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Abstract 
 
Cell patterning platforms support diverse research goals including tissue engineering, 

the study of cell physiology, and the development of biosensors. Patterning and 

interfacing with neurons is a particular challenge, being approached via various 

bioengineering approaches. Such constructs, when optimised, can inform our 

understanding of neuronal computation and learning, and ultimately aid the 

development of intelligent neuroprostheses. A fundamental pre-requisite is the ability 

to dictate the spatial organization and topography of patterned neuronal cells. This 

thesis details efforts to pattern neurons using photolithographically defined arrays of 

the polymer parylene-C, printed upon oxidised silicon wafers. 

Initial work focused on exploring the parylene-C:SiO2 construct as a wide-ranging 

cell-patterning platform, assessing cell adhesion from both substrate- and cell-centric 

perspectives. Next, the LUHMES (Lund Human Mesencephalic) cell line was used 

to explore the potential for construction of interrogatable, topographically-defined 

neuronal networks. In isolation, LUHMES neurons failed to pattern and did not show 

any morphological signs of cellular differentiation. However, in the context of a 

cellular template (the HEK 293 cell line which was found to pattern reliably), 

LUHMES were able to adhere secondarily on-chip. This co-culture environment 

promoted morphological differentiation of neurons. As such, HEK 293 cells fulfilled 

a role analogous to glia, dictating neuronal cell adhesion and generating an 

environment conducive to neuronal survival. 

Neurites extended between islands of adherent cell somata. The geometry and 

configuration of parylene-C influenced the organisation of neurites. With appropriate 

designs, orthogonal neuronal networks could be created. The dominant guidance cue 

for neurite growth direction appears to be a diffusible chemotactic agent. HEK 293 

cells were later replaced with slower growing human glioma-derived precursors, 

extracted during tumour debulking surgery. These primary cells patterned accurately 

on parylene-C and provided a similarly effective, and longer lasting, scaffold for 

neuronal adhesion. 
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Chapter 1 Introduction 
1.1 Motivations for cell patterning        
Cell adhesion is a critically important, multifaceted process that informs numerous 

functions necessary for life. Understanding and manipulating the mechanisms that 

dictate cell adhesion and behaviour on synthetic materials is similarly important. Cell 

patterning platforms, informed by (and informing) this understanding, support work 

in diverse research domains. For example, they facilitate the development of micro-

scale biosensors and implantable bioelectronics (1), aid the investigation of 

fundamental aspects of cellular physiology (2), and can be adapted for tissue 

engineering purposes (3). 

Why pattern neurons? 

Interacting with engineered in vitro neuronal networks represents a unique 

opportunity to approach an exciting array of research questions. Engineered networks 

provide a platform to explore theories regarding information processing and 

computation in nervous systems (4), and have translational potential as lab-on-chip 

platforms for drug discovery (5). They are also relevant to neuroprosthetics, which 

are built on a foundation of sympathetic interaction between nervous systems and 

microelectronics (6,7). The fidelity of such interactions is enhanced as in vitro 

neuronal network engineering research progresses. Beyond neuroscience, insights 

derived from engineered neuronal networks serve to inspire novel biomimetic or 

heterotic* computing paradigms (8); potentially informing new computer 

architectures capable, for example, of sidestepping the Von Neumann bottleneck† by 

operating in a neuromorphic, asynchronous, parallel, and fault tolerant mode. 

                                                

* Heterotic computing refers broadly to the concept of hybrid, mixed mode systems deployed for the 
purpose of unconventional computation. 
 
† The von Neumann model describes an architecture for electronic digital computers in which an 
instruction fetch and a data operation cannot occur simultaneously because they share a common data 
communication system (bus). This shared bus between data memory and program memory results in a 
bottleneck which limits data transfer between the CPU and memory. 
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1.2 Cell adhesion 
A balance between specific competitive binding, and non-specific repulsion, governs 

cell adhesion to an adjacent substrate. Specificity of cellular adhesion is controlled 

biologically by expression of cell surface receptors that bind with reciprocal ligands. 

In parallel, certain generic physico-chemical forces also inform and modulate 

adhesion (9).  

1.2.1 Biological factors 
Families of transmembrane cell adhesion molecules (CAMs) govern cell-specific 

mechanisms of adhesion. CAMs typically have three domains: an extracellular 

domain that interacts either with components of the extracellular matrix (ECM) or 

other CAMs, a transmembrane domain, and an intracellular domain that interacts 

with the cell’s own cytoskeleton (see Figure 1-1). 

Integrins, cadherins, selectins and the immunoglobulin superfamily (Ig SF) constitute 

the four primary classes of CAMs (with selectins found only on circulating cells and 

endothelium). CAMs can be modified by endo/exocytosis, by proteolytic 

mechanisms, or by conformational change of an adhesion receptor. Initially, CAMs 

are distributed randomly in the plasma membrane. Upon adhesion, receptor 

segregation results in formation of tight adhesive zones. Adhesion is modulated 

either by mobilizing receptors from cytoplasmic storage compartments or de novo 

formation of new receptors. Membrane receptors or ligands are often hidden within 

the glycocalyx‡ and other membrane-anchored molecules can act either to attract or 

repel a cell from a given substrate. As such, the net effect of the glycocalyx is 

modulated by the presence of giant macromolecules in the ECM (such as fibronectin 

or hyaluronic acid) (10).  

Integrins are the dominant group of transmembrane receptors mediating cell:ECM 

interactions (11,12). Expressed in most cell types, including neurons, they consist of 

non-covalently linked α and β subunits. Twenty-four different αβ heterodimers are 

                                                

‡ Glycocalyx is a term describing all extra-cellular membrane-bound polymeric proteoglycans. 
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possible, each with their own ligand-ECM specificity (13). Integrin-mediated cell 

adhesion involves recognition of, and binding to, adhesive protein ligands in the 

extra-cellular environment. Binding of ligand to integrin results in signal 

transduction cascades causing changes in cell motility, differentiation, gene 

expression, and cell process outgrowth (14,15). Integrin activation may occur 

externally (by changes in integrin-binding monoclonal antibodies or alterations in 

extracellular ion concentrations) or internally by, for example, over-expression of the 

ras-related GTPase R-ras, which has been shown to increase integrin-dependent 

attachment to ECM ligands (16). Other cell surface molecules (e.g. receptor tyrosine 

kinases, G-protein coupled receptors) can also bind to or associate with integrins, 

resulting in activation of intracellular signal transduction cascades (17). 

Ig SF CAMs are evolutionarily ancient and widely expressed proteins that share 

structural features with immunoglobulins, each possessing an Ig domain. IgSF 

members include proteins of the T-cell receptor complex, virus receptors, tumour 

markers, major histocompatibility class I and II molecules, and glycoproteins found 

principally in the nervous system. 

The cadherin superfamily comprises over 100 members sub-grouped into classic 

cadherins, protocadherins, desmosomal cadherins, flamingo/CELSRs (Cadherin EGF 

LAG seven-pass G-type receptors) and FAT. A role for cadherins has been described 

in regulating contacts and signalling between neurons (18). Neuronal cell adhesion 

molecule (NCAM) is a member of the IgSF. The FNIII portion of the NCAM 

extracellular domain has been implicated in neurite outgrowth mechanisms (19). A 

role for Ig SF CAMS during neuronal network development has also been illustrated. 

Specifically, the contactin subgroup is important in the development of cerebellar 

granule cell networks (20). 

  



Patterning neuronal networks on parylene-C:SiO2 

Chapter 1 Introduction  4 

Figure 1-1 Integrin-mediated cell adhesion to the ECM 

 

A transmembrane cell adhesion molecule (CAM, an integrin shown in this example) enables 
cell adhesion via binding to the ECM. Cell adhesion molecules typically consist of three 
domains. The extracellular component interacts either with other CAMs or with proteins in 
the ECM, whilst the intracellular component interacts with the cytoskeleton. Adapted from 
(21). 

 

Extracellular matrix versus synthetic biomaterial  

The ECM is a complex network of secreted proteins organized into a basement 

membrane or interstitial matrix. ECM proteins are multifunctional, providing 

structure and strength to a tissue and also informing cell behaviour via interactions 

with CAMs. Specific adhesion motifs (e.g. Arg-Gly-Asp [RGD]) on ECM molecules 

cooperate synergistically with other amino acid sequences (e.g. the PHSRN motif), 

to maintain effective spatial conformation of ligands and respective integrin 

receptors (22). The interface between a cell and an adjacent biomaterial is similarly 

dynamic and bi-directional. Receptor mediated cell adhesion to a biomaterial is also 
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mediated by CAM interactions (predominantly integrin) with absorbed ECM 

molecules such as vitronectin, collagen, or laminin (23-25). 

1.2.2 Physico-chemical factors 
Cell adhesion is also influenced more generically by surface energy, polarity, and 

‘wettability’. If a material is too hydrophobic, ECM molecules tend to be absorbed in 

a rigid denatured state. This conformation impairs access to specific binding sites 

(e.g. RGD-containing oligopeptides) and thereby impairs cell adhesion. Synthetic 

polymers used in medicine or biotechnologies are usually hydrophobic (with a 

contact angle ≥90°) so as to intentionally impair cellular colonization. A polymer 

surface can be rendered more hydrophilic by physical (e.g. irradiation by ions or 

ultraviolet light) or chemical (e.g. etching by treatment with acid or hydroxide) 

means (9). Such processes tend to increase the presence of oxygen-containing groups 

on the surface, increase surface free energy, and thereby enhance absorption of 

adhesion-mediating proteins. Complimentarily, such treatment can also result in a 

relative attenuation of the binding of characteristically cell repulsive proteins such as 

albumin, which preferentially adhere to less oxygenated and more hydrophobic 

substances (26).  

Surface roughness 

Macro-roughness (features ≥100 µm) can facilitate anchorage of a large implant in 

bone, for example. However, these irregularities are too large to be of consequence 

to an individual cell. Micro-scale roughness (1-100 µm) affects cells variably with no 

consensus as to whether the effects are positive or negative (27). Submicron surface 

roughness (100 nm-1 µm) also exerts variable effects, though positive pro-adhesive 

effects dominate. Nanoscale roughness (<100 nm), however, is considered to have a 

broadly positive effect on cell adhesion, growth, and differentiation; though specific 

findings remain cell and substrate specific (9,28,29). Synthetic materials fabricated 

so as to have nanoscale roughness closely resemble the structural scale and texture of 

the true ECM, mimicking the in vivo environment with its nanocrystals, nanofibers, 

and nano-sized folds of ECM molecules. As a consequence, cell-adhesion mediating 

molecules tend to absorb to these surfaces in a sympathetic geometric orientation, 
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giving cell adhesion receptors good access to binding sites. For example, carbon 

nanotubes (CNTs) are cylindrical carbon allotropes with diameter and length of the 

order of nanometres. CNT-coated surfaces have been shown to be highly 

biocompatible substrates, both in the context of biosensors and as a substrate for 

neuronal growth (30). 

The characteristics of a synthetic substrate influence the formation of cell-to-

substrate adhesion complexes, cell spreading, actin cytoskeleton arrangement, and 

downstream cell differentiation. As such, surfaces can be micro-patterned not only to 

inform cell adhesion, migration, and growth, but also to selectively induce 

differentiation into a given lineage. For example, mesenchymal stem cells (MSCs) 

cultured on different nano-patterned chemically modified gold surfaces can be 

directed towards a specific lineage. MSCs cultured on gold surfaces patterned with 

methyl groups (using dip pen nanolithography) remain undifferentiated, those on 

hydroxyl or carboxyl groups differentiate towards a chondrogenic (cartilaginous) 

phenotype, whilst those on amino groups are directed towards an osteogenic 

phenotype (31).  

Cell behaviour is also impacted by the stiffness of a synthetic surface. Rat vascular 

smooth muscle cells are unable to form adhesion complexes when cultured on 

extremely soft matrices, whilst stiffer matrices promoted cell adhesion and actin 

cytoskeleton formation (32). Extremely soft matrices do not allow the necessary 

balance between cell tractional forces and ECM counter-resistance (33). The stiffness 

of a substrate also affects phenotypic destiny of cells during differentiation. Soft gels 

mimicking the mechanical properties of brain tissue prompted MSCs to differentiate 

towards a neuronal phenotype (suggested by upregulation of neuronal markers nestin 

and β-3 tubulin, and the development of dendritic extensions from cells). On harder 

gels MSCs developed a myogenic phenotype, whilst even stiffer surfaces promoted 

differentiation into an osteogenic cell type (34). This behaviour is likely mediated by 

focal adhesions which transduce the tensile characteristics of the microenvironment 

by influencing actin-myosin contractions. Related, is the finding that nanoscale 
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mechanotransductive stimuli (10-14 nm displacements at a frequency of 10 kHz, 

termed ‘nanokicking’) can be used to induce osteoblastogenesis in MSCs (35). 

1.3 Neurons, networks and nervous systems 
Cell theory dictates that the specialized function of cells and how they interact 

determines the function of a tissue. By consilience, aspects of brain function can be 

inferred by reductionist analysis of its component cellular units.  

“‘You’, your joys and your sorrows, your memories and your 
ambitions, your sense of personal identity and free will, are 
in fact no more than the behaviour of a vast assembly of 
nerve cells and their associated molecules.” 

Francis Crick (36) 

The ‘Neuron Doctrine’ posits the neuron as the key structural, developmental, and 

functionally independent unit of the nervous system, with a phenotype specialized 

for information processing and transfer. Consisting of soma, dendrites, and axon, 

neurons are electrically excitable and maintain ion concentration gradients across 

their membranes using metabolically driven ion pumps. Neurons communicate with 

one another by chemical and electrical signalling at synapses, and in this way form 

interconnected networks. The law of dynamic polarization describes the cell body 

and dendrites as receptor components, whilst the axon functions to communicate the 

cell’s output. These fundamental principles were articulated over a century ago. 

Whilst core aspects of this dogma persist, the modern view of information processing 

in the nervous system involves far more extensive and intricate mechanisms (37).  

1.3.1 Functional components 
Neurons 

Cajal developed the view of neurons as individual, polarized, functional units 

receiving signals via root-like dendrites and delivering outputs via the axon (38). 

Early electrophysiological studies suggested conductance of electrical activity along 

axons in an ‘all or nothing’ manner, with the self-propagating changes in cell 

membrane potential termed action potentials. This finding encouraged the idea that 

neuronal activity itself was similarly binary, with neurons either ‘on’ or ‘off’. It later 
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became apparent that information processing is far more subtle and in fact involves 

graded electrical events (both in terms of amplitude and frequency) and also that 

these electrical responses occur in the context of additional spontaneous background 

activity (39). 

Another layer of complexity comes from a plethora of neuromodulatory substances 

termed neuropeptides. These are capable of external reconfiguration of neuronal 

circuits, enabling different patterns of functional connections (40). Compared with 

the millisecond temporal scale of chemical synapses, neuropeptides remodel and tune 

circuit behaviour over minutes, hours, or even days. In addition, the intricacies of 

nervous system histo-architecture are becoming steadily better appreciated. It is now 

apparent that regions of conserved and consistent anatomical structure exist 

alongside areas determined by activity-related plasticity (41). Furthermore, the roles 

of a diverse mosaic of voltage-gated ion channels (varying by type, density, and 

property) are also being explored. Regulation of such channels (from transcription 

through to post-translational changes) informs how a neuron ultimately responds to 

its various inputs (for examples, see (42,43)). 

Glia 

Glia are non-neuronal cells found in nervous systems that have well described 

neuronal support roles (including structural, maintenance of homeostasis, myelin 

formation, and an immunological function). For some time, they were considered to 

have no place in neurotransmission and information processing. However, it is now 

apparent that some glial cells do modulate neurotransmission. Chemical synapses 

between neurons and oligodendrocyte precursor cells have been demonstrated (44) 

whilst astrocyes also communicate via glial transmitters and gap junctions. This 

represents a parallel and inter-related system of information processing, operating 

alongside and informing neuron-to-neuron interactions.  

Together, these findings illustrate the naivety of the original simple and static models 

of nervous system connectivity. Neuronal properties are hugely variable, extensive, 

and sophisticated. Non-neuronal cells participate actively and cannot be considered 

merely supportive.  
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1.3.2 Information transfer 
The transfer of information from one neuron to another occurs at synapses (45,46). 

The vast majority of synaptic transmission is chemically mediated. Pre-synaptic and 

post-synaptic membranes are separated by a synaptic cleft into which 

neurotransmitter is secreted. Neurotransmitter release (by exocytosis from the pre-

synaptic membrane) is triggered by the arrival of an action potential. Depolarisation 

causes voltage-gated Ca2+ channels to open, consequent influx of Ca2+ ions, fusion of 

neurotransmitter-filled vesicles with the pre-synaptic cell membrane, and release of 

neurotransmitter into the synaptic cleft. Neurotransmitters then bind to specific 

receptors on transmitter-gated ion channels in the post-synaptic membrane. This 

results in a conformational change that opens the ion channel pore. The outcome is 

either a transient excitatory post-synaptic depolarization or inhibitory 

hyperpolarization (depending upon ion channel and neurotransmitter type). Most 

neurons in the CNS receive thousands of synaptic inputs, each activating various 

combinations of transmitter-gated ion channels. The post-synaptic neuron transforms 

these complex chemical and ionic signals into a simple output: the action potential. 

The process of converting many inputs into a single output constitutes a neural 

computation, of which a human brain performs billions per second in parallel. This 

computational process is fundamental to all neural information processing. 

The ‘connectome’ and the ‘synaptome’ are terms relating to different scales of 

connectivity in nervous systems. Beyond the microscopic scale, we remain largely 

ignorant of the highly complex histoarchitecture of neuronal connections in the brain. 

The connectome includes macroscopic (major tracts, visible with human eye) and 

intermediate sized structures (visible with light microscopy). The synaptome refers to 

the smaller ultrastructural level (visible by electron microscopy). Despite extensive 

efforts, we do not currently possess complete connectome data for the nervous 

system of any species, with the exception of the nematode worm C elegans (47).  

Work is underway to catalogue the human connectome with the overarching goal of 

building a realistic statistical model of the human brain (48) 

(www.humanconnectome.org/consortia/). Although tempting to embrace a wiring 
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diagram analogy, this is insufficient. The connectome and synaptome evolve 

dynamically during development, life, ageing, and in response to disease. The 

strength or weight of synaptic connections can be up or down-regulated, new 

synapses can be created and others eliminated, neurite architecture can be modified, 

and even neurons themselves can be created or destroyed. 

The brain as a complex system 

The human brain contains ~86 billion neurons (49) equipped with an average of 

~7000 synapses per neuron (50), collectively performing ~12×1016 calculations or 

computations per second§. This is further complicated by multiple different 

neurotransmitters, the variable influence of glia, and a dynamic ultrastructure 

influenced by network activity. Given such complexity, a reductionist experimental 

approach is attractive (and has proved effective) in identifying most of the 

components and many of the interactions in nervous systems. However, there 

remains a paucity of convincing hypotheses regarding system properties. As the 

connectome and synaptome become better defined, it becomes critical to understand 

how information flows and is represented within neuronal networks, and how 

autonomous neurons operate collectively to generate behaviour.  

1.4 Rationales for engineering neuronal networks 
1.4.1 System level data from a controlled environment 
Complex systems in which many interactions occur rapidly and simultaneously (e.g. 

financial markets, swarms of birds, nervous systems) are hard to explain. Whilst such 

systems can appear overwhelmingly complex from the outside, a few simple rules or 

laws of interaction may actually explain key aspects of their behaviour.  

Considering the complex motions of a flock of birds (or a school of fish), individual 

and collective behaviour can be modelled closely by instigating just three simple 
                                                

§ This approximation is based on assumptions of 86 billion neurons, connected via 7000 
synapses/neuron, firing at an average frequency of 20 Hz, resulting in 1.204 × 1016 firing events per 
second. In fact, synaptic density and neuronal number vary across individuals and by age. Moreover, 
this approximation fails to appreciate other ‘calculations’ attributable to glia:neuron interactions or 
neuropeptides, for example. 
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steering rules in a computer simulation: ‘alignment’, ‘separation’, and ‘cohesion’. 

‘Alignment’ dictates that a bird will turn so that it is moving in the same direction as 

nearby birds. ‘Separation’ means a bird will turn to avoid another bird in close 

proximity. ‘Cohesion’ means a bird will move towards other nearby birds. Using 

these rules, computer simulation can successfully reproduce what is superficially a 

highly complex behaviour (51).  This is an example of emergence, whereby complex 

systems and patterns arise as a result of several relatively simple interactions. 

Extrapolated, biology can be considered an emergent property of the laws of 

chemistry, itself an emergent property of particle physics.  

Determining the equivalent emergent ‘rules of engagement’ for cells of the nervous 

system is fundamental. Ideally this would be achieved by observing all component 

parts in action, whilst simultaneously quantitatively measuring different variables of 

electrical and chemical activity.  However, the anatomically small scale and 

consequent inaccessibility restricts our ability to record and stimulate multiple 

neurons at the ideal spatio-temporal scale. Whilst single cell recordings in vivo have 

enhanced understanding of sensory responses in single neurons, they do not generate 

data regarding broader network activity, nor do they specify the spatial distribution 

and sub-threshold activity at synapses. Newer techniques are improving resolution. 

For example, combining whole cell patch-clamp recordings with two-photon 

microscopy to allow the in vivo measurement of calcium signals from dendritic 

spines of cortical neurons (52). Other techniques utilising optogenetics are also 

beginning to provide better in vivo system-level data (53), but have their own 

specific limitations (being highly invasive and requiring light to penetrate through 

tissues). Traditional dissociation procedures used for in vitro cell or organotypic 

cultures are undermined in this sense by the loss of resolution and connectivity that 

results from their preparation.  

An alternative methodological approach is to study the behaviour of in vitro neuronal 

networks with imposed topographies. To be able to design, engineer and then 

interrogate simplified neuronal networks in this way promises to enhance 

understanding of how individual neurons cooperate as part of larger, more complex, 

networks.  
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Imposing a given topography upon cells requires the use of bio-patterning 

technologies. Collecting cellular activity data requires that the patterning platform be 

compatible with non-invasive recording techniques, such as multi-electrode arrays 

(MEAs). Stimulation and recording from sites within such controlled networks (at 

cellular or subcellular resolution) promises to provide important insights into 

emergent network behaviours. This approach is a core motivation for many 

researchers in the field of neuronal network engineering.  

It is acknowledged that such networks have limitations. Most are two-dimensional 

and do not realistically reproduce several facets of the in vivo nervous system 

environment (e.g. inter-relationship with glia, blood supply dynamics). However, the 

ability to control or rationalise (or even remove) these factors is also the core 

strength; simplifying the system into one from which dynamic activity may be 

recorded and emergent properties extrapolated. 

Reflexes proposed as a key CNS functional unit 

Reflex arcs may underpin phylogenetically early neuronal networks that have since 

evolved to become the more complex nervous systems of higher animals. Even 

Paramecium, an eukaryotic single cell organism with no true nervous system, is 

equipped with an inherent ‘object avoidance’ reflex. The entire organism operates in 

a manner analogous to a single polarizable neuron. Paramecium moves through 

liquid by coordinated motion of cilia on the cell membrane. Ion exchange channels 

maintain a graded electrical potential across the plasma membrane. Mechanical 

stimulation caused by encountering an obstruction results in activation of membrane 

calcium channels (54). As a result, external calcium ions enter, with simultaneous 

efflux of potassium ions. This causes a reversal of cilia beating direction and the 

entire organism is consequently propelled away from the obstruction. This represents 

an elegant, simple, and efficient pro-survival reflex.  

In larger organisms equipped with a nervous system, the reflex arc exists as a basic 

neuronal pathway mediating a useful action reflex (see Figure 1-2). Requiring a 

minimum of just two neurons, the reflex arc can be considered the simplest neuronal 

network.  
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Figure 1-2 The archetypal somatic reflex arc 

 

A reflex arc controls an action reflex. In their simplest form, one sensory and one motor 
neuron combine to mediate a response to an external stimulus. Image reproduced courtesy 
of Wikipedia commons. 

 

Interestingly, primitive human reflexes seen transiently during normal 

neurodevelopment can re-emerge with the onset of neurodegenerative disease. For 

example, the palmar grasp reflex that disappears in children at five or six months can 

re-emerge in Alzheimer's disease and other fronto-temporal dementias (55). 

Similarly, central nervous system lesions tend to cause peripheral reflexes to be 

enhanced due to attenuated basal CNS inhibition. This implies a possible hierarchy 

of computation, with reflexes occupying the lower tiers. In complex, evolved 

nervous systems these basic stereotyped responses are normally obscured by higher 

centres, only to re-emerge in states of CNS damage. 

Two conflicting selective pressures impact upon nervous systems: a need to 

minimise energy consumption and a need to generate adaptive behaviour in 

fluctuating environmental conditions. Neurons have a high-energy budget. A heavily 

energy-dependent computational mechanism would therefore be selected out, unless 

it conferred a significant survival advantage. Simple reflex arcs permit useful 

survival-enabling behaviours and rely on the activity of very few neurons. For 

example, the withdrawal reflex enables pro-survival behaviour using a network 
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consisting merely of a sensory neuron, interneuron, and motor neuron. This 

represents a highly energy efficient computational and behavioural mechanism. For 

these reasons, re-creating simple reflex arcs represents an interesting initial neuro-

engineering goal, en route to creating more complex networks. 

1.4.2 Disease modelling and pharmacological testing 
Engineered neuronal networks can offer insights into neuropathological processes 

otherwise difficult to define. Changes in network connectivity have been described in 

neurological diseases including Alzheimer’s disease (56) and epilepsy (57). 

Arguably, however, engineered networks may offer greatest utility in efforts to 

understand neuropsychiatric disorders. There has been no significant progress in the 

management of either depression or schizophrenia during the last twenty years, in 

stark contrast to other areas of medicine. One reason is a profound ignorance of the 

underlying pathophysiology or even the anatomical regions of disease. There is a 

growing consensus that diseases including mood disorders, schizophrenia, and 

autism may represent ‘connectopathies’ (58) which manifest as a result of aberrant 

connectivity at a scale that has, to date, eluded detection. 

As such, neuronal network engineering offers an interesting disease modelling 

opportunity. In vitro networks that model such diseases also present an opportunity 

to utilise novel experimental interventions that might not be practical in vivo. For 

example, targeted exposure to a pharmacological agent via microfluidics (see 1.5.2).  

1.4.3 Brain-computer interfaces 
Engineering and interacting with in vitro neuronal networks has specific translational 

relevance in the field of brain-computer interfaces (BCI). A BCI is an artificial link 

between an organism’s nervous system and the external world within which it 

behaves, augmenting the status quo where interaction with the outside world is 

enabled by motor, sensory, and special sensory systems. BCIs offer (and in select 

clinical contexts have already delivered, see Table 1) a method of overcoming 

disability caused by neurological or musculoskeletal pathology. 
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Pathology that interrupts any downstream component of behaviour is theoretically 

amenable to therapy with an output BCI. By recording from viable CNS domains, the 

region(s) of pathology are circumvented and a meaningful functional interaction with 

the outside world can be re-established. Proof-of-concept experimental motor BCIs 

are already in use in humans. By recording neuronal ensemble activity via a 96-

channel micro-electrode array implanted in primary motor cortex, neuronal activity 

has been decoded to enable volitional movement of an on-screen computer cursor 

(59). This allowed a tetraplegic patient to interact with a computer operating system 

and to open his email, amongst other activities. The fidelity of this system has 

recently been improved, now enabling a robotic limb to perform three-dimensional 

reach and grasp movements (60).  

Fundamentally, electricity governs the function of both computers and nervous 

systems. Whilst electrons move in solid-state lattices of microelectronic 

semiconductors, ions move in polar fluids to depolarize neuronal membranes. 

Joining these two systems together, so as to create an iono-electric interface, is a 

significant challenge. Table 1 details some key discoveries to date, afforded directly 

by exploring the interface between nervous and electrical systems.  

A BCI requires real-time measurement of the electrophysiological state of the brain. 

Both invasive and non-invasive systems are in use, capable of recording different 

electrophysiological variables with varying fidelity. Cortically embedded intra-

parenchymal electrode arrays are capable of recording electrical activity from 

individual neurons (and potentially even resolving sub-cellular components) and 

have been used effectively in humans and monkeys. Small (~20µm in diameter) 

electrodes are capable of detecting relatively large extracellular action potentials. 

Intra-cortically recorded signals have high fidelity but the stability of such recordings 

can be variable and may decay over time (61). 

Intra-cortical electrode placement is inherently invasive. As well as causing local 

parenchymal damage, there is a risk of CNS infection. Placement of electrodes often 

results in activation and migration of microglia and astrocytes (62). Reactive gliosis 

around electrodes causes local neuronal cell death and impedes electrical conduction. 
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This is one reason why some human BCI devices suffer from gradual recording 

quality degradation over time, making long-term use (decades) unfeasible. Improved 

understanding of the abiotic:biotic / electrode:parenchyma interface will inform 

novel electrode probe architectures.  

As such, developments in neuronal patterning and engineering work are particularly 

relevant to the advancement of BCIs. One approach that promises to ameliorate some 

issues (notably the need for long-term recording), utilises ‘neurotrophic’ electrodes. 

Here, the implantation dogma is reversed. Rather than positioning an electrode 

adjacent to cortical tissue, the neurotrophic electrode promotes neurite growth into a 

specialised glass recording chamber. These ‘annexed’ neurites become myelinated 

axons within months and in this context unwanted gliosis has not been encountered 

(63).  

Advanced microelectrode arrays are also needed to improve the spatial resolution of 

recording from a given brain region of interest. Currently, vast amounts of electrical 

activity pass unnoticed. New technologies, such as micro-fabricated electrode arrays 

combined with neuronal patterning techniques, open the door to high channel, sub-

cellular resolution recording. Such advances will ultimately improve the practicality, 

fidelity, and lifespan of human BCIs. 
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Table 1 A timeline of discoveries achieved by interfacing electricity with 
nervous systems. Adapted from (64). 

 40AD Scribonius Largus, physician to Emperor Claudius, advocates the use electricity 
to treat headache by applying an electric fish (Torpedo mamorata) across the 
brow of sufferers. 

1771 Italian physician Galvani publishes his discovery of bioelectricity, demonstrating 
that nerves and muscles of frogs are electrically excitable. 

1790 Volta (developer of the electric battery, or voltaic pile) demonstrates that 
electrical stimulation of the auditory system can create the perception of sound. 

1809 Using a voltaic pile and crude electrodes, Rolando pioneers direct electrical 
stimulation of the nervous system as a means of studying localization of brain 
function. 

1874 Bortholow, an American physician, stimulates living human brain via a 
pathological skull defect to induce limb movements (ultimately resulting in 
seizure and death).  

1884 Horsley, a British neurosurgeon, uses intra-operative cortical stimulation to 
localize epileptic foci in humans. Aided by Clarke, they pioneer the stereotactic 
technique; enabling use of a Cartesian coordinate system to target brain regions.  

1924 Berger, a German physician scientist, records electrical activity from the human 
brain using a prototypic electro-encephalogram (EEG). 

1929 Foerster, a German neurosurgeon, creates phosphenes (the sensation of seeing 
light without light entering the eye) by electrical stimulation of occipital cortex.  

1930s Penfield, a Canadian neurosurgeon, uses cortical stimulation in awake patients 
(during procedures to treat epilepsy) to map the motor and sensory homunculus.  

1968 Brindley & Lewin, British physiologists, develop the first implantable cortical 
stimulator for restoration of visual inputs. 

1969 House, an American otologist, develops the first wearable cochlear implant. 
1970s Vidal, a Belgian electrical engineer, coins the term brain-computer interface, in 

work part-funded by Defence Advanced Research Projects Agency (DARPA).  
1978 Schmidt et al. demonstrate that monkeys can learn to voluntarily control the 

firing rates of neurons in primary motor cortex through conditioning. 
1978 Dobelle, an American neuroscientist-entrepreneur, implants a single array input 

BCI into visual cortex, enabling a blind person to detect light again. 
1989 Georgopoulos derives a mathematical relationship between electrical activity of 

single cortical motor neurons in monkeys and the direction in which they move 
their arms, paving the way for translational computer algorithms.  

1980s Kennedy and colleagues pioneer the development of the neurotrophic electrode 
1998 Kennedy & Bakay implant neurotrophic electrodes in a human (with severe 

amyotrophic lateral sclerosis) that elicits signals of sufficient quality to re-
establish some control over their environment. 

1999 Dan et al. reconstruct moving images observed by cats, by recording from an 
electrode array embedded in the lateral geniculate body of the thalamus.  

2000 Nicolelis et al. use multiple multi-channel cortical arrays to produce accurate 
real-time predictions of hand trajectory in primates. 

2005 Work by Donoghue & Hochberg enables a tetraplegic patient to be the first to 
control, in near real-time and informed by visual feedback, a prosthetic robotic 
hand using a 96-electrode BCI implanted in primary motor cortex. 

2012 Refinements in invasive motor BCIs enable human control of a robotic arm, 
allowing three-dimensional reach and grasp movements. One quadriplegic study 
participant is able to use the system to drink coffee from a flask. 
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1.4.4 Biomimetic brain-inspired computation 
Turing’s prediction of massive advances in computing power (dating back to the 

1940s) has failed to materialise to the extent envisaged. This is explained in part by 

fundamental rate-limiting steps in computational architectures. Most computers work 

in a rigid, sequential, step-by-step, fault intolerant mode. By contrast, nervous 

systems operate with parallel, fluid, dynamic, interconnected neurons, and an 

inherent degree of fault tolerance. The brain has a computational robustness due to 

this distribution of processing. A computer’s lack of parallelism is compensated in 

part by executing instructions exceedingly fast. However, there is a high tariff in 

terms of energy and time in shuttling data repeatedly through a central processing 

unit (CPU). The Blue Gene supercomputer (capable of performing 1016 

computations/s) requires 1.5 MW to operate. The human brain which, by 

comparative models of analysis, also functions at a comparable 12×1015 bits/s, 

requires just 20-25 W**. The ability to build computational systems that are similarly 

energy efficient is unsurprisingly of great interest to industry. 

For example, Boahen et al. try to reverse engineer computational strategies observed 

in living nervous systems in an effort to enhance computer power and efficiency, and 

move away from sequential von Neumann architectures (65). This neuromorphic 

approach is fundamentally restrained by our appreciation of computational 

mechanisms in real nervous systems. The construction and interrogation of 

engineered in vitro nervous systems is therefore key to informing and advancing 

these projects. 

1.5 Cell patterning technologies 
Cell patterning technologies are manifold and diverse. Several key performance 

measures require appraisal. Some are generic whilst others are context and goal-

dependent. 

                                                

** The average human male requirement of 2500 kilocalories/day equates to 0.0289 kilocalories per 
second. This translates to 121 joules per second or 121 W. The brain demands ~20% of cardiac 
output. As such, its power requirement can be grossly estimated as approximately 24.2 W. 
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Resolution: The resolution at which individual cells and subcellular components 

can be controlled is key. Importantly, this control may attenuate over time depending 

on the platform and cell type. This is particularly important for cells requiring time to 

mature into their final functional phenotype.  

Cell behaviour: As discussed above, cell behaviour and phenotype can be 

influenced significantly by the interaction with an adjacent synthetic substrate. 

Undifferentiated cells are particularly susceptible to influence. 

Dimensionality: Most cell patterning platforms are two-dimensional. In certain 

contexts, this is very restrictive (e.g. tissue engineering). The growing availability of 

technologies such as 3D printing, and the use of porous scaffolds (66), is enabling 

more three dimensional approaches. 

Interface compatibility: Depending on the rationale for cell patterning, it is often 

important to interact with patterned cells (e.g. local exposure to pharmacological 

agents/specific growth media or, for electrically excitable cells, to record or stimulate 

action potentials). Certain platforms facilitate this whilst others are inherently 

restrictive. To be able to prospectively or retrospectively incorporate relevant 

interface technologies into a patterning platform may be key, depending upon its 

intended use.  

For example, micro-electromechanical systems (MEMS) are extremely small 

mechanical devices driven by electricity; overlapping with the nano-scale equivalent, 

nanoelectromechanical systems (NEMS). Microfabrication techniques developed for 

semiconductor electronics have found utility for creating electrodes for 

electrophysiological measurements of cells. For example, adapted MEMs constructs 

combined with cell-communication via multi-electrode arrays (MEAs) allow multi-

site cell stimulation and recording.  

Practicality of fabrication process: This includes factors such as cost, potential 

for repeat use, potential for mass manufacturing, and turnaround time. The 

theoretical ideal is a low cost, reusable platform with rapid turnaround from design 

phase to readiness.  
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Biocompatibility: Certain cell patterning/interface projects are undertaken with the 

explicit aim of downstream in vivo use. These platforms must be mindful of broader 

biocompatibility issues from the outset, as certain components may be unsuitable or 

even toxic in vivo. For example, whilst platinum has several appealing characteristics 

for creating novel MEMs constructs (67), its overt toxicity in vivo (68) precludes its 

use in implants. 

1.5.1 Neuron-specific considerations for patterning 
Guidance of axons and neurites:  

In vivo, orchestrated genetic programs (operating in concert with experience-based 

changes) enable neuronal cell bodies to locate correctly, form appropriate pathways, 

and reach precise targets. During development, neural stem cells generate daughter 

cells whose fate is regulated by developmental gene expression. Radial glial cells, for 

instance, provide a radiating fibre scaffold for cortex-bound daughter cells to 

migrate. Initially neurites grow out from the soma. One neurite becomes the 

dominant axon whilst others become dendrites. Fine structure depends upon 

environmental factors with neurons in different locations developing characteristic 

cyto-architecture and cell-to-cell connections. 

Axons reach appropriate targets through a combination of cell-to-cell communication 

and cell-to-ECM communication. The growth cone of the neurite consists of flat 

sheets of cell membrane called lamellipodia from which extend filopodia. Integrins 

and other CAMs in neuronal growth cones dictate migration, adhesion, guidance, and 

outgrowth (69). Filopodia probe the environment seeking a suitable substrate upon 

which to take hold and advance the growth cone. Growth and adhesion occurs in the 

context of appropriate ECM proteins, along a haptotactic or chemotactic gradient 

(see Figure 1-3).  

The laminar cytoarchitecture of cerebral cortex manifests due to appropriate neuronal 

migration. Radial migration occurs via somal translocation or locomotion (70) whilst 

interneurons migrate tangentially into neocortex (71). Distinct integrin receptor 

expression, combined with changing availability of ligands, allow cortical cells to 

manifest varying adhesive properties and to activate different intracellular signal 



Patterning neuronal networks on parylene-C:SiO2 

Chapter 1 Introduction  21 

transduction pathways. As a result, different neuronal layers emerge. Other guidance 

mechanisms include chemotaxis (movement of a cell in response to a chemical 

concentration gradient) and galvanotaxis (where an electric charge is the orienting 

stimulus). Netrins†† are an example of a chemotactic protein involved in axonal 

guidance. Netrins, mediated by UNC-40/DCC cell surface receptors, induce a 

growing axon to either move towards or away from a region of higher concentration 

(72).  

These finely tuned in vivo mechanisms may inspire or inform techniques that can be 

used to gain control of neuronal behaviour in vitro, enhancing the topographic 

control and resolution of an engineered neuronal network.  

Neuronal polarity:  

Cell polarity broadly relates to spatial differences in structure, shape, and function 

and is seen almost universally across cell types. During neuronal differentiation, 

symmetry is broken and morphology alters dramatically to create two functionally 

and structurally distinct compartments (dendrites and axons) (73) (74). 

From an electrophysiological perspective, neurons are polarised such that 

information flows in one direction (dendritic synapse à cell body à axon initial 

segment à axon à pre-synaptic terminal, see Figure 1-4). This unidirectional flow of 

information through an integrated network of neurons and glia is fundamental to 

nervous system function. Achieving appropriate polarity for an in vitro neuronal 

network is similarly critical. Functional polarity is dependent upon anatomical 

polarity, as manifest by the distinction between axonal and somato-dendritic 

domains. Experimental findings suggest that, during development, axon-dendrite 

differentiation is established through both extracellular cues and intracellular 

signalling pathways. Polarity is also seen at a sub-cellular level, with protein 

complexes, organelles, and ion channels found in distinct membrane regions or 

cellular compartments (75).  

                                                

†† Named after the Sanskrit word ‘netr’, meaning ‘one who guides’.  
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Achieving appropriate polarity in patterned in vitro neuronal networks is a significant 

challenge. Differentiating neurons may possess the capacity to self-organise to 

establish appropriate polarity. Terminally differentiated cells, however, may require 

specific topographic (or other) guidance cues, or may in fact be incapable of 

retrospectively assuming appropriate polarity.  
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Figure 1-3 Schematics illustrating haptotaxis and chemotaxis. 

 

In haptotaxis, the direction of movement or growth of a cell occurs along a gradient of 
substrate-bound chemo-attractants. Such gradients occur naturally in the extracellular 
matrix or can be generated artificially on biomaterials. In contrast, chemotaxis involves a 
soluble chemo-attractant or chemo-repellent. ECM, extracellular matrix. 

Figure 1-4 Neurons as anatomically and functionally polarised cells.  

 

Functional polarity means that action potentials propagate in a single direction. At the axon 
initial segment, excitatory and inhibitory inputs are integrated. The action potential 
propagates along the axon with ultimate neurotransmitter release at the nerve terminal. 
Anatomic polarity manifests with the presence of a somatodendritic input domain and an 
axonal output domain. Various subcellular domains manifest further anatomic and 
functional polarity. Adapted from Rasband et al. (74). 
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1.5.2 Existing neuronal patterning platforms & technologies 
The concept of building topographically defined neuronal networks in vitro is not 

new, with pioneering work first occurring over 40 years ago (76-78). Several diverse 

approaches have been employed to date. 

Inkjet printing 

Conventional inkjet printers pattern pigments by depositing 10-100 µm droplets 

under robotic control. The same principle can be used to pattern pro-adhesive 

cytophilic substances (e.g. collagen or poly-D-lysine) onto a cytophobic background 

(see Figure 1-5). Roth et al. used this technique to pattern smooth muscle cells (79). 

Collagen was printed using a commercially available inkjet printer with shapes 

including lines, dot arrays, and gradients. A cell line of smooth muscle cells, derived 

from rat aorta, was cultured on the patterned surface. This allowed the creation of 

viable cellular patterns with a resolution of 350 µm. More broadly, inkjet printing-

based processes have also been used for biosensor development, DNA arrays, and 

free-form fabrication techniques to create polymeric scaffolds. Inkjet printing has 

also been used to pattern hippocampal rat neurons and glia (80). This approach is 

relatively inexpensive, repeatable, flexible, and high throughput. However, resolution 

is significantly restricted (to tens of µm at best) and only certain materials can be 

printed upon. 

Micro-contact printing 

Microcontact printing requires fabrication of an elastomeric‡‡ stamp. First, silicon is 

coated with a pre-designed pattern of photoresist termed the ‘master’. A liquid phase 

pre-polymer (often poly(dimethyl)-siloxane, PDMS) is applied to the master to form 

the stamp. After curing, the stamp is ‘inked’ with cytophilic proteins (e.g. 

fibronectin) and applied to a given surface. This approach has been used with various 

‘inking’ molecules and a variety of different cell types including fibroblasts and 

keratocytes (81). Belkaid et al. used this approach to pattern neuronal cells (82), 

                                                

‡‡ An elastomer is a viscoelastic polymer. 
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using PDMS stamps ‘inked’ with poly-L-lysine and printed onto untreated 

coverslips. In this way, primary murine hippocampal and cortical cells were 

successfully patterned on linear and octagonal patterns (see Figure 1-6).  

Microcontact printing is conceptually simple and reasonably flexible. However, after 

stamping, pattern degradation occurs rapidly due to protein denaturation. This 

demands rapid use of the printed substrates. Considering downstream integration of 

MEAs or other MEMs components, microcontact stamping is also problematic. 

Specifically, it is difficult to accurately align the stamp with pre-fabricated 

components on a separate substrate. 

Physical immobilisation 

Physical immobilisation techniques range from fabrication of three-dimensional 

structures (such as pillars or compounds) to trap cell bodies, to modification of 

surface topography or roughness to alter adhesion characteristics.  Individual neurons 

from snail (Lymnaea stagnalis) have been immobilized using a microscopic ‘picket 

fence’ of polyimide on a semiconductor chip (see Figure 1-7). These physically 

restrained cells formed a network with post-synaptic excitation modulating the 

current of an on-chip transistor (83).  

A similar approach utilised ‘nanopillar’ arrays (84). Here, in an effort to reduce 

neuronal migration on patterned substrates, arrays of vertical nanopillars (dimensions 

150 nm × 1 µm) were created by ion beam platinum deposition.  Movement of 

neurons in contact with nanopillars was significantly restricted (see Figure 1-8). 

Such immobilization methods tend not to rely on biological agents or activation of 

potentially short-lived chemical cues. However, fabrication processes for these 

bespoke micron scale surfaces are complex and expensive. Moreover, whilst physical 

immobilisation may serve to define the location of a cell body, there is limited 

control of neurite behaviour.  
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Figure 1-5 Cell patterning using inkjet printing 

     

 

Left: Schematic illustrating the operation of an ink-jet print head. Microscopic droplets (10-
100 µm in diameter) take a ballistic trajectory onto the underlying substrate. The print head 
moves robotically as droplets are ejected. Right: rat hippocampal cells adhering to 350 µm 
diameter printed islands of collagen/poly-D-lysine after 8DIV. Adapted from Sanjana et al. 
(80). 

 

Figure 1-6 Microcontact printing for cell patterning 

 

Example of microcontact printing to guide neuronal morphogenesis. A: (top) silicon master 
with 10 µm thick lines separated by a pitch of 60 µm, (bottom) uFITC-conjugated poly-L-
lysine (PLL) lines printed onto coverglass. B:Primary hippocampal neurons plated on 
micropatterned PLL and immuno-stained for neuron-specific β-3 tubulin. C: Primary 
cortical neurons plated on micro-patterned PLL and stained for F-actin. From Belkaid et al. 
(82). 
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Figure 1-7 Physical immobilisation using a ‘picket fence’ 

 

A: Electron micrograph of two-way contact with a ‘picket fence’ made of polyimide. 
Stimulator wings (St) and transistor (S, source; D, drain; G, gate) are marked (scale bar 20 
µm). B: Post fixation electron micrograph of neuron in the picket fence after 3 days in vitro 
(scale bar 20 µm). C: Micrograph showing neuronal cell bodies in picket fences on a circle 
of two-way contacts connected by neurites after 2 days in vitro (scale bar 100 µm). From 
Zeck & Fromherz (83). 

 

Figure 1-8 Physical immobilisation using a nanopillar array 

  

Cultured neurons on a nanopillar substrate, from Xie et al. (84). A: Bright field image of 
neurons on MEA substrate with nanopillar arrays located both on the microelectrodes (blue 
arrows) and in open areas (orange and cyan squares). B: SEM image of ring-shaped 
nanopillar array. C: SEM image of 5×5 square nanopillar array. 
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Topographic ‘inducement’ 

In a similar vein, topographic variation of the substrate surface can be used to alter 

adhesive behaviour more subtly. Dowell-Mesfin et al. explored the impact of specific 

topographical cues on murine hippocampal neurons (85). Neurons were grown on 

poly-L-lysine coated silicon surfaces containing regions of pillars created using 

photolithographic processes. 1 µm high pillars with different width and inter-pillar 

spacing were assessed.  Neurite growth on smooth surfaces was random, whilst 

growth on regions with pillars of width of 2.0 µm and inter-pillar distance 1.5 µm 

demonstrated more orthogonal growth (see Figure 1-9). 

Carbon nanotubes also show potential as a means of harnessing control of aspects of 

neuronal adhesion. CNTs have unique mechanical, chemical, electrical and surface 

properties. They are electrically conducting, allowing excellent interfacial electrical 

impedance (86). Sorkin et al. cultured neurons on 20 µm CNT islands on a 

background of quartz (87).  Their findings suggest that entanglement, a mechanical 

effect, may constitute an additional mechanism by which neurons (and possibly other 

cell types) anchor themselves to nano-roughened surfaces. Neurons bound 

preferentially to the rough-textured CNT islands, with processes curled and 

entangled amongst the nanotubes (see Figure 1-10). 
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Figure 1-9 Altering surface topography to inform neurite growth direction 

   

Left: High magnification SEM image illustrating an array of pillars with height 1 µm. Scale 
bar 4 µm. Right: Automated tracing of β-3 tubulin-labelled rat hippocampal neurons grown 
on the pillar array. Note the orthogonal growth pattern of neurites. Scale bar 100 µm. 
Adapted from Dowell-Mesfin et al. (85). 

 

Figure 1-10 Entangling neurons with carbon nanotubes (CNTs) 

 

Rat neurons entangled on carbon nanotube (CNT) islands. A: High resolution scanning 
electron micrograph (HRSEM) image of 20 µm CNT island with 3 adherent, entangled 
neurons. B: Three-dimensional rendering of immunofluorescent confocal laser scanning 
microscope image of neurons atop a CNT island (immuno-labelled with β-3 tubulin). Scale 
bar 10 µm in both images. Adapted from Sorkin et al. (87). 
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Photolithographic methods 

Photolithography involves transfer of geometric features from mask to substrate via 

illumination (usually ultraviolet light). A mask is designed using an appropriate 

computer-aided design (CAD) platform and fabricated on a quartz plate coated with 

a thin layer of non-transparent chromium that represents the desired geometric 

pattern. Standard feature resolution is 1 µm with some mask fabrication processes 

allowing sub-micron resolution. The substrate to be patterned is then coated with a 

thin layer of photoresist, a UV-sensitive polymer. The coated polymer is aligned and 

brought into close contact with the mask. An UV source is applied such that 

unprotected areas are irradiated and therefore become soluble and removable in a 

subsequent development step; leaving a representation of the mask pattern behind. 

This process has a long history of use in the fabrication of semiconductor devices, 

where silicon dioxide wafers are frequently used as a substrate.  

Use of this technology in cell patterning has taken several different forms. For 

example, micro-patterns of different metal oxides can be created. Cells recognize the 

difference between aluminium, niobium, titanium, or vanadium-patterned regions 

and showed differential surface adhesion and migration behaviours (88). 

Interestingly, the preference of cells for surfaces composed of TiO2, Nb2O5 and V2O5 

correlated with an increased concentration of bound fibronectin.  

Microfluidics 

Microfluidics deals with behaviour, control, and manipulation of fluids at sub-

millimetre scale. For cell patterning, a substance such as PDMS is used to create a 

network of three-dimensional channels that are flooded with a cell suspension or 

irrigated with cell adhesive molecules. Morin et al. (89) combined a 3D PDMS 

construct with a commercially available planar MEA. After flooding with either 

poly-L-lysine or laminin, neurons (derived from mouse or chick embryos) were 

successfully seeded into the microsystem.  

This approach suffers from the same post hoc alignment issues as microcontact 

stamping. Moreover, the low flow in some microfluidic constructs can result in 
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insufficient diffusion of nutrients in growth media. Conversely, a clear benefit of 

such constructs is the ability to locally manage the fluid microenvironment, opening 

the way to targeted pharmacological therapy, for example. 

Real-time manipulation 

This technique involves dynamically altering the position and growth of cells in 

culture in real-time. Application of extracellular direct current across a culture is an 

example. In this way, Kim et al. utilised galvanotaxis to modulate the behaviour of 

Tetrahymena pyriformis, a eukaryotic ciliate (90). Taking advantage of a behavioural 

response called cathodal galvanotaxis, they were able to steer a cell in a given 

direction at a microchannel intersection by altering a two-dimensional electric field 

created using four electrodes. 

As shown in Figure 1-11 and Figure 1-12, sophisticated additional apparatus is 

required, real-time cues need to be applied continuously to the culture, and 

specificity is undermined by the global nature of the manipulation. 
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Figure 1-11 Real-time manipulation of cells using galvanotaxis 

 

A: Photomicrograph of Tetrahymena pyriformis, scale bar 10 µm. B: Schematic of the 
PDMS micro-channel for galvanotaxis. Platinum wires at the ends of the microchannel are 
used as electrodes. C: The overall system for galvanotaxis, including microscope and PDMS 
channel as a galvanotactic chamber. From Kim et al. (90). 

Figure 1-12 Tetrahymena pyriformis guided by polarity changes 

  

Swimming trajectory of Tetrahymena pyriformis can be influenced by polarity changes. 
Magenta, green and blue lines represent trajectory before/after turning, during delay, and 
during turning, respectively. Red dashed line represents the fitted circle for a cell’s turning 
trajectory. Scale bar is 200 µm. From Kim et al. (90).  
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1.6 The parylene-C:SiO2 platform 
1.6.1 Motivation, inception and development 
The parylene-C:SiO2 platform at the centre of this project was originally born out of 

a desire to incorporate on-chip neuronal patch-clamps§§ into a neuronal patterning 

platform (91). Equipped with an in-built array of patch-clamps recording from a 

patterned neuronal network, the goal was to record multiple whole-cell recordings 

simultaneously. Given that putative patch-clamp devices (or alternative MEA-type 

electrodes) were to be made using microelectronic cleanroom techniques, it was 

considered important that the cell-patterning platform itself be similarly compatible 

with cleanroom protocols and MEMS fabrication processes. Importantly, this 

combined approach also removes the alignment difficulties inherent to two-stage 

processes such as micro-contact stamping.  

As photolithographic techniques are at the core of many microelectronic fabrication 

processes, the aim was to use similar processes to create a high fidelity neuronal 

patterning platform. Photolithographic patterning onto SiO2 is a good candidate for 

this coalition: the fabrication processes mirror those for integrated circuit 

construction and the background SiO2 facilitates incorporation of microelectronic 

recording or stimulation devices. Moreover, photolithography offers patterning at 

potentially very high resolution (sub-micron with high specification masks) and 

relatively low cost. 

Delivopoulos et al. initially pursued this goal, aiming to photolithographically define 

cell attractant regions upon a cyto-repulsive background substrate. Early efforts using 

boron-doped SiO2 patterned with photoresist were unsuccessful, with no 

reproducible cell patterning (92). Similarly, plain SiO2 patterned with boron-doped 

SiO2 also failed as a cell-patterning platform. Given the well-described relationship 

between hydrophobicity and cell repulsion, the next substrate tested (with a view to 

                                                

§§ Patch clamp recording is an electrophysiological technique allowing the study of excitable cell 
types. An electrode, typically in the form of a fluid filled glass micropipette with tip diameter of ~1 
µm, is pressed against the cell membrane and suction applied. This forms a high resistance seal, 
enabling recording of currents measured across the membrane patch.  
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increasing the contrast between adhesion and repulsion), was the hydrophobic 

polymer parylene-C. 

Parylene-C 

Parylene is a trade name for a range of polyxylylene polymers. A number of different 

isomers and derivatives exist, with parylene-N, parylene-C, and parylene-D used 

most frequently. Parylene-C differs from parylene-N in the substitution of one of the 

aromatic hydrogen atoms with a chlorine atom (see Figure 1-13).  

Parylene can be deposited by chemical vapour deposition (CVD), during which the 

monomer absorbs to a surface and then polymerises spontaneously to form high 

molecular weight linear parylene films (see Figure 1-14). Importantly, this process 

can take place at room temperature, making the coating process compatible with pre-

fabricated in situ heat-sensitive components (93).  

Due to low water and gas permeability, parylene has long been used to protect 

printed circuit boards. Being amenable to photolithographic etching processes, it has 

been deposited and patterned for use as dielectric layers in the semiconductor 

industry and as coatings for MEMs. Low water absorption, the highly homogenous 

nature of the parylene film, its thermal stability and high corrosion resistance, has 

also promoted use in vascular stents, cardiac pacemakers, and for insulating neural 

electrodes.  

Parylene-C has also found utility in the context of cell patterning, sometimes 

incorporating the techniques described above. For example, parylene has been used 

as a peel-off stencil (94). Combined with inkjet printing to increase resolution, 

different proteins can be printed over different parylene fenestrations prior to peel-off 

(so called ‘print-and-peel’, see Figure 1-16). Furthermore, parylene can be deployed 

for use in microfluidic constructs.  Ilic et al. (95) created high aspect ratio trenches 

by etching into silicon. Deposition of parylene over these trenches resulted in the 

uppermost aspect of the trench ‘pinching off’ to create a sealed microfluidic tube (see 

Figure 1-17).  
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Figure 1-13 Parylene subtypes and chemical structures 

 

Figure 1-14 The parylene chemical vapour deposition process  

 

Chemical vapour deposition (CVD) of parylene-C. Precursor is loaded into a sublimation 
zone. Pyrolysis (of the sublimed form of the precursor into the reactive monomer) occurs in 
the furnace. The monomer polymerises spontaneously into parylene as it cools in the 
deposition chamber. 

Figure 1-15 Fabrication of parylene-C stencils 

  

Parylene-C stencils can be used in a ‘print-and-peel’ process to create protein nano-arrays. 
A: Schematics illustrating the electron beam lithography process. B: Peeling off the parylene 
template from a 4” oxidised silicon wafer. From Tan et al. (94).  
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Figure 1-16 Combining ‘print-and-peel’ with inkjet printing 

 

Using the ‘print-and-peel’ process to generate combinatorial biomolecular nanoarrays. A: 
Schematic showing superimposition of second inkjet print-run immediately over the first to 
generate six different combinations of antibodies. B: Pseudocolour merged fluorescence 
image showing the combinatorial array. C: Antibody nanoarrays of six different 
biomolecular combinations generated after parylene peel-off, corresponding to the 
demarcated region in B. From Tan et al. (94). 

Figure 1-17 Using parylene for micro-fluidic constructs.  

 

A: Non-conformal step coverage of the high aspect ratio deep trench. B: Cross-sectional 
scanning electron micrograph of a partially delaminated fluidic channel from a high aspect 
ratio silicon template. Scale bar: 5 µm. Adapted from Ilic et al. (95). 
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Parylene-C as utilised in the current platform 

Parylene-C is hydrophobic with a baseline water contact angle of 87° (see appendix 

6.1 for parylene properties). This contrasts with a baseline water contact angle of 43° 

for SiO2 (96). On this basis, Delivopoulos et al. hypothesized that parylene-C would 

serve as a cell repellent surface, contrasting with cell adhesion on SiO2. In fact, the 

reverse was noted. Murine hippocampal cells (a combination of neurons and glia) 

adhered to parylene-C but were repulsed from SiO2. Figure 1-18 shows cultured cells 

(with the glial component stained with glial fibrillary acidic protein, GFAP). Here, 

background SiO2 has been patterned with vertically aligned strips of parylene-C, 

both with and without a serum activation step. Importantly, the platform only served 

to pattern cells if the chips were incubated in foetal calf serum prior to cell culture. 

The use of serum in this way was motivated by its prior observed use for promoting 

cell adhesion to synthetic materials, but without a specific mechanistic hypothesis in 

mind.  

In addition, the impact and importance of a number of other steps in the protocol 

(shown fully in Figure 1-19) remained undefined and unexplained. Several steps 

were included because they represented normal practice in photolithography and 

microelectronics clean room processes, not because of a hypothesis relating to cell 

patterning.  
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Figure 1-18 Murine hippocampal cells on parylene-C:SiO2 substrates 

 

Early work using the parylene-C:SiO2 platform. Culture examples of serum treated (A & C) 
and control (B & D) chips. Square area is 2000 µm × 2000 µm. In A and B, vertically 
orientated parylene strips (of width 20 µm) are separated horizontally by 180 µm of bare 
SiO2. In C and D, parylene strips are 40 µm wide with 160 µm horizontal separation. Mouse 
hippocampal cells are stained with GFAP to label the glial component of the culture. From 
Delivopoulos et al. (91). 
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Figure 1-19 Fabrication and preparation of parylene-C:SiO2 substrates 

 

 

Schematic illustrating the entire process flow for design, manufacture, and activation of 
parylene-C:SiO2 chips. Uppermost: Stages that occur in predominantly in a microelectronics 
clean room context. Lower figure: Stages performed in a biomedical sciences context. CIF, 
Caltech Intermediate Form; GDS-II, Graphic Database System-II. Both refer to file formats 
used for wafer design.  
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1.6.2 Unanswered mechanistic questions and hypotheses 
Serum activation constitutes the key biological step in chip preparation. Prior efforts 

to dissect the mechanisms underpinning cell patterning on the parylene-C:SiO2 

platform focused primarily on the impact of this step, hypothesising that specific 

serum proteins bind to the two substrates in different quantities and/or 

conformations. As a consequence, ‘serum-activated’ SiO2 and parylene-C surfaces 

present a repulsive or adhesive environment, respectively, for a cell coming into 

contact with the chip surface. Although protein elution of serum-incubated parylene-

C and SiO2 surfaces illustrated that parylene-bound vitronectin may (at least in part) 

be responsible for imbuing parylene with its adhesive character (91), this hypothesis 

remains undeveloped. 

As described above, physico-chemical factors also impact significantly upon cell 

adhesion. The chip fabrication processes deployed prior to serum incubation may 

affect both wettability and surface roughness. To date this area has received limited 

consideration. For example, piranha acid is used routinely in semiconductor 

manufacturing processes to clean chips following photolithographic manufacture 

(ensuring removal of all organic material). This step was therefore incorporated into 

the current protocol with a motivation solely to clean, as opposed to any overt or 

suspected contribution to the cell patterning mechanism (Delivopoulos, personal 

communication). In fact, piranha acid is likely to have a significant impact on the 

surface properties of parylene-C and SiO2; potentially altering surface roughness, 

surface chemistry, or contact angle, and therefore impacting downstream cell 

adhesion. 

Contact angle 

A polymer surface can be rendered more hydrophilic by treatment with acid or 

hydroxide. This process increases the presence of oxygen-containing groups on the 

surface, increasing surface free energy and thereby enhancing the functional 

absorption of adhesion-promoting ECM proteins. Given the pre-existing hypothesis 

that bound serum proteins enable adhesion and enforce repulsion to parylene-C and 

SiO2 regions respectively, measuring the change in contact angle of the two different 
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surfaces during chip fabrication, cleaning, and activation may provide insights into 

downstream serum protein interactions.  

Importantly, parylene-C has a baseline hydrophobic character. Therefore, chip 

fabrication and post-fabrication processes would need to induce a particularly large 

decrease in contact angle of parylene-patterned domains, if contact angle does indeed 

play a dominant role in cell patterning. Regarding the piranha acid stage, it is 

hypothesized that rather than simply cleaning the chip of unwanted organic matter, 

piranha acid in fact etches and oxidizes the two substrates so as to effect a marked 

contrast in serum protein binding characteristics, and hence produce cyto-phobic and 

cyto-philic domains.  

Another relevant process is the oxygen plasma etching stage inherent to 

photolithography. Oxygen plasma removes unprotected parylene-C from the chip 

surface, creating the desired parylene pattern. An etch time of 120 s is considered 

sufficient to reliably remove 100 nm thick parylene-C right down to underlying SiO2 

(etch rate is ~100 nm/min). An important additional question, therefore, is whether 

this etch phase also impacts the underlying SiO2, altering its surface chemistry and 

contact angle. 

Surface roughness 

Given that nanoscale roughness (<100 nm) is considered to have a positive effect on 

cell adhesion (because cell-adhesion promoting molecules absorb in a sympathetic 

geometric orientation on nano-roughened surfaces), it may be that contrasts in 

surface roughness also contribute to the effectiveness of the parylene-C:SiO2 

platform. If roughness does play a role, cyto-adhesive parylene might be expected to 

exhibit greater nano-scale roughness, whereas cyto-repulsive SiO2 might have 

surface features that are less conducive to functional binding of adhesion-mediating 

molecules. Again, the processes utilised in chip fabrication may impact surface 

roughness at different stages. As with changes in surface wettability, it is worth 

appreciating that other adhesion mechanisms may dominate ahead of surface 

roughness, potentially leading to counter-intuitive findings. 
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Biological hypotheses 

The behaviour of serum components during incubation with the chip surface is 

influenced by the aggregate effect of all upstream pre-serum processes, as discussed 

above. However, patterning may ultimately rely upon differential absorption of a key 

serum protein (or proteins) to parylene-C or SiO2, which may in fact be de-coupled 

from the physico-chemical factors explored above.  

Serum is a complex solution derived from blood. Whole blood is refrigerated and 

allowed to clot. After removing all cells by centrifugation, all clotting factors, and 

the clot itself, serum remains. Serum is a key component in the classical basal media 

used extensively for in vitro cell culture (usually foetal bovine serum (FBS) at a 

concentration of 5-20%). However, it remains poorly characterized, containing over 

1000 different components including many proteins, electrolytes, lipids, 

carbohydrates, enzymes, hormones and other unidentified constituents (see Table 2). 
Producing FBS is costly and inefficient, with composition also varying somewhat 

from batch to batch. Identifying the protein(s) from this milieu that enable cell 

patterning would illuminate a key aspect of the cell patterning mechanism and would 

also supplant the need for serum, with its inherent heterogeneity between batches. 

  



Patterning neuronal networks on parylene-C:SiO2 

Chapter 1 Introduction  43 

Table 2 Concentration of select components of foetal bovine serum. Adapted 
from Price & Gregory (97).  

Description Concentration 
Inorganic salts  
Calcium 13.6 mg/100 ml 
Chloride 103 meq/L 
Inorganic phosphorous 9.8 mg/100 ml 
Potassium 11.2 meq/L 
Selenium 0.026 µg/ml 
Sodium 137 meq/L 
Other components  
Alkaline phosphatase 255 mU/ml 
Blood urea nitrogen 16 mg/100 ml 
Creatine 3.1 mg/100 ml 
Total bilirubin 0.4 mg/100 ml 
Glucose 125 mg/100 ml 
Haemoglobin 11.3 mg/100 ml 
Lactate dehydrogenase 864 mU/ml 
Uric acid 2.9 mg/100 ml 
Steroids and hormones  
Cholesterol 31 mg/100 ml 
Cortisol 0.5 µg/ml 
Follicle stimulating hormone 9.5 ng/ml 
Growth hormone 39 ng/ml 
Leutinizing hormone 0.79 ng/ml 
Parathyroid hormone 1.718 pg/ml 
Progesterone 8 ng/ml 
Prolactin 17.6 ng/ml 
Prostaglandin E 5.91 ng/ml 
Prostaglandin F 12.33 ng/ml 
T3 119 ng/ml 
T4 12.1 ng/ml 
Testosterone 40 ng/ml 
Thyroid stimulating hormone 1.22 ng/ml 
Selected proteins  
Total protein 3.8 g/100 ml 
Albumin 2.3 g/100 ml 
Insulin 10 mU/ml 
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Prior work by Delivopoulos, using X-ray photoelectron spectroscopy (XPS), showed 

that the chlorine and silicon peaks (which would be expected on untreated parylene 

and SiO2, respectively) are attenuated after serum incubation (91). In parallel, a 

spectral peak at ~400 eV (characteristic of nitrogen) emerges on both parylene and 

SiO2 surfaces following serum activation. The carbon specific C1s spectra of serum-

treated parylene-C and SiO2 reveal characteristic contributions attributable to the 

peptide bonds of adsorbed protein. In summary, these findings show that a layer of 

proteins is coating both surfaces. 

Elution of these bound proteins, followed by polyacrylamide gel electrophoresis 

(PAGE), found both albumin and vitronectin bound to both parylene-C and SiO2 

regions.  Parylene-C substrates displayed a slightly higher intensity band for 

vitronectin than did SiO2, and no fibronectin was eluted from either substrate.  The 

observed dominance of vitronectin ahead of other serum proteins is consistent with 

its recognised ability to bind competitively to polymer biomaterials according to a 

Vroman effect*** hierarchy (98). These findings suggest a potential pro-adhesive role 

for the ECM protein vitronectin. However, its presence on both parylene and SiO2 

suggests that a functionally important conformational difference in protein structure 

may be important, as opposed to a simple difference in quantity. Specifically, 

vitronectin bound to SiO2 may be denatured and therefore unable to engage with 

reciprocal cell membrane-bound integrins. This reinforces the potential utility of 

assessing surface characteristics that impact upon protein folding and conformation.  

The binding of albumin (found at high concentrations in serum) tends to fall as 

surface hydrophobicity decreases, as albumin molecules bind preferentially to less 

oxygenated hydrophobic surfaces. Although found, after elution, to be present on 

both surfaces, albumin is a candidate for contributing to repulsion from SiO2, 

                                                

***  The Vroman effect describes absorption behaviours of different proteins in solution onto a given 
surface. Different proteins diffuse to the surface at different rates. Highest mobility and more highly 
concentrated proteins arrive and absorb first, but may later be replaced by less mobile proteins that 
have higher overall surface affinity. 
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potentially via an unopposed repulsive effect when bound to SiO2, versus repulsion 

countered by pro-adhesive vitronectin in the context of parylene-C.  

It was initially hypothesised, therefore, that parylene-C manifests a cell-adhesive 

phenotype through absorption of vitronectin (which maintains a functional 

conformation) whilst background SiO2 enables ‘contrast’ repulsion by exerting a 

dominant cytophobic effect mediated by bound albumin, with any co-bound 

vitronectin denatured and unable to promote adhesion. Furthermore, it is suggested 

that this protein binding arrangement is facilitated by differences in the surface 

roughness and contact angle of the two surfaces that follow chip fabrication 

processes.  

If vitronectin indeed binds to parylene-C ahead of other serum proteins due to its 

hierarchical binding status, and the hypotheses above are correct, a solution devoid 

of vitronectin but containing another pro-adhesive protein may conceivably attain the 

ability to bind to parylene-C. This is important as it would afford the opportunity to 

define the patterned integrin-ligand, allowing the parylene-C:SiO2 platform to be 

tailored to a specific cell type (with a known CAM profile).  

Temporal considerations in substrate preparation 

From both a practical and mechanistic standpoint, it is interesting to consider the 

time frame of effectiveness of different stages of chip fabrication and activation. 

Prior work with the parylene-C:SiO2 platform illustrated that fabricated chips can be 

stored for years (prior to piranha treatment and serum activation stages) without 

detriment to their subsequent patterning ability. However, whether the effect of 

piranha acid is time-limited, and whether serum incubation needs to occur 

immediately after piranha treatment, remains unexplored. The duration of action of 

serum is less pertinent from a practical perspective as, from this point on, sterility is 

key and any delay would likely compromise this.  

Generalizability of patterning  

If cell adhesion to parylene-C relies, as hypothesised, on cells binding to a specific 

surface-bound protein or proteins, cell patterning will require the presence of 
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complimentary CAM receptors on the cell membrane. Given the heterogeneity of 

cell surface receptors across cell types, it is hypothesised that cell adhesion 

behaviours will therefore not be constant across cell types. Certain cells will lack the 

necessary CAM(s) and therefore be unable to engage with parylene-C-bound 

proteins.  

Furthermore, some cell types possess the capacity to self-generate and exocytose 

ECM proteins (such as collagen or fibronectin) in significant volumes. This could 

obliterate patterning, as a cell-generated adhesion-promoting protein would coat both 

substrates indiscriminately.  

1.6.3 Neuron-specific patterning questions 
Neurons in isolation 

Previous neuronal patterning was achieved in the context of primary murine 

hippocampal cells (i.e. a combination of both neurons and glia, see Figure 1-20) (91). 

It remains unknown whether neurons in isolation are capable of patterning on this 

platform, or whether it is glia that adhere to parylene-C and (by close association) 

enable neurons to similarly respect the underlying parylene geometry.  

The presence of glia amongst patterned neurons, though better reflecting the in vivo 

environment, complicates downstream efforts to resolve, record, and stimulate 

individual neurons. It is therefore important to ascertain whether neurons are capable 

of patterning on-chip in isolation, or whether they are dependent on the presence of 

glia.  

Directionality and polarity  

Beyond dictating the location of adhesion for a neuronal cell body, the next 

challenge is to control the directionality of axonal and dendritic projections. Given 

the potential to alter the shape of patterned parylene-C, one interesting idea is 

whether projections from a differentiating cell might be guided haptotactically 

towards a given target, along a suitable parylene-C ‘path’.  
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If this were found to be feasible, the issue remains of how to ensure that adjacent 

patterned neurons connect with appropriate axo-dendritic polarity. Differentiating 

neurons (whose cell bodies are anchored to specific locations) may possess the 

capacity to self organise their axo-dendritic projections and connections, though this 

needs to be explored. Identifying rules governing neurite organisation might open the 

way to manipulation, potentially enabling a greater degree of control over 

connectivity and polarity. 

1.6.4 Rationale for choice of neuronal cell type 
Primary murine neurons were used in previous parylene-C:SiO2 patterning work 

(91,99,100). Similarly, this project will ultimately require a suitable model neuronal 

cell type for network engineering experiments. However, the initial priority is to 

better understand the cell patterning platform itself. This task does not justify the use 

of primary animal cells, given the anticipated requirement for multiple (potentially 

high throughput) trials. Specifically, given the National Centre for the Replacement, 

Refinement, and Reduction of Animals in Research guidelines (www.nc3rs.org.uk) 

such non-specific use of primary animal cells is unjustifiable. Furthermore, their use 

might even complicate the interpretation of certain cell patterning findings.  

Similarly, anticipated downstream network engineering experiments are conceptually 

so reductionist, and so early-stage, that utilising primary animal cells here does not 

lend sufficient additional power as to justify their use. Instead, the American Type 

Culture Collection (ATCC, www.lgcstandards-atcc.org/) database of cell lines and 

hybridomas was interrogated for a suitable neuronal cell line. Important neuronal 

phenotypic characteristics were assessed, including electrophysiological behaviour, 

the capacity to form functional synaptic connections, and the protocol and time frame 

for neuronal differentiation. 

The Lund Human Mesencephalic (LUHMES) cell line was identified as fulfilling 

requirements (101). This cell line was created by transforming committed neural 

precursor cells with myc oncogenes, thus ensuring immortalization and continuous 

proliferation. LUHMES are a sub-clone of the tetracycline-controlled, v-myc 

overexpressing, human mesencephalic-derived cell line MESC2.10 (originally from 
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Lund University, Sweden). A differentiation process, triggered by shut down of the 

myc transgene, results in the formation of post-mitotic neurons within 5 days (see 

Figure 1-21).  

Differentiated cells develop one or two long projections (often >500 µm). Time-lapse 

imaging illustrates dynamic growth cone behaviour. Whole cell patch clamping 

illustrates the presence of functioning voltage-gated K+ and Na+ channels in 

differentiated cells. After 10 days of induced differentiation, cells generate 

spontaneous action potentials. As such, LUHMES have an appealing combination of 

characteristics, making them a viable choice for in vitro neuronal network 

engineering work. That said, little is known regarding their CAM profile.  
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Figure 1-20 High magnification examples of murine hippocampal cells cultured 
on serum-treated, parylene-C patterned SiO2.  

 

Square area represents 500 µm × 500 µm area with underlying parylene-C patterned as 
vertically orientated strips of width 20 µm. (a) Immuno-stained with GFAP to label glial 
component. (b) Immuno-stained with β-3 tubulin to label neuronal component. From 
Delivopoulos et al. (91). 

 

Figure 1-21 The LUHMES neuronal cell line 

 

The conversion of proliferating undifferentiated LUHMES into post-mitotic neurons. (a) 
Schematic of differentiation procedure; (b) Scanning electron microscopy (SEM) images of 
undifferentiated (day 0) and differentiated (day 5) LUHMES; (c) LUHMES immuno-stained 
for β-3 tubulin and H-33341 (nuclear) dye and mRNA expression levels of β-3 tubulin, Fox-
3/NeuN and CDK-1. From Scholz et al. (101).  
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1.7 Core project aims 
The core hypothesis of this project is that parylene-C-patterned SiO2 substrates can 

be utilized to construct, refine, and interact with simple, functional neuronal 

networks. The following stepwise goals were set: 

• Investigate the currently elusive mechanisms of cell patterning on parylene-

C:SiO2, using both a cell and substrate centric approach.  

• Achieve reliable patterning of neuronal cells on parylene-C:SiO2. 

• Establish control over neuronal morphology, with respect to axo-dendritic 

processes, in order to create topographically defined networks. 

• Explore techniques to stimulate and record from patterned networks, to 

ensure that patterned neurons retain a viable and functional phenotype.  

• Construct and stimulate simple, appropriately polarised poly-neuronal reflex 

arcs. 
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Chapter 2 Exploring cell patterning on 
parylene-C:SiO2 
This chapter describes the exploration of substrate-centric and cell-centric 

hypotheses regarding the cell patterning mechanisms in action on parylene-C:SiO2. 

2.1 Substrate-centric approaches 
2.2 Introduction 
An initial aim was to systematically assess the contribution of different chip 

fabrication and activation processes to the downstream effectiveness of the cell 

patterning platform. In order to measure changes in cell patterning, a model cell line 

was sought. The primary requirement was that this cell type reliably and accurately 

patterns on-chip using the pre-existing protocol. Secondary considerations were ease 

of use and availability. 

2.2.1 HEK 293 as a candidate model cell line 
The immortalized human embryonal kidney (HEK 293, see Figure 2-1) cell line was 

first described in 1977 (102); having been derived from primary human embryonal 

kidney by transformation with fragments of adenovirus 5 DNA. HEK 293 cells are 

straightforward to culture, have a short doubling time, are practical to work with, and 

consequently are used extensively in transfection studies. Importantly, they also have 

a well-described transmembrane CAM profile. HEK 293 cells express at least five 

β1-integrin containing subunits (αVβ1, α2β1, α3β1, α5β1, α6β1) (103). This 

diversity of integrin expression allows adherence to a wide variety of ECM proteins 

that includes vitronectin, laminin, fibronectin, and collagen. This profile therefore 

represents an obedient phenotype for protein-dependent cell adhesion research. 

Prior opinion considered HEK 293 cells a derivative of embryonic fibroblastic or 

endothelial renal cells. However, contemporary research instead points towards a 

potential early neuronal lineage, suggested by the presence of mRNA and gene 

products typically found in neurons (neurofilament-M, neurofilament-L, α-

internexin) and endogenous expression of voltage-gated ion currents (104,105). 



Patterning neuronal networks on parylene-C:SiO2 

Chapter 2 Cell patterning on parylene-C:SiO2  52 

Previous work involving protein elution from serum-incubated plain parylene-C or 

plain SiO2 surfaces, followed by PAGE, illustrated that parylene-bound vitronectin 

may be responsible (to some degree) for imbuing parylene with its cell adhesive 

character (91). On this basis, it was hypothesized that the HEK 293 integrin profile 

(which includes vitronectin receptors) would enable cell adherence to parylene-C 

domains. Regarding contrasting repulsion from background SiO2, early thinking was 

that repulsion was a more generalized, non-specific phenomenon. The recognition 

that HEK 293 cells are not known for an innate capacity to generate large quantities 

of adhesion-promoting ECM proteins is also in their favour in this regard. 

If HEK 293 cells pattern successfully, this additionally provides an opportunity to 

assess the impact of parylene-C feature geometry upon the morphology of this cell, 

as well as allowing the assessment of how cell adhesion behaviour varies with the 

passage of time. 

Figure 2-1 The HEK 293 cell line 

 

Photomicrographs of HEK 293 cells in culture. Left image shows a low density culture, right 
is high density confluent culture. Scale bar 200 µm. 
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2.2.2 Physico-chemical hypotheses 
Given the impact that surface roughness and contact angle have upon serum protein 

adhesion and configuration, and therefore cell adhesion, an early goal was to assess 

how these two variables change during chip fabrication and activation processes. The 

aim was to ascertain the relevance (or not) of such factors to the ultimate 

effectiveness of the patterning platform. 

Substrate hydrophobicity, as assessed by contact angle goniometry 

The accepted dogma is that hydrophobic synthetic substrates are cell repulsive whilst 

hydrophilic substrates are cell adhesive (see section 1.2.2). Given that parylene-C is 

known for its high baseline water contact angle (~87°, reflecting significant 

hydrophobicity) and that SiO2 has a lower contact angle, one would anticipate cell 

adhesion to occur on SiO2 and for cells to be repulsed from parylene-C. However, as 

described, the reverse was observed in prior work (see Figure 1-20). Therefore, if 

contact angle is of relevance, the fabrication and activation steps would be expected 

to cause significant changes to the baseline contact angle of the two substrates. 

Specifically, it was hypothesized that beyond merely cleaning the chip of unwanted 

organic matter (as previously reported), piranha acid in fact differentially etches the 

two substrates so as to alter contact angle and subsequent serum protein-binding 

characteristics; ultimately resulting in parylene-C becoming cell adhesive and SiO2 

becoming cell repulsive. 

Surface roughness, as assessed by atomic force microscopy (AFM) 

Atomic force microscopy (AFM) is a very high-resolution form of scanning probe 

microscopy capable of assessing surface roughness at the nano-scale. A sharp tip at 

the end of a cantilever is scanned over a surface. The tip is deflected according to 

surface features. By consolidating cantilever deflections, a topographic image of the 

surface can be generated. 

Assessing alterations in surface roughness at different stages of chip fabrication and 

activation may similarly reveal changes that, downstream, alter the binding 

characteristics of serum proteins. If roughness plays an important role, cyto-adhesive 
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parylene might be expected to exhibit greater nano-scale roughness whereas cyto-

repulsive SiO2 might be expected to have larger surface features that are theoretically 

less conducive to functional binding of adhesion-mediating molecules. The caveat 

here is that the influence of surface roughness upon cell adhesion remains variable, 

controversial, and is cell- and context-dependent. 

Temporal considerations in substrate preparation 

Whether the effect of piranha acid is time-limited, and whether serum incubation 

needs to occur immediately after treatment, remains unexplored. If the effect of 

piranha acid treatment is transient, this would suggest a reversible process occurring 

on one or both of the substrates, which in turn might help to illuminate the 

underlying mechanism. As such, experiments were designed to assess changes in 

contact angle, and HEK 293 cell patterning, in the context of time delays between 

piranha acid treatment and serum incubation.  

2.2.3 Biological hypotheses 
Identifying the key proteins in serum that ultimately enable patterning would remove 

the need for serum, with its inherent heterogeneity between batches, as well as 

illuminate a key mechanistic aspect of cell patterning. One potential explanation, 

based on prior protein elution and PAGE experiments, is that serum-activated 

parylene manifests a cell-adhesive phenotype through competitive absorption of the 

ECM protein vitronectin (which maintains a functional conformation) whilst 

background SiO2 enables ‘contrast’ by exerting a cytophobic effect mediated by the 

repulsive effect of bound albumin (with any SiO2-bound vitronectin denatured and 

therefore unable to promote adhesion). 

On this basis, if vitronectin does indeed bind to parylene-C ahead of other serum 

proteins, a solution devoid of vitronectin but containing another pro-adhesive protein 

ought then attain the ability to bind to parylene-C. This is important as it would 

represent an opportunity to define the patterned integrin-ligand, allowing the 

platform to be tailored towards a given cell type (with a specific, identified CAM in 

mind). To explore these ideas, rationalised solutions of vitronectin in combination 
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with albumin (and other ECM protein combinations) were tested in place of serum, 

in an attempt to replicate and modulate serum-mediated chip activation. 

Raman spectroscopy of serum activated surfaces 

Raman spectroscopy is opportune as a more direct approach to interrogate serum-

activated chip surfaces. This spectroscopic technique relies on Raman scattering of 

monochromatic light delivered from a laser. The sample is illuminated and light 

interacts with molecular vibrations of the interrogated substance. Light returning 

from the illuminated spot is collected and sent through a monochromator. The shift 

in energy of laser photons gives information about the vibrational modes in the 

system. 

This technique is used frequently in chemistry, as vibrational activity relates 

specifically to chemical bonds and symmetry of a molecule. As a result, different 

molecules have different Raman ‘fingerprints’, enabling identification. As such, 

Raman spectroscopic examination of parylene-C and SiO2 surfaces, both before and 

after serum-incubation, offers a potentially powerful method to identify important 

chip-bound serum proteins. 

2.2.4 Fabricating a transparent chip 
Oxidised silicon wafers are opaque. This is suboptimal as it precludes use of certain 

potentially useful imaging platforms to assess cultured cells (specifically, any 

requiring inverted microscopes). A transparent chip would allow easier assessment of 

cell adhesion behaviour and also facilitate patch-clamping, useful for assessing the 

electrophysiological behaviour of patterned cells. The pool of potential materials 

used to make wafers for microelectronics includes borosilicate glass†††, which is 

optically transparent. There is a high percentage of SiO2 in borosilicate glass (81%) 

but it also contains boric oxide (12%), sodium carbonate (4.5%), and aluminium 

oxide (2.0%). A prototype chip using a borosilicate wafer as the background 

                                                

††† Borosilicate glass is made by adding boric oxide to the usual glass-making combination of silica 
sand, soda, and ground lime. 
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substrate was fabricated in an effort to create a transparent chip. All subsequent 

photolithographic processes and activation protocols were kept the same as those 

used for SiO2 wafers. 

Key questions: 

1. Will HEK 293 cells pattern effectively on parylene-C:SiO2 substrates 

prepared according to the established protocol? 

1. How does HEK 293 cell patterning behaviour change over time? 

2. Is HEK 293 cell morphology influenced by the underlying parylene-C 

geometry? 

2. Effect of serum  

1. What impact does the serum incubation step have upon subsequent 

HEK 293 cell patterning behaviour on the two substrates? 

2. How does the contact angle of the two substrates change as a result of 

serum incubation? 

3. Can important serum components be identified by using Raman 

spectroscopy to interrogate chip surfaces pre- and post- serum 

incubation? 

4. Can a simplified solution of vitronectin and albumin (or other 

recognised ECM molecules) be used in place of serum to similarly 

activate parylene-C:SiO2 surfaces for cell patterning? 

3. Effect of piranha acid 

1. What impact does the piranha acid treatment step have upon HEK 293 

cell patterning behaviour on parylene-C and SiO2? 

2. What impact does piranha acid have on the contact angle of parylene-

C and SiO2? 

3. Is the effect of piranha time-limited? Does serum incubation need to 

occur immediately after piranha treatment? 

4. What impact does piranha acid have on the surface roughness of 

parylene-C and SiO2, as measured by AFM? 

4. What is the impact upon HEK 293 adhesion for a chip fabricated from a 

borosilicate glass wafer, in place of SiO2?  
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2.3 Methods 
2.3.1 Photomask design 
For all chips, the desired parylene-C configuration was initially mapped out using a 

layout editor software package, capable of reading/writing CIF (Caltech Intermediate 

Form) or GDS-II (Graphic Database System-II) files. CIF and GDS-II are industry 

standard file formats for integrated circuit artwork layout. Two different photomask 

designs were used for this initial sequence of experiments: 

Chip 1: 

This design consisted of three iterations of circular parylene-C nodes with a centred 

‘cross-hair’ (node diameters 250 µm, 100 µm, and 50 µm, orthogonally-orientated 

cross hairs measuring 450 µm in length for the largest node size and 300 µm for 

smaller nodes) on chips 7.7 mm × 5.9 mm in dimension (see Figure 2-2). The 

rationale for this particular layout was informed by questions relating to downstream 

neuronal network organisation and is described in detail in section 4.1. 

Chip 2: extensive geometric variation  

This design was far more diverse, with elements designed to test chip resolution and 

also the impact of parylene geometry on cell morphology. Chip dimensions were 10 

mm × 10 mm, whilst specific regions of parylene geometry can be seen in results 

Figure 2-7. 

2.3.2 Chip fabrication process  
Silicon wafers (Siltronix, Archamps, France) were oxidised in an atmospheric 

horizontal furnace (H2 1.88 SLM and O2 1.25 SLM) at 1100 °C for 40 min to 

produce a 500 nm SiO2 layer (measured with a Nanometrics NanoSpec 3000 

reflectometer). Oxidised wafers were primed with Merck Silane A174 adhesion 

promoter, followed by deposition of 100 nm coating of parylene-C (at 22 °C at a rate 

of 1.3 nm/mg of dimer using a SCS Labcoter 2 deposition Unit, Model PDS2010). 

Next, hexamethyldisilazane (HMDS) adhesion promoter was deposited on parylene-

coated wafers in an SVG 3 inch photo-resist track followed by application of a 1 µm 
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thick film of Rohm & Hass SPR350-1.2 positive photoresist, by spinning at a speed 

of 4000 rpm for 30 s. The wafer was then soft baked for 60 s at 90 °C. Both the 

wafer and pre-manufactured photo mask (Compugraphics International Ltd, 

Glenrothes, UK) were placed in a Suss Microtech MA/BA8 mask aligner. Exposure 

results in UV negative representation of the desired parylene-C configuration on the 

photoresist-coated wafer. After baking for 60 s at 110 °C, exposed photo-resist was 

removed by developing in Microchem MF-26A developer. 

The wafer was inserted into a JLS RIE80 etch system for 120 s (at a 50 mTorr 

chamber pressure, 49 sccm O2, 100 W RF power at 13.56 MHz) to etch off 

unprotected parylene (at an etch rate of 100 nm/min) to reveal underlying SiO2. The 

wafer was cut with a DISCO DAD 680 Dicing Saw (spindle speed 30 000 rpm, feed 

speed 7 mm/s), rinsed in water, blown dry with nitrogen, and stored in dust-free 

boxes.  

Figure 2-2 Design for chip 1 

 

Schematic illustration of the parylene-C design on chip 1. Overall chip dimension 7.7 mm × 
5.9 mm. Node diameters 250 µm, 100 µm, and 50 µm, orthogonally orientated cross hairs 
measuring 450 µm in length for the largest node size and 300 µm for smaller nodes. A 
distance of 100 µm separates the end of one cross hair from the beginning of the next, in all 
cases. 

  



Patterning neuronal networks on parylene-C:SiO2 

Chapter 2 Cell patterning on parylene-C:SiO2  59 

2.3.3 Standard chip activation protocol 
Any residual photoresist was removed by washing chips in acetone for 10 s, followed 

by rinsing in de-ionised distilled H2O three times. Piranha acid is a 5:3 ratio of 30% 

hydrogen peroxide and 98% sulphuric acid that must be prepared with great care. It 

is an extremely powerful oxidiser, is strongly acidic, and mixing hydrogen peroxide 

with sulphuric acid is a significantly exothermic reaction. This stage was performed 

in an acid fume hood, allowing 2 mins to pass after mixing piranha acid, but using 

within 10 mins. 

Chips were immersed in piranha acid for 10 mins, followed by rinsing three times in 

de-ionised distilled H2O, followed next by transfer to sterile culture dishes. Two 

chips were placed per well in a 6-well plate, followed immediately by the addition of 

2 ml of FBS (FBS, Gibco Invitrogen) so as to fully immerse chips. Chips were then 

incubated at 37 °C overnight. These, and all subsequent cell culture stages, are 

performed under sterile conditions in a laminar flow tissue culture hood. 

2.3.4 HEK 293 maintenance, plating, and imaging protocols 
HEK 293 cells (human embryonic kidney cells; American Type Culture Collection, 

Virginia) were maintained at 37 °C and 5% CO2 in Dulbecco’s modified Eagle’s 

medium (DMEM, Gibco Invitrogen) supplemented with 10% FBS. HEK 293 cells 

were applied to chips as a 2 mL/well suspension (at 5✕104 cells/mL concentration) in 

normal growth media.  

First, the capacity to pattern HEK 293 cells using prior established protocols was 

tested using chip 1. Temporal aspects of cell patterning behaviour were evaluated by 

interval (daily) imaging, acknowledging the continued mitotic proliferation of 

cultured HEK 293 cells. The impact of parylene-C geometry upon HEK 293 cell 

morphology was further explored by plating cells on chip 2 (at the same density), 

with its greater geometric variation.  

Cells were imaged alive on sequential days in vitro using a dissecting light 

microscope (Wild Heerbrugg, Switzerland) adapted for use with a Nikon Coolpix 

4500 digital camera (Tokyo, Japan) using an MDC2 relay lens. Image J (version 
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1.44o, National Institute for Health, USA) was used for image analysis and 

measurement of cell surface areas.  

2.3.5 Quantification of patterning and assessment of cell 
behaviour 

Two indices were derived to assess contrasting aspects of cell patterning on-chip and 

are described in Figure 2-3:  

Parylene-C Adhesion Index (PAI) 

A square region of interest (ROI), consisting of one iteration of the parylene node 

pattern surrounded by SiO2, was defined.  The PAI was calculated by dividing the 

surface area of cell material adherent to parylene-C by the total surface area of 

available parylene-C in the ROI. 

SiO2 Repulsion Index (SRI) 

Similarly, SRI was calculated by dividing the surface area of cell material adherent 

to SiO2 by the total available surface area of SiO2; and subtracting the result from 1. 

Hence, perfect patterning on parylene would result in a PAI of 1 (reflecting complete 

cell coverage of all parylene-patterned areas) and a SRI of 1 (reflecting complete 

absence of cell material from SiO2). The theoretical range of patterning behaviours 

can be illustrated by plotting PAI against SRI (see Figure 2-4). 
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Figure 2-3 Schematic illustrating the method for calculating SRI and PAI.  

 

A square region of interest (ROI), consisting of one iteration of the parylene node pattern 
surrounded by SiO2, is defined. PAI is calculated by dividing the surface area of cell 
material adherent to parylene-C by the total surface area of available parylene-C in the 
ROI.  

SRI is calculated by dividing the surface area of cell material adherent to SiO2 by the total 
available surface area of SiO2; and subtracting the result from 1. ROI, region of interest; 
PAI, parylene adhesion index; SRI, silicon dioxide repulsion index. 
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Figure 2-4 The range of possible cell adhesion behaviours 

 

Parylene-C adhesion index (PAI) plotted against silicon repulsion index (SRI), with 
representative cartoon illustrations of the range of potential patterning behaviours on a 
theoretical chip consisting of a central square of parylene-C (white) on a background of 
SiO2 (grey).  
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2.3.6 Experimental fabrication and activation protocols 
Rationalised protein solutions 

Following standard piranha acid treatment, chips (chip design 1) were incubated 

overnight at 37 °C in the following alternative activation solutions:  

• Bovine serum albumin (BSA) alone (0.3 mg/ml, 3 mg/ml, 30 mg/ ml 

dissolved in Hanks Balanced Salt Solution (HBSS, Gibco Invitrogen). 

• BSA with vitronectin (0.3 mg/ml, 3 mg/ml, 30 mg/ml BSA with 1 µg/ml 

vitronectin). 

• BSA and fibronectin (0.3 mg/ml, 3 mg/ml, 30 mg/ml BSA with 1 µg/ ml 

fibronectin). 

• Vitronectin alone (1 µg/ml) 

• Fibronectin alone (1 µg/ml),  

• Laminin alone (1 µg/ml) 

• Collagen alone (1 µg/ml) 

• Poly-L-ornithine alone (50 µg/ml) 

• De-ionised distilled H2O (control) 

For experiments using simplified protein solutions in place of serum, cells were 

passaged and transferred to FreestyleTM 293 expression medium (Gibco Invitrogen) 

prior to plating. This is a serum-free and protein-free growth medium chosen 

specifically to avoid confounding the contribution of rationalized protein activation 

solutions.  

For each patterning trial, a minimum of 27 ROIs were interrogated (nine for each of 

the three node diameters present on the chip, pooled). Charted data is illustrated as 

means ±SEM. Kruskal-Wallis tests‡‡‡ were used to compare patterning indices 

                                                

‡‡‡ The Kruskal-Wallis one-way analysis of variance by ranks was chosen (a) because patterning data 
is non-parametric and (b) because of the need to compare more than two different samples. Kruskal & 
Wallis. 1952. Use of ranks in once-criterion variance analysis. Journal of the American Statistical 
Association. 47:260; 583-621. 
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between different chip treatment and activation protocols. The method involves 

ranking all data from all groups together from 1 to N. The test statistic is given by: 

 

Where:  

- ni is the number of observations in group i 

- rij is the rank (amongst all observations) of observation j 

from group i 

- N is the total number of observations across all groups 

Prism 5 for Mac OS X (GraphPad Prism Software Inc., California, USA) was used 

for statistical analyses.  

Assessing the impact of piranha  

To assess the impact of piranha treatment on patterning, HEK 293 cells were plated 

on both piranha-activated and non piranha-activated (water-control) chips, both of 

which went on to standard serum incubation.  

To assess the effect of delayed serum activation following piranha treatment, chips 

were piranha-treated, left for an interval of between one and 50 days (at room 

temperature, in the dark, in non-airtight 6-well plates), then serum-activated, and 

then plated with HEK 293 cells as described previously. 

2.3.7 Goniometry to assess contact angle  
Surfaces were prepared to represent the chip in different stages of fabrication and 

activation: 

• Plain SiO2 wafer, no treatment. 

• SiO2 wafer coated with parylene-C. 

• SiO2 wafer coated with parylene-C, followed by 120 s oxygen plasma etch to 

remove all parylene-C and reveal underlying SiO2. 
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• SiO2 coated with parylene-C, followed by the complete photolithographic 

etch process (photoresist, baking, UV exposure, etching), performed so as to 

leave all parylene (i.e. entire surface protected by photoresist). 

• SiO2 wafer coated with parylene-C, followed by 120 s oxygen plasma etch to 

remove all parylene-C and reveal underlying SiO2, then followed by piranha 

treatment. 

• SiO2 wafer coated with parylene-C, followed by 120 s oxygen plasma etch to 

remove all parylene-C and reveal underlying SiO2, and followed by piranha 

treatment, then serum incubation, then brief HBSS wash. 

• SiO2 wafer coated with parylene-C, followed by the complete 

photolithographic etch process (photoresist, baking, UV exposure, etching), 

performed so as to leave all parylene (i.e. entire surface protected by 

photoresist). Followed by acetone to remove photoresist layer. 

• SiO2 coated with parylene-C, followed by the complete photolithographic 

etch process, performed so as to leave all parylene-C in situ. Then followed 

by acetone treatment to remove photoresist layer and piranha acid treatment. 

• SiO2 coated with parylene-C, followed by the complete photolithographic 

etch process, performed so as to leave all parylene-C in situ. Then followed 

by acetone treatment to remove photoresist layer, piranha acid treatment, 

serum incubation, and a final brief HBSS wash. 

At room temperature, an Optem micro video zoom lens (Qioptiq, Luxembourg) with 

a digital interface was used to image a 5 µL droplet of de-ionised distilled H2O on 

each of the surfaces described. 3 measurements were taken per surface. IC Capture 

2.0 (NCH Software, CO, USA) was used to acquire droplet images and FTA 32 

(First Ten Angstroms, VA, USA) was used to measure the contact angle.  

2.3.8 Atomic force microscopy to assess surface roughness  
A Veeco Explorer AFM (Veeco, Plainview, NY, USA), with a Bruker probe (Bruker, 

Camarillo, CA, USA) in tapping mode, was used to assess chip surfaces representing 

the following: 

• Parylene-C domains before piranha acid treatment 
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• Parylene-C domains immediately after piranha acid treatment 

• SiO2 domains before piranha acid treatment 

• SiO2 domains immediately after piranha acid treatment 

Chips were prepared by MH. AFM measurements were performed by Andy Downes 

(School of Engineering, University of Edinburgh). 

2.3.9 Raman spectroscopy  
A Renishaw InVia (Renishaw, Wooton-under-Edge, UK) Raman spectroscope (785 

nM illumination, 50 mW laser power, in an upright microscope) was used to assess 

the following wafer surfaces:  

• Plain, untreated SiO2 wafer 

• Plain SiO2 wafer treated with piranha acid but no serum 

• Plain SiO2 wafer treated with piranha acid and then serum-activated 

• Plain SiO2 wafer untreated with piranha acid but then serum activated 

• SiO2 wafer coated with parylene-C, no piranha acid nor serum treatment 

• SiO2 wafer coated with parylene-C, treated with piranha acid but no serum 

• SiO2 wafer coated with parylene-C, treated with piranha and then serum 

incubated 

• SiO2 wafer coated with parylene-C, untreated with piranha and then serum 

activated. 

Surfaces were prepared by MH and transferred immediately for Raman spectroscopic 

measurements (performed by Andy Downes, School of Engineering, University of 

Edinburgh). 

2.3.10 Fabrication of borosilicate glass chips 
A borosilicate glass wafer (Borofloat 33 [reference V015.04-0003], Plan Optik, 

Germany) underwent the same oxidation and photolithographic process as described 

in 2.3.2. After standard activation with piranha acid and serum incubation, HEK 293 

cells were plated as a suspension of 5 × 104 cells/ml in growth media. Chips were 

imaged daily as previously described, in order to assess PAI and SRI.  
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2.4 Results 
2.4.1 HEK 293 cell patterning 
HEK 293 cells patterned effectively on parylene-C:SiO2 substrates that had been 

prepared using the pre-established protocol (of piranha acid treatment followed by 

serum incubation). Cells adhered specifically to parylene-C regions and were 

repulsed from SiO2 (see Figure 2-5). 

Figure 2-6 illustrates PAI and SRI from day 1 to day 7 in vitro for each of the three 

different node diameters on chip 1, with representative images of patterned HEK 293 

cultures (all were piranha-treated, serum-incubated chips). PAI starts low (due to the 

relatively low cell plating density) and increases to approach 1 by day 7 (reflecting 

almost total coverage of parylene with cell matter). SRI starts and remains high for 

all node geometries, with a gradual decline manifesting at day 6 or 7. This growth 

pattern is similar for all three parylene node sizes. 

Figure 2-7 illustrates high resolution patterning of HEK 293 cells on chip 1 and chip 

2, compared with random growth on an un-patterned polystyrene cell culture flask. 

Underlying parylene geometry influences HEK 293 cell morphology. A lower 

density culture (2 × 104 cells/mL) on the 100 µm diameter node pattern demonstrates 

the ability to capture single cell bodies on parylene ‘cross hairs’ (solid arrow, Figure 

2-7B) and the potential to dictate the direction of an extending cell process (dashed 

arrow). Figure 2-7C-G illustrates persisting high fidelity patterning achieved using 

chip 2, with its more extensive variations in parylene geometry. 
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Figure 2-5 HEK 293 on chip 1 

 

Photomicrograph of live HEK 293 cells cultured on chip 1 after 3DIV. HEK 293 cells grow 
to confluence on parylene-C nodes but not on SiO2. Only occasional, spherical cell 
fragments are seen on surrounding SiO2 domains. Imaged region depicts parylene nodes of 
diameter 100 µm with 300 µm long ‘cross-hairs’. 
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Figure 2-6 Changes in HEK 293 cell patterning indices over time 

 
Temporal changes in PAI and SRI for HEK 293 cells cultured on the three different node 
diameters on-chip. A: 250 µm diameter node, region shown measures 450 µm × 450 µm, B: 
100 µm diameter node, region shown measures 300 µm × 300 µm, C: 50 µm diameter node, 
region shown measures 300 µm × 300 µm, DIV, days in vitro. Data presented as 
mean±SEM. For each of the three different node sizes, 18 ROIs from 3 independent chips 
were assessed.  
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Figure 2-7 Impact of parylene-C geometry upon morphology of patterned HEK 
293 cells.  

 

A: HEK 293 cells approaching confluence in a standard polystyrene cell culture flask, 
region shown measures 360 µm × 240 µm, B: Low density HEK 293 culture on chip pattern 
1, illustrating single cell capture (filled arrow) and guided process extension (dashed 
arrow). Parylene node diameter 100 µm, region shown measures 720 µm × 720 µm C - G: 
Consistent high resolution patterning on diverse parylene geometric patterns using chip 2. 
All images taken at 4DIV. C measures 600 µm × 380 µm, D measures 200 µm × 380 µm, E 
measures 150 µm × 220 µm, F measures 150 µm × 220 µm, G measures µm × 250 µm,    
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2.4.2 Experimental fabrication and activation protocols: 
Piranha treatment and serum activation impact HEK 293 behaviour 

Figure 2-8 illustrates the effect of serum activation and piranha treatment (both in 

isolation and in sequence) upon HEK 293 patterning, as measured by PAI and SRI. 

Effective cell patterning only occurs when piranha acid treatment is followed by 

serum incubation. Piranha-treated chips incubated with H2O instead of serum do not 

manifest a patterning capability. SiO2 domains revert to being relatively cell tolerant 

whereas parylene-C domains became less cell-adhesive. Non piranha-treated chips 

incubated with serum also lacked discriminative adhesion behaviour between the two 

substrates; both parylene-C and SiO2 became relatively cell-tolerant. Notably, cell 

morphology on non piranha-treated, water-activated chips is profoundly abnormal 

(Figure 2-8C).  

Only in the context of piranha-treated, serum-incubated chips is a situation 

established where both PAI is high and SRI is close to the requisite maximum of 1. 

The overall result of this is effective, discriminative patterning. 

Effect of delaying serum activation after piranha treatment 

Figure 2-9 illustrates changes in PAI and SRI that occur when a time delay is 

incorporated between piranha acid treatment and serum incubation. Regardless of a 

delay ranging from 1 to 50 days, parylene-C domains retain their downstream 

adhesive character with no significant change in PAI. However, SRI shows a 

significant drop off following (and beyond) a 24 hour delay. The effect is to 

undermine patterning, as illustrated in Figure 2-9C. 

To assess whether the attenuation in SRI is salvageable by repeat piranha-treatment, 

chips were piranha-treated, left for 7 days, re-piranha treated, underwent serum 

incubation without delay, and were then plated with HEK 293 cells. The result was 

to successfully re-establish effective cell repulsion from SiO2 domains. However, 

parylene-C patterns were damaged by the second piranha treatment, as shown in 

Figure 2-10. 
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Figure 2-8 Impact of piranha treatment and serum incubation upon HEK 293 
cell patterning 

 

A: Cell patterning indices illustrating the impact of piranha treatment, with and without 
subsequent activation with FBS or water, upon HEK293 cell adhesion and patterning. B-E: 
Representative images of each protocol showing the 250 µm diameter node pattern, each 
region shown measures 450 µm × 450 µm. Pir+ve/Pir-ve denotes treatment with/without 
piranha solution respectively. Data is illustrated as mean ±SEM. Kruskal-Wallis test used to 
compare groups, * denotes P<0.05, ** P<0.001. For each activation protocol, 27 ROIs 
from 3 independent chips were assessed.  
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Figure 2-9 Impact of introducing a delay between piranha treatment and serum 
incubation upon HEK 293 cell patterning behaviour.  

 

A: Changes in parylene adhesion index. B: Changes in SiO2 repulsion index. C: Illustrative 
photomicrograph showing failed HEK 293 cell patterning due to HEK 293 cell adhesion to 
SiO2, when a 7-day delay post-piranha treatment was introduced. Scale bar 250 µm. PAI is 
relatively unaffected by a delay between piranha acid treatment and serum incubation. 
However, SRI is significantly reduced after a 1 day delay or more. Data presented as 
mean±SEM. Kruskal-Wallis test used to compare groups. * denotes P<0.05, ** P<0.001. 
For each time delay protocol, 18 ROIs from 3 independent chips were assessed. 
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Figure 2-10 Attempting to salvage cell patterning by repeat piranha treatment.  

 

Cell repulsion from SiO2 can be re-asserted by repeat piranha acid treatment. Imaged chip 
underwent piranha acid treatment, a 7-day delay, a second piranha treatment, followed by 
immediate serum incubation. Imaged after 3DIV. Note disruption of parylene-C design, 
particularly with respect to the ‘cross-hair’ components that have been damaged or 
deformed. 

Rationalized protein activation solutions 

Patterning indices derived from chips activated with rationalized protein activation 

solutions are shown in Figure 2-11. With solutions of BSA alone, parylene becomes 

notably cytophobic (particularly at a concentration of 30 mg/mL) while SiO2 

becomes relatively cell-tolerant. This inverts the prior-observed patterning effect to 

produce a ‘negative’ cell-patterning image. A similar result is seen with BSA co-

dissolved with vitronectin or fibronectin, though solutions with fibronectin manifest 

a further significant reduction in PAI. Adhesion indices also differ according to the 

concentration of BSA in which vitronectin or fibronectin is co-dissolved. 

The four purified solutions of vitronectin, fibronectin, laminin, or collagen alone 

resulted in a PAI significantly greater than that for either water control, pure BSA 

solutions, or combinations of BSA with vitronectin or fibronectin. However, the 

concomitant attenuation of the SiO2 repulsion index resulted in a substrate that no 

longer manifests contrasting adhesive or repulsive qualities and therefore ceases to 

pattern cells. Poly-L-ornithine enabled excellent cell adhesion to parylene (PAI 

approaching one), comparable to that seen with serum-activated chips (see Figure 

2-11B). However, its effect too was indiscriminate with similarly confluent adhesion 

on SiO2 (SRI almost zero).   

150µm
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Figure 2-11 Rationalized protein activation solutions 

 

A-C: Parylene adhesion and SiO2 repulsion indices for HEK 293 cells cultured in 
Freestyle™ media on substrates activated with rationalised protein solutions. All indices 
measured at 4DIV. For PLO-treated chips, SRI was significantly lower and PAI significantly 
higher than for vitronectin, fibronectin, laminin, or collagen treated chips. For vitronectin 
co-dissolved in any of the different concentrations of BSA, PAI was significantly greater than 
that of fibronectin co-dissolved with BSA. D-G: representative images of the 250 µm 
diameter node pattern for specific activation solutions. Each region shown measures 450 µm 
× 450 µm D: serum, E: Vn alone, F: BSA 3mg/ml + Vn, G: BSA 3mg/ml + Fn. BSA, bovine 
serum albumin; Vn, vitronectin; Fn, fibronectin; Lam, laminin; Col, collagen; PLO, poly-L-
ornithine. Data presented as mean±SEM. Kruskal-Wallis test used to compare groups. * 
denotes P<0.05, ** P<0.001. For each protein activation protocol, 27 ROIs from 3 
independent chips were assessed.  
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2.4.3 Contact angles during fabrication and activation 
Table 3 illustrates the contact angles measured for wafer surfaces representing the 

different stages of chip fabrication and activation. Prior to piranha treatment, surfaces 

representative of on-chip background SiO2 are relatively hydrophilic with a contact 

angle of 27°. Piranha treatment further reduces this to just 6°. In contrast, surfaces 

representative of on-chip parylene-C prior to piranha treatment are hydrophobic with 

a contact angle of 75°. Piranha treatment reduces this somewhat to 60°. Following 

serum incubation, however, both surfaces have a similar contact angle of 14°. 

Table 4 illustrates changes in contact angle of SiO2 regions that occur with the 

passage of time after piranha acid treatment. Following an interval of 31 hours, 

contact angle increased spontaneously from 6° to 18°, trending back towards the pre-

piranha value of 27°.  
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Table 3 Contact angles of chip substrates during various stages of fabrication 
and activation. 

 

Start substrate Treatment; indicative of Contact°  
Plain SiO2 No treatment; SiO2 baseline 47.8±0.2° 
SiO2 coated 
with parylene-C 

No treatment; parylene-C baseline  86.1±0.4° 

SiO2 coated 
with parylene-C 

120 s O2 plasma etch to reveal underlying SiO2; exposed 
regions of SiO2 on fabricated chips prior to piranha or serum  

17.4±0.6° 

SiO2 coated 
with parylene-C 

Complete photolithography and O2 plasma etch process, 
leaving all parylene protected with photoresist; parylene-C 
domains on fabricated chips, with a residual coat of 
photoresist remaining 

74.8±0.3° 

SiO2: 

SiO2 coated 
with parylene-C 

120 s O2 plasma etch to reveal SiO2, then acetone wash; SiO2 
regions on fabricated chips after acetone wash (i.e. residual 
photoresist removed) but prior to piranha treatment 

27.3±0.8° 

SiO2 coated 
with parylene-C 

120 s O2 plasma etch to reveal SiO2, then acetone wash, then 
piranha etch; SiO2 regions on fabricated chips after acetone 
wash & piranha etch, but prior to serum incubation 

5.6±0.3° 

SiO2 coated 
with parylene-C 

120 s O2 plasma etch to reveal SiO2, then acetone wash, 
piranha etch, incubation with serum, and brief HBSS wash, 
dry; exposed SiO2 regions on activated chips immediately 
prior to cell plating 

14.1±0.8° 

Parylene-C: 
SiO2 coated 
with parylene-C 

Complete photolithography and O2 plasma etch process 
(leaving parylene in situ), then acetone wash; fully exposed 
parylene-C domains on fabricated chips 

74.6±0.7° 

SiO2 coated 
with parylene-C 

Complete photolithography and O2 plasma etch process, 
acetone wash, piranha etch; Parylene-C domains on 
fabricated chips after acetone wash & piranha etch but pre-
serum incubation 

60.4±0.7° 

SiO2 coated 
with parylene-C 

Complete photolithography and O2 plasma etch process, 
acetone wash, piranha etch, incubation with serum, brief 
HBSS wash, dry; parylene-C domains on fabricated chips 
immediately prior to cell plating 

14.2±0.3° 

 

(Mean of 3 measurements taken per surface. Data presented is mean±SEM).  
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Table 4 Contact angles of SiO2 domains following piranha treatment and time 
delays ranging from 90 mins to 31 hrs. 

 

Start substrate Treatment; indicative of Contact°  
SiO2 coated with 
parylene-C 

O2 plasma etch to reveal SiO2, acetone wash, piranha 
etch; SiO2 regions on fabricated chips after acetone wash 
& piranha etch (immediate baseline measure) 

 
 
5.6±0.3° 

  - 90 mins delay 10.3±0.4° 
  - 6 hr delay 11.6±0.6° 
  - 31 hr delay 18.0±0.4° 
 
(Mean of 3 measurements taken per surface. Data presented is mean±SEM). 
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2.4.4 Atomic force microscopy (AFM) findings 
AFM surface roughness measurements were restricted to on-chip parylene-C and 

SiO2 regions pre, and 30 minutes post, piranha treatment (with preceding steps 

occurring as per the established fabrication protocol).  

The surface deflections on parylene-C changed minimally after piranha-treatment, 

with feature sizes of 5-25 nm both before and after piranha exposure. However, SiO2 

regions showed a pronounced change with feature sizes changing from just 1-2 nm to 

20-40 nm following piranha treatment (see Figure 2-12). 

2.4.5 Raman spectroscopy findings 
Raman spectroscopy was able to detect a signal change denoting the presence of 

parylene on parylene-C coated wafers, compared with bare SiO2 wafers. However, it 

was unable to resolve any further, potentially due to SiO2 fluorescence obliterating 

smaller signals. Due to its limited utility, results are reserved for appendix 6.2. 

2.4.6 Borosilicate glass as an alternative background 
substrate 

Figure 2-13 illustrates HEK 293 cells cultured on a chip with borosilicate glass (in 

place of SiO2) as the background substrate. Patterning fails due to an absence of cell 

repulsion from glass. Adhesion to parylene-C continues to occur. Overall, adhesion 

behaviour is not substrate-specific and reflects the random, spreading, confluent 

growth of established cell clusters. Data for PAI and SRI are shown in Figure 2-14, 

comparing chips fabricated from SiO2 wafers with those from borosilicate glass. 
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Figure 2-12 Atomic force microscopy findings 

 

AFM deflections for parylene-C (A) and SiO2 (B) regions on-chip, pre- and post-piranha 
treatment. Z data tracings reflect the corresponding colour-coded lines of scanning in the 
image beneath. NB The scale of the y axes of the deflection data, labelled ‘Z Data’, are not 
constant across the figure. The surface roughness of SiO2 changes significantly following 
piranha acid treatment, with feature sizes changing from just 1-2 nm to 20-40 nm.  
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Figure 2-13 Borosilicate glass in place of SiO2 

 

HEK 293 cells cultured on a version of chip 3 (for parylene design details see 4.1.1) 
fabricated on borosilicate glass wafer, in place of SiO2. Note failed repulsion from the 
borosilicate background surface. Imaged after 3DIV. Parylene nodes are 50 µm diameter, 
region shown measures 700 µm ×1200 µm. 

 

Figure 2-14 Patterning indices for HEK 293 cells cultured on borosilicate glass 
chips compared with SiO2 chips  

 

Comparison of PAI (A) and comparison of SRI (B) for HEK 293 cells cultured on SiO2 chips 
and borosilicate glass chips. Cultures assessed at 3DIV. Patterning fails on borosilicate 
glass wafers due to the absence of repulsion from background glass regions. Data is 
illustrated as mean±SEM. Mann Whitney U test used to compare groups, * denotes P<0.05, 
** P<0.001. For each wafer type, 15 ROIs from 3 independent chips were assessed.  
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2.5 Discussion 
2.5.1 HEK 293 derived insights into patterning 
HEK 293 cells patterned accurately using the pre-established protocol and therefore 

fulfilled their intended role as a model cell line. However, this finding does not in 

itself add credence to any particular patterning hypothesis. Although the HEK 293 

integrin profile may be important in enabling adhesion to parylene-C, the broad 

range of potential ECM adhesion molecule ligands for which they possess receptors 

does not narrow the search for the key adhesion molecule(s). Indeed, arguably the 

core realisation from this sequence of experiments relates to repulsion from SiO2. 

Absolute repulsion from SiO2 domains is fundamental to effective cell patterning. 

The importance of repulsion from surrounding SiO2 was not adequately considered 

when HEK 293 cells were initially selected. 

The effect of time on HEK 293 patterning 

SRI is high from the outset and attenuates only towards the end of the 7-day 

assessment window. Therefore cells evidently do not migrate from SiO2 towards 

cytophilic parylene over time: SiO2 appears to be hostile to cells from the outset. The 

late drop in SRI can be attributed to overgrowth of parylene-C-adherent cell clusters, 

with resultant impingement onto adjacent SiO2. PAI increases towards a value of one 

from day one to day 7 in vitro, reflecting continued proliferation of cells adherent to 

parylene. Both initial cell plating density, cell proliferation rate, and the relative size 

of the patterned cell type evidently influences the PAI metric. 

For downstream applications using functional neurons, it will be important to exert 

fine control over placement of both the cell soma and any extending axonal or 

dendritic components. As such, it is interesting to assess the impact of the parylene-C 

pattern upon cell morphology. HEK 293 cells patterned reliably on a wide range of 

different geometric parylene-C patterns. Single cell bodies could be isolated with 

appropriately small parylene-C feature sizes and cell projections and cell elongation 

were, in some instances, influenced by the underlying parylene-C design (see Figure 

2-7). A more detailed assessment of the impact upon HEK 293 cytoarchitecture 
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might be achieved by immuno-staining cytoskeletal components (for example by 

immune-labelling neurofilament-M (104)). 

HEK 293 phenotypic uncertainties – neuronal origin? 

Certain neuronal cellular machinery has been identified in HEK 293 cells (namely 

neurofilament-M, neurofilament-L, α-internexin, together with endogenous 

expression of voltage-gated ion currents (104,105)). However, whilst HEK 293 cells 

may therefore have some characteristics of an early neuronal lineage cell, they are 

some way from manifesting a functional neuronal phenotype capable of generating 

spontaneous electrical activity, forming synapses, or releasing neurotransmitters. 

2.5.2 The contribution of fabrication phases to downstream 
cell patterning 

Impact of piranha treatment 

For water-activated, non piranha-treated chips, cell adhesion and morphology is 

highly abnormal. Cell bodies are hard to resolve and a confluent sheet of cells 

dominates, adherent predominantly to SiO2 but also apparently influenced to some 

extent by topography (see Figure 2-8). Piranha treatment without serum activation 

results in re-establishment of more normal HEK 293 morphology, but cells adhere to 

both surfaces similarly thus obliterating patterning capability. 

When the parylene-C:SiO2 platform was first developed, piranha treatment was 

included as a cleaning step, specifically to remove any residual organic material. Use 

of piranha acid in this way is well established in the microelectronics industry. This 

step was explicitly not motivated by a purported role in facilitating discriminative 

cell patterning. However, it has been shown to be crucial. Failure to perform piranha 

treatment results in a parylene-C patterned surface that does not possess an adequate 

differential between cell adhesive and cell repulsive domains. The primary role of 

piranha treatment is in enabling background SiO2 to exert total cell repulsion after 

serum treatment, reflected by an SRI of one.  

Furthermore, the action of piranha acid is time limited. If piranha-treated chips are 

not serum-incubated immediately, SRI falls. A corresponding change in the contact 



Patterning neuronal networks on parylene-C:SiO2 

Chapter 2 Cell patterning on parylene-C:SiO2  84 

angle of piranha-treated SiO2 regions is also observed if surfaces are left (at room 

temperature in non-airtight boxes) and then re-assessed. Interestingly, this 

degradation of piranha-effect can be salvaged by repeat piranha treatment. However, 

from a practical point of view, parylene-C patterns cannot tolerate the second 

treatment and are subject to erosion and lift-off. It is also interesting to note that the 

efficacy of patterning deteriorated (specifically, the SRI decreased) when using 

piranha acid made from aged H2O2 (data not shown). This was resolved when new 

H2O2 was sourced, resulting in re-establishment of dominant repulsion from SiO2.  

In summary, effective piranha acid treatment causes a crucial but transient alteration 

in SiO2 regions on-chip. These changes manifests as: 

1. A reduction in contact angle from 27.3° to 5.6°, but which drifts back 

upwards if surfaces are left in atmospheric conditions.  

2. An alteration in surface roughness from features of just 1-2 nm size to 

features of 20-40 nm size. 

This piranha acid effect is necessary in enabling subsequent serum incubation to 

imbue SiO2 domains with their crucial cytophobic character. One potential 

explanation is that piranha acid treatment results in a SiO2 surfaced dominated by 

free hydroxyl groups. These free hydroxyl groups result in impaired functional serum 

protein absorption. However, with the passage of time, hydroxyl groups become 

cross-linked. The result of cross-linking is that, following serum incubation, serum 

proteins adhere in a more sympathetic conformation, and cells are therefore able to 

engage via their CAMs. A gradual hydroxyl cross-linking process is consistent with 

the change seen in contact angle before and after piranha treatment, and by the 

gradual increase in contact angle over time following piranha treatment. Moreover, 

previous work using parylene-patterned SiO2 noted that UV exposure to chips prior 

to serum incubation (as a means of sterilization) resulted in impaired downstream 

patterning due to increased cell adhesion to SiO2 (100). UV light has a heating effect 

on SiO2, which would be expected to promote more rapid cross linking of hydroxyl 

groups and therefore increase undesirable serum protein adhesion. This hypothesis 

could be explored further through use of infra-red spectroscopy, a technique which 
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has previously been deployed to determine the concentration of hydroxyl groups on 

SiO2 surfaces (106). 

Considering parylene-C domains, the impact of piranha acid exposure is less 

significant. Even without performing the piranha step, parylene-C domains facilitate 

cell adhesion following serum incubation. Surface roughness of parylene-C areas 

was also not altered to any significant degree by piranha acid treatment. Delayed 

serum incubation following piranha treatment did not significantly alter downstream 

PAI, in contrast to the situation observed for SiO2. Contact angle was, however, 

reduced by a similar order of magnitude to that seen on SiO2 (74.6° à 60.4°), though 

this did not parallel a change in cell adhesive behaviour. 

Impact of serum incubation 

Cell patterning is only achieved when piranha acid treatment is followed 

immediately by serum incubation. In this context, serum activation affords a 

dramatic downstream increase in PAI and pushes SRI close to the maximum of 1. 

The overall result is effective, discriminative cell patterning (see Figure 2-8E). 

Interestingly, the effect of serum incubation upon contact angle is such that both 

surfaces, immediately prior to cell plating, are similarly hydrophilic with the same 

contact angle of ~14° (parylene-C falls from 60.4° to 14.2° whilst SiO2 increases 

from 5.6° to 14.1°). This finding most likely reflects that both surfaces are coated 

with a protein layer following serum incubation. Unfortunately Raman spectroscopy 

was unable to discern specific components of this protein layer. The likely cause for 

this failure in resolution is signal noise generated by fluorescence or heating of 

silicon, which obliterates the ability to detect small adherent protein molecules. 

2.5.3 Effect of rationalised protein activation solutions 
Cell patterning relies on contrasts. None of the rationalised protein solutions was able 

to induce the patterning behaviour observed with serum activation, where SiO2 is 

profoundly cytophobic and parylene is cytophilic. However, under certain activation 

conditions, the patterning process could be inverted owing to a total reversal of 

adhesive characteristics of the two substrates. 
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Pure solutions of the ECM proteins vitronectin, fibronectin, laminin, or collagen 

enabled significantly enhanced adhesion to parylene-C compared with water controls 

(with vitronectin and collagen exerting the greatest effect). However, the extent of 

adhesion remained approximately 5× poorer than for serum-activated chips. 

Importantly, the concentration of single protein used (1 µg/ml) is of a similar order 

of magnitude to that found in serum (reported values range from 0.14-0.6 µg/ml in 

human serum (107)). In any event, patterning is undermined in these cases by 

attenuation of the SRI. The combination of cell tolerance to both substrates results in 

failure of cell patterning.  

Solutions of BSA alone caused parylene to become notably cytophobic (especially at 

30mg/ml concentration), while SiO2 became relatively cell-tolerant. This is an 

unexpected finding in the context of an early hypothesis that albumin may be 

responsible for imbuing SiO2 with a cyto-repulsive character. Combinations of BSA 

with vitronectin or BSA with fibronectin resulted in a similar patterning 

configuration. However, the presence of vitronectin in BSA solutions did somewhat 

mitigate the observed decrease in PAI. Nevertheless, in combination with a persisting 

cell tolerance on SiO2, the net result is inverted, or negative, patterning.  

The observed changes in PAI and SRI are modulated by the concentration of BSA in 

which a second protein is co-dissolved. The cause for this in unclear but it is, 

interestingly, a phenomenon that has been observed before in the context of 

fibronectin binding on hydrophobic surfaces (108). One explanation is that co-bound 

albumin alters the configuration or packing of the second protein such that its 

binding sites are more or less available. 

Given these findings, a model of adhesion relying on pro-adhesive and pro-repulsive 

proteins in isolation is probably an oversimplification. More likely is a combinatorial 

effect of different proteins, in different functional states, giving the two regions of 

the chip their contrasting adhesive characteristics. Although we cannot as yet identify 

the key protein combinations in serum, we have (in the context of HEK 293 cells) 

developed the capacity to induce cell-tolerance to SiO2 and cell repulsion from 
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parylene (a complete reversal of the serum-induced parylene patterning effects 

reported previously (91,99,100,109,110). 

2.6 Conclusions and new hypotheses 
Work in this chapter has demonstrated the ability to pattern, at high resolution, HEK 

293 cells on parylene-C:SiO2 substrates. Moreover, the geometry of underlying 

parylene-C can influence the morphology of the cell.  

Chip fabrication processes have a significant impact upon the surface characteristics 

of the two patterned substrates. Piranha acid treatment is key to enabling SiO2 

domains to exert cell repulsion after serum incubation. Both a decrease in contact 

angle and a marked change in surface roughness reflect the impact of piranha acid 

upon SiO2. However, its effect is transient meaning that serum incubation must occur 

immediately after piranha treatment.  

No rationalised protein activation solutions were able to reproduce the effect of 

serum incubation. We have not identified the key components of serum that interact 

to imbue each substrate with its respective cyto-adhesive or cyto-repulsive character, 

though vitronectin appears to have a role in enabling adhesion to parylene-C. 

Although the overarching mechanism of action of the platform has not been 

determined, this sequence of experiments has illustrated key fabrication steps that, if 

deviated from, will undermine patterning. This is important for downstream cell 

patterning work. 
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2.7 Cell-centric approaches 
To compliment insights derived by assessing chip surface characteristics, the 

patterning platform was next assessed from a cell-centric perspective.  

2.8 Introduction 
2.8.1 Patterning behaviour across different cell types 
If adhesion to parylene-C relies on cell engagement with specific parylene-bound 

protein(s), adhesion will require the presence of appropriate complimentary CAMs in 

the cell membrane. Given the extensive heterogeneity of CAMs across cell types, it 

was hypothesised that cell adhesion behaviours will not be constant across different 

cell types. Certain cells will lack the necessary CAM(s), will therefore be unable to 

engage with parylene-bound proteins, and therefore will not adhere. 

Similarly, repulsion may be a specific or non-specific phenomenon. If repulsion from 

SiO2 manifests due to the generalized absence of any functional pro-adhesive 

proteins, the repulsive effect might be expected to impact broadly across all cell 

types. However, if repulsion depends on some form of specific interaction with the 

cell glycocalyx, then this aspect of patterning may too vary across different cell 

types.  

Finally, some cell types have the capacity to self-generate ECM proteins in large 

volumes (e.g. myofibroblasts secrete copious quantities of ECM proteins) (111). This 

can enable adhesion to surfaces that might otherwise be repulsive, whereby a layer of 

secreted proteins becomes a pro-adhesive ‘carpet’. Such a cell might fail to pattern 

on the parylene-C:SiO2 platform, as it would adhere and spread indiscriminately on 

both surfaces. 

To explore these ideas further, a broad range of different cell types was assessed on 

the parylene-C:SiO2 platform (using the standard piranha acid and serum activation 

protocols). These included immortalised cell lines, primary cells, and embryonic 

stem cell-derived or stem-like cells. The core aim was to identify cell-specific 

features associated with given patterning behaviours; features that complimentarily 

might help to elucidate important chip substrate characteristics. Most cells tested 
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were of nervous system origin. Given the ultimate downstream goal of patterning 

neurons, LUHMES neurons (in both an undifferentiated and differentiated state) 

were included in the range of cell types tested. Bioinformatic analysis of micro-array 

mRNA expression data was also explored as a potential method of identifying 

expression of specific CAMs or other proteins associated with a given 

adhesion/repulsion phenotype. 

Immortalised cell lines:  

1. Human Embryonal Kidney (HEK 293). See 2.2.1 for details. Previously 

considered a derivative of mouse embryonic fibroblastic or endothelial renal cells 

(102) but now recognized to have some features of early neuronal lineage (104,105). 

As previously demonstrated, HEK 293 cells pattern accurately and therefore serve as 

a useful control.  

2. Undifferentiated and differentiated Lund Human Mesencephalic (LUHMES) 

neurons. See 1.6.4 for full details. Sub-clone of the tetracycline-controlled, v-myc 

overexpressing, human mesencephalic-derived cell line MESC2.10 (originally from 

Lund University, Sweden). Differentiated cells represent a robust, functional 

dopaminergic neuronal model (101).  

3. N9 microglia. A mouse-derived cell line with phenotypic characteristics similar to 

primary microglia (112). Microglia are the CNS equivalent of macrophages, release 

trophic factors and various cytokines, and have a role in tissue repair and neuro-

protection. 

4. Undifferentiated Neuro 2a (N2a). A mouse neural crest, neuroblastoma-derived 

cell line. N2a cells have been used to model neurite growth, neuronal differentiation, 

and signaling pathways (113). 

5. Undifferentiated 3T3 L1 pre-adipocytes. Derived from 3T3 cells (themselves 

derived from primary mouse embryonic fibroblasts), these cells have fibroblast-like 

characteristics. They have been used for obesity and metabolism research due to their 



Patterning neuronal networks on parylene-C:SiO2 

Chapter 2 Cell patterning on parylene-C:SiO2  90 

ability to differentiate into adipocytes (114). Here, they were trialed in their 

undifferentiated pre-adipocyte state.  

6. Human Brain Endothelial Cells (HBEC-5i). HBEC-5i were originally derived 

from post mortem fragments of human cerebral cortex by Dorovini-Zis and Bowman 

(115). These cells represent a useful model of aspects of the human blood-brain 

barrier (BBB) and consequently have been used extensively in malaria research 

(116). 

7. mHypoE-N7. This is an immortalized murine hypothalamic cell line. This is one 

of a number of similar clonal neuronal cell lines which have been used, for example, 

to model neuropeptide regulation in feeding behaviour (117). 

Primary cells: 

1. Dispersed murine anterior pituitary cells – containing the following cell types:  

• Somatotrophs (up to 50% of the cell population) 

• Gonadotrophs (10-15%) 

• Lactotrophs (10-25%) 

• Corticotrophs (2-5%) 

• Thyrotrophs (<10%) 

• Non-endocrine folliculostellate cells (5-10%)  

2. Murine hepatic pericytes (also known as hepatic stellate cells (HSC), 

perisinusoidal cells, or Ito cells). Pericytes are vascular cells found on small 

diameter blood vessels, but whose function is not yet well understood. They have 

some phenotypic similarities with smooth muscle cells and are broadly involved in 

the development and remodelling of blood vessels. In the CNS, they have a role in 

blood flow regulation and form a component of the BBB. 

Embryonic stem (ES) cell-derived: 

1. Wild type mouse ES cell-derived neurons and MeCP2 null neurons. ES-

derived neurons represent an alternative model neuronal cell line, all be it one that is 
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more resource intensive and more complex to generate. MeCP2 null neurons are used 

to model Rett syndrome, an autism spectrum disorder.  

In Rett syndrome, affected children lose previously learned motor and 

communication skills, and later develop cognitive impairment, motor dysfunction, 

and seizures. Rett syndrome can be caused by mutations in the gene that encodes 

MeCP2 (methyl-CpG binding protein). Some purport a role for MeCP2 in regulating 

synaptic function and propose that Rett syndrome is, ultimately, a neural network 

disorder (118). MeCP2 null neurons model, at a single cell scale, Rett syndrome. 

Given some of the ultimate motivations of this project, they were appealing with a 

view to potential disease modelling in the context of topographically defined 

neuronal networks. 

2. Human Glioma Stem-like Cell (GSC) lines. GSCs are a subpopulation of cells 

within glial tumours. They have stem-like characteristics and are thought to be 

responsible for tumour recurrence and treatment resistance (119). The cell lines used 

for this work were newly derived during recent tumour debulking surgery. As such, 

they currently remain somewhat poorly defined. 

However, high grade human glial tumours (similar to those from which these cell 

lines were derived) have previously been shown to express the αVβ3 integrin (120), 

which can bind vitronectin. Given prior work illustrating that adhesion to parylene 

may be mediated by vitronectin, this infers that GSC cell lines may too possess the 

capacity to bind to serum-activated parylene regions. Three different cell lines were 

extracted from patients undergoing tumour-debulking neurosurgery. Of the three cell 

lines used for patterning trials, one came from histologically confirmed glioblastoma 

(GSC-A) and two from oligodendroglioma (GSC-B and GSC-C).   
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Key questions: 

1. Do cell patterning behaviours on the parylene-C:SiO2 platform vary across 

different cell types? 

2. Can cell-specific characteristics that are associated with the capacity to 

pattern effectively be identified? 

3. Does the LUHMES neuronal cell line pattern effectively, either in an 

undifferentiated or differentiated state? 
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2.9 Methods 
2.9.1 Cell maintenance and plating protocols 
Chip fabrication and activation protocols were kept constant for all cell trials, using 

the standard piranha acid treatment and serum incubation phases detailed in section 

2.3.3. Chip 1 (node and ‘cross hair’ design) was used for all experiments in this 

series. 

Human embryonal kidney (HEK 293) cells.  

See 2.3.4 for culture details. Cells were plated at a density of 5✕104 cells/mL and 

imaged alive after 3DIV.  

Lund Human Mesencephalic cell line (LUHMES) 

LUHMES cells (American Type Culture Collection) were maintained at 37°C and 

5% CO2 in pre-coated plastic culture flasks (coated with 50 mg/mL poly-L-ornithine 

and 1 mg/mL fibronectin in H2O for 3 h at 37 °C). Proliferation media consisted of 

Advanced DMEM/F12 (Gibco Invitrogen), 1✕N2 supplement, 2 mM L-glutamine 

and 40 ng/mL recombinant basic fibroblast growth factor (FGF; Gibco Invitrogen). 

Differentiation media consisted of Advanced DMEM/F12 (Gibco Invitrogen), 1✕ 
N2 supplement, 2 mM L-glutamine and 1 mg/mL tetracycline.  

To differentiate into post-mitotic neurons, proliferation media was changed to 

differentiation media 24 h after passaging cells. After 2 further days in differentiation 

media, cells were trypsinized and plated. Undifferentiated (UD) LUHMES were 

plated as a suspension of 5✕104 cells/mL in proliferation media whilst pre-

differentiated (DF) LUHMES were plated as a suspension of 30✕104 cells/mL in 

differentiation media. Both were imaged alive after 3 days in vitro.  

Undifferentiated 3T3 L1 pre-adipocyte cell line  

3T3 L1 cells (a gift from Dr Luke Chamberlain, Strathclyde Institute of Pharmacy 

and Biomedical Sciences, University of Strathclyde) were maintained at 37 °C and 

10% CO2 in DMEM (Gibco Invitrogen) supplemented with 10% FBS and 1% 
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penicillin–streptomycin. Cells were applied to chips as a suspension of 5 ✕ 104 

cells/mL in growth media and imaged alive after 3 days in vitro. 

N2a cell line 

N2a cells (American Type Culture Collection) were maintained at 37 °C and 5% 

CO2 in DMEM (Gibco Invitrogen) supplemented with 10% FBS. Cells were applied 

to chips as a suspension of 5 ✕ 104 cells/mL and imaged alive after 3 days in vitro. 

N9 microglial cell line 

N9 cells (a gift from Prof Alun Williams and Dr Clive Bate; The Royal Veterinary 

College, University of London) were maintained at 37 °C and 5% CO2 in Iscove’s 

modified Dulbecco’s medium (Gibco Invitrogen) with 5% FBS, 100 IU/mL 

penicillin, and 100 µg/mL streptomycin. Cells were applied to chips as a suspension 

of 15✕104 cells/mL and imaged alive after 3 days in vitro.  

mHypoE-N7 

mHypoE-N7 (a gift from Javier Tello, Centre for Integrative Physiology, University 

of Edinburgh) were grown in DMEM (Gibco Invitrogen) supplemented with 5% 

FBS (Gibco Invitrogen), 20 mM glucose, 1% penicillin/streptomycin and maintained 

at 37 °C and 5% CO2. Cells were applied to chips as a suspension of 6✕104 cells/mL 

and imaged alive after 3 days in vitro. 

Human brain endothelial cells (HBEC-5i) 

HBEC-5i cells (a gift from Prof Rowe; Institute for Immunology and Infection 

Research, University of Edinburgh) were cultured in DMEM/F-12 medium (Sigma) 

with 2 mM L-glutamine supplement (Gibco Invitrogen), 1% penicillin–streptomycin, 

10% FBS, and 30 µg/mL endothelial cell growth supplement. Cells were applied to 

chips as a 2 ml suspension of 5 ✕ 104 cells/mL and imaged alive after 3 days in vitro. 
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2.9.2 Primary cells 
Murine primary anterior pituitary cells  

Anterior pituitary cell isolation was performed by Peter Duncan (Centre for 

Integrative Physiology, University of Edinburgh). Two mice were killed by cervical 

dislocation. Heads were removed, the pituitary glands were identified and carefully 

dissected free, and the posterior and intermediate lobes were removed and discarded. 

Remaining anterior lobes were broken down by hand using a single edged razor 

blade in two directions. This preparation was digested in a solution of DMEM (+4.5 

g/L high-glucose, +L-Glutamine, +25 mM HEPES, -Pyruvate; Gibco) containing 

0.25% Trypsin (Worthington, New Jersey, USA) and 10 µg/ml DNAse I and 

incubated at 37 ºC for 20 minutes.  

Following digestion, cells were suspended in 5 ml of inhibition solution (DMEM 

[+4.5 g/L high-glucose, +L-Glutamine, +25 mM HEPES, -Pyruvate] containing 0.5 

mg/ml Soybean Trypsin inhibitior, 100 kallikrein units aprotinin [200× dilution of 

Sigma stock], 10 µg/ml DNAse I). This cell suspension was passed through a pre-

wetted 70 µm nylon mesh (BD Bioscience), diluted with an equal volume of culture 

medium (DMEM [4.5 g/L high-glucose, +L-Glutamine, +25 mM HEPES, -Pyruvate] 

with ITS [5 µg/ml insulin, 50 µg/ml transferrin, 30 nM sodium selenite], 0.3% BSA 

[w/v], 4.2 µg/ml fibronectin and antibiotic/antimycotic [100x dilution of sigma 

stock]) and spun in a centrifuge at 100 G for 10 minutes. After supernatant removal, 

cells were re-suspended in 4 ml of culture media. 200 µl of this cell suspension was 

pipetted onto the chip surface, left for 10 minutes to allow the cells to settle, and then 

a further 2 ml of culture media was gently added to the culture well. Cells were 

incubated at 37 ºC in 5% CO2 and media was changed every two days with 

antibiotic/antimycotic-free media.  

Murine liver-derived pericytes 

Murine pericyte preparation was performed by Kylie Conroy (MRC Centre for 

Inflammation Research, Queen's Medical Research Institute, University of 

Edinburgh). Two mice were killed by cervical dislocation. Livers were perfused with 

HBSS+, dissected out, and digested using pronase/collagenase and the gradient 
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centrifugation method, as described in (121). Pericytes were seeded onto uncoated 

plastic tissue culture wells and cultured in a solution of DMEM (+4.5 g/L high-

glucose, +L-Glutamine, +Pyruvate; Gibco), 16% FBS, and 1% penicillin–

streptomycin. On day 6 post-isolation, cells were re-suspended in growth media and 

plated on chips as a 2 ml suspension of 5 ✕ 104 cells/mL per well, and imaged alive 

after 3 days in vitro. 

2.9.3 Embryonic stem cell-derived and ‘stem-like’ cells 
Wild type and MeCP2 null ES-derived neurons 

Preparation of all WT and MeCP2 null ES cell-derived neurons was performed by 

Kyla Brown (The Wellcome Trust Centre for Cell Biology, University of 

Edinburgh). 

Wild type ES cell-derived neuronal differentiation:  

4 x 106 mouse embryonic stem cells (E14 TG2a line from mouse substrain 129/Ola) 

were plated in 10 cm bacterial dishes (Greiner, Stonehouse, UK) in Embryoid Body 

(EB) medium (GMEM (Gibco); 10% fetal bovine serum (Hyclone); 1 mM sodium 

pyruvate; 1×MEM non-essential amino acids; 50 µM β-mercaptoethanol; 2 mM L-

glutamine (Life Technologies)) on day 0. Medium was changed on day 2, day 4 (+5 

µM retinoic acid) and day 6 (+5 µM retinoic acid). On day 8, cells were washed in 

PBS, trypsinised with 0.05% trypsin (Sigma) in 0.05% EDTA in PBS, neutralized 

with 10ml EB medium, spun down for 5 minutes at 1000 RPM, re-suspended in N2 

medium (DMEM/F12, 1× N2 supplement, 1× penicillin streptomycin (all 

Invitrogen)) adjusted according to number of dishes and passed through a 40 µm cell 

strainer (BD Falcon). Cells were counted, spun for 5 mins at 1000 RPM, and then re-

suspended in an appropriate volume of N2 medium. For patterning experiments, cells 

were plated on-chip as a 2 ml suspension of 5 ✕ 104 cells/mL per well. After 1 day 

on-chip, medium was replaced with 1:1 N2:Neurobasal medium (+1× B27 

supplement and 1× penicillin streptomycin (Invitrogen)). After 3 days on-chip, half 

the medium was removed and replaced with Neurobasal medium. Chips were imaged 

after 3 days in vitro.  
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MeCP2 null ES cell-derived neuronal differentiation:  

A targeting vector (made by Dr Jacky Guy, The Wellcome Trust Centre for Cell 

Biology, University of Edinburgh) with exon 3 and exon 4 of MeCP2(R133C) 

(mutation made with Sigma QuikChange II XL Site-Directed Mutagenesis Kit; 

forward primer CCCAGGGAAAAGCTTTTTGCTCTAAAGTAGAATTG, reverse 

primer CAATTCTACTTTAGAGCAAAAAGCTTTTCCCTGGG), a GFP tag, a 

floxed NEO cassette, 2.8 kb 5’ homology arm and 1.8 kb 3’. Gene targeting was 

performed on E14 TG2a ES cells, derived from the 129/Ola substrain mouse. Cells 

were grown in complete ES medium (Glasgow MEM (Invitrogen) supplemented 

with 15% fetal bovine serum (Hyclone), 1✕ MEM non-essential amino acids, 1 mM 

sodium pyruvate, 50 µM β-mercaptoethanol and 2 mM L-glutamine (all Life 

Technologies) with recombinant human LIF on gelatinized dishes). 2✕107 ES cells 

were transfected with 30 µg linearized targeting vector in 0.6 ml HEPES buffered 

saline by electroporation (240 V, 500 µF, BioRad Gene Pulser) and plated in 10 cm 

dishes at 5×106 or 2.5×106 cells per dish on day 0. Cells were positively selected by 

growing in complete ES medium + 350 µg/ml G418 (Life Technologies) from day 1 

and then 150 µg/ml G418 from day 3. On day 9 colonies were picked. For patterning 

experiments, cells were plated on-chip as a 2 ml suspension of 5 ✕ 104 cells/mL per 

well. After 24 h on-chip, medium was replaced with 1:1 N2:Neurobasal medium 

(+1× B27 supplement and 1× penicillin/streptomycin (Invitrogen)). After 3 days on-

chip, half the medium was removed and replaced with Neurobasal medium. Chips 

were imaged alive after 3 days in vitro. 

Human primary glioma-derived cell cultures 

The GSC cell lines were developed and maintained by Paul Brennan (Edinburgh 

Cancer Research Centre, Institute of Genetics and Molecular Medicine). MH was an 

assisting surgeon in two of the cases during which tumour tissue was isolated. 

Human glioma-derived primary cell cultures were obtained from fresh human glioma 

tissue removed intra-operatively during surgery to diagnose and debulk tumours. All 

patients gave informed signed consent. The South East Scotland Research Ethics 

committee approved the process (LREC 2004/4/16). A single-cell suspension was 
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generated from the tumour and cells were allowed to form neurospheres in non-

adherent conditions, similar to previous descriptions of glioma stem cell (GSC) 

primary culture (119). Briefly, cells were maintained at 37 °C and 5% CO2 in 

Advanced DMEM F12 (1:1) (Gibco Invitrogen) supplemented with 1% B27 (10✕), 

0.5% N2 (100✕), 1% Glutamax 100 mM, 1% penicillin–streptomycin, 1% fungizone, 

EGF 10 ng/mL (R&D Systems, Abingdon, UK), basic FGF 10 ng/mL (R&D 

Systems, Abingdon, UK), Heparin 5 mg/mL (Sigma Aldrich, Gillingham, UK). After 

neurospheres had formed in suspension culture, cells were expanded on plastic flasks 

coated with growth factor reduced Matrigel (BD Biosciences, Oxford, UK) diluted 

1:80 in Advanced DMEM F12 for 30 min at 37 °C. In this way, GSC primary 

cultures were derived from three different tumours and named GSC-A, GSC-B, and 

GSC-C. A 50 µL droplet containing 10,000 GSC cells in suspension was pipetted 

onto each chip surface, incubated for 10 min, followed by addition of 2 mL 

maintenance media. Cells were imaged alive after 3 days in vitro. 

2.9.4 Cell imaging and analysis 
All cells were imaged live in vitro using a Wild Heerbrugg (Switzerland) light 

microscope adapted for use with a Nikon Coolpix 4500 digital camera using an 

MDC2 relay lens. Image J (version 1.44o, National Institute for Health, USA) was 

used for image analysis and measurement of cell surface areas. PAI and SRI 

(described previously) were measured to objectively assess patterning. 

2.9.5 DNA micro-array data collection 
The Gene Expression Omnibus (GEO, www.ncbi.nlm.nih.gov/geo/) and 

ArrayExpress (www.ebi.ac.uk/arrayexpress/) databases were searched for DNA 

micro-array data relating to all of the cell types trialled. When available, datasets 

were identified that represented normal or control experimental data. MH identified 

appropriate data sets. Raw data acquisition and data warehousing was performed by 

Donald Dunbar and Jonathan Manning (Bioinformatics Department, Queens Medical 

Research Institute, University of Edinburgh). As such, an online database allowing 

comparison of gene expression across different cell lines was created (URL: 

www.bioinf.mvm.ed.ac.uk/projects/hughes/search.php).  
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2.10 Results 
2.10.1 Patterning behaviour across cell types  
Cell patterning behaviour was highly heterogeneous, with adhesion to parylene-C 

and SiO2 varying significantly according to cell type.  The theoretical range of 

potential patterning behaviours can be illustrated by plotting PAI against SRI (see 

Figure 2-4). Figure 2-15 illustrates a similar plot showing data for all cell types 

tested, whilst Figure 2-16 shows the same PAI and SRI data plotted separately. 

Example photomicrographs for a selection of the cell types tested is shown in Figure 

2-17. 

LUHMES in both a differentiated or undifferentiated state did not adhere to either 

substrate (reflected by a SRI of almost one and PAI of almost zero: undifferentiated 

LUHMES: PAI 0.02±0.05, SRI 1.0±0.01 [n=27, assessed 3DIV]; differentiated 

LUHMES: PAI 0.0±0.0, SRI 1±0.0 [n=27, assessed 3DIV]). On the rare occasion 

where cell material was seen chip-bound, the cell body showed spherical 

morphology suggesting poor adhesion. WT and MeCP2 null ES-derived neurons 

similarly completely failed to adhere to either substrate (WT ES neuron: PAI 

0.01±0.0, SRI 0.99±0.0; MeCP2 null ES neuron: PAI 0.01±0.01, SRI 0.99±0.01). 

This global chip repulsion behaviour was also seen for isolated murine anterior 

pituitary cells, with no adhesion seen on parylene-C or SiO2 (murine anterior 

pituitary cells: PAI 0.01±0.01, SRI 1.0±0.0). 

N2a, N9, mHypo-E N7, and 3T3 L1 pre adipocytes were able to grow on both 

substrates, consequently showing no patterning capability (N2a: PAI 0.38±0.02, SRI 

0.89±0.01; N9: PAI 0.59±0.03, SRI 0.65±0.01; mHypo-E N7: PAI 0.45±0.06, SRI 

0.2±0.03; 3T3 L1: PAI 0.61±0.08, SRI 0.48±0.08).  

HEK 293, HBEC-5i, murine liver-derived pericytes, and all three GSC sub-types 

were found to have an SRI approaching 1 in combination with a high PAI (HEK 293: 

PAI 0.87±0.04, SRI 0.98±0.0; HBEC-5i: PAI 0.81±0.02, SRI 0.99±0.0; murine 

pericytes: PAI 0.85±0.04, SRI 0.97±0.0; GSC-A: PAI 0.83±0.05, SRI 0.96±0.01; 

GSC-B: PAI 0.99±0.0, SRI 0.96±0.01; GSC-C: PAI 0.96±0.03, SRI 0.95±0.01). This 

combination represents effective, discriminative cell patterning.  
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Figure 2-15 A plot of PAI and SRI for all cell types tested 

 

Mean parylene-C adhesion index (PAI) plotted against mean SiO2 repulsion index (SRI) for 
all cell types tested. GSC cells, HEK 293 cells, pericytes, and HBEC 5i cells were found to 
pattern appropriately on-chip, manifesting a high SRI and high PAI. Pre-differentiated and 
undifferentiated LUHMES, WT ES and Rett ES neurons, and the anterior pituitary cells all 
found the entire chip surface repellent, adhering to neither substrate. 3T3 L1, N9, mHypoE-
N7, and N2a cells were capable of adhering to both surfaces and therefore did not pattern. 
For SEMs, see Figure 2-16. 
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Figure 2-16 PAI and SRI plotted separately for all cell types tested  

 

Parylene-C adhesion index (PAI) and SiO2 repulsion index (SRI) charted separately for all 
cell types assessed and categorised by origin. Data is illustrated as mean±SEM. For each 
cell line, a minimum of 27 ROIs from 3 independent chips was assessed.  
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Figure 2-17 Illustrative photomicrographs of cell patterning 

 

Illustrative photomicrographs showing adhesion behaviour for a selection of cell types 
tested. Note the markedly different behaviour across cell types; ranging from robust 
patterning, to undiscerning adhesion, to total repulsion from both substrates. Parylene-C 
nodes are 100 µm diameter in all cases and each region measures 300 µm × 1100 µm.  
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2.10.2 Comparison of DNA micro-array data 
Appropriate DNA micro-array data was identified and consolidated for HEK 293, 

3T3 L1, and N2a cell types only (see appendix 6.3 for GEO data set reference 

details). This very limited dataset was insufficient for identification of viable 

candidate genes. 
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2.11 Discussion: 
Importantly, cell-plating densities varied somewhat across the cell types tested§§§.  

Combined with differences in both cell size and proliferation rates, this brings 

inherent difficulties in comparing patterning indices of different cell types. Although 

the numerical values are therefore not directly comparable, they have however aided 

categorization into three broad patterning phenotypes: 

• Cells that pattern appropriately (adhere to parylene-C, repulsed completely 

from SiO2): all GSC cell lines, HEK 293 cells, murine liver pericytes, and 

HBEC 5i cells. 

• Cells that adhere to both surfaces and therefore do not pattern: 3T3 L1, N9, 

mHypoE-N7, and N2a cell lines. 

• Cells that are globally repulsed from both surfaces: pre-differentiated and un-

differentiated LUHMES, WT and Rett ES neurons, and murine anterior 

pituitary cells 

2.11.1 Heterogeneity of patterning behaviours 
Considering adhesion to parylene-C 

As discussed, cell adhesion to parylene may demand that a certain integrin binds to a 

complimentary ligand (as presented by a non-denatured parylene-bound protein). 

Assessing the integrin profile of cell types with the capacity to adhere to parylene 

might therefore prove useful in elucidating the mechanism further. Compounding 

this approach, however, is the fact that most integrin receptors bind to a wide variety 

of ligands and many ECM proteins can also bind to multiple integrin receptors. This 

undiscerning binding behaviour makes identifying a key interaction difficult. 

Previous protein elution studies, together with HEK 293 patterning trials using 

rationalised protein activation solutions, suggest a possible parylene-adhesion-

promoting role for vitronectin. Integrin αVβ3 was the first identified vitronectin 
                                                

§§§ Most cell lines were plated at a density of 5 ✕ 104 cells/mL as a 2 mL suspension. Preparation 
protocols for anterior pituitary cells and GSC cells generated lower numbers of cells which 
necessitated plating at a different density directly on-chip. 
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receptor. It is now clear, however, that vitronectin is able to bind to a number of 

other integrins (including α2bβ3, α8β1, αVβ5, and αVβ1). αVβ3 is also a particularly 

promiscuous integrin and is known to bind fibrinogen, fibronectin, von Willebrand’s 

factor, osteopontin, thrombospondin-1,  tenascin, nephronectin and prothrombin – as 

well as vitronectin (122). 

HBEC-5i cells showed the capacity to adhere to parylene and to pattern on-chip. 

Interestingly, HBEC-5i cells have also been shown to express the integrin αVβ3 

subunit (123), giving them the cell membrane machinery to engage with bound 

vitronectin. Analysis of the limited DNA micro-array data for HEK 293, N2a, and 

3T3-L1 cells (all of which have the capacity to adhere and grow on parylene) also 

showed relative up-expression of the ITGAV (integrin αV) gene in all three cell 

types. That 3T3 L1 cells express the complete αVβ3 integrin has also been reported 

in the literature, in the context of IGF-1 mediated cell growth experiments (124). 

Similarly, rat hepatic pericytes have been shown to express the integrins α5β1 and 

αVβ3 and can therefore also bind vitronectin (125). A literature search failed to 

provide any relevant data regarding the integrin profile of mHypoE-N7 cells. 

The GSC lines were derived from three human glial tumours: one from a 

histologically confirmed glioblastoma (named GSC-A) and two from 

oligodendrogliomas (GSC-B and GSC-C). Given the previously demonstrated 

increased expression of vitronectin receptors in glioblastoma cells (120), these stem-

like cells may too express vitronectin receptors. 

Collectively, the presence of a vitronectin-binding integrin in cells that adhere to 

parylene is consistent with, but certainly not confirmatory of, a role for vitronectin in 

mediating adhesion to parylene. To explore the hypothesis further, antibodies against 

vitronectin receptors could be tested as a means of impeding cell adhesion to 

parylene-C. 

On a separate note, acquiring the ability to pattern GSC, HBEC 5i, and pericytes 

provides an opportunity to investigate the behaviour of the cell lines themselves. For 

example, different parylene patterns might offer a chance to assess how (notoriously 
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invasive) GSC cells migrate and self organise in different, restrictive contexts. 

Similarly, the potential to incorporate on-chip microfluidic trenches opens the way to 

topographically targeted high throughput testing of potential chemotherapeutic 

agents. 

Considering repulsion from SiO2  

Repulsion from SiO2 domains is fundamental to effective patterning. The variability 

of this aspect of behaviour across cell types illustrates that repulsion is also a cell-

specific phenomenon. It was hypothesised that the presence of wholly denatured 

proteins on SiO2 domains (due to a surface dominated by free hydroxyl groups) may 

be key to enforcing cell repulsion. However, it is hard to reconcile this argument 

given that, of the range of cells tested, four showed indiscriminate adhesion (N2a, 

3T3 L1, N9, mHypoE-N7) and the capacity to adhere robustly to SiO2. One potential 

explanation is that such cell types are capable of secreting adhesion-mediating 

proteins that overwhelm an otherwise repulsive cue. 3T3 L1 pre-adipocytes, for 

example, secrete proteins in large quantities during differentiation (126). However, in 

these chip-patterning trials they were used in an undifferentiated state in which 

protein secretion is much less marked. Moreover, if cell-generated proteins were key 

to enabling adhesion on SiO2, it would be anticipated to take time, with cells 

spreading from regions of established parylene-adhesion onto SiO2 domains. In fact, 

this was not observed. Those cell types capable of adhering to SiO2 did so from the 

outset. An alternative explanation is that these cells possess CAMs capable of 

engaging with otherwise inaccessible SiO2-bound proteins, courtesy of a structurally 

different glycocalyx. Or, conversely, those cells that are repulsed from SiO2 may in 

fact possess a membrane component that induces repulsion. 

LUHMES neurons failed to adhere to either surface in either an undifferentiated or 

differentiated state. They found both surfaces highly repulsive. Even on the very rare 

occasion where LUHMES were seen to adhere, they showed no morphological 

evidence of differentiation into neurons. This suggests that LUHMES lack the 

requisite integrin to adhere to parylene-bound proteins. The same global repulsion 

was observed with ES-derived neurons in both the wild type and with MeCP2 null 
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(Rett syndrome) iterations. A search of the literature found no relevant information 

regarding the integrin or CAM profile for either of these cell types. 

The inability of both of these neuronal cell types to engage with parylene-C 

paralleled an inability to morphologically differentiate into neurons. This finding re-

iterates the intimation that neurons may require a glial – or other - cell type in order 

to adhere, pattern, and differentiate on-chip. This assertion is supported further by the 

observation that glial lineage GSC cells patterned very accurately. 

2.11.2 Insights from micro-array analysis 
Unfortunately, most of the cell lines tested had no publically available DNA micro-

array data. Appropriate DNA micro-array data was identified and consolidated only 

for HEK 293, 3T3 L1, and N2a cell types. Relevant patterning observations with 

respect to these four are: 

• All are capable of adhering to parylene-C. 

• HEK 293 and GSC-C are avidly repulsed by SiO2 domains. 

• 3T3 L1 cells are particularly SiO2-tolerant. 

• N2a cells also show modest growth on SiO2, though less marked. 

As such, comparison of expression data from this cohort is likely to have utility only 

in suggesting factors that enable or disable repulsion from SiO2. Either, 3T3 L1 cells 

express x (which enables adhesion to SiO2) whilst x is not expressed in HEK 293 or 

GSC-C, or 3T3 L1 lacks expression of y (which prevents adhesion to SiO2) whereas 

HEK 293 and GSC-CC do express y (thus ensuring repulsion from SiO2).  

However, data comparisons on this basis were fruitless and did not identify any 

viable candidate genes. The very limited number of datasets (relating to only four of 

the cell types tested) significantly restricted the usefulness of this approach. In future, 

running DNA micro-arrays or RNA-Seq specifically for this process, rather than 

relying on library data, might generate new findings. Candidates identified in this 

way might be validated in future by using siRNA mediated knockdown in cell types 

that pattern, or by over-expression of candidate genes in cells that normally do not 

pattern.  
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Importantly, this comparative DNA expression approach is also limited by the real 

possibility that cells may express an important adhesion-mediating receptor in 

response to being cultured on-chip. This would clearly not be reflected in the library 

control array datasets used here. 

2.12 Conclusions and new hypotheses 
The parylene-C:SiO2 platform is not uniformly effective and is entirely dependent 

upon cell type. This variation is to be expected, given the large differences in CAM 

expression across different cell types and cell lines. LUHMES neurons, in both an 

undifferentiated and pre-differentiated state, failed to pattern on-chip.  

Despite a systematic substrate and cell-centric exploration, the cell patterning 

mechanisms underpinning the parylene-C:SiO2 platform remain unclear. Parylene-

bound vitronectin may play a role in allowing cells to engage, thereby demanding the 

complimentary vitronectin receptor be present in the cell membrane.  

A future analysis of the patterning behaviours of a broader range of cell types, in 

combination with assessment of each cell’s proteome (with specific reference to 

CAM expression), may in due course allow identification of key cell membrane 

proteins which both facilitate parylene adhesion and, equally important, enable 

repulsion from SiO2. 
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Chapter 3 Enabling neuronal patterning on 
parylene-C:SiO2 
3.1 Introduction 
Despite the systematic approach described above, there remains a persisting lack of 

understanding regarding the mechanism of cell patterning on parylene-C:SiO2. In the 

context of this uncertainty, two different approaches were taken in an effort to 

achieve LUHMES neuronal patterning. 

3.1.1 Strategies to achieve isolated LUHMES patterning 
Given the failure to pattern LUHMES using the established protocol, and the 

observation that HEK 293 patterning behaviour could be altered so significantly 

through modification of the chip preparation protocol, the impact of similar 

alterations on LUHMES behaviour was explored. Specific protocol modifications 

were: 

• Exclusion of the piranha etch and/or serum activation stages.  

• Using simplified activation solutions of either fibronectin or vitronectin or 

poly-L-ornithine alone**** , or fibronectin or vitronectin in combination with 

BSA, instead of serum. 

• Using reduced concentrations of serum for chip activation, hypothesising that 

a potential repulsive constituent might be less overwhelming to LUHMES in 

lower concentrations. 

3.1.2 A co-culture hypothesis to achieve neuronal adhesion 
A co-culture approach was inspired by (a) the recognition that neurons in vivo exist 

in very close proximity to glia, (b) the prior successful patterning of primary 

hippocampal cells (predominantly glia, with some neurons) (91) (100), and (c) the 

                                                

**** Standard culture protocols for the maintenance of LUHMES neurons demand the use of culture 
vessels pre-treated with a combination of fibronectin and poly-L-ornithine, in order to promote 
healthy cell adhesion and proliferation. 
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finding that glial lineage GSC lines patterned extremely accurately on the parylene-

C:SiO2 platform (see Figure 2-17). 

Also relevant is the recognition of extensive glia-neuron interactions that mediate 

neurodevelopment (127). For example, if glia are ablated during early neuronal 

growth, axon development is frequently found to stall (128). This suggests a role for 

glia in assisting neuronal axogenesis and is supported by the observation that PNS 

glia appear to promote expression of Futsch (a microtubule-associated protein 

important in extension of the axon) (129). These findings are pertinent as regards the 

need for undifferentiated LUHMES to morphologically differentiate, evidence of 

which was conspicuously absent for LUHMES on the very rare occasion that they 

adhered to parylene-C areas. Collectively, this thinking led to the idea of using a 

different, pre-patterned cell type to act as a ‘pseudo-glial’ cellular template for 

subsequent culture of neurons (see Figure 3-1). 

HEK 293 cells were identified as the initial candidate for template cell, due to their 

robust patterning phenotype and relative ease of use.  Being demonstrably non-glial, 

this also raises the interesting question of whether a supporting cell template need 

necessarily be of specific glial phenotype in order to enable adhesion and/or 

differentiation of LUHMES neurons. 

Key questions:  

1. Will LUHMES neurons adhere secondarily to a non-glial pre-patterned HEK 

293 cell template layer? 

2. If so, do they show morphological evidence of differentiation despite the 

absence of a glial cell type? 

3.1.3 Optimising a ‘pseudo-glial’ template cell 
Should the co-culture concept prove effective in principle, several potential issues 

regarding the relationship between pre-patterned cell and LUHMES neurons warrant 

consideration. Differentiated LUHMES are post-mitotic whereas HEK 293 cells 

remain proliferative with a rapid doubling time. This would inevitably lead to 

overgrowth of the underlying pre-patterned HEK 293 cell layer and potentially 



Patterning neuronal networks on parylene-C:SiO2 

Chapter 3 Enabling neuronal patterning   111 

undermine patterning, should it be found to occur. In anticipation of this problem, 

methods to retard or arrest HEK 293 growth were considered. One method identified 

involves the use of citrinin, a nephrotoxic mycotoxin, which disrupts microtubule 

function and has been used to induce cell cycle arrest in HEK 293 cells (130).  

Key questions:  

1. Can HEK 293 cell growth be retarded or arrested through exposure to 

citrinin? 

2. Do citrinin-treated HEK 293 cells continue to pattern on-chip?  
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Figure 3-1 Illustration of the co-culture hypothesis  

 

Cartoon illustration of the co-culture hypothesis, utilising HEK 293 cells as template layer. 
A: Region of chip after piranha and serum activation. B: After plating, and successful 
patterning, of HEK 293 cell suspension. C: Hypothesised secondary adhesion of 
undifferentiated LUHMES to the HEK 293 cellular template. D: Potential outgrowth of 
neurites, suggestive of morphological neuronal differentiation.   
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3.1.4 Human GSC as a patterning template 
After HEK 293 cells, the next clear candidate template cell is the GSC group. These 

cells patterned accurately and are of human glial origin. In addition, their slightly 

slower growth profile is more favourable than that of HEK 293 cells. However, their 

poorly understood phenotype, tumour origin, and complex culture protocols are 

important less favourable characteristics. Despite a slightly longer doubling time, 

GSC proliferation rates would still be anticipated to quickly overwhelm any 

theoretical, subsequent, LUHMES neuronal patterning. In order to reduce cell 

turnover rate, exposure to the anti-mitotic agent cytosine-D-arabinofuranoside (Ara-

C) (131) was explored as a potential means of decreasing the proliferation rates of 

GSCs. Ara-C, after conversion into cytosine arabinoside triphosphate, interferes with 

DNA synthesis and holds cells in the S phase (during which DNA is replicated). As a 

result, rapidly dividing cells are most affected (this being the rationale behind its use 

as a chemotherapeutic agent).  

Key questions:  

1. Will LUHMES neurons secondarily adhere to a pre-patterned ‘glial’ GSC 

template layer? 

2. If so, do they show morphological evidence of differentiation? 

3. Can GSC growth be retarded/arrested by adding Ara-C to growth media? 

4. Do Ara-C-treated GSCs continue to pattern effectively on-chip? 

3.1.5 Murine ES-derived neurons in co-culture 
To explore a broader applicability of the co-culture hypothesis, an alternative (non 

human) neuronal cell type was tested in place of LUHMES. Murine ES-derived 

neurons (which were previously repulsed by both substrates when cultured in 

isolation, see Figure 2-17) were co-cultured after prior HEK 293 cell plating.  

Key questions: 

1. Will murine ES-derived neurons secondarily adhere to a pre-patterned HEK 

293 template layer, thereby illustrating proof of co-culture concept with 

neurons from a different species? 
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2. If so, do they show morphological evidence of differentiation? 
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3.2 Methods 
All experiments in this chapter utilised chip 1, with its three iterations of circular 

parylene nodes with a centred ‘cross-hair’ (node diameters 250 µm, 100 µm, and 

50µm, orthogonally-orientated cross hairs measuring 450 µm in length for largest 

node size and 300 µm for smaller nodes) with overall chip dimension of 7.7 mm × 

5.9 mm. 

3.2.1 LUHMES in isolation, with protocol modifications 
Impact of excluding piranha and/or serum activation 

Undifferentiated LUHMES were plated as a suspension of 5✕104 cells/mL in 

proliferation media on chips prepared as follows: 

• No piranha treatment, no serum incubation (instead incubated overnight at 

37° C in de-ionised distilled H2O). 

• Piranha acid treatment followed by no serum incubation (instead incubated 

overnight at 37° C in deionised distilled H2O). 

• Piranha acid treatment followed by standard serum incubation at 37° C. 

Simplified activation solutions in place of serum. 

Undifferentiated LUHMES were plated as a suspension of 5✕104 cells/mL on chips 

that underwent standard piranha acid exposure followed by overnight incubation at 

37 °C in the following alternative activation solutions:  

• BSA alone (0.3 mg/ml, 3 mg/ml, 30 mg/ml dissolved in HBSS, Invitrogen). 

• BSA with vitronectin (0.3 mg/ml, 3 mg/ml, 30 mg/ml BSA with 1 µg/ml 

vitronectin). 

• BSA and fibronectin (0.3 mg/ml, 3 mg/ml, 30 mg/ml BSA with 1 µg/ml 

fibronectin). 

• Vitronectin alone (1 µg/ml). 

• Fibronectin alone (1 µg/ml).  

• Poly-L-ornithine alone (50 µg/ml). 

• Deionised distilled H2O (control). 
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In all above experiments, cells were imaged live on day 3 in vitro using a Wild 

Heerbrugg (Switzerland) light microscope adapted for use with a Nikon Coolpix 

4500 digital camera using an MDC2 relay lens. Image J (version 1.44o, National 

Institute for Health, USA) was used for image analysis. PAI and SRI were measured 

in a minimum of 18 ROIs (with equal representation of each of the three node 

diameters present on the chip, and data pooled). Charted data is illustrated as mean ± 

SEM. The Kruskal-Wallis test was again used to compare patterning indices across 

multiple groups (see section 2.3.6 for rationale and calculation). Prism 5 for Mac OS 

X (GraphPad Prism Software Inc., California, USA) was used for statistical analyses. 

Impact of reduced concentration of serum 

Undifferentiated LUHMES were plated as a suspension of 5✕104 cells/mL in 

proliferation media on chips that had undergone standard piranha treatment followed 

by overnight incubation at 37 °C in FBS of concentration of 1%, 10%, and 100%. 

FBS was diluted as necessary in HBSS (Invitrogen). 

3.2.2 LUHMES in co-culture with pre-patterned HEK 293  
For all co-culture experiments, chips were prepared according to the standard piranha 

and serum incubation protocol (see 2.3.3). 

HEK 293 cells were applied to chips as a suspension of 5×104 cells/ml in growth 

media.  24 hours later, media was removed and chips were transferred to fresh 

culture well. A 40 µL droplet containing 120,000 pre-differentiated LUHMES was 

pipetted onto the chip surface. Chips were incubated at 37 °C for 30 minutes to allow 

settling of cells, followed by the addition of LUHMES differentiation media. Chips 

were imaged daily up to 6 days in vitro. 

HEK 293 growth retardation protocols 

Citrinin treatment:  

Standard HEK 293 growth media (DMEM with 10% FBS) was supplemented with 

citrinin (MP Biomedicals, Cambridge, UK) at a final concentration of 100 µM. The 

doubling time of un-patterned HEK 293 cells, growing in citrinin-doped media, was 
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assessed by daily measurement of percentage cell confluence. Secondly, citrinin-

treated HEK 293 cells were assessed for the capacity to pattern on chips (prepared 

according to the standard protocol).  

3.2.3 LUHMES in co-culture with pre-patterned GSCs 
A 50 µL droplet containing 10,000 GSC-A cells in suspension was pipetted onto chip 

surfaces. Chips were incubated for 30 minutes to allow cells to settle, followed by 

the addition of GSC maintenance media.  

72 hours later, maintenance media was removed and the chip was transferred to a 

fresh culture well. A 40 µL droplet containing 50,000 pre-differentiated LUHMES 

was pipetted onto the chip surface. Chips were then incubated at 37 °C for 30 mins, 

followed by addition of LUHMES differentiation media. These co-cultures were 

imaged alive up to 8 days in vitro, using a Wild Heerbrugg (Switzerland) light 

microscope adapted for use with a Nikon Coolpix 4500 digital camera using an 

MDC2 relay lens. 

GSC growth retardation protocols 

Growth retardation with Ara-C:  

Normal GSC growth media was supplemented with Ara-C (Sigma Aldrich, Missouri, 

USA) at a final concentration of 0 µM, 5 µM, or 10 µM. The morphology, 

behaviour, and doubling time of un-patterned GSC-C growing in ara-C-containing 

media was assessed by daily imaging.  

3.2.4 ES-derived neurons in co-culture with HEK 293 
HEK 293 cells were applied to chips (prepared according to the standard 

piranha/serum protocol) as a suspension of 5×104 cells/ml in growth media.  48 hours 

later, media was removed and chips were transferred to fresh culture well. A 2 ml 

suspension (of concentration 5✕104 wild type ES-derived neurons/mL) was added to 

each well. For preparation protocol, see 2.9.3. Chips were imaged daily up to 6 days 

in vitro. 

  



Patterning neuronal networks on parylene-C:SiO2 

Chapter 3 Enabling neuronal patterning   118 

3.3 Results 
3.3.1 LUHMES in isolation, with protocol modifications 
None of the protocol modifications enabled LUHMES to pattern appropriately on 

parylene-C:SiO2. 

Impact of excluding piranha and/or serum treatment 

As shown in Figure 3-2, PAI remains almost zero and SRI remains almost 1 

(reflecting persisting global repulsion from the chip surface) regardless of the 

exclusion or inclusion of piranha or serum treatment (UD LUHMES no piranha, H2O 

incubation: PAI 0.01±0.0, SRI 0.97±0.01; piranha treated, H2O incubation: PAI 

0.05±0.01, SRI 0.93±0.01; piranha treated, serum incubation: PAI 0.02±0.01, SRI 

1.0±0.0;). 

Impact of reduced concentration of serum 

Incubation in serum with concentration 10% or 100% resulted in similar, dominant 

cell repulsion from both parylene-C and SiO2 (UD LUHMES piranha treated, 100% 

serum incubation: PAI 0.02±0.01, SRI 1.0±0.0; UD LUHMES piranha treated, 10% 

serum incubation: PAI 0.04±0.02, SRI 0.99±0.0). Incubation in serum diluted to a 

concentration of 1% resulted in attenuated repulsion from SiO2, reflected by a 

significant fall in SRI (see Figure 3-3, UD LUHMES piranha treated, 1% serum 

incubation: PAI 0.0±0.0, SRI 0.16±0.01). In all instances, however, there was 

minimal or no cell adhesion to parylene domains.  
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Figure 3-2 Impact of exclusion of piranha acid and/or serum incubation stages 
on LUHMES adhesion. 

 

The impact of excluding piranha acid and/or serum incubation stages upon downstream 
LUHMES adhesion. None of the chip preparation combinations trialled enabled cell 
patterning. A: PAI, parylene-C adhesion index; B: SRI, SiO2 repulsion index. Data 
illustrated as mean±SEM. Kruskal-Wallis test used to compare groups, * denotes P<0.05, ** 
P<0.001. For each preparation, 27 ROIs from 3 independent chips were assessed. 
 

Figure 3-3 LUHMES adhesion indices after activation with serum of differing 
concentrations 

 

LUHMES adhesion indices using serum concentrations of 1%, 10%, and 100%. Serum 
concentration of 10% or 100% results in similar, dominant cell repulsion from both 
parylene-C and SiO2. Incubation in 1% serum results in attenuated repulsion from SiO2, but 
persisting lack of adhesion to parylene-C. A: PAI, parylene-C adhesion index; B: SRI, SiO2 

repulsion index. Data illustrated as mean±SEM. Kruskal-Wallis test used to compare 
groups, * denotes P<0.05, ** P<0.001. For each serum concentration, 27 ROIs from 3 
independent chips were assessed.  
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Rationalized protein activation solutions in place of serum. 

PAI remained almost zero for all simplified activation solutions tested, other than for 

PLO-treated chips. Similarly, SRI remained almost 1 for all experimental activation 

solutions other than PLO (BSA 0.3 mg/ml: PAI 0.00±0.0, SRI 1.0±0.0, BSA 3 

mg/ml: PAI 0.00±0.0, SRI 1.0±0.0, BSA 30 mg/ml: PAI 0.00±0.0, SRI 1.0±0.0, BSA 

0.3 mg/ml + vitronectin 1µg/ml: PAI 0.01±0.0, SRI 0.99±0.0, BSA 3 mg/ml + 

vitronectin 1µg/ml: PAI 0.00±0.0, SRI 0.99±0.0, BSA 30 mg/ml + vitronectin 

1µg/ml: PAI 0.00±0.0, SRI 1.0±0.0, BSA 0.3 mg/ml + fibronectin 1µg/ml: PAI 

0.01±0.0, SRI 0.99±0.0, BSA 3 mg/ml + fibronectin 1µg/ml: PAI 0.00±0.0, SRI 

1.0±0.0, BSA 30 mg/ml + fibronectin 1µg/ml: PAI 0.00±0.0, SRI 1.0±0.0, 

vitronectin 1µg/ml alone: PAI 0.03±0.01, SRI 0.97±0.0, fibronectin 1µg/ml alone: 

PAI 0.02±0.01, SRI 0.98±0.0, PLO 50 µL/ml alone: PAI 0.61±0.05, SRI 0.42±0.04, 

see Figure 3-4).  

However, in the context of activation with either vitronectin alone or fibronectin 

alone, there were occasional examples of LUHMES adhering to SiO2 domains (in 

very small numbers) and differentiating (Figure 3-5). This contrasted with all BSA 

combinations, in which only cell debris could be seen on-chip. Incubation with PLO 

resulted in extensive but indiscriminate cell adhesion to both parylene-C and SiO2 

domains. 
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Figure 3-4 LUHMES adhesion after chip activation with rationalised protein 
activation solutions 

 

PAI and SRI for UD LUHMES plated on chips incubated with experimental protein 
activation solutions. Activation with PLO alone resulted in PAI significantly greater and SRI 
significantly lower than for all other activation solutions. BSA: bovine serum albumin, Vn: 
vitronectin, Fn: fibronectin, PLO: poly-L-ornithine, PAI: parylene-C adhesion index, SRI: 
SiO2 repulsion index. Data is illustrated as mean±SEM. * denotes P<0.05, ** P<0.001. For 
each protein solution, 27 ROIs from 3 independent chips were assessed. 
 

Figure 3-5 Photomicrograph of LUHMES growth on a fibronectin-activated 
chip 

 

Chip prepared with standard piranha acid treatment followed by incubation with fibronectin 
(concentration 1 µl/ml). Plated with UD LUHMES in differentiation media and imaged after 
3DIV. Note (amongst other cell debris) very occasional adhesion of viable LUHMES cells, 
with morphological differentiation as evidenced by projection of neurites onto surrounding 
SiO2. Node diameter 100 µm.  

BS
A 

0.
3

BS
A 

3
BS

A 
30

BS
A 

0.
3 

+ 
Vn

BS
A 

3 
+ 

Vn
BS

A 
30

 +
 V

n
BS

A 
0.

3 
+ 

Fn
BS

A 
3 

+ 
Fn

BS
A 

30
 +

 F
n

Vn
 a

lo
ne

Fn
 a

lo
ne

PL
O

 a
lo

ne

0.0

0.5

1.0

PA
I **

BS
A 

0.
3

BS
A 

3
BS

A 
30

BS
A 

0.
3 

+ 
Vn

BS
A 

3 
+ 

Vn
BS

A 
30

 +
 V

n
BS

A 
0.

3 
+ 

Fn
BS

A 
3 

+ 
Fn

BS
A 

30
 +

 F
n

Vn
 a

lo
ne

Fn
 a

lo
ne

PL
O

 a
lo

ne

0.0

0.5

1.0

SR
I

**



Patterning neuronal networks on parylene-C:SiO2 

Chapter 3 Enabling neuronal patterning   122 

3.3.2 LUHMES in co-culture with pre-patterned HEK 293 
When pre-seeded with HEK 293 cells, secondarily plated LUHMES selectively 

adhere to patterned HEK 293 cell clusters. Figure 3-6 illustrates HEK 293 cells alone 

(sections A and B) and following secondary LUHMES co-culture (sections C-F). 

Pre-seeded HEK 293 cells pattern accurately, adhering only to parylene-C domains. 

Secondarily plated pre-differentiated LUHMES adhered only to HEK 293 cell 

clusters.  

Importantly, these adherent neurons also showed morphological signs of 

differentiation, with neurites extending from parylene nodes to explore the 

surrounding SiO2 environment. In some instances, neurites were seen to connect with 

adjacent cell clusters (see Figure 3-6E). After 4 to 5 days in vitro, however, cultures 

became unstable due to continued HEK 293 cell proliferation and cell lift-off. As 

such, HEK 293 cells outgrew their parylene nodes (as previously observed when 

cultured in isolation, see Figure 2-6). By 5 days post LUHMES plating, there was 

widespread culture lift-off from the chip surface.  
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Figure 3-6 LUHMES in co-culture with pre-patterned HEK 293 cells.  

 

A & B: HEK 293 alone after 1DIV, on 250 µm diameter and 100 µm diameter nodes 
respectively. C: Two days after the addition of pre-differentiated LUHMES neurons, three 
neurites can be seen exploring the surrounding SiO2. D: A 250µm diameter node following 
sequential co-culture with a single neurite seen extending from the cell cluster. E: Example 
of neurites connecting with adjacent nodes. Sequential daily imaging illustrates the 
continued proliferation of HEK 293 cells on parylene. F: A 250µm diameter node in which a 
higher density of LUHMES have successfully adhered and differentiated. Scale bar 150 µm.  
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Retarding HEK 293 growth with citrinin 

When HEK 293 cells were grown on un-patterned polystyrene in media 

supplemented with 100 µM citrinin, their doubling time increased from 24.8 h to 

63.4 h (see Figure 3-7). Citrinin-treated HEK 293 cells retained the ability to pattern 

effectively on-chip (see Figure 3-8). However, despite this reduction in doubling 

time, overgrowth was still pronounced by day 6 in vitro. 

3.3.3 LUHMES in co-culture with GSC-A  
When LUHMES were co-cultured on pre-patterned GSC-A, they adhered to the pre-

patterned GSC-A cells and projected neurites into surrounding SiO2. Similar to HEK 

293 co-culture findings, they illustrated the capacity to extend neurites onto adjacent 

SiO2 and, in some instances, connected with adjacent nodes (see Figure 3-9). 

Retarding growth of GSC-A with Ara-C 

Addition of Ara-C to GSC growth media resulted in a decreased rate of cell growth 

as measured by % confluence (see Figure 3-10). However, adherent cells developed 

abnormal morphology and large amounts of free-floating cell debris was noted. 

Crucially, when Ara-C treated GSC-A were re-plated onto chips, they failed to 

adhere nor pattern on-chip. 

3.3.4 ES-derived neurons in co-culture with pre-patterned 
HEK 293 

Akin to LUHMES co-cultured with HEK 293 cells, ES-derived neurons also showed 

the capacity to adhere to pre-patterned HEK 293 clusters. Furthermore, examples of 

neurites extending onto SiO2 were also noted. On occasions, direct neurite 

connection between adjacent nodes was again observed (see Figure 3-11).  



Patterning neuronal networks on parylene-C:SiO2 

Chapter 3 Enabling neuronal patterning   125 

Figure 3-7 Impact of citrinin on HEK 293 cell proliferation rates 

 

Impact of citrinin on HEK 293 cell proliferation rates, as measured by % confluence. A: 
Standard growth media. B: Standard media supplemented with 100 µM citrinin. 
Photomicrographs illustrate representative culture examples at 3 DIV; scale bar 100 µM; 
CTN, citrinin; DIV, days in vitro. Data is illustrated as mean±SEM. At each time point, 6 
ROI (of surface area 400 × 400 µM) were assessed. 

Figure 3-8 Citrinin-treated HEK 293 cells  

 

Citrinin-treated HEK 293 cells imaged after 6 days in vitro. Citrinin-treated HEK 293 cells 
pattern accurately but continue to proliferate beyond the margins of the parylene nodes. 
Area depicted shows six 100 µm diameter nodes with ‘cross hairs’ measuring 300 µm, total 
region shown measures 800 µm × 1200 µm.  
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Figure 3-9 LUHMES in co-culture with pre-patterned GSC-A cells.  

 

A: GSC-A alone on the smallest node design, pre-LUHMES. B: GSC-A and LUHMES in co-
culture with neurites evident extending from cell clusters (after 3DIV). C: GSC-A alone on 
the largest node design, pre-LUHMES. D: GSC-A and LUHMES in co-culture with neurites 
exploring surrounding SiO2 and occasionally connecting with adjacent nodes (after 3DIV). 
Scale bar 150 µm.  
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Figure 3-10 Effect of ara-C on GSC-A growth 

 

Growth profile of un-patterned GSC-A, as measured by % confluence, grown (from left to 
right) in: normal media, 5 µM Ara-C, and 10 µM Ara-C. Data is illustrated as mean±SEM. 
At each time point, 4 ROI (of surface area 400 × 400 µM) were assessed. 

 

Figure 3-11 Wild type ES-derived neurons in co-culture with HEK 293 cells.  

 

Example of WT ES-derived neurons co-cultured with HEK 293 cells. HEK 293 clusters have 
out-grown their underlying parylene nodes. However, occasional neurites (black arrows) 
are seen extending between some cell clusters, illustrating that ES-derived neurons have 
adhered and differentiated. Imaged at 4DIV. Scale bar 150 µm.   
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3.4 Discussion 
3.4.1 Failure to achieve adhesion of LUHMES in isolation 
Excluding piranha acid and/or serum incubation did not enable undifferentiated 

LUHMES to adhere to either parylene or SiO2 domains to any meaningful extent, 

though there were downstream differences in adhesion indices between groups (see 

Figure 3-2). PAI, although statistically different across groups, remained close to 0 

for all protocols tested (no piranha acid followed by water incubation, piranha acid 

followed by water incubation, or piranha acid followed by serum incubation). SRI 

remained high for all three trials. As previously discussed, absolute repulsion from 

SiO2 is crucial. It was only with the combination of piranha acid treatment followed 

by serum incubation that the SRI was driven to 1, reflecting truly robust cell 

repulsion. This echoes a similar finding with HEK 293 cells, where repulsion from 

SiO2 regions is achieved only with piranha acid treatment followed by serum 

incubation.  

Reducing the concentration of serum used to activate chips did not facilitate 

LUHMES patterning. Serum concentrations of 10% and 100% resulted in similar 

global repulsion from both parylene-C and SiO2 regions. Reducing serum 

concentration to 1% interestingly resulted in failure of repulsion from SiO2 (with SRI 

falling to 0.16±0.01) but with persisting repulsion from parylene (PAI 0.0±0.0). One 

explanation is that, when diluted to 1%, protein adhesion and packing on SiO2 is 

such that membrane-bound CAMs are able to engage, therefore allowing a degree of 

adhesion. An alternative explanation is that key repulsive component(s) in serum are 

so depleted as to fail to enforce repulsion. As regards parylene adhesion, LUHMES 

likely do not express the requisite parylene-adhesion mediating CAM(s). Therefore, 

regardless of serum concentration, LUHMES cannot engage with parylene-C 

regions.  

Simplified protein activation solutions were similarly unable to induce any cell 

patterning. All concentrations of BSA alone or in combination with vitronectin or 

fibronectin resulted in a globally repulsive chip surface with PAI ~1 and SRI ~1. 

This contrasts with HEK 293 cell behaviour, where adhesion indices could be altered 
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more extensively by use of rationalised protein solutions. When activated with 

fibronectin or vitronectin alone, adhesion remained poor on both surfaces. However, 

there were occasional instances of LUHMES cell adhesion. Moreover, these adherent 

cells showed morphological signs of differentiation, with neurites extending out onto 

the chip surface. These neurites showed no apparent influence from the two different 

substrates, nor from surface topography, apparently growing at random on the chip 

surface. This illustrates that pure vitronectin or fibronectin, when not in competition 

with other serum proteins, is capable of coating the chip surface and enabling 

occasional LUHMES adhesion. Furthermore, this infers the presence of CAMs 

capable of engaging, all be it in small numbers, with vitronectin or fibronectin. This 

conflicts somewhat with the theory that the absence of a vitronectin receptor in 

LUHMES is responsible for their inability to bind to parylene-C regions, though a 

very low receptor density of the suitable integrin could explain the finding. 

Poly-L-ornithine (PLO) is a synthetic amino acid chain used widely as a coating to 

enhance cell adhesion to plastic and glassware. Incubation of chips with PLO 

resulted in pronounced, but undiscerning, cell adhesion to both surfaces; likely due to 

a uniform coating of PLO on both parylene-C and SiO2.  

In summary, none of the alternative chip preparation and activation protocols tested 

enabled LUHMES to pattern effectively on-chip. For LUHMES, the patterning 

protocol fulfils the need to repulse from SiO2 but fails to enable adhesion to 

parylene-C. 

3.4.2 Achieving adhesion and differentiation by co-culture  
LUHMES in co-culture with pre-patterned HEK 293 

With standard chip preparation protocols, isolated LUHMES do not pattern (either in 

an undifferentiated or differentiated state). On the infrequent occasion in which cells 

are seen to adhere, they do not manifest morphological changes suggestive of 

differentiation (Figure 2-17). This behaviour contrasts starkly with the previous 

accurate patterning of primary murine hippocampal extract (7,8,9), suggesting that 

the presence of glia in these preparations may be key to enabling the neuronal 

component to pattern. Hypothesizing that a non-glial, but accurate-patterning, cell 
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type might fulfil a role analogous to glia, LUHMES were first co-cultured with pre-

patterned HEK 293 cells.  

When pre-differentiated LUHMES were secondarily cultured on HEK 293-patterned 

chips, LUHMES selectively adhered to the HEK 293 cell clusters. Neurites projected 

from adherent LUHMES, demonstrating morphological neuronal differentiation, and 

were seen to explore the surrounding SiO2 surface. In some instances, extending 

neurites united with nearby cell clusters. HEK 293 cells enabled LUHMES to adhere 

selectively to the chip, facilitating neuronal patterning by providing a physical point 

of attachment. In addition, this cell:cell interaction represents an environment in 

which LUHMES differentiation was able to proceed, where this was not possible in 

isolation.  

As anticipated, HEK 293 proliferation (in the face of post-mitotic arrested LUHMES 

growth) was troublesome. HEK 293 cells rapidly outgrew the pro-adhesive parylene 

nodes. As a result, 5 to 6 days after the addition of LUHMES, co-cultures were noted 

to lift-off from the chip and float free in growth media. The combination of HEK 293 

overgrowth, and the presumed inter-node tension seen in the context of neurite-

linked cell clusters, tended to cause widespread cell lift off and network obliteration 

by day 7 (at least) post addition of LUHMES. Critically, this is an insufficient time 

window for the maturation of neurons and establishment of spontaneous electrical 

activity in the network. In addition, it was not possible to fix these cultures for 

fluorescence microscopy due to network fragility. Given that spontaneous electrical 

activity in cultured neuronal networks only emerges after 10-12 days in vitro, it is 

key to maintain cultures for much longer periods than that allowed by HEK 293 cells 

in standard growth conditions. 

Citrinin was found to be somewhat effective in slowing HEK 293 proliferation. 

Moreover, HEK 293 cells treated with citrinin maintained the capacity to pattern 

reliably on-chip. However, the effect was of no great practical significance as despite 

a modest reduction in proliferation rates, HEK 293 clusters persisted in overgrowing 

parylene by day 7 in vitro. As a consequence, citrinin-treated HEK 293 cells were 

not trialled with LUHMES. 
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LUHMES in co-culture with GSC-A 

Given the successful deployment of HEK 293 cells as a glial analogue, the GSC-A 

line was next assessed as a potential co-culture partner. Despite their genetic 

aberrations, and evident ineligibility for theoretical in vivo downstream uses, these 

cultures are more readily available than primary human astrocytes and are easier to 

work with at this proof-of-concept stage. The slower growth profile of GSCs also 

potentially mitigates somewhat against problematic cell overgrowth. 

All three GSC lines patterned accurately, comparable to HEK 293 cells (see Figure 

2-17). Using GSC-A to pre-pattern the parylene template, successful co-culture with 

LUHMES was again achieved. Similar to observations from HEK 293 co-culture, 

LUHMES adhered to pre-patterned GSC-A clusters and neurites were seen to project 

out onto surrounding SiO2. Cultures remained stable for slightly longer. However, 

template cell overgrowth remained problematic with cell lift-off becoming evident 7 

to 8 days after the addition of LUHMES. 

ES-derived neurons in co-culture with HEK 293 cells 

The above work illustrates a means of dictating the point of adhesion of LUHMES 

neurons on-chip, using an intermediate template cell of both non-glial (HEK 293) 

and glial origin (GSC-A). To see whether this behaviour is LUHMES-specific, 

similar co-culture experiments were performed using a different neuronal cell type 

(ES-derived murine neurons). These cells represent both a different source and 

different species of neuron.  

Due to logistical complexities of timing the ES-neuron preparation with HEK 293 

cell culture, ES neurons were plated on chips upon which HEK 293 cells had already 

proliferated to a greater degree of confluence than prior experiments (for 48 hours 

compared with 24 hours). Additionally, as a result of being applied as a suspension, 

ES-derived neurons were plated at a significantly lower seeding density. 

Nevertheless, in this context ES-neurons were also seen to adhere to HEK 293 

clusters with neurites seen extending from cell clusters. This finding suggests that the 

co-culture approach is more widely applicable and is not merely LUHMES-specific.  



Patterning neuronal networks on parylene-C:SiO2 

Chapter 3 Enabling neuronal patterning   132 

3.4.3 Resolving neuron from template cell and the challenge 
of controlling neurites 

Behavioural differences of neurons versus template cell 

The results illustrated above involve light microscopy of live co-cultures. There is 

therefore no capacity to fully resolve LUHMES neurons from underlying template 

cell. The presence of neurites is the key factor in confirming the presence and 

adherence of LUHMES cells, also illustrating the capacity for cells to 

morphologically differentiate. However, it is important to better resolve the two cell 

types. Differential immunofluorescence labelling is one option, provided that 

cultures remain stable enough for fixation procedures. Theoretically, neuron specific 

β-3 tubulin is a good marker for demarcating LUHMES (101), whilst glial fibrillary 

acidic protein (GFAP) may be appropriate for GSC lines. With improved resolution, 

it should become possible to better define the interface between template cell and 

differentiating LUHMES. 

Furthermore, there is as yet no functional data regarding the behaviour of patterned 

neurons. It is important to ensure that patterned neurons are capable of becoming 

spontaneously electrically active and of forming synapses with adjacent cells, in the 

context of this artificial on-chip network. The impact of their relationship with the 

underlying ‘glial’ template is also undefined. Though enabling targeted adhesion and 

neuronal differentiation, the current constructs may in other ways be counter-

productive to functional neuronal network function.  

Achieving control of neurite behaviour 

Co-culture work illustrated that LUHMES neurons adhere and differentiate when 

cultured on a template cell line of either HEK 293 cells or GSC-A. However, the 

forces governing the behaviour (especially direction of growth) of neurites are as yet 

unexplored. Key questions involve the potential impact of parylene-C itself (possibly 

capable of imparting a haptotactic guidance cue on advancing neurites) or whether a 

secreted chemotactic agent (akin to netrin, for example) is the dominant factor 

guiding neurite trajectory. Chapter 4 explores factors that influence neurite 

directionality, utilising the different domains on chip 1 to identify changes in 
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network configuration that are induced by different parylene-C node designs. Only 

with such factors identified, along with a means of promoting long-term network 

survival, will better-defined and polarised neuronal networks become a viable 

prospect.  

3.5 Conclusions 
Efforts to induce LUHMES to pattern in isolation, by altering chip preparation 

protocols, were unsuccessful. LUHMES can, however, adhere and differentiate in a 

co-culture environment. In the context of an intermediate cell type, LUHMES adhere 

and show signs of morphological differentiation, as evidenced by projection of 

neurites on-chip.  

HEK 293 cells fulfil a template cell role and, in doing so, perform a function 

analogous to glia. However, HEK 293 overgrowth (and ultimately cell lift-off) 

compromise long-term culture viability. Human GSC-A also enables spatially 

defined secondary adhesion of human LUHMES neurons and morphological 

differentiation. Similar co-culture behaviour was observed for murine ES-derived 

neurons co-cultured with pre-patterned HEK 293. This suggests a broader, cross-

species, principle in action. 
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Chapter 4 Refining network architecture 
4.1 Introduction 
A sequential co-culture approach has enabled targeted adhesion of LUHMES to pre-

patterned template cells, with subsequent morphological evidence of neuronal 

differentiation. Important next questions are: 

1. Can neurite outgrowth trajectory now be manipulated so as to gain better 

control of network topography and potentially even neuronal polarity? 

2. Can LUHMES neurons be better resolved from the underlying template 

layer? 

4.1.1 Controlling neurite directionality 
Equipped with a method to dictate the location of adhesion of neuronal cell bodies, 

the next challenge is to control the direction of growth of neuronal processes. For the 

creation of networks capable of meaningful interrogation, neurite growth direction, 

connectivity, and polarity needs to be controllable. Chip 1 was designed with arrays 

of nodes of three different diameters, all with orthogonally arranged ‘spokes’ 

extending at 0º, 90º, 180º, and 270º (see Figure 4-1). This provides the opportunity to 

assess how size and spacing of parylene nodes impacts neurite organisation. 

The ‘spoke’ projections were included as a potential haptotactic cue, intended to 

guide growing neurites along the parylene track. With co-culture protocols optimised 

(with respect to cell plating density and timing), repeat experiments were performed 

using HEK 293 cells and pre-differentiated LUHMES neurons, to specifically assess 

how neurite directionality varies according to underlying parylene node size and 

configuration. The primary alternative to haptotactic guidance is a chemotactic cue, 

with neurites growing towards (or perhaps away from) a chemotactic gradient. As 

such, a diffusible compound secreted from HEK 293/LUHMES cell clusters may be 

the dominant signal governing neurite growth.  

To challenge these two alternative guidance mechanisms, a third chip was designed 

and fabricated (see Figure 4-2). Here, parylene node morphology was varied once 

again; with either a single or double spoke, or a single or double teardrop design. 
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Nodes were positioned such that those with a double spoke or double teardrop 

morphology ‘aimed’ towards the nearest neighbouring node, whilst single spoke and 

single teardrop nodes instead aimed towards a more distant node.  

If a chemotactic cue (originating from nearby cell clusters) dominates, it is 

hypothesized that neurites will tend to grow towards the nearest neighbouring node 

despite the presence of a parylene track directing growth in a different direction. 

Identifying the dominant neurite guidance mechanism theoretically opens the door to 

manipulation of both network topography and potentially network polarity, a key 

goal. 

Key questions: 

1. Beyond directing the attachment of neuronal cell bodies (via an intermediate 

template cell) can parylene haptotactically influence the direction of growth 

of extending neurites during differentiation? 

2. If not under haptotactic control, what rules instead dominate neurite 

arrangement and direction? Can these be extrapolated and utilized to enhance 

topographic control of the network?  
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Figure 4-1 Schematic illustration of node configuration on chip 1 

 

Node diameters are 250 µm, 100 µm, and 50 µm with orthogonally-orientated ‘spokes’ 
measuring 100 µm in length for the large and medium sized nodes and 125 µm for smallest 
node). Overall chip dimensions are 7.7 mm × 5.9 mm. A distance of 100 µm separates the 
end of one cross hair from the beginning of the next in all cases.  

Figure 4-2 Schematic illustration of node configuration on chip 3-1 

 

 

Four different node morphologies are shown, with identical inter-node spacing. Node 
diameter is 50 µm for all, with either a single or double spoke (20 µm long and 2 µm wide) 
or a single or double teardrop (20 µm long, tapering). Nearest neighbouring nodes are 
positioned at 45° and 135° with respect to one another.  For single spoke/single teardrop 
nodes the intended (haptotactic) target is orientated at 90°, towards a node 400 µm away. 
For double spoke/double teardrop nodes, intended growth direction is towards the nearest 
nodes, 247.5 µm away.  
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4.1.2 Resolving neurons from the template cell 
Behavioural differences 

Several downstream optical methods to assess the electrophysiological activity of 

patterned neurons rely on being able to resolve exactly where neuronal material 

(rather than template cell) resides. The co-culture process means that parylene nodes 

contain a combination of both template cell and differentiating LUHMES neurons. 

However, SiO2 regions between nodes – where no prior attachment of template cell 

occurs – ought to contain neurites only. 

To further explore this perceived behavioural difference between neuron and pre-

patterned glial cell, another parylene node configuration was created (constituting a 

separate region of chip 3) with parylene tracks extending between adjacent nodes 

(see Figure 4-3). If GSC-A template cells are unable to connect with adjacent nodes, 

unless provided with this parylene track, support is added to the theory that any cell 

matter that is capable of doing so is neuronal. 

Immunofluorescence labelling 

Light microscopy of co-cultures confirmed the presence of adherent neurons by the 

visualisation of neurites extending onto SiO2. Unfortunately, HEK 293 co-cultures 

proved difficult to fix for immunofluorescence microscopy, due to cell lift-off 

obliterating cultures either before or during fixation. However, GSC-A/LUHMES co-

cultures appeared more robust and may tolerate fixation procedures.  

Immunofluorescence techniques offer the possibility of labelling the two different 

cell types. Neuron-specific β-3 tubulin has previously been used to reliably stain 

LUHMES neurons (101), as shown in Figure 4-4. This marker labels a microtubule 

element of the neuronal cytoskeleton. As such, β-3 tubulin was assessed as a means 

of labelling the neuronal component of the co-culture, whilst glial fibrillary acidic 

protein (GFAP) was assessed as a means of staining GSC-A cell lines. GFAP is an 

intermediate cytoskeleton filament, considered a specific marker for glia.  
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Figure 4-3 Schematic illustration of node configuration on chip 3-2 

 

Array of 50 µm diameter nodes arranged such that a 400 µm distance separates nodes 
vertically and horizontally. Two parylene tracks (2 µm wide) extend from each node nodes at 
trajectories of 45° and 135°.  

 

Figure 4-4 Immunofluorescence staining of LUHMES neurons 

 

β-3 tubulin immunostaining (red) of pre-differentiation (left) and 5 days post induction of 
differentiation (right) LUHMES neurons. Nuclei are labelled with H-33341 dye (blue). 
Adapted from Scholz et al. (101).  
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4.2 Methods 
4.2.1 Assessment of neurite directionality 
Co-cultures of HEK 293 and LUHMES were generated using chip 1 and chip 3 as 

follows:  

HEK 293 cells were applied to chips (prepared according to the standard piranha 

then serum protocol) as a suspension of 5 × 104 cells/ml in growth media. 24 h later, 

media was removed and chips were transferred to fresh culture well. A 40µL droplet 

containing 120,000 pre-differentiated LUHMES was pipetted onto the chip surface. 

Chips were incubated for 30 mins to allow settling of cells, followed by the addition 

of LUHMES differentiation media. Cultures were imaged daily up to 7 days in vitro. 

Chip 1:  

To quantify the impact of the parylene node morphology and configuration upon 

neurite orientation, neurites in co-culture experiments were traced manually using 

Image J (version 1.44o, National Institute for Health, USA). All neurites in a region 

of interest were tracked from a start point (centred on a parylene node) to an end 

point (defined either as branching point, termination, or the point of encountering 

another cell body). Traced segments were divided into 100 µm sub-segments. A 

tangent was taken to each sub-segment and the angle, θ, of each segment measured 

and categorized into 11.25° bins (354.375° to 5.625°, 5.625° to 16.875°, 16.875° to 

28.125°, etc). Entries in bins 180° apart were summed, as the aim was to assess for 

neurite growth between the orthogonally arranged parylene nodes.  

A radial plot illustrating the frequency of θ values, according to their 11.25° bins, 

reveals the orientation of neurite segments. This process was conducted for areas 

encompassing each of the three different node configurations on chip 1, and also for 

differentiated LUHMES cultured in isolation on a polystyrene surface treated to 

promote homogenous, un-patterned cell adhesion (with 50 µg/ml poly-L-ornithine 

and 1 µg/ml fibronectin in H2O for 3 hrs). 12 independent chip experiments using 

chip 1 enabled acquisition and measurement of 200 neurite sub-segments (each of 

100 µm length) representing each of the four different culture environments. Datasets 
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derived for each of the four environments were compared using the Kolmogorov-

Smirnov test††††. 

Chip 3 

For each of the four different node design regions (single spoke, double spoke, single 

teardrop, double teardrop), neurites were traced manually using Image J, segmented, 

and categorized into 11.25° bins (as above). 8 independent chip experiments using 

chip 3 enabled acquisition and measurement of a total of 220 neurite sub-segments 

(each of 100 µm length). A radial plot illustrating the frequency of θ values, 

according to their 11.25° bins, reveals the orientation of neurite segments. Datasets 

derived for each environment were compared using the Kolmogorov-Smirnov test. 

4.2.2 Behavioral and immunofluorescence assessment of 
cultures 

LUHMES and GSC-A cells were maintained as previously described (see 2.9.1). 

GSC-A imaged in isolation with GFAP:  

A 50µL droplet containing 10,000 GSC-A cells in suspension was pipetted onto the 

chip surface (chip 3, prepared according to standard piranha/serum protocol). Chips 

were incubated for 30 mins to allow cells to settle, followed by addition of GSC 

maintenance media. For immunocytochemistry, cultures were fixed (on day 7 in 

vitro) with phosphate-buffered saline (PBS)/4% paraformaldehyde for 15 min at 20° 

C, washed, permeabilized with PBS/0.2% Triton X-100 and pre-incubated with 

PBS/1% BSA (Sigma Aldrich, Missouri, USA) for 1 h at 20° C. After blocking, 

chips were incubated with anti-GFAP Alexa Fluor® 488 monoclonal antibody 

(Invitrogen) at a 1:50 dilution in blocking buffer for 3 hours at room temperature. 

                                                

†††† This is a non-parametric test of the equality of one-dimensional probability distributions. The null 
hypothesis is that the samples are drawn from the same distribution. The Kolmogorov-Smirnov 
statistic, D, represents the distance between the empirical distribution functions of two samples. 
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Co-culture of LUHMES and GSC-A, labelled with β-3 tubulin:  

A 50µL droplet containing 10,000 GSC-A cells in suspension was pipetted onto the 

chip surface (chip 1, prepared according to standard piranha then serum protocol), 

incubated for 30 mins, followed by addition of maintenance media. 72 hrs later, a 40 

µL droplet containing 50,000 pre-differentiated LUHMES was pipetted onto the chip 

surface, incubated for 30 mins, followed by addition of LUHMES differentiation 

media. Cells were fixed on day 7 post-addition of LUHMES. For 

immunocytochemistry, cultures were fixed with PBS/4% paraformaldehyde for 15 

min at 20° C, washed, permeabilized with PBS/0.2% Triton X-100 and pre-incubated 

with PBS/1% BSA (Sigma Aldrich, Missouri, USA) for 1 h at 20° C. After blocking, 

chips were incubated with anti-Neuron-specific β-III Tubulin-NL637 conjugated 

antibody (R&D Systems, Minnesota, USA) at a 1:10 dilution in blocking buffer for 3 

hours at room temperature.  

Fluorescently labelled chips were attached to glass slides using a small droplet of 

Fluorsave reagent (Calbiochem, Merck Millipore). A cover slip was mounted on the 

chip surface using Fluorsave reagent. Chips were imaged with a Zeiss Axioskop 

microscope (Göttingen, Germany), using a ×10 oil objective with NA of 0.3. Image 

processing was carried out with Image J software (version 1.44o, National Institute 

for Health, USA). 
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4.3 Results 
4.3.1 Assessing neurite directionality 
Chip 1 – altered node size and configuration 

Orientation of neurite growth is shown in radial plots in Figure 4-5, illustrating each 

of the four different patterning environments (the three different node designs on 

chip 1 and an un-patterned polystyrene surface treated to promote homogenous and 

therefore random cell adhesion).  

Neurite orientation differs significantly according to parylene node configuration 

(Kolmogorov-Smirnov tests: un-patterned vs 250 µm diameter nodes D=0.20, 

P=0.001; 250 µm vs 100 µm nodes D=0.20, P=0.001; 100 µm vs 50 µm nodes 

D=0.15, P=0.03). There is a trend towards increasingly orthogonal growth as 

parylene configuration changes from 250 µm to 100 µm to 50 µm diameter nodes. 

Chip 3 – altered node morphology 

Radial plots showing the directionality of neurites on corresponding regions of chip 3 

are shown in Figure 4-6. Regardless of different node morphology, the dominant 

orientation of neurites is in the bins centred on 45º (39.375º to 50.625º) and 135º 

(129.375º to 151.875º). This corresponds to the two nearest neighbouring nodes.  

There is no significant difference between the distributions of data for single spoke 

vs double spoke and for single teardrop vs double teardrop (Kolmogorov-Smirnov 

tests: single spoke vs double spoke D=0.18, P=0.29, single teardrop vs double 

teardrop D=0.18, P=0.29). 

4.3.2 Behavioral and immunofluorescence assessment 
GSC-A cells do not possess the capacity to grow between nodes of parylene-C, as 

shown in Figure 4-7D & 4-7E. However, in the presence of a parylene track 

connecting adjacent nodes, GSC-A cells are able to extend and form reticular 

networks (see 4-7B & 4-7C). This contrasts with the behaviour observed for 

LUHMES neurons in co-culture (Figure 4-8), where neurites ‘bridge the gap’ 

between adjacent parylene nodes in the absence of an intervening track.  
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Figure 4-5 Directionality of neurite growth on chip 1 

 

Radial plots illustrating the directionality of neurite growth for different regions of chip 1 
and for plain polystyrene, with a schematic illustration of corresponding parylene design 
below each plot. (A) LUHMES on plain polystyrene, (B) co-culture on 250 µm diameter 
parylene nodes, (C) co-culture on 100 µm diameter nodes, (D) co-culture on 50 µm diameter 
nodes.  
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Figure 4-6 Directionality of neurite growth on chip 3-1 

 

Radial plots illustrating the directionality of neurite growth for four regions of chip 3, with 
schematic representation of corresponding parylene configuration below plot.   
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Figure 4-7 GSC-A cells require a parylene path to connect adjacent nodes 

 

GSC-A cell line cultured on-chip in isolation. (A) Schematic of parylene pattern imaged in B 
& C. (B) GSC-A fixed and stained with glial fibrillary acidic protein. (C) Light micrograph 
of GSC-A imaged at 3DIV. (D) Reflectance image showing parylene pattern in figure E. (E) 
GSC-A cells fixed and stained with glial fibrillary acidic protein. 
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Figure 4-8 Co-cultured LUHMES and GSC-A on chip 1 

 

A and B: Glioblastoma-derived line GSC-A in isolation (left) and in co-culture with pre-
differentiated LUHMES (right). Node diameter 250 µm in A and 100 µm in B. (C) Neuron-
specific β-III tubulin stained co-culture of pre-differentiated LUHMES with glioblastoma-
derived glial cell GSC-A. Fixed after 7DIV. The dashed square marked by the arrowhead 
demarcates a theoretical neurite-only region of interest.  

A

B

C 125µm 150µm

300µm 300µm

300µm 300µm
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As a control, GSC-A in isolation were also fixed and stained with neuron-specific β-

3 tubulin, after culture on chip 1.  Unexpectedly, GSC-A also labelled with β-3 

tubulin (see Figure 4-9). Again, however, there was no evidence of GSC-A cells 

extending off parylene regions.  

 

Figure 4-9 GSC-A aberrantly expresses ‘neuron-specific’ with β-3 tubulin  

 

GSC-A cultured alone on chip 1. Fixed and immuno-stained with β-3 tubulin. A: node 
diameter 100 µm. B: node diameter 250 µm.  
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4.4 Discussion 
4.4.1 Refining control of network topography 
Establishing orthogonal network growth 

Radial plots allowed comparison of neurite orientation. Using chip 1, and having 

optimised the co-culture protocol, it was possible to grow orthogonally arranged 

neuronal networks using both HEK 293 and GSC-A cells. Each of the three node 

sizes/configurations promoted some degree of orthogonal growth (compared with the 

random growth observed on un-patterned polystyrene) but accuracy improved from 

largest (250 µm diameter) to smallest (50 µm diameter) node.  

Growth was most orthogonal for the configurations in which parylene nodes were 

more closely packed. A chemotactic process potentially explains this finding, where 

the closer proximity of secreting cell clusters results in a more powerful chemotactic 

gradient. Importantly, however, the parylene designs on chip 1 (with all parylene 

‘spokes’ directing towards adjacent, nearest nodes) are not able to reliably 

distinguish between a chemo- or hapto-tactic guidance mechanism, as both 

mechanisms would theoretically result in the orthogonal neurite growth pattern 

observed. That said, it was noteworthy that neurites in co-culture experiments were 

sometimes seen to extend off parylene nodes away from the spoke tracks, suggesting 

that the neuronal growth cone was undiscerning with respect to the ‘underfoot’ 

substrate. 

Disregard for node morphology 

Data from chip 3 constitutes further evidence supporting the dominance of a 

chemotactic mechanism. Here, regardless of the morphology of the underlying 

parylene node, neurites were seen to organise themselves in a configuration 

suggesting a vector of growth that sought out the nearest neighbouring node. Both of 

the node designs with morphology attempting to haptotactically direct neurites 

towards a more distant node (singe spoke and single teardrop) were unable to exert 

influence. Hence, for all node designs, the overwhelming neurite direction was 

towards the nearest neighbouring node orientated at 45° and 135°.  
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However, it is important to note some limitations. The parylene node itself rapidly 

becomes overgrown with template HEK 293 cells (an issue noted previously). As a 

consequence, overlying LUHMES growth cones may not in fact be greatly exposed 

to parylene-C, but instead interact with the more amorphous profile of the underlying 

template cell. In addition, both of these directionality experiments are limited by the 

fact that advancing growth cones were measured at a single point in time, with no 

dynamic data measuring the true vector of neurite growth. This could be achieved in 

future using time-lapse imaging. Furthermore, multiple neurites running together in 

close proximity are difficult to resolve using light microscopy. As such, some data 

may have been lost. 

Considering the chemotactic hypothesis further, questions arise regarding the 

character, origin, and distance of action of the diffusible agent. If one assumes that 

parylene regions acquire a population of patterned cells proportionate to their surface 

area, and that a given chemotactic substance is secreted in proportion to the volume 

of cells, an opportunity arises to mathematically model the system. If a chemotactic 

cue is secreted from cell clusters, an explanation is also needed for neurites not being 

compelled to return or reside at their ‘home’ node, given that the concentration will 

be highest in this location. One explanation is that the growth cone requires a certain 

amount of time in order to become sensitive to the purported chemotactic agent 

(contingent upon reaching a certain stage of neuronal maturation). As such, after 

initially heading off at random, relevant receptor expression becomes up-regulated, 

the growth cone becomes responsive to the diffusible cue, and the vector of growth 

changes so as to seek out the nearest cell cluster. 

4.4.2 Behavioral and immunofluorescence assessment 
The critical behavioural difference between cell types is that the neurite growth cone, 

in contrast with GSC and HEK 293 cells, is able to adhere to and traverse bare SiO2. 

For future work, it becomes important to integrate techniques that allow assessment 

of electrical and synaptic activity in the patterned network. This capacity of neurites 

to ‘jump the gap’ between parylene nodes represents an opportunity to interrogate a 

neurite-only region of interest. By focusing on a parylene-free, inter-node space (see 
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Figure 4-8C, demarcated by dashed yellow box) one can be confident that neurites 

alone will be interrogated. 

Immunofluorescence staining of the network was complicated by the fact that GSC-

A was found to aberrantly express ‘neuron-specific’ β-3 tubulin. Tubulin is a major 

constituent of microtubules, which play key roles in chromosome segregation, 

intracellular transport, ciliary and flagellar bending, and structural support of the 

cytoskeleton. β-3 tubulin is abundant in the CNS and PNS, being particularly 

prominently expressed during fetal & postnatal development. In adult tissues, the 

distribution of β-3 tubulin is almost exclusively neuronal. However, on reviewing the 

literature, it is apparent that altered patterns of expression have previously been noted 

in cancer (132), with aberrant expression seen in some glial tumours. Evidently, the 

tumour from which GSC-A was isolated is one such glial tumour. Co-staining with 

GFAP and β-3 tubulin would enable the two different cell types to be resolved. 

Alternatively, another truly neuron-specific marker could be employed. Some 

preliminary work using neurofilament-L has illustrated its capacity to reliably stain 

LUHMES neurons and not GSC-A (see Figure 4-10).  

The issue of template cell overgrowth persists, despite use of the slightly slower 

growing GSC-A. It is confounded by the fact that neurites, after encountering 

another node, apparently straighten up under tension. That growth cones of 

developing neurons generate tensile forces is well-described (133) and this behaviour 

has been observed before in the context of carbon-nanotube patterned substrates 

(134). For long-term neuronal cultures, the current construct is unsuitable. A post-

mitotic template cell line might enable prolonged viability of co-cultures. However, 

the issue of neurite tension might nevertheless result in cell cluster lift-off.   

Thinking beyond the initial motivations for the creation of neuronal networks, this 

lift-off phenomenon might theoretically be useful for neuro-regenerative purposes. 

For example, it represents a method of defining a neuronal network in vitro on-chip 

that then detaches (see Figure 4-11) and which might then be implanted with the 

intention of in vivo nervous system repair.  
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Figure 4-10 Neurofilament-L labels LUHMES but not GSC-A 

 

A: Un-patterned LUHMES cultured on a glass coverslip, fixed and stained with 
neurofilament L (yellow) and DAPI (blue). Region shown measures ~600 µm ×600 µm. B: 
Un-patterned GSC-A cultured on glass coverslip, fixed and stained with neurofilament-L 
(yellow) and DAPI (blue). Region shown measures ~150 µm ×150 µm. The LUHMES neuron 
cytoskeleton is well demarcated by neurofilament-L, compared with minimal expression in 
GSC-A.  
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Figure 4-11 HEK 293-LUHMES culture lift-off 

 

HEK 293 cells co-cultured with pre-differentiated LUHMES. A linear network lifts off from 
the chip surface after 6DIV (left and right image are the same chip region imaged at two 
different depths of focus).   
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4.4.3 Future work 
Polarity 

The apparent growth of neurites towards their nearest neighbouring cell cluster 

presents an opportunity to create a polarised, linear network. By constructing a linear 

array of parylene nodes which become progressively more closely spaced (from left 

to right), growing neurites ought be induced to grow from left to right, due to the 

chemotactic influence of their nearest neighbouring node (see Figure 4-12).  

To test this hypothesis, time-lapse imaging of co-cultures could be used to assess 

neurite behaviour. This technique could be enhanced by combination with a live 

fluorescence cell visualization platform. For example CellTracker™ dyes (Life 

Technologies, CA, USA) pass through the cell membrane freely whereupon they are 

transformed in a cell impermeable products. This allows cellular movement to be 

tracked. Also from a fluorescence imaging perspective, dendritic compared with 

axonal components can also be differentially stained in LUHMES neurons. Tau-1 

labels axons whilst MAP2 labels dendritic proteins (101). Staining with these two 

markers in fixed cultures could help to assess for the establishment of appropriate 

overall neuronal polarity, beyond the directionality of growing neurites. 

 

Figure 4-12 Proposal for chip 4 

 

Chip 4. Proposed linear node array. 50 µm diameter nodes are separated as shown, 
becoming progressively more close-packed from right to left. The chemotactic influence of 
each node’s nearest neighbour will theoretically induce neurites to grow from left to right. 

 

Action potential generation and synaptic transmission 

Looking forward, a fundamental question is whether co-cultured LUHMES neuronal 

networks are forming functional synapses with adjacent neurons. Additionally, given 
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sufficient time to mature, is this context one in which LUHMES will become 

spontaneously electrically active? Potential strategies to address these questions are 

discussed in section 5.2. 

4.5 Conclusion 
In co-culture experiments, the size and spatial configuration of parylene nodes 

informed neurite organisation. Specifically, reticular networks of neurons can be 

generated using an orthogonally arranged node-and-spokes parylene design. 

Direction of growth of the neurite does not appear to be influenced by parylene. 

Neurites instead seek out nearby cell clusters, regardless of underlying parylene node 

morphology. A chemotactic guidance mechanism could explain this behaviour.   

GSC-A cells are unable to grow between nodes of parylene-C unless a parylene track 

is provided. LUHMES neurites, however, possess the capacity to traverse bare SiO2. 

This key behavioural difference allows neurite-only ROIs to be identified on-chip. 

Aberrant expression of beta-3 tubulin in GSC-A cells precludes its use as a means of 

selectively labelling LUHMES in co-cultures. However, neurofilament-L shows 

promise as a selective marker. Overgrowth of the template cell remains problematic, 

with the current protocol presenting insufficient time for functional maturation of 

LUHMES neurons. 
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Chapter 5 Conclusions 
5.1 Summary 
Initial project aims were to: 

• Investigate the mechanisms of cell patterning on parylene-C:SiO2, using both 

a cell and substrate centric approach. 

• Achieve reliable patterning of neuronal cells on parylene-C:SiO2. 

• Establish finer control over neuronal morphology, with respect to axo-

dendritic processes, in order to create topographically defined networks. 

• Explore techniques to stimulate and record from patterned networks, so as to 

ensure that patterned neurons retain a viable and functional phenotype.  

• Construct and stimulate simple, appropriately polarised, poly-neuronal reflex 

arcs. 

The first three of these aims have largely been achieved and a strategy to address the 

final goal has been proposed. However, less progress has been made in developing 

and incorporating tools that evaluate functional characteristics of patterned neuronal 

networks. 

5.1.1 Cell patterning on parylene-C:SiO2 
The parylene-C:SiO2 platform has been explored from both a substrate and cell 

centric perspective. Whilst the overarching mechanism of action remains elusive, 

several important (and previously unexplored) aspects have been identified and 

investigated. 

Chip fabrication processes have a profound impact upon surface characteristics. At 

the outset, the importance (and cell specificity) of repulsion from SiO2 was 

significantly underestimated. Absolute repulsion from SiO2 domains is fundamental 

to effective cell patterning. As such, piranha treatment (previously considered merely 

a cleaning step) has been shown to be key to enabling SiO2 domains to exert 

downstream cell repulsion after serum incubation. Piranha acid treatment results in 

both a decrease in contact angle and also a change in surface roughness on SiO2 
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regions. However its impact is transient, meaning that serum incubation must occur 

immediately after piranha treatment. The key components of serum that ultimately 

impart each substrate with its respective cyto-repulsive or cyto-adhesive character 

remain unknown. However, parylene-bound vitronectin may play a role in allowing 

cells to engage, demanding the presence of complimentary vitronectin receptors in 

the cell membrane. These findings go some way to explain why the parylene-C:SiO2 

patterning platform is not universally effective, with only a subset of cell types 

patterning reliably (likely a consequence of variation in their CAM expression). 

The persisting uncertainty regarding the mechanism of action of the parylene-C:SiO2 

construct restricts its utility as a broad-spectrum cell patterning platform, as there is 

no way of knowing whether a given cell type will pattern effectively. As such, 

further work is needed to understand the platform more fully (see 5.2).  

5.1.2 Engineering neuronal networks 
LUHMES neurons, the neuronal cell model chosen for this project, failed to pattern 

on-chip in isolation, in either an undifferentiated and pre-differentiated state. All 

efforts to induce LUHMES to pattern by altering chip preparation protocols were 

ineffective. This demanded an indirect approach to generating neuronal networks, 

reliant upon the presence of a pseudo-glial template cell. In the context of a pre-

patterned intermediate cell type, LUHMES adhered and showed signs of 

morphological differentiation. Interestingly, HEK 293 cells (demonstrably non-glial) 

can fulfil a cellular template role. However, continued HEK 293 proliferation (and 

ultimately cell lift-off) significantly reduced the lifespan of such co-cultures. A 

human glioma-derived stem like cell line (GSC-A) also enabled spatially defined 

secondary adhesion of human LUHMES neurons and morphological differentiation.  

Similar co-culture behaviour was observed for murine ES-derived neurons co-

cultured with pre-patterned HEK 293 cells. These findings demonstrate that the co-

culture principle operates both for different types of neurons and also across different 

species. 

Reticular networks of neurons were generated using an orthogonally arranged node-

and-spokes parylene design. Neurite behaviour appears to be influenced not by 
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underlying parylene but by a diffusible chemotactic guidance cue. The recognition of 

this dominant cue to neurite organisation theoretically offers the potential to create a 

polarised, linear network. In contrast to template cell, LUHMES neurites possess the 

capacity to traverse bare SiO2. This allows neurite-only ROIs to be identified on-chip 

that may, in due course, facilitate use of tools to assess network functionality. 

Overgrowth of the pseudo-glial template cell remains problematic and the current 

protocol provides an insufficient time window for electrophysiological maturation of 

LUHMES neurons. 

Though this platform has enabled patterning of neurons, and has (via harnessing 

innate neurite growth behaviours) allowed a degree of specific network connectivity 

to be asserted, it has involved a somewhat circuitous progression. This process has 

highlighted some interesting concepts (particularly the need, in this context, for an 

intermediate cell), but has also made some of the core aims of the project more 

difficult to achieve. For example, the need for a template cell currently limits 

neuronal network lifespan and impedes on-chip cellular recording strategies. Neurite 

growth and connectivity also remains largely autonomous (though this may in fact be 

a strength). 

Certain of these challenges are seen in other contemporary neuronal network 

engineering tools, with some platforms excelling with respect to a given technical 

aspect but being compromised in another. Arguably at the forefront, Boehler et al. 

(135) have successfully developed a platform capable of recording from patterned 

hippocampal neurons for up to 21 days. However, this construct involves alignment 

of a PDMS stamp (inked with polylysine) with a separate MEA-incorporated 

substrate. Echoing some of the challenges identified in the parylene-C platform, this 

team faced problems ensuring that MEA substrate fabrication processes remained 

sympathetic to the core cell patterning strategy. However, once refined, they 

achieved reliable patterning of neuronal networks with specified connectivity (see 

Figure 5-1). Crucially, the underlying MEA electrodes also allowed recording of 

spike activity in the network. It was observed that spike rates were constant 

regardless of pattern complexity (4, 6, or 8 connections), suggesting that neurons 

may be optimised for a state of spike rate homeostasis. Identifying such emergent 
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neuronal network properties exemplifies the potential of topographically defined 

neuronal networks. This platform would, however, be improved by combining the 

two-stage print process and removing the need for secondary MEA alignment. An 

optimised parylene-C:SiO2 platform could theoretically facilitate similar experiments 

at a more complex scale and with higher through-put. 

Another important issue is the conflict between defining topography to an extent that 

allows comparison and analysis, versus allowing an appropriate degree of 

physiological self-organisation. Li et al. (136) have recently designed a platform that 

defines the location of the cell body but intentionally does not restrict neurite 

outgrowth or dendritic branching and arborisation (the ‘NeuroArray’, see Figure 

5-2). This is reminiscent of the parylene-C:SiO2 method in the sense that it similarly 

does not restrict neurite behaviour. The NeuroArray enables a spatially defined, well-

connected, and spontaneously active network to be cultured and assessed (via 

calcium imaging to characterise activity). However, this method does not integrate 

recording technology into the patterning construct, being based on a PDMS stencil 

rather than constructed on silicon.  
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Figure 5-1 Patterned, long-term hippocampal networks integrated with MEAs. 
Adapted from (135).  

 

A PDMS print is ‘inked’ with polylysine and aligned with a background substrate containing 
embedded MEA electrodes. Hippocampal neurons grow according to the print pattern which 
here has defined three different levels of connectivity. A: 4 connections, B: 6 connections, C: 
8 connections, D: Random growth. MEA electrodes are separated by 200 µm vertically and 
horizontally.  
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Figure 5-2 Schematic illustration of the ‘NeuroArray’ platform, adapted from 
(136) 

 

 

Schematic illustration of ‘NeuroArray’ technology. Top: A: Design and working principle. 
B: Example of patterned configuration of through-holes for pattering neural network. C: 
Representative fluorescence (β-3 tubulin) image of neurons cultured for 4 days, scale bar, 
100 µm. D: Fabrication procedures using sacrificial-layer-protected PDMS molding. 
Bottom: Traces of calcium fluctuation of three neurons showing their spiking activities.  
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5.2 Future work and ideas 
Cell patterning mechanism 

Unambiguously defining the mechanism of action of patterning on parylene-S:SiO2 

remains a key challenge. Performing more cell patterning trials and running specific 

DNA micro-arrays (or RNA-Seq) may generate new findings that illuminate the key 

CAM and ligand (in the context of serum activation). 

An alternative approach is to trial other rationalised protein solutions, the 

constituents of which are informed specifically by Vroman-mediated binding 

dynamics. Given the dynamic binding behaviours of proteins in solution, it is 

conceivable that the use of specific solutions for defined durations may allow 

targeted and controlled protein binding to the two substrates. Removing the need for 

serum is critical to removing a large component of the uncertainty that currently 

limits the utility of the platform. 

Engineering neuronal networks 

As regards neuronal network engineering, a major rate-limiting step of the co-culture 

protocol is overgrowth of the template cell. A different, post mitotic cell that patterns 

accurately is required to allow full maturation and long-term survival of patterned 

networks. However, even if that is achieved, the issue of neurite tension causing 

network lift-off may yet remain problematic.  

The current hypothesis regarding LUHMES neurite directionality is that a secreted 

chemotactic agent induces growth towards the nearest neighbouring cell cluster. The 

proposed design of chip 4, combined with time-lapse imaging and immuno-labelling 

of different neuronal compartments, offers a means of assessing both neurite growth 

and the impact upon cellular polarity. 

Incorporating on-chip tools to assess functionality  

Useful engineered neuronal networks must have appropriate neurophysiological 

functionality; forming synapses, generating action potentials, and remaining viable 
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for weeks to months. Otherwise, they arguably run the risk of merely representing 

microscopic neuronal art.  

Several potential methods exist for in vitro assessment of neurophysiological 

characteristics. The on-chip environment presents novel opportunities for certain 

techniques whilst for others it may be restrictive. Specifically, the parylene-C:SiO2 

construct represents an opportunity to incorporate MEM technologies as a means of 

cell interrogation. Future work to assess functionality may therefore involve 

techniques that (i) incorporate bespoke interfacing components into chip fabrication 

or (ii) use ‘traditional’ in vitro neuronal interrogation techniques. 

CNTs represent an interesting potential material for use as an on-chip electrode. As 

discussed in 1.5.2, CNTs are cylindrical carbon allotropes which have been 

demonstrated as a biocompatible and electrically conducting substrate to which 

neurons adhere (30,86). The challenge is to develop a means of targeted CNT 

generation on-chip that is compatible with the current photolithographic processes. 

Optogenetic techniques are another potential tool for assessing activity in patterned 

neuronal networks and would not require significant alteration of the chip fabrication 

process. Optogenetics involves the use of light to control neurons that have been 

genetically modified with light sensitive proteins. Light-gated ion channels (such as 

channelrhodopsin or halorhodopsin) are the optogenetic actuators whilst recording 

can be achieved using genetically encoded sensors of calcium or voltage. 

Theoretically, patterned LUHMES neurons transfected with an appropriate light-

gated ion channel could be targeted in this way, with very fine spatial and temporal 

resolution. 

Evolutionary game theory to inspire network design  

Once tools for patterning, interacting and recording from engineered neuronal 

networks reach appropriately high fidelity (on this platform or others), a fundamental 

question arises regarding the type of network to engineer, and why. One interesting 

approach involves the application of evolutionary game theory (EGT).  

Game theory is a study of strategic decision-making. Its aim is to mathematically 
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determine the optimal strategy in situations of conflict and cooperation between 

intelligent rational decision makers. Originally conceived to analyse economic 

processes, game theory rapidly found utility in biological contexts (for example 

regarding survival, a competitive strategy, and reproduction, which involves 

investment, risk, and return). Evolutionary game theory (EGT), advocates that 

Darwinian evolution does not lead to fitness optimization, but rather that evolution 

yields solutions to games. EGT helps to define a framework of contests, strategies, 

and analytics by focusing on the dynamics of strategy change. With respect to 

Darwinian evolution, players in the game are proteins or cells or whole organisms. 

The rules are those of inheritance, phenotypic variation, and natural selection. 

Strategies are the value of phenotypic traits (e.g. anatomy, acuity of perception). The 

reward is fitness. EGT has also proven useful in explaining some complex, and 

superficially counter-intuitive, aspects of biology (such as altruism). 

The nervous system is under selective pressure to generate adaptive behaviour but is 

restricted by energy costs. Maintenance of the neuronal membrane potential is a 

particularly metabolically demanding process, as is vesicle loading and transmitter 

recycling. This conflict demands the development of energy efficient wiring schemes 

and computational processes. As such, perhaps there is role for EGT as a tool to 

inspire the design and interpretation of engineered, topographically defined neuronal 

networks. This approach may aid the identification of emergent properties or 

mechanisms underpinning neural communication and organization. Nervous systems 

have been considered theoretically in the context of EGT mechanics before 

(137,138). Here, however, the aim here would be to build a specific network with the 

intention of testing a given ‘game’ inspired by the EGT framework that relies on 

players, rules, and strategies: 

• Players in the game are the individual firing neurons 

• Rules would include those of dynamic polarisation, long-term 

potentiation/depression, or other core aspects of neuronal function. 

• Strategy might be the firing rate of a neuron, or its connectivity as measured 

by synaptic formation or pruning.  



Patterning neuronal networks on parylene-C:SiO2 

Chapter 5 Conclusions   166 

• Reward is more difficult to envisage but might relate to energy efficiency or 

reaching equilibrium of network activity. 

This approach also provides a framework in which to mathematically model a 

proposed collection of rules and strategies, from which data can be compared to that 

generated in real engineered in vitro networks.  
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Chapter 6 Appendix 
6.1 Parylene-C material properties 
Table 5 Material properties of different types of commercially available 
parylene.  

Property Parylene-C Parylene-N Parylene-D 
Density (g/cm3) 1.289 1.11 1.418 
Refractive index 1.639 1.661 1.669 
Melting point (ºC) 290 420 380 
Dielectric constant (60 Hz) 3.15 2.65 2.84 
Tensile modulus (GPa) 3.2 2.4 2.84 
Elongation to break (%) 200 30 10 
Static coefficient of friction 0.29 0.25 0.31 
Dynamic coefficient of friction 0.29 0.25 0.31 
Water absorption (% in 24 h) <0.1 <0.1 <0.1 
Oxygen gas permeability (cc.mm)/(m2.day) 2.8 15.4 12.6 
Water vapour transmission rate (g.mm)/(m2.day) 0.08 0.59 0.09 
Water contact angle 87º 79º 97º 
Data from Tan et al. (93). 
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6.2 Raman spectroscopy data 
Figure 6-1 Raman spectroscopy results.  

 

A ParyleneQ1: plain parylene, untreated with piranha solution or serum. ParyleneQ2: plain 
parylene, treated for 10 mins with piranha solution but no serum. ParyleneQ3: plain 
parylene, treated with piranha and incubated with serum. ParyleneQ4: plain parylene, 
untreated with piranha but incubated with serum. 'Ar' refers to an aromatic ring. B SiO2Q1: 
plain SiO2, untreated with piranha solution or serum. SiO2Q2: plain SiO2, treated for 10 
mins with piranha solution but no serum. SiO2Q3: plain SiO2, treated with piranha and 
incubated with serum. SiO2Q4: plain SiO2, untreated with piranha but incubated with 
serum. For parylene surfaces, large silicon peaks dominate whilst the presence of parylene 
is just discernible. The cause of the large broad peak at 2900cm-1 is unknown but could be 
an artefact in the Raman system, from luminescence of silicon, and or due to heating of the 
sample. This signal obliterates any peaks that might be attributable to adherent organic 
material on serum-incubated substrates.  
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6.3 DNA micro array data sources 
Table 6 Gene expression omnibus references and specific data sets used for 
DNA micro-array comparisons. 

Cell line Gene Expression Omnibus reference 
HEK293 
(human) 

GSE1676 (6 samples GSM28627à28632, uninfected controls). 
PLATFORM: Affymetrix Human HG-Focus Target Array	
  

 GSE1822 (2 samples GSM31805à6). PLATFORM: Affymetrix Human 
Genome U133A Array	
  

 GSE35226 (4 samples GSM864208à864211)	
  
HEK293-WT-1 to 4). PLATFORM Affymetrix Human Gene 1.0 ST 
Array	
  

 GSE10241 (1 sample GSM258516 normal control). PLATFORM: 
Illumina human-6 v2.0 expression beadchip	
  

 GSE35084 (2 samples GSM861810 and GSM861810). PLATFORM: 
Affymetrix Human Genome U133 Plus 2.0	
  

N2a (mouse) GSE17494 (1 sample GSM436142). PLATFORM: Affymetrix Mouse 
Genome 430 2.0 Array	
  

 GSE30190 (8 control samples GSM747388-747395). PLATFORM: 
Agilent-026655 Whole Mouse Genome Microarray 4x44K v2 (Feature 
Number version)	
  

3T3 L1 (mouse) GSE20696 (2 samples GSM519581 and GSM519582. PLATFORM: 
Affymetrix Mouse Genome 430 2.0 Array	
  

 GSE1458 (3 samples GSM24459à61 control). PLATFORM: 
Affymetrix Murine Genome U74 Version 2 Array	
  

 GSE6794 (2 samples GSM156862à3, pre-confluent and confluent). 
PLATFORM: Affymetrix Murine 11K SubA Array	
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6.4 Peer-reviewed papers 
Hughes MA, Bunting A, Brennan PM, Cameron K, Murray AF & Shipston MJ. 

(2014) Patterning human neuronal networks on photo-lithographically engineered 

silicon dioxide substrates functionalized with glial analogues. J Biomed Mat Res A. 

102(5): 1350-60. 

Hughes MA, Bunting A, Brennan PM, Shipston MJ & Murray AF. (2014) Cell 

patterning on photolithographically-defined parylene-C/SiO2 substrates. J Vis Exp. 

85: e50929, doi:10.3791/50929. 

Hughes MA, Bunting A, Cameron K, Murray AF, & Shipston MJ. (2013) 

Modulating patterned adhesion and repulsion of HEK 293 cells on micro-engineered 

parylene-C/SiO2 substrates. J Biomed Mat Res A. 101(2): 349-57. 

Hughes MA, Murray AF & Shipston MJ. Toward a “Siliconeural” Computer: 

Technological Successes and Challenges. Phil. Trans. Roy. Soc. A. Invited article, 

submitted. 

6.5 Oral and poster presentations 
Hughes MA, Bunting A, Brennan PM, Murray AF & Shipston MJ. (2014) Patterning 

neuronal networks on photolithographically-defined parylene:silicon substrates. 

Experimental Biology, San Diego, [Oral presentation]. 

Hughes MA, Bunting A, Brennan PM, Murray AF & Shipston MJ. (2014) 

Engineering neuronal networks on photolithographically defined, biologically 

activated silicon substrates. Academy of Medical Sciences Spring Meeting, London. 

Proceedings: The Lancet AMS Supplement 2014 [Poster]. 

Hughes MA, Bunting A, Brennan PM, Murray AF & Shipston MJ (2014). Towards 

regenerative neurosurgery: Interfacing neuronal networks with silicon-based 

microelectronics. Society of Academic and Research Surgery (SARS) annual 

meeting, Cambridge. Proceedings: British Journal of Surgery [Oral presentation]. 
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Hughes MA, Murray AF, & Shipston MJ. (2013) Patterning neurons and informing 

neurite geometry on photolithographically defined parylene-C coated SiO2. 

International Union of Physiological Sciences (IUPS) Congress, Birmingham 

[Poster]. 

Hughes MA, Murray AF, & Shipston MJ. (2012) Progress towards merging neuronal 

network engineering with semiconductor microelectronics technology: tools for 

neuroscience and neurosurgery. Society of British Neurological Surgeons (SBNS) 

Annual Conference, Aberdeen. Proceedings: British Journal of Neurosurgery 2012; 

26(2): 132–174.  

Hughes MA, Bunting A, Murray AF, & Shipston MJ (2012). Patterning human 

dopaminergic neurons on photolithographically engineered silicon dioxide wafers 

functionalized with pre-adhered HEK 293 cells. PC 237. Physiology Congress, 

Edinburgh [Poster]. 

6.6 Prizes 
Winner of Society of Academic and Research Surgeons (SARS) Academic Clinical 

Lecturer future projects prize. SARS annual meeting, Cambridge, 2014. 

Winner of British Journal of Neurosurgery Prize for best abstract, SBNS conference, 

Aberdeen, 2012. 

Winner of EUSci (student-run science communication group) Scientific Photography 

Competition 2012 (for image of patterned co-culture of LUHMES and glioma-

derived stem-like cell line entitled “A Neuronal Celtic Cross”). 
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