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Abstract 
 

Tau is a microtubule-associated protein mainly responsible for stabilizing 

the neuronal microtubule network in the brain. Under normal conditions, tau 

is a highly soluble protein adopting an ‘unfolded’ monomeric conformation. 

However, it undergoes conformational changes resulting in a less soluble form 

with weakened stabilizing properties. Altered tau forms pathogenic inclusions 

characteristically seen in Alzheimer’s disease and related tauopathies. Tau 

aggregates have been observed to be deposited surrounding prion protein 

amyloid plaques in mouse brains infected with the 87V murine adapted 

scrapie (87V-VM). Although tau hyperphosphorylation is widely considered 

as the major trigger of tau malfunction, tau is subject to a variety of other post-

translational modifications, the site-specific impact of which on tau 

physiology and pathology remains unclear. Therefore, we used mass 

spectrometry to map post-translationally modified sites on tau purified from 

normal and 87V-VM mouse brains. We identified five types of site-dependent 

modifications in normal soluble tau, seven types in soluble tau extracted form 

87V-VM brains and six types in insoluble aggregated tau. In preliminary, we 

showed that we can use LC-MS with a multiple reaction monitoring approach 

to determine relative levels of specific post-translational modifications of tau 

after only crude extractions. Once optimized, this workflow could be used to 

correlate the abundance of a wide variety of different modifications with 

specific properties of tau, such as solubility or morphologies of deposits.  
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Lay summary 
 

Tauopathies are common diseases of the central nervous system that lead to 

cognitive decline and eventually death, including Alzheimer’s disease, which 

is the most common form of dementia worldwide. A typical feature of these 

diseases is the alteration of the structure of tau protein that results in tau 

abnormal accumulation into fibrils. Whereas this process disables tau from 

serving its normal roles in the neurons, it allows to acquire novel neurotoxic 

roles. One of the most studied features of tau is its phosphorylation. 

Phosphorylation is one of the biochemical modifications that occur in cellular 

proteins after being translated from mRNA (post-translational modifications). 

The phosphorylation of tau protein controls its ability to bind and stabilize 

neuronal microtubules. However, under pathological conditions, tau 

phosphorylation is abnormally increased leading to impaired tau functions. 

Apart from phosphorylation, several other post-translational modifications 

that occur on tau have been discovered. The role of each post-translational 

modification either in normal or abnormal tau, especially concerning at which 

specific position on tau protein occurs, has not been completely investigated. 

Neither it is completely clarified what post-translational modifications are 

involved in turning tau from normal to abnormal. In this study, we used mass 

spectrometry in order to find post-translational modifications of tau protein 

that was isolated from normal and pathological brains. In these pathological 

brains, abnormal tau co-exists with another abnormal protein, called prion, 

which is the main feature of another group of central nervous system 

disorders, the prion diseases. This allows to compare the post-translational 

modifications between normal and abnormal tau and understand which of 

them are responsible for tau pathology. In addition, we developed a method 

in a preliminary stage to quantify tau post-translational modifications. This 

could be potentially used to elucidate different properties of tau and as a 

diagnostic tool for tau pathologies, but further optimization is needed.  
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      1. Introduction  
 

 

 

 

1.1 Neurodegenerative tauopathies 

Neurodegenerative diseases represent a group of nervous system disorders, 

which are characterized by selective loss of neurons and synapses, glial 

activation, progressive irreversible dysfunction resulting in motor and 

cognitive impairment and eventually death1, 2. The main processes that lead to 

neurodegeneration are caused by genetic and/or environmental factors; 

however, advancing aging is widely considered the major factor responsible 

for the development and progression of neurodegenerative diseases. Common 

pathogenic processes underpinning neurodegenerative diseases include 

abnormal protein misfolding and aggregation, impaired protein degradation, 

proteasomal dysfunction and autophagy dysregulation, deficiency of 

molecular chaperones, oxidative stress and formation of free radicals, 

metabolic dysregulation, mitochondrial dysfunction, damage of  neuronal 

Golgi apparatus, disruption of cellular and axonal transport, dysregulation of 

neurotrophins and neuroinflammation3, 4. 

Some neurodegenerative diseases are also known as proteinopathies due to 

the presence of pathological forms of proteins that accumulate and deposit in 

the brain. For this reason, it has been assumed that the aggregation of 

misfolded proteins is the molecular cause of neurodegeneration. In general, a 

particular protein switches to an unfolded state, which is thermodynamically 

unstable and, as a result, unfolded molecules have the tendency to interact 

with each other seeking more stability5. The formed aggregates come from 

endogenous proteins with different initial conformational state ranging from 

native to fully unfolded, but degraded proteins can be subject to self-

association reactions as well6. In any case, proteins participating in aggregates 

lack their normal conformational arrangement and, hence, they are incapable 

of serving their typical functions in living cells, whilst they possibly acquire a 

novel neurotoxic role. 
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A common class of neurodegenerative diseases includes the disorders 

associated with the filamentous inclusions of tau protein, which are known 

collectively as tauopathies7, 8. Tauopathies include progressive supranuclear 

palsy, frontotemporal dementia with parkinsonism-17, corticobasal 

degeneration, argyrophilic grain disease, Pick’s disease, Huntington’s disease 

and several other cases9, 10 (Table 1.1). The basic features that portray 

tauopathies are the transition of tau into a hyperphosphorylated state, the  

 

 

Table 1.1 Neurodegenerative diseases with tau pathology (modified after Spillantini and 

Goedert, 2013; Arendt et al., 2016)10-12.   

Tauopathies 

Predominant tau pathology Associated with other types of pathology 

 Progressive supranuclear 

palsy 

 Argyrophilic grain disease 

 Corticobasal degeneration 

 Pick’s disease 

 Frontotemporal dementia 

with parkinsonism-17 

 Postencephalitic 

parkinsonism 

 Parkinson’s dementia 

complex of Guam 

 Guadeloupean 

parkinsonism 

 Globular glial tauopathies 

 Aging-related tau 

astrogliopathy 

 Tangle-only dementia 

 Alzheimer’s disease 

 Down’s syndrome 

 Lewy body disorder 

 Prion disease 

 Familial British dementia  

 Familial Danish dementia  

 Chronic traumatic encephalopathy 

 Myotonic dystrophy 

 Niemann-Pick disease type C 

 Subacute sclerosing panencephalitis 

 Frontotemporal lobar degeneration 

(some cases caused by C9orf72 

mutations) 

 Diffuse neurofibrillary tangles with 

calcification 

 Neurodegeneration with brain iron 

accumulation 

 SLC9A6-related mental retardation 

 Cerebrotendinous xanthomatosis with 

the c.379C>T (p.R127W) mutation in the 

CYP27A1 gene 

 TARDBP mutation p.Ile383Val 

associated with semantic dementia 

 Huntington’s disease 
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missorting of tau from the axonal cytoplasm into the somatodendritic 

compartment and the formation of characteristic fibrous bundles that 

accumulate in neurons and glia cells12. On the other hand, tauopathies can 

have different neuropathological phenotypes due to various aspects, such as 

the tau isoforms that are aggregated, the phosphorylation pattern, the 

conformation of the filaments, the cellular and subcellular distribution of tau 

species in neurons and glia cells, the anatomical distribution in brain tissues 

and, lastly, the co-existence with other types of pathology1, 12. 

One of the main pathological hallmarks of Alzheimer’s disease (AD) is the 

intraneuronal accumulation of neurofibrillary tangles (NFTs) consisting of 

“misfolded” tau protein and, therefore, AD is considered to be partly a 

tauopathy and is, in fact, one of the most well studied. In AD, tau protein is 

abnormally hyperphosphorylated and aggregated into insoluble paired 

helical filaments (PHFs), which deposit in neuronal cell bodies as NFTs, in 

neuronal processes (neurites) as neuropil threads and in dystrophic neurites 

surrounding amyloid plaques that consist of aggregated Aβ peptides, the 

second main neuropathological hallmark of AD13, 14 (Figure 1.1A, 1.1B). Each 

of the two filaments, winding helically around each other so that PHF 

structures are formed, consists of four protofilaments15. At the ultrastructural 

level, PHFs have a diameter of approximately 8-20 nm and a periodicity of 80 

nm16 (Figure 1C). Except for PHFs that represent the most abundant form of 

tau filaments, straight filaments about 15 nm wide are also found in NFTs17. It 

is well known that the severity of cognitive decline observed in AD correlates 

positively with the presence of NFTs in AD brains. This is due to the number 

of brain regions that are affected rather than the density of NFTs within a 

certain brain region18.  

In contrast to AD, for which tau aggregates deposit only in neurons, tau-

positive glial inclusions are detected in various tauopathies, such as 

progressive supranuclear palsy, corticobasal degeneration and Pick’s 

disease19. Neuropathological glial lesions seen in tauopathies include ramified 

astrocytes, coiled bodies, threads, tufted astrocytes, astrocytic plaques and 

bushy astrocytes20. Another aspect that differentiates AD from other 

tauopathies is the pattern of tau isoforms (see below) that generate 

pathological species, so that all tau isoforms are seen in tau deposits in AD, 

whilst preferential accumulation of some tau isoforms can be found in various 

tauopathies, such as Pick’s disease. Moreover, except for PHFs and straight  
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filaments typical for AD, variable filamentous profiles are observed in other 

tauopathies, including tubules, PHF-like and twisted ribbon-like filaments22. 

Despite their differences, tauopathies share abundant aggregates consisting 

predominantly of tau and, consequently, numerous studies are focused on 

investigating tau dysfunction in the brain. Several aspects have been 

implicated in underpinning tau neuropathogenesis including the loss of 

normal tau function in the cell, the toxic gain of function of aggregated tau 

and/or oligomeric forms of tau, the toxicity caused by tau missorting within 

the neuron and the transmission of toxic tau species among neurons23, 24. 

Notably, it has been proposed that the polymerization of toxic tau products 

into tau aggregates might represent a neuroprotective response against 

oxidative stress25. Since tau is involved in various normal functions in the brain 

and tau pathology results in many neurodegenerative diseases, it is worth 

discussing in more detail the cell biology of tau protein itself.  

 

 

1.2 The cell biology of tau protein 

In 1975, a specific microtubule-associated protein (MAP) was isolated from 

porcine brain by Weingarten et al., which was named tau (τ) due to its ability 

to induce tubulin polymerization26. Tau is found in vertebrates, especially in 

mammals, and belongs to the highly conserved MAP2/Tau family of MAPs, 

which also includes the vertebrate proteins MAP2 and MAP4 and other 

 

Figure 1.1 A. In AD, tau deposits as NFTs in the neuronal soma surrounding nucleus at 

the medial temporal cortex, as detected by using PHF-phosphorylated tau antibody 

(modified after Murray et al., 2014)21. B. In AD, tau deposits in dystrophic neurites 

surrounding Aβ amyloid plaques forming a neuritic plaque at the medial temporal cortex, 

as observed with Bielschowsky silver stain (modified after Murray et al., 2014)21. C. 

Electron micrograph of tau PHF from AD (modified after Spillantini and Goedert, 1998)22. 

B C A 
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homologs27-29. In invertebrates, proteins showing homology to the MAP2/Tau 

family have been detected in Escherichia coli, Caenorhabditis elegans and 

Drosophila melanogaster, although this homology is rather limited30-33. In non-

mammal vertebrates, MAP2/tau-related genes were identified in Tetraodon 

(pufferfish) and Xenopus laevis (frog) genome, whilst products of the 

MAP2/tau family were detected in Coturnix coturnix (quail) as well27, 28, 34. 

Consequently, tau is found throughout much of the animal kingdom and no 

homologs have been detected in other eukaryotic organisms so far. 

Phylogenetic analysis revealed that MAP4 derives from the earliest 

vertebrates, in contrast to tau and MAP2 that share a more recent common 

ancestor and have the same distribution in different species throughout 

vertebrates35. In mammals, tau is typically expressed in the central nervous 

system and predominantly in the brain, where it is located in neurons and, to 

a lesser extent, in glial cells36-38. Whilst tau can be detected in the spinal cord 

and peripheral nervous system, it is considerably less abundant36. Lastly, tau 

has been also found in some peripheral tissues, such as the heart, kidney, 

submandibular gland and liver, where it is present in remarkably lower levels 

than the brain39, 40.  

 

 

1.2.1 Tau expression 

Human tau is encoded by a single gene, the microtubule-associated protein 

tau gene (MAPT), extending over an area of 100 kb on the chromosomal locus 

17q21.31, which consists of 16 exons numbered as -1, 1, 2, 3, 4, 4A, 5, 6, 7, 8, 9, 

10, 11, 12, 13, 1441, 42 (Figure 1.2; see MAPT gene). Two extended haplotypes 

that cover entirely the MAPT gene, known as H1 and H2, have been 

characterized and result from an inversion polymorphism spanning over an 

area of 900 kb43. H1 haplotype has been associated with increased risk for 

developing many tauopathies, such as progressive supranuclear palsy and 

corticobasal degeneration43, 44. Numerous repeated sequences are spread 

throughout MAPT gene including Alu elements, DNA transposons, 

microsatellites and minisatellites, the effect of which on MAPT expression is 

not fully understood45. In addition, three CpG islands associated with MAPT 

are present, one related to the promoter region, the other to exon 4A, and the 

last one to exon 942, 46. One MAPT promoter has been mapped so far, which is 
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located directly upstream of the exon -1 and is characterized by a high G + C 

content and the absence of TATA boxes indicating possibly the presence of 

multiple transcription initiation sites47. The transcription factors SP1 and AP2 

bind to the MAPT promoter region and are essential for its activity; however, 

putative binding sites have been identified for various alternative 

transcription factors, such as Nrf1, MTF1 and MBF145, 48.  

MAPT produces three primary transcripts (preRNAs) of 2, 6 and 9 kb that 

are differentially expressed depending on the neuronal maturation and 

neuronal type49, 50. The 6-kb transcript encodes the most abundant form of tau 

found in the adult brain and throughout development and is primarily 

targeted to the axons, whilst the 2-kb transcript that arises due to an alternative 

polyadenylation site is targeted to the nucleus, where tau might serve a special 

function during the early stages of development51, 52. Indeed, two 

polyadenylation sites have been identified, indicating the presence of two 

alternative transcription termination sites46, 53. On the other hand, the 9-kb 

transcript is targeted to the peripheral nervous system54. Tau preRNA (from 

now on referring to the 6-kb transcript) contains 16 exons, of which exons 1, 4, 

5, 7, 9, 11, 12 and 13 are constitutive exons, whilst exons 4A, 6 and 8 are not 

found in any mRNA55 (Figure 1.2; see Tau preRNA). Exon -1 and exon 14 are 

transcribed to mRNA, but they are not translated into protein as they are part 

of the 5’ and 3’ untranslated regions55. The translation initiation codon ATG is 

located in exon 156, while the AATAAA polyadenylation site is found within 

the exon 1446. 

The remaining exons 2, 3 and 10, are subject to alternative splicing 

generating six mRNA combinations and, as a result, tau can be found in six 

different isoforms in adult human brain varying from 352 to 441 residues57 

(Figure 1.2; see Tau isoforms). These isoforms differ depending on the number 

of 29-residue N’-inserts encoded by exon 2 and 3, so that an isoform can 

contain 0, 1 or 2 inserts, termed as 0N, 1N or 2N, respectively. Whilst exon 2 

can appear alone, exon 3 never appears independently of exon 2, so that 1N 

isoforms contain one N’-insert that is coded by exon 2 instead of exon 358. 0N, 

1N and 2N constitute about 37 %, 54 % and 9 % of total tau, respectively59. In 

addition, an isoform can contain 3 or 4 C’-repeat regions, known as 3R or 4R, 

respectively, due to the presence of exon 10 that encodes for the additional 

second repeat domain; the other C’-repeat domains are encoded by exons 9,  
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11 and 12, respectively60. In the human cortex, the ratio of 4R tau to 3R tau 

isoforms is about 1:159. The expression of tau isoforms differs among the 

species and is developmentally regulated. The adult rodent brain almost 

exclusively expresses the three isoforms of 4R tau (0N4R, 1N4R, 2N4R), whilst 

the adult human brain expresses all six tau isoforms61. Unlike the adult human 

brain, the dominant tau isoform in fetal human brain is the shortest one (0N3R) 

that contains neither N’-inserts nor the additional C’-repeat domain and, as a 

result, this 0N3R isoform is known as fetal tau61. 

The alternative splicing of exon 10 has received much attention as 

tauopathies are related preferentially to a certain isoform type found in tau 

  

 Figure 1.2 The human MAPT gene coding for tau protein consists of 16 exons, which are 

transcribed to a 6-kb primary transcript (tau preRNA). Exon 1, 4, 5, 7, 9, 11, 12, 13 (purple) 

are constitutive, whilst exons 4A, 6 and 8 (plum) are not found in any mRNA. Exon -1 

and exon 14 (dark purple) are transcribed to mRNA, but they are not translated into 

protein as they are part of the 5’ and 3’ untranslated sequences of tau mRNA. The 

remaining exons 2 (green), 3 (coral) and 10 (sky blue), are subject to alternative splicing 

generating six mRNA combinations and, as a result, tau can be found in six different 

isoforms in adult human brain. These isoforms differ due to the presence of 0, 1, or 2 

short N’-inserts (0N, 1N or 2N, respectively) and 3 or 4 C’-repeat domains (3R or 4R, 

respectively), so the length of the isoforms ranges from 352 to 441 residues. 
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lesions, and the normal ratio 1:1 is shifted under pathological conditions. 

Based on the balance of the 3R and 4R isoforms, three groups of tauopathies 

are distinguished: 4R tauopathies, such as progressive supranuclear palsy, 3R 

tauopathies, such as Pick’s disease and 3R+4R tauopathies, such AD1.  The 

splicing of exon 10 is regulated by intronic and exonic cis-elements in 

combination with splicing regulatory proteins. Both exon and intron 10 

contain many cis-elements including splicing enhancers, splicing silencers and 

an intronic splicing modulator62, 63. The interface between exon and intron 10 

displays complementarity indicating the formation of a stem loop, the 

destabilization of which has been shown to lead to exon 10 inclusion62, 64. Also, 

distal sequences found in exon 9, 12 and 13 as well as the length of the flanking 

introns might affect exon 10 alternative splicing50, 63. Several splicing 

regulatory proteins are involved in exon 10 splicing regulation divided into 

two groups: the SR/SR-like factors, such as the SRp54 and SF2 that promote 

exon 10 exclusion and inclusion, respectively, and the hnRNPs factors, such as 

the hnRNPE2 factor that stimulates exon 10 inclusion65-67. Except for cis-

elements and splicing factors, exon 10 splicing is controlled by the activity of 

several kinases since the phosphorylation of splicing factors seems to regulate 

their activity68. Also, miRNAs may affect tau splicing, such as miR-132 that 

was shown to correlate negatively with exon 10 inclusion in neuroblastoma 

cells69. Lastly, MAPT mutations associated with high affinity binding sites for 

splicing factors within or near exon 10 influence its splicing and alter the 

stoichiometry of 3R/4R tau isoforms70.   

The rather long 3’ untranslated region is essential for the post-

transcriptional stability as well as the axonal localization of tau mRNA.  

Binding sites for the miR-34a and miR-485-5p within the 3’ untranslational 

region have been associated with downregulation of tau expression71, 72. On the 

other hand, apart from the poly(A) tail that protects mRNA, heterogeneous 

stabilization signals within the 3’ untranslated region including an AU-rich 

and pyrimidine-rich region, in combination with possible secondary 

structures, increase tau mRNA half-life73. The initial event that determines the 

6 kb-derived mRNA localization to neuronal axons is the interaction of cis-

acting signals present in the 3’ untranslated region with RNA-binding proteins 

forming ribonucleo-protein granules that transport along microtubules74, 75. 

Several RNA-binding proteins associated with tau mRNA axonal targeting 

have been identified including the interleukin enhancer binding factor 3, NF90 
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and HuD76, 77. Notably, the presence of ribosomal proteins, tau mRNA and its 

translated product in the axons of differentiated P19 neurons supports the 

notion that tau mRNA is initially targeted to axons, where it is subsequently 

translated78.  

The translation of tau mRNA depends on an internal ribosomal entry site 

situated in the leader sequence of the 5’ untranslated region (5’ leader) and 

required for recruiting the translational machinery79. Moreover, specific 

regulatory proteins bind to the mRNA molecule and contribute to its 

translation. The tau RNA-binding proteins G3BP1, IMP1, and HuD have been 

found to interact with translating polysomes and tau mRNA leading to 

inhibition of tau mRNA translation through association with the 3’ 

untranslated region80, 81. Except for the preferential targeting of tau mRNA in 

neuronal axons, as discussed above, the axonal distribution of tau is also 

assisted by preferential translation of tau mRNA in axons due to a 5’ terminal 

oligopyrimidine tract within the 5’ untranslated region, which facilitates the 

mammalian target of rapamycin kinase-mediated protein synthesis82. After 

translation, tau isoforms undergo a variety of post-translational modifications 

that determine their functional potential in the cell (see 1.3 Tau post-

translational modifications). 

 

 

1.2.2 Tau structure 

The polypeptide chain of the longest tau isoform (2N4R) consists of 441 

residues, and, within those residues, there is a low proportion of hydrophobic 

amino acids (about 24 %), which makes tau a highly soluble protein. Also, 

about 26 % of the residues are charged amino acids (D, E, L, R, H) with the 

positively charged residues slightly dominating and, thereby, tau is overall a 

basic protein; two small regions, which consist of a high proportion of acidic 

residues are found in tau sequence, one near the N-terminal end including the 

additional N’-inserts and the other near the C-terminal end of the molecule83. 

Circular dichroism, nuclear magnetic resonance, small angle X-ray scattering, 

and Fourier transform infrared spectroscopy showed that tau is natively 

unfolded with few β-sheet, α-helix and poly-proline helix secondary 

structures84-86. Since tau is a highly hydrophilic protein, it does not adopt the 

compact tertiary structure of cytosolic proteins and, as a result, it is considered 
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as an “intrinsically disordered” protein in solution85. However, the tau 

molecule was shown to have the propensity to adopt a hairpin-like folding, 

according to which the C-terminal end of tau folds approaching the 

microtubule-binding repeats and, thereby, the N-terminal end87. Consistent 

with its mainly unfolded character, tau displays flexibility and resistance to 

heating, denaturing or acidic treatment by keeping its biological function88.  

Based on its functional interaction with the microtubules, tau can be divided 

into two major domains: the N’-terminal projection domain that protrudes 

from the microtubule surface to which tau is bound and the microtubule-

assembly domain, which is essential for interacting with microtubules88, 89 

(Figure 1.3).  Alternatively, considering both the amino acid composition and 

functional interactions, tau can be divided into four main regions: (i) an N'-

terminal projection region; (ii) a proline-rich region that contains seven PXXP 

motifs; (iii) a microtubule-binding domain (MBD) that contains three or four 

repeat regions, R1, (R2), R3 and R4, which are essential for binding to 

microtubules through their conserved KXGS motifs, and the flanking regions 

between them; (iv) a C-terminal region89, 90.   

 

 

 

 

1.2.3 Tau sorting 

The subcellular localization of tau seems to be developmentally regulated 

and isoform-dependent. During neurogenesis, fetal tau is equally distributed 

 

 Figure 1.3 Diagram of the elongated longest tau isoform. Tau is divided structurally into 

the N’-terminal projection domain, which includes the N’-terminal region and part of the 

proline-rich region, and the microtubule-assembly domain, which consists of the rest of 

the proline-rich region, the microtubule-binding domain and the C’-terminal region. The 

N’-terminal region contains the two additional highly acidic N’-inserts encoded by the 

exon 2 and 3, respectively, whereas the microtubule-binding domain contains the three or 

four repeats essential for binding to microtubules. 
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in the cell soma and developing neurites91. When neurons become polarized 

after the outgrowth of axons and dendrites, tau displays polarized distribution 

residing predominantly in axons, where it is found along microtubules and 

related to ribosomal polysomes37, 92, 93. For this reason, it has been implicated 

that the preferential distribution of tau is required for the development of 

neuronal polarity94. However, low amounts of tau can be detected in the 

somatodendritic compartment, in the nucleus and in association with the 

plasma membrane and several intracellular membranes, such as the Golgi or 

endoplasmic reticulum membranes95-98. Although tau is primarily a 

cytoplasmic protein, it can be detected outside cells and studies have shown 

that its release into the extracellular space is stimulated by neuronal activity in 

vivo99, 100. However, tau isoforms show different distribution in distinct 

subcellular compartments101, 102. Tau isoforms without the N’-inserts (0N3R, 

0N4R) were highly enriched in axons in primary neurons, while the longest 

isoform (2N4R) was partly retained in cell bodies and dendrites, where it 

enhanced spine and dendrite growth101. 

Two possible mechanisms explaining the abundance of tau in axons have 

been already discussed above, according to which tau mRNA is preferentially 

sorted into the axonal compartment being locally translated there, or tau 

mRNA also transports into other compartments, but it is preferentially 

translated in the axon. Other factors underlying tau axonal distribution have 

been suggested including differential degradation of tau in the axons 

compared to the somatodendritic compartment and prevention of the 

retrograde (axon to soma) diffusion of axonal tau owning to the axon initial 

segment barrier thereby trapping tau in the axons101, 103.  

 

 

1.2.4 Tau functions 

The cellular function of tau depends primarily on its subcellular localization, 

but, even within the same compartment, tau serves different roles based on 

different interacting partners. In addition, the phosphorylation state of tau, in 

combination with other post-translational modifications, are important in 

regulating the biochemical properties and activity of tau in the neurons. Tau 

is a microtubule-associated protein, but seems to serve several other functions 

within neurons not related to microtubules, such as iron export and cell 
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signaling104. Therefore, known roles of tau in different subcellular 

compartments are described next.   

 

1.2.4.1 Axonal tau 

The most well established biological function of tau is to promote 

microtubule assembly and stabilization in neuronal axons. Microtubules are 

long tubular structures of the cytoskeleton consisting of polymerized α- and 

β-tubulin heterodimers. Tau binds at the interface between tubulin 

heterodimers through the three or four repeat regions found within the 

MBD105. Due to the additional repeat region, 4R isoforms bind more effectively 

to microtubules than 3R isoforms106. Two distinct tau-binding sites were 

identified on both α- and β-tubulin units, one C-terminal, where the R1 repeat 

and/or the R1-R2 flanking region of tau binds to, and the other internal, where 

the binding of tau is mediated by one of its other repeats107. In neurons, the 

ratio of tau to tubulin is about 0.5, that is one tau molecule for two tubulin 

heterodimers108. By binding to tubulins, tau promotes microtubule nucleation, 

elongation and bundle formation108. In this case, tau is incorporated into the 

inner surface of the developing microtubules109. Also, tau can bind to the outer 

surface of previously assembled microtubule bundles maintaining their 

stability and more than 86 % of tau was found to be bound in the neurons110. 

The flanking regions remain flexible, while tau is bound, but they might also 

control tau affinity for microtubules105. The N’-terminal projection domain, 

which is negatively charged, protrudes from microtubules, when tau is bound, 

owning to electrostatic repulsion, and its length has been suggested to 

influence the spacing between microtubules111. 

Apart from its role in stabilizing microtubules, tau also modulates the 

microtubule dynamic instability by protecting the microtubule ends from 

growing and lessening randomly, while avoiding overstabilization that could 

damage the cell sustainability112, 113. The ability of tau to control microtubule 

dynamics is primarily regulated by its phosphorylation113. Given that 

microtubules are responsible for establishing the axonal architecture, tau 

seems to be essential for stabilizing the axonal shape as well. Moreover, 

overexpression of tau in ovarian cells was shown to induce the formation of 

neurites indicating that tau may be important for axonal outgrowth and 

maturation114, 115. Since microtubules facilitate the intracellular transport of 
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cargos and organelles with the aid of motor proteins, such as kinesin and 

dynein, tau may influence this process by competing with motor proteins for 

binding sites on microtubules116.  

 

1.2.4.2 Tau in dendrites 

The function of tau in dendrites as well as dendritic spines remains elusive. 

By inducing a long-term synaptic activation in murine cultured cortical 

neurons, it was shown that tau translocates from the dendritic to the 

postsynaptic compartment and, thus, it has been suggested that dendritic tau 

may be involved in activity-dependent synaptic re-organization underpinning 

synaptic plasticity117. Furthermore, dendritic tau has been reported to be 

essential for the postsynaptic targeting of the kinase Fyn, a substrate of which 

is the NMDA receptor, and seems to affect the trafficking of the GluA2-

containing AMPA-type glutamate receptor within neuronal dendrites118, 119. 

Lastly, a selective deficit in NMDAR-dependent long-term depression was 

observed in CA1 synapses in vivo in tau-knockout mice, suggesting that tau is 

required for long-term depression in the hippocampus120. 

 

1.2.4.3 Tau in nucleus 

Apart from its localization in neuronal processes, tau has been detected in 

the nucleus, where it is specifically localized in the nucleolus in both neuronal 

and non-neuronal cells121, 122. The cytoplasmic translocation of tau into the 

nucleus depends on post-translational modifications, including 

phosphorylation and glycosylation121, 123. Nuclear tau can bind to both single- 

and double-stranded DNA through the second half of the proline-rich region 

and the R2 repeat within the MBD124, 125. Nuclear magnetic resonance revealed 

that an AT-rich or GC-rich 22 bp oligonucleotide is responsible for interacting 

with tau125. However, phosphorylation seems to decrease the interaction of tau 

with DNA and this agrees with data showing that tau is not phosphorylated 

in the nucleus121, 125. Similar to histone activity, tau is likely to serve several 

roles in the nucleus, including the protection of genomic DNA against stress-

induced damage, chromosome stability, modulation of gene expression and 

RNA metabolism124, 126, 127. Moreover, owning to its specific localization in the 

nucleolus, it has been proposed that ribosomal biogenesis and/or rRNA 
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transcription are facilitated by tau activity, whereas it may be involved in the 

nucleolus organization itself122, 128.  

 

1.2.4.4 Tau associated with the plasma membrane 

Tau has been reported to interact with the inner leaflet of the plasma 

membrane through its N’-terminal projection domain and possibly its MBD 

repeats in a process mediated by the plasma membrane-binding protein 

annexin A297, 129, 130. However, it may be also present within cell-surface lipid-

rich microdomains of the plasma membrane131. Similar to tau-DNA 

interaction, phosphorylation prevents tau association with the plasma 

membrane132. To date, the interaction of tau with the plasma membrane has 

not been studied extensively, but plasma membrane-associated tau might be 

involved in two possible process. Firstly, tau has been proposed to bring 

developing microtubules close to the plasma membrane of growth cones 

thereby facilitating neurite outgrowth129. Moreover, certain motifs (PXXP) 

within the proline-rich region of tau interact with signaling proteins, such the 

src tyrosine kinases, targeting tau into the plasma membrane, where it seems 

to facilitate intracellular signaling pathways131, 133.  

 

1.2.4.5 Extracellular tau 

To date, the function of extracellular tau remains unclear. In cultured 

neuronal cells, extracellular full-length tau increased the concentration of 

intracellular calcium by activating the cholinergic muscarinic receptor M1 

and/or M3 inducing neuronal death134. Notably, repeated stimulation of the 

muscarinic receptors with tau failed to induce their desensitization, in contrast 

to acetylcholine135. Tau released in the extracellular space, where was found to 

be very stable, has been associated with increasing neuronal activity, 

indicating that the synaptic activity serves the spread of tau pathology to 

neighboring neuronal cells causing tau-mediated neurotoxicity100, 135.  

  

 

1.2.5 Tau turnover 

In neurons, tau can be proteolytically processed by the proteasome through 

a ubiquitin-dependent process136 (see 1.3.4.3 Tau ubiquitylation). However, it 
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was shown that tau degradation might not require its preceding 

ubiquitylation at all, since tau was bi-directionally degraded in vitro by the 20s 

proteasome in a ubiquitin-independent manner that could be further 

supported by the “unfolded” character of tau protein137, 138. Impaired tau 

clearance has been widely considered a critical factor causing tau 

accumulation in the cell and, thus, contributing to tau pathology.   

 

 

1.3 Tau post-translational modifications  

Tau undergoes a variety of post-translational modifications, including 

phosphorylation, glycosylation, truncation, acetylation, methylation, 

ubiquitylation, SUMOylation, glycation, nitration, oxidation, prolyl-

isomerization and deamidation139. Tau post-translational modifications are 

enzymatically regulated, with the exception of glycation and deamidation, 

and occur at different residues throughout the tau sequence. Each type 

influences the physical and chemical properties of tau in a site-specific manner 

thereby determining tau activity within different subcellular compartments. 

In addition, considerable evidence supports the notion that tau misfolding and 

dysfunction are favored by certain post-translational modifications that alter 

the biophysical properties of tau. Thereby, the post-translational modifications 

occurring on tau will be discussed immediately afterwards with regard to the 

biochemical reaction that takes place (for figures of the biochemical reactions 

see Appendix I) and their impact on both tau function and dysfunction.  

 

 

1.3.1 Tau phosphorylation 

One of the most well studied post-translational modifications of tau is 

phosphorylation, which refers to the addition of the terminal phosphate group 

from ATP to hydroxyl groups of serine, threonine or tyrosine side chains by 

esterification. Tau phosphorylation is regulated by the balance between 

protein kinases and phosphatases. Several protein kinases have been 

identified to phosphorylate tau protein in a site-dependent manner including 

the proline-directed S/T-protein kinases, such as GSK-3β, Cdk5 and MAPKs, 

the non-proline-directed S/T-protein kinases, such as CK1, DYRK1A and 

TTBK1/2, and the protein kinases specific for tyrosine residues, such as Src and 
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Fyn139. Conversely, tau dephosphorylation is controlled primarily by PP2A, 

but PP5 has also been shown to be able to dephosphorylate tau in vitro140, 141. 

The longest tau isoform (2N4R) contains 85 putative phosphorylation sites (45 

serine, 35 threonine and 5 tyrosine residues), of which 28 have been detected 

to be possibly phosphorylated in AD brains, whereas 31 have been found 

exclusively in normal brains distributed along the tau sequence17. The 

remaining sites either have been detected in both brains or have not been fully 

characterized yet.  

The phosphorylation of tau appears to be developmentally regulated, since 

fetal tau was shown to be more phosphorylated than adult tau in human and 

rat brains142. Under normal conditions, the phosphorylation of adult tau, 

controls its physiological activity as mentioned above, including tau affinity 

for microtubules, DNA and plasma membrane.  However, PHF-tau is 

abnormally hyperphosphorylated13, 143. The abnormal increase in tau 

phosphorylation has been extensively studied and seems to result from the 

upregulation of tau kinases and/or downregulation of tau phosphatases. Also, 

it is considered the main cause for reducing tau affinity for microtubules given 

that phosphorylation of specific sites within the MBD has been related to 

weakened tau binding to microtubules144. Moreover, hyperphosphorylation 

possibly precedes and facilitates the self-assembly of tau isoforms into PHFs 

and straight filaments145. These data indicate that hyperphosphorylation is 

likely to be the main trigger of tau pathology by causing tau to unbind from 

microtubules, which are subsequently depolymerized, and facilitating its 

aggregation. 

 

 

1.3.2 Tau glycosylation 

Tau protein can be also modified by the addition of a sugar. This process, 

termed glycosylation, can occur on either the hydroxyl group of serine or 

threonine side chains (O-glycosylation) or the amino group of asparagine side 

chain (N-glycosylation). In human AD brains, tau was found to be N-

glycosylated and it was suggested that this modification is responsible for 

maintaining and stabilizing the PHF structures146. Additionally, it was 

revealed that tau N-glycosylation may precede its hyperphosphorylation in 

AD brains by promoting phosphorylation and suppressing 
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dephosphorylation of tau by altering tau conformation147. Three potential N-

glycosylation sites have been identified in human tau including N167, N359 

and N410148. 

A special type of glycosylation found on tau is the addition of a single N-

acetyl glucosamine (GlcNAc) group to serine or threonine residues, termed as 

tau O-GlcNAcylation. In contrast to tau N-glycosylation, O-Glc-NAcylation 

occurs at serine and threonine residues that can be also phosphorylated. 

Consequently, it has been suggested that this modification competes with 

phosphorylation for the same residues on tau both in vivo and in vitro, 

protecting tau against phosphorylation149. At the same time, O-Glc-NAcylation 

has been shown to inhibit tau aggregation by either enhancing the solubility 

of tau monomers or destabilizing tau aggregates150. In AD brains and other 

tauopathies, O-Glc-NAcylation appears reduced probably due to impaired 

brain glucose metabolism contributing to tau hyperphosphorylation and 

fibrillization149. Mass spectrometric analysis of O-Glc-NAcylated recombinant 

tau revealed three putative sites that are possibly modified at T123, S400 and 

either S409, S412 or S413, whereas only S400 has been identified in rat brain151. 

Tau O-Glc-NAcylation is catalyzed by the O-GlcNAc transferase; loss of the 

O-GlcNAc transferase led to increased production of hyperphosphorylated 

tau in forebrain excitatory neurons152. 

   

 

1.3.3 Tau truncation  

Truncation is another post-translational modification of tau that occurs in 

AD and other tauopathies and seems to be an early pathological event153. In 

AD, four putative cleavage sites have been mapped on tau: D13 cleaved by 

caspase-6, R230 cleaved by calpains, E391 cleaved by caspases and D421 

cleaved by the apoptotic protease caspase-3154-157. Two possible mechanisms 

have been proposed according to which truncation may facilitate tau-induced 

neurodegeneration158. Firstly, tau truncation may generate fragments with 

higher propensity for aggregation given that the hairpin-like folding is 

disturbed. Besides, it has been shown that tau structure after truncation is 

conformationally different compared to non-truncated tau159. Additionally, 

toxic fragments produced by tau cleavage may induce neurodegeneration 
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independently of tau aggregation. Lastly, tau truncation was demonstrated to 

follow tau hyperphosphorylation, but precede the formation of NFTs160, 161.  

 

 

1.3.4 Lysine-directed post-translational modifications 

Tau post-translational modifications that extend to lysine residues have not 

been yet analysed as extensively as phosphorylation and glycosylation, but it 

is likely that they may be as important as phosphorylation in dictating the 

biophysical properties of tau. During this project I wrote and published a 

review article (see Appendix II) that provides a complete insight of the 

research up to date that focuses on lysine-directed post-translational 

modifications including tau acetylation, methylation, ubiquitylation, 

SUMOylation and glycation. Consequently, they will be discussed only briefly 

here.  

 

1.3.4.1 Tau acetylation 

Tau acetylation regards the addition of an acetyl group deriving from acetyl-

CoA to the side chain of lysine residues of tau. It can be catalyzed by either the 

protein p300 or the CBP acetyltransferase, whereas tau can be deacetylated by 

the NAD+-dependent sirtuin 1 deacetylase or the histone deacetylase 6162-164. 

Remarkably, tau has also intrinsic acetyltransferase activity and, hence, can 

catalyze its self-acetylation165. So far, 31 lysine residues have been identified as 

putative acetylation sites, most of which are distributed within or near the 

MBD. In general, acetylation that is elevated by cellular stress, such as Aβ 

accumulation, seems to be responsible for impairing both tau homeostasis and 

tau-microtubule interactions162, 166. However, acetylation at KXGS motifs has 

been reported to prevent tau phosphorylation and decrease its aggregation in 

vitro164, 166. 

 

1.3.4.2 Tau methylation 

Tau methylation refers to the enzymatic addition of one or more methyl 

groups deriving from S-adenosyl methionine to the terminal amino group of 

lysine or arginine side chains of tau protein. To date, 26 lysine and three 

arginine residues have been detected to be possibly methylated in tau protein 
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isolated from both pathological and normal brains167-169. Given that the 

putative methylated sites are distributed throughout tau sequence, lysine 

methylation may suppress tau binding to microtubules and other partners. 

Moreover, lysine residues have been shown to participate in electrostatic 

interactions facilitating abnormal aggregation and, as a result, it has been 

suggested that lysine methylation may enable interactions between tau 

molecules enhancing tau self-assembly and NFT formation170. In contrast, the 

impact of lysine methylation on endogenous normal tau remains unclear.  

 

1.3.4.3 Tau ubiquitylation 

Ubiquitylation of tau involves the formation of an isopeptide bond between 

the C’-terminal carboxyl group of the small regulatory protein ubiquitin and 

the ε-amino group present in lysine side chains of tau by a multistep 

enzymatic process. Several enzymes have been reported to ubiquitylate tau, 

including the C-terminus of the Hsc70-interacting protein, TNF receptor-

associated factor 6 and axotrophin/MARCH7136, 171, 172. The reverse process can 

be catalyzed by the cysteine protease deubiquitinating enzyme Otub1 that 

cleaves the isopeptide bond between tau and ubiquitin173. Apart from K44 that 

is located on the N’-terminal region, the remaining 16 lysine residues that can 

be potentially ubiquitylated are distributed within the MBD. The most well-

known role of ubiquitylation in cells is the induction of the proteolytic 

degradation of targeted proteins by the proteasome, including tau136. Also, tau 

was identified as the ubiquitin-targeted protein in PHFs raising, thus, 

questions about the insufficient clearance of pathological fibrillary inclusions 

of tau174.  

  

1.3.4.4 Tau SUMOylation 

SUMOylation is another post-translational modification of tau, in which the 

small ubiquitin-like modifier (SUMO) protein is enzymatically attached to the 

terminal amino group of lysine side chains forming an isopeptide bond in a 

way similar to ubiquitylation. Tau was shown to be preferentially 

monoSUMOylated by SUMO1 and, to a lesser extent, by SUMO2 and 

SUMO3175. So far, only K340 has been identified as a putative SUMOylation 

site, which is part of the consensus motif VKSE located within the MBD175, 176. 

Consistent with this, SUMOylation occurs only after tau is released from 
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microtubules175. Evidence shows that tau hyperphosphorylation facilitates its 

SUMOylation, whereas tau SUMOylation reciprocally enhances its 

hyperphosphorylation at several AD-related sites176. Moreover, it was 

revealed that SUMOylation of tau at K340 inhibits its ubiquitylation and 

subsequent degradation175. 

 

1.3.4.5 Tau glycation 

The non-enzymatic attachment of a reducing sugar, especially glucose, to 

the terminal amino group of a lysine side chain of tau is called tau glycation 

or tau non-enzymatic glycosylation. Glycation is one of the modifications 

detected in PHF-tau purified from AD human brains, but not in soluble tau177. 

From the 32 putative glycation sites identified in tau both in vitro and in vivo, 

21 are distributed within the MBD178. Tau glycation has been implicated in 

inhibiting microtubule-tau interactions in vitro, assisting tau 

hyperphosphorylation and facilitating tau aggregation177, 178. Lastly, the 

formation of advanced glycation end products by developing irreversible 

cross-links between tau glycation products and other proteins has been related 

to oxidative stress in neurons179. 

 

 

1.3.5 Other tau post-translational modifications 

1.3.5.1 Tau nitration 

The addition of nitrogen dioxide on the aromatic ring found in the side chain 

of a tyrosine residue of tau is termed as nitration. Tau can be nitrated at four 

possible sites including Y18, Y29 and, to a lesser extent, Y197 and Y394180. 

Nitration may facilitate tau aggregation into filamentous inclusions in AD and 

other tauopathies or, conversely, may inhibit tau polymerization depending 

on the modified sites180, 181. In the neuroblastoma N2a cell line, nitrated tau was 

shown to accumulate in the cells, whereas impaired binding to microtubules 

was observed in vitro182. Immunoblotting analysis using antibodies that react 

specifically with nitrated tau at Y18, Y29 and Y394 revealed that these sites are 

nitrated only in AD and other tauopathies, indicating that these modifications 

may be a disease-related event183-185. On the other hand, nitration at Y197 

located within the proline-rich region has been detected in soluble tau from 
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normal brains and, as a result, it is likely to serve physiological functions in 

neurons185. However, the impact of the site-specific tyrosine nitration on tau 

biology seems to vary between different tauopathies and tau lesions184.     

 

1.3.5.2 Tau oxidation 

Protein oxidation is a chemical reaction that involves loss of electrons 

leading to amino acid side chain modifications and is part of normal 

regulatory processes or appear when oxidative stress overcomes antioxidant 

defenses186. Tau protein can be oxidized at C322, located within the MBD, 

enabling the formation of intermolecular disulfide bridges between C322 

residues and tau oxidation was shown to induce its self-association in vitro187, 

188. Consistent with this, treatment with tau fibrillization inhibitors, such as the 

aminothienopyridazines, found to promote the oxidation of both cysteine 

residues within the MBD of tau molecule, C291 and C322, leading to a compact 

monomer that contains an intramolecular disulfide bond and is resistant to 

aggregation189. Moreover, cysteine oxidation of tau to disulfide formation was 

shown to weaken tau ability to promote microtubule assembly190. 

 

 1.3.5.3 Tau prolyl-isomerization 

Prolyl-isomerization refers to the interconversion between cis and trans 

conformation of the peptide bond of a targeted protein that is formed by the 

amino group of proline. In contrast to other amino acids, the amino group of 

proline is part of its cyclic side chain. Tau prolyl-isomerization can be 

catalyzed by the Pin1 prolyl isomerase and the FKBP52 protein191, 192. Pin1 has 

been shown specifically to isomerize the phosphorylated T231-P232 bond in 

tau affecting its cis-trans conformation191. Also, the activity of PIN1 seems to 

regulate the PP2A-dependent dephosphorylation, since PP2A phosphatase 

displays trans-specificity, and can restore the ability of hyperphosphorylated 

tau to bind to microtubules and promote microtubule assembly in vitro191, 193.  

  

1.3.5.4 Tau deamidation 

Tau deamidation refers to the replacement of the amide group of the side 

chain of asparagine to a hydroxyl group resulting in the irreversible, non-

enzymatic conversion of asparagine to aspartic acid or isoaspartic acid.  
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Aggregated tau extracted from AD brains was shown to include two 

isoaspartic acids at the position of tau asparagine residues N381 and N387194. 

The isoaspartate formation at these sites has been related to both 

oligomerization and PHF formation in vivo194. Another asparagine residue that 

was found to undergo deamidation in AD brains was N279, located within the 

MBD195. Deamidation of N279 to aspartic acid seems to reduce tau binding to 

microtubules similarly to tau hyperphosphorylation195. 

 

 

1.4 Tau aggregation  

Even though tau protein adopts an “unfolded” conformation under normal 

conditions, its self-association results in the formation of well-ordered 

filamentous structures. Three factors are essential for facilitating tau 

aggregation. The first concerns the release of tau from microtubules, which 

contributes to increasing the pool of available-to-aggregate tau in the cytosol. 

Secondly, the charge neutralization of basic regions of the tau molecule caused 

by polyanions enables tau self-association196. The last factor that contributes to 

tau aggregation is the tendency of two hexapeptide motifs, VQIINK and 

VQIVYK within the R2 and R3 repeat region of the MBD, respectively, to form 

β-structures196, 197. When tau accumulates into highly ordered PHFs, the MBD 

has been shown to compose the fibril core of PHFs consisting of β-structures, 

whereas a highly flexible “fuzzy coat” that consists of the N’- and C’-terminal 

regions exists surrounding the fibril core198.  

Studies of the kinetics of PHF assembly revealed that tau fibrillization 

follows a nucleation-elongation process197 (Figure 1.4). According to this 

mechanism, a thermodynamically unstable nucleus in equilibrium with the 

assembly-competent monomer population is formed randomly (nucleation)199. 

When this nucleus reaches a critical size, the subsequent addition of 

monomers is energetically favorable and the aggregation proceeds forming 

initially short oligomers and later long fibrils (elongation)199. Consequently, 

the rate of tau fibrillization depends on both the nucleation efficiency and the 

elongation rate. Different tau isoforms have been shown to display different 

propensity to aggregate in vitro. The first N’-insert encoded by exon 2 has been 

reported to promote tau fibrillization due to its contribution to the nucleation 

and elongation steps of the aggregation process, in contrast to the antagonist 

effect of exon 3-encoded N’-insert200. Also, 4R isoforms have been reported to 
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aggregate more efficiently than 3R isoforms in vitro, which require higher 

concentration and longer nucleation time to support the aggregation level of 

4R isoforms200. Since tau aggregation is clearly a biophysical process, it is not 

surprising that several site-directed post-translational modifications, which 

may or may not compete each other, have a profound impact on it.  

 

 

  

Figure 1.4 The sigmoidal graph represents a typical protein fibrillization process that is 

characterized by a nucleation (lag)-elongation (growth) phase followed by a plateau 

phase (adapted after Gillam and MacPhee, 2013)199. τ50 represents the time, when half of 

the protein molecules have formed filamentous aggregates and the elongation rate (rmax) 

is maximum. 
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   2. Project objectives 
 

 

 

 

Tau undergoes a variety of post-translational modifications as discussed 

above and, amongst them, phosphorylation has received most attention for 

two main reasons. Firstly, it is well established that phosphorylation 

influences the biological activity of tau under normal conditions (see 1.2.4 Tau 

functions). Secondly, pathological tau aggregates found in AD and related 

tauopathies are characterized by a hyperphosphorylated state of tau, which 

has been associated with the loss of tau major function to bind and stabilize 

microtubules and is widely considered one of the initial events resulting in tau 

misfolding (see 1.3.1 Tau phosphorylation). However, increasing evidence 

supports the notion that other post-translational modifications occurring on 

tau, such as acetylation and glycosylation, might be equally important for 

regulating tau normal function and misfolding in a site-specific manner. 

Despite the increasing focus on tau post-translational modifications, the 

identification of possible sites that are found to be modified is not complete 

yet. In addition, the biological role that each site-specific post-translational 

modification facilitates in normal tau as well as in different types of 

pathological tau, remains to be elucidated.  

Immunohistochemical data available from previous work revealed that tau 

aggregates can deposit surrounding prion protein amyloid plaques in mouse 

brains infected with the 87V murine adapted scrapie (87V-VM; Figure 2.1). 

This observation raised the question whether tau post-translational 

modifications are altered by the pathology of prion protein in vivo compared 

to normal tau. Consistent with this, we hypothesized that the prion pathology 

in 87V-VM mouse brains causes the biochemical shift of normal endogenous 

tau into misfolded aggregated tau by inducing alterations of specific tau post-

translational modifications. Therefore, the primary aim of the project was to 

identify site-specific post-translational modifications occurring on tau 

isoforms derived from normal and 87V-VM mouse brains, respectively. To do 

that, mass spectrometry was used given that it allows large-scale analysis of  
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protein post-translational modifications. Furthermore, since certain site-

specific post-translational modifications may be prevalent in one type of 

pathological tau, whereas they may be absent or less abundant in other types, 

the development of a method at a preliminary stage to quantify site-specific 

modifications from crudely isolated tau was another major objective. This 

study contributes to our understanding of the biochemical transition occurring 

on tau protein in neuropathology, which could be the ground for therapeutic 

approaches aiming at certain site-specific post-translational modifications of 

high risk. In addition, it would increase our knowledge of the impact of site-

specific post-translational modifications on tau biology, since tau seems to be 

involved in many important cellular functions of neurons. 

The specific technical objectives of the project were as follows: 

 Extract biochemically soluble endogenous tau from normal mouse brain 

samples and identify tau isoforms by immunoblotting. 

 Extract biochemically soluble endogenous tau from 87V-VM mouse brain 

samples and identify tau isoforms by immunoblotting. 

 Optimize the biochemical extraction of insoluble aggregated tau from 87V-

VM mouse brain samples and identify tau isoforms by immunoblotting. 

 

Figure 2.1 Immunohistochemistry using the anti-prion antibody 6H4 and the anti-tau 

antibody AT8 reveals the co-existence of prion protein amyloid plaques (left) and tau 

deposits (right) in the cerebral cortex of 87V-VM mouse brains (stained with hematoxylin; 

magnification 40x). The figure was kindly provided by Prof. P. Piccardo (Piccardo et al., 

Variable tau-protein accumulation in animal models with prion protein deposits, in 

submission).  

50 μm 50 μm 
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 Detect both normal and pathological tau post-translational modifications 

by mass spectrometry and analyze the data. 

 Investigate the phosphorylation state of soluble tau in the 87V-VM mouse 

brain underlying tau pathology. 

 Investigate whether it is possible to develop a method of quantifying 

specific tau post-translational modifications of interest by mass 

spectrometry.  

Last but not least, since the scientific field lacked an overview of the latest 

findings concerning tau post-translational modification occurring on lysine 

residues, a review of the literature on the subject was an additional aim during 

this project. 
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   3. Materials and methods 
 

 

 

 

3.1 Materials 

The chemicals and reagents that were used during this project are listed 

below: perchloric acid 70 % (PCA; Aristar/Primar), tris base (Fisher 

BioReagents), sodium chloride (Fisher BioReagents), sarkosyl (N-

Lauroylsarcosine sodium salt; Sigma-Aldrich), nonidet P-40 Alternative (NP-

40; Calbiochem), sodium deoxycholate (BDH 430353P), ethylene diamine 

tetraacetic acid (EDTA; Sigma-Aldrich), ethylene glycol bis(β-aminoethyl 

ether) N,N,N′,N′-tetraacetic acid (EGTA; Sigma-Aldrich), 

phenylmethylsulfonyl fluoride (PMSF; Sigma), sucrose (Fisher BioReagents), 

β-mercaptoethanol (BDH 44143), trichloroacetic acid (TCA; Fisher 

BioReagents), methanol (Fisher Chemicals), magnesium sulfate (Scientific 

Laboratories Supplies), dithiothreitol (DTT; Fisher BioReagents), formic acid 

(Rathburn Chemicals), sodium phosphate (Sigma-Aldrich), potassium iodide 

(Sigma-Aldrich), sodium thiosulphate (VWR Chemicals BDH), urea (Sigma-

Aldrich), glycerol (Fisher BioReagents), sodium dodecyl sulphate (SDS; BDH 

Prolabo Chemicals), 3’, 3’’, 5’, 5’’-tetrabromophenolsulfonephalein 

(bromophenol blue; Sigma-Aldrich), glycine (Fisher BioReagents), tween-20 

(AMPRESCO), iodoacetamide (IAA; Sigma-Aldrich), ammonium bicarbonate 

eluent additive for LC-MS (Fluka), trypsin from porcine pancreas (Sigma-

Aldrich), trypsin resuspension buffer (Promega), formic acid LC-MS Grade 

(Thermo Scientific), acetonitrile (VWR Chemicals BDH Prolabo). All 

homogenizations were carried out by using the Wheaton Dounce Tissue 

Grinders by Fisher Scientific. Insoluble pellets were sonicated by using the 

Sonicator Ultrasonic Processor XL, if needed. 
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3.2 Animals 

Frozen mouse brain tissues were available from previous work to 

investigate the changes of tau post-translational modifications induced by the 

prion protein pathology, for which the entire brain was removed and snap 

frozen in liquid nitrogen before storage at -80oC. Two groups of mouse brains 

were used in this study: a group of normal brains, which did not display any 

clinical signs, and a group of brains collected from mice infected by 

intracranial inoculation with the 87V mouse adapted scrapie strain. These 

mice displayed clinical signs prior to cull, as defined by validated scoring 

criteria. Both normal and 87V-VM brains were derived from mice of 

approximately the same age, nearly one year old, and of both sexes. 

  

 

3.3 Biochemical extraction of soluble tau from mouse brain 

The biochemical extraction of soluble tau from mouse brain was performed 

according to Ivanovova et al. (2008)201. Mouse brain was homogenized in ice-

cold 1 % (w/v) perchloric acid (1.5 g tissue per 5 mL PCA) with a glass 

homogenizer and kept on ice for 20 min to allow the depolymerization of 

microtubules. The homogenization was performed in low temperature to 

prevent protease activity. The homogenate was centrifuged at 15,000 x g for 20 

min at 4oC and the clear supernatant was concentrated using Amicon 

Microcon Centrifugal Filter Devices with simultaneous buffer exchange to 

washing buffer by spinning at 14,000 x g for 6 h overall at room temperature 

on an Eppendorf Refrigerated Microcentrifuge, Model 5417R, using the rotor 

FA-45-30-11. The washing buffer contained 20 mM Tris pH 7.4 and 150 mM 

NaCl. The concentrated supernatant was stored at -20oC. Aliquots of the brain 

and the pellet were kept for analysis. This protocol was used for the extraction 

of soluble tau from both normal and 87V-VM mouse brains.  

  

 

3.4 Biochemical extraction of aggregated tau from mouse brain 

Different protocols were used for the biochemical extraction of insoluble 

aggregated tau from the 87V-VM brains, all of which were based on fractional 

centrifugation and incubation with the detergent sarkosyl. Insoluble tau refers 
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to tau insoluble by 1 % (w/v) sarkosyl. Aliquots of intermediate fractions were 

kept and analysed along with the fraction of interest. The slow centrifugation 

steps were carried out on an Eppendorf Refrigerated Microcentrifuge, Model 

5417R, using the rotor FA-45-30-11, which spins up to 20,800 x g maximum. 

When the rotational speed given by the protocol exceeded this value, the time 

of centrifugation was calculated according to the equations below: 

 

𝑘 (
𝑚𝑚

𝑔
) =  

2,83696 𝑥 105 𝑥 𝑟𝑚𝑎𝑥 𝑥 ln (
𝑟𝑚𝑎𝑥

𝑟𝑚𝑖𝑛
)

𝑅𝐶𝐹
; 

 
𝑡1

𝑘1
=  

𝑡2

𝑘2
 , 

 

where k (k factor) represents the relative pelleting efficiency of a given 

centrifuge rotor at maximum rotational speed, rmin and rmax represent the 

minimum and maximum distance from the rotational axis (mm), respectively, 

RCF represents the rotational speed of the centrifuge (x g), t1 (unknown) 

represents the time to precipitate a certain particle at the rotational speed given 

by the protocol that exceeds the maximum rotational speed of the centrifuge 

(min), k1 represents the k factor of the rotor at the speed given by the protocol 

(mm/g), k2 represents the k factor of the rotor at the maximum rotational speed 

(mm/g) and, lastly, t2 represents the time to precipitate a certain particle at the 

maximum rotational speed of the centrifuge (min)202. Consequently, the 

centrifugation was carried out at the maximum rotational speed of the 

centrifuge for t2 min. The fast centrifugation steps were carried out on the 

Beckman Optima TL 100 Ultracentrifuge using the rotor TLA-100.3 and 

Beckman Coulter Polyallomer Centrifuge thick-wall tubes, which were strictly 

weighed and balanced before centrifugation.  

 

 

3.4.1 Biochemical extraction according to Planel et al. 

The first protocol used for the extraction of aggregated tau was described 

previously by Planel et al. (2009)203. Mouse brain was homogenized in 5 vol. 

(v/w) of cold RIPA buffer with a glass homogenizer. RIPA buffer contained 50 

mM Tris pH 7.4, 1 % (v/v) Nonidet P-40, 0.25 % (w/v) sodium deoxycholate, 
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150 mM NaCl and 1 mM EDTA. The homogenate was centrifuged at 20,000 x 

g for 20 min at 4oC and the supernatant representing total tau fraction was 

adjusted to 1 % (w/v) sarkosyl for 1h at room temperature with constant 

shaking. The supernatant was then centrifuged at 100,000 x g for 60 min at 

room temperature. Given that the Beckman Coulter Polyallomer Centrifuge 

thick-wall tubes were used for this centrifugation step with maximum fill 

volume 3 mL, the concentration of sarkosyl csarkosyl (% w/v) that was used to 

reach a final concentration of 1 % (w/v) was calculated as below: 

 

𝐶𝑠𝑎𝑟𝑘𝑜𝑠𝑦𝑙(% 𝑤 𝑣⁄ ) =
𝑉𝑠𝑎𝑚𝑝𝑙𝑒   

𝑉𝑠𝑎𝑟𝑘𝑜𝑠𝑦𝑙 𝑤𝑖𝑡ℎ 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑐 
+ 1; 

 

𝑉𝑠𝑎𝑚𝑝𝑙𝑒 + 𝑉𝑠𝑎𝑟𝑘𝑜𝑠𝑦𝑙 𝑤𝑖𝑡ℎ 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑐 = 3 𝑚𝐿 

 

where Vsample refers to the supernatant volume representing total tau fraction 

(mL), which emerged from the first centrifugation, and Vsarkosyl with concentration c 

refers to the volume of sarkosyl that was added to reach final volume 3 mL 

(mL). The pellet containing sarkosyl-insoluble, aggregated tau was 

resuspended in distilled water and stored at -20oC. Aliquots of the 

homogenate, the initial pellet and the sarkosyl-soluble supernatant were kept 

for analysis.  

 

 

3.4.2 Biochemical extraction according to Greenberg and Davies 

The protocol that was published by Greenberg and Davies (1990) for the 

preparation of insoluble tau fractions was used after some modifications204. 

Mouse brain was homogenized in 10 vol (v/w) of cold H buffer with a glass 

homogenizer. The homogenization was performed in low temperature to 

prevent protease activity. H buffer contained 10 mM Tris, 1 mM EGTA, 1mM 

PMSF, 0.8 M NaCl and 10 % (w/v) sucrose, pH 7.4. The homogenate was kept 

on ice for 20 min to allow the depolymerization of microtubules and then 

centrifuged at 20,800 x g for 26 min at 4oC. The pellet was re-homogenized and 

spun similarly to the brain. The supernatants from both centrifugations 

representing total tau fraction were combined and adjusted to 1 % (w/v) 

sarkosyl and 1 % (v/v) β-mercaptoethanol by adding 11.11 μl of 10 % (w/v) 

sarkosyl and 1.11 μl of β-mercaptoethanol per 100 μl of supernatants. After 
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incubation for 2h at 37oC with constant shaking, the supernatants were 

centrifuged at 30,000 rpm for 30 min at room temperature. The pellet 

containing sarkosyl-insoluble, aggregated tau was resuspended in H buffer. 

The re-suspended pellet was adjusted to 0.1 % (v/v) β-mercaptoethanol as 

before (up to final volume 200 μl) and placed onto a discontinuous sucrose 

gradient that consisted of 1,3 mL of 35 % (w/v) sucrose and 1,5 mL of 50 % 

(w/v) sucrose in 10 mM Tris, 1 mM EGTA, 0.8 M NaCl and 0.1 % (v/v) β-

mercaptoethanol, pH 7.4. After centrifugation at 35,000 rpm for 82 min at room 

temperature, the 35 % layer and 35-50 % interface that contain aggregated tau 

were collected with a 2.5-mL syringe. The proteins of the samples were 

precipitated with 10 % (w/v) TCA with ice-cold methanol and stored in -20oC. 

Aliquots of the homogenate, one of the initial pellets and the sarkosyl-soluble 

supernatant were kept for analysis. 

 

 

3.4.3 Biochemical extraction according to Cohen et al. 

The next protocol that was used for the biochemical extraction of aggregated 

tau was based on a previous protocol published by Cohen et al. (2011)166. 

Mouse brain was homogenized in 3 vol (v/w) of cold High Salt RAB buffer, 

which contained 0.75 M NaCl, 100 mM Tris, 1 mM EGTA, 0.5 mM MgSO4, 2 

mM DTT, pH 7.4. The homogenate was kept on ice for 20 min to allow the 

microtubule depolymerization and the homogenization was performed in low 

temperature to prevent protease activity. After centrifugation at 100,000 x g 

for 30 min at 4oC, the pellet was re-homogenized and centrifuged similarly to 

the brain. The resultant pellets were re-homogenized again in 5 vol (v/w) of 

cold PHF extraction buffer, which contained 10 mM Tris pH 7.4, 10 % (w/v) 

sucrose, 0.85 M NaCl, 1 mM EGTA, pH 7.4, and centrifuged at 15,000 x g for 

20 min at 4oC. The supernatant was adjusted to 1 % (w/v) sarkosyl as 

previously and incubated at 4oC overnight. After centrifugation at 100,000 x g 

for 30 min at room temperature, the sarkosyl-insoluble pellet was solubilized 

by formic acid. The proteins of the sarkosyl-insoluble fraction were 

precipitated with 10 % (w/v) TCA with ice-cold methanol and the sample was 

stored in -20oC. Aliquots of the homogenate, the initial supernatant and one of 

the pellets as well as the sarkosyl-soluble supernatant were kept for analysis. 
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3.4.4 Biochemical extraction according to Hope et al.  

A protocol for the extraction of pathological prion protein (PrPSc) was used, 

since aggregated tau is associated with PrPSc plaques in the same brain tissues, 

described previously by Hope et al. (1988)205. According to this protocol, mouse 

brains were homogenized in brain lysis buffer (20 mL of buffer per 2 g of 

tissue) and incubated for 30 min at room temperature. The brain lysis buffer 

consisted of 0.01 M sodium phosphate pH 7.4 and 10 % (w/v) sarkosyl. The 

homogenate was centrifuged in the Thermo Scientific Sorvall LYNX using the 

SS34 rotor and Nalgene Oakridge tubes at 13,500 rpm for 30 min at 10oC. The 

supernatant was collected and centrifuged in the Beckman L8-60M 

Ultracentrifuge using the Ti70 rotor and Beckman red topped polycarbonate 

tubes at 46,000 rpm for 2 h 30 min at 10oC. The resultant pellet was re-

suspended in 3 ml/g of distilled water and 6 ml/g of iodide solution were 

added. The iodide solution contained 0.9 M potassium iodide, 9 mM sodium 

thiosulphate pH 8.5 and 1.5 % (w/v) sarkosyl. After incubation for 1 h at room 

temperature, the re-suspended pellet was placed onto a sucrose cushion, 

which consisted of 20 % (w/v) sucrose in iodide solution, and centrifuged in 

the Beckman L8-60M Ultracentrifuge using the SW41 rotor and Beckman 

Ultraclear tubes at 40,000 rpm for 1h 30 min at 10oC. The resultant pellet was 

stored at 4oC overnight and the next day was re-suspended in distilled water 

to approximately 1 μg/μl by sonicating in 10 sec pulses. The resuspended 

pellet that contains the pathological prion aggregates was stored at -20oC. 

Aliquots of the homogenate and the supernatants and pellets that emerged 

during the homogenization were kept for analysis. 

  

  

3.5 Gel electrophoresis 

The samples collected during the homogenization procedure were 

separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE), which was performed using the Novex NuPAGE gel system (Thermo 

Scientific). The identification of the total protein concentration of the samples 

was omitted since a Coomassie staining was done in almost all cases enabling 

to visualize the total protein content per sample (see 3.7.1 Coomassie staining) 

and the SDS-PAGE was to be used for exclusively qualitative Western blotting 

analysis. Protein samples were diluted in washing buffer or distilled water 
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depending on the homogenization procedure that was followed, and sample 

loading buffer was added in equal volumes with the samples. The sample 

loading buffer contained 125 mM Tris, 4.5 M urea, 20 % (v/v) glycerol, 4 % 

(w/v) SDS, 0.02 % (w/v) bromophenol blue and 5 % (v/v) β-mercaptoethanol. 

Proteins were denatured by heating at 100oC for 10 min (see Appendix III). 

Samples were loaded into NuPAGE 4-12 % Bis-Tris gels (15-well or 10-well) in 

the XCell SureLock Mini-Cell electrophoresis system, where NuPAGE MES 

SDS Running Buffer that is recommended for separating small- or medium-

sized proteins and NuPAGE antioxidant that improves band sharpness were 

added. Except for protein samples, appropriate protein standards were loaded 

into the gels, including SeeBlue Plus2 Pre-Stained Standard or Precision Plus 

Protein Kaleidoscope Prestained Protein for observing the protein migration 

on the gel and MagicMark XP Western Protein Standard for matching the 

molecular weight size of the protein bands during imaging. Gel 

electrophoresis was performed at 180 V constant for 45 min. 

 

 

3.6 Immunoblotting (Western blot) 

 

3.6.1 Semi-dry transfer 

Immobilon-FL PVDF transfer membrane cut into the appropriate size for the 

gel (usually 8.5 cm x 7.5 cm) was wet for 1 min in methanol and soaked for 5 

min in transfer buffer, which consisted of 100 mM Tris, 192 mM glycine and 5 

% (v/v) methanol. Several pieces of thin filter paper (Munktell, Grade 1 F), cut 

into the same size as the PVDF membrane, were briefly soaked in transfer 

buffer and stalked together to produce a 2.5-mm-thick layer. After SDS-PAGE, 

the gel was rinsed with transfer buffer. Transfer stacks were prepared in a 

Novex Semi-Dry Blotter consisting of a bottom layer of filter paper, the PVDF 

membrane, the gel and a top layer of filter paper. Transfer was carried out at 

200 mA for 50 min.  

 

 

3.6.2 Immunostaining  

Following transfer, membranes were blocked in LI-COR Odyssey Blocking 

Buffer (PBS) overnight. After removing the blocking buffer, membranes were 
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incubated for 1 h at 4oC with primary antibody diluted in Odyssey Blocking 

Buffer (PBS) containing 0.1 % (v/v) Tween-20. The primary antibodies that 

were used include Tau46 mouse anti-tau antibody (dilution 1:1000, Cell 

Signaling Technology), BC6 mouse anti-prion antibody (dilution 1.5:2000) and 

AT8 human anti-tau IgG1 (dilution 1:500, Thermo Fisher Scientific). The 

dilutions of the primary antibodies were re-used up to 5 times. Membranes 

were washed four times with PBS containing 0.1 % (v/v) Tween-20 and then 

incubated in dark with secondary antibody for 50 min at room temperature 

under constant shaking. The IRDye 680RD goat anti-mouse IgG diluted 

1:10000 in 1 part Odyssey Blocking Buffer: 3 parts PBS containing 0.1 % (v/v) 

Tween-20 was used as secondary antibody. Four washes with PBS containing 

0.1 % (v/v) Tween-20 were then carried out, which were followed by two 

additional washes with PBS to remove residual detergent. Immunoblotting 

imaging was performed by using the LI-COR Biosciences Odyssey Infrared 

Imaging System as well as the ImageStudio Lite Ver 5.0 and 5.2 software. 

 

  

3.7 Protein staining  

After gel electrophoresis, a protein-specific chemical reaction must be 

performed to make the proteins within the gel visible. Two different methods 

for protein staining were used including Coomassie and, occasionally, silver 

staining. Protein staining allowed a relative estimation of the total protein 

concentration per sample as well as on-gel detection of bands including tau 

isoforms.  

 

 

3.7.1 Coomassie staining 

Following SDS-PAGE, the gel to be used for Coomassie staining was 

incubated in appropriate amount of Expedeon InstantBlue protein stain 

solution for 1 h. InstantBlue is a Coomassie protein dye, which binds to basic 

and hydrophobic residues of proteins, changing in color from brown to blue. 

After two washes in distilled water to reduce background, the stained proteins 

on the gel were visualized by the Biorad Molecular Imager Gel Doc XR+ 

imaging system and the QuantityOne Ver 4.6.9 software. In general, 

Coomassie staining can detect 25 ng per band for most proteins. Proteins 
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stained by using InstantBlue are also compatible with mass spectrometric 

analysis. 

 

 

3.7.2 Silver staining  

Proteins separated on a gel were stained with the Invitrogen SilverXpress 

Kit by a multi-step process that includes fixation of the proteins in the gel 

matrix and facilitation of the necessary chemical reaction. The staining reagent 

contains silver ions that interact and bind to certain functional groups of the 

proteins. The sensitizer reagent controls the specificity and efficiency of silver 

ion binding to proteins, whilst the enhancer reagent is essential for the 

development of the bound silver to metallic silver resulting in a brown-black 

color. The stained proteins on the gel were visualized by the Biorad Molecular 

Imager Gel Doc XR+ imaging system and the QuantityOne Ver 4.6.9 software. 

Silver staining can normally detect less than 0.5 ng of protein in gels.  

 

 

3.8 Protein quantification by BCA assay 

For quantifying the total protein content of samples, the Pierce Microplate 

BCA Protein Assay Kit-Reducing Agent Compatible (Thermo Scientific) was 

used. The Albumin Standard (BSA) provided by the kit (2 mg/mL) was diluted 

accordingly in washing buffer (for washing buffer composition see 3.3 

Biochemical extraction of soluble tau from mouse brain) to give the 

concentrations 125, 250, 500, 750, 1,000, 1,500, 2,000 μg/mL of Protein 

Standards. The same washing buffer was used as Standard Control (control 

that does not contain protein), which served as blank. Samples were used 

without being diluted and in triplicates similarly to the Standard Control and 

Protein Standards. The absorbance of the standards and the unknown samples 

were measured at 562 nm on a Synergy HT plate reader. The average values 

of the standards and samples were calculated, and the blank average 

absorbance was subtracted accordingly. A standard curve was produced in 

Microsoft Excel by plotting the average values of each Protein Standard 

relative to its concentrations (μg/mL), which was used to determine the total 

protein concentration of each unknown sample.  
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3.9 Protein digestion 

For in-solution digestion168, proteins in tau-purified samples were incubated 

with urea (5 M final) and reduced with 10 mM DTT for 10 min at 56 °C. The 

samples were alkylated with 20 mM IAA for 30 min at 18-23°C in the dark and, 

after another reduction with 10 mM DTT, 100 mM ammonium bicarbonate 

buffer was added. Trypsin digestion was carried out overnight at 37 °C with a 

1:50 ratio of enzyme to total protein. Trypsin (10 mg/mL) was diluted in 100 

mM ammonium bicarbonate to final concentration 0.1 mg/mL. Digested 

samples were acidified with 10 % (v/v) formic acid to pH 2-3 before analysis.  

In-gel digestion was performed according to the protocol provided by the 

Proteomics and Metabolomics Facility of the Roslin Institute. After Coomassie 

staining, bands including tau isoforms according to the Western blot analysis 

were cut out and diced into 1 mm cubes. The bands were washed with 25 mM 

ammonium bicarbonate for 30 min and then in 25 mM ammonium bicarbonate 

and acetonitrile at a ratio of 1:1. After another wash in acetonitrile, the bands 

were dried in the Savant SpeedVac for 10 min. The proteins were reduced with 

10 mM DTT for 1 h at 56oC and alkylated with 55 mM IAA for 30 min in dark. 

After being washed and dried as before, trypsin solution was added to cover 

completely the gel pieces and trypsin digestion was carried out at 37oC 

overnight. Trypsin (10 mg/mL) was diluted in 100 mM ammonium 

bicarbonate to final concentration 0.005 mg/mL. Samples were acidified with 

100 % (v/v) formic acid to stop digestion and digested peptides were collected 

by incubating with extraction buffer that contains distilled water and 100 % 

(v/v) acetonitrile at a ratio of 1:1 as well as formic acid and dried in the Savant 

SpeedVac before analysis. 

 

 

3.10 Mass spectrometry 

For the identification of digested peptides and the detection of post-

translational modifications on modified peptides that were derived from tau 

isoforms, liquid chromatography-mass spectrometry (LC-MS) was used, 

which was performed by Dr D. Kurian. The digested peptides were cleaned 

up using Pierce C18 SPE cartridges by following standard protocol described 

by Rappsilber et al. (2007)206. NanoflowLC-MS/MS was performed on a 

micrOTOF-II mass spectrometer (Bruker) coupled to an RSLCnano LC system 
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(Thermo). Tryptic digest was delivered to a trap column (Acclaim PepMap100, 

5 μm, 100 Å, 100 μm i.d. × 2 cm) at a flow rate of 20 μL/min in 100 % solvent A 

(0.1 % formic acid in LC-MS grade water). After initial loading and washing, 

peptides were transferred to an analytical column (Acclaim PepMap100, 3 μm, 

100 Å, 75 μm i.d. × 25 cm) and separated at a flow rate of 300 nl/min using a 

60-min gradient from 7 % to 35 % solvent B (solvent B, 0.1 % formic acid in 

acetonitrile). The eluted peptides from LC were electrosprayed directly on to 

the mass spectrometer for MS and MS/MS analysis in a data-dependent mode 

of acquisition. The m/z values of tryptic peptides were measured using a MS 

scan (300-2000 m/z), followed by MS/MS scans of the three most intense ions. 

Rolling collision energy for fragmentation was selected based on the precursor 

ion mass and a dynamic exclusion was applied for 30 sec. 

Dr D. Kurian also processed the raw spectral data using DataAnalysis 

software (Bruker) and the resulting peak lists were searched using Mascot 2.4 

server (Matrix Science) against a custom database containing mouse tau 

protein.  Mass tolerance on peptide precursor ions was set at a maximum of 

25 ppm and on fragment ions at 0.1 Da. The peptide charge was set to 2+ and 

3+. Carbamidomethylation of cysteine was selected as a fixed modification and 

oxidation of methionine, acetylation, methylation, dimethylation and 

trimethylation of lysine, phosphorylation of serine, threonine and tyrosine and 

methylation of arginine residues were chosen as variable modifications.   

The development of a quantitative LC-MS/MS methodology was performed 

with the help of Dr A. Gill. All mass spectrometry was performed by use of an 

EasyNano-LC (Bruker Daltonics) capillary HPLC system interfaced to an 

Amazon ETD ion trap mass spectrometer (Bruker Daltonics) that was 

equipped with an electrospray ion source. Protein samples were digested with 

trypsin, as detailed in section 3.9 Protein digestion, and 8 µl samples were 

injected onto a microtrapping device packed with Bioshell A400 Protein C4 

beads of 3.4 µm diameter. The trap was washed with a further 30 µl of HPLC 

buffer A (0.1 % (v/v) formic acid in 96:4 water:acetonitrile) to remove non-

retained components, such as salts. The peptide separation was developed by 

use of a capillary column of dimensions 200 µm i.d., 100 mm length packed 

with Halo Peptide ES-C18 beads of 2.7 µm diameter. Peptides were eluted by 

a gradient from HPLC buffer A to buffer B (0.1 % (v/v) formic acid in 4:96 

water:acetonitrile) of 0-40% B over 45 minutes. The flow rate was 1.5 µl/min. 
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For initial full scan experiments, the mass spectrometer was set to scan 

between m/z 250-1500 in enhanced resolution mode, with a scan speed of 8,100 

m/z /sec. For multiple reaction monitoring (MRM) experiments, the potential 

signals from the ions of interest were identified from shotgun proteomics data; 

the mass spectrometer was then operated in MS/MS mode and set to fragment 

each of the 3 parent ions. The following conditions were used: ion trap filling 

was set for 200000 ions or no more than 200 ms; amplitude 0.6, cutoff m/z 200, 

enhanced resolution scan mode. Full scan mass spectra of product ions were 

acquired between m/z 200 –1500. The data were processed to produce 

extracted ion chromatograms associated with the transitions 697.3416.3; 

737.3416.3; 777.3416.3. These chromatograms were smoothed and 

integrated according to standard algorithms and the area under each peak was 

calculated. 
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      4. Results 
 

 

 

 

4.1 Biochemical extraction of soluble endogenous tau from mouse 

brain and mass spectrometric identification of tau post-translational 

modifications 

 

 

4.1.1 Extraction of soluble tau from normal mouse brain 

The investigation of tau post-translational modifications by mass 

spectrometry enables large-scale identification and analysis of possible 

modified sites throughout the tau molecule. However, it requires the 

preparation of a sample that is enriched with tau extracted from brain tissues 

of interest, whereas it contains as little as possible of other proteins. Also, the 

sample preparation is necessary to be as simple as possible, because the more 

steps that are involved the more chance there is of quantitation being lost 

regarding that the same sample can be used for both identification and 

quantification of post-translational modifications. As a result, the first aim of 

this work was to extract soluble endogenous tau from normal mouse brains 

by using a protocol that achieves the highest possible enrichment and purity 

of tau in a single step. Thereby, the protocol based on tau solubility in 1 % (v/v) 

PCA was used for the extraction of soluble tau according to Ivanovova et al. 

(2008), which additionally allows tau to maintain its phosphorylation state201. 

Nevertheless, this agrees with the fact that tau displays resistance to acidic 

treatment, due to its unfolded character, maintaining thus its biological 

function that depends primarily on its phosphorylation88. However, there is 

no evidence on how other post-translational modifications might be affected 

by treatment with PCA.  

One brain was homogenized manually each time and the homogenate was 

kept on ice to allow the depolymerization of microtubules and the highest 

possible harvest of tau. Next, the centrifugation of the homogenate at low 
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rotational speed produced a supernatant representing the soluble tau fraction 

and a pellet consisting of unbroken tissue, whole cells, nuclei, mitochondria, 

lysosomes and peroxisomes. The supernatant was concentrated with 

simultaneous buffer exchange (concentrated s/n) and along with the aliquots 

of the brain and the pellet was analyzed by immunoblotting incubating with 

the Tau46 primary antibody. Tau46 detects all isoforms of murine tau 

recognizing the amino acid sequence of an epitope within the C-terminal end 

of tau. In contrast to human brain, the adult mouse brain almost exclusively 

expresses the three 4R tau isoforms (0N4R, 1N4R, 2N4R) with apparent 

molecular weights on SDS-PAGE electrophoresis at 52, 59 and 67 kDa, 

respectively61, 90.  

As shown in Figure 4.1A, the western blot analysis of the samples using the 

Tau46 primary antibody reveals the presence of all three expected tau isoforms 

 

 

 

Figure 4.1 Normal mouse brain was homogenized in 1 % (w/v) PCA for the biochemical 

extraction of soluble endogenous tau. A. Western blot analysis using Tau46 shows that 

three tau isoforms are detected at about 50 - 70 kDa. B. Gels were stained with Coomassie 

and silver, showing that the amount of protein in the soluble-tau fraction is relatively low 

enabling to be further analysed by MS. 

A 

B 
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in all samples at about 50 – 70 kDa. Furthermore, low-signal bands that are 

present in lower molecular weights (see pellet lane) might represent truncated 

forms of tau isoforms. The pellet seems to include some soluble tau, 

presumably since it contains unbroken tissues and whole cells. In addition, the 

concentrated supernatant is the only case that it could be safely suggested that 

contains larger amount of tau compared to the supernatant, since it derives 

from the last. In all other cases, conclusions about the relative amounts of tau 

in each sample could not be extracted, because sample protein quantification 

did not precede the western blotting.  

Moreover, a Coomassie and silver staining were carried out allowing to 

appreciate the purity level of tau in the soluble-tau fraction (Figure 4.1B). Both 

staining procedures suggest that the total amount of other non-tau proteins in 

the soluble-tau fraction is relatively low so as to allow further analysis and that 

there are protein bands that are quite distinguishable at about 50 – 70 kDa that 

contain tau, potentially amongst other proteins of the same molecular weight. 

To confirm that the extraction procedure was suitable for purifying soluble 

tau and was repeatable, another brain was homogenized and analysed as 

above (Figure 4.2A, B). Both the immunoblot and protein staining analysis 

suggest that the extraction with 1 % (v/v) PCA achieved relatively high 

enrichment of tau and, hence, it was a suitable purification protocol of tau to 

be further analysed, whereas an additional purification step was not 

necessary. As a result, the total protein concentration of the soluble-tau 

fraction derived from this normal brain was identified by the BCA assay to be 

about 808 μg/ml (Figure 4.2C). The identification of the protein concentration 

was necessary in order to calculate the amount of trypsin required for protein 

digestion.  

Having shown that the amount of other proteins in the soluble-tau fraction 

is relatively low, an in-solution preparation and trypsin digestion was 

performed (for the whole list of proteins detected by MS in the soluble-tau 

fraction see Appendix IV; Supplementary Table 1). Proteins in solution were 

denatured and their disulphide bonds were reduced by treatment with DTT. 

Next, cysteine residues were alkylated by treatment with IAA, in order to 

prevent the formation of inter- and intra-molecular disulphide bonds. In 

mouse tau, two cysteine residues, C291 and C322 found in the R2 and R3 

repeat, respectively, are available to form disulphide bonds, given that the 

mouse brain expresses only 4R isoforms that include the additional R2 repeat.  
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The sample was incubated with trypsin overnight and the resulting peptides 

were analysed by LC-MS. However, in a separate experiment an in-gel 

digestion was also carried out in order to further purify tau before mass 

spectrometric analysis by collecting the SDS-PAGE gel region from 50 to 70 

kDa and, consequently, to enhance the specificity of the analysis. 

Five types of post-translational modifications occurring on soluble 

endogenous tau under normal conditions were identified including serine 

phosphorylation, threonine phosphorylation, tyrosine phosphorylation, 

lysine acetylation and lysine trimethylation (Table 4.1). The specific modified 

sites were assigned according to the longest isoform of mouse tau (430 amino 

acids mouse isoform) as well as the homologous longest human isoform (441 

    

Figure 4.2 Normal mouse brain was homogenized in 1 % (w/v) PCA for the biochemical 

extraction of soluble endogenous tau. A. Western blot analysis using Tau46 shows that 

three tau isoforms are detected at about 50 - 70 kDa. B. Gels were stained with Coomassie 

and silver, showing that the amount of protein in the soluble-tau fraction is relatively low 

enabling to be further analysed by MS. C. The BCA assay was carried out for quantifying 

the total protein content of the soluble-tau fraction (concentrated s/n). Based on the BSA 

absorption of light at 562 nm, a standard curve was produced, and the protein 

concentration was identified to be about 808 μg/mL.  

B 

A C 
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amino acids human isoform). However, since tau peptides identified by MS 

were matched with the tau isoform found in the peripheral nervous system, 

which consists of 733 amino acids, some modified sites could not be found in 

either the homologous mouse or human isoform due to absence of these 

sequences. Since the literature typically follows the human numbering, the 

mass spectrometric data were analysed according to the human tau isoform, 

with the exception of S167 (serine phosphorylation) and K179 (lysine 

methylation) that are not found on the homologous human tau sequence. Two 

peptides were modified by methionine oxidation at M250 and M419, 

respectively. However, whether they truly represent biologically-significant 

post-translational modifications of tau or result from the preparation 

procedure was not able to be tested as part of this work and, consequently, 

they will not be considered as tau putative post-translational modifications. 

The following data include analysis of the modifications of tau peptides 

derived by both in-solution and in-gel digestion and were matched with 

Uniprot database against both overall protein entries and tau entries 

exclusively. Although the matching of the tryptic peptides with known entries 

indicates specific sites where post-translational modifications may occur, 

further analysis is needed in order to confirm these modifications.  

 

 

Table 4.1 Endogenous post-translational modifications that have been detected on 

soluble tau under normal conditions. The tryptic peptides that were detected by mass 

spectrometry are listed, including both the modified and unmodified ones, along with the 

specific type and sites of post-translational modifications. The sites are numbered 

according to the mouse 430 isoform as well as the homologous human 441 isoform. 

Peptides detected 

by MS 
Post-translational modification 

Modified residue 

(Mouse 430 

isoform) 

Modified 

residue (Human 

441 isoform) 

K.QMKLK.G 
Lysine trimethylation 

Lysine acetylation 

- 

- 

- 

- 

R.GAASPAQKGTSN

ATRIPAK.T  
- - - 

R.GAASPAQKGTSN

ATRIPAKTTPSPK.T  
- - - 

R.GAASPAQKGTSN

ATRIPAKTTPSPK.T    
Lysine acetylation K152 K163 

R.GAASPAQKGTSN

ATRIPAKTTPSPK.T    
Lysine trimethylation K152 K163 

K.TTPSPKTPPGSGEP

PKSGER.S    
Lysine acetylation K169 K180 
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K.TTPSPKTPPGSGEP

PKSGER.S    

Serine phosphorylation 

Lysine acetylation 

S167 

K169 

- 

K180 

K.TTPSPKTPPGSGEP

PKSGER.S    
Threonine phosphorylation T170 T181 

K.TTPSPKTPPGSGEP

PK.S    

Serine phosphorylation 

Lysine methylation 

S174 

K179 

S185 

- 

K.TPPGSGEPPKSGE

R.S  
- - - 

R.SGYSSPGSPGTPGS

R.S  
- - - 

R.SGYSSPGSPGTPGS

R.S    
Serine phosphorylation S187 S198 

R.SGYSSPGSPGTPGS

R.S 
Serine phosphorylation S188 S199 

R.SGYSSPGSPGTPGS

R.S 
Serine phosphorylation S191 S202 

R.SGYSSPGSPGTPGS

R.S    

Serine phosphorylation 

Serine phosphorylation 

S188 

S191 

S199 

S202 

R.SGYSSPGSPGTPGS

R.S    

Serine phosphorylation 

Serine phosphorylation 

S187 

S191 

S198 

S202 

R.SRTPSLPTPPTREP

K.K  
- - - 

R.SRTPSLPTPPTREP

K.K 
Serine phosphorylation S203 S214 

R.SRTPSLPTPPTREP

K.K    
Threonine phosphorylation T206 T217 

R.TPSLPTPPTREPK.

K 
- - - 

K.KVAVVRTPPKSPS

ASK.S 
Threonine phosphorylation T220 T231 

R.TPPKSPSASK.S Lysine acetylation K223 K234 

R.LQTAPVPMPDLK.

N 
- - - 

R.LQTAPVPMPDLK.

N 
Methionine oxidation M239 M250 

R.LQTAPVPMPDLK

NVR.S    
Methionine oxidation M239 M250 

K.LDLSNVQSK.C  - - - 

K.KLDLSNVQSK.C Lysine acetylation K270 K281 

K.HVPGGGSVQIVY

KPVDLSKVTSK.C 

Tyrosine phosphorylation 

Lysine trimethylation 

Lysine trimethylation 

Threonine phosphorylation 

Serine phosphorylation 

Lysine trimethylation 

Y299 

K300 

K306 

T308 

S309 

K310 

Y310 

K311 

K317 

T319 

S320 

K321 

K.SEKLDFKDRVQSK

.I 
- - - 

K.IGSLDNITHVPGG

GNK.K 
- - - 
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K.KIETHKLTFRENA

K.A 
- - - 

R.HLSNVSSTGSIDM

VDSPQLATLADEVS

ASLAK.Q 

Serine phosphorylation S405 S416 

R.HLSNVSSTGSIDM

VDSPQLATLADEVS

ASLAK.Q 

Serine phosphorylation 

Methionine oxidation 

S401 

M408 

S412 

M419 

 

 

The majority of the modified sites detected in soluble tau under normal 

conditions are located within the proline-rich region, whereas a few have been 

found in the MBD and C’-terminal region (Figure 4.3). Four lysine residues 

were detected to be acetylated during this project, including K163, K180, K234 

and K281. Apart from K234, the remaining acetylated sites were identified 

previously by in vivo studies162, 166, 168. Furthermore, four lysine residues were 

detected to be trimethylated under normal conditions, at K163, K311, K317 and 

K321. In addition, lysine K163 seems to be target of both acetylation and 

trimethylation suggesting that tau post-translational modifications might 

compete for the same residues and, hence, it is likely they serve different 

physiological activities of tau in the brain. Most putative phosphorylation sites 

detected on soluble endogenous tau were also found in earlier studies in wild-

type mouse brains. However, one phosphorylation site, at S185, was found in 

 

 

 

  

 Figure 4.3 Putative post-translationally modified sites identified in soluble endogenous 

tau extracted from normal mouse brain by MS. Modifications are shown on the longest 

human tau isoform.  
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AD brain tissues exclusively, whereas this project shows that it is likely to be 

phosphorylated under normal conditions as well139. Y310 and T319, which 

were not fully characterized earlier, are shown here to be phosphorylated in 

vivo under normal conditions. Lastly, S320 is confirmed as a putative 

phosphorylation site seen under physiological conditions in endogenous 

mouse tau.   

 

 

4.1.2 Extraction of soluble tau from 87V-VM mouse brain 

To investigate the post-translational modifications that may be involved in 

differentiating pathological from normal tau, tau protein was extracted from 

87V-VM mouse brain. Similar to the extraction of soluble tau from normal 

mouse brain, the isolation of soluble endogenous tau from 87V-VM mouse 

brain was carried out based on tau solubility in 1 % (v/v) PCA according to 

Ivanovova et al. (2008)201. The pool of the soluble-tau fraction collected from 

the 87V-VM brain consists possibly of various soluble tau molecules. Firstly, 

normally “folded” tau proteins are present most likely serving their normal 

biological functions in the brain. As characteristically seen in conformational 

diseases, some of the proteins responsible for the observed neuropathology 

are present in their proper folding207. In addition, the spreading of tau 

pathology in 87V-VM brains is restricted to limited brain tissues. Also, soluble 

tau molecules prior to aggregation may be included in the soluble-tau fraction, 

characterized by a differentiated biochemically state compared to normal tau. 

Another tau species possibly found in the soluble-tau fraction is abnormal tau 

derived from filamentous tau aggregates that deposit in 87V-VM brain tissues 

that are soluble in PCA208.   

One 87V-VM brain was homogenized manually similarly to the normal 

brain (See 4.1.1 Extraction of soluble tau from normal mouse brain). The 

samples were analysed by immunoblotting incubating with two different 

primary antibodies, Tau46 and AT8. As shown in Figure 4.4A, the western 

blot analysis of the samples using both primary antibodies demonstrates the 

presence of all three expected tau isoforms at about 50 – 70 kDa. In contrast to 

Tau46 that recognizes the amino acid sequence of an epitope within the C- 
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terminal end of tau, AT8 recognizes an epitope within the proline-rich region 

that is characterized by phosphorylation at S202, T205 and S208 exhibiting a 

hyperphosphorylated state associated with tau neuropathology209, 210. This 

shows that the soluble-tau fraction collected from the 87V-VM brain contains 

tau molecules that are phosphorylated at S202, T205 and S208. The 

phosphorylation of these sites on tau can be detected primarily in AD and, to 

a lesser extent, in normal brains, but S208 has been found to be possibly 

phosphorylated only in AD brains, indicating that the soluble-tau fraction 

includes abnormal soluble tau either prior to aggregation or derived from the 

filamentous aggregates directly after treatment with PCA. Moreover, a 

Coomassie staining was carried out allowing to appreciate the purity level of 

   

Figure 4.4 87V-VM mouse brain was homogenized in 1 % (w/v) PCA for the biochemical 

extraction of soluble endogenous tau. A. Western blot analysis using both Tau46 and AT8 

shows that three tau isoforms are detected at about 50 - 70 kDa. By using the AT8 antibody 

is shown that soluble tau in the 87V-VM brain is phosphorylated at S202, T205 and S208. 

B. Gels were stained with Coomassie and silver, showing that the amount of protein in the 

soluble-tau fraction is relatively low enabling to be further analysed by MS. C. The BCA 

assay was carried out for quantifying the total protein content of the soluble-tau fraction 

(concentrated s/n). Based on the BSA absorption of light at 562 nm, a standard curve was 

produced, and the protein concentration was identified to be about 1381 μg/mL.  

B A 
C 
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tau in the soluble-tau fraction (Figure 4.4B) demonstrating that the total 

protein amount in the soluble-tau fraction is relatively low for further analysis. 

As a result, the overall protein concentration of the soluble-tau fraction 

derived from this 87V-VM brain was identified by the BCA assay to be about 

1381 μg/ml (Figure 4.4C). The identification of the protein concentration was 

necessary in order to calculate the amount of trypsin required for protein 

digestion. 

Having shown that the amount of total protein in the soluble-tau fraction is 

relatively low in the case of 87V-VM brain (for the whole list of proteins 

detected by MS in the soluble-tau fraction see Appendix IV; Supplementary 

table 2), an in-solution preparation and trypsin digestion were performed 

similarly to the sample derived from the normal mouse brain. Seven types of 

post-translational modifications occurring on soluble endogenous tau under 

pathological conditions were identified including serine phosphorylation, 

threonine phosphorylation, lysine acetylation, arginine methylation, lysine 

methylation, lysine dimethylation and lysine trimethylation (Table 4.2). The 

specific modified sites were assigned according to the longest isoform of 

mouse tau (430 amino acids mouse isoform) as well as the homologous longest 

human isoform (441 amino acids human isoform). Since tau peptides 

identified by MS were matched with the tau isoform found in the peripheral 

nervous system, which consists of 733 amino acids, some modified sites could 

not be matched with either the homologous mouse or human isoform due to 

absence of these sequences. In addition, the modified sites K139, S148, T165 

and S167 are absent from the homologous human 441 isoform. Two peptides 

were detected to include methionine oxidation at M250 and M419, 

respectively, being the same sites that were found to be oxidized in the case of 

normal tau. Again, whether they represent truly post-translational 

modifications of tau or result from the preparation procedure was not able to 

be tested during this work, so they will not be considered as tau putative post-

translational modifications. The following data include analysis of tau 

peptides derived by in-solution digestion after being matched with the 

Uniprot database against tau entries exclusively. Although the matching of the 

tryptic peptides with known entries indicates specific sites where post-

translational modifications may occur, further analysis is needed to confirm 

these modifications.  
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Table 4.2 Endogenous post-translational modifications that have been detected on 

soluble tau under pathological conditions. The tryptic peptides that were detected by 

mass spectrometry are listed, including both the modified and unmodified ones, along 

with the specific type and sites of post-translational modifications. The sites are 

numbered according to the mouse 430 isoform as well as the homologous human 441 

isoform. 

Peptides detected 

by MS 
Post-translational modification 

Modified residue 

(Mouse 430 

isoform) 

Modified 

residue (Human 

441 isoform) 

R.QEFDTMEDHAG

DYTLLQDQEGDM

DHGLK.E 

- - - 

K.STPTAEDVTAPL

VDER.A 
- - - 

R.APDKQAAAQP

HTEIPEGITAEEAG

IGDTPNQEDQAA

GHVTQGR.R 

Arginine methylation R115 R126 

K.QAAAQPHTEIP

EGITAEEAGIGDTP

NQEDQAAGHVT

QGR.R 

Arginine methylation R115 R126 

R.TGNDEKKAK.T 
Lysine acetylation 

Lysine trimethylation 

K127 

K128 

K140 

K141 

R.TGNDEKKAK.T 
Lysine acetylation 

Lysine trimethylation 

K128 

K130 

K141 

K143 

R.TGNDEKKAKTS

TPSCAK.A 

Lysine acetylation 

Lysine acetylation 

Lysine acetylation 

Threonine phosphorylation 

Lysine dimethylation 

K127 

K128 

K130 

- 

- 

K140 

K141 

K143 

- 

- 

R.TGNDEKKAKTS

TPSCAK.A 

Lysine trimethylation 

Lysine acetylation 

Lysine acetylation 

Serine phosphorylation 

Lysine dimethylation 

K127 

K128 

K130 

- 

- 

K140 

K141 

K143 

- 

- 

R.NGSPGTKQMK.

L 

Lysine trimethylation 

Methionine oxidation 

Lysine dimethylation 

- 

- 

- 

- 

- 

- 

R.NGSPGTKQMKL

KGADGKTGAK.I 
Lysine dimethylation - - 

R.NGSPGTKQMKL

KGADGKTGAK.I 

Serine phosphorylation 

Lysine dimethylation 

- 

- 

- 

- 

R.NGSPGTKQMKL

KGADGKTGAK.I 

Lysine dimethylation 

Methionine oxidation 

Lysine trimethylation 

- 

- 

- 

- 

- 

- 
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Lysine trimethylation - - 

R.NGSPGTKQMKL

KGADGKTGAK.I 

Lysine dimethylation 

Methionine oxidation 

Lysine acetylation 

Lysine trimethylation 

Lysine dimethylation 

- 

- 

- 

K135 

K139 

- 

- 

- 

K148 

- 

R.NGSPGTKQMKL

KGADGKTGAK.I 

Lysine dimethylation 

Methionine oxidation 

Lysine methylation 

Lysine trimethylation 

Lysine dimethylation 

Lysine dimethylation 

- 

- 

- 

- 

K135 

K139 

- 

- 

- 

- 

K148 

- 

R.NGSPGTKQMKL

KGADGKTGAK.I 

Serine phosphorylation 

Lysine dimethylation 

Methionine oxidation 

Lysine dimethylation 

Lysine dimethylation 

Lysine trimethylation 

Lysine methylation 

- 

- 

- 

- 

- 

K135 

K139 

- 

- 

- 

- 

- 

K148 

- 

K.QMKLK.G 
Lysine acetylation 

Lysine trimethylation 

- 

- 

- 

- 

K.LKGADGKTGAK

IATPR.G 

Lysine acetylation 

Threonine phosphorylation 

K135 

T136 

K148 

T149 

K.TGAKIATPRGA

ASPAQKGTSNATR

IPAK.T 

Lysine trimethylation 

Threonine phosphorylation 

Arginine methylation 

Serine phosphorylation 

Lysine methylation 

Arginine methylation 

K139 

T142 

R144 

S148 

K152 

R159 

K150 

T153 

R155 

- 

K163 

R170 

R.GAASPAQKGTS

NATRIPAK.T 
Serine phosphorylation S148 - 

R.IPAKTTPSPK.T 

Threonine phosphorylation 

Serine phosphorylation 

Lysine methylation 

T165 

S167 

K169 

- 

- 

K180 

K.TTPSPKTPPGSG

EPPKSGER.S 
Threonine phosphorylation T170 T181 

K.TTPSPKTPPGSG

EPPKSGER.S 

Lysine methylation 

Lysine trimethylation 

K169 

K179 

K180 

K190 

K.TTPSPKTPPGSG

EPPK.S 

Serine phosphorylation 

Lysine methylation 

S174 

K179 

S185 

K190 

R.SGYSSPGSPGTP

GSR.S 
- - - 

R.SGYSSPGSPGTP

GSR.S 
Serine phosphorylation S188 S199 

R.SRTPSLPTPPTRE

PK.K 
- - - 
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R.SRTPSLPTPPTRE

PK.K 
Serine phosphorylation S203 S214 

R.SRTPSLPTPPTRE

PKK.V 

Arginine methylation 

Threonine phosphorylation 

Threonine phosphorylation 

Arginine methylation 

Lysine trimethylation 

Lysine trimethylation 

R200 

T206 

T209 

R210 

K213 

K214 

R211 

T217 

T220 

R221 

K224 

K225 

R.TPSLPTPPTR.E - - - 

R.TPSLPTPPTREPK

.K 
- - - 

K.KVAVVRTPPKSP

SASK.S 
Threonine phosphorylation T220 T231 

K.KVAVVRTPPKSP

SASK.S 

Threonine phosphorylation 

Serine phosphorylation 

T220 

S224 

T231 

S235 

R.LQTAPVPMPDL

K.N 
- - - 

R.LQTAPVPMPDL

K.N 
Methionine oxidation M239 M250 

R.LQTAPVPMPDL

KNVR.S 
- - - 

R.SKIGSTENLKHQ

PGGGKVQIINK.K 
- - - 

K.IGSTENLKHQPG

GGKVQIINK.K 
- - - 

K.KLDLSNVQSK.C Lysine acetylation K270 K281 

K.LDLSNVQSK.C - - - 

K.CGSKDNIKHVP

GGGSVQIVYKPVD

LSK.V 

- - - 

K.DNIKHVPGGGS

VQIVYKPVDLSK.V 
- - - 

K.HVPGGGSVQIV

YKPVDLSK.V 
- - - 

K.CGSLGNIHHKP

GGGQVEVK.S 
- - - 

K.CGSLGNIHHKP

GGGQVEVKSEK.L 
- - - 

K.SEKLDFKDR.V 
Lysine acetylation 

Lysine methylation 

K332 

K336 

K343 

K347 

K.SEKLDFKDR.V 
Lysine acetylation 

Arginine methylation 

K332 

R338 

K343 

R349 

K.SEKLDFKDRVQS

K.I 

Lysine methylation 

Serine phosphorylation 

Lysine trimethylation 

K336 

S341 

K342 

K347 

S352 

K353 
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K.IGSLDNITHVPG

GGNK.K 
- - - 

K.IGSLDNITHVPG

GGNK.K 
Serine phosphorylation S345 S356 

K.IGSLDNITHVPG

GGNKK.I 
- - - 

K.IGSLDNITHVPG

GGNKK.I 
Serine phosphorylation S345 S356 

K.IGSLDNITHVPG

GGNKKIETHK.L 
- - - 

K.IGSLDNITHVPG

GGNKKIETHK.L 

Threonine phosphorylation 

Lysine acetylation 

Lysine dimethylation 

Lysine acetylation 

T350 

K358 

K359 

K364 

T361 

K369 

K370 

K375 

K.AKTDHGAEIVY

KSPVVSGDTSPR.H 
- - - 

K.AKTDHGAEIVY

KSPVVSGDTSPR.H 

Serine phosphorylation 

Serine phosphorylation 

S385 

S389 

S396 

S400 

K.AKTDHGAEIVY

KSPVVSGDTSPR.H 
Serine phosphorylation S393 S404 

K.AKTDHGAEIVY

KSPVVSGDTSPR.H 

Serine phosphorylation 

Serine phosphorylation 

S389 

S393 

S400 

S404 

K.AKTDHGAEIVY

KSPVVSGDTSPR.H 

Serine phosphorylation 

Serine phosphorylation 

Serine phosphorylation 

S385 

S389 

S393 

S396 

S400 

S404 

K.TDHGAEIVYKSP

VVSGDTSPR.H 
- - - 

K.TDHGAEIVYKSP

VVSGDTSPR.H 

Serine phosphorylation 

Serine phosphorylation 

Serine phosphorylation 

S385 

S389 

S393 

S396 

S400 

S404 

K.TDHGAEIVYKSP

VVSGDTSPR.H 
Serine phosphorylation S393 S404 

K.TDHGAEIVYKSP

VVSGDTSPRHLSN

VSSTGSIDMVDSP

QLATLADEVSASL

AK.Q 

Serine phosphorylation 

Serine phosphorylation 

Threonine phosphorylation 

S385 

S389 

T392 

S396 

S400 

T403 

R.HLSNVSSTGSID

MVDSPQLATLAD

EVSASLAK.Q 

- - - 

R.HLSNVSSTGSID

MVDSPQLATLAD

EVSASLAK.Q 

Serine phosphorylation 

Serine phosphorylation 

Serine phosphorylation 

S398 

S401 

S402 

S409 

S412 

S413 

R.HLSNVSSTGSID

MVDSPQLATLAD

EVSASLAK.Q 

Threonine phosphorylation 

Serine phosphorylation 

T403 

S405 

T414 

S416 
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R.HLSNVSSTGSID

MVDSPQLATLAD

EVSASLAK.Q 

Serine phosphorylation S405 S416 

R.HLSNVSSTGSID

MVDSPQLATLAD

EVSASLAK.Q 

Serine phosphorylation 

Methionine oxidation 

S405 

M408 

S416 

M419 

K.SPVVSGDTSPRH

LSNVSSTGSIDMV

DSPQLATLADEVS

ASLAK.Q 

Serine phosphorylation 

Serine phosphorylation 

S405 

S411 

S416 

S422 

 

 

The majority of the modified sites detected in soluble tau isolated from 87V-

VM brain are located within the proline-rich and C’-terminal region, whereas 

a few have been found in other regions (Figure 4.5). Eight putative acetylation 

sites have been detected to occur on soluble tau under pathological conditions. 

Acetylation at K148 was found only by in vitro studies before, while three 

acetylation sites detected during this project were shown previously to be 

acetylated in vivo in wild-type mouse tau (K281, K343 and K369)162, 168. Several 

trimethylation sites were identified throughout tau sequence, four of which 

seem to can be possibly acetylated as well (K140, K141, K143 and K148). Two 

possible dimethylated sites were identified including K148, which is also 

target of acetylation and trimethylation, and K370, both of which agree with 

previous data collected by in vitro studies169. Five arginine residues were found 

to be probably methylated during this project. The remaining putative 

methylated sites include K163 that has been discovered previously in both 

normal and AD brains, K180 and K190 detected both in vitro and in vivo and, 

lastly, K347167, 169. Most putative phosphorylation sites detected on soluble 

endogenous tau from 87V-VM were found in earlier studies in both normal 

and AD brains17, 139. Three phosphorylation sites, at T153, S185 and S422, were 

found exclusively in AD brains in previous studies. On the other hand, T149, 

T220, S352, T361 and T414 that were assigned during this project as putative 

phosphorylation sites were demonstrated to be phosphorylated under normal 

conditions previously, indicating either that the soluble tau in 87V-VM brains 

is likely to include normal tau molecules or these sites are not responsible for 

differentiating normal tau to pathogenic, since they are commonly found 

under both normal and pathological conditions. 
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4.2 Biochemical extraction of insoluble aggregated tau from 87V-VM 

mouse brain and mass spectrometric analysis of tau post-translational 

modifications 

The study of post-translational modifications that may govern the 

pathological shift of normal tau to insoluble aggregated that deposits in brain 

tissues, as observed characteristically in 87V-VM mouse brain, requires the 

collection and analysis of samples enriched with purified insoluble aggregated 

tau. Several methods are available in the literature for the isolation of 

aggregated tau species and, during this project, three of them were used with 

some modifications for the biochemical extraction of insoluble tau, including 

the protocols published by Planel et al. (2009), Greenberg and Davies (1990) 

and Cohen et al. (2011)166, 203, 204. Given that tau aggregates deposit surrounding 

prion amyloid plaques in the same tissues, a protocol for the extraction of 

pathological prion protein was used additionally according to Hope et al. 

(1988), in order to test if the immunohistochemical association of these two 

proteins allows their common biochemical extraction205. All methods were 

based on fractional centrifugation and incubation with the detergent sarkosyl. 

Significantly, tau in the sarkosyl-insoluble pellet has been characterized by 

immuno-electron microscopy to be filamentous in agreement with that 

identified by immunohistochemistry in NFTs211.  

  

 Figure 4.5 Putative post-translationally modified sites identified in soluble endogenous 

tau extracted from 87V-VM mouse brain by MS. Modifications are shown on the longest 

human tau isoform. 
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The first protocol for the isolation of enriched insoluble tau (Greenberg and 

Davies) was used for homogenizing only one 87V-VM brain initially. In Figure 

4.6A1, the sarkosyl-insoluble pellet that represents the insoluble aggregated 

tau fraction along with aliquots of other fractions were analysed by 

immunoblotting using the Tau46 primary antibody. Three tau isoforms are 

detected in both supernatants (s/n) at about 50 – 70 kDa that agrees with the 

fact that mouse brain expresses 4R tau isoforms almost exclusively. However, 

the insoluble-tau fraction seems to contain a low amount of tau implying that 

either the homogenization procedure was not successful or little aggregated 

tau was present in the 87V-VM brain. Apart from the inadequate enrichment 

of insoluble tau, the method did not also allow a sufficient purification, since 

the insoluble-tau fraction seems to contain many proteins stained with 

Coomassie making it necessary to further purify tau (Figure 4.6C1).  

To try to increase the amount of insoluble tau isolated from 87V-VM brains, 

two and a half 87V-VM brains were homogenized according to Greenberg and 

Davies (Figure 4.6A2, 4.6C2). Whereas the amount of insoluble tau was 

increased slightly compared to the sample derived from one brain and the 

total amount of proteins stained with Coomassie was not increased, this was 

probably not enough for insoluble tau to be detected by MS. For the same 

reason, two other protocols by Planel et al. (RIPA buffer) and Cohen et al. 

(Formic acid) were used and analyzed by immunoblotting showing that the 

amount of aggregated tau in 87V-VM brains is relatively low to be analysed 

by MS (Figure 4.6A3, 4.6A4). Furthermore, four 87V-VM brains were used in 

the case of the protocol for extracting pathological prion protein. This protocol 

was performed successfully since the western blot analysis by incubating with 

the anti-prion BC6 primary antibody revealed that the pathological prion 

protein is enriched in the sarkosyl-insoluble pellet (Figure 4.6B1). On the 

contrary, the protocol failed to harvest appreciable levels of insoluble 

aggregated tau, as the western blot analysis by incubating with both Tau46 

and AT8 primary antibodies suggests (Figure 4.6B2, 4.6B3). Bands that are 

found out of the 50 – 70 kDa region may represent truncated forms of tau or 

result from various post-translational modifications that influence the 

migration of tau isoforms to larger molecular weights. Since all methods 

systematically led to an insoluble-sarkosyl pellet that contains low amount of 

aggregated tau, it is likely that the amount of aggregated tau in 87V-VM brains 

is relatively low.   
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 Figure 4.6 A. Different protocols were used for the extraction of insoluble aggregated tau 

from 87V-VM brains including those published by Greenberg and Davies using H buffer 

for the homogenization step (blot 1 and 2), Planet et al. using RIPA buffer for the 

homogenization step (blot 3) and Cohen et al. using formic acid for the extraction of 

insoluble tau (blot 4). The insoluble-tau fraction seems to contain low amount of 

aggregated tau in order to be further analysed by mass spectrometry in all cases. B. A 

protocol for the extraction of pathological prion protein was carried out enabling to 

identify the characteristic bands of PrPSc (blot 1). However, incubation with both Tau46 

and BC6 reveals that the content of insoluble-tau fraction in aggregated tau is low, in 

agreement with previous protocols (blot 2 and 3). C. SDS-PAGE gels stained with 

Coomassie for the protocol by Greenberg and Davies are shown indicating that this 

protocol allows to reach a satisfactory purity level in the case of the sarkosyl-insoluble 

pellet, but an additional step is needed for enhancing the purification of tau (staining 1 

and 2). 

 

1 2 3 4 

1 2 3 

1 2 
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Owing to the fact that the protocol by Greenberg and Davies achieves a 

relatively adequate purification of the insoluble-tau fraction and, therefore, 

could be a suitable protocol for extracting purified insoluble tau, another 87V-

VM brain was homogenised aiming to enhance the yield of insoluble tau. In 

this case, the insoluble-tau fraction was collected as previously and 

concentrated by using the Amicon Microcon Centrifugal Filter Devices until 

reaching a quarter of the initial volume used to resuspend the sarkosyl-

insoluble pellet. The samples were analyzed by western blotting using Tau46. 

As shown in Figure 4.7A, the concentrated insoluble-tau fraction included 

increased amounts of aggregated-derived tau compared to the initial fraction 

allowing to proceed in analysis of the sample by mass spectrometry. Despite 

that, the purification level of the protocol was not sufficient, the protein bands 

were quite distinguishable, as revealed by Coomassie staining (Figure 4.7B), 

pointing out that an additional purification step was necessary. 

 

 

 

Figure 4.7 87V-VM mouse brain was homogenized according to Greenberg and Davies 

for the biochemical extraction of insoluble aggregated tau. A. Western blot analysis using 

Tau4 shows that three tau isoforms are detected at about 50 - 70 kDa and the concentration 

of the insoluble-tau fraction contains increased amount of insoluble tau. B. Gel was stained 

with Coomassie showing that the amount of total protein in the concentrated insoluble-

tau fraction is not adequately low enabling the sample to be further analysed by MS, so an 

additional purification step is needed. 

A 

B 
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As a result, the additional purification of insoluble tau was achieved by 

extracting from the SDS-PAGE gel a region between 50 to 70 kDa that contains 

the three isoforms of mouse tau among other proteins of the same molecular 

weight and performing in-gel preparation and digestion of the proteins (for 

the whole list of proteins detected by MS in the insoluble-tau fraction from 50 

to 70 kDa see Appendix IV; Supplementary table 3). In contrast to previous 

preparations, the proteins were denatured by SDS before gel electrophoresis 

but not reduced and alkylated aiming to increase the sensitivity of tau 

identification by MS. Six types of post-translational modifications occurring 

on insoluble endogenous tau under pathological conditions were identified 

including serine phosphorylation, threonine phosphorylation, arginine 

methylation, lysine methylation and lysine dimethylation (Table 4.3). The 

specific modified sites were assigned according to the longest isoform of 

mouse tau (430 amino acids mouse isoform) as well as the homologous longest 

human isoform (441 amino acids human isoform). Since tau peptides 

identified by MS were matched with the tau isoform found in the peripheral 

nervous system, which consists of 733 amino acids, some modified sites could 

not be matched with either the homologous mouse or human isoform due to 

absence of these sequences. One peptide was detected to include methionine 

oxidation at M250 being the same site that was found to be oxidized in the 

case of soluble tau. Again, whether it represents truly post-translational 

modification of tau or results from the preparation procedure was not able to 

be tested during this work, so it will not be considered as tau putative post-

translational modification. The following data include analysis of tau peptides 

derived by in-gel digestion after being matched with the Uniprot database 

against both overall protein entries and tau entries only. Although the 

matching of the tryptic peptides with known entries indicates specific sites 

where post-translational modifications may occur, further analysis is needed 

to confirm these modifications.  
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Table 4.3 Endogenous post-translational modifications that have been detected on 

insoluble tau under pathological conditions. The tryptic peptides that were detected by 

mass spectrometry are listed, including both the modified and unmodified ones, along 

with the specific type and sites of post-translational modifications. The sites are numbered 

according to the mouse 430 isoform as well as the homologous human 441 isoform. 

Peptides detected 

by MS 
Post-translational modification 

Modified residue 

(Mouse 430 

isoform) 

Modified 

residue (Human 

441 isoform) 

K.GTKEASLQEPPG

KQPAAGLPGRPVS

R.V 

Threonine phosphorylation 

Lysine dimethylation 

Lysine trimethylation 

Serine phosphorylation 

- 

- 

- 

- 

- 

- 

- 

- 

K.KAKTSTPSCAK.

A 

Lysine dimethylation 

Lysine methylation 

Serine phosphorylation 

Lysine dimethylation 

K128 

K130 

- 

- 

K141 

K143 

- 

- 

K.GADGKTGAK.I Lysine trimethylation K135 K148 

K.QMKLKGADGK

TGAK.I 

Methionine oxidation 

Lysine dimethylation 

Lysine dimethylation 

Lysine methylation 

Threonine phosphorylation 

Lysine trimethylation 

- 

- 

- 

K135 

T136 

K139 

- 

- 

- 

K148 

T149 

K150 

R.SGYSSPGSPGTP

GSR.S 
- - - 

R.SRTPSLPTPPTRE

PK.K 
- - - 

R.SRTPSLPTPPTRE

PK.K 

Arginine methylation 

Serine phosphorylation 

Threonine phosphorylation 

Arginine methylation 

Lysine dimethylation 

R200 

S203 

T209 

R210 

K213 

R211 

S214 

T220 

R221 

K224 

R.TPSLPTPPTREPK

.K 
- - - 

R.LQTAPVPMPDL

K.N 
- - - 

R.LQTAPVPMPDL

K.N 
Methionine oxidation M239 M250 

K.DRVQSKIGSLDN

ITHVPGGGNK.K 

Serine phosphorylation 

Lysine dimethylation 

Lysine methylation 

S341 

K342 

K358 

S352 

K353 

K369 

K.IGSLDNITHVPG

GGNK.K 
- - - 

 

 

The modified sites detected in insoluble tau isolated from 87V-VM brain 

cluster in three distinct regions, at the end of the N’-terminal region, proline-
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rich region and MBD, respectively (Figure 4.8). Two putative trimethylation 

sites have been detected to occur on aggregated tau, at K148 and K150, 

whereas tau can be possibly dimethylated at three different lysine residues 

(K141, K224 and K353) under pathological conditions, of which only K353 was 

shown to be dimethylated before by reductive methylation of recombinant 

tau169. Also, both lysine and arginine residues were found to be 

monomethylated. K148 and K369 were shown to be dimethylated and 

monomethylated, respectively, in vitro according to earlier studies169. Notably, 

despite that aggregated tau bears abnormal hyperphosphorylation on several 

sites throughout its sequence typically seen in tauopathies, insoluble tau 

extracted from 87V-VM brain seems to be slightly phosphorylated based on 

the mass spectrometric analysis performed up to date. Four phosphorylation 

sites were detected during this project to occur possibly on aggregated tau, 

including T149, S214, T220 and S352, all of which were identified previously 

under normal conditions. However, the pattern of site-directed post-

translational modifications may vary between different species and 

pathologies. Since tau phosphorylation sites have been mostly assigned in AD, 

it is likely phosphorylation sites that have not been implicated in AD-related 

tau pathology to be pathogenic in other cases, including 87V-VM brains, and 

vice versa.   

 

 

 

  

 Figure 4.8 Putative post-translationally modified sites identified in insoluble aggregated 

tau extracted from 87V-VM mouse brain by MS. Modifications are shown on the longest 

human tau isoform. 
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Since the Greenberg and Davies protocol was successful in terms of 

extracting insoluble tau from 87V-VM brains for mass spectrometric analysis, 

further investigation of the protocol was performed. For this reason, a normal 

brain was homogenized accordingly and analysed by western blotting using 

both Tau46 and AT8 along with the 87V-VM brain. Also, anti-mouse 

secondary antibodies are able to recognize endogenous mouse 

immunoglobulins, even though their amount in brain is relatively low due to 

the presence of the blood brain barrier that blocks antibodies entrance into the 

brain. Therefore, being necessary to test whether there is any possible cross-

reactivity, the samples were also analysed by western blotting using only 

secondary antibody (Ab2).  

As shown in Figure 4.9, incubation with Tau46 primary antibody identified 

three 4R tau isoforms at about 50 – 70 kDa in both normal and 87V-VM brains. 

The sarkosyl-insoluble pellet of normal brain contains remarkably low amount 

of tau, which is expected since normal brain does not contain insoluble 

aggregated tau theoretically. Compared to the sarkosyl-insoluble pellet from 

normal brain, the sarkosyl-insoluble pellet of the 87V-VM brain before being 

concentrated (see Figure 4.7) includes similarly low amount of insoluble tau. 

Only after concentration, insoluble tau could be detected by MS as it was 

discussed above. Moreover, incubation with secondary antibody exclusively 

revealed that there is some cross-reactivity, but it seems insignificant to take 

into consideration compared to the intense signal observed in other cases. 

Strangely, AT8 does not seem to react preferentially with tau derived from 

87V-VM brains compared to normal tau. However, in the case of normal brain, 

tau bands detected by AT8 are likely to be present due to cross reactivity of 

the secondary antibody since both immunoblots are similar. On the other 

hand, this is not the case in the 87V-VM brains, where there was not detected 

any cross reactivity of the secondary antibody with tissue antibodies. Besides, 

inhibitors of phosphatases were not included in the homogenizing buffers 

leading possibly to the loss of all or some of the PHF-specific phosphorylation 

sites that are recognized by AT8 (S202, T205, S208). In agreement with this, 

these sites were not detected by MS to be modified in the insoluble-tau fraction 

from the 87V-VM brain. 
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Figure 4.9 Normal and 87V-VM brains were homogenized according to Greenberg and 

Davies and analyzed by immunoblotting. By using Tau46, the immunoblot shows that all 

three 4R isoforms of mouse tau are detected at 50 – 70 kDa in both brains (left blots). Also, 

incubation with exclusively secondary antibody demonstrates some cross-reactivity with 

tissue immunoglobulins in the case of normal brain, but it can be considered negligible 

(right blots). AT8 does not seem to react preferably with tau derived from 87V-VM brains 

compared to normal tau (middle blots). The immunoblot that was generated by incubation 

with AT8 in the case of normal brain is similar to that showing the cross reactivity of the 

secondary antibody in contrast to the 87V-VM brain. 

 

 

 

4.3 Phosphorylation state of soluble tau in 87V brains 

As mentioned before (see 4.1.2 Extraction of soluble tau from 87V-VM 

mouse brain), the pool of soluble tau in 87V-VM brains extracted by treatment 
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with PCA may contain various tau proteins, including normal soluble tau 

properly folded, tau prior to aggregation and aggregated-derived tau given 

that PHF-tau was shown to display solubility in PCA208. By incubating with 

the AT8 primary antibody, western blot analysis showed that this soluble 

fraction contains phosphorylated tau on S202, T205 and S208 sites due to the 

fact that AT8 binds to a site-dependent phosphorylated epitope on tau 

protein210. AT8 is widely known to react specifically with PHF-tau in 

immunohistochemical studies. Also, it recognizes preferably PHF-tau on 

immunoblots, and to a lesser extent, normal tau isoforms, since both S202 and 

T205 are phosphorylated primarily in PHF-tau and less in tau from normal 

brains and S208 has been identified as a PHF phosphorylation site209, 212, 213. In 

addition, phosphorylation of S202 has been associated with the pathological 

shift of tau to an aggregated state, while double phosphorylation of S202/T205 

was shown to trigger tau aggregation212, 214.    

Since abnormal hyperphosphorylation is considered to be the major trigger 

of tau malfunction in tauopathies and soluble hyperphosphorylated tau seems 

to have toxic properties, the phosphorylation state of soluble tau extracted 

from 87V-VM brain was explored during this project13, 215. For this reason, a 

normal and an 87V-VM mouse brain were homogenized in 1 % (v/v) PCA as 

previously described. Despite the obvious difference in their weight, this has 

been counterbalanced during the concentration of the soluble-tau fraction 

allowing further comparisons. The concentrated supernatant along with 

aliquots of the brain and pellet were analysed by western blotting using both 

Tau46 and AT8. Also, anti-mouse secondary antibodies are able to recognize 

endogenous mouse immunoglobulins, even though their amount in brain is 

relatively low due to the presence of the blood brain barrier that blocks 

antibodies entrance into the brain. As a result, being necessary to test whether 

there is any possible cross-reactivity, the samples were also analysed by 

western blotting using only secondary antibody (Ab2).  

As shown in Figure 4.10, the three 4R isoforms of mouse tau were detected 

by incubation with the primary antibodies Tau46 and AT8 in both normal and 

87V-VM brain at about 50 – 70 kDa. Also, incubation with solely secondary 

antibody revealed that there is some cross-reactivity, but it seems insignificant 

to take into consideration compared to the intense signal observed in other 

cases. Notably, AT8 seems to react preferably with tau derived from 87V-VM 

brains compared to normal tau, which has remarkably lower signal almost  
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Figure 4.10 Phosphorylation, the most well studied tau post-translational modification, is 

differentiated between normal and 87V-VM brains. Western blot analysis using Tau46 

shows that all three 4R isoforms of mouse tau are detected at 50 – 70 kDa in both brains 

(left blots). Also, incubation with solely secondary antibody demonstrates some cross-

reactivity with tissue immunoglobulins, but it can be considered negligible (right blots). 

Soluble tau is phosphorylated in PHF-specific sites in the case of 87V-VM brain and, to a 

lesser extent, in normal brain, as results from western blotting using the AT8 primary 

antibody (middle blots). The difference in the brains weight was counterbalanced during 

the concentration of the soluble-tau fraction.  

 

 

similar to being incubated with Ab2. This argues that soluble tau in 87V-VM 

brains is possibly hyperphosphorylated in contrast to normal brains and 

precedes possibly tau aggregation, and/or biochemically confirms that 

filamentous aggregates being solubilized in PCA are abnormally 

hyperphosphorylated tau species typical for tauopathies. However, it has been 

proposed that AT8 exhibits high non-specificity and in combination with the 
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lack of tau negative and positive controls, it is more than necessary to further 

investigate the phosphorylation state of tau in 87V-VM brains216.  

 

 

4.4 Method development for quantifying tau post-translational 

modifications 

One of the common features that characterizes tauopathies is the abnormal 

hyperphosphorylation of tau; however, different tau pathologies may vary 

depending on their phosphorylation pattern. Examining distinct patterns of 

phosphorylation and, by extension, of other post-translational modifications 

can be proved to be a useful tool for diagnosing tau neuropathological 

phenotypes. Previously, a quantitative method was established achieving to 

distinguish variable proteinase K-cleaved products of prion protein aiming 

ultimately to differentiate prion strains for diagnostic purposes217. For this 

reason, we took the first steps towards developing a similar biochemical 

method during this project based on mass spectrometric analysis for 

quantifying targeted phosphorylated peptides of tau existing in a pool of 

various tryptic peptides, which was achieved using a multiple reaction 

monitoring (MRM) process. According to the lists of tryptic peptides detected 

in the samples of purified tau, the peptide R.SGYSSPGSPGTPGSR.S was 

commonly detected in all three tau samples as detailed previously and is 

present in three different states: unphosphorylated, monophosphorylated at 

one of S198, S199 or S202 and diphosphorylated at either S198 and S202 or S199 

and S202 (for the Mascot search results including the MS/MS spectra see 

Appendix V). It was, therefore, chosen to determine whether relative 

quantification of its variants may be possible on the crudely purified tau 

samples, in order to produce a ratio of different phosphorylation states in 

normal soluble tau that can be compared to respective ratios from soluble or 

insoluble aggregated tau extracted from 87V-VM brains and soluble tau 

extracted from mouse brain infected by a different prion strain (22F-VM). 

Initially, the sample of soluble tau derived from normal brain was analysed 

by the Bruker AmaZon ETD mass spectrometer after being digested by 

trypsin, leading to the detection of all tryptic peptides included in the sample, 

as shown in Figure 4.11. Each state of the peptide of interest is characterized 

by a specific molecular mass and ionization state that is 697.3 Da, 2+ for non- 



73 

 

 

Figure 4.11 LC-MS/MS chromatogram of all digested peptides included in the sample of 

normal soluble tau. 

 

 

phosphorylation, 737.3 Da, 2+ for monophosphorylation and 777.3 Da, 2+ for 

diphosphorylation. The same sample of normal soluble tau was analysed 

again, but this time the mass spectrometer was set to identify only the peptides 

that produce mass spectrometric signals of the preferable molecular mass in 

each case (Figure 4.12). These chromatograms show the presence of many 

signals from peptides that produce signals at m/z 697.3, 737.3 and 777.3, 

respectively. The isolation and subsequent quantification of these signals from 

the targeted tau peptides requires the identification of specific fragment ions 

for them. The ion fragmentation of the targeted peptides is based on the ratio 

m/z of y ions that seem to emerge from the C-terminal side of proline residues 

present in the peptides (Table 4.4), which are particularly susceptible to 

fragmentation due to their conformation. As a result, the LC-MS/MS spectra 

were collected for the fragmented tryptic peptides representing distinct 

phosphorylation patterns (Figure 4.13), all of which are characterized by the 

common presence of a fragment ion at m/z about 416.3. Based on this, 

extracted ion chromatograms that include the transitions 697.3416.3, 

737.3416.3 and 777.3416.3, respectively, were produced by processing the 

data demonstrated on Figure 4.12 (Figure 4.14). Each chromatogram was 

smoothed and integrated enabling to determine the area under the curve for  

 

10 20 30 40 50 Time [min] 0 

1 

2 

3 

9 
x10 
Intensity [arbitrary units]  



74 

 

 
 

 Figure 4.12 LC-MS/MS chromatograms of all digested peptides included in the sample of 

normal soluble tau that agree with the targeted molecular mass and ionization (blue for 

unphosphorylated state, 697.3 Da, 2+; green for monophosphorylated state, 737.3 Da, 2+; 

and orange for diphosphorylated state, 777.3 Da; 2+). 

 

 

 

 

 

Table 4.4 MRM fragmentation ions for each peptide of certain phosphorylation state 

derived from normal soluble tau. The S4, S5, S8 represent the position of the putative 

phosphorylated serine residues on the peptide that correspond to S198, S199 and S202 on 

longest human tau isoform, respectively. 

Peptide 
Molecular 

mass (Da) 

Ionization 

level 

Phosphorylation 

state 
y ion 

Molecular mass of y 

ion (Da) 

R.SGYSSPGS

PGTPGSR.S 
697.3 2+ 0 

PGSR 416.2 

PGTPGSR 671.3 

PGSPGTPGSR 912.4 

R.SGYSSPGS

PGTPGSR.S 
737.3 2+ 1  

PGSR 416.2 

PGTPGSR 671.3 

PGSPGTPGSR 
912.4 (S4 or S5) 

894.4 (S8) 

R.SGYSSPGS

PGTPGSR.S 
777.3 2+ 2 

PGSR 416.2 

PGTPGSR 671.3 

PGSPGTPGSR 894.4  
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the peptides in each phosphorylation state. As shown in Figure 4.14, in the 

case of normal soluble tau, two phosphorylation states were detected: 

unphosphorylated and monophosphorylated with the value of the integral to 

be 5969428.2 and 1503139.7, respectively. Although there is signal representing 

the diphosphorylated state, this was not above noise level, so as to be taken 

into consideration. Therefore, the above values produce a ratio of non-

phosphorylation to monophosphorylation that is about 4 for normal soluble 

tau.  

The same procedure that was followed for normal soluble tau can be 

repeated for different samples of purified tau, including soluble and insoluble 

tau isolated from 87V-VM brains as well as soluble tau derived from 22F-VM 

brain. In the case of soluble tau extracted from 87V-VM brain, two 

phosphorylation states were detected similarly to normal soluble tau: 

unphosphorylated and monophosphorylated with the value of the integral to 

be 27944402 and 5015785, respectively (Figure 4.15). No signal representing 

the diphosphorylated state above noise level was detected. Consequently, the 

above values produce a ratio of non-phosphorylation to 

monophosphorylation that is about 5.6 for soluble tau from 87V-VM brain. 

Similarly, analysis of the insoluble aggregated tau sample led to signals from 

unphosphorylated and monophosphorylated peptides (Figure 4.16). 

Although the signals from the unphosphorylated peptides are above noise 

level, the signals from the monophosphorylated peptides are too low to get 

reliable quantitation. Again, no signal representing the diphosphorylated state 

above noise level was detected. Lastly, in the case of soluble tau extracted from 

22F-VM brain, all three phosphorylation states were detected: 

unphosphorylated, monophosphorylated and diphosphorylated with the 

value of the integral to be 942531.1, 270300.4 and 77090.2, respectively (Figure 

4.17). Thereby, the above values produce a ratio of non-phosphorylation to 

monophosphorylation that is about 3.5 for soluble tau from 22F-VM brain. 

Since diphosphorylation failed to be detected in other cases, a ratio that 

involves diphosphorylation and either monophosphorylation or non- 

phosphorylation would not be helpful for further comparison. 

Notably, the quantitation within an experiment should not be considered 

literally since variably phosphorylated peptides will fragment to generate the 

ion fragment 416.3 with different efficiencies and no normalization preceded 

quantification. Therefore, only between different experiments the relative 
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Figure 4.13 MS/MS spectra of unphosphorylated (top), monophosphorylated (middle) 

and diphosphorylated (bottom) peptides, respectively. 

 

308.4 

416.4 

671.2 

758.2 
815.2 

912.4 

978.3 

1086.4 
0.0 

0.5 

1.0 

1.5 

2.0 5 x10 
Intensity [arbitrary units] 

200 300 400 500 600 700 800 900 1000 1100 m/z 

332.4 

416.4 

464.2 588.5 

688.1 

728.1 

839.5 894.3 

992.3 
1040.3 

0 

2 

4 

6 

8 

4 x10 
Intensity [arbitrary units] 

200 300 400 500 600 700 800 900 1000 1100 m/z 

244.4 343.4 

416.4 

477.1 

585.2 
652.9 

768.1 

865.5 
994.3 

0 

1000 

2000 

3000 

4000 

Intensity [arbitrary units] 

200 300 400 500 600 700 800 900 1000 1100 m/z 



77 

 

 

Figure 4.14 Smoothed and integrated extracted ion chromatograms of transitions from 

normal soluble tau. Chromatogram 1 (fuchsia) represents the unphosphorylated state of 

the targeted tau peptide and integration of the area under the curve gives a value of 

5969428.2 [arbitrary units]. Respectively, chromatogram 2 (blue) represents the 

monophosphorylated state of the targeted tau peptide and integration of the area under 

the curve gives a value of 1503139.7 [arbitrary units].    

 

 

 

Figure 4.15 Smoothed and integrated extracted ion chromatograms of transitions from 

soluble tau extracted from 87V-VM brain. Chromatogram 1 (grey) represents the 

unphosphorylated state of the targeted tau peptide and integration of the area under the 

curve gives a value of 27944402 [arbitrary units]. Respectively, chromatogram 2 (green) 

represents the monophosphorylated state of the targeted tau peptide and integration of 

the area under the curve gives a value of 5015785 [arbitrary units].    
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 Figure 4.16 Smoothed, but not integrated extracted ion chromatograms of transitions 

from insoluble aggregated tau extracted from 87V-VM brain. The orange chromatogram 

represents the unphosphorylated state of the targeted tau peptide, whereas the blue 

chromatogram represents the monophosphorylated state of the targeted tau peptide. 

 

 

 

Figure 4.17 Smoothed and integrated extracted ion chromatograms of transitions from 

soluble tau extracted from 22F-VM brain. Chromatogram 1 (mint green) represents the 

unphosphorylated state of the targeted tau peptide and integration of the area under the 

curve gives a value of 942531.1 [arbitrary units]. Chromatogram 2 (purple) represents the 

monophosphorylated state of the targeted tau peptide and integration of the area under 

the curve gives a value of 270300.4 [arbitrary units]. Respectively, chromatogram 3 

(turquoise) represents the diphosphorylated state of the targeted tau peptide and 

integration of the area under the curve gives a value of 77090.2 [arbitrary units]. 
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quantification results that emerge after integration could be useful to examine 

the differences on the phosphorylation levels. In conclusion, the ratio of the 

unphosphorylated to monophosphorylated state was determined to be 4, 5.6 

and 3.5 for soluble tau from normal, 87V-VM and 22F-VM brain, respectively. 

This suggests that the 87V-VM brains are less abundantly 

monophosphorylated possibly due to the presence of other post-translational 

modifications in the expense of phosphorylation. In agreement with this, a 

variety of post-translational modifications detected on soluble tau from 87V-

VM brains has been displayed above that may prevent tau phosphorylation. 

On the other hand, soluble tau from 22F-VM brains seems to be relatively more 

monophosphorylated compared to the other cases. However, the above 

methodology requires validation by testing known abundances of 

phosphorylation states and reproducibility of the different measurements. 

Also, this methodology needs to be applied to various tau pathological cases 

before it is safely suggested that could be used as a diagnostic tool, whereas 

the sample preparation and the inclusion of other post-translational 

modifications would be important aspects. 
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      5. Discussion and future perspectives 
 

 

 

 

Tau is a highly soluble protein that undergoes several post-translational 

modifications that regulate both its subcellular localization and its 

physiological activity in the brain. In this study, using LC-MS, five types of 

post-translational modifications were identified occurring at 21 sites on 

crudely purified soluble endogenous tau under physiological conditions. 

Amongst them, 12 sites were found to be modified in wild-type or non-

pathological transgenic mouse brains before. In contrast, one phosphorylation 

site, at S185, was found according to earlier studies in AD brain tissues 

exclusively. However, it is necessary to consider that the modification pattern 

of tau under normal conditions may vary between different species.  

In addition, post-translational modifications of tau are likely to influence its 

misfolding and aggregation under pathological conditions in a site-dependent 

manner by altering the physicochemical properties of tau molecule. In 87V-

VM mouse brains, tau aggregates were previously observed 

immunohistochemically in the vicinity of prion protein amyloid plaques 

proposing that prion dysfunction generates a pathogenic environment that 

promotes tau aggregation. In addition, the mouse brains used in this project 

were of relatively old age. In the brains of aged humans, tau lesions can be 

detected in a pathology called primary age-related tauopathy218. Although this 

type of tauopathy has not been detected in mouse brains, age is likely to be an 

additional factor underpinning tau pathology in 87V-VM brains. Using LC-

MS, seven types of post-translational modifications were assigned to soluble 

tau crudely extracted from 87V-VM mouse brains occurring at 51 sites overall. 

Amongst these sites, 13 sites were previously detected under non-pathological 

conditions, whereas 22 sites were found under both normal and pathological 

conditions in vivo. In the case of insoluble aggregated tau extracted from 87V-

VM brains, six types of post-translational modifications were found occurring 

at 14 sites merely.  
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Despite the obvious differences between the overall numbers of sites 

assigned to normal soluble tau, soluble and insoluble aggregated tau in 87V-

VM brains, respectively, some post-translationally modified sites have been 

commonly identified. Nine modified sites are found in soluble tau in both 

normal and 87V-VM brains, including acetylated K281 and phosphorylated 

T181, S185, S199, S214, T217, T231, S412 and S416. This implies that these sites 

might not be required for tau transition to a pathological state and/or may play 

a physiological role in both cases given that soluble tau in 87V-VM brains may 

contain both pathologically differentiated as well as normally folded tau 

molecules. Respectively, soluble and insoluble aggregated tau from 87V-VM 

brains share seven common modified sites, which include trimethylated K148 

and K150, methylated R211 and phosphorylated T149, S214, T220 and S352. 

These data suggest that these sites may facilitate tau pathology in 87V-VM 

brains, especially considering their absence from normal soluble tau. 

However, further investigation of tau post-translational modifications in 

normal brains is necessary in order to clarify if these sites are certainly absent 

from normal tau or failed to be detected during this project. Nevertheless, 

since only S214 was commonly found in all three distinct cases of purified tau, 

this argues that phosphorylation at S214 is possibly neutral in terms of its 

involvement in tau pathology in the 87V-VM brains. Of course, different post-

translational modifications may characterize distinct tau pathologies.  

Several post-translational modifications targeting lysine residues were 

chosen as fixed modifications during mass spectrometric analysis of tau 

samples. The detection of lysine residues in all samples that can be common 

targets of more than one type of modification proposes that it is likely tau post-

translational modifications to compete each other for the same residues on tau 

in both health and pathology. Consequently, this crosstalk between tau lysine-

directed modifications reveals a more complex regulation of tau biological 

activity under normal conditions as well as during misfolding and 

fibrillization, which begins to unfold as more modifications are mapped - and 

crucially quantified - and their role is investigated. Hence, further mass 

spectrometric investigation is needed for a more complete mapping of 

modified sites, in order to reveal the level of regulation they may serve in tau 

biology. Furthermore, many sites identified in this project appear to be 

distributed in the proline-rich region recommending that this region is 

possibly quite susceptible to modifications, which may control tau ability to 
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interact with other partners that are involved in intracellular signalling 

pathways133.     

Despite the presence of a few common residues, the distinct pattern of 

modified residues as was emerged in each of the three tau samples implies 

that different post-translational modifications control biochemically the state 

of tau in normal brains compared to 87V-VM brains bearing tau pathology. 

However, three aspects impose the need to further explore tau modified sites. 

Firstly, the investigation of tau post-translational modifications by MS can be 

a challenging process. Also, it is not known if the methods used for the 

biochemical extraction of tau from brain tissues during this project are suitable 

for preserving tau post-translational modifications especially considering the 

lack of inhibitors for the enzymes that catalyse the biochemical reactions in the 

homogenizing buffers. In addition, the abundance of modified peptides in 

combination with the stability of the modifications during mass spectrometric 

analysis are two parameters that can influence the detection of post-

translational modifications219. Secondly, the assignment of specific sites, where 

detected modifications may occur, needs further confirmation, since the 

matching of tryptic peptides against known protein entries via Mascot 2.4 is 

merely indicative and, in a few cases, not even reliable. Assigned sites of 

interest could be additionally tested by fragmentation of the modified 

peptides by MS or western blotting using antibodies against site-dependent 

modified epitopes. Lastly, although soluble-tau extracted from 87V-VM brains 

reacts specifically with the AT8 primary antibody through a site-dependent 

phosphorylated epitope, the mass spectrometric analysis failed to detect the 

phosphorylated sites S202, T205 and S208. This indicates that the list of MS-

detected modified sites on tau extracted from either normal or 87V-VM brain 

is not complete yet.  

Concerning the methods used for the biochemical extraction of tau from 

mouse brains, the lack of positive controls cannot allow to estimate the 

purification and extraction level that has been achieved in each case. However, 

the fact that the samples collected during these methods were to be used for 

mass spectrometric analysis, their evaluation was based on the ability to detect 

post-translational modifications during the mass spectrometric analysis. 

Regarding the method used for the biochemical extraction of soluble tau, it 

achieved the highest possible enrichment and purity of soluble tau to be 

analysed subsequently by MS. On the other hand, whereas the method used 
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for the biochemical extraction of insoluble aggregated tau achieved the 

isolation of aggregated filamentous tau, the purity level was barely satisfying 

for further analysis by MS. Consistent with this, the number of post-

translationally modified sites in the case of insoluble aggregated tau was 

relatively low compared to soluble tau, because the purity level affects the 

sensitivity of the MS to detect post-translational modifications, which is 

already a difficult task. Of course, an additional purification step during the 

extraction procedure would possibly cause the loss of some post-translational 

modifications. Instead, a further purification step was carried out during the 

in-gel preparation of the insoluble-tau sample for MS. However, since many 

methods were used for the isolation of insoluble aggregated tau and it was 

shown systematically that the amount of insoluble aggregated tau was low to 

be further analysed, it is quite likely the aggregated tau in 87V-VM brains to 

be present in low levels accordingly. For this reason, it would be useful to 

isolate specifically those brain tissues that were detected 

immunohistochemically to contain tau inclusions or increase the number of 

brains to be homogenized increasing, thus, the starting material and apply the 

same biochemical preparation for MS. 

Site-specific post-translational modifications may preferentially affect tau 

biological activities under normal conditions as well as the properties of 

different pathological types of tau. Based on this, the initial steps for 

developing a methodology that quantifies certain post-translational 

modifications by LC-MS/MS, using a multiple reaction monitoring (MRM) 

process, were taken during this project. This methodology achieved to 

produce comparable ratios of different phosphorylation states 

(unphosphorylated to monophosphorylated) of a certain peptide for various 

tau samples allowing to examine the relative differentiation of tau 

phosphorylation between them. However, further development of this 

methodology is required in order to be able to reliably differentiate various 

tau properties. 

Possible future objectives of the research that focuses on tau physiology and 

pathology in 87V-VM brains involve primarily the additional investigation of 

site-directed post-translational modifications occurring on tau clarifying, thus, 

distinct differences responsible for tau biological activity as well as misfolding.  

This could be processed by two possible ways. At first, as discussed above, 

certain regions in 87V-VM brains observed to include more densely tau 
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aggregates could be dissected and prepared for mass spectrometric analysis. 

This, thereby, could increase the total content of tau in the same volume unit, 

especially considering that 87V-VM brains may contain possibly low amount 

of aggregated tau. Similarly, more brains could be homogenized to increase 

the starting material. What is more, further optimization of the biochemical 

extraction of aggregated tau could be useful, in order to enhance both the 

harvest and purity of insoluble aggregated tau and the use of positive tau 

controls would allow the estimation of both parameters. Modified sites of 

interest, including those of high risk, could be quantified according to a 

methodology similar to this developed preliminarily during this project or 

could be explored in other ways aiming to reveal the underlying processes that 

they serve. For example, site-specific mutagenesis is one of the many possible 

approaches to study the impact of certain sites on tau biology. Lastly, it is 

worth investigating the impact of prion pathology on tau in terms of the 

interactions and processes that are involved in the development of tau 

aggregates in the case of 87V as well as different prion strains.   
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Appendix I: Tau post-translational 

modifications – Biochemical reactions 
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Lysine-Directed Post-translational
Modifications of Tau Protein in
Alzheimer’s Disease and Related
Tauopathies
Christiana Kontaxi, Pedro Piccardo and Andrew C. Gill *

Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom

Tau is a microtubule-associated protein responsible mainly for stabilizing the neuronal

microtubule network in the brain. Under normal conditions, tau is highly soluble and

adopts an “unfolded” conformation. However, it undergoes conformational changes

resulting in a less soluble form with weakened microtubule stabilizing properties.

Altered tau forms characteristic pathogenic inclusions in Alzheimer’s disease and related

tauopathies. Although, tau hyperphosphorylation is widely considered to be the major

trigger of tau malfunction, tau undergoes several post-translational modifications at lysine

residues including acetylation, methylation, ubiquitylation, SUMOylation, and glycation.

We are only beginning to define the site-specific impact of each type of lysine modification

on tau biology as well as the possible interplay between them, but, like phosphorylation,

these modifications are likely to play critical roles in tau’s normal and pathobiology. This

review summarizes the latest findings focusing on lysine post-translational modifications

that occur at both endogenous tau protein and pathological tau forms in AD and other

tauopathies. In addition, it highlights the significance of a site-dependent approach of

studying tau post-translational modifications under normal and pathological conditions.

Keywords: tau, acetylation, methylation, ubiquitylation, SUMOylation, glycation, paired helical filaments,

tauopathies

INTRODUCTION

Neurodegenerative diseases of the central nervous system are characterized by selective loss
of synapses and neurons, glial activation, progressive irreversible neural dysfunction, cognitive
impairment and eventually death (Verkhratsky et al., 2014; Kovacs, 2016).Many neurodegenerative
diseases are also known as conformational diseases- or proteinopathies-due to the presence of
pathological forms of proteins that accumulate and deposit in the brain (Carrell and Lomas,
1997). For this reason, it has been assumed that the aggregation of misfolded proteins is the
molecular cause of neurodegeneration. Proteins participating in aggregates lack their normal
tertiary structure and, hence, they are incapable of serving their typical functions in living
cells. The aberrantly-folded forms may also acquire a novel, neurotoxic role (Ballatore et al.,
2007). A common class of neurodegenerative diseases includes the disorders associated with the
filamentous inclusions of tau aggregates in nerve cells and glia, which are known collectively as
tauopathies (Spillantini et al., 1997; Ferrer et al., 2014). One of the main pathological hallmarks
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of Alzheimer’s disease (AD) is the intraneuronal accumulation of
neurofibrillary tangles (NFTs) consisting of misfolded tau protein
and, therefore, AD is considered to be partly a tauopathy and
is one of the most widely studied. Other tauopathies include
progressive supranuclear palsy, frontotemporal dementia with
parkinsonism-17, corticobasal degeneration, argyrophilic grain
disease, Pick’s disease and Huntington’s disease (Hernandez and
Avila, 2007; Gratuze et al., 2016).

Tau protein is a microtubule-associated protein (MAP)
expressed abundantly in neurons and, to a lesser extent,
in astrocytes and oligodendrocytes. In neurons, tau localizes
predominantly to the axonal cytoplasm, but it can also be
found in the nucleus and dendrites (Binder et al., 1985; Migheli
et al., 1988; Loomis et al., 1990). Tau is responsible mainly
for microtubule assembly and stabilization, thus maintaining
the normal morphology of the neuronal cells and enabling
axonal transport. Tau may also be involved in other activities
such as neurogenesis and iron export (Lei et al., 2012; Pallas-
Bazarra et al., 2016). It is encoded by the MAPT gene,
which includes 16 exons located on the human chromosome
17 (Neve et al., 1986; Lee et al., 1988). Based on protein
structure, tau can be divided into four regions: (i) a N-terminal
projection region that protrudes from the microtubules to
which tau is bound and is responsible for interacting with
other, non-microtubular partners; (ii) a proline-rich region
that contains seven PXXP motifs, which serve as binding
sites for signaling proteins; (iii) a microtubule-binding domain
(MBD) that contains three or four repeat regions, R1, R2,
R3, and R4, which are essential for binding to microtubules
through their conserved KXGS motifs, and the flanking
regions between them; (iv) a C-terminal region (Figure 1A;
Mandelkow et al., 1995). There is heterogeneity at the level of
transcription due to alternative splicing of exon 10, resulting
in the generation of two different tau isoforms; these isoforms
are known as 3R or 4R depending on whether they contain
three or four repeat regions within the MBD (Lee et al.,
1989).

Under normal conditions, tau is highly soluble and is classed
as an intrinsically disordered protein. It is believed to have little
tendency for aggregation in this intrinsically disordered state
(Schweers et al., 1994; Mukrasch et al., 2009), however, tau can
undergo conformational changes resulting in altered physical and
chemical properties, including a decrease of solubility. Thereby,
conformationally-stable insoluble structures are formed as tau
assembles into higher-polymerized aggregates that differ between
different tauopathies (Yoshida, 2006). In AD, tau lesions include
neurofibrillary tangles (NFTs) in neuronal cell bodies, neuropil
threads in neurites and dystrophic neurites in neuritic plaques; in
electron microscopy, tau assemblies form mainly paired helical
filaments (PHFs) that consist of both 3R and 4R isoforms
(Figure 1B). In contrast, 3R or 4R tau isoforms are preferentially
accumulated in a variety of tauopathies, such as progressive
supranuclear palsy and Pick’s disease (Dickson et al., 2011).
The processes underpinning the formation of tau aggregates
are not completely understood, but appear to involve a variety
of post-translational modifications occurring at many sites
throughout tau, including phosphorylation, O-Glc-NAcylation,

glycation, nitration, acetylation, methylation, SUMOylation,
ubiquitylation, oxidation, and truncation (Martin et al., 2011).

Since the phosphorylation state of tau controls its intrinsic
affinity for microtubules and given the fact that aggregated tau
species have been shown to be hyperphosphorylated at several
serine, threonine and tyrosine residues, numerous studies have
focused on exploring tau phosphorylation (Grundke-Iqbal et al.,
1986; Williamson et al., 2002). Conversely, tau modifications
that extend to lysine residues have not yet been analyzed as
extensively, but it is likely that they might be as important
as phosphorylation in dictating the biophysical properties of
tau, because they profoundly alter the charge of the protein.
This review gives an overview of the latest findings concerning
the lysine-directed tau post-translational modifications, which
include acetylation, methylation, ubiquitylation, SUMOylation
and glycation, and discusses the impact on tau biology of the
possible cross-talk between them. It also emphasizes the need to
achieve a complete understanding of the biological role of lysine
site-specific modifications in both endogenous and aggregated
tau, in order to shed light on the molecular events underlying
the pathological transition of tau that characterizes tau-mediated
neurodegeneration.

TAU ACETYLATION

Acetylation is a co- or post-translational modification that is
best known for modifying the N-termini of eukaryotic proteins
(around 85% of human proteins are believed to be N-terminally
acetylated) as well as for modifying the side chains of specific
lysine residues in histones, thereby altering chromatin structure
and providing epigenetic control of transcription. As a result,
the enzymes responsible for acetylating and deacetylating protein
substrates at lysine residues are called histone acetyltransferases
and histone deacetylases, respectively, but given the fact that a
variety of other proteins except for histones can be acetylated
the terms lysine acetyltransferase (KAT) and lysine deacetylase
(KDAC) are more precise. The source of the acetyl group in
protein acetylation reactions is acetyl-CoA and it has been
demonstrated recently byMin et al. (2010), that lysine side chains
of tau protein can be acetylated (Figure 2A). NMR analysis of
recombinant human tau acetylated enzymatically in vitro has
shown that tau displays an overall acetylation level of 6± 2 acetyl
groups per molecule (Kamah et al., 2014). Tau can be acetylated
by either the protein p300 or the CBP acetyltransferase, a CREB-
binding protein and close homolog of the p300 acetyltransferase,
and deacetylated by the NAD+-dependent sirtuin 1 deacetylase
(SIRT1; Min et al., 2010). A decrease in the levels of both SIRT1
mRNA and protein has been associated with enhanced PHF-tau
accumulation in AD patients (Julien et al., 2009), thus indicating
a negative correlation between the regulation of SIRT1 and tau
accumulation.Moreover, histone deacetylase 6 (HDAC6), located
mainly in the cytoplasm, has been shown to interact with tau in
the MBD (Ding et al., 2008) suggesting that HDAC6 is another
possible tau deacetylase, and Cook et al. found that HDAC6 could
deacetylate tau on KXGS motifs (Cook et al., 2014). HDAC6
has also been shown to be involved in assisting the clearance
of misfolded huntingtin through autophagic degradation by
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FIGURE 1 | (A) Endogenous tau is a highly soluble protein adopting an “unfolded” conformational state and consisting of two major domains: the projection domain

that projects from microtubules and the microtubule (MT)-assembly domain that interacts with tubulin heterodimers. Tau can also be divided into four regions: the

N-terminal region, the proline-rich (Pro-rich) region, the microtubule-binding domain (MBD) and the C-terminal region. (B) Tau is responsible mainly for stabilizing

neuronal microtubules based on its phosphorylation state. Abnormal tau hyperphosphorylation weakens tau affinity for microtubules and, thus, releases tau in the

cytosol and destabilizes the microtubule bundles. Unbound hyperphosphorylated tau assembles into pathogenic inclusions that deposit in brain tissues causing

pathological phenotypes.

mediating the retrograde transport of autophagic components to
huntingtin aggresomes (Iwata et al., 2005), supporting the notion
that HDAC6 might act to protect neurons against abnormal tau
rather than act only as a tau the deacetylase. In contrast to
HDAC6, both p300 and SIRT1 are localizedmainly in the nucleus
(Michishita et al., 2005; Blanco-Garcia et al., 2009), whereas tau
resides predominantly in the axonal cytoplasm (Binder et al.,
1985); if they are to regulate tau acetylation exclusively and
directly then the mechanisms underpinning the migration of
these deacetylases to the cytosolic compartment of adult neurons
need to be established.

Remarkably, tau also has intrinsic acetyltransferase activity
and, hence, can catalyze its own acetylation by using cysteine
residues in the MBD—C291 and C322 (all amino acid numbers
in the manuscript refer to human tau) in the R2 and R3 repeats,
respectively—as intermediates to enable transfer of the acetyl
group from acetyl-CoA to certain lysine residues both intra- and
inter-molecularly (Cohen et al., 2013). Different tau isoforms
may have different tendency to undergo autoacetylation, with 4R
isoforms displaying higher levels of autoacetylation compared
to 3R isoforms, which lack the R2 repeat that includes C291
hence contain only the C322 residue (Cohen et al., 2016). Despite
the intrinsically disordered nature of tau, both C291 and C322
residues participate in α-helical structures, which ensures a

relatively ordered conformation and brings cysteine and lysine
residues (C291 and K274, C322 and K340) into close proximity
for the chemical reaction(s) to take place (Luo Y. et al., 2014).
Since acetylated tau is unable to bind to microtubules (Cohen
et al., 2011), it has been suggested that tau autoacetylation might
serve as an autoinhibitory mechanism to prevent interaction
between tau and microtubules (Cohen et al., 2013). Tau self-
acetylation has also been shown to induce tau autoproteolysis,
catalyzed by the same cysteine residues, during which about 17
kDa and 12 kDa C- and N-terminal fragments, respectively, are
generated (Cohen et al., 2016). Mass spectrometry analysis of
the N-terminal end of each fragment identified that the putative
autocleavage sites on tau are located within the R2 and R4 repeats
(Cohen et al., 2016).

Most lysine residues that are putative sites of acetylation
are distributed in the MBD, whilst, a few are found in the N-
terminal and C-terminal regions (Figure 3A). Proteomic studies
revealed 23 lysine residues throughout the tau sequence that can
potentially be acetylated by p300 in vitro, of which 13 lysines
are found in the MBD (Min et al., 2010). NMR analysis assigned
several lysine residues as potential CBP-catalyzed acetylation sites
in accordance with previous mass spectrometric data, including
two novel highly acetylated lysines, K240 and K294 (Kamah
et al., 2014). Acetylation of K163, K174 and K180, located in the
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FIGURE 3 | Tau lysine-specific sites that are modified post-translationally based on the longest human tau isoform. The modified sites include the total number of

sites that have been identified both in vivo and in vitro, in normal tau as well as in pathological states of tau. (A) Tau acetylation sites. (B) Tau methylation sites. (C) Tau

ubiquitylation sites. (D) Tau SUMOylation site. (E) Tau glycation sites.

proline-rich region, has also been confirmed in vivo (Min et al.,
2010). A further study detected K163 in the proline-rich region,
K280 and K281 in the second repeat region and K369 in theMBD
as the major sites of tau acetylation (Cohen et al., 2011). Recently,
13 putative lysine sites were discovered in vivo including K343
and K347 in the MBD (Morris et al., 2015)—acetylation in this
region could affect the affinity of tau for microtubules.

Of the putative acetylation sites, K174, K274, K280, and K281
have received most attention concerning their significance in
regulating tau function. Acetylation of K280 is of particular
interest since it has been suggested to be a critical event for the
formation of pathogenic tau based on data showing that this
modification decreases microtubule binding and, also, precedes
and possibly enhances tau fibrillization into PHFs (Irwin et al.,
2012). Moreover, transgenic Drosophila models overexpressing a
mutant form of human tau (K280Q) to mimic acetylation show
increased phosphorylation at S262 and T212/S214 and enhanced
tau levels, possibly due to either increased oligomerization or
differential protein degradation, thus suggesting that acetylated
K280 contributes to pathological events underlying tau toxicity
(Gorsky et al., 2016). Conversely, examining the co-localization
of acetylated K280 immunoreactivity with multiple tau epitopes
in AD revealed a possible sequence of events, according to which

tau hyperphosphorylation occurs before tau acetylation at K280,
which is then followed by subsequent tau truncation (Irwin
et al., 2012). Notably, immunohistopathological studies revealed
that in normal brains K280 is not identified to be acetylated,
whereas it is predominantly detected in NFTs and, to a lesser
extent, in neuropil threads or pretangles (Cohen et al., 2011;
Irwin et al., 2012). Acetylated K280 is detected in neuronal
and glial inclusions in many tauopathies, such as argyrophilic
grain disease, sporadic and familial AD, frontotemporal dementia
with parkinsonism-17, corticobasal degeneration and progressive
supranuclear palsy (Cohen et al., 2011; Irwin et al., 2012, 2013).
However, Pick’s disease is a 3R tauopathy and 3R tau isoforms
lack exon 10, where K280 is located, so that a low degree of
acetylated K280 was found only in a subset of 4R tau containing
lesions (Irwin et al., 2013). This indicates that acetylation of K280
is not sufficient for causing tau-induced neurotoxicity.

In contrast to K280, acetylated K274, located in the first
repeat region, was shown to be present in neuronal and
glial inclusions of both 3R and 4R human tauopathies from
a variety of sporadic as well as familial cases, with the
exception of the 4R tauopathy argyrophilic grain disease
(Grinberg et al., 2013). Pathological acetylation of K274, as
well as K281, has been reported to cause downregulation of
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the cytoskeletal protein network of the axon initial segment
leading to destabilization of the microtubule barrier in this
region and consequent somatodendritic mis-sorting of tau,
which represents an early event of neurodegeneration (Sohn
et al., 2016). Apart from enabling tau mislocalization, these
modifications have been associated with synaptic dysfunction
and memory deficits observed in AD brains (Tracy et al.,
2016) with possible mechanisms involving the kidney/brain
protein, a postsynaptic memory-associated protein. Specifically,
primary hippocampal neurons expressing K274/K281-specific
acetylation-mimic mutants failed to recruit AMPA receptors
to the postsynaptic surface of spines, whilst activity-dependent
postsynaptic actin polymerization was disrupted; site-specific
acetylated tau was shown to disturb the postsynaptic distribution
of kidney/brain protein, which contributes to impaired actin
polymerization and trafficking of AMPA receptors in the
postsynaptic membrane (Tracy et al., 2016). Lastly, another
significant residue that can be acetylated is K174 found in the
proline-rich region. Pseudoacetylation at K174 (K174Q) was
reported to attenuate tau clearance resulting in increased tau
accumulation and was sufficient to induce behavioral deficits
in vivo, such as memory and learning impairments. Thus,
acetylation of K174 is likely to be an additional key modification
regulating tau-induced toxicity (Min et al., 2015).

The finding that tau can be acetylated gave rise to further
research studies examining the impact of these modifications on
tau physiopathology. In general, acetylation that is elevated by
cellular stress, such as Aβ accumulation (Min et al., 2010), seems
to affect tau biology via two different processes. The first involves
the dysregulation of tau homeostasis due to prevention of
degradation mediated by the ubiquitin-proteasome system (UPS;
Min et al., 2010). Most of the putative acetylated lysine residues
that are distributed in the MBD can also be polyubiquitylated
(see below) to mark tau for degradation (Morris et al., 2015).
Hence, acetylation of lysines can prevent their polyubiquitylation
resulting in insufficient turnover of both endogenous and
hyperphosphorylated tau (Min et al., 2010). Primary cultured
neurons lacking SIRT1 activity that, as a result, show enhanced
acetylated tau levels, also have impaired tau turnover (Min et al.,
2010). Similarly, inadequate turnover of hyperphosphorylated
tau is observed when tau also becomes hyperacetylated (Min
et al., 2010). Impaired clearance of tau is believed to be one of
the major factors that leads to tau accumulation by increasing the
pool of tau available for aggregation by maintaining proteins that
should be normally degraded.

The second mechanism by which acetylation is suggested
to change tau function is through the impairment of tau-
microtubule interactions (Cohen et al., 2011), since acetylation
neutralizes the positive charge of lysine residues in the MBD,
thereby disabling tau binding to negative charges on the
microtubule surface (Luo Y. et al., 2014). Of course, the release
of tau frommicrotubules might act collaboratively with impaired
tau degradation in enhancing tau pathological accumulation.
Nevertheless, whether acetylation facilitates tau fibrillization
remains to be elucidated. However, acetylation of KXGS motifs
(K259, K290, K312, and K353) has been reported to prevent tau
phosphorylation at these same motifs and decreases aggregation

of recombinant tau in vitro (Cohen et al., 2011; Cook et al., 2014).
Furthermore, KXGS motifs are hypoacetylated in AD brains and
in a mouse model of tauopathy (Cook et al., 2014). This discovery
implies that acetylation of particularly KXGS motifs is an event
possibly occurringmerely in normal tau, but its role needs further
investigation. In any case, the fact that other MAP proteins,
such as MAP2, which share highly conserved repeats with tau,
undergo lysine acetylation in the MBD and cysteine-dependent
autoacetylation indicates that acetylation might be a conserved
regulatory mechanism of MAP activity in governing cytoskeletal
dynamics (Hwang et al., 2016).

TAU METHYLATION

Methylation refers to the enzymatic addition of one or more
methyl groups to protein substrates. Typically, the methyl
group derives from S-adenosyl methionine and it is added to
the terminal amino group of lysine or arginine side chains
of the target protein. Depending on the residue that is
modified, lysine methyltransferases (KMTs) and protein arginine
methyltransferases, respectively, are responsible for methylating
the protein substrates; accordingly, the reverse reaction can
be catalyzed by several lysine demethylases (KDMs), but no
arginine demethylases are yet known. Lysine methylation of tau
(Figure 2B) is a relatively recent discovery that, to date, has not
received the same attention as acetylation. Mass spectrometric
analysis of PHFs derived from AD brains showed that several
lysine residues, distributed in the projection domain and MBD
of tau protein, can be methylated (Thomas et al., 2012). So far,
the specific enzymes involved in tau methylation have not been
identified.

Lysine methylation has been detected in tau protein isolated
from both pathological and normal brains (Figure 3B). In human
AD brains, aggregated tau is monomethylated at seven lysine
residues found in the proline-rich region and the R1 and R2
repeats within the MBD, of which K180 and K267 appear to be
more frequently methylated, in contrast to K290 that displays
the lowest level of methylation (Thomas et al., 2012). Later
studies showed that endogenous tau from cognitively-normal
human brains can be monomethylated as well as dimethylated
at different lysine residues (Funk et al., 2014; Morris et al., 2015).
Extracted soluble tau is methylated at up to 11 sites, more than
found to be modified in PHF-tau, and which are distributed
throughout the sequence, whilst in vitro reductive methylation
of recombinant tau led to detection of 23 methylated lysines
(Funk et al., 2014). Furthermore, not only lysine residues, but the
arginine residues R126, R155, and R349 were detected as possible
sites of monomethylation in normal mouse tau and in a mouse
model of AD (Morris et al., 2015). Tau modified by the addition
of three methyl groups at a single site—tri-methylation—has not
yet been found in either healthy or pathological states.

Since K254 was found to be mainly methylated and, to
a lesser extent, ubiquitylated (see below) in PHF-tau, it has
been suggested that methylation may block UPS-mediated
degradation of tau leading to a further enhancement of
tau levels in the cell (Thomas et al., 2012). At the same
time, phosphorylation of S262, which reduces tau affinity for
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microtubules, is found more frequently in the presence of
methylated K267 in PHF-tau (Thomas et al., 2012). This suggests
that lysine methylation, apart from preventing degradation by
the UPS, might result in abnormal phosphorylation of tau. In
addition, most of the potentially methylated sites of PHF-tau are
subject to acetylation as well, suggesting that these modifications
might compete for the same site-specific lysine residues on
pathological tau. K163, K174 and K180 were identified in vivo
as possible sites of both acetylation and methylation (Min et al.,
2010; Thomas et al., 2012), thus signifying the importance to
explore the competing factors that may govern tau pathological
modifications. However, significant putative acetylated sites, such
as K280 and K281, have not yet been detected as beingmethylated
(Thomas et al., 2012).

Immunohistochemical studies using a combination of a
polyclonal antibody, that recognizes methylated tau epitopes,
and antibodies specific for epitopes present on PHF-tau
demonstrated that methylated tau is highly colocalized with
NFTs especially in late-stage AD brains (Thomas et al., 2012).
Given that the regions found to be potentially methylated in
pathological tau are essential for interactions with microtubules
and other partners, lysine methylation may serve to suppress
tau binding to these partners. Moreover, lysine residues have
been shown to participate in electrostatic interactions facilitating
abnormal protein aggregation (Sinha et al., 2011) and, as a
result, it has been suggested that methylation of lysine residues
possibly enables interactions between tau molecules, playing thus
an important role in tau self-assembly and NFT formation. This
is further supported by the discovery that lysine methylation of
other non-histone proteins, such as the transcription factor p53,
affects both protein-protein interactions and protein stability
(West and Gozani, 2011). In contrast, although the impact
of lysine methylation on endogenous tau activity remains
unknown, recombinant tau methylated in vitro via reductive
methylation appeared to have low tendency for aggregation and
the modifications actually promoted tubulin assembly (Funk
et al., 2014), indicating that methylation of tau might have a
protecting role against abnormal aggregation of the protein.
However, the specificity of a chemically-induced modification
is generally low, making it difficult to interpret its effects on
tau. Therefore, an extensive investigation of the site-dependent
lysine methylation observed in vivo would contribute to the
understanding of this modification in tau biology.

TAU UBIQUITYLATION

Ubiquitylation involves the formation of an isopeptide bond
between the C-terminal carboxyl group of the small regulatory
protein ubiquitin and the ε-amino group present in lysine side
chains of proteins (Figure 2C). Sequential addition of more than
one ubiquitin molecule by ubiquitin-chain elongation factors
(E4 polyubiquitin ligases) can result in the generation of long
polyubiquitin chains, which differ in terms of the specific lysine
residue that is used to form an isopeptide bond to the C-terminal
glycine of the next ubiquitin molecule defining, therefore, the
type of polyubiquitin linkage. In general, it is polyubiquitylation
rather than the attachment of a single ubiquitin that acts to

induce the proteolytic degradation of targeted proteins in the
cytoplasm by the UPS, but different types of polyubiquitin
linkage affect the fate of the modified protein in various
ways. Whereas, K48-polyubiquitylated proteins are degraded
by the UPS pathway with the help of Rad23 proteins, which
stimulate their binding to the proteasome (Nathan et al., 2013),
K63-polyubiquitylated proteins are directed to the lysosomal-
autophagic pathway. K63 polyubiquitin chains were shown to
interact selectively with the cellular factor ESCRT0 (Endosomal
Sorting Complex Required for Transport), which prevents the
binding to the 26s proteasome (Nathan et al., 2013), permitting
K63-polyubiquitylated proteins to serve different functions, such
as receptor endocytosis, intracellular signaling and DNA repair
(Mukhopadhyay and Riezman, 2007; Ikeda and Dikic, 2008).

Ubiquitylation takes place in three successive stages, each of
them involving a distinct enzyme: an E1 ubiquitin activating
enzyme that catalyzes the ATP-dependent ubiquitin activation,
an E2 ubiquitin conjugating enzyme onto which activated
ubiquitin is transferred through a transesterification reaction
and, finally, an E3 ubiquitin ligase essential for catalyzing the
formation of the isopeptide bond between ubiquitin’s terminal
glycine and the target protein. Amongst these, the E3 ubiquitin
ligase primarily defines the specific protein substrate that will be
ubiquitylated.

Enzymes Regulating Tau Ubiquitylation
Several E3 ligases have been reported to ubiquitylate tau,
including the C-terminus of the Hsc70-interacting protein
(CHIP), TNF receptor-associated factor 6 (TRAF6) and
axotrophin/MARCH7 (Petrucelli et al., 2004; Babu et al., 2005;
Flach et al., 2014), whereas other E3 ubiquitin ligases, such
as parkin and Cbl, failed to ubiquitylate hyperphosphorylated
tau (Petrucelli et al., 2004; Shimura et al., 2004). CHIP was
shown to ubiquitylate tau in vivo and in vitro by associating
with tau’s MBD and the nearby proline-rich region, thereby
promoting the proteasome-mediated degradation of soluble tau
(Petrucelli et al., 2004). CHIP has intrinsic E3 ubiquitin ligase
activity via a U-box domain, and ubiquitylates tau through
K48 or K63 linkages (Petrucelli et al., 2004). Two types of E2
ubiquitin conjugating enzymes, UbcH5a and Ubc13-Uev1a,
have been identified to interact with CHIP, but it is likely
that the sequential interaction of Ubc13-Uev1a with other E2
enzymes is responsible particularly for ubiquitylating tau with
K63 polyubiquitin chains (Xu et al., 2008). It has also been
reported that hyperphosphorylated tau derived from AD brains
can be polyubiquitylated by use of HbcH5B as an E2 enzyme
(Shimura et al., 2004). CHIP might mediate tau degradation
in both physiological and diseased conditions regardless
of its phosphorylation state (Zhang et al., 2008), however,
tau hyperphosphorylation was shown to be a recognition
requirement for ubiquitylation by the CHIP-Hsc70 complex in
the presence of HbcH5B (Shimura et al., 2004).

CHIP interacts directly with the molecular chaperone
Hsp70/Hsp90 and increased Hsp70 activity in HEK293 cells
was found to weaken CHIP activity, thereby suppressing CHIP-
mediated tau ubiquitylation; given that Hsp70 interacts with
tau this suggests an antagonistic relationship between the two
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interacting partners (Petrucelli et al., 2004). A quantitative
analysis of CHIP in human and mouse brains revealed that the
levels of CHIP andHsp70 appear to be increased in AD compared
with normal controls (Sahara et al., 2005). Also, in several human
tauopathies, CHIP localized to tau neuronal and glial lesions,
with 3R tauopathies displaying more CHIP immunoreactivity
than 4R or 3R+ 4R tauopathies (Petrucelli et al., 2004). Increased
accumulation of aggregated tau species was observed in a cell
culture system overexpressing CHIP (Petrucelli et al., 2004). In
contrast, insoluble tau accumulation has been increased in a
mouse model lacking CHIP (Sahara et al., 2005). These data
suggest that the CHIP-Hsp70 complex might be a key molecular
assembly affecting tau pathogenic events, but its role needs
further investigation.

CHIP may also affect abnormal tau levels indirectly via two
possible processes. Firstly, it has been demonstrated that CHIP
ubiquitylates and controls the levels of HDAC6, a deacetylase
of the molecular chaperone Hsp90, and enhanced levels of
HDAC6 have been associated with augmented tau accumulation
(Cook et al., 2012). The second pathway involves a different
stress-induced substrate of CHIP, the cellular kinase Akt, which
prevents CHIP-induced tau ubiquitylation and its subsequent
degradation by regulating the CHIP-Hsp90 complex directly,
competing with tau for binding to CHIP or promoting tau
hyperphosphorylation at S262/S356, a tau species that is not
recognized by the CHIP-Hsp90 complex (Dickey et al., 2008).

Another candidate E3 ubiquitin ligase for tau is TRAF6,
which ubiquitylates tau via K63 linkages, apparently inducing
tau degradation through the UPS pathway (Babu et al., 2005).
Although, K63 polyubiquitylation has not been associated
with proteolytic degradation of substrates by the UPS, the
26s proteasome is capable of binding and degrading K63-
polyubiquitylated proteins in vitro in a similarly way to proteins
modified by K48-polyubiquitin chains (Hofmann and Pickart,
2001). In aggregates extracted from AD brains TRAF6 was
shown to be colocalized with the ubiquitin-associating protein
sequestosome 1/p62, a cellular protein responsible for interacting
with the proteasomal subunit Rpt1 (Babu et al., 2005). p62
interacts with the K63 polyubiquitin chain of tau through its UBA
domain (Babu et al., 2005), so is suggested to be an essential
intermediate of TRAF6-mediated tau degradation.

Recently, by use of yeast-two-hybrid systems it was shown
that axotrophin/MARCH7 is a tau-interacting protein and, also,
has E3 ligase activity via its C-terminal RING-variant domain
in the presence of the E2 enzymes UbcH5b/c, UbcH6 and, to
a lesser extent, UbcH13 (Flach et al., 2014). Axotrophin is able
to induce tau monoubiquitylation in vitro with tau isoforms
being preferentially modified at multiple sites, including some
located in the MBD, which led to weakened tau binding to
microtubules (Flach et al., 2014). In AD brain tissues, axotrophin
was observed to colocalize with tau aggregates in different cellular
compartments, such as the cell soma or dendrites, in contrast
to normal brains and tau knockout mice, where axotrophin was
found predominantly in the nucleus implying that tau affects the
intracellular sorting of axotrophin (Flach et al., 2014).

Ubiquitylation is a reversible process with specific
deubiquitinases (DUBs), catalyzing the cleavage of the isopeptide

bond. So far, only Otub1, a cysteine protease deubiquitinating
enzyme, has been reported to deubiquitinate endogenous tau
in mouse brains and prevent tau degradation by removing
K48 polyubiquitin chains (Wang et al., 2017). Using primary
neurons derived from a tau transgenic mice model, it was
shown that Otub1 expression leads to increased total tau levels
confirming the role of Otub1 as a tau deubiquitinating enzyme
and suggesting that impairment of Otub1 expression could result
in impaired tau clearance (Wang et al., 2017). Furthermore,
Otub1 was shown to contribute directly to tau pathology,
since Otub1 expression in primary neurons leads to enhanced
tau aggregation and increased levels of oligomeric tau forms
(Wang et al., 2017), which might be important given that tau
oligomers have emerged as the pathogenic species in tauopathies
(Lasagna-Reeves et al., 2010).

Putative Ubiquitylated Sites on Tau
Mass spectrometric analysis of soluble PHF-tau immunopurified
from AD brains revealed three putative ubiquitylated lysine
residues: K254 and K353 located in the R1 and R4 repeat
sequences, respectively, and K311 found in the flanking region
between the R2 and R3 repeat sequences (Figure 3C; Cripps
et al., 2006). K290, another lysine residue located within the
MBD, was detected to be ubiquitylated in a mouse model of AD
(Morris et al., 2015). Endogenous murine tau is ubiquitylated
at 15 possible lysine residues, which are distributed mostly
throughout the MBD region, except for K44 that is found
in the N-terminal region (Morris et al., 2015); some of these
residues are subject to methylation as well. For example, K254
from PHF-tau isolated from late-stage AD regions is either
ubiquitylated or methylated, with the latter strongly dominating
(Thomas et al., 2012). Moreover, to date all of the lysine
residues discovered to be possibly ubiquitylated are sites that
could be acetylated as well. These discoveries suggest that
some modifications occur at the expense of others indicating
even more strongly the importance to clarify the site-specific
biochemical cross talk between competing post-translational
modifications. Furthermore, mass spectrometric data identified
three types of polyubiquitin linkage through which PHF-tau is
modified, K6, K11 and, predominantly, K48 linkages (Cripps
et al., 2006), whereas soluble tau can also be ubiquitylated via
K63 polyubiquitin conjugation (Petrucelli et al., 2004). Notably,
coexpression of K63 ubiquitin with a disease-associated tau
mutant in SH-SY5Y neuroblastoma cells enhanced the formation
of ubiquitin-enriched tau-positive inclusions (Tan et al., 2008).

The Effect of Ubiquitylation on Tau Biology
The studies concerning the role of tau ubiquitylation in its
degradation are rather controversial. Tau can be proteolytically
processed by the proteasome through an ubiquitin-dependent
process, but, since tau is a natively unfolded protein, it was shown
that normal tau degradation might not require its preceding
ubiquitylation at all (David et al., 2002; Petrucelli et al., 2004;
Grune et al., 2010). At the same time, the contribution of tau
ubiquitylation in tau pathology has not been completely clarified.
Ubiquitin was identified as a protein component of PHFs, NFTs
and neurites associated with senile plaques in the brains of
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patients with AD (Mori et al., 1987; Perry et al., 1987), which
appeared to includemore ubiquitin compared to normal controls
(Riederer et al., 2009). However, given that pre-tangles were
not immunostained by an anti-ubiquitin antibody, this suggests
that ubiquitin might be linked to fibrillary inclusions only
after their formation (Bancher et al., 1991; Garcia-Sierra et al.,
2012). Similarly, the ends of neuropil threads, which represent
newly formed regions, are characterized by the absence of anti-
ubiquitin immunostaining (Iwatsubo et al., 1992). Moreover,
abnormal hyperphosphorylation and N-terminal cleavage of
tau was shown to precede both the formation as well as the
ubiquitylation of tau neurofibrillary inclusions in AD brains
(Bancher et al., 1991; Morishima-Kawashima et al., 1993). In
contrast, it was reported that both monoubiquitylation and
polyubiquitylation contribute to the formation of insoluble
protein inclusions present in neurodegenerative diseases (Dickey
et al., 2006; Tan et al., 2008) and, as mentioned above, increased
aggregation of tau was detected in a cell culture overexpressing
CHIP (Petrucelli et al., 2004) implying that ubiquitylation
enhances the formation of these aggregates.

Since tau was identified as the ubiquitin-targeted protein
in PHFs (Morishima-Kawashima et al., 1993), this has raised
questions about the insufficient clearance of pathological
fibrillary inclusions of tau. Apart from inaccessibility of the
ubiquitylated tau aggregates by the cellular quality control
system, the inhibitory binding of PHF-tau to proteasomes is
responsible for the proteasomal impairment observed in AD
brains (Keck et al., 2003). Additionally, most ubiquitin found
in PHFs from AD brains occurs as a monoubiquitylated form,
whereas only a small proportion of ubiquitin forms polyubiquitin
chains (Morishima-Kawashima et al., 1993), making it difficult
to induce UPS-mediated proteolysis of tau aggregates. Another
aspect demanding further investigation is the role of the
autophagic pathway in removing insoluble tau structures since
truncated tau present in AD brains is reported to be preferentially
cleared by the autophagic pathway (Rissman et al., 2004; Dolan
and Johnson, 2010).

Since impaired tau clearance is widely considered to be
a critical factor causing tau accumulation in neurons, many
therapeutic approaches targeting tau pathology aim to promote
either ubiquitylation or degradation of tau protein. Long-
term administration of lithium to murine models of AD-like
tauopathies reduces tau lesions primarily by enhancing their
ubiquitylation (Nakashima et al., 2005), whereas synthesis of
molecules that bring tau and E3 ubiquitin ligases together
aims to enhance tau polyubiquitylation and degradation
(Chu et al., 2016). Lastly, specific RNA aptamers of USP14,
a proteasome-associated deubiquitylating enzyme, inhibited
the deubiquitylating activity of this enzyme facilitating the
proteasomal degradation of tau in vitro (Lee et al., 2015).

TAU SUMOYLATION

SUMOylation is another modification in which a small protein
is post-translationally attached to the target protein. An
ubiquitin-like protein, the small ubiquitin-likemodifier (SUMO),

is transferred enzymatically to the terminal amino group of lysine
side chains of the target protein forming an isopeptide bond in
a way similar to ubiquitylation (Figure 2D). Three main SUMO
isoforms are expressed in cells, SUMO1, SUMO2, and SUMO3, of
which SUMO2 and SUMO3 are more similar to each other than
to SUMO1 (Sarge and Park-Sarge, 2009).

Analysis of immunoreactive tau species derived fromHEK293
cells expressing tau and different His-tagged SUMO isoforms
showed that tau is preferentially monoSUMOylated by SUMO1
and, to a lesser extent, by SUMO2 and SUMO3 (Dorval and
Fraser, 2006). Like ubiquitin, SUMO is conjugated by an ATP-
dependent enzymatic cascade involving an E1 activating enzyme,
an E2 SUMO-conjugating enzyme and an E3-type SUMO ligase.
The AOS1-UBA2 complex acts as an E1 activating enzyme, whilst
Ubch9 has E2 SUMO-conjugating activity (Desterro et al., 1997;
Gong et al., 1999), although there is as yet no direct evidence that
they are responsible for tau SUMOylation. Like ubiquitylation,
SUMOylation is a reversible process, since specific proteases,
called SENPs, can rapidly remove SUMO from their substrates.
Although the SENP3 protease was reported to be downregulated
in AD tissues (Weeraratna et al., 2007), as with SUMOylation
enzymes, no particular proteases have been identified specifically
to deSUMOylate tau.

Lysine residues that are targeted for SUMOylation are part
of the consensus motif 9KX(E/D), where 9 and X represent a
hydrophobic residue and any amino acid, respectively, (Dorval
and Fraser, 2006). Tau contains two such motifs, VK340SE and
AK385TD, however, the examination of SUMOylation at these
lysine sites by generating the tau mutants K340R and K385R
showed that only K340R displays altered SUMOylation levels
indicating that K340, located within the MBD, is the major
SUMOylation site on tau (Figure 3D; Dorval and Fraser, 2006).
Another study that also used the K340R mutation showed that
the effect of tau SUMOylation on HEK293 cells co-transfected
with SUMO1 and tau K340R is eliminated, confirming that
K340 is indeed a putative SUMOylation site (Luo H. B.
et al., 2014). Between valine and alanine, valine displays higher
hydrophobicity, potentially explaining why the motif VK340SE
might form a more appropriate environment than AK385TD for
facilitating the SUMOylation of the included lysine residue.

Tau is available for SUMOylation only after its release
from microtubules (Dorval and Fraser, 2006) suggesting that
SUMOylation is a post-translational modification that does not
target the endogenous tau pool but, consequently, is likely
to be involved exclusively in tau pathogenic processes. This
agrees with evidence showing that tau hyperphosphorylation,
which is the main trigger of tau unbinding from microtubules,
facilitates SUMOylation by SUMO1 in HEK293 cells (Luo
H. B. et al., 2014). Although hyperphosphorylation possibly
precedes SUMOylation, there is increased evidence that tau
SUMOylation reciprocally enhances tau hyperphosphorylation
at several AD-related sites, such as T231 and S262 (Luo H. B.
et al., 2014). SUMOylation also modulates tau ubiquitylation;
SUMOylation of hyperphosphorylated tau at K340 inhibits
its ubiquitylation and the subsequent proteasome-dependent
degradation (Luo H. B. et al., 2014). In contrast, inhibition of the
proteasome pathway stimulates tau ubiquitylation, whereas tau
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SUMOylation is eliminated (Dorval and Fraser, 2006). Possible
reasons explaining why tau SUMOylation affects ubiquitylation
and vice versa is that conjugation of a polypeptide group
may inhibit the attachment of another large molecule to the
neighboring lysine residues by steric factors or that these two
tau modifications compete for the same lysine residues on tau,
even though the only putative SUMOylated site, K340, was not
identified to be ubiquitylated. SUMOylation could be a factor
contributing to the impaired clearance of tau under pathological
conditions by upregulating the pool of pathogenic tau in the
cytosol and enhancing tau aggregation due to the decreased
solubility of SUMOylated tau (Luo H. B. et al., 2014).

Immunohistochemical analysis of brains fromAPP transgenic
mice, a model of AD, revealed that SUMO1 co-localizes with
hyperphosphorylated tau in neurites associated with amyloid
plaques suggesting that tau SUMOylation is a downstream
effect mediated by pathological Aβ amyloid plaques (Takahashi
et al., 2008). In agreement with this observation, rat primary
hippocampal neurons displayed increasing levels of tau
SUMOylation when treated with increasing concentrations of
Aβ peptides (Luo H. B. et al., 2014). In the Tg2576 murine model
of AD, SUMO1 protein conjugation was elevated both in the
cortex and hippocampus (Nistico et al., 2014). Conversely, NFTs
found in the brains of AD patients and hyperphosphorylated
tau inclusions from mutant tau transgenic mouse brains
were both negative for SUMO1 immunoreactivity (Takahashi
et al., 2008). In progressive supranuclear palsy brain tissues,
SUMO1 colocalizes within perinuclear tau-positive inclusions
in oligodendrocytes and labels lysosomes in oligodendrocytes
containing tau inclusions, in contrast to those where tau
aggregates are absent (Wong et al., 2013). This finding indicates
that SUMOylation might be involved in the autophagy-lysosome
pathway in tauopathies, but this remains to be elucidated. What
is more, increased SUMO1 levels were determined by ELISA in
blood plasma derived from both dementia and mild cognitive
impairment patients compared to healthy samples suggesting
that SUMO1 could serve as an AD biomarker (Cho et al., 2015).
Recently, a SUMO1 transgenic mouse model with SUMO1
overexpression in neurons was generated, in which increased
levels of SUMO1 eliminated basal synaptic transmission,
impaired presynaptic function and reduced spine density, which
resulted in learning and memory deficits (Matsuzaki et al., 2015).
Since tau is an important SUMO1 target in the cytoplasm and
dendritic spines it would be intriguing if hyper-SUMOylation of
tau underpinned these deficits, although there are clearly other
molecular targets that require follow up.

TAU GLYCATION

Glycation (or non-enzymatic glycosylation) defines the non-
specific reaction in which reducing sugars, especially glucose,
are non-enzymatically linked to proteins by condensation of a
sugar aldehyde or ketone group with terminal amino groups of
lysine side chains (Figure 2E). As a result, glycation depends
on both the availability of free lysine amino groups along the
polypeptide chain and the concentration of sugar. The glycation

products are subject to further changes that lead to the formation
of the advanced glycation end products (AGEs) by developing
irreversible cross-links with other proteins over a long period
of time (Eble et al., 1983). Although, the formation of AGEs
does not involve enzymes, there are several enzyme systems that
antagonize AGEs production, like the NADPH-dependent aldose
reductase and the aldehyde dehydrogenase (Li J. et al., 2012).

Non enzymatic glycation is one of the modifications detected
in PHF-tau purified from human AD brains in vivo, but not
in soluble tau (Figure 3E; Ledesma et al., 1994). It occurs
preferentially at the MBD of PHF-tau (Ledesma and Avila,
1995); lysines present at the R3 repeat were initially identified
to be glycated in vitro (Ledesma et al., 1994), but later studies
confirmed immunologically that glycation takes place in vivo
within the MBD (Ledesma and Avila, 1995). 13 lysine residues,
located throughout the polypeptide chain, were also identified as
being glycated in vitro (Nacharaju et al., 1997); although most
of these sites were detected in both 3R and 4R isoforms, K280
and K281 are absent in the case of 3R tau and this difference
seems enough to cause slower glycation of 3R compared to
4R isoforms (Nacharaju et al., 1997; Liu et al., 2016). Recently,
mass spectrometry analysis revealed 19 novel sites of glycation
occurring on recombinant full length tau (Liu et al., 2016).

Since tau has been shown to be glycated within the

MBD and glycated tau appears to have reduced affinity for
microtubules in vitro, it has been suggested that glycation
blocks tau-microtubule interactions, thereby assisting tau
hyperphosphorylation (Ledesma et al., 1994). The region of
tau containing the MBD was shown to participate in its self-

association (Ledesma and Avila, 1995), implying that glycation
indirectly facilitates the aggregation of tau or stabilizes the
aggregated tau species. On the other hand, since glycated PHF-
tau has higher tendency for aggregation compared to non-
glycated soluble tau, it is likely that glycation stimulates the

aggregation of PHFs into more complex structures and stabilizes
the assembled formations (Ledesma et al., 1994, 1996; Ko et al.,
1999). This suggestion is supported by the observed crosslinking
between AGE-modified proteins, which represents an additional
factor contributing to the insolubility and resistance against
proteolytic degradation that are characteristic of tau aggregates.
However, tau glycation enhances, but is not able to trigger,
aggregation in vitro (Necula and Kuret, 2004). In addition,
glycation has different impacts on aggregation propensity
depending on the tau isoform that is modified, with the full length
tau isoform displaying more extensive aggregation when glycated
(Liu et al., 2016).

By immunoelectron microscopy, AGEs were found to
colocalize with PHF-tau in NFTs of sporadic AD (Yan et al.,
1994). Intracellular AGE-positive deposits were found to
correlate positively both with age in normal and AD cases
and with the stage of the disease in AD patients (Luth et al.,
2005). AGEs may be involved in several processes underlying
tau pathogenesis; neurons carrying AGE-positive NFTs also bear
intracellular reactive oxygen intermediates (Yan et al., 1994).
Moreover, it has been found that the introduction of glycated
recombinant tau into neuroblastoma cells is able to generate
oxygen free radicals causing neuronal dysfunction by inducing
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oxidative stress (Yan et al., 1994). Further studies demonstrated
that AGEs may be involved in the tau-associated pathogenesis
of AD via reactive oxygen intermediates by activating NF-kB-
induced transcription, which leads to increased expression of the
cytokine IL-6, and by enhancing the synthesis of the amyloid
precursor protein, which, as a consequence, promotes the release
of the Aβ peptides under stress conditions (Yan et al., 1995). By
using reactive carbonyl compounds, which are elevated under
conditions of oxidative stress, enhanced formation of AGE-
modified tau tangles was observed in vivo (Kuhla et al., 2007).
AGEs can also cause cellular toxicity through their receptor
(RAGE). In a mouse model of AD, tau is colocalized with RAGE
in the hippocampus and cortex (Choi et al., 2014) and RAGE has
been associated with AGE-induced tau hyperphosphorylation as
well as synapse dysfunction and spatial memory impairment in
rats (Li X. H. et al., 2012). Lastly, apart from AD, tau-positive
inclusions were also AGE-positive in the case of Pick’s disease as
well as in other neurodegenerative diseases (Sasaki et al., 1998).

CONCLUSION

Lysine residues of tau are common targets for different post-
translational modifications including acetylation, methylation,
ubiquitylation, SUMOylation, and glycation. As a result, it is
likely that modification of a target lysine blocks or controls
other possiblemodifications occurring at the same site. Although,
the identification of possible sites found to be modified is
unlikely yet to be complete, the overlap between each type
of post-translational modification in terms of all lysine sites
that have been discovered so far is obvious, implying that
certain lysine modifications compete for the same site on

tau. At the same time, the high content of lysine residues in
tau provides sufficient targets to be modified emphasizing the
importance of lysine post-translational modification in normal
tau biology as well as the mechanisms of misfolding and
cellular toxicity elicited by it pathogenic isoform(s). Significantly,
the sites modified in vitro might differ from those identified
in in vivo systems, whereas the species, neuronal subtype
and pathological state could promote different site-specific
modifications as well as certain combinations of modified lysine
sites. Therefore, methodical mapping of the lysine residues that
can be modified both on endogenous and abnormal tau under
different pathological conditions is crucial. The impact of each
type of post-translational modification on normal tau or related
to pathological states of tau is likely to be site-dependent and
the potential for cross-talk of these modifications is high—this
fact guides the direction for future scientific research in order
to unravel fully the biochemical mechanisms underpinning tau
biology.
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Appendix III: Determining the suitable boiling 

time for Western blot analysis of tau protein 
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Supplementary figure 2 The sarkosyl-soluble fraction that derived from an 87V-VM 

mouse brain was boiled for different times before running on a gel. Western blot analysis 

incubating with the primary antibody Tau46 showed that the boiling time does not affect 

the migration of tau isoforms on the gel and, in addition, the most suitable boiling 

duration for western blot is 10 min. 
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Appendix IV: Proteomic analysis of tau 

samples 
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Supplementary table 1 List of proteins detected by MS in the sample of normal soluble tau 

(in-solution preparation). 

UniProtKB entry Protein full name 
Molecular mass 

(Da) 

E9Q4K7 Kinesin-like protein 204,575 

Q5NCI0 Up-regulator of cell proliferation 104,683 

Q8C0C0 Zinc fingers and homeoboxes protein 2 92,259 

O70494 Transcription factor Sp3 82,362 

A0A0A0MQC7 Microtubule-associated protein 76,259 

O88935 Synapsin-1 74,097 

P07724 Serum albumin 68,693 

Q0VGU4 MCG18019 68,232 

A2AVX1 Breast carcinoma-amplified sequence 1 homolog 61,162 

Q3TEA8 Heterochromatin protein 1-binding protein 3 60,867 

Q8VC30 
Bifunctional ATP-dependent dihydroxyacetone 

kinase/FAD-AMP lyase (cyclizing) 
59,691 

Q9Z2D6 Methyl-CpG-binding protein 2 52,307 

P0C7L0 WAS/WASL-interacting protein family member 3 49,453 

A0A0A0MQA3 Alpha-1-antitrypsin 1-1 48,796 

Q00897 Alpha-1-antitrypsin 1-4 45,998 

Q9CY58 
Plasminogen activator inhibitor 1 RNA-binding 

protein 
44,714 

Q60980 Krueppel-like factor 3 38,561 

A2BI12 PC4 and SFRS1-interacting protein 36,968 

P47911 60S ribosomal protein L6 33,510 

D3YXH0 Immunoglobulin superfamily member 5 32,628 

Q792Y8 MCG15081 26,119 

A0A087WNP6 Protein CDV3 24,196 

P06837 Neuromodulin 23,632 

Q7TQD2 Tubulin polymerization-promoting protein 23,575 

Q9DD18 D-tyrosyl-tRNA(Tyr) deacylase 1 23,384 

F6RT34 Myelin basic protein (Fragment) 23,197 

Q9DCT8 
Cysteine-rich protein 2 OS=Mus musculus GN=Crip2 

PE=1 SV=1 
22,727 

P43276 Histone H1.5 22,576 

P43277 Histone H1.3 22,100 

Q91XV3 Brain acid soluble protein 1 22,087 

D3Z7Q5 Programmed cell death protein 5 21,985 

P43274 Histone H1.4 21,977 

Q60829 Protein phosphatase 1 regulatory subunit 1B 21,781 

O09114 Prostaglandin-H2 D-isomerase 21,066 

A2A6Q8 Myosin light chain 4 (Fragment) 21,045 

P10922 Histone H1.0 20,861 

P55821 Stathmin-2 20,828 
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Q60648 Ganglioside GM2 activator 20,824 

Q3UHX2 28 kDa heat- and acid-stable phosphoprotein 20,605 

B1AZQ0 Proenkephalin-A (Fragment) 20,132 

O54693-4 Isoform TAB of Ectodysplasin-A 19,297 

Q9CRB6 
Tubulin polymerization-promoting protein family 

member 3 
18,965 

E0CX65 
Tyrosine-protein phosphatase non-receptor type 

substrate 1 
18,890 

B1AXW5 Peroxiredoxin-1 (Fragment) 18,870 

P63089 Pleiotrophin 18,869 

Q9ERT9 Protein phosphatase 1 regulatory subunit 1A 18,718 

A2AP78 High mobility group protein B3 (Fragment) 18,311 

P62983 Ubiquitin-40S ribosomal protein S27a 17,951 

Q8BP67 60S ribosomal protein L24 17,779 

P62751 60S ribosomal protein L23a 17,695 

D3Z1N9 MCG9889 17,587 

F6ZIA4 Myelin basic protein (Fragment) 17,109 

F6RWW8 Myelin basic protein (Fragment) 16,479 

D5MCW4 Protein CutA 16,453 

P97825 Hematological and neurological expressed 1 protein 16,081 

D3Z4A4 Peroxiredoxin-2 (Fragment) 15,977 

P08228 Superoxide dismutase [Cu-Zn] 15,943 

P02089 Hemoglobin subunit beta-2 15,878 

P02088 Hemoglobin subunit beta-1 15,840 

P62267 40S ribosomal protein S23 15,808 

P84086 Complexin-2 15,394 

P63040 Complexin-1 15,122 

Q91VB8 Alpha globin 1 15,112 

D3YUT3 40S ribosomal protein S19 (Fragment) 14,896 

P11404 Fatty acid-binding protein, heart 14,819 

O55042 Alpha-synuclein 14,485 

Q642K5 40S ribosomal protein S30 14,416 

P52760 Ribonuclease UK114 14,255 

Q6GSS7 Histone H2A type 2-A 14,095 

Q91ZZ3 Beta-synuclein 14,052 

Q6ZWY9 Histone H2B type 1-C/E/G 13,906 

P62852 40S ribosomal protein S25 13,742 

Q9D1R9 60S ribosomal protein L34 13,293 

P62889 60S ribosomal protein L30 12,784 

Q9Z1P6 
NADH dehydrogenase [ubiquinone] 1 alpha 

subcomplex subunit 7 
12,576 

P83882 60S ribosomal protein L36a 12,441 

D3YWA4 PEST proteolytic signal-containing nuclear protein 12,097 
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Q9QUH0 Glutaredoxin-1 11,871 

D3Z1Z8 Stathmin (Fragment) 11,729 

Q9D0J8 Parathymosin 11,430 

G3UW55 MCG14937 11,426 

Q9CQX8 28S ribosomal protein S36, mitochondrial 11,101 

B1ARW4 
NADH dehydrogenase [ubiquinone] iron-sulfur 

protein 5 (Fragment) 
10,909 

E9QAD6 
ATP synthase-coupling factor 6, mitochondrial 

(Fragment) 
10,473 

P56391 Cytochrome c oxidase subunit 6B1 10,071 

P31786 Acyl-CoA-binding protein 10,000 

D3Z794 Small ubiquitin-related modifier 2 8,111 

P63248 cAMP-dependent protein kinase inhibitor alpha 7,960 

Q6W8Q3 Purkinje cell protein 4-like protein 1 7,502 

P60761 Neurogranin 7,496 

P20065-2 Isoform Short of Thymosin beta-4 5,053 

Q6ZWY8 Thymosin beta-10 5,026 

G3UWG1 MCG115977 - 

 

 

Supplementary table 2 List of proteins detected by MS in the sample of soluble tau extracted 

from 87V-VM brain (in-solution preparation). 

UniProtKB entry Protein full name 
Molecular mass 

(Da) 

Q8K4E0 Alstrom syndrome protein 1 homolog 360,215 

E9PVX6 Protein Mki67 350,864 

Q62261 Spectrin beta chain, non-erythrocytic 1 274,223 

A2A7F4 MCG122876 217,389 

Q5HZJ0 Ribonuclease 3 158,828 

Q8CH77-3 Isoform 3 of Neuron navigator 1 129,744 

O70318 Band 4.1-like protein 2 109,940 

E9PZ43 Microtubule-associated protein 97,796 

Q7TSJ2 Microtubule-associated protein 6 96,450 

B2RPU8 MCG130675 84,267 

P0CG50 Polyubiquitin-C 82,550 

O88935 Synapsin-1 74,097 

P07724 Serum albumin 68,693 

Q0VGU4 MCG18019 68,232 

Q80YN3 Breast carcinoma-amplified sequence 1 homolog 67,378 

Q4W8U9 Scg2 protein 66,366 

O08553 Dihydropyrimidinase-related protein 2 62,278 

Q3TEA8 Heterochromatin protein 1-binding protein 3 60,867 

Q99JF8 PC4 and SFRS1-interacting protein 59,697 
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Q9EQW4 Cytochrome P450, CYP3A 57,617 

Q9Z2D6-2 Isoform B of Methyl-CpG-binding protein 2 53,576 

Q3U422 
NADH dehydrogenase [ubiquinone] flavoprotein 3, 

mitochondrial 
50,499 

P0C7L0 WAS/WASL-interacting protein family member 3 49,453 

Q9JL35 
High mobility group nucleosome-binding domain-

containing protein 5 
45,344 

P10637-2 Isoform Tau-A of Microtubule-associated protein tau 44,893 

P10637-5 Isoform Tau-D of Microtubule-associated protein tau 38,961 

Q6DFY2 Opioid binding protein/cell adhesion molecule-like 37,156 

Q80Y39 Uncharacterized protein C10orf62 homolog 34,025 

D3YXH0 Immunoglobulin superfamily member 5 32,628 

Q8R5L1 
Complement component 1 Q subcomponent-binding 

protein, mitochondrial 
31,025 

P26645 Myristoylated alanine-rich C-kinase substrate 29,661 

Q9CR68 
Cytochrome b-c1 complex subunit Rieske, 

mitochondrial 
29,368 

A0A087WRY3 
Nuclear ubiquitous casein and cyclin-dependent 

kinase substrate 1 
26,184 

P63158 High mobility group protein B1 24,894 

Q4VAA2-2 Isoform 2 of Protein CDV3 24,338 

P06837 Neuromodulin 23,632 

Q7TQD2 Tubulin polymerization-promoting protein 23,575 

Q9D1J3 SAP domain-containing ribonucleoprotein 23,533 

Q9DD18 D-tyrosyl-tRNA(Tyr) deacylase 1 23,384 

Q9DCL8 Protein phosphatase inhibitor 2 23,119 

Q9DCT8 Cysteine-rich protein 2 22,727 

Q8CHP5 Partner of Y14 and mago 22,690 

P43276 Histone H1.5 22,576 

E0CXA0 Hepatoma-derived growth factor (Fragment) 22,115 

P43277 Histone H1.3 22,100 

Q91XV3 Brain acid soluble protein 1 22,087 

Q8CCT4 Transcription elongation factor A protein-like 5 22,038 

P43274 Histone H1.4 21,977 

P43275 Histone H1.1 21,785 

Q60829 Protein phosphatase 1 regulatory subunit 1B 21,781 

P10922 Histone H1.0 20,861 

Q60648 Ganglioside GM2 activator 20,824 

Q3UHX2 28 kDa heat- and acid-stable phosphoprotein 20,605 

Q80ZM5 H1 histone family, member X 20,151 

B1AZQ0 Proenkephalin-A (Fragment) 20,132 

Q9R0P4 Small acidic protein 20,046 

A2AEC2 
Transcription elongation factor A protein-like 3 

(Fragment) 
19,926 



123 

 

Q9CRB6 
Tubulin polymerization-promoting protein family 

member 3 
18,965 

E0CX65 
Tyrosine-protein phosphatase non-receptor type 

substrate 1 
18,890 

B1AXW5 Peroxiredoxin-1 (Fragment) 18,870 

Q64288 Olfactory marker protein 18,867 

Q9ERT9 Protein phosphatase 1 regulatory subunit 1A 18,718 

P04370-5 Isoform 5 of Myelin basic protein 18,488 

P01831 Thy-1 membrane glycoprotein 18,080 

Q8BP67 60S ribosomal protein L24 17,779 

P62751 60S ribosomal protein L23a 17,695 

D3YVR4 LDLR chaperone MESD (Fragment) 17,347 

Q9JMG1 Endothelial differentiation-related factor 1 16,369 

A2AA85 SUZ domain-containing protein 1 (Fragment) 16,277 

P97825 Hematological and neurological expressed 1 protein 16,081 

P08228 Superoxide dismutase [Cu-Zn] 15,943 

P07309 Transthyretin 15,776 

A8DUK4 Beta-globin 15,748 

Q3TM89 PEST proteolytic signal-containing nuclear protein 15,562 

P27661 Histone H2AX 15,143 

P63040 Complexin-1 15,122 

Q91VB8 Alpha globin 1 15,112 

Q9JKC6 Cell cycle exit and neuronal differentiation protein 1 14,987 

D3YUT3 40S ribosomal protein S19 (Fragment) 14,896 

O55042 Alpha-synuclein 14,485 

P11031 
Activated RNA polymerase II transcriptional 

coactivator p15 
14,427 

Q642K5 40S ribosomal protein S30 14,416 

P52760 Ribonuclease UK114 14,255 

P04370-8 Isoform 8 of Myelin basic protein 14,211 

Q91ZZ3 Beta-synuclein 14,052 

Q8R1M2 Histone H2A.J 14,045 

P10854 Histone H2B type 1-M 13,936 

P62852 40S ribosomal protein S25 13,742 

P60840 Alpha-endosulfine 13,335 

Q9Z0F7 Gamma-synuclein 13,160 

P52503 
NADH dehydrogenase [ubiquinone] iron-sulfur 

protein 6, mitochondrial 
13,020 

Q9Z1P6 
NADH dehydrogenase [ubiquinone] 1 alpha 

subcomplex subunit 7 
12,576 

P97450 ATP synthase-coupling factor 6, mitochondrial 12,496 

P56212 cAMP-regulated phosphoprotein 19 12,293 

P26350 Prothymosin alpha 12,254 

P32848 Parvalbumin alpha 11,931 
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Q8BK30 
NADH dehydrogenase [ubiquinone] flavoprotein 3, 

mitochondrial 
11,813 

D3Z1Z8 Stathmin (Fragment) 11,729 

P10639 Thioredoxin 11,675 

P99027 60S acidic ribosomal protein P2 11,651 

P17095 High mobility group protein HMG-I/HMG-Y 11,614 

Q9DAM7 Transmembrane protein 263 11,549 

Q9D0J8 Parathymosin 11,430 

G3UW55 MCG14937 11,426 

Q9CQX8 28S ribosomal protein S36, mitochondrial 11,101 

Q64433 10 kDa heat shock protein, mitochondrial 10,963 

P17095-1 
Isoform HMG-Y of High mobility group protein 

HMG-I/HMG-Y 
10,617 

P56212-2 
Isoform ARPP-16 of cAMP-regulated phosphoprotein 

19 
10,605 

Q91VW3 SH3 domain-binding glutamic acid-rich-like protein 3 10,477 

Q9D0M5 Dynein light chain 2, cytoplasmic 10,350 

P56391 Cytochrome c oxidase subunit 6B1 10,071 

P31786 Acyl-CoA-binding protein 10,000 

Q5XK38 Hmgn2 protein 9,609 

G3UWI9 
SMT3 suppressor of mif two 3 homolog 3 (Yeast), 

isoform CRA_c 
9,373 

H3BLI9 TSC22 domain family protein 1 9,358 

P61961 Ubiquitin-fold modifier 1 9,118 

P29595 NEDD8 8,972 

Q9D115 Zinc finger protein 706 8,498 

Q9JJI8 60S ribosomal protein L38 8,204 

D3Z794 Small ubiquitin-related modifier 2 8,111 

P63248 cAMP-dependent protein kinase inhibitor alpha 7,960 

D6RFU4 Myosin light chain 4 7,957 

Q6W8Q3 Purkinje cell protein 4-like protein 1 7,502 

P60761 Neurogranin 7,496 

O08997 Copper transport protein ATOX1 7,338 

A2AF31 Protein Tmsb15b2 5,247 

P20065-2 Isoform Short of Thymosin beta-4 5,053 

Q6ZWY8 Thymosin beta-10 5,026 

G3UWG1 MCG115977 - 

F7D425 cAMP-regulated phosphoprotein 21 (Fragment) - 
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Supplementary table 3 List of proteins detected by MS in the sample of insoluble aggregated 

tau extracted from 87V-VM brain (in-gel preparation). 

UniProtKB entry Protein full name 
Molecular mass 

(Da) 

A0A0A0MQC7 Microtubule-associated protein 76,259 

Q6P1J1 Crmp1 protein 74,221 

O88935 Synapsin-1 74,097 

P20029 78 kDa glucose-regulated protein 72,422 

P63017 Heat shock cognate 71 kDa protein 70,871 

P07724 Serum albumin 68,693 

P50516 V-type proton ATPase catalytic subunit A 68,326 

P40142 Transketolase 67,63 

O08599 Syntaxin-binding protein 1 67,569 

Q76MZ3 
Serine/threonine-protein phosphatase 2A 65 kDa 

regulatory subunit A alpha isoform 
65,323 

Q64332 Synapsin-2 63,373 

P06745 Glucose-6-phosphate isomerase 62,767 

O08553 Dihydropyrimidinase-related protein 2 62,278 

Q3TT92 Dihydropyrimidinase-related protein 3 61,78 

Q9EQF6 Dihydropyrimidinase-related protein 5 61,516 

P08551 Neurofilament light polypeptide 61,508 

Q9D0F9 Phosphoglucomutase-1 61,418 

P26443 Glutamate dehydrogenase 1, mitochondrial 61,337 

E9Q6Q4 Protein Rap1gds1 60,793 

P28652 
Calcium/calmodulin-dependent protein kinase type 

II subunit beta 
60,461 

P63328 
Serine/threonine-protein phosphatase 2B catalytic 

subunit alpha isoform 
58,644 

G3UYZ1 Immunoglobulin superfamily member 8 58,132 

P52480 Pyruvate kinase PKM 57,845 

P62814 V-type proton ATPase subunit B, brain isoform 56,551 

P56480 ATP synthase subunit beta, mitochondrial 56,300 

P46660 Alpha-internexin 55,383 

F8WIS9 
Calcium/calmodulin-dependent protein kinase type 

II subunit alpha 
55,347 

D3Z6F5 ATP synthase subunit alpha 54,595 

P11798 
Calcium/calmodulin-dependent protein kinase type 

II subunit alpha 
54,115 

H3BL49 T-complex protein 1 subunit theta 53,083 

A0A0A0MQA5 Tubulin alpha-4A chain (Fragment) 52,905 

Q6P1B9 Bin1 protein 52,764 

Q9CZU6 Citrate synthase, mitochondrial 51,737 

A0A0A6YW88 CaM kinase-like vesicle-associated protein 51,675 

O89053 Coronin-1A 50,989 
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E9Q1G8 Septin-7 50,649 

Q61644 
Protein kinase C and casein kinase substrate in 

neurons protein 1 
50,575 

P50396 Rab GDP dissociation inhibitor alpha 50,522 

P62631 Elongation factor 1-alpha 2 50,454 

Q9ERD7 Tubulin beta-3 chain 50,419 

P68369 Tubulin alpha-1A chain 50,136 

P10126 Elongation factor 1-alpha 1 50,114 

Q9CWF2 Tubulin beta-2B chain 49,953 

Q7TMM9 Tubulin beta-2A chain 49,907 

P03995 Glial fibrillary acidic protein 49,900 

P68372 Tubulin beta-4B chain 49,831 

P99024 Tubulin beta-5 chain 49,671 

Q9R1T4 Septin-6 49,62 

Q9D6F9 Tubulin beta-4A chain 49,586 

B2M1R6 Heterogeneous nuclear ribonucleoprotein K 48,562 

P46096 Synaptotagmin-1 47,418 

P17183 Gamma-enolase 47,297 

P17182 Alpha-enolase 47,141 

P16330 2',3'-cyclic-nucleotide 3'-phosphodiesterase 47,123 

H3BKT5 Adenosylhomocysteinase 45,055 

P09411 Phosphoglycerate kinase 1 44,550 

Q04447 Creatine kinase B-type 42,713 

E9Q1F2 Actin, cytoplasmic 1 32,564 

P26645 Myristoylated alanine-rich C-kinase substrate 29,661 

F6WWS1 Synaptopodin-2 (Fragment) 24,470 

P06837 Neuromodulin 23,632 

Q3TUE8 4-aminobutyrate aminotransferase, mitochondrial 22,727 

E9Q3D6 Heat shock protein HSP 90-beta (Fragment) 22,482 

Q91XV3 Brain acid soluble protein 1 22,087 

D3Z2F2 60 kDa heat shock protein, mitochondrial (Fragment) 21,501 

F7ALS6 Aspartate aminotransferase, cytoplasmic (Fragment) 20,378 

A0A0A6YX05 
Sodium/potassium-transporting ATPase subunit 

beta-1 (Fragment) 
15,253 

G3UXT7 RNA-binding protein FUS (Fragment) 14,009 

D3YVN7 Elongation factor Tu - 

 

 

 

 

 

 



127 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix V: Mascot search results for the 

tryptic peptide R.SGYSSPGSPGTPGS.R 



 Mascot Search Results

Peptide View

MS/MS Fragmentation of SGYSSPGSPGTPGSR

Found in P10637-3 in Uniprot_Mouse, Isoform Tau-B of Microtubule-associated protein tau OS=Mus musculus 

GN=Mapt

Match to Query 882: 1392.636694 from(697.325623,2+) intensity(7475.0000) rtinseconds(1118.0) index(373)

Title: Cmpd 8, +MS2(697.3256), 27.8eV, 18.6 min #1090 (id=56294995365073466) (id=56294995365078224)

Local Instrument: ESI-QUAD-TOF

Data file 56294995342141725.mgf

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 200  to  1150  Da       Full range

Label all possible matches    Label matches used for scoring 

Show Y-axis 

Monoisotopic mass of neutral peptide Mr(calc): 1392.6270 

Fixed modifications: Carbamidomethyl (C) (apply to specified residues or termini only) 

Ions Score: 83  Expect: 9.7e-007 

Matches : 17/138 fragment ions using 19 most intense peaks   (help) 

# b b++ b0 b0++ Seq. y y++ y* y*++ y0 y0++ #

1 88.0393 44.5233 70.0287 35.5180 S 15

2 145.0608 73.0340 127.0502 64.0287 G 1306.6022 653.8047 1289.5757 645.2915 1288.5917 644.7995 14

3 308.1241 154.5657 290.1135 145.5604 Y 1249.5808 625.2940 1232.5542 616.7807 1231.5702 616.2887 13

4 395.1561 198.0817 377.1456 189.0764 S 1086.5174 543.7624 1069.4909 535.2491 1068.5069 534.7571 12

5 482.1882 241.5977 464.1776 232.5924 S 999.4854 500.2463 982.4588 491.7331 981.4748 491.2411 11

6 579.2409 290.1241 561.2304 281.1188 P 912.4534 456.7303 895.4268 448.2170 894.4428 447.7250 10

7 636.2624 318.6348 618.2518 309.6295 G 815.4006 408.2039 798.3741 399.6907 797.3900 399.1987 9

8 723.2944 362.1508 705.2838 353.1456 S 758.3791 379.6932 741.3526 371.1799 740.3686 370.6879 8

9 820.3472 410.6772 802.3366 401.6719 P 671.3471 336.1772 654.3206 327.6639 653.3365 327.1719 7

10 877.3686 439.1880 859.3581 430.1827 G 574.2944 287.6508 557.2678 279.1375 556.2838 278.6455 6

11 978.4163 489.7118 960.4058 480.7065 T 517.2729 259.1401 500.2463 250.6268 499.2623 250.1348 5

12 1075.4691 538.2382 1057.4585 529.2329 P 416.2252 208.6162 399.1987 200.1030 398.2146 199.6110 4

13 1132.4905 566.7489 1114.4800 557.7436 G 319.1724 160.0899 302.1459 151.5766 301.1619 151.0846 3

14 1219.5226 610.2649 1201.5120 601.2596 S 262.1510 131.5791 245.1244 123.0659 244.1404 122.5738 2

15 R 175.1190 88.0631 158.0924 79.5498 1

Page 1 of 2Mascot Search Results: Peptide View

25/08/2017http://mvm-ri-d136022/mascot/cgi/peptide_view.pl?file=..%2Fdata%2F20170517%2...



NCBI BLAST search of SGYSSPGSPGTPGSR

(Parameters: blastp, nr protein database, expect=20000, no filter, PAM30)

Other BLAST web gateways

All matches to this query

Score Mr(calc) Delta Sequence

83.3 1392.6270 0.0097 SGYSSPGSPGTPGSR

1.6 1391.6446 0.9921 VEPGLGADNSVVR

0.2 1392.6344 0.0023 VFNDSTNIMHAK

0.0 1392.6221 0.0146 KSVSHNMTAPNK

Mascot: http://www.matrixscience.com/

Page 2 of 2Mascot Search Results: Peptide View

25/08/2017http://mvm-ri-d136022/mascot/cgi/peptide_view.pl?file=..%2Fdata%2F20170517%2...



 Mascot Search Results

Peptide View

MS/MS Fragmentation of SGYSSPGSPGTPGSR

Found in P10637-3 in Uniprot_Mouse, Isoform Tau-B of Microtubule-associated protein tau OS=Mus musculus 

GN=Mapt

Match to Query 935: 1472.605932 from(737.310242,2+) intensity(16205.0000) rtinseconds(1225.8) index(383)

Title: Cmpd 18, +MS2(737.3103), 28.9eV, 20.4 min #1195 (id=56294995365073476) (id=56294995365078234)

Local Instrument: ESI-QUAD-TOF

Data file 56294995342141725.mgf

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 150  to  1200  Da       Full range

Label all possible matches    Label matches used for scoring 

Show Y-axis 

Monoisotopic mass of neutral peptide Mr(calc): 1472.5933 

Fixed modifications: Carbamidomethyl (C) (apply to specified residues or termini only) 

Variable modifications: 

S4     : Phospho (ST), with neutral losses 97.9769(shown in table), 0.0000 

Ions Score: 66  Expect: 3.8e-005 

Matches : 20/200 fragment ions using 30 most intense peaks   (help) 

# b b++ b0 b0++ Seq. y y++ y* y*++ y0 y0++ #

1 88.0393 44.5233 70.0287 35.5180 S 15

2 145.0608 73.0340 127.0502 64.0287 G 1288.5917 644.7995 1271.5651 636.2862 1270.5811 635.7942 14

3 308.1241 154.5657 290.1135 145.5604 Y 1231.5702 616.2887 1214.5436 607.7755 1213.5596 607.2835 13

4 377.1456 189.0764 359.1350 180.0711 S 1068.5069 534.7571 1051.4803 526.2438 1050.4963 525.7518 12

5 464.1776 232.5924 446.1670 223.5871 S 999.4854 500.2463 982.4589 491.7331 981.4748 491.2411 11

6 561.2304 281.1188 543.2198 272.1135 P 912.4534 456.7303 895.4268 448.2170 894.4428 447.7250 10

7 618.2518 309.6295 600.2413 300.6243 G 815.4006 408.2039 798.3741 399.6907 797.3900 399.1987 9

8 705.2838 353.1456 687.2733 344.1403 S 758.3791 379.6932 741.3526 371.1799 740.3686 370.6879 8

9 802.3366 401.6719 784.3260 392.6667 P 671.3471 336.1772 654.3206 327.6639 653.3366 327.1719 7

10 859.3581 430.1827 841.3475 421.1774 G 574.2944 287.6508 557.2678 279.1375 556.2838 278.6455 6

11 960.4058 480.7065 942.3952 471.7012 T 517.2729 259.1401 500.2463 250.6268 499.2623 250.1348 5

12 1057.4585 529.2329 1039.4480 520.2276 P 416.2252 208.6162 399.1987 200.1030 398.2146 199.6110 4

13 1114.4800 557.7436 1096.4694 548.7383 G 319.1724 160.0899 302.1459 151.5766 301.1619 151.0846 3

14 1201.5120 601.2596 1183.5014 592.2544 S 262.1510 131.5791 245.1244 123.0659 244.1404 122.5738 2

15 R 175.1190 88.0631 158.0924 79.5498 1

Page 1 of 2Mascot Search Results: Peptide View

25/08/2017http://mvm-ri-d136022/mascot/cgi/peptide_view.pl?file=..%2Fdata%2F20170517%2...



NCBI BLAST search of SGYSSPGSPGTPGSR

(Parameters: blastp, nr protein database, expect=20000, no filter, PAM30)

Other BLAST web gateways

All matches to this query

Score Mr(calc) Delta Sequence Site Analysis

66.3 1472.5933 0.0126 SGYSSPGSPGTPGSR Phospho S4 59.52%

64.2 1472.5933 0.0126 SGYSSPGSPGTPGSR Phospho S5 36.28%

53.3 1472.5933 0.0126 SGYSSPGSPGTPGSR Phospho S1 2.96%

49.5 1472.5933 0.0126 SGYSSPGSPGTPGSR Phospho S8 1.23%

30.4 1472.5933 0.0126 SGYSSPGSPGTPGSR Phospho T11 0.02%

22.4 1472.5933 0.0126 SGYSSPGSPGTPGSR Phospho S14 0.00%

Mascot: http://www.matrixscience.com/

Page 2 of 2Mascot Search Results: Peptide View

25/08/2017http://mvm-ri-d136022/mascot/cgi/peptide_view.pl?file=..%2Fdata%2F20170517%2...



 Mascot Search Results

Peptide View

MS/MS Fragmentation of SGYSSPGSPGTPGSR

Found in P10637-3 in Uniprot_Mouse, Isoform Tau-B of Microtubule-associated protein tau OS=Mus musculus 

GN=Mapt

Match to Query 933: 1472.605566 from(737.310059,2+) intensity(11251.0000) rtinseconds(1218.8) index(14)

Title: Cmpd 15, +MS2(737.3100), 28.9eV, 20.3 min #1196 (id=56294995365073106) (id=56294995365077865)

Local Instrument: ESI-QUAD-TOF

Data file 56294995342141725.mgf

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 150  to  1200  Da       Full range

Label all possible matches    Label matches used for scoring 

Show Y-axis 

Monoisotopic mass of neutral peptide Mr(calc): 1472.5933 

Fixed modifications: Carbamidomethyl (C) (apply to specified residues or termini only) 

Variable modifications: 

S5     : Phospho (ST), with neutral losses 97.9769(shown in table), 0.0000 

Ions Score: 70  Expect: 1.5e-005 

Matches : 24/202 fragment ions using 39 most intense peaks   (help) 

# b b++ b0 b0++ Seq. y y++ y* y*++ y0 y0++ #

1 88.0393 44.5233 70.0287 35.5180 S 15

2 145.0608 73.0340 127.0502 64.0287 G 1288.5917 644.7995 1271.5651 636.2862 1270.5811 635.7942 14

3 308.1241 154.5657 290.1135 145.5604 Y 1231.5702 616.2887 1214.5436 607.7755 1213.5596 607.2835 13

4 395.1561 198.0817 377.1456 189.0764 S 1068.5069 534.7571 1051.4803 526.2438 1050.4963 525.7518 12

5 464.1776 232.5924 446.1670 223.5871 S 981.4748 491.2411 964.4483 482.7278 963.4643 482.2358 11

6 561.2304 281.1188 543.2198 272.1135 P 912.4534 456.7303 895.4268 448.2170 894.4428 447.7250 10

7 618.2518 309.6295 600.2413 300.6243 G 815.4006 408.2039 798.3741 399.6907 797.3900 399.1987 9

8 705.2838 353.1456 687.2733 344.1403 S 758.3791 379.6932 741.3526 371.1799 740.3686 370.6879 8

9 802.3366 401.6719 784.3260 392.6667 P 671.3471 336.1772 654.3206 327.6639 653.3366 327.1719 7

10 859.3581 430.1827 841.3475 421.1774 G 574.2944 287.6508 557.2678 279.1375 556.2838 278.6455 6

11 960.4058 480.7065 942.3952 471.7012 T 517.2729 259.1401 500.2463 250.6268 499.2623 250.1348 5

12 1057.4585 529.2329 1039.4480 520.2276 P 416.2252 208.6162 399.1987 200.1030 398.2146 199.6110 4

13 1114.4800 557.7436 1096.4694 548.7383 G 319.1724 160.0899 302.1459 151.5766 301.1619 151.0846 3

14 1201.5120 601.2596 1183.5014 592.2544 S 262.1510 131.5791 245.1244 123.0659 244.1404 122.5738 2

15 R 175.1190 88.0631 158.0924 79.5498 1

Page 1 of 2Mascot Search Results: Peptide View

25/08/2017http://mvm-ri-d136022/mascot/cgi/peptide_view.pl?file=..%2Fdata%2F20170517%2...



NCBI BLAST search of SGYSSPGSPGTPGSR

(Parameters: blastp, nr protein database, expect=20000, no filter, PAM30)

Other BLAST web gateways

All matches to this query

Score Mr(calc) Delta Sequence Site Analysis

70.3 1472.5933 0.0123 SGYSSPGSPGTPGSR Phospho S5 68.49%

66.4 1472.5933 0.0123 SGYSSPGSPGTPGSR Phospho S8 27.52%

57.8 1472.5933 0.0123 SGYSSPGSPGTPGSR Phospho S4 3.81%

43.3 1472.5933 0.0123 SGYSSPGSPGTPGSR Phospho S1 0.14%

38.4 1472.5933 0.0123 SGYSSPGSPGTPGSR Phospho T11 0.04%

20.3 1472.5933 0.0123 SGYSSPGSPGTPGSR Phospho S14 0.00%

0.3 1471.5828 1.0228 SSLAGDGTPQSESR

Mascot: http://www.matrixscience.com/

Page 2 of 2Mascot Search Results: Peptide View

25/08/2017http://mvm-ri-d136022/mascot/cgi/peptide_view.pl?file=..%2Fdata%2F20170517%2...



 Mascot Search Results

Peptide View

MS/MS Fragmentation of SGYSSPGSPGTPGSR

Found in P10637-3 in Uniprot_Mouse, Isoform Tau-B of Microtubule-associated protein tau OS=Mus musculus 

GN=Mapt

Match to Query 931: 1472.605444 from(737.309998,2+) intensity(9712.0000) rtinseconds(1219.8) index(380)

Title: Cmpd 15, +MS2(737.3100), 28.9eV, 20.3 min #1189 (id=56294995365073473) (id=56294995365078231)

Local Instrument: ESI-QUAD-TOF

Data file 56294995342141725.mgf

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 200  to  1200  Da       Full range

Label all possible matches    Label matches used for scoring 

Show Y-axis 

Monoisotopic mass of neutral peptide Mr(calc): 1472.5933 

Fixed modifications: Carbamidomethyl (C) (apply to specified residues or termini only) 

Variable modifications: 

S8     : Phospho (ST), with neutral losses 97.9769(shown in table), 0.0000 

Ions Score: 63  Expect: 7.9e-005 

Matches : 20/208 fragment ions using 29 most intense peaks   (help) 

# b b++ b0 b0++ Seq. y y++ y* y*++ y0 y0++ #

1 88.0393 44.5233 70.0287 35.5180 S 15

2 145.0608 73.0340 127.0502 64.0287 G 1288.5917 644.7995 1271.5651 636.2862 1270.5811 635.7942 14

3 308.1241 154.5657 290.1135 145.5604 Y 1231.5702 616.2887 1214.5436 607.7755 1213.5596 607.2835 13

4 395.1561 198.0817 377.1456 189.0764 S 1068.5069 534.7571 1051.4803 526.2438 1050.4963 525.7518 12

5 482.1882 241.5977 464.1776 232.5924 S 981.4748 491.2411 964.4483 482.7278 963.4643 482.2358 11

6 579.2409 290.1241 561.2304 281.1188 P 894.4428 447.7250 877.4163 439.2118 876.4322 438.7198 10

7 636.2624 318.6348 618.2518 309.6295 G 797.3900 399.1987 780.3635 390.6854 779.3795 390.1934 9

8 705.2838 353.1456 687.2733 344.1403 S 740.3686 370.6879 723.3420 362.1747 722.3580 361.6826 8

9 802.3366 401.6719 784.3260 392.6667 P 671.3471 336.1772 654.3206 327.6639 653.3366 327.1719 7

10 859.3581 430.1827 841.3475 421.1774 G 574.2944 287.6508 557.2678 279.1375 556.2838 278.6455 6

11 960.4058 480.7065 942.3952 471.7012 T 517.2729 259.1401 500.2463 250.6268 499.2623 250.1348 5

12 1057.4585 529.2329 1039.4480 520.2276 P 416.2252 208.6162 399.1987 200.1030 398.2146 199.6110 4

13 1114.4800 557.7436 1096.4694 548.7383 G 319.1724 160.0899 302.1459 151.5766 301.1619 151.0846 3

14 1201.5120 601.2596 1183.5014 592.2544 S 262.1510 131.5791 245.1244 123.0659 244.1404 122.5738 2

15 R 175.1190 88.0631 158.0924 79.5498 1

Page 1 of 2Mascot Search Results: Peptide View

25/08/2017http://mvm-ri-d136022/mascot/cgi/peptide_view.pl?file=..%2Fdata%2F20170517%2...



NCBI BLAST search of SGYSSPGSPGTPGSR

(Parameters: blastp, nr protein database, expect=20000, no filter, PAM30)

Other BLAST web gateways

All matches to this query

Score Mr(calc) Delta Sequence Site Analysis

63.2 1472.5933 0.0121 SGYSSPGSPGTPGSR Phospho S8 66.57%

59.3 1472.5933 0.0121 SGYSSPGSPGTPGSR Phospho S5 27.24%

52.5 1472.5933 0.0121 SGYSSPGSPGTPGSR Phospho S4 5.74%

39.7 1472.5933 0.0121 SGYSSPGSPGTPGSR Phospho S1 0.30%

36.0 1472.5933 0.0121 SGYSSPGSPGTPGSR Phospho T11 0.13%

24.8 1472.5933 0.0121 SGYSSPGSPGTPGSR Phospho S14 0.01%

0.0 1471.5828 1.0227 SSLAGDGTPQSESR

Mascot: http://www.matrixscience.com/

Page 2 of 2Mascot Search Results: Peptide View

25/08/2017http://mvm-ri-d136022/mascot/cgi/peptide_view.pl?file=..%2Fdata%2F20170517%2...



 Mascot Search Results

Peptide View

MS/MS Fragmentation of SGYSSPGSPGTPGSR

Found in P10637-3 in Uniprot_Mouse, Isoform Tau-B of Microtubule-associated protein tau OS=Mus musculus 

GN=Mapt

Match to Query 953: 1552.564428 from(777.289490,2+) intensity(2506.0000) rtinseconds(1393.6) index(387)

Title: Cmpd 22, +MS2(777.2895), 39.0eV, 23.2 min #1358 (id=56294995365073480) (id=56294995365078238)

Local Instrument: ESI-QUAD-TOF

Data file 56294995342141725.mgf

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 200  to  1100  Da       Full range

Label all possible matches    Label matches used for scoring 

Show Y-axis 

Monoisotopic mass of neutral peptide Mr(calc): 1552.5596 

Fixed modifications: Carbamidomethyl (C) (apply to specified residues or termini only) 

Variable modifications: 

S4     : Phospho (ST), with neutral losses 97.9769(shown in table), 0.0000 

S8     : Phospho (ST), with neutral losses 97.9769(shown in table), 0.0000 

Ions Score: 39  Expect: 0.011 

Matches : 9/224 fragment ions using 9 most intense peaks   (help) 

# b b++ b0 b0++ Seq. y y++ y* y*++ y0 y0++ #

1 88.0393 44.5233 70.0287 35.5180 S 15

2 145.0608 73.0340 127.0502 64.0287 G 1270.5811 635.7942 1253.5545 627.2809 1252.5705 626.7889 14

3 308.1241 154.5657 290.1135 145.5604 Y 1213.5596 607.2835 1196.5331 598.7702 1195.5491 598.2782 13

4 377.1456 189.0764 359.1350 180.0711 S 1050.4963 525.7518 1033.4697 517.2385 1032.4857 516.7465 12

5 464.1776 232.5924 446.1670 223.5871 S 981.4748 491.2411 964.4483 482.7278 963.4643 482.2358 11

6 561.2304 281.1188 543.2198 272.1135 P 894.4428 447.7250 877.4163 439.2118 876.4322 438.7198 10

7 618.2518 309.6295 600.2413 300.6243 G 797.3900 399.1987 780.3635 390.6854 779.3795 390.1934 9

8 687.2733 344.1403 669.2627 335.1350 S 740.3686 370.6879 723.3420 362.1747 722.3580 361.6826 8

9 784.3260 392.6667 766.3155 383.6614 P 671.3471 336.1772 654.3206 327.6639 653.3365 327.1719 7

10 841.3475 421.1774 823.3369 412.1721 G 574.2944 287.6508 557.2678 279.1375 556.2838 278.6455 6

11 942.3952 471.7012 924.3846 462.6959 T 517.2729 259.1401 500.2463 250.6268 499.2623 250.1348 5

12 1039.4480 520.2276 1021.4374 511.2223 P 416.2252 208.6162 399.1987 200.1030 398.2146 199.6110 4

13 1096.4694 548.7383 1078.4588 539.7331 G 319.1724 160.0899 302.1459 151.5766 301.1619 151.0846 3

14 1183.5014 592.2544 1165.4909 583.2491 S 262.1510 131.5791 245.1244 123.0659 244.1404 122.5738 2

15 R 175.1190 88.0631 158.0924 79.5498 1

Page 1 of 2Mascot Search Results: Peptide View

25/08/2017http://mvm-ri-d136022/mascot/cgi/peptide_view.pl?file=..%2Fdata%2F20170517%2...



NCBI BLAST search of SGYSSPGSPGTPGSR

(Parameters: blastp, nr protein database, expect=20000, no filter, PAM30)

Other BLAST web gateways

All matches to this query

Score Mr(calc) Delta Sequence Site Analysis

39.0 1552.5596 0.0048 SGYSSPGSPGTPGSR Phospho S4, S8 46.78%

36.9 1552.5596 0.0048 SGYSSPGSPGTPGSR Phospho S5, S8 28.91%

34.9 1552.5596 0.0048 SGYSSPGSPGTPGSR Phospho S1, S8 18.28%

25.4 1552.5596 0.0048 SGYSSPGSPGTPGSR Phospho S4, T11 2.06%

24.1 1552.5596 0.0048 SGYSSPGSPGTPGSR Phospho S5, T11 1.53%

18.7 1552.5596 0.0048 SGYSSPGSPGTPGSR Phospho S4, S5 0.44%

17.5 1552.5596 0.0048 SGYSSPGSPGTPGSR Phospho S4, S14 0.34%

16.3 1552.5596 0.0048 SGYSSPGSPGTPGSR Phospho S1, T11 0.25%

16.1 1552.5596 0.0048 SGYSSPGSPGTPGSR Phospho S5, S14 0.24%

16.0 1552.5596 0.0048 SGYSSPGSPGTPGSR Phospho S1, S5 0.23%

Mascot: http://www.matrixscience.com/

Page 2 of 2Mascot Search Results: Peptide View

25/08/2017http://mvm-ri-d136022/mascot/cgi/peptide_view.pl?file=..%2Fdata%2F20170517%2...



 Mascot Search Results

Peptide View

MS/MS Fragmentation of SGYSSPGSPGTPGSR

Found in P10637-3 in Uniprot_Mouse, Isoform Tau-B of Microtubule-associated protein tau OS=Mus musculus 

GN=Mapt

Match to Query 952: 1552.562718 from(777.288635,2+) intensity(3375.0000) rtinseconds(1403.0) index(391)

Title: Cmpd 26, +MS2(777.2887), 39.0eV, 23.4 min #1367 (id=56294995365073484) (id=56294995365078242)

Local Instrument: ESI-QUAD-TOF

Data file 56294995342141725.mgf

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 200  to  1100  Da       Full range

Label all possible matches    Label matches used for scoring 

Show Y-axis 

Monoisotopic mass of neutral peptide Mr(calc): 1552.5596 

Fixed modifications: Carbamidomethyl (C) (apply to specified residues or termini only) 

Variable modifications: 

S5     : Phospho (ST), with neutral losses 97.9769(shown in table), 0.0000 

S8     : Phospho (ST), with neutral losses 97.9769(shown in table), 0.0000 

Ions Score: 46  Expect: 0.0022 

Matches : 13/220 fragment ions using 18 most intense peaks   (help) 

# b b++ b0 b0++ Seq. y y++ y* y*++ y0 y0++ #

1 88.0393 44.5233 70.0287 35.5180 S 15

2 145.0608 73.0340 127.0502 64.0287 G 1270.5811 635.7942 1253.5545 627.2809 1252.5705 626.7889 14

3 308.1241 154.5657 290.1135 145.5604 Y 1213.5596 607.2835 1196.5331 598.7702 1195.5491 598.2782 13

4 395.1561 198.0817 377.1456 189.0764 S 1050.4963 525.7518 1033.4697 517.2385 1032.4857 516.7465 12

5 464.1776 232.5924 446.1670 223.5871 S 963.4643 482.2358 946.4377 473.7225 945.4537 473.2305 11

6 561.2304 281.1188 543.2198 272.1135 P 894.4428 447.7250 877.4163 439.2118 876.4322 438.7198 10

7 618.2518 309.6295 600.2413 300.6243 G 797.3900 399.1987 780.3635 390.6854 779.3795 390.1934 9

8 687.2733 344.1403 669.2627 335.1350 S 740.3686 370.6879 723.3420 362.1747 722.3580 361.6826 8

9 784.3260 392.6667 766.3155 383.6614 P 671.3471 336.1772 654.3206 327.6639 653.3365 327.1719 7

10 841.3475 421.1774 823.3369 412.1721 G 574.2944 287.6508 557.2678 279.1375 556.2838 278.6455 6

11 942.3952 471.7012 924.3846 462.6959 T 517.2729 259.1401 500.2463 250.6268 499.2623 250.1348 5

12 1039.4480 520.2276 1021.4374 511.2223 P 416.2252 208.6162 399.1987 200.1030 398.2146 199.6110 4

13 1096.4694 548.7383 1078.4588 539.7331 G 319.1724 160.0899 302.1459 151.5766 301.1619 151.0846 3

14 1183.5014 592.2544 1165.4909 583.2491 S 262.1510 131.5791 245.1244 123.0659 244.1404 122.5738 2

15 R 175.1190 88.0631 158.0924 79.5498 1
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NCBI BLAST search of SGYSSPGSPGTPGSR

(Parameters: blastp, nr protein database, expect=20000, no filter, PAM30)

Other BLAST web gateways

All matches to this query

Score Mr(calc) Delta Sequence Site Analysis

45.6 1552.5596 0.0031 SGYSSPGSPGTPGSR Phospho S5, S8 54.29%

43.0 1552.5596 0.0031 SGYSSPGSPGTPGSR Phospho S4, S8 29.50%

40.3 1552.5596 0.0031 SGYSSPGSPGTPGSR Phospho S1, S8 15.91%

16.6 1552.5596 0.0031 SGYSSPGSPGTPGSR Phospho S4, S5 0.07%

15.9 1552.5596 0.0031 SGYSSPGSPGTPGSR Phospho S5, T11 0.06%

14.3 1552.5596 0.0031 SGYSSPGSPGTPGSR Phospho S1, S5 0.04%

14.3 1552.5596 0.0031 SGYSSPGSPGTPGSR Phospho S1, S4 0.04%

13.7 1552.5596 0.0031 SGYSSPGSPGTPGSR Phospho S4, T11 0.04%

10.6 1552.5596 0.0031 SGYSSPGSPGTPGSR Phospho S1, T11 0.02%

7.2 1552.5596 0.0031 SGYSSPGSPGTPGSR Phospho S5, S14 0.01%

Mascot: http://www.matrixscience.com/
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