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Lay summary 

eEF1A is a molecule which plays a significant role in a process used by cells to make 

new proteins, which are important for them to survive. This molecule occurs in slightly 

different forms in many animals, for example, in mice and human, there are two forms 

called eEF1A1 and eEF1A2. Every cell contains only one form of eEF1A. eEF1A2 is 

present only in the nerve, heart and muscle cells, while eEF1A1 can be found in the 

rest of the other cells types. Mice that have no eEF1A2 show abnormal characteristics 

such as loss of nerve and muscle cells, deteriorate rapidly and die at 28 days old. 

Recently, eEF1A2 has been shown to cause epilepsy, autism and intellectual disability 

in humans. Our research focuses on providing better understanding of the role of 

eEF1A2 in these neurological disorders. Our approach involves the use of different 

models, as insights from them can lead to better treatment strategies. 

One model that is increasingly becoming popular is the zebrafish. Zebrafish has many 

advantages, one in particular is the ease to use them for drug testing experiments. The 

main aim of my PhD was to try and generate a zebrafish model of these neurological 

disorders caused by eEF1A2. Zebrafish have four forms of eEF1A genes: eef1a1l1, 

eef1a1a, eef1a1b and eef1a2.  As we do not know much about eef1a in zebrafish, I 

looked at different early stages and adult tissues for the different eef1a forms using 

some molecular techniques. My results showed eef1a1l1 is seen first, followed by 

eef1a1a and eef1a1b and much later during development, eef1a2. To understand the 

role of eef1a2 in zebrafish, I generated and characterised zebrafish with two mutant 

copies of eef1a2. These fish were healthy and did not show any neurological 

abnormality, and unlike the process seen in mice, they survive to adulthood. We think 

the fish remain healthy because of the presence of the other eef1as and so any 

deleterious effect that may have occurred by the loss of eef1a2 is prevented. However, 

a pilot study suggests that loss of eef1a2 might make zebrafish vulnerable to induced 

seizures similar to cases we have observed in mice.   

In all, this study has provided us with valuable information of how eEF1A works in 

zebrafish which will help in further investigation. 
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Abstract  

Eukaryotic elongation factor (eEF1A) plays a vital role in protein synthesis. It recruits 

amino-acylated tRNAs and delivers them to the ribosome during protein translation. 

eEF1A is conserved throughout evolution and exists as independently encoded 

isoforms in many species. In mammals, there are two isoforms: eEF1A1 and eEF1A2. 

Unlike eEF1A1 which is widely expressed, expression of eEF1A2 is restricted to the 

brain, heart and skeletal muscle and is upregulated during development. In mice, 

homozygote deletion in Eef1a2 gene resulting in the complete loss of function of 

eEF1A2 causes severe neurodegeneration, loss of muscle bulk and death by 28 days. 

Recently, de novo heterozygous missense mutation in EEF1A2 has been identified in 

humans which cause epilepsy, autism and intellectual disability. The main aim of this 

project was to investigate the use of zebrafish as a model to better understand the role 

of eEF1A2 in neurological disorders. In addition to its many advantages, the zebrafish 

has been shown to be an excellent tool for in vivo drug screening. This is an attractive 

attribute for our studies as regards developing treatment strategies for these disorders. 

Zebrafish possess four eef1a genes: eef1a1l1, eef1a1a, eef1a1b and eef1a2 which 

encodes separate highly similar proteins: eEF1A1L1, eEF1A1A, eEF1A1B and 

eEF1A2 respectively. The zebrafish eEF1A2 shares a 94% sequence identity with the 

mouse and human eEF1A2 at the amino acid level. In this work, characterisation of 

zebrafish eEF1A genes was first carried out, as there is currently little information 

available. Using conventional reverse transcriptase polymerase chain reaction (RT-

PCR) and real time quantitative PCR (qPCR), I analysed the expression pattern of 

eef1a genes at different embryonic stages and adult tissues. These genes were 

differentially expressed with only eef1a1l1 detected at earlier developmental stages, 

followed by eef1a1a and eef1a1b. Similar to mammals, eef1a2 is detected much later 

(48 hpf) during development. Co-expression of eef1a mRNA was observed in the adult 

tissues analysed except in liver where eef1a2 was not detected. An attempt to knock-

in one of the epilepsy causing variant, G70S into the zebrafish genome using 

CRISPR/Cas9 technology was unsuccessful. However, I established two null eef1a2 

mutant lines using this technology. Homozygotes from these null lines showed no 

obvious phenotype and in contrast to null Eef1a2 mice, they are fertile and viable 

through adulthood. No evidence of neurodegeneration was observed. These results 
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suggest the possibility of compensatory mechanisms activated by the other eef1a genes 

to buffer the loss of eef1a2 in the mutants. However, preliminary findings suggest that 

eef1a null mutation might cause zebrafish to be susceptible to PTZ-induced seizures.  

Results from this work has provided vital information on functional redundancy of 

eef1a genes in zebrafish and a foundation for further validation of the zebrafish as a 

model system.  
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Chapter 1: Introduction 

1.0 Protein synthesis 

Protein synthesis is one of the essential biological processes employed by cells to 

survive. During protein synthesis, cells use the information contained in the DNA to 

make specific proteins that help in the proper functioning of the cell. An important part 

of this process is translation, which is the actual stage where the protein is synthesised 

using mRNA as a template. Protein synthesis is divided into three phases; initiation, 

elongation and termination. During initiation, the initiation complex is formed by the 

binding of the ribosomal small unit and the initiator methionine-tRNA to the start 

codon (AUG) on the mRNA. Subsequently, the large ribosomal subunit binds to the 

initiator complex. The second phase, elongation, involves the assembling of amino 

acids which are carried by tRNAs to the growing polypeptide chain following the 

sequence contained in the mRNA. This phase is repeated and involves the same 

mechanism until any of the three stop codons, UAA, UAG and UGA, is reached in the 

mRNA and signals the start of the last phase, termination. At this phase, the newly 

synthesised protein is released from the ribosome which is then recycled and made 

available for another translation process. Each of these phases is coordinated by 

several protein factors to ensure the precise spatial and temporal levels of protein are 

synthesised for normal physiological functions (Livingstone et al., 2010). 

1.1 Eukaryotic elongation factor 1 alpha (eEF1A)  

Eukaryotic elongation factor 1 alpha (eEF1A), formerly referred to as EF1α, is a 

member of the G protein family and the second most abundant protein after actin, 

making up about 1-2% of the total protein in normal growing cells (Condeelis, 1995). 

Delivery of aminoacylated-tRNAs to the A-site of the ribosome during the elongation 

step of translation is catalysed by this protein. This process is GTP-dependent and is 

mediated by the guanine exchange factor, eEF1B. Once the anticodon region of the 

recruited aminoacylated-tRNA correctly matches the codon of the mRNA at the A-site 

of the ribosome, the GTP bound to eEF1A is hydrolysed. The inactive eEF1A-GDP 

complex is then reactivated by eEF1B which exchanges the GDP for GTP, to bind 

another aminoacylated-tRNA (Figure 1.1). 
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Figure 1.1. Schematic of eEF1A participation in protein translation. During elongation, the eEF1A 

in its active state (bound to GTP) recruits aminoacylated tRNA to the A site of the ribosome. 

Recognition of the anticodon region of the aminoacylated tRNA by the codon of the mRNA triggers the 

hydrolysis of GTP to GDP, releasing eEF1A-GDP from the ribosome to be recycled. To reactivate itself, 

eEF1A exchanges the bound GDP for GTP with the guanine exchange factor, eEF1B. The multi-unit 

eEF1B protein consists of three subunits: eEF1B is shown in orange, eEF1G in green, and eEF1D in 

purple. Taken from (Li et al., 2013). 

1.1.1 eEF1A exists as different isoforms that show reciprocal 

expression patterns 

The presence of multiple eEF1A genes which are usually located on separate 

chromosomes has been described in different eukaryotic species. For example, two 

sequence-redundant eEF1A genes TEF1 and TEF2 are present in the yeast, 

Saccharomyces cerevisiae (Nagata et al., 1984; Nagashima, Nagata and Kaziro, 1986). 

In Drosophila melanogaster, two genes, F1 and F2, have been described (Hovemann 

et al., 1988) while in Xenopus laevis, four eEF1A genes, EF-1αO, EF-1αS, 42Sp50 

and eEF1A2, have been reported so far (Djé et al., 1990; Newbery et al., 2011). In 

mammalian species, two eEF1A genes have been shown to be actively expressed (Ann 

et al., 1992; Knudsen et al., 1993; Chambers, Peters and Abbott, 1998; Kahns et al., 

1998; Svobodová et al., 2015). In vertebrates, these genes encode different eEF1A 

proteins, eEF1A1 and eEF1A2, with amino acid sequences that are highly conserved. 
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Interestingly, eEF1A variants are more identical between species than they are when 

compared within the same species. For example, human eEF1A1 show a 99.8% 

sequence identity with its mouse orthologue but is only 92.4% identical to the human 

eEF1A2 isoform. This suggests that these duplicated eEF1A genes might have 

acquired some other functional differences which are biologically important, hence 

they were positively selected and retained in the genomes.      

Another common feature of eEF1A genes is that they show a developmental and 

tissue-specific pattern of expression. In mammalian species where this has been 

extensively studied, eEF1A1 is widely expressed during development but is then 

down-regulated in the brain, heart and skeletal muscle postnatally and replaced with 

eEF1A2 in these tissues (Knudsen et al., 1993; Lee, Wolfraim and Wang, 1993; 

Chambers, Peters and Abbott, 1998; Svobodová et al., 2015). While a complete switch 

of eEF1A variants is observed in adult muscle tissues, eEF1A1 remains expressed in 

the glial cells, some small neuronal cells (most neurons show eEF1A2 expression) and 

white matter of the spinal cord in mice (Khalyfa et al., 2001; Newbery et al., 2007). In 

human and mice, eEF1A2 expression was also observed in the pancreatic islet cells, 

enteroendocrine cells in colon crypts and specific cells in the lungs using 

immunohistochemistry. A consistent expression pattern, except in the lungs, was 

observed between the two species suggesting the possible functional importance of 

eEF1A2 in these cells (Newbery et al., 2007). 

1.1.2 Isoform switching is conserved through evolution 

Although it is still not clear why there are two eEF1A isoforms with very high 

sequence identity in vertebrates, it is quite intriguing they show differential expression 

pattern and are developmentally regulated. The regulation of eEF1A variants was 

initially observed by different studies in mammalian species and was shown to occur 

at the mRNA level. Subsequent analysis in our laboratory using Xenopus confirmed 

the presence of eEF1A2 in non-mammalian vertebrates (Newbery et al., 2011). 

Analysis of a range of adult tissues showed overlapping expression of eEF1A1 and 

eEF1A2 mRNA in the brain, heart and muscle tissues (Figure 1.2A). However, when 

the expression of eEF1A isoforms were investigated at the protein level, eEF1A1 was 

absent in the muscle and optic ganglion while eEF1A2 expression was observed in 
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these tissues (Figure 1.2B). The absence of eEF1A1 and the presence of eEF1A2 in 

the muscle at the protein level, with both mRNA present was also observed in Xenopus 

tropicalis in this study. Interestingly, translational regulation of eEF1A had been 

previously suggested to occur in Xenopus laevis during embryogenesis and in serum-

deprived cultured Xenopus cell line (Loreni, Francesconi and Amaldi, 1993). Cell-

specific expression data obtained using immunohistochemistry showed eEF1A2 to 

have widespread expression in cardiac muscle but was restricted to large neurons in 

the brain and spinal cord of Xenopus laevis (Figure 1.2C). This same expression 

pattern was also seen for eEF1A2 in mammals (Newbery et al., 2007).  

    

Figure 1.2: Expression pattern of eEF1A isoforms in adult Xenopus laevis. A. RT-PCR of eEF1A1 

(top) and eEF1A2 (bottom) mRNA from Liver (Li), Lung (Lu), Spleen (S), oocytes (O), gall bladder 

(G), brain (B), heart (H) and muscle (M) B. Expression analysis using protein lysates from Og-optic 

ganglion, Brain (B), spinal cord (Sc), Muscle (M), Liver (Li), gall bladder (G), Lung (Lu), Kidney (K) 

and Spleen (S) for western blot for eEF1A1 (top) and eEF1A2 (bottom). The molecular weight of both 

protein is ~50kDa. C. Immunohistochemistry for eEF1A2 in the spinal cord (top panel) and cardiac 

muscle (bottom panel). In the spinal cord, eEF1A2 expression is restricted to the neuronal cells but is 

widespread in the cardiac muscle. Taken from Newbery et al, 2011. 
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The observation that the tissue-specific expression of eEF1A2 and the down-regulation 

of eEF1A1, most notably in the muscle (where eEF1A2 replaces it), is conserved in 

vertebrates provides strong evidence to suggest this to have biologically important 

consequences. What the functional significance is, remains unclear. A plausible 

hypothesis is that these two isoforms might have other functional differences even 

though they share the same major role in translation. This is an attractive notion when 

the architecture of cells that express eEF1A2 only is considered. These cells are 

terminally differentiated and are more stable, therefore it is likely that some other 

functional roles of eEF1A1 in these cells might interfere with their overall structure. 

For this reason, eEF1A1 is replaced with eEF1A2 to avoid or modify these functions 

but at the same time ensure translational activities are maintained in the cells (Newbery 

et al. 2007). Interestingly, Khalyfa et al., 2003 showed a dramatic upregulation of 

eEF1A1 in rats muscle after about one month of being subjected to permanent 

denervation. The level of the eEF1A1 remained high even after two years and could 

possibly stem from the unstable tissue environment caused by the injury. Similarly, a 

165-fold increase of eEF1A1 mRNA was observed in the muscle tissues of trauma 

patients that were in catabolic conditions than in muscle samples obtained from age-

matched healthy controls (Bosutti et al., 2007). These studies further stress the 

possibility that the non-canonical functions of eEF1A1 might be needed at only a 

certain point in the development of these cell types that express only eEF1A2 in adults.        

 1.1.3 Non-canonical roles of eEF1A 

In addition to its central role in translation, there is growing evidence that shows 

eEF1A is a multifunctional protein with a role in a wide variety of biological processes 

( reviewed in Ejiri, 2002; Mateyak and Kinzy, 2010). Some non-canonical roles of 

eEF1A include cytoskeleton interaction and remodelling, proteolysis, apoptosis, 

nuclear transport and heat shock response. It is still unclear if some of these non-

canonical functions, except for heat shock which is eEF1A1 specific (see section 

1.1.3.2), are shared by both eEF1A isoforms and how they perform these roles. 

Understanding this could provide insights into the biological significance of isoform 

switching in certain cell types. Unfortunately, detangling these ‘moonlighting’ 
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functional relationship between eEF1A1 and eEF1A2 has been technically challenging 

mostly because of the high similarities in their amino sequence.   

1.1.3.1 Cytoskeleton interaction and remodelling 

The association of eEF1A with the cytoskeleton is the most established non-canonical 

function of eEF1A as it has been demonstrated by numerous studies across species. 

The first direct evidence that showed eEF1A interaction with actin, an important 

protein of the cell cytoskeletal system, was demonstrated in Dictyostelium 

discoideum(Demma et al., 1990; Yang et al., 1990). Demma et al, 1990 showed 

eEF1A (formerly known as ABP-50) isolated from Dictyostelium discoideum to have 

strong actin binding and bundling properties in vitro. Actin-binding activities of 

eEF1A, unlike its translational function, are not GTP-dependent but are modulated by 

pH changes (Edmonds, Murray and Condeelis, 1995). Although there is an obvious 

link between protein synthesis machinery and the cytoskeleton, the binding of 

aminoacylated-tRNA and the actin by eEF1A are biochemically separate events. 

Increasing the pH (from 6.5 to 7.0) favoured the binding of eEF1A to aminoacylated-

tRNA and reduced its affinity for F-actin (Liu et al., 1996). However, changes in pH 

did not affect the binding affinity of eEF1A for aminoacylated-tRNA. Interaction of 

eEF1A with actin was then demonstrated in vivo in the yeast, Saccharomyces 

cerevisiae. Using site-directed mutagenesis, different mutations were identified that 

reduced actin bundling and disorganisation induced by the overexpression of eEF1A 

(Gross and Kinzy, 2005, 2007). Some of the mutant strains showed normal elongation 

activities, while two mutations resulted in reduced translation rate in the yeast. 

However, aberrant protein synthesis observed in these mutants was due to a translation 

initiation defect (Gross and Kinzy, 2007). Their finding is consistent with the report of 

Liu et al, 1996 that these two functions of eEF1A are distinct processes. 

Although eEF1A2 has been less studied in terms of actin-related activities, it has been 

shown to have a role in actin remodelling through its interaction with the 

phosphatidylinositol-4 kinase III β (PI4IIIKβ). Activation of PI4IIIKβ by eEF1A2 

stimulates the formation of filopodia (slender projections that contain bundles of cross-

linked actin filaments) in vitro (Jeganathan et al., 2008). More efforts are now being 

made to better understand the actin activities of this variant especially as this can 

provide more insights into its implication in other processes in particular 
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transformation (further discussed in section 1.2.3). Recent studies by Novosylna et al., 

2017 demonstrated the actin-bundling activity of eEF1A2 in vitro. Interestingly, 

eEF1A1 and eEF1A2 generate actin bundles with different morphology (Figure 1.3), 

with eEF1A2 producing short, thick and splinter-like actin bundles (Novosylna et al., 

2017). The authors implicated the compact dimeric structure of eEF1A2 which was 

described by Timchenko et al., 2013 as a possible explanation for their observation 

since it is most likely that eEF1A performs its actin bundling activities as a dimer 

(Vlasenko et al., 2015). Interestingly, in silico analysis of the human eEF1A variants 

showed that almost all of the amino acid residues that differ between the two proteins 

were located on one side of the modelled structures away from the binding site of 

eEF1Bα (Soares et al., 2009). They also demonstrated that the residues were arranged 

in two clusters; a circular band of 12 residues within domain I and a swathe of 14 

residues across domain II and III on the variable face of the 3D structures. The 

identification of eight residues that impact on actin binding properties from the yeast 

mutagenesis studies (Gross and Kinzy, 2005, 2007) which are also found within 

domain II and III together with the findings of Novosylna et al., 2017 could suggest 

that eEF1A1 and eEF1A2 may differ in their actin-related functions.          

    

Figure 1.3: eEF1A isoforms generate F-actin bundles with different morphology. A. Atomic force 

microscopy (AFM) image showing phalloidin-stabilised F-actin only (Left panel), F-actin bundled with 

eEF1A1 (centre panel) and F-actin bundled with eEF1A2 (right panel). B. Confocal microscope images 
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showing only F-actin stabilised with phalloidin (bottom left panel), F-actin bundled with eEF1A1 

(bottom centre panel) and F-actin bundled with eEF1A2 (bottom right panel). Taken from Novosylna 

et al 2017   

In addition to actin, eEF1A has been shown to interact with other components of the 

cytoskeleton. For example, eEF1A has been reported to have both microtubule 

bundling and severing abilities. The microtubule bundling activity of eEF1A was 

demonstrated in vitro using eEF1A isolated from carrots (Durso and Cyr, 1994), while 

eEF1A was purified from Xenopus eggs as a rapid microtubule severing protein 

(Shiina et al., 1994). This study also demonstrated that human eEF1A displays quick 

microtubule severing function in vitro and by microinjecting the recombinant form of 

the protein into rat fibroblasts. The functional importance or regulation of these 

microtubule-related activities of eEF1A remains unclear.              

1.1.3.2 Temperature induced stress  

In response to cold stress, enzymatic elongation factor activities were significantly 

enhanced in the liver, kidney, spleen, gill, white muscles of rainbow trout with the 

activity rate varying in these organs except in the red muscle where no compensatory 

enhancement was observed (Simon, 1987). Although no particular elongation factor 

was identified in this study, using hybrid protein synthetic systems from fish and rat, 

eEF1A from Antarctic fish was identified as a major component that was sufficient 

alone to protect the rat system from the effect of temperature breaks (Haschemeyer, 

1985). Similarly, eEF1A was differentially expressed in maize under cold stress, with 

its mRNA level upregulated in the leaves and transiently reduced in the roots 

(Berberich et al., 1995).  

In response to environmental stresses such as thermal stress, low oxygen and 

starvation, cells activate genes that encode the heat shock proteins (HSPs). This is 

known as the heat shock response and has been found to occur in every organism 

studied so far. Although some characteristics may vary, all organism share many of 

the features of this response which include the rapid and intense production of HSPs 

(Lindquist and Craig, 1988). Induction of the heat shock response is regulated by the 

HS factors (HSFs) in eukaryotes, with numerous evidence supporting HSF1 as the 

master regulator in vertebrates (Shamovsky and Nudler, 2008). HSF1 is present in all 

cells but is only activated by environmental stress stimuli. 
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The first direct evidence of eEF1A playing a role in the heat shock response was 

demonstrated in vitro by Shamovsky et al., 2006. In this study, eEF1A was identified 

as a co-activator of HSF1 alongside a non-coding RNA, which they termed heat shock 

RNA-1 (HSR1). They suggested that the shutdown of protein synthesis and the 

collapse of the cell cytoskeletal system in response to stress stimuli might cause the 

release of adequate amounts of eEF1A which is then available to activate the heat-

shock response in cells. Although the variant of eEF1A was not indicated, the protein 

was isolated from rat liver which is known to express only eEF1A1 (Lee, Wolfraim 

and Wang, 1993). 

Subsequent work by Vera et al., 2014 provided a more detailed mechanism of the 

eEF1A heat-shock response activities. This study revealed a more multi-faceted role 

of eEF1A in coordinating the heat-shock response. In addition to activating HSF1 as 

observed in previous work, eEF1A was also responsible for the quick transcription, 

stabilisation and nuclear export of HSP70 mRNAs upon stress. Also, this study 

confirmed that eEF1A1 was the variant with heat shock function and that this is not 

shared by the eEF1A2 isoform. This was demonstrated by the use of short interfering 

RNA (siRNA) to knockdown eEF1A1 and eEF1A2. Only eEF1A1-deficient cells 

showed impaired induction of HSPs genes when stressed. This is consistent and 

provides a suitable explanation for the findings of Batulan et al., 2003, who showed 

that HSP70 was only expressed in glial cells (express only eEF1A1) but not in cultured 

motor neuron cells (express eEF1A2 only) when heat-shocked.          

1.1.3.3 Apoptosis 

Apoptosis, also referred to as programmed cell death, is a tightly controlled series of 

cellular events employed in multicellular organisms to remove unwanted or damaged 

cells. Work by Duttaroy et al., 1998 showed that the changes in the expression levels 

in eEF1A affected the rate of apoptosis in serum-deprived cultured mice fibroblasts. 

According to this study, overexpression of eEF1A favoured apoptosis while cells were 

protected from this process with reduced eEF1A levels. In contrast, Talapatra et al, 

2002 identified eEF1A from a screen of cDNA libraries to confer apoptotic resistance 

to hematopoietic cells upon growth factors withdrawal during culture. Despite this 

discrepancy, the global rate of protein synthesis in the cells were observed to remain 

unaffected in both studies, suggesting the apoptotic and translational activities of 
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eEF1A are independent functions. However studies from Ruest et al, 2002 

demonstrated that the eEF1A variants modulate apoptotic activities in different ways. 

While eEF1A1 was observed to be pro-apoptotic, eEF1A2, on the other hand, was 

anti-apoptotic increasing the survival rate of serum-deprived cultured differentiated 

myotubes. Their findings provide a reasonable explanation to the contradicting results 

described above especially as it is not clear which of the isoforms these two groups 

investigated. It is still not fully understood how these isoforms perform the opposite 

effects on apoptosis. However, it is likely they bind with different protein partners and 

exert differential regulation on genes involved in this process. For example, Chang and 

Wang, 2007 showed that eEF1A2 and not eEF1A1 interacts with peroxiredoxin 1 

(Prdx-1) in yeast two-hybrid experiments. Mouse cell line NIH 3T3 fibroblasts 

transfected with both eEF1A2 and Prdx-1 were resistant to peroxide-induced cell 

death. In addition, activation of caspases 3 and 8, key proteins in the initiation and 

execution phase of apoptosis, were significantly reduced in these cells. Instead, levels 

of Akt protein, which promotes survival, increased 5-fold with a further half-fold 

increment observed when transfected cells were treated with peroxide.     

1.1.4 Post-translational modification 

Several post-translational modifications (PTMs) have been reported in the eEF1A 

protein across species. Interestingly, unlike the amino acid sequence, these 

modifications are less conserved in eukaryotes (Merrick et al., 1990).   

In the rabbit, seven PTMs were identified in eEF1A1 isolated from reticulocytes. 

These include the addition of ethanolamine to the glutamic amino acids at position 301 

and 374, while the other five PTMs involved lysines amino acids with dimethylation 

at position 55 and 165 and trimethylation at position 36, 79 and 318 (Dever et al., 

1989). Chemical sequencing of eEF1A2 purified from rabbit skeletal muscle revealed 

the same PTMs as eEF1A1 at Glu301 and Glu374. However, Lys55 and Lys165 were 

trimethylated in this isoform and not dimethylated as observed in eEF1A1 (Kahns et 

al., 1998). 

In silico functional analysis by Soares and Abbott, 2013 identified 74 positions that 

could be post-translationally modified in human eEF1A isoforms. Similarly to the 
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rabbit eEF1A, there is evidence, as provided by several bioinformatics and 

experimental studies, that the human eEF1A isoforms may also show different PTM 

patterns. However, it is worth mentioning that most of the positions involve conserved 

residues and as such it is impossible to infer the specific isoform these peptides are 

derived from in most studies. Although most of the type of PTMs reported so far 

involves phosphorylation of serine, threonine and tyrosine residues, the addition of 

ethanolamine to Glu301 and Glu374 has been shown to occur in human eEF1A in vitro 

as seen in rabbit (Rosenberry et al., 1989). Some experimentally reported 

phosphorylation sites in human eEF1A is summarised in table 1.1.    

Table 1.1 Summary of experimentally validated phosphorylated sites in eEF1A isoforms 

Residues  Isoform  Conserved?  Techniques  Reference  

Tyr29, Tyr141 Ambiguous Y MS Rush et al., 

2005 

Tyr29, Ser163 eEF1A1 Y MS Molina et al., 

2007 

Thr432 eEF1A1 Y MS, SDM Eckhardt et al., 

2007 

Ser300 eEF1A1 Y 2D-

phosphopeptide 

mapping, SDM 

Lin et al, 2010 

Ser21 Both Y MS, SDM Sanges et al, 

2012 

Thr88 eEF1A1 Y MS, SDM Sanges et al, 

2012 

Ser205  eEF1A2 Y MS, immunoblot 

with Ab against 

S358 phospeptide 

Gandi et al, 

2013 

Ser358 eEF1A2 N MS, immunoblot 

with Ab against 

S358 phospeptide  

Gandi et al, 

2013 

  Y- Yes, N- No, MS- Mass spectrometry, SDM- Site directed mutagenesis 
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Although no functional importance has been assigned to most PTMs residues, a few 

studies have shown that these modifications are capable of regulating the human 

eEF1A isoforms affecting its translational and/or non-canonical activities. Lin et al, 

2010 showed that phosphorylation of Ser300 by type 1 TGF-β receptor (TβR-1) 

inhibited the translation activities of eEF1A1 by interfering with its binding ability 

with aminoacylated-tRNAs (Lin et al., 2010), whereas phosphorylation of Ser21 was 

shown to modulate the stability of both eEF1A isoforms as well as regulate their 

apoptotic functions. Mutation of this residue in eEF1A1 resulted in an increase of early 

apoptosis while an increase of late apoptosis in eEF1A2 mutants was observed in 

transfected H1355 cell lines (Sanges et al., 2012). Interaction of eEF1A2 with newly 

synthesised polypeptides intended for degradation was found to be enhanced when its 

Ser205 and Ser358 residues were phosphorylated by stress-activated c-Jun N-terminal 

kinase (Gandin et al., 2013).  

Another common form of PTMs that has been reported in the human eEF1A isoform 

is lysine methylation. Using mass spectrometry, two studies identified methylated 

lysine residues; 36, 55,79,165 and 318, in the human eEF1A which corresponded to 

those previously reported in the rabbit eEF1A (Cao, Arnaudo and Garcia, 2013; Guo 

et al., 2014). An additional site; K313, was found to be dimethylated in eEF1A2 (Guo 

et al., 2014). All of these residues are conserved between the two eEF1A isoforms. 

The lysine (K)-specific methyltransferase (KMTs) enzymes responsible for the 

methylation of four of these sites; K36, K79, K165 and K318 have been identified 

(Dzialo et al., 2014; Shimazu et al., 2014; Jakobsson et al., 2017; Małecki et al., 2017). 

The effect of methylation on the human eEF1A isoforms is still poorly understood but 

it is likely to be of functional importance as suggested by the conservation of the 

methylation of two of these sites; K79 and K318 over a large evolutionary distance 

from yeast eEF1A to human eEF1A isoforms and by orthologues of the same KMTs 

in yeast and human (Lipson, Webb and Clarke, 2010; Dzialo et al., 2014; Hamey et 

al., 2016). Also, investigations by Jakobsson et al., 2017 showed that methylation of 

K36 modulates mRNA translation by affecting the dynamics as well translation speed 

of distinct codons using ribosome profiling. Using the same technique, they also 

demonstrated that methylation of K165 impacted the translation of certain mRNA 

(Małecki et al., 2017). This study also revealed a difference in the methylation pattern 
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of K165 in eEF1A1 between tissues and cancer cell lines, with a significantly higher 

methylation level in human cancer cell lines compared to different rat organs and a 

variation of K165 methylation between the different organs were also noted (Małecki 

et al., 2017). It therefore possible that the structure of the eEF1A isoforms, in addition 

to their tiny differences in amino acid residues, has been further strengthened by their 

difference in PTMs making them more functionally divergent, and hence allowed them 

to be retained in the genome. 

1.2 eEF1A2 role in diseases 

1.2.1 The wasted mouse 

A deletion spanning 15.8 kilobases involving the promoter and first exon of eEF1A2 

was identified to cause a wasted (wst) phenotype in mice (Chambers, Peters and 

Abbott, 1998). This mutation which occurred spontaneously in the Jackson laboratory 

in 1972, eliminated the transcription of Eef1a2. Mice which are homozygous for this 

mutation appear normal earlier in development. However, abnormal phenotypes such 

as tremors, weight loss and uncoordinated gait become visible from around 21 days of 

age. The severity of the wasted phenotypes increases, leading to paralysis and death of 

the mouse at around 30 days of age (Shultz, L.D, Sweet, H.O, Davisson, 1982). Despite 

having low levels of eEF1A2, heterozygous mice (+/wst) show no neuromuscular 

dysfunction or spinal cord abnormalities (Griffiths et al., 2012). 

Further works from our laboratory confirmed that the eEF1A2 gene was solely 

responsible for the phenotypes observed in the wasted mice. This was demonstrated 

using transgenic experiments. Newbery et al, 2007 generated two different sets of 

transgenic mice carrying mouse bacterial artificial chromosome (BAC) with either 

intact Eef1a2 or a loss of function mutation in Eef1a2. Only the BAC transgene 

containing intact Eef1a2 was able to rescue the wasted phenotypes. The mutant Eef1a2 

containing BAC was unable to correct the wasted phenotypes even though it carried 

another candidate gene, C20orf149, which was expressed at normal levels in wasted 

mice. 
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Prominent neurological features of the wasted mouse include vacuolar degeneration 

of motor neurons located in the anterior horn of the spinal cord and the accumulation 

of phosphorylated neurofilaments (Lutsep and Rodriguez, 1989). Detailed analysis of 

the pathology of the wasted mouse showed that neurological abnormalities occur as 

early as 17 days postnatal and start in the spinal cord (Newbery et al., 2005). Elevated 

GFAP staining, indicative of reactive gliosis, in the spinal cord and a reduction in the 

number of innervated endplates in the thoracic muscles, were first seen. This was then 

followed by axon and motor neuron degeneration and weak synaptic input from muscle 

fibres. These pathologies occur in a rostrocaudal manner starting at the cervical level 

and progressing caudally. Muscle wasting which results in significant loss of total 

body weight in wasted mice begins at about 21 days of age. When subjected to rotarod 

activity, an assay for testing motor function, wasted mice performed progressively less 

compared to their wild-type littermates from 21 days. 

The onset of the neuromuscular abnormalities in wasted mice falls within the period 

when Eef1a1 is down-regulated and is gradually replaced with Eef1a2 in the brain, 

heart and skeletal muscle (Chambers, Peters and Abbott, 1998, Khalyfa et al, 2001). 

A more dramatic effect is seen in the skeletal muscles for the wasted mouse. Since 

eEF1A2 completely replaces eEF1A1 in the muscle, homozygous wasted mice do not 

have any form of eEF1A in their muscles resulting in the total loss of protein synthesis 

activities in these tissues. However, in vivo studies from our laboratory have 

demonstrated that the characteristic muscle wasting phenotype in these null mutants 

has a neurogenic origin (Doig et al., 2013). This was shown using tissue-specific 

eEF1A2 constructs to restore expression of eEF1A2 in the neurons or muscle of wasted 

mice. Although generating transgenic wasted mice with eEF1A2 expression only in 

the neurons was unsuccessful, the presence of eEF1A2 in the muscle only and not the 

neurons was shown to be insufficient to correct the wasted phenotypes in the 

transgenic wasted mice. Their results were consistent and fit well with the findings of 

Newbery et al, 2005 where the first signs of abnormalities in these mutants are 

observed at the neurological levels.  
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1.2.2 eEF1A2 role in epilepsy, autism and intellectual disability  

The use of whole exome sequencing to investigate the underlying genetic cause of 

some neurodevelopmental disorder has identified several missense mutations in 

EEF1A2 (see table 1.2). Most of these mutations reported are de novo and occur in the 

heterozygous state. More recently, Cao et al., 2017 reported a homozygous missense 

EEF1A2 mutation (P333L) which they identified in two siblings who died in early 

childhood of dilated cardiomyopathy (DCM). Diagnosis of DCM is unique to this 

study as it was not reported in the de novo cases. Although Cao et al., 2017 postulated 

that this might be because cardiac function was not evaluated in the patients in these 

other studies, it is possible that DCM was absent because mutations identified in these 

other patients are heterozygous and/or it could manifests later in life. The DNA from 

both parents were also sequenced and are shown to be heterozygous for the mutation. 

While the mother appeared normal, the father was described to smile in an 

inappropriate manner and avoided eye contact during a medical examination session. 

He also has relatives with a history of neurodevelopmental problems such as learning 

disability, speech delay and seizure disorder (Cao et al., 2017).  

In all cases, individuals with eEF1A2 missense mutations presented with intellectual 

disability (ID) and developmental delay and in almost all cases, epilepsy or abnormal 

EEG. Many of the individuals also displayed autistic behaviours, while in some cases, 

facial dimorphic features such as tented upper lip and broad nasal bridge were noted. 

The effect of these different mutations varies ranging from extremely severe to mild 

phenotypes presented by the individuals. For example, a case described by Lam et al, 

2016 of a 9 years old patient with a heterozygous F98L mutation. She presented with 

very severe hypotonia and global developmental delay and daily seizures. She is 

nonverbal and is unable to move her head, sit or stand. A much milder case is a 10 

years old patient with a heterozygous E124K mutation who showed no sign of 

hypotonia and is capable of walking unaided. Although she shows significant delays 

in language and comprehension, she can communicate in sentences. Unlike the case 

of the patient with a F98L mutation, her seizures are well controlled with anti-epileptic 

drugs (Lam et al., 2016).   
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Table 1.2: Published cases of patients with missense mutations in EEF1A2 and associated phenotypes. 
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G70S F (22y) 

Onset at 4 months with 

myoclonic seizures, absences 

and grand mal 

SID, GDD, very limited 

speech development 
Y Y N 

Head circumference 

normal at 22 years 

old 

de Ligt et al., 

2012 

G70S M (14y) 

Onset at 10 weeks with 

myoclonic seizures, infantile 

spasms, GTC, refractory 

Severe delay,  Non-

verbal, incoordination 

and gait instability 

NM Y NM 
Acquired 

microcephaly 

Veeramah et 

al., 2014 

G70S F (3y) 

Onset at 2 months with 

myoclonic and tonic-clonic 

seizures, now absence 

seizures 

GDD NM Y Y 
No microcephaly at 9 

months, dysphagia 

Lam et al., 

2016 

E122K F (12y) 
Onset at 4 months with 

infantile spasms, controlled 

SID, Non-verbal, motor 

delay, ataxic gait 
Y Y Y 

Progressive 

microcephaly, 

cerebral atrophy 

Nakajima et 

al., 2014 

E122K F (2y) 

Onset at 10 months with 

myoclonic seizures, atypical 

absence, uncontrolled 

SID, development 

stagnated during seizure 

episodes, non-verbal, 

cannot roll over at 2 

years 

NM NM Y 

Normal head 

circumference at 

birth 

Inui et al., 

2016 

E122K M  (2y) 

Onset at 8 months with 

myoclonic seizures and 

myoclonic-atonic seizures, 

uncontrolled 

SID, developmental 

delay, non-verbal and 

cannot stand unaided at 

2 years 

NM NM Y Cerebral atrophy 
Inui et al, 

2016 

E122K F (6y) 
Infantile spasm onset from 

10 weeks, controlled 

Gross motor delay, 

unsteady gait, non-

verbal but vocalizes uses 

signs 

N Y Y 
Small head 

circumference 

Lam et al, 

2016 



17 
 

M
u

ta
ti

o
n

 

S
ex

 (
A

g
e)

 

E
p

il
ep

sy
 

ID
 a

n
d

 

d
ev

el
o
p

m
e
n

t 

p
h

en
o
ty

p
e 

A
u

ti
sm

 

H
y
p

o
to

n
ia

 

F
a
ci

a
l 

fe
a
tu

re
s 

O
th

er
s 

R
ef

er
en

ce
 

E124K F (10y) 

Onset at 3 months with 

myoclonic seizures, now 

absence seizures, controlled 

Normal but immature 

gait, verbal but 

significant delay in 

language, mild ID 

N N Y 

Normal MRI, head 

circumference at 

25th centile at 5 

years 

Lam et al, 

2016 

D252H F (8y) 
Onset at 8y with generalised 

tonic seizures 

SID, Significant 

psychomotor 

developmental delay, 

non-verbal, 

Y Y Y 

Progressive 

microcephaly, mild 

cerebral atrophy at 2 

and 4 years 

Nakajima et 

al., 2014 

A92T F (6y) Seizure onset at 1 months 
ID, Significant 

developmental delay 
Y NM NM  

Lopes et al., 

2016 

I71L M (9y) Seizures 
Severe GDD, non-verbal 

but uses signs 
NM NM Y 

Head circumference 

>9th centile, 

brachycephaly 

Lam et al, 

2016 

D91N F (14y) 

Onset at 2y with head drops, 

eye rolling and arm extension 

seizures, uncontrolled 

GDD, non-verbal, 

unable to walk unaided 

at 14 years 

NM Y Y 

Head circumference 

<50th centile, 

brachycephaly, 

reduced bone density 

accompanied with 

fractures 

Lam et al, 

2016 

F98L F (9y) 

Onset at infant with focal 

seizures, now myoclonic, 

tonic and occasional tonic-

clonic seizures 

Severe GDD, non-

verbal, unable to sit or 

stand 

N Y Y 

Head circumference 

85th centile at 6 

months, poor bone 

density 

Lam et al, 

2016 

R423C M (5y) 
Onset at 4 months, multiple 

seizure types daily 

GDD, non-verbal, can’t 

walk at 5 years 
NM Y Y 

MRI showed mild 

hypoplasia of corpus 

callosum and mild 

Lam et al, 

2016 
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*P333L M 

Onset at 7 months, febrile 

seizures, eye deviation, 

tonic-clonic, absences 

GDD, non-verbal, 

unable to walk 
NM Y Y 

FTT, progressive 

DCM leading to 

early death at 29 

months 

Cao et al, 

2017 

*P333L F 
Onset at 12 months, febrile, 

tonic-clonic 
SID, GDD NM Y Y 

Microcephaly, FTT, 

progressive DCM 

leading to early death 

at 5 years 

Cao et al, 

2017 

Y- Yes, N- No, NM- Not mentioned, DCM- Dilated cardiomyopathy, FTT- Failure to thrive, GTC- Generalised tonic-clonic, GDD- Global developmental 

delay, SID- Severe intellectual disability. * indicate mutation is homozygous recessive in patients and not de novo heterozygous as the other mutations. 

Adapted from Lam et al, 2016.   
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These missense mutations are not present in online databases including the Exome 

Aggregation Consortium (ExAC) and Genome Aggregation Database (gnomAD) 

which contain data set from 60,706 unrelated individuals and 123,136 exome 

sequences respectively (Lam et al, 2016, Cao et al, 2017). They involve residues that 

are shared between both eEF1A isoforms and are evolutionarily conserved across 

species. Mapping of these mutations on the surface of the 3-D modelled structure of 

the human eEF1A2 shows that most of them are clustered around the binding sites 

critical for protein elongation. Some of these residues which are buried in the modeled 

structure lie in close proximity to the eEF1B binding sites or located at or close to 

residues involved in domain-domain contacts (Figure 1.4).   

 

Figure 1.4. 3-D structure of human eEF1A2 showing location of missense mutations with respect 

to known binding sites mapped onto its surface. Two views rotated by 180o about the y-axis of the 

eEF1A2 structure with the equivalent location of eEF1Bα (cyan) and GTP/GDP binding site (yellow) 

from yeast eEF1A crystal structure. Variant residues between the human eEF1A1 and eEF1A2 are also 

indicated (green). Mutations are shown in red with residues with buried side-chains labelled in brown. 
A92T, M102V, T432M also lie in close proximity to the eEF1Bα binding site, while M102V, R423C 

and T432M are located at or adjacent to inter-domain contacts. Modelling and figure made by Dinesh 

Soares. 

 

 1.2.3 eEF1A2 in cancer 

Several studies have implicated eEF1A2 as an oncogene consistent with its 

overexpression in tumour cells derived from different tissues as summarised in table 

1.3 (Reviewed in (Lee and Surh, 2009; Abbas, Kumar and Herbein, 2015). Most 

importantly, functional analysis carried out by most of these studies showed that 

indeed eEF1A2 has the ability to transform cells. For example, Anand et al, 2002 

demonstrated the transformation ability of eEF1A2 in vivo by injecting nude mice with 
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EEF1A2-expressing NIH3T3 cells. These cells grew as tumours on the mice, while no 

tumour was seen in the parental mice or those injected with vector-transfected NIH3T3 

cells only. It is still not yet clear how the expression of eEF1A2 is enhanced in tumour 

cells. Working with primary ovarian tumour cells, Anand et al, 2002 showed that 

EEF1A2 amplification may elevate its expression in most, but not all, tumour cells. 

Tomlinson et al, 2007, however, demonstrated a lack of correlation between EEF1A2 

copy number and its expression in ovarian tumours. Interestingly, they found the 

highest EEF1A2 copy number in a tumour that did not express eEF1A2. Although they 

did not find any functional mutation or differential methylation modification of the 

EEF1A2 locus in normal and tumour cells, their findings suggest there are other 

alternative ways by which eEF1A2 is upregulated. The authors postulated the improper 

expression of a trans-acting factor in some tumours as a likely cause for eEF1A2 

overexpression.  

Table 1.3: Summary of some studies which showed overexpression of eEF1A2 in 

different human cancer types   

Cancer type Methods of eEF1A2 

detection 

Relevant findings Reference 

Ovarian cancer Northern blot Increased EEF1A2 

expression in ~30% 

primary ovarian tumours 

while it was detected in 

normal ovarian tissues 

Anand et al., 2002 

Ovarian cancer RT-PCR, WB, IHC ~75% of ovarian clear cell 

carcinomas showed 

overexpression of eEF1A2 

using IHC 

Tomlinson et al., 

2007 

Breast cancer RT-PCR, IHC 40 out of 63 breast tumours 

showed increased 

expression of eEF1A2 with   

more significant observed 

in ER-positive tumours 

Tomlinson et al., 

2005 
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Breast cancer DNA microarray, 

IHC 

Upregulation of eEF1A2 

found in ~30% of ductal 

and lobular carcinomas and 

tumour metastases 

Kulkarni et al., 

2007 

Lung cancer CGH Overexpression of eEF1A2 

was related to gene 

amplification and stage of 

the disease 

Li et al., 2006 

Lung cancer CGH EEF1A2 suggested as a 

strong oncogene with a 

marked upregulation of 

127.9-fold increase  

Zhu et al., 2007 

Hepatocellular 

carcinoma 

qRT-PCR Overexpression of  eEF1A2 

partially dependent on gene 

amplification  

Grassi et al., 2007 

Hepatocellular 

carcinoma 

(HCC) 

CGH, qRT-PCR, 

WB, IHC 

Increased expression of 

eEF1A2 in about half HCC 

cell lines. 

Schlaeger et al., 

2008 

Pancreatic 

cancer 

qRT-PCR, WB, IHC Upregulation of eEF1A2 in 

83% of pancreatic cancer 

tissues 

Cao et al., 2009 

Prostate cancer 

(PCa)  

qRT-PCR, IHC Enhanced expression of 

eEF1A2 in 26/30 (86.7%) 

PCa tissues  

Sun et al., 2014 

 

How eEF1A2 promotes tumorigenesis is still poorly understood. Thornton et al., 2003 

suggested that increased protein synthesis as a result of eEF1A overexpression occurs 

in these cells. This, in turn, leads to the excessive production of protein which then 

promotes cell growth and proliferation. Another possibility could relate to the other 

non-canonical functions of eEF1A2, in particular, its cytoskeletal remodelling and 

anti-apoptotic role which has obvious implications for tumour progression. Different 

studies have shown that the promoting effect of eEF1A2 in the migration, invasion and 

metastasis of tumour cells occurs in an Akt and P13K (phosphatidylinositol-3-kinase) 

dependent manner (Pecorari et al., 2009; Li et al., 2010; Xu, Hu and Zhu, 2013). Using 
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both bioinformatics and experimental approaches, it has been shown that only eEF1A1 

interact with calmodulin (Kanibolotsky et al., 2008; Novosylna et al., 2017). In their 

study, Novosylna et al 2017 also demonstrated that calmodulin interfered with the 

tRNA-binding ability of eEF1A1 and also had an inhibitory effect on its actin-bundling 

activity. This made the authors suggest that eEF1A2, when present in this tissues, 

might escape eEF1A1-specific regulation. This then leads to the inappropriate 

behaviour of the cells which makes them become oncogenic. This hypothesis is 

strengthened by the fact that only eEF1A1 is normally expressed in most of the tissues.  

1.3 Zebrafish: a useful tool for modelling human diseases 

The zebrafish (Danio rerio) is a small freshwater vertebrate that is undoubtedly 

becoming a popular choice of animal model for understanding human diseases. As a 

model, the zebrafish has several advantages that make it suitable for this purpose. The 

breeding and maintenance of these animals is not only easy but also space and cost-

efficient. A single mating pair of the zebrafish produces large clutch sizes of fertilised 

eggs within a range of 200-300 in a week, with the generation time relatively rapid. 

More so, the embryos develop ex utero in a transparent chorion. This, together with 

the embryo being translucent up till early larval stages make it ideal for visualising 

different aspects of development using different techniques including conventional 

light microscopy. For example, monitoring of motor neuron axonal length and 

branching pattern, which is a marker indicating motor neuron degeneration in 

zebrafish, can be carried out in embryos as early as 24 hours post fertilisation (Kabashi, 

Brustein, et al., 2011). 

Zebrafish are genetically tractable models, a feature which is further strengthened by 

the continuous development of advanced and more precise genome-editing techniques 

such as TALEN and CRISPR-Cas9. Fortunately, the complete sequence of the 

zebrafish genome is now available and shows that approximately 70% of human genes 

have at least one clear orthologue in its genome (K. Howe et al., 2013). Another 

important and very attractive feature of the zebrafish is the ease to use them as an in 

vivo model to carry out high-throughput chemical screening for drug discovery 

researches for different human diseases such as neurological disorders and cancers 

(Reviewed in (Lieschke and Currie, 2007; Bootorabi et al., 2017). Due to their small 



23 
 

size, larvae can be placed into a 96-well plate containing water-soluble drugs, allowing 

large numbers of fish to be tested simultaneously. This benefit and others mentioned 

above not only makes zebrafish a suitable complement to rodent models but also helps 

in reducing the number of rodents used for research purposes, as unprotected (larval) 

stages can also be used in experiments, therefore, adhering to the 3Rs (replacement, 

refinement and reduction) principles.   

1.3.1 Comparison of the zebrafish and human central nervous system 

with a focus on relevant regions in modelling human neurological 

disease 

The central nervous system (CNS) is the most complex tissue in vertebrates, as such 

raising questions as to the suitability of using the zebrafish to model neurological 

disorders. Although the human CNS is much more complex and some of the structures, 

for example, the cerebral hemisphere, are bigger than that of the zebrafish, the overall 

organisation of their CNS is similar. As in other vertebrates, the CNS of the zebrafish 

is divided into forebrain, midbrain, hindbrain and spinal cord.  

The zebrafish brain shares some similarities with that of mammals. For example, the 

cerebellum which plays a key role in motor control has the typical three-cell layer 

structure; molecular layer, Purkinje cell layer and granule cell layer as seen in the 

mammalian cerebellum. Using in situ hybridisation, Bae et al., 2009 also showed 

similar expression profiles of most of the key genetic markers for GABAergic and 

glutamatergic neurons in the cell types found in these layers. As suggested by the 

authors, this could indicate that the development and functioning of the cerebellum 

may be the same in these species, as such the zebrafish could also provide insights to 

understand cerebellar development. However, the major difference between the teleost 

and the mammalian cerebellum is the presence of teleost-specific eurydendroid cells 

identified by Nieuwenhuys, Pouwels and Smulders-Kersten, 1974; these  are located 

in the Purkinje layer. These cells are homologous to the deep cerebellar nuclei (DCN) 

found in mammals which are located further away from the Purkinje layer. These two 

cell types are efferent neurons and receive inputs from the Purkinje cells and transmit 

them to other regions of the brain. As shown by Bae et al, 2009, the expression of 

VGLUT2 which also has preferential expression for DCN is conserved in the 
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eurydendroid cells. However, it is still not clear if these different cell types develop or 

perform their function in the same manner. 

Other parts such as the medulla, tectum and olfactory system of the zebrafish brain 

also show some structural similarities to the corresponding regions in the human brain. 

Deterioration of the olfactory system has been noted to correlate to the progression of 

some neurodegenerative diseases in preclinical studies suggesting it has some clinical 

importance (Aguilar Martínez et al., 2017). The sensory pathway of the olfactory 

system of the zebrafish shares homology with that of mammals (Tropepe and Sive, 

2003). For example, the olfactory nerves project through the olfactory bulb to targets 

within the telencephalon and diencephalon in teleost as well as in mammals 

(Wullimann, 1997). However, caution should be taken when interpreting data on 

homologies from the forebrain regions as the forebrain is much smaller and less 

developed in the zebrafish. In addition, unlike mammals which have an evaginated 

telencephalon, the teleost telencephalon is everted. Although, there are now various 

studies aimed at providing more insights into the structural and functional homologies 

of this region between the zebrafish and mammals. For example, tracing studies using 

neuronal tracers has identified the dorsal nucleus of the zebrafish ventral telencephalic 

area to be homologous to part of the mammalian striatum (Rink and Wullimann, 2004). 

The striatum is one of the main input regions for the basal ganglia which is also 

involved with neurodegenerative diseases in human.  

Most of the descending neural pathway originating from the brainstem down to the 

spinal cord appears to be phylogenetically conserved in teleost and mammals 

(reviewed in (Yamamoto, Nakayama and Hagio, 2017). However, an important 

difference is the lack of descending projections referred to as corticospinal tract (CST) 

in the homologous telencephalic area in teleost species. In mammals, the CST is sent 

out from the motor cortex to the spinal cord and has been suggested to play a role in 

skilled movement of the forelimbs in primates (Iwaniuk and Whishaw, 2000). This is 

an important difference to consider particularly when modelling neurodegenerative 

diseases associated with the upper motor neurons.  

Apart from the neurons, major glial cell types such as oligodendrocytes (Kirby et al., 

2006) and microglia (Peri and Nüsslein-Volhard, 2008) are present in the brain and 
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spinal cord parenchyma of the zebrafish and show similar development and function 

as in mammalian species (reviewed in (Lyons and Talbot, 2015). With the recent 

findings implicating glial cells in neurodegenerative diseases (Kurosinski, Biol and 

Götz, 2002), this also strengthens the suitability of the zebrafish as a model system. 

Although stellate-shaped astrocytes have been reported to be found in the adult 

zebrafish spinal cord (Kawai, Arata and Nakayasu, 2001) and adult rainbow trout brain 

(Alunni et al., 2005), this has not been supported by other studies. However radial 

cells, which usually transform to astrocytes during the maturation of the mammalian 

nervous system are found in abundance in the zebrafish. There are studies that provide 

evidence that the radial glial cells have the capabilities to subserve some of the roles 

which have been described for the mammalian differentiated astrocytes (Lyons and 

Talbot, 2015). One function of the astrocytes is their involvement in the maintenance 

and modulation of the blood-brain barrier (BBB) in mammals (Janzer and Raff, 1987; 

Daneman et al., 2010). Interestingly, it has recently been demonstrated that a 

functional endothelial tight junction BBB, similar to that of higher vertebrates is also 

present in the zebrafish brain (Jeong et al., 2008). As the BBB also presents a challenge 

for the efficient delivery of therapeutic compounds, this finding suggests that a better 

understanding of the BBB can also be achieved using the zebrafish. This, therefore, 

strengthens its utility as an in vivo model for chemical screening for the purpose of 

developing treatments for neurological disorders.    

Although investigations of the comparative homologies between the zebrafish and 

human CNS are still ongoing, there is enough evidence that suggests the conservation 

of the overall structure and function of the CNS in these species, thereby validating 

the use of the zebrafish model to contribute to the understanding and treatment of these 

complex neurological disorders. This is further supported by the findings of numerous 

studies that have noted phenotypes in zebrafish models of some neurological disorders 

to parallel those of rodent models. 

1.3.2 Zebrafish models for motor neuron disease 

Motor neuron disease (MND) is a collective term which is used to describe a 

heterogeneous group of neurodegenerative disorders that results in the selective death 

of motor neurons resulting in the increasing weakness and wasting of the associated 



26 
 

muscles. MND can be categorised depending on whether the disease affects the upper 

motor neurons (UMNs), which start in the motor cortex of the brain and end within the 

spinal cord and/or the lower motor neurons (LMNs) which are located from the spinal 

cord or brainstem to the skeletal muscles. There are different types of MND such as 

spinal muscular atrophy (SMA), hereditary spastic paraplegia and amyotrophic lateral 

sclerosis (ALS), which is the most common form of the disease and will be the focus 

of this review.  

ALS, which is also referred to as MND in the UK (henceforth will be used 

interchangeably with ALS), is a late-onset neurodegenerative disorder that affects both 

UMNs and the LMNs. It has been found in different populations with an incidence rate 

ranging between 0.9-2.4 per 100,000 depending on the population (Sathasivam, 2010). 

While 90% of ALS cases occur sporadically, about 5-10% of cases are inherited in a 

Mendelian fashion, although a systematic metanalysis suggests 5.1% as the accurate 

rate of familial ALS (Byrne et al., 2011). Most cases of ALS are diagnosed in people 

between the ages of 40-70, although a much rarer form known as juvenile ALS can 

occur in younger individuals below 25 years of age. A study in a combined European 

cohort by Logroscino et al., 2010 shows that the incidence of ALS rapidly increases 

after the age of 40 years and peaks at the early 70s for men and late 60s for women, 

after which it falls. The location of the onset of the disease varies, with ~70% ALS 

patients presenting with limb-onset, ~20% with bulbar-onset and ~5% with trunk and 

respiratory involvement and spread to other region of the body (Kiernan et al., 2011).  

The neuropathological hallmarks of ALS include the disappearance of the pyramidal 

and Betz cells which results in retrograde axonal degeneration, loss of the anterior horn 

cells of the spinal cord as well as the lower cranial nerve motor nuclei of the brain 

stem, accumulation of intracellular inclusions such as phosphorylated neurofilaments 

and ubiquitinated inclusions within the anterior horn cells, and gliosis (Hirano, 1996; 

Maragakis and Galvez-Jimenez, 2018). The disease rapidly progresses and 

deteriorates, leading to the death of most patients within 2-5 years of diagnosis often 

due to respiratory failure (Van Damme, Robberecht and Van Den Bosch, 2017).        

Although there is currently no cure, the growing interest in this condition has provided 

valuable insights into the aetiology of ALS which is still essentially unknown. About 

20 genes have been identified over the last decade, most of which are associated with 
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the familial form of the disease (Corcia et al., 2017). Most of these genes are involved 

in different biological pathways reflecting the multifactorial cause of this disease. The 

first causative gene implicated in ALS is the Superoxide dismutase 1 (SOD1) identified 

in 1993 (Rosen et al., 1993) with the frequency of 12-23.5%. Other most common 

genes linked to ALS are C9ORF72, TARDBP and FUS with frequencies of 39.3% 

(Familial ALS), 5% and 4.1% respectively (Al Sultan et al., 2016). Most of the ALS-

causing mutations in these genes were identified in patients with the familial form of 

ALS (see Table 1.4 below).   

Table 1.4: Most common genes linked to ALS with statistics obtained from the 

Amyotrophic lateral sclerosis online genetics database (accessed July 2018)  

Gene FALS SALS Most frequent 

mutation reported 

CORF72 60 46 HREM 

FUS 77 27 Arg521His 

SOD1 286 44 Cys6Ser 

TARDBP 58 40 Ala382Thr 

FALS- Familial Amyotrophic lateral sclerosis, SALS- Sporadic Amyotrophic lateral sclerosis, 

HREM - hexanucleotide repeat expansion mutation 

The heterogeneous clinical presentation of ALS in patients even within individuals 

from the same family and the same causative gene stresses the need to better 

understand this disease as this has implications for identifying potential therapeutic 

targets (Van Damme, Robberecht and Van Den Bosch, 2017). Different animal models 

have been generated to recapitulate the neurological abnormalities or the genetic 

aspects of the condition (reviewed in (Van Damme, Robberecht and Van Den Bosch, 

2017).  Although there is no perfect animal model displaying all the clinical features 

of the disease, they have no doubt served as a valuable tool in providing insights into 

the mechanism of motor neuron disease. An example is the wasted mouse, which is 

one of the several spontaneous mouse strains (reviewed in (Doble and Kennel, 2000) 

and a model that our laboratory has worked extensively on. In terms of neurological 

abnormalities, the wasted mouse (described in section 1.2.1) presents with clinical 

features that more closely resemble ALS in humans than the other spontaneous mice 

models. More recently, different zebrafish models for ALS have been described in 
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several studies (reviewed in (Babin, Goizet and Raldúa, 2014; Patten et al., 2014). 

However, most of the approaches used in generating these models involve the injection 

of mRNA for overexpression of ALS-related genes or morpholinos to knockdown 

these genes in the embryos. Expression of genes in these models is only transient, 

limiting the time to perform any phenotypic assay. This poses a challenge for this 

condition which has a late onset (Kabashi et al, 2011) as well as having the potential 

for off-target effects associated with the use of morpholinos, therefore results from 

these studies should be interpreted with caution. However, due to the ease and speed 

of these methods, models generated with these approaches have been used to confirm 

the usefulness of the zebrafish as a tool for understanding the pathogenesis of motor 

neuron disease as well as for screening small molecules to be used for treatment for 

the condition in combination with other animal models.  

The first ALS disease zebrafish model was generated by Lemmens et al., 2007 using 

an overexpression approach. Microinjection of embryos with three different ALS-

causing mutations of the human SOD1 mRNA induced axonal abnormalities that were 

specific to the motor neuron and were reminiscent of those seen in transgenic SOD1 

rodent models. It has been reported that the phenotype associated with the mutation of 

SOD is modified by two factors; wild-type SOD1 and the vascular endothelial growth 

factor (VEGF) gene in rodents. VEGF has been suggested to have a protective effect 

on motor neuron in humans and rodents models of ALS (Lambrechts et al., 2003; 

Storkebaum et al., 2005). Wild-type SOD1 worsens the ALS phenotype in transgenic 

SOD1 mutant mice and even cause these phenotypes to appear in mice carrying a 

mutation, SOD1A4V that has been previously shown to not induce any ALS phenotypes 

in mice even after 2 years, consistent with a toxic gain of function effect (Deng et al., 

2006). Lemmens et al, 2007 investigated the effect of VEGF and wild-type SOD1 on 

their mutant embryos and their findings were consistent with those observed in mice. 

This not only validated the zebrafish model for studying motor neurodegeneration but 

has led to the development of transient zebrafish models as well as stable transgenic 

lines carrying mutations in different genes involved in MND by different groups; these 

have been reviewed in Babin, Goizet and Raldúa, 2014. As a result of this work, the 

interactions between these genes are now being studied in the hope that this will 

provide a complete picture of the pathogenesis of MND and better inform the 
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development of effective therapeutic strategies for the different gene mutations. A 

good example is that demonstrated by Kabashi, Bercier, et al., 2011, where the 

interactions of FUS with TARDBP and SOD1 was investigated. They showed that 

human wild-type FUS was able to rescue phenotypes such as motor neuron branching 

and swimming abnormalities induced by the knockdown of zebrafish tardbp but not 

vice versa while the wild-type form of both human  FUS and TARDBP genes had no 

effect on fish injected with the human G93A mutant SOD1 mRNAs. Also, human wild-

type SOD1 had no effect on phenotypes induced by the overexpression of human 

mutant FUS and TARDBP or knockdown of the zebrafish fus and tardbp. However, a 

more severe phenotype was observed in injected embryos co-expressing human mutant 

SOD1 with either human mutant forms of FUS or TARDBP. Their findings suggested 

that FUS shares a common pathway with TARDBP, although the latter acts upstream 

and hence was unable to rescue the phenotype induced when the zebrafish fus was 

knockdown. On the other hand, SOD1 might act independently of FUS and TARDBP 

(Kabashi, Bercier, et al., 2011). Consistent with these findings, Laird et al., 2010 had 

previously shown that overexpression of human progranulin gene had a 

neuroprotective effect on the axonopathy induced by mutant TARDBP but not mutant 

SOD1 expression. Interestingly, the zebrafish models are now being used to identify 

other gene modifiers that could serve as a potential target for therapeutic interventions. 

Van Hoecke et al., 2012 identified the ephrin receptor, epha4, as a modifier of ALS 

using a morpholino-based modifier screen approach with embryos overexpressing 

human mutant SOD1. They then confirmed that this factor was also a modifier in 

rodents ALS models as well as in ALS patients, with lower EPHA4 expression 

resulting in later disease onset and reduced severity and progression of the disease. 

Pharmacological inhibition of the Epha4 signalling pathway also completely rescued 

the axonopathy induced by mutant SOD1 in zebrafish and delayed onset of the disease 

as well as increased the survival rate of ALS rat models (Van Hoecke et al, 2012).     

Despite the fact that zebrafish was only recently validated as a suitable model for 

investigating MND pathogenesis, the fish models are already being used to carry out 

chemical screenings for drug discovery purposes confirming their advantage, 

particularly as regards economic issues, over rodent models. The first in vivo chemical 

screening was performed using three compounds; lithium chloride, methylene blue 
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(MB) and riluzole which are known for their neuroprotective potential, first in 

transgenic mutant TDP-43 (mTDP-43) and mFUS Caenorhabditis elegans ALS 

models and then later with transgenic zebrafish models, referred to as mTDP-43 and 

mFUS by the authors, using only MB which showed more promise in worms (Vaccaro 

et al., 2012). In both their worm and fish models, motor neuron abnormalities induced 

by TDP-43 and FUS mutations such as paralysis in C. elegans and swimming deficits 

with shortened and unbranched axons in zebrafish were significantly improved with 

MB, with earlier rather than late administration of MB being more effective in worms. 

This study also identified the molecular mechanism of MB as the oxidative stress 

levels in mTDP-43 and mFUS zebrafish and C. elegans models were reduced using 

dihydrofluorescein diacetate (DHF) assay. In the presence of intracellular peroxide 

which is a marker of oxidative stress, DHF produces a strong fluorescent signal which 

was observed in mTDP-43 and mFUS zebrafish and C. elegans. When both mutant 

models were treated with either MB and ero-1 (ER oxidoreductin 1) RNAi, the 

intensity of the fluorescent signal was significantly reduced (Vaccaro et al., 2012, 

2013). This suggests that MB exerted a neuroprotective effect through the endoplasmic 

reticulum (ER) stress pathway that is activated in response to the accumulation of the 

unfolded mutant proteins (UPRER) which was demonstrated with only mTDP-43 

zebrafish models (Vaccaro et al., 2013). Understanding the mode of action of MB led 

to the identification of three other candidate compounds with therapeutic potential 

which were structurally similar to MB in the same study. Two of these compounds, 

salubrinal and guanabenz have previously been demonstrated to be active in the UPRER 

(Boyce et al., 2005; Tsaytler et al., 2011) while the first evidence of the 

neuroprotective ability of phenazine through this pathway was reported in the study of 

Vaccaro et al., 2013. Interestingly, salubrinal was also found to reduce disease onset 

and delay its progression through the ER stress pathway in the transgenic FALS mouse 

model expressing the human SOD1G93A mutation (Saxena, Cabuy and Caroni, 2009). 

These three compounds act through different branches within the UPRER pathway and 

proved to be more efficient when combined with MB (Vaccora et al, 2013). Validation 

of the suitability of Vaccora et al, 2013 mTDP-43 zebrafish model for drug screening 

subsequently led to a high-throughput screening for other drugs for MND which has 

now been translated to patients with ALS (Patten et al., 2017). In this recent study, 
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3,850 small molecules were first screened using mTDP-43 C. elegans models and 13 

lead compounds, all neuroleptics, were identified as positive hits. Using the mTDP-43 

zebrafish model, only 10 of these compounds were confirmed, with pimozide being 

the lead compound with neuroprotective abilities which was also observed in zebrafish 

overexpressing the mutant form of human SOD1 and FUS. Pimozide was next tested 

in mutant SOD1 mice where it was shown to restore neuromuscular synaptic 

transmission. This study also demonstrated the safety and promise of using pimozide 

in patients with SALS in a pilot randomised controlled trial (RCT), allowing a second 

RCT trial with 100 patients to be approved for further investigation (Patten et al., 

2017).  

Some other studies have also validated the use of mutant sod1 zebrafish models for 

small molecules screening. McGown et al., 2013 demonstrated the effectiveness of 

riluzole, the only approved drug for MND, in their transgenic sod1 mutant and also 

identified a new role of the drug in reducing neuronal stress in interneurons. Another 

antioxidant drug, olesoxime was also shown to protect against SOD1 neurotoxicity in 

a T701 sod1 zebrafish model generated using TILLING (targeting induced local 

lesions in genomes) by Da Coasta and colleagues, 2014. Interestingly, apomorphine 

was also found to be effective in reducing oxidative stress in the different sod1 

zebrafish mutants in both studies (McGown et al., 2013; Da Costa et al., 2014). This 

drug has also been demonstrated to reduce motor dysfunction in SOD1G93A transgenic 

mice as well as attenuate oxidative stress and increase the survival rate in fibroblasts 

derived from ALS patients subjected to oxidative insult in vitro (Mead et al., 2013). 

Apomorphine is an activator of the nuclear factor erythroid 2-related factor (NRF2), 

which drives the expression of several neuroprotective genes by interacting with the 

antioxidant response elements (ARE). Further investigation of this compound as well 

as of the NRF2-ARE pathway, which has been shown to be impaired in SOD1 mutant 

mice models and brain and spinal cord tissues from ALS patients (Sarlette et al., 2008; 

Vargas et al., 2008), can now be done using the zebrafish in combination with the other 

available animal models. This could potentially speed the translatability of research 

findings to individuals with motor neuron disease.  
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1.3.3 Zebrafish models of epilepsy  

Epilepsy is a complex neurological disorder marked by unprovoked and recurrent 

seizures that are caused by abnormal electrical activity in the brain. This disorder is 

common, affecting approximately 1% of the general population. Despite the wide 

range of anti-epileptic drugs (AEDs), epileptic seizures in around one-third of these 

patients cannot be controlled with the available treatment (Cunliffe, 2016). Also, some 

of these AEDs have been shown to have an adverse effect, for example, increased rate 

of congenital malformation and developmental and cognitive impairment in children 

with in utero exposure to valproate, a widely used AED, has been reported (Adab et 

al., 2004; Morrow et al., 2006). It is therefore important that new drugs with better 

efficacy for drug-resistant epilepsy and with fewer side effects are developed. 

Several factors, for example, genetic mutations or head trauma can cause epilepsy; 

however, the cause is still unknown in at least 40% of cases (Shorvon, 2011). The 

number of these cases is gradually diminishing, especially for childhood cases of 

epilepsy, with the advent of whole exome sequencing (WES). Exome sequencing of 

patient-parents trios has identified many de novo mutations in genes that have never 

previously been implicated in neurological disorders. These patients present with other 

cognitive and behavioural deficits such as autism and intellectual disability (ID) along 

with the seizures. This in itself is no surprise, as it is known that there is a strong 

association between epilepsy, ID, autism and even motor impairment in infants 

(Tuchman and Cuccaro, 2011). However, it is still not clear if these other 

neurodevelopmental disorders are as a result of the damage caused by the seizure itself, 

as implied by the term epileptic encephalopathy, or independent of the presence of 

seizures but with a common underlying cause. Most studies seem to point to the latter, 

especially in the development of autism, which will suggest that these disorders might 

share a common molecular pathway that these genes are involved in (Tuchman and 

Cuccaro, 2011). The development of animal models which recapitulate some of these 

phenotypes has been and is still extremely valuable in understanding the contribution 

of these genetic mutations to neurodevelopmental disorders especially as more new 

genes, whose causal role have to be validated, are being discovered. 
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The zebrafish has again been employed in epilepsy research and has contributed 

immensely to the growing information currently available (recently reviewed in 

Cunliffe, 2016). One of the attractive features of using the zebrafish is the ability to 

effectively model epilepsy using both larval and adult stages. While the larvae can be 

used to model early-onset epilepsy, other more complex seizure-related behaviours 

can be further investigated using the adult fish (Stewart et al., 2012). Epileptic seizures 

can be investigated in zebrafish models using pharmacological induced and/or genetic 

manipulation methods. Chemically induced seizure was first demonstrated by Baraban 

et al., 2005 using pentylenetetrazole (PTZ), a common convulsant drugs also used in 

rodent models. In this study, they found PTZ induced locomotor convulsive behaviour, 

abnormal electrical discharges in the brain and increased expression of c-fos, a 

biomarker for neuronal activity, in the brain of PTZ treated zebrafish larvae, 7 days 

post fertilization (dpf). All these changes were similar to those seen in the rodent 

seizure models and were readily suppressed using valproate and diazepam, two AEDs 

that are also known to be effective in PTZ-induced seizure in rodents. The well-

established scoring system of seizure behaviour of PTZ treated fish from this study has 

paved the way for other uses of the PTZ assay. The assay was used to perform the first 

large-scale genetic screening in N-ethyl-N-nitrosourea (ENU) mutagenized larvae 

which identified six candidate genes that conferred resistance to seizure (Baraban et 

al., 2007). Interestingly, this study showed that PTZ can also be used to induce seizures 

effectively in larvae at earlier developmental stages from 3-5 dpf which are not 

regulated (unlike 7 dpf larvae) and will not require a license to carry out these 

experiments,  an added benefit of this model. In 3dpf larvae, Teng and colleagues used 

this assay in combination with morpholinos to demonstrate that knockdown of lgi1a 

or lgi1b, both of which encodes ion channel proteins, increased the susceptibility of 

their Lgi1a and Lgi1b zebrafish morphants to PTZ-induced seizures (Teng et al., 2010, 

2011). Other convulsant drugs used in mammals have now been shown to be equally 

effective in inducing seizures in zebrafish, but PTZ still remains the most widely used 

(reviewed in Stewart et al., 2012). 

Zebrafish have been shown to be sensitive to mutations in genes shown to cause 

epilepsy in humans and rodents. An example is the sodium channel subunit scn1La 

zebrafish mutation which was identified from an ENU mutagenesis screen (Baraban, 
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Dinday and Hortopan, 2013). Heterozygous missense mutations in SCN1A, most of 

which are de novo (85%), account for the underlying cause of Dravet syndrome (DS) 

in about 70- 80% of individuals with this disorder (Rosander and Hallböök, 2015). DS 

is a severe form of epilepsy marked by prolonged frequent generalised seizures that 

may or not be caused by a fever. These seizures begin within the first year of life, 

usually around 5 months of age and are poorly controlled by the available AEDs 

(Bender et al., 2012). In addition to epilepsy, these patients also present with 

developmental delay, cognitive and behavioural problems towards the second year of 

life. Some other neurological abnormalities such as hypotonia, ataxia and gait 

abnormalities accompany these other features in some infants with DS (Dravet, 2011). 

Another example is the KCNQ3 gene which encodes for the voltage-gated potassium 

channel, kv7.3. Mutation in this gene and another of this gene family, KCNQ2, are 

associated with a range of early-onset epilepsies with varying severity from the mild 

inherited epilepsy benign familial neonatal seizures (BFNS) to the severe epileptic 

encephalopathy usually caused by de novo mutations in these genes (Charlier et al., 

1998; Singh et al., 1998; Miceli et al., 2015). Using morpholinos, knockdown of 

KCNQ3 expression in zebrafish induced seizure-like activities shown by the abnormal 

electrical discharges obtained from the brains of larval morphants using 

electrophysiology (Chege et al., 2012).   

Most of the pro and anti-convulsant drugs are water soluble and can easily be 

administered by placing in a small volume of the normal bathing medium of the fish. 

Combined with the small size and genetic amenability of the zebrafish larvae, this 

makes the larval form excellent for high-throughput screening to identify new AEDs 

drugs. This has been further strengthened with the development of devices for 

automated compound delivery with in-built software for automated behavioural 

analyses that are compatible with a 96-well plate allowing large number of larvae to 

be tested simultaneously (for example, www.noldus.com). A good example where 

these benefits have been employed is seen in the study of Baraban et al, 2013. They 

performed a relatively large screen using a chemical library made up of 320 

compounds in the scn1La zebrafish Dravet syndrome models and found that clemizole 

was effective in reducing seizure activity in 5dpf larval mutants. A larger screening of 

about 2000 small molecules has also been performed using PTZ-induced seizure wild 
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type larvae at 2dpf with similar equipment (Baxendale et al., 2012). The authors also 

demonstrated the change of c-fos expression associated with seizure activities in 

zebrafish was robust enough to be used as another in vivo criterion for assessing the 

anti-convulsant properties of compounds in high-throughput chemical screens. The 

ability to use zebrafish larvae to carry out chemical screening not only identifies the 

effective doses of potential compounds but also allows for the simultaneous evaluation 

of their toxicity in vivo to determine if they are safe to be used for treatment of epilepsy. 

Goldsmith et al, 2007 showed that GBR12909, a dopamine reuptake inhibitor, 

although having an anti-convulsant effect on zebrafish and rodent models of 

generalised epilepsy, has a cardiac side effect as it induced abnormal heart rhythms in 

zebrafish even at the effective dose concentration for treating epilepsy. Interestingly, 

this finding parallels data from two phase 1 clinical studies that suggested the potential 

QT prolongation of GBR12909 in humans (Goldsmith et al., 2007). Their study 

demonstrates that the zebrafish could be used as the first in vivo platform to assess 

safety of a drug, once it has been identified as a hit, to determine if it should be 

developed further and then tested in the mammalian system. This could help avoid a 

waste of time and resources (and welfare issues) in the development of drugs that 

might be found to have serious side effects in the long run. Taken together, these 

studies demonstrate that zebrafish larvae present an excellent platform for identifying 

new and safe AEDs drugs for pharmocoresistant seizures, as well as seizures that are 

currently controlled by AEDs shown to have major side effects in the long term e.g 

valproate. 

1.4 Local mRNAs translation in neurons  

 mRNA localisation is a highly conserved mechanism that allows for the 

spatiotemporal control of the synthesis of specific proteins in cells. Using 

differentiated neurons separated into neurites and soma fractions, Zappulo et al., 2017 

showed that mRNA localisation accounted for half of the neurite-localised proteome. 

This finding together with those from a number of studies support the idea that mRNA 

localisation underlie the establishment and maintenance of dendrites and axons which 

are functionally specialised compartments of the neuron (reviewed in (Holt and 

Schuman, 2013). The mRNAs localised to these compartments fall into diverse 
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functional categories such as translation, cytoskeleton, degradation and 

channel/receptor formation. This further reflects the ability of axons and dendrites to 

function independently as they are able to coordinate and regulate the translation of 

these mRNAs locally when needed. Interestingly, this has already been demonstrated 

in vivo in a study by Harris and Colleagues in 1987. Using time-lapse video recordings, 

they showed that axons isolated from the soma were able to grow and navigate 

correctly to the optic tectum in Xenopus embryos (Harris, Holt and Bonhoeffer, 1987).  

There is much evidence that demonstrates the role of axonal mRNA translation in axon 

growth and navigation, synapse formation as well as the survival of axons and deficits 

in this process can lead to neurodevelopmental and neurodegenerative disorders 

(reviewed in (Cioni, Koppers and Holt, 2018; Costa and Willis, 2018). Interestingly, 

there are studies that link eEF1A to local protein synthesis during synaptic formation. 

It was demonstrated that eEF1A is important for the maintenance of newly formed 

synapses using sensory neurons isolated from Aplysia (Giustetto et al., 2003). In this 

study, it was observed that applying serotonin (5-HT) increases the level of eEF1A 

protein and mRNA but its mRNA was only enriched in the axonal processes when 

applied to both the cell body and the synapse. Blocking the expression of eEF1A using 

antisense oligonucleotides or antibodies resulted in the failure of the long-term 

facilitation (LTF) induced by 5-HT to last beyond 24 hrs. LTF is the major form of 

synaptic plasticity in invertebrates and has been suggested to underlie long-term 

learning behaviour and memory in Aplysia (Frost et al., 1985).  

Long-term potentiation (LTP) and long-term depression (LDP) which describes the 

long-lasting increase or decrease in synaptic strength respectively are the most studied 

form of synaptic plasticity, which is also believed to underlie learning and memory in 

human. Similarly, these processes require de novo protein synthesis suggesting that 

local mRNA translation at the synapses is important for their maintenance. There are 

studies that show the local translation of eEF1A2 mRNA at the synapses is required 

for LTP and LDP. Using microarray, eEF1A was identified as part of a subset of 

dendritic mRNAs from rat hippocampal neurons (Zhong, Zhang and Bloch, 2006). 

Another study demonstrated that eEF1A2 binds the alpha-2 subunit of the glycine 

receptor (GlyR) in a pull-down assay using extracts from adult rat brain (Bluem et al., 

2007). Immunofluorescence microscopy also showed eEF1A to colocalise with GlyR 
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from the soma into the dendrites and at inhibitory synapses in cultured hippocampal 

and spinal cord neurons from rat. Stimulation of hippocampal LTP in dendrites that 

have been severed from the cell body led to the increased expression of eEF1A, 

suggesting its translation is locally regulated at the dendrites. This effect was absent 

when the rat hippocampal slices were then treated with rapamycin, an inhibitor of the 

mammalian target of rapamycin (mTOR) pathway, and also blocked the maintenance 

of LTP (Tsokas et al., 2005). In another study, induction of LDP in rat hippocampal 

slices resulted in the enhanced expression levels of eEF1A protein in the dendrites 

(Huang, Chotiner and Steward, 2005).  

These findings provide strong evidence for the conserved role of eEF1A in maintaining 

long-term synaptic plasticity and possible in learning and memory. Interestingly, 

expression of eEF1A protein is reduced in the hippocampus, in particular the CA1 and 

dentate, but not in the cerebellum or midfrontal gyrus in post mortem brain samples 

obtained from patients diagnosed with Alzheimer disease (AD) (Beckelman, Zhou, et 

al., 2016). AD is a neurodegenerative disorder with memory loss as one of the first 

symptom in patients. This group also showed that impaired LTP characteristic to AD 

is attenuated by the upregulation of eEF1A in hippocampal slices obtained from 

transgenic AD mice models (Beckelman, Day, et al., 2016).  Similarly, dysregulation 

of eEF1A was found to underlie the impaired synaptic elimination observed in Fragile 

X syndrome, the major form of inherited learning disability. Tsai et al., 2012 showed 

that reducing eEF1A levels which is found to be elevated in Fmr1 knockout neurons 

restore synaptic elimination in mice. FMR1 protein participates in the spatial and 

temporal control of local protein synthesis during synaptic development. This protein 

represses translation of certain neuronal mRNAs whose levels are elevated in its 

absence (Bagni et al., 2012). Although not all these mRNAs are known, a direct 

interaction between eEF1A mRNA and FMR1 protein has been demonstrated (Sung 

et al., 2003; Darnell et al., 2011) which could explain the enhanced levels in 

individuals with this disorder and Fmr knockout mice models.                           
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1.5 Previous studies of the eukaryotic elongation factor 1 

alpha in zebrafish 

Before the complete sequence of the zebrafish genome was available, the zebrafish 

was thought to have only one gene copy of eEF1A. The structure of the zebrafish 

eEF1A gene was first reported by Gao et al., 1997. They described this gene to be 

made up of 8 exons interspersed with 7 introns. The exon-intron organisation of the 

eEF1A gene was found to be identical to the human and displayed the same splice 

pattern and exon sizes with the human eEF1A gene. Differential expression levels of 

eEF1A mRNA was observed when compared in different developmental stages and 

cultured cells derived from adult fish tissue. This led to the suggestion that eEF1A was 

developmentally regulated in the zebrafish. Another study then identified this eEF1A 

gene to be important for embryonic development based on the results from a large 

insertional mutagenesis screen carried out in zebrafish (Golling et al., 2002; 

Amsterdam et al., 2004). Homozygous eef1a mutants develop abnormally with 

phenotypes becoming visible from 2 days post fertilisation (dpf). At 3 dpf, they have 

small heads and eyes and grow slowly compared to their wild type siblings. At 4 and 

5 dpf, their swim bladders fail to inflate and they then die  by day 5. In this study, this 

gene was identified as the orthologue of the human EEF1A1. On the contrary, Clark 

et al., 2011 found that homozygous eef1a mutants did not show any abnormal 

phenotype and were viable till adulthood. In their study, mutants were generated using 

a gene-break transposon mutagenesis system which resulted in the knockdown of most 

transcripts by >99%. Only the gene ID, zgc:73138 was mentioned, but it was also 

identified as the orthologue of the human EEF1A1, with a paralogue gene identified 

as zgc:110335 in the zebrafish genome. These two studies were carried out at the time 

when the zebrafish sequencing project was still in its early stage. However, with the 

complete sequence now available, it is now obvious that the zebrafish has more than 

one eEF1A gene. The reason for the discrepancy between the two studies was actually 

due to the groups identifying different eEF1A genes. While the gene reported by 

Amsterdam et al., 2004 is now known as eef1a1l1, zgc:73138 and zgc:110335 have 

been renamed eef1a1a and eef1a1b respectively (ZFIN). The zebrafish eEF1A 

isoforms are described in more details in chapter 3 of this thesis. 
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A guide to the past and current nomenclature of the zebrafish eEF1A is summarised in 

table 1.5. However, for the sake of clarity, the mammalian naming convention for 

proteins will be used when referring to eEF1A proteins from all species in this thesis. 

Table 1.5: Nomenclature of the zebrafish eEF1A isoforms 

Current gene symbol Previous gene names Protein 

eef1a1l1 ef-1 alpha, ef1 alpha, ef1a, 

EFL1-alpha,  

eEF1A1L1 

eef1a1a j64c02, wu:fj64c02, 

zgc:73138 

eEF1A1A 

eef1a1b eef1a1, wu:fj34g08, 

zgc:110335 

eEF1A1B 

eef1a2 zgc:92085 eEF1A2 

  

1.6 Project aims  

With the growing evidence that supports the utility and the contribution of the 

zebrafish in understanding different human disease pathogenesis, the main aim of this 

project was to investigate the potential of using the zebrafish as a model to understand 

the role of eEF1A2 in neurological disorders. The objectives of this project include: 

1. To characterise eEF1A isoforms in zebrafish using bioinformatics and gene 

expression analyses  

2. To recreate the G70S eEF1A2 mutation in the zebrafish to investigate the 

mechanisms by which it causes the observed human phenotype 

3. To generate and characterise eEF1A2 null zebrafish model for complementary 

use with mice models with the intention of using the zebrafish model as an in 

vivo platform for chemical screening. This would help in the identification of 

potential compounds that could ameliorate any observed phenotype(s) caused 

by eEF1A2 for further investigation.       
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Chapter 2: Materials and Methods 

2.1 Materials 

2.1.1 Reagents 

The recipe for the different reagents used throughout this work is listed in table 2.1 

below. 

Table 2.1: List of reagents used in this work and their recipe 

Whole mount in situ  hybridisation (WISH) experiment 

Name  Composition   

1M Lithium chloride 4µl of 10M LiCl (Fluka) diluted in 36µl 

of DEPC-treated water 

0.003% PTU (Sigma-Aldrich) 100x stock solution of 0.3% PTU (w/v) 

dissolved in distilled water was diluted 

in E3 to working concentration of 

0.003% PTU (v/v)  

4% PFA  4g of PFA (Sigma-Aldrich) dissolved in 

1x PBS 

aPBS-T 1ml of Tween 20 (Thermo Fisher 

Scientific) diluted in 1L of 1x PBS 

Hybridisation Mix (HM+) 50% Formamide, 5X SSC, 0.1% Twee 

20, 50µg/ml Heparin, 500µg/ml RNAse 

free tRNA 

Hybridisation Mix (HM-) Same as above without RNAse free 

tRNA and heparin 

10x Maleic acid buffer (MAB) 58g Maleic acid, 43.5g NaCl, 20g 

NaOH, 400ml distilled water, pH 

adjusted to 7.5 

MABT 10x MAB diluted to 1x in distilled water, 

0.1% Tween 20 
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Blocking buffer 10% stock blocking reagent powder 

(Roche) diluted to 1% in MABT 

Alkaline phosphatase buffer (NTMT) 5ml 1M Tris HCl pH 9.5 

2.5ml 1M MgCl2  

1ml 5M NaCl  

250µl 20% Tween 20  

Distilled water up to 50ml  

Staining solution 200µl of NBT/BCIP stock solution 

diluted in 10ml NTMT 

Protein detection using western blota 

RIPA lysis buffer 1.5ml 1M NaCl, 0.1ml Nonidet P-40, 

50µl 0.5% Sodium deoxycholate, 50µl 

20% SDS, 5ml 50mM Tris, pH8.0, dH2O 

up to 10ml. 1 Complete Protease 

inhibitor tablet (Roche) added prior use 

10% separating gel 8ml 1.5M Tris pH8.8, 10.4ml 30% 

acrylamide/bis (Bio-Rad), 160µl 20% 

SDS, 20µl TEMED, 80µl 25% AMPS, 

13.4ml dH2O 

4.3% stacking gel 5ml 0.5M Tris-HCl pH6.8, 2.9ml 30% 

acrylamide/bis (Bio-Rad), 100µl 20% 

SDS, 10µl TEMED, 100µl 25% AMPS, 

11.9ml dH2O 

TBS-T 1ml of Tween 20 (Thermo Fisher 

Scientific) diluted in 1L of 1x TBS 

Blocking buffer 5% dried skimmed milk (Marvel) 

dissolved in TBS-T 

Histology 

3% hydrogen peroxide 100ml 30% stock H2O2 diluted in 900ml 

distilled water 

   a same recipe for PBS-T used for WISH and protein detection applications   
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2.1.2 Oligonucleotides for gRNAs synthesis 

Sequences of oligonucleotides used in the cloning of gRNA into the expression vector, 

pDR274 for the CRISPR/Cas9 experiments are listed in table 2.2 below. All 

oligonucleotides were purchased from Integrated DNA Technologies (IDT) with a 5’ 

phosphate modification to improve ligation efficiency. 

Table 2.2: Oligonucleotide sequences used to generate gRNAs for CRISPR/Cas9 

experiment  

Name Sequence (5’ to 3’) 

eef1a2 CR F1 [P] TAGTGATCGGCCATGTTGATTC 

eef1a2 CR R1 [P] AAACGAATCAACATGGCCGATC 

eef1a2 CR F2 [P] TAGGGCATCTCATCTACAAATG 

eef1a2 CR R2 [P] AAACCATTTGTAGATGAGATGC 

gRNA3 1 [P] TAGGATAAGTTGAAGGCTGAGA 

gRNA3 2 [P] AAACTCTCAGCCTTCAACTTAT 

gRNA5 1 [P] TAGGTTTGAGAAAGAGGCAGCTG 

gRNA5 2 [P] AAACCAGCTGCCTCTTTCTCAAA 

gRNA7 1 [P] TAGGTAAACCCTGATGCTTCCTG 

gRNA7 2 [P]  AAACCAGGAAGCATCAGGGTTTA 

 

2.1.3 Primers 

Sequences of primers used in this project are listed in Table 2.3 below together with 

the applications they were used for indicated by the subheadings. Primers were 

purchased from Sigma-Aldrich unless otherwise indicated. 

Please note that primers highlighted in grey were obtained from the Primerdesign gene 

detection kit and their sequences are copyrighted and may not be used to synthesise 

new primers from a different source.   
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Table 2.3: Sequences of primers used in this work     

Expression analysis of eef1a during development and adult tissues 

eef1a1l1 RT-PCR F ACCTACCCTCCTCTTGGTCG 

eef1a1l1 RT-PCR R GGAACGGTGTGATTGAGGGA 

eef1a1a RT-PCR F TCCTCCTCTGGGTCGTTTTG 

eef1a1a RT-PCR R GTAACCTTTCCGCTTGTCGC 

eef1a1b RT-PCR F TCCTCTTGGTCGTTTTGCAGT 

eef1a1b RT-PCR R TGTGGCTGACCCAAGTGTTT 

aeef1a2 RT-PCR F TACTGTTCTCTCTTGCCGCC 

aeef1a2 RT-PCR R TTTTCCCATCTCAGCTGCCT 

actb2 F GATCAAGATCATTGCCCCACC 

actb2 R GAGTCGGCGTGAAGTGGTAA 

Sequencing primers for CRISPR/Cas9 experiments 

eef1a2 CR GENO F (IDT) TGCAGACAGAAGAAAGCACCT 

eef1a2 CR GENO R (IDT) TTTGAGAAAGAGGCAGCTGAG 

gRNA3 GENO F CACCTTTATTTTTGCGTGAACA 

gRNA3 GENO R TCAAAAACATGATCACTGGGAC 

gRNA5 GENO F TCAACATGGGGAAAGAGAAGAT 

gRNA5 GENO R CACTTGCATCTTCCATTTTGAA 

gRNA7 GENO F TTTAATGTGAAGAACGTGTCCGTAA 

gRNA7 GENO R AGGTCATCATTTTGAATCACCC 

G70S New F GGTAGGCCCGGTCCTATAAA 

G70S New R CTTGTTTGGAATGTACCGTTAGT 

Expression analyses in Del and Ins4 eef1a2 mutant linesa 

eef1a2 F (Primerdesign)  AGGCGGATTGTGCTGTCTT 

eef1a2 R (Primerdesign) GGCGTGTTCCCTTGTTTGG 

eef1a1l1 F (Primerdesign) GAGGAAATCACCAAGGAAGTCA 

eef1a1l1 R (Primerdesign) GTTGTCACCGTGCCATCC 

eef1a1a F (Primerdesign) GATTGTGCTGTGCTGATTGTG 

eef1a1a R (Primerdesign) GTAAGCCAGAAGAGCGTGTT 

eef1a1b F (Primerdesign) CTTGCTGGCGTACACTCTC 

eef1a1b R (Primerdesign) GACTTCCTTCACAATCTCCTCAT 

3’ eef1a2 RT-PCR F AGTATCCTCCACTGGGACGC 

3’ eef1a2 RT-PCR R AGCTGATTTGGTCACTCTCCC 

Probe synthesis for ISH experiment 

eef1al1 3’UTR AntiF AGAAGGCTGCCAAGACCAAG 

eef1al1 3’UTR AntiR [T7]TTATTCATCAGCGTTTCCAAATTGT 
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eef1a1a 3’UTR AntiF TGTTGTGTTTGACTGCCAACTC 

eef1a1a 3’UTR AntiR [T7]ACAAGTGCTTGTGCAGGGTT 

eef1a1b 3’UTR AntiF AAACACTTGGGTCAGCCACA 

eef1a1b 3’UTR AntiR [T7]TGAGTGCAAGTGCAAACAAGAT 

eef1a2 3’UTR AntiF TGAATCTCCAAGACAGTCACCTT 

eef1a2 3’UTR AntiR [T7]TTGTCACAGGTTTGAGCAGC 

a- Primers used in two different experiments,  [T7] promoter sequence- 

TAATACGACTCACTATAGGG, Grey highlight- indicate primer sequences are 

copyrighted by Primerdesign Ltd. 

 

2.1.4 Antibodies 

The antibodies used in this project is listed in the table below together with the 

concentration and the application they were used. 

Table 2.4: List of antibodies employed in this project 

Antibody name Host species Application and 

dilution 

Company 

EEF1A2          (1o)  Rabbit WB  1:500 GeneTex 

EEF1A2           (1o) Rabbit WB  1:500 Proteintech 

Anti-EEF1A2  (1o) Rabbit WB  1:1000 Abcam 

Anti-EF1α        (1o) Mouse WB  1:1000 Merck Milipore 

Anti-EF1A       (1o) Rabbit WB 1:1000 GeneTex 

eEF1A2-2         (1o) Sheep  WB  1:50 Made in-house  

GFAP              (1o) Rabbit  IHC  1:500 Dako 

IRDye® anti-

rabbit                (2o) 

Goat WB   1:5000 LICOR 

IRDye® anti-

mouse              (2o) 

Goat WB   1:5000 LICOR 

Anti-rabbit 

biotinylated      (2o) 

Goat IHC 1:500 Dako 
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Anti-goat IgG-

HRP                  (2o) 

Rabbit WB  1:2000 Dako 

Anti-rabbit IgG-

HRP                  (2o) 

Goat  WB  1:2000 Cell signaling 

   

2.2 Methods 

2.2.1 Zebrafish model 

2.2.1.1 Animal Husbandry 

Zebrafish were maintained in the Yamuna fish room, MRC Human Genetics Unit 

(HGU) University of Edinburgh. They were raised in re-circulating in closed water 

system (Aquatic Habitats UK) at ~ 28.5oC with a pH range of 7.0 - 7.2. Room 

temperature was maintained at ~ 25oC on a diurnal light schedule of 14 hours of day 

(9 am to 11 pm) and 10 hours of night (11 pm to 9 am). AB zebrafish strains were used 

and were established from embryos collected from adult fish from within the facility 

using either the pairing or marbling mating methods.  

Embryos were placed in E3 solution in batches of 50 per 9cm Petri dishes or 100 in 

15cm Petri dishes and kept in the incubator at ~ 28.5oC until they become free 

swimming larvae at 5 days old. To ensure a healthy clutch was maintained, 

unfertilised, deformed or dead embryos were removed and the embryos were placed 

in fresh E3 solution every day. At 5 days old, the larvae were introduced into the water 

system and fed 3-4 times a day; one daily feed of paramecia, one feed of Artemia and 

one or two feed of dry food. Around 6 weeks of age, the fish are fed twice a day with 

adult dry food and live Artemia.  

2.2.1.2 Experimental procedures  

All procedures carried out was done in accordance with the UK Home Office 

regulations. Permission to perform all experiments was granted to Personal Project 

License (PPL) number 60/4418 (updated to PA3527EC3) and Personal Individual 

License (IF3D4F532). 
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2.2.2 Methods for RNA analysis 

2.2.2.1 Collection and extraction of RNA from embryos and adult tissues 

Adult zebrafish were killed by immersing in tricaine for 10mins or until the cessation 

of gill movement. Tissues were quickly dissected and stored at -70°C in RNAlater® 

solution until RNA extraction. Zebrafish embryos were collected by natural spawning 

and raised in Petri dishes at 28.5°C until the desired developmental stages were 

reached according to Kimmel et al., 1995. Embryos were collected at the following 

stages: 1-cell, 2-cell, 4-cell, 8-cell, 16-cell, 256-cell, high, 50%-epiboly, 90%-epiboly, 

24 hours, 48 hours and 72 hours post fertilisation (hpf). A brief description of these 

developmental stages is summarised in table 2.5.  

Table 2.5: Description of embryonic developmental stages used for expression 

analysis taken from ZFIN (https://zfin.org/zf_info/zfbook/stages/index.html).  

Stage Period Begins (hpf) Landmark feature 

1-cell Zygote  0.00 Cytoplasm streams 

toward animal pole 

to form blastodisc  

2-cell  

 

Cleavage  

0.75 Partial cleavage 

4-cell 1.00 2X2 array of 

blastomeres 

8-cell 1.25 2X4 array of 

blastomeres 

16-cell 1.50 4X4 array of 

blastomeres 

256-cell  

Blastula  

2.50 7 blastomere tiers 

High 3.33 Blastodisc 

flattening starts 

50%-epiboly  

Gastrula  

5.25 Uniformity of 

Blastoderm 

thickness remains 
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90%-epiboly Gastrula 9.00 Brain and 

notochord 

rudiments 

24hpf Pharyngula 24 Early 

pigmentation, 

heartbeat  

48hpf Hatching  48 Elongated pectoral 

fin buds 

72hpf Early larva 72 Protruding mouth 

 

Total RNA from tissues and approximately 50 embryos were extracted by 

homogenising in TRIzol® using a cordless pestle motor and RNase free pestle (VWR 

international). Muscle tissues were further homogenised by passing the lysate through 

a 1ml syringe with a 25G needle. RNA clean-up was done using the RNeasy Mini Kit 

(Qiagen) with on-column DNase treatment (RNase-free DNase set, Qiagen) following 

the manufacturer’s instructions. Concentration and integrity of extracted RNA were 

assessed using the Agilent 2100 Bioanalyzer. 

2.2.2.2 Synthesis of cDNA 

 RNA was synthesised into cDNA using the AffinityScript Multiple Temperature 

cDNA Synthesis Kit (Agilent Genomics), following the manufacturer’s instructions. 

A combination of oligo (dT) and random primers were used for all reactions. A ‘–RT’ 

control, containing all the reagents except the reverse transcriptase (Affinityscript RT) 

was also included to check for DNA contamination in the RNA preparation. cDNA 

was then stored at -20°C until required. 

2.2.2.3 RT-PCR 

Genomic contamination was assessed first for all cDNA using a primer for actb2. The 

primers were designed such that it amplifies cDNA at a product size of 360 base pair 

and genomic DNA if present, at a size of 648 base pair. Once it was ascertained that 

cDNA was free of genomic DNA, samples were run in duplicate with gene-specific 

primers and primer that amplified actb2 to serve as a loading control for the reaction. 

PCR was performed using the Phusion High-Fidelity DNA Polymerase (see table 2.3 
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for primer sequences and section 2.6.1 for PCR parameters). Products were run out on 

a 2% 0.5 x TBE agarose gel containing SYBRsafe and visualised on a transilluminator 

or a Fujifilm FLA-5100 imager.  

2.2.2.4 geNorm reference kit 

For accurate mRNA quantification, it is important to normalise real-time PCR data to 

a fixed reference gene, one that is not influenced by the experimental conditions. Some 

important factors to consider when choosing reference genes are discussed in Bustin 

et al., 2009. A study by Vandesompele et al., 2002 demonstrated the importance of 

using the geometric mean of multiple reference genes that have been carefully chosen 

for a more accurate normalisation factor for qPCR analysis. To select the best reference 

genes for this study, I used the geNorm gene kit for zebrafish (PrimerDesign Ltd UK). 

This consists of custom designed primers for 12 reference genes (Table 2.6) from the 

zebrafish genome which were analysed using a representative set of the samples. 

Primer sequences are not disclosed by the company. PCR was run as described in 

section 2.2.2.5. Data were analysed using the qbase+ analysis software (Biogazelle) 

which ranks the reference genes in order of their expression stability.   

Table 2.6: List of genes in the zebrafish geNorm kit (PrimerDesign, UK)  

Gene name Symbol 

Eukaryotic translation initiation factor 1B EIF1B 

NADH dehydrogenase  NADH 

Tyrosine 3-monooxygenase activation 

protein 

YWHAZ 

16S ribosomal RNA 16S 

ATP synthase ATPsynth 

Cytochrome P450 monooxygenase CYP2K17 

Actin, beta 1 actb1 

Glyseraldehyde-3-phosphate dehydrogenase GAPDH 

Ribosomal protein L13 RPL13 

Topoisomerase (DNA) II alpha TOP2 

Succinate dehydrogenase SDHA 

Ubiquitin specific protease 5 USP5 
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2.2.2.5 Quantitative PCR (qPCR) 

Gene expression levels of the genes studied in this project were examined using RNA 

extracted from adult fish. RNA and cDNA preparation was carried out as described in 

section 2.2.2.1 and 2.2.2.2. The cDNA templates were diluted 1:5 with RNase free 

water before it was used in the reaction. The qPCR reaction was performed using the 

Brilliant II SYBR Green qPCR Master Mix (Agilent Technologies) and the 7900HT 

Light Cycler (Roche). Primers sequences are given in Table 2.3. Custom designed 

primers from Primerdesign were prevalidated by the company using pooled full-length 

cDNA generated from whole adult zebrafish by me. 

Reaction set-up contained 5µl 2x Brilliant II SYBR Green, 0.5µl 6μM Primer mix, 

0.375µl reference dye diluted 1:50 in water and 0.125µl RNase free water for a final 

volume of 10µl which were assembled on ice. Cycling conditions used were as 

follows: 

Thermocycling conditions for qPCR  

Cycles Duration of cycle Temperature (°C) 

1 10 minutes 95 

50 30 seconds 95 

1 minute 60 

 

A dissociation curve was carried out at the end of the program to assess the specificity 

of the PCR reaction. 

Primer efficiency was assessed for all genes using seven 4-fold serial dilutions of 

cDNA pooled cDNA from whole adult fish (1:4, 1:16, 1:64, 1:256, 1:1024, 1:4096 and 

1:16384), all carried out in triplicate. Data were used to construct a standard curve for 

each target gene and reference genes and the efficiency of the reaction was calculated 

from the slope of the standard curve determined in the HT7900 system SDS software 

(Applied Biosystems) which is summarised in appendix table 2. Quantity of transcripts 

levels in the different tissues was determined using the appropriate standard curve for 

each gene.  

The mRNA quantity of each gene of interest was then normalised to three reference 

genes: ATPsynth, NADH and 16S which were selected using the geNorm kit 

(PrimerDesign Ltd UK) described in section 2.2.2.5, by dividing each target gene by 
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the geometric mean of the reference genes. To compare the amount of each zebrafish 

eef1a transcripts, the Pfaffl method (Pfaffl, 2001) was used to calculate the gene 

expression ratio of each transcript relative to the geomean of the reference genes for 

each tissue. All reactions were performed with three biological replicates in triplicate 

and a no-template control was included for each gene. 

GraphPad Prism v5 was used to make graphs and perform statistical analyses. To test 

for significance, Mann Whitney test or One-way ANOVA with Tukey Multiple 

Comparison tests was performed where appropriate.  

2.2.2.6 Whole mount in situ hybridisation (WISH) 

2.2.2.6.1 Probe synthesis 

DNA primers were used to amplify fragments from the 3’UTR region of each eef1a 

gene as this region shows less similarity across the gene families, thereby avoiding 

cross-hybridisation of probes. PCR was performed using Phusion HF DNA 

polymerase (see section 2.2.6.1 for protocol) and products were gel-purified using the 

QIAquick Gel Extraction Kit (QIAGEN) according to the manufacturer’s instructions. 

For each eef1a gene, PCR templates for antisense (experimental) and sense (control) 

probes were amplified. Primer sequences for sense probes are the same as that listed 

for antisense probes in Table 2.3 except that the T7 promoter sequence is tagged to the 

5’ of the forward primer. 

Digoxigenin (DIG)-labelled anti-sense and sense probed were generated with 1µg of 

purified PCR products as templates using T7 RNA-polymerase and DIG RNA 

labelling mix (Roche). Reaction setup was assembled at room temperature in the 

following order; 

Component  Volume (µl) 

Purified PCR product X (1µg) 

DEPC-treated water Up to 20 

10X transcription buffer 2 

DIG-RNA labelling mix 2 

T7 RNA polymerase 2 

RNasein (Promega, 40U/µl) 1 
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The reaction was incubated for 2 hours at 37°C. To stop the reaction, 1µl of DNase 

(Turbo DNase, Ambion) was added to the mix and incubated at 37°C for 20 minutes. 

RNA probes were then precipitated from the reaction by adding 6µl of DEPC-treated 

water, 75µl of 100% ethanol and 10µl 1M lithium chloride (LiCl). Precipitation mix 

was left overnight at -20°C and was centrifuged at a speed of 12,000xg the next day at 

4°C for 30 minutes. The pellet was washed with 70µl of 70% ethanol and centrifuged 

at room temperature at a speed of 8,000xg for 5 minutes, after which it was air dried 

for 5-10 minutes. Pellets were dissolved with Diethyl pyrocarbonate (DEPC)-treated 

water and 1µl of RNAsein to protect the RNA from degradation. Concentration and 

integrity of the probes were measured using the NanoDrop 1000 spectrophotometer 

(Thermo Fisher Scientific). All probes were aliquoted and stored at -80°C until needed. 

2.2.2.6.2 Preparation of embryos 

Embryos were collected and staged using the same method described in section 

2.2.2.1. At 9hpf, the embryos were dechorionated using forceps and gently transferred 

to E3 medium containing 0.003% phenylthiourea (PTU) to inhibit melanin synthesis. 

The medium containing PTU was replaced regularly until the desired stage was 

reached. After this they were fixed overnight in 4% paraformaldehyde (PFA) in 1X 

PBS. The next day, the embryos were dehydrated through an increasing series of 

methanol in 1X PBS (25%, 50% and 75% v/v) for 5 minutes each and three changes 

of 100% methanol for 10 minutes. Embryos were stored in 100% methanol at -20°C 

until needed.     

2.2.2.6.3 In situ hybridisation 

The hybridisation protocol used was modified from the method described by Thisse 

and Thisse, 2007 and was carried out in sterile 1.5ml Eppendorf tubes. Embryos were 

rehydrated through a decreasing series of methanol in 1X PBS (75%, 50% and 25% 

v/v) for 5 minutes and then 4 times in PBS-T for 5 minutes each. Embryos were then 

digested with 500µl of 10µg/ml Proteinase K diluted in PBS-T at room temperature to 

make them permeable and allow penetration of the RNA probes. Embryos at 24hpf 

were digested for 10 minutes, those at 48hpf for 20 minutes and larvae at 72hpf and 

5dpf were digested for 30 minutes. To stop the reaction, embryos were incubated in 

4% PFA in 1X PBS for 20 minutes. The embryos were then washed in five changes of 

500µl PBS-T for 5 minutes per wash to get rid of residual PFA. The embryos were 
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then prehybridised in 250µl prewarmed (15 minutes at 67°C) Hybridisation Mix 

(HM+) in the water bath at 67°C for 3 hours. Antisense and sense RNA probes were 

diluted separately in 250 µl of HM+ and denatured in a thermal cycler at 95°C for 

2mins and placed immediately on ice to prevent reannealing. The final concentration 

of probes used was in the range of 40-50ng. The HM+ was removed and was then 

replaced with the HM+ containing probes. The embryos were hybridised in the 

solution overnight in the water bath at 67°C.   

The HM+ containing probe solution was removed and stored at -20°C to be reused. The 

embryos were then washed in a decreasing series of heparin-free and tRNA-free 

Hybridisation Mix (HM-) diluted in 2x SSC (75%, 50% and 25% HM-) for 10 minutes 

per wash and then for 10 minutes in 100% 2x SSC. The embryos were washed 3 times 

for 30 minutes per wash in 0.2x SSC to prevent non-specific hybridisation of the 

probes. All these washes were performed in a water bath set at 67°C with the solutions 

prewarmed to 67°C prior to use. The embryos were then washed twice in 1x maleic 

acid buffer (MABT) for 10 minutes per wash at room temperature. Embryos were then 

incubated in blocking buffer at room temperature for 2 hours to avoid non-specific 

binding by the anti-DIG antibody. They were then incubated with the anti-DIG-AP 

antibody (Roche) diluted at 1:5000 in blocking buffer overnight at 4°C on an orbital 

shaker set at 40 rpm. 

The next day, the antibody solution was replaced with 1x MABT and the embryos 

were washed for 5 minutes. They were then washed four times with 1x MABT for 30 

minutes per wash to remove excess antibody and then washed with four changes of 

NTMT solution for 15 minutes per wash. All these washes were performed at room 

temperature with gentle agitation. This was then followed by staining the embryos with 

freshly prepared staining solution and the reaction was monitored under a dissecting 

microscope illuminated from above every 10 minutes. Staining was performed in the 

dark and with multi-well plates wrapped with foil to avoid excess exposure to light. 

The reaction was stopped by washing the embryos in five changes of 1x PBS-T for 5 

minutes per wash and then incubating in 0.1M EDTA for 20mins. They were again 

washed in five changes of 1x PBS-T for 5 minutes per wash to remove residual EDTA. 

Brightfield microscopy using a Zeiss upright microscope and the Micro-manager 
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imaging software was used to view and take pictures of stained embryos. Stained 

embryos were stored in 4% PFA at 4°C.      

2.2.3 eef1a constructs preparation and expression analysis 

2.2.3.1 Cloning of full-length eef1a transcripts 

2.2.3.1.1 Generation of full-length cDNA 

Total RNA was extracted from whole adult fish and cDNA synthesised as described 

in section 2.2.2. Full-length cDNA of eef1a genes were cloned into a pcDNA6.2C-

EmGFP vector using Gateway cloning technology. The forward and backward primers 

were designed to contain attB site to facilitate recombination. Kozak consensus 

sequence was included in the forward primer to allow protein expression in 

mammalian cells and stop codon removed from the reverse primer to allow for GFP 

expression. attB-PCR products were generated using the PCR reaction set-up and 

cycling parameters summarised below; 

PCR reaction set-up and thermocycling parameters for full-length eef1a cDNA 

Component  Volume (µl) 

5X Q5 Reaction Buffer 10 

10Mm dNTPs 1 

10µM F Primer 2.5 

10µM R Primer 2.5 

cDNA 2 

Q5 Hot Start High-fidelity 

DNA Polymerase 

0.5 

5X Q5 High GC Enhancer  10 

Water 21.5 

 

Step  Temperature (°C) Time  

Initial Denaturation 98 30 seconds 

 

   35 cycles 

98 

*59 (eef1a2),64 (eef1a1a and 

eef1a1b), 62 (eef1a1l1) 

72 

10 seconds 

30 seconds 

2 minutes 

Final Extension 72 2 minutes 

*indicates the different Tm temperature used for each gene.  
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2.2.3.1.2 PCR product clean up 

After amplification, PCR products were run on a 1% TAE agarose gel.  The amplified 

products were excised from the gel with a clean scalpel using a Safe Imager 

transilluminator and purified using the QIAquick Gel Extraction Kit (QIAGEN) 

according to the manufacturer’s instructions. 5µl of the purified products were run on 

a 1% 0.5x TBE gel to check the integrity of the DNA. The concentration of DNA was 

determined using the Nanodrop 1000 spectrophotometer (Thermo Fisher Scientific).  

2.2.3.1.3 BP recombination reaction 

Purified attB-PCR products were cloned into a pDONR221 donor vector using the BP 

clonase kit following the manufacturer’s instructions to create an entry clone. In brief, 

a reaction containing 2µl of BP clonase, 150ng of pDONR221, 100ng attB-PCR 

product and TE buffer to a final volume of 10µl was made in a 1.5ml tube and 

incubated overnight at room temperature. 

2.2.3.1.4 Transformation of competent cells  

Library Efficiency DH5α competent cells were thawed on ice and 50µl aliquoted to 

1.5ml ice-cold tubes. One microliter of BP recombination reaction was added and 

incubated on ice for 30 minutes. Cells were heat-shocked for 30 seconds at 42°C and 

immediately transferred to ice. After 2 minutes, 450µl of SOC medium was added to 

each tube and the cells were agitated horizontally for 1 hour at 37°C.   

For each transformation, two LB plates containing kanamycin were used. The plates 

were pre-warmed at 37°C and 20µl cells spread on one plate and 100µl on the other 

plate. The plates were sealed with paraffin to avoid drying out and incubated overnight 

at 37°C. The pUC19 DNA vector was included as a control. 

2.2.3.1.5 Colony screening 

Four colonies were randomly chosen for each transformation and inoculated in 

individual Falcon tubes containing 4ml of LB broth containing 50μg/ml kanamycin. 

Cells were grown overnight at 37°C with constant shaking. The plasmid was purified 

from 3.5ml of the cell culture using QIAprep Spin Miniprep Kit (QIAGEN) following 

the manufacturer’s protocol. 10µl of the purified plasmids were sent to Technical 

Services, MRC HGU Unit for sequencing using M13 sequencing primer from the 
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facility. The remaining 500µl of all positive entry clones were mixed individually with 

500µl 50% v/v glycerol and stored at -70°C to provide a glycerol stock.  

2.2.3.1.6 LR recombination reaction 

Each gene was transferred to the pcDNA6.2C-EmGFP destination vector using the LR 

clonase II enzyme mix kit according to the manufacturer’s instructions. 

Transformation and screening of colonies for the correct insert were performed as 

described above. In this case, LB containing 100μg/ml ampicillin was used and T7 

promoter primers used for sequencing.  

2.2.3.2 Transient transfection  

HEK293T cell line, a kind gift from Dr. Chloe Stanton, were used for transfection. 

Transfection was performed using TurboFect Transfection reagent (Thermo Fisher 

Scientific) according to the manufacturer’s recommended protocol. Briefly, cells were 

seeded into 6-well cell culture plates at a seeding density of 2.4x104 in 4ml of DMEM 

(Gibco) with 10% Fetal Bovine Serum (FBS) growth medium 24 hours prior to 

transfection. 4μg of purified plasmid DNA containing the relevant construct was 

mixed with 6µl of TurboFect in 400µl of serum-free DMEM and incubated for 15 

minutes at room temperature. The transfection reagent/DNA mixture was added to the 

well and mixed gently. Cells were harvested after 24 hours and used for protein 

analysis as described in section 2.2.4.2.    

2.2.4 Method for protein analysis 

2.2.4.1 Protein extraction from tissues  

Tissues were immediately snap frozen in dry ice after dissection and stored at -70°C if 

not extracted immediately. Ice cold RIPA buffer (containing one EDTA-free protease 

inhibitor tablet per 10ml RIPA buffer) was added to the tissue. Tissues were 

homogenised on ice using a cordless pestle motor (VWR). Lysates were maintained 

under constant agitation at 4°C for 2 hours and then centrifuged for 20 minutes at 

12,000rpm at 4°C. The supernatant was gently aspirated and placed in a fresh pre-

chilled 1.5ml tube and the pellet discarded.  
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2.2.4.2 Protein extraction from cell culture 

Protein lysates from cultured cells were prepared in multi-well plates placed on ice. 

Cell medium was carefully aspirated and then the cells were washed once with ice-

cold PBS. Ice cold RIPA buffer (containing one EDTA-free protease inhibitor tablet 

per 10ml RIPA buffer) was added to each well and a cold plastic cell scraper was used 

to collect the cells at one side of the well. The cell suspension was transferred to a pre-

chilled 1.5ml tube and maintained under constant agitation for 30 minutes at 4°C. The 

lysate was centrifuged for 20 minutes at 12,000 rpm at 4°C. The supernatant was gently 

aspirated and placed in a fresh pre-chilled 1.5ml tube and the pellet discarded. 

2.2.4.3 Protein concentration determination 

Protein concentrations were quantified using the Pierce BCA protein assay kit (Pierce) 

for cell lysates and the DC Protein Assay (Bio-Rad) for tissue lysates following the 

manufacturers’ instructions. In brief, the Pierce BCA protein assay was carried out 

using the microplate method. Eight BSA standards were prepared by diluting 2mg/ml 

BSA stock in RIPA. 25µl of standards and samples were pipetted into the microplate 

wells in duplicate. Working reagent was prepared by mixing fifty parts of reagent A 

with one part of reagent B (50:1) and 200µl of the solution added to each well and 

mixed on a shaker for 30 seconds. The plate was incubated at 37°C for 30 minutes and 

cooled to room temperature. The absorbance was measured at 562nm using a 

FLUOstar Omega plate reader. 

The DC Protein assay was performed using individual cuvettes. The working reagent 

was prepared by mixing 20µl of reagent S to each ml of reagent A and 125µl added 

per cuvette. Five protein standards were made from a stock of 1.52mg/ml of BSA 

diluted in RIPA as follows: 0.25mg/ml, 0.5mg/ml, 0.75mg/ml, 1mg/ml and 1.5mg/ml. 

2µl of standards and samples were added and the cuvette vortexed briefly and left for 

5 minutes at room temperature. Absorbance was measured at 750nm using a Biomate 

3 Spectrophotometer (Thermo Fisher Scientific).  

The protein concentration of unknown samples was determined using a standard curve 

prepared from the BSA standards for both assays.   
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2.2.4.4 SDS-PAGE 

All samples were prepared at equal protein concentration using the results obtained 

from the protein concentration assay kits. Laemelli loading buffer was added to each 

sample at a 1:1 ratio. Samples were denatured by placing in a heat block at 100°C for 

5 minutes and then 10% (v/v) 1M dithiothreitol (DTT) was added. 

Precast gel (4-15% Mini-Protean TGX stain-free gel, Bio-Rad) or homemade gels 

were used. Homemade gels were prepared using the Bio-Rad mini-Protean glass 

plates. The glass plates were cleaned using 70% ethanol, assembled into the casting 

frame and clamped to the casting stand. A 10% separating gel was poured into the gap 

between the plates and overlaid with isopropanol until it overflowed to ensure the top 

of the gel was horizontal. Once the separating gel had set, the isopropanol was 

discarded and 4.3% stacking gel pipetted between the glass plates until it overflowed. 

The comb was gently inserted to avoid trapping air under the teeth and the gel left to 

set.  

Up to 20µl of samples were loaded into each well, with the first lane containing 10µl 

of a protein marker.  Gels were run in a Bio-Rad Protean III tank with running buffer 

at 200V for precast gel or 100V through the stacking gel and then 150V through the 

separating gel when using homemade gels. Gels were run until the blue dye front 

reached the bottom of the gel. 

2.2.4.5 Protein transfer 

Two pieces of Whatman filter paper and one piece of PVDF membrane (Millipore) 

were cut to the size of the gel. The membrane was activated by wetting it with 100% 

methanol for 15 seconds. The membrane and gel were equilibrated in the transfer 

buffer in different trays for 15 minutes. The transfer sandwich was assembled in a tray 

containing transfer buffer as follows: the gel holder cassette, placed with the black side 

facing down, sponge, filter paper, gel, filter paper and sponge. Air bubbles were 

removed using a glass pipette and the cassette carefully closed and locked. The cassette 

was placed in the module and put into a tank along with an ice pack and magnet. The 

tank was filled with transfer buffer, placed on a magnetic stirrer and transfer performed 

at 100V for 1 hour at 4°C.  
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2.2.4.6 Sypro Ruby Protein Blot Stain 

To determine if protein transfer was successful, membranes were stained using Sypro 

Ruby Blot Stain (Invitrogen) following the manufacturer’s instructions. In brief, 

membranes were allowed to dry completely after transfer and then washed faced down 

in a solution of 7% acetic acid with 10% methanol on a shaker for 15 minutes. 

Membranes were washed four times in water for 5 minutes each and incubated in 

Sypro Ruby Blot Stain for 15 minutes with rocking in an opaque box to prevent light. 

Finally, the membranes were washed 2-3 times for 1 minute each to remove excess 

stain. Protein bands were visualised using the Odyssey Fc imager (LI-COR 

Biosciences, UK). 

2.2.4.7 Immunoblotting using HRP-conjugated secondary antibodies 

Membranes were blocked for 1 hour in blocking buffer containing 0.1% v/v Tween 20 

and 5% w/v dried skimmed milk in TBS-T at room temperature. They were then 

incubated in primary antibody diluted in blocking buffer overnight at 4°C. Membranes 

were washed three times with TBS-T and incubated with the appropriate HRP-

conjugated secondary antibody diluted in blocking buffer for 1 hour at room 

temperature. Membranes were again washed in TBS-T three times for five minutes 

each and detected using Clarity Western ECL Substrate (Bio-Rad) according to the 

manufacturer’s instructions. 

2.2.4.8 Immunoblotting using LI-COR 

Membranes were blocked in Odyssey blocking reagent (LI-COR Biosciences, UK) for 

1 hour at room temperature. Membranes were incubated overnight at 4ºC with primary 

antibodies diluted to an appropriate concentration in Odyssey blocking buffer. They 

were washed three times in PBS-T for 5 minutes each wash and then incubated in 

secondary antibodies diluted 1:5000 in Odyssey blocking buffer. Membranes were 

washed three times with PBS-T for 5 minutes and photographed using the Odyssey Fc 

imager. 
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2.2.5 Generation of mutant lines using CRISPR/Cas9   

2.2.5.1 Cloning of guide RNA into guide RNA expression vector 

For the CRISPR/Cas9 experiment, guide RNAs (gRNAs) were designed to target the 

zebrafish eef1a2. The gRNA expression vectors were constructed by cloning a pair of 

annealed oligonucleotides into a Bsal (New England Biolabs) digested pDR274 

(Addgene) backbone. Oligonucleotides corresponding to five different gRNA 

sequences (see Table 2.2) were annealed by mixing 9µl each of 100µM top and bottom 

strand with 2µl of annealing buffer (0.01M Tris-HCl pH 7.5, 0.05M NaCl, 1mM 

EDTA). The mixture was heated for 5 minutes at 95°C and cooled down slowly to 

room temperature. The pDR274 (a kind gift from Dr. Rodanthi Lyraki) was linearized 

by digesting it with Bsal in CutSmart buffer for 1 hour at 37°C and the enzyme was 

heat inactivated for 20 minutes at 65°C. The vector was dephosphorylated using 

Antarctic phosphatase (New England Biolabs) to prevent it from self-annealing and 

purified using the QIAquick PCR Purification Kit (QIAGEN) according to the 

manufacturer’s protocol. Annealed oligonucleotides were ligated to the digested vector 

by mixing 10nM of annealed oligonucleotide with ~ 50ng of purified linearized vector 

and incubating the reaction with 1µl of Quick ligase and 10µl of ligase buffer (New 

England Biolabs) at room temperature for 15 minutes. Library Efficiency DH5α 

competent cells were transformed with the ligation mix using the same method 

described in section 2.2.3.1.4. The presence of the correct insert was confirmed as 

described in section 2.2.3.1.5. 

 2.2.5.2 In vitro transcription of gRNA  

gRNA sequences were first amplified from purified gRNA expression vector with the 

cloned insert using Phusion High-Fidelity DNA Polymerase and primers which were 

a gift from Zhiqiang Zeng. The cycling conditions used were 98°C for 30 seconds, 30 

cycles of 98°C for 30 seconds, 58°C for 30 seconds and 72°C for 20 seconds, followed 

by 10 minutes at 72°C. PCR product was confirmed by running 5µl on a 2% 0.5x TBE 

agarose gel and purified using the QIAquick PCR Purification Kit (QIAGEN) 

according to the manufacturer’s instructions.  

In vitro transcription of gRNA was carried out using the Ambion MAXIscript T7 kit 

(Thermo Fisher Scientific) and 1µg of the purified PCR product as a template. The 
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reaction was incubated for 1 hour at 37°C and treated with Turbo DNase for 15 minutes 

at 37°C to get rid of the template DNA. The gRNAs were purified using the SigmaSpin 

sequencing reaction clean-up kit (Sigma Aldrich). They were aliquoted in RNase-free 

0.2ml tubes and stored at -80°C until use. 

2.2.5.3 Preparation of the nCas9 mRNA 

Purified pCS2-nCas9n vector (Addgene) plasmid was obtained from Dr. Rodanthi 

Lyraki. This plasmid contains the insert nuclear localised signal zebrafish codon-

optimised Cas9 (nls-zCas9-nls) and an SP6 promoter for in vitro transcription. The 

vector was linearized with NotI-HF (New England Biolabs) for 1.5 hours at 37°C and 

purified using the PCR column purification kit (QIAGEN). Approximately 370ng of 

the linearized vector was used as a template for in vitro transcription using the SP6 

mMESSAGE mMACHINE kit (Thermo Fisher Scientific) following the 

manufacturer’s instructions producing capped nCas9 mRNA molecules. The Cas9 

mRNA was purified using the RNAeasy kit (QIAGEN) following the ‘RNA cleanup’ 

protocol. Poly(A) tailing of the nCas9 mRNA was then carried out using E. Coli 

Poly(A) polymerase (E-PAP) and purified again using the RNAeasy kit (QIAGEN) 

and eluted in RNase-free water. Capping and poly(A) tailing of the mRNA is important 

for stabilising the nCas9 mRNA molecules, therefore increasing translation efficiency 

once injected into the zebrafish embryo. 

The other nls-zCas9-nls mRNA molecules used was prepared by Zhiqiang Zeng 

(Patton lab). The same preparation method described above was used excluding the 

poly(A) tailing procedure as in vitro transcription from the plasmid SP6 or T3 

promoter already produces a capped, polyadenylated mRNA.      

2.2.5.4 Microinjection of embryos 

A solution containing the nCas9 mRNA (300ng/µl) and gRNA were mixed in a 1:1 

ratio and microinjected directly into the cell of one-cell stage AB zebrafish eggs to 

generate eef1a2 null cells. Injections were carried out by Witold Rybski (Patton’s lab) 

and by me. For the CRISPR/Cas9-mediated HDR experiment, two test concentrations, 

92ng/µl and 183ng/µl of ssODN repair template (IDT) were used to increase the 

chances of the G70S mutation being incorporated. ssODN at these concentrations were 

co-injected separately with nCas9 mRNA (300ng/µl) and gRNA3 (92ng/µl) mixed in 
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a 1:1:1 ratio. Injections were conducted by Dr. Cameron Wyatt (Zebrafish Manager, 

IGMM). 

2.2.5.5 Genomic DNA isolation from zebrafish embryos and adult fish 

Isolation of genomic DNA was conducted using either single or pooled whole embryos 

and clipping from tail fins of individual adult fish. Extraction of genomic DNA from 

these materials was performed using either DNA Releasy reagent (Nippon Genetics) 

or 50mM NaOH.  

When using DNA Releasy reagent, embryos or tail fin clippings were placed in a 0.2ml 

PCR tube and covered with 20µl of DNA Releasy reagent. The tubes were then placed 

in a thermal cycler and DNA extracted using the following conditions: 65°C for 20 

minutes, 96°C for 2 minutes, 65°C for 4 minutes, 96°C for 1 minute, 65°C at 1 minute, 

96°C for 30 seconds and hold at 20°C.  

Protocol for extracting DNA using 50mM NaOH was described by Meeker et al., 

2007.  Tail fin clip or embryos were placed into 0.2ml PCR tubes containing 50µl of 

50mM NaOH and incubated for 20 minutes at 95°C. The tubes were cooled to 4°C and 

5µl of 1M Tris-HCL, pH 8, was added to neutralise the basic solution. In both methods, 

the tubes were centrifuged to pellet the debris, and the supernatant which contained 

the genomic DNA was stored at -20°C until use.    

2.2.5.6 TOPO cloning of PCR products to identify individual mutations  

Mutagenic efficiency of gRNAs and nCas9 mRNA were assessed after injection using 

DNA extracted from 5-10 pooled 2 days post fertilisation injected embryos. The target 

site was amplified using appropriate primers flanking target sites (see Table 2.3) and 

Taq DNA polymerase. PCR products were confirmed by gel electrophoresis and 

purified using a QIAquick PCR purification kit (QIAGEN).  

As it is likely that amplified DNA fragments would be heterogeneous, purified PCR 

products were cloned into the TOPO vector using the TOPO-TA cloning kit 

(Invitrogen) before sequencing. Two microliters of purified PCR products was mixed 

with 2µl of water, 1µl of water and 1µl of TOPO vector. The ligation mixture was 

gently mixed and left to incubate for 30 minutes at room temperature. The ligation 

reaction was used to transform One Shot TOP10 chemically competent E. coli cells 
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(Invitrogen). The presence of the lacZΔM15 gene in these cells makes them a good 

choice as it allows for a more accurate selection of positive clones using the blue/white 

colour screening method. For this reason, 40µg of X-gal was spread on LB-Kanamycin 

plates 1 hour before use. Cells were thawed on ice and 25µl of cells aliquoted to ice-

cold 1.5ml tubes. 2µl of the appropriate transformation reaction was added to each 

tube. The tubes were swirled gently to mix and incubated for 25 minutes on ice. Cells 

were heat shocked at 42°C for 1minute and placed immediately on ice for 2 minutes. 

Room temperature SOC medium (275µl) was added to each tube and the tubes were 

incubated at 37°C for 1 hour under constant agitation of 225rpm. Two LB-Kanamycin 

plates with X-gal were used for each transformation. The plates were pre-warmed at 

37°C and 50µl cells spread on one plate and 100µl on the other plate. The plates were 

sealed with paraffin to avoid drying out and incubated overnight at 37°C. Positive 

colonies, indicated by their white colour, were inoculated in individual wells 

containing 1ml of LB-Kanamycin broth in a 96-well deep well culture plate. The plates 

were sent to the Technical services, MRC HGU Unit for processing. T7 primers 

provided by the technical services were used for Sanger sequencing.  

2.2.5.7 Founder (F0) screening for mutation 

Genomic DNA extracted from tail fin clippings of injected fish at 3 months old were 

used to identify putative founder fish. Target sites were amplified using Taq DNA 

polymerase. Wild-type and no template controls were included in each reaction. 2ul of 

PCR product was sent off for analysis to Technical Services, MRC HGU using the 

Agilent 2100 Bioanalyzer.  

2.2.5.8 Germline transmission and establishing stable lines 

Putative founders were outcrossed with wild-type AB to confirm if the mutation could 

be passed to their offspring. Genomic DNA was extracted from 10-16 individual 

embryos and the target site amplified using Taq DNA polymerase and sequenced. 

When mutations were recovered, the rest of the F1 embryos were raised to adults.  

Genomic DNA was isolated from tail fin clippings of 3 months old F1 fish and the 

target site was amplified with the Phusion High Fidelity (HF) DNA polymerase and 

sequenced to identify the mutant fish. F1xF1 crosses between fish with identical 

mutations were carried out. Fish from these crosses were then screened by PCR using 
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the Phusion HF DNA Polymerase and Sanger sequencing to identify homozygous null 

F2 fish. Phusion HF DNA polymerase was used for the PCR experiments because of 

its proof-reading capacity so as to ensure the correct sequences of mutant alleles were 

identified.   

2.2.5.9 Restriction enzyme digestion to screen for G70S incorporation in F0 fish 

Genomic DNA around the target site for the G70S incorporation amplified with 

Phusion HF DNA polymerase was digested with two restriction enzymes; EcoRI High 

fidelity (HF) and MnlI. Using EcoRI, a digest of the G70S allele is expected to produce 

two products of sizes, 429 and 60 base pairs. Since the EcoRI site was engineered in 

the G70S repair template and is absent in the wild-type allele, PCR products containing 

the wild-type remains uncut. Using MnlI, a digest of the wild-type allele is expected 

to generate three products; 291bp, 190bp and 8bp, whereas the G70S will remain uncut 

as the incorporation of the G70S mutation and the PAM-blocking silent mutation 

disrupts the MnlI recognition sites.  

Reaction set-up for both enzymes was as follows: 

Component  15µl reaction 

Cutsmart buffer (NEB) 1.5 

H2O 8 

Restriction enzyme (NEB) 0.5 

DNA 5 

 

 Samples were incubated for 2 hours at 37°C in a BioRad C1000 Touch thermal cycler.  

2.2.6 PCR protocol 

DNA amplification was performed by polymerase chain reaction (PCR) using either 

the proof-reading Phusion High Fidelity DNA Polymerase (New England Biolabs) or 

Taq DNA Polymerase (Invitrogen). 

2.2.6.1 PCR with Phusion High Fidelity (HF) DNA Polymerase 

A typical reaction setup which was assembled on ice when using the Phusion HF DNA 

polymerase is as follows: 
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Component  25µl reaction 

10µM F Primer 1.25 

10µM R Primer 1.25 

cDNA/DNA/-RT/NTC 2 

2X Phusion Master mix 12.5 

H2O 8 

 

The PCR tubes containing the reaction mix were centrifuged briefly and transferred to 

a Bio-Rad C1000 Touch thermal cycler and processed with the following conditions; 

Step  Temperature  Time  

Initial Denaturation 98°C 30 seconds 

Denaturation 

Annealing            35 cycles  

Extension  

98°C 

X 

72°C 

10 seconds 

30 seconds 

15-30secs per kb 

Final Extension 72°C 10mins 

Hold  4°C  

The annealing temperature used for each primer set was determined using the NEB 

Tm calculator (https://tmcalculator.neb.com/#!/main).   

2.2.6.2 PCR with Taq DNA Polymerase   

DNA amplification was mostly performed using Taq DNA polymerase for routine 

genotyping experiments. The reaction setup assembled on ice was as follows: 

Component  X1 (µl) for 25ul 

10X PCR Buffer 2.5 

50mM MgCl2 0.75 

10mM dNTPs 0.5 

10µM F Primer 1.25 

10µM R Primer 1.25 

DNA/NTC 2 

Taq Polymerase 0.5 

H2O 16.25 

   

The following thermocycling conditions were used to process the amplification 

reaction: 
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Step  Temperature   Time  

Initial Denaturation 94°C 3mins 

Denaturation 

Annealing            35 cycles  

Extension  

94°C 

63°C 

72°C 

45s 

30s 

60s 

Final Extension 72°C 10mins 

Hold  12°C  

 

2.2.7 General sequencing protocol 

When the sequencing reaction was carried out by me, the following protocol was used. 

Once the target site has been amplified and confirmed, the PCR product was treated 

with ExoSAP-IT (Affymetrix) to remove excess primers and incorporated dNTPs. 

Five microliters of PCR product were incubated with 1µl of ExoSAP-IT at 37°C for 

15 minutes, and then at 80°C for another 15 minutes to inactivate the ExoSAP-IT. The 

DNA sequencing reaction was carried out using the BigDye Terminator v3.1 Cycle 

Sequencing kit (Thermo Fisher Scientific). The reaction was set up as follows: 4µl 

clean PCR product, 1.5µl primer, 1µl Big Dye, 1.5µl Big Dye and 2µl water. The 

sequencing reaction was then run using the following program: 96°C for 1 minute and 

24 cycles of 96°C for 1 minute, 50°C for 15 seconds and 64°C for 4 minutes. 

The sequencing reaction was cleaned up by adding 2.5µl of 125mM EDTA and 30µl 

of absolute ethanol to each well. The reaction was mixed by inverting the sealed plate 

gently four times and the plate incubated at room temperature for 5 minutes. The plate 

was then centrifuged for 15 minutes at 3000 rpm. The ethanol was removed and 

replaced with 30µl 70% ethanol. The plate was again centrifuged for 15 minutes at 

3000 rpm and the ethanol removed. The plate was left to air dry at room temperature 

for 10 minutes. Plates were sent off to the Technical services, MRC Human Genetic 

Unit (HGU) for processing using a 3730 Genetic Analyser (Applied Biosystems). 

Chromatograms were viewed using the SnapGene Viewer (version 2.8.2, GSL, 

Biotech).   

2.2.8 PTZ treatment and behavioural monitoring 

Zebrafish larvae were sorted and placed individually in a 96-well plate (Greiner 

CELLSTAR) 24 hours before the experiment and then placed in an incubator at 28.5°C 
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until they was needed. Each well contained 70µl of E3 medium and one 5 dpf larva. 

Before starting the recording session, larvae were allowed to habituate for 10 minutes 

to minimise disturbance due to handling and transporting of the plate. Baseline 

recordings of 20 minutes were then obtained from the fish while in normal E3 medium. 

Experimental fish were then treated with 2.5mM PTZ (Sigma-Aldrich) diluted in E3 

medium while controls were left in normal E3 medium. Swimming behaviour of the 

fish was monitored for 80 minutes.  

Video recordings were performed with the assistance of Craig Nicol using a Nikon 

D800 camera with an attached 60mm macro lens mounted on a copy stand. The 

experiment was carried out in a quiet location with restricted access to avoid exposing 

the fish to unintended stimuli. Recording session (80 minutes) was done at intervals of 

20 minutes which is the recording limit of the camera. For Locomotion analysis, 

swimming behaviour of the fish was tracked using EthoVision XT9, an automated 

locomotion tracking software, by Dr. Pia Lundegaard. For seizure analysis, the video 

was scored according to Baraban et al., 2005 (summarised below) by Dr. Rodanthi 

Lyraki blind to the genotype and treatment of the fish. Graphs and statistical analysis 

were performed using GraphPad Prism 5. To test for significance, One-way ANOVA 

with Tukey Multiple Comparison tests or repeated measures ANOVA were performed 

where appropriate.  

Description of seizure stages according to Baraban et al., 2005 used for seizure analysis  

Seizure stage Description 

I Dramatic increase in swim activity 

II Rapid ‘whirlpool-like’ circling swim 

behaviour 

III Clonus-like convulsions followed by brief 

loss of posture 
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2.2.9 Histology 

2.2.9.1 H & E staining  

Adult zebrafish were culled in an overdose of tricaine for 10 minutes or until the 

cessation of gill movement. Using a forceps, a longitudinal incision was made on the 

ventral side of the fish to allow for the introduction of the fixative into the body. The 

fish were fixed in 10% neutral buffered formalin (Sigma-Aldrich) and sent to the 

Easter Bush Pathology labs for processing.  Sections were cut at a thickness of 3 µM 

and haematoxylin and eosin (H&E) staining were performed by staff at the Easter Bush 

Pathology department.    

2.2.9.2 Immunohistochemistry 

Spinal cord sections were dewaxed in two changes of xylene for 5 minutes each and 

were rehydrated through a decreasing series of alcohol solutions, with 5 minutes in 

two changes of 100% ethanol and 5 minutes in two changes of 70% ethanol. Sections 

were then washed under running tap water for 5 minutes. Antigen retrieval was carried 

out by treating sections with Proteinase K (Dako) at room temperature for 10 minutes. 

Sections were then treated with 3% hydrogen peroxide to block endogenous 

peroxidase activity. They were again washed in water, followed by PBS for 5 minutes 

each. Slides were transferred to a Sequenza (Shandon) and washed briefly with PBS. 

They were treated for 10 minutes with 100µl goat blocking serum (Bethyl 

Laboratories) diluted 1:5 in PBS to prevent non-specific binding of the secondary 

antibody. 100µl GFAP antibody (Dako) diluted 1:500 in PBS was then added and the 

slides incubated overnight. The slides were washed twice with PBS for 5 minutes and 

incubated for 30 minutes with 100µl goat anti-rabbit biotinylated secondary antibody 

(Dako) diluted 1:500 in PBS. They were then washed for 5 minutes in PBS and treated 

with 3 drops of Strept ABC reagent (Vector Laboratories) for 30 minutes. Slides were 

again washed in PBS for 5 minutes, removed from the Sequenza and treated with DAB 

(Abcam) for 10 minutes. Excess DAB was removed by washing slides under running 

tap water. Sections were counterstained in haematoxylin solution (Shandon) for 5 

minutes, rinsed in water to remove excess stain and then differentiated in saturated 

lithium carbonate for few seconds. Sections were washed briefly in water and then 

dehydrated through two changes of 70% ethanol, 100% ethanol and xylene for 5 
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minutes. Slides were mounted using DPX (VWR) and imaged using an Olympus 

BX60 light microscope. 

2.2.10 Databases and online resources 

The two main online databases used in this work were Ensembl 

(https://www.ensembl.org/index.html) and ZFIN (http://zfin.org/) genome browsers 

(D. G. Howe et al., 2013; Flicek et al., 2014).  BLAST search and design of primers 

for qRT-PCR were performed using tools from the NCBI homepage 

(https://www.ncbi.nlm.nih.gov/). Other primers were designed using Primer3 

(http://primer3.ut.ee/) (Untergasser et al., 2012). Multiple alignments of DNA and 

protein sequences were done using Clustal Omega 

(https://www.ebi.ac.uk/Tools/msa/clustalo/) (Sievers et al., 2011).  The phylogenetic 

tree was constructed by Dr. Dinesh Soares with the MEGA version 6 software (Tamura 

et al., 2013) using a maximum likelihood method. Conserved synteny analysis was 

conducted using the Synteny Database (Catchen, Conery and Postlethwait, 2009). 

Comparative modeling and visualisation of the 3-D structures of the zebrafish eEF1A 

isoforms were carried out through the Chimera-Modeller interface (Pettersen et al., 

2004; Webb and Sali, 2016). The coarse packing quality of the models was evaluated 

using the WHAT IF server (https://swift.cmbi.umcn.nl/servers/html/index.html). This 

checks the normality of the local environment of amino acids and assigns a score. A 

residue with a score of -0.5 or lower indicates something is ‘wrong’ with its packing 

quality within the model (Vriend and Sander, 1993). Solvent-accessibility of variant 

amino acid residues and those within a distance of 5 Å of a known binding site was 

calculated under Chimera (Sanner, Olson and Spehner, 2018). Phosphorylation site 

prediction was performed using the NetPhos version 3.1 server 

(http://www.cbs.dtu.dk/services/NetPhos/) (Blom, Gammeltoft and Brunak, 1999) 

using a threshold set at 0.5 so that only positive predicted phosphorylation sites are 

displayed. The NetPhos 3.1 server performs both generic and kinase specific 

predictions of serine, threonine or tyrosine phosphorylation sites in eukaryotic proteins 

using ensembles of neural networks. It then assigns a score to each sites with the 

confidence of its prediction indicated by how high the score is from 0.5, which is the 

threshold for showing only positive potential phosphorylation sites in the result output.   
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For the CRISPR/Cas9 experiments, the target finder tools CHOPCHOP 

(http://chopchop.cbu.uib.no/) and http://crispr.mit.edu/ were used to design guide 

RNAs and primers (CHOPCHOP) to amplify target sites for the zebrafish eef1a2. 

These target finder tools also search for potential off-target sites for each gRNA in the 

zebrafish genome. Sanger sequencing results were viewed using the SnapGene Viewer 

version 2.8.2. Double peak regions in the sequencing chromatograms were separated 

into wild-type and alternative sequences using the Poly Peak Parser software to 

identify indel mutations (http://yosttools.genetics.utah.edu/PolyPeakParser/) (Hill et 

al., 2014).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



70 
 

Chapter 3: Bioinformatics and expression analysis of 

Zebrafish eEF1A  

3.1 Introduction 

As detailed in chapter 1, eEF1A is important for protein translation where it helps 

recruit aminoacylated-tRNA to the acceptor site of the ribosome during protein 

synthesis. This process is GTP-dependent and is facilitated by its interaction with 

eEF1B, a GTP-exchange factor. Apart from this function, eEF1A also has other non-

canonical roles such as binding and bundling actin (see section 1.1.3 in chapter 1 for 

details). Different numbers of eEF1A genes are found in individual eukaryotic species. 

In the yeast Saccharomyces cerevisiae, two sequence-redundant genes, TEF1 and 

TEF2 are present. In Xenopus, four different genes; eef1a1 which is the somatic form, 

eef1a1o which is the oocyte form, 42Sp50, expressed only in the oocytes and eef1a2 

are present. While many pseudogenes exist in mammalian genomes, only two EEF1A 

genes, EEF1A1 and EEF1A2, has been shown to be actively expressed in human, rat, 

mouse, rabbit and pig (Knudsen et al., 1993; Chambers, Peters and Abbott, 1998; 

Kahns et al., 1998; Svobodová et al., 2015). They encode distinct proteins, eEF1A1 

and eEF1A2 which has been implicated in neurological diseases. Extensive studies of 

eEF1A in mammals revealed the differential expression of these two genes, with 

eEF1A1 widely expressed and eEF1A2 expression restricted to the brain, heart and 

skeletal muscle, where it gradually replaces eEF1A1 during development in these cell 

types. Although, eEF1A has been studied less extensively in non-mammalian 

vertebrates, studies by Newbery et al. 2011 in Xenopus species show a similar pattern 

of expression of eEF1A2 and that variant switching is conserved with the regulation 

of expression occurring at the post-transcriptional level rather than transcriptional as 

seen in vertebrates.  

The emergence of the zebrafish as an excellent tool for modelling disease processes 

has resulted in tremendous progress of the sequencing of its genome. Previous studies 

reported only one actively expressed eef1a gene in zebrafish (Gao et al. 1997). 

However, the zebrafish genomic sequence has developed to the point where it is clear 

that the zebrafish has more than one eef1a gene. This chapter describes work providing 
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an updated studies of eEF1A in zebrafish. Zebrafish eEF1A was investigated using 

bioinformatics and gene expression analysis approaches to confirm the existence of 

each eEF1A gene and investigate if they are functionally active. 

3.2 Results 

3.2.1 Bioinformatics analysis of eef1a in zebrafish 

3.2.1.1 Identification of eef1a genes in zebrafish 

To investigate the eef1a genes in zebrafish, its genome was searched using the 

Ensembl ( Zv9, release 79) and ZFIN databases (Bradford et al., 2011; Flicek et al., 

2014). Four eef1a genes, referred to as eef1a1l1, eef1a1a, eef1a1b and eef1a2 were 

identified which are located on different chromosome in the zebrafish genome. Table 

3.1 summarises some of the features of the eef1a genes. All of them contained eight 

exons, seven introns and an open reading frame (ORF) that encodes different proteins 

462 (eEF1A1L1, eEF1A1A and eEF1A1B) or 463 (eEF1A2) amino acid long. The 

exon-intron organisation for each eef1a gene is shown in figure 3.1. Exon 1 together 

with part of exon 2 form the 5’UTR, and part of exon 8 makes up the 3’UTR in all 

four eef1a genes. While the sizes of exons 3-7 are the same for all the genes, some of 

the introns of eef1a1a, eef1a1b and eef1a2 genes are greatly expanded compared to 

eef1a1l1 which has smaller introns similar to eEF1A1 gene in human and mouse 

species (Figure 3.2). The eef1a genes shared high sequence homology at the nucleotide 

level in the coding region and also at amino acid level, with eef1a1a and eef1a1b being 

highly related to one another as shown in table 3.2.  

Table 3.1. Main features of the eef1a genes in zebrafish  

Gene  Chromosome Transcript 

length (bps) 

Number of 

exons 

Translation 

length (aa) 

Protein 

encoded 

eef1a1l1 19 1745 8 462 eEF1A1L1 

eef1a1a 13 2170 8 462 eEF1A1A 

eef1a1b 1 2160 8 462 eEF1A1B 

eef1a2 23 2030 8 463 eEF1A2 
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Figure 3.1. Exon-intron organisation of the eef1a genes in zebrafish. Schematic representation of 

eef1a1l1 (red), eef1a1a (black), eef1a1b (blue) and eef1a2 (yellow) genes structures obtained from the 

Ensembl database. Exons are represented with blocks while introns are represented with lines. 

Untranslated regions (UTRs) in exons are shown with empty blocks. Length (in base pairs) of exons 

and introns, which are not drawn to scale, are indicated above and below respectively.  

 

 

Figure 3.2. Comparison of the intron-exon structure of the zebrafish eEF1A1L1 gene and eEF1A 

genes in human and mouse species. Gene structures of zebrafish eef1a1l1 (red), human EEF1A1 (gold) 

and EEF1A2 (black), mouse Eef1a1 (blue) and Eef1a2 (orange) obtained from the Ensembl genome 

browser. The zebrafish eef1a1l1 gene architecture is much more similar to that eEF1A1 gene of both 

vertebrate species. Exons are represented with blocks while introns are represented with lines. 

Untranslated regions (UTRs) in exons are shown with empty blocks. Length (in base pairs) of exons 

and introns, which are not drawn to scale, are indicated. 
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Table 3.2. Percentage identity matrix of zebrafish eEF1A variants at the 

nucleotide and amino acid sequence level calculated using Clustal Omega 

 eef1a1l1 eef1a1a eef1a1b eef1a2 

eef1a1l1 100 (100) 80 (92) 79 (91) 75 (89) 

eef1a1a 80 (92) 100 (100) 83 (97) 77 (91) 

eef1a1b 79 (91) 83 (97) 100 (100) 77 (90) 

eef1a2 75 (89) 77 (91) 77 (90) 100(100) 

   *Numbers in bracket indicate the percentage identity at the amino acid sequence level. 

3.2.1.2 Orthology assignment of zebrafish eef1a to human EEF1A genes 

Three different approaches were used to assign the zebrafish eef1a genes to their 

appropriate human orthologue. Firstly, a reciprocal best hit (RBH) BLAST was 

employed using each of the human protein eEF1A variants as the query sequence 

against the zebrafish genome using the reference sequence (RefSeq) protein database 

on the NCBI BLAST browser. A BLAST search of the human eEF1A1 protein against 

the zebrafish genome produced eEF1A1A and eEF1A1B as its top two hits with 

approximately the same magnitude of alignments with the following BLAST results; 

 Score Expect Identities Positives Gaps 

eEF1A1A 905 bits (2338) 0.0 438/462(95%) 448/462 (96%) 0/462 (0%) 

eEF1A1B 901 bits (2329) 0.0 436/462 (94%) 447/462 (96%) 0/462 (0%) 

 

A retro-BLAST with the zebrafish eEF1A1A and eEF1A1B against the human 

genome both found eEF1A1 as their best hit. Similar BLAST searches were done for 

eEF1A2 protein. The human and zebrafish eEF1A2 produced each other as their top 

hit with the results;  

 Score Expect Identities Positives Gaps 

eEF1A2 910 bits (2351) 0.0 436/463(94%) 454/463 (98%) 0/463 (0%) 

 

However, an eEF1A1L1 BLAST search hit the human eEF1A1 and eEF1A2 with 

approximately the same magnitude. The BLAST results are summarised below. 
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 Score Expect Identities Positives Gaps 

eEF1A1 882 bits (2279) 0.0 425/462(92%) 441/462 (95%) 0/462 (0%) 

eEF1A2 875 bits (2262) 0.0 417/460(91%) 448/460 (95%) 0/460 (0%) 

 

Secondly, a phylogenetic analysis was performed with the MEGA6 software (Tamura 

et al., 2013) using all four zebrafish eEF1A protein sequences and those from other 

vertebrate species. The phylogenetic tree was built by Dr. Dinesh Soares using the 

maximum likelihood method (see figure 3.3 legend for details). Result from this 

analysis showed that zebrafish eEF1A1A is paralogous to eEF1A1B, and both of them 

are co-orthologous to human eEF1A1. The phylogenetic tree also suggests that 

zebrafish eEF1A2 is orthologous to the human eEF1A2. However, eEF1A1L1 did not 

segregate with the eEF1A1 clade and appears to possess sequence features similar to 

both eEF1A1 and eEF1A2. 
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Figure 3.3. Molecular Phylogenetic analysis of eEF1A1 and eEF1A2 orthologues by Maximum 

Likelihood method. The evolutionary history was inferred by using the Maximum Likelihood method 

based on the Poisson correction model (Zuckerkandl and Pauling, 1965). The tree with the highest log 

likelihood (-2809.8575) is shown. The percentage of trees in which the associated taxa clustered 

together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically 

by applying Neighbour-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a 

JTT model, and then selecting the topology with superior log likelihood value. The tree is drawn to 

scale, with branch lengths measured in the number of substitutions per site. The reliability of each 

branch was assessed using 1,000 bootstrap replicates and reliable assignment values indicated. The 

analysis involved 24 amino acid sequences. All positions with less than 95% site coverage were 

eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous amino acids were 

allowed at any position. There were a total of 462 positions in the final dataset. Evolutionary analyses 

were conducted in MEGA6 (Tamura et al., 2013). The orthologues of eEF1A1 and eEF1A2 sequences 

fall into well-supported clades, consistent with their known paralogous classification and functional 

divergence. The eEF1A1l1 sequence from zebrafish on the other hand appears to be more divergent, 

does not fall into the eEF1A1 group of sequences and appears to possess sequence features of both 

eEF1A1 and eEF1A2.  (Phylogenetic tree and figure legend by Dr. Dinesh Soares)  
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The third approach involved the use of the Synteny Database (Catchen, Conery and 

Postlethwait, 2009) to identify conserved synteny regions between the zebrafish and 

human genomes. Conserved synteny make use of gene position and order to identify 

orthologous chromosomal regions in different species, unlike RBH BLAST and 

phylogenetic analyses which infers orthologous genes based on sequence similarities. 

Therefore, conserved synteny served as an independent line of evidence to confirm 

results obtained using the other two approaches. The Synteny Database was used to 

search for conserved regions between the eef1a genes region in zebrafish and in 

humans using the recommended sliding window size of 100-gene. A gene trace clearly 

showed strong conservation between zebrafish eef1a1a gene located on chromosome 

13 (Dre13) and the human EEF1A1 on chromosome 6 (Hsa6) with ten pairs of 

orthologous genes surrounding the EEF1A1/eef1a1a orthologues with SLC17A5, 

MB21D1 and DDX43 genes as near neighbours in both species (Figure 3.4A). The 

orthologous syntenic cluster associated with zebrafish eef1a1b (Dre1) showed only 

RIMS1 and KCNQ5 as the orthologous genes surrounding the EEF1A1/eef1a1a 

orthologues (Figure 3.4B). However, a paralogous syntenic cluster for zebrafish 

eef1a1a and eef1a1b showed a strong local conservation between these regions and 

contained 13 paralogous gene pairs including eef1a1a and eef1a1b, as well as the 

directly adjacent paralogues of rims1 and kcnq5 as their near neighbours (Figure 3.4C). 

This confirms eef1a1a and eef1a1b as paralogues and indicates eef1a1b arose from the 

duplication of the genomic region containing the eef1a1a gene.   

Similar analysis was carried out for zebrafish eef1a2. The orthologous syntenic cluster 

between the zebrafish eef1a2 and human EEF1A2 showed a strong conservation with 

a total of 96 pairs of orthologues between the two species using a 100-gene sliding 

window. However, the gene trace (shown in Figure 3.4E) was drawn using a 25-gene 

sliding window for the sake of clarity and shows 22 pairs of orthlogues, with NKAIN4 

and EEF1A2 forming a subcluster in both species. Searching for any conserved region 

for eef1a1l1 between zebrafish and the human genomes produced an orthologous 

syntenic cluster for a region on human chromosome 6 (Hsa6) containing the EEF1A1 

gene. However, this region did not contain any pair of orthologous genes but only 

related genes that belonged to the same family; EEF1A1/eef1a1l1, TFAP2B/tfap2e and 

SLC17A5/slc17a3 (Figure 3.4D). 
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Taken together, these results show that zebrafish eef1a1a and eef1a1b are paralogues 

and are co-orthologues to human EEF1A1, while eef1a2 is the orthologue of the human 

EEF1A2 gene. However, zebrafish eef1a1l1 did not appear to have any orthologous 

EEF1A gene in the human genome.      
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Figure 3.4. Conserved synteny analysis for zebrafish eef1a genes. Gene trace representation of the conserved syntenies between zebrafish eef1a genes and the human 

EEF1A genes were generated using the Synteny DB discovered using a 100-gene sliding window. Orders of the genes (indicated as squares) but not their physical 

location are preserved. Coloured squares indicate genes that belong to the cluster while grey squares show genes within the region but not members of the cluster. Lines 

connecting coloured squares between the two clusters represent orthologous or paralogous gene pairs. Lines of the same colours (referred to as subclusters) indicate 

strong local conservation. A-B. Orthologous syntenic cluster for eef1a1a and eef1a1b showing syntenic conservation between the human chromosome 6 (Hsa6) which 

contain EEF1A1 and zebrafish chromosome 13 (Dre13) for eef1a1a and Dre1 (eef1a1b) C. The eef1a1a and eef1a1b paralogous syntenic cluster showing a strong 

conserved region between Dre13 and Dre1 which contains eef1a1a and eef1a1b respectively. D. Orthologous syntenic cluster generated for eef1a1l1 shows a weak 

conservation with Has6, but genes from the two clusters are not orthologous pairs but belong to the same family. E. The zebrafish eef1a2 orthologous gene trace showing 

a very strong conservation with the Hsa20 which contains EFF1A2, both of which form a subcluster with NKAIN4. For clarity, the window size used in generating the 

gene trace was reduced to 25. Syntenic cluster using a 100-gene sliding window size discovered 97 orthologous gene pairs in this region between the two species.     

E 
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3.2.1.3 Comparative analysis of zebrafish eEF1A sequence 

Although, it is still not understood why two near-identical eEF1A isoforms exist, it is 

clear that there are some functional differences between the two isoforms in humans. 

It was therefore hypothesised that some form of functional divergence might also have 

occurred among the zebrafish eEF1A isoforms. To investigate this, a comparative 

analysis of zebrafish eEF1A was carried out using a similar approach to that described 

in the study by Soares et al., 2009. A multiple sequence alignment of the zebrafish  

eEF1A protein (Figure 3.5) show the number of variant amino acid residues in 

eEF1A1L1 from eEF1A1A, eEF1A1B and eEF1A2 to be 37, 42 and 53 respectively, 

while eEF1A1A differ from eEF1A1B and eEF1A2 at 12 and 44 positions respectively 

out of 462 (for eEF1A1A/eEF1A1B) and 463 ( for eEF1A1A/eEF1A2). Also, 

eEF1A1B differ from eEF1A2 at 48 positions out of 463. The position and the residues 

present for each of the eEF1A proteins are summarised in appendix table 1, while 

figure 3.6 shows their location on the 3-D models. Alignment of the human eEF1A 

protein sequences together with the zebrafish eEF1A protein sequences show some 

variant residues to be wholly conserved, such that eEF1A1 from the two species have 

the same amino acid residue as do eEF1A2 from human and zebrafish at that same 

position. Zebrafish eEF1A1L1 which has no orthologue in human fall more in the 

eEF1A1 cluster at these positions than with the eEF1A2 orthologues, with eEF1A1L1 

having the same amino acid as the eEF1A1 orthologues in 13 out of the 16 wholly 

conserved positions. 

Published data obtained from the study of Soares et al. 2009 were then mapped unto 

the aligned sequences (Figure 3.5). These data include functional annotations, some of 

which have been confirmed in vivo, which shows translational and actin-related 

activities based on the yeast eEF1A protein. Yeast eEF1A shows high sequence 

identity with the zebrafish eEF1A proteins (~82% (eEF1A1L1), ~81% (eEF1A1A and 

eEF1A1B) and ~79% for eEF1A2) which is similar to both human eEF1A variants 

(~81%). Twenty six residues shown to be involved in the binding of the yeast eEF1A 

with the C-terminal of eEF1Bα are highly conserved in the zebrafish eEF1A with only 

2 (out of 26) variations for eEF1A1A, eEF1A1B and eEF1A2 and 1 (out of 26) 

variation for eEF1A1L1. The residues Ala76 and Val89 in yeast are substituted with 

Ser76 in eEF1A1A, eEF1A1B and eEF1A2 and Ile89 in all the zebrafish proteins. 
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However, these substitutions are conserved with the human proteins. Also, the 

equivalent residues involved in the binding of aminoacyl-tRNA in the zebrafish 

eEF1A, (His295, His296 and Arg322), are conserved in all the eEF1A variants. 

Similarly, residues Gly19, Lys20, Ser21, Thr22, Asn153, Lys154 and Asp156 which 

are shown to be essential for forming the guanine-binding pocket for GDP/GTP 

binding were also conserved. Three positions, 296, 329 and 333 (298, 331 and 335 in 

zebrafish eEF1A) demonstrated to bind actin through site mutagenesis studies in yeast 

are variable in the zebrafish eEF1A variants. Both 331 and 335 positions are also 

variable between the two human eEF1A variants. The eEF1A1 orthologues (and 

eEF1A1L1) have asparagine at position 331, while eEF1A2 orthologues have serine 

at this position. At position 335, eEF1A1A, eEF1A1B and eEF1A2 all have a 

glutamine residue as seen in human eEF1A2, while eEF1A1L1 shares the same 

methionine residue seen in human eEF1A1. Position 298 involved a non-conservative 

change of Ala298 in eEF1A1B and eEF1A1B (same as both human eEF1A variants) 

to Ser298 in eEF1A2 and eEF1A1L1.  
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eEf1a1a         1 MGKEKLHINIVVIGHVDSGKSTTTGHLIYKCGGIDKRTIEKFEKEAAEMGKGSFKYAWVL 

eEf1a1b         1 MGKEKLHINIVVIGHVDSGKSTTTGHLIYKCGGIDKRTIEKFEKEAAEMGKGSFKYAWVL 

eEF1A1_HUMAN    1 MGKEKTHINIVVIGHVDSGKSTTTGHLIYKCGGIDKRTIEKFEKEAAEMGKGSFKYAWVL 

eEf1a2          1 MGKEKIHINIVVIGHVDSGKSTTTGHLIYKCGGIDKRTIEKFEKEAAEMGKGSFKYAWVL 

eEF1A2_HUMAN    1 MGKEKTHINIVVIGHVDSGKSTTTGHLIYKCGGIDKRTIEKFEKEAAEMGKGSFKYAWVL 

eEf1a1l1        1 MGKEKTHINIVVIGHVDSGKSTTTGHLIYKCGGIDKRTIEKFEKEAAEMGKGSFKYAWVL 

eEF1A_YEAST     1 MGKEKSHINVVVIGHVDSGKSTTTGHLIYKCGGIDKRTIEKFEKEAAELGKGSFKYAWVL 

 

 

eEf1a1a        61 DKLKAERERGITIDISLWKFETSKYYVTIIDAPGHRDFIKNMITGTSQADCAVLIVAAGV 

eEf1a1b        61 DKLKAERERGITIDISLWKFETSKYYVTIIDAPGHRDFIKNMITGTSQADCAVLIVAAGV 

eEF1A1_HUMAN   61 DKLKAERERGITIDISLWKFETSKYYVTIIDAPGHRDFIKNMITGTSQADCAVLIVAAGV 

eEf1a2         61 DKLKAERERGITIDISLWKFETTKYYITIIDAPGHRDFIKNMITGTSQADCAVLIVAAGV 

eEF1A2_HUMAN   61 DKLKAERERGITIDISLWKFETTKYYITIIDAPGHRDFIKNMITGTSQADCAVLIVAAGV 

eEf1a1l1       61 DKLKAERERGITIDIALWKFETSKYYVTIIDAPGHRDFIKNMITGTSQADCAVLIVAGGV 

eEF1A_YEAST    61 DKLKAERERGITIDIALWKFETPKYQVTVIDAPGHRDFIKNMITGTSQADCAILIIAGGV 

 

 

eEf1a1a       121 GEFEAGISKNGQTREHALLAYTLGVKQLIVGVNKMDSTEPSYSQKRYEEIVKEVSTYIKK 

eEf1a1b       121 GEFEAGISKNGQTREHALLAYTLGVKQLIVGVNKMDSTEPNYSQKRYEEIVKEVSTYIKK 

eEF1A1_HUMAN  121 GEFEAGISKNGQTREHALLAYTLGVKQLIVGVNKMDSTEPPYSQKRYEEIVKEVSTYIKK 

eEf1a2        121 GEFEAGISKNGQTREHALLAYTLGVKQLIVAVNKMDSTEPSYSEKRYDEIVKEVSAYIKK 

eEF1A2_HUMAN  121 GEFEAGISKNGQTREHALLAYTLGVKQLIVGVNKMDSTEPAYSEKRYDEIVKEVSAYIKK 

eEf1a1l1      121 GEFEAGISKNGQTREHALLAFTLGVKQLIVGVNKMDSTEPPYSQARFEEITKEVSAYIKK 

eEF1A_YEAST   121 GEFEAGISKDGQTREHALLAFTLGVRQLIVAVNKMDSVK--WDESRFQEIVKETSNFIKK 

 

 

eEf1a1a       181 IGYNPDTVAFVPISGWNGDNMLEASPNMSWFKGWKITRKEGNAAGTTLLEALDAIQPPTR 

eEf1a1b       181 IGYNPDTVAFVPISGWNGDNMLEASPNMTWFKGWKITRKDGSSSGTTLLEALDAIQPPTR 

eEF1A1_HUMAN  181 IGYNPDTVAFVPISGWNGDNMLEPSANMPWFKGWKVTRKDGNASGTTLLEALDCILPPTR 

eEf1a2        181 IGYSPASVPFVPISGWHGDNMLEPSSNMPWFKGWKLDRKEHHAGGVTLLEALDTIMPPTR 

eEF1A2_HUMAN  181 IGYNPATVPFVPISGWHGDNMLEPSPNMPWFKGWKVERKEGNASGVSLLEALDTILPPTR 

eEf1a1l1      181 IGYNPASVAFVPISGWHGDNMLEASSNMGWFKGWKIERKEGNASGTTLLDALDAILPPSR 

eEF1A_YEAST   179 VGYNPKTVPFVPISGWNGDNMIEATTNAPWYKGWEKETKAGVVKGKTLLEAIDAIEQPSR 

 

 

eEf1a1a       241 PTDKPLRLPLQDVYKIGGIGTVPVGRVETGLLKPGMVVTFAPVNVTTEVKSVEMHHEALS 

eEf1a1b       241 PTDKPLRLPLQDVYKIGGIGTVPVGRVETGILKPGLVVTFAPVNVTTEVKSVEMHHEALS 

eEF1A1_HUMAN  241 PTDKPLRLPLQDVYKIGGIGTVPVGRVETGVLKPGMVVTFAPVNVTTEVKSVEMHHEALS 

eEf1a2        241 PTDKPLRLPLQDVYKIGGIGTVPVGRVETGVLRPSMVVTFAPVNITTEVKSVEMHHESLS 

eEF1A2_HUMAN  241 PTDKPLRLPLQDVYKIGGIGTVPVGRVETGILRPGMVVTFAPVNITTEVKSVEMHHEALS 

eEf1a1l1      241 PTDKPLRLPLQDVYKIGGIGTVPVGRVETGVLKPGMVVTFAPANVTTEVKSVEMHHESLT 

eEF1A_YEAST   239 PTDKPLRLPLQDVYKIGGIGTVPVGRVETGVIKPGMVVTFAPAGVTTEVKSVEMHHEQLE 

 

 

eEf1a1a       301 EALPGDNVGFNVKNVSVKDIRRGNVAGDSKNDPPQEAANFTAQVIILNHPGQISAGYAPV 

eEf1a1b       301 EALPGDNVGFNVKNVSVKDIRRGNVAGDSKNDPPQEAASFTAQVIILNHPGQISAGYAPV 

eEF1A1_HUMAN  301 EALPGDNVGFNVKNVSVKDVRRGNVAGDSKNDPPMEAAGFTAQVIILNHPGQISAGYAPV 

eEf1a2        301 EALPGDNVGFNVKNVSVKDIRRGNVCGDSKSDPPQEASGFTAQVIILNHPGQISSGYSPV 

eEF1A2_HUMAN  301 EALPGDNVGFNVKNVSVKDIRRGNVCGDSKSDPPQEAAQFTSQVIILNHPGQISAGYSPV 

eEf1a1l1      301 EATPGDNVGFNVKNVSVKDIRRGNVAGDSKNDPPMEAANFNAQVIILNHPGQISQGYAPV 

eEF1A_YEAST   299 QGVPGDNVGFNVKNVSVKEIRRGNVCGDAKNDPPKGCASFNATVIVLNHPGQISAGYSPV 

 

 

eEf1a1a       361 LDCHTAHIACKFAELKEKIDRRSGKKLEDNPKSLKSGDAAIVEMIPGKPMCVESFSEYPP 

eEf1a1b       361 LDCHTAHIACKFAELKEKIDRRSGKKLEDNPKSLKSGDAAIVDMIPGKPMCVESFSEYPP 

eEF1A1_HUMAN  361 LDCHTAHIACKFAELKEKIDRRSGKKLEDGPKFLKSGDAAIVDMVPGKPMCVESFSDYPP 

eEf1a2        361 IDCHTAHIACKFAELKEKIDRRSGKKLEDNPKSLKSGDAAIVDMIPGKPMCVESFSQYPP 

eEF1A2_HUMAN  361 IDCHTAHIACKFAELKEKIDRRSGKKLEDNPKSLKSGDAAIVEMVPGKPMCVESFSQYPP 

eEf1a1l1      361 LDCHTAHIACKFAELKEKIDRRSGKKLEDNPKALKSGDAAIVEMVPGKPMCVESFSTYPP 

eEF1A_YEAST   359 LDCHTAHIACRFDELLEKNDRRSGKKLEDHPKFLKSGDAALVKFVPSKPMCVEAFSEYPP 

 

 

eEf1a1a       421 LGRFAVRDMRQTVAVGVIKGVEKKTATSGKVTKSAQKAQKAK- 

eEf1a1b       421 LGRFAVRDMRQTVAVGVIKGVEKKTSTSGKVTKSAQKAQKNK- 

eEF1A1_HUMAN  421 LGRFAVRDMRQTVAVGVIKAVDKKAAGAGKVTKSAQKAQKAK- 

eEf1a2        421 LGRFAVRDMRQTVAVGVIKNVEKKIGGSGRVTKSAQKAQKSSK 

eEF1A2_HUMAN  421 LGRFAVRDMRQTVAVGVIKNVEKKSGGAGKVTKSAQKAQKAGK 

eEf1a1l1      421 LGRFAVRDMRQTVAVGVIKSVEKKIGGAGKVTKSAQKAAKTK- 

eEF1A_YEAST   419 LGRFAVRDMRQTVAVGVIKSVDK-TEKAAKVTKAAQKAAKK-- 
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Figure 3.5. Multiple sequence alignment of the zebrafish and human eEF1A isoforms with the 

yeast eEF1A as a template.  Results of the alignment were shaded using BoxShade v3.21 where black, 

grey and white background indicates strictly conserved, conservative substituted or non-conserved 

regions respectively. Functional annotations obtained for yeast eEF1A is shown using different 

symbols. Domains are shown with filled rectangles, with domain I, II and III indicated with aqua, green 

and pink respectively. Circles show domain-domain contacts, with the red    and yellow   circles 

indicating conserved and non-identical residues respectively. Also shown on the yeast sequence are      ;                                

-residues in the disordered region of the yeast crystal structure,     - involved in the binding of the C-

terminal region of eEF1Bα. Residues identified in yeast mutagenesis studies to be; -actin 

bundling/disorganisation,    -affect translational fidelity,   -reduce dependence on eEF1Bα. *- human 

eEF1A2 mutations which are completely conserved in the four zebrafish eEF1A isoforms. Adapted 

from Soares et al. 2009. 

          

3.2.1.4 Variant residues analysis using the 3-D models of zebrafish, human and 

yeast eEF1A proteins 

Functional analysis of the variant residues based on their position in the 3-D structure 

provides better insight than analysis of the linear sequence, especially when comparing 

highly homologous proteins. To this end, I constructed structural models of the 

zebrafish eEF1A proteins using the Modeller software through the Chimera interface 

(Pettersen et al., 2004). The yeast eEF1A (1F60) structure was used as a template and 

the variant residues analysed further. As with yeast, all the zebrafish eEF1A proteins 

models are made up of three domains; domain I (1-240), domain II (241-336) and 

domain III (337-443). Residues at position 444-462 (463 for eEF1A2) are equivalent 

to the disordered residues of the yeast eEF1A and so were not included in the resulting 

models. The variant residues within the zebrafish eEF1A proteins are spread across 

the three domains. Six variable positions are found to be completely buried in all the 

eEF1A models. Positions 87 and 361 are conservative changes and are wholly 

conserved within orthologues, with eEF1A1L1 falling into the eEF1A1 group. Two 

other positions, 189 and 326, did not involve conservative substitutions but were also 

wholly conserved within the eEF1A and eEF1A2 orthologues, with eEF1A1L1 in the 

eEF1A1 group again. While eEF1A1L1 and eEF1A2 has the same residue as the yeast 

eEF1A at positions 118 and 151 respectively, the others have the same residues with 

both human eEF1A variants at these sites. Positions 216, 161 and 339 are found to be 

completely buried only in the zebrafish eEF1A1A, eEF1A1B and eEF1A2 modeled 

structures respectively. Position 216 involves a conservative change (Ile216 for 

eEF1A1L1, eEF1A1A and eEF1A1B, Leu261 for eEF1A2). On the other hand, 

changes at position 161 and 339 are not conservative, therefore the quality of the 
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packing properties of the residues was evaluated using the WHAT IF server (see 

section 2.2.10 in chapter 2).  Asn161 (eEF1A1B) and Gly339 (eEF1A2) has a packing 

score of -1.1 and 0.6 respectively. Packing scores of -0.5 or lower indicates something 

is ‘going on’ with the packing quality of that residue. However, judging from the good 

packing scores, these residues likely fit into the protein interior and suggests that 

eEF1A1B and eEF1A2 do not have different domain structures from the other eEF1A 

variants.            

Existing structural data for the domain contacts for the yeast structure from the study 

of Soares et al. 2009 were also mapped on the multiple aligned sequences shown in 

figure 3.5. This showed 40 out of 42 residues involved in domain-domain contact to 

be absolutely conserved among the zebrafish eEF1A variants, yeast eEF1A and the 

two human eEF1A variants. Two positions; 335 and 417 (K333 and Glu415 in yeast) 

with residues that connects domain II and III are variable in zebrafish. It is worth 

mentioning that a two sequence insertion in vertebrate eEF1A isoforms relative to the 

yeast eEF1A is found between position 159 and 160 in the yeast eEF1A, thereby 

leading to a discrepancy in the numbering of residues after position 159. The glutamine 

residue is present at position 335 for eEF1A1A, eEF1A1B and eEF1A2 (same as 

human eEF1A2), while eEF1A1L1 has a methionine, as in human eEF1A1. Zebrafish 

eEF1A1A and eEF1A1B share the same residue (Glu417) with yeast (Glu415 in yeast) 

and a conservative change of aspartic acid (Asp417) is present in human eEF1A1. 

While eEF1A2 has Gln417, as in human eEF1A2, eEF1A1L1 is the only zebrafish 

variant with threonine at this position. However, the main–chain oxygen atom of all 

the variant residues at these two positions maintained their inter-domain H-bond 

interaction with the side-chains of residues Cys411 for residues at position 335 and 

Lys244 for position 417. This suggest that all the eEF1A proteins are predicted to have 

the same conformation as that seen in yeast, at least in the context of the eEF1Bα-

bound structure.        

Similar to what is seen for human eEF1A isoforms, the majority of the variable 

residues between the zebrafish eEF1A isoforms are present on one side and show 

similar clustering arrangement as the variable amino acid between the human eEF1A 

isoforms (Figure 3.6). The Chimera software was then used to check if any of the 

positions containing variant amino acid residues were in close proximity (within 5Å) 
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to some of the functional annotations shown in figure 3.4. Position 298, which 

involved a non-conservative change of Ala298 in eEF1A1A and eEF1A1B (same as 

both human eEF1A variants) to Ser298 in eEF1A2 and eEF1A1L1, was found to lie 

within 5Å of Glu293 and His296, (equivalent to yeast Glu291 and His294) which are 

involved in eEF1Bα and aminoacyl-tRNA binding respectively. A double mutant form 

of yeast eEF1A with a H294A Q296R mutation (equivalent to position 296 and 298 in 

zebrafish eEF1A isoforms) was shown to promote actin cable formation when 

overexpressed in yeast cells but did not affect the total translation in the cells (Gross 

and Kinzy, 2007). Another variant position 355 which also entails a non-conservative 

substitution of Ala355 (eEF1A1A, eEF1A1B and both human eEF1A variants) with 

Ser355 (eEF1A2) and Gln355 (eEF1A1L1) lies within 5Å of Tyr357. The Tyr357 

residue is equivalent to the yeast Tyr355 which is also implicated in actin-related 

functions in yeast (Gross and Kinzy, 2007). Tyr357 is also in close proximity with 

another variable position, 358. This position is wholly conserved within the eEF1A 

orthologues with Ala358 for the eEF1A family (and eEF1A1L1) and Ser358 for the 

eEF1A2 family in human and zebrafish. Position 326 close to Phe310 (equivalent to 

yeast eEF1A Phe308) also involved in actin organisation, is variable between eEF1A 

isoforms in the zebrafish (Ala326 in eEF1A1A, eEF1A1B and eEF1A1L1, Cys326 in 

eEF1A2 only) but is wholly conserved within the eEF1A orthologues in both species. 

Close to Asp156, one of the residues important for GDP/GTP binding, is another 

variant position, 197, which has Asn in eEF1A1A and eEF1AB (same as human 

eEF1A1) and His197 in eEF1A2 and eEF1A1L1 (as with human eEF1A2).        
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Figure 3.6. Mapping of variant amino acids and known binding sites onto the surface of zebrafish 

eEF1A isoforms. Two views rotated by 180o about the y-axis of the 3-D models of eEF1A1L1 (purple), 

eEF1A1A (orange), eEF1A1B (grey) and eEF1A2 (blue) shown with the location of exposed variant 

amino acids (green) mapped on the surface compared in a pairwise fashion. Also highlighted on the 

surface of the models are: location of the C-terminal eEF1Bα-binding sites (cyan), GDP/GTP-binding 

sites (yellow) and aminoacyl-tRNA-binding residues (red). Residues His295 and Arg322 (equivalent to 

the yeast His293 and Arg320) are involved in both eEF1Bα and aminoacyl-tRNA-binding but have been 

indicated as only aminoacyl-tRNA-binding residues and coloured red for the sake of clarity. Variant 

amino-acid present in the equivalent disordered region of the yeast eEF1A are not represented.   

   

3.2.1.5 Prediction of phosphorylation sites in the zebrafish eEF1A variants  

Protein phosphorylation is the most common type of post-translational modification 

used to regulate protein function in eukaryotic cells (Levy, Michnick and Landry, 

2012). Phosphorylation is mediated by protein kinases which catalyses the transfer of 

the γ-phosphate from ATP to specific amino acids of the protein; which in eukaryotic 

cells are serine, threonine and tyrosine (Ubersax and Ferrell Jr, 2007). Interestingly, 

most of the differences between the zebrafish eEF1A proteins involved substitution of 

serine or threonine residues. Also, the tyrosine residues present at position 141 and 

167 in eEF1A1A, eEF1A1B and eEF1A2 are substituted with phenylalanine in 

eEF1A1L1. This is similar to what was observed in the study by Soares et al., 2009 in 

human eEF1A, although no change involved tyrosine in humans. Using an in silico 

approach, differential predicted phosphorylation profiles in human eEF1A1 and 

eEF1A2 were observed in their study. I therefore carried out a phosphorylation 

analysis of zebrafish eEF1A isoforms using the NetPhos 3.1 server (Blom, Gammeltoft 

and Brunak, 1999) (see section 2.2.10). The sequence of each variant was analysed 

using this server to identity likely serine, threonine or tyrosine residues that are 

phosphorylatable. A total of 27 out of 33 positions that involved change in serine or 

threonine residues within the eEF1A isoforms were predicted to be potential sites for 

phosphorylation. While 26 common phosphorylation sites were predicted, each eEF1A 

isoforms had their own specific predicted phosphorylation sites, with eEF1A2 having 

the most (12 in total). Seven out of nine residues which have been demonstrated 

experimentally to be phosphorylated in the human eEF1A variants are also predicted 

to be phosphorylatable in zebrafish (Figure 3.7). The isoform specific sites and the 

NetPhos prediction score for each position are shown in (Table 3.3). The higher the 

NetPhos score, the more likely that the predicted site is a true phosphorylation site. 

Some other predicted sites were shared by two or more of the eEF1A variants. Also, 
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one of the Tyr that was lost in eEF1A1L1 was predicted to be a phosphorylation site 

in eEF1A1A, eEF1A1B and eEF1A2 at position 167. The NetPhos score was high 

indicating Tyr167 to likely be a true phosphorylation site with eEF1A1A and 

eEF1A1B having a score of 0.659 and a higher score of 0.931 in eEF1A2. Also, worth 

noting is the high NetPhos score, >0.90 for all the four predicted eEF1A1B-specific 

sites indicating these sites are most likely true phosphorylation sites. The variant-

specific residues and Tyr167 predicted as phosphorylation sites were present on the 

surface of the modeled structures except for Tyr183 (eEF1A1L1) and Tyr85 

(eEF1A2). However, they all have their hydroxyl groups exposed (Figure 3.8) 

suggesting they are accessible to a kinase which is required for phosphorylation to 

occur. Although these prediction results will need to be validated, it provides 

preliminary findings that suggest the zebrafish eEF1A isoforms might be chemically 

different which will imply they may have some functional differences. 
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Figure 3.7. Sequence alignment showing predicted phosphorylation sites for zebrafish eEF1A 

proteins. Phosphorylation sites are indicated with P, colour coded according to variants. P = all eEF1A 

variants, P= eEF1A1L1-specific, P= eEF1A1A-specific, P =eEF1A1b-specific, P = eEF1A2-specific, 

P = eEF1A1L1, eEF1A1A and eEF1A1B, P = eEF1A1A and eEF1A1B, P = eEF1A1B and eEF1A1L1, 

P = eEF1A1A, eEF1A1B and eEF1A2, P = eEF1A1A and eEF1A2, P = eEF1A1L1 and eEF1A2. 

Equivalent positions of the experimentally validated phosphorylated residues of the human eEF1A 

variants are denoted with black circles (see Table 1.1).     
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Table 3.3: Predicted isoform-specific phosphorylation sites in zebrafish eEF1A proteins 

Protein Residue  Position  NetPhos Score 

eEF1A1L1 Tyrosine 183 0.544 

Serine 239 0.515 

Threonine 303 0.835 

Serine 354 0.522 

Serine  440 0.663 

eEF1A1A Serine  205 0.506 

eEF1A1B Serine  222 0.991 

Serine  223 0.964 

Serine  339 0.924 

Serine  440 0.932 

eEF1A2 Threonine  83 0.541 

Tyrosine  85 0.586 

Tyrosine 86 0.509 

Serine 184 0.649 

Serine 187 0.567 

Threonine  234 0.660 

Serine 275 0.976 

Serine 331 0.558 

Serine 338 0.538 

Serine 358 0.881 

Serine 416 0.633 

Serine 462 0.576 

 

 

 

 

 

 

  



94 
 

 

 

 

 

 

 

 

 

 

Figure 3.8. Location of isoform-specific potential phosphorylation sites on the 3-D structure of the 

zebrafish eEF1A protein. Ribbon representation of the 3-D model of zebrafish eEF1A isoforms 

showing predicted phosphorylation sites (side-chain of the residues at this sites are depicted with stick 

representation)   calculated using the NetPhos 3.1 server (Blom, Gammeltoft and Brunak, 1999) specific 

for A. eEF1A1L1 (purple) B. eEF1A1A (orange) C. eEF1A1B (green) and D. eEF1A2 (blue).Ser-462 

is not shown on eEF1A2 structure as it present within the equivalent disordered region in the yeast 

eEF1A structure. Predicted phosphorylated tyrosine residue at position 167 which is lost in eEF1A1L1 

is also shown on the ribbon structure of eEF1A1A, eEF1A1B and eEF1A2 models.   
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3.2.2 Expression analysis of eef1a isoforms during zebrafish 

development and adult tissues 

To investigate the expression pattern and functional relationships of eef1a in zebrafish, 

I evaluated the expression of the four eef1a homologues during embryonic 

development and in various adult tissues. I performed both RT-PCR and quantitative 

PCR analyses on cDNA generated from RNA isolated from different developmental 

stages and adult tissues. At first, specific primers for each eef1a gene suitable for qRT-

PCR were designed and their specificity were confirmed from results obtained from 

sequencing RT-PCR products amplified from whole adult fish (data not shown).  

3.2.2.1 Expression of eef1a isoforms during development 

Twelve different stages during embryogenesis and early development in zebrafish, 

namely 1-cell, 2-cell, 4-cell, 8-cell, 16-cell, 256-cell, high, 50%-epiboly, 90%-epiboly, 

24 hours post- fertilisation (hpf), 48 hpf and 72 hpf stages, were analysed for eef1a 

mRNA using conventional RT-PCR (Figure 3.9). Expression of eef1a1l1 was detected 

at all developmental stages analysed, including the one-cell zygotic stage, suggesting 

eef1a1l1 is also maternally expressed. Expression of the other three eef1a genes, 

eef1a1a, eef1a1b and eef1a2, did not show any maternal expression as they were not 

detected during the early embryonic stages analysed from the one-cell to the 90%-

epiboly stage which begins 9 hpf. Expression of eef1a1a and eef1a1b were detected at 

the 24 hpf, 48 hpf and 72 hpf developmental stages. While it cannot be concluded on 

which developmental stage eef1a1a and eef1a1b were first expressed, an increment in 

their expression level could be seen between 24 hpf and 48 hpf (Figure 3.9B), and it 

could be possible it is around the 24 hpf stage, rather than a stage much closer to the 

90%-epiboly stage, that expression of these genes is induced. The eef1a2 gene is first 

expressed at 48 hpf, being the last eef1a gene to be detected during development in the 

zebrafish. 

To identify the expression pattern of eef1a genes during 24 hpf, 48 hpf and 72 hpf 

developmental stages, I performed whole-mount in situ hybridisation (ISH) using 

digoxigenin (DIG)-labelled antisense RNA probes to mark eef1a-expressing regions 

and DIG-labelled sense RNA probes as a control to check signal specificity (Figure 

3.10). Probes for each eef1a gene were designed from the 3’UTR region of the gene 
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where there is maximum sequence difference between the genes. This helps to avoid 

cross-hybridisation further ensuring specificity of the hybridisation reaction. The 

WISH experiment for eef1a1l1 showed that it is widely expressed from the head to the 

trunk at 24 hpf. At 48 hpf, its expression is enriched in the developing brain of the fish 

but is then reduced at 72 hpf and shows a more localised expression pattern with strong 

signal observed in the eye and tectum in the larva (Figure 3.10A). Simultaneous 

hybridisation with DIG-labelled sense RNA probe for all three stages was also 

performed and did not produce any signal and the fish remained clear (data shown for 

only 48 hpf embryo). For eef1a1a, eef1a1b and eef1a2 (48 and 72 hpf), I was unable 

to obtain a clear expression pattern, likely as a result of low transcript levels, as a 

longer incubation time of a minimum of 10 hours was required when analysed. 

Although background signal was produced with the sense probe, some difference in 

the staining intensity around the head region can be seen with staining with the 

antisense probe being more pronounced than the sense probe. However, further 

optimisation of the hybridisation parameters for these probes would be required to 

obtain a much clearer spatial expression pattern for eef1a1a, eef1a1b and eef1a2 genes.     
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Figure 3.9. Expression of eef1a genes during zebrafish development assayed by RT-PCR. A. Gel 

pic showing expression of eef1a1l1 in 1-cell, 2-cell, 4-cell, 8-cell, 16-cell, 256-cell, high, 50%-epiboly 

and 90%-epiboly embryonic stages. The other eef1a genes were undetected at these stages (data not 

shown). B. mRNA expression of eef1a in 24, 48 and 72 hpf stages. eef1a1l1 was detected in all stages 

while eef1a1a and eef1a1b were detected in 24 and 48 hpf. eef1a2 was the last isoform to be expressed 

during development at 48 hpf. As a loading control, expression of actin was also assessed in the same 

samples. RT-PCR was performed and gel run in duplicates using samples from the same cDNA. NTC 

– no template control.      
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Figure 3.10. Whole-mount in situ hybridisation analysis of eef1a expression in different 

developmental stages in zebrafish. Expression of eEF1A mRNA was analysed at the indicated 

developmental satges A. At 24 hpf, eef1a1l1 is expressed in the whole embryos and is then enriched in 

the brain at 48 hpf. At 72 hpf, its expression becomes more localised and is noticeable in the eyes and 

tectum of the larva. A representative larva hybridised with the sense probe do not show any staining 

indicating the eef1a1l1 anti-sense probes are specific. B-C. Expression of eef1a1a and eef1a1b at 72 

hpf. D. Expression of eef1a2 at 5 dpf. Abbreviations: E- eye, fb- forebrain, hbv- hindbrain ventricle, l- 

lens, ov- otic vesicle, pb- pectoral fin bud, s- somite, t- tectum, y-yolk. 
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3.2.2.2 Expression of eef1a isoforms in adult tissues 

Expression of all four eef1a genes in adult tissues was examined in total RNA isolated 

from brain, muscle, spleen, testis, intestine, liver and ovary by conventional RT-PCR 

analysis (Figure 3.11A). Three eef1a genes, eef1a1l1, eef1a1a and eef1a1b, were 

detected in all the adult tissues examined. Expression of eef1a2 is readily observed in 

brain, muscle, spleen, testis and ovary tissues but only just detectable in the intestine. 

No expression is observed in liver for eef1a2. 

Using q-PCR, I quantified the expression levels of the eef1a transcripts in adult brain, 

muscle and liver tissues with prevalidated primers designed by Primerdesign. 

Simultaneous detection of ATPsynth, NADH and 16S expression was performed to be 

used as reference genes. Expression of these three genes were shown to be stable when 

measured in a representative set of cDNA samples from brain, muscle and liver tissues 

using the geNorm kit (Primerdesign, UK) (see Appendix figure 1). The geNorm 

analysis software ranks candidate reference genes by the stability measure M, where a 

lower M value indicates a more stable gene. A set of the three reference genes with the 

lowest M values were used to ensure accurate quantification of the eef1a transcripts in 

the tissues analysed. Each of the eef1a genes was normalised by the geometric mean 

of ATPsynth, NADH and 16S to obtain their transcripts expression levels in the brain, 

muscle and liver tissues. Similar to the RT-PCR results, eef1a1l1, eef1a1a and eef1a1b 

are found in the brain, muscle and liver while eef1a2 is only detected in the brain and 

muscle. However, the eef1a genes are not present in equal amount in the tissues in 

which they were detected. Expression of eef1a1l1 is significantly higher in liver when 

compared with brain and muscle (p<0.01 for brain and p < 0.05 for muscle, one-way 

ANOVA). On the other hand, eef1a1a, eef1a1b and eef1a2 show similar expression 

level patterns with a higher expression level in brain tissue than in muscle and liver (in 

the case of eef1a1a and eef1a1b) tissues (Figure 3.11B).  

The relative transcript levels of the four eef1a genes vary substantially across the three 

tissues examined above (Figure 3.11C). As a whole, eef1a1l1 transcripts are the most 

abundant with about 7,980, 7,830 and 240-fold higher overall expression ratios than 

eef1a1a, eef1a1b and eef1a2 respectively. However, expression levels of all the eef1a 

transcripts are similar in brain tissue with the higher expression level of eef1a1l1 

transcripts observed in the muscle (1,040, 1,280 and 490-fold higher than eef1a1a, 
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eef1a1b and eef1a2 respectively) and liver (22,900 and 22,200-fold higher in eef1a1a 

and eef1a1b respectively) tissues. The expression level of eef1a2 transcripts in muscle 

tissue is approximately two and three-fold higher than that of eef1a1a and eef1a1b 

respectively, both of which show similar expression levels in all three tissues 

examined.  
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Figure 3.11. Expression analysis of the four eef1a genes in adult tissues. A. Expression of eef1a1l1, 

eef1a1a, eef1a1b and eef1a2 in various adult tissues detected by RT-PCR. eef1a1l1, eef1a1a and 

eef1a1b are expressed in all the tissues analysed, while eef1a2 is expressed in all the tissues except liver. 

As a loading control, expression of actin was also assessed in the same samples. RT-PCR was performed 

and gel run in duplicates using samples from the same cDNA. For each gene, -RT controls were included 

for all analysed tissues and showed no amplification. B. Expression levels of eef1a in brain, muscle and 

liver tissues. Data are presented as the expression levels normalised to the geometric mean of ATPsynth, 

NADH and 16S. Results are means + S.E.M.; n=3 in each group. Asterisk show where there is a 

significant difference in transcript expression levels in the tissues (*p < 0.05, **p < 0.01 and ***p < 

0.0001, one-way ANOVA) C. Comparison of the relative expression levels of eef1a transcripts in brain, 

muscle and liver tissues. Results are presented as the gene expression ratio of the target mRNA to the 

geometric mean of ATPsynth, NADH and 16S for each tissue (means + S.E.M.; n=3).    
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3.2.2.3 Analysis of eEF1A2 antibodies specificity 

Detection of eef1a mRNA expression does not necessarily indicate they are translated 

into stable proteins, especially given the findings of Newbery et al. 2011 which shows 

the expression of eEF1A in Xenopus to be regulated at the post-transcriptional level. 

It is therefore essential to be able to analyse expression of eef1a at the protein level in 

zebrafish. Using the available eEF1A2 antibodies, I investigated the expression of 

zebrafish eEF1A2 further. One in-house generated eEF1A2 antibody (hereafter 

referred to as eEF1A2-2) and three commercial antibodies against eEF1A2 were 

tested. The eEF1A2-2 antibody has previously been shown in our laboratory to be 

specific for mouse and Xenopus eEF1A2. Protein extracts from zebrafish and mouse 

brain, muscle and liver tissues were used to perform western blot following the method 

described in Newbery et al. 2011 and probed for eEF1A2 using the eEF1A2-2 

antibody. A band was observed in protein lysates obtained from adult zebrafish and 

mouse liver tissues which were used as a negative control. This suggests a cross-

reactivity of the antibody with other eEF1A variants, since eEF1A2 is not expressed 

in the liver in both species. It is worth mentioning that a different batch of eEF1A2-2 

which had been purified by precipitation with ammonium sulphate only was used since 

the affinity purified eEF1A2-2 that was demonstrated to be specific in our laboratory 

was unavailable. This could explain why the lack of specificity of eEF1A2-2 was 

observed in my hands. Specificity of the three commercial antibodies (hereafter 

referred to as eEF1A2-Genetex, eEF1A2-Proteintech and eEF1A2-Abcam) were also 

tested using protein extracts from adult zebrafish brain, liver and muscle tissues. Since 

eef1a2 expression was not detected at the mRNA level in the liver, it was used as a 

negative control while the muscle tissue from mouse which is known to express only 

eEF1A2 was used as a positive control. A band of the correct size was observed in the 

liver for both eEF1A2-Genetex and eEF1A2-Proteintech antibodies, suggesting these 

antibodies were not specific for eEF1A2 alone.  

No band was recognised in the liver by eEF1A2-Abcam (Figure 3.12A) and it was 

then used to investigate the expression of eEF1A2 in different zebrafish tissues. 

Contrary to the findings of eEF1A2 expression at the mRNA level, no signal was 

detected for the muscle. No band was also observed in the other tissues: intestine, 

ovaries and heart which showed mRNA expression of eEF1A2 using eEF1A2-Abcam 
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antibody (data not shown). While a signal was readily detected in the brain, longer 

exposure time of about 30 minutes was required to produce a signal in the spinal cord 

using eEF1A2-Abcam antibody. To confirm the absence of a signal in the muscle was 

not due to the low abundance of eef1a2 mRNA based on the qPCR results, protein 

extracts from muscle tissues at concentrations of 20µg, 30µg, 40µg and 50µg were 

probed with eEF1A2-Abcam antibody. No signal was observed even when the blot 

was exposed overnight during the detection process. Simultaneous probing of samples 

from the same muscle extract was carried out using an antibody against the zebrafish 

eEF1A (now known as eEF1A1L1) from GeneTex, anti-Ef1a (Figure 3.12B). A band 

was readily observed in the muscle samples at all concentrations. Bearing in mind that 

the specificity of the antibody for zebrafish has not been tested and also that there is 

no expression data available for the zebrafish eEF1A2 protein, it is important that 

validation of the eEF1A2-Abcam antibody be performed.   
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Figure 3.12. eEF1A2 expression in zebrafish tissues using eEF1A2-Abcam antibody. A. Western 

blot showing protein extracts from adult zebrafish brain, liver and muscle tissues probed with eEF1A2-

Abcam at a concentration of 1:1000. Control is muscle tissue from mouse. B. Western blot showing 

protein extracts from adult zebrafish brain, spinal cord and muscle tissues (at different concentrations 

of 20µg, 30µg, 40µg and 50µg) probed with eEF1A2-Abcam (left). Samples of the different 

concentration of the muscle, run in parallel, were probed with eEF1A2-Abcam (left) and anti-Ef1a 

(right) antibodies at concentrations of 1:1000. Muscle 1, 2, 3 and 4 is samples at concentrations of 20µg, 

30µg, 40µg and 50µg respectively. Transfer of protein were confirmed by staining blots with syproruby 

to visualise total protein on blots.      
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3.2.2.4 Cloning and expression of GFP-tagged eef1a construct and eEF1A2-

Abcam antibody validation 

With the presence of four eEF1A proteins in the zebrafish which have highly similar 

amino acid sequences, it is crucial that antibodies against any of the eEF1A isoforms 

are validated to ensure they are specific. For this purpose, I generated full-length 

eEF1A1L1, eEF1A1A, eEF1A1B and eEF1A2 transcripts from cDNA synthesised 

from brain RNA extracts which were expressed with a GFP tag at the C-terminus. This 

is to help differentiate them from the endogenous eEF1A in the cell lines where they 

would be expressed as these zebrafish eEF1A proteins will have a higher molecular 

weight when expressed together with the GFP tag. Transcripts of all four eEF1A 

isoforms were confirmed by Sanger sequencing and then cloned into the pcDNA6.2/C-

EmGFP-DEST expression vector using the Gateway® cloning technology (see section 

2.2.3.1). Sequencing of constructs was performed to check sequences of the eef1as 

cDNA and that of the GFP tag were in frame. Each construct (hereafter referred to as 

eEF1A1L1-GFP, eEF1A1A-GFP, eEF1A1B-GFP and eEF1A2-GFP) were transfected 

into HEK293 cells and their expression were confirmed by western blot using an 

antibody, anti-EF1α (Merck Milipore), which is known in our laboratory to pick up 

both mammalian eEF1A isoforms (Figure 3.13). 

The specificity of eEF1A2-Abcam antibody was further investigated using protein 

extracts from HEK293 cells that were transfected with eEF1A1L1-GFP, eEF1A1A-

GFP, eEF1A1B-GFP and eEF1A2-GFP constructs for western blot. Similar results 

were obtained using secondary antibodies for either LICOR or chemilumescent 

detection of the eEF1A2 in the samples, with a clearer result obtained using the 

chemilumescent method (Figure 3.14). A band of the correct size was observed for the 

cells transfected with eEF1A1A-GFP, eEF1A1B-GFP and eEF1A2-GFP but not 

eEF1A1L1-GFP suggesting that eEF1A2-Abcam is not specific for eEF1A2 in 

zebrafish but cross-reacts with eEF1A1A and eEF1A1B and likely does not recognise 

eEF1A1L1.  

 

 

 



108 
 

 

Figure 3.13. Expression of eEF1A constructs confirmed by Western blot analysis. eEF1A 

constructs tagged with GFP were transfected into HEK293 cells and their expression determined by 

western blot. Blots were probed for the tagged protein with anti-EF1α (Merck Milipore), which 

recognises all eEF1A isoforms. Band of the right size was observed for all four eEF1A constructs. 

The GFP tag adds ~ 27kDa, therefore expected band size is ~ 77kDa (Mol. weight of eEF1A= 50kDa). 

Only endogenous eEF1A1 was observed in protein lysates from HEK293 cells transfected with the 

empty vector or water (mock) which acts as the negative controls.     

 

 

Figure 3.14. Validation analysis of eEF1A2-Abcam antibody using the expression eEF1A 

constructs. Specificity of eEF1A-abcam was tested using the same lysates from HEK293 transfected 

with the different GFP-tagged eEF1A constructs. Immunoblotting was performed by A. LICOR and B. 

chemilumescent detection method. Transfer of protein were verified by staining blots with syproruby 

to visualise total protein on blots. zf- zebrafish 
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3.3 Discussion 

Initial studies suggested that the zebrafish has only one eEF1A gene in its genome 

(Gao et al., 1997). However, the recent completion of the sequencing of the zebrafish 

genome has shown that more than one eEF1A genes exist in the zebrafish. Although 

the zebrafish sequencing project is still work in progress, it is clear that four eEF1A 

genes are present in the zebrafish genome. These genes, eef1a1l1, eef1a1a, eef1a1b 

and eef1a2, are located on chromosomes 19, 13, 1 and 23 respectively. The structure 

of these genes show that they are not processed (intronless) pseudogenes and are 

predicted to be actively transcribed, encoding different functional zebrafish eEF1A 

proteins. All of them share high sequence identity at both nucleotide and amino acid 

levels. Due to their high similarities, three different approaches were used to assign 

these genes to their appropriate human orthologue. All approaches gave strong support 

to the classification of eef1a1a and eef1a1b as co-orthologues of the human EEF1A1, 

while eef1a2 is the orthologue of the human EEF1A2. The eef1a1b gene showed strong 

syntenic conservation with the genomic region containing the eef1a1a gene on 

chromosome 13 and is therefore a paralogue of eef1a1a and probably arose from the 

teleost-specific genome duplication that took place at the base of the teleost fish 

evolutionary lineage (Christoffels et al., 2004). The eef1a1l1 gene did not have any 

orthologue in the human genome but was clearly different from the other eef1a genes 

and is 92% identical to eEF1A1A and eEF1A1B and ~89% identical to eEF1A2 at the 

amino acid sequence level.  

In silico functional analysis similar to the study of Soares et al. 2009, although less 

comprehensive, was carried out for the zebrafish eEF1A using their structural data 

calculated for the yeast eEF1A. Also 3-D models of the zebrafish eEF1A proteins were 

constructed using the yeast eEF1A crystal structure as the template. This showed that 

all four zebrafish eEF1A isoforms consists of three structural domains: I (1-240), II 

(241-336) and III (337-443) similar to the yeast eEF1A structure and the domain-

domain contacts are almost conserved in them with variation at only two positions. At 

the two variable positions; 335 and 417, the variant residues still retain inter-domain 

interactions with their respective linker residues in domain III and II respectively. 

Also, the amino acid residues involved in the binding of the C-terminal fragment of 

eEF1Bα, aminoacyl-tRNA and GDP/GTP were completely conserved in the zebrafish 
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eEF1A isoforms, which is in line with the functional importance of these residues in 

translation. It is reasonable to assume that all four zebrafish eEF1A isoforms have 

similar translational elongation activity and may adopt an identical conformation to 

that shown in the crystal structure for the complex of the yeast eEF1A with the C-

terminal fragment of eEF1Bα (Andersen et al., 2000). 

Structural differences between the zebrafish eEF1A isoforms was analysed using in 

silico approach to analyse the location of variant residues within known binding sites 

or in close proximity (within a distance of 5Å) to them. Noteworthy of mentioning is 

the non-conservative change Ala298Ser (eEF1A1A and eEF1A1B/eEF1A2 and 

eEF1A1L1) which is unique to the zebrafish and is invariant in the human isoforms 

and is equivalent to the yeast eEF1A Gln296. This position is close to the binding site 

for eEF1Bα (Glu291 in yeast) and aminoacyl-tRNA (His294 in yeast). Interestingly, 

previous studies has implicated this position and others to be involved in actin-related 

functions in yeast (Gross and Kinzy 2007). They identified the mutant strains; one with 

a mutation at this site and 294 (H294A Q296R), K333E (equivalent to the variant 

position 335 in zebrafish eEF1A) and Y355C, (equivalent to 357 in zebrafish eEF1A), 

with normal translation function but that were able to reduce disorganisation of actin 

caused by overexpression of eEF1A. Similarly, a mutation N329S, which corresponds 

to the change that occur at position 331 (Asn331Ser) in the zebrafish isoforms, reduced 

the actin bundling activity with the translation function unaffected in yeast eEF1A 

(Gross and Kinzy, 2005). Two other position, 355 (unique to zebrafish) and 358 

(identical change in zebrafish and human) lie close to Tyr357 (yeast eEF1A2 Tyr355). 

It is therefore most likely these differences in amino acids between the zebrafish 

eEF1A isoforms at these positions 298, 331, 335, 355 and 358 confers different actin 

interacting properties on the isoforms. This does not however rule out the possibility 

of the Ala298Ser change having an effect on the eEF1B and aminoacyl-tRNA binding 

properties of the four isoforms since it lies within 5Å of both binding sites. 

A difference in the affinity of GDP and GTP between eEF1A1 and eEF1A2 has been 

reported, although it does not seem to influence protein synthesis using in vitro assays. 

While eEF1A1 binds more strongly to GDP, eEF1A2 shows more affinity for GTP 

than GDP (Kahns et al. 1998). They suggested that the non-conservative change 

(eEF1A1 Asn197His eEF1A2) could be one of the possible reasons for the difference 
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in guanine nucleotide binding between eEF1A1 and eEF1A2. Interestingly, this 

change also occurs in the zebrafish eEF1A isoforms, with eEF1A1A and eEF1A1B 

having an asparagine residue whereas eEF1A1L1 and eEF1A2 have a histidine residue 

at this position. Lying very close to 197, is Asp156, which is important for GDP/GTP 

binding and makes an hydrogen bond with Asn197 that is absent when this residue is 

replaced with a histidine in the structured eEF1A1L1 and eEF1A2 models as observed 

by Soares et al, 2009. The zebrafish isoforms may therefore exhibit differential affinity 

for guanine nucleotide binding which would further suggest likely functional 

differences within the isoforms. 

There is evidence to suggest that post-translational modification of eEF1A isoforms 

might play a key role in the functional differences between the two isoforms (Kahns 

et al, 1998, Soares et al, 2009, Soares and Abbott, 2013). As it is likely the zebrafish 

eEF1A variants might have slightly different biological roles even though they share 

translational function, the pattern of post-translational modification will reflect this. 

Indeed this was the case as the eEF1A isoforms exhibited differential predicted 

phosphorylation patterns when analysed in silico. Predicted variant-specific 

phosphorylation sites are exposed and have their side chain exposed such that they can 

interact with a kinase (as this is obviously essential for phosphorylation to occur). 

Some of the predicted sites overlap with putative binding sites or variant residues that 

lie close to a functional site. For example, the eEF1A2-specific Ser358 which has a 

strong NetPhos score of 0.88, and is close to the actin-related residue mentioned above. 

Interestingly, phosphorylation of Ser358 in human eEF1A2 by c-Jun N-terminal 

kinase has been confirmed in vitro (Gandin et al. 2013). Other predicted 

phosphorylation sites for which experimental evidence of post-translational regulation 

also exists include Ser21, Thr88 and Ser300. Ser21, which is one of the residues 

involved in GDP/GTP-binding (Figure 3.5) was shown to modulate the half-life as 

well as the apoptotic roles of eEF1A isoforms (Sanges et al., 2012). Interestingly, 

phosphorylated Thr88 (predicted for eEF1A1A, eEF1A1B and eEF1A1L1) was found 

only in the human eEF1A1 isoform (Sanges et al., 2012). Although the score for Thr88 

(0.53) is barely above the threshold for all the three zebrafish isoforms, the confidence 

of the prediction is increased by being in predictive agreement with findings from 
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Sanges et al., 2012. Similar to Ser21, phosphorylation of Thr88 improved the stability 

of human eEF1A1 in vivo.  

While all of the eEF1A1B-specific sites have been predicted with strong confidence 

and involves non-conserved serine residues, eEF1A1A specific site, Ser205 which is 

conserved in all the eEF1A variants has a score just on the threshold of 0.5. This 

suggests that eEF1A1B might have diverged in some other functions from eEF1A1A 

even though it is the most closely related paralogue compared with the other zebrafish 

isoforms. This possibility has been demonstrated by Chen et al., 2017, where they 

found heterozygous mutation in eEF1A1B to cause infertility in male tilapia 

(Oreochromis niloticus).  Unlike in human, the amino acid differences in the zebrafish 

eEF1A variants involves a loss of two tyrosine residues in eEF1A1L1. One of these 

positions, Tyr167 is likely a phosphorylation site in the eEF1A1A, eEF1A1B and 

eEF1A2, with a notably high prediction score of 0.9 in eEF1A2. Position 298, as 

mentioned above has been implicated in actin-related function in yeast and lies in close 

proximity to binding sites for eEF1Bα and aminoacyl-tRNA, was predicted to be 

phosphorylated in eEF1A1L1 (NetPhos score, 0.75) and eEF1A2 (NetPhos score, 

0.83). Interestingly, eEF1A1A and eEF1A1B has alanine at that position and this 

residue is very highly conserved with other higher vertebrates’ eEF1A orthologues. 

Modification of Ser298 could likely regulate the translation and/or actin-binding 

functions of eEF1A1L1 and eEF1A2 and possibly serve as a molecular switch for these 

isoforms between these two functions similar to what was observed with Ser21 

(Sanges et al., 2012). It has been suggested that differences in phosphorylation may 

contribute to the different oligomeric state observed in human eEF1A with eEF1A1 

having an enhanced ability to self-associate than eEF1A2 (Timchenko et al., 2013). 

While Timchenko et al., 2013 noted that the different oligomeric state did not affect 

the translation activity of the isoforms, it is likely to be of biological importance. For 

instance, in the study of Sanges et al., 2012, phosphorylation of Ser21 residue which 

affects eEF1A stability and apoptotic activity was found to be more pronounced when 

both isoforms were preincubated before the kinase assay was performed. Whether this 

is the case with the zebrafish eEF1A isoforms will require separate investigation.  

Gene expression analyses using RT-PCR confirms the presence of all four eef1a genes. 

Expression of the zebrafish eef1a genes were detected in a developmental-specific 
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manner which is a common feature of the different eEF1A genes in most species. 

During embryogenesis, eef1a1l1 was the only gene shown to have maternal 

contribution as well as zygotic expression. Interestingly, eef1a1l1 (formerly referred 

to as eef1a) has been shown to be an embryonic essential gene and is required for early 

embryonic development in zebrafish (Amsterdam et al, 2004). According to this study, 

mutation in eef1a1l1 causes abnormal phenotypes which becomes apparent from 2dpf 

in the fish. At 3dpf, the larva develops small head and eyes, reduced growth and 

eventually die at 5dpf due to failure of the swim bladder to inflate. It is worth noting 

that ISH results presented in this work shows eef1a1l1 to have a ubiquitous expression 

at 24hpf and an enriched expression in the head region and eyes of the fish at 48hpf. 

The next eef1a genes to be detected were eef1a1a and eef1a1b, while eef1a2 was the 

last to be expressed. The detection of eef1a2 at a later developmental stage is consistent 

with that of mammals, where its expression is observed much later in development 

gradually replacing eEF1A1 in skeletal muscle and neurons. 

Expression of eef1a genes was also determined in adult zebrafish using a range of 

tissues. In all the tissues analysed, mRNA of eef1a1l1, eef1a1a and eef1a1b were 

detected. The eef1a2 gene showed a tissue-specific expression pattern as its mRNAs 

was not present in the liver and was only just detected in the intestine. This is again 

another characteristics that appears to be conserved in vertebrates. The difference 

between the zebrafish eef1a2 and the mammalian and Xenopus orthologue however, 

is the presence of eef1a2 mRNA in the spleen and ovary tissues of the adult zebrafish. 

Whereas the expression pattern of eef1a1a and eef1a1b is in contrast to that of their 

mammalian orthologue, it is similar to that of Xenopus where eEF1A1 mRNA was 

also detected in the adult muscle (Newbery et al, 2011). Despite the co-expression of 

the eef1a genes in the tissues, quantification of transcripts levels in the brain, muscle 

and liver suggests that they are not present in equal amounts. While eef1a1l1 mRNA 

was more abundant in muscle and liver compared to the other eef1a genes, the levels 

of all the eef1a mRNA were the same in the brain. Similar levels of eef1a mRNA in 

the brain might stem from the presence of a more heterogeneous cell types in this tissue 

compared to the liver and muscle tissues. A follow up experiment looking at cell-

specific expression of these isoforms might shed more light on this. The eef1a2 

transcript was the second most abundant in the muscle but was only ~2-3 fold higher 
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than eef1a1a and eef1a1b. As expected and consistent with being paralogues, eef1a1a 

and eef1a1b exhibited the same expression pattern. 

Regulation of eEF1A expression resulting in the switching of eEF1A variants in the 

muscle and neuron, though conserved, occurs through different mechanism in 

mammals and Xenopus. While in mammals, this occurs at the transcriptional level, 

regulation of eEF1A expression is post-transcriptional in Xenopus (Chambers, Peters 

and Abbott, 1998; Kahns et al., 1998; Helen J Newbery et al., 2011; Svobodová et al., 

2015). Although it is not yet understood why Xenopus shows a different mechanism 

from mammalian species, Newbery et al 2011 postulated that it could likely be an 

adaption for the need of a quick response of eEF1A switching during metamorphosis. 

This is reasonable considering the dramatic developmental changes that accompany 

this process and occur in the whole organism simultaneously. It is therefore possible 

that the post-transcriptional mode of regulating eEF1A expression does not only occur 

in Xenopus species but might be conserved in lower vertebrates. Unfortunately, the 

complexity of the zebrafish eEF1A coupled with the dearth of antibodies for zebrafish 

made it impossible to reach a definite conclusion for this hypothesis. However, results 

obtained using an antibody against eEF1A2 from Abcam (ab82912) advertised to be 

specific for zebrafish indicates it might also cross-react with the other eEF1A variants, 

particularly eEF1A1A and/or eEF1A1B. This stresses the need to validate antibodies 

first before employing it for further analysis particularly with zebrafish to avoid 

misleading results. This is particularly relevant as this antibody was used in a recent 

study by Cao et al. 2017 to show the absence of eEF1A2 in their knockdown zebrafish 

model at 2dpf. My RT-PCR results revealed that all of the eef1a mRNA are already 

present at this stage and it is around this period that eef1a2 is first detected. A striking 

observation of my western blot results (summarised below) using the eEF1A2-abcam 

antibody was the absence of a band in a range of adult zebrafish tissues except brain 

where the four eef1a genes are co-expressed at the mRNA level and spinal cord. 

Interestingly, the manufacturers (Abcam) also tested eEF1A2-abcam antibody using 

protein lysates from adult zebrafish brain, heart, and skeletal muscle tissues, but only 

observed a band with the brain lysate (personal communication) which is in line with 

my own results. Although the specificity of anti-Ef1a (GeneTex) which was raised 

against eEF1A1L1 is questionable, it does confirm the presence of eEF1A in muscle. 
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It is difficult to interpret this intriguing observation. It is however possible that eEF1A2 

and eEF1A1A and /or eEF1A1B are not present in these other tissues assuming the 

eEF1A2-abcam recognises only these isoforms and not eEF1A1L1 and control of the 

zebrafish eEF1A occurs at the post-transcriptional level as in Xenopus. Alternatively, 

these isoforms might have different post-translational modification in the different 

tissue types which eEF1A2-abcam might not recognise.     

Summary of western blot results using different antibodies to probe tissues from 

adult zebrafish for eEF1A 

Antibody Brain Muscle  Liver  Spinal 

cord 

Intestine  Ovaries  Heart  

eEF1A2-2 Y Y Y NA NA NA NA 

eEF1A2-

Genetex 

Y Y Y NA NA NA NA 

eEF1A2-

Proteintech 

Y Y Y NA NA NA NA 

eEF1A2-

Abcam 

Y N N Y N N N 

Anti-Ef1a NA Y NA NA NA NA NA 

 Y- Band of the correct size detected, N- no band detected, NA- Not analysed      

Although, I was unable to investigate expression at the protein level, my findings 

suggest that while the zebrafish eEF1A isoforms have similar role in translation, the 

differences in residues, predicted phosphorylation sites and expression profile 

observed could possibly promote functional divergence in them thereby supporting a 

subfunctionalisation model for the four zebrafish eEF1A isoforms.  
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Chapter 4: Modelling eEF1A2 disease-causing 

mutation in zebrafish  

4.1 Introduction 

Since 2012, twenty different mutations in EEF1A2 have been identified in about 50 

patients. These individuals usually present with epilepsy, intellectual disability and in 

some cases autism (discussed in section 1.2.2 in Chapter 1). Modeling of these 

mutations in different living models will not only provide insight into the underlying 

mechanism of these mutations but will also help in the identification of new treatment 

for these disorders.  

Here, I describe experiments aimed at recreating the G70S mutation in zebrafish using 

CRISPR/Cas9 technology. Due to time constraints, this experiment was carried out 

concurrently with those described in chapter 5. I was however aware of the possibility 

that knocking out eef1a2 might not have any phenotypic effect in zebrafish because 

the other eef1a genes might compensate for its loss. In which case, zebrafish carrying 

a heterozygous missense mutation will be non-informative if the G70S mutation acted 

through a loss of function mechanism. As there are studies that provide evidence that 

suggests eEF1A can form dimers (Bunai et al., 2006; Sanges et al., 2012),  it is also 

possible that the G70S mutation could exert a dominant-negative effect on the wild-

type eEF1A2 or even the other eEF1As present in zebrafish. Also, it is still unknown 

whether the missense mutations in eEF1A2 results in a loss or gain of function effect 

in humans. In the study of  Davies et al., 2017, four Eef1a2G70S/-  mice generated from 

a CRISPR/Cas9-mediated gene editing experiment were found to show the typical 

wasted mouse phenotypes despite the expression of G70S protein in their brain at 

levels comparable to those of wild-type mice. This finding suggests that the function 

of eEF1A2 is compromised by the mutation since the G70S protein was unable to 

compensate for the loss of the wild-type Eef1a2 in the other allele. Also, one 

Eef1a2G70S/G70S mouse had a more severe phenotype compared to its Eef1a2 null 

littermates and had to be culled at 18 days which is earlier than that of wasted mice, 

which are usually culled at 21 days when the onset of the phenotype begins. This 

preliminary finding supports a gain-of-function mechanism is also at play with the 

G70S mutation.      
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These findings further stress the need to generate animal models that can accurately 

recapitulate the human phenotype as this will help inform decisions as regards 

developing new drug therapies. For example if these mutations are found to only lead 

to a loss of function of the mutant protein, then boosting wild-type eEF1A2 expression 

levels in the patients will be an efficient therapeutic strategy. However, this approach 

will be deleterious if the mutant protein has a dominant negative effect on the wild-

type. For this reason, it is therefore important to generate zebrafish with the missense 

mutations as eEF1A2-null zebrafish models might not be sufficient to model the 

human disorder.             

4.1.1 Guide RNA (gRNA) synthesis 

Guide RNA (gRNA) was originally designed with the intention to generate eef1a2 null 

zebrafish lines, however, for the sake of clarity it is described in here.   

Guide RNA target sites for zebrafish eef1a2 were designed using online target finders tools at 

http://crispr.mit.edu/ and at http://chopchop.cbu.uib.no/ (CHOPCHOP).  To increase the 

chances of abolishing expression of eef1a2, the majority of the gRNAs were designed to target 

sites on early exons. Also, gRNAs with no predicted off-target sites found by the finder tools 

were selected. Target sequences were amplified from genomic DNA extracted from AB wild-

type fish using the Phusion High-fidelity DNA polymerase and sequenced to confirm that no 

confounding sequence variants were present, as these can lead to a mismatch between the 

gRNAs and their target sites resulting in the inefficiency of the CRISPR/Cas9-mediated 

genome editing. Synthesised gRNAs were separately co-injected with nCas9 mRNA into 1-

cell stage zebrafish embryos. For each gRNA, target sites were amplified from pooled genomic 

DNA isolated from 10-15 injected 3 days post fertilisation (dpf) embryos. As it is likely that 

injected embryos will be mosaic, PCR products were cloned into TOPO-A vector and used to 

transform competent E. coli cells. Between 22 and 48 individual colonies were sequenced and 

used to estimate the mutagenesis efficiency of the experiment by dividing the number of 

colonies with mutant sequence insert by the total number of colonies with insert sequence I 

was able to read (see Table 4.1). The nCas9 mRNA which was co-injected with gRNA1, 

gRNA2 and gRNA7 was found to be inefficient, which could explain the low mutation rate 

observed with these gRNAs. The other nCas9 mRNA (gift from Zhiqiang Zeng) co-injected 

with gRNA3 and gRNA5 proved to be more efficient (see section 2.2.5.3 in Chapter 2). Higher 

mutagenic activity was seen in embryos injected with gRNA3 compared with gRNA5 injected 
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embryos which nevertheless also generated several mutations (Figure 4.1).  High survival rate 

was also observed in embryos injected with either gRNA3 or gRNA5.  

Table 4.1: Mutagenesis efficiency of CRISPR/Cas9 genome editing to target eef1a2 in 

zebrafish 

gRNA Exon Total 

colonies 

Readable 

sequence 

Mutant 

sequence 

Mutagenic 

efficiency (%) 

*gRNA1 2 48 35 0 0/35 (0) 

*gRNA2 2 48 24 0 0/24 (0) 

  gRNA3 3 38 31 24 24/31 (77.4) 

  gRNA5 2 36 31 9 9/31 (29) 

*gRNA7 6 22 8 1 1/8 (12.5) 

*indicates gRNA co-injected with the same source of nCas9 mRNA 
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Figure 4.1. Mutation rate analysis of gRNA3 and gRNA5 in CRISPR-Cas9 experiment. A-B. 
Examples of mutation sequences recovered from genomic DNA clones of lysed injected F0 embryos. 

(A) Shows those generated by gRNA3 and (B) shows those generated by gRNA5. Sequences 

highlighted in yellow indicates gRNAs target sites with the PAM site highlighted in purple. Inserted 

bases are in red. Sequences that are located in exons or introns are represented in upper case and lower 

case respectively. 
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4.1.2 CRISPR/Cas9-mediated HDR experimental design  

The G70S (c.208G>A) mutation, which involves an amino acid residue that is highly 

conserved, was the first disease-causing EEF1A2 mutation discovered and has been 

identified in the largest number of individuals. Patients with this mutation usually 

present with epilepsy, intellectual disability and hypotonia (see Table 1.2 in chapter 

1). This mutation occurs on exon 3 and is only 8 base pairs away from the target site 

of gRNA3 which was also used in another CRISPR/Cas9 experiment described in 

chapter 5. Encouraged by the high mutagenic activity observed at this site with 

gRNA3, I speculated that it might be suitable to facilitate a targeted knock-in approach 

to recreate the G70S (c.208G>A) mutation in the zebrafish. To this end, I designed a 

single-stranded oligonucleotide (ssODN) repair template containing the G70S point 

mutation that spanned the same region targeted by gRNA3 as it is expected that is 

where DNA cleavage was likely to occur. Flanking the G>A point mutation in the 

ssODN template were 151 and 52 base pair homology arms on the 5’ and 3’ sides 

respectively.  A silent mutation was introduced in the PAM site targeted by gRNA3 

changing it from a NGG sequence (GGG) to a non-NGG sequence (GAG) on the 

ssODN repair template. This was done to avoid subsequent DNA cleavage from 

occurring following the incorporation of the repair template. Also, the repair template 

contained a two base substitution (CTTC) 153 base pairs upstream of the G70S 

mutation site. This change does not affect eef1a2 as it is situated well into the intron 

but it introduces a novel EcoRI restriction enzyme site to aid genotyping of the fish. 

The target region and repair template design are shown in figure 4.2. 
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Figure 4.2. G70S zebrafish CRISPR/Cas9 experimental design. A. Schematic representation of 

zebrafish eef1a2 showing the distance of the gRNA3 target site from the G70S point mutation in exon 

3. B. Sequence of the 200bps repair template containing the point mutation (in purple). A novel 

restriction enzyme site (in red) was introduced into the intron which is represented by the orange 

nucleotides. Target site sequence is in blue. PAM site is mutated from GGG to GAG to avoid cleaving 

of the repair template once integrated. C. The translated amino acid sequence of WT and a G70S 

template showing that the PAM-blocking mutation (highlighted in orange) is silent and does not alter 

the coding potential of eef1a2 and also the serine residue in the G70S repair temple.   
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4.1 Results 

4.1.1 Microinjection and screening of founders for mutation  

The ssODN repair template along with gRNA3 and Cas9 mRNA was microinjected 

into one-cell embryo stage by the fish facility Manager, Dr. Cameron Wyatt. The repair 

template was injected at two test concentrations; 92ng/µl and 183ng/µl into 108 and 

131 embryos respectively. Injected embryos were placed in E3 solution in batches of 

50 per 9cm Petri dish and kept in the incubator at ~ 28.5oC.  Dead or deformed embryos 

were discarded and the healthy ones were placed in fresh E3 medium daily. At 5 days 

post fertilisation, injected embryos were transferred to tanks and raised until they were 

2 months old. Table 4.2 summarises the number of injected fish at different ages that 

were alive during the course of the experiment.          

 Table 4.2: Number of surviving fish at different ages injected with 92ng/µl and 

183ng/µl ssODN  

ssODN 

concentration 

Number of injected 

one-cell embryos 

Number of injected 

embryos at 5dpf 

Number of injected 

F0 at 2 months old 

G70S 92ng/µl 108 100 46 

G70S 183ng/µl 131 113 40 

 

DNA was isolated from fin-clips of 2 month old injected fish (F0) and the region 

around the EcoRI restriction enzyme site and mutation site was amplified. 

Incorporation of the PAM-blocking and G70S silent mutation will result in the loss of 

the two MnlI site (Figure 4.2A), as such MnlI would fail to digest G70S mutant 

amplicons, thereby identifying founders with this mutation. Also, the amplified PCR 

product of 489 base pairs digested with EcoRI will generate bands of 429 and 60 base 

pairs if the repair template was incorporated by homology-directed repair (HDR) since 

this restriction enzyme site was engineered into the repair template only. The 

restriction enzymes, MnlI and EcoRI, were then used to digest PCR products to 

determine if the knock-in experiment was successful (Figure 4.3).                     

A total of eighty-six F0 fish were genotyped using both restriction enzymes but none 

of them were found to have incorporated the repair template or have the G70S 

missense mutation. Insertion and deletion mutations, mainly around the target site of 
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gRNA3, were consistently revealed on sequencing cloned PCR products obtained from 

a total of 21 founders (Figure 4.3C). These results, therefore suggests that the 

CRISPR/Cas9-mediated HDR experiment was unsuccessful.   

Since no founder with the desired mutation was identified, this work could not be taken 

further and there was insufficient time to attempt another experiment to produce a 

G70S zebrafish line. 
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Figure 4.3. CRISPR/Cas9 experiment generated indels but failed to generate a G70S mutation in 

ssODN injected founders. A. Sequence of PCR product for wild-type (WT) and G70S. Orange 

sequence indicates target site while PAM site is underlined. MnlI cut sites (highlighted in grey) is shown 

in the wild-type PCR product. These sites have been destroyed by the PAM-blocking mutation (G >A 

in the G70S product) and the G70S point mutation (shown in purple). Yellow highlight indicates EcoRI 

cut site contained in the repair template by a CT to TC substitution. B. Example gel electrophoresis of 

PCR products and restriction enzymes (MnlI and EcoRI) digest from 23 founders. NTC indicate a ‘no 

template control’ while ‘+’ indicate a positive control that cuts with EcoRI. Predicted band sizes using 

NEBcutter V2.0 are shown to the right of the digest gels. PCR product size; 489bp. MnlI (middle) - WT 

band sizes: 291bp, 190bp and 8bp. G70S band uncut (489bp). EcoRI (bottom) - WT band uncut (489bp). 

G70S band sizes: 429bp and 60bp. + band sizes: 171bp and 73bp. C. Example sequence results from 

cloned PCR products from founders. Note that some of the generated indels destroy one or both of the 

MnlI cut sites which could explain the partial digest of some amplicons by MnlI.                         

 

4.2 Discussion 

There has been a remarkable development of different tools for gene manipulation 

such as the zinc finger nucleases (ZFN), transcription activator-like effector nucleases 

(TALEN) and the more recent clustered regularly interspaced short palindromic repeat 

(CRISPR) system. With these genome editing technologies, mutations at a desired 

location in the genome can be efficiently generated in various model organisms. 

CRISPR/Cas9  has been shown to be highly efficient in inducing mutations at rates 

comparable or even exceeding that of ZFN and TALEN, which were the most used 

methods before the CRISPR/Cas9 system was adapted for use in the zebrafish 

(Hruscha et al. 2013, Hwang et al. 2013, Jao et al 2013). However, CRISPR/Cas9 

offers the advantage of being cheaper, easier to design and less time consuming than 

ZFN and TALEN, making it an excellent alternative to these other methods. 

After successfully identifying a gRNA with high mutagenic activity which was 

fortunately in close proximity to the G70S mutation, I sought to use this gRNA in a 

CRISPR/Cas9-mediated HDR experiment to recreate the point mutation in the 

zebrafish eef1a2. The G70S (G>A) point mutation is only 8 base pairs away from the 

target site of gRNA3 with a mutagenic efficiency of 77.4%.  A repair template was co-

injected with gRNA3 and Cas9 mRNA to take advantage of the homology-directed 

repair (HDR) pathway to introduce our desired mutation. A ssODN was used as the 

donor repair template and designed to contain the point mutation and a silent mutation 

at the PAM site, to avoid further targeting once it has been integrated into the gene. In 

addition, a novel EcoRI restriction site was engineered into the ssODN to assist in 

genotyping the fish. Due to time and space constraints, screening for the G70S 



126 
 

mutation was carried out in the founders. Unlike non-homologous end joining (NHEJ) 

induced gene disruption, HDR requires screening for a precise mutation and can be 

time-consuming especially in zebrafish where there are high levels of mosaicism 

among founder fish. For this reason, founders were pre-screened using restriction 

fragment length polymorphism (RFLP) analysis. G70S founders were to be identified 

based upon their loss of MnlI sites and the ability of their PCR products to be digested 

when treated with EcoRI. Unfortunately, the expected cut pattern was not observed in 

any of the founders. Although a partial cut was observed when some of the PCR 

products were digested with MnlI, sequencing results obtained from some founders 

showed similar NHEJ-induced indel distribution which disrupted the MnlI sites. Also, 

EcoRI failed to digest the amplicons further supporting that the partial cut might be 

due to these indel mutations and not as a result of the G70S mutation being 

incorporated. There is, however, the possibility that fish with a point mutation could 

be missed using this approach as a result of the high null background. As such it is best 

to analyse F1 generation when possible to avoid this complication due to mosaicism 

in founders. However, the mutation must occur in the germline of the founders and 

breeding large number of fish for screening might be needed. Taken together, these 

results suggest that HDR did not occur and that the induced double-stranded breaks 

were likely repaired by the NHEJ pathway only.   

HDR is a rare event with DSBs being predominantly repaired by the NHEJ pathway 

which occurs at least 10-fold higher than HDR during early embryonic development 

in the zebrafish (Dia et al. 2010, Li et al. 2015). Although the efficiency of the NHEJ 

pathway was high and reliably generated indels, none of the fish had incorporated the 

G70S point mutation. A similar experiment was performed by Armstrong et al, 2016 

where they successfully introduced a point mutation in tardbp and fus but with very 

low efficiencies. Surprisingly, the gRNA target sites for tardbp and fus used in their 

study had low efficiencies of 21% and 17% respectively. It is, however, possible that 

the position of their point mutation, being within the gRNA target sites, favoured the 

integration of the repair template. Interestingly, a systematic characterisation of the 

distance of the mutation to the cut site showed that a distance of 10bp reduces HDR 

efficiency by half in human IPS cells (Paquet et al. 2016). Several other studies have 

demonstrated the feasibility of precise gene modification using CRISPR/Cas9-
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mediated HDR, but its efficiency is still considerably low in zebrafish and results have 

been inconsistent in zebrafish (Cornet, Di Donato and Terriente, 2018; Zhang, Zhang 

and Ge, 2018). This has become a limiting factor in harnessing the combined 

advantage of the CRISPR/Cas9 technology and the zebrafish model stressing the need 

for further investigations pertaining to the development of an efficient CRISPR/Cas9-

mediated HDR protocol that could be routinely used in the laboratory. This might 

require a systematic approach to optimise the best conditions of the several factors 

showed to influence HDR efficiencies such as the activity rate of the gRNA, distance 

of mutation from the target site and design of repair template. Interestingly, in the study 

by Armstrong et al, 2016, two ssODN templates that differ in length showed different 

HDR efficiency, with the 100 base pairs template having a slightly higher efficiency 

than the one which was 23 base pairs in length. Also, while Armstrong et al, 2016 

postulated that a higher HDR efficiency would have been achieved if gRNAs with high 

efficiencies were used, results from my study shows that several other factors order 

than the use of poor gRNAs might have been responsible.      

Interestingly, a recent study by Zhang et al. 2018 demonstrated that employing a 

combination of the optimal condition of these factors significantly increased the rate 

of CRISPR/Cas9-mediated HDR. The approach used in this study that was most 

effective involved the use of a plasmid DNA donor, suppressing NHEJ and enhancing 

HDR rates by the use of drug antagonists: SCR7 (inhibits NHEJ) and RS-1 (HDR 

enhancer), Cas9 protein and a CRISPR/Cas9 blocking mutation. A combination of 

these parameters and a gRNA with a mutation rate of 80% resulted in a high HDR 

efficiency rate of about 74% and a germline transmission rate of 25%. Another 

advantage of this study is that it was designed such that point mutations can be easily 

identified in founders with a high background of indel mutations when screening, 

avoiding the need to breed large number of fish. The protocol described by Zang et al. 

2018 could, therefore, be adapted as a guide in designing another round of 

CRISPR/Cas9 experiment to generate a G70S mutant zebrafish line. It is important to 

note that the point mutation incorporated in this study was within the target site which 

could have also contributed to the high level of efficiency obtained in this study. 

However, there is the possibility that the distance of the G70S point mutation from the 

target site might not dramatically reduce the expected level of efficiency reported as it 
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is only 8 base pairs away from the gRNA3 target site. Interestingly, it might even 

increase the chances of generating fish heterozygous for the G70S mutation which will 

be equivalent to the genotype seen in humans as well as other genotypes for 

comparative studies. This is because optimisation of the adequate distance between the 

target site and the mutation position by Paquet et al. 2016 showed that a distance of 5-

20 base pair favours heterozygous editing, while a gRNA targeting <10 bp from the 

mutation was ideal for homozygous editing. Although Paquet et al 2016 carried out 

this work in human IPS cells, this relationship between the cut to mutation distance 

and zygosity might also be applicable to the zebrafish. It might, therefore, be possible 

to make use of gRNA3, avoiding the need to design and assess the mutation efficiency 

of another target site.   

CRISPR/Cas9 genome editing was recently used in our laboratory to generate mice 

with G70S with a high level of efficiency (Davies et al., 2017). Although no mice 

heterozygous for G70S mutation were recovered, this study provided some 

preliminary findings that suggest the G70S mutation might also act through a gain of 

function. Given the importance of the functional impact of the G70S mutation in 

developing treatment strategies, a G70S zebrafish mutant line will be useful as an 

additional model to confirm this finding. I will also be interested in modeling other 

disease-causing eEF1A2 mutations using the method from the study of Zhang et al, 

2018 since it is possible these mutations might operate through different mechanisms 

as suggested by the phenotypic heterogeneity in the patients. For example, the D252H 

mutation which could be used in future studies together with our recently generated 

mice and LUHMES cells D252H models. Moreso, since I was able to generate and 

characterise a homozygous null zebrafish line (discussed in chapter 5), results on the 

effect of these missense mutations would be easier to interpret.   
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Chapter 5: Generation and characterisation of eef1a2 

knockout zebrafish model 

5.1 Introduction 

Complete loss of Eef1a2 in mouse causes motor neuron degeneration in the spinal cord 

anterior horn, muscle wasting and death by 4 weeks. More recently, a heterozygous 

null mutation in Eef1a2 has been shown to cause a minor social discrimination in mice, 

even though these mice appear normal (J.E Hope, Ph.D. thesis). Studies using this 

model have no doubt provided valuable information on eEF1A2 function in vivo. 

However, homozygous Eef1a2 null mice show postnatal mortality and are therefore 

not a suitable model for drug discovery studies. Also, the use of rodent models in the 

development of new drugs is costly, time-consuming, ethically challenging and usually 

performed at low-throughput. On the other hand, zebrafish has been shown to be an 

ideal model system for the screening of new drug molecules. This model provides a 

whole-animal system for investigating the onset and course of a pathological process 

in vivo and at the same time, allows for high-throughput screening of several small 

molecules simultaneously which saves time and is cost-effective, which is particularly 

useful in the pharmaceutical drug discovery field (Lieschke and Currie, 2007). For this 

reason, I aimed to investigate whether the zebrafish could be used as a complementary 

model to fill this need.  

Bioinformatics and expression analysis described in chapter 3 identified four eef1a 

genes with a clear indication of the presence of a eEF1A2 orthologue in the zebrafish 

which is similar in amino acid sequence (94%) to that of the mouse. This also provides 

some evidence of sub functionality among these genes as they showed distinct 

expression profiles during the development of the zebrafish embryo. However, this 

interpretation is confounded by the co-expression of all the eef1a transcripts in a range 

of adult tissues which might also indicate functional redundancy. It is important to note 

that regulation of eEF1A expression in Xenopus occurred at the post-transcriptional 

level (Newbery et al 2011), therefore making the interpretation of the RNA level 

expression data not straightforward. 
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In this chapter, I describe work focused on eef1a2 as this will provide an essential 

underpinning for assessing the suitability of the zebrafish as a model for our studies. 

This was achieved by 

 Generating a eef1a2 knockout zebrafish model using a CRISPR/Cas9 

system  shown to be efficient in zebrafish (Hwang et al., 2013) and the 

subsequent validation of  two independent mutant lines  

 Characterising mutant lines to determine the effect of eef1a2 disruption 

on phenotype and survival in zebrafish    

  

5.2 Results                 

5.2.1 Generation of eef1a2 null zebrafish lines  

To generate a null eef1a2 zebrafish model using CRISPR/Cas9, I designed and 

constructed five different guide RNA sequences (gRNAs) targeting the eef1a2 gene. 

This is described in full details in section 4.1.1 in chapter 4. Two of these gRNAs; 

gRNA3 and gRNA5 which showed the highest mutagenic activity were then selected 

for further investigations. Embryos injected with gRNA3 and gRNA5 showed a high 

survival rate of 93% and 67% respectively. At 2 months old, nine CRISPR-injected 

fish for each gRNAs were genotyped using genomic DNA isolated from tail fin 

clipping to identify potential founders using the Agilent 2100 Bioanalyser. If 

mutagenesis is successful in the F0, PCR products will be made up of a mixture of 

wild-type and different mutant sequences since founders are usually mosaic. The 

presence of multiple sequences creates heteroduplex DNA which could be seen for all 

F0 genotyped (Figure 5.1). 
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Figure 5.1. PCR products amplified from F0 fish injected with gRNA3 or gRNA5 in the CRISPR-

Cas9 experiment. Screening of potential F0 mutants injected with gRNA3 (top) or gRNA5 (bottom). 

Level of mismatches forms heteroduplexes (red line). Black star indicates founder (F0) used to generate 

mutant lines. WT1, WT2 and WT3 indicate PCR products from fin clipping obtained from three 

different uninjected wild-type fish.  
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5.2.2 Germline transmission and establishing stable mutant lines 

In order to employ these mutants for further characterisation, it is important to generate 

fish with identical mutations in every cell. This is only possible after germline 

transmission of the mutations of the putative founder fish, which are genetically 

mosaic. To confirm that mutations could be transmitted to their offspring, nine of the 

screened F0 of each gRNAs were in-crossed separately and individual F1 embryos 

were sequenced. gRNA5 injected F0 had a low germline transmission frequency of 

18.8% (mutant F1/examined F1= 6/32) while a much higher germline transmission 

frequency of 82.9% (mutant F1/examined F1= 25/35) was observed in F0 injected with 

gRNA3.  

To establish stable null mutant lines, putative founders were outcrossed with wild-type 

fish to avoid transmitting unlinked off-target mutations. Mating was successful with 

founder A2 (gRNA3) and three mutant alleles were recovered (Figure 5.2A). Two 

alleles, a 4 base pair insertion (hereafter referred to as Ins4) and 2 base pair deletion 

(hereafter referred to as Del2) were chosen for further analysis. Heterozygous fish 

carrying the same eef1a2 mutation were crossed and the mutation was confirmed in 

F2 homozygote offspring using Phusion High fidelity DNA polymerase (Figure 5.2B-

C). Complete loss of Eef1a2 in mice causes a wasted phenotype from 21 days of age 

with rapid deterioration and the homozygous mice die by 28 days (Shultz, L.D, Sweet, 

H.O, Davisson, 1982). Interestingly, both eef1a2 mutant lines reached adulthood 

without showing any obvious abnormal phenotypes and were fertile (Figure 5.2D). As 

a result, I was able to maintain them in homozygosity.  
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Figure 5.2. Establishing eef1a2 mutant zebrafish line. A. Schematic of outcross mating of founder 

fish with wild-type showing recovered F1 sequences with the number for each sequence indicated in 

brackets. Target sequences (yellow highlight) and PAM site (purple) with red showing inserted bases. 

B-C. Predicted effect of the mutant allele (upper panel) and Sanger sequencing data from homozygous 
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fish which confirmed mutant alleles for Del2 and Ins4 mutant lines (bottom panel). Aberrant residues 

are shown in red D. No overt difference in homozygous Del2 (6 months) and Ins4 (8 months) adult fish 

from wild-type (6 months) adult fish.     

  

5.2.3 Del2 and Ins4 mutant lines show reduced eef1a2 transcript levels. 

Selected alleles are predicted to cause a frameshift lesion which introduces a premature 

stop codon. It is likely that the mRNA transcripts from these alleles would be subjected 

to nonsense-mediated decay, since the premature stop codon occurs early and is 

located > 50 – 55 nucleotide upstream an exon-exon junction (Brogna and Wen, 2009; 

Popp and Maquat, 2016). The Del2 allele is predicted to encode a truncated 

polypeptide with 11 aberrant amino acid residues starting with an Arg to Gly 

substitution at position 67, while the Ins4 allele encodes a truncated polypeptide 

containing 14 aberrant amino acids (Figure 5.2B-C). To investigate the severity of 

these mutant alleles, I examined the levels of eef1a2 transcript by real-time 

quantitative PCR in adult homozygous Del2 and Ins4 mutant zebrafish tissues. Two 

different set of primers, eef1a2P and 3’eefla2, were used for both lines while a third 

primer set; eef1a2S was used only in Ins4. The location of the primers in relation to 

the target site is illustrated in figure 5.3. The 3’eef1a2 primer set which is located 

further downstream from the target site was designed to assess nonsense-mediated 

decay efficiency. Both Del2 and Ins4 mutations lead to a decrease in transcripts levels 

compared with those seen in the wild-type siblings. Using primers eef1a2P and 

3’eef1a2, eef1a2 levels were reduced by approximately 81% and 92% in the Del2 

homozygous adult brain compared to their wild-type siblings. On the other hand, 

eef1a2P and 3’eefla2 showed a eef1a2 transcript level reduction of approximately 86% 

and 95% respectively in the Ins4 homozygous adult brain compared to wild-type. 

Similarly, eef1a2S showed a decrease of eef1a2 mRNA of approximately 82% in F2 

Ins4 homozygous adult brain and muscle tissues compared with wild-type (see 

Appendix figure 2A).  

These primer sets were then used to assess the transcript levels of eef1a2 in the brain 

of adult homozygous 12bp deletion mutants. As expected, there was no significant 

decrease in transcript levels as this is an in-frame mutation and is not predicted to cause 

a truncated protein (see Appendix figure 2B). These results suggest that the Del2 and 
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Ins4 allele leads to an increased messenger RNA degradation rate possibly through 

nonsense-mediated decay (NMD). It is, therefore, possible that Del2 and Ins4 are 

severe mutations and homozygous mutant fish could be null mutants.    
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Figure 5.3. Reduced eef1a2 transcript levels in Del2 and Ins4 mutants. A. Schematic of the eef1a2 

gene with untranslated region, exons and introns depicted as open box, filled box and line respectively. 

The position of the three different primer sets; eef1a2S (Blue triangle), eef1a2P (black triangle) and 

3’eef1a2 (red triangle) is illustrated in relation to the gRNA3 target site (PAM site sequence in red).  B-

C. eef1a2 mRNA expression (normalised to three reference genes: ATPsynth, NADH and 16S) as 

assessed by qPCR in (B) F2 Del2 homozygous (4 months) and (C) F3 Ins4 homozygous (3 months) and 

age-matched wild-type adult brain. Transcript levels of eef1a2 were reduced in both lines using two 

different sets of primers suggesting NMD is taking place. Results are means + S.E.M.; n=3 in each 

group. *p < 0.05 (Mann Whitney test)    
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5.2.4 Characterisation of mutant fish by histology  

Since the eef1a2 mutant zebrafish had a normal physical appearance and did not show 

any obvious phenotype, I decided to perform a histological analysis of the central 

nervous system in adult mutant fish to establish whether any changes could be 

identified at a cellular level. Loss of function of Eef1a2 in mice has been well 

characterised and shown to cause severe neuromuscular abnormalities such as motor 

neuron degeneration of the anterior horn of the spinal cord and muscle wasting which 

is of neurogenic origin (Newbery et al., 2005; Doig et al., 2013). As a preliminary 

study, a detailed histological examination of longitudinal brain sections, 3µm-thick, 

obtained from one male homozygous Ins4 adult fish (5 months old) was carried out by 

Dr. Jorge del Pozo, a diagnostic pathologist at Easter Bush Veterinary Centre (EBVC). 

He observed lower neuronal density in the cerebellum and medulla oblongata in the 

Ins4 mutant compared with its age-matched male wild-type sibling (see Appendix 

figure 3). Interestingly, Shultz et al 1982 reported loss of Purkinje cells in the brain of 

wasted mouse. Therefore, a follow-up study was carried out using three male fish per 

genotype including the homozygous Del2 mutants as a complementary line which 

would also be predicted to be effectively null. Longitudinal brain sections of 3µm-

thick were also generated from each fish and stained with H&E at the EBVC. For each 

fish, I analysed the number of Purkinje cells in the cerebellum at three areas around 

the corpus cerebelli (Figure 5.4A). This region was chosen as it was best represented 

in all the fish and allowed uniformity of sampled areas. Using one-way ANOVA, there 

was no significant difference in the density of Purkinje cells in the cerebellum of Ins4 

and Del2 mutants when compared to wild-type (Figure 5.4B). It is, therefore, possible 

that the difference initially observed was artefactual.       

Thin sections of spinal cord from homozygous Ins4 and Del2 adult fish were evaluated 

for gliosis. Gliosis is the reactive response to a variety of injuries to the central nervous 

system from trauma to neurodegeneration (Goc et al., 2014). During this process, 

microglia and astrocytes are activated and expression of glial genes are upregulated, 

one of which is GFAP (O’Callaghan and Sriram, 2005). Glial fibrillary acidic protein 

(GFAP) is a widely used biomarker to evaluate gliosis and high level of staining of 

this protein has been shown to occur in the anterior horn of the spinal cord of wasted 
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mouse (Newbery et al., 2005). I, therefore, stained spinal cord sections from 

homozygous Del2 and Ins4 mutants with an antibody against GFAP. Spinal cord 

sections of homozygous Del2 and Ins4 mutants did not show increased staining for 

GFAP when compared to wild-type (Figure 5.4C). These results suggest the absence 

of neurodegeneration in the spinal cord of both mutant lines.      
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Figure 5.4. Del2 and Ins4 characterisation by histology. A. Representative Screenshot of 

ImageJ counter window used for analysing the Purkinje cell density in the cerebellum. The three 

sampled areas around the corpus cerebelli (CCe) (indicated with yellow squares) show individual 

Purkinje cells counted for square 1 (blue), square 2 (cyan) and square 3 (green) B. Graph showing 

average number of Purkinje cells per µm2 in homozygous Del2 and Ins4 fish compared to wild-type 

adult cerebellum. No significant difference was observed (One-way ANOVA). Results are means + 

S.E.M.; n=3 fish per genotype. C. Anti-GFAP antibody stained transverse sections of homozygous Del2 

and Ins4 spinal cord shows no sign of neurodegeneration. Negative control of a no primary (No Pri) 

was included which showed no staining. Scale bar = 100µm             
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5.2.5 Transcript levels of the other eef1a genes 

To investigate whether there might be an underlying compensatory mechanism from 

the other eef1a genes leading to the healthy appearance of the two mutant lines 

generated, quantification of transcript level of the other eef1a genes (eef1a1l1, eef1a1a 

and eef1a1b) was performed in homozygous Del2 and Ins4 mutants. Pre-validated 

custom primers for eef1a1l1, eef1a1a and eef1a1b from Primerdesign and the same 

brain cDNA used to quantify eef1a2 transcripts levels in section 5.2.3 were used for 

this experiment. Using the Mann Whitney test, transcripts level of the other eef1a in 

Del2 and Ins4 mutants were not significantly different from wild-type fish (Figure 5.5).  

There is the possibility of the endonuclease activity of Cas9 to lead to random off-

target mutations. The chances of this occurring are further favoured with the presence 

of four homologous eef1a genes and the use of a gRNA that targets exonic region 

which displays high similarities across the gene family. With this in mind, these data 

were also used to investigate any off-target effect of the CRISPR/Cas9 experiment 

involving the other eef1a genes. Since no significant change in the expression level of 

the other eef1a transcripts was observed, it suggests they were unaffected by the 

CRISPR experiment. 
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Figure 5.5. Transcript levels of the other eef1a gene in del2 and Ins4 adult brain. A. eef1a1l1 (left), 

eef1a1a (middle) and eef1a1b (right) mRNA expression levels in del2 homozygous adult brain. B. 

eef1a1l1 (bottom left), eef1a1a (bottom middle) and eef1a1b (bottom right) mRNA expression levels 

in Ins4 homozygous adult brain. Transcript levels of the other eef1a genes (normalised to three reference 

genes: ATPsynth, NADH and 16S) were not significantly different compared to wild type. Results are 

means + S.E.M.; n=3 in each group. 
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5.2.6 Behavioural characterisation of homozygous Ins4 mutant larvae 

It was recently discovered in our laboratory that homozygous Eef1a2 null mice on a 

pure C57BL/6 background, generated from a CRISPR/Cas9 experiment, were 

susceptible to audiogenic seizures. This finding was particularly interesting as epilepsy 

has been noted to occur in individuals with missense mutations in eEF1A2, with the 

mutation being de novo in almost all cases. Both of these findings suggest eEF1A2 to 

be an epilepsy susceptibility gene. I decided to investigate the susceptibility of eef1a2 

null fish to chemical-induced seizures especially as zebrafish are considered good 

models to study epileptic seizures in humans as they can be used for high-throughput 

screening for effective AEDs which has already been demonstrated by Baraban, 

Dinday and Hortopan, 2013 (discussed in section 1.3.3). For this experiment, 

pentylenetetrazole (PTZ) was chosen since it a common and well-established 

compound used to induce seizures in zebrafish. Also, PTZ-induced seizures in 

zebrafish larvae have been fully characterised and found to closely resemble seizure 

behaviour and changes evoked in rodents (Baraban et al., 2005). Titration of five 

different PTZ concentrations; 1mM, 2mM, 2.5mM, 5mM and 15mM dissolved in 

normal E3 medium was carried out using 5 dpf wild-type larvae to identify the 

optimum concentration of PTZ that gives the best results of inducing a seizure 

phenotype in wild-type prior to performing the experiment on the mutants. The PTZ 

concentration at 2.5mM induced a mild increase in activity in the larvae and was 

selected as the working concentration. The rationale behind this was that an increase 

in hyperactivity by the eef1a2 null mutants at this concentration compared to wild-type 

would be easily detected if a synergic effect of eef1a2 knockout and PTZ treatment 

occurs. Only homozygous Ins4 and wild-type larvae were used, as homozygous Del2 

mutants were not available at the time this experiment was conducted. Twenty four 5 

dpf larvae per treatment group were placed in individual wells of a 96-well plate.  

To quantify locomotor activity, zebrafish larvae were monitored using a mounted 

Nikon camera (Figure 5.6A) and EthoVision XT9 locomotion tracking software which 

was performed by Dr. Pia Lundergaad. Twenty minute baseline recordings were 

obtained from fish in E3 embryo medium alone. Afterward, for each genotype, 24 

larvae were treated with 2.5mM PTZ dissolved in normal E3 medium and 24 larvae 
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maintained in normal E3 medium to serve as controls, and activity was monitored for 

80 minutes divided into 4 blocks of 20 minutes. Activity did not differ significantly 

across the groups when in normal E3 medium after analysing the whole 20 minutes of 

baseline recording (Figure 5.6B). On the addition of 2.5mM PTZ, treated fish showed 

a marked increase in locomotor activity when compared to untreated controls (Figure 

5.6C). Interestingly, a significant increase in activity was observed for 2.5mM PTZ 

treated Ins4 fish compared to 2.5mM PTZ treated wild-type fish in the first 20 minutes 

after treatment using repeated measures ANOVA. However, this difference is lost 

when activity is analysed for the rest of the video (Figure 5.6C). Notably, a decline in 

larval movement was observed in wild-type and Ins4 2.5mM PTZ treated fish from 40 

to 80 minutes while untreated fish activity remained at a stable level for the entire 

monitoring session (Figure 5.6C). 

 To investigate whether these behaviours observed in the PTZ treated fish could be 

seizure related, the video for only the first 20 minutes following PTZ treatment was 

analysed by Dr. Rodanthi Lyraki who was blinded to genotype and treatment for 

seizure-like behaviour according to Baraban et al, 2005 (see section 2.2.8 for 

description) to obtain an unbiased result. All three stages of seizure were evoked in 

Ins4 and wild-type larvae treated with 2.5mM PTZ, with the least number of fish 

reaching stage III within 20 minutes of PTZ treatment (Figure 5.7). The latencies to 

the first sign of the stages of seizure-like activities were analysed for both PTZ treated 

group. Although all PTZ treated Ins4 and wild-type fish exhibited stage I behaviour, it 

was challenging for Dr. Rodanthi Lyraki, who performed the analysis, to accurately 

pinpoint the specific time some of them showed the first signs of stage I. Analysis of 

the available data using Two-way ANOVA showed no significant difference in the 

latency for both genotypes to show the first sign of any of the three stages of seizure 

behaviour scored within 20 minutes after treatment (Figure 5.7A).  
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Figure 5.6. Locomotor activity analysis of Ins4 and wild-type zebrafish larvae exposed to 2.5mM 

PTZ or E3 medium. A. Schematic of experimental set-up used for obtaining video recordings for 

analysis. B. Bar plot showing the average larval locomotor activity of 5 dpf Ins4 and Wild-type larvae 

in E3 medium (baseline activity) over a 20 minutes period. In the absence of PTZ, no significant 

difference in the average total distance moved was observed among the group (One-way ANOVA, p-

value 0.6). WT (control) and Ins4 (control) were maintained in E3 medium, which was also the vehicle 

used in dissolving PTZ, for the entire recording sessions. C. graph showing the behavioural profile of 

larvae exposed to E3 only or with 2.5mM PTZ. The average total movement is shown per 20 minutes 

interval of the tracking session. ** is the confidence level for time point when the total distance moved 

for Ins4 (2.5mM PTZ treated) was significantly increased compared to wild-type (2.5mM PTZ treated) 

using repeated measures ANOVA. (**: p < 0.01). Results are means + S.E.M.; n=24 larvae per group. 

 

 

A 
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Figure 5.7. Seizure behaviour analysis in Ins4 and wild-type zebrafish larvae. A. Graph showing 

the latency to the first sign of seizure activity for three seizure stages in homozygous Ins4 and wild-type 

5 dpf larvae after 20mins of treatment with 2.5mM PTZ. Seizure scoring was performed blind. Results 

are means + S.E.M.; n=24 larvae per genotype. B. graph showing number of Ins4 and wild-type larvae 

exposed to 2.5mM PTZ that reached each seizure stages. Note that PTZ evokes stage III behaviour at 

this concentration in few larvae.      
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5.3 Discussion   

In this chapter, I aimed to investigate the function of eef1a2 in zebrafish as a 

complementary animal model to mouse. To this end, I generated two mutant lines, 

namely Del2 and Ins4, using CRISPR/Cas9 technology. Both alleles are predicted to 

cause a frameshift mutation in exon 3 which if translated would encode a truncated 

polypeptide (79 and 81 amino acids long for Del2 and Ins4 respectively). However, 

the mRNA transcribed from both alleles is likely to be degraded through the activation 

of nonsense-mediated mRNA decay and would not be translated. This process is 

usually activated when a premature stop codon occurs early and is located > 50 – 55 

nucleotides upstream of an exon-exon junction (Brogna and Wen, 2009, Popp and 

Maquat, 2016) as is the case with both mutations. In line with this, Del2 and Ins4 

mutant lines showed a significant decrease in eef1a2 mRNA expression in adult brain 

and muscle. This does not preclude the possibility of translation re-initiation occurring 

downstream of the mutation. However, the 3’eef1a2 primer set which was designed to 

amplify the 3’ end of the gene showed a more dramatic decrease of eef1a2 mRNA in 

both mutant lines, making the possibility of any other products less likely. The 

unavailability of a specific eEF1A2 antibody made it impossible to confirm whether 

these mutants were true null. Nevertheless, the findings that mutant transcripts are 

likely targets of nonsense-mediated decay suggests both the Del2 and Ins4 mutations 

are deleterious. Therefore, the eef1a2 mutants I generated should be good models for 

investigating the role of eEF1A2 in disease. 

In contrast to wasted mice, where complete loss of function of eEF1A2 is lethal, 

homozygous zebrafish eef1a2 mutants appeared healthy and reached adulthood and 

showed no obvious abnormal phenotype. Adult homozygous Del2 and Ins4 mutants 

were fertile and produced viable embryos. With no observable phenotype displayed 

by fish of either the Del2 or Ins4 lines, they were further characterised for other 

phenotypes at the cellular level using immunohistological techniques. With the wasted 

mouse phenotype in mind, which has been shown to be of neurogenic origin (Doig et 

al., 2013), a comparative analysis of the central nervous system was performed. 

Although Purkinje cell degeneration was shown to occur in the cerebral cortex of 

wasted mice by Shultz and colleagues, 1985, adult fish from both mutant lines did not 

show any Purkinje cell loss in the brain. It is worth mentioning, however, that this 
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observation by Schulz et al, 1985 has not been replicated till date by other studies that 

have also characterised the wasted mouse model (Chambers, Peters and Abbott, 1998; 

Khalyfa et al., 2001; Newbery et al., 2005). No evidence of motor neuron degeneration 

was observed in the spinal cord of fish from both mutant lines, although this 

experiment was limited by the lack of a suitable control for gliosis.  

One likely explanation for this difference could be due to species differences. As 

detailed in chapter 3 of this thesis, the zebrafish genome contains four eef1a genes that 

encode different closely related proteins which presumably retained the main function 

in protein synthesis. Also, eef1a2 mRNA was found to be co-expressed with the other 

eef1a mRNAs. Although it was not possible to confirm this at the protein level, the 

apparent lack of phenotype is indicative of the possibility of paralogue redundancy and 

could explain why a deleterious mutation in eef1a2 is well tolerated in zebrafish. Also, 

unlike mammals, the zebrafish CNS has regenerative capacity throughout its life. This 

confounding factor poses an obstacle especially as motor neuron degeneration is the 

benchmark outcome expected in the zebrafish eef1a2 mutants. If regenerative 

responses are activated in these mutants, the neurodegenerative phenotypes might be 

subtle and easily masked by the continuous replacement of dead neurons with new 

ones. Interestingly, eEF1A genes have been identified to be differentially expressed 

during regeneration processes. A transcriptomic analysis of tail regeneration in Anolis 

carolinensis (green anole lizard) revealed eEF1A2 to be differentially expressed in the 

regenerating tail at the 25th day after autotomy and was upregulated 10-fold compared 

to lizard embryos (Hutchins et al., 2014). Another study identified all four eef1a genes 

to be differentially expressed at five different time points of regeneration after crushed 

injury in the zebrafish spinal cord using genome-wide expression profiling technique 

(Hui et al., 2014). From the regeneration data generated from this study, it was noted 

that the eef1a genes showed an expression pattern of up and down regulation across 

the five time points analysed. It is, therefore, possible that any of the eef1a genes could 

contribute to the regeneration process if this is the case. Another possible explanation 

could be that Del2 and Ins4 fish, unlike the wasted mice model, may not be true null 

mutants and may retain some degree of residual function of eef1a2. However, the 

consistency of the eef1a2 reduction observed with three different set of primers makes 

it unlikely.  
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While this project was ongoing, a study was published where the authors suppressed 

eef1a2 expression using morpholinos. Interestingly, Cao et al, 2017 observed skeletal 

muscle weakness, cardiac failure and small head phenotypes in eef1a2 morphants. The 

discrepancy between my findings and those of Cao et al, 2017 may have to do with 

the different approaches used to disrupt eef1a2 function. It is now a common 

occurrence that CRISPR-induced mutants fail to replicate morpholino-induced 

phenotypes since the development of efficient genome editing techniques in zebrafish. 

However, it is worth noting that the study by Cao et al, 2017 did not assess the 

possibility of an off-target mRNA effect involving another eef1a gene(s). It is therefore 

not clear if the observed phenotypes are specific to the knockdown of eef1a2 alone or 

a combined effect of the knockdown of one or more of the other eef1a genes. It is 

important to note that an eef1a1l1 mutant, from a large retroviral-mediated insertional 

mutagenesis screen, displayed a small head size (Amsterdam et al. 2004) which was 

one of the phenotypes observed in the eef1a2 morphants in the study of Cao et al, 

2017. Although the phenotypes observed were consistent using both translational and 

splice-site targeting morpholinos, it is still possible that they may have been the result 

of a common off-target toxic effect induced by both morpholinos. This type of 

situation has been demonstrated in the study by Robu et al., 2007, where they observed 

that these two different types of morpholinos induced off-target effects mediated 

through p53 activation in the zebrafish embryo. Interestingly, a recent study showed 

that many morpholino-induced phenotypes, even though rescued by co-injecting with 

the wild-type mRNA, could still be due to off-target effects in zebrafish (Kok et al., 

2015). This study by Kok et al, 2015 also observed that off-target phenotypes induced 

by the use of morpholinos occurred much more frequently than was previously 

thought. This brings to light the dire need for a much better control to validate 

morpholino-mediated experiments. For example, validation of the morpholinos used 

in the Cao et al, 2017 study can be performed using embryos from the eef1a2 mutant 

lines as a negative control. If a phenotype is observed in them, it could indicate an off-

target effect and it might be possible to use these mutants background to identify the 

best concentration of the morpholinos that would not lead to off-target effects. Another 

validation approach is to check for p53 mRNA induction in the morpholino- injected 
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embryos as this usually points to the activation of non-specific effects by the 

morpholinos (Robu et al., 2007).  

On the other hand, CRISPR/Cas9 has been shown to have negligible off-target effects 

in zebrafish. Using next-generation sequencing (NGS), Hruscha et al., 2013 

demonstrated that the off-target effect was limited in founder fish. This study was 

small, analysing the gRNA target site for only one gene, but only 2.2-2.5% of all the 

reads were found to have mutations at the predicted off-targets in the pool of ten 

individual embryos injected with the gRNA (Hruscha et al., 2013). Their observation 

of the limited off-target effect of CRISPR experiments in zebrafish was supported by 

another larger study. In this study, they analysed the target sites for five gRNAs of 

different genes. They performed NGS using PCR products pooled from five predicted 

off-target sites for each gRNA and detected a 3 base pair deletion in only one of the 

25 off-target loci tested (Varshney et al., 2015). Although no off-target sites were 

found for gRNA3, which was used to generate the mutant lines, by the online CRISPR 

design tool, CHOPCHOP at the time it was accessed, there is still the possibility of 

random off-target mutations at other sites particularly as annotation of the zebrafish 

genome is still work in progress. The presence or absence of these off-target mutations 

can be assessed in Del2 and Ins4 mutant lines by amplifying and sequencing DNA 

from regions with the highest homology to the target site of gRNA3. I did not analyse 

the Del2 and Ins4 lines for potential off-target mutations, but my use of fish starting 

from the F2 generation resulting from an outcross of the F0 with wild-type fish should 

minimise the possibility as these unintended mutations would segregate away from the 

Del2 and Ins4 eef1a2 mutation. Also, evaluation of the other eef1a mRNAs levels in 

Del2 and Ins4 mutants were not significantly different when compared to wild-type 

fish. This provides strong evidence to suggest that eef1a2 paralogues were not affected 

by the CRISPR/Cas9 experiment.  

Another possible explanation for the inconsistencies could be that these two strategies 

induce different responses to eef1a2 gene inactivation in zebrafish. For example, a 

study by Rossi et al., 2015 found that severe mutations induced by a knockout 

approach, as is the case with Del2 and Ins4 mutants, resulted in compensatory 

upregulation of specific proteins which could account for the phenotypic rescue 

observed in knockdown experiments.  Although the mutant lines I generated did not 
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show upregulation of the eef1a2 paralogues suggesting no compensation occur in adult 

tissues at the mRNA level, this does not completely rule out this possibility. Perhaps 

there might be some compensation at the levels of specific cells, or during a critical 

developmental period in the fish or upregulation of these other eef1a genes occur at 

the protein level instead which will not reflect from analysing mRNA levels. Further 

experiments are needed to draw a conclusion on whether or not a compensatory 

response is activated in the mutant lines. However, this supports the idea of functional 

redundancy of eef1a genes as the more likely mechanism at play to compensate for the 

loss of eef1a2 in Del2 and Ins4 mutants.  

The identification of eEF1A2 as a likely epilepsy susceptibility gene in human and a 

recent observation in our laboratory of homozygous Eef1a2 null mice showing 

vulnerability to audiogenic seizures prompted a behavioural analysis in the mutant 

lines. To test if eef1a2 null fish were sensitised to seizure, 2.5mM PTZ was applied 

directly to the bathing E3 medium of the fish. Locomotor activity was found to 

significantly increase in 2.5mM treated 5 dpf homozygous Ins4 and wild-type larvae 

within 20 minutes after treatment compared to their baseline activity and to untreated 

fish. Homozygous Ins4 fish showed a significant increase in locomotor activity 

compared to wild-type when treated with 2.5mM PTZ in the first 20 minutes. Activity 

was not significantly different between the groups at the other time points. 

Interestingly, studies by Afrikanova et al. 2013 has shown that combining larval 

activity over longer time points could mask a subtle effect when performing the 

locomotor assay. Seizure analysis showed Ins4 and wild-type demonstrated all three 

stages of seizure behaviour within the first 20 minutes. The decline in total larval 

movement in both groups between 20 and 80 minutes could likely be as a result of the 

majority of treated larvae spending time in stage 3 with prolonged exposure to PTZ. 

This will result in a loss of posture and a subsequent decrease in swimming activity in 

those larvae. A similar trend was observed in the studies by Afrikanova et al. 2013. It 

was surprising to observe stage 3 behaviour using PTZ at a lower concentration 

(2.5mM) since this stage was reported in studies that routinely used a much higher 

PTZ concentration of 15-20mM (Baraban et al., 2005; Afrikanova et al., 2013). 

However, only a few larvae (about 37% and 25% wild-type and Ins4 respectively) 

exhibited stage 3 behaviour within 20 minutes of PTZ treatment compared to studies 
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of Baraban et al. 2005 (nearly 75%). As shown in these studies and initial pilot 

experiments I carried out, higher concentrations of PTZ induces a more severe and 

robust seizure activity within a short time frame, which will not allow the difference 

in PTZ response of wild-type and mutant larvae to be detected. One possible factor 

that could influence the outcome of this study is strain difference, with Baraban et al. 

2005 and Afrikanova et al. 2013 using TL and Ekkwill fish respectively, whereas I 

used AB fish for this work. Another possibility could be the experimental protocol 

employed here. For example, in contrast to both studies, I performed this assay under 

constant light (as opposed to constant darkness in these other studies) due to the 

available apparatus and used younger larvae at 5 dpf (7 dpf, Baraban et al. 2005; 6 dpf, 

Afrikanova et al. 2013) since they are not regulated and do not require a license to 

work with. Although the nature of my experimental set-up could make the fish more 

vulnerable to external stimuli, the activity of untreated fish did not differ significantly 

for the entire recording sessions. Also, the stable level of activity of untreated fish was 

in line with the expected swimming pattern of zebrafish larvae tracked under constant 

light (MacPhail et al., 2009). This suggests that the effect of unwanted external stimuli, 

if any, was negligible and did not greatly influence the outcome of the experiment.  

The significant increase in locomotor activity observed in Ins4 larvae compared to 

wild-type within 20 minutes after PTZ treatment could indicate Ins4 larvae are 

spending more time in stage 1 and stage 2 or are more sensitised to PTZ-induced 

seizures, and hence move more during a seizure. It is tempting to assume the latter as 

the most likely reason particularly as stage 1 behaviour was more easily recognisable 

for Ins4 (21 out of 24) than wild-type (14 out of 24) by Dr. Lyraki who was blind to 

the genotype. However, a more detailed analysis of the 20 minutes tracking session 

into short intervals, for example, 5 minutes, will be valuable to better understand the 

kinetics of their response to PTZ more precisely. However, bearing in mind that only 

one mutant line; Ins4 was used to perform this assay, it is important that the PTZ-assay 

is first repeated using the Ins4 and also the Del2 mutant line. Furthermore, potential 

off-target events should be assessed in both mutant lines to ensure no other loci were 

affected by the CRISPR/Cas9 experiment. If after performing these experiments, 

seizure susceptibility is still observed, this could demonstrate a likely predisposing 

effect of the loss of function of eef1a2 in zebrafish. A similar effect was seen in our 
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laboratory where homozygous Eef1a2 null F0 mice generated from a CRISPR/Cas9-

mediated HDR experiment were susceptible to audiogenic seizure in response to 

environmental sound (Davies et al., 2017). Both of these models; mice and zebrafish, 

could then be used for complementary studies to understand the underlying mechanism 

by which mutation in eEF1A2 results in epilepsy. Drug screening with the zebrafish 

mutant lines can also be performed to identify efficient AEDs.       
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Chapter 6: Summary and future directions. 

6.1 Summary 

 The unequivocal role of eEF1A2 in neurodevelopment was first evident in the wasted 

mouse model. More recently, missense mutations in eEF1A2 have also been identified 

in WES data obtained from about 50 patients with severe cases of neurodevelopmental 

disorders. Up until now, work in our laboratory has focused on the use of  mice and 

cell lines as model systems to better understand the relationship between eEF1A2 and 

neuronal diseases. With the mounting evidence of the utility of the zebrafish in 

neuroscience research, this animal was chosen as a model to be used for further 

complementary studies, with particular interest in its high-throughput screening 

capacity as a whole organism which is quick, easier and cost-efficient compared to 

rodents (Kalueff et al., 2014). 

6.1.1 Bioinformatics and expression analysis of Zebrafish eEF1A 

The first step taken to determine if the zebrafish was an appropriate model for research 

into eEF1A2 was to re-evaluate information on eEF1A genes in zebrafish, as previous 

literature worked on the premise that only one eEF1A was present in its genome. Using 

bioinformatics and gene expression analysis, I showed that the zebrafish has four 

eEF1A genes; eef1a1l1, eef1a1a, eef1a1b and eef1a2. While eef1a1l1 did not have an 

orthologue in the human genome, eef1a1a and eef1a1b were identified as the co-

orthologues of the human EEF1A1 gene. In addition, eef1a2 was identified as the 

orthologue of the human EEF1A2 and the two were shown to be 94% identical at the 

amino acid sequence level. In silico functional analysis of the zebrafish eEF1A 

isoforms suggest that they all share a similar translational function but could likely 

have other functional differences between them. In support of this finding, isoform-

specific phosphorylation sites were predicted for each eEF1A isoform which could 

further strengthen their functional differences. The eEF1A genes were 

developmentally regulated as their expression was detected at different developmental 

stages. Consistent with the expression pattern of the mammalian eEF1A2 gene, eef1a2 

was expressed much later than the other eef1a genes in development, around 48hpf. 

Although it is difficult to directly compare developmental stages between the zebrafish 
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and mammalian species, eef1a2 could be regarded as the ‘adult’ form of the eukaryotic 

elongation factor in zebrafish as is the case for eEF1A2 in mammals (Knudsen et al., 

1993; Lee, Wolfraim and Wang, 1993; Chambers, Peters and Abbott, 1998; Khalyfa 

et al., 2001; Svobodová et al., 2015). 

I also investigated the expression pattern of the eef1a genes in adult fish using a range 

of adult tissues. The zebrafish eef1a2 appear to have a tissue-specific expression 

pattern as it was not detected in the liver, another feature it has in common with 

eEF1A2 gene in mammalian species. However, one difference between eEF1A from 

these species, is that the zebrafish eef1a2 transcripts were detected in some other 

tissues such as the spleen and ovary which are negative for eEF1A2 expression both 

at the mRNA and protein level in mammals (Khalyfa et al., 2001; Anand et al., 2002; 

Newbery et al., 2007; Svobodová et al., 2015). Since I was unable to determine 

expression of eEF1A2 at the protein level in these tissues, it is still unknown if these 

transcripts are actually translated in which case, a conclusion could be made on 

whether the zebrafish eEF1A2 shows a completely different expression pattern from 

that of mammals. Another difference was observed with the expression pattern of the 

eEF1A1 orthologues. In zebrafish, expression of eef1a1a and eef1a1b mRNA was 

noted in all the adult tissues analysed including muscle which is known to be negative 

for their mammalian orthologue. However, this is consistent with the Xenopus eEF1A 

expression pattern at the mRNA level, where regulation of eEF1A occurs at the post-

transcriptional level instead (Helen J. Newbery et al., 2011). Since eEF1A isoform 

switching is biologically important as it appears to be evolutionarily conserved in 

vertebrates, it is most likely that this also occurs at the translational level in the 

zebrafish. Unfortunately, I was unable to test this hypothesis due to the lack of specific 

antibodies for each of the eEF1A proteins. However, the results from the analysis of 

the specificity of antibodies against eEF1A2 demonstrate the value of validating 

commercial antibodies even if advertised as specific for a particular species, before 

using them for further investigation.    

Another key difference is the presence of an eEF1A gene, eef1a1l1, which has no 

corresponding orthologue in mammalian species. My expression data suggests this 

gene to be the ‘embryonic’ form of the eukaryotic elongation factor in zebrafish. 

Furthermore, eef1a1l1 transcript is the major form detected in the adult muscle and 
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liver tissues, in contrast to mammalian species where only eEF1A2 and eEF1A1 are 

expressed in the mature adult muscle and liver tissue respectively. It is possible that 

eEF1A1L1 has some of the non-canonical functions in common with these other 

eEF1A isoforms. However, equivalent amounts of each eef1a transcripts were noted 

in adult brain tissue. Since brain tissue is made up of a more heterogeneous cell 

population than liver and muscle, it is also possible that there are other isoform-specific 

‘moonlighting’ functions between the zebrafish eEF1A isoforms. It is however worth 

noting that this results are based on the mRNA expression of the eEF1A isoforms and 

should be confirmed at the protein level.  

All the findings presented here suggest that functional diversification might have 

occurred among the zebrafish eEF1A isoforms while presumably retaining their main 

role in protein elongation, which is somewhat similar to the case of the eEF1A 

isoforms in mammals. These additional functions could be biologically important and 

confer some evolutionary advantage in the zebrafish, which could explain why all four 

eEF1A isoforms were positively selected for their maintenance in its genome. Studies 

by Kinoshita et al., 2001 also showed two eEF1A gene was present in medaka (Oryzias 

latipes) which displayed a tissue and stage-specific pattern of expression. In the flatfish 

(Solea senegalensis), five eEF1A genes were isolated which also showed differential 

expression in ten different tissues examined and during larval development (Infante et 

al., 2008). One of the eEF1A genes, termed SseEF1A4, was suggested to have a role 

in metamorphosis as its expression was upregulated by thyroid hormones in larvae. 

More recently, a heterozygous mutation of eEF1A1B in tilapia (Oreochromis 

niloticus) has been demonstrated to give rise to viable fish but caused spermatogenesis 

arrest and infertility in males (Chen et al., 2017).    

6.1.2 Modelling an eEF1A2 disease-causing mutation in zebrafish 

I attempted to knock-in the G70S epilepsy causing mutation in the zebrafish eEF1A2 

using a gRNA originally generated and used in creating eEF1A2 null zebrafish. 

Unfortunately, I was unable to identify any fish with the G70S encoding mutation 

incorporated and most of the mutants carried indel mutations. The high rate of indel 

mutations is in itself not surprising, considering they are generated by the NHEJ 

pathway which occurs at a much higher rate than HDR (Dai et al., 2010; Li et al., 
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2015). However, together with the low efficiency of the knock-in, this posed a 

challenge in the screening process to identify any point mutations. Low HDR 

efficiencies and the high rate of indel mutations are common pitfalls in CRISPR/Cas9-

mediated HDR in zebrafish (Armstrong et al., 2016; Zhang, Zhang and Ge, 2018). It 

is, therefore, necessary to determine optimum conditions that will combat these two 

factors. The recent CRISPR/Cas9-mediated HDR protocol for zebrafish described by 

Zhang et al. 2018, seems to show more promise as it is the only study that has reported 

a high efficiency. Another attractive feature of Zhang et al. 2018 study is that it was 

also designed to make screening for the point mutation a less challenging task by 

generating specific primers that only amplified the HDR-induced mutation, which is 

useful if one’s efficiency is not as high as was obtained in their study. Since this 

protocol shows some promise, it will be a good starting point to attempt another knock-

in experiment in the zebrafish. However bearing in mind the lack of reproducibility of 

other studies which have also demonstrated the successful use of the CRISPR-Cas9 

technique for HR in zebrafish, it should be tested first with only one eEF1A2 epilepsy-

causing mutation. Once a working protocol is obtained and the protocol optimised, 

generating mutant lines with the other missense mutations would be worthwhile since 

it is possible they may perturb function via a different mechanistic pathway.  

If I were able to generate a G70S zebrafish mutant, I would characterise this mutant 

line with a focus initially on seizure activity, which is an easier and more valid human-

relevant phenotype to model in the zebrafish and can be performed in the first instance 

on larval stages which are not regulated. This can be achieved by using automated 

video locomotion tracking devices to screen for seizure-like behaviours as well as 

using electrophysiology to look for spontaneous electrographic seizure discharges. If 

these mutants do not exhibit spontaneous seizure behaviours, seizure susceptibility can 

also be investigated using the PTZ-induced seizure assay(Baraban et al., 2005).  It will 

also be interesting to carry out a microarray-based transcriptomic analysis to identify 

if any differentially expressed genes including the other eEF1A genes, which could 

compensate for the loss of eEF1A2 function, occur in the mutants. This could also 

provide insights into the molecular pathways underlying the epileptic phenotypes. 

Another epilepsy-causing mutation I would like to generate and characterise alongside 

the G70S in zebrafish is the D252H mutation. The advantage of generating these two 
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mutant lines is that they will be useful for further complementary studies since the 

G70S and D252H mutation have already been modelled in mouse (Davies et al., 2017 

and unpublished data) and LUHMES cells (only D252H in LUHMES) in our 

laboratory. This will hopefully contribute immensely to disentangling the role of 

eEF1A2 in epilepsy and ultimately to provide better treatment strategies especially as 

they can be employed for high throughput screening of different small molecules. 

6.1.3 Generation and characterisation of eef1a2 null zebrafish model 

Having confirmed the presence of an eEF1A2 orthologue in the zebrafish, it was 

essential to investigate the function of this gene in the zebrafish and determine if loss 

of function mutation of eef1a2 would result in a similar phenotype to that seen in 

wasted mice, a well-characterised model for early onset motor neuron degeneration. 

For this purpose, I generated two mutant lines, Del2 and Ins4, using CRISPR/Cas9 

gene editing. Although I was unable to confirm these lines as true nulls because of the 

lack of a specific antibody against eEF1A2, a marked decrease of eef1a2 at the mRNA 

level was noted in both lines, suggesting these mutations could lead to a loss of 

function similar to that seen in the wasted mouse. However, my results show that loss 

of eef1a2 does not lead to any obvious defects and that the fish are viable as adults. No 

evidence of neurodegeneration was noted in the spinal cord as assessed using 

immunohistological examination. I have proposed at least three possible confounding 

factors that could explain this discrepancy; (i) Del2 and Ins4 might not be true nulls as 

seen in wasted mice and could retain some residual eEF1A2 function (ii) the presence 

of multiple eef1a genes, any of which could compensate for the loss of eef1a2 as they 

are co-expressed at the mRNA level leading to redundancy and (iii) the ability of the 

zebrafish CNS to regenerate throughout its life which could mask any neuronal loss 

caused by these mutations.     

One mutant line, Ins4, was characterised behaviourally and was found to show 

significant susceptibility to PTZ-induced seizures compared to their wild-type 

siblings. As I was unable to carry out a complementary testing using the Del2 line in 

the seizure behaviour analysis, caution must be taken when interpreting this results. 

However, this finding seems to corroborate a recent observation in our laboratory, 

where eEF1A2-null mice showed susceptibility to audiogenic seizures which resulted 
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in the death of these mice (Davies et al, 2017). It is, therefore, possible that the seizure 

phenotypes observed in humans are mediated by conserved mechanisms in these other 

species. If this is the case, further complementary studies with the zebrafish and mice 

models will be invaluable in future research.           

6.2 Future directions 

6.2.1 Potential of using the zebrafish and its eEF1A isoforms to 

understand the functions of eEF1A in vertebrates 

The fundamental question as to why there are two eEF1A isoforms with very high 

sequence identity in mammals has remained unanswered. Resolving this question 

could likely help us understand how mutation or dysregulation in the expression of 

eEF1A2 causes disease. The most reasonable explanation for the existence of different 

isoforms is the presence of some other isoform-specific non-canonical functions that 

may be suitable for only certain cells types or at certain developmental stages. Results 

from characterising the zebrafish eEF1A genes have shown that some features are 

conserved with mammalian species and could offer insights into understanding the 

functional differences within the eEF1A family. However, one important feature that 

will be interesting to confirm in the zebrafish is the occurrence of eEF1A isoform 

switching in different tissues. With evidence that this process is a biologically 

important one demonstrated by its conservation in different vertebrate species (Lee, 

Wolfraim and Wang, 1993; Chambers, Peters and Abbott, 1998; Helen J. Newbery et 

al., 2011; Svobodová et al., 2015), it is tempting to assume that this is also the case in 

the zebrafish. We hypothesised that similar to what was observed in the Xenopus 

(Newbery et al, 2011), this process will occur at the translational level if it does occur 

in the zebrafish. Generation of isoform-specific antibodies will be invaluable for 

testing this hypothesis since any switch will not necessarily be reflected in the 

expression pattern at the RNA level. Determining which tissue type and the point of 

development where this switch occurs could contribute towards providing an answer 

to the question above.  

Further investigation into the expression pattern of the zebrafish eEF1A isoforms at 

the cellular level is also required to shed more light on these ‘moonlighting’ functions. 
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If isoform-specific antibodies could successfully be generated, they could also be used 

for immunohistochemistry (IHC) or immunofluorescence examination of different 

tissues to determine cell type- specific expression and also the subcellular localisation 

of the different isoforms. However, generating specific antibodies for these eEF1A 

isoforms can be a challenging task due to their sequence similarities and there is the 

possibility, they may be specific for Western blotting but not IHC applications from 

experience in our laboratory. Alternatively, individual cell types could be isolated from 

zebrafish transgenic lines expressing different fluorescent protein reporters in any of 

the tissue types using fluorescence-activated cell sorting (FACS) assay. These 

predefined cell populations could then be used for subsequent gene expression analysis 

using techniques such as qRT-PCR or Western blotting if specific antibodies are 

available. More recently, large scale single-cell RNA sequencing (scRNA-seq) is 

being explored with data generated from different embryonic stages in the zebrafish 

currently available (Farrell et al., 2018; Wagner et al., 2018). I examined the datasets 

from these two studies, but none of the eef1a genes was found. Although scRNA-seq 

is more expensive than ISH, it offers the opportunity to generate transcriptome-wide 

data of individual cells and will facilitate the exploration of different developmental 

stages and adult tissues compared to ISH. This may be useful in constructing an atlas 

of the expression patterns and the dynamics of the eEF1A genes in adult fish in future, 

as well as being able to examine other known interacting partners at a single-cell 

resolution.     

Differences in the PTMs between eEF1A1 and eEF1A2 isoforms have been noted and 

could likely contribute to the functional divergence of these proteins. Mapping of these 

PTM sites, both from experimental and predicted studies, to the modelled 3-D 

structures showed they are mostly present on the surfaces with clusters of sequence 

variation between the isoforms suggesting the proteins are differentially regulated 

(Soares and Abbott, 2013). Using the NetPhos 3.1 server (Blom, Gammeltoft and 

Brunak, 1999), I was able to predict likely phosphorylation sites for the zebrafish 

eEF1A isoforms. While these isoforms share some of the predicted sites, likely unique 

sites were also noted for each of them. Bearing in mind the possibility of predicting 

some false-positive sites using this method, it would be ideal to compare predicted 

sites for the zebrafish eEF1A isoforms to that of human to select candidate sites for 
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further investigation in the first instance. One candidate site that may be suitable for 

future studies is the Ser300 predicted to be phosphorylated in the zebrafish eEF1A1A, 

eEF1A1B and eEF1A2. Although these sites have a borderline NetPhos probability 

score of 0.5, these sites are readily accessible by a kinase on the modelled structure 

and Ser300 has been experimentally confirmed in eEF1A1, thus increasing the 

confidence of the prediction. Phosphorylation of Ser300 by type 1 TGF-β receptor 

(TβR-1) has been demonstrated to interfere with the binding activity of aminoacylated-

tRNAs in eEF1A1, thus inhibiting protein synthesis and cell proliferation (Lin et al., 

2010). Although eEF1A1l1 was not predicted to be phosphorylated at this site, it has 

a threonine residue at this position which can also interact with a kinase. To test that 

this is not a false- negative site, it should also be investigated. Another site that might 

have implications for the translation rate is Ser298 (in eEF1A2 and eEF1A1L1) since 

it lies very close to residues involved in eEF1Bα and aminoacyl-tRNA binding. This 

position is also equivalent to Gln296 in yeast, which has been implicated in actin-

related functions (Gross and Kinzy, 2007), therefore phosphorylation could potentially 

affect actin-eEF1A interaction(s) as well. It is interesting that opposite these two sites 

(298 and 300) is an exposed and most likely phosphorylatable eEF1A1L1 specific site 

(>0.84 probability score), Thr303, which could perhaps help with understanding the 

role of both sites and is therefore worth further investigation. Other sites that could 

also be considered and have experimental support include: Ser21 and Thr88, which 

modulate the stability of eEF1A (Sanges et al., 2012) and Ser358, a phosphorylation 

site on eEF1A2 but not eEF1A1 in both zebrafish and human, in which it has been 

shown to have a role in stress-induced quality control of newly synthesized polypetides 

(Gandin et al., 2013). Further studies of these sites could contribute towards 

understanding how eEF1A switches between its main role in protein translation to 

other non-canonical functions. This will be particularly useful in understanding the 

functional difference between eEF1A isoforms in human and perhaps provide insights 

on some disease related to them, for example, the oncogenic ability of eEF1A2.  

Confirmation of the phosphorylation status of these sites can be achieved using mass 

spectrometry. It will also be useful to generate phosphorylation mimics by mutating 

Ser or Thr to either Glu or Asp (phospho-positive) and also to a non-phosphorylatable 

residue such as alanine (phospho-negative) to determine if similar functional 
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significance occurs with the zebrafish. If these sites are validated as true 

phosphorylation sites, in vitro kinase assays should be performed to establish if 

phosphorylation is mediated by the same kinase. If the expected results are observed 

after these experiments, phospho-specific antibodies could be raised and used to 

determine if the eEF1A isoform is phosphorylated in vivo in the zebrafish. It will also 

be interesting to determine if the genes encoding these kinases are expressed at the 

same time as the eEF1A isoforms. Similar experiments as outlined above could also 

be performed for some of the isoform-specific sites predicted with high confidence as 

indicated with the NetPhos score >0.5 (Table 3.3 in chapter 3) with the hope that these 

could contribute to the evolutionary understanding of the eEF1A family in vertebrates. 

6.2.2 Translational validity of the eef1a2 mutant lines for neurological 

diseases 

With the aim of using the zebrafish for drug discovery studies, I generated two lines 

with different deleterious mutations in eef1a2. Since the role of eef1a2 in zebrafish 

was unknown during the course of this project, phenotyping of the mutant zebrafish 

lines was carried out using the wasted mouse model as a guide. However, the severe 

phenotypes such as motor neurodegeneration of the spinal cord in the wasted mouse 

model were absent in both mutant lines which were viable and fertile as adults. Further 

experiments are still required which might elucidate the reason behind the discrepancy 

between these models. I have outlined above three possible factors that could be 

responsible and will require further investigation as understanding the reason for the 

different phenotypes will contribute towards the validation of these models for 

neurological diseases.  

Generation of specific antibodies could help establish whether these models are true 

nulls as they could be used to perform Western blot analysis to detect the presence of 

any residual protein. Alternatively, Del2 and Ins4 could be further characterised to 

confirm that their transcripts are indeed targets of NMD as suggested by the qRT-PCR 

results (see Figure 5.3 in chapter 5). Expression of Del2 and Ins4 alleles could be 

evaluated in vitro by generating constructs for each allele. These constructs should 

then be separately transfected into cell lines and their expression measured using 

Western blotting. Since there is the possibility of the antibody cross-reacting with the 
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endogenous eEF1A, expressing the mutant cDNA with a tag protein would allow the 

effect of the mutation to be easily detected. The wild-type eef1a2 construct generated 

during this project would serve as a useful positive control for this experiment. If the 

protein from cells transfected with the mutant constructs is mostly absent, this will 

confirm the severity of these potential null alleles.    

The presence of multiple eef1a genes in the zebrafish genome encoding separate 

proteins with almost identical amino acid sequence and presumably functional 

equivalence in translation might imply functional redundancy occurring in both mutant 

lines. At the same time, it also poses a challenge to determine which isoform(s) could 

be playing this compensatory role. While the suggested future work described in 

section 6.2.1 could help identify the isoform(s) responsible, a systematic analysis of 

the compensatory effect of the other eef1a genes could also be performed. Loss of 

function mutations should be induced using similar CRISPR/Cas9 technique described 

herein in both Del2 and Ins4 lines and the phenotypes compared to the eef1a2 mutant 

lines. Bearing in mind that eEF1A1L1, which appears to share some features with 

eEF1A2, is the only eEF1A present in the zebrafish during early development, global 

loss of eef1a1l1 could likely be embryonic lethal as observed in the study of 

Amsterdam et al. 2004. To overcome this caveat, the generation of a time-dependent 

conditional knockout (Maddison, Li and Chen, 2014) should be considered. 

The regenerative capacity of the zebrafish CNS imposes a major drawback in 

developing any zebrafish model of neurodegeneration. Since motor neurodegeneration 

in the spinal cord is a benchmark outcome, this phenotype might be subtle in the 

mutant lines if these dead neurons are constantly replaced. For this reason, a good 

positive control is important for the immunohistological assay with GFAP which I 

used in phenotyping these lines. Another alternative to the GFAP-immunostaining 

would be to perform a choline acetyltransferase (ChAT) immunostaining instead on 

spinal cord sections. The total number, as well as the size of ChAT-positive motor 

neurons, could then be quantified and compared between the mutant and wild-type 

fish. Generally, the smaller the motor neuron, the younger it is thought to be, as it gets 

larger with maturation (Da Costa et al., 2014). If a decrease in the number of large 

(mature) ChAT-positive motor neurons are observed in the mutant fish spinal cord, 

this could suggest that neuronal loss occur in them as well. However, if the rate at 
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which neurons are lost is similar to that at which they are replaced, performing these 

immunohistochemical analyses with fish that are more than 24 months, when a decline 

in neurogenesis and regenerative response is expected (Fleisch, Fraser and Allison, 

2011), may be best to make it easier to detect any neuronal death in the mutant lines. 

Alternatively, cell death assays that involve staining with fluorescent markers for 

neuronal death such as TUNEL or Fluoro-Jade can be performed on mutant larval and 

younger adult stages as it is usually difficult to breed fish beyond 24 months without 

a project license. Both of these assays are simple, quick and well-established 

techniques for qualitative and quantitative assessment of neurons undergoing 

apoptosis. If more cells stained with either of these dyes are observed in the mutant 

lines, this would suggest they are undergoing an increased rate of neuronal death than 

that seen in WT fish. Data from the cell-specific expression analysis of the eEF1A 

isoforms in the zebrafish CNS will also be extremely useful in this regard. If a cycle 

of degeneration and regeneration is noted, these mutant lines will be an invaluable 

model to dissect the underlying molecular and cellular pathways involved in replacing 

dead neurons during disease progression, and perhaps identify potential therapeutic 

targets for degenerative diseases.       

Finally, the observation that loss of eEF1A2 in zebrafish might make them susceptible 

to chemical-induced seizures is worth exploring further, especially as it is in line with 

findings in our laboratory with eEF1A2 null mice models (Davies et al., 2017). Since 

I was only able to use the Ins4 lines for this experiment, it will be interesting to follow 

this up using both mutant lines; Del2 and Ins4, to confirm if indeed the seizure 

phenotype is caused by a mutation in eef1a2. Although the set-up I used to carry out 

this assay did not appear to be affected by other external stimuli, it might be worth 

repeating this experiment using the automated larval tracking devices, for example, 

DanioVisionTM (www.noldus.com). This would ensure the testing environment is 

uniform for all rounds of biological replicates performed and an unbiased qualitative 

and quantitative behavioural analysis could be obtained. Using this equipment, Ins4 

and Del2 mutant larvae could also be exposed to other forms of epileptogenic stimuli 

in a controlled manner. For example, an in-built tapping device could be used to 

provide sound/vibration stimulus especially as eEF1A2 null mice were observed to 

show susceptibility to audiogenic seizure in our laboratory (Davies et al., 2017). Visual 
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stimulus can also be employed by varying the lighting conditions providing alternating 

cycles of light and dark conditions. This is similar to flashing light which is the most 

common trigger for reflex seizures. Mutant larvae could be exposed to these stimuli 

alone and/or in combination with PTZ treatment and analysed for any difference in 

seizure behaviour compared to wild-type larvae.  

Depending on the outcome, it might be worth performing other seizure analysis assays 

as the locomotor assay may not be robust enough (Afrikanova et al., 2013; Ingebretson 

and Masino, 2013) even though it served as a useful easy and quick initial screening 

tool for seizure activity. Alternatively, the epileptiform activity can be monitored by 

taking extracellular recordings from the brain of larval fish exposed to PTZ (Baraban 

et al., 2005, 2007; Afrikanova et al., 2013). Electrophysiological recordings obtained 

from larval zebrafish brain is comparable to electroencephalographic (EEG) 

monitoring which is the gold standard for the diagnosis of seizures (Baraban, 2013). 

This provides a more sensitive readout for seizure-like behaviour compared to using 

locomotor activity, however, it cannot be performed in a high-throughput multiwall-

format as the locomotor assay. Abnormal brain activity can also be monitored by 

analysing expression levels of cfos, a robust marker for neuronal activity, using qPCR 

or in situ hybridisation assays in PTZ-treated larvae (Baraban et al., 2005; Baxendale 

et al., 2012). Establishing Del2 and Ins4 lines expressing a genetically encoded 

calcium indicator marker such as GFP-Calmodulin fusion protein (GCaMP) will 

enable the spatiotemporal visualisation of neuronal activity in vivo within the larval 

CNS. A new  GCaMP variant known as NBT:GCaMP3 has recently been developed 

that allows the in vivo visualisation of neural activity in the CNS of larval stages up to 

the age of 21 dpf (Bergmann et al., 2018). Electrophysiological analysis can also be 

performed on both transgenic mutant and wild-type PTZ-treated larvae to obtain a 

quantitative neural activity measurement in vivo. If my initial observation of 

susceptibility of the mutant larvae to PTZ-induced seizure is confirmed using any of 

the approaches described above, the eef1a2 mutant lines will serve as an invaluable 

tool to be used to elucidate the mechanisms of epilepsy and an in vivo platform for 

high-throughput screens for better and safer AEDs for these patients.   
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6.3 Conclusion           

With this work, I have provided an up to date expression profile of the eEF1A genes 

in the zebrafish as well generated two mutant lines for eef1a2. The findings reported 

in this thesis provides groundwork information that can be used in the laboratory to 

further assess the fitness of the zebrafish model for our research. This is particularly 

useful as the success of translating research benefits to the patients depends largely on 

the use of well-validated animal models that correctly recapitulate the human 

condition. 
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Appendix figure 1: geNorm analysis for selecting reference genes for qPCR 

experiments. geNorm M graph generated by qbase+ software indicating the average 

expression stability value (M) of the reference genes tested. The stability of the genes 

are ranked with the least stable gene starting from the left and ending with the most 

stable gene on the right. ATPsynth, NADH and 16S are the three most stable genes and 

were selected as reference genes for qPCR analyses.   
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Appendix figure 2: Analysis of eef1a2 transcripts in Ins4 and confirmation of the 

possibility of Del2 and Ins4 mutations leading to nonsense-mediated decay. A. 

Reduced eef1a2 transcript was noted in F2 Ins4 homozygous (3 months) brain and 

muscle tissues. B. The three different primer sets; eef1a2P, 3’eef1a2 and eef1a2S that 

were used in the molecular characterisation of  Del2 and Ins4 mutant lines did not 

show any significant reduction in eef1a2 mRNA expression when tested with brain 

cDNA from adult fish with a homozygous 12 bps deletion. This is an in-frame mutation 

and theoretically should not cause a truncated protein to be translated. Since the result 

is in agreement, it suggests that the observed decrease in eef1a2 transcript levels in the 

Del2 and Ins4 are likely due to NMD which leads to the increased degradation of the 

mutant mRNA. cDNA samples from age-matched wild-type fish were used as 

controls. eef1a2 mRNA expression was normalised to three reference genes: 

ATPsynth, NADH and 16S. Results are presented as means + S.E.M.; n=3 in each 

group. *p < 0.05 (Mann Whitney test)    
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Appendix figure 3: Preliminary histological examination of the brain from one 

homozygous Ins4 fish (5 months old) and age-matched wild-type zebrafish. A. 

Representative image from the medulla oblongata showing lower neuronal density in 

Ins4 B. Representative image from the cerebellum with sparsely arranged Purkinje 

cells (indicated with red arrow) noted in Ins4 fish. However, follow-up investigation 

using more number of fish and the Del2 line was carried out and did not support 

preliminary findings, suggesting these were likely artefacts possible from the 

preparation of the sections. Longitudinal sectioning (3µm-thick) and H&E staining 

were carried out by the staffs at Easter Bush Veterinary Centre (EBVC). Histological 

observation and images were provided by Dr. Jorge del Pozo. CCe- Corpus cerebelli. 

Scale bar = 100µm.                              
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Appendix figure 4: Time evolution of a representative larva showing a pattern of 

activity consistent with stage III seizure behaviour. Black arrow shows the larva 

treated with 2.5mM PTZ which was followed in the 96-well plate. Larva remained 

stationary at 13mins 17secs and then loses posture and fell on its side at 13mins 20secs 

and remained in that position for few seconds.         
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Appendix Table 1: Positions with amino acid variation and the respective 

residues in the four zebrafish eEF1A isoforms. 

Position eEF1A1L1 eEF1A1A eEF1A1B eEF1A2 

6 Threonine (T) Leucine (L) Leucine (L) Isoleucine (I) 

76 Alanine (A) Serine (S) Serine (S) Serine (S) 

83 Serine (S) Serine (S) Serine (S) Threonine (T) 

87 Valine (V) Valine (V) Valine (V) Isoleucine (I) 

118 Glycine (G) Alanine (A) Alanine (A) Alanine (A) 

141 Phenylalanine (F) Tyrosine (Y) Tyrosine (Y) Tyrosine (Y) 

151 Glycine (G) Glycine (G) Glycine (G) Alanine (A) 

161 Proline (P) Serine (S) Asparagine (N) Serine (S) 

164 Glutamine (Q) Glutamine (Q) Glutamine (Q) Glutamic acid 

(E) 

165 Alanine (A) Lysine (K) Lysine (K) Lysine (K) 

167 Phenylalanine (F) Tyrosine (Y) Tyrosine (Y) Tyrosine (Y) 

168 Glutamic acid (E) Glutamic acid (E) Glutamic acid (E) Aspartic acid 

(D) 

171 Threonine (T) Valine (V) Valine (V) Valine (V) 

176 Alanine (A) Threonine (T) Threonine (T) Alanine (A) 

184 Asparagine (N) Asparagine (N) Asparagine (N) Serine (S) 

186 Alanine (A) Aspartic acid (D) Aspartic acid (D) Alanine (A) 

187 Serine (S) Threonine (T) Threonine (T) Serine (S) 

189 Alanine (A) Alanine (A) Alanine (A) Proline (P) 

197 Histidine (H) Asparagine (N) Asparagine (N) Histidine (H) 

204 Alanine (A) Alanine (A) Alanine (A) Proline (P) 

206 Serine (S) Proline (P) Proline (P) Serine (S) 

209 Glycine (G) Serine (S) Threonine (T) Proline (P) 

216 Isoleucine (I) Isoleucine (I) Isoleucine (I) Leucine (L) 

217 Glutamic acid (E) Threonine (T) Threonine (T) Aspartic acid 

(D) 

220 Glutamic acid (E) Glutamic acid (E) Aspartic acid (D) Glutamic acid 

(E) 
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221 Glycine (G) Glycine (G) Glycine (G) Histidine (H) 

222 Asparagine (N) Asparagine (N) Serine (S) Histidine (H) 

223 Alanine (A) Alanine (A) Serine (S) Alanine (A) 

224 Serine (S) Alanine (A) Serine (S) Glycine (G) 

226 Threonine (T) Threonine (T) Threonine (T) Valine (V) 

230 Aspartic acid (D) Glutamic acid (E) Glutamic acid (E) Glutamic acid 

(E) 

234 Alanine (A) Alanine (A) Alanine (A) Threonine (T) 

236 Leucine (L) Glutamine (Q) Glutamine (Q) Methionine (M) 

239 Serine (S) Threonine (T) Threonine (T) Threonine (T) 

271 Valine (V) Leucine (L) Isoleucine (I) Valine (V) 

273 Lysine (K) Lysine (K) Lysine (K) Arginine (R) 

275 Glycine (G) Glycine (G) Glycine (G) Serine (S) 

276 Methionine (M) Methionine (M) Leucine (L) Methionine (M) 

283 Alanine (A) Valine (V) Valine (V) Valine (V) 

285 Valine (V) Valine (V) Valine (V) Isoleucine (I) 

298 Serine (S) Alanine (A) Alanine (A) Serine (S) 

300 Threonine (T) Serine (S) Serine (S) Serine (S) 

303 Threonine (T) Leucine (L) Leucine (L) Leucine (L) 

326 Alanine (A) Alanine (A) Alanine (A) Cysteine (C) 

331 Asparagine (N) Asparagine (N) Asparagine (N) Serine (S) 

335 Methionine (M) Glutamine (Q) Glutamine (Q) Glutamine (Q) 

338 Alanine (A) Alanine (A) Alanine (A) Serine (S) 

339 Asparagine (N) Asparagine (N) Serine (S) Glycine (G) 

341 Asparagine (N) Threonine (T) Threonine (T) Threonine (T) 

355 Glutamine (Q) Alanine (A) Alanine (A) Serine (S) 

358 Alanine (A) Alanine (A) Alanine (A) Serine (S) 

361 Leucine (L) Leucine (L) Leucine (L) Isoleucine (I) 

393 Alanine (A) Serine (S) Serine (S) Serine (S) 

403 Glutamic acid (E) Glutamic acid (E) Aspartic acid (D) Aspartic acid 

(D) 
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405 Valine (V) Isoleucine (I) Isoleucine (I) Isoleucine (I) 

417 Threonine (T) Glutamic acid (E) Glutamic acid (E) Glutamine (Q) 

440 Serine (S) Glycine (G) Glycine (G) Asparagine (N) 

445 Isoleucine (I) Threonine (T) Threonine (T) Isoleucine (I) 

446 Glycine (G) Alanine (A) Serine (S) Glycine (G) 

447 Glycine (G) Threonine (T) Threonine (T) Glycine (G) 

448 Alanine (A) Serine (S) Serine (S) Serine (S) 

450 Lysine (K) Lysine (K) Lysine (K) Arginine (R) 

459 Alanine (A) Glutamine (Q) Glutamine (Q) Glutamine (Q) 

461 Threonine (T) Alanine (A) Asparagine (N) Serine (S) 

462 Lysine (K) Lysine (K) Lysine (K) Serine (S) 

463 - - - Lysine (K) 
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Appendix Table 2: Slope, intercept and correlation coefficient (R2) output from 

SDS software to estimate efficiency of primers used for qPCR analyses. 

Primer Slope Y-Intercept Correl. Coeff. (R2 

eef1a1l1 -3.296 11.766 0.997 

eef1a1a -3.223 19.571 0.997 

eef1a1b -3.283 20.197 0.996 

eef1a2P -3.294 21.767 0.994 

eef1a2S -3.495 20.357 0.981 

3’ eef1a2 -3.208 22.445 0.992 

ATPsynth -3.237 14.832 0.999 

NADH -3.227 16.500 0.996 

16S -3.018 10.194 0.991 
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