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ABSTRACT 

The efficiency of recovery of P1 transductants is 

marker-dependent, and normally varies over a 25-fold range. 

UV irradiation of either transducing lysates, or recipient 

cells, results in a selective stimulation of the trans-

duction of markers which are normally transduced poorly. 

As a result, the range in frequencies of transduction is 

reduced to about 3-fold, and resembles the gene frequency 

distribution expected in the donor cells. From these 

results, it was concluded that P1 packages donor DNA 

randomly, and the recombination system of the recipient 

selectively recombines certain regions of DNA. To confirm 

that P1 packages DNA randomly, restriction fragments of 

E.coli were used to probe to P1 and to E.coli DNA. It was 

found that the ratios of markers was approximately the 

same in both P1 and L.coli DNA, thus substantiating the 

conclusion that P1 packages DNA randomly. 

Possible reasons for selective robinthowere 

examined. Recipients with abnormal chromosome folding 

(gyr mutants), a factor which may influence accessibility 

of the chromosome to recombination enzymes, showed greatly 

decreased recovery of transdu.ctants, although ratios were 

similar to wild type. Recipients lacking the RecBC 

pathway of recombination, and derepressed for the RecF 

pathway, were foun.d to be better recipients for poorly-

transduced markers, although no better f'or normally well- 

transduced markers. The role of the nucleases Exol and ExoV, 

and of chi sites, in preferential integration of some 

markers is discussed. 
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CHAPTER 	ONE 

INTRODUCTION 

The bacteriophage P1 has proved to be an invaluable 

tool in E.coli genetics, both in strain construction and 

in gene mapping (Bachmann and Low, 1980) due to its 

capacity to transmit pieces of host chromosome as a 

normal part of its life cycle. This process, known as 

generalised transduction, has been used for many years in 

the study of E.coli genetics (Lennox, 1955; Ikeda and 

Tomizawa, 1965), but relatively little is known about 

the process of transduction. In this work, some aspects 

of the process of transduction are investigated, with a 

particular focus on events in the recipient cell. The 

aim of this introduction is firstly to review the 

present state of knowledge of P1 transduction, and 

secondly, to outline the processes of recombination and 

repair in E.coli which have a bearing on P1 transduction. 

1.1 Physical properties of bacteriophage P1. 

P1 is a temperate phage, but whereas most temperate 

phages in E.coli K12 are known to have specific sites for 

integration on the bacterial chromosome, the P1 prophage 

exists as an extra-chromosomal element (Ikeda and 

Tomizawa, 1968) which is maintained as a closed-circular, 

single-copy plasmid with autonomous replication under 

stringent control. A complex genetic control maintains 

the prophage state and prevents superinfection (Scott, 1980). 

-1- 



EcoRl cleavage map of 
circular P1 DNA 

figure 1.1 
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Physical and genetic map of bacteriophage P. 

Important functions and genes referred to in the text only are shown. The fragments 

generated by EcoRl cleavage are numbered according to size (1 being the largest). Where 

several numbers are grouped together, the order of the fragments has not been determined. 

The arrows at the right-hand end indicate the origin (a) and direction of 

packaging of phage DNA. 



The products of two genes, ci and c4, that are located 

in separate immC and imml regions of the phage genetic 

map (fig 1.1) are required for maintenance of the prophage 

state. 	ci represses the viral lytic functions but is not 

responsible for superinfection immunity, while c4 represses 

a second imml gene, ant which antagonises ci. mediated 

repression (Sternberg eta].,, 1978). There are at least ten 

other genes involved in control of lysogeny, but as yet, 

a comprehensive model for P1 lysogeny has not been 

formulated. Control of replication is precise, maintain-

ing one copy of the plasmid in each cell; prophage loss 

occurs at a frequency of about 	per cell generation 

(J.L.Rosner, 1972). Wild-typePi lysogens cannot easily 

be induced into the lytic cycle in contrast to A which is 

often considered to be a typical temperate phage and 

which is readily induced by treatment of a lysogen with 

Wi and other mutagens. Rare events do occur which result 

in the breakdown of prophage repression and the expression 

of viral lytic functions leading to cell death and release 

of infective particles; thus a culture of a P1 lysogen 

always contains some free phage particles. 

P1 particles contain a single molecule of double 

stranded infective DNA with a molecular weight of 66 x 10 6 . 

(Ikeda and Tomizawa, 1965); the infective DNA forms a 

population of circularly permuted molecules with 9-10% 

terminal redundancy (Yarmolinsky, 1977). P1 particles 

adsorb to sensitive recipient cells, in the presence of 

calcium ions, and inject the infective DNA.. On entering 

- 3 - 



the cell, if lysogeny is to ensue, the DNA immediately 

circularises, either by RecA-dependent homologous 

recombination between the redundant ends, or, in recA 

cells, by a site-specific recombination event which generates 

circular molecules at low frequency (Sternberg, 1979b see 

also section 1.4 below). In either case, the result is a 

circular prophage molecule of genome size, 586 x 10 

(Bach! and Arber, 1977). If lysogeny is not established, 

a lytic infection occurs; phage DNA and proteins are 

synthesised, host DNA may be degraded (Wall and Harriman,, 

1974), and finally infective particles are released from 

the lysed cell. 

In addition to infective, plaque-forming particles, 

a P1 lysate contains a small percentage of transducing 

particles. Estimates of this proportion vary from 0.3% of 

the total for a virulent derivative (Ikeda and Tomizawa, 

1965) to 2% for a high transducing strain (Sandri and 

Berger, 1980a). These transducing particles contain no 

infective P1 DNA, but instead carry a segment of host DNA of 

equivalent size. When these particles infect a recipient 

cell, this transducing DNA may become integrated into the 

recipient chromosome thus giving rise to transductants. 

This process is described more fully below. 

1.2 Packaging of DNA into phage heads. 

P1 infective DNA is packaged by a headful mechanism 

from concatamers synthesised by the rolling circle model 

(Gilbert and Dressier, 1968). From a restriction analysis 
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which cornparedPl infective and prophage DNA, Bachi and 

Arbe.r (1977) concluded that packaging is initiated at a 

site near 92 physical map units, termed a 	(Sternberg 

et al., 1980), then proceeds to the right. This implies 

some specificity in the enzyme responsible for nicking the 

DNA prior to packaging. 

It is thought that P1 transducing particles arise 

from the mistaken packaging of host chromosomal DNA during 

the lytic phase of development. It can be hypothesised 

that recognition of a similar site to pac on the host DNA 

will lead to inclusion of bacterial DNA in some phage heads. 

Harriman (1972) found from a single-burst analysis of P1 

that only a fraction of infected cells produced - transducing 

as well a's infective particles. However, in individual 

cells, he found by observing transduction of prophage 

markers that the chance that two markers which are too 

far apart to be co-transduced will be packaged in the same 

cell increases with the proximity of the markers. He 

hypothesised that infected cells may contain 'several 

regions of localised packaging, and that P1 requires a 

free end to initiate packaging. He suggested that the 

majority of 'infected cells would have an intact circular 

chromosome, and only the few cells whose chromosomes were 

degraded would provide start sites for encapsidation. In 

other words, in a few cells, the P1 enzyme responsible for 

cutting P1 DNA at the pac site, may recognise a similar 

site on the host chromosome and DNA is then packaged 

sequentially from this site. 

- 5 - 



P22, a temperate phage whose host is Salmonella, 

has been studied in detail by several workers (for review 

see Susskind and Botstein, 1976). It is capable of 

generalised transduction, and its mode of transduction 

may be comparable with that of P1. There is evidence 

that P22 packages host DNA from certain preferred sites to 

generate transducing fragments of fairly constant 

composition (Ozeki, 	1959; Pearce and Stocker, 1965). 

Chelala and Margolin (1974) found that a deletion in the 

chromosome of a donor for P22 transduction can alter the 

co-transduction frequencies of a pair of markers located 

._wholly to one side of the deletion even if both donor 

and recipient carry the deletion, and even if the 

deletion is not included in the same headful of DNA as 

the selected markers. They hypothesised that transducing 

DNA fragments are formed by sequential encapsidation 

from a small number of preferred starting points on the 

host chromosome. Schmeiger (1972) isolated mutants of 

P22 which were altered in their ability to transduce 

Salmonella DNA. Some mutants (high transducing, or HT) 

packaged 50% host DNA, compared with 1-5% packaged by 

the wild type, indicating that some phage functions are 

responsible for the choice as to whether phage or host 

DNA is packaged in phage particles. He hypothesised 

that there was a decrease in the specificity of an 

enzyme responsible - for cutting the DNA prior to packaging. 

This was supported by the finding that the map position 

of the mutation responsible for the HT phenotype was 



identical with the position of gene 3 on the P22 map 

(Raj et al., 1974.) which seems to be involved in 

fragmentation of the phage DNA concatamers and possibly 

codes for the endonuclease necessary for cutting (Botstein 

at al., 1973). 

Transduction mutants of P1 have also been isolated. 

Wall and Harriman, (1974) isolated classes of mutants 

with a tenfold increase in transduction (HiT mutants) and 

a tenfold decrease in transduction (LTF mutants). Their 

selection technique was based upon the transduction of 

prophage which does not have to be integrated to be 

expressed, and thus these mutants were most likely to be 

altered in the ability to package' donor DNA into 

transducing particles. Burst sizes of some of the 

mutants did differ from the wild-type, but the differences 

were not large enough to explain the altered transducing 

frequencies by altered infective centre production alone. 

Infection of the recipient by one of the HFT mutants led 

to an accelerated breakdown of the donor chromosome, 

supporting Harriman's (1972) hypothesis that packaging 

of P1 transducing DNA was initiated from free ends of 

chromosomal DNA. 

1.3 P1 transduction frequencies. 

If P1 transduction resulted from random packaging 

of host DNA followed by the integration of a random 

selection of P1 transducing fragments into the recipient 

chromosome, typical transduction frequencies for each 

- 7 - 



Figure 1.2 	Transduction frequencies as a function of 

map position. 

Squares represent transduction frequencies 

determined by Masters (1977), and are plotted relative 

to map positions from Bachmann and Lou (1980). 

Superimposed (broken line) is the gene frequency 

distribution of an exponential culture similar to those 

used for frequency determinations. 

oriC = origin of replication 

terC = terminus of replication 
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marker according ,to its position on the E.coli map would 

be expected. Exponentially growing donor cells have 

two or more replication forks (the number of replication 

forks is a function of growth rate; Cooper and Helmstetter, 

1968).and thus there will be more copies of markers near 

the origin of replication than of markers near the 

terminus. I P1 lysate prepared from a culture in the 

exponential phase of growth, in rich medium, might be 

expected to yield a ratio of 4:1 origin:terminus markers 

due to this gene dosage effect. However, observations on 

the actual frequencies of transduction show much greater 

differences between markers than would be expected from 

a gene dosage effect alone (Masters and Broda, 1971; 

Masters, 1977). Instead of the expected 4-fold difference 

between origin and terminus markers, there is a 30-fold 

difference observed between the frequencies of trans-

duction of rbs located near the origin at 83.0 minutes, 

and his, located near the terminus, at 44•1 minutes on the 

E.coli genetic map (Bachmann and Low, 1980). The high 

frequency of transduction of markers in the 2 minute region 

spanning the origin is particularly noticable, and is 

accentuated by the very low frequency of transduction of 

markers flanking this region; for example, pyrE, at 80•7 

minutes is transduced with a frequency of only 5% of the 

frequency of transduction of rbs. Figure 1.2 (Masters, 

1977) shows a plot of transduction frequencies of 

individual markers as a function of map position, and 

superimposed upon this is a plot of gene frequency 
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Figure 1.3 	Gene clustering on the E.coli chromosome: 

co-incidence of high-transducjg markers 

with gene-dense regions. 

The line joins points representing the number of 

markers in each minute interval of the chromosome (from 

Bachmann and Low, 1960). The peaks flanking the origin 

peak are clusters of ribosomal genes. 

Superimposed are frequencies of transduction of 

individual markers. Triangles are from Masters (1977), 

and circles from Masters and 8roda (1971). 

oriC = origin of replication 

terC = terminus of replication 
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distribution of an exponential culture similar to those 

used to prepare the phage lysates for frequency 

determinations. Plasters (1977) pointed out a correlation 

between the frequency of transduction of a marker and the 

density of genes in the area of the marker. Distribution 

of genes around the E.coli chromosome is not even; a map 

of all known genes on the E.coli chromosome (Bachmann and 

Low, 1980) shows a marked clustering of genes interspersed 

with relatively gene-sparse regions. A plot of frequency 

of transduction as a function of map position, and showing 

gene density, is displayed in figure 1.3, and it can be 

seen that markers within the gene clusters tend to be 

transduced at a higher frequency than would be expected 

from their mapposition, whereas markers in gene sparse 

regions tend to be transduced at low frequency. This 

indicates that there is perhaps some property of these 

better transduced, gene-dense regions, which makes them 

more easily packagable by P1, or increases the frequency 

with which transducing fragments recombine with these 

regions of the recipient chromosome. 

1.4 	P1 site-specific recombination. 

Sternberg (1979O)demonstrated that P1 has a highly 

efficient site-specific recombination system encoded by 

P1 EcoRl fragment 7, which spans the ends of the genetic 

map (figure 1.1). By cloning this fragment into a 

recombination-defjcjent.A , and by performing phage crosses 

he found that this recombination was recA and recBC 
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independent. Not only was the recombination site 

(loxP) located on this fragment, but also on the fragment 

was a gene encoding the presumptive recombinase function 

(cre), which acted in trans to promote recombination. 

The loxP site allows circularisation of P1 infective DNA 

carrying two loxP sites in a recA background, and may 

have a role in plasmid segregation (Austin et al., 1981). 

Normally, P1 plasmid integrates into the bacterial 

chromosome of a recA strain with low effieiency, 

estimated at about one in every 1O 5  cells. However, 

Chesney et al., (1979) found that P1 could integratively 

suppress a dnaAt5  recA strain by recombination between 

a site near the ends of the P1 genetic map and a 

preferred site on the E.coli chromosome. Sternberg et al. 

(1980) also observed preferred integration at one site, 

and sequenced the loxP site, and also part of the E.coli 

sequence surrounding an integrated prophage, the loxB site 

its preferred site of integration. They found a 13 base 

pair perfect inverted repeat hyphenated by an 8 base 

pair region in the former, and a 10 base pair repeat 

hyphenated by a 5 base pair region in the latter. There 

was a striking degree of homology between the two sites, 

suggesting that perhaps loxB is a degenerate loxP site 

left in the bacterial chromosome by a once-integrated P1. 

Sternberg proposed that integration of the P1 prophage 

into the bacterial chromosome via site-specific 

recombination could be responsible for the production of 

P1 transducing phage. Such an integration event during 
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the lytic cycle of phage growth would position a normal 

P1 packaging site (a) adjacent to bacterial sequences. 

P1 processive headful packaging from this pac site would 

result in the packaging of bacterial DNA into a phage 

head, and the production of generalised transducing phages. 

Sternberg et al.(1980) demonstrated that if P1 infects a 

recA strain in which a hybrid N phage containing the pac 

site (APi?) is integrated at its preferred site in one 

orientation, the resulting P1 lysate transduces toiC, metC 

and serA markers 50 times more efficiently than can a 

lysate made on a recA strain without the integrated 

prophage. Inserted in the opposite orientation, the 

integrated prophage enhanced transduction of dnaG and 

argO, clearly demonstrating unidirectional packaging from 

2..E• Thus the integration site for theP17 prophage 

lies on the E.coli chromosome between tolC at 66' and dnaC 

at 67 1. It is thus plausible that P1 enzymes recognise 

sites similar to pac on the host chromosome, and that 

packaging starts preferentially at these sites. 

1.5 Fate of transducing DNA in the recipient cells. 

When phage DNA enters the cell in order to produce 

a successful infection, it must resist attack by the host 

nucleases. The recBC product, exonuclease V (Exo ii), 

efficiently degrades linear, double stranded DNA (Goldmark 

and Linn, 1972) but some forms of DNA are completely 

resistant. Double stranded circles are not attacked even 

if they contain single-stranded nicks or gaps of up to 
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5 nucleotides in length. Different bacteriophages have 

developed-various strategies to avoid degradation, for 

example,? circularises on entry into the cell via its 

cohesive ends to generate a nuclease-resistant double-strand 

circle (Hershey and Burgi, 1965). Other phage DNAs are 

linear and do not have the capacity to circularise, and in 

these cases the ends may be complexed with protein, since 

transfection of cells with phenol-extracted DNA results in 

a very low frequency of productive infection (Benzinger, 

Enquist and Skalka, 1975). P1 infective DNA circularises 

either by homologous, recA-mediated, or site-specific 

recombination..  

P1 transducing DNA presumably cannot circularise by 

this method, since it includes no P1 virion DNA, and the 

chromosomal fragments are unlikely to be able to circularise. 

However, transducing DNA must be protected from attack to 

a certain degree, since the recovery of tranductants is 

many-fold higher than the recovery of recombinants after 

transformation with linear DNA which presumably is rapidly 

degraded. Transducing DNA can also persist in cells 

without recombining into the chromosome for several 

generations, and, in fact, most transducing DNA fails to 

recombine to form stable transductants. Cells carrying 

these - extra-chromosomal fragments are known as abortive 

tranaductants (Ozeki, 1956; Cross and Englesberg, 1959) 9  

and can be detected by their ability to form minute colonies 

on selective plates. The DNA is expressed, but cannot 

replicate and is thus inherited unilinearly. The DNA has 
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apparently escaped degradation by host nucleases which 

suggests that its structure is modified to a form 

resistant to ExoU attack. 

Ikeda and Tomizawa (1965) showed that there was a 

protein associated with P1 transducing DNA. Sandri and 

Berger (1980b) showed that abortively transduced DNA 

migrated on agarose gels at the same speed as circular P1 

prophage DNA; treatment with pronase caused the abortively 

transduced DNA to migrate at the same speed as linear P1 

DNA on agarose gels. This strongly suggests that the 

abortively transduced DNA circularises with the aid of a 

protein which renders it resistant to attack by ExoV. 

This circularisation apparently occurs in the recipient 

cell, since transducing DNA extracted from phage particles 

by a non-proteolytic method is linear. 

Once formed, the complex of DNA and protein is stable, 

and does not subsequently recombine with the chromosome. at 

a significant rate; it has been estimated that the 

frequency of conversion of abortive to stable transductants 

is as low as 	per generation (Ozeki and Ikeda, 1968). 

The mechanism of this circularisation, and its purpose, is 

unclear. 

The exact mechanism by which P1 transducing DNA 

recombines with the recipient chromosome had not been 

elucidated. It is not known whether the integrated DNA 

circularises and .then integrates, or fails to circularise. 

It is clear that it is dependent upon RecA, and is thus 

certainly a homologous recombination between donor and 
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recipient DNA. Possible factors controlling this 

recombination will be discussed below (1.7, 1.8, 1.9). 

Ebel-Isipis et al. (1972) showed that only 2-5% of 

the total DNA in P22 generalised transducing particles 

becomes integrated into the host chromosome, the rest 

forming abortive transductants in a similar manner to P1. 

Also, they showed that the successfully transduced DNA 

becomes integrated into the host chromosome as sub-

stantial segments of conserved duplex DNA. They estimated 

the molecular weight of these pieces to be 2 x 10 to 

10 x 	and concluded that integration involves double 

strand breakage and joining of DNA. In a similar study 

on P1, Sandri and Berger (1980a) showed that 7-15% of 

total transducing DNA integrated into the chromosome. 

The DNA was again found to integrate as a duplex, but 

the molecular weight of the insert was estimated to be 

about 5-10 x 1o 6 , or about one tenth to one sixth of the 

size of the tranducing fragment. Integration had 

occurred within one hour after adsorption, and the 

integrated DNA was replicated by 180'. 

These experiments give no indication of the pathway 

leading to integration of transducing DNA. This is 

presumably controlled by host functions, and some mutants 

altered in the ability to integrate transducing DNA have 

been isolated. Stacey and Oliver (1977) characterised 

a mutation, tdi, which appeared to confer defects in a 

number of functions including an inability to complete 

the process of P1 transduction. The tdi mutant was a 

MNIM 



normal host for P1, since P1 lysates could be made on the 

strain, and it could by lysogenised by P1, but it could 

not be transduced for auxotrophic markers, nor could 

transducing particles be recovered from its lysates. 

That the transducing DNA was entering the cell, and was 

not being degraded, was demonstrated by the recovery of 

Cal+ transductants after infection of a IX—resistant 

derivative of the tdi mutant with a lysate made on a 

strain carrying the defective prophage Nd!.  In this 

case, the block is circumvented by the 7-.coded integrase. 

Integration of F DNA into the mutant chromosome was normal, 

and mobilisation was possible, but the mutant could only 

be transformed at a very much lower frequency than the 

- 	parental strain. Stacey and Oliver proposed that there 

could be an additional mechanism required to bring double-

stranded DNA into a recombinational pathway, and that this 

step is defined by the tdi mutation. However, the tdi 

mutant is slower growing than the parental strain, and 

has a lower mutation rate, and thus the tdi mutation could 

have a more general effect on recA mediated homologous 

recombination. The tdi mutation has not yet been mapped, 

and is possibly an allele of one of the known recombination 

genes. The authors do not comment upon the effect of the 

mutation on abortive transductants; it is possible that it 

is involved in the circularisation of transducing DNA, and 

lack of the function results in degradation of transducing 

DNA and decreased recovery of abortive transductants. 

The presence of certain plasmids in the recipient cell 
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affects transduction. Oliver and Stacey (1977) showed 

that the presence of R46 in the recipient greatly reduced 

the frequency both of P1 transduction and of recombinant 

formation after conjugation, whilst conferring a slight 

increase in survival after WI irradiation. Walker (1978) 

observed a 50% reduction in the recovery of P1 transduct-

ants in strains carrying pKFl101 or R46. Again, the exact 

nature of this effect has not been elucidated. 

1.6 Three-dimensional structure of the E.coli chromosome. 

The E.coli chromosome is about 1 mm in length, and 

this is packed into a cell. of about 1 urn Ia diameter, thus 

the chromosome must be folded into an organised structure 

in order to fit into the cell, and yet be accessible for 

transcription and replication enzymes. Worcel and Burgi 

(1972) proposed a model for the folded chromosome of E.coli. 

The chromosome contains negative superhelices in folded 

E.coli DNA, (extracted by gentle lysis) by measuring its 

sedimentation coefficient in increasing concentrations of 

ethidium bromide. Their estimate was consistent with the 

concentration of superhelices in other naturally- 

occurring closed-circular DNA molecules. By treating folded 

E.coli chromosomes with DNase they found that a 

surprisingly high concentration of DNase was needed to 

relax the chromosome completely suggesting that more than 

one nick was necessary; they estimated that 6-40 nicks 

were required to relax the chromosome completely. Thus it 

appears that the E.coli chromosome is organised in a series 

of loops, and a single strand nick in one loop will relax 
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the superhelicity within that loop without affecting the 

the superhelix concentration in the rest of the chromosome. 

tdorcel and Burgi proposed that the chromosome was-folded 

into about 50 independent loops stabilised by interaction 

with a core, probably RNA, since the folded chromosome is 

resistant to protease treatment, but unfolds in the 

presence of RNase. 

It could be envisaged that regions of the chromosome 

on the outside of these loops are more accessible to 

enzymes involved in phage packaging or in recombination; 

Uorcel and Burg! (1972) deduced from the action of DNase - 

that perhaps some stretches of the chromosome were more 

accessible to DNase. These areas of the chromosome might 

be expected to carry more coding information 	since 

frequently transcribed genes may need to be readily 

accessible to the transcription machinery. This could be 

a possible-explanation for the clustering of genes around 

the E.coli map, gene sparse regions may be points of 

attachment of the E.coli chromosome to the central core, 

and gene clusters could be on extended loops. 

The negative supercoils in all naturally occurring 

closed circular DNA (Cozzarelli, 1980) points to their 

fundamental necessity. DNA gyrase of E.coli (Gellert et al., 

1976a) introduces negative supercoils into covalently closed 

duplex DNA. The energy required by DNA gyrase to drive 

the DNA into the negatively supercoiled form is provided 

by ATP, and this increases the free energy of the DNA. 

This free energy promotes the binding of any ligand which 

unwinds the helix removing the superhelica]. turns, and 
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thus predisposes the molecule towards unwinding of the 

duplex. Botcham et al. (1973) found that negative 

superhelicity increases initiation of RNA synthesis by 

E.coli RNA polymerase in vitro probably by facilitating 

helix unwinding at the promoter site. Superhelical DNA  

is also required for the initial stages in recombination 

(see section 1•7 below) and may facilitate unwinding of 

the helix to expose bases for homologous pairing. 

1.7 General recombination in E.coli. 

General genetic recombination, which takes place 

between homologous DNA, accounts for mt of the essential 

recombination in the E.coli cell. The major pathway for 

general recombination in E.coli is the RecBC pathway which 

- 	requires functional products of the three genes recA, recB 

and recC. Other pathways for recombination, for example 

RecF (see section 1.8) normally play a minor role in 

general recombination, but also have a requirement for a 

functional recA gene. Mutations in recB or recC result 

in severely reduced viability,' and reduced recombination 

frequencies in Hfr x F crosses, and in P1 transduction 

(K.Haefner, 1968), while mutations in recA result in a 

wide variety of pleiotropic effects including deficiency 

in general recombination, increased sensitivity to 

radiation, failure of UV-induction of prophage? , absence 

of mutability and inability to co-ordinate cell division 

with-DNA synthesis (Clark and Margulies, 1965; Clark, 1973). 

The process of homologous recombination involves 

transfer of homologous regions of single-stranded DNA and 
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Figure /. 

The Holliday model for genetic recombination. 

(after Pleselson and Radding, 1975) 

Single-strand breaks are made at chemically identical 

sites on homologous duplexes. 

Heteroduplex DNA is then formed symmetrically 

between h and r on both duplexes. 

The two pairs of like strands at the site of the 

crossover are considered to be equivalent with respect 

to recognition by a DNase which terminates the exchange. 

Cleavages at p produce two molecules with the flanking 

arms in the parental configuration, whereas cleavage 

at r produce molecules with flanking arms in the 

recombinant configuration. 
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depends upon the annealing of complementary strands to 

produce, at an early stage in recombination, a region of 

duplex DNA containing one strand from each parental DNA 

molecule (Radding, 1978). Hälliday (1964) proposed a 

model to explain recombination and aberrant segregation 

in fungi (figure 1.4) which results in a symmetric 

exchange of DNA via an intermediate form, or Holliday 

structure. This model had been adopted and modified by 

bacterial geneticists, supported by observations from 

in vitro studies and from electron micrographs which show 

the postulated Holliday structure (Potter and Dressier, 

1978). The importance of the recA gene product in strand 

transfer has been shown by observations that the 

heteroduplex overlaps required by recombination are not 

formed in reciC mutants, in contrast to other recombination 

deficient mutants such as recB or recC (Potter and 

Dressier, 1976). 

The cloning of the recA gene (McEntee and Epstein, 

1977) and the purification of its protein product 

(Weinstock et al.., 1979; Shibata et al., 1979) has 

allowed detailed .studies on the action of the RecA protein 

which have led to some understanding of the mechanism of 

the early stages of recombination. The product of the 

recA gene is a protein with a molecular weight of 37 800 

(Sancar et al., 1980; Horii et al., 1980), which has DNA 

dependent ATPase activity and a high affinity for single-

stranded DNA. Shibata et al., (1979) discovered that 

purified RecA protein catalysed the homologous pairing of 
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Figure 1.5 	Formation of a D loop. 

1. 	Single-stranded DNA catalyses the binding of' 

supercoiled duplex by RecA protein. 

20 	The duplex is partially unwound, promoting a search 

For homology. 

3. 	The single strand (heavy line) invades the duplex 

in a region of homology to form heteroduplex DNA 

by pairing to one strand of the duplex, but without 

stable Watson-Crick binding. The reaction is 

accompanied by ATP hydrolysis and the resulting 

structure is a D loop. 
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superhelical DNA and single-stranded fragments, a 

reaction which only occurs at a slow rate in vitro in the 

absence of RecA protein(Holloman et al., 1975). The 

product of this 'strand assimilation' was a 0 loop, or 

displacement loop (figure 1.5), which contains a 

heteroduplex region with a single-stranded fragment paired 

to one strand of the duplex, and its formation was 

accompanied by ATP hydrolysis. The 0 loop resembles a 

putative recombination intermediate and may represent an 

early stage in recombination, where a single DNA strand 

invades a homologous duplex to initiate strand exchange 

Further investigations showed that single-stranded 

DNA promoted binding of RecA protein to double-stranded 

DNA, and unwinding of the duplex by RecA protein (Cunningham 

et al., 1979). The unwinding occurred without topoisomerase 

activity, and so required a free end of DNA, or superhelical 

turns, to allow rotation of the DNA strands. Unwinding 

could be promoted by non-homologous single-stranded DNA, 

not necessarily with a free end, but strand assimilation 

only occurred in the presence of homologous DNA. RecA 

protein also catalysed homologous pairing between two 

duplex molecules, provided one of them contained one or 

more short, single-stranded regions (Cunningham et al., 

1980). tJest et al. (1981) found that RecA protein could 

promote pairing between closed circular duplex DNA and 

gapped double-stranded circular DNA, or between closed-

circular duplex DNA and closed-circular DNA with a short 

annealed fragment, without unwinding of either circle to 

generate a free end. 
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It has been suggested that initial pairing occurs 

first in regions of non-homology at the site of a single-

strand gap, and that stable pairing occurs after repeated 

dissociation and reannealing of the two molecules, or by, 

movement of one DNA molecule relative to.the other until 

regions of homology coincide (West et al., 1981). 

Cunningham et al. (1980) made electron microscope 

observations of three-stranded joints formed between 

gapped circular DNA and closed circular DNA, and found 

that the homologous junction was far removed from the 

single-strand gap in 31 of 44 joints examined. This 

supports the theory that single strands simply projnote a 

search for homology. 

The strand assimilation reaction was found to be 

stimulated by single-strand binding protein, or 558 

protein (formerly known as helix destabilising protein), 

the product of the ssb (lexC) gene (McEntee. et  al., 1980). 

The strand assimilation reaction requires, in vitro in the 

absence of 558 protein, one RecA protein monomer per five 

base pairs, and is inhibited by excess single-stranded 

DNA, so apparently single stranded DNA competes with 

duplex DNA for binding to RecA protein resulting in the 

formation of non-productive single-strand DNA-RecA protein 

complexes. 558 protein, which is bound to single-stranded 

DNA in vivo thus prevents the non-productive binding of 

RecA protein, and also prevents degradation by nucleases. 

[Ieselson and Radding (1975) proposed a model for 

genetic recombination which, with some modifications 
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Figure 1.6 	Model for the formation of joint molecules 

by gapped circular DNA and closed circular 

DNA. 

P. Single-stranded regions of DNA promote binding of 

RecA protein to duplex DNA, and unwinding of the 

duplex. Single strands are protected by 556 protein 

(small elipses)0 

RecA protein promotes annealing of the single-strand 

gap to the duplex, and homologous pairs are aligned 

by reiterative dissociation, or procession of one 

molecule relative to the other. 

RecA protein promotes uptake of a free end of the 

interrupted strand (strand assimilation) which forms 

a region of heteroduplex DNA similar to a 0 loop. 

This structure is referred to as a joint molecule in 

the text. 
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figure 1.6 

A 	Sire stranded DNA promotes local unwindiog of DNA duplex 

catalyzed 	i RecA protein. 

B 	Search for homology promoted by RecA protein. 

C 	Strand assimilation. 



(West et al., 1981) is supported by the observations 

reported above. The first stages in the formation of a 

joint molecule are illustrated in figure 1.6. 

Single-stranded regions of DNA promote binding of 

RecA protein to DNA, and unwinding of the duplex. 

RecA protein, bound to duplex DNA promotes non-

specific binding of single-stranded DNA to the duplex, 

catalysed by SSB protein, and promotes a search for 

homology by reiterative dissociation, or by procession 

of one DNA molecule, thus aligning homologous pairs. 

RecA protein catalyses the uptake of a free end of 

the interrupted strand to produce a structure similar 

to a D-loop, without normal Watson-Crick heteroduplex 

structure. 

The following stages in recombination are more a 

matter of conjecture, but one interpretation of the data 

(1'leselson and Radding, 1975) leads to the following steps 

for maturation of the joint molecule: 

The joint molecule is acted upon by cutting-in-

trans enzymes (Ross and Howard-Flanders, 1977), to 

allow initiation of exchanges of one or both strands 

to give, respectively, asymmetrical or symmetrical 

exchange. The structure can now form a stable, 

covalently-bonded, molecule. 

Strand exchange continues by the concerted operation 

of strand displacement by polymerase action, or strand 

assimilation by exonucleolytic action. 

The cross connection is free to migrate in either 

direction as a consequence of the rotary diffusion of 
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the two DNA molecules, or branch migration (Lee 

et al., 1970; Warner et al., 1978), such that strand 

transfer is now occurring at some distance from the 

site of initial pairing. 

Isomerisation of this Holliday structure after 

dissociation of the recA protein-DNA complex may 

interchange the two pairs of like strands at the site 

of exchange, making them both susceptible to 

exonucleolytic attack that terminates the exchange by 

cleaving the crossing strands leaving the arms in the 

parental or the recombinant configuration. The recBC 

nuclease, which has unwinding as well as nucleolytic 

activity may be involved in this resolution of the 

Holliday structure. 

Mismatched base pairs in heteroduplex regions are 

subject to enzymic repair (Holliday, 1964; Whitehouse 

and Hasting, 1965; Redding, 1978). 

1.8 The RecF and RecE pathways of recombination. 

The RecBC pathway accounts for 99% of general 

recombination in the wild-type cell. The very low level 

of recombination in a rec8 or recC mutant can be restored 

almost to wild-type capacity by mutations at sbcA or sbcB. 

The sbcA'mutation derepresses the gene recE which is 

carried by the cryptic prophage rac, and 'which codes for 

DNA exonuclease 'Jill (ExoVill), an enzyme isofunctional 

with A exonuclease. The sbcB mutation inactivates DNA 

exonuclease I (Exol). It was generally recognised that the 

sbcA and sbc8 mutations controlled two separate pathways 
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of recombination,the RecE and RecF pathways respectively, 

which were both inhibited by ExoV, the' product of the 

rec8 and recC genes. However, evidence that recF+  is 

required for recombination both in recBC sbcB and 

recBC sbcA strains, led Clark (1980) to propose that 

there was a single alternative pathway in recBC mutants, 

and that ExoVill in some way neutralises the inhibitory 

effect of Exol on this pathway. 

Since this pathway is only effective in the absence 

of certain wild-type functions, it seems unlikely that 

it has a major role in cellular recombination. However, 

there is evidence that the RecF pathway is responsible for 

mediating recombination between different forms of DNA 

than does the RecBC pathway. The exact role of Exot! in 

recombination is not known, other than that it has the 

ability to unwind linear, double-stranded DNA and nick the 

single strands produced in the presence of SSB protein 

(Telander Fluskavitch and Linn, 1980). From experiments 

on conjugational recombination frequencies (DeHaan et al., 

1972) it appears that the major contribution of Exo\i to 

conjugational recombination is at a site on the exogenote 

where its strand unwinding activity is most likely to 

create single-stranded DNA useful in RecA protein-

mediated synapsis with the chromosome. If such synapsis 

occurs between each end of linear exogenote and the recipient 

chromosome, the result could be the substitution of a long 

double-stranded donor segment for its corresponding 

chromosomal segment. In contrast, the RecF pathway appears 

to be responsible for closely spaced, double recombination 
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events in conjugation (Clark, 1980) 1, Mahajan and Datta 

(1977, 1979), concluded that there was a greater frequency 

of single-stranded DNA substitution events in conjugational 

recombination mediated by the RecF pathway than was 

produced by the RecBC pathway. They deduced that 

recombination via the RecF pathway involved integration of 

a single strand only, and that this was subject to 

mismatch repair resulting in a greater recovery of un-

selected recipient markers, and a much higher level of 

clonal heterogeneity. 

Porter, McLaughlin and Low (1978) deduced that 

- 

	

	levels of genetic recombination in E.coli measured 

between the same two alleles was strongly dependent upon 

parental configurations of DNA; for example, genes carried 

by a non-integrated; recombined much more easily with 

genes carries by an F-prime factor, than with chromosomal 

genes. Recombination between the A genes and the 

chromosome was elevated in a RecF background. 

It can be envisaged that the RecF pathway has a 

specialised function in some types of recombination, 

although intermediates of the RecF pathway are probably 

frequently degraded by ExoV thus excluding a major role 

in general recombination. However, RecF does have an 

alternative role in repair (Clark et al., 1979). 

1.9 Hotspots for general recombination. 

Generalised recombination effects exchanges at any 

point on homologous DNA, but exchanges may occur more 

frequently in some regions than in others. In certain 



cases, the increased frequency of exchanges has been 

attributed to special sites at and around which re-

combination occurs at elevated levels. These sites may 

be recognition sequences for a protein involved in 

recombination. Chi sites are well-studied examples of 

sites that when present in \ enhance recombination in 

their vicinity (Chattoraj et al., 1978). Chi sites have 

recently been detected in eukaryotes (Kenter and 

Birshtein, 1981) and an equivalent site cog in Neurospora 

was found to influence neighbouring recombination rates 

(Catcheside, 1974). 

Chi sites, were first detected in .X where they caused 

a large-plaque phenotype in red gam mutants 	In these 

mutants, the action of the recBC nuclease, which is 

normally inhibited by the gam product, prevents replication 

of A DNA by the rolling circle method. Monomeric DNA, the 

product of theta replication, is not a substrate for 

encapsidation, but the presence of chi, a hotspot for 

recombination, allows formation of dimers which can be 

packaged into phage heads. 

Chi sites stimulate exchange mediated by the RecBC 

pathway only; they are inactive when only the RecE or RecE 

pathway of E.coli, or the red pathway of A , is operating. 

Each site stimulates recombination within approximately 

10 base pairs of its locus, and stimulation reaches a 

maximum of about 10-fold very near the locus and 

diminishes with distance (Stahl et al., 1975). The effect 

appears to be assymmetric; stimulation is greater to the 
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left of chi than to the right (Stahl and Stahl, 1975), 

and this is supported by the nucleotide sequence at 

separate chi sites (Smith et al., 1980). Sequences of two 

chi sites in \ showed a 23 base pair region of homology 

between the two sites with no inverted repeats. Mutations 

of chi to chi were all found to map within an eight 

base pair sequence: 

GCTCGTGG 

which seems to be the active sequence (Schultz et al., 

1981). 

Chi sites were detected in wild type E.coli chromo- 

•1-: somes by cloning separate EcoRl fragments from a 

chromosomal digest into N red 	and chi was 

estimated to occur at a density of one per 5-15 kb (Malone 

et al., 1978). The importance of chi to the E.coli cell 

has not been established. It is not essential for RecBC- 

mediated recombination, but the occurrence of the chi 

sequence at a higher frequency than would be expected by 

chance seems to indicate that it does have some role. 

1.10 Induction of recombination by damaged DNA. 

Non-lethal doses of UV irradiation can cause an 

increase in genetic exchanges. This stimulation of 

recombination has been very well documented in phage 

(Jacob and Woliman, 1955; Rupp et al., 1971; Lin and 

Howard-Flanders, 1976; Lin et al., 1977) and has also 

been reported in E.coli (Howard-Flanders et al., 1978). 

It can be caused by agents other than WI for example, 

mitomycin C (Shaw and Cohen, 1965), and cross-linking 
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agents such as psoralen (Lin et al., 1977). The close 

relationship between repair of damaged DNA and 

recombination was established by the isolation of Rec 

mutants of E.coli deficient in both functions (Clark and 

Margulies, 1965). A detailed discussion of the 

mechanisms of repair is beyond the scope of this intro-

duction, but a brief mention of the best docUmented 

pathways is necessary for an understanding of the role of 

repair in damage induced recombination. 

UV irradiation produces a variety of photo—products 

in DNA, including intrastrand cyclobutane-type dimers 

between adjacent pyrimidines known as pyrim.idine dimers 

These have been identified as a major cause of lethal and 

mutagenic effects (Ijlitkin,  1966). Pyrimidine dimers 

present a complete blockage to the elongation of nascent 

DNA chains during replication since they cannot form stable 

nucleotide pairs., This discussion will be limited to the 

response of the cell to these lesions only. The E.coli 

cell has a number of mechanisms to circumvent this blockage, 

which can be placed in two categories as suggested by 

Clark and Jolkert (1978). Extrareplicational repair 

pathways remove the dimer before it reaches the replication 

fork, or after it has passed through the replication fork, 

while intrareplicational repair pathways act on the lesion 

as it is replicated. 

Extrareplicational repair results in the complete 

excision of a pyrimidine dimer. Photoreactivation is the 

enzyme-mediated, light-dependent, rnonomerisation of 

pyrimidine dimers (Rupert, 1975). The phr gene of E.coli 
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Figure 1.7 	Extra replicational repair. 

Action of UV on DNA produces a pyrimidine dimer. 

Photo reactivating enzyme (pathway A) recognises the dimer 

and binds to the DNA. The action of light on this comlex 

(1A) splits the dimer; the enzyme is released leaving the 

DNA intact (2A). 

In the dark (pathway B) uvrA and uvrB products together 

make a single-strand nick on the 5' side of the dimer (18). 

DNA polymerase I (Pol I) excises bases from this nick and 

fills in the gap (28). uvrC product is needed for 

efficient excision. DNA ligase seals the ends (36) thus 

completing the repair. 

38 



Figure 1.:? 

LTV  
pyrimidine dimer 

photo reoctivating enzyme  

IA 1i 	 111  3 1  iB 3.' iji iiii 	 I I III I 

single.-strand 2 
nick 

ZA ZB 

excision and 

infilling 	Pot I 

36 i i i i i i i 	 I I I I 3 1 

gap sealed 

by liguse 

 



codes for a protein, or photoreactivatiflg enzyme, which 

binds specifically to a pyrimidine dimer. The action of 

light on this complex splits the dimer and the enzyme is 

released leaving the DNA intact (figure 1.7a). 

Pathways for excision repair in the dark are dependent 

upon uvrA + and uvrB +. These two gene products together 

make a single strand nick or incision on the 5' side of the 

dirner (Braun and Grossman, 1974). Seeberg et al. (1980) 

found that the uvrC+ product was needed for efficient 

incision, and Kato (1972) showed that uvrC product was 

needed to complete excision of the dimer. DNA polymease I 

binds at the nick and adds nucleotides to the 3' end, then 

makes a second nick in the chain to release the damaged 

region; it may continue to digest nucleotides, thus trans-

lating the nick. DNA ligase closes the nick thus completing 

repair (figure 1.7b). This type of 'short patch' repair is 

recA-independent, but a second excision repair pathway 

termed 'long patch' has been propdsed which is recPuvrA+ 

uvrB dependent (Cooper and Hanawalt, 1972). 

If the replication fork reaches a pyrimidine dimer, 

the DNA cannot be completely replicated, and single 

strand gaps 1 500-40 000 nucleotides long are left in the 

daughter strands (figure 1'8; Johnson and McNeill, 1978). 

These gaps are subject to intrareplicational repair, by 

- 

	

	recombination between daughter and parental strands in 

breakage-reunion gap-filling repair dependent upon either 

the FecBC pathway, or the RecF pathway for recombination 

(figure 1.8). An alternative route to accomplish gap 

filling involves the blocking of -the 3 1 -5' correction 

endonuclease activity of one or more of the DNA 
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Figure 1.8 	Intrareplicational repair. 

The replication of pyrimidine dimer (1 and 2) 

leaves a single-strand gap (3). RecA protpin binds to 

this gap and aligns it with a homologous region of the 

sister duplex. When homologous pairing is achieved, an 

enzyme nicks the duplex and RecA protein initiates 

strand transfer (4A), producing subsequently a double-

strand exchange similar to a Holliday structure (5A). 

The lower duplex is repaired by DNA polymerase leaving 

one intact daughter molucule, and one daughter molecule 

still carrying a dimer which is subject to excision 

repair (5A). 

Alternatively, an inducible, error-prone polymerase 

activity may continue synthesis across a pyrimidine 

dimer (transdimer synthesis; 48), which can later be 

excised. 
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polymerases, by one or more inducible proteins, or the 

induction of a separate, error-prone polymerase. This 

prevents the removal of bases which are not hydrogen-

bonded in the normal configuration, and hence DNA 

synthesis can continue past a pyrimidine dimer. This 

type of inducible repair could be responsible for the 

induction of mutagenesis which is a part of the 505 

response (see chapter 5, section 1). This pathway was 

termed transdimer synthesis (Clark and Volkert, 1978; 

figure 1.8). The result of these intrareplicational 

repair pathways is to leave the lesion in the DNA, and 

this must subsequently be excised by one of the extra-

replicational repair pathways. 

All of these pathways except photoreactivation, 

generate single-strand gaps and ends as intermediates in 

repair. Stacey et al. (1969) proposed that the formation 

of single-strand-gaps with unpaired bases during the 

excision and repair of DNA containing photoproducts 

induced recombination, whilst Rupp and Howard-Flanders 

(1968) proposed that the replication of DNA and the 

formation of daughter strands containing gaps opposite the 

dimers generated free strand ends able to initiate 

recombination. These theories are compatible with the 

finding that one of the earliest stages in homologous 

recombination is probably the invasion of a duplex by a 

single-stranded DNA molecule. Clark and Volkert (1978) 

proposed another pathway of repair: incision-promoted 

recombinational repair which is dependent upon uvr A+ uvr B+ 

and recA+. The availability of such recombinogenic forms 
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of DNA, and the inducibility of a number of the repair 

and recombination pathways (Sedgwick, 1975; Llitkin, 1976) 

underlines the close association between repair of 

damaged DNA, and the observed increase in recombination. 

1.11 	Summary. 

The aim of this project was primarily to establish 

at which stage during the process of P1 transduction 

events leading to the wide variation in recovery of 

different markers occurs. This introduction has presented 

several possibilities which may give rise to the observed 

discrepancie5.j: Briefly these were: 1'. Selective phage 

packaging due tba limited number of initiation sites for 

packaging for which there is considerable evidence in P22, 

or reduced accessibility of some regions of the donor 

chromosome; 2. Selective recombination in the recipient 

due to problems of accessibility due to the three-

dimensional structure of the recipient chromosome, or to 

a limitation of recombination enzymes, or to a concentration 

of recombination events in some regions due to the presence 

of recombination-stimulating sites. The experiments in the 

following chapters were designed to discriminate between 

events in the donor and in the recipient, and to attempt 

to define more clearly events in the recipient leading to 

the formation of stable transductants, 
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CHAPTER 	TWO 

MATERIALS AND METHODS 

2.1 Bacterial and phage strains. 

Bacterial strains are listed in table 2.1. Bacteria 

were maintained on nutrient agar plates stored at 4 C for 

regular use, or in stabs of nutrient agar at 4 C. Stocks 

were stored as frozen cultures which were made by diluting 

overnight cultures of bacteria with an equal volume of 2x 

freezing mix which consists of KH 2PO 4 , 6.3 g; Na 3 C 6 H 5 O 7 , 

045 g; 11g50 4 .7H 20, 0.09 g; (NH 4 ) 2 SO 4 , 0.9 g; KH 2PO 4 , 

18 g; glycerol, 44g; distilled wter to 500 ml. Cuiltures 

were frozen at -70 C. 

Bacteriophage strains are listed in table 2'2. Phage 

Plkc was a laboratory stock which initially gave titres of 

about 5 x 10 to 1 x 10 9 pfu/ml. During the course of 

this work the titre improved to 1-5 x 1010,  and trans-

duction frequencies per phage increased possibly due to 

the selection of a variant. P1 could be stored in CsC1 

for a few months, but fresh stocks were made frequently. 

Phage 2t stocks were stored in CsC1 solution, or 

maintained as lysogens. 

2.2 Growth media and buffers. 

Growth media and buffers are listed in tables 2•3 

and 2•4 respectively. L-broth (LB) and L-agar (LA) were 

used for all phage work; for P1, LBC and LAC, which are 

LB and LA supplemented with 10 -  M CaCl2, were used. UB 
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Table 2.1 	Bacterial strains 

SOURCE AND REFERENCE 

Laboratory stock. 

Laboratory stock. Masters, 1977. 

STRAIN 	 GENOTYPE 

tJ3110 	 Prototroph 

MM 303 	 g H met B 	
42 	 .pyrE thi 

tna 	 -4 mtl malA lacY uhn 080 s  

rpsL  T6 (p1) 

rU13031mai 	N11303 P1 cured, mai 

1iF7 arqG metB leu his liv PYrE uh 

malA xyl lac gal rpsL gyA 

NF279recA his arqG leu met8 liv pyrB rbs mtl 

xyl qal lac mal A rpsL rps E 

C P154 arqA his AA  thi rpsL 

L E 234 metB arqE iiv tna 22 

L E 701 metB argE ilv tna pro qyrB 

MH5 Prototrophic: 	Hfr KL16gyrl\ 

0 [VI  11 87 thi- 1 	thr- 1 	ieu- 6 proA2 his-4 ilv ts 

ara-14 mtl-1 j-5 tsx-33 

£a.L 	tif- 1 	sliA 11 lexA 3 spr5l 

Laboratory stock. Neuman and 

Masters, 1980. 

Laboratory stock, masters, unpublished. 

Laboratory stock. 

Laboratory stock. 

E.Orr. Fairweather et al., 1980. 

E.Orr. Fairweather et al., 1980. 

Laboratory stock. 

R.G.Lioyd. 	Mount .. 1977. 



-J 

6C3217 -1 	thr-1 	leu-6 aA 2  his-4 	E3 R.G.Lloyd. 	haunt, 	1977 

1 	ara- 1 4 rntl- 1 	5 

tsx- 33 £L tif- 1 	sf IA 11 

D111420 thi-1 	thr-1 	1eu6'aA2 	1]ts a•Kl R.G.Lloyd. 	Mount, 	1977. 

ara- 1 4 mtl- 1 	5 tsx- 33 	rpsL 	sifl\ 1 1 

!A3 	-51 

N1462(pPE13) spr sf1 	recAA 	(pPE13) .T.Emmerson. 

N1460 Hfr KL16 	argA21 z(sr1-recA)21 	deoB R.G.Lloyd. 

ED2123 sbcB17 	recB N.S.UillettS. 

JC7526 recB21 	recC22 	sbcB15 sfiB103; 	other.  A.J.Clark. 

markers as AB1157 

NE11259 met supE supF r 	m Laboratory stock. 

AA125 (jZ) 	(LaED) 	(aj-.LB) 	his Laboratory stock. 

tsx 	tonl\ 	lacI3 	SU P 
 0 

A81160 proA2 his-4 .ilvC7 	argE3 thi-1 	lacYl B.J.Bachmann. 

qalK 2 	5 mtl- 1 	supE44 

AB1161 proA2 his-4 ilvA210 arQE3 thi-1 B.J.Bachmann. 

lacY 1 	2 	yl-5 	j-  1 	supE44 



A82070 proA2 -3 his-4 ilvE12 met[46 thi-1 

ara- 9 lac qa11K2 malA 1 	mtl- 1 	rpsL 

ton-i tsx- 3 supE44 

AB3505 aA2 2- 	his-4 ilvD1B8 metE46 

arqH 1 lac qalK2 	j- 7 mtl- 1 	malA 1 

tsx-3 suPE44 

• 	 Pt 811 57 thi- 1 thr- 1 	leu- 6 jI  2 his-4 arqE3 

• lacY 1 qalKl 	ara- 1 4 mtl- 1 	5 tsx 

yE44 str-31. 

Gif102 HfrPOi thrAiOiS metLH1005 thi-i 

relAl 

.J.Bachmann. Harsh and Duggan, 1972. 

B.J.Bachmann. 	Wechsler and 

I\delberg, 1969. 

Laboratory Stock. 

B.J.Bachmann. Thze et al., 1974. 



Table 2.2 	Phage Strains 

STRAIN GENOTYPE SOURCE AND REFERENCE 

Plkc Laboratory stock 

MM 540 srl(1-2) 4 	att 	irnrn 21  N.E.Ilurray 	(Murray 	and 
nin Murray,: 	1975) 

ANM 616 21 lac + att + imm 	nin N.E.Murray 	(Wilson and 
Murray, 	1979) 

\trpABC 2540trpABC N.E.Murray 	(Hopkins 	et 	al., 
1976) 

tna 540tnaA R.J.Myers 	(Borck 	et 	al... 
V 1976) 

• 	 vir , 	• : 	 • Laboratory stock 

NK55 b221 	cIII67 	TnlO Kleckner 	et 	al.(1978) 
c1857 md 	0am29 

V 	 V 	 • 	 V 	

-  49  - 



Table 2.3 	Growth Media 

L-broth (LB) 

Difco Bacto Tryptone 10 g 

Difco Bacto yeast extract 5 g 

NaCl 5g 

Distilled water to 	1 litre; pH to 7.2 with NaOH. 

L-agar 	(LA) 

Difco Bacto Tryptone 10 q 

Difco Bacto yeast extract 5 g 

NaCl. 10 g 

Difco agar 15 g 

Distilled water,  to 	1 litre; pH 	to!' 7.2 with NaOH. 

Nutrient broth 	(NB) 

Oxoid nutrient broth no. 	2 25 g 

Distilled water to 1 litre. 

Nutrient 	agar (NA) 

Oxoid nutrient broth no. 	2 25 g 

Davis New Zealand agar 12.52 g 

Distilled water to 	1 litre. 

• 	BBL 	agar 

Baltimore Biological Laboratories • 

Trypticase 10 g 

NaCl 5g 

Difco agar 10 g 

Distilled water to 	1 litre. 
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BBL top agar 

As for BBL agar, but only 6.5 g  Difco agar per litre. 

UB minimal agar (Vogel and Bonner, 1956) 

1.5% Dif'co agar in distilled water, 
molten 	 400 ml 

20 x VB salts 	 25 ml 

20% carbon source 	 10 ml 

Amino acids and vitamins as required. 

VB minimal medium 

20 x UB salts 	 25 ml 

20% carbon source 	 10 ml 

Sterile distilled water 	.. 	400 ml 

Amino acids and viatamins as required. 

20 x \i8 salts 

11g 50 4  • 7H 2   0 

Citric acid 

K 2 HPO 4  

NaNH 4 . HPO 4 .4H 20 

Distilled water to 1 litre. 

Amino acids and vitamins 

Amino acids 

B 1  

Biotin 

Uracil 

4g 

40 9 

200 .9 

70 g 

20 ug/ml 

2 ug/ml 

2 ug/ml 

5 ug/ml 

Difco top agar 

Dif'co agar 

Distilled water to 1 litre. 
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liacConkey agar 

Peptone 	 20 g 

Due salts no.3 	 1.5 g 

NaCl 	 5 g 

Neutral Red 	 0•03 q 

Agar 	 15 g 

Distilled water to 1 litre. 



Table 24 	Buffers 

Phage buffer 

Na2HPO4 	 7 g 

KH2PO4 	 3 g 

NaCl 	 5 g 

F1g50 4 , 0.1 1i 	 10 ml 

CaC1 2 , 001 ['I 	 10 ml 

Gelatin sàlution, 1% 	 1 ml 

Distilled water to 1 litre 

• Tris-EDTA buffer (TE buffer) 

0•01 11 Tris/HC1 pH 8•0 

1 mM EDTA 	• 

TEN buffer 

TE buffer + 5 mI'1 NaCl 

1 x SSC 

0.15 N NaCl 

0.03 N sodium citrate 

SSC:CaCl 2  

3 parts 1 x SSC to 4 parts 0.1 N CaC1 2  
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agar, supplemented with appropriate amino acids, vitamins 

and sugars, was used as a selective medium. 

2•3 Bacterial techniques. 

Growth of bacteria. Bacterial cultures were 

grown in LB at 37 C in a New Brunswick rotary water bath 

shaker or as overnight cultures in LB incubated at 37 C 

without shaking. 

Measurement of OD and cell number. Cell mass 

was measured in a Perkin-Elmer Coleman Model 55 

Spectrophotometer at 540 nm (OD 540)'  Cell size 

distribution was measured in a Coulter Counter Model ZO 

interfaced with a Coulter Channeliser (Coulter Electronics 

Ltd., Harpenden, England). 0.2 ml cell samples were 

mixed thoroughly with 0.2 ml of 0.5% formaldehyde 

solution. A . 50 ul sample was diluted into 8 ml of filtered 

azide-saline solution (NaCl, 36 g; NaN 3 , 2 g; water to 4 

litres), and counted. Size distribution was recorded. 

Hfr matings. Hfr donors were diluted 10-fold 

into pre-warmed LB from overnight cultures and grown at 

37 C in static culture with maximum surface area to allow 

for aeration to a density of 4 x 10 cells/mi. 

Streptomycin-resistant recipient cultures were grown in 

shaking cultures at 37 C in LB to a density of 4 x 10 8  

cells/ml, and equal volumes of donor and recipient were 

mixed then incubated without shaking at 37 C. Matings 

were stopped at appropriate times by withdrawing 

aliquOts and vortexing, then plating 0.1 ml of a 10 x 

dilution in phage buffer on selective, plates supplemented 
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with streptomycin (200 ug/mi). 

(iv) Isolation of a tetracycline-resistant culture 

with TWO present at undetermined sites. The method of 

Csonka and Clark (1979) was used to link a marker with 

an unselectable phenotype to a transposon carrying a 

drug resistance determinant, thus facilitating its 

manipulation. Strain J3110 was grown to a density of 

5 x 10 cells/ml in LB supplemented with maltose 

(4 mg/ml). 10 ml of culture was sedimented and 

resuspended in 1 ml of a lysate of 7¼NK55 (titre 4 x 1010 

pfu/ml)and allowed to adsorb for 15 minutes at room 

temperatue. The mixture was diluted into 50 ml of LB 

supplemented with glucose (4 mg/ml) and sodium citrate 

(10 mu, pH 7.0) and incubated with aeration at 30 C until 

the 00 began to increase. Tetracycline-(l ug/mi) was 

added and incubation was continued for 1 hour. At the 

end of this time, the concentration of tetracycline was 

increased to 15ug/ml, and the culture was grown to 

saturation at 42 C. A 10 ml aliquot was again subcultured 

into the same medium and grown to saturation at 42 C. The 

incubation at 42 C ensures that all cells lose the 

phage which has a temperature sensitive repressor, whilst 

growth in tetracycline selects for those cells which carry 

a chromosomal TnlO insertion. A P1 lysate was made on this 

culture, which carries random TnlO insertions, at 37 C and 

was used to infect suitable recipients and select for the 

required linkage. 
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2.4 Phage P1 techniques. 

Growth of phage by liquid infection. A P1 

sensitive strain (usually W3110) was grown with aeration 

at 37 C in LBC, in a flask of a capacity at least 5 x 

greater than the volume of the culture, to an OD 540of 

about 0.5, then infected with P1 at an moi of about 1. 

Incubation was continued until lysis, which occurred at 

i-4 to 3 hours after infection. Lysis was completed by 

the addition of chloroform (1-2 ml/litre) and incubation 

continued for a further 15 minutes. Lysates were 

clarified by centrifugation at 10k. rpm in the GSA rotor 

of a Sorvall RC-5B centrifuge.' Phage stocks were 

titrated by mixing 0.1 'ml of phage, diluted in phage 

buffer, with 0.1 ml of tJ3110 in mid-log phase and 2•5 ml 

of molten BBL top agar, pouring on LAG plates, and 

incubating at 37 C overnight. 

Growth of phage: plate lysates. For small 

volume lysates, 10 p.f.u. of P1 and 0.1 ml of U3110 in 

mid-log phase were mixed with 25 ml of molten BBL top 

agar and poured on to a freshly made LAG plate. After 

incubation at 37 C for 5-6 hours, the top agar layer was 

scraped off with a sterile spatula and vortexed with 1 ml 

of phage buffer and a drop of chloroform. The suspension 

was centrifuged in a bench-top centrifuge, and t'he clear ' 

supernata'nt was removed and titrated. 

P1 transductions. Recipient strains were grown 

in LOG to late log or stationary phase (i-s x 10 cells/ml). 

Strains non -lysogenic for P1 were concentrated lOx, to 

reduce phage killing, by pelleting in a bench-top 
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centrifuge and resuspending in 1/10  volume of LBC. P1 

lysates were diluted to a concentration of approximately 

10 pfu/ml in LOG or phage buffer. 0.1 ml of P1 was mixed 

with 0•1 nil of recipient cells and incubated at 37 C for 

15 minutes. This mix was diluted to 1 ml with phage 

buffer, and 0.1 ml of this suspension, and also a 10_i 

dilution, was spread on selective plates. Transductants 

were scored after 1-2 days' growth at 37 C. 

2•5 Phage'Xtechniques. 

Growth of phaqe. Liquid and plate lysates and 

titrations were performed as described for P1, except 

that media were supplemented with 10-- 2  M Mg50 4  instead of 

CaCl 2 . 

Complementation test. The complementation 

pattern of specialised transducing phages was tested by 

spotting a phage lysate, diluted in phage buffer if 

necessary, on to a lawn of an appropriate recipient. The 

recipient was grown to stationary phase in LB, then 

resuspended in 10 2M f'gSO 4 . 0.1 ml of the suspension was 

mixed with 2•5 ml of molten Oifco top agar and pourd on to 

selective plate. 0.02 ml of phage suspension was placed on 

the surface, and the plate was incubated for 2 days at 37 C. 

Colonies were picked and checked for \ lysogeny to 

distinguish complementation from recombination. 

Test for ) lysoqeny. The test strain was grown 

in LB 	overnight, then resuspended in 10 2ii 1igSO 4 , mixed 

with molten BBL top agar and poured on to an LA plate. 

0.02 ml each of'Nl1540, to test for lysogeny by an imm 2'  
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phage, and 7\vir, to test for N sensitivity, was placed on 

the lawn which was incubated for 4-5 hours at 37 C. 

Cross-streak tests were performed by streaking parallel 

bands ofA vir andNfi540 on a dry LA plate, then cross-

streaking with the test strains over first the 7NI1540, 

then the2\vir. In both tests, lysis by)vir but not by 

7\NF1540 indicated lysogeny by an imm 	phage. 

(iv) WI induction of 	from lysogenià strains. 

Lysogenic bacteria were grown to early log phase (00540, 

0.5; 2 x 10  cells/ml) in LB at 37 C, harvested and 

resuspended in half the original volume of 10_ 2  

The cells were irradiated in 10 cm diameter glass petri 

dishes with 400 ergs/mm 2  UV, then diluted 4-fold into 

fresh, warm LB supplemented with 10_ 2  M MgSO 	and grown 

in the dark at 37 C with good aeration for 2 hours, or 

until lysis occurred. Chloroform was added (1 ml/litre), 

and the lysate was clarified and titrated as above. 

26 WI irradiation of phage P1 lysates and bacterial 

cultures. 

Phage or bacterial suspensions were diluted 10-fold 

in phage buffer and placed in a 10 cm diameter glass petri 

dish. The open dish was exposed to Wi at a dose rate of 

10 ergs/mm 2/second with agitation. Irradiated phage and 

bacteria were shielded from the light and used as soon as 

possible after irradiation. Transductions and titrations 

using irradiated organisms were accomplished with the 

minimum exposure to light, and incubated in the dark to 

prevent photoreactivation. 



2.7 Concentration of bacteriophage cultures. 

Similar methods were adopted for \ and P1. 

Concentration of phage by polyethylene glycol 

precipitation (Yamamoto et al., 1970). Phage lysates 

were prepared and clarified as above, then NaCl 

(40 g/litre) was added and dissolved by stirring. 

Polyethylene glycol 6000 (PEG 6000) was added at a 

concentration of 10% u/v and dissolved by stirring, then 

the lysate was left overnight at 4 C. The precipitated 

complex of PEG 6000 and phage was harvested by centrifuga-

tion at 10k rpm for 15 minutes in the GSA rotor of a 

Sorvall RC-56 centrifuge. Pellets were resuspended in about 

1/50 of the original volume of phage buffer by stirring in 

the cold.- for a few hours. DNase (DNase 1, Sigma) and RNase 

(RNase A, Sigma) were added - at a final concentration of 

10 ug/ml, and the suspension was incubated at 37 C for 1 

hour. Debris were sedimented at low speed in a bench-top 

centrifuge. 

C5C1 step gradients. Phage concentrated by PEG 

precipitation were loaded on to CsCl step gradient composed 

of three 1 ml steps of 1•7, 1•42, and 1.3% u/v CsCI in 

phage buffer in a 17 ml polycarbonate tube. The gradient 

was spun in the AH627 (swing-out) rotor of a Sorvall OTD 

50 centrifuge for 3 hours at 22k rpm. Phage bands were 

removed through the side of the tube with a 23 g needle 

and syringe. 

CsC1 equilibrium gradients. Phage was further 

purified in equilibrium gradients. Phage bands were mixed 

with 1•42 u/v CsCl in phage buffer and loaded into 15 ml 
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polyalionier heatseal tubes. Gradients were formed by 

spinning in the T150 rotor of a Sorvail OTO 50 centrifuge 

for 30 hours at 33k rpm. Phage bands were removed as 

above. 

Phage ) can be stored indefinitely in CsC1 at.4 C, 

but P1 tends to be unstable so DNA was extracted immediately 

after banding to obtain the maximum yield. 

2•8 DNA techniques. 

(1) Extraction of phage DNA. Phage which had been 

concentrated in CsC1 was dialysed against 3 changes of 

phage buffer over 12 hours, and placed in a siliconised 

Corex centrifuge tibe with an equal quantity of distilled 

phenol which had been equilibrated with TE buffer and 

stored at -20 C. The two were mixed gently by inversion 

for 10 minutes, and then the layers were separated by low 

speed centrifugation. The aqueous layer was removed with 

a pasteur pipette and added to a second aliquot of phenol. 

The extraction was repeated twice more, then the aqueous 

layer was removed and dialysed for 15 hours against 4 or 5 

changes of TE buffer to remove all traces of phenol. DNA 

was stored in TE buffer at 4 C. 

(ii) Preparation of E.coli DNA. !J3110 was grown in 1 

litre of LB at 37 C with vigorous shaking to an 0D 540  of 

about 0.5 (log phase). Cells were harvested by 

centrifugation, and the pellet was resuspended in 50 ml 

25 1/"c- sucrose in 50 mM Tris buffer pH 8•0 with 17 ml of a 

freshly prepared solution of lysozyme (10 mg/ml; Sigma, 

Grade 1 from egg white), 6.5 ml EDTA (0.25 N, pH 8.0), 

13.5 ml lysis buffer (2% Triton X100, 0.0625N EDTA, 
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50 mM Tris buffer pH 8.0) and 2.8 mg of pre-incubated 

Protease (Sigma, Type IV). The mixture was digested 

overnight at room temperature. 

The digest was extracted 4x with an equal volume of 

phenol (as for phage DNA extractions), mixing gently by 

inversion for 2 minutes. The layers were separated by 

low-speed centrifugation and the phenol layer saved for 

re-extraction with 0.5 M Tris buffer pH 8•0. 

DNA was precipitated from the aqueous phase by 

layering 2 volumes of ice-cold ethanol on the surface and 

spooling the DNA-on a clean, acid-washed, glass rod. The 

DNA was dissolved in 50 ml 0 1 x SSC, and the ethanol 

precipitation repeated. The DNA was re-dissolved in 50 ml 

0.1 x SSC, and treated with RNase (20 ug/mi, boiled for 

20 minutes to inactivate contaminating DNase). The phenol 

extraction was repeated once more, followed by ethanol 

precipitation. DNA was dissolved in 10 ml - of TE buffer 

and dialysed against 4-5 changes of TE buffer over 1-2 days. 

(iii) Small-scale plasmid preparation. (Birnboim and 

Doly, 1979). The solutions used for this preparation are 

listed in Table 2.5. 1.5 ml cultures were grown overnight 

in NB with aeration to give maximum cell density. These 

were transferred to 1.5 ml polypropylene microfuge tubes 

and pelleted by spinning for 1 minute in a fuickfit 

microcentrifuge. The supernatant was discarded, and the 

pellet resuspended in 0.1 ml of lysis solution by 

vortexing, then left on ice for 30 minutes. 0.2 ml of 

alkaline SOS solution was added. After a further 5 

minutes on ice, 0.15 ml of high salt solution was added, 
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Table 2.5 	Solutions for Birnboim preparation. 

Lysis solution 

Lysozyme 	 2 mg/ml 

Tris/HOl pH 8•0 	 25 mM 

EDTA pH 8.0 	 10 mM 

Glucose 	 50 mM 

Alkaline SOS solution 

NaOH 	 0.2 M 

SOS 	
0 	

1% 

• 	 ..High .. salt solution 	 • 

Sodium acetate. 	 • 

To pH 5. with acetic acid 	 • 

• 	 Low salt solution 

Sodium acetate 	 0•1 P1 

To pH 6 with acetic acid 
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and the suspension was mixed by inversion, then left on 

ice for 60 rninutes.with occasional mixing. The 

precipitate was removed by centrifuging for 5 minutes, 

and the supernatant was transferred to:  a fresh microfuge 

tube together uith.1 ml of cold ethanol, then left at 

-20 C for 30 minutes. Nucleic acids were pelleted by 

centrifuging for 2 minutes in a microcentrifuge; the 

supernatant was disgarded and the pellet dissolved in 

0.1 ml of 0.1 lvi sodium acetate, pH6. 	0.2 ml of cold 

ehanol was added, nucleic acids were precipitated at -20 C 

for 10 minutes, pelleted in a microcentrifuge then dried 

under vacuum. The final pellet of DNA and RNA was 

dissolved in 50 u]. of TE buffer. This final solution was 

suitable for transformations. 

Ethanol precipitation of small quantities of 

DNA. 1/10 volume of 5 11 potassium acetate and 2-3 

volumes of cold ethanol were added to DNA in TE buffer in 

a microfuçje tube and mixed well, then left at -70 C for 

1 hour, or overnight. DNA was pelleted at 4 C in a 

Quickfit microcentrif'uge, the supernatant was decanted, and 

the pellet dried under vacuum. The DNA was dissolved in' 

50-100 ul of TE buffer. 

Restriction of DNA. DNA was digested with 

restriction enzyme (1 unit/ug of DNA) for 1 hour at 37 C 

in a total volume of 10 ul, with 1 ul of lOx reaction 

buffer. Reaction buffers for Hind III and EcoRl are 

shown in table 2•6. The reaction was stopped by incubat-

ing at 70 C for 10 minutes to inactivate the enzyme and 

also to separate the cohesive ends of A. 
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Table 2•6 
	

Buffers for restriction and ligation of DNA. 

10 x reaction buffers 

Hindill EcoRl 

Tris/HE1 pH 75 100 mm 1.0 	fl 

MgC1 2 	V  100 mm 50 mM 

NaCl 500 mm 500 mM 

2-mercaptoethanol 60 mM 60 mM 

10 	x ligase cocktail V 

• 	1 	M 	tris/HC1 	pH 	7.2 660 ui/mi 	• •• 

0.1 	M 	EDTA 100 ui/mi V  

1 	P1 	P1gC1 2  100 ui/mi 

• 	1 	P1 	dithiothreitol 100 61/ml V 	 •• 

• 	0.1 	P1 	ATP 10 ui/mi V 	 • 
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Ligation of DNA fragments with cohesive ends. 

Restricted DNA was diluted to a concentration of 

5-30 ug/rnl in 10 mEl Tris pH 7.5, 0.1 (1 NaCl. 	1/10 final 

volume of lOx ligase cocktail (Table 2.6) was added 

together with 1-2 ug of DNA and 1 unit of 14 DNA ligase 

(New England Biolabs) in a total volume of 20-50 ul. 

The mixture was incubated at 10 C for 3-6 hours, then at 

0 C. during which time samples were removed for trans-

fection. 

Transfection and transformation of E.coli cells 

(after Lederberg and Cohen, 1974). Cells competent for 

transfection were obtained by growing a suitable host 

strain (NE11259 or AA125 for phage DNA) to an 0D 540  of 

055-0•65 in 50 ml of LB at 37 C.; Cells were chilled on 	- 

ice for 15 minutes, then pelleted and resuspended in 25 nil 

of ice-cold 0•1 N ElgCl 2 , then immediately re-pelleted and 

resuspended in 2.5 ml of ice-cold 0.1 N CaC1 2 . They were 

then kept on ice for at least 30 minutes. 

About 50 ng of ligated DNA, or plasmid DNA, was 

diluted to 0.1 ml in SSC:CaC1 2 , and mixed with 0.2 ml of 

competent cells. The mixture was left on ice for 30 

minutes, then heat-shocked at 42 C for 2 minutes, then 

returned to ice for 30 minutes before plating out. 0.1 ml 

was mixed with 2.5 ml of molten BBL top agar supplemented 

with 10_ 2  N EIgSO 4 , poured on BBL plates, and incubated at 

37 C overnight. 

For transformation with plasmid DNA, after the heat 

shock the mixture was diluted to 1 ml with NB and incubated 

at 37 C to allow expression of drug resistance. 0.1 ml 



was then spread on selective plates. 

(viii) DNA electrophoresis on agarose gels (McDonnell 

et al., 1977). For a horizontal 0.7% 25 cm x 15 cm gel, 

1.4 g of agarose (Sigma, Type II) was dissolved in 200 ml 

of Tris-acetate buffer (40 mM Tris, 20 mM sodium acetate, 

1mM EDTA; pH to 8.2 with acetic acid) by boiling for three 

minutes. After cooling to 50-60 C. and adding ethidium 

bromide (0.5 ug/ml) the gel was poured into a 25 cm x 15 cm 

perspex gel former. A slot former was placed 5 cm from one 

end giving 12 slots each of capacity 20-30 ul. The gel 

was allowed to set for 1 hour, then the slot former was 

removed and the gel immersed in Tris-acetate buffer, in an-

electrophoresis tank. 

Restricted DNA was mixed with 2 ul of loading buffer 

(50% glycerol, 50 1/"D Tris acetate buffer, 0.04% bromophenol 

blue) and loaded into the slots. Electrophoresis was at 

30 U, 15 mA, overnight, or 100 U, 50 mA, for 4-5 hours. 

Bands were illuminated with UV and photographed using 

Ilford FP4 film with a 15 second exposure and 'a red filter. 

2•9 Polyacrylamide gel electrophoresis of proteins. 

(i) Labelling cells with 35 s methionine and extraction 

of proteins (after Clark et al., 1979). Cells were grown 

overnight in fully supplemented JB minimal medium with 

glucose, then diluted lOx into fresh, warm medium and 

grown to an 0D 540  of 0.3-0.4. Cultures for UV treatment 

were exposed to 400 erg/mm 2  of UV and then wrapped in foil. 

Incubation of all cultures was continued for a further 

40 minutes. 1.5 ml of cells were removed into microfuge 
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Table 2.7 	Solutions for SDS—polyacrylamide gels 

Stock acrylamide 

Acrylamide (Sigma, electrophoresis grade) 	 30 g 

NN' methylene bis acrylamide (Sigma) 	 0.8 g 

Distilled water to 1 litre; filter and store in the dark 

Upper tris (x 4) 

Trizma base (Sigma) 

10% SDS in water (Sigma, electrophoresis grade) 

Distilled water to 100 ml; pH to 6•8 with HC1 

Lower tris (x 4) 

Trizma base 

: 10% SDS in water 

Distilled water to 100 ml; pH to 8.8 with HCI 

Overlay buffer 

3 ['1 tris/HC1 pH 8.8 

10% SDS in water 

Distilled water to 200 ml 

Electrophoresis buffer 

Trizma base 

Glycine 

10% SOS in water 

Distilled water to 1 litre 

6•06 g 

4.0 ml 

18•17 g 

4.0 ml 

25 ml 

2 ml 

3g 

14.4 g 

10 ml 
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Sample buffer 

Tris/HC1 pH 6.8 

SOS 

EDTA 

2-me r capt a e t hanoi 

Glycerol  

In distilled water. 

0.05 N 

I/o 

0•002 N 

U 
n 

.J/Q
uf 

10% 

Composition of gradient gel solutions 

20% 

crylamide/bis 	 6.7 ml 

Lower tris 	 5.3 ml 

HO 	 3.0 ml 

10% ammonium persulphate 1 	 25 ul 

TE11D 2 	 3-7 ul 

•7 01 
I /0 

2•6 ml 

5.3 ml 

9.0 ml 

25 ul 

3 U  

Stacking gel 

Acrylamide/bis 

Upper tris 

H 2  0 

10% ammonium persulphate 1  

TEIVIED 2  

1.0 ml 

25 ml 

6.5 ml 

40 ul 

15 ul, 

Sealing gel 

3 N tris/HC1 pH 8.8 

Acrylamide/bis 

10% SOS in water 

80% sucrose 

H 2  0 

15% ammonium persulphate 1  

T E N ED 2  

1.26 ml 

6.1 ml 

100 uJ. 

1.8 ml 

07 ml 

100 ul 

8 ul 



1 Ammonium persuiphate was freshly prepared for each gel.. 

2 TEIIED: N,N,Nt,NI - tetramethylethyenediamine 

(Koch-Light Laboratories Ltd.) 

Both TEFbiLD and ammonium persulphate were added 

immediately before pouring the gel. 



tubes and chilled on ice for 15 minutes. Cells were 

pelleted, washed once in 1 x UB salts, resuspended in 

growth medium without methionine, and incubated at 37 C 

for 30 minutes. j uCi 	S methionine ( The Radiochemical 

Centre, Amersham, Bucks.) was added and incubation was 

continued for 5 minutes. The label was chased with 100 

ug/mi unlabelled methionine for 2 minutes. Labelled cells 

were immediately pelleted, washed once in 1 x VB salts, 

and resuspended in 0.1 ml of final sample buffer (Table 2.7). 

Samples were heated for 2 --  minutes in a boiling water bath, 

then cooled on ice, and stored at -20 C. 

(ii) Separation of proteins on SDS.-polyacrylamide gels 

(Laertimli, 1970). SOS-polyacrylamide gels were poured 

between 25 cm x 15 cm glass plates which were thoroughly : 

cleaned before use. 1 mm thick perspex spacers were 

greased lightly and clamped between the plates. The gel 

was placed vertically in a 30 ml sealing trough, and 

sealing gel (table 2.7) was poured into the trough to seal 

the lower edge. When this had polymerised, 10 ml of 7% 

and 10 ml of 20 1/10 
SOS acrylamide solutions (table 2.7) 

were placed in separate chambers of gradient maker. 

Flixing was started, and the gel was run slowly between 

the plates to within 5 cm of the top. Overlay buffer was 

layered on the surface to assist polymerisation. After 

polymerisation, which was complete after about 30 minutes, 

the buffer was poured away, and the top was washed with 

distilled water. Stacking gel was added to fill the gel, 

and a comb was set into the stacking gel. When this had 

set, the comb was removed and the wells were washed and 
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filled with running buffer (table 2.7). The gel was set 

in place vertically between two troughs of running buffer 

and protein samples, mixed with bromophenol blue (0.01%) 

were loaded into the wells using a 100 ul Hamilton. 

syringe. Standard protein mix (which contained 

Phosphorylase b, 94.0 kD; bovine serum albumin, 67.0 kD; 

ovalbumin, 43.0 kD; carbonic anhydrase, 30.0 kD; soybean 

trypsin inhibitor, 20.1 kD; O&-lactalbumin, 14.4 kD) was 

also loaded. Electrophoresis was at 150 J, 10 mA, for 1 

hour, then at 350 J, 20 mA, for 10 hours. 

(iii) Fixing, staining and autoradiogrophy of 

pplyacrylamide gels. The gel was removed from between the 

plates, washed in distilled water, then immersed in fixing 

solution (45% methanol, 9% acetic acid in distilled water) 

for 10 minutes on a rotary shaker at 37 C. This was 

removed and staining solution (0.1% Coomassie brilliant 

blue in fixing solution) was added for 10 minutes. The gel 

was finally washed in destaining solution (7% acetic acid, 

5% methanol in distilled water). The gel was dried down 

on to Uhatman 3 NIl paper using a Bio-Rad gel drier, then 

autoradiographed for 2-3 days at room temperature using 

X-ray film (Kodak X-Omat H) which had been pre-flashed to 

increase sensitivity. Film was developed and fixed with 

Kodak developer and fixer. 

2.10 Preparation of probes for use in hybridisation. 

(i) Extraction of DNA fragments from agarose gels by 

'freeze-squeeze' (Thuring et al., 1975). Up to 100 ug of 

DNA was completely restricted with an appropriate enzyme, 
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and loaded into a single large well in a 0.7% agarose gel 

which contained a trace of ethidium bromide (i ug of a 

10% solution). The fragments were separated by electro-

phoresis, and the relevant band was excised under Wi 

illumination. The DNA-containing agarose was wrapped in 

Parafilm, and frozen at -20 C for 30 minutes. Fluid was 

squeezed from the gel by pressure from thumb and fore- 

finger. 100 ul of TE buffer was added to the agarose, and 

the process repeated. Any contaminating agarose was 

removed from the clear fluid by centrifugation, then the 

DNA was precipitated with ethanol and potassium acetate, 

and resuspended in ioq ulof TE buffer. 

(ii) Separation of restriction fragments on sucrose. 

gradients. Sucrose was dissolved in sterile TE buffer 

and boiled for 10 minutes-to destroy nucleases. 5 1/'C' and 

20% sucrose solutions were placed in separate chambers of 

a gradient maker, mixing was started, and the gradient was 

run slowly into a 17 ml polycarbonate centrifuge tube. 

5-20% gradients gave good separation of up to 8 kb 

fragments from7 ; larger inserts could not be separated 

completely. Restricted DNA (50-100 ug) was layered on the 

surface of the. gradient, then centrifuged for 18 h at 

22k rpm in the AH627 rotor of a Sorvall OTD 50 centrifuge. 

Bands were separated by collecting 0•5 ml fractions 

drop wise from the bottom after puncturing the tube. The 

fractions containing DNA were identified by running 10 ul 

of each fraction on an agarose gel. Fractions containing 

the desired band were pooled, and dialysed overnight or 

for 2-3 hours against 2 changes of TE buffer. The DNA 

was precipitated with ethanol and potassium acetate, and 
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resuspended in TE buffer. 

(iii) Labelling DNA by nick translation (Rigby et al., 

1977). 15-20 uCi ofdCTP (The Radiochemical Centre, 

Amersham, Bucks.) was dried down under vacuum and 

resuspended in 10 ui of lOx reaction buffer (so mlvi 

TrisHCl, pH 7•8; 5 mlvi 119012;  10mM 2-mercaptoethanol) with 

1 ul each of 10 mM solutions of dGTP, dATP and dTTP, and 

1. ug of DNA in TE buffer. 1 ul of DNase 1 (1 ug/mi stock 

solution; Sigma Type 1 pancreatic) was added and nicking 

of the DNA was allowed to proceed at. room temperature for 

2 minutes. DNA polymerase 1 (i ul of 1 unit/ui) was 

- 

	

	added and the reaction was continued for. 3-4. hours at 

15 C. At the end. of this time, 5 ul of orange C dye was 

added, and the DNA separated from reaction substrates by 

chromatography on a 10 ml Sephadex 050 column in TEN 

buffer. Unincorporated label elutes with the dye well 

after the DNA. 5-drop fractions were collected and 

counted by Cérenkov radiation in a Packard Tri-Carb 

Liquid Scintillation Counter. Fractions containing peak 

activity (approximately 40% of total incorporated counts) 

were pooled and stored at -20 C. 

2.11 Assay of DNA homology by liquid hybridisation. 

(i) Hybridisation conditions. DNA for use in 

reassociation experiments was sonicated for a total of 

2 minutes at maximum output using the fine probe of an 

(viSE sonicator in 30 second bursts with 30 second pauses 

for cooling. This treatment generated fragñients of 

200-400 base pairs in-length. Labelled, sonicated probe 
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Table 2•0 	Solutions for assay of DNA homology 

2•5 x HB (Hybridisation buffer) 

NaCl 	 3.75 fl 

Tris/HG1 pH 7•5 	 0.025 [i 

EDTA pH 75 	 0.0025 Cr,. 

5 x 'JB (Vogt buffer; Vogt, 1973) 

Glycerol 	 25% 

Sodium acetate, pH4.6 	 150 mN 

Zn50 4 	 5 mM 

51 mix 

• • 	Double-stranded salmon sperm DNA, 1.5 mg/ml 	0.24 ml 

Denatured salmon sperm DNA, 1.5 mg/ml 	 0•24 ml 

2.5 x HO 	 0.27 ml 

5 x \JB 	 2.9 ml 

H20 	 • 	 6.35 nil 
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DNA was mixed with unlabelled, sonicated, test DNA in a 

total volume of 150 ul in a microfuge tube. The DNA was 

denatured by placing in a boiling water bath for 5 

minutes. 	100 ul of 2.5 x HO (table 2.8) was added, and 

the tube was immediately brought to 65 C, whilst 10 ul 

was removed into 65 ul of ice-cold water for the 0 time 

sample. Reassociation was allowed to proceed at 65 C 

for up to 36 hours, and 10 ul samples were removed at 

appropriate intervals. Samples were stored at 4 C until 

assayed. 

(ii) Si nuclease assay. The 51 nuclease assay of 

Crosa et al., (1973) was used to determine the proportion 

of single-stranded DNA in each sample of a reassociation 

experiment. 125 ul of Si mix (table 2.8) was added to 

each 75 ul sample, which was then divided into 2 x 100 ul 

aliquots. 5 ul of a 5-fold dilution of Si enzyme prepared 

as described by Sutton (1971) was added to one of each 

pair of aliquots, and both were incubated at 37 C for 

20 minutes. To stop the reaction, the tubes were cooled 

on ice, and 100 ul of ice-cold 10 TCA was added to both. 

TCA-precipitable material was collected on 2.1 cm CF/C 

Lihatman filter discs by vacuum filtration, washed with 

15 ml of cold 5/'C') TCA, then with 2 ml of ethanol. Filters 

were dried in air and placed in vials with 5 ml of 0•7 

butyl-PBD scintillant in toluene (2(4 1 -t-Butylphenyl)-5-

(4 11 -bipherylyl)-1,3,4-oxadiazole; Koch-Light Laboratories 

Ltd. Bucks.) and counted in a Packard Tri-Carb Liquid 

Scintillation Counter. 
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CHAPTER 	THREE 

EFFECT OF UV IRRADIATION ON P1 TRANSDUCTION FREQUENCIES. 

3.1 Introduction 

It was pointed out in chapter 1 that there are much 

greater differences in the recovery of markers after.  P1 

transduction than would be expected from a gene dosage 

effect alone. Two possible explanations for this were 

suggested: 1. P1 packages some regions of the E.coli 

chromosome at much higher frequency than other regions or 

2.'Some transducing fragments are recombined into the 

recipient chromosome with much 'greater efficiency than".' 

"other regions. In order to distinguish between these two 

possibilities, events occurring in the donor must be 

dissociated from events occurring in the recipient. 

The efficiency with which P1 transducing DNA 

recombines into the chromosome is quite low: about 

85-90% of the transducing DNA fails to recombine into the 

chromosome and persists as abortively transduced DNA 

(Sandri and Berger, 1980b). The possibility exists that 

all markers are packaged by P1 with equal efficiency, and 

are found among abortive transductants according to their 

frequency of occurrence in the donor cell. Abortive 

transductants may be scored for certain markers, 

particUlarly those for carbohydrate utilisation, but other 

markers are almost impossible to score due to minute colony 

size, or presence of background growth of revertants. 

Attempts at counting numbers of abortive transductants 
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Figure 3.1 	Transduction of P11i303 with irradiated P1. 

Liquid lysates of P1 kc made on the prototrophic 

strain W3110 were irradiated as described in the text, 

and used to transduce fiii303. Numbers of liv + , Arg 
±

and 

His± transductants recovered after various periods of 

irradiation are shown. Irradiation was at a dose rate of 

10 ergs/mm 2/sec. Survival of phage is 3 x 10 	of 

original titre after 2 minutes irradiation. 
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gave variable results and were abandoned. 

As already mentioned, treatment of DNA with UV 

stimulates recombination, increasing the recovery of 

recombinants in Hfr crosses, and also after P1 transduction 

using irradiated P1 lysates. It has been proposed that the 

increased frequency of P1 transduction results from the 

diversion of transducing DNA from the formation of 

abortive transductants to the formation of stable 

transductants (Benzinger and Hartman, 1962). Irradiation 

of P1 lysates was therefore adopted as an approach to the 

analysis of the ratio of markers carried by P1 transducing 

DNA. 	•• 	 • 

3•2 Effect of - UV irradiation of phage lysates upon the 

recovery of transductants. 

Phage lysates prepared from the prototroph U3110 were 

irradiated with increasing doses of UV as described . in 

chapter 2, and used to transduce a recipient for a variety 

of markers. Frequencies of transduction were scored 

relative to the number of Ar9H+ transductants at 0 UV 

dosage, which was arbitrarily designated as 1. 

Figure 3.1 shows the results of an experiment where 

1V1c]3031 was infected with UV irradiated P1; the frequency 

of transduction of 3 markers is plotted against UV dosage 

given to the phage. It can be seen that the stimulation 

of transduction caused by UV irradiation is not the same 

for all markers, but does reach a peak for 2 markers at 

a dose of 2 minutes, or 1 200 ergs/mm 2 . The recovery of 
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Figure 32 	Frequencies of transduction of a variety 

of markers into four different recipients 

using irradiated P1. 

Transductians were as described in the text, using 

P1 irradiated for 0-5 minutes. Recipients used were: 

(a) NF279 (b) 1ii7 (c) CP154 (d) NM3031. 	Transductions 

in (a) and (b) used identical P1 lysates; (c) and (d) 

used identical lysates. 
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the marker liv, which is normally transduced with a very 

high frequency, is not stimulated to any significant extent. 

In contrast, recovery of His+  transductants, which normally 

occurs at very low frequency, is stimulated ten-fold. 

Arg+ transductants are normally recovered at an inter-

mediate frequency, but Wi irradiation results in increased 

recovery such that after 1 200 ergs of UV there is little 

difference between-the recovery of Ilv+  and  Arg+ 

transductants. 

Figures 3.2 a, b, c and d show similar experiments 

with the unrelated strains NF279 and CP154, and MM?, which 

is related to NF279 1  and other markers from MM303. Some 

general points can be drawn from these results: 	 S  '. 

Transduction of 'early', markers argH, metB, ilv and xyl 

become nearly equal; tranduction of ily is either very 

slightly stimulated or decreases, presumably depending 

upon the fine balance between the transduction stimulating 

and the DNA damaging effects of Wi irradiation. 

Transduction of 'late' markers trp and his are also 

equalised, and stimulated to a great extent. 

Transduction of intermediate markers argA and lysA is 

stimulated, but not to the same level as the early markers. 

There , 	orte discrepancy , recovery of Leu+ 

transductants, an intermediate marker, is stimulated to 

exceed the recovery of Ilv+  transductants 	- 
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Figure 3.3 	Frequency of transduction as a function of 

time of replication. 

Points represent the number of transductants for 

individual markers relative to the frequency of 

transduction of 1rg+ transductants recovered before 

irradiation of phage, and each was calculated from the 

average of 2-5 separate experiments. Recipients used 

were: P111303, 11117, CP154 and NF2790 	Open circles, before 

irradiation; closed circles, after 2 minutes UV irradiation 

to phage. 
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From these collected data a pattern emerges: the 

recovery of transductants after maximum stimulation with 

UV can be related to the position of the marker on the 

E.coli map. Figure 3.3 shows a plot of frequency of 

transduction before and after 2 minutes of irradiation as 

a function of the relative time of replication. It can be 

seen that the initial 25-fold differences in transduction 

frequencies between well- and poorly-transduced markers 

is reduced to an approximately 3•5-fold difference. 

Transduction frequency is, in part, a function of gene 

frequency in the donor cell; transducing lysates are 

produced from cells-in -the iogphase- ofgrowth and the---  

• 

	

	particular culture used to produce the P1 lysate for these 

experiments had a generation time of 28'. The cells would 

• 	be expected to have an origin: ,  terminus ratio of markers 

of 2.7 due to multiple replication forks. Thus, after UV 

irradiation, the ratio of origin to terminus markers 

recovered approaches that expected from a gene dosage effect 

alone, and the large differences normally observed are 

greatly diminished. These results strongly suggest that 

transducing lysates contain bacterial genes in proportions 

equivalent to their frequencies in the donor cells. 

3.3 An inducible factor is not responsible for stimulating 

Irradiation of the P1 transducing particle enables 

the transducing DNA to bypass some selective process in 

the recipient. The next experiment was designed to 
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Figure 3.4 	UV survival curve for P1, and numbers of 

transductants at increasing WI dosage.. 

P1 was irradiated as described in the text, and 

pfu/ml was determined by titration. Open squares 

represent pfu/ml plotted against UV dosage (10 ergs/rnm 2/ 

sec). 	Closed squares represent numbers of Prg+ 

transductants obtained from the irradiated lysate. 
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distinguish between the following two possible causes of 

the observed stimulation: 1. The observed stimulation 

results from an increased concentration in the cell of a 

factor involved in general recombination which is induced 

by liv damage in DNA, 2. the tranducing DNA becomes a 

better substrate for the normal cellular recombination as 

a result of cleavage caused by UV. 

These two possibilities can be distinguished by 

introducing UV-damaged, non-transducing DNA into the 

recipient, simultaneously with undamaged, transducing DNA. 

• 	Non-transducing phages were grown onP]113031, a 

derivative of MM-303 which was used as the recipient, then 

concentrated by PEG precipitation and banding on a EsC1 

step gradient to a titre of 1•7 x io 12 pfu/ml. An aliquot 

of this preparation was diluted 100-fold in phage buffer, 

then irradiated with increasing doses of liv as previously. 

0.3 ml of the irradiated phage was mixed with 0.1 ml of 

phage prepared on W3110 (tire 8 x 10 8 pfu/ml) and added 

to the prepared recipient cells. The non-transducing 

phage was present at a final multiplicity of 4•5 thus 

ensuring that almost every cell in the recipient population, 

would be infected with an irradiated phage. The damage 

caused by irradiation does not impair the ability of the 

P1 particle to inject DNA into the recipient cell since it 

is possible to recover transductants when phage have been 

irradiated such that they are completely inviable (figure 

3.4). This, and the use of a P1 lysogen as a iecipient to 

prevent phage killing, ensures that each cell received some 

damaged DNA without impairing viability. Transductants 
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Figure 3.5 	Transduction of M11303 with a mixture of 

unirradiated transducing phage and irradiated 

non-transducing DNA. 

P1 grown on f'Wi3031 and concentrated in CsCI to a 

titre of 17 x 10 12  pfu/ml was diluted lOOx in phage buffer 

and irradiated as described in the text. 1 minute of UV 

at a dose rate of 10 ergs/mm 2/sec reduced phage titre by 

sox. 0•3 ml of irradiated phage was mixed with 0.1 mlof 

P1 prepared on W3110 (8 x 10  
pfu/ml) and added to the 

recipient cells. Numbers of transductants are shown 	 0 

relative to the number of Ilv+  transductants recovered, 

and plotted against Wi dosage. 	•0 	 - 

-89- 



Tiguie 3.5 

I. 

-J 

C-) 

U) 

I- 

0 

I.- 

II 

IN 

met 

13 

trp  

I. 

0 	 I 	 2 
	

3 	 4 
UV dose (mins) 

- 



can only arise as a result of recombination between the 

chromosome and undamaged transducing DNA from the P1 

lysate grown on t13110, since the irradiated lysate 

carries the same negative alleles as the recipient. 

The results of this experiment are shown in figure 

3.5. It can be seen that the presence of highly damaged 

DNA . has very little effect upon the recovery of stable 

transductants. None of the markers tested shows the 

stimulation in recovery relative to the recovery of Ilv+ 

transductants found in previous experiments. Thus it 

does seem more likely that the stimulation of transduction 

- 	arises because the recombining DNA is a better substrate 

• - 	for recombination enzymes, rather than because there is an 

inducible factor in the cell which raises the general 

level or recombination. 

3.4 UV irradiation of recipient cells prior to transduction. 

To show that damage to donor DNA is not required for 

the stimulation of transduction, the recipient cells were 

irradiated before transduction, rather than the 

transducing lysate. 

Cells were resuspended in phage buffer and irradiated 

as described, then resuspended in LBC and infected with a 

P1 lysate grown in J3110 at a multiplicity of about 1. 

Numbers of transductants for six markers recovered after 

various periods of irradiation are shown in figure 3.6. 

It can be seen that numbers of Ilv+ and Arg+  transductants 

fall sharply as the viability of the recipient decreases. 

However, recovery of poorly transduced markers his, j2 and 
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	 Cells of M[303 	were irradiated as described in 

chapter 2 and transduced as described in the text with 

unirradiated P1. Numbers of transductants for various 

markers recovered after times of irradiation shown are 

plotted, together with survival of colony-forming units. 
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pyrE increases 	 to 	.r€Qi/efy OF ;Xi,T.et 	WU 

UV 	 At maximum stimulation, as in previous 

experiments, the 20-fold differencesin frequencies of 

recovery are reduced to about 3-fold differences. Thus, 

irradiation of the recipient results in a similar pattern 

of stimulation as does irradiation of the donor phage. 

3.5 Role of repair enzymes in the stimulation of P1 

transduction by UV. 

In a further investigation of the mechanism of the 

stimulation of transduction, recipients deficient in 

excision repair were used in UV transduction experiments. 

Suitable recipients were constructed by introducing 

uvrA, uvrB and uvrC mutations into M[13031. Because. 

these give an Unselectable phenotype, the mutations were 

first linked to the transposon Tn 10 by the method of 

Csonka and Clark (1979) described in chapter 2. A81884 

(uvrC), A81885 (uvrB) and A81886 (uvrC) were infected 

with P1 (tJ3110::TnlO), and tetracycline-resistant 

colonies were selected on LB plates. supplemented with 

15 ug/ml of tetracycline. 200-300 clones were picked and 

patched on two LB-tetracycline plates, one of which was 

exposed to 500 ergs UV. UV resistant, tetracycline 

resistant clones would have miD closely linked to the 

uvr marker. To link to the negative allele, P1 lysates 

made on these strains were used to infect the parental, 

• uvr strain, and tetracycline resistant clones were 

selected. These were patched and tested for UV 

sensitivity. Tetracycline resistant, UV sensitive 

strains have the TnlO element linked to the negative 
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Figure 3•7 	The role of excision repair enzymes in UV- 

stimulated recombination. 

P1 transductions were performed as described in the 

text using P1 which was irradiated with UV for 0, 1, 2 

and 3 minutes at a dose rate of 10 ergs/mm 2/second. 

Recipients used were A. 11M3031, B. 1Th]3031 uvrA, 

C. 11113031 uvrB0 
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allele, and were used as donors to transduce uvr 

mutations into P1P13031 by selecting for tetracycline 

resistance, and screening for Wi sensitivity. 

The resulting strains MP13031 uvrI and uvrB were 

used as recipients for transduction experiments. The 

uvrC mutation could not be transferred to a suitable 

recipient; although it was apparently linked to Tn10 

the Tn10 insertion seemed to render the strain non-

transducible by P1. This insertion may have been in a 

gene similar to tdi, described earlier.. 

The results of transduction of 11M3031, MIl303luvrA 

and MM3031uvrB are shown in figure 3•7. TransductionE 

were as previously using P1 lysates exposed to WI at a 

dose rate of 100 ergs/mm 2  for 0, 1, 2 and.3 minutes. 

It can be seen that the uvrB mutation completely 

eliminates UV-mediated stimulation of transduction of all 

markers, while the uvrA lesion eliminates stimulation of 

transduction of the markers ilv, argH, 	pyrE and metB, 

but transduction of his is still stimulated at a low WI 

dose, but not to such an extent as in the parental strain 

1ir3031. 

36 Discussion. 

These results clearly show that there is some 

discrimination by the recipient in the frequency with 

which different fragments of transducing DNA are integrated 

into the chromosome, and that this discrimination can be 

eliminated by the introduction of Wi damage into the 

recombining DNA. It is possible that some regions of the 
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chromosome are more susceptible to damage by IJU than are 

others, and that the damage-stimulated recombination is 

concentrated on these fragments. The susceptibility of 

each marker to Wi is indicated by the rate at which 

recovery of that marker decreases from the point of 

maximal stimulation due to inactivation of the relevant 

gene. Slight differences can be seen between the markers 

(figures 3.1 and 3.2), but these do not negate the major 

conclusion that the differences in P1 transduction arises 

from a selective recombination in the recipient. 

- Most markers follow a similar pattern; the observed 

frequency of transduction, after, irradiaion being dictated 

by the relative time of replication. However, the recovery 

of some markers diverges from this pattern, most notably 

the marker le u, at 2 minutes on the chromosome, which is 

recovered at greater frequency after WI treatment than 

are origin markers. It is therefore possible that there 

is some bias towards packaging ofcertain regions by P1, 

but the experiments reported here indicate that this is 

not primarily responsible for the discrepancies in 

transduction frequencies. It was indicated in chapter 1 

that Sternberg etal.(1980) have shown preferential 

integration at and consequent packaging from one site on 

the E.coli chromosome. This site was found to be at 67 

minutes on the E.coli chromosome, and although this is 

not a high transducing region, other sites for 

preferential integration may exist. A more detailed 

analysis of the DNA content of transducing particles is 

necessary to confirm these conclusions, and this is 
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presented in chapter 7. 

In section 3.3, it was demonstrated that the damage 

stimulated transduction is probably not caused by an 

inducible factor. Introduction of damaged replicons into 

the E.coli cell is known to elicit a set of co-ordinated 

responses, the SOS response (Rosner et al., 1968; see also 

chapter 5), which includes the induction of some repair 

pathways (Kenyon and Walker, 1981). The introduction of 

damaged linear DNA in the form of Hfr DNA does not induce 

this response, and it is probable that damaged transducing 

DNA will similarly not induce SOS. Damaged transducing . 

DNA, then, is simply a better substrate for the cell's 

recombination system.. 	. 

The experiments descibed in section 3•6 show that 

uvrA+ and  uvr8+  gene products are necessary for damage-

stimulated transduction, and are in agreement with the 

results of Helling (1973). In addition, he found that 

uvrC+ gene product was not essential, and he hypothesised 

that an initial step in general recombination could be 

bypassed by the action of uvrA and uvrB nucleases to 

produce single-strand ends. Complete excision of the 

damaged DNA, which requires the uvrC gene product, is not 

essential. Helling found that there was still a slight 

initial stimulation in the uvrA and uvrB strains, and 

he proposed that this was due to the presence of another 

enzyme which could partially replace the uvrA and uvr8 

nucleases, but that most UV-induced recombination was 

dependent upon this function. 

Clark and \Jolkert (1978) proposed an additional 



pathway for recombination to explain this phenomenon; 

incision-promoted repair. Damaged DNA, then, may bypass 

an initial step in recombination which is responsible for 

the selective recovery of markers after transduction, 

and all damaged DNA is repaired, and thus recombined, with 

equal efficiency. The nature of the initial step is not 

clear, and this is investigated further as described in 

subsequent chapters. 



CHAPTER 	FOUR 

EFFECT OF REDUCED SUPERHELICITY OF THE RECIPIENT 

CHROMOSOME ON P1 TRANSDUCTION. 

4.1 	Introduction. 

As stated in chapter 1 the E.coli chromosome is 

organised into a series of loops stabilized by .a core of RNA 

and protein; each loop forms a domain of supercoiling. The 

folding of the chromosome may limit the accessibility of 

some parts of the chromosome to enzymes involved in 

recombination or repair. If this were so altering or 

disrupting the three dimensional structure of the E.coli 

chromosome might selectively alter the frequency of 

recombination of transducing DNA. 

E.coli DNA gyrase (topoisomerase II) introduces 

negative supercoils into the E.coli chromosome in a 

reaction dependent upon ATP hydrolysis (Cozzarelli, 

1980). The enzyme acts by passing a double helical 

DNA segment through a transient double stranded break 

in DNA (Ilizuuchi et al., 1980). DNA gyrase activity is 

produced by a complex of two subunits; molecular weights 

100 000 and 90 000 coded for by genes £A (nalA) and 

gyrB (cou) respectively (ilizuuchi et al., 198). The 

enzyme is the target of several antibiotics: coumermycin 

and novobiocin affect the gyB subunit; and, nalidixic and 

oxolinic acids affect the qyrA subunit. The action of 

these antibiotics is to reduce the degree of supercoiling 

of the E.coli chromosome (Drlica and Snyder, 1978; Gellert 

et al., 1976b). The two subunits appear to function in 

different steps of the supercoiling reaction: the qyrA 
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subunit is responsible for the breakage and reunion 

activity of the enzyme, while the gyrS subunit is 

involved in the binding of ATP (Ilizuuchi et al., 1978). 

The precise physiological role of DNA gyrase is not 

known, although the inhibitory effects of nalidixic acid 

on DNA replication and transcription (Botcham et al., 1973; 

Kreuzer and Cozzarelli., 1979) and of novobiocin and 

coumermycin on DNA synthesis and transcription (Fairweather 

et al., 1980) indicate the necessity of DNA gyrase activity 

for these processes. Orr et al., (1979) isolated a 

conditional lethal mutant in the 9B gene which showed 

aberrant division and disorganisation of nuclei at the 

non-permissive temperature, suggesting that DNA gyrase is 

essential for the structural organization of the chromosome 

and its normal association with the cell membrane. 

It seemed likely that reduced supercoiling in the 

chromosome of E.coli strains mutant in DNA gyrase activity 

may result in disruption of. the normal three-dimensional 

organisation of the chromosome. Two mutants were chosen 

to investigate the effect of reduced supercoiling on 

recombination of transducing fragments in the recipient 

cell: LE701, a a8 mutant (Fairweather et al., 1980) and 

i1H5, a gA mutant. LE701 was isolated as a coumermycin 

resistant mutant and it has a tendency to form chains and 

filaments during normal growth. It has an approximately 

30% reduction in DNA : cell mass ratio compared to the 

parental strain, and an increased cell mass, which 

together indicate that initiation of DNA replication is 

delayed. 
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Figure 4.1 	Comparative cell volume of parental and 

gyr mutant strains. 

Cell volumes were determined using a Coulter counter 

as described in chapter 2. The figure shows a plot of 

number of cells against increasing cell volume for the 

two pairs of strains: A. LE234 (parental) and LE701 

(gyrB); B. FtN303 (parental) and 6N500 (gyri). 
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4.2 Transduction of gyrase mutants. 

The effect of the gyrB mutation on P1 transduction 

was determined by comparing the recovery of stable 

transductants from the yyrB mutant LE701 and from the 

parental strain LE234. LE701 is resistant to 70 ug/mi of 

coumermycin and has a larger average cell volume than the 

parent (figure 4.1A). 

The gyrA mutation in fiH5 was in a prototrophic 

background, so a suitable recipient for transduction was 

constructed by transducing the mutation from 11H5 into 

MM303 which has a number of auxotrophic markers. 

Selection was for naiR  on LBC plates containing 70 ug/mi 

nalidixic acid. The resulting,. nal strain (8N500) had 

all the auxotrophic. markers. of FW1303, was resistant to 

70 ug/mi nalidixic acid and had a larger average cell 

volume as determined using a Coulter counter (figure 

4.18) 

Transduction was performed as outlined in chapter 2 

using a P1 lysate of titre 5.3 x 10 pfu/ml grown on 

W3110. Transductants were scored on selective plates and 

the resbits of experiments using 2Lrmutants and parental 

strains re shown in table 4.1. Also shown are the 

relative frequencies of tr ansduction. 

It can be seen that there is little alteration in the 

relative frequencies of transductions in the two mutant 

strains when compared to the parental strains. However, 

absolute frequencies are reduced. The gyrA mutant, F1H5, 

shows approximately 50% reduction in recovery of all 

markers, while the qyr8 mutant shows a 5-6 fold decrease. 
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Table 	4•1 	Transduction of gyr mutants. 

Effect of gyrB on transduction. 

Recipient Number of 	transductants per 

1 	x 	10 7 	phage, 	and 	(below) relative 

ratio 	(No. 	of Pro 	= 	i) 

+ 	
F - 
	+ 	 + 

liv 	et 	Pro 
+ 

Arg 

LE234 535 	59 	51 87 

10.5 	1.2 	1.0 1•7 

LE701 130 	11 	7 17 

186 	1.6 	1 2.4 

Effect of gyrA ontransduction. - 

Recipient Number of transductants per 5 	x 	10 
7 

phage, 	and 	(below) 	relative ratio 

(No. 	of 	Arg
+ 
 = 	i) 

+ 	+ 	+ 	+ Arg 	Met 	liv 	His + 
Trp 

+ 
Pyr 

[*1303 695 	630 	2376 	153 252 220 

1'0 	0.91 	3.4 	0.22 0•36 032 

BN500 308 	244 	1325 	67 113 102 

10 	0.79 	4.3 	0.22 0.37 0•33 

iii 



4.3 Discussion. 

Mutations affecting DNA gyrase result in a highly 

pleiotropic phenotype which includes reduction in the 

rate of DNA and RNA synthesis and cell division. These 

may be due to a direct interaction of the enzyme in these 

processes but are more likely to be caused by a general 

disruption of DNA metabolism by a loss of supercoiling. 

The ubiquitous occurrence of negative supercoiling to the 

same extent in circular DNA isolated from all natural 

sources (Cozzarelli, 1980) suggests its fundamental 

importance. Supercoiled DNA is known to be necessary 

for site-specific recombination (flizuuchi and Nash, 1976) 

and also increases the rate of initiation of RNA 

synthesis by E.coli polymerase in vitro probably by 

facilitating helix unwinding at the promoter (Botcham 

et al., 1973). 

These results show that P1 transduction into a DNA 

gyrase mutant is severely reduced, and this may point to 

a general effect upon the mutant cells' ability to 

perform general recombination.' Negative superhelicity is 

also essential for the activity of RecA protein in 

unwinding DNA to initiate recombination (Shibata et al., 

1979). The reduced P1 transduction frequencies may simply 

be a manifestation of the reduced ability of RecA protein 

to initiate recombination with the mutant chromosome. 

Since it has not been established that the gyrase 

mutants have an altered chromosome structure brought 

about by reduced supercoiling it cannot be concluded that 
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there is no effect caused by the alteration of the 

three-dimensional structure. of the chromosome upon P1 

transduction frequencies. 



CHAPTER 	FIVE 

ROLE OF RECA PROTEIN AND CHI SITES IN P1 TRANSDUCTION 

5•1 	INTRODUCTION 

In chapter 3 it was shown that UV irradiation 

stimulates transduction by P1, both after irradiation of 

the phage, and of the recipient cell, resulting in a 

consequent loss of discrimination during integration of 

transducing DNA. The experiments in this chapter were 

designed to investigate how this discrimination arises. 

RecA protein is essential for homologous recombina-

tion and also for efficient P1 transduction, and it 

could be envisaged that it has a greater affinity for 

some areas of the chromosome and that these regions 

would therefore more frequently undergo recombination 

events. By  increasing the concentration of RecI\ protein 

in the cell, areas with less affinity for the protein 

might be expected to undergo recombination with greater 

frequency. The experiments of Lloyd (1978) encouraged 

this reasoning; he found that by increasing the 

- 	concentration of RecA protein in the cell, the number of 

genetic exchanges in Hfr x F crosses is greatly elevated. 

It was possible that a similar effect might be observed 

with P1 transduction and so asimilar experiment was-, -. - .'. . -  

performed. 

Initially, to boost the concentration of RecA 

protein in the cell,, mutants which over-produce RecA 

protein described by Mount (1977) and used by Lloyd (1978) 
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were used as recipients in P1 transduction experiments. 

These strains are mutants in the control of RecA protein 

synthesis, which is a complex system elucidated during 

investigations of the E.coli response to DNA damage. 

Normally the recA gene is repressed by the lexA product 

and RecA protein is synthesised at a basal level sufficient 

for homologous recombination. Uhen E.coli DNA is damaged 

by such treatments as Wi irradiation, the cell reacts by 

initiating a set of coordinated actions, known collectively 

as the SOS response (tJitkin, 1976).. The response begins 

with the association of RecA protein with an effector 

which alters its conformation such that it can act as a..  

very, specific protease (McEntee, 197.7; Craig and Roberts, 

1980). A model for control postulates that this protease, 
* 

or RecA , cleaves the lexA gene product which represses 

the recA gene and thus RecA protein synthesis is 

derepressed to such an extent that it constitutes 3 of 

total cell protein (figure 5.1). 

The lexA gene product also represses a number of 

other genes, including its own promoter (Brent and 

Ptashne, 1980) which are consequently expressed as prt of 

the SOS response. These include; uvrA and uvrB, increased 

expression of which results in increased repair of 

chromosomal and incoming damaged DNA (Kenyon and Walker, 

1981); a cell division inhibitor, which leads to 

filamentation; and, a group of damage inducible or din 

genes whose function is not yet clear but may account for 

increased mutagenesis by the induction of an error-prone 

DNA poly.merase (Kenyon and Walker, 1980). RecA
* 
 also 
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cleaves ?\ repressor protein, and thus lysogens are 

induced (Roberts et al., 1978). 

The nature of the effector is a matter for 

conjecture; any impediment to DNA synthesis, including 

thymine starvation, rnitomycin C treatment, disruption of 

the replication fork by denaturation of dnaB, cinaG or 

poiC proteins induces the SOS response (Dishi et al., 1976). 

One suggestion is that the inducing signal may be 

oligonucleotides arising from degradation of damaged DNA 

(Dishi and Smith, 1978). 

A mutation at the recA locus, tif, or recA 441 

• (temperature inducible filamentation; Castellazzi et al., 

1972) mimics the SOS response at . 42 1 -C in all respects 

including overproduction of RecA protein. The tif product 
* 

is temperature sensitive and assumes the RecA protease 

conformation at 42 C (Emmerson and West, 1977). The 

filamentation response leads to poor viability, but a 

second mutation sfiA (suppressor of filamentation; 

George et al., 1975) specifically suppresses the 

filamentation respone at 42 C, but has no effect on the 

other temperature induced responses. The tif-1 sfiA 

strain 0C3217 overproduces RecA protein at 42 C and 

synthesis is elevated at 37 C. • Mount (1977) isolated 

another RecA' protein overproducing mutant DM1187 from a 

lexA tif-1 sfiA strain, which is non-inducible and very 

sensitive to mutagenic treatments. DM1187 expressed SOS 

functions constitutively at normal temperatures due to 

a second mutation at the lexA locus, spr which stops 

production of the lexA repressor. DM1420 is tif and 
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hence is derepressed for RecA protein synthesis but not 

for other SOS functions. 

A second strategy to increase the concentration of RecA 

protein in the cell was later used. The recl\ gene has been 

cloned on multicopy plasmids (Sancar and Rupp, 1979; 

Emmerson et al., 1980) and one of these plasmids was 

introduced into a suitable recipient for P1 transduction. 

In another series of experiments, the effect of 

special sites for recombination of P1 transduction 

frequencies was investigated. The best documented of 

these are chi sites (see chapter 1) although the role of 

these in chromosomal recombination has not been determined. 

Chi sites are only effective when recombination is by the 

RecBC pathway, and thus if chi sites are responsible for 

the recombination of high transducing markers, rec8 or 

recC recipients should give lowered transduction 

frequencies for higher transducing markers only. It 

was therefore decided to construct mutants lacking the 

RecBC pathway and to look for effects on P1 transduction. 

5.2 P1 transduction of mutants constitutive for RecA 

protein synthesis. 

The strains DM1187, 0C3217 and DM1420 which Lloyd (1978) 

used in experiments which showed that increased RecA protein 

synthesis resulted in •enhanced crossover frequency were 

used as recipients in transduction experiments. 

Transductions were as described in chapter 2, and were 

performed at 37 C at which temperature SOS-controlled 

functions are elevated in CC3217 (Lloyd, 1970). The 

results are displayed in table 5.1, together with results 
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Recipient 	Relevant Genotype 	 Numbers of transductants per 5 x 10 pfu, 

and ratios relative to numbers of Leu+ 

• 	 transductants. 

• 	 Thr 	Leu 	Pro 	Rrg 	His 

PB1157 	tif !t.1 	 1262 	2001 	597 	ND 	327 

0.63 	:1.00 	0.30 	 0.16 

GC3217 	tif-1 sfil\11 lex spr 	814 	1390 	368 	909 	195 

0.59 	.1.00 	0.26 	'0.65 	0.14 

DM1187 	tif-1 sfiAll lexA3 spr5l 	ND 	1717 	443 	 205 - . 
	 1•00 	0.26 	 0.12 

0111420 	
tif f  sflPtll lexA3 spr5l 	• 	1232 	2112 	593 

0.58 r 	1.00 	0.28 

Effect of RecI\ protein overproduction on frequencies of transduction. 0.1 ml of P1 

was mixed with 0.1 ml of recipient cells. 10- 
2  dilutions of this mixture were spread 

on selective plates which were incubated at 37 C for 2 days. 1 000-4 000 colonies 

were counted for each marker. Ratios of frequencies relative to numbers of Leu+ 

transductants are also displayed; numbers of Leu+  arbitrarily fixed as 100. 

ND = not determined due to high reversion rate. 



using the parental strain, A01157 as a recipient. It is 

clear that RecA overproduction has no marked effect upon 

transduction; numbers of Th r+ ,  Leu+ and  Pro+  transductants 

are virtually identical when either A81157, the parental 

strain, or DM1420, a constitutive overproducer of RecP 

protein, is used as the recipient. In both GC3217, and 

DM1187, which are both tif sfi, numbers are slightly 

depressed, although not significantly so. In none of the 

mutant strains is the ratio of numbers of transductants 

relative to leu+  transductants altered, thus the over-

production of RecI\ protein to the extent found in these 

strains does not stimulate the transduction of poorly 

transduced markers. 

5.3 Introduction of multicopy recA plasmid into a recipient 

for P1 transduction. 

pPE13 (Emmerson et al., 1980) was constructed by 

sub-cloning a 1.6 Md Bst fragment from XprecA (McEntee 

et al., 1976) into p8R322. The plasmid carries an intact 

recICF gene, and in a host cell directs the synthesis of a 

large amount of RecA protein. However, this overproduction 

does not lead to 'induction of the SOS response (McEntee, 

1977) and effects upon recombination caused purely by an 

increased concentration of RecA protein will be observed 

without interference caused by increased mutagenesis. 

A suitable host for this plasmid, useful in P1 

transductions, was constructed from MM3031 by introducing 

a deletion, of the recA region to prevent homologous 

recombination of the plasmid into the chromosome. N1460 
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Figure 5.2 	Autoradiograph of whole cell proteins 

35 extracted from 	S labelled cells. 

Cells were labelled, proteins extracted and 

separated on a 7-20% SDS-polyacrylamide gel as described 

in chapter 2. Proteins were made from: track 1. l'1M3031, 

M1V13031  treated with 400 ergs Wi before labelling, 

BN56 , 4. 8N56 pPE13. Standard proteins (unlabelled) 

were: C-lactalbumin, 14°4 kO; soybean trypsin inhibitor, 

20.1 kO; carbonic anhydrase, 30•0 kD; ovalbumin, 43.0 kD; 

bovine serum albumin, 67.0 kD and phosphorylase b, 94•0 kD. 
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is an Hfr donor which transfers a deletion extending 

from sri to recA from an origin at 61 minutes. N1460 

was crossed with 11113031, selecting for His+  and counter-

selecting on plates supplemented with 200 ug/mi 

streptomycin. Hi s+ 5mR clones were checked for sensitivity 

to UV, and one clone, B.N56, was transformed with pPE13, 

selecting for ampicillin resistance on LB plates 

supplemented with 50 ug/mi of ampicillin. ApR  clones 

were checked for UV resistance, and the presence of a 

plasmid was confirmed in Birnbcim plasmid preparation. 

To check that RecA protein was being overproduced in this 

strain (BN56pPE13), which is not derepressed for RecA 

protein synthesis, cells were labelled with 35 

methionine and whole cell proteins were extracted and 

separated on a 7-20%.SDS-polyacrylamide  çel. The gel was 

dried down and autoradiographed;. figure 5.2. shows an 

autoradiograph of whole cell proteins prepared from 

P1113031, 11(13031 treated with 400 ergs of UV before labelling, 

BN56, and BN56pPE13. The increase in synthesis of a 

38 000 moleclar weight protein after Ut! can clearly be 

seen; this band is entirely absent from BN56A and is thus 

identified as RecI\ protein. BN56 pPE13 clearly 

synthesises RecA protein copiously, and although the 

amounts of protein loaded for each strain is different, it 

is obvious that it exceeds the amount synthesised during 

the SOS response (track 2). 

BN56ipPE13 was used as a recipient for P1 transduc- 

tion. Transductions were performed as described previously, 

-117- 



Table 5.2 

Recipient UV dose Numbers of transductants per 55 x 	i0 6  

(minutes) pfu 	(before irradiation) and ratios 

of frequencies relative to numbers 

of Arg 
± 

before irradiation. 

1\ 	
+ 

rg et fl 	
+ + 	+ 

Ilv 	Trp 
+ 

PyrE 

F'iIV13031 0 1030 490 3140 	225 395 

1.00 0•48 3•00 	0.22 0•38 

2 1800 1660 2570 	601 1046 

1.70 1.60 2•50 	0•58 1.00 

BN56L 0 1040 680 4230 	265 460 
(pPE13) 1•00 0.65 4.00 	0•25 0.44 

2 2390 1890 3010 	1021 1562 

2.30 1.80 2.90 	0.98 1..50 

Comparison of transduction into rW13031 and BN56(pPE13) 

Transductions were as described in the text using P1 

irradiated for 0 and 2 minutes as indicated. 



using a P1 lysate grown on W3110, and selecting for five 

auxotrophic markers. Results are displayed in table 52, 

together with a simultaneous experiment on MIi3031. It is 

apparent that increasing the concentration of RecA protein 

in the cell does not significantly affect the level of 

transduction, or alter the ratio of markers recovered. 

However, the elevated synthesis of RecI\ protein does 

appear to have an effect upon the recovery of markers 

after UV irradiation. There is a 30-50% improvement in 

the recovery of all markers, particularly the low-

transducing markers trp and pyrE. 	 - 

5.4 Role of chi site activity and the RecE pathway of 

recombination in P1 transduction. 

To eliminate chi site activity, strains were 

constructed which lacked the RecBC pathway of recombination, 

but which were derepressed for the RecF pathway and hence 

recombination proficient. Two mutations were introduced: 

recB or recC which eliminates the recBC nuclease, ExoV, 

and sbcB, which eliminates Exol, which is a suppressor of 

the RecF pathway. Neither of these mutations can be 

selected for easily, 	and sbcB 	alone confers no obvious 

phenotype. The following strategy, outlined in 	figure 	53, 

for constructing IRecFt strains was used. 

The parental strain, M113031 	was infected with 

P1 prepared from a his sbcB strain (E02123) and His.+  

transductants were selected. Approximately 50% of these 

would be expected to be sbc0 also (Wu, 1966). BN1-16 

were isolated at this stage. Next, P1 prepared on a 
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Figure 5.3 	Derivation of 'RecF' strains. (see text 

for further explanation). 

N113031 thy 	x P1 (sbcB h.is) 

select His+ 

BN1-16 	 S  
+ 	+ 	 + 	

.5 

(recB 	sbcB or recB sbcB
- 
 ) 	 .. 	- 

8N3, 0N7 x Pi(flj recB) 

	

+ 	
___5• 

• 	 select Thy 	 : 	• 

Test R ec+ Thy+ strains for recB 

- 	spontaneous 
BN3-1-5 (sbcB recB ) 	 ) 0N3-1-L 

BN3-8 (sbcB rec8) 
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recB strain (JG7526 or [02123) was used to transduce 

BN1-16 and Thy transductants were selected. About 50% 

would also be expected to be recB. Those strains which 

were sbcB would be expected to yield only recombination-

proficient Thy strains; sbcB his strains would yield a 

mixture of Rec + and Rec- 
	 + 
transductants. Thy clones 

originating from BN1-16 were checked for recombination 

proficiency in Hfr crosses, and also for the presence of 

the recB marker as follows. P1 lysates grown on Rec+ 

putative, sbcB strains were used to infect [P154 

(argA lysA), and Arg+  Lys+  transductants were selected and 

testedforrecombination. proficiency.in  Hfr. crosses.. 

Recovery of recombination deficient clones indicated that 

the donor was recB. 

The first recB sbcB isolates grew slowly and were 

Poor recipients for transduction, but they spontaneously 

changed to faster growing, large colonies on LB plates 

which were good recipients for P1 transduction. One of 

these segregants, 8N3-1-L, was used in a transduction 

experiment, together with BN3-8, one of the sbcB recB 

isolates. Transductions were performed as previously 

using P1113031, 8N3-1-L and BN3-8 as' recipients for P1 

prepared on W3110, and irradiated with UV for 0, 1, 2, 4 

and 6 minutes,., The results of these experiments are 

plotted in figure 5.4. 

From these graphs it is clear that the rec8 sbcB, 

or RecF strain, is a better recipient for low-transducing 

markers trp and oyrE, although no better for high-

transducing markers. 	It is also a better recipient for 

- 121 



Figure 5.4 	Frequency of transduction into sbcB strains 

using irradiated P1 lysates. 

P1 lysates grown on L13110 were irradiated with UV 

at a dose rate of 10 ergs/mm 2/second for 0-6 minutes, and 

used to transduce A. flN3031 (recB sbcB); B. BN3-1-L 

(recB sbcB); C. 8N3-8 (recB sbcB). 
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UV damaged DNA. The sbcB strain BN3.-8 also shows a 

marked improvement in the, recovery of all markers after 

UV damage over the recovery :in  the wild-type strain. 

55 Discussion 

The experiments in this chapter represent two 

approaches to the problem of bias in the recovery of some 

markers after P1 transduction. The experiments in the 

first two sections were an attempt to decrease the 

discrimination by increasing the concentration of an 

essential participant in homologous recombination, RecA 

protein, by various means. 'The -overall level of 

:recombination resulting in the-formation of stable 

transductants is unaltered in a strain which constitutively 

synthesises RecA protein, DM1420, and virtually unchanged 

in two other RecA protein overproducers, 0C3217 and 

DM1187, both of which are tif mutants. Lloyd (1978) 

suggested that the frequency of crossover between Hfr and 

F chromosomal DNA is strongly dependent upon the level of 

recA gene product in merozygotes, although integration of 

Hfr DNA per se is relatively independent of RecA protein 

level. He pointed out a possible enhancement of 

recombination by the tif-1 mutant protein. It is possible 

that P1 transducing DNA was subject to a higher frequency 

of crossover, but this was not measured in these 

experiments.. Also, Hfr DNA enters the cell as a single 

strand whereas P1 DNA is integrated as a double strand 

(Sandri and Berger, 1980a), and thus ,  is possibly the 
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substrate for different enzymes, as discussed in chapter 

T . 

In order to avoid the mutator effects of two of 

these strains, and the high reversion rates of some of the 

markers in these strains, a different method was adopted 

to obtain increased levels of RecA protein. The plasmid 

pPE13 which directs the synthesis of a copious amount of 

RecA protein, unaccompanied by any of the SOS responses 

was introduced into f1t13031. Again, the effects were 

small. 

It can thus be concluded that the differences 

fob.s?r.vedin transduction frequency are not due to 

differing affinities for a limiting amount of RecA protein. 

It seems evident that the variations result from some 

other aspect of the structure of the transduced DNA. 

Homologous recombination usually occurs by the RecE3C 

pathway. Recombination by the RecE pathway was examined, 

both in order to compare the specificities of the two 

pathways, and to gain information about the possible 

role of chi sites in transductional recombination. Results 

of P1 transductions into the RecF strain shows a striking 

difference from recB 
+

strains in that it integrates 

poorly transduced DNA at a higher frequency than wild-

type indicating that a selective process in recombination 

is not operating in this strain. Perhaps the activities 

of ExoL and ExoV, which are lacking in the RecE strain, 

destroy the poorly transduced DNA selectively either 

because it is delayed in integration, or because its 

recombination intermediates are better substrates for 
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these enzymes. 8N3-8 lacks one of these enzymes, Exol, 

and it is a better recipient for damaged DNA than the 

wild-type; Exol may be selectively destroying damaged 

DNA. 

Another factor to be considered is the role of chi 

site activity. WFhether chi sites have any effect upon 

general recombination is not known. The experiments in 

this chapter neither prove nor disprove the theory that 

chi site activity is responsible for selectivity in P1 

transduction. It is possible that the recBsbcB strain. 

which lacks chi activity is a better recipient for all 

markers due to the lack of exonuclease activity,. but.... 

that in a wild-type strain, chi site activity causes rapid 

and preferential integration of the high-transducing DNA. 

The low-transducing DNA may lack chi sites, may not be so 

rapidly integrated, and may be more susceptible to 

nuclease attack. A model based on these results is 

further discussed in the final chapter. 

The fact that the initial recBsbcB isolates, 

which grew poorly, rapidly developed faster growing 

derivatives indicated that these may have gained another 

highly advantageous mutation. The nature of this further 

mutation has not been investigated, but it may be that it 

is this mutation, rather than the recBsbcB mutations, 

which is resposible for the alteration in transduction 

frequencies. In any case, it is clear that the 

discrimination between markers in P1 transduction is 

genetically controlled in the recipient. 	. 
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CHAPTER 	SIX 

CLONING or RESTRICTION FRAGMENTS FROM CHROMOSOMAL DNA 

INTO PHAGE \ VECTORS. 

6.1 	Introduction. 

The development of in vitro systems for creating 

specialised ?\ transducing phages (Murray and Murray, 1975; 

Dorck et al., 1976) provides a convenient means for 

isolating and preparing large quantities of particular 

fragments of E.coli chromosome free of vector DNA. A 

bank,or pooled lysate, of recombinant phages is first 

prepared as described below, from which phages can be 

isolated which carry selected markers by complementation 

of particular mutations. 

6.2 Phage 	cloning vectors. 

Two cloning vectors were used. These wereN1540 

(Murray and 1urray, 1975) andi\NM616 (Wilson and Murray, 

1979), which are illustrated in figure 61.1\NM54O 

(sri(1-2) , att+ 	21 , imm , nm) was constructed for use as 

a receptor for fragments generated by Hindtll. The 

chromosome is deleted for about 21% of the wild-type 

complement, and it has a capacity for restriction 

fragments of up to 10 kb which are inserted into the single 

Hindill site between gene I and the attachment site to 

generate an integration and recombination proficient 

phage. It also carries the wild-type allele of imm 21  

derived by replacing the ? immunity region with the phage 

21 immunity region. 
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figure 6.1 
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+ 	+ 	21 \N1i616 (lac , att , irnm , nm) is a derivative of 

plac5. It is an integration and recombination 

proficient displacement vector in which donor DNA is 

inserted between two EcoRl sites to the left of the 

attachment site, displacing the fragment containing 

most of the lacZ gene. It has a capacity for a 12 kb 

insert, and the two arms of \ cannot rejoin to form a 

viable phage since the complement of DNA is too low. 

-. This, and the presence of the lacZ gene in the vector, 

facilitates recovery of recombinants since only phages 

• carrying an. insert are viable, and the original vector 

: 

	

	forms red plaques on iacConkey-lactose plates, whereas 

recombinants form white plaques. 

6.3 Construction of pooled lysate. 

Receptor phage and E.coli U3110 DNA were digested to 

completion separately with ECOR1 (New England Biolabs) or 

Hindill (Ooehringer Mannheim Corporation). The reaction 

was terminated by inactivating the enzymes at 70 C for 

15 minutes, then cooling on ice. 

Restricted donor and receptor DNAs were mixed in 

the proportion of 3-4 donor to 1 of recipient, then 

incubated at 30 C for 15 minutes to separate pre-

annealed fragments. The mixture was ligated with T4 

DNA ligase at 10 C for 6 hours, then kept on ice for 

2-6 days. During the incubation period, samples (about 

50 ng) of the ligating mixture were diluted to 01 ml 

with SSC:CaCl 2  and used to transfect 0.2 ml of competent 

cells (NEM259 or AA125). After transfection, cells were 
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mixed with molten BBL top agar and plated on BBL plates. 

Plaques were harvested after overnight incubation at 

37 C as for a plate lysate. A total of about . 1 000 

plaques was pooled into one lysate. 

Numbers of recombinantphages could be estimated 

directly uhen7NM616 was used as the receptor. AP,125 was 

used as the transfection strain; it is lacZ, and thus 

infection with the original lac k  vector gives red plaques 

on IviacConkey  lactose plates, whereas infection with 

recombinant,. lac 	phages gives white plaques. Maximum 

numbers of recombinant phages were recovered after 48 

hours incubation at 0-C. 

The resulting pooled lysates had a titre of 10 5  10 6

pf'u/ml, and this was boosted by re-infecting NEM259, plat-

ing on 88L plates at 37 C, and harvesting the lysate. The 

boosted lysate had a titre of 10 -10 	pfu/ml. 

6.4 Selection for transducing phages carrying particular 

segments of the E.coli chromosome. 

Transducing phages were selected from the pooled 

lysate by their ability to complement mutations in 

appropriate bacterial strains, 10 6_10 7  pfu in phage 

buffer were mixed with about 10 8 recipient cells grown 

to late log phase and resuspended in 10' 	11 MgSO 4 . After 

adsorption for 15 minutes at 37 C, ten-fold dilutions 

were spread on selective plates. 

Colonies appeared after 1-2 days; these were 

restreaked on selective plates and checked for lysogeny 

by cross-streaking against ?vir and 1\N11540 on LB plates. 
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Figure 6.2 	Restriction pattern of 2\ transducing phages. 

DNA was prepared and restricted as described in 

chapter 2. Restricted DNA was loaded on a 0.7% agarose 

gel which was electrophoresed at 30 v, 15 mA overnight 

then stained with ethidium bromide. Bands were 

visualised with UV and photographed through a red filter. 

Track 1,XC1857  DNA digested with Hindlil (size markers); 

track 2,BN2 digested with Hindlil; track 3, ABN1 

digested with jjdIII; track 4, 7BN74 digested with 

Hindill. R and L indicate the right and left arms of 

7tNV1540  from the recombinant phages. Bands larger than 

R and L are incompletely digested. 
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Free phage was prepared from lysogens by UV induction, 

and DNA was prepared and analysed on agarose gels. 

65 Isolation and characterisation of 7iiv phage. 

The 2\NP1540 pooled lysate was used to complement 

11113031 ma1 on lJ8 minimal plates, selecting for Iiv clones. 

Ilv+ colonies were checked for 7 lysogeny, and phage was 

prepared by UV induction. From one clone, a 2ilv phage, 

7BN74, was isolated. DNA was prepared, and restricted with 

Hindlil. The restriction pattern is shown in figure 6•2 

lane 4; the chromosomal insert is a 7.5 kb Hindlil 

fragment. The complementation. pattern of the phage .wás 

also checked using AB1160 (ilvC), AB1161 (il v At 5 ) ,  

A82070 (ilvE) and A83505 (ilvD). 	BN74 complements 

ilvA and ilvC (figure 6.3), but not ilvE or iivD. A 

restriction pattern of the liv gene cluster at 84.1 

minutes (11cCorkle et al., 1978) is shown in figure 6.3, 

and from this data, and the complementation pattern, it was 

deduced that 2BN74 carries a 7.5 kb Hindlil fragment which 

extends from a Hindlil site in the ilvD gene rightward 

through the ilvA, ilvC and ilvB genes, and beyond the liv 

gene cluster. 

The liv gene cluster is organised into four 

transcriptional units as shown in figure 6.3; ilvEDA, 

iluB, ilvC and ilvC. ilvO is a regulatory locus affecting 

11vEDA and ilvG. Thus livA, which is carried on the 

7.5 kb Hindill fragment and which complements the ilvA 

lesion in ASilGi must be transcribed either from the 

L promoter, which can promote transcription beyond att 
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figure 6.3 
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into the central region of 7 including transcription 

from genes inserted at shnM in the 1 orientation (Hopkins 

et al., 1976), or from a minor promoter situated between 

the ilvD and ilvA genes (F9acCorkle et al., 1978). 

6.6 Isolation of ?\arg, met, and 2pro phages. 

Transducing phages carrying the argH and metE3 genes 

were isolated by complementation of 11113031 	
+

with the 

\N11540 pooled lysate. Digests of the 2argH phage,7BN1, 

and the 2'metB phage,'\8N2,  with Hindill are shown in 

figure 6•2. 

2\BN1 carries a 7.0 kb Hindill fragment, which can 

be identified with the 7.0 kb fragment mapped by Crabeel 

et al. (1977), and the 7.35 kb fragment mapped by 

Kreuger et al. (1981). This is confirmed by the comple-

mentation pattern shown in figure 6.4. 7BN1 complements 

the argH mutation in 11113031 mal, but not the argE 

mutation in A81157. A physical map of the argECBH 

cluster is shown in figure 6.4. It is probable that the 

argH gene in 2BN1 is being transcribed from the secondary 

promoter which was identified between argH and argB 

(Crabeel et al., 1977). 

2\BN2 contains a 10.5 kb Hindlil fragment which 

complements met8 but not the metLil mutation in Gif102. 

A comprehensive restriction map of the metB.JLF cluster has 

not been published, so this fragment cannot be related to 

existing maps. 

A phage carrying the pro/\ gene was also isolated by 

complementation of AB1157 with the 7N[1616 pooled lysate. 
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The chromosomal insert was very small, less than 1 kb, 

and unfortunately, reassociation experiments using this 

fragment were not satisfactory as the probe reassociated 

at a rate barely distinguishable from the reassociation 

driven by test DNA under the conditions used. 



CHAPTER 	SEVEN 

COMPARISON OF THE RATIOS OF MARKERS IN P1 AND LOG-PHASE 

E.COLI DNA USING KINETICS OF REASSUCIATION. 

7.1 	Introduction. 

The experiments described in chapter 3 strongly 

suggested that P1 does not selectively package DNA, but 

that the recipient selectively recombines some regions. 

From this hypothesis it would follow that markers would 

be represented in transducing DNA in the same ratios as 

in the DNA of donor cells. In order to substantiate the 

earlier results, an experiment was designed to estimate 

the relative ratios of several markersin. P1 transducing 

DNA and in E.coli U3110 DNA. 

Estimates of the-percentage of transducing particle 

• 	in a P1 lysate vary from 0.3% (Ikeda and Tomizawa, 1965) 

to 2% (Sandri and Berger, 1980a), and, since P1 can 

package 2% of the chromosome into a phage head, a given 

sequence will be represented by, on average, 21c of 

transducing particles or about 0.02% of total particles. 

Therefore, a very sensitive method is needed to enable the 

estimation of the concentration of different sequences. 

Nucleic acid hybridisation techniques have been used for 

many years to detect and quantify homologous sequences in 

DNA (Britten and Kohne, 1968). Filter techniques (Denhardt, 

1966) have certain limitations; particularly that a 

sufficient excess of DNA cannot be loaded on to filters. 

However, perfection of techniques for hybridisation in 

solution (Britten et al., 1974) has led to measurements of 
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very low concentrations of sequences in test DNA. Gelb 

et al. (1971) could detect less than one SV40 DNA 

molecule (3 x 10 daltons) per mammalian cell genome 

(4 x 10 12  daltons) by using a high ratio of mammalian 

DNA to viral DNA to compensate for the large differences 

in their respective molecular weights. 

Similar methods could therefore be used to analyse the 

• content of P1 transducing DNA. Fragments of chromosomal 

DNA were isolated from the 	transducing phages described 

in chapter 6, and used to probe P1 DNA; because of the 

sensitivity of the method it was unnecessary to separate 

the transducing particles from the infective particles. 

The relative concentration of each marker was compared with 

that obtained when W3110 log phase DNA was used as the test 

DNA. In the next section, the process of renaturation is 

described, and the calculation of reassociation rates, 

- 	and hence DNA concentration, is explained. 

7.2 DNA-DNA reassociatjon kinetics. 

DNA renaturation is the process by which two single-

stranded molecules of DNA with complementary sequences 

meet and form a stable duplex structure. The rate of 

renaturation is dependent upon several parameters (tJetmur 

and Davidson, 1968). Briefly, these are: 

DNA-phosphate concentration. The reaction is 

-• 	 approximately second order in DNA-phosphate 

concentration. 

Temperature. The reaction rate increases as the 

temperature decreases below I ( the temperature for 
m 
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501 denaturation of DNA) reaching a broad, flat 

maximum from 15-30 C below T, and then decreases 

with a further"decrease in temperature. 

Single-strand length. For a given DNA at a fixed 

DNA-phosphate concentration, a decrease in single-

strand length results in a decrease in the rate of 

renaturation. For this reason, the DNA used in 

reassociation experiments was sheared to the same 

average length. 

Complexity.. Complexity is defined as the total number 

of DNA base pairs in non-repeating sequence, and the 

rate is inversely proportional to complexity. The 

rate of renaturation of DNA of simpler organisms such 

as viruses, is faster than that of more complex 

organisms such as bacteria. 

Ionic strength., The rate is dependent upon the ionic 

strength of an. electrolyte such as NaCl below 0.4 '1, 

but is almost independent of ionic strength above this 

concentration. 

The rate is dependent upon solvent viscosity. 

Because the reaction proceeds with second order 

kinetics, it is thought that the rate limiting step is 

the formation of a small region of duplex, which can 

serve as the nucleation site for the subsequent 

zippering process (Wetmur and Davidson, 1968). 

All other things being equal, then, the rate of 

reassociation of any given sequence of DNA is a function 

only of the concentration of that sequence in solution. 

Thus, when one sequence reassociates at a higher rate than 
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another in the presenc.e of an excess of test DNA (this 

is defined as a DNA-driven reaction), under identical 

- 	conditions of temperature, ionic strength etc., it is 

clear that that sequence is present at higher concentration. 

By determining rates of reassociation of small sequences 

of DNA in the presence of a large excess of test DNA, the 

concentration of that sequence in the test DNA can be 

calculated as follows: 

The second order reassociation of DNA can be expressed 

as an ideal 2nd order equation: 	: 

f 	- 	1 - 	 - 	sa 
1+kCt. 

where: f 55  = fraction remaining single stranded at time t. 

t 	= time (seconds). 

k 	= reaction rate constant. 

C 	= 
0 	

DNA concentration at t = 0 (moles of 

= 	 nucleotides per litre). 

(from Britten et al., 1974). A plot of 1 against t will 

ss 

result in a straight line of slope kG 0 0 

To apply this method to the analysis of P1 

transducing DNA, short fragments of E.coli DNA isolated 

from 7 transducing phages were allowed to reassociate in 

the presence of a large excess of P1 DNA. The rates of 

reassociation of fragments from different parts of the 

chromosome driven by P1 DNA were compared with the rates 

of reassociation of the same fragments driven by DNA 

extracted from log-phase E.coli W3110 which should have 

the same gene dosage as the cells on which the P1 was 
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Figure 7.1 	Restriction patterns of ?trpABC and 7ttna. 

DNA was restricted and run on a 0o7% agarose gel as 

described in the legend to figure 6•2. Tracks 1 and 4, 

2c1875 DNA digested with EcoRl; track 2,ALLZ digested 

with Hindill; track 3, ?*.tna digested with Hindill. 	R 

and L indicate the right and left arms of ? N11540 from 

the recombinant phages. Bands larger than these, and 

bands in tracks 1 and 4 other than those marked, are 

incompletely digested. 
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grown. From this comparison, it should be possible to 

see whether P1 transducing DNA carries the same ratio of 

markers as is found in late log phase E.coli. 

7.3 Description of probes used in hybridisation studies. 

ilv probe. 7.5 kb Hindlil fragment isolated from 

78N74 separated on sucrose gradient. 

ftsA probe. 2.2 kb Hindill fragment isolated from pGH4, a 

pBR325 derivative (G.Hatfull, Ph.D. thesis, University 

of Edinburgh, 1981). The f'tsA gene is situated at 

2.25 minutes on the E,coli chromosome, about 0.65 

minutes from the leu gene cluster which is of interest 

due to its anomolous behaviour in the transduction 

experiments described in chapter 3. 

meta probe. 	10.5 kb Hindlil fragment isolated from 

)%8N2 by freeze-squeeze. 

tna probe. 7.5 kb Hindill fragment isolated from a 

?tna phage made in vitro from ANf1540 (figure 7.1; 

Oorck et al., 1976). The fragment was separated by 

freeze-squeeze. 

.a probe. 2.75 and 2.90 HindIll fragments isolated 

fromtrpABC (figure 7.1; Hopkins et al., 1976), 

which was made in vitro from '2Ni1540. The fragments 

• 	were separated from the two arms of 	on a sucrose 

• gradient, and could be considered as a single probe of 

5.65 kb for the reassociation experiments. 
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7•4 Reassociation of isolated fragments of DNA driven by 

P1 DNA, and by log phase E.coli DNA. 

Restriction fragments of E.coli DNA isolated from 

specialised \ transducing phages or, in one case, from a 

pBR325 clone, were purified and labelled with ( 32PdCTP by 

nick translation as described in chapter 2. The probe was 

sonicated to generate fragments of 300-400 base pairs, 

and mixed with an excess of test DNA, also sonicated. The 

DNA was denatured, and allowed to reassociate at 65 C as 

described in chapter 2. A typical reassociation mixture 

consisted of: 1 ug/mi sonicated, denatured, labelled probe 

DNA; 85-380 ug/ml sonicated, denatured, unlabelled test 

DNA, and sufficient sonicated, denatured, unlabelled salmon 

sperm DNA to give a total final concentration of DNA of 

500 ug/mi. DNA, in a total volume of 150 ul in water was 

mixed with 100 ul of 2.5 x HB to give a final volume of 

250 ul. 

Samples were withdrawn at appropriate intervals, 

divided into two aliquots, and assayed with Si nuclease. 

The percentage remaining single stranded was calculated 

for each pair of samples as: 

100 - 	TCA precipitable counts after digestion with Si x 100 

Total TCA precipitable counts 

The counts were corrected for background obtained by 

counting blank filters. The reciprocal of this value was 

plotted against time. 

For each fragment, the reassociation driven by P1 

DNA and td3110 log phase DNA (extracted from cells grown in 
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Figure 7•2 	Reassociation of trp probe in the presence 

of W3110, P1, and salmon sperm DNA. 

(a) tJ3110 DNA (squares), (b) P1 DNA (triangles) and 

(c) an excess of probe DNA (open circles). iir ss is 
plotted against t as described in the text. DNA 

concentrations in reaction mixtures were (a) 0•76 ug/ml 

sheared, labelled, probe DNA, 32.5 ug/ml sheared W3110 

DNA, 460 ug/mi sheared salmon sperm DNA; (b) 0'76 ug/mi 

sheared, labelled, probe DNA, 78•4 ug/ml sheared P1 DNA, 

420 ug/mi sheared salmon sperm DNA; (c) 7.6 ug/mi sheared, 

labelled, probe DNA, 500 u/ml sheared salmon sperm DNA. 

All reactions were carried out in a total volume of 250 ul 

at 65 C as described in the text. 
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broth to an 0D 540  of 0.5) was measured. Also, 

reassociation of the fragment alone with added salmon. 

sperm DNA to a final concentration of 500 ug/ml was 

measured as a control reaction to enable the calculation 

of the rate constant for a known concentration of probe 

DNA. This rate constant was then used to calculate the 

concentration of probe sequences in the test DNA. 

Figure 7.2 shows the results obtained for the 

reassociation of trp probe in the presence of salmon sperm 

DNA, P1 DNA, and t113110 log phase DNA displayed as plots of 

F ss  against t. Similar plots were drawn for each probe 

(figure 7.3) and the slopes of each,. together with DNA 

concentrations in each reaction mix, are displayed in 

table7.1. 

7.5 Calculation of concentration of probe sequences in P1 

and U3110 DNA. 	 . 

From the plots in figure 7.2, slopes for the 

renaturation rate of the trp .  probe in the presence of, 

respectively, E.coli DNA, P1 DNA, and excess probe DNA 

were: 	2.413 x 10 	sec 1 , 1•032 x 10 	sec 1 , 3•819 x 10 

sec- 1.  The second order rate constant, k, for the probe 

was calculated from the last slope. In this reaction, C 

was 7.60 ug/mi, or 5•81 x 10 	moles nucleotides 1 

From the formula F' 	 1 	, a plot of 	1 ss 	
1+kCt 

against t has a slope of kC 
0 
. Thus: 

k = 3819 x 10 	= 6.57 x io 	1mo1 	sec 

5•81 x 10 
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Figure 73 	Reasssociation of ilv, tna, ftsA and metB 

probes in the presence of W3110, P1 and 

salmon sperm DNA. 

DNA concentrations in reaction mixtures are shown in 

table 7.1. All reactions were carried out in a total 

volume of 250 ul at 65 C. Other methods and reagents 

were as described in the text. For each probe, 1/f 5  is 

plotted against t; stopes of each line are shown in table 

7'l. 

A. 	Reassáciation of liv orobe in the oresence of !J3110 

C . 
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Using this value for k. C 0  for the trp probe in P1 

and J3110 DNA was calculated as follows: 

C (W3110) = slope = 2.413 x 10 

k 	6.573 x 10 

= 3.67 x 10 	moles nucleotides 1 

similarly: 

= 1.032 x 	= 1.57 x 10 	moles nucleotides 1_i 

6•573 x 10 

The labelled probe contributed 6.05 x 10 	moles 

nucleotides 17 1 ; this figure was subtracted, and the 

concentrations were calculated as umoles trp sequence per 

ug of test DNA. For U3110 DNA, this was calculated as 

9.44 xi0 	umoles/ug, and for P1 DNA, 1•23 x 10 

umoles/ug. 	 - 

Similar calculations were made for each probe, and 

values for k, and concentration of probe sequence in 

tJ3110 and P1 DNA, are displayed in table 7.2. These 

figures do not take into consideration the length, or 

complexity,of the probes used. It was stated earlier that 

the rate of renaturation is inversely proportional to 

complexity. To compare the reassbciation rates of probes 

of different complexity the formula 

k  = k 	 iihere k  = nucleation rate constant, 

L 2  

N = complexity, and L = molecular weight (Hutton and 

Uetmur, 1973). The molecular weight was not accurately 

determined in these experiments, although all samples were 

reduced to the same average molecular weight by sonication. 

Instead, to give comparable values for the. concentration 
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Table 7.1 	Rates of reassociation of 5 probes driven by 

E.coli and P1 DNA. 

The composition of each reaction mixture (ug/mi DNA) 

is shown. Reassociation was at 65 C; other reagents and 

methods are described in the text. Rate of renaturation 

was determined from a plot of 1/f 5  against t. 

Probe DNA concentration (ug/ml) Rate of renaturation 
-1 (sec 	) 32 

P salmon 
labelled J3110 P1 sperm 
probe DNA DNA DNA 

trp 7•6 - - 500 3-82 x 	10 

0.76 32.5 - 460 2.41 x 

0.76 - 76•4 420 1•03 x 	10 

ilv 10.0 - 500 4.72 x 	10 

1.0 32•5 - 460 3.78 x 	10 

1.0 - 78.4 420 1•32 x 	10 

metB 1.68 - - 500 1.08 x 

0.17 325 - 460 3'06 x 

0.17 - 380.8 120 3.64 x 

tna 4•5 - - 500 6.61 x 	10 

0•45 32'5 - 460 9.92 x 	10_ 8  

0.45 - 380.8 120 1.16 x 

ftsA 0.86 - - 500 1•48 x 

0.09 32'5 - 460 5.14 x 	10 

0.09 - 380'8 120 8•06 x 10r 7  

-153- 



Table 7.2 	Concentration of probe sequences in P1 and 

U3110 DNA.. 

The first column shows k, 	the rate constant, 	for each 

probe, 	which was calculated from the data in table 71 	as 

described in the text. The next two columns show 

concentrations of each of the probe sequences in W3110 and 

P1 	DNA 	respectively, 	calculated as described in the text. 

For easier comparison, the last column shows the concentration. 

divided by complexity of the probe 	(the units are arbitrary). 

Probe 	k Concentration ofprobe concentration 
-1 	-1 (isec 	mole 	) 

in 	test DNA 	( jjm1es 
nucleotides/ug) complexity 

W3110 	 P1 W3110 	P1 

trp 	657x10 3  9•44x10 4 	123x1O 4  1•67 	0.22 

ilv 	6•18x10 3  1.64x10 3 	1•71x10 4  2.19 	0•23 

tna 	1•92x10 3  1•48x10 3 	150x10 4  1•97 	0•20 

metB 	5•14xiO 1•79x10 3 	1•82x10 4  1.70 	0•17 

ftsA 	2•25x10 2  6•81x10 4 	9•21x10 5  3.10 	0•42 
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Table 7.3 	Relative ratios of each sequence in U3110 and 

P1 DNA. 

Relative ratios were determined from the final column in 

table 7.2; ilv was arbitrarily designated as l•O. 
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•Omitted from the data are control experiments to 

show that each reaction was driven by the test DNA.. The 

rates of reassociation of the same amount of probe in 

the presence of salmon sperm alone, or together with 

test DNA were compared, and in all cases except one, the 

presence of test DNA greatly increased the rate of 

renaturation of the probe. 	In the case of the 2\ 8 N 3  

fragment no difference in rate was detected in the 

presence of test DNA as mentioned earlier (page 137), 

These data could not be used. 

However, the concentration of DNA used for the 

reassociati•on experiments as determined by measurement of 

the 00 at 260 nm in a Zeiss spectrophotometer (table 7.1) 

would be expected to give too high a ratio of probe to 

test DNA for the reaction to have been driven by the test 

DNA. It can only be assumed that there was an error in 

the measurement of DNA concentration, and that therefore 

the results obtained are invalid. 



of each probe, the concentration, in umoles nucleotide/ug 

test sequence, was divided by the complexity of the probe. 

These values are shown in the final column of table 7.2. 

The ratios of these values for each sequence with respect 

to the value for ilv probe were calculated for P1 and 

W3110 DNA, and are shown in table 7'3. 

7.6 Discussion 

The results displayed in table 7.3 show that the 

• 	ratio of each of the five markers tested are very 

• 	similar in E.coli log phase DNA, and in P1 DNA although 

the ratios are not those which would be expected; a 

culture at 0D 540 	0.5 growing in broth should have an 

- 	origin: terminus marker ratio of 2.3 (Cooper and 

Heimstetter, 1968). The concentrations of ftsA and trp 

relative to liv are much higher in tJ3110 DNA, which was 

extracted from a culture of 0D 540  = 0.5, than would be 

expected from this assumption. The reasons for this are 

not clear, but there is a similar trend in P1 DNA. 

Possibly the major pitfall in the interpretation of these 

results is the use of probes with such a wide range in 

complexity; 'the ftsA probe which gave the most anomolous 

value is much smaller than the other probes. A valid 

method for compensating for complexity was not applied 

to these results. 

The treatment of the results here is, in the author's 

opinion, a valid indication that the ratios of the five 

sequences tested in similar in P1 and L13110 DNA, although 

the absolute values are not comparable with one another. 
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The similarity between the two sets of ratios is further 

evidence that P1 does not package E.coli DNA selectively; 

selective packaging to the extent suggested by the poor 

recovery of some markers should result in obvious 

discrepancies in the two sets of ratios. Also since the 

size of probes used was much smaller than the size of a 

transducing fragment packaged by P1 (about 90 kb), the 

predominance of one or more species of fragment should 

certainly have been detectable. 

P second unexpected aspect of these data is the 

surprisingly high ratio of each sequence in P1 DNA 

compared to that inE.coli DNA. Thee figures indicat.e 

that there i between 1/6 and 1/10 the amount of each 

sequence in P1 DNA compared to the amount in U3110 DNA. 

Unless there is a property of the two different samples 

of DNA which causes them to renature at a different rate, 

such as contaminating EDTA or salts, which would make the 

two sets of figures not directly comparable, there appears 

to be a much higher percentage of E.coli DNA packaged into 

P1 particles than previous estimates have shown. Sandri 

and Berger (1980a) made their estimate of 2% of the 

total DNA by growing transducing lysates on 32P labelled 

bacteria, a method which ought to result in a highly 

accurate determination. There may of course be strain 

differences; it was noted at the beginning of chapter 2 

that the - strain of P1 used in these determinations had a 

very high frequency of transduction. It is therefore 

possible that this strain of P1 packages host DNA into 

1/6 - 1/10 of phage particles, although determinations 
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using different samples of P1 and W3110 DNA should be 

made to substantiate or contradict these results. A 

repeat of the determination of the fraction of transducing 

particles made by Sandri and Berger (1980a) should also 

reveal any strain differences. 
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CHAPTER 	EIGHT 

DISCUSSION. 

The primary conclusion of this work is that P1 

transducing DNA is selectively recombined into the 

recipient chromosome. Two types of evidence were 

presented: firstly, genetic; it was shown that UV 

irradiation could selectively improve the recovery of 

some markers. The second line of evidence was physical; 

this should have been easier to interpret than the first. 

type of evidence,, but in fact it proved to be rather more 

difficult, possibly because of the wide range in size of 

probes used.. However, the results indicate that the 

conclusion drawn from genetic evidence - that there is no, 

or very little, preferential, packaging of donor DNA by P1, 

is valid. 	 , 

In chapter 1, some evidence for selective packaging 

in P22 was discussed, and also Sternbergts hypothesis 

that P1 recognises packaging sites in chromosomal DNA 

and packages from these. It was possible that high-

transducing regions were adjacent to these recognition 

sites, but this theory was contradicted by the results 

of the hybridisation experiments. Sternberg observed 

preferential packaging from a \ prophage carrying the p ac  

region of P1, and hypothesised. that this had integrated 

at a site on the chromosome which was homologous with 

the pac site. This was perhaps a rather artificaial 

situation. 	. 
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If P1 does not selectively package some regions of 

the chromosome, it is apparent that transducing DNA must 

be selectively recombined in the recipient in order to 

give rise to the large differences in the recovery of 

markers which is observed. WI irradiation only 

stimulated the recombination of some markers, which 

indicates that other regions, such as the origin, are 

normally integrated at high efficiency. The stimulation 

of transduction is caused by the presence of single- 

strand ends generated by uvrA and uvrB gene products in 	-. 

either the donor or the recipient (Helling, 1973, this work). 

Lfhether single-strand ends - are necessary for integration - 

of transducing DNA was not established. 'Zieg et al., (1978), 

used a variety.of mutants, including jJ, polA and uvrD,. - -. 

in an attempt to define those which are necessary for the 

processes of recombination, transduction, and conjugation. 

From these experiments, it was not clear whether strand 

breaks were limiting, or necessary, for transduction. In 

any case, if single-strand breaks are the cause of the 

high efficiency of transduction of some regions, it is not 

apparent why some regions of the chromosome are more 

susceptible to single-strand breaks than others. 

Some possible reasons for selective recombination 

were investigated. Three-dimensional structure was 

suggested as a possibility but the experiments on gyrase 

mutants were inconclusive. It is known that supercoiling 

is important for transcription, site-specific recombination, 

and for p1 transduction. The chromosome is divided into 

separate domains of supercoiling, and it has been 
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suggested (Sinden and Pettijohn, 1981) that different 

states of torsional tension may be maintained in separate 

domains. In any case, the domains are independent, and 

it could be envisaged that there is a structural basis in 

chromosome folding which permits regulation of DNA- 

dependent processes (transcription, recombination and 

replication) in different domains, allowing for perhaps 

different levels of transcription and recombination in 

the separate domains. 

A variable affinity for RecA protein may be a cause 

of variation in recombination frequency, but when the 

RecA protein concentration in recipient cells was greatly 

increased, no stimulation of transduction, either, selective 

-or otherwise, was observed. However, many other proteins 

are involved in recombination, and a variable affinity 

for these may lie in the primary structure of the DNA. 

It has been suggested that chi sites may be recognition 

or binding sites for a recombination protein (Schultz 

et al., 1981), and perhaps clustering of these may result 

in more initiation of crossovers in certain regions. 

Other binding sites, of course, may exist, and the role 

of chi sites in chromosomal recombination has not been 

established. 

The results of experiments on a strain without chi 

sites (IRecEt strain) were rather ambiguou's, possible due 

to the lack of some nuclease activity, as well as chi site 

activity, and could be interpreted in several ways. The 

fact that two nucleases, Exol and ExoV, are missing from 

the RecE strain strongly suggests that the altered 



transduction frequencies observed (figure 5.4) were due 

to a decrease in the breakdown of recombination 

intermediates, and thus increased recovery of low-

transducing markers. However, this leads to the question 

of why recombination intermediates from some regions should 

be 	more susceptible to nuclease attack than from other 

regions. Supposing that some fragments are more rapidly 

integrated than others due to the presence of recombination-

stimulating sites, or for some other reason, they would 

perhaps be less susceptible to nuclease attack. 

Integration of some fragments via .a different pathway may 

lead to different intermediates., which are less 
. 	 .-,. 

susceptible to nuclease degradation. For example, the 

RecF pathway only functions in the absence of Exol and 

ExoV, suggesting that some intermediates of this pathway 

are more susceptible to degradation than are intermediates 

of the RecBC pathway. 

A complex pattern of recombination pathways has been 

emerging in the last few years. Different recombination 

pathways appear to favour different substrates. For 

example, Porter et al., (1978) showed that the RecE/RecF 

pathway was much more active in recombination between 

p lac and chromosomal lac than the RecBC pathway. 

This result was also found by Basu.and Oishi (1975), who 

stressed the role of ExoU in preventing recombination by 

the RecF pathway. Recently, Howard-Flanders and Bardwell 

(1981) showed that the double mutations rec821recF143 and 

rec821uvrD152 caused very marked deficienthies in Hfr x F 

crosses, whereas they had only moderate effects ( a 3-fold 
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reduction and a 3-fold increase respectively) upon the 

frequencies of both spontaneous and damage-induced 

recombination in homoimmune \phage-pr.ophage crosses 

(using ?red 	 This suggests that there is another 

pathway, independent of recB, recC and recF' operating in 

these crosses. 

By changing the major pathway of recombination from 

RecBC to RecF transduction frequencies were altered such 

that increased,recombination of poorly transduced markers 

was observed (figure 5.4), indicating that recombination 

pathway is important in transduction, though why different 

markers should be differently affected is not obvious. 

Again, structural variations could be invoked, the RecBC 

pathway efficiently integrating DNA with chi or other active 

sites whilst other regions are inefficiently integrated 

via the RecF pathway. Loss of the RecBC pathway and 

exonucleases I and V would result in more equal integration 

of all regions. 

Another factor to be considered is the formation of 

abortive transductants, which are generated by 

circularisation of the DNA with a protein. liv treatment 

causes decreased recovery of abortive transductants, whilst 

the recovery of stable transductants increases, thus 

presumably the DNA is more prone to recombination than 

circularisatjon. It was stated earlier that once 

transducing DNA has circularised, it is extremely stable, 

and recombination with the chromosome is rare. However. 

presence of UV damage may increase this frequency, and 

recombination may occur after circularisation. If it is 
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assumed that there is an initial choice between 

circularisation and recombination, it is possible that 

this is affected by the pathway of recombination,,or the 

presence or absence of exonucleases, and discrimination 

may arise at this stage, rather than at the stage of 

recombination. 

Figure 8.1 shows a tentative model for the role of 

the recombination pathways, and hotspots for recombination, 

in the integration of transducing DNA. Transducing 

fragments entering a cell have an .initial choice between 

circularisation with the aid of a protein to generate 

abortive transductants, or recombination with chromosomal 

DNA to generate stable transductants. Recombination may 

be favoured over circularisation if the DNA is damaged, or 

if it contains a hotspot for recombination. The bias in 

recombination may occur solely at this stage; once the 

DNA has circularised, it is protected from nuclease attack. 

A fragment which fails to circularise and contains 

one or more hotspots for recombination,which may be sites 

for the initiation of recombination,may be rapidly 

integrated; if the  hotspot is chi, recombination is via the 

RecBC pathway. Fragments without hotspots may be less 

efficiently integrated via the RecBC or an alternative 

pathway, and intermediate structures may-be more susceptible 

-. 	to exonuclease degradation either because their resolution 

- 	is slower, or because their structure is different. 

When the RecF pathway is derepressed and Exol and 

ExoV are eliminated, integration of previously poorly 

-_ 	.- 	transduced markers is improved. This is either because 
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the RecF pathway integrates these markers more efficiently 

than the RecBC pathway, or because the slowly resolved 

fragments without hotspots are recombined via inter-

mediates which are no longer degraded by nucleases, or a 

combination of the two. In this model, rapid integration 

via chi sites is eliminated in RecF strains, but the 

general level of recombination is increased due to the 

lack of exonucleases and/or derepression of the Red 

pathway . 

This model is by no means proven, but it does go 

some way to beginning to provide an explanation of some 

of the phenomena observed in the experiments described 

here. 

There are.further possibilities which may be 

important in recombination. For example, opening of the 

double helix during active transcription may provide a 

stimulus for recombination. Transcription would be more 

active in gene-dense areas, which could explain the 

coincidence of high transducing frequency within gene- 

dense regions. However, it is not certain how active tran-

scription is at the stage when transducing DNA is 

integrated. This appears to occur within 1 hour after 

infection (Sandri and Berger, 1980a), and although there 

does seem to be a significant lag in DNA replication, after. 

infection, transcription could be sufficiently active to 

initiate recombination at active sites. 

Further work is necessary to confirm and extend the. 

results described in the preceeding chapters. The results 
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of the hybridisation experiments are particularly 

tentative, and more extensive determinations of reassocia-

tion rates should be made on-the probes already described 

to try to find any sources of error. It should be 

possible to show that the rate is proportional to the 

concentration of probe sequence under the conditions used. 

Further experiments could also be performed, using markers 

from other chromosomal locations. 

As it is apparent that recombination can favour 

certain pieces of DNA over others, and the experiments 

described only begun to-investigate. this,. further 

experiments are possible in this area. For example, a 

more detailed analysis of chi site density and its 

possible correlation with areas of high transduction 

by cloning restriction fragments into recombination- 

def'icient?\, would provide stronger evidence for or against 

the importance of chi in selective recombination. Since - 

the hypothesis regarding chi sites assumes a specificity 

of pathway, more experiments on the genetics of P1 

transduction 'should reveal some important facts. These 

could include transductions using recF strains which may 

show poorer integration of damaged or low-transducing 

markers, and more experiments similar to those of Zieg 

et al. (1978) on lig, pj, and uvrD strains. It was also 

suggested that poorly transduced markers were slower to 

recombine, and thus more susceptible to nuclease 

degradation. It should be possible to detect a delay in 

the time of integration of some markers by using a recAt5 
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recipient strain, and shifting to the non-permissive 

temperature at appropriate times after infection. 

This work has revealed a hitherto unrecognised 

possibility: that the E.coli recombination system can 

selectively integrate certain pieces of DNA. The 

mechanism by which this occurs is not clear, but the 

experiments suggested above may shed some light on the 

problem. They may also reveal further facts about 

generalised recombination in E.coli, which is emerging 

as an increasingly complex process. 
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The Variation in Frequency with which Markers are Transduced 
by Phage P1 is Primarily a Result of Discrimination During Recombination 

Barbara J. Newman and Millicent Masters 
Department of Molecular Biology, University of Edinburgh, Kings Buildings, Mayfield Road, 
Edinburgh EH9 3JR, Scotland 

Summary. The efficiency of recovery of P1 transduc-
tants is marker dependent and normally varies over 
a 25-fold range. UV irradiation of either transducing 
lysates or recipient cells results in a selective stimula-
tion of the transduction of markers which are normal-
ly transduced poorly. As a result the range in fre-
quency of transduction is reduced to about 3-fold 
and resembles the gene frequency distribution ex-
pected in the donor cells. We conclude that P1 trans-
ducing lysates are likely to contain a random sample 
of donor DNA but that the recombination system 
of the recipient cell exhibits a preference for the DNA 
of some regions over that of others. Damage to DNA 
presumably overrides this specificity. 

Introduction 

The frequency with which recombinants are recovered 
after transduction of E. co/i by the generalised trans-
ducing phage P1 varies greatly from marker to marker 
(Masters 1977). Markers close to the chromosomal 
origin of replication are transduced best, at frequen-
cies up to 30 times that of the most poorly transduced 
markers (located in general near the terminus). Gene 
frequency in the donor cell has been shown to be 
an important factor in determining relative transduc-
tion frequencies (Masters and Broda 1971). Since, 
however, gene frequency in the donor population does 
not vary more than 4-fold between origin and termi-
nus (Cooper and Helmstetter 1968), and since trans-
duction frequencies do not, in any case, form a 
smooth gradient between origin and terminus, donor 
gene frequency cannot be the sole determinant of 
transduction frequency. 

Other factors, such as for instance, the presence 
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of chromosomal DNA sequences which resemble the 
sites of action of phage endonucleases involved in 
packaging might result in certain regions being pack-
aged more efficiently than others. There is consider-
able evidence that packaging specificity is the major 
determinant of the frequency with which the Salmo-
nella phage, P22, transduces (Susskind and Botstein 
1978) and it has been suggested that it may also be an 
important factor in determining P1 transduction fre-
quency (Low and Porter 1978). Alternatively, al-
though genes might in fact be packaged into transduc-
ing phages more or less in proportion to frequency, 
the proportion of these genes which are eventually 
integrated so as to yield progeny might well be in-
fluenced by factors in the recipient cell. We will pres-
ent evidence in this paper that the latter alternative 
is in fact correct: that is, that discrimination occurs 
during recombination in favour of DNA from certain 
regions of the chromosome. 

Methods and Materials 

Bacterial Strains. W31 10 was used as prototrophic donor for the 
preparation of transducing lysates. MM303 (Ihi argH metB xyl 
ma/A his lacY ma strA tsx trp tonB pyrE uhp i/v (P1)) was most 
often used as transductional recipient. Its derivation is described 
in Masters (1977). MM303-1 is a P1 cured derivative. Curing was 
accomplished by replacing the resident P1 prophage with PlCm 
and selecting Cm' survivors at 42°. MM7 is derived from JC4I I 
and has the genotype argG leu nietB his ma/A xyl lac gal strA 
na/A pyrE uhp A. NF279 recA + is also derived from JC4I I and 
is described in Masters (1977). 

Media and Transduction. Plkc lysates were made and used for 
transduction as described in Masters (1970) and Masters (1977). 
Media were as described in Masters (1970). 

Irradiation of Phage and Bacteria. Phage were suspended at Ca. 
10 pfu/ml in phage buffer (Kl-1 2 PO4  3 g/l, Na 2 HPO 4  7 g/l, NaCl 
5 g/l, MgSO4  i0 M, CaCl2 10 M, gelatin 0.01 g/l) and 10 ml 
aliquots placed in a petri dish and irradiated with UV light at 
a rate of 10 ergs/sec/mm 2 . Samples were agitated during irradia- 
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Fig. IA—C. Transduction of MM 303 with irradiated P1 phage. Liquid lysates of Pike made on the prototrophic strain W3110 were 
irradiated as described in Methods and used to transduce MM303. A Number of transductants to llv, Arg and His after various 
periods of irradiation. Survival of phage pfu is 3 x 10 after 2 min of irradiation. B Numbers of transductants relative to Ilv after 
various periods of irradiation. Results are the average of three separate experiments. C Frequency of transductants as a function 
of relative time of replication assuming that the origin is at 83 min and the terminus at 33 min on the standard genetic map 

tiofl. Bacteria were grown to stationary phase in L-broth, washed 
and resuspended in phage buffer. 10 ml aliquots were irradiated 
as above. After irradiation, cells were resuspended in L-broth and 
used for transduction. Irradiated phage and bacterial suspensions 
were kept in the dark until use. 

Results 

Irradiation of P1 Transducing Lysates 
Selectively Alters the Recovery of Transductants 

It has long been known that irradiation of P1 trans-
ducing lysates results in a stimulation of transduction 
(Arber 1960; Wall and Harriman 1974). This, as does 
the occurrence of abortive transduction (Gross and 
Englesberg 1959), indicates that only some of the 
transducing DNA transferred to recipient cells is nor-
mally integrated to yield recombinant progeny. We 
reasoned that, if the DNA coding for poorly trans-
duced markers is normally integrated inefficiently, 
stimulation of the level of integration by UV might 
selectively aid the recovery of these markers. 

The marker ilv is normally transduced with very 
high frequency. Its recovery is not stimulated to any 
significant extent by irradiation (Fig. 1 a). In contrast, 
the transduction of all other markers tested, each 
of which is normally transduced at a lower level than 
is ilv, is stimulated by irradiation (Fig. 1 a, I b), and 
reaches, for each, a characteristic level relative to ilv. 

The transduction of markers such as his, which are 
normally transduced most poorly, is stimulated most. 
As a result, the 25-fold range in transduction frequen-
cies observed with unirradiated phage is reduced to 
between 2- and 3-fold. 

Transduction frequency is in part a function of 
gene frequency in the donor cell; that is, origin genes 
are transduced with higher frequencies than terminus 
genes (Masters and Broda 1971). As the cells used 
to prepare the transducing lysates were growing with 
a generation time of 28 mm, an origin/terminus ratio 
of 2.7 would be expected in these cells (Cooper and 
Helmstetter 1968). This compares well with the ratio 
approached after UV irradiation. This approach of 
transduction frequency to calculated gene frequency 
can be seen in Fig. 1 c, in which the relative number 
of transductants for each marker is plotted as a func-
tion of the time at which the marker replicates. Trans-
duction of the early markers arg, ilv and met, becomes 
nearly equal, as does that of the late markers his 
and trp. The transduction of pyrE is less markedly 
stimulated by this treatment but is effectively stimu-
lated by irradiating recipient cells before transduction 
(see below). 

That the degree to which UV stimulates transduc-
tion of a marker is indeed inversely proportional to 
how well it is normally transduced can be seen by 
examining the data from nine separate transduction 
experiments compiled in Fig. 2. In this figure the max-
imum observed stimulation of transduction for 12 
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Fig. 2. Relationship between maximum observed UV-stimulation 
of transduction and stimulation expected (see text). Transductjons 
were carried out for 12 separate markers in strains MM303 (argH, 
pyrE, i/v, trp, his and me/B), MM7 (argG, pyrE, i/v, leu, his and 
me/B) and NF279 recA + (argG, his, leu, me/B, i/v, rbs, xy/ and 
pyrB) with irradiated (5 samples per experiment, 30 sec-5 min irra-
diation) and unirradiated W31 10 lysates. Expected stimulation was 
calculated by dividing the transduction frequency expected on gene 
dosage considerations (ori=3, ter= I) by that obtained using unirra-
diated phage (argH= I). Maximum stimulation is calculated by 
dividing the maximum number of transductants obtained for each 
marker by the initial number. Maximum stimulations of less than 
I are the ratio of the number of transductants observed for unstim-
ulated markers at UV doses which give maximum stimulation of 
other markers and the number obtained using unirradiated phage. 
Values from nine experiments were normalised; generally by setting 
the maximum stimulation for me/B equal to 4.1, and individually 
plotted 

separate markers in two unrelated strains is plotted 
against the stimulation anticipated on the hypothesis 
that UV is capable of stimulating the transduction 
of any marker up to a level proportional to its gene 
dosage in the donor cell. It is assumed that gene 
frequencies in the donor cell vary from 3:1 between 
origin and terminus, as would be predicted from the 
donor growth rate on broth of g=27 mm (Cooper 
and Helmstetter 1968). The average level of stimula-
tion observed varies from experiment to experiment, 
presumably as a result of a fine balance between the 
cell killing and transduction stimulating actions of 
UV. The values for maximum stimulation were there-
fore normalised to allow the presentation of the data 
as a single line rather than as a family of lines. It is 
clear that transduction of markers transduced with 

high frequency is stimulated only slightly or not all 
by UV (points at lower left) while that of those nor-
mally transduced poorly is stimulated most (points 
at upper right). Markers transduced with intermediate 
frequencies are stimulated to an intermediate degree. 

An alternative method of treating the data is to 
extrapolate the parts of the curves in Fig. 1 a in which 
inactivation of transducing activity appears exponen-
tial, back to their intercepts at 0 min irradiation. If 
we assume that inactivation of transducing ability 
by UV is exponential and superimposed on the stimu-
lating activity which occurs at low doses, then such 
an extrapolation should give a measure of the maxi-
mum stimulation possible in the absence of UV inacti-
vation (Arber 1960). Although such an analysis is 
limited in our experiments by the low numbers of 
transductants obtained after higher UV doses, our 
data is sufficient to show a range in extrapolated 
values of approximately 3X between origin and termi-
nus (data not shown). 

These results taken together strongly suggest that 
transducing lysates contain bacterial genes in propor-
tions equivalent- to their frequencies in the donor cells, 
but that some DNA sequences are normally integrat-
ed more efficiently than others. 

Selective Stimulation of Transduction Results 
from the Irradiation of Transducing Fragments 

The stimulation of transduction that we observe may 
be due to the fact that irradiated transducing DNA 
is itself improved as a substrate for recombination. 
Alternatively, it may be a consequence of a general 
stimulation of recombination function resulting from 
the introduction into the cell of irradiated P1 repli-
cons along with the transducing DNA. Damaged rep-
licons induce, for example, the synthesis of additional 
recA protein (Inouye and Pardee 1970) which could 
presumably circumvent a rate-limiting step in trans-
ductional recombination. 

In order to distinguish between these possibilities 
we infected a recipient population with a mixture 
of unirradiated transducing phage and irradiated non-
transducing P1. Non-transducing phage were ob-
tained by preparing a lysate on MM303-1, a derivative 
of the strain to be used as the transductional recipient. 
The lysate was irradiated in the usual way and then 
mixed 100: 1 with an unirradiated lysate of the proto-
trophic donor W31 10. The mixture was used to trans-
duce MM303 at a multiplicity of 4.5, thus ensuring 
that almost every cell in the recipient population 
would be infected with an irradiated phage. Since 
the irradiated lysate carries the same negative alleles 
as the recipient population, transductants can arise 
only as a result of recombination between the chro- 
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UV fmin) 

Fig. 3. Transduction of MM303 with a mixture of unirradiated 
transducing phage and irradiated non-transducing phage. P1 grown 
on MM303-1 and concentrated in CsCI to a titre of 1.7x 10' 2 /ml 
was diluted 100x in phage buffer and irradiated as described. 
I min of UV reduced phage titre by 50 x. 0.3 ml of irradiated phage 
were mixed with 0.1 ml of phage prepared on W3110 (8 x 10 8/ml) 
and added to the recipient cells 

mosome and unirradiated DNA. It can be seen 
(Fig. 3) that relative numbers of transductants are 
almost unaffected by this treatment; certainly no 
stimulation of transduction of other markers relative 
to i/v is observed. Thus it seems probable that the 
stimulation of transduction found on irradiating a 
transducing lysate is due to the alteration in structure 
suffered by the transducing DNA fragment rather 
than to indirect effects mediated by the irradiated 
P1 DNA. 

Irradiation of Recipient Cells Before 
Transduction Also Alters the Recovery 
of Transductants Selectively 

To exclude the possibility that efficiency of integra-
tion varies because of variation in some aspect of 
transducing DNA structure which can be altered by 
irradiation, we irradiated the recipient cells before 
transduction, rather than the transducing phages. 

When the recipient cells are irradiated and then 
transduced with unirradiated phage (Figs. 4a, b) the 
number of ilv and arg transductants immediately falls 
as the recipient cells are killed. In contrast, markers 
transduced with relatively low frequencies show an 
initial stimulation in frequency of transduction. This 
is particularly marked in the case of pyrE, which, 
although very near to ilv, is normally transduced 
poorly. Irradiation of recipient cells stimulates pyrE 
transduction greatly, such that it becomes comparable 
to that of other early replicated markers (Fig. 4b). 
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Fig. 4A-C. Transduction of irradiated cells with P1 phage. Cells of MM303 were irradiated as described in Methods and transduced 
in the usual way with lysates prepared on W31 10. A Numbers of transductants for a variety of markers after various periods of irradiation; 
(+) survival of colony-forming units. B Numbers of transductants relative to numbers of I1v after various periods of irradiation. 
C Frequencies of transduction as a function of relative time of replication for 0, 30 and 90 second doses of UV 
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The total range in frequency of transduction is again 
reduced to the range expected in gene frequency, from 
25- to 3-fold (Fig. 4c). 

Thus we see that irradiation of the recipient cells 
before transduction selectively stimulates the trans-
duction of poorly transduced markers in a manner 
similar to that observed, after the irradiation of trans-
ducing lysates. 

Discussion 

We have shown that irradiation of P1 transducing 
lysates or of recipient cells selectively stimulates the 
transduction of markers normally transduced poorly 
such that the range in frequencies of transduction 
approximates the range calculated for gene frequen-
cies in the donor cell. The fact that the transduction 
of poorly transduced markers can be stimulated 
proves that the corresponding DNA is packaged into 
phage heads and injected into the recipient cell. This 
lends support to the hypothesis that P1 encapsidates 
transducing DNA relatively unselectively and that 
variations in transduction frequency occur mainly as 
a result of events in the recipient cell. We hope to 
confirm this hypothesis by conducting a physical anal-
ysis of the gene content of transducing lysates. 

That selective stimulation of transduction results 
from a stimulation of recombination in the recipient 
cell can be inferred from the observation that the 
transduction of complete replicons is not stimulated 
by UV (Arber 1960). Two possible mechanisms which 
could lead to selective stimulation of recombination 
after irradiation come to mind. The first isthat certain 
DNA sequences are poor substrates for recombina-
tion and generally fail to be recombined because en-
zymes, such as recA protein,. are present in low con-
centrations and fail to interact with them. Selective 
stimulation might then be expected to occur as a 
concomitant of treatments 'which would induce recA 
and other proteins active in recombination, such as 
irradiation of the cell or the introduction into it of 
a damaged replicon. We think that this is probably 
not the mechanism at work' here since we have shown 
that the introduction of irradiated' P1 virion DNA 
into a cell at the time of transduction is not in itself 
sufficient to stimulate transduction. 

Another possibility is that transduced fragments 
which are normally poor substrates for recombination 
are rendered better substrates because of direct UV 
damage to 'DNA. Gapped or otherwise damaged 
DNA is well-known to undergo recombination with 
increased efficiency (Benbow et al. 1974; Konrad 
1977). This seems the more likely explanation of our 
results as irradiation of the transducing DNA or, 
presumably, of its chromosomal homologue seems  

to be necessary in order for transduction to be stimu-
lated. 

The most intriguing question which arises from 
this work is that of why some regions of the chromo-
some are apparently better substrates for recombina-
tion than are others. In a previous paper (Masters 
1977) we noted that, in general, gene dense regions 
are transduced better than are gene sparse ones. Since 
then a new edition of the genetic map has been pub-
lished (Bachmann and Low 1980) incorporating some 
300 new loci. Although this represents a close to 50% 
increase in the number of mapped genes, the new 
loci are distributed quite similarly to those already 
known. Thus the gene dense and gene sparse regions 
noted in 1976 by Bachmann et al. remain relatively 
unaltered in relation to one another and it seems 
likely that they will prove to represent a genuine varia-
tion in gene density. If so, there is presumably some 
factor correlated with gene density, either in DNA 
sequence or genome organisation, that facilitates 
transductional recombination. 
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