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Abstract 

Kosaraju [Kosaraju 69] and independently ten years later, Guibas, Kung and 
Thompson [Guibas 79] devised an algorithm (K-GKT) for solving on an array of 

processors a class of dynamic programming problems of which general context-free 
language (CFL) recognition is a member. I introduce an extension to K-GKT 
which allows parsing as well as recognition. The basic idea of the extension is to 

add counters to the processors. These act as pointers to other processors. The 
extended algorithm consists of three phases which I call the recognition phase, the 
marking phase and the parse output phase. I first consider the case of unambiguous 
grammars. I show that in that case, the algorithm has O(n2log n) space complexity 

and a linear time complexity. To obtain these results I rely on a counter imple- 

mentation that allows the execution in constant time of each of the operations: 

set to zero, test if zero, increment by 1 and decrement by 1. I provide a proof of 

correctness of this implementation. I introduce the concept of efficient grammars. 
One factor in the multiplicative constant hidden behind the O(n2log n) space com- 

plexity measure for the algorithm is related to the number of non-terminals in the 
(unambiguous) grammar used. I say that a grammar is k-efficient if it allows the 
processors to store not more than k pointer pairs. I call a 1-efficient grammar an 

efficient grammar. I show that two properties that I call nt-disjunction and rhs- 

dasjunction together with unambiguity are sufficient but not necessary conditions 
for grammar efficiency. I also show that unambiguity itself is not a necessary con- 

dition for efficiency. I then consider the case of ambiguous grammars. I present 
two methods for outputting multiple parses. Both output each parse in linear time. 
One method has O(n3log n) space complexity while the other has O(n2log n) space 
complexity. I then address the issue of problem decomposition. I show how part of 

my extension can be adapted, using a standard technique, to process inputs that 
would be too large for an array of some fixed size. I then discuss briefly some issues 
related to implementation. I report on an actual implementation on the I.C.L. 
DAP. Finally, I show how another systolic CFL parsing algorithm, by Chang, 
Ibarra and Palis [Chang 87], can be generalized to output parses in preorder and 
inorder. 
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Chapter 1 

Introduction 

1.1 Harnessing Parallelism 

A lot of the research currently conducted in the field of Computer Science relates 

to parallel processing. A phrase like "to harness parallelism", often found in re- 

search papers, is evocative of the great hope, justified or not, that people put in the 

possibilities of exploiting parallelism in problem solving and of the benefits people 

expect to obtain from such an exploitation. The interest in parallelism has intensi- 

fied in recent years but the idea of using concurrency in computing is certainly not 

new. The first reference on the subject appeared in 1842 in a paper by Menabrea 

[Menabrea 61] which describes Charles Babbage's Analytical Engine [Babbage 22] 

[Randell 82]. ENIAC [Hartree 46] [Goldstine 46] [Randell 82], the first general- 

purpose electronic digital computer, which was operational in 1946, had 25 com- 

puting units (20 accumulators, 1 multiplier, 1 divider/square rooter and 3 table 

look-up units) that could all work in parallel. The quest for parallelism has been 

pursued on three fronts: hardware, programming methodology and algorithmic. In 

the last thirty years a wide variety of machine models, either real or theoretical, have 

1 
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been designed to take advantage of parallelism, some of them more pragmatic then 

others. Amongst these we find: computers with pipeline architectures, vector com- 

puters, processor arrays, data flow machines, graph reduction machines and neural 

networks. (Vector processing is basically an extension to pipeline processing. This 

relatively sober idea probably represents the approach that has as yet most suc- 

cessfully capitalized on the use of parallelism. This is no doubt due to the fact that 

this approach suits so well a wide range of scientific calculation (number crunching) 

applications.) In parallel with developments on the hardware side, developments 

came about on the programming methodology side (languages, environments). A 

few years ago, when vector computers started to become more widely spread, a 

great deal of work dealt with the vectorization of sequential programs [Higbie 79] 

[Austin 79] [Paul 75] [Kennedy 79]. In recent years, emphasis has been put on the 

suitability of various programming styles for exploiting parallelism: object oriented 

programming (SIMULA [Birtwistle 73], SMALLTALK [Goldberg 83]), functional 

programming (LISP [McCarthy 60], ML [Harper 86] [Wikstrom 87]) and logic pro- 

gramming (PROLOG [Clocksin 81]). Important work has also been done on a more 

theoretical level with the study of the semantics of concurrency (CCS [Milner 80], 

CSP [Hoare 78]). Finally, as well as the research on the hardware and methodology 

sides, research has also been conducted on the algorithmic side of the exploitation 

of parallelism. It can be argued that this aspect of the problem is probably the 

most important of the three since, without parallel algorithms, what use could one 

make of a parallel machine or of a convenient language for writing parallel program? 

Although the quest for parallel algorithms has been going on for a long time most of 

the activity in this area of research has taken place in the last few years. This is due 

to recent advances in technology (VLSI). The outburst of interest in the area has 

been evidenced by the appearance in 1984 and 1986 of two important new journals 

devoted to parallel processing the Journal of Parallel and Distributed Comput- 

ing (Academic Press Inc.) and the International Journal of Parallel Programming 
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(Plenum Publishing Corp.)' Parallel algorithms have found applications in a vari- 

ety of fields. Although the most important of these is no doubt numerical analysis 

[Heller 78] [Miranker 71] [Poole 74], parallel algorithms have been designed to solve 

problem in areas as diverse as sorting [Thompson 77], searching [Deker 86], graph 

theory [Hirschberg 83], computational geometry [Miller 84], topology [Beyer 69], 

information retrieval [Shaw 80] and memory management [Steele 75]. 

1.2 Cellular automata, systolic arrays and 

present day machines 

People doing research on algorithms often tend to be theoreticians. When designing 

algorithms such persons will often rely on some idealistic theoretical model of a 

machine. Only if the model they are using is near enough to reality can their 

discoveries one day bear fruit. If such is not the case the risk is that their work 

might well remain only of purely theoretical interest. For this reason, over-idealistic 

machine models are liable to have a short life. 

The late sixties and early seventies saw the attention of a number of researchers 

focus on algorithms for a machine model that was then called cellular automata or 

array automata [Burks 70] [Codd 68] [Beyer 69] [Cole 691 [Hamacher 68] [Smith 71]. 

The interest then died out. At the end of the seventies, researchers started to 

pay attention to a slightly different machine model referred to as systolic arrays 

[Kung 79]. The revival of interest for this sort of machine model has been brought 

about by the rapid technological progress that had taken place, that was still taking 

1IJPP actually existed before 1986 but under the name International Journal of Com- 
puter and Information Systems. As it changed name it also changed its orientation, 
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place then and that is still taking place today in the field of integrated circuits. 

Suddenly, the model was nearer to reality. It may be said that in the early and 

mid eighties, with the appearance on the market of processor arrays, such as the 

DAP with 4096 processors [Gostick 79] [Reddaway 79] [Parkinson 88] (International 

Computer Limited and Active Memory Technology), the FPS T series (Floating 

Point Systems Inc.) with up to 16,384 processors [Frenkel 86] and the Connection 

Machine (Thinking Machine Corporation) with 65,536 processors [Hillis 85], the 

model became reality. 

1.3 Promises and limitations 

Parallelism holds promise. The idea of many processors acting simultaneously and 

cooperating in the task of solving a problem is very attractive to computer scientists. 

It is an idea that stimulates imagination and excites curiosity. On the other hands, 

most will realise that parallelism has its limitations. Not all problems have "parallel 

solutions". In fact, probably not "many" problems do. In no one's mind will the 

parallel computer ever replace the good old sequential machine. But what are 

the promises that parallelism can actually fulfill and where do its limitations lie? 

We may well never find the exact answer to this question. Nevertheless, it seems 

obvious that in order to profit as fully as possible from the benefits of parallelism, a 

lot more needs to be known about the field and this warrants that we continue our 

efforts in the exploration of the area. More specifically, more research needs to be 

conducted on the algorithmic side of parallelism. We need to know more about the 

applicability of parallel processing to problems of various sorts. This thought has 

motivated me in investigating the adequacy of resorting to parallelism for parsing 

context-free languages (CFLs). 
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1.4 Parallelism in parsing 

Due to the fact that computer programs have to be parsed, the problem of parsing 

is very well known to computer scientists. In the sixties sequential solutions to 

the problem have been studied intensively. Some of the work dealt with general 

CFLs [Hays 67] [Younger 67] [Kasami 65] [Earley 68] [Schorre 64] [Reynolds 65] 

but most of it concentrated on the parsing of restricted CFLs: precedence lan- 

guages [Floyd 611 [Wirth 661, LR languages [Knuth 651 and LL languages [Lewis 681 

[Korenjak 661 [Wood 701. Today, we can expect most university graduates in com- 

puter science to be more or less familiar with at least one parsing method. Rel- 

atively few researchers have worked on parallel parsing (I shall have more to say 

about this in the next chapter). This is somewhat surprising considering how well 

the problem is known and how well its sequential solutions are known. Most of the 

work on parallel parsing has been targeted on the parsing of restricted CFLs. In 

this dissertation I focus my attention on the parsing of general CFLs. 

In 1975, Fischer [Fischer 75] listed in the introduction of his thesis (which was 

primarily about parallel parsing methods based on precedence grammars) vari- 

ous sequential methods and considered which of those could perhaps be deemed 

good candidates for parallelisation. He rejected the method developed by Earley 

[Earley 70] arguing that it was too resource consuming. The rapid progress in 

technology that has occurred since then may justify us today in adopting a dif- 

ferent stance on that question. In this dissertation I report on an extension for 

parsing to a systolic algorithm that performs CFL recognition. The algorithm 

can be seen as a parallel version of the Cocke-Younger- Kasami (CYK) algorithm 

[Hays 67] [Younger 67] [Kasami 65] which itself can be seen as a generalisation of 

Earley [Graham 76b], the method Fischer rejected. The fact that a chapter in the 

dissertation (chapter 7) is devoted specifically to issues related to the implemen- 
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tation of the algorithm on real machines and the fact that I also report in this 

chapter on an actual implementation of the algorithm offer, if not evidence then at 

least an indication that research into this kind of algorithm need not be motivated 

by theoretical interest alone. (Fischer's algorithms were all designed for theoretical 

machines and he could only either prove them correct or simulate them. I was more 

fortunate, I had access to the real McCoy.) But one must interpret one's results 

soberly and I have to point out right away (before building up false expectations) 

that my implementation was on a rather small scale. More about this in the last 

chapter (Discussion), where it belongs ... 

1.5 An extension to K-GKT 

The main contribution reported in the dissertation is an extension to an algo- 

rithm for CFL recognition due to Kosaraju [Kosaraju 69] [Kosaraju 75] and also to 

Guibas, Kung and Thompson (GKT) [Guibas 79]. The original algorithm performs 

CFL recognition. CFL recognition consists in establishing whether a sentence is 

part of the language generated by a specific context-free grammar (CFG) or not. 

My extension allows that we do parsing as well as recognition. Parsing consists in 

finding how a sentence that is part of the language can actually be generated from 

the grammar. 

General CFL recognition (and parsing) is a member of a class of dynamic pro- 

gramming problems. I shall often refer to this class and I shall denote it by the 

symbol C. (I characterize the problems of this class in section 2.3.3.) All the prob- 

lems of C can be solved using the same algorithmic skeleton. Kosaraju discovered 

(do you invent algorithms or do you simply discover them?) his algorithm in 1969. 

He reported it as an algorithm for array automata and as a solution for CFL recog- 

nition. He seemed to have overlooked the fact that his algorithm could also be 
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applied to the other problems of C. Independently, ten years later, Guibas, Kung 

and Thompson rediscovered the algorithm. They reported it as a systolic algorithm 

and they explicitly indicated that it could be adapted for any dynamic problem 

of C. I refer to the algorithm as the K-GKT algorithm. 

(It seems as though very few people are aware that the Kosaraju algorithm 

and the GKT algorithm are really just two versions of the same algorithm. I have 

not seen one single mention of this fact in the literature, not even in papers that 

reference both Kosaraju and GKT!) 

The K-GKT algorithm computes what I call a solution matrix. It runs on a 

triangular array of orthogonally interconnected processors. Each processor of the 

array corresponds to an element of the solution matrix. During the algorithm 

execution, a processor will compute the value of the element it represents. When 

applied to CFL recognition, the algorithm computes a solution matrix also. In that 

particular case I call the matrix more appropriately the recognition matrix. This is 

the same matrix as the matrix computed by the Cocke-Younger-Kasami algorithm. 

My extension is very simple. I add counters to the processors of the array. At 

various relevant points during the computation of the solution (recognition) matrix, 

the values of the counters in some processors are saved (in the processors' local 

stores). These saved counter values act as pointers to other processors. After the 

computation of the matrix, I use these pointers to reconfigure the array of processors 

into a tree of processors. In the context of CFL parsing, the resulting tree of 

processors corresponds to the parse tree sought. The reconfiguration is done in an 

original way. Instead of resorting to programmable switches as in [Snyder 82], I have 

certain processors act as link node processors and others as tree node processors. 

Link node processors are used solely as communication links. 

Throughout the dissertation, I present my extension in the framework of CFL 

recognition and CFL parsing. The reader must bear in mind however that the 
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extension also applies to any of the dynamic programming problems of class C. I 

also discuss issues that relate specifically to parsing. 

1.6 Overview 

In the first chapter I cover background material. I first define formally the problem 

of CFL parsing. I then review some of the work that has been done in parallel pars- 

ing. I describe in some detail the CYK and Earley sequential parsing algorithms. 

I characterize the problems of class C. I also describe existing general CFL parallel 

parsing algorithms. 

In the second chapter, I introduce my extension. I restrict the presentation to 

the case where the grammar is unambiguous. I show that the extension has, in that 

case, an O(n2 log n) space complexity and an O(n) time complexity. To be able to 

get the linear time complexity I rely on the fact that the operations on the counters 

can all be performed in constant time. I suggest a counter implementation that 

meets the required specifications and I prove its correctness. 

In the third chapter, I consider grammar properties that could ensure that the 

processors of the array will not need to store too much information during the 

execution of the algorithm. I define an efficient grammar as one that will limit 

to 1 the numbers of pointer pairs any processor might be required to store. I 

suggest two properties: nt-disjunction and rhs-disjunction. I show that either of 

these together with unambiguity is a sufficient but not a necessary condition for 

grammar efficiency. I provide some decidability results related to these properties. 

In the fourth chapter, I consider the case of the use of non ambiguous grammars. 

I define two algorithms for outputting multiple parses. I show that both algorithms 

output each parse in linear time, that the first requires O(n3 log n) space and the 
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second requires only O(n2log n) space. The latter result is probably one of the 

more interesting results reported in this dissertation. 

For sake of completeness, in the fifth chapter I address the question of problem 

decomposition, that is the question of how to handle inputs that are too large for 

some fixed size array. I show how a standard technique can be applied with my 

extension and I expose some of the implications this involves. 

In the sixth chapter, I take a look at issues related to the implementation of the 

algorithm on real machines. I consider three machines currently available on the 

market: the Connection Machine, the DAP and the Transputer. I also report on 

an actual implementation of the algorithm on the DAP. 

In the seventh chapter I show how another parallel parsing algorithm, the 

Chang, Ibarra and Palis (CIP) algorithm [Chang 87], can be generalised to out- 

put parses in various orders. 

In the concluding chapter I compare my algorithm with those of others. I also 

discuss some practicality issues related to the use of my algorithm for CFL parsing 

and for other dynamic programming problems. I suggest areas for further research. 



Chapter 2 

Preliminaries 

2.1 CFL parsing 

The problem of parsing context-free language has been described in the literature 

over and over again. It is probably one of the best known problems to computer 

scientists. Nevertheless, for sake of completeness, I shall here describe the problem 

again. This exercise will also serve as a convenient means for introducing my 

notation'. 

2.1.1 The problem (our notation) 

Context-free languages 

An alphabet is a set of symbols. A string over an alphabet E is a sequence of symbols 

taken from E. I denote the empty string, the string with no symbols by v (nu). A 

'I use the same notation as in [Aho 72]. 

10 
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language is a set of strings. E" denotes the language consisting of all the strings 

over E of n symbols. E* (E+) denotes the language consisting of all the strings of 

zero (one) or more symbols over E. (We often find in the literature the use of 

where 0 is the empty alphabet, to denote the empty string.) 

A context-free grammar (CFG) is a four-tuple (N, E, P, S) where N is a set of 

symbols called the non-terminals, E is a set of symbols called the terminals, P is 

a set of ordered couples consisting of a non-terminal and a string of terminals and 

non-terminals (a string in (N U E)*) and S is a distinguished symbol in N called 

the start symbol. We call the couples of P the production rules or the rewriting 

rules or simply the rules of the grammar. To denote the rule (A, a) we use the 

special notation A -+ a. We call the first component of a rule its left-hand side 

(A) and the second its right-hand side (a). We sometime denote a set of rules with 

a common left-hand side A -+ al , A ---> a2 .... A -+ a, more conveniently as 

A --+ alJa2l a,. The a; are called the alternatives for A. 

Convention I adopt the following convention. Terminal symbols will be denoted 

by small roman letters (a, b, c,... ), non-terminals by capital roman letters (A, B, 

C,...) and strings of terminals and non-terminals by small greek letters (a, ,0,... ). 

Derivations and parses 

Given a grammar G = (N, E, P, S), we have the following relation between strings 

of (N U E)*: a string aAy directly derives the string a/.ly if the rule A --> ,0 is in 

P. This relation is denoted by = its transitive closure is denoted by $ and its 

transitive and reflexive closure is denoted by $ . If a /l, we say that a derives 

The sequence of strings ao, al, ... a,,, such that ao = al cx is called 

the derivation of a.. from ao . A leftmost (rightmost) derivation is a derivation 
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ao, a15 ... a,,,, such that each at (i > 0) is derived from ai_1 by replacing the leftmost 

(rightmost) non-terminal in at-1. To each leftmost derivation corresponds a unique 

rightmost derivation. 

The language generated by a grammar G = (N, E, P, S), denoted L(G), is the 

set of strings over E that can be derived from the start symbol S. Formally: 

L(G) = {Q ( Q E E*, S 4 Q}. The strings in L(G) are called the sentences of G. A 

language that can be generated by a CFG is a context-free language (CFL). Two 

grammars are equivalent if they generate the same language. 

A leftmost (rightmost) parse for a sentence of G is the sequence of the rules (rule 

numbers) that are involved in each derivation step of a given leftmost (rightmost) 

derivation. A parse tree (or derivation tree) for a sentence of G is a directed tree 

whose internal nodes are labelled by non-terminals and whose leaves are labelled 

by terminals. The root of the tree is labelled by the start symbol, the sons of a 

node are labelled by the symbols of the right-hand side of a rule whose left-hand 

side is the symbol labelling the father. The frontier of the tree is labelled by the 

symbols of the string. To each parse tree corresponds a unique leftmost derivation 

(and hence a unique rightmost derivation, a unique leftmost parse and a unique 

rightmost parse). 

A sentence of G is said to be ambiguous if there exists more than one parse 

tree for it and conversely, it is unambiguous if there exists only one. A grammar 

is unambiguous if all its sentences are unambiguous. A language is unambiguous if 

at least one unambiguous grammar generates it. 

The problem of recognition consists in, given a string and a grammar G, deciding 

if the string belongs to L(G) or not. Assuming it does, the problem of parsing 

consists in providing a parse or a parse tree for it. 
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2.1.2 Chomsky normal form 

Many parsing algorithms I refer to throughout the dissertation work only with 

grammars that are in Chomsky normal form (CNF) [Chomsky 59] [Aho 72]. A 

grammar G is in CNF if all its rules have a right-hand side consisting of either two 

non-terminals or of one terminal. The rule S --3 v, where S is the start symbol 

of the grammar (and v is the empty string), can also be in a CNF grammar. Any 

grammar G not in CNF can be transformed into an equivalent grammar G' in CNF 

and so the fact that an algorithm may require that a grammar be in CNF is not a 

severe restriction. 

Aho and Ullman present an algorithm (algorithm 2.12 in [Aho 72]) for trans- 

forming grammars not in CNF into grammars in CNF. I refer to this transformation 

as the standard transformation for that purpose. I denote it by T. If G is a gram- 

mar, I denote by T (G) the grammar obtained by applying T to G. In this section, 

I give an upper bound on the relative increase in grammar size that the application 

of transformation T involves. I also indicate how we can recover the parse of a 

sentence according to a grammar G from the parse of the sentence according to 

T(G). 

T takes as input a proper CFG with no single production. A proper CFG is one 

that is cycle-free, that is v -free and that has no useless symbols. A grammar G is 

cycle-free if for no non-terminals A of G do we have A 4 A. It is v-free if it has no 

rule of the form A --a v or it has only one which is S - v, where S is the start 

symbol of G, and S appears in no right-hand side of rule of G. A non-terminal A 

of a grammar is a useless symbol if we cannot derive from it a string of terminals. 

A single production is a rule of the form A --+ B where B is a non-terminal (and 

so is A). We can transform any CFG that is not proper and/or that contains single 

productions into a proper CFG with no single production [Aho 72]. Analysing the 

relative increase in grammar size involved by such a transformation falls outside the 
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scope of this dissertation. I shall thus simply assume that the grammars we may 

want to transform using T are proper and contain no single productions. This is a 

reasonable assumption since most parsing algorithms require grammars with these 

properties. For convenience to the reader I reproduce below, with slight variations, 

algorithm 2.12 of [Aho 72] (T). 

Transformation T 

input. a proper CFG G =< N, E, P, S > with no single production. 

output: an equivalent grammar in CNF G' =< N', E, P', S >. 

In the following, X; denotes a new non-terminal if A', is a terminal and X denotes 

Xi if X, is a non-terminal. P' is obtained as follows: 

1. Add each rule of the form A - a in P to P'. 

2. Add each rule of the form A -- B C in P to P'. 

3. If S-+ v is in P, add S-+ v to P'. 

4. For each rule in P of the form A -4 X1 X2 where X1 or X2 or both X1 and 

X2 are terminals, add to P' the rule A -4 Xi X2 X. 

5. For each rule of the form A -4 X1X2 ... Xk in P where k > 2 add to P' 

the following set of rules: A -- X' B1 , B1 --+ X2 B2, ... , Bk-2 --' Xk-1 Xk , 

where the Bi are new non-terminals. 

6. For each new non-terminal A' introduced by the previous two steps, add to 

P' the rule A' --> a. 

N' is obtained by adding to N the new non-terminals introduced by the steps 

above. T(G) = G' =< N', E, P', S > . 
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Relative sizes of T(G) and G 

I now give an upper bound on the relative sizes of T(G) and G for any proper CFG 

G with no single productions. I define the right-hand side length (rhs-length) of a 

grammar G as the sum of the right-hand side length of all the rules in G. I denote 

this value by rhs-length(G). The upper bound is given by the following theorem. 

Theorem 2.1.1 For any proper CFG G =< N, E, P, S > with no single produc- 

tions the following three relations hold: 

1. 1 N' I- I N j< 2 rhs-length(G) 

2. 1 P' j< 3 rhs-length(G) 

3. rhs-length(G') < 3 rhs-length(G) 

where G' =< N', E, P', S > is the grammar obtained by applying T to G. 

Proof Observe first that the steps in T involving rules of P with right-hand sides 

of length 2 or less never introduce more new non-terminals than there are symbols in 

these right-hand sides. Second, observe that the only step involving rule of P with 

right-hand sides of length greater than 2, step 5, never introduces more than 2k - 2 

new non-terminals when dealing with a rule whose right-hand side is of length k. It 

introduces the k - 2 non-terminals denoted B1, ... Bk_2 and it can introduce up to 

k non-terminals denoted X. Since each rule in P is considered by at most one step 

and since it is considered at most once by all the steps, it follows that relation 1 

above is true. Third, observe that any step dealing with a rule A --* a of P never 

adds to P' more rules than there are symbols in a. From this observation and from 

relation 1 and the fact that step 6 may add to P' as many rules as the number 

of new non-terminals introduced by the transformation it follows that relation 2 is 
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true. Fourth, observe that step 1 to 4 add to P' rules whose right-hand sides are 

of the same length as corresponding right-hand sides in P. Fifth, observe that for 

each rule A - a in P considered by step 5, the rhs-length of the set of rules added 

to P' is always equal to twice the length of a minus 2. Finally, observe that a rule 

of the form a' - a is added to P' in step 6 if and only if the terminal a appears 

at least once in a rule right-hand side of P. Hence, the rhs-length of all the rules 

added by step 6 cannot exceed the rhs-length of G. The truth of relation 3 follows 

from the last three observations. 

Parse recovery 

One may want to parse a sentence using a grammar G', because parsing with G' 

is easy, and then be able to easily transform this parse into a parse of the same 

sentence but according to another grammar G equivalent to G'. It could be that 

the parse according to G is more convenient for some reason but that parsing the 

sentence with G is difficult. 

It can easily be shown that from the leftmost parse r' of a sentence w according 

to a grammar T(G) = G' =< N', E, P', S > we can obtain the leftmost parse 7r of 

w according to G as follows. Suppose that we number each rule inserted in P' by 

the steps 1 to 4 using the same number as the number of the rule in P involved 

in the insertion. Suppose also that we do the same for the first rule in each set 

of rules inserted in P' by step 5 (i.e. A -+ Xi B1 gets the same rule number 

as A - X1X2 ... Xk) and that any other rule inserted in P' by T is numbered 

differently from every rule in P. 7r is obtained from r' by deleting any rule number 

in r' that is not a rule number of G [Aho 72]. The recovery can be done in a time 

proportional to the length of pr'. We can do the equivalent with rightmost parses 

but only if we apply to G a variant of transformation T. Let us call the latter T'. 

The difference between T and T' lies in step 5. Instead of inserting in P' set of 
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rules 

A -- X' B2 , B2 , X 
2 

B2 , ... , Bk-3 -- X k-2 Bk-2 , Bk-2 -- X k-1 X k 

17 

for a rule of the form A -- X1X2 ... Xk in P the transformation T' inserts the 

rules2 

A -a B1 Xk , B1 -+ B2 Xk-1 , ... , Bk-3 -4 Bk-2 X3 , Bk-2 -- X; X2 . 

The rule A -- B1 Xk is the one that gets numbered by the same number as the 

rule A -- X1X2 ... Xk . The other rules must get rule numbers different from every 

rule number of G. 

2.2 Parsing of restricted CFLs 

We can divide parsing methods into two broad categories: those applicable to 

restricted CFLs and those applicable to general CFLs. Most of the work in the 

area of parsing has been carried out on methods of the former category. This is 

true for sequential as well as for parallel parsing. In this thesis, I am concerned 

with methods of the latter category. For the sake of completeness however, I briefly 

cover here the major research conducted on parallel parsing methods for restricted 

CFLs. 

The work done in this area involved adapting existing sequential parsing meth- 

ods for use in parallel environments. Fischer [Fischer 75] [Fischer 801 adapted a 

whole series of precedence parsing techniques for their implementation on vector 

computers. The skeleton of his algorithms is as follows. The input is first stored 

2The set of rules does not strictly have to be exactly as indicated but it must contain 
the rule A --f B1 Xk . 
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as a vector of tokens. Then, from this vector, the vector of all the precedence rela- 

tions is computed. This last vector serves to identify simple phrases in the string, 

i.e. the sub-strings that can be reduced to non-terminals. The reductions of all 

the detected simple phrases is effected, the resultant vector is compressed and the 

whole process is repeated until a single element vector containing the start symbol 

is obtained. For a particular type of grammar which Fischer calls arithmetic in- 

fix grammars, Fischer also developed techniques to carry out semantic analysis and 

code generation as well as parsing. Fischer [Fischer 75] and, a few years later, Schell 

[Schell 79], extended the LR method for use on a linear array of processors. In their 

methods, each processor of the array is assigned a segment of the input which it 

processes in an LR fashion. This implies that processors have to deal with un- 

known left-contexts. Fischer tackled this problem by having the processors handle 

multiple stacks while Schell resorted to a super-initial state, an LR state meaning 

I can be anywhere in any production. Fischer concentrated on parsing while Schell 

also addressed the problem of error recovery and semantic analysis. For the for- 

mer, he adapted the method of Mickunas and Modry [Mickunas 78] and for the 

latter, he investigated the parallel evaluation of attributed parse trees [Knuth 68]. 

Fischer and Schell showed that their methods have linear time complexity. (This 

is a worst case complexity measure. Schell mentioned that in the best case, the 

time complexity is O(log n).) Asymptotically, this offers no improvement over the 

sequential methods. Fischer showed however that in real terms, his parallel LR 

parsing method is significantly faster than the sequential one. He simulated his 

method, measured its efficiency and came up with speed-up factors of between 4 

and 8. 

Frank [Frank 79] is another researcher who worked on adapting the LR method 

for a parallel environment. He also worked on the LL method. Fischer and Schell 

resorted to parallelism to improve the efficiency of the LR method, Frank used 

it to enlarge the classes of languages the LR and LL methods could parse. His 
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scheme allowed for a bounded degree of non-determinism in the languages. All 

the processors scanned the input simultaneously. The multiplicity of processors 

served to cover the multiplicity of paths in the tree of possible computations. The 

degree of non-determinism of the parsable languages was bounded by the number 

of processors available. 

Other researchers have worked on parallel parsing of restricted CFLs. I shall 

not mention them all here. Among them we find: Lipkie [Lipkie 79], Lincoln 

[Lincoln 70], and Zosel [Zosel 73]. 

2.3 Parsing of general CFLs 

Very little work has been done on parsing of general context-free languages. The 

few methods that have been suggested are based on two (sequential) algorithms: 

the Cocke-Younger-Kasami (CYK) and Earley algorithms. Kosaraju [Kosaraju 69] 

[Kosaraju 75] and independently, ten years later, Guibas, Kung and Thompson 

(GKT) [Guibas 79], devised a clever array algorithm for CFL recognition (K-GKT). 

The array algorithm is actually applicable to a wide class of dynamic programming 

problems (class C, see section 2.3.3) of which CFL recognition is just one member. 

The algorithm allows a direct parallel implementation of the CYK algorithm. Up 

until a few of years ago, the research conducted looked only at CFL recognition and 

paid no attention to parsing. In 1984, Chiang and Fu [Chiang 84], and in 1986, 

Chang, Ibarra and Palis [Chang 87] reported on results concerning both aspects 

of the problem. Chiang and Fu resorted to the K-GKT algorithm to implement 

a weakened version of Earley's algorithm. They also suggested a scheme for the 

extraction of the parse of the input from the array and a scheme for the detection 

of errors. Ibarra, Kim and Palis [Ibarra 86] devised a wholly new algorithm for 

the computation of the recognition matrix. Chang, Ibarra and Palis [Chang 87] 



Chapter 2. Preliminaries 20 

extended this algorithm so as to allow the computation to be traced backward and 

for the parse leading to the successful recognition to be recovered in the process. I 

shall say more about this work later in this chapter. 

2.3.1 The Cocke-Younger-Kasami algorithm 

The CYK algorithm uses a grammar in Chomsky normal form (CNF). As was 

mentioned in section 2.1.2, any CFG can be transformed into an equivalent CFG 

in CNF so no generality is lost by this requirement. (There exists a generalised 

version of the algorithm that will accept grammars of any form.) The algorithm 

is composed of two phases. The first one computes a matrix called the recognition 

matrix and the second one generates a parse for the string from the information 

contained in the matrix. 

CYK combination To describe the first phase, it is useful here to define, given 

a grammar G = (N, E, P, S), an operation I shall call the CYK combination. The 

CYK combination takes as argument an ordered pair of sets of non-terminals from 

N. It returns the set of all the non-terminals which appear on the left-hand side 

of rules whose first non-terminal of the right-hand side is in the first set of the pair 

and whose second non-terminal is in the second set. Formally: 

CYK combination(Si, S2) = {A I A -+ B C E P, B E Si, C E S2} 

For example, say we have the following grammar: 

Go = ({A, B, C, D, E, F}, {g, h, i}, Po, A) 

where Po is: 

{A--+AD,A-SAE,C-CAB,D-+FC,E-+BE,B--+g,E--h,F-+i} 
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and say we have the two sets Sl = {A, B, C} and S2 = {D, E, F}. The CYK com- 

bination of (S1, S2) results in the set {A, E} and the CYK combination of (S2, Si) 

yields the set {D}. 

The computation of the recognition matrix 

For an input string of length n (n tokens), the recognition matrix M consists of an 

n x n upper-triangular matrix. The entries of the matrix are sets of non-terminals. 

A non-terminal will be a member of an entry M+,3 if and only if the portion of the 

input string starting at position i and ending at position j can be derived from 

that non-terminal. I call this sub-string the sub-string (or the string) spanned by 

the entry. The algorithm first initialises the entries on the diagonal. This is done 

by inserting into each entry every non-terminal that directly derives the terminal 

in the string's corresponding position. The algorithm then proceeds by computing 

the entries on the line next to the diagonal and then those on the next line and so 

on until the whole matrix has been computed. The value of an entry M,,3 not on 

the diagonal is computed from the values of the pairs of entries (M,,k, Mk+1,,,), for 

k = i ... j - 1. We set the entry M,,3 to the value of the union of the results of the 

application of the CYK combination on these pairs. Each pair corresponds to one 

partitioning of the sub-string associated with the entry M;,,. Let's suppose that for 

a given k and a given rule A -+ B C that B is in M;,k and C is in Mk+1,3 . Then 

B $ a;, ... ak, C $ ak+1, ... a3 and hence A $ a;, ... a j. This fact is reflected by 

the insertion of A in M;,, via the CYK combination of M;,k and Mk+1,,,. If at the 

end of the matrix computation, the start symbol is a member of M1,n the symbol 

derives the whole input string and the input is accepted. In such a case we can 

proceed with the generation of the parse using the information of the recognition 

matrix. 
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example: 

Say we have the following grammar: 

G1=({E,T,F,E),+T,*F,j,),±,*}, {a,(,),+,*}, P, E) 

where P is: 

(1) E -, E +T (7) T - j E) 

(2) E - T *F (e> T - a 

(3) E -, i E) (9) +T -, ± T 

(13) 

(15) f-4 

(4) E -4 a (10) F -4 ( E) (16) * -4 * 

(5) E) - E ) (11) F --1 a 

(6) T -, T *F (12) *F - * F 
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and say we have the string (a+a)*a, figure 2-1 shows the recognition matrix at 

various stages of its computation. At the end of the computation, E, the start 

symbol of G1, is a member of M1,7 so we may conclude that (a+a)*a is in the 

language generated by G1. 

Generation of a parse 

The generation of a parse is a recursive process that takes as input the indices (i, j) 
of a matrix entry and a symbol A and produces on output a parse corresponding 

to one derivation of the symbol A into the string a,,... aj. In the case that i = j, 
the process simply outputs the rule (rule number of) A -* ai. In the case that 

i < j, the process first finds a pair of entries (Mi,k, Mk+1,j) for which there exists 

a rule A -4B C such that B E Mi,k and C E Mk+1,j 
. 

Say we want the parse in 

leftmost order. The process then outputs the rule (or rule number of) A -* B C 

and calls itself first with indices (i, k) and symbol B and then with (k + 1, j) and 
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a) 

{S} 0 0 0 

{E,T,F} 0 {E} {E)} 

{±} {+T} 0 0 

{E,T,F}{E)} 0 

{)} 0 

{*} 

{E,T,F}l 
b) 

23 

k 

{E,T,F} 0 {E,T} ) 

0 

0 

0 

{*} {.F} 
{E,T,F} 

{} {+ T} 0 0 

{E,T,F} {E)} 0 

{)} 0 

{E,T,F} 0 {E} {E)} 0 0 

C) 

Figure 2-1: The recognition matrix during recognition of the string (a+a)*a. 

symbol C. To generate the parse of the input string, we call the process with the 

indices (1, n) and the start symbol. 

Figure 2-2 gives a description in pseudo-code of the two phases of the Cocke- 

Younger-Kasami algorithm. 

Complexity 

The recognition phase requires O(n3) execution time and the parse generation re- 

quires O(n2) execution time [Aho 72] [Younger 67]. We can reduce the execution 

time for parse generation if, during the recognition, for each entry, we save pointers 

to the pairs of entries responsible for the insertion of non-terminals in that entry. 

This allows us to find a pair of entries in constant rather than linear time. The 

space complexity of the algorithm is determined by the size of the matrix. The 
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procedure Compute Matrix; 

or i .= 1 to nd,M;,;._ {AIA-'a;}; 
fu 1:= 1IQn-1dQ 

fiIlQn-lda 
j i+1; 

M,,, := 0; 

fork :=itoj-1d4. 
M,,, := M,,, U CYK combination(M;,k, Mk+i,3); 

end 

procedure Generate Parse ((i, j), A); 

Find a pair of entries (M,,,+k, Mi+k,,) such that 

for a A -p BC E P,BEM;,,+k andCEM;+k,j; 

Output the rule A -+ BC; 

cal Generate Parse ((i, i + k), B); 

call Generate Parse ((i + k, j), C); 

end 

Figure 2-2: The CYK algorithm in pseudo-code. 
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matrix is composed of (n2 - n)/2 entries. If we do not save pointers in the entries, 

each entry needs just enough storage to hold the set of every non-terminals in the 

grammar. This is a fixed amount independent of the input size and in this case, the 

space complexity is 0(n2) [Aho 72]. If we do save pointers, we must add a factor of 

log n to this measure. If our grammar is ambiguous and we want to obtain all the 

parses of the input strings then each entry might need to hold a number of pointers 

proportional to the length of the sub-string it spans. This adds a factor of n and 

results in a space complexity 0(n3log n). 
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The complexity measures mentioned above are for the straightforward imple- 

mentation of the CYK algorithm. With much ingenuity, Valiant [Valiant 75] has 

devised a slightly faster recognition algorithm based on the CYK idea. He showed 

how the computation of the recognition matrix reduces to computing the transitive 

closure of a boolean matrix which in turns reduces to boolean matrix multipli- 

cation. Resorting to Strassen's algorithm for matrix multiplication [Strassen 69], 

he devised a method for CFL recognition that takes O(n281) time3. This is the 

fastest offline sequential CFL recognition algorithm known today. The algorithm 

is said to be offline because it requires to have the whole input available from the 

start. 

2.3.2 The Earley algorithm 

The work reported in this thesis is based on the CYK algorithm. However, I need 

to say a few words here about another sequential parsing algorithm for general 

CFLs, the Earley algorithm [Earley 68] [Earley 70]. As we shall see later on, other 

researchers in the field of parallel parsing have mentioned this algorithm. Unlike 

CYK, the Earley algorithm can work with grammars of any form (not necessarily 

in CNF). Like CYK, the algorithm first computes a recognition matrix. (In the 

original description of the algorithm [Earley 70], the data structure consisted of 

lists rather than a matrix. I refer here to a version due to Graham, Harrison and 

Ruzzo [Graham 76b].) The entries of the matrix are sets of dotted rules instead of 

sets of non-terminals. A dotted rule is a grammar rule whose right-hand side is 

divided in two parts. We denote such a rule as follows: A -- a fl. We call the 

first part of the right-hand side, the scanned portion of the rule (a) and the second 

3The hidden constant in this complexity measure is so large that we can consider the 
method unsuitable for any practical application. 
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part, its remainder (/3). In Earley, an entry Mi,i will contain dotted rules whose 

scanned portions derive the string a; . . . a,. It will not contain all such rules. For 

a dotted rule A - a - /3 to be inserted in M;,2, the following condition also has 

to be satisfied: S $ al ai_1Ap for some p E E*. In other words, a dotted rule 

can be inserted in an entry only if it is consistent with the context to the left of 

the sub-string spanned by the entry. This is where the main difference between 

Earley and CYK lies. Graham, Harrison and Ruzzo modified the Earley algorithm 

and obtained a weakened version of the algorithm in which the second condition 

just mentioned is dropped. They pointed out that this weakened Earley algorithm 

is essentially the same as a generalised version of CYK. I shall not go into the 

details of the Earley algorithm. Descriptions of differing flavours can be found in 

[Earley 68] [Earley 70] [Aho 72] [Graham 76b] [Winograd 83] (Winograd indirectly 

describes Earley's algorithm when describing the Chart parser'). 

Complexity 

Assuming we are only interested in one parse for the input string, the time complex- 

ity of the algorithm, as CYK, is D(n3) for ambiguous grammars. For unambiguous 

grammars, Earley is faster then CYK and takes 0(n2) time. The space complexity 

is of 0(n2) if we do not save pointers in matrix entries and of D(n2 log n) otherwise 

[Aho 72]5. 

4A Chart parser is a parser based on a data structure, called a Chart, which consists 
of a set of vertices, one for each position between tokens of the input string, and a set of 
labelled directed edges joining pairs of vertices. 

'In their book, Aho and Ullman consider pointers to be of fixed size and so, the space 
complexity measures they provide for CYK and Earley do not include any log n factor. 
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The Graham, Harrison and Ruzzo variant 
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Graham, Harrison and Ruzzo [Graham 76b] proposed a more efficient variant of the 

original recognition phase in Earley. Their variant (GHR) implies a rearrangement 

in the order of the operations and a pre-computation of tables from the grammar. 

They were able to implement their algorithm in a way similar to which Valiant 

implemented CYK. Instead of resorting to Strassen's algorithm, they resorted to 

the boolean matrix transitive closure algorithm of Arlazarov, Dinic, Kronrod and 

Faradzev [Arlazarov 70] [Aho 74]. They obtained a CFL recognizer with time com- 

plexity O(n3/ log n). This is slower then Valiant's recognizer. It has the advantage 

however of being online. An online algorithm is an algorithm which can read the 

input while executing, without knowing in advance what the size of the input will 

be. GHR is the fastest online sequential CFL recognition algorithm known today. 

2.3.3 The CYK algorithm and dynamic programming 

CFL recognition is a member of a large class of dynamic programming problems 

that can all be solved using a common algorithmic skeleton. I denote this class 

by the symbol C. C contains problems such as: the building of optimal binary 

search trees; file merging; computation of order statistics, string matching and the 

optimal multiplication of matrices. An instance of a problem of C consists of a 

sequence of some objects b1b2 . bt,. We can partition a sequence of n objects in 

n -1 different ways. Each partitioning yields two sub-sequences that are themselves 

instances of the original problem. To solve the problem we need only to consider the 

pairs of solutions for the sub-sequences of the n - 1 partitionings of the sequence. 

The dynamic programming approach to the problem is to work bottom up. We 

start first by finding the solutions for all the sub-sequences of length one, then 

those for the sub-sequences of length two and so on. An implementation of this 

strategy consists in the computation of a solution matrix M (corresponding to 
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the recognition matrix in CYK). At the end of the matrix computation, an entry 

M,,, will contain the solution for the sequence of objects bi . . b,. This entry will 

have been computed from the information in the pairs of entries (M,,k, Mk+1,3) for 

k = i ... J - i. This general skeleton of the algorithm for computing a solution 

matrix applies to all the problems of class C. What basically varies from problem 

to problem is the specific information contained in the matrix entries, the entries' 

initial values and how we combine the information in the pairs of entries involved 

in the computation of an entry. For example, in the case of CFL recognition, the 

entries consist of sets of non-terminals, their initial value is the empty set and 

the combination is the union of the results of CYK combination over the pairs of 

entries. The case of the building of an optimal binary search tree is slightly more 

complicated. An entry M,,, will give the cost of the minimal cost search tree for the 

set of objects b, b,. Objects have weights related to the probability that search 

operations will be performed for them. An entry's initial value will be the sum of 

the weights of the objects of its set. The final value will be obtained by selecting 

among the relevant pairs of entries the one whose sum of final values (minimal cost) 

is minimal and by adding this sum to the entry's initial value (sum of weights). 

(For details, see [Aho 74].) 

Knuth [Knuth 71a] has shown that in the specific case of the building of optimal 

search trees, the computation of the solution matrix can actually be done in 0(n2) 

time. Such an improvement is made possible from the observation that for this 

problem not all partitionings of a sequence s need be considered when searching for 

the sequence's optimal solution. Let us call si the sequence s minus its leftmost 

element and sT the sequence s minus its rightmost element. The search space for 

the optimal solution of the sequence s can be limited to those partitionings whose 

left partition is greater or equal to the left partition of si that led to the optimal 

solution of si and whose right partition is greater or equal to the right partition of 

sr that led to the optimal solution of sT . 
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As we just saw, solving an instance of a problem of C involves partitioning the 

instance (and subpartitioning it and so on) in the right way. We can describe this 

partitioning as a binary tree. Each node of the tree corresponds to a portion of 

the instance and its two subtrees correspond to the left and right partitions of this 

portion. Let's call this tree the solution tree. The solution matrix will state if a 

solution exists or it will tell us what the cost of the optimal solution is. Often, we 

will also need the solution tree. From the information in the solution matrix, we 

can reconstitute the solution tree. The second phase of the CYK algorithm does 

just that, it generates a parse which is just a flattened representation of the solution 

tree called, in this instance, the parse tree. In the case of the building of an optimal 

search tree, the solution tree will consist of the search tree sought. 

2.3.4 The Kosaraju and Guibas, Kung and Thompson 

array algorithms 

Kosaraju[Kosaraju 69] [Kosaraju 75] and Guibas, Kung and Thompson (GKT) 

[Guibas 79] came up with a very clever processor array algorithm for the com- 

putation of the dynamic programming solution matrix mentioned above. Kosaraju 

presented his algorithm in the context of CFL recognition while Guibas, Kung and 

Thompson presented theirs in the more general context of C. Kosaraju referred to 

his algorithm as an array automaton. GKT used instead the more modern term 

systolic array. The two versions of the algorithm differ only very slightly. I shall 

point out their difference later. 

The algorithm operates on a triangular array of orthogonally connected proces- 

sors. We can think of the array as a representation for the solution matrix. Each 

processor of the array corresponds to an entry of the matrix. During execution, 

a processor computes the value of the entry it represents. (For short, I will call 

this value the value of the processor.) I shall index the processors in the same way 
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Figure 2-3: The array of Kosaraju and of Guibas, Kung and Thompson. 
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as we index the matrix entry. The processors are connected to their four neigh- 

bours in the same row and column. The values of the processors on the diagonal 

({P1,i}, i = 1 ... n) are set at initialisation. To compute its value, a processor Pi,, 

not on the diagonal (i < j) will need the values of the processors on its left, Pi,k 

for k = i ... j - 1, and of those below, Pk,j for k = i + 1 ... j. These values will be 

handed to PP,, by its left and bottom neighbours, Pi,;-1 and Pi}1,,. The processors 

pass on to the right (top) the values they receive from the left (bottom) to allow 

these to reach the other processors that will need them. For the same reason, once 

a processor has computed its value, it sends it to both its right and top neighbours. 

Figure 2-3 (page 30) shows a graphical representation of the array applied to the 

recognition example introduced earlier. For reasons that will prove obvious later, I 

have tilted the array by 45° counter clockwise. 

One of the main ideas behind a systolic network is to have the data circulate in 

such a way that they arrive at the right place at the right time. Notice that in the 



Chapter 2. Preliminaries 31 

case considered here, a processor P;j will need to hold simultaneously the values of 

its furthest left neighbour, P;,,, and of its nearest lower neighbour, P,+i,.i, and vice- 

versa. It will also need to hold simultaneously the values from its second furthest 

left neighbour and second nearest bottom neighbour and so on. To meet these 

requirements, the algorithm has the data circulate in each direction on two different 

channels which I will call, as in GKT's paper, the fast belt and the slow belt.' The 

algorithm arranges for the values on the fast belt to end up in the reverse of the 

order in which the processors are laid out and for those on the slow belt to end in 

the same order, thus allowing processors to receive values from nearby neighbours 

(via the fast belt) at the same time as they receive values from distant neighbours 

(via the slow belt). The details are as follows. Let us define the time unit as the 

time from the beginning of one data transfer to the next (the beat). I refer to time 

zero as the time when all the processors on the diagonal have been initialised. Data 

travel twice as fast on the fast belt as they do on the slow belt. On the fast belt, 

they go from one processor to the next on every beat. On the slow one, the data go 

through a pipeline of two registers in each processor and they go from one processor 

to the next on every two beats. For a processor P,,,, I call the value j - i its distance 

from the diagonal. Processors at distance d from the diagonal compute their values 

from time L3/2 d] to 2d - 1 and at time 2d, they deposit their value onto the fast 

belts. At time 3/2 d processors at an even distance d from the diagonal transfer 

the values then on their fast belts onto their slow belts. To compute their value, 

the processors combine the values coming from the left on their fast belt with those 

coming from below on their slow belt and vice-versa. 

The only difference between the version of Kosaraju and that of GKT is the 

'I speak of two channels but in fact, in an actual circuit, it could very well be the case 
that only one channel would connect pairs of processors. In that case, the two channels I 
refer to would be virtual channels implemented on the real one by multiplexing in time. 
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Figure 2-4: The effect of the synchronization strategy. 

way in which in each implementation, the processors determine when to put on the 

fast belts the value they have been computing and when to transfer the value from 

the fast to the slow belts. Kosaraju resorts to defined/undefined flags carried by 

the values on the channels. For example, if a processor receives for the first time a 

defined value on the fast belt while the slow belt still brings in an undefined value, it 

copies to the slow belt the value on the fast belt and on the next beat, it sends out 

undefined values on both belts. Guibas, Kung and Thompson on their part have 

recourse to explicit control signals to trigger the transfer operations. The signals all 

leave the processors on the diagonal on time 0. The signals to control the transfer 

of the computed value onto the fast belts travel from one processor to the next on 

every alternate beat while those to control the transfer from fast to slow belt travel 

from a processor to its next-but-one on every third beat. Figure 2-4 shows the 

effect of the synchronization strategy (implemented with explicit control signals). 
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For a problem instance of length n, an array of (n2 + n) /2 processors is needed. 

This array will compute the solution matrix in 2n beats, i.e. in linear time. On 

a sequential machine, the computation of the solution matrix takes 0(n3) time. 

The array thus provides a speedup of 0(n2). Since the array consists of 0(n2) 

processors, the speedup is asymptotically optimal. 

2.3.5 The extensions of Chiang and Fu 

Chiang and Fu [Chiang 841 resorted to the K-GKT algorithm to implement the 

recognition phase of the weakened Earley algorithm. As I mentioned earlier, weak- 

ened Earley corresponds exactly to a generalised version of CYK. They motivate 

their recourse to weakened Earley instead of CYK by argumenting that the former 

avoids the significant overhead incurred by the transformation of a grammar not 

in CNF to one in CNF. This claim is refutable however. Their algorithm involves, 

as in GHR, pre-computations of tables from the grammar. Graham, Harrison and 

Ruzzo [Graham 76b] pointed out that these pre-computations correspond closely 

to the standard transformation of a grammar to Chomsky normal form. 

They suggested two extensions to the basic algorithm, one for extracting the 

parse (or the parses) of the input and the other for compiling error-counts. 

Their scheme for parse extraction works in a bottom-up fashion in parallel 

with the recognition phase. The processors compute in addition to the sets of 

dotted rules, sets of parse symbols. A parse symbol is a pair consisting of a non- 

terminal and a sequence of rule numbers. A parse symbol (A, 7r) will be inserted 

in the set of processor P;j only if the string of tokens ai aj can be derived 

from the non-terminal A using the sequence of rules denoted by 7r. At the end 

of the algorithm's execution, the second component of any symbol in processor 

PI, whose first component is the start symbol denotes a parse for the input. The 

major drawback of the scheme is that the amount of information the processors 
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have to store, process and exchange (on each beat) is dependent on the input 

length and can become exceedingly large. The length of the rule sequence in any 

parse symbol a processor will record is proportional to the length of the string 

this processor spans. As a consequence, processors far away from the diagonal will 

need to hold and exchange more information than processors near the diagonal. 

For unambiguous grammars, the maximum number of parse symbols a processor 

might need to store is fixed by the grammar and independent of the input size. For 

ambiguous grammars, that number, in the worse case, can grow exponentially with 

the input size [Graham 76a]. 

Chiang and Fu also presented an extension for the compilation of error-counts. 

An error-count is associated with each dotted rule in the processors' sets. Suppose 

we have a dotted rule A --+ a Q in the set of P,,,. Its error-count indicates the 

minimal number of deletions, insertions and substitutions that it would be necessary 

to perform on a string derived from a so as to transform it into the string a, a.. 

For each type of error, the number of errors the algorithm can take into account is 

limited to the number of tokens in the target string, i.e. to j -i+ 1. Different weights 

can be assigned to each type of error. As with the parse extraction, the algorithm 

works in a bottom-up fashion in parallel with the recognition phase. Chiang and Fu 

simulated their extension. They pointed out its usefulness for pattern recognition 

applications. 

2.3.6 The Chang, Ibarra and Palis array algorithm 

Chang, Ibarra and Palis [Chang 87] designed a most interesting systolic algorithm 

(CIP) for parsing which is also based on CYK. Their algorithm works on an 

array of fixed size processors interconnected by one-way communication links. The 

algorithm first computes the recognition matrix and then traces the computation 

backward to recover the parse. The original version of the algorithm consists of 
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Figure 2-5: The parse tree for the CIP algorithm example. 

seven phases. Two of these serve to reflect a matrix, horizontally first and then 

vertically. These inversions are necessary because of the constraint of one-way links 

between processors. To make this presentation simpler, I will assume the availability 

of an array of two-way interconnected processors. To assist the reader, I reproduce 

the example provided by Chang et al. in their paper and refer to it throughout the 

explanation. The example involves a five token input. The parse tree of the input is 

depicted in figure 2-5. A symbol m;,,, in a node of this tree indicates that the non- 

terminal (or rule) for this node has been found in element M,,, of the recognition 

matrix. Which particular non-terminal (or rule) is not important. To avoid getting 

tangled up with synchronisation details when depicting data movements, I resort, 

as in the paper of Chang et al., to a technique of unrolling in time and space the 

content of the registers in the processors of an array. (What Chang et al. actually 

resort to is a special sequential multi-tape Turing machine model. They explain 

their algorithm with respect to this model and rely on a mapping [Ibarra 86] from 

algorithms for this model to algorithms for one-way rectangular systolic arrays to 

prove the existence of the parsing array. They have not produced, in their paper, 
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Figure 2-6: Two equivalent representations of processor contents: a) tabular 

form; b) unrolled form. 

the systolic algorithm as such.) This technique consists of displaying in a processor 

the register contents that appear in this processor during the algorithm execution 

one beat after the register contents displayed in the processor to its left (or below) 

appear there (figure 2-6). As a consequence, the register contents displayed in the 

processors along a north-east/south-west diagonal all appear in these processors at 

the same time while those displayed in the processors along a south-east/north-west 

diagonal appear in them one after the other at two beats intervals. This technique 

allows one to scan a row of processors in a figure as if one was scanning it through 

time. When I explain the parse extraction phase, I will reverse the directions of 

unrolling. 

The recognition phase 

Like K-GKT, CIP computes the recognition matrix of CYK. Unlike K-GKT how- 

ever, it does not establish a one-to-one correspondence between the processors of 

the array and the elements of the matrix. Furthermore, K-GKT requires that the 

whole input be available at the start of the execution (the algorithm is offline) while 

for CIP, the input is fed serially to the array during the execution (online). 
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Figure 2-7: The array for the recognition phase of CIP. 

The recognition phase of CIP uses an upper triangular array of processors as 

depicted in figure 2-7. I number the rows of this array from bottom to top and 

the columns, in the usual manner, from left to right. A token of the input is fed to 

processor P1,1 on each beat. The computation of an element Mi,3 of the recognition 

matrix is distributed among the processors of row j - i + 1. It starts on beat 23'- i 

in the first processor of the row and finishes on beat 3j - 2i with the value of M,,, 

ending up in the last processor. I sketch out how the computation is carried out. 

The processors have four registers (among others) to hold the values of two pairs of 

matrix elements. On beat 2j - i, processor P3-i+1,1 generates an empty set (of non- 

terminals). On each beat, this set is passed from one processor to the next along 

the row and reaches processor P3-,+1,,-i+l on beat 3j - 2i. Each time a processor 

on the row receives the set, it adds to it the non-terminals obtained by the CYK 

combination over the two pairs of sets it holds at that time in its store. These last 

sets have been computed previously and have been passed to the processor by its 

left and bottom neighbours. The algorithm arranges for these sets to be just those 

needed for the computation of the set that is travelling from left to right, i.e. for 

M,,,. Figure 2-8 shows the (unrolled) contents of the processors' four registers just 

mentioned during the recognition phase. Because this is unrolled, for each array, 
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indicates that the processor contains the two 
pairs (M1,i,M2,4) and (Mi,3,M4,4). 
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A - depicts a null value while a o depicts a non-null one. 

The number of dots along an arrow indicates that the value travels from the tail 
to the head of the arrow in so many beats. 

The diagrams above cover three of five possible cases. Each case is determined by 
the number of null value pairs in the bottom processors. In the other two cases, 
the upper right processor ends up with four null values. 

Figure 2-9: The data exchange occuring between processors during recognition. 

what is displayed in processor P5,5 appears in that processor 8 beats after what is 

displayed in processor P1,1 appears in processor P1,1. Note how the processors on 

the rows contain the matrix elements needed to compute the elements appearing on 

the rightmost processors of the rows. Figure 2-9 shows how the data are transferred 

from processor to processor to meet the algorithm's requirements. 

Examining figure 2-8 and 2-9, we can make three observations. First, in the 

limit, half of the processors in the triangular array hold at all times only null values. 

We could easily adapt the algorithm to do away with these processors. Second, 

once a register has been fed its first non-null value, it only receives non-null values 

thereafter. Third, processors sometime need to pass to other processors values they 

have received two beats earlier. This implies that as with K-GKT, the processors 

need pipelines of two registers. 
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The parse extraction phase 

To provide for parse extraction, during the recognition phase, processors record for 

each non-terminal in a set, the rule that cause the insertion. (Actually, only the 

rules themselves need to be recorded since the left-hand sides of the rules consist 

of just those non-terminals we are interested in.) If the grammar is ambiguous and 

more than one rule allows the insertion of a non-terminal, one is chosen arbitrarily. 

During the recognition phase, processors also record in separate registers copies of 

the first non-null values they receive in their working registers. 

The phase has four sub-phases, two of which are executed simultaneously. The 

first sub-phase reconstitutes in reverse the data movements that occurred during 

the recognition phase. This backward trace of the recognition serves to spot the 

rules in the recognition matrix that are part of the parse. The second sub-phase 

has these rules migrate to another part of the array where they are laid-out in a 

representation of the parse tree. The third sub-phase flattens this tree and the 

fourth one outputs the result. Let us go through all this again more slowly. 

Spotting the rules Recall how an element of the recognition matrix gets com- 

puted. An empty set is generated on the left boundary of the triangular array and 

as the set travels towards the diagonal, it encounters pairs of already computed 

matrix elements and gets augmented by the results of the CYK combinations over 

these pairs. (I assume from now on that the matrix elements are sets of rules rather 

then sets of non-terminals.) In the reverse process, a selected rule of the set will 

travel from right to left and while doing so it will encounter the same pairs of matrix 

elements the set met on the outward journey. Element Ml,,,, must have a rule with 

the start symbol as its left-hand side. (If this is not the case, recognition failed 

and we have no parse to output.) This rule is the first to engage on its backward 

journey. It is the root of the parse tree. As it travels to the left, it is bound to meet 
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Figure 2-10: The parse extraction sub-array. 

on the way the pair of sets containing the two rules responsible for its insertion 

in M1,,,,. These two rules are the sons of the root rule and they are marked as 

being part of the tree. As the backward trace continue, the two sets containing the 

marked rules will eventually make their way to processors on the diagonal. From 

there, the rules will trigger the marking of the remaining rules of the parse tree, 

each, independently triggering the marking of the rules of its own subtree. When 

a set arriving in a processor of the diagonal contains no marked rule, a null rule is 

sent on a journey leftward along the row. I refer the reader to the paper of Chang 

et al. for further details. I simply mention here that the recording, during the 

recognition phase, of the first non-null values arriving in the processors' registers is 

a necessary step for the trace. These values play a role similar to the one that was 

intended for the pieces of bread Hansel left behind him as he walked through the 

forest with Gretel. 

Laying out the rules To the left of the triangular array used for recognition 

is abutted another triangular array which is the vertical symmetric of the first 

turned upside down (figure 2-10). At the start of the parse extraction phase, each 

processor of this second array represents an empty slot. The rules of the first sub- 
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phase travelling from the diagonal of the first array towards its left boundary cross 

over in the second array and keep on migrating eastward until they find a vacant 

slot to occupy. At the end of this sub-phase, the non-null rules in the left array are 

laid out in a representation of the parse tree sought. A node is represented by a 

non-null rule in a slot, its right son by the nearest non-null rule below and its left 

son by the nearest non-null rule in the south-east direction. Figure 2-11 depicts 

the beginning of the backward trace and rule layout phases of the example. In this 

figure, I have reversed the directions of the unrolling. Hence, a value displayed in 

a processor appears there a beat after the values displayed in the processor above 

and in the processor to the right appear in these. Figure 2-12a depicts the left 

sub-array at the end of these two phases. Compare the representation of the tree 

in this figure with the tree of figure 2-5. 

Flattening the tree and outputting the parse Through a shift and accumu- 

late phase, a flattened representation of the tree is obtained in the bottom row of 

the array. The processors of the bottom row can hold two rules. The rules all mi- 

grate downwards. When a bottom processor receives a rule from its top neighbour 

while two rules already occupy its store, it sends one of these two rules, the one 

that arrived first, to its left neighbour. This flattened representation of the tree 

constitutes a rightmost parse of the input. Figure 2-12b shows the content of the 

left sub-array at the end of the shift and accumulate phase in the example. In a 

last phase, this parse is output through the leftmost or the rightmost processor at 

the base of the second sub-array. 

Complexity 

The time complexity of the algorithm is linear. The two-way links version presented 

here requires, more precisely, 7n beats to produce a parse of a string of length n. The 
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Figure 2-11: The contents of the processors during the beginning of the backward 

trace and rule laying out phase. 
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Figure 2-12: The content of the parse extraction sub-array: a) at the end of the 

rule layout phase; b) at the end of the flattening phase. 

recognition phase and its backward trace require 2n beats each. The completion 

of the laying out phase, the tree flattening phase and the output phase each takes 

another n beats. The size of the processors of the array is completely independent 

of the input size. Thus, the space complexity is determined by the number of 

processors and is hence 0(n2). The algorithm can cope with ambiguous grammar. 

However, as it stands, it cannot output all the parses of an ambiguous sentence since 

during the recognition phase, the array keeps a record of only the first reduction 

that is involved in the insertion of a given non-terminal in a given set. 

2.3.7 Other work 

Hirikawa [Hirakawa 83] wrote a PROLOG implementation of Earley's algorithm 

(the Chart parsing method). He targeted his program for execution on a concurrent 

version of PROLOG. 

Fanty proposed the use of connectionist networks (neural networks) for parsing. 

Connectionist networks are based on a simplified model of the brain. They consist 
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of large collections of units with minimal computing capability of different kinds 

interconnected in a very irregular fashion. Typically, a unit will have many inputs 

and one output. Depending on its input, the unit can be in a firing? state in which 

case it sends a positive signal through its output line. 

Fanty presented a scheme for building, from a grammar G, a connectionist 

network for parsing the strings of L(G) of a fixed length n. Such a network is 

composed of O(n3) nodes consisting of one or two gates. The input is fed to the 

network by setting the relevant terminal nodes of the network into their firing state. 

Then, in a first phase, signals propagate from the terminal nodes to a single node 

corresponding to the start symbol and the whole sentence. If this node ends in 

a firing state, the input is accepted. In a second phase, signals propagate in the 

other direction and they set on the nodes corresponding to the nodes of the parse 

tree of the input. The whole process is extremely fast, it takes Cn time where C 

is of the same order of magnitude as the switching speed of the network's gates. 

The interconnection complexity of the network however is huge. Fanty has made 

no suggestion as to how the parse tree could be extracted from the network. 

?This term is borrowed from neurology. A neuron, when stimulated with the right 
signals on its dendrites (inputs) sends a signal on its axon (output). It is then said to 
fire. 



Chapter 3 

An Extension to K-GKT 

3.1 Introduction 

As mentioned in the last chapter, the K-GKT algorithm implements on an array 

of processors the recognition phase of CYK. I propose a major extension to this 

algorithm for the implementation of the parse extraction phase. 

Let us refer back to figure 2-3 (page 30) depicting the K-GKT array after it has 

processed the string (a-{-a)*a. Because E is a member of the set of processor P1,,,, 

we know that the input string is in the language generated by G1. E was inserted 

in processor P1,7 because of the T in processor P1,5 and the F in processor P6,7. 

The T in processor P1,5 was itself inserted there because of the ( in processor P1,1 

and the E in processor P2,5. Figure 3-1 expresses the situation succinctly. In this 

figure, lines join those processors whose values were involved in the insertion of the 
distinguished symbol in processor P1,7 and lines join the processors on the diagonal 

to their corresponding tokens (only the relevant non-terminals are displayed). It is 

no coincidence that the schema obtained, ignoring non-involved processors, looks 

46 
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very much like a parse tree, it is one. The processors involved constitute the inside 

vertices of the tree, the lines constitute its edges and the tokens constitute its leaves. 

The reader can now understand why the array has been tilted in figure 2-3, and 

why it is tilted in figure 3-1. In the remaining of the dissertation, I shall continue 

to depict arrays of processors in this fashion. Notice that I number the processors 

as if the array was not tilted. Hence, I denote the leftmost processor at the base of 

the pyramid by P1,1, I denote the rightmost one by P",,,, and I denote the processor 

at the top by Pl ",. I shall also refer to a line of processors on a forward diagonal of 

the tilted array as a "row" of processors (as if the array was not tilted) and I shall 

refer to a line of processors on a backward diagonal as a "column" of processors. 

The proposed modification to the K-GKT algorithm involves a reconfiguration 

of the array to give the conceptual lines joining the processors on figure 3-1 a 

physical reality. The basic idea is to use the processors between the vertices of the 

underlying tree as communication links, that is, to use them for passing information. 
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The extended algorithm has three phases. I call them the recognition phase, the 

marking phase and the output phase. The recognition phase corresponds almost 

exactly to the K-GKT algorithm, the marking phase reconfigures the array and the 

output phase outputs the parse. The marking and the output phases proceed only if 

recognition is successful (only on valid inputs). The heart of the extension consists 

of the addition of two counters to each processor. At all time when a processor 

is computing its value during the recognition phase, these counters indicate where 

the information currently on the processor's fast and slow belts originated from. 

Processors save the values of their counters whenever the information on their belt 

causes (via the CYK combination) an insertion of a non-terminal in their set. The 

marking phase employs the stored counter values to locate relevant processors and 

mark them as either tree node or link node processors. The former are the internal 

vertices of the underlying tree while the latter are those in-between. Figure 3-2 

shows the array of our example after reconfiguration (see key in figure 3-5). Finally, 
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the output phase uses the reconfigured array to output a parse of the input string. 

Recall that a parse of a string is a sequence of (numbers of) rules that we can apply 

to derive the input string from the distinguished symbol. The third phase outputs 

these rules sequentially via processor P1,,,. 

In this chapter, I consider the case where we are interested only in obtaining 

one parse of the input string. If the grammar is unambiguous, a valid string will 

only have one parse but if it is ambiguous, a string may have many parses. In the 

latter case, if we require only one parse, we "choose" it arbitrarily. Chapter 5 deals 

with the case where we want to obtain all the parses of an input string. 

3.1.1 Definitions 

Before going into the details of the three phases of my algorithm, I define various 

terms to simplify the presentation. An array of n rows (or columns) is said to be 

of size n. A processor not on a boundary of the array has four neighbours. In 

the general context, I call them the upper left, upper right, lower left and lower 

right neighbours. For a marked node, only one of its two upper neighbours will 

be relevant. I will call this neighbour simply the upper neighbour. Likewise, I will 

refer to the relevant lower neighbour of a link node as its lower neighbour. I also 

employ some of the usual graph theory terminology and speak of the sons and/or 

the father of a tree node'. I call the son of a tree node and the processors (if any) 

leading to the son a branch of the father node. This is different from a branch in 

graph theory. Node P,,,, will always constitute the root of the underlying tree so I 

often refer to this node as the root of the tree. By extension, I also refer to it as 

the root of the array. The root is said to be on level 1, its two lower neighbours 

'The father or the son of a tree node will itself always be another tree node. 
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are said to be on level 2 and so on. An array of size n has n levels. I call level n 

the base of the array. (The base in the tilted array is what I referred to it as the 

diagonal in the non-tilted array.) A processor at level k is said to be at distance 

I k - 11 from a processor at level 1. The height of an array is the distance between 

its root and its base (height = size - 1). Recall that a processor P,,, contains the 

set of non-terminals deriving the portion of the input string starting at position i 

and ending at position j. I call this sub-string the string spanned by the processor. 

3.1.2 Desiderata for systolic algorithms 

Kung [Kung 79] has listed the following properties as desirable for a systolic algo- 

rithm: 

1. that all processor operations take the same time. 

2. that each processor requires a fixed amount, as small as possible, of storage. 

3. that the processors be identical except maybe for special cases such as pro- 

cessors at the boundary of the array. 

4. that the communication geometry be simple and regular. 

5. that the data movement be simple and regular. 

These properties ensure that the algorithm may be easily and efficiently imple- 

mentable in VLSI systems. It is simple to produce an integrated circuit composed 

of a large collection of identical components interconnected in a regular fashion. If 

the processors are all the same, then building a bigger array simply involves adding 

more processors. The algorithm that I propose satisfies all of these properties ex- 

cept for 2. As we will see later, for an n x n array, the storage requirement of each 
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processor is proportional to log n. As a consequence, processors built for an array 

of some given size may not be usable for arrays of bigger sizes. I shall argue, in the 

last chapter, that this drawback may not be significant in practice. 

3.2 The algorithm 

3.2.1 The recognition phase (K-GKT plus counters and 

pointers) 

Each processor contains two counters. While a processor is computing its value, 

the algorithm arranges for these counters to hold the values of the distances in 

between this processor and the processors which computed the values currently 

on the processor's fast and slow belts. When a pair of processor values causes 

an insertion of a non-terminal in the set of the processor, the counters' values are 

saved. These saved counter values will be used by the marking phase. We can 

think of them as pointers to the processors responsible for the insertion. If our 

grammar is ambiguous, more than one processor value pair may cause insertions. 

For the moment we are interested in obtaining only one parse of the input string 

so we assume the processors record only one pointer pair per non-terminal. 

The algorithm arranges for the counters to hold the right values at the right 

time as follows. A processor at a distance d from the base computes its value 

from time t = L3d/2j to time t = 2d - 1 [Kosaraju 75]. During this interval, at 

time t, the two values on the processor's slow belts are from the processors below 

(on either the same row or column) that are at a distance t - d + 1 away while 

those on the fast belts are from the processors at a distance 2d - t away. For the 

counters to take the values of these distances at the right times, they simply need 

to be initialised at the values Ld/2] + 1 and rd/21 at time t = L3d/2] and to be 
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respectively decreased and increased by 1 at each time unit afterwards. Various 

methods can be used to achieve the initialisation. I propose two, both based on 

control signals. The first assumes that at the start, the counters are preset, one at 

value zero, the other at value one. The second considers on the contrary that the 

counter values are initially undefined. Figures 3-3 and 3-4 show how each method 

performs the initialisations. 

With preset counters 

The method resorts to two sets of control signals that are sent from the base at time 

zero. The signals of one set must all travel either along the rows of the array or 

along its columns. From the start until they receive a first control signal (depicted 

in figure 3-3 by t ), the processors increment one of their counters, the lower one, 

at every odd beat and the other at every even beat. The signals of the first set 

visit a new processor on every beat. A processor at distance d from the base will 

thus receive a signal from this set on beat d. At that time, one of the processor's 

counters will hold the value (d/21 while the other one will hold the value ld/2] + 1. 

From then until a second control signal is received (depicted in figure 3-3 by I ), 

the processors keep their counters' values intact. The signals of the second set 

travel at the speed of 2/3 processor per beat. (An extra set is not really needed 

here. We can use the signals from GKT for the fast to slow belt transfer.) They 

reach processors at distance d on beat l3d/2]. After it has received the second 

control signal, a processor decrements its lower value counter and increments the 

other one at every beat. 

With counters undefined 

This method also resorts to two sets of control signals. As in the previous method, 

the signals of the first set (depicted in figure 3-4 by n ) travel at the speed of 
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Figure 3-3: Counter initialisation with preset counters. 
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Figure 3-4: Counter initialisation with undefined counters. 
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1 processor per beat and those of the second set (depicted in figure 3-4 by ) 

travel at the speed of 2/3 processor per beat. The signals of the second set have 

two states. I call them the even and the odd states. The signals leave the processors 

of the base in an even state and they toggle their state whenever they arrive at a 

new processor. The state indicates if the processor the signal is currently visiting 

is at an even or an odd distance from the base. The 2/3 processor per beat speed 

is achieved by keeping the signals one beat in each processor and an extra beat in 

alternate processors. For the method to work, we must have the two beat pauses 

occur in odd distance processors. This ensures that the signals arrive in processors 

at distance d at time L3d/2J. At the start of the array operation and until they 

receive the first control signal, the processors leave their counters undefined. When 

they receive the first signal (on beat d for processors at distance d) the processors 

initialise their two counters to zero. On each subsequent beat up to and including 

the beat when they receive the second signal, they increment both counters by one. 

The second signals arrive Ld/2J beats after the first signals at processors at distance 

d and hence, the operations above bring the values of these processors' counters to 

Ld/2J. (Note that these operations involve no increment operation for processors 

at distance 1 which receive both signals at the same time.) The processors then 

increment either one or both of their counters by one, depending on whether the 

second signals are in an even or an odd state. This final operation brings the values 

of the counters to Ld/2J + 1 and Ld/2] on beat L2d/3] as required. 

3.2.2 The marking phase 

Once recognition is complete, if the input string is accepted, the array goes into the 

marking phase. This phase marks the processors representing the internal vertices 

of the underlying parse tree as tree nodes and marks those in between as link nodes. 

The root initiates the marking. The distances from the root to its sons are indicated 
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by two pointers (counter values) saved by the root during recognition. The root 

uses these pointers to mark its two branches. This involves marking its sons as tree 

nodes and the processors in between it and the sons as link nodes. Once marked, 

the sons initiate the marking of their own branches and so on until the base nodes 

get marked (as tree nodes). 

I suggest two methods for the marking of the branches of a node. One entails 

the passing down of pointers while the other involves only token passing. 

Marking by pointer passing 

The father decrements both pointers by one and sends each decremented value to 

the relevant lower neighbour. A processor, upon receiving a pointer, if the pointer 

has value zero, marks itself as a tree node (and initiates the marking of its sub-tree), 

otherwise, it marks itself as a link node, decrements the pointer by one and passes 

it on the next beat to its lower neighbour, i.e. the one opposite the upper neighbour 

that sent it the pointer. One can easily convince oneself that this method will mark 

a branch of d processors in d beats. I do not provide a proof. 

Marking by token passing 

On each beat, the father node sends to each of its lower neighbours a token and 

decrements its two pointers by one. The father stops sending tokens to a neighbour 

when the pointer associated with it reaches zero. When a processor receives a token 

for the first time, it keeps it, i.e. it records the event. If on the next beat it obtains 

another token it marks itself as a link node and on the following beat, it passes 

the second token received to its lower neighbour. Afterwards, it keeps on passing 

the tokens it receives on one beat down to its lower neighbour on the next beat. If 

after getting its first token, a processor does not obtain another one on the following 
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Figure 3-5: The marking of a branch by token passing. 

beat, it marks itself as a tree node. Figure 3-5 depicts the marking of a branch of 

length 3. 

It is not immediately obvious that this method will do the job. I informally indi- 

cate here why it works. Later, in the section on complexity analysis (section 3.3.2, 

page 64), I provide a more formal proof. Suppose a tree node is at a distance d 

from its son. The father's pointer associated with this son holds the value d and it 

will send d tokens down the branch leading to the son. The first processor on this 

branch receives d tokens, keeps one and transmits the d - 1 others. The second 

processor receives these d - 1 and transmits d - 2 and so on. The dth processor, the 

son, receives only one token and marks itself as a tree node while every processor 

between the father and the son has received at least two and marked itself as a link 

node. 
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Passing down more information 

In the case we consider in this chapter, processors never need to record more than 

one pointer pair per non-terminal. As I will show in section 3.3.1, they may need to 

record only one pair or as many pairs as there are non-terminals in the grammar, 

depending on the type of grammar used. If they hold at most one pair, processors 

marked as tree nodes initiate the marking of their branches using the unique pair 

they hold. If processors hold many pairs, processors marked as tree nodes will 

need to select one pair amongst those. Each pointer pair will be associated with a 

different non-terminal and a different rule. A father can thus inform its son which 

pair to use by indicating to it which non-terminal is relevant. This information can 

be passed down with either the pointers or the tokens (depending on the method 

chosen) used in the marking phase. The rule associated with the pair which the 

father uses indicates which terminals are relevant to its sons. The root's relevant 

non-terminal will always be the grammar's starting symbol. 

3.2.3 The output phase 

After the marking, the array goes through a phase during which it outputs the 

parse of the input string. I assume that during the recognition phase the processors 

recorded the rule numbers responsible for the insertion of non-terminals. I show 

how the string of rule numbers composing the parse can be output sequentially 

at the root. I explain this for a parse output in leftmost order. (I indicate later 

how we can adapt the method for other parse orders.) The output can be likened 

to a structured bucket brigade. The volunteers are the processors and the buckets 

are the rule numbers. All the rule numbers must be passed to the root which 

outputs them. The root first outputs its own rule number. Then it outputs the 

rule numbers it receives from its lower left neighbour. The last rule number sent by 

this neighbour is accompanied by an end-of-parse marker. The root strips the rule 
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number of this marker before transmitting it. It then transmits the rule numbers 

sent by its lower right neighbour. The last rule number from the right is also 

marked. The root transmits this one with the mark however since it constitutes 

the last rule number of the whole parse. During the phase, link nodes simply pass 

to their upper neighbour the rule numbers they receive from their lower neighbour. 

Tree nodes act exactly as the root except that instead of outputting values they 

send values up to their upper neighbour. The base nodes, which are tree nodes, 

constitute a special case. They have only one value to send up, namely, their own. 

This is the last value of their own sub-parse so they attach an end-of-parse marker 

to it. 

To satisfy desideratum 2 of section 3.1.2, I impose the following constraint on 

processors: they can hold at most one rule number at any given time (not counting 

the tree nodes' own rule number and rule numbers that may be held in auxiliary 

registers for data transfer). As a consequence of this constraint, during the output, 

upper neighbours of nodes may be unable to accept a rule number because they 

already hold one that they themselves cannot send up. The bucket brigade is then 

held up at these points. (This will always be due to ancestors delaying the output 

of their right sub-parse while they output their left sub-parse. The right sub-parse 

is blocked in that case in the right sub-tree.) To control the flow of rule numbers 

up the array, processors operate as follows. On alternate beats, they can either 

send or receive information. While the processors on even numbered levels are on 

sending beats, those on odd numbered levels are on receiving beats and vice-versa. 

As just mentioned, processors have storage space to hold one value (rule number). 

They constantly try to obtain values from (either of) their lower neighbour(s) to 

fill this storage and simultaneously, they try to get rid of any value in their storage 

by sending such value to their upper neighbour. To obtain a value from a lower 

neighbour, a processor sends the lower neighbour requests for a value until the 

neighbour provides a value. Before sending a value up, a processor must first have 
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A processor's next state depends on what it 
received on the previous (receiving) beat. The 

transition arcs are labeled by one or two pairs 

of digits. The first digit of the pair indicates 

whether the processor received a request (1) or 

not (0). The second indicates if it received a 

value. 

Using the same convention, the two digits in 

a state circle indicate what the processor will 

send on the subsequent (sending) beat. 

The circle in the top right of a state circle indi- 

cates whether the processor in this state holds 

a value to send up () or not (o). 

Figure 3-6: State diagram for the output phase. 
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received a request from its upper neighbour. Figure 3-6 shows the state diagram 

the processors go through during the output phase. The diagram has two initial 

states, A and C. A processor starts in state A if it is a tree node and if the first 

operation to be executed is to send up its own rule number (it may not be the case, 

see below). A processor otherwise starts in state C. Figure 3-7 shows the output 

of the parse of the string a+a according to grammar G1. 

3.2.4 Parse orders 

The output phase achieves the equivalent of a traversal of the parse tree during 

which we output the rule numbers of the nodes we visit. The three operations 
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The twelve rectangles show the content of the array on successive beats during the output. 

The dotted lines between the processors and the processors and the token depict the 

edges of the underlying tree. 

The arrows indicate the non null data transfers occuring during the beats. Down arrows 

are for requests and up arrows are for values (rule numbers). The effects of the transfers 

are apparent on the rectangle depicting the content of the array on the following beat. 

Rule numbers with end-of-parse markers are underlined. 

A null value separates the first and the second rule number of the parse because on beat 

three, the root did not output a value. 

Figure 3-7: The output of the parse of a+a. 
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Node operations I Tree Traversal Order Parse Order 

SOR-TLS-TRS preorder leftmost 

SOR-TRS-TLS inverse preorder rightmost 

TLS-SOR-TRS infix order - 
TLS-TRS-SOR postorder inverse rightmost 

TRS-SOR-TLS inverse infix - 
TRS-TLS-SOR inverse postorder inverse leftmost 

Table 3-1: Node operations, tree traversal and parse orders. 
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of the tree node processors: SEND OWN RULE (SOR), TRANSMIT LEFT SUB- 

PARSE (TLS) and TRANSMIT RIGHT SUB-PARSE (TRS) correspond to the familiar 

tree traversal operations: VISIT NODE, TRAVERSE LEFT SUB-TREE and TRAVERSE 

RIGHT SUB-TREE. In the description above, I chose to perform the operations in 

the order SOR-TLS-TRS and obtained a parse in leftmost order. I could however 

have chosen any other order. For example, had I wished the parse to be instead in 

reverse rightmost order (the order produced by the Shift-Reduce parsing methods), 

I would have opted for the order TLS-TRS-SOR. Table 3-1 lists the tree traversal 

and parse orders corresponding to the various orders of execution of the tree node 

operations. 

3.3 Complexity 

I now analyse the space and time complexity of my algorithm. In this analysis, I 

derive complexity measures solely as a function of the length of the input string. I 

do not consider the size of the grammar in spite of the fact that in some applications 

such as natural language, the grammar size can be a predominating factor. 
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3.3.1 Space 

For an input string of n tokens, the array must consist of n(n + 1)/2 processors. 

Were it not for the counters and pointers, the space requirements of each processor 

would be independent of the array size (i.e. constant). The processors have only 

two counters but they may have to save many pairs of pointers. The counters 

and pointers need to be of length at most log n. This chapter deals only with 

unambiguous grammars. If a grammar is unambiguous, there exists at most one 

derivation from any non-terminal to a given string. Hence a processor will never 

need to hold more pairs of pointers than there are non-terminals in the grammar. 

In relation to the input size, this is a constant and so the space complexity of the 

whole array is 0(n2 log n). 

3.3.2 Time 

I now analyse the time complexity of the algorithm. I analyse each phase separately. 

We shall see that each phase takes linear time and thus that the whole algorithm 

takes linear time. 

Recognition 

As mentioned earlier, the CYK algorithm implemented on the K-GKT systolic array 

has a linear time complexity. The recognition phase of our algorithm differs from 

K-GKT only by its use of counters. The only operations our algorithm requires to 

perform on the counters are: SET TO ZERO, INCREMENT (by one), DECREMENT (by 

one), NO OPERATION and TEST IF ZERO. It is possible to implement the counters 

so that these operations can all be executed in constant time. In section 3.4, I 

present a detailed implementation of such constant time counters together with a 
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proof of its correctness. Assuming we implement the counters this way, we may 

conclude that the recognition phase has a linear time complexity. 

Marking 

The root initiates the marking phase and the phase is terminated when every 

processor of the underlying tree has been marked. I prove that the phase com- 

pletes in linear time. Observe that n, the size of the input, is related to the height 

of the array, h, by the following relation: h = n - 1. It is thus sufficient to show 

that the phase terminates after a time proportional to h. 

Theorem 3.3.1 For an array of height h holding a valid underlying parse tree, 2h 

beats after the marking of the root, every processor of its underlying parse tree will 

be marked. 

Proof By induction on h. The conclusion is true for h = 0. The array then 

consists of the root only and once it has been marked, the marking is over. Let us 

assume that the hypothesis holds for any array of height less than some h > 1. I 

shall prove that it also holds for any array of height h. For an array of height h 

greater than zero, the root has two sons. The argument presented below applies to 

both sons so let's consider only one. Suppose the left son is at a distance d from the 

root. Then, the son is itself the root of a sub-tree of height h - d. By the induction 

hypothesis, 2(h - d) beats after the son has been marked, every processor of its 

sub-tree will be marked. What is left to prove is that the son and the processors 

linking it to the root will be marked within 2d beats after the root has been marked. 

I show this by induction on d. A son at distance 1 receives the token the root sends 

on the first beat. On the next beat, it receives none and marks itself as a tree node, 

so the conclusion is true for d = 1. Let's suppose the hypothesis is true for a son 

at distance less than some d > 1 and prove that it also holds for a son at distance 



Chapter 3. An Extension to K-GKT 65 

d. Consider the node in between the son and the root and nearest to the root. As 

far as the proof is concerned, after two beats this node will behave exactly like a 

root that would be at distance d - 1 from the son. On the first beat, it will receive 

the first token sent by the root. On the second, it will receive the second token. 

From then on, it will pass down to its lower neighbour d - 1 tokens just as a root 

at distance d - 1 would. By the induction hypothesis, the son will thus be marked 

2(d - 1) beats later, i.e. after beat 2d. It follows that 2h beats after the marking of 

the root, every processor of the underlying left sub-tree, and by the same argument, 

every processor of the underlying right sub-tree will be marked. 

Output 

The root must output as many rule numbers as there are internal nodes in the 

parse tree. If we take out the leaves of the parse tree (i.e. the terminals) we are 

left with a full binary tree (one whose vertices all have either two sons or none) of 

n sons (the n processors at the base). This tree thus consists of 2n - 1 nodes and 

correspondingly, the parse consists of 2n - 1 rule numbers. If we can show that a 

linear time after the start of the output phase, the root outputs a rule number on 

each of its sending beats until the last value has been output, we will have shown 

that the output phase takes linear time. The next theorem serves that end. 

Theorem 3.3.2 For an array of height h holding a valid underlying parse tree, 

2h + i beats after the start of the marking phase, every node of the underlying tree 

at level n - i is ready to send values up on each successive sending beat until there 

are no more values left to send up. 

Proof By induction on i. The conclusion is true for i = 0. After 2h beats, 

the nodes at the base are marked and they are ready to send up their own value. 

Suppose the statement is true for some i - 1 > 0, let's prove that it is also true 
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for i. Consider a node at level n - i. Suppose it is a link node. It then has one 

lower neighbour at level n - i + 1. Let's call the node on level n - i the upper 

node and the one on level n - i + 1 the lower node. By the induction hypothesis, 

after beat 2h + i - 1, the lower node can send a value to the upper node on each 

of its subsequent sending beats. These sending beats correspond to the receiving 

beats of the upper node. Thus from beat 2h + i - 1, the upper node will always 

be able to fill its storage with a value, if need be, by obtaining one from the lower 

node. (When a node sends a value up, it also sends a request down so as to obtain 

a new value on the following beat). Thus on each sending beat after beat 2h + i, 

the upper node will be able to send values up. The same argument applies to the 

case when the node at level n - i is a tree node. 

The root is never impeded from sending values up. So if it is ready to send 

a value, it sends it. We thus conclude from theorem 3.3.2 that after 3h beats 

(2h + (n - 1) = 3h), the root is outputting values at every sending beat. Since 

there is a linear number of values to output, it follows that the output phase has 

linear time complexity. 

When the parse is output in reverse leftmost (respectively reverse rightmost) 

order, the first value to be output will be from either the leftmost (respectively 

rightmost) base node. Let's suppose, without loss of generality, that it will be from 

the leftmost one. This node will be marked after beat 2h. It will take another 

h beats for its value to migrate to the root. Thus in this case, the first value 

of the parse will be output on beat 3h + 1. The 2n - 2 remaining values will be 

output during the next 2n - 2 sending beats. The whole phase thus requires exactly 

(3h + 1) + 2(2n - 2) = 7n - 6 beats. If the parse is output in either leftmost or 

rightmost order, at least 1 and up to n - 1 values might be output before the first 

base node value gets out on beat 3h + 1. Thus in this case, it will take in between 

2 and 2(n - 1) less beats to output the parse than in the previous case (i.e. in 
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between 5n - 4 and 7n - 8 beats). The exact number will depend on the number 

of tree nodes on either the upper-left or the upper-right boundary of the array. 

I have shown that the execution of each of the three phases of the extension 

takes a linear time. Consequently, the whole algorithm execution takes a linear 

time. 

3.4 Constant time counters 

If we implement the counters in the usual way, because of carry and borrow prop- 

agation delays, the increment and decrement operations would each take a time 

proportional to log n where n is the biggest value the counters can hold. The only 

operations the algorithm needs to perform on the counters are: increment (INCR), 

decrement (DECR), no operation (NOP), set to zero (SETO) and test if zero (IFO). 

I show how by resorting to a carry save vector, a borrow save vector and another 

vector which I call the significance vector, we can implement the counters such that 

all of the above operations require constant times. 

3.4.1 Implementation 

A counter consists of four bit vectors: the value vector (V), the carry vector (C), 

the borrow vector (B) and the significance vector (S). The vectors are all of length 

log n. The value vector holds the interim value of the counter while the carry and 

borrow vectors hold pending carries and borrows that have not yet fully propagated 

through the counter. The significance vector indicates the position of the most 

significant non-zero bit in the value or the carry vector. I refer to this position as 

the MSB position. If the carry and value vectors have only zero bits, the MSB 

position is position 0, the position of the least significant bit. The MSB position is 
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indicated by the least significant bit at one in the vector S. For the purpose of this 

explanation, I partition the counter in vertical slices. Each slice consists of the bits 

of the four vectors in a given position. If you want, you can see the counter as a 

vector of slices. The slice in position i consists of the four bits V, C;, B; and Si. If 

C, = 1 (B, = 1), I say that slice i holds a carry (borrow). I refer to the slice in the 

MSB position as the MSB slice. I refer to the value of a given bit at some specific 

time t by superscripting its symbol with t. Hence, Vt refers to the value of the V 

bit in slice i at time t. Likewise, MSBt refers to the MSB position at time t. 

On each beat (of the systolic array) each slice of the counter changes the value 

of its bits according to a function of the current values of its own bits and of 

the bits of its two neighbouring slices. I refer to this function by the symbol F. 

Table 3-2 contains a definition of F in truth table form. In table 3-2a, not all 

possible combinations of values for Vt, Ci_1, B;_1 and S_1 are present. As will 

be shown later, those missing can never occur (see lemma 3.4.3). Slice 0 behaves 

as if there was a virtual slice -1 and changes the value of its bits using almost the 

same function as the other slices. This virtual slice has all its bits at 0 except when 

the operation INCR or DECR are performed. The INCR operation is performed by 

setting the C bit in slice -1 to 1 just before the slices update their value while the 

DECR operation involves setting the B bit to 1. The operation SETO is performed 

by setting (Vo, Co, B0, So) to the value (0, 0, 0, 1). The operation IFO is performed 

by testing if slice 0 has this value. I refer to this last fact by saying that the counter 

is in the zero configuration. Only one operation can be performed at any given time 

and a DECR operation is not allowed when the counter is in the zero configuration. 

3.4.2 Proof of correct behavior 

Does the implementation described above behave correctly? What does it mean 

here to behave correctly? In other words, what specifications must the implemen- 
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Vi' 
s 

ct 
i-1 Bt i-1 Jrt 

i-1 
Vt+1 V. Ct+1 

i B'+1 i 

0 0 0 x 0 0 0 

0 0 1 x 1 0 1 

0 1 0 x 1 0 0 

1 0 1 x 0 0 0 

1 0 0 x 1 0 0 

1 1 0 0 0 1 0 

1 1 0 1 1 0 0 

a) i > 0 

St co s +1 

1 0 1 

otherwise 0 

b) 

ci+1 ci ci-1 Bi Bi -1 'S i+l Ss Ss_1 Ss}1 

x x 1 x x x x 1 1 

x 0 x x 0 x 1 x 1 

0 x x 1 x 1 x x 1 

otherwise 0 

c)i>0 

Table 3-2: Function .1. 
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tation meet? As mentioned above, the only operations we must be able to perform 

on the counters are: SETO, INCR, DECR, IFO and NOP. The specifications may be 

stated succinctly as follows: provided the capacity of the counter has not been 

exceeded, an IFO operation must return the value true if and only if the numbers 

of DECR operations and INCR operations performed since the last SETO operation 

are equal. 

Intuitively, one may be easily convinced that our implementation is correct. 

The concepts of carry save and borrow save vectors are fairly familiar. The one of 



Chapter 3. An Extension to K-GKT 70 

significance vector less so. In the remaining of this section, I provide a formal proof 

of the correctness of my implementation. As is often the case, the proof is rather 

long for what seems to be, at first sight, obvious enough. I start with a definition 

followed by a series of eight lemmas. 

Definition 3.4.1 The value represented in the counter is given by the the formula: 

MSB 

E (V, + 2C; - 2B1)2` 
i_o 

More specifically, the value represented at some time t is: 

MSB° 

(V,t + 2C; - 2BS )2` 
8_o 

Lemma 3.4.1 A slice i, 0 < i < n, can hold a carry (borrow) on a given beat only 

if slice i - I held one on the previous beat. 

Proof Follows from the definition of F (table 3-2). 

Lemma 3.4.2 A slice holding a carry (borrow) has its value bit cleared (set). 

Proof Follows from the definition of F. 

Lemma 3.4.3 A slice cannot hold both a carry and a borrow at the same time. 

Proof Follows from lemma 3.4.1 and the fact that we do not allow the INCR and 

the DECR operations simultaneously. 

Lemma 3.4.4 Two consecutive bit slices cannot both hold carries or both hold 

borrows. 

Proof By applying lemma 3.4.1, all we need to prove is that a slice cannot 

generate two consecutive carries or two consecutive borrows. By lemma 3.4.2, 
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whenever a carry (borrow) is generated in a slice, the V bit of that slice gets the 

value 0 (1). By the definition of F, a carry (borrow) cannot be generated on the 

next beat with V at this value. 

Lemma 3.4.5 For any i, 0 < i < MSBt, and any t > 0: 

Vtt+1 + 2C,+1 - 2B,+1 _ Vt + C,-1 - B,-1 

Proof By lemma 3.4.3 Ci_1 and Bs-1 cannot both have value 1. This leaves 6 

possible value combinations for Vt, Ci_1 and Bs_1. By the definition of F, each com- 

bination yields a result satisfying the lemma with the exception of (Vi', Ct_1, B;_1) _ 

(1, 1, 0) when S;-1 = 1. But in that case, i > MSBt. 

The next lemma, although very simple, has an astonishingly long proof. 

Lemma 3.4.6 Any number of beats t after a SETO operation, BMSBt = 0 and except 

when the counter is in the zero configuration, CMSBt + V SBt = 1. 

Proof By induction on t. The conclusion is true for t = 0. Let us prove that it 

also holds for t + 1 if it holds for some t > 0. By the induction hypothesis, at time 

(on beat) t either the counter is in the zero configuration or CMSB° + VMSSW = 1 and 

BMSB° = 0. If the counter is in the zero configuration only an INCR an IFO or a 

NOP operation can be performed. In all cases, the hypothesis will still hold on time 

t + 1. If the counter is not in the zero configuration on time t, either CMSBt = 1 or 

VMSW = 1. If CMSBt = 1, on the next beat, the MSB slice gets shifted to the left 

(MSBt+1 = MSBt+1) and Vt+Bt+, is set to 1 while CMSBt}1 and Bt+1 t are set to 0 MSB 

(by the definition of .F). Thus, in this case, the hypothesis still holds. The other 

case (V sBt = 1,CMSB' = 0) has two sub-cases depending on whether the MSB slice 

is in position 0 or not. If the MSB slice is in position 0, it will be affected by the 

operation performed. A NOP operation will leave it as it is, an INCR operation will 
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set its C bit and reset its V bit while a DECR operation will put the counter in 

the zero configuration. In all three cases, the induction hypothesis remains true at 

time t + 1. If the MSB slice is not in position 0, it will be affected only by its V bit 

and the C and B bits of the slice to the right. By lemma 3.4.3, these cannot both 

be on. If neither one of them are on, the MSB slice remains unchanged and the 

hypothesis is still true. If CMSBI-1 = 1, on time t + 1, the MSB slice stays in the 

position it was on time t, CMSB gets set, VMSB gets reset and BMSB is unchanged 

and the hypothesis is still true. If BMSB°-1 = 1, on time t + 1, the MSB slice gets 

shifted to the right (MSBt+1 = MSBt - 1). Here, we have two sub-cases: 1- the 

new MSB slice is in some position to the left of slice 0; 2- the new MSB slice 

is in position 0. We consider them in turn. In sub-case 1, the value of the C, V 

and B bits in the new MSB slice on time t + 1 (the value of CMSB'_i, VNtssI_1 and 

P+11 1 
is a function of VMSB,-1 (the value of the V bit in the new MSB on time MsBt- 

t), CtMS8 _2 and BMSB°-2 (the values of the C and B bits in the slice to the right of 

the new MSB slice on time t). Since BMS8t 1 = 1, by lemma 3.4.2, VMSB°-1 = 1 and 

by lemma 3.4.4, BMSBt-2 = 0. This leaves two possibilities (sub-cases!) depending 

on the value of CMSBt-2 If this value is 0, the C and B bits in the new MSB slice 

end up on time t + 1 with value 0 and the V bit remains with value 1 while if 

CMSBt-2 = 1, the C bit in the new MSB slice takes value 1 and both the V and 

B bits take value 0. In either cases, the induction hypothesis is preserved. We are 

now left with a final sub-case to consider, the sub-case when on time t, the MSB 

slice is in position 1 and slice 0 holds a borrow (sub-case 2). In this sub-case, the 

second slice to the right of the MSB slice of time t is the virtual slice -1. We can 

apply exactly the same argument as above (sub-case 1) except that here we may 

have BMSBt-2 = 0. This occurs when we perform a DECR operation on time t. In 

this case, the counter ends up on time t +1 in the zero configuration and the lemma 

is proved. 
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The following lemma is the most important. It simply states that at any time, 

the value represented by the counter is the right one. 

Lemma 3.4.7 Provided the capacity of the counter has not been exceeded, the value 

represented in the counter equals the number of INCR operations minus the number 

of DECR operations that have been performed since the last SETO operation. 

Proof I prove by induction on the time (number of beats) t since the last SETO 

operation. At time t = 0 (just after a SETO operation), the counter is in the zero 

configuration and the basis is true. Assuming the hypothesis is true at some time 

t > 0, let us prove that it is also true at time t + 1. I do so by proving the following 

equality: 

MSB` MSBt+i 
E (Vt + 2C, - 2B,)2` + OP = E (Vt+1 + 2C,+1 - 2B;+1)2` (3.1) 
t=o i=o 

where OP = 1 if the operation performed on time t is INCR, OP = -1 if the 

operation is DECR and OP = 0 otherwise. The summation in the left part of 

the equation represents the value represented in the counter on time t while the 

summation in the right part represents the value on time t + 1. 

By the definition of the implementation, we can see the counter as having a 

virtual slice -1 and consider that (Ct 1i Bt 1) = (1, 0) when the operation performed 

on time t is INCR, that (Ct 1, Bt 1) = (0, 1) when it is DECR and that otherwise 

(Ct 1, Bt 1) = (0, 0). We can thus rewrite equation (3.1) as follows: 

MSBt MSBt+l 

(Vt + 2C, - 2B,)2` + Ct 1 - Bt, = E (Vt+1 + 2C,+1 - 2B,+1)2' (3.2) 
t=o i=O 

Let m denote the minimum of MSBt and MSBt+1 and let us prove the following: 

m m 

E(Vt + C;-1 - Bi-1)2z = >(Vt+1 + 2C;+1 - 2Bz+1)2= 
i=O 1=o 
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By lemma 3.4.5, each factor of 2' in the left summation is equal to the corresponding 

factor in the right summation and thus, the equation is true. Substracting (3.3) 

from (3.2) we get: 

MSBt MSBt+l 
(Ut+2Ci-2Bi)2`+(2Ct,,-2B,tr)2m = (Vt+l+2Ci+1-2Bi+1)2` (3.4) 

i=m+1 i=m+1 

By the definition of F the MSB position can move by at most one position on 

each beat. Therefore, only the following three cases are possible: 

1. m = MSBt = MSBt+1 - 1 (the MSB position is shifted to the left) 

2. m = MSBt = MSBt+1 (the MSB position is unchanged) 

3. m = MSBt - 1 = MSBt+1 (the MSB position is shifted to the right) 

We prove the correctness of equation (3.4) for each case. In case 1, (3.4) becomes: 

(2CMt SBt - 2BMSBt)2MSBt = 
(Vt+1 + 2C+11 - 2BMSBt+1)2MSBt+1 (3.5) 

By the definition of F, case 1 occurs only when CMSBt = 1. CvzSBt and 

lemma 3.4.3 implies BMSBt = 0. By the definition of F, CMSBt = 1 implies 

t+1 t+l = 0. Finally, lemma 3.4.6 implies BMSB +1 t = 0 and vMSBt+1 = 1 and CMSBt+1 - 
equation (3.5) is proved. In case 2, (3.4) becomes: 

(2CMt SBt - 2BMtSBt)2MSBt 0 (3.6) 

By the definition of F, case 2 occurs only if CMSBt = 0. By lemma 3.4.6, Btt SBt = 0 

and equation (3.6) is proved. In case 3, equation (3.4) becomes: 

(VMSBt + 2CMSBt - 2BMt 
SBt)2MSBt + (2CMSBt-1 - 2BMSBt-1)2 MSBt-1 = 0 (3.7) 

By the definition of F, case 3 occurs only if CMSBt = 0 and BMSBt-1 = 1. CMSBt = 0 

and lemma 3.4.6 imply that VMSBt = 1 and BMSBt = 0. Finally, BMSBt_1 = 1 and 

lemma 3.4.3 imply that CMSBt_1 = 0 and the correctness of equation (3.7) is proved. 
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Lemma 3.4.8 When the counter is not in the zero configuration, the value repre- 

sented in the counter must be greater than 0. 

Proof For a given MSB position, let us find what the smallest value represented 

in the counter can be. By lemma 3.4.6, either the C bit or the V bit of the MSB 

slice must be set. Since the C bit has twice the weight of the V bit, the smallest 

value must be obtained when the V bit is set. Since the B bits have a negative 

weight, the smallest value must be obtained when the counter has as many and as 

significant B bits set as possible (in slices 0 to MSB). By lemma 3.4.6, the B bit 

in the MSB slice cannot be set. By lemma 3.4.4 two consecutive slices cannot both 

hold borrows. So we will have the most B bits set when the B bits in every other 

slice, starting from slice MSB - 1 and going to the right, are set. By lemma 3.4.2, 

when these bits are set so are the V bits in the same slices. Since the V bits have 

a lesser absolute weight than the B bits, it is still the case that the smallest value 

will be obtained when those B bits are on. Since the V bits and the C bits have 

positive weight, we will want to have as few of those on as possible. Assume that 

the C bits in all the slices are clear and so are the V bits in every other slice starting 

from slice MSB - 2. In that case, if MSB is even and greater than 0, the value 

represented in the counter is given by: 

MSB/2 
2MSB + 22:-1 -2 2i (3.8) 

t=1 

The term 2MSB is the contribution of the V bit in the MSB slice, the terms 22i-1 

of the summation are the contributions of the other V bits set and the terms 22= 

are the contributions of the B bits set. We can apply the following transformations 

to (3.8): 

(MSB/2)-1 

= 2MSB 
+ 22i+1 -2 242 

i=o 
(MSe/2)-1 

= 2MSB -2 E (4i) 

i=o 
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2MSS 2 1 - 4MSB/2l 

1-4 ) 3(2MSB) +2-2(2 MSB) 

3 
2MSB +2 

3 
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For any value of MSB even and greater than 0, the formula (3.9) yields a positive 

value and the lemma is proved for this case. If MSB is odd (and greater than zero), 

the smallest value that can be represented in the counter is given by: 

(MSB-1)/2 

2 MSB + 22i 22i+1 (3.10) 
i=O 

(MSB-1)/2 

2 MSB 

:=0 
(MSB-1)/2 

2MSS 4` 
s=O 

1-4 MSB-1 +1 
2MSS 

1-4 
3(2MSB) + 

1 - 2m S13+1 

3 
2MSB + 1 

22: 

3 
(3.11) 

For any positive odd MSB, the value given by (3.11) is strictly positive and the 

lemma is proved in that case as well. Only one case is left to consider, the case 

when MSB = 0. The smallest value represented when MSB = 0 and the counter is 

not in the zero configuration is when Vo = 1, Co = 0 and Bo = 0 (by lemma 3.4.6 

B0 must be equal to 0). In that case, the value is 1 and the lemma is proved. 

Rich with these lemmas, I am now ready to prove that the counter implemen- 

tation meets its specifications. For this, lemma 3.4.7 almost suffices. It states that 

after an equal number of INCR and DECK operations, the value represented in the 

counter is 0. Recall however that the IFO operation is performed by testing if the 

counter is in the zero configuration. We thus also need lemma 3.4.8 which explicitly 
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states that the value 0 can be represented in the counter only when the counter is 

in the zero configuration. 

Theorem 3.4.1 Provided the capacity of the counter has not been exceeded, if, 

since the last SETO operation, as many DECR operations as INCR operations have 

been performed, the counter must be in the zero configuration 

Proof Follows from lemma 3.4.7 and lemma 3.4.8. 



Chapter 4 

Efficient grammars 

4.1 Introduction 

As mentioned in the previous chapter, when the grammar used is unambiguous, the 

number of pointer pairs a processor will need to save during the recognition phase 

will never exceed the number of non-terminals in the grammar. However large the 

set of non-terminals is, it will always be finite. This allowed us to conclude that 

the space complexity of the algorithm is O(n2 log n). One of the hidden constants 

behind this asymptotic measure is specifically the size of the non-terminal set of the 

grammar. When designing and building actual processors, allocating enough space 

to hold as many pointer pairs as there are non-terminals could prove prohibitive. In 

this chapter, I take a look at grammar properties that could ensure that the number 

of pointers the processors could need to save is low. I say that a given grammar is 

k-efficient if for this grammar, this number is bounded by k. A 1-efficient grammar, 

I simply call an efficient grammar. I first show that G, (see page 22), the grammar 

used in examples in the last two chapters, is efficient. I then exhibit two distinct 

sufficient conditions for a grammar to be efficient. I provide counter examples to 

78 
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show that these are not necessary conditions. I also provide a counter example to 

show that unambiguity is not a necessary condition either. I conclude with a small 

discussion on structural ambiguity and decidability. 

4.2 G1 is efficient 

To prove G1 efficient, I prove a series of lemmas. The first three of these are auxiliary 

lemmas stating two properties of strings derivable from the non-terminals E, T and 

F or from the right-hand sides E), ±T and ±F. Each of the others states that 

any string reducible to a given right-hand side of G1 with two non-terminals is 

reducible only to this right-hand side and only according to one partitioning. The 

efficiency of G1 follows immediately from these. 

To express the fact that a string contains as many left and right parentheses I 

will say that the string is 0-balanced (parenthesis balanced). If it contains more left 

(or right) parentheses then right (or left) parentheses, I will say that it is (-heavy 

(left parenthesis heavy) (or )-heavy (right parenthesis heavy)). Notice that a string 

must be either (-heavy, ()- balanced or )-heavy. 

Lemma 4.2.1 Any string reducible to either E, T or F is of odd length. 

Proof By induction on the length of the string. The basis is true for the only 

string of length 1 reducible to E, T or F, namely a. Suppose that the hypothesis 
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is true for any string shorter than some string s of length greater than one. If s 

reduces to either E, T or F, then, one of the following must be true: 

1 . E +T = E±T si + s2 = s, 

2. TF T*F$ s1 *s2=s, 

3. j Ei E ) z (sl) = s. 

The induction hypothesis holds for sl (and s2), it thus also holds for s. 

Lemma 4.2.2 Any string reducible to either E), ±T or 2t F is of even length. 

Proof Follows from lemma 4.2.1 and the fact that each of the non-terminals ), 

± and * directly derive a terminal. 

Lemma 4.2.3 Any string s reducible to either E, T or F is 0-balanced and any 

prefix of that string is either (-heavy or O-balanced. 

Proof By induction on the length of the string. The basis is true for the only 

string of length 1 reducible to E, T or F, namely a. Suppose the hypothesis is true 

for any string shorter than some string s of length greater than 1. If s reduces to 

either E, T or F then one of the following is true: 

1. E+T =E±T,sl+s2=s, 

2. TwF TF3sl*s2=s, 

3. jE) = jE 4 (sl) = s. 

The induction hypothesis holds for si (and s2), it thus also holds for s. 
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Lemma 4.2.4 Any string reducible to the right-hand side E +T is reducible only to 

this right-hand side and only according to one partitioning (i.e. E+T 4' sls2 = s, 

E$.sI,+T4s2i A AB 

s1 = s3 and s2 = s4). 

Proof Since E+T 4. s, s is of an odd length at least 3. Thus none of the 

single terminal right-hand sides of GI and none of the right-hand sides mentioned 

in lemma 4.2.2 can derive s. Since E +T 4. s, s must contain a +. Suppose 

(E) 4. s. Then s must be of the form (u + v) where E 4. u + v, (u = Si and 

+v) == s2. By lemma 4.2.3 any prefix of u + v is either (-heavy or ()-balanced since 

E $ u + v. Since E 4. sl = (u, by the same lemma (u is ()-balanced. It follows 

that u, a prefix of u + v is )-heavy. A string cannot be )-heavy and at the same 

time be either (-heavy or ()-balanced. We have a contradiction and conclude that 

( E)is. 

Suppose T.F 4. s. Then one of the following must be true: 

1. s=t+u*v,t=s1i+u*v=s2,T4.t+uand F4- *v; 

2. s=t*u+v,t*u=s1i+v=s2,T4.tand F4-*u+v. 

Let us look at the first case. The terminal + is accessible to the non-terminal T only 

via the right-hand side (E) . Thus T 4. t + u implies that t + u must be of the form 

tl(t2 + ul)u2 where E4. t2 + ul, tl(t2 = t and ul)u2 = u. Since E 4. sl = tl(t2, 

by lemma 4.2.3, tl(t2 is ()-balanced and any prefix of tl(t2 must either be (-heavy 

or ()-balanced. Thus tl must be (-heavy and t2 must be )-heavy. But t2 is a prefix 

of t2 + u1 and by the same lemma t2 cannot be )-heavy since E $ t2 + u1. We 

`lave a contradiction and conclude that case 1 cannot be. Let us look at case 2. 

'he terminal + is accessible to the non-terminal F only via the right-hand side 

E). Thus F 4. *u + v implies that *u + v is of the form *ul(u2 + v1)v2 where 
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E 4- u2 + v1, ul(u2 = u and v1)v2 = v. Since E 4 sl = t * u, by lemma 4.2.3, 

t * ul(u2 is ()-balanced and t * ul( is (-heavy. Thus u2 is )-heavy. But u2 is a 

prefix of u2 + v1 and by the same lemma u2 is either ()-balanced or (-heavy since 

E-4- u2 + vl. We have a contradiction and conclude that case 2 cannot be. We 

conclude that T F 4.s. 

Suppose now that pq = s,E 4 p, +T 4 q, p Si and q S2. Then one of the 

following must be true: 

1. s=t+u+ V, S1= t, S2=+u+v,p=t+uandq=+v; 

2. s=t+u+v,sl=t+u,s2=+v,p=t andq=+u+v. 

Let us look at the first case. Since + is accessible to T only via the right-hand side 

(E), +T A. S2 = +u + v implies that +u + v is of the form +u1(u2 + v1)v2 where 

E u2 + vl, ul(u2 = u and vl)v2 = v. Since E 4 p = t + u = t + ul(u2, by 

lemma 4.2.3 t + u1(u2 is ()-balanced. Therefore t + ul( is (-heavy and u2 is )-heavy. 

But u2 is a prefix of u2 + v1 and by the same lemma it is either ()-balanced or 

(-heavy. We have a contradiction and conclude that case 1 above cannot be. Case 

2 is dual to case 1 and by the same argument we conclude that it cannot be. We 

have covered every right-hand side of the grammar and the proof is complete. 

Lemma 4.2.5 Any string reducible to the right-hand side T .F is reducible only to 

this right-hand side and only according to one partitioning (i.e. T F 4 S1S2 = S, 

T sl, F S2i AB S3S4 = s, A S3, B 40 S4 implies A = T, B =* F, 

S1 = s3 and S2 = S4). 

Proof Since T .F 4 s, s is of an odd length at least 3. Thus none of the 

single terminal right-hand sides of G1 and none of the right-hand sides mentioned 

in lemma 4.2.2 can derive s. By lemma 4.2.4, E +T s since T *F 4 s. Because 



Chapter 4. Efficient grammars 83 

T.F : s, s must contain a *. Suppose jE) s then s = sls2 must be of the 

form (u * v) where E 3 u * v, (u = sl and *v) = s2. By lemma 4.2.3, u, a prefix of 

u * v can only be either ()-balanced or (-heavy since E : u * v. Since T 4. 31 = (u, 

by lemma 4.2.3 (u is ()-balanced and thus, u is )-heavy. We have a contradiction 

and conclude that (E) ,s. We have covered every right-hand side of Gl besides 

T .F . All we need to consider now is the right hand side T.F and a different 

partitioning of s. Suppose that pq = s, T 4 p, F 4 q, p # sl and q 0 s2. Then 

one of the following must be true: 

1. s=t*u*v,s1=t,s2=*u*v,p=t*uandq=*v; 

2. s=t*u*v,s1=t*u,s2=*u,p=tandq=*u*v. 

One-case being the dual of the other, we only need to consider one. Let us look 

at 1. Since * is accessible to F only via the right hand side (E) , .F : s2 = *u * v 

implies that *u * v is of the form *ul(u2 * vl)v2 where E -- u2 * vl, ui(u2 = u and 

vl)v2 = v. Since T : p = t * u = t * ul(u2, by lemma 4.2.3 t * ul(u2 is ()-balanced 

and thus t * u2( is (-heavy and u2 is )-heavy. But u2 is a prefix of u2 * vi and by 

the same lemma u2 is either ()-balanced or (-heavy. We have a contradiction and 

conclude that case 1 (and consequently case 2) cannot be. 

,emma 4.2.6 Any string reducible to the right-hand side (E) is reducible only to 

this right-hand side and only according to one partitioning (i.e. (E) 4. 3132 = s, 

sly E) 4' 32i AB z 3334 = s, A 4. 33, B 4 34 implies A B = E), Si = 33 

and 32 = 34. 

Proof Since E 4 s, s must be an odd length at least 3. Thus, none of the 

single terminal right-hand sides of G1 and none of the right-hand sides mentioned 

in lemma 4.2.2 can derive s. By lemma 4.2.4 and 4.2.5 none of the right-hand sides 

E +T or T.F can derive s since (E s. We have covered every right-hand side 
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of Gi besides (E). All we need to consider is the possibility of a reduction according 

to a different partitioning of s. But the only rule of Gl with ( as a left hand side is 

( --f ( so the left partition of s can only be the one-token string (. 

Lemma 4.2.7 Any string reducible to either of the right-hand sides E), ±T or 

* F is reducible only to this right-hand side and only according to one partitioning. 

Proof By lemma 4.2.2, any string s reducible to either of these right-hand sides 

must be of even length and thus s cannot be reducible to any of the right-hand sides 

E +T, T .F and (E). The right-hand sides ±T and * F cannot both derive the 

same string since the former can only derive strings starting with the symbol + 

while the latter can only derive strings starting with the symbol *. Suppose a 

string s was reducible to both right-hand sides E) and ±T. Then s would be of 

the form +t) where E 4- +t and T 4- t). By lemma 4.2.3, t would have to be at 

the same time (-heavy and ()-balanced. This is impossible and we conclude that s 

cannot be reducible to both E) and ±T. By a similar argument it follows that 

no string can be reducible to both E) and * F . Trivially, a string reducible to 

either of the right-hand side E j, ±T or *F is reducible to this right-hand side 
1t 

only according to one partitioning. 

Theorem 4.2.1 G1 is 1-efficient. 

Proof By lemmas 4.2.4, 4.2.5, 4.2.6 and 4.2.7 any string s reducible to any two 

non-terminals right-hand side of Gi is reducible according to only one partitioning 

thus G1 is efficient. 
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4.3 NT-disjunction and RHS-disjunction 

The whole of the previous section has been devoted to show that a very simple 

grammar, G1, is efficient. Is it possible to find a property that characterizes efficient 

grammars? My search for such a characterization has led me to consider two 

properties which I call non-terminal disjunction and right-hand side disjunction. I 

show that each of these properties in conjunction with unambiguity is a sufficient 

condition for efficiency but not a necessary condition. 

A grammar is non-terminal disjoint if distinct non-terminals of the grammar 

derive only distinct strings of terminals. 

Definition 4.3.1 A grammar G = (E, N, P, S) is non-terminal disjoint 

(nt-disjoint) if for any A, B E N, s E E`, A $ s, B $ s implies A = B. 

Note that since it is undecidable whether the intersection of two CFGs is empty 

or not [Aho 72], it is undecidable whether two given non-terminals of a grammar 

can derive the same string or not. This does not necessarily imply that grammar 

nt-disjunction is undecidable. At the end of this section, I prove the undecidability 

of nt-disjunction in the case of general (non CNF) CFGs. In the case of grammars 

in Chomsky normal form, the question remains open. 

Theorem 4.3.1 Any grammar G that is unambiguous and nt-disjoint is also effi- 

cient. 

Proof Let us consider a string s reducible to some non-terminal A of G. Because 

G is nt-disjoint, s reduces to no other terminal. Now, suppose s is a substring of r, 

a sentence of G, that the derivation from A to s is part of the derivation from the 

distinguished symbol to r, and that s is reducible to A according to more than one 
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partitioning. Then there exist at least two parses for r, one for each partitioning 

of s. But G is unambiguous so there can only exist one parse for r. We have a 

contradiction and conclude that s reduces to A according to only one partitioning 

which implies that G is efficient. 

G1 provides us with a counter example to prove that nt-disjunction is not a 

necessary condition for grammar efficiency. 

Theorem 4.3.2 An unambiguous efficient grammar G may not be nt-disjoint. 

Proof The sentence a reduces to F, to T and to E so G1 is not nt-disjoint and 

according to theorem 4.2.1, Gl is efficient. 

What we can observe is that in the case of G1 when a string reduces to more 

than one non-terminal, it does so according to only one right-hand side. This 

raises the question as to whether it would not be more appropriate to consider the 

disjunction at the level of right-hand sides rather then that of non-terminals. 

Definition 4.3.2 A grammar G = (E, N, S, P) is right-hand side disjoint if for 

any A --> Al A2, B --> B1 B2 E P, s E E*, A1A2 S, B1B2 s implies 

A1A2 = B1B2. 

Like nt-disjunction, rhs-disjunction is a sufficient but not a necessary condition 

for efficiency. Also, like nt-disjunction, rhs-disjunction is undecidable in the case of 

general CFGs. 

Theorem 4.3.3 Any grammar G that is unambiguous and rhs-disjoint is efficient. 

Proof Let us consider a string s reducible to some non-terminal A via some rule 

A --> BC of G. Because G is rhs-disjoint, s may reduce to another non-terminal 
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but only via the right-hand side B C C. Now, suppose s is a substring of r, some 

sentence of G, that the derivation from the right-hand side B C to s is part of 

the derivation from the distinguished symbol to r and that s is reducible (to B C ) 

according to more than one partitioning of s. Then there must exist at least two 

parses for r, one for each partitioning of s. But G is unambiguous so there can only 

exist one parse for r. We have a contradiction and conclude that s is reducible to 

B C according to only one partitioning. Thus G is efficient. 

In preparation for the proof of the non-implication of rhs-disjunction from effi- 

ciency, I introduce the following grammar: 

G2 = ({a,b,c}, {A, B, D, F, I, J, S1, P, S) 

where P is: 

S -F AD D - FD I --3. J I 
S-BI D--'c I -c 
A -a 
B -' b 

F -,c J-,c 

G2 generates the regular set (ac+ I be+). Its right-hand sides FD and J I 
both derive the strings in the regular set (c+) so the grammar is not rhs-disjoint. 

However, it is unambiguous and efficient. Of these four assertions, the first two can 

easily be seen to be true while one may wish to be convinced of the others. 

Lemma 4.3.1 G2 is unambiguous. 

Proof Suppose s is a string of L(G2). Let us prove that the rules composing 

a leftmost parse of s are all determined uniquely. Since A derives only the string 

`a', B derives only the string `b' and the only alternatives for S are AD and B I , 

s must start with either an `a' or a W. If it starts with an a, the first two rules 

of the leftmost parse must be S -; AD and A - a while if it starts with a `b' 
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they must be S -- B I and B -- 6 . In the former case, the rest of the string 

must be derived from D. Since the only terminal accessible from D is `c' and the 

grammar has no empty production, the rest of the string must consist of one or 

more symbols V. If the rest of the string contains only one `c' the next and last 

rule can only be D --> c since the only other alternative of D, namely F D, has 

at least two non-terminals. If it contains more than one `c' then the next two rules 

can only be D --> F D and F --> c . In this last case, the rest of the string s after 

the first `c' must be derived from D. We can apply the above argument recursively 

and conclude that rules composing the left sub-parse of this string of `c's will be 

determined uniquely. In the case that s starts with a `b', exactly the same situation 

prevails but with non-terminal D replaced by non-terminal I and non-terminal F 

replaced by non-terminal J. Since in all cases, the rules of a leftmost parse of s are 

determined uniquely, we conclude that G2 is unambiguous. 

Lemma 4.3.2 G2 is efficient. 

Proof A string reducible to S must consist of either an `a' or a `b' followed by 

one or more `c's. In either case, the left partition of the string must consist of its 

first symbol and the right partition must consist of the rest of the string. This is 

because A D and B I are the only alternatives of S and A and B derive only the 

one symbol strings `a' and `b' respectively. Also, no other non-terminal of G2 can 

derive a string reducible to S. The only string reducible to either F or J is the one 

symbol string V. Both non-terminals D and I can derive strings of one or more `c's 

and only those strings. A string of more than one `c' is reducible to D and I only 

according to the partitioning consisting of a left partition composed of the first `c' 

of the string and a right partition composed of the remainder. We have shown that 

for any string reducible to some non-terminal of G2, the final reduction, to whatever 

non-terminal, involves a unique partitioning of the string. We thus conclude that 

G2 is efficient. 
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We now have the necessary elements to prove the following theorem on rhs- 

disjunction. 

Theorem 4.3.4 A grammar that is unambiguous and efficient may not be rhs- 

disjoint. 

Proof G2 provides the necessary counter-example. By lemmas 4.3.1 and 4.3.2, 

grammar G2 is unambiguous and efficient. Since the string `cc' is reducible to D F 
as well as to I J, two right-hand sides of G2, G2 is not rhs-disjoint. 

4.3.1 Undecidability of nt/rhs-disjunction 

I prove that for general (non CNF) grammars, nt-disjunction and rhs-disjunction 

are two undecidable problems. This means that no algorithm exists that can, when 

given any arbitrary grammar G, output whether G is nt-disjoint (rhs-disjoint) or 

not. The proofs of this resemble very much the proof of the undecidability of gram- 

mar ambiguity found in [Aho 72]. It resorts to the classic strategy of reducing 

Post's Correspondence Problem (PCP) to the problem we want to show undecid- 

able. Let us call the latter P. To reduce PCP to P, we must find a transformation 

that maps instances of PCP to instances of P. The transformation must be such 

that the transformed instance (of P) is to have (or not have) a solution if and only 

if the original instance (of PCP) has one. The argument then brought forward is 

that if an algorithm existed for P the composition of the transformation with this 

algorithm would provide us with an algorithm for PCP. But since PCP is known 

to be undecidable such an algorithm cannot exist and therefore, one cannot exist 

for P either. (Note that one does not have to resort to PCP specifically. Any 

undecidable problem will do.) 

For the purpose of introducing my notation, I reproduce the definition of PCP. 
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Definition 4.3.3 An instance of Post's Correspondence Problem is a three-tuple 

(E, W, X) where W and X are two equal length lists of strings over the alphabet E. 

W = wi, w2, ... wn 

X = xi, x2.... xn 

The instance has a solution if for some sequence of integers ii, i2i ... i,n, m > 1, 

wi, wi2 ... wim = xi, xi2 ... xim . 

In such a case, the sequence of integers ii, i2i ... i,n, m > 1 constitutes a solution 

of the instance. 

For showing grammar nt-disjunction undecidable, I shall use a transformation 

which from any instance C of PCP creates a grammar Gc. The grammar Gc is 

nt-disjoint if and only if C has no solution. This transformation is only slightly 

different from the transformation exhibited in [Aho 72] for showing grammar am- 

biguity undecidable. 

Theorem 4.3.5 General CFG nt-disjunction is undecidable 

Proof From some arbitrary instance of PCP C = (E, (w1, ... wn), ( X I ,- .. xn)) let 

us create the grammar Gc = (E U R, IS, Sw, SX }, P, S) where R is a set of symbols 

{b, ri,... rn} disjoint from E and where P contains the rules S --> b SW, S --> b Sx. 

For each i, 1 < i < n, P also contains the rules SW --> wi SW ri, SW --> wi ri, 
SX --> xi Sx ri and Sx --> xi ri . Let us denote by LW and LX respectively the 

sets of strings of terminals derivable from SW and Sx. It is easy to see that 

Lw = {wi, ... wimrim ... ri, I m > 11 and LX = {xi, ... ximrim ... ri, I m > 11. 

The instance C has a solution if and only if Lw n LX # 0. Indeed, suppose 

ii ... in, m > 1 is a solution for C, then the string wi, ...wim rim ... ri, in Lw 

equals the string xi, ... ximrim ... ri, in LX and thus, Lw n Lx # 0. Conversely, 
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suppose a string wi, ... wi,.. rim ... ri, in Lyy is also in LX then this string must be 

xi, .. ximri.... ri, and the sequence it ... in, must be a solution for C. Grammar 

GC has only the three non-terminals S, SW and S. All strings of terminals 

derivable from S must begin with the symbol b while no strings derivable from Sw 

or Sx begin with this symbol. Therefore, if GC is to have two non-terminals that 
derive the same string, those could only be SW and Sx. It follows that Gc can be 

nt-disjoint if and only if C has no solution. 

Using the same transformation as in the theorem above, I can also prove the 

undecidability of rhs-disjunction. 

Theorem 4.3.6 General CFG rhs-disjunction is undecidable 

Proof From an arbitrary instance of PCP C = (E, (W1.... wn), (x I.... Xn)) let 

us create the grammar Gc = (E U R, IS, Sw, Sx}, P, S) in the same way as in 

theorem 4.3.5. The only other right-hand side that could derive a string derivable 

from the right-hand side b Sw is b Sx (and vice versa) since the terminal b is 

accessible from no other right-hand side. b SW and b Sx can derive the same 

string if and only if SW and Sx can derive the same string and thus if and only 

if C has a solution. All the other right-hand sides of Gc end with a terminal 

symbol from R. Let us consider some right-hand side w, ri, 1 < i < n. Only 

right-hand sides ending with ri could derive the string wi ri. The right-hand sides 

wi SW ri and xi Sx ri cannot derive this string since they introduce at least one 

other symbol from R. The other right-hand side ending with ri, xi ri, will derive 

the string wi ri if and only if C has a solution, namely i. Let us now consider 

the right-hand side wi SW ri. From the previous argument, it follows that only the 

right-hand side xi Sx ri could derive a string derivable from wi SW ri. That could 

happen if and only if Sw and Sx can derive a common string and thus if and only 

if C has a solution. The argument above generalizes to the other right-hand sides 
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of Gc. We conclude that Gc is rhs-disjoint if and only if C has no solution and 

thus that rhs-disjunction is undecidable. 

Note that the fact that nt-disjunction and rhs-disjunction are undecidable for 

general CFGs does not imply that the same is true in the case of grammars in CNF. 

The CNF restriction may very well make both problems decidable but this is not 

yet known. 

4.4 Efficiency, ambiguity and structural 
ambiguity 

In this chapter I have only considered unambiguous grammars. The unambigu- 

ity property played an important part in the proofs of theorems 4.3.1 and 4.3.3. 

One may wonder whether or not the unambiguity property would not itself be a 

necessary condition for grammar efficiency? The answer to that question is no. 

Theorem 4.4.1 A grammar can be ambiguous and efficient, 

Proof Consider the following simple grammar: 

G3=({a},{A,B,S},{S--AB,S-->BA, A-->a,B-->a },S) 

G3 generates only the string aa. It can generate it however in two different ways so 

it is ambiguous. But as can be partitioned into two non-empty sub-strings in only 

one way so G3 is necessarily efficient. 
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"But L(G3) is finite," one might say. Are there ambiguous efficient grammars 

whose language are infinite? Yes. Consider: 

G4 = ({a},{A,B,C,S},P,S) 

where P is: 

S-+AB A --+AB B --ia 

S --> AC A --i a C --i a 

S --+a 

L(G4) is the regular set a+. Any sentence a+a has two parses, one that includes the 

rule S --+ A B and the other that includes the rule S --+ A C, so G4 is ambiguous. 

On the other hand, only one partitioning of some string a' a, n > 1, namely a' ( a, 

can be involved in a reduction of this string to a non-terminal (A or S) and so G4 

is efficient. 

The fact that efficiency does not imply unambiguity is not a totally new result. 

Graham and Harrison [Graham 76a) have pointed out a very similar fact in relation 

with what they call structurally unambiguous grammars. A structurally unambigu- 

ous sentence is one that may have more than one parse tree but whose parse trees 

all have the same shape. A grammar is structurally unambiguous if all its sentences 

are structurally unambiguous. (A grammar (sentence) is structurally ambiguous if 

it is not structurally unambiguous.) Graham and Harrison exhibited a grammar 

very similar to G3 to show that a structurally unambiguous grammar can be am- 

biguous (G3 itself actually shows this). Structural unambiguity and efficiency may, 

at first, look to be the same thing. While it is certainly the case that any efficient 

grammar is structurally unambiguous, the converse is not true. Consider: 
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G5 = ({a,b},{A,B,C,D,E,F},P,S) 

where P is: 

S-AC S-FEB A-pa 
C-DB E -AF B -pb 

D-4AA F-4AB 

G5 generates the two strings aaab and aabb unambiguously and is thus structurally 

unambiguous. But it is not efficient because the string aab can be reduced to C 

according to one partitioning, as I b, and to E according to another, a I ab. 

4.5 A lot of open questions 

In this chapter, I have been looking for a characterization of efficient grammars. 

I have exhibited two conditions that are sufficient but not necessary for efficiency. 

My search for such a characterization has been unsuccessful. In the circumstances, 

a question that naturally arises is the one of decidability. Is grammar efficiency 

decidable? I would guess it is. Unfortunately again, I have not yet been able to 

prove it. My results do not converge to some neat solid conclusion. This may be 

somewhat unsatisfactory. On the positive side, I think the search has pointed out a 

few interesting open questions: "how can we characterize efficient grammars?", "is 

grammar efficiency decidable?", "is nt-disjunction of grammars in CNF decidable?" 

and "is rhs-disjunction of grammars in CNF decidable?". 



Chapter 5 

Outputting multiple parses 

5.1 Introduction 

When describing my extension in chapter 3, I assumed that the problem to be 

solved either had only one solution or that, if it had many, any one of them would 

do and so one could be chosen arbitrarily. While for problems like the building 

of optimal binary search trees or the finding of the optimal order for multiplying 

matrices, this approach will nearly always be satisfactory such may not be the 

case for other problems, like CFL parsing. If we are analysing strings with an 

ambiguous grammar, we will often want to obtain all the parses of an input string 

(and possibly apply thereafter some criteria to select one parse among them). This 

chapter is devoted to the presentation of two different methods by which we can 

have our parsing algorithm (extension to K-GKT) output multiple parses. The first 

method adds a factor n to the space complexity of the extension while the second 

keeps the original space complexity. Before presenting the algorithm, let me discuss 

a few related issues. 

94 
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5.2 Preliminaries 

5.2.1 Partitioning/right-hand side pairs 

If a string s of length greater then one reduces to some non-terminal L (L s) 

then for some rule L - Rl R2 of the grammar and a partitioning sl I32 of s we 

have Rl 4- sl and R2 3 s2. In the following I shall often talk about the right-hand 

side of the rule and the string partitioning involved in this way in a reduction as a 

pair. I shall refer to such a pair by the term partitioning/right-hand side pair which 

I abbreviate to p/rhs pair. I shall also often use the abbreviation rhs instead of the 

term right-hand side (of a rule). During the recognition phase, when a processor 

finds the first non-terminal of the rhs of some rule in the set associated with a 

left partition of the string it spans and finds the second non-terminal of the rhs in 

the set of the corresponding right partition, it inserts in its set the left-hand side 

non-terminal of the rule. It also records, for use in the marking and the output 

phases, the rule and the pair of counter values that point to the processors involved. 

Actually, the left-hand side of the rule need not be recorded explicitly since it can 

be recovered from the rhs and the grammar. Observe also that the pointer pair 

saved corresponds to the relevant partitioning of the string spanned. Hence, the 

information saved is directly related to a p/rhs pair. In the following I shall actually 

refer to this information as a p/rhs pair. I shall refer to the fact that a processor is 

allowed to record a p/rhs by saying that the processor deduces or simply finds the 

p/rhs pair. 

The number of p/rhs pairs 

If the grammar is unambiguous then for each string there can be no more than one 

p/rhs pair involved in the reduction of the string to a given non-terminal. For an 
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ambiguous grammar this is obviously not the case. A question of interest to us is 

how many p/rhs pairs could lead to the reduction of a string to some non-terminal? 

(It is of interest to us because our processors will need to record these pairs.) It is 

easy to show that in some cases all the partitionings of a string could be involved 

in a reduction of the string to a non-terminal. Consider the following grammar: 

G6 =Q a}, {A}, { A - AA, A - a}, A) 

All the n - 1 partitionings of a string a,, can lead to the reduction of the string, 

via the rule A - A A, to the non-terminal A. There could certainly not be more 

p/rhs pairs associated with a string than the number of partitionings of the string 

times the number of rhs in the grammar. This second factor is a constant and so 

the number of p/rhs that could be involved in reductions of the string is bounded 

by a value of 0(n). 

Observe that a rhs can appear in more than one rule. If a p/rhs pair leading 

to the reduction of a string to a non-terminal contains such a right-hand side then 

this pair also leads to the reduction of the string to the other left-hand side non- 

terminals that share this rhs. There is no need however to have the processor store 

the pair more than once. 

5.2.2 Parses and sub-parses 

A parse, recall, is a sequence of rules that can be applied to derive a sentence from 

the distinguished symbol. A parse is composed of sub-parses. A sub-parse is a 

sequence of rules that can be applied to derive a segment of a sentence from a given 

non-terminal. I will often refer to this non-terminal as the non-terminal to which 

the sub-parse is relative. Consider a sub-parse of a given parse. If there is a second 

sub-parse relative to the same non-terminal that produces the same segment then 

we can replace the first sub-parse by the second to obtain a new parse. A sub-parse 
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may itself be composed of sub-parses so the comment I have just made applies 

recursively to sub-parses. The two algorithms that I present in this chapter both 

implement some sort of recursive enumeration of the parses of the input. 

5.3 Recursive enumeration: the O(n3 log n) 

method 

I now describe one method for outputting the successive parses of an input string. 

I assume that each processor has enough storage to hold all the p/rhs it may ever 

deduce and that a processor can access the p/rhs pairs recorded in its store in some 

specific order. For example, the partitionings could be ordered by increasing left 

partitions and the p/rhs pairs could be ordered first by right-hand sides and then 

by partitionings. For the purpose of this presentation, I consider that we want to 

output the parses in leftmost order. It is a simple matter to generalize the algorithm 

for other orders (see section 3.2.4). 

The parse output process is as follows. For each right-hand side involved in the 

insertion of the distinguished symbol in the root node's set, the root node will send 

up all the parses relative to this right-hand side. For a given right-hand side, let 

us denote it Rl R2, for each partitioning of the input (pointer pair), the root will 

send up all the parses involving this right-hand side and this partitioning (p/rhs 

pair). To produce the parses related to a given p/rhs pair, the root proceeds as 

follows. To the partitioning correspond a left son (processor) and a right son. The 

root first asks the left son to send up the "first" sub-parse (of the sub-string it 

spans) relative to the non-terminal Rl and asks the right son to send up its "first" 

sub-parse relative to the non-terminal R2. (I shall explain later how these requests 

are transmitted from father to son). The root outputs the "first" parse relative to 

the current right-hand side (R, R2) and the current partitioning by outputting its 
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own rule (S -4 Ri R2) followed by the sub-parse provided by the left son followed 

by the one provided by the right son. To produce the "next" parse, the root asks 

the left son to send up again the "same" sub-parse it just sent while it asks the 

right son to send the "next" sub-parse relative to R2. This is repeated until every 

combination of the first left sub-parse with each of the right sub-parses has been 

produced. The right son indicates to the root that it has sent its "last" sub-parse 

by attaching a last-parse marker to the last rule of its last sub-parse. The root takes 

this marker off before outputting the rule. The whole process is then repeated with 

the second (next) left sub-parse and then with the third and so on. Once every 

combination of left and right sub-parses (each time with the rule S -- Ri R2) 

has been output, the root switches to the next partitioning and outputs, using the 

same strategy, the parses relative to the new partitioning. It then switches to the 

next partitioning and then the next and so on. Once every partitioning associated 

with the first right-hand side involved in the reduction of the input string to the 

distinguished symbol has been considered, the root moves on to output the parses 

related to the second right-hand side and then to the third and so on. The very 

last rule that the root has to output has attached to it a last-parse marker. The 

root outputs this rule complete with its marker. 

The processors send up the successive sub-parses of the sub-string they span 

relative to some non-terminal in the very same way that the root processor outputs 

the successive parses of the input relative to the distinguished symbol. In other 

words, the parse output process is recursive. The only difference between the root 

processor and the others is that the root will output in the process a given parse 

only once while the other processors may be asked to send up repeatedly the same 

sub-parse or the same sequence of sub-parses. 
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5.3.1 Requesting and providing sub-parses 

When a father node requires a sub-parse from one of its sons it sends a request. Such 

a request can be transmitted straightforwardly by the link-nodes lying between the 

father and the son. There are three types of sub-parse request. I shall denote them 

by: FIRST-SP, SAME-SP and NEXT-SP. The sub-parses sought will always be those 

relative to the non-terminal labelling the tree-node. As we saw earlier on, the sub- 

parses are ordered. FIRST-SP requests that the processor sends the first sub-parse, 

SAME-SP requests that it sends the same sub-parse it sent last time while NEXT-SP 

asks for the following sub-parse. To be able to respond correctly to these requests, 

the processor must keep in its local memory a pointer to the p/rhs pair associated 

with the "current" sub-parse. Note that we will always want a processor that has 

just been marked as a tree-node to send the first sub-parse relative to its label. 

Hence, the marking of a processor as a tree-node implies a FIRST-SP request. The 

latter need not be sent explicitly. The sending up of the sub-parse as such can 

be realised via the same implementation as for the output of a single parse (see 

section 3.2.3). 

5.3.2 Comments 

The underlying parse treeg 

In the single parse algorithm, the marking phase reconfigures the array into some 

sort of tree of processors representing the parse tree of the input. The parse is then 

output. In the multiple parse algorithm the output of each parse involves a first 

phase similar to the single parse marking phase followed by an output phase which 

is exactly like the single parse output phase. In the multiple parse marking phase 

some tree-node processors send down tokens to mark their sons just as in the single 

parse marking phase but others only send down parse requests. As in the single 
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parse marking phase, the whole process is triggered by the root processor. Observe 

that if in the process a tree-node must mark its sons then all of its descendants 

(except for base processors) will also be required to mark their sons. For each parse 

output the parse tree represented in the array is modified. It successively takes on 

the shapes of all of the input's parse trees. 

Impossible situations 

A processor, either a tree-node or a link-node, that is sending up a sub-parse ought 

not to receive any request for another sub-parse before it has sent up the last rule 

of the current sub-parse. This is simply because such a request could only originate 

from the father of the node. But the father sends a request only after it has sent 

up its own sub-parse and thus only after its son has sent up the last rule of its 

sub-parse. If a processor has already received a FIRST-SP request, it ought never 

to receive another one before it has sent up the last rule of the last parse relative 

to its current label (but it may receive a SAME-SP request). This stems from the 

fact that if the father of the node requires any of its son's sub-parses (relative to 

a non-terminal) then it requires them all. For the same reason, a tree-node or a 

link-node processor can receive a marking token only after it has sent up the last 

rule of a last parse. A processor ought not to receive the sub-parse request NEXT- 

SP just after it has sent up the last rule of a last parse. This last rule will bear 

a last-parse marker and indicate to the father of the node that no next sub-parse 

exists and therefore the father shall not request one. 

Lingering tree-node processors 

A processor marked as a tree-node or a link-node may actually not be part of the 

current tree represented in the array. Consider for example the middle processor 

in the following arrays: 
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0 0 0 
o' 'o 0 0' 'o o' 'o 0 

If the tree represented in the array changes from that one depicted on the left to 

that one depicted on the right then the middle processor will remain marked as a 

tree-node processor although it is not part of the second tree. This is because no 

marking token will have reached the processor. Such a lingering tree-node will not 

affect the extraction of the parse out of the second tree. The processor will receive 

no request at all during the extraction and will remain idle. 

5.3.3 Complexity 

Space 

Assuming that we want our algorithm to be able to handle the worst cases and 

assuming that the processors of the array should all be identical, the analysis of 

the space complexity of our algorithm is as follows. Each processor has to have 

enough storage to hold a number of pointer pairs that is proportional to n where 

n is the length of the input, hence a number in O(n). (In the very worst case, 

the hidden constant of this measure will be the number of right-hand sides of the 

grammar.) As in the single parse algorithm, the length of each pointer is O(log n). 

Hence, in each processor the storage requirement for the pointers is O(n log n). The 

remaining storage requirement of each processor (grammar, marks, tokens etc.) is 

fixed relative to the input size and hence the space complexity of each processor 

is O(n log n). The array consists of n(n - 1)/2 processors. The overall space 

complexity of the algorithm is thus O(n3log n). 
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Time 

The information processed by each processor in the recognition phase of the multiple 

parse algorithm is exactly the same as that processed in the recognition phase of 

the single parse algorithm. The information is also processed in the very same way 

except that in the former case the processors may record more of this information 

in their storage. The time required to store each item of the information is certainly 

independent of the input size. We may thus conclude that the recognition phases 

of both algorithms have the same time complexity, i.e., linear time complexity. 

As I have mentioned earlier (section 5.3.2), the multiple parse algorithm does 

not have a separate marking phase. Instead, the marking of processors occurs 

at various points of time and the marking process is interleaved with the output 

process. However, if we look at what happens during the output of one parse in 

the multiple parse algorithm we can see that the output actually consists of two 

phases. I shall call them the multiple parse marking phase and the multiple parse 

output phase. The multiple parse marking phase is very much like the marking 

phase of the single parse algorithm while the multiple parse output phase is exactly 

the same as the output phase of this algorithm. What differs between the multiple 

parse and single parse marking phases is that in the latter a father will always mark 

its sons while in the former a father will on certain occasions mark its sons and on 

others it will simply send them a sub-parse request. Marking a processor that is 

at a distance d takes 2d beats while sending it a request takes d beats. Since the 

times of the processes differ by a constant factor we may conclude that the multiple 

parse marking phase (for a single parse) has the same time complexity as the single 

parse marking phase. We may thus conclude that the time taken by the multiple 

parse algorithm to output one parse is of the same complexity as the time taken 

by the single parse algorithm, i.e. linear in n. 
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The time for all the parses 

To output one parse takes a time linear with the length of the input. Since the 

root, after it has output the last rule of a parse, takes a fixed amount of time to 

trigger the output of the next parse, the time to output all the parses is linear 

with the length of the input times the number of parses. The number of parses 

of a sentence depends of course on the specific grammar used and on the sentence 

itself. What can we expect in the worst case? It is easy to exhibit a grammar which 

can generate sentences whose numbers of parses are exponential functions of their 

length [Graham 76a]. 

A minute improvement 

As I have mentioned two paragraphs back, it takes twice as long to mark a processor 

at some distance away as to send it a request. (Note that to send to a processor a 

request, it must be marked "properly" and so must the processors between it and 

the sender). It is thus preferable to have the fathers send requests to their sons as 

often as is possible and to limit the number of times they will need to mark their 

sons. In the description of the algorithm, I have suggested that the root outputs 

all the parses relative to a right-hand side first and then all the parses relative to 

another right-hand side and so on. The comment above indicates that it would be 

more efficient for the root to output all the parses relative to a given partitioning 

and then those relative to another partitioning and so on. This also applies to the 

order in which each processor sends up its sub-parse. Bringing this modification 

implies that each FIRST-SP request would have to carry a non-terminal to label the 

son. 

This modification could only lower the time used to reconfigure the tree rep- 

resented in the array. The factor it could lower it by is very much dependent on 

the particular input string. For example, suppose a string has 9 parses in all, that 
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there are 3 parses relative to each of 3 right-hand sides and that there are 3 parses 

relative to each of 3 partitionings. In this case, without the modification above 

the reconfigurations would imply 9 markings and no explicit request sending (a 

marking stands for an implicit request) while with the modification it would imply 

3 markings and 6 explicit request sendings. Assuming a request transmission takes 

on average half the time of a marking, the modification would thus improve the 

reconfiguration time, in this instance, by a factor of roughly 2/3. 

5.4 Recursive enumeration: the O(n2 log n) 

method 

In the space complexity of the multiple parse output algorithm described in the 

last section, a factor n is due to the fact that a string could be reduced to some 

right-hand side via all the partitionings of the string and the fact that the algorithm 

requires that processors keep in storage the information relative to every reduction 

made during the recognition phase. In the algorithm I am about to introduce this 

requirement is dropped. The result is an algorithm of space complexity O(n2log n). 

The basic idea is to have the processors record during the recognition phase enough 

information to output at least one parse but not necessarily enough to output 

all the parses. After the output of one parse, the recognition phase is rerun to 

allow the processors to "pick up" the information they may need to output the 

next parse. This process is repeated until all the parses have been output. The 

advantage we get from rerunning the recognition phase between successive parse 

outputs is that by doing so we limit the amount of information the processors may 

need to keep in their storage. The important fact is that the maximal quantity 

of information that can ever be required is independent of the input size. We do 

not rerun the recognition phase each time from scratch. The processors retain 
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throughout the rerun the information they used for the output of the previous 

parse. They use this information to select, among all the information they process 

during the recognition phase, what to record in preparation for the output of the 

next parse. This second multiple parse output algorithm is very similar to the 

first. Like the first, it resorts to FIRST-SP, SAME-SP and NEXT-SP requests and to 

last-parse markers. In fact about the only difference between the two algorithms is 

the repetition of the recognition phase. I assume, in the following, that the reader 

has well understood how the first algorithm works. 

5.4.1 The information needed to output the next parse 

Let us look back at what goes on at the level of a tree-node (or tree-node to be) 

processor during the output of one parse (with the first algorithm). During the 

output of the parse the processor must provide a sub-parse. Which specific sub- 

parse it must produce is determined basically by what it receives from above (either 

a marking token or some sub-parse request) and by some information held in its 

store (information related to reductions and the value of some state variables). 

I shall now address the following question: what is the minimal information the 

processor must have to be able to react properly to whatever request (a marking 

token bears an implicit request) it can receive? The string the processor spans could 

be reducible to any non-terminal of the grammar. It could be in fact reducible to 

every non-terminal. A string reducible to a non-terminal can be reducible to that 

non-terminal according to more than one right-hand side and for each such right- 

hand side it can be reducible according to more than one partitioning. Recall that 

the right-hand sides of the rules and the string partitionings are ordered in some 

way and that the processors are aware of this ordering. 

If our processor receives one marking token (which marks it as a tree-node 

processor) carrying the value of some non-terminal, it must produce the first sub- 
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parse relative to this non-terminal (of the sub-string it spans). To be able to do so 

it will need to hold in its store the first p/rhs pair that brought the reduction of the 

processor's sub-string to this non-terminal. Since the value carried by the marking 

token could be any non-terminal, our processor must hold the first p/rhs pair 

associated with each non-terminal that was inserted in its set during the recognition 

phase. (In the worst case this set could equal the whole set of non-terminals of the 

grammar.) 

If our processor receives a FIRST-SP request it must be the case that on some 

previous parse output it received a marking token carrying the value of some non- 

terminal. To honour the FIRST-sP request it only needs the first p/rhs pair associ- 

ated with the non-terminal. It must also remember that it is a tree-node processor. 

(Only tree-node and link-node processors can receive sub-parse requests. The for- 

mer must react to those requests while the latter must simply pass them on.) If our 

processor receives a SAME-SP request the matter is even simpler. In such a case the 

only information required by the processor is its status (mark) as a tree-node. For 

the processor to provide the sub-parse sought involves simply that it itself sends 

SAME-SP requests to its two sons. I assume that its sons have also kept their marks 

(tree-node) and that so have the processors leading to them (link-node). The last 

case, our processor receiving a NEXT-SP request, is a bit more complicated and also 

probably more interesting. The fact that the processor receives this request implies 

that it has already produced a sub-parse relative to some non-terminal (the one 

by which it is labelled) and that the next sub-parse relative to this non-terminal is 

sought. The last sub-parse sent up was relative to some p/rhs pair. Recall, there 

may be more than one sub-parse relative to the same pair. In the case that the next 

parse is relative to the same p/rhs pair, producing this sub-parse will imply that the 

processor simply sends the appropriate sub-parse requests (FIRST-SP, SAME-SP and 

NEXT-SP) to its sons. Which requests are appropriate depends entirely on whether 

the last sub-parse provided by the two sons carried with them last-parse markers 
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or not. For example, assuming the combination of left and right sub-parses are or- 

dered as suggested in section 5.3, if the last left sub-parse did not have a last-parse 

marker and the right sub-parse did, the appropriate requests would be a NEXT-SP 

request for the left son and a FIRST-SP request for the right son. If it was the other 

way around, that is if the previous left sub-parse had a marker and the right one 

did not, then the processor would need to send its left son a SAME-SP request and 

its right son a NEXT-SP request. The important thing to notice here is that when 

the next sub-parse is relative to the same p/rhs pair, the (only) information needed 

by the processor is a record of whether the previous left and right sub-parses had 

last-parse markers or not. If the next sub-parse is relative to another p/rhs pair 

the processor will need to hold this pair. It will use this pair to mark its two sons. 

This second case occurs just when the previous left and right sub-parses passed up 

to the processor both carried last-parse markers. 

I can now summarise what has been said above and indicate precisely what 

information processors require for the output of a next parse: 

1. for each non-terminal in the processor's set, the first p/rhs pair involved in 

the insertion of the non-terminal in the set, 

2. the most recent marking of the processor (link-node or tree-node), 

3. the p/rhs pair that is next to the pair to which the last sub-parse produced 

by the processor was relative or an indication that the latter pair has no next 

pair, 

4. a record of whether the sub-parses most recently passed up to the processor 

had last-parse markers or not. 

Before explaining how we can arrange for the processors to hold the information 

they need when they need it, I shall add some further comments on this information. 



Chapter 5. Outputting multiple parses 108 

First, the information enumerated above is not the minimum required at all 

times. For instance, if the last sub-parse produced by a processor was relative to 

some p/rhs pair and if this sub-parse was not the last one relative to this pair, 

the processor requires no other information apart from the indication of absence or 

presence of last-parse markers on the last sub-parses it received. That is because 

in such a circumstance the processor can only be requested to produce either the 

same sub-parse as the one produced last or the next one. Let us consider another 

case. Suppose a processor acted as a link-node during the output of the last parse. 

During the output of the next parse it is liable to get marked as a tree-node and 

labelled by any of the non-terminals in its set. To make sure it can cope with 

this eventuality we must have the processor record the first p/rhs pairs associated 

with those non-terminals. On the other hand, observe that our processor could 

get marked as a tree-node only if the last rule passed up during the output of the 

previous parse had a last-parse marker. If such is not the case, the only information 

it needs to retain is its link-node status. 

Second, if a tree-node is outputting a sub-parse relative to the last p/rhs pair 

associated with a non-terminal, it must know that this pair is the last. In such a 

case if the sub-parses sent by its two sons both have last-parse markers the last 

rule sent up by the processor must also bear the last-parse marker. Many things 

can happen to a processor that has produced the last sub-parse relative to a non- 

terminal: it can be requested to produce the same parse again; it can be requested 

(explicitly) to produce the first parse relative to that non-terminal; it can get re- 

marked as a tree-node and labelled, either by that same non-terminal by which it 

was already labelled or by some other non-terminal of its set; it can get re-marked 

as a simple link-node; finally, it can just be left out altogether of the output process 

(not be part of the underlying parse tree(s) of the following parse(s)). 
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5.4.2 The recognition phases 

Now that I have indicated what information is required for the output of a next 

parse, I shall explain how it is obtained. Recall that the idea of this algorithm is to 

have the processors keep in their storage as little information as possible but enough 

to output one parse and to rerun the recognition phase after each parse output so 

as to allow the processors to pick-up the information they may need for the output 

of the next parse. Actually, the recognition reruns are relevant to one one piece of 

the information listed in the last section. Their sole purpose is to allow (tree-node) 

processors to "pick-up" the right-hand side/partitioning pair that is next to the 

pair to which the last sub-parse they have produced was relative. The first p/rhs 

pair relative to each non-terminal of the processors' sets can be recorded during 

the first execution of the recognition phase and kept until the end. The indication 

of whether the last sub-parses passed up to a processor carried last-parse markers 

or not is of course obtained during the current parse output. This information 

is simply stored until needed in the next parse output. Finally, the link-node or 

tree-node status of a processor can also simply be kept in storage from one parse 

output to the next. A processor's status can be modified during the output of a 

parse. 

I shall now show how a (tree-node) processor can get its "next pair" during 

a rerun of the recognition phase. For this, the processor must hold in its store 

what I call the "current p/rhs pair". This is the pair relative to which the sub- 

parse the processor produced during the previous output was. The only reason why 

the processor needs a record of this pair is so that it can spot the next pair, i.e. 

the p/rhs pair next to the current p/rhs pair. As I have mentioned previously, I 

assume that the right-hand sides of the grammar used and the string partitionings 

are ordered in some way. Which specific ordering is used is not important as long 

as the processors can establish which of two right-hand sides (or two partitionings) 
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comes first. To simplify the explanation however I shall adopt the following ordering 

of string partitionings. 

A partitioning ordering 

Say a string is of even length. Its first partitioning is the one that splits the string 

in the middle, the second splits it one position to the left of the middle, the third 

splits it one position to the right, the fourth two positions to the left and so on. 

By the same pattern, the first partitioning of an odd length string partitions it in 

a left sub-string that is one token shorter than the right sub-string. Vice versa for 

the second partitioning. The third partitioning involves a left sub-string two tokens 

shorter than the right sub-string and so on. 

This ordering of string partitionings corresponds to the chronological order in 

which the processors receive, during the recognition phase, the values (non-terminal 

sets) computed by other processors. Let us consider for example a processor that 

is spanning an even length string. The first value pair it will receive will be from 

the two processors spanning the left half and right half of this string. These sub- 

strings correspond to the first partitioning of the string as defined by the ordering 

specified above. On the following beat our processor will receive two pairs of val- 

ues corresponding to the second and third partitioning of the string. The second 

partitioning is the one that involves the shorter left sub-string. It corresponds to 

the pair of values arriving on the processor's left slow belt and right fast belt (see 

section 2.3.4). The third partitioning itself corresponds to the pair arriving (on 

the same beat) on the left fast belt and the right slow belt. From here on I shall 

denote the pair of belts consisting of the left slow belt and the right fast belt by 

the term slow/fast belts and likewise fast/slow belts shall mean the left fast belt and 

right slow belt pair. We can immediately see how a processor can tell whether the 

string partitioning corresponding to a value pair comes before or after the parti- 
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tioning corresponding to another pair. The partitioning corresponding to the pair 

that arrives first comes before the other. If both pairs axrive simultaneously, the 

partitioning corresponding to the pair arriving on the slow/fast belts comes first. 

5.4.3 Recording the next pair 

Let us now see how a processor can identify and pick-up its next p/rhs pair, assum- 

ing one exists. I shall use the term current partitioning to denote the partitioning of 

the current p/rhs pair. Likewise I shall use the terms current rhs, next partitioning 

and next rhs. For ease of presentation, I assume, without loss of generality, that 

the pairs are ordered first by partitionings and then by right-hand sides. During 

the recognition phase rerun the processor's counters will take on, and in the same 

order, exactly the same values they took on during the previous run. The processor 

will also receive exactly the same pairs of non-terminal sets that it received the last 

time. Because of the partitioning ordering we adopted, our processor will receive 

the pair of sets corresponding to the next partitioning pair (the one sought) either 

on the same beat or after the beat during which it will receive the pair of sets 

corresponding to the current partitioning pair (the one it already holds). I call the 

latter beat the current partitioning beat. The processor can easily identify this beat 

by comparing the values of its two counters with the values of the pair of pointers 

that represent the current partitioning. The beat is reached when both counters 

become equal to their corresponding pointers. (Since the sum of the two counters, 

and of the two pointers, is always the same, only one counter needs to be compared 

with its corresponding pointer). One of two things can happen. Either the next 

partitioning is the same as the current partitioning or it follows it. In the former 

case the next right-hand side must necessarily follow the current one while in the 

latter case the next right-hand side can be any right-hand side. Let us look at 

the first case first. On the current partitioning beat the processor receives a pair 
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of non-terminal sets which corresponds to the current partitioning. Because this 

partitioning is the same as the next one this pair of sets also corresponds to the 

next partitioning. It follows that the two non-terminals of the next right-hand side 

will be found in this pair of sets. Thus in this case, the processor, in its search for 

the next right-hand side, must look for the first right-hand side following the cur- 

rent one (in the ordering of right-hand sides) whose first non-terminal is in the first 

non-terminal set and whose second non-terminal is in the second set. The processor 

stores this right-hand side. It constitutes, together with the current partitioning, 

the next p/rhs pair sought. If no right-hand side meets the above conditions then it 

must be that the latter case prevails, i.e. the next partitioning follows the current 

partitioning. In this second case, the processor may receive the non-terminal set 

pair corresponding to the next partitioning either on the same beat or on a beat 

following the current partitioning beat. Recall that processors receive two pairs of 

non-terminal sets at a time and that these are ordered. In the ordering we have 

adopted, the pair arriving on the slow/fast belts comes before the other. Thus, if 

the pair of sets corresponding to the current partitioning arrives on the slow/fast 

belts, the pair corresponding to the next partitioning can arrive on the same beat 

on the fast/slow belts. Whatever the case may be, whether the set pair of the 

next partitioning arrives on the same beat or on a following beat, is not important. 

The important fact is that the processor can easily identify which of the pairs of 

sets it receives correspond to the partitionings that follow the current partitioning. 

These pairs are the ones that arrive on or after the current partitioning beat. The 

processor looks for the first pair amongst these that holds a rhs that reduces to 

the non-terminal by which the processor is labelled. This pair corresponds to the 

next partitioning sought. The processor must thus record the value of the pointers 

(counters) associated with it. The processor must also record the value of the rhs. 

If more than one rhs satisfies the above requirement, the processor picks the one 
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that comes first in the ordering of the right-hand sides. This rhs constitutes the 

next rhs. It and the next partitioning constitute the next p/rhs pair sought. 

5.4.4 Identifying the last p/rhs pair 

We have assumed above that a next p/rhs pair existed. But this may not be the case 

and it could be that the current p/rhs pair of the processor is the last one relative 

to the non-terminal currently labelling it. For the parse output algorithm to work, 

each tree-node processor must know whether the p/rhs pair relative to which it is 

producing a sub-parse is a last pair or not. Since a processor is liable to be labelled 

by any non-terminal of its set, it is liable to be required to produce a sub-parse 

relative to (the first p/rhs pair of) any non-terminal of its set. Thus, a processor 

must know whether each of the first p/rhs pair related to the non-terminals of its 

set is a last pair or not. Suppose a processor has just produced the last sub-parse 

relative to some p/rhs pair (relative to some non-terminal). This processor is then 

liable to produce either the same sub-parse or the first sub-parse relative to the 

same p/rhs pair or the first sub-parse relative to the next p/rhs pair (assuming 

there is a next p/rhs pair). To provide for the last possibility, the processor must 

thus know whether the next p/rhs pair is a last pair or not. 

How can a processor obtain this information? We have seen in the last section 

how a processor that holds some p/rhs pair related to some non-terminal can pick- 

up the next pair during the recognition rerun. If no such pair can be found it is 

simply that the pair already held is the last p/rhs pair relative to the non-terminal. 

Thus, to find out if the first p/rhs pair relative to some non-terminal is also the 

last, a processor can proceed as follows. Once it has recorded the first pair (i.e. 

once it has inserted the non-terminal in its set), the processor looks for a next pair 

using the method described above. If and only if the processor cannot find a next 

pair relative to the same non-terminal then the first pair is also the last. If the 
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processor finds a next pair, it does not need to store any information relative to 

it. It just needs to record the fact that the first p/rhs pair is not a last pair. Each 

processor does this for each non-terminal that it inserts in its set. Observe that 

finding the first p/rhs pairs and finding out whether they are also last pairs need 

to be done only once (during the first execution of the recognition phase). 

The purpose of the recognition phase rerun is to allow the processors to pick up 

a p/rhs pair that is next to some pair it already holds (its current pair). Using the 

same strategy as above, the processor can determine if the next pair picked up is a 

last pair simply by searching, after it has found the next pair sought, for another 

pair that follows it in the ordering. 

5.4.5 The next becomes the current 

Recall that the sub-parse produced by the processor during the last parse output 

is relative to the pair that has been referred to in the last section as the current 

p/rhs pair. During the following parse output, the processor may produce a sub- 

parse relative to that same pair or it may also be requested to produce a sub-parse 

relative to the next p/rhs pair (there are also other possible outcomes). In the 

former case, the current pair remains the current pair while in the latter, the next 

pair becomes the current pair. In this last instance, the processor no longer needs 

to retain the information relative to the old current p/rhs pair. If the processor is 

ever required again in the future to output a sub-parse relative to that pair, it will 

have picked it up first during a preceding rerun of the recognition phase. 

5.4.6 Alternative orderings 

The ordering of partitionings that I suggested earlier makes it easy for the processors 

to spot their next p/rhs pair. The processors first wait until they receive the pair of 
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non-terminal sets corresponding to their current partitioning and from then on they 

look for a next pair. That ordering corresponds to the chronological order in which 

processors receive non-terminal sets from other processors. It is not a very natural 

ordering. A more natural way to order the partitionings would be, for example, to 

order them by increasing left partitions. I shall show how the algorithm presented 

above can be adapted for this alternate ordering. Earlier, I have also assumed 

that the p/rhs pairs are ordered first by partitionings and then by rhs. I shall also 

show how the algorithm can be adapted for the case where it is required that the 

p/rhs pairs should be ordered by right-hand sides first. From these two examples, 

the reader should get the general idea of how the algorithm could be adapted for 

various other p/rhs pair orderings. 

Order of increasing left partitions 

Recall that during the recognition phase, a processor receives from its immediate 

lower left neighbour the sets of non-terminals that this neighbour and the ones 

further along in the lower left direction have computed. For ease of explanation, 

I shall assume that our processor is at an odd distance from the base (i.e. that 

it has an odd number of lower left neighbours). The first set received is from the 

processor that is halfway between our processor and the base. (Our processor gets 

two copies of this set. One comes on the slow belt while the other comes on the 

fast belt.) The set received corresponds to the left half (partition) of the string 

spanned by the processor. On the following beat, the processor receives on its slow 

belt a set coming from the processor that is one position further than halfway and 

it receives on its fast belt a set from a processor that is one position closer. These 

correspond to left partitions that are respectively one token shorter and one token 

longer than the previous (half length) partition. On the next beat, the processor 

receives sets corresponding to left partitions that are respectively one token shorter 
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and one token longer than the previous ones and so on. In other words, the sets 

received by the processor on its slow belt arrive in the order of decreasing size of 

the partitions to which they correspond (starting from the half length partition) 

while those received on its fast belt arrive in increasing order of corresponding 

partitions. In the case where the set corresponding to the left partition of the 

current p/rhs pair (let us call this set the current left set) arrives on the fast left 

belt, the problem of spotting the next p/rhs pair is similar to what it was before. It 

is in the other case where things become slightly more interesting. If the processor 

is to receive the current left set on the slow belt then it may receive the left set 

corresponding to the left partition of the next p/rhs pair (let us call it the next left 

set) before the current left set. If this happens then we must have the processor 

record the next pair before it receives the current one. The strategy to achieve this 

is fairly simple. If the processor receives a pair which could be a next pair it records 

it as a candidate. If later on the processor receives another pair which precedes 

the one recorded (in the ordering) and if it follows the current pair then this pair 

replaces the one recorded as a candidate. The details are as follows. During the 

recognition rerun, the processor records the first p/rhs pair (relative to its label) 

it can deduce whether the associated sets arrived on the slow/fast belts or the 

fast/slow belts. If on the same beat both the set pair arriving on the slow/fast 

belts and the one arriving on the fast/slow belts allow the processor to deduce a 

p/rhs pair, the processor records the one deduced from the former set pair. This 

is because that pair involves a smaller left partition than the latter. If a set pair 

allows for the deduction of more than one p/rhs pair, the processor favors the one 

which contains the rhs that comes before the others in the rhs ordering. Then 

and until it receives the current p/rhs pair, the processor does the following. If it 

receives on the slow/fast belts a set pair which allows it to deduce another p/rhs 

pair (always favoring the lowest ordered rhs if more than one can be deduced), it 

replaces the pair recorded by that other pair since the latter involves a smaller left 
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partition. When the processor receives the sets corresponding to the current pair it 

may be the case that the processor does not have in its store a candidate. If it has 

a candidate and if the set pair of the current p/rhs pair arrived on the slow/fast 

belts then the candidate is a good one. It gets nominated the next pair and we 

are through. If on the other hand the set pair of the current pair arrived on the 

fast/slow belts then its left partition would be longer than that of any candidate the 

processor could have recorded and so such a candidate would have to be rejected. 

In that case or in the case where no candidate has been recorded the processor 

must keep looking for the next pair. It looks first in the set pair corresponding to 

the current partitioning. In that pair, it looks only for right-hand sides that follow 

the current one. If it cannot find one in that set pair it shall look for any rhs in 

the set pairs that it will receive on its fast/slow belts. If the set pair corresponding 

to the current p/rhs pair arrived on the slow/fast belts, it looks first for a rhs in 

the set pair that arrived on the same beat on the fast/slow belts. From then on 

the processor must ignore the set pairs arriving on the slow/fast belt since these 

involve left partitions that are smaller than the current left partition. 

Ordering first by rhs 

For this explanation, let us revert back to the partitioning ordering that was sug- 

gested originally. If the p/rhs pairs are ordered by rhs first and then by partitionings 

then the pair next to some current pair could consist of the same rhs as the current 

rhs and a partitioning that follows the current partitioning. If such a pair does not 

exist then the next pair could consist of some rhs that follows the current rhs and 

of any partitioning. If more than one such pair exist, the next one is the one with 

the lowest rhs among them and if more than one such pair exist, the next one is the 

one with the lowest partitioning. To implement the search of the next pair with 

this ordering, we apply the same strategy as above. That is as soon as a (tree-node) 
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processor starts receiving set pairs, it looks for a candidate next p/rhs pair. Until 

it receives the set pair of the current partitioning, the processor records any p/rhs 

pair it can deduce that has a rhs which follows the current one. It replaces the 

recorded pair if it finds a pair with a rhs that follows the current rhs and precedes 

the recorded rhs. That is because in the overall ordering, any p/rhs pair with a 

lower order rhs precedes any pair with a higher order rhs. Once it has received 

the set pair of the current partitioning, the processor keeps doing the same thing 

except that from this point, it can also record a p/rhs pair containing the same 

rhs as the current pair. That is because from then on, the partitionings involved 

follow in the ordering the current partitioning. If the processor finds such a pair 

then it has found the next pair and it stops searching. Otherwise, the processor 

keeps looking for a better pair up until it receives the last set pair. At that point, 

if no definite next pair has been found, the recorded candidate pair, if one exists, 

gets elected to the post. If none exists, then it is the case that the current p/rhs 

pair was the last pair. 

It is a simple matter to combine the ideas presented in the last two sections if 

we want the p/rhs pairs to be ordered by rhs first and if we want the partitionings 

to be ordered by increasing left partitions. 

5.4.7 Complexity 

Space 

As was mentioned at the beginning of the description of this second algorithm, the 

main purpose for introducing the recognition phase reruns was to limit the number 

of information elements that a processor could be required to hold to a number 

independent of the input (or array) size. As was shown in section 5.4.1, the maximal 

information that the processors need to hold for the algorithm to work properly 



Chapter 5. Outputting multiple parses 119 

amounts to one p/rhs pair for each non-terminal in the grammar and possibly one 

more pair plus a few status flags. The number of pairs is thus independent of 

the input size. The space required to store one such pair, because it consists of 

pointers, is O(log n) (where n is the input size). Thus, the space requirement for 

one processor is O(logn) and thus for the whole array, it is O(n2 log n). 

Time 

The output of each parse involves a recognition phase and a marking and output 

phase. The marking and output phases are exactly the same as the corresponding 

phases of the previous algorithm and so they are of linear time complexity. The 

recognition phase of the second algorithm however is slightly more elaborate than 

that of the first. All of the extra operations that must be performed during each 

beat of the phase, except for the comparison of pointers (to detect the arrival of the 

current p/rhs pair) certainly take fixed amounts of time. If we want to be totally 

rigorous we have to take into account the fact that comparing two values of log n 

bits takes a time O(log n). We have a way out however. Recall that the counter 

implementation described in section 3.4 allows a test if zero (IFO) operation to be 

performed in constant time. We can implement the detection of the current p/rhs 

pair arrival as follows. When a processor starts to receive set pairs (this is indicated 

in GKT by a control signal), it resets a special counter to zero which it increments 

it on each of the following beats. Whenever the processor records a p/rhs pair 

(it could be a first pair or a candidate for a next pair or whatever...) it records, 

with the pair, the value of this counter. If on a subsequent recognition phase, if 

the processor needs to identify the beat on which the set pair corresponding to 

this p/rhs pair arrives, it does this. On the beat it receives the first set pairs, it 

initialises a counter to the value mentioned above (the value the special counter 

had when the p/rhs pair was recorded during a previous phase). It decrements this 
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counter on each following beat. When the counter reaches zero, the current beat is 

the one we wanted to detect. Assuming the above implementation for the detection 

of the current p/rhs pair arrival, we conclude that the recognition phase also has a 

linear time complexity. We thus conclude that the time to output each parse with 

the second algorithm is as with the first O(n). 

A net gain 

We have an interesting result here. By repeating the recognition phase between 

parse outputs we have reduced the space complexity of multiple parse output by a 

factor of n. While in doing so, we have certainly increased the time taken to output 

the parses, but we have increased it only by a constant factor. 
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Problem decomposition 

6.1 Introduction 

Up until now I have assumed that we always had at our disposal an array of 

processors as large as the size of the input required it to be. Considering that for 

an input of size n, the number of processors needed is n(n + 1)/2, this assumption 

may not be very realistic, mostly in the specific case of CFL parsing. In this chapter, 

I address the issue of how we can solve, given an array of some fixed size, problem 

instances too large for the array. I restrict myself and consider only that part of the 

problem dealing with the computation of the recognition (solution) matrix, i.e. the 

recognition phase. The existence of a simple efficient sequential algorithm for the 

extraction of the parse out of the recognition matrix makes the use of a processor 

array unattractive in the circumstances. 

I resort to a standard technique which handles a large instance by simulating 

a virtual array on a much smaller real array. The technique resorts to auxiliary 

storage that must be accessible to the processors at the boundary of the real array. 
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Figure 6-1: The real array. 
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I first describe the technique briefly in the context of the recognition phase. I 

then address various issues related to the use of this technique. More specifically, 

I look at the question of auxiliary storage space, timing, counter initialisation and 

recognition matrix recovery. Finally, I present an analysis of the space and time 

complexity of the algorithm. 

6.1.1 The real array 

The array at our disposal is an s x s rectangular array of processors for some s > 0. 

Auxiliary storage devices are connected to the array. The top left and the top right 

processors of the array can write on auxiliary store while the bottom processors can 

read data from it. In the algorithm, a bottom processor needs to read from the store 

only data that have been written by the processor in line with it on the opposite 

boundary of the array. Hence, the auxiliary storage devices could either consist of 

two devices, one for each pair of opposite array boundaries (see figure 6-1a), or of 

2s devices, one for each pair of opposite boundary processors (see figure 6-1b). I 

assume that the main mode of data access of the storage devices is sequential and 

0.0 0 0.0 
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Figure 6-2: The virtual array. 

that the rate of transmission is in accordance with the rate at which the processors 

of the array exchange data. The devices also have the capability to start reading 

or writing data from specified locations in the auxiliary storage. 

6.1.2 The virtual array 

The algorithm is based on the concept of a virtual array. Suppose the size of the 

input is n. For sake of simplicity I assume that n is a multiple of s, i.e. n = qs for 

some integer q > 1. If we had an n x n array (depicted in figure 6-2, in this figure 

q = 5) we could then use the original version of the algorithm. But our array is 

much smaller. I have drawn sub-divisions in the figure of the virtual n x n array. 

I suppose each diamond shape sub-division is of the size of our real array and that 

each triangular sub-division at the base is (slightly over) half the size of our array 

(the upper half). I shall call diamond shape sub-divisions full-tiles and triangular 

ones half-tiles. I shall also use the word tile to refer to either full-tiles or half-tiles. 
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Bottom processors of a full-tile receive data only from top processors of adjoining 

full-tiles or half-tiles. The idea of the algorithm is to simulate the virtual array 

using the real array by multiplexing in time the processing that should be executed 

by each tile. We first simulate the bottom leftmost half-tile by running the original 

algorithm on the top half of the real array, feeding it as input the first s tokens 

of the input string. The recognition phase proceeds as usual except that some 

of the information coming out of the top right processors gets stored in auxiliary 

storage (instead of being left to wander in ether!). After the topmost processor 

has computed its value, only null values flow out of the processors on the top right 

boundary. At that point, we stop the execution of the algorithm, reset the array 

and rerun the algorithm with the next s tokens as input. This time, information 

emerging from both the top left and top right boundary processors gets saved. We 

continue in this fashion until we have simulated the processing of each half-tile at 

the base of the virtual array. We then simulate the processing of the full-tiles above. 

We simulate a full-tile by running the original algorithm on the whole array and by 

feeding the bottom processors of the array with the relevant information that was 

saved during simulation of the adjoining tiles below. This is the basic idea. I now 

examine in more details some of its implications. 

One can resort to other strategies than the one presented above to have a small 

real array simulate a large virtual array. One of these, for example, consists in 

having each processor simulate a square array of virtual processors. Such a strategy 

can be applied if the real processors are relatively powerful. I shall have more to 

say about this in the next chapter in which I take a look at actual real machines. 
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6.2 The information in auxiliary storage 

The information we need to store in auxiliary storage are the processor values 

emerging out of the fast and slow belts of the topmost processors of the real array. A 

topmost processor of the real array always plays the role of some (virtual) processor 

in the virtual array that is located on the top boundary of a tile. The information 

saved is the one this virtual processor would transmit to its virtual neighbour above 

located at the bottom boundary of an adjoining full-tile. We save the information 

so as to be able to feed it later on to the real bottom processor opposite the topmost 

processor when the former will play the role of the virtual neighbour. 

6.2.1 The amount of information 

Not all that is coming out of a topmost processor's fast and slow belts is worth 

saving. Firstly, at the beginning of the algorithm's execution only null values 

emerge out of processors that are high up in the array. (The higher up a processor 

is in the array, the longer it will take before it outputs non-null values.) Also, once 

a processor has computed and sent up its own value, it receives and transmits only 

null values. Clearly, there is no point in storing null values in auxiliary storage if we 

can help it. Secondly, in the GKT version of the basic algorithm, a processor may 

put on its fast belt a non-null value and on the same beat put a null value on its 

slow belt. The non-null value travelling on the fast belt will never be caught up by 

any non-null value on the slow belt and it will never be involved in the computation 

of any of the other processors' sets. Here again, we shall not clutter the auxiliary 

storage needlessly with such values. (In the Kosaraju version of the basic algorithm 

no non-null value travels on a fast belt accompanied by null values on the slow belt. 

It is very easy to modify the GKT version so that it behaves in the same way.) 
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Recall that a processor at a distance d from the base computes its value from 

beat 2d/3 to beat 2d - 1. During that period, the processor receives on its left 

slow belts the values that have been computed by the processors on the same row 

lying between the base and halfway between the base and the processor. On its 

fast belt it receives the values of the processors lying halfway between it and the 

base. Now, suppose that our processor is a virtual processor located on the bottom 

left boundary of a full-tile. Then, the values mentioned above are precisely those 

that the real processor will need to obtain from the auxiliary storage when it will 

play the role of this virtual processor. Of course, these are also the values that the 

neighbouring virtual processor located on the top right boundary of the bottom left 

adjoining tile will have sent out on its top right fast and slow belts. The values will 

have been provided at some earlier time by the real processor playing the role of 

this virtual processor. We will have saved these values in auxiliary storage at that 

time. The comment at the beginning of this paragraph implies that the number of 

values that needs to be saved is equal to d, the distance of the virtual processor 

from the base. Half of these values will be for feeding into the processor's fast belt 

and the other half for feeding into its slow belt. 

6.2.2 The number of values produced by a row of a 

half-tile 

Say a row of a half-tile consists of r processors (1 < r < s). During the simulation 

of this half-tile the corresponding r processors of the real array will compute r 

processor values (sets of non-terminals). These values will all start their journey 

upward on the fast belt. Only half of those however will exit out of the row's 

topmost processor's fast belt. These r/2 values will be from the processors of the 

top half of the row. The other half of the values computed will have been transferred 

onto the slow belt and they will exit out of the row's topmost processor's slow belt. 
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These r/2 values will be from processors on the bottom half of the row. I assume 

here that as in the Kosaraju version of the basic algorithm, no copy of a value that 

has been transferred from a fast to a slow belt remains on the fast belt. The total 

number of values the row will produce is thus r. 

6.2.3 The number of values added by a row of a full-tile 

Say a virtual processor at a bottom left boundary of a full-tile is at a distance d 

from the base, d > s. When the real processor located at the corresponding position 

on the bottom left boundary of the real array will simulate this virtual processor, it 

will receive d/2 values on the fast belt and the same amount on the slow belt from 

the auxiliary storage. During the simulation of the full-tile, the s processors of the 

row on which the real processor lies will compute s values. The first of these will 

be computed by the bottommost processor of the row. It will have been computed 

only after the processor will have received all of the d values from auxiliary storage. 

Of the d/2 values received on the fast belt, s/2 will be transferred onto the slow 

belt and only the rest will reach the top end of the fast belt. Because d > s, all of 

the s newly computed values will also reach the fast belt top end. Hence, (d + s)/2 

values will exit out of the row's top processor's fast belt. These values will be saved 

for later. All of the d/2 values fed in the lower end of the row's slow belt will reach 

the top end and so will the s/2 values that will have been transferred from the fast 

belt. Hence, the number of values reaching the top end of the slow belt will be the 

same as the number of values reaching the end of the fast belt. The total number of 

values saved will be d + s. The row will thus have produced s new values. Observe 

that these values are intended for a virtual processor that is at a distance d + s 

from the base. 
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6.3 Timing issues 

The idea of simulating the virtual array with the real array is fairly simple. If a 

real processor does not have a top (left or right) neighbour but the corresponding 

virtual processor has one then we save the values the real processor outputs so as 

to be able to feed them later to a real processor that will stand for the virtual top 

neighbour. We have just seen what values need to be saved and how many need to 

be saved. I now consider the question of timing. 

Let us look at the values coming out of the top right boundary of the real 

array while it is simulating a half-tile. I assume that at time 0 the relevant portion 

of the input is available to the processors of the real array corresponding to base 

processors of the virtual array. As in the Kosaraju version of the basic algorithm, 

processors never send a non-null value on their fast belt with a null value on their 

slow belt. On beat 1 the bottom rightmost processor on the top right boundary 

outputs its own value. On the same beat all the other processors on that boundary 

output only null values. On the following beat the processors all output null values. 

On beat 2 the bottom rightmost processor outputs only null values, its top left 

neighbour outputs non-null values, all the other processors output only null values. 

On beat 4 and 5 the third processor from the bottom right outputs non-null values 

while all the others output only null values and so on. On beat 13s/21 the topmost 

processor outputs its first non-null value and on beat 2s the last non-null value that 

is to come out of the array comes out of the topmost processor. Figure 6-3 shows 

schematically what goes on. On that figure circles (o) represent active processors, 

diamonds (o) represent idle processors, bullets (.) represent pairs of non-null values 

and dots () represent pairs of null values. The values depicted are the ones we will 

want to feed in on the other side of the array when we make it simulate the full-tile 

above and to the right of the current half-tile. Notice that a processor on the top 
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Figure 6-3: The output from a half-tile. 

right boundary at a distance d from the (virtual) base will output [3d/21 leading 

pairs of null values before outputting its first pair of non-null values. The simplest 

thing to do is to store these leading null value pairs in auxiliary storage as they 

come out. Alternatively, we can decide that we want to store only non-null values. 

This implies that we insert appropriate delays between the start of the simulation 

of a full-tile and the times when we start feeding in streams of values from the 

auxiliary storage into each of the processors at the bottom boundary of the array. 

Such delays could be implemented easily with two control signals that would leave 

the bottom corner of the array and travel at the speed of 2/3 processor per beat 

along each bottom boundary. 

6.3.1 Doing only useful work 

Let us now look at the values coming out of the top-right boundary of a full-tile. 

Let us consider a full-tile at the lowest level in the virtual array. Figure 6-4 depicts 

the data that are fed in the bottom-left boundary of the real array and the data 
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Figure 6-4: The output from a full-tile. 
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that come out of the top-right boundary. Notice that 8 beats elapse before the 

bottom rightmost processor of the top-right boundary outputs its first non-null 

value. During these 8 beats all of the processors on that boundary output only null 

values. It would be both a waste of space and a waste of time to store these values 

in auxiliary storage. We cannot do otherwise but wait for the 8 beats to elapse 

before we start collecting useful values coming out of the array. But if we do not 

store the null values produced during the initial 8 beats period and hence if we do 

not feed them back in the bottom-left boundary when the time comes to simulate 

the tile above and to the right of the current tile, then we will be able to avoid an 

unnecessary 8 beat delay. Doing so amounts to simulating the processing of this 
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second tile only when it is doing useful work, i.e. when its processors are not all just 

exchanging null values. Since a processor at a distance d from the base computes 

its value from beat L3d/2J to beat 2d - 1, simulating the virtual tiles only when 

they are doing useful work should take roughly 1/4 of the time it would take to 

simulate them from the start of the virtual algorithm execution. 

6.3.2 The fast belt and slow belt paradox 

When we have the array simulate a full-tile we start feeding (non-null) values onto 

the fast belt of the bottom processor of the row at the same time that we start 

feeding (non-null) values onto its slow belt. Paradoxically, although the slow belt 

carries values at half the speed of the fast belt, non-null values start coming out 

of the fast and slow belts of the top processor of the row at the same time. This 

is explained by the fact that some values on the fast belt get transferred onto the 

slow belt. In fact, as soon as a non-null value on the fast belt passes in front of 

the stream of non-null values on the slow belt the basic K-GKT algorithm has this 

non-null value move onto the slow belt. Hence, the fronts of the two streams of 

non-null values are never further than one value apart from each other. 

As many values are fed onto the fast belt of the bottom processor of the row 

as onto its slow belt. Although, as we have just mentioned, some of the values 

initially on the fast belt end-up on the slow belt, as many values come out of the 

top processor's fast belt as out of its slow belt. This is explained by the fact that 

each processor of the row computes a new value and deposits it onto the fast belt. 

The number of new values is double the number of values transferred from the fast 

belt to the slow belt. 
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6.4 Initialisation of counters 

Up until now I have dealt with matters that concern only the basic K-GKT algo- 

rithm. The one question I have to consider with regard to my extension to this 

algorithm is the question of initialisation of counters. In section 3.2.1 I suggested 

two methods for the initialisation of counters. I show how these methods can be 

adapted for the execution of the algorithm on the virtual array. When the real ar- 

ray simulates a half-tile, the original methods can be applied without modification. 

I shall thus consider only full-tiles. 

Recall that when a processor at a distance d from the base starts to compute 

its value, its two counters must be initialised to rd/21 and Ld/2i + 1 respectively. 

For a real processor P;j let me define its distance from the bottom corner of the 

(s x s) real array, which I shall denote d', as the value (j - 1) + (s - i). (By the 

convention I have been using, P1,1 denotes the left corner processor of the array 

while P,,1 denotes the bottom corner processor.) The distance of a processor from 

the bottom corner is equal to the distance between this processor and the processor 

on the same row on the bottom-left boundary of the array plus the distance between 

the latter processor and the bottom corner processor. The distance between the 

base and the virtual processor a real processor stands for (during the simulation 

of a full-tile) is equal to the distance between this real processor and the bottom 

corner processor plus the distance between the base and the virtual processor the 

bottom corner processor stands for. To implement the initialisations of the counters 

we precompute, before the simulation of a full-tile, the half of the distance from the 

base of the virtual processor located at the bottom corner of the full-tile. I call this 

distance the bottom corner offset. At the start of the simulation we transmit the 

bottom corner offset to the bottom corner processor of the real array. We broadcast 

this value to all the processors of the array by having the bottom corner processor 
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send it to its two upper neighbours and by having any processor that receives the 

value on a beat send it to both of its upper neighbours on the next beat. Using 

either of the two counter initialisation methods suggested in chapter 3 we have each 

processor increment their counters to the values (d'/21 and ld'/2J + 1 where d' is 

the distance between a processor and the bottom corner. The original methods use 

control signals that leave at the base of the array and travel either along its rows 

or its columns. To achieve the required result here, we use the same signals but 

we have them start off from the bottom corner of the array and have them travel 

along both the bottom row and the bottom column. On each beat, each signal gets 

duplicated. A processor that has received a signal, either from its bottom left or 

bottom right neighbour, will send a copy of it to both of its upper neighbours. (We 

proceed in this way just to ensure that every processor of the array receives the 

signals. We could also have only the processors on either the bottom row or bottom 

column duplicate the control signals.) On beat L3d'/2J the counters of a processor 

at a distance d' from the bottom corner will have reached the values (d'/2] and 

[d'/2j + 1. At that time, the processor will have already received the offset value. 

It will add this offset value to each of its counter values to obtain the final values 

required. 

Let us assume that s, the number of processors on a side of the array, is even. 

In that case the distance between the bottom corner processor of any full-tile of the 

virtual array and the base of the virtual array will always be odd. Our counters are 

integers so the offset value will have to be an integer. We may choose it to be either 

the floor or the ceiling of the corresponding real value. Whatever choice we make 

is not important as long as we adjust the counter initialisation appropriately. The 

necessary adjustment must ensure that the final values of the counter are not off 

by one from the required values. The details are not interesting and I skip them. 

As a final comment on counter initialisation, observe that the computation of 

the counter values before the addition of the offset need not to be done more than 
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once. Actually, if we were to build an array, we would probably prefer to store these 

values permanently in each processor rather than to implement the whole counter 

initialisation method described in chapter 3. 

6.5 Recovering the recognition (solution) 

matrix 

In order to be able to produce the parse of the input (using the usual sequential 

method [Aho 72]) we have to recover the recognition matrix that will have been 

computed by the virtual array. Each element of the matrix must consist not only 

of a set of non-terminals but also of the associated rules (rhs) and pointer pairs 

that will have been involved in the insertions of the non-terminals in the set. The 

recovery of the recognition matrix can be achieved in various ways. One simple 

method consist in collecting its elements as they come out of the top-right (or top- 

left) boundary of the real array while it is simulating each of the tiles located on 

the top-right (or top-left) boundary of the virtual array. Recall that the non-null 

values a (virtual) processor receives on its fast belt from its bottom-left (bottom- 

right) neighbour are the values that have been computed by the (virtual) processors 

located along the same row (column) between it and halfway between it and the 

base. It receives on its corresponding slow belt the other values that have been 

computed on its row (column). Thus, when a real processor simulates a top-right 

(top-left) virtual boundary processor, it outputs on its top-right (top-left) fast belt 

the values of the top half of the row (column) of this virtual processor and it outputs 

on its slow belt the values of the other half. These values are just those we are 

seeking (from this row of the matrix). Recall that the values come out of the fast 

belt in the reverse order in which they come out of the slow belt. If the values 
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are stored in a random-access memory, it is a simple matter to store them in some 

given order. 

The major drawback of the method presented above is that it implies that 

throughout the simulation of the virtual array, the values exchanged by the (real) 

processors and stored in auxiliary storage will have to consist not only of non- 

terminal sets but also of rules and pointer pairs. It will thus take more time to 

perform the exchanges of processor values and these will occupy more auxiliary 

storage space. Notice that for the computation of its value a processor requires 

only the non-terminal sets. The rules and pointer pairs associated with these are 

needed only after the recognition phase. To recover the recognition matrix while 

avoiding the unnecessary movement of rules and pointer pairs we can proceed as 

follows. Once the real array has terminated the simulation of a tile, we have the 

array go through what I call the flushing phase. During this phase, we extract the 

values (non-terminal sets, rules and pointer pairs) that have been computed by the 

array during the simulation. This can be achieved by first having each processor 

deposit its value on one of its fast belts, say the row oriented one, and then having 

all the values migrate out of the array through, say, the top-right boundary. In this 

fashion, we can recover the whole matrix by recovering each of its tiles separately. 

We can combine the two previous methods and obtain yet a slightly faster 

method. We can use the flushing phases to recover only the rule and pointer 

pair components of the recognition matrix and use the first method to recover the 

non-terminal set component. Since in that way the processors would move less 

information during each flushing phase that phase could run more quickly. And 

since when the real array simulates a top-right boundary tile the non-terminal sets 

sought flow out of the real array anyway, no time need be lost in recovering these 

values as they come out. 
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6.6 Complexity 

6.6.1 Space 

Since our real array is of some fixed size, we may consider its number of pointers to 

be a constant. Since the size of the input we can handle with our array is limited 

by the size of the counters in the processors, the space complexity due to the array 

itself is O(log n) where n is the size of the input. In order to evaluate the space 

complexity of the algorithm we must also take into account the amount of auxiliary 

storage required. We have seen in section 6.2.1 that the amount of information we 

must save for the simulation of a tile is proportional to the height of the tile in 

the array. After having simulated all the half-tiles at the base of the virtual array 

we will have in auxiliary storage an amount of information proportional to n since 

the number of half-tiles simulated is proportional to n (it is equal to n/s) and each 

simulation will have produced an amount of information proportional to the size of 

the real array, which is constant. Just before simulating the full-tile at the top of 

the array we shall also have in storage an amount of information proportional to n. 

This is simply because the top tile is at a distance from the base proportional to n. 

When we have simulated or just before we simulate the full-tiles that are located 

mid-way between the base and the top of the virtual array we shall have in storage 

an amount of information proportional to n2. This follows from the fact that the 

distance between these tiles and the base is proportional to n and that the number 

of such tiles is also proportional to n (is equal to n/2s). I show that the maximal 

amount of information that we may ever need to store cannot be greater than some 

constant factor times n2. Observe that the information needed to simulate a tile 

of the virtual array (or, should I say, to compute a tile of the recognition matrix) 

comes from a portion of the recognition matrix. The information required is the set 
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of values of the recognition matrix elements in the tiles below and on the same row 

(forward diagonal) as the tile we want to compute (simulate) and those in the tiles 

below and on the same column (backward diagonal). Since we can simulate a tile 

only after having simulated all the tiles below in the same row (column) and since 

we must simulate it before we simulate any tile above in the same row (column) 

it follows that we shall not need to have in storage more than two copies of any 

tile of the recognition matrix. We might have a copy for the simulation of at most 

one tile above in the same row and another for the simulation of at most one tile 

above in the same column. Since the number of values in the whole recognition 

matrix is O(n2) it follows that the maximal number of values we may need to store 

is O(n2). Because the values must include counters at one point or another, we 

must add a factor of log n to this measure. Hence the space complexity of the whole 

algorithm (recognition phase) is 0(n2 log n). We obtain the same result as when 

we considered the array always to be large enough for our inputs. This is explained 

by the fact that storing the information in an array of processors or storing it in 

some auxiliary storage device does not affect the amount of information that needs 

to be stored. The space complexity is also the same as in the sequential method 

(taking pointers into account). 

6.6.2 Time 

Let us determine the total number of beats required to simulate the whole virtual 

array for an input of length n using an s x s real array. I assume that n = qs 

for some integer q. I define virtual array tile-levels (which are similar to real array 

levels (section 3.1.1)). The tile at the top of the virtual array is at tile-level 1. The 2 

tiles below are at tile-level 2 and so on. The half-tiles at the base are at tile-level q. 

The simulation of each half-tile requires the same number of beats as the execution 

of the original algorithm on an input of s tokens, i.e. 2s beats. There are q half-tiles 
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and so the simulation of all the half-tiles requires 2qs beats. As mentioned above, 

we only simulate the useful processing of a tile. Hence, the amount of time required 

for the simulation of a tile is the same as the amount of time during which such a 

tile would be doing useful work if it was actually part of a real array as large as 

the virtual array. Let us consider a tile at tile-level 1, 1 > 1. Its bottom corner 

processor is the one nearest to the base and so it starts computing its value before 

every other processor of the tile. Conversely, its top corner processor is the one 

furthest from the base and it terminates the computation of its value after every 

other processor. The simulation time for the full-tile is the same as the time between 

the virtual beat on which the bottom corner processor starts computing its value 

and the virtual beat on which the top corner processor terminates computing its 

in the virtual execution of the algorithm on the virtual array. Let db and dt denote 

the distances of the bottom corner (virtual) processor from the base and of the top 

corner processor from the base. The bottom processor starts computing its value on 

virtual beat 3db/2 while the top processor has terminated computing its on virtual 

beat 2dt. The time it takes to simulate the full-tile is thus given by 2dt - 3db/2. 

Since the full-tile is at tile level 1, db = s(q - 1 - 1) + 1 and dt = s(q - 1 + 1) - 1 

and hence its simulation time is not more than s(q -1 + 7)/2 - 3 beats. There are 

1 full-tiles on tile level 1 so the time to simulate all the tiles of the level is roughly 

1(s(q-1+7)/2-3) beats. We can now determine the total number of beats required 

to simulate all the full-tiles of the array by evaluating the following summation: 

q-1 
E1(s(q-1+7)/2-3) 
1=1 

q-1 q-1 
(s(q + 7)/2 - 3) 1 - s/2 l2 

l=1 l=1 

((s(q + 7)/2 - 3)g2/2 - sl2(g3/3 - q2/2 + q/6) 

sq3/12 + 2sg2 - 3g2/2 - sq/12 
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Adding to this the 2qs beats required for the simulation of the base half-tiles we 

get the total number of beats required for the whole virtual array: 

sq3/12 + 2sq 2 - 3g2/2 + 23sq/12 

Only the most significant term of this expression is of interest to us. If we replace 

in this term q by n/s we get n3/12s2. Hence, the time complexity of the algorithm 

is 0(n3). In term of complexity measure, we thus get no improvement over the 

sequential algorithm which also has a time complexity 0(n3). What is interesting 

here is the 1/s2 factor in the constant hidden behind this complexity measure. The 

number of processors in the real array is s2 so the fact that the running time of the 

algorithm is proportional to 1/s2 implies that in real term the speedup provided by 

the algorithm is optimal. In other words, building a bigger array will in most cases 

be worth it. This is not a new result. The optimal speedup property is inherent 

in the basic algorithm of K-GKT and this was pointed out by Guibas, King and 

Thompson in their paper. The result also applies to the recognition phase of my 

extension. 



Chapter 7 

Implementation issues 

7.1 Introduction 

Up until now I have spent my time in the clouds, in the very comfortable world of 

theory, a world where reality is as we define it to be, a world where cumbersome 

details can simply be swept under the carpet and forgotten. In this chapter, I 

make a brief visit into the world of practice and consider some issues related to 

the implementation of my algorithm. The chapter is divided into three parts. In 

the first part, I discuss the possible implementation of the CYK combination using 

PLAs. In the second, I describe three currently available machines (the Transputer, 

the Connection Machine, the DAP) and I discuss their suitability for the algorithm. 

Finally, in the last part, I report on an actual implementation (on the DAP) of my 

algorithm. 

140 
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7.2 The CYK combination and parallelism 

The main operation performed by the processor during the recognition phase is 

the CYK combination (see section 2.3.1). The operation has inherent parallelism 

which can be exploited through recourse to a broadly used construct in VLSI, the 

Programmable Logic Array (PLA) [Mead 80]. A PLA computes sums of products 

of boolean variables. It consists of two abutted rectangular areas called the and- 

plane and the or-plane. The input lines (i.e. the lines of the input variables) traverse 

the and-plane where they cross lines called the and-lines. Each input is inverted 

and both a line carrying the input's value and one carrying its complement cross 

the and-lines. Connections can be placed where these lines cross that will leave an 

and-line at high voltage only if an input is high or only if it is low, depending on 

whether the and-line is connected to the input's line or to its complement. The 

and-lines run across the whole PLA. In the or-plane they cross the output lines. 

Connections can also be placed at these crossings. A high and-line crossing an 

output line to which it is connected will put this output line low. An output line 

can remain high if and only if none of the and-lines to which it is connected is high. 

The signal on such an output line thus represents the inverse of a sum of products. 

If we want the sum of products, we invert the signal on the line. The placement of 

the connections in the PLA determines the boolean function it implements, hence 

the term "Programmable". 

The CYK combination is a boolean function which takes as input two sets of 

non-terminals and produces one set. The presence of a non-terminal in a set is a 

boolean value. We can thus implement the CYK combination with a PLA. The 

input to such a PLA would be the two sets of signals representing the two input sets 

of non-terminals and the output would be the set of signals representing the CYK 

combination over these sets. Such an implementation would be extremely fast. The 
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time it would take to perform the operation would be of the order of magnitude of 

the time it would take to charge up a wire in the circuit. The idea of using PLAs 

has two major drawbacks. One is that it can require a prohibitively large amount 

of circuit space and the other is that it would make it difficult to change grammars. 

The straightforward design of the PLA (i.e. without optimisation) implies as many 

and-lines as there are right-hand sides in the grammar and a total number of input 

and output lines equal to five times the number of non-terminals in the grammar. 

Such a PLA would be very sparse. Since the grammars are in CNF, each and-line 

would be connected to only two non-terminals. There exist compaction techniques 

for PLAs such as folding [De Michelli 83] and partitioning [Cole 84]. But the ap- 

plication of such techniques rarely reduces the space below 30%. However, it could 

be the case that PLAs designed for the CYK combination are very good candidates 

for compaction. Whether this is true or not will depend on the specific grammar 

used. The second drawback is related to the fact that a PLA is a hardwired piece 

of circuitry. If the CYK combination for a particular grammar is implemented by a 

PLA, changing the grammar implies redesigning the PLA and thus redesigning and 

refabricating the whole chip containing the PLA. There is a way out of this prob- 

lem. Instead of PLAs, we can resort to other programmable hardware devices such 

as EPROMs (Erasable Programmable Read Only Memories) or EPLDs (Erasable 

Programmable Logic Devices) and obtain nearly the same speed performance as 

with PLAs. But such constructs require a lot of space, at least as much space as 

unoptimised PLAs. So it is a case of "out of the frying pan, into the fire". 
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7.3 A look at 3 different machines 

In this part of the chapter I take at look at 3 commercially available parallel ma- 

chines. I first describe briefly each machine. I then point out some of their respective 

advantages in relation to my algorithm. 

7.3.1 The Transputer array 

The Transputer from Inmos Limited [Inmos 86] is a computer on a chip. It contains 

a powerful 32 bit processor, a 2 K byte RAM and four bidirectional serial asyn- 

chronous communication links (so called "Occam links") that can transmit data 

at a rate of up to 20 M bits/sec.. It can also access external memory. Its total 

address space (internal and external memory) can extend to upto 4 G bytes. The 

communication links are of the twisted wire type. To connect two Transputers all 

that is needed is two wires (channels), one for each direction of communication. 

The communication protocol does not allow uni-directional links. Via the links, 

information (i.e. messages) can be transferred from the address space of one Trans- 

puter to the address space of another. The four links and the processor can all 

operate concurrently. 

A Transputer can act as a single process or as many. The concept of a process is 

embedded in the hardware. Processes running on different Transputers run concur- 

rently while those running on a single Transputer share the time of the processor. 

Transputers can be interconnected in very many ways. The fact that a Trans- 

puter has four communication links makes it very straightforward to build a rect- 

angular array of Transputers. 
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7.3.2 The Connection Machine 

The Connection Machine from Thinking Machine Inc. [Hillis 85] is a collection 

of 65,536 (216) 1 bit processors, each having its own local memory of 4096 bits. 

The processors all execute the same instruction stream. The machine is thus of 

the Single Instruction Multiple Data (SIMD) type. The stream of instructions is 

provided by a front end computer. Through a 1 bit flag internal to each processor, 

called the context flag, it is possible to deactivate one or many processors for the 

duration of one or many instructions. Only active processors execute instructions. 

(Except for the instruction that either sets or resets the context flag. Otherwise, the 

processors would imitate even more closely the cells of our brain, all slowly dying as 

time goes by...) The processors are interconnected by two different networks. One 

is a rectangular grid while the other is a 16-dimensional hypercube. Through the 

first, processors can communicate directly with each of their four nearest neigh- 

bours while through the second, any processor can communicate with any other 

processor in a maximum of 16 steps. The hardware allows the memory of each 

processor to be divided in equal portions and to allocate each portion to what is 

called a virtual processor. There may be up to 16 virtual processors per physical 

processor and so there may be in total up to 1,048,576 virtual processors. Notice 

that the comments above relative to the execution of instructions apply to virtual 

processors. Hence, each virtual processor has its own context flag. Only physical 

processors operate concurrently. Instruction execution by virtual processors must 

be multiplexed in time. Notice also that the comments above relative to inter- 

processor communication apply to virtual processors as well. Communication with 

the outside world can be performed in two ways, either via the front end processor 

or via an I/O bus. The front end can access the memory of a single processor or 

of a series of contiguous processors. Communication via the front end is relatively 

slow. The I/O bus, which can transfer data at a rate of up to 500 M bits/sec, is 
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used when information must be moved quickly to and from memory, for example, 

during disk swapping. 

7.3.3 The DAP 

There have been two generations of the DAP (Distributed Array of Processors). 

I first describe here the machine of the earlier generation, the International Com- 

puter Limited (I.C.L.) DAP [Gostick 79] [Reddaway 79] (first produced in 1976, 

first delivered in 1980). This is the one I have worked with. The I.C.L. DAP is a 

64 x 64 rectangular array of 1 bit processors that each have a 4096 bit local mem- 

ory, as in the Connection Machine. As in the Connection Machine, the processors 

all obey a single stream of instructions, each processor has a flag (which is called 

by the DAP people the activity bit) that indicates whether it will ignore or not 

the next instruction and each processor can communicate, 1 bit at a time, with 

each of its four nearest neighbours. The Distributed Array of Processors is called 

"Distributed" because the processors of the array are embedded in part of the core 

memory of an I.C.L. mainframe (Series 2900) host. The DAP has a central con- 

troller which fetches the instructions from the memory and broadcasts them to the 

4096 processors of the array. The DAP controller is itself under the control of the 

host's CPU. To run a program on the DAP one first has the host load the program 

in the part of its memory which is also the DAP's memory. Once the program is 

loaded we then have the host pass control to the DAP's controller. At the end 

of the DAP program execution, control is transferred back to the host CPU. The 

DAP does not have its own I/O facility. It relies on the host for its I/O. This 

implies that whenever an I/O operation must be performed in a DAP program, the 

program must be interrupted and control must be passed to the host. The mem- 

ory accessible to the DAP controller is the same as the memory of its processors. 
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Hence, a DAP program occupies a portion of each of its 4096 processors' 4096 bit 

local memories. 

Active Memory Technology Ltd' (A.M.T.) took up the basic DAP architecture 

and started delivering second generation DAPs in 1985 [Parkinson 88]. These differ 

from the earlier models in the following way. First, the machine stands as an 

independent unit instead of being embedded in the memory of a mainframe. It 
is attached to a host via a 2 M bytes/sec interface. The host is used mainly 

for loading programs into the DAP and to initiate their execution. It does not 

provide the instruction stream as does the front-end of the Connection Machine. 

The local memory of each processor is 8 times bigger then in the first version 

DAPs (i.e. 32 K bits). Also, programs executed by the A.M.T. DAP reside in a 

memory unit separate from the processors' memory. Hence, the local memory of 

each processor really is "local". There exists a fast I/O facility through which data 

can be written or read, at the rate of 70 M bytes/sec, from a "plane" of the processor 

array memory called the D plane. The plane consists of 1 bit registers, one from 

each processor. Finally, as well as being connected to their 4 nearest neighbours, 

the processors are connected to buses that run along the rows and columns of the 

array. At the time of writting, A.M.T. offers a 32 x 32 DAP. A 64 x 64 one is 

expected to be available in the near future. 

'A spin-off from I.C.L. 
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7.4 Pros and cons 

In this section, I consider some aspects of the architecture of the machines described 

above that are, to a greater or lesser extent, relevant to my algorithm. I compare the 

machines in the aspects considered. The comparisons I make are mostly qualitative. 

I have not tried to measure or evaluate the performance of each machine. This could 

be the subject of some further work. 

7.4.1 Computation/ communication power balance 

An important issue in the design of parallel computers composed of a large number 

of processors (so called massively parallel computers) is the balance between the 

performance of each processor and the performance of the interconnection network. 

If the processors are too powerful they will spend most of their time waiting for 

the terminations of data transfers and conversely if the network is too efficient it 

will be under utilised. A straightforward rectangular array of Transputers is an 

example of a machine where most of the hardware is devoted to processing power. 

The Connection Machine lies at the other extreme of the spectrum. Whether, for 

a particular machine, a balance is reached between its computation and communi- 

cation capabilities will depend on the algorithm we want to run on the machine. 

Most systolic algorithms require relatively little computation power compared to 

the amount of data exchange they involve. This is also the case for my extension to 

K-GKT if we apply it to dynamic programming problems other then CFL parsing. 

For example, if we use the extension for the building of optimal binary search trees, 

each beat of the first phase of the algorithm will involve for each processor only a 

few additions, a couple of comparisons and perhaps the saving of counter values. If 

we use it for CFL parsing, the main operation performed during each beat of the 
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first phase (the recognition phase) is the CYK combination. This operation can be 

quite elaborate. How elaborate will depend on the grammar used. Two attributes 

of a given grammar will affect the computation/ communication balance. One is the 

size of the set of non-terminals of the grammar and the other is the size of its set 

of rules. Since non-terminal sets are exchanged by processors, a grammar with a 

larger number of non-terminals will incur heavier inter-processor communications. 

Since sets of non-terminals must also be stored in the processors a larger number of 

non-terminals will also imply bigger processor memories. Since the complexity of 

the CYK combination is directly proportional to the number of rules in the gram- 

mar, the number of rules will influence the processing requirement of the processors 

in the array. We may thus say that the balance reached between the computation 

and communication power of the machine using a given grammar will depend to 

some degree on the balance between the sizes of the grammar's non-terminal and 

rule sets. 

Notice that if, for an algorithm, the processors of a machine are too powerful 

in comparison with the performance of its inter-processor communication network, 

we can, in order to make a more balanced usage of the machine's computation and 

communication capabilities, have each of its processors emulate a square sub-array 

of virtual processors. In doing so, we will shift a part of the communication load 

from the inter-processor links to the processors themselves since the latter will per- 

form (emulate) the data transfers that are to occur between its virtual processors. 

To a limited extent, this strategy can also be used the other way around. Suppose 

that for a given algorithm, the storage capacity of the processors of a machine is 

insufficient. We can in that case cluster processors together and have each cluster 

emulate one virtual processor. Some of the data references performed by such a vir- 

tual processor in its virtual storage would imply communication between processors 

of the cluster. 
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7.4.2 Code replication 

My parsing extension to K-GKT is nearly an SIMD algorithm. An array of Trans- 

puters is a Multiple Instruction Multiple Data (MIMD) type machine. We can still 

have the extension run on such an array. Doing so implies that the program (and 

the grammar description) has to be loaded in the local memory of each Transputer. 

It almost seems a waste of space to replicate the code in such a way. In contrast, if 
we run the algorithm on the Connection Machine or the DAP, we will have just one 

copy of the code (and of the grammar). On the other hand, observe that with these 

true SIMD machines, we have to broadcast to all the processors each instruction 

that needs to be executed. Since one single instruction might be executed many 

times, it almost seems a waste of time to broadcast it to all the processors each 

time it is executed rather than to load it into their memory for once and for all. So, 

the choice between replicating the code in each processor's memory or broadcasting 

it to all the processors can be seen as a space/time tradeoff. 

My extension to K-GKT is not a pure SIMD algorithm. For example, in the 

parse output phase, tree-node processors and link-node processors behave slightly 

differently. In relation to this aspect of the algorithm, the MIMD approach has an 

advantage over the SIMD approach. On an MIMD machine such as a Transputer 

array, the execution of the code of a tree-node processor can overlap completely 

with the execution of the code of a link-node processor while on an SIMD machine 

such as the Connection Machine or the DAP an overlap can occur only on segments 

of code that are common to both processors. How significant is the advantage of 

an MIMD machine over an SIMD machine in relation to my algorithm? Because 

the algorithm is systolic, all the processors have to be synchronised on equal length 

beats. The beat period must be at least as long as the time it takes for the slowest 

processors to do their work. Hence, since during the output phase there are only 

2 types of (non-idle) processor (tree-node and link-node), the speedup that can 
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be obtained during the phase by overlapping the code execution of each type of 

processor cannot be greater than 2. Actually, the work performed by a link-node 

processor during a beat, sending a value upward and obtaining one from downward, 

is also a major portion of the work performed by a tree-node and so the speedup 

should be nearer to 1 than to 2. In the other two phases, recognition and marking, 

there is no type distinction between processors. So, in the context, the MIMD 

approach does not bring important benefits over the SIMD approach. 

7.4.3 The number of processors 

As was already said, a Transputer is a very sophisticated processor compared with 

a Connection Machine processor (or a DAP processor). Consequently, the cost of 

building an array of Transputers containing as many processors as in the Connection 

Machine (or the DAP) will be much greater than the cost of building a Connection 

Machine (or a DAP). (I am not taking into account here the cost of the hypercube 

network of the Connection Machine. Observe that this network is of no use to us.) 

Since the number of processors required by the algorithm is quite large (O(n2)), 

this could be a predominant factor in the choice of a machine. On the other hand, 

recall that it is possible to have one Transputer emulate many virtual processors 

so it is possible to have a moderate size array of Transputers emulate a large size 

array of virtual processors. (Notice that we can also have Connection Machine or 

DAP processors emulate virtual processors.) 

7.4.4 I/O and problem decomposition 

Of the 3 machines I have described, the Transputer array is the one most suited 

for the implementation of the scheme described in chapter 6 for problem decom- 

position. In this scheme, processors at the boundary of the array need to write 
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to (or read from) auxiliary memory (disk) at the same rate as processors within 

the array exchange data. The hardware links on the Transputers that are used 

for inter-Transputer communication can also be used for communication between 

Transputers and peripherals. Communication of the latter type can take place con- 

currently with communication of the former. On the Connection Machine or the 

DAP it is possible for the front end to have access to the local memory of selected 

processors. However, the exchange of data between the front end and the processor 

array is slow and it cannot overlap with processing. Both the Connection Machine 

and the A.M.T. DAP have a fast interface allowing the loading of data in or the 

reading of data out of the whole machine's memory very quickly. Unfortunately, 

through these interfaces, it is not possible to access the memory of only the border 

processors of the arrays. 

7.4.5 A triangular array 

The algorithm uses a triangular array of processors. The DAP and the Connection 

Machine are rectangular arrays. Hence, when using them, we can exploit at most 

only (slightly over) half of their processors. If we were to build a Transputer array 

especially for our algorithm, it would be easy to tailor the array to our needs, i.e. to 

make it triangular. "But," one could say, "so would it be the case if we were to build 

a DAP-like machine especially for our algorithm." The flexibility of the Transputer 

however would make the task particularly easy. 
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7.5 An actual implementation 

I have written an implementation of my extension to K-GKT for the I.C.L. DAP 

(first generation DAP). The whole implementation consists of two separate pro- 

grams. A copy of these is reproduced in appendix A. My primary goal in writing 

the implementation was not so much to evaluate the performance of my algorithm 

but rather to test it and try to find out if it did not contain any flaw that I had 

overlooked. Writing a program that supposedly implements an algorithm and ver- 

ifying that the program produces the expected results does not constitute a valid 

proof of the algorithm's correctness. However, writing the program and seeing that 

it produces bad results can certainly help in pinpointing errors in the algorithm. 

When I wrote the implementation (summer 1986) the University of Edinburgh 

had an I.C.L. DAP of 64 x 64 processors2. A few months later the University 

also acquired an array of Transputers produced by Meiko3 called the Computing 

Surface. It would have certainly been interesting to implement my extension on the 

Computing Surface as well but one implementation was sufficient to reach the goal 

mentioned above. Also, the fact that at the time the Computing Surface consisted 

of only 40 processors made it less appealing (to some macho parallel computer 

programmer) than the 4096 processor DAP. 

'Which had been donated to the University in 1983 in celebration of its 400th year of 
existence by Queen Mary College, University of London. 

3Meiko Limited, Whitefriars, Lewins Road, Bristol, UK. 
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7.5.1 An ad hoc parser for L(Gi) 

As the aim of the programming experiment was simply to test my algorithm, I did 

not consider it worthwhile to write a general parser and wrote instead a very ad hoc 

parser for G1 (see page 22). The fact that G1 is efficient made the implementation 

simple in that it implied that each processor needed to store at most one pointer 

pair. The fact that G1 is rhs-disjoint but not nt-disjoint made the implementation 

interesting in that it implied that in the marking phase, non-terminal sets rather 

than just simple tokens had to be exchanged. 

7.5.2 DAP Fortran 

The programs have been written in a special Fortran extension for the DAP called 

DAP Fortran. I shall not bore the reader here with the details of the code. The 

programs are rather heavily commented and self-explanatory. I simply explain here 

a few important features of DAP Fortran. 

Host and DAP components 

As I have mentioned in section 7.3.3, the I.C.L. DAP is under the control of a host 

machine (I.C.L. Series 2900). To execute a program on the DAP, one writes two 

programs, one for the host and one for the DAP itself. The DAP component is 

not a program as such but rather a set of Fortran subroutines. Some of these are 

"Entry subroutines" which are callable from the main host component program. 

The two components communicate with each other via Fortran "Common blocks". 

Only the DAP component is written in DAP Fortran. The host component is 

written in standard Fortran. In the implementation, the host component, apart 

from calling the relevant subroutines of the DAP component, does mundane things 
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such as prompting the user for an input string and displaying the result of the parse 

in some fancy format. 

DAP Fortran matrices 

To express in DAP Fortran operations that are to be performed by all the DAP 

processors (or a subset thereof), the user writes statements involving 64 x 64 ma- 

trices. For example, to declare a 5 bit vector (called FLAGS) in each of the 4096 

processors of the DAP, one would write the statement: 

LOGICAL FLAGS (,,5) 

This statement contains two implicit indices, (,5), which indicate to DAP Fortran 

that this is a 64 x 64 x 5 array of bits or, equivalently, a 64 x 64 matrix of 5 bit 

values. (One could also declare matrices of integers, of reals, or of characters in 

the same fashion.) DAP matrices can appear in Fortran expressions and on the 

left-hand side of assignment statements. Operations involving DAP matrices are 

performed in parallel on each of the matrices' elements. For example, the following 

statement has each of the 4096 DAP processors compute the OR of the first and 

second bit of their local FLAGS variable and assign that value to the third bit of 

this variable. 

FLAGS(,,3) = FLAGS(,,1).OR.FLAGS(2) 

The 4096 computations and the 4096 assignments are all carried out in parallel. 

Masked assignments 

The implicit indices of a matrix variable reference that appears on the left-hand 

side of an expression can be replaced by a boolean expression involving DAP matrix 
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variables (only). Such an expression serves as a mask. Its effect is to have all the 

processors compute locally a boolean expression and have only those processors 

that have computed a true value carry out the assignments. For example, the 

following statement has those processors whose FLAGS (1) or whose FLAGS (2) bit 

is set assign to their FLAGS(3) bit the value of their FLAGS(4) bit. 

FLAGS(FLAGS(1).OR.FLAGS(2),3) = FLAGS(4) 

All the other processors leave their FLAGS(3) bit unchanged. 

Inter-processor communications 

Communication between DAP processors is expressed in DAP Fortran by expres- 

sions involving shifted DAP matrices. An implicit index in a reference to a DAP ma- 

trix can be replaced by either a "+" or a "-" to indicate that processors are to use a 

matrix element coming from a neighbouring processor. For example, a "+" as the 

implicit row index of a DAP matrix and an empty implicit column index indicate 

that the processors are to obtain the matrix element value from their bottom neigh- 

bours. As another (fancy) example, the following statement has those processors 

whose top right neighbour's FLAGS (1) bit is set assign to their own FLAGS (2) bit 

the value of their left neighbour's FLAGS (3) bit. 

FLAGS(FLAGS(-,+,1),2) = FLAGS(,-,3) 

One of two things can happen to processors on the edge of the array. They can 

either be connected in a wrap around fashion to processors at the opposite edge 

(CYCLE mode) or they can be connected to virtual neighbours that are to feed them 

only with null values (PLANE mode). The user specifies which modes he requires 

through the GEOMETRY statement. Separate modes can be specified for each of 

the two directions, vertical and horizontal. The following statement for example 
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specifies that left or right boundary processors are connected to processors on the 

opposite edge while processors on the top or bottom boundary are connected to 

virtual processors. 

GEOMETRY(CYCLE,PLANE) 

For my implementation, I used: 

GEOMETRY(PLANE,PLANE) 

Storage modes 

The storage mode of matrices of the host Fortran differs from that of the DAP For- 

tran. For example, in host Fortran storage mode an integer of a 64 x 64 8 bit integer 

matrix occupies 1 bit in the local memory of each of 8 contiguous DAP processors. 

In DAP Fortran storage mode, the same integer should occupy 8 contiguous bits 

in the local memory of 1 DAP processor (see figure 7-1). In either mode, the 

whole matrix occupies exactly the same bloc of 32768 bits. If the host component 

of the program assigns values to elements of a matrix, this matrix will have to be 

converted before it can be processed by the DAP and vice versa. DAP Fortran has 

predefined subroutines to perform the required conversions. These all work in situ. 

Matrices of single bits (LOGICAL) are not affected by the storage mode difference. 

The matrix FLAGS of our examples above is affected. 

7.5.3 The implementation 

AETKHOST and AETKDAP 

Appendix A contains the two components of the implementation. The first one, 

called AETKHOST (AETK stands for An Extension to K-GKT) is the host com- 

ponent and the second, called AETKDAP, is the DAP component. Perhaps only 
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Figure 7-1: The storage of an 8 bit integer in Host Fortran and DAP Fortran. 
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two aspects of the programs are worth mentioning here. First, the implementation 

was developed in 4 phases. In a first phase I implemented the basic K-GKT al- 

gorithm (more specifically, the GKT version). In a second phase I added counters 

and pointers. In a third phase I implemented the marking and finally in the last 

phase, I added the parse output phase of my extension. The comments in the pro- 

gram bear a trace of this stepwise development4. Second, I chose as the top of the 

(tilted) array the top left corner of the DAP array. Hence, while throughout the 

text the processor indexing convention I use is consistent with the idea of an upper 

right triangular array, in the programs I switch to an upper left triangular 

Notice that one could also use a lower left or a lower right triangular array. The 

orientation of the array is of no importance, as long as consistency is ensured. 

Performance evaluation 

The host component program contains a bit of code intended to measure the ex- 

ecution time of the DAP. However, I was unable to obtain significant measures 

due to the simple fact that the predefined function DAPTIME returned an integer 

value expressing the time in seconds. The DAP never took more than 1 second to 

execute the algorithm, whatever the length of the input was (the latter could not 

go beyond 64 tokens). Due to the low accuracy of the DAPTIME function, I could 

not know how much time below 1 second it took. I could have gone around this 

problem however by having the DAP execute repeatedly several hundred times or 

41n the comments, the phases are numbered from 0 to 3. Phase 0 is never mentioned 
as such. 

5Some reader will want to know why. It is quite simple. The "top" of the array being 
the top left corner, I always expressed data movement "up" the array, whether in the 
row direction or column direction, with the "-" sign as a DAP (shifted) matrix implicit 
index. Had I stuck to the upper right convention, I would have had to use one sign for 
one direction and another sign for the other. 
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several thousand times the algorithm (on the same input) and measure the time it 

took. This is a rather simple idea. Unfortunately it did not come to my mind in 

time (before the DAP was dismantled). As a final comment on performance let me 

point out that probably a lot of overhead can be attributed to the conversions (from 

Fortran storage mode to DAP Fortran storage mode) that had to be performed on 

the DAP matrices. 

A straightforward affair 

As I have stated at the beginning of this section, the main purpose of writing 

the implementation was to test the algorithm and to expose some of the faults it 
may have had. The writing of the programs was most straightforward. The main 

difficulty encountered, which had nothing to do with the algorithm, consisted in 

getting the storage mode conversion function calls right. A minor difficulty was 

getting acquainted with DAP Fortran. Another difficulty was getting reacquainted 

with Fortran after 8 years separation. Writing the DAP programs was good fun! 



Chapter 8 

CIP and parse orders 

8.1 Introduction 

I have mentioned in chapter 1 the work of Chang, Ibarra and Palis whose algorithm 

(CIP), like mine, maps on an array of processors the recognition phase and the parse 

extraction phase of the CYK algorithm. In the description of their algorithm, 

Chang et al. show how to obtain a rightmost (or reverse rightmost) parse of the 

analysed string. In this chapter, I show how we can adapt the CIP algorithm, as I 

have adapted mine, to produce parses in orders other than rightmost. Recall that 

the CIP algorithm runs on an array of processors composed of two sub-arrays, the 

recognition sub-array and the parse extraction sub-array. When run on a valid 

input, the algorithm produces, in the parse extraction sub-array, a distributed 

representation of the parse tree of the input. The algorithm then proceeds by 

flattening this representation so as to obtain, in the bottom processors, a post- 

order enumeration of the tree's nodes. I introduce two variants of this flattening 

phase. One variant flattens the tree into the preorder enumeration while the other 

flattens it into an inorder enumeration. 

160 
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Figure 8-1: The CIP parse extraction sub-array. 

I first define formally what I refer to as a valid tree representation in a parse 

extraction array. I then proceed by describing the variants and by proving them 

correct. 

8.1.1 Valid tree representation 

For the purpose of this discussion, I number the rows of the parse extraction array 

from bottom to top and the columns from left to right. Hence, for an n x n array, 

P1,1 is the lower leftmost processor, Pl,1, is the lower rightmost processor and P,ti,,ti 

is the uppermost one (see figure 8-1). I call row 1 of the array its base and I define 

the size of the array to be its number of rows (or columns). The processors of a 

parse extraction array may either hold a null or non-null values. As we will see, a 

processor holding a non-null value corresponds to some node of a binary tree. For 

this reason, I refer to such a processor as a tree node processor. The value held in 

the processor corresponds to the label of the node. 
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Definition 8.1.1 A parse extraction array holds a valid tree representation if it 
satisfies the following four conditions: 

1. The topmost processor of the array is a tree node processor (it holds a non-null 

value). It corresponds to the root of the tree represented. 

2. The base processors are all tree node processors. They correspond to the leaves 

of the tree. 

3. If the nearest tree-node processor R below some tree node processor F on row 

D (D > 0) is on row d, then the nearest tree node processor L in the south- 

west direction from F is the one on row D - d. F corresponds to a father 

node and L and R to its left and right sons. 

.(. The root, processor P,,,,,, is the ancestor of every tree-node processor in the 

array. 

The following theorem points out the one-to-one correspondence existing be- 

tween valid tree representations in parse extraction arrays and full binary trees. In 

this theorem and in its proof, I abstract the specific values held in processors to 

being either null or non-null. 

Theorem 8.1.1 A valid tree representation held in an array of size n corresponds 

to some full binary tree of q = 2n - 1 nodes and vice versa. 

Proof I first establish the correspondence from valid tree representations to full 

binary trees and then I establish the correspondence in the opposite direction. 

1- On induction on n, the size of the array. The basis is true for n = 1. The 

array then consists of one processor holding a non-null value and it corresponds to 

a one node full binary tree. Assuming the hypothesis holds for any array of size 
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less than n for some n > 1, I prove that it also holds for any array of size n. Let us 

consider some array of size n holding a valid tree representation. By definition 8.1.1 

its topmost processor is a tree node processor. Since its base processors are also 

tree node processors (by definition 8.1.1), the topmost processor must have a left 

son L (nearest south-west tree node processor) and a right son R (nearest tree 

node processor below). Suppose the left son is on row n1. Then, by definition 8.1.1, 

the right son must be on row n - n1. Consider the two lower right triangular 

sub-arrays whose topmost processors are L and R. These sub-arrays each satisfies 

all four conditions of definition 8.1.1. Since they are of size less than n, by the 

induction hypothesis, they correspond to full binary trees of respectively 2n1 - 1 

and 2(n - n1) - 1 nodes. Since the roots of these trees are the left and right sons 

of the topmost processor of the whole array, the whole array thus corresponds to a 

full binary tree of 2n - 1 nodes. 

2- By induction on q, the number of nodes in the full binary tree. For q = 1, 

the tree consists of only 1 node and it corresponds to an array of 1 tree node 

processor. Such an array satisfies all four conditions of definition 8.1.1 and hence 

the hypothesis is true for q = 1. Suppose the hypothesis is true for any full binary 

tree of less than q nodes for some q > 1. Let us prove that it also holds for any tree 

of q nodes. Such a tree has two sub-trees of less than q nodes which, themselves, are 

full binary trees. Suppose the left sub-tree has q1 nodes. Consequently, the right 

sub-tree must have q-qj-1 nodes. Let q,. denote q-q1-1. The tree and its sub-trees 

being full binary trees, q, qj and q,. must all be odd. By the induction hypothesis, 

to the left and right sub-trees correspond valid tree representations fitting in arrays 

of size (q1 + 1)/2 and (q,. + 1)/2 respectively. We can construct an array of size 

(q + 1)/2 by abutting these two arrays side by side and by adding processors in 

between the arrays and above the array corresponding to the right sub-tree. If all 

the added processors except the topmost one hold null values, we obtain an array 

corresponding to the whole tree. The topmost processor corresponds to the root of 
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the tree and the processors corresponding to the left and right son of this topmost 

processor, by definition 8.1.1, are just those processors corresponding to the roots 

of the left and right sub-trees, by the induction hypothesis. The resulting array 

satisfies all four conditions of definition 8.1.1. 

8.2 Preorder enumeration 

I now define an algorithm to flatten the tree represented in an array onto the bottom 

processors, into a preorder enumeration. The algorithm is similar to the one of 

CIP. The latter has the processor values (rules) migrate directly downward towards 

the base processors and it shifts values in overcrowded base processors leftward. 

The following algorithm instead has the values migrate diagonally (downward and 

leftward) and it shifts extra values in base processors rightward. 

Algorithm 8.2.1 Base processors have two registers denoted MR (most recent) 

and LR (least recent). The base processors' initial values are stored in their MR 

registers and their LR registers initially contain null values. On odd beats, every 

processor not on the base sends the value it holds to its bottom neighbour. On even 

beats, every processor including those on the base sends the value it received on the 

previous (odd) beat from above to its left neighbour. Null values are fed on the top- 

left and right boundaries of the array. Whenever a base processor receives either 

from the left or from the right a non-null value, it pushes this value into its MR 

register. The value that was in the MR register is pushed in the LR register and if 
the LR register already held a non-null value, this value is sent to the right on the 

next beat. 

On a n x n array, the algorithm terminates after 3n - 2 beats. The detection 

of termination can easily be implemented using a control signal. At the end of the 
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algorithm's execution, the leftmost enumeration sought is stored from left to right 

in the MR and LR registers (in this order) of the base processors. This enumeration 

(if it is a parse) can be output sequentially via the leftmost base processor to give a 

leftmost order parse or via the rightmost base processor to give an inverse leftmost 

order parse. Figure 8-2 shows the state of the parse extraction array on various 

beats during the execution of the algorithm on the example of section 2.3.6. I now 

formally show that this algorithm performs as expected. In the following theorem 

I let LR; and MR,, denote the LR and MR registers of processor P1,;. 

Theorem 8.2.1 For any n, n > 1, any j, 0 < j < n, after beat 2n + j - 3 of the 

execution of algorithm 8.2.1 on a n x n array holding a valid tree representation, 

MR, and LR; hold respectively the (2j - 1)th and (2j)th values of the preorder 

enumeration of the tree node and after beat 3n - 3, MR7, holds the (2n -1)th (last) 

value of the enumeration. At all times, LR7, holds a null value, processor P1,1 sends 

only null values leftward and processor P1,7, sends only null values rightward. 

Proof By induction on n. The basis is true for n = 1. In that case the array 

consists of one processor which holds the representation of a one node tree. This 

processor simply keeps its own value in MR1 and a null value in LR1 from beat 0 

onwards. Let us prove that the theorem is true for an n x n array for any n> 1 if it 
is true for any array of size less than n x n. Let us consider an n x n array holding 

a valid tree representation. We can decompose the represented tree into its root, a 

left sub-tree and a right sub-tree. Suppose the left sub-tree has 2m - 1 nodes and 

that consequently the right sub-tree has 2(n - m) - 1 nodes. By definition 8.1.1 it 
follows that the left sub-tree is held in the leftmost m x m triangular portion of the 

array and that the right sub-tree is held in the bottom rightmost (n - m) x (n - m) 

portion. Let us call these portions respectively the left sub-array and the right- 

sub-array (see figure 8-3). By definition 8.1.1, it also follows that the processors 

in the rest of the array with the exception of P7,,,,, all hold null values. Because 
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n x n array 

(n - m) x (n - m) right sub-array 

m x m left sub-array \ 

Figure 8-3: The sub-arrays relative to a tree in the array. 

of this last fact and because the algorithm feeds null values on the top-left and 

right boundaries, we conclude the following. As far as the MR and LR registers are 

concerned, running the algorithm on the whole array has exactly the same effect as 

if we ran it simultaneously and independently on the left sub-array and the right 

sub-array (as if these were arrays on their own) except that in the former case, on 

beat 2n - 2 processor P1,1 receives from the right a non-null value (while in the 

latter case it receives a null value). This is the value of the root node, i.e. the 

value of P,a,,,. The effect of the arrival of this value will not be felt in P1,1 before 

beat 2n - 2 and, in general, it will not be felt in any processor PP,;, 1 < j < n, 

before beat 2n + j - 3. We can thus apply the induction hypothesis in relation to 

either the left sub-array or the right sub-array and in relation to some processor 

P1,; up until beat 2n + j - 3. If the left sub-tree consists of only one node (m = 1), 

then, by the induction hypothesis (applied in relation to the left sub-array), on 

beat 2n - 2, MR1 contains the first and only value of the preorder enumeration 

of the left sub-tree (which is also the second value of the preorder enumeration of 

the whole tree) and LR1 contains a null value. On that beat, P1,1 receives the root 
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node value. This value goes in MR1 and the old value of MR1 goes in LR1. Thus 

at the end of beat 2n - 2, MR1 and LR1 contain the first two values of the preorder 

enumeration of the whole tree. Afterwards, P1,1 receives only null values from P1,2 

and thus MR1 and LR1 are never modified and P1,1 sends only null values leftward 

and rightward (to P1,2). Hence, the arrival of the root node values in P1,1 has no 

effect on the MR and LR registers of the other base processors and so even after 

beat 2n + j - 3 the induction hypothesis applies in relation to the right sub-array 

and any processor P1,;, 1 < j < n. Thus for any j, 0 < j < n - 1, after beat 

2(n - 1) + j - 3, MR;+1 and LR;+1 contain the (2j - 1)th and (2j)th values of 

the preorder enumeration of the right sub-tree (LRn contains a null value). These 

correspond to the (2j + 1)th and (2j + 2)th values of the preorder enumeration of 

the whole tree and this completes the proof for the case where the left sub-tree 

consists of only one node. Let us now consider the more general case where the 

left sub-tree consists of 2m - 1 nodes for some m, 1 < m < n. By the induction 

hypothesis applied to the left sub-array, when, on beat 2n - 2, P1,1 receives the 

root node value from P1,2, it holds in its MR and LR registers the first two values 

of the preorder enumeration of the left sub-tree. On the next beat the value that 

was in LR1, which is the third value of the preorder enumeration of the whole tree, 

is sent to P1,2 while the root node value and the value that was in MR1, which 

are the two first values of the preorder enumeration of the whole tree, go in MR1 

and LR1. From then on, P1,1 receives only null values from P1,2 since P1,2 receives 

from beat 2n - 1 only null values from above. Hence the values in MR1 and LR1 

remain as they are afterwards. By the same argument we can show that a process 

corresponding to the one just described takes place (propagates) in P1,2 on beats 

2n - 1 and 2n and in general, in P1,j on beats 2n + j - 3 and 2n + j - 2 for any j, 
0 < j < m. That is, on beat 2n +j -3 processor P1,3 receives the (2j -1)th value of 

the preorder enumeration of the whole tree. At that time, MR; and LR; hold the 

(2j)th and (2j + 1)th values of the enumeration. On the next beat, the (2j + 1)th 
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value is sent to P1j+i while the (2j -1)th and (2 j )th values get stored in MR; and 

LR;. The contents of MR; and LR; remain unchanged afterwards. By the same 

process, on beat 2n + m - 3, Pi,,,,, receives the (2m - 1)th value of the preorder 

enumeration of the whole tree. By the induction hypothesis MRm then holds the 

(2m)th value of the enumeration and LRm holds a null value. It follows that the 

(2m - 1)th and (2m)th values get stored in MRm and LRm on beat 2n + m - 3. It 

also follows that Pi,m will have sent and will send only null values to P1,m+i. We 

thus conclude that as in the case where m = 1, the induction hypothesis applies to 

the whole of the right sub-array. This completes the proof for the general case. 

Corolary 8.2.1.1 When run on an array holding a valid tree representation, algo- 

rithm 8.2.1 flattens the tree into its preorder enumeration onto the bottom boundary 

of the array. 

Proof Follows from theorem 8.2.1. 

8.3 Inorder enumeration 

The algorithm I am about to introduce resembles the original flattening phase of 

CIP even more than algorithm 8.2.1. As in CIP, the algorithm has the values 

migrate directly downward. If differs from CIP in its dealing with the arrival of a 

third non-null value in a base processor. Instead of getting rid of the least recently 

received value, it sends away the newcomer. 

Algorithm 8.3.1 Base processors have two registers denoted FI (first in) and SI 

(second in). The initial values of the base processors are stored in their FI registers 

and the SI registers start with null values. On every beat every processor except 

the base processors sends the value it holds to its bottom neighbour. Null values 
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are fed to the processors on the top-left boundary. When a base processor receives 

a non-null value for the first time, either from above or from the right, it stores it 
in its SI register. Any non-null value that it receives thereafter, it sends to its left 

neighbour on the following beat. 

When run on a n x n array, the algorithm terminates after (at most) 2n - 2 

beats. This is the time the root value would take to travel from the top of the array 

to the bottom-left corner. Figure 8-4 depicts the state of the parse extraction array 

at various beats during the algorithm execution on our example. At the end, the 

inorder enumeration of the tree's nodes is found in the SI and FI (in this order) 

registers of the base processors. The SI register of the leftmost base processor never 

receives a non-null value. A proof of the correctness of the algorithm follows. Not 

surprisingly, this proof is of the same shape as the proof of theorem 8.2.1. Feel 

totally free to skip it. In the following I have FI, and SI; denote the FI and SI 

registers of processor P1,,. 

Theorem 8.3.1 For any n, n > 0, and any j, 0 < j < n - 1, after beat n + j - 1 

of the execution of algorithm 8.3.1 on a n x n parse extraction array holding a 

valid tree representation, SIn_j and FIn_j hold respectively the (2(n - j) - 2)th and 

(2(n - j) -1)th values of the inorder enumeration of the tree and after beat 2n - 2, 

FIl holds the first value of the inorder enumeration of the tree. At all time SIl 

holds a null value and processor Pl,l sends only null values leftward. 

Proof By induction on n. The basis is true for n = 1. In that case, the array 

consists of one processor which holds the representation of a one node tree. The 

processor simply keeps its own value in FIl and a null value in SIl and sends only 

null values from beat 0 onwards. Let us assume that the theorem is true for any 

array of size less than n x n and let us consider a n x n array holding a valid tree 

representation. As in the proof of theorem 8.2.1, 1 decompose the tree into its root, 
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a left sub-tree of say 2(n - m) - 1 nodes, 1 < m < n, and a right sub-tree of 2m - 1 

nodes. I also identify a left sub-array and a right sub-array and note that as far 

as the FI and SI registers are concerned, running the algorithm on the whole array 

has exactly the same effect as running it simultaneously and independently on the 

left and right sub-arrays (as if they were arrays on their own) except that in the 

former case, on beat n - 1, processor P1,,, receives the root node value while in the 

latter case it receives a null value. The effect of this cannot be felt in processor Pl,,, 

before beat n - 1 and in general it cannot be felt in any processor Pl,,,_j, 0 < j < n, 

before beat n + j - 1. We can thus apply the induction hypothesis in relation to 

either the left or the right sub-tree and in relation to some processor P1,,,_j up until 

beat n -}- j - 1. If the right sub-tree consists of only one node (m = 1) then, by the 

induction hypothesis (applied to the right sub-tree), on beat n -1, FI contains the 

first and last and only value of the inorder enumeration of the right sub-tree and 

SI contains a null value. On that beat, P1,,, receives the root node value which in 

this case is the next to last value of the inorder enumeration of the whole tree. It 

puts this value in SI and thus at the end of beat n - 1, SI and FI contain the last 

two values of the inorder enumeration of the whole tree. Afterwards, P1,,, receives 

only null values from above and it thus sends only null values to Pi,,,_,. Hence, 

the arrival of the root node value in P1,,, can have no effect on the content of the 

SI and FI registers of the other base processors and so even after beat n + j - 1 

for any j, 0 < j < n, the induction hypothesis applies in relation to the left sub- 

array and processor P1,,,_,. We conclude that for any j, 1 < j < n, after beat 

(n - 1) + j - 1 (i.e. n + j - 2), SI_, and FI_j contain the (2(n - 1 - j) - 2)th 

and (2(n - 1 - j) - 1)th values of the inorder enumeration of the left sub-tree (SIr 

contains a null value). These correspond to the (2(n - j) -2)th and (2(n - j) -1)th 
values of the inorder enumeration of the whole tree and this completes the proof 

for the case where the right sub-tree consists of only one node. I now consider the 

case where the right sub-tree consists of more than one node (1 < m < n). By the 
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induction hypothesis applied to the right sub-array, when P1,,, receives on beat n-1 
the root node value, it already holds in its SI and FI registers two non-null values. 

Those are the last two values of the inorder enumeration of the right sub-tree and, 

consequently, of the whole tree. Because SIn has a non-null value the root node 

value is sent to P1,,,_1 on beat n. By the same argument we can show that the same 

process as the one just described takes place (propagates) in P1,n_1 (if m > 2) on 

beats n and n + 1 and in general in P1,,,-9 on beats n + j - 1 and n + j for any 

j, 0 < j < m. That is, on beat n + j - 1 processor P1,n_A receives from P1,n-9+1 

the root node value. At that time SIn_,i and FIn_j hold the (2(m - j) - 2)th and 

(2(m - j) - 1)th values of the inorder enumeration of the right sub-tree which are 

the (2(n - j) - 2)th and (2(n - j) - 1)th values of the inorder enumeration of 

the whole tree. These values remain there and the root node value is sent to the 

left on the next beat. On beat n + m - 1, processor P1,n_m+1 receives the root 

node value. By the induction hypothesis SIn-m+l then contains a null value and 

FIn-m+1 contains the first value of the inorder enumeration of the right sub-tree 

or equivalently the (2(n - m) + 1)th value of the inorder enumeration of the whole 

tree. The root node value which is the 2(n - m)th value of this enumeration is 

stored in SIm+1 as required by the theorem. It follows that P1,n-m+l will have sent 

and will keep sending only null values to P1,m and thus, as in the case where m = 1, 

the induction hypothesis applies integrally to the left sub-array. This completes the 

proof for the general case. 

Corolary 8.3.1.1 When run on an array holding a valid tree representation, algo- 

rithm 8.3.1 flattens the tree into its inorder enumeration onto the bottom boundary 

of the array. 

Proof Follows from theorem 8.3.1. 
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8.4 Flattening and the extension to K-GKT 

After the marking phase of my extension (section 3.2.2), the K-GKT array holds, 

like the CIP parse extraction array, a distributed representation of a (parse) tree. In 

fact, from a K-GKT array holding a tree representation we can obtain the equivalent 

of a CIP parse extraction array holding the corresponding valid tree representation 

(satisfying definition 8.1.1) by simple shearing rightward the K-GKT array so as 

to align vertically processors along the same negative slope diagonals (of the tilted 

array). Consider, for example, the following parse tree and the corresponding K- 

GKT array: 

E O 
% 

E +T 
1 ,l \ 0 
a E 

+ a O O O 

Shearing the array, we get: 

which, if we do not consider communication links, is exactly the same as the CIP 

parse extraction array corresponding to our tree. This sheared array has all the 

links needed to run the flattening phase for inorder enumeration (algorithm 8.3.1) 

and postorder enumeration (the original CIP flattening phase) except for leftward 
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links to connect the base processors. To run these phases on the K-GKT array, all 

we need is simply to add these links: 

O O 
O +T or O 0 O O O O .---- O H O 

With this modification, these phases can be run on the K-GKT array exactly as on 

the CIP array. 

In the case of the flattening phase for preorder enumeration (algorithm 8.2.1), 

we must add communication links between processors as well but in the other 

direction. 

Also, we must adapt the algorithm slightly. Algorithm 8.2.1 sends values downward 

on one beat and then leftward on the next beat. On the K-GKT array we can 

(and we must) perform this value transfer in one beat instead of two by using the 

communication links along the positive slope diagonals. The resulting algorithm 

yields the same results as the original and it terminates (on a n x n array) n-1 beats 

earlier. We can obtain a formal proof of this by adapting the proof of theorem 8.2.1 

as follows: replace all occurrences of "from the right" by "from the top right" and 

all occurrences of "from P1,2" by "from P2,2" and add to all expressions containing 

the term 2n the value n - 1. I do not deem it worth while or useful to write this 

proof in full here. 
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8.4.1 Yet more variants 

In section 2.3.6 I described the original CIP flattening phase. In this chapter I 

introduced two variants of this algorithm and I have just indicated how the three 

algorithms can all be adapted to run on the K-GKT array. There exist yet other 

flattening methods of the same pattern. One of them, for instance, consists in 

gathering the inorder enumeration of a tree represented in a K-GKT array along 

the top left boundary of the array. When you have seen one variant, you have seen 

them all. There is no point in going into the details of this last variant or of any of 

the other variants or even in listing these. The reader may find it more interesting 

to discover, some of them on his own. 



Chapter 9 

Discussion 

9.1 Comparison with other work 

Basically, two algorithms deserve attention in this section: the parsing extension of 

Chiang and Fu and the parsing algorithm of Chang, Ibarra and Palis (CIP). I have 

given a brief description of these in sections 2.3.5 and 2.3.6. Both algorithms have 

been presented by their authors in the restricted framework of CFL parsing but 

both can easily be generalised and applied to any of the other dynamic programming 

problems of C. 

9.1.1 The extension of Chiang and Fu 

Like I, Chiang and Fu have suggested a parsing extension to K-GKT. Instead of 

implementing the CYK algorithm they chose to implement a weakened version of 

Earley. They motivated this choice by the fact that CYK requires that we transform 

a grammar not in CNF into one in CNF. They claim that by resorting to weakened 

Earley they can avoid the overhead incurred by such a transformation. However, as 

177 
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I have pointed out, their algorithm implies a preprocessing of the grammar which 

is the equivalent, but in a more complex form, of the standard transformation of 

a grammar not in CNF into one in CNF. Moreover, as pointed out by Graham, 

Harrison and Ruzzo [Graham 76b], weakened Earley is equivalent to CYK. Thus, 

resorting to weakened Earley provides no real advantage. 

The strategy of the Chiang and Fu algorithm consists in accumulating whole 

parses or sub-parses in each processor. This strategy has two major drawbacks. 

First, it implies that the amount of information each processor needs to store is 

proportional to the distance between the processor and the base. As a consequence, 

the space complexity of the algorithm is O(n3) in the single parse case. Second, 

the amount of information exchanged by processors is also proportional to the 

distance between the processors involved and the base. Hence, the information 

exchanges occurring at the top of the array take more time than those occurring 

at its base. Since all the processors of the array need to be synchronized on equal 

length beats and since the longest information exchanges must be completed in the 

period between two beats it follows that the beat periods have to be of duration 

proportional to the input size. For this reason, the time complexity of the algorithm 

reaches O(n2). 

9.1.2 The CIP algorithm 

The CIP algorithm has the same time complexity as mine (O(n)) but has a lower 

space complexity, O(n2) compared to O(n2 log n). Both algorithms use a number 

of processors proportional to the square of the input length. My algorithm requires 

exactly (n + 1)n/2 processors, the version of CIP presented in section 2.3.6 (with 

two-way inter-processor communication links) requires exactly n2 processors while 

the original version [Chang 871 requires exactly 3n2/2 processors. The key advan- 

tage of CIP over my algorithm is that the size of its processors is totally independent 
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of the size of the input. Hence if one builds an array of processors to run the CIP 

algorithm on inputs of size, say, up to 4, one can use exactly the same processors 

(in greater number) to build an array to handle inputs of any size. In contrast, 

with my algorithm, the requirement of processor storage space grows in proportion 

to log n. From a theoretical point of view this will be seen as an important disad- 

vantage of my algorithm over CIP. In practice the disadvantage may be of a lesser 

significance. Observe that the size of the array being proportional to the square 

of the input, the storage requirement of each processor grows only in proportion 

to the log of the square root of the number of processors in the array. Because 

the log n factor (above) is due to the counters and pointers used by my algorithm, 

the hidden constant behind this factor can be relatively small and involve only a 

"few" bits. The exact number will depend on the grammar used. Another (minor) 

advantage of CIP over my algorithm is that it is online. The algorithm can run 

without knowing in advance the size of its input. My algorithm, in contrast, needs 

to have the whole of the input available before it can start executing. 

In its current version CIP can output only one parse of the input. I conjecture 

that it should be possible to adapt CIP for the production of multiple parses. 

It would probably be possible to do so by resorting to a strategy like the one 

I used in the second multiple parse output algorithm presented in section 5.4. 

This strategy consists in rerunning the algorithm for the production of each parse 

and in having each run leave a trace in the processor array so as to guide the 

following run in producing the next parse. Whether this strategy can in fact be 

applied to CIP or not should constitute an interesting subject for further research. 

Another important topic that warrants further research into the CIP algorithm 

is the question of decomposability. Can the algorithm be adapted so that it can 

handle large inputs on arrays that would normally be too small? It is most probably 

possible to do so simply by having each processor emulate a square array of virtual 
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processors. But, would an approach similar to the one I used in chapter 6 for my 

algorithm also provide positive results in the case of CIP? 

I must point out that I have obtained most of the results reported in this 

dissertation before the CIP algorithm came out in January 1987. 

9.2 Simple and active memory 

My parallel algorithm has the same space complexity (O(n2 log n)) as its sequential 

equivalent which in the case of parsing is CYK. A similar comment applies to CIP 

and the version of CYK that does not use pointers (see [Aho 72] for descriptions 

of both versions of CYK) if we regard the latter as the sequential equivalent of the 

former. These two algorithms also have the same space complexity (0(n2)). In 

other words, in both cases, in term of hardware area requirement, only constant 

factors separate the parallel algorithms from their sequential counterpart. All four 

algorithms work with triangular matrices. In the sequential algorithms, the matrix 

elements are simply memory units which are all serviced by a single processor. 

In the parallel algorithms the matrix elements are memory units enriched with 

communication channels and an active circuit unit that we call a processor. The 

constant factors mentioned above should reflect roughly the differences between the 

areas occupied by matrix elements consisting of just memory and that occupied by 

elements consisting of memory, communication channels and a processor. 
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9.3 Of practical interest ? 

In the introduction to this dissertation I have pointed out that technological ad- 

vances in recent years may justify that we change our views on parallel algorithms 

which would have been considered of theoretical interest only a decade or so ago. 

In connection to this it may be appropriate to question the practicality of the 

algorithm I have presented. 

9.3.1 Parsing of programs 

As computer scientists, we have been motivated to study parsing primarily because 

the programs we write have to be parsed. In this context should we consider 

my algorithm a favorable alternative to the methods currently used? Sadly three 

reasons strongly suggest a "no" answer to this question. Firstly, computer programs 

constitute very long problem instances in the context of my algorithm. Very rarely 

will programs contain less than a thousand tokens and even with that few tokens 

my algorithm requires more than half a million processors. Notice that such a 

difficulty can be alleviated via problem decomposition at the expense of execution 

time. Secondly, almost every programming language is of some restricted type 

of CFL (LL, LR) for which efficient linear time methods already exist. Thirdly, 

the advent of language based programming environments [Medina 81] [Reps 83] 

[Teitelbaum 81] has taken away some of the motivation for faster parsers. 

9.3.2 Parsing of natural languages 

In natural languages, sentences are rather short compared to computer programs 

and their length makes them amenable to being parsed using my algorithm. Also an 
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application like real-time speech recognition for data input [Thompson 84] demands 

high speed parsing. However, my algorithm would probably not be of much help 

in this area due to the very serious shortcomings of CFGs in describing natural 

languages. Another drawback of my algorithm with respect to speech recognition 

is the fact that it requires to have a whole sentence before it can start parsing it. 

9.3.3 Syntactic pattern recognition and pattern 
matching 

Chiang and Fu have suggested the use of CFGs in pattern recognition [Chiang 84] 

and the K-GKT algorithm can be used to that end. Pattern matching of speech 

utterances [Tappert 78] is another dynamic programming problem for which the K- 

GKT algorithm and my extension can be applied. Pattern recognition and pattern 

matching are two areas where real-time performances are often required. It is not 

clear however if in these cases recognition (or matching) alone will not always be 

sufficient or if a parsing capability can also be desirable. The question warrants 

further investigation. 

9.3.4 Building of optimal search trees 

The classic textbook example of the application of optimal binary search trees is 

the search tree for the reserved words in a compiler. One does not build such trees 

everyday and thus, instead of resorting to a fast algorithm that requires special 

hardware (e.g. an array of processors) for the task, one might very well prefer 

to settle for a slow algorithm that runs on the conventional computer at one's 

disposal. Observe also that the existence of a sequential solution of time complexity 

O(n2) for this particular problem makes the parallel solution even less appealing. 
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The speedup provided by the parallel solution is not optimal in this case but is 

proportional to the square root of the number of processors. 

9.3.5 Optimal matrix multiplication and optimal file 
merging 

Optimal matrix multiplication and optimal file merging are two other problems of 

C. If we have a series of rectangular matrices to multiply, the order in which we 

choose to multiply them will determine the total number of scalar multiplication 

operations that we will need to perform. We will not only want to know how many 

multiplications the optimal order will involve but will also want to know what the 

optimal order is. A similar comment applies to the optimal file merging problem. 

Thus, in these two cases, the partial solution yielded by K-GKT is insufficient 

and the complete solution, which my extension provides, is required. In practice, 

instances of these two problems will tend to be short such that one could consider 

resorting to my algorithm to solve them. On the other hand, in the cases where the 

instances are very short, the sequential algorithm could prove satisfactory in spite 

of the fact that its running time is 0(n3). Observe that it is not usually required 

for problems of this sort to be solved very quickly. 

9.3.6 A solution in search of a problem 

In the above survey of known problems in C, which is far from exhaustive, I have 

not identified one practical application for which we could assess a recourse to my 

algorithms as positively worthwhile. It seems that what we have is a solution in 

search of a problem and so, in the end, it could well be the case that the research 

presented in this dissertation should be classified as of theoretical interest. As a 

consolation (to the reader or to myself?) I offer the following observation. Algo- 
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rithms that require a number of processors that is proportional to the square (as 

mine does) or the cube (or...) of the input size are often looked at suspiciously as 

just playthings for the theoreticians. But consider the following. Suppose that for 

one problem in C, the basic operation performed during each beat of the K-GKT 

algorithm required some 6.3 seconds on a powerful processor and suppose that one 

needed to solve an instance of such a problem of length 1000. Resorting to the 

uniprocessor approach, one would have to wait over 200 years for the solution. My 

algorithm would require an array of over half a million processors for an instance 

of that size. Such an array, if it consisted of powerful processors, would solve the 

problem in less than 2 hours. If it consisted of not so powerful processors it would 

solve it within perhaps a few days. The prospect of waiting for 200 years would 

probably make one envisage to resort to my algorithm in spite the fact that it 

requires a huge number of processors. 

9.4 Areas for further research 

9.4.1 Efficient grammars 

In chapter 4 on efficient grammars I have mentioned four open questions which 

make obvious candidates for further research. For convenience to the reader, I 

echo them here: "how can we characterize efficient grammars?", "is grammar ef- 

ficiency decidable?", "is nt-disjunction of grammars in CNF decidable?" and "is 

rhs-disjunction of grammars in CNF decidable?". 

9.4.2 Problem decomposition 

In tackling the subject of problem decomposition, I have investigated one scheme 

which involves using auxiliary storage devices that are connected to processors 
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on the boundary of the array. Other approaches exist, such as having each real 

processor emulate a square sub-array of virtual processors. It should be of interest 

to investigate such other approaches and to find out how they compare with the 

one I have taken. 

9.4.3 CYK combination and PLAs 

I have suggested the use of PLAs for the hardware implementation of the CYK com- 

bination. I have pointed out that such PLAs, if unoptimised, could be very sparse. 

It would be interesting to know if we could obtain, by compaction, partitioning or 

other means, area efficient PLAs for the CYK combination. The efficiency of such 

PLAs would no doubt be very dependent on the grammar involved. How can we 

characterize grammars whose CYK combination could be efficiently implemented 

with PLAs? Could we transform grammars into equivalent grammars that would 

lead to more efficient CYK combination implementations? Finally, are there other 

hardware design approaches to the problem that could prove more profitable than 

PLAs? 

9.4.4 Real performance evaluation 

Asymptotically, the parallel algorithm presented in this dissertation is a lot more 

efficient than its sequential counterpart. This implies that even if we had an ar- 

ray whose processors were exceedingly slow, on inputs large enough (assuming the 

array was of the required size) it would do better than an extremely fast unipro- 

cessor machine. The parallel algorithm no doubt incurs some overhead (amongst 

other things because it involves inter-processor communications) such that a given 

uniprocessor machine could be faster in finding the solution to small problem in- 

stances than an array whose individual processor performance was comparable to 
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the performance of the processor in the uniprocessor machine. Experiments would 

be needed to determine on what size of problem instances a machine like, say, the 

DAP would start to perform better than some conventional computer and on what 

size of problem it would perform significantly better. The measurements that we 

would obtain from such experiments would be very much dependent on the specific 

problem (of C) we chose for conducting them. For example, CFL parsing involves 

as the basic operation the CYK combination. The 1 bit processors of the DAP are 

well suited for executing this operation. On the other hand, they are not so well 

suited for integer multiplication (in comparison with conventional CPUs), the basic 

operation in the optimal matrix multiplication problem. It would thus be prefer- 

able to experiment with several problems of C. It would also be very interesting to 

evaluate how the performance obtainable from one type of processor array (e.g. the 

DAP) compared with the performance obtainable from another (e.g. a Transputer 

array). Finally, it would be interesting to compare the real term performance of 

my algorithm with that of CIP. 

9.4.5 CIP 

As I have mentioned earlier in this chapter (section 9.1.2), it should be possible to 

adapt the CIP algorithm for the output of multiple parses. Is this in fact true and 

if so, how exactly can it be done? Finally, it should be interesting to investigate 

various problem decomposition approaches for CIP. 

9.4.6 Transitive closure 

As Valiant pointed out [Valiant 75], recognition matrix computation reduces to 

the problem of boolean matrix transitive closure. Guibas, Kung and Thompson 

described a systolic algorithm for matrix transitive closure [Guibas 79] (this paper is 
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the same as the one in which they presented their version of K-GKT). The algorithm 

computes the transitive closure of an n x n matrix on an n x n array of (fixed size) 

processors in linear time. In the CIP algorithm, a first phase which computes 

the recognition matrix is followed by a second phase which traces backward the 

recognition matrix computation (see section 2.3.6). This backward trace allows the 

recovery of the parse tree. It is perhaps possible to adapt the idea of a backward 

trace to the Guibas, Kung and Thompson transitive closure algorithm and thus 

design an extension to this algorithm for parsing. If such is the case, an extension 

of the sort could well lead to the design of an algorithm that would have the 

same space and time complexity as CIP. Such an extension would also surely be 

applicable to the other problems of C. 

9.5 Conclusions 

In the introduction to this dissertation I have emphasised the fact that much hope 

is put into the possibilities of profitably exploiting parallelism in computation. I 

have pointed out the need for a broader knowledge of the promises parallelism can 

fulfill and of its limitations. With the aspiration of contributing to the enlargement 

of this knowledge as my main motivation, I have set out to investigate the potential 

utilisation of parallelism in the field of CFL parsing. I have presented an algorithm 

(extension) which shows that parallelism can in fact be used for parsing. (When I 

started my research I was not aware of the existence of the K-GKT algorithm and 

of its extension by Chiang and Fu. The CIP algorithm was published just after the 

bulk of my research work had been done.) The recourse to parallelism brings a very 

significant improvement in the speed at which we can perform CFL parsing (and 

other problems in C). However, this improvement is obtainable only at a cost which 

is just as significant. It is not at all obvious whether for this problem, resorting to 
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parallelism can prove practical or not. The answer to this question will very much 

depend on the requirements of each specific application. Whatever the case may 

be, I believe that the research I have presented can be regarded as another brick in 

the wall of our better knowledge of the possibilities of parallelism. 



Appendix A 

DAP programs for parsing L(G1) 

A.1 Host component 

* * Program *** A E T K H 0 S T *** 
* * 
***** 

PROGRAM AETKHOST 
* 
* 
* AETKHOST is an "upgraded" version of PH2HOST. 
* See end of this comment. 
* PH2HOST is an "upgraded" version of PHIHOST. 
* See end of this comment. 
* 
* 
* This program implements on the I.C.L. DAP distributed Array 
* Processor) the algorithm of Kosaraju and 
* Guibas, Kung and Thompson applied to CFL recognition. 
* The program reads in a string, initialises 
* the relevant array elements and uses the DAP to simulate the 
* systolic algorithm of K-GKT. To use the DAP, one needs a host 
* program and a DAP program. This is the HOST one. 
* 
* This particular program uses the following grammar: 
* 

189 
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* E --> E +T ( T 
* T --> T *F ( F 
* F --> <(> E) ( a 
* +T --> <+> T 
* *F --> <*> F 

* E) --> E <)> 

* Grammar dependency is concentrated in the function TOKENSET in 
* the routine SHOWUS and also (unfortunatly) in the choice of 
* integer size of various variables. This is due to the fact 
* that these integers are used to represent sets of non-terminals. 

* The program outputs the non-terminals that derive the input 
* string. 

* In this upgraded version, we implement the first phase of the 
* parsing algorithm. This phase is very similar to K-GKT. The 
* only difference is that we add counters and pointers to be able 
* to reconstruct the parse tree (reconfigure the array). The 
* only difference this implies for this program is that we added 
* a subroutine (and a call to it) to output the array of pointers 
* (POINTOUT) after recognition. The DAP program (PH1DAP) is more 
* significantly different than the K-GKT version. We also modified 
* READIN so that the input string is feeded back on output. 

* In this upgraded upgraded version, we now output the "marks" of 
* the processors. The DAP version (PH2DAP) uses the pointers to 
* mark the processors of the underlying parse tree, either as 
* tree nodes or link nodes. In this version , we have added a 
* subroutine (and a call to it) to output the array of marks 
* (MARKOUT) after marking. We keep the subroutine POINTOUT 
* although we do not call it. Of course, we also call the DAP 

* subroutine that will do the marking after recognition 
* (MARKPROCESSORS). Well actually, what we do is that we call a 
* subroutine (DAPPHASES) that will call for us the subroutines 
* RECOGNIZE and MARKPROCESSORS. 

* You will not find MARKOUT in this file (listing). Because 
* FORTRAN trapped by software in the subroutine, we had to 
* compile it seperately with a "dont trap" sort of option. 

* We have added, for the purpose of better user interface a 

* common block (INPUTSTRING) to output the input string together 
* with the marks of the processors. 



Appendix A. DAP programs for parsing L(G1) 191 

* AETKHOST version: This version is actually a rather lot simpler 
* than the Phase 2 version. All it does is output the parse and 
* that's pretty simple. The subroutine PARSOUT takes care of 
* that. We also needed to modify the PARAMETER value of SIGBIT 
* in the subroutine TOKENSET so as to identify the "base" 
* processors in the array. We eliminated from this version the 
* subroutine POINTOUT and MARKOUT since they were of no use 
* anymore. The subroutine PARSOUT is compiled separately to 
* avoid erroneous unassigned variable access software traps by 
* FORTRAN. 

* 

INTEGER NTOKEN, RESULT, PADN1, PADN2, PADN3(124) 
INTEGER*2 ACCSIG(64,64) 
COMMON /ARGMTS/ PADN1, NTOKEN, PADN2, RESULT, PADN3, ACCSIG 

* NTOKEN : number of tokens in the input string (must be <= 64). 
* RESULT : will contain the value of the systolic array root 
* processor. 
* PADN- : dummy variable to ensure correct allignment with DAP 

* storage mode. 
* ACCSIG : the accumulators and signal controls of the array. 
* ARGMTS : common block to pass arguments to the DAP. 

INTEGER I 
INTEGER TOBASE(64), TMDAP, TMDAPI, TMDAP2, TMDAP3, TMDAP4 

DOUBLE PRECISION TMHOST, TMHOSTI, TMHOST2 

CHARACTER AGAIN 

* I : loop control variable. 
* TOBASE : contains the values of the systolic array base processors; 
* these are used to initialise the array. 
* TMDAP- : variables to compute the time taken by the DAP. 
* TMHOST-: " 

If 
" 

it 
" " " " HOST. 

* AGAIN : to ask the user if he wants to start all over AGAIN. 
* 
* Start of the body of program * * A E T K H 0 S T * * 
* 
* 
* Read the input string and initialise the vector TOBASE. 
* 

10 CALL READIN (TOBASE,NTOKEN) 
* 
* We note here the HOST time to make measures on the execution time. 
* 

CALL CPUTIM(TMHOSTI) 
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* NTOKEN will be zero either if the input string is empty or 
* if it contains illegal characters. 
* 

IF (NTOKEN.NE.0) THEN 

* First initialise the whole array to zero. This is done 
* by a DAP routine. Before and after, we note the DAP time. 

CALL DAPTIME(TMDAPI) 
CALL INITARRAY 
CALL DAPTIME(TMDAP2) 

* Transfer the content of TOBASE in the processors 
* correspondingto the base of the systolic array. 

DO 20 , I = 1 , NTOKEN 

ACCSIG(NTOKEN+1-I,I) = TOBASE(I) 
20 CONTINUE 

* 
* Simulate the systolic algorithm and recognize the string. 
* Via DAP of course. Here as well, we note DAP times. 
* 

CALL DAPTIME(TMDAP3) 
CALL DAPPHASES 

CALL DAPTIME(TMDAP4) 
* 
* Output the result in readable form. 
* 

CALL SHOWSET(RESULT) 
* 
* Output the pointers, that is the counter values saved by 
* each processor. 
* 

* 

* CALL POINTOUT 
* 

* Not anymore. This is PH2HOST, not PHIHOST. The DAP has already 
* used the pointer values to mark the nodes of the underlying parse 
* tree. We willnow output the "marking" of the processors in a 
* readable form. 
* 

* 

* CALL MARKOUT 

* 

* Not anymore. This is PH3FTN, not PH2HOST. We now want to output 
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* the parse, if the recognition was successfull. A successfull 
* recognition is indicated by a strickly positive value for 
* OUTPUTBEATS. (POINTOUT and MARKOUT do no exist anymore.) We test 
* a successfull recognition inside the subroutine PARSOUT. 

CALL PARSOUT 

* Output some execution times. 
* 

CALL CPUTIM(TMHOST2) 
TMHOST = TMHOST2 - TMHOSTI 

TMDAP = (TMDAP2 - TMDAPI) + (TMDAP4 - TMDAP3) 

PRINT 2000, TMHOST, TMHOST/NTOKEN, 

X TMDAP, (TMDAP*1.0)/NTOKEN 

2000 FORMAT(' T I M E S TOTAL PER TOKEN'// 
X Host : ', 2F15.6/ 
X DAP : ', 18, 7X, F15.6) 

ELSE 

* The user has entered either a null string, either an invalid one. 
* Let's ask him if he wants to enter another string or if he's had 
* enough. The user has to enter 'n' or 'N' to stop the program. 

CALL FPROMPT(' Do you want to enter another string? (Y/N)') 
READ 3000 , AGAIN 

3000 FORMAT(A1) 
IF ((AGAIN.EQ.'N').OR.(AGAIN.EQ.'n')) STOP 

ENDIF 

* We think this is great fun and the user has not informed us he 

* has a different feeling so we start all over again. 

GOTO 10 

* END MAIN PROGRAM A E T K H 0 S T 

* 

END 

***** 
* 
* * subroutine *** READIN *** 
* 
***** 

SUBROUTINE READIN (TOBASE,NTOKEN) 
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* 
* Reads in the input string. Checks that it's of the right size 
* and that it contains only valid characters. Returns zero in 
* NTOKEN if any violation. If not, returns in TOBASE the initial 
* values of the base processors' accumulator and control signals 
* and in NTOKEN, the number of tokens (characters) in the input 
* string. 

INTEGER NTOKEN, TOBASE(64), I 

INTEGER*2 TOKENSET 

CHARACTER*80 INSTRING 

LOGICAL STRINGOK 
COMMON /INPUTSTRING/ INSTRING 

* I loop control. 
* INSTRING : the input string. 
* STRINGOK : string error indicator. 
* TOKENSET : function computing the set representation associated 
* with a token. 
* INPUT- : common block to be able to communicate the input 
* string to any interested parties. 

STRINGOK = TRUE. 
CALL FPROMPT('input string please:') 
READ 4000 , INSTRING 

4000 FORMAT(A80) 

NTOKEN = INDEX(INSTRING,' ') - 1 

IF (NTOKEN.EQ.0) THEN 

STRINGOK = FALSE. 
PRINT * , '*** Input string is null' 

ELSE 
PRINT * , ' The input string is: ', INSTRING 

IF (NTOKEN.GT.64) THEN 

STRINGOK FALSE. 

PRINT * , '** ERROR ** Input string too long (>64)' 
NTOKEN - 64 

END IF 
END IF 
DO 100 , I = 1,NTOKEN 

TOBASE(I) = TOKENSET(INSTRING(I:I)) 
IF (TOBASE(I).EQ.-1) THEN 

PRINT * , '** ERROR ** Invalid character 
X INSTRING(I:I),"', in position ',I,'.' 

STRINGOK = .FALSE. 
END IF 
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100 CONTINUE 

IF (.NOT.STRINGOK) NTOKEN=0 
RETURN 

* END SUBROUTINE R E A D I N 
* 

END 

***** 
* * 
* * function * * * T 0 K E N S E T * * 
* * 

***** 

INTEGER*2 FUNCTION TOKENSET (INCHAR) 
* 
* This computes a 16 bit integer whose 10 is-bits represent the set 
* of non-terminals deriving the character INCHAR and whose 2 next 
* is-bits (bit 5 and 6) represent the 2 control signals (transfer 
* from the accumulator to the fast belt and transfer from the fast 
* belt to the first stage of the slow belt). The value computed 
* serves to initialise the base processors. Since the control 
* signals are sent from the base, bit 5 and 6 are set to 1. 
* 

* If the token (character) is illegal, the function returns -1. 
* 

* This subroutine has been slightly modified with the additon of 
* counters and pointers in the phase 1 of the parse (PHIHOST). We 

* now need to add one more control signal (set to one). This is the 
* signal that will indicate to the processors that their counters 
* have reached their "initial" values. All that it changes to this 
* subroutine is the PARAMETER value of SIGBIT. 
* 

* This is version AETKHOST. The value of SIGBIT is modified again. 
* We add another bit of value one. This one will identify the 
* "initialised" processors as the "base" processors of the array. 
* 

INTEGER ASET, LPSET, RPSET, PLUSET, TIMSET, SIGBIT 
CHARACTER INCHAR 

ASET value representing the set {E,T,F} for the 
terminal 'a' or 'A'. 

LPSET '(' 
RPSET . . ')'. 

PLUSET : ... '+' 
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* TIMSET : ... '*'. 

* SIGBIT : value with the four (three(two)) control signals bits at 1. 
* Well, actually, the fourth bit (added in Phase 3) is not a 
* control signal but a mask. 
* INCHAR : the current input character. 

* The following PARAMETER values are based on the following 
* convention. 

* (MSB is numbeed 1 and LSB, 16, because of the way the 
* EQUIVALENCE matches logical planes of an array to the 
* bits of an integer.) 

* non-terminal : E T F E) +T *F ( ) + * 
* bit in set : 1 2 3 4 5 6 7 8 9 10 
* bit in 
* 16 bits integer : 7 8 9 10 11 12 13 14 15 16 

* control signal : stop counter initialisation 
* bit in 
* 16 bits integer : 4 

* control signal : accum. to fast belt fast belt to slow belt 
* bit in 
* 16 bits integer : 5 6 

PARAMETER (ASET = 896, LPSET = 8, RPSET = 4, 
X PLUSET= 2, TIMSET- 1, SIGBIT=15360) 

* Compute the set value and initialise the control signal bits 
* while you're at it. 

IF ((INCHAR.EQ.'a').OR.(INCHAR.EQ.'A')) THEN 

TOKENSET= SIGBIT + ASET 

ELSE IF (INCHAR.EQ.'(') THEN 

TOKENSET= SIGBIT + LPSET 

ELSE IF (INCHAR.EQ.')') THEN 

TOKENSET= SIGBIT + RPSET 

ELSE IF (INCHAR.EQ.'+') THEN 

TOKENSET= SIGBIT + PLUSET 

ELSE IF (INCHAR.EQ.'*') THEN 

TOKENSET= SIGBIT + TIMSET 
ELSE 

TOKENSET=-1 
END IF 
RETURN 
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* END FUNCTION ** T 0 K E N S E T ** 
* 

END 

***** 

* * 

* * subroutine * * * S H 0 W S E T * * * 
* * 

***** 

SUBROUTINE SHOWSET (RESULT) 
* 

* This is supposed to show us the result of the computation in 
* a "readable" format. The way we chose to do that is to put a 
* heading indicating what each bit of the result corresponds to 
* and to write below the heading the values of the bits. 
* 

INTEGER I, RESULT, RSLT, LSBIT, POS 

CHARACTER*80 BITLIN 
* 
* I loop control variable. 
* RESULT : integer representing the accumulator content and control 
* signals. We're only interested in the 16 least sign. bits. 
* RSLT : copy of RESULT. 
* LSBIT : least significant bit of RSLT. 
* POS : position where to put the bit representation in string 
* BITLIN. 
* BITLIN : string to contain bit representation with spaces 
* between bits. 
* 

* Fill the bit line string with blanks. 

BITLIN = ' ' 
RSLT = RESULT 

IF (RSLT.LT.O)THEN 
* 
* RSLT is negative. To extract the bit representation, we must 
* first reverse its bits by adding 1 to it and negating the 
* the result (thus obtaining a positive value). We then extract 
* the bits of this positive value and invert them. 
* 

BITLIN(5:5) = '-' 
RSLT - -(RSLT+1) 
DO 100 , I = 1,15 

POS = 80 - (I-1)*5 
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LSBIT = MOD(RSLT,2) 
IF (LSBIT.EQ.0) THEN 

BITLIN(POS:POS) _ '1' 
ELSE 

BITLIN(POS:POS) _ '0' 
END IF 
RSLT = RSLT/2 

100 CONTINUE 

ELSE 

* RSLT is positive. We extract the bit representation directly. 
* 

BITLIN(5:5) = '+' 
DO 200 , I = 1,15 

POS = 80 - (I-1)*5 
LSBIT = MOD(RSLT,2) 
IF (LSBIT.EQ.0) THEN 

BITLIN(POS:POS) _ '0' 
ELSE 

BITLIN(POS:POS) _ '1' 
END IF 
RSLT = RSLT/2 

200 CONTINUE 

ENDIF 

* Now finally print the results. 

PRINT * , ' The results are:' 
PRINT * 
PRINT * , ' - - - - AtoF FtoS E T F E)', 

X ' +T *F ( ) + *' 
PRINT * 
PRINT * , BITLIN 
RETURN 

* 
* END SUBROUTINE ** S H 0 W S E T ** 
* 

END 

***** 
* * 
* * subroutine * * * M A R K 0 U T * * * 
* * 
***** 

SUBROUTINE MARKOUT 
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* Outputs (in readable form) the relevant portion of the array of 
* processor marks. Processors can be marked either as tree nodes 
* or or as link nodes. Processors can also not be marked at all. 
* Processors linked as link nodes may have been so marked from 
* either their up (vertical) neighbor or their left (horiaontal) 
* neighbor. The same is true for processors marked as tree nodes 
* but we will not need to "depict" this fact. So, all in all, we 
* have to distinguish four different "marks". 

* The subroutine is just one big loop (again). Each time the loop 
* is executed, we print the marks of a row of processors. In the 
* first part of the loop, we find the appropriate string 
* representation of the marks and in the second part, we print out 
* these string representations together together with the token 
* associated with the row. Of course, there are NTOKEN rows to 
* consider. 

INTEGER NTOKEN, RESULT, PADN1, PADN2, PADN3(124) 
INTEGER*2 ACCSIG(64,64) 
COMMON /ARGMTS/ PADN1, NTOKEN, PADN2, RESULT, PADN3, ACCSIG 

* See main program for a description of the variables. 

CHARACTER*80 INSTRING 

COMMON /INPUTSTRING/ INSTRING 

* See subroutine READIN for a description of this variable. 

CHARACTER CHARMARK(64,64) 
COMMON /MARKING/ CHARMARK 

* CHARMARK : an array of bytes. Each byte contains various "logical" 

* bits that were used by the DAP during the marking phase. 
* The bits that interest us are only the last three bits. 
* MARKING a common block to communicate with the DAP. 

INTEGER INTMARK, LASTCOLUMN, I, J 

LOGICAL VERTICAL, LINKNODE, TREENODE 

CHARACTER*2 STRINGMARK(64) 

* INTMARK the integer representation of a character, used to 
* extract the last three bits 
* (VERTICAL, LINKNODE and TREENODE). 

* LASTCOLUMN the number of processors in a row or in other word, the 
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* column of the last processor of a row. 
* I, J : stupid loop control variables and at the same time smart 
* array indices. 
* VERTICAL : third last bit of a character mark. Indicates if 

in the case 
* of a link node, the mark came in the vertical or 
* horizontal direction. 
* LINKNODE : second last bit... . Indicates if the processor 
* is a link node. 
* TREENODE : last bit... . ... is a tree node. 
* STRINGMARK : array of strings depicting the marks of the processors 
* on a row. 

* Start of the body of subroutine MARKOUT 

* Print a few blank lines. 

PRINT * 
PRINT * 
DO 200 I = 1 , NTOKEN 

* In the first section of this loop, we extract the bit 
* representation of the "mark characters" (of the row considered) 
* and from the last three bits of this representation, we compute a 
* string to depict the mark. 

* '. ' unmarked processor. 
link node processor marked in the vertical direction. 

* '--' " 
11 " " " horizontal " 

* 'o ' . tree node processor. 

* Compute the number of processors in this row. 

LASTCOLUMN = NTOKEN + 1 - I 

* In this inner loop, we consider the marks of each processor in 
* the row in turns. 

DO 180 J = 1 , LASTCOLUMN 

* Get the integer value of the eight bit character representation. 
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INTMARK = ICHAR (CHARMARK(I,J)) 

* Extract the last three bits. 
* 

TREENODE = 

INTMARK = 

LINKNODE _ 

INTMARK = 

VERTICAL = 

(MOD (INTMARK,2) 
INTMARK / 2 

(MOD(INTMARK,2) 
INTMARK / 2 

(MOD(INTMARK,2) 

EQ. 1) 

EQ. 1) 

EQ. 1) 
* 

* Set the "mark strings" accordingly. 
* 

IF (TREENODE) THEN 

STRINGMARK(J) = 'o-' 
ELSE IF (LINKNODE) THEN 

IF (VERTICAL) THEN 

STRINGMARK(J) = 'I ' 

ELSE 

STRINGMARK(J) = '--' 

ENDIF 
ELSE 

STRINGMARK(J) 

ENDIF 

* 
180 CONTINUE 

* Now that we have an array of strings representing the marks of 
* one row of processors, we print them out together with the token 
* associated with this row. 
* 

PRINT * , (STRINGMARK(J), J = 1 , LASTCOLUMN), 

X INSTRING(LASTCOLUMN:LASTCOLUMN) 

200 CONTINUE 
* 

* Print a few blank lines. 
* 

PRINT * 

PRINT * 

* 

* End of subroutine * * * M A R K O U T * * * 

* 
END 

***** 
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* * 

* * subroutine *** P A R S 0 U T 
* * 
***** 

SUBROUTINE PARSOUT 
* 
* This subroutine, added especially for the Phase 3 of the parsing 
* algorithm (PH3FTN), simply outputs the parse that the DAP version 
* is supposed to have stored in the vector PARSE. For space 
* efficiency reasons, the parse rule numbers are represented in 
* "character" codes so we'll need to do some conversions to recover 
* the rules. We chose the simplest way to output the parse. We 

* output the rules one after the other in one column. 
* 

INTEGER NTOKEN, RESULT, PADN1, PADN2, PADN3(124) 

INTEGER*2 ACCSIG(64,64) 

COMMON /ARGMTS/ PADN1, NTOKEN, PADN2, RESULT, PADN3, ACCSIG 

* See Main Program for a description of these variables. 

CHARACTER PARSE(127), PADCHAR 

INTEGER PADINT(223), OUTPUTBEATS 

COMMON /PARSING/ PARSE, PADCHAR, PADINT, OUTPUTBEATS 

* NTOKEN : the number of tokens in the input string. 

* PARSE : the vector of rule numbers composing the parse. The 

* numbers are represented by character codes. 
* PADCHAR, : useless memory space due to Host and DAP storage 
* PADINT format differences. 

* OUTPUTBEATS : some integer that kept a count for us of the number of 

* beats required to get the parse out of the array. 
* PARSING : common block to communicate with the DAP. 

CHARACTER*25 RULES(16) 

INTEGER I 

* RULES : strings representing the rules as such. 
* I : loop control variable. 

DATA RULES / ' (1) E --> E +T 

X ' (2) E --> T *F 

X ' (3) E --> <(> E) ', 
X ' (4) E --> a ', 
X ' (5) E) --> E <)> ', 
X ' (6) T --> T *F 
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X (7) T --> <(> E) ', 
X ' (8) T --> a ', 
X ' (9) +T --> <+> T 
X ' (10) F --> <(> E) ', 
X ' (11) F --> a ', 
X ' (12) *F --> <*> F 
X ' (13) <(> --> ( ', 
X ' (14) <)> --> ) ', 
X ' (15) <+> --> + 

X ' (16) <*> --> * 

* Start of the body of subroutine * * P A R S 0 U T * * 

* We output a parse only if recogni tion was successfull. 

IF (OUTPUTBEATS.GT.-1) THEN 

PRINT * 
PRINT * 
PRINT * , ' The parse is: 
PRINT * , 

* The parse is twice the length of the input string minus one. 

DO 100 , I = 1 , 2 * NTOKEN - 1 

PRINT * , ' ', I, ' : ', RULES(ICHAR(PARSE(I))) 

100 CONTINUE 

PRINT 1000 , OUTPUTBEATS 

1000 FORMAT(/' ',13,' beats were required to output the parse.'/) 

ELSE 

PRINT * 
PRINT * , ' *** Recognition failed *** 
PRINT 

ENDIF 
RETURN 

* END of subroutine ** P A R S 0 U T 

END 
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A.2 DAP component 

c ******************************************************************* 
c* 
c* 
c* 
C * 
C * 

A E T K D A P 

C ******************************************************************* 
C 

C We've added in a first stage counters and pointers to the original 
C program. 
C 

C We are adding in a second stage the marking phase. This phase uses 
C the pointers (saved counter values) obtained during the recognition 
C to "mark" certain processors as "tree" nodes and certain others as 
C "link" nodes. The only difference this brings to this program is a 
C (self contained) subroutine MARK_PROCESSORS. Oh, also, We added a 
C subroutine, DAP_PHASES, that simply acts as an entry point in the 
C DAP program for the Host program. This subroutine calls the 
C subroutines 
C RECOGNIZE (not an entry subroutine anymore) and MARK-PROCESSORS. 
C 

C PH3DAP : This version implements the output of the parse (after 
C the marking of the processors of course). This implementation 
C involves a modification both at the level of phase 1 version and 
C phase 2 version. 
C It also involves pure add-ons. We need to modify ACC_UPDATE so that 
C it will record the "rule number" (phase 1). We need to modify MARK- 

C PROCESSORS for two reasons. First, because our grammar is not 
C "locally 

C unambiguous", local ambiguities need to be resolved during the 
C marking 
C phase. Second, we identify during this phase the processors at 
C odd and even levels (diagonals) in the array. 
C 

C We also modify the common ARGMTS. Actually, we simply use 
C another bit of the variable SIGACC to identify the base processors. 
C This bit is reset (.FALSE.) by the DAP part (implicitly in 

C INIT_ARRAY) and then set by the Host part. 
C 

C 

C These subroutines to be executed on the I.C.L. DAP implement 
C the systolic algorithm of Kosaraju 
C and Guibas, Kung and Thompson. We use this 
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C algorithm to implement in turn the algorithm of Cocke-Younger- 
C Kasami for CFL recognition. 
C 

C The grammar used is: 
C 

C (1) 
C -(2) 
C -(3) 
C -(4) 
C (5) 
C (6) 

C 

E --> E +T (7) T --> <(> E) (13) <(> --> 
E --> T *F (8) T --> a (14) <)> --> ) 
E --> <(> E) (9) +T --> <+> T (15) <+> --> + 

E --> a (10) F --> <(> E) (16) <*> --> * 
E) --> E <)> (11) F --> a 

T --> T *F (12) *F --> <*> F 

C Rules 2 has the same right-hand side as rule 6. During the 
C recognition, rule 2 is recorded and during the marking phase, we 
C determine which of rule 2 or 6 is correct. Same remark applies 
C for rule 3 (with 7 and 10) and rule 4 (with 8 and 11). 
C 

C We number the non-terminal as so: 
C 

C 

C 

C 

non-terminals: E T F E) +T *F <(> <)> <+> <*> 

numbers: 1 2 3 4 5 6 7 8 9 10 

C We number the terminals as so (numbering not used yet... 
C 

C terminals: a ( ) + * 
C numbers: 1 2 3 4 5 
C 

C ****************************************************** 

C * * 
C * ENTRY SUBROUTINE I N I T - A R R A Y * 
C * * 
C ****************************************************** 

C 

ENTRY SUBROUTINE INIT-ARRAY 
C 

C Initialises to zero the bits of the matrices of the accumulator 
C and the control signals. These matrices are equivalenced to parts 

C of a 16 bits integer matrix ACCSIG and the initialisation is done 

C via this matrix. We resort to this integer matrix for space 

C efficiency reasons. 
C 

C Well finally we decided that this subroutine should also 

C initialise the registers of the fast and slow belts 

C 

C Now this is not the same program anymore. We've added things to 

C it on our way to the parser!! So here we also initialise the 
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C counters and some control bits associated with them. 
C 

C This is Phase 3. In this version, we also initialise the matrix 
C RULE which will be used during the output of the parse. Of course, 
C we add the declarations of the common block in which RULE appears. 
C 

INTEGER NOFNTERM 

INTEGER NTOKEN, RESULT 

INTEGER*2 ACCSIG(,) 

COMMON /ARGMTS/ NTOKEN, RESULT, ACCSIG 

C If DAP FORTRAN had the PARAMETER statement: 
C 

C LOGICAL FHBELT(,,NOFNTERM), FVBELT(,,NOFNTERM), 
C SHBELT( NOFNTERM), SVBELT( NOFNTERM), 
C SHBELT2(,,NOFNTERM), SVBELT2(,,NOFNTERM), TEMP(,) 
C 

C But it does not: 

LOGICAL FHBELT(,,10), FVBELT(,,10), 
X SHBELT(10), SVBELT(10), 
X SHBELT2(,,10), SVBELT2(,,10), TEMP(,) 

COMMON /BELTS/ FHBELT, FVBELT, SHBELT, SVBELT, 

X SHBELT2, SVBELT2, TEMP 

LOGICAL INIT_COUNT(,), UPDATE_COUNT(,) 

INTEGER*2 BIG_COUNT(,), WEE-COUNT(,), 

X V_POINTER(,), H_POINTER(,) 

COMMON /COUNTING/ INIT_COUNT, UPDATE-COUNT, 

X BIG_COUNT, WEE_COUNT, 

X V_POINTER, H_POINTER 

C See subroutine RECOGNIZE for descriptions of these variables. 

INTEGER*1 LEFT_SIDE(,), RIGHT_SIDE_1(,), RIGHT_SIDE_2(,), 

X RULE(,) 

LOGICAL ODD_LEVEL(,) 

COMMON /RULING/ LEFT_SIDE, RIGHT_SIDE_1, RIGHT_SIDE_2, 

X RULE, ODD_LEVEL 

C See subroutine ACC_UPDATE for a description of these variables. 

INTEGER I 

C I : Loop control variable. 

C 

C We set the value of "PARAMETER" NOFNTERM, the number of non- 
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C 

C 

terminals in the grammar. 

NOFNTERM = 10 
C 

C We do not convert from 2900 FORTRAN to DAP FORTRAN, since we 
C initialise. 

C 

ACCSIG(,) = 0 
DO 50 I = 1, NOFNTERM 

FVBELT (,,I) _ FALSE. 
FHBELT (,,I) _ FALSE. 
SHBELT (,,I) _ FALSE. 
SVBELT (,,I) _ FALSE. 
SHBELT2(,,I) _ FALSE. 
SVBELT2(,,I) _ FALSE. 

50 CONTINUE 

INIT_COUNT - TRUE. 
UPDATE_COUNT = .FALSE. 
BIG_COUNT = 1 

WEE-COUNT = 0 
C 

C It sure is not necessary to initialise V_POINTER and H_POINTER 
C but it might come in handy if we want to see what's going on... 
C 

V_POINTER = -1 
H_POINTER = -1 

C 

C We don't even need to convert from DAP to 2900 since all the 
C bits are at zero. Maybe I must add here that only ACCSIG 
C will be used (modified) anyway by the host. 
C 

C 

C Added bit for phase 3. 
C 

RULE - 0 

RETURN 

C 

C END OF ENTRY SUBROUTINE ** I N I T_ A R R A Y 

C 

END 

****************************************************** 
* 
* SUBROUTINE R E C O G N I Z E 

* 

* 

* 

* 
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C ****************************************************** 

SUBROUTINE RECOGNIZE 
C 

C Does the bulk of the work really. In other words, this is 
C IT!! The actual implementation of the K-GKT algorithm. All the 
C rest was simply initialisations, inputs and outputs. On the 
C other hand, we should not get too excited here. This subroutine 
C is only a big loop. In this loop we do the following things: 
C 

C - Transfer the accumulator contents (of selected 
C accumulators) to fast belt registers. 
C - Transfer data in-between processors. 
C * Increment (half of the) counters that have not yet reached 
C their initial value. 
C *- Transfer the control signals. 
C - Transfer fast belt register contents (of selected 
C fb registers) to slow belt registers. 
C *- Update content of all accumulators using the values 
C in the fast and slow belt registers. 
C * Update the counters of those processors currently computing 
C their value. 
C 

C The interesting thing about this stupid looking loop is that we 
C could start executing it from anywhere within it, provided the 
C initialisations are in accordance. 
C 

C (-) steps present in the initial program (pure K-GKT). 
C (*) steps added in the second program (phase 1). 
C (*-) steps present in the first program and modified in the 
C second. 
C 

C This is the Phase 3 version. Here, we simply add a variable, 
C BASE_NODE. Note that Phase 3 involves changes in ACC-UPDATE and 
C that C ACC_UPDATE is called by this subroutine. 
C After some thinking, we have found out that we need also to 
C initialise the rules for the base nodes in this subroutine. 
C That means we also need to import a common (RULING). 

C 

INTEGER NOFNTERM 

INTEGER NTOKEN, RESULT 

INTEGER*2 ACCSIG(,) 

C If DAP FORTRAN had the PARAMETER statement: 
C 

C LOGICAL SIGACC(,,16), 
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C INIT_C_STOP(,), ACCTOFB(,), FBTOSB(,), 
C ACCUM(,,NOFNTERM) 
C 

C But it does not so: 

LOGICAL SIGACC(,,16), 
X INIT_C_STOP(,), ACCTOFB(,), FBTOSB(,), 
X ACCUM ( 10) 

C 

C Added for Phase 3. We EQUIVALENCE this bit (BASE_NODE) to a bit of 
C SIGACC. 
C 

LOGICAL BASE_NODE(,) 
EQUIVALENCE (SIGACC,ACCSIG), 

X (SIGACC(,,3),BASE_NODE), 
X (SIGACC(,,4),INIT_C_STOP), 
X (SIGACC(,,5),ACCTOFB), (SIGACC(,,6),FBTOSB), 
X (SIGACC( 7),ACCUM) 

COMMON /ARGMTS/ NTOKEN, RESULT, ACCSIG 

C NOFNTERM . Number of non-terminals in the grammar. 
C NTOKEN . Number of tokens in the input string (must be <= 64). 
C RESULT . The result of the recognition (set of processor (1,1)). 
C ACCSIG . Integer representation of the ACCumulator registers and 
C the control signals. 
C SIGACC . EQUIVALENCED logical (bit) representation of ACCSIG. 
C INIT_C_STOP: Control signal indicating to a processor that 
C its Counters have reached their "INITial" values 
C and that it can STOP initialising (incrementing) them. 
C ACCTOFB . ACCumulator TO Fast Belt control signals. 
C FBTOSB . Fast Belt TO Slow Belt control signals. 
C ACCUM . ACCUMulator registers. 
C BASE_NODE : indicates that the processor is at the "base" of the 
C array. By "base", we mean the diagonal at a distance 
C NTOKEN from the "root" (the top left corner). (Added 
C in the Phase 3 version.) 

LOGICAL INIT_COUNT(,), UPDATE_COUNT(,) 

INTEGER*2 BIG_COUNT(,), WEE_COUNT(,), 

X V_POINTER(,), H_POINTER(,) 
COMMON /COUNTING/ INIT_COUNT, UPDATE_COUNT, 

X BIG_COUNT, WEE_COUNT, 

X V_POINTER, H_POINTER 

C INIT_COUNT : Indicates to a processor that he is presently in 
C the process of initialising his counters (during 
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C the recognition phase). 
C UPDATE_COUNT : Indicates to a processor that it is presently in the 
C process of computing its value and that at every beat, 
C it must update its counters. Both INIT_COUNT and 
C UPDATE-COUNT are "masks" that serve to select the 
C processors that will be involved in counter value 
C modifications. 
C BIG_COUNT : The counter that will hold the bigger values. 
C WEE_COUNT . The one ... smaller .... 
C V_POINTER : Saved counter value pointing to a previous processor 
C in the Vertical direction. This processor is the one 
C that will have computed the value responsible for the 
C insertion of a value in the processor's set. 
C H_POINTER : Saved ... Horizontal direc... . 

LOGICAL FHBELT(,,10), FVBELT(,,10), 
X SHBELT ( 10) , SVBELT ( 10) , 
X SHBELT2(10), SVBELT2( 10), TEMP(,) 

COMMON /BELTS/ FHBELT, FVBELT, SHBELT, SVBELT, 
X SHBELT2, SVBELT2, TEMP 

C FHBELT Fast Horizontal BELT register. 
C FVBELT... 
C SHBELT... 
C SVBELT... 
C SHBELT2 . Second Slow Horizontal BELT register, the one that 
C slows things down. 
C SVBELT2... 
C TEMP : Temporary variable (bit plane) for register transfers. 

INTEGER*2 AF-STATE, FS-STATE 

LOGICAL AF-ACTIVE, FS-ACTIVE, BEAT-IS-EVEN 
COMMON /SIG_STATUS/ AF_STATE, FS_STATE, 

X AF-ACTIVE, FS-ACTIVE, BEAT-IS-EVEN 

C BEAT_IS_EVEN : Indicates whether we are on an even beat or not. 
C We toggle this variable between TRUE. and .FALSE.. 

C AF-STATE : See subroutine UPDATESIGNALS for a description of the 
C other SIG_STATUS variables. 
C 

C Added for Phase 3: 
C 

INTEGER*1 LEFT_SIDE(,), RIGHT_SIDE_1(,), RIGHT_SIDE_2(,), 
X RULE(,) 

LOGICAL ODD_LEVEL(,) 
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COMMON /RULING/ LEFT_SIDE, RIGHT_SIDE_i, RIGHT-SIDE-2, 

X RULE, ODD-LEVEL 

C See subroutine ACC-UPDATE for a description of these variables. 

INTEGER NOFBEATS 

INTEGER I, J 

C NOFBEATS : Number of times we do the big loop which is equivalent to 
C the number of beats the simulated systolic array has to 
C go through to compute the sought result. 
C I, J : Loop control variables. 
C 

C We don't need the following since "plane geometry" is on 
C by default, but just in case... 
C 

GEOMETRY(PLANE,PLANE) 
C 

C We set the value of "PARAMETER" NOFNTERM, the number of non- 
C terminals in the grammar. 
C 

NOFNTERM = 10 

C 

C We initialise the signal status global variables. 
C We start with a transfer from the accumulators along 
C the base to the fast belts. Soon after, FS_STATE will 
C turn to zero and we will transfer from fast belt to 
C slow belt on the processor above the base. 
C 

AF-STATE = 0 

FS-STATE = 2 

AF-ACTIVE _ TRUE. 

FS-ACTIVE = FALSE. 

C 

C The first beat, beat i, is odd, isn't it? 
C 

BEAT_IS_EVEN = .FALSE. 

C 

C We never needed to do 2900/DAP conversions before but this 
C time, we can not avoid it. The host (2900) modified certain 

C values of ACCSIG so we need to convert it. 

C 

CALL CONVFM2 (ACCSIG) 

C 

C PH3DAP: Bit added for the Phase 3 version: 
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C 

C We record here the rules used to initialise the "base node" 
C processors accumulators. 
C 

C recall: non-terminal E <(> <)> <+> <*> 
C number 1 7 8 9 10 
C 

C rule(4) E --> a 

RULE(BASE_NODE AND. ACCUM(,,1)) _ 

C rule(13) <(> --> 

4 

RULE(BASE_NODE AND. ACCUM(,,7)) = 13 

C rule(14) <)> --> ) 

RULE(BASE_NODE AND. ACCUM(,,8)) = 14 

C rule(15) <+> --> + 

RULE(BASE_NODE AND. ACCUM(,,9)) = 15 

C rule(16) <*> --> * 

RULE(BASE_NODE AND. ACCUM(,,10)) = 16 
C 

C Here is where the big loop starts. We loop around 
C NTOKEN*2 - 3) times. Usually, we would loop NTOKEN*2 times but 
C because of the way we have set up the loop and the initialisa- 
C tions, we can save 3 beats. 
C 

NOFBEATS = NTOKEN * 2 - 3 
C 

C FORTRAN does not allow loop parameters to be less than zero 
C so we have to do this little test here. 
C 

IF (NOFBEATS.LT.1) GOTO 101 
DO 100 I = 1 , NOFBEATS 

C 

C Transfer the content of the accumulator of selected 
C processors to the processors fast belt registers. Now this 
C is not done all the time. In fact, half of the time its 
C not done. 
C 

212 

IF (.NOT.AF_ACTIVE) GOTO 11 
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DO 10 J = 1 , NOFNTERM 

FHBELT(ACCTOFB,J) - ACCUM(,,J) 
FVBELT(ACCTOFB,J) = ACCUM( J) 

10 CONTINUE 
11 CONTINUE 

C 

C Execute the inter-processor data transfers. 
C 

DO 20 J = 1, NOFNTERM 

C Horizontaly first. 
C The root is processor (1,1). Can you 
C see what this implies? 
C Our array is tilted 90 degrees counteclockwise 
C compared to the array GKT in their Caltech 79 
C paper. So our horizontal belts correspond to 
C their vertical belts and... 

FHBELT(,,J) = FHBELT(,+,J) 
TEMP(,) - SHBELT(,,J) 
SHBELT(,,J) = SHBELT2(,+,J) 
SHBELT2(,,J)= TEMP(,) 

C Vertically now. 
C Look where the "shift indices" are now. 

FVBELT(,,J) = FVBELT(+,,J) 
TEMP(,) = SVBELT(,,J) 
SVBELT(,,J) = SVBELT2(+,,J) 
SVBELT2(,,J)= TEMP(,) 

20 CONTINUE 

C 

C Increment either the BIG counter, either the WEE one, depending 
C on which turn it is. 
C 

IF ( BEAT_IS_EVEN) BIG_COUNT(INIT_COUNT) - BIG_COUNT + 1 

IF (.NOT. BEAT_IS_EVEN) WEE_COUNT(INIT_COUNT) = WEE-COUNT + 1 

C 

C Update the control signals as need be. 
C 

CALL UPDATESIGNALS 

C 

C Copy content of Fast Belt register to the first slow belt 
C registers. 
C 

IF (.NOT.FS_ACTIVE) GOTO 91 

213 
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DO 90 J = 1, NOFNTERM 

SHBELT(FBTOSB,J) - FHBELT(,,J) 
SVBELT(FBTOSB,J) = FVBELT(,,J) 

90 CONTINUE 

91 CONTINUE 
C 

C Update the content of the accumulators. 
C 

CALL ACC-UPDATE 
C 

C Now modify the counters of those processors currently computing 
C their values. 
C 

BIG_COUNT(UPDATE_COUNT) = BIG_COUNT + 1 

WEE_COUNT(UPDATE_COUNT) - WEE_COUNT - 1 

C 

C Allright, we're almost finished with this loop. One last thing we 
C must do before the end is to toggle the value of BEAT_IS_EVEN. 
C 

BEAT_IS_EVEN = NOT. BEAT-IS-EVEN 
C 

C That's the end of this loop. 
C 

100 CONTINUE 

101 CONTINUE 
C 

C It's almost finished now. What we are looking for is in 
C the accumulator of processor (1,1). The only thing we 
C need to do now is to put this value in a scalar variable 
C so as to be available to the 2900. Resorting to a 
C separate variable allows us to avoid having to convert 
C the whole accumulator matrix. 
C 

RESULT = ACCSIG (1,1) 

C 

C Well just up there is some obsolete stuff. We are now not 
C looking only for the value of processor (1,1). We are 
C interested in the value of all the processors and most of all 
C in the values of the pointers: V_POINTER and H_POINTER. So 
C we'll convert the relevant matrix just now and the host 
C program will sort out how to present them to you dear user. 
C 

C All this up there was true in PH1DAP but is not in PH2DAP. 
C Now we want the DAP to use the pointer values so we'll not 

214 
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C convert anything but instead, we'll put the following lines 
C in comments. 
C 

C 

C CALL CONVMF2 (ACCSIG) 
C CALL CONVMF2 (V_POINTER) 
C CALL CONVMF2 (H_POINTER) 
C 

C 

C Just in case things go badly, we'll convert the counter matrices 
C as well so we can look at their content if we want to. 
C 

C 

C CALL CONVMF2 (BIG_COUNT) 
C CALL CONVMF2 (WEE_COUNT) 

RETURN 

C 

C END OF SUBROUTINE ** R E C O G N I Z E 

C 

END 

C ****************************************************** 
C * * 
C * SUBROUTINE A C C_ U P D A T E 
C 

C ****************************************************** 

SUBROUTINE ACC-UPDATE 

C 

C This procedure updates the content of the accumulators 
C accordingly with the values on the fast and slow belts. 
C The procedure is completely dependant on the grammar used. 
C 

C Let's repeat here the numbering convention of the non- 
C terminals so as to make it more convenient to read this 
C seemingly meaningless code. 
C 

C non-terminal : E T F E) +T *F ( ) + 

C bit number : 1 2 3 4 5 6 7 8 9 10 

C 

C To minimise the computations, we update by applying the 
C rules in a given order. Can you see why? In fact, we use 
C single production rules (NT --> NT) although this does not 
C comply with the Chomski Normal Form. 
C 
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C This is not the original ACC-UPDATE. It's the version in 
C which we have the counters and we save them once in a while. 
C To celebrate this occasion, we have introduced two new logical 
C DAP matrix variables. Their declaration follow. 
C 

C Well, they follow this added lines of comment. This ACC_ 

C UPDATE is now the one for phase 3. What we do that is new is 
C that we record the rules that allow us to make insertions in the 
C set of non-terminals. Actually, because our grammar is locally 
C ambiguous, we record a rule that allows an insertion but at the 
C time of recording, we are not sure yet if this rule is going to 
C be the one we are looking for. This uncertainty will be resolved 
C in the marking phase. 
C 

C We record the rules at the end of the subroutine. 
C 

C 

LOGICAL PAIR_FV_SH(,), PAIR_SV_FH(,) 

C PAIR_FV_SH : Indicate if the processor had on its Fast Vertical belt 
C and its Slow Horizontal belt a pair of value 

C corresponding to a right hand side rule. This is going 
C to be used to mask out processors when assigning values 
C to the pointers V_POINTER and H_POINTER. 

C PAIR_SV_FH : Indicates if ... Slow Vertical ... Fast... 

INTEGER NTOKEN, RESULT 

INTEGER*2 ACCSIG(,) 

C If DAP FORTRAN had the PARAMETER statement: 
C 

C LOGICAL SIGACC(,,16), 
C INIT_C_STOP(,), ACCTOFB(,), FBTOSB(,), 
C ACCUM(,,NOFNTERM) 

C 

C But it does not so: 

LOGICAL SIGACC(,,16), 
X INIT_C_STOP(,), ACCTOFB(,), FBTOSB(,), 
X ACCUM ( 10 ) 

LOGICAL BASE_NODE(,) 
EQUIVALENCE (SIGACC,ACCSIG), 

X (SIGACC(,,3),BASE_N0DE), 
X (SIGACC(,,4),INIT_C_ST0P), 
X (SIGACC(,,5),ACCT0FB), (SIGACC(,,6),FBTOSB), 
X (SIGACC(,,7),ACCUM) 
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COMMON /ARGMTS/ NTOKEN, RESULT, ACCSIG 

C If DAP FORTRAN had the PARAMETER statement: 
C 

C LOGICAL FHBELT(,,NOFNTERM), FVBELT(,,NOFNTERM), 
C X SHBELT(,,NOFNTERM), SVBELT( NOFNTERM), 
C X SHBELT2( NOFNTERM), SVBELT2(,,NOFNTERM), TEMP(,) 
C 

C But it does not: 

LOGICAL FHBELT(,,10), FVBELT(,,10), 
X SHBELT ( 10) , SVBELT( 10) , 
X SHBELT2(10), SVBELT2(,,10), TEMP(,) 

COMMON /BELTS/ FHBELT, FVBELT, SHBELT, SVBELT, 

X SHBELT2, SVBELT2, TEMP 
LOGICAL INIT_COUNT(,), UPDATE_COUNT(,) 
INTEGER*2 BIG_COUNT(,), WEE_COUNT(,), 

X V_POINTER(,), H_POINTER(,) 
COMMON /COUNTING/ INIT_COUNT, UPDATE_COUNT, 

X BIG_COUNT, WEE_COUNT, 

X V_POINTER, H_POINTER 

C For variable descriptions, see subroutine RECOGNIZE. 
C 

C The next variables were added for phase 3. 
C 

INTEGER*1 LEFT_SIDE(,), RIGHT_SIDE_1(,), RIGHT_SIDE_2(,), 
X RULE(,) 
LOGICAL ODD _LEVEL(,) 
COMMON /RULING/ LEFT-SIDE, RIGHT_SIDE_1, RIGHT_SIDE_2, 

X RULE, ODD-LEVEL 

C LEFT_SIDE : Non-terminal number of this processor. 
C RIGHT_SIDE_i : First non-terminal of the (common) right hand side of 
C the (possibly many) rule(s) by which we inserted non- 
C terminals in the set of this processor. 
C RIGHT_SIDE_2 ... 
C RULE : Before the marking phase, any rule whose right hand 
C side allowed the insertion of non-terminals in the set of the 
C processor. After the marking, the specific rule for this 
C non-terminal, i.e. the one with a right-hand side as above 
C and with a left-hand side corresponding to the lhs of the 
C processor. 
C ODD_LEVEL : Indicate the parity of the level a processor is on. 
C A level is simply a diagonal of the array (from bottom- 
C left to top-right). Processor (i,i) constitutes level i, 
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C the diagonal "below" level two and so on. 
C RULING : A common block just to be able to share these 
C variables among various DAP FORTRAN only subroutines. 
C 

C Observe on the following statements that we always look 
C for the first non-terminal of a right-hand side on the 
C vertical belts and for the second on the horizontal belts. 
C This is contrary to the convention found in the literature on 
C K-GKT. The reason is that also contrary to the convention, we 
C put the "root" of the array at processor (1,1), the North-West 
C corner. Hence, the base 
C lies on a diagonal (perpendicular to "conventionnal" diagonals) 
C touching the west and north boundaries of the DAP array. So 
C vertical belts carry information pertaining to left substrings 
C of the input and horizontal ... right ... 
C 

C 

C We don't need the following since "plane geometry" is on 
C by default but just in case... 
C 

GEOMETRY(PLANE,PLANE) 
C 

C *F --> * F 

C 

ACCUM(,,6) = ACCUM(,,6).OR.(FVBELT(,,10).AND.SHBELT(,,3)) 
X .OR.(SVBELT(,,10).AND.FHBELT(,,3)) 

C 

C +T --> + T 

C 

ACCUM(,,5) = ACCUM(,,5).OR.(FVBELT(,,9).AND.SHBELT(,,2)) 
X .OR.(SVBELT(,,9).AND.FHBELT(,,2)) 

C 

C E) --> E ) 
C 

ACCUM(,,4) = ACCUM(,,4).OR.(FVBELT(,,1).AND.SHBELT(,,8)) 
X .OR.(SVBELT(,,1).AND.FHBELT(,,8)) 

C 

C F --> ( E) 
C 

ACCUM(,,3) = ACCUM(,,3).OR.(FVBELT( 7).AND.SHBELT(,,4)) 
X .OR.(SVBELT(,,7).AND.FHBELT(,,4)) 

C 

C T --> T *F I ( E) 
C 

C Actually, we use the following rule: 
C 
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C T --> T *F I F 

C 

C which because of the order of evaluation of the other rule 
C is equivalent. 
C 

ACCUM(,,2) = ACCUM(,,2).OR.(FVBELT(,,2).AND.SHBELT(,,6)) 
X .OR.(SVBELT(,,2).AND.FHBELT(,,6)) 
X .OR.ACCUM(,,3) 

C 

C E--> E +T I T *F I ( E) 
C 

C Actually, we use the equivalent rule: 
C 

C E --> E +T I T 
C 

ACCUM(,,1) = ACCUM(,,1).OR.(FVBELT(,,1).AND.SHBELT(,,5)) 
X .OR.(SVBELT(,,1).AND.FHBELT(,,5)) 
X .OR.ACCUM(,,2) 

C 

C That used to be all we did in this subroutine but in this version, 
C we implement the counter and pointer idea and we need to have the 
C lines that follow to do that. If a pair of value of the belts 
C correspond to a right hand side we save the counters in the pointer 
C variables (V_POINTER and H_POINTER). The fast belts always carry 
C values from nearer processors (those whose distance are indicated by 
C WEE-COUNT and the slow... . Can you see how this fact is reflected 
C in the following code? 
C 

PAIR_FV_SH = (FVBELT(,,10).AND.SHBELT(,,3)).OR. 
X (FVBELT(,, 9).AND.SHBELT(,,2)).OR. 
X (FVBELT(,, 1).AND.SHBELT(,,8)).OR. 
X (FVBELT(,, 7).AND.SHBELT(,,4)).OR. 
X (FVBELT(,, 2).AND.SHBELT(,,6)).OR. 
X (FVBELT(,, 1).AND.SHBELT(,,5)) 

PAIR_SV_FH = (SVBELT(,,10).AND.FHBELT(,,3)).OR. 
X (SVBELT(,, 9).AND.FHBELT(,,2)).OR. 
X (SVBELT(,, 1).AND.FHBELT(,,8)).OR. 
X (SVBELT(,, 7).AND.FHBELT(,,4)).OR. 
X (SVBELT(,, 2).AND.FHBELT(,,6)).OR. 
X (SVBELT( 1).AND.FHBELT(,,5)) 

V_POINTER (PAIR_FV_SH) = WEE-COUNT 

V_POINTER (PAIR_SV_FH) = BIG-COUNT 

H_POINTER (PAIR_FV_SH) = BIG-COUNT 

H_POINTER (PAIR_SV_FH) = WEE-COUNT 

C 

C And in this version (PH3DAP), we also implement the output of the 
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C parse. So we now need to record the rules that allowed the 
C insertions. (see comment at the beginning of the subroutine). 
C 

C *F --> * F 

RULE( (FVBELT(,,1O).AND.SHBELT(,,3)) 
X .OR.(SVBELT(,,10).AND.FHBELT(,,3))) - 12 

C +T --> + T 

RULE( (FVBELT(,, 9).AND.SHBELT(,,2)) 
X .OR.(SVBELT(,, 9).AND.FHBELT(,,2))) = 9 

C E) --> E ) 

RULE( (FVBELT(,, 1).AND.SHBELT(,,8)) 
x .OR.(SVBELT(,, 1).AND.FHBELT(,,8))) 5 

C E,T,F --> ( E) 
C { "( E)" is a right-hand side common to E,T,F } 

RULE( (FVBELT(,, 7).AND.SHBELT(,,4)) 
X .OR.(SVBELT(,, 7).AND.FHBELT(,,4))) = 3 

C E,T --> T *F { "T *F" is a ... to E,T } 

RULE( (FVBELT(,, 2).AND.SHBELT(,,6)) 
X .OR.(SVBELT(,, 2).AND.FHBELT(,,6))) = 2 

C E --> E +T 

RULE( (FVBELT(,, 1).AND.SHBELT(,,5)) 
X .OR.(SVBELT(,, 1).AND.FHBELT(,,5))) = 1 

RETURN 

C 

C END SUBROUTINE ** ACC_UPDATE ** 
C 

END 

C ****************************************************** 
C * * 
C * SUBROUTINE UPDATE_SI GNALS * 
C * * 
C ****************************************************** 
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SUBROUTINE UPDATE-SIGNALS 
C 

C The control signals cycle through states. In a given 
C state, they are activated and in given states they are 
C transfered to neighboring processors. The states are held in 
C two global variables AF-STATE and FS_STATE (possible because 
C our machine is SIMD). Two global logical variables, AF-ACTIVE 
C and FS_ACTIVE, indicate if the signals are active. 
C 

C Actually, this whole state business is just a way to simulate 
C signals that travel at certain speeds. The Accumulator to Fast 
C belt signals travel at the speed of the slow belt and the other 
C ones travel at 2/3 of that speed. 
C 

C This subroutine updates the states of the control signals and 
C their activation indicator accordingly. If need be, it executes 
C control signal transfers. 
C 

C 

C Like the other subroutines, this one is also modified for the 
C implementation with added counters. Its in this subroutine that 
C we transfer the signals that indicate to the processors when their 
C counters have reached their "initial" value, when to start 
C modifying them and when to stop modifying them. For the "initial" 
C bit, we have an extra control signal (INIT_C_STOP) and something 
C that remember its passage (INIT_COUNT) while for the modifying 
C bit, we use the transfer control signals we already had and also 
C something to "remember" (UPDATE_COUNT)... 
C 

INTEGER*2 AF-STATE, FS-STATE 

LOGICAL AF-ACTIVE, FS-ACTIVE, BEAT-IS-EVEN 

COMMON /SIG_STATUS/ AF_STATE, FS_STATE, 

X AF-ACTIVE, FS-ACTIVE, BEAT-IS-EVEN 

C For descriptions of the above variables see above comment 

C (except for BEAT-IS-EVEN, see subroutine RECOGNIZE). 

INTEGER NTOKEN, RESULT 

INTEGER*2 ACCSIG(,) 

C If DAP FORTRAN had the PARAMETER statement: 
C 

C LOGICAL SIGACC(,,16), 

C INIT_C_STOP(,), ACCTOFB(,), FBTOSB(,), 

C ACCUM(,,NOFNTERM) 

C 
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C But it does not so: 

LOGICAL SIGACC(,,16), 
X INIT_C_STOP(,), ACCTOFB(,), FBTOSB(,), 
X ACCUM ( 10) 

LOGICAL BASE_NODE(,) 
EQUIVALENCE (SIGACC,ACCSIG), 

X (SIGACC(,,3),BASE_NODE), 
X (SIGACC(,,4),INIT_C_STOP), 
X (SIGACC(,,5),ACCTOFB), (SIGACC(,,6),FBTOSB), 
X (SIGACC(,,7),ACCUM) 

COMMON /ARGMTS/ NTOKEN, RESULT, ACCSIG 
LOGICAL INIT_COUNT(,), UPDATE_COUNT(,) 
INTEGER*2 BIG_COUNT(,), WEE_COUNT(,), 

X V_POINTER(,), H_POINTER(,) 
COMMON /COUNTING/ INIT_COUNT, UPDATE_COUNT, 

X BIG_COUNT, WEE_COUNT, 
X V_POINTER, H_POINTER 

C For descriptions of these, see subroutine RECOGNIZE. 
C 

C We don't need the following since "plane geometry" is on 
C by default, but just in case... 
C 

GEOMETRY(PLANE,PLANE) 
C 

C We set the value of "PARAMETER" NOFNTERM, the number of non- 
C terminals in the grammar. 
C 

NOFNTERM = 10 

C Accumulator to Fast belt control signal update first 
C (order not important). 

IF (AF_STATE.EQ.1) ACCTOFB(,) = ACCTOFB(,+) 
AF-STATE = AF_STATE + 1 

IF (AF_STATE.GT.1) AF_STATE = 0 

AF_ACTIVE a (AF_STATE.EQ.0) 

C Now the Fast to Slow belt... 

IF ((FS_STATE.EQ.1).OR.(FS_STATE.EQ.2)) FBTOSB(,) = FBTOSB(,+) 
FF_STATE = FF_STATE + 1 

IF (FF_STATE GT. 2) FF_STATE = 0 

FS_ACTIVE = (FF_STATE EQ. 0) 

222 

C 
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C This is the added bit for the implementation with counters. 
C 

C We first transfer the control signals that will tell the processors 
C their counters have reached their initial values. 
C 

INIT_C_STOP = INIT_C_STOP(,+) 
C 

C Notice that as with all the other control signals, we make the 
C transfer in the horizontal (,+) direction. We could just as well 
C make it in the vertical direction (+,), it would not make any 
C difference. 
C 

C Now we make sure the processors currently holding the I...STOP 
C control signal notice its presence... The FALSE. in this next 
C line means that the processors must not increment their counter 
C anymore to initialise them (because they are supposed to be 
C initialised by now). 
C 

INIT_COUNT (INIT_C_STOP) _ FALSE. 
C 

C When a processor has received the Fast to Slow belt transfer 
C signal, it should start modifying its counters. Here, we have 
C the processor note this. The processors at an even distance 
C from the base (they never do a transfer from Fast to Slow... ) 
C notice the presence of the control signal while this one is 
C inactive. 
C 

IF ((FS_STATE.EQ.O).OR.(FS_STATE.EQ.2)) 
X UPDATE_COUNT(FBTOSB) = TRUE. 

C 

C When a processor puts the value in its accumulator on (in) the fast 
C belt (register), that's its value computed. So after that happens, 
C there is no point (neither harm) in continuing to modify the 
C counters. The ACCumulator TO Fast Belt control signal indicates 
C when this happen and here we use this signal to reset the 
C UPDATE_COUNT bit. 
C 

IF (AF_STATE.EQ.O) UPDATE_COUNT(ACCTOFB) = FALSE. 

RETURN 

C 

C END SUBROUTINE ** UPDATE_SIGNALS ** 
C 

END 
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C 

C 

C * SUBROUTINE M ARK _ P R 0 C E S S 0 R S * 
C * * 
C 

ENTRY SUBROUTINE MARK-PROCESSORS 
C 

C This subroutine implement the marking phase of the "array" 
C parsing algorithm. During this phase, pointers obtained by 
C the previous phase are used to mark the nodes of the 
C underlying parse tree as "tree" nodes and those in between 
C as "link" nodes. This is done by token passing. The root 
C initiates the marking. It sends on eah beat two tokens, one 
C vertically and one horizontally. It sends in one direction 
C as many tokens as the value of the pointer for this 
C direction. If a token gets two tokens in a row, it marks 
C itself as a "link" node. If it gets one first token and 
C then none on the following beat, it marks itself as a "tree" 
C node. Once a tree node got marked, it initiates the marking 
C of its own subtree. 
C 

C We also record in which direction came the tokens. 
C 

C This is the phase 3 (PH3DAP) version of MARK-PROCESSORS. In 
C this version, we do two things. First, we color the 
C processors with black and white so as to obtain a chess 
C board pattern. The goal is to identify the processors on 
C even and odd levels. Second, because our grammar is 
C "locally ambiguous", we need to pass down with the tokens, 
C the non-terminals of the right-hand side of the rule of the 
C processor. These non-terminals will tell the sons which 
C rule to choose (the one with the non-terminal passed down as 
C the left-hand side) among rules with a common right-hand 
C side. (Not all sons will have used such rule to compute 
C "their value".) Before the marking takes place, we assign 
C to the relevant variables the values of the two non-terminal 
C of the right-hand sides used during recognition. After all 
C the marking is over, we determine the correct rules 
C associated with each tree node processor. 
C 

LOGICAL TEMP-TOKEN(,), V_TOKEN_1(,), V_TOKEN_2(,), 
X H_TOKEN_1(,), H_TOKEN_2(,), 
X VERTICAL(,), LINK_NODE(,), TREE_NODE(,) 

CHARACTER CHAR_MARK(,) 
EQUIVALENCE (TEMP_TOKEN,CHAR_MARK) 
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COMMON 

X 

X 

/MARKING/ TEMP_TOKEN, V_TOKEN_1, V_TOKEN_2, 
H_TOKEN_1, H_TOKEN_2, 

VERTICAL, LINK-NODE, TREE-NODE 

C TEMP_TOKEN : temporary bit for token transfers (passings). 
C V TOKEN_1 : vertical token received on "this" beat. 
C V_TOKEN_2 : horizontal token received on the "previous" beat. 
C H TOK... 
C VERTICAL : indicates if the token that were received (if any) 
C were coming in the vertical direction. 
C LINK_NODE : the actual "link" node mark. 
C TREE_N... 
C CHAR_MARK : a character matrix EQUIVALENCEd with the stuff above 
C for the purpose of transfering the information back 
C to the host. 

LOGICAL BEAT-IS-ODD 
INTEGER I 

C BEAT_IS_ODD : we test if processors can be marked on every other 
C beat. This is what tells us if we are on even beats 
C or not. 
C I : (useless) loop control variable. 

INTEGER NTOKEN, RESULT 
INTEGER*2 ACCSIG(,) 
COMMON /ARGMTS/ NTOKEN, RESULT, ACCSIG 
LOGICAL INIT_COUNT(,), UPDATE_COUNT(,) 
INTEGER*2 BIG_COUNT(,), WEE-COUNT(,), 

X V_POINTER(,), H_POINTER(,) 
COMMON /COUNTING/ INIT_COUNT, UPDATE_COUNT, 

X BIG_COUNT, WEE_COUNT, 
X V_POINTER, H_POINTER 

C See subroutine RECOGNIZE for a description of these variables. 
C 

C Added for phase 3. 
C 

INTEGER*1 LEFT_SIDE(,), RIGHT_SIDE_1(,), RIGHT_SIDE_2(,), 
X RULE(,) 
LOGICAL ODD_LEVEL(,) 
COMMON /RULING/ LEFT_SIDE, RIGHT_SIDE_1, RIGHT_SIDE_2, 

X RULE, ODD-LEVEL 

C See subroutine ACC_UPDATE for a description of these variables. 
C 
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C Start of the body of subroutine MARK-PROCESSORS 
C 

C 

C We don't need the following since plane geometry is on by 
C default but just in case. 
C 

GEOMETRY(PLANE,PLANE) 
C 

C We initialise everything to false except the tree node mark at the 
C root (the root of the tree is processor (1,1)). 
C 

TEMP_TOKEN = FALSE. 
V_TOKEN_1 = FALSE. 
V_TOKEN_2 = FALSE. 
H_TOKEN_1 = FALSE. 
H_TOKEN_2 = FALSE. 
VERTICAL = FALSE. 
LINK-NODE = FALSE. 
TREE_NODE = FALSE. 
TREE_NODE(1,1)= TRUE. 

C 

C Before we start the marking (this is the phase 3 version), we set 
C the variables RIGHT_SIDE_1 and RIGHT_SIDE_2 according to the rules 
C recorded by the processors during recognition. 
C 

C We repeat here the convention for non-terminal numbering: 
C 

C non-terminals: E T F E) +T *F <(> <)> <+> <*> 
C numbers: 1 2 3 4 5 6 7 8 9 10 
C 

C rule (1) E --> E +T 

RIGHT_SIDE_1(RULE.EQ.1) - 1 

RIGHT_SIDE_2(RULE.EQ.1) = 5 

C rule (2) E --> T *F 

RIGHT_SIDE_1(RULE.EQ.2) = 2 

RIGHT_SIDE_2(RULE.EQ.2) = 6 

C rule (3) E --> <(> E) 

RIGHT_SIDE_1(RULE.EQ.3) = 7 

RIGHT_SIDE_2(RULE.EQ.3) = 4 

C rule (5) E) --> E <)> 
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RIGHT_SIDE_1(RULE.EQ.5) = 1 

RIGHT_SIDE_2(RULE.EQ.5) = 8 

C rule (9) +T --> <+> T 

RIGHT_SIDE_1(RULE.EQ.9) = 9 
RIGHT_SIDE_2(RULE.EQ.9) = 2 

C rule (12) *F --> <*> F 

RIGHT_SIDE_1(RULE.EQ.12) = 10 
RIGHT_SIDE_2(RULE.EQ.12) - 3 

C 

C We are ready for our one and only loop. We start with beat 1 which 
C is odd, right? 
C 

BEAT_IS_ODD = TRUE. 
C 

C We circle around two times NTOKEN minus 2. The thing is the 
C furthest processor from the root is (NTOKEN-1) and it takes 
C 2n beat to mark a processor at a distance n from the root. 
C Because DAP FORTRAN does not like loop control variables to 
C be less than zero we have to had a stupid test just before 
C the loop. 
C 

IF (NTOKEN.EQ.1) GOTO 101 

DO 100 I = 1 , 2 * (NTOKEN-1) 
C 

C It's quite simple, first pass the tokens around (twice) then 
C test for marking. We start in the vertical direction. 
C 

C 

C Well, passing tokens around is not quite so simple. Here's 
C the situation: tree nodes pass down a token whenever their 
C associated pointer is strictly positive; link node pass down 
C a token if they have received a token during the two 
C previous beats (which is the same as saying that they keep 

C the first token they receive and pass down the other ones on 

C the beat after they receive them.). To implement this, we 

C have a two stage pipeline. Token come in one end of the 

C pipeline and they come out the other end only if the 

C pipeline is full. The variables ..-TOKEN-1 and ..-TOKEN-2 

C implement the pipeline. The pipeline can be full only for 

C link nodes, so when we test for a full pipeline, we don't 

C need to test only on link nodes. You got all that? O.K., 
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C here's what we do: We find out if the processors can pass 
C down a token; we shift the content of the first stage of the 
C pipeline into the second stage; we then pass the tokens from 
C one processor to the next (in the first stage of the 
C pipeline). 

C 

C 

C Find out if the processors have a token to pass down. And while 
C you're at it, decrement the relevant pointer in the tree nodes. 
C 

TEMP_TOKEN - (V_TOKEN_1.AND.V TOKEN_2) 
X .OR.(TREE_NODE.AND.(V_POINTER.GT.0)) 

V_POINTER(TREE_NODE .AND. (V_POINTER.GT.O)) = V_POINTER-1 
C 

C Shift the first stage of the pipe. 
C 

C 

C 

C 

V_TOKEN_2 = V TOKEN_1 

Pass down (transfer) the tokens (and non-tokens). 

V TOKEN_1 = TEMP_TOKEN(-,) 
C 

C We set the VERTICAL bit of any processor that has received a token 
C just now (although VERTICAL is only useful for link nodes). 
C 

VERTICAL = VERTICAL OR. V_TOKEN_1 

C 

C Same thing, but horizontally now. Of course, this time, we 

C do not set the VERTICAL logical bit. 
C 

C 

C Find out if the processors have a token to pass down. And while 
C you're at it, decrement the relevant pointer in the tree nodes. 
C 

TEMP-TOKEN (H-TOKEN-I.AND.H-TOKEN-2) 
X .OR.(TREE_NODE.AND.(H_POINTER.GT.0)) 

H_POINTER(TREE_NODE AND. (H_POINTER.GT.O)) = H -POINTER-1 

C 

C 

C 

C 

C 

C 

Shift the first stage of the pipe. 

H_TOKEN_2 = H_TOKEN_1 

Pass down (transfer) the tokens (and non-tokens). 

H TOKEN_1 = TEMP_TOKEN(,-) 
C 
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C If we have passed tokens around twice (if we are on a even 
C beat), we test to see if we have not identified link nodes 
C and tree nodes. We have identified a link node if a 
C processor has received a first token and then a second one. 
C We have identified a tree node if a processor received a 
C first token but not a second one. Of course, we mark the 
C processors we identify as tree node or link node (that the 
C whole point of this subroutine). 
C 

C 

C First of all, test if we are on an even beat. Otherwise, we won't 
C bother with all this. 
C 

IF (BEAT_IS_ODD) GOTO 99 
C 

C A processor is identified as a link node if either of its token 
C pipeline is full. That then means that the processor has received 
C tokens on two successive beats. Of course, a processor that has 
C already been marked as a link node remains marked that way. 
C 

LINK_NODE = LINK_NODE OR. (V_TOKEN_1 AND. V_TOKEN_2) 
X OR. (H_TOKEN_1 AND. H_TOKEN_2) 

C 

C A processor is identified as a tree node if only the second 
C stage of its pipeline contains a token. That then means 
C that the processor received a token on the second previous 
C beat but none on the previous. Of course, a processor that 
C has already been marked as a tree node remains marked that 
C way whatever and also, a processor that has been marked as a 

C link node does not subsequently get marked as a tree node. 
C 

TREE_NODE = TREE_NODE OR. 

X (.NOT. LINK_NODE AND. 

X ( (.NOT.V_TOKEN_1 AND. V_TOKEN_2) 

X .OR.(.NOT.H_TOKEN_1 AND. H_TOKEN_2))) 
C 

C Next bit added for phase 3. We need to pass down with the 
C tokens information originating from the father and destined 
C to its son. This information is the non-terminal sent by 
C the son (among others) during recognition that the father 
C actually used to compute its "value" (set of non-terminals). 
C This information has been extracted from the rule the father 
C recorded (see the code before this loop). Here, we pass 
C DOWN the FIRST non-terminal of this right-hand side. The 

C non-terminal is only sent to link nodes. The idea is to 
C make sure that at the end of the marking phase, the sons can 
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C pick-up from their immediate neighbor linking them to their 
C father this non-terminal. 
C 

RIGHT_SIDE_1(LINK_NODE.AND.VERTICAL) = RIGHT_SIDE_1(-,) 
C 

C We pass to the RIGHT the SECOND non-terminal of the nearest 
C tree node on the left. 
C 

RIGHT_SIDE_2(LINK_NODE.AND..NOT.VERTICAL) - RIGHT_SIDE_2(,-) 
C 

C We color the processors according to their level parity (odd or 
C even). For this, we color a processor according to the opposite 
C parity of its neighbor to its left or the one above (which should 
C have the same parity if they both exist). 
C 

C Observe that we did no initialisation before the loop for this 
C coloring. We dont need any because we relie on the PLANE GEOMETRY 

C which feeds in FALSE. logical values on the boundary. Before the 
C loop, all the level parity are undefined. Each (even) loop cycle 
C sets properly the level parity of one level. (We'll need to do 
C what follows one more time outside the loop.) This simple line 
C of code (imbedded in a loop) is a bit tricky. The reader might 
C need a bit of thinking about it to see what's going on... 
C 

ODD_LEVEL - .NOT.(ODD_LEVEL(-,).OR.ODD_LEVEL(,-)) 
C 

C That's almost the end of this loop. Each turn of a loop is a 

C beat so before we finish this turn, we toggle the beat parity. 
C 

99 BEAT_IS_ODD = NOT. BEAT-IS-ODD 

100 CONTINUE 

101 CONTINUE 

C Old stuff below. This is the phase 3 version so we'll put the 

C following in comments and add something afterwards. 

C 

C 

C This loop constitute just about the whole of this 

C subroutine. We simply need before returning to convert the 

C data we've been working on from DAP format to HOST FORTRAN 

C format. We use a CHARACTER matrix EQUIVALENCEd to all 

C LOGICAL matrix we've used. Because we are going to work on 

C this "CHARACTER" matrix in the Host part of the program, (I 

C am not sure but I think) we need to make sure the most 
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C 

C 

significant bit of all the characters are set 
(otherwise we would have undefined character 

to zero 
codes). We do 

C 

C 

C 

C 

so by reseting TEMP_TOKEN. 

TEMP TOKEN = FALSE 
C 

C 

_ . . 

CALL CONVMF1 (CHAR_MARK) 
C 

C Next bits added for phase 3. We first set the level parity of 
C the last level, level NTOKEN. (See comment inside the loop.) 
C 

C 

ODD_LEVEL = .NOT.(ODD_LEVEL(-,).OR.ODD_LEVEL(,-)) 

C The sons that used right-hand sides common to more than one 
C l d t i h i ru e e erm ne ere wh ch rule was relevant. 
C First, they get the non-terminal number of their left-hand side. 
C 

C 

LEFT_SIDE(TREE_NODE.AND. VERTICAL) = RIGHT_SIDE_1(-,) 
LEFT_SIDE(TREE_NODE.AND..NOT.VERTICAL) = RIGHT_SIDE_2(,-) 

C Now, from their left-hand sides, the processors with incorrec t rule 
C 

C 

recorded determine their correct rule. Remember: 

C 

C 

C 

C 

C 

C 

non-terminals: T F 

numbers: 2 3 

rule (2) E --> E +T, rule (6) T --> ... 

rule (2) is recorded during recognition and we witch to rule 6) 
C 

C 

only if the left-side is "T". 

RULE((RULE.EQ.2).AND.(LEFT_SIDE.EQ.2)) = 6 

C rule (3) E --> <(> E), rule (7) T --> ..., rule (10) F --> ... 

RULE((RULE.EQ.3).AND.(LEFT_SIDE.EQ.2)) = 7 
RULE((RULE.EQ.3).AND.(LEFT_SIDE.EQ.3)) = 10 

C rule (4) E --> a, rule (8) T --> a, rule (11) F --> a 

RULE((RULE.EQ.4).AND.(LEFT_SIDE.EQ.2)) = 8 

RULE((RULE.EQ.4).AND.(LEFT_SIDE.EQ.3)) = 11 

RETURN 

C 

C END of subroutine *** MARK_PR0CESS0RS *** 
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C 

C 

END 

****************************************************** 
C 

C 

C 

C 

* 
* 

SUBROUTINE * 
* 

****************************************************** 

SUBROUTINE OUTPUT-PARSE 

232 

This subroutine implement the third phase of the algorithm. In 
this phase, the parse present in the array reconfigured as a tree 
is output through the root of the tree, processor (1,1). This is 
achieved by a kind of structured bucket brigade. Every processors 
try to pass rules up the tree. Processors however never pass a 

rule up if the processor they want to pass it to is not ready. To 

control the whole thing, all we need is to make all the processors 
go through the following automata: 

.------. 0 0 

I I 

I 

I I 

C I State A -rule- I <-- 
C 0 1 

C --> 1 
0 0 

C I I 
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C 

C 

C 

C 
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--- I State C - - 1 <-------- 
1 

0 0, 1 0 

1 
1 0 1 <--. 

I I ----------------- I 

I I 

0 0 , 1 0 
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C Let me explain. On every beat, a set of processors send things to 
C neighbors and of course, a set of processors receive things. On 
C the next beat, the roles are inversed. Processors on sending beats 
C send two things, rules (up) and requests (down). A processor can 
C send a rule up only if it received a request on the previous beat. 
C In the diagram you see above, there are labels composed of two bits 
C (one label has two pair of bits). On transition labels, the first 
C bit of the pair indicates if on last receiving beat the processor 
C received a request and the second indicates if it received a rule. 
C In a state rectangle label, the pair indicates what the processor 
C will send on the next sending beat (using the same convention). 
C Processors on even levels are on sending beat when those on odd 
C levels are on receiving beats (and vice versa). (See subroutine 
C ACC_UPDATE comments for a description of levels.) 
C 

C Before we go on, we have to explain one last thing. During the 
C output, link nodes just pass up whatever they receive. Tree nodes 
C are a bit more sophisticated. They first pass up the rule they 
C have recorded. Then, they pass the rules coming from their left 
C branch (verticaly) until one comes with a "last-rule" marker. They 
C strip this marker before passing up the rule and then, they pass 
C the rules coming from their right branch. When they receive a 
C rule marked as the last from this branch, they pass up this rule 
C with the marker this time and then "stop". 
C 

C Now let's implement all this nice stuff. 
C 

INTEGER NTOKEN, RESULT 

INTEGER*2 ACCSIG(,) 

C If DAP FORTRAN had the PARAMETER statement: 
C 

C LOGICAL SIGACC(,,16), 
C INIT_C_STOP(,), ACCTOFB(,), FBTOSB(,), 
C ACCUM(,,NOFNTERM) 

C 

C But it does not so: 

LOGICAL SIGACC(,,16), 
X INIT_C_STOP(,), ACCTOFB(,), FBTOSB(,), 
X ACCUM(10) 

LOGICAL BASE_NODE(,) 
EQUIVALENCE (SIGACC,ACCSIG), 

X (SIGACC( 3),BASE_NODE), 

X (SIGACC(,,4),INIT_C_STOP), 
X (SIGACC(,,5),ACCTOFB), (SIGACC(,,6),FBTOSB), 
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X (SIGACC(,,7),ACCUM) 

COMMON /ARGMTS/ NTOKEN, RESULT, ACCSIG 

C See subroutine RECOGNIZE for a description of these variables. 
C (Only BASE_NODE is of interest to us in this subroutine.) 

INTEGER*1 LEFT_SIDE(,), RIGHT_SIDE_1(,), RIGHT_SIDE_2(,), 
X RULE(,) 

LOGICAL ODD_LEVEL(,) 

COMMON /RULING/ LEFT_SIDE, RIGHT_SIDE_1, RIGHT_SIDE_2, 
X RULE, ODD-LEVEL 

C See subroutine ACC-UPDATE for a description of these variables. 

LOGICAL TEMP_TOKEN(,), V_TOKEN_1(,), V_TOKEN_2(,), 
X H_TOKEN_1(,), H_TOKEN_2(,), 
X VERTICAL(,), LINK_NODE(,), TREE_NODE(,) 

CHARACTER CHAR_MARK(,) 
EQUIVALENCE (TEMP_TOKEN,CHAR_MARK) 

COMMON /MARKING/ TEMP_TOKEN, V_TOKEN_1, V_TOKEN_2, 
X H TOKEN_1, H_TOKEN_2, 
X VERTICAL, LINK-NODE, TREE-NODE 

C See subroutine MARK_PROCESSORS for a description of these variables. 

INTEGER*1 STATE(,), NEWSTATE(,), RULE_BUFFER(,) 
INTEGER RULE-INDEX 
LOGICAL RULE_OUT(,), REQUEST-OUT(,), LAST-RULE(,), 

X RULE_IN (,), REQUEST-IN (,), RECEIVING(,), 
X BEAT-IS-EVEN, FINISHED 

C STATE the states of the processors. 
C NEWSTATE a temporary for the computation of next states. 
C RULE-BUFFER : buffer for the passing of the rules by the bucket 
C brigade. 
C RULE-INDEX : just a vector index that will tell us where to store 
C the next rule of the parse. 
C RULE-OUT indicates (to the interested neighbor) that this 
C processor will send a rule on this sending beat. 
C RULE-IN : indicates that the interested neighbor will receive 
C the rule just mentionned. 
C REQUEST_ ... 
C LAST_RULE : indicates that this rule is the last one to come from 
C this branch. 
C RECEIVING indicates that the processor is on a receiving beat. 
C BEAT-IS-EVEN the usual... 
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C FINISHED : tells us when we are finished with the output of the 
C parse. Not necessary but makes the program more readable. 

INTEGER*1 PARSE(127) 
INTEGER OUTPUT-BEATS 
COMMON /PARSING/ PARSE, OUTPUT-BEATS 

C PARSE a vector that will receive the parse, the list of 
C rules used to derive the input string from the 
C starting symbol (or whatever). 
C OUTPUT_BEATS : depending on the shape of the parse tree, we will need 
C a different number of beats to output a parse. With 
C this variable, we will count how many we needed. 
C PARSING : common block to pass the parse to the Host. 

C 

C Start of the body of subroutine ** 0 U T P U T_ P A R S E 

C 

C 

C Of course, we start with initialisations. 
C 

C 

C State initialisations. The link nodes are in state C (3), no rule 
C to send and no request received. The tree nodes are in state A(1), 
C their own rule to send (because we output in leftmost order) but no 
C request received. The root is in state B (2), its rule to send and 
C it's just as though we had sent it a request for it. All the other 
C nodes are in no state (0). 
C 

STATE = 0 

STATE(LINK_NODE) = 3 

STATE(TREE_NODE) - 1 

STATE(1,1) = 2 

C 

C Processors on even levels are going to be 
C a on receiving beat first. 
C 

RECEIVING = NOT. ODD-LEVEL 

C 

C The tree nodes send their own rule first so they put it now 

C in their rule buffer. 
C 

RULE_BUFFER(TREE_NODE) = RULE 

C 

C The root has a rule in its buffer. We can pick it up at the start 
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C of the output loop. To be informed of this fact we set its RULE-IN 
C logical bit. 

C 

RULE_IN(1,1) = TRUE. 

C 

C The base processors are leaf (tree) nodes. They have no subtree so 
C their own rule is the last one "passing through" them. 
C 

LAST-RULE = BASE-NODE 

C 

C The VERTICAL variable has a slightly different meaning then 
C in the MARK_PROCESSORS subroutine. In that sub., it meant 
C that a processor had received a token from "above" either 
C VERTICALy or horizontally. Here, it means that a processor 
C receives rules from "below" VER... . The VERTICAL logical 
C bits were set in MARK_PROCESSORS. This setting is ok for 
C the link nodes. For tree nodes, they all start in VERTICAL 
C mode (because we output in leftmost order). They change 
C when they have output their whole left sub-parse. (Link 
C node never Change mode. 
C 

VERTICAL(TREE_NODE) = TRUE. 

C 

C Up to now, we have put no rule in the PARSE vector, have we? 
C And we have executed no beat either. 
C 

RULE_INDEX = 0 

OUTPUT-BEATS = 0 

C 

C We are ready now to start the loop. Beat one isn't even, is it? 

C 

BEAT_IS_EVEN = FALSE. 
C 

C The loop is of the sort in between a "while" and a "repeat" loop, 
C i.e. the test is in the middle of the body (and it is executed 
C only on odd beats). 
C 

100 OUTPUT_BEATS - OUTPUT BEATS + 1 

C 

C On odd beats, we pick up the rule in the root rule buffer if there 
C is any in there. 
C 

IF (BEAT_IS_EVEN OR. .NOT.RULE_IN(1,1)) GOTO 200 
RULE-INDEX = RULE_INDEX + 1 

PARSE(RULE_INDEX) = RULE_BUFFER(1,1) 

C 
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C Here's the test for exit of the loop. 
C 

IF (LAST_RULE(i,i)) GOTO 300 

200 CONTINUE 

C 

C We first see which processors are sending rules and requests. 
C 

RULE_OUT - (STATE.EQ.2) AND. (.NOT.RECEIVING) 
REQUEST_OUT - ((STATE.EQ.2) OR. (STATE.EQ.3)) 

X AND. (.NOT.RECEIVING) 
C 

C Now, the complement code, which processors receive these rules and 
C requests. Note that as a special case, we send a request to the 
C root. (This request will be used only for the "next state" 
C computation and only on beats when the root is receiving.) 
C 

RULE_IN = ( VERTICAL AND. RULE_OUT(+,)) OR. 

X (.NOT.VERTICAL AND. RULE_OUT(,+)) 
REQUEST_IN = ( VERTICAL(-,) AND. REQUEST_OUT(-,)) OR. 

X (.NOT.VERTICAL(,-) AND. REQUEST_OUT(,-)) 
REQUEST_IN(i,i) = TRUE. 

C 

C Now we can proceed to the exchange of rules as such. 
C 

RULE BUFFER(RULE_IN AND. VERTICAL) = RULE_BUFFER(+,) 
RULE BUFFER(RULE_IN AND. .NOT.VERTICAL) = RULE_BUFFER(,+) 

C 

C These last few statements were pretty straightforward. The next 
C bit is kind of tricky. Here's what's happening. Link node just 
C transmit rules and "last rule" markers. Horizontal mode tree node 
C do the same but VERTICAL mode tree node dont transmit a last rule 
C marker. That's not all, if asked to do so, they go in horizontal 
C mode. Recall, tree nodes transmit first vertically until they get 
C a "last rule" marker which they leave hanging. Then they 
C transmit horizontally until they get the marker again, but this 
C time they transmit the marker. 
C 

C 

C Horizontal nodes, either link or tree, transmit any "last rule" 
C marker received. 
C 

LAST_RULE(.NOT.VERTICAL .AND. RULE-IN)= LAST_RULE(,+) 

C 

C Vertical link nodes transmit any ... 
C 
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LAST_RULE(LINK_NODE AND. VERTICAL AND. RULE-IN)= LAST_RULE(+,) 
C 

C Vertical tree nodes presented with a "last rule" marker go in the 
C horizontal mode (and ignore the marker). 
C 

VERTICAL(TREE_NODE AND. VERTICAL AND. 

X RULE-IN AND. LAST_RULE(+,)) - FALSE. 
C 

C We now execute the state transitions. Processors change state 
C according to what they have received from their neighbors, so only 
C processors RECEIVING change states. We set the variable NEW-STATE 
C of every processors but this variable will change the values of the 
C variable STATE of only the RECEIVING processors. 
C 

C We do not explicitly implement every transitions of the FSM 

C depicted in the comment at the beginning of this subroutine. 
C Transitions to the same state are implemented by the fact that we 
C assign to NEW_STATE the 'value of STATE to start with. 
C 

C To make the following code a bit more clear, let me describe 
C informally what each state "means": 
C 

C (1) A - The processor has a rule to send up but has not 
C received a request for it. It will wait for a 

C request. 
C (2) B - The processor has a rule to send and received a 

C request for it. It will send the rule and send 
C a request for another one. 
C (3) C - The processor has no rule to send up. It will send 
C requests for one until it gets one. 
C 

NEW_STATE = 

NEW-STATE( 

STATE 

(STATE.EQ.1) AND. REQUEST_IN) = 2 

NEW-STATE( (STATE.EQ.2) AND. .NOT.RULE_IN) - 3 

X 

NEW_STATE( (STATE.EQ.3) AND. 

AND. 

RULE-IN 
REQUEST_IN) - 2 

NEW_STATE(((STATE.EQ.2).OR. 
X (STATE.EQ.3)) AND. RULE-IN 
X AND. .NOT.REQUEST_IN) = 1 

STATE(RECEIVING) = NEW-STATE 

C 

C We come to the end of our loop. We'll start another cycle but 
C before we do so, we will toggle the RECEIVING mode of the 

C processors. Those that were RECEIVING will become "sending" 

C and ... Oh, and we toggle the beat parity (of course). 

C 
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RECEIVING = NOT. RECEIVING 
BEAT_IS_EVEN = .NOT. BEAT-IS-EVEN 
GOTO 100 

300 CONTINUE 
C 

C That's the parse in the vector PARSE now. The DAP part of the 
C program is just about finished. All that is left to do is to 
C convert this vector(*) to Host FORTRAN format so as to allow the 
C Host part to present the results. We also want to present 
C OUTPUT_BEATS to the user but this requires no conversion. 
C 

C *** PARSE is a one dimensional array of "scalar" elements 
C and so, following DAP FORTRAN terminology, the mode of 
C PARSE is "Scalar", not "Vector". Hence, we use the 
C conversion subroutine "convSf1", not "convVf1". 
C 

CALL CONVSF1 (PARSE,127) 
RETURN 

C 

C END of subroutine * * OUTPUT _PARSE * * 

C 

END 

C ****************************************************** 
C * * 
C * ENTRY SUBROUTINE D A P_ P H A S E S * 
C * * 
C ****************************************************** 

ENTRY SUBROUTINE DAP-PHASES 

C 

C This, would it not be for INIT_ARRAY, would be the only 
C subroutine called by the Host. What it actually does is it 
C calls the DAP routine for the Host. We do things that way 

C because we want to minimise the overhead involved in calling 
C the DAP from the Host. 
C 

C Added bit for the Phase 3 version. (It should have been there 
C for Phase 2!). We test if recognition is succesful and only if it 
C is, do we call the other phases. An unsuccessfull will be 
C indicated by a negative value in OUTPUT-BEATS. 

C 

INTEGER*1 LEFT_SIDE(,), RIGHT_SIDE_1(,), RIGHT_SIDE_2(,), 
X RULE(,) 



Appendix A. DAP programs for parsing L(G1) 240 

LOGICAL ODD_LEVEL(,) 
COMMON /RULING/ LEFT_SIDE, RIGHT_SIDE_1, RIGHT_SIDE_2, 

X RULE, ODD-LEVEL 

C See subroutine ACC_UPDATE for a description of these variables. 

INTEGER*1 PARSE(127) 
INTEGER OUTPUT-BEATS 
COMMON /PARSING/ PARSE, OUTPUT-BEATS 

C See subroutine OUTPUT_PARSE for a description of these variables. 
C 

C Start of the body of subroutine ** D A P_ P H A S E S ** 
C 

CALL RECOGNIZE 

OUTPUT-BEATS = -1 
C 

C If the root, processor (1,1) has not recorded a rule during 
C recognition, nothing has been recognized and we do not call the 
C other two phases. OUTPUT-BEATS at value -1 will indicate this. 
C 

IF (RULE(1,1).EQ.O) RETURN 

CALL MARK-PROCESSORS 

CALL OUTPUT-PARSE 
RETURN 

C 

C END of subroutine * * D A P_ P H A S E S ** 
C 

END 
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