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Abbreviations 

AdoMet S-adenosylmethyonine 

Amp Ampicillin 

2AP 2-aminopurine 

ATP adenosine ti'iphosphate 

bp base pair 

BSA bovine serum albumin 

C degrees celsius 
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mol mole 

min minute 

MW molecular weight 

micro (x10 6) 

n nano (xl O) 

NADH 13-nicotinamide adenine dinucleotide, reduced form 

Nal nalidixic acid 

O.D. optical density 

ORF 	 open reading frame 

ohms 

p 	 Pico (x1O 2) 

PAGE 	 polyacrylamide gel electrophoresis 

PCR 	 polymerase chain reaction 



PEG polyethlene glycol 

POD peroxidase 

PMSF phenylmethylsuiphonyl fluoride 

rpm revolutions per minute 

RNA ribonucleic acid 

RNase ribonuclease 

SDS sodium dodecyl sulphate 

TENTED N,N,N' -tetramethylethylenediamine 

Tris tris (hydroxymethyl) arninomethane 

T11  melting temperature 

UV ultraviolet 

V volt 



AMINO ACIDS 

Amino acids Three letter abbreviation One letter symbol 

Alanine Ala A 

Arginine Arg R 

Asparagine Asn N 

Aspartic acid Asp D 

Cysteine Cys C 

Glutarnine Gin Q 

Glutarnic acid Glu E 

Glycine Gly G 

Histidine His H 

Isoleucine Tie I 

Leucine Leu L 

Lysine Lys K 

Methionine Met M 

Phenylalanine Phe F 

Proline Pro P 

Serine Ser S 

Threonine Thr T 

Tryptophan Trp W 

Tyrosine Tyr Y 

Valine Val V 
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CHAPTER 1 General Introduction 

Bacteria have evolved mechanisms that allow them to distinguish their own DNA 

from foreign DNA. Modified bases within the resident DNA provide an imprint that 

identifies the DNA as "self', whereas DNA that lacks the appropriate imprint is 

designated foreign and is subject to attack by endonucleases. The fragmentation of 

foreign DNA restricts its acquisition or propagation, hence these endonucleases were 

designated restriction endonucleases. It has usually been assumed that should 

modification of a bacterial chromosome fail, then DNA would resemble foreign 

DNA and be a substrate for the resident endonuclease. Unrepaired breaks in the 

bacterial chromosome would lead to cell death. However, evidence is emerging that 

the regulation of restriction activity can prevent the occurrence of breaks in the 

resident DNA (O'Neill et al., 1997; Makovets etal., 1999). This evidence is the topic 

of this thesis. 

A restriction enzyme that recognises unmodified DNA must coexist with a 

modification enzyme and the two enzymes, or activities, are commonly referred to as 

a restriction and modification (R-M) system. The modification enzyme catalyses the 

transfer of a methyl group from a methyl-donor, S-adenosyl methionine (AdoMet) to 

specific bases within a target sequence, and the restriction endonuclease hydrolyses 

phosphodiester bonds within the DNA backbone if the target sequences lack the 

appropriately modified bases. The restriction and modification activities may reside 

in separate enzymes or in different subunits of an oligomeric protein. 

R-M systems have been classified according to the target they recognise, their 

subunit composition and their cofactor requirements. The traditional classification 

distinguishes 3 major types of R-M systems - type I, TI and III (for reviews see 

(Wilson and Murray, 1991; Bickle and Kruger, 1993; King and Murray 1994) 

Type I restriction enzymes recognise an asymmetric target, which consists of two 

parts divided by a nonspecific spacer sequence. The oligorneric modification 

complex comprises a specificity subunit combined with two modification subunits. 

The addition of two restriction subunits generates a restriction complex. If this 



complex binds to a target sequence that is unmodified it translocates DNA in a 

process dependent on the hydrolysis of ATP, but should an obstacle block the 

translocation process, a double-strand break (DSB) is introduced . The restriction 

reaction requires S-adenosylmethyonine (AdoMet), ATP and Mg2t 

Typical type II R-M systems recognise palindromic targets. These R-M systems have 

two separate components - restriction and modification enzymes that recognise the 

same target. Unmodified targets are modified by the modification enzyme or cut by 

the restriction enzyme at a specific position. The restriction reaction requires only 

Mg2 . 

Type III R-M systems recognise asymmetric targets. The modification component 

consists of only one type of polypeptide, which in combination with restriction 

subunits produces the restriction complex that has recently been shown to require 

AdoMet, ATP and Mg2  for the restriction process (Saha and Rao, 1995). 

However, the accumulating data from new systems merge the borders between 

different types of restriction systems. For example, Bcg-like enzymes combine 

characteristics of type I and type II R-M systems. A restriction enzyme is an 

oligorneric complex that recognises a symmetric target with a spacer and requires 

AdoMet and Mg2  for the restriction reaction. A restriction enzyme of a provisional 

type IV R-M system recognises a non-symmetric target and can either modify it or 

introduce a DSB; AdoMet stimulates cleavage (Janulaitis et al., 1992). 

There are also restriction systems that attack modified DNA. These modification-

dependent restriction systems (MDRS) can be divided into two groups: multisubunit 

nucleoside triphosphate-dependent systems (Bickle and Kruger, 1993) and type II-

like systems based on a single polypetide (Lacks and Greenberg, 1975). Both types 

of MDRS lack cognate modification enzymes. 

In the present account restriction systems will be divided into the nucleoside 

triphosphate dependent (NTD) restriction systems and nucleoside triphosphate 
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independent systems. The restriction reaction of NTD systems requires the 

hydrolysis of either ATP or GTP. This requirement correlates with the oligomeric 

composition of the enzymes, hypothesised to be subjects of posttranscriptional 

regulation (Murray,2000). 

1.1 Restriction and modification systems 

Nucleoside triphosphate- independent R-M systems 

These restriction enzymes cut double-stranded DNA within or close to a recognition 

sequence, producing a distinct pattern of restriction fragments. Their wide use for 

genetic engineering stimulated intensive searches for these endonucleases and 

several thousand have been described (see for review (Roberts and Macelis, 2001); 

http://i-ebase.neb.com/rebase/rebase.htmi).  

The members of the broad group of nucleoside triphosphate-independent R-M 

systems include type II restriction systems, where the restriction and modification 

components are separate enzymes (Lunnen et al., 1988; Heidmann, et al., 1989; 

Brooks et al., 1991). Most type II restriction enzymes require only Mg2  for the 

cleavage of their palindromic target sequence in double stranded DNA. 

The typical R-M operon of type II R-M systems includes an ORF additional to two 

that code Res and Mod genes, called [the name of restriction nuclease] + C, for 

example bamHIC (Ives ci' al. 1992). This ORF encodes a small polypeptide which 

acts at the level of transcription to stimulate expression of restriction enzyme and to 

repress DNA methyltransferase synthesis (Tao etal., 1991). 

The analysis of nucleotide sequences of type II R-M systems revealed a consensus 

sequence between the genes encoding the R-M system. This sequence, named C-box, 

may play the role of an operator sequence (Rimseliene, et al., 1995). 
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Nucleoside triphosphate-dependent restriction (NTDR) systems 

a) Type I R-M systems 

The first R-M system to he discovered, hence type I, was the EcoKI system of E.coii 

K-12 (Bertani and Weigle, 1953). Type I restriction enzymes are the most 

complicated in their mechanism of action (for recent extensive review of type I 

systems see (Murray, 2000). 

Genetic organisation 

The genes encoding EcoKI, hsd (for host specificity of DNA) are located at 98.5 

rnin of the genetic map of E.coli K-12 close to the serB locus (Arber and Wauters-

Willerns, 1970). The region including this locus is sometimes referred to as the 

"immigration control region" because not only the type I restriction and modification 

genes are located here but the hsd genes are flanked by mrr on one side and by 

incrBC on the other. These genes encode the systems that restrict methylated DNA 

(Raleigh, 1992). A characteristic of the hsd region is its hypervariability. More than 

twenty different type I systems encoded by allelic genes have been identified in 

isolates of E.coii, Salmonella and Citrobacter (Barcus et al., 1995). 

hsd genes are organised into two transcription units: Pts  controls the hsdR gene (for 

restriction) and Pinod  the hsdMS operon (for modification and specificity, 

correspondingly), transcribed in the same direction (Loenen ci' al., 1987; Titheradge 

et al., 1996). 

An hsd locus with an unusual structure was reported for Mycoplasma puimonis 

(Sitaraman and Dybvig 1997; Dybvig et al. 1998). In this system the hsdM and hsdR 

genes are flanked by hsdS genes. Within the two hsdS genes there are at least 3 sites 

of similar sequence and inversions of hsd genes during growth of bacterial cultures 

leads to clones with restriction systems of different specificities. As there is only one 

promoter, some inversions lead to clones which have the restriction system silenced. 

4 



A gene switch similar to one reported for Mycoplasina has been described for a type 

I restriction system of Lactococcus lactis (O'Sullivan & Klaenhamrner, 1998). 

Sequence analysis of Haemophilus influenzae and Neisseria meningitidis detected 

the presence of inversion-prone repeat sequences near the genes for their predicted 

R-M systems (Hood ci al. 1996; Saunders ci al., 2000). Similarly, repeated 

sequences were discovered near the surface antigen genes, where divergence is 

known to be important for the pathogenicity. Thus occurrence of inversion-prone 

sequences near genes of some R-M systems might suggest a selective advantage for 

changing specificity of a resident restriction system for a pathogen. 

Type I systems found in Enteric bacteria have been sub-divided into four families 

(IA, TB, IC, ID) according to their sequence similarity, genetic complementation, 

cross-reactivity of antibodies and biochemical characteristics of enzymes (Murray et 

aL,1982; Dryden ci al., 1993; Barcus ci al., 1995; Titheradge et al.,1996). The 

systems that belong to one family, for example, EcoKI and EcoBI have a high degree 

of sequence similarity and their subunits are interchangeable in genetic 

complementation analysis. On the other hand, systems from different families, e.g. 

EcoKI (IA family) and EcoAI (IB) have a very limited sequence similarity and, for 

example, HsdR of EcoKI system cannot interact with the methylase of EcoAI 

system. Some examples of representatives of different families are shown in Table 

1.1. 

Type IA, TB, ID are chromosomally encoded (Barcus ci al., 1995) type IC are found 

on conjugative plasmids, except for the Ecoprrl system, which is located in the 

chromosome at a site different from allelic type I systems (Kaufmann, et al., 1986; 

Tyndall et al., 1994). 

The best genetic and biochemical descriptions of type I restriction systems are 

available for representatives of the Enterobacteriaceae and particularly E.coli, but 

this is a reflection of history of the research in the field of bacterial genetics and the 

availability of tools for genetic analysis, rather than an indication of the distribution 

of type I restriction systems among bacteria. 



Table 1.1 Some representatives of type I families. 

Family Enzyme Target 

IA EcoKI AAC(N6  )GTGC 

EcoBI TGA(N8  )TGCT 

StyLT1II GAG(N6) TAYG 

StySPI AAC(N5  )GTRC 

lB EcoAI GAG(N7  )GTCA 

EcoEl GAG(N7  )ATGC 

IC EcoR 1241 GAA(N6  )RTCG 

EcoDXXI TCA(N7  )RTTC 

ID SIySBLI CGA(N6  )TACC 



Genes of type I systems that belong to different families have very little sequence 

similarity. Nevertheless, analysis of the predicted amino acid sequences of their 

subunits reveals motifs common to DNA adeninemethylases (in HsdM) (Dryden et 

al., 1993; Willcock, et al., 1994); ATPases, helicases and endonucleases (in HsdR) 

(Gorhalenya and Koonin, 1991; Titheradge et al., 1996; Davies etal., 1998; Davies et 

al. 1999b). 

Contemporary computer analysis takes advantage of the operon organisation of 

hsdMS genes and their close association with hsdR using it in so called "guilt by 

association" method for the prediction of the presence of type I systems (Bult et at., 

1996; Nelson et al., 1999; Tettelin et at., 2000). For example, during detection of 

putative R-M systems specified by the genornes of prokaryotic organisms, searches 

for ORFs with methyltranferase motifs closely associated with an unknown ORF and 

subsequent BLASTX search against known sequences of R-M systems detected 

among all other types of R-M systems, presence of type I-like sequences in 15 out of 

28 species of prokaryotes (Kong et al., 2000). This search identified a type I R-M 

system in E.coii which may be considered as a positive control of the efficiency of 

the search. 

Thus, representatives of type I R-M systems are described, or at least predicted, for 

all three divisions of Bacteria kingdom: 

- 	Gram-negative (Gracilicutes), for example, Kiebsiella 	(Lee et al., 1997) 

Pasteurella (Highlander and Garza, 1996), Pseudoinonas (Droge et al., 2000). 

- Gram-positive (Tenericutes), for example, Bacillus (Xu et al., 1995), Lactococcus 

(Schouler et al., 1998; Seegers et al., 2000); 

- Mycoplasma (Mollicutes), for example, Mycopicesma (Sitaraman and Dybvig, 

1997; Kong etal., 2000) 

- 	Additionally, type I restriction systems were found by genome sequence analysis 

in Archaea (Bult et al., 1996; Roberts, 1998; Nelson ci al., 1999). 
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Enzyme composition and structure of individual subunits 

Type I enzymes are large oligomeric complexes of three types of subunits: S - for 

specificity, M - for modification and R for restriction, which form two complexes: 

M2S 1  capable of methylation of the adenine residues in the non-palindromic target of 

7-8 residues (Table 1) and R2M2S1  which methylates hernimethylated DNA and cuts 

DNA that contains unmethylated targets (Taylor etal., 1992; Dryden etal., 1993). 

hsdS gene and the HsdS polypeptide. 

In the early work of Murray ci' al. (1982) sequences of three type IA hsdS genes were 

compared and the two regions (-450 b.p.) that showed no similarity at the level of 

nucleotide sequence were named "variable" in contrast with regions that have a high 

degree of homology and were defined as "conserved". It was suggested that the 

polypeptide sequences encoded by the variable regions take part in target recognition 

and these regions of HsdS have been named "target recognition domains (TRDs)". 

One of the TRDs proved to be responsible for the recognition of the three-nucleotide 

component of a target and the other one for the recognition of the second part of the 

sequence. 

The extensive random mutagenesis of the amino-TRD of EcoKI was performed in 

order to find amino acids of a TRD involved in interactions with the target ( ONeill 

ci' at., 1998) It has been shown that out of 101 substitutions affecting 79 residues only 

seven caused the loss of restriction and modification activity, the phenotype expected 

for mutations that lead to loss of specificity. The authors proposed an explanation 

that the corresponding amino acids lie on the protein-DNA interface and subsequent 

site-directed mutagenesis supported this suggestion. The fluorescence anisotropy and 

DNA binding experiments showed that there was a strong correlation between the r 

m phenotype and failure to bind DNA target. 

A new type I system StySQI was isolated from a P1 transduction between S1ySPI and 

StvLTIII (previously called S!),SBI) strains (Table 1.1). (Bullas and Colson, 1975). 

The sequence of the central conserved region of the hsdS of StySQI has the sequence 

(ö] 



identical to the 5' part of StySPI joined together with 3'part of StyLTIII. As a result 

the new system recognises a three-nucleotide sequence identical to that of the target 

of StySPI, has the same 6-nucleotide spacer and recognises the same target 

tetranucleotide as the SIySBI ( Fuller-Pace & Murray, 1986). 

The study of EcoR 1241 showed that, at a low frequency, cells gain the ability to 

restrict phage modified by the original enzyme. The target of the new system of 

restriction-modification (EcoR 124/TI) differs only in the length of the spacer 

(Hughes, 1977; Price et al., 1989). The sequences of the corresponding genes are the 

same except for a 12bp sequence in the central conserved region that is present twice 

in the initial hsdS gene and three times in the EcoR124/I1 gene. 

The transposition of Tn5 that led to the formation of a truncated HsdS subunit of the 

type IC system EcoDXXI resulted in an enzyme with a new specificity - 

TCA(N)TGA. This enzyme proved to be the result of an interaction between two 

"half-subunits" of HsdS ( Meister et al., 1993). It was shown later that the 3'end of 

the same gene, fused to the transcriptional and translational signals produces a 

peptide that can interact with HsdM and HsdR and confers specificity for the 

interrupted palindromic DNA sequence GAAY(N5)RTTC (MacWilliams and 

Bickle, 1996). 

A symmetrical model for the organisation of a type I methylases has been proposed 

by (Kneale, 1994). On the basis of homology between the central conserved domain 

and sequences near N and C termini of the protein a circular organisation of the S-

subunit have been postulated, where one M subunit interacts with a conserved 

domain and the other holds together the "split domain" (Figure 1.1). 

Even though the HsdS subunit determines the specificity of both the methylation and 

restriction complexes of type I R-M systems, the frequent appearance of hybrid hsdS 

genes and therefore new type I systems raises the question of the regulation of 

restriction, particularily since the methylase of type IA systems have a pronounced 

preference for hemimethylated DNA, and new systems could restrict unmodified 

chromosomal DNA. 
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b) 

C) 

[1 	Variable 1 	i:::['1,7 OoV] 	Variable 2 

1 20 	 145 	 210 	 358 	 404 

Figure 1.1 HsdS subunit of EcoR 1241 enzyme. 

(a) Orgunisation indicating the two TRDs and conserved sequences. (b) Model of 

Kneale, in which the repeated sequences form linkers joining the TRDs. (c) Model 

of the EcoR. 1241 methyltranferase. in which the two HsdM subunits bind to the 

linker region. From reference Murray (2000). 
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hsdM gene and polypeptide. The modification complex. 

Early analysis of the predicted amino acid sequence of the HsdM subunit of EcoKI 

revealed motifs common to methyltransferases (Loenen et al.,1987).Comparisons of 

the amino acid sequences of many methyltransferases (Mtases) identify 9 or 10 

motifs, two of which are highly conserved. These motifs are common to all 

methyltransferases, from the simplest acting on organic compounds such as catechol 

methyltransferase to those active on bases within polynucleotides (Schluckebier, et 

al., 1995). All these enzymes, which share the ability to catalyse the transfer of a 

CH3  group to a substrate molecule, are believed to contain a characteristic alpha/beta 

structural fold (Figure 1.2) (Tran et al., 1998). 

The methyltransferases active on DNA are divided into 3 classes according to which 

residue is methylated and the position to which the methyl group is transferred: N6-

adenine methyltransferases, C5-cytosine Mtases and N4-cytosine DNA 

methyltransferases (for reviews see (Cheng 1995; Dryden, 1999). C5-cytosine 

Mtases are the best studied because the presence of a covalent intermediate in the 

process of methylation (Wu and Santi, 1987) permitted the determination of the high-

resolution three dimensional (3D) structure of the HhaI-DNA complex 

(Klimasauskas et al., 1994). 

All type I R-M enzymes transfer a methyl group from the cofactor AdoMet to the N6 

position of adenine. Malone et al. (1995) made a structure-guided sequence 

comparison of N6-adenine and N4-cytosine DNA Mtases, identifying nine conserved 

sequence motifs, which correspond to the motifs Ito VIII and X previously found in 

C5-cytosine DNA Mtases ( Posfai et al.,1988; Posfai et al., 1989). 

DNA N6-adenine methylases have been subdivided into 3 groups: c3 and y 

according to the order and spacing between conserved motives (Wilson, 1992). The 

arrangement of the conserved motifs places the HsdM subunits of type I restriction 
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N 

N 

Figure 1.2 Consensus fold of methylases (Tran et al., 1998) 

Circles represent a-helices and triangles represent 13-strands; the N and C 

termini are indicated; motifs conserved in adenine methylases shown as black 
rectangles. 

A Fold of M.TaqI 

B Predicted fold of HsdM of EcoKI (Dryden D., unpublished) 
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enzyme in the y  class of rnethyltransferases. Unfortunately, no 3D-structure of a type 

I restriction or modification enzyme has been determined, but the structure of 

M.TaqI, a representative of they class of methyltransferases has been solved (Figure 

1.2) (Labahn et al., 1994). 

The mechanism of modification reaction was discovered for Mal, a C5-

methyltranferase but there is supporting evidence that a similar mechanism is 

applicable to all DNA Mtases. For HhaI the methyl group of AdoMet, which is 

bound to a conserved glycine of motif I is transferred to the target base that is flipped 

out of the double helix through the minor groove into the enzyme pocket by the 

amino acids of motif IV (Klimasauskas et at., 1994). A similar 3D-structure was 

obtained for M.HaeIII, another type II methyltransferase (Reinisch et at., 1995). 

Amino acid substitutions within the two most conserved motifs of EcoKI ( motif I, 

consensus PAxAxGP and motif IV, consensus N/DIS P/I P Y/F/W) produced 

enzymes incapable of methylating the target DNA either in vivo or in vitro. The 

change G 177D in motif I led to an enzyme unable to bind the cofactor AdoMet, 

which supports the idea that this motif is responsible for binding the cofactor as was 

shown for Mal. The amino acid substitutions in motif IV apparently led to enzymes 

that retained the conformation of the wild-type enzyme and were able to bind 

AdoMet, but unable to transfer the methyl-group to DNA, except when F was 

replaced by an aromatic residue: the F269W substitution resulted in enzyme with 

partial activity and F269Y resulted in an enzyme with wild-type activity (Willcock ci' 

al., 1994). 

Site-directed mutagenesis to change the Y residue of motif IV of M.TaqI led to an 

enzyme that according to measurement of changes in the fluorescence of 2-

aminopurine (2AP) incorporated into an oligonucleotide duplex was capable of 

flipping of the target base but had a reduced catalytic constant (Pues et al. 1999). The 

authors proposed that the aromatic residue Y/F/W of the motif IV is involved in 

13 



placing the extrahelical target base in an optimal position for transfer of the methyl 

group. 

Indirect evidence supports the current model of base flipping as an intermediate in 

the mehylation reaction performed by type I R-M enzymes. Hydroxyl radical 

footprinting studies of DNA complexed with M.EcoR124 revealed an increased 

accessibility of the bases that are the substrates for the methylation, and a marked 

change in the structure of the sugar-phosphate backbone of the DNA including these 

bases, after binding of the enzyme (Mernagh and Kneale, 1996). Additionally, like 

M.Hhal, the constant of binding of M.EcoR124 to the oligonucleotide duplex 

containing the recognition sequence where an abasic pair or mismatch substitute for 

the target adenine is higher than that of binding to an oligonucleotide duplex that 

includes the target sequence (Mernagh et al., 1998). 

The type I complex, capable of methylation, is a trimer consisting of one DNA 

recognition subunit (S) and two modification subunits (M): M2S1.  The partly 

assembled dimer form, M I S,, binds DNA with weaker affinity. The addition of a 

second modification subunit to form M2S, also confers Mtase activity (Taylor et cii. 

1992; Dryden et al., 1993) 

The M I S I   complex of EcoKI has a footprint on the DNA substrate of the same length 

as M2S1  implying that the modification subunits are located on either side of the 

DNA helical axis (Powell et al., 1998a). The M.EcoKI has two non-interacting 

AdoMet binding sites and it was shown by gel-retardation analysis that binding of 

AdoMet to the methyltransferase enhances binding to both specific and non-specific 

DNAs, but the enhancement is greater for the specific DNA (Powell et al., 1993). 

The tertiary structure prediction of the M subunit of EcoKI reveals three major 

domains: an N-terminal rn*  region, relevant to the higher methylation activity of type 

IA enzymes on hemirnethylated DNA (Kelleher et al., 1991), the catalytic domain 

and a C-terminal tail. 
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Using the similarity between the type I enzymes and the type II y class of methylases 

a model for the type I methylase bound to DNA was proposed. According to this 

model the two M-subunits bind to the conserved regions of HsdS in the opposite 

orientation. The HsdM-HsdS interface includes both the catalytic region and joined 

m 	tail region of HsdM (Dryden et al., 1995). 

hsdR gene and polypeptide. Restriction complex. 

The early genetic experiments showed that the product of hsdR gene is responsible for 

the restriction of unmodified DNA although the products of all three hsd genes are 

required for it (Colson et al., 1965; Wood, 1966; Boyer and Roulland-Dussoix, 1969). 

The hsdR genes for all four families of type I systems encode polypeptides containing 

motifs characteristic of ATP binding proteins (Walker et al., 1982). However, the "A" 

component of a classical "Walker motif' GAXXXGKST is in the form GXGKS, a 

variant characteristic of members of the "DEAD box" family of helicases, so called 

because prototypic members shared the motif "Asp-Glu-Ala-Asp" (DEAD). The 

HsdR subunit includes all the motifs common to ATP-dependent helicases 

(Gorbalenya and Koonin, 1991; Murray et al., 1993; Titheradge et al., 1996; Davies 

et al., 1998). 

Limited proteolysis and structural modelling have shown that HsdR can be 

functionally subdivided into 3 domains: an aminoterminal domain containing an 

endonuclease motif, a central domain containing DEAD-box motifs, which is 

predicted to have a similar structure to the catalytic domain of a DNA helicase such 

as PcrA, and a carboxyterminal part that is critical for binding HsdR to the 

methylase (Davies et al., 1999). 

Substitutions in the endonuclease motif, reminiscent of the P-D (DIE)-X-K the 

catalytic motif of many type II restriction enzymes, led to proteins that were unable 

to cut DNA, while still retaining the translocation activity (Davies et al., 1999a). 

Conserved changes in DEAD-box motifs resulted in proteins that were able to bind 

specifically to the target in the presence of ATP and AdoMet and undergo an ATP- 

15 



dependent conformational change. However, these enzymes were unable to 

hydrolyse ATP and translocate DNA and they failed to cut DNA (Davies et al., 

1999a). 

The stoichiometry of the restriction complex of type I restriction systems is R2M2S1  

(Dryden et al., 1997). The report that R.EcoR 1241 complex is R1 M2S1  by Janscak et 

al. (1996) was explained (Mernagh et al., 1998) by the finding that M.EcoR124I has 

two non-equivalent sites for binding HsdR. While binding of the first HsdR subunit 

to the corresponding methylase is very tight the second HsdR binds weakly and is 

easily dissociated to yield R1 M2S1  (Janscak et al.,1998). 

In the presence of both cofactors, and either a hemirnethylated or unmethylated target 

sequence, EcoKI undergoes a conformational 	change (Bickle et al., 1978; 

Burckhardt et al. 1981; Powell et al., 1998b). In the case of hemimethylated target 

the change leads to the methylation of the other strand of DNA followed by the 

release of the enzyme (Burckhardt etal. 1981). 

Gel retardation experiments showed that, irrespective of the presence of AdoMet, the 

EcoKI restriction enzyme could bind to DNA, even without a target, in the absence of 

ATP. Following the addition of both AdoMet and ATP, the size of the footprint 

changes to that of the methyltransferase although restriction subunits remain bound to 

the complex (Powell ci al., 1998b). The authors interpretation of these findings is 

that restriction subunits can make unspecific contacts with DNA but these 

interactions are weakened if the methylase core of the enzyme recognises the target 

allowing the enzyme to undergo the conformation change necessary for the 

restriction reaction (Powell etal., 1998b)(Figure 1.313). 

The restriction complex requires AdoMet both as an allosteric factor and methyl 

donor. In the absence of ATP, EcoKI and EcoBI methylate the target DNA but at a 

very slow rate (Burckhardt et al. 1981). Thus, theoretically, the restriction reaction 

will always lead to the DSB before the modification reaction will be completed. 
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Figure 1.3 A model of EcoKI and the effect of cofactor binding on the EcoKI 

complexes with specific DNA 

Model of EcoKI (Davies et al., 1999b). HsdS is shown in grey: HsdR, HsdM 

and the methylase core (Mtase) are defined by brackets. 

Effect of cofactors (Powell et al., 1998). 
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With unmodified DNA the enzyme starts to hydrolyse ATP and uses this energy to 

translocate DNA in both directions, simultaneously, while remaining bound to the 

target. (Studier and Bandyopadhyay, 1988; Firman and Szczelkun 2000). 

The requirement for ATP hydrolysis for DNA translocation was confirmed by an 

assay of T7 DNA entrance into a bacterial cell. When bacterial and T7 RNA-

polyrnerases, which are usually responsible for internalisation of phage T7 genome 

are inhibited, EcoKI can pull the phage genome into the cell in the absence of the 

product of the 0.3 gene (see Chapter 2. Regulation of the restriction activity) (Garcia 

and Molineux ,1999). Mutations in each of the DEAD-box motifs were shown to 

block the translocation activity of EcoKI and this correlated with loss of the ability 

to hydrolyse ATP (Davies et al., 1999a). 

Atomic force microscopy has shown the dimerisation of two EcoKI molecules, 

bound to two unmodified targets on the plasmid DNA, in the absence of ATP. A 

rapid collapse of DNA molecules was observed after ATP was added, consistent with 

ATP-dependent translocation (Ellis et al., 1999). 

DNA translocation by EcoAl along the helical path of a plasmid simultaneously 

generates positive supercoils ahead and negative supercoils behind the moving 

complex in the contracting and expanding DNA loops respectively (Janscak and 

Bickle, 2000). When the translocation is impeded by an encounter with a fixed 

Holliday junction, translocating complexes introduce a DSB within the DNA 

molecule (MacWilliams et al., 1996; Janscak et al., 1999; Studier and 

Bandyopadhyay, 1988). Encountering another type I restriction enzyme, but not 

any other protein bound to DNA, 	e.g. Lac-repressor, triggers cutting of 

DNA(Janscak et al., 1999). After cleavage the enzyme remains tightly bound to the 

DNA (Eskin and Linn, 1972; Ellis et al., 1999). 
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Despite the presence in HsdR of DEAD-box motifs common to DNA and RNA 

helicases, there is no direct evidence for strand-separating activity for any type I 

restriction enzyme. However, some proteins such as phage DNA packaging enzymes 

that are able to translocate DNA do not employ a strand separating mechanism (for 

review see (Fujisawa and Morita, 1997). Additionally, it is possible to uncouple the 

translocation and strand-separation activities of a helicase (Graves-Woodward et at., 

1997; Soultanas et al., 2000). Therefore, type I restriction enzymes may just track 

along double-stranded DNA without strand separation. 

b) Type III R-M systems 

Type III systems are highly reminiscent of type I R-M systems (see Bickle and 

Kruger, 1993; King and Murray, 1994 for review). Putative type III enzymes are 

mostly chromosomally located (Roberts, 1998; Roberts and Macelis, 2001) and 

references therein), although the most detailed studies of type III restriction systems 

were done on the EcoPI system of phage P1 and EcoP 151 of plasmid P15B. 

The modification enzyme of type III systems has motifs characteristic of adenine-

methyltransferases. Substitutions in motif I of the Mod subunit of EcoP 151 led to an 

enzyme unable to bind AdoMet. The mutants in motif IV bind AdoMet but do not 

perform the methylation reaction (Saha et al., 1998). 

The restriction subunit is active only in a complex with the modification subunit 

(Hadi et al., 1975). The Res polypeptide has DEAD-box motifs (Gorbalenya and 

Koonin, 1991; Saha and Rao, 1997). Substitutions in motif I (GxGKS) resulted in a 

mutant enzyme unable to hydrolyse ATP and cut DNA, mutagenesis of motif II 

(DEPH) resulted in uncoupling of ATP hydrolysis and cleavage reaction (Saha and 

Rao, 1997). 

Type III enzymes recognise asymmetric sequences without a spacer and methylate 

adenine at the N6 position, or restrict DNA in a reaction dependent on Mg2  and 

ATP (De Backer and Colson, 1991). For successful cleavage two unmethylated 

sites must be inversely oriented (Kunz et al., 1998) as co-operation between two 

enzymes is required for the restriction reaction (Saha and Rao, 1995) 
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c) Modification-dependent restriction systems (MDRS) 

Three such systems have been found in E.coii K-12: McrA (for methylcytosine 

restricting) (Rg1A), McrBC (Rg1B) and mrr (Bickle and Kruger, 1993). They were 

discovered as the factor responsible for the restriction of non-glycosylated T-even 

phages (Rgl) and were the main barrier to cloning C5-methylated DNA from 

eukaryotes in E.coli (Whittaker et al., 1988; Raleigh etal., 1988). 

McrA is a single 3 lkDa polypeptide that restricts only cytosine methylated DNA 

(Shivapriya et al., 1995). 

incrB 	specifies two polypeptides - full length, McrBL  and 	a 

truncated, 	McrBs 	( Beary et al., 1997 ; Panne et al., 1998 ). 

The McrB component of the McrBC restriction system has a GTP-binding motif. 

McrB is able to restrict 5meC preceded by a purine in a reaction dependent on GTP, 

Mg2  and McrC. McrC regulates the activity of McrB and the optimal enzyme 

activity is obtained at a ratio of three to five McrB per McrC, suggesting that DNA 

is cleaved by a multisubunit complex (Panne etal., 1999). McrBs, which lacks 161 

amino acids at the N-terminal part of McrB, regulates the activity of McrBC 

complex by sequestering McrC (Panne et al., 1998) 

McrBC recognises and cleaves DNA containing modified cytosine residues (mC): 5-

hydroxymethylcytosine (restriction of T4 phage is the Rg1B phenotype), N4-

methylcytosine, 5-methylcytosine (Dila et al., 1990). For DNA containing 5-

methylcytosine it has been shown that the cleavage requires two mC sequences, 

usually separated by at least 22 bp and no more than 2 kb, where only one of the 

strands has to be methylated (Stewart and Raleigh, 1998). A linear substrate 

requires 2 mC for cleavage, but a circular substrate containing only one mC is 

cleaved successfully (Panne et al., 1999). Additionally, a mutant unable to hydrolyse 

GTP cuts DNA close to the target, resembling DEAD-box mutants of EcoKI that are 

able to introduce nicks into the substrate despite absence of the ability to hydrolyse 

ATP. McrBC translocates DNA and its behaviour is quite similar to type I 

restriction enzymes. However, unlike type I restriction enzymes, an encounter with 

Lac repressor bound to the linear substrate triggers the restriction reaction (Panne et 
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al., 1999). 	Mrr (for methylated adenine recognition and restriction) is an 

endonuclease that restricts DNA containing N6mA and C5mC (Heitman and 

Model, 1987). 

1.2 The regulation of restriction activity of nucleoside triphosphate-dependent 

restriction systems. 

Introduction 

Regulation of restriction activity of ATP or GTP-dependent R-M systems 

Two situations that arise in bacterial cells are the subjects for the regulation of 

nucleoside triphosphate-dependent restriction systems: acquisition of new restriction 

systems and regulation of the restriction activity of a resident R-M system under 

stress conditions. 

The latter phenomenon is often referred to as restriction alleviation (RA). However, 

some other processes, which lead to inhibition of restriction activity, are referred to 

in the literature using the same term. These processes include the inhibition of type I 

restriction systems by the antirestriction proteins of plasmids (Belogurov et at., 1985) 

or phages (Spoerel et at., 1979). However, antirestriction proteins often inhibit both 

restriction and modification reactions of type I restriction enzymes (Bandyopadhyay 

et at., 1985; Moffatt and Studier, 1988) and the Ral protein of phage X enhances the 

modification of unmodified DNA (Zabeau ci' at., 1980; Toothman, 1981). 

In this thesis restriction alleviation (RA) is considered to be a phenomenon in which 

the level of restriction but not modification of foreign DNA is reduced in genetically 

restriction-proficient cells under some physiological conditions. RA occurs after 

bacterial cells are exposed to DNA- damaging agents or as a result of certain 

mutations that are predicted to lead to DNA damage. The phenomenon of restriction 

alleviation is characteristic of type I and some modification-dependent but not of 

type II systems. 
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For example, the normal level of restriction of 2 with 5 targets by E.coli K-12 cells is 

104  and in the case of RA the level of restriction may be as low 10 fold (Bertani and 

Weigle, 1953 ; Day, 1977). This remaining restriction activity will be referred to as 

residual restriction activity. 

The acquisition of type I hsd genes and their regulation. 

One might expect that the acquisition of type I hsd genes conferring a new specificity 

would lead to cell death because the chromosome of the recipient bacterium has 

unmodified targets for the new specificity. However, hsd genes can be easily 

transferred from one strain to another by transfection, conjugation or transformation 

(Sain and Murray, 1980; Surl and Bickle, 1985; Skrzypek & Piekarowicz 1989; 

O'Neill et al., 1997). But when an F'plasrnid, carrying the EcoAl genes was used in 

matings with a recipient that expressed hsdR on a multicopy plasmid, this 

conjugation was lethal for the recipient cell due to the restriction of its genome (Sun 

and Bickle, 1985). Similarly, when 2. phage encoding hsdS of EcoAl or EcoEI 

infected bacteria that had a plasmid with hsdR and hsdM of EcoAl the recipient 

bacteria were killed (Fuller-Pace et al., 1985). These facts imply the existence of 

mechanisms for regulation of the expression of hsd genes during their establishment 

in a bacterium that lacks the appropriate protective modification. 

The hsdR gene of the EcoKI system has a separate promoter but no evidence for 

transcriptional regulation has been found (Loenen ci' al., 1987, Daniel et al., 1987). 

Prakash-Cheng et al. (1993) using hsd::iacZ fusion found no evidence for 

transcription regulation of expression of the hsd genes of EcoKI following transfer 

by conjugation of F'-plasmids. Both the fusion with the promoter of hsdR and that 

with hsdMS genes had approximately the same level of 3-galactosidase activity. 

Additionally, a mutant, !isdC (for control), has been isolated that cannot survive 

transfer of an Ffactor that includes hsdR, M and S while the corresponding 

methylase genes can be transferred readily (Prakash-Cheng et al., 1993). 

22 



A reduction in the level of restriction was also noted following conjugation 

experiments from ink-  Hfr donors (Glover and Colson, 1966). This RA was not 

dependent on the origin of transfer of the chromosomal DNA and a saturation of 

the restriction enzyme by targets on the unmodifued chromosomal DNA was 

proposed as an explanation of the observed effect. However, RA was also noticed 

in conjugation experiments with F and F donors, although to a lesser degree. 

Many years later it was shown (Makovets et al., 1998) that clpX and clpP, which 

encode the C1pXP protease, are critical for the establishment of type IA and type TB 

systems. Mutants deficient in this protease either do not survive (EcoKI) or show a 

lower rate of survival (EcoAl) after transfer of hsd genes by conjugation, 

transformation and transduction. The drop in the titre of the recipient in the 

conjugation experiments is more severe using the hsdC recipient than that detected 

for a clpX recipient and the presence of an additional mutation in the hsdC recipient 

was suggested (Makovets et al., 1998). Makovets et al.(1998) proposed a hypothesis 

that C1pXP degrades HsdR, but not HsdM or HsdS, and thus allows the methylase to 

modify the host chromosome in a naive cell. 

The 'missing link' between the reduced level of restriction during the establishment 

of type I R-M systems, restriction alleviation after exposure of the cells to DNA-

damaging agents and the constitutive RA found in some mutants was provided by 

the work of Makovets and colleagues (1999). It was shown that RA is C1pXP-

dependent in mutants that show constitutive RA (darn, inut) and in hsd cells grown 

in the presence of 2-aminopurine (2AP). 

The authors proposed a hypothesis that the degradation of the restriction subunit by 

C1pXP protease was caused by unmodified targets appearing on the bacterial 

chromosome and required the presence of a functional translocation complex. An 

amino acid substitution in one of the DEAD-box motifs in HsdR of EcoKl, which 

led to an enzyme unable to translocate and cut DNA, prevented degradation of 

HsdR even in the presence of functional EcoAI complex, e.g. a cis signal is required 

for the degradation of a type I restriction complex. 
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Inducible Restriction Alleviation 

The first report of restriction alleviation of a type I restriction enzyme followed the 

exposure of E.coli K-12 cells to UV radiation (Bertani and Weigle, 1953). Day 

(1977) proposed a blockage of restriction enzyme by inhibition of its action as one of 

the possible causes of RA. 

UV-induced RA affects infection with unmodified phages, e.g. X, unglycosylated T4 

and T2 (Dharmalingarn and Goldberg, 1980) and transformation by unmodified 

plasmids, although in the case of transformation the residual restriction activity is 

much higher (Hiorn and Sedgwick, 1992). The maximum level of RA of type I 

restriction enzyme is reached at 60-90 minutes after treatment and declines later. RA 

requires protein synthesis (Thorns and Wackernagel, 1982). 

The induction of restriction alleviation EcoKI is abolished in mutants in which the 

RecA protein is defective (recAI3, recA56) or its protease activity is altered 

(recA430) (Thorns and Wackernagel, 1984). On the other hand constitutive 

derepression of the SOS regulon by the recA 730 allele did not lead to RA and UV 

irradiation is still required (Hiom and Sedgwick, 1992). Additionally, UV-induced 

RA does not occur in lex (Day 1977), recBC (Thorns and Wackernagel, 1984) and 

recF (Thorns and Wackernagel, 1984) strains. 

An additional unidentified protein necessary for the induction of RA was later found 

to be functional UmuD'C: RA is one hundred times lower in an umuD mutant and is 

not activated by overexpression of UmuDC if UmuD cannot be processed to yield 

UmuD' (Hiom and Sedgwick, 1992). 

Summarising the genetic requirements for the UV-inducible RA, there is a parallel 

between it and the requirements for SOS mutagenesis (reviewed in Humayun, 1998). 

During SOS mutagenesis proteolysis of LexA repressor by the activated RecA-DNA 

complex is necessary for the activation of the SOS response and for proteolysis of 

UmuD. Proteolysis of UmuD leads to the production of an active form, UmuD', and 
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consequent formation of UmuD'2C. UrnuD'2C is an error-prone DNA polymerase 

and it has an ability to stimulate both nucleotide misincorporation and mismatch 

extension (Tang et al., 1998). 

Nalidixic acid (Nal)-induced RA occurs when rapidly growing cultures are exposed 

to a sublethal concentration of the antibiotic for 90-120 minutes; Nal inhibits DNA 

gyrase. Nal-induced RA is dependent on recBC, but not on lex or recF. It can be 

pointed out that UV differs from nalidixic acid as a DNA-damaging agent: Nal 

produces DSB as a result of stalling of replication forks and UV leads primarily to 

lesions in the DNA as a result of the replication fork by-passing thymine dimers. The 

single-strand gaps can be repaired by recombinational repair - hence the requirement 

for rec genes or, if the error free repair systems are saturated, for the UmuD'2C 

pathway. Accordingly, the RecFOR pathway repairs single-strand gaps in the 

daughter strand and RecBCD takes part in the repair of double-strand breaks 

(Kuzminov, I 999).The difference in time of occurrence of UV and Nal-inducible RA 

can be explained by the repair of daughter strand occurring earlier than the repair of 

DSBs (Kuzminov, 1999). 

Efimova et al (1988b) reported that the level of restriction by EcoKI, EcoBi and 

EcoDI but not type II systems (EcoRI) was found to be reduced after treatment of the 

restriction-proficient cells with either 2AP or 5-bromouracil (513U). The relief of 

restriction was the biggest for EcoKI and smallest for EcoAI and was independent of 

recA or lexA genes. Both 2AP and 5BU are strong inducers of mismatches (Bebenek 

and Janion, 1983). 

Makovets and colleagues (1999) compared all three inducers of RA of type I R-M 

enzyme (UV, Nal and 2AP) and found that inducible RA is completely abolished in 

clpX and cipP mutants. Direct evidence for the degradation of the HsdR subunit 

during the growth of restriction-proficient cells in the presence of 2AP was obtained 

by pulse-chase experiments. The authors suggested that the new, unmodified, targets 

that appear on the chromosome as a result of any DNA-damaging agent induce RA 

(Figure 1.5). 
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A deficiency in C1pXP protease has been shown to be lethal in the presence of 

functional EcoKI when bacteria are grown in the presence of 2AP (Cromie and 

Leach, 2001). The levels of sensitivity to 2AP in rec mutants are consistent with 

EcoKI introducing DSB into the bacterial chromosome. 

Some type IC and type ID systems show RA under conditions of treatment with 2AP, 

although the RA for a type IC system is not dependent on Lon or Cip proteases 

(S .Makovets and N.E.Murray, unpublished observations). 

Constitutive Restriction Alleviation 

This thesis describes mutations in the hsdM gene of E. coli K-12 restriction enzyme, 

which lead to a permanent low level of restriction by EcoKI independent of the 

growth conditions, i.e. restriction is alleviated constitutively. 

A number of amino acid substitutions in the N-terminal TRD of the HsdS gene of the 

same system lead to constitutive restriction alleviation. The mutants have impaired 

modification activity and require ClpX for viability (O'Neill et al., 2001).). 

The previous section (Inducible restriction alleviation) has shown that recombination 

associated with DNA repair and error-prone DNA synthesis, which lead to 

accumulation of new targets for type I R-M enzymes, result in RA. One might expect 

that mutations that result in the increased recombination and/or accumulation of 

replication errors would result in RA. 

Indeed, some mutations, which are not located in the hsd region, lead to constitutive 

restriction alleviation, which, in contrast to inducible RA, is not transient. First, a 

mutation in darn, the gene specifying the maintenance methyltransferase, was shown 

to result in constitutive RA, (Efimova et at., 1988a). The characteristic traits of the 
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Dam phenotype are hypermutability (Arraj and Marinus, 1983; Marinus et at., 1984) 

and hyperrecombination (Peterson and Mount, 1993; Marinus 2000) presumably 

because of the constitutive SOS response in darn strains. It has been shown that darn 

mutants are deficient in the correct repair of mispaired bases (Glickman et at., 1978). 

The hypothesis of mismatches as inducing agents of RA in the case of type I R-M 

systems was checked by Efimova et al.(1988b). Mutants with defects in genes 

responsible for the mismatch repair function (matH, mulL, mutS) were shown to be 

deficient in restriction by type IA systems. The same phenotype of constitutive RA 

was conferred by a mutation in dnaQ. This mutation compromises the fidelity of 

DNA polymerase (Makovets et al., 1999). 

The effect of topA mutations is presumably similar to that obtained with Nal, 

leading to the disturbance of normal topology of the nucleoid, stalling of the 

replication forks and, finally, to DSBs although it might be pointed out that this 

mutation has a pleiotropic effect influencing the level of transcription of several 

Cy enes, so an indirect effect on a protein which is required for RA can not be 

excluded. 

Regulation of other nucleotide-dependent systems 

Data for the regulation of those restriction systems that cut modified DNA, and for 

type III restriction systems, are scarce. EcoPlI and EcoP15I can be transferred to 

E.coii cells by transfection, conjugation or transformation, become established 

without difficulty and the regulation occurs on the posttranscriptional level (Redaschi 

and Bickle, 1996). It was reported that type III R-M systems may undergo RA in 

dam strains (Efimova em' a/.,1988a) but restriction alleviation was not observed after 

treatment with 2AP (Efimova em' al., 1988b). 

The response of four different systems of E.coli K-12 - EcoKI as a control, and three 

systems that restrict modified DNA (McrA, McrBC and Mrr) was monitored. All the 

systems showed some response to treatment with UV (Kelleher and Raleigh, 1994). 



McrBC behaved in a similar way to EcoKI, showing the same kinetics of induced 

RA. However, the level of RA was smaller for the McrBC system, which might 

account for a previous report of the absence of RA for this system when measured by 

the frequency of transformation by an unmodified plasmid (Hiom et al., 1991). The 

interpretation of the reduction of activity of the McrA system, encoded by e14, a 

cryptic prophage, was complicated by the induction and loss of the prophage after 

treatment with UV (Hiom et at., 1991; Kelleher and Raleigh, 1994). A possible 

mechanism of regulation of the McrA system at the level of translation has been 

reported by (Shivapriya et al., 1995). 

The mechanism of RA of the McrBC and Mrr systems remains to be investigated. 

1.3 Molecular mechanisms of specific recognition and degradation of proteins 

by the cytoplasmic proteases. 

Proteolysis is one of the general mechanisms of regulation of important cellular 

processes such as the cell cycle, programmed cell death and pathogenesis. Proteases 

are widespread and have homologues in bacteria, archea, plants and animals (see for 

review (Gottesman 1996; Gottesman, 1999). Proteases play an important role in 

regulation of the cell cycle of certain bacteria such as Caulobacter and Bacillus, but 

the present review will concentrate on the action of the ATP-dependent proteases in 

E.coli and mostly on Cip proteases, as these have been shown to be involved in 

regulation of the activity of type I restriction enzymes (Makovets et at., 1998; 

Makovets et at., 1999). 

Many of cytoplasmic proteases of bacteria require ATP for the degradation of the 

protein substrates and they belong to the AAA protein family of ATPases associated 

with a variety of cellular activities, defined by an AAA domain. This domain of 230 
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amino acid contains the Walker motifs and a conserved sequence, which is proposed 

to be associated with the conversion of the energy from ATP hydrolysis to the 

disassembly of protein complexes (Pate! and Latterich, 1998; Neuwald et at., 1999). 

Intracellular proteases of E.coti include hornooligomeric enzymes such as Lon (La) 

or HflB (FtsH) and heterooligorneric proteases CIpAP (Ti), C1pXP, CIpYQ (Hs1UV). 

For the heterooligomeric proteases CIpP and CIpQ are peptidase components, which 

alone can hydrolyse only short peptides. The chaperone-like subunits ClpA, X and Q, 

which can also act independently from the proteolytic components, provide substrate 

specificity to the complex (Suzuki et al., 1997). The main difference between 

classical chaperones, like GroEL, and the specificity subunits of proteases like C1pA 

or C1pX is that classical chaperones recognise unfolded or misfolded and aggregated 

proteins and components of proteases disassemble complexes of "normal" proteins. 

The term 'charonine' has been proposed to describe ATP-dependent proteases with 

intrinsic chaperone activity (Schumann, 1999). However, this is not a generally 

accepted terminology and this review will use the definitions given in (Gottesman, 

1996). 

The domain structures of the subunits of some proteases of E.coli are shown on 

Figure 1.6A (Smith ci' at., 1999). Assembled heterooligomeric proteases are 

organised into ring of 6 or 7 subunits, stacked upon each other in such a way that the 

chaperone components serve as gates to the proteolytic chamber (Fig 1.6B) 

(Schmidt et at., 1999). 

Unlike the eukaryotic 26 proteasome, which mostly degrades ubiquinated proteins, 

the substrates of prokaryotic proteases do not possess a uniform signal that renders 

them susceptible to proteolysis. Prokaryotic proteases have substrate specificity; they 

degrade some proteins, but not others, even if similar in structure. So far it is not 

possible to predict that a protein will be recognised as a substrate for a particular 

protease. The least understood aspect of the proteolytic degradation is the recognition 

of the substrate by the chaperone. For example, the C1pXP protease was shown to 
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recognise both the N-terminal part of a substrate - as in XO or UmuD', the C-

terminal part as in MuA and the SsrA tag, or a sequence in the middle of a protein as 

in RpoS. 

The current scheme of proteolysis is that, after recognition as a substrate, the 

chaperone hinds and unfolds the substrate protein and threads it into proteolytic 

chamber using ATP as a source of energy. 

Structure and general mechanism of action of Up proteases. 

In 1988 two groups independently discovered a protease in E.coli, which hydrolysed 

casein in vitro, in a reaction dependent on ATP and Mg2  (Maurizi et al., 1990; 

Katayama et al., 1988). 

It was found that the Cip protease (also called Ti) consists of two components - 

CIpA and C1pP - combined into multisubunit complex. C1pAP and CIpXP have 

mini-proteasorne structures composed of four stacked rings, organised into chambers, 

where the unfolding and proteolysis of the substrate takes place (Schmidt et al., 

1999). CIpA is responsible for ATP hydrolysis but cannot degrade proteins in the 

absence of C1pP. The CIpP subunit has an active site characteristic of serine 

proteases, but can only degrade small peptides in the absence of C1pA. An 

alternative chaperone component of Cip proteases was identified later and named 

C1pX (Wojtkowiak et al., 1993). 

C1pA and C1pX belong to the Hsp 1 OOIClp family of remodelling proteins and both 

are heat shock proteins (Schmidt et al., 1999). C1pA was shown to exhibit a 

chaperone-like function reassembling and directing the RepA replication protein of 

the P1 prophage to degradation by C1pP (Wickner ci al., 1994). An elegant 

experiment in which the SsrA tag was fused to the green fluorescent protein (GFP) 

demonstrated that CIpA can unfold stable proteins (Weber-Ban et al., 1999). When 

70 amino acids from the N-terminus of RepA were fused to GFP, CIpAP degraded 
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the resulting fusion protein. It was shown that ClpA binds the Rep-GFP fusion 

without perturbing the native conformation of the protein, unfolds it in the presence 

of ATP and passes it to the proteolytic chamber, hydrolysing ATP (Hoskins et at., 

2000). Additionally, CIpA was able to hind unfolded GFP lacking a recognition 

signal but not native GFP. 

ClpX, like ClpA, disassembles protein complexes, for example the MuA transposase 

tetramer or dinner of the replication protein of the R6K plasmid (Levchenko et at., 

1995), but it lacks the ability to hind unfolded proteins (Levchenko et at., 1997a); 

ClpX interaction with proteins is facilitated by specific recognition motifs (Singh et 

al., 2000). 

a) SsrA tag 

The SsrA tag is probably the closest approximation, in principle, to conjugation with 

uhiquitin in eukaryotes as a signal that targets proteins to degradation by the 

proteosome. It was shown that murine proteins produced in E.coii acquire an 11-

residue C-terminal peptide tag -AANDENYALAA-COOH on their C-terminus and 

that this peptide is specified by the lOSa RNA gene (ssrA) (Tu et al., 1995). It was 

then shown that this mechanism of degradation works not only on foreign proteins 

but on E.coli proteins such as the Lacl repressor (Abo ci al., 2000). 

It was then shown that proteins translated from mRNA that lacks stop codons 

acquire an SsrA tag by switching the ribosomes from the damaged mRNA to SSrA 

tmRNA. Proteins tagged with the SsrA are sequentially degraded by cytoplasmic 

proteases (Keiler ci at., 1996). 

The proteases responsible for the degradation of SsrA-tagged proteins are C1pAP and 

C1pXP (Gottesman et at., 1998). In vitro both proteases act equally effectively, but 

in viva CIpXP is more important. A minimal in vitro system of proteolytic 

degradation in this work consisted of A.O protein tagged with SsrA, ATP, C1pP and 

either ClpA or ClpX. The degradation of 2O-SsrA was shown to be mediated by CIp 
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proteases at 32°C but some other proteases were involved in degradation of the 

substrate at 39°C. One of these additional proteases, HfIB, can compensate for the 

absence of Cip complexes, when overexpressed (Herman et al., 1998). 

More recently (Levchenko et al., 2000) investigated additional factors that are 

involved in the SsrA tag-mediated degradation of abnormal proteins. A factor that 

enhances degradation of proteins fused to SsrA is a ribosome-associated protein, 

SspB (stress starvation protein), encoded by part of an operon important for the 

survival of bacterial cells in stationary phase (Williams et at., 1994). 

The recognition of SsrA-tagged proteins by C1pXP is enhanced 10 fold by SspB in 

vitro. The degradation of ?O-N-SsrA was abolished in viva in a C1pX mutant 

confirming that SspB protein is a specific factor enhancing degradation of SsrA-

tagged proteins by C1pXP. Different parts of the -AANDENYALAA-COOH peptide 

were shown to be responsible for the binding of SspB protein and for recognition by 

CIp proteases. The degradation of some substrates, e.g. MuA and ?O protein by 

C1pXP protease is not influenced by the presence of SspB. 

b) Other substrates 

These can he divided into broad groups of phage and plasmid replication proteins, 

cellular proteins and addiction modules. 

Phage and plasmid replication proteins 

C1pX as a chaperone and as a part of the C1pXP protease plays a dual role in the life 

cycle of phage Mu. C1pXP protease degrades Mu repressor, promoting the 

transposition of the phage. Virulent mutants of phage Mu, which successfully infect 

Mu lysogens and induce the resident prophage, have amino acid changes in the Mu 

repressor. These changes lead to an abnormally short half-life of the protein and 

their effect is trans-dominant (Geuskens et at., 1991; Geuskens et at., 1992).Other 

vir mutations, that result in the more rapid degradation of the repressor protein were 
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investigated. It was found that mutations that conferred the Or phenotype, and others 

that caused the reversion to the wild-type phenotype, affected the C-terminus of Mu 

repressor. A single amino acid change is sufficient to decrease the rate of proteolysis 

(Laachouch etal., 1996). 

MuA transposase hinds to the ends of the Mu genome and assembles itself into a 

tetrarner that catalyses the transfer of each Mu end to the target DNA. ClpX 

disassembles the tetramer, releasing monomers of MuA into solution. The ten C-

terminal amino acids of MuA, when transferred to the Arc - repressor of phage P22, 

were sufficient to convert the repressor protein into a substrate for C1pXP protease 

(Laachouch etal., 1996). 

It was also found that the region of transposase that interacts with MuB, the activator 

of transposition, was within the 30 amino acids at the C-terminus of MuA and this 

region overlaps the sequence recognised by C1pX . MuB inhibits disassembly of the 

MuA tetramer by C1pX, providing a mechanism for the regulation of the action of the 

chaperone (Levchenko et al., 1997b). 

Interestingly, the effect of a mutation, Mucts62, that leads to the thermosensitive 

derepression of Mu transposition, is dependent on C1pXP and Lon, and it requires 

carbon starvation in addition to the increase of temperature (Lamrani et al., 1999). It 

would he of interest to investigate a possible involvement of SspB (see (Levchenko 

et al., 2000) in the regulation of transposition of phage Mu. 

2. 0 protein, which may he relevant to the switch of replication of the phage DNA to 

the rolling circle mode, has a very short half-life in i'ivo and its degradation was 

identified to be dependent on C1pXP protease (Wawrzynow et al., 1995). The 0 

protein is protected from degradation while bound to ori?c or as a part of 

oriX:O:P:DnaB preprimosome complex 	but becomes susceptible to proteolysis 

under conditions permissive for transcription or as a result of increased negative 

supercoiling, e.g. after dissociation of X 0 from the DNA (Zylicz et al.,1998), 
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Studies of recognition and targeting of 2. 0 protein for binding to C!pXP and its 

hydrolysis have shown that deletion of first 18 amino acids from the N-terminus of 

the protein abolishes its degradation by CIpXP but not its binding to CIpX (Gonciarz-

Swiatek el al., 1999). The authors propose a hypothesis that C1pXP must first bind to 

an unidentified motif remote from the termini before the N-terminus sequence is 

recognised and used for unfolding the protein and its subsequent degradation. 

Table 1.3 Examples of sequences recognised by C1pA or CIpX 

Protein Source Protease Recognised sequence Reference 

RepA P1 C1pAP N-MNQSTFISDILYADIE (Hoskins 	et 	al., 

phage 2000) 

2 0 phage CIpXP ? (Gonciarz- 

lambda Swiatek 	et 

(1!., 1999) 

Mu phage CIpXP ---QEVKKAV-C (Laachouch et at., 

repres- Mu 1996). 

sor 

MuA phage CIpXP ERDDEYETERDEYLNHS (Levchenko et al., 

Mu LDILEQNRRKKAI-C 1997b) 

Bold 	- 	interaction 	with 

MuB, 	underlined 	- 	with 

ClpX 

Cellular proteins 

The sigma factor o (RpoS),  which replaces the major sigma factor, RpoD, in the 

stationary phase, is responsible for the transcription of a variety of genes expressed 

after cells enter the stationary phase. Rpo5  is rapidly degraded in the logarithmic 

phase (Hengge-Aronis, 1993) and its degradation is mediated by C1pXP protease 

(Schweder et al., 1996). However, an additional protein, RssB, that has sequences 
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common to response regulator proteins, is necessary for the proteolysis(Muffler et 

(11,1996) as RpoS accumulates even in the logarithmic phase in an RssB mutant. 

The action of RssB is modulated by phosphorylation (Bouche ci al., 1998) and a 

mutation affecting residue D58, the site of phosphorylation in MviA a Salmonella 

tliyphiiiiiiriuin homologue of RssB, prevented degradation of RpoS (Moreno eta!, 

2000). RssB regulates the degradation of RpoS by direct interaction and sequences 

within the 180 N-terminal amino acids are necessary for the action of CIpXP (Zhou 

and Gottesman, 1998). 

The turnover element, defined by the demonstration that the deletion of amino acids 

177-183 completely abolished proteolysis of as  (Schweder etal., 1996) was studied 

in detail by (Becker ci al., 1999). Site-directed mulagenesis was used to change the 

amino acids most dissimilar between RpoS and stable RpoD in the region identified 

by the deletion. This led to the identification of K173 as a critical residue. The 

change of this lysine to glutamic acid abolished proteolysis in vivo and led to the 

increased half-life of RpoS in vitro. El 74T and VI 77K changes slightly increase the 

half-life of the corresponding mutant proteins (Figure 1.7). 

A(aa 173- 188) 

RpoS 	IHIVKELNVYLRARELSHKLD 

RpoD 	VHMIETINKLNRISQMLQEMQ 

Figure 1.7 Alignment of the region of RpoS containing the turnover element with 

the corresponding region of RpoD. The in-frame deletion that interferes with RpoS 

proteolysis is shown. Residues changed in site-directed mutagenesis are shown in 

hold. 

Unlike many other substrates of CIp proteases, the restriction subunit of type IA and 

lB restriction enzymes is a stable protein under normal conditions of growth of 

bacterial cells but it is degraded if cells acquire unmodified sequences on the 
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chromosome. The restriction subunits (HsdR) of type IA (EcoKi) and type lB 

(EcoAL) restriction enzymes were shown to be degraded if bacteria are grown in the 

presence of 2-aminopurine. A mutation that prevented translocation of DNA also 

abolished this C1pXP-dependent proteolysis and the HsdR subunit of only active 

complexes was degraded, even when a translocating complex from the other type I 

enzyme was present. i.e. the signal for degradation does not act in trans between 

translocating restriction complexes of different families (Makovets et al., 1999). 

Attempts to reproduce CIpXP proteolysis in vitro have been unsuccessful under 

conditions that permitted degradation of ? 0 protein (L.Powell, pers.com) suggesting 

that some additional factor(s) are required for degradation of HsdR subunit. 

Unsolved problems of the proteolytic regulation of type I restriction systems. 

The present introduction reviews the information on type I R-M systems, including 

the regulation of their restriction activity. Recent work by Makovets and colleagues 

provided evidence for the proteolytic regulation of type I systems (Makovets et al., 

1998 Makovets et al., 1999). C1pXP protease was implicated in the degradation of 

the restriction subunit of both EcoKI (type IA) and EcoAI (type IB). The proposed 

hypothesis states that when a restriction complex recognises an unmodified target 

sequence in the bacterial chromosome and initiates DNA translocation, it is 

recognised by C1pXP and HsdR is degraded. 

However, Makovets et cii. (1999) base this hypothesis on the result of indirect 

evidence for unmodified chromosomal DNA. It was shown that the HsdR subunit is 

degraded in rni cells after their treatment with 2AP. Incorporation of 2AP into the 

bacterial chromosome during DNA replication was presumed to lead to the 

appearance of unmodified targets in the chromosome, the consequent activation of 

the restriction enzyme and subsequent degradation of HsdR. Additionally, a mutation 

in lisciR that results in a restriction complex capable of binding to the target DNA, 

but not capable of restriction activity, prevented the proteolysis. 
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Direct evidence that unmodified target sequences are the primary signal for the 

C1pXP-dependent degradation of HsdR will be shown in the present thesis. The data 

presented in Chapters 3-5 will also attempt to answer the following questions: 

a) Is the presence of a restriction-proficient, modification-deficient type I restriction 

enzyme lethal for a bacterial cell? 

h) What is the signal for RA? 

At what stage of the restriction reaction is the restriction complex recognised by 

the C1pXP protease? 

What is a possible explanation of the residual restriction activity during RA? 

Might the localisation of EcoKI explain the different cellular response to foreign 

and resident DNA? 
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Chapter 2 Materials and methods 

Bacteria 

E.coli K-12 Relevant genotype or phenotype 	Reference 

strains - 

ABI 157 

C600 

DH5x 

ED8654 

JC9935 

KL32 

NK224h 

NK3OI 

NK304* 

NK308 

NK3I 

NK3 12* 

NK352* 

N K3 79 * 

N K3 80 * 

NK3 82 * 

NK3 83 * 

NK384 * 

NK386* 

NM 67 9a 

NM181 

NM 146 

hsdk  1UC 

llS(ih  

enclA I hsc/RI 7recA IgyrA 

hs4R5 1 4supE44supF58 

AB 1157 recAl3sup°  

recA /1 (hsclRM) 

A(lsdMS) gyrA 

mc - gvrA lacY [hi leti IN 

cIpX. . kan 

recA: :cai' 

A(nicr hsd inrr) 

A(nicr hsd nirr)recA: :cat 

A(hs(IRM) 

hsdRA4 

hsdRA4 cipX: :kan 

hsdRA4 hsdM(F269G) 

hsdRA4 hsdM(F269G) recA. . cat 

hsdRA4 hsciM(F269G) clpX::kan 

hsclM(F269G) 

W31 I OA(incr /isd inn) 

I 	+ + 	+ r RI  rn RI 

hsdR r R  I IT1R  I 

De Witt & Adelberg, 1962 

Appleyard, 1954 

Grant et al., 1990 

Murray et at., 1977 

J . Clark 

S. Makovets 

S .Makovets 

Makovets et al, 1999 

Makovets et al., 1999 

Makovets et at., 1999 

Makovets et al., 1999 

Makovets et al., 1999 

Makovets et al., 1999 

NK301 xPl(NM802) 

NK379 x P1(NK304) 

NK380 x 2NM 1394 

NK352xP1 (NK312) 

NK352xP1 (NK304) 

NK301 x XNM1394 

King and Murray, 1995 

Kelleher et al., 1991 

Murray and Murray, 1974 
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NM522 A(hsdMS) Gough and Murray, 1983 

NM 890 hsdR(F629Y) N Murray 

NM90411  hsc/R(D298E) N. Murray 

NM90811  hsa'R(E3 l2H) N.Murray 

VC30I' /ac NK30I x P1 (AB 1157) 

VC3017* lack  hsilM(F269G) NK386 x P1 (AB I 157) 

VC4'11  AhsdMS recA::cat iamB::tet This study 

VC211  AhsdR recA scat lamB: :tet This study 

VC48* clpX:.kan isx::tet NK301x P1 

VC802"' AhsdR gyrA This study 

VC7971  hsdR(H577D) hsdM(F269G) NM797 x 2NM 1394 

VC799 11  hsdR(A6 1 9V) hsclM(F269G) NM799 X  ?cNM 1394 

VC80 ill hsdR(K477R) hsdM(F269G) NM801 X  2NM 1394 

VC802 hsdRA4 gvrA NM802 x P1 (NK30 1) 

VC803 hsdRA4 recA::cat VC803 x P1(VC802) 

VC892' hsdR(G177C)hsdM(F269G) NM 892 X  2NM1394 

VC89311  hsdR( D502Y) hsdM( F2696) NM893 X  XNM 1394 

VC89811  hsaR(R826H) hsa'M(F269G) NM898 X  XNM 1394 

VC904 hsdR(D298E) hsdM(F269G) NM904 X  4NM1394 

VC908' hsclR(E312H) hsdM(F2690) NM908 X  2NM 1394 

VC896' hsc/R(F629Y) hsdM(F2690) NM890 X  XNM 1394 

VC9 1 4 hscfRA4 hsdMJ 77gyrA VC802 x ?NM 1332 

VC80261  hscIRA4 hsdM269 gvrA VC802 x ANM 1394 

VC3003 1  hsdRA4 /iscIM269 clpP::cat gvrA VC802 x P1 (NK303) 

a different isolates have different properties, see Section 3.2 

- all NK strains are derivatives of C600, but some are rac 

* - derivatives of NK30I 

derivatives of AB1 157 
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Bacteriophages 

Bacteriophage Relevant genotype or phenotype 	Reference 

T7oci D104 At. 3-7.2 Garcia & Molineux,1999 

MI 3 rnpAT38 M 13rnp18 with targets for EcoKl A.J.B. Titheradge 

Xvir S targets for EcoKl Laboratory collection 

XNM 1326 hsdM(F269G) hsdS 1mm2' Willcock et aL,1994 

2NM 1327 /isdM(F269C) IisJS 1mm21  Willcock et al., 1994 

X NM 1329 hsdM(F269Y) hs/S 1mm21  Willcock etal.,1994 

2NM 1330 /isdM(N266D) hsdS 1mm21  Willcock et al., 1994 

XNM 1331 hsdM(N266D, F269G) IisdS 1mm2t  Willcock et al., 1994 

2NM 1332 hsdM(G 177D) hsdS imm2t  Willcock et al., 1994 

2NM1384 2JisdR(A619V) c/857 NE.Murray 

2NM 1394 hsdM(F269G) hsdS c1857 Makovets et al., 1999 

NM 150 h82 i,n,,i 	with 4 targets Laboratory collection 

NM 106 phage 82 with two targets for EcoKI Laboratory collection 

NM 105 h"O  iniii/ with two targets for EcoKl Laboratory collection 

Plasmids 

Plasmid 	Relevant genotype or phenotype 	Reference 

pACYC 184 cat tel 

pNK3 pACYC 1 84//isdR 

pBRsKl pBR322, one EcoKl target 

pJK2 pBR322/hsdR b/a 

pBRK pBR322 let ace 

F'101-102 I,sdRMS 	zjj::TnIO 

F'10l-103 hs/R:jj::Tn1O 

Chang and Cohen, 1978 

Makovets ci al., 1999 

Davies, 2000 

Kelleher etal., 1991 

Laboratory collection 

Makovets eta!, 1998 

This study 



Standard solutions and reagents 

All solution were made using sterile, deionisecl water 

Agarose gel load dye 

10% (w/v) Ficoll 400, 50mM EDTA (pH 8.0), 0.5% SDS, 0.25% bromphenol blue 

or Orange G. 

ATP 

100mM ATP, 10mM Tris, pH adjusted to 7.0 with NaOH. Concentration determined 

from the A2601  of a 10-3 dilution using ATP(1)H 7.Q) = 15.4. Aliquots were stored at - 

70°C. 

Boehringer Mannheim Buffer A 

33 mM Tris-acetate (pH 7.9), 10 mM Mg-acetate, 66 mM K-acetate, 0.5 mM 

Di th iothrc ito!. 

50 x TAE Buffer 

242g Tris, 571 ml glacial acetic acid and 100 ml 0.5M EDTA (pH.8.0) 

20 x TBE Buffer 

1.78M Tris, 1.78M Boric Acid, 50 mM EDTA (pH.8.3) 

TE Buffer 

10 mM Tris (pH 7.5), 1 mM EDTA (pH.8.0) 

10 x TBS Buffer 

60g  Tris, 87.6 g NaC!, adjust to pH 7.5 with HC!, H2O up to 11. 

Transfer Buffer 

9 g Tris, 43.2 g Glycine, H2O up to 3 L. 
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Nuclease Buffer 

20 mM Tris-HC1 (pH7.5), 10 mM M-CI, 7 mM 2-mcrcapthoethanol, 10% glycerol, 

10 mM PMSF, 10 MM benzamidine. 

Phage buffer 	 - 

22 mM monopotassium phosphate (KH2 PO4  ), 5mM disodium phosphate (Na2HPO4), 

8.5 mM sodium cloride(NaCI), 0. 1 MM magnesium sulphate (MgSO4), I MM 

calcium chloride (CaCl2), I x 10-3 (wlv) gelatine. 

Ethidium Bromide Stock 

10 mg/ml in dH2O, stored in dark at 4°C. 

Antibiotics: 

- 	Ampicillin (Amp): stock solution 100 mg/ml in dH2O, l00ig/ml final 

concentration; 

- 	Chioramphenicol (Cat): stock solution 10 mg/ml in 50% ethanol, l0tg/ml final 

concentration; 

- Kanamycin (Kan): stock solution 10 mg/ml in dH7O, 100tg/rn1 final 

concentration; 

- Rifampicin (Rif): stock solution 10 mg/ml in methanol, 50.tg/ml final 

concentration; 

- 	Streptornicin (Str): stock solution 20 mg/ml in dH2O, 50jig/ml final oncentration; 

- 	Tetracyclin Jet): stock solution 10 mg/ml in dH2O, 10tg/ml final concentration; 

Media 

All media were sterilised by autoclaving at 15 lb/in2  for 30 minutes 
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Luria-Bertany Broth (LB) 

10 g Difco Bacto Tryptone, 10 g NaCl, 10 g Difco Bacto yeast extract, pH adjusted 

to 7.2 with NaOH, dH2O up to 1 L. 

LB agar 

1 .5g of Difco agar in 1 L of Luria-Bertany Broth 

Baltimore Biological Laboratory (BBL) agar 

5 g NaCl, 10 g BBL trypticase, 10 g Difco agar (6.5 g for BBL top agar). 

Microbiological and genetic techniques 

Long-term storage of bacterial cells 

A single freshly grown colony was picked up with a loop and stabbed into a thick 

layer of LB-agar in a small glass bottle. The stabs were incubated overnight at 30°C 

to allow bacterial growth, leads were wrapped by Parafilm and kept at room 

temperature. 

Preparation of plating cells 

An overnight culture was diluted 5-fold in L-broth, grown to mid-log phase, and the 

cells were harvested by centrifugation (4,000 x g, 5 mm) and resuspended in the 

same volume of 10mM MgSO4  

Preparation of phage lysates 

A single plaque was picked using a toothpick and resuspended in 1 ml phage buffer 

containing a few drops of chloroform (@i07  p.f.u. /ml). 0.1 ml of the appropriate 

dilution of the phage, to give confluent lysis (@l0 p.f.u. /ml), was mixed with an 

equal volume of plating cells, left for 15 minutes to allow phage adsorption, and 2.5 

ml of molten BBL top agar was added before the mixture was poured on fresh BBL- 
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agar in a plate. The plate was incubated overnight at 37°C. 1 ml of L-broth was 

added, the top layer of BBL was harvested and after adding a few drops of 

chloroform and vortexing, resulting mixture was clarified by centrifugation (4,000 x 

g, 15 min). The phage lysate was collected and transferred to a fresh bottle and stored 

at 4°C. 

Preparation of M13 lysates 

F bacteria were used as plating cells and lysate was clarified by centrifugation 

(12,000 x g, 5 min) 

Restriction assays 

Bacteria to he tested for restriction and a control restriction-deficient and restriction-

proficient strains were grown until mid-log phase, and 1 ml of the cultures were 

mixed with 0.1 ml aliquots of the appropriate dilution of unmodified phage lysate 

(.0). After 15 minutes incubation at room temperature to allow phage adsorption, 2.5 

ml BBL top agar was added and used to overlay BBL-bottorn agar plate. Plaques 

were counted after overnight incubation and the ratio of p.f.u. on the tested strain to 

one on the control was taken as an. e.o.p. The reverse ratio displayed restriction. The 

experiments were accompanied by a control of a modified phage (. K). 

For a quick non-quantitative test, 10 1.11  of appropriate dilutions of .0 and .K phages 

were spotted on lawns of test-bacteria and two control strains. After overnight 

incubation .0 phage produced a spot of confluent lysis on the restriction-deficient 

bacteria and a few plaques on the restriction-proficient control strain. Test bacteria 

were compared with controls. 

Modification assay 

A X plaque grown on a strain to assay for modification was picked with a toothpick, 

resuspended in 1 ml phage buffer. treated with a drop of chloroform and the phage 

titre was determined on restriction-deficient and restriction-proficient bacteria. 
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If the phages are modified they form plaques with the same efficiency on both 

strains 

Lysogenisation of E.coli with X and 2/ E.coli chromosome exchange 

In this work we used different lambda phages with c1857 and an all mutations. 

c1857 is a thermosensitive mutation in the lambda repressor which prevents 

maintenance of lysogenic slate above 37°C. A mutation in the alt site prevents phage 

integration into the attachement site and forces integration of the phage into the 

bacterial chromosome via homologous recombination between the chromosome and 

a fragment cloned in the phage. 

To make an E.coli lysogen a lysate was diluted 100-fold in phage buffer and spotted 

(10 tl) onto a lawn of bacteria. The spots were dried and the plate was incubated 

overnight at 37°C to allow lysogenisation. Bacteria from the spots were streaked with 

21 	 . 	j 
a toothpick on fresh L-agar seeded with Xi,mn ci- 	8 and h - wnn ci

-
, homoimmune 

phages which lyse cells that do not contain a prophage and therefore select for 

lysogens. Alternatively, when the phage used for lysogenisation had a drug resistance 

gene, bacteria from the spots were streaked on agar with appropriate antibiotic. The 

plates were incubated overnight at 32°C and single colonies were purified at the 

same temperature and tested for the presence of a prophage as lysogens survive the 

infection by homoimmune phages but not Xvir. 

The prophage can be induced at 42°C. On excision via homologous recombination, 

allelic exchange can occur between the sequences common to the ?c and bacterial 

chromosome. The phage progeny can be analysed for allele exchange and phage with 

a new genotype can be obtained in viva. 

Conjugation 

Cultures of donor and recipient bacteria strains were grown until mid-log phase (A600  

0.3-0.4) and mixed in a flask, taking no more than 1/10 of volume. The ratio of 

donor: recipient was 10:1. Conjugation mixtures were incubated with gentle aeration 

on a rotating wheel for 2-3 hours, and appropriate dilutions were plated on selective 

media. 



The frequency of transfer (f.o.t.) of a plasinid was calculated as the ratio of the titre 

of recipient cells that acquired the plasmid to the litre of the recipient cells in the 

conjugation mixture. 

Preparation of P1 lysates 

Overnight cultures were diluted 50-fold in L-broth and incubated until late log-phase 

and harvested by centrifugation. After decanting the supernatant, bacteria were 

resuspended in MC buffer 1/10 of the original volume. An 0.1 sample of cells was 

mixed with 10 - 106  P1 phages in small test tubes and incubated in a 37°C water 

bath for 15-20 mm. 2.5 ml of BBL-top agar was added to each tube, mixed and 

poured in a freshly prepared BBL bottom plate. Plates were incubated overnight and 

those with confluent lysis were used for obtaining the lysate. 

P1 transduction 

Cells were prepared as for P1 lysate but after incubation in a water bath sodium 

citrate was added to final concentration of 100 mM and the cells were plated on 

selective agar media. After overnight incubation the colonies were purified on the 

appropriate selective media and used for further experiments. 

Preparation of competent cells for transformation 

Overnight cultures were diluted 50-fold in flasks with L-broth and incubated at 37°C 

with vigorous aeration. When A600  reached 0.3-0.5 the cultures were chilled on ice-

water bath for 15 minutes. The bacteria were transferred to pre-chilled McCartney 

bottles, harvested by centrifugation at 4°C, resuspended in ice-cold 0.lM CaCl2  (1/10 

of the initial volume) and incubated on ice for 1 hour. The cells were centrifuged and 

resuspended in ice-cold 0.lM CaCl2  containing 20% glycerol (1/20 of the initial 

volume). 

0. 1 ml aliquots were used for transformation or transferred to pre-chilled eppendorfs 

and stored at -70°C. 
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Transformation 

An aliquot of competent cells was thawed on ice, DNA was added (0.5-10 RI)  and 

was incubated on ice for 1 hour. The cells were incubated at 42°C for 2 minutes and 

returned to ice for a minute. 1 ml of l--broth was added to each tube and the tube was 

incubated at 37°C for 1 hour. Bacteria were plated on selective media and incubated 

overnight to obtain transformants. 

Restriction alleviation 

Stock solution of 2AP in L-broth at the final concentration 400 g/m1 was added to 

mid-log cultures grown at 37°C in L-broth. Intensive aeration was provided before 

and during the treatment. After 1 h, the cells were centrifuged at room temperature 

(4.000 rpm, 10 mm) resuspended in 1/10 of initial volume of LB and tested for 

restriction or used for preparation of subcellular fractions. 

Isolation of subcellular fractions 

Preparation of spheroplasts. 

All steps were carried at 4°C. Cells were grown until A600  —0.6, harvested by 

centrifugation and washed 0.9%NaCl. Supernatant was completely removed. Cells 

were converted to spheroplasts by incubation for 30 min in plasmolysis buffer 

[50mM Tris-HC1 pH8.0, 20% w/v sucrose, 1mM DTT]. Then 2 ml of a fresh solution 

of lysozyme 10mg/mi in 10 mM Tris-HC1 pH8.0 was added. 100R1  of 1M MgSO4  

and DNase. RNase (10 mg/ml) were added and the cells were incubated 0.5h. 0.5M 

EDTA pH 8.0 was slowly added and cells were incubated for 1.5 h on ice with gentle 

mixing every 10 minutes. The convertion to spheroplasts was monitored by phase 

contrast microscopy. 

Spheropiasts were frozen at -70°C and were kept until required. 

Spehoroplasts then were lysed by three cycles of freezing at -70°C for 30 mm 

followed by 15 min at 37°C. After the first lysis an inhibitor of proteases 

methylphenylflouoride was added to the final concentration 1 IJM. 
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Manipulation of nucleic acids 

Small-scale preparation of p1 asmid DNA 

Samples of bacterial cells obtained from 5m1 o/n cultures of E.coli were used and The 

procedures were carried out using a QlAprep Spin Miniprep Kit (Qiagen) according 

to the manufacturer instructions. 

Small-scale preparation of 2 DNA 

0.1 ml of a culture of an appropriate host (.l08  cells) was infected with the required 

phage (-.10 p.f.u), left for 15 minutes to allow phage adsorption, diluted by 4m1 of 

L-Broth supplemented with 10mM MgSO4  and grown at 37°C with aeration until full 

lysis of the cells (3-5 hours). Remaining cells were lysed by the addition of the 

chloroform (0.1 ml), cells debris was removed by centrifugation (10,000 x g, 10 

mm), and nucleases (5 lii,  10 mM RNase and DNase) added to supernatant in a fresh 

tube. The lysate was incubated at 37°C for 30 minutes, and the phage precipitated by 

the addition of polyethylene glycol (PEG) and salt solution (4ml 20g 6K PEG, 11.7 

g NaCl, 78 ml phage buffer). The mixture was left overnight at 4° C and the phage 

particles sedimented by centrifugation (13,000-x g, 20 mm, 4°C). The supernatant 

was completely removed and the phages were resuspended in 0.5 ml of phage buffer. 

Chloroform was added (0.5 ml) to remove any remaining PEG, the mixture clarified 

by centrifugation (11,000 x g, 3 mm) and the aqueous phase containing the phage 

particles was transferred to a tube containing phenol (0.5 ml) and TE buffer 

pH8.0(0. 1 ml) and gently mixed. 

The two phases were separated by centrifugation (11,000 x g, 3 mm), and the 

aqueous phase transferred to a tube containing 0.5 ml of phenol: chloroform (1: 1) 

mixture in Tris buffer pH 8.0, gently mixed and was separated into aqueous phase 

containing naked phage DNA and organic fraction. The aqueous phase was treated 

with chloroform to remove traces of phenol and ethanol precipitated. 1/10 volume of 
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3M sodium acetate (pH5.3) and two volumes of chilled ethanol were added and the 

solution was left at -70°C for 20 minutes. The DNA was sedirnented by 

centrifugation (11,000 x g, 15 mm), rinsed with 70% ethanol, dried, resuspended in 

TE (0. 1 ml) and stored at 4°C. 

Measuring DNA concentration 

DNA concentrations were calculated by measuring UV-adsorption on a Perkin Elmer 

lambda 5 spectrophotometer. An A26()  of 1 = 50 Jg/ml for double-stranded DNA. 

Cutting DNA with type II restriction enzymes 

Endonuclease reaction was performed in a volume 10-40 jil containing 1-2 jig of 

DNA. The reaction contained the appropriate Boehringher Manheim (Rosche) or 

New England Biolabs restriction buffer 1 x concentration. BSA was added (to 

1mg/mI) if recommended by the manufacturer of the enzyme. The digests were made 

up to final volume using distilled sterile water. The complete reaction mixtures were 

incubated at the temperature recommended for a particular enzyme for 1-4h. The 

products of the reaction were analysed using agarose gel electrophoresis. If digested 

DNA was used for ligation the restriction enzymes were inactivated (20 min at 65°C 

or 80°C according to the supplier recommendations). When an enzyme can not be 

heat inactivated an AG cartridge (Advanced Genetic Technologies Corp.) that allows 

purification DNA from proteins was used. If the DNA was to be subjected to 

purification from an agarose gel, it was not necessary to inactivate the enzyme. 

The polymerase chain reaction 

PCR was used to screen phages or plasmids for certain sequences. Reactions were 

performed in an OmniGene thermal cycler (Hybaid Ltd). Primers were designed 

about 20 base pairs long with GC pairs at both ends and GC content 60-70%. The 

melting temperature (T 1 ) was calculated T 	4(G+C) +2(A+T), the annealing 

temperature used in each reaction was 5 degrees lower than T1. 



Typically the reaction was performed in 50 jil, with 1 x reaction buffer containing 

2mM MgSO4 , 1 unit of polyrnerase, 200 j.tM dNTP mix, 0.4 IIM  primers and lOng 

of DNA template and 1 unit of Vent®  DNA polymerase (New England Biolabs). A 

layer of 20 tl mineral oil was added to cover each reaction mix. 

A typical cycle was: 96°C for 5 minutes, then 20 cycles of (96°C for 1 minute. 52°C 

for 40 seconds, 72°C for 40 seconds), then 72°C for 5 minutes. 	 - 

DNA sequencing 

The nucleotide sequences of plasmid or PCR DNA templates were identified by 

automated sequencing using ABI Prism dRhodamine Terminator Cycle Sequencing 

Ready Reaction Kit and ABI Prism 377 DNA Sequencer. The procedure consists of 

several stages: template preparation, cycle sequencing, extension product 

purification, sample electrophoresis and data analysis. The last two stages were 

carried out by Nicola Preston in the department sequencing service. 

Plasmid DNA templates were prepared by Qiagen mini-prep method and no further 

purification was required. 

100 ng of dsDNA template were added to 4 lil terminator ready reaction mix and 1.6 

pmol of an appropriate ssDNA primer in a total volume of 10 pl. The mixed 

reactions were then overlayed with 20 tl light mineral oil and cycled through 25 

cycles of 96°C for 30 sec. 50°C for 15 sec, and 60°C for 4 min. Samples were held at 

4°C on completion of the programme before brief centrifugation of the contents in a 

microfuge. 

After complete removal of mineral oil, 1 tl 3M sodium acetate (pH 4.6) and 25 il 

100% ethanol was added to the samples. Tubes were vortexed, placed at -70°C for 20 

mm, and centrifuged for 15 i-nin on maximum speed. Supernatant was discarded and 

the pellet washed with 70% ethanol. Residual ethanol was removed by evaporation. 

The samples were stored at 4°C and submitted to the department sequencing service. 

Data were analysed using Factura and Sequence Navigator Software. 
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Agarose gel electrophoresis 

Agarose gels for electrophoretic analysis of DNA were prepared with TBE or TAE 

buffer. Agarose concentration varied from 0.3 to 1% according to the sizes of 

expected DNA fragments. Samples containing 1 x loading dye (6 x stock is 0.25% 

bromphenol blue, 0.25% xylene cyanol and 40% (w/v) sucrose in H20) were always 

loaded after immersion of the gels in the TBE or TAE buffer with 0.5 pgIrni of 

cthidium bromide. The gels were run at 50-70 mA at room temperature. These 

conditions usually led to separation of the fragments in less than an hour. For better 

separation, especially with larger fragments and higher agarose concentration, the 

gels were run 20-40 mA overnight. For better quality pictures gels were destained in 

distilled water for an hour. The DNA was visualised by using UV transilluminator. 

Recovery of DNA from agarose gels 

DNA was purified from agarose gel slices using a DNA Purification Kit II (Hybaid). 

Ligation of DNA 

DNA ligation was usually performed in a final volume of 10-20 pi. The reaction 

contained between 0.5-2 ig of total DNA with insert DNA in a 2 to 5-fold molar 

excess over the vector DNA, I x New England Biolabs ligation buffer and T4 DNA 

ligase from the same manufacturer. The reactions were incubated overnight at 16°C. 

5-10 Ill of the reaction mixture was directly used to transform competent cells of an 

appropriate strain of E.coIi. When X vectors were used the ligase was heat 

inactivated and the ligated DNA was packaged using X packaging extracts. 

Phage ?. DNA packaging 

A 50 pA aliquot of X packaging extract (Promega) stored at -70°C was defrosted on 

ice. 15 pA of the extract was mixed with 10 M1  of ligation reaction with inactivated 

Haase and containing at least 200 no DNA. The mix was left at room temperature for 
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2h. 0.5 ml of phage buffer was added and appropriate dilutions were plated on Ecu/i 

ED8654. After overnight incubation the plaques were analysed. 

Manipulation of proteins 

Tris-glycine SDS polyacrylamide gel 

Solutions: 

- 	4 x stacking gel buffer (0.5 M Tris-HCI, pH 6.8) 

15.25 g of Tris base was dissolved in 200 ml dH2O, adjusted to pH 6.8 with 

concentrated HC1, made up to 250 ml, filtered and kept at 4°C. 

- 	4 x resolving gel buffer (1.5 M Tris-HCI, pH 8.8) 

45.5 g of Tris base was dissolved in 200 ml dH2O, adjusted to p1-1 8.8 with 

concentrated HCI, made up to 250 ml, filtered and kept at 4°C. 

- 	10% SDS (w/v) 

20 g of SDS, made up to 200 ml, filtered and kept at room temperature. 

- 	10% ammonium persulphate (w/v) - freshly made 

0.2g of ammonium persuiphate was dissolved in 2-ml dH2O 

- 	running buffer 

3 g of Tris base and 144 g of glycine were dissolved in 990 ml dH2O. SDS was 

added to the final concentration 0.1% (10 ml of 10% stock solution) 

- 	2 x loading buffer 

x stacking gel buffer (2.5 ml), 10% SDS (2.0 ml). glycerol (2.0 ml), dH2O (2.5 ml), 

3-mercaptoethanol (1 ml), and bromphenol blue (some crystals to give blue colour). 
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E.coli proteins were routinely separated using SDS-polyacrilamide gel 

electrophoresis with a discontinuous buffer system (Laernrnli, 1970). Usually a 7.5% 

resolving gel and 5% stacking gel were employed and a mini-gel apparatus (SE 250) 

manufactured by Hoeffer Scientific Instruments was used. 

Staining of proteins with Coornassie Blue 

Solutions: 

- 	staining solution 

10% (v/v) acetic acid, 50% (v/v) methanol and 0.1% (wlv) Coomassie Brilliant 

Blue R250. 

- 	destaining solution 

7% (v/v) acetic acid, 5% (v/v) methanol. 

Gels were separated from glass plates, transferred to a plastic box with staining 

solution and incubated on a shaker for 30 min at room temperature. The staining 

solution was replaced by destaining solution and two pieces of polypropylene sponge 

were placed into the box to absorb Coomassie Blue. Gels were incubated on a shaker 

for 2-3 hours, until protein bands become clearly seen. 

Preparation of E.coli whole cell lysates 

Protein samples to be loaded onto an SDS PAGE gel were prepared from cultures 

grown to late logarithmic phase (O.D.600  0.7-0.9) at 37°C with shaking. 1.5 ml of 

culture was centrifuged for 1 minute, the pellet was resuspended in 150 p1 of distilled 

water and mixed with an equal volume of 2 x SDS load dye. The samples were 

boiled for 5 minutes and used immediately or frozen at -20°C to be used for western 

blotting in aliquot 20-30 p1. Samples require 3 minutes spin at 13 000g before use for 

removal of insoluble debris. 
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Protein samples from cell fractions. 

Lysed spheroplasts were subjected to 15,000-rpml1.5h centrifugation at 4°C to 

remove cell debris. The supernatant was centrifuged 60,000/lh/4°C to sediment the 

membrane fraction. Supernatant was completely removed and used as cytoplasmic 

fraction (CF). CF was mixed with equal volume of mixed with an equal volume of 2 

x SDS dye, frozen at -20°C. 

Membrane was washed in 50mM Tris-HCI pH8.0, resuspended 50mM Tris-HC1 

pH8.0, 1 mM DTT, methylphenylflouoride, mixed with an equal volume of 2 x SDS 

load dye. Samples were stored -70°C. 

Western blotting 

After protein gel electrophoresis was completed apparatus was disassembled; one of 

the two glass plates removed and the gel was covered with PVDF membrane briefly 

wetted with methanol. No air bubbles should be left between the gel and the 

membrane. The proteins were transferred to the membrane by electrophoresis at 4°C 

for 1.5h at a constant voltage of 42V. 

After electrophoresis membrane was used for protein detection using the 

chemoluminescence detection system (POD) of Rosche. Through all the procedure 

membrane was incubated on a shaker at room temperature. The membrane was 

blocked to prevent non-specific adsorption of the antibodies during 

immunocletection, in block solution (1: 10) dilution of the stock in TBS buffer for 2h. 

The block solution was removed and replaced by solution with primary antibodies 

(block diluted in TBS 1:20 plus 1: 2500) for 2h.Then the membrane was washed 2 x 

10 minutes in TBST (0.1% Tween in TBS) and 2 x 10 min in block solution. The 

secondary antibody solution was added (block diluted in TBS 1:20 plus 1:1000 anti-

rabbit IgO peroxidase conjugate (Sigma)) for 1 hour and then the membrane was 

washed 4 x 15 minutes in TBST. After last wash the membrane was incubated with 

substrate solution for 1 min covered with Saranwrap film and exposed to X-ray film 

(Kodak) for 3-60 seconds. 

Assay of f3-galactosidase 

The assays were performed following the procedure described by Miller (1972). 
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Measuring protein concentration 

Protein concentrations were estimated by a modification of the Lowry method 

(Peterson, 1979). 

Assay of NADH oxidase 

The oxidation of DPNH (Sigma) was monitored (de Maagd and Lugtenberg, 1986) 

at 37°C in 100 pt volume of 50 mM Tris-HC1 pH 7.5 supplemented with 0.12 mM 

DTT and 0.12 mM DPNH. The decrease in substrate absorbance at A340  was 

monitored over 5 minutes period using a Perkin Lambda 15 UV/VIS 

spectrophotometer. The rates were calculated from change in A340  with time using 

A340  of 1 mM DPNH = 6.22 nM. All assays were performed at least in two 

duplicates. 

In vitro assembly of R2M2S1  complex 

The method of Dryden et al. (1997) was used. The assembly of R2M251  complex 

from M2S1  complex and R subunit kindly provided by L.Cooper was carried out for 

30 minutes on ice in 10 mM Tris HCl pH 7.5. The proteins were mixed in molar ratio 

1:4 in nuclease buffer and then used directly for nuclease assays 

Endonuclease assays 

Endonuclease assays monitored the degradation of a covalently closed circular 

plasmid DNA (Vipond et al., 1995). pBRsKI, a derivative of pBR322 with one 

EcoKi recognition site (Davies, 2000) .0 or .K was used as a substrate. Reactions 

were carried out at 37°C in Boehringer Manheim buffer A with 5 nM plasmid DNA, 

100 j.iM SAM, 50 p.g/rnl BSA and varying concentrations of wild type or mutant 

R2M2S1  complex. The enzyme was preincubated with SAM for 10 minutes and the 

reaction started by addition of ATP to a final concentration of 2 jiM. Samples (10 p1) 

were removed at various times and mixed with 0.2 volumes stop solution (10% 
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Ficoll 400, 50mM EDTA, 50 m Tris (pH8.0), 0.5% SDS, 0.1% Bromphenol Blue) 

to terminate the reaction. DNA fragments were separated by electrophoresis. 
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Chapter 3. Mutations that block methyltransferase activity but 

permit the binding of AdoMet lead to a modification-deficient, 

restriction-proficient (rm) EcoKI complex 

3.1 Introduction 

Bacterial cells in which /isdR is expressed from a multicopy plasmid die after the 

acquisition of the hsdM and hsdS genes, as the consequence of the formation of a 

functional type I restriction complex. This was shown to be the case when type lB 

hsd genes are transferred via either 2 (Fuller-Pace ci al., 1985) or an F'plasmid (Sun 

and Bickle, 1985).A similar phenomenon was used in the analysis of the type IA 

restriction enzyme, EcoKI (Kelleher etai., 1991). 

The phenomenon of cell death resulting from the sudden formation of a functional 

type I enzyme in a cell that cannot modify its DNA or has not had the opportunity to 

modify its DNA was called "the kill-effect" because it was shown that the e.o.p of 

modified X carrying hsd genes is reduced and it was interpreted as due to the 

degradation of chromosomal DNA. 

Thus the kill-effect can be used to assay the restriction proficiency of restriction 

complexes that cannot be maintained in viva, for 	example, 	a 	restriction- 

proficient, modification-deficient (rm ) type I restriction enzyme. It has generally 

been anticipated that a mutation that confers an rn phenotype will be lethal. 

Good candidates for the formation of rm restriction enzymes are mutations 

affecting motifs common to N6-adeninemethyltransferases. EcoKI mutants with 

single amino acid changes in either motif 1 or IV, motifs that are essential for 

catalysing the transfer of methyl groups from the cofactor AdoMet to the target 

adenine residues, were shown to form MS1  complexes. The hsdM(F177G) mutant 

(motif 1) was unable to hind the cofactor, whereas the mutants with substitutions in 

the NPPF motif (motif IV) were able to bind AdoMet but most of them failed to 
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modify DNA in vivo and were inactive in the methylase assay (Wilicock et al., 

1994). However, the properties of these methylases as a part of the restriction 

complex have not been characterised. 

3.2 Mutations in motif IV but not in motif I result in EcoKI that is restriction-

proficient but modification-deficient in vivo and in vitro. 

In vivo assays 

One of the logical expectations concerning type I systems is that there is no 

possibility of isolating rm mutants or, at least, of maintaining such a mutant in 

vivo. Therefore we decided to use the kill-effect to check the ability of restriction 

complexes containing mutant HsdM subunits to restrict DNA. 

Strain NM679, which lacks the three Jisd-genes, was transformed by 

pACYC//i.vdR. XhsdMS phages that include the IisdM mutations mentioned above 

were assayed on NM679 and on its 1isdR derivatives transformed by pNK3 (Table 

3.1). 

Only mutants with single amino acid changes in motif IV have the kill-effect on the 

NM679 pNK3 strain (column 6), which supports the idea that restriction-proficient 

complexes are formed. Neither a mutant with a substitution in motif I (X1330) and 

unable to bind AdoMet, nor a mutant with a substitution that did not affect the 

modification ability of the corresponding enzyme (21326) were restricted. However, 

none of the phages were restricted if hsdR was expressed from the chromosome 

(column 7). 

The drop in the efficiency of plating (e.o.p.) of a X/i/MS phage on the strain with 

hsdR on the plasmid could be explained by the restriction of phage DNA by EcoKI 
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or by the death of the cells as a result of chromosome cutting. Since experiments 

with these phages grown on Mk  strains showed no drop of e.o.p., EcoKI derived 

from the defective methylase still retains the restriction specificity of the original 

enzyme and cuts the phage DNA, and thus the chromosomal DNA may be 

unaffected. 

The experiments shown in Table 3.1 are the summary of 3 independent assays that 

were done on the same strains. However, the attempts to reproduce this experiment 

on another isolate of NM679 were unsuccessful. No kill-effect was observed, 

although both isolates of NM679 behaved in the same way in all other tests, e.g. 

routine tests with phages and the deletion of hsd genes was confirmed by a PCR 

reaction. It is possible that the plasmid is better maintained in the isolate used in the 

experiment (Table 3.1), than in the initial NM679 strain, due to an additional 

mutation, but the difference that enables the detection of kill-effect in some NM679 

isolates remains unclear. 

In vitro assays 

For further analysis, hsdM(F269G) and hsdM(0177D) were chosen as 

representatives of two classes of modification-deficient mutants. the first mutation 

causes the kill-effect in vivo and the second one does not. 

The expectation that a rrn restriction enzyme would kill the cells that produce it, 

because of restriction of the unprotected chromosomal DNA, led to the alternative 

approach of assembling EcoKI 	in vitro. The in vitro assembly from the 

corresponding mutant methyltransferases and HsdR subunits was done as described 

by (Dryden et al., 1997) and the resulting complexes were used in standard 

endonuclease assays (Davies et al., 1999a) (Fig. 3.1). 

61 



00 GC C71\ 00 r— 
Zzc 

- 

d CD -  

4— 

- 

o - - '5- 

-t 

zoc >< >< x >< - 
z 1- CD 

4- - 
> 5i 

- 

Ln 
4-  

5- 

b b b 
c >< - 

x 
- 
x 

- 
x 

- 
x 

Hc C) r CA - 

b) 

+ + + + + 
-CC 

— — - 

S 	>'4 

(3 U L 

50  
C- 

U- 

+ © 
\r- 

cc-- 

C 

C 
C 
0 
0 

C 
C- 

0 
> 
0 

C 

0 
C- 
>'4 

C 
C 
I) 

40 
0 C- z 

- C 
C- .5 

Ln - 
, U 

> - UL 
T > 
50 

o 0 N > - U-4 
> > 
50 50 C C C- 

-C 
-o 0 

LE
L  

:5 

62 



10 
8 

IMt 
4 - — -- 	 - — - - 

2.5 

- 
.oJ .K 

	

wilt! type 	IlsdM (1"1 21,9   C) 
.0 	.0 	.0 	.K 	.0 	.0 	.0 	.K 
 I 	15 	160 	60 	I 	IS 	60 	60 

HsdM (C177 0) 
.0 	.0 	.I( 
I 	15 	60 	60 iIn 60 60 

oc 
fin 
ccc 

Figure 3.1 Endonuclease activity of modification-deficient enzymes. 

The modification enzyme used in the in vitro assembly of EcoKI is 
identified at the head of the figure. The substrate DNA was plasmid 
pBRsKI, a plasmid with one unmodified (.0) or modified target ( .K). 
The incubation times are indicated in minutes. M identifies marker 
DNAs from 10 to 2.5 kb in length, oc = open circular, tin = linear, ccc 
= covalently closed circular plasmid DNA. 
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EcoKI specifically cleaves DNA in the presence of AdoMet, ATP, and Mg2 , where 

AdoMet acts as an allosteric effector (Hadi et al., 1975). Unmodified pBR322 with 

one EcoKI site was used as a substrate. Fig. 3.2 shows the conversion of covalently 

closed circular DNA via open-circles to linear molecules by both the wild-type 

EcoKI and the F269G mutant complexes, but not by the G177D mutant complex. 

This is in agreement with the results obtained in vivo. 

The MIS, complexes used in the endonuclease assay were shown to he unable to 

methylate the target DNA (Willcock et al., 1994). These data were confirmed 

recently (O'Neill M., pers.com) using a more sensitive assay (Roth and Jeltsch, 

2000): the M2S1  complexes containing either HsdM(G177D) or HsdM(F269G) have 

shown no methyltransferase activity. 

In 4 out of 5 experiments that were carried out using the same sample of purified 

methylase and freshly assembled complex, the F269G mutant enzyme cut the DNA 

more slowly than the wild-type enzyme. For example, in the experiment shown in 

Fig 3.2 after 15 minutes of incubation of the restriction complexes with unmodified 

DNA, 80% of the plasmid DNA was linearised in the case of incubation with wild-

type enzyme but only 10% in the case of the HsdM (F269G) mutant. This fact can 

he explained by a change in the local structure of the mutant enzyme that might have 

led the enzyme to have a higher binding constant for AdoMet. 

A similar mutant in motif IV of the BcgI system (see section 1.1) blocked 

methyltransferase activity but the mutant enzyme was still able to cleave DNA in 

vitro, showing approximately 40% of restriction activity of the wild-type enzyme. 

The expression of this mutant protein from a multicopy plasmid was lethal to the 

host (Kong, 1998). 

A similar change (Y269G) in the motif IV of EcoR124I (IC family) has recently 

been shown to result in a restriction-proficient, modification-deficient phenotype (L. 

Powell and N. Murray, pers.com). 
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Therefore, the finding that substitutions in motif IV of the methyltransferase block 

methylation but not the restriction reaction can be extended from type IA restriction 

enzymes to other groups of restriction enzymes where AdoMet is required for 

endonuclease activity. 
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Chapter 4 HsdR subunits of EcoKI complexes are degraded if 

the complexes are able to translocate DNA. 

4.1 	Conjugation 	experiments 	show 	that 	survival 	of 

hsdR7zsdM269(F269G)hsdS cells depends on CLpXP protease, but does 

not depend on RecA for the repair of double-strand breaks. 

It is expected that bacterial cells, which have the hsdM(F269G) mutation 

(abbreviated to hsdM269 in further sections) in the presence of hsdS, should die if a 

functional hsdR gene is present, because the EcoKI complex formed will fragment 

the unmodified bacterial chromosome. For example, if there is a resident methylase 

able to interact with HsdR to form a restriction complex but unable to methylate the 

targets present in the chromosome, recipient cells should die if they acquire hsdR on 

a plasmid. However, for the correct interpretation of the results of such an 

experiment it is important to maintain the ratio of Hsd subunits and their 

concentration in the cell to that determined by one copy of the Iisd genes per 

bacterial chromosome. An F'plasmid was chosen because it is a low copy number 

plasmid - 1-2 copy per chromosome. The F'101-102 hsdKRMS (Prakash-Cheng 

and Ryu. 1993) was available and used for the construction of an F'hsdR necessary 

for the designed conjugation experiments. 

F' 101-102 is a derivative of F'101 (Makovets et al., 1998) with TnlO inserted into 

the zjj gene. jj:.TnlO is closely linked to the hsd region and this allows the use of 

an F' hsd z./j:TnlO for the construction of F'derivatives with different hsd genes via 

chromosome-plasmid allele exchange (Figure 4. 1): 

LA strain with a functional hsdR gene on the bacterial chromosome, but in which a 

deletion removed IiscIM and /isdS (NK224) was chosen. A zj1*202.: TnlO insertion 

was transferred to this strain by P1 transduction to provide a marker closely linked to 

the IisIR 	gene. 
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2. An F' hsdIVtS carrying the hsd region but deleted for hsdR was transferred to 

the hsdR zjj202:: TnlO recipient and clones were checked for Nalr Tetr and the 

rm phenotype anticipated for a strain with all of the three hsd genes. 

3.Derivatives of the partial diploid were sought in which exchange of markers 

between the chromosome and F generated an F in which hsdMhsdS were 

replaced by hsdRiihsdMS zjj202: Tn] 0. To recognise recombinant F factors, 

selection was made for the transfer of Tn]0 to a recA::catAhsdRM recipient and 

transconjugants were checked for the predicted rm phenotype. 

The presence of a functional hsdR gene in the F was confirmed by transferring the 

F to an hsdtS recipient lacking hsdR. The Nal' Tetr  derivative was checked for 

the predicted rm phenotype. 

The new F designated 101-103 hsdR was transferred to JC9935. 

The resultant JC9935 F101-103) hsdjçR was used in the conjugation experiments 

where strains /ihsdR hsdMS, zlhsdR hsdM269S and zlhsdR hsdM177S 

were used as recipients and JC9935 F'101-102 or JC9935 F'101-103 as donor strains 

(Table 4.1). 

Unexpectedly, the transfer of F'hsdIVtS and F'hsdR was equally efficient to both 

hsdM2 69 and hsdMl 77 recipients (Table 4.1). Samples of transconjugants that 

acquired resistance to tetracycline, presumably because of transfer of the F, were 

purified and tested for restriction. All of them were sensitive to the male-specific 

phage M13 which confirms F transfer from donor to the recipient cells. 

Although cells of NM802 with F hsdR have a r phenotype (X v.0 has an e.o.p. of 

10), cells of VC8026 hsdM269 F hsdR restrict 2 v.0 poorly (e.o.p. 10) while 2 

v.K has an e.o.p. close to 1. The e.o.p. of 2. v.0 and 2, v.K was close to 1 when 

assayed on hsdM(G177D) F hsdR transconjugant clones, e.g. no restriction was 

detected in these transconjugants. 
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NK224 iisdRL hsdMSgvrA x P1 (C600 zjj::Tn]O) 

Select NalTel' 

R: NK224 zjj::TnlO x D: JC9935 F' /,sdM S + 

Select NaF Tet' rm 

D: NK224 F' zjJ2O2 . :Tn 10 x R: KL32 recA . . cat A hsdRM 

Check for Cm' Tet' rrnM 1 3s clones 

D: KL32 F'hsdR zjj202..TnIO x R: DF15a hsdR gyrA recA 

Check for Nair Tetr Ml 3s rrn clones 

D:H5c hsdR gyrA recA F'hsdR x R:JC9935 

Figure 4.1 The construction of F'hsdR 

See comments in the text 
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Why should restriction be virtually absent in hsdM269hsdS F hsdR 

transconjugants while the experiment in section 3.1 supported the hypothesis that this 

mutation in hsdM leads to an rm complex? One of the possible explanations is that 

mutations in F hsdR , which allow the survival of hsdM269 hsdR cells, were 

selected during the experiment. 

Twelve hsdM269 F hsdR transconjugant clones were used as donors and the hsdR 

gene was functional in all cases when transferred to a restriction-deficient, 

modification-proficient strain. The e.o.p. of 2 v.0 on these transconjugants was 

close to i0, e.g. restriction activity was restored in these cells. Therefore there was 

no evidence for mutations in the F. 

A second possible explanation of the phenotype of the hsdM269hsdR cells is that 

restriction has been alleviated. In the experiments that were done in our laboratory by 

S.Makovets the wild-type cells treated with 2AP showed some similarity in their r'/ 
 
-

phenotype to the low level of restriction shown by the hsdM269hsdR strain (rrn 

phenotype). Survival of the cells treated with 2AP is dependent on C1pXP protease 

so it was logical to check whether survival of hsdM269 F hsdR transconjugants is 

dependent on the clpXP genes. 

However, if the cell death expected after the formation of restriction-proficient, 

modification-deficient EcoKI is prevented by the recombinational repair of bacterial 

chromosomes, residual restriction activity would be lethal in a recA strain in which 

repair of DSBs is impaired. 

Mutations in cIpX, clpP and recA were transferred to the recipient strains by P1-

transduction. Each mutation was tagged by a transposon and could be selected by the 

antibiotic resistance marker. The strains obtained were used as recipients in 

conjugation experiments (Table 4. 1). 
ee 	 (j 

The frequency of transfer of the control F'hsdMS was independent of the genotype 

of the recipient cells. The frequency of acquisition of the selective marker of the F 

me 



was as low as 10-4 if an hsdM269clpX::kan or hsdM269 clpP..cat cells were used as 

recipient cells. The frequency was close to one in the case of hsdM269recA.:cat 

recipient. These results imply that ClpX and ClpP but not RecA are critical for the 

survival of the clones that encode a rrn enzyme and have rm phenotype. 

All F'plasrnids that were acquired by cIpX::kan recipient cells (VC8026) were shown 

to be deficient in restriction activity after their transfer to an rm strain, and they 

may represent deletion variants of the plasmid which were selected by the survival 

of the cells that received them. 

The mutation in the c/pP gene, which inactivated the proteolytic component of the 

C1pXP protease, also reduced the survival rate of recipient cells of VC3003 slightly 

less prominently than the cfpX mutant, probably because disassembling of restriction 

complexes by C1pX chaperone might reduce the number of DSBs on the 

chromosome. 

The dynamics of killing of hsdM (F269G) transconjugant cells during conjugation 

was also monitored, but in a different background - in a C600 Rac - strain to check 

that the results obtained are not an artefact of the strains used and because the recent 

work on restriction alleviation was done in a C600 Rac - background (Makovets et 

al., 1999) (Fig 4.2). 

The graphs shown in Figure 4.2 indicate the death of the recipient cells in the 

absence of either C1pX or C1pP but not in the absence of RecA. Control experiments 

with F'101-102 revealed no drop in titre of any of the recipient bacteria tested. 

Clearly, both c1p genes show a similar effect on the survival of the AhsdR 

/isclM(F269G) recipient strain, which confirms that a functional CIpXP protease, 

rather than the C1pX chaperone alone is required for the survival of the recipient 

cells. 
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4.2 Survival of rm cells depends on the copy number of the hsdR gene - a high 

copy number of hsdR is not tolerated even in Clp cells. 

The establishment of type I systems is dependent on cipXP when hsd genes enter the 

bacterial cell by conjugation, transduction or transformation (Makovets et al., 1998). 

Thus transformation provides the possibility to assess the effect of the dosage., of 

hsdR' on the cells that are able to make a rm restriction complex. 

The IivdRM269S strain was transformed with a mixture of two plasmids, an hsdR 

test plasmid and a control plasmid tagged with a different antibiotic resistance. The 

ratio of the clones transformed by a test plasmid to those transformed by a control 

plasmid was compared (Table 4.2). Two hsdR plasmids were tested. These were 

pNK3, a derivative of the low copy number plasmid pACYCI84 which has 5-10 

copies per bacterial chromosome (Chang and Cohen, 1978), and pJK2, a derivative 

of pBR322 (20-25 copies, (Sutcliffe. 1978). 

The ratio of clones transformed by the test plasmid to those transformed by the 

control plasmid depended only on the ratio of plasmid DNA in the AhsdR strain 

(NM802) (Table 4.2). In a cip strain it was possible to maintain pNK3 in the cells 

in the presence of the hsdM269 mutation (NK384) the ratio of transformants by 

pNK3 and pACYC184 is close to that obtained for NM802. However, the 

transformants containing pNK3 grew slowly on the solid medium containing 

chloramphenicol and it was not possible to grow these transformants in liquid broth. 

No transformants were observed if a mutation in recA was introduced into the 

i,sdM269 strain (VC36), which is in contrast to the result of the experiment with 

F'transfer by conjugation (see Fig 4.21). 

The presence of the cIpX mutation in the hsdM269 mutant prevented transformation 

by any hsdR plasmid. In the case of the higher copy number plasmid, even Clp 

cells failed to give hsdR transformants (Table 4.2). 
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A possible explanation of these findings is that the restriction-proficient, 

modification-deficient enzyme obtained as a result of the interaction HsdR with the 

defective methylase leads to a situation in which the enzyme binds to the unmodified 

target sequences in the chrornosoma! DNA and initiates the restriction pathway. The 

action of the basal level of C1pXP is enough to degrade the HsdR subunits produced 

from one copy of hsdR, hence the survival of Clp cells in case of the transfer of-the 

F'plasmid by conjugation, but the level of C1pXP in the cell is insufficient to prevent 

EcoKI from cutting the chromosome if the level of HsdR is increased. reck  cells are 

able to grow slowly in the presence of a low copy number plasmid, pNK3, but repair 

mechanisms cannot prevent cell death if the number of functional EcoKI complexes 

is increased, as shown by the presence of the pBR322/hsdR plasmid (pJK2). 

When an h,s'dR hsdM269hsdS strain was lysogenized by 2 atf /isdMS the 

resulting strain was able to modify phage DNA in a routine test of modification 

activity but restriction was still 10 1 , which suggests that the 11sdM269 mutation is 

dominant over the wild-type with respect to the induction of RA. If there is no 

preference in assembly between wild-type and mutant HsdM there should be 25% of 

wild-type R2M2S1  complexes, 50% complexes which have one wild-type and one 

defect M-subunit and 25% of mutant restriction enzymes. The chromosome will still 

be undermethylated and HsdR subunits of EcoKI are probably degraded. 
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Table 4.2 The effect of hsdM (F269G) mutation on acquisition of hsdR by 

transformation 

Recipient strains The 	ratio 	and 	the 	phenotype 	of transformants 	with 

hsdR plasmid to a control plasmid 

pACYC 1 84IIis'dR pBR322/hsdR 

NM802 (AhsJR) 4.2 	(r 	m) 3.4 	(r 	rn) 

NK384(A/is'dR 

/is(IM2ó 9) 

4.1 * < 5 x iü- 	
a 

VC36((Ahs(IR 

hsdM26 9recA) 

<o 	aa 

NM802 clpX::kan 3.1 (r 	nY) 2.1 (r*  m) 

NK384 clpX::kan <2 x 10-3 <8x 102a 

approximately 1000 transformants were isolated after transformation by a control 

plasmid, but none was observed after transformation by a plasmid with hsdR. 

- cells were sick. 

The restriction phenotype of the transformants is shown in brackets. 

4.3 HsdR is degraded in hsdM(F269G) mutant 

The survival of transconjugant cells after the acquisition of F'/isdR suggested that it 

might be possible to maintain hsdM269 in the presence of a functional hsdR allele on 

the chromosome. The I1sdM(F269G) mutation was transferred to the chromosome of 

NK301. an  1isdRMS 	strain, by phage-chromosome allele exchange using 

?J,sdM269hsdSt The hsdM269 recombinants were recognised by their modification-

deficient phenotype. 
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Sections 4. 1 and 4.2 have shown that the survival of ii,s'dM269S cells is CIpXP-

dependent in those cases where either conjugation or transformation provided 

/isdR in trans on a plasmid. If the survival of /isilR M269S cells is still CIp-

dependent when all hsd genes are present in cis on the chromosome, it should be 

impossible to transfer a clp allele to hsdRM269S cells, for example, by P1 

ran sduction. 

To check the possibility of constructing an hsdRM269 c11i strain, a P1 lysate was 

prepared on a clpX:.kan isx.:TnlO strain (VC48) where TnlO has 50% linkage with 

the clpX::kan allele. Transductants of a wild-type strain, the hsdRhsdM26.9 strain, 

and the hsdR(A6l9V)hsdM269S 	strain, in which the restriction activity of the 

EcoKl complex is inactivated as the result of a single amino acid change in one of 

the DEAD-box motifs, were selected by their resistance to tetracycline and screened 

for the transfer of the mutation in c/pX (Table 4.3). The linkage between tsx::TnlO 

and the cIpX::kan allele is close to 50% for the wild-type strain and for the 

hsdR(A6 I 9V)hsa'M269 strain. No clpX::kan derivative of hsdM(F269G) was 

isolated, which strongly supports the hypothesis that CIpXP is essential to maintain 

the viability of cells that contain the rni enzyme. 

Table 4.3 The effect of hsdM(F269G) on the acquisition of the clpX gene by P1 

transduction. 

Recipient strains CAG 12148 tsx::Tn]O clpX::kan 

Sample size tsx::TnJO clpX::kan 

linkage 

NK301 wI. 100 0.51 

NK3821,sdM(F269G) 100 0.00 

VC3017-1 hsdM(F2690) 

/isa'R(Aô 1 9R) 

100 0.47 
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A possible mechanism of control of EcoKl by CIpXP protease is proteolysis of the 

HsdR subunit of the restriction complex. The proteolysis would prevent the 

restriction reaction and therefore prevent cell death. To check this hypothesis a 

Western-blot analysis was done on the cell extracts of the strains used in the 

previous experiment (Fig 4.3A) . The antibodies identify HsdR and HsdM in the 

wild-type strain (lane 1 of Fig 4.3). Lane 2 shows that HsdR was virtually absent in 

cells with the hsdM(F269G) mutation. However, HsdR could be seen on a film after 

a long exposure(Fig. 4.3B), which can explain the residual restriction activity of 

hsdM(F269G) strain. Substitution of hsdM for the hsa'M269 using a 

AhsdRhsdMS donor prevented the degradation of HsdR, which allows us to 

attribute the cause of degradation of HsdR in hsdRThsdM269 strain to the mutation in 

hsdM (Fig 4.7A, lane 2). The presence of the hsdR (A619V) mutation transferred 

from a XhsdR(A619V) (Fig. 4.3A, lane 4) prevents the degradation of HsdR in 

hsdM269 mutant. The mutation in one of the DEAD-box motifs results in an enzyme 

that is incapable of restriction (Davies et al.,1999) and therefore is not lethal in the 

presence of the hsdM269 mutation (Table 4. 1), despite the retention of the 

restriction subunit. 

The analysis of cell extracts shown in Fig 4.3 indicates that hsdM(F2690) is a 

mutation that leads to the constitutive degradation of the HsdR subunit and an 

extremely low level of restriction, despite the restriction-proficient genotype. This is 

an example of a mutation that leads to constitutive restriction alleviation. 

Constitutive restriction alleviation in hsulM(F269G) mutants supports the hypothesis 

that unmodified targets on the chromosome are the primary condition for the 

degradation of HsdR. 

The proteolytic control is very effective because it even prevents cell death in recA 

strains, where a single DSB should be lethal (Murialdo, 1988) and there are some 

600 EcoKI targets on the chromosome of E.coli K-12 (Winter M., unpublished 

observations). 
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1 2 3 4 5 6 EcoKi 

___ 	___ - ____ 

M 	 - - 

Figure 4.3 The level of HsdR was monitored by Western blots 
using antibody against EcoKI. 
Lanes 1-6 include extracts of strains: 1, NK30I (hsd); 2, NK386 [an 
hsclM(F269G) derivative of NK30I]: 3, an hsd* derivative of NK386; 4, 

an hsdR(A619V) derivative of NK386 (NK388) in which alleles of hsd 

genes was replaced by using hscl phages that included only hsdM+S+ or 
hsc/R(A619V), respectively, 5. NM802 (anA hsdR strain): and 6, 

NK352 (an A hs(IMS strain). 
Short exposure 
Long exposure. Some HsdR subunit can be seen in NK386 (lane 2), 

but not in the strain with deletion hsdR (lane 5). An unknown protein X 
with a mobility close to the mobility of HsdM is detected in the strain 
deleted for hsdM (lane 6). 
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1 2 3 4 5 6 7 	8 9 10 

HsdR - 
	M. 

HsdM - I 	 - 400 *am 
X  

Figure 4.6 The effect of changes in DEAD-box motifs on the degradation 

of HsdR in hsdM269 mutant. 

The positions of amino acid changes are given in brackets followed by the 

motif. An unidentified protein (X in the figure) is detected by our polyclonal 

antibodies and it is present in strains deleted for hsIM (Fig 4.513). 

Lane I - EcoKI, Lanes 2-8, extracts of hsclM(F269G) strains with mutations in 

hsdR that affect DEAD box motifs:2 - NM797, hsdR(H577D), motif II; 3 - 

NM799. hsdR(A619V), III; 4- NM80I, hsdR (K477R), 1; 5- NM892 

hsdR(G799C), V; 6 - NM893, hsdR(D502Y), 1a; 7 - NM898, hsdR(R826H), 

VI; 8 - NM890, IisdR(F629Y), IV; lane 9 - wild type (AB 1157), and lane 10 - 

VC 1. hsclM(F269G). 
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In addition to the DEAD-box motifs, HsdR subunits of type I restriction enzymes 

were reported to contain another conserved motif localised in the N-terminal part of 

the polypeptide (Titheradge et al., 1996). This motif formerly known as "region X" 

is reminiscent of the AD (E/D) X (EID)ZK sequence of type IT restriction enzymes 

which is responsible for the endonuclease activity of the enzyme (Aggarwal, 1995; 

Selent et al., 1992). Type I R-M enzymes with substitutions in this motif retain  

ATPase activity in vitro and translocation activity in vivo (Davies et al., 1999b; 

Janscak el al., 1999) but lack the DNA nicking activity characteristic of DEAD-box 

mutants (Davies et al., 1998). Double mutants with changes in the endonuclease 

motif of HsdR and in addition to hsdM269(F269G) substitution were constructed 

using 2hsdM269S as a donor of the hsdM mutation. The Hsd subunits were assayed 

by Western-blot analysis (Figure 4.7). The HsdR subunits of EcoKI with conserved 

changes in the endonuclease motif (either D298E or E3 1 2D) in the presence of 

hsdM269 were degraded (lanes 3 and 12). The HsdR of the mutant (E312H) that 

retains only 10% of the wild-type ATPase activity was partially degraded (lane 5). 

Mutants in the endonuclease motif do not introduce DSBs into DNA so their 

degradation by CIpXP protease supports the hypothesis that DSBs are not the signal 

that triggers degradation of HsdR by the CIpXP protease. 

The experiments presented above suggest that the signal for restriction alleviation 

depends upon the translocation of unmodified DNA by the type I restriction enzyme. 

But while translocation of chromosomal DNA leads to RA (Makovets et al., 1999). 

the phenomenon of restriction of unmodified phage or plasmid DNA by E.coli K12 

raises the question of the difference between unmodified DNA that causes RA and 

unmodified DNA that does not. 



1 2 3 4 5 6 7 8 9 10 11 12 

HsdR - 
HsdM 

Figure 4.7 The effect of changes in the nuclease motif on the 

degradation of HsdR in hsdM269 mutant. 

Lane 1 - EcoKI, 2 - NM904, hsdR(D298E); 3 - VC904, 

hsdR(D298E)hsdM(F269G); 4 - NM908, hsdR(E312H), 5 - 

VC908,hsdR(E312H)hsdM(F269G); 6 - NM890, hsdR(F629Y) - a 

mutation in DEAD-box motif IV 	7-VC890, hsdR (F629Y) 

hsdM(F269G); lane 9 -VC 1, hsdM(F269G), lane 10 - EcoKI, lane 11 - 

NM907, hsdR(E312D), lane 12- VC907 hsdR(D298E)hsdM(F269G). 

The substitution E312H (lane 5) in contrast to D298E (lane 3) and 

E3 1 2D (lane 12) greatly impairs ATPase activity 
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Chapter 5 HsdR is depleted from the cytoplasm during restriction 

alleviation. 

5.1 Introduction 

The Western blot analysis of cell extracts has shown that the amount of HsdR is 

significantly depleted in the 17sdM269 mutant (Fig 4.3). Nevertheless, these cells 

retain the ability to restrict up to 90% of incoming unmodified lambda phage. If 

EcoKI had been acting with the same efficiency on unmodified chromosomal targets, 

cells should die as a result of the chromosome breakage. Their survival raises the 

question about the differences between DNA substrates and the recognition of "self', 

rather than "non-self' DNA: how does a cell distinguish between unmodified targets 

on chromosomal DNA and those on foreign DNA. 

First, these two substrates differ in their localisation. DNA that enters the cell - 

phage or plasmid DNA - has to cross an outer membrane of a bacterial cell, its 

periplasmic space, and the inner membrane in order to be replicated within a 

bacterial cell. Early work by Schell and Glover (Schell and Glover, 1966a; Schell 

and Glover, 1966b) suggested that phage lambda DNA that crossed the membranes 

of E.co/i K- 12, is not degraded but becomes modified. In recent work by (Holubova 

et al., 2000) EcoKI was found in the inner membrane fraction of bacterial cells after 

overproduction of the restriction enzyme. On the other hand, there are some reports 

that type II restriction enzymes are cytoplasmic (Lacks and Neuberger, 1975). But 

the definitive EcoKI evidence for the localisation of EcoKI in wild-type cells is still 

lacking. 
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5.2 Phages that contain double-stranded but not those that contain single-

stranded DNA are subject to residual restriction activity during RA. 

DNA of lambda phage and plasmid DNA during transformation are substrates for 

residual restriction activity under conditions of restriction alleviation, although .the 

level of RA is much lower in the case of transformation (Hiom et al., 1991). These 

substrates for restriction by EcoKI are double-stranded while crossing the 

membranes of the bacterial cell. 

The analysis of residual restriction activity during restriction alleviation was 

extended to include T7 - a double-stranded DNA phage with a different mode of 

entry from X ) (Garcia and Molineux ,1999) and a derivative of M13 - a single-

stranded DNA phage, which has to be replicated in the cytoplasm of a bacterial cell 

in order to become a substrate for restriction enzymes. 

The residual restriction activity remaining when RA is induced by treatment with 

2AP is more noticeable than that in the hsdM269 mutant (Table 5.1). The residual 

restriction activity (RRA) was observed for T7 ocr phage and for derivatives of 

lambda with different numbers of targets. However, RRA was not detected using a 

derivative of M13 with 2 targets for EcoKI. This might be explained if the residual 

EcoKI is associated with the membrane. If DNA enters the bacterial cell as an 

unmodified double-stranded molecule, the restriction enzyme recognises and cuts it. 

However, single-stranded DNA becomes double-stranded only after the synthesis of 

the complementary strand; this will occur in the cytoplasm where, under conditions 

of restriction alleviation, HsdR is depleted. 
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5.3 HsdR is depleted from the cytoplasmic fraction under conditions of RA. 

The hypothesis that the localisation of EcoKI influences the residual restriction 

activity under conditions of RA was checked after bacterial spheroplasts had been 

separated into cytoplasmic and membrane fractions. The purity of the fractions was 

controlled measuring the activity of 3-galactosidase and NADH oxidase as a marker 

of cytoplasmic and membrane fractions, correspondingly (Table 5.2). 

Table 5.2 Activity of marker enzymes in different cellular fractions. 

Fraction f3-galactosidase, 

Miller units 

NADH oxidase, 

u/mg protein 

Protein 

concentration, 

mg/ml 

Cytoplasmic NK301 645 2.0 0.50 

fraction VC3017 586 1.5 0.24 

Membrane NK30I ND 50 1.0 

fraction VC3017 ND 45 0.6 

ND - not detected 

While some NADH oxidase activity was observed in the cytoplasmic fraction, which 

might he explained by incomplete sedimentation of the membrane, f3-galactosidase 

activity was detected only in the cytoplasmic fraction and therefore contamination of 

the membrane fraction by cytoplasmic proteins is unlikely. 

HsdR and HsdM subunits of EcoKI were detected in both cytoplasmic and the inner 

membrane fraction of the wild-type strain. HsdR was depleted in the cytoplasmic 

fraction of IisdM269 mutant (Fig 5. 1 A) and to the lesser extent when 2AP was added 

to the wild-type cells in the early logarithmic phase (Fig 5.1B). 

The wild-type cells, treated with 2AP, showed some depletion of HsdR from the 

cytoplasmic fraction (Fig. 5.lB). However, the degradation was incomplete. 
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1234 5 6 

HsdR 	 - 

HsdM 

B 	
HsdR 1 2 3 4 5 

HsdM 	- 
x - 

Figure 5.1 The effect of RA on the localisation of HsdR. 

Subcellular fractions of bacteria were analysed by Western blot under 

conditions of restriction alleviation. X is not a derivative of either 

HsdR or HsdM and shows an anomalous mobility in the lipid-rich 

membrane fraction. 

A Lanel and 6 - EcoKI, 2 - membrane fraction of NK30I 	3- 

cytoplasmic fraction of NK301 	
4 - membrane fraction of 

VC3017 hsdM269,5 - cytoplasmic fraction of VC3017 hsdM269. 

B Lanel - EcoKI, 2- cytoplasmic fraction of NK301 grown in the 

presence of 2AP(+2AP); 3 - membrane fraction of NK301+2AP 4-

cytoplasmic fraction of NK30 1: 5 - membrane fraction of NK30 1 



Obviously, RA in the /isdM269 mutant is more severe because the chromosome is 

not protected by modification and this results in an enhanced level of degradation of 

HsdR. 

The ratio of HsdR to HsdM of the purified protein estimated from the intensity of 

hands on a film afteer a short exposure was taken as 1: 1 in each of the three 

independent experiments using the lrnagzneQuantTM  program. The ratio of HsdR and 

HsdM in the cellular fractions was normalised relatively to the value of that of the 

EcoKI protein on the same film. Protein X on the films used for the analysis was 

represented as an individual peack and was not taken into calculations. 

The ratio of the subunits detected in the membrane fractions of the wild-type and the 

mutant was close to that of the R2M2S1  complex (Table 5.). For the wild-type cells 

the ratio was 0.4:1 for the cytoplasmic fraction, which probably reflects the 

abundance of the of M2S1  complex in it. These data are in accord with those obtained 

by (Weiserova et al., 1993) for EcoKI, expressed from a multicopy plasmid in 

mi n icel is. 

3 
Table 4 Ratio of HsdR:HsdM subunits in cellular fractions as determined by 

Western-blot analysis 

Strain Fraction 

Cytoplasmic Membrane 

NK301 

wild type 

0.45 1.23 

VC3017 

hscIM269 

ND* 1.22 

* ND. not detected. At least 50 times less than in the cytoplasmic fraction of the 

wild type 
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5.4 RA during conjugation is dependent on clpX. 

RA in a recipient following the transfer of unmodified bacterial chromosomal DNA 

into rm cells has been reported by (Glover and Colson, 1966). The level of 

restriction was reduced 60-90 minutes after the start of conjugation and it was 

restored later to the initial level. The authors used different Hfr donors and 

F'plasmids for the transfer of DNA into recipient cells, although the data for F' were 

not shown. This type of experiment was reproduced using a donor of F'101-103 and 

the results are shown on Fig 5.2. 

Donor and recipient cells were grown until mid-logarithmic phase and mixed in the 

ratio 10:1. Donor cells were rm and resistant to phage X adsorption. Recipient cells 

were rKmK and contained plasmid with the mod gene of a type II R-M system 

EcoRI (rjjmt1 phenotype) so that only phages that were replicated in the recipient 

cells will be detected. The conjugation mixture was incubated with gentle aeration 

and samples were taken at time points indicated in Fig. 5.213. Each sample was 

divided into two aliquots. 2.0 was added to one aliquote and X.K was added to the 

other. The infected cells were mixed with an rprn !+  indicator culture so that 

unadsorbed phage will he restricted by the EcoRI system of these cells. Infective 

centres were estimated from plaque counts. 

A transient drop in the level of restriction activity was detected with 2.0 in clp cells 

but not in cIpX cells. Therefore, RA caused by conjugation is dependent on C1pXP 

protease as in the case of the establishment of hsd genes (Makovets et al., 1998). 
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Figure 5.2 RA during conjugation is dependent on clpX. 

Scheme of experiment. 

Restriction of 2.0 bythe recipient in the conjugational mixture. 

The result from one of three independent experiments is shown. 



Chapter 6. Discussion 

6.1 Regulation of type I systems 

This thesis investigates the details of the regulation of the restriction activity of 

EcoKI, a type IA restriction enzyme. Three different situations relevant to the control 

of type I restriction systems have been shown to be dependent on the C1pXP 

protease:- the acquisition of genes specifying these restriction systems, inducible RA 

and constitutive RA (Makovets etal., 1998; Makovets etal., 1999). 

The experiments in Chapter 3 show that some mutations in the hsdM gene of a type I 

restriction enzyme (EcoKI) can result in a restriction-proficient, modification-

deficient restriction complex (rm). This complex was produced in vivo when cells 

in which hsdR was expressed from pNK3, a derivative of pACYCI84 (- 8-10 

copies per cell), were infected with AhsdM7isdS 	phages. The low e.o.p. of 

unmodified, but not modified, 2JisdM7isdS phages can be explained by the 

restriction of phage DNA. In earlier experiments (Kelleher et al., 1991) the e.o.p. of 

AhsdM47?sdS phages was found to be low, irrespective of the modification state of 

the phage DNA, when the phage infected a strain containing pJK2, a pBR322 

derivative including hsdR 	(- 20-25 copies per cell). The authors therefore 

concluded that the bacterial DNA was degraded. The apparent discrepancy between 

these experiments, all of which used Clp 	bacteria, can be explained by the 

difference in the copy number of pNK3 and pJK2 and consequent difference in the 

amount of EcoKI. 

However, when even a low copy number plasmid (pNK3) is used, ?hsdMhsdS.K 

phages have a low e.o.p. on modification-deficient strains in the absence of C1pXP, 

consistent with the degradation of the unmodified bacterial chromosome (Doronina 

and Murray, 2001). This suggests that C1pXP can protect the bacterial chromosome 

from degradation when hsdR is expressed from a low copy number plasmid. 

Preliminary experiments (V.Doronina) have checked for the degradation of the 

bacterial chromosome following the infection of modification-deficient bacteria with 

2J7sdM7lsdS phages. Using a method described by G. Cromie and D. Leach (2001), 
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degradation of host DNA was detected in C1pX but not in Clp cells, and this 

occurred after infection with 2J'zsdM269hsdStK but not XhsdMJ 77hsdS.K. This is 

consistent with the in vivo experiments in which a low e.o.p. of the phage was 

observed when c1phsdRMS cells were infected by XhsdRMSt The low e.o.p. is 

likely to reflect the degradation of the chromosome of infected cells (Doronina and 

Murray, 2001). 

Mutations conferring a rm phenotype have not been described previously, because 

bacteria effectively regulate the restriction component of the R-M system so these 

mutations, if characterised in vivo, would have been classified as conferring a rrn 

phenotype. This phenotype is characteristic of the transconjugant 

hsdRA4hsdM269hsdS cells that have an F'hsdR . Survival of these bacteria, that 

contain a rm type I restriction enzyme, depends on the CIpXP protease. Mutations 

that result in a very low level of residual restriction activity can be classified as 

leading to constitutive RA. 

This discrepancy between the behaviour of a mutant restriction complex in vitro and 

the phenotype of bacteria that contain the mutant type I restriction enzyme was also 

observed when a number of single amino acid changes in the N-terminal TRD of 

HsdS of EcoKI were shown to result in a poor ability of mutant complexes to bind 

DNA and the rrn or rm phenotype of the corresponding strains. The survival of 

these mutants is dependent on the C1pXP protease (M.O'Neill et at., 2001). For 

example, the hsdS(K92R) mutant has 70% of methyltransferase activity of the wild-

type enzyme on an unmodified oligonucleotide DNA substrate and 90% of activity 

on the hemimethylated oligonucleotide DNA. Nevertheless, this mutation leads to 

the C1pXP-sensitive phenotype, which suggests that even a modest decrease in the 

modification activity of a restriction complex would lead to the DBSs in the bacterial 

chromosome. 

A mutant that is apparently inactive in vitro but retains the need for C1pXP in vivo, 

hsdS(S 103E), has a remarkable difference between its action on three substrates: 

double-stranded oligonucleotides and phage DNA as opposed to the chromosomal 

DNA. hsdS(5103E) mutant complex completely lacks the ability to bind an 
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oligonucleotide in vitro or restrict phage 2. DNA in vivo. At the same time this amino 

acid change led to the C1pXP-sensitive phenotype of the mutant strain and to the low 

e.o.p. of 2JisdMhsdS(Sl03E).K on a CIpX strain (V.Doronina). Both these pieces 

of evidence support the idea that, despite its complete inactivity in vitro, S103E can 

introduce DSBs into bacterial chromosome in vivo. Therefore, CJpXP sensitivity is 

probably the best test of in vivo restriction activity. 

One of the critical factors in the regulation of the restriction activity of EcoKI in the 

case of an undermethylated chromosome is the copy number of the hsdR gene. 

Overproduction of the HsdR polypeptide can lead to cell death as shown by 

experiments in which the hsdM (F269G) mutant is transformed by /isdR plasmids 

with different copy number (section 4.2.). 

The process of inducible RA, also controlled by C!pXP protease mechanism, was 

similarly dependent on the copy number of hsdR. The level of residual restriction 

activity was 10 times higher in cells with pNK3, approximately 250 times higher in 

cells with pJK2 and was independent of the copy number of either hsdM or hsdS 

(Makovets, 1999). 

The HsdR subunit was shown to be degraded in an hsdM (F269G) mutant if the 

EcoKI complexes can translocate DNA. The recognition of translocating complexes 

must occur before DSBs are introduced (section 4.4). We hypothesise that a part of 

the HsdR is exposed during the process of translocation and is recognised by the 

C1pXP protease. A mutation in HsdR that abolishes the recognition of translocating 

complexes by CIpXP protease would lead to the cell death in responce to induction 

that naturally evoke RA as a result of DSBs introduced into the bacterial 

chromosome. 

Some mutations in HsdR isolated in our laboratory led to the bacteria with a 2AP-

sensitive phenotype, the phenotype predicted if the process of restriction alleviation 

is blocked. Using a Tn7-based system for random mutagenesis in vitro (Biery et al., 

2000) insertion mutations were obtained in the hsdR gene of EcoKI (W.Pigaga and 

A. Titheradge, pers.com). One mutation resulting in the insertion of five amino acids 
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close to the C-terminus of HsdR, in a linker between the helicase domain and the C-

terminal domain (Davies et al., 2000, see Fig 1.3A) that is involved in the 

interactions with the methylase complex. The mutation results in the 2AP sensitivity 

of an rkrnk  strain while present on pNK3 suggesting a defect in the RA. The amino 

acid sequence affected by the insertion is conserved in EcoKI and EcoAl, both of 

which are substrates for Cip-dependent regulation, and the insertion is not predicted 

to change the local secondary structure. The sequence affected has some similarity 

with the sequences of some other substrates of C1pXP, i.e. those within RpoS and 

the Phd protein of phage P1, which have been shown to be important for the 

degradation of these proteins (V. Doronina). 

Chemical mutagenesis of wild-type E.coii and a subsequent screen for 2AP-sensitive 

mutants led to the isolation of four mutations mapped to the cipXP genes and one in 

IisdR with a single amino acid change (E590K) between DEAD-box motifs II and III 

of the (S.Makovets, A. Titheradge and N.Murray, pers.com). The level of restriction 

activity is enhanced in this mutant. Motif II (Walker motif B) and motif III are 

implicated in coupling of ATP-hydrolysis and DNA translocation (Davies et al., 

1999b Hall and Matson, 1999) and the change of the local conformation may lead 

to the less effective translocation and an introduction of an early DSBs before the 

translocating complex is recognised by C1pXP and HsdR is degraded. This 

explanation is supported by the finding that HsdR is still degraded in the presence of 

2AP, although possibly less effectively than the wild-type HsdR (S.Makovets, 

pers.com). However, the direct involvement of this sequence in the recognition of 

HsdR by C1pXP cannot be excluded. 

Despite the effective regulation of EcoKI by C1pXP protease, RA is always 

incomplete and some residual EcoKI remains. The residual restriction activity is 

efficient against phages that cross bacterial membranes as double-stranded DNA but 
, I 

not those that enter as a single-stranded DNA (Chapter 5, Table V. This difference 

in sensitivity is consistent with the detection of HsdR in the inner membrane fraction 

but not in the cytoplasmic fraction, under conditions of restriction alleviation (Fig. 

HsdR is depleted from the cytoplasmic fraction under conditions of restriction 
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alleviation and therefore single-stranded DNA would replicate in the environment 

lacking EcoKI. 

In wild-type cells EcoKI was detected both in the cytoplasmic fraction and in the 

inner membrane fraction of cells (Fig. 5. 1, lane 2 and 3). This is consistent with 

results of (Holubova et al., 2000). However, the results presented by Holubova et al. 

(2000) appear to contradict each other. In one experiment EcoKI was no longer 

associated with the inner membrane if cells were treated by an enzyme that 

hydrolyses nucleic acids and the authors concluded that EcoKI was associated with 

the inner membrane via DNA. But the other experiment treating the spheroplasts 

with a proteolytic enzyme resulted in fragmentation of HsdR and this was taken as 

evidence that parts of HsdR are exposed to the periplasmic space. 

Obviously, the question of the localisation of type I restriction enzymes requires 

further investigation. 

Finally, what is the signal for the RA when unmodified DNA enters a restriction-

proficient cell? The data in Chapter 5 (section 5.0) suggest that postconjugational 

RA, like in the case of establishment of a type I R-M system, is C1pXP - dependent 

even if cells contain an established type I system. 

Our preliminary evidence supports the hypothesis that incoming DNA has to be 

recombined with the resident chromosome in order to provide the trigger for the 

restriction alleviation. RA was not observed using pOX38Km, a derivative of F 

plasmid that lacks homology with the bacterial chromosome and therefore cannot 

undergo homologous recombination with the chromosome of recipient cell. It also 

does not include any transposable element that could lead to the integration of the an 

F plasmid to the bacterial chromosome and mobilisation of chromosomal DNA was 

used and this plasmid was effectively restricted (Doronina and Murray, 2001). 



Additionally, the restriction alleviation is blocked in a recA mutant. However, recA 

mutation leads to a pleiotropic phenotype and a functional RecA is necessary for 

some types of RA (section 1.2, Inducible restriction alleviation). 

To test this hypothesis it is critical to restore the recombination proficiency of the 

recipient cells by providing an alternative recombination system and accessing the 

restriction alleviation. 

Summarising, this thesis describes certain aspects of regulation of type I R-M 

systems. It has been a generally accepted opinion that the modification itself is 

sufficient and necessary for a restriction system to distinguish between the resident 

DNA and foreign DNA. Fully modified resident DNA becomes hernimethylated after 

the replication and hemirnethylated DNA is a substrate for a modification enzyme 

but not the restriction enzyme. However, chromosome might lose the property, 

distinguishing it from the foreign DNA, i.e. modification as in the case of mutations 

that impair modification activity or lead to a restriction enzyme with a new 

specificity. This situation requires the additional mechanisms of regulation of a 

resident restriction system. 

6.2 Biological aspects of restriction systems. 

Restriction-modification systems are widespread in nature. At least one candidate is 

found in 80% of the completely sequenced genomes of Bacteria and Archaea, 75% 

of these genomes appear to contain multiple restriction systems (Roberts, 1998; 

(Kong et al., 2000). Type II R-M systems are predicted to be the most abundant (in 

terms of number predicted for one strain) and widespread (number of species 

predicted to have at least one) group and type I is the second most abundant and 

widespread. Some bacteria for which a complete genome sequence is published, 

notably intracellular parasites Ricketsia provazekii and three Chiamidia species, 
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have no candidates for any type of restriction systems. The number of restriction 

systems predicted for a species does not correlate with genome size. The correlation 

between the presence of putative restriction systems and their functionality, detected 

by biochemical methods, has been analysed using Helicobacter pylori (H.pylori) as a 

model organism for detection of type II systems. E.coli was used for the study of 

biology of type I systems. 

The genorne of H.pylori is of a medium size (- 1 .65 Mb) but as much as 4% of the 

DNA is predicted to encode putative restriction systems and more than ten of these 

are type II systems (Kong et al., 2000). Three type I systems and two type III 

systems were also predicted in each strain. 

The biochemical analysis of two strains, H.pylori J99 and H.pylori 26695, for which 

complete sequences of genomes are available revealed that 30% (4 in each strain) of 

putative type II systems are functional. Those restriction enzymes for which 

endonuclease activity is detected belong to the strain-specific R-M systems (Kong et 

al., 2001). There are also 6 systems where only the modification component is active 

and the authors propose that these systems are in the process of inactivation due to 

the accumulation of mutations. 

Ando et al. (2000) analysed 19 strains of H.pylori and found that all of them have at 

least one functional R-M system but no two strains have an identical functional type 

II restriction system. Therefore, most of the strains of H.pylori screened so far have a 

functional type II R-M system and most of these restriction systems have a different 

specificity. 

In contrast to H.pylori, the sequences of the genomes of two strains of E.coli - K12 

and enteropathogenic 0157:H7 - contain no candidates for type II R-M systems 

(Blattner et al., 1997; Perna et al., 2001). Each has one type I system - EcoKJ and an 

unidentified R-M system that shows a high level of identity with EcoAl of lB family 

(G. Davies. pers.com), correspondingly. 
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The biochemical activities of type I restriction enzymes are more difficult to detect 

because a type I restriction enzyme requires cofactors for the restriction activity and 

does not produce a distinct pattern of restriction fragments. A search for type I R-M 

systems in the collection of E.coli strains relied on the hybridisation of probes 

derived from the representatives of four families (IA, IB, IC and ID) with 

chromosomal DNA. Seventeen of thirty-seven strains tested were probe-positive, but 

the authors do not exclude the possibility that probe-negative strains have a type I 

system non-homologous to the probes used (Barcus et at., 1995). 

Restriction systems have been compared with the immune system of higher 

organisms. Using an absence or presence of a specific modification as a "foreign 

antigen" they distinguish between "self' and "non-self' DNA and eliminate the 

latter. The most obvious role for the restriction systems is to protect the host DNA 

against an invasion by foreign DNA: bacteriophages, conjugative plasmids and 

naked DNA. The presence of antirestriction systems in the majority of phages 

(Kruger and Bickle, 1983) and transmissible plasmids (Chilley and Wilkins,1995), 

absence of the recognition sites for the restriction systems (Kruger et al., 1995) and 

modification of DNA determined by phage modification systems (Bickle and Kruger, 

1993) are the result of the arms race in host-parasite interaction. 

In the case of lateral transfer (for review see Ochman et at., 2000) of homologous 

DNA R-M systems can play an additional role in facilitating recombination. 

Restriction enzyme fragment DNA and fragmented DNA is degraded until 

sequences that facilitate recombination are encountered and the recombination can 

start. 

However, a potential damage to the resident DNA in the process of the establishment 

of an RS or as a result of loss of the RS raises the question of regulation of restriction 

activity of restriction systems. Nucleoside-independent restriction systems (NIRS) 

and nucleoside-dependent restriction systems (NDRS) have a fundamental difference 

in the mechanisms of their regulation. There is accumulating evidence that the first 

group is controlled at the level of transcription and the second group at the 
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posttranslational level (Murray, 2000). The differences between NIRS and NDRS 

which may be the cause of the distinct regulatory mechanisms will be discussed 

using type II R-M systems as representatives of NIRS and type I restriction enzymes 

as representatives of NDRS. 

There is a bewildering variance in the nucleotide sequences of the genes, gene 

arrangements and sequences recognised among type II systems. The division into 

families like the "natural" classification of type I systems is non-applicable to type II 

systems. The restriction and modification enzymes that are part of one type II R-M 

system apparently do not have a common ancestor (Wilson and Murray, 1991). 

In contrast, the organisation of type I R-M systems into families, within which the 

subunits of the enzymes are interchangeable and the finding that enzymes that 

recognise similar sequences have similar TRDs is consistent with divergent 

evolution from a common ancestor (Barcus and Murray, 1995). 

The hypothesis of type II R-M systems as "selfish genes" is fully explored by 

Kobayashi and co-workers. According to them, R-M systems behave like "molecular 

parasites". A resident R-M system eliminates the host cells that have lost the resident 

restriction system by killing the host when the residual modification enzyme is no 

longer able to modify all the target sequences. In the experiments performed to check 

this hypothesis R-M systems serve as addiction modules for plasmid maintenance 

(Kulakauskas et al., 1995; Naito et al., 1995). Loss of a plasmid encoding a type II 

system leads to cell death as a result of an attack on the bacterial chromosome by the 

restriction enzyme and introduction of DSBs (Handa et al., 2000). 

However, a type II system which is established and situated on the bacterial 

chromosome will be harmful if a mutation inactivates inactivates the modification 

gene or if the specificity of one of either components is changed. 

The finding of a group of type II R-M systems, in two H.pviori strains (Kong ci al., 

2000; Kong et al., 2001), which have inactive restriction but active modification 



components supports a hypothesis that a restriction gene accumulates mutations 

more rapidly than the cognate modification gene. 

Moreover, the DNA-binding specificity of restriction endonucleases are difficult to 

change (for recent review see (Lukacs and Aggarwal, 2001. Despite numerous 

attempts to engineer an enzyme with the new specificity it has been possible only to 

change BainHI so that it prefers a methylated substrate (Dorner et at., 1999) or the 

preferred target sequence of EcoRV from six base pairs to eight base pairs (Lanio et 

al,, 2000). 

Unlike type II R-M systems, type I R-M systems are prone to change of the 

specificity not by change within a TRD but as the result of rearrangements affecting 

hsdS (for review see Bickle and Kruger, 1993; Murray, 2000). However, the 

hypothesis of "selfishness" as defined by Kobayashi and co-workers is non-

applicable to type I R-M systems. 

Type I systems can be readily acquired and established (Ryu et al., 1993; Makovets, 

1998) and lost (O'Neill et at., 1997). Type I R-M genes in the chromosome are 

readily replaced by the mutant alleles and by alleles encoding a type I R-M system of 

different specificity ((O'Neill et at., 1997). 

This thesis investigates the consequences of a mutation that led to the inactivation of 

modification but not restriction activity of a type I restriction enzyme. The results 

indicate that this mutation is not lethal due to the proteolytic control of the restriction 

enzyme and they support the idea that type I R-M systems are not "selfish". The 

system of control of the restriction activity of EcoKI that distinguishes between the 

resident DNA and foreign DNA is consistent with the idea that some R-M systems 

are involved in "cellular defense" and therefore are advantageous to the cell. 
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ABSTRACT 	CIpXP-dependent proteolysis has been im- 
plicated in the delayed detection of restriction activity after 
the acquisition of the genes (hsdR, hsdM, and hsdS) that specify 
EcoKl and EcoAI, representatives of two families of type I 
restriction and modification (R-M) systems. Modification, 
once established, has been assumed to provide adequate 
protection against a resident restriction system. However, 
unmodified targets may be generated in the DNA of an hsd 
bacterium as the result of replication errors or recombination-
dependent repair. We show that CIpXP.dependent regulation 
of the endonuclease activity enables bacteria that acquire 
unmodified chromosomal target sequences to survive. In such 
bacteria, HsdR, the polypeptide of the R-M complex essential 
for restriction but not modification, is degraded in the pres-
ence of CIpXP. A mutation that blocks only the modification 
activity of EcoKI, leaving the cell with 600 unmodified 
targets, is not lethal provided that CIpXP is present. Our data 
support a model in which the HsdR component of a type I 
restriction endonuclease becomes a substrate for proteolysis 
after the endonuclease has bound to unmodified target se-
quences, but before completion of the pathway that would 
result in DNA breakage. 

Within a bacterium that has a classical restriction and modi-
fication (R-M) system, the nucleotide sequences that define 
the targets for attack by the resident restriction endonuclease 
are concealed by the modification of appropriate bases within 
them. For some systems this modification is achieved by the 
methylation of specific adenine residues, and for others it is 
achieved by methylation of cytosine residues. The restriction 
endonuclease has the potential to attack DNA from different 
strains of the same species because foreign DNA generally 
lacks the protective imprint of the relevant met hyltransferase 
(for reviews see refs. 1 and 2). Restriction of the host cell's 
newly synthesized DNA normally is avoided, because the 
unmethylated strand of each target sequence produced by 
DNA replication is methylated before the next round of 
replication. If, however, resident DNA were to acquire un-
modified target sequences, would it, like foreign DNA, become 
a substrate for restriction? In this paper we show that in 
situations where the modification of the host DNA by a type 
I R-M system fails, an alternative level of protection impairs 
the endonuclease activity of the restriction system and the 
bacteria survive. 

A type I R-M system is encoded by three genes: hsdR, hsdM, 
and hsdS. The three polypeptides, HsdR, HsdM, and HsdS, 
often designated R, M, and S. assemble to give an enzyme 
(R2M2S1 ) that modifies hemimethylated DNA and restricts 
unmethylated DNA. A smaller complex (M2St) has only the 
methyltransferase activity. The S subunit confers target spec- 

The publication Costs of this article were defrayed in part by page charge 
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accordance with 18 U.S.C. §1734 solely to indicate this fact. 
PNAS is available online at www.pnas.org. 

ificity; hence, both complexes and both activities respond to 
the same nucleotide sequence. 

Type I systems of enteric bacteria have been divided into 
discrete families by tests for cross-hybridization between genes 
and cross-reactivity with antibodies raised against the arche-
typal member of each family (3-5). Four families of distantly 
related systems have been identified (types IA, IB, IC, and ID), 
and where complementation tests have been done they indi-
cate that enzymes in the same family can interchange subunits, 
but those from different families cannot (6, 7). 

No transcriptional regulation of type I R-M genes has been 
detected; yet these genes are transferred readily to recipient 
bacteria devoid of the relevant modification activity (8-10). It 
is presumed that the cells survive the acquisition of the new 
R-M system because they become restriction proficient only 
after the modification activity is established. Experiments in 
support of this identify a lag of 15 generations before the cells 
become restriction-proficient after the acquisition of hscl genes 
by conjugation (11). The CIpXP protease was shown to be 
essential for the effective acquisition of genes specifying type 
IA and lB systems, and for this reason proteolysis has been 
implicated in the delayed expression of restriction activity (10). 

The acquisition of a new specificity system is not the only 
situation in which a temporary loss of restriction proficiency 
has been detected. A well documented example, referred to as 
restriction alleviation (RA), occurs in response to treatments 
that damage DNA (12-14). UV light, nalidixic acid, and 
2-aminopurine (2-AP) have been shown to induce restriction 
alleviation. It is possible that the temporary loss of restriction 
proficiency associated with the establishment of a new speci-
ficity is an example of RA. If this is so, CIpXP would be 
required for the alleviation of restriction in response to DNA 
damage. We have tested this hypothesis and show C1pXP to be 
a common requirement for RA in response to the various 
agents that damage DNA. This led us to identify steps in the 
molecular pathway that protect bacteria against the potentially 
lethal effects of restriction after DNA damage in a cell with a 
resident type I system or after the acquisition of a type I system 
capable of attacking the resident DNA. 

MATERIALS AND METHODS 

Bacterial Strains, Phages, Plasmids, and General Micro-
bial Methods. Bacterial strains are listed in Table 1. Inte-
gration-deficient, AhsdcI857 phages were used to transfer 
hsd alleles to bacterial chromosomes: ANM1367 includes 
hsdzRM(F269G)S; ANM1376, hsdMS; ANM1394. 
1isdM(F269G)S; and ANM1384, hsdR(A619V) (17). JC9935 
was used as the donor of the following derivatives of F'101: 
F'101-102. 11sdKRMS (11); F'101-301, hsdhsd (10); 

Abbreviations: R-M, restriction and modification; RA, restriction 
alleviation: 2-AP. 2-aminopurine: DSB. double-strand break: EOP. 
efficiency of plating. 
*To whom reprint requests should he addressed. E-mail: Noreen. 
Murray@ed.ac.uk. 
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Table 1. E. coli K-12 Strains 

Strain 	Relevant genotype 	Source or origin 

C600 Ii.cd See ref. 10 
5K hsdR5I4 See ref. 10 
CB5I darn-3 Boyd 
JC9935 ,ecAI3 See ref. 10 
LE451 rac-O recA srl::TnIO Ref. 15 
NM477 (IisdMS)5 Sec ref. 10 
NM659 reA::cat This laboratory 
NM679 A (IsdRMS) Ref. 16 
NM799 /isc/R(A619V) Refs. 17 and 18 
NM802 MsdR4 This laboratory 
5G22007 dpP::ca1 Ref. 19 
SG22080 cIpX::kan Ref. 20 
SG22129 &lpP::caf A clpX::kan S. Gottesman 
RH6972 duo Q::rnioiTnlO (rnutD) R. F. Leach 
RS2 lopAlO Ref. 21 
TPC48 zj::TnJO dnaC'° See ref. 10 
NK3I gyrA96 Ref. 10 
NK167 hsdhsd Ref. 10 
NK300 rac-O rec-Alsill LB451 X P1(C600) 
NK30I rac-O gyrA96 NK300 >< P1(NK31) 
NK302 darn NK301 X P1(CB51) 
NK303 &lpP NK30I )< P1(SG22007) 
NK304 ZXcIpX NK301 X P1(5G22080) 
NK308 irecA NK301 X P1(NM659) 
NK309 zjj::TnlO dnaCu NK301 >< P1(TPC48) 
NK310 hsdR NK301 )< P1(5K) 
NK311 .(hs(IRMS) NK309 x P1(NM679) 
NK312 (hsdRMS) zXcIpX NK31I X P1(SG22080) 
NK315 darn tXclpX NK302 X P1(S022080) 
NK320 &lpX NK300 X Pl(SG22080) 
NK323 &lpX zrecA NK304 >< Pl(NM659) 
NK324 (JisdRMS) &lpX recA NK3I2 >< Pl(NM659) 
NK325 hsdR Ac1pX NK310 X P1(8022080) 
NK326 nuilD NK30I X P1(RH6972) 
NK327 molD AcIpX NK326 X P1(5022080) 
NK329 lop410 &lpP LXclpX R52 X PI(5G22129) 
NK351 h,sdR(A6I9V) NK309 x Pl(NM799) 
NK352 (/,s(1MS)5 NK309 >< Pl(NM477) 
NK354 /i,vdhsdJ NK309 >< Pl(NK167) 
NK355 IisdIzsd 	z.\cIpX NK354 >< P1(SG22080) 
NK378 XI,sdR /isdM(F269G) NM802 >< ANM1367 
NK379 &isdR NK309 X Pl(NM802) 
NK380 A/isdR AcIpX NK379 X P1(SG22080) 
NK382 LXIisdR hsdM(F2690) NK309 x Pl(NK378) 
NK383 thsdR hsdM(F269G) LrecA NK382 >< P1(NM659) 
NK384 LV,sdR ILsdM(F269G) &lpX NK382 X P1(S022080) 
NK386 hsdM(F2690) NK301 X ANM 1394 
NK388 hsdR(A619V)hsdM(F269G) NK386 X ANM1384 

Affiliations: C. Boyd, Medical Research Council, Human Genetics 
Unit, University of Edinburgh; S. Gottesman, National Cancer Insti-
tute, Bethesda, MD; D. R. F. Leach, Institute of Cell and Molecular 
Biology, University of Edinburgh. 

and F'101-103, zjj::TnlO hsdiR(MS)5. F'101-103 was 
selected after plasmid—chromosome allele exchange, as de-
scribed for F'101-301 (10). pNK3 was made by transferring 
the HindIII-SmaI fragment containing hsdR from pBg3 (22) 
to pACYC184 (23) digested with Hin dIH and Ni-uI. Media 
and general methods were as described previously (10). 

Restriction Alleviation. 2-AP (400 jig/ml) was added to 
midlogarithmic cultures grown at 37°C in LB medium. Inten-
sive aeration was provided before and during the treatment. 
After 1 h, the cells were washed, resuspended in fresh broth, 
and tested for restriction. UV-induced RA was measured as 
described in ref. 24, and RA in response to nalidixic acid was 
measured as described by (13). 

Analysis of Proteins. Polypcptides were separated by elec-
trophoresis through S DS/polyacrylamide gels (25). Western 
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blots used rabbit antisera against EcoKI or EcoAl and the 
chemilumincscence detection system (POD) of Boehringer 
Mannheim. 

The stability of proteins was monitored after pulse-labeling 
with [35S]methionine. Bacteria were grown at 37°C with in-
tensive aeration to an ODu)O  of 0.2-0.3 in minimal medium 
supplemented with thiamin and all amino acids except methi-
onine and cysteinc. Chloramphenicol (21) jig/ml) maintained 
the presence of pNK3. Each culture was divided, and 2-AP 
(400 j.tg/ml) was added to one aliquot. After 1.5 h, a 1-mm 
pulse of [35S]methionine (25 j.rCi/ml) was given. Labeling was 
stopped by diluting each culture with an equal volume of 
prcwarmed LB supplemented with L-mcthionine (15 AM) or 
with L-mcthionine and 2-AP (400 jig/ml). Intensive aeration 
was maintained, and samples were taken at appropriate inter-
vals. Bacteria were collected by centrifugation, resuspended in 
SDS sample buffer, and boiled for 5 mm, and samples were 
applied to SDS/polyacrylamide gels for the separation of 
polypeptides by electrophoresis. 

RESULTS 

C1pXP Is Necessary for RA. A simple quantitative test for 
restriction relies on the fact that most unmodified A phages are 
killed when they infect Escherichia coli K-12; the phage 
genome is a substrate for EcoKl, the resident restriction 
system. The titer of an unmodified phage lysate (A.0) on a 
restricting host relative to that on a nonrestricting derivative is 
referred to as the efficiency of plating (EOP). Therefore, the 
inverse of EOP quantifies restriction. RA is detected as a 
temporary reduction in restriction (hence, an increased EOP) 
after treatment of genetically restriction-proficient cells with 
agents that damage DNA. 

We examined RA for Clp and C1p strains in response to 
each of three treatments; UV light, nalidixic acid, and 2-AP. 
For each treatment, CIpX was essential for efficient RA (Fig. 
1). A c/pP strain was tested for RA in response to 2-AP, and 
it also was deficient in RA (data not shown). The results 
support our hypothesis that RA, in response to agents that 
damage DNA, and the delayed expression of restriction activ-
ity after the acquisition of /zsd+  genes by an hsd recipient are 
both the outcome of a common CIpXP-dependent process. RA 
for the EcoAI system in response to 2-AP also was shown to 
be dependent on CIpX (data not shown). 

"Constitutive" RA. Restriction is alleviated in darn strains 
(26). It is known that the Dam-methylase identifies the pa-
rental DNA strand during mismatch repair, and in darn 
mutants mismatch repair leads to double-strand breaks 
(DSBs) (27). This alleviation of restriction in dam strains led 
us to question whether other mutations that impair the effi-
ciency or fidelity of DNA replication might induce RA. If such 
a phenotype occurred, would it be dependent on C1pXP? We 
tested topA, mutD, and darn strains. 

Mutants deficient in topoisomerase 1, like wild-type cells 
treated with nalidixic acid, have problems in DNA replication; 
DSBs may occur when the replication forks stall (28). In 

Fin. I. Restriction of unmodified phage A by clp (NK30I, NK300 
for nalidixic acid) and clpX (NK304. NK320 for nalidixic acid) 
bacteria. Only cip+  cells show restriction alleviation. 
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contrast, a niutD mutation enhances the error rate of DNA 
polymerase III (29) and the increased frequency of mismatches 
may mimic the effect of 2-AP, an analogue of adenine that 
causes base pair transitions. 

Restriction by dam, topA, or rnutD strains was at least 
100-fold less efficient than restriction by wild-type E. coli K-12 
(Fig. 2). If this poor restriction is the result of constitutive 
expression of RA activated in response to either DNA damage 
or mismatches, then a mutation in clpX or clpP should restore 
restriction. Consistent with this prediction, the efficiency of 
restriction was enhanced by approximately 100-fold in the 
absence of CIpXP protease (Fig. 2). 

CIpXP-Deficient, Restriction-Proficient Bacteria Die Dur-
ing Prolonged Exposure to 2-AP. After prolonged treatment 
with 2-AP (3-4 h at 400 j.tg/ml), cip (NK303 and NK304) but 
not c!p' (NK30I) bacteria become filamentous, a phenotype 
characteristic of the SOS response. 2-AP does not normally 
activate the SOS response but, in the absence of CIpXP, it 
could induce a chain of events that leads to DNA damage. The 
relevance of a RecA-dependent repair pathway is supported by 
the observation that recA cIpX double mutants (NK323) are 
supersensitive to 2-AP and do not survive low concentrations 
(40 .tg/ml) of 2-AP in the medium. In contrast, a recA clp 
hsd strain (NK308) is no more sensitive to 2-AP than its rec 4  
counterpart (NK301); recA strains resemble rec in their RA 
response to 2-AP. 

Is CIpXP needed in the presence of 2-AP to prevent DNA 
damage by the resident restriction endonuclease? We made 
the cIpX bacteria deficient in restriction both by deleting the 
hsd genes (NK312) and by including a mutation in hsdR 

the gene essential for restriction. The restriction-
deficient bacteria were not sensitive to 2-AP. Similarly, the 
hypersensitivity of the recA clpX strain was relieved by inac-
tivation of the endonuclease activity. We suggest that during 
prolonged treatment with 2-AP, the CIpXP-dependent path-
way is essential to prevent EcoKI from causing DNA damage 
and consequent cell death. 

RA Induced by 2-AP Is Associated with a Deficiency of 
HsdR. RA is not correlated with a loss of modification activity 
(14, 30). It could, therefore, he the result of a deficiency in 
HsdR and the consequent depletion of EcoKI (R2M)S1 ), but 
not the modification enzyme (M2S1 ). 

The HsdR and HsdM subunits were monitored by Western 
blots after the addition of 2-AP to both c1p and clpX bacteria 
(Fig. 3). After alag of 20 min, a reduction in the concentration 
of HsdR, but not HsdM, was detected. This deficiency of HsdR 
was found only in clp cells in response to 2-AP. RA, there-
fore, correlated with a ClpX-dependent reduction in the 
concentration of HsdR, the polypeptide essential for restric-
tion, but not modification. 

HsdR Is Degraded in c1p Cells Treated with 2-AP. The very 
low concentration of HsdR detected in Clp cells after a 
period of growth in the presence of 2-AP (Fig. 3) is consistent 

Fin. 2. Restriction of unmodified phage A by damn (NK302), mutD 
and topA (RS2) strains and their cIpX derivatives (NK315. 

NK327. and NK329). It is known that topA strains accumulate 
compensatory mutations in gviA or gvrB (21), but the topAlO strain 
(RS2) is not known to have a compensatory mutation (21), and the 
topA mutation itself correlates with impaired restriction (G. P. Davies, 
personal communication). 
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FIG. 3. Assays for HsdR and HsdM polypeptides after treatment 
with 2-AP. (a) clp bacteria (NK301). (b) cIpX bacteria (NK304). In 
the absence of 2-AP (data not shown), the assays for dp' and cIpX 
bacteria were indistinguishable from those seen in 1) 1' .  
antibody, used in these Western blots, fails to detect I 
HsdR and HsdM and some other E. coO proteins. 

with the degradation of HsdR in the presence of CIpXP, but 
it could be argued that CIpXP in some way affects the synthesis 
rather than the degradation of HsdR. 

We therefore assayed the stability of HsdR in clp and clpX 
cells in response to treatment with 2-AP. The preferred 
experiment was to rely on the chromosomal /isdR gene, but the 
signal generated from a single copy of hsdR was weak com-
pared with those generated by other proteins. Gene dosage was 
increased by cloning hsdR in pACYC 184, a low-copy-number 
vector. cip F  hsd 1  (NK30I) and cIpX Iisd (NK304) bacteria 
transformed with the hsdR plasmid (pNK3) were treated with 
2-AP for 90 min to allow the establishment of RA before they 
were pulse-labeled with r5Slmethionine. HsdR was unstable 
in Clp but not ClpX cells after 2-AP treatment (Fig. 4). In 
the absence of 2-AP (data not shown) the HsdR polypeptide 
was stable in clp and clpX cells for at least 180 mm. 

These results are consistent with 2-AP as the activator of a 
RA pathway in which HsdR is susceptible to C1pXP-dependent 
proteolysis. 

Functional EcoKI Is Obligatory for the Loss of HsdR That 
Is Characteristic of RA. Is active EcoKI necessary to generate 
the signal that leads to CIpXP-dependent degradation of 
HsdR? To answer this question we tested whether 2-AP-
induced depletion of HsdR occurs in restriction-deficient 
mutants. One of the mutants tested has a missense mutation 
in hsdR (NK35 1), and the other (NK352) has a wild-type hsdR 
gene, but hsdM and hsdS are deleted so that HsdR cannot form 
an EcoKI complex. 

HsdR was not depleted in either mutant in response to 2-AP 
(Fig. So). This finding implies that a functional endonuclease 
is required for induction of the pathway that leads to degra-
dation of HsdR. If the products of restriction by a type I 
enzyme are the stimulus for RA, the endonuclease activity of 
one R-M system should induce RA for a different system. We 
tested whether a functional type TB system (EcoAI), for which 
RA is regulated in a C1pXP-dependent manner. induced 
degradation of the HsdR polypeptide of the inactive type IA 
system. EcoKI. 

We transferred F'/isdARMS (F'I01-301) to the three 
strains used in the previous experiment (Fig. So): 
hsdkR M*S+, hsdKR 	and 1isd KRt(MS). The 
transconjugants, both untreated and treated with 2-AP, were 
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FIG. 4. The stability of HsdR in viva after treatment with 2-AP. Labeled polypeptides separated by electrophoresis through SDS-polyacrylamide 
gels (6%) were detected by autoradiography. An extract from a strain lacking HsdR (NK3II/pACYCI84) was analyzed in the first track. Samples 
from c1p and clpX bacteria containing pNK3 were taken at the time intervals indicated after pulse labeling. 

assayed for EcoAl- and EcoKI-dependent restriction in vivo 
and for the presence of HsdR polypeptides. 2-AP caused RA 
of functional R-M systems, and HsdR from any restriction-
proficient complex was lost (Fig. Sb). However, for the non-
functional EcoKI complex, RK remains even in the presence of 
functional EcoAl. These data require that the stimulus for RA 
is family-specific and therefore is not simply the product of 
restriction. 
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Mutations Predicted to Confer a Restriction-Proficient, 
Modification-Deficient (r 5m) Phenotype Cause Restriction 
Alleviation. It is logical to expect that a mutation conferring an 
rm phenotype would be lethal. We chose to investigate a 
mutation in hsdM (F269G) that abolishes methyltransferase 
activity but has no effect on the binding of the cofactor 
S-adenosylmethionine and therefore is predicted to leave a 
functional endonuclease (31). This hsdM mutation was trans-
ferred from a Ahsd phage (ANM1367) to the chromosome of 
an hsdR strain. The presence of hsdM(F269G) (NK378) was 
associated with the anticipated m phenotype. We tested the 
naive prediction that the acquisition of an F' with a functional 
hsdR gene would generate rm transconjugants and these 
would die. However, we found no difference between the 
survival of the recipients upon acquisition of F'hsdR and the 
survival of recipients receiving the control F' lacking an hsdR 
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FIG. 5. Hsd subunits were monitored, after treatment with 2-AP, 
using antibodies raised against the relevant R-M complex. HsdR is 
degraded only when it is a part of a functional complex. (a) Degra-
dation of HsdR is prevented by a missense mutation in hsdR (track 5) 
or by the absence of HsdM and S (track 8). (6) The presence of 
functional EcoAl has no effect on the degradation of the HsdR subunit 
of EcoKI (Upper), even though the HsdR subunit of EcoAl itself is 
degraded (Lower, lanes 2, 5, and 8). The control tracks for EcoAl 
contain a mixture of polypeptides in which HsdM and HsdS are present 
in molar excess to give strong signals with antibody. 

0 30 60 90 120 150 180 

Time, mm 

Fin. 6. The survival of hsdRM(F269G)S I  cells was assessed 
after the conjugative transfer of hvdR to hsdR M S recipients. (a) 
The experiment using F' 101-103 (JudR ). (6) The control experiment 
with F'101-102 (hsdM'S ). Data are plotted for the following recip-
ients: NK379, hsdR (A); NK380, hsdR clpX (V); NK382, hsdRM (n); 
NK384, hsdRM clpX (.); and NK383, hsdRM recA (.).The data show 
that hsdRM (F269G)S'-  cells survive only if the recipient is ClpXt 
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allele (Fig. 6). We extended our experiment to include a recA 
recipient in which DSBs would not be repaired; transfer of the 
hsdR allele still occurred efficiently (Fig. 6). 

The EOP of A.0 on the hsdRMS (F'hsdR) transconju-
gants was 10  in contrast to 5 )< 10 when the FhsdR was 
transferred to an hsdR-M'S' recipient (the EOP of A.K was 
1 in both cases). The low level of restriction by the m 
transconjugants is consistent with induction of the RA re-
sponse. Therefore, the conjugation experiments were ex-
tended to include clpX recipients. In the absence of CIpX, 
transfer of the F'hsdR to the hsdRMS recipient was 
lethal, consistent with the presence of functional restriction 
endonuclease (Fig. 6). Our hypothesis predicts that the 
transconjugant bacteria can survive in the presence of CIpXP 
because of the activation of the RA pathway. If this suggestion 
is correct, hsdR-'M-S' bacteria would he deficient in HsdR. 

We chose to use chromosomal genes in preference to a 
plasmid-borne hsdR to test this prediction. We transferred the 
hsdM(F269G) mutation to the chromosome of NK30I, an hsd 
strain. The hsdM recombinants were recognized by their in-
phenotype phenotype and could not be transduced to give clpX derivatives 
(data not shown). These derivatives restricted A.0 with an effi-
ciency indicative of RA (EOP = 10-1). Consistent with the 
induction of RA, HsdR was missing in the hsdM(F269G) strain 
that encodes a functional restriction enzyme and present in a 
derivative with a missense mutation in hsdR (Fig. 7). Importantly, 
when hsdM(F269G) was replaced with the wild-type allele (see 
legend to Fig. 7), HsdR was restored. Therefore, the loss of HsdR 
is a consequence of the hsdM mutation. Our experiments with the 
modification-deficient mutant show that E. co/i has an extraor-
dinary capacity to protect itself against potential DNA damage 
elicited by a resident type I R-M system. 

DISCUSSION 
The diagnostic feature of RA is an r phenotype despite a 
restriction-proficient genotype (hsd). The r phenotype that 
persists for many generations in a transconjugant after the 
acquisition of functional hsd genes by an hsd recipient (11, 32) 
may he viewed as an example of RA. In this case, the establish-
ment of hsd genes in a naive bacterium depends on the CIpXP 
protease (10). We now have shown that RA in response to a 
variety of stimuli, including external agents and mutations that 
affect the fidelity of DNA replication, also requires C1pXP. In two 
quite different situations the presence of subunits of EcoKI was 
monitored after the induction of RA. In the first, the bacteria 
were treated with 2-AP, and in the second, a mutation in hsdM 
(F269G) was introduced that blocks only the methyltransferase 
activity of EcoKI (31). In both these examples of C1pXP-
dependent RA, a negligible level of HsdR remained. We propose 
a general pathway for RA in which C1pXP is necessary for the 
degradation of HsdR and the consequent r phenotype. Accord-
ing to this scheme, unmodified chromosomal DNA targets would 

5 6 EcoKI 

M -  - - 
Fin. 7. The effect of hsdM (F269G) on the level of HsdR. The 

mutation hsdM (F269G) destroys only the modification activity of 
EcoKI. The level of HsdR was monitored by Western blots by using 
antibody against EcoKI. Lanes 1-6 include extracts of strains. Lanes: 
1, NK301 (/isd): 2, NK386 [an hsdM (F269G) derivative of NK30II; 
3. an I,sd derivative of NK386: 4, an /isdR(A6I9V) derivative of 
NK386 (NK388) in which alleles of hsd genes were replaced by using 
A/nd phages that included only hsdMS or /isdR. respectively: 5, NMSO2 
(an hsdR deletion strain); and 6. NK352 (an hsdMS deletion strain). 
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be a signal for the cell to protect its own DNA from restriction. 
We believe that all the stimuli for RA examined by us rely on the 
presence of unmodified target sequences. 

A particularly severe stimulus is provided by the mutation in 
hsdM (F269G) that results in a modification-deficient, restric-
tion-proficient EcoKI complex (Fig. 6a). For this mutant to 
survive, despite an unmodified chromosome, restriction alle-
viation must he extraordinarily effective. A more common 
stimulus is DNA damage that elicits RecA-dependent repair. 
UV irradiation and mutations in darn can cause DSBs (26, 33); 
nalidixic acid and mutations in topA are likely to generate 
DSBs by stalling replication. Damage by UV light also leads to 
lesions in one strand that are repaired postreplicatively (34). 
RecA-dependent repair relics on homologous recombination. 
If homologous recombination involves two segments of hemi-
methylated DNA, the annealing of unmethylated strands or 
DNA synthesis may generate a localized region of unmethyl-
ated DNA. In contrast, both 2-AP and rnutD increase the 
frequency of base pair transitions (29, 35). Some mutations will 
generate new target sequences, all of which will be unmodified. 

Our experiments have shown a CIpXP-dependent loss of 
HsdR in response to 2-AP. It seems likely that the CIpXP 
protease itself degrades HsdR, rather than being necessary to 
maintain or activate another protease. The only protease-
deficient mutants found to affect the transmission of the genes 
encoding EcoKI were c!pX and c/pP (10). Our experiments also 
show that HsdR is lost only in cells in which HsdR could 
produce functional EcoKl. Thus, in the absence of HsdM and 
HsdS, wild-type HsdR is not degraded; likewise, in the pres-
ence of HsdM and HsdS, a missense mutation in hsdR prevents 
degradation of the nonfunctional polypeptide. The require-
ment for unmodified targets and functional EcoKI might 
suggest that DNA breakage initiates the RA response. We 
argue that DSBs are not involved in the initiation of RA. One 
reason for doubting this idea is our observation that a 
itcAc1p/isd bacterium is no more sensitive to 2-AP than its 
rec counterpart. This finding is not consistent with the 
creation of DSBs in response to 2-AP. Second, we tested 
whether active EcoAI, a member of the type lB family of 
enzymes is sufficient to induce loss of the HsdR subunit of 
EcoKI in response to treatment with 2-AP. It is not, although 
it is susceptible to C1pXP-dependent RA. If DSBs are the 
signal for RA, those made by EcoAl do not provide a signal 
for degradation of the HsdR subunit of EcoKI. Finally, even 
in the absence of RecA we readily made strains in which EcoKI 
is defective in methyltransferase activity (Fig. 6). Because 
DSBs cannot be repaired in a recA -- strain (36), it would appear 
that in this hsdRM(F269G) S bacterium DSBs are avoided, 
despite the presence of =600 unmodified targets and the 
coding potential for restriction-proficient, modification-
deficient EcoKI. We conclude that C1pXP-dependent degra-
dation of HsdR is able to prevent cutting of the bacterial 
chromosome. In the absence of C1pXP, however, even rec 
cells fail to survive because EcoKI cuts their chromosomes. 

If DSBs are not the stimulus for RA, why does a missense 
mutation in hsdR prevent degradation of HsdR? The amino 
acid substitution (A619V) is associated with a defect in the 
hydrolysis of ATP and probably, therefore, with the ATP-
dependent translocation of DNA that precedes the generation 
of DSBs (18). The missense mutation does not prevent either 
the binding of EcoKI to its target sequence or the associated 
ATP-dependent conformational change that is a prerequisite 
for the restriction pathway (18. 37). Other missense mutations 
in HsdR also prevent degradation of HsdR (V.A.D. and 
N.E.M.. unpublished observations): therefore, it seems prob-
able that the functional defect, rather than the amino acid 
substitution per Se. determines whether the enzyme is a sub-
strate for CIpXP. We conclude that HsdR is recognized only 
after the EcoKI complex has embarked on its restriction 
pathway. It remains to be determined what renders the HsdR 
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subunits susceptible to proteolysis. Nevertheless, the present 
experiments promote the concept of a remarkably specific 
control mechanism, effective only once the relevant restriction 
pathway has been initiated, but able to act before any damage 
is inflicted on unmodified chromosomal DNA. 

The RA response can protect the bacterial chromosome 
from restriction in the complete absence of modification, but 
the alleviation is not entirely complete when analyzed by 
infection with A.0 (EOP = 10 '). These facts raise two new, but 
probably related, problems. First, why does phagc DNA en-
tering the cell show some susceptibility to restriction whereas 
the resident bacterial chromosome does not? Second, why do 
unmodified targets on the chromosome, but not those on 
incoming phage DNA, stimulate the RA response? At present, 
it should be borne in mind that the two substrates differ in their 
location and their association with other proteins. 

Our current experiments document the disappearance of 
HsdR under conditions of RA, and we interpret this as 
CIpXP-dependent degradation of HsdR. Initial but unsuccess-
ful attempts to detect degradation in vitro used purified HsdR, 
or EcoKl, as substrate. The in vivo experiments indicate that 
the substrate is unlikely to be protein alone but, rather, a 
functional protein-DNA complex. 

The role of C1pXP in the disassembly and degradation of the 
Mu transposase already is known to be complex. MuB appar-
ently protects the MuA-DNA complex from recognition by 
CIpX and, hence, from disassembly and potential degradation 
by the protease activity of CIpP (38). These authors suggested 
"that a protein-complex architecture that uses overlapping 
sequences for subunit interactions and for targeting a protein 
for remodeling or destruction provides a useful design for this 
type of regulation." By analogy we would suggest that some 
step in the ATP-dependent DNA translocation by EcoKI leads 
to the exposure of the target sequence for CIpX. 

Our investigation of the relevance of CIpXP to RA has been 
confined to the type IA and lB families of R-M systems. There 
is evidence for Dam-mediated RA of a type III system (26). 
Members of the type IC and ID families are susceptible to RA in 
response to 2-AP (unpublished results), but transmission of the 
plasmid-borne type IC hsd genes by conjugation is not dependent 
on CIpXP (10,32). Although the assembly pathway of the R2M2S, 
complex may provide a lag in the production of the endonuclease 
after plasmid transfer (39), it would not prevent the cutting of 
unmodified targets created in cells in which functional endonu-
clease is already assembled. It is not known whether RA can 
involve other proteases or other mechanisms, but RA is found for 
some methylation-dependent restriction systems (24), where 
DNA damage would not generate target sequences. RA has not 
been detected for any type 11 system; rather, RA appears to be 
characteristic of complex R-M systems. 

Our experiments demonstrate that control of the restriction 
activity ofEcoKl is extraordinarily sensitive. It not only copes with 
the acquisition of hsd genes conferring new specificities and the 
production of unmodified targets created by repair and mutation, 
but clp cells also survive a mutation that destroys the modifi-
cation activity of the R-M complex. A similar control system 
could permit the efficient phase variation of type I R-M systems, 
a phenomenon recently documented for Mycoplasma pulmonis 
(40). Molecular mechanisms of the sophisticated interactions that 
mediate the proteolytic control remain to he determined. 
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Summary 

The endonuclease activity of Ecoki is regulated by 
the CIpXP-dependent degradation of the subunit that 
is essential for restriction, but not modification. We 
monitored proteolysis in mutants blocked at different 
steps in the restriction pathway. Mutations that 
prevent DNA translocation render EcoKl refractory 
to proteolysis, whereas those that permit DNA 
translocation, but block endonuclease activity, do 
not. Although proteolysis alleviates restriction in a 
mutant that lacks modification activity, some restric-
tion activity remains; our evidence indicates residual 
EcoKl associated with the membrane fraction. CIpXP 
protects the bacterial chromosome, but little effect 
was detected on unmodified foreign DNA within the 
cytoplasm of a restriction-proficient cell. The mole-
cular basis for the distinction between unmodified 
resident and foreign DNA remains to be determined. 

Introduction 

Recent experiments have shown that the endonuclease 
activity of some restriction and modification (R-M) sys-
tems is regulated by proteolysis (Makovets et al., 1998; 
1999). This regulation of restriction activity becomes 
relevant to the survival of a restriction-proficient bacter-
ium should its chromosome acquire unmodified target 
sequences. Previously, it was assumed that, in a 
restriction-proficient bacterium, the imprint provided by 
modification was essential to distinguish DNA in the 
bacterial chromosome from unmodified DNA entering 
the cell by phage infection or conjugation. Contrary to 
the classical view, modification of chromosomal DNA is 
not essential for its identification as self' rather than 
foreign'. For some, if not all, type I R-M systems, 
Escherichia coil has an additional, fail-safe' mechanism 
of protection against its own restriction system. This 
protection is relevant under a variety of conditions including 
those in which DNA damage, either as the result of 
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external agents or as the consequence of defects in DNA 
metabolism, generates unmodified target sequences in 
the bacterial chromosome (Makovets et al., 1999). 

The published data support a model in which one of 
the three subunits of a type I R-M system is the substrate 
for proteolysis by a cytoplasmic protease, CIpXP, before 
the completion of the complex reaction that leads to DNA 
breakage (Makovets et al., 1999). Degradation of the 
subunit of an R-M complex that is essential for restriction, 
but not for modification, can result in a restriction-
deficient, modification-proficient phenotype (rm). This 
phenotype was reported in response to treatment with UV 
light in the very first paper that identified a classical R-M 
system (Bertani and Weigle, 1953). More recently, the 
phenomenon has been referred to as restriction allevia-
tion (RA) (Day, 1977; Kelleher and Raleigh, 1994). 
Usually, the alleviation is incomplete, and some residual 
restriction activity remains (Bertani and Weigle, 1953; 
Makovets of al., 1999). 

Type I R-M systems are encoded by three genes: 
hsdR, hsdM and hsdS. The three polypeptides, HsdR, 
HsdM and HsdS, often designated A, M and S, assemble 
to give an enzyme (R2M2S1) that modifies hemi-
methylated DNA and restricts foreign DNA if it includes 
unmethylated target sequences (for a recent review, 
see Murray, 2000). HsdS confers sequence specificity 
to the R-M complex. The HsdM subunit contains the 
active site for the methyltransf erase activity, including 
the binding site for the cofactor AdoMet (Willcock et al., 
1994; for a review, see Dryden, 1999). HsdS and HsdM 
are sufficient for modification activity; restriction requires 
the additional subunit, HsdR, which includes an ATP 
binding site and other motifs essential for endonuclease 
activity (Murray of al., 1993). The pathway that eventually 
leads to DNA breakage begins when an R-M complex 
binds to an unmodified target sequence in the presence of 
AdoMet and ATP (see Fig. 1). This pathway includes the 
translocation of DNA in an ATP-dependent process; the 
enzyme remains bound to its target sequence and moves 
the flanking DNA towards itself. DNA cutting is triggered 
when DNA translocation is impeded (Studier and Ban-
dyopadhyay, 1988; Janscak etal., 1999a; for reviews, see 
Murray, 2000; Szczelkun 2000). Mutations in hsdR are 
available that block the restriction pathway (Webb et at., 

1996; Davies et al., 1998; 1999a,b). These mutations 
define the relevance of seven motifs, the so-called DEAD-
box motifs characteristic of many DNA and RNA 
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1 	Recognition of the target sequence 

ATP + AdoMet 

2 ATP-dependent DNA translocation 

3 Double-strand break 

Fig. 1. The restriction pathway. 
Step 1. The binding of AdoMet is blocked by the substitution in 
motif I of HsdM (G177D) but not those in motif IV. 
Step 2. ATP-dependent translocation is prevented by substitutions 
in any of the seven DEAD-box motifs. 
Step 3. DNA breakage but not DNA translocation is prevented by 
conservative mutations in the endonuclease motifs. 

helicases, to the ATP-dependent translocation process 
(Davies et al., 1999b). Conservative mutations that impair 
restriction but do not impair DNA translocation define an 
endonuclease motif (Davies et al., 1 999a,b; Janscak et al., 
1999b). A missense mutation that blocks DNA transloca-
tion was shown to prevent the proteolytic degradation of 
HsdR, and a model was proposed in which HsdR became 
susceptible to proteolysis as the result of a conformational 
change associated with DNA translocation (Makovets 
et at., 1999). In support of this model, we show that 
substitutions in any of the motifs essential for DNA 
translocation prevent degradation of HsdR, whereas 
those that permit DNA translocation, but block endo-
nuclease activity, do not prevent proteolysis of HsdR. 

RA was shown to protect the bacterial chromosome 
from breakage in the absence of DNA modification, but 
RA was found to be incomplete when assayed by 
infection with unmodified phage X. Why are most of 
these unmodified phage (90%)  restricted, whereas the 
bacterium with approximately 600 unmodified targets in its 
chromosome survives? It was noted that these two DNA 
substrates differ both in their location and in their 
association with other proteins (Makovets et al., 1999). 
In this paper, we provide biological and biochemical 
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evidence in support of the suggestion that the cellular 
location of the substrate DNA can influence its suscept-
ibility to restriction. We find that, under conditions of RA, 
the residual restriction activity for EcoKI attacks phage X 
but not M13 and that the residual R—M complex is 
recovered preferentially in the membrane fraction. We 
show, however, that foreign DNA within the cytoplasm 
remains susceptible to EcoKI even in the presence of 
CIpXP. 

Results 

Mutations that block methyltransferase activity 

A mutation in hsdM that impaired the methyltransf erase 
activity of a type I R—M enzyme was presumed to be 
lethal unless the mutation concomitantly abolished the 
endonuclease activity of the R—M complex. Mutations in 
the hsdM gene of E. co/i K-i 2 have permitted a test of this 
prediction. Site-directed mutagenesis demonstrated the 
relevance of two conserved sequences within the active 
site for the methyltransf erase activity of EcoKI (Willcock 

et al., 1994). A change in the sequence predicted to be 
within motif I (G177D) abolishes the binding of AdoMet, 
whereas changes (F269G, F269C and N266D) within a 
motif previously called motif II, but now known as motif IV 
(Dryden, 1999), prevent catalysis but do not inhibit the 
binding of AdoMet. It is known that AdoMet is an essential 
cofactor for endonuclease activity (Meselson and Yuan, 
1968); therefore, the amino acid change G177D should 
result in an inactive complex and an 	phenotype 
(see Fig. 1). In contrast, changes in motif IV are 
anticipated to result in a restriction-proficient, modifica-
tion-deficient (rK mK ) complex and, if this restriction-
proficient complex were to break the unmodified bacterial 
chromosome, it would lead to cell death. We have 
previously provided indirect evidence that a mutation in 
motif IV (F269G) of the active site for methyltransf erase 
activity does not block the endonuclease activity of the 
modification-deficient complex and that the mutant cell 
survives because the HsdR polypeptide of the functional 
complex is degraded by the CIpXP protease (Makovets 

et al., 1999). Direct evidence from the following in vivo 

and in vitro experiments confirms that a modification-
deficient EcoKl complex able to bind AdoMet retains 
endonuclease activity, whereas the complex that fails to 
bind AdoMet does not. 

The in vivo tests for restriction used XhsdMS phages in 

which the hsdM gene included a mutation that alters the 
sequence of either motif IV (e.g. F269G) or motif I 
(G177D). Restriction was monitored after the infection of 
bacteria that encode a functional hsdR gene in the 

absence of resident hsdM and hsdS genes. Infection 

leads to the expression of the phage-encoded hsd genes 



418 V. A. Doronina and N. E. Murray 

and the consequent assembly of EcoKI complexes with 
defective M subunits (R2M2 S1). Lysates of the hsdM test 
phages were prepared on both modification-deficient and 
modification-proficient hosts, so that the effect of K-specific 
modification of the test phages could be assessed. 

The data (Table 1) indicate that, when unmodified 
phages (.0) specify a methyltransferase-deficient enzyme 
able to bind AdoMet (e.g. X1326 with a mutation in motif 
IV), they have a low efficiency of plating (e.o.p.) on an 
r( MK  strain in which a plasmid-borne hsdR gene is 
maintained; the e.o.p. is indistinguishable from that on 
0600, a standard restriction-proficient strain. We con-
clude that the resident HsdR subunit is assembled into an 
active rK mK complex after the expression of the hsdM 
and hsdS genes of the X transducing phage and that the 
unmodified phage genomes are restricted. In contrast, the 
phage encoding a methyltransf erase defective in its ability 
to bind AdoMet (X1332) forms plaques with high efficiency 
in the presence of HsdR subunits. The survival of these 
unmodified phages is consistent with an EcoKI complex 
deficient in both restriction and modification. A control 
phage encoding a methyltransferase-proficient enzyme 
(Xl 329) also forms plaques with high efficiency as its DNA 
will remain modified. 

The experiments in Table 1 relied on the expression of 
hsdR from a multicopy plasmid in an hsdM hsdS strain. 
Earlier experiments had shown the need to enhance the 
level of HsdR to observe efficient restriction when the 
hsdM and hsdS genes were expressed from the PL 
promoter of an incoming X phage (Fuller-Pace et al., 
1985). More recently, it has been shown that the 
unmodified targets in the bacterial chromosome will 
induce restriction alleviation, i.e. the degradation of 
HsdR (Makovets et al., 1999). The necessity for high 
levels of HsdR may reflect the large number of unmodified 
target sequences ('600) in the bacterial chromosome. 
When EcoKI binds to unmodified target sequences in the 
bacterial chromosome, CIpXP will degrade the HsdR 
subunits and deplete the restriction activity of the cell. In 
addition, the sensitivity of the present tests may be  

decreased by the replication of phage genomes. This 
would increase the chance that one or more phage 
genomes will escape restriction. 

When the experiments used modified, rather than 
unmodified, XhsdM S 1  phages (.K), an e.o.p. of 	1 
was obtained irrespective of which mutation was present 
in hsdM (data not shown). K-specific modification there-
fore protects phage genomes from the endonuclease 
activity produced within the infected cells. These experi-
ments clearly show that EcoKI with a substitution in motif 
IV remains proficient in K-specific restriction, whereas that 
with a substitution in motif I is restriction deficient. 

The modification complex 02S1) purified from hsdM 
mutants conferring any of the following changes (F269G, 
F2690, N266D or G177D) was shown to be defective in 
methyltransf erase activity (Wilicock et al., 1994). Protein 
purified from one mutant defective in motif I (G177D) and 
from one affecting motif IV (F269G) have been reinvesti-
gated recently using the sensitive assay system for 
methyltransferase described by Roth and Jeltsch (2000); 
no methyltransferase activity was detected for either 
protein (M. O'Neill, personal communication). It is not 
possible to purify the R—M complex from the mutant with 
the F269G change in motif IV, as survival of the mutant 
bacteria depends upon the degradation of HsdR by 
CIpXP. It was necessary therefore to assemble EcoKI 
(R2M2 S1) in vitro from the modification complex and 
purified HsdR (Dryden etal., 1997). Endonuclease activity 
of the assembled complexes was assayed using a 
plasmid substrate with a single target for EcoKI (Fig. 2). 
Enzyme with the F269G substitution in motif IV retained 
K-specific endonuclease activity, whereas that with the 
G177D substitution in motif I did not. In four out of five 
experiments, the wild-type enzyme was more proficient in 
the linearization of unmodified plasmid DNA than enzyme 
with the substitution in motif IV, but each of the experiments 
provides evidence that EcoKI with the F269G substitution 
retains K-specific endonuclease activity. 

The in vitro assays endorse the conclusions deduced 
from biological tests of the hsdM mutations. In particular, 

Table 1. In vivo tests for restriction by EcoKI deficient in modification activity. 

XhsdM S 	 Substitution 	 Motif 	 AdoMet 	 E.o.p. on test strainsa,b 	 hsd 
phage 	 specified by 	 binding 	 AhsdRMS 	 (C600) 

hsdM 	 + phsdR' 

X1332.0 G177D I 	 - 0.8 4 x 10 	' 
X1326.0 F269G IV 	 + 4 x iO 3 x 10 
11327.0 F269C IV 	 + 9 x 10 2 x io 
Xl 330.0 N266D IV 	 + 5 x io 4 x 10 
11329.0 F269Y IV 	 + 0.6 08d 

Defined relative to the hsdRMS strain NM679; the data are the average of three experiments 
The e.o.p. of modified phages was always close to 1 (data not shown). 
pNK3, a derivative of pACYC184. 
The substitution F269Y results in a wild-type phenotype and serves as a positive control. 

9 2001 Blackwell Science Ltd, Molecular Microbiology, 39, 416-428 
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Enzyme None HsdM(WT) HsdM(F269G) HsdM(G177D)] 

Methylatlo .0 1 	.K 1 	.0 .0 .0 1 .K 1 	.0 .0 .0 1 	.K 1 	.0 1 	.0 1 	.0 1 	.K 

Time(mins M 60 1 60 1 	1 1 	15 1 	60 60 1 15 60 60 1 151..60. 1  60 

10.0-
1 	oc 

80 - 	 - 	 * 	 - un 
4.0 - 	 - 	 - 	 - ccc 

2.5 - .5- 

Fig. Fig. 2. Endonuclease activity of modification-deficient EcoKi. The HsdM subunit of the modification enzyme used in the in vitro assembly of 

EcoKI is identified at the top. The substrate DNA was plasmid pBRsKl, a plasmid with one unmodified (0) or modified EcoKI target (K). The 
incubation times are indicated in minutes. M identifies marker DNA5 from 10 to 2.5 kb in length. oc, open circular; un, linear; ccc, covalently 

closed circular plasmid DNA. 

a mutation (F269G) that blocks modification activity of the 

EcoKI complex is not lethal despite residual competence 

of the EcoKI complex in the restriction reaction. 

Mutations in hsdR that affect the degradation of HsdR 

Both CIpX and CIpP have been shown to be essential for 

the acquisition of genes specifying EcoKI and for the 

degradation of HsdR in response to 2-aminopurine (2-AP) 

(Makovets et al., 1998; 1999). Data presented by 

Makovets et al. (1999) show that the transfer of hsdR 

to an hsdR hsdM (F2690) hsdS' recipient is lethal in the 

absence of CIpX (Makovets et al., 1999). A similar result 

(data not shown) was obtained in the absence of CIpP. 
The CIpXP-dependent degradation of HsdR associated 

with RA was prevented by a missense mutation in hsdR. 

Similarly, a wild-type HsdR polypeptide was shown to 
evade degradation in the absence of HsdM and HsdS. It 
was suggested that the substrate required for proteolysis 

was a functional EcoKI complex (Makovets et al., 1999). 

The degradation of HsdR was first detected in response to 
treatment with 2-AP, but it was found to occur when 
modification activity was impaired by the F269G sub-
stitution in motif IV. The constitutive degradation of 
HsdR required for the viability of a restriction-proficient, 
modification-deficient bacterium (hsdM F2690), like the 

temporary RA after treatment with 2-AP, is prevented by a 
missense mutation in hsdR (Makovets et al., 1999). The 

hsdM F269G mutation provides a convenient means of 
activating RA and is used here to investigate the proper-

ties of EcoKI required to make HsdR susceptible to 

proteolysis by CIpXP. 
Recent analyses characterize two classes of hsdR 

mutants (Davies et al., 1999b). In one, substitutions 
affecting any of the seven DEAD-box motifs identify 
sequences essential for the ATP-dependent translocation 
activity that precedes DNA breakage. In the other, 
mutations identify a motif essential for endonuclease 
activity; conservative substitutions in this motif impair 
endonuclease activity but are without effect on ATPase 
activity and DNA translocation (see Fig. 1). 

The present experiments take advantage of the F269G 
substitution to provoke RA (Fig. 3A, lane 10) and monitor 

© 2001 Blackwell Science Ltd, Molecular Microbiology, 39, 416-428 

the effects of amino acid substitutions in HsdR on the 
degradation of this polypeptide (Fig. 3A and B). The 
missense mutation analysed by Makovets et al. (1999) 

affects DEAD-box motif Ill (A619V). The experiments 
illustrated in Fig. 3A examine the effects of substitutions 
in each of the six previously untested DEAD-box 
motifs. The Western blots indicate that each 'DEAD-box 
mutation' (Fig. 3A, lanes 2-8) prevents the degradation 
of HsdR, the normal response (Fig. 3A, lane 10) to 
unmodified target sequences. The data from the DEAD-
box mutants contrast with those for conservative muta-
tions that impair endonuclease activity but leave the 
EcoKI complex with normal ATPase and translocation 
activities. The behaviour of one such mutant (D298E) in 
the absence and the presence of the hsdM mutation is 

shown (Fig. 3B, cf. lanes 2 and 3). The HsdR polypeptide, 

like that of hsdR (Fig. 3B, lane 9), remains susceptible to 
proteolysis. Similarly, a conservative change at position 
312 (E312D) has no effect on the degradation of HsdR 
(data not shown). A less conservative change at position 
312 (E312H), which results in an enzyme with much 
reduced (10%) ATPase activity (Davies et al., 1999b), 

was also examined. Some loss of HsdR is apparent 
(Fig. 3B, lanes 4 and 5); the effect of this substitution on 
proteolysis appears to be intermediate to that seen for 
the ATPase-proficient mutant in lane 3 and that seen for 
the ATPase-deficient DEAD-box mutant in lane 7. The 
endonuclease-deficient mutants (see Fig. 3B, lanes 2 and 
4) produced normal levels of HsdR in the presence of a 
wild-type HsdM but, in the absence of methyltransf erase 
activity, the HsdR polypeptide of a translocation-proficient 
complex was degraded. These experiments using the two 

classes of hsdR mutants show that the EcoKI complex 

becomes sensitive to CIpXP-dependent proteolysis 
before the final step in the restriction pathway (Fig. 1). 
The sensitivity to proteolysis correlates with the ability to 
hydrolyse ATP, consistent with a conformational change 

associated with DNA translocation. 

The residual restriction activity is not effective against all 

foreign DNA 

Under the conditions that result in RA, the bacterial 
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even in the absence of RecA-dependent DNA repair, an 
analogous mutation in the modification gene of a type II 
R—M system is predicted to lead to cell death, given that 
the concomitant loss of the restriction and modification 
genes of some type II R—M systems has been shown to 
lead to cell death (Kulakauskas etal., 1995; Kusano etal., 
1995). Kobayashi and coworkers, in particular, have 
documented very fully the demise of bacteria when the 
type II R—M genes are lost (for a review, see Kobayashi, 
1998). Under these conditions, residual endonuclease 
activity attacks the bacterial chromosome (Handa et al., 
2000). Methyltransferase-deficient mutants have been 
isolated for the Bcgl system, an atypical R—M system of 
Bacillus coagulans that shares characteristics with both 
type I and type II restriction systems. The complex 
Bcgl enzyme, like EcoKI, requires AdoMet for both its 
modification and its restriction activities (Kong and Smith, 
1997). A mutation affecting motif IV in the active site for 
methyltransf erase activity blocks enzymatic activity but 
permits AdoMet binding and generates an enzyme that 
is proficient in restriction and defective in modification. 
Under the conditions of the reported in vivo experiments, 
in which the genes for the BcgI system are present in 
plasmids maintained in E. co/i, the mutation conferring a 
defect in modification, in contrast to that obtained in the 
hsdM gene of E. coil K-12, confers a lethal phenotype 
(Kong, 1998). Bcgl, like other type II R—M systems, may 
not be susceptible to RA. 

Analyses of RA have focused mainly on systems in 
E. co!i, and therefore any generalizations must be made 
with caution. Nevertheless, it is tempting to speculate that 
RA is associated with R—M systems in which DNA 
translocation is an integral part of the restriction pathway. 
This correlation with DNA translocation is consistent with 
the present analyses of mutations in hsdR that interfere 
with the restriction reaction. Our data suggest that the 
HsdR subunit of EcoKI becomes susceptible to CIpXP 
after the conformational change that is dependent on the 
cofactor ATP, as all the mutations in hsdR that prevent 
DNA translocation permit this conformational change 
(Davies et al., 1998; 1999b), yet HsdR is not degraded 
in any of these mutants. HsdR is degraded in restriction-
deficient mutants that permit ATP-dependent DNA trans-
location. Our present results are consistent with the idea 
that exposure of the target sequence within HsdR requires 
the hydrolysis of ATP, or even AlP-dependent DNA 
translocation. Irrespective of which steps in the restriction 
pathway are necessary for HsdR to become sensitive to 
CIpXP, the mechanism by which restriction activity is 
controlled requires the enzyme to bind to unmodified 
target sequences and initiate the restriction pathway. The 
remarkable effectiveness of RA in the preservation of an 
unmodified bacterial chromosome indicates that active 
enzyme is extinguished efficiently before its activity  

culminates in DNA breakage. The complex restriction 
pathway of type I systems provides an opportunity for 
control that is absent for simpler restriction endonu-
cleases. Our current understanding of the control process 
does not necessarily explain the low level of HsdR in 
cells under conditions of RA. The residual level of HsdR in 
cells treated with 2-AP is influenced by growth rate; 
conditions of very active growth enhance the depletion of 
HsdR (Makovets et at., 1999). Under these conditions, 
replication and mutagenesis will be enhanced. 

A critical question that remains to be answered is why 
the translocating complexes of EcoKI are attacked by 
CIpXP when the unmodified target sequences are in the 
bacterial chromosome, but not when they are within an 
infecting X genome. It was noted by Makovets et al. 
(1999) that the two DNA substrates differ in both their 
location and their association with other proteins. Indirect 
evidence for surface-localized' restriction activity was 
presented many years ago (Schell and Glover, 1966). 
Recent direct assays for the subunits of EcoKI have been 
reported to support this idea (Holubová et al., 2000). 
These authors present evidence that EcoKI is associated 
with the inner membrane, and they suggest that this 
correlates with the restriction activity that remains under 
conditions of RA. Our experiments used a different 
fractionation procedure from that of Holubová et al. 
(2000), one that includes a DNase and RNase treatment 
at an early step (de Maagd and Lugstenberg, 1986). In 
these experiments (Fig. 4), EcoKI was detected in both 
the cytoplasmic and the membrane fractions of wild-type 
cells but was preferentially retained in the membrane 
fraction under the conditions of restriction alleviation. This 
retention of HsdR in the membrane fraction is consistent 
with the residual restriction activity detected when double-
stranded, but not single-stranded, phage genomes enter 
the cell under conditions of RA (Table 2). 

The preferential depletion of HsdR from the cytoplasmic 
fraction under conditions of RA may explain the residual 
restriction activity of the modification-deficient (hsdM 
F269G) strain, but it does not provide an understanding 
of the basic mechanism of how the bacterial chromosome 
is distinguished from foreign DNA in the absence of the 
imprint of modification. In the infection experiments using 
Xhsd phages, the production of EcoKI is dependent upon 
transcription of the phages. Yet, in these infections, 
unmodified phage genomes are susceptible to EcoKI in 
the presence of CIpXP (Tables 1 and 3) as well as in its 
absence (Table 3). In contrast, even modified Xhsd 
phages have a low e.o.p. in the absence of CIpXP if the 
host chromosome is unmodified (Table 3). The degrada-
tion of the bacterial chromosome and consequent loss of 
bacterial functions appears to impair the propagation of 
phages. 

The experiments with Xhsdphages (Table 3) imply that 
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unmodified phage genomes are sensitive to restriction 

when they are replicating within a restriction-proficient 

CIp  cell. Apparently, CIpXP alleviates restriction of the 

bacterial chromosome but fails to protect X DNA in the 

cytoplasm (Table 3). Similarly, the CIp phenotype has no 

or very little effect on the e.o.p. of unmodified Ml 3 phages 

or on the transfer of unmodified plasmid DNA by 

conjugation. In both these examples, the DNA enters in 

a single-stranded form and must be replicated before it 

becomes a target for EcoKI. The double-stranded DNA 

that is made after the transfer of unmodified chromosomal 

DNA by conjugation was shown to be sensitive to 

restriction (Boyer, 1964), but Glover and Colson (1965) 

noted a drop in the restriction proficiency of the recipient 

cell 30-60 min after the initiation of DNA transfer. Our 

preliminary evidence shows that this alleviation of restric-

tion is CIpX dependent. What is the stimulus for RA after 

conjugation? Does it depend on the incorporation of 

unmodified DNA into the recipient chromosome? If so, 

unmodified targets in the DNA fragments would become 

protected from restriction after their assimilation into the 

bacterial genome. For type I, in contrast to type II, R—M 

systems, the DNA fragments produced by restriction will 

generally include unmodified targets. The nature of 

the nucleoprotein complex in the bacterial chromosome 

could affect the efficiency of DNA translocation and 

the accessibility of HsdR to CIpXP. Attempts to mimic 

RA in vitro have failed (L. M. Powell, personal communi-

cation). This may indicate that it has not yet been possible 

to simulate the appropriate protein—DNA substrate in 

vitro. Currently, we conclude that unmodified DNA target 
sequences within the nucleoid are distinguished from 

those in newly acquired phage or plasmid genomes, but 

the molecular basis for this distinction remains to be 

determined. 

Experimental procedures 

Bacterial strains 

These are listed in Table 4. 

Phages and plasmids 

XhsdMS 1mm21  phages (NM1326, NM1327, NM1329, 
NM1330 and NM1332) reported by Willcock et al. (1994) 
include mutations that impair methylation (see Table 1). 
XNM1 394, a c/857 derivative of an integration-deficient 
XhsdM(F269G)S phage, was used to transfer the hsdM 
mutation to the chromosome of hsdR strains (Makovets etal., 
1999). XhsdR M S (NM1 128) and XhsdR M S 

(NM1129) are isogenic derivatives isolated after the 
lysogenization of the hsdS strain WA803 with XNM1050 
(Sain and Murray, 1980). 

The standard phage for monitoring restriction was Xvir, but 
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others with fewer EcoKI targets were the lambdoid phages, 
NM150 (h82 immk  with four targets), NM106 (phage 82 with 
two targets), NM1 05 (h8° immN  with two targets) (Murray et al, 
1973), phage T7 D104 A1.3-7.2 with four targets (Garcia and 
Molineux, 1999) and mpAT38, a derivative of mp18 that 
includes a DNA fragment shown by sequence analysis to 
include two EcoKI targets (A. J. B. Titheradge, personal 
communication). 

pNK3 is a derivative of pACYC1 84 including the hsdR gene 
of E. co/iK-12 (Makovets et al., 1999). pBRsK1 is a derivative 
of pBR322 with one target for EcoKI (G. P. Davies, personal 
communication). pOX38Km is a derivative of the F factor 
Chandler and Gallis (1985). 

Microbial methods 

Media and general methods have been described previously 
(Makovets et al., 1998). P1 transductions were performed 
according to the methods of Miller (1972). Integration-
deficient Xhsdcl857 phages were used to transfer hsd alleles 
to bacterial chromosomes. Lysogens were selected as 
immune colonies at 32°C using Ab2cl and h82  b522-c/ 
phages, and cured derivatives were selected at 42°C. 
Tests for restriction alleviation in response to 2-AP were 
determined as described by Makovets et al. (1999). 

Analysis of proteins 

Components of EcoKI were purified and analysed as described 
by Dryden et al. (1997). Polypeptides were separated by 
electrophoresis through 7.5% SDS—polyacrylamide gels 
(Laemmli, 1970). Protein concentrations were estimated 
by a modification of the Lowry method (Peterson, 1979). 
Western blots used rabbit antisera against EcoKI and the 
chemiluminescence detection system (POD) from Roche. 

Subcellular fractionation and enzyme assays 

Late logarithmic phase cells (an OD of 0.6 at A600) were 
harvested and washed in 0.9% NaCl. All subsequent steps 
were carried out at 4°C. Cells were converted to spheroplasts 
by lysozyme—EDIA treatment as described by de Maagd 
and Lugtenberg (1986). Conversion to spheroplasts was 
monitored by phase-contrast microscopy. Spheroplasts were 
frozen at —70°C. Cells were disrupted by repeated freezing 
and thawing in the presence of p-phenylsulphonylfluoride 
(Sigma) to inhibit proteases, and the debris was then 
removed by centrifugation at 10 000 g for 1 h. The super-
natant was subjected to centrifugation (60 000 g) for 1 h to 
separate the membrane (pellet) and cytoplasmic (super-
natant) fractions. After washing with 10 mM Tris-HCI 
(pH 8.0), the membrane fraction was resuspended in buffer 
(10 mM Tris-HCl, pH 8.0, 10 mM dithiothreitol, p-phenylsul-
phonylfluoride) and applied to a Qiagen DNA-binding column 
before clarification by centrifugation. Beta-galactosidase 
activity was assayed as described by Miller (1972), using 
the substrate o-nitrophenol--galactoside. NADH oxidase 
activity was assayed as described by Osborn et al. (1972), 
using the substrate 3-nicotinamide adenine dinucleotide, 
reduced form (NADH). 
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Table 4. Bacterial strains. 

E. co/i K-12 strains 	 Relevant genotype or phenotype 	 Reference 

C600 hsdk  Makovets et al. (1999) 
WA803 hsdS Wood (1966) 
NM679 ihsdRMS King and Murray (1995) 
NK301 rac 	gyrA lacY fhr lou thi Makovets et al. (1999) 
NK303 clpP::caf Makovets et al. (1999) 
NK304 a clpX::kan Makovets of al. (1999) 
NK308 recA::cat Makovets et al. (1999) 
NK31 la ihsd Makovets of al. (1999) 
NK312a .thsd clpX::kan Makovets of al. (1999) 
NK379a ..thsdR Makovets of al. (1999) 
NK38Oa thsdR clpX::kan Makovets of al. (1999) 
NK386 hsdM(F269G) Makovets of a/. (1999) 
vc301a lac This study 
VC3017 a lac' hsdM(F269G) This Study 
AB1157 hsdk 	rpsL Bachmann (1972) 
VC,' hsdM(F269G) This study 
VC797b hsdR(H577D) hsdM(F269G) This study 
VC799b hsdR(A619V) hsdM(F269G) This study 
VC801 b hsdR(K477R) hsdM(F269G) This study 
VC892b hsdR(G177C) hsdM(F269G) This study 
VC893b hsdR(D502Y) hsdM(F269G) This study 
VC898b hsdR(R826H) hsdM(F269G) This study 
NM904' hsdR(D298E) This Study 
VC904b hsdR(D298E) hsdM(F269G) This Study 
NM908b hsdR(E312H) This Study 
V0908b hsdR(E312H) hsdM(F269G) This study 
NM89Ob hsdR(F629Y) This study 
VC890b hsdR(F629Y) hsdM(F269G) This Study 

Derivatives of NK301. 
Derivatives AB1157. 
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Note added in proof 

We find that the restriction of AhsdM(F269G)S in CIp 
(hsdRMS) bacteria carrying pNK3 (i.e. hsdR) is strain 

dependent (see Table 1) In contrast, the e.o.p. of 
AhsdM(F269G)S is low on every cipXZt(hsdRMS) pNK3 
strain we have tested, irrespective of whether the phage is 
modified or unmodified. 
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