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Abstract 

This thesis is concerned with the mapping properties of the related objects, 

Mf(x,w) := 
suph_1J(01h) 

f(x-6w)dt, 
h>O  

Mrf(x) 	sup h1 
fo,h) 

f(x - F(t)) dt 
h>O  

and their associated singular integral operators, H and Hr  respectively. Here, 

it := exp((log t)P) and P is a real d by d matrix whose eigenvalues have positive 

real part, and F R -+ R° parameterises a curve. 

For p in (1, max(2, (d + 1)/2)], we prove that M maps L1' to LP(L)  for an 

optimal range of q (modulo an endpoint). For H, the same optimality is achieved 

for pin (1, 2]. 

If F(t) = (t, P(7(t))), where P is a real polynomial and 'y  is a convex function, 

then we give sufficient conditions in order for Mr,  and Hr to be bounded on L, for 

all p in (1, cc), with bounds independent of the coefficients of P. We also consider 

when these operators map L log L to weak L' locally. The same conclusions are 

shown to hold for the corresponding hypersurface in Rd  (d > 2) under weaker 

hypotheses on F. 

We give sufficient conditions on a convex curve F in R° (d > 2) in order for 

NCI,  and Hi-j to map L log L to weak L' locally. Finally, it is shown that if F is a 

piecewise linear version of a parabola then the best one can expect, in terms of 

Orlicz spaces locally near L', is that Mr  maps L(log L)1/2  to L"°°. 
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Preliminaries 

LP and LP(LI) spaces 

For a fixed measure space (X, jt) and p E [1, Do] we introduce the familiar LP (X) 

space as those measurable functions f : X - C such that IIf 11p is finite, where 

IIfI 	
(fIfI)' 

with the agreement that when p is oo we interpret the above expression as the 

essential supremum of f on X. When there is no danger of confusion, we simply 

write LP for LP(X). Each p e [1, oo] has a dual exponent, denoted by p', which 

satisfies i/p + i/p' = 1. 

We also define a specific class of mixed-norm spaces for functions defined on 

measure spaces with a product structure. In particular, for p, q E [1, 00] we 

denote by LP(L)  the space of measurable functions f : R' x Sd_i - C such that 

If IILP(L) is finite, where 

p/q 	1/P 

fIlLP(L) 	(fRd (fSd-1 
f ( x,w)I dw) 	dx) 

Here, dw and dx are the natural Lebesgue measures on Sd_i  and ]R° respectively, 

and as above, we can interpret this expression appropriately when either exponent 

p or q is oo. Mixed-norm spaces of this type were first introduced by Benedek 

and Panzone in [2] with greater generality. The above setting is sufficient for our 

purposes. 

Lorentz spaces 

Fix a measure space (X, ). If  f : X -p C is measurable, define the decreasing 

rearrangement of f by 

f*(t) = inf{A E (0, oo) : ji({x E X: jf(x)I > }) < t}. 
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Define L''(X) to be the space of measurable functions f on X such that 11flip,q 

- 	is finite, where 

1/q 

liflip,q 

	

:= 	( f 	(tlIP f*(t))) 	for p, q e [1, oo), and 
J(o,00) 

	

If IIp,00 := 	sup tlf*(t) for p E [1, 00]. 
tE (0,00) 

These spaces were introduced by Lorentz in [39] and [40]. The quantity II IIp,q 

satisfies the triangle inequality only when 1 < q < p < 00, or p = q = 00. Despite 

this, the spaces arising when q > p will be of most interest to us. Observe that, if 

qi 	q2  then LP,q, ç 11P,q2 and also that L' coincides with LP for each p e [1, 00], 

with equality of norms. 

Orlicz spaces 

Let Q c lR' be a fixed unit cube. Suppose 1 : [0, oo) -* [0, oo) is nondecreasing 

and convex with (0) = 0. We define the Luxemburg norm of a measurable 

function f by, 

If II(L)(Q) := inf a >0: fQ 	f(x)I/a)dx < i}. 	(1) 

Then we define the corresponding Orlicz space, (L)(Q), as those measurable 

functions f : Q -+ C such that the norm in (1) is finite. Such spaces were 

introduced by Orlicz in [53] and the norm in (1) appeared in [41]. One thinks of 

Orlicz spaces as generalisations of the more widely known LP(Q) spaces. Indeed, 

if 1(t) = t' for p E [1, oo) then it is easy to check that the norm defined in (1) 

coincides with the L(Q) norm of f. It turns out that Orlicz spaces are complete 

spaces. For more details on the rich theory of these spaces, we refer the reader 

to [38]. 
Notice that we have now introduced two generalisations of the classical L 

spaces; Orlicz spaces and Lorentz spaces. The theory of a further generalisation 

of these spaces, Orlicz-Lorentz spaces, has also emerged (see, for example, [42], 

[44], [33], and [47]). 

Some universal notation 

A function 0 : 	-p C belongs to the Schwartz class, S(Rd),  if 0 is infinitely 

differentiable and, for all a,)3 E N", 	 - 

/ 	
p() := sup xD(x)I <cc. 

xE1fU 
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The Schwartz class is a Fréchet space, dense in LP(Rd)  for all p E [1, oc) under 

the following topology given by the seminorms 	a sequence (k)k>1  converges 

to the zero function if and only if p(k)  tends to zero as k tends to infinity, 

fOr all c, j3 E Nd. The space of tempered distributions, SF(lRd) ,  is the space of 

bounded linear functionals on 8(Rd).  The action of a tempered distribution 1L on 

an element of of S(Rd)  will be denoted by 

Adopting the notation x.y for the standard inner product of elements x and y 

in Rd,  the Fourier transform of a finite Borel measure p on R' will be defined by 

:= 
Rd  e 
	d(x). 	 (2) 

We shall often require the use of Euclidean balls in Rd;  that is, the open 

balls defined by Euclidean distance in R'. The Euclidean ball of radius r and 

centre x in R' will be denoted by Br(). In Chapter 2 and Chapter 4, the reader 

should also be ready to meet balls in Rd  defined by certain nonisotropic distance 

functions. The notation will be made clear at the appropriate moment. 

If E is a subset of Rd,  we shall use lEt to denote either the Lebesgue measure 

of E or the number of elements in E. There should be no confusion caused by 

this. Let XE  denote the characteristic function of E. 

For positive numbers A and B, we frequently employ the notation A < B to 

dissolve constants, and this notation will be defined in each chapter separately. 

Automatically, B > A means A < B, and A B means A $ B and B $ A. Any 

dependence in a constant that we wish to emphasise will be done so via subscripts 

or parentheses. 

A toolbox 

(Plancherel's theorem) Up to an absolute constant, the mapping f F-p I is 

an isometry on L2(R'). To see how to make sense of the Fourier transform 

defined in (2) for L' functions, p E (1, 2], see [24]. 

(van der Corput's lemma) Suppose 0 : (a, b) - R and : (a, b) -* R are 

smooth, and that I0(")(t)l > 1 for all t e (a, b). Then 

fa 	 (10(b) 
b

b  e

iAO(t(t) dt <C(k) 	l 
+ f j'(t)I dt) —1/k 	(3) a 

holds when 

k > 2, or 

k = 1 and 0' is monotonic, 
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and the constant C(k) is independent of 0 and A. This estimate is due to 

van der Corput; a proof can be found in [60]. One should bear in mind 

that, using a simple integration by parts argument, it suffices to show (3) 

when 0 = 1. 

(Minkowski's inequality) Let (X, ) and (Y, 11) be a-finite measure spaces. 

Then, for all p e [1, 00), 

P 	i/p 	 i/p 

( I f f(x,y)dv(y) d(x))f (fIf(x,Y)l P d(x)) 
'\ x Y 

(Holder's inequality) Let (X, ) be a a-finite measure space. Then, for all 

pe[1,00], 

I.  
I f(x)g(x) d(x) <( / f(x) d(x)) 	(I g(x) '  dp(x) 
iX 	 \Jx 	.1 "ix 

(Sobolev spaces and Sobolev embedding) Let v be a real number. If u is a 

distribution on Sd_i,  we shall say that u E L(Sd_l) if, for any coordinate 

patch U ç 8di and any e C000(U), the distribution bu belongs to L,(U), 

where U is identified with its image in Rd-1. For a definition of the more 

familiar Sobolev spaces on Euclidean spaces see, for example, [65]. If u = 1 

we can equivalently define L(S'11) to be the set of all u E L2(S_i) such 

that for any smooth vector field X on S_1,  3Cu E L2(Sd_i). 

If ii is a real number such that 2 < (d - 1)/u, then the identity mapping 

from L(Sd_l) to L(5d_1) is continuous, if 1/q = 1/2 - u/(d - 1). This 

result is a particular case of a general theory of Sobolev spaces on manifolds. 

See [65] for more details. 

(Interpolation) Suppose T is alinear operator such that for i E 10, 11, we 

have 

TfII LPI(Lqi ) :5  Cjfj,, for each f E LPt(Rd), 

where pi <qi. It follows that for 0 e [0, 1], 

ITfII LP(Lq) <C °CjIfII 	for each f E LP(Rd), 

where 
1 1-0 0 	1 1-0 0 
-= 	+— and -= 	+—. 
P 	Po 	P1 	q 	qo 	qi 

This interpolation theorem was proved in greater generality in [2] using 

complex interpolation methods. One may also deduce this result using real 
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interpolation and the Peetre K-functional; see [3] for a full treatment on this 

method. For a fleeting glimpse at the main point in the real interpolation, 

we have that 
(LP0(1Rd), LP1(Rdl))9,  = 

and 
(LPo(Lo),  LP1  (L"))9, ç LP(L),  since p, 	q, for each i. 

The notation (., .)O,p we have just used for the intermediate spaces can be 

found, for example, in [3]. 

We shall also utilise interpolation theory on Sobolev spaces. Our results 

follow from complex interpolation methods; in particular from the fact that 

[L2(S''), L(S'1 ')] 	L 	° ,(S 1) for each Ii  E [0 1 11. 

We refer the reader to [65] for further details, including the definition of the 

notation [., .],. for the intermediate spaces. 



Chapter 1 

Background and Introduction. 

In this thesis we shall be concerned with the boundedness, or mapping proper-

ties, of various singular integral and maximal operators. Rather than out of the 

blue definitions,, this preamble is intended to show how our operators arise in a 

very natural manner from certain classes of partial differential equations via the 

method of rotations. Those in the know may prefer to move straight to Section 

1.1 and Section 1.2. 

The isotropic case 

Throughout this thesis we shall refer to the dilations x i—  (txi,.. . ,tXd) on 

forte (O,00), as isotropic dilations. 

Constant coefficients 

Let P be a polynomial on 1I which is homogeneous jf  degree n with respect to 

isotropic dilations; that is to say, P() = 	 for some real coefficients 

p and E W1. Suppose further that the the polynomial P only vanishes at the 

origin so that the differential operator P(D) is elliptic. Define the operator A by 

and the operator Tp by 

(—i)- 1 f(e) 

It follows from, 

= 

that we can express the differential operator P(D) as 

P(D)f = Tp(Af). 	 (1.2) 
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The operator A is well understood since —A2  is the Laplaçian operator. It is clear 

that i-# (—i)ThP()/je is homogeneous of degree zero with respect to isotropic 

dilations, and furthermore, belongs to C°°(R° \ {O}) from our assumption that 

P(D) is elliptic. For f belonging to 8(R°), it is possible to show that 

Tpf(x) = af(x) + p.v. 
fRd 

K(y)f(x - y) dy, 

where a E C, and K satisfies the following conditions: 

(Ki). K is homogeneous of degree —d with respect to isotropic dilations; 

f5d _ l K(W)=O;  

K belongs to COO(Rd \ {o}). 

A proof of this fact may be found in [24]. Thus, we have effectively reduced the 

study of Tp to the study of the operator 

Tf(x) := p.v. 
JR 

K(y)f(x - y) dy, 	 (1.3) 

where K satisfies (Ki), (K2), and (K3). To ensure T is well-defined, we initially 

restrict f to $(IR°). These operators go back to work of Mihlin in [45] and the 

now classical work of Calderón and Zygmund in [6]. It follows from [6] that T 

extends to a bounded operator on LP for each p E (1, oo). A point we wish 

to emphasise here is that one can prove this fact by  considering the following 

associated maximal function of Hardy-Littlewood type, 

MHLf(x) :=Sup Bh(0)1 1 	f(x - y) dy. 	 (1.4) 
h>O 	VYGBh(0 ) 

It is known that MilL satisfies the following key distributional estimate: There 

exist C < oo such that 

{x E Rd : MHLf(x) > a} <Ca'f i  for all a > 0. 	(1.5) 

This fact was 'proved by Hardy and Littlewood [32] when d = 1, and for d> 1 by 

Wiener [67] and Marcinkiewicz and Zygmund [43]. Moreover, one can prove that 

there exists C < oc such that 

I{x e Rd: Tf(x)j > a}I CI{x E Rd: MHLf(x) > a}I+Ca2 Jif (x)Ia 
If(x)12 dx, 

(1.6) 

and therefore we can use (1.5) to deduce the same result for T. The result in 

(1.6) is the fruit of the much celebrated Calderón-Zygmund theory; a proof is 



implicitly written in [61]. The boundedness of  on P3  for p E (1, oo) now follows 

by simple arguments involving interpolation and duality. 

This is an example of a general expectation that, despite no formal link, the 

behaviour of a singular integral operator will be determined by the behaviour 

of the associated maximal operator. If this were not sufficient motivation for 

the study of maximal operators, one may be further persuaded by their direct 

connection to pointwise convergence results of the form, 

lim F(x,h
)1kx,h) 

 f(y)dy = f(x) for almost all x E Rd, 	(1.7) 
h-O  

where {F(x, h) : x E Rd, h E (0, oo)} are measurable subsets of R' (with re-

spect to the appropriate Lebesgue measure) and f belongs to a certain class of 

functions. The case where F(x, h) is the Euclidean ball Bh(x) is the classical 

Lebesgue differentiation theorem and (1.7) holds for all f E L1(W). Moreover, 

the distributional estimate (1.5)is known to be equivalent to (1.7). The problem 

becomes significantly more difficult when F(x, h) are lower dimensional subsets of 

R". For example, it is unknown whether (1.7) is true for functions in L' if IF (x, h) 

is a piece of parabola of length h emanating from x, or, if h is restricted to a 

dyadic subsequence of (0, oc), the boundary of Bh(x). We return to this matter 

in Section 1.1. 

Let us now demonstrate an alternative proof that the operator in (1.3) is 

bounded on P3, for all p e (1, oo), if K satisfies (Ki), 

K is an odd function; 

fSdi K(w)l dw <00. 

Here, (K2') is a stronger cancellation condition than (K2), and (K3') is a weaker 

smoothness condition than (K3). If f e S(Rd) then, by changing variables to 

polar coordinates and using the oddness of K, 

2Tf(x) = limJ
Sd-1 

K(w) 
(f 	

f(x - rw) 
dr  

) dw. 
-O 	IrIE(,00) 	 r 

Because of condition (1) and the smoothness 6f f, we can use the dominated 

convergence theorem to deduce that 	 - 

2Tf(x) =  
JSd-1  

K(w)Hf(x,w), 	 (1.8) 

where 

Hf(x,w) :=p.v.ff(x_tw) 
dt  

. 	 (1.9) 
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For a fixed w E Sd_i this operator is essentially the classical one-dimensional 

Hubert transform, H1, defined a priori by 

JR 
t)

dt  
Hi f(s) := p.v.f(s - 

 t 

for f belonging to 8(R). In particular, if we fix p E (1, cc) and w E Sd_i, and 

write each x E Rd as 

X = (x.w)w + (x - (x.w)w), 	 (1.10) 

then 

Hf(x,w) = H1(f(.w + (x - (x,w)w)))(x.w).  

We can now use the famous theorem of M. Riesz that H1  is bounded on LP to see 

that 

flHf(x,w )I dx 	
f JR 

Hi(f( 	+ y))()jP
yO  

C(p)  
fY .U)=O fR 

f(. w + y)(A)IP dAdy = C(p)f. 

Therefore 

IjHf(.,w)M 	C(p) 11 f. 
	 (1.12) 

Because the bound in (1.12) is independent of w, it follows from (1.8), (3'), 

together with an application of Minkowski's inequality, that T is bounded on 

L. Passing from the expression (1.3) for T to (1.8) is an instance of the method 

of rotations. This approach was introduced by Calderón and Zygmund in [7]. 

With the aid of Riesz kernels, this method can be used to handle even kernels 

too. 

Nonconstant coefficients 

In more a general context, one is led to variable kernel singular integral operators 

of the form 

Tf(x) :=p.v.f K(x,y)f(x—y)dy, 
R  d 

where, for each x, 

(Ki). K(x,.) is homogeneous of degree —d with respect to isotropic dilations; 

(K2). fSd-1  K(x,c) dw = 0; 

and some smoothness condition holds. As an example, one need look no further 

than a homogeneous polynomial differential operator with non constant coeffi-

cients; an argument akin to the constant coefficient case leads to operators like 
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(1.13). Observe that if we assume that K(x,.) is odd instead of (K2), then 

one can apply the method of rotations, and one is reunited with the operator 

H defined in (1.9). Furthermore, if one assumes for the smoothness condition 

that w i—* supXERd jK(x,w) I belongs to Ll(Sd_l),  then one may deduce that T is 

bounded on I? for all p E (1, oc). We will return to the matter of the boundedness 

of T under weaker smoothness assumptions on K later in the thesis. 

Nonisotropic case 

Our motivation for this discussion will be the differential operator P(D), where 

P() := 2 - ; this operator essentially defines the two dimensional heat equa-

tion. It is easy to check that 

S(P(D)f) = D °"f and T(P(D)f) = 

where 	 2 
Sf 	

—ze2 	
() and Tf() := 	21(e) 	(114) 

2 + ' i 	 —ie2 + 1 

One can quickly see that both of the multiplier functions which govern S and T 

in (1.14) are homogeneous of degree zero with respect to the parabolic dilations, 

X  i—f (txi, t2 X2)on ]R2. By considering inverse Fourier transforms, we are thus led 

to operators of the form (1.3) where K is homogeneous of degree -3 with respect 

to parabolic dilations; that is, K(txi ,t2x2) = t 3 K(xi,x2) for each t e (0, 00). 

It is at this point where we have reached a junction at which two directions of 

pursuit offer themselves. Both are initiated by the method of rotations, and the 

main body of work in this thesis splits into contributions along both paths. 

To be more specific, let us fix a kernel K which is homogeneous of degree 

-3 with respect to parabolic dilations, and odd. Apply the change of variables 

Yi = tcos D and Y2 = t2  sing, which are in the spirit of polar coordinates, but 

better suited to parabolic dilations. Then, the operator T defined by (1.3) may 

be written as 

2Tf(x) 
= f 

K(w)Hf(x, w)(1 + sin  ) dw, 

where w := (cos , sin ), 

Hf(x,w) :=p.v.f(x— 	
dt 

	

5tW)1, 	 (1.15) 
fR 

and 

= (sgn(t)t2)t 	0 	for t E R 	 (1.16) 

is our family of dilations. As with the similar looking object in (1.9), one can 

prove that the analogue of (1.12) holds. Like the isotropic case, if we know that 

11 



K belongs to L'(S'), then Minkowski's inequality implies that T is bounded on 

II for each p e (1, 00). 

Remark. For fixed w, the L2  boundedness of the operator in (1.15) was originally 

proved in a thesis of Fabes. In [49], the II boundedness was proved for all p E 

(1, oo). The parabolic analogue of (1.12) easily follows by scaling. However, the 

proof we gave for the isotropic case on page 10 does not work. There is no obvious 

reduction to a one-dimensional operator since the orthogonal decomposition in 

(1.10) has no obvious analogue. This issue reappears in Chapter 2 of this thesis. 

The first turn at our junction is to consider the dilations in (1.16) as a pro-

totype, then fix w, and consider the corresponding operators defined in (1.15) 

as Hubert transforms along curves. Such operators have generated considerable 

interest in the past thirty years, and we continue this road of discussion in more 

detail in Section 1.1. 

The second route appears if one assumes that the kernel belongs to L(1'  (S') 

for some q' strictly greater than 1. More generally, suppose we are in the variable 

kernel case and we assume that there exits a constant C(q') < oo such that 

sup 
fsd-1 

K(x,w)'dw C(q'). 
xEfl  

An application of Holder's inequality implies that, 

p/q 

TfIj 	C(q') 
(JRd (fSd-1 	

W)lq 
	dx)  

This begs the question: For what values of p is the mixed-norm quantity on the 

right hand side of (1.17) controlled by 11f II. We discuss this further in Section 

1.2. 

1.1 Operators on curves 

Given an integer d > 2 and a map F : ll — p 	we define operators Hr  and M 

by 

dt 
Hr f(x) := p.v.ff(x_F(t)) 	 (1.18) 

Mrf(x) := sup h' 	f(x —F(t)) dt,  
h>O 	41h) 

for f belonging to S(Rd).  We shall refer to Hr  as the (global) Hubert transform 

along F and N[r  as the (global) maximal operator along F. We also introduce 

local versions of these operators, HOC  and M[C,  where the integral in (1.18) is 
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restricted to (-1, 1) and the supremum in (1.19) is restricted to h in (0, 1). It 

will be convenient for us to work with the following dyadic form of Mr: 

Mrf (X) := sup ,\_k 	 f(x— F(t)) dt, for a fixed A e (1, oo). (1.20) 
kEZ 	f(,\k,,\k+1) 

It is clear that there exists C(A) E (0, oo) such that Mr f ~: C(A)MrIf I and 

Mrf 	C(A)Mr If. For our purposes this means Mr is equivalent to M1.. The 

local version is defined in the obvious way. 

On LP for pE (1, 00) 

The question of interest here is the following: For which F and what range of p 

can say that either Hr or M (or the local versions) are bounded on L? Of course 

Mr is bounded on L°°, and so we choose to omit this triviality from subsequent 

theorems on M. We begin with the case that F is a polynomial curve in R'. 

The following theorem is well known. 

Theorem 1.1.1. [60] Let F(t) = (P1(t),. . . ,P(t)), where P1,. .. 	 are real 

polynomials on R. Then Hr and Mr are bounded on LP for all p E (1, oo), with 

bounds independent of the coefficients of P1,. . . 

A somewhat related problem is the case when F is of finite type, that is to 

say {F(")(0) : k > 11 spans Rd 

Theorem 1.1.2 [62] If  is of finite type then HC and MC are bounded on L 

for all  E (1, 00). 

We may then ask what happens in the case that F is not of finite type. This 

brings us to the simplest case of this kind, where we have d = 2, F(t) = (t, 'y(t)) 

and all of the derivatives of 'y vanish at zero. One such (nonconvex) 'y was 

constructed in [62] for which M[C is unbounded on LP for any p E (1, oc). Despite 

this, positive results are possible for such curves when, in particular, we consider 

convex 'y. If we restrict our attention to curves 'y satisfying: 

E C2 (0, oo), convex on [0, oo) and 'y(0) = 'y'(0) = 0, 	(1.21) 

and extend 'y to a function on R by stipulating that it must be either even or 

odd, then the following notions naturally arise. 

Definition 1.1.3. 	1. A function f : R -p R belongs to e1 if there exists 

D e (1, oo) such that for each t e (0, oo) we have f(Dt) ~! 2f (t). Such an 

f is said to be doubling. 
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2. A differentiable function f : R -* R belongs to C2 if there exists E0 > 0 such 

that for t e (0, oo), f(t) > eo f(t)/t. Such an f is said to be infinitesimally 

doubling, and if f is nondecreasing on (0, oo) then f e e2 implies f E Cl. 

We shall also need the function h defined for t e (0, oo) by h(t) := t'y'(t) —'y(t). 

Notice that because 'y is convex and 'y(0) = 0 we get the important fact that 

t'y'(t) ~! 'y(t) for all t E (0, oc). 	 (1.22) 

(and hence h is nonnegative). We now state a series of known results in this 

setting. 

Theorem 1.1.4. [13] Suppose 'y is even and satisfies (1.21), and p e (1, oo). 

Then Hr is LP bounded if and only if 'y' E C1 . 

The L2 result in Theorem 1.1.4 was proved earlier in [51]. In the context of L' 

boundedness for p E (1, oo), this is of course the end of the matter for Hr, when 

'-y is convex and even. In the odd case, the current situation is less satisfactory. 

We have: 

Theorem 1.1.5. [51] Suppose 'y is odd and satisfies (1.21). Then Hr is L2 

bounded if and only if h e C1. 

This theorem of course means that, for each p E (1, oo), h E C1 is a necessary 

condition for H to be LP bounded. However, it was demonstrated in [9] that this 

condition is far from sufficient. There they construct a 'y such that h E C yet 

Hr is unbounded on LP for any p E (1, oo) not equal to 2. Some known sufficient 

conditions in the odd case are given in the following: 

Theorem 1.1.6. Suppose 'y is odd and satisfies (1.21), and p E (1, oc). 

[13] If-y' E C then Hr is IY bounded. 

[9] If h E C2 then H is LP bounded. 

For Mr, a necessary and sufficient condition for LP boundedness in geometric 

terms is not known. ,It was demonstrated in [64] (see also [58]) that a convex 'y 

exists for which Mr is unbounded on LP for all p E (1, oo). There is however an 

analogue of Theorem 1.1.6: 

Theorem 1.1.7. Suppose 'y satisfies (1.21) and p E (1, oc). 

[13] If -y' E C1 then Mr is LP bounded. 

[9] If h E e2 then M11 is LP bounded. 
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Remarks. 	1. The case where a convex curve on [0, ) is extended to be either 

even or odd is encompassed by the notion of a biconvex balanced curve given 

in [22]. There it is shown that if the derivative of such a curve satisfies a 

doubling condition then, for all p e (1, oo), we get LP boundedness of both 

Hr  and M (and also the associated maximal Hilbert transform). 

2. Suppose 'y  satisfies (1.21), and moreover, is infinitely differentiable. We shall 

- 

	

	say that the curve (t, 'y(t)) is flat if all of the derivatives of 'y vanish at zero. 

This may seem a little obvious, but our aim is to avoid any confusion with 

the following alternative candidate for the term 'flat': If the intervals {I} 

are disjoint and have (0, oo) as their union, let (t, 'y(t)) be a curve which is 

linear on each interval I. Such a curve has zero curvature on each piece, and 

for this reason, stakes a claim to be called flat. However, we shall call such 

curves piecewise linear. Observe that if I = (2i ,  2j+1] for each integer j, 

and (t, 7(t)) is the parabolic piecewise linear curve defined by y(2) = 22j ,  

then the class C, admits the function ' (with D = 2). Piecewise linear 

curves are the focus of attention in Chapter 5 of this thesis. 

Motivated by the above theorems, our contribution will be to prove that both 

Hr and Mr are bounded on L, for all p E (1, oo), along a class of nonconvex 

plane curves, F. We state and prove our theorem in Chapter 3. 

Near L' 
For the curve, F(t) = (t,  t2), it is clear that Hr,  and Mr  are not bounded on L1. 

A substantial open problem of particular interest to us is the following: Can we 

enlarge the target space to the Lorentz space Ll00  and say that these operators 

are bounded from L1  to L100?  An affirmative answer for the maximal operator 

would, for instance, imply that for each f E L1(R2), 

lim h' 
J(01h) 

f(x -(t,t 2 )) dt = f(x) for almost all x E R2 (1.23) 

It follows from [48] that (1.23) holds for f E LP(R2) for each p (1, oc). 

Before describing the significant progress for Hr  and Mr along the parabola 

and near L', we set the scene a little. Of interest to us will be Orlicz spaces 

defined by the family of functions 

1(t) = 4)i" (t) = t(log(t + 100)) 	for i E {1, 21, a E [0, oo), 	(1.24) 

where log(')  denotes the composition of log with itself i times. If a < a' then, for 

each e > 0, we have the following chain of inclusions, 

L1+6(Q) 	i a'(L)(Q) 	i ,a(L)(Q) 2,a'(L)(Q) 	4)2,,(L) (Q) 	L'(Q), 
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where Q is some unit cube in Rd. This fact is a consequence of a general result 

which essentially says that distinct functions give.rise to distinct Orlicz spaces. 

For the precise form of this result, see [38]. 

Definition 1.1.8. Let be a function belonging to the family in (1.24). Let T 

be either Hr or Mr (or their local versions). We shall say that T is of weak type 

L(log (L)) if there is a constant C so that the inequality 

j{x E Rd: JTf(x)I > a} I
<f 	

(Cf(x)I 
) 

dx 	(1.25) 
d 	 a  

holds for all positive a. 

Remarks. 	1. Suppose Q is a unit cube in Rd and T is either Hr or Mr. It 

follows from a remark on page' 609 of [57] that if T satisfies (1.25) then the 

local operator f i-4 Tb0c(fXQ) is a bounded map from (L)(Q) to Ll,00. 

2. The distributional estimate in (1.5) is equivalent to saying that MHL is of 

weak type L (more commonly referred to as weak type (11 1)). 

In terms of the above setup, the best known result on Hr and M1- where 

F is a parabola is in [57]. The operators considered in [57] are more general: 

Let 	be a smooth compact hypersurface of Rd, and let ii be a smooth and 

compactly supported density on E . The fundamental assumption is that the 

Gaussian curvature does not vanish to infinite order on E. Define the dilations 

{6t :tE(0,00)}by 

exp ((log t) P), 	 (1.26) 

where P is a (fixed) d by d matrix with real entries and eigenvalues with positive 

real part. Then define the measure Vk by 

(1/k, 0) := (v,(62k)). 

In [57] it is shown that the operator f —* SUNCZ Ivk * f I is of weak type L log (2) L. 

Moreover, if the cancellation condition, i(0) — 0, holds then it is also shown that 

the operator f '—p 
EkEZ Vk * f extends to an operator of weak type L log (2) L. 

Taking d = 2 and the matrix P to be diag(1, 2) we essentially recover Mr and 

Hr. Therefore, (1.23) holds for functions belonging locally to L log (2) L. 

Also known in the parabola case are the following results involving certain 

Hardy spaces and the smoother maximal operator, 

f(x) := sup 	f(x — (t, t2))t 1 (t 1h) dt, 
h>O ~f3 

where 0 is, say, a smooth function with compact support. Christ showed in [17] 

that M maps the appropriate Hardy space associated to parabolic dilations to 
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L"°° (and to no L' q  for q < oo). Later, in [56], it was shown that M maps the 

smaller product-type Hardy space H,.Qd(I x Il') to the smaller Lorentz space Ll  

(and,  to no L' q  for q < 2). Our focus in this thesis will be on results concerning 

the above Orlicz spaces, and thus we discuss these Hardy space results no further. 

The result in [57] covers the finite type plane curves mentioned in Theorem 

1.1.2. However, there are no known extensions to include the classes of fiat plane 

curves which naturally arise in the II theory for p E (1, oo). Our contribution 

in Chapter 4 is to show one can go beyond the L' theory for one such class 

of fiat curves, and furthermore one can extend to include flat curves in higher 

dimensions. 

A further relevant result in this context is the counterexample of Christ in [18] 

which shows that if we let F be the parabolic piecewise linear curve defined earlier, 

then Mr is not of weak type L. Unfortunately, the construction is completely 

inapplicable to the smooth parabola case. In Chapter 5 of this thesis, we extend 

Christ's result and prove that Mr  is at best of weak type L(log L)1/2. 

1.2 Mixed-norm estimates 

Given an integer d > 2 and a Schwartz function f on R, define operators H and 

N[ by 

dt 
Hf(x,w) 	p.v.ff(x-6tw) 	 (1.27) 

Mf(x,w) := suph1 4h) f(x.— tw)dt ,(1.28) 
h>O 	, 

where f 6: t 	(O,00)} is defined exactly as in (1.26), and, for t E (—oc,O), we 

set 5t := 

Remark. Taking d = 2 and P = diag(1, 2) we see that our dilations match those 

in (1.16) and thus our express ions for H in (1.27) and (1.15) coincide. 

Inspired by (1.17), we are interested in the following: For what range of 

p and q are the operators H and M bounded from LP to LP(L)? Below, we 

survey the isotropic situation, giving known results along with a variety of further 

applications. In Chapter 2 we improve upon all known results in the nonisotropic 

setting governed by the dilations in (1.16). 

Known results for the isotropic case 

If we take P to be the identity matrix, then the 8t  generate the isotropic dilations. 

The isotropic case is thus essentially the same as the case where P is a fixed 
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The line q = q j(P) 

Region proved in [19] 

Remaining conjectured region 

lid 2/(d+1) 	 1 1/p 

Figure 1.1: The isotropic case 

multiple of the identity. As far as we know, the best known result in this case is 

in [19], and to state the theorem, we use their notation, 

qd(p) 
p(d-1) 

for p E (1,00),  .— 

with the agreement that qj(p) = oo when p > d. 

Theorem 1.2.1. [19] Suppose P is a multiple of the identity matrix. Then, for 

any d ~! 2, p E (1, max(2, (d + 1)/2)1, and q E [1, q(p)), the operators H and M 

are bounded from L° to LP(L). 

If one tests each operator on the characteristic function of the Euclidean unit 

ball, then one must have q E [1, q(p)). In fact, this gives the conjectured range 

of p and q for isotropic dilations. Theorem 1.2.1 therefore solves the conjecture 

for p e (1, max(2, (d+ 1)/2)], and hence when d = 2, the conjecture is completely 

resolved. Figure 1.1 illustrates the isotropic situation (when d > 3). 

Applications in the isotropic case 

As one might expect, via the method of rotations, the estimates given by Theorem 

1.2.1 give the best known estimates on the variable kernel operator in (1.13) under 

the following conditions: 	
/ 

(Ki). K(x,.) is homogeneous of degree —d with respect to isotropic dilations; 

(K2). K(x,.) is an odd function; 

1/q 

l/(d+I) 



(K3). SUPXERd (fd_I 
lK(x,w)lrdw)l/r 

The result states that T is bounded on E" provided that p E (1, max(2, (d+ 1)/2)] 

and r e ((1 - 1/d)p', oo). In fact, in [19], they show the same conclusion holds if 

(K2) is replaced by K(x,.) having zero average over Sd_i  for each x E W1. This 

result improved upon earlier work of Calderón and Zygmund [8] and Cowling and 

Mauceri [23], and is a sharp result in the stated range of p. 

In a different direction, the estimates on M from Theorem 1.2.1 were used to 

establish bounds on the Kakeya maximal operator. Specifically, if N is a large 

positive parameter, we let RN be the collection of rectangles in Rd  which contain 

the origin and have one side of length  and d - 1 sides of length N'r, for all 

r E (0, oo). Then the Kakeya maximal operator, XN,  is defined by 

XNf(x):= sup ,  ( if(X—Y)Idy, 
RERN RI J R 

and the famous conjecture is that 

IIXNf lip 	 p E (1,d], 	(1.30) 

holds for some .\, C < oo depending on only d and p. In [21], Córdoba established 

(1.30) for p E (1, 2]. It was shown in [19] that the estimate for M in Theorem 1.2.1 

implies (1.30) for p E (1, max(2, (d + 1)/2)] and thus improved upon Córdoba's 

result when d > 4. Spurred on by the work of Bourgain in [5], who further 

extended the range of p and also found exciting new links with other fundamental 

open problems in harmonic analysis, (1.30) has since received a large amount of 

attention. At the time of writing of the fairly recent survey article [35], the 

best known range of p was (1, (d + 2)/2] for 3 < d < 8, due to Wolff [70], 

and (1, (4d + 3)f7) for d > 9, due to Katz and Tao [34]. Recent progress on 

(1.30) has been achieved through arguments involving geometric combinatorics 

and arithmetic combinatorics, rather than the Fourier transform based proof of 

Theorem 1.2.1. We believe that the best known mixed-norm estimates for M are 

still those in [19]. 

Another application was observed by Durán [25] who established a connection 

between the maximal operator M and an aspect of numerical approximation, the 

Bramble-Hilbert lemma. In [27], R. Fefferman proved mixed-norm estimates for 

M and extended the result of Durán. 
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Chapter 2 

Mixed-Norm Estimates for a 
Nonisotropic Maximal Operator 

Arising in the Method of 
Rotations 

2.1 Introduction 

In this chapter, we prove mixed-norm estimates for the operators H and M defined 

in (1.27) and (1.28). We suppose throughout this chapter that the matrix P which 

defines the dilations Jt is not a multiple of the identity matrix. The notation 

q(p) defined earlier in (1.29) will be adopted without change. For the maximal 

operator, our main result is as follows. 

Theorem 2.1.1. 	1. For any d > 2 and p E (1, oc), a necessary condition that 

M is a bounded operator from LP to LP(L) is that q E [1, q(p)]. 

2. For any d > 2, p e (1, max(2, (d + 1)/2)], and q E [1, qj(p)), M is bounded 

from IJ to LP(L). 

It is easy to show Theorem 2.1.1(2) when 1 < q <p < oo (and p> 1) . To 

see this, use Minkowski's inequality and the fact that 

IIMf(,w)M :~ C11 f 11P, 	 (2.1) 

where the constant C is independent of w E 8d1• The estimate in (2.1) for fixed 

w was proved by Stein and Wainger in [62]. However, the arguments in this paper 

can be used to prove the uniform estimate (2.1). 

If we can prove Theorem 2.1.1(2) when p = max(2, (d + 1)/2) then the full 

assertion holds by interpolation with our trivial estimates near p = 1 and q = 

1. We have in mind the mixed-norm interpolation result on page 5 stated for 
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linear operators. The maximal operator M is not linear, but an easy linearising 

argument means we can still invoke the result on page 5 as stated. One can 

also deduce certain results in the range p e (max(2, (d + 1)/2), oo). In fact, 

by interpolation with the trivial estimate when p = q = 00 one gets that M is 

bounded from LP to LP(L)  for p e (max(2, (d + 1)/2), oo) and q E [1, 2p). 

Modulo the endpoint q = qj(p), Theorem 2.1.1 says that we have the same 

result for M whether we have isotropic or nonisotropic dilations. In particu-

lar, modulo this endpoint, Theorem 2.1.1 is sharp in all dimensions for p E 

(1, max(2, (d + 1)/2)], and when d = 2, sharp for p E (1, oo). 

Our analysis of the singular integral operator H has been less successful. At 

the moment, the following is known to us. 

Theorem 2.1.2. 	1. For any d > 2 and p E (1, oo), a necessary condition that 

H is a bounded operator from L" to LP (L) is that q E [1,qd(p)]. 

. For any * d > 2, p E (1, 2], and q E [1,qd (p)), H is bounded from LP to 
LP(L).  

It follows from Theorem 2.1.2 that we have a sharp result for H in all dimen-

sions for p E (1, 2], and, when d = 2, for all p E (1, oo) (modulo an endpoint). As 

with M, it suffices to prove Theorem 2.1.2(2) when p = 2, and in this case, q 2 

is trivial. 

Best known results in the nonisotropic case 

Firstly, we emphasise that the only known results in the nonisotropic setting 

concern the case that P is a diagonal matrix with distinct real and positive 

diagonal entries. Let P be such a matrix and write P = diag(c i ,. . . , o4. ForM, 

if we set 

2(d > c - (d - 2) min (a)) 
P := 

2(d-1+1/d) 
and 

q._21+1l) 

Pc := d-1+2/d ' 	 d-1 

then Sato [55] and Chen [16] achieve the range of p and q shown in Figure 2.1. 

Either result can subsume the other, depending on certain relationships between 

the numbers d, min(a), and' E,  c j. 

For H, we believe that the best known result is the following theorem of Chen, 

which is restricted to d = 2. 
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1/2 
	

'Proved in [53] 	

l/q, 
	 Proved in [16] 

Our gain 
	

Our gain 

lid, 	2/(di-1) Ups 	 lid 	2/(d4-1) l/p 

Figure 2.1: Our improvement for the nonisotropic maximal operator 

Theorem 2.1.3. [15] If P = diag(ai,a2) and 1 < a2/al < 4/3 then H is 

bounded from LP to LP(L) provided 

1. p  (1,2] and q(1,2p/(3—p)); or 

2.pE(2,00) and qE(1,2p). 

We shall not highlight the gain from Theorem 2.1.2 by a diagram. It is clear 

that when d = 2 and p = 2, Theorem 2.1.2 achieves the optimal range, q E [1, oc)'. 

Compare this with the range q e (1,4) given by Theorem 2.1.3. 

Remark. We should emphasise that in [15], Chen actually proved the stronger 

result that Theorem 2.1.3 is true if one replaces H by the corresponding maximal 

Hubert transform. 

Preliminaries 

We frequently rely on the fact that our dilations 6t  satisfy the following group 

property: 	
0 

6s8t = 6at for all s,t E (0, 00). 	 (2.2) 

Associated to P are smooth P-homogeneous distance functions ; that is, 

p e Cc0(TR \ {o}) and p(ox) = tp(x) for all t e (0, oc) and all x E j11 For our 

purposes it is crucial to choose a p with a specific property; namely, we will need 

the hypersurface, 

to have nonvanishing Gaussian curvature. First, take a real symmetric positive 

definite matrix Q such that, for fixed x e R' \ {0}, the function 

t '-p (Qx.8x)' 
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is strictly increasing on [0, oc). Assuming that such a matrix Q exists for the 

moment, we may, for each x e W \ {0}, set g(x) to be the unique t E (0, oo) such 

that 

Qöt-ix.St-ix = 1. 

When x = 0 we set p(x) = 0. On the existence of such a matrix Q, one may take 

Q=f exp(_tP*) exp(_tP)dt. 
((,00) 

It is straightforward to check that this has the requisite properties; this rather 

cute choice can be found in [62]. Note that the choice 1  of Q is certainly not unique. 

Notation. Write A B for A < CB, where C depends only on d, the matrices 

P and Q, and any index p or q that may be present. 

We now introduce polar coordinates in our nonisotropic setting: For each 

nonzero x e Rd  there exists a unique pair (r, w) E (0, oo) x E, such that 

X 

where r = p(x) and w =Then the volume element in Rd  is 

dx = rT_ldrdw, 	 (2.3) 

where di' is Lebesgue measure on the positive real line, dw is a smooth C measure 

on E.,  and 'r is the trace of P. This change of variables will be referred to as 

passing to nonisotropic polar coordinates. For a proof of (2.3), see [62]. 

Since Q is a positive definite symmetric matrix, E,, is an ellipsoid with nonva-

nishing Gaussian curvature. Since the measure dw is smooth, it follows (see, for 

example, [60]) that for large j, 

2()I $ II_(d_1)/2 	 (2.4) 

and this is the key estimate we shall need. 

Although the triangle inequality will fail in general, there exists, a constant 

C > 1 such that 

Q(x + y) <C(p(x) + p(y)) for all x, y E Rd. 	 (2.5) 

Define the associated balls 

B(x,r) := {y E Rd: p(x—y) <r} for x E Rd,r  E (0,00). 

The following bounds will also be useful (for a proof, see [621); 

tal xl $ 18xI < t 2 Ixi for all t < 100, 	 (2.6) 

t3Ixi 	lc5txi < tixi for all t > 100, 	 (2.7) 

where each aj  depends only on P. 
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Remark. In many circumstances it actually suffices to take Q to be the identity 

matrix, or equivalently, E. to be S'. For example, this is the case if. P is a 

diagonal matrix or if 116t ll ~:, t for each t e [0, 11 (see [541). To simplify the proofs 

of Theorem 2.1.1 and Theorem 2.1.2, we shall assume throughout this chapter 

that > = Sd_i. It will be clear how to modify the arguments in the more general 

context. 

Overview. In the coming section, we prove the necessity parts of Theorem 2.1.1 

and Theorem 2.1.2. Section 2.3 and Section 2.4 are devoted to the sufficiency 

parts of Theorem 2.1.1 and Theorem 2.1.2 respectively. In Section 2.5 we prove 

the main oscillatory integral estimate used for these results.. Finally, in Section 

2.6 we exhibit a few applications of our results. 

2.2 Necessity 

As far as we know, no necessary conditions have been given in the nonisotropic 

case. This may be because of difficulties arising from the competing homogeneities 

of the nonisotropic dilations Jt and the isotropic nature of the sphere 5di To 

reflect this, we set fN' to be the charcteristic function of N := 5N(BcN-i (0)), 

where C 1 whose exact value will be revealed later in the proof, and N > 100. 

Notice that in the case of isotropic dilations, BN is simply a Euclidean ball which 

is independent of N, and for parabolic dilations in the plane, 8N amounts to the 

interior of an ellipse of scale 1 in the x direction and scale N in the y direction: 

Suppose first that M is bounded from LP to LP(L), so that 

q 	p/q 
/ 

NTd 	fNII 	J~, (f (sup 
fh 

fN(x -ow) dt)dw)dx. 	(2.8) 
Sd-i \h>O d 

Now pass to nonisotropic polar coordinates x = 5,0 for r E (0, oo) and 0 E 

so that (2.8) reads 

r fsd-1 

/ 1 	
) q dW) p/q 

NT_d > / 	( J (sup 
-

f 

fN(ôO  8tW) dt 	dOrT_i dr 
Jo 	5d-1 \h>0 h  

j,2N / 	 jr+1 	 q p/q  f (J ( f j (ör 5t )dt)dw) dOr_l dr, 

d_i\A9 \r+l 	 I 	/ 

where it0 := 5d-i n BN-1(0). For fixed r E (N, 2N) and 0 E 5d-1, we claim that 

for w .110 and t E (r, r + 1) we have örO - ötW E BN. This claim granted, 

1 	 p/q 12N 

fsd-1 I dw\ dOrT_l dr NT_d > 	
N 	Ag ) 
1 2N 

IN 
dr

p+(d_i)p/q  
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and this implies that q E [1, qj(p)]. 

To prove the claim, first write t = r + h and w = ü + ij where h E (0, 1) and 

77 E BN-1(0). Then, 

JrO - 8tW = 	- 	- 

which means that 60 - 5w E BN if and only if 

6r/N(1  - S1+h/r)O - 	E BcN1(0). 	 (2.9) 

By (2.6), 6(r+h)/N7] :5 C(r + h)2N2' < C3N 1, for some C2  ' 1. It 

therefore remains to bound I6r/N(1 - 81+h/r)01, for which we use the following 

lemma. 

Lemma 2.2.1. There exists C' t-..  1 such that for all t E (0, 1) we have I8+i - 

Ill < C't. 

Proof. Write ot+ = I + log(t + 1)P + A(t), where, of course, A(t) 	1og(t+1)P - 

I - log(t + 1)P. Clearly, 

00 tk 	00 1p11k - 1 00 (log(t + l))kpk11 	 pjk 	 te IA(t)II = 	k! M - I Ik=r2 	 k=2 

Hence, IISt+i - Ill 	t(IIPII + eII') 
	

LE 

Using Lemma 2.2.1 and (2.6), ISr/N (I 81+h/,)0I 	C22 2C'N-1. Theorem 

2.1.1(1) is proved by making the choice C 	C2  (3C12  + 22C'). 

To get the necessary condition for H, we also test this operator on the function 

fN, for large N. The only difference to the above argument is that one should 

restrict the 0 integral to some smaller subset of 	of size 	1 to remove the 

cancellation in the t integral. 

2.3 	Proof of Theorem 2.1.1(2) 

Unlike previous approaches in the nonisotropic setting, we shall use the successful 

techniques used for the isotropic case in [19]. The proof proceeds in two steps. The 

first step is to show that Theorem 2.1.1(2) is true when p = 2. Secondly, we show 

that a weaker estimate! holds arbitrarily close to the case (p, q) = ((d+1)/2, d+1). 

Notice that this point lies on the critical line 1/q = 1/qd(p). Some Littlewood-

Paley theory will be used to show that our weaker estimate near the critical 

point together with the L2  estimate imply that Theorem 2.1.1(2) holds when 

p = (d + 1)/2, as required. 
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Step 1: the case p = 2 

We setup a square function type argument using a fixed number ci e (1, oc) 

which we do not specify but remark that it only depends on the matrix P. Select 

ci) for which (c, c2)C (1, ci). Then choose E 3(R) such that i vanishes 

outside (1, ci), 0 is equal to 1 on (c;(;2), and 0 < 	1. Then let 

I}k(t) := c_k((;_kt) for each k E Z. 

Now choose a positive function E 3(lRd) such that f 4 = f 0 and such that 

there exists a decreasing function q  defined on [0, oc) such that (x) 

for each x E R Then let 

k(t) := det5ç _k(6ç-kx) for each k e Z. 

Now define, for each k E Z, 

Akf(x, w) := J
R 

f(x - ötw)k(t) dt 
- f 

 f(x -Y)k(Y) dy. 

For f >0, one certainly has 

Mf(x,w) < sup I Akf(x,w)I  + supI
Rd 

f(x - y)k(y)dy. 	(2.10) 
kEZ 	 kEZ 

The second term on the right hand side of (2.10) is $ MHL f(x), where the 

Hardy-Littlewood type maximal operator, MHL, is defined by 

1 
MHLf(x) 

:= sup I6rBi(0)l V6'Bj(O*) 
f(x - z) dz. 

r>O 

Moreover, MHL is a bounded operator on LP for all p E (1, oc) (see, for example, 

Chapter 1 of [60]), and thus it suffices to prove 

/ 	\1/2 

(\ 	
Akf2) 	 fII. 	 (2.11) 

kEZ 	 L2(L) 

Fix q E (2, qd(2)) and choose v E (0, 1/2) such that 

q' = 1/2 - ii/(d - 1). 

To prove (2.11), we first invoke Minkowski's inequality and Sobolev embedding 

to get 

/ 	 \1/2 	

(1: 
\1/2 

IAk fx.I 2) 	IIAkf(x,.)II) ; 12tf(x)Ikc. 
kEZ 	 kEZ q 

26 



Here, the operator 2, defined by %f (x) := {Ak f(x, )}kEz,  is being viewed as a 

linear operator from L2  to L2(J-C), where J-C is the Hubert space 12(L,). Now, 

I 
M2tf(x)IldX 	

fRkcZ 	d 
 II(e)I2 Im(k, )II 

Rd 	
d, 

j  

where 

m(, w) := fR 
(t)e t dt 

- f (x)e dx. 

Thus, Theorem 2.1.1(2) for p = 2 will be proved once we have shown 

sup 	IIm(k, )I 	; 1. 	 (2.13) 
eERd ke7L 

If we can show that there exists e > 0 depending only on ii such that, for almost 

allE1R°, 

)ML 	min(, II) 	 (2.14) 

then (2.13) follows from (2.6) and (2.7). In fact, we show that (2.14) holds with 

= 1/2(1/2 - ii). We shall do so by showing that the following estimates hold 

almost everywhere: 

S 	
IIm(, .)11L2j 	min(II, Ie112); 	 (2.15) 

0 	 - 

IM(, )IIL 	$ min(II, 	E+1/2); 	 (2.16) 

and then interpolate between the Sobolev spaces L 2  and L. Firstly, for small IL 
we use the fact that f = f  to get 

	

m(, (J)
= f (t)(et T 1)dt 

- f (x)  (e 	- 1) dx. 

In modulus, this is 	by the mean value theorem. Since the modulus of any 

first order derivative of w i—p 	on 8d1  is < j, the estimates for small 

in (2.15) and (2.16) follow. The estimates in (2.15) and (2.16) for large 	are 

implied by the following lemma, whose proof is delayed until Section 2.5. 

Lemma 2.3.1. Fix  E 10, 11. Suppose that for each fixed (,w) E 

the function W(,w) is supported in [1, a], smooth on (1, a), and 

hI w) (t)j + IW&,W)(t)I 	
i a  for alit E (1,a). 	(2.17) 

Then, 
2 

L
j W( ,W)(t)et dt dw 	II_1+22E  

fsd-i  
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Step 2: the case (p, q) near to ((d + 1)/2, d + 1) 

With a very similar methodology to [19], we extend the mixed-norm inequalities 

for M to p e (2, (d + 1)/2] by proving the following weaker estimates near the 

endpoint (p, q) = ((d + 1)/2, d ± 1). Let e c [0, 1]2 denote the convex hull of the 

points (0, 0), (0, 1), (1, 1), and (2/(d + 1), 1/(d + 1)). 

Lemma 2.3.2. There exists a constant C(p, q) < oc such that for all k E Z, 

IAkfMLP(Lq) < C(p, )IIfI 	 (2.18) 

whenever (l/p, 1/q) belongs to the interior, °, of C. 

	

Proof Fix (l/p, 1/q) E C°. Lemma 2.3.2 is obvious if q 	p by Minkowski's 

inequality and therefore we assume throughout this proof that q > p. 

Since MHL is bounded on L, it is immediate from (2.10) that it suffices to 

prove (2.18) with Ak replaced by Tk, where 

Tkf(x, w) := f f(x - 6tw)k(t) dt. 

Observe that 

lTkfI p(Lq) = det 8ckITo(f(6ck))Ilp(Lq), 

and therefore it suffices to prove (2.18) for To. It is also clear that it suffices to 

take f ~! 0; indeed > 0 and thus this is the worst case. Our final reduction is 

that we may suppose that f is supported on the unit cube centred at the origin. 

That we may restrict our attention to unit cubes, {Q}, follows from the fact that 

To is a local operator; more specifically, there exists C t-- 1 such that 

x —wEQxECQ for all tE(1,a) and wE Sd_l, 

and therefore T0 f is supported in CQ whenever f is supported in Q. By transla-

tion invariance it suffices to consider the unit cube centred at the origin, which we 

	

call Q. Holder's inequality now implies that I I To f LP(L) 	IITo fII Lq (Lq ) , which 

means it suffices to show 

JCQI (I 
f(i_ow)dt)dwdxIIf III 

0 Sd—i (1,o) 

or, by duality, 

	

I E Sd — i J(I 'U) 
f(x - Stw)g(x,w) dtdwdx 	IfM (XESd—ig(x,w)'

dwdx)

1/q' 

xeCQo 
	 I 	 XECQ0 

(2.19) 



To show (2.19) we use a recent theorem of Gressman in [31]. We now describe 

the general setup and main theorem in 	and demonstrate that (2.19) follows 

immediately as a special case. 

Let X and Y be smooth manifolds equipped with measures of smooth density 

and assume the dim X < dim Y. Let 9)1 be a smooth (dim Y + 1)-dimensional 

submanifold of X x Y, also equipped with a measure, and such that the natural 

projections 7x : 9)1 -* X and lty : 9)1 --4 Y have everywhere surjective differential 

maps. Furthermore,-  let 3C1  and 91 be those vector fields on 9)1 which are anni-

hilated by dirx  and d'iry, respectively. Now choose a nonvanishing representative 

Y1  E 91i  and define T(V) := [V, Y1 ], where [•,.] denotes the Lie bracket. Define 

3c3  to be the collection of all vector fields in Xj  such that T(V) e X3 . +9i. 

Definition 2.3.3. The ensemble (9)1, X, Y, nx,  lty) is said to be nondegenerate 

through order k at m E 9)1 if there are dim X - 1 vector fields X3  E 1k such that 

13C, I., 0'ti m, T'(X) : j = 1,... , dim X - 11 spans the tangent space of 9)1 at m. 

{(

Let ek C [0, 1]2  be the convex hull of the points (0, 1), (1, 0), (0, 0), and 

2_j+21_ (j+1)(jdimX_j+2)) 	
(2.20) jdjmX   

Then we have the following. 

Theorem 2.3.4. [31] Let (9)1, X, Y, 7TX, iry) be nondegenerate through order k at 

m e 931. Then there exists an open set U C M containing m and a constant 

C(p, q') < oc such that, for any positive functions fx  and fy on X and Y, 

respectively, 

U fx(x(m))fy(ny(m)) dm < C(p, 

whenever (l/p, 1/q') belongs to the interior of ek. 

To see how (2.19) follows from Theorem 2.3.4, we take 

X := Rd,Y 	d  x Sd_1,9J1 := {(x - tW,X,W) : XE CQ0,w E Sd_l,t  E (1,a)}, 

(2.21) 

each equipped with their natural Lebesgue measure. Since 9)1 is compact it is 

clear that that Theorem 2.3.4 implies (2.19) once we demonstrate that, at each 

point m E 931, (931, X, Y, lrX , ivy) is nondegenerate through order 1 at m. To this 

end we consider m lying in the piece of 931 parameterised by, 

(1,a) x CQ0  x B1(0) C  x R" x Rd-1 	9)1 

(t,x,y) 1-* (x—ow,x,w), 
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where w := (yi,.. . , Yd— 1,(1 - 1y1 2)"2). We can parameterise the rest of 9J using 

(a finite number of) maps which are similar to 1. It will be apparent that the 

argument which follows can be modified to get the same outcome for the remaining 

elements of 9Yt. Our computations of the vector fields 3C, and O'ti occur in a 

Euclidean space and thus appear as 2d-tuples. Our choice of parameterisation 

means that it is convenient to write these 2d-tuples in the form (tlxly) where 

t C R, x E Rd,  and yE 

One can easily verify that, if e j  is the jth standard basis vector in W' and 
Wj := (ei , yj(l 	

11)_1/2) E Rd,  then the vectors 

X3 	:= (0IStwIe) for j=1,...,d-1; and 

Xd := (1It1P6tw10) 

lie in X1, and the vector (110 10) lies in 911. It is also straight-forward to verify that 

T(X) = (0It 1P6wj0) for j = .1, 	, d - 1. 

We claim that for each fixed (t, x, y) E (1, a) x CQ0  x B1(0) the set 

{Yi,X,Xd,T(Xj) : j = 1... ,d- 11 	 (2.22) 

is linearly independent. Upon a dimension count, this implies that (9), X, Y, 7rx, lry) 

is nondegenerate through order 1 at m, as claimed. 

To see that the set in (2.22) is linearly independent, suppose that 

i + 	+dXd+ 	T(X) = 0. 

The last d - 1 components force 3j 0 for j = 1,. . . , d - 1. Therefore, 

01 

1 	'1 	0 	... 	0 
Od 

( tPöw 	—tPö1w1 	t'PStwd_i ) 	
i 	= 0, (2.23) 

7d-1 

and it suffices to show that the determinant of the matrix in (2.23) is nonzero. 

This determinant is clearly equal to 

det(t'Pöt ) det(w, —w1,. ... , —wd_i), 

and an easy computation shows that this equals, 

det(P)(1 - ) 

which is nonzero for each (t, x, y) e (1, a) x CQ0  x B1(0). This completes the 

proof of Lemma 2.3.2. 	 El 
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Following [19], we shall combine Lemma 2.3.2 with some Littlewood-Paley 

theory to complete the proof of Theorem 2.1.1(2). Begin with a smooth compactly 

supported function i on W' such that 0 < 77 < I and 

r 1 for II 1, 
0 for 

and set l7k(e) := 77(8k). Itcan be shown (see, for example, [9]) thatthere exists 

a natural number D -- 1 such that if 

71k+D - 77k-D and Ak 	Ak, 

then the following is true. 

Theorem 2.3.5. 	1. The Ak decompose the identity operator in the following 

sense: 

A) = 2D for each e 0. 
kEZ 

There exists a natural number N 1 such that for any E Rd, the number 

of k E Z for which Ak() 0 is at most N. 

If either k5çk_D'i ~! 2 or I 6çk+DeI 	1 then )'k() = 0. 

For all pE(1,00), 

1/2I 

(kc Z 

lAk * f12 
 

For any Schwartz function f we have 

sup IAkf(x,w) 	SUP Ak (
jEZ 

A +k *f (x, LL') <Bf(x,w), 
kEZ 	 kEZ 

where 

Bf(x,w) 	sup lAk (Aj+k  
kEZ 

We claim that it suffices to prove the following inequalities for each Schwartz 

function f and each j E Z. 

IIBj fII LP(Lq ) < IIf 11p for each (l/p, 1/q) E 	 (2.24) 

jBjfIL2(Lq) < c 	11f12 for some a(q) > 0 and q < qd(2). (2.25) 

In fact, interpolation between (2.24) and (2.25) implies that 

IBj fII LP(Lq ) $ 
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for each p E (2, (d + 1)/2) and q E [1, q,j(p)). Hence, for such p and q, 

IMfLP(Lq) 	IBj fl piq + J I MHLfl lp < 11f jp + 	2 '' t IIfM 	IIfII. 
jEZ 	 jE7Z 

We can now use this estimate and interpolation to achieve the same conclusion 

when po = (d + 1)/2 and qo E [1, q(p)). Indeed, fix such a Po and qo and 

interpolate the above estimate for p sufficiently close to Po and an appropriate 

q e [1,qd(p)), with the trivial estimate IIMfIILOOLQO 	IIfl 
To wrap things up, it only remains to prove (2.24) and (2.25). To see (2.24), 

first fix (l/p, 1/q) 	° with p < q, and observe the following trivial majorisations: 

p/q 

Ijf L Y~p(Lq) 	f~,d (f 
IA(Aj+ * f)(X,W) lq 

	dx 
kEZ 

p/q 

lad (Ld-1 	
f)(X , W) lq 
	dx. 

kEZ 

Now (2.24) follows from Lemma 2.3.2, the fact that the 1P(Z) norm is dominated 

by the 12(Z) norm, and Theorem 2.3.5(4) in the following .way: 

jBjfIp(Lq) 	
fd 

IAj+k * f(x)Idx 
kE7Z R 

p/2 

(1j) 	dxIIf. fRd  

To show (2.25), we take the same approach that we used to prove (2.11) and also 

Theorem 2.3.5(3) to get 

I[BjfIl2(Lq) 	I JRd 
IAj+k()IIf( 	min(Iöl2, Iöçkl 	) d 

kEZ 

f I1(e)I2 min(I8keI2,k 2E >i: )d, 
kEZ k 

where 

Ak := 	jd: Sçi+k+DI > 1 and Sçi+kD <2}. 

It is easy to verify that (2.25) follows from (2.6), (2.7), and Theorem 2.3.5(2). 

This completes the proof of Theorem 2.1.1. 

Remark. The ensemble (Xt,X,Y,irx,iry) is not nondegenerate through order k 

for any k > 2, in the setup of (2.21). Using this, and the fact from [31] that 

Theorem 2.19 is essentially sharp, means that a different approach is needed to 

improve upon Theorem 2.1.1. 
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2.4 	Proof of Theorem 2.1.2 (2) 

In the isotropic case, the schema in [19] is to deduce the same estimates for H from 

those known for M (see Lemma 4.1 on pages 197-198). The argument here relies 

on the fact that H arises from the classical one-dimensional Hubert transform 

in the way described in (1.11). As we remarked on page 12, this approach is 

not available in a nonisotropic setting. However, as an aside, the point at which 

the argument breaks down throws up an interesting question involving weighted 

inequalities for operators along curves. Specifically, for fixed w E Sd_i, what 

values of r E (1, oo) and s E (0, oo) is it true that 

fRd 
Hf(x, w)I r Mf(x, w) dx < C(r, s, w) fRd 

lf(x)ITMf(x,w) 8  dx 

holds for some finite constant C(r, s, w), and if so, how does C(r, s, w) depend on 

We prove Theorem 2.1.2(2) using a similar technique to Step 1 for the maximal 

operator. Fix q E (2,qd (2.)) and choose.v e (0,1/2) as in (2.12). It suffices to 

prove 

Hf lI L2(L)  < 11fJ12 for q e (2,qd(2)), 

and by Sobolev embedding, it therefore suffices to prove 

IIHfL2(L) $ 11fJ12 for q E (2, qd(2)). 	 (2.26) 

But, by Plancherel's theorem, 

' 112 
IIHfII2(L) 	f II(e)IIlm(e, IL d, 

Rd 

where 

m(, w) :__p.v.fe, 	 (2.27) 

and therefore (2.26) follows if we can show 

SUP Ilm(, )IIL ;$ 1. 	 (2.28) 
ERd 

We shall make a dyadic splitting of the integral in (2.27) using the same o E 

(1, oo). So, for each k E Z, define 

dt  
mk(, w) 

:=IE[1,] 
eicstw 

t ,  

in such a way that 

m(, w) E 
kEZ IE[uk,uk+ 1 ] 	= 	LE[l,C] 

eStW  
fit 	 kEZ kEZ 
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We claim that, if E = 1/2(1/2 - v) then, for almost all , 

IImo(e,IL 	min(II,Ie). 	 (2.29) 

It follows from, mk(,.) = mQ(Sk, .), along with (2.6) and (2.7), that (2.29) 

implies (2.28). We prove (2.29) by showing that '(2.15) and (2.16) hold with m0 

replacing the m which appears in these equations (and not m defined in (2.27)), 

and interpolating. The estimates for small 	are again easy to verify. The 

estimates for large 	follow from Lemma 2.3.1 and the fact that 6t 	—8_i for 

negative t. 

2.5 	Proof of Lemma 2.3.1 

Firstly, choose C > a such that log 	:5 IIE for 	C. Since C 	1, it is 

clear that we only need to consider 	> C. 

We shall handle the cases d > 3 and d = 2 separately. In the former case we 

make use of the following well-known estimate on the Fourier transform of surface 

measure dw on Sd_i: 
' 	

2()j 	min(1, 177 1_(d_1)/2). 	 (2.30) 

The decay exponent in (2.30) is sharp and we shall see that this is the reason for 

our dimensional dichotomy. 

So firstly, suppose d > 3. 'We write, 

2 o.  

Jsd-~ 	
dw

= JJ
dw((6 -S')e)W(j) (t) 'TJ(ew)(s) 

 i 	 1 1 

in order to capitalise on the decay exponent in (2.30). Thus, using (2.30) and 

also (2.17), we get 

a 	 2 

JSd-1 f W (w)(t)ettStw dt dw 61 
2aI 	

ldtds 
00-8)II<1 

+Ij2a 
ft)[1]2 I(6 

- 5*)1_(d_1)/2 dtds 
1<(t—s)It 

2a(I + II). 

Clearly I is comparable to the measure of a rectangle in Il2 with sidelengths f' 
and 1. Hence I 	, and the contribution from this term is suitably under 

control. 

We claim that for all 	> C, and all (s, t) e [1,a]2 with t> s we have, 

iiç* 
- 

8) 	(t - s)eI. 	 (2.31) 
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Firstly we complete the proof of Lemma 2.3.1 for d > 3 equipped with (2.31). We 

may as well suppose' (a - l) > 1, otherwise there is no II term. If d > 4 then 

a a 

	

II 	—(d-1)/2 
1 1+ 	(t 

- s)_(d_1)/2 dtds 

< 	1—(d-1)/2 
/ 	

(d-3)/2 ds 
J1 

whilst if d = 3, 
a a 

" 	i-' I f (t - s)' dtds 	 log ds < I 1+2  

Notice that the estimate for I also holds when d = 2. However, a simple com-

putation shows that when d = 2 the best one can hope from the term II is the 

weaker estimate 1I_1/'2. We shall therefore use an alternative argument when 

d = 2 which instead capitalises on the decay from the t-integral for fixed w. Be-

fore moving on to this case, we prove our claim in (2.31). For this, it clearly 

suffices to prove that for all (s, t) E [1, a]2  with t > s, 

(t - s). 	 (2.32) 

So we fix (s, t) E [1,a]2  with t> s and by writing 

it - = 6(8 - I), 

we seek to get a bound on the norm of the inverse of S,'3  I. Putting u = t/s 

for notational convenience, we have u e [1, a], and 

00 

= 

	

(logu)P (i + 	
(logu)a 

	

Setting B(u) := - 	2(j!) 1(1ogu)i'P', then, as long as a < 2, we have 

U - 1)(logv)i2i 	 i - 1) (log  2)i 2  
= 	 P 

j-2  
=: C<oo, 

for each v e (1, a). Hence, if we choose a E (1, min(2, 1 + (2C)')) then the 

mean value theorem implies, IIB(u)II < Cp(u —1) 1/2. This implies I - B(u) 

	

is invertible and moreover (I - B(u))II 	(1 - IIB(u)II)-' < 2. Whence, 

(o - I)h11 	 - B(u))'II 5 (u - 1) 
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Therefore, 

(5 - \ 	II (5u - 'Y' IIII51/sII 	(u - 1)—i 	(t - s) 1  
t 	'-' 

A 
s) 1I 	

, 

which proves (2.32) and consequently completes the proof of Lemma 2.3.1 in the 

case d > 3. 

Ford = 2, first write w E S1  as (cos 0, sin 0) for 0 e (0,27r). We claim that for 

all s e (O, log a),and all (,0) ER2  \ {O} x (0, 2-7r) with 

e. (cos 0, sin 0)1 > 1, 

the following is true: 

I8 

	 2 
eetP0,si1b0) dt 	$ 	

1 	
. 	 (2.33) 

l. (cos O,sm0)l 

To see how this would complete the proof of Lemma 2.3.1 in the case d = 2, first 

note that 

I 	dt 
1 

= 	I
log a 

etee8P (cos 0fb)e8 IF (w)(e8) ds 
0 

log 
	

d (I8 

6 jetP (cos 9,sin6) dt) e8 (,)(e8 ) ds =H 
log a 

= a()(0) I 
	

O,sin dt 
0 

log 1 j8 - J 	j e t (Cos O,sinO) dt) e8 (W()(e8 ) + e8 )(e8)) ds. 
0 

Then (2.17) and (2.33) imply 

f
or 	

9)I 
,w)(t)e t)  dt 	

e.(cos9,sin 	
(2.34) 

A straightforward computation now gives 

L<I.(cos O,sinO)I 1 	,t)&t (cos e8mo) dt dO < 	_l+2alg l 
	11_1+20+2 

Since we also have the trivial estimate 

4.(cosO,sinO)j<1 	
e8O,8mnO) dt dO < f 	1 dO < 

1 	 (cos  
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the proof of Lemma 2.3.1 will be complete once we prove (2.33). We shall ac-

complish this by fixing and 0, and invoking van der Corput's lemma, with the 

phase function e defined by 

e(t) := e.et' (cos 0, sin 0) for tE [0, S]. 

Our first observation is an explicit formula for the exponential of a general 2 by 

2 matrix. Let 
a2  

\\ a3 	a4  

and let A := ((ai  - a4) 2  + 4a2a3)1/2. A direct computation gives: 

I -  

e
tp = e 14)t 	cosh(T) + (ai  - a4) 

s1nh(— 2 ) 	 sinh 
2a2 	2 

I 	 sinh 	 sinh( 2 ) 

	

2a 2 	 cosh(T)—(al—a4)_ 

We consider the cases where A is nonzero and zero separately, and firstly suppose 

the former. Then we may write 

e(t) = eCt(Asinh(t/2) + Bcosh(t/2)), where 

A(,0) := 	1((ai - a4 ) 1 cos0 + 2a21  sin6+ 2a3e2coso - (ai - a4)e2 sinG), 

B(,0) := .(cos0,sin0), 

C := (ai + a4)/2. 

We claim that the following estimates hold on the first and second derivatives of 

E): if i := det P/(2(C2  + A2/4)) then, for all t E [0, s], 

2CB(e,0)I 	(1 +) JAI IA(,0)I = 	e"(t)j > IB(,0)L 	(2.35) 

2CIB(e,0)I 	+ ,3) IAI 	Ie'(t) I > I B(e,o)I. 	(2.36) 

We shall also show that e" has < 1 zeros on [0, log a]. This allows us to split 

the integral in (2.33) into < 1 pieces where e' is monotone and thus, (4.39) and 

(4.38) imply (2.33) via van der Corput's lemma. 

To begin our proof of the claim, first recall that P has real entries and the 

eigenvalues of P have positive real part. Therefore the following hold: 

The eigenvalues of P are C + /2 and C > 0. 

C2 _2/4 = a1a4 - a2a3 = detP>0. 

Thus, 0 is well defined and is certainly positive. Now, writing A = A(, 0) and 

B=B(,0),wehave 

e'(t) = e't ((CA + B/2) sinh(t/2) + (CB ± A/2) cosh(t/2)), and 

= eC1((C2A ± 1CB + 2A/4) sinh(Lt/2) 

+(C2B +CA + A2 B14) cosh(t/2)). 
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Let us first look at what happens when t = 0, and begin with the case 2CIBI < 

(1 + /3)IIIA. Then, 

= IC2B + ACA + L 2B/4 

> CA - (C2 + &/4)IBI 

~ CjA - (C2 + 2/4) (1+ )IIIA 
2C 

IIA 
= 	2C (2C

2 - (C2 + 2 /4)(1+ 0)), 

and our choice of i ensures 

JAI AIdetP > B 	 (2.37) 
4C 

For 2CjBI~!(1+/3)LIjAIwehave 

e'(o)I = ICB +AA/21 ~! CB - 	 AI/2 > IB/(1 + ) > IBI. 	(2.38) 

Next, note that there exists some to 1, such that 

Icosh(t/2)I ~! 1/2 and Isinh(t/2)I 	forte [0, to]. 

If 2CB 	(1 +/3)IIIAI, then (2.37) implies there is a constant c 1, such that 

e"(o)I > 4cjAj 	+ ICB + A2 A/4 ~! 4tjAj 	+ ZCB + A2 A/41, 

as long as a is chosen such that log a < c. Therefore, if we also ensure log a < to, 

then (2.37) implies 

Ie"(t)I ~: 1e11(0)I/2 - IIIC2A + LCB + 2A/4It > Ie"(0)I/4 > IBI, 

which is (4.39). Similarly, if we suppose 2CIBI ~: (1 +,3) 1 A A 1 ,  then there exists 

a constant c' > 0 such that 

> 4c'[CA+ JIB/2 I, 

and this, (2.38), and a choice of a with log  < c', imply 

> e'(0)/2 - AjjCA + AB/21t > Ie'(0)I/4 > JB I . 

Thus, we have proved (4.39) and (4.38). It remains to show that the number of 

zeros of e" on [0, log a] is < 1. To see this, if we write, 

e(Asinh(t/2) + Bcosh(t/2)), 

where 
(A\(C2+2/4 	

AC 
(A\ 

)k\ AC 



then we must have that (A, E) (0, 0). Otherwise, we would be able .to use the 

fact that B 0 to deduce the following nonsense, 

0 = (C2 + A2/4)2 
- z 2C2 = (C2 - 2/4)2 

= (det P)2 > 0. 

Observe that if e"(t) = 0 then (A + 	+ i3 - A = 0, and consequently, 

A + B 0. Letting z := (A - .ä)(Ã + E)-', and for argument's sake, arg(z) E 

[0, 21r), we must have At = log lzl + i(arg(z) + 2kir) for some k E Z. The fact 

that Itl < 1 means of course Iki < 1 and therefore the number of possible t such 

that e"(t) = 0 is < 1. This completes the proof of (2.33) when L 	0. 

Suppose finally that A = 0, so that the phase function e simplifies to e(t) = 

eCt(B + At), where 

A(e, 8) 	((ai - a4)6 cos 0)/2 + a21 sine + a32 cos 0 - ((ai - a4)e2 sin 0)/2, 

and B(, 0) and C are unchanged. One can check that, modulo a suitable choice 

of a, le"(t)l > IB(e, 0)1 if 31A(, 0)1 ~: 2ClB(, 0)1, and le'(t)I > JB(~,0)1 if 

31A(,0)I < 2ClB(,0)1. It is straightforward to check that e" has at most one 

zero in [0, log a]. This concludes our proof of Lemma 2.3.1. 

Remark. The proof of 'Lemma 2.3.1 shows that if d > 4 and P is a real d by 

d matrix whose eigenvalues have positive real part, then there exists a number 

a E (1) oc) such that, 

e 6 dt dw Il'. 	 (2.39) fsd-1 f  
The loss of an epsilon power in the statement of Lemma 2.3.1 arose from our 

arguments for d = 2 and d = 3. We claim that in the case of parabolic dilations 

in the plane there is no loss of epsilon. To see this, fix 0 E (0, 27r) and with 

much larger than 1, and let e(t) := t cos 0 + Gt2 sin 0 for t e [1, 2] (we are 

thus choosing or = 2, but the claim actually holds for any a E (1, oo) ). We shall 

apply van der Corput's lemma on the first and second derivatives of e; clearly 

e' 15 monotone. 

Split the 0-integral over [0, 27r] into disjoint subintervals I, 12, and 13, where 

11 	10 : Iill COS 0l 	l2Il sin 0l} 

12 	:= f  : IiII COS 0l 	8l2II Sin 0I}, 

and 13 is of course the complement of 11 U 12. Notice that for 8 E 11 we have 

Ie'(t)I ~: 	sin 01 for all t e [1,2] and therefore van der Corput's lemma implies 

2 	I 

dt < 1 	1 < 	 (2.40) 
J1 	 I 	l2II sin 0l 	IeiIIcosOr 
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When I21 > liI, the stronger estimate in (2.40) implies 

2 	 2 

IC —2 
i2

1-21 

	

fOEI 	sin 812 dO + 
JOEl 	

1 dO 

	

f11 1 
e (t) dt dO < 	

I2IIsin0I>1 1~211 Si- 01:51 
< 16 1 —1 " kc I —i 

On the other hand, when 	~! 161 one can perform a similar argument to the 

one above using the weaker estimate in (2.40). This takes care of the contribution 

from I. For 12, .an analogous argument works; we spare the reader the details. 

For 0 E 13, observe that Ie"(t)I i-' I2II sin 0l 	IiIl cos 0I for allt E [1,2]. 

Also notice that if 12I ~! 	then I cos ol 	1 and 1211 sin 01 > 1. Thus, when 

162 1 ~! Ii I van der Corput's lemma implies 

r 	,.2 	2 

	

J J 
edt dO 	I2L'f

OE13  
Isin 0ld0 	I21 	II'. 

9E13 1  

A similar argument works for the contribution from 13 if Ii I 	16 I; this completes 

the proof of our claim. It may be of interest to establish whether (2.39) holds for 

all dilations given by (1.26) and all d > 2. 

2.6 Some applications 

Variable kernel singular integrals 

Recall that 'r is the trace of P, and 3 is defined via the change of variables in 

(2.3). Suppose K, defined on Rd x Rd, satisfies the following conditions: 

(Ki). K(x,.) is homogeneous of degree —r with respect to the dilations St for 

positive t; 

K(x, .)3, defined on Sd_i, is an odd function; 

5UPXERd (fsd_1 
IK(X, W )IrdW )VT <do. 

(Note that the above conditions are not precisely those that appear in Chapter 

1, but we reuse the notation in order to maintain a correspondence). Then the 

following theorem holds via the estimates for H given by Theorem 2.1.2 and the 

method of rotations. 

Theorem 2.6.1. The operator T defined in (1.13) is bounded on LP provided 

p e (1,2] and r e ((1 - 1/d)p', oo); or 

p e (2,00) and rE (p(d— 1)/(p(d— 1)— (d-2)),00). 
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Also known in this context is the work of Fabes and Rivière in [26] where a 

weaker cancellation condition and a substantially stronger smoothness condition 

are assumed. Specifically, it is shown that T is bounded on L1' for all p E (1, oo) 

under the above homogeneity condition (Ki) and the following conditions: 

fsd-1 K(x,w)Z(w) dw = 0; 

K(x,.) belongs to C°°( 	\ {01) and SUPXERd  IIDaK(x, •)IIL(sd-1) <00. 

Fabes and Rivière proved this result using a spherical harmonic expansion of the 

kernel, in the spirit of the work of Calderón and Zygmund in [7] (see also [8]). 

Our approach in the nonisotropic setting is to follow [19]; recall our discussion at 

the end of Chapter 1, where we highlighted the success of the method of rotations 

in handling kernels satisfying the weak smoothness condition (K3) above. Notice 

that for p e (1, 21, Theorem 2.6.1 shows that the same outcome holds for isotropic 

and nonisotropic dilations. It would be nice to be able to show that one can prove 

that Theorem 2.6.1 holds with (K2) replaced with (K2'). The standard approach 

to handle the even case with isotropic dilations is to make use of the Riesz kernels. 

At present, we are working on an analogous argument in our nonisotropic setting. 

We include our next theorem as a potential first step towards this. Indeed, in 

the isotropic case, the result is crucial to the standard argument for handling 

even kernels (see [8] and [27]); a nonisotropic version appears in [55] when P is a 

diagonal matrix. 

Theorem 2.6.2. For E > 0, define K(x, y) := _TN(x, y)W(5_1 (y)), where 

N(x,.) is homogeneous of degree —r with respect to the dilations öt  for 

positive t; 

5UPxERd (fsd_1 IN(x,w)!rdw) 
1/r

<oo; 

S. W is a nonnegative and nonincreasing L1  function, radial with respect to 0,- 

that 

;

that is, 'I' = (p(.)) for some nonnegative and nonincreasing function 0 on 

[0,00). 

Then the operator T*  defined by 

T*f(x) :=supJRd K(x,y)f(x—y)dy 
>O  

is bounded on LP provided that either (1) or (2) of Theorem 2.6.1 holds. 
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Proof. Passing to nonisotropic polar coordinates and using the homogeneity of N 

we get 

JRd 
K(x,y)f(y)dy 	f 	N(x,w) 

d—i 	 o 
(2.41) 

for each E > 0. We claim that, for fixed w E  Sd_i, the term against which I N(x, w)I 
integrates in (2.41) is < Mf(x,w). Given the claim, the proof of Theorem 2.6.2 

follows from Holder's inequality and condition (2) of this theorem. 

To prove the claim, first write 

too 
—T J 	f,(_lt)tT_i jf(x8w)l dt J JO 

tT_h jf(x_6tw)Idsdt (2.42) 
00  

For fixed positive s, the set {t E (0, oo) : s <E_Tb(E_lt)} is some interval (0, t(s)] 

because 0 is nonincreasing. If we suppose that r e [1, oc), by changing the order 

of integration, the quantity in (2.42) is 

ft(s)T.t(s)_l f 
	

If (x - 5w)j dtds < Mf(x,w) f 
f 

t 

(2.43) 

By changing back the order of integration and a change of variables, the right 

hand side of (2.43) is $ I IWIkMf(x,w), which completes the proof of our claim 

when T e [1, oc). When r E (0, 1), for each positive s we have 

ft(s) 	 c 

 Jo 

t(s) 1V_i 

f(x_Stw)ItT_ldt = I 	I 	f(x - 5tw)dudt 
Jo  

= L
t(I)T-1 t(s) 

L If(x-6tw)Idtdu 

100  

1 	 f(x-6tw)dtdu 
t(s)T_ I 

t(s)TMf(x,w). 

Therefore, the right hand side of (2.42) is < the right hand side of (2.43). From 

this point, we finish the proof of our claim for r E (0, 1) as we did for r E 

[1,00). 

A nonisotropic Kakeya maximal function 

For a bounded subset F of 	define its diameter with respect to P, diamp(F), 

by 

diamp(F) :=sup{p(x—y) : x,y E F}, 
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and its eccentricity with respect to P, F-p(F), by 

diamp(F) 
IFI 

We also wish to introduce a notion of star-shaped in our nonisotropic context, 

and in particular with respect to the origin. We shall say that F is star-shaped 

with respect to the origin and the matrix P if 

	

F = 
{6'W : w G 5di and 0 < r < R(w)J, 	 (2.44) 

for some nonnegative measurable function R on Sd_i. 

Remarks. 	1. When P is the identity matrix, the above reduce to the usual 

definitions of diameter, eccentricity, and star-shapeliness of bounded sets in 

Euclidean space. 

Suppose F is star-shaped with respect to the origin and P. Using (2.5), 

sup{ (x) : x  F} :!~ diamp(F) Cpsup{p(x) : x  F}, 

and therefore, using the notation of (2.44), homogeneity, and (??), 

sup{R(w) : w E 5_11 <diamp(F) <Cpsup{R(w) : w E 5d_1}. (2.45) 

Eccentricity with respect to P is invariant under the action of the dilations 

8,. One can easily verify the following: 

EP(6rF) 
- [rdiamp(F)] 

	

= E(F). 	 (2.46) 
- det( r)F 

Example 2.6.3. Suppose d = 2 and P = diag(1, 2), so that we have parabolic 

dilations. If a point (x0 , Yo) E JR2 lies in F c R2, and x0 > 0, then in order to 

satisfy (2.44) and be star-shaped with respect to the origin and parabolic dilations, 

F must contain the section of the parabola y = (y0/x)x2 for x E [0, x0]. 

For a positive number N, let aN denote the family of all subsets of IRd which 

are star-shaped with respect to the origin and P, and have eccentricity with 

respect to P no greater than N. Define the following maximal operator, 

MNf(x):= sup F'
fF

If(x_Y)IdY. 
FEN  

With isotropic dilations, I)' estimates on MaN were established in Corollary 

3.5 of [19]. These estimates are easily shown to imply that the conjecture in 

(1.30) concerning the standard Kakeya maximal operator is true for all p 
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(1, max(2, (d + 1)/2)]. We shall use Theorem 2. 1.1 to prove analogous estimates 

in the nonisotropic setting. Following [19], for fixed p, we shall need to know the 

dependence on q of the constant CP,d,p,q  in the following estimate from Theorem 

2.1.1: 

MfIlLv(Lq) 	Cp,d,p,q IIf 11 p for q < q(p). 

To simplify the notation in the remainder of this section, use introduce the fol-

lowing notation. 

Notation. For positive numbers A andB, write A B for A < GB, where C 

depends only on the matrix P and the ambient dimension d. Also write A B 

if AB A. 

We are most interested in the endpoint Po := max(2, (d+ 1)/2) since all of our 

estimates on M in Theorem 2.1.1 follow from our sharp estimates at this point. 

Recall the theorem of Gressman on page 29 from which we were able to deduce 

the estimates at po  and for q < d(Po) when d > 4. Gressman proves this theorem 

in [31] by showing that restricted weak type estimates hold at the endpoints 

in (2.20). In our application, this set of points reduced to the singleton set 

containing (l/po,  1/qd (po)'), and therefore a restricted weak type estimate holds 

at this point. After unravelling the duality, one can interpolate from the resulting 

restricted weak type (po, q(po)) estimate using Marcinkiewicz interpolation (see, 

for example, [63]) to get strong type estimates away from the endpoint (these are 

essentially the estimates in the statement of Lemma 2.3.2). Moreover, the blow 

up in the constant as we approach the end-point can be computed. As in [19], it 

follows from our proof of Theorem 2.1.1 that there exists ..\ 1 such that 

71 

	
llfII 	 (2.47) IIMfMLP0(Lq) 	

-d(P0) 

for all q < qd(po). Using this fact, we can prove the following theorem. 

Theorem 2.6.4. Fix a large positive number N (say no less than 100). Then, 

for each d > 2, one has the following estimate, 

llMNf 11p0 	(log N)AN1  'ld(PO) 
11f11, 	 (2.48) 

where Po := max(2, (d + 1)/2). 

Proof. For now, let q be any element of (1, oo). Using the fact that F = {6w 

w E Sd_i and 0 < r < R(w)j, we use nonisotropic polar coordinates to get 

fF fsd- 1 J0
Fl_i 	lf(x - ) ldy 	Fl_iIlf(x - 8rW )l 1 T_i drdw. 
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By using arguments from the proof of Theorem 2.6.2 one can show 

pR(w) 

J if (x - 8rW)TT_l dr Mf(x,w)R(w)T . 

0 

Note that R(w) = R(w)l/'R(w)h/ $ R(w)h/'diamp(F)lI, by (2.45). Therefore, 

using Holder's inequality, and the hypothesis that E(F) N, 

1/q' 
FI 1 ff(x_y)Idy 	Fdiamp(F)Tk (fSdlTdw) 	IIMf()q 

)M'q 

N1jMf(x,)IIq. 

Therefore, 

1NflIPO 	N"lq IIJV[fILPo(Lq). 

If we choose q E (1, d (p0 )) such that 

1 	1_i 

- q(po) - log N' 

	

then the desired estimate in (2.48) follows from (2.47). 	 El 

Maximal operators related to the operator MN  concerning averages over 

curved sets have been studied by.Wisewell in [68] and [69]. Minicozzi and Sogge 

[46] and Sogge [59] consider the quite different problem of geodesics in curved 

space. The estimate at (d + 1)/2 (appearing in Theorem 2.6.4) was achieved in 

[69] for a very broad class of curves. Rather than the Fourier transform based 

proof that we used to prove Theorem 2.6.4, Wisewell proves a (d + 1)/2 bound 

using more modern geometric techniques; in particular the bush argument of 

Bourgain. For the curves naturally associated to the dilations S, considered in 

this chapter, it is an interesting question as to whether the (d + 1)/2 estimate for 

the maximal operator may be extended. This question was studied in some depth 

in [68] and [69] for parabolic curves in Rd.  It wasshown that on the one hand 

there exist such curves for which the estimate (d + 1)/2 is (in some sense) best 

possible. Nevertheless, some necessary conditions on the parabolic curve were 

given in [69] for which the (d+ 1)/2 bound can be extended. In fact, using recent 

arguments of Wolff and Katz, Wisewell proves a (d + 2)/2 maximal operator es-

timate. Furthermore, using arithmetic methods, progress beyond (d + 1)/2 was 

made on the question of the Minkowski dimension of certain related null sets. 

For future work, we hope to fully address the question of whether Theorem 

2.6.4 can be improved for certain curves naturally associated to the dilations 6,. 

Moreover, we hope to investigate whether some of the more recent techniques 
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developed for tackling Kakeya type maximal operators can form a basis for an 

argument which extends the range of p in the mixed-norm estimates for the 

isotropic directional maximal operator, M, in Theorem 1.2.1. Any progress on 

this problem would naturally beg the question of whether similar progress could 

be made in the nonisotropic setting governed by the dilations Jt  considered in 

this chapter; that is to say, extend the range of p in Theorem 2.1.1. 



Chapter 3 

L-Boundedness of the Hubert 
Transform and Maximal 

Operator Along a Class of 
Nonconvex Curves 

3.1 Introduction 

Recall the definitions of Hr and Mr from (1.18) and (1.19). The following theorem 
concerning a class of nonconvex curves F : R - R2 is the main result that we 

prove in this chapter. 

Theorem 3.1.1. Suppose P is a real polynomial and 'y is convex on [0, oo), twice 

differentiable, either even or odd, y(0) = 0, and 'y'(0) ~ 0. If F(t) = (t, P('y(t))), 

p E (1, oo), and either (1) P'(0) is zero, or (2) P'(0) is nonzero and 'y' E C1, 
then 

Hr f p CIf, and Mrfp :~ Cfp. 

Moreover the constant C depends only on p, 'y, and the degree of P. 

Remarks. 	1. By taking 'y(t) = t we recover a special case of Theorem 1.1.1 

since we can then suppose P'(0) = 0. Our proof does not require the 'lifting' 

technique used in [60] to prove Theorem 1.1.1. Also, taking P(s) = s we 

recover Theorem 1.1.6(1), Theorem 1.1.7(1), and the sufficiency part of 

Theorem 1.1.4. 

2. Some examples of nonconvex curves were studied in [71], and later these 
were generalised somewhat through a technical theorem in [66]. Although 
the class of curves in Theorem 3.1.1 falls within the scope of [66], the bounds 
obtained from the technical theorem in [66] depend on the coefficients of P. 

Furthermore, our proof is more direct in this setting. 
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We shall see that ideas in our proof of Theorem 3.1.1 can be used for certain 

hypersurfaces instead of curves. Specifically, if d > 2 and F : Rd ,S Rd+l param-

eterises a hypersurface, then, ignoring a slight abuse of notation, we associate to 

this the corresponding Hubert transform and maximal operator by 

Hrf(x) := P.V. 
fRd 

f(x - F(y))K(y) dy, 

Mrf(x) := sup h_d 	f(x - F(y))dy, 
h>O 	fivIE(O,h) 

where K : 'R'1 -p R is a Calderón-Zygmund kernel; that is K is homogeneous of 

degree —d with respect to isotropic dilations, K is of class C on Rd \ {0}, and 

f l y IE(a,b) 
K(y) dy = 0 for each 0 < a < b. Again, it is clear that a dyadic version 

of the maximal operator, in analogue with (1.20), is equivalent to M. Then we 

have the following theorem. 

Theorem 3.1.2. Suppose P is a real polynomial and is convex on [0, oo), twice 

differentiable, either even or odd, 7(0) = 0, and 'y'(0) >_ 0. If F(y) = (y, P('y(jyl))) 

and pe(1,00) then 

IIHrfII 	 and JjMrfjI !~ ClIf 11p. 

Moreover the constant C depends only on p, d, 'y, and the degree of P. 

Remark. The case P(s) = s was proved in [37]. Notice how in this case the 

convexity of 'y suffices for L' boundedness, which is in stark contrast to the case 

d = 1 that we alluded to earlier. 

Notation. Write A < B for A < GB, where C is an absolute constant which may 

depend on p, -y, d, and the degree of P but is independent of the coefficients of 

P. 

Overview. In the following section we make a suitable decomposition of our op-

erators based on key results concerning polynomials of one variable. The next 

section contains the fundamental results for the proof of Theorem 3.1.1. In the 

last section we prove Theorem 3.1.2. Both Theorem 3.1.1 and Theorem 3.1.2 are 

to appear in [4]. 

3.2 Preliminaries and reductions 

Let P(s) = > 	p1 s' be a real polynomial of degree n, where n > 2 (it is without 

loss of generality that we suppose P(0) = 0). With the model case that P is a 

monomial in mind, we let 73 denote the jth power of and note that, using only 



the convexity of 'y, it is simple to verify that (.y)' E e2  if j > 2. It will be a 

continuing theme throughout this chapter that the cases j > 2 and j = 1 will need 

separate considerations; the latter being the more difficult. If D is the doubling 

constant for (yi)1  then we consider the dyadic operator M1  with A := max{ 3, D} 

(recall the role of A in the dyadic operator M1  defined in (1.20)). 

We now discuss the decomposition of (0, oo) crucial to the proof of Theo-

rem 3.1.1. The ideas here originated from work in [10] (see also [29]). First 

let z1,. . . ,z be the roots of P ordered as 0 = Izil 	z2 j 	... 	z. Our 

decomposition will depend on a constant A which depends only on the de-

gree of P and whose value we fix later. Firstly, we include G1  = (0, A'1z21]. 
Then, for j E {2,... ,m - 11, if the interval (AIzI,A'z +i ] is nonempty this 

is also included and called C3. Finally, we include G = [Al z, oc). Now let 

:= {1} U {n} U U0{i}• Observe that (0, oo) \ UE3 C3  can be written as 

Uke Dk where the Dk are disjoint and, moreover, each Dk = (ak, 13k) enjoys the 

property that ak - I3k The notation is suggestive since the Dk resemble dyadic 

intervals and, as we are thinking of A as 'large', the G3  are 'long' intervals, or 

gaps of P. Our decomposition is then: 

(°'°°) = UC)u U7 	Dk. 	 (3.1) 

	

jE3 	 kE. 

We of course then get the corresponding decomposition of R by taking symmetric 

versions of the intervals in the above decomposition. If I is a subset of (0, oc) 

then define H1  and M1  by 

Hj f(x) := 
f 	

f(x - F(t)) 
dt 

, 	 (3.2) 

Mi f(x) := supA 	f 	 f(x—F(t))dt. 	(3.3) 
ke7Z 

It is easy to see that each HD, and MDk  are LP bounded. After an application 

of Minkowski's inequality, this will follow if '[ 1(/3k) $ 'y '(ak). In fact, (1.22) 

implies 

	

y'(I3k) 	-rC@k) dt - 
J.'k 

I3k 	 1 	 i3i 	=13k 
log-, log -1 =f 	

-- 	 ds<
(ak) 	

1(k) 	 r'(s)7'(1(s)) 	- 1"'k s 	ak 

and therefore, 
'r'(/ 3k) < Ik <1. - 

fl'i. 
(3.4) 

Along with the fact that the cardinalities of J  and . are < 1, Theorem 3.1.1 will 

follow once we verify that HG, and M 3  are IY bounded (with bounds independent 
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of the coefficients of P), for each j e 3. So for the rest of this chapter, we fix 

j E 3, and for k E Z we define 'k := [1, A] fl A_ky)(Gj), and measures Hk and 

ILk by: 

lk 

(Hk, ) := f 

	

IEIkt, p((Akt))) dt (, 0) := 	(Ak p( y(Akt)))dt, 

for 0 G S(l2). In order to analyse HG3 and M 3 , we need to understand the 

behaviour of P on C3. The following lemma is essentially contained in [10] and 

[29]. 

Lemma 3.2.1. There exists a number Cn > 1 such that for any A > C, 

1. 1P(s)i 	Ipj IjsIj for all j E,3 and Isl E 03- 1- 

P(s)/P(s) > 0 for all j e 3 and s E C; P'(s)/P(s) < 0 for all j E 3 and 

—s E G; 

S. is! iP'(s)i/iP(s)i 	1 for all j E 3 and Isl E C; 

. P"(s)/P(s) > 0 and s2P"(s)/P(s) r' 1 for all j C3 \ {1} and Isl E Cj. 

Proof. For (1)-(3) see Lemma 2.1 in [29] and Lemma 2.5 of [10]. For (4), let 

{1,... ,n} and define S := {(l1,12) E Nn x N : 11 <12 and 12 	j}and 

S2 := f(11, 12) E Nn x N :11<12 and 12 >j+ 11. Then write 

=2 E
(s—z11)(s—z12) P(s) 	

11<12 

1 
=2 

	

	(s_z11)(s_z12)+2 
(ii ,12)eSi 

=: I + H. 

1 
(s—z11 )(s—zj2 ) 

(lj,12)ES2 

Let 	[z] denote the real part of z and suppose A > 10. Then, for (li , 12) E Si, 

1 	1 	R[(s - z11 )(s - z12)] 
1= 

L( 	- zj1 )(s - z12 )j 	is - z1112Is - Z12 12 
- 	

2 
- IR[(z11 + z12 )]s + IR[z11 z12 ] 

Is - zi1l2is - Z12 12 
(1-2A—A 2) 1 

(1+A1)4 	2' 

where the last inequality follows because IZlk i < Aisi for k = 1,2. 

If 1 < j then !s — zii ~! (1—A)isi and if 1 > j+1 then is — zii ~! (A -1)isi ~ 
(1 - A')isi. Therefore, if (11, 12) E 82 then 

1 
	

1 

IS - Z11 is - z12 I - A(1_A_1)2 s2 
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If C7 is twice the cardinality of S1 and C' is twice the cardinality of S2 then 

P/1 (s)  
=[I]+ [II] 

P(s) 	[P(s)] 

"C' (1 - 2A - A 2) 	'-I 
' 

n
" 	" 1 

	

(1+A-')4 	A(1_A_1)2)S2 

It is now clear that there is some Cn > 1 for which the first assertion of (4) and 

the lower bound in the remaining assertion follow for A > C. The upper bound 

	

is easier and we leave the details to the reader. 	 Li 

By (the proof of) Lemma 3.2.1, we can choose A so that for all I sl E G, 

P(.$)I < 	 1 2pjsi 	and 	iIpIs 	
< IP'(s)l < 2jps 4. 	(3.5) 

In the light of Lemma 3.2.1 it is an appropriate moment to discuss our method 

of proof of the LP boundedness of H 3 and MGj , and hence Theorem 3.1.1. Firstly, 

P'(0) being zero is equivalent to C1 being empty. Heuristically Lemma 3.2.1 tells 

us that on C3 the curve (t,P('y(t))) behaves like (t, Ipjy(t)i). Of course, when 

j = 1 some stronger condition than convexity is necessary. When C1 is nonempty, 

under the assumption 7' e C1, we will be able to follow the proof in [13] or [22] to 

get LP bounds for our operators on C1. We stress here that, under the assumption 

h E e2 (or the stronger condition ' E 2), the method of proof in [9] fails to 

work for our operators on C1. Fundamental to the argument in [9] are dilation 

matrices and estimates on the Fourier transform of certain measures. However 

the fact that Lemma 3.2.1(4) does not hold for j = 1 means we are unable to 

achieve such estimates. For j ~! 2 either the approach in [13] (and also [221) or 

[9] is available to us because (73)' E e2. Therefore (yi)1 E C, and the h-function 

associated to 'y belongs to e2 (recall the definition of the h-function from page 

14). 

The following proposition, which can be found on page 384 of [12], lays down 

the bare essentials of a combination of ideas from [9], [13] and [22]. We use this 

to prove LP bounds for H 3 and MG,, ,and state it as follows: 

Proposition 3.2.2. [12] Suppose {Ak}kEz c CL(2) IR) satisfies 

A l AkM <a < 1. 	 (3.6) 

Suppose {Vk}kEZ is a family of measures satisfying 

A 1suppvk c B, 	 (3.7) 

for some fixed ball B, 

	

i(0) =0, 	 (3.8) 
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and 

< CA' for outside some cone Ak. 	(3.9) 

If Tç, is defined by Tkf() = Xk(e)f() and satisfies 

/ 	\1/2 

(Y 	iTkfi2) 	< Cf I I p  for 	(1,00), 	(.10) 
kEZ P 

then f 	11k * f is bounded on LP for  E (1, oo) with bound depending only 

ona,B,C and C. 

3.3 LP  bounds for MGj  and HG3  

For t> 0 let 
(t 	0 

(t) := 

Define the family of dilations {Ak }kEz  by Ak  := A(Xlc), where we recall that 

A = max{ 3, D} and D is the doubling constant for (.y)'. 

We begin with M 3  and create cancellation by introducing measures Uk defined 

by: 

	

: 	
k(0) 

 fAk+lB 
(x)dx, 

iAk+1BI 

where B := {x E R2  : lxi < 101. To complete the setup of Proposition 3.2.2, 

we define 11k := Ek(/ik - Uk), where {Ek} C 1-1, 11. Now (1.22) implies that 

'y(t)i/7(s)3  < t/s whenever s > t > 0, and therefore (3.6) holds with a = 2/A < 1. 

By (3.5), if t E 'k  then iP(y(Akt))i < 21piy(Akt)3 	21piy(Ak+. Thus, 

SUpp/lk = {(Akt,  P('y(Akt))) : t E Ik} C Ak+1B. 

Of course Uk is supported in Ak+1B, therefore so is 1/k  and we have (3.7). It is 

trivial to verify (3.8). To deal with (3.9) and (3.10) we define Ak to be the set of 

= (i, 2) in R2  satisfying: 

4ipi()'(') > 
16 1 > 1 

1e21 	
(3.11) 

The following lemma is well known. 

Lemma 3.3.1. [50] Let {rk}kZ  be a sequence of positive real numbers such that 

for some R> 1, r 	R'rjc  for all k E Z. Let M> 1 and define Ak to be the 

set of all E 2  satisfying M'rk 1611e21' < Mrk+1. If Tj = XAkf then 

\1/2 

I 
Tkfi 2  ) 

	

\kEz 	I P 

for all  E (1, 00). 
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It is immediate from Lemma 3.3.1 that we now have (3.10) (note there is no is- 

sue of the constant Ci,, depending on p3 because 	 > 

2). 	If we can prove (3.9) then we are done. Indeed, Mc3 f 	SUPk Ik * f I + 

(k I (/-Lk - ak) * 
f2)'/2. In LP norm, the latter term is < I I f I I p by using a stan-

dard Rademacher function argument and the fact that the conclusion of Propo-

sition 3.2.2 holds with bounds independent of 6, and the former term is 

by Proposition 2.2 of [9] and the fact that i(0) 	1. 

Before we prove (3.9) in Lemma 3.3.3 we need the following: 

Lemma 3.3.2. For all j E j \ {1}, the function 

t 	pU(\kt))/(Akt)2 + P'((t))y"(A't) 

is singled-signed on 

Proof. By (2) and (4) of Lemma 3.2.1, it must be the case that P' and P" have 

the same sign on G. The convexity of 'y implies 7"()t) is nonnegative for t E 'k 

and so the result follows. 	 E 

Lemma 3.3.3. If 	A j then IiI 	IAk L' 

Proof. Since 

I6()I 	Ixn(Ak+l)I 5 	 (3.12) 

we are left to find a decay estimate for 	Let 0(t) = )t 1 + P(y)'!t))e2 for 

t E 'k Suppose first that 	> 41 p 1( i)/( 	1 ) 2 . Then, by (3.5), 

O1(t) ~! AkIeiI 	IP'( 	kt))I/( kt)AkII ~ 
k2p (yi)/(kt)Akj 	> 

NowO"(t) = 	 6. For any 	1, Lemma 

3.3.2 implies that 0" is singled-signed on 'k and therefore we have that 0' is 

monotone on 'k We now invoke van der Corput's lemma for these 3 to get 
.< 	k)1 

$ 	where the last inequality follows from (1.22). The 

situation for j = 1 will be dealt with momentarily. 

If now 1~11 < 	
161 then we use (3.5) to get 

0'(t)  	 - 

~ 
	 ~ 

Another application of van der Corput's lemma and then (1.22) gives 

$ (I p Iy()i_ / p k )Ak L 2 I)_l 

which completes the proof for 3 1. 
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When j = 1 we are unable to divide 'k into a suitable number of intervals on 

which 6' is monotone and therefore we must argue in a slightly different way. Let 

us again begin with 	> 4 P1 F)k+l)Ie2 I. Of course we still get Io'(t)I 

fort E 'k• Using this and integration by parts (which is how the standard proof 

of van derCorput's lemma proceeds), 

(A) + f 
O"(t) dt. 

Ik 

Note 
f1k 10

11(t)/01(t)2 dt is less than 

If 
A2k Ipll(\kt))I/(Akt)2 dt 	 dt=:a1 +a2. 

For a we introduce (t) = ).!tje1 I + p1I7(kt)I 2 I for t E 'k• Note, '(t) 

19'(t) and, again using (3.5), we see that 

a $ Jk 
"(t) 
'(t)2 

dt < (kI)1 o 

For a2, first we write 

a2 	f1k 	

dt < (1 k )_1fG1 IP"(s)I ds. 

Suppose P" > 0 on [si , s21 c C1. Then .J'[81,82] IP"(s)I ds = P'(s2) - P'(si ) 	pu 
by Lemma 3.2.1. Similarly if P" < 0 on [.s1, s] 9 C1. Since C1 splits into $ 1, 

disjoint such intervals, we get a2 < (,\k111)_1. Now, (1.22) implies (.\kIe1 )_i $ 
' in the case 	 7,Ic > 4IplI.yF+l)Ie2I. 

	

so we have I ( )I 	IAk i  

Finally, suppose 	< 	161- Yet another application of (3.5) gives 

IO'(t)I ~ 	IpiI/(t)AkI 2I ~! 

for tE 'k• With a1, a2 , and q as above we have '(t) ".i 

The- same argument used previously for a1 gives a1 < 	 Also 

1 
012 	f1k 

Ak IPll ((Akt)) / (Akt) jj(k)k1
61 
 dt 

	

)A k 	f pi 1 1 P" (s) I ds < (IpuIF(Ak)AI 2D 

By (1.22) it follows that I()I < 	 $ IAL', and this com- 

pletes the proof of Lemma 3.3.3. 	 LI 

Finally, for HG, we apply Proposition 3.2.2 with Ak and Ak unchanged, and 

Uk equal to 11kV Since (3.8) is true, we only need check (3.9). Firstly, if 'y is even 
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then this is almost immediate from the work done in the proof of Lemma 3.3.3. 

Indeed, this and integration by parts gives us the decay for the integral over 

while the integral over 'k  is simply a reflection in the vertical axis of the integral 

over 'k  For odd y, we claim that Lemma 3.3.2 holds on 'k  as well. To see this, 

simply observe that P' and P" have opposing signs on —Gd , by (2) and (4) of 

Lemma 3.2.1, and couple this with the fact that 'y" < 0 on (—oo, 0). Now, (3.9) 

will follow if we carry out the argument used in the proof of Lemma 3.3.3 and 

integration by parts. This completes the proof of Theorem 3.1.1. 

3.4 	The. hypersurface 

We again decompose (0, oo) as in (3.1). If HD, and MD, are defined in the 

analogous way, then 

fl,YIE'Y-'(L?k)
IK()!d

fs 
IK(w)IL7-1(Dk) dr da(w)1, 

''.  

and therefore these operators are bounded on L. So we fix j e 3 and turn our 

attention to showing H 3  and M 3  are II bounded operators. Taking A := d + 2 

and 'k  as before, define Hk and Pk  by: 

(Hk,) := 
f
1YJEIk (Akyp((AkIyI)))K(y)dy, 

 

(k,) := 
f
lylEIk (Akyp((AkIyI)))dy, 

for 0 E 8(I*1)  Also, put Ak := A(A') where, for t > 0, A(t) is the d + 1 by 

d + 1 diagonal matrix with (r, r)-entry equal to jpjy(t)i when r = d + 1, and t 

otherwise. 

Lemma 3.4.1. H)I + I( 	Akj')/2 for 0. 

Proof. We just prove the decay estimate for "k  because the corresponding result 

for 	can be proved in the same way. If C = (C' Cd+1) then 

C) = .1(,i 

	

	
dy 

Elk 

= 	
fsd-I 	

T()K(w) do-(w)dr 
Elk 	 r 

It is well known (see, for example [60]) that because K is smooth away from the 

origin, for r E 'k, 

fsd-1

K(w) do-(w)<(AkrC/ )_ 2 	(AkI)/2  
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Therefore the claim follows for 	 :!~ 4AdII. Suppose then that 

IPl(A)Ied+1l ~! 4A' Fix w E Sd_i and let 0(r) = A'rw' + P((r))d+1 

for r E 'k• Then (3.5) and (1.22) imply 

01(01 > 
1
_puI()I(.Vr))kIed+lt - 

It follows that 

I < 
(I 	

(k)1)1 

Ik TE 	
r 

(as in the proof of Lemma 3.3.3 this follows by van der Corput's lemma for 

j e 3 \ {1}, and the substitute argument for j = 1). This completes the proof of 

Lemma 3.4.1. 	 E 

We can now use Proposition 3.2.2 (or a weaker form, given that we in fact 

have uniform decay estimates) to complete the proof of Theorem 3.1.2. 
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Chapter 4 

Flat Curves in Rd  Near L1  

4.1 Introduction 

Suppose that F(t) = (t, 7(t)) where 'y is odd, belongs to C' (0, oc), and is convex 

on (0, oo). Recall the definitions of the set e2  and the function h associatedto 'y 

from Chapter 1. By Theorem 1.1.6(2) and Theorem 1.1.7(2) we know that if h 

belongs to e2  then Hr  and Mr  are bounded operators on LP for each p E (1, cc). 

In [11] an extension of these results in IR'1  for d > 2 was achieved. Let us begin 

this chapter with a description of how the notion of convexity was extended to 

higher dimensions and also how the analogue of the curvature assumption on the 

function h was formed. 

	

Let 'y2,... , Yd belong to Cd(0,  cc). For 	I,—, d let 

1 	'y t) 	. 	'y(t) 

0  72 
Dk(t) := det 

	

(k) 	 (k)(t) 

and set D0(t) := 1. For k = 1,.. . , d define 

t 	(t) 	•.. 	k(t) 
1 	'yt) 	. . 	'y(t) 

Nk(t) := det 	. 	. 

	

(k-i) 	 (k-i) 0 	'Y 	(t) 	'Yk 	(t) 

Nk(t) 
hk(t) .- 

k-it 

Definition 4.1.1. The curve (t,'y2(t),... , -yd  (t)) is said to be convex if for all 

k=1,...,dwehave 

	

Dk(t) >0 for all t E (O,00). 	 (4.1) 

57 



The curvature assumption is that each hk belongs to e2; that is to say, there 

exists c(d) > 0 such that for all k = 2,. . . , d we have 

th'k (t) ~! c(d)hk (t) for all t E (0, oc). 	 (4.2) 

The higher dimensional analogue of Theorem 1.1.6(2) and Theorem 1.1.7(2) is 

the following: 

Theorem 4.1.2. [11] Suppose F(t) = (t,'y2(t),. . . ,i(t)) is odd, F(0) = 0, and 

(4.1) and (4.2) are satisfied. Then Hr and Mr are bounded operators on LP for 

all  E (1, 00). 

In this chapter we consider the mapping properties near L' of Hr and Mr, 

where F belongs to the class of curves described in Theorem 4.1.2. Our main 

result is the following: 

Theorem 4.1.3. Suppose F(t) = (t,'y2(t),.. . ,'yj(t)) is odd, F(0) = 0, and (4.1) 

and (4.2) are satisfied. Then Hr and Mr are of weak type L log L. 

To see the context in which Theorem 4.1.3 stands, let us consider the pro-

totypical finite type curves 'in ]R2 and R3; r2 (t) := (t, t2) and r3 (t) = (t, t2, t3 ) 

respectively. It is known from [20] that H 3 and Mr, locally map L log L to L"°°. 

It was shown in [57] that H 2 and Mr, locally map L log (2) L to L"°°. The proof 

of the stronger result for 172 in [57] uses the fact that F2 has codimension 1. It 

is presently open as to whether the result in [20] for F3 can be extended at all 

beyond Llog L. Until this is achieved, Theorem 4.1.3 has little hope of improve-

ment for d > 3. The result in [57] offers some hope to extend Theorem 4.1.3 when 

d = 2. However, we have so far been unable to achieve any such improvement; a 

short discussion on this matter appears at the end of Section 4.2. 

Remark. Theorem 4.1.3 implies that if f belongs locally to L log L, then, for 

almost every x e IRd, 

lim h 1 / f(x - F(t)) dt = f(x). 
h-0 J(O,h) 

Overview. We prove Theorem 4.1.3 in Section 4.2. In Section 4.3 we consider 

local mapping properties near L1 of Hr and Mr where F belongs to the class of 

nonconvex hypersurfaces studied in Chapter 3. 

4.2 	Proof of Theorem 4.1.3 

The schema to prove Theorem 4.1.3 is the same as that used in Section 3 of 

[57]. In this setting of fiat curves, we shall use the Calderón-Zygmund theory 
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developed in [9]. Before defining the appropriate Calderón-Zygmund cubes, we 

shall introduce the dilation matrices defined in [11] which are associated to the 

curve F. Our dilations will satisfy the well-known Rivière condition which serves 

as a substitute for the group property that the dilations Jt  from Chapter 2 enjoy. 

Thus we are able to define certain 'nice' normalised versions of F. These will 

be nice in the sense that it is possible to prove decay estimates for the Fourier 

transform of certain measures supported on these normalised curves. 

Notation. Write A < B for A < GB, where C depends on at most d and F. 

Dilations and decay estimates 

All of the work on the choice of dilations and proving the decay estimates that 

follow was done in [11]. We shall state their results without proof. We again work 

with the dyadic maximal operator in (1.20); the choice of A will be made later in 

the proof. 

The dilation matrices {A(t) : t E (0, oo)} are defined in terms of the following 

differential operators: 

R0 f := f, 
/ 	' 

Rkf := (-k—) - 	fork=1,...,d.. 
\hk/ hk 

We define 

t 	Rt 	•.. 	RdlRd2 ... Rlt 

A(t) := 	
-y2  (t) 	R172(t) 	. . . 	Rd_lRd_2 . . . Ri72(t) 

d(t) 	Rid(t) 	•.. 	Rd_l Rd_2... R(t) 

Remarks. 	1. If d = 2, the situation is entirely analogous to that in [9]; we 

have F(t) = (t,'y2(t)) and D2(t) > 0 implies 'y'(t) > 0. Moreover, h2(t) 

t'y(t) - -y2(t), so we recover the h-function associated to the plane curve, 

and the dilation matrices coincide. For a discussion on why these dilations 

are appropriate see Section 4 in-[11]. 

Condition (4.1) implies, via Lemma 1 and Lemma 2 in [52], that hk(t) > 0 

and h'k (t) > 0 for t E (0, oc) and k = 1,... , d. Therefore, R1,... ,Rd  are 

well defined. 

Each A(t) is lower triangular. In particular, if A(t) = (A,(t))l< , <d  then, 

A1,1(t) = t and, for j = 2,..., d, A,(t) = h(t). 	(4.3) 

The previous remark and (4.3) imply that each A(t) is invertible. For a 

proof of (4.3), see the proof of Lemma 5.3 in [11]. 
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Part (1) of the following proposition says that {A(t) : t e (0, oo)} satisfies the 

Rivière condition. A proof can be found in Section 5 of [11]; the full strength of 

the curvature hypothesis (4.2) is not needed to prove Proposition 4.2.1 and the as-

sumption that each hk belongs to E suffices. The remaining parts of Proposition 

4.2.1 are trivial consequences of the first and are only included for emphasis. 

Proposition 4.2.1. There exists C, E ' 1 suci that for s > t> 0 and E Rd, 

IIA(s) 1A(t) 	A(t)*(A(s)*)_ h iI < C (t/s); 

A(s)'A(t)I <C (t/s)e 	and IA(t)*(A(s)*)I 	C (t/s)e j; 

A(t)A(s) 	C' (s/t)E 	and IA(s)*(A(t)*)- I ~! C1 (s/t)e I. 

For each k E Z, we now define the normalised versions, Fk, of F by 

Fk(t) := A7k)_lF\ct) for each I tI e [1, A]. 

Also define the following measures: 

A 
(k) (

IL 	
,(k). 

	
(Fk(t)) dt, 	(k 	:= ((k) 	(A(Ak).), 

1 

(H,) := 
f1tjE[1,Aj 

(Fk(t)) 
dt 

(k) 	 (k) Clearly we have Mrf = supkcz If * Pk I and Hpf = kEZ Hk * f. The notation 

Ilk may seem heavy-handed at first. The intention is to maintain the notation 

from Section 3 of [57] in the sense that 	is a A(Ak)_dilate of the measure 

a measure that will not in general be fixed as k varies, yet has the property that 

its Fourier transform satisfies a decay estimate independent of k, and in this sense 

one can think of k) as almost fixed. This decay estimate is the content of the 

subsequent lemma. This was proved in Section 5 of [11] via a variant of van der 

Corput's lemma (see Proposition 3.1 of [11] for this variant). 

Lemma 4.2.2. There exists 6 E (0,1) such that for 	0, 	 and 

e1 5. 

The proof of Lemma 4.2.2 from [11] shows in fact that one can take 8 = 1/d. 

Calderón-Zygmund theory 

In order to utilise the Calderón-Zygmund theory developed in [9], we shall define 

balls {Bk }kEz satisfying, 

(Bi). UkEZBk = 
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(B2). flkEzBk = {O}; 

each Bk is open, balanced, convex, and bounded; 

Bk C Bk+1 for each k; 

for each k we have IBk+1I 	Bk. 

Initially put Bk := A(Ak)Bi (0); clearly (133) holds. Now we choose 

A := 4[1+(Io92C)/(2E)J 

where C and E are those appearing in Proposition 4.2.1, and /3 := C/A'. Notice 

that our choice of A ensures 0 </3 < 1 and, moreover, by Proposition 4.2.1, 

IA(Ak+l ) — A(A)II </3 	 (4.4) 

For any k E Z and e Rd, (4.4) implies 

A(Ak+ I = A(Ak+ 	l A(Ak )A(Ak ) l I :5 /3IA(Ak)- e1' 	(4.5) 

which immediately implies (134). Moreover, it follows inductively that 

IA(A 1 )1 :5 /3hIA(Ak)- I, 	 (4.6) 

for all integers 1 > 0. We claim that (4.6) implies (Bi) and (132) also hold. To 

see (Bi), take 	R' \ {0} and choose 10 > 0 such that /310 < (2IA(1) 1 l) 1. 

Then (4.6) implies A(Ab0) 	I :5 /30IA(1)-lI 	1/2, so that 	E B10 . For 

(132), take 	0 and choose 11 ~! 0 such that /911 < A(1)'j. Then, by (4.6), 

A(A')'I ~! /3_11 IA(1)lI ~! 1 and hence 

Unfortunately, we cannot guarantee (135) holds for the Bk. Nonetheless, if we 

fix k e Z then it is possible to choose a finite collection Ekj 
	Ekn '} of open, 

balanced, convex, and bounded sets so that 

Bk=ECE.0 ... CE=Bk+l , 

and I EJ 	2EL' 1 for 1 = 1,.. .,n(k) —1. Then define the collection of Bk by 

n(k)-1 

U U {E}, 	 (4.7) 
kZ 1=1 

so that (B1)-(B5) hold for the Bk. 

Observe that, for each k E Z, (133) allows us to define a norm 1 1. 1 1 k such that 

Bk = {x E Rd: II4k < 11. For each k E Z define an associated ball with centre 

Y E Rd and radius r> 0 with respect to 1 1.11 k as 

B(y, k, r) := {x e Rd: JJX - yIIk <r}. 	 (4.8) 
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Notation. For each k E Z, x e Rd, and nonempty subset S of R d, define 

4ist(x, S) := inf{Ijx - Silk : S E S}. 

We now state the Whitney type decomposition relative to the balls in (4.8) 

which appears on page 680 of [9]. 

Proposition 4.2.3. There exists A - 1 such that the following hold. 

If ci is any nonempty proper open subset of W1, then Q = UBC=8 B, where 

:= {B(x, k, 1): x e ci, k E Z, 5 < distk (x, 9ci) <A}. 

If in addition IQI is finite then we can find a sequence of disjoint balls 

Q := B(x, k, 1) e such that ci = Ui B(x, k, 3). 

Taking A 1 that appears in Proposition 4.2.3, define the following collection 

of all translates of the Bk: 

{B(y,k,A) : y  R',k E Z}, 

and the associated Hardy-Littlewood type maximal function MHL by 

MHL J(X) := sup f f(y)Idy. 
xEBEIBI B 

By Proposition 2.2 of [9], we know that MHL is of weak type L. 

Main estimates 

Recall that our goal is to prove the estimate, 

j{x e 	IMFf(x)I > Ce}I 
<f 

f(x)j 
log 	+1 (n~ 	oo) dx, 	(4.9) 

a 	a 

holds for all a > 0. 

Fix a > 0 and set ci := {x E Rd: MHLf(x) > a} for a fixed f such that the 

right hand side of (4.9) is finite. From the weak type L of MHL we get ci 

If hi/a. Next, apply Proposition 4.2.3 to obtain sequences {x} ç ci, {jj} c z, 

and disjoint Whitney cubes. {Q} such that the following hold. 

(Wi). cl=UQ. 

B(x,j,1) c Qi c B(x,j,3). 

5 < inf{jIx - yII.i : y e 9QJ <A. 
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Also define Tl := Ui  B(x,j, C + 10), where C is the constant appearing in 

the statement of Proposition 4.2.1. Observe that (WI) implies 11 '-i 	; in 

particular 

	

IIfMi/a. 	 (4.10) 

By an analogue of the Lebesgue differentiation theorem we know that If(x)l 

a for x 0 Q. Our first decomposition of f is then, 

	

f=g+fQ, 	 (4.11) 
i 

where 
f f(x) ifxEQandf(x)>a, 

fQ(x) 	otherwise. 

This decomposition is akin to that of classical Calderón-Zygmund theory; observe 

that g enjoys good L°° properties; in particular 

a, 

and since I g(x) 1 :5 1 f(x)I for any x E Rd,  we may also deduce at once that 

ugh2 	ah/2Mfhh/2 Iii (4.12) 

Furthermore, for each i, (W3) gives us some y E o9Q such that i1xi - 'hL < A. 

Thus 

f(x)dx 	
1• 

	J
Af (x)IdxMHLf(y)a, (4.13)

IQI 	 IB(x, Jj, A)I ,) 

and one has that each fQ, is, on average, under control. 

Next, decompose fQ, further by letting 

f(x) .= 
{ fQ (x) if A(n_l)öa < If(x)I 

0 	otherwise, 

where S is the decay exponent from Lemma 4.2.2. Notice that 

and, by (4.13), 

Now let 

fQ=Ifa 	 (4.14) 
n>1 

(4.15) 
n>1  MI 

g.(x) 	 (4.16) 
Al Qi 

b,.(x) := f.(x)—g.(x), 	 (4.17) 
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and 

	

9' (x) := 	g.(x), b(x) := 	V, (x), f n (X) := 	f. (x). 	(4:18) 

Observe that (4.15) implies 

1' I 

	

gQi (x)I 	x(x) 	J f(y)I dy  aXQ(x). 	(4.19) 

	

n>1 	 n>1 

Moreover, by (4.15) and (4.19), 

I MbM i 	 (4.20) 
n>1 

The next step is to decompose the measures 	first by the following local- 

ization: Let' 8(lRd) have compact support in B112(0) with f (x) dx = 1, and 

f xkçb(x) dx = 0 for all k E {1,. . . , d}. Note that Taylor's theorem implies 

(4.21) 

	

under our hypotheses. Also define, for each n > 1, 	(x) = ).ndc(Anx).  

To this stage, the proof of Theorem 4.1.3 is the same for Mr  and H. We now 

focus our attention on M1-; the proof for H 'is very similar, and the necessary 

changes will be made clear later. 

For each n>llet 

k) 	 (4.22) 

	

* k) 	 (4.23) 

For each k E Z and ii > 1 define the following dilates of these localisations: 

det A(Ak)n(A(Alx). 

(k) Use (4.11), (4.14), and (4.18) to decompose p * f as 

(k) 	(k) 
ILk *9±11k 	 = 

	

i n 	 n 

	

(k) 	(k),n 

	

= 	
IL (k) 
k *g+ 	

(k) 
/k 	 Pk 

n>1 

and then (4.17), (4.18), and (4.22) to continue this decomposition to get 

(k) 	 (k) 	 (k) 	(k),n 
Ilk *f = ILk *g+(ILk 	/k )*fTh 

- 	 n>1 
ri—i 

(k),m+i 	(k),m 
+ 	/2 

(k)  
k *g+ (ILk 	11k 

n>i 	n>lm=O 	 n>i 
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Therefore 

(k) 
Mr f(x) = sup Ik * fl M1,1 + M1,2 + M1,3 + M1,4 + M11, 

kEZ 

where 

(k) 
M1,1 := SUPLk *g, 

kEZ 

:= sup 	* 	gfl 
kE7Z I 	n>1 

M1,3
(k) 	(k)n 	n 

= 	
sup ( 	- /2k ) * f , 
keZ 

:= 	sup 	Ak 
- 	

* 

m>O keZ 

	

	 n>m 

(k)n n 
MII := 	SUP IItj 	* b 

n>1 kEZ 

In order to handle the terms M1,1, M1,2, M1,3 , and M1,4, we shall show that 

IIMi,II 	ajfIi. 	 (4.24) 

An application of Chebyshev's inequality gives 

ljx E Rd: Mi,(x) > a/5} 

which is clearly dominated by the right hand side of (4.9). 

Before proving (4.24) we outline how we control the more difficult term, M11, 

using L1 arguments. Recalling the definition of our balls B3 from (4.7), for each 

i let 1i be the integer satisfying 

	

B 1 c B, c B. 	 (4.25) 

For each n > 1 and i, set 

	

S,.j := {kZ:l-2< k<l+'m}, 	 (4.26) 

where E appears in Proposition 4.2.1. Then M11 M11,1 + M11,2, where 

M11,1 := 

n~1 i 

M11,2 := 
n~!1 i keS, 

We claim that 

IIII ,1IIL1(Rd\*) < IfIli, 	 (4.27) 
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where the set 11* was introduced on page 63. By (4.10) and Chebyshev's inequal-

ity, this implies 

I{x E Rd: Mi,1(x) > a/51 	I{x E R \ 
ç* : MH,i(x) > a/51 + Ilf 1111ce 

lflIi/a. 

To handle the contribution from M11,2 we use a very coarse argument. Notice 

first that since the total variation of u(') is uniformly 5 1 we get 

(k),n 

	

11k 	Mi = lIi'lk 	!nIIi = IIIli 	1, 

and thus, by Chebyshev's inequality and the fact that, for each i, IS,jI < n, we 

get 

l{x e lR'.: Mii,2(x) > a/5} I < a1>nMblIi. 

Therefore, 

{x E Rd : Mii,2(x) > a/51 	a' 	nf 	If(x)I dx 

n~1 

f f(x) 
log (IL(x)l + 100) dx. 

The rest of the proof of Theorem 4.1.3 is then dedicated to (4.24) and (4.27). 

From Theorem 4.1.2 we know that Mr is a bounded operator on L2. This and 

(4.12) implies 

IIMi,iII = sup 	* gHl 	lllI 	$ all! Iii. 
kE7Z 

Now (4.19) clearly implies 

a)Qt (x) < a, 

so, 

g_ 	
< Ce 	f Igni (4.28) 

2 	n>1 i 	 n>1 ? 

Using the L2 boundedness of Mr again, we get 

llMi,2II 	Slip * 	gfl 
2 
<gfl 	<ailfIl 

kEZ 	fl>1 	2 	n?1 	2 

as required. To handle M1,3 and M1,4 we use the following estimates concerning 

our localised measures. 
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Lemma 4.2.4. For each m > 0, 

(k),m+1 (k),m I 	mc5" :'I sup (k 	- ILk 	) * f 	) 	ii 2 
IIkE7Z 	 112 

Proof. Clearly, 

1/2 2 

J 

		

sup (
(k),in+1 	(k),m 

ILk 	- ILk 	) * fI 	( kEZ 
I( 

(k),m+1 	(k),m 
 ILk ) 

*f2

kEZ  

d(k),m+1 	(k),m c 
()— 	()I2lI(e)I2 

	

IILk 	ILk 	 d, 
kcZ 

so it suffices to show that, for each 	0, 

Im+1(A()*) - 	 A(Ak )*)l 2 	 (4.29) 
kZ 

We claim that, for each 	0, 

j km+l() - k)m( 	<Amornifl(AmIeI, (Am)) 	(4.30) 

That (4.30) implies (4.29) easily follows because Proposition 4.2.1 allows us to 

estimate the left hand side of (4.29) by a convergent geometric series. To prove 

(4.30), note that 

I,m+1() - (k),m( 	= 	m1) 
- 

If A-' < 1 then we can use (4.21) and Lemma 4.2.2 to get 

- It < me 2S = 	 <AmS(Am!l). 

On the other hand, if )—m > 1 then we can use the fact that E 3(W') and 

Lemma 4.2.2 to get 

Im+l(e) - km(e)I< ((AmlIeI)-1 + (A m l)-1)m6 <mö(m)1 

This completes the proof of (4.30) and hence Lemma 4.2.4. 

Since we have chosen (0) = 1 we may write 

(k) 	(k),n - 	 (k),m+1 	(k),m 
Mk ILk - .ILk 	ILk 

Tfl>fl 

This and Lemma 4.2.4 imply, 

	

l'I,3 112 :
!~ 
	

(k),m+1 	(k),rn 

kEZ 
I(ILk 	- 

,(k),m ) 

	

) * fn 
1112 	A 5IIfII2, 

n>lm>n 	 n>1 
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and furthermore 

=
If(x)12 dx < AalIfIk. 

i JXEQi,,\(n-1)1C,<jf(X)j<,\n,5a 

Therefore 

IIMi,3112 <ah/2 11  fI/2 	\n5/ 2 <a1/2 f/2, 

n>1 

as claimed. For M1,4, We use Lemma 4.2.4 to get 

I (k),in+1(k),m 
IVII 4 I 2 ;:; 	M5 	I(k 	- Pk

kEZ 
) * 	gh1 

,m>O 	 n>m 1h2 
- 

; 
m~!O 	 2 

and this is aIf I ii by a similar argument to that used for (4.28). This concludes 

the proof of (4.24). 

We now prove the remaining claim, (4.27). Firstly, we need the following 

simple, but important, property of the normalised curves. 

Lemma 4.2.5. For any k E Z and t E [0, 1] we have IFk(t)I :5 C, where C 

appears in Proposition 4.2.1. 

Proof. If e1 is the element of Rd given by (1, 0,... , 0) then, by Proposition 4.2.1, 

Fk(t) = AVc)_l A(A!ct)ei I < Ct < C. 

Fix i and consider k such that k < i - 2. We claim that these k do not 

contribute to IIMn,1IIL1(Rd\o*). To see this, observe that by Lemma 4.2.5, 

A(Ak)supp(k) = {F(A't) : t e [1,A]} 

= 	{A()Fk+l (A 1t) : t E [1, A]} 

c A(A 4)B(0). 

Therefore, 
A(Ac)supp) c CB c CB,,-, c CB3 . 

Also, since 0 is supported in B112 (0), we have that, 

A()supp 	c A(A)131(0) c Bj, for each n > 1. 	- 

Hence, 

supp(4'' * ba.) c suppb. + A()Y)supppP ) + A(A)supp 

c Q+B(0,j,C+1)cc*. 
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So to prove (4.27) it suffices to prove that 

(k),ri 
I/k 	* b.Il1 	IIfIIi. 	 (4.31) 

i n>1 k>1+e'n 

Let x e TRd  and use the cancellation of Q. and then Taylor's theorem to get Qi 

(k),n 
/-k 	*bQi (x) 

b 
f 	

(k),-(X 	(k),n 
= 	Q(y) [Ilk 	- y) - 11k (x - xi)] dy 

i 

= detA(A'  fQi b(y)[(A()'(x -y))Il )m(A(Ak)(x -  xi))] dy 

= 	det A()-1 f f b. (y)A(Ak)1(xj - y).V(A() 1  (z)) dydt, 
Jo Q 

where z := x - x + t(x - y). For y e Qj  we have 

A()'(x - y)E A(Ak)_lA()i)B3(0). 

Since k > 1i  it follows by Proposition 4.2.1 that 

- < (l—k) 

Also, 

= ndf (A (x - u))dIl(u), 

so that 

fV'(x)dx < n(d+1) ff IV(x - u))I dxdt(u) 

Therefore, 

I (k),n 

J I/1 Qi * b  Qi (x)I dx 	(li_k)E+m hIb 

and one can use this estimate, with the help of (4.20), to deduce (4.31) as follows. 

(k),n. 
II I IIlk *bQ I i  $ 
i n>1 k>l+'n 	 i m>1 

= aII 	IIfIIi. 

This concludes the proof of Theorem 4.1.3 for Mr. 

As noted previously, the proof Theorem 4.1.3 for Hr  is similar to the one we 

used for the maximal operator. Firstly, we define 

H ,0  := H(k) and, for n > 1, 	On * H(k); 
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and then 

H'(x) := det A(Ac)_lHTh(A(Ak)_lx). 

We decompose Hr in a similar manner as before. Specifically, if 	is defined 

exactly as in (4.26), we write 

Hrf = H1,1 + H1,2 + H1,3 + H1,4 + H11,1 + H11,2, 

where 

H1,1 	:= H 	* 91 
kZ 

H1,2 H 	* 	gfl, 

keZ 	n>1 

H1,4 	:= (H 	m 4 - 
k 

H)m) * 	gfl, 
k 

m~:O kEZ n>m 

H1,3 	:= j 	(H 	-H') * 
n>1 keZ 

H11,1 H' * b n  

n~:1 	i 

H11,2 	:= H' k * b n Qi * 
n~!1 	i 

As before, it suffices to prove the following estimates. 

lIHi,I 	fIIi; 	 (4.32) 

	

IHII,1 M L1R2\*) 	Ifi. 	 (4.33) 

It is easy to see that 11H1,1 112 + IIHi,2II 	c4f using the fact that Hr is bounded 

on L2 by Theorem 4.1.2: Moreover, the following analogue of Lemma 4.2.4, 

(H1'" - H)m) * f 
kE7Z 	 2 

holds via Plancherel's theorem and Lemma 4.2.2. Thus, we may repeat argutnents 

	

for M1,3 and M1,4 to get IIHi,3II + IH1,4 II 	aIIfM1 and hence (4.32). We may 

also run the argument that we used to prove (4.24) almost verbatim to deduce 

(4.33). This completes the proof of Theorem 4.1.3. 

Beyond L log L: a stumbling block 

We conclude this section with a brief discussion on the possibility of improving 

Theorem 4.1.3 when d = 2. Our motivation is the main theorem in [57]; we 
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encourage the reader to recall the setup of this paper given at the end Chapter 

1. If we consider flat plane curves, then we violate the fundamental curvature 

assumption in [57]. By running through the argument in [57] with 	taking on 

the role of the fixed measure ii, and, for example, F(t) = (t, 2_t2), one sees this 

violation quite clearly in the sense that the following crucial pointwise estimate 

* i (lc))(x)I 	x' 	 (4.34) 

fails when I cel = 1 (where (p9), /j) : 	(1(k), 
(.))). Incidentally, the pointwise 

estimate (4.34) is true when c = 0 and 17(t) = (t, 'y(t)) for any convex 'y whose 

derivative belongs to e2. 

It may be more fruitful to move in the direction of Hardy space estimates. 

Two such results were mentioned at the end of Chapter 1 for the parabola. It 

is an interesting question whether theses results have analogues for some class of 

flat curves. 

4.3 Nonconvex hypersurfaces 

Let d > 1 and let F(y) := (y, P(y(y))) for y E Rd, where P is a polynomial with 

real coefficients of degree no less than 2, and 'y satisfies the following conditions. 

'yE C2(0,00), convex on [0,00) and -y (0) = 0, 7'(0) ~! 0. 	(4.35) 

Our main result in this section is the following. 

Theorem 4.3.1. Suppose 'y is extended to either an odd or even function on IL 

Then the operators Mr and Hr are of weak type L log L if either 

1. d>2; 

. d = 1 and P'(0) = 0. 

The hypothesis of Theorem 4.3.1 should come with little surprise in the light 

of the analysis in Chapter 3. Recall that we were unable to suitably handle the 

second derivative of P on the first gap, in the sense that certain almost everywhere 

Fourier transform estimates were out of reach in the case d = 1. However, such 

estimates are crucial for the argument of Section 4.2. Hence, when d = 1 we 

eliminate this issue with the hypothesis P'(0) = 0 since this means that the first 

gap of P is empty. As in Chapter 3, when d > 2, this is not necessary because we 

can make use of the decay of the Fourier transform of surface measure on Sd_i. 

Near L1, the case d = 1 and P'(0) 	0 is clearly open; if we allow P to 

have degree 1, then of course we have a sufficient condition in Theorem 4.1.3, 
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however one should note that, in this case, there is also no first gap. In the light 

of Theorem 3.1.1, the additional hypothesis 'y' e C, offers itself as a possibility 

for a sufficient condition. In the next chapter we shall see some negative results 

for some examples of such 'y, though we will not go so far as to prove that the 

conclusion of Theorem 4.3.1 cannot hold under these conditions. 

Proof of Theorem 4. 3.1.  We consider the equivalent dyadic operator, Mr, which 

takes averages over {y E Rd: II 
E (2k ,  2k+1)} for k E Z. 

Without loss of generality, we may take P(0) = 0. Write P(s) =E'k=lPkS' 

where each Pk  is real. Recall from Section 3.2 the decomposition of (0, oo) in 

(3.1) based on the roots of P. Also recall from (3.2) and (3.3) the definitions of 

the restricted operators H1  and M1. We claim that the assertions of Theorem 

4.3.1 are obvious for HDk  and  MDk,  where Dk = (ak, /3k)  is a dyadic interval 

introduced in Section 3.2. This is simply because (3.4) implies that HDk  and 

MDk  are bounded operators from L' to itself. 

The preceding observation tells us that to prove Theorem 4.3.1 it suffices 

prove the same assertions for each Hc and M03 ; for this, we fix j, and use the 

same method as in Section 4.2. The appropriate d ± 1 by d + 1 dilation matrices 

{A(t) = (A(t)k, j) : t E (0, oo)} are defined as follows. 

(t 	fork=l and k=1,...,d, 
A(t)k,l  := 	jpjy(t)i fork= 1 = d+ I, 

0 	for kl. 

It follows from (3.4) that Proposition 4.2.1 holds for these dilations with (C = 

E = 1). We normalise F in the same way: 

Fk(y) := A(2k)_lF(2cy) for y e Rd. 

Therefore, 

Fk(y) 	(y,'k(IyD 	
P( y(2kt)) 

) where, for 	(0,00), 'yk (t) 

Let 'k := [1,2] fl 	 as in Chapter 3. 

Lemma 4.3.2. Suppose j 1 and 'y is odd. Then, for all tiE 'k, we have 

'y(t)I 	I(t)I 	Yk(t) >1 

Proof. It is-  immediate that Lemma 3.2.1 and (4.35) give I yk(t) I > 1 for all I ti E 'k• 

Also, Lemma 3.2.1 and (1.22) imply that 	 - 

i'lk  (t)i 	
P(y(2kt))i,(2k) > 2kY(2t) > 1 

2'c I  
= 	P(7(2kt)) 	 y(2kt) 
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which implies '4(t)j 	1. For the remaining assertion, observe that 

pll((2kt)).y(2kt) 
and 

'y"(2't) 

P'(y(2't)) 	 '(2't) 

are both positive on 'k  and both negative on 'k  This follows from Lemma 3.2.1 

and the fact that -y  is odd. Therefore, 

1P"(7(2kt))y(2kt) _y'(2kt) 
2c I   

I(t)I = 	P'((2kt)) + '(2k) 

> 2' Ip/(..y(2kt))I.,/(2kt) > 

pF( . (2kt))I 

where the last bound follows from another application of Lemma 3.2.1. 

Remark. The estimates in Lemma 4.3.3 up to the first derivative were being used 

in Chapter 3. 

Define the following measures: 

((k) 	:= f. 
	

(F 	
/
Ik k (y)) dy, 	,) := 

VIE 

 := 	flylEIk (Fk(y))K(y) dy, (Hr, 	:= (H (k) ,  (A(2 k).)).  

Of course, MGf = SUPkEZ 
,4k) 

 f  and Hc3f = kEZ H * f. Then we have 

the following decay estimates. 

Lemma 4.3.3. For each 	0 we have (k)()J + H1c)()j 

Proof. Under condition (1) of Theorem 4.3.1, this was essentially proved in Lemma 

3.4.1 and we shall not repeat the details. Instead, assume condition (2) of Theo-

rem 4.3.1 holds and, for fixed with j > 1, define 

e(t) := ti + N(t)6 for t Elk. 

If 	> 	then, by Lemma 4.3.3, we have 9"(t) > 	for all t E 'k•  By 

van der Corput's lemma, 

dt 	 (4.36) 
ftc=Ik 

We claim that (4.36) also holds when 	To see this, first suppose that 

P> 0 on C3. Since C1  is empty, we know from Lemma 3.2.1 that 'y' > 0 and 

-y k' 	0 on 'k•  Hence there is at most one solution t E 'k  to the equation 

'y(t) 
=f-tj• 	

(4.37) 



If a solution to to (4.37) exists, then for t E 'k with t < to we have 

O'(t)I ~! 16  - 	(t) 161 ~! IiI/2 	 (4.38) 

and for t > to , by Lemma 4.3.3, 

= 	 y(t) ~! 1I/2 	. 	 (4.39) 

Since 'y' > 0 on 'k we know that 0' -is monotone on 'k• Thus (4.36), or in fact 

a better estimate, follows from van der Corput's lemma foi 1e11~! 21. The case 

where a solution to (4.37) does not exist is handled as in (4.38) or (4.39). 

If 'y is even, I'(C)j $ 1C1 -1' is immediate from the above. If 'y is odd, then 

one can say that 'y' > 0 and 'y <0 on 'k Then the equation 

- 

—

10 
2161 

has at most one solution, and one can argue as above to deduce that I ji(k)()I 

ICI 1,12 . A similar argument works when P < 0 on C, and using integration by 

parts we get the required decay estimate for H('). 	 Li 

The final ingredient in the proof of Theorem 4.3.1 is the appropriate choice 

of Calderón-Zygmund balls. This is significantly simpler than in the Section 4.2 

because the dilation matrices are diagonal. For fixed k E Z there exists a finite 

collection {Eku ,. . . , E'} of open, balanced, convex, and bounded sets such that 

A(2k)B1(0) = E ç Ek2 c ... c E 	= A(2k+1)B1(0), . 

and ELI :5 21E'I for 1 = 1,.. ., n(k) —1. One can easily verify that (3.4) implies 

that A(t)Bu(0) C A(s)BI (0) whenever 0 < t < s, and therefore the EL are well 

defined. As in Section 4.2, the collection {Bk }kEz is chosen to be the collection 

{EL}kEz,1<j<fl(k). Then the conditions (131) - (B5) hold for the Bk and we are free 

to use the Calderón-Zygmund theory developed in [9]. The main ingredients are 

now in place, and the argument that we used in Section 4.2 can now be used to 

complete the proof of Theorem 4.3.1. 	 Li 

Remarks. 	1. Theorem 4.3.1 implies a certain pointwise convergence result for 

averages over the hypersurfaces considered in this section, for functions 

belonging locally to L log L. 

2. It follows from the proof of Theorem 4.3.1 that there-exists a finite constant 

C, which is independent of the coefficients of P, such that for all unit cubes 

Q in R d, 

IMNfXQ) IIL'°° + IIH(fxQ) IL1'°° 	C!IfII L logL(Q). 
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Chapter 5 

Piecewise Linear Curves Near L1 

5.1 Introduction 

Suppose we are given a plane curve [(t, (t)) : t e (0, oo)} and A E (1, oo) is 

fixed. We can form a continuous piecewise linear version, F, of this curve in the 

following manner: Define a F(t) := (t, 7(t)) by stipulating that, 

for each k e Z, y(A') = (Ak) and 'y is affine on [A', Ak]; 	(5.1) 

see Figure 5.1 for an example. In [18], Christ proves that if the derivative of '"y 

takes infinitely many distinct values , then Mr is not of weak type L. In fact, 

this result is a corollary of the more general proposition stated below concerning 

averages over line segments, in R' for d > 2, which point in distinct directions 

and may have arbitrary location. To be specific, let ZX := {l : 1 < j N} be a 

collection of N line segments in W1 of finite length, let wj be a unit vector in the 

same direction as l, and let yj denote oqe-dimensional Hausdorif measure on lj 

normalised to have total mass 1. Then define the following maximal function, 

MCNf(x) := sup 
11,j 

If(x -y)Id(y). 	 (5.2
1<j~N 

Proposition 5.1.1. [18] Fix d > 2, N > 1, and a collection of line segments 

{l : 1 <j < N} as above with w 	Wk for each j k. Then there exists E > 0 

and a function f6 in L' such that 

e Rd: M N fE(x) > E} ~! B(d)N 1IIflI i . 

The main goal of this chapter is to consider the weak type behaviour of Mr on 

(L), for 1 belonging to the family of functions in (1.24) and certain examples 

of piecewise linear F. 

Overview. In Section 5.2 we firstly consider the case = P/Q, where P and Q are 

polynomials with rational coefficients. This certainly covers the parabolic case, 
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k+2 

Figure 5.1: A piecewise linear version, 'y, of 

(t) = (t, t2), and we note that the derivative of the resulting 'y, as defined above 

in (5.1), belongs to C1. We include some fragmentary results in the case of real 

coefficients. Persuaded by the generality of Proposition 5.1.1, we also consider the 

case where (t) is a prototype flat curve, 22  for small t > 0; again y' belongs 

to C (or strictly speaking, some modified local version of C1). In Section 5.3 we 

include a very brief discussion on the sharpness of the our results. 

Notation. Write A < B for A < GB where the constant G depends on at most 

F. If v E R, define Rv := {tv : t E IR}. If E is a finite line segment, denote 

the length of E by L(E). Let dist(E, F) = inf{Ix -yj : x E E and y E F}, for 

nonempty subsets E and F of 

5.2 Main results 

Rational coefficients 

Theorem 5.2.1. Suppose ). e Q fl (1, oo), and let (t) = (t, R(t)) where R(t) = 

P(t)/Q(t) and P and Q are polynomials with rational coefficients such that R is 

non-affine. If F(t) 	(t, y(t)), where 'y satisfies (5.1), then Mr,  is not of weak 

type L(logL)U  for each a E (0,1/2). 

Remarks. 	1. Our proof of Theorem 5.2.1 is completely based on Christ's proof 

of Proposition 5.1.1 in [18]. We use exactly his construction of the function 

fE. For the specific F in Theorem 5.2.1, however, we shall see that it is 

possible to make a quantitative estimate on how small E should be; this is 

in contrast to the indeterminate way E is chosen in Christ's proof, which is 

of course demanded by the generality of Proposition 5.1.1. 
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The case where F is a curve in Rd (d > 2) with (smooth) rational compo-

nents has been studied in [29] and [30]. In particular, if R1,.. . , Rd are real 

rational functions and F(t) = (R1(t),. . . ,Rd(t)) then it is shown in [30] that 

Hr and Mr, are bounded on LP for all p e (1, oo). 

With reference to the discussion in Section 4.3 on page 71, since L log L 

locally sits inside L(log L)1/2, Theorem 5.2.1 does not preclude the condition 

'Y' e C1 as being sufficient for the maximal operator along the plane convex 

curve (t, 'y(t)) to be of weak type L log L. 

When R is affine, Mr is essentially the classical one-dimensional Hardy-

Littlewood maximal operator, and hence is of weak type L. 

Proof of Theorem 5.2.1. Let ) = p(X)/q(A), where p(.X),q(A) E N, p(A) ~! 2. 

Write Enl 
R(t) - 	 no PrtT 

- 	 0 q3t8 

where each Pr and q3 are rational and p 0 , p 1 , q 0 , q 1 are all nonzero. Without 

loss of generality, we suppose that min(no, mo) > 1 and p1 = q 1 = 1. If we let 

n := n1 - m1 then we have the following fact: Given 0 < A1 < 1 < A2 there 

exists to 	1 such that 

A1ttm < R(t) 	A2tm. for all t e (to, 00). 	 (5.3) 

It should be clear from (5.3) that the cases n = 0 and n = 1 should cause the 

most difficulty. Heuristically, these cases are closest to the situationwhere all the 

line segments are pointing in the same direction. 

Fix a natural number N, which counts the number of line segments. This 

parameter will later tend to infinity and should be considered large. If k is an 

integer with 1 < k < N, let 1k be the portion of the curve F in the interval 
[),.ko+k_1, Ako+k]. Here, k0 - 1 is another fixed natural number whose role is 

to ensure that we are sufficiently far along the curve so that we have useful 

information on R, like (5.3). The exact value of k0 will not be given, but it will 

be clear from the proof that an appropriate choice can be made. 

We parameterise each line segment 1k in the following way: 

{Ck + 0, TO : t E [ —.tk, tk]}, 	 (5.4) 

where 
R(Ak0) - R0') 

,\ko+k - 
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is the slope of ik, Ck is the midpoint of tk, and tk is some real number. It is 

straightforward to verify that 

I A' for n>1, 
tk 	and L(lk) 	'i1 ,k 	for n < o. 	

(5.5) 

Also define 

:= 	{t(1,rk) : t e [ —tk/8, tk /811, 	 (5.6) 

: 	{ck + t(1, m) : t E [—tk/2, tk/2]}. 	 (5.7) 

Clearly Mr dominates Mc,,; for the majority of this proof, we work with MEN . 

It is crucial that we have some control on the slopes 'rk. The following lemma 

contains the information we require. 

Lemma 5.2.2. 1. For 1 <k <N, 

(n-1)k for n> 2, 
ITkH1 1 	for n_<l, 

2. For any jk,is 

-pN 
for m>2, 
form < 1, 

for some natural number p depending only on R, and 

<  {
(n-1)N for  > 2, 

1 	for m<1. 

Proof. The proof of this lemma is easy if n > 2 or n < —1. For n > 2, we have 

A1 —A -ThA2 ko+kXn1) < rk< A2—AA1k0+kfl_1 	
(5.8) 

and so part (1) of the lemma follows by choosing A1 and A2 sufficiently close to 

1 so that A n > A2/A1. We also get from (5.8), and perhaps a refined choice of 

A1, A2 	1 sufficiently close to 1, that 

Th - AA Al 	2-i >1. (5.9) 
Tk - A2 - 

Therefore, if k > j, 

Tk - ru = - 
Tj ~! Irk - Tk-1 = Tk(1 - Tkl/Tk) Tk 1, 

which gives the lower bound in part (2) of the lemma. The upper bound Irk — I 
,\(fl1)N is trivial by (5.8). A similar argument also works for n < —1 and so we 

omit the details. 



Suppose now that n = 1. Although the above argument still applies to get 

part (1) we shall need to be a little more careful in order to establish part (2). 

We have 

1 	Vm1 V'T 	prqs(A - ) —r)A(r+s_i)(ko+k) 
L.jr=n0 L_.j3 7fl0 = 

I'çThi ( 1 - A' 'ç' 
3
mi 

Tfl3 
q5A8(ko+k)) (Li'=m0 q3,A8'( co+k_i)) 

\ L_d  

= 1+Rk, 

where Rk Pk/Qk, and 

M1 mi—i 

Pk 	 prq5(A - )_r)A(r+s_i)(ko+k) 

r=no s=mo 
mi—i nij—i 

- 	i 	q8q8,_S' 
- A_ 8'_l)A(s+3')çko+k) , 

8=m s'=m0 

ml 

m1 

Qk := I:i q3q3'(A' - 

S=MO s'=mQ 

Therefore, ro 
Pk =

>r(ko+k) Tr  

r=min(no+mo-1,2mo) 

for some r0 < 2mi - 2, with 	0. Indeed, if all the Tr were zero then Tk = 1 

for each k > 1, and this implies that R is affine. It is clear then that, choosing 

k0 	1 sufficiently large, we can make Rk as close to the quantity 

	

Pro 	A(2miro)(ko--k) 
(A—mi - A_mi_i) 

as we please; since 	1, this certainly proves part (1) of the lemma when 

n = 1. For part (2), suppose that F, > 0. Then Rk > 0 for each k and Rk+i/Rk 
is as close to A—(2m1_ro) < 1 as we please. Hence, if k > j, 

Tk — TjRk --RjHRj — Rk 

A similar argument for the lower bound in part (2) can be used if 	<0. Also it 

is clear that ImI < 1 for each k and this implies the upper bound in part (2); this 

completes the proof of the lemma when n = 1. The case ri = 0 can be handled 

in a similar way to the case n = 1 so we choose to omit the details. 	E 

The next step is to define a set of points in R2 , 

{z:1kN, 0j:!~A(k)-11, 	 (5.10) 

which meet certain conditions. For 1 < k < N, we fix A(k) to be some integer 

satisfying 

max(L(lk), 1) <A(k) < IL(lk ). 	 (5.11) 
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Such a choice is certainly possible; for instance, we are free to dilate each of the 

line segments Ik by a fixed factor (which may depend on N). Thus, we may do 

so in such a way that L(1k) > 1 for each k and then the existence of A(k) is 

immediate. Assuming the have been chosen, we let 

A:={wER2 :w=z k) 0<—k !~A(k)_1}. 	(5.12) 

Define, for each 1 < k < N, a kth-equivalence relation on A, k, by 

if 	w, w' e A then w k WI if and only if w - W I E ](1,Tk). 

Then the following are the required conditions on the 

(Z 1). z=O. 

zEl k .. 

For fixed 1 <j <N, if w, w' e A and w = lZk,W' =
EN k 
 lZk then 

w 	j w' if and only if cei = Oi for all i j 

A simple consequence of condition (Z3) is that 

N 	 AnN(N+1)/2 for n > 1, 
JAI 

= fi A(k) 	AN( 1)/2 for n < 0. 	
(5.13) 

k=1 

We shall initially define a set of points 

{Z:1<k<N, 0<jA(k)-1} 

which are manageable in a sense that will become clear later in the proof. These 

points will satisfy (Zi) and (Z2), but may not satisfy (Z3). Our choice of the 

will then be a small perturbation of the 	to ensure (Z3), whilst not disturbing 

the nice properties of the Z. To define the Z, we introduce positive numbers 

SN inductively in the following way: 

and for 2 < k N, 

:= C2(N) 	 (5.14) 

where C1 and C2(N) shall be chosen later, with the constraint 

C1 	1 and 1 < C2(N)N_1 < Sj. 	 (5.15) 

Then we have the following tautological result. 



Lemma 5.2.3. 	1. For 2 < k < N we have 6k = c2(N) (1 + G2(N))k_2  s. 

2. 0< 61< 82 < ... < 6N - . 

For I Forl <kNand0j A(k)-1,define 

Zjk 	C3(N)j(1 + Sk)(1, TO, 	 (5.16) 

where the role of the constant C3(N) is to ensure that 

C3(N)A(k)(1 + Sk)  <tk/16 for each 1 < k < N. 	(5.17) 

It follows from Lemma 5.2.3(1) and (5.15) that there exists a choice 

C3(N) A(N)' 	 (5.18) 

which is up to this task. 

Now we shall use the Zjk to define the z. We make the following claim: For 

each 1 < k < N, we can choose real numbers i for 1 < i < k and 0 < r < A(r) 

so that 

0 <i 	C(N) := min({ti /(16A(l)) •: 1 < I < N} U {A_(C1+2)N2}), 	(5.19) 

and if 

	

z := Z + ri7.(1, TO, 	 (5.20) 

then z E l and condition (Z3)k  holds; this condition being condition (Z3) with 

1 <j < N but the set•Jl replaced by all elements of the form 

zai for 0<aj  

Note that (Zi) is clearly satisfied if we have (5.20). We proceed by induction on 

k. 

If k = 1 then we define lqjl:=  0 for each 0 < j < A(1). One can easily check 

that each Zil , and therefore z, lies on Ti . Since each z's distinct, condition (Z3)1  

is also satisfied. 

Suppose the claim has been shown to be true for k. We shall define each 

in succession, beginning withOne can check that as long 	k+1  does not 

belong to one of the following lines 

k 	

- 	+R(i,r) for j k+ land 0 	<A(i) —1, 	(5.21) 

then condition (D) k+1  will not be violated for ak+1 E {0, l}. We do not need to 

include the case j = k+ 1 in (5.21) because this case is handled by the assumption 



that the claim is true for k. One can also check that as long as we have (5.19) then 

we have Z '+ij '(1,Tk+1) e 	This means we can choose any 	satisfying 

(5.19) except the finitely many possible 	for which Z' + i'(1, Tk+1)  lies 

on one of the lines in (5.21). Now fix such a choice of 77 4, and hence z 1, and 

consider ij '. One can again easily verify that as long as zr1  does not belong 

to one of the lines 
k 	

- z.) +(i,r) for j 	k+ 1, 	 (5.22) 

or one of the lines 

—4)+R(i,rj) for jk+1, 	(5.23) 

then condition (Z3)k+l  is not violated for ak+1  E {0, 1, 21. Also, if 	satisfies 

(5.19) then Zr'+21'(1,Tk+1) E 1k+1 Hence we are free to fix any 772  obeying 

(5.19) except the finitely many for which Z' + 2iir'(l, Yk+1) lies on one of the 

lines in either (5.22) or (5.23). We may continue this procedure to obtain 

satisfying (5.19) for 0 < r < A(k + 1) - 1 and which give rise to points zr' 
via (5.20) which satisfy (Z3)k+1. (Note that the bound on the right hand side of 

(5.19) ensures that if we have (5.20) then we always have4 E 1k.) This completes 

our induction. 

Henceforth in this proof zk is defined by (5.20), where 77,k  satisfies (5.19), and 

the 4 satisfy (Z1),(Z2), and (Z3). 

Remark. We have now introduced four distinguished constants C1, C2(N), C3(N), 

and c4(N) involved in the definition of the points 4. These points are absolutely 

key to the proof of Theorem 5.2.1. To avoid confusion, no other constant which 

appears in the remainder of this proof will contain a subscript. 

Define 
-(C1+1OO)N2, 	 (5.24) 

and 

fN(x) := i: XBe(w)(X)• 	 (5.25) 
WEA 

This is the function f appearing in the statement of Proposition 5.1.1; the sub-

script has turned into N since this is the crucial parameter in the proof of Theorem, 

5.2.1. For each wEit and l<k<Ndefine 

S(w, k) := {x E I2 : dist(x - l,, w) <e/2}. 	1 (5.26) 

We claim that, for each w E A and 1 < k < N, 

S(w, k) 9 {x e 	M N fN(x) > r/21. 	 (5.27) 
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To see this, fix 1 < k < N, w EA, and x e S(w,k). It suffices to show 

L((x 
- 

Ik) fl B(w')) ~: /2 for all w' k w, 	 (5.28) 

because (5.28), the fact that there are precisely A(k) elements w' e A for which 

W' 	k w, and (5.11) give 

MNfN(x) ~ I fN(x—y)dk(y) 

Ptk 	 dt 

J XB(W')(2 kt(1,Tk)) 

C 

4tk(1,rk)i 	
1 

W'kW 

- eA(k) 

- 2L(1k) 
> e/2. 

To prove (5.28), suppose w' k w so that, first using condition (Z3) and then 

condition (Z2), w' - w = (s' - s)(1,'rk) where s, s' E [—tk/8,tk/8]. Now, x E 

S(w,k) and therefore. there exists t E [—tk /2,tk /2] for which 

jx— (Ck +t(1,m)) — WI =dist(x—lk,W) <e/2. 

Hence 

Ix - (Ck + (t - (s' - s))(1,TO) - w'j = Ix - (Ck + t(1,rk)) - WI <e/2, 

and since It- (s' - s)j < tk it follows that 

dist(x - 1k, w') <e/2. 	 (5.29) 

Obviously L(x 
- ik) ~! e/2 and therefore (5.28) follows from (5.29). 

We have now reduced matters to obtaining a lower estimate on the area of 

S(n,j). 

j=1 WEA 

The bulk of the work for this is contained in the following lemma. 

Lemma 5.2.4. For each 1 < j < N, 

U S(w,j) > dAt. 
wEA 



Proof. Fix 1 <j <N and let 

and 0<—akA(k)_ 1}. 
k=j 

Then we have 1AI = A/A(j). We claim that if we take distinct elements T and 

i 	from A then S(i, j) and SIZ, j) are disjoint: This claim granted, the lemma 

follows easily because 	 - 

Us(w,j) I ~! q S(O, j) 
wEA 

= 	
jS(,j)j > ___ 	 > EA 

- 2 A(j) 

where the final bound is due to (5.11). To prove the claim, suppose that S(j,j)fl 

S(, j) is nonempty. Then it follows that 

dist(T - ;, 1j 

	

- 
<. 	 (5.30) 

The rest of the proof is therefore dedicated to showing that, using our choice of 

the zk, (5.30) is a contradiction. 

Write 	= kj Zk and 	= >kj Zak. 
Suppose thatX is the set of all 

k e {1,. . . , N} \ {j} for which ak 13k• Clearly X is a nonempty set, and we let 

k0 be the largest member of X. 

We shall be working with the. Zjk initially (recall their definition in (5.16)), 

and we write, 

> 'zk k 	13k 

k363- 

C3(N) 

j

c3(N) 	(ak 
- k) + C3(N) 	ök(ak - 

kj 	 kj 

C3(N) 	r(a 
- k) + C3(N) 	Tkök(ak - ak)) 

kj 	 kj 

=: (8+ri,t+r2). 

A simple computation shows that 

(1 + 7-32)1/2dist((s + r1,t + r2),R(1,i-j)) = I(rjs - t) + (rjri - r2)I. 	(5.31) 

When nonzero, -rj s - t provides the main contribution to the second term on the 

right hand side of (5.31). A lower bound is attained in Sublemma 5.2.6 below. 

First, the following sublemma gives us the required bounds on the 'remainder' 

term, j'rri - r2 1 - 
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Sublemma 5.2.5. If p is from Lemma 5.2.2(2), then 

'r3r1
- 

 r2l <{ NA
1 "öN for rt >  2, 

NSN 	for n<1, 

and 	

Irri-r2I 
{ 

C(N)S1 	for n>2, 
APIrC3(N)61  for  <1. 

Proof. For the upper bound, we use Lemma 5.2.2, Lemma 5.2.3, and the fact 

that the number of points on each 1k  is equal to A(k). For the lower bound, first 

consider n > 2. Note that 

	

C3(N)1r2 - Tjri = (7-k0 rj)6k0(ak0 - 13k0 ) + 	 (Tk - ij)ök(ak - 13k) 
kEX\{ko} 

and we deal with the more difficult case where JC \ {ko } 0 first. If n > 2, then 

using the fact that there at most A(N) points on each 1k  and Lemma 5.2.3 we get 

k0 —1 

C3(N)'r2 - 7rjriI 	
- CA(n_l)NA(N) 

k=1 

for some C 1. Now our definition in (5.14) implies that it is possible to choose 

C2(N) r'.i n_l)NA(N), 	 (5.32) 

such that C3(N) 1 1r2 -rriI 	0; by Lemma 5.2.3 this implies the lower bound 

when n > 2 and X \ {k0 } 	0. Note that (5.32) does not violate (5.15) for a 

suitably large choice of C1  1. If n > 2 and X \ {k0 } = 0 then, by Lemma 5.2.2 

and Lemma 5.2.3, C3(N)'1r2 - rjri  I = JTko - 	- !3k01 6, as required. 

When n < 1 the same argument applies, and Lemma 5.2.2 moves us to make 

the choice C2(N) ,\PNA(N),  which of course does not violate (5.15). 	El 

Sublemma 5.2.6. If 'rjs - t 0 then for sufficiently large N, 

jTjS - tj > A_4m1N(N_1)q()_4m1 N 2  

Proof. It suffices to consider the case where P and Q have integer coefficients 

since we are free to replace 'y with any fixed nonzero multiple. Now, 

(1 - X1)rk 
= 	r pr T_1X1C0 	- 	 ___ 

q \s(ko+k) 	 q9).s(ko+k1) 

pq8),(k0+k)(T+8_l)(_8 - 

Es 	8' q3q8,A(8+3')(k0.)_8 



and therefore 

(1 - 	- Tk) = 
	r,s,c,c' prqsqcqc'(' - 	

- )r) 	
-. 	(j, k) 

qsqs'qcqc' )(s+s')(ko-f-j)+(c+c')(ko+k)—s—c -. D(j )  k) 

where, 

I:=I(r,s,c,c'):=(ko+j)(r+s-1)+(ko+k)(c+c')—cEN, 

J := J(r, s, c, c') := (Ico  + k)(r + s - 1) + (k0  + j) (c + c') - c e N, 

for no  < r < n1  and m0  < s,c,c' < m. Using the fact that max(I,J) 

(ni  + 3m1)(ko  + N) it is easy to see that 

C(N)N'(j, k) := q(A)21+3m1)0+r)p(A)fh+m1(j, k) e Z. 

Similarly, one can check that 

C'(N)D(j, k) := q(\)4m1(ko+N)(j, k) e Z. 

Since 

	

(1—)r1)(rs—t) = 	
1(j, k) 

kj 

1 

	

= 	Ilk/1 54i (j, k")  
- 	k)(j, k) 

(k/54j,k/54k 

	

fl 	(j, k/)
kj  

it follows that 

(1 - _1) (H (j, k/F)) C(N)C/(N)N_2(rs - 

Moreover, 
T(j, k) = 

so 

Now we can use the fact that 'rj s - t 0 to deduce 

-  tj > _4mN(N_l)C(N)_lC/(N)_(N_2)Tjs  	> _4iniN(N_1)q)_4miN2, 

for sufficiently large N. This completes the proof of Sublemma 5.2.6. 	El 

We are now in a position to show that (5.30) is a contradiction, and hence 

complete the proof of Lemma 5.2.4. First, suppose 7-3s - t is nonzero. It is clear 



from Sublemma 5.2.5 and Sublemma 5.2.6 that, upon a large enough choice of 

C1 	1, we have 1,rjs - tj > ft7r1 - r21. Therefore, (5.31) and Lemma 5.2.2 imply 

dist 
(z 

- Zak), R(1, Ti)) 	A_(n_1)N_4mlN(N-1)q(A)4m1N2, 

kj 

for sufficiently large N. If on the other hand -r3s - t is zero then we use (5.31), 

Lemma 5.2.2, Sublemma 5.2.5, and the choice of C3(N) in (5.18) to get 

dist ((Zk - zk)R(1TJ)) 
> 	i+2, 	 (5.33) 

kj 

for sufficiently large N and Ci 	1. Thus, in either case, we can conclude that 

(5.33) holds. Hence there exists a constant C r'J 1 such that 

dist(i - i, R(1, rj)) 

= dist (E(Z~k
k Zak) + 	(ckij

Cek - I3k?/3k)(1,Tk),1.(1,
kj 	 kj 

(E(Z.k> dist 	z k )R(1 Ti)) - 	(akiik 

kj 
- 

kj 

,\—(Cl +1)N2 
— C.Iakr k _ 3k 17/3k H( 1, 7k)I. 

kj 

It follows from (5.19) that dist (0-1 - 	,R(1,r)) > )(cl+1)N. But ij - ij ç 

R(1,r), so, for sufficiently large N, 

dist(ij - 	-) -:,>dist(j— i,1(1,r)) > A_'" > . 

This contradicts (5.30) and thus completes the proof of Lemma 5.2.4. 

We next intend to use Lemma 5.2.4 and our choice of E to prove that the sets 

Sj :=S(w,j) for 1jN, 
wEJl 

are essentially disjoint. We claim that this follows if we can show that there exists 

some C r. 1 such that whenever i j, 

S(w,i) fl S(w',j)I <)CNE2 	 (5.34) 

where w and w' are allowed to be equal. Since (5.34) is not difficult, we prove this 

first. Observe that S(w, j) is a tubular neighbourhood around the line segment 

w + i. Therefore the maximum overlap of S(w,i) with S(w',j) occurs as shown 
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S(wi) 

S(w ',j) 

Figure 5.2: The maximum overlap of S(w, i) and S(w', j) 

in Figure 5.2, where Oi j e (0, ,7r/2) is the angle between the vectors (1, r) and 

(1, 'rj ). A little elementary geometry gives 

ri - 7j I 	> 	
-2(n-i)N for n > 2, 

sin 	
= (1 ± r2)'/2(1 +,r2)1 /2 	 for m < 1, 

from which (5.34) follows. 

An elementary consequence of (5.34) is that, for any r > 2 and 1 < i1 <... 

ISji fl ... fl Si, < A CNE2 JA 12. 	 (5.35) 

Using the inclusion-exclusion principle in a very crude way this implies 

U S ~ 	- 2NCNs2lAI 2 

By Lemma 5.2.4, there exists C' 1 such that 

$ 	2C'NAI. 	 (5.36) 

Recalling our choice of E in (5.24), and the the estimate in (5.13) for the cardinality 

o 1 A, there exists a suitably large choice of C1 '--i 1 such that 

	

C' > N 12''AI. 	 (5.37) 

(The constants may cause some confusion here; recall Ci is one of our distin-

guished constants, C 1 appears in (5.34), and C' arises in (5.36) above.) Hence, 

U U S(w,j) = US 	 (5.38) 
j=1 wEA 	 j=1 	j=1 



This bound is sufficient to complete the proof of Theorem 5.2.1: If we suppose 

that Mr  is of weak type L(log L)a  for some a E (0, 1/2) then, by (5.27) and 

(5.38), 

	

NIAIE 
< f f(x) 

(g 
 (2,(1) + 

10))a 
dx. 	(539) 

However, 0 	fiv(x) < JAI, from which it follows that the right hand side of 

(5.39) is ;$ 
(log (21AI + io)) 	Be(w)l < N2 AIE. 

w€A 

Since a E (0, 1/2), this is clearly nonsense for large enough N, and thus the proof 

of Theorem 5.2.1 is complete. 	 E 

Real coefficients 

It is clear from the proof of Theorem 5.2.1 that the proof of Sublemma 5.2.6 was 

the sole place that we used the condition that the coefficients of the polynomials 

P and "Q were rational. The real coefficient case seems to be tricky if one adopts 

the same approach. Let us consider the basic case where P(t) 	p,t where 

n > 2 (p 	0), Q = 1, and A = 2. Then, reusing notation from the proof of 

Theorem 5.2.1, 

2 1( 	t) 	
n 	N 

C(N) 	
- k)(2 - 2  n—r) (2  (ko+j)(,—l)  - 2(ko+k)(r_1)) 

=: 	pI(r,j,N), 

where 1(r, j, N) is an integer for each r, j, and N. In the case where 'rs—t Owe 

have only been able to control 	prl(r, j, N) I from below in very easy cases 

using elementary arguments. For example, if we assume that p2 = ... = pa-i = 0, 

or nothing when n = 2, then we can easily deduce that 

rs - t 	0 = Iris - tl > C3(N). 	 (5.40) 

At the next level of difficulty where precisely one of P2, 	p,, is nonzero, say 

Pro , then we are looking to control the quantity, 

Iprjfr0, j, N) + pI(rt, j, N)l, 

from below. We may as well assume that I(ro, j, N) and I(n, j, N) are nonzero; 

otherwise we immediately get the outcome in (5.40). Thus we are naturally led 

to the theory of rational approximation and the topic of convergents. 
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Definition 5.2.7. Let ( be a real number with continued fraction representation 

[ao; a1, a2,...] (ao e Z and a3  e N for j > 1). Then, for I > 1, the convergent 

of order 1 of is the (irreducible) rational number A1/B1  with continued fraction 

representation [ao; a1,. . . , all 

The following theorems contain the crucial results we need concerning conver-

gents. Proofs can be found in [36]. 

Theorem 5.2.8. Let ( be a an irrational number. If A1/B1  is the convergent of 

order I of(, then 

1 
inf{ JO( —aI /3 E{1,...,Bi },c EZ}=IB1(—Al l 

for sufficiently large 1. 

Theorem 5.2.9. There exists a null set N (in the sense of Lebesgue) such that 

for all (belonging to R \ N there exist real numbers i and ii in (1, oc) such that, 

for sufficiently large 1, 
< B1  <ii. 

Suppose that at least one of Pro/Pn  and Pn/Pro  is an irrational number and lies 

outside the null set N from Theorem 5.2.9, and for argument's sake suppose the 

former is such a number. Let A1/B1  denote the convergent of order l of PrO /Pn 

and let ji and v be the growth constants from Theorem 5.2.9. Without too much 

work, one has the estimate, 

I(ro,j,N)I <25nN <CN 

for some C 1, and without loss of generality we take C to be a natural number. 

Hence, by Theorem 5.2.8 and Theorem 5.2.9, 

I(ro,j, N)pr0 /pn  + I(n,j, N)I > IBCNPT0/Pr, - AcNI 

> 
1  >_L 

- BCN+1 + BCN vCN 

Therefore, we can deduce that 

Iris - tI 0 0 = rs— tj > C3(N)v'. 

However, we are stuck with the undesirable problem that the null set 'f is inde-

terminate. If instead we had assumed that either prô/pn,  or its reciprocal, was 

an algebraic number then Liouville's classical theorem on rational approximation 

(see, for example, [1]) will also give a version of Sublemma 5.2.6. (Roth's famous 
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improvement of Liouville's theorem is of no help to us here.) However, this re-

sult is much more unsatisfactory since algebraic numbers form a null set in R. 

We summarise the above observations in the following 'baby theorem'. Further 

progress in the real coefficient case seems to require a fresh approach, with a view 

to handling a greater number of nonzero coefficients. 

Baby Theorem 5.2.10. Suppose A = 2 and (t) = (t,P(t)) where P(t) 

E= ptT for some n> 2 and p,, 0. The following conditions are sufficient to 

conclude that Mr  is not of weak type L(log L)a  for any o E (0, 1/2). 

n=2. 

n > 3 and {P2,... ,Pn_i} = {0}. 

n > 3, {P2,.. . ,pni} = {pro, O} 	f 0 and Pro/Pn,  or its reciprocal, is an 

irrational number which either belongs to the complement of the null set N.  

arising in Theorem 5.2.9 or is an algebraic number. 

A flat example 

In a different direction, we simply state a result concerning our flat curve proto-

type (t) = 22 with A = 2. We are only interested in the resulting piecewise 

linear curve F near the origin and thus the local operator M10C.  Notice that the 

argument we used to prove Theorem 5.2.1 considered the portion of the curves in 

question at infinity. However, one can check that we could have also considered 

the portion of the curves near the origin. This requires blowing everything up by 

a factor C(N) which does not affect the argument at all, and this approach yields 

the following theorem. 

Theorem 5.2.11. If ci E (0,1) then M?C  is not of weak type L(log 2 L). 

Despite the flatness at the origin of (t, 2_t2), when one forms the piecewise lin-

ear version, one still has a good quantitative grip on how the slopes are behaving. 

Indeed, one can check that as k tends to minus infinity, the slope on [2k ,  2k+1] 

is essentially 2C'221'  for some C '-'-i  1. This fact determines the conclusion of 

Theorem 5.2.11. 

Remark. Although we have not checked the details, we suspect that all of the main 

results in this section are also true for the associated singular integral operator 

Hr. In [18], Christ remarks that it is apparent from his construction that H 

is not of weak type L when F is a piecewise linear curve whose derivative takes 

infinitely many values. 
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5.3 Sharpness 

For this discussion, let us consider the case 	= t2  which motivated Theorem 

5.2.1. We know from this result that, at best, Mr  locally maps L(logL)"2  into 

L"°°. We suggest that it is far from obvious how one can push Christ's coun-

terexample construction any further. Recall that we needed our choice of r to 

satisfy (5.37) in order to prove that the sets Sk are essentially disjoint, and thus 

avoid the very delicate question of how they overlap. Moreover, we needed (5.37) 

to be true regardless of what we chose as the definition of theFrom this point 

of view, we are forced to take e to be at most CN2 for some C 1. For any 

improvement, we need € to be at least )C"N8  for some C' r'  1 and s < 2. 

We believe that the best known result in the positive direction is in [14] where 

it was shown that Mr maps LP to L (globally) for all p> 1. The same result also 

follows from a more general result in [13]. The proof in [13] involved a bootstrap 

argument involving a square function very closely related to the following one: 

(kcZ 	

1/2 

where Rf() = 2Xk(e)f(e) and, for a fixed A E (1,00), 

The /k  are angular sections which form a decomposition of the plane and are 

finitely overlapping. It is certainly not clear to us how a bootstrap argument 

would apply to the Orlicz spaces near V. However, we conclude this chapter 

with a 'sketch proof of the potentially useful observation that R is not of weak 

type L(logL) for each a E [0, 1). That fR is bounded on LP fOr all p> 1 is 

essentially proved in [50]. Also, the smoothed out version of 'R is a Marcinkiewicz-

type multiplier, and a result of R. Fefferman in [28] implies that 'R is of weak type 

L log L. 

Sketch proof of our observation. First notice that 

Rkf = f + Hk(Hk+2f), 	 (5:41) 

where Hkf := Hf(•,wk) and H is the operator in (1.9), with the dilations 5t 

isotropic and Wk := (-1, A')/(-1, A')I. Equality (5.41) follows because Hkf(e) = 

—isgn(.wk)f(). OU'r  observation follows simply 'by evaluation of R on 

for sufficiently small 6 > 0. The point is that if, for k > 1 the infinite strips Ek 

are 	are those shown in Figure 5.3, then - log(116) of these >k are disjoint, 
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-1 	 -6 	58 78 	 1 

Figure 5.3: The strips Ek  and 

and for x in Ek,  we have that IRk (xB2o )(x)I > 5(Akx1 + x2)'. The latter is 

true since Hk+2(xB25(o))(y) 6IyL1 for y e . Thus, for small 5 > 0 we get, 

I{x e 	: 2f  (X) 	5} 	6log(1/5), 

and our observation follows. 

93 



Bibliography 

[11 T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, 

2nd Ed., New York: Springer Verlag (1997). 

A. Benedek, R. Panzone, The spaces II, with mixed norm, Duke Math. J. 

28 (1961), 301-324. 

C. Bennett, R. Sharpley, Interpolation of Operators, Academic Press (1988). 

N. Bez, L-boundedness for the Hilbert transform and maximal operator along 

a class of nonconvex curves, Proc. Amer. Math. Soc. 135 (2007), 151-161. 

J. Bourgain, Besicovitch-type maximal operators and applications to Fourier 

analysis, Geom. Funct. Anal. 1 (1991), 147-187. 

A. Calderón, A. Zygmund, On the existence of certain singular integrals, 

Acta Math. 88 (1952), 85-139. 

A. Calderón, A. Zygmund, On singular integrals, Amer. J. Math. 78 (1956), 

289-309. 

A. Calderón, A. Zygmund, On singular integrals with variable kernels, Appl. 

Anal. 7 (1978), 221-238. 

A. Carbery, M. Christ, J. Vance, S. Wainger, D. Watson, Operators associ-

ated to flat plane curves: L° estimates via dilation methods, Duke Math. J. 

59 (1989), 677-700. 

A. Carbery, F. Ricci, J. Wright, Maximal functions and Hubert transforms 

associated to polynomials, Revista Mat. Ibero. 14 (1998), 117-144. 

A. Carbery, J. Vance, S. Wainger, D. Watson, The Hilbert transform and 

maximal function along flat curves, dilations, and differential equations, 

Amer. J. Math. 116 (1994), 1203-1239. 

A. Carbery, S. Ziesler, Hubert transfirms and maximal functions along rough 

flat curves, Revista Mat. Ibero. 10 (1994), 379-393. 

94 



H. Carlsson, M. Christ, A. Cordoba, J. Duoandikoetxea, J. L. Rubio de Fran-

cia, J. Vance, S. Wainger, D. Weinberg, LP estimates for maximal functions 

and Hubert transforms along flat convex curves in 1R2, Bull. Amer. Math. 

Soc. 14 (1986), 263-267. 

H. Carlsson, S. Wainger, Maximal functions related to convex polygonal lines, 

Indiana Univ. Math. J. 34 (1985), 815-823. 

L.-K. Chen, The singular integrals related to the Calderón-Zygmund method 

of rotations, Appl. Anal. 30 (1988), 319-329. 

L.-K. Chen, The maximal operators related to the Calderón-Zygmund method 

of rotations, Illinois J. Math. 33 (1989), 268-279. 

M. Christ, Weak type (1,1) bounds for rough operators, Ann. of Math. 128 

(1988), 19-42. 

M. Christ, Examples of singular maximal functions unbounded on L, Con-

ference on Mathematical Analysis (El Escorial, 1989), Pubi. Mat. 35 (1991), 

269-279. 

M. Christ, J. Duoandikoetxea, J. Rubio de Francia, Maximal operators re-

lated to the Radon transform and the Calderón-Zygmund method of rotations, 

Duke Math. J. 53 (1986), 189-209. 

M. Christ, E. M. Stein, A remark on singular Calderón-Zygmund theory, 

Proc. Amer. Math. Soc. 99 (1987), 71-75. 	 - 

A. Córdoba, The Kakeya maximal function and the spherical summation 

multipliers, Amer. J. Math. 99 (1977), 1-22. 

A. Córdoba, J. L. Rubio de Francia, Estimates for. Wainger's singular inte-

grals along curves, Revista Mat. Ibero. 2 (1986), 105-117. 

M. Cowling, C. Mauceri, Inequalities for some maximal functions, I, Trans. 

Amer. Math. Soc 287 (1985), 431-455. 

J. Duoandikoetxea, Fourier Analysis, American Mathematical Society, Prov-

idence, Rhode Island (1995). 

R. Durán, On polynomial approximation in Sobolev spaces, SIAM J. Numer. 

Anal. 20 (1983), 985-988. 

E. B. Fabes, N. M. Rivière, Singular integrals with mixed homogeneity, Studia 

Math. 27 (1966), 19-38. 

- 	 95 



R. Fefferman, On an operator arising in the Calderón-Zygmund method of 

rotations and the Bramble-Hubert lemma, Proc. Nat. Acad. Sci. U.S.A. 80 

(1983),3877-3878. 

R. Fefferman, Some topics from harmonic analysis and partial differential 

equations, Essays on Fourier analysis in honor of Elias M. Stein (Prince-

ton, NJ, 1991), 175-210, Princeton Math. Ser., 42, Princeton Univ. Press, 

Princeton, NJ, (1995). 

M. Foich-Gabayet, J. Wright, An oscillatory integral estimate associated to 

rational phases, J. Geom. Anal. 13 (2003), 291-299. 

M. Foich-Gabayet, J. Wright, Singular and maximal operators associated to 

curves with rational components, to appear in Trans. Amer. Math. Soc. 

P. Gressman, L-improving properties of X-ray like transforms, Math. Res. 

Lett. 13 (2006), 10001-10017. 

G. H. Hardy, J. E. Littlewood, A maximal theorem with function-theoretic 

applications, Acta Math. 54 (1930), 81-116. 

A. Kamiñska, Some remarks on Orlicz-Lorentz spaces, Math. Nachr. 147 

(1990),29-38. 

N. Katz, T. Tao, New bounds for the Kakeya problems, J. Anal. Math. 87 

(2002),231-263. 

N. Katz, T. Tao, Recent progress on the Kakeya conjecture, Proceedings of 

the 6th International Conference on Harmonic Analysis and Partial Differ-

ential Equations (El Escorial, 2000), Pubi. Mat. (2002), 161-179. 

A. Ya. Khintchine, Continued Fractions, P. Noordhoff (1963). 

W. Kim, S. Wainger, J. Wright, S. Ziesler, Singular integrals and maximal 

functions associated to surfaces of revolution, Bull. London Math. Soc. 28 

(1996),291-296. 

M. A. Krasnosel'sk, Ya. B. Ruticki, Convex Functions and Orlicz Spaces, 

P. Noordhoff (1961). 

G. G. Lorentz, Some new functional spaces, Ann. of Math. 51 (1950), 37-55. 

G. G. Lorentz, On the theory of spaces A, Pacific J. Math. 1 (1951), 411-429. 

Rol 



W. A. J. Luxemburg, Banach Function Spaces, Thesis, Delft Technical Univ. 

(1955). 

L. Maligranda, Indices and interpolation, Dissert. Math. 234 (1984), 1-49. 

J. Marcinkiewicz, A. Zygmund, On the summability of double Fourier series, 

Fund. Math. 32 (1939), 112-132. 

M. Mastylo, Interpolation of linear operators in Calderón-Lozanovskiz spaces, 

Comment. Math. Prace Mat. 26 (1986), 247-256. 

S. Mihlin, Singular integral equations, Amer. Math. Soc. Transi. 10 (1962), 

84-198. 

W. P. Minicozzi II, C. D. Sogge, Negative results for Nikodym maximal func-

tions and related oscillatory integrals in curved space, Math. Res. Lett. 4 

(1997),221-237. 

S. J. Montgomery-Smith, Comparison of Orlicz-Lorentz spaces, Studia Math. 

103 (1992), 161-189. 

A. Nagel, N. M. Rivière, S. Wainger, A maximal function associated to the 

curve (t,  t2), Proc. Nat. Acad. Sci. U.S.A. 73 (1976), 1416-1417. 

A. Nagel, N. M. Rivière, S. Wainger, On Hilbert transforms along curves. 

II., Amer. J. Math. 98 (1976), 395-403. 

A. Nagel, E. M. Stein, S. Wainger, Differentiation in lacunary directions, 

Proc. Nat. Acad. Sci. U.S.A. 75 (1978), 1060-1062. 

A. Nagel, J. Vance, S. Wainger, D. Weinberg, Hubert transforms for convex 

curves, Duke Math. J. 50 (1983), 735-744. 

A. Nagel, J. Vance, S. Wainger, D. Weinberg, The Hilbert transform for 

convex curves in R, Amer. J. Math. 108 (1986), 485-504. 

W. Orlicz, Ober eine gewisse Klasse von Rdumen vom Typus B, Bull. Intern. 

Acad. Pol. 8 (1932), 207-220. 

N. M. Rivière, Singular integrals and multiplier operators, Ark. Mat. 9 

(1971), 243-278. 

S. Sato, Maximal functions associated with curves and the Calderón-Zygmund 

method of rotations, Trans. Amer. Math. Soc. 293 (1986), 799-806. 

97 



A. Seeger, T. Tao, Sharp Lorentz space estimates for rough operators, Math. 

Ann. 320 (2001), 381-415. 

A. Seeger, T. Tao, J. Wright, Singular maximal functions and Radon trans-

forms near L', Amer. J. Math. 126 (2004), 607-647. 

A. Seeger, S. Wainger, J. Wright, S. Ziesler, Singular integral and maximal 

integral operators associated to hypersurfaces: IJ theory, Journ. Geom. Anal. 

15 (2005), 477-498. 

C. D. Sogge, Concerning Nikodym-type sets in 9-dimensional curved spaces, 

J. Amer. Math. Soc. 12 (1999), 1-31. 

E. M. Stein, Harmonic Analysis, Princeton Univ. Press, Princeton, N. J. 

(1993). 

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, 

Princeton Univ. Press, Princton, N. J. (1970). 

E. M. Stein, S. Wainger, Problems in harmonic analysis related to curvature, 

Bull. Amer. Math. Soc. 84 (1978), 1239-1295. 

E. M. Stein, G. Weiss, An Introduction to Fourier Analysis on Euclidean 

Spaces, Princeton Univ. Press, Princeton, N. J. (1971). 

J. 0. Stromberg, unpublished. 

M. E. Taylor, Partial Differential Equations I, New York: Springer Verlag 

(1996). 

J. Vance, S. Wainger, J. Wright, The Hilbert transform and maximal function 

along nonconvex curves in the plane, Revista Mat. Ibero. 10 (1994), 93-121. 

N. Wiener, The ergodic theorem, Duke Math. J. 5 (1939), 1-18. 

L. Wisewell, Oscillatory Integrals and Curved Kakeya Sets, PhD thesis, Uni-

versity of Edinburgh (2003). 

L. Wisewell,Kakeya sets of curves, Geom. Funct. Anal. 15 (2005), 1319-

1362. 

T. Wolff, An improved bound for Kakeya type maximal functions, Revista 

Mat. Ibero. 11 (1995), 651-674. 

J. Wright, LP estimates for operators associated to oscillating plane curves, 

Duke Math. J. 67 (1992), 101-157. 

98 


