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Abstract 

Standard methods for performing analytic perturbative calculations for the process of 

e+ e  -+ qq up to 0(a3 ) are explained and the results given. An emphasis is given to the 

organisation of calculations using the Cutkosky cutting rules and the renormalisation 

of the massive quark propagator. 

Methods for numerical integration are presented including those used in VEGAS. 

The numerical methods used in the Beowulf program for calculating infra-red safe 

observables for jet events from electron-positron collisions are also explained. Cancel-

lations of singularities required for numerical calculations are demonstrated using an 

example in 03 theory both numerically and graphically. Renormalisation by subtraction 

of appropriate integrals is also covered. 

Adaptations of the Beowulf procedure required for the inclusion of massive fermions 

are developed and explained. An alternative method for including the quark self energy 

and its related cuts using scalar decomposition, numerically equivalent integrals and its 

spinor structure is introduced. The methods are used to calculate the 0(a3 ) corrections 

to the process e+ e  -+ qi7 using VEGAS. Drawbacks of the smearing function required 

in the numerical integration due to the corrections dependence on the mass and centre 

of mass energy are discussed. Results of the 0(a3 ) cross section using the numerical 

method verify the procedure. The method will then be used to see the effects of mass 

on the thrust distribution and when using the Durham and JADE jet algorithms. 
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1. Introduction 

Like all research in physics, this thesis has grown from the vast amount of work per-

formed by many physicists. Without the basis given by them, the material developed 

here would be at most a mathematical challenge. However using the theories and mod-

els already constructed, the method assembled in this thesis could be used and adapted 

to help make predictions and verify results from experiments that could give a deeper 

insight into the building blocks of the universe. 

The work described is constructed within the framework of particle physics theory. 

In particular, the phenomenological aspect of calculating quantities using the accepted 

models formulated' in the language of quantum field theory that can be verified using 

experiments. All the results presented have been generated using the Standard Model 

of particle physics with special interest in Quantum Chromodynamics (QCD) and have 

been obtained previously using methods that will be described again in this thesis. So 

what does this work offer that has not already been obtained? 

To help answer this question, it is useful to understand the motivation behind 

the recent work of Davison Soper [1]. His work grew from the methods developed 

by Ellis, Ross and Terrano [2] for performing calculations using a combined analytic 

and numerical approach. Mainly on the grounds of versatility, Soper sought a purely 

numerical approach to the problem. Thus Beowulf was created, a computer program 

that uses a 'bare hands' approach akin to the fabled hero from the story of the same 

name. 

The Beowulf program has gradually developed around the core theme of perturba-

tive QCD. Preliminary versions used numerical integration to calculate the properties 

1 



1. Introduction 

of three jet processes as found in the detectors of electron-positron colliders using the 

next to leading order approximation of perturbative QCD. As the program has ma-

tured the methods for choosing suitable contours of integration and the organisation of 

sampling methods used in the numerical integration [3] have been adapted. 

The two biggest changes to the program make moves towards calculating more phys-

ical processes. Firstly Beowulf was adapted to have a representation for the gluons that 

did not transmit unphysical polarisations into the final state particles [4]. There is free-

dom to choose the way gluons are represented as they are gauge particles. This allows 

them to be parametrised in a multitude of ways. However, for any particular calcula-

tion with a fixed parametrisation a result is gained that is independent of this choice 

if gauge invariant calculations are performed. A simple yet unphysical choice of gauge 

that was employed in the earlier versions is the Feynman gauge and so the physical 

Coulomb gauge that requires more intensive calculations was chosen in preference. 

This leads directly onto the second adaptation. The motivation behind having phys 

ical polarisation states for the gluon was so that more physical jets could be simulated 

[5, 6]. To do this, a move away from inclusive fixed orders in perturbation theory is 

made by including parton showering. By doing this, a step towards modelling jets 

similar to those found in experiments is made where many particles cluster to form 

jets. 

Another feature to be considered, and the motivation behind this work, is the effect 

of mass on jet calculations. The effectiveness of perturbative QCD as a predictive tool 

is reliant upon experiments performed at high energies. This is due to a property called 

asymptotic freedom where the coupling constant of the strong force, g, that determines 

the strength of the force and acts as an expansion parameter of the perturbative series, 

decreases with increasing energy. At sufficiently high energies the coupling constant is 

small enough to warrant a perturbative expansion. This leads to smaller corrections as 

the order of the perturbative series increases. The upshot is that for the lighter quarks; 

up, down, strange and charm, the energies are much greater than the masses and so the 

effects of their mass are negligible. However, if jets based on bottom and top parent 

quarks are produced, then the mass effects are more prominent. To reduce errors in 

calculations, increase predictive power and gain better understanding of results from 
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experiments, it is important to include this characteristic. The introduction of mass 

also leads to the examination of other possible models such as super-symmetric theories 

so that they can be compared to the results obtained through the Standard Model. 

The work that follows will illustrate how massive quarks may be included into a nu-

merical procedure for calculating jet properties. To test this method a less complicated 

process concerning the O(a) correction of electron-positron annihilation into two jets 

was chosen. In chapter two aspects of quantum field theory, analytic calculations and 

results pertinent to the verification of the numerical method for this process will be 

presented. Chapter three explains the concepts of numerical integration and how they 

are used in this context. Results and interpretations of the numerical procedure, com-

parisons with analytic procedures and implications for the incorporation of the concept 

into Beowulf will be given in chapter four. Finally in chapter five the practicalities and 

applicability of the method for introducing massive fermions will be summed up with 

a discussion of possibilities for future work. 
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2. Analytic Framework for Calculations of 

Quark-Antiquark Production from 

Electron-Positron Annihilation up to 

O(a) 

When developing a technique for calculating using a computer it is useful to have known 

results to compare against. As the perturbative calculation of e+e  -* qq is well known, 

it is a suitable candidate for comparison with the numerical technique. In this chapter 

the principles behind the analytic calculations will be discussed, technical details that 

support the development of a numerical procedure presented and the results to check 

the numerical procedure will be given. 

2.1. Quantum Field Theory 

The Standard Model of particle physics has had much success in describing the nature 

and interactions of the sub atomic particles [7]. Using quantum field theory to describe 

the strong, weak and electromagnetic forces as interactions of gauge bosons with the 

quarks and leptons is a major achievement. Most importantly, it has survived the tests 

set out by experiments. Extensions to the Standard Model have mainly come in the 

form of supersymmetric theories which are again field theories. Seeing that quantum 

field theories play a major role in our understanding of the fundamental nature of 

matter, it is important to develop effective tools to test the models created and make 
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2. Analytic Framework 

predictions using these theories. 

Given a specific quantum field theory, a suitable procedure for calculating processes 

must be chosen. Asymptotic freedom of QCD and naturally small coupling constants of 

the electroweak theory have lead to perturbative calculations taking a prominent role in 

calculating high-energy scattering processes. Analytic calculations have progressively 

been performed to higher orders in perturbation theory. The procedures for creating the 

required terms in perturbative calculations is fairly straight forward, even mechanical 

due to the Feynman rules (Appendix A). The main difficulties and developments in 

calculations have been in the techniques for preparing and evaluating the integrals that 

need to be performed. While analytic calculations using techniques such as Feynman 

parameters and dimensional regularisation are very effective, integrals for high order 

calculations become increasingly more challenging and result in functions that require 

numerical evaluation. 

Although the Feynman rules may provide a way of constructing the amplitudes 

required for the process, technical issues can hamper the calculations. As the Standard 

Model is renormalisable, consistent interpretable finite answers can be produced. Inter-

mediate divergent results still need to be handled with care. This applies both to high 

energy ultra-violet divergences (UV), low energy infra-red divergences (IR) and mass 

singularities. Changing the integrals so that they are performed in n dimensions can 

regulate these divergences [8]. While the JR divergences and mass singularities cancel 

for inclusive calculations of electron positron annihilations, the UV divergences have to 

be removed through renormalisation. Although the renormalisation schemes of mini-

mal subtraction (MS) [9] and modified minimal subtraction (Ms) have been developed 

through the dimensional regularisation procedure, there is still a degree of freedom in 

choosing what to use. The freedom of choice is restricted however by the Ward identities 

[10] that give the relationships between renormalisation terms used for renormalising 

different UV divergent graphs in both the electroweak and strong theories. There is 

also a matter of preference how renormalisation schemes are implemented. One could 

choose to use only renormalised propagators and vertices, thus avoiding loop diagrams 

or use loop diagrams and find the suitable counter terms afterwards. Using different 

renormalisation schemes leads to effects that manifest as higher order corrections. 
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2.1. Quantum Field Theory 

When making calculations using Quantum Electrodynamics (QED) and QCD, the 

similarities between them are very useful. Unless the Feynman diagrams to be used 

contain the triple or quartic gluon vertices then the algebraic differences between the 

two theories are caused by the coupling constants, and the Lie algebra used in QCD 

due to it's non-Abelian SU(3) nature. These differences produce overall factors for this 

subset of processes. Although these theories may look very similar it is important to 

keep in mind the physical differences between them. While the leptons can exist as free 

particles, the quarks and the gluon, collectively the partons, are only detected via their 

formation of hadrons in the form of jets. This relies on the principle of confinement 

that requires all partons to form hadrons. Perturbation theory in QCD deals with the 

initial partons as the non-perturbative creation of hadrons is factored out. Calcula-

tions tell us about the high energy scattering process and the basic characteristics of 

the jets produced but not the detailed nature of the jets themselves or how they are 

formed. Models are needed in QCD to describe the evolution of partons into hadrons. 

Characteristics of the strong coupling constant also limits the region of centre of mass 

energies for which the perturbative methods are valid for QCD as the coupling is high 

for small energies. 

The analytic properties of the scattering matrices can help in the organisation and 

calculation of scattering processes. High order corrections of propagators, vertices and 

general N-point functions can be related to scattering processes through the optical 

theorem [7]. This basically states that a Feynman diagram of a given order in per-

turbation theory with N external particles (N-point function) can be related to the 

sum of all the possible scattering processes that contain the same order of coupling in 

total and have the same initial states as the N-point functions legs. Standard processes 

involving the corrections due to decays of particles or the scattering of two particles 

correspond to corrections of a two-point function (propagator) or a four-point function 

respectively with pairs of identical particles. The analytic properties also allow this to 

be performed on a subpart of a particular amplitude as well. By relating high energy 

processes to N-point functions it is easy to categorise the required graph topologies to 

be included and provides a simple way of calculating higher order corrections. 

Given the relation between N-point functions and scattering processes it would be 

useful to have a simple method for determining the required scattering matrices. This 
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2. Analytic Framework 

is given through Cutkosky's cutting rules [11] which were developed as a consequence of 

looking at the analytic properties of scalar amplitudes and using the optical theorem. 

Through the Cutkosky rules the expressions of the Feynman diagrams that have loops 

are related to the expressions of scattering processes. When separating an N-point 

function into two amplitudes a line is drawn through the pictorial representation of 

the N-point function effectively cutting the diagram. This was first considered using 

scalar particles leading to a relationship between a propagator and a cut propagator. 

Adapted Feynman rules can be applied to cut diagrams or cutting rules can be used to 

adapt the expression for the N-point function. 

2.2. Calculating the Born Cross Section 

To put some of the theory mentioned in context it is useful to apply it to the simple 

calculation of the Born cross section [7, 12, 13]. When an electron and positron collide 

they can annihilate and produce a multitude of possible particles. The collection of 

particles created will conserve the quantum numbers and kinematic properties of the 

initial state. One particular production channel is via an intermediate virtual photon. 

The photon then decays into a particle-antiparticle pair that interact through the elec-

tromagnetic force and satisfy the initial conditions. Further decays are then possible 

although the case when only a muon anti-muon pair is created is the Born process (Fig. 

2.1). 

e 

Figure 2.1.: The Born process, e+e  -* 

This is the simplest Feynman diagram to produce a muon-antimuon pair as the 



2.2. Calculating the Born Cross Section 

Standard Model does not allow for vertices that change lepton generation. In addition 

it has the least possible vertices for this process and so the fewest interactions meaning 

the lowest order and fundamental underlying process. It is also a process that solely 

involves the electromagnetic force. The similarity between quarks and leptons can be 

demonstrated by replacing the muon-antimuon pair with a quark-antiquark pair. This 

is possible as the quarks interact through the electromagnetic force as well as the strong 

force. Figure 2.2 shows that diagrammatically it is basically the same structure and 

Figure 2.2.: Lowest order production of a quark-antiquark pair from electron-positron an-

nihilation. 

again it is the simplest diagram to produce quarks through the electromagnetic force 

as there are no vertices that mix lepton and quark generations. The differences can be 

seen in the algebraic representations and their physical differences as mentioned earlier. 

Rather than proceeding to calculate the ee -+ pf the ee -+ q?j calculation will 

be performed as it will be the QCD corrections that are required for this thesis and it 

forms the basis for the remaining work. This will be referred to as the Born cross section 

throughout the rest of the thesis. Also to keep the calculation simple, massless quarks 

will be used for the moment although it is the aim to use massive quarks eventually. 

Determining the required integral for this process using the Feynman rules (Ap-

pendix A) is a fairly simple procedure. Each line and vertex in the diagram corresponds 

to an algebraic expression that is written in order, going against the direction of the 

fermion flow as represented by the arrows on the fermion lines. To find the scattering 

matrix the amplitude has to be multiplied by its hermitian conjugate. This is effec-

tively done by reversing the order of the original amplitude, changing factors of i to —i 

and conjugating the spinors. By keeping track of the spinor indices, this leads to an 
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2. Analytic Framework 

integrand that consists of two traces: 

( - iglill ,  
M(U(P0(iQe-Y")V(P2)

q  
—ig w  

M 1 = 
 

(U(pI)(iQe-yI)V(P2)( q 

x (U(ki)(—ie-y - )v(k2) ( igp- 
qT  

= T7-(Yl(p 1 )(iQe'y'2 )v(p2)i5(p2)(- 

(k 2 )(i eyu) u (k i )) 

Y(k2)(ie)u(ki)) 

) 

-iQe'y'')u(p1)) 

xTr(J(k2)(ie'y")n(k i )ii(k i )(—ie'y°)v(k 2 )) x 	x "gptj 
q2  

- Q2 e4  

- 

(2.1) 
01 

The integrand can be further simplified by using spinor algebra, properties of the 

gamma matrices and the trace (Appendix B). For an inclusive calculation all possible 

spin states of the final state particles are included and an average of the spin states of 

the initial state particles as the initial particles are usually unpolarised. There is also a 

numerical colour factor due to the quarks carrying the colour quantum number. Using 

these properties the scattering matrix becomes, 

MI2 = Q2  e  
q4  

- 4NQ 2 e2  
(pi4 - P1 P2Y + pp)(k2 1 k1 - k2 k1g + k2ki) 

- 	q412  

- 4NQ2e4 
( 2p1 kp . ki +2p1 k1p2 k +(n —4)pi  .p2k . k) . (2.2) 

- 	q4  

Using standard scattering theory the cross section is found by integrating the scat-

tering matrix just determined over Lorentz invariant phase space and dividing this 

answer by a flux factor. To simplify calculations it is easier to work in the centre of 

mass frame which gives the virtual photon an energy Ecm  but no three-momentum. The 

incoming momenta will be taken to lie along the z-axis (beam axis) and the outgoing 
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2.2. Calculating the Born Cross Section 

momenta will be at an angle 0 to the z-axis in the y-z plane: 

Ecm  
k1 = ---(1,O,O,1) 	 (2.3) 

Ecm  
k2 = --(1,0,0,-1) 	 (2.4) 

P1 = 
Ecm
—.—(1,O, sin 9, cos 9) 	 (2.5) 

Ecm  
P2 = --(1,O,— sin 0,— cos 0) 	 (2.6) 

(2.7) 

Using these relations the cross section is given by, 

1 
2Ek j 2Ek 2 Iv i  — v 2 I 

	

xJ

d'1 	f  _ 	
P2 

	

2E 1 (2ir) 	J 2E2(2ir)" 
IMI (27r) 6(p1 +P2 - k1 - k2) 

1 f 	d'1 	d'2
2E2 	2E 1 (27r)fl 	2E2(27r) 	

lMl 2 (2ir)8(pi +p2 - k1 - k2) 
E,2  

1__ 	 P1  f = 2E2  j 2E12E2(27r)' 
1MI 2(2, 1  + E2 - EMI)

cm 
1 

= 2Emff1hI 	
1 iMi28 (2I'i IEcm ) 

1 	
dQ 

1 	Ec- ) n-4 

2Em 	32ir2 	 MI2 . 	 (2.8) 

The calculations performed have used momentum conservation of the two particle 

final state and the relationship between the energies of the particles to the centre of 

mass energy, Ecm . Using the expressions gained the form of the squared scattering 

matrix has to be modified and the remaining angular integrals performed. As no 

poles have been created in the calculation so far, it is safe to perform the remaining 

calculations with n = 4 and so the angular integrals are just those used in spherical 
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2. Analytic Framework 

polar coordinates: 

	

_ 	1  I dOf dcosO 1 
4NQ 2 e4  

	

Oro
- 	 — 

2E 	 327r2  B4  cm 

x  (2 	
2 	

(1 + COS 0) ,  +2 	
2 

( Ec_  ) 4 	
2 	

( E.~M  4 	
COS  2 

1 fdofdcosO 1 NCQ 2 e  4 (1 +cos2O) 
2E2  32ir2  cm 

1 

= 2Em 
f d COS ONcQ2 e2 (1 +cos2 O) 

	

= 	 NcQe'  2+ 
2)  

2Ecm  l6ir 

- 4NcQ27ro!2 

	

- 	 3E2 	
(2.9) 

cm 

To complete this example, the number of generations of quarks to be included in 

the calculation needs to be considered. When the centre of mass energy passes through 

the threshold for the production of a generation of quarks the cross section gains a 

contribution from it. This would require the centre of mass energy to be much greater 

than twice the mass of the heaviest quark. As massless quarks have been used, those 

that would be produced at a given centre of mass energy needs to be included. The 

difference in contribution comes from the charge of the quarks contributing. The charge 

for the up, charm and top quark is 2 while for the down, strange and bottom quarks 

it is - 1 . With this information the cross section can be written in terms of the cross 

section R for e+ e  7r given the type of quarks, i, to be used. 

o0 = NEQ? 4  
'~ 
'-"-'cm 

= NEQR . 	 (2.10) 

Extending this calculation to the next order in perturbation theory will increase the 

accuracy of the calculation. Since the final state particles can interact via the strong 

force it is natural to consider the quantum corrections due to QCD, although it is also 

possible to look at the electroweak corrections. One reason for considering the strong 

interactions is that they will have a dominant effect due to the size of the coupling 

compared to that of the electroweak coupling constants. Another reason is that it is a 

simpler effect to consider as at the next level of perturbation theory it only affects the 

final state particles. This means that the corrections will not be affected by the initial 

state particles and so they only contribute to the angular distribution and an overall 
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2.2. Calculating the Born Cross Section 

factor in the cross section. With this in mind it is possible to simplify the integrands 

further by ignoring the initial state particle when determining higher order corrections 

produced by the strong force on the total cross section. 

Removing the initial electron-positron collision from the scattering diagram leaves 

a process that looks like the decay of a virtual photon into a quark-antiquark pair 

(Fig.2.3). Instead of having the spinor structure of the electron-positron scattering 

Figure 2.3.: Decay of a virtual photon into a quark-antiquark pair. 

there is a simple polarisation vector for the photon. The decay itself is defined in much 

the same way as a scattering process with its Lorentz invariant integrals and integrand 

but now with a prefactor that is inversely proportional to the mass of the decaying 

particle. As it is the ratio between the lower and higher order corrections we wish 

to calculate and the flux factor does not change, it suffices to calculate the remaining 

13 



2. Analytic Framework 

Lorentz invariant part, Io: 

M0 = 

= 	 (2.11) 

M0 2  = Q2 e2 Tr((pi )v(p2)i5(p 2 )y"u(p 1 )) 

= —Q 2 e2 Tr( i y'j32'y) 

= 8NQ2 e2pi  - P2 	 (2.12) 

Io 	ff 
 d 

2Ei(2ir) 3 2E2 (27r)3 
IM 0 I 2 (2r) 3 6(p i  +p2 - q) 

= f dQ 2,2 1MO12 

1 8NQ2e2 ( EL) 
87r 	 2 

= NcQ 2 e2 E m  (2.13) 
2-7r 

 

For comparison, it is useful to see how this calculation is set up using the Cutkosky 

cutting rules. If the contraction of the photon was not performed then this diagram 

would basically be the quark loop contribution to the correction of the photon propa-

gator, H'', and this is how it will be viewed. Given this and the requirement that the 

cut should give a quark-antiquark pair produced from a virtual photon, only a single 

cut can be used (Fig. 2.4). Applying the Feynman rules for cut diagrams (Appendix 

Pi 
-*1 

*1 
P2 

Figure 2.4.: Cut of the quark loop correction to the photon propagator. 
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2.3. 0(a3 ) Correction 

A) the form of the integrand is easily found: 

I = cut 

f d pi 
  (2ir) - 

(2ir)O(p)ö(p) (2ir)O(p)ö(p) 

f d37iNQ22 	(L) (27t)9(p)6((Ecm  17511) 2  - 11511 2 ) ( 27r) 	 2E 1  

= f  d 
	8NCQ2e2 (gm) 

T272

= NcQ2e2Em (2.14) 
2ir 

The calculation demonstrates the equivalence of the two methods and shows how a 

scattering calculation can be related to a particular topology of a higher order correc-

tion. 

2.3. Q(a) Correction 

As expected the lowest order calculation was free from divergences as it was a tree-

level calculation and so had no quantum corrections. Going beyond this order, it is 

inevitable that divergences due to loop momenta will occur. Dimensional regularisation 

that was superfluously used before, now takes a more important role. The integrands 

to be considered do not have UV divergences if the dimension of the integrand is less 

than four. On the other hand individual integrands do not have JR divergences or 

mass singularities if the dimension is greater than four. To regulate the divergences the 

integrations can be performed in an arbitrary number of dimensions, m. It is convenient 

to take the number of dimensions to be n = 4 - 2€ where the —2€ will regulate the 

divergences as € can be both positive or negative. The divergences will appear as 

powers of .. although it is easy to distinguish the terms at 0(a3 ) that belong to the 

UV divergences by the calculations being performed as will be seen later. 

As mentioned previously the MS and MS renormalisation schemes are suited to 

the results produced by dimensional regularisation. The MS scheme is most straight 

forward to apply as it removes the poles while the MS scheme when using n = 4— 2€ 

requires subtracting - log(4-7r) + ^ fE where -yE is the Euler gamma constant. This 
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2. Analytic Framework 

scheme will be used as it is more convenient to apply in both the analytic and numerical 

calculations. 

Determination of the strong corrections to the decay of the photon can be ap-

proached by finding the required amplitudes or by cutting the two loop strong correc-

tions of the photon propagator. The constituent amplitudes can be separated into three 

types; graphs used in the calculation of the Born cross section, graphs containing strong 

loop corrections and graphs with gluon emission. There are basically two topologies of 

graphs with loop corrections. One contains the 'self energy' of the quark or antiquark 

and the other the vertex correction. Of the two graphs, the one containing the self 

energy has the most interesting properties. For the moment it is useful to consider 

the self energy diagram (Fig.2.5). As the gluon is a gauge boson there is a degree of 

1 

Figure 2.5.: Self energy strong correction of the quark propagator. 

choice how the gluon is represented in terms of Feynman rules. Once a particular choice 

of gauge has been chosen then it is fixed for any further calculation. To begin with, 

this diagram will be calculated in an arbitrary gauge using the machinery of Feynman 

parameters: 

J d'21 (igT")i( - ji)(ig'y"T") 	—i / 	1/1u) 
 77 

= 	(2n) 	((p - 1)2 + ) 	l + 
j 	 + 
 12 

- - 9 	
J 

dl 	- 	
. (gin, + 77 14")  

(27r((p—l) 2 +i€)(12 +if) \ 	12 

2TaTaJ 
d9 	(2—n)&'—V) 	_______________ - - 9 	(2) ((p - 1)2 + ic)(1 2  + if) + ((p - 1) 2  + ic)(1 2  + i€)2  

d'2 1 	(2—n)(6—V) = 	92TT fo dx f
(2 	(x(p - 1) 2  + (1 - x)12 + ic) 2   

2(1—x)(j5— 
+(x(p - 1) 2  + (1 - x)1 2  + ic)3 	

(2.15) 
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2.3. 0(a3 ) Correction 

A change of variables helps to continue this calculation: 

K = 1—px 

= x(1—x)(—p 2 ) 

Terms linear in the integration variable may be ignored as the domain of integration 

is symmetric: 

	

g 	
fo 

1 	dK (2 - n)(1 - x) 
2TaTa~ dx 1  = — 	 (27r)fl (K 2  - i + ie) 

2(1 - x) (( - ).K2(1 
- x) - 2xK2  + x2(1 - x)p2) 	

(2.16) 

	

+11 	
(K2—I+i€)3 

The final evaluation can be performed using a Wick rotation that effectively trans-

forms the integrals from a Minkowski metric to a Euclidean metric: 

iE( 	
' 	I dK (2 - n)(1 - x) 

p) = _ig2TaTa 
fo dx I 

J (27r)' 	(K2 + )2 

2(1 - x) (_11K2(1 
- x) + 2xK2  + x2(1 - x)p2) 

—1) 
(K 2  + A) 3  

1 
= _ig2TaTajf dx 2F (2

- ) 

(2 - n)(1 - x) 

+j 
 (A ~ -2r (2 

- ) 

[(1 
- ) 

(1 - x)2 
- nx(1 - x)] 

- I 3 F (3 - 

  ) 

x(1 - x) 2p2) 

= _jg2aa(_p2) _2 2(l - )r (2— 
) 
r (n)2 

+) . 	 (2.17) 
F(n) 

If j is set to -1 then the Landau gauge is chosen and it is clear that the self energy 

is equal to zero. More generally in dimensional regularisation if the quark propagator 

is put on-shell then it is equal to zero in any gauge [12]. This is due to cancellations 

between the UV and mass singularity of the self energy with zero remainder. Although 

this may be true, mass singularity cancellations will require a contribution from the self 

energy. In this current example, amplitudes containing the self energy can be ignored. 

The vertex correction (Fig. 2.6) can't be thrown away so easily although there are 

no further tools necessary to perform the calculation. From this calculation onwards 

the Feynman gauge, 7 1 = 0 will be used for the gluons. Taking this into account the 
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Fill 

Figure 2.6.: 0(a8 ) correction to the quark-antiquark-photon vertex. 

calculations for the vertex correction can be performed: 

dl 	ILTa)_i(71 + 	(—ieQ) 	 (igYi/Ta) 
) 

VP 
 = 	(2 	

(zg 	
(P1 + 1)2  + zc 	(1 	 12 + i  

=f 
 = 	 f

_g2eQTaTa d9 
 (2 	((P1 + 1)2  + i€)((l 

- P2) 2  + ic)(12  + iC) 
1 	1 	P d _g2eQTaTa dx fo 

 dy j 9
(2)n  

2y( -2 (V - 2)'yP (~ 1 +) - (n-4)( +y'(V - 72)) (2.18) 
(12 + 2xypi  - I - 2(1 - x)yp2 I + iC) 

K = 1+xypl—(1—x)yp2 	 (2.19) 

= 2x(1—x)y2 (—p1•p2) 

= x(1 - X)y2(Em) 	 (2.20) 

ii;] 
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VP = f  _92eQTaTa 
1 

dx fo 
 1 

dy 
 j 

I d K 
(27r) 

- 
0027P1 

- (2— n)x(1 - x)y201Pi + (2;ZK2y1) 

(K2 - 
a 	1 	1 ig2eQTaT I dxf dy 2F (2_ 

) 

yP 

 2 
(n-2) 2  

(47r) 	Jo 	o 

— 3 F (3 - 

  ) 
fi2'y~i(2y(l - y) + (n - 2)x(1 - x)y 3 ) 

= 	ig2eQTaTaF(1 + c)r'(1 - 

(4ir) 2 F(2 - 2€) 

< {(_Ec2my'y' 

( - 

i) - (_Em)_l_f~2y1~i 
(- 

+ 1 	(2.21) 

The calculation demonstrates that powers of are produced at two stages of the 

calculation. Firstly when the momentum integrals are performed as seen by the factor 

of 1P (2 
- ) in equation (2.21) which is divergent as n - 4. Secondly when the integrals 

over the Feynman parameters are carried out as can be seen by the pole generated 

in the second term. The former correspond to UV divergences and the latter due to JR 

and mass singularities that will be discussed later. 

To conclude the calculation of the vertex correction requires finding the interfer-

ence between this term and the tree-level decay process, evaluating the spinor algebra 

and performing the two particle phase space integrals. This provides the total virtual 

contribution, It', to the 0(a3 ) calculation. 

MV = U(p1 )VP €pv (p ) 

MVM = Tr (i(pi)Vcv(p2)iJ(p2) (iQ.yC)  u(pi)) 

- 	 g2 e2Q2  N - 1 
(Em)1_E'l 

 + €)F(1 - 
- 

- (4.)2_€ 	2 	 F(2 - 2€) 

x2(n-2) [_+2] 
 6
2 	C  

= (M0MV*)* (2.22) 
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f d'jij 

f 

 dji Iv 
= 	2E1(2 - ' 	2E2(2 -1  

Re(MVM + MoMI*)(27r)n8(pl +P2 - q) 
I a -  1\ F(1 + c)F(1 - ) 2 1 4 	6 S ( Ec_) 
	_______ _________________ = Re ho- 

) 	F(1 - 2€) 	L 	- - 16]] 

N2 -1 	1 4 1 	 ____ —E 2  = io-9i( 
2N 

)Re[_-__(6_4YE_4log( cmfl_16 
4ir 62 	C 	 4ir J) 

cm  7r2 	 2 
cm\ +6'yE - 2 	

- 	
+ 6 log 	- 4YE log ()  

6 	 47r 	 47r 

-2 (log (h))
2 

+ 0(E)] . 	 (2.23) 

To obtain the final form of this correction, the log terms need to be analytically 

continued so that the argument of the logarithm is positive: 

"-E2 " 	'E2 
log 1 	cm = 1og (+i 	 (2.24) 

\ 47r ) 	\4ir) 

C' 
==I = IO42N) 	Lc2  € 

'E2 \\2 
1 	 'E2  cm\ 

3 	 \4ir 	 47r 	 47r 

+0(c)] . 	 (2.25) 

The remaining amplitudes to consider for this process are the gluon emission graphs. 

Although these graphs have three particle final states, they are required to complete 

the 0(a5 ) calculation. Physically they can contribute to the production of two jets in 

the regions where the gluon has a direction very similar to its parent quark or when 

they have very little energy at all. To isolate the contribution of this correction to the 

production of two jets a jet algorithm needs to be used that cuts out regions of phase 

space that would lead to three jet production. Two such algorithms are the JADE [14] 

and Durham algorithms [15], both of which look at the angles between the partons but 

differ in the way they treat their energies. The 0(a5 ) calculation makes a contribution 

to the two jet and three jet events as seen in experiments. For the purposes of this 

calculation no jet algorithm will be used. 

Although the graph contains no UV divergences the calculations still need to be 

performed using dimensional regularisation to regulate the IR and mass divergences. 

This is so that they will cancel with those obtained by the virtual gluon in the vertex 

20 



2.3. 0(a8 ) Correction 

graph. There are only two possible real gluon emission amplitudes that contribute at 

this level; one where the quark emits the gluon, Mf?,  and the other where the antiquark 

emits the gluon, M, (Fig. 2.7). The amplitudes can then be found using the Feynman 

Figure 2.7.: Possible tree-level amplitudes with a quark-antiquark-gluon final state. MR  on 

the left and M on the right. 

rules: 

(pl)(ig.yPfpTa)_ (~i +fi3) (—ieQy€)v(p2) 
(P1 +p3)2  +iE 

= igeQT (Pi)Y(1 +03)'yv(p2) 
 CAI 	 (2.26) 

(P1 + P3) +i€ 

MR = 	(—ieQy,L) 
—i(i2+73) 

(P2 + 03)2 +ZE 
(ig_,,PfTa)V(p2) 

= _igeQT (p1(j32 +733)'fV(p2) 

(p2+p3)2+if 	e€ 	. 	 (2.27) 

Before performing the three particle phase space integrals the squared matrix ele-

ments need to be found. Combining the two amplitudes there are four possible terms, 
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however due to symmetry there are only three different terms produced, 

M2= g2 e2 Q2 TaTaTr(u(Pl)Y P (J1 +3)'yV(p2)V(p2)'y1(Oi +03)'ypu(Pl)) 

(P1 +p3)4  

= 92e2Q2TaTa 2(n - 2)2pi P3P2 P3 	 (2.28) 
(P1 P3)2  

IMI2 	g2e2Q2TaTaTr(u(P1)YP(12 +733)'Y'v(P2)V(P2)'Y P (fi2 +733)'y,u(p1)) 

(P2 +p3)4  

= 92e2Q2TaTa2(n - 2)2pi  P3P2 	 (2.29) 
(P2 P3)2  

= _g2 e2 Q2 TaTaTr(u(Pl)Y P (fil +03)v(p2)v(p2)'yp(132 +J3)'y1ju(pi)) 

(P1 + p3)2 (p2 + D3) 2  

= 92 e2 Q2TaTa 

x 2(n— 2)[2(p' P2)(P1 P2 +p1  P3 +P2 P3) +(n- 4)(p, - p3)(P2 P3)] 

(P1 P3)(P2 P3) 
- MMR* - 	1 	 (2.30) 

IM + 
MI2 = 2(n - 2)g2 e2 Q2 TaTa 

[(n - 2)((pi P3)2  + (P2 P3)2 ) 
(P1 P3)(P2 P3) 

+4p1 P2(P1 .P2+Pl.P3+P2.P3)+2(n-4)(P1  P3)(P2P3)1 
- 

92e2Q2TaTa(1 - [8(1 - f)((Pi P3)2  + (P2 P3)2 ) 
- 	(P1P3)(P2P3) 

16P1 'P2 (P1 P2 +Pi 3 +7i2 7i3) + 16E (pi P3)(P2 3)] .(2.3 1) 

To evaluate the integrals it is useful to change variables using momentum conser-

vation so that the integrand is written according to it's energy dependence. As will be 

seen, once momentum conservation is applied to the three particle phase space integrals, 

only energy related integrals will remain: 

q = P1+P2+P3 

E2cm 

 (

2E3 \ E2  
—(1 - X3) P1 *P2 = 

2 	 2 E,2_ E2\ E2  
-  (1___) =-f1 (l—x2) P1 *P3 - 

2 

'-' 
'2
cm (i 2E

1 \ 	E2  
P2 *P3 = 

2 	Ec  
IM + MI2 - g2e2Q2TaTa(1 - 

[8(1 - €)((1 - x)2 + (1 - X2) 2 ) 
- 	(1—x1)(1—x2) 

+16(xi + X2 - 1) - 16c(1 - x1)(1 - x 2 )] . 	(2.32) 

Many of the integrals required for the three particle phase can be performed due 

to the momentum constraints and the angular independence of the decay. To perform 
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2.3. 0(a8 ) Correction 

the remaining integrals, transformations used on the integrand have to be applied to 

the integration variables: 

iR 	 d'j5 	dj52 	d 1 3 

= 	2Ei (27r)' 2E2(2r) 	2E3(27r)' IM + M2 
(21r)fl572(qq 

- P1 - P2 P3) 

I d1 	dj3°2 
= 	2Ei(2ir)' 2E2(2ir)' 

IM + MI2 8(Ecm 	- E2 - E3) 
2E3 

I d_1 d_2 

= I 2(2 	2(2) 2  

f dEiE3 f dE2E'  f dO12 sin 3  012 IM + M25((q - P1 - P2 - P3)2 ) 

1 	 1 

= (4)F( - ) (47r)1F ( - 1) 

f dE1E f dE2ET  f d02 	0i2 IM + M2ö((q - Pi - P2 - 

(2.33) 

2E 
Xi = -ii;--- 

'-'cm 

Z = COS 012 

IR- 

	

E2"cm 4 
	

n-3 
- (4) 1 2 2 F(n - 2) f dx1x3  f dxx 

f dz(1 - z 2 ) 2 IM + MI26(Em(1 - - X2 + 	(1 - z)) 

z'2n-6 
'-'cm 

= (4) -1 2 -3 r(n - 2) f dx1x4  f dxx 

2 
(1 - (2- 2x1 - 2X2 + x1x2)) -  

IM + MI2 . 	(2.34) 
X1X 

A final transformation makes this integral easier to integrate: 

X2 = 1VXi 

iR 	 E26 = 	cm 
2(47r)'F(n - 2) 

 x 3 (1 	v -- xi) 2 	2 	2IM+MI2 x f dxi f dv    

g2e2Q2TaTa(1 
- [8(1 - €)((1 - x1) 2  + v2 x 2

) = 	xi(l - Xi)v 

+16(1 - v)xi - 16€x1(1 - x i )v} 
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ii'2 	N2 -1I'(1–€) 2 14 	6 = j0 (-cm\ 	c 
4 	 2N F(1 - 3E) L + - + 19

, 

a8 N-1 14 1 ( 

	

= 104 2N 	
))+19_6E+(6_77r2) 6 - 4'YE - 4log 

	

–6 log ( - 	+ 4'YE  log ( - 1 + 2 ('

) 	

(log 
	\2 

	

4 	 4) 
	+ 0(E)] . 	(2.35)

47  

To obtain the final result the contributions from the virtual gluon and real gluon 

emissions have to be included: 

Ii = 1VjR 

= 3I 
a3  ( 

2N
N_1\ 	

(2.36) 
— 	 )
4ir 

'1_! 	a 3 (N-1'\ 	
(2.37) 

IØltcYo = 7r42Nc ) 

The above calculation can be performed again using the Cutkosky rules. Repeating 

the integrations is not very productive, but the organisation of the calculation is quite 

enlightening. Due to theorems by Bloch and Nordsiek [16], and Kinoshita [17], Lee 

and Nauenberg [18] each of the corrections to the photon propagator should be finite 

once UV renormalisation is performed. This is a general property for any order of any 

correction to this process. There are three corrections to the photon propagator that 

contribute to this process (Fig. 2.8). Within them can be identified each of the matrix 

999-0, 

Figure 2.8.: 0(a8 ) corrections to the photon propagator. 

elements as calculated after cutting. 

To begin with, consider the graph containing the vertex correction. Adding the re-

suits previously obtained for the corresponding cuts of this graph,and Re 

(Fig. 2.9), the UV pole remains as expected. This term needs renormalising by suitable 

counter terms in an appropriate renormalisation scheme. At this order in perturbation 

theory the overall answer will be independent of renormalisation scheme. The MS 
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2.3. 0(a3 ) Correction 

renormalisation scheme was not used explicitly in the former calculation as the cancel- 

lations occurred between the JR and UV poles. However, the appropriate MS counter 

terms, 'r'  should be applied to make the graph finite and can be represented Counte 

graphically (Fig. 2.9). This then leads to a finite value for the graph with the vertex 

Valcx 
'VHtu1 

Vctx 
'-Countr 

"IVV&: 	 VVV-,A 

Vx •  
lReal 

 

Figure 2.9.: Cuts of the two loop strong correction to the photon propagator that contains 

the vertex correction along with the renormalisation terms. 

jVertex. correction, 
MS 

I.Vertex - 1Vertex 	j-Vertex 	jVertex 
vs— - 	Virtual I  Counter I  Real 

2a3  (N-1 	
2 = 'O 	 2N 	

.38 

Now consider the graph containing a self energy. Naively cutting the graph to 

obtain all two and three particle cuts leads to three possible cuts (Fig. 2.10). Two 

of these cuts contain self energies. Previously, these terms would be set to zero. This 

would lead to an overall divergent set of cuts due to the collinear singularity from the 
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-66 

W\A tVW 

Afw !5AAAA  
Figure 2.10.: Possible cuts of the two loop strong correction to the photon propagator 

containing the self energy graph. 

three particle cut: 

- 	E26  1Self cm 
Real - (4) 1 2 -3F(n - 2) I dx1x4  f dx2x 

)2)2-

2 - 2x1 - 2x2 + XlX2
X1X 

 

2 
 M1

2  + 1M2 1 2  

= 10 
(i/'1'_1) 	

(2.39)— + 2,yE + 2 log ( 
4i 	2N 	€ 	 4j) 

The term produced in equation 2.39 would cancel the UV pole generated by the 

vertex graph. As this graph should only have UV divergences, once the cuts are added 

together the pole should cancel with a pole produced by the renormalised self 

energy diagrams. However including both renormalised propagators leads to an over 

compensation of the mass divergences. In fact only a half of the self energy graph from 

each side of the cut is needed for the cancellation. Effectively, only one of the two 

particle cuts is required. 

To resolve this apparent discrepancy, the Feynman rules need re-examination. The 

generation of matrix elements are derived from the expansion of the path integral. 

One of the constraints made is that only truncated diagrams are used. This removes 

the self energy diagram as it is a graph in itself i.e. can be cut to produce tree like 

graphs. However the self energy graph can be replaced with the first correction to the 

renormalised propagator. If using a renormalised Lagrangian then this corresponds 

to the wave function coefficient Z2  in the counter term Lagrangian. The difference is 

that the self energy goes like Z2 while the renormalised propagator goes like VfZ2 . In 

the Taylor expansion of the counter terms, this gives rise to a factor of a half. Using 

both cuts and introducing the factor of half as given by the perturbative expansion 

gives the same result as before. The redundancy of the renormalisation scheme is due 

26 



2.4. Massive Quarks 

to the poles created by the divergences cancelling between the graphs. However, it is 

important that cancellations between singularities occur between singularities of the 

same types. When using the numerical method this property will be required to give a 

smooth integrable function. 

2.4. Massive Quarks 

Having massive fermions complicates the calculation. The matrix elements are alge-

braically more intensive as the non-spinor structures of the mass terms are included in 

the Feynman rules. Terms generated due to the introduction of mass in the numerator 

all have even powers of the mass as the trace of an odd number of gamma matrices 

is zero, and the topologies of graphs to be considered only have two or four fermion 

propagators. 

In terms of the JR and mass singularities the matrix elements become slightly sim-

pler. The mass singularities appear due to vertices subtending massless particles. The 

introduction of mass to the quarks is sufficient to quell this singularity. Mass singu-

larities can still occur in a QCD theory with massive quarks, but only when triple 

or quartic gluon vertices are present. There is also a reduction in the number of JR 

singularities caused by zero momentum (soft) massless particles as the mass gives the 

particle an energy even when it has zero three-momentum. In other words, the mass 

of the quark prevents it from becoming soft. Energy conservation prevents an infinite 

number of massive quarks from being produced, however an unlimited amount of zero 

momentum gluons is still allowed. As the bare matrix elements of the massless case are 

just a limiting case, it is of little surprise that the soft gluon cancellations still occur. 

Indeed the Bloch-Nordsiek and Kinoshita-Lee-Naunberg theorems are generally true 

and can be attributed to the fact that the general numerator structure of every cut of 

a particularly graph is the same and the above mentioned singularities arise from the 

denominator. 

The mass is also another parameter of the theory that requires renormalising. This 

does not affect the renormalisation of the vertex correction as the terms proportional 

to the mass are all UV finite, and so its renormalisation is the same as the massless 
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case. This can easily be verified through power counting of the loop momentum as 

UV terms are generated by integrands with an over-all loop momenta of 0(1) in the 

denominator: 

	

VP = _g2eQTaTa I (2 	((P1 + 1)2 - m 2  + ic)((1 - P2)2 - m2  + ic)(12  + ic) 

d'l 	.y P y2  
(2.40) -3 	g2eQTT I (2 	(12 + ic)3  

As before, the correction due to the self energy is a multiplicative factor. To show 

this, the corrections of the propagator need to be formalised. The full renormalised 

propagator to all orders in perturbation theory can be written as a sum of all the 

irreducible self energies. This corresponds to a geometric series that can be summed: 

iE1 	+ 
= 
	

2 	 1 	 2 	 2 

m j3—m j3—m j—m 3—m 
i 

—+ 	 (2.41) 

Now consider the MS renormalised irreducible diagram >j split into two parts, 

one corresponding to the wave function and one for the mass, each multiplied by a 

coefficient dependent on the incoming momentum: 

E1  (p2 ) = J3Af(p2 ) — mB1(p 2 ) 	 (2.42) 

= 

i 
= 	(1 — Aj(p 2)) - m(1 - Bf(p2)) 	

(2.43) 

The mass of the propagator is no longer the bare mass m, but a new mass M. 

This is defined by saying that the pole of the propagator occurs when j5 = M. Thus a 

relationship between m and M can be determined choosing A1 and B1 to be of order 

M(1 — Af(p2))Ip2M2 = m(1 - Bf(P2))Ip2zrM2 	 (2.44) 

M = m(1 + A1 (M 2 ) - Bj(M 2 )) + 0(g4 ) . 	 (2.45) 

Performing a Taylor series expansion of the coefficients A1 and Bj, the residue of 
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the propagator can be determined: 

= 	 '1 

- A1 (p 2 )) - m(1 - B1 (p2 )) 
i 

= 	

(i - A1 (M2) 
- (~ - M) 

I 	
- m 	 LB

_ I (1 - B1(M2) 
- ( - M)2M2) 

i 

	

(j - M) (i - A1 (M2) 
- 	

+ rn 	
p2_M2) 

iz2 
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== z2 = 1 -i-A1(M2) +0 
ÔAI 

2M2 
- rn 

8B1 	
+ 0(g4 ) 

Z2Ip2=M2 = 	 —rn 

	

1+A1(M2)+M oil 
	 OBI 

—I 	+0(g4 ) 
O p2=M2 	O I p2M2 

	

I 	 1 
= 1 + A1(rn 2 ) + rn

oA  

	

— I 	- m
0B 
— I 	+ 0(g4 ) 	(2.46) 

afi Ip2_m 2 	8j Ip2=m2 

	

2 	OA I 	
+ 0(g4 ) (.2.47) VZ21pzM2 = 1 + (Af(rn )  +m— 
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5 

I

p 2 m2) 

The correction to the quark propagator contributes to the calculation as a multi-

plicative factor of the massive Born term. Although z2 is the residue of the propagator, 

only is needed as the remaining \/ goes towards the fermion wave-function. Only 

the 0(g2 ) terms need to be included and they come with the factor of a half as stated 

earlier. The contribution of the self energy is less trivial than the massless case since 

there are now finite contributions. It should be noted that the derivative with respect 

to j  of A and B renders them both UV finite as it increases the power of the loop mo-

mentum in the denominator. This means that the renormalisation term required in the 

actual calculation is the same as the massless renormalisation. Mass renormalisation 

at this order in perturbation theory only affects the way the mass is interpreted and 

provides a higher order effect if included in the correction terms. 

Introducing massive fermions poses additional problems due to their effects on the 

phase space and the integrands themselves. The energy integrations of the massive 

particles now have a lower limit of m that leads to solutions in the form of logarithmic 

and dilogarithmic functions [19]. An interesting property of the analytic result is that 
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it is a function of the velocity of the massive particles, 

V = (-
4m2 2 

. 	 (2.48) 
8) 

	

The analytic expression for the 	coefficient, al  (v), divided by the massless Born cross 

section ao(v = 1) is given by 

ai(v) 	fN-1\ 1 
ao(v=1) = 	2N ) 

I 	f1+v\ f1+v\ 
lni X{(1+V2)(1_V2) 

L3 	2 ) 	\1—vJ 
2\ 1 

2lnv 
In

( 1 	 1+v 
1 +v) + 2Li( 1 v) + Li(( 1 v))j 

1 v\ 
+ [(1+v2)(3_v2)+ 	 + _3v (3_ v2 )] in ( 

	) 
+v +6v(3_v2)ln(12 ) _4v(3_v2)1nv+v(5_3?2)} (2.49) 

This expression will be used to check the results obtained from the numerical expression. 
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3. Numerical Methods for the 

Implementation of Perturbative 

Calculations 

The previous chapter set the scene in terms of the types of integrals that need to be 

performed for high energy particle scattering. Analytic calculations are extremely use-

ful, but they become laborious to evaluate due to the shear number of terms and the 

forms of functions generated. Many of the functions obtained in higher order processes, 

such as the polylogarithms, can only be evaluated numerically. By considering these 

calculations using an almost purely numerical procedure from the outset, some of these 

problems may be alleviated. In contrast to the analytic method where the singularity 

structure of the JR and mass divergences have to be explicitly accounted for, the numer-

ical procedure takes care of these divergences within the integrals [20]. Similarly, the 

UV divergences are handled by the subtraction of UV divergent integrals rather than 

subtracting poles. It also has the advantage of calculating many observables within 

the same program simultaneously. Here the principles behind Monte-Carlo integration 

will be discussed, how they are used in the Beowulf program and how they are used in 

the numerical integrations of the next chapter. 

3.1. Monte-Carlo Integration 

There are many methods of approximating the result of an integral. One method 

suitable to be performed with the aid of a computer is Monte-Carlo integration. The 
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basic principle behind this method is to evaluate the integrand at a series of random 

points within the domain of integration, and then take an average. This gives an 

approximation to the true value of the integral. As the number of points is increased 

the accuracy of the result also increases. Providing a suitable integrand is chosen, using 

a simple random scatter technique will result in the error decreasing proportional to 

the square root of the number of samples. 

A classic example to illustrate this is the numerical evaluation for the value of it. A 

simple technique to do this is to take a unit square with a circle inscribed and randomly 

sample points within the square. The value returned is chosen to be one if the point 

lies within the boundaries of the circle else it is zero. The average of these points gives 

an approximation to area of the circle i.e. . It is the fraction of the square taken up 

by the circle that is being calculated and as the square has unit area, the area of the 

circle is given directly. Obviously other areas of shapes can be calculated using suitable 

constraints within the square. 

3.1.1. Sampling Techniques 

More practical examples that we may wish to consider do not have the simple binary 

evaluation that the previous example had. The integrands are usually some function 

dependent on the domain of integration. When the value of the integrand has a large 

variation on the domain of integration, randomly sampling points may not be the most 

efficient method of estimating the integral. To improve the process, a more suitable 

choice of integration variable may be used. There also exists different ways of enhancing 

a Monte-Carlo integration, two of them are importance and stratified sampling [21]. 

The Beowulf code employs a tactic of choosing integration variables that match the 

shape of the integrand. This involves choosing multiple coordinate transformations or 

sampling methods, each of them catering for a specific feature of the integrand [3]. As 

the integrals to be considered consist of three-momenta each integrated over the whole 

of momentum space, there are an infinite number of ways to transform the momentum 

integrals into the space of a unit cube. Each of these transformations will squash 

or stretch the original momentum space in a different way. This changes the values 

that are sampled, however, the overall answer stays the same. A particular sampling 

32 



3.1. Monte-Carlo Integration 

method is then chosen at random and the weighted average is taken. The parameters 

that distinguish the different transformations are tuned so that it produces the least 

error per sample thus increasing the efficiency of the integration. 

Monte-Carlo integration routines such as VEGAS [22] deal with the integrands 

once they have been put into a unit hyper-cube. This is done by sampling the inte-

grand inside the hyper-cube using techniques called importance and stratified sampling. 

Importance sampling is a variance minimisation technique. It involves slicing the sam-

pling region along each dimension into a finite number of pieces thus creating many 

little sampling bins. Each bin is randomly sampled with the same probability. After 

each sample an estimate of the integration is calculated and the variance for each bin 

in every dimension is calculated. Over successive samples, regions that have greater 

variance are sampled more. This is done by changing the width of the divisions along 

each dimension. At the points along a particular dimension where there is greatest 

variance, the width of the division is decreased. This creates smaller boxes, but by 

keeping the probability of sampling a particular bin fixed the density of points in this 

region is effectively increased. Large variances are caused by high fluctuations in the 

integrand and so limiting the bin size reduces sampling space in this region and reduces 

variance. 

Stratified sampling minimises variance in a slightly different way. Instead of chang-

ing the size of the bins keeping the number of points the same, the bins are kept the 

same size but the number of points are distributed differently. More points are given to 

the bins with greatest variance, thus increasing the density of points in that region of 

integration space, similar to the effect that importance sampling had. VEGAS is also 

capable of using this technique on individual bins but only when there are a sufficient 

number of points per sample. Thus VEGAS uses a combination of importance and 

stratified sampling, which allows it to tune itself to any suitable integrand given to it. 

3.1.2. Choosing Coordinate Systems 

For simplicity, Monte-Carlo integrations are usually performed by sampling points from 

a unit hypercube. This is because random number generators generally speaking pro- 

duce numbers on the bounded region of 0 and 1. Thus a value can be chosen for each 
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dimension giving the coordinate for the point to sample. Unfortunately, most interest-

ing integrals we wish to evaluate don't come in a multidimensional box. As mentioned 

the integrals evaluated here are momentum integrals extending over an infinite volume. 

After a change of coordinates for each momentum integral into a unit cube they are 

effectively combined to form a unit hypercube. A further complication is that from the 

outset, most of the integrals to be considered have points where the integrand appears 

to take infinite values. This can be seen when a factor in the denominator becomes 

zero in the integrands considered. However, all the integrals considered, as shown in 

the previous chapter will have finite answers. Heuristically, this can be reconciled by 

the fact that these values will 'average' over an infinite volume. This puts a constraint 

on the choice of coordinate system adopted in that it has to be 'good' i.e. one that 

transforms the integrand into a finite valued function over the unit hypercube. 

To determine what type of coordinate system should be used, the type of singular-

ities or places of enhancement need to be determined. The singularities that will be 

considered in three dimensions take the form of points, lines or closed surfaces in their 

original momentum coordinate systems. Cancellations that occur between different in-

tegrands reduce the number of singularities to deal with. Of these singularities, the 

only one that requires special attention in terms of the choice of coordinate system, are 

the point like singularities. These correspond to the JR singularities mentioned in the 

previous chapter. If a point like singularity is integrable, then it is sufficient to centre 

the coordinate system on the singularity and use spherical polar coordinates: 

f d31= f d 	
2 

fi d cos 0 	 dOl 	. 	 (3.1) 

From the above transformation, it is clear that any integrand that has a factor of 

11 2  or less in the denominator that would superficially look problematic is removed by 

the factor of JrJ2  from the Jacobian. This is the constraint for the overall integrand 

to be free from JR singularities once the two and three particle integrands are added 

together. A further transformation is required to change the domain of integration into 
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a cube: 

= 
 E( — 1 A_ 1 ) 	 (3.2) 

X 

cosO = 2x2 - 1 	 (3.3) 

= 2irx3 	 (3.4) 

f 
d  fi d cos o 

f27r 
dOl 	

= f d  47rABEI11 2  

x (()+i) 	(1(1)1_* . ( 3.5) 

Cancellations of multiple point like singularities in the domain of integration may 

at first sight pose a problem. Each cancellation will provide a 1— 11 2  factor in the 

denominator where (i  specifies the position at which the cancellations take place and 

i labels each of the N points. How can one transformation take care of each point of 

cancellation? At this point a change of notation is useful. Instead of working in terms 

of the Jacobian, the inverse of the Jacobian is more useful. This will be labelled as 

p(i) for each of the i points of cancellation. As the labelling suggests, the inverse of 

the Jacobian can be thought of as a density of integration points in a Monte-Carlo 

integration. To complete the task of catering for multiple singularities, it is necessary 

to multiply the integrand by 1 in a clever way: 

f d3iA(i) 
= f 	

I(1) 	 (3.6) 
>i cipi 

= 
fd

3 r 	A(i) 	 (3.7)EN aipi i=1 

= 	fd 31, N 	A(fl)) . 	 (3.8) 
i=1 

This shows how an integrand that apparently has multiple soft singularities can be 

converted into multiple integrands that are free from singularities. Each of the inte-

grals can be calculated separately then added together with it's associated weight. The 

current version of Beowulf treats this slightly differently as the different choices of co-

ordinate system are sampled using the weights and then the overall answer determined. 

To verify this procedure a test integral can be used whose value is predetermined. 

By modifying the normal distribution one can obtain a suitable integrand that exhibits 
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the required 112  structure. 

-11  
drr = 47r . 	 (3.9) 
3e 12  f  

To prepare for the integrands that will be considered later it is suitable to consider 

a slightly more complicated version of this integrand. The integrands to be considered 

will be functions of two-momenta and have three points of soft cancellations, as such 

an integrand of this type can be engineered. To match future notation the momenta 

used will be called r2  and F4 . The points of cancellation required are at = 0, I12I = 0 

and 112 + 141 = 0. Using these conditions a suitable expression can be generated: 

eHI 2  /eHr2I 2 	e I+'2  1 
(4)2 f d3 f 

d3 2II 2 	21F2 12 	2I+I2) = 1 . 
	(3.10) 

The result can be easily verified by hand and implemented numerically using the 

coordinate transformations described with or without the help of VEGAS. Two separate 

numerical integrations need to be performed, one that centres on the pair of cancellation 

points 1141 = 0 and jr2l = 0, the other on the points I1I = 0, jr2  + 141 = 0. These two 

sampling methods will now be referred to as method 1 and method 2 respectively as 

they will be used in the calculations to be performed later in the chapter and are the 

principle sampling methods used for the QCD case. 

3.2. An Example in 03  Theory 

The choice of coordinate systems used in the above example is almost identical to 

those required for the massless e+e  —+ qq case. To gain an understanding of why 

no further transformations are required, it is useful to first consider a scalar version 

of this process. In particular, the graph containing a vertex correction in 03  theory 

(Fig. 3.1). This theory is useful as a toy model and one that was used to demonstrate 

the practicalities of the numerical method in the beginning stages of Beowulf [20]. It 

demonstrates how soft and collinear singularities appear and how they occur, while 

eliminating the complications introduced from non-trivial numerator structures. 

The Feynman rules (Appendix A) obtained are very similar to those obtained in 

QED but with no spinor structure or gauge vertices. These may seem fairly drastic 
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Figure 3.1.: Two loop correction to the scalar propagator. 

changes, but when considering all singularity structures apart from UV singularities, 

they have no effect. The two loop scalar graph to be considered (Fig. 3.1) has the same 

denominator structure as the fermion case for each of the two and three particle cuts 

(Fig. 3.2): 

12 

13 
Scar•  
4. 

Figure 3.2.: Two and three particle cuts of the scalar two loop correction to the scalar 

propagator. 
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d4 12 f d414f7r)' 	d 15 
liar = 	f (2-7r)' 	(2 	(2) 4  

(2r)ö(l )O(1) (27r)8(lg j(1)(10) 7r) 	( 
d411 I d412 f

7r)4 	
d415 I 1ar 	A f (2) 4  I (2 	(2)4  

(2ir)(l)O(l) (2ir)6(1)O(-1) 

1 
(1? + iE)(1 + ie)(l + ic) 

- 14 - 15) 	 (3.11) 

1 
12 

+ i6) (14 	i€) 

(21r)o(1)O(1g)(27r)484(q - 11 + 12 - 15) 

(3.12) 

4calar - A4 	
d412 f d413  f d4 14 	1 

- 	 J (2 -7r) 4 J (21) 4  J (21r)4  (1?  + iE)(15 - i€) 

- 12 + 13 - 14) 

(3.13) 

I1ar 	= 	A4  
f dl f d4 12 	d4 13 	1 

(27r) 4  
f

(21r)4 (2ir) 4  	(l 	- i€)(1 	- i€)(ig - 	i c) 

(2ir)5(1)O(l)(2ir)6(1)O(-1)(2ir)464(q - 11 + 13) 

(3.14) 

To consider the integrals numerically, they need to be manipulated so that there are 

only three-momentum integrals left. Initially this is done by using the delta functions 

which put the propagators on shell and replaces the energies by three-momenta: 

_1 
(3.15) fdPo8(P - 1i312)9(po) - 

Looking at the integrands, it can be seen that there is one more delta function 

compared to the number of energy integrals in the three particle cuts. There are the 

same number of delta functions as energy integrals for the two particle cuts. However, 

the total conservation of energy delta function can not be eliminated by the loop energy 

integral. This is a typical property of loop momenta as they do not effect the overall 

conservation of four-momenta. These properties suggest that an integral over the total 

energy needs to be introduced to remove the final delta function. To do this, the 

integrand need to be multiplied by a function that integrates to one over the range 

of centre of mass energies q °  =Vs. The function will be referred to as the smearing 

function and will become a focus of attention later on: 

fd v1s_ h ( Vs-) = 1 
	

(3.16) 
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d4 12 f  d 4  14 f d415 f dV 	
h  I (2 	I (2) 4  	(2)4 	(1 + if)  + if ) (12 + i€) 

(27r) 6(1 2 ) 0 (1 0 )  (2ir)o(1)O(1g )(2ir)4 64  (q - 14 - 15) 

	

= 	f
d412 f d3 14 	 h(1141 + - 141) 
(2 	(2)3 2114 2 W —  141((1  +1141) 2 _ I +141 2 + i€) 

X 	
1 	

(3.17) 
((1)2 -11l2 + ic)((12° - W- 141)2 - Il; + 14 - 2 + i€) 

d4 1 1  f d 4 12 f d415 f dv' 	
h(/) 

	

liar = 	I (2 	j (2)4  	(2)4 	(1 + if)(l - if) 

- 11 + 12 - 15) 

	

= 	f
d3 1 1  I di_ h(IliI+Il2I+Il2—li+q) 

(2 	I (2)3 2I12I1 ((1l + I r2- 	+ 	- I - 	+ i) 
1 

X (3.18) 
((l(il + 11l)2 - (i - 	- i€)2112 - l i  + ql 

Igcaiar 	 d4 12 f d4 13 f d414 
f diJ  _

h(/) 

	

= 	f (2 	(2) 4  	(2)4 	(1_2_ i€)(1 - i€) 

- 12 + 13 - 14) 

	

= 
	

di  	d3 14 	h(1l21 + 12 + - + 
(2 	(2)3 (I I +1141) 2 I +141 2 + i) 2 1 1 2 

 

1 2 1 1 2 +14- qf 	I    
1 

X 	 (3.19) 
2 1l41((1l21+ 1(2  +14 _)2 - W_14l 2  —.if) 

d411 P  d412 I d4 1 f d V/ I1 	f 	I (2 	I (2) 4 	(1 - i€)(1 - i€)(1 - if) 

(2ir)ö(1)O(1)(2ir)8(l)9(-1)(2ir)484(q - 11 + 13) 

	

= 	I
di 	I' d4 12 	h(I 1 1 I + 11 - 1) 
(2 	I (2) 4  2II((1) 2  - II2 - i€)211 - qj 

1 
X 	

-.iJ - 	
-. 	-. 

((Il 	lO\2_Ill_l2I2_ if) ((lO+I14_)2_I_+2_if) 

(3.20) 

Once all delta functions have been removed, there remains a final integral to perform 

over the loop momenta of the two-particle cuts i.e. I1 andand 14Scalar . To perform 

this integral a knowledge of complex analysis is useful. The residues of the integrand 

need to be found and then the result is simply 27ri times the sum of the residues. Each 

of the propagators has two poles but only one must be used in the calculation. Due to 

causality constraints, we must choose either the positive or the negative energy solution. 

Thankfully, the Feynman rules include the if prescription that specify which pole to 

include. For each pair of poles, the positive energy solution will be taken. Finally, care 

must be taken with the direction that the contour travels around the pole as a minus 
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sign is incurred if the contour travels clockwise: 

fdpo 1 - 
27ri 

2 1j51 
(3.21) 

The overall effect of the integration applied to this example is to gain an integrand 

for each of the propagators in the loop put on-shell (Fig. 3.3): 

Sclw 
lb 

1Sla, 

Slar •  
4a 

Scth, 
'4b 

IL' 
I4  Scalm 

 

Figure 3.3.: Two particle cuts of the scalar two loop correction to the scalar propagator 

with one propagator put on-shell in each uncut loop. 

1Scalar 	 I di f d 	 h(ll + - 14 l) 
la 	 J (2ir) 	(2ir)3 2 IiI 2I- I2I( + 1  F2 + iI - IiI)2 - IiI2 + ic) 
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X 	-.
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 -. 	 (3.22) 

((1 12 + 141 - 1141 - lq i4) - 12 + r4 - q1 2  + ic) 
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d311 f d 	 h(Irl  + 	- qi) 
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At this point in the procedure there are eight expressions. Each of these expressions 

consist of integrands that depend on the incoming momenta, OY, and two other three-

momenta that are integrated over. To make things simpler, the calculations may be 

performed in the centre of mass frame 7 = 0. Finally using momentum conservation, all 

of the expressions can be written in terms of 12 and 1. This is carried out by integrating 

over a momentum conserving delta function: 

di 	3di 	 d 	i  
f(

-
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P d 	P di 	h(l+il+ll+Il) Sca1ar = 
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The expressions are now in a form that can be integrated numerically and so the 

singularity structures need to be examined before choosing suitable coordinate systems. 

In each of the integrands there is a combination of soft, collinear and scattering singu-

larities. As mentioned previously, the soft singularities are point-like while the collinear 

and scattering singularities are lines and surfaces in three-momentum space. For the 

remainder of the chapter the factor of A 4  will be neglected as the analysis does not 

depend on it. 

3.2.1. Soft Singularities 

Soft singularities can occur whenever a massless particle has zero three-momentum. 

This leads to zero factors in the denominator that can cause an infinite integrand. In 

this case there are only two momentum variables t; and  i. If r4  is taken to be fixed 

and non zero then the variable t; can be varied so that either jr2 l or 112 + 141 tends to 

zero. Considering the first case when t; is small then expansions of the other factors 

in the denominator can be made. Taking i2 to be the direction of 12 and U4 to be 
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the direction of i, the greatest multiplicative power of 5 in the denominator can be 

examined: 

ii -+ 	5 (3.37) 

I+I I14 I+5u24 (3.38) 
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All the integrands, 	of the expressions for the graph can be formed out of 
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the above factors. This gives the highest order soft singularity: 

S 	__ a 
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Only two of the above expressions are finite as goes to zero, they are A° and 

Aalar. All the other integrands contain a factor of 63 in the denominator. However 

there are intricate cancellations between the cuts. When the integrands are added 

together cancellations occur between Aa 1ar and  Aalar, and the group of integrands la 
Aalar, Acalar ,  A3SCalar and Aalar. After the addition there still remain terms with 

2 in the denominator, but these terms are integrable singularities that the momentum 

dependence of the measure takes care of. 

A similar procedure can be used to examine the soft case when 1i + r4 l goes soft 

for fixed i. This time the momentum concerned is an external momentum for the cut 

with the vertex correction on the right hand side. Not surprisingly, the strong soft 

singularities appear in the three expressions corresponding to this cut. To show that 
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the soft singularities cancel, the first order expansions need to be kept: 
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II = 

11 4 1H12+141u24.u4 

= 
h(21(4 1) 

6462 11 4 1 5 (1124. U4 - 1) 

h(2114 1) 
3252 Il4 I(('1l24  U4) 2  - 1) 

h(21(4 1) 
6452 I141 (Z24 U + 1) 

h(21(4 1) 
6452 11 4 1 5  
h(21I) 

6462 11 4 1 5  
h(25) 

325( 	- 5124 U4)((U24 U4) 2  - 1) 
(3.65) 

h(25) 

645 II 2 (24 U4 - 1)(5 - II) 	
(3.66) 

h(28) 

64J4 II 2 W24 U4 + 1)(5 + II) 	
(3.67) 

h(25) 

3252I15 	
(3.68) 

"

A Scalar 
la 

AScalar 
"lb 

AST 
lc 

A Scalar 
"2 

A Scalar 
413 

ASca 4a 

A Scalar 
"0 

A scta7  4c 

AScalar 	AScalar 	AScatar 
"4a 	+ .rl4b 	+ "4c 

(3.59) 

(3.60) 

(3.61) 

(3.62) 

(3.63) 

(3.64) 

Finally, the soft characteristics when L1 is small need to be examined. Here ( 2  is 
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kept at a fixed non-zero value: 

iI = 5 	 (3.69) 

I r2 +1 	Il2I+5u2u4 	 (3.70) 

Ascalar 	
h( 	

(3.71) 
640'I12I(1 - U2 U4) j121 - 2O(1 - U2 U4)) 

h(28) 

328 112 ( (i7 174)2  —1) 	
(3.72) 

h(25) 
(3.73) 

6484 11 2 1 2 (1 + i12 U4)(1 1 21 + 28(1 + U2 U4)) 

O 	 (3.74) 

h(21I) 

648211215(1 - U2 t14) 

h(2111) 

6462 1 	- U2 t4) 

,jScalar 	 h(2Ii) 
"4a 

6462 11 2 1 5 ((112  fl4) 2  - 1 

h(21121) AScat 	
6482 II5(2 . 	- 1) 

h(2111) 
4c 

AScaLar 	
6482 lI( 1  + U2 U4) 

For the soft cancellations with small r4 or F2  + r4 , the smearing function can help to 

make the integrand less singular, however it - is not required to do so. The directional 

vectors, 17, point towards other singular features of the expressions that will be dealt 

with in the next section. 

3.2.2. Collinear Singularities 

Collinear singularities occur when the momenta of two or more on-shell massless par-

ticles emerging from a vertex lie parallel or anti-parallel to each other. If one or both 

of the particles has a mass then these singularities disappear. They are called mass 

singularities for this reason. 

As a nice coordinate system has already been chosen it would be useful if all rem-

nants of the collinear singularities disappeared on the addition of the cuts. Superficially, 

it would seem that only graphs with three particle cuts could carry collinear singularities 

A Scalar 
'1 1b 

AScalar 
lc 

ASaar A 1°" A 1°  la 	lb 	I 	lc 

A Scalar 

A Scalar 
113 

(3.75) 

(3.76) 

(3.77) 

(3.78) 

(3.79) 
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3.2. An Example in 03  Theory 

as they naturally possess on-shell particles emerging from the same vertex. However, 

the graphs with two particle cuts also contribute. This is due to the internal momenta 

flowing round the loop being put on-shell. It is sufficient to consider the collinearity of 

the two independent momenta by writing one of the vectors in terms of another along 

with a transverse part. The transverse part is taken to be small and the components 

are expanded about the magnitude of the small transverse momenta: 

12 	= 	X14 + 1T (3.80) 

II 	= (3.81) 

= 	(x2 IiI 2  + II 2  (3.82) 

ir 1XII&I  
(1 + 2X2II2) 

(3.83) 

= 	I(1+x)+&1 (3.84) 

= 	((1 + x) 2 IiI 2  + (3.85) 

I&I 	\ 
Il+xIII (3.86) 

2(1 + x)2IiI2) 

By examining the factors in the denominator it is possible to attribute the collinear 

singularities to three possible terms. These factors in turn have collinear regions for 

different ranges of x: 

ii - 	+ 	- II 	II -1 1 + xII 	(+ 	I&12  

2(1 + x)2II2) - 
xIIlI 

(1+ I&12 

2x2 Ii, 2 ) 
- 	I1T1 2 	I1 r I 2  
- 	2(1 +x)II2 + 2XI2' 	

—1< x <0 	 (3.87) 

II - 112 + 141 + lI 	II -1 1 + xIII (+ 	
II2 	

+ 	+ IxIII 
(1 	

II 2  \ 

\ 	2(1 + x) 2 II 2 ) 	 2x2 II 2 ) 

- 	IirI2 	
+ 12 , 	0 < x < 00 	 (3.88) 

- 	2(1 +x)IiI 2 	2x1iI 2  

	

+ I r2 + 	- 	 +11+ 	
(1 + 

	II2 	
IxIII+ 

( 	
Il 2  \ 

	

2(1+x)2II2) - 	1 2II2) 

- 	I&12 	+ I1 r I 2  , 	
<x < —1. 	(3.89) 

- 	2(1 +x)Iil 2 	2x114 1 2  

The integrands can now be categorised according to what collinear factors they have 

in the denominator (Tab. 3.1). 

Cancellations must occur between integrands that have collinear singularities in the 
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Integrand —oo<x< --1 — 1<x<O O<x<oo 

AalaT la  No Yes Yes 

A Scalar Yes 1b  Yes Yes 

Aalar Yes No No 

Aca1ar No Yes Yes 

11
A Scalar 3 No Yes  Yes  

Aa1ar Yes Yes Yes 

AScatar 
4b  No Yes Yes 

Aalar Yes NO No 

Table 3.1.: Table showing singularities in each integrand. 

same regions. To examine this further, the integrands can be expanded in the collinear 

regions and the highest order cancelling terms determined: 

—00 <X < — 1: 

—1 <x <0: 

A1° h(2IiI) 
32xI1TI2IiI5 

(3.90) 

Scalar - 	h(2i) 
(3.91) 

32xI&I2IiI5 

Scalar 
4a 

h( 2 1 1 +x11 141) (3.92) 
32x(1 + x)2I&I2II5 

Scalar 
,44c 

- 	h(211+x11111) 
(3.93) 

32x(1 + x)2liI2IiI5 

AScalar 
la (3.94)  

32xIipl 2 IiI 5  
Scalar h(2) 

32xIiI2IiI5 
(3.95) 

Scalar 
142 

- 	h(2i) 
(3.96) 

32xI&I2II5 

Scalar 
143 

h (2114  1)  
32xIirI2Ii415 

(3.97) 

Scalar h(211+x11(41) 
(3.98) 4a 

32x(1 + x)21iI2IiI5 

AZIc 
0 

h(211 + xIl(I) 
-  (3.99) 

32x(1 + x)2IirI2IiI5 
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0 < x < oo: 

,4Scalar 
' 11a 

h(21141) 

32xIirI2IiI5 
(3.100) 

AScaar 
1b 

h(2IiI) 
-  32xIiI2IiI5 

(3.101) 

Ascatar h(211+xIIl4l) 
(3.102) 

32x(1 + x)2Ii;I2IiI5 

Aralar 
h(2I1+xIII) 

(3.103)  
32x(1 + x) 2 lir I 2 lil 5  

At° 
- 	h(211+xIIl4l) 

32x(1 + x)2II2II5 
(3.104) 

Aalar - 	h(211+x11141) 

32x(1 + x)2II2II5 
(3.105) 

Combining the integrands in their respective regions, it can be seen that no fac-

tors of IrTI remain in the denominator. The form of the integrands also suggest that 

pairs of amplitudes when combined without expanding may leave integrands free from 

collinear singularities in a particular region. Where the smearing function is depen-

dent on different momenta, the combination can only take place exactly on the line of 

collinearity: 

—oo <X < — 1: 

A  Scalar 	Scalar = 	h(21iI)(4Ii±14IIl4I+I12I(I14!+I12+14I+ll2I) 
32112  + l4lI12II14I(I14I  + I 12 + 141 + ll2 I)(11 4 I + 112 + 141 - r2  1) 

1 
X 	 (3.106) 

(1 141 + 112  + 141 - 112 1)(11 4 I + 1(2 + 141) 

A&l + 	= 	h(211 + xIIiI)( 4 IitIli2 + 141 + 11 2 1(114 1 + 12 + 141 + 11 2 1) 
4a 3211 2 1114 1112  + iI(II + 11 2  + 141 + 1l21)(1141 - 12 + 141 + 11 2 1) 

X 	-. 	
1 	

(3.107) 
(11i1 - 112+141 - 111)(114 1 +I+iI) 
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—1 <x <0 

= 
la 

321121112 + 14ll14I(ll2  + 141 - 1141 - 1121)(1121 + 114 1 + 1(2  + 14 1) 2  
X 	

1 	
(3.108) 

(ll-l+iI) 
A Scalar 	,j Scalar - 
"lb 	mn3 	- 

Scalar - 
4a 	4b 	- 

AScalar 	AScalar - 
"2 	+J14b 	- 

h(2Iil)(I 

81121112 + iIIjI2((l(I + IiI)2 - 

X 	 (3.109) 
(1 (21 + 114 1 + 112 + 141) 
h(211 + xIII)(4 IiIIi + 141 + Iil(l; + &I - 	- II) 

32 1 1 211 1411 12 + 141(I12  + 141 - 1121 - 1141)(1121 + I  141 + 112 + F4  1) 

X 	 (3.110) 
(I E41 + 11 2  + 141 - 112 1)(11 2  + 141 - 1141) 

h(2I(I)(4Ii + F4  III + Il(lfI - 	 + r4l - II) 
321121112 + 14111413(1l41 - 11 2  + 141 - ll2 1)(1l4 1 + 112 + 141 + 11 2  1) 
X 	 (3.111) 

(I F41 + 112  + 141 - 1121)(1l41 - 112 + 141) 
h(211 + xIlI) 

32IlIIIIi + C4 13 (j r4 l - 	+ 	- IiI)(II + 	+ i:i + 
2(I r2 + I + II) 2  + 2112 +I2 + II(IiI - 1i + 	- 111) 

(1 12 

0 < X <00 

A Scalar + AScar = 1aIb 

11 +iI)(II + I 	+ 	I - II) 

(3.112) 

Aralal.  + Aalar 	-. -. -. 	
-. h(211 + x11 141)(1 141 + 112 +14 1) 	-. 	 -. 

8 1 1411 1211 12 + l4I 2 (l 14l 	11 2  + 141 - 11 2 1)(11 4 1 + 11 2  + 141 + 12 1) 2  
X -. 	

1 	
. 	 (3.113) 

(l 14I+I+iil — II) 

As can be seen, the factor in the denominator that would produce a collinear sin-

gularity in a particular region cancels on the addition of pairs of integrands. 

3.2.3. Scattering Singularity 

The final type of singularity that could warrant a change of coordinate system is the 

scattering singularity. This singularity is so named as it occurs whenever two on-shell 

particles scatter within a diagram to produce other on-shell particles. This type of 

singularity can only occur within graphs that have loops. For this configuration, there 

is only one possible source of scattering singularity and that is when the two propagators 

extending from the source are on-shell and produce the two on-shell final state particles. 
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In the centre of mass frame, the characteristic factor in the denominator is 21141 - 

2 1 12 + 141. This can be understood as two particles colliding, producing two more 

particles, with each pair being back to back. Geometrically, this factor is zero on a 

sphere in loop three-momentum space centred on 12 = r4  with radius JF4 1. There only 

exists two integrands, A Scalar  and Aatar,  one from either side of the cut that contain 

this factor. When these two integrands are added together the singularity disappears: 

A Scalar + Aalar = - 	-. 	h(211)(lI +i; + (41) 	-. 	

. (3.114) la 
32I14II12 + F413((1(2  + 141 - 114 1) 2  - 11 2 1 2 ) 

This simplifies the numerical procedure as no contour deformation is required as will 

be explained later. 

3.3. Visualisation of Singularity Cancellations and 

Verification of the Numerical Procedure 

The analytic justification of the cancellation of singularities is thorough and shows that 

the integrals are viable. Before carrying out the numerical procedure it is useful to 

visualise the integrand to be evaluated. As the integral is 6 dimensional, it is impossible 

to view the whole integrand in a single image. This problem can be overcome by 

considering one or two dimensional slices of the integrand. To see how the singularities 

cancel it is useful to choose slices that contain each type of cancellation. There are 

two ways this can be done, either by viewing a small section of momentum space, 

or by looking at the integrand after the transformations are made for the purposes of 

numerical integration. The former gives a view that is easy to interpret from the original 

integrand while the latter gives an idea of the shape of the integral to be evaluated. 

Before considering what the integrand looks like, the smearing function to be used 

must be decided. This is because it alters the weight of the contribution from each 

integrand depending on the momentum that is flowing through the external legs of each 

cut. A way of combining the integrands with equal weight in a region of momentum 

space is by using a 'top hat' smearing function. This is basically a function that 

is a combination of the standard theta functions. If the region of integration to be 
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considered starts at 	= 	and ends at 	= Eb then the function required is 

h(/)= (3.115) 
bEa  

By increasing the width of the top hat, the common non-zero contributions from 

each cut in momentum space increase. Taking a top hat smearing function centred 

on = 100 GeV with a width of 40 GeV the region of loop momentum space that 

has contributions from each cut at various magnitudes of external momentum whose 

directions lie along the 1 axis are shown in Fig. 3.4 and 3.5. 

The most interesting regions of momentum space for the scalar, case is the part of 

momentum space where soft collinear and scattering singularity cancellations occur. 

To see how each of the cuts contribute to the integrand while avoiding effects due to 

change of coordinates, a very wide top hat function that includes = 0 can be used 

(Fig. 3.6). 

An alternative smearing function that has been used in the Beowulf program can 

be applied here. It is a function that is non-zero over the whole of momentum space 

and is based on the radial transformation used in the choice of momenta: 

= E(_1) XA 

1+* 
h(/ )ABE P00 	 1 

I dh() = f
o

dX 	
((E)+1-8 

Jo 
 	 (

\ _1 

E) 

= 1 	 (3.116) 

= 	 E) 

1 	 1+ 	
(3.117) 

ABE ((r + 
1) 

The peak of the smearing function can be found by differentiating the smearing 

function with respect to the centre of mass energy and so finding the maximum of the 

function. This then allows the parameters E, A and B to be fixed for the required 
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Figure 3.4.: Plots of integration regions for each of the main cuts in the l, 1 plane using 

= 100 GeV and a top hat smearing function of width 40 GeV. Plots given 

for external momentum of magnitude 35 GeV (top) and 45 GeV (bottom). 
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Figure 3.5.: Plots of integration regions for each of the main cuts in the l, 1 plane using 

= 100 GeV and a top hat smearing function of width 40 GeV. Plots given 

for external momentum of magnitude 55 GeV (top) and 65 GeV (bottom). 
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jl 

Figure 3.6.: Plot of integration region for each of the main cuts in the 4, l plane using 

= 100 GeV and a top hat smearing function of width 200 GeV. Plots given 

for external momentum of magnitude 50 GeV. 
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energy: 

Vpeak 

E) 
2+* 

= ABE(()+1) 

hi *  1
+ 	)(') j 

Vpeak 

= 0 	 (3.118) 

/ 1+AB \B 
= E = /PeakA(1_B)) (3.119) 

For the purposes of this demonstration, the value for NFs will be taken to be 100 

GeV and the values of A and B will be 0.9 and 0.1 respectively. The effects on the 

shape of the smearing function due to changing the parameters will be considered in 

the following chapter. 

To begin with the momentum picture of the integrand will be considered. The first 

two components of the loop momentum i2  can be used to form the basis of the slice to 

be considered. After making this choice it is useful to make a choice for 1 4  that has a 

non-zero value in the first component of the momentum and zero value for the other 

two components. This ensures that the singularities lie in the plane to be considered 

and the collinear singularity is on the first axis of the loop momentum. By choosing 

the size of 1 4  to be 50 GeV, taking a section of i2  that lies between -100 GeV and 100 

GeV in both the components mentioned the integrands can be evaluated using a very 

wide top hat function as described previously. The pictures presented in figures 3.7, 

3.8, 3.9 and 3.10 show both the positive and negative contributions of the integrand by 

ignoring the majority of points within the red parallelogram as they have very small 

values. 

The most prominent feature of each of the integrands are the soft singularities that 

can be seen as peaks. As noted previously not all cuts have both of the soft singularities 

and this can be correlated to the pictures given. One can also clearly see the scattering 

singularities in Aia and A4b,  and the collinear singularities in each of the integrands 

although they are not as prominent. By combining the integrands one can see that the 

scattering and collinear singularities disappear leaving only the two soft singularities. 

Even the strength of their singular nature has decreased as expected, however, they are 
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Figure 3.7.: Scalar integrands Aia  and Alb evaluated in a cross section of momentum space. 
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Figure 3.8.: Scalar integrands A1 and A2 evaluated in a cross section of momentum space. 
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Figure 3.9.: Scalar integrands A3  and A4a  evaluated in a cross section of momentum space. 
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A Scalar 

4e-09 
2e-09 

0 
-2e-09 
-4e-09 

-1 

100 

A 4c 

4e-09 
2e-09 

C 
-2e-09 
-4e-Og 

-1 

100 

Figure 3.10.: Scalar integrands A4b and A4 evaluated in a cross section of momentum 

space. 

60 



3.3. Visualisation of Singularity Cancellations 

still peaks that go to infinity as the coordinate transformation has not been performed 

yet (Fig. 3.11). 

le-11 
5e-12 

C 
-5e-12 
-le-li 

-1 

100 

Figure 3.11.: Combined scalar integrands evaluated in a cross section of momentum space. 

Creating an image of the transformed integral is a little different. As the integrand 

is now constrained in a six dimensional unit hypercube, a full two dimensional slice 

can be viewed. One of the momenta, i, can be specified again, this time it has to be 

specified using the appropriate transformed variables that will be denoted by F. The 

other two transformations required to determine the loop momentum r2 that centre 

the coordinate systems on = 0 and JF2  + lij = 0 will use the the variables Y and 

respectively. In all three transformations the first component is related to the size of the 

momentum, the second component to the azimuthal angle and the third component to 

the polar angle. If iT is chosen so that the soft pole lies on the axis of the third 

component of t, then it is sensible to choose x 1  and x2 or Yl  and 1/2  to represent the 

plane. This is because there is an axial symmetry about the collinear singularity, that 

can be seen in the previous images. An idea of how the integrand changes over the 

integration space can be gained by using a smooth smearing function peaked at 100 

GeV and taking sections setting z2 = 0 and z3  = 0 for 14, using a different value of z 1  
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for i4 in each slice (Fig. 3.12, 3.13, 3.14 and 3.15). 

It can be deduced from the different sections that the integrand is finite over the in-

tegration domain as stated previously. Enhancements do occur where the soft singular-

ities were previously positioned. The different sections also highlight how the integrand 

varies over the domain of integration. Although a simple Monte-Carlo method could 

be used, the variation justifies the need for a more sophisticated method to reduce the 

amount of time required for calculation. 

The evaluation of this integral using the numerical integration method described 

and cross checking against an analytic result gives an important check on the validity 

of the procedure. Determining the value of this graph is simple using an argument via 

the optical theorem. In 03  theory any graph that does not contain a self energy type 

graph is UV finite and real. This implies that the imaginary part of the total graph is 

zero and so the sum of the cuts gives a zero result. The numerical procedure using the 

two sampling methods described previously (Sec. 3.1.2) can be used to obtain a result 

for jSca1ar  Method 1 needs a loop momentum coordinate transformation of, 

1121 = E(-_1) 

cosO = 2x2 -1 

0 = 27rx3 , 	 (3.120) 

while method 2 uses a loop momentum coordinate transformation of, 

12 + 141 = E(I_1) 

cosO = 2Y2' 

= 27ry 	. 	 (3.121) 

These transformations respectively produce Jacobians or inverse densities, 

1 	
2 

- = 41rEI1I2 ( 1 

 -.

i+1) 
P1 

1 - 	 r2I'2+14I 	
2 

- - 4E 12  + 	
E + 
	 ( 3.122) 

P2 

The energy scale, E, in the above transformations is arbitrary and will be taken to be 

141 to reduce the number of input parameters introduced. 
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x1 	 x2  

Figure 3.12.: Sections of the scalar integrand in the true sample space with z1 = 0.2. 
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Figure 3.13.: Sections of the scalar integrand in the true sample space with z1 = 0.4. 
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Figure 3.14.: Sections of the scalar integrand in the true sample space with z1 = 0.6. 
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Figure 3.15.: Sections of the scalar integrand in the true sample space with z1 = 0.8. 

66 



3.4. Dealing, with UV Singularities 

In each case a transformation for the external momentum needs to be performed, 

Il = E(_1) 

cosO = 2z2-1 

= 2irz3 
	 (3.123) 

which produces an inverse density, 

= 47rE1 	(14 +
,, 	

. 	(3.124) 
P3 	 \E  

Again the value of E is arbitrary and an input parameter. This can be varied and does 

not affect the result analytically as it just scales the transformation. A value of 100 

GeV was used in the numerical procedure. Combining these transformations produces 

two integrals. For method 1, 

Id' fd _1 	
(3.125) 

J 	p3J 	Pl+P2 

and method 2, 

f d--- [dil_1 >Ascalar . 	 (3.126) 
P3J 	Pl+P2 

Combining the values obtained from both integrals gives the overall result (Tab. 3.2). 

Method 1 	Error 	Method 2 	Error 

1Scalar —2.11 x 10_1 	1.28 x 10_l0  1.37 x 10_1 	1.33 x 10_ 1  

Result 	Error 

1Scalar I —1.84 x 10-11 9.25 x 10_li 

Table 3.2.: Results for the scalar vertex integral showing the numerical values and errors 

for the two sampling methods used. 

This result provides good evidence for the soundness of the procedure. 

3.4. Numerical Procedure for Dealing with UV Singularities 

Numerical integrations are carried out using a whole number of dimensions. The ana- 

lytic calculations carried out were performed in 4— 2€ dimensions so that they were UV 
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finite and could be renormalised simply by subtraction of appropriate terms according 

to the MS scheme. In a numerical integration, this can be done by subtracting an 

integral that renders the result UV finite and produces the same result as the analytic 

procedure. This requires determining an integrand that depends on the same momenta 

as the UV divergent integral and integrates analytically in 4 - 2€ dimensions to give 

the correct 1, pole and accompanying finite parts. 

As mentioned earlier the two UV divergent loop diagrams to be computed are the 

first order strong corrections to the quark-antiquark-photon vertex and the quark/antiquark 

self energies . Of these two corrections, the modification of the propagators require spe- 

cial care as they superficially belong to untruncated Feynman diagrams. In this section, 

the method of renormalisation will be shown using the massless fermion propagator as 

it is a fairly rich example and the vertex correction with massive or massless quarks 

will be left for the following chapter. 

Through the evolution of Beowulf, the methods for evaluating the self energy cor-

rection have been adapted. The underlying principle for carrying out the calculation 

has remained the same. To begin evaluating the self energy correction, the spinor struc-

ture of the self energy correction has to be made explicit. Considering the self energy 

correction as a truncated diagram, it has one momentum integral and can only depend 

on the incoming momentum: 

	

d9 	 V) (2—n)(q— 	
(3.127) iE(q) = — g2 f (2)n ((q - 1)2 + i€)(1 2  + i€) 

By inspection it is clear that the correction must be proportional to a single gamma 

matrix. After integration of the loop momenta it can only depend on the incoming quark 

momenta, q, so the self energy must be proportional to 4 (Eq. 3.128). This simplifies 

the expressions when the propagators on each side of the correction are included: 

	

E(q) = 	A(q 2 ) 	 ( 3.128) 

	

- 	A(q 2 ) 	 (3.129) 
q2 	- 

d9 	(2—n)(q-1).q 

	

A(q 2) = 	f (2 	q2 ((q - 1)2 + i€)(1 2  + if) 	
(3.130) 

At this point there are different methods for manipulating the integral into a form 

that is suitable for numerical integration. The original procedure described by Soper 
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3.4. Dealing with UV Singularities 

performed the energy integral by looking at the discontinuity of the integral [1]. An 

alternative method is to perform the energy integral directly by finding the poles of the 

propagator as considered previously. A piece of work by Kramer and Soper required a 

coordinate transformation to be performed on the resulting integral [4]. The variables 

used were elliptic coordinates based on the momentum within the integral: 

= 	(Iii+W-1D 	1<A<oo 

= 	(I(-I-11) 	— l<A<oo 

	

0 = 0 	0 < q < 27r. 	 (3.131) 

This procedure highlighted the fact that there were redundant terms within the 

original integrand as a term generated had a factor of A_. The linear momentum term 

in the original integrand points to this fact as well. A simple way of avoiding the zero 

linear terms and the method adopted here will be through scalar decomposition as 

described by 't Hooft and Veltman [23]. Initially, momentum conservation has to be 

used on the numerator to generate terms akin to those in the denominator. 

= (q—l) 2 +q2 -2(q—l)q 

(q - 1) . q = !(q2 + (q - 1)2  - 12 ) 	 (3.132) 

	

d721 f2—m ( 

	

1 A(q) = jg2f 	
2 ) ((q—l)2+if)(12+if) 

+q2(12+if) - q2((q_1)2+if)) 	. 	 (3.133) 

At this point in the calculation, the last two terms of the integrand have a factor 

of q2  in the denominator. This is a worrying factor especially when q2  = 0 as the 

massless external quark is put on-shell. The previous methods removed this factor and 

this method does as well. To see this the last two terms are numerically equal to each 

other when the integration over the loop momentum is performed. This leads to a 

cancellation of these terms: 

d9 /2—n" / 	1 
A(q 2 ) = ig f (2n) 
	2 ) ((q - 1)2 + if)(1 2  + if)) 	

(3.134) 

92 	
d''i 	2 - n" 	 ii + ki- fl 

- 	(2' f 	

/ 

2 
) 	

fl((qo)2 	
(3.135) 

From this point it is quite simple to find the counter term for the self energy. The UV 

singularity occurs due to high loop momentum, thus the form of the numerical counter 
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3. Numerical Methods 

term can be found by ignoring q in equation (3.134) and introducing a renormalisation 

mass in the denominator to prevent a soft singularity. To gain the correct finite part 

as well, a term proportional to j 2  has to be introduced: 

d'21 /2—n\ / 	1 	SP2  \ 

	

Ac ounter (q2 ) = 	92 f (2 	2 ) T177:--p-1)2 + (12 p2)3) 

92 (2)2 (F(€) - F(1 + €) - F(1 + 	. (3.136) 

	

= 	(4ir) 

To remove the finite part the constant S has to be —2. The energy integral of 

the counter term can now be performed, however there are now multiple poles in the 

integral and so the residue must be found using an extension to the method used before 

and given by standard complex analysis: 

dl,, 	1(1°) 	- 	1 	(O\\N_l 	1(10) 	
3137 

	

ij 2 (12 - m2)N - 	(N - 1)! oi°) 	(10 + ( I 2  + m2 ) )N 
10=(I12+rn2) 

Ac ounter (q2  ) = —
g J (2ir)' 

(2 - 
2 ) (4(2 + 2) - 8(l2 ± 2)) 	

. (3.138) 

By adding Ac ounter (q2 ) to A(q 2 ) the self energy is finite, renormalised in the MS 

scheme and can be used in the numerical integration by setting n = 4. 

3.5. Treatment of Scattering Singularities 

The case examined has been quite special as the scattering singularities cancel. This is 

because all possible cuts are taken of the diagram and there were matching scattering 

singularities with the same momenta flowing through the loops. In the current versions 

of Beowulf only a subset of the possible cuts for the three loop strong correction of the 

photon propagator are considered and they do not contain all the required matching 

singularities. The subset contains all possible cuts involving three or four particles in the 

final state. While this is sufficient for cancellation of soft and collinear singularities in 

the three particle limit, it is not suitable for cancellation of soft or collinear singularities 

that occur in the two particle limit or certain scattering singularities. To accommodate 

these problems limits are placed on the choice of momenta so that the two particle limit 
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3.5. Treatment of Scattering Singularities 

isn't reached and a contour deformation of the loop momentum involved in producing 

the scattering singularity is performed. This section will describe the basic aspects of 

the contour deformation procedure as although this is not of direct concern with this 

project it will be needed to discuss modifying Beowulf. 

Contour deformation is an idea generated from the if prescription given by the 

Feynman rules. By keeping this complex component of the factor in the denominator 

that contains the scattering singularity, the integrand doesn't become singular. Due 

to the symmetric nature of the cutting, scattering singularities of the same type are 

found with both a +if and a —ic factor. This ensures that any finite complex additions 

due to the inclusion of if cancel and the result is real. The procedure separates into 

three parts; finding the shape of the scattering singularity, choosing the direction of 

the deformation and determining the size of the deformation. 

For a loop momentum, 1, and an arbitrary momentum Q representing a combination 

of momenta the scattering singularity can be written in a generic form: 

(1 - Q) 2  + j 	 (3.139) 

or 	(1 - Q)2 - i€ 	 (3.140) 

Using the conditions 12 = 0, (1 - Q)2 = 0, Q°  > 	I and ignoring the if factor, the 

shape of the scattering singularity can be determined, 

(10 - QO ) 2  = I_ 	 (3.141) 

(Ifl - 	= ir- 12 	 (3.142) 

== ii + 1- 01 = 	. 	 ( 3.143) 

This gives the familiar equation of an ellipse with foci at r = 0 and r = . The 

integrand is enhanced on this surface and so the Beowulf program chooses the loop 

momentum using an elliptical coordinate system so that the density of points can be 

increased in this region [3]. A simple method for finding the transformation to an 

elliptical coordinate system is to use a two part procedure. Consider first that Q is 

along the z-axis of the loop momentum. The loop momenta can be decomposed into l, 

IT and 0 which are components of the loop momentum in the direction of Q , transverse 

to 
I 
 Q and the azimuthal angle about the z-axis. This constitutes the standard cylindrical 
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polar coordinate system: 

I = 1cos0+1Tsin0j+12 k 	 (3.144) 

d3 1 = dlTdl 2 dcblT . 	 (3.145) 

New variables A+  and A_ representing elliptic and orthogonal hyperbolic surfaces 

can be introduced and written in terms of 1T, 1 and II: 

= (1 	+ 1) (3.146) 

((li - II) 2  + (3.147) 

= 
1 	-.-.-. 

--(IlI + 1 - QI) (3.148) 
IQI 

= 
1 

(- 	

- 
	Q  

IQ 

IT 

(3.149) 

 !Q!' ) 	1) 12  (1 - A ( (3.150) 

IQI 	(A +A_ + 1) (  
) 

(3.151) 12 	

= 2 

d 3 = dAdAdq5 
(9)3 	

- A) 	. (3.152) 

By examining the limits of loop momentum, the limits 1 < A < oc and —1 < 

A_ < 1 can be Aetermined. The task of choosing a high density of points on the 

elliptic surface corresponds to finding a mapping from 0 < xi < 1 to 1 < A+ < oo 

that deforms the region about A = Q°  so that it is sampled frequently. A suitable 

transformation is of the type for selecting the radial component of a loop momentum, 

but with the constant adjusted so that the maximum density of points occur on the 

surface of the ellipse. 

This is a simplified example that illustrates the procedure. In the real Beowulf 

program, more complex transformations are used to smooth the integrand further es-

pecially when scattering singularities are close to each other or soft singularity cancel-

lations occur on the scattering surface. The exact choice of transformation is somewhat 

arbitrary yet tailored by hand to produce an efficient integration procedure 

Now that the shape of the contour has been established and a route for creating a 

high density of points on the scattering surface determined, a method for introducing .  
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3.5. Treatment of Scattering Singularities 

the if factor must be found. The aim is to integrate along a contour for a complex 

loop momentum, 1c, that can be used used instead of the original loop momentum 1 

and includes the effects of the if prescription: 

(ic - Q) 2 	(1 - Q) 2  + if 	 (3.153) 

or 

 

( IC 
- 	(1 - 	- i€ 	. 	 (3.154) 

To obtain this relation, a suitable form for (C must be postulated: 

= r- iCil . 	 (3.155) 

The variable C is taken to be small compared to the magnitude of the loop momentum. 

This can now be introduced into equation (3.154) to determine the form of e. 

	

IiI 	= 

ill - iC- 	 (3.156) 

1 1 C - Q1 =  

	

r- i - jC' 1 Y! 	(3.157) 

	

(1 - Q) 2 	(1— Q) 2  + 2iC 
( 

+ 

	

= (1 - Q) 2  + 2iCii• A . 	 ( 3.158) 

Here A is actually the normal to the scattering surface. To ensure that the size of 

the deformation is not controlled by 6, the vector is taken to be in the direction of A. 

Controlling the size of the deformation is responsibility of C. 

Altering the size of C is important to give sensible results. The contour deformation 

needs to be switched off at points where soft and collinear cancellations occur. If the 

external momenta are to be used in any physical calculations then no imaginary parts 

should enter the final state particles. The size of the deformation should also be small 

and disappear as the loop momentum is much bigger than the size of the scattering 

singularity. Each of these conditions can be met by a separate function and depending 

on the complexity of the singularity structure, several combinations may be required. 

As C is taken to be a function of the loop momentum, it also has an effect on the 

Jacobian of the transformation. 
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4. Numerical Calculations of Observables 

for Quark-Antiquark Production from 

Electron-Positron Annihilation up to 

O(Ces) 

The previous two chapters have been concerned with setting up the procedure for 

numerically integrating the 0(a 3 ) correction for the process e+ e  -* q?j with massive 

quarks. Working towards this has shown that results can be obtained analytically and 

the systematics of the numerical integration procedure based on the work by Soper 

has been demonstrated using a scalar toy model. Now the final step of applying the 

procedure will be explained, results confirming the procedure given and additional 

information for extending the procedure discussed. 

4.1. Integrands with Massive Fermions 

Most of the ground work for determining the integrands has been developed in the 

analytic framework chapter. As has been seen, there are two graph topologies to be 

considered, one with a vertex correction and the other with a self energy correction, 

their respective cuts and renormalisation counter terms. To begin adapting them for 

use within the numerical integration scheme, the energy integrals must be performed 

akin to the method used in the previous chapter, however, remembering there is now 

a mass. This modifies the poles of the propagators and changes the on-shell delta 
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functions, however, the principles of the integration remain the same: 

dl°  f((Ifl 2 +m2 )) f(l°)(2ir)ö(12 - m2 ) 0 (1 0 ) 	f = 	2(111 2  + m2 ) 

if d1° 	1(10) 	- f((111 2  + m2)) 
(4.1) 

27r (l 2 _ m2) - 	2(111 2  +m2 ) 

As shown above, the energy integration also affects the numerator of each topology. 

Although the numerator for a particular topology of graph is the same for each cut 

when written in terms of four momenta, the specific cut determines the energies of 

the four momenta within the numerator. When performing the energy integrals for 

the renormalisation terms, the above integrals are not quite sufficient. Due to the 

construction of these terms, multiple poles arise and so the residue must be found 

using standard complex analysis: 

N-i  	1(10) 

if dl 
 	I  	(4.2)   

1(1° )  	-   I   1  	_____________ 
0   (12   -   m2)N   -   [(N - 1)   () 	(1 0  + ( I 2  + m2)] 

1O=(I112+m2) 

These methods can now be utilised to obtain the required integrands. 

4.1.1. Vertex Correction 

As the vertex correction graph in the fermion case (Fig. 4.1) is topologically the same 

1_ 	 1 

Figure 4.1.: Two loop O(a) correction of the photon propagator containing the vertex 

correction. 

as the scalar case, all momenta and equivalent cuts will be labelled in the same way as 

before. It is not surprising that after integrating out the energies the terms generated 

(Fig. 4.2) pictorially look very similar to the scalar case (Fig. 3.2 and 3.3) . For 
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Vcrt 
lb 

Vertex.

Vale  

Vr1z 

I,l" 
v. 

I4 

1  

Verte 	 Vn •  

ILfKtIcH ILAK:tIESS 
Figure 4.2.: Two and three particle cuts of the 0(a8 ) correction to the photon propagator. 

brevity, the numerator, N't,  (Eq. 4.4) and momentum relations (Eq. 4.5) will be 

given once. Each cut is also accompanied by the momentum integrals 

I d1 	c d3 14 

	

I (27r) I (2ir)3 	
(4.3) 

The energy relations and denominator, D''e7t,  will be given for each cut: 

Vertex 	 (N_— 
(-3213 1411 .15 = g2 e 2Q2 	

2 ) 
+16m2 (13.15+1115-1113+1415-1314-11 .14) 

+32m4 ) 	 (4.4) 

=+ 

= —i 	 (4.5) 

V1 
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10? = ( ll+l2+m2) 

0_ 2 l2 - ( i + il 2  + m2) - (L41 + m2 ) 

0 
13 - ( Il; + iI2  + m2) - (ui 	- (1 141 + M2)12  

0 14 - (IlI2+m2) 

l5 - (l1l2+m2) 

DveTtex - 8110 2 2 	2)110 0  
la 	- 	1112(13 - m 	411 1 5 	 (4.6) 

10? = II+(IlI 2 +m2 ) 

70 - 
t2_1 1 21 

0 1 - 13 - IiI_(IlI2+m2) 

10 - 
14 - (1l12 +m2)  

D I - 65 - (I1l2+m2) 

Dvertex 	 '0 0 = 8(l - m2)Il°I(l - m2)ii4IIl5I 	 (4.7) 

0 
11 - 	(11 	+ iI 2  + m 2 ) 	+ 2(114 1 2  + m 2 ) 

' 0 12 - - 	(11 	+ iI 2  + m 2 ) 	+ (IiI 2  + m 2 ) 

0 ' 13 - - 	(Il+I2+m2) 

0_ 14 - 	(IlI2+m2) 

150 _ - 	(IlI2+m2) 

D Vertex 2 	Ui '0 	'0 = 	8(l 	- m 2 )l2 11 1 1t34 11i 5 1 	 (4.8) 

'0 - 
11 - 	

M2) 1  2  

10 -
2 - 

0 
13 - -; i - (111 2  + m2 ) 

1 0
4 - ( I1+( I2+rn2)+IiI 

0 - 	
'12_FrTL2)i 15 - (1141 	2 

D  Vertex = 8I1IIl20I(132 - m
2  )(1 - m2 )I1I 	 (4.9) 
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0 11 - 1121 + (I11 + m 2 ) 

12-1 1 21 

13 - _(l1;+I2+m2) 

o - 14 - (1141 +m2)  

'0 - 15 - II+(I1+I2+m2) 

D  Vertex 010 2 2 = 8(l - m2)I1lll3Ii14l(1s - m ) (4.10) 

'0 11 = 	(I( +I2+m2) 

'0 
1 2  = 	-Ill 
i 0 13 = 	_(I+I 2 +m2 ) 

' 0 14 = 	(I+I 2 + rn2)+lI 
' 0 15 = 	(I+iI 2 +m2)_I1I 

D(,frtex , = 	8llII120Il63Ol4
(,2 - M 2 )  (1 	- m 2 ) 	 (4.11) 

110 _ - (Ii;+I2+m2) 

0 12 = (I 	+TI2 + m2) 	- ( 1  -12 + m 2 ) 

'0 13 - - _(I+iI2+m2) 

0 ' 14 - - (Ii+i1I2+rn2) 

0 l 5  = 2(Il2 +l4I2 +rn2 )_(I14I 2 +m2 ) 

D Vertex = 8llIlI1II140I(15
2 - M2) 
	 (4.12) 

0 ' 11 - - (Il+( I2+m2) 

120 = _(I+ll 2 +m2 ) 	_(IlI 2 +m2 ) 

130  = _(Il+[I 2 +m2 ) 

140 _ - 2(I12+14I2+m2)+(Il4I2+m2) 

'0 15 - - _(Ill2+m2) 

D Vertex = 101 
	 (4.13) 8I1?IlIlI(l4

2 - In2 )I5 

As can be seen, the massless denominators are easily modified by replacing Ill with 

(I(1 2  + M2)12 for the massive fermions. 
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Renormalisation of the vertex graph 

From the form of the vertex graph, a UV counter term must be determined so that it 

has the same UV properties. To do this, the part of the integrand corresponding to 

the vertex is extracted and the limit of large loop momentum is taken. As described 

in the analytic framework chapter, power counting of the momentum leads to the 

renormalisation counter term being independent of the mass. Care must be taken 

when considering what to take as the loop momentum. The loop momentum of the 

left hand side vertex is easily found if momentum conservation is used to write the 

momenta in terms of 12, 14 and 15 : 

	

d92 	Y' ( 'l + m)y'/3 + m)7p  

	

V = _g2eQTaTa I (2 	(1? - m 2  + i€)(l - m 2  + iE)(l + if) 

	

- 92 eQTa Ta I d92 	y' + + m)yP( - + M) 71,  - - 
	 (27r) ((12 +14 )2 - m 2  + iE)((12 - 15)2 - m 2  + ic)(1 + i€) 

(4.14) 

By doing this, it is clear to see that 12 is the only momentum flowing round the left 

hand vertex and the external legs of this loop are independent of it. Looking at the 

highest order of the loop momentum in the numerator and performing some algebra 

one can obtain an integral corresponding to the UV divergent part, 

	

V —+ — 2eQTaTa f d'12 	 (2 — n)(2V21 —1) 
 (2 	((12 + 14 )2 — m 2  + if)((12 — 1 5  )2 - m 2  + i€)(l + if) 

(4.15) 

To obtain the counter term required in the numerical integration, the UV limit 

of the denominator is taken, further simplifying the integrand. This would lead to a 

possible soft singularity dependent on the loop momentum, however a renormalisation 

scale, p, can be introduced in the denominator taking the form of a mass proportional 

to the centre of mass energy thus preventing the soft singularity: 

'' 
Vp 	 d'212 (2 - n) (2(/212P - '2

2
) g2eQTaTa f (2 	(l — 2 + ic)3 	

(4.16) 

Calculating the analytic value of the above counter term in the MS scheme gives 

a result that contains the required counter term along with an additional finite piece. 

This can be dealt with by subtracting a term proportional to j 2  that produces the 
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correct counter term: 

d92 (2 - n)(2V2l - 12 	
(4.17) 

2  + 2,2) 
Counter 	

, g2eQTaTa I (2 	(1 - p2  + if) 3  

Before incorporating the correction term into the full graph, the energy integral of 

the loop momentum can be performed using the residue theorem: 

	

d'12[4'y°m-8y 	12V1 P +6p2,Yp] 
Vounter 	_ig2eQTaTa f (2 

	

-' 16I2 + p2) 	16(Il;1 2  + p2)] 

(4.18) 

A similar expression can be obtained for the counter term when the vertex is on the 

right hand side of the cut. However, the external momenta of the vertex are no longer 

14 and 15, but 11 and —1 3 . Thus, the vertex can be written in terms of 1, 13 and 1 2 : 

d92 	y( + 	+ m)'yp  
VP = _g2eQTaTa f (2 	(1 - m2 + if ) ( 12 - m 2  + if) (l + i€) 

- g2eQTaTa J d12 	Y '  ( Vl  - V2 + m)(3 - V2 + m) 
- - 
	 (2ir) ((li -  12)2 - m 2  + if) 	- 12)2 - m2  + if)(l + i€) 

(4.19) 

Determining the counter term as before, the second counter term can easily be 

found. The counter terms now have to be incorporated into the full graph by including 

the expressions from the other side of the cut in each case. This generates expressions 

for the numerator and denominator for the counter term on the left hand side of the cut 

/ rtrVertex (j\,rVertex 
(1VCOUnter,LHS and Vertex 	and for the right hand side of the cut 	COUnter,RHS 

i 	Vertex and Counter,RHS 

10 

10 - - 
- 

10 - 
- 

2..jVertex - 

Counter,RHS - 

D  Vertex 
- Counter,RHS - 

(1(1'12 + 
M2

) 21  

(I1;12 + 

_(IlI 2  + m2 ) 12 

(N2 -1) 
—g2e2Q2 	

2 

x32(-2(l)2(l?l - 2M2) + 3(2l . 	12 - 2p2 1 13 +3 p2 m2 )) 

1281l?II1°  

	

311i021
5 	 (4.20) 
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0 ' 12 = (IlI2+/.2) 

0 14  = ( I1I 2 +m2 ) 

0 1 5  = ( 11I2 +m2) 

Vertex 	 2 2 	_________ NC OUTh ter,LHS = g e Q2 
(N_ 1) 

x32(-2(1) 2 (11g  + 2m2 ) + 3(2(4 	1 - 2214 15 - 3i2 m2 )) 

Vertex 	- 	II 0  DCoun ter,LHS 	128l1 - 	1511120 1 5 
	. 	 (4.21) 

4.1.2. Self Energy Correction 

A little more thought is required when dealing with the graph containing the self energy 

(Fig. 4.3). As has been discussed, the self energy corrects the wave function and defines 

1 3  
- 

- 4 

= 

r5= ri 

(4.22) 

Figure 4.3.: Two loop 0(a5 ) correction of the photon propagator containing the self energy 

correction. 

a new mass according to the position of the pole of the propagator. Due to symmetry, 

either the self energy that occurs on the left hand side of the cut or the right hand 

side of the cut needs to be considered. Similarly, either the quark self energy or the 

antiquark self energy has to be evaluated as each diagram will contribute the same 

value to the overall calculation. The quark self energy contribution will be considered 

with the overall contribution of the correction given. 
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r---------- 1 

Figure 4.4.: Combined contribution from the self energy when the cuts are on the left and 

right hand side of it. 

The self energy contributes by multiplying the lowest order two particle process, 

i.e. the Born cross section, by a factor. This correction has already been described in 

the analytic framework chapter, yet the exact form suitable for numerical calculation 

must be determined. Again scalar decomposition is used to generate the expressions 

required for the self energy. Similar to the massless case, there are terms that are 

numerically unstable, however, they are no longer simple cancellations. Instead the 

terms can be replaced with numerically equivalent integrands while maintaining the 

same singularity structure. This then gives the integral, corresponding to the 

self energy contribution: 

10= ( IiI2+m2) 
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For numerical stability, the three particle cut for this graph, 12 	has to be put into 

a similar form illustrated by placing a box around the self energy part of the diagram 

(Fig. 4.5). This involves taking the part of the scattering matrix that corresponds to 

Figure 4.5.: Three particle cut of the graph containing the self energy. 
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4.1. Integrands with Massive Fermions 

the splitting and recombination of the quark and gluon, and giving it the same form 

as the self energy, /1 A - mB. From the jet perspective, this is quite sensible as the 

decay of the photon into two fermions naturally describes two jets while the splitting 

of a gluon from one of the fermions gives the possibility of a third. However, it must 

be shown analytically possible to separate the splitting of the fermion into a fermion 

and a gluon from the underlying process: 

(N_—_1"\ f d'212  f d'13 I dl 

	

Self = — g2e2Q2 	
2 	) 	(2ir) 	(27r) I (27r)fl 
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Obtaining the form for A and B, this may then be reinserted into the integrand 
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and the required integrals may be performed: 
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This gives both the contributions from the graph containing the unrenormalised self 

energy. 

Renormalisation of the self energy graph 

As stated previously, the renormalisation term is the same form as the massless wave 

function renormalisation since the mass renormalisation goes towards the running of 

the mass parameters. This has been calculated in the previous chapter and becomes a 

multiplicative factor of the Born cross section: 

'0 
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di 	2(l .14+2rn2 ) 
Gunte

Self 
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4(II2 + 2) - 8(1(12 + p2) 	(II 2  +rn2)(li4 I 2  + m2 ) 

Combining the renormalisation term with the other two cuts produces the finite 

contribution for the graph containing the self energy correction. 
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4.1.3. Comparison to the Massless Case 

By taking the limit m -* 0 it is self evident that the basic integrands are the same 

as those obtained in the massless case. The corresponding renormalisation terms also 

have a smooth limit to the massless case and have the same structure as that used 

in the Beowulf program. Massive fermions remove the soft singularities that were 

associated with these particles and the collinear cancellation properties are no longer 

required. This suggests that only one sampling method concentrating points on the 

zero momentum gluon is required in this case. However, for simplicity, two sampling 

methods can still be used so that the transition between massive and massless fermions 

is apparent. It is also suitable as for small masses there is still an enhancement near to 

where the soft points would be. 

4.2. Cancellation of Singularities Revisited 

Before going any further, the integrands need to be checked to ensure that there are no 

singularities present. Most of the work towards this has been completed in the previous 

chapter when the scalar diagram was considered. As before there are soft, collinear and 

scattering singularities to consider plus another graph and masses to account for. 

4.2.1. Vertex Graph 

The difference between the vertex graph considered in this chapter and that of the scalar 

case in the previous chapter is in the numerator. Prior to integration of the energies, 

the numerators for each cut are identical. For cancellations to occur, the numerators of 

the cancelling integrands must be the same for the region of cancellation. It is sufficient 

to check that the energy terms in the massless case of the four-momenta involved in the 

numerator are the same for each cut in the required regions. There are four cases to 

consider; three collinear regions (Tab. 4.1, 4.2 and 4.3) and the scattering surface (Tab. 

4.4). The soft points are end points of the collinear region and so do not need to be 

considered separately. The same collinear conventions will be used as in the previous 

chapter. 
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Integrand 1 '0 
1 1 '0 13 1 14 '0 

AVertex 	AVertex 
1b (1 - x)II —(1 + x)I II 11 i 1 

11
AVertex 

4a 	Aertex —(1 + x)i (1 + x)II —(1 + 2x)1 1 41 - IlI 

Table 4.1.: Energies for integrands with collinear singularity along —oo < x < —1. 

1 Integrand 10 

11 
AVertex A rerlex  1a (1 + x)I (x - 1)IiI liI ii 
,tVertex 	Avertex  

' 1  1b  (1 - x)lil —(1 + x)IiI IiI IiI 

11 
AVertex 	,tVertex (1 + x)jI 4a 	' 114b  —(1 + x)IiI (1 + 2x)1 1 11 

Table 4.2.: Energies for integrands with collinear singularity along —1 < x < 0. 
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1b  
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Table 4.3.: Energies for integrands with collinear singularity along 0 < x < 00. 

0 	I 	'0 	I 
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I AVertex ,iVertex 
I" la 	''14b 

Table 4.4.: Energies for integrands on the scattering singularity jr2 + 141 = 1141. 



4.2. Cancellation of Singularities Revisited 

Adding massive fermions to this analysis tends to simplify the singularity structure 

rather than complicate it. To begin with, the collinear singularities are removed as 

they only appear when the particles subtending from a vertex are all massless. This is 

due to simple energy conserving principles and can also be verified by performing the 

collinear analysis demonstrated in the previous chapter with masses on the appropriate 

momenta. The mass of the fermions prevents soft singularities occurring due to the 

fermions as they now have a minimum energy. Cancellation of the soft singularity due 

to the gluon occurs in exactly the same way as before since the mass of the propagator 

is applied consistently throughout the integrands and the numerator structure is the 

same for each integrand. Similarly, the scattering singularity cancels in the same way 

as before. The surface of the scattering singularity is the same as before. 

4.2.2. Self Energy Graph 

The graph containing the self energy is a much simpler example to consider as the terms 

split neatly into a massless and massive case and the massless case is proportional to 

the Born cross section that is free from soft and collinear divergences. To guide the 

analysis it is useful to consider some general aspects of soft and collinear singularities. 

Collinear singularities require two massless particles at the same vertex and so it is 

only possible to have a collinear singularity in the massless case. The integrands take 

a very simple form when the mass is set to zero: 

1Self = g2e2Q2 
(Nc2 - 
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j  Self = g 2  e 2Q2 	
2 1) 

	

d311 	' dl 	h(1 121 + 131 + IlI)1 1  14 

	

I (2 	I (2)3 IIIR(II + II)2 - 	+ 1 2 )I1 
(4.33) 

To examine the collinear singularity it is useful to look at 12 lying in the direction 

Of 13 with some small transversal momentum. Looking at the integrands, there is only 

one denominator that could cause a collinear divergence. Applying the representation 
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Of 12, one can determine the range for x where there is a collinear divergence: 

12 = X13+IT 

111 2  \ 
II 	

4l3 (1+ 2x2II2) 

16 	
111 2 	\ 

+ 	11+ X11 631 1 + I 
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2 IxjI 1 31 	2 1 1  + x11 1 31 

The range of x for which the collinear singularity exists includes x = 0 that corresponds 

to the gluon going soft, however, the gluon does not produce a soft singularity at this 

point. As the integrands for both cuts have a common factor, elf in the collinear 

region, it suffices to look at the combination of the factors that are different in the 

collinear region: 

Ih1 + Ih1 = jSel.i 	(h(j(+

112
III)(IH1l)  - 	 ) 

h(1 121 + 131 + 141) Common 

- ISelf  
- Common 

< ( 

12 + 131 
(4.35) 

In the collinear limit the smearing functions are dependent on the same momenta 

and so there is an exact cancellation between the numerator and denominator that 

removes the collinear singularity. When the fermions are massive, it is necessary to 
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check the soft cancellation again due to the additional terms: 
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The soft singularities in these expressions are found in the terms with 8 in the 

denominator and are proportional to m 2  showing that these have been created by the 

introduction of mass. Effectively the collinear singularity of the massless case has turned 

into a soft singularity in the massive case. It is clear that when the two integrands are 

added together that the terms containing j3  in the denominator cancel and so no soft 

pole remains. 

4.3. Obtaining Numerical Results 

Evaluating these expressions requires some care. For the remainder of the chapter 

all the calculations will be performed using only one quark and ignoring the charge, 

Q. This is to simplify the checking of calculations and get a feeling for the effect of 

introducing mass, however by combining and interpolating the results, numbers can be 

obtained for several quarks. It should also be noted that a factor of 

a.  - 
(4.37) 

ir 	47r2  
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has been factored out of the integrals as this corresponds to the massless Oa, correction 

when N = 3. 

The correction to the Born cross section is a function of the velocity, 

/ 	4m2'\ 12 

V= ii------ 
S 

(4.38) 

This means that for a given mass, different values of the centre of mass energy produce 

different values for the correction. Using a smearing function that is dependent on 

the centre of mass energy produces a weighted average of these corrections that is 

dependent on the shape of the smearing function. To determine the correction for a 

particular centre of mass energy requires a smearing function that is strongly peaked 

about the value to be considered. However, a smearing function that is too strongly 

peaked causes problems in terms of numerical stability. 

The dependence of the correction to the Born cross section on the velocity is almost 

linear starting with a correction of 7r2  for zero velocity and ending with 1 at a velocity 

of 1. This suggests that a sensible method of checking the validity of the expressions 

obtained would be to use a smearing function that averages over a small range of the 

velocities. The correction in each range can then be considered to be approximately 

linear and the average will give a good estimate of the central value of the range. To 

do this it is convenient to integrate over the velocity with a suitable smearing function. 

The Jacobian from this transformation introduces a factor that originates from the 

energy conserving delta function: 

f dv h(v)I8( - EE) 
= fo 

dv h(v)Iö _
2m 

-
0  	 \(1—v2)2 

= (1_v2)h(v)I 	
(439 

2mv 

Averaging equally over a small range of velocities that lie between Va and vb requires 

the smearing function, h(v), to take the form of a 'top hat', 

- Va)  - O(v - Vb) 
h(v) = 	 . 	 (4.40) 

Vb - V 

It is suitable to use a width of 0.1 to verify the expressions obtained while avoiding 

numerical problems that arise due to narrow peaks. Choosing an arbitrary fixed mass 
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of 10 GeV the equivalent widths for the centre of mass energies can be determined 

(Tab. 4.5). 

Velocity Extremal velocities Energy Extremal Energies Difference 

0.1 0.05 20.101 20.025 -0.076 

0.15 20.229 +0.129 

0.2 0.15 20.412 20.229 -0.183 

0.25 20.656 +0.244 

0.3 0.25 20.965 20.656 -0.310 

0.35 21.350 +0.385 

0.4 0.35 21.822 21.350 -0.472 

0.45 22.396 +0.574 

0.5 0.45 23.094 22.396 -0.698 

0.55 23.947 +0.853 

0.6 0.55 25.000 23.947 -1.053 

0.65 26.318 +1.318 

0.7 0.65 28.007 26.318 -1.688 

0.75 30.237 +2.230 

0.8 0.75 33.333 30.237 -3.096 

0.85 37.966 +4.633 

0.9 0.85 45.883 37.966 -7.917 

0.95 64.051 +18.168 

Table 4.5.: Velocity-energy correspondence for a fixed mass of 10 GeV. For the given velocity 

bins, the corresponding energies and difference from the energy corresponding 

to the central energy are given in GeV. 

As can be seen, higher velocities have greater energy widths and the central value 

for the velocity corresponds to centre of mass energy that is towards the lower energies 

of the range. There is a good agreement between the results obtained using this method 

and the analytic values for the correction (Tab. 4.6). When this data is represented 

graphically (Fig. 4.6) the almost linear nature of the correction can be seen and the 

deviations of the numerical calculations away from the corrections can be attributed to 
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Velocity (o(v=1) 
oi(v) 

) Analytic 

cri(v) 

 a
Error 

0.1 9.105 9.110 0.010 

0.2 8.275 8.325 0.013 

0.3 7.545 7.560 0.016 

0.4 6.678 6.651 0.020 

0.5 5.743 5.726 0.016 

0.6 4.753 4.738 0.017 

0.7 3.731 3.773 0.016 

0.8 2.719 2.726 0.013 

0.9 1.773 1.785 0.011 

Table 4.6.: Comparison of the value of 	for different velocities using analytic results 

and the top hat velocity smearing function. 

the slight curvature. As the errors are quite small it is useful to look at the numerical 

results normalised to the analytic results (Fig. 4.7). 

Using velocity smearing has properties useful for calculations beyond the one con-

sidered here. It provides a finite interval for integration to work within in contrast 

to using /i Even if higher order corrections do not depend directly on the velocity, 

one would expect the corrections to change smoothly, maybe with isolated peaks as 
VS- 

varies. These properties will allow checking of higher order corrections using a sliding 

bin technique. By taking a suitably thin top hat function and gradually moving it along 

the values of velocity so that there is a large overlap between consecutive evaluations, 

the amount of variation in the correction for different velocities can be deduced. 

The velocity top hat smearing method can be contrasted with the approach using a 

smooth smearing function that depends on the centre of mass energy. As described in 

the previous chapter, the Beowulf code uses a smearing function that is based on the 

method for choosing radial components in the spherical coordinate system. It may be 
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modified to cater for the centre of mass threshold at an energy of Vs = 2m: 

= 
 E(

_l)+2m  XA 

1+3. 
1 h()ABE((V 2m) 8 +1)

dX  
F2m 

dJh(fi) = 
 Jo 	 ( V/_2m\* 1  
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1 —1 

(v2m\ 
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ABE N/i  
E 
—2m\) + i) 

(4.41) 

(4.42) 

Again to fix the peak at a particular energy, the smearing function must be differ-

entiated with respect to the centre of mass energy. The parameter B can then be fixed 

according to the value of energy required, the parameters A and B, and the mass: 

(/-2m 1-2  
_ 	- 	 E ) 

1 	2+3. 
Lea - ABE ((Vs--2m)B 

 + i) 

[(1-') - (1 + ) 
(,- 2m) L ] 

  ¼pea 

= 0 	 (4.43) 

/1 
E = (peak_2m)A(l 

+AB 
B)) (4.44) 

This gives a family of smearing functions for a fixed set of parameters but different 

masses. The peak of the function has to be greater than 2n'i for this procedure to work. 

Adjusting the parameters leads to changing the shape of the smearing function. The 

parameter A must be greater than zero and B ranges between zero and one. Broadly 

speaking smaller values of B create much more peaked distributions and smaller values 

of A leads to smaller widths and slightly changed shape. It is useful to consider plots 

of the smearing function for different values of m and varying values of B to get 
peak 

an idea of the differences changing the parameters causes (Fig. 4.8 and 4.9). 

Fixing A at 0.9, B can be varied to determine how well the values fit with the 

analytic values obtained for the velocity (Fig. 4.10). To see the effect of varying B 

more clearly, the correction produced by the numerical method can be divided by the 

analytic result for each value of B (Fig. 4.11 and 4.12). This illustrates the shape 
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Figure 4.6.: Plot of 	for different velocities using analytic results and the top hat 

velocity smearing function. 
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Figure 4.10.: Plot of correction produced for different values of B and velocity using the 

smooth smearing function. 

dependence on the numerical values obtained. Results close to velocities of 0 and 1 are 

least dependent on the value for B as these are fixed points and least dependent on the 

mass. From the results obtained for v = 1 it can be seen that the results are independent 

of the smearing function used. Numerical instability prevents B from taking very small 

values and also appears to affect the accuracy of the calculations. This can be seen 

from the deviation of convergence to the analytic result as B is reduced to 0.05. The 

values obtained when A = 0.9 and B = 0.1 are within errors and as good as the values 

obtained using the top hat smearing function (Tab. 4.7). 

The work described so far has all been in terms of velocities of particles and has 

shown that the numerical procedure produces results consistent with analytic values 

obtained over the full range of velocities. Although it has been useful to consider all 

the results in terms of the velocity, it is more normal to consider different centre of 

mass energies and masses of fermions. In addition, particles with velocities very much 

less than one could be strongly affected by higher order corrections. The processes 

producing low velocity particles are those created close to threshold. 
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Velocity ( 	uj(v) 	
) 

o(v=i) 	Analytic 
(_oi(v) 	

' 

o(v=i) )Tophat 
Error  G

a (V)@o(v= 	Smooth 

0.1 9.105 9.110 0.010 9.083 0.026 

0.2 8.275 8.325 0.013 8.303 0.022 

0.3 7.545 7.560 0.016 7.503 0.020 

0.4 6.678 6.651 0.020 6.663 0.018 

0.5 5.743 5.726 0.016 5.738 0.016 

0.6 4.753 4.738 0.017 4.742 0.013 

0.7 3.731 3.773 0.016 3.725 0.012 

0.8 2.719 2.726 0.013 2.718 0.011 

0.9 1.773 1.785 0.011 1.778 0.012 

1.0 1.000 j 	 - - 0.992 0.010 

Table 4.7.: Values obtained for- "(!~ obtained from analytic, velocity top hat smearing 

and a smooth smearing function. 

By considering the fraction 	, all the results are kept as general as possible so 
VS 

one can choose the required centre of mass energy and get some idea of the correction 

produced for a given mass. Obviously this ignores production of jets through the Z 

channel for centre of mass energies above Z production. Another aspect to consider is 

the relative size of the correction compared to the corresponding massive Born term. 

The massive Born term divided by the massless Born term can be calculated quite 

easily and is a function of' (Tab. 4.8). 
Vfs- 

However, the correction term is multiplied by 	which is a function of energy 

renormalised at a particular mass scale, usually chosen to be mz.  There is a matter of 

choice for which energy is used to define a 8 . One could use the centre of mass energy, 

however this is not the energy that is flowing through the vertices where the coupling 

takes place. Increasing the number of external particles for graphs without loops means 

less energy is flowing through the coupling, leading to higher values for the coupling 

constants. Between the energies of 1.2 GeV and M, a3  is found to range between 0.35 

and 0.12 by ee experiments [24]. Taking a value for the coupling constant of 0.25 

the two particle cross section up to 0(a3 ) normalised by the born cross section can be 

calculated for different values of (Fig. 4.13). 
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Figure 4.13.: The O() two particle inclusive cross section for different values of 	with 

= 0.25. 
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rn _______ 
ao(0) oo(=O) 

E rror 

0 1.00000 0.99 0.01 

0.05 0.99996 1.03 0.01 

0.10 0.99939 1.15 0.01 

0.15 0.99687 1.34 0.01 

0.20 0.98984 1.66 0.01 

0.25 0.97428 2.10 0.01 

0.30 0.94400 2.74 0.01 

0.35 0.88911 3.59 0.01 

0.40 0.79200 4.75 0.01 

0.45 0.61243 6.36 0.02 

0.50 0.00000 (7r2 ) - 

Table 4.8.: Analytic values of 	
o ()

ao(m0) 
and numerical values of the coefficient of 	, 

for different values of --. 
uo(=O) 

4.4. Infra-Red Safe Observables 

The numerical method can be used to calculate quantities other than total cross sec-

tions. It has the advantage of performing the calculations of infra-red safe observables 

in a very simple way. This is done by multiplying each of the integrands with the desired 

measurement function corresponding to the infra-red safe observable. These functions 

satisfy the property that changing a single particle into two collinear particles does not 

affect the observable. This in turn gives a relationship [25] between the measurement 

functions used: 

S1(p1,...,(1-A)pn,Apn)=Sn(pi,...,pn) . 	 (4.45) 

This is an important property that allows the singularity analysis previously de-

scribed to hold. A measurable quantity that can be used to produce a function that 

is infrared safe is the thrust [26, 27] which is described straightforwardly through the 

momentum of the final state particles: 

Y(p i ,...,p)=max(il) Ei lf. (4.46)  
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As there are only two different final states, two particle and three particle, this 

reduces to two thrust functions: 

7(p1,p2) = 1 

2max(IjI, IiiI, Ii5I) 	 (447) T3(pl,p2,p3) 
= 	II+IpI+II 

Due to conservation of momentum in the centre of mass frame the two particle final 

state always produce pencil like events. Whereas, the three particle final state can 

produce events ranging from three particles with an equal magnitude of momenta to 

two particle like events. Thus by momentum conservation the thrust can vary between 

two thirds and one for three particle final states. In general the thrust ranges between 

a half for spherical events and one for pencil like events. To get an idea of how much a 

contribution to the total cross section each value of thrust gives the differential of the 

cross section with respect to thrust can be performed for various values of thrust. As 

the calculations are to be performed numerically, it is more suitable to bin the events 

for a small range of thrusts (Tab. 4.9 and 4.10). 

The thrust distribution highlights some properties of the leading order calculation. 

As the two particle final states can only produce events with a thrust of one, it can be 

seen that the three particle final states provide a positive contribution to the correction 

that increases as it approaches thrusts close to one. As increases this contribution 

reduces. The two particle final states produce the most variation in contribution. For 

lower values of the contribution is large and negative and as increases so does the 

contribution becoming large and positive. To view how the correction affects the overall 

thrust distribution, the distribution can be combined with the lowest order quark anti-

quark production and weighted against the total combined lowest and leading order 

correction (Appendix C). 

The thrust distributions (Fig. 4.14) can be further changed by taking smaller bins 

for values of thrust close to one. However, in this region large logarithms exist and 

hadronisation corrections become large [28]. The bin size has the effect of smearing 

the contributions of the two and three particle final states in the final bin. To gain a 

better thrust distribution parton showering should be included to smooth the contribu-

tions more naturally. By taking the thrust average of this correction, the two particle 

contribution can be emphasised (Tab. 4.11). 
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M 

vs- 

Thrust Bin 0.00 0.05 0.10 0.15 0.20 

0.66-0.68 2.12 x 10-1  2.06 x 10_1  1.90 x 10- ' 1.65 x 10_1  1.31 x 10-1  

0.68-0.70 1.13 x 100  1.10 x 100  1.01 x 100  8.73 x 10_i  7.00 x 10_i 

0.70-0.72 2.17 x 100  2.10 x 100  1.93 x 100  1.66 x 100  1.33 x 100  

0.72-0.74 3.30 x 100  3.21 x 100  2.94 x 100  2.53 x 100  2.03 x 100  

0.74-0.76 4.60 x 100  4.47 x 100  4.08 x 100  3.51 x 100  2.81 x 100  

0.76-0.78 5.83 x 100  5.96 x 100  5.45 x 100  4.69 x 100  3.75 x 100  

0.78-0.80 8.02 x 100  7.79 x 100  7.09 x 100  6.11 x 100  4.88 x 100  

0.80-0.82 1.04 x 10' 1.00 x 10 1  9.12 x 100  7.87 x 100  6.31 x 100  

0.82-0.84 1.35 x 10 1  1.31 x 10 1 1.18 x 10 1  1.02 x 10 1  8.19 x 100  

0.84-0.86 1.77 x 10 1  1.71 x 10 1  1.55 x 10 1  1.33 x 10 1  1.07 x 10 1  

0.86-0.88 2.36 x 10 1  2.27 x 10 1  2.06 x 10 1  1.75 x 10 1  1.43 x 10 1  

0.88-0.90 3.24 x 10 1 3.11 x 10 1  2.80 x 10 1  2.38 x 10 1  1.95 x 10 1  

0.90-0.92 4.58 x 10' 4.39 x 10 1  3.93 x 10 1  3.36 x 10 1  2.73 x 10 1  

0.92-0.94 6.94 x 10 1  6.63 x lO 5.86 x 10 1  4.98 x 10 1  4.09 x 10 1  

0.94-0.96 1.18 x 102  1.11 x 10 2  9.76 x 10 1  8.26 x 10 1 6.75 x 10 1  

0.96-0.98 2.54 x 102  2.36 x 102  2.04 x 102  1.70 x 102  1.38 x 102  

0.98-1.00 -5.61 x 102  -5.24 x 102  -3.95 x 102  -3.62 x 102  -2.66 x 102  

Table 4.9.: Values of the coefficient of 	for different thrusts in bins for values of - "S 

between 0 and 0.20. 
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4.4. Infra-Red Safe Observables 

M 
VIS 

Thrust Bin 0.25 0.30 0.35 0.40 0.45 

0.66-0.68 9.70 x 10-2  6.72 x 10-2  3.30 x 10-2  1.17 x 10-2  1.58 x 10 

0.68-0.70 5.13 x 10_1  3.34 x 10_ i  1.77 x 10_ i  6.12 x 10-2  8.25 x 10 

0.70-0.72 9.82 x 10_1  6.36 x 10_ 1  3.38 x lO 1.20 x 10_1  1.81 x 10- 2  

0.72-0.74 1.49 x 100  9.74 x 10_1  5.16 x 10_i  1.85 x 10_1  2.79 x 10_ 2  

0.74-0.76 2.08 x 100  1.36 x 100  7.16 x 10_ i  2.70 x 10-i  3.70 x 10-2  

0.76-0.78 2.77 x 100  1.82 x 100  9.92 x 10-1  4.05 x 10_i  5.89 x 10_ 2  

0.78-0.80 3.64 x 100  2.40 x 100  1.35 x 100  5.21 x 10_1  9.29 x 10-2  

0.80-0.82 4.72 x 100  3.16 x 100  1.83 x 100  7.50 x 10 -1  1.34 x 10- i 

0.82-0.84 6.18 x 100  4.19 x 100  2.45 x 100  1.02 x 100  1.92 x lO 

0.84-0.86 8.10 x 100  5.58 x 100  3.35 x 100  1.51 x 100  3.05 x 10 -1  

0.86-0.88 1.09 x 10 1  7.67 x 100  4.66 x 100  2.17 x 100  4.81 x 10 -1  

0.88-0.90 1.49 x 10' 1.06 x 10 1 6.52 x 100  3.21 x 100  7.89 x 10 -1  

0.90-0.92 2.11 x 10 1 1.52 x 10 1 9.75 x 100  4.86 x 100  1.29 x 100  

0.92-0.94 3.19 x 10 1 2.34 x 10 1  1.52 x 10 1  7.84 x 100  2.37 x 100  

0.94-0.96 5.26 x 10 1 3.89 x 101  2.56 x 10' 1.38 x 10 1 4.17 x 100  

0.96-0.98 1.08 x 102  8.01 x 101  5.34 x 10 1 3.00 x 10 1 1.00 x 10 ,  

0.98-1.00 -1.65 x 102  -6.08 x 101  5.22 x 100  1.70 x 102  2.99 x 102  

Table 4.10.: Values of the coefficient of 	for different thrusts in bins for values of m 

between 0.25 and 0.45. 
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Figure 4.14.: Combined 0(1) and 0(c 3 ) values of thrust in different bins for values of 

between 0 and 0.45. 
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Weighted Thrust I  Error 

0 -0.04 0.01 

0.05 -0.03 0.01 

0.10 0.06 0.01 

0.15 0.30 0.01 

0.20 0.62 0.01 

0.25 1.06 0.01 

0.30 1.65 0.01 

0.35 2.41 0.01 

0.40 3.38 0.01 

Table 4.11.: Weighted thrust average for different values of 

Another way of examining the two particle and three particle contributions is 

through jet algorithms. As mentioned in chapter two, two of the commonly used 

algorithms are the JADE and Durham algorithms. They both set a limit on what is 

recognised as a two jet or three jet event according to a given parameter, yt,  that 

can be fixed between zero and one, where one includes all contributions from the three 

particle final states and zero includes only those in the two particle limit. However the 

way Ycut  is defined for each algorithm is slightly different. The JADE algorithm looks 

at the four-momentum dot product between particles and if they are all less than a 

predetermined fraction of the centre of mass energy then it is classed as a three jet 

event: 

Yti, 
= 	. pi 

S 
= 2EZE)(1 	

0) . 	 (4.48) 

The Durham algorithm, in contrast, replaces the energies of the particle by the smallest 

energy of the particles to be considered and then proceeds as the JADE algorithm: 

2min(E2 , E2 ) 
=(1 - cos O) . 	 (4.49) 

Using the same YCUt  parameters, the two algorithms predict different contributions 

to a two jet process. The JADE algorithm (Tab. 4.12) is more affected by the contri- 
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m 

Ycut 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 

1.000 0.99 1.03 1.15 1.34 1.66 2.10 2.74 3.59 4.75 6.36 

0.200 0.87 0.92 1.07 1.31 1.69 2.18 2.84 3.67 4.78 6.36 

0.100 0.30 0.40 0.67 1.11 1.70 2.35 3.11 3.95 4.97 6.40 

0.075 -0.44 -0.30 0.09 0.67 1.08 2.17 3.05 4.03 5.10 6.44 

0.050 -1.83 -1.61 -1.03 -0.23 0.70 1.7 2.78 3.94 5.16 6.52 

0.025 -5.06 -4.58 -3.54 -2.28 -0.90 0.53 1.96 3.54 5.06 6.65 

Table 4.12.: Coefficient of 	for different values of Ycut  andusing the JADE jet algo- 

rithm. 
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Figure 4.15.: Coefficient of 	for different values of y ut  and 	using the JADE algorithm 
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m 

1/cut 0.00 0.05 0.10 0.15] 0.20 0.25 0.30 0.35 0.40 0.45 

1.000 0.99 1.03 1.15 1.34 1.66 2.10 2.74 3.59 4.75 6.36 

0.200 0.94 0.98 1.11 1.32 1.65 2.13 2.77 3.60 4.75 6.36 

0.100 0.74 0.80 0.99 1.28 1.71 2.24 2.89 3.69 4.77 6.36 

0.075 0.51 0.57 0.81 1.17 1.67 2.26 2.93 3.74 4.79 6.36 

0.050 -0.03 0.09 0.38 0.87 1.48 2.17 2.93 3.79 4.84 6.36 

0.025 -1.47 -1.28 -0.75 -0.01 0.82 1.70 2.67 3.74 4.91 6.38 

Table 413.: Coefficient of 	for different values of 1/cut  and 	using the Durham jet 

algorithm. 
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Figure 4.16.: Coefficient of 	for different values of 1/cut  and m keeping i/ = 100 using 

the Durham algorithm 
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butions of two particle final states than the Durham algorithm (Tab. 4.13). When 

is small, small values of yt  and lead to a negative contribution to two jet production. 

It also means that for certain parameters there is a zero contribution from the strong 

corrections. For the larger values of 	the correction is less dependent on the Yt 
VIS 

parameter for both algorithms. To see the effect of using different values of yt  on 

the two jet cross section, the ratio between the Born cross section plus the contribu-

tion for a particular value of Ycut  and the complete up to O(c) jet calculation can be 

determined for both the JADE (Fig. 4.17) and Durham (Fig. 4.18) jet algorithms. 

4.5. Ground Work for Future Calculations 

The next obvious adaptation of this work is to perform the three jet calculations with 

massive quarks in the Beowulf scheme. Apart from the obvious changes to the integrand 

in terms of numerator, denominator and renormalisation conditions, the change in 

structure of the scattering singularities has to be considered. The discussion and results 

presented in this section will be of a general nature so that they can be used to modify 

Beowulf. 

An immediate effect is that the introduction of mass changes the factors in the 

denominator that cause the scattering singularity. Similar to the previous chapter, a 

scattering surface is created when two momenta are put on-shell. This time general 

masses ml and m2 will be used. To investigate this the two on shell conditions that 

will be used are (1 - Q)2 = m and 12 = m to find the scattering surface: 

(10 - Q° ) 2  = ii 	+ m 	(4.50) 

	

((111 2  +m) -  Q° ) 2  = ii- I 2  +m 	(4.51) 2 2 

== (1112 + m 	+ (Ir- I 2  + m)4 = Q° . 	 (4.52) 

It is difficult to see what the shape of the scattering singularity is using this repre-

sentation. A simple method for determining the shape is to get rid of the square roots 

and take Q to lie on the z axis of the loop momentum. Performing this operation one 

finds that the scattering singularities are once again ellipses, but the foci and size of 
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m 

Yctt 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

0.200 0.998 0.998 0.999 0.999 1.000 1.001 1.001 1.000 1.000 1.000 

0.100 0.991 0.991 0.994 0.998 1.002 1.005 1.006 1.004 1.001 1.000 

0.075 0.982 0.983 0.988 0.994 1.001 1.006 1.007 1.005 1.002 1.000 

0.050 0.962 0.965 0.971 0.983 0.994 1.003 1.007 1.007 1.003 1.000 

0.025 0.907 0.913 0.929 0.950 0.969 0.985 0.997 1.005 1.006 1.001 
m 
-) 

ao(=O) 
Ycu 

m 
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Figure 4.18.: Weighted jet cross section for different values of Ycut  against combined 0(1) 

and O(cx3 ) cross section using the Durham algorithm. 
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M 

YcUt 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

0.200 0.996 0.996 0.997 0.999 1.001 1.003 1.004 1.003 1.001 1.000 

0.100 0.974 0.976 0.982 0.992 1.002 1.009 1.014 1.013 1.009 1.002 

0.075 0.946 0.950 0.960 0.975 0.990 1.003 1.011 1.017 1.014 1.003 

0.050 0.894 0.901 0.919 0.942 0.966 0.985 1.001 1.013 1.016 1.007 

0.025 0.773 0.789 0.825 0.866 0.906 0.943 0.971 0.998 1.012 1.013 
m 

ao(=O) 
Yt 

1.05 
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Figure 4.17.: Weighted jet cross section for different values of y Ut  against combined 0(1) 

and 0(c) cross section using the JADE algorithm. 
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the ellipse are a function of the masses and the momenta: 

	

2+z2+m2+(z 	= Q°+ 	_ Q)+m(r 	 (  

	

(z+d)2 	r2  
== = 

a2 	b2 	C  

(4.53) 

a = 

b = (( Q0)2 - Q') 12 

= (((QO)f2 - Q
2 ) 2  + m + MI - 2((Q° ) 2  - Q2 )m - 2((Q° ) 2  - Q2 )m - 2mm) 

C 	
2((Q°)2 - Q 2 ) 

d - 
Q((Q°) 2 —Q 2 +m—m) 

(4.54) 
- 	2((Q°)2 - Q 2 ) 

The values of a, b, c and d can be used to define the length of the major axis, 

minor axis and the centre of the ellipse given by ac, bc and z = — d respectively. Using 

standard relations of the ellipse the foci are located at —d± /(ac) 2  - (be) 2 . This then 

gives the forms for A+  and A_ required for an orthogonal elliptical coordinate system 

where the scattering singularity occurs at A+ 
= a  

A ± =
1 

2(ac) 2  + (bc) 2  

	

    (ac) + ( bc) 2 ) 2  	2 )    	( ac)2+( bc)2) 2  + r2)x((z+ d- 	 + r 	± (z+d+ 	 k.55)  

The need for contour deformation appears because of the type of calculation being 

performed. As the three jet calculation at next to leading order does not contain all 

possible cuts of the three loop QCD correction to the photon, the integrands that 

provide the required cancellations for the scattering singularities are not generated. 

Within the set graphs there are a few that do not require contour deformation, namely 

those that have two self energies or corrections to one of the parent quarks. As well as 

the scattering singularity not all of the collinear singularities would cancel in as neat a 

way either as the two loop corrections to two parton production would not be included. 

The cancellations not catered for will be cut out by the jet algorithm that will remove 

the two jet-like processes. If all the possible cuts were used, then the complete O(a) 

two jet process would also be calculated. 
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5. Conclusions 

This thesis has explored the calculations of the leading order perturbative corrections 

to the production of two jet processes. An analysis of the photon decay into two 

massless quarks has been given with attention paid to analytic properties of scattering 

processes. With analytic results of the massless and massive two jet processes in mind, 

an alternative numerical method of calculation akin to the procedure developed by 

Soper was sought after. The principles behind numerical integrations were discussed 

along with the different methods for enhancing the numerical integration procedure. 

By extracting the tools developed in the Beowulf program, adapting and utilising them, 

numerical integrations of perturbative processes can be performed in conjunction with 

VEGAS. Other adaptations for further work have also been considered. 

The major aim of the thesis was to establish the viability of extending the Beowulf 

procedure to include massive quarks. From the work performed, the viability has 

been established up to an approximation. As the corrections due to massive quarks 

depend on the centre of mass energy, and the smearing function varies with energy, 

then for an arbitrary smearing function only an approximation can be gained. Results 

obtained showed good agreement for the smearing functions used and as it is a numerical 

integration, there is a degree of approximation inherent to the procedure. The real issue 

of the accuracy is how important it is compared to the experimental measurements and 

the corrections due to the neglected higher order corrections. It is possible to use a 

smearing function that would analytically produce the actual correction but this would 

require a smearing function that depends on the analytic result that is to be found. 

This approach seems to defeat the object in terms of the simplicity of the procedure. 

Investigating this problem has led to a variation of the Beowulf code being created. 
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5. Conclusions 

The procedure used has had several benefits in terms of diagnostic and calculating 

purposes. Each graph could be considered separately and the convergence of the in-

tegrals checked. This allowed the 'catching' of spurious terms and the checking of 

divergence cancellation. As a different numerical integration is required for each choice 

of coordinates, an error in one of the integrations points towards an error in soft can-

cellation. Having multiple integrals gives greater control over the required accuracy of 

the integration. Beowulf controls errors through the specification of length of time for 

computation. Using VEGAS each integral can be computed to a required accuracy, 

which is useful when contributions from different integrals differ is size so the absolute 

error of each integrand compared to the sum of the integrals is important. There is still 

an element of judgement required using VEGAS when choosing sample sizes and the 

number of iterations for both the warm up integrations and main integration routines. 

Choosing too few points per sample can lead to ignoring parts of the sample space that 

are quite important while choosing too many can result in sampling regions that are 

strongly affected by cancellations between integrands and the inherent finite accuracy 

of the computer. 

The introduction of massive quarks and the use of VEGAS has required some tech-

nical additions to the Beowulf arsenal. Beowulfs 'bare hands' approach led to the 

integration of integrals on 'face value'. Difficulties due to large cancellations around 

soft points are dealt with using cuts on the domain of integration. Because the inte-

grand is finite, it would be nice to numerically integrate without cuts. For this to work 

using VEGAS a much more sensitive approach has to be employed as it homes in on the 

parts of integrals that have the most variance. This has been done by finding equivalent 

representations for the graph containing the self energy. To begin with the self energy 

has been manipulated using scalar decomposition. Large cancellations between terms 

generated required finding numerically equivalent integrands that preserved the singu-

larity structure. This had a knock on effect on the three particle cuts that required 

manipulation to obtain the same spinor structure as the self energy. 

By considering this particular process insight into the nature of the scattering sin-

gularities has been provided. Treatment of the scattering singularities in the Beowulf 

program used contour deformation to render the integrals finite. This process, how-

ever, shows that there are cancellations of scattering singularities. For certain graphs 
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in the three jet process described by Beowulf, use of this fact can remove some calcu-

lating burden of using complex momenta. There still remain scattering singularities in 

the three jet calculation, but this is because only the three and four particle cuts are 

included. 

To improve this procedure so that quantities calculated are physically more signifi-

cant, the work on the Coulomb gauge for the gluon and parton showering as now used 

in Beowulf should be included. The Coulomb gauge will affect the structure of the 

integrands and so more work on the representation of the integrands may be required. 

Parton showering which does not affect the soft, collinear or scattering singularities 

should not pose a problem in terms of implementation and should make the thrust 

distributions more realistic as it will smooth the contributions due to the two and three 

particle cuts. 

Including massive partons at O(cx) using the Coulomb gauge and parton showering 

will obviously further improve the physical calculations. To do this it would be better 

to incorporate the integrand manipulations discussed in this study into the Beowulf 

scheme as it contains the methods to cater for the scattering singularities and can cope 

with complex momenta. This method just needs adapting to take into consideration 

the shapes of the scattering singularities as discussed in the previous chapter. The 

full O(a) calculation including the two loop contributions should contain sufficient 

cancellations between scattering singularities, however, this would require investigation. 

In summary, massive particles can be included in numerical perturbative calcula-

tions. There is also plenty of scope for further investigation and development of this 

technique to explore the properties of particles as observed in particle physics experi-

ments. 
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A. Feynman Rules 

The Feynman rules for the gluons and quarks presented in this appendix have their 

colour algebra suppressed apart from the quark-antiquark-gluon vertex where the colour 

matrix has been written explicitly. To complete the rules, the quark and gluon 

propagator need to be multiplied by öj  and jab  respectively. 

A.1. 03  Rules 

p 
Scalar propagator: 	 = 

p 
External scalar: 	 = 1 

Scalar vertex: =iA 
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A. Feynman Rules 

A.2 Required rules for QED and QCD 

- i(Ø±-) 
- p2  —in 2  +i€ Fermion propagator:  

Antifermion 	 p 

propagator: 

P 
Incoming fermions: 

p 
Incoming antifermions: 

Outgoing fermions: 

P 
Outgoing antifermions: 

P 

Boson propagators: 
P 

p 

tW\AIWVvWVW\f\AAP External bosons: 

666666666 MooMnTMP 

p 

- i(— ~+m) 
- p2 -m2 +if 

=u(p) 

=13(p) 

=11(p) 

=v(p) 

P 
+i,  (gA, 	

P 2  

77 = 0, Feynman gauge 

77 = +1 ,  Landau gauge 

= 

Fermion-antifermion-

photon vertex: 

Quark-antiquark-gluon 

vertex: 

= iQe'y 

= ig7oyIL 

. Introduce a factor of minus one for every closed fermion loop. 
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A.3. Cutkosky Cutting Rules in the Feynman Gauge 

Include an integral, 

f dl 
(2r) 

for each loop momentum. 

A.3. Cutkosky Cutting Rules in the Feynman Gauge 

=(~ +m) 

Cut fermion 	 x (27r)6(p2  - m2 )0(p° ) 

propagator: 	 P 	 = (- + m) 

x(27r)ä(p2 —m2)O(—p0 ) 

P 	
= ( —~+m)(27r) 

Cut antifermion 	 xö(p2  - m2 )0(p° ) 

propagator: 	 P 	 = ( 
+ m) (27r) 

xS(p 2 —m 2 )O(—p°) 

P 	I 	 = -91jji 

x (p2  ) O(o) Cut gluon 	 I 	

= — g1jji propagator: P 	i 

x8(p 2 )0(—p o ) 

• Complex conjugate all the propagators and vertices on the right hand side of the 

cut. 

• Introduce a factor of minus one for every fermion loop even if it is cut. 

Alternatively the standard Feynman rules can be used to write the un-cut graph 

then the following rules applied: 

• For the propagators crossing the cuts replace the factors of, 

i 
(A.2) 

- m2  + ic 

(A.1) 
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A. Feynman Rules 

with, 

(27r)8(p2  - m2 )0(±p° ) 	 (A.3) 

where ±p0  is positive if the momentum is pointing to the right across the cut and 

negative if pointing left. 

. Introduce a factor of minus one for each closed fermion loop even if it is cut. 
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B. Integrand Algebra 

Gamma Matrices in ri Dimensions 

Using the defining commutation relation for the 'y  matrices in n dimensions, 

	

{y,yu/}=2gW . 	 (B.1) 

relations for the contracted gamma matrices, 

= 7' 	 (B.2) 

..YILYP._Y 	= (2—m)'y 	 (B.3) 

	

7 ply 074u 
= 4gP + (n - 	 (B.4) 

7YV,i,P,.YY = —27—(n-4)y"yy 	 (B.5) 

and traced gamma matrices, 

Tr(y''yM) = 4gIW 	 (B.6) 

4(gI`gP' - gAPg" + gAa gP) 	 (B.7) 

can be obtained. 

Feynman Parameters 

Denominators of an integrand can be combined simply using Feynman parameters, 

X2, through integration [7]: 

1 	 1 	 H = f dx, .. dxö(Ex - 1) 	
x 1  F(mi +... + Mn)  

A 1  A 2  . . . 
	

[EX A]Emi F(mi ) . F(m) 	
. (B.8)  
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B. Integrand Algebra 

n Dimensional Integrals 

To evaluate n dimensional integrals it is useful to be able to integrate the redundant 

angular integrals. Consider 

= (fdx e_x2) 

= fd n  x exp 	x) 

00 

= f dQn f dr r_1e_2 

1 	 00 

= 	f dIln f d(r2) (r2)_1e_r2 

fd
n fdyy_ 1 e_! 	 (B.9) 

= 	fd n r() 	 (B. 10) 

fcffn 
=  27,2

(B.11) 

This can then be used to integrate the momentum integrals in n-spherical polar coor-

dinates: 

f
dnK K2M 	

f 

d 	 K2M_l

2 (K 2 +)L  = 	(2) f dK(K2+)L 	 (B.12) 

1 	f rM_l 

= (4i)() 	
dr()L . 	(B.13) 

 22 F  

Let 

S = 	. 	 (B.14) 

Then 

1 	I rM_l 

(47r) 121  r 	
dr 

() 	 (r + )L = (4F() 
f ds M+_L 8LM1 (1 - 

7r) 121

— 	M+_LF(L_M_)r(M+) 

- 	 (47r)F()F(L) 	
(B.15) 

Gamma Functions 

Integrals in n dimensions involving massless particles give results in terms of the P 

function defined as 

F(x) = f 00 dye_yx_l . 	 (B.16) 
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B.5. Colour Factors 

In the calculations performed in this thesis they have appeared in combinations due 

to integrals such as 

I dx xM_l(l - x)"1 
- r(m)r(N)1  

(B.17) 
0 	 F(M+N) 

The F function has properties; 

	

F(x+1) = xF(x) 	 (B.18) 

['(2x) = 221 FF (X + 	 (B.19) 

F(1) = 1 	 (B.20) 

F 
() 

= .../ 	 (B.21) 

(B.22) 

which can be used to simplify the expressions obtained. 

B.5. Colour Factors 

The only elements of the SU(NC ) lie algebra encountered here have been the traceless 

generators T and the unit matrices 6u  and 816 . Here the subscripts can take N 

different values and the superscripts N - 1 different values. The structure constants 

1abc can be defined through the commutation relation, 

[Ta, Tb] = jfabcTc , 	 ( B.23) 

however it is the anti-commutation relation, 

IT 	23 , Tb}.. - 6ab6 i..3 	 (B.24) 

that gives the required factor for the graphs containing a gluon, 

N2 -1 
"" 	2 	

(B.25) 

Graphically, the two colour factors used are: 

Born term: 	 = N 
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B. Integrand Algebra 

N 2  -1 0 (c) terms: 	 T T - -c---- 

J\iWOf\AAtJ 	

ijji 2 

When the number of colours, N, is taken to be three this gives a colour factor of 

three for the Born term and four for the 0(c 8 ) terms. 
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C. Binned. Thrust Values 

M 
vs- 

Thrust Bin 0.00 0.05 0.10 0.15 0.20 

0.66-0.68 1.56 x 10_2  1.52 x 10-2  1.38 x 10-2  1.19 x 10-2  9.32 x 10 

0.68-0.70 8.32 x 10-2  8.08 x 10-2  7.36 x 10-2  6.30 x 10-2  4.97 x 10 -2  

0.70-0.72 1.60 x 10_ 1  1.55 x 10_1  1.41 x 10_1  1.20 x 10_ 1  9.43 x 10_ 2  

0.72-0.74 2.43 x 10_ i  2.36 x 10_1  2.15 x 10-1 1.82 x 10-1 1.44 x 10_ 1  

0.74-0.76 3.39 x 10_ i  3.29 x 10_ 1  2.98 x 10_ i  2.53 x 10_1  2.00 x 10_ 1  

0.76-0.78 4.30 x 10_1  4.38 x 10-1 3.98 x 10_ i  3.39 x 10_1  2.67 x 

0.78-0.80 5.91 x 10-1 5.73 x 10_ 1  5.17 x 10-1  4.41 x 10_ 1  3.47 x 10_ 1  

0.80-0.82 7.63 x 10_ i  7.37 x 10_ 1  6.65 x 10-i  5.68 x lO 4.48 x 10-1  

0.82-0.84 9.92 x 10_ 1  9.61 x lO 8.60 x 10_ 1  7.35 x lO 5.82 x 

0.84-0.86 1.31 x 100  1.26 x 100  1.13 x 100  9.57 x lO 7.62 x 

0.86-0.88 1.74 x 100  1.67 x 100  1.50 x 100  1.27 x 100  1.02 x 100  

0.88-0.90 2.39 x 100  2.29 x 100  2.05 x 100  1.72 x 100  1.39 x 100  

0.90-0.92 3.38 x 100  3.23 x 100  2.86 x 100  2.43 x 100  1.94 x 100  

0.92-0.94 5.11 x 100  4.88 x 100  4.27 x 100  3.59 x 100  2.90 x 100  

0.94-0.96 8.67 x 100  8.13 x 100  7.12 x 100  5.96 x 100  4.79 x 100  

0.96-0.98 1.87 x 10' 1.73 x 10' 1.49 x 10' 1.23 x 101  9.79 x 10 1  

0.98-1.00 4.98 x 100  7.70 x 101  1.30E x 101  1.90 x 101  2.53 x 10 1  

Table C.1.: Combined 0(1) and 0(o) values of thrust in different bins for values of 
vs- 

between 0 and 0.20. 
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C. Binned Thrust Values 

M 

Thrust Bin 0.25 0.30 0.35 0.40 0.45 

0.66-0.68 6.76 x 10 3  4.29 x 10 2.23 x 10 7.97 x 10 1.12 x 10 

0.68-0.70 3.58 x 10-2  2.29 x 10-2  1.20 x 10-2  4.16 x iO 5.87 x 10 

0.70-0.72 6.85 x 10-2  4.36 x 10-2  2.29 x 10-2  8.19 x 10 1.29 x 10 3  

0.72-0.74 1.04 x 10_1  6.67 x 10-2  3.50 x 10-2  1.26 x 10_2  1.98 x iO 

0.74-0.76 1.45 x lO 9.34 x 10_2  4.85 x 10-2  1.84 x 10_2  2.63 x 10 

0.76-0.78 1.93 x 10_ 1  1.24 x 10 6.72 x 10-2  2.75 x 10-2  4.19 x 10 

0.78-0.80 2.54 x 10_1  1.64 x 10_ 1  9.12 x 10_2  3.54 x 10-2  6.61 x 10-3 

0.80-0.82 3.29 x 10_1  2.16 x 10_1  1.24 x lO 5.10 x 10_2  9.57 x 10 

0.82-0.84 4.31 x 10-1  2.87 x 10 -1 1.66 x 10 -1  6.92 x 10-2  1.36 x 10_2  

0.84-0.86 5.64 x 10 3.82 x 10 -1  2.27 x 10_ 1  1.03 x lO 2.17 x 10_ 2  

0.86-0.88 7.63 x 10-1  5.25 x 10 -1  3.16 x 10_1  1.48 x lO 3.42 x 10 -2  

0.88-0.90 1.04 x 100  7.26 x 10 -1 4.42 x 10_ 1  2.18 x lO 5.61 x 10 -2  

0.90-0.92 1.47 x 100  1.04 x 100  6.61 x lO 3.31 x 10_1  9.21 x 10_ 2  

0.92-0.94 2.22 x 100  1.60 x 100  1.03 x 100  5.34 x 10_ 1  1.69 x 10_ 1  

0.94-0.96 3.67 x 100  2.66 x 100  1.73 x 100  9.37 x 10_ 1  2.97 x 10_ 1  

0.96-0.98 7.54 x 100  5.49 x 100  3.61 x 100  2.04 x 100  7.12 x 10_ 1  

0.98-1.00 3.12 x 101  3.65 x 10 1 4.14 x 10 1  454 x 10 1 4.86 x lO 

Table C.2.: Combined 0(1) and 0(a) values of thrust in different bins for values of vs- 
between 0.25 and 0.45. 
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