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Abstract 

There has recently been considerable interest in the development of 'logical 

frameworks' which can represent many of the logics arising in computer science in 

a uniform way. Within the Edinburgh LF project, this concept is split into two 

components; the first being a general proof theoretic encoding of logics, and the 

second a uniform treatment of their model theory. This thesis forms a case study 

for the work on model theory. 

The models of many first and higher order logics can be represented as fib red 

or indexed categories with certain extra structure, and this has been suggested as 

a general paradigm. The aim of the thesis is to test the strength and flexibility of 

this paradigm by studying the specific case of Girard's linear logic. It should be 

noted that the exact form of this logic in the first order case is not entirely certain, 

and the system treated here is significantly different to that considered by Girard. 

To secure a good class of models, we develop a carefully restricted form of first 

order intuitionistic linear logic, called £FOLL, in which the linearity of the logic 

is also reflected at the level of types. That is, the terms of the logic are given 

by a linear type theory LTT corresponding to the algebraic idea of a symmetric 

monoidal closed category. The study of logic in such categories is motivated by 

two examples which are derived as linear analogues of presheaf topoi and Heyting 

valued sets respectively. We introduce the concept of a monoidal factorisation 

system over such categories to provide a basis for a theory of linear predicates. A 

monoidal factorisation system then gives rise to a structure preserving fibration 

between symmetric monoidal closed categories, which we term a linear doctrine. 

We provide a sequent calculus formulation of £FOLL and show that it is both sound 

and complete with respect to a linear doctrine semantics. 

Although the logic £FOLL  sits nicely within the fibred category framework, 

we note that it also displays some quite unexpected features which should be of 

interest in future work on both the categorical semantics of linear logic and model 

theory in the general case. 
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Chapter 1 

Introduction 

Logic is a key tool in the theoretical analysis of computer science and the diversity 

of computational phenomena leads to a profusion of logical systems : first order, 

higher order, and equational logic are used in program specification; temporal, 

dynamic and modal action logics arise in the analysis of system behaviour; type 

theory and the A-calculus form the basis of functional programming; and there are 

many other examples of importance. 

Recently, there has been considerable interest in developing a 'logical frame-

work' in which these logics can be represented in a uniform way. The Edinburgh 

LF [HHP87], Martin Löf type theory [ML84], and the Isabelle proof environment 

[Pau89] are examples of such a framework, which all classify logics according to 

their proof theory. This thesis forms part of a complementary line of research, 

being undertaken at Edinburgh, which aims to provide a uniform representation 

of logics through their model theory. Traditionally, the model theoretic approach 

to logic has been more popular, but there has been little work on general model 

theoretic frameworks for logic. The 'abstract model theory' of Barwise [Bar74] 

is limited to the theories of classical logic; whereas the 'institutions' of [BC84] 

give a uniform understanding of the relationship between theories and models in 

an arbitary logic, but no analysis of the structure of models. It is therefore not 

immediately clear what a model theoretic framework should be. As is often the 

case, category theory provides a convenient language in which to formulate the 

problem and evaluate ideas. There are numerous categorical studies of specific 



Chapter 1. Introduction 	 9 

first and higher order logics in which the models are presented as fibred categories 

with certain extra structure depending on the logic [MR77,See83,HJP80,See87a]. 

It is reasonable to suppose that fibred categories could form the basis of a general 

framework, and this is the view adopted by the Edinburgh group. The aim of this 

thesis is to gain further insight by studying another specific example; one which 

is of natural interest in computer science, yet is problematic enough to pose a 

challenge to the fibred category paradigm. 

Linear logic [Cir87a] is the weakest of the family of relevance logics and provides 

the most discerning analysis of entailment so far. Its simplicity and elegance make 

it a natural vehicle for research, and it seems clear that a logic with such good 

structural properties should have many applications. Furthermore, linear logic 

lies close to many of the concerns which are important in computer science. In 

particular, it can be used to describe the properties of systems which change as they 

are observed (the necessary algebraic semantics were originally proposed in the 

context of quantum mechanics), and thus some of the most successful applications 

so far have been in the theory of concurrency. Linear logic has been employed 

to capture both the compositional properties [Dam88,Dam9O] and the evolutional 

properties [AV90] of processes in Miler's ccs [Mi189]. It has also been used to 

describe the behaviour of Petri nets [Bro90]. 

Interest in linear logic has generated a number of new ideas in the theory of 

programming languages. Girard, Scedrov and Scott [GSS] give a type system 

based on bounded linear logic in which an algorithm is typable if and only if it is 

computable in polynomial time. Lafont [Laf88] defines the linear abstract machine, 

an execution mechanism for the proof terms of intuitionistic linear logic. This 

simple model of functional programming can operate without garbage collection 

because storage is handled explicitly at the level of types. Abramsky [Abr90] takes 

this further, proposing that the proof terms of second order classical linear logic 

could form the basis of a full polymorphic functional programming language in 

which execution is both concurrent and without garbage collection. There is also 

work on logic programming in linear logic [HP,HM91]. 

Girard [Gir87b] describes linear logic as a logic of action. Whereas classical 
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and intuitionistic logic are concerned with stable truth, the nature of linear 'facts' 

is transient and depends upon the internal state of a dynamic system. This is 

illustrated by the simple example of buying a packet of cigarettes. Let q, ', 0 

denote the following linear facts 

= to have $1 

= to have a packet of Camels 

0 = to have a packet of Marlboro 

A proof of the linear implication q —o 0 is given by the action of spending $1 

and buying a packet of Camels. Thus linear implication involves a principle of 

conservation of resource. There are two distinct forms of conjunction in linear 

logic. The meet (0 A 0) corresponds to the possibility of having a packet of one or 

other brand of cigarette, and the fusion (b 00) corresponds to actually having two 

packets. The difference between them is illustrated by the fact that 0 —a (& A 0) 

is provable, since given $1 we can buy either a packet of Camels or Marlboro, but 

—o (& c 0) is not, since we cannot use $1 to buy two packets1. 

Given the shift of perspective between linear logic and its forbears, it is unclear 

to what extent the categorical ideas developed for classical and intuitionistic logic 

apply in the linear case. Makkai and Reyes [MR771 give a categorical account of 

models of first order theories in classical logic. In this approach, the types and 

functions of a logic are modelled by the objects and morphisms of a category C 

while the formulae are modelled by 'subobjects' in C. The subobjects of an object 

A form a partial order Sub(A) corresponding to the formulae q  with a free variable 

x of 'type' A. Pullback along a morphism f : A -p B in C gives rise to a functor 

Sub(B) -* Sub(A). This models the operation of substitution which maps 

a formula & with free variable y of type B to the formula i[f(x)/y] with free 

variable x of type A. If f* has left and right adjoints then these can be interpreted 

as forms of existential and universal quantification respectively. This fundamental 

observation is due to Lawvere [Law69,Law7O]. 

'The author is inclined to save his $'s and leave both packets on the shelf. 
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The subobjects as a whole form a fibred category with base C [Gra66] in which 

the fibre over an object A is Sub(A). The two main ingredients of categorical 

model theory are therefore a base category C which forms the theory of types and 

functions, and a fibred category of subobjects whose objects represent predicates 

over these types. Given a category C whose structure is sufficiently rich, we may 

adopt it as our 'type theory' and attempt a logical investigation of its subobjects. 

The logic thus obtained is the 'internal logic' of C. In order to carry out our 

programme, we need structured categories for which first order linear logic is the 

internal logic. 

A version of first order linear logic appears in Seely's paper [See87b]. He treats 

first order linear logic as propositional linear logic 'indexed over' a category C with 

finite limits. In that view, the connectives are taken as primitive and not related 

to any property of C. Consequently, the only real models of this kind are given 

by construction [See90]. If, however, first order linear logic is to arise naturally 

from the subobjects of a category C then there must be some structure on C which 

allows the connectives to be defined. Specifically, the fusion of predicates should 

arise from a tensor product on C and the linear implication from the corresponding 

internal horn. We therefore take the overall structure of C to be that of a symmetric 

monoidal closed category, and define a modified version of first order linear logic 

whose models are given by the subobject structure of such categories. 

The importance of symmetric monoidal closed categories as type theories is 

already well established in the context of enriched category theory [Ke182]. Here 

an arbitary such category V takes the place of Set as the ambient universe. Jay 

[Jay89a,Jay9O] has considered an internal language of types and functions for 

monoidal categories. This language can be used to simplify proofs in enriched 

category theory by allowing diagramatic arguments to be replaced by simple type 

theoretic ones. We shall use it as the type theoretic basis for our logic. 

Many of the nice algebraic properties of the categories studied by Makkai and 

Reyes stem from the fact that there is a good interaction between limit and colimit 

structure. We cannot hope for such a good situation. In linear logic the failure of 

meet to distribute over join is precisely the failure of this kind of neat interaction. 
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The logic of symmetric monoidal closed categories has several disturbing features. 

We shall see that substitution fails to permute with the logical connectives. The 

logic that we develop is therefore equipped with explicit substitution operators. 

These act very much like the additive connectives and there are various distributive 

and half-distributive laws which hold. 

This analysis tells us three things about general model theoretic frameworks 

for classifying logics. First, there is an advantage in considering fibrations over 

indexed categories: the definition of a linear doctrine refers to the closure of the 

category of predicates as a whole, and so could not have been so conveniently 

expressed in terms of indexed categories. Secondly, there is a need for categories 

with added structure specified in terms of functors, natural transformations, and 

coherences; rather than categories with structure specified only by universal prop-

erties such as cartesian closed categories or elementary topoi. Lastly, as the logical 

connectives are not preserved by substitution, one must allow the possibility of 

making substitution explicit. 

Other work on linear logic has focussed on its elegant proof theory, as this 

provided the original motivation for the logic, and there has been considerable 

work on the categorical semantics of linear proofs [See87b,dP89,B090]. That work 

is concerned with the idea that the propositions and proofs of a (constructive) logic 

can be modelled by the objects and arrows of a suitable category, and is motivated 

by the celebrated 'Curry Howard isomorphism' between the normal form proofs of 

intuitionistic logic and the free cartesian closed category generated by the atomic 

propositions [LS86, part I]. The 'semantics of proofs' given by such work are in 

contrast to the model theoretic semantics developed here. 

In chapter 2, we recall the theory of propositional linear logic. An elementary 

algebraic semantics is given in terms of 'consequence algebras' which we define 

here. The second half of the chapter deals with the class of consequence alge-

bras which are lattice theoretically complete. These are known in the literature 

as 'commutative quantales with unity'. Examples are given and the important 

features of the theory of quantales are reviewed. Finally, we elucidate the notion 
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of resource which is implicit in linear logic by developing an abstract resource 

semantics similar to the semi-lattice semantics for relevance logic. 

In chapter 3, we introduce the concept of a symmetric monoidal closed category 

together with some standard examples. We use this to motivate our definition of 

the linear type theory LTT. This is based on Jay's language for monoidal categories 

[Jay89a], and comprises a system of types, combinators, and terms with restrictions 

on the occurrence of variables. We define the interpretations of an equational 

theory in LTT, and show that there is an initial model of such theories. 

In chapter 4, we give two examples of symmetric monoidal closed categories 

that arise naturally from a consideration of linear logic. These are linear analogues 

of presheaf topoi and Heyting valued sets respectively, both of which have been 

developed independently and with different motivation in the theory of enriched 

categories. 

In chapter 5, we introduce the minimal structure required to derive first order 

linear logic in a symmetric monoidal closed category. Both of the examples of 

chapter 4 have such structure. We take the notion of subobject to be relative to 

a factorisation system (i',  M) on C where M is a class of monomorphisms. We 

then define algebraic operations on these subobjects that correspond to the logical 

connectives. We assume that C is sufficiently complete and cocomplete that the 

M-subobjects of an object A form a lattice SubM (A). The additive connectives are 

interpreted by the lattice theoretic operations. The multiplicatives are defined in 

terms of the symmetric monoidal closed structure of C, so we restrict to categories 

in which the factorisation system (, .M) is monoidal, i.e. behaves well with respect 

to the tensor product. The multiplicatives are non-fl brewise operations, so rather 

than acting on a single fibre, they give families of maps 

0A,B : SubM (A)xSubM (B)—'SubM(A®B) 

A,B : SubM (A) x SubM(B) - SubM([A,B]) 

In theorem 5.4.5 we show that, despite their non-fibrewise nature, fusion and linear 

implication are related by an adjunction generalising that of the propositional case. 

The situation described above is quite general so there are many examples. The 
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category Ab of abelian groups demonstrates many of the pathologies that can 

occur, and motivates many of the design decisions made about the form of the 

logic £FOLL. 

In chapter 6, we give a sequent calculus presentation of the logic £FOLL which is 

built over the type theory LTT. Formulae are constructed by applying linear pred-

icates to the terms of LTT. Sequents F I- qf(t) are subject to a variable balancing 

condition which says that every variable which appears has exactly one occurence 

on each side of the turnstile. The introduction rules for the logical connectives 

appear as decorated forms of the corresponding rules in the propositional logic. 

There are also rules for the substitution operators and existential quantification. 

Many of the rules have side conditions to prevent the arbitary permutation of sub-

stitution with the other operations. We give some examples of derivable sequents 

and present two small applications. 

Finally in chapter 7, we present the model theory of £FOLL in terms of fibred 

categories. We define a notion of linear doctrine which adequately captures the 

categorical properties of the M-subobjects of a monoidal factorisation system 

(E, M) in C, so that every category with such structure gives rise to a linear 

doctrine. We define an interpretation of the formulae and sequents of £FOLL in 

a linear doctrine and prove that the rules of £FOLL  are sound with respect to 

such interpretations. We also prove a completeness result by constructing a linear 

doctrine from the syntax of £FOLL. 

We assume a knowledge of the basic definitions of category theory; such as 

category, functor, natural transformation, and adjunction ; all of which can be 

found in Mac Lane's book [ML71}. Some knowledge of indexed categories and 

fibrations would also be useful; see [Gra66] or [Tay86]. Other concepts will be 

introduced, as necessary, in the main text. 



Chapter 2 

Linear Logic and Quantales 

Girard [Gir87a] This thesis 

times fusion 

(non-commutative) 

o 

& 

with 	& meet A 

plus 	T join V 

par 	'&' inverted par 

entails 	—o entails —o 

Linear logic was introduced by Girard [Gir87a]. It is essentially a logic derived from 

proof theoretic consideration of Gentzen's sequent calculi LJ and LK [Gen69]. An 

interesting discussion of linear logic and the philosophical ideas that surround it 

can be found in the first paper of the "Geometry of Interaction" series [Gir87b]. 

Girard notes that both the undecidability and nonconstructive nature of the classi-

cal predicate calculus LK can be traced back to the structural rule of contraction. 

F1,,q,F2  I- 

F1,q5,F2  H 
(weakening) 

F1,q,F2  H 
(contraction) (2.1) 

It is therefore natural to consider logics without this rule, and this had already 

been suggested by Ono and Kormori [0K85]. 

Relevance logicians have considered logics without weakening. The effect of 

this restriction is to stop the introduction of spurious or non-causal dependencies 

between assumptions and conclusion. If a proposition appears as an assumption 

15 
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then it is essential in deducing the conclusion. There is a large family of rele-

vance logics. These logics often accept contraction and the distributivity of meet 

over join. Urquhart [Urq84] has shown that this is sufficient to make even the 

propositional logic undecidable. 

In linear logic, both weakening and contraction are abandoned. This means 

that it actually matters how many times a proposition is asserted. In this way, a 

linear implication is analogous to a chemical equation where the various propor-

tions of the reactants matter. In fact, Girard gives the combustion of hydrogen as 

the following linear implication. 

(H2  o H2  o 02)  —o (H20 0 H20) 	 (2.2) 

There is a conservation principle acting between the two sides of a linear implica-

tion, and we therefore say that linear logic is resource bounded. 

Linear logic has a number of pleasant features. In the fragment without modal 

operators, it is both relevant and constructive, the predicate logic is decidable, 

and there is a cut elimination algorithm executable in linear time. 

The logic presented in [Gir87a] is often called classical linear logic because it 

features an involutive 'negation' reminiscent of that of classical logic. This thesis 

is essentially concerned with the nonstandard conjunction 0 and the problems that 

arise from it. It is therefore appropriate to work with intuitionistic linear logic. 

In section 2.1, we define propositional intuitionistic linear logic together with 

an appropriate algebraic semantics given in terms of consequence algebras. We 

prove that the latter is sound and complete with respect to the former. In section 

2.2, we define quantales as the consequence algebras which are lattice theoreti-

cally complete. We give some examples, and review their basic theory. We also 

define a resource semantics for propositional intuitionistic linear logic similar to 

the semilattice semantics for relevance logic given by Urqhart [Urq72]. 
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2.1 	Intuitionistic Linear Logic 

Let A 	{P1,P2,. . . ,p,.  . .} be a countably infinite list of atomic propositions. 

The set F of formulae 0 of intuitionistic linear logic is given by the following BNF 

grammar. 

Iii Tp I 	 I 	 (2.3) 

If F is a finite list of formulae, possibly empty, and q  is a single formula then 

F F- 0 is a sequent of intuitionistic linear logic. The valid sequents are those derived 

using the rules of inference given in the next two sections. 

2.1.1 Structural rules 

The following rules operate on the structure of derivations. 

(ref) 
0 1- 0 

(ex) 	
F1101F2 HO 

F1,5,,F2  1-0 

(cut) 
	 F2 Hq 

F1,F2  I- 

The additional structural rules of weakening and contraction given in Gentzen's 

sequent calculus LJ for intuitionistic logic [Gen69] are not allowed. 

Avron [Avr87] states the three rules above as the definition of a 'consequence 

relation'. This is a generalisation of the original definition given by Scott [5co74] 

which included both weakening and contraction, but is still slightly too restrictive 

because there are logics without the exchange rule, eg. the non-commutative linear 

logic of Yetter [Yet90]. 

Note that the cut rule is slightly simplified in the presence of exchange because 

we can assume that the cut formula is adjacent to the turnstile. Similar simplifica- 
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tions occur in the logical rules below. In non-commutative linear logic, the order 

of the formulae is critical and the rules are more complex as a result. 

2.1.2 Logical rules 

The logical rules allow the introduction of constants and connectives in a sequent 

derivation. They are classified as either left or right rules, depending on which side 

of the turnstile the introduction occurs. 

The constants and connectives of linear logic are divided into two classes which, 

on the basis of the coherence space semantics, Girard has named the multiplicatives 

and the additives. In relevance logic, these classes are termed intensional and 

extensional respectively. 

Multiplicative Connectives 

(11) 
	

(1 r) 
I-i 

(01) 
F 	

(or) 
,q'HO 	 F, F- F2 H 

F,oF-O 	 F1,F2 Hqo 

—ol) 	
H F1 c 	F211-0 	

r) 	
F,q5F-b 

( 	 (—o 
F2,0—o,F1 F-0 	 FHc—o 
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Additive Connectives 

(0) 
F,0 F- 0 

F, qJ- 0 
(All) 

F,At' 1-0 

Flo I- 0 
(Al2) 

F,qA 0 HO 

(T) 
FF -T 

(Ar) F q FH5 

FHqA1' 

FH 
(Vrl) 	

q 
 

(vi) 	
'ib FçHO F,H0 	 FHqV 

	

F,qVbF-0 	 1 I 9/)  

(Vr2) 
FHqv 

The crucial difference between the multiplicatives and the additives lies in the 

way in which their introduction rules handle the side formulae or contexts. For 

example, in (or) the contexts F1  and F2  appearing in the premise are combined to 

give F1, F2  in the conclusion, whereas in (Ar) the conclusion has the same context 

as the premises. These differences are not significant in intuitionistic logic because, 

in the presence of weakening and contraction, the two forms of conjunction are 

interderivable. 

2.1.3 The Modality "Of Course" 

Girard's calculus also includes the modal operator "of course" which takes a for-

mula q  to the modal formula !q. The effect of! is to reintroduce weakening and 

contraction in a controlled manner by restricting their use to modal formulae. It 

has the following sequent rules. 

(!1) 

	

F,qH 0 	 !FHb 
(!r) 

!F H! 

FH ________ 
(weakening) 	 (contraction) 
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where !F denotes a finite sequence of formulae of the form !qi,.. . , !q5,. 

The "of course" modality gives linear logic the expressive power of intuitionistic 

logic, since intuitionistic implication can be defined as 0 D /' =!q —o 0 . However, 

it is inessential to the main thrust of this thesis, so we exclude it from the basic 

logic. 

2.1.4 Consequence Algebras 

We define the notion of 'consequence algebra' and use it to give an algebraic 

semantics for the basic connectives of intuitionistic linear logic. This is similar to 

the Heyting algebra semantics for intuitionistic logic. 

Definition 2.1.1 A consequence algebra is a structure (L, V, 01  A, T, o, 1, —o) 

where (L, V, 0, A, T) is a lattice, (L, o, 1) is a commutative monoid, and —o is 

a binary operation on L; such that for all x, y, z E L 

y<z =' xoy<xoz 	 (2.4) 

and 

xoy<z 	x<y —oz 	 (2.5) 

In the terminology of [Bir48], the operation —o is called residuation and a con-

sequence algebra is a residuated multiplicative lattice in which the multiplication 

is commutative and has a unit. 

A Heyting algebra is a consequence algebra in which o = A and 1 = T. Other 

examples include de Morgan monoids, and the rational numbers between 0 and 

1 under multiplication. In the next section, we consider 'quantales' which are 

consequence algebras whose underlying lattice is complete. 

1111 [Gir87a], Girard gives a sound interpretation of intuitionistic logic in linear which 

is based on this translation. 
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Proposition 2.1.2 The following identities (inequalities) hold in any consequence 

algebra A. 

(xoy) —oz = 	x —o(y —oz) (2.6) 

xo(yVz) = 	(xoy)V(xoz) (2.7) 

x —o(yAz) = 	(x—oy)A(x--oz) (2.8) 

(xVy) —oz = 	(x —o z) A (y —o z) (2.9) 

(x—oy)o(y--oz) < 	(x —oz) (2.10) 

(u—ov)o(x—oy) (uox)—o(voy) (2.11) 

Proof. These all follow routinely from the definition. We take 2.9 as an illustra-

tion. 

First, since fusion is order preserving 

xo[(xVy)z] <(xVy)o[(xVy)z] < z 

where the second inequality follows immediately from 2.5. Thus (x V y) —o z is 

less than or equal to x —o z and similarly less or equal to y —o z. It follows that 

(xVy)z < (xz)A(yz) 

In the other direction, we have 

(x—oz)A(y—oz)x—oz 

Using two applications of 2.5 together with the commutativity of fusion, we can 

swap the positions of x and (x -0 z) A (y —o z) and so obtain 

x < [(x—oz)A(y—oz)]---oz 

As the same argument applies to y, we deduce that 

xVy[(xz)A(yz)]z 

and hence that (x —o z) A (y —o z) :~ (x V y) —o z as required. 	 11 
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An interpretation of intuitionistic linear logic in a consequence algebra L is a 

function ft-J : F -f L which sends each of the logical constants and connectives 

to the corresponding algebraic operation on L. Thus I[1]1 = 1, ftO o &JJ = E[cii ° Ek'Th 

[q5  A 01 = ft1J A  ft'J, and so on. An interpretation -] can be extended to a list 

of formulae by defining E I = 1 and F, q] = ftF]j o ftç/4 A sequent F F- 0 is true in 

the interpretation [-] : F -p L if ftF 	I[. 

Theorem 2.1.3 Intuitionistic linear logic is sound and complete with respect to 

the consequence algebra semantics. 

Proof. Soundness is straightforward. For completeness, we consider equivalence 

classes of formulae in the logic under the relation 	where q 	J' holds if both 

I- 	and 0 I- q are derivable sequents. These form a consequence algebra L and 

the function 	F - L which maps each formula to its equivalence class yields 

an interpretation of intuitionistic linear logic such that F [- 0 is derivable if and 

only if ftF]J < ftcb]I. Thus, if F F- q  is true in every interpretation then I[F]I< ftJI 

holds in L and F F- q  is derivable. 	 0 

2.2 Quantales 

Recall [Joh82] that a locale is a complete lattice in which finite meets distribute 

over arbitrary joins. Locales provide an algebraic semantics for propositional in-

tuitionistic logic, but also form the basis of the theory of sheaves and hence the 

algebraic treatment of higher order intuitionistic logic (see [FS79,LS861). 

Quantales are a generalisation of locales which were introduced by Mulvey 

[Mu186] in an attempt to provide a constructive formulation of the foundations 

of quantum mechanics. The idea was to represent the sequencing of time using 

a non-commutative version of conjunction. Mulvey defined a quantale to be a 

complete lattice with an associative binary operation & which distributes over 

suprema on both sides. The product p & q should be read as "p holds and then q 

holds". 
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Subsequently, Borceux and Van Den Bossche [BVDB85] extended the proof of 

the Gelfand-Naimark representation theorem, that every C*algebra  is isomorphic 

to the object of complex numbers in a suitable topos, to the non-commutative 

case by using quantales. Here, the motivating example of a quantale is the lattice 

of closed right ideals of a non-commutative C*a1gebra.  This has the additional 

properties that multiplication is idempotent and the top element is a right unit. 

These very strong assumptions allow a large part of the theory of locales to 

be lifted to a non-commutative setting, and Borceux and Van Den Bossche have 

exploited this in a series of papers. In [BVDB85], they define quantum spaces, a 

variant of topological spaces in which the intersection of open sets is replaced by a 

noncommutative multiplication, and demonstrate a duality between the category 

of 'sober' quantum spaces and quantales 'with enough points'. In [BVDB86] they 

give a notion of 'quantic sheaf'. 

Joyal and Tierney initiated the study of commutative quantales in [JT84]. 

They observed that many interesting properties of locales can be studied in the 

more general setting of 'commutative monoids in the category of complete semi-

lattices' (commutative quantales with unity). There is a strong parallel between 

such monoids and rings. In particular, Joyal and Tierney show that commutative 

quantales have a theory of 'modules' similar to that for rings. 

Mulvey's formulation of quantales does not require & to have a unit. From 

a logical point of view this is an omission, because the unit determines which 

elements of the quantale are considered to represent 'truths'. An element a of Q 

is said to be valid or designated if 1 < a 

The assumption of idempotency is also undesirable from our point of view 

because it includes the logical principle of contraction. We shall concentrate on 

commutative non-idempotent quantales and refer to [Yet90] for an account of the 

quantale semantics of non-commutative linear logic. 

Definition 2.2.1 	A commutative quantale with unity is a structure 

(Q, <,o, 1)  01  T) where (Q, <,0, T) is a complete lattice, (Q, o, 1) is a commutative 
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monoid and o distributes over suprema, ie. 

ao(Vb1)=V(aob) 	 (2.12) 
iES 	iES 

The multiplication o is called fusion in the tradition of relevance logic. 

Notation 2.2.2 Henceforth, 'quantale' will mean 'commutative quantale with 

unity'. 

A quantale homomorphism is a function f : Q -f  Q' which preserves 1, o and 

suprema. Let CQuant denote the category of quantales and quantale homomor-

phisms. 

We note that a quantale Q is necessarily a consequence algebra via: 

a —o b = V{xlx o a < b} 	 (2.13) 

In categorical terms, the functor (—) o b from Q to Q preserves colimits and so, 

since the solution set condition is trivial for partial orders, has a right adjoint 

b—o(—). 

Conversely, if Q is consequence algebra whose underlying lattice is complete 

then Q is a quantale, because the existence of a right adjoint b —o (—) ensures that 

the functor (—) o b preserves colimits. 

2.2.1 Examples 

We know that every locale is a quantale with the multiplication given by binary 

meet. There are, however, many other forms of quantale. The examples in this 

section have been chosen to demonstrate their wide diversity and some of the 

possible pathologies. 

Power Set of a Monoid 

Let (M, ., e) be a commutative monoid. The complete lattice ((M), ç)  forms a 

quantale P(M) with XoY = XY = {xylx E X,y E Y} and 1 = {e}. The residual 

X —o Y = { z E QVx E X. xz E Y} is denoted X\Y. 

In fact 2(M) is the free quantale on the monoid M. 
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3-Valued Logic 

The behaviour of fusion on the elements 0 < 1 < T is determined by the definitions: 

xoO = 0 since 0 is the sup of the empty set, T is idempotent since T = Tol < ToT, 

and x a 1 = x since 1 is the unit for o. 

oOlT 	—o 01T 

O 0 0 0 	0 1 T T 	
(2.14) 

1O1T 	1 O1T 

TOTT 	TOOT 

The quantale consisting of the three elements 0 < 1 < T with the induced multi-

plication has been used by Routley and Meyer as the basis of their three valued 

relevance logic (see [AB75]). We denote it RM3. 

Additive Subgroups of a Commutative Ring 

The subgroups of a group ordered by inclusion form a complete lattice with 

AEIX = fl€jX and V.,,,€ jX = 	 E Ul,EIX}. Let (R,+,O, x,1) 

be a commutative ring, and consider subgroups of (R, +, 0). We can define a 

multiplication of subgroups as follows. 

X o Y = { 1<i<(x >< )l; E X, y  E Y} 	 (2.15) 

The subgroup generated by {1} is a unit for this multiplication (its elements are 

known as the integers of R). As a is clearly monotone we need only check that 

XOVEI1' <V€j(Xo}). 

Suppose that z e X o V-1 }', then z is a finite sum of terms x x 

where x E X and y cU IEIYY.  By distributivity, this is just a finite sum of terms 

x >< y where y e } ie. an element of V €1(X a 1). 

Similarly, the ideals of R form a quantale Idl(R). 
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Flat Quantales 

Let (M,,,  e) be a commutative monoid, and let L be the complete lattice whose 

underlying set is M U {O, T} and whose order is defined as 

x<y 4= x=yorx=Oory=T 
	

(2.16) 

We can extend the multiplication on M to produce a monotone operation on L as 

follows. 
x•y ifx,yEM 

xoy= 0 ifx=Oory=O 	 (2.17) 

T otherwise 

Now, suppose that (M, •, e) is a commutative cancellation monoid. That is, for 

all x, y E M there is at most one z E M such that xz = y. We can define linear 

implication as follows. 

T ifx=Oory=T 

X-0y= z ifx,yEMandx•z-y 	 (2.18) 

0 otherwise 

It is easy to check that x —a (-) is right adjoint to (-) o x, from which it follows 

that (M U {0, T}, o, e, <) is a quantale. We call it the flat quantale on M and 

denote it .F(M). The three element quantale RM3 is the flat quantale on the 

trivial monoid. 

Recall that an element of a quantale is said to be designated if it is greater than 

or equal to the unit, and that the designated elements are intended to represent 

linear 'truths'. It is interesting to note that if C is a non-trivial abelian group 

then for any element a e we have that aa 1  = e is a designated element of T(G) 

despite the fact that neither a nor a 1  is designated. In terms of linear logic, we 

have a conjunction which is valid as a whole without either of its conjuncts being 

valid. 

Ordinal examples 

An ordinal is a set whose elements are well ordered by membership. For any 

ordinal c let 0., be the set c + 1 = o U {o} with the opposite of the membership 
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order. This is a complete lattice with the supremum of S C O given by the 

least element of S with respect to the order of a + 1. Fusion is based on ordinal 

addition. 

3o -y=min{9+'y,a} 	 (2.19) 

The distributivity is derived from the well-ordering of a + 1 as follows. 

° V 72  = min{9 + ii('y), a} 	 (2.20) 
IEI 	

iEI 

= 	min{rrip(I3 + 7j), a} 	 (2.21) 

= nip(min{/3 + 	 (2.22) 

= V(°) 	 (2.23) 
iEI 

In general, there is very little we can say about the relationship between fusion and 

meet. The ordinal examples illustrate the fact that fusion might not distribute over 

infs of chains. For example, consider the descending chain 1 > 2 > ... ii 

in 02,-  WehaveAflEW lon=w but lo/\flEWn=w+l. 

Reals with oc 

Let [0, oo] be the ordered set of non-negative reals together with a maximum 

element oo and let [0, 	be the same set with the opposite order. Addition is 

extended to oc by defining x + oc = oc for all x. Every subset of [0, oc] has an 

infimum by the elementary properties of the reals, so [0, oo]°  is a complete lattice. 

Furthermore it is residuated 

x+y>z 	 x>y -- z 	 (2.24) 

where - denotes truncated subtraction given by: 

I a — b ifb<a 
a—b = 

	

	 - 	 (2.25) 

1 0 otherwise 

Thus R = ([0, oc]°', +, 0) is a quantale. Note that the function x '-* 2 is an 

isomorphism of quantales between R and ([0'  1], , x, 1). 
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2.2.2 Quotients and Nuclei 

In this section, we review some basic results in the theory of quantales. 

Recall [Bir48] that a closure (resp. co-closure) operation on a complete lattice 

£ is an order preserving function c: L -i £ which is increasing (resp. decreasing) 

and idempotent. That is, x < c(x) (resp. c(x) < x) and c(c(x)) = c(x). We say 

that an element x of L is c-closed if c(x) = x, or equivalently if x lies in the image 

of c. 

Definitions 2.2.3 

A quantic nucleus on a quantale Q is a closure operation j : Q - Q such 

that for all x,y E  
j(x) o j(y) <j(x o y) 	 (2.26) 

A quantic conucleus on Q is a co-closure operation h : Q -p  Q such that for 

all x,y E  

1 < h(1) 	 (2.27) 

h(x)oh(y) :5 h(xoy) 	 (2.28) 

In the terminology of the next chapter, quantales are a particular form of sym-

metric monoidal category and the conditions 2.26, 2.27 and 2.28 say that nuclei 

and conuclei are monoidal functors. Of course, the condition on a nucleus j which 

corresponds to 2.27 is already given by the fact that j is increasing. 

The following result gives an easy way to identify quantic nuclei. 

Lemma 2.2.4 [NR88] A function j : Q - Q is a quantic nucleus if and only if 

x —oj(y)  =3(x) —oj(y) for all x,y eQ. 

Q uantic nuclei are important in that they give a way of constructing new quantales 

Ii (Si Ssusirsi 

Lemma 2.2.5 [NR88] The image Q of a quantic nucleus j Q -+ Q forms a 

quantale with 1' =j(1), x o' y = Ix o y), and V 1 x1  = j(V€1xJ. 
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The meet of a family of j-closed elements in Q is again j-closed, so infima in Q, 

coincide with those of Q. This is also true for linear implications. 

Clearly, we can regard a quantic nucleus j : Q -* Q as a surjective map of 

quantales from Q to  Q. Moreover, every surjective map of quantales e: Q -+ Q' 

is isomorphic to one produced in this way. Since e preserves suprema it has a right 

adjoint e' : Q' -+ Q defined by 

e'(y) = V{xle(x) = y} 	 (2.29) 

Let j : Q -+ Q be the composite e'c. It is not difficult to show that j is a quantic 

nucleus and that e factors through j: Q -f Q3  by an isomorphism Q, Q'. 

Thus, the image Q3  of a quantic nucleus j is called a quantic quotient. The 

following lemma allows us to readily identify such quotients. 

Lemma 2.2.6 [NR88] A subset S of the quantale Q is a quantic quotient if and 

only if S is closed under A and x —o s E S whenever x E Q and .s E S. 

We note from [Ros90] that every quantale can be presented as the quotient of 

the free quantale over a monoid M. Consider Q as a monoid and let j : P(Q) -p 

P(Q) be the function which maps a subset S of Q to the set of elements below 

V(S). Then j is a quantic nucleus and Q P(Q)3 . 

By the subset ordering on quotients, the quantic nuclei on Q form a complete 

lattice N(Q). This is isomorphic to the lattice of congruence relations on Q. It 

follows from the above that every quantale has a presentation in terms of generators 

and relations (see [Vic891). 

Examples 2.2.7 

For any peQ,t=p—o(po(—)):Q—Qisa quantic nucleus. 

p 0 (-) Q - Q is a quantic nucleus if and only if p is an idempotent greater 

than 1. This is true if and only if p  o (-) = ti,. In particular, T o (-) is a 

quantic nucleus. 



Chapter 2. Linear Logic and Quantales 
	 30 

u, = p —o (-) : Q - Q is a quantic nucleus if and only if p is an idempotent 

less than 1. This is true if and only if p —o (-) = ti,. 

c, = p V (-) is a quantic nucleus if and only if p  o T < p. 

Proposition 2.2.8 Let Q be a commutative quantale and b be any element of Q. 

Then j(-) = ((-) —o b) —o b is a quantic nucleus. Furthermore, b is j-closed and 

the operation (-) —o b is an involution on Q3 . 

Applying this construction to the free quantale on a commutative monoid, we 

obtain Girard's phase semantics for classical linear logic. We define a Girard 

quantale to be a quantale Q with an element I such that the operation (_)1 

defined by x1  = x —a I is an involution. A simple example is given by RM3 with 

11. 

We turn our attention briefly to conuclei. 

Lemma 2.2.9 Let h : Q - Q be a quantic conucleus. The image Qh  of h is a 

subquantale of Q. That is, Qh  contains the unit and is closed under o and V. 

The modal operator !(-) can be interpreted as a conucleus. As !-closed formu-

lae are required to satisfy weakening and contraction, !0 must be interpreted by 

an idempotent element less than 1. The set of such elements form a locale, in fact 

the largest localic subquantale of Q. We take the interpretation of !(-) to be the 

corresponding conucleus. 

2.2.3 Resource Semantics 

In this section, we aim to elucidate the conservation principles which are implicit 

in linear logic by developing a semantics based on an abstract notion of resource. 

These ideas will be used later on in the construction of the presheaf example of 

chapter 4. The resource semantics is similar in style to the semantics for relevance 

logic proposed by Urquhart [Urq72], Routley and Meyer [RM72], and Fine [Fin74]; 

an account of which can be found in [Dun86]. Similar ideas have been used by Dam 
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[Dam88,Dam9O] to analyse the compositional properties of processes in Milner's 

CCs- 

The minimum requirement of an abstract notion of resource is that there is an 

operation which combines resources. We shall go further and require that resources 

form a commutative monoid. A linear proposition 0 will be modelled by the set 

of resources sufficient to prove it. Thus interpreting linear propositions in the 

power set of a monoid M gives a simple resource semantics. It is helpful to think 

of M as the natural numbers (N, +, 0, <) and suppose that we are counting the 

number of computation steps in some process that will validate 0. Alternatively, 

if every element of M is idempotent then we can imagine that they are 'pieces of 

information' which might allow us to deduce q,  and this is Urquhart's semi-lattice 

semantics [Urq72]. 

There may also be a partial order representing the idea that one resource is 

better than another, in the sense that it can prove more facts. 

Definition 2.2.10 A resource model of propositional linear logic is a structure 

(M, ., e, , I=) where (M, ., e) is a commutative monoid, < is a partial order on 

M such that multiplication is monotone in both arguments, and = is a relation 

between elements of M and atomic propositions of intuitionistic linear logic which 

satisfies 

xy and x F= 0 ==> y=çf 	 (2.30) 

The relation = can be extended to all linear propositions as follows. 

xVL' x=qorxF= 0 (2.31) 

x 	q  A b x 	and x H 0 (2.32) 

== (2.33) 

VyEM(y='xy=çb) (2.34) 

x=1 == e<x (2.35) 

x = T for all x E M (2.36) 

x0 for any xM (2.37) 
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A sequent F H 0 is valid in the model (M, •, e, , =) if x = 0 implies that x = 

where 0 is the fusion of formulae in F and is 1 when F is empty. 

There is a straightforward connection between the resource semantics given 

above and the consequence algebra semantics. For any subset S of the monoid M 

let 1 (8) denote the upward closure of S. As multiplication in M is monotone in 

both arguments, 1: 'P(M) - P(M) is a quantic nucleus whose image P(M)1  is 

the upwardly closed subsets of M. The resource semantics corresponds to an in-

terpretation of linear propositions in the quantale P(M)1  and hence propositional 

intuitionistic linear logic is sound with respect to this semantics. 

The interpretation of the linear connectives given above captures the intention 

of the relational semantics of Routley and Meyer [RM72]. Their ternary relation 

R can be defined as 

Rxyz 	== 	xy < z 	 (2.38) 

Note 2.2.11 Linear logic is not complete with respect to the resource semantics 

since the distributive law below is valid in all resource models but is not a derivable 

sequent of linear logic. 

A ( 	V 0) I- (q A b) V (q  A 0) 	 (2.39) 

See [Rea88] for a discussion of linear logic with this additional rule. 



Chapter 3 

Symmetric Monoidal Closed Categories 

There is now a well established correspondence between type theories and classes 

of 'category with structure' [See84,See87a,11P88]. This is often expressed as an 

equivalence between a category of type theories and the corresponding category 

of categories. Two important examples, both contained in [LS86], are the corre-

spondence between elementary topoi and higher order intuitionistic type theory, 

and that between cartesian closed categories and the simply typed )-calculus. 

Symmetric monoidal closed categories are a mild, but important, generalisa-

tion of cartesian closed categories, and it is therefore natural to seek a syntactic 

analogue of these categories. In this chapter, we present a form of linear type 

theory, denoted LTT, and we state and prove a correspondence between LTT and 

symmetric monoidal closed categories. The system LTT forms a type theoretic 

basis for the logic of chapter 6. 

In section 3.1, we define symmetric monoidal closed categories and give some 

standard examples. In the next chapter, we study in detail two further examples 

which are, perhaps, more interesting because they are actually derived from a 

consideration of linear logic. 

In section 3.2, we introduce the language of LTT which consists of types and 

terms with restrictions placed on the occurrence of variables. In contrast to the 

other examples mentioned above, symmetric monoidal closed categories have less 

structure than cartesian closed categories. We must therefore limit the expres-

siveness of the syntax to the fragment of equational reasoning that is valid in a 

33 
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symmetric monoidal closed category. In general, the tensor product of a symmet-

ric monoidal closed category has no diagonal map, so we must restrict ourselves 

to terms in which there is no repetition of variables. We allow equational axioms 

between terms provided that the same variables occur on each side. 

The definition of linear type theory is parametric in three arguments: a set B 

of basic types, a set F of function symbols, and a set E of equational axioms. We 

use LTT(B, F, E) to denote the language defined with parameters B, .F and E. 

In section 3.3, we define an interpretation of a linear type theory in a symmetric 

monoidal closed category C, and give a syntactic construction to show that for 

every theory LTT(B, F, E) there exists an 'initial model' T0(B, F, E). 

In section 3.4, we give examples of equational theories to illustrate the sort 

of equational reasoning that that is possible within a symmetric monoidal closed 

category. The first of these is a simple theory of monoids and monoid actions. 

The examples include quantales, which are monoids in the category CSLat of 

complete semilattices, and rings, which are monoids in Ab. 

The idea that category theory itself can be internalised in a symmetric mon-

oidal closed category is the foundation of enriched category theory [Ke182], and 

indeed 'categories' form the second of our examples. 

Finally, we modify LTT so that it includes equations between types, and show 

that for any symmetric monoidal closed category C there exists a (modified) linear 

type theory whose initial model is C. This gives an equivalence between the cate-

gory LTT of linear type theories and the category SMCC of symmetric monoidal 

closed categories. 
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3.1 Symmetric Monoidal Closed Categories 

Definition 3.1.1 A monoidal category  = (C ) ®,I,a,l,r) consists of a category 

C, a functor 0 C x C -p C, an object I of C, and natural isomorphisms 

ax,y,z : (X0Y)0Z—X0(Y(9Z) 
	

(3.1) 

I X  : I®X—X 
	

(3.2) 

rx : X®I—*X 
	

(3.3) 

which satisfy the following coherence axioms. 

((W0X)®Y)®Z a®l(W(XY))Z 

a 

(WØX)O(YOZ) 	 a 
	 (3.4) 

a 	

______ W0((x®Y)®z) 

(X0I)oY 	
a 	

XØ(I(DY) 

(3.5) 
rOl  

X®Y 

These are called the pentagon and triangle laws respectively. A monoidal category 

is said to be strict if a, 1, r are identities. 

Definition 3.1.2 A symmetry for a monoidal category (C, ®,1, a, 1, r) is a natural 

transformation cx,y : X ® Y - Y ® X satisfying the following coherence axioms. 

(X®Y)®Z 
a 
 X(YZ) 

 c 

c®1 	

la 

	 (3.6) 

(YOX)OZ 	Y0(X0Z) 	Y®(Z®X) 
a 	 lØc 



(3.7) 

x®Y 

c\ 

Y®X 	X®Y 
C 
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A symmetric monoidal category is a monoidal category equipped with a symmetry. 

If C is a category with finite products then C is a symmetric monoidal category 

with 0 given by the cartesian product, I the terminal object, and a, c, 1 given by 

appropriate combinations of pairing and projection. 

Definition 3.1.3 A symmetric monoidal category C is closed if for each 

X E Obj(C) the functor (-) 0 X has a specified right adjoint [X, -]. 

That is, there exist natural transformations 

6x,Y : [ X,Y]®X—*Y 

X—*[Y,X®Y] 

which satisfy the triangle identities for an adjunction 

1=e(01) : XOY—*[Y,XOY]®Y—*X®Y 	(3.8) 

1 = [1,e]5 : [X,Y] - [X,[X,Y] ®X] - [X,Y] 	(3.9) 

The notion of an adjunction has several equivalent formulations [ML71, page 81], 

and we can also usefully state the definition of closure in terms of a universal 

property 

Lemma 3.1.4 A symmetric monoidal category C is closed if for each X, Y E 

Obj(C) there exists an object [X, Y] and an arrow E x,y : [X, Y] 0 X - Y which is 

universal from (-) 0 X to Y. That is, whenever f: Z 0 X -p Y is a morphism 

of C, there exists a unique map .X(f) : Z -+ [X, Y] such that x,y(A(f) 0 1) = f. 

Remark 3.1.5 If C is a symmetric monoidal closed category then, by the param- 

eter theorem for adjunctions [ML71, page 100], there is a unique way to 'piece 
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together' the horn functors [X, -] to give a single functor [-, -] C°1  >< C -* C 

such that the isomorphism 

C(ZØX,Y) C(Z,[X,Y]) 

is natural in X, Y and Z. 

Example 3.1.6 Perhaps the best known example of a symmetric monoidal closed 

category is the category Ab of abelian groups. 

The tensor product of two abelian groups A and B is the abelian group gener-

ated by elements a ® b with a e A and b e B subject to the relations 

(a1 +a2)®b = (a1 ®b)+(a2 ®b) 	 (3.10) 

a®(b1 +b2) = (a®b1)+(a®b2) 	 (3.11) 

The unit for ® is given by Z, the group of integers under addition. The internal 

horn [A, B] is the set of all group homomorphisms from A to B with addition 

defined pointwise: 

(f +g)(a) = f(a) +g(a) 
	

(3.12) 

and identity given by the trivial homomorphism mapping all of A to the zero in 

B. 

In fact, the symmetric monoidal closed structure on Ab is a special case of 

that on the category R-Mod of modules over a ring R, since Ab is equivalent to 

Z-Mod where Z is the ring of integers. 

Examples 3.1.7 

Every consequence algebra, and hence every quantale, is strict symmetric 

monoidal closed when viewed as a category. 

A category C with finite products is said to be cartesian closed if it is closed 

with respect to x. Examples of cartesian closed categories include Set, the 

category Poset of partial orders and order preserving maps, the category 

Cat of all small categories, the category CPO of partial orders with sups of 

w-chains and Scott continuous maps between them [Sch86], Heyting algebras, 

and topoi. 
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The category of (generalised) metric spaces and distance decreasing maps 

(see section 4.2). 

The category Set of sets with a distinguished element * and functions 

which preserve that element. The tensor product X ® Y is the quotient of 

X >< Y U {*} under the smallest equivalence relation containing the relations 

(x ) *) 	* 	(*, y) for alix € X andy e Y. The unit us the set {*} and 

the internal horn [X, Y] is the function space yX  with distinguished element 

given by the constant function mapping all of X to *. 

3.1.1 Monoidal Functors 

There is more than one interesting notion of map between symmetric monoidal 

closed categories C and V. The most obvious is to take a functor F : C -* V which 

preserves all the structure on the nose. A more subtle notion is a functor which 

preserves the tensor product and unit up to a comparison. That is, FX 0 FY and 

F(X®Y) are not necessarily equal, but there is a comparison map F(X)®F(Y) - 

F(X 0 Y) between them subject to certain coherence conditions. Quantic nuclei 

are an example of such a functor. 

Definition 3.1.8 Let C, V be symmetric monoidal categories. A symmetric 

monoidal functor from C to V is a triple (F, P, F°) where F C -* V is a functor, 

F°  is a morphism I - F(I) in V and F is natural transformation with components 

Fx,y : F(X) 0 F(Y) -* F(X ® Y). The following coherence axioms are required. 

(F(X) ® F(Y)) ® F(Z) 
a 
 F(X) ® (F(Y) ® F(Z)) 

P®i 	 i®P 

F(X ® Y) ® F(Z) 	 F(X) 0 F(Y 0 Z) 	(3.13) 

_______ N 
F((X ® Y) ® Z) 	 F(X ® (Y ® Z)) 

F(a) 
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I0F(X) 	F(X) 

F°  O1[ 	 [F(l) 	 (3.14) 

F(I) 0 F(X) 	F(X 01) 
F 

F(X) ® F(Y) 	F(Y) ® F(X) 

PI 	 [1 	 (3.15) 

F(X ØY) 	F(Y ®X) 
F(c) 

Remark 3.1.9 In the nonsymmetric case we would need to give a coherence 

condition for r, but here it follows from the conditions on 1, c and the fact that 

Note that the existence of a comparison P : F(X) 0 F(Y) —* F(X 0 Y) 

automatically gives the following comparison for the internal horn. 

x,y = )(F(e)P) F[X,Y] — [F(X), F(Y)] 	 (3.16) 

The next definition gives some of the stronger notions of map between symmetric 

monoidal closed categories. 

Definition 3.1.10 A symmetric monoidal functor (F, F, F°) : C —* V is said to 

be 

strong if F°  and F are natural isomorphisms, 

strict if F°  and F are identities, 

strong closed if F°  and F are natural isomorphisms, 

strict closed if F°  and P are identities. 
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Q uantale homomorphisms are examples of strict monoidal functors, but are 

not necessarily strict closed. The linear doctrines defined in chapter 7 (definition 

7.1.5) are strict monoidal strict closed. 

3.2 Linear Type Theory 

In this section, we use a language of combinators and types to give a syntactic 

presentation of symmetric monoidal closed categories. This is based on Jay's 

language for monoidal categories [Jay89a,Jay9O] but also bears some relation to 

the language of Lafont's linear abstract machine [Laf88]. 

3.2.1 Types 

Let B = {X, Y, Z,. . . } be a set of basic types. The set T of types is built induc-

tively from basic types and the unit type I, by the application of the binary type 

constructors tensor product 0 and internal hom [-, -]. 

t ::= I I X It1® t 2 I  [t1, t 2] 	 (3.17) 

3.2.2 Combinators 

The basic combinators are given below, together with their type. 

IdA  A  

asslA,B,c 	: A®(B®C)—(A®B)®C 

assrA,B,c : (A®B)®C—A®(B®C) 

swapA,B : 	A 0 B -p B 0 A 	 (3.18) 

openA A —IØA 

closeA  : I®A —A 

evalA,B : 	[A,B]®A—B 

In addition to the basic combinators above, we have a set F of function symbols. 

Each F E F has a specified type F : A -f B. General combinators are built 
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inductively from the function symbols and basic combinators by the following 

three rules. 
cE:A —*B 	

(3.19) 
J3.c:A—*C 

/3:C—D 	
(3.20) 

a®/9:AØC—*BØD 

cE:AØB — C 	
(3.21) 

A(a) : A - [B, C] 

In the tradition of the )-calculus, we call A(c) the 'currying of cr'. 

3.2.3 Type Assignment and the Calculation of Subscripts 

The combinators given above are explicitly typed. In proposition 3.2.3, we show 

that the subscripts on the basic components of a combinator c are uniquely de-

termined by its type, and so can be dropped whenever the type is clear from 

the context. To do this we briefly consider an extension of the system of types 

which includes type variables. The type expressions are given by the following BNF 

grammar 

e::= I  I  X  I  x  I  e1  ® e2  [e1 , e2 ] 

where x ranges over type variables. The basic combinator schemes are given by 

3.18 where A, B, C are taken to range over type expressions. Function symbols 

are assumed to have a specified type U - V with no type variables. General 

combinator schemes are built up from basic schemes and function symbols using 

the rules 3.19 to 3.21. 

In addition to the combinator schemes, we need to consider combinator ex-

pressions without subscripts. The untyped combinators are given by the following 

BNF grammar 

c 	Id I ass!  I assr I swap I open I close I eva! 

F I c1 0  c2  I  c1  0 c2  I A(c) 	 (3.22) 



Chapter 3. Symmetric Monoidal Closed Categories 	 42 

If a is a combinator scheme then erase(a) denotes the untyped combinator derived 

from a by deleting the subscripts on basic components, eg. 

erase(open[x,y] .A(evalx,y  • evalx,[X,y]®x)) =open .A(eval • eva!) 

Not all of the untyped combinators have a typed counterpart, swap .A(swap) 

for example. We say that an untyped combinator 'y is stratified if there exists a 

combinator scheme a with erase(a) = 'y. 

We say that a combinator scheme a' : A' -f B' is a substitution instance of a 

scheme a: A -f B if there exists a simultaneous substitution 0 of type expressions 

for type variables which maps A to A', B to B' and a to a'. The following result 

says that if an untyped combinator -y is stratified then there exists a most general 

combinator scheme with erasure 'y. This is similar to the principal types lemma 

found in [HS86]. 

Lemma 3.2.1 If an untyped combinator 'y  is stratified then there exists a com-

binator scheme 3 : C -f D such that erase(/3) = 'y and, furthermore, whenever 

erase(/3') = -y then /3' is a substitution instance of/5. 

Proof. By induction on the structure of -y.  Note that for any combinator scheme 

A - B with erase(0) = -y, the structure of the type derivation of 3 is exactly 

determined by the structure of -y. 

The only difficult case is 'y = 'y • 72• By the induction hypothesis, there exist 

A -f B and /2 : B' - C which are the most general combinator schemes such 

that erase(pi) = 7i  for i = 1, 2. We know that there exists a combinator scheme a 

such that erase(a) = , so by examination of the type derivation of a there is at 

least one substitution of type expressions for type variables which makes B and 

B' equal. Thus, by the first order unification theorem (see [Rob79]), there exists 

a most general one 0. It is routine to verify that 0(132) • 0(/3) : 0(A) - 0(B) is the 

most general combinator scheme with erase(/3) 	y. 
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Lemma 3.2.2 Let /3: B -p C be a combinator scheme. Then every type variable 

in the subscripts of /3 appears either in B or in C. 1  

Proof. By induction on the structure of the type derivation. 

Again, the only difficult case is the composition rule 3.19. Suppose that 3 = 

/32 • where 01  : B -* D and /2 : D - C. We use the fact that the combinators 

of LTT correspond to the consequence relation of intuitionistic linear logic. For 

each type variable x let vx  be a mapping of type expressions into the quantale 

RM3 such that 

T 

f v(A) = 

[
1 

ifA=x 

if A=A1 ®A2  

if A = [A,, A21 

otherwise 

(3.23) 

Note that v(A) = 1 if and only if x does not occur in A. We can show inductively 

that if : C -* H is a combinator scheme then v(G) < v(H). For example, if  is 

a function symbol then G and H contain no type variables, so v(G) = v(H) = 1. 

If the type variable x does not appear in C or D above then 

1 = v(B) <v(D) <v(C) = 1 	 (3.24) 

so x does not occur in D either. 	 El 

Proposition 3.2.3 Let c, cV be combinators with the same type. If erase(c) = 

erase(cx') then a = c/. 

Proof. 

Let /3 : B - > C be the most general combinator with erase(0) = erase(a). 

It follows that both c, are substitution instances of /3. As every type variable 

'This is related to a result by Kelly and Mac Lane [KML71] which says that the 

allowable natural transformations of a closed category have 'graphs' which do not contain 

any loops. 
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occurring in the subscripts of 3 appears in B or C, it suffices to know the domain 

and codomain of a to calculate a substitution 0 such that a = 0/3. Hence a, a' 

must be equal because they have the same domain and codomain. 	 0 

Proposition 3.2.3 shows that the subscripts on a combinator are uniquely de-

termined by its type, and the proof of lemma 3.2.1 embodies an algorithm for 

calculating them. Thus, we shall omit the subscripts from combinators when the 

overall type is clear. However, there are important situations where this is not the 

case (see remark 6.3.3) and the subscripts must be retained. 

3.2.4 Derived Combinators 

The following combinators are important enough to merit names. 

holdA,B 	= A(Id) 

A—[B,A®B] 

interA,B ,c,D 	= assr .((assl .(Id 0 swap). assr)0 Id). assi 

(A®B)®(C(DD) - (A®C)Ø(BØD) 

tensorA,B,c,D = A((eval 0 eva!). inter) 

[A,C]®[B,D] - [A®B,COD] 

corn PA,B,c 	= A(eval .(Id (9 eval). assr) 

[B,C]Ø[A,B] — [A,C] 

curryA,B,c 	A(A(eval • assr)) 

[AØB,C]—*[A,[B,C]] 

If a : A' —f A and /3 : B - B' then we can define a combinator [a, /3]: [A, B] --~ 

[A', B'] which corresponds to the morphism part of the horn functor. 

[a, /9] = A(/3. eva! *(10 a)) 	 (3.25) 

3.2.5 Variables and Terms 

We assume that we have a countably infinite set var(A) = {a1, a2,. . . , an,. . .} of 

variables for each type A in T. The following rules generate a set of preterms for 

each type A. 
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Q e preterm(I). 

If a E var(A) then a E preterm(A). 

If s E preterm(A) and t E preterm(B) then (s, t) E preterm(A ® B). 

If s E preterm(A) and a: A -* B then a(s) E preterm(B)2. 

A preterm s is a term if no variable occurs more than once in s. Thus 

(F(x), eva! (comp (f, g), y)) is a term but swap (x, x) is not. The set of terms of 

type A is denoted term(A)- 

We say that a term is basic if it contains no combinators. Thus basic terms are 

built from variables and round brackets only. A basic term (x, y) E term(A 0 B) is 

essentially a variable of the tensor type. The reason for introducing single variables 

V E var(A ® B) is to give a clean definition of substitution. 

If t is a preterm and v is a variable of the same type then for any preterm s 

we can define the preterm s[t/v], the result of substituting t for v in s as follows. 

Q[t/v] = 0 
	

(3.26) 

w[t/v] = 
	t ifv=w 	

(3.27) 
w otherwise 

(51,s2)1t/v1 = (s1[t/v], s2[t/v]) 
	

(3.28) 

a(s)[t/v] = a(s[t/v]) 
	

(3.29) 

Lemma 3.2.4 If s,t are terms with no variables in common, and v is a variable 

with the same type as t, then s[t/v] is a term. 

Proof. Easy induction on the structure of s. 	 U 

21f  S  = 0 or s = (t, n) then shall shall omit the brackets and write as. 
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3.2.6 Equations between terms 

Definition 3.2.5 An equivalence relation on terms is substitutive if it satisfies 

the following two conditions. 

whenever t1, t 2  are terms with the same type as a variable v and 51,S2  are 

terms whose variables do not appear in t1, t 2  then 

S1 	2 and t1 	t2 	= 	s1[t/v] 	s2[t/vJ 	(3.30) 

whenever x is a basic term with the same type as v, and none of the variables 

of x already appear in s, 2  then 

s1[x/v] s2 [x/v] 	si  82 
	 (3.31) 

This second condition will allow us to assume that variables of the tensor type 

are actually pairs. 

Definition 3.2.6 An equivalence relation on terms is extensional if whenever 

f, g are terms of type [X, Y] and x is a basic term of type X then 

eva1x,y (f,x)evalx,y (g,x) = fg 	 (3.32) 

Definition 3.2.7 Let E be a set of linear equational axioms, that is pairs (s t) 

of terms such that s, t have the same type and exactly the same variables. The 

relation E  of term equality relative to E is defined to be the smallest substitutive 

and extensional equivalence relation including the equational axioms E and the 

equations 3.33 to 3.41 below. 

IdA  (s) s (3.33) 

('y • a) (s) y(c(s)) (3.34) 

c®/3(s,t) (Q(s),/3(t)) (3.35) 

asslA,B,c (s, (t, u)) ((s, t), u) (3.36) 

assrA,B, 	((s, t), u) (t, u)) (3.37) 

SWaPA,B (s, t) s) (3.38) 
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openA  (s) 	(0, S) 	 (3.39) 

	

closeA  (0, S) 	s 	 (3.40) 

	

evalB,c (A()(s),t) 	c(s,t) 	 (3.41) 

Definition 3.2.8 The language LTT(B, F, E) of linear type theory with a set B 

of basic types, F of function symbols and E of linear equational axioms consists 

of the set T of types generated from B together with, for each type A, the set 

term(A) of terms of type A built from variables and function symbols in F subject 

to the relation E  of term equality defined above. 

Notation 3.2.9 Henceforth, we shall omit the subscript E and write for term 

equality wherever this causes no confusion. 

Lemma 3.2.10 Ifs t then s,t are terms of the same type with the same vari-

ables. 

Proof. By induction on the number of steps required to derive s pti t. 	0 

3.2.7 A Normal Form for Terms 

In this section, we show that every term has a normal form consisting of a single 

combinator applied to a basic term. This means that we can separate the 'function' 

part of LTT from the 'variable' part, which is important for the interpretation of 

formulae given in section 7.2. 

Definition 3.2.11 Let s be a term in LTT(B,F,E). We define an associated 

combinator, ac(s), and an associated basic term, abt(s), as follows. 

	

ac(Q) = Id, 	 abt(Q) = () 

	

ac(VA) = IdA 	 abt(v) = v 	
(342) 

ac((s,t)) = ac(s)®ac(t) abt((s,t)) = (abt(s),abt(t)) 

ac(o(s)) = c 9 ac(s) 	abt(cx(.$)) = abt(s) 
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Lemma 3.2.12 If 1 is a term of type A and v E var(A) then for all terms S 

ac(s)(abt(s)[t/v]) 	s[i/v] 	 (3.43) 

In particular, if v does not occur ins then s 	ac(s)(abt(s)). 

Proof. Easy induction on the structure of s. 	 761 

Definition 3.2.13 A combinator is central if it is built entirely from instances of 

Id, assi, assr, open, close, swap by composition and tensor product. 

Lemma 3.2.14 If x, y are two basic terms with the same variables then there 

exists a central combinator such that (x) y. 

Proof. Given a list 	{A1 , A2,.. . , A,} of types, there are two canonical ways 

to form a tensor product of 

L() 	= ( ... ((A1 ®A2)®A3)® ... ®An) 

R() = (A1  ® . . . ® (A ® (A_1  ® 

Let A be any other product of the types A1 , A2,.. . , A which retains their or-

der. We give an inductive definition of central combinators left: A - L() 

and right: A -* R() which map basic terms of type A with variables in 

A1 , A2,. . . , A,. to their left and right associated forms. That is, left (x) 	sl  

and right (x) 	x" where x' and x" are basic terms of type L() and R() 

respectively. 

If n = 1 then L() = R() = A so left1=right1=Id. For n > 2, A = B1  0 B 

where B1 , B2  are products of lists 	, 2 of length n1 , n2  respectively. We define 

left 	In1 -1 = ass 	. (left, 0 right 2 ) 

right = assrn2 -1 
 . (left 0 right,) 

Given the right associated product R() of a list 4D = { A1, A2,.. . 'An}, we can 

define central combinators 

pull1: A1Ø(...A1_1®(A1 ®(A11® ... )) ... ) - A1 ®(A1®(...A1_ 1®(A11® ... ) ... ) 
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which move the ith term of an n-tuple to the first position. 

pull1  = Id 

pull 1  = assr . swap • ass! .(Id 0 pulls ) 

These can be combined to give combinators which perform any permutation of 

the terms. 

Let x and y be basic terms with the same variables. We can apply right to 

obtain the right associated form of x, then use the appropriate combinations of 

the pull1  to obtain the right associated form of y, and finally apply the inverse of 

right to obtain y. 	 U 

3.3 The Interpretation of LTT in C 

Let (C, 01  I) [-, -], a, c, 1, 6, )) be a symmetric monoidal closed category and let 

B -* Obj(C) be a function which maps each basic type to an object of C. We 

extend z to all types as follows. 

z(I) = I 

z(A®B) = z(A)®z(B) 

z([A,B}) = [z(A),z(B)] 

Let I be a mapping of the basic function symbols given by 2 to morphisms of C 

such that 

-y : A -+ B 	= 	j (y) : z (A) - z (B) 	(3.44) 

We extend the definition of j inductively to all combinators in such a way that 

the functorial property 3.44 holds for an arbitrary -y. The basic combinators are 
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mapped to components of the natural transformations a, 1, c, e as follows. 

J(IdA) = 
j (assr,,c) = 	a,(A),(B),2 (c) 

.7 (assl,,c) -1 = 	aI (A),(B) I (C) 

3 (swap , ) = 	 (3.45) 

3(openA) = 
j(closeA) = 	i_i 

z(A) 

.7(evalA,B) = 

If a: A -p B and 9: B -* C are composable combinators then, using 3.44 as an 

induction hypothesis, I (a) and j 	are composable morphisms of C, and we can 

define 

3 (i9  • a) = .7 (13)j (a) 	 (3.46) 

Similarly for the tensor product 

(aø/3) =j(a)Øj(j3) 	 (3.47) 

Suppose that a: A ® B -p C. By the induction hypothesis I (a) is a morphism 

from z (A) 0 z (B) to z (C) in C. We define j (A (a)) to be the transpose of j (a) 

across the adjunction (-) 0 z (B) -1 [z (B), -], i.e. 

j (A (a)) = )( (a)) 	 (3.48) 

Definition 3.3.1 Let z : B -* Obj(C) and j : F - Mor(C) be functions such 

that 3.44 holds. We say that the pair (z,3) is an interpretation of LTT(B,F,E) 

if whenever x is a basic term and a(x) 	3(x) is derivable from the equational 

axioms E, then j (a) = j (/3) in C. 

3.3.1 The category TO 

We construct a symmetric monoidal closed category 7(B, F, E) from the syntax 

of LTT(B, F, E), and show that there is an interpretation of LTT(B, F, E) in 

7(B, F, E) which is initial in the sense that every interpretation factors uniquely 

through it. 
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Let 	be the equivalence relation between combinators defined as follows. 

a3 	a(x)/3(x) 
	

(3.49) 

where x is a basic term of type A. Note that by 3.30 and 3.31, this definition is 

independent of the choice of x. 

Notation 3.3.2 We use [a] to denote the equivalence class of a under 

Lemma 3.3.3 The following are derived rules for the equivalence of combinators. 

I 	 I ac :A—B 	/3/3 :B —*C 

9 .aE/9'.a' :A—* C 

I a=a:A—B 	0 
-  

aØ/3'®/3':AØB—*CØD 

(3.50) 

(3.51) 

a/3:AØB—*C 	
(3.52) 

A(a)A(/3):A—+[B,C] 

Lemma 3.3.4 The following data define a category 'To  (B, T, E) the objects are 

the types of LTT(B,Y,E) and morphisms from A to B are the equivalence classes 

Of combinators a : A -* B under . Composition of equivalence classes [a] : A -p 

B and [3] B - C is given by [3 • a] A -* C, and the identity on A is [Id A]. 

Proof. 

Composition is well defined by 3.50. To verify the axioms for a category we 

check the following equivalences 

Id B .a 	a 	a.Id A  (3.53) 

(3.54) 

and this is straightforward. 

Proposition 3.3.5 T0(B,.F,E) is a symmetric monoidal category. 

0 
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Proof. We verify that 7(B, F, E) has the required data. 

Tensor Product. 

	

The tensor product on types gives 	rise to a functor ® : 	x To  -* To  where 

[a] ® [/3] is [a ® /3]. This is well defined by 3.51. We need to check the following 

equivalences 

	

IdA  ® IdB 	Id AØB 	 (3.55) 

	

(/3 ® /3') • (a 0 a') 	(/3 • a) 0 (/3' • a') 	 (3.56) 

but this is quite routine. We shall omit the details of this and of the similar 

calculations below. 

Natural Transformations. 

We define 

aA,B,c=[assrA,B,c1 : (A®B)®C—A®(B®C) 

aABC=[ass!A,B,cI : A®(B®C)—*(A®B)®C 

IA = [closeA] : 10 A - A 

11=[openA] : A — IØA 

CA,B =[swapA,B] : A®B — B®A 

To show that these define natural transformations we need to check the following 

equivalences. 

	

assr .((a®i3)®7) 	(a® (Boy)). assr 	 (3.57) 

	

ass! e(a ® (3 ® 'y)) 	((a 0 /3) 0 y)' ass! 	 (3.58) 

	

open sa 	(Id, ®a). open 	 (3.59) 

	

close .(1d1  ®a) 	a. close 	 (3.60) 

	

swap .(a 0/3) 	(/3 ® a). swap 	 (3.61) 

To show that a, 1 are isomorphisms we check that 

ass! . assr 	Id(AeB)Øc 	 (3.62) 

assr. ass! 	IdA®(BØc) 	 (3.63) 
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open • close 	Id IØA 	 (3.64) 

close • open 	Id 	 (3.65) 

Coherence. 

The remaining equivalences to be verified come from the coherence axioms 

given in diagrams 3.4 to 3.7. 

	

assr. assr 	(Id 0 assr). assr .(assr 0 Id) 	(3.66) 

	

(Id 0 close). assr 	(close • swap)O Id 	 (3.67) 

	

assr . swap . assr 	(Id 0 swap). assr .(swap 0 Id) 	(3.68) 

	

swap • swap 	Id 	 (3.69) 

0 

To establish that 7(B, .1, E) is closed with respect to the tensor product, we need 

the following lemma. 

Lemma 3.3.6 Let : X 0 Y -p Z and ,@: W - X. The following equivalences 

are derivable from the equations 3.33 to 3.1. 

	

eval .(A(c)® Id) 	a 	 (3.70) 

	

A(evalx,y) 	Id[x,y] 	 (3.71) 

	

A(a • (30 Id)) 	A(ci) • /3 	 (3.72) 

The equivalences 3.70 and 3.71 correspond to the \-calculus notions of beta-

equivalence and eta- equivalence. 

Proposition 3.3.7 T0(B,.F,E) is a symmetric monoidal closed category. 

Proof. It remains to show that 7(B, ., E) is closed. Let EA,B = [evalA,B ] 

[A, B] 0 A - B. We show that 6A,B  is universal from (-) 0 A to B and hence 

that To  is closed. Let [cr] : A ® B -* C, we need to show that there is a unique 

map [/3]: A - [B, C] such that EAB([/31 0 'A) = [cE]. 
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Using equivalence 3.70 from the lemma above, we see that [A(a)] satisfies the 

required condition. If [-y] is another such map then eva! .(-yØ Id) a and so 

A(a) 	A(eval .(y® Id)) by 3.52 

A(eval).y 	by 3.72 

.7 
	 by 3.71 

The pair (id, [-]) is an interpretation of LTT(B, .1, E) in T0(B, .T, E), trivially, 

and we have the following result. 	 0 

Proposition 3.3.8 The pair (z, ) is an interpretation of LTT if and only if there 

exists a strict monoidal strict closed functor I : To  -* C such that z (A) = 1(A) 

and 3(a) = I([a]). Moreover, I is the unique such. 

3.4 Equational Theories in LTT 

The restrictions on the occurence of variables limit the sort of equational theories 

which can be expressed in linear type theory. The theory of groups, for example, is 

excluded because the inverse law xx 1  = e requires the variable x to be duplicated 

on the left and thrown away on the right. Nevertheless, the following examples 

show that there are worthwhile algebraic theories which lie in this fragment of 

equational reasoning. 

3.4.1 Monoids 

Definition 3.4.1 A monoid in a monoidal category C consists of an object M 

of C together with morphisms IL M ® M -+ M and i : I -p M such that the 

following diagrams commute. 

(M®M)®M 
a 
 M®(M®M) 1®/ MOM 

it®1 
	

it 
	(3.73) 

M®M 	
IL 
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7701 	 1077 
I®M M&M M®I 

/ 	

(3.74) i  
If C is symmetric then a monoid M in C is commutative if ILCM,M = 11. 

If M is a monoid in C and X E Obj(C) then a left action of M on X is a map 

ii: M 0 X -+ X such that the following diagram commutes. 

(MOM)OX  a 
M®(M®X) 

 lØu 	i®1 
M0Xi 	loX 

/ (3.75) 

M®X 
ii 

Example 3.4.2 

Monoidal Category C Monoids in C 

(Set,x,1) Monoids 

(Ab, 0, I) Rings 

(CSLat, 0, 	(1)) Quantales [JT84] 

(Cat, x, 1) Strict Monoidal Categories 

(CC, ., l) Monads 

Thus, the analogy between rings and quantales, hinted at in chapter 2, is that 

they are both monoids in an appropriate monoidal category. 

The theory of a monoid has the following presentation in LTT. 

B={M} 

.1 = {e:I—+M,m:M0M--M} 	
(3.76) 

E = {m(u,m(v,w)) rn(m(u,v),w), 

rn(eQ, u) u , rn(u, eQ) u} 

The theory of a commutative monoid has the additional equation 

rn(u, v) 	rri(v, u). 
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Clearly, if (z,j) is an interpretation of this theory in a symmetric monoidal 

closed category C then (z (M),j (in),j (e)) is a monoid in C. 

The theory of a monoid with a left action on X is given by 

B' = BU{X} 

.1' = 9U{h:M®X—*X} 	 (3.77) 

E' = E U {h(u, h(v, x)) h(rn(u, v), x), h(eO,  x) x} 

3.4.2 Enriched Categories 

Recall that a monoid in Set is just a category with one object. Since the associa-

tivity and identity laws of a monoid are expressible in linear type theory, it is not 

suprising that this extends to the case of categories with more than one object. 

The corresponding algebraic idea is that of a category enriched in V or 

category' where V is a symmetric monoidal closed category. Here, the 'hom-sets' 

in an ordinary category are replaced by 'hom-objects' taken from V. In contrast to 

the internal categories of a topos [Joh77], the objects of an enriched category are 

not internalised. Enriched categories were originally motivated by constructions 

found in representation theory, but, more recently, have been studied in computer 

science (eg. the 0-categories of [SP82] and the quantaloids of [AV90] are cate-

gories enriched in cpo and CSLat respectively). We refer to [Kel82] for the basic 

definitions of enriched category theory, and state just the type theoretic version 

below. 

The theory of a (small) enriched category with object set 0 is given by 

B = {A(X,Y)IX,YEO} 

= {rnx,y,z : A(Y, Z) ® A(X, Y) - .4(X, Z), 

I— A(X,X)IX,Y,Z E 0} 	
(378) 

E = {mw,y,z(h,mw,x,y(g,f)) mw,x,z(mx,y,z(h,g),f) 

mx,y,y(jyO, f) I 
mx,x,y(f,jx) f} 
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3.4.3 The Theory Associated with a Category 

In section 3.3.1, we saw that every linear type theory e = LTT(B, T, E) gives 

rise to a symmetric monoidal closed category ?(B, F, E). In this section we 

consider how to generate a linear type theory from the objects and morphisms of 

a symmetric monoidal closed category C. In order to get a precise correspondance 

between the category and its type theory we extend the system of types and 

combinators given in sections 3.2.1 and 3.2.2 to include equations between types. 

Let T be a set whose elements are pairs (A, B) where A, B are types. We define 

a relation .-' of type equality relative to T. This is the smallest equivalence relation 

on types containing T and closed under the following two rules. 

AA' 	BB' 	AA' 	BB' 
(3.79) 

(AØB)-(A'ØB') 	 [A,B][A',BI ] 

We extend the typing of combinators by the following rule . 

AA' 	a   
(3.80) 

c : A --+ B' 

and similarly for terms 

E term(A) 	A A' 
(3.81) 

S E term(A') 

Let LTT(B, T, F, E) denote linear type theory with the set T of type equations 

as a parameter and the additional rules given above. 

Let (C, ®, I, a, 1, r) be a symmetric monoidal closed category. We use C to 

define a linear type theory with equations between types as follows. 

B = {XXisan object ofC} 

T = {I,XØYXØY,[X,Y][X,Y]X,YEObj(C)} 

F = 17: X - YIf: X - Y is a morphism of C} 

'This, of course, invalidates the type assignment property given in proposition 3.2.3 

because the type subscripts in c need no longer appear as part of the domain or codomain 

type. 
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The equational axioms are as follows, where x, y, z are basic terms of the appro-

priate type and c is any combinator. 

7(x) (7(x)) 

f®g(x,y) (7(x),(y)) 

aA,B,c((x,y))z) (x,(y,z)) 

x,y) (Y' X ) 

T(Q,x) x 

(A(a)(x),y) a(x,y) 

We need to extend the definition of an interpretation (z, j) of LTT so that it 

respects type equality. That is, if A ' A' is provable then z (A) = z (A'). The 

construction of To  is also modified so that the objects are the equivalence classes 

of types under '. We denote the equivalence class of X under ' by [X]. 

Proposition 3.4.3 Let z be the function which maps each basic type X to the 

object X of C and  be the function which maps each function symbol 7: X -* Y 

to the morphism f X - Y. Then (z, 1) is an interpretation of LTT(B, T,.F, E) 

in C and the functor [ : 	-+ C given by proposition 3.3.8 is an isomorphism of 

categories. 

Proof. It is routine to verify that (z, ) is an interpretation. 

We show that I has an inverse. Let H : C -* To  be the mapping X E- [X] on 

objects and similarly f i-*  [7] on morphisms. It is easy to verify that H is a functor 

and that IH = l. To show that HI = 1T. we need to check that A z (A) for 

all types A and that a j (a) for all combinators a. This is done by structural 

induction. 	 0 

If 01  = LTT(B1,T1,F1,E1) and e2  = LTT(B2,T2,T2,E2) are linear type theories 

then a strict map from 01  to 02  is a pair (F, G) where F is a function mapping 
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types of 01  to types of 02  such that 

F(I) = ii 

F(A ØB) = F(A)®F(B) 
	

(3.82) 

F([A,BJ) = [F(A), F(B)] 

and if A '.i  B then F(A) '-' F(B), and G is a function which maps each combinator 

A -* B of 01  to a combinator G(a) : F(A) - F(B) such that 

G(Id A) 	= Id F(A)  

G(a ® /3) 	= G(a) ® G(3) 

G(3 • 	= G(3) • G(a) 

G(asslA,B,c) 	= asslF(A),F(B),F(c) 

G(assrA,B,c) 	= assrF(A),F(B),F(c) 

G(openA ) 	= openF(A) 

G(A(c)) 	= A(G(o)) 

(3.83) 

and if c 	/3 then G(a) 	G(/3). Thus, a strict map between type theories is a 

straightforward translation of one language into another which preserves all the 

structure on the nose. We view strict maps to be equivalent if they agree modulo 

the equivalence relations determined by and . Let LTT denote the category 

of linear type theories with type equality and equivalence classes of strict maps 

between them, and let SMCC denote the category of small symmetric monoidal 

closed categories and strict monoidal strict closed functors. 

It is routine to verify that the construction of a linear type theory from a 

symmetric monoidal closed category gives rise to a functor U : SMCC - LTT. 

Moreover, it follows from proposition 3.3.8, with a mild addition to account for 

type equality, that U has a left adjoint F. Further, by proposition 3.4.3, it fol-

lows that the counit of the adjunction is an isomorphism, and hence SMCC is 

a full reflective subcategory of LTT. U is also essentially surjective and hence an 

equivalence of categories. This correspondence can be treated more naturally at 

the level of 2-categories in terms of a biequivalence. However, the details of this 

correspondence are delicate, and are inessential to the main development of the 

thesis. We therefore omit an exposition of this form and summarize as follows. 



Chapter 3. Symmetric Monoidal Closed Categories 	 60 

Theorem 3.4.4 The category LTT is equivalent to the category SMCC of small 

symmetric monoidal closed categories and strict monoidal strict closed functors. 



Chapter 4 

Two Examples 

The internal language of a topos is expressive enough to support a large fragment 

of mathematical reasoning. Lambek and Scott, for example, regard the free topos 

as "an acceptable universe of mathematics for the moderate intuitionist" [LS86, 

Preface]. We shall not be concerned with such foundational issues, but merely 

the question of how the underlying logic adopted changes the properties that one 

might expect from a 'universe of sets'. 

The study of linear logic is still in its infancy, and it may be some time before 

a definitive notion of 'universe' for linear logic emerges. In the meantime, we can 

provide evidence to support the belief that such a universe should be a symmetric 

monoidal closed category with some extra 'logical' structure. 

In this chapter, we present two examples of categories which can have some 

claim to being categories of 'sets under linear logic'. These both arise as linear 

analogues of constructions in the theory of topoi. The first is the category of 

presheaves over a small symmetric monoidal category (C, 0, I). We view symmetric 

monoidal categories as a natural generalisation of resource monoids, and use ideas 

taken from the resource semantics to motivate the definition of a resource bounded 

tensor product of presheaves. This is the content of section 4.1. The second 

example is a category of sets with 'equality predicates' valued in a quantale Q, as 

explained in section 4.2. We show that both of these categories have a symmetric 

monoidal closed structure. Later on, in chapter 5, we shall see that they also have 

sufficient logical structure to provide models for first order linear logic. 

61 
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4.1 Resource Semantics in a Presheaf Category 

4.1.1 Presheaves and Kripke Models 

We compare the Kripke semantics of propositional intuitionistic logic (found in eg. 

[Fit69]) with the resource semantics of section 2.2.3. Kripke semantics are defined 

with respect to a partial order (W, <). The elements of W are called possible worlds 

or states of knowledge, and a comparison x < y indicates that y is a better world 

than x in the sense that more truths are known there. As in resource semantics, 

atomic propositions are interpreted as upwardly closed subsets of (W, ), and this 

interpretation can be extended to all propositions by an inductive definition. A 

key difference between the Kripke semantics and the resource semantics is that, 

in the former, there is no notion of combining possible worlds. In particular, 

intuitionistic implication is defined only in terms of the partial order on W. 

xi Vy>x(y y=b) 	 (4.1) 

Kripke semantics are easily extended from the propositional logic to intuition-

istic set theory. If A is an intuitionistic set then for each possible world x there 

is an ordinary set A(x) which represents our knowledge of A at x. Knowledge 

of a set covers both the existence of elements and their equality. If x < y then 

all the elements that exist in A at stage x must also exist at stage y so there is 

a comparison map Ax,y  : A(x) - A(y). This map is not necessarily injective as 

elements considered distinct at stage x may become equated at y as a result of the 

greater knowledge available. Thus, an intuitionistic set corresponds to a functor 

A:W —+ Set. 

Recall from section 2.2.3 that the idea of a computational resource can be 

modelled abstractly by a partially ordered monoid (M, •, e, ). Multiplication rep-

resents the combination of resources and the order indicates where one resource 

is better than another. To adapt the above ideas in the case of the resource se-

mantics, we imagine some process of calculating information about a set A which 
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is bounded by a limitation of resource measured in M. It is helpful to consider 

the natural numbers (N, +, 0, <) and suppose that we are counting the number 

of computation steps, calls to a particular routine, or seconds elapsed in the com-

putation. The set A(x) represents the totality of all the information about A that 

could be acquired by the expenditure of resource x. As in the intuitionistic case, 

information covers both the existence of elements and their equality. If x < y 

in M then y is a better resource than x so a computation using y yields more 

information about A than one using x. Again, it follows that there should be 

a comparison map Ax,y  : A(x) -* A(y) and that a resource bounded set should 

correspond to a functor A: M - Set. 

The crucial difference between the two approaches comes when we consider the 

product of 'sets'. The cartesian product of functors A, B : M -+ Set is defined by 

(A x B)(x) = A(x) x B(x) 	 (4.2) 

This expression is natural enough in the Kripke semantics where x denotes a 

state of knowledge, but is more problematic in terms of resources. It says that 

to ascertain that (a, b) is an element of A x B, we are allowed to use x twice to 

separately ascertain that a is in A and b is in B. Thus, the cartesian product fails 

to conserve resources. We seek instead a tensor product A 0 B which respects 

resources by analogy to the interpretation of fusion in 2.2.10. For example, if 

resource is a measure of time given by the monoid (N, +, 07 ) then we anticipate 

that the tensor product will be such that (A 0 B)(n) is some suitable colimit of 

the sets A(m) x B(n - rn). That is, the time taken to calculate that a pair (a, b) is 

an element of the tensor product A 0 B is the sum of the time taken to calculate 

that a is in A and that b is in B. In section 4.1.3, we develop a general form 

of 'resource bounded product', the next section introduces some of the categorical 

machinary that we shall need. 

4.1.2 Ends and Kan extensions 

Definition 4.1.1 Let F : A°' x A -* B be a functor. A wedge w : x-+F is an 

object x of B together with a function assigning to each object A of A an arrow 
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WA : x — F(A, A) such that for every morphism f : A -* B of A the following 

diagram commutes. 
WA 

x 	 F(A, A) 

WB 	 F(1, f) 	 (4.3) 

F(B,B) 	F(A, B) 
F(f,l) 

An end for F is a wedge v: e+F which is universal amongst wedges into F, that 

is, whenever w : x*F is a wedge there exists a unique morphism g : x — e with 

VA = wAg for all A. Coends are defined dually. 

We use the 'integral' notation fA  F(A, A) and fA  F(A, A) for the end and coend 

of F respectively. 

Definition 4.1.2 Let X, Y and A be categories and let F : X —* A and K :X —)' 

be functors. A left Kan extension of F along K is a functor L : Y —p A with 

natural transformation i : F--LK which is universal as an arrow from F to 

AK : A3' —* Ax.  That is, 

A 

(4.4) 

x 
K 

given any functor M : Y —* A and natural transformation a : F-KM there 

exists a unique natural transformation a: L--4M such that a = (aK)i. 

Dually, a right Kan extension of F along K is a functor R : Y —p A and 

a natural transformation e : RK—F which is universal as an arrow from A K 

A3' - Ax to F. 

Let LanK F denote the left Kan extension of F along K and RanK denote 

the right. If every functor from X to A has a left Kan extension along K then 

A K 	3' 	X : A —f A has a left adjoint (and similarly for the right). 



Chapter 4. Two Examples 	 65 

We refer to chapters IX and X of [ML71] for the properties of ends and Kan 

extensions. In particular, if X is small, )) is locally small and A is complete then 

the Kan extensions of F : X - A along K X -+ 3) exist and have the following 

expressions in terms of ends 

X 
(LanK  F)Y = J y(K(X), Y) . F(X) 	 (4.5) 

(RanK  F)Y - JXF(X)Y(YK(X)) 	 (4.6) 

(If S is a set then As and S. A denote the product and coproduct of S copies of 

A.) 

Lemma 4.1.3 Let C be a small category and let F : C - Set be a functor then 

F(C) 	JXC(xC) x F(X) 	 (4.7) 

F(C) 	J[C(C,X),F(X)] 	 (4.8) 

Proof. Immediate from the observation that Lan1  F F _Ran1  F. 	0 

Let A be a small category, B be locally small and G, H : A -* B be functors. Then 

the natural transformations from G to H form a set and this has the following end 

formulation 

Nat (F, G) 
= j 

[F(A), G(A)] 
	

(4.9) 

Applying this above, 4.8 is recognisable as the Yoneda lemma [ML71, page 61]. 

4.1.3 Day's Tensor Product 

There is a natural generalisation of the Kripke semantics which is given by re-

placing the partially ordered set W with an arbitrary category, by convention C° , 

so that intuitionistic sets become functors C°  -* Set or presheaves. These form 

a topos and we refer to [LS86] for an account of the semantics of higher order 

intuitionistic logic in presheaf topoi. 

The resource semantics can also be generalised from partial orders to cate-

gories. If C is a small symmetric monoidal category then we regard C as a category 
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of resources. The objects of C are resources, the morphisms are comparisons or 

transformations of resource, and the tensor product of C is the operation of com-

bining resources. This includes the partially ordered monoids of section 2.2.3 as 

a special case, and we keep these in mind while developing the general theory. 

A resource bounded set built over a symmetric monoidal category C is given by a 

presheaf A : C°  -* Set. We show that there is a resource bounded product on the 

category C of presheaves over C analogous to the interpretation of fusion in 2.2.10, 

and that this gives rise to a symmetric monoidal closed structure. 

Let C be the functor category [C° , Set] and let Y C —p 0 be the Yoneda 

functor, defined on objects of C by Y(x) = C(—, x) with a corresponding action on 

morphisms. Recall [LS86] that the Yoneda functor is a full and faithful embedding. 

Our aim is to extend the monoidal structure of C to C. 

C 

0 	 (4.10) 

CxC 	 xd 
YxY 

Let 6 : C x C - C be the left Kan extension of the composite Y® along the 

embedding Y x Y. The fact that Y x Y is full and faithful ensures that the unit 

iy® :Y®(YxY) 
	

(4.11) 

is a natural isomorphism, so Y(x)Y(y) Y(x 0 y) for all objects x, y in C. 

We can use the coend formula for the left Kan extension to calculate explic-

itly for arbitrary presheaves A, B 

AB = (Lanyy Y(g)(A,B) 	 (4.12) 

= J
(x,y) 

C xC((Yx,Yy),(A,B)). Y(x ®y) 	(4.13) 

= 	J
(x,y) 

(A(s) x B(y)) Y(x 0 y) 	 (4.14) 

As limits and colimits are evaluated pointwise in C 

(x,y) 
AB(u) 

= J 	
C(u, x 0 y) x A(s) x B(y) 	 (4.15) 
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We show that (—)B has a right adjoint in C. Consider the following sequence 

of isomorphisms in Set. 

(AB, C) = j[A6B(x), C(x)] 

= 	[J C(x, y 0 z) x A(y) x B(z), C(x)]] X  

JY[C( x, y 0 z) x A(y) x B(z), C(x)] 
,,z 

j[A() x B(z) I[C(x,y®z),C(x)]] 	(4.16) 

By the Yoneda lemma 

t(AB, C) 	J [A(y) x B(z), C(y 0 z)] 

J[A(y), I [B(z), C(y 0 z)]} 

ô(A,[B,C]) 	 (4.17) 

where [B, C] is defined by 

[B, C] j[B(z), C(— ® z)] 	 (4.18) 

The isomorphism 4.17 is natural in A and C by the parameter theorem for ends 

[ML71, page 2241, so [B, -] is a right adjoint for (-) ® B. 

It is a matter of routine calculation to show that the associativity, symmetry 

and unit for ® induce corresponding structure for c. The coherence conditions 

also follow from the parameter theorem. 

4.1.4 Discussion of Resources 

The elements of A 0 B at stage u are, modulo an equivalence, triples 

(f, a, b) E C(u, x 0 y) x A(x) x B(y) 	 (4.19) 

The map f : u -p x 0 y is a comparison between the resource u and the combined 

resource x 0 y. This can be interpreted as saying that u is at least as good as x 0 y. 

In the partial order case, this reduces to xy < u. Thus if we can use resource x 

to show that a is an element of A and y to show that b is in B then u must be 

sufficient to show that (a, b) is an element of the product. 
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Note the correspondence between the definition of internal horn and the inter-

pretation of linear implication in 2.2.10. We explain this in terms of resources as 

follows. If we can use resource x to show that b is an element of B and resource y 

to show f is a function from B to C then the combined resource x 0 y is sufficent 

to ascertain that f(b) is an element of C. 

In the specific case that C°  is the natural numbers (N, +, 0, <), the tensor 

product AB can be evaluated at stage n as the colimit of the following diagram 

in Set. 

A(0)x B(n —1) 
	

A(rz - 1) x B(0) 

N 
A(0) x B(n) 	 A(1) x B(n - 1) 

	
A(n) x B(0) 

This is easy enough to calculate if each of the comparison maps is a monomor-

phism, so the equality relations of A and B remain fixed as the measure of resource 

increases; but is much more difficult to calculate in general. It seems unlikely, given 

the complexity of its construction, that we will be able to analyse the properties 

of 	much beyond the observation that (C, , Y(I), [-, -]) is symmetric monoidal 

closed. Fortunately, this suffices for our purposes because the extra properties 

required in chapter 5 to show that C is a model of first order linear logic follow 

from the fact that it is a topos. 

4.2 Q-sets 

An important example of a topos is given by the category Shv(1l) of sheaves over a 

locale ft This is defined as the full subcategory of the presheaf category [Q-P, Set] 

whose objects satisfy a certain gluing condition [Joh82, page 1711. It is certainly 

possible to study sheaves by working directly with this definition, but there is 

an alternative approach which is based on the use of sets with 1-valued equality 

predicates. This was pioneered by Fourman and Scott [FS79] and independently 

by Higgs [11ig73,Hig84]. 
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An 1-set X is a pair (IXI,=x) where iXI is  set and =x: lxi x lxi - 1 is a 

function which is 'symmetric' and 'transitive' in the evident way. The reflexivity 

of equality is not taken as an axiom. Instead the value of (x =X x) is taken to be 

the extent to which x exists. Thus, the logic of sheaves is a logic of both existence 

and equality. Higgs showed that the category Il-Set, whose objects are Il-sets and 

whose morphisms are 'functional relations', is equivalent to Shv(S1). 

There is some difficulty in developing a theory of sets with quantale valued 

equality relations due to the presence of the two conjunctions. In his thesis 

{Naw85], Nawaz developed a theory of sets with a Q-valued equality where Q 

is a non-commutative quantale in which T is a right unit and multiplication is 

idempotent. This work has been extended by Borceux and others [BCBSC89], 

but unfortunately rests heavily on the assumption of idempotence. More recently, 

Borceux has considered a category of Q-sets where Q is a commutative quantale 

in which multiplication is not necessarily idempotent but 1 = T [Bor90]. 

In this section, we present a theory of sets with a Q-valued equality where Q is 

any commutative quantale with unity. We adopt the axiom of reflexivity in order 

to study the notion of quantale valued equality without reference to existence. 

This allows us to draw on the ideas about metric spaces and enriched categories 

given by Lawvere in [Law73]. 

This influential paper has inspired a great deal of work on monoidal categories, 

bicategories and the categories enriched in these, and the constructions we shall 

use are special cases of the much more general ones appearing in the literature. In 

particular, the notion of a 'functional relation' given in definition 4.2.9 is closely 

related to the notion of a 'map' in a bicategory [CW87], and the associated idea 

of 'functional completeness' is related to the notion of 'Cauchy completeness' ap-

pearing in [Wa181,Wa182,Str81]. The importance of studying the more restricted 

version of these concepts is that we stay close to a logical intuition and obtain a 

simple category in which it is possible to test ideas about the categorical semantics 

of linear logic by explicit calculation. 

Definition 4.2.1 Let Q be a commutative quantale with unity. A Q-category X 

is a set JXJ equipped with a function X(—, —) : lxi x JXJ — Q which satisfies the 



Chapter 4. Two Examples 	 70 

axioms Qi and Q2 below. A Q-category X is a Q-set if it satisfies the additional 

axiom Q3. 

Qi 	 1 < X(u,u) 

Q2 	X (u, v) o X (v, w) < X(u,w) 

Q3 	 X(u,v) :~ X(v,u) 

If X is a Q-set then the function X(—, -) : lxi x JXJ -* Q is said to be the 

equality or metric of X. 

Remark 4.2.2 Recall that a quantale Q can be viewed as a symmetric monoidal 

closed category, in which case the notion of Q-category defined above coincides 

with that of a V-enriched category in the sense of [Ke]82] (compare the inequalities 

above with the basic function symbols of section 3.4.2). Note that the coherence 

conditions are trivial in the case that V is a partial order. 

In categorical terms, the last axiom states that x is a self dual category in the 

very strong sense that x = x°, and in logical terms, it says that the equality on 

X is symmetric. Though formally less critical than the first two, it fits our logical 

intuition and greatly simplifies some of the definitions below. 

As Q-sets are self dual Q-categories, one possible notion of map between them 

is that of Q-functor. 

Definition 4.2.3 If x, Y are Q-categories then a Q-functor from x to Y is a 

function f: lX 
- ll such that for all x, x' E 1XI 

X(x,x') <Y(f(x),f(x')) 	 (4.20) 

Let Q-Cat denote the category of small Q-categories with Q-functors between 

them, and let Q-CatSD denote the full subcategory of whose objects are self 

dual. 

Example 4.2.4 The motivating example of [Law73] is that of generalised metric 

spaces. Recall from section 2.2.1 that the reals [0, cc] with the reverse of the usual 

order form a quantale IR in which fusion is given by addition and the unit is 0. 
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When Q = the axioms above become 

X(u,'u) = 0 

X(u, w) < X(u, v) + X(v, w) 	 (4.21) 

X(u,v) = X(v,u) 

-sets are therefore a generalisation of metric spaces which allow points with 

infinite distance between them and distinct points x, y with X(x, y) = 0. Lawvere 

goes further and drops symmetry as well. -functors are distance decreasing maps. 

We say that a generalised metric space X is Cauchy complete if every Cauchy 

sequence {xi  has a unique limit point in X 1  

Example 4.2.5 [Bor90] Let R be a commutative ring with unity. If r E R then 

the annihilator of r is the ideal Ann(r) = {x E 7?Irx = 01. The elements of R can 

be given the structure of an Idl(7?)-set R by defining 

R(r, .$) = Ann(r - s) 	 (4.22) 

If x E Ann(r - s) and y E Ann(s - t) then 

xy(r - t) = xy(r - .$) + xy(s - t) = 0 	 (4.23) 

so Ann(r - s)Ann(s - t) c Ann(r - t). Qi and Q3 are immediate. 

Example 4.2.6 Any quantale Q itself forms a Q-set with the equality given by 

bi-implication. 

It is well known [Ke182, page 65] that for a complete symmetric monoidal closed 

category V the category V-Cat of small V-categories is also complete symmetric 

monoidal closed. The tensor product and internal horn are given by 

X 0 Y((x, y), (x', y')) = X(x, x') 0 Y(y, y') 

I[X, YII = {Q-functors from X to Y} 

[X,Y](f,g) = fy(f(x),g(x)) 

'For spaces in which X(x, y) = 0 = x = y the uniqueness is immediate 
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The unit I for the tensor product is defined by III = {*} and I(*,*) = IV  where 

Iv is the unit for the tensor product in V. Thus, in particular, Q-Cat is complete 

symmetric monoidal closed. Though, in this case, the definition of [X, Y] is sim-

plified by the fact that the end reduces to a meet. The subcategory Q-CatSD 

is also symmetric monoidal closed because it contains I and is closed under the 

tensor and horn constructions. 

Although Q-functors are a natural notion of map between Q-sets, they bear 

little resemblance to the 'functional relations' defined between 1-sets. Thus, in 

the spirit of 1-valued sets, we pursue a more general notion of map. 

Definition 4.2.7 If X, Y are Q-sets then a Q-valued relation R : X -- Y is a 

function R: I XI x JYJ - Q which satisfies 

Ri 	X(x', x) o R(x, y) 	R(x', y) 

R2 	R(x, y) o Y(y, y') 	R(x, y') 

Given relations R: X - Y and S : Y -'-* Z the composite SR is defined by 

SR(x,z) = \/R(x,y) o S(y,z) 	 (4.24) 

If R is a relation from X to Y then R°  is the relation from Y to X defined by 

R'  R (y, x) = R(x, y). 

It is clear that composition of relations is associative, and that the identity 

relation on a Q-set X is the equality of X. Thus Q-sets and Q-valued relations 

between them form a category Q-Rel. In fact, Q-Rel forms a locally ordered 

category with the evident ordering on relations. 

If Q = 2 then a Q-set is just a set with an equivalence relation, a Q-valued 

relation X 	Y is a relation between equivalence classes of X and Y, and 4.24 

is just the usual composition of relations. 2-Rel is therefore equivalent to the 

category Rel of sets and relations. An important observation on the locally ordered 

category Rel is that 

Proposition 4.2.8 A function is a relation which is left adjoint to its own oppo- 

site 
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That is, a relation F c X x Y is a function if and only if l' < F° F and 

FF° < ly. We extend this idea to an arbitrary quantale Q. 

Definition 4.2.9 A functional relation between Q-sets X and Y is a relation 

F : X Y such that F H F° , that is 

Fl 	F(x, y) o F(x, y') 
	

Y(y,y') 

F2 	X(x,x') ~ \/F(x,y)oF(x',y) 
	(4.25) 

The identity relation on X is clearly functional and the composite of func-

tional relations is again functional because adjunctions compose. Thus, Q-sets 

and functional relations form a category which we denote Q-Set. 

Remark 4.2.10 We can give the following readings to Fl and F2. Fl says that 

F is single-valued : "if F maps x to y and also maps x to y' then y and y' are 

equal" and F2 says that F is total : "if x = x' then there exists a y such that F 

maps x to y and F maps x' to y" 

Taking x = x' in F2, we obtain 

X(x,x) <VF(x,y)o F(x,y) 
	

(4.26) 

Note that the proposition "F maps x to y" is asserted precisely twice. This is in 

sharp contrast to the intuitionistic case, where it does not matter how many times 

a proposition is asserted and the axiom (x =X x) < VY F(x, y) suffices to express 

the totality of F. 

4.2.1 Functional Completeness 

A Q-functor f : X - Y induces a functional relation f: X -* Y via 

J(x,y) = Y(f(x),y) 
	

(4.27) 

This correspondence gives rise to a functor (-) : Q-CatSD -+ Q-Set whose object 

part is the identity. 

Given that every functor induces a functional relation, it is interesting to ask 

when the converse holds. 
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Definition 4.2.11 A Q-set Y is functionally complete if for every functional rela-

tion F : X —* Y there is a unique Q-functor f : X - Y such that F = f. 

Lemma 4.2.12 A functional relation F : X - Y is induced by a Q-functor if 

and only if there exists a function f: IX —* IYI such that 1 < F(x, f(x)) for all 

xEIXI. 

Proof. Given such a function f, we have 

X(x, y) 	X(x, y) o F(x, f(x)) o F(y, f(y)) 

< 	F(y, f(x)) o F(y, f(y)) 

< Y(f(x),f(y)) 	 (4.28) 

so f is a Q-functor. Furthermore, by Fl 

F(x, y) < F(x, f(x)) o F(x, y) Y(f(x), y) 	 (4.29) 

and by R2 

Y(f(x),y) <F(x,f(x)) o Y(f(x),y) <F(x,y) 	(4.30) 

so F = f. The converse is trivial. 	 . 
Proposition 4.2.13 [Law73] A metric space is functionally complete if and only 

if it is Cauchy complete. 

Proof. First, suppose that Y is Cauchy complete and that F : X —p Y is a 

functional relation. By F2 

0 = inf{F(x,y)Iy E JYJ} 	 (4.31) 

so we can choose a sequence yn  of points in JYJ such that F(x, y,) < 1/n. Such a 

sequence is Cauchy since, by Fl, 

Y(y, y) < F(x, y) + F(x, y) <1/n + 1/rn 	 (4.32) 
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and furthermore if {z} is any other choice of points satisfying the same condition 

then Y(y, z) < 2/n so {y}  and {z} are equivalent Cauchy sequences. Let f(x) 

be the unique limit of the sequence {y}. As F is a relation 

F(x, f(x)) inf{F(x, y) + Y(y, f(x)) I= 0 	 (4.33) 

so by lemma 4.2.12 f is a distance decreasing map with f = F. As Y is Cauchy 

complete, it has the property that Y(y, y') = 0 = (y = y'). Hence the uniqueness 

of f follows from Fl. 

For the converse we note that every Cauchy sequence {y} in JYJ defines a 

functional relation F : I -p Y via 

F(*,y) = lim_.Y(y,y) 	 (4.34) 

If f: I -+ Y is a Q-functor satisfying F(*, y) = Y(f(*), y) then f(*) is a limit for 

{yTh}. 	
0 

Remark 4.2.14 The observation that the Cauchy completeness of a metric space 

could be expressed in terms of lJ-valued relations, led Lawvere to propose the 

following generalised definition of Cauchy completeness for categories enriched in 

a symmetric monoidal category V. A V-category Y is said to be Cauchy complete 

if every pair of V-valued relations or 'bimodules' F : X -'- Y and C : Y --* X 

with F H C is induced by a unique functor f : X -* Y. Restricted to Q-sets, this 

definition is slightly stronger than that of functional completeness because there 

is no requirement that C = F°'. The precise relationship between functional and 

Cauchy completeness is not yet clear. If Q is a locale or Q = then they coincide, 

but this will not be so in general. It may be possible to characterise the cases 

in which they do coincide by considering the modularity condition on allegories 

given by Freyd and Scedrov [FS90], but we shall not pursue this here. Instead, we 

continue with our study of functional completeness. 

Proposition 4.2.15 Every quantale Q is functionally complete as a Q-set. 

Proof. Suppose that F : X -+ Q is a functional relation, and let f : lxi -f  iQi 

be the function 

f(x) = \JF(x,q)oq 	 (4.35) 
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Then for all p E IQk we have F(x, p) <p —o f(x) and F(x, y) :5 f(x) -op by the 

following. 

F(x,p)of(x) = \/F(x,p)oF(x,q)oq 

< \J(po—oq)oq 

< p 	 (4.36) 

Thus F(x, p) < (p 0-0 f(x)) = Q(p, f(x)). It now follows that 

1 <X(x,x) < \/F(x,q)oF(x,q) 

V F(x, q) 0 Q(q, f(x)) 

< F(x,f(x)) 	 (4.37) 

so by lemma 4.2.12 f is a Q-functor and F = f. The uniqueness of f follows from 

Fl and the observation that in a quantale 1 <(p 0-0 q) implies p = q. 	0 

4.2.2 Tensor Product and Internal Horn 

In the next two propositions, we show that the tensor product of Q-CatSD can 

be lifted to a tensor product on Q-Set, and that Q-Set is closed with respect to 

this product. 

Proposition 4.2.16 Q-Set is a symmetric monoidal category. 

Proof. As in Q-Cat, the tensor product of Q-sets X, Y has underlying set 

IX ® YJ = IXI  x JYJ and equality relation 

X 0 Y((x, y), (x', y')) = X(x, x') 0 Y(y, y') 	 (4.38) 

and the unit is the Q-set I with underlying set I II = {*} and equality I(*, *) = 1. 

If F : X - Y and C: U - V are functional relations then F 0 C is defined by 

F 0 C((x, u), (y, v)) = F(x, y) 0 G(u, v) 	 (4.39) 
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Let X, Y, Z be Q-sets. We define the functional relations 

Ax,y,z : (X®Y)®Z—X®(YøZ) 

Lx  IØX—X 

Cx,y : X®Y—+Y®X 

to be those induced by the corresponding data in Q-CatSD 

	

Ax,y,z(((x, y), z), (x', (y',  z'))) = X(x, x') o Y(y, y') o Z(z, z') 	(4.40) 

= X(x,x') 	 (4.41) 

Cx,y((x, y), (y', x')) = X(x, x') 0 Y(y, y') 	 (4.42) 

Clearly A, L, C are isomorphisms. Naturality and coherences follow from the prop- 

erties of o. 	 o 

Proposition 4.2.17 	Q-Set is a symmetric momoidal closed category. 

Proof. The internal horn [X, Y] is defined as follows. The underlying set I [X, Y] 

is the set of all functional relations from X to Y. The equality is given by 

[X,Y](F,G) = /\F(x,y) 0-0 G(x,y) 	 (4.43) 

It is routine to check that [X, Y] is a Q-set. It is immediate from this definition 

that 

F(x,y)o [X,Y](F,G) <G(x,y) 	 (4.44) 

for all  E IXI and  E JYJ. The evaluation map E: [X,Y]®X -* Y is defined by 

E((F,x),y) = F(x,y) 	 (4.45) 

which clearly satisfies R2 and Fl. The other two conditions hold as follows. 

([X, Y] 0 X)((F', x'), (F, x)) 0 E((F, x), y) = [X, Y] (F, F) 0 X(x', x) 0 F(x, y) 

< 	[X, Y](F', F) 0 F(x', y) 

< E((F',x'),y) 
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([X, Y] 0 X)((F, x), (F', x')) = [X, Y](F, F') 0 X(x, x') 

< V [X, Y](F, F') 0 F'(x, y) 0 F'(x', y) 

< \JE((F,x),y)oE((F',x'),y) 

Thus E is a functional relation. We show that it is universal from (-) 0 X to Y. 

Let F : Z 0 X -* Y be a functional relation. Let F be the relation defined by 

F(x, y) = F((z, x), y). It is clear that F is functional. Furthermore, the mapping 

z i-p F is a Q-functor from Z to [X, Y]. 

Z(z, z') <AF ((z, x), y) 0-0 F((z', x), y) = [X, YI(FZ, Fe, ) 	(4.46) 

The currying of F is the functional relation G induced by this functor, i.e. 

G(z,H) = [X,Y](F,H) 	 (4.47) 

We now show that E(G 0 I X ) = F and moreover that C is the unique map with 

this property. 

E(C0 lx)((z,x),y) = V G(z,H) oX(x,u) 0 H(u,y) 
(H,u) 

= V [X,Y](F,H)oH(x,y) 
H 

= F(x,y) 

= F((z,x),y) 

For uniqueness, suppose that C' Z 0 X -+ Y is another functional relation 

satisfying E(C' 0 1) = F, i.e. 

F((z, x), y) = \J G'(z, H) 0 H(x, y) 	 (4.48) 

It follows that for all H e I [X, Y] 

G'(z, H) < H(x, y) —o F((z, x), y) 	 (4.49) 

and 

G'(z, H) 0 F((z, x), y) = V G'(z, H) 0 G'(z, H') 0 H'(x, y) 

V[X,Y](H,H') 0 H'(x,y) 
H' 

< H(x,y) 	 (4.50) 
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Combining 4.49 and 4.50 we have 

G'(z,H) AF((z,x),y)o-_oH(x,y) = G(z, H) 	(4.51) 

To get the converse inequality we note that 

1 < Z(z, z) < V G'(z, H) o G'(z, H) 
H 

V G'(z, H) o G(z, H) 

= VG'(z,H) o [X,Y](H,F2) 

H 

= 	G'(z, F) 	 (4.52) 

and hence 

G(z, H) < G'(z, F) o G(z, H) 

G'(z, F) o [X, Y](FZ,  H) 

G'(z, H) 	 (4.53) 

which concludes the proof. 	 F. 

4.2.3 Reflection Theorem 

In this section, we show that Q-Set is equivalent to a full reflective subcategory 

of Q-CatSD. In the case of metric spaces, this reflection is the familiar Cauchy 

completion. We use this result to construct limits in Q-Set. 

Lemma 4.2.18 For all Q-sets X and Y, the internal horn [X, Y] is functionally 

complete. 

Proof. Let F : Z -f [X, Y] be a functional relation. Since Q-Set is symmetric 

monoidal closed, F is equal to the currying of C = E(F ® 1) which is, by 

definition, induced by a Q-functor from Z to [X, Y]. 

Suppose that f, g: Z -p [X, Y] are Q-functors such that f = F = then 

1 < Z(z,z) 	V F(z, H) o F(z, H) 
H 

= V[X, Y](f(z), H) o [X, Y](g(z), H) 
H 

= IX, Y](f(z),g(z)) 	 (4.54) 
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and hence f(z) g(z) for all z E JZ1. 

This lemma allows us to make the following series of observations. 

Proposition 4.2.19 Let s be the function which maps each Q-set X to the in-

ternal horn [I, X] viewed as an object of Q-CatSD, and each functional relation 

F : X -* V to the unique Q-functor f [I, X] - [I, Y] such that f = [I, F]. The 

functions determines a full and faithful functor S : Q-Set -* Q-CatSD. 

Proof. The functoriality of S follows directly from that of (-) : Q-CatSD -+ 

Q-Set. We verify that S is full and faithful. 

Let f be a Q-.functor S(X) - S(Y). As Q-Set is a closed category, there is a 

natural isomorphism X [I, X]. Applying this to f: [I, X] -+ [I, Y], we find that 

there is a unique functional relation F X -p V such that [I, F] = f and hence 

S(F)=f. 	 El 

Theorem 4.2.20 The functor (-) : Q-CatSD - Q-Set is left adjoint to S 

exhibiting Q-Set as a reflective subcategory of Q-CatSD. 

Proof. If X is a Q-set then 8(X) = [I, X] is functionally complete so we can 

define a Q-functor Tjy : X -p S(X) to be the unique map in Q-CatSD such that 

is the currying of the isomorphism LC : X ® I -* X in Q-Set. We show that 

is universal as an arrow from X to S. 

Let f : X -* 8(Y) be a morphism of Q-CatSD. Then f factors uniquely 

through iFx  : X -* [I, X] since this is an isomorphism in Q-Set, and hence f 

factors uniquely through qX by the functional completeness of S(Y) = [I, Y]. 

(4.55) 

Thus (-) is left adjoint to 5, and it follows from the proposition above that S is 

equivalent to a reflective subcategory of Q-CatSD. 	 0 
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Proposition 4.2.21 The adjunction (-) -1 S restricts to an equivalence between 

Q-Set and the full subcategory A of Q-CatSD whose objects are functionally 

complete. 

Proof. It is clear that the adjunction can be restricted to the subcategory A 

because the image of S is contained in A. Furthermore, if X is functionally 

complete then the inverse to rfx : X -f [I, X] in Q-Set yields an inverse to 77X,  so 

every object in A is isomorphic to one in the image of S. As S is full and faithful, 

we conclude that it is an equivalence of categories. 	 El 

Corollary 4.2.22 	Q-Set is complete and cocomplete. 

Proof. If Q-CatSD is complete and cocomplete then so is Q-Set because Q-

Set is equivalent to a full reflective subcategory of Q-CatSD. It is easy to show 

that Q-CatSD is closed under limits and colimits in Q-Cat and hence that the 

completeness and completeness of Q-CatSD follow from that of Q-Cat. 	El 

We give an explicit descriptions of products and equalisers in Q-Set. 

Products 

Let {X}25  be a family of Q-sets indexed by a set S. Then the product IIIESX1 

has underlying set IliCSIXi l and equality 

11iEs((;)ies7 ()€s) = A xi (xi,  y) 	 (4.56) 
iES 

The projections P3  H ESX —+ X3  are defined by 

= X3 (Xi  ,x) 	 (4.57) 

Given a cone {F, : Y -i Xj}2Es of functional relations, the mediator F : 

H sXi  is defined by 

fly, (x)s) = A F(y, x.) 	 (4.58) 
iES 
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Equalisers 

Let F, G: X -+ Y be functional relations. Let I U c I [I, X] I be the set of functional 

relations S: 1 - X such that FS = GS and let U be the equality inherited from 

[I, X]. Then the functional relation K : U -* X defined by K(S, x) = S(*, x) is 

an equaliser of F and G. 



Chapter 5 

Monoidal Factorisation Systems 

In this chapter, we investigate the minimal additional structure required to derive 

an internal logic from a symmetric monoidal closed category C. We indicate the 

form that such a logic should take and discuss some of the problems that arise. 

The basic categorical structure required is that of a factorisation system on 

C, as defined in section 5.1. This gives two classes of morphisms in C, called E 

and M, which satisfy an orthogonality condition and have the property that every 

map f in C factors as an element of E followed by an element of M. An important 

example of such a factorisation system is given by the classes of epimorphisms 

and monomorphisms in a topos. Here, predicates over an object A are associated 

with monomorphisms with codomain A. We shall take the notion of predicate in 

the category C to be relative to a particular factorisation system (.6, M) where 

M is a subclass of the monomorphisms. Provided that C is sufficiently complete 

and cocomplete, this allows us to define operations corresponding to the additive 

connectives, substitution and existential quantification. 

The multiplicative connectives are defined in terms of the symmetric monoid-

al closed structure of C. It is therefore important that the factorisation behaves 

well with respect to the tensor product. In section 5.2, we define a monoidal 

factorisation system to be one in which E is closed under tensor product. This 

single condition is sufficient to prove that fusion is associative, and to allow the 

definition of linear implication. This is a mild condition, so there is a wide class of 
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examples. In particular, in section 5.3, we show that Q-Set has a natural monoidal 

factorisation system. 

The definition of the multiplicative connectives, given in section 5.4, is slightly 

unexpected. The form of first order linear logic given by Seely [See87b,See9O] 

consists of an indexed category in which each fibre is a model of the propositional 

logic. The logical structure given by a monoidal factorisation system is somewhat 

different. The multiplicatives are non-fibrewise operations, eg. fusion maps a 

predicate over A and a predicate over B to a predicate over A ® B. In the next 

chapter, we shall see that this corresponds to a restriction on the occurrence of 

variables in formulae similar to that encountered in linear type theory. 

Although fusion and linear implication are not operations on a single fibre, they 

are still related by an adjunction. We define a category Sqr (M) whose objects 

are elements of M and prove, in theorem 5.4.5, that this is a symmetric monoidal 

closed category with tensor product and internal horn given by fusion and linear 

implication respectively. 

There are various difficulties involved in developing a logic of symmetric mon-

oidal closed categories, which we illustrate in the case of Abin section 5.5. The 

properties observed in Ab fundamentally shape the logic presented in chapter 6. 

In particular, the fact that pullback fails to preserve the logical operations on 

the nose necessitates the use of explicit substitution operators, and removes the 

possibility of including universal quantification. We also note that the evident 

generalisation of the Beck-Chevalley condition fails. These are not a defects of 

our system, but rather the inevitable consequence of studying linear logic in a 

categorical framework. 
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5.1 Factorisation Systems 

We recall the definitions and basic facts about factorisation systems [FK72]. 

Let f and g be morphisms of a category C. We say that f is orthogonal to g, 

written f t g, if whenever there exist maps u,v with vf = gu there is a unique 

diagonal fill-in w making both triangles below commute. 

A 

	

U[ 	

" 	

jv 	 (5.1) 

C 
g 

Definition 5.1.1 A factorisation system for a category C is a pair (, M), where 

', M are classes of morphisms of C such that 

Both E and M are closed under composition, and contain the isomorphisms. 

Every morphism f of C has a factorisation f = me with e E e and m E M. 

e m whenever e e E and m GM. 

A factorisation system (E, M) is said to be proper if every element of E is an 

epimorphism and every element of M is a monomorphism. 

Note 5.1.2 If hme = m'e'g with m, in'  e M and e, e' E E, then since e t m' 

there is a unique k which makes the diagram below commute. 

	

e 	m 
X 	 I-z 

I 	 I 

k 	 hi 

	

I 	 (5.2) 

	

F 	 , 

	

e 	
, 	

in 



Chapter 5. Monoidad Factorisation Systems 	 86 

Taking g and h to be identities we see that the factorisation of a map f is unique 

up to isomorphism. Provided that there is a choice of factorisation for each f 

diagram 5.2 shows that factorisation determines a functor C 	- C 	which 

maps an arrow f in C to its image in M and co-image in E. 

If 1 is a class of morphisms then we write F1  for {gf I g for all f E J} and 

.F1  for {ggf for all fEF}. 

Lemma 5.1.3 [FK7] If (E, M) is a factorisation system for a category C then 

e =  MT and M = 91.1  

Proof. From the definition of a factorisation system E c M 1  and M C S1. To 

show that M 1  c E, suppose g E M 1  and let its factorisation be g = ip. Since 

p 1 g, there is a unique diagonal map t which fills in the square below. 

A 

1 / 

i 	 (5.3) 

Let t 	jq be the factorisation of t. By the uniqueness of the factorisation of 

j . qp = 1 = 1 1, we know that j is an isomorphism, and hence that t E E. By the 

uniqueness of the factorisation 1 i = gt = pt i we have that pt is an isomorphism. 

Since ip = 1, it follows that (pt) 1 p is an inverse for t, and hence g = it-' E M. 

0 

Definition 5.1.4 An epimorphism e in a category C is said to be extremal if 

whenever e = it with j a monomorphism, then j is an isomorphism. Extremal 

monomorphisms are defined dually. 

We write Epi for the class of epimorphisms in C and Epit  for the class of extremal 

epimorphisms. Similarly, for monomorphisms we write Mon and Mont. 

11n [FK72], classes of morphisms F, G such that F = F and g = Y1  are said to form 

a pre-factorisation. 
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Proposition 5.1.5 If C has all finite limits and admits an intersection for every 

class of monomorphisms {rn : Xc -f Al then (Epit,  Mon) is a proper factorisa-

tion system on C. 

Proof. See [FK72] page 176. 

Thus, (Epit,  Mon) is likely to be a proper factorisation system in any category 

with reasonable limit properties. 

Examples 5.1.6 

For any ring R, (Epi, Mon) is a factorisation system on the categories of 

R-modules. In particular this is true for the category of abelian groups 

(Z-modules) and vector spaces over a field F. 

(Epi, Mon) is a factorisation system on any topos T (see [LS86]). When 

IT = Set this factorisation restricts to the category Set of pointed sets. 

The category Cat of small categories has several factorisation systems, eg. 

(e,M) for i = 1,2 where 

{functors which are bijective on objects} 

= {fully faithful functors} 

= {initial functors} 

M 2  = {discrete op-fibrations} 

The first of these is straightforward and details of the second can be found 

in [SW73]. 

We summarise some of the important properties of factorisation systems. 

Lemma 5.1.7 If (i', M) is a factorisation system for C, then 

s fl M is the class of isomorphisms in C. 

M is closed under pullback. 
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If {p : X -* '}iES is the limit of a diagram {m : Yi  -p  Z} € s where each 

rn2  is in M, thenk=rnp:X — Z isinM. 

. Let J be a category with terminal object t and F: J -i C be a diagram such 

that every morphism in J  is mapped to an element of M. If  has a limit 

then the projection jim F - F(t) is in M. 

If i is a monomorphism, on i E M, or every element of( is an epimorphism; 

then ij G  implies  EM. 

If every element of e is an epimorphism then M contains all equalisers in 

C. 

Proof. Easy consequences of lemma 5.1.3. Note that 3 is an immediate conse- 

quence of 4. 	 0 

If M is a class of monomorphisms then clause 3 means that M is closed under 

such intersections as exist. This is important for the interpretation of the ad-

ditive conjunction. Similarly, clause 2 will be needed for the interpretation of 

substitution. 

Definitions 5.1.8 

Let A be an object of the category C. The slice category C/A is the cate-

gory whose objects are morphisms with codomain A and whose morphisms 

f : 91 __4 92  are commuting triangles g1  = 92f- 

Let T be any class of morphisms in a category C and A be an object of C. 

We define the relative slice category C/FA to be the full subcategory of the 

slice category whose objects are the morphisms of .7. 

Note that if f: m1  - m2  in C/MA  then f is an element of M by lemma 5.1.7 (5). 

Proposition 5.1.9 

1. If C is complete (resp. finitely complete) then so is C/MA. 
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2. If C has finite (resp. small) coproducts then so does C/M A. 

Proof. The first part is immediate from lemma 5.1.7. The second can be shown 

by verifying that the image factorisation of the morphism [mI],Es :EiESXi -* A 

in C is a coproduct for the family {m : X --+ A}€s of objects in C/M A. 	U 

5.1.1 Subobjects 

If M c Mon then there is at most one map between any two objects of C/M A. 

That is C/M A is a preorder 

m1  -< n2 	 m factors through in2 	(5.4) 

We define the M-subobjects of A to be the equivalence classes of objects in C/M A 

modulo -<. Let SubM (A) denote the class of M-subobjects of A with the induced 

partial order <. We say that C is M-well powered if for each object A of C 

SubM (A) is a set. 

Under reasonable assumptions, for example if C is finitely complete, M-well 

powered and has finite coproducts, SUbM (A) is a lattice. If C is complete then 

SubM (A) is a complete lattice. The additive connectives of first order linear logic 

will be interpreted by the lattice operations in SubM (A). 

Notation 5.1.10 For the rest of this chapter we deal with categories C with a 

specific factorisation system (, M). It is convenient to redefine the notation on 

arrows relative to this. Let 

e 

and 

denote elements of e and M respectively. Note that, unless (E, M) is proper, 

these arrows are not necessarily epimorphic or monomorphic. 
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5.1.2 Direct and Inverse Images 

Let C be a category with factorisation system ('s, M) such that every map has a 

choice of factorisation, and suppose that f : A - B is a morphism of C. Then f 

induces a functor f : C/MA -* C/M B as follows. The direct image of m along f 

is defined to be the M part of the factorisation of fm. 

mI 	1f*m 	
(55) 

If there exist choices of pullback for elements of M along arbitrary maps in C 

then f also induces a functor f* C/MB -* C/MA. The inverse image f*k  is the 

pullback of k along f. Note that f*k E M by lemma 5.1.7 (2). 

f*y  

f*kI 1 

	

1k 	 (5.6) 

Proposition 5.1.11 The functors f : C/MA -4  C/M B and f* C/MB -* C/MA 

are adjoint : f _ f* 

The direct and inverse image constructions give rise to functors f SubM(A) -4 

SubM (B) and f* : SubM (B) - SubM (A) on subobjects. 

Example 5.1.12 Let f : A - B be a homomorphism of abelian groups and let 

X, Y be subgroups of A, B respectively. Then 

b e fX 	x(f(x) = b and x e X) 	 (5.7) 

aef*Y 	f(a)€Y 
	

(5.8) 

These expressions are identical to the ones giving the direct and inverse images in 

Set. So, at least in these constructions, the logic of Ab agrees with the underlying 

logic in Set. 
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The expression for fX makes it clear that we should regard the direct image 

as a form of existential quantification along the morphism f. The inverse image 

corresponds to substitution along f. 

Note 5.1.13 By working exclusively with subobjects it is possible to avoid the 

assumption of specific choices of pullback and factorisation. However it is more 

convenient to continue working directly with the elements of M and assume that 

the appropriate choices exist. 

Note 5.1.14 Although ultimately we are only interested in factorisation systems 

in which M C Mon, few of the results or constructions in this chapter rely on this 

assumption. We give proofs in general and note that these can often be simplified 

if M c Mon or £ ç Epi. 

5.2 Monoidal Factorisations 

Definition 5.2.1 Let (t', M) be a factorisation system on a symmetric monoidal 

category (C, 0, I). We say that (E, M) is a monoidal factorisation system if the 

class S is closed under the functor (-) 0 X for each object X of C, ie. 

eEE = eOlx EE 

or, equivalently, e1 , e2  E E = e1  0 e2 E E. 

Lemma 5.2.2 If C is a symmetric monoidal closed category with a factorisation 

system (, M) then S is closed under (-) 0 X if and only if M is closed under 

[X,—]. 

Proof. To show that e 0 I X  is in E, it suffices to show that it is orthogonal to 

every rn E M. Suppose there exist morphisms f and g such that the left hand 
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square below commutes. 

e®1 
A®X 	BOX 

M 

(5.9) 

Then the righthand square also commutes because it is the transposition of the 

left across the adjunction (-) ® X H [X, -]. As [1,m] is in M, there exists a 

diagonal fill-in for the right and hence, transposing back again, for the left. 	0 

Let C be a symmetric monoidal closed category on which (Epit, Mon) is a factori-

sation system. Then [X, -] preserves monomorphisms because it is a right adjoint 

and Epit  is closed under tensor by the above. Thus, by proposition 5.1.5, there 

are plenty of examples of monoidal factorisation systems. 

Remark 5.2.3 It is tempting to strengthen definition 5.2.1 to require that both e 
and M are closed under tensor product. This holds for vector spaces and pointed 

sets, but fails in the important example of abelian groups. 

Let i Z -* Q be the inclusion of the integers into the rationals. If a E A 

satisfies na = 0 for a positive integer n then for any q € Q 

a ® q = a ® n(q/n) = na ® (q/n) = 0 ® (q/n) = 0 	(5.10) 

In particular if A is a torsion group then A 0 Q 0. In this case 'A ® j cannot 

be a monomorphism since Z 0 A A. 

5.3 Factorisation in Q-Set 

There are two important subclasses of the morphisms in Q-Set. Let E denote the 

class of functional relations F : X -f Y such that for all y, E IYI 

V F(x, y) o F(x, y') = Y(y, y') 	 (5.11) 
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and let M denote those for which 

X(x,x') =V F(x, y) o F(x', y) 	 (5.12) 

for all x, x' E IXI. Note that by the axioms Fl and F2 both of these conditions 

already hold as an inequality left to right. 

Theorem 5.3.1 (, M) is a proper monoidal factorisation system on Q-Set. 

Proof. First we note that every M E M is a monomorphism. Suppose that 

M : X -* Y is in M and F, C U - X are functional relations such that 

MF = MG. Then 

F(u, x) = \J F(u, x') o X(x', x) 
11 

= V F(u, x') ° (V M(x', y) o M(x, y)) 
x l 	 y 

= V MF(u, y) o M(x, y) 

= \/MC(u,y)oM(x,y) 

= G(u,x) 

A similar calculation shows that every element of E is an epimorphism. From the 

elementary properties of fusion, both e and M are closed under tensor product. 

To show that (E, M) is a factorisation system we first show that every map 

has an (E, M) factorisation. Let F : X - Y be a functional relation. We define 

a Q-set U with the same underlying set as X. 

U(x, x') = \/F(x,y) o F(x', y) 	 (5.13) 

By F2 X(x, x') 5 U(x, x') so the 'equality' on U is stronger than that on X. 

Reflexivity (Q I) is immediate and symmetry (Q3) follows from the commutativity 

of fusion. We check Q2 

U(x,x')o U(x',xI, 
) 	V F(x, y) o F(x', y) o F(x' , y' ) o F(x" ,y

F
) 

y,y, 

~ 	V F(x, y)o Y(y, y') o F(x" , y
F
) 

y,y, 

= V F(x, y)o F(x", y) = U(x, x") 	 (5.14) 
Y 
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Let G:X—U and H:U—'Ybe defined by 

G(x,u) = U(x,u) 	 (5.15) 

H(u,y) = F(u,y) 	 (5.16) 

It is easy to check that these are functional relations. We see that H E M by 

replacing F with H in 5.13, and that G E ,6 by the following. 

U(u,u') 	\/U(u,x)oU(x,u') 

	

= VG(x,u) o G(x,u') 	 (5.17) 

The composite HG is equal to F. 

HG(x,y) = \/G(x,u)oH(u,y) 

= \/U(x,u)oF(u,y) 

= F(x,y) 	 (5.18) 

Thus we have shown that every map F factorises as a map in E followed by a map 

in M. 

We now prove that maps in E are orthogonal to those in M and hence that 

(e, M) is a factorisation system. Let G e S and H E M and suppose that there 

exist functional relations F1  and F2  such that HF1  = F2G. We need to show 

that there is a unique map K which makes both triangles in the diagram below 

commute. 
G 

F2 	 (5.19) 

w> 
H 

If such a map exists then it is certainly unique since G is epi. Take K to be 

H°'F2. That is 

K(v, w) \/ F2(v, x) o H(w, x) 	 (5.20) 

This is the same as F1G°  since 

K(v, w) = V V(v, v') o F2  (v', x) o H(w, x) 
x,vl 
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= 	V G(u, v) o G(u, v') o F2(v', x) o H(w, x) 

= V G(u, v) a F2G(u, x) o H(w, x) 

= V G(u, v) a HF1(u, x) o H(w, x) 

= VG(u,v)oFi(u,w) 	 (5.21) 

The last step is dual to the first two. We need to verify that K is a functional 

relation. It is not difficult to see that it satisfies Ri and R2. It satisfies F2 as 

follows 

V K(v, w) a K(v', w) = V G(u, v) a G(u', v) o F, (u, w) o F, (u', w) 
W 	 W,u,u' 

> 	V G(u, v) a G(u', v') o U(u, u') 
u,u,  

= \/G(u,v)oG(u,v') 

= V(v,v') 	 (5.22) 

and, by a similar argument, it satisfies Fl. It remains to show that K makes 

diagram 5.19 commute. 

KG(u, w) = \/ G(u, v) a K(v, w) 

= V G(u, v) a F2(v, x) a H(w, x) 

= 	V F, (u, w') a H(w', x) o H(w, x) 
W 1  ,X 

V F1(u7  w') a H(w', w) 

= F1(u,w) 	 (5.23) 

Thus KG = F1  and by a similar argument HK = F2. 	 0 

Let M X -* Y be a morphism in M and suppose that Y is functionally 

complete so that M = I for some Q-functor in : X - Y. Then 

X(x, x') = \/ M(x, y) a M(x', y) 

= 	V Y(m(x), y)o Y(in(x'), y) 

= Y(m(x),rn(x')) 	 (5.24) 
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Thus elements of M are essentially inclusions of a subspace where the subspace 

bears the induced equality. In general there may be monomorphisms in Q-Set 

which are not of this form. 

Example 5.3.2 Let X be the unit circle with the metric dx  where dx(x,x') is 

the shortest distance between x and x' along the perimeter of the circle, and let 

Y be the real plane with dy the Euclidean metric. The inclusion j : X -+ Y is 

a monomorphism in the category of metric spaces and distance decreasing maps, 

so the induced functional relation J is mono in R-Set because X and Y are 

complete metric spaces. However J V M because d (x, x') is strictly greater than 

d(j(x),j(x')) whenever x and x' are distinct. 

5.4 Non-fibrewise Operations 

This section introduces the algebraic operations which will correspond to multi-

plicative connectives in first order linear logic. 

5.4.1 Fusion from Tensor Product 

There are two different ways to construct the cartesian product of objects m1  

X1  - A and M2 : X2  - A in the relative slice category C/MA. The first is to 

take the pullback of m1  along m2  and obtain a map m1  A m2  E M into A by 

composition. 

X1 AX2 >- '-X 

I

fmi 	 (5.25) 

X2 > 
M2 
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It is not difficult to check that this is isomorphic to the pullback of m1  x m2  along 

the diagonal LA : A -p A x A. 

X1 AX2 	X1 xX2  
I 

7n1  A in2 	 m1 x 7n2 	 (5.26) 

A 	'AxA 
AA 

This alternative view has the advantage of relating A to the cartesian product x. 

Let C be a symmetric monoidal category with a monoidal factorisation system 

(E, M). We would like to obtain a second conjunction by replacing x with ® in 

diagram 5.26. However, since the tensor product has no diagonal map, this cannot 

lead to a fibrewise operation. The best we can hope for is a binary operation which 

maps a pair of morphisms m11m2  € M with codomains A1, A2  to a morphism 

m1  o m2  in M with codomain A1  ® A2 . 

Recall from remark 5.2.3 that, in Ab, the tensor product of monomorphisms is 

not necessarily a monomorphism. Thus the fusion m1  o m2  of maps m1  : X1  -+ A 

and m2  : X2  -f A2  is defined to be the image of in1 ® M2- 2. 

X1 0 X2 X®X2 	X1 oX2  

M1 ® 	
In1 0 in2 	 (5.27) 

A1 ® A2  

The domain of m1  0 m2  will be written X1  0 X2, but it is important to remember 

that the meaning of this notation is relative to rn1  and m2 . 

Example 5.4.1 In Ab, the fusion of subgroups X1  g A and X2  C A2  is the 

subgroup of A1  ® A2  generated by the elements x1  0 x2  with x1  E X1  , x2  E X2 . 

We will see below that fusion is associative up to the associativity of 0. That is, 
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62 
there exists an isomorphism a' making the following square commute. 

(X1 0X2)0X3 	X1 0(X2 0X3 ) 

a' 

(7n1  0 in2) 0 m3 M1  o (m2  o 7123) 
	

(5.28) 

(A1 ®A2)®A3 	A1 Ø(A2 ØA3) 

Similarly, o is commutative up to the symmetry of 0 and l : Z - Z is a unit 

for o up to the natural isomorphism 1A : Z 0 A -* A. 

Given the non-fibrewise nature of fusion - even to express its associativity we 

need to compare subobjects in different fibres - it makes little sense to restrict 

our attention to a single fibre. Instead we consider the subobjects in C as a 

whole. Comparisons between different fibres consist of commuting squares and 

these define a category. 

5.4.2 The Category Sqr (.A4) 

Let Sqr (M) denote the full subcategory of the functor category C determined 

by the elements of M. That is an object of Sqr (M) is a morphism in M and a 

morphism from in1  to m2  is a pair of maps (g, h) forming a commutative square 

h 

m2 	 (5.29) 

A1 g A2 

If M C Mon and there is a morphism (g, h) m1  - m2  in Sqr (M) then we 

say that m1  entails M2  along g (note that h is uniquely determined by g). 

If C is a symmetric monoidal category with monoidal factorisation system 

(E, M) then fusion in C functorial. The fusion of maps (g1, h1) : in1  - n1  and 

(92, h2) : m2  -* n2  is given by the pair (91092, h1  0 h2) where h1  0 h2  is the unique 
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12 
map which makes the diagram below commute. 

® 

	

x1®x2 	Y1 0 Y2 

o h2 	 (5.30) 

	

X1 oX2 	-'-Y1 oY2  

mi om2 f 	 fni on2  

91 092 

	

A, A2 	B, B2  

Note that the symbol 'o' has been overloaded again. 

Lemma 5.4.2 (Sqr (M) , o, 1) is a symmetric monoidal category. 

Proof. Let e1,2  and e2,3  be the S components of the factorisations used to construct 

X1  o X2  and X2  o X3. 

	

(X1  o X2) ® x3 	X1  ® (X2  ® X3) 

e1,2 0 	 1®e2,3 

	

(X1 0X2)®X3 	X1 0(X2 0X3) 

1 	

(5.31) 

(X1 0X2)0X3  --X1 0(X2 0X3) 
a' 

(rn1  o rn2) o Tn3 	 m1  o (rn2  o m3) 

	

(A1 ®A2)®A3 	A1 O(A2 OA3) 

The exterior of diagram 5.31 represents two (E, M) factorisations of the same 

map. Thus there is a unique map a': (X1  oX2 ) o X3  - X1  o (X2  o X3) making the 

diagram commute. Moreover, a' is an isomorphism. 

The pair (a, a') defines the associativity (m1  o m2) 0 Tn3 	M1 0 (m2  0 m3) 

in Sqr (M) . Similar constructions give the symmetry and unit. The coherence 
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conditions follow easily from those of C using the uniqueness properties of factori- 

sations. 	 0 

The import of lemma 5.4.2 can be conveniently summed up in a slogan. 

Slogan 	The tensor product on C gives rise to a multiplicative 

structure on the category of subobjects as a whole rather than to the 

individual fibres. 

5.4.3 Linear Implication by Pullback 

Just as the fusion of two subobjects is a subobject of a tensor product, their linear 

implication is a subobject of an internal horn. Let m1, rn2  e M then m1  —o m2  is 

defined by the following pullback diagram. 

x1-0x2 
p 

[X1, X2] 

M21

1  

I[I m21 	 (5.32) 

[A,, A21 	r [X1, A21 

Note that[, m21 e M because (E, M) is monoidal, and so ml -0  m2  E M because 

M is closed under pullback. 

It is natural to ask in what sense can 	—s M2  be considered an 'implication'. 

We shall see below that linear implication is related to fusion by an adjunction in 

much the same way as in the propositional case. The situation is slightly more 

complex because the various objects involved in the adjunction lie in different 

fibres. The meaning of m1  —a m2  is clarified by the following two examples. 

Example 5.4.3 Let X1  ç A1  and X2  C A2  be inclusions in Set. Then 

f e X1  --0  X2 	if 	Va E A, (a e X1 	f(a) E X2 ) 	(5.33) 

That is, X1  —o X2  is the set of functions A1 - A2  which map elements of X1  to 

elements of X2. 
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Example 5.4.4 Let X1  and X2  be subgroups of the abelian groups A1  and A2  

respectively. Then X1  —a X2  is the subgroup of [A1, A21 consisting of all homor-

phisms which map X1  into X2. An element of (X1  —o X2 ) a X1  is a finite sum 

>f 0 xi  where; E X1  and the fi  are homorphisms from A1  to A2  mapping X1  

into X2. It follows that 

-(if 0;) = Ef(x2) 	 (5.34) 

is an element of X2  and hence that (X1  —o X2) oX1  entails X2  along the evaluation 

map e: [A1, A21 ® A1  - A2. 

Theorem 5.4.5 Let C be a symmetric monoidal closed category with monoidal 

factorisation system (E, M) and suppose there exists a choice of pullback for each 

rn E M and f E Mor(C). Then (Sqr (M) ,o, 11,  —a) is symmetric monoidal 

closed. 

Proof. From lemma 5.4.2 we know that (Sqr (M) ,o, 1) is a symmetric monoidal 

category, it remains to show that it is closed. For m1, m2  E M we construct a 

morphism eml,M2:  (m1  —o m2)0rn1  -* rn2 in Sqr (M) and show that it is universal 

from (-) o m to M2- 

First, observe that the following three squares, the front faces of a cube, form 

a commutative diagram. 

®' 
(X1  —o X2 ) ® 	

p 
X1 	 • [Xi, X21 ® X1  

(m1 m2 )®1 	 [1,m2]01 	 X2  

(5.35) 

[m1,1]®1 	4 

[A1,A2]0X1 	 [X1,A2]0X1  

1® \Tn j 	 EX  

[A1,A2]®A1  
EA1  ,A2  
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The top left hand square is just the pullback 5.32 tensored with X1. The corn-

mutativity of the other two squares follow from the fact that evaluation in C 

is dinatural in its first and third arguments and natural in its second. The 

evaluation map 6,,,1,m2  is defined to be the pair 	where e is the evaluation 

6 A1 ,A2 : [A1, A210  A1  - A2  in C and T is the unique map making the following 

diagram, the remaining faces of the cube, commute. 

P®1 
(XI  —oX2)®X1  

(Ml 	m2)®1 	 [X1,A2]oX1  -------------- 

[A1, A21 0 X, 	(m1  —o rn2) o M, 	 m2  

1 __ 

[A1,A2]0A1 	 •A2  
6 A1,A2 

(5.36) 

	

Let k : Y - B be a morphism in M and let 	be a map k o m1  -p rn2  

in Sqr (M) . We need to show that there is a unique morphism a: k - mi -O M 2  

such that Em1,m2(0 0 1m1 ) = 

k 	 korn1  

\a 
I 	 I 

a: 	(aolmj ) (5.37) 
I 	 I 

I 	 I 
V V 

-0 m2 	(m1  —o in2) 0 in1 	'- m2  
Emi  ,m 

Remember that k 0 in1  is the M part of the (E, M) factorisation of k 0 in and let 
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e be the e part. We have the following commutative diagram in C. 

Y®X1 	'YoX1 	'-X2  

k ® 1 	 k 0 miJ 	 Jm2 	 (5.38) 

B®X1 	-B®A1  
1Øm1  

Transposing diagram 5.38 across the adjunction (-) ® X1  H [X1, -] gives 

e) 
Y 	 [X1, X21 

k 	 [1,m2] 	 (5.39) 

B 	 [X1 A21 
A(o(1 Øm1)) 

Recall from remark 3.1.5 that the isomorphism AU,VW  : C(UØV, W) C(U, [V, W]) 

is natural in V as well as in U, W. Therefore 

0 ml )) = [ml, 1])¼() 
	

(5.40) 

and so the commutative square in diagram 5.39 forms the exterior of diagram 5.41. 

e) 

Y - - - - X1 	X2 	[X1, X21 

	

1 	 (5.41) 

k 	m1  -o m2 	 [11  in21 

B 	[A1, A21 	[X1, A21 
[mi,1] 

We define o to be the pair (p,or)  where a = A(o) and is the unique mediator of 

the pullback in 5.41. It is clear that ci is a morphism of Sqr(M) , it remains to 
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check that it satisfies the conditions required. 

Y®X1 	(X1 -0X2)0X1  

® 1) 
e 	 x2  (p ___  

1  
YoX1 o (X1 X2)0X1 X2 	(5.42) 

komll (Ml m2)omlI 	 1m2 

BOA, 	 '-A2  
g.®1 

The composite Eml  ml(7 o 1) is given by the lower half of diagram 5.42. Note 

that this diagram commutes from the definitions of 6m1,m2  and a o 1. The lower 

component of Em;,m2(0 0 1) is 

0 1) = EA1 ,A2(A(Q) 0 1) = a 	 (5.43) 

It remains to show that the upper component 	o 1) is 2. From the definition of 

we know that p 	A(-&e). Hence 

6x1,x2 (p 0 1)(® 1) = Ex1,x2 (A(e) 01) = -de 	(5.44) 

Also (k o m1) = m2  because 	k o m1  —* rn2  is a morphism of Sqr(M) 

These two equations are to enough to ensure that = 	o 1) because of the 

orthogonality between e and m2. 

Let -r = (, ) be any morphism of Sqr (M) which satisfies Emi  m (r o 1) =a. 

The first component satisfies 6A1 A2 (I 0 1) = a and hence r = )t(a) by the 

universal property of EA, ,A2' 

The second component T satisfies 	o 1) = Z?. Precomposing with e yields 

exi ,x2 (p? 01) = 	a 1)e = zie 	 (5.45) 

Thus rT= \(e) by the universal property ofEXI,X2  and = -f by the uniqueness 

of the mediator in diagram 5.41. 	 0 
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5.5 Algebraic Limitations 

To explain the problems involved in developing a logic of symmetric monoid-

al closed categories it suffices to take Ab as an example. We have seen that 

(Epi, Mon) is a monoidal factorisation system on Ab, and so provides a model 

for the calculus LFOLL  of first order linear logic presented in the next chapter. 

We make a series of observations on the structure of Ab which shape the logic 

£FOLL. These mostly amount to drawing distinctions between M-subobjects one 

might have thought equivalent. The logic must respect these distinctions and this 

necessitates the use of side conditions on the rules to carefully limit the derivations. 

A key observation on the subobject structure of Ab is that Sub(G) is not 

necessarily distributive. For example, let U, V, W be the three distinct subgroups 

of order 2 in Z2  Z2. 

Z2 EBZ 2  

U 	V 	W 	 (5.46) 

Then UA(VVW) = U strictly contains (UAV)V(UAW) = 0. This observation 

has led algebraists to the study of modular rather than distributive lattices (see 

[Bir481). Recall from chapter 2 that the distributive law does not hold as a theorem 

of propositional linear logic. 

Regarding Sub(U) as a sublattice of Sub(Z2  Z2) the operation U A (-) 

is equivalent to m*.  The nondistributivity of Sub(Z2  Z2) can therefore be 

restated as the fact that m : Sub(Z2  Z2) - Sub(Z 2) fails to preserve suprema. 

In particular, the following inclusion is strict 

*V V  m*W C  m*(V V W) 	 (5.47) 
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This has two unpleasant consequences for our logic which might initially seem 

to be quite serious drawbacks. Firstly, it means that m*  cannot have a right 

adjoint and so, in the internal logic of Ab and hence in our version of first order 

linear logic, there is no notion of universal quantification. Secondly, it means that 

substitution does not arbitrarily permute with logical connectives; in this case, it 

fails to permute with join. These problems are so closely related to linearity in the 

model that it would be impossible to correct them without making restrictions 

which are sufficient to rule out most of the natural examples. In the absence 

of a clear remedy, it seems more sensible to accept these features as part of the 

nonstandard flavour of the logic rather than attempting a cure. 

Join is not the only connective which behaves badly with respect to substitu-

tion. One might expect to be able to exchange pullback and fusion as follows. 

(f*X) o Y = (f ® 1)(X o Y) 	 (5.48) 

where X, Y are subgroups of A, B and f is a group homorphism A' -f A. In 

general this only holds as an inclusion left to right. 

Example 5.5.1 Let i : Z - Q be the inclusion of the integers into the rationals 

and consider the two subgroups 0 Q and Z 	Zr,. We note that the subgroup 

(i ® 'z)(° o Z) of Z ® Z 	ZP  is actually the entire group, whereas i*0 0 Z, 

is the trivial subgroup. 

0 	-0 	 0 

I 	. 	I

Z 

PI 	 1 	

(5.49) 

Z 	 '-0 

Note 5.5.2 In Ab the pullback of the unique map 0 -p H along f : G -* H 

is the kernel of f. In logical terms, this means that substituting into the "false" 

predicate has a nontrivial content. 
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5.5.1 The Beck Chevalley Condition 

Let ur = st be a commutative square in C and suppose that m is a morphism in 

M with the same codomain as r. Consider the following cube. 

e 
rr 	-------- ------- 's

*
uY 

* 
su*mJ\ 

r* 	 X 	 '-'- uX 

	

mf 	 1 	 (5.50) 

__ t 
e B 	 Ium 

C 
U 

The front face is the (E, M) factorisation defining um and the two sides are the 

pullbacks defining r*rn  and  s*u.rn  respectively. As the left face is a pullback there 

is a unique map e': r*Y s*u*Y making the top and back commute. It follows 

that t*r*rn  factors through s*u*m  so there exists a map t*r*m  s'u.m in C/M B. 

We say that C satisfies the Beck Chevalley condition if this map is an isomor-

phism whenever the square ur = st is a pullback. As is well known, this holds 

precisely when E is closed under pullback. 

If the base of 5.50 is a pullback then so is the top by elementary properties 

of pullback squares. E closed under pullback means that e' e E and hence the 

comparison i*r*rn 	is an isomorphism by the uniqueness of factorisation. 

Conversely, suppose that the base of 5.50 is a pullback with u E E. Take m to 

be the identity on C so that all the vertical maps are isomorphisms. By the Beck 

condition the image of t is iso and hence t E E. 
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Let f: A - C and g B -* D and consider the following commuting square. 

A®B 'A ®g 

f 01 	 f 01 	 (5.51) 

C®B 	B®D 
1®g 

In the particular case where ® is actually the cartesian product then 5.51 is a 

pullback diagram, and provided that C satisfies the Beck condition then 

fØ12  (1A ®g)* 	
('c 0 9 

)* (f®1) 	 (5.52) 

This would seem a desirable property since it states that substitution and 

existential quantification do not interfere when they act on different variables. 

However, it is too much to expect 5.52 to hold in general. Even if C satisfies the 

Beck condition, there is no reason why 5.51 should be a pullback. For example, 

let i : Z - Q be the inclusion of the integers in the rationals and let h : Z - 

be the quotient map with kernel pZ. 

z®z 

1®h 	 1®h 

Z®Z 
i®1 

z 

(5.53) 

We showed in 5.2.3 that Q 0 Z 	0. Thus the lefthand square is isomorphic to 

the right which is clearly not a pullback. 

Consider the trivial subgroup of Z. Pulling back along h and then taking the 

image along i we obtain pZ as a subgroup of Q ; but taking the image and then 

pulling back we obtain the whole of Q. 



Chapter 6 

First Order Linear Logic 

In the previous chapter, we saw various algebraic operations which can be defined 

on the M-subobjects of a symmetric monoidal closed category C with monoid-

al factorisation system (E, M). These operations provide the connectives for the 

internal logic of C. We already know some of their algebraic properties: recall 

from lemma 5.4.2 that fusion is associative, and from theorem 5.4.5 that fusion 

and linear implication are related by an adjunction; but so far, we have only 

alluded to the form of logic which they define. 

In this chapter, we give a syntactic account of the internal logic using a formal 

system £FOLL. This is a first order extension of the sequent calculus presentation 

of propositional linear logic and is based on the type theory of chapter 3. 

Recall from section 5.5, that some of the familiar principles of logic fail in the 

context of M-subobjects. Notably, the logical connectives do not necessarily com-

mute with substitution. We shall see that others remain valid (eg. the distributive 

laws of section 6.3.1). The proposed sequent calculus is carefully formulated to 

allow only the valid inferences to be derived. Thus, the logic £FOLL  delimits the 

fragment of ordinary first order reasoning available in symmetric monoidal closed 

categories. This is achieved via restrictions on the occurrence of variables and also 

on the use of substitution operators. These restrictions appear quite natural in 

the sequent calculus presentation. For instance, the variable balancing property 

says that each variable which appears has exactly one occurrence on each side of 

the turnstile. 

109 
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Each of the algebraic operations defined in chapter 5 gives rise to a correspond-

ing logical operation on the predicates of £FOLL. A formula in £FOLL consists of 

a predicate applied to a term of LTT. For instance, if 0 and 0 are predicates 

on terms of type A and B respectively then their fusion is a predicate on pairs 

of type A® B. We write (q o b)(s,i) rather than q(s) o 5(t) to emphasise this. 

This choice is also important with respect to the relative order of binding between 

logical operations and substitution. 

Since variables cannot be repeated in the terms of LTT, we cannot form the 

expression (q o &)(x, x). On the other hand the operations of meet and join are 

fibrewise. The repetition of variables in q(x) A O(x) is therefore harmless and we 

write (q A ,)(x) to be clear. 

Both fusion and meet can be read naturally as "and": (q o /')(s, t) means that 

q holds of s and '' holds of t, whereas (q A b)(s) means that both q  and 0 hold of 

s. The fact that they apply to different arguments removes some of the confusion 

generated by having two forms of conjunction. 

The meaning of the other connectives requires some explanation. Recall that 

the linear implication of two M-subobjects is a subobject of an internal horn. 

Thus, in the logic £FOLL,  if q  and & are predicates of type A and B respectively 

then the linear implication q —o 0 is a predicate of the horn type [A, B]. Given 

a term f of type [A, B], we expect q  —o 0 to hold of f if whenever 0 holds of 

a term s of type A then & holds of f evaluated at s. This form of implication 

is already quite familiar in computer science (eg. see [BJ90]). One can think 

of the linear implication q —o 0 as a specification of the function term f. The 

predicates 0 and 0 are the precondition and postcondition of the specification 

respectively, and a function f satisifies the specification if whenever its input 

satisfies the precondition then its output satisfies the postcondition. Note that 

if we were working in ordinary first order logic then this would be a compound 

statement involving both implication and universal quantification. The restrictions 

imposed by the structure of symmetric monoidal closed categories force us to 

accept the above operation as primitive. 

The form of existential quantification presented in £FOLL  is quite standard 
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in categorical logic. Recall that if rn is an M-subobject of an object X and 

g : X -* Y is a morphism of C then the direct image g*(m)  is a subobject of Y. 

Correspondingly in the logic LFOLL,  if 0 is a term of type A and a is a combinator 

of type A - B then [a]q is a predicate of type B. The intended meaning of 

[a]q(t) is that there exists an element x of type A such that a(x) = t and q(x) 

holds. Again, this would be a compound statement in ordinary logic but here we 

are forced to take it as primitive. 

The remaining operations are straightforward. The fibrewise join of M-subobjects 

correponds to a binary connective V which can adequately read as "or": OVO holds 

of s if either 0 or ,0 holds of s. The inverse image operations on M-subobjects 

correspond to substition operators in the logic. If 0 is a predicate of type B and 

a is a combinator of type A - B then cAL' is a predicate of type A. Given a term 

s of type A, the meaning of a*(s)  is the same as that of 0(a(s)). 

Finally, the top and bottom elements of the subobject lattices SubM (X) give 

rise to constants TA and FA  for each type A. These are units for the logical 

operations of meet and join. T1  is also a unit for fusion. 

Recall from chapter 3 that the language of linear type theory has three pa-

rameters : a set B of basic types, a set T of function symbols, and a set E of 

equations. The language of first order linear logic is defined in terms of these 

parameters, but also has the additional parameter P which is a set of atomic 

predicates. We use £FOLL(B, J, E, F) to denote the language of first order linear 

logic with parameters B, .1, E and P. 

In section 6.1 we define the formulae of first order linear logic; in section 6.2 

we present the rules; and in section 6.3 we derive some basic theorems and prop-

erties of £F0LL, and illustrate the use of the language by two examples arising 

from the subobjects of a monoid and Girard's 'double negation' closure operation 

respectively. 
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6.1 Formulae and Sequents 

Let P = {, 0, 0,.. .} be a set of predicate symbols each of which has an associated 

type. We use the following rules to define a set pred(A), the predicates of type A, 

for each type A in LTT(B,.T,E). 

If q is a predicate symbol of type A then 0 e pred(A). 

If 0 E pred(A) and 0 E pred(B) then q  o b E pred(A ® B) and q —o ?b E 

pred([A, B]). 

If 0 and 0 are members of pred(A) then so are 0 A 0 and 0 V . 

If q  e pred(B) and a is a combinator of type A - B then a0 E pred(A). 

If 0 e pred(A) and a is a combinator of type A -* B then 3[a]o E pred(B). 

TA  and FA  are members of pred(A), for all A. 

A formula (s) of type A consists of a predicate 0 of type A applied to a term s 

of type A. 

A sequent is an expression 

F H o(s) 

where (s) is a formula and F is a finite list of formulae. The formulae before the 

turnstile F- are termed the antecedents and the single formula after the turnstile is 

the succedent. 

A sequent F F- q(s) is said to be well formed if each variable which appears in 

F or çb(s) has exactly one occurrence on each side of the turnstile. This 'variable 

balancing' property is essential to the interpretation of sequents given in section 

7.2. 

A sequent F H q(s) is said to be valid in £FOLL(B, F, E, P) if it can be derived 

from the rules given in the following section. 
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6.2 Rules 

As in the propositional case, the rules are divided into those which operate on the 

structure of derivation trees and those which introduce logical connectives. 

6.2.1 Structural Rules 

For each formula c(s), we allow 

(Ref) 
ç(s) 

We also accept the structural rules of Exchange (on the left), and Cut: 

(Ex) 	
(s) F1,q,' (t) ,F2  H 0(u) 

F1,(t),q(s),F2  H 0(u) 

(Cut) 
F1,q(s) H &(t) 	F2  H ç5(s) 

ri, r 2  H '(t) 

The structural rules of contraction and weakening would allow the formulae of a 

sequent to be duplicated and discarded respectively. They cannot be incorporated 

into £FOLL  without violating the restrictions on the occurrence of variables, and 

are therefore forbidden. 

As in the propositional case, the presence of exchange simplifies many of the 

other rules. 

6.2.2 Logical Rules 

The logical rules are subject to two forms of restriction. Firstly, there are restric-

tions on the occurence of variables, which ensure that all the derivable sequents are 

well formed. Secondly, the introduction rules for connectives are often restricted 
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to predicates on basic terms (that is, terms containing no combinators). This 

maintains an order between the introduction of connectives and the introduction 

of substitution operators, and so prevents the derivation of sequents in which these 

are permuted. 

Notation 6.2.1 If e is either a term, a formula, or a list of formulae in the 

languange of £FOLL then V(e) denotes the set of variables occuring in e. 

True and False 

(TR) 
F F- Tx(s) 

FF-q 
(TL) 	

(s) 
 

F, T1() I- çi(s) 

(T®) 
F, Tx  (s), Ty (t) F-0(u) 

F,Tx®y(s,t) F- q(u) 

(F) 
F,F(x) F- çb(s)  

V(F) = V(s) 

x is a basic term and 

V(F) U V(x) = V(s). 

Note that F- T1() is derivable as a special case of (TR). 

Fusion 

(oR) 	
ri  F- q(s) 	F2  F-  i,b(t) 

F1, F2  F- (qo)(s,t) 

(oL) 	
(x) F1,q,1'(y),F2  F- 0(u) 

F1,(ço&)(x,y),F2  F-  0(u) 

V(F1)nV(F2)=ø 

x, y are basic terms. 
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Linear Implication 

I 
F, q(x) F- b(evalx,y (f, x)) 

FF-(q—o&)(f) 

L) 	
F1  F- q(s) 	F2,b(evalx y (f, s)) F- 0(t) 

(—o 
F2,(0-0)(f),171  F- 0(1) 

x is a basic term. 

Existential Quantification 

(ER) 
FF-q(s) 

F F- ([o]çb)(cr(s)) 

r' q(x) F- (s[o(x)/v]) 
(EL) 

F, ([a]cb)(v) F- 0(s) 

x is a basic term and v does 

not occur in the premise. 

Meet 

(ALl) 	
F, q(s) F- 0(1) 

IF, (q A 	s) F- 0(i) 
(AL2) 	

F,(s) F- 0(1) 

F, (ç  A )(s) F- 0(1) 

IAP\ 
FF-q(s) 

FF- (qA)(s) 

Note that the rules for meet have no side conditions. This reflects the fact that 

meet behaves well with respect to substitution. 

Join 

(vL) 	
F , ç(x) F- 0(1) 	IF, 0(x) F- 0(1) 	

x is a basic term. 
F, (0 V  OW  F- 0(1) 
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FF- 
(vRl) 	

q(s) 
 

Fl- (qV)(s) 

FF- 
(vR2) 	

(s) 
 

r  (4V )(s) 

Substitution 

F, q(c(s)) F- '(t) 
(*L) 

F,c*c(s) F- b(t) 
(*R) F 

F- 0(s)) 

F F- *q() 

F,q(s) 1 	(u) 
(L) 

F, 4(t) F- v, (u) 
(-P) 

FF- q(s) 

F F- ç(t) 

.st 

F, ç(s) F- b(t) 
(Substi) 

F, q(s[u/v]) F- (t[u/v]) 

(Subst2) 	
F, q(s[x/v]) F- ,&(t[x/v]) 

F, q(s) F- &(t)  

none of the variables of u 

occur in the premise. 

x is a basic term and 

v does not occur in F. 

6.3 	Properties of the Calculus £F0LL 

The following lemma shows that our rules have the promised variable balancing 

property. 

Lemma 6.3.1 Every derivable sequent Of £FOLL is well formed. 

Proof. By induction on the structure of derivations. Clearly the conclusion 

q(s) F- (s) of the reflexive rule (Ref) is well formed because s contains no repeated 

variables. The other rules preserve this property. 
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For instance, consider (—o L). The induction hypothesis states that 

V(F1) = VMS)) 

and 

V(F2,b(eva1 (f, s))) = V(O(t)) 

and furthermore that no variable is repeated in F or F2 , &(eva1 (f, .$)). By the 

first of these equations, V((q —o ')(f) F1) = V(f, s) = V(&(evaI (f, s))) and 

hence by the second 

V(F21  (q —o 0)(f), F1) = V(O(t)) 

Now, since no variable is repeated in F21  çl'(eval (f, .$)), we must have V(F1 ) fl 

V(F2) = 0 and hence no variable is repeated in ]F2, (0 —o )(f),F1. 	 0 

Note 6.3.2 As a consequence of lemma 3.2.12, every formula q(s) is provably 

equivalent to a predicate applied to a basic term: 

(s) HF (ac(s)*q )(abt(s)) 	 (6.1) 

Remark 6.3.3 As both variables and predicates have a specified type, it is often 

possible to determine both the domain and codomain of the combinators appearing 

in fomula q(t), in which case we may omit the subscripts on their components. 

For example, this holds if q(t) = a*,(s) or (t) = [/3]0(x) with L' atomic and x 

basic. However, there are important situations where this is not the case, and the 

subscripts must be retained. For instance, if 

(t) = ([evalx,y] eva1 	)(x) 	 (6.2) 

then X cannot be deduced from the types of x and (' alone. 

6.3.1 Theorems and Derivations in £FOLL 

We define a preorder on predicates as follows. Let 0, j' E pred(A) then 

0 F 0 	0(x) F 0 (x) is a derivable sequent in 12FOLL 	(6.3) 
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where x is a basic term of type A. The rules for substitution ensure that this 

definition is independent of the choice of x. The reflexivity and transitivity of F-

follow from (Ref) and (Cut) respectively. 

Let -IF- denote the equivalence relation induced by F-, that is 

0-1F-5 	 F- &andF- q 

Lemma 6.3.4 The logical operations 0, V, A, a* and a[c] are monotone with re-

spect to the preorder I-. Linear implication —o is anti-monotone in its first argu-

ment and monotone in its second. 

It follows that the equivalence -IF- on predicates is a congruence relation with 

respect to the logical operations. 

Lemma 6.3.5 Let 0 and & be predicates of type A and B respectively, and let 

a,8 be combinators of type A - B. Then 

oE/9 = 	[a]q1F-[fi]' 	 (6.4) 

9 =0*0' 	 (6.5) 

Many of the laws which hold in propositional linear logic have a counterpart 

in £FQLL, although the interpretation here is slightly different. For example, the 

properties of fusion and the distributive laws given below are well known as valid 

sequents of the propositional logic, but here they refer to the typed predicates 

of £FOLL. The derivations required are given by modifying the corresponding 

ones in the propositional calculus and we omit them here. There are some more 

substantial derivations to be found in the proof of first order specific properties, 

for example proposition 6.3.9. 

Proposition 6.3.6 For all predicates , and 0 the following laws are derivable 

in '-FOLL- 

T1 0 0 -HF- 0 	 (6.6) 

000 -HF-  0 0 0 	 (6.7) 

0 (1 o 0) -IF- (ç o ) o 0 	 (6.8) 
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Proposition 6.3.7 Let 0 be a predicate of type A and let 0 and 0 be predicates 

of type B. The following laws are derivable in £FOLL. 

4 0 FB + FAØB (6.9) 

q0(0V0) HF- (00)V(000) (6.10) 

TB + T[A,B] (6.11) 

q—o(A0) HF (-o9')A(0-00) (6.12) 

FB  —o q HF T[B,A] (6.13) 

(bv0)—oq HF (—oç)A(0-0q) (6.14) 

Proposition 6.3.8 Let q  and  ?I' be predicates of type B and let c and /3 be corn-

binators of type A -p B and B -* C respectively. The following distributive laws 

are derivable in £FOLL. 

*T HF TA (6.15) 

*(A) HF 	*A*, (6.16) 

[/3]FB -IF 	F (6.17) 

[/3](v0 HF 	[/9]qv[/3]0 (6.18) 

The following 'half-distributive' laws are also valid. 

*0V* F *( v) 	 (6.19) 

[c](Ab) F 	 (6.20) 

Proposition 6.3.9 Let q,  0 and 0 be predicates of type A, B and C respectively, 

and let c be a combinator of type B - C. The following two distributive laws are 

derivable in rFOLL. 

o a[a}& HF a[IdA  ®o](q5 o ib) 	 (6.21) 

O HF A(o. eval)*(q5 —o 0) 	 (6.22) 
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Proof. The following two derivations show that fusion distributes over existential 

quantification. 

b(z) F-  &(z) 
(HR) 

(x) F- (x) 	(z) F- ([])(c(z)) 

q(x), 0(z) F (q o 3 [c]&)(x, c(z)) 

o b(x, z) F- (q  o  [a])(IdA  ®c(x, z)) 

[Id A  &a] (0 o &)(x, y) F- (q  o 3 [c]&)(x, y) 

(6.23) 

OW F- q(x) 	1'(z) I- b(z) 
(oR) 

q(x),b(z) I- 40(x,z) 

q(x),'ib(z) F- [Id A  Øa](qo)(Id A  Øa(x,z)) 

q(x),'(z) F- I [Id A  ®cx](qob)(x,c(z)) 

ç(x), [a](y) F- [IdA ®°]& o )(x, y) 

(q o 3 [o])(x, y) F- 3 [Id A  0a] (0 o &)(x, y) 

(6.24) 

The next two derivations show that linear implication distributes over substitution. 

O(a(eval (f, x))) F- O(c(eval (f, x))) 

O(x) F- ç(x) 	c*O(eva1  (f, x)) F- O(c. eva! (f, x)) 
(—o L) 

(q —a a*O)(f) q5(x) F- 0(a. eva! (f, x)) 
(cR) 

( 	o aO)(f) q(x) F- O(eval (A(ae eval)(f), x)) 
(—oR) 

( 	
*())(f)  F- (q —o 0)(A(. eval)(f)) 

(*R) 
( 	

* )(f)  F- A(a. eva!)*(q  —o O)(f) 

(6.25) 

O(c(eval (f,x))) F- O(a(eva! (f,x))) 	
( L) 

O(x) F- q(x) 	O(eva! (A(cEs eval)(f), x)) F- O(o(eval (f, x))) / 

—o O(A(c. eval)(f)), ç(x) F- O(c(eva! (f, x))) 

—o O(A(o. eval)(f)) F- (ç  —o 

A(o. eval)*(ç  —o O)(f) F- ( —o 

-O L) 

(*R, —o R) 

(*L) 

(6.26) 
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The next two propositions are a logical expression of the adjunctions relating 

fusion and linear implication (theorem 5.4.5), and substitution and existential 

quantification (proposition 5.1.11). 
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Proposition 6.3.10 Let 0 and 1' be predicates of type A and B respectively, and 

let 0 be a predicate of type A 0 B. Then 

qo 	F- 0 if [holdA,B ]q F- 	—o 0 (6.27) 

F- 	—o 0 if o 	I_eval*  0 (6.28) 

Proposition 6.3.11 Let q and 'i/' be predicates of type A and B respectively and 

let c be a combinator of type A - B. Then 

[c]±& 	if 	qHc*/, 	 (6.29) 

Proposition 6.3.12 Let q  be a predicate of type B 0 C and let c and /3 be corn-

binators of type A - B and C - D respectively. Then the following sequent is 

derivable in £FOLL. 

[IdA  0/3](a® 
J)*q 

H (cr® IdD)*[IdB 0/310 	(6.30) 

The above law corresponds to the part of the modified Beck condition (5.52) which 

always holds. The converse is not derivable because the full condition does not 

hold in general. 

6.3.2 Predicates on a Monoid 

We now develop two small applications of the logic £FOLL. These show how 

the logic can be used to calculate directly the order theoretic properties of M-

subobjects, which would otherwise require a confusing diagram chase. In the next 

section, we shall consider how Girard's double negation operator can be translated 

into the first order logic, but first we look at the properties of predicates over a 

commutative monoid. 

Let (B, .T, E) be the theory of a commutative monoid given in section 3.4.1. 

The comparisons in : M 0 M - M and A(m) : M - [M, M] allow us to define 

the following versions of fusion and linear implication for predicates over M. 

1 = 	[e] T 1 	 (6.31) 

= [m]çbob 	 (6.32) 

= A(rn)*(c5 —o 5) 	 (6.33) 
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Let C be the set of equivalence classes of pred(M) under -IF-. By lemma 6.3.4, 

-II- is a congruence with respect to the operations and D so these give rise to 

operations and 3 on equivalence classes. Let (C, Q, FM, A, TM, 1, 3) denote 

the set C with the various induced operations. 

Proposition 6.3.13 (C, 9, FM , A, TM,, 1, 3) is a consequence algebra. 

Proof. It is routine to verify that (C, , 	, ?, I) is a lattice. The monotonicity 

of the multiplication . follows from lemma 6.3.4. We show that multiplication is 

associative as follows. 

0-(0- 0) = 	o 	o 0)) 	 (6.34) 

-IF- 	[rn][Id Øm](ç o ( o 0)) 	 (6.35) 

-IF- 	[rn • (Id Ørn)]((q o 	o 0) 	 (6.36) 

There is a similar expression for (q . 	. 0 and this is equal to the above by the 

associativity of m. 

The following derivations show that (q  D 0) . 4 F- b and 0 F- 0 D ( 	b) 

respectively. 

?I'(m(x, y)) F- 'b(m(x, y)) 
(L) 

q(y) F- q(y) 	(eva1 (A(rn)(x), y)) I- 0(m(x, y)) 	
14 

—c '(A(m)(x)), q(y)  F- &(m(x, y)) 
(*L) 	 (6.37) 

A(m)*(q5 —0 1')(x), 0 (y)  F- (m (x, y)) 
(oL) 

(A (m) 	—o ) o )(x, y) F- b(rn(x, y)) 
(EL) 

—o i) o q)(z) F- (z) 

q(x)F-q(x) 	
(oR) 

OW,'(y) F- q o &(x, Y 
(ER) 

4(x), 'çb(y) F- ([7n] 0 o 0)(m(x, 	
(R) 	(6.38) 

O(x), '(y) F- ([m] o 0)(eval (A(m)(x), y) 	
R) 

O(x) F-  (& —o 	o )(A(m)(x)) 	
(*R) 

O(x) F- A(rn)*(5 —o 	o 

Thus, and 5 are related by the required adjunction. 	 0 
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6.3.3 Girard's Double Negation Closure 

Let I be a fixed predicate of type Z, and for all 	E pred(A) let 	denote 

the predicate 0 —o I of type [A, Z]. Let atA,B: A —p [[A, B], B] be the derived 

combinator 

at A,B= A(eval A,B • swapA,[A,B]) 	 (6.39) 

which given a term .s returns the function "evaluate at s". 

eva! (at (s), f) 	eva! (A(eval • swap) (s),f) 	(6.40) 

(eva! • swap)(s, f) 

eval (f, s) 

If q  is a predicate of type A then 	pred([[A, Z], Z]), and hence O(q) =at 
(1)  is a predicate of type A. We show that 0 is a closure operation on predicates 

over A. 
O(x) I- q(x) 	I(eval (f, x)) I- .L(eval (f, x)) 

(x), 1(f) H I(eva! (f, x)) 

(x), '(f) H I(eval (at (x), f)) 

(x) H 11(at (x)) 

(x) Fat*  (')(x) 

The idempotency of 0A  is a consequence of the following. 

(—a L) 

(6.41) 

-I--i- 
(f),q 	(at (g)) I- I(eval (at (g), f)) 

J 	±1 (f),at* 
 (q 	)(g)HI(eval(f,g)) 

L(f)  H (at* (I±))±(f) 

hf), (at* 11)'1(h) H I(eva! (h, f)) 

(at* ç' 1(h) H çb"(h) 

(6.42) 

Where the missing premise for the application of ( —o L) is supplied by the axiom 

I(eval (h,f)) H ...L(eva! (h,f)). 

For all 0 e pred(A) and 0 E pred(B), the following relation holds. 

(6.43) 

The diamond operator is the first order analogue of the double negation nucleus 

given in proposition 2.2.8. Unfortunately, the presence of a combinator in the 
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definition of OA  prevents us from constructing an involutive "negation" on the 

A-closed predicates. 



Chapter 7 

Model Theory 

In chapter 5, we developed the algebraic theory of M-subobjects in a symmetric 

monoidal closed category with a monoidal factorisation system (E, M). This pro-

vided the motivation for the logic £FOLL presented in chapter 6, and remains the 

primary example of a model. 

In the present chapter, we shall develop the model theory of £FOLL in terms of 

linear doctrines. These are an axiomatisation of the subobject model viewed as a 

fibred category. We define interpretations of £FOLL  in a linear doctrine, and show 

that £FOLL is both sound and complete with respect to this semantics. Choosing 

to work with fibrations rather than directly with the subobject semantics clarifies 

the statement and proof of these theorems. Furthermore, nothing is lost by taking 

this approach as there are translations back and forth between the two forms of 

model. 

In section 7.1, we first give the definition of a fibration and some subsidiary 

definitions. We show how every factorisation system gives rise to a fibration. We 

then define the notion of a linear doctrine as a fibration with extra structure, 

and prove that our leading example of a monoidal factorisation yields a linear 

doctrine. Finally, we prove some elementary results about linear doctrines and 

give a construction on quantales as a further example. 

In section 7.2, we define the interpretation of formulae of £FOLL  in a linear 

doctrine, and prove that linear doctrines are sound models of £FOLL. 

125 
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Finally, in section 7.3, we prove that linear doctrines form a complete class of 

models for £FQLL, and further deduce that those linear doctrines which arise from 

monoidal factorisation systems also form a complete class of models. 

7.1 Linear Doctrines 

Before giving our presentation of linear doctrines, we recall some of the definitions 

and basic facts associated with the theory of fibred categories. 

7.1.1 Fibrations 

Fibrations [Gra66,B5] give an abstract formulation of the notion of an 'indexed 

family'. This extends the familiar notion of a family indexed by a set to include 

families indexed by the objects of an arbitrary base category 13. Families of objects 

indexed by B and families of morphisms between them form a category B,  the 

fibre over B. The fibres over different objects form part of a larger category .F 

where the morphisms crossing between fibres involve re-indexing along a morphism 

of B. One consequence of the definition given below is that morphisms in T can 

always be separated into a vertical component, lying within a single fibre, followed 

by a cartesian component, corresponding to the re-indexing. 

Definition 7.1.1 Let F and B be categories, z : T -f B be a functor and 

f: U - V be a morphism in F. We say that f is cartesian with respect to z if for 

all g : W -+ V and for all 'y: z(W) -+ z(U) such that z(g) = z(f), there exists a 
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unique map h : W - U in F such that f  = g and z(h) = 'y. 

IN 

Z(W) 

Z  

Z(9) 
Z(U) 	z(V) 

z(f) 

If a is a morphism of 13 then f is cartesian over a if f is cartesian and z(f) = a. 

The functor z : F — 13 is a fibration if for each object X in F and for each 

morphism a : A —+ z(X) in 13 there exists a morphism f: U —i X in F which is 

cartesian over a. 

Dually, a functor z : F —+ 13 is an op-fibration if z°' : F°' —* 8°°  is a fibration. 

If z : F — B is a fibration or op-fibration and B is an object of 13 then 

FB  denotes the fibre over B, that is, the subcategory of F whose objects and 

morphisms are mapped to B and 'B  respectively. 

Definition 7.1.2 A fibration z : F — 13 is cleaved if for each morphism a: A —* B 

in B and each object p e FB there exists a choice of morphism v : a*p + 

which is cartesian over a. Such a choice is called a cleavage of z. 

A fibration is split if it is cleaved and the choices of cartesian lifting cohere 

as follows. For all objects p of F such that z(p) = C, and for all morphisms 

a: A —* B and /3: B —f C in T the following diagrams commute. 

127 

(7.1) 

(7.2) 
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Example 7.1.3 Let (, M) be a factorisation system on the category C and let 

cod : Sqr (M) -* C be the functor which maps an object of Sqr (M) , that is 

a morphism m E M, to its codomain in C and a morphism (f, g) : m1  - m2  of 

Sqr (M) to its first component. Then cod Sqr (M) -p C is an op-fibration. 

If pullbacks exist in C for every pair m e M and f e Mor(C) with a common 

codomain then cod : Sqr(M) - C is also a fibration. Furthermore if there 

exist choices of pullback and factorisation then these give rise to a cleavage and 

op-cleavage respectively. 

There is a well known correspondence between split fibrations z : .T -* B and 

functors F : 13" -p Cat, often known as 'strict indexed categories' [PS78]. Given 

a split fibration z : F -* B, we define a functor F : B°  -* Cat as follows. If 

B is an object of 8 then F(B) is the fibre over B, that is, the subcategory of .F 

which maps to B under z. If a U -* V is an arrow of B then we can verify 

that the map p i-p a*p extends to a functor F(f) : F(B) -* F(A) by the universal 

properties of a fibration. The coherences of 7.2 ensure that F(IA) = 'F(A) and 

F(g)F(f) = F(gf) and hence that F forms a functor 8°" -* Cat. 

Conversely, given a functor F : 8°f'  -* Cat, we can use the following con-

struction, due to Grothendieck, to produce fibration ZF : .T -* B. The objects 

of T are pairs (B, X) where B is an object of B and X is an object of F(B). 

A morphism in .1 from (B, X) to (C, Y) is a pair (a, f) where a : B -* C 

in B and f : X —p F(a)(Y) in C(B). The composition of two such maps 

(a, f) : (B, X) - (C, Y) and (/3,g) : (C, Y) - (D, Z) is given by (9a,F(a)(g)f) 

and the identity on (B, X) is (1B, 1k ). It is routine to verify that this data defines 

a category and furthermore that the functor ZF : F --4 B which maps objects and 

morphisms of .F to their first component is actually a split fibration. 

There is a similar correspondence between cleaved fibrations and 'pseudo-

functors' F : 8°" -p Cat, which preserve identities and composition up to coherent 

isomorphism. Despite these correspondences, fibrations have a certain conceptual 

advantage over indexed categories. See [B5] for a philosophical discussion of fi-

brations and a critique of [PS78]. In our case, there are clear practical reasons for 
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adopting the fibred category view; to formulate the definition of a linear doctrine 

we need to consider the category of predicates as a whole. We make no further 

mention of indexed categories except to note that the Grothendieck construction 

is implicit in the proof of the theorem 7.2.3 (the soundness of £FOLL). 

If z : T —+ B is a fibration then we say that a map f of I is vertical if z(f) 

is an isomorphism. We write Vert for the class of vertical maps, and Carte  for 

the class of cartesian maps. Note that it is more usual to take the vertical maps 

to be those lying within a single fibre. We need to take the weaker definition in 

order to get the following result. 

Lemma 7.1.4 If z : I —p B is a fibration then (Vert, Cart) is a factorisation 

system on I. 

Proof. Clearly, both Cart and Vert contain the isomorphisms and are closed 

under composition. If g : U - V is any morphism in I then we know that there 

exists a map f which is cartesian over z(g) and hence, by the universal property 

of f, a vertical map v such that z(v) = 	and g factors as fv. 

Now, let v e Vert and f G Cart, and suppose that we have a commuting 

square hv = fg. 

Since z(v) is an isomorphism, there is a unique map p making both triangles of 

the righthand square commute. By the universal property of f applied to h, there 

exists a unique map o : V — W such that z(cT) = p and h = fa. Applying the 

same universal property to hv, we deduce that ov = g. Thus a is the unique map 

making the lefthand square commute, since any other map a' with this property 

would necessarily satisfy z(a') = p. 	 D 
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7.1.2 Linear Doctrines 

The concept of a linear doctrine isolates the properties of the M-subobjects of 

a monoidal factorisation system (4, M) which are needed to prove the soundness 

and completeness of £FOLL. 

Definition 7.1.5 Let (1', o, 1, —a) and (T, 0, I, [-, -]) be symmetric monoidal 

closed categories. A strict monoidal strict closed functor z : P - T is a linear 

doctrine if 

z is both a fibration and an op-fibration, 

for each object A of T, the fibre 'TA  has finite products and finite coproducts, 

1 is a terminal object in PI, and whenever T A  and TB  are terminal in PA 

and TB  respectively, then T A  o  T B  is terminal in PA®B• 

The key example of a linear doctrine is given by the codomain fibration 

cod : Sqr (M) - C of example 7.1.3 in the case that (E, M) is a monoidal 

factorisation. 

Proposition 7.1.6 Let C be a symmetric monoidal closed category with finite 

coproducts and a monoidal factorisation system (S, M). Suppose that there exists 

a choice of pullback for every pair of maps m e M and f E Mor(C) with a 

common codomain and a choice of factorisation for every morphism of C. Then 

cod : Sqr (M) -* C is a linear doctrine with cleavage and op-cleavage. 

Proof. We know that cod: Sqr (M) -p C is a fibration and op-fibration and that 

the choices of factorisation and pullback give rise to a cleavage and op-cleavage. 

Theorem 5.4.5 states that (Sqr (M) , o, 1, —o) is symmetric monoidal closed and 

an examination of the data given reveals that the codomain components are given 

by the corresponding data in (C, (9, I, [-, -]) so cod is strict monoidal strict closed. 

The fibre over an object A of C is, of course, the relative slice category C/M A and 

this has finite products and coproducts by lemma 5.1.9. Finally, a terminal object 
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in the fibre over A is an isomorphism rn : A' 	A and these are preserved by 

fusion. 	 E1 

Remark 7.1.7 There are two important special cases of a linear doctrine: where 

the fibres are preorders and partial orders respectively. If the factorisation system 

of the above proposition satisfies M c Mon then the fibres of cod : Sqr (M) -* C 

are preordered. By taking an appropriate quotient of Sqr (M) , we can obtain a 

fibration z : F -* C whose fibres are the M-subobject lattices of C, and hence 

partial orders. The interpretation of the logic £FOLL given in the next section will 

be defined with respect to a linear doctrine whose fibres are partially ordered. 

Proposition 7.1.6 shows that a monoidal factorisation system gives rise to a linear 

doctrine. In fact, there is a converse to this result. 

Proposition 7.1.8 Let P = (P, o, 1, —a) and T = (T, ®, I, [-, -]) be symmetric 

monoidal closed categories, and z : P - Y be a linear doctrine. Then for all 

p E Obj(P), OpCart is closed under (-) op and Carte  is closed under p —o (-). 

Proof. By the dual of lemma 7.1.4, (OpCart, Vert) is a factorisation system 

on P. We note that Vert,.,,is closed under p —o (-). If g: q1  -+ q2  is vertical then 

z(g) is an isomorphism and hence so is 

z(p —og) = [z(p),z(g)] : [z(p),z(q2)] - [z(p),z(q1)] 	 (7.4) 

Thus, by lemma 5.2.2, OpCart is closed under (-) a  p. 

The second part is just the dual of the first. 

Corollary 7.1.9 If z : P -* T is a linear doctrine then (OpCart,Vert) is a 

monoidal factorisation system on P. 

We turn briefly to the connection between linear doctrines and quantales. One 

way to view the predicates of £FOLL  is that they are much the same as the formulae 

of the propositional logic but 'spread out' over an underlying type theory. It seems 

that if we could collect together the predicates of different types then this should 

give a model of the propositional logic. We make this statement precise in terms 
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of linear doctrines. Let z : 7- -p T be a linear doctrine with T small, and suppose 

that the fibres of z are complete lattices. For each f : X -* Y in T, the direct 

image functor f : Px  -* Py preserves suprema since it is left adjoint to f* Thus, 

f is a morphism of complete semilattices, and z defines a functor F : T -p CSLat 

mapping objects to fibres and morphisms to direct image maps. 

Proposition 7.1.10 The colimit of the diagram F: T -* CSLat is a quantale. 

Proof. Let Q be the colimit of F. For each pair of objects X, Y in T, fusion 

defines a bilinear map from Px x Py to P®y  and hence a morphism 0x,y 

Px 0 Py -4 PX®Y of CSLat. 

Let f X - X' and g : Y - Y' be morphisms of T. As a result of lemma 

7.1.8 the following diagram commutes. 

ox,y 
Px®Py 	PXOY 

f 0 g,. 	 (f 	0 g). 	 (7.5) 

Pxl ® PyI 	l  - Px,®yl  
ox,,y,  

Thus oxy : Px  0 P' -+ X®Y are the components of a natural transformation 

®(FxF)-F. 

Since CSLat is symmetric monoidal closed, 0 preserves colimits and so 

Q 0 Q =colim (F)ø colim (F) _colim 	(0(F x F)) 	(7.6) 

We define the multiplication in : Q 0 Q -p  Q to be the map between colimits 

induced by the natural transformation above. It is routine to verify that in is 

associative, commutative and has a unit. 

7.2 	Soundness of the calculus £FOLL 

We give an interpretation of the sequents of £FOLL  in a linear doctrine z : P -* T 

whose fibres are partial orders and prove that it is sound. 
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7.2.1 Interpretation of formulae 

Let z : P -p T be a linear doctrine, and let (z,.j) be an interpretation of LTT in 

Y. Let I - be a mapping of atomic predicates to objects of P such that if 4 is of 

type A then 101 lies in the fibre P2(A).  We extend - to an interpretation of all 

predicates as follows. 

= Iokbl 

= kI —ok&I 

IAI 	= IcIAk'I 

IcV''I = 

= 	j(a)*10  

= 
ITx I = 	T, (X) 

IFxI = 

(7.7) 

Lemma 7.2.1 For all predicates çt' E pred(A), z(IqI) = z(A). 

We can now give a function I[—J1 from lists of formulae to objects of P. Let 

denote j  (ac(s)). 

ft= 1  

ftq(s)]I = 	 (7.8) 

= ft]I o -9*101 

We are not quite ready to state the soundness theorem. Although we can interpret 

the formulae on each side of the turnstile, these interpretations may lie in different 

fibres. To interpret a sequent F F- q(s) we need to define a comparison map 

z(ftF) - z(ftq(s)). Firstly, we extend the concept of associated basic term to 

lists of formulae. 
AbtQ = () 

Abt(qf(s)) = abt(s) 	 (7.9) 

Abt(F, ç(s)) = (Abt(F), abt(s)) 

If no variable occurs twice in the list 'y  then Abt(F) is a term. In particular, if 

F I- o(s) is a valid sequent then Abt(F) and Abt(q(s)) are terms by the variable 

balancing property. 

Lemma 7.2.2 If F is a list of formulae with Abt(F) E term(A) then z(FJ1) = 

z(A). 
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Theorem 7.2.3 Soundness of £FOLL 

Let z : P -* T be a linear doctrine whose fibres are partial orders and let 

I - ) be an interpretation of £FOLL(13,.F,E) in z. If  F q(s) is derivable in 

£FOLL(B, .T, E) then there exists a morphism in P 

g: UP] 	ftq.(s)] 
	

(7.10) 

and a central combinator such that z(g) = I () and (Abt(F)) Abt(çb(s)). 

Remark 7.2.4 The existence of g : F] -* [q(s)] such that z(g) = J () is 

equivalent to the inequality 

ftF}1 <()*I{()] 	 (7.11) 

holding in the fibre 	where A is the type of Abt(F). 

Proof. The proof proceeds by induction on the structure of derivations. For each 

rule of £FOLL,  we show that theorem 7.2.3 holds of the conclusion if it holds of 

the premises. We present only the more difficult cases. 

Fusion. 

(oR) 
F F q(s) 	F2  F &(t) 

F1, F2  F 0  o(s,t) 

provided that 

V(F1 ) n V(F2 ) = 0. 

Induction Hypothesis: There exist morphisms 

91  : F1 - 	 E[F2J -* 

and central combinators 	such that 1 (Abt(171 )) 	abt(s), 2(Abt(F2)) 

abt(t) and z(g1) =j()  for i = 1, 2. 

Abt(F1,F2) is the left associated form of (Abt(F1),Abt(F2)). Following the 

proof of lemma 3.2.14, we can construct a central combinator, left such that 

left (Abt(F1), Abt(F2)) 	Abt(F1, F2). There is a semantic counterpart to this 

construction which gives us a morphism h : [F1] o  [F21 -p  V1  F2]J in P with 

z(h) = j (left). 
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Let Ui 	- IcI, '2 : 	- 	and v: (301)*1 	&l - IcoI be 

cartesian over , 1 and 01 respectively. Then 

z((v1  0v2)(91  0 92)) = -§ & 11  (6 0 2) 
	

(7.12) 

By the universal property of ii, there is a unique map g: V1,F2} -* ( ® l)*Ico 01 

with z(g) = 01 making the diagram below commute. 

° 
ftF1}oftF2] 

1u1 0v2 	(7.13) 

(0l)*Icl 	 Ic° 01 
V 

The required map E{F11 F2  - (g 0 l)*Iq  ° 	is thus the composition gh 1 . Note 

that z(gh1) = J ((6 0 2)• left) where left is the obvious 'inverse' of left. 

(oL) 
F1,(x),(y),F2  I- 0(u) 

F1,40'(x,y),F2 H 0(u) 

The soundness of (oL) follows from the observation that F1, O(X), ?1'(y), F2] and 

lIP1, 0 o b(x, y), F211 are just different products of the same finite set of objects in 

1'. 

Linear Implication. 

( —oR) F, ç5(x) H 'ç&(eval,y (f, 
x)) x is a basic term. 

PH(q—o&)(f) 

Induction Hypothesis : There exists a map g : ftFlJ ° lcl - (47 ® 1))*0I 

such that z(g) = j () where is a central combinator satisfying (Abt(F), x) 

(abt(f), x). 

Abt(P) and abt(f) are basic terms in the same variables so by lemma 3.2.14, 

there exists a central combinator ' such that '(Abt(F)) 	abt(f)). It follows 

that 

'® Id (Abt(F),x) 	(abt(f), x) 	(abt(f), x) 	(7.14) 
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and hence j 	® 1 = j 

ft1]olI 

101
1) 	 (7.15) 

	

z(AØB) 	z(A'ØB) 	ez(C) 

3(e) 	 E(fØ1) 

Let h = vg where v : e(J 0 1)*I0I -* 10 1 is cartesian and let 

= [1,h]S: JQ —+ II —ok&I= I—I 

Then 
z(h) = [ 1,z(h)]8 

	

= [1,e(f0 1)j()]5 	
(7.16) 

= [1,E(73(') ® 1)18 

= 7J(') 

IIr1 

ii 	
(7.17) 

	

z(A) 	z(A') 	z([B,C]) 

I 

Thus ii factors as ii = v'g' where 1/ is cartesian over 7 and z(g') = j (c') 

L) 	
F1  I- q(s) 	F2,(evalxy (f,$)) I- 0(t) 	provided that 

( —o  
F2, (q —o  0) W, F1  I- 0(t) 	V(F1) fl V(F2) = 0. 

Induction Hypothesis: There exist morphisms g1,g2  in P 

91 	Fil 	101 

92  
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and central combinators 6, 6 such that 

z(g1) = 1 () 	 1(Abt(171 )) 	abt(s) 

z(92) = 3(2) 2(Abt(Fi ),abt(f,$)) 	abt(t) 

It is easy to check that 6 = 	assr .(Id 04) satisfies 

((Abt(F2), abt(f)), Abt(F1)) 	abt(t) 	 (7.18) 

We shall define a morphism g as the composition of a series of arrows 

hl*  

h2  - 	UPA o (E(j®))*Ibl 

Clearly, the last step is just 92. We define h1  = a(1 o g1) and note that z(h1) = 

(assr .(Id Ø)). 

Let v :f*I_o 	- 10 -0 01 	 :kI - 	and v : (e(j Ø ))*II -* &l be 

cartesian over 7, and e(J 0 ) respectively. 

T 	
ii

IIo*Il 
1Oh 1 0_0010101  

(7.19) 

V 

1/ 

Since z(E(v1  0 v)) = e(7 0 ), there is a unique map k with z(k) = 1 = j (Id) 

making the above diagram commute. We now define h 2  = 1 0 Ic and g = 92h 2h1. 

It is routine to verify that 

	

Z(9) = J (' assr .(Id ®)) 	 (7.20) 

Existential Quantification. 

FHq(s) 
(ER) 

F H ([a]q )(o(s)) 

Let g be a map ftF] - 	with z(g) = 3 (c). From the adjunction .i (c) -13  

we obtain a unique map 

-9*101 -4  ()*()....* 	 (7.21) 
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in the fibre 2A (where A is the type of abt(s)), and composing this with g gives 

the required map g'. 

(EL) 
F,O(x) H /(s[c(x)/v]) 

F, (a[])(,) H 0 (s) 

x is a basic term and v does 

not occur in the premise. 

Induction Hypothesis : There exists a map 

g: V1 0 101 -* s[c(x)/vJI 

such that z(g) = j () where is a central combinator satisfying (Abt(F), x) 

abt(s[c(x)/v]). 

First, note that (Abt(F), v) and abt(s) are basic terms with the same variables, 

and hence there exists a central combinator ' such that e(Abt(F),v) 	abt(s). 

Using the substitutivity of 

(Abt(F),a(x)) abt(s)[c(x)/v] 	 (7.22) 

Thus 

(ac(s) • • (Id ®c))(Abt(F),.x) 	ac(s)(abt(s)[a(x)/v]) 	
( 

s[a(x)/v] 

By the induction hypothesis 

(ac(s{o(x)/v]) • )(Abt(F), x) 	ac(s[c(x)/v])((Abt(F), x)) 

ac(s[o.(x)/v] )abt(s[o(x)/v]) 	(7.24) 

s[a(x)/v] 

It follows from definition 3.3.1 that 

j (ac(s) • • (Id Øc)) = j (ac(s[a(x)/v]) • ) 	(7.25) 

The existence of g in the induction hypothesis is equivalent to the inequality 

M 0 	 ()*[ ()/ ]*I,I 	 (7.26) 

and hence by 7.25 to 

F *_* ~rjojoj 	j (Id ®c)*J () s kI'I 	 (7.27) 
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Transposing this inequality across the adjunction 3(Id ®a) H .j (Id 0c)* 

-* 

	

(1 0.1 ())*([[F]] 0 10 1) 	.1 ('s
, *
) s 	 (7.28) 

The result now follows from the fact that the op-cartesian maps in P are closed 

under fusion. 
_ ftF]oj(c)*II 	F *S* 

I'I 	 (7.29) 

0 

7.3 	Completeness of £FQLL 

Theorem 7.3.1 Let £FOLL(B,F,E,P) be a theory of first order linear logic. 

Then there exists a linear doctrine z0  : 20 —* To  and an interpretation (20,10 - I) 

Of £FOLL(B, F, E, P) in z0  such that whenever there exists a morphism 

g: IIF] —* {q(s)] 	 (7.30) 

and a central combinator such that z0(g) = .Jo() and (Abt(F)) 	Abt(q(s)), 

then F H (s) is derivable in £FOLL(13, F, E, P) 

The proof of theorem 7.3.1 is the content of section 7.3.1. 

Corollary 7.3.2 £FOLL is complete with respect to the linear doctrine semantics. 

Proof. If a sequent F H q(s) is valid in every linear doctrine interpretation of 

£F0LL(B,T,E,P) then it is valid for the interpretation (z0,30, I - ) in z0  and 

hence is derivable in £FOLL(B, F, E, F). 	 U 

Every monoidal factorisation system (E, M) on a symmetric monoidal closed 

category C gives rise to a linear doctrine. For completeness the apparent extra 

generality of linear doctrines is illusory because we have the following result. 

Corollary 7.3.3 For every theory £FOLL(B,F,E ) F) of first order linear logic, 

there is a monoidal factorisation (S, M) on a symmetric monoidal closed category 

C such that the associated factorisation system satisfies the conditions of theorem 

7.3.1. 
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Proof. Given z0  : P0  --+ 	as in theorem 7.3.1, it follows from corollary 7.1.9 

that (OpCart 0 ,Vert 0 ) is a monoidal factorisation system on P0. Consider z': 

Sqr( 0 ) -* P0  and define the interpretation (z',j) I - ') by z'(A) = TA, j'(a) = 

(T A, [a], TB ) and ' is the unique map from 101 to TA  in the fibre (PO)A. 	0 

7.3.1 The fibre category PO  and the functor z0 : PO  -p To  

Given £FOLL(B, F, E, F) a theory of first order linear logic, define T0(B, F, E) as 

in lemma 3.3.4. Given an object A of ?, the objects of P0  in the fibre over A are 

equivalence classes of predicates with type A under the equivalence relation HF 

defined in section 6.3.1. Let [qf] denote the equivalence class of q. 

Let 0 e pred(A), 0 G pred(B) and a be a combinator of type A - B 

in LTT(B, F, E). The triple ([q],  [a],  []) is a morphism [] - [] in P0  with 

z0([q], [a], []) = [a] provided that 

(7.31) 

The identity on [] is the triple ([çf], [IdA ], [q])  and composition is defined as 

follows. 

([v'], [/3], [0]>  ([], [a],  [v']) = ([], [/3. a], [01) 	 (7.32) 

It is easy to check that this defines a morphism of P. That is 

0Fa*0 	0F/3*0 
(7.33) 

qF (/3.a)*0 

Given that two morphisms of P0  have the same domain and codomain, their equal-

ity is determined by their middle components. Hence, composition is associative 

and z0  is a functor. Moreover, the commutativity of diagrams in P0  reduces to 

the commutativity of corresponding diagrams in To. Thus, we shall see that the 

equational axioms required to show that P0  is symmetric monoidal closed are 

essentially those already checked in section 3.3.1. 

Where it is clear from the context, we shall drop the domain and codomain 

parts of a triple. Thus we write (a) : [] -+ [] rather than ([], [a],  []> : [q] -* [&]. 
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Tensor Product 

To is given the tensor product of proposition 3.3.5, and we define a tensor product 

on objects of 	in the evident way : [q] o [] = [q o &]. This is well defined by 

lemma 6.3.4, and z0 strictly preserves the tensor product. 

Let (a) : [] - [&] and (/3): [qY] -* [j/]. The following derived rule for H shows 

that (a (D /3): [0 o 	-* [qV o '] is a morphism of P. 

F*F 

oH 
(Ø/3)*IF 
	 (7.34) 

We therefore define (a) o (3) to be (a 0 9) : [q o 	-+ [q' o /"]. The functoriality 

of o follows in the same way as the functoriality of 0 in To (see 3.53 and 3.54). 

Natural Transformations 

(assrx,y,z) 	: [(q o &) o 01 - 	o (b o 0)] 

(asslx,y,z) :[0 o (/ o 0)] -~ [(c o 	) o 0] 

(closex) : 	[T1 o 	] - 	[] 

(openx) : 	[q]— [TI o4] 

(swapxy) : 	[q o 	-* [0 o 

where X, Y, Z are the types of the predicates 0, b, 0 respectively. Naturality follows 

from the base category, as do the coherence conditions. 

Closure 

By proposition 3.3.7, To is symmetric monoidal closed. We note that (evalx,y 

) : [( -0 b) o q] -* [/] is a morphism of P, and show that it is universal from 

(—) 0 [q] to [sb]. 
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Let (a) : [0 o ] -* [/,] then 

0(x), O(Y) F 0 o q(x, y) 	0 o q(x, y) F- /.(a(x, y)) 

0(x), q(y)  F b(a(x, y)) 
(R) 

0(x),4(y) F /'(eva1 (A(a)(x),y)) 
(—oR) 

0(x) F q —o 0 (A(a)(x)) 

(Cut) 
(7.35) 

It follows from the above derivation that (A(a)) : [0] -+ [q —a  /] is a morphism of 

Po. As in To, we have that (A(a)) is the unique map satisfying (eval)((A(a)) o 

= (a). Moreover, z0  is strict monoidal strict closed. 

Note 7.3.4 The unit of the adjunction (-) a  [] -1 [q] —o (-) is 

(holdx) : [] - [ —o (q 0 

Fibration/op-fibration 

We have defined z0 : P0  -p To  be the functor which maps an object [] to the type 

of q and a morphism (a) : [q] -p [] to its middle component [a] : X -p Y. 

Let 0 e pred(C) and [-y] : B - C in To. We show that (-y) : fry*] -* [] is 

cartesian over [y]. 

Let (a) : [] -* [] and suppose that zo((a)) = [a] factors through [y].  That is 

a 	-y • /3 for some /3. Then 

a*L, HF (y • 
/3)* 

HF 
 /3*(*/,) 	 (7.36) 

It follows that q  F /3*(y*)  and so (/3): [] 	[-y/] is a morphism in PO. Clearly, 

(/3) makes the following diagram commute 

['} 

ce) 

	
(7.37) 

[y&] 

(7) 
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and, like all maps in 70,  is uniquely determined by its domain, codomain, and 

image under z0. 

Let 0 E pred(B) and [8] : B - C in To. We show that (/3) : [] - [3[/3]] is 

op-cartesian over [3]. 

Let (a) : [] - [] and suppose that z0((a)) = [a] factors through [/3]. That 

is a 	'y • /3 for some -y.  Then at' -IF- /3*(7*)  and hence (y) 	[&] is a 

morphism of P0  by the following derived rule for H. 

(7.38) 

Clearly, (by)  makes the following diagram commute. 

[v,] 

/N 

	
(7.39) 

[] 
(i9) 

Again the uniqueness property of [y]  is trivial. 

Interpretation of £FOLL(B, T, E, F) in z0  P0  -* To  

The interpretation ( 20, JO) I - ) is given by the identity on types, the function 

mapping a combinator to its equivalence class under , and the function mapping 

a predicate to its equivalence class under -IF-. It is immediate from the definitions 

that this interpretation satisfies the conditions of theorem 7.3.1. 



Chapter 8 

Conclusions and Further Work 

The work contained in this thesis represents a first attempt to apply the techniques 

developed in the categorical model theory of classical and intuitionistic logic to 

linear logic. The main body of the work is concerned with the derivation of a 

system £FOLL of first order intuitionistic linear logic from its intended model 

theory. This forms part of a wider programme of research to develop a uniform 

model theoretic framework for the logics arising in computer science, and the 

main benefits of the work are to illuminate the issues and requirements of such a 

framework. Specifically, we have shown that the analysis of first order logics as 

fibred categories with added structure can be applied in the case of linear logic, 

though not without considerable care. 

As we move away from classical logic to intuitionistic, relevance, or linear logic, 

many of the logical principles which were taken for granted no longer continue to 

hold. The interest and challenge of these weaker logics is to reformulate the stan-

dard concepts in such a way to recover as much of the logical intuition as possible. 

The work here shows the difficulty of correctly formulating a first order version 

of linear logic, even given a good understanding of the propositional logic. The 

easiest path would have been to follow Seely [See87b] and consider predicates to 

be families of propositions indexed over some category with finite limits. However, 

this leads to a theory whose only models are given by construction [See90], and so 

gives no insight into the meaning of the logical operations and connectives. 

144 
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In contrast, the system of first order linear logic £FOLL presented here has 

a simple and clear semantics, in terms of, say, the subgroups of abelian groups. 

The price to be paid for this simplicity is that the logic contains a number of 

compromises which perhaps detract from its aesthetic appeal. Some of these are 

inevitable consequences of the linearity constraints; for example the failure of pull-

back to preserve joins, the nonfibrewise nature of the multiplicative connectives, 

and the slightly strange presentation of existential quantification. The status of 

others is less clear cut. The failure of the modified Beck condition 5.52 is justified 

because it does not hold in Ab, but perhaps, if we were more discerning about 

our class of models, this is a property which could hold. 

Clearly, we would like to go on to investigate categories with stronger logical 

properties, but it is important to resist the temptation to refine the class of models 

too early. The various features mentioned above might lead one to dismiss cate-

gories such as Ab as 'nonlogical'. The main point of the work presented here is 

to proceed undeterred by these apparent failings and extract the logical content 

that still remains. The fact that we retain Ab as an example gives our logic an 

independent mathematical interest. 

The suggested class of models, symmetric monoidal closed categories C with a 

monoidal factorisation system (E, M), is based on a simple condition which relates 

factorisation and tensor product, that e is closed under tensor product. This 

condition is the minimum requirement for the M-subobjects to form a model of 

linear logic, and is mild enough to retain a large number of interesting examples. 

Furthermore, it appears in practice in some of the more complex constructions 

in enriched category theory; for instance, as part of the definition of a 'locally 

bounded' symmetric monoidal closed category [Ke182, page 2101. This gives a hint 

of the implicit logical content of these constructions. 

There is obviously more work to be done before we fully understand the role 

of linear logic as an internal logic of symmetric monoidal closed categories. The 

work done here is intended to provide a firm basis for further research. It identifies 

some of the important concepts and issues in the categorical study of linear logic, 

in particular the connection between linearity in the logic and linearity in the 
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type theory. This is illustrated by the examples of chapter 4 where the linearity 

constraints of the logic are used to define a tensor product at the level of types. 

More generally, this analysis tells us three things about general model theo-

retic frameworks for classifying logics. First, there is an advantage in considering 

fibrations over indexed categories; the definition of a linear doctrine refers to the 

closure of the category of predicates as a whole, and so could not have been so 

conveniently expressed in terms of indexed categories. Secondly, there is a need 

for categories with added structure specified in terms of functors, natural trans-

formations, and coherences; rather than categories with structure specified only 

by universal properties. Lastly, as the logical connectives are not preserved by 

substitution, one must allow the possibility of making substitution explicit. 

For future work, some of the algebraic ideas developed in chapters 5 and 7 seem 

worth pursuing; in particular, the theory of monoidal factorisations and linear 

doctrines. It may be possible to reformulate the definition of a linear doctrine 

as an indexed category rather than a fibration, although it would seem to be 

more difficult to state the closure condition on predicates in this setting. If C is a 

complete symmetric monoidal closed category with monoidal factorisation system 

(E, M) then we can show that SUbM : C -p CSLat is a monoidal functor with 

comparison maps 

T1  : I — SubM(I) 

°A,B : SubM(A)®SubM(B)—*SubM(A(&B) 

where T1  picks out the top element of SUbM  (I) and °A,B  is the fusion of subobjects. 

An important property of monoidal functors is that they preserve monoids. Thus, 

a monoid in C will be mapped to a monoid in CSLat. That is, the subobjects of 

a monoid M in C form a quantale, and hence a consequence algebra. This gives a 

simple algebraic proof of the observation proved syntactically in section 6.3.2. 

There are several obvious questions to be answered about the logic £FOLL.  In 

the main these relate to the possible extensions. One possibility is to extend the 

logic to include an involutive negation similar to that of the classical propositional 

logic. However, from section 6.3.3, it seems clear that any category C providing a 
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model for this would have to be *-autonomous to ensure that the double negation 

of a subobject 0 lies in the same fibre as 0. This would seem to greatly 

reduce the interest in such a negation, since there are fewer good examples of a 

*-autonomous category. 

In a similar vein, one might consider trying to add a modal operator !(-) 

to reintroduce weakening and contraction, though it is far from clear how this 

can be done. The repetition of a formula q(t) appearing in the premise of a 

contraction contains a duplication of the variables in 1, and hence violates the 

variable balancing condition. To successfully incorporate the !(-) modality, we 

must devise a mechanism round this; either a more lenient set of restrictions, or a 

similar 'modal' operator at the level of types. 

Jay [Jay89b] makes some interesting observations on natural numbers objects 

in symmetric monoidal closed categories. If N is a natural numbers object in V 

then we can define maps N -* N 0 N and N -* I by 'recursion'. The effect of 

these maps is to duplicate and destroy variables respectively. Thus there may be 

some interest in adding recursive types to LTT. 

An early version of LTT had cartesian products together with a much more 

complicated variable occurrence condition. These could be reintroduced together 

with coproducts. However, one should not speculate too deeply on the possible 

syntactic extensions, without a clearer analysis of the class of models it is intended 

to represent. The logic that we have produced so far is justified by its particularly 

wide class of models. We should not consider making unnatural restrictions on 

the models in order to accommodate the features which although present in the 

propositional logic, may be of less significance here. 

Another aspect of the logic £FOLL  which perhaps deserves more attention is 

the associated proof theory. It is natural to ask whether there is a cut elimination 

theorem for proofs in £FOLL. This has not been a concern in the work so far 

because we have been interested in the theories £FOLL(B, T, E, F) where E is 

a nonempty set of linear equational axioms. In this case, there is no hope of a 

cut elimination theorem, and the consistency of the logic is established by appeal 

to existence of nontrivial models. However, if E = 0 then the sequent calculus 
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presentation of £FOLL is just a decorated extension of that for the propositional 

calculus, and it seems likely that there is a cut elimination algorithm. 

As remarked in the introduction to chapter 4, there is yet no notion of a universe 

for linear logic which compares with that of topos for intuitionistic logic. The two 

examples presented in chapter 4 represent the first steps towards an appropriate 

generalisation which would permit an analysis of higher order linear logic. 

The presheaf example is perhaps the less promising of the two. It is difficult to 

work with, the tensor product is almost impossible to calculate in all but the most 

trivial cases, and [C', Set] has too many extra properties, derived from the fact 

that it is a topos, to give any clear guidance on the required categorical structure. 

Note that the presheaf model is a generalisation of the resource semantics of section 

2.2.3 and, as such, inherits the distributivity of meet over join 2.39. 

By comparison, it is quite easy to make explicit calculations in the category of 

Q-sets, and this seems the most promising area for further work. As Q itself is a 

Q-set it seems that there should be some form of higher order linear logic to be 

discovered. This should be analogous to the form of logic given by a topos, but may 

be significantly different in detail. For example, in metric spaces every subspace 

X 	Y induces a 'classifying map' Xx : Y - which sends each point y E I Y I to 

its distance from the subspace X. The subspace X is certainly a pullback of {O} 

along this map, but x is not unique with this property. Johnstone has suggested 

that the category of metric spaces and distance decreasing maps should be an 

example of a 'collapsed topos' but the precise definition of this structure is not yet 

certain. It seems reasonable to suppose that further experimentation with Q-sets 

might suggest the requisite categorical axioms. 

The theory of locale valued sets includes the concept of partial existence which 

we have avoided for simplicity. It should certainly be possible to reintroduce an 

existence predicate, though this must be done explicitly because the intuitionistic 

'trick' of encoding existence into equality depends crucially upon the properties of 

the conjunction A. One possible idea is to take categories enriched in a suitable 

bicategory rather than in a quantale. Walters has already shown that sheaves on a 
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locale can be viewed in this way [Wa181,Wa182], but it is not clear how to modify 

this work for a quantale. 
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