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Abstract

This thesis is concerned with the mapping properties of the related objects,

Mf(z,w) := suph™’ fz — Sw) di‘,
» h>0 (0,h)
Mrf(z) := suph™! (z —T(t)) dt‘ ,
h>0 (0,k)

and their associated singular integral operators, H and Hr respectively. Here,
8, = exp((logt)P) and P is a real d by d matrix whose eigenvalues have positive
real part, and I' : R — R% parameterises a curve.

For p in (1,max(2,(d + 1)/2)], we prove that M mapé LP to LP(L9) for an
optimal range of ¢ (modulo an endpoint). For H, the same optimality is achieved
for p in (1,2]. | ' '

If T'(t) = (t, P(y(t))), where P is a real polynomial and vy is a convex function,
then we give sufficient conditions in order for Mr and Hr to be bounded on L?, for
all pin (1, 00)7, with bounds independent of the coefficients of P. We also consider
when these operators map Llog L to weak L! locally. The same conclusions are
shown to hold for the corresponding hypersurface in R4 (d > 2) under weaker
hypotheses on I'. _ ' '

We give sufficient conditions on a convex curve ' in R? (d > 2) in order for
Myr and Hr to map Llog L to weak L* locally. Finally, it is shown that if T is a
piecewise linear version of a parabola then the best one can expect, in terms of

Orlicz spaces locally near L!, is that My maps L(log L)/? to L*>.
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Preliminaries

LP and LP(L7?) spaces

For a fixed measure space (X, p) and p € [1,00] we introduce the familiar LP(X)
space as those measurable functions f : X — C such that || f||, is finite, where

i = ([ |f|”du>l/p,

with the agreement that when p is co we interpret the above expression as the
essential supremum of f on X. When there is no danger of confusion, we simply
write L? for LP(X). Each p € [1,00| has a dual exponent, denoted by p’, which
satisfies 1/p+1/p’ = 1. |

We also define a specific class of mized-norm spaces for functions defined on
measure spaces with a product structure. In particular, for p,q € [1,00] W_é
denote by LP(L9) the space of measurable functions f : R? x §%1 — C such that

| fllze(zay is finite, where

| ’ - p/q 1/p |
1fllzoze) = (/Rd (/Sd_l If(x,w')!"dw> | dw) :

" Here, dw and dz are the natural Lebesgue measures on S%! and R¢ respectively,
and as above, we can interpret this expression appropriately when either exponent
‘porgq is 0o. Mixed-norm spaces of this type were first introduced by Benedek
and Panzone in [2] with greater generality. The above setting is sufficient for our

purposes.

Lorentz spaces

Fix a measure space (X,u). If f: X — C is measurable, define the decreasing

rearrangement of f by

F5(t) =inf{X € (0,00) : p({z € X : [f(z)] > A}) < t}.



Define EP9(X) to be the space of measurable functions f on X such that || f||pq
is finite, where

q 1p pe th l/q ’
”f“P,lI = . -]; © )(t f (t)) 7 fOI' p,qe[l,o_o), and

[ fllpoo = sup tl/pf*(t) for p € [1, 00].
£€(0,00)
These spaces were introduced by Lorentz in [39] and [40]. The quantity || - {54
satisfies the triapgle inequality only when1 < ¢g<p < o0,0rp=g=00. Despite
this, the spaces arisiﬁg when g > p will be of most interest to us. Observe that, if
¢ < g then L% C LP%, and also that LPP coincides with L? for each p € [1,00], |

with equality of norms.

Orlicz spaces

Let Q C R* be a fixed unit cube. Suppose ® : [0,00) — [0,00) is nondecreasing
and convex with ®(0) = 0. We define the Luzemburg norm of a measurable
function f by,

1oy = inf {a S0 /Q 8(1f(2)|/a) dz < 1} . W

Then we define the correspdnding Orlicz space, ®(L)(Q), as those measurable
functions f : @ — C such that the norm in (1) is finite. Such spaces were
introduced by Orlicz in [53] and the norm in (1) appeared in [41]. One thinks of
Orlicz spaces as generalisations of the more widely known LP(Q) spaces. Indeed,
if ®(t) = ? for p € [1,00) then it is easy to check that the norm defined in (1)
coincides with the LP(Q) norm of f. It turns out that Orlicz spaces are complete
- spaces. For more details on the rich theory of these spaces, we refer the reader
to [38]. '

~ Notice that we have now introduced two generahsatmns of the classical L?
spaces; Orlicz spaces and Lorentz spaces. The theory of a further generalisation

of these spaces, Orlicz-Lorentz spaces, has also emerged (see, for example, [42],
[44], [33], and [47]). '

Some unlversal notat ion

A function 9 : R — C belongs to the Schwartz class, S(R?), if ¥ is 1nﬁn1te1y
differentiable and, for all o, B € N,

!

" pap() = sup |z*DPY(z)| < co.
z€R4



The Schwartz class is a Fréchet space, dense in LP(R?) for all p € [1,00) under
the following topology given by the seminorms pa,g: a sequence (¥ )k>1 converges
. to the zero function if and only if p,s(¥k) tends to zero as k tends to infinity,
for all o, 3 € N The space of tempered distributions, 8'(R%), is the space of
bounded linear functionals on 8(R%). The action of a tempered distribution 4 on
an element of 1 of 8(R%) will be denoted by (u,). 7

Adopting the notation .y for the standard inner product of elements z and y

in RY, the Fourier transform of a finite Borel measure p on R? will be defined by
) = [ = duo). 2
Rd

We shall often require the use of Euclidean balls in R¢; that is, the open
balls defined by Euclidean distance in R¢. The Euclidean ball of radius r and
centre z in R¢ will be denoted by B,(z). In Chapter 2 and Chapter 4, the reader
should also be ready to meet balls in R defined by certain nonisotropic distance
functions. The notation will be made clear at the appropriate moment.

If E is a subset of R%, we shall use |E| to denote either the Lebesgue measure
of ‘E or the number of elements in E. There should be no confusion caused by -
this. Let xg denote the characteristic function of E. ’

" For positive numbers A and B, we frequently employ the notation A < B to
dissolve constants, and this notation will be defined in each chapter separately.
Automatically, B > A means A < B,and A~ Bmeans A < Band B S A. Any
dependence in a constant that we wish to emphasise will be done so via subscripts

or parentheses.

A toolbox

e (Plancherel’s theorem) Up to an absolute constant, the mapping f +— fis
an isometry on L2(R%). To see how to make sense of the Fourier transform
defined in (2) for L? functions, p € (1,2], see [24].

e (van der Corput’s lemma) Suppose 6 : (a,b) — R and ¥ : (a,b) — R are
smooth, and that |[®)(¢)| > 1 for all ¢ € (a,b). Then ’

[ ot a < cw (wen+ /Lzbw"(t)ldt) @)
holds wheﬂ |

1. k> 2 or

2. k=1 and ¢ is monotonic,



and the constant C(k) is independént of 6 and ). This estimate is due to
van der Corput; a proof can be found in [60]. One should bear in mind
that, using a simple intégration by parts argument, it suffices to show (3)
when 1 = 1.

(Minkowski’s inequality) Let (X, ) and (Y,v) be o-finite measure spaces.

Then, for all p € [1,00),
pw@ymsﬂ(ﬁuwwmwwymw@.l

(

(Hélder’s inequality) Let (X, u) be a o-finite measure space. Then, for all
_pE€[1,00],

/Y f(z,y) dv(y)

s(AvumquW(mew@@0W 

(Sobolev spaces and Sobolev embedding) Let v be a real number. If u is a

| @e(z) du)

distribution on S%1, we shall say that u € L2(S%!) if, for any coordinate
patch U C S9! and any ¢ € C§°(U), the distribution 4u belongs to LA(U),
where U is identified with its image in R¢"!. For a definition of the more
familiar Sobolev spaces on Euclidean spaces see, for exémple, [65]. If v =1
we can equivalently define L2(S%1!) to be the set of all u € L*(S*?) such
that for any smooth vector field ¥ on S, Xu € LQ(Sd“l).

If v is a real number such that 2 < (d — 1)/v, then the identity mapping
from L?(S%1) to LI(S%!) is continuous, if 1/¢ = 1/2 — v/(d — 1). This
result is a particular case of a general theory of Sobolev spaces on manifolds.

See [65] for more details.

(Interpolation) Suppose T is a linear operator such that for i € {0, 1}, we
“have '

T £l Los oy < Cillfll,; for each f € LP(RY),

where p; < ¢;. It follows that for 6 € [0, 1],
ITfllozey < C3~°CHIIf |l for each f € LP(RY),

where '

1 1-6 6 1 1-6 @6
= 4+ — and -= + —.
p Po o q do q1

This interpolation theorem was proved in greater generality in [2] using

complex interpolation methods. One may also deduce this result using real

)



interpolation and the Peetre K -functional; see [3] for a full treatment on this
method. For a fleeting glimpse at the main point in the real interpolation,
we have that ‘

(L7 (RY), L7 (R?))o,p = LP(RY),

and
(LP(L%), LP*(L%))g, C LP(LY), since p; < g; for each .

The notation (-,-)g, we have just used for the intermediate spaces can be

found, for example, in [3].

We shall also utilise interpolation theory on Sobolev spaces. Our results

follow from complex interpolation methods; in particular from the fact that
[L3(8%Y), L3(S47Y)], = LE(S*™!) for each v € [0,1].

‘We refer the reader to [65] for further details, including the definition of the
notation [, -], for the intermediate spaces.



Chapter 1

Background and Introduction.

In this thesis we shall be concerned with the boundedness, or mapping proper-
ties, of various singular integral and maximal operators. Rather than out of the
" blue definitions, this preamble is intended to show how our operators arise in a
very natural manner from certain classes of partial differential equations via the
method of rotations.. Those in the know may prefer to move straight to Section .
1.1 and Sectibn 1.2.

The isotropic case

Throughout this thesis we shall refer to the dilations z ~ (tz1,...,tzq) on RY,

for t € (0,00), as isotropic dilations.

Constant coefficients

Let P be a polynomial on R® which is homogeneous of degree n with respect to
isotropic dilations; that is to say, P(¢) = Z|a]=n po€® for some real coefficients
po and € € R%. Suppose further that the the polynomial P only vanishes at the
origin so that the differential operator P(D) is ellip‘tic. Define the operator A by

»

P o~

K76 = lelf©), | )
| and the operator Tp by‘
To7(€) = (- T )

Tt follows from,

o~

P(D)}(€) = P(—-i&)F8),

that we can express the differential operator P(D) as

P(D)f = Tp(A™f). (1.2)
7



The operator A is well understood since —A? is the Laplacian operator. It is clear
that ¢ — (—4)"P(&)/]¢|™ is homogeneous of degree zero with respect to isotropic

- dilations, and furthermore, belongs to C°(R?\ {0}) from our assumption that
P(D) is elliptic. For f belonging to 8(R?), it is possible to show that

Tof(s) = af(@) + po. [ KG)f(@=v)dy,
where a € C, and K satisfies the following conditions: |
(K1). K is homogeneous of degree —~d with respect tb is;)tropic dilations;
(K2). [ga-1 K(w) dw =.O; : |
(K3). K belongs to C*®(R%\ {0}).

A proof of this fact may be found in [24]. Thus, we have effectively reduced the
study of Tp to the study of the operator .

T4@) = po. [ K- 3) o 13

where K satisfies (K1), (K2), and (K3). To ensure T is well-defined, we initially
restrict f to S(RY). These operators go back to work of Mihlin in [45] and the
now classical work of Calderén and Zygmund in [6]. It follows from [6] that T
extends to a bounded operator on L* for ‘ea,ch p € (1,00). A point we wish
to emphasise here is that one can prove this fact by considering the following
associated maximal function of Hardy-Littlewood type,

My f(z) = sup | Bx(0)|™* / f(z —y) dy|. o | (1.4)
h>0 y€BR(0) -

It is known that Mgy satisfies the vfollowing key distributional estimate: There
exist C' < oo such that '

o €RY: Musf(z) > a}| < Ca™M|fh foralla>0. - (L5)

This fact was proved by Hardy and Littlewood [32] when d = 1, and for d > 1 by
Wiener [67] and Marcinkiewicz and Zygmund [43]. Moreover, one can prove that
there exists C < oo such that ' '

e € RY: [T(2)] > a}| < Cl{z € RY: Mypf(2) > a}|—l—Ca_2/ (@) de,
. & /1f (@)|<er
(1.6)
and therefore we can use (1.5) to deduce the same result for T. The result in

(1.6) is the fruit of the much celebrated Calderén-Zygmund theory; a proof is
o ’



‘implicitly written in [61]. The boundedness of T on L? for p € (1, 00) now follows
by simple arguments 1nvolv1ng interpolation and duality.

This is an example of a general expectation that, despite no formal link, the
behaviour of a singular integral operator will be determined by the behaviour
of the associated maximal operator. If this were not sufficient motivation for
the study of maximal operators, one may be further persuaded by their direct

connection to pointwise convergence results of the form,

%ig(l) IT(z, h)| ™ /r(a: y fly)dy = f(z) for almost all z € R, (1.7)
where {T(z,h) : z € R%h € (0,00)} are measurable subsets of R? (with re-
spect to the appropriate Lebesgue measure) and f belongs to a certain class of
functions. The case where I'(z,h) is the Euclidean ball By(z) is the classical
Lebesgue differentiation theorem and (1.7) holds for all f € L'(R?). Moreover,
the distributional estimate (1.5),is known to be equivalent to (1.7). The problem
becomes signiﬁcantly more difficult when I'(z, h) are lower dimensional subsets of
R<. For example, it is unknown whether (1.7) is true for functions in L' if I'(z, h)
is a piece of parabola of length h emanating from z, or, if h is restricted to a
dyadic subsequence of (0,00), the boundary of Bx(x). We return to this matter
in Section 1.1. : ‘
Let us now demonstrate an alternative proof that the operator in (1.3) is
bounded on L, for all p € (1,00), if K satisfies (K1), )

(K2"). K is an odd function;
(K3). [gamr |K(w)] dw < o0

Here, (K2) is a stronger cancellation condition than (K2), and (K3’) is a weaker
smoothness condition than (K3). If f € 8(R?) then, by changing variables to

polar coordinates and using the oddness of K,

. | dr
i@ =t [ K@ ([ se-rf)a

Because of condition (1) and the smoothness of f, we can use the dominated

convergence theorem to deduce that

| 2T f(z) = " K(W)H f(z,w) dw, | (1.8)
where it
Hf(z,w) = pu. /Rf(x — tw)?. (1.9)

9



For a fixed w € S9! this operator is essentially the classical one-dimensional

Hilbert transform, H;, defined a prior: by
dt
() = [ Hs=0F,

R

for f belonging to 8(R). In particular, if we fix p € (1,00) and w € S9-1, and
write each z € R? as : ‘
= (r.ww+ (z — (zw)w), (1.10)

then |
Hf(z,w) = Hi(f(-w+ (z — (z,w)w)))(z.w). (1.11)

We can now use the famous theorem of M. Riesz that H; is bounded on L? to see
that

[seara = [ [imGtospopas
o [ [1ftw+ P ixiy = CEIIIE

IA

Therefore
IHfC,w)ll, < CONfllpe (1.12)

Because the bound in (1.12) is independent of w, it follows from (1.8), (3),
together with an application of Minkowski’s inequality, that 7" is bounded on
LP. Passing from the expression (1.3) for T to (1.8) is an instance of the method
of rotations. This approach was introduced by Calderén and Zygmund in [7].
With the aid of Riesz kernels, this method can be used to handle even kernqls

il

too.

Nonconstant coefficients

In more a general context, one is led to variable kernel singular integral operators
of the form

Tf(z) = po. [ K@w)fa-va, (1.13)

where, for each z,
(K1).- K(z,-) is homogeneous of degree —d with respect to isotropic dilations;
(K2). [ga1 K(2z,w) dw = 0;

and some smoothnéss condition holds. As an example, one need look no further
than a homogeneous polynomial differential operator with nonconstant coefhi-

cients; an argument akin to the constant coefficient case leads to operators like

10



(1.13). Observe that if we assume that K(z,-) is odd instead of (K2), then
one can apply the method of rotations, and one is reunited with the operator
H defined in (1.9). Furthermore, if one assumes for the smoothness condition
that w +— sup,cre | K (z,w)| belongs to L!'(5%!), then one may deduce that T is
bounded on L? for all p € (1,00). We will return to the matter of the boundedness

of T under weaker smoothness assumptions on K later in the thesis.

Nonisotropic case

Our motivation for this discussion will be the differential operator P(D), where
P(§) := & — £2; this operator essentially defines the two dimensional heat equa-

tion. It is easy to check that
S(P-(D)f) = D(O,l)f and T(P(D)f) — D(2’0)f,

where - : )
SO =GRl md THO =g le. (1)
One can quickly see that both of the multiplier functions which govern S and T
in (1.14) are homogeneous of degree zero with respect to the parabolic dilations,
z — (tz1,t%z;) on R2. By considering inverse Fourier transforms, we are thus led
to operators of the form (1.3) where K is homogeneous of degree -3 with respect
to parabolic dilations; that is, K(tz,t?z2) = t~*K(z1,z,) for each t € (0,00).
It is at this point where we have reached a junction at which two directions of
pursuit offer themselves. Both are initiated by the method of rotations, and the
main body of work in this thesis splits into contributions along both paths.
To be more specific, let us fix a kernel K which is homogeneous of degree

-3 with respect to parabolic dilations, and odd. Apply the change of variables |
y1 = tcosw ahd yo = t2sin&, which are in the spirit of polar coordinates, but
better suited to parabolic dilations. Then, the operator T defined by (1.3) may

be written as

2T f(z) = / K(w)H f(z,w)(1 + sin’ @) dw-7
S1
where w := (cos @, sinw),

%E, (1.15)

Hf(z,w) :=p.v. /]R flz — dw)

and 0 )
t
6 = ( 0 sen(t)? > forteR 7 (1.16)

is our family of dilations. As with the similar looking object in (1.9), one can

prove that the analogue of (1.12) holds. Like the isotropic case, if we know that
' 11



K belongs to L(S!), then Minkowski’s inequality implies that T is bounded on
LP for each p € (1,00).

Remark. For fixed w, the L? boundedness of the operator in (1.15) was originally
proved in a thesis of Fabes. In [49], the L? boundedness was proved for all p €
(1,00). The parabolic analogue of (1.12) easily follows by scaling. However, the
proof we gave for the isotropic case on page 10 does not work. There is no obvious
reduction to a one-dimensional operator since the orthogonal decomposition in

(1.10) has no obvious analogue. This issue reappears in Chapter 2 of this thesis.

The first turn at our junction is to consider the dilations in (1.16) as a.pro-
totype, then fix w, and consider the corresponding operators defined in (1.15)
as Hilbert transforms along curves. Such operators have generated considerable
- interest in the past thirty years, and we continue this road of discussion in more
detail in Section 1.1.

The second route appears if one assumes that the kernel belongs to L% (S*)
for some ¢' strictly greater than 1. More generally, suppose we are in the variable
kernel case and we assume that there exists a constant C (¢') < oo such that

'Sup/ 1K (z,w)|" dw < C(¢).
z€R® J §d-1
An application of Holder’s inequality implies that,

11, < O(a) ( L([, mswera)” dx> T

This begs the question: For what values of p is the mixed-norm quantity on the
right hand side of (1.17) controlled by || f|l,. We discuss this further in Section
12. ot

1.1 Operators on curves

Given an integer d > 2 and a map I' : R — R? we define operators Hr and Mr

by

Hif(@) = po. [ fe=T() 2 (1.18)
| Mr f(x) | e ili%h—l on f(z— F(t))dt‘, (1.19)

for f belonging to S(R?). We shall refer to Hr as the (global) Hilbert transform
along T and My as the (global) maximal operator along I'. We also introduce

local versions of these operators, Hi*® and M, where the integral in (1.18) is

12



restricted to (—1,1) and the supremum in (1.19) is restricted to h in (0,1). It

will be convenient for us to work with the following dyadic form of Mr:

My f(z) :=sup \7*
| kel

/ f(z—T(t))dt|, forafixed A€ (1,00). (1.20)
(AR, \k+1)

It is clear that there exists C()\) € (0,00) such that Mrf < C(A\)Mrl|f| and
Mrf < C(\)Mr|f]. For our purposes this means Mr is equivalent to Mr. The
local version is defined in the obvious way.

On L? for p c (1,00)

The question of interest here is the following: For which I' and what range of p
can say that either Hp or My (or the local versions) are bounded on LP? Of course
Mr is bounded on L°°, and so we choose to omit this triviality from subsequent
theorems on Mp. We begin with the case that T' is a polynomial curve in R%,

The following theorem is well known.

Theorem 1.1.1. [60] Let T'(t) = (Pi(t),..., Fa(t)), where Py,..., Py are real
polynomials on R. Then Hp and Mr are bounded on LP for all p € (1,00), with
bounds independent of the coefficients of Py, ..., Py.

A somewhat related problem is the case when I is of finite type, that is to
say {T'®)(0) : k > 1} spans R%

Theorem 1.1.2: [62] ‘If T is of finite type then HY¥° and M are bounded on LP
forallp e (1,).

We may then ask what happens in the case that I' is not of finite type. This
brings us to the simplest case of this kind, where we have d = 2, I'(t) = (t,7(t))
‘and all of the derivatives of v vanish at zero. One such (nonconvex) vy was
constructed in [62] for which M!¢¢ is unbounded on L? for any p € (1,'oo)., Despite
this, positive results are possible for such curves when, in particulér, we consider

convex 7. If we restrict our attention to curves v satisfying:
v € 02(0,06), convex on [0,00) and ~(0) =+'(0) =0, (1.21)

A
1

and extend « to a function on R by stipulating that it must be either even or

odd, then the following notions naturally arise.

Definition 1.1.3. 1. A function f : R — R belongs to €, if there exists °
D € (1,00) such that for each t € (0,00) we have f(Dt) > 2f(t). Such an
f is said to be doubling.

13



2. A differentiable function f : R — R belongs to C; if there exists g > 0 such
that for ¢ € (0,00), f'(t) > of(t)/t. Such an f is said to be infinitesimally
doubling, and if f is nondecreasing on (0, 00) then f € €, implies f € C;.

We shall also need the function & defined for t € (0, 00) by h(t) := t¥'(t) —(¢).
Notice that because v is convex and (0) = 0 we get the important fact that

ty'(t) > ~y(t) for all ¢ € (0, 00)- ‘ (1.22)
(and hence h is nonnegative). We now state a series of known results in this
setting.

Theorem 1.1.4. [13] Suppose v is even and satisfies (1.21), and p € (1,00).
Then Hyp is LP bounded if and only if v' € €.

The L? result in Theorem 1.1.4 was proved earlier in [51]. In the context of L?
boundedness for p € (1, 00), this is of course the end of the matter for Hr when
« is convex and even. In the odd case, the current situation is less satisfactory.
We have:

Theorem 1.1.5. [51] Suppose v is odd and satisfies (1.21). Then Hr is L?
bounded if and only if h € C;.

This theorem of course means that, for each p € (1,00), h € €, is a necessary
condition for H to be LP bounded. However, it was demonstrated in [9] that this
condition i$ far from sufficient. There they construct a 7 such that h € €, yet
Hr is unbounded on L for any p € (1, 00) not equal to 2. Some known sufficient

conditions in the odd case are given in the following:

Theérem 1.1.6. Suppose v is odd and satisfies (1.21), and p € (1,00).
1. [13] If v’ € @, then Hp is LP bounded.
2. [9] If h € C; then Hy is LP bounded.

For Mr, a necessary and sufficient condition for L” boundedness in geometric
terms is not known. It was demonstrated in [64] (see also [58]) that a convex 7y
exists for which Mp is unbounded on LP? for all p € (1,00). There is however an
analogue of Theorem 1.1.6: '

Theorem 1.1.7. Suppose v satisfies (1.21) and p € (1, 00).
1. [13] If v € €, then My is LP bounded.

2. 9] If h € €y then My is LP bounded.
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Remarks. 1. The case where a convex curve on [0,00) is extended to be either
even or odd is encompassed by the notion of a biconvex balanced curve given
in [22]. There it is shown that if the derivative of such a curve satisfies a
doubling condition then, for all p € (1, 00), we get L? boundedness of both
Hr and Mr (and also the associated maximal Hilbert transform).

2. Suppose ~ satisfies (1.21), and moreover, is infinitely differentiable. We shall
say that the curve (t,v(t)) is flat if all of the derivatives of v vanish at zero.
This may seem a little obvious, but our aim is to avoid any confusion with
the following alternative candidate for the term ‘flat’: If the intervals {;}eg
are disjoint and have (0,00) as their union, let (¢,7(t)) be a curve which is
linear on each interval J;. Such a curve has zero curvature on each piece, and
for this reason, stakes a claim to be called flat. However, we shall call such
curves piecewise linear. Observe that if I; = (27,27%1] for each integer j,
and (t,7(t)) is the parabolic piecewise linear curve defined by v(27) = 2%,
then the class @; admits the function v (with D = 2). Piecewise linear
curves are the focus of attention in Chapter 5 of this thesis.

Motivated by the above theorems, our contribution will be to prove that both
Hr and Mr are bounded on L?, for all p € (1,00), along a class of nonconver

plane curves, I'. We state and prove our theorem in Chapter 3.

Near L!

For the curve, [(t) = (¢,t2), it is clear that Hr and Mr are not bounded on L'.
A substantial open problem of particular interest to us is the following: Can we
“enlarge the target space to the Lorentz space L* and say that these operators
are bounded from L! to LY*®? An affirmative answer for the maximal operator
would, for instance, imply that for each f € L!(R?),
lim Rl o flz —(t,£%))dt = f(z) for almost all z € R%. ~  (1.23)
- Tt follows from [48] that (1.23) holds for f € LP(R?) for each p € (1,00).
Before describing the significant progress for Hr and Mr along the parabola
and near L!, we set the scene a little. Of interest to us will be Orlicz spaces
defined by the family of functions ' '

B(t) = ®;,(t) = t(log®(t + 100))° for i € {1,2}, o € [0,00), (1.24)

where log® denotes the compositi(‘)n of log with itself ¢ times. If 0 < ¢’ theﬁ, for
each € > 0, we have the following chain of inclusions, ‘

L*(Q) G @10(L)(Q) & 210(L)(Q) & P2 (L)(Q) & 22,(L)(Q) & LN(Q),
15



where () is some unit cube in R?. This fact is a consequence of a general result
which essentially says that distinct functions give rise to distinct Orlicz spaces.

For the precise form of this result, see [38].

Definition 1.1.8. Let ® be a function belonging to the family in (1.24). Let T
be either Hp or Mr (or their local versions). We shall say that T" is of weak type
L(log® (L)) if there is a constant C so that the inequality

«

| 1{5 eR?: T f(z)| > o} g/ ® (ﬂf(—”)—l> dz (1.25)
Ré
holds for all positive a. | |

Remarks. 1. Suppose @ is a unit cube in R% and T is either Hr or Mr. It
follows from a remark on page 609 of [57) that if T satisfies (1.25) then the
local operator. f > T%¢(fxq) is a bounded map from ®(L)(Q) to LY.

2. The distributional estimate in (1.5) is equivalent to saying that My is of

weak type L (more commonly referred to as weak type (1,1)).

In terms of the above setup, the best known result on Hr and Mr where

I is a parabola is in [57]. The operators considered in [57] are more general:

Let & be a smooth compact hypersurface of R?;, and let v be a smooth and

compactly supported density on X. The fundamental assumption is that the

Gaussian curvature does not vanish to infinite order on . Define the dilations
{6; : t € (0,00)} by '

' 6 := exp((logt) P), (1.26)

where P is a (fixed) d by d matrix with real entries and eigenvalues with positive
real part. Then define the measure v, by

(i, )= (v, 9(622-))-

In [57] it is shown that the operator f + sup,ez [Vk * f| is of weak type L log? L.
Moreover, if the cancellation condition, D(O) = 0, holds then it is also shown that
the operator f — >, ., vk * f extends to an operator of weak fype Llog(z) L.
Taking d = 2 and the matrix P to be diag(1,2) we essentially recover Mr and
Hp. Therefore, (1.23) holds for functions belonging locally to Llog@? L.

Also known in the parabola case are the following results involving certain

Hardy spaces and the smoother maximal operator,

~

Mf (x) ;= sup

h>0

/R fo — (6, @)t et ) dt]

where ¢ is, say, a smooth function with compact support. Christ showed in [17]

that M maps the appropriate Hardy space associated to parabolic dilations to
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LY (and to no LY for ¢ < 0o). Later, in [56], it was shown that M maps the
smaller product-type Hardy space H,, ,,(R x R) to the smaller Lorentz space LY?
(and-to no L9 for ¢ < 2). Our focus in this thesis will be on results concerning
the above Orlicz spaces, and thus we discuss these Hardy space results no further.

The result in [57] covers the finite type plane curvés mentioned in Theorem
1.1.2. However, there are no known extensions to include the classes of flat plane
curves which naturally arise in the L? theory for p € (1,00). Our contribution
in Chapter 4 is to show one can go beyond the L? theory for one such class
of flat curves, and furthermore one can extend to include flat curves in higher
dimensions. ' |

A further relevant result in this context is the counterexample of Christ in [18]
which shows that if we let T be the parabolic piecewise linear curve defined earlier,
then Mr is not -of weak type L. Unfortunately, the construction is completely
inapplicable to the smooth parabola case. In Chapter 5 of this thesis, we extend

Christ’s result and prove that M is at best of weak type L(log L)Y/2.

1.2 Mixed—horm estimates

Given an integer d > 2 and a Schwartz function f on R%, define operators H and
M by -

Hf(z,w) = puw. /]R f(z — dw) %, | ' (1.27)
Mf(z,w) := suph™’ flz — dw) dti , (1.28)
h>0 (0,h) / :

where {8, : t-€ (0,00)} is defined exactly as in (1.26), and, for t € (—o0,0), we
set 6t = _6-—t- . ‘

Remark. Taking d = 2 and P = diag(1,2) we see that our dilations match those
in (1.16) and thus our expressions for H in (1.27) and (1.15) coincide. '

Inspired by (1.17), we are interested in the following: For what range of
p and ¢ are the operators H and M bounded from L? to LP(L?)? Below, we
survey the isotropic situation, giving known results along with a variety of further
applications. In Chapter 2 we improve upon all known results in the nonisotropic
setting governed by the dilations in (1.16). |

Known' results for the isotropic case

If we take P to be the identity matrix, then the é; generate the isotropic dilations.

~ The isotropic case is thus essentially the same as the case where P is a fixed
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The line g = g,(p)

Region proved in [19]
1/(d+1) ......................... : N

Remaining conjectured region

1/d  2/(d+1) 1 1/p

- Figure 1.1: The isotropic case
multiple of the identity. As far as we know, the best known result in this case is

in [19], and to state the theorem, we use their notation,

d—1 ‘
w) =29 forpe (1,00, (1.29)
with the agreement that gg(p) = co when p > d.

Theorem 1.2.1. [19] Suppose P is a multiple of the identity matriz. T hen; for
anyd > 2, p € (1,max(2,(d +1)/2)], and g € [1,q4(p)), the operators H and M
are bounded from LP to LP(LY).

If one tests each operator on the characteristic function of the Euclidean unit
ball, then one must have g € [1,g4(p)). In fact, this gives the conjectured range
of p and q for isotropic dilations. Theorem 1.2.1 theréfore solves the conjecture
for p € (1, max(2, (d+1)/2)], and hence when d = 2, the conjecture is completely

resolved. Figure 1.1 illustrates the isotropic situation (when d > 3). .

Applications in the isotropic case

“As one might expect, via the method of rotations, the estimates given by Theorem
1.2.1 give the best known estimates on the variable kernel operator in (1.13) under

s

the following conditions:
(K1). K(z,-) is homogeneous of degree —d with respect to isotropic dilations; .

(K2). K(z,-) is an odd function;
18



(K3). sup,ege (figoor | K (,w)}" dw)'’" < oo.

The result states that T is bounded on L? provided that p € (1, max(2, (d+1)/2)]
and r € ((1 - 1/d)p’,00). In fact, in [19], they show the same conclusion holds if
(K2) is replaced by K(z,-) having zero average over S%~! for each € R%. This
- result im.proved upon earlier work of Calderén and Zygmund [8] and Cowling and
Mauceri [23], and is a sharp result in the stated range of p. ‘

In a different direction, the estimates on M from Theorem 1.2.1 were used to
establish bounds on the Kakeya mazimal operator. Specifically, if N is a large
positive parameter, we let Ry be the collection of rectangles in R? which contain
the origin and have one side of length r and d — 1 sides of length N~'r, for all
r € (0,00). Then the Kakeya maximal operator, Xy, is defined by '

K f(z) = sup |—;—| /R |z — )l dy,

ReRyN

and the famous conjecture is that
K fllp < Cllog N N[ fll,, pe(1,d], (1.30)

holds for some ), C' < oo depending on only d and p. In [21], Cérdoba established
(1.30) for p € (1,2]. It was shown in [19] that the estimate for M in Theorem 1.2.1
implies (1.30) for p € (1, max(2,(d + 1)/2)] and thus improved upon Cérdoba’s .
result when d > 4. Spurred on by the work of Bourgain in [5], who further
extended the range of p and also found exciting new links with other fundamental
open problems in harmonic analysis, (1.30) has since received a large amount of
attention. At the time of writing of the fairly recent survey article [35], the
best known range of p was (1,(d + 2)/2] for 3 < d < 8, due to Wolff [70],
and (1,(4d + 3)/7) for d > 9, due to Katz and Tao [34]. Recent progress on
(1.30) has been achieved through arguments involving geometric combinatorics
and arithmetic combinatorics, rather than the Fourier transform based proof of
Theorem 1.2.1. We believe that the best known mixed-norm estimates for M are
still those in [19].

Another application was observed by Durén [25] who established a connection
between the maximal operator M and an aspect of numerical approximation, the
Bramble-Hilbert lemma. In [27], R. Fefferman proved mixed-norm estimates for
M and extended the result of Durén. | '
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Chapter 2

Mixed-Norm Estimates for a
Nonisotropic Maximal Operator
Arising in the Method of
Rotations

2.1 Introduction

In this chapter, we prove mixed-norm estimates for the operators H and M defined
in (1.27) and (1.28). We suppose throughout this chapter that the matrix P which
defines the dilations d; is not a multiple of the identity matrix. The notation
qa(p) defined earlier in (1.29) will be adopted without change. For the maximal

operator, our main result is as follows.

Theorem 2.1.1. 1. For anyd > 2 and p € (1,00), a necessary condition that
M is a bounded operator from LP to LP(L9) is that q € [1, g4(p)].

2. For anyd > 2, p € (1,max(2,(d + 1)/2)], and q € [1,44(p)), M is bounded
from LP to LP(L9). ' ‘ h

It is easy to show Theorem 2.1.1(2) when 1 < ¢ <p < oo (and p > 1) . To

see this, use Minkowski’s inequality and the fact that

IMfCw)lle < Clifllps ‘ (2.1)

where the constant C is independent of w € $4=1. The estimate in (2.1) for fixed
w was proved by Stein and Wainger in [62]. However, the arguments in this paper
can be used to prove the uniform estimate (2.1).

If we can prove Theorem 2.1.1(2) when p = max(2,(d + 1)/2) then the full
assertion holds by interpolation with our trivial estimates near p = 1 and ¢ =
1. We have in mind the mixed-norm interpolation result on page 5 stated for

20



linear operators. The maximal operator M is not liﬁear, but an easy linearising
argument means we can still invoke the result on page 5 as stated. One can
also deduce certain results in the range p € (max(2,(d + 1)/2),00). In fact,
by interpolation with the trivial estimate when p = ¢ = oo one gets that M is
bounded from L? to LP(L9) for p € (max(2,(d +1)/2),00) and q € [1,2p).

Modulo the endpoint g = g4(p), Theorem 2.1.1 says that we have the same
result for M whether we have isotropic or nonisotropic dilations. In particu-
lar, modulo this endpoint, Theorem 2.1.1 is sharp in all dimensions for p €
(1, max(2, (d + 1)/2)], and when d = 2, sharp for p € (1,00). |

Our analysis of the singular integral operator H has been less successful. At

the moment, the following is known to us.

Theorem 2.1.2. 1. Foranyd > 2 and p € (1,00), a necessary condition that
H is a bounded operator from LP to LP(L9) is that q € 1, q4(p)].

2. Forany'd > 2, p € (1,2], and q € [1,q4(p)), H is bounded from L? to
I7(L9).

It follows from Theorem 2.1.2 that we have a sharp result for H in all ‘dimen—
sions for p € (1,2], and, when d = 2, for all p € (1,00) (modulo an endpoint). As
with M, it suffices to prove Theorem 2.1.2(2) when p = 2, and in this case, ¢ < 2

is trivial.

Best known results in the nonisotropic case

Firstly, we emphasise that the only known results in the nonisotropic setting
concern the case that P is a diagonal matrix with distinct real and positive
" diagonal entries. Let P be such a matrix and write P = diag(a, ..., aq4). ForM,
if we set .

2(d3; a; — (d — 2) min(ay))

Ps = : )
d3>; a; — (d — 4) min;(y)
 2d—1+1/d) 2d—1+1/d)
Pe = iz ™ =T g1 o

then Sato [55] and Chen [16] achieve the range of p and ¢ shown in Figure 2.1.
Either result can subsume the other,’depending on certain relationships between
the numbers d, min;(e;), and"}; o;.

For H, we believe that the best known result is the following theorem of Chen,
which is restricted to d = 2. '

21



Y2 e A Proved in [53] Proved in [16]
i 11 N R S /

Our gain — Our gain

Vd,  2/d+1)lp, Vd  2(d+1)1p.
Figure 2.1: Our improvement for the nonisotropic maximal operator

Theorem 2.1.3. [15] If P = diag(on, ) and 1 < az/ay < 4/3 then H s
bounded from LP to LP(L?) provided

1. p€(1,2] and g € (1,2p/(3 — p)); or

2. p € (2,00) and q € (1,2p).
We shall not highlight the gain from Theorem 2.1.2 by a diagram. It is clear

that when d = 2 and p = 2, Theorem 2.1.2 achieves the optimal range, ¢ € [1,00)..
Compare this with the range ¢ € (1,4) given by Theorem 2.1.3.

Remark. We should emphasise that in [15], Chen actually proved the stronger
result that Theorem 2.1.3 is true if one replaces H by the corresponding maximal

Hilbert transform.

Preliminaries

‘We frequenﬂy rely on the fact that our dilations ¢, satisfy the following group
property: o , :
8,8 = b5 for all s,t € (0,00). (2.2)

Associated to P are smooth P-homogeneous distance functions g; that is,
o€ C"?."(Rd \ {0}) and o(6;z) = to(x) for all t € (0,00) and all z € R%. For our
purposes it is crucial to choose a p with a specific property; namely, we will need

the hypersurface,
¥, ={weR?: pw) =1}

~ to have nonvanishing Gaussian curvature. First, take a real symrﬁetric positive
definite matrix Q such that, for fixed z € R?\ {0}, the function o

t— (Qb,x.0,x)"/?
22



J

is strictly increasing on [0,00). Assuming that such a matrix @ exists for the
moment, we may, for each = € R%\ {0}, set o(z) to be the unique ¢ € (0, 00) such
that ’ ‘
o Qbs—1z.0-1z = 1.
When z = 0 we set p(z) = 0. On the existence of such a matrix @, one may take
Q= exp(—tP*) exp(—tP)dt.
(0,00)

It is straightforward to check that this has the requisite properties; t}lis rather
cute choice can be found in [62]. Note fhat the choice of @) is certainly not unique.
. Notation. Write A < Bfor A S.CB, where C depends only on d, the matrices
P and @, and any index p or ¢ that may be present. '

We now introduce polar coordinates in our nonisotropic setting: For each

nonzero z € R? there exists a unique pair (r,w) € (0,00) x 3, such that
z = bw;
where r = p(z) and w = 5{:(;)30. Then the Volurﬁe element in R? is
dz = r""'drdw, (2.3)

where dr is Lebesgue measure on the positive real line, dw is a smooth C* measure
on X,, and 7 is the trace of P. This change of variables will be referred to as
passing to nonisotropic polar coordinates. For a proof of (2.3), see [62].

Since Q is a positive definite symmetric matrix, 3, is an ellipsoid with nonva-
nishing Gaussian curvature. Since the measure dw is smooth, it follows (see, for

example, [60]) that for large |£|,
w9l S e, ~ (24)

and this is the key estimate we shall need.
Although the triangle inequality will fail in general, there exists a constant
C > 1 such that

oz +y) < Clo@) + oy) forallz,y €RE (2.5)
Define the associated balls '
B(z;r) = {y eR*: Q(ZL’.— y) <r} for z € R% 1 € (0,00). |
The following bounds will also be useful (.for a proof, seé [62));
tz| < |6z| S t*2|z| for all ¢ < 100, (2.6)
t9|g| < |6,z| < t24|z| for all £ > 100, (2.7)
where each 'aj depends only on P. 7 '
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Remark. In many circumstances it actually suffices to take @ to be the identity
matrix, or equivalently, ¥, to be S¢°!. For example, this is the case if P is a
diagonal matrix or if ||6;]] < ¢ for each t € [0,1] (see [54]). To simplify the proofs
of Theorem 2.1.1 and Theorem 2.1.2, we shall assume throughbut this chapter
that ©, = §%1. It will be clear how to modify the arguments in the more general

context.

Overview. In the coming section, we prove the necessity parts of Theorem 2.1.1
and Theorem 2.1.2. Section 2.3 and Section 2.4 are devoted to the sufficiency
parts of Theorem 2.1.1 and Theorem 2.1.2 respectively. In Section 2.5 we prove
the main oscillatory integral estimate used for these results. Finally, in Section

2.6 we exhibit a few applications of our results.

2.2 Necessity

As far as we know, no necessary conditions have been given in the nonisotropic
case. This may be because of difficulties arising frdm the competing homogeneities
of the nonisotropic dilations é; and the 1sotr0plc nature of the sphere S% 1. To
reflect this, we set fy to be the characteristic function of By = dy(Bon- 1(0)),
where C ~ 1 whose exact value will be revealed later in the proof, and N > 100.
Notice that in the case of isotropic dilations, B is simply a Euclidean ball which
is independent of N, and for parabolic dilations in the plane, By amounts to the
interior of an ellipse of scale 1 in the z direction and scale N in the y direction.
Suppose first that M is bounded from L? to LP(L?), so that

' ' p/q
T—d p _ .
NT%~ ||fN”p > /Rd (/Sd 1 (ili%/ fn(z — dw) dt) dw) dz. (2.8)

Now pass to nonisotropic polar coordinates z = 6,8 for r € (0,00) and 8 € 5%,
so that (2.8) 8 reads

1 [t | q p/q
v / / (/ (Sup h / In(8:9 = o) dt) dw> d6r™ dr
Sd-1 gd-1 \ h>0 h 0
w 1 T+ ’ q p/q 1
/ /Sd—l (/Ae (’f‘ + 1 /r fN (6r0 - (5tCU) dt) dw) d97‘ d'f‘,'

where Ag := S N By-1(0). For fixed r € (N, 2N) and 6 € S%!, we claim that
for we€Agand t € (r,r+1) we ‘have 8,0 — 6w € By. This claim granted,

4 2N p/q .
N > dor™ " dr
~ N,,/ /S</A ) T

rmLdr ~ NTP(d- 1)P/q
Np+(d—1)p/q /N dr~N
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and this implies that ¢ € [1, g4(p)]-
To prove the claim, first write ¢ =7 4+ h and w = 8 4+ 7 where h € (0,1) and
n € By-1(0). Then,

51'0 - 6tw = 6T(I - 61+h/1‘)0 - 6r+h77;
which means that 6,0 — d,w € By if and only if

8ryN(I = 614h)0 — S(r+nyNn € Bon-1(0). (2.9)

By (2.6), |0¢+rynnl < Cafr + h)2N-*271 < Cy3°2N~!, for some Cy ~ 1. It
therefore remains to bound |6/~ (I — 6144/r)0}, for which we use the following

lemma.

Lemma 2.2.1. There ezists C' ~ 1 such that for all t € (0,1) we have ||0¢41 —
I < C't.

Proof. Write 6,41 = I + log(t + 1)P + A(t), where, of course, A(t) := glog(t+1P _
I —log(t + 1)P. Clearly, :

oo

fog(t + 1))* ]| _ =t NI
1A = Z—T)—Pk <> HlPIF < tzk—!” _ telPl,
k=2 k=2 v k=0
Hence, “6754-1 — I“ _<_ t(HP” + eHP”) ) ) D

Using Lemma 2.2.1 and (2.6), |6,/v(I = d144/r)0] < Cy2°2C'N~!. Theorem -
2.1.1(1) is proved by making the choice C := C5(3%? + 2°2C").
" To get the necessary condition for H, we also test this operator on the function
fn, for large N. The only difference to the above argument is that one should
restrict the @ integral to some smaller subset of S%-1 of size ~ 1 to remove the

cancellation in the ¢ integral.

2.3 Proof of Theorem 2.1.1(2)

Unlike previous approachés in the nonisotropic setting, we shall use the successful
techniques used for the isotropic case in [19]. The proof proceeds in two steps. The
first step is to show that Theorem 2.1.1(2) is true when p=2. Secondiy, we show
that a weaker estimate holds arbitrarily close to the case (p,q) = ((d+1)/2,d+1).
Notice that this point lies on the critical line 1/¢ = 1/g4(p). Some Littlewood-
Paley theory will be used to show that our weaker estimate near the critical
point together with the L? estimate imply that Theorem 2.1.1(2) holds when

p = (d+1)/2, as required.
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Step .1: the case p =2

We setup a square function type argument using a fixed number o € (1,00)
which we do not specify but remark that it only depends on the matrix P. Select

€ (1,0) for which (5,¢%) S (1,0). Then choose ¥ € 8(R) such that ¢ vanishes
outside (1,0), ¥ is equal to 1 on (s;s?), and 0 < ¢ < 1. Then let

Yi(t) := s *p(¢*t) for each k € Z..

Now choose a positive function ¢ € S(R?) such that ¢ = [ and such that
there exists a decreasing function ¢ defined on [0, 00) such that ¢(z) = #(o(z))
for each z € R% Then let '

i () := det 6.x$(5.-xz) for each k € Z.
Now define, for each k € Z,
Acl(e,0) 1= [ flo = Bwpblt)dt = [ flo—v)outy) dy-
For f >.0, one certainly has
Mf@w) SswplAf@o) +su [ @-nam)d.  (10)

The second term on the right hand side of (2.10) is < My f(z), where the
- Hardy-Littlewood type mAaximalb operator, My, is defined by

/ flz—2)dz
5-B1(0)

Moreover, My, is a bounded operator on L? for all p € (1,00) (see, for example,
Chapter 1 of [60]), and thus it suffices to prove - i

. 1/2 . :
. (Z IAka) 1 Sk (2.11)

kEZ L2(L9)

. Mypf(z) = sup m

Fix q € (2, ¢4(2)) and choose v € (0,1/2) such that

§

l=1/2-v/d-1). - (2.12)

To prove (2.11), we first invoke Minkowski’s inequality and Sobolev embedding
to get ' ‘

kEZ keZ

e 1/2 1/2
(Z | A f(z, -)|2> < <Z llAkf(fvw)Hg) - SRS @)5e
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Here, the operator 2, defined by Af(z) := {Axf(z,")}rez, is being viewed as a
linear operator from L? to L2(H), where K is the Hilbert space 1*(L?). Now,

[ Ii@ieds ~ 3 [ € Imse, M

kez

= [wwersa— [ o@e e
R Rd

Thus, Theorem 2.1.1(2) for p = 2 will be proved once we have shown

where

sup ZHm (62 {, iz S 1. (2.13)

§eR? Lez,
- If we can show that there exists € > 0 depending only on v such that, for almost
all £ € RY,

Im (& )lzz < min([€],1€]7), (2.14)

then (2.13) follows from (2.6) and (2.7). In facﬁ, we show that (2.14) holds with
e = 1/2(1/2 — v). We shall do so by showing that the following estimates hold

almost everywhere:

Im(&, iz < min(lé], |€1F72); (2.15)
Im(€ )l S min(|¢], |€]F1/%); (2.16)

_and then interpolate between the Sobolev spaces L3 and L?. Firstly, for small |¢],
we use the fact that [ = [ & to get .

_ /R Yo = it = | ofe)(e=¢ = 1)da

In modulus, this is < || by the mean value theorem. Since the modulus of any
first order derivative of w — duw.£ on S%' is < ||, the estimates for small €]
n (2.15) and (2.16) follow. The estimates in (2.15) and (2.16) for large [{| are
implied by the following lemma, whose proof is delayed until Section 2.5.

Lemma 2.3.1. Fiza € {0,1}. Suppose that for each fized (§,w) € RI\{0}x 5%,
the function W (e, 1s supported in [1,a], smooth on (1,0), and

U ey (D] + [ Tlen () S [€l* forallt € (1,0). (2.17)

/Sd—l

Then,
2

d_w 5 |§|—1+2a+25'

/IR \Il(f,w) (t)ei‘s"w'6 dt
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Step 2: the case (p,q) near to ((d+ 1)/2,d+1)

With a very similar methodology to [19], we extend the mixed—nbrm inequalities
for M to p € (2,(d + 1)/2] by proving the following weaker estimates near the
endpoint (p,q) = ((d +1)/2,d +1). Let € C [0, 1]? denote the convex hull of the
points (0,0), (0,1), (1,1), and (2/(d+ 1),1/(d+1)). |

Lemma 2.3.2. There ezists a constant C(p,q) < oo such that for all k € Z, .

A fllzoey < Clp, DIl Il (2.18)
whenever (1/p,1/q) belongs to the interior, €°, of C.

Proof. Fix (1/p,1/q) € ©°. Lemma 2.3.2 is obvious if ¢ < p by Minkowski’s
inequality and therefore we assume throughout this proof that ¢ > p.
Since My is bounded on LP, it is immediate from (2.10) that it suffices to

prove (2.18) with Ay replaced by T}, where

T f(z,w) = /R (@ — Sw)e(t) dt.

Observe that '
. ”ka“?,p([,q) = det“sc"”To(f(éc"'))“ip([,q):

and therefore it suffices to prove (2.18) for Tp. It is also clear that it suffices to
take f > 0; indeed ¢ > 0 and thus this is the worst case. Our final reducfion is
that we may suppose that f is supported on the unit cube centred at the origin.
That we .ma,y restrict our attention to unit cubes, {Q}, follows from the fact that

To is a local operator; more specifically, there exists C ~ 1 such that
r—weQR=>x€CQ foralte(l,o)andwe St

and therefore Tp f is supported in CQ whenever f is supported in Q). By transla-
tion invariance it suffices to consider the unit cube centred at the origin, which we
call Qo. Holder’s inequality now implies that ||Tof||zrze)y S |70f || La(ze), Which

means it suffices to show

[ ( f(x‘—atw>dt)qwdx,<v||f||g,
CQo Sd—1 (1,0)

\
or, by duality, .

i

1/q
S Hf”p ([uesd—l g(:v,u_))q dwd:f) E

/ it flz — bw)g(z,w) dtdwdz
we z€CQo

z€CQo (11‘7)

(2.19)
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To show (2.19) we use a recent theorem of Gressman in [31]. We now describe
the general setup and main theorem in [31] and demonstrate that (2.19) follows
immediately as a special case. |

Let X and Y be smooth manifolds equipped with measures of smooth density
and assume the dim X < dimY. Let 91 be a smooth (dimY + 1)-dimensional
submanifold of X x Y, also equipped with a measure, and such that the natural
projections mx : 9 — X and my : 9 — Y have everywhere surjective differential
maps. Furt‘hermore,’let ¥, and 91; be those vector fields on 9t which are anni-
hilated by drx and dry, respectively. Now choose a nonvanishing representative
Y; € 9 and define T(V) := [V,Y;], where [-,] denotes the Lie bracket. Define
X; to be the collection of all vector fields in X;_, such that T(V) € X_1 + M.

Definition 2.3.3. The ensemble (M, X,Y,nx,my) is said to be nondegenerate
through order k at m € 9 if there are dim X — 1 vector fields X; € X, such that
{%1]m, Mi|m, T*(X;) : 5 =1,...,dim X — 1} spans the tangent space of 90 at m.

Let C; C [0, 1]2 be the convex hull of the points (0,1),(1,0),(0,0), and

-

2 2 '
' 11— — __ , j=1,.. k5. (220
{(jdimX-j+'2 (j+1)(]‘d1mX—]+2)> J } (220)

Then we have the following.

Theorem 2.3.4. [31] Let (M, X,Y,nx,ny) be nondegenerate through order k at
m € M. Then there exists an open set U C M containing m and a constant
C(p,q') < oo such that, for any positive functions fx and fy on X and Y,

respectively,

| £xxm) e m) dm < Co, ) bl

whenever (1I/p, 1/¢') belongs to the interior of Cy.

To see how (2.19) follows from Theorem 2.3.4, we take

X =R4LY :=R%x S m = {(z - 6w, z,w) : T € CQo,w € S 1, t € (1,0)},

| (2.21)
each equipped with their natural Lebesgue measure. Since 90 is compact it is
clear that that Theorem 2.3.4 implies (2.19) once we demonstrate that, at each
point m € 9, (M, X,Y, 7x,my) is nondegenerate through order 1 at m. To this

end we consider m lying in the piece of 90t parameterised by,

® : (1,0) x CQo x B1(0) CRxR* x R — 9

(t,z,y) — (T — dw, z,w),
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where w = (1, . . .,Ya-1, (1 = |y|*)/?). We can parameterise the rest of I using
(a finite number of) maps which are similar to . It will be apparent that the
argument which follows can be modified to get the same outcome for the remaining
elements of 9. Our computations of the vector fields X; and 91; occur in a
Euclidean space and thus appeér as 2d-tuples. Our choice of parameterisation
means that it is convenient to write these 2d-tuples in the form (t|x|y) where
teR, z € RY andyé]Rd‘l. ‘

One can easily verify that, if e; is the jth standard basis vector in R%-! and
w; = (&5, —y;(1.— |y|)~'/%) € R?, then the vectors

X; = (0|bwjle;) forj=1,...,d—1, and
X, = (1t~ Péw|0)

lie in %;, and the vector (1]00) lies in 9%;. It is also straightforward to verify that
T(X;) = (0]t~ Péw;|0) forj=1,...,d—1.
We claim that for each fixed (¢, z,y) € (1,0) x CQq x By1(0) the set
Y, X5, Xay T(X;) 1 j=1...,d=1) (2.22)

is linearly independent. Upon a dimension count, this implies that (M, X, Y, 7x, 7y )
is nondegeneraté through order 1 at m, as claimed.
To see that the set in (2.22) is linearly independent, suppose that

d—1 d—1
aYi+ Y BiX; + BaXa+ ) %T(X;) =0.
j=1 j=1

The last d — 1 components force §; = 0 for j =1,...,d — 1. Therefore,

o

Ba
1 1 0 ... 0 .
( 0 ¢t 'Pohw —tT'Phur - t~ 1 P8wq_1 ) ’Y:1 =0, (2.23)

Yd—1

and it suffices to show that the determinant of the matrix in (2.23) is nonzero.

This determinant is clearly equal to
det(t"*P4,) det(w, —wi, - .., '—wd_l),:
and an easy computation shows that this equals,
771 det(P)(1 = [yl) /2,

which is nonzero for each (t,z,y) € (1,0) x CQp x B1(0). This completes the
proof of Lemma 2.3.2. ' O
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Following [19], we shall combine Lemma 2.3.2 with some Littlewood-Paley
theory to complete the proof of Theorem 2.1.1(2). Begin with a smooth compactly
supported function n on R? such that 0 <7 < I and

1 for €] £1,
10=1{6 ol

and set 7;(€) := n(83:&). It.can be shown (see, for example, [9]) that there exists

a natural number D ~ 1 such that if
M = Tk+D — Mk—p and  Ag = Ay,
then the following is true.

Theorem 2.3.5. 1. The A, decompose the identity operator in the following

Sense.

Z/\k(f) =2D for each £ # 0.

kEZ
9. There exists a natural number N ~ 1 such that for any & € R?, the number
of k € Z for which A\(§) # 0 is at most N.
3. If either |87 _p€| > 2 or [63,p€] < 1 then Ag(§) = 0.

4. For allp € (1,00),

1/2
(meﬂ S A1£ -

keZ
P

For any Schwartz function f we have

Ay (Z Ajix * f) (z,w)

JEL

<Y Bif(z,w),

JEZ .

sup | Ay f(z,w)| ~ sup

keZ ke
where . )
By (z,) i= sup [ Ax(Asan » (@)

We claim that it suffices to prove the following inequalities for each Schwartz

function f and each j € Z.

Ifll, for each (1/p,1/q) € €°; L (2.24)
¢~ f]l, for some a(q) > 0 and g < g4(2). (2.25)

||ij||LP(L4)
| B; fl| L2 (zo)

IN LA

In fact, interpolation between (2.24) and (2.25) implies that

1B; fll 1o (zey S 27 @Dl £,
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for each p € (2, (d +1)/2) and q € [1,q4(p)). Hence, for such p and g,

IMf e S 3N Bifllrwey + IMacflls S Wl + D 27 @£l S N fllp-
JEZ JEZ

We can now use this estimate and interpolation to achieve the same conclusion
when po = (d +1)/2 and qo € [1,q4(p)). Indeed, fix such a po and go and
interpolate the above estimate for p sufficiently close to pg and an appropriate
q € [1,q4(p)), with the trivial estimate || M f||zeo(ze) < I flloo-

To wrap things up, it only remains to prove (2.24) and (2.25). To see (2.24), °
first fix (1/p,1/q) € ©° with p < ¢, and observe the following trivial majorisations:

p/q

| B; f“Lp L9) < / (Z/Sd_ | Ax( ]_,_k*f)(x w)‘qdw> dz

keZ

Z/Rd (/Sd_ |Ak g+k*f)(ﬂv W)quw> qu.

keZ

IA

Now (2.24) follows from Lemma 2.3‘2, the fact that the IP(Z) norm is dominated
by the [*(Z) norm, and Theorem 2.3.5(4) in the following way:

1By S 3 [ Ihseicn Fla)F da

keZ .
p/2
< [ (Z1A+k*f ) e s
keZ )

To show (2.25), we take the same approach that we used to prove (2.11) and also
Theorem 2.3.5(3) to get -

1Bl S S / I QPIFE) min( 56l 536/ 7*) de
kEZ
< 2 min(|57E[2, 6561 7) dé,
PN

where
‘ Ay = {€ € R?: |0%54x40€] > 1 and |8351-0€| < 2}

It is easy to verlfy that (2.25) follows from (2.6), (2.7), and Theorem 2.3.5(2).
This completes the proof of Theorem 2.1.1.

Remark. The ensemble (9N, X,Y, wx,Ty) is not nondegenerate through order k
for any k > 2, in the setup of (2.21). Using this, and the fact from [31] that '
Theorem 2.19 is essentially sharp, means that a different approach is needed to

improve upon Theorem 2.1.1.
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2.4 Proof of Theorem 2.1.2(2)

In the isotropic case, the schema in [19] is to deduce the same estimates for H from
those known for M (see Lemma 4.1 on pages 197-198). The argument here relies
on the fact that H arises from the classical one-dimensional Hilbert transform
in the way described in (1.11). As we remarked on page 12, this approach is
not available in a nonisotropic setting. However, as an aside, the point at which
the arg'urhent breaks down throws up an interesting question involving weighted
inequalities for operators along curves. Specifically, for fixed w € S9!, what
values of r € (1,00) and s € (0,00) is it true that -

/ \H (2, 0)] M f(z,0)" dz < O(r, 5,w) / F@) M (z,w)™ dz
R¢ _ Re

holds for some finite constant C(r, s,w), and if so, how does C(r, s,w) depend on
w? '

We prove Theorem 2.1.2(2) using a similar technique to Step 1 for the maximal
operator. Fix g € (2 q4(2)) and choose v € (0,1/2) as in (2.12). It suffices to
"~ prove

Vv S IFlle for q € (2, qu(2)),

and by Sobolev embedding, it therefore suffices to prove -

IH fllz2zzy S I Flla for g € (2,qa(2)). (2.26)

But, by Plancherel’s theorem,

S ~ / PO lIm(e, I3 de.
where - . :
10w .€ dt .
m(€,w) :=pv. | € T (2.27)
R . .

and therefore (2.26) follows if we can show

sup Hm(f, Mz S 1. ' (2.28)

€eR?

We shall make a dyadic splitting of the integral in (2.27) using the same o €
(1,00). So, for each k € Z, define

o dt
mk(£7w) = / 6160k5‘6tw T
ltlel1,0] ¢

in such a way that

V P wdt_ 12,60 twﬁ__
Z/ﬂe[ak k1] T Z/ o t*Zm’“(g’w)

k€eZ kez v ltIE[L,o] keZ
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We claim that, if € = 1/2(1/2 — v) then, for almost all £,

lmo(&; ez < mm(lél, 1€17°)- (2.29)

It follows from, my(§,) = mo(83:&,-), along with (2.6) and (2.7), that (2.29)
implies (2.28). We prove (2.29). by showing that (2.15) and (2.16) hold with my
replacing the m which appears in these equations (and not m defined in (2.27)),
and interpolating. The estimates for small |£| are again easy to verify. The
estimates for large |¢| follow from Lemma 2.3.1 and the fact that 6, = —é_; for

negative t.

2.5 Proof of Lemma 2.3.1

Firstly, choose Ce > o such that log [¢] < |€]% for |¢] > C. Smce Ce ~ 1,1t is
clear that we only need to consider |€] > C.

We shall handle the cases d > 3 and d = 2 separately. In the former case we.

make use of the following well-known estimate on the Fourier transform of surface

measure dw on S41:

|dw(n)l < min(1, ||~ @-/2), (2.30)

The decay exponent in (2.30) is sharp and we shall see that this is the reason for
our dimensional dichotomy.

So firstly, suppose d > 3. We write,

/ / W(Ew)() 0 gy
se-1 |J1

in order to capitalise on the decay exponent in (2.30). Thus, using (2.30) and
also (2.17), we get

2

o = //8;((6;_6;)5)‘P(£,w)(t)mdtds',
. -

2.

é . 1€.60w < 2a
/Sd_l ,/1"Ij(£’w)(t)e dt| dw < |§| / (s)elL.o)? 1 dtds
- : 0<(t—s)}¢|<1
2% o\ g |—(d—1)/2
e [ 16 = 82 duds
1<(t~s)l¢]
= |¢)**(I + II).

Clearly I is comparable to the measure of a rectangle in R? with sidelengths |¢|*
and 1. Hence I < |¢|7}, and the contribution from this term is suitably under
control. 4 |

We claim that for all |¢] > C., and all (s, t) € [1,0]? with ¢ > s we have,

(87 — 62)E| = (t - s)lél. S (231)
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Firstly we complete the proof of Lemma 2.3.1 for d > 3 eqﬁipped with (2.31). We
may as well suppose (o — 1)|£| > 1, otherwise there is no I term. If d > 4 then

I < Jge- 1)/2/ / ~(d-1)/2 gy
+lgl-1
< e [ s el

whilst if d = 3,
nslt [ @-srtads sl [ loglelds S g
1 s+lgt 1

Notice that the estimate for I also holds when d =2. However, a simple com-
putation shows that when d = 2 the best one can hope from the term I7 is the
weaker estimate |¢|~1/2. We shall therefore use an alternative argument when
d = 2 which instead capitalises on the decay from the t-integral for fixed w. Be- _
fore moving on to this case, we prove our claim in (2.31). For this, it clearly
suffices to prove that for all (s,t) € [1,0]? with t > s,

18 — &) S (¢ =) (2.32)
So we fix (s,t) € [1,0]* with ¢t > s and by writing
575 - 53 = 53(5t_/s - I)7

we seek to get a bound on the norm of the inverse of 8, — I. Putting u = t/s

for notational convenience, we have u € [1,0], and

‘ N .
6 —1 = (1ogu)P+Z@5,L)PJ

= 7

= (logu)P <I+ i (LC)g-}L!)EPj_1> .

§=2

Setting B(u) := — .72, (j!) " (log u)’ "' P7~, then, as long as o < 2 we have

B @I =27

< S U DO L

Z (7 —1)( 108'”) pi-1

j=2
= (Cp< o0,

for each v € (1,0). Hence, if we choose o € (1,min(2,1 + (2Cp)~!)) then the
mean value theorem implies, ||B(u)|| < Cp(u — 1) < 1/2. This implies I — B(u)
is invertible and moreover ||(I — B(u))™Y|| < (1 — ||B(u)||)~* < 2. Whence,
160 = D)7HI < (logw) H IPHINI = Bu) T S (w—1)7"
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Therefore,
108 = &) 7M1 < 118w — DMyl S (w = 1)7" ~ (E—8) 77,

which proves (2.32) and consequently completes the proof of Lemma 2.3.1in the
case d > 3. '

For d = 2, first write w € S* as (cos ,sin ) for 6 € (0,27). We claim that for
all s € (0,logo), and all (£,6) € R?\ {0} x (0, 27) with

|€.(cosf,sin )| > 1,

the following is true:

s 2
i£.etP (cos 8,sin 9) dt|l < 1 . 2.33
A € ™~ |€.(cos 8, sin 6)| (2:33)

To see how this would complete the proof of Lemma 2.3.1 in the case d = 2, first.
note that

/ \II(E,w) (t)eif-tst (cos 8,sin §) dat |
1

logo . '
/ ezE.e (cose,sme)esql(g’w)(es) ds
0
log o s '
= / i </ eig,e”’(cose,sme) dt) 63\11(5 w)(es)ds
o ds\Jo Y&
loéo' P .
= U\Ij(g,w)(O')/(; 6166 (cos 8,sin 8) dt

logo s, ) '
~/ </ ez{.e P(cos 8,sin 6) dt) es(ql(g,w)(es) _*_.es\III(E,w)(es))ds.
0 0

Then (2.17) and (2.33) imply

SR
3 |€.(cos 6,sin 6)| (2:34)

/a \I’(g W) (t)eiﬁ.ég (cos 6,sin 6) dt

1

A straightforward computation now gives

/1515.(005 8,sin 6)|

Since we also have the trivial estimate

/|§.(cos 8,sin6)|<1

2
40 < JE[7 log €] S Je| e,

/ U ) (1) 202050 g

2 .
w5 [ 149 < ¢,
|€.{cos 8,sin 8)|<1

/U eiﬁ.ét (cos8,sin §) dt

1
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the proof of Lemma 2.3.1 will be complete once we prove (2.33). We shall ac-
complish this by fixing £ and 6, and invoking van der Corput’s lemma, with the

phase function © defined by
O(t) := £.eF(cosh,sinf) for t € [0, s].
Our first observation is an explicit formula for the-exponential of a general 2 by

a a
P .= 1 2 ,
as a4

and let A := ((a; — a4)? + 4aa3)'/2. A direct computation gives: -

2 matrix. Let

. . At . : At
At h 4t
etP _ e(_al%ﬁ COSh(%t') + (a1 — CL4)'S—HEIA('—2'2 202%2— '
- sinh £t At ' sinh(4%)
20,3-—A2— COSh(T) - (al — a4)—A—2—

We consider the cases where A is nonzero and zero separately, and firstly suppose

the former. Then we may write

O(t) = e“*(Asinh(At/2) + Bceosh(At/2)), where

,0) = AM(a1 — ag4)€1cos0 + 2ax6) sin 6 + 2a3€2 cos § — (a1 — ag)ésin6),
,0) = & (cosB,sinb), I "

C = (a;+aq)/2

We claim that the following estimates hold on the first and second derivatives of

O: if B := det P/(2(C? + A%/4)) then, for all ¢ € [0, s], '

20|B(E,0)] < (1 + DIAIIAE. O] = 10"(0) 2 |BE6),  (235)

- 2C1B(6,0)1 = (1 + B)IA[|AE,0)] = [0'())] 2 |B(£,0)|. (2.36)

We shall also show that ©” has < 1 zeros on [0,logo]. This allows us to split

the integral in (2.33) into < 1 pieces where © is monotone and thus, (4.39) and
(4.38) imply (2.33) via van der Corput’s lemma.

To begin our proof of the claim, first recall that P has real entries and the

eigenvalues of P have positive real part. Therefore the following hold:

1. The eigenvalues of P are C £ A/2 and C > 0.~

2. C? — A?/4 = ayaq — aza3 = det P > 0.
Thus, 3 is well defined and is certainly positive.‘ Now, writing A = A(¢,6) and
- B = B(,0), we have ,
O'(t) = eC*((CA + AB/2)sinh(At/2) + (CB + AA/2) cosh(At/2)), and
©"(t) = e°((C2A + ACB + A’A/4) sinh(At/2) |

+(C?B + ACA + A?B/4) cosh(At/2)).
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Let us first look at what happens when ¢t = 0, and begin with the case 2C|B| <
(1+ B)|A||A|. Then,

©"(0)]

|C’B + ACA+ A’B/4|
C|A||A] = (C? + A?/4)|B|
ClAlIA] - (C? + a?/a) LEAIAIA

1all4] *
AllA 2 2 2
g (207 = (CT+ AY/4)(1+ 1)),

Y

vV

and our choice of 3 ensures

1©7(0)] = RIBl. , (2.37)

|A||A| det P
4C
For 2C|B| > (1 + B)|Al|A| we have
©(0)| = |CB + AA/2| = CIB| ~ |Al|Al/2 2 BIBI/(1+ 6 2 1Bl (2.38)
Next, note that there exists some ¢y ~ 1, such that
| cosh(A¢/2)| > 1/2 and [sinh(At/2)| < |AJ¢ for t € [0,t).
If2C|B| < (1+ ﬁ)]A||A| then (2.37) implies there is a constant ¢ ~ 1, such that |
|©"(0)| > 4c|A||C?A+ ACB + A?A/4| > 4t|A||C*A+ ACB + A2A/4|

as long as o is chosen such that logo 5 c. Therefore, if we also ensure Iog o < iy,
then (2.37) implies "

©"(t)] > 1©7(0)]/2 - |AIC*A+ ACB + A*A/4]t > |©7(0)|/4 2 | B,

which is (4.39). Similarly, if we suppose 2C|B| > (14 §)|Al|A], then there exists
a constant ¢’ > 0 such that

|@’(0)[ > 4 |A||CA + |A|B/2|
and this, (2.38), and a choice of ¢ with logo < c’ 1mp1y
©'(t)] = 1'(0)I/2 - |Al|CA+ AB/2|t > ©01/42 |BI.

Thus, we have proved (4.39) and (4.38). It remains to show that the number of
zeros of ©” on [0,log o] is < 1. To see this, if we write,

0" (t) = e“*(Asinh(At/2) + B cosh(At/2)),

(8)- (587 2%, (4).
38
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then we must have that (A4, B) # (0,0). Otherwise, we would be able to use the
fact that B # 0 to deduce the following nonsense,

0= (C? + A?/4)? — A2C? = (C? — A?/4)? = (det P)* > 0.
Observe that if ©”(t) = 0 then (A + B)e?* + B — A = 0, and consequently,
A+ B #0. Letting z := (A — B)(A+ B)™', and for argument’s sake, arg(z) €
[0,27), we must have At = log|z| + i(arg(z) + 2km) for some k € Z. The fact
that |At| < 1 means of course |k| < 1 and therefore the number of possible ¢ such -
that ©”(t) = 0 is < 1. This completes the proof of (2.33) when A # 0. |

Suppose finally that A = 0, so that the phase function © simplifies to O(t) =
eCt(B + At), where

A(f, 9) = ((a1 - a4)§1 COS 9)/2 + agfl sin + (1362 cosf — ((alr— (14)62 sin 9)/2,

and B(£,6) and C are unchanged. One can check that, modulo a suitable choice
of g, |©"(t)] 2 |B(&,0)] if 3|A(¢,0)| > 2C|B(¢,0)], and |©'(t)] 2 |B(£,0)] if
3|A(&,0)] < 2C|B(¢,0)|. 1t is straightforward to check that ©” has at most one
zero in [0,log o]. This concludes our proof of Lemma 2.3.1. '

Remark. The proof of Lemma 2.3.1 shows that if d > 4 and P is a real d by

d matrix whose eigenvalues have positive real part, then there exists a number

o € (1,00) such that,
/ / ei§.6tu dt
S§i-11J1

"The loss of an epsilon power in the statement of Lemma 2.3.1 arose from our

2 .
dw S €7 (2.39)

arguments for d = 2 and d = 3. We claim that in the case of parabolic dilations
in the plane there is no loss of epsilon. To see this, \ﬁx 6 € (0,27) and € with
|¢| much larger than 1, and let ©(¢) := &itcosd + Ext2sind for t € [1,2] (we are
thus choosing o = 2, but the claim actually holds for any o € (1,00) ). We shall
apply van der Corput’s lemma on the first and second derivatives of ©; clearly
©' is monotone. '

Split the #-integral over [0, 27| into disjoint subintervals I, I3, and I5, where

I = {0:|&]|cosb| < |&|sind},
I = {0:[&]|cosb| > 8|&|sindl},

and I5 is of course the complement of I; U I;. Notice thaﬂ for § € I, we have
|©'(t)| > |&]|sin 6] for all ¢t € [1,2] and therefore van der Corput’s' lemma implies

2 1 1
1O(t)
e~V dt| < - < . 2.40
/1 ’N |€2]|sin @] ~ |€1]] cos b (2:40)

39




When |£;| > |1, the stronger estimate in (2.40) implies

2 .
/ / ez(—)(t) dt
6el 1

On the other hand, when |£;| > |£;| one can perform a similar argument to the

2 .
df < 16| géh * |sin6| 2 d9+/9611 1d6
, |€2]|sin 6]>1 |€2]| sin 6] <1
S &t~ e

one above using the weaker estimate in (2.40). This takes care of the contribution

from I,. For I,, an analogous argument works; we spare the reader the details.
For 6 € I, observe that |©”(t)| ~ |&]}sinf] ~ |&1||cosf)| for all ¢ € [1,2].

Also notice that if |&| > |£| then |cosf| ~ 1 and |&||siné| 2 1. Thus, when

|&2] > |&1|, van der Corput’s lemma implies

. : .
/ / ez@(t) dt
1S3 1

A similar argument works for the contribution from I3 if |£;| > |€;]; this completes

2
d8 < o] / |sin 6]~ db ~ &~ ~ J¢] .

el

the proof of our claim. It may be of interest to establish whether (2.39) holds for |
all dilations given by (1.26) and all d > 2. '

- 2.6 Some applications

Variable kernel singular integrals

Recall that 7 is'the trace of P, and J is defined via the change of variables in
(2.3). Suppose K, defined on R? x R satisfies the following conditions:

(K1). K(z,-) is homogeneous of degree —7 with respect to the dilations 4, for

positive ;
(K2). K(z,-)3, defined on S471, is an odd function;
(K3). supyepe ([suos 1K (z,w)]" dw) "’ < 6.

(Note that the above conditions are not precisely those that appear in Chapter
1, but we reuse the notation in order to maintain a correspondence). Then the -
following theorem holds via the estimates for H given by Theorem 2.1.2 and the
method of rotations. )

Theorem 2.6.1. The operator T defined in (1.18) is bounded on LP p'rom'ded -
1 pe .(1,2]. andr € ((1—1/d)p’,0); or
2. p € (2,00) andr € (p(d— 1)/(p(d — 1) — (d — 2)), 0).
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Also known in this context is the work of Fabes and Riviére in [26] where a
weaker cancellation condition and a substantially stronger smoothness condition
are assumed. Specifically, it is shown that T is bounded on L* for all p € (1, 00)
under the above homogeneity condition (K1) and the following conditions:

(K2'). [gu1 K(z,w0)J(w) dw = 0;
(K3). K(z,-) belongs to C®(R?\ {0}) and sup,cge [| D2K (z, )| poe(si-1) < 00.

Fabes and Riviére proved this result using a sphérical harmonic expansion of the
kernel, in the spirit of the work of Calderén and Zygmund in [7] (see also [8]).
Our approach in the nonisotropic setting is to follow [19]; recall our discussion at
the end of Chapter 1, where we highlighted the success of the method of rotations
in handling kernels satisfying the weak smoothness condition (K3) above. Notice
that for p € (1, 2], Theorem 2.6.1 shows that the same outcome holds for isotropic
and nonisotropic dilations. It would be nice to be able to show that one can prove
that Theorem 2.6.1 holds with (K2) replaced with (K2’). The standard approach
to handle the even case with isotropic dilations is to make use of the Riesz kernels.
At present, we are working on an analogous argument in our nonjsotropic setting.
We include our next theorem as a potential first step towards this. Indeed, in
the isotropic case, the result is crucial to the standard argument for handling
even kernels (see [8] and [27]); a nonisotropic version appears in [55] when P is a .

diagonal matrix.
Theorem 2.6.2. Fore > 0, define K.(z,y) := z—:'TN(a:,y),\Il(cSE_l(y)),v where

1. N(z,-) is homogeneous of degree —T with respect to the dilations &; for
‘ positive t; ‘

2. sup,epd (fgar [N(z,w)[" dw)l/r < 00;

3. U is a nonnegative and nonincreasing L' function, radial with respect to o;
that is, ¥ = (p(-)) for some nonnegative and nonincreasing function ¢ on
[0, 00).

Then the operator T* defined by

T*f(z) =sup| | Ke(z,y)f(z —y)dy|,

. e>0

Rd

is bounded on LP provided that either (1) or (2) of Theorem 2.6.1 holds.
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Proof. Passing to nonisotropic polar coordinates and using the homogeneity of N

we get

[ K< [ el (e [ oe0r e - sl de) do

' (2.41)
for each € > 0. We claim that, for fixed w € S9!, the term against which |N(z,w)|
_integrates in (2.41) is < M f(z,w). Given the claim, the proof of Theorem 2.6.2

follows from Hélder’s inequality and condition (2) of this theorem.

To prove the claim, first write

. poo ' o0 TYleTlt) . .
e /0 et | f(z—bu0)] dt = /0 /0 T e flam b)) dsdt (2.42)

For fixed positive s; the set {t € (0,00) : s < e "p(et)} is some interval (0,t(s)]
because 7 is nonincreasing. If we suppose that 7 € [1,00), by changing the order

of integration, the quantity in (2.42) is <

e T(0) £(s) eTY0) i)
/ H(s)" 4(s)" / (2 — 6w)| dtds < M (z,w) / - / £ dtds.
0 0

(2.43)
By changlng back the order of integration and a change of variables, the right
hand side of (2.43) is < ||¥||,Mf(x,w), which completes the proof of our claim

when 7 € [1,00). When 7 € (0, 1), for each positive s we have

t(s) _ t(s) pt7t
/ f(z — S|t dt = / / 1F(z — 6,0)]| dudt
0 0 0.

Cpt(s)TL pt(s) v
=/ / |f(z — duw)| dtdu

l/(‘r 1)

/ / (z — dyw)| dtdu
t(s)7 1

S t(s)Mf(z,w).

~

Therefore, the right hand side of (2.42) is < the right hand side of (2.43). From
this point, we finish the proof of our claim for 7 € (0,1) as we did for 7 €
1, 00). ’ (.

A nonisotropic Kakeya maximal function

For a bounded subset F' of RY, define its diameter with respect to P, diamp(F),
by '
diamp(F) := sup{e(z — y) : 2,y € F},
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“and its eccentricity with respect to P, Ep(F), by

ep(r) = T2

We also wish to introduce a notion of star-shaped in our nonisotropic context,
and in particular with respect to the origin. We shall say that F' is star-shaped
with respect to the origin and the matrix P if

F={fw:weS8and 0 <r < Rw)}, (2.44)

for some nonnegative measurable function R on S41.

Remarks. 1. When P is the identity matrix, the above reduce to the usual
definitions of diameter, eccentricity, and star-shapeliness of bounded sets in

Euclidean space.

2. Suppose F is star-shaped with respect to the origin and P. Using (2.5),
sup{o(z) iz € F} < diamp(F') < Cpsup{o(z) : z € F},
~and therefore, using the notation of (2.44), homogeneity, and (??),

sup{R(w) : w € §41} < diamp(F) < Cpsup{R(w) 1w € S '}. (2.45)

3. Eccentricity with respect to P is invariant under the action of the dilations

6r. One can easily verify the following:

: [rdiamp(F)]"
Ep(6,F) = —e0—=— = Ep(F). : 2.46
Example 2.6.3. Suppose d = 2 and P = diag(1,2), so that we have parabolic
dilations. If a point (z¢,10) € R? lies in F C R?, and zo > 0, then in order to
satisfy (2.44) and be star-shaped with respect to the origin and parabolic dilations,

F must contain the section of the parabola y = (yo/x§)z* for z € [0, zo|.

For a positive number N, let §x denote the family of all subsets of R¢ which
are star-shaped with respect to the origin and P, and have eccentricity with

respect to P no greater than N. Define the following maximal operator,
My f(z) = sup FI™ [ |f(z = w)ld.
Fe3n F

With isotropic dilations, LP estimates on Mg, were established in Corollary
. 3.5 of [19]. These estimates are easily shown to imply that the conjecture in

(1.30) concerning the standard Kakeya maximal operator is true for all p €
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(1,max(2, (d + 1)/2)]. We shall use Theorem 2.1.1 to prove—analogouS' estimates
in the nonisotropic setting. Following [19)], for fixed p, we shall need to know the
dependence on ¢ of the constant Cpq, 4 in the following estimate from Theorem

2.1.1:
1M fllzezay < Crapall fll,  for ¢ < qa(p):

To simplify the notation in the remainder of this section, use introduce the fol-

lowing notation.

Notation. For positive numbers A and B, write A $ B for A < CB, where C
depends only on the matrix P and the ambient dimension d. Also write A = B
fASBZSA

We are most interested in the endpoint py := max(2, (d+1)/2) since all of our
estimates on M in Theorem 2.1.1 follow from our sharp estimates at this point.
Recall the theorem of Gressman on page 29 from which we were able to deduce
the estimates at py and for ¢ < g4(po) when d > 4. Gressman proves this theorem
in [31] by showing that restricted weak type estimates hold at the endp;)ints
in (2.20). In our application, this set of points reduced to the singleton set
containing (1/po,1/g4(po)'), and therefore a restricted weak type estimate holds
at this point. After unravelling the duality, one can interpolate from the resulting
restricted weak type (o, qa(po)) estimate using Marcinkiewicz interpolation (see,
for example, [63]) to get strong type estimates away from the endpoint (these are
essentially the estimates in the statement of Lemma 2.3.2). Moreover, the blow
up in the constant as we approach the end-point can be computed. As in [19], it
follows from our proof of Theorem 2.1.1 that there exists A ~ 1 such that

. .\ ' |
¢ lmen £ (3= =) 161l (247

for all ¢ < g4(po). Using this fact, we can prové the following theorem.

Theorem 2.6.4. Fiz a large positive number N (say no less than 100). Then,

for each d > 2, one has the following estimate,
1My Flipo S (log N NYe®| ]|, (2.48)
where pg := max(2, (d + 1)/2). : - :

Proof. For now, let ¢ be any element of (1,00). Using the fact that F = {§,w :
w € S% ! and 0 <7 < R(w)}, we use nonisotropic polar coordinates to get

R(w)
P [t =wldy ~ 17 [ [ i~ gl drd
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By using arguments from the proof of Theorem 2.6.2 one can show
R(w) :
' / |f(z = &;w)|r™tdr S Mf(z,w)R(w)".
0

Note that R(w) = R(w)YY R(w)Y? < R(w)" diamp(F)Y9, by (2.45). Therefore,
using Hélder’s inequality, and the hypothesis that €p(F) < N,

N /e '
|F|t /F |f(zx—y)ldy = |F|—1diamP(F)T/q ( R(w)" dw) M f(z,)llq
~ |F|7*Y9 diamp(F) 1| Mf(z, )]l
N9 Mf(z,)lq

Sd—1

IN

Therefore,
Mgy, fllpo S NYIMS || oo (£e).
If we choose ¢ € (1, g4(po)) such that

1 I 1
q Qd(Po) log N ’
2.

then the desired estimate in (2.48) follows from (2.47). O

Maximal operators related to the operator Mg, concerning averages over
curved sets have been studied by Wisewell in [68] and [69]. Minicozzi-and Sogge
[46] and Sogge [59] consider the quite different problem of geodesics in curved
space. The estimate at (d + 1)/2 (appearing in Theorem 2.6.4) was achieved in
[69] for a very broad class of curves. Rather than the Fourier transform based
proof that we used to prove Theorem 2.6.4, Wisewell proves a (d + 1)/2 bound
using more modern geometric techniques; in particular the bush argument of
Bourgain. For the curves haturally associated to the dilations §; considered in
this chapter, it is an interesting question as to whether the (d+1)/2 estimate for
the maximal operator may be extended. This question was studied in some depth
in [68] and [69] for parabolic curves in R¢. It was-shown that on the one hand
there exist such curves for which the estimate (d+1)/2 is (in some sense) best
possible. Nevertheless, some necessary conditibns on the paraboiic curve were
given in [69] for which the (d+1)/2 bound can be extended. In fact, using recent
arguments of Wolff and Katz, Wisewell proves a (d + 2)/2 maximal operator es-
timate. Furthermore, using arithmetic methods, progress beyond (d + 1)/2 was
made on the question of the Minkowski dimension of certain related null sets. A

For future work, we hépe to fully address the question of whether Theorem
2.6.4 can be improved for certain curves naturally associated to the dilations d;.-

Moreover, we hope to investigate whether some of the more recent techniques

45



developed for tackling Kakeya type maximal operators can form a basis for an
argument which extends the range of p in the mixed-norm estimates for the
isotropic directional maximal operator, M, in Theorem 1.2.1. Any progress on
this problem would naturally beg the question of Whéther similar progress could
be made in the nonisotropic setting governed by the dilations d; considered in
‘this chapter; that is to say, extend the range of p in Theorem 2.1.1.
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Chapter 3

LP-Boundedness of the Hilbert
Transform and Maximal
Operator Along a Class of
Nonconvex Curves

3.1 Introdluction

Recall the definitions of Hr and M from (1.18) and (1.19). The following theorem
concerning a class of nonconvex curves I' : R — R? is the main result that we

prove in this chapter.

Theorem 3.1.1, Suppose P is a real polynomial and +y is convex on [0, 00), twice
differentiable, either even or odd, v(0) =0, and 4'(0) > 0. IfT'(t) = (¢, P(¥(?))),
p € (1,00), and either (1) P'(0) is zero, or (2) P'(0) is nonzero and 7' € €y,
then '

1Hcfllp < Cllfll, and IMcfll, < Cllfllp-

Moreover the constant C depends only on p, vy, and the degree of P.

Remarks. 1. By taking y(tj = t we recover a special case of Theorem 1.1.1
since we can then suppose P’(0) = 0. Our proof does not require the ‘lifting’
technique used in [60] to prove Theorem 1.1.1. Also, taking P(s) = s we
recover Theorem 1.1.6(1), Theorem 1.1.7(1), and the sufficiency part of
Theorem 1.1.4. '

2. Some examples of nonconvex curves were studied in [71], and later these
were generalised somewhat through a technical theorem in [66]. Although
the class of curves in Theorem 3.1.1 falls within the scope of [66], the bounds
obtained from the technical theorem in [66] depend on the coefficients of P.

Furthermore, our proof is more direct in this setting.
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We shall see that ideas in our proof of Theorem 3.1.1 can be used for certain
hypersurfaces instead of curves. Specifically, if d > 2 and " : R — R%*! param-
eterises a hypersurface, then, ignoring a slight abuse of notation, we associate to

this the corresponding Hilbert transform and maximal operator by

Hef(@) = po. [ 1o~ Tw)K @)y,

Mrf(z) ;= suph™@

h>0

/ f(z - T(v)) dy,
lyle(0,R)

where K : R? - R is a Calderén-Zygmund kernel; that is K is homogeneous of
degree —d with respect to isotropic dilations, K is of class C* on R¢\ {0}, and
flyle(a,b) K(y)dy = 0 for each 0 < a < b. Again, it is clear that a dyadic version
of the maximal operator, in analogue with (1.20), is equivalent to Mr. Then we

have the following theorem.

Theorem 3.1.2. Supposé P is a real polynomial and ~y is convez on [0, 00), twice
differentiable, either even or odd, v(0) = 0, and ¥ (0) > 0. IfT'(y) = (v, P(v(ly])))
and p € (1,00) then

15 fll, < Cllfll, and | Mefllp < Clifllp-

Moreover the constant C depends only on p, d, v, and the degree of P. .

Remark. The case P(s) = s was proved in [37]. Notice how in this case the
convexity of « suffices for LP boundedness, which is in stark contrast to the case
d = 1 that we alluded to earlier. ’

- Notation. Write A < B for A < CB, where C is an absolute constant which may
depend on p, v, d, and the degree of P but is independent of the coefficients of
P. | ~

Overview. In the following section we make a suitable decomposition of our op-
. erators based on key results concerning polynomials of one variable. The next
section contains the fundamental results for the proof of Theorem 3.1.1. In the
last section we prove Theorem 3.1.2. Both Theorem 3.1.1 and Theorem 3.1.2 are

to appear in [4].

3.2 Preliminaries and reductions

Let P(s) = 3_¢_, pis® be a real polynomial of degree n, where n > 2 (it is without
loss of generality that we suppose P(0) = 0). With the model case that P is a
monomial in mind, we let v denote the jth power of v and note that, using only
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the convexity of v, it is simple to verify that (y/) € €, if 7 > 2. It will be a
continuing theme throughout this chapter that the cases j > 2 and j = 1 will need
separate considerations; the latter being the more difficult. If D is the dvoubling
constant for (7?)’ then we consider the dyadic operator Mp with A := max{3, D}
(recall the role of A in the dyadic operator Mr defined in (1.20)). '

We now discuss the decomposition of (0,00) crucial to the proof of Theo-
rem 3.1.1. The ideas here originated from work in [10] (se€ also [29]). First .
let z,...,2n be the roots of P ordered as 0 = |z1| < |z2] < ... < |23 Our
decomposition will depend on a constant A which depends only on the de-
gree of P and whose value we fix later. Firstly, we include G; = (0, A7|2]].
Then, for j € {2,...,n — 1}, if the interval (A|z;|, A7*|2;41|] is nonempty this
is also included and called G;. Finally, we include G, = [A|z,|,00). Now let
3 = {1} U{n} UUg,.p{s}. Observe that (0,00) \ Uje3 Gy can be written as
Ukeg D where the D, are disjoint and, moreover, each Dy, = (ax, Bi) enjoys the
property that aj ~ B. The notation is suggestive since the Dy resemble dyadic
intervals and, as we are thinking of A as ‘large’, the G; are ‘long’ intervals, or

gaps of P. Our decomposition is then:

(0,00) = {J7l(gioe) (G) U U 6oy (D): (3.1)
J€l _ ke

We of course then get the corresponding decomposition of R by taking symmetric:

versions of the intervals in the above decomposition. If I is a subset of (0, 00)

then define H; and M| by

' dt |
H = —I(t)) —, ' 3.2
@ = /OO | (3:2)
Mif(z) = supr / fa-T@)d|.  (33)
keZ te[,\k,,\k+1]n—y|(—01,°°)(1) |

It is easy to see that each Hp, and Mp, are LP bounded. After an application
of Minkowski’s inequality, this will follow if v~1(8;) < v~ (). In fact, (1.22)

implies

-1 Y~ (Br) Br : T B
v Haw) Sy b Ja YTHEY(r ) w S Ok

2 1(5k) < —ﬁ—k,Sl. ‘ . (3.4)
v Haw) T ok y
Along with the fact that the cardinalities of J and £ are S 1, Theorem 3.1.1 will

follow once we verify that Hg, and Mg, are L? bounded (With bounds independent

and therefore,
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of the coefficients of P), for each Ij € J. So for the rest of this chapter, we fix
j €3, and for k € Z we define Ij, := [1, AN\~ k7|(0°o (G;), and measures Hj and

ik Dy:

(How) = [ 904 PGORN T, Gat) i= [ w0 POOM) d,

ftlelk . I

for ¢ € 8(R?). In order to analyse Hg, and Mg;, we need to understand the
behaviour of P on G;. The following lemma is essentially contained in [10] and
[29].

Lemma 3.2.1. There exists a number C, > 1 such that for any A > C,,
1. |P(s)| ~ |pjllsl for all j € J and |s| € G;;

2. P'(s)/P(s) >0 for all j € J and s € Gj; P'(s)/P(s) <0 for all j € J and
—S € Gj,'

3. |s||P’(s)|/|P(s)| ~ 1 for all j € J and |s| € Gj;
4. P"(s)/P(s) >0 and s*P"(s)/P(s) ~ 1 for all j € 3\ {1} and |s| € G;.

Proof. For (1)-(3) see Lemma 2.1 in [29] and Lemma 2.5 of [10]. For (4), let
N, := {1,...,n} and define S; := {(I1,l2) € N, x N, : I; < I and I < j} and
Sy :={(l1,12) € N, x N, : [; <y and l; > j + 1}. Then write

P'(s) 1
Pe) ~ 2 (s—zh)(s—zzz)

1<l .
| 1
=2 Z +2 Y
imes, (877 (s —) s, (8T A8 2)
=I+1I

Let R[z] denote the real part of z and suppose A > 10. Then, for (I1,1) € S,

R [ 1 ] _ ?R[(S - 251)(8 - 212)]
(s = 21,)(5 — 21,) s — 21, 2[5 — 23, |?
82 - %[(zll + 212)]6’ .+ ?R[zllzlz]
ls — 2, |2]s — 2, |?
(1-2471— A2 1
> o)
(1+A-1)* 82

where the last inequality follows because |z, | < A™Y|s| for k =1, 2.
Ifl < jthen|s—z| > (1—-A7Y)|s| andif { > j+1 then |s—z| > (A—1)|s| >
(1 — A71)|s|. Therefore, if (I1,12) € S, then
1 1
. < 55
|S—le||S—zl2| A(I_A_l) §

a0




If C], is twice the cardinality of S; and C is twice the cardinality of S; then

5on 5] -on
. (c;(1-2A-1—A‘2) G )l
T+ A AQ-AR) S

It is now clear that there is some C,, > 1 for which the first assertion of (4) and
the lower bound in the remaining assertion follow for A > C,,. The upper bound

is easier and we leave the details to the reader. ]

By (the proof of) Lemma 3.2.1, we can choose A so that for all |s| € G;,
; . e
P(s)l < 2psls”  and  Sglpsls’™ < [P/(s) < 2flpsls"™" (3.5)

In the light of Lemma 3.2.1 it is an appropriate moment to discuss our method
of proof of the LP boundedness of Hg; and Mg;,, and hence Theorem 3.1.1. Firstly,
P'(0) being zero is equivalent to G; being empty. Heuristically Lemma 3.2.1 tells
us that on G; the curve (t, P(y(t))) behaves like (t,|p;|y(t)’). Of course, when
j = 1 some stronger condition than convexity is necessary. When G is nonempty,
under the assumption 7' € €;, we will be able to follow the proof in [13] or [22] to
get L bounds for our operators on ;. We stress here that, under the assumption
~ h € G, (or the stronger condition v € €;), the method of proof in [9] fails to

work for our operators on G;. Fundamental to the argument in [9] are dilation
matrices and estimates on the Fourier transform of certain measures. However
the fact that Lemma 3.2.1(4) does not hold for j = 1 means we are unable to
~achieve such estimates. For j > 2 either the approach in [13] (and also [22]) or
[9] is available to us because (v?)’ € @,. Therefore (y7)' € €, and the h-function
~ associated to 47 belongs to Gy (recall the definition of the h-function from page
14), | .
The following proposition, which can be found on page 384 of [12], lays down
the bare essentials of a combination of ideas from'[9], [13] and [22]. We use this

to prove LP bpunds for Hg, and Mg;, and state it as follows:
Proposition 3.2.2. [12] Suppose { A }rez € GL(2,R) satisfies

AT Al < @ < 1. | (3.6)
Suppose {Vi}rez 1s a family of measures satisfying

A,;l_lsupp v, C B, (3.7)

for some fized ball B, ;
7x(0) = 0, (3.8)
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and
17k (€)] < C|AE|™Y  for € outside some cone Ak (3.9)
If Ty is defined by 7/}7({) = x0, (6)f(€) and satisfies

A 1/2
<§nnﬂﬂ <Gllfl, forpe (1,00) (310)

keZ
p

then f — Y,z Vi * f is bounded on LP for p € (1,00) with bound depending only
on a,B,C and C,. '

3.3 I” bounds for MG]. and Hg,

For ¢t > 0 let

Aw’@ mmw)

Define the family of dilations {Ax}rez by Ax = A()F), where we recall that
A = max{3, D} and D is the doubling constant for (y7)'. .
We begin with Mg, and create cancellation by introducing measures oy defined
by: : '
_m(0)
|Aen1B| Jay, 5

(ak,z,b) = ¥(x)ds,

where B := {z € R? : |x| < 10}. To complete the setup of Proposmon 3.2.2,
we define vy = ex(ux — 0%), where {ex} C {—1,1}. Now (1.22) implies that
v(t)?/v(s) < t/s whenever s > ¢t > 0, and therefore (3.6) holds with & = 2/ < 1.
By (3.5), if t € Iy then |P(y()\*t))| < 2|p;|v(AFt)? §\2ipj|'y()\'°+1)j. Thus,

supp px = {(X¥t, P(y(\Ft))) : t € I} C Ap1 B.
Of course ok is supported in A1 B, therefore so is v and we have (3.7). It is

trivial to verify (3.8). To deal with (3.9) and (3.10) we define A, to be the set of
= (&1,&2) in R? satisfying:

4mwmme%QMﬂw» e

The following lemma is well known.

Lemma 3.3.1. [50] Let {7k }xez be a sequence of positive real numbers such that
 for some R > 1, 141 > Rry for all k € Z. Let M > 1 and define /i to be the
set of all £ € R? satisfying M1, < |&||&| ™! < MTeyr. Iffl/’,J‘ = XAkf then

: 1/2
(Z lka|2> [ £ Goll Sl

keZ
) P

for all p € (1,00).
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It is immediate from Lemma 3.3.1 that we now have (3.10) (note there is no is-
sue of the constant C, depending on p; because |p;|(v!) (\*+1)(|p;|(v7)' (A*))~! >
2). If we can prove (3.9) then we are done. Indeed, Mg, f < supy|ok * f| +
(2 k [k — k) * f|2)1/2. In L” norm, the latter term is < ||f||, by using a stan-
dard Rademacher function argument and the fact that the conclusion of Propo-
sition 3.2.2 holds with bounds independent of ¢, and the former term is < ||f|l,
by Proposition 2.2 of [9] and the fact that |z£(0)| < 1.

Before we prove (3.9) in Lemma 3.3.3 we need the following:

Lemma 3.3.2. For all j € 3\ {1}, the function
Ers PY(3(F)7 (V)2 + P(y(X50))y (\R1)
1s singled-signed on Ij.

Proof. By (2) and (4) of Lemma 3.2.1, it must be the case that P’ and P” have
the same sign on G;. The convexity of  implies 7”(\*t) is nonnegative for ¢ € Ix

and so the result follows. ‘ _ |
Lemma 3.3.3. If £ & Ak then |0x(§)| S Ak

Proof. Since -
15:(6)] S XB(Akr18)] S 1Apné|™! S [Ag] ™ (3.12)

we are left to find a decay estimate for fiz. Let 6(t) = \¥t&; + P(y(\*t))& for
t € Ir. Suppose first that |&;] > 4|p;|(77) (\*1)|&,|. Then, by (3.5), '

10" 2 Xola] = [P (y(F) Y ()N I6a] 2 Al =20ps| (7)) ()M €al 2 A6l

Now 0"(t) = [P”(’y()\kt))’y’()\kt)2+P’(’y()\kt))'y”()\kt)]/\\%ﬁg.. For any j # 1, Lemma
3.3.2 implies that 6” is singled-signed on Iy and therefore we have that 6 is
monotone on I;. We now invoke van der Corput’s lemma for these j to get
[2R(E)] S OF&) 7 £ |Ak€| ™, where the last inequality follows from (1.22). The
situation for j = 1 will be dealt with momentarily.

If now [&1] < $1p;|(79)(XF)|&2| then we use (3.5) to get

0] 2 Slpsl (7Y kA&l — el
2 (YNl > glal (7Y ()l

Another application of van der Corput’s lemma and then (1.22) gives
@) S (Ipsly (W) (N[N L S 1Al

which completes the proof for j # 1.
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When j = 1 we are unable to divide I; into a suitable number of intervals on
which ¢’ is monotone and therefore we must argue in a slightly different way. Let
us again begin with |&1] > 4|p; |/ (A**1)|€|. Of course we still get |6/ ()| = AF|& |
for't € I. Using this and integration by parts (which is how the standard proof

of van der.Corput’s lemma proceeds),

)] S (Ve / '9" '

Note f, [6"(t |/9’( )2 dt is less than

VHEIP OO [ MHElP GOy (R
/Ik 9/(t)2 dt + Ak 9’(t)2 dt = oy + Qo.

For a; we introduce ¢(t) = Aet|¢r| + |pr|y(Akt)|&| for ¢ € Ir. Note, ¢/(t) ~
Ak|¢| < |0(t)] and, again using (3.5), we see that

s [ 20,
O S

For ay, first we write

dt S (Mla)™

k| pt 11y k 71()‘k+1‘))‘k|62|
o0 < [ MP ORI ) T
Suppose P” > 0 on [s1, s2) € G1. Then fs o) | P’ (8)]ds = P'(s2) — P'(s1) < |pi
by Lemma 3. 2.1. Similarly if P” < 0 on [$1,82] € Gi. Since G splits into < 1
disjoint such intervals, we get oz < (AF|€;])~1. Now, (1.22) implies (Xk|&;])! <
| Ax| 2, so we have [Lx(€)] < [Ax€|™! in the case |€1] > 4]p1|Y/ (AFFD)]&2].
Finally, suppose 1] < z[p1|7/(A¥)|€2]. Yet another application of (3.5) gives

dt < (IpAHle)) /G |P"(s)] ds.

1 ' 1
6" (t)] > lellv’(k’“t)kklﬁzl > Z|P1|7'(/\k)/\k|€2|,

for t € I,. With ay, oz, and ¢ as above we have ¢'(t) ~ |p1|Y (A\et)\¥|&| < 16/(2)].

The same argument used previously for oy gives a; < (|p1]y/ (V)Ak|&]) L. Also
N 1 .
o < / M| P (v(XF) |y (ARt dt
2 L l ( ( ))I ( )lpllV’()\kt)AkKﬂ

S (py O9N&D™ [ Il P () ds S (Ipaly' (W)AFI€)
G

By (1.22) it, follows that [Ze(€)| < (Ip1lY (AF)N*|&2]) ™ < 1Ax€]™", and this com-
pletes the proof of Lemma 3.3.3. O

Finally, for Hg, we apply Proposition 3.2.2 with Ay and Ay unéhanged, and ,
vk equal to Hy. Since(3.8) is true, we only need check (3.9). Firstly, if v is even
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then this is almost immediate from the work done in the proof of Lemma 3.3.3.
Indeed, this and integration by parts gives.us the decay for the integral over I, -
while the integral over — I} is simply a reflection in the vertical axis of the integral
over I. For odd 7, we claim that Lemma 3.3.2 holds on —I} as well. To see this, -
simply observe that P’ and P” have opposing signs on —Gj, by (2) and (4) of
Lemma 3.2.1, and couple this with the fact that v < 0 on (—00,0). Now, (3.9)
will follow if we carry out the argument used in the proof of Lemma 3.3.3 and
integration by parts. This completes the proof of Theorem 3.1.1.

3.4 The hyperéurface

We again decompose (0,00) as in (3.1). If Hp, and Mp, are defined in the

analogous way, then

| v dr g
/ K ()| dy S / KW) / ¥ ) <1,
lyley—1(Dx) §d-1. rey=1(Dg) T _

and therefore these operators are bounded on LP. So we fix j € J and turn our
attention to showing Hg, and Mg, are L” bounded operators. Taking Ai=d+2
"and I} as before, define Hy and puy by:

How) = [ by, PGOMD) K@) dy,

lylel,

W) = [ w0k POOMD)) dy,

lyl€lx

for ¢ € §(R**1). Also, put Ay := A(N*) where, for t > 0, A(t) is the d + 1 by
d + 1 diagonal matrix with (r,7)-entry equal to |p;|y(t)? when r = d+ 1, and ¢

otherwise.
Lemma 3.4.1. |I/-I7€(§)| + R (€)] S |Apt|AD2 for £ £0.

Proof. We just prove the decay estimate for I/-I; because the corresponding result

for 11z can be proved in the same way. If &€ = (&',€441) thén ‘

I/{;(f) = / ei(/\ky-f’+P(v(/\"lyl))£d+1)K(y) dy
lyl€lx

= / eiP(W(/\"r))ﬁdH"/ eikkrw-f’-K(w) da(w)_d_r.
relg gd-1 ' r

It is well known (see, for example [60]) that because K is smooth awa;y from the

origin, for r € I,

/Sd_1 ei,\krgf_wK(w) da(W)‘ < (/\krlé-ll)(l—d)/Z < ()\k|f'|)(1‘d)/2,
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" Therefore the claim follows for |p;|y(A\F)7|€441| < 4M*|¢’|. Suppose then that
Ip; |y (W) |€ar1] > 4NF|E'|. Fix w € S¢! and let 0(r) = Merw.& + P(y(A\*r))€as1
for r € I,. Then (3.5) and (1.22) imply '

16"(r)| = %lpjl(vj)'(x‘r)kkléml = XIE] 2 Ipily (Y [6al.

o
/ (i) ar
r€ly r

(as in the proof of Lemma 3.3.3 this follows by van der Corput’s lemma for

It follows that

< (o YR Jarnl) ! < | Are]

7 €3\ {1}, and the substitute argument for j = 1). This completes the proof of
Lemma 3.4.1. d

We can now use Proposition 3.2.2 (or a weaker form, given that we in fact

have uniform decay estimates) to complete the proof of Theorem 3.1.2.
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Chapter 4

Flat Curves in R? Near !

4.1 Introduction

~Suppose that T'(t) = (t,v(t)) where v is odd, belongs to C?(0,00), and is convex
on (0,00). Recall the definitions of the set C; and the function h associated to vy
from Chapter 1. By Theorem 1.1.6(2) and Theorem 1.1.7(2) we know that if A
belongs to €, then Hr and M are bounded operators on L? for each p € ‘(1, 00).
In [11] an extension of these results in R for d > 2 was achieved. Let us begin
this chapter with a description of how the notion of convexity was extended to
higher dimensions and also how the analogue of the curvature assumption on the
function h was formed. \
Let 7,,...,7q belong to C4(0,00). For k=1,...,d let -

| () BRI A ()
v2 (t) Ve (1)

0 . :
0 AP - AP

and set Dy(t) ;== 1. For k=1,...,d define

t ’Y?(t) 77(t)

N(t) = det | %) W
0 %V 7D
h(t) = o

Definition 4.1.1. The curve (t,72(t),...,7a(t)) is said to be convex if for all
k=1,...,d we have :

Dy(t) >0 forall t € (0,00). (4.1)
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The curvature assumption is that each hg belongs to C,; that is to say, there
~ exists ¢(d) > 0 such that for all k = 2,...,d we have

thy(t) > c(d)hg(t) for all t € (0,00). (4.2\)

The higher dimensional analogue of Theorem 1.1.6(2) and Theorem 1.1.7(2) is
the following:

Theorem 4.1.2. [11] Suppose ['(t) = (t,72(t),..,7a(t)) is odd, I'(0) = 0, and
(4.1) and (4.2) are satisfied. Then Hr and Mr are bounded operators on LP for
all p € (1,00). '

~

In this chapter we consider the mapping properties near L' of Hr and Mr,
where T" belongs to the class of curves described in Theorem 4.1.2. Our main
~ result is the following: ' ‘

Theorem 4.1.3. Suppose I'(t) = (t,72(t), .. .,7a(t)) is odd, T'(0) =0, and (4.1)
and (4.2) are satisfied. Then Hr and Mr are of weak type Llog L.

To see the context in which Theorem 4.1.3 stands, let us consider the prd—
totypical finite type curves in R? and R3; I'y(t) := (t,%) and I's(t) = (¢,t2,t%)
respectively. It is known from [20] that Hr, and Mr, locally map Llog L to L»>.
It was shown in [57] that Hr, and My, locally map Llog® L to L. The proof
of the stronger result for I'; in [57] uses the fact that I'; has codimension 1. It
is presently open as to whether the result in [20] for I's can be extended at all
beyond Llog L. Until this is achieved, Theorem 4.1.3 has little hope of improve-
ment for d > 3. The result in [57] offers some hope to extend Theorem 4.1.3 when
d = 2. However, we have so far been unable to achieve any such improvement; a
short discussion on this matter appears at the end of Section 4.2.

Remark. Theorem 4.1.3 implies that if f belongs locally to LlogL, then, for
almost every z € R¢,

lim A~} flz —T(t))dt = f(z).
h—0 (0,h)

Overview. We prove Theorem 4.1.3 in Section 4.2. In Section 4.3 we consider
local mapping properties near L' of Hr and M where I' belongs to the class of

nonconvex hypersurfaces studied in Chapter 3.

4.2 Proof of Theorem 4.1.3

The schema to prove Theorem 4.1.3 is the same as that used in Section 3 of

[57]. In this setting of flat curves, we shall use the Calderén-Zygmund theory
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developed in [9]. Before defining the appropriate Calderén-Zygmund cubes, we
shall introduce the dilation matrices defined in [11] which are associated to the
curve I'. Our dilations will satisfy the well-known Riviere condition which serves
as a substitute for the group property that the dilations 8, from Chapter 2 enjoy.
Thus we are able to define certain ‘nice’ normalised versions of I'. These will
be nice in the sense that it is possible to prove decay estimates for the Fourier

transform of certain measures supported on these normalised curves.

Notation. Write A S B for A < CB, where C depends on at most d and I'.

Dilations and decay estimates

All of the work on the choice of dilations and proving the decay estimates that
follow was done in [11]. We shall state their results without proof. We again work
with the dyadic maximal operator in (1.20); the choice of A will be made later in
the proof. ’

The dilation matrices {A(t) : t € (0,00)} are defined in terms of the following
differential operators:

Rof = /[, |
_ (f\'h _
‘ka = <hk " fork=1,...,d.
We define
t ’ th Rd_le_z...th
t Ryt oo Ry 1R4o...Riye(t
A(t) — 72:( ) 17’2( ) d—11ld 2: 172( )
va(t)  Riva(t) -+ RiRaa. .. Riva(t)

Remarks. 1. Ifd = 2, the situation is entirely analogous to that in [9]; we
have ['(t) = (¢,72(¢)) and D,(t) > 0 implies 4 (¢) > 0. Moreover, hy(t) =
t74(t) — 72(t), so we recover the h-function associated to the plane curve,
and the dilation matrices coincide. For a discussion on why these dilations

are appropriate see Section 4 in*[11].

2. Condition (4.1) implies, via Lemma 1 and Lemma 2 in‘[52], that hi(t) > 0
and hi(t) > 0 for t € (0,00) and k = 1,...,d. Therefore, R;,..., Ry are
well defined. ' '

3. Each A(t) is lower triangular. In particular, if A(t) = (4; ;(t))1<ij<a then,
Au(t) =t and, forj=2,...,d, A;;(t)=hi(t). (4.3

The previous remark and (4.3) imply that each A(¢) is invertible. For a
proof of (4.3), see the proof of Lemma 5.3 in [11].
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Part (1) of the following proposition says that {A(t) : ¢t € (0,00)} satisfies the
Riviere condition. A proof can be found in Section 5 of [11]; the full strength of
the curvature hypothesis (4.2) is not needed to prove Proposition 4.2.1 and the as-
sumption that each hy belongs to C; suffices. The remaining parts of Proposition

4.2.1 are trivial consequences of the first and are oniy included for emphasis.
Proposition 4.2.1. There exists C,e ~ 1 such that for s >t >0 and § E']Rd,
1 AG) A = 4@ (A1) < O ¢/s)
2. |A(s)7 A(t)8] < C(t/9)° €] and |A(t) (A(s)")¢l < C(t/s)7[€l;
3. |A(®) T A(s)El 2 C* (s/t)° €] and |A(s)"(A(8)") 7€ 2 C* (s/8)" [€)-
For each k € Z, we now define the normalised versions, I'x, of I" by
Tk(t) := A(VF)7IT(A*t)  for each |t| € [1, \].

Also define the following measures:

A
W) = [T )= WO wAN),
EOw) = [ O0) T, (HE) = H 940
[tle[1,2]

Clearly we have Mrf = supycz |f * l[,l,](ck)l and Hrf = EkeZ H,Ek) * f. The notation

u,(ck) may seem heavy-handed at first. The intention is to maintain the notation |
from Section 3 of [57] in the sense that u,(ck) is a A(\¥)-dilate of the measure u®);
a measure that will not in genéral be fixed as k varies, yet has the property that
its Fourier transform satisfies a decay estimate independent of k, and in this sense
one can think of u(®) as almost fixed. This decay estimate is the content of the
subsequent lemma. This was proved in Section 5 of [11] via a variant of van der

Corput’s lemma (see Proposition 3.1 of [11] for this variant).

’

Lemma 4.2.2. There exists § € (0,1) such that for £ # 0, |;(’“\)(§)| < 1¢7% and
[H®(E)] < €17

The proof of Lemma 4.2.2 from [11] shows in fact that one can take § = 1/d.

Calderén-Zygmund theory

In order to utilise the Calderén-Zygmund theory developed in [9], we shall define
balls { By }xez satisfying, '
(B1). Ugez Bx =R%
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(B2). Nkez Be = {0};
(B3). each By is open, balanced, convex, and bounded;
(B4) By, C Bgy for each k;

(B5). for each k we have |Byy1| ~ | Byl

~

Initially put By := A(N*)B,(0); clearly (B3) holds. Now we choose
' ) = 4[1+(log2 C)/(2E)1’

where C' and ¢ are those appearing in Proposition 4.2.1, and 8 := C/)\*. Notice
that our choice of X ensures 0 < 8 < 1 and, moreover, by Proposition 4.2.1,

AR TAR) < 8. > (4.4)

s

For any k € Z and £ € R, (4.4) implies
[AQET) ] = JAOFT) AN AR e < BIAOR T, (45)
which immediately implies (B4). Moreover, it follows inductively that
A g] < FlAN e, )

for all integers [ > 0. We claim that (4.6) implies (B1) and (B2) also hold. To
see '(Bl),:‘take ¢ € R\ {0} and choose [y > 0 such that g < (2|A(1)7%|)~.
Then (4.6) implies [A(\e)~1¢| < BR|A(1)~Y¢| < 1/2, so that ¢ € B,,. For
(B2), take £ # 0 and choose ; > 0 such that 8 < |A(1)7%¢|. Then, by (4.6),
~ |A(A)71¢] > B A(1)7¢| > 1 and hence & ¢ B_y,.

Unfortunately, we cannot guarantee (B5) holds for the By. Nonetheless, if we
fix k € Z then it is possible to choose a finite collection {E},. .. ,E,’:(k)} of open,
balanced, convex, and bounded sets so that

Be=ELCELC...C g™ =By,

and |EL| < 2|E,i‘1| fori=1,...,n(k) — 1. Then define the collection of By by

n(k)—1

, {Behez = J U {EL), (4.7)

keZ i=1
s0 that (B1)-(B5) hold for the By.
Observe that, for each k € Z, (B3) allows us to define a norm ||.||x such that
By = {z € R?: ||z||x < 1}. For each k € Z define an associated ball with centre
y € R? and radius r > 0 with respect to |.||x as
B(y,k,r)={zeR*: lz—yle < r}. (4.8)
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Notation. For each k € Z; z € R?, and nonempty subset S of R¢, define
disti(z, S) := inf{||z — s||x : s € S}.

We now state the Whitney type decomposition relative to the balls in (4.8)
~ which appears on page 680 of [9].

Proposition 4.2.3. There exists A ~ 1 such that the following hold.
1. IfQ is any nonempty proper open subset of R?, then Q = {Jge B, where
& :={B(z,k,1): € Nk € Z,5 < disty(z,00) < A}.
2. If in addition |Q| is finite then we can find a sequence of disjoint balls
Qi = B(z;, k;, 1) € € such that Q =, B(z, ki, 3).

Taking A ~ 1 that appears in Proposition 4.2.3, define the followmg collection
of all translates of the By:

B :={B(y,k,A) : y e R,k € Z},

and the associated Hardy-Littlewood type maximal function My, by

z€EBEB

By Proposition 2.2 of [9], we know that My is of weak type L.

Main estimates

Recall that our goal is to prove the estimate,

|/ ()|

(0]

|z eR: [Mrf(z)] > a}| < / |f£f)l log ( + 100) dz, (4.9)

holds for all @ > 0. co )

Fix a > 0 and set  := {z € R?: My f(z) > o} for a fixed f such that the
right hand side of (4.9) is finite. From the weak type L of My we get || <
Il f1l1/c. Next, apply Proposition 4.2.3 to obtain sequences {z;} C Q,{j;} C Z,
and disjoint Whitney cubes {Q;} such that the following hold.

(w1 2=U,Q
(W3). 5 <inf{||z; — yll;; : y € 00} < A.

62



Also define Q* := U, B(zi, Ji,C + 10), where C is the constant appearing in
the statement of Proposition 4.2.1. Observe that (W1) implies |Q*| ~ |Q]; in

particular
] SN F /e : (4.10)

By an analogue of the Lebesgue differentiation theorem we know that | f(z)| <
a for z ¢ . Our first decomposition of f is then,

f=0+Y fa (411

where
. foul2) = f(z) ifz €@, and |f(z)] > «,
@/ 0 otherwise.
This decomposition is akin to that of classical Calderén-Zygmund theory; observe

that g enjoys good L™ properties; in particular

and since [g(z)| < |f(z)| for any z € R?, we may also deduce at once that

gllz S o2 £I3. (4.12)

-

Furthermore, for each i, (W3) gives us some y € 99 such that |z; — vl < A.
Thus ' :

ARG 1 £(@)]dz S Muzf() S @ (413)

|Q1 |B($1,]“ )I B(z;,5:,A)

and one has that each fg, is, on average, under control.

Next, decompose fg, further by letting

13,(z) = [ faul@) i AV < | fo(a)] < X,
Qs 0 otherwise,

where § is the decay exponent from Lemma 4.2.2. Notice that

fo.=>_ 15, (4.14)
n>1 -
and, by (4.13),
1
= [ fg.(@)ldz S o (4.15)
> i ] 1
Now let
%) = xa@g [ W (@)
1 JQy
. (z) = f5,(z)— 95,(z) (4.17)
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and

)i=D_dba), V(@)= by (2), fi@)i=) fola).  (418)

Observe that (4.15) implies

1 . ~ |
> 198, < xa/®) X7 [ 13.0)ldy S oxaa). (4.19)
n>1 n>1 ¥ JQi A
Moreover, by (4.15) and (4.19),
' / .
> 116l S el Qul- (4.20)
n>1 -

The next step is to decompose the measures (¥, first by the following local-
ization: Let ¢ € $§(R?) have compact support in B, /2( ) with [ ¢(z)dz =1, and
[ zkd(z)dz = 0-for all k € {1,...,d}. Note that Taylor’s theorem implies

|6(6) - 1] S Il (4.21)

under our hypotheses. Also define, for each n > 1, ¢,(z) = A™p(\"z).

To this stage, the proof of Theorem 4.1.3 is the same for Mr and Hf. We now
focus our attention on Mr; the proof for Hp is very similar, and the necessary
changes will be made clear later.

Foreach n > 1 let

pke = k) (4.22)
por = gpw ™ (4.23)
For each k € Z and n > 1 define the following dilates of these localisations:

p (@) = det ANF) T u®m(ANF)a).

- Use (4.11), (4.14), and (4.18) to decomposé u,(ck) * f as

w % g+ *ZZfQ, = u¥ *g+Zuk "

(k) * g+ Z (k) __ (k),n * f* + Zﬁ(k) * 7,

n>1 >l

Il

and then (4.17), (4.18), and (4.22) to continue this decomposition to get

k k),n n
pOxf o= g+ Y () -0« f
_ n>1
),m: (k
D S ) D LU PPNS LN

n>1 n>1 m=0 n>1
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Therefore

Mrf(z) = iug |N§ck) * f| < Mpy+ Mo+ Mps+ Mpa+ My,
€

where
Mpy = suplu *gl,
keZ
M, = sup W ZQ
n>1
k n
Mz = ZSUPI — ™) % 7,
n>1
Mis = ZSUP (Ic),m+1 (k), Zg
m>0k€Z n>m
M = Zsupm(k)’ * b"|.
n>1

In order to handle the terms M. 11, Mr2, M3, and M4, we shall show that

4
Z IMrall3 < ellflh (4.24)
i=1 . .

An application of Chebyshev’s inequality gives
{z €R?: Mi14(z) > a/5}| S o[ Mygly S o[£,

which is clearly dominated by the right hand side of (4.9).

Before proving (4.24) we outline how we control the more difficult term, M 11
using L' arguments. Recalling the definition of our balls Bj from (4.7), for each
i let [; be the integer satisfying '

B,1CB,CB,. (4.25)
For each n > 1 and 1, set
Spi={k€Z:l;,-2<k<l+e'n}, (4.26)

where ¢ appears in Proposition 4.2.1. Then M < M1, + Mi2, where

M[[’l = ZZ Z |‘u,(k) *bn

n>l i k¢Sh;

Mo = ZZ Z |u(’°)’"*b

n>l i k€ESn;

We claim that

NMialleaesy S Il | (4.27)
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where the set Q* was introduced on page 63. By (4.10) and Chebyshev’s inequal-
ity, thls implies :

{z € R?: My4(z) > a/5}] [{z € R4\ Q" : My11(z) > a/5}| + ||f||1/a

<
< Iflh/e

To handle the contribution from M;j;, we use a very coarse argument. Notice
first that since the total variation of u®) is uniformly < 1 we get

k),n n
1™ = 1@y < llgnll = Il ~ 1,

and thus, by Chebyshev’s inequality and the fact that, for each i, |S, | < n, we
get

{z € R%: Mip(z) > a/5} Sa ' S0 3 it L.

n>1 1
Therefore,

Hz € R*: Myra(z) > a/5} < a7t Z /
| n>1 z€Q;, X~ Dda<|f(z)| <AV a

< /lfa log<lfgf)|+1oo> dz.

The rest of the proof of Theorem 4.1.3 is then dedicated to (4.24) and (4.27).
From Theorem 4.1.2 we know that Mp is a bounded operator on L?. This and
(4.12) implies

|f(2)| dz

k .
1Ml = Il sup 1  glls S llglz S @l 1

Now (4.19) clearly implies

> gb.(=)

n>1 1

S O‘ZXQi(x) <a

S0,

o

n>1

<aZZ/|gQ, Dldr=a XY [ 153,01 <alflh. (@29)

n>1 1 ' n>1 1

Using the L? boundedness of Mr again, we get

Nk *Zg

n>1

IMrall3 <

Zg

n>1

sup S afl £l

2

as required. To handle M I,f; and M; 4 we use the following estimates concerning

-our localised measures.
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‘Lemma 4.2.4. For each m >0,

sup | (™ — 1™y w £ <A™ £

keZ

Proof. Clearly,

| 1/2]|?
sup I(ugc),m—l—l (k) ) S <Z | ‘u(k),m-f-l k) m) f|2>
keZ tez \
~ [ S Pt - WO oPIRe P,
R? yez _
so it suffices to show that, for each £#£0,
3 I A(NR)E) — pRIm(A(NF)E) 2 S A2, (4.29)
, keZ '
We claim that, for each £ # 0,
| mEL(E) — LOm(E)] S A™ min(A™E], (AN ), (4.30)

That (4.30) implies (4.29) easily follows because Proposition 4.2.1 allows us to
estimate the left hand side of (4.29) by a convergent geometric series. To prove
(4.30), note that

ERmTL(E) — W (E)] = [BA™E) - FATE) LB

If A7™|¢] 5 1 then we can use (4.21) and Lemma 4.2.2 to get |

TE3(6) ~ B(E)] APl = XSO S A

On the other hand, if A™™|¢| > 1 then we can use the fact that ¢ € S(Rd) and
Lemma 4.2.2 to get

[pEme1(g) — pBmE)] < (A HED T + (ATIENTHAT™ S AT TN T
This completes the proof of (4.30) and hence Lemma 4.2.4. O

Since we have chosen ¢(0) = 1 we may write
k k)n . k),m+1 k),m
N 7 i L)
» m>n
This and Lemma 4.2.4 imply,
k)m+1 k n -n n
Mgl <33 |sup| T =T e S DN e

n>1 m>n ) n>1
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and furthermore

I =32 / 1@ dz < Al f]h.

€Qi, N(n—1ac|f(z)|<AMa

Therefore ' :
2 —-n 1/2
IMralla S A2 FIV2 S A2 < o2 £11Y2,

n>1

as claimed. For Mj4, we use Lemma 4.2:4 to get

Mzl S sup |(ut?™t — p™) « Zg
m>0 k\EZ n>m 2
DI DIEL ¥
m>0 n>m 2

and this is < «|f]|, by a similar argument to that used for (4.28). This concludes
the proof of (4.24).
We now prove the remaining claim, (4.27). Firstly, we need the following

simple, but iniportan’o, property of the normalised curves.

Lemma 4.2.5. For any k € Z and t € [0,1] we have |Tx(t)] < C, where C
appears in Proposition 4.2.1.

" Proof. If e; is the element of R? given by (1,0,...,0) then, by Proposition 4.2.1,
ITx(2)] = |AONF)TLA(NFt)ey | < Ct° < C. O

Fik 1 and consider k such that &k < [; — 2. We claim that these k£ do not
contribute to ||Mz,1]|z1re\a+)- To see this, observe that by Lemma 4.2.5,

AQ)suppp® = {T(\*1) : t € [1, ]}
= {AMOT (A7) 1t e [1,0]}
C AW B:(0).

Therefore,
(Ak)suppu C CB;H_l C C'Bl -1 CCB;,.

Also, since ¢ is supported in By/(0), we have that,
A(MN*)supp ¢, C A(\*)B,(0) C B;, for each n > 1.

Hence,

N

supp b, + A(X*)supp ) + A(X*)supp ¢y,
Qi + B(O7j‘i7 C + 1)g Q.
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So to prove (4.27) it suffices to prove that

20 X W em s (4.31)

i n>l k>lLi4e1n

Let z € R% and use the cancellation of b, and then Taylor’s theorem to get
| U b ()

= [ @l =) - i wldy

= det A(\)™! /Q 03, ) O™ (AN) Tz ~ y)) = s (AN (2 — 2:))] dy

= aet A0 [ 10 ACE) o= ). TG0 e,
where z := z — z; + t(z; — y). For y € Q; we have

A @ - y) € AN TAN) Ba(0).
Since k > [; it follows by Proposmon 4.2.1 that
JAO) (@i — )] S X (e,

Also,

p9(@) =3 [ ((a - ) duw)
5o that \
[ Ivur@ds < 06 [ [ [9600(@ ) dodu®(w) S .
Therefore,

17 83, @) d S X024

and one can use this estimate, with the help of (4.V2O), to deduce (4.31) as follows.

DD DD DN 7 TN I B 1 M

i n>1 k>lL+e~1n i n>1

S DaQd =l S Iflh

This concludes the proof of Theorem 4.1.3 for Mr.

As noted previously, the proof Theorem 4 1.3 for Hr is similar to the one we
used for the ma.xunal operator. Flrstly, we define '

H®0 H(’“) and, forn>1, H®":=¢,« H®),
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and then
) (a:) = det ANS)TTHER (AN 1),

We decompose H[‘ in a 81m11ar manner as before. Specifically, if S,; is defined

exactly as in (4.26), we write
Hrf=Hiy+Hrp+ Hrg+ Hra+ Hyn + Hi,

where

Hpp = ZHIE:k)*g,

kEZ

Hpy = ZH,Ek)*Zg",

keZ n>1

His = Z Z(ngk),m+l _ HP™ Z a",

m>0 kEZ n>m

Hpz = ZZ — HO™)x £,

n>1 k€Z

Huw = 330 3 HY

n2l i kgsn,i

Huz = 333 HY

n>1 1 kESn;

As before, it suffices to prove the following estimates.

4
S IHLE S ellfll; . (4.32)
i=1 ’ . ) )
| Hirllp@every S l|f||1- | (4.33)

It is easy to see that |Hy 1|3+ || Hr 2l < al|f]|1 using the fact that Hp is bounded
on L? by Theorem 4.1.2: Moreover, the following analogue of Lemma 4.2.4,

keZ

S 27 £lle,
2
holds via Plancherel’s theorem and Lemma 4.2.2. Thus, we may repeat argu'rhents
for Mr3 and My 4 to get |[Hyall2 + [|Hiall2 S e f]l1 and hence (4.32). We may
also run the argument that we used to prove (4.24) almost verbatim to deduce
(4.33). This completes the proof of Theorem 4.1.3.

Beyond Llog L: a stumbling block

We conclude this section with a brief discussion on the possibility of improving
Theorem 4.1.3 when d = 2. Our motivation is the main theorem in [57]; we
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encourage the reader to recall the setup of this paper given at the end Chapter
1. If we consider flat plane curves, then we violate the fundamental curvature
assumption in [57]. By running through the argument in [57] with u®* taking on
the role of the fixed measure v, and, for example, I'(t) = (¢,27""), one sees this
violation quite clearly in the sense that the following crucial pointwise estimate

D% (u®) % 5 ()] < |2 (4.34)

fails when |a| = 1 (where (ﬁ,’l[/) = (u®), 4)(=-))). Incidentally, the pointwise
estimate (4.34) is true when a = 0 and I'(¢) = (¢,~(t)) for any convex -y whose
derivative belongs to Cs.

It may be more fruitful to move in the direction of Hardy space estimates.
Two such results were mentioned at the end of Chapter 1 for the parabola. It
is an interesting question whether theses results have a.nalogueé for some class of

flat curves.

4.3 Nonconvex hypersurfaces

Let d > 1 and let I'(y) := (y, P(v(|y|))) for y € R¢, where P is a polynomial with
real coefficients of degree no less than 2, and + satisfies the following conditions.

v € C*(0,00), convex on [0,00) and (0) = 0,7'(0) > 0. (4.35)
Our main result in this section is the following.

Theorem 4.3.1. Suppose v is extended to either an odd or even function on R.
Then the operators Mr and Hr are of weak type Llog L if either

1.d>2
2. d=1 and P'(0) = 0.

The hypothesis of Theorem 4.3.1 should come with little surprise in the light
of the analysis in Chapter 3. Recall that we were unable to suitably handle the
second derivative of P on the first gap, in the sense ’éhat certain almost everywhere
Fourier transform estimates were out of reach in the case d = 1. However, such
estimates are crucial for the argument of Section 4.2. Hence, when d = 1 we
eliminate this issue with the hypothesis P’(0) = 0 since this means that the first
gap of P is empty. As in Chapter 3, when d > 2, this is not necessary because we
can make use of the decay of the Fourier transform of surface measure on S%!,

Near L!, the case d = 1 and P'(0) # 0 is clearly open; if we allow P to

have degree 1, then of course we have a sufficient condition in Theorem 4.1.3,
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however one should note that, in this case, there is also no first gap. In the light
of Theorem 3.1.1, the additional hypothesis 7' € @, offers itself as a possibility
for a sufficient condition. In the next chapter we shall see some negative results
for some examples of such «, though we will not go so far as to prove that the
conclusion of Theorem 4.3.1 cannot hold under these conditions.

Proof of Theorem 4.3.1. We consider the equivalent dyadic operator, M, which
takes averages over {y € R?: |y| € (2%,2"*1)} for k € Z.

Without loss of generality, we may take P(0) = 0. Write P(s) = 3¢, pes*
where each py is real. Recall from Section 3.2 the decomposition of (0,00) in
(3.1) based on the roots of P. Also recall from (3.2) and (3.3) the definitions of
the restricted operators H; and M;. We claim that the assertions of Theorem
- 4.3.1 are obvious for H Dk‘ and Mp,, where Dy = (o, k) is a dyadic interval
introduced in Section 3.2. This is simply because (3.4) implies that Hp, and
Mp, are bounded operators from L! to itself. ' '

The preceding observation tells us that to prove Theorem 4.3.1 it suffices
prove the same assertions for each Hg; and Mg;; for this, we fix j, and use the
same method as in Section 4.2. The appropriate d + 1 by d + 1 dilation matrices
{A(t) = (A(t)k,) : t € (0,00)} are defined as follows.

t fork=1and k=1,...,d,
Ay =1 Iplv(t) fork=1=d+1,
0 for k # 1.

It follows from (3.4) that Proposition 4.2.1 holds for these dilations with (C' =
e = 1). We normalise I" in the same way:

T (y) == A(2F)7'T(2%y) for y € RY.

Therefore,

Tu(y) = (W w(y])) where, for ¢ € (0,00), 7s(t) = ((2’°t)]) |

, P @)

Let I == [1, 2] N 2"‘7!(0300)(Gj), as in Chapter 3.

Lemma 4.3.2. Suppose j # 1 and 7y is odd. Then, for all |t|.€ I}, we have
Y@ 2 1O 2 @] 217

Proof. Tt is immediate that Lemma 3.2.1 and (4.35) give |v(¢)| > 1 for all |¢| € I.
Also, Lemma 3.2.1 and (1.22) imply that

O] e PO e - 7 (250
@]~ 2 Po@n) T PR S A b
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which implies |7;(t)| 2 1. For the remaining assertion, observe that

PI(y(@ )y (2%) o 2(2%)
P'(~(2*t)) ' (2kt)

are both positive on J; and both negative on —I;. This follows from Lemma 3.2.1
and the fact that v is odd. Therefore,

O _ o | 7025y (2%) | 2"(2%)
|7, (8)] P'(y(2kt)) v'(2F)
L plPaeret
- |P'(y(25e))f
where the last bound follows from another application of Lemma 3.2.1. O

Remark. The estimates in Lemma 4.3.3 up to the ﬁrst derivative were being used
in Chapter 3.

Define the following measures:

W) = [ @) dy, (P, 8) = (), p(A25)-)),

lylel,

(HO,p) = [ @)K dy, (HP,p) = (H® p(A2")-).

lyl€lx

Of course, Mg, f = supyez |/_Lk * f| and Hg, f = Zkez H('c * f. Then we have
~ the following decay estimates. v

Lemma 4.3.3. For each & # 0 we have Iu(’“ &)+ |H )(€)] L 1€,

Proof. Under condition (1) of Theorem 4.3.1, this was essentially proved in Lemma

3.4.1 and we shall not repeat the details. Instead, assume condition (2) of Theo-
rem 4.3.1 holds and, for fixed ¢ with |£| > 1, define

0( ) = tfl + ’Yk(t)fz for ¢ E(I]c.

If |&] > |§1| then, by Lemma 4.3. 3, we have |0”( )| 2 |&| ~ |€] for all t € I;,. By
van der Corput’s lemma,

/ e m(t dtl<|§|‘1/2 (4.36)
tel} :

We claim that (4.36) also holds when |&;| > |&|. To see this, first suppose that
P > 0on G,. Since G, is empty, we know from Lemma 3.2.1 that Yo > 0 and
¥, > 0 on I;.. Hence there is at most one solution ¢ € I to the equation '

€1

T (4.37)

Ye(t) =
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If a solution ¢y to (4.37) exists, then for ¢ € I}, with ¢ < ¢y we have

0O > lal - ANl = [61/2 ~ €] (4.38)

and for ¢ > to, by Lemma 4.3.3,
16”()] = % (D)l&2l 2 ()&l = 1€1]/2 ~ [€]. - (4.39)

Since v > 0 on I we know that 6’ is monotone on I;. Thus (4.36), or in fact
a better estimate, follows from van der Corput’s lemma for |£;| > |£;]. The case
where a solution to (4.37) does not exist is handled as in (4.38) or (4.39).

If v is even, |;(r)(§)[ < €]71/2 is immediate from the above. If  is odd, then
one can say that 'y,’c' > 0 and 7;, < 0 on I;. Then the equation |

k(o] = 22k

has at most one solution, and one can argue as above to deduce that |u®*)(£)] <

|€]7'/2. A similar argument works when P < 0 on G;, and using integration by

parts we get the required decay estimate for H®), a

The final ingredient in the proof of Theorem 4.3.1 is the appropriate choice
of Calderén-Zygmund balls. This is significantly simpler than in the Section 4.2
because the dilation matrices are diagonal. For fixed k € Z there exists a finite

collection {E}, ... ,E,’:(k)} of open, balanced, convex, and bounded sets such that

A(Z¥)By(0) = EL C E2 C ... C Ef® = A(2"1)B,(0),

and |EL| < 2|E5T| for 1 = 1,...,n(k) — 1. One can easily verify that (3.4) implies
that A(t)B)(0) C A(s)B;(0) whenever 0 < t < s, and therefore the E are well
defined. As in Section 4.2, the collection {By}rez is chosen to be the collection
{EL}kez1<i<n(k)- Then the conditions (B1) - (B5) hold for the By, and we are free
to use the Calderén-Zygmund theory developed in [9]. The main ingredients are
now in place, and the argument that we used in Section 4.2 can now be used to
complete the proof of Theorem 4.3.1. ' O

Remarks. 1. Theorem 4.3.1 implies a certain pointwise convergence result for
averages over the hypersurfaces considered in this section, for functions

-belonging locally to Llog L.

2. It follows from the proof of Theorem 4.3.1 that there-exists a finite constant

C, which is independent of the coefficients of P, such that for all unit cubes
Q in RY,

IME(FxQ)llzre + IHE(FxQ) e < Cllfllz10g(0)-
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Chapter 5

Piecewise Linear Curves Near It

5.1 Introduction

Suppose we are given a plane curve {(¢,%(t)) : t € (0,00)} and X € (1,00) is
fixed. We can form a continuous piecewise linear version, I', of this curve in the

following manner: Define a I'(t) := (¢, (t)) by stipulating that,
for each k € Z, v(\F) = ¥(\F) and v is affine on [A\F~1, \¥]; (5.1)

see Figure 5.1 for an example. In [18], Christ proves that if the derivative of «y
takes infinitely many distinct values then Mr is not of weak type L. In fact,
this result is a corollary of the more general proposition stated below concerning
averages over line segments, in R? for d > 2, which point in distinct directions
and may have arbitrary location. To be specific, let Loy = {l;:1<j<N}bea
collection of N line segments in R? of finite length, let w; be a unit vector in the
same direction as l;, and let u; denote one-dimensional Hausdorff measure on [;
normalised to have total mass 1. Then define the following maximal function,

Mg, f(z) = sup /|fm—~ Ndp;(y). | (52)

1<j<N

Proposition 5.1.1. (18] Fizx d > 2, N > 1, and a collection of line segments
{l; :1 <j < N} as above with w; # wy for each j # k. Then there exists € > 0

and a function f. in L' such that

{z € RY: Mp, fo() > e} 2 Bd)Ne ™| fell1.

The main goal of this chapter is to consider the weak type behaviour of M on
®(L), for  belonging to the family of functions in (1.24) and certain examples

of piecewise linear T'.

Overview. In Section 5.2 we firstly consider the case ¥ = P/Q, where P and Q are
polynomials with rational coeflicients. This certainly covers the parabolic case,

75



Kk Xk +1 Kk +2

Figure 5.1: A piecewise linear version, 7, of ¥

F(t) = (t,?), and we note that the derivative of the resulting v, as defined above
in' (5.1), belongs to C;. We include some fragmentary results in the case of real
coefficients. Persuaded by the generality of Proposition 5.1.1, we also consider the
case where 7(t) is a prototype flat curve, 2=t for small ¢ > 0; again ' belongs
to €, (or strictly speakihg, some modified local version of €;). In Section 5.3 we
include a very brief discussion on the sharpness of the our results.

Notation. Write A < B for A'< CB where the constant C depends on at most
[. If v € R?, define Rv := {tv : t € R}. If E is a finite line segment, denote
the length of E by L(E). Let dist(E,F) = inf{|z ~y|: 2 € E and y € F}, for
nonempty subsets E and F of R2.

5.2 Main reSults :

Rational coefficients

Theorem 5.2.1. Suppose A € QN (1,00), and let ¥(t) = (i,R(t)) where R(t) =
P(t)/Q(t) and P and Q are polynomials with rational coefficients such that R is
non-affine. If T(t) = (t,7(t)), where v satisfies (5.1), then Mr is not of weak
type L(log L)° for each o € (0,1/2).

Remarks. 1. Our proof of Theorem 5.2.1 is completely based on Christ’s proof
of Proposition 5.1.1 in [18]. We use exactly his construction of the function
fe. For the specific I' in Theorem 5.2.1, however, we shall see that it is
possible to make a quantitative estimate on how small € should be; this is
in contrast to the indeterminate way ¢ is chosen in Christ’s proof, which is

of course demanded by the generality of Proposition 5.1.1.
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2. The case where I is a curve in R? (d > 2) with (smooth) rational compo-
nents has been studied in [29] and [30]. In particular, if Ry,..., Ry are real
rational functions and I'(t) = (Ri(t), ..., Ra(t)) then it is shown in [30] that
Hr and Mr are bounded on L for all p € (1,00).

3. With reference to the discussion in Section 4.3 on page 71, since LlogL
locally sits inside L(log L)'/?, Theorem 5.2.1 does not preclude the condition
4" € @, as being sufficient for the maximal operator along the plane convex

“curve (t,7v(t)) to be of weak type Llog L.

4. When R is affine, Mr is essentially the classical one-dimensional Hardy-

Littlewood maximal operator, and hence is of weak type L.

Proof of Theorem 5.2.1. Let A = p(\)/q()\), where p(A),q(}A) € N, p(A) > 2.

Write
ZT =ng p”'tr

) Zs =myg qstS,
where each p, and g, are rational and pp,, Py, Gme, Gm, are all nonzero. Without

R(t) =

loss of generality, we suppose that min(ng,mq) > 1 and pn, = gm, = 1. If we let
n := n; — m; then we have the following fact: Given 0 < A; < 1 < A, there

exists ty ~ 1 such that /

At < R(t) < Aqt™  for all ¢ € (to, 00). (5.3)

It should be clear from (5.3) that the cases n = 0 and n = 1 should cause the
most difficulty. Heurisﬁcally, these cases are closest to the situation where all the
line segments are pointing in the same direction. -

" Fix a natural number N, which counts the number of line segments. This
parameter will later tend to infinity and should be con51dered large. If k£ is an
integer with 1 <k <N, let 1 be the portion of the curve I' in the interval
[Meo+k=1 Xko+k]  Here; kg ~ 1 is another fixed natural number whose role is
to ensure that we are sufficiently far along the curve so that we have useful
information on R, like (5.3). The exact value of kg will not be given, but it will
be clear from the proof that an appropriate choice can be made.

We parameterise each line segment [ in the following way:

le = {ox + t(1,72) : £ € [—te, tal}, (5.4)

where
R()\ko+k) _ R(/\ko+k—1)
= Ako+k _ Ako+k—-1
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is the slope of Iy, ¢ is the midpoint of I, and ¢, is some real number. It is

straightforward to verify that -
t~ X and  L(l) ~ { i:k g . i (l)j (5.5)
Also define |
b= {tL,7) t € [—tu/8 /8], (5.6)
b= {eo+t(l,m) te [—te/2,t/2). (5.7)

Clearly M dominates My, ; for the majority of this proof, we work with My, .
It is crucial that we have some control on the slopes 7. The following lemma

contains the information we require.

Lemma 5.2.2. 1. For1<k <N,

7l A=D1k forn > 2,
k 1 forn<l,

2. Foranyj #k, s
1 form > 2
—_T| > ="
[Tk T]l ~ { A—pN fOT'TL < 1,
for some natural number p depending only on R, and

' Xn=DN - forn > 2
_ . < — 7
7 TJ'”{ 1 forn <1,

Proof. The proof of this lemma is easy ifn>2o0orn < —1. Forn > 2, we have

Al — AT"A,

o MeotRn-) < o« A2 AL ooy (5.8)

I I

and so part (1) of the lemma follows by choosing A; and A, sufficiently close to
1 so that A\ > Ay/A;. We also get from (5.8),.and perhaps a refined choice of
Ay, Ay ~ 1 sufficiently close to 1, that ‘

Thtl A =24y
T, Az b )\—nAl

> 1. . (5.9)
Therefore, if £ > j,
I — Tl =T =75 = T = The1 = (1 = Tt /Te) 2T 2 1,

which gives the lower bound in part (2) of the lemma. The upper bound |7, —7;| <
Ar=DN g trivial by (5.8). A similar argument also works for n < —1 and so we

omit the details.
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o Suppose now that n = 1. Although the above argument st.ill‘applies to get
part (1) we shall need to be a little more careful in order to establish part (2).
We have '

1 E:"u:;l Zs M o prq.s(/\ s _ A\~ }')/\(r+sv—l)(ko+k)
Tk — — (

— ! m (ki "(ko+k—
L= 270 (1, @oA o) (5L, g A (o+E0)
= 14 Ry,

where Ry, := P/Qx, and

m; mp—1

P, = Z Z prQS —r)/\('r+s—1)(lco+lc)

r—-no s=mg

mi—1 m;—1

- Z Z g5y (A5 = AT\ kotE)

s=mg $'=mo

mi m1 .
- Z Z CIst/(/\"‘f’/ — ,\_S’_l)/\(8+s’)(k0+k).

s=mo 8'=myg

Therefore,
70

P, = Z . Z’)‘;/\r(ko+k)’

r=min(ng+mo—1,2mo)
for some rg < 2m; — 2, with p,;, # 0. Indeed, if all the p, were zero then 7, =1
for each £ > 1, and this implies that R is affine. It is clear then that, choosing
ko ~ 1 sufficiently large, we can make R as close to the quantity :

ﬁ:) —(2m1—ro)(ko+k)
(A=m — A=)

as we please; since py, ~ 1, this certainly proves part (1) of the lemma when
n = 1. For part (2), suppose that p,; > 0. Then R; > 0 for each k£ and Rk+1/ Ry

is as close to A~(?™1—70) < 1 as we please. Hence, if k > j,
|7 — Tj' = | Ry __Rj| =R;j— Ry > R; — R_7+1 > R; >\ (2m1—ro)N

A similar argument for the lower bound in part (2) can be used if pry < 0. Also it
is clear that |7x| < 1 for each k and this implies the upper bound in part (2); this
completes the proof of the lemma when n.= 1. The case n = 0 can be handled

in a similar way to the case n = 1 so we choose to omit the details. - o
The next step is to define a set of points in R?,
{F:1<k< N, 0<j < A(k) -1}, (5.10)

which meet certain conditions. For 1 < k < N, we fix A(k) to be some integer
satisfying ‘
max(IL(ly),1) < A(k) SL(l). - (5.11)
9 |



Such a choice is certainly possible; for instance, we are free to dilate each of the
line segments lx by a fixed factor (which may depend on N). Thus, we may do
. so in such a way that LL(ly) > 1 for each k and then the existence of A(k) is

immediate. Assuming the z;? have been chosen, we let

N
A= {wER21w=ZZ§k,OSakSA(k)—l}- - (5.12)

k=1
Define, for each 1 < k < N, a kth-equivalence relation on A, =, by
if w,w' €A theﬁ ESH w’. if and only if w—w' € R(1, 7).
Then the following are the required conditions on the z5.
(Z1). zk=0.
(22). 2 € x.
(Z3). For fixed 1 Sj <N, ifw,w €Aandw=3p, zE ' = N 2§, then

N

wr;w ifandonly if o; =g forall i#j.
A simple consequence of condition (Z3) is that

)\nN(N+1)/2 forn>1,
Al = HA(k { ANHD/2 for i < 0. ' (5.13)

We shall 1n1t1a11y define a set of pomts
{ZF: 1<k<N 0<j<Ak)—1}

which are manageable in a sense that will become clear later in the proof. These
points will satisfy (Z1) and (Z2), but may not satisfy b(Z3). Our choice of the z;-“
will then be a small perturbation of the ZF to ensure (Z3), whilst not disturbing
the nice properties of the Z¥. To define the ZF, we introduce positive numbers

1,...,0xn inductively in the following way:

61 = Q—ClNz

)

~and for 2 < k<N,

bl

-1
8 := Co(N) 6, ' (5.14)
, _ i=1
where C; and C3(N) shall be chosen later, with the constraint

Ci~1 and 15 Cy(N)VE 6L . (5.15).

Then we have the following tautological result.
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Lemma 5.2.3. 1. For2<k <N we have 8k = Co(N) (1 + C'g(N))k_z 5.

2.0<61<6§<...<6N.

ForlgngandOSjSA(k)—l,deﬁne
Z¥ = C3(N)j(1+ 8)(1, ), (5.16)
where the role of the constant C3(V) is to ensure that
C3(N)A(k)(1 + 6;) < tx/16 foreach 1 <k < N. (5.17)
It follows from Lemma 5.2.3(1) and (5.15) that there exists a choice |
- C3(N) ~ A(N)™? (5.18)

which is up to this task.

Now we shall use the Z¥ to define the z§. We make the following claim: For
each 1 < k < N, we can choose real numbers 7t for 1 <4 < k and 0 < r < A(r)
so that

0 <} < Ca(N) = min({t,/(16A(1)) : 1 <1 < N}U{QACNTY) - (5.19)

2= Z +rpi(1,7), (5.20)

then zi € I; and condition (Z3), holds; this condition being condition (Z3) with
1 < j < N but the set-A replaced by all elements of the form

k
> 2, for 0<a; SA®) - 1.

27}
=1

Note that (Z1) is clearly satisfied if we have (5.20). We proceed by induction on
k. | -

If £k = 1 then we define 77]1" :=0 for each 0 < 7 < A(1). One can easily check
that each Z}, and therefore z}, lies on 1. Since each z}"/is distinct, condition (Z3),
is also satisfied.

Suppose the claim has been shown to be true for k. We shall define each nk+!
in succession, beginning with 7*+1. One can check that as long as 25" does not”
belong to one of the following lines

k .
S (&, — ) +R(L,7) forj#k+land0< ;B <AG) -1,  (5.21)

273
i=1

then condition (Z3),,, will not be violated for a1 € {0, 1}. We do not need to
include the case j = k+1 in (5.21) because this case is handled by the assumption
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~'that the claim is true for k. One can also check that as long as we have (5.19) then

k+1

we have Z¥ 1 4+nf (1, 7)€ lk+1 This means we can choose any 7, satisfying

(1, Ty lies

k41

(5.19) except the finitely many possible nf*! for which Zf*' +

k+1

, and hence 277", and

k+1

on one of the lines in (5.21). Now fix such a choice of n;

1

consider 75*!. One can again easily verify that as'long as z;"' does not belong

to one of the lines

k
> (2, - 25) +R(1,7y) forj#k+1, (5.22)
i=1 : ,
or one of the lines
2 4 Z )+ R(l ;) forj#k+1, (5.23)

then condition (ZB)k +1 1s not violated for axy1 € {0,1,2}. Also, if nE+! satisfies
(5.19) then ZEF1 + 2051 (1, 74) € ler1. Hence we are free to fix any n5+! obeying
(5.19) except the finitely many for which Z3** + 205 5+1(1, Tk41) lies on one of the
lines in either (5.22) or (5.23). We may continue this procedure to obtain 7f*!
satisfying (5.19) for 0 < r < A(k + 1) — 1 and which give rise to points 2}*
via (5.20) which satisfy (Z3)x+1. (Note that the bound on the right hand side of
(5.19) ensures that if we have (5.20) then we always have z} € Ix.) This completes
our induction. ' _

Henceforth in this proof 2 is defined by (5.20), where 7} satisfies (5.19), and
the 2% satisfy (Z1),(Z2), and (Z3).
Remark. We have riow introduced four distinguished constants Cy, C2(N), C3(N),
and C4(N) involved in the definition of the points z;‘ . These points are absolutely
key to the proof of Theorem 5.2.1. To avoid confusion, no other constant which

appears in the remainder of this proof will contain a subscript.

Define

g := A~(CL+100N (5.24)
and »
)= Y XB(w)(®)- (5.25)
wEA

This is the function f. appearing in the statement of Proposition 5.1.1; the sub-
script has turned into N since this is the crucial parameter in the proof of Theorem
5.2.1. For each w € A and 1 < k < N define

S(w, k) == {z € R? : dist(z — I, w) < £/2}. - (5.26)
We claim that, for each w€ Aand 1 <k < N,

S(w k) C{z € R2: Mg, fu(a) > ¢/2}.  (5.27)
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To see this, fix 1 <k < N, w € A, and z € S(w, k). It suffices to show

L((z — Ix) N Be(w')) > €/2 for all w' = w, - (5.28)

because (5.28), the fact that there are precisely A(k) elements w’ € A for which

w' = w, and (5.11) give

ML,;fN(x) 2 fn(z - y) dux(y)

Uk

t dt
Z / XB.(w)(T — &k — t(l,Tk))ﬁ—
k

Y

v
>
Ll

>
—
| m
=
=
[

> €/2.

To prove (5.28), suppose w' ~ w so that, first using condition (Z3) and then
condition (Z2), w' —w = (s’ — s)(1,7x) where s,s' € [—t/8,t/8]. Now, z €
S(w, k) and therefore. there exists ¢t € [—tx/2, t/2] for which

1z — (cx + t(1, 7)) — w| = dist(z — Ly, w) < &/2.
Hence

|z — (ce + (t — (' = $))(1, 7)) —w'| = |z — (ck + t(1, 7)) — w| < €/2,

and since |t — (s' — s)| <ty it follows that
dist(z — I, w') < /2. (5.29)

~ Obviously L(z — ly) > €/2 and therefore (5.28) follows from (5.29).

- We have now reduced matters to obtaining a lower estimate on the area of
"
U U Stw,3).
j=lweA

The bulk of the work for this is contained in the following lemma.

Lemma 5.2.4. For each 1 <j<N,

U S(w,5)

weA

2 e|Al.
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Proof. Fix 1 < j < N and let

A= {aeR2;@:Zz§k and OSakSA(k)—l}.
. k+#j

Then we have |A| = |A|/A(j). We claim that if we take distinct elements ; and -

ws from A then S (w1, 7) and S(wz, 5) are disjoint. This claim granted, the lemma

follows easily because ’

U S@w,j)| 2 UAS(@J)
- Ts@s > ) 2z,

where the final bound is due to (5.11). To prove the claim, suppose that S(wy, j)N
- S(ws, j) is nonempty. Then it follows that

dist(wy — w3, ; — ;) < e. (5.30)

The rest of the proof is therefore dedicated to showing that, using our choice of
the z¥, (5.30) is a contradiction. _
Write W1 = Y., 25, and Wy = 3, ,;2f,. Suppose that- X is the set of all
ke {1,...,N}\ {j} for which oy, # B. Clearly X is a nonempty set, and we let
ko be the largest member of X.
We shall be working with the.Z¥ initially (recall their definition in (5.16)),

and we write,

Z(sz o ng)

k#j
_ (03(N)Z(ak — B) + Co(V) 3 e — B,
_ k#j k#j
N)S " 7ilon — Br) + Cs(N) Y b ak_/gk))

k#j ‘ k#j
=: (s+7,t+7r2). ‘

A simple computation shows that
(1+ Tf)l/zdist((s +r1,t+72),R(1, 7)) = |(158 — t) + (1571 — 12)|. (5.31)

When nonzero, 7;s — t provides the main contribution to the second term on the
right hand side of (5.31). A lower bound is attained in Sublemma 5.2.6 below.
First, the following sublemma gives us the required bounds on the ‘remainder’
term, |7;ry — 72l
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Sublemma 5.2.5. If p is from Lemma 5.2.2(2), then

7o ., < NXO=DNg§y forn > 2,
TN Ny forn <1,

and :
C3(N)éy forn > 2,

] >

|’T]7'1 7"21 ~ { )\—pNCS(N)él fO’f"I’L <1.

Proof. For the upper bound, we use Lemma 5.2.2, Lemma 5.2.3, and the fact
* that the number of points on each Iy is equal to A(k). For the lower bound, first
consider n > 2. Note that

C3(N) T ra — | = | (7o — 75)0ke (0o — Bro) + D, (7 — 75)8k(x = Bi)]|
ke3\{ko}

and we deal with the more difficult case where X\ {ko} # 0 first. If n > 2, then
using the fact that there at most A(NV) points on each Iz and Lemma 5.2.3 we get

V ko—1
Ca(N)Hry — 1yr1] 2 8k — CACTDNA(N) D~ 6,
k=1

for some C' ~ 1. Now our definition in (5.14) implies that it is possible to choose
Cy(N) ~ NP DNA(N), (5.32)

such that C3(N)™Y|ry = 7571] 2 6ko; by Lemma 5.2.3 this implies the lower bound
when 7 > 2 and X\ {ko} # 0. Note that (5.32) does not violate (5.15) for a
suitably large choice of Cy ~ 1. If n > 2 and X \ {ko} = 0 then, by Lemma 5.2.2
and Lemma 5.2.3, C3(N)7}|ry — 7j71| = |Tky — Tj|0ko| ko — Biol 2 61, as required.

When n < 1 the same argument applies, and Lemma 5.2.2 moves us to make
the choice Co(N) ~ MNA(N), which of course does not violate (5.15). O

Sublemma 5.2.6. If ;5 — t.# 0 then for sufficiently large N,

[rjs — t] 2 ATIMN (V=D g(y)=4mN?,

Proof. Tt suffices to consider the case where P and @ have integer coefficients

_since we are free to replace v with any fixed nonzero multiple. Now,

S p, A(r=1)(ko-+k) S p AC-D(ko+k-1)
Zs gs A3 (ko+k) - 28 goA3(ko+k=1)
S 3, Prgo Aot ks () s _ \—r)
Zs Zs/ Q.sqy)\(""'s’)(kﬁ"’k)_s ’

] (1 - )‘_I)TI‘Z\, =
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and therefore

(1 _ /\—1)(7_' T ) _ Er,s,(,(l prQchQc'(/\I - /\J)(/\_s - /\—r) . N(], k)
’ ¢ Zs,s’,c,q/ QSQS'%QC’/\(S_HI)(ko_+_j)_+_(<_+_g.’)(ko_.-k)_s_g o D(]v k) ,

where,
Ii=1I{r5,6,¢) i=(kg +J)(r+s—1)+ (ko + k)(s+¢) —c €N, |

= J(r,s5,6,¢') = (kg + k)(r+s—1)+ (ko +7)(s+¢)—c €N,

Ji=J
for ho < r < m and my < 5,6,¢ < my. Using the fact that max(I,J) <
(n1 + 3my)(ko + N) it is easy to see that

CNIN(GG, k) = q(n)XrremaripRymemnN(, k) € Z.
Similarly, one can check that

C'(N)D(j, k) := q(\)*™&+ND(5 k) € Z.

Since
A VNrs—1 = Sar— N(j, k)
(I=A")(ms = 1) ;J( k ﬁk)D(j,k)
1 ' o
- b a6 1 268)

it follows that
(1 —'/\‘1) (H D(7, k”)) C(N)C/(N)N_2('Tj$ —t) € L.
K
Moreover,

'D(],/ k) = Q(,\ko+j)Q(/\ko+j—1)Q(/\ko+k)Q(/\k0+k_1)’

SO
0 < D(j, k) < A,

Now we can use the fact that 7;5 —t # 0 to deduce
ITjS _ tl > /\—4m1N(N—1)C(N)~10/(N)~(N—2) > /\—4m1N(N—1)q(/\)f4m1N2’
for sufficiently large N. This completes the proof of Sublemma 5.2.6. O

We are now in a position to show that (5.30) is a contradiction, and hence
complete the proof of Lemma 5.2.4. First, suppose 7;s — t is nonzero. It is clear
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from Sublemma 5.2.5 and Sublemma 5.2.6 that, upon a large enough choice of
C; ~ 1, we have |js — t| 2 |7;71 — r2|. Therefore, (5.31) and Lemma 5.2.2 imply

dist (Z(Z!:k - Z&LR(W)) > A~ ON—AmN(N=1)g(y)=4mNE
k#3 :

for sufficiently large N. If on the other hand 7;s —t is zero then we use (5.31),
Lemma 5.2.2, Sublemma 5.2.5, and the choice of C3(N) in (5.18) to get

dist (Z( - Z5), (1,Tj)> > A\~ (CH)N (5.33)

k#j

for sufficiently large N and C; ~ 1. Thus, in either case, we can conclude that
(5.33) holds. Hence there exists a constant C ~ 1 such that

dist(w; — ws, R(1, 75))

=mg@]ﬁfz@+2kw&ﬂMMQM£@m>

o ey
> dist (zwz,c—z;k),uau,q)) IS (o, = B )17
k+#j k#j

2
> \(CHONT CZlaknak ﬁknﬂkH(l k).
k#j

It follows from (5.19) that dist(@; — @3, R(1,75)) 2 A~C+DN* But I; — I; C
R(1,7;), so, for sufficiently large N, :

 dist(@; — @p, I — ;) > dist(@1 — Ta, R(1, 7)) > ATOFIVE > ¢,
This contradicts (5.30) and thus completes the proof of Lemma 5.2.4. O

We next intend to use Lemma 5.2.4 and our choice of € to prove that the sets’

= US(w,j) for1<j3 <N,

weA

are essentially disjoint. We claim that this follows if we can show that there exists

some C ~ 1 such that whenever ¢ # j,
1S(w,i) N S(w', 5)] < ANe?, (5.34)

where w and w' are allowed to be equal. Since (5.34) is not difficult, we prove this
first. Observe that S(w,j) is a tubular neighbourhood around the line segment

w+ l Therefore the maximum overlap of S(w,7) with S (w', j) occurs as shown
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S(w'.j)

Figure 5.2: The maximum overlap of S(w, 1) and S(w', 5)

~ in Figure 5.2, where 6;; € (0,7/2) is the angle between the vectors (1,7;) and
(1,75). A little elementary gebmetry gives
|7 — 75 S { A"2=DN for p > 2,
A+ )21+ 7212 Y| AN for n <1,
from which (5.34) follows. : ‘
An elerhentéry consequence of (5.34) is that, for any r > 2 and 1 <ip<...<
i <N, |

‘ sin 01'):,’ =

1S, N...N S, | < AN |AP (5.35)

Using the inclusion-exclusion principle in a very crude way this implies
N
Us
j=1

By Lemma 5.2.4, there exists C’ ~ 1 such that

N
> Y1)l - 2ACNE AR
j=1

N : ,

> IS > 2C'NelAl. (5.36)
j=1 N . .

Recalling our choice of £ in (5.24), and the the estimate in (5.13) for the cardinality .
of A, there exists a suitably large choice of C; ~ 1 such that

C' > N712VN XN Al (5.37)

(The constants may cause some confusion here; recall C, is one of our distin-

guished constants, C' ~ 1 appears in (5.34), and C’ arises in (5.36) above.) Hence,

J U swa|=|Us;
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~ Z 1S;] = N|Ale. (5.38)
J=1
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This bound is sufficient to complete the proof of Theorem 5.2.1: If we suppose
that My is of weak type L(log L)? for some o € (0,1/2) then, by (5.27) and

- (5.38), .
N|Ale < /fis@ (fog (2@( 2 4 10))0 dz. ~ (5.39)

However, 0. < fn(z) < JA|, from which it follows that the right hand side of

(6.39) is
1 24|
-1 10 B.(w)] £ N*|A
? (1og (224 10) ) S 1wl s e

weEA
Since o € (0,1/2), this is clearly nonsense for large enough N, and thus the proof
of Theorem 5.2.1 is complete. (]

Real coefficients

It is clear from the proof of Theorem 5.2.1 that the proof of Sublemma.5.2.6 was
the sole place that we used the condition that the coeflicients of the polynomials
P and 'Q were rational. The real coefficient case seems to be tricky if one adopts
the same approach. Let us consider the basic case where P(t) = ) ~_ p,t" where
n > 2 (p, # 0), Q =1, and A = 2. Then, reusing notation from the proof of
Theorem 5.2.1, ‘ : '

on 1 T8 —t . -
#—_ ZPTZ(O% _ B (2" — 2y (2l i) r=1) _ glkotk)r-1)y

Ca(N r=2 k=1
ZPTI(T) j) N
r=2 -

where I(r,j, N) is an in’begerfor each r,j, and N. In the case where 7;5—t # 0 we
have only been able to control |3, p,I(r, j, N)| from below in very easy cases
using elementary arguments. For example, if we assume that pp = ... =pp,_1 =0,

~or nothing when n = 2, then we can easily deduce that |
|7is —t| # 0 = |rj5 — t| 2 Cs(N). (5.40)

At the next level of difficulty where precisely one of py,...,pn—1 is nonzero, say -
Pr,, then we are looking to control the quantity, '

IPTOI(TOIj) N) + pnl(nﬁ j? N)"

from below. We may as well assume that I(rg, j, N) and I(n,j, N) are nonzero;
otherwise we immediately get the outcome in (5.40). Thus we are naturally led

to the theory of rational approximation and the topic of convergents.
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Definition 5.2.7. Let  be a real number with continued fraction representation
[ag; a1,a2,...) (ag € Z and a; € N for j > 1). Then, for [ > 1, the convergent
of order | of ( is the (irreducible) rational number A;/B; with continued fraction

representation [ag;as,. . ., a.

The following theorems contain the crucial results we need concerning conver- -

gents. Proofs can be found in [36].

Theorem 5.2.8. Let { be a an .z'rrational number. If A;/B; is the convergent of
order | of (, then

t{6¢ ~ ol 6 € {1,..., B}, € 2} = |BC ~ 4l > p—p,

. for sufficiently large [.

Theorem 5.2.9. There exists a null set N (in the sense of Lebesque) such that
for all ¢ belonging to R\ N there exist real numbers p and v in (1, o0) such that,
for sufficiently large [,

pt < B <V

Suppose that at least one of p,,/pn and p,/pr, is an irrational number and lies
outside the null set N from Theorem 5.2.9, and for argument’s sake suppose the
former is such a number. Let A;/B; denote the convergent of order I of pr,/pn
and let 4 and v be the growth constants from Theorem 5.2.9. Without too much

work, one has the estimate,

|I(T07j7 N)l < 25nN < )u'CNa
]

for some C' ~ 1, and without loss of generality we take C to be a natural number.
Hence, by Theorem 5.2.8 and Theorem 5.2.9,

|1(ro, 3, N)Pro/Pn +1(n,j, N)| > |Benpry/Pn — Acn|
1 1

> > .

~ Bewny1+Ben ~ VOV

Therefore, we can deduce that
|Tjs —t| #0 = |ms—t] 2 C3(N)v=°N.

However, we are stuck with the undesirable problem that the null set N is inde-
terminate. If instead we had assumed that either p,;/p,, or its reciprocal, was
an algebraic number then Liouville’s classical theorem on rational approximation

(see, for example, [1]) will also give a version of Sublemma 5.2.6. (Roth’s famous
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improvement of Liouville’s theorem is of no help to us here.) However, this re-
sult is much more unsatisfactory since algebraic numbers form a null set in R.
We summarise the above observations in the following ‘baby theorem’. Further
progress in the real coefficient case seems to require a fresh approach, with a view

to handling a greater number of nonzero coeflicients.

Baby Theorem 5.2.10. Suppose A\ = 2 and F(t) = (¢, P(t)) where P(t) =
S prt" for some n > 2 and p, # 0. The following conditions are sufficient to
“conclude that My is not of weak type L(log L)° for any o € (0,1/2).

1. n=2.
2. n>3 and {ps,...,Pn-1} = {0}.

8. n>3,{p2,...,Pn-1} = {Pro,0} # {0} and pry/pn, or its reciprocal, is an
irrational number which either belongs to the complement of the null set N

arising in Theorem 5.2.9 or is an algebraic number.

A flat example

In a different direction, we simply state a result concerning our flat curve proto-
type ¥(t) = 2-t"% with A = 2. We are only interested in the resulting piecewise
linear curve I near the origin and thus the local operator Mi°. Notice that the
argument we used to prove Theorem 5.2.1 considered the portion of the curves in.
question at infinity. However, one can check that we could have also considered
the portion of the curves near the origin. This requires blowing everything up by
a factor C(N) which does not affect the argument at all, and this approach yields
+ the following theorem.

" Theorem 5.2.11. Ifo € (0,1) then M is not of weak type L{log® L)°.

Despite the flatness at the origin of (¢, 2-t*), when one forms the piecewise lin-
ear version, one still has a good quantitative grip on how the slopes are behaving.
Indeed, one can check that as k tends to minus infinity, the slope on [2F,25+1]
is essentially 2-C2"%* for some C' ~ 1. This fact determines the conclusion of
Theorem 5.2.11.

'Remark. Although we have not checked the details, we suspect that all of the main
results in this section are also true for the associated singular integral operator
Hrp. In [18], Christ remarks that it is apparent from his construction that Hr
is not of weak type L when I is a piecewise linear curve whose derivative takes

infinitely many values.
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5.3 Sharpness

For this discussion, let us consider the case ¥(t) = t* which motivated Theorem
5.2.1. We know from this result that, at best, Mr locally maps L(log L)¥/? into
LY. We suggest that it is far from obvious how one can push Christ’s coun-
terexample construction any further. Recall that we needed our choice of € to
satisfy (5.37) in order to prove that the sets Sj are essentially -disjoint, and thus
avoid the very delicate question of how they overlap. Moreover, we needed (5.37)
to be true regardless of what we chose as the deﬁnition of the z;?. From this point
of view, we are forced to take € to be at most A=Y for some C' ~ 1. For any
improvement, we need € to be at least A~C'N° for some C’' ~ 1 and s < 2.

We believe that the best known result in the positive direction is in {14] where
it was shown that Mp maps L to L? (globally) for all p > 1. The same result also ‘
follows from a more general result in [13]. The proof in [13] involved a bootstrap
argument involving a square function very closely related to the following one:

1/2 )
sz*—»(ZlefF) ,
keZ

o~

where }?,:f(ﬁ) = 2xa,(§)f(§) and, for a fixed A € (l,ook),

1 & 1
— 2.,
Ak.—{feR ')\’C+2SESXE}'

The A, are angular sections which form a decomposition of the plane and are
finitely overlapping. It is certainly not clear to us how a bootstrap argument
would apply to the Orlicz spaces near L'. However, we conclude this chapter .
with a ‘sketch proof of the p'otentially useful observation that R is not of weak
type L(log L)° for each o € [0,1). That R is bounded on L” for all p-> 1 is
essentially proved in [50]. Also, the smoothed out version of R is a Marcinkiewicz-
type multiplier, and a result of R. Fefferman in [28] implies that R is of weak type
Llog L.

Sketch proof of our observation. First notice that
- Ref = f + He(Hgs2f), o (5.41)

-where Hyf := Hf(-,wr) and H is the operator in (1.9), with the dilations &,
isotropic and wy := (=1, A¥)/|(=1, A¥)|. Equality (5.41) follows because Hof(6) =
—isgn(€.wy) f (£). Our observation follows simply by evaluation of R on X Bas(0)»
for sufﬁciently small § > 0. The point is that if, for £ > 1 the infinite strips X
are ch are those shown in Figure 5.3, then ~ log(1/§) of these X are disjoint,
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Figure 5.3: Thg stripst,c and X},

and for z in Xy, we have that |Rk(X5,(0)(z)| 2 6(Xexy + 22)~'. The latter is
~ true since Hiy2(XB,5(0))(¥) 2 Oly|™! for y € L. Thus, for small § > 0 we get,

{z € R*: Rf(z) 2 6}| 2 dlog(1/6),

and our observation follows. _ : g
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