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Abstract 
X-ray computed tomography (CT) is a non-invasive imaging technique widely 

used in medical diagnosis to detect physiological abnormalities. Recently it has 

been adopted for estimating tissue proportions in live sheep. This thesis is con-

cerned with the development of statistical methods for automating the estimation 

of tissue proportions from CT images. 

The first stage in the estimation process is to segment sectional images into the 

internal organs, the carcass and the area external to the sheep. This is currently 

achieved by manually extracting boundaries which encircle the internal organs of 

the sheep, and is undesirable because it is a very subjective and tedious process. 

We explore the use of deformable templates to automate this stage, by means of 

a parametrised stochastic template which describes the shape and variability of 

these boundaries. The manually segmented boundaries from 24 lumbar images are 

parametrised using Fourier coefficients, which are reduced in dimensionality using 

principal components in order to estimate a distribution on the parameters of the 

template. Templates are fitted to further images using a criterion which combines 

the local pixel gradient and closeness to the estimated template distribution. 

Having isolated the carcass region, we estimate the proportions of fat and muscle 

by modelling the probability density function of the pixel values in the segmented 

image, taking into account that many pixel values are generated from a mixture 

of two or more tissues. The spatial response of the CT machine is investigated by 

examining a sharp boundary in the image. Modelling this response as an isotropic 

bivariate normal density leads to a new probability density function for the values 

of the mixed pixels in the image, and hence to a combined distribution with the 

remaining pixels. 

In a simulation study, this proposed density function is fitted to histograms of 

pixel values by maximum likelihood, and is shown to estimate the tissue propor-

tions more accurately than the threshold-based method currently in use. The ef-

fect of taking some account of a pixel's spatial context by examining the greyscale 

values of its neighbours is also investigated. 
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Chapter 1 

Introduction 

The aim of this thesis is to develop statistical methods for automated estimation 

of the amount of fat, muscle and bone in X-ray computed tomography images of 

sheep. 

X-ray computed tomography (CT) is a non-invasive imaging technique whose pri-

mary application is in medical diagnosis. However, in a very different application, 

CT scanning is being used increasingly in sheep breeding programmes, and offers 

potential for estimating tissue proportions in live sheep to aid selection. 

1.1 Why use X-ray CT for sheep breeding? 

In the past, ultrasound imaging has proved a very useful tool for breeders who 

wish to improve the carcass composition of their animals (see Simm, 1998). How-

ever, X-ray CT offers a more accurate imaging technology, allowing genetic im-

provement of carcass composition to be accelerated and more characteristics to 

be assessed, e.g. the ratio of muscle to fat, studies of fat distribution or develop-

ment of muscle. The quality of the carcass is becoming of greater importance for 

breeders, but with ultrasound imaging the most useful and critical characteristics, 

whose manipulation causes the greatest impact, are difficult to assess objectively 

and accurately in live sheep. 

Therefore in 1997, with this understanding the Scottish Agricultural College 

(SAC) collaborated with Biomathematics and Statistics Scotland (BioSS), aiming 

to benefit from the use of CT scanning in meat sheep breeding programmes. Meat 

breeds, such as Charollais, Suffoiks and Texels, produce about 70% of the lambs 

reared for meat production in Britain, so genetic improvement in this sector will 

have a major impact in the whole sheep industry. It is believed by breeders that 
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Figure 1.1: X-ray CT image showing a cross-section of the abdomen of a sheep 
with the main regions identified. 

the economic benefits to the industry could be increased by up to 50% by using 

CT measurements as opposed to ultrasound. 

CT scanning provides more accurate information on body tissues than ultrasound; 

this results in fewer animals requiring to be studied. Detailed measurements can 

now be made on tissues of live animals, whereas previously these calculations 

could only be made on dissection of the animal. In addition, some entities such 

as the distribution of fat in the body or the shape of individual muscles can now 

be visualised in a way which was previously unavailable. Figure 1.1 shows a 

typical X-ray CT image through the abdomen of a sheep; the U-shaped cradle in 

which the sheep is lying can also be seen. 

1.2 Digital images and Hounsfield units 

X-ray CT measures tissue density, and each CT picture is a digital image which 

is made up of a grid of small squares, which are called pixels. Often the grid 

is square and the number of rows and columns is either 256 or 512, with the 

labelling of pixels starting in the top left-hand corner. 

Each pixel is assigned a value which corresponds to the average density of the 

tissue around that point in the image. Air is least dense and tissues such as bone 

are most dense. The pixel values are given Hounsfield units (HU), which measure 
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Figure 1.2: The Hounsfield scale and values for various body tissues. 

how opaque different tissues are to the passage of X-rays and range between 

—1024 for air to in excess of +1000 for dense bone. Figure 1.2 shows the full 

Hounsfield scale and the ranges of values for various tissues. 

However, the human eye can distinguish only a small number of shades of grey, 

around 10-15. Therefore, if the full Hounsfield scale (approximately 2000 HU) is 

displayed in an image then small differences in density appear homogeneous and 

are masked. The computer displays different density values as different shades 

of grey and these are known as grey-levels. Usually the computer discretizes the 

density values as 256 shades of grey, where 0 is displayed as black (representing 

air) and 255 as white (representing bone). The choice of how to display pixel 

values is arbitrary and the range of densities displayed can be altered to suit the 

particular investigation by selecting upper and lower limits on the density range 

required. For example, we can choose to highlight just dense tissues or have a large 

range of densities displayed in the image. Pixels which have a Hounsfield number 

larger than the upper limit and smaller than the lower limit can be assigned to 

appear as white and black in the image. 

For the purposes of this thesis, we re-configure the sheep images using a scale 

which emphasizes the differences between fat and muscle tissues by selecting the 

Hounsfield units in the range [-256, +256]. A linear transformation on this range 

is used to assign greyscale values with —256 and +256 represented by greyscale 

values 0 and 255 respectively. Hounsfield values less than —256 are represented 

by greyscale value 0 and the Hounsfield values greater than +256 are represented 

by greyscale value 255. Therefore, in a typical image of a sheep, visually we see 

air as black, fat as dark grey, muscle as light grey and bone as white; see Figure 

1.1. As in the convention with X-ray plates, see Chapter 2, light areas in the 

image denote regions which transmitted less X-rays (usually bone). Muscles and 

internal organs appear slightly lighter than fat tissue because they are slightly 
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(a) 	 ()) 

Figure 1.3: X-ray CT image through the abdomen of a sheep where (a) the full 
Hounsfield range is displayed (b) a subset of the Hounsfield range is displayed to 
highlight the differences between fat and muscle tissue. 

more opaque to X-rays. Figure 1.3 (a) shows the full Hounsfield range displayed 

in a typical cross-section through the abdomen of a sheep and (b) shows the same 

image with Hounsfield units in the range [-256, +2561 to highlight the fat and 

muscle tissues. 

1.3 The nature of the data 

The SAC-BioSS CT scanner is a Siemens Somatom CR system, which is described 

in more detail in Chapter 2. The dataset consists of 24 Suffolk lambs, comprising 

both males and females, scanned at the age of 22 weeks. 

Experts at the SAC-BioSS CT unit identified several CT scan positions in the 

whole body which were most informative for the estimation of body composition. 

Therefore, the convention now established at the CT unit is to obtain a conven-

tional X-ray image (in the vertical plane through the animal), together with three 

anatomically located CT cross-sectional images for each sheep. The process of 

obtaining these images is described in Chapter 2. These three locations are the 

ischium (upper legs), lumbar (lower back) and the thorax (chest region) and they 

comprise one each in the main carcass regions. Hence, this is intended to allow 

accurate estimation of tissue proportions and distributions from only three scans. 

The three CT scans are taken parallel to each other and are perpendicular to the 

long axis of the sheep. Each image contains a 256 x 256 array of pixels with the 

sheep scanned lying on its back, and the left side of the sheep is displayed on the 
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Figure 1.4: (a) Conventional X-ray image of a male sheep lying on its back in 
a cradle. The cross-sectional CT images, (b) ischium (c) lumbar (d) thorax are 
displayed, (with the manually drawn boundaries) and are located at the positions 
marked by arrows. 

right to the viewer. Figure 1.4 shows a typical example of each of these images, 

where (a) shows a conventional X-ray image of a sheep lying on its back in a 

cradle. The position of the three cross-sectional images relative to this conven-

tional image are marked with arrows. These cross-sections are (b) ischium, (c) 

lumbar and (d) thorax images, which have been trimmed to become 191 x 191 

arrays of pixels. The manually drawn boundaries, which are explained in Section 

1.4, for each cross-sectional image are shown in white. It is attempted, as much 

as possible, to restrain the sheep to lie vertically in the cradle. However, due to 

movement of some of the animals after restraint, the corresponding images show 

slight rotation from the central axis of the body from the vertical. Examples of 

this are shown in Figures 1.3 and 1.4. 



1.4 Current approach to tissue estimation 

The approach which is currently in use at the SAC-BioSS CT unit for estimation 

of tissue proportions in sheep takes place in three stages, which are outlined briefly 

below. For a more detailed summary of each stage, see Glasbey and Robinson 

(2000). 

The first stage involves segmenting the relevant tissue areas of fat, muscle and 

bone from images similar to Figures 1.4 (b), (c) and (d), by excluding the internal 

and external organs, the cradle and the air. This is currently achieved by trac-

ing round the digestive tract, internal organs and internal fat using a computer 

mouse. These manual boundaries for each anatomical position are shown in white 

in Figures 1.4 (b), (c) and (d). Another boundary around the outside of the sheep 

is required in Figures 1.4 (c) and (d), but can be found comparatively easily: see 

Chapter 4. The greyscale values of the pixels contained within the inner bound-

ary and outside the outer one are set to zero, so the remaining non-zero pixels 

correspond to fat, muscle and bone. These images are referred to as 'segmented 

images' and are used by the operator in stage two to predict the relative body 

composition. - 

In the second stage, the animal's fat and muscle tissue volumes are estimated from 

the segmented images. At present, this is achieved by examining the histograms 

of greyscale values of these pixels and using three threshold values to segment 

the image into air, fat, muscle and bone. These threshold values are —196HU, 

—24HU and 176HU. 

Finally, in the third stage, the overall amounts of fat, muscle and bone in the 

carcass are predicted using these tissue measurements from the three CT images 

of each sheep, together with the weight of the animal at the time of scanning. This 

is known as the 'liveweight'. These predictions are made using multiple regression 

procedures. Initially, the prediction equations used by SAC-BIOSS CT unit were 

breed specific, e.g. for Charollais, Suffoiks or Texels. However, it was found that 

when the breed specific equations were used to predict carcass tissue weights in 

other breeds, statistically significant differences between breed equations were 

found. Therefore, a generalised prediction equation has been derived by fitting 

the tissue areas from the three CT images as covariates and breed as a fixed effect 

in a generalised linear model. 

The research in this thesis comprises the improvement of the first two stages of 

this current process, in terms of efficiency, accuracy of estimation results and 
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computation time. Although not discussed further, stage three is mentioned for 

completeness. 

1.5 Outline of the thesis 

In Chapter 2, a concise history and the process of X-ray CT are presented, and 

the differences to conventional X-ray images are highlighted. The hardware and 

software of the scanning system of a typical X-ray CT machine, and in particular 

the SAC-BioSS CT scanner, is discussed, together with the different modes of 

scanning available. 

We propose to use deformable templates to automate the segmentation stage of 

the process, which is currently performed manually. In Chapter 3 the problems 

with low-level segmentation techniques for these X-ray CT images of sheep are 

presented, hence stressing the requirement for an alternative approach. The ad-

vantages of using deformable templates are considered and a concise review of the 

literature in this field is provided. The review is separated into free-form mod-

els and parametric deformable templates, although the latter are predominantly 

discussed as this approach is employed in Chapter 4. 

In Chapter 4, a parametrised template model is constructed for the distribution 

of boundaries which encircle a sheep's internal organs in order to identify the 

carcass. This is achieved by modelling a training set of 24 lumbar images similar 

to Figure 1.4 (c). Fourier coefficients are used to parametrise the boundaries and 

the matrix of coefficients is reduced in dimensionality using principal components. 

As a measure of fit to further images we use a criterion which combines the local 

pixel gradient with the estimated distribution of boundaries. This criterion is 

optimised using the Nelder-Mead algorithm, and the model is validated on an 

independent set of images from sheep of the same breed and age. To complete 

Chapter 4, we investigate the effect of adding the mirror images of each of the 24 

lumbar regions to the training set. 

Chapter 5 is concerned with estimation of the relevant tissue proportions after au-

tomating the segmentation of these images. In approaching this it is appreciated 

that many of the pixel values are generated by a mixture of two or more tissues, 

due to the finite resolution of the X-ray CT machine. The spatial response of the 

CT machine is investigated by examining a sharp boundary in the image. This is 

used to derive a new probability density function for the mixed pixels and hence 

a distribution of greyscale values of all the pixels in the image. 
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In Chapter 6, the proposed probability density function is fitted to simulated his-

tograms of pixel values containing two tissue types, using maximum likelihood. 

The results are compared with those obtained using the threshold method cur-

rently in use at the SAC-BioSS CT unit. To complete this chapter, a pixel's 

spatial context is considered by examining the greyscale values of its neighbours, 

in an investigation which is shown to produce more efficient estimation results 

than the maximum likelihood approach. 

12 



Chapter 2 

X-ray computed tomography 

2.1 Introduction to X-ray CT 

When X-rays were discovered in 1895, they provided a non-invasive, internal 

visualisation of the body's structures without surgery. The potential of this as 

a new medical diagnostic technique was immediately recognised. Since then the 

technique has been improved through the development of more sophisticated and 

effective instruments. Due to the ionising effect of the X-rays, the patient is liable 

to some risks, but these are generally accepted because of the advantages of the 

direct visualisation of structures: see Shrimpton and Wall (1995). 

In the ordinary medical use of X-rays, the image is something like a shadow. All 

points in the path of any X-ray beam are projected onto the same point on the 

detector film, resulting in structures being superimposed on the photographic im-

age, rendering detailed visualisation of these separate structures difficult. Figure 

2.1 shows an example of a sheep which has been X-rayed in this way. The posi-

tioning of the bones can be fairly clearly seen, but other organs and soft tissues 

are not so easily detectable. 

This form of conventional X-ray imaging technique has several important limita-

tions: 

• Due to the superposition of a three-dimensional structure onto a two dimen-

sional detector, much of the detail on features is lost. This is very evident 

from Figure 2.1. 

• Small differences in the attenuation values of different tissues are not de-

tectable in the values that the X-ray film records. 

• A large percentage of the transmitted X-rays are scattered from the patient 
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Figuru LI: A o 	uJ i 	1(1 in 	-i 	. un aiiutLii a a LupuyI.LJJII) of a 
typical sheep. The sheep is scanned in two images as the table can only be moved 
by the computer by a certain amount, which is shorter than the full length of the 
sheep. From left to right, the head, ribs, heart and legs can be seen. 

and are not recorded by the detector. This therefore reduces the signal to 

noise ratio of the recorded information. 

When X-ray CT (computed tomography) was developed in the 1970s, it provided 

a more precise method of viewing the location of structures inside the human 

body than had previously been available. It is termed X-ray CT because it 

makes use of X-ray attenuation (reduction in intensity of X-rays due to tissue 

absorption and scatter). 'Tomography' is derived from a Greek word meaning 

'section' where a computer (rather than an X-ray film) is used to produce an 

image of the subject. Unlike conventional X-ray imaging, X-ray CT provides 

a picture of a single slice, (or cross-section) termed a tomograph, through the 

body, without structures being superimposed. Tomographs are constructed from 

thousands of X-ray beams that lie in the plane of the cross-section. As well 

as enhanced image quality, the development of X-ray CT has led to reduced 

examination times. Therefore, with the introduction of X-ray CT, many of the 

problems associated with conventional X-ray imaging were either eliminated or 

greatly diminished, see Shepp and Kruskal (1978). 

Today tomography is used in a wide variety of fields, such as medical imaging, 

seismology, and underwater acoustic imaging. Although the main use of X-ray 

CT is in medical imaging to detect tissue abnormalities, it has also been used to 

study the growth and development of animals. 

14 



2.2 X-ray CT and its history 

The fundamental purpose of CT is to reconstruct an image of a cross-section of 

an object using data collected from many individual beams of X-rays that are 

passed through the cross-section. The data from the beams is processed by a 

computer, which uses a mathematical algorithm to convert the X-ray attenuation 

measurements into a two-dimensional cross-sectional image, which is displayed 

on a video screen. This process is known as image reconstruction. 

In 1917, an Austrian mathematician, Radon (1917), first investigated the math-

ematical principles which still have such a central role in tomography. He proved 

that a two or three-dimensional object could be reconstructed uniquely from the 

infinite set of all its projections. Radon's formulation later became known as the 

projection formula. 

In the 1930s, conventional tomography (also known as longitudinal tomography) 

was developed in order to overcome the problem of structures being superimposed, 

which existed with traditional X-ray imaging. Conventional tomography differs 

from traditional X-ray imaging in that the X-ray source and detector move in 

opposite directions to each other. This is performed in such a way that only 

points in a plane parallel to the film are in focus on the film. This method does 

not completely remove the superposition problem, but results in sharper focus of 

the objects in the plane than those not in the plane. 

Recognising the restrictions, Kuhl and Edwards (1968) introduced transverse sec-

tion scanning in an attempt to avoid them. This technique is a form of the basic 

reconstruction method, known as summation or simple back projection. However, 

it also has limitations, in that due to the reconstruction, blurring of sharp features 

occurs. 

Bracewell and Riddle (1967) proposed the mathematical approximation of Radon's 

integral formula in radioastronomy, which came to be known as the convolution 

method. This method was modified and refined by several investigators, including 

Cormack (1963) who proposed it for medical use, and was to become the recon-

struction method used by most X-ray CT scanners developed in the latter half of 

the 1970s. 

In the late 1960s, Hounsfield (1972) was independently developing the ideas that 

mathematical techniques could be used to reconstruct the internal structure of 

the body from a number of different X-ray measurements. As a result of his work, 

he developed a numerical, executable, mathematical solution to the reconstruc- 
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tion problem. Hounsfield (1972) also showed that he could produce considerably 

more accurate measurements of the absolute value of X-ray attenuation coeffi-

cients within the body with a quantitative tomographic technique rather than 

the conventional X-ray imaging. In 1971, when working for EMI Ltd, he invented 

the first clinical X-ray CT machine to give an image accurate enough to be of 

value in medical diagnosis. Mathematical analysis using Fourier transforms has 

led to algorithms which are much more accurate and efficient than the algorithm 

used in the first commercial tomography machines. 

The most widely used technique for comparing the three reconstruction algo-

rithms mentioned (summation, convolution method and the Fourier transform 

method) has been to compare the reconstructed images from each method when 

applied to data taken from real human objects. Another technique is to use phan-

toms; this means taking data from a man-made object of known structure instead 

of a human subject. The most well known phantom in reconstruction is a head 

phantom: see Shepp and Logan (1974). The mentioned image reconstruction 

methods are not described in this thesis, but full details may be found in Robb 

(1982), Rosenfeld and Kak (1982) and Schalkoff (1989). 

2.3 The scanning system of an X-ray CT machine 

The scanning system consists of 5 main components, which can be seen in Figure 

2.2. These are 

An operator's console from which the rest of the system is controlled. 

. A bed on which the subject lies (the position, relative to the gantry, is under 

the control of the computer). 

. The gantry which contains the X-ray source and detectors (both of which 

can spin around the subject). 

. The computer, which is responsible for co-ordinating all system functions 

and calculating the image reconstruction. 

• High voltage generator. 

An X-ray CT image, or tomograph, is obtained with the subject placed in the 

aperture of the gantry. An X-ray source spins round the subject sending a thin 

focused beam of X-rays through the subject. On the opposite side to the X-ray 

source an array of X-ray detectors measures the degree to which the X-ray beam 

is attenuated. The amount of absorption of the X-rays depends on the physical 
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For Examination and Evaluation 

Figure 2.2: The main components of a typical X-ray CT machine. This image 
was taken from the operating manual of the Siemens Somatom scanner. 

density and atomic composition of the structures which they pass through and on 

the energy of the X-ray beam. Although two spatially separated X-ray beams of 

equal energy may be recorded by the detector as having the same total reduction 

in intensity, they may have passed through entirely different materials. This is 

because attenuation of the beam is also dependent on the length of the path 

through the object, as well as the composition of the path. The computer records 

the degree of attenuation at many points around the subject. It then builds up 

a picture of a two-dimensional slice through the subject, describing the density 

of each point in that picture. This density is based on the degree to which the 

X-ray beam is attenuated from the different positions around the subject. The 

finite number of attenuation values corresponding with the scanned object are 

organised into a matrix. The translation of these numbers into Hounsfield units, 

(see Chapter 1) and hence corresponding grey-levels, then creates a visual image 

of the scanned cross-sectional area. The number of pixels in the reconstructed 

image is dependent on the number of individual projections through the subject 

and therefore also influences the quality of the image resolution. 

Obtaining a tomograph at a precise anatomical location is aided by the use of 

topographs or scout images: a topograph for a typical sheep is shown in Figure 

2.1. These look like conventional X-ray plates and are obtained by holding the 

X-ray source in one position and slowly moving the subject past it. The operator 

17 



of the scanner can then locate the position of a desired slice from this topograph 

and the computer will move the motorised bed so a tomograph image is taken 

at that exact location. Technically, X-ray CT scanners can produce whole body 

scans, but in practice this is not realistic as more than 100 scans per animal would 

have to be taken and analysed. 

2.3.1 Modes of scanning 

There are two possible modes used for scanning the cross-section. These are the 

parallel and the fan-beam mode. Since the development of CT scanners, the de-

signs of the scanners have changed in order to become more efficient. Many texts 

give detailed accounts of the various types of scanners, such as Herman (1980), 

Robb (1982), Anton and Rorres (1991) and Hiriyannaiah (1997). The current 

engineering emphasis is on speed of scanning and the reduction of the number 

of moving parts, which is achieved by the use of many detectors in combination 

with a fan-shaped beam of X-rays. 

Parallel mode 

In the parallel mode, a single X-ray source and the X-ray detector pair are moved 

in parallel in a direction perpendicular to the line connecting the source to the 

detector. Many measurements of the parallel beams are recorded. Then the 

source and detector pair are rotated through a small angle (typically one degree), 

and another set of measurements is taken. This is repeated until the desired 

number of beam measurements is completed. Advantages of this method are 

that there is little noise due to scatter and the detector can be calibrated at the 

beginning of each parallel beam scan. The disadvantages are that it is very time 

consuming and inappropriate for imaging organs which cannot stay stationary 

for more than a few seconds. Also, undue exposure to ionising radiation for 

extended periods are involved. For example, in the original 1971 machine, 160 

parallel measurements were taken through 180 angles spaced 1 degree apart, a 

total of 28,000 beam measurements. Each scan took approximately five and a 

half minutes. 

Fan-beam mode 

This type of scanner was introduced to speed up the scanning process without 

losing most of the desirable features of the parallel mode. In fan beam tomogra- 



phy, the X-ray beam is collimated so that a thin, planar fan beam of rays diverges 

from the X-ray source and passes through the object before being collected by a 

detector array (containing between 200 and 1000 detectors) on the other side of 

the field of view. This method involves only one motion, where the X-ray tube 

and detector array are rotated around the patient through many angles (approx-

imately 500) and a set of measurements is taken at each angle. In each source 

position, the fan beam completely covers the object and each complete scan is 

performed within several seconds. 

Figure 2.3: This shows how the equiangular fan beam system appears. The k-rays 
are emitted from A, and C is the circular arc containing the detector array. This 
was taken from the Siemens Somatom scanner operating manual. 

There are two major detector configurations in the fan beam mode, (for more 

details see Hiriyannaiah, 1997). 

Equiangular fan-beam: The detector array lies on a circular arc (or a com-

plete circle in some present day scanners) such that the angle between two 

detectors is constant as well as the distance between the detectors. If the 

detectors were collinear then the spacing between the detectors would ob-

viously be unequal. Figure 2.3 shows an equiangular fan beam system with 

rotating X-ray tube and a circular arc containing the detector array. The 

enclosed circle in this image is the gantry in which the subject lies. 

Equidistant collinear detector fan beam: The detectors lie on a straight line 

and are equidistant from each other, but the angular interval is not equal. 
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2.4 X-ray CT scanning of sheep using the SAC-
BioSS scanner 

The SAC-BioSS scanner is a Siemens Somatom CR system, and the main com-

ponents of this machine are shown in Figure 2.2. This is a fan-beam scanner, 

and the gantry contains the rotating X-ray tube-detector system. The sheep lies 

on a longitudinally movable table top, normally in the supine position with its 

head pointing towards the gantry. Reconstruction and storage of the image is 

performed using a 256 x 256 matrix, with a choice of attenuation measurements 

taken at either 360 or 720 angles in order to produce a single scan: refer to 

Subsection 2.3.1 for further details. 

Different durations of X-ray pulses are available (2 and 4 ms), as are different 

slice thicknesses (2, 4 and 8mm): the 2mm option is used for all the tomograph 

images presented throughout this thesis. The measured attenuation values are 

converted into the international Hounsfield unit (HU) range: see Chapter 1. 

2.4.1 The scanning strategies used for sheep 

There are two strategies commonly used in CT scanning of sheep. One is used 

to predict the relative body composition of the animal from a few (2-7) images, 

taken at specific anatomical locations. These specific locations are found using 

the topograph, see Section 2.3. The other method is used to estimate whole body 

tissue size from 15-20 images. 

The first strategy is used when knowledge of the relative tissue size is sufficient. 

The few anatomical sites are chosen according to their likelihood of having a 

strong relationship with body composition or to allow assessment of a number 

of anatomical entities from only a few images. This approach is best suited to 

comparisons of large numbers of animals within or between breeds. However, it 

may overestimate or underestimate differences between individual animals with 

different body shapes. Body and carcass composition can then be predicted from 

tissue areas in each slice using equations derived from calibration studies. At the 

SAC-BioSS CT unit, three anatomical locations from each sheep are used in the 

reference slice approach, namely the ischium (upper legs), lumbar (lower back 

region) and thorax (chest) images: see Chapter 1 for examples of scans at each of 

these positions. These particular positions are chosen based on expert knowledge 

of positions which provide the most accurate analysis of the full animal compo-

sition. Comparison of different sets of predictors was carried out using stepwise 
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regression techniques. It was found that these three CT scans consistently topped 

the list of the best predictors. Also, these three predictors include one each from 

the three main regions of the carcass: leg, loin and chest/shoulder. 

The second strategy is known as the Cavalieri approach, and is named such as it 

is implemented using Cavalieri's Theorem, a 14th century Italian mathematician 

(see Sugakkai, 1987). The volume of each tissue can be estimated accurately by 

taking 12-15 images randomly positioned but equally spaced, and measuring the 

area of each tissue in the image and then multiplying the sum of these areas by 

the inter-image distance (for the SAC-BioSS machine this is 2, 4, or 8mm). This 

approach is used when the absolute tissue size is required to be known, such as 

in studies of nutrition. 
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Chapter 3 

Deformable templates 

3.1 Introduction 

Deformable templates are a model-based approach to extracting structures from 

images, which are able to accommodate the significant variability of biological 

structures across individuals and over time. They were originally developed for 

application to problems associated to computer vision and computer graphics, 

to segment, visualize, track and quantify a diversity of structures. In particular, 

in segmentation, the aim is primarily to extract boundaries belonging to the 

structure and to use this information to build a consistent model of the object of 

interest. 

This chapter explains how segmentation was traditionally performed, (see Sec-

tion 3.2) and goes on to discuss the disadvantages of these methods. Deformable 

templates were introduced and developed in order to overcome these deficien-

cies. In addition, a review is presented of the various types of template that have 

been employed by authors since they were first introduced. The review mainly 

focuses on the parametric deformable templates in Section 3.5, since they incor-

porate prior information from the images into the model. This has been the most 

commonly used approach in recent years. 

3.2 Low-level segmentation 

In many medical and biological image analysis tasks, the first stage is to segment 

the image into subsets of pixels corresponding to the different tissues and struc-

tures present. In order to be able to identify objects of interest, it is a common 

approach to extract features such as boundaries. Using segmentation methods 
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based on these features, the image is separated into its constituent regions and can 

then be classified by identifying which object corresponds to each region. In med-

ical and biological images, there is natural variability both between and within 

subjects. That is, almost every object of interest in the body can vary in size, 

shape, orientation, location and appearance. This makes the task of identifying 

and segmenting the image into the structures of interest very difficult. 

In many applications, segmentation is performed manually, where a skilled oper-

ator manually traces round the region of interest in each image, using a computer 

mouse. This approach has serious weaknesses in that there will be operator bias 

or fatigue, since it is a very tedious, subjective and time-consuming process. It 

also raises the question of whether the operator would be able to produce a sim-

ilar segmentation if carried out on different occasions. Therefore, for manual 

segmentation to be reliable, consistent and reproducible, expert knowledge of the 

features and underlying image is required. 

Other approaches involve using low-level automatic segmentation techniques, for 

example grey-level thresholding or the application of edge operators. However, 

these methods also have many well-known problems. Thresholding is generally 

successful only if there is little overlap in the greyscale pixel values in the different 

regions of the image. Edge detectors for boundary fitting have the problem that 

they completely rely on the local neighbourhood of pixels in the original image and 

can therefore generate infeasible object boundaries, spurious edges and gaps in 

the objects of interest. In addition, the edges found do not necessarily correspond 

to the actual boundaries of the objects. Furthermore, they are of little use in noisy 

images, e.g. ultrasound images, and they ignore model-based information and the 

higher-order organisation of the image. Therefore, these model-free techniques 

also require expert intervention as they are unlikely to work well due to the 

under-constrained nature of the problem. 

These weaknesses for both manual and low-level processing show there is a need 

for quantitative data to be efficiently extracted using a more accurate, repeat-

able, objective and automatic method. That is, in general, segmentation cannot 

be addressed adequately without 'high-level' prior knowledge of the size, loca-

tion, intensity of tissues, the number of objects the image contains and how they 

interact with each other. 

The consequence of these disadvantages is that powerful models are needed which 

are not only robust against noisy data but are also capable of accurately represent- 

ing complex shapes of many anatomical structures. In order to be fully effective, 
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these models must allow for expected variation in size, shape and appearance of 

the objects in the images. However, segmenting structures and reconstructing a 

compact geometric representation of the structures is difficult because of the size 

of datasets and the complexity and variability of the anatomic shapes of inter-

est. A solution to this problem is the elegant and robust method of deformable 

templates (with image preprocessing), which will now be described in detail. 

3.3 Deformable templates 

The use of deformable templates is a model-based approach to extracting mean-

ingful structures from the data, which accommodates the significant variability 

of biological structures across subjects. They may be used to overcome the diffi-

culties and drawbacks of manual interpretation and traditional image processing 

techniques, as mentioned in Section 3.2. They are also popular because they 

have the ability to combine low-level knowledge from the image with high-level 

knowledge about the location, size and shape of features such as the anatomic 

structures. 

By using parametrised geometric models of objects that. are likely to be present 

in the image, results from imperfect data can be improved. The amount of shape 

information incorporated into the model can vary from local and general to global 

and very specific. For example, the model can incorporate only smoothness or 

continuity constraints or may specify the exact shape of the object using e.g. 

a 'hand-crafted' parametric form, see Subsection 3.5.1. In general, the overall 

template can consist of more than one object template, and when it is overlaid 

onto the image, it should segment it into the regions of interest (see Phillips and 

Smith, 1994). Most authors address the problem of object identification as a 

process of boundary finding and incorporate the global shape information into 

the model. In order to exploit model-based information, the knowledge of the 

shape should be included as explicitly and specifically as possible. Obviously 

there will be differences between the objects present between individuals due to 

natural variation, varying imaging conditions and noise. Deformable templates 

are adaptable and flexible in the modelling of the object of interest and can cope 

with variations while still maintaining the certain structure of the object. These 

models of shapes and appearance of flexible objects may be used when searching 

the images for new examples of the objects. Such models usually have a number of 

parameters to control the shape and size of all the parts of the model. Structures 

in the image can therefore be considered as a deformation of a given template. 
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Early attempts at template matching were undertaken by using rigid templates, 

which are restricted to transformations of rotation, translation and scaling. As 

they are very simple models because of the limited degrees of freedom, their use 

is very restricted, since biological applications undergo non-rigid transformations. 

However, a deformable template can undergo both non-rigid transformations and 

the transformations mentioned above. They can adapt to fit any given image 

data and they have the ability to impose geometrical constraints on the shape. 

Also, it is possible to include local information from the image. 

The concept of template matching was introduced by Fischler and Elschlager 

(1973) to model facial features using a set of basic rigid features connected by 

a mathematical representation of springs. The individual features (eyes, mouth, 

nose, hair) do not deform and each feature has a local measure of fit to the 

image. The springs joining the rigid features act not only to constrain the relative 

movement, i.e. ensure that the spatial relationships between the features remain 

reasonable, but to measure the 'cost' of the movement by how much they are 

stretched from the equilibrium position. During the matching process the entire 

structure is deformed until all the features have a good local fit in an image and 

the spring forces are balanced. Although it has the benefit of being a very general 

approach, the main weakness is the simplicity of the local fitness measure that 

Fischler and Elschlager (1973) proposed to use. It is strongly scale dependent 

and may fail with certain noise levels in the image. 

The deformable templates used in previous literature fall into two categories: 

. Free-form models 

• Parametric deformable templates. 

These will be discussed in Sections 3.4 and 3.5 respectively. However, before 

they are discussed it should be pointed out that there are two ways in which 

to quantify the success of a particular instance of a deformable template and 

distinguish which template provides the best segmentation for a given image. 

This can be achieved by either using an energy minimising approach, or the more 

recent approach, which uses a Bayesian framework. 

3.3.1 Energy minimising approach 

Here an energy function is defined which consists of two separate parts, namely 

the internal and external energy functions. Each of these individual functions 

may consist of one or more terms themselves, (see for example Yuille et al., 
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1992). The internal energy is independent of the input image and is related only 

to the geometric shape, which is a fundamental property of the template. The 

external energy function is related to the image data in some way, depending on 

the object of interest, e.g. edges, lines, valleys or peaks. However, in most papers 

the authors specify the interaction between the image and the template in terms of 

the image greyscale values and/or edge information from the image. In principle 

it is possible to combine other types of information such as texture or colour. 

Combining the external energy with the internal energy allows the template to 

interact with the image and it is therefore attracted to the desired prominent 

features. In Section 3.4 the internal and external functions used by Kass et al. 

(1988) are discussed. The two energy functions are combined generally in such 

a way that the overall energy, also called the objective function, is minimised by 

the optimal template. 

3.3.2 Bayesian formulation 

A convenient approach is also to view the problem in a probabilistic framework, 

hence allowing the incorporation of very specific prior knowledge about features 

and the spatial relationships between them into the template model. The proba-

bilistic framework also provides a measure of uncertainty of the estimated shape 

parameters after the model is fitted to the data and is used to make inferences 

about the parameters of interest. The prior model usually represents the initial 

knowledge of the distribution of the template parameters. We let the vector of 

parameters of the model be denoted by 0, with prior probability density p(0). 

The prior density must accurately reflect the variation between the parameters if 

the general template is to be capable of adapting to closely represent a sufficiently 

wide range of particular cases of the modelled object or objects. The likelihood 

function (also known as the observation or imaging model) measures the 'good-

ness of fit' of a given template with the observed image, denoted by (Il°)  where 

I represents a certain image, (see Fisker and Carstensen, 1998). In many cases 

the likelihood is thought of as specifying how well the existing templates agree 

with the boundaries of the images, i.e. a measure of the edge strength agreement. 

For examples of Bayesian formulations, see Phillips and Smith (1994), Rueckert 

and Burger (1997), Glasbey (1998). These papers will be discussed in Subsection 

3.5.2. The likelihood function is chosen according to the specific problem in hand. 

Using Bayes theorem, the posterior density, p(0I), of the parameters given the 

image is obtained, where p(0I) cx (iI°)(°). The posterior density, p(0I), (also 

denoted the objective function) can then be maximised to find the parameters of 
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the best fitting template for that given image. 

3.3.3 Optimisation of the energy and Bayesian approaches 

The internal energy function can be interpreted as a prior distribution over the 

expected shapes, using the Boltzmann or Gibbs distribution. Similarly, the ex-

ternal energy can be shown how to be related to the likelihood, therefore showing 

that the approaches are equivalent. For full details on this relationship between 

the two methods see McInerney and Terzopoulos (1996) and Jain et al. (1998). 

Several authors have assigned weights to the two different components of the 

given objective function, both in the Bayesian and energy formulation, see Glas-

bey (1998). The choice of these weights and other parameters of the template 

affect the overall success of the model. 

Various methods are used in the literature for the optimisation of the objective 

function (from either the energy or Bayesian approaches), using either determinis-

tic or stochastic techniques. The choice of optimisation technique is not discussed 

here, but various approaches are mentioned in Chapter 4. As part of the opti-

misation stage, some authors have proposed to use a multi-resolutional approach 

proceeding from a coarse to fine resolution in a number of steps: see Jain et al. 

(1996). 

3.4 Free-form models 

McInerney and Terzopoulos (1996) and Jain et al. (1998) provide very compre-

hensive reviews of these free-form methods. They are used because they can 

represent any arbitrary shape as long as some given constraints such as continu-

ity and smoothness are satisfied. They are generally free to follow almost any 

smooth boundary as they contain only a few constraints on the overall shapes. 

In general, they are used to approximate the locations and shapes of bound-

aries, based on the assumption that the boundaries are piecewise continuous and 

smooth. Among the first and primary uses of deformable models was the appli-

cation of deformable contour models, also known as active contour models (see 

Kass et al., 1988). They refer to their model as a 'snake', which they describe to 

be 

an energy minimising spline guided by external constraint forces and 

influenced by image forces that pull it towards features such as lines 
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and edges. Snakes are active contour models. They lock onto nearby 

edges, localising them accurately. 

Kass et al. (1988) describe the model to be active because it is always minimis-

ing the energy function and can adapt to any given shape. Snakes do not try 

to solve the global problem of finding prominent image contours as they rely on 

other mechanisms to place them somewhere near the desired contour. However, 

from any starting point, the snake deforms itself to resemble and fit the near-

est prominent contour. In most cases where deformable models are used, they 

have associated deformable energy functions, which increase monotonically as the 

model deforms away from the specified natural position. Kass et al. (1988) op-

timise in the image space and this makes it difficult to incorporate global shape 

information. Other authors, including Cootes et al. (1994) and Glasbey (1998), 

optimise in the parameter space. Kass et al. (1988) propose to minimise the 

energy function which is a weighted combination of three parts: 

An internal contour energy which characterises the deformation of a stretchy, 

flexible contour and which serves to impose a piecewise smoothness con-

straint, 

An image energy which attracts the contour to prominent features of the 

image like lines and edges, 

An external constraint energy, which is responsible for putting the contour 

near a desired local minimum. 

To apply snakes to images, image energies are designed whose local minimum 

coincide with e.g. the maximum and minimum greyscale values, edges and other 

features of interest. If the snake is designed to be attracted to edges, then it is 

fairly common to convolve the edge image with a Gaussian smoothing filter, see 

Subsection 4.9.1. This has the effect of controlling the spatial extent of the local 

minimum of the energy function. 

At the time snakes were introduced, they offered a unique semi-automatic way 

of locating edges, lines and contours using essentially a single method. However, 

they have limitations in that they only use local information from the image and 

therefore do not try and solve the global problem of finding prominent image 

contours. They are very sensitive to their initial position and the amount of noise 

in the image. After the initial position is specified, the snake deforms itself to 

resemble and fit a nearby edge or line by minimising the energy function. However, 

it is very likely to be attracted to a local minimum of the energy function rather 

than the global minimum. 
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For full automation of this approach, the models need to describe the size, shape, 

location and orientation of the object, while also allowing expected variations in 

these characteristics. In many medical and biological images, this information is 

generally known and therefore as much information as possible should be incor -

porated into the model. As a result, many authors use parametric deformable 

templates. 

3.5 Parametric deformable templates 

Jain et al. (1998) provide a good description of the parametric deformable mod-

els. A parametric deformable template is a parametrised geometric model of the 

shape or the object boundary being modelled, usually using a small number of 

parameters. These types of deformable models are preferable to free-form models 

because prior information of the global structure of the object is included in the 

template. An advantage of this type of global model is that gaps in the bound-

aries which occur from noise or occluding objects are bridged. As stated earlier, 

in biological and medical images the location, shape, size etc. is generally known 

and this information may be incorporated into the template model in the form of 

initial conditions, data constraints, constraints on the model shape parameters or 

directly into the model fitting procedure. Parametrisation of the template allows 

for deformations in its shape and by specifying a probability distribution over 

the parameters makes it possible to quantify the relative probability of the likely 

types of deformation. 

Parametric deformable templates are similar to snakes as they also address the 

problem of matching objects with known shapes. However, they differ in that the 

parametric form comprises more prior knowledge about the object being detected. 

Also, the forces on the parametric templates are global rather than local, therefore 

reducing the number of local minima in the objective function. Since they also 

involve only a small number of parameters, they are fairly easy to implement. 

There are two ways in which to parametrise the shape and variation in these 

types of templates: 

Using a collection of parameterized curves, known as hand-crafted models'. 

Using a prototype template. 

In both of these methods, the prior shape preferences are clearly expressed by the 

parameters of the model. The deformable template interacts with the features 

29 



of the image by changing the parameters of the template to alter the measure 

of fit with the image. Each value of the objective function quantifies how well 

the template matches the object in that given image. By searching the possible 

parameter values using an optimisation technique, the set of parameters which 

optimises the objective function may be chosen. 

3.5.1 Hand-crafted models 

These deformable models are built from simple subcomponents such as circles, 

ellipses, lines or arcs. The components are allowed some degree of freedom to 

move around relative to each other and have the possibility to change scale and 

orientation, for example see Yuille (1991) and Yuille et al. (1992). For this type 

of approach it is necessary that the shapes used for the templates are of known 

structure. The variations in the shapes of the template are determined by a prob-

ability distribution placed on the allowed parameters. Yuille (1991) and Yuille 

et al. (1992) have used this approach to extract facial features and determine 

the spatial relationship between them. In particular, they have designed models 

for the eye and mouth using circles and parabolic curves. They use an energy-

minimisation approach where the external energy function is defined in terms 

of edges, peaks and valleys of the greyscale values and also the original image 

greyscale values. They find that for these types of templates, a good starting 

point for the contour is required in order to obtain meaningful results. They also 

assume that the orientation and scale of the individual templates are known. Lip-

son et al. (1990) use a similar scheme to map elliptical models of vertebrae onto 

CT images of spines. Hill and Taylor (1992) use these hand-crafted models for 

identifying the left ventricle of the heart in ultrasound images. They first select 

control points on each image and use parametric cubic splines which interpolate 

these control points. To find the set of parameter values which best position 

the template in the image, they search through the parameter space, projecting 

instances of the template back into the image until the most consistent with the 

observed is found. They again use an objective function based on edge evidence 

within the image in order to evaluate the degree to which the image supports a 

particular instance of the model. 

Grenander et al. (1991) represent shapes as a set of boundary points which are 

connected by arcs, with a statistical model of the relationships between neigh-

bouring arcs. They also show that by using the model of the outline of a hand 

that it can be deformed to fit degraded images of hands. They are able to achieve 

this by considering sections of the boundary and determining the most probable 
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positions given the rest of the boundary and through incorporating local image 

data. 

The advantage of this type of modelling lies in the simplicity of the template 

because of the limited degrees of freedom generally used. Also, models of this type 

are capable of capturing detailed knowledge of the expected shapes. However, this 

approach has distinct disadvantages in that it lacks generality, since the templates 

have to be hand-crafted for specific applications and they are not easily applicable 

to complex objects. Also, the shape being modelled has to be well-defined in order 

for it to be represented by a set of curves with (preferably) a small number of 

parameters. These templates are generally restricted to scaling, rotation and 

translation whereas in most cases, anatomical features also undergo non-rigid 

deformations, due to their own deformation as well as deformation from adjacent 

structures. 

3.5.2 Prototype based templates 

This is a more flexible approach to designing a deformable template and is the 

most commonly used method in the recent literature. In these types of tem-

plates the object is defined around a 'standard or prototype' template which 

normally describes the most likely or characteristic shape of the objects to be 

identified, where the objects have a global structure but deviate from this struc-

ture from individual to individual. The prototype template is selected by using 

prior knowledge of the objects of interest or else it is obtained empirically from 

training samples, e.g. see Baldock (1992), Cootes et al. (1995) and Glasbey (1998). 

A parametric mapping of the prototype is used in order to obtain different in-

stances of the object. As with the 'hand-crafted' templates, (in Subsection 3.5.1) 

different parameter values give different instances of the object. The pattern the-

ory proposed by Grenander (1993) describes a framework to represent classes of 

shapes that show a substantial amount of variation. 

Success in using this type of template is dependent on the accuracy of the de- 

scription of the object and the variations allowed within the template parameters. 

The discussion of the literature using these types of templates will be divided into 

the two methods mentioned in Subsections 3.3.1 and 3.3.2, although the majority 

of the papers use the Bayesian approach. Another method, using a landmark 

approach, is also described. 
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Prototype templates using an energy minimising approach 

Baldock (1992) models the boundaries of the heart chambers in two-dimensional 

ultrasound images and represents these boundaries as a number of curved lines. 

An operator manually draws round the required structures by using line segments. 

Dynamic programming is used to refine the initial estimates of a structure using 

the information encoded in the model. An energy function is designed containing 

four terms, with weights applied to each (similar to Yuille et al., 1992). The 

model used is entirely empirical and he describes the model as 'trainable' because 

it uses information from many images to update the parameters of the model. 

The model then uses the knowledge from the manual templates to establish an 

initial guess of the parameters in the model. An advantage of building in this 

training mechanism is that during the routine use of the system, the model can 

be continuously updated by new examples. 

Rueckert and Burger (1997) are also interested in segmenting the left and right 

ventricles of the heart, and their template consists of two ellipsoids. They describe 

each object as an ordered set of vertices, where they think of the vertices as 

landmarks which describe the outline of the shapes. They interpolate all the 

vertices using interpolating splines so that the boundary is smooth between these 

vertices. They initially approach the problem in an energy minimising framework 

with an internal and external energy functions, but later describe how this may 

be viewed in a probabilistic framework also. They describe how they can use 

the prior information on the shapes of these object boundaries to increase the 

robustness of the algorithm in situations where part of the boundary is occluded 

in some way. 

Prototype templates using a Bayesian approach 

Staib and Duncan (1992) use a deformable contour model mainly on two dimen-

sional echocardiograms to extract the left ventricle of the heart. They represent 

open and closed boundary templates for various other objects which are smooth 

and continuously deformable by using elliptic Fourier descriptors. The Fourier 

coefficients are the parameters of the deformable template and the probability 

distribution on these coefficients is selected in order to bias the template towards 

some particular shapes with different amount of variability among the objects of 

interest. They derive distributions for each of the parameters over a training set 

and the likelihood function which they use is based on the correlation between 

the template and the boundary strength in the original image. They then pro- 
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ceed using a Bayesian approach by locating the maximum of the posterior density 

(MAP), which determines the most likely set of parameter values of the template 

for each given image. However, the relationships between the variations in shape 

and variations in the parameters of the trigonometric expansion of Fourier de-

scriptors is not straightforward because the parameters (the Fourier coefficients) 

are correlated. Like others, they place separate limits on the model parameters 

on the basis of the distributions determined directly from the training set. Since, 

as usually is the case, the parameters are correlated over the training set, this 

approach does not effectively restrict the shape which can be generated to ones 

similar to those found in the original training set. 

Jain et al. (1996) deform the prototype shape of many objects using, like most 

others, boundary information of the objects of interest. Their template consists 

of representative edges and a set of probabilistic deformation transformations on 

the template. Their approach differs from others in that the prior shape informa-

tion is specified as a binary image. The prototype template is not parametrised 

but contains edge information in the form of a bitmap, and the deformed tem-

plates are obtained by applying transformations to the prototype. The prototype 

is deformed by locally stretching, squeezing and twisting, and the variability in 

the shape is obtained by imposing a probability distribution on the possible map-

pings. Using a Bayesian framework and including a weighting on the prior and 

likelihood components, they find the MAP. Their likelihood is similar to the ex-

ternal energy function described by Kass et al. (1988), but different from more 

recent approaches in that they use the gradient directions combined with the edge 

positions in the image. They use a multi- resolutional approach, from a coarse to 

fine resolution, to initiate matchings at finer resolutions. 

At the coarsest stage, a smoothed version of the image is used which has fewer 

local optima, and this helps to roughly find the global optimum without great 

consideration to the accuracy of its position. At the finer stages, the amount 

of smoothing applied to the image is less since more accurate localisation of the 

template is desired. The template from the previous resolution stage is used as 

an initial guess. Their approach is very general because they can match curved, 

(open or closed) polygonal objects using the boundary and gradient information of 

the image only. They show their method can perform good matching independent 

of the location, size, orientation and number of objects, present in the image. 

Phillips and Smith (1994) develop a hierarchical model to organise prior informa- 

tion to segment many facial features in images. The hierarchical models allow the 

prior information to be organised in a structure so that at one extreme it considers 
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local variation in the individual templates and in the other extreme it considers 

global variation. They make the assumption that the pixel values within each re-

gion after segmentation are independent in order to form the likelihood, which is 

unlikely to be true. However, they find this assumption seems to work quite well, 

assuming that there is an obvious difference between the means of the segments. 

They use the hierarchical models to try and reflect the relative importance of the 

individual features. They construct the boundaries for the head and face using a 

small number of key points and a closed contour is achieved by fitting a smooth 

curve through these points. The face is parametrised in terms of proportions of 

the head template. They also make an assumption of symmetry, that the right 

side of the face mirrors the left side, when fitting the individual features such 

as the eyes, mouth and nose. They also use a smoothed version of the original 

image, similar to Jain et al. (1996), for the initial search of parameters. 

Prototype templates using a landmark approach 

A number of researchers have built deformable templates by using the distribution 

of sets of 'landmark' points which mark significant positions on an object. Recent 

work using this type of template has focused on using training samples to actively 

learn about the shape models. 

The approach which Cootes et al. (1995) adopt is to find a model for the shape 

representation in which estimates of the shape parameters are uncorrelated over 

the training set, using principal component analysis (PCA). Having performed 

PCA, simple limits on each parameter constrain the model to generate shapes 

similar to those in the training set. 

The work by Cootes et al. (1994) and Cootes et al. (1995) on prototype template 

matching is based on deformations which are learned from correctly segmented 

training images. They call this method 'Active Shape Models'. They represent 

objects by sets of labelled points, which are placed in the same way on the object 

boundary found in each image. Then, the sets of points over the training images 

are aligned with respect to a set of axes in order to establish similarities between 

the landmarks of training samples of the same objects. By examining the statistics 

of the labelled points and using PCA, the point distribution model (PDM) is 

derived. The PDM method works by modelling how different labelled points 

tend to move together as the shape varies. They use the largest eigenvectors of 

the covariance matrix of the labelled points of the shape to describe the average 

positions of the points and describe the main modes of variation found from the 
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training set. They propose to use the mean shape as their prototype template. 

The object boundaries are then segmented using this PDM by combining the 

current example of the PDM with the image at each iteration. At this point the 

pixels in the neighbourhood of each landmark point are examined to see if an edge 

is present there. It should be noted that the landmarks can come from several 

different objects in the image, (see Cootes et al., 1994, 1995), or from just a single 

object, (see Cootes et al., 1992). Although in many of their papers in this area, 

they are interested in locating the left ventricle in a two-dimensional image of the 

heart, the later papers also include the nearby edge of the right ventricle and the 

left cavity of the heart in their model. This is to improve the proficiency of the 

template at locating the desired object. 

In an early paper on their work, Cootes et al. (1992) use a method defined as 

the Chord Length Distribution (CLD), to build models for the left ventricle only. 

Here, they represent the shapes using polygons with the landmark points. For 

each polygon in the training set, the chord lengths between pairs of points are 

calculated. The correlation between pairs of chords is modelled by calculating 

their means and variances and applying PCA to choose a smaller set of chord 

vectors which can explain most of the variation in the shape. Although the CLD 

is better than the PDM at representing objects which can bend, the reconstruction 

shape from the distances between points is iterative and slow. 

The main contribution of this work is that the active shape model is capable 

of learning the typical pattern of the shape and uses this information to deform 

the template in ways that reflect the variation from the training set, therefore 

giving a more powerful description than the active contour models proposed by 

Kass et al. (1988). However, a weakness of this approach is that they found it 

is sensitive to partially occluded objects and it is not capable of handling large 

changes in scale or orientation. 

Glasbey (1998) used a similar approach to Cootes et al. (1995), by incorporating a 

PDM into a Bayesian framework to segment ultrasound images of sheep. Glasbey 

(1998) also makes the assumption similar to Phillips and Smith (1994) that the 

pixels in each segment are independent and identically distributed in order to 

form the likelihood. A weighting is used on the likelihood, similar to Jain et al. 

(1996). 
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3.6 Summary and conclusions 

It has been shown how deformable templates offer an attractive approach to 

modelling anatomic structures because they are able to represent complex shapes 

and shape variability. They overcome many of the limitations of the traditional 

low-level image processing techniques by providing compact and analytical rep-

resentations of the object shape. 

The ideas and methods described in this chapter will be used when a deformable 

template is designed in Chapter 4 to segment the X-ray CT images of the sheep. 
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Chapter 4 

Segmentation of sheep images 

4.1 Introduction 

In this chapter deformable templates are used to segment the sheep images de-

scribed in Chapter 1 to identify the region of interest, namely the area of the sheep 

that contains the muscle, fat and bone. Currently, considerable human interven-

tion is required to achieve this. We explore the use of deformable templates to 

automate the segmentation. The deformable template is constructed in Section 

4.3, from a training set of 24 manually segmented images. Fourier coefficients 

are used to parametrise the template boundaries and the coefficients are reduced 

in dimensionality using principal components to estimate a distribution on the 

parameters of the template: see Section 4.4. In order to define a matching crite-

rion between a given template and the boundaries of an image, we examine local 

edge information in the image in Section 4.7. The Nelder-Mead algorithm is used 

in Section 4.8 to optimise the objective function, which is a combination of the 

matching criterion and the distribution of the template parameters. The amount 

of prior information incorporated from the training set into the template is then 

updated to improve the performance of this deformable template approach. The 

results have been validated on an independent set of images, Section 4.10. Finally, 

it has been decided to add the mirror images of each image into the training set 

and the same analysis performed (see Section 4.11), to examine the effect on the 

results by doubling the training set and allowing for symmetry. 
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4.2 Manual segmentation of the sheep images 

The low-level methods of segmentation, described in Section 3.2, are unsatisfac-

tory for the segmentation of these sheep images. The desired goal is to extract 

the region of the sheep which contains the muscle, fat and bone and separate this 

region from the areas that contain the cradle and the internal organs. The area 

of interest will be referred to as the 'carcass region'. Thresholding is unsuitable 

for the segmentation because, as can be seen from Figure 4.2, the internal organs 

have similar density to muscle and therefore appear in the image as having similar 

greyscale values. In addition, the edge detection filters are unsuitable due to the 

reasons mentioned in Section 3.2. An example of an edge filter applied to a typical 

sheep image is shown in Figure 4.12 (page 53). It can be seen that the boundaries 

are discontinuous in this image, and the filter also highlights many boundaries 

which are not of direct interest. Therefore, expert human intervention is required 

in order to select the correct boundary to follow from all the possibilities. In 

many other segmentation problems the object of interest is well defined and the 

edge detector highlights and identifies the boundary very easily. However, due 

to the complexity of the shape of the boundary to be extracted in these X-ray 

images, edge filters used on their own are seen to very ineffective. 

Therefore, the segmentation is performed manually at present. As stated in 

Section 1.4, two boundaries are required to segment these lumbar images. The 

boundary around the outside of the sheep is relatively easy to find and the method 

used to select this boundary is described in Section 4.10. In order to identify the 

boundary which encircles the internal organs, a skilled operator manually traces 

the region of interest in each tomograph using a computer mouse. In attempting 

to reduce bias between operators, each skilled operator uses a list of criteria when 

deciding on the best position of the hand-drawn inner carcass boundary. These 

criteria are described below. Figure 4.1 labels the appropriate regions of a typical 

sheep lumbar scan to assist interpretation of these criteria. 

• There is no air allowed in the carcass area. Therefore, any air pockets 

that appear in an image are automatically assumed to be contained in the 

internal organs region. 

• If a large air pocket exists at the top of the rumen, the inner boundary 

would generally run along the outer edge of the pocket. Typical air pockets 

in the rumen are visible in Figure 4.2. 

• When moving away from the backbone, in either a clockwise or anti-clockwise 
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Figure 4.1: A typical lumbar scan of a sheep, with various organs and muscles 
labelled. These landmarks are used to manually select the inner boundary which 
encircles the internal organs. 

direction towards the top of the image, around the abdominal wall area, 

choose the inner-most layer of muscle before drawing the boundary. 

• Around the abdominal wall contained in the carcass, starting from the back-

bone region there is a transition from three layers of muscle, to two and then 

finally only one layer at the top of the image. 

• The triangle of fat at the lateral edge of the longissimus muscle and below 

the right kidney (seen on the left hand side of the image as an approximately 

circular light grey object) should remain in the carcass area. 

• If one side of the image around the abdominal wall has unclear bound-

ary definition between the fat and muscle and the internal organs, then 

the boundary is drawn symmetrically with the visible side of the image. 

(assuming that the outer boundary is symmetric with respect to the axis 

running through the spinal column.) 

39 



4.3 Modelling the carcass boundary using de-
formable templates 

As stated in Chapter 1, three anatomical positions are scanned for each of the 

sheep in the training set. It has been decided that the lumbar image is the 

most difficult to segment automatically due to the internal organs lying beside 

the region of interest. Therefore, a deformable template approach is used for 

segmentation at this anatomical position. Although it has not been attempted 

here, a similar approach could be employed to build a model to segment the 

remaining two positions (see Glasbey and Young, 2000). 

It is already known from Section 3.3 that designing a deformable template to 

detect a boundary or object falls into two parts. 

Providing a parametric model for the template. Once the form of the model 

is specified, the parameters for each image can be evaluated and the proba-

bility distribution of these parameters may be estimated by statistical meth-

ods, assuming that the size of the training set is large enough. 

Given a model for the template, it is necessary to quantify how the template 

will appear in an image by specifying a measure of agreement, or 'matching 

criterion', in order to determine how well the template fits an image. It is 

this part that is generally harder. 

1. and 2. are combined to form what is denoted as the 'optimisation function'. 

The inner boundaries from the training set of 24 manually segmented lumbar 

images, described in Section 1.3, are used in the construction of a stochastic 

model for the distribution of these inner boundaries which segment the images 

into the region of the internal organs and the carcass region. Images (a) and (b) 

in Figure 4.2 show typical X-ray images before segmentation and (c) and (d) show 

the same images with the manually drawn boundaries superimposed. Figure 4.3 

shows the extracted carcass region from Figure 4.2 (c), with all other pixel values 

set to zero. 

The knowledge of all the realised shapes, sizes and locations of the inner bound-

aries within the training data is used to help build a probability distribution for 

the parameters of the template, based on the parametric model. Figure 4.4 shows 

some inner boundaries taken from the set of 24 training images. The variability 

in size and slight differences in the orientation at which the sheep are lying can 

be seen. 
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Figure 4.2: Examples of X-ray CT images before ((a) and (b)) and after ((c) 
and (d)) manual segmentation. The inner and outer hand-drawn boundaries are 
superimposed in white on the original image. The white 'x 'in (a) and (b) corre-
sponds to the centroid of the outer boundary. 

Figure 4,3: The carca. regiou of thc S/l(:(1j) 'in Figure 4.2 (c): the fat, muscle and 
bone can be seen to lie between the manually drawn boundaries which have been 
used to 'blank out' the internal organs. 
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Figure 4.4: Some realisations of shapes, sizes and locations of the inner boundary 
taken from the sample of known inner boundaries in the training set. 

There are many ways in which to parametrise the template, e.g. splines (Rueckert 

and Burger, 1997), landmark points (Cootes et al., 1995), polygons (Cootes et al., 

1992) and using hand-crafted models, (Yuille, 1991). It has been decided to use a 

Fourier parametrisation, similar to Staib and Duncan (1992). Fourier descriptors 

are initially used to parametrise the inner boundaries using a polar representation, 

with co-ordinates r, 0. Fourier representations of the boundary express the curve 

as a weighted sum of a set of orthogonal known functions, i.e. cosines and sines. A 

Fourier parametrisation is suitable for these images because it is concise, periodic 

and is very general in that it is not restricted to a particular type of object, 

unlike the hand-crafted models used by Yuille et al. (1992), see Subsection 3.5.1. 

Also, the r, 0 descriptor has the characteristic that the number of terms used is 

the same regardless of the size of the object to be identified. Staib and Duncan 

(1992) use a basis function of 

(1/(21r), cos 0/7, sin 0/ii, cos 20/7t, sin 20/it,... ,). 

They also state that the number of harmonics, h, that should be chosen to 

parametrise the boundaries, is a trade-off between the accuracy and the con-

ciseness of the fitted boundary (in comparison to the true boundary) and the 

degree of smoothing of the fitted boundary. 

It was decided that it was only necessary to model the inner carcass boundary 

since the outer boundary for each image can be easily identified using low-level 

image analysis techniques, such as thresholding and then forming a labelled image 

of connected components. The x, y coordinates of all the pixels lying on the man-

ually segmented inner boundary are extracted, centred with respect to a 'central 

pixel' in each image and converted to the usual polar representation. The central 
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Figure 4.5: An outer boundary region which is used to calculate the co-ordinates 
of the centroid. The position of the centroid for this image is marked by an 'x'. 

pixel chosen is the centroid (geometric centre) of each binary outer boundary. 

This is shown in Figure 4.5, where the centroid is marked by an 'x'. The cen-

troid of an object has the useful property that it is approximately invariant with 

respect to the orientation that the object is scanned, if a discrete representation 

of the object is used. For a set of ni  pixels lying on the ith binary outer boundary, 

(as shown in Figure 4.5), at pixel positions (x i,, y3,  (x22, y2), , (x,1, y7)  in the 

image grid, the centroid of the ith image (, yj) is given by 

	

Xi Xt j 	yti 	 (4.1) 

Examples of the position of the centroid are also shown in Figure 4.2 (a) and (b). 

Having extracted the centroid and the x, y coordinates of the pixels on the inner 

boundary, the corresponding radius r and angle 0 for each point is calculated, 

where 0 is calculated in the range (—ir, +7r] with zero taken parallel to the vertical 

axis. 

For each of the N training images (i = 1••• , N), we have an m2-vector r i  of 

distances from the centroid to the inner carcass boundary. Here, mi  is the number 

of pixels lying on the manually drawn inner boundary of image i, and the m i  from 

the training set vary from 330 to 450 pixels. This is due to the natural variability 

in sizes of the sheep at the same age and of the same breed. We treat r i  as the 

vector of responses in a linear regression model 

	

E(r2IXj) = Xf3, 	Var(rX) = O 2 Tm 	 (4.2) 
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Figure 4.6: Total RSS from fitting the 24 training images vs number of Fourier 
coefficients, 2h. 

For the inner boundaries, X i  is chosen to be an mi  x p matrix whose jth row 

comprises 1, cos Oi 
I 

cos 2O,•. . ,cos hO3 , sin 03 , sin 203 ,..., sin hO3 , and 3 is a p 

vector of Fourier coefficients. The higher indexed basis functions, i.e. cos hO and 

sin hO, represent the higher spatial variation. Therefore, h Fourier harmonics are 

used, giving a total of p = ( 2h + 1) Fourier coefficients. Let b2  denote the least-

squares estimate of )3i  and B the N x p matrix with rows bT,... , b. Various 

numbers of harmonics are tried in order to parametrise each image, and the total 

residual sum of squares (RSS) over the 24 training images is plotted against the 

total number of harmonics, 2h, which equals the number of Fourier coefficients 

(not counting the constant term): see Figure 4.6. On examination of this graph 

it is decided to parametrise each boundary using h = 20 harmonics. Staib and 

Duncan (1992) choose the number of harmonics that reconstruct the boundary 

within a predetermined fixed error bound. For each of the 24 sheep images, 

41 regression coefficients are estimated using least squares. The total variation 

can not be completely explained (i.e. the RSS does not fall to zero) using 25 

harmonics (i.e. p = 51). This is in part due to a relatively small number of 

harmonics in the model and to the fact that these inner boundaries are not all 

star-shaped with respect to the centroid of the outer boundary. The area which 

causes some boundaries not to be star-shaped is the region of the hand-drawn 

boundary around the backbone. It is possible to find rays from the centroid which 

intersected the boundary at more than one point. 

Figure 4.7 shows the pixels (displayed using the radii and angles) of the manually 



drawn inner boundaries (displayed as '.') for images (a) and (b) shown in Figure 

4.2. The continuous boundaries fitted to these data points, using the Fourier 

representation, have been superimposed onto the original data. 

4.4 Reduced-rank approximation and principal 
components 

To generalise from the 24 training images to future images without hand-drawn 

boundaries, we might suppose that the vector of coefficients, )3i  in (4.2), are taken 

at random from a p-variate distribution, where p = 2h+ 1, and use the mean vector 

and variance matrix of the b2  to estimate the moments of this distribution. With 

only 24 images, the sample variance is clearly a poor estimate of the population 

variance. To reduce its sampling variability, we use a reduced-rank approximation 

to the matrix of estimated coefficients. This approximation is closely related to 

the principal component analysis of the sample variance matrix of the b2 . 

Before the theory of the reduced rank approximation is presented, some definitions 

are given. 

Definition 4.1 An 'in x m matrix A is idempotent if AA = A 2  = A. 

Consequences of this, (Harville, 1997) are 

If A is symmetric and idempotent then the rank of A = trace of A. 

. If A is idempotent, then Im - A is idempotent. 

Definition 4.2 A Frobenius norm is the norm on matrices that arises by treating 

a matrix as a vector and using the Euclidean norm of that vector. If B is an m x n 

matrix, with elements b 3 , then 

m m 

IBII 
i=1 j=1 

Let JN  and HN,  (a centering matrix), denote the symmetric, idempotent N x N 

matrices N1 N 1 and 'N - N1pj 1, where 1N  denotes an N-vector of l's, 

and write B, the N >< p matrix, as 

B = JNB+HNB 

= lNb + HNB 	 (4.3) 
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Figure 4.7: Radii vs angles for the original hand-drawn inner boundary pixels 
(shown as '.') for the X-ray images in Figure 4.2. The estimated boundaries 
for these images using p = 41 Fourier coefficients have been superimposed as a 
continuous line. 



where b is the mean of the bi  and the rows of HNB equal the deviations (b - b  

from the mean. Then r = rank (HNB) <min(N —1, p). To reduce the sampling 

variation in B, we replace HNB by an approximation with rank q < r, (see 

Basilevsky, 1983). 

Let D be a diagonal r x r matrix whose diagonal elements are the r positive 

eigenvalues, d 1  d2  ~! •.. ~! dr , of the symmetric, positive semi-definite matrix 

(HNB)THNB = BTH N B. This is the matrix of sums of squares and products 

of the b 1  about their mean, with entries in the jth row and kth column being 

(1j,kp). 

If P denotes the p x r matrix of the corresponding eigenvectors then BTH NB 

has the decomposition PDPT  with pTp = 

The matrix HNB  has singular value decomposition 

HNB = QD 1 /2 PT , 	 (44) 

where 

Q = HNBPD 112 	 (4.5) 

and is an N x r matrix. Then Q has orthonormal columns q1,•. 
, 
q, since 

QTQ 	D1/2PTBTHNBPD2 

= 

1r . 

For some specified integer q <r, let P1  and Q1 denote the submatrices of P and 

Q comprising their first q columns and let D1 be diagonal (d1 ,... , dq ). Then, it 

is possible to approximate HNB by 

Cq  = Q 1 D 2 PT 

= HNBP1PT, 	 (4.6) 

where Cq  is the best approximation among N x p matrices of rank q in the 

sense of minimising jHNB - Cq I, (see Stewart, 1973, page 322). The N x q 

matrix HNBP1 comprises the principal component scores for the first q principal 
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components based on BTHNB.  This N x q matrix has sums of squares and 

products matrix D 1 , since 

(HNBP1)THNBP1 = PTPDPTP 

[Iq  01ID1 	01 lIq i 
[OT D2 j[OT] 

= D 1 , 

where 0 is q x (r - q) and D2  is (r - q) x (r - q). 

Having found an approximation to HNB, it can be seen from (4.3) that B is 

approximated by 

lNb + HNBPlP. 	 (4.7) 

The mi-vector of fitted values for the ith regression is X i bi , and this is replaced 

by the approximation X i bi , where 
6T

is the ith row of Cq . 

4.4.1 Assessing results and principal scores from the reduced-
rank approximation 

The vectors b % , of estimates of the Fourier coefficients for each of the 24 training 

images are used to form the 24 x 41 matrix B. Performing the reduced rank 

approximation on HNB reveals that the first six principal components accounted 

for 96.3% of the variation, as measured by the trace of (BTH N B), between the 

original 41 variables. Figure 4.8 shows the cumulative proportions explained as 

the number of principal components is increased. 

The first six principal components are assessed for multivariate normality. Plots of 

the principal component scores can reveal suspect observations in the data as well 

as provide checks on the assumption of normality. Since the principal components 

are linear combinations of the original p variables, it is not unreasonable to expect 

them to be normal. Figure 4.9 shows scatter diagrams for pairs of the first few 

principal component scores centred about their means. It is already known that 

the principal component scores are uncorrelated, but the scatter plots can be used 

to reveal any unusual observations. Figure 4.9 (a) has an outlier at (10.77, —0.64) 

which corresponds to image 8 and similarly Figure 4.9 (b) has an obvious outlier 

at (2.72,0.74) which corresponds to image 20. These results could indicate that 

the fitted templates for images 8 and 20 would not fit as accurately to the hand-

drawn template as for the other images in the training set. It can be seen from 
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Figure 4.8: Proportions of the total variation in the regression coefficients ex-
plained as the number of principal components varies. 

the probability plots Figure 4.10 that the first six principal component scores do 

not contradict this normality hypothesis. 

The reduced-rank model represents the ith vector of regression coefficients, b, as 

b + P l di  with dT,  the ith row of HN BP1 , so that the bi  lie in a q-dimensional 

hyperplane defined by b and P1 . For a future image from the same population, 

we take the vector of coefficients b1 to equal b + P i df, where 

	

d1 ' Nq (O, D 1 ). 	 (4.8) 

If a common set of m angles is used then the matrices X i  reduce to a common 

m x p matrix X and the vector of radii is fitted by a model of the form 

Xb + XP l df. 	 (4.9) 

4.5 Fitting boundaries to the training images 
using the reduced-rank approximation 

The images in the training set have varying numbers of pixels lying on the hand-

drawn inner boundaries (330 to 450 approximately). Therefore, to standardise 

so that each image is reconstructed in the same way, a standard set of m = 360 

equally spaced angles is used to construct a common X, and the corresponding 

radii estimated. Therefore, for each image, X is now a m x p matrix whose 

we 
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Figure 4.9: Scatter plots of principal component scores for the 24 training images, 
(centred about their means). (a) first PC vs second (b) third vs fourth (c) 
fifth vs sixth. 
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Figure 4.10: Normal probability plots of the first 6 principal component scores, 
(centred about their means), for 24 training images. 

columns are 1, cos 0, •••, cos hO, sin 0, •, sin hO, where 0 is a 360-vector of 

equally spaced angles, making the columns of X orthogonal. Taking q to be 6, 

the fitted coefficients in the appropriate row of C6  for each image are used to 

reconstruct the inner boundaries for the 24 images one at a time. 

Using standard Fourier theory gives 

XTX=m[1 
0T 1 	

] 
0 '2h 

so that 

a 2 0T  

	

Var(b) = 	
[ 1 2I2h] 

This shows that all the elements of b1 , except the first have the same variance, 

(given )3), justifying calculating the principal components from the covariance 

matrix rather than the correlation matrix. 

The effects on the template by varying the first few principal components was 

examined, although the results are not displayed here. It was found that the first 

principal component affects the orientation of the template with respect to the 

vertical axis. This indicates that more prior information from the hand-drawn 
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Figure 4.11: Manually drawn (lighter) and fitted boundaries (darker) for the im-
ages in Figure 4.2 for a reduced-rank approximation with rank 6. 

boundaries could be included in the modelling process. This has been examined 

further in Section 4.9. 

Figure 4.11 shows the fitted boundaries for a reduced rank approximation of rank 

6, for the images in Figure 4.2, superimposed onto the hand-drawn boundaries. 

It can be seen that these fitted boundaries agree with the hand-drawn boundaries 

very accurately, and the main region of difference between the two boundaries 

is situated around the backbone. This is partly because when approximating 

the boundary initially by the 41 Fourier coefficients, a star-shaped boundary is 

fitted and also because the hand-drawn boundary is less smooth at this region in 

comparison to other parts, e.g. around the rumen. 

For future images, the estimated probability distribution of the parameters of the 

template (which can be derived from (4.8)) can be combined with the matching 

criterion to form the optimisation function, which is then fitted to each image. 

4.6 Image filtering 

To extract information about the position of the boundaries, it has been decided 

to enhance the view of the inner boundaries in the images from the training set 

using an edge detector filter. Boundaries of objects tend to show up as intensity 

discontinuities in an image. The main objective of enhancement techniques is to 

transform an image so the result is more suitable than the original image for a 

specific application. There are two methods that may be used, see Gonzalez and 

Woods (1993). 
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Spatial domain methods: These methods refer to all the pixels forming an 

image, and the procedures operate directly on these pixels. It is these 

methods that have been used to transform the X-ray CT sheep images. 

Frequency domain methods: These methods are based on transforming the 

spatial information in an image into frequency information by using the 

Fourier Transform. This uses a series of sine and cosine waves to fully 

represent the image. 

4.6.1 Spatial filtering 

As mentioned in Section 4.6, this is a pixel-by-pixel transformation of an im-

age. Enhancement techniques based on this approach are referred to as filtering 

techniques, which are used to reduce noise by smoothing and/or enhance certain 

features of an image. Let the original greyscale pixel values of the 256 x 256 

sheep images be denoted by ft ,,,, for u, v = 0,... , 255; the row and column co-

ordinates respectively. Similarly, let 9u,,  be the transformed pixel values after 

filtering. The main approach is to use a submatrix of the area centred around 

each pixel, and this submatrix of pixels is generally square. The centre of the 

square is moved from pixel to pixel to obtain a new value Yuv  at each location by 

weighting the greyscale values of the pixel being processed, f,, and also those 

of its neighbours. The values of the weights in this square determine the nature 

of the transformation and are often known as the 'mask' or the 'filter'. If the 

weights of the original greyscale values of the pixels in this square are all positive 

then the filter will smooth the image. An example of this is the Gaussian filter, 

which will be discussed in Subsection 4.9.1. 

Generally, the size of the filter used is a square of 3 x 3 pixels, but it is possible to 

use 5 x 5 or 7 x 7 also, but the number of calculations per pixel increases rapidly as 

larger matrices are used. For pixels located on the border of the original image, 

gu,v is computed using partial neighbourhoods. There are two types of spatial 

filters: 

Linear filters: These use linear combinations of the greyscale values of the 

pixels in the original image, which depend on the weights of the filter. They 

are unable to smooth without simultaneously blurring the edges. 

Non-linear filters: These can smooth without blurring edges and can detect 

edges at all orientations simultaneously. This type of filter does not use the 
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weights in the same way as linear filters, and is dependent on the type of 

filter how the weights are combined. 

For linear filters, the basic approach is to sum products between the filter weights 

and the greyscale values of the pixels at a specific location of the submatrix in 

the image. Therefore, using a 3 x 3 linear filter with specified weights Wk,1,  for 

k, I = —1,0, 1 (with central pixel being wo , o ) on the original greyscale values, 

will produce a transformed image with pixel values gu,v  where 

1 	1 

	

9u,v = E :ii: Wk,1f+k,+1 	 (4.10) 
k=-1 1=-i 

for u, v = 1,•• , 254 in the CT images. The transformed values for the border 

pixels are found using partial neighbourhoods. 

Edge detection is by far the most common approach for detecting meaningful 

discontinuities in greyscale values. An edge is a boundary between two regions 

where the greyscale levels change rapidly. It is assumed that the regions in ques-

tion are sufficiently homogeneous that the transition between the two regions can 

be determined on the basis of greyscale discontinuities alone. A region of rapid 

change is one where the first difference of the greyscale value, i.e. the gradient of 

greyscales, is at a maximum. If a directional derivative is used as a measure of 

edge strength, its response would vary with orientation of the edge. To avoid this, 

the magnitude of the gradient which gives the rate of change in the direction of 

greatest steepness is used. The first derivative at any point is obtained by using 

the magnitude of the gradient at that point. The gradient vector of the original 

image f at coordinates (x, y) is defined to be the vector f, where 

8f 
8x 

f 
31 
ay 

and the magnitude is given by 

Of 2 	Of 
mag= 	

2]h/2 

\axJ 	() j 	
. 	 ( 4.11) 

One of the simplest non-linear edge detectors used for approximating the mag-

nitude of the gradient, using (4.11), is Prewitt's filter: see Glasbey and Horgan 

(1995) for details. This uses a 3 x 3 submatrix to approximate 21  and . So,ay 
for a 3 x 3 area of the image, with greyscale values f+k,v+1,  the weights wkl  for 
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Figure 4.12: Example of Prewitt's gradient filter applied to the original X-ray CT 
image shown in Figure 4.2 (a), with the 0 greyscale values shown in white and 
large greyscale values shown by dark pixels. 

k,l = —1,0,1, used to approximate 	are given by 

-1 —1 —1 
1 
- 000 
6 1 1 1 

and the weights to approximate 	are given by 

—1 0 1 
- —1 0 1 
6 —1 0 1 

The filter coefficients sum to zero, indicating a response of zero in areas of constant 

greyscale values, as expected of a derivative operator. Although and useay 
linear operations on the weights, the magnitude calculation does not, therefore 

the overall gradient filter is non linear. For further information on these filters 

see Ballard and Brown (1982) and Joyce-Loebi (1985). 

Figure 4.12 shows the effect of applying Prewitt's gradient filter to an X-ray CT 

image. In the original images, black pixels have a greyscale value 0 and white 

pixels have a greyscale value 255. However, in Figure 4.12 the black pixels corre-

spond to a greyscale value of 255 and the white pixels correspond to a greyscale 

value 0. This has been done for ease of viewing the defined edges from the gradi-

ent filter, and will be referred to as the 'inverse gradient filtered image' in future 

references. Larger pixel values (i.e. darker pixels) in Figure 4.12 correspond to a 

large change in the greyscale values around a point (x, y) in the image. Therefore, 

the outer boundary is seen as very dark because the filter detected a very strong 

edge as it passed from the inside to the outside of the sheep carcass. However, in 
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the middle of the image, most of the pixels are approximately the same greyscale 

value because the different internal organs all have approximately the same den-

sity in the original image. Therefore, as the filter passes from one organ to another 

it does not detect a large change in greyscale values. Hence, the filtered image 

has a smaller gradient at a pixel in this area than at a pixel lying on the outer 

boundary. 

4.7 Matching criterion 

As mentioned in Section 4.3, the deformable template model includes some mea-

sure of how well the template agrees with the true inner boundary in an image. 

Therefore, in order to form this matching criterion it is necessary to define the 

measure of fit between the template and the image. To do this, we examine the 

greyscale values from the gradient filtered image. It has been decided that aver-

aging over the edge gradients of the pixels corresponding to the fitted boundary, 

defined by the template parameters, could be used as a measure of fit with the 

image. For images in the training set, the radii of the 360 pixels lying on the 

fitted boundary are found using Xb + XP 1 d2 , where di  is the ith row of Cq . 

For future images, the 360 radii are expressed as Xb + XP 1 d1  where d1  has 

distribution in (4.8). Obviously the stronger edges have a larger gradient value 

and hence a larger greyscale value in the gradient filtered images. Therefore, 

this suggests that the best fitting template maximises this average. Given the 

parameters of the template, the 360 radii and hence the corresponding Cartesian 

coordinates may be calculated. If these coordinates are integer valued, then using 

their corresponding pixel values in the gradient filtered image, g,  we define the 

matching criterion to be 

1(d 1 ) = exp 
(

I 
E 1:  gu,, (4.12) 

360 
U V 

,  

where the summation is over the given 360 greyscale values. It should be noted 

that I is a function of df since the 360 gradient values are selected based on the 

template obtained given a particular instance of d1 . However, these Cartesian 

coordinates are not integer valued. Therefore, bilinear interpolation, based on 

the four nearest pixels in the image is used to obtain a weighted sum of gradient 

values for each of the 360 radii. See Glasbey and Horgan (1995, page 42), for 

details on bilinear interpolation. 

As stated in Section 4.3, the objective function is made up of two parts and can 

be thought of in either an energy minimisation framework or from a Bayesian 
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viewpoint. Therefore, similar to Glasbey (1998) and Phillips and Smith (1994), 

the estimated probability density of d, (found from (4.8)) can be viewed as anal-

ogous to a prior density and the matching criterion as analogous to a likelihood. 

Then, summing the -logs of these two components gives the objective function to 

be maximised, with a weighting c on the matching criterion. This is given by 

F(d1 ) = 	 (4.13) 
360 	 2 

IL 	V 

The effect of varying c changes the emphasis on each of the two components of 

the objective function. These results are described later and are shown in Table 

4.1. Many authors have similarly used a weighting between the two parts of the 

objective function, e.g. see Yuille et al. (1992), Phillips and Smith (1994) and 

Glasbey (1998). As in Glasbey (1998), it was decided to optimise this function F 

using the Nelder-Mead optimisation algorithm (Nelder and Mead, 1965). How -

ever, due to this being a minimisation technique, —F is used as the function to 

be optimised. 

4.8 Nelder-Mead optimisation algorithm 

Many numerical optimisation methods require the gradient of the objective func-

tion to be evaluated because it gives the direction of greatest increase in the 

function value. Therefore, the gradient provides the best local direction in which 

to move in the parameter space in order to locally maximise the objective func-

tion. However, an analytic or numerical form of the gradient must be found in 

order to make use of these methods, which in many cases can be very difficult. 

Methods which do not incorporate gradient information have an advantage of 

allowing greater flexibility in forming the objective function since they are not re-

stricted by differentiability. Therefore, the Nelder-Mead algorithm is selected for 

the purposes of this optimisation as derivatives are not required to be calculated. 

The Nelder-Mead algorithm, (see Press et al., 1996), is a downhill simplex method 

used for the minimisation of a function of M variables. No assumptions are made 

about the function except that it is continuous and has a unique minimum in the 

area of search. It is not very efficient in terms of the number of function eval-

uations that it requires and Powell's method, (see Press et al., 1996), is almost 

always faster in all applications. However, the downhill simplex method will con-

verge even when the initial simplex straddles two or more valleys, a property not 

shared by Powell's method; the optimisation method used by Staib and Duncan 

(1992). 
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A simplex is a geometrical figure consisting, in M variables, of M + 1 vertices, 

and all their interconnecting line segments. It is necessary to give the algorithm a 

starting guess in M dimensions with M + 1 points, defined by an initial simplex. 

The method depends on the comparison of the function values at the M + 1 

vertices of the simplex, followed by the replacement of the vertex of the highest 

function value by another point. The simplex adapts itself to the local values of 

the function, and contracts on to the final minimum. 

A general problem occurring in many deterministic minimisation methods is that 

of false convergence at a point other than the global minimum. Therefore, it is 

generally a good idea to restart a multi-dimensional routine at a simplex near 

where it claims to have found a minimum. 

4.8.1 Results from optimising the objective function using 
the Nelder-Mead algorithm 

The Nelder-Mead algorithm is used to minimise the objective function shown in 

(4.13) with c initially taken to be 1. This is carried out using 100 randomly chosen 

starting vectors (of length 6) from the estimated distribution on the template 

parameters, shown in (4.8). For each of the training images, the smallest of 

the minima (over the 100 starting positions) of the objective function is selected 

and the corresponding template is superimposed onto the gradient filtered image. 

Figure 4.13 shows examples of some of the different templates which minimised 

(4.16), using these 100 random starts. We find from this optimisation that in 

many cases the template giving the apparent minimum value of the objective 

function from each of the different starting vectors is actually recovering parts 

of the outer boundary. In some cases parts of the fitted template lie beyond the 

outer boundary: see Figure 4.13 (b). 

It can be seen from Figure 4.13 that some of these templates provide a very poor 

solution to the segmentation, in particular the innermost boundary in Figure 4.13 

(a) is not even close to the desired boundary. 

From these 100 starts, 100 minimum values of —F are found and the smallest of 

these 100 values is taken to be the overall optimal best fitting template. Figure 

4.14 shows these best fitting templates (lighter boundary) together with the orig-

inal hand-drawn boundaries (darker boundary) for the two images from Figure 

4.2. It may be seen that the manual template is very poorly recovered in both of 

these cases. The radii of the templates are over-estimated so that the area within 

the carcass region is vastly under-estimated in each image. 

ME: 
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(a) 
	

(b) 

Figure 4.13: Examples of the 'best' template from the 100 starting vectors, af-
ter optimisation using the Nelder-Mead algorithm. These templates have been 
superimposed onto the inverse gradient filtered X-ray images from Figure 4.2. 

(a) (b) 

Figure 4.14: Results after applying Nelder-Mead algorithm from 100 different 
starting positions. The darker boundary is the manual boundary and the lighter 
boundary is the best fitting template (obtained by the set of parameters which 
minimised the objective function). Again, these correspond to the original images 
in Figure 4.2. 
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It can be seen from Figures 4.13 and 4.14 that the general shape of the inner 

boundary is correctly recovered using this parametrised template approach, but 

not the correct size. This suggests that the amount of prior knowledge used to 

form the template which reflects the size of the boundary needs to be increased. 

4.9 Redefinition of the template 

The results in Subsection 4.8.1 are clearly unsatisfactory since the model does 

not constrain the template to remain in the appropriate region of each image, 

i.e. inside the outer boundary of the sheep. Therefore, it has been decided that 

more prior information reflecting the size of the boundaries i.e. height and width 

should be incorporated into the model. The inner carcass boundaries will still 

be modelled using a polar representation, but now information from the outer 

boundary pixels will be included within the polar form. This is required so the 

model can be trained to ensure that the inner boundary lies inside the outer 

boundary. Therefore, we represent the radii of the inner boundary pixels as 

proportions of the distance to the outer boundary pixels situated at the same 

orientation. This is similar to Phillips and Smith (1994) who constrain the face 

template to lie inside the head template using proportions: see Subsection 3.5.2 

for more details on this paper. Using this idea constrains the radii to lie in the 

range [0,1]: the closer to 1 implying the closer to the outer boundary that the 

template will lie. Incorporating this prior information will prevent the template 

from falling outside the outer boundary in the optimisation routine. 

Previously the orientation of each sheep has not considered. For the redefinition 

of the templates this is included in the parametrisation. This depends on how 

much the sheep had rotated from the vertical axis after being restrained in the 

cradle. This was achieved by changing the reference axis of the angles from the 

vertical to the line joining the centroid of the outer boundary (marked with a 

white 'x' in the images in Figure 4.2) and the centre of the spinal column, which 

is easily located in all images either manually or automatically. This approach is 

similar to Cootes et al. (1995), who align their landmark points over the training 

set with respect to a set of axes: see Subsection 3.5.2. 

The pixels lying on the inner boundary of each training image are then extracted 

and the corresponding r, 0 for each pixel found. This process is repeated for 

the outer boundary. From Section 4.3 it is known that the hand-drawn inner 

boundaries contain 330-450 pixels, whereas the corresponding hand-drawn outer 

boundaries contain more pixels than on the inner boundaries, approximately 380- 
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Figure 4.15: Angle, 0, and proportional radius used for the redefined template 
where r1  is Tinner and r2  is router. 0 is measured from the line joining the centroid 
and the centre of the spinal column. 

490 pixels. This indicates that only a subset of the outer boundary pixels are 

necessary to calculate the appropriate proportional radii. Therefore, we choose 

the m i  pixels from each outer boundary (i = 1, , N) whose corresponding 

angles have the smallest absolute difference to the inner boundary angles. Having 

selected the m2  pixels, the corresponding outer boundary radii are found in order 

to calculate the m 2-vector of proportional radii (i = 1••• , N). Figure 4.15 shows 

how the radius r for the corresponding angle on the inner boundary is calculated, 

where r = 
router 

When the manual outer boundary is viewed, it appeared to be very jagged' 

because it followed along the edges of the pixels. Therefore, it is decided to 

smooth the outer boundary by converting to polar coordinates (with the redefined 

axis) and using Fourier coefficients, as in Section 4.3. We decide to be consistent 

with Section 4.3 and parametrise the outer boundary using h0  = 20 harmonics. 

It is this new smoothed outer boundary that is used to extract the mi  radii to 

express the inner proportional radii as 

Tinner 	 (4.14) 
Tfitted outer 

Then, using these new m 2  proportional radii, the regression analysis is repeated 

to estimate a new set of Fourier coefficients which models the inner boundary of 

each image. As in Section 4.3, we vary the number of Fourier harmonics, h in the 

parametrisation of the inner boundary. Figure 4.16 shows the total residual sum 

of squares (RSS) over the 24 images plotted against the total number of Fourier 

harmonics. From this, it has been decided to parametrise each boundary using 

41 Fourier coefficients (2h + 1) as before. 
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Figure 4.16: Total RSS from fitting the proportional radii in the 24 training images 
vs total number of Fourier coefficients. 

Figure 4.17 shows the new fitted Fourier boundaries, again superimposed as a 

continuous line onto the original data points for the same images in Figure 4.2. It 

can be seen here that these images exhibit more symmetry than the corresponding 

images for the first parametrisation, shown in Figure 4.7. This is due to the 

redefinition of the template which helps to correct the asymmetry of the animal 

due to gravity when it is not upright in the cradle. The large 'dip' in the radii, 

centred around 8 = 0, corresponds to the pixels around the backbone region. This 

evidence of symmetry was one of the initial ideas that we mentioned in Section 4.2 

when considering where to position the templates, since it is valuable to manual 

interpretation. 

The reduced rank analysis was repeated on the matrix HNB and Figure 4.19 

shows scatter plots of the first few pairs of scores. In Figure 4.19 (a) the two out-

hers at (-0.036, —0.017) and (-0.017,0.034) correspond to image 8 and image 

20 respectively. In Figure 4.19 (b) the outlier at (-0.026, —0.005) corresponds to 

image 4. As before, this could indicate that the fitted templates for these images 

would not fit as accurately to the hand-drawn boundaries as for the remaining im-

ages. See Table 4.3 for further evidence of this. It appears the outliers in Figures 

4.19 are more apparent than those in Figures 4.9. The results of this reduced rank 

approximation reveal that the first six components account for 86.7% of the varia-

tion between the original 41 variables and again the first six principal component 

scores support the normality hypothesis. Figure 4.18 shows the proportion of the 

cumulative variation explained as the number of principal components varies. 
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Figure 4.17: Proportional radii vs angles for the original hand-drawn inner bound-
ary pixels for the X-ray images in Figure 4.2. The estimated proportional radii 
for the images found using 41 Fourier coefficients have been superimposed as con-
tinuous lines. 
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Figure 4.18: Proportions of total variation in the regression coefficients explained 
as the number of principal components varies for the redefined template. 

Figure 4.20 shows the effect on the template of varying each of the first three 

principal components. The darker lines show the average template increased by 

two standard deviations for the first three principal components in turn, and the 

lighter lines are for the average template decreased by two standard deviations. 

If the average template (i.e. no principal components used) had been added to 

these images, it would have been situated between the two boundaries already .  

displayed. As can be seen, the first component mainly affects the amount of fat 

below the kidney that is included in the carcass: (refer to Figure 4.1). The second 

component specifies which layer of muscle to follow around the abdominal wall, 

while the third component affects the asymmetry of the image. 

4.9.1 Smoothing the image before optimisation 

Before optimisation is carried out, the gradient filtered image is also modified 

slightly. Firstly, we decide to 'blank out' the outer boundary because of the 

problem discovered earlier (Subsection 4.8.1) that the optimisation routine found 

an optimum lying along parts of the outer boundary. This is easily achieved by 

setting all the pixel values on this boundary to zero, so they appear as white in 

the gradient filtered image shown in Figure 4.12. Next, a Gaussian filter, with 

a variance of , was applied to simultaneously smooth and interpolate between 

pixels. The choice of variance used with the Gaussian filter is important, because 

as Staib and Duncan (1992) point out, it is possible to use too much smoothing 
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Figure 4.19: Scatter plots of principal component scores (centred about their mean) 
for the 24 training images (a) first PC vs second (b) third vs fourth (c) 
fifth vs sixth. 
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Figure 4.20: Average template with principal component scores increased (darker 
line) and decreased (lighter line) by two standard deviations for (a) first (b) second 
(c) third principal component. 

(i.e. too large a variance) and this has the effect of going further than simplifying 

individual objects, so that they become no longer recognisable. Figure 4.21 shows 

the effect of applying this Gaussian filter to the gradient filtered image, with the 

outer boundary removed. It can be seen that this filter smoothed the image and 

caused a blurring effect, i.e. reduced the number of local optima in the objective 

function in (4.13). Many authors have used a similar approach for smoothing 

the image, e.g. see Lipson et al. (1990) and Staib and Duncan (1992). Table 

4.2 shows evidence that these modifications produce more accurate positioning 

of the template in the image after optimisation when the proportional radii are 

fitted. The results in this table will be discussed later after the 'goodness of 

fit criterion' has been introduced, i.e. a measure quantifying how well the fitted 

template matches the manually drawn boundary. 

The Gaussian filter is a linear filter, in which a weighted average of the neigh-

bourhood pixels for each central pixel is formed, refer to Section 4.6. Gaussian 

filters have weights specified by the probability density function of a bivariate 

Normal distribution with variance a 2 . Therefore, the coefficients are defined by 

1 	1 —(k 2  + 12) 

Wkl 	2  exp 	
2a 2 	J 	for k, I = - [3a] , - [2a],... , + [3a], (4.15) 

2ira 

where [3u] represents the integer part of 3a. The divisor of 27ra 2  ensures the coeffi-

cients sum approximately to unity, which is a common convention with smoothing 

filters. For further details on this filter see Glasbey and Horgan (1995). 
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Figure 4.21: Examples of the initial images in Figure 4.2 after Prewitt's filter has 
been applied, the outer boundaries removed and finally the Gaussian filter applied. 
As before, the inverse of these images are shown for ease of viewing. 

4.9.2 Results after redefining the template 

The objective function in (4.13) was minimised for a range of values of c. using 

20 starting points for each value. It was found that this number was adequate 

as the variation between the best and worst fitted boundaries (i.e. corresponding 

to the parameter values which produced the smallest and largest value of the 

objective function using the Nelder-Mead routine) was quite small. This is due 

to incorporating more information from the manual boundaries into the template 

pararnetrisation and because the templates are standardised in size and orienta-

tion. Also, if the backbone is not vertically below the centroid, the inner and outer 

boundaries are distorted by gravity in a similar way. As before, the boundaries 

are reconstructed using only 360 radii, which are at equally spaced angles from 

the reference axis. The average sum of squares (SS) of the differences between 

the manual proportional radii and the fitted proportional radii (for the 24 images 

in the training set) for each value of c were found. These SS were found using 

360 

SS = 	(r1 - i') 2 	where 	r = Tinner 	
(4.16) 

t=1 	
router 

These average sums of squares are shown in Table 4.1 for varying values of c and 

varying ranks. It can be seen that c = 1 produces the lowest average sum of 

squares for each rank. Therefore, when validating this model on new data, c will 

he fixed at 1. This criterion in (4.16) is used to calculate the results in Table 4.2. 
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Rank used in reduced-rank approximation 
c 0 1 2 3 4 5 6 7 

9.0 0.154 0.148 0.145 0.145 0.145 0.145 0.145 0.144 
3.0 0.154 0.139 0.132 0.133 0.133 0.132 0.132 0.132 
1.0 0.154 0.126 0.124 0.132 0.130 0.128 0.128 0.128 

0.3 0.154 0.130 0.166 0.227 0.219 0.222 0.199 0.275 

Table 4.1: Average SS produced for various values of c in the objective function, 
(4.13), for images which have had both the gradient and Gaussian filters applied, 
and the outer boundaries 'removed' prior to optimisation. 

Image Rank used in reduced-rank approximation 
type 0 	1 2 3 4 5 	6 

A 0.154 	0.180 0.216 0.199 0.170 0.220 	0.215 
B 0.154 	0.128 0.136 0.141 0.141 0.138 	0.139 

C 0.154 	0.126 0.124 0.132 0.130 0.128 	0.128 

Table 4.2: Average SS over the 24 training images for various ranks used in 
the reduced-rank approximation and for different filters applied. Image types are 
A: Gradient filter, B: Gradient and Gaussian filters, C: Gradient and Gaussian 
filters with the outer boundaries removed. These values were found using c = 1 
in (4.13) and then using (4.16). 

It can be seen from this table that by smoothing the edge image with a Gaussian 

filter (middle row of results) there is a significant reduction in the average SS. It 

is also evident that the removal of the outer boundary improves the results even 

further. In fact, it can be seen that using the gradient filter on its own produced 

worse fitting templates than if the average template had been used instead (i.e. 

zero principal components.) 

The agreement between the best fitting template (darker), and the hand drawn 

boundaries (lighter), found using c = 1, for the images in Figure 4.2, may be seen 

in Figure 4.22. These results may be compared to those in Figure 4.14, and it is 

very evident that the manual template has been very accurately reconstructed. 

These best-fitting templates have been superimposed onto the inverse gradient 

filtered images (for ease of viewing) in Figure 4.23 to show the segmentation. 

Although the previous choice uses rank 6 in the reduced-rank approximation, it 

can be seen from Table 4.1 that for c = 1, this is not the optimal rank. Using 

a reduced rank approximation with rank 2 gives a smaller average SS than rank 

6 (and all other ranks), based on the total amount of variation from the true 

boundary for the training images. The first two principal components explain 

34.4% and 61.1% of the total variability respectively. 
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(a) 
	

(b) 

Figure 4.22: Hand drawn boundaries (lighter) with the best fitting templates su-
perimposed (darker), for the images in Figure 4.2. 

: 

(a) 
	

(b) 

Figure 4.23: X-ray images from Figure 4.2, with the template boundary super-
imposed onto the inverse gradient filtered image, based on optimisation of the 
redefined pararnetrisation of the template. 
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Rank used for reduced-rank approximation 
Image 0 1 2 3 4 5 6 7 

1 0.117 0.092 0.071 0.110 0.108 0.092 0.093 0.094 

2 0.225 0.095 0.103 0.110 0.106 0.108 0.107 0.106 

3 0.065 0.060 0.064 0.059 0.065 0.068 0.070 0.069 

4 0.230 0.242 0.088 0.084 0.076 0.077 0.073 0.075 

5 0.068 0.068 0.041 0.045 0.043 0.043 0.045 0.045 

6 0.185 0.206 0.103 0.118 0.119 0.114 0.118 0.117 

7 0.093 0.076 0.068 0.100 0.099 0.097 0.095 0.096 

8 0.314 0.236 0.179 0.170 0.166 0.166 0.160 0.161 

9 0.235 0.219 0.274 0.288 0.289 0.278 0.272 0.276 

10 0.138 0.078 0.083 0.097 0.096 0.097 0.092 0.090 

11 0.240 0.130 0.125 0.143 0.137 0.147 0.142 0.143 

12 0.095 0.095 0.081 0.074 0.056 0.055 0.055 0.055 

13 0.074 0.091 0.081 0.074 0.074 0.072 0.074 0.074 

14 0.064 0.062 0.036 0.047 0.047 0.045 0.044 0.042 

15 0.190 0.152 0.152 0.169 0.179 0.181 0.178 0.182 

16 0.122 0.071 0.084 0.062 0.063 0.063 0.064 0.066 

17 0.168 0.095 0.121 0.114 0.116 0.109 0.112 0.112 

18 0.104 0.080 0.068 0.077 0.070 0.069 0.068 0.073 

19 0.091 0.091 0.095 0.091 0.094 0.092 0.091 0.092 

20 0.442 0.405 0.554 0.603 0.604 0.600 0.617 0.619 

21 0.092 0.097 0.054 0.063 0.056 0.058 0.055 0.055 

22 0.114 0.117 0.133 0.126 0.129 0.116 0.118 0.120 

23 0.078 0.079 0.124 0.135 9.134 0.127 0.128 0.124 

24 0.159 0.095 0.217 0.206 0.197 0.195 0.197 0.194 

Average 0.154 0.126 0.124 0.132 0.130 0.128 0.128 0.128 

Table 4.3: Sums of squares of difference between the hand-drawn inner boundary 
and the fitted boundary (described in (4.16)) and the average sum of squares for 
the 24 training images, for the various ranks used to produce the fitted template 
using image type C. 

Although the fitted boundaries are constructed with only 360 pixels, the majority 

of the original hand-drawn boundaries have many more pixels. Therefore, the 360 

pixels that we extract from the hand-drawn boundary are those that lie closest 

in orientation to those on the fitted boundary. Table 4.3 displays the SS for each 

individual image and also the average SS over the full training set, for various 

ranks used in the fitting of the boundaries. It is also evident from Table 4.3 that 

image 20 is the worst, in terms of the criterion used in (4.16). Image 20 and 

image 8 were expected to do worse than the other images as they were viewed as 

outliers in Figure 4.19 (a): see Section 4.3 for previous comments. Figure 4.24 (a) 

displays the hand-drawn boundary, for image 20, with the poorly fitted boundary 

superimposed. Figure 4.24 (b) shows the original cross-section of image 20 with 
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(a) 	 1)) 

Figure 4.24: (a) Manual boundary (darker) with the fitted template (lighter) su-
perimposed for image 20 (b) fitted template for image 20 superimposed onto 
the original image to show the poor segmentation. 

the fitted boundary superimposed. This shows more clearly the areas of fat and 

muscle that have been incorrectly approximated. It can be seen from Figure 4.24 

(b) that this is a fairly fat sheep and as a result of this, it 'appears' to the viewer 

that the continuous layers of muscle around the abdominal wall do not exist. The 

'islands' of muscle within the carcass region make it difficult for the optimisation 

routine to find an accurate fitted template. 

4.10 Applying the redefined model to validation 

data 

Until now the algorithm had been built and tested only on the training data. 

However, it is necessary to validate the algorithm on an independent set of images. 

The new set of data consisted of 10 images, tomographs taken at the same lumbar 

vertebrae position and for the same breed and age of sheep as in the training 

data. The main problem encountered here is that the outer boundary has to 

be identified for the new images, whereas in the training set the pixels lying on 

the outer boundary are known and therefore can be easily modelled using the 

parametrisation. This is a relatively easy task using low level image analysis 

techniques involving several steps: 

Threshold the image at a value of 0. This creates a binary image separating 

the background pixels (greyscale value 0) from the non-zero image pixels. 

Using this binary image, a labelled image may be formed. This is where 
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the connected components in an image are labelled from 1 up to the total 

number of connected components in an image. 

3. After labelling, it is fairly easy to extract the pixels which lie on the con-

nected component corresponding to the outer boundary. 

After the outer boundary is identified, the coordinates of the centroid are found 

using (4.1) and the outer boundary is smoothed using the Fourier parametrisation 

of Section 4.3. The coordinates of the centre of the spinal column are easily 

identified in all images. 

The same procedure as in Section 4.4 was repeated, using proportional radii 

(measured from the line joining the centroid and backbone). Prewitt's and the 

Gaussian filters are applied and the outer boundary removed and the Nelder-

Mead algorithm used to fit the boundary with d1  from (4.9) having length 2. 

Each boundary is reconstructed using 360 equally spaced angles to estimate the 

radii and bilinear interpolation of the corresponding real valued (x, y) coordinates 

is used to obtain 360 smoothed gradient values. 

As would be expected, the fit of the template is not quite as good as it is for 

the original training data. However, the results are fairly accurate in comparison 

with those of the manual interpretation of the new data. The fit for the validation 

images is quantified using the sums of squares criterion in (4.16). The SS of 

differences of the true and fitted proportional radii for each of the 10 new images 

and their average SS are displayed in Table 4.4. An average SS of differences 

(rank 2) of 0.180 was found for the validation set, in comparison to 0.124 (rank 

2) for the training data. Figure 4.25 shows the manual interpretation (lighter 

boundaries) of these new images with the fitted template assuming rank 2 (darker 

boundaries) superimposed. Figure 4.26 shows the 10 new images with the fitted 

template superimposed, again on the inverse of the gradient filtered image for 

ease of viewing. 

4.11 Effect of adding mirror images to the train-
ing set 

It has been decided to investigate how the results from the reduced-rank approx-

imation would be affected if the mirror image of each training image is also used. 

This idea is motivated by the near-symmetry of the images and also because in 

the manual interpretation, symmetry is used to draw parts of the boundary if 

there is no clear boundary definition on one side of the image: see Section 4.2. 
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Figure 4.25: The manual boundaries (lighter) for the validation data set with the 
fitted boundaries (darker) superimposed. 

73 



•' 

	 - 	
l/I 	

L 

/ 

Figure 4.26: Prewitt's filter applied to the validation data set, with the fitted 
templates (using rank ) superimposed onto the inverse gradient filtered images. 
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Image Sum of Squares 
number of differences 

(rank 2) 
1 0.108 
2 0.063 
3 0.156 
4 0.245 
5 0.350 
6 0.077 
7 0.328 
8 0.080 
9 0.248 
10 0.146 

average 0.180 

Table 4.4: Sums of squares of differences between the true proportional radii and 
the fitted proportional radii for each image in the validation set with rank 2. 

The polar representation of these mirror images is easily obtained by negating 

the vector of angles of the boundary pixels, so that a pixel previously with polar 

representation (r, 0) now becomes (r, —0). The polar form for the mirror images 

is based on the polar representation of the images in Section 4.3. 

Using these mirror images with the original images has the effect of doubling 

the training set. To see how this affects the principal component scores and the 

corresponding eigenvectors and eigenvalues, suppose the ith vector of estimated 

Fourier coefficients in Section 4.3 is partitioned as 

bc  

where the two sub-vectors are the estimated coefficients for the cosines (and 

constant term) and the sines. Therefore, the corresponding partition of B is 

given by 

B=[B B5 ], 

where B and B5  are N x (h + 1) and N x h respectively. The corresponding 

matrix for the mirror images is 

[B —B s  ]. 

Therefore, including the original and mirror images replaces B by the 2N x p 

matrix 

B J3 
BC  —B s  
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so that b, (which is p x 1), is replaced by [] , where be  is (h + 1) x 1 and 0 

is h x 1. Therefore, (4.3) becomes 

1B 	B5 1 B e  B 5 ] 

L BeB5] = '2N { be 0T]  + H2N L Be—B5  j 
= 	

oT 

	

1 2N be 	]+[BC_1C 	
B55 I 

	

 
Be - 1Nb —B 	

(4.17) 

and BTHNB  is replaced by 

I B T  B T 11 'N - JN 	JN 11 B e B 5  1 1 2BfHNB C 	0 

B —B iL — JN 'N - JN iL Be—B  j = L 	0 	2B B 5 ] 

Thus, if p, r are any eigenvectors of 2BHNB c  and 2BB S  respectively then 

F P, an 1 	d 1 0 	
are eigenvectors of 

[0] 	[Ps 

F 2BH.,rB 	0 

L 	0 	2BB S  

The eigenvalues are twice those of BHNB C  and of BiBS.  Since this is block-

diagonal there are min(N - 1, (p + 1)) non-zero eigenvalues for BHNB C  and 

min(N, (p - 1)) non-zero eigenvalues for BYB S . 

It can be seen from Table 4.5 that when the mirror images are added to the 

original 24 images, producing a training set twice the previous size, seven principal 

components accounted for 85.2% of the total variation between the 41 Fourier 

coefficients. It can be seen that the eigenvalues are very similar for both analyses 

and the last two columns of Table 4.5 indicate whether the largest eigenvalues 

came from either BHNB C  or BY  B S . It can be seen that the first, second, fourth, 

fifth and seventh largest eigenvalues are from BfHNBC. It is interesting to note 

that the third eigenvalue in the mirror image reduced rank analysis actually comes 

from 2BB S . It was shown in Figure 4.20, that the third principal component 

affected the asymmetry of the fitted boundary, showing that all the eigenvectors 

from 2BB S  also affect the asymmetry to some extent in the images. This idea 

has not been investigated here but could be pursued further in future work, see 

Section 7.2. 

Table 4.6 shows that three principal components minimised (4.16), where the 

average SS of differences (over the 24 images) between the true and fitted pro-

portional radii is 0.132. The average SS from the previous analysis, not including 

mirror images in the training set, have been included to provide direct compar -

ison. It can be seen that the sum of squares for ranks 0 to 7, is slightly higher 
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Previous analysis 
eigenvalue 	% of 
X10-5 	variance 

Mirror image analysis 
eigenvalue 	% 	from matrices of 
x10 5 	variance 	cosines 	sines 

25.4 34.4 24.5 32.0 x 

19.8 26.7 18.8 24.5 x 
6.83 9.3 6.82 8.9 x 

5.01 6.7 5.82 7.6 x 
4.70 6.4 4.60 6.0 x 
2.39 3.2 2.84 3.7 x 
1.72 2.3 1.89 2.5 x 

Table 4.5: The largest seven eigenvalues for the reduced rank approximation, be-
fore and after the mirror images of the training set were included in the analysis. 
The last two columns indicate whether the eigenvalues in the mirror image anal-
ysis come from the matrices containing either the cosine or sine coefficients. 

Rank used in reduced rank approximation 
Type of analysis 	0 	1 	2 	3 	4 	5 	6 	7 

Mirror images 	0.175 0.145 0.136 0.132 0.134 0.133 0.133 0.133 
No mirror images 0.154 0.126 0.124 0.132 0.130 0.128 0.128 0.128 

Table 4.6: Average SS over 24 training images using various ranks in the reduced 
rank approximation when the mirror images were included in the analysis. The 
averages from Table 4.3, when mirror images are not included in the analysis, are 
shown for comparison. 

when the mirror images are included. Figure 4.27 shows the images in Figures 

4.2 (a) and (b) with the fitted boundaries using the mirror image analysis, with 

rank 3, superimposed. 

The increase in the average sum of squares for the various ranks by including the 

mirror images could be expected because it assumes symmetry in some average 

sense. However, the real test of whether the inclusion of these mirror images 

actually improves the boundary fitting results comes from applying this method 

to images not in the training set. Therefore, using the same ten validation images 

as in Section 4.10, boundaries are reconstructed using ranks from 0 to 7, in the 

reduced rank approximation which included mirror images. The average SS over 

the ten images are shown in Table 4.7. The corresponding results when the mirror 

images are not included in the analysis for these validation images are shown for 

comparison. It can be seen that for each of the ranks, (including the mean 

template with rank 0) the average SS over the ten images is actually larger when 

the mirror images of the 24 images are included in the training set. These results 

indicate that the inclusion of the mirror images of the training set actually lead 

to the inner boundaries being fitted less accurately than when the mirror images 
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tion when the mirror images where included in the training set, superimposed onto 
the original image for the images displayed in Figures 4.2 (a) and (b) respectively. 

Rank used in reduced rank approximation 
Type of analysis 	0 	1 	2 	3 	4 	5 	6 	7 

Mirror images 	0.229 0.191 0.181 0.178 0.180 0.181 0.182 0.183 
No mirror images 0.220 0.186 0.180 0.178 0.179 0.175 0.174 0.174 

Table 4.7: Average SS over 10 validation images using various ranks in the re-
duced rank analysis approximation when the mirror images where included in the 
analysis. The averages when mirror images are not included in the analysis, are 
included for comparison. 

are not included. 

4.12 Summary and conclusions 

A deformable template approach has been used to perform the segmentation of 

the X-ray CT lumbar images, see also Glasbey et al. (1999). A training set of 

24 images were used to build a parametric model of the template with Fourier 

coefficients. Principal component analysis was used to reduce the dimensionality 

and estimate a distribution on the parameters of the template. This distribution 

was combined with local gradient information from the image and various image 

enhancements were used on the images prior to optimisation. We found that the 

segmentation was greatly improved by including more prior information in the 

model concerning the size and orientation of the sheep. This was achieved by 

considering the inner boundary as a proportion of the outer boundary and taking 

into account the rotation of some sheep in the cradle after restraint. 

We also investigated the inclusion of the mirror images of the 24 inner boundaries 
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into the training set. However, we were unable to improve upon the accuracy of 

the fitted boundaries prior to this investigation. 

It can be seen from the results presented in this chapter, that deformable tem-

plates provide a very effective approach for the segmentation of the X-ray CT 

images. On comparison with the manual segmentation, deformable templates are 

capable of locating the required inner boundary extremely accurately. 

We now consider the second stage of the process (see Section 1.4), which in-

volves estimating tissue proportions in the segmented images. This is discussed 

in Chapter 5. 
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Chapter 5 

Probability density function of 
pixel values 

5.1 Introduction 

Having automated the identification of the relevant tissue areas to produce im-

ages similar to Figure 4.3, the next step is to estimate the proportions of each 

tissue present in each image. One method for estimation is to consider each pixel 

separately, assign it to a tissue type and finally sum over all the pixels. 

Classifying each pixel would be a relatively simple task if each pixel represented 

one tissue and each tissue was represented by a single greyscale value. If this 

were the case then it would simply be a matter of counting the number of pixels 

with these individual values. However, an image is never an exact representation 

of the object under observation as the output of any system is corrupted by the 

system itself. In addition, each tissue is represented by a range of values (due 

to the method of imaging, image noise, inhomogeneity of the tissues and other 

factors) that may overlap with the ranges of other materials, making it difficult 

to quantify the amount of each tissue in the image. Therefore, it is important to 

know how the imaging system affects the input. However, in part due to the finite 

resolution of the X-ray machine, averaging takes place between the tissue types, 

resulting in mixed pixels. These mixed pixels are a combination of two or more 

tissue types and this mixing of tissues makes it difficult to obtain an accurate 

quantification of the image. 

In Section 5.2, recent papers which model the distribution of pixel values, pre-

dominantly concerning medical images, are reviewed. In Subsection 5.3.2, three 

representations of the point spread function for the X-ray CT machine are fitted 

to the data and an isotropic bivariate normal density is chosen. This is used to 



derive a new probability density function for the mixed pixels, termed the mixed 

pixel density: see Subsection 5.3.4. This distribution is combined with the dis-

tributions for the pure pixels to obtain a density function of pixel values in the 

image. 

5.2 Review of recent literature on estimating 
the probability distribution of pixel values 

Santago and Gage (1995) briefly review current work on the classification of pix-

els and the quantification of a given tissue. However, for the purposes of this 

work it is not necessary to use the classification approach as it is sufficient to 

estimate the overall proportions of each tissue without estimating the exact type 

of tissue/tissues present in each individual pixel. 

A method of quantification is described by Gage et al. (1992), based on exam-

ining the histogram of pixel values in the image, and from this they develop a 

finite-mixture density model (see Everitt and Hand, 1981) for the distribution of 

the pixel values. The histogram of pixel values for a typically segmented lumbar 

image (such as Figure 4.3), is shown in Figure 5.1. This histogram will be dis-

cussed in more detail in the following section. Each tissue type has a probability 

density function with different parameter values and with a different probability. 

This approach of using a finite-mixture density will be adopted to estimate the 

tissue proportions in the X-ray lumbar images. Having estimated the parameters, 

Gage et al. (1992) use a classifier which has prior probabilities for the tissues, in 

order to sort the pixels into the different tissue types, although the proportions of 

the mixture density could have be used directly. The pixels which are determined 

to be mixed pixels are allocated among the appropriate tissues equally. There-

fore, the total amount of each tissue is found by adding the pure pixels and the 

appropriate number of pixels from the mixed pixels. 

Thaler et al. (1978) consider estimating the proportions of the three types of 

matter present in voxels (volume elements) in the brain. They assume that pure 

voxel values have independent Normal densities with different means, j, and 

variances, and the greyscale values for mixed voxels, composed of all three 

types of tissue, (in proportions, p i ) follow a Normal distribution with mean and 

variance given by N( 1  pj1uj, > Po?). They provide no derivation of the 

probability distribution of the mixed voxels to justify the assumption. They also 

assume that the variation in the proportions from voxel to voxel follows a Dirichiet 
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probability distribution. 

To date, the approaches which use the finite mixture distributions either do not 

take into account the modelling of mixed pixels, (e.g. see Lei and Sewchand, 

1992a), or they include them as being a different material, where the parameters 

of the probability density function of the mixed pixels are unconnected to the 

parameters of its pure pixels elements (e.g. see Luiting et al., 1995). 

Luiting et al. (1995) also consider a finite mixture density to model the pixel 

values, and incorporate mixed pixels into their model in order to estimate the 

amount of fat and muscle present in pig carcasses. They assume that the ob-

served greyscale frequency distribution is the sum of independent normal density 

functions for both fat and muscle tissues. They also assume that the values for 

mixed pixels follow a normal density function, but they do not express the param-

eters in terms of the means and variances of the pure tissues, but instead appear 

to treat the mixed pixel density function as a separate distribution with parame-

ters independent of the pure tissue parameters. After maximising the likelihood 

to estimate these parameters, they differ from Thaler et al. (1978) by splitting 

the proportion of mixed pixels over fat and muscle according to the ratio of the 

proportions of pure fat to pure muscle. They also perform their analysis without 

the inclusion of mixed pixels, assuming that only pure pixels exist. They find 

that the parameter estimates became less biased and the estimated proportions 

were greatly improved through the inclusion of the mixing distribution. 

Lei and Sewchand (1992a) approach the estimation of tissue types in an image 

in a slightly different manner. They also use a finite mixture of Normal densi-

ties and a classifier with prior probabilities for the tissue types but they do not 

assume to know the number of distinct regions present in the image. They use 

an information criterion to estimate this number initially but do not explicitly 

include mixed pixels in their model. On estimating the number of regions, they 

find the optimal number is in fact larger than the number of pure tissues expected 

to be present and they explain this result by the existence of mixed pixels. 
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Figure 5.1: Shows a typical histogram of the pixel values in a segmented lumbar 
image, similar to Figure 4.3. 

5.3 Approximating the probability density func-
tion of the pixel values 

5.3.1 Review of literature on estimating the point spread 
function, (PSF) 

Although each pixel in the image is represented by a single greyscale value, it 

is actually the average value of the amount of transmitted X-rays for a small 

region around that point in the image. As a result of this averaging, there is 

an area between two adjacent tissues whose greyscale values are different from 

those in either of the two tissues regions. The pixels in this area are defined 

as mixed pixels, and their greyscale values are usually between those of the two 

adjacent tissues, i.e. an ideal sharp edge in greyscale values does not exist on the 

boundary between the two tissues. Generally this averaging extends more than 

the distance between pixels, and Lei and Sewchand (1992a) state that the width 

of this averaging in X-ray CT imaging is about 1-2 pixels. Due to this averaging, 

many pixels in the CT images are actually responses to mixtures of two or more 

tissue types. Therefore, in trying to estimate the tissue proportions effectively it 

is necessary to take this mixing into account. 

A typical histogram of a segmented lumbar image is shown in Figure 5.1. The 

greyscale values are displayed in the range [0,255]  rather than in the original 

Hounsfield units: see Chapter 1. The peak at 0 (i.e. the background pixels) 

has been removed to allow a magnified view of the other greyscale values. The 

smaller peak around pixel value 75 corresponds to the fat pixels and the larger 
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peak around 150 corresponds to muscle pixels. Many, but not all, of the pixels 

lying between these peaks correspond to pixels which are a mixture of fat and 

muscle. The peak at greyscale value 255 corresponds to the bone pixels. 

It can also be seen from Figure 5.1 that there are negligible amounts of mixed 

pixels between the muscle and the bone peaks and similarly between the fat peak 

and the background pixels. Also, since the bone pixels and the background pixels 

can be easily identified in an image using thresholding methods, our estimation 

of tissue amounts is restricted to fat and muscle only. It is assumed that all the 

mixed pixels are a combination of fat and muscle only and the derived probability 

density function for the greyscale values in an image (in Subsection 5.3.4) makes 

provision for pure fat and muscle pixels and a mixture of these tissues only. 

In order to develop a distribution which accurately represents the pixel values 

shown in Figure 5.1 (excluding the background and bone pixels), and which takes 

into account the mixed pixels, it is first necessary to model the spatial response 

of a pixel for the X-ray machine. This means it is necessary to understand and 

model how the average value is obtained, i.e. is it a linear combination of all pixels 

in some local neighbourhood or is there a larger weighting to regions very close 

to the point? This spatial response is known as the point spread function (PSF). 

The standard use of the point spread function in image analysis is in deconvo-

lution to restore a blurred image. The main aim of restoration is to improve a 

given image in some sense by modelling the degradation and applying the inverse 

process in order to recover a better approximation to the original image. Early 

techniques for digital image restoration were derived mostly from the frequency 

domain (see Gonzalez and Woods, 1993). 

• CT scanner blurs the images and also introduces noise (see Dore et al., 1997). 

• common model for studying such a system is to consider it as linear, spatially 

invariant and corrupted by additive output noise, such that 

g(x, y) = (f * h)(x, y) + n(x, y), 	 (5.1) 

where g(x, y) is the observed (degraded) image, f(x, y) is the original image, 

n(x, y) is random output noise, which may or may not be present, h(x, y) is the 

point spread function and * is a two-dimensional convolution. The assumption 

that the observed picture g(x, y) is a linear function of the ideal image f(x, y) as 

in (5.1) is approximately correct only over a small dynamic range of grey levels 

(see Rosenfeld and Kak, 1982). In most cases with various imaging modalities, 

it is assumed that the point spread function is position-invariant, i.e. the result 

depends only on a value of f(x, y) at a given point in the image and not on the 
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position of the point. If it is assumed that there is no noise present, then (5.1) 

reduces to 

g(x,y) = (f * h)(x,y). 	 (5.2) 

The PSF can be estimated in the frequency domain by taking Fourier transforms 

of both sides and using the convolution theorem to obtain 

G(u,v) = F(u, v)H(u, v), 	 (5.3) 

where C, F and H are the Fourier transforms of g(x, y), f(x, y) and h(x, y) respec-

tively: H(u, v) is also known as the modulation transfer function of the system 

that transforms the ideal image f(x, y) into g(x, y). Rosenfeld and Kak (1982) 

demonstrate how in some cases the physical phenomenon underlying the degrada-

tion can be used to determine h(x, y), for example in optical imaging systems or 

in photography. If the blurring is of an unknown nature or if the phenomenon un-

derlying the degradation is too complex for analytical determination of h(x, y), 

the only possible alternative is to estimate it from the degraded picture itself. 

Many experimental PSF identification techniques adopt one-dimensional linear 

system methods based on impulse methods, step functions or frequency methods. 

Dore et al. (1997) give details on these methods. 

Glasbey et al. (1994) look at estimating the PSF of a desktop scanner using fre-

quency domain methods. They examine digitised versions of binary images which 

show intermediate greyscale values because of blurring. To estimate the PSF they 

calculate the Fourier amplitudes of both the blurred and true versions of the bi-

nary images. Assuming there is no noise, as in (5.2), the ratios of these Fourier 

amplitudes are the Fourier amplitudes of the PSF. On examination of these ratios 

they find the PSF is isotropic and they approximate it by an integrated form of 

a bivariate Cauchy distribution. 

The approach used to identify the PSF of the SAC-BioSS CT scanner is based 

on the knowledge of a true edge that is known to exist in the image. 

A system modelled by (5.1) is completely characterised by the PSF and the noise, 

which accounts for the blur in the spatial domain. Output noise from the CT 

system is due to a variety of factors, resulting from the interaction of X-ray 

photons with the tissues, as well as noise at the detectors. It is generally assumed 

for many imaging modalities that output noise is uncorrelated to the original 

image f(x, y), but Dore et al. (1997) state that this is not true of X-ray CT 

scanners. In general, the level of noise increases with the X-ray attenuation of 



a tissue. They propose to identify the PSF of a CT scanner using a correlation-

based method, through using the Wiener-Hopf equation, (see Dore et al., 1997). 

Although correlation-based methods have been used in other fields to estimate 

the PSF, they had not been used for medical imaging systems prior to this paper. 

In it they construct a 'phantom' consisting of a series of randomly located holes 

in order to estimate the PSF. They assume that the PSF is position invariant 

and that it is of finite size. A 'phantom' is an object made specifically for use 

either to check the resolution of the X-ray machine or as in Dore et al. (1997) 

to estimate the PSF. A phantom generally consists of objects of different sizes 

and the exact form of the input image is known before scanning. Therefore, this 

allows the PSF to be determined, given the output image after scanning. 

Rathee et al. (1992a) define the PSF of a CT system as the image of an infinites-

imally small point object. The main factor in image blurring for small objects 

in CT is the finite size of the X-ray beam profiles. In an earlier paper, (Rathee 

et al., 1992b), they assume that the PSF is spatially invariant for an idealised CT 

scanner. However, in their second paper they state that the PSF is in reality spa-

tially variant due to the divergent and spatially variant fan beams of X-rays: see 

Subsection 2.3.1. Therefore, two point objects located at two different positions 

in the object plane are blurred differently. In general, the PSF of a CT system is 

spatially variant and is a function of the radial position of the point object. 

Although the noise in CT images is spatially correlated and data dependent, re-

cent formulations assume a noise-free image degradation model. For the purposes 

of estimating the PSF of the SAC-BioSS CT scanner, this assumption will also 

be made here, together with the PSF being spatially invariant. The edge method 

mentioned earlier is also used by assuming that a step edge is known to exist in 

reality in the image. 

5.3.2 Estimation of the PSF of the SAC-BioSS CT scan-
ner 

Here a simple approach is used in order to estimate the PSF. It is known that in 

reality the boundary from air to the cradle is a step edge, (see Figure 5.2(a)), i.e. 

so in the image if there was no PSF then all the pixels in this region should have 

a greyscale value corresponding to either air or the cradle only. A subsection of 

the cradle in Figure 5.2(a) is shown in Figure 5.2(b), which shows two boundaries 

between cradle and air pixels. Since the cradle is made from a homogeneous 

material it would be assumed that the greyscale values of each of the cradle 
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Figure 5.2; (a) An X-ray CT /ruaqc b(joi'c pioccssiiij ui//i I/u u/u/c square iden- 
tifying the sub-image of the cradle in (b): (b) is used to estimate the point spread 

function. 

pixels should be the same if there was no averaging taking place. It can be seen 

that this is obviously not the case. It can be seen in Figure 5.2(b) that the cradle 

pixels which lie on the two boundaries with air are slightly darker than those 

cradle pixels slightly further from the boundaries (i.e. the pixels in the middle of 

the cradle). It is assumed that the averaging taking place between the air and 

cradle pixels is the same at each of the two boundaries shown in Figure 5.2(b) and 

the averaging is also assumed to be the same over the rest of the image i.e. we are 

assuming a spatially invariant PSF, similar to Dore et al. (1997). Therefore, it is 

only necessary to consider one of these boundaries and here the larger of the two 

boundaries is used, i.e. the cradle/air boundary which lies on the left of Figure 

5.2(b). It was assumed in Section 5.3 that all the mixed pixels in the carcass 

are a combination of fat and muscle only. From examination of Figure 5.2(a), 

the majority of the mixed pixels in the carcass region lie relatively close to the 

cradle pixels. Therefore, if this assumption of a spatially invariant PSF is slightly 

incorrect, then the estimated PSF found from this air/cradle region would still 

be quite accurate. 

In order to estimate the PSF, the outer boundary of the cradle was assumed to be 

approximated by the arc of a circle with radius "y and centred at (ici, ic2). Since 

we are restricting ourselves to one of the boundaries, it is only necessary to model 

the N pixels near the edge of the cradle. For the boundary of interest, 44 pixels 

were chosen. 

The greyscale values of these 44 pixels which lay close to the boundary with pixel 
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location (i,j), were modelled by 

fa+(), 	
(5.4) 

where 

dij  =-y — \/(/ci —i) 2  +(ic2 -j) 2  

is the distance from pixel (i, i) to the outer edge of the cradle. The air and 

cradle regions are modelled as homogeneous materials with mean pixel values a 

and (a + 3) respectively and is a function with range [0, 1] that specifies the 

response of a pixel after scaling by T. It is a one-dimensional integral of the two-

dimensional PSF. The expected greyscale value of pixel (i, j) is  f,, with observed 

greyscale value f23 . It should be mentioned here that in order to model the PSF 

the original Hounsfield unit values (approximately in the range —1024 to +200) 

in this section of cradle were used rather than the transformed values which lie 

in the range [0,255J. 

The six parameters in (5.4) , i.e. (a,,6, 'y, ,c 1)  ,c2 , r) are estimated by minimising 

the root mean square error, (RMSE), between the data and the model, i.e. 

RMSE = 
	

(f - f * ) 2 

where N is the number of pixels which lay close to the boundary and the sum is 

over the values of i and j corresponding to the selected 44 pixels. Three choices 

of 'i/' were tested: 

. a linear ramp where 

10 
	

for x < —1 

for —1 < x < 1 

(1 
	

for x> 1 

• a logistic function where 1(x) = expx 
1+expx 

1 	X 
• a normal integral where /(x) = - I exp (—y 2 /2) dy 

Table 5.1 shows the results of minimising the RMSE for the three forms of i/, 

over the same 44 pixels. Figure 5.3 (a), (c) and (e) show the greyscale values of 

the-44 pixels near the outer edge of the cradle, plotted against the distance from 

the fit of the model in (5.4), for each of the three forms of /'. The fitted greyscale 

values have been superimposed as a continuous line. Figures 5.3 (b), (d) and (f) 

[s1b 



RMSE 

ramp 34.6 
logistic 29.7 
normal integral 28.6 

Table 5.1: The minimised RMSE of (5.4) for the three functions. 

Parameter 	a 	13 	-y 	Ici 	 -r 

Estimate —1025.76 1161.99 224.81 34.89 242.06 0.41 

Table 5.2: Estimated values for the six parameters which minimised the RMSE 
with as a normal integral. 

show the sub-image of the cradle from Figure 5.2(b) with the estimated cradle 

boundary superimposed. 

It can be seen from Table 5.1 that the normal integral performs best, although 

there was little difference between this and the logistic function. However, the 

normal integral is the only form of that corresponds to a simple two-dimensional 

PSF, i.e. a bivariate normal density: see Subsection 5.3.3. 

Table 5.2 shows the six parameter estimates obtained for the normal integral. 

The most important parameter here is r, which is the standard deviation of the 

isotropic bivariate normal density: see Subsection 5.3.3. The estimate of 0.41 

pixel units is important because it is used later in order to derive the distribution 

of pixel values in an image. The estimate; &, of the mean greyscale value of the air 

pixels is - 1025HU and accurately reflects the true greyscale value of air, which 

is —1024HU: see Section 1.2. The estimate, â + /3, of the mean greyscale values 

of the cradle pixels is 136HU. It can be seen from Figure 5.2 (a) that the cradle 

pixels are more dense than the muscle pixels and hence have larger Hounsfield 

numbers. On comparison with Figure 1.2 and the range of HU for muscle, this 

value of 136HU appears an accurate estimate of the mean value of the cradle 

pixels. Also, the estimate of -y corresponds to the estimated radii of the arc of 

the circle. 

The estimated PSF is used in Subsection 5.3.4 in the derivation of the mixed pixel 

distribution. At present, as stated earlier, the method used here only considers 

two tissues in the model, although this may be extended to deal with more. 
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Figure 5.3: (a), (c) and (e) show the greyscale values for N pixels near the edge of 
the cradle plotted against the distance from the edge of the cradle, with the fitted 
model in (5.4), using the linear ramp, logistic and normal integral functions. (b), 
(d) and (1) show the sub-image from Figure 5.2(b), with the estimated edge of the 

cradle superimposed, again using the three forms of 0 . 
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5.3.3 Observed image for a circular normal PSF and a 
linear boundary 

The normal integral which gave the best fit is also the only one of the three cases 

for that corresponds to an analytically simple two-dimensional point spread 

function, which in this case is a bivariate isotropic normal density. In this section 

we will show that applying a bivariate normal PSF to an image produces the 

one-dimensional normal integral which minimised the RMSE in Subsection 5.3.2 

(see Table 5.1). 

On examination of segmented images similar to Figure 4.3, it is clear that the 

positioning of the layers of fat and muscle and hence the amount of each tissue 

varies between sheep. The boundaries between two tissues are reasonably smooth 

and continuous, and therefore are assumed to be locally linear. It can also be seen 

that the three layers of muscle/fat at the side of the carcass are approximately 

parallel to each other and to the outside of the body. These assumptions will be 

used in the simulation study in Chapter 6. It was decided due to the random 

position of the boundaries and the assumption of them being locally linear, that 

the boundaries separating the tissues could be approximated by random lines. 

The process of constructing random lines is given in Section 6.2. 

Consider a locally linear tissue boundary, ax + by = c passing through an image, 

where a typical pixel in the image is denoted by (x, y). If it is assumed that the 

pixels on the left and right of the line represent say fat and muscle, then using 

an indicator function we can denote fat as 1, and muscle as 0. It is assumed that 

the fat and muscle pixels have negative and positive distances respectively from 

the line. Therefore, the image may be represented as 

Jo for ax+by<c 
(5.5) 

for ax+by>c  

An isotropic bivariate normal PSF, with standard deviation r, centred at (0,0) is 

given by 

w(x,y)= 
1 	1_(x2 + 2 ) 

exp< 
27rr

2 	
I. 	27-2 	

} 
 

Therefore, convolving this point spread function, centred on a pixel (x 0 , yo), with 

(5.5) gives the weighted average greyscale value from the X-ray machine, p, on a 

pixel as 
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Figure 5.4: Geometrical representation of the new axes, s and t, after the change 
of variables. 

f
Q0 P00

p(xO,yO) 
= 	

/w(x —x 0 ,y—yo)r(x,y)clxciy, 	(5.6) 
 J —00 

where p may be interpreted as the proportion of fat in a pixel. 

In order to shift the origin to the pixel (x 0 , Yo)  and to rotate the axes such that one 

axis is parallel to the boundary ax + by = c, a change of variables is introduced. 

This will simplify the integral in (5.6) where s = a(x - x0 ) + b(y - Yo) and 

t = —b(x - x o ) + a(y - yo), (see Figure 5.4 for geometrical representation), and 

substituting into (5.6) gives 

p00 	(as - bt bs + at'\ (as — bt 	bs + at 	
dsdt (5.7) +x0 , 	+ yo P=JJw2+b22+b2)r2+b2 	a2+b2 	

)J 

where the Jacobian, J, is given by 

(s, 
 t) =a2+b2. 

- a(x,y) I 
Using (5.5), 

I 	fors<l (as — bt 	bs+at 
T 

a2 + b2 + 
x0, 

a2  + b2 + Yo) 	i for s > 1, 

where 1 = c - ax0  - by 0 . 

Therefore, (5.7) simplifies to 

=1

00

f
001 exp 

 { 

s2  +t2 '1dsdt. 

00 2 2  2r2 (a2  + b2) a2  + b2  
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After integration, we obtain 

	

P

(\/ 	b2 ) 	 a2  + b2 ) = (_
D ) 

	
(5.8) 

where 

	

D 	
I 	—ax 0 —by 0 +c 

= ___ = ___ 

which is the perpendicular distance from the pixel, at position (x 0 , yo),  to the 

tissue boundary, with equation ax + by = c. This result is exactly the normal 

integral which minimised the RMSE in Subsection 5.3.2. 

5.3.4 Using the estimated PSF to approximate the prob-
ability density function of pixel values 

Using the estimated value 0.41 of r in the Normal PSF, see Table 5.2, it is 

reasonable to assume that any pixel which is more than a perpendicular distance 

of 1 (which is approximately 2.5 x ), from the boundary between the two tissues 

is either pure fat or pure muscle. This is because if D I > 1 then p 0 or 

1, since (-1/r) = 0.007 and 1(1/r) = 0.993. Conversely, all pixels within a 

perpendicular distance of 1 of a boundary are assumed to be a mixed pixel (part 

fat and part muscle). In order to derive the probability density function and hence 

the cumulative distribution function of p, it is assumed that the perpendicular 

distance D is uniformly distributed, conditional on it taking a value between —1 

and +1. This assumption will be justified in Section 5.4. 

The cumulative distribution function of D, denoted F(D) is given by 

F(D)=(D+1) (-1 < D < 1). 

Therefore, the cumulative distribution function of p, F(p), is given by 

F(p) = 1—Pr(D<—r'(p)) 

{i + T ' (p)} 	 <p < (1/r)). 	(5.9) 

The probability density function of p, denoted by f(p), is found by differentiating 

(5.9) with respect to p. Since p in (5.8) is a differentiable decreasing function of 

D, its probability density function is given by 

dF(p) dD 	dF(p) 	1 

= dD 	
where 

dD - 2 
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and 

dp  - _-' (_ 
dD 	-r 

where 

(_D ) 	1—exp— 	
= 1exp _

r 	 I 2( Y 
) 5 	

{1(p)2} 

Therefore, the probability density function of p is given by 

f(p) = 
-;- 

exp j 	2 	f 	(1(_1/r) <p ~ 1'(1/i- )) 	(5.10) 

Figures 5.5 (a) and (b) respectively show the probability density function and 

cumulative distribution functions of p under this assumption. 

In order to consider the effect on f(p) and F(p) as -r varies, it may be easier to 

re-express these distributions by defining D in terms of T. Above, the limits of 

the uniform distribution of D were chosen to be between —1 and +1 as this is 

approximately 2.5 X T. However, rather than substituting in these values of —1 

and +1, the distribution of D may be defined in terms of -r. Therefore, F(D) is 

given by 

F(D)=+- (-r<D-r). 

Therefore, the cumulative distribution function of p, F(p) is given by 

F(p) = 
+ 	(1(-5/2) p < ID(5/2)) 

	
(5.11) 

Therefore, similar to above 

- dF(p) dD 
- dD dp 

where 
dF(p)

= 
dD 	5T 

Hence, the probability density function f(p) is given by 

f(p) = --- exp 	
2 	j' 	

((-5/2) p 	(5/2)) 
	

(5.12) 

From (5.11) and (5.12) it can be seen that as -r tends to zero or infinity then f(p) 

and F(p) remain the same for all values of -r. 

In reality it is known that fat and muscle do not have constant greyscale values. 

Lei and Sewchand (1992b) assume that in X-ray CT images, the pixel values for 

pure tissues are normally distributed within an image with different means and 

variances. Therefore, it is assumed that the greyscale values for pure fat pixels 
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Figure 5,5: (a) Probability density function (b) cumulative distribution function 
of p, the proportion of fat in a mixed pixel. 
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are normally distributed with mean 1u1  and variance and those for pure muscle 

pixels are normally distributed with mean /m  and variance u. Assuming that 

these values are independently distributed, similar to Phillips and Smith (1994) 

and Glasbey (1998), then the greyscale value y, for a mixed pixel conditional on 

p, is also normally distributed, given by 

N(p1+(1p)itm ,p+(1 —p)a). 	 (5.13) 

This is similar to the distribution proposed by Thaler et al. (1978), who provided 

no proof of their result. Justification of this distribution is obtained by considering 

each pixel to be made up of n smaller 'sub-pixels' whose values are independently 

and identically distributed. So, if we know that for a pure fat pixel, the mean 

is pf and the variance is U2  then the sum of the means of the sub-pixels has to 

equal pf  and the sum of the variances of the sub-pixels has to equal o. This 

leads to the result that the values for the ith fat sub-pixel, denoted by y fi , has 

the following distribution 

Yfi -1 N (" f , 	)
(5.14) 

fl n 

Similarly for the sub-pixel values of a pure muscle pixel, denoted by Ymi, 

yN ( n 

	

—,— 
Ti ) 

). 	 ( 5.15) 

Therefore, a mixed pixel, with proportion p of fat and 1 - p of muscle can be 

regarded as np fat sub-pixels and n(1 - p) muscle sub-pixels. Therefore, the mean 

and variance for the mixed pixel is the sum for the means and variances of the 

fat and muscle sub-pixels, hence providing the result in (5.13). 

The probability density function for a mixed pixel, f(y), (mixed pixel density) is 

found by convolving the conditional distribution (5.13) and the marginal distri-

bution of p  (5.10), i.e. f(y) = f f(yp)f(p)dp, which after some cancellation leads 

to 

4,(3) rexp {i ([y - PP - (1 - P)A.] , /[PU
p
f
) 

 + (1 - p)oj) - [ 4(p)]2} 

	

2 [pay + (1 - 	
dp 

(5.16) 

This integral appears to have no analytic solution but can be computed by us-

ing numerical integration routines (Numerical Algorithms Group, 1993) for any 
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Figure 5.6: The probability density function of mixed pixels, f(y), for ji = 

65, o = 150, /t m  = 150, o = 250 and r = 0.41. 

specified values of the parameters /Li,  Q, p 7  and o. Figure 5.6 shows this dis-

tribution, where ,t1 = 65, £T = 150, Itm  = 150 and a = 250. The choice of these 

values is justified in Chapter 6. 

Finally, having derived the density (5.16) for mixed pixels in an image based on 

previous assumptions, it is possible to combine this with the distributions for 

the pure pixels, to obtain the probability density function of all pixel values in 

the image. Assuming that in any image the proportions of pure fat pixels and 

pure muscle pixels are ir 1 , and 7rm , thew it is assumed also that the remainder, 

(1 - - 7rm), of the pixels are mixed pixels. Therefore, the probability density 

function of all pixel values in the image is given by 

+7rm 	 +(1—ir1—irm )f(y). 	(5.17) V~,Iroj 	V27rU2  01. 

This distribution was fitted to the histogram of pixel values in Figure 5.1, by 

maximising the likelihood using a numerical optimisation routine, E04JAF (Nu-

merical Algorithms Group, 1993). The maximisation was performed with 7r j , rrm  

and 1 - - 7rm  all guaranteed to be positive. The fitted probability density 

function is shown in Figure 5.7. The estimates of the two pure tissue proportion 

parameters were found to be *f = 0.05, urn = 0.39, hence (1 
- - 

*m) = 0.56. 

These results are fairly typical of the fitted proportions. Having obtained the 

maximum likelihood estimates for the six parameters, it was decided to adopt 

the approach similar to Gage et al. (1992) and Thaler et al. (1978) by estimating 
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Figure 5.7: A histogram of greyscale values for one of the segmented lumbar sheep 
images. The superimposed probability density function of pixel values, given in 
(5.17), was fitted by maximum likelihood. 

the total proportion of fat in the image as 

frf (1 - f11 - km) 
+ 	

2' 
	 (5.18) 

where half of the estimated proportion of mixed pixels are counted as fat and half 

as muscle. It was decided not to adopt the approach of Luiting et al. (1995), i.e. 

splitting the mixed pixels relative to the estimated proportions of pure fat and 

pure muscle. This is because, say for example the estimated proportion of fat 

was zero, i.e. no pure fat pixels. Using the method of Luiting et al. (1995) would 

result in there overall being no fat pixels at all and only muscle pixels, which 

would be incorrect. Given that it was shown above that the estimated proportion 

of pure fat can be very small, it was decided to chose to adopt the approach of 

Thaler et al. (1978). 

5.4 The distribution of perpendicular distances 
of pixels from a random line 

In Subsection 5.3.4 it is assumed that any pixel which lies within a perpendicular 

distance of 1 from a random line is a mixed pixel (based on the estimated value 

of r in Table 5.2). Then, to estimate the mixed pixel density, (5.16), and hence 

the probability density function of pixel values in (5.17), it is assumed that these 

signed perpendicular distances are uniformly distributed, subject to D E [-1, +1]. 

This latter assumption of uniformity is now justified. 
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It is assumed that a square image, of size 2n x 2n pixels, consists of two tissues 

and they are separated by a straight line of the form y = A(x - c). For a given 

A, the line passes through the image with a random perpendicular distance from 

the origin. The perpendicular signed distance of a pixel at position (i, i), for 

—n <i,j <n, in the image to the line is given by 

D•- 1,3 (5.19) 

and the line intersects the x axis at x = c. Without loss of generality, the origin 

can be chosen such that c E [-1/2, +1/2], by shifting the y axis by m, the nearest 

integer to c. It can be assumed that the positioning of each sheep in the X-ray 

machine has sufficient variability to allow the assumption that the boundary is 

positioned randomly with respect to the pixel lattice. Therefore, it can be stated 

that 

i'l 	1 H 
Using this and (5.19), it follows that 

(A(i_) - j A(i+) _i\) 	
(5.20) 

1 _+A2  ' 1 _+A 2  
/ 

If only the points which lie on the x axis are considered, (i.e. j = 0), and if i is 

chosen at random from the set —(n + m), —(n + rn - 1),... , n - m, for n > 1, 

then by restricting the Dij  E [-1, +1] it can be seen that 

D,0 	U(-1, +1), 	 (5.21) 

where D,0  denotes that is the distances for all possible values of i, when j = 0. If 

the slope, A, is assumed to satisfy I Al > 1, then the same result applies for other 

values of 

(5.22) 

If the slope does not satisfy this condition then the line does not intersect all the 

rows of the image and hence (5.22) does not hold as there will be no pixels in 

those rows which lie within a perpendicular distance of 1 from the line. However, 

if JAI < 1, simply exchange x and y to make this condition hold. The result 

does not hold for j = ±n because at these points the edges of the lattice cause 

edge effects and the point on the line required to measure the perpendicular 



distance falls outside the lattice. Therefore, if we choose j at random from the 

set (—(n - 1),—(n -  2),... , (n -  1)) then 

D. I . 	U(-1, +1), 	 (5.23) 

giving the required result. 

5.5 Summary and conclusions 

In this chapter, the point spread function (PSF) of the SAC-BioSS CT machine 

was estimated using a known edge between the cradle and air pixels in the image. 

The estimated, spatially invariant PSF was an isotropic bivariate normal, and 

this was used to derive the mixed pixel density. This was combined with the 

distributions for the pure pixels in order to form an estimated probability density 

function of the greyscale values in the segmented lumbar images. 

This distribution was fitted by maximum likelihood to histograms of greyscale 

values of lumbar images and appeared to provide a good fit to the data. How -

ever, since the model included provisions for only two tissue types, and no true 

proportions are available for comparison, a simulation study is carried out. This 

allows us to compare the estimated proportions by using this newly proposed 

probability density function, with those obtained using the method currently in 

use and also with the true proportions of the tissues. This simulation study is 

presented in detail in the following chapter. 
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Chapter 6 

Estimation of tissue proportions 

6.1 Introduction 

In Chapter 5, the probability density function of pixel values for segmented sheep 

images is estimated. It is noted that the boundaries between two tissues are 

reasonably smooth and continuous: we assume that they are locally linear and 

the boundaries can be approximated by parallel random lines. In Subsection 

5.3.1, it is assumed that all the mixed pixels are a mixture of fat and muscle, 

and the probability density function in (5.17) makes provision only for these two 

tissues. However, this could be extended to deal with more tissue types. 

In Section 6.2, the construction of random lines in the plane is discussed. In 

Section 6.3, simulations are performed in which random parallel lines represent 

boundaries between areas of fat and muscle, so as to approximate the portion 

of the histogram of segmented images that corresponds to fat and muscle (i.e. 

greyscale values between approximately 40 and 200 in Figure 5.1). Several meth-

ods are used to estimate the amounts of fat and muscle in each simulated image. 

Such methods include the method currently in use at the SAC-BioSS CT unit 

and the fitting to the histogram of pixel values of the probability density function 

proposed in Subsection 5.3.4. These results are compared with the true tissue 

amounts in each simulation. 

The accuracy of the assumptions made in order to derive the probability density 

function of pixel values is assessed by examining sub-images of a typical segmented 

lumbar image, and these assumptions are modified in Subsection 6.6.1. The 

simulations are repeated to assess the effect on the root mean square error of the 

estimation methods: see Subsection 6.6.2. Spatial information around each pixel 

is also considered in order to classify the pure pixels using certain thresholds on 
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the local variances. From this, the amount of fat present in the mixed pixels is 

estimated: see Section 6.7. 

6.2 Random processes of geometrical objects 

Random point patterns (or point processes) have an important role in stochastic 

geometry. They may be used in analysing random patterns of geometric objects 

through using suitable representation spaces, where a point from the representa-

tion system represents a particular geometric object in the original pattern. An 

example of this, described in Stoyan et al. (1995), is a random pattern of lines 

which can be viewed as equivalent to a point process, with the corresponding 

points lying on a cylinder in R3 . A line process is a random collection of lines in 

the plane which is locally finite, where only finitely many lines hit each compact 

planar set. 

6.2.1 Representation space for directed lines in the plane 

Stoyan et al. (1995) define a directed line as a line together with a preferred 

direction along that line. They let F(2, 1) denote the family of all undirected 

lines and F*(2,  1) denote the directed lines in the plane. There is an obvious 2:1 

correspondence between the elements of F*(2,  1) and F(2, 1) which is obtained 

by ignoring the direction of the line. The representation space for directed lines 

is described below: and the results transfer easily to the undirected case. 

All directed lines in the plane can be put in a 1:1 correspondence with the set of 

points on a cylinder in R 3 . A convenient set of coordinates for the directed line, 

1, in the plane is based on its perpendicular distance from the origin, o, and the 

angle which it makes with the x axis. The signed perpendicular distance, p, of 

the line, 1, from o is denoted positive if the origin lies to the left of the line and 

negative if it lies to the right of the line 1. The angle between I and the x axis is 

denoted by a and is measured in an anti-clockwise direction. See Figure 6.1 for 

an illustration of this coordinate system. 

The cylinder in R3  corresponding to F*(2,  1) is denoted by C*  and defined by 

C 	{ (cos a, sin a,p)e JR3  :pEIR,ae(O,2ir]}. 

Each member of F(2, 1), the family of undirected lines in the plane, corresponds 

to a pair of directed lines, and hence a pair of points in C*.  These two points are 
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Figure 6.1: Taken from Stoyan et al. (1995, p245), this shows the construction of 
the representation space for directed lines in the plane. The upper diagram shows 
the case when p is negative and the lower shows p as positive. 

reflections of each other in the origin. To represent an undirected line only one 

of these points is selected. The point which is selected is the one which is lying 

in the half cylinder which lies to one side of a fixed plane and which includes 

the cylinder axis. Therefore, the corresponding representation space for F(2, 1) 

is denoted by 

C = { (cos a, sin a, p) E 1R 3 : p E R,a E (0,7r]} 

It is worth noting that as the angle of the undirected line passes through 0, the 

point in C jumps from one edge of the half cylinder to the other, while the value 

of the p-coordinate is multiplied by —1. 

Stoyan et al. (1995) further discuss the symmetries of C*.  The representation 

spaces described above depend on the particular choice of the origin, o, and the 

x axis for the plane, and therefore the stochastic geometry must account for 

these choices, since they correspond to important symmetries. To complete the 

discussion on these line processes, Stoyan et al. (1995) include a study of the 

transformations induced on the representation cylinder C*  by translations and 

rotations of the plane. The effect of choosing different origins and x axes for a 

square lying in the plane is discussed later. 

Stoyan et al. (1995) formally describe a directed line process as equivalent to a 

random subset of the representation space, C*.  Therefore, to select a random 

line that passes through an image is the same as selecting a random point from 

the corresponding possible subset of C*,  where the random point has a uniform 

distribution over this subset. Point processes such as these can be considered as 

103 



Range of a 	 Range of p, given a 

0 <a < 7r/2 	\/sin(-7r/4 - a) <p < \/sin(7r/4 + a) 
7r/2 <a < ir 	\/sin(1r/4 - a) <p < 	sin(a -7r/4) 

r <a < 37r/2 	/sin(37r/4 - a) <p < 	sin(a - 37r/4) 

37r/2 <a < 27r 	V'sin(-37r/4 - a) <p < \/sin(a + 37r/4) 

Table 6.1: For directed lines, the ranges of p,  the signed perpendicular distances 
from o, which ensure that the lines pass through a square of side 2, with the origin 
positioned at the centre of the square. 

particular cases of point processes in 1R 2 , because using the suggested parametrisa-

tion of Stoyan et al. (1995) i.e., (p, a) of C*,  the cylinder can be cut and embedded 

as a subset R x (0, 1T] of I2. 

Subset of C*  corresponding to a square 

As stated in Section 6.1, the objective is to perform simulations which approxi-

mately reproduce the histograms of segmented sheep images by simulating ran-

dom parallel lines to represent the boundaries between fat and muscle. Using 

a square grid to approximate the sheep images, it is possible to find the corre-

sponding subset of C*,  and hence the subset of R 2 , which corresponds to lines 

which pass through these square grids. These subsets depend on the choice of o 

and the x axis and we have chosen the origin to be at the centre of the image. 

Table 6.1 shows the range of p's, for the given ranges of a, which ensures that the 

line passes through the square of side 2. It can be seen from these results that 

the subset of II2  is symmetric about p = 0 when the origin is in the centre of the 

image. 

6.3 Simulation study 

The main objective of the simulation study is to simulate images whose histograms 

of pixel values approximate those of the segmented lumbar images, lying in the 

greyscale range of between approximately 40 and 200. Then, for these simulated 

histograms, the proportion of fat and muscle is estimated using various methods, 

which include the method currently in use at the SAC-BioSS CT unit (see Sub-

section 6.4. 1) and the proposed probability density function of pixel values which 

is introduced in (5.17). 

The greyscale values in the range 40 to 200, from the segmented lumbar images 
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are used to estimate the means and variances of pixel values corresponding to 

pure fat and pure muscle in each of the 24 training images, which are described 

in Chapter 1. The average value, over the 24 images, of each estimate is calculated 

and rounded, giving the estimates of the means and variances for pure fat and 

muscle respectively as 

	

t1=65, cr= 150, /m=  150, u=250. 	 (6.1) 

It was decided to simulate images of size 60 x 60, which provides a close approxi-

mation to the total number of pixels in the histograms of the sheep carcass which 

lie in the greyscale range 40 to 200. The range of this total number of pixels in 

the 24 lumbar images is [3297, 5897]. 

A random line, representing a boundary between fat and muscle, is simulated 

using the representation described in Section 6.2. The origin is taken to be at the 

centre of the simulated image, and for a given a, p is selected, using the range 

defined in Table 6.1, to ensure the line passes through the square. Due to the 

symmetry of the chosen square, it is only necessary to consider a in the range 

[0, 7r/4] and positive p. To select a pair (a, p) at random from this specified region 

for a square of size 60 x 60, simulate a U(0, 7r/4) and p U(0, 30\/). For 

the given a, if p E (0, 30v/'2-  sin(7r/4 + a)), then this (a, p) pair corresponds to 

a line which passes through the square. Otherwise, repeat the simulations of a 

and p until a suitable (a, p) pair is selected. All other possible images with one 

simulated line passing through the square, for other values of a and p may be 

obtained by reflection and/or rotation of the image obtained with a e [0, 7r/4] 

and p E [0, 30/]. It is reasonable to use these restrictions on a, and hence p, 

since it is only the overall histogram shape that is of interest in the simulation, 

rather than the individual pixel values or their spatial position within the image. 

This also reduces the computations required to calculate the overall true amount 

of each tissue in the simulated images. 

For a simulation containing a single random line ( a E [0, 7r/4] and p positive), and 

given the estimated PSF (see Subsection 5.3.2), pixels more than a perpendicular 

distance of one from the line and lying to the left and right are represented as 

pure muscle and fat respectively. This is chosen only to ensure that there is 

more muscle than fat in the simulated image. The remainder of the pixels are 

represented as mixed pixels. Depending on the position of this random line in the 

image, there can be at most 2J/60% or 4.7% mixed pixels within the image. This 

is much less than the actual percentage of mixed pixels present in the histograms 

of the sheep images, which is approximately 20-30%. This value is estimated from 
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fitting (5.17) to a typical histogram of greyscale values from the segmented sheep 

images, such as Figure 5.7. In addition, the proportions of the pure tissues in 

these simulations do not accurately reflect those in the sheep images. Therefore, 

in order to increase the percentage of mixed pixels it is possible to either reduce 

the size of the simulated images, or to increase the number of lines in the 60 x 60 

grid. The first proposal is undesirable as the number of pixels in the increased 

grid would no longer accurately reflect the truth; therefore, the second method is 

used. A set of seven randomly positioned parallel lines is simulated which pass 

through the image to represent alternate layers of fat and muscle tissue. 

Based on the earlier assumption that there is a negligible number of pixels affected 

by more than one boundary, and due to the estimated variance of the PSF, the 

parallel lines must be at least two units apart. Therefore, to ensure the seven lines 

pass through the square, with neither the first nor the last line lying too close 

to the bottom right or top left corners (hence reducing the proportion of mixed 

pixels), we take Pi "-' U(20, 30), where P'  is the perpendicular distance of the first 

line from the origin. The choice of this upper limit is based on the feasible range 

of p, given a (see row one of Table 6.1). Each remaining line is then chosen to be 

within a perpendicular distance d2  from the previous line, with d2  U(2,9), for 

j = 1,... , 6. Therefore, this gives 

Pi+1 = pi -  d, 	(i = 	, 6), 

where di  is the perpendicular distance between two consecutive lines at distances 

pi  and Pi+1  from the origin. The eight regions bounded by these lines and the 

sides of the square represent alternately fat and muscle tissue, starting in the 

bottom right hand corner. Each pixel's greyscale value, depending on its position 

from a line and the region in which it is lying, is generated from either the pure 

fat, pure muscle or mixed pixel probability (5.16) density functions, using (6.1). 

Six examples of these simulations are shown in Figure 6.2 and the proportions of 

fat and muscle in these simulations are shown Table 6.2. 

The corresponding histograms are constructed with the greyscale values rounded 

to the nearest integer: see Figure 6.3. It can be seen from these histograms that 

they accurately reflect the actual histograms, shown in Figure 5.1, from the sheep 

images as the greyscale values are in the appropriate range and the proportion of 

muscle is larger than that of fat, which is always the case for the lumbar images. 

The true tissue areas in each simulated image are calculated fairly easily using 

standard formulae from coordinate geometry. Having restricted a to the interval 

(0, 7r/4) and P1  to be positive, there are only three possible ways each of the seven 
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Figure 6.2: Six examples of the simulations from the proposed probability density 
function of pixel values in (5.17). As with the true sheep images, fat and muscle 
pixels are displayed as dark grey and light grey respectively. 
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Figure 6.3: Histograms of the greyscale values for the six images shown in Figure 
6.2. 
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Simulation 	Proportions of 
number 	fat 	muscle 

1 	0.22 0.53 
2 	0.20 0.58 
3 	0.23 0.53 
4 	0.21 0.57 
5 	0.32 0.45 
6 	0.28 0.50 

Table 6.2: Proportions of pure fat and pure muscle generated in the simulated 
images. 

lines may pass through the image: 

• passing through the right side and the bottom of the image, 

• passing through the right and left sides, 

• passing through the left side and the top of the image. 

6.4 Methods used for estimating tissue propor-
tions 

This section describes four methods used to estimate the amount of each -tissue 

type. The results are compared using the root mean square error of the estimated 

amount of fat over all the simulations in Section 6.5. These methods are divided 

into two groups: two threshold methods which exclude provision for mixed pixels 

within the model and two methods which allow for mixed pixels. For the first 

three methods, two sets of results are obtained, depending on whether the four 

parameters, ILf, U, p,,,  and o are either assumed to be known or are required 

to be estimated. 

6.4.1 Threshold methods 

Method 1: Threshold at the average of the two tissue means 

In this method it is assumed that the distribution of pixel values is a mixture of 
22 two normal distributions, N(1i 1 , o) for fat with proportion 7r1  and N(iim , cr) for 

muscle, with proportion 71m,  such that it1 + irm  = 1. No provision is made for 

mixed pixels in this method. The method employed here is quite simply taking 

the average of the two means as a threshold for the image. If the means are 
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assumed known then the threshold is denoted by t 1 , where 

- [Lf+m 

2 

Using this threshold is the method that is currently in use at the SAC-BioSS CT 

unit. If the means are estimated then the threshold used to estimate the amount 

of fat is denoted by i l. Therefore, any pixel with greyscale value < t 1  (or ) is 

considered to be fat, and any pixel with greyscale > ti (or ) is considered to be 

muscle. 

In the case of known means, the same threshold is applied to each histogram, 

without considering the individual counts of greyscale values. Obviously, this is 

not an ideal method of estimation as the means and variances of the pure tissues 

vary slightly between sheep, depending on for example, the obesity of the sheep, 

or how long it has been without food or water before scanning. 

However, when the means and variances are assumed to be unknown they are 

estimated by maximum likelihood, where the individual counts in each histogram 

need to be considered. We denote the probability density function of pixel val-

ues by h(y; 6), (which is a mixture of two normal distributions), where 6 = 

(Uj, O, 7t, urn, o). Therefore, the likelihood, L, is giVen by 

L(6;y)= fl h(y;O). 
all pixels - 

Hence, for each histogram the likelihood is given by 

L(6; y) = flh(y j ;6), 
j 

where the product is taken over the range of simulated greyscale values, j, and n3  

the frequency with which the greyscale values occur in an individual histogram. 

Taking logs gives a log likelihood 1, such that 

1(6;y) = 	n3  log h(y3 ;6). 	 (6.2) 

j 

This is maximised using numerical optimisation routine E04JAF (Numerical Al-

gorithms Group, 1993). Although the estimated proportion of fat, ir, (found by 

maximum likelihood), could be used directly to estimate the total amount of fat 

(using 602  x *), the threshold value i l  is used in preference to provide comparison 

with results obtained using t 1 . 
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Method 2: Threshold at the point the two normal probability density 
functions cross 

Again assuming a mixture of two normal distributions as the probability density 

function of pixel values, another proposed method for estimating the amount of 

fat is to threshold the image at the greyscale value at which the two normal 

probability density functions cross. This is almost equivalent to quadratic dis-

crimination with equal prior probabilities (see McLachlan, 1992). If the means 

and variances of the pixel values for fat and muscle tissues are assumed known 

then the points of intersection occur when 

1 	

{(y)2}1 

	________ 
— exp 	

2o 	
= - exp 	

2a o_f 	 rn 

After rearrangement and simplification, the points at which these two densities 

meet are given by 

t2 = 
(Um - UjLf) + U1 Um\/(ILf - m ) 2  + 2(u - u) log (Ui/Urn ) 

or 2 	92 
- 

Therefore the threshold, t 2 , is chosen such that pf < t2 < SUm . In these simula-

tions, the required value of t 2  is found using the - from this +. If a 2 = u then 

t2  = t 1 . If the means and variances are assumed unknown, then the estimates 

ftj., 
& 2

, and &2  obtained by maximum likelihood in method 1 are used to 

calculate the threshold value: this will be denoted i 2 . As before, an estimate of 

the total amount of fat is the number of pixels with greyscale values < t 2  (or t 2 ). 

6.4.2 Mixed pixel methods 

Method 3: Fitting probability density function given by (5.17) by max-
imum likelihood 

This method of estimation is the first we have considered to make provision for 

mixed pixels: the probability density function of pixel values in the image is as-

sumed to be given by (5.17). The vector of parameters to be estimated is denoted 

by 8K  or 0u,  depending on whether the means and variances are known or un-

known respectively. Therefore, 6K = (7r1, urn), and 0u = (/Lf, U, 7l f ,  1n, am , urn), 

where the u1  and urn are the proportions of the pure tissues. As in method 1, 

0, for the means and variance of the pure tissues either known or unknown, is 

estimated by maximum likelihood. By analogy with (6.2) the log likelihood is 
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given by 

l(yIO) = 	nlogg(y,O), 

where g(y3 , 0) is the probability density function given in (5.17). The log likeli-

hood, constrained by ii  ~! O 71m > 0 and 0 < * + m < 1, is maximised using 

numerical optimisation routine E04JAF (Numerical Algorithms Group, 1993), 

thereby providing an estimate of 0. Using the estimates for the two proportion 

parameters, it1 and *m , an estimate of the total amount of fat in the simulated 

image is obtained by adding the number of pure fat pixels to half the number of 

mixed pixels (see 5.18). Therefore, an estimate of the total amount of fat is given 

by 

602x (iti+1_*1_itm\ 
2 	

)• 

(6.3) 

Method 4: Finding the first moment of the greyscale values of pixels 
in the image 

It is known from (5.13), that 

yp N(pc + (1 - p)/, P7 + (1 - 

Therefore, the expectation, E(y), of the greyscale values in an image is given by 

E(y) = E[E(ylp)] 

= ,LL f E(P)+/lm (1 - E(p)) 

= 
	

(6.4) 

Rearranging (6.4), an unbiased estimate of the proportion of fat in the image is 

given by 

E(y)fL m 	
(6.5) 

where E(y) is estimated by 9 , the average of all pixel values in the image. Hence, 

an unbiased estimate of the total amount of fat in the image is given by 

3600  
[ 

Am  - E(y) 

j . 	

(6.6) 
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6.5 Results and discussion 

100 simulations are performed, by varying ce , pi 
 and the di  independently and for 

each simulation an estimate of the amount of fat is found using each of the four 

methods. As stated earlier, the distributions of greyscale values for fat and muscle 

pixels are N( 1a1, o) and N(Um, o). Throughout all the simulations the means 

are fixed at It f = 65 and I-Lm  = 150, (see Section 6.3), but o and 0,  are varied for 

each set of 100 simulations. The true variances for the fat and muscle tissues are 

estimated from the 24 training images to be a 2 = 150 and a = 250. However, 

to check the sensitivity of the results to the particular choices of parameters, 100 

simulations were repeated for eight other pairs of values of cr and a
. 

, without 

varying pf  and btm. The other pairs of variances were chosen to be centred around 

the estimated values. 

The performance of the methods is compared on the basis of the root average 

mean square error of the estimated fat area, averaged over the 100 simulations, 

denoted by RMSE. Let °k  and Tk denote the true amount and estimated amounts 

of fat for simulation k, for k = 1,... , 100. In each simulation the amount of fat 

varies, so strictly speaking it is not the standard mean square error that is used 

for comparing the methods. Hence, for each of the four methods the average 

mean squared error (MSE), is denoted by 

100 

MSE= 
100 Y~ 

which can be rearranged as 

1 
100 

( 2 +(Tk T(Ok _G)) 2 bias2 +variance 100 1: 

These RMSEs of estimated fat areas from 100 simulations, for each estimation 

method, are shown in Table 6.3. As in Section 6.4, the results are divided accord-

ing to whether the method is a threshold or mixed-pixel method, and whether the 

moments (the means and variances) of the pure tissues are assumed known or are 

estimated. To distinguish these results in the threshold methods, the threshold 

used will always be stated. In the case of Method 3, the results will be denoted 

MLK and MLU, depending on whether the moments of the pure tissues are known 

or unknown respectively. 

It can be seen from Table 6.3 that the ML method out-perform both of the thresh- 

old methods, irrespective of whether the parameters are known or estimated. This 
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moments known moments unknown 
threshold mixed threshold mixed 

o 	0-2  
m  t 1  t 2  MLK Moment il 	i2  MLU 

75 	125 6.0 25.2 4.7 	6.5 9.5 	51.4 5.0 
250 13.5 57.0 5.4 	8.1 8.5 	74.6 8.1 
500 51.4 79.7 7.3 	10.5 27.0 	95.0 18.6 

150 	125 5.8 11.2 5.2 8.0 8.4 13.4 5.5 
250 10.9 23.5 5.8 9.3 9.4 38.3 8.5 
500 48.6 47.6 7.7 11.5 30.3 64.5 22.3 

300 	125 21.1 39.0 6.6 10.3 19.6 33.9 8.7 
250 13.3 9.4 7.1 11.3 18.8 18.5 9.9 
500 30.9 26.4 8.9 13.1 22.1 46.1 24.9 

Table 6.3: Root mean square errors of the estimated amount of fat, by applying 
the four methods to the data from 100 simulations for a range of values of o 2  and 

is hardly surprising since the probability density function for this method was as-

sumed to be the same as that from which the simulated values were drawn. The 

results also show that Method 3, MLK has estimated fat to within 5-9 pixels, 

which is approximately 0.2% of the total pixels. 

Method 1, with threshold t 1 , is currently being applied at the SAC-BioSS CT unit 

in order to estimate the overall amount of fat present in each segmented sheep 

image. Adoption of the proposed probability density function of pixel values 

to estimate the overall amount of fat ought to provide substantially improved 

performance for all pairs of variances, in particular for o = 150 an a d 	= 250, 

the estimated true variances of fat and muscle tissue. In reality the true means 

and variances vary from sheep to sheep, see Subsection 6.4.1, and are therefore 

unknown. Therefore, the performance of Method 1, with threshold t 1 , is directly 

compared with Method 3 MLU, rather than Method 3 MLK, because if this 

mixed pixel method was adopted it would be assumed that the moments of the 

pure tissues are unknown. 

On average using the RMSE scale, Method 1 with threshold t 1  estimates fat to 

within approximately 28 pixels, which is approximately 0.8% of the total image. 

Although this seems a very small amount, this method is more sensitive to large 

changes in the variances than Method 3 MLU, in particular when a 2 = 500. In 

comparison, Method 3 MLU estimates fat to within 14 pixels (0.4% of the total 

image). 

Figure 6.4 shows the fitted probability density functions of the pixel values for 
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75 150 300 

125 102.4 109.3 115.7 
250 96.0 102.7 109.1 
500 90.8 97.0 103.3 

Table 6.4: Thresholds, t 2 , for Method 2for the pairs of variances (a, c). These 
results can be compared with the threshold, t1 , used in Method 1 which is 107.5 

Method 1, threshold t 1  (solid line), and Method 3 MLU (dotted line), super-

imposed on the histograms shown in Figure 6.3. It can be seen that the fitted 

histogram for Method 3, MLU has a much better fit to the pixels lying between 

the two peaks, whereas the fit in this region is very poor with Method 1, threshold 

t 1  (which makes no allowance for mixed pixels). 

Figure 6.5 shows the true (solid line) with the estimated (dotted line) probability 

density functions of pixel values (using Method 3 MLU) superimposed on the six 

histograms shown in Figure 6.3. It can be seen from these that there is little 

difference between the estimated fit and the true probability density function. 

Method 2 (t2  and 2)  consistently performs worse than Method 1 (t 1  and il respec-

tively), the other threshold method. This is due to the fact that the thresholds 

for Method 1 are unaffected by the choice of the variances for the two tissues (i.e. 

fat and muscle), unlike the thresholds chosen-for Method 2. Table 6.4 shows ,  the 

thresholds, t2 , for Method 2, for the different pairs of variances. It can be seen 

that when the variances are approximately equal, e.g. o = 300 and a = 250, 

or or = 150 and or 2 = 125, then the RMSE of Method 2, with threshold t2 , is 

closer to that of Method 1, with threshold t 1 , which uses a constant threshold of 

107.5. Method 2, with threshold t2 , performs surprisingly well when o 2 = 300 

and a = 250 in comparison to the other methods. 

The RMSE for the moment method is fairly consistent over the range of variances 

for the two tissues and this method is in general more accurate at estimating the 

amount of fat than either of the threshold methods. 

The MSE was split into its bias and variance components for each of the four 

methods of estimation, again for the means and variances of the pure tissues 

either known or estimated. Rather than showing the results for all nine sets of 

variances, three sets have been selected. These are 

o = 75,u = 125; o = 150,a = 250; o = 300,a = 500. 

These results can be seen in Tables 6.5 (a), (b) and (c). The biases for the 
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Figure 6.4: The six simulated histograms shown in Figure 6.3 with the estimated 
probability density functions of pixel values for Method 1 (—)(with only 7r1  esti-

mated) and Method 3, MLU (- - -) superimposed. 
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Figure 6.5: The six simulated histograms shown in Figure 6.3, with the true (-) 
and estimated (- - -) probability density function of pixel values (using Method 3, 
ML U) superimposed. 
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cr = 75; cr = 125 

moments known 	 moments unknown 

	

threshold 	mixed 	threshold 	mixed 
component t 1 	t2 	MLK Moment 	il 	i2 	MLU 

bias 2.7 -24.6 1.0 0.6 -6.6 48.9 1.0 
variance 29.1 31.8 21.5 42.4 46.7 249.0 24.4 
RMSE 6.0 25.2 4.7 6.5 9.5 51.4 5.0 

U 2 = 150; o = 250 f 	7n 

moments known moments unknown 
threshold mixed threshold mixed 

component t 1  t2  MLK Moment ii  i2 MLU 

bias 8.3 -22.6 1.2 0.9 -0.8 -35.9 1.2 

variance 50.3 45.6 32.1 86.3 89.3 173.5 71.4 

RMSE 10.9 23.5 5.8 9.3 9.4 38.3 8.5 

300; o= 500 

moments known moments unknown 
threshold mixed threshold mixed 

component t 1  t 2  MLK Moment il  i2  MLU 

bias 27.8 -22.8 1.4 1.3 10.3 -38.0 2.9 

variance 183.7 176.7 77.1 171.1 384.1 685.4 613.9 
RMSE 30.9 26.4 8.9 13.1 22.1 46.1 24.9 

Table 6.5: RMSE for each of the four methods, with the bias and variance com-
ponents displayed for three pairs of variances. 

maximum likelihood methods all have the same sign, i.e. they tend to overestimate 

the fat in each image due to the same 100 lines being simulated over each set of 

pure tissue variances. 

Since the maximum likelihood estimators, (MLK and MKU) are asymptotically 

unbiased and the moment estimator unbiased, their relative merit may be ex-

pressed as the ratio of their RMSE's. The efficiency of an estimator, say T2 , 

relative to another estimator of the parameter, say T1 , is defined as 

relative efficiency = RMSE(T1)  
RMSE(T2 )' 

where T2  is less efficient than T1  if efficiency < 100%. 

In estimating the overall amount of fat using the moment estimator, it is assumed 

that the expected pixel values for the tissues are known and therefore, to provide 

direct comparison with the ML estimator, we shall estimate the efficiency of 

the moment estimator relative to the ML estimator under the same assumptions 
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cT 

75 150 300 

125 72 65 64 
250 67 62 63 
500 60 67 68 

Table 6.6: The relative efficiencies of the moment estimator relative to the max-
imum likelihood estimator, MLK. 

i.e. Method 3, MLK. Table 6.6 shows the estimated efficiency of the moment 

estimator relative to the maximum likelihood estimator, MLK. It can be seen that 

the moment estimator is approximately 35% less efficient than the ML estimator. 

The higher efficiency of the maximum likelihood estimators is to be expected 

because they have asymptotic variance no greater than that of any other unbiased 

estimator. However, these results are included more for comparison with later 

results, see Table 6.13, after the moment method has been modified. 

The estimates of the proportion of fat by both the maximum likelihood and 

moment methods are found by assuming that the probability density function 

of pixel values is given by (5.17). The assumptions that are made in order to 

estimate this probability density function are assessed by examining a typical 

segmented lumbar image in detail. This is presented in Section 6.6. 

6.6 Modelling thin layers of tissue 

The assumptions that are made in Chapter 5 in order to derive the probability 

density function of pixel values are now summarised: 

• Given the estimated point spread function (isotropic bivariate normal with 

standard deviation r = 0.41), a pixel lying within a perpendicular distance 

of one from the boundary between fat and muscle is defined to be a mixed 

pixel. 

The perpendicular distances, D, of the pixels to the tissue boundary within 

this region of mixed pixels are distributed as U(-1, +1). 

• Given that a pixel is classified as a mixed pixel, the mixing proportion, p, 

is affected by at most one boundary, which requires that the boundaries 

between the tissues are at least two units apart. Under this assumption, 

the proportion of fat in a mixed pixel is given by p = '1(-D/T). 
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Figure 6.6: Postwie Of thi(L ub-iiiiugc. in the carcass region, which (1IC waqn i- 

fled and shown in Figure 6.7. 

. The boundaries between tissues can be represented by random lines which 

are approximately parallel. 

6.6.1 Assessing the accuracy of the original assumptions 

The validity of the assumption relating to pixels being affected by only one bound-

ary, that boundaries are more than a perpendicular distance of two apart, is inves-

tigated by examining three sub-images of a typical segmented lumbar image: see 

Figure 6.7. The positions of the three chosen sub-images are shown by the white 

boxes in the segmented lumbar image in Figure 6.6 and are magnified to show the 

distances between boundaries that exist in reality. These particular sub-images 

are chosen because they lie in the area where many layers of muscle exist around 

the sides of the sheep, see Figure 4.1. It can also be seen from the sub-images that 

the boundaries between tissues are approximately linear and parallel. Very thin 

layers of fat can exist between these regions of muscle, depending on the fatness 

of the individual sheep. It is known from the true position within the carcass that 

two layers of fat exist in each sub-image, some of which are just visible. It is not 

necessary to determine the exact distance between these boundaries, but rather 

show that some are closer than a distance two. This is achieved by simulating an 

image with known distances between the tissue boundaries, and comparing it by 

eye with the images in Figure 6.7. 

An image containing alternate layers of fat and muscle is simulated, and as before. 
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U)) 

Figure 6.7: Three sub-images taken from a segmented lumbar image. The positions 
uf tlI( t/i ru 1m(1 q (. ii,f/ii:,i Mr carcass are shown by the white boxes in Figure 6.6. 

Figure 6.8: A simulation of parallel lines with increasing distances between the 
layers of fat. This is for comparison with Figure 6.7. 

the layers are drawn parallel to each other. The layers of muscle are displayed 

with constant thickness of four units, whereas the distance between the thin layers 

of fat increases by 0.5 each time. These distances are given by (0.5, 1.0, 1.5, 2.0). 

This simulation is shown in Figure 6.8. On comparison with Figures 6.7 (a), (b) 

and (c) it can be clearly seen that the boundaries in the chosen sections can in 

reality lie closer than two pixels apart. Therefore, assuming that the standard 

deviation of the PSF is T = 0.41, then the original assumptions are inaccurate 

in some regions of the carcass. However, it is already assumed that most of the 

mixed pixels lie in the area from which these sub-images were chosen. Given that 

a mixed pixel can be affected by more than one boundary, the proportion of fat 

in some pixels will no longer be able to be estimated using (5.8), hence altering 

the probability density function of pixel values. 
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6.6.2 Modifying the simulations 

In Subsection 6.6.1, it was shown that a mixed pixel can be affected by more 

than one boundary between tissues. Therefore, it has been decided to modify the 

previous simulations from Section 6.3. This is achieved by allowing for boundaries 

which lie closer together than a perpendicular distance of two (given the estimated 

standard deviation of the PSF). It is decided that it is realistic to assume that 

the layers of fat are in general less than a perpendicular distance two thick, 

whereas the layers of muscle are in general more than a thickness of two. This is 

particularly evident from Figures 6.7 (a), (b) and (c). Therefore, this ensures that 

the proportion of fat in a mixed pixel can be affected by at most two boundaries. 

As before, the simulated images are of size 60 x 60, and the angle of the parallel 

lines is simulated from a U(0, 7r/4) with the first radius P' '-'-' U(20, 30). In 

order to simulate images which contain a significant number of pixels affected by 

two boundaries, 9 parallel lines are used for this set of simulations and the dis-

tances between them, d, are selected alternately from U(0, 2) and - U(3, 10) 

to produce four thin layers of fat. As before, the remaining radii p2  are found 

using Pi+i = p2 - d, for i = 1,... , 9. An example of this simulation is shown 

in Figure 6.9 (a) and the corresponding histogram of pixel values for the image 

is shown in Figure 6.9 (b). It can be seen from this image that in some cases, 

if d2  is very small, then the layer of fat is only just visible. This is similar to 

the sub-images in Figure 6.7 (a). The simulated d2  in Figure 6.9 (a) to produce 

the thin layers of fat, from the bottom right to top left corners are 1.7, 0.8, 1.8, 

0.4. Again, 100 simulations are performed for each pair of tissue variances, but 

the amount of fat is estimated using only two methods: the moment method and 

the maximum likelihood method (parameters known, OK).  In any subsequent 

results, these will just be referred to as the Moment and the ML methods. The 

RMSE's of the estimates are shown in Table 6.7. On comparison with Table 6.3 

(column number 5), it is clear that the RMSE of the ML method has dramatically 

increased as a result of the modified assumptions, whereas the moment estimator 

results have remained constant and now out-perform the ML method. In addi-

tion, it can be seen that the ML method is now producing biased estimates, by 

over-estimating the amount of fat in each simulation, but the moment estimator 

remains approximately unbiased. This indicates that the moment estimator is 

more robust and not as sensitive to changes in assumptions. The reason behind 

this is now explained. 

It was shown in Subsection 5.3.3 that under an isotropic bivariate normal PSF, a 
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mixed pixel close to only one boundary has a proportion of fat of p = 

Given the assumption that D U(-1, +1), the probability density function of 

p was given and then used in turn to estimate the probability density function 

of pixel values in an image. However, under the revised assumptions, a mixed 

pixel can lie sufficiently close to two lines to affect the proportion of fat. If the 

boundaries between the tissues are considered and if we label the three regions 

such that fat is the middle tissue, then the proportion of fat in such a mixed pixel 

is given by 

1 =(L) _(_a), 

for D 1  and D2  simultaneously in the range [-1, +1], where D 1  and D2  are the 

perpendicular distances from the two lines, and line 1 lies to the right of the fat 

section. Obviously, if D 1  or D2  are outside the range [-1, +1] then the proportion 

of fat is reduced to a single integral. Due to the spacing of the boundaries there 

are no pure fat pixels within the four strips of fat. The only pure fat pixels 

exist in the top left hand corner of the image. Given this definition of p'  the 

density function for p 1 , denoted by f(i)  will change, as will the overall probability 

density function of pixel values within the image. Therefore, the pixel values in 

the new simulations will be from a different distribution than (5.17), which is 

fitted to the histogram of pixel values to produce the ML results. Therefore, 

biased results would be expected. However, the moment estimator only considers 

the expectation of the pixel values to estimate the proportion of fat. 

On further examination of Table 6.7, it can be seen that although the moment 

estimator has a lower RMSE than the ML method and is unbiased, the variance of 

the estimates of the amount of fat is considerably larger than for the ML method. 

It is particularly evident from Tables 6.3 and 6.7 that as the variances of the pure 

tissues (i.e. a and a' ) increase, so does the variance of the estimates (and hence 

the RMSE) of the moment estimator. Hence, if the pure pixels could be identified 

in some way and we are required only to estimate the amount of fat present in 

the mixed pixels, then the variance of the moment estimator could be reduced, 

hence making it even more efficient. 

The moment estimator method used to date has considered only the frequency of 

pixel values from the histogram and has not incorporated any spatial information 

on each pixel, i.e. it has not included any information on the positioning of each 

pixel in the image or information from the neighbouring pixels. It must be de-

cided how much spatial information should be used in order to classify the pixels, 

i.e. should information on the rest of the image be used to classify each pixel or 
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Figure 6.9: (a) A modified simulated image, with four thin layers of fat visible 
amongst the muscle. This is simulated using oJ = 150, U2 = 250 and as usual 

65 and p,, = 150, (b) The histogram of pixel values for the simulated image 
in (a). 

just a small neighbourhood? In addition, it is desired that the amount of incorpo-

rated spatial information does not dramatically increase the overall computation 

time for estimating of the tissue proportions. We consider examining a small 

neighbourhood centred around each pixel to allow the pure pixels to be classified 

more easily and hence remove some of the variability that exists within the pure 

pixels, with the overall aim of reducing the variance of the moment estimator. 

The inclusion of spatial information on each pixel is investigated in Section 6.7. 

6.7 Incorporating spatial information of pixels 
to estimate the tissue proportions 

Having decided to use spatial information oil each pixel to estimate the proportion 

of each pure tissue, we use this additional knowledge to estimate the overall 

amount of fat present in the image. This is achieved by calculating the variance 

of the pixel values within a 3 x 3 square centred on each pixel. This is an example 

of a non-linear spatial filtering: see Subsection 4.6. The edge and corner pixels 

do not have eight nearest neighbours and there are several ways of dealing with 

these pixels: see Glasbey and Horgan (1995). Here, this variance filter has been 

modified to deal with incomplete neighbourhoods by ignoring the parts of the 

3 x 3 square which fall outside of the image. Hence, for the corner pixels the 

three nearest neighbours (and the pixel itself) are used and for the remaining 

edge pixels the five nearest neighbours (and the pixel itself) are used to calculate 
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RMSE bias variance 
af2 	u,2,, ML moment ML moment ML moment 

75 	125 7.6 	6.9 -3.9 	0.7 43.3 	46.5 

250 11.9 	8.7 -8.5 	0.9 68.7 	75.7 

500 15.7 	11.7 -11.7 	1.2 108.7 	135.0 

150 	125 9.8 8.0 -7.0 0.8 46.9 63.8 

250 12.9 9.7 -9.8 1.0 71.0 92.9 

500 15.0 12.4 -11.0 1.3 103.9 152.2 

300 	125 12.2 10.0 -9.0 1.0 67.8 99.7 

250 13.5 11.4 -10.0 1.2 84.1 128.4 

500 14.4 13.7 -9.7 1.5 114.3 186.7 

Table 6.7: The RMSE, bias and variance for all pairs of variances of pure tissues, 
for both the maximum likelihood method and the moment method. The results are 
for simulated images (similar to Figure 6.9) and with 9 lines and 4 thin layers of 

fat. 

the variance of that pixel. Figure 6.10 shows the effect of the variance filter 

applied to the simulated image in Figure 6.2 (a). Small variances are displayed as 

dark/black pixels, and large variances as light/white pixels. On comparison with 

Figure 6.2(a), it can be seen that the pure pixels of either tissue type correspond 

to the darker pixels in Figure 6.10 and the lighter pixels are those lying close to 

the boundaries, and hence are the mixed pixels. 

By using this spatial information to identify the pure pixels, the variance of the 

moment estimator results should be reduced. The original simulations will be used 

to investigate this approach (i.e. seven lines all more than a perpendicular distance 

of two apart) and therefore the results of the unbiased maximum likelihood, ML 

(OK) can be used to re-calculate the estimated efficiency of the moment estimator. 

Due to the original assumptions that the boundaries are all more than a distance 

of two apart and mixing extends only a distance of one in all directions, it seems 

justified to use a 3 x 3 square to estimate the variance of each pixel. Therefore, 

if the variance of a pixel is large then it is to be considered a mixed pixel, as 

some of the neighbours will be pure pixels and some will be mixed. Similarly, a 

pixel which has a small variance can be assumed to be a pure tissue pixel since 

most of the neighbours have similar greyscale values and must therefore be the 

same tissue. A pixel with a small variance cannot be considered as a mixed pixel 

based on the model assumptions (all lines > 2 apart) as a mixed pixel cannot be 

totally surrounded by other mixed pixels. An intermediate value of the variance 

may suggest pure pixels with mixed neighbours or a mixed pixel with mostly pure 

neighbours. Hence, a decision criterion, based on these local variances, needs to 

125 



Figure 6.10: The effect of the variance filtcr (using a 3 	3 squa.i( ) ( Ippli( (I to tJi( 

simulated image in Figure 6.2 (a). 

be established to distinguish between the types of pixels. 

The new variance information for each pixel is used in combination with the 

original greyscale values in attempting to classify the pure and mixed pixels. 

Figure 6.11 shows the standard deviation of each pixel value plotted against the 

corresponding greyscale value, for three pairs of pure tissue variances, i.e. cT and 

a. The clusters of pixels with small standard deviation at the bottom left and 

bottom right hand sides of the image correspond to the pure fat and pure muscle 

pixels respectively. The remainder of the pixels, (the arc of pixels connecting 

the two clusters) correspond to mixed pixels or pure pixels which have mixed 

neighbours and therefore have a larger variance. It can be seen from Figure 6.11 

that the larger the values of a and a., , the larger the overlap of pure and mixed 

pixels and the harder it becomes to distinguish the pure pixels from the mixed 

pixels. The next stage is to propose a decision criterion which can be used to 

classify all the pixels into these three groups. The choice of decision criterion is 

discussed in Subsection 6.7.1. 

If, after classification, the estimated total number of pixels belonging to each of 

the three possible types is obtained and n1 pixels are classified as pure fat and 

m as pure muscle, hence n = 3600 - nj  - rim  are classified as mixed pixels. 

Previously, in Subsection 6.4.2, the overall proportion of fat in an image, using 

the moment method, is given by (6.6). However, since the number of pure pixels 

n1  has already been estimated (using the decision criterion), then (6.6) may be 

used to obtain an estimate of the proportion of fat, in the pixels classified as 
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Figure 6,11: Bivariate plots of the standard deviation in each pixel, given a 3 x 3 
window, against the original greyscale value of each pixel for (a) o 2 = 75, 0.2 = 

125, (b)o = 150, a = 250 and (c) 0.2 = 300, a = 500. All simulated images 
had seven lines which were all more than two pixels apart. 
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mixed pixels and is given by 

Pm - Ymix 
mix = 	 , 	 (6.7) 

/2m  - 

where Yrnix = '  E E f(i, j) is the mean of the greyscale values f(i, j) for the 
ninix 

mjx pixels which are classified as mixed pixels. Hence, an estimate for the total 

amount of fat in an image, using this method, is given by 

flf + flm ix lrm ix  

This estimator will be referred to as the modified moment estimator. 

6.7.1 Selecting thresholds for the variances of pure tissues 

On examination of Figure 6.11(a), it seems clear that this plot can be split into 

three regions corresponding to pure fat, pure muscle and mixed pixels. We ap-

proach this by selecting thresholds on both axes. The threshold, g, on the pixel 

value axis is taken to be the average of the two pure tissue means, i.e. g = 

However, selecting the threshold on the variance axis is not so obvious. A simple, 

but subjective approach is to examine the histogram of the pixel variances in each 

image and select an appropriate threshold value by eye. However, this is a very 

approximate method of estimating the amount of fat in an image and would need 

to be standardised for all images. 	-- 

Therefore, using the fact that the variances of the pure tissues, a and a, are 

assumed to be known in the moment method (see Subsection 6.4.2), it is known 

that the estimated variances, s2 , from a window containing it pure pixels has 

distribution 

(n - 1)s2  

where a 2  is the known variance of a given tissue. Given that the variance of the 

majority of the pixels is found by considering a 3 x 3 square and the mean of 

these values is estimated, it is reasonable to assume that most of the pure pixels 

in the image, with estimated variance s 2,  have distribution 

Q2 
2 

"-' Xs. 

This result is based on the assumption that the pixel values for both pure tis- 

sues are normally distributed and are independently and identically distributed. 

128 



Therefore, for a probability 3, and a known true variance of the tissue, a 2 , an 

appropriate threshold on the variance axis, denoted v, is given by 

or 2 

V = 

where 6 is the probability that ~ x(16). However, in these images there 

are two pure tissues, with different known variances and therefore it raises the 

question how to select a value for a 2 ; either to have two thresholds, one for each 

tissue type, or to have one threshold value, where a 2  is taken as a compromise be-

tween the two known variances 0,2  and a,. In both methods below, the estimated 

variance of a pixel at location (i,j) in the image is denoted as 82(i, j ) .  

Two-threshold method 

In this case a different variance threshold is used for fat and muscle, based on the 

two pure-tissue variances, o and a. Letting v 1  and v2  be the variance thresholds 

for fat and muscle respectively, the decision rule is 

. if s2 (i,j) <v1  and f(i,j) <g then (i,j) is classified as pure fat, 

. if s(i,j) <v2  and f(i,j) ~! g then (i,j) is classified as pure muscle, 

• otherwise, (i, i) is classified as mixed, 

where v1 = 	 and v2 = 

One-threshold Method 

This method uses an average of the two pure tissue variances, a 2  and a, to 

obtain just one threshold. Therefore, for a common 3 and using a combined 

threshold, denoted v 3 , the decision rule is 

• if s(i, j) < v3  and f(i, j) < g then (i, i) is classified as pure fat, 

• if s2 (i,j) <v3  and f(i,j) > g then (i,j) is classified as pure muscle, 

• otherwise, (i, i) is classified as mixed, 

2 a 2  -I-- 	lam 2 where v3 
= 	16 x8(13). 
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PM  V 1  v2  
Two thresholds 

RMSE 	bias variance v 3  
One threshold 

RMSE 	bias 	variance 

20.0 103 172 4.3 0.4 18.3 138 4.4 0.6 19.4 
10.0 125 209 3.9 -0.1 14.8 167 4.2 0.3 17.6 

5.0 145 242 3.8 -0.1 14.3 194 3.9 0.1 14.9 

2.5 164 244 3.7 0.1 14.0 219 3.7 0.1 13.9 
1.0 188 314 3.5 0.3 12.4 251 3.6 0.2 13.0 

0.5 206 343 3.5 0.4 11.8 274 3.6 0.2 13.0 
0.1 245 408 3.2 0.1 10.4 327 3.4 0.3 11.5 

Table 6.8: The RMSE, bias and variance for various probabilities, /3, and corre-
sponding thresholds when o 2 = 75 and u = 125 for the pure tissue variances. 
For each threshold method, the optimal RMSE is displayed in bold. 

6.7.2 Results from using spatial information 

Three pairs of variances of pure tissues are chosen to provide an indication of the 

trends in the RMSE. The three pairs and the reasons for choosing them are: 

• a 	75, o = 125 are chosen to show the effect on the results when there 

is clear definition between both pure tissues and also mixed pixels. 

• oJ2 = 150, a 2 = 250 are chosen as these are the values which were estimated 

to be the variances of the pure tissues, estimated from the training set used 

in Chapter 1. 

• Orf2 = 300, cr 2 = 500 are chosen to show the effect on the results when the 

variances of the pure pixel values are large. In this case there is not such 

clear distinction between the pure pixels and the mixed pixels. 

The results of using both one and two thresholds are shown in Tables 6.8, 6.9 and 

6.10. They display the threshold/s (rounded to the nearest integer) corresponding 

to various values of 3 and show the RMSE, bias and variance for the new estimates 

of the amount of fat present in an image using the modified moment estimator. 

From Table 6.8 it can be seen that for both the one and two threshold approaches, 

and the chosen values of 6, the optimal RMSE is achieved when 0 = 0.1. A small 

value of 0 should be expected from examining Figure 6.11(a), since there is very 

clear distinction between the pure fat and pure muscle pixels, and also the mixed 

pixels. 

In Table 6.9, for the two threshold case, again small values of 0 produce a small 

RMSE. The optimal 0 in the one-threshold case is considerably higher than for 

the previous case. This is again due to fairly clear definition between the types 
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OM  V 1  v2  
Two thresholds 

RMSE 	bias variance 

20.0 207 345 6.0 0.6 35.7 
10.0 251 418 5.4 0.5 28.5 
5.0 291 485 5.2 0.5 26.2 
2.5 329 548 5.0 0.5 25.3 
1.0 377 628 4.9 0.2 23.9 
0.5 412 686 4.8 -0.1 23.1 
0.1 490 816 5.1 -1.2 24.4 

One threshold 
V3 RMSE bias 	variance 

276 6.2 0.9 38.2 
334 5.7 0.7 32.5 
388 5.1 0.7 26.0 
438 5.4 1.3 27.2 
502 5.6 1.8 27.6 
549 5.5 1.9 26.6 
653 5.7 2.3 27.2 

Table 6.9: The RMSE, bias and variance for various probabilities, 0, and corre-
sponding thresholds when U2 = 150 and u = 250 for the pure tissue variances. 
For each threshold method, the optimal RMSE is displayed in bold. 

Two thresholds 

OM  V 1  v 2  RMSE bias variance 

40.0 313 522 10.9 0.9 117.5 
30.0 357 595 10.9 0.5 118.5 
20.0 414 689 9.9 0.7 97.5 
10.0 501 835 10.0 0.8 98.4 
5.0 582 969 10.3 0.4 105.3 

One threshold 

V3 RMSE bias 	variance 

418 10.5 1.4 108.6 
476 10.5 0.8 109.8 
552 10.4 0.9 108.3 
668 10.9 2.8 110.6 
776 12.2 5.7 117.3 

Table 6.10: The RMSE, bias and variance for probabilities, 13, and corresponding 
thresholds when o 2 = 300 and a,',, = 500 for the pure tissue variances. For each 
threshold method, the optimal RMSE is displayed in bold. 

of tissues: see Figure 6.11(b). 

In Table 6.10, the values of the optimal 3 have greatly increased. This is due to 

the fact that the variances of the two pure tissues are large. On examination of 

Figure 6.11(c), there are no obvious clusters corresponding to pure fat and pure 

muscle. It has become more difficult to distinguish a mixed pixel from a pure pixel 

with a large variance, due to the large variability within the pure pixels alone. In 

summary of these three tables, as expected, the two-threshold method performs 

slightly better for all three pairs of pure tissue variances than the one-threshold 

method. 

Table 6.11 shows the average proportion of pixels assigned to the pure tissue 

categories over 100 simulations, using the two threshold approach. The results 

are again for the three pairs of variances and are displayed only for the optimal 

/3 found earlier for these given variances. The true average proportions over 100 

simulations for pure fat and pure muscle are 0.28 and 0.49 respectively. 

Table 6.12 shows the optimal RMSE obtained when using spatial information of 

pixels to modify the moment estimator approach (with one and two thresholds) 
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Tissue variances Average proportions 

13 (%) u fat muscle 

0.1 75 125 0.24 0.48 
0.5 150 250 0.25 0.49 

20.0 300 500 0.20 0.38 

Table 6.11: The average proportions of pixels assigned to pure fat and pure mus-
cle using the two threshold approach, for the optimal ,8 using the three pairs of 
variances. The actual average proportions (over 100 simulations) are 0.28 and 
0.49 for fat and muscle respectively. 

cr o,2  

without spatial 
information 

ML 	Moment 

with spatial information 
Two threshold 	One threshold 

RMSE 	i3(%) 	RMSE 	i3(%) 

75 125 4.7 6.5 3.2 0.1 3.4 0.1 
250 5.4 8.1 4.3 0.5 4.6 0.5 

500 7.3 10.5 6.9 1.0 8.5 30.0 

150 125 5.2 8.0 4.2 0.1 4.0 0.1 

250 5.8 9.3 4.8 0.5 5.1 5.0 
500 7.7 11.5 7.0 1.0 9.7 20.0 

300 125 6.6 10.3 5.8 10.0 6.0 5.0 

250 7.1 11.3 7.0 10.0 7.3 10.0 

500 8.9 13.1 9.9 20.0 10.4 20.0 

Table 6.12: The optimal RMSE for each pair of pure tissue variances and using 
either 1 or 2 thresholds. The corresponding 3 for each method is also shown. The 
RMSE values for the maximum likelihood method and the original moment esti-
mator values (before pure pixel classification, taken from Table 6.3) are included 
for comparison. 

for each of the nine original pairs of tissue variances. The corresponding optimal 

probability, 0, is shown for each method. The RMSE from the moment estimator 

when spatial information has not been included and the maximum likelihood 

method (taken from Table 6.3) are included for ease of comparison. Overall, it 

can be seen that for each pair of tissue variances and for each threshold method, 

the RMSE for this classification approach (columns 5 and 7) has considerably 

reduced in comparison to the RMSE for the original moment method (column 4). 

In all cases (except a = 150 and U2 
rn = 125) the two-threshold method performs 

better than the one-threshold method. It is also evident from Table 6.12 that 

there is no common optimal 0 for all pairs of variances, using either threshold 

method. If this has been the case, then a single value of 3 could be used for 

all simulations, irrespective of the variances of the pure tissues. However, it is 

interesting to notice from Table 6.12 that in the two-threshold case, the new 
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Relative efficiency of 
modified moment estimator (%) 

a 	o-,2,, 2 thresholds 	1 threshold 

75 	125 	147 	 138 
250 	126 	 117 
500 	106 	 86 

150 	125 124 130 
250 121 114 
500 110 79 

300 	125 114 110 
250 101 97 
500 90 86 

Table 6.13: The relative efficiency of the modified moment estimator, (which 
uses spatial information), relative to the maximum likelihood estimator, Method 
S MLK (see Subsection 

RMSE for this classification moment method is now less than the original RMSE 

for the ML method, except for o 2 = 300 and u 2 = 500. Similarly, when the 

tissue variances are both fairly small, the same applies in the one threshold case. 

Due to the extra information incorporated into the modified moment estimator, 

it becomes more efficient than the ML method, in the majority of 100 simulations 

for the pairs of variances for the pure tissue pixels. The efficiency of the estimator 

using spatial information and the moment estimator, relative to the ML method 

(from Section 6.5), is shown in Table 6.13. 

The results in Tables 6.12 and 6.7, show that using the moment method in con-

junction with spatial information from the pixels provides more efficient and ro-

bust estimates of the amount of fat, especially when the original model assump-

tions do not always hold and thin layers of tissue are modelled in the image. 

6.8 Summary and conclusions 

We have compared threshold-based methods with mixed-pixel methods (using 

the probability density function of pixel values derived in (5.17)) by means of 

simulating images which contain only two tissue types. It was found that the 

threshold-based methods (one of which is currently in use at the SAC-BioSS 

CT unit) produced biased results and were less accurate than the mixed-pixel 

methods for the estimation of tissue proportions. The two mixed-pixel methods 
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produced approximately unbiased estimates of the amount of fat present in the 

images. 

However, the assumptions that were made to estimate the probability density 

function in (5.17) are not plausible in all sections of the segmented images, as 

thin layers of fat exist between the layers of muscle: see Subsection 6.6.1. There-

fore, the simulations were modified to account for this and the two mixed-pixel 

methods, maximum likelihood and the moment method, were used to estimate the 

amount of fat. Given these modifications, it was shown that the maximum likeli-

hood method produced biased results (on average underestimating the amount of 

fat), whereas the moment method remained unbiased. However, the variance of 

this moment estimator was very large in comparison to the maximum likelihood 

method. This variance was significantly reduced by considering a pixel's spa-

tial context which examines the estimated variance of the greyscale values of its 

neighbours. Using two thresholds on the local variance, we were able to classify 

many of the pure pixels and therefore use the moment method from Subsection 

6.4.2 to estimate the proportion of fat in the remaining pixels. It has been shown 

that by considering spatial information on each pixel, the modified moment es-

timator is more efficient than the maximum likelihood estimator for estimating 

tissue proportions. - 
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Chapter 7 

Conclusions and further work 

The aim of this thesis was to develop and apply statistical methods for automating 

the segmentation of relevant tissues in X-ray CT images of sheep, and from this, 

provide estimation of the appropriate tissue proportions. In this final chapter 

we review the current methods along with the strategies we adopted to improve 

on their results. In addition we bring together our conclusions as we discuss the 

effectiveness of our approach. Finally, we suggest possible further work in Section 

7.2. 

Chapter 1 outlined the three-stage process currently in use at the SAC-BioSS CT 

unit in order to estimate the overall volume of each tissue present in the carcass 

of a sheep. The three stages of the process are summarised below. 

Stage 1: Extract the carcass region of the sheep which contains the fat, muscle 

and bone, from the areas containing the cradle and the internal and external 

organs at three anatomical positions: ischium, lumbar and thorax. Prior to 

this research, a skilled operator performed this segmentation manually. 

Stage 2: The proportions of air, fat, muscle and bone are estimated in the three 

segmented images (from Stage 1). To achieve this, three thresholds on the 

greyscale values of the pixels are selected. 

Stage 3: These estimated tissue proportions, together with the liveweight of the 

animal are regressed on the dissected tissue weights to predict the overall 

amount of each tissue type within the whole carcass. 

Although all three stages have been outlined, this thesis is concerned only with 

improving the first two. However, this is a continuing project at the SAC-BioSS 

CT unit, and further research may allow for Stage 3 to be reassessed and further 

developed. 
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7.1 Conclusions 

In Chapter 2 we introduced and briefly outlined the history of X-ray CT. The 

scanning system of a typical CT machine was discussed and in particular we 

studied the SAC-BioSS CT scanner, together with the various scanning strategies 

that are in operation for sheep. 

Low-level segmentation techniques were described in Chapter 3 and their weak-

nesses for this project were highlighted. To overcome these problems, deformable 

templates were proposed as an attractive approach to modelling anatomic struc-

tures, as they provide compact representations of the object shape. A compre-

hensive, but not exhaustive, review of both free-form models and parametric 

deformable templates was provided, although in particular focused on the latter 

of the two as this approach was adopted in Chapter 4. 

In Chapter 4, deformable templates were used to automatically segment the lum-

bar images. Previously, this was performed by a skilled operator who manually 

traced the region of interest using a computer mouse. A training set of 24 manu-

ally segmented images was used to construct a stochastic model for the distribu-

tion of the boundaries. The images in the training set were from Suffolk sheep, 

all at approximately the same age. 

The manually segmented boundaries were parametrised using Fourier coefficients 

and took into account both the rotation of the sheep in the cradle and the size of 

the animal. The latter was achieved by representing the radii of the inner bound-

ary as a proportion of the distance to the outer boundary from the centroid of 

the image. This helps to correct the asymmetry of the animal due to gravity 

when it is not upright in the cradle. A reduced rank approximation to the ma-

trix of Fourier coefficients, similar to principal component analysis, was used to 

reconstruct the manual boundaries, and from this we estimated the distribution 

of the parameters of the template. We demonstrated that the fitted boundaries 

approximated the manual boundaries very accurately. 

To define the measure of fit of the template, to a new image not in the training 

set, in terms of local edge information, Prewitt's gradient filter was applied. This 

highlighted tissue boundaries in the images. The objective function, which com-

bined this measure of fit with the fitted distribution for the Fourier coefficients, 

was optimised using the Nelder-Mead algorithm, which produced in most cases, 

very swift and accurate results. Overall, it was found that the template was more 

accurately and consistently located by smoothing the image with a Gaussian filter 
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prior to optimisation. 

With one image in particular this approach provided a poorly fitting boundary, 

but this was thought to be due to the obesity of the sheep, where layers of muscle 

were 'hidden' by large areas of fat. The model was validated on an independent 

set of images of the same breed and age as the training set and was found to 

produce results with similar quality of fit. 

The mirror image of each inner boundary was also included to double the size of 

the training set, motivated by the near symmetry of the images. It was found 

that the eigenvalues which corresponded to the matrix of sums of products of the 

coefficients of the sine coefficients about their means could be viewed as measuring 

the asymmetry in the images. 

We have shown that the deformable template approach accurately fits the bound-

aries of interest in the lumbar images when incorporating information from both 

the inner and outer manual boundaries in the model. This method removes the 

subjectivity and tediousness of the manual approach and has since been adopted 

at the SAC-BioSS CT unit to replace the manual approach, providing the option 

to accept or reject the fitted boundary selected by the optimisation routine. If the 

deformable template method produces a poorly fitting boundary, similar to the 

image mentioned earlier, then the fit is rejected and segmentation is performed 

manually for that particular image. This considerably reduces the time required 

to analyse large quantities of images. Points for further work in this stage of the 

process are given in Section 7.2. 

Having automated Stage 1 of the current procedure in Chapter 4, we devel-

oped statistical theory in Chapter 5 which has been shown to improve upon the 

threshold based method for estimating the proportions of fat and muscle. This 

was achieved by estimating the probability density function of the pixel values 

within the image. In Chapter 5, we have restricted our attention to only two 

tissue types, namely fat and muscle, by assuming the air and bone pixels could 

be easily identified in the histogram of greyscale values. 

Due to the resolution of the X-ray CT machine, averaging takes place between 

tissue types and hence greyscale values of many pixels are in fact responses to 

mixtures of two or more tissue types. Therefore, it was necessary to model the 

spatial response of a pixel for an X-ray CT machine. We approached this by 

examining a known edge in the image, between the cradle and air, which was 

modelled as an isotropic, bivariate normal density. We assumed, similar to many 

authors, that the spatial response was spatially invariant. 
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From the estimated spatial response, we derived a new probability density func-

tion for the values of mixed pixels, (see Glasbey and Robinson, 1999) which to 

our knowledge has not previously been proposed. This was combined with the 

distributions for the pure pixels to estimate the probability density function of 

the greyscale values in the images. 

In Chapter 6 we applied the proposed probability density function of pixel values 

to simulated data which contained only two tissue types. We compared various 

threshold methods, including that used at the SAC-BioSS CT unit with mixed-

pixel methods, which included the new method from Chapter 5. The probability 

density function of pixel values was fitted to histograms by maximum likelihood, 

and it was shown that the mixed-pixel methods produced unbiased estimates 

of the amount of fat, and out-performed the threshold based methods which 

produced approximately biased results. 

We also developed a moment estimator based on the distribution of mixed pix-

els. This method and the maximum likelihood method were re-evaluated having 

shown that some of the previous assumptions about the widths of tissue layers do 

not always hold, and results indicated that the moment method out-performed 

the maximum likelihood method when the image included thin layers. 

By considering information on each of the pixels neighbours, the estimation of the 

amount of fat using this moment estimator could be improved. To take into ac-

count a pixel's spatial context, we calculated the variance of the greyscale values 

of its neighbours. Selected thresholds on these local variances were used to sepa-

rate the pixels most likely to be pure fat or pure muscle. The moment estimator 

was then used to calculate the proportion of fat in the remaining pixels which 

were not considered to be pure tissue. This procedure produced more efficient 

estimates of fat than the maximum likelihood method under the original assump-

tions. Although we have considered only estimation of two tissue proportions, 

we have provided a strong platform for any future work on images containing 

more than two tissue types. Modelling the histogram of pixel values in an im-

age containing two tissue types using the estimated probability density function 

in Chapter 5, has been shown to more accurately estimate the tissue propor -

tions than the SAC-BioSS CT method. Therefore, this mixed pixel method could 

be extended to deal with more tissues, hence improving on the current Stage 2 

results. 
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Recommendations 

Although further work has been suggested to extend the mixed pixel method to 

handle more than the two tissues, it is recommended that the SAC-BioSS CT 

unit combine their threshold method with the mixed pixel method, until such 

research has been carried out. This is proposed as follows: 

Currently their method involves three threshold values. However, it is proposed 

to only use two, at —204 HU and 176 RU, to identify the air and bone pixels 

respectively in the usual manner. This leaves fat and muscle only to be classi-

fied. At present the SAC-BioSS CT unit make no provision for mixed pixels in 

their method, and it is proposed at this stage to assume that mixed pixels exist, 

but only between fat and muscle. Therefore, the moment method described in 

Subsection 6.4.2 could be used to estimate the fat and muscle proportions in the 

remaining pixels. Whether the spatial information is incorporated, would depend 

on how difficult this would be to implement and the extra computation time 

required. 

-
These recommendations to improve Stage 2 of the process are justified as the 

overall goal for meat sheep is to examine the ratio of fat to muscle and reduce the 

fat proportions, either by genetic breeding or by diet. Hence, the estimation of fat 

to muscle ratio needs to be more accurately estimated than the bone proportions. 

7.2 Further work 

The methodologies presented throughout this thesis have produced several promis-

ing results regarding the further development of the methods currently employed 

in this three-stage process. However, there are several areas which may benefit 

from further work. These are discussed in the order which they appear in the 

thesis. 

• To date, only the lumbar images have been segmented by utilizing paramet-

ric deformable templates. A similar strategy could be employed to automate 

the identification of the relevant tissues in the two other anatomical posi-

tions; ischium and thorax. 

• The selected matching criterion of the deformable template only comprises 

local edge information from the image. Authors such as Yuille et al. (1992) 

have also incorporated peaks and valleys of greyscale values in addition to 

this local edge data. The inclusion of additional knowledge from the image 
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into the matching criterion may improve the overall segmentation results. 

• Prior to optimisation of the objective function, many authors such as Jam 

et al. (1996) have adopted a multi-resolution approach, from a coarse to a 

fine resolution in order to smooth the image. It is suggested that a Gaussian 

filter with a smaller variance could be used as a second stage in the opti-

misation procedure of the sheep images to locate a more accurately fitting 

boundary. 

• Investigation of the spatial response of the CT machine could have been 

approached by alternative techniques, for example using Fourier domain 

methods. In addition, future work may include reassessing the assumption 

of this response being spatially invariant. 

• It was assumed that the perpendicular distance, D, was uniformly dis-

tributed between (-1, +1), given that T = 0.41, i.e. (-2.5r, +2.5T). It 

would lead to an interesting investigation to see how the probability den-

sity function, f(p), and hence the mixed pixel distribution, would change if 

D had a different distribution. 

• To date, we have only considered estimating the proportions of two tissue 

types. The moment method, together with the incorporation of spatial 

information, could be extended in order to estimate the proportions of fat, 

muscle and bone in the segmented sheep images, at all three anatomical 

positions. This requires the distribution of bone greyscale values to be 

estimated. 

• Upon establishing the distribution of bone pixel values, a simulation study 

could be performed to approximate the histogram of greyscale values in 

Figure 5.1. This would allow for direct comparison between the current 

threshold method in use at the CT unit and the method in Section 6.7, 

which combines the local spatial information of each pixel and the moment 

estimator. 
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