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ABSTRACT 

We undertake a group-theoretical study of the specific form of the 

harmonic oscillator quark model proposed by Isgur and Karl, restricting 

our attention to the non-strange sector of the baryon spectrum. In par-

ticular, we consider the spectrum-generating group, Sp(12,R), appropriate 

to the study of the 3-quark problem, and demonstrate how it may be used 

to label the oscillator eigenstates and to provide a new and direct 

means of constructing wavefunctions of definite orbital angular momentum 

and permutation - symmetry type. We indicate how Sp(12,R) provides the 

most appropriate means of classifying the symmetry-breaking induced by an 

anharmonic perturbation and we derive an algebraic mass formula, in-

volving the quadratic Casimir invariant operators of Sp(12,R) and its 

relevant subgroups, plus one non-subgroup invariant operator, which 

successfully reproduces the splitting pattern of the N = 2 supermulti-

plets originally derived in the literature by straightforward pertur-

bative techniques. Some results for the N = 3 level are also given 

together with an outline of the method for generalisation to any degree 

of excitation of the system. Much of our understanding of the role of 

the spectrum - generating group in this context derives from a parallel 

study of the simpler case of a 2-particle bound system, which we also 

describe. We examine the implications of our results for baryon spectro-

scopy: in particular, we discuss in some detail the possibility that 

the iD35(1940) resonance is evidence for an N = 3 [56,1] super-

multiplet corresponding to excitation of new gluonic degrees of freedom. 

After inclusion of hyperfine effects, and with reasonable values of 

the parameters in the model, we recover the pertinent features appropriate 

to the D35, G37 and G39 sectors of a recent preliminary phase-shift 

analysis by Cutkosky et al. 
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PROLOGUE 

In recent years, the theory of quantum chromodynamics (QCD) has 

become the leading candidate to describe the strongly-interacting par-

ticles (hadrons). In this theory, hadrons are assumed to be composite 

particles, their constituents being quarks (q) and antiquarks (i). 

However, QCD goes beyond the early quark models (Lichtenberg 1981 and 

references therein) in that it purports to be a dynamical theory of 

the interactions of quarks. 

At the most naive level, quarks and antiquarks provide a mnemonic 

that accounts for properties such as the spin, parity and electric 

charge of the observed hadrons as their being composed of qqq for 

baryons (q q q for antibaryons) and qq for mesons. In the naive 

model, quarks have finite mass, fractional electric charge and are 

spin 1  
2 particles (fermions) with two types of internal degree of 

freedom: flavour and colour. Flavour concerns quantum numbers such 

as electric charge, isospin and hypercharge, which are directly ob-

served in elementary particle interactions. At present, there is 

good (but indirect) experimental evidence for five flavours of quark: 

up (u), down (d), strange (s), charmed (c) and bottom (b), although 

there is strong theoretical prejudice favouring the existence of a 

sixth flavour called top (t). Colour was originally introduced to 

resolve a conflict with the generalised Pauli exclusion principle 

for the quarks in the ground-state baryons. A quark of a given 

flavour can exist in any of three possible colour states, say red, 

green or blue, although these names have no logical connection to 

the concept. The quarks couple via their colour charges to eight 

massless vector gluons in such a fashion that the Lagrangian is 

locally-invariant under the gauge group SU(3) 1 . The three- 
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valued colour degree of freedom carried by quarks transforms as the 

fundamental representation, 3, of SU(3) colour • 	This group is 

assumed to be an exact symmetry group for the strong interactions, 

and all physical states are, by hypothesis, colour singlets. It is 

this latter assumption which resolves the statistics problem of baryon 

spectroscopy, for the colour-singlet state of three quarks is com-

pletely antisyinmetric in the colour variable. It is precisely because 

SU(3) 	has only three invariant tensors, 6 , c 	 c and 
colour 	 cty 

that all colour-singlet states may be decomposed into systems of mesons, 

baryons and antibaryons, respectively. 

At this stage, the introduction of colour must be considered as an 

ad hoc hypothesis invented to explain the symmetry of quark space and 

spin wavefunctions. Nonetheless, the colour hypothesis finds much 

(indirect) experimental support including (Lichtenberg 1981, Greenberg 

1978 and references therein): 

the saturation property of hadrons, viz, that low-lying states 

all have the quantum numbers of qqq for baryons and qq for mesons. 

The quark model without the colour degree of freedom fails to account 

for saturation; 

measurement of the ratio., R, of hadrons to muon pairs (ii 'u) 

produced in electron-positron (e+e) collisions. Away from vector 

meson resonances, the calculated value of R approximately agrees with 

the experimental value if quarks have three colours, but is about a 

factor of 3 too small if quarks are colourless; 

the decay modes of the tau-lepton (T). The calculated branch-

ing ratio into hadronic and leptonic modes approximately agrees with 

experiment if quarks have three colours, but disagrees if quarks are 

colourless. This evidence is perhaps not really independent of the 

evidence from e+e  annihilation, since in the Glashow-Salam-Weinberg 



-3- 

model, the weak interaction responsible for r decay into hadrons is 

related to the electromagnetic interaction responsible for hadron pro-

duction in ee annihilation; 

the decay rate of the neutral pi-meson, ire.  The existence 

of three colours requires the calculated decay rate of the ,rO  to be 

increased by a factor of 9 (Ross 1981 and references therein) and this 

factor is just what is needed to bring theory and experiment into close 

agreement; 

the Drell-Yan cross-section, which is decreased by a factor 

of 1  i 	i f colour s included in the theory compared to the value without 

colour. This prediction is favoured but not confirmed by experiment. 

It is anticipated that QCD may provide a mechanism to confine 

quarks and other colour-carrying particles in hadrons permanently, 

although this remains to be demonstrated. Because confinement is 

only conjectured to be a consequence of QCD, it is not known whether 

the observation of free quarks would be compatible with QCD. Indeed, 

there is one experiment (Fairbank et al. 1977) in which fractional 

charge appears to have been seen, but this result awaits confirmation. 

The success of the symmetric quark model for baryon spectroscopy 

(so-called because each baryon consists of three quarks in a state 

totally symmetric in the combined space, spin and flavour degrees 

of freedom) and the non-observation of the extra mesons corresponding 

to fully exploiting the colour degree of freedom, suggest that one 

elevates to the level of a principle the notion that only colour-

singlet states exist in nature. 

An immediate consequence of the non-observation of free quarks 

is that their masses must be inferred indirectly from the properties 

of hadrons. Thus, the values of the quark masses depend on theory as 

well as observation. Furthermore, the value of the mass of a given 
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quark seems to depend on the nature of the indirect process one is 

looking at. In this thesis, quark masses are always to be understood 

as constituent quark masses, i.e. the masses of the quarks determined 

from the masses and magnetic moments of hadrons in a non-relativistic 

approximation. The constituent quark masses determined in different 

ways may vary by 100 MeV or more. Following Lipkin (1980), we can 

envision a picture of a hadron in which each constituent quark carries 

its own share of the coloured gluon field within the hadron and has 

an effective mass determined by the gluon field. This gives an 

effective mass for a quark which is roughly one-third of the mass 

of a baryon. In this picture, the mass of a quark, as measured in 

an experiment which transfers energy and momentum to the quark, 

depends on how much of the quark's associated gluon field recoils 

with it and contributes to its inertia. In deep inelastic electron 

scattering, the process is assumed to take place so rapidly that the 

field does not recoil with the quark and the quark effectively has 

zero mass. An isolated quark would carry all its gluon field with 

it when its momentum changed and would have a very high mass, in-

finite in models where quarks are permanently confined. In the pro-

cesses studied in baryon spectroscopy, the quark seems to carry with 

it a gluon field which consistently gives it its share of the mass 

of the baryon, about 350 MeV in the case of the up and down quarks. 

Aside from its many attractive features, both aesthetic and 

phenomenological, QCD has in addition the very important feature of 

being amenable to rigorous tests and therefore of being disproved: 

whilst it is a strongly-interacting field theory at large distances, 

at short distances the theory becomes asymptotically free .and pertur-

bative techniques can be applied. As in quantum electrodynamics 

(QED), the strong-interaction coupling constant, a 	can be generalised 
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to a strong-interaction running coupling strength, cL(Q2), where Q 

is the 4-momentum transfer of the process being studied. Because a 

quark has its colour screened by the creation of quark-antiquark pairs 

in a manner analogous to the screening of electric charge in QED, we 

might expect that ct(Q2) increases at large Q 2 . However, in QCD 

there is another effect which acts in the opposite direction. The gluon 

field of a quark itself carries colour, and can transport this colour 

away from the original quark, leaving it with a smaller net colour. 

In effect, the gluons cause the original point source of colour to be 

smeared Out in space. Therefore, in QCD, two effects (creation of 

quark-antiquark pairs and creation of gluons) act in opposing direc-

tions: the first to strengthen a 5 (Q2 ) at small distances and the 

second to weaken it. Which effect wins out depends on how many quark 

flavours there are. Provided the number of quark flavours with (mass)2  

<< Q2  is no greater than sixteen, the effect of the gluons wins out 

and the closer two quarks come together, the smaller will be the 

effective coupling strength. It is this effect which is loosely termed 

asymptotic freedom. 

Like QED, QCD depends on only one parameter, the so-called A-

par.ameter. Unlike QED, however, in which the fine-structure constant 

is dimensionless, A has the dimensions of energy. Empirically, A 

is not very well determined thus far, but probably lies in the range 

200 MeV - 500 MeV (Lichtenberg 1981 and references threin) Indeed, the 

value of A inferred from experimental data depends on which renor-

malisation scheme is used (Ross 1981). One reason why it is so dif-

ficult to determine A is that at high energy, where perturbation 

theory works best, ct 5 (Q2 ) is relatively insensitive to the value of 

A. A value of 400 MeV for A gives [cL (1 GeV) 2 ] = 0.76 and 

a[(10 GeV) 2 ] = 0.25. 	Even at 10 GeV, the QCD effective coupling 
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strength is considerably greater than the electromagnetic coupling 

strength, x(Q 2), which equals 0.0074 at Q 2  = ( 10 GeV) 2 . Despite 

asymptotic freedom, QCD perturbation theory converges more slowly 

than QED perturbation theory at all presently-accessible energies 

(Lichtenberg 1981). 

The behaviour of QCD at small Q 2  remains to this day an un-

solved problem. However, it has been conjectured that the increasing 

effective coupling strength makes the interaction so strong at small 

Q2  (corresponding to large separation, r) that quarks and gluons 

(and any other coloured states) are permanently confined to the 

interior of hadrons. The difficulties involved in obtaining pre-

dictions about the long-range behaviour of QCD have led to the in-

vestigation of a number of models which assume quark confinement 

a priori and which embody ideas inferred from QCD. 

It is the study of one such quark model, viz, that due to Isgur 

and Karl (Isgur 1980 and references therein) which forms the subject 

of this thesis, and-we-begin the thesis proper with a brief rsum 

of non-relativistic quark models and their relevance to the problem 

of quark confinement. 
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CHAPTER 1 

INTRODUCTION 

1.1 Confinement 

There is strong support from the study of QCD on a lattice (De 

Rtljula et al. 1975 and references therein) that the long-range con-

fining potential is spin- and flavour-independent and depends only 

on colour variables. In this approach, the quark fields are defined 

only at the sites of. a hypercubical lattice and the gauge fields are 

associated with the links between neighbouring sites. The gauge 

symmetries of the model consist of independent 	 colour rotations 

at each lattice site. The interaction energy between two distant 

static quarks can be written as an expansion in inverse powers of the 

quark-gluon coupling constant, a S9  which is conjectured to be large 

for large lattice spacing. The leading term in this expansion is pro-

portional to N, the number of lattice links connecting the quarks, 

so that the force between distant quarks is constant. Thus, the 

picture suggested by lattice gauge theories is that of a colour flux 

tube, outside of which the gluon fields are not allowed to propagate, 

connecting the two colour charges. This effect makes the dynamics 

essentially 1-dimensional. Since, in one dimension, the Green's 

function of Laplace's equation is proportional to the distance, one 

obtains a linear potential. This linear form of the long-range 

confining potential in mesons is well supported by data from 

charmonium studies. 

For baryons, where 3-body forces might be important, Dosch and 

Muller (1976) have shown, again by employing lattice methods, that the 

interquark potential is well approximated by a sum of 2-body potentials 

which grow linearly with distance and whose slope is roughly one-half 

of that in mesons. Thus, in baryons, the picture suggested by lattice 
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gauge theories is that of three flux tubes joining the quarks. Gromes 

and Stamatescu (1979) suggest an alternative picture, however. They 

propose that the gluon fields are confined to the plane defined by the 

three quarks in the baryon. This flux surface makes the dynamics 

essentially 2-dimensional, and since, in two dimensions, the Green's 

function of Laplace's equation varies logarithmically with the distance, 

a logarithmic potential results. 

We shall have very little to say in this thesis about the precise 

functional form of the long-range confining potential. Following 

Isgur (1980), we mention briefly a simple model for confinement based 

on QCD. We consider a non-relativistic, colour-symmetric, 2-body 

potential of the form: 

	

V 
qq 12 	 conf. 12 Cr ) 	= 	-v 	(r ) 	F 2 	 (l.la) 

- - 

	

V —(r ) 	= 	+V 	(r ) F(2)* 	 (1. lb) 

	

qq 12 	 conf. 12 - 	- 

	

V---(r12) 	= 	_Vconf Cr12) 
F ]) * .  F(2)* 	 (1. 1c),  

where= 	- .2' and 
F(1),  c = 1,2, ..., 8 are the generators -El 2 	11

of SU(3) 
colour,  to be understood as acting on the colour wavefunction 

of the th  quark or antiquark. V coflf(r) is the effective long-range 

colour confinement potential. We stress that these, potentials depend 

only on colour variables and not on flavour degrees of freedom. This 

implies that eigenstates of the confining potential alone (before the 

introduction of spin-dependent effects) have flavour-symmetry-breaking 

only via the explicit appearance of the quark masses in the kinetic 

energy term'öf the' Hainiltonian. 

The motivation for the potentials in equations (l.la) - (l.lc) 

rests in the fact that a cluster of quarks and antiquarks in a given 

SU(3) 	representation will be confined to another cluster of colour 



quarks and antiquarks in the conjugate representation with a strength 

proportional to the eigenvalue of the colour quadratic Casimir 

operator acting on the given representation (Greenberg 1978' and 

references therein). In particular, this solves the problem of can-

celling out the long-range potential between separated hadrons, since 

the eigenvalue of the colour quadratic Casimir operator vanishes for 

colour-singlet states. In terms of our picture of coloured flux 

lines, we view these as quantised, so that all the coloured flux 

emanating from a given coloured particle ends on another coloured 

particle, leaving no residual long-range interaction between separated 

hadrons (colour-singlet states). 

By employing the colour-singlet wavefunctions: 

Iii> 	= 	_!_. 5czqi 	i 	 (1.2a)q a  meson 

	

Iiik> 	 _L. ccxYqi i k 

	

baryon = 	
q8 	, 	 (1.2b) 

where i, j, k label the quarks/antiquarks and a, , y are colour 

indices, we can easily demonstrate that the effective (i.e. colour-

averaged) quark-antiquark and quark-quark potentials appropriate to 

a meson or baryon, respectively, are: 

Vmeson() = 	V 	(r..) ij  (1. 3a) 

	

- 	 3 conf. ij 
qq 

baryon 	= 	V 	(r ) 	 (1.3b) V 
qq 	3 1 

(r..) 	3 conf. ij 

so that baryon and meson bound states are governed by related effective 

potentials. Because a quark in a baryon transforms as 3 of SU(3) 
colour 

the remaining diquark necessarily transforms as 3 of SU(3) 	, in 
colour 

order that the baryon remain a colour-singlet state. However, the 

potentials in equations (l.la) - (1.1c) are sensitive only to the net 
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colour of an object, so the diquark effectively serves as an antiquark. 

It follows that the effective interaction per quark in the diquark is 

just half the quark-antiquark interaction, which is just the result in 

equations (1.3a) - (1.3b). 

1.2 	Short-range forces 

While the potentials in equations (l.la) - (l.lc) express the long-

range confinement characteristics of QCD, they are, of course, neither 

expected nor observed to be the whole story. With only the long-range 

confining potential, which is both spin- and flavour-independent, one 

would observe such degeneracies as i - N and p - ii. 	Splittings of 

this type have long been attributed in quark models to the existence of 

spin- and flavour-dependent, short-range interactions and it is the form 

of these interactions which we-now examine. 

Following De Riijula et al. (1975), we assume that the effective 

short-range quark-quark interaction arises from one-gluon-exchange, 

which is represented by the diagram in Figure 1. Whilst the associated 

short-range potential, together with its relativistic corrections, can 

be inferred from a non-relativistic reduction of the Bethe-Saltpeter 

equation (Cronies 1980 and references therein), a much simpler approach 

provides us with the leading (Coulombic) contribution to the short-range 

potential (Lichtenberg 1981). Neglecting spin and the effects of 

identical particles, the scattering amplitude, A 	., for the process 
q qJ 

illustrated in Figure 1 is given by: 

	

A . . 	= 

	

qlq.] 	- 	- 	2ii2Q2  
(1.4) 

We obtain the leading contribution to the corresponding short-range 



ql 	 q' 

qJ 	 qi 

Figure 1 	One - gtuon - exchange 
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potential by taking the Fourier transform of A 	. with respect to 
q q3  

Q, having first replaced the 4-momentum transfer, Q, by the 3-momentum 

transfer Q. This latter replacement is a non-relativistic approximation 

giving: 

	

F(1).F(3) 	 CL (Q 2 ) 

2ii 

	

v short-range  (rij) 	= - 	fd3 	
- 

Q2 . (

1.5) 

The problem with equation (1.5) is that for small Q2, 	
(2) 

varies considerably with Q 2 . 	However, we ignore the difficulty that 

varies rapidly in an important region of integration and replace 

CL  (2) b some approriate average value a, which can be taken out-s - s 

side the integral. We then obtain: 

V 	 i 

	

shortrange(rij) 	
= 	

(! ) 	( 1.6) 

and recalling that in a baryon (c.f. equation (1.3b)): 

= 	- 	 (1.7) 

	

colour-average 	3 	21  

we deduce that the leading, colour-averaged, contribution to the short-

range interaction between two quarks in a baryon is: 

2cL 

	

.. 	
S 	

(1.8) = 	3r.. 

	

<Vshort_range (r ) > colour-average 
	ij 

Had we performed a non-relativistic reduction of the Bethe-

Saltpeter equation, we would have deduced that 

2CL 
- 	 5 <V 

	

short-range ij 	 -- T 	' 	( 19) 
colour-average 

where the Fermi-Breit interaction, S 	 is given by (De Rtijula et al. 

1975 and references therein): 

DT 

	

S.. - ---- 	= 	H?? + H. + H. + H? + H. , 	(1.10) 
13 	r.. 	13 	13 	13 	 13 
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and the relativistic corrections on the RHS of equation (1.10) are: 

	

1100 	1 	
( r 

13 

UJ + 	

r13 	
(orbit-orbit term) 	(l.11a) 

2 

	

13 	m . 
1 
 rn . 
3 	

.. 	. . 

Hi?. = - 	6 3 (r. 	+ 	 (Darwin term) 	(l.11b) 

	

13 	2 	-13 
M. 2 	rn. 2  

1 	3 

	

H. 	
8ff 

6 3 (r..)(s.s.) 	 (contact term) 	(l.11c) 

	

13 	3m 1  .m 3  . 	-13 -1 —3 

0  

= - 2r.. 	
{j 	 - 	--(!. 	xL.).S. 

+ mu. 	
x)S. - ( r... XP ). S .l}(s 0it 	(1.11d) 

T 	1 	.1 

	

H.. 	=- 	 .[3(s•r .)(s .r. .) - (s. s.)r. . I 

	

13 	m.m. 	r..5 	-1 -13 —3 -13 	-1-3 -13 

(tensor term) 	(l.11e) 

In equations (1.11a) - (1.11e), rn., P 1  and s 	 represent the 

mass, momentum and spin of the i quark. We stress that-we have in-

cluded in equation (1.10) only relativistic corrections of 0( /2): 

higher-order relativistic corrections have been neglected. (Note that, 

because we work throughout this thesis -with natural units, wherein 

= c = 1, the factors of 11 and c in equations (1.11a) - (1.11e) 

have been suppressed.] 

Notice that the orbit-orbit and Darwin terms, in common with the 

leading Coulomb term, are spin-independent. Such terms are difficult 

to distinguish from the (completely-empirical) spin-independent con-

finement potential, Vcoflf  (r 1 ) and so, following Isgur (1980), we 

choose to subsume these terms, together with the long-range behaviour 

of the confining potential, under the one expression, Vf(r). 

The spin-orbit terms have been discussed extensively by several authors 

(Reinders 1980 and references therein). However, underlying the model 
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 of Isgur and Karl (Isgur 1980 and references therein) is the notion that 

spin-orbit effects are relatively unimportant; accordingly, we choose 

not to include them in our considerations. By way of contrast, we shall 

have a great deal to say in this thesis about the contact and tensor 

terms. 

1.3 The harmonic oscillator quark model 

In the main body of this thesis, we shall be exclusively concerned 

with studying non-strange baryons within the context of the specific model 

due to Isgur and Karl (Isgur 1980 and references therein), so that we 

shall not consider the strange, charmed or bottom quarks in the chapters 

which follow. We shall, however, include the strange quark in the dis-

cussion which forms the remainder of this chapter. 

We begin this section by briefly reviewing the harmonic oscillator 

quark model (Hey 1980 and references therein). The basic assumptions of 

this model are: 

(a) quark dynamics in baryons is non-relativistic. This enables 

us to extract the centre-of-mass (CM) motion by making the canonical 

change of variables from the individual quark coordinates, r, to the 

coordinates: 

1 R 	= 	-(r + 12  + E3) 	 (1. 12a) 

1 = - (r - 	 (I. 12b) 

1 
A = - (r +- 2r3) 	 (1. 120 

in the case of equal-mass quarks. We remark that the internal coor-

dinates P and A form a basis for the 2-dimensional mixed irre-

ducible representation of the permutation group on three objects, S 3 . 

(For an excellent review of S 3 . see Lichtenberg 1970). 
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(b) the quark-binding forces may be approximated by 2-body 

harmonic interactions. This approximation is particularly convenient 

because the p- and A-modes decouple and the non-relativistic 3-body 

problem can be solved exactly. In fact, as we shall demonstrate ex- 

plicitly in this thesis, the calculations can be done group-theoretically. 

The resulting zeroth-order Hamiltonian, H0 , may be written: 

	

H= 	E(m. + 	) + 	E 	13 
Kr. 2 	 (1. 13a) 

	

0 	 . 1 
1 	 2m. 	i<j 

1 

2 + 
	+ !2 + A2 ) 	(1. 13b) 

	

0 	
-- i.e. H 	

= 	-i)" 	
m + + 2(3m) 	2m 	2m 

for the case of equal-mass quarks. K is a measure of the oscillator 

strength and 	= m, 	= mA. 	We may safely drop the first term 

on the BBS of equation (1.13b) as it simply describes the translational 

motion of the 3-body system as a whole. 

The construction of the allowed states of the harmonic oscillator 

quark model is a standard problem. The assumption that quarks are 

spin 1 
2 objects obeying Fermi statistics, together with the hypothesis 

that all observed states are colour-singlet states, leads to 3-quark 

state vectors of the form: 

I 3q> 	= 	If lavour>lspin>Ispace>Icolour> . 	 (1.14) 

	

___ 	______________iL 

antisynimetric 	symmetric 	antisymmetric 

For the three quark flavours u, d and s, neglecting quark 

mass differences, we must construct overall symmetric 

SU(6) 	 . flavourxspin @ 0(3) wavefunctions. This overall symmetry requires 

that the SU(6)f1 avourxspin and space states have matching permutation 

symmetries, so that the allowed 	
flavourxspin 0 0(3) state is: 
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' '' 	 T' total 	
= 	E 'Y[SU(6)flavourxspjn] )( space 	 (1.15a)  

= FMO 	I ® EP (D 	
(1. 15b) 

= 56 x  symmetric 	70 x  mixed $ 20 x  antisymmetric, 

(l.15c) 

where the Young tableaux in equation (1.15b) give the permutation sym-

metry and, for the SU(6) flavourxspin states, also label the irreducible 

representations. (For an extensive review of Young tableaux and their 

uses in the context of unitary groups, see Lichtenberg 1970). 

The use of SU(6) 
flavourxspin 0 0(3) for counting states and 

labelling supermultiplets is convenient on a phenomenological level. 

However, since SU(6) 
flavourxspin is broken by quark mass differences, 

we need not take states with a spatial wavefunction belonging to a 

single irreducible representation of the permutation group on three 

objects, S 3 , as basis states in an analysis of baryons. Isgur and 

Karl (Isgur 1980 and references therein) emphasise this point in their 

study of the strange baryons. Use of broken SU(6) 	 . with flavourxspin 

the generalised Pauli principle is equivalent to treating quarks of 

different mass as distinguishable; however, for a given calculation, 

one approach may be simpler than the other. 

We display in Figure 2 the first five levels of the spectrum of 

allowed SU(6) flavourxspin 0 0(3) supermultiplets in the harmonic 

oscillator quark model. The masses are labelled by the excitation 

number, N, which is just the total number of excitations of the p -

and X-ocillators, and the supermultiplets by their SU(6) - 	 flavourxspin 

representation and corresponding orbital angular momentum and parity, 

L1' . The assignment of the 0(3) auantum numbers. L. to the various 

SIJ(6) multiplets is arrived at from a study of the flavourxspin 
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Figure 2 	Spectrum of allowed 

SU(6) 	 @ 0(3) 
flcivourx spin 

supermult i plets for 

N =0,1,23 and 4 
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permutation symmetry of the spatial wavefunctions: in general, 

P  = (1) N 

We remark that the degeneracy of the five SU(6) 	 0 0(3) flavourxspin 

supermultiplets at the N = 2 level, the eight SU(6) 	 . 0 0(3) flavourxspin 

supermultiplets at the N = 3 level and the seventeen 

sU(6) f lavourx . 0 0(3) supermultiplets at the N = 4 level is a result 

specific to the harmonic oscillator potential. It reflects the dynamical 

symmetry of the harmonic oscillator, about which we shall have much to 

say in subsequent chapters of this thesis. 

We can subdivide the harmonic oscillator quark model into two types 

of quark model: algebraic and explicit: 

(a) 	algebraic quark models 

In such models, detailed dynamical assumptions are avoided as far 

as possible. Instead, such models rely on symmetries to parameterise 

the data in terms of relatively few, unknown reduced matrix elements 

which serve as independent parameters. It is within the context of 

such a model that Dalitz and collaborators performed their 

SU(6) 
flavourXspin  mass-operator analyses (Dalitz and Horgan 1973, 

Horgan 1974, 1976a, Dalitz et al. 1977a). These analyses are based on 

non-relativistic quark dynamics, and the assumption that the observed 

low-lying supermultiplets are consistent with the SU(6) 	 0 0(3) flavourxspin 

structure of the harmonic oscillator quark model. Mass splittings are 

accounted for in terms of symmetry-breaking forces which are assumed 

to be of a 2-body nature. The effect of such terms is calculated in 

first-order perturbation theory and can be represented by matrix elements 

of the form: 

M 	= 	Z <cLIM.. 	 (1.16) 
1 CJ 
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where la> and 10> are states with a common value of N and i,j 

label the quarks. 	Since these states are totally symmetric in the 

quark variables, 	depends only on the quantum numbers of the sub- 

system comprising quarks 1 and 2. This subsystem can be classified 

under 	
flavourxspin  as 21 ( 	I 	symmetric) or 15 ( 

antisymmetric) and the full 2-body mass operator, M, can be written: 

M 	= 	Z v(P 2)T, 	 (1.17) 

where V.(p 2) is a scalar potential and i describes the properties 

of the mass operator, T. The different mass operators are classified 

as tensors under SU(6) flavourxspin  0 0(3), and they must couple to at 

least one of the following SU(6) 	 . outer products: flavourxspiri 

	

0 21 = 	 (1. 18a) 

15015 	= 	 (1.l8b) 

The SU(3) flavour 	spin 

	

0 SU(2) 	subgroup reductions of the 

SU(6) flavourxspin irreducible representations appearing on the RHS of 

equations (1.18a) - (1.18b) define all the possible mass-operator trans-

formation properties. In addition, permissible mass operators must 

conserve isospin and hypercharge, i.e. they must have I = Y = 0, so 

the possible mass operators are limited to the 1 ,  8 or 27 irre-

ducible representations of SU(3) flavour . Dalitz and collaborators 

further restrict the set of permissible operators by considering 

only those which transform under SU(3) 
flavour  as 1 or 8. This - 	 - 

assumption of "octet dominance" is motivated by the mass formula for 

the N = 0 [56, 0+]  supermultiplet, which is very successful. Beyond 

this general framework, them authors make an important assumption by 

retaining spin-orbit forces but neglecting spin-tensor forces. Throughout 
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this thesis, we shall repeatedly call this assumption into question. 

To constrain the model still further, Dalitz et al. make the additional 

dynamical assumption that the confining forces may be approximated by 

2-body harmonic oscillator potentials. This has the consequence that: 

the wavefunctions separate: 

''(1 ,  .1) 	= 	a)x() 	; 	 ( 1.19) 

for the same value of N, parameters of different 

SU(6) flavourxspin 0 0(3) supermultiplets are related; 

for different values of N, the reduced matrix elements are 

related. 

We shall demonstrate in this thesis that property (b) reflects the 

dynamical symmetry of the harmonic oscillator and that, as conjectured 

by Horgan (1976a), property (c) derives from the existence of a spectrum-

generating group for the harmonic oscillator. 

Despite the very explicit framework underlying the calculations of 

Dalitz et al. (Horgan 1976a and references therein), the actual fitting 

procedure for the resonance masses proved very difficult to systematise 

(Dalitz et al. 1977a). Mixing within, and between, 

SUM flavourxspin 00(3) supermultiplets allows an enormous number of 

possible assignments, with the result that whilst the mass formulae 

derived by Dalitz and collaborators are in good agreement with experiment, 

mixing angles and decay rates have been predicted which find less happy 

	

agreement with the experimental data. 	 - 

(b) explicit quark models 

The phenomenological analysis of Dalitz and collaborators is but a 

single step towards a definitive theory. The next step, using guesses 

about the form of the interactions based on QCD, has already allowed 
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more specific predictions (with fewer attendant parameters) to be made. 

Such explicit quark models assume: 

the long-range confining interaction is spin- and flavour-

independent and leads to SU(6) 
flavourxspin 0 0(3) hadron supermultiplets; 

SU(3)flavor  - breaking occurs only via explicit quark mass 

differences; 

asymptotic freedom to motivate a short-range, spin- and 

flavour-dependent force arising from the non-relativistic reduction of 

one-gluon-exchange. This is the essential new feature and gives rise 

to the standard Fermi-Breit interaction in equations (1.9), (1.10) and 

(l.11a) - (l.11e). 	For mesons, the colour factor of C- -) in equation 

(1.9) must be replaced by 
(- 

The recent revival of the construction industry for explicit, non-

relativistic quark models owes its origin to the pioneering work of 

De Riijula et al. (1975). These authors assume the Hamiltonian for the 

three quarks in a baryon is of the form: 

2ct 
H 	= 	L(r1 , r2, 1.3) + E(m. + 	- 	Z S 	, 	(1.20) 

1 	 1 	 1<] 

where L(r 1 , r2 , r3) describes the long-range interaction responsible 

for the binding of the quarks within the baryon and S 	is as inij 

equation (1.10). The original application of this Hamiltonian held 

within it no assumptions about the explicit form of the confining forces 

giving rise to the term L(r 1 , r2 , r3). the calculations were concerned 

only with mass splittings. More precisely, De Riju1a et al. wrote: 

H 	= 	H + V 	 (1.21) 

where: 

H 	= 	L (E.i' 1.2'  .E.3 + Z (m + u 	2m 	' 	 (1.22) 0 
1 	 U 

V is everything else, and mu  denotes the mass of the "Up" quark. 
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The eigenstates of H are the degenerate SU(6) 	 0 0(3) o 	 flavourxspin 

supermultiplets and these serve as basis .states for first-order per-

turbation theory in V, which introduces splittings between the super-

multiplets. Lacking detailed information about the zeroth-order eigen-

states, these authors could only parametrise the expectation values of 

V and fit to observed particle masses. Because there were fewer para- 

meters than there were par 

be deduced. Indeed, given 

menology obtained by these 

multiplet was a resounding 

formula: 

icle masses, a number of mass formulae could 

the simplicity of their model, the pheno-

authors for the N = 0 [56, 0] super-

success. Both the Gell-Mann-Okubo mass 

+ 2M... 	= 	3MA + ME 	 (1.23) 

and the equal-spacing rule for the decuplet: 

- M1 	= 	- M.. 	= 	M... - M 	 (1.24) 

were successfully recovered. These authors also predicted the 

SU(6) 	 . relation: flavourxspin 

- M1 	= 	M., - M... , 	 (1.25) 

together with a unified mechanism for the (A-N) and (E-A) mass dif-

ferences. By means of the relation: 

m 
ME - MA = 4(1 - —)(M - MN) , 	 (1.26) 

5 

they found the ratio, - , of constituent quark masses to be approxi-

mately 0.6. This ratio, combined with the value of the proton magnetic 

moment, P and the relation: 

M 
m 	= u 	

.._2. 	 (1.27) 
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where M denotes the proton mass, gave a value of approximately 330 

MeV for the "up"-quark mass, mu. 

The phenomenology of the N = 1 [70, 1] supermultiplet was some-

what confused, however, and the whole question of excited states was 

taken up by many authors including Reinders (1978), Gromes and Stamatescu 

(1976, 1979) and Isgur and Karl (1977, 1978a, 1978b, 1979a). Reinders 

(1978), in common with De Rüjula et al. (1975), did not specify the form 

of the confining potential, but worked in the non-relativistic 3-quark 

shell model with SU(6) 	 . flavourxspin ® 0(3) symmetry, as, formulated by 

Horgan and Dalitz (1973), using, in particular, the wavefunctions cal-

culated by these authors without the specific radial dependence deter-

mined by their choice of an harmonic oscillator potential as the con-

fining potential. The lack of detailed information about the radial 

dependence of the wavefunctions forced Reinders to parametrise the 

expectation values of the perturbation, V, and to fit to -- the observed 

particle spectrum. However, unlike De Riijula et al. (1975),' who treated 

the SU(3) flavour-breaking only to first-order in the mass difference of 

the strange and non-strange quarks, Reinders treated the SU(3) 	- 
flavour 

breaking in an exact way. By way of contrast, both Gromes and 

Stamatescu (1976, 1979) and Isgur and Karl (1977, 1978a, 1978b, 1979a) 

proposed detailed models for L(r 1 , E2 , E3) in terms of 2-body inter-

quark potentials. Gromes and Stamatescu (1976) employed a linear quark 

confining potential using harmonic-oscillator wavefunctions to calculate 

matrix elements and reproduce the non-strange P-wave baryon spectrum. 

The most detailed and phenomenologically successful study of both strange 

and non-strange baryons belongs to Isgur and Karl (Isgur 1980 and 

references therein), however, and it is to a more detailed discussion of 

their model that we now turn. 
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1.4 The Isgur-Karl model 

Isgur and Karl (1977, 1978a, 1978b, l979a, 1979b) assume the baryon 

Hamiltonian is of the form 

where 

H 	= 	E(m. +_1/2m) + E 	V(r..) + E H1'?', 	(1.28) 

V(r 13  ..) 	= 	V 	(r..) 	 (1.29) 3 	13 conf.  

= 3m.m. 	 + ;• 	 - 

J 1i 
	 (1.30) 

and V 0f  (r1 ) is the spin- and flavour-independent confining poten-

tial appearing in equations (l.la) - (l.lc) and (1.3a) - (1.3b). 

Isgur and Karl choose to do perturbation theory around the harmonic 

oscillator Hamiltonian, H 0 , in equation (1.13a). These authors set: 

V(r..) 	= 	Kr?. + U(r..) 
13 	 -13 	13 ' 

(1.31) 

where U(r..) is an unknown scalar potential which is assumed to - in-

clude a short-range, attractive (Coulombic) potential and any deviation 

of the long-range part of the confining potential from the harmonic 

oscillator form. It is the specific inclusion of the full spin-spin 

interaction, H hyp ,(i.e. both contact and tensor terms) and the 

deliberate neglect of spin-orbit forces in the Fermi-Breit interaction 

in equation (1.10) which is the key to the phenomenological success 

enjoyed by the Isgur-Karl model. 

We describe in this section some of the successful applications 

of the Isgur-Karl model relevant to the N = 0 and N = 1 levels of 

the harmonic oscillator quark model, reserving for later chapters of 

this thesis a detailed discussion of the N = 2 and N = 3 levels. 

Although in later chapters we shall concern ourselves only with 



-23- 

non-strange baryon resonances, we review both the strange and non-strange 

sectors of the N = 0 and N = 1 levels in the remainder of this 

section. It is convenient to distinguish the cases S = 0 and S = -1, 

where S denotes strangeness, since these two cases contain some quite 

different physical effects. The cases S = -2 and S = -3 follow 

trivially from the cases S = -1 and S = 0, respectively. 

(a) S = 0 sector 

In this sector, all three quarks may be taken to have a common mass, 

m, and the relevant zeroth-order Hamiltonian is: 

H 	= 	3m+_+—+(102+A2), 	 (1.32) 

where the symbols have the same meaning as in equation (1.13b), and we 

have neglected a term representing the kinetic energy of translation of 

the centre-of-mass of the system. It is clear from equation (1.32) that, 

in the harmonic oscillator quark model, the 3-quark system is equivalent, 

after elimination of the centre-of-mass motion, to two independent 3-

dimensional harmonic oscillators, labelled by p and A, respectively. 

The ground-state baryons correspond to the p-  and A-oscillators simul-

taneously occupying their respective ground states, so that the total 

orbital angular momentum of the system is zero. In the first-excited 

level of the harmonic oscillator quark model, there is a single quantum 

of excitation localised either in the relative motion of quarks 1 and 2 

(p-type excitation) or in the relative motion of quark 3 about the 

centre-of-mass of quarks 1 and 2 (A-type excitatior. The total orbital 

angular momentum L = 1 for both these possibilities. 	In the S = 0 

sector, the p- and A-oscillators possess the common frequency: 

I 
2 

= 	
W 	

3K 
A 	W 	= 	(-;--) , 	 ( 1.33) WP 
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so that there are two degenerate orbital states in the first-excited 

level for each value of L , z 

angular momentum (= 1, 0, -1). 

the z-component of the total orbital 

This degeneracy arises because the 

Hamiltonian of a system of three equal-mass particles, with identical 

forces acting between all pairs of particles, is invariant under the 

permutation group on three objects, S 3 . 

For N = 0 and N = 1, where N, the principal quantum number, 

equals the total number of p-type and A-type excitations, the eigen-

states of H0  may be chosen to be (Isgur 1980): 

N = 0: 	 = 	a
3 

exp[— ct2 (p 2 +X 2 )] 	 (1.34) 00 	 IT3/2 

____ N = 1: 	
' N 
P
11 	= - 3/2 (P +iP)exP[- ct2 (P 2 +X 2 )] 	 (1.35a) 

	

7r 	x

M 	 _ 
(A +iA )exp[— ct2 (p 2+A 2 )] 

	

 3/2 	x 	y 	 , 	(1.35b) 
•11• 

where a 4  = 3Km. The notation for the spatial wavefunctions is LL 

where L is the total orbital angular momentum and L z its zcom 

ponent, and P ( S(syimnetric), A (antisymmetric), M (mixed, of type p) 

or M X (mixed, of type A)) specifies the symmetry of the wavefunction 

under the permutation group, S 3 . Note that, in equations (1.34) and 

(1.35a) - (1.35b), we display only the highest state of a given orbital 

angular momentum multiplet. We postpone until the next chapter any 

discussion of how one classifies and constructs these wavefunctions. 

(b) S = -1 sector 

In this sector, it is conventional to select the more massive 

strange quark as the third quark, so that m1  = m2  = m and m3  = In 

The zeroth-order Hamiltonian is: 

2 	2 

H0  = 	2m + m + 	+ 	+ . 	( p 2 -i-A 2) , 	 ( 1.36) 
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wherep =m A and m is defined to be: 

3mm 
S 

= 	2m+m 	• 	 (1.37) 
S 

It is clear that the zeroth-order Hamiltonian has lost the permuta-

tion group, S 3 , as its invariance group, since the quarks now have 

different masses. As a result, the two orbital states which were 

degenerate in the S = 0 sector are now split. It is no longer equi-

valent, energetically, whether the P-wave excitation is localised in 

the relative motion of the non-strange pair or in the motion of the 

strange quark relative to the non-strange pair. While this result 

holds for a general pair-potential between quarks, it is particularly 

easy to verify within the harmonic oscillator quark model (Isgur Sand 

Karl 1978a). The p- and A-oscillators now have different frequencies: 

W 	 w 	= 	() 	 (1.38a) 

WA 	
= 	() 2 	

(1.38b) 
MX 

so that: 
I 

2x+l 2 

U) - U) 	= 	w[l - ( 	),I P 	A 
(1.39) 

where x = -- 0.6. m 
5 

The eigenstates of the zeroth-order Hamiltonian are quite distinct 

from those of the S = 0 sector because the degeneracy between the 

p-  and . X-modes has been broken. 	For N = 0 and N = 1, the eigen- 

states may be taken to be (Isgur 1980): 

3/2 3/2 

N = 0: 	 = 	p 	
3/2 	exp(- 2 p 2  - a2 A 2 )vl  

7r 	 P_ 	2

5/2 3/2 

N = l: 	 - 	
3/2 	x + iPy)eXP(a2) 

3/2 5/2 

IT 
3/2 

(1.40) 

(1. 41a) 

(l.41b) 
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where, once again, we display explicitly only the highest state of an 

orbital angular momentum multiplet, and where: 

a4 	a4=  Am 
P 

=3Km. 

(1. 42a) 

(1.4 2b) 

A simple picture of S = -1 baryons emerges once it is realised 

that, since the strange-quark mass differs from the non-strange-quark mass, 

it is no longer necessary to construct baryon wavefunctions which are 

totally antisymxnetric in the combined space, spin, flavour and colour 

degrees of freedom. In this situation, one is free to single out the 

strange quark as quark 3 and only the symmetry of the states under 

1-(--* 2 interchange remains relevant. With this in mind, Isgur and Karl 

(1978b, 1979a) introduce the isospin wavefunctions: 

= 	(ud + du)s 	 (1.43a) 
/1 

OA 	
= 	-i- (ud - du)s 	 (1.43b) 

vi 

appropriate to the description of the E °  and A states (by isospin 

invariance, these wavefunctions are sufficient to describe the whole 

S = -1 sector). Since the spatial wavefunctions are either symmetric 

or antisymmetric under the interchange of quarks 1 and 2, one can 

enlist the aid of the usual spin and colour wavefunctions to construct 

states (the so-called "uds basis states") which are antisymmetric under 

1 ++ 2 interchange. 

Most of the machinery introduced by Isgur and Karl to describe the 

excited baryons does not come into play in their study of the ground-

state (N = 0) baryons (Isgur and Karl 1979b). The masses of the 

N(940) and (1232) states are used as input to fix the two completely-

free parameters of the model at the N = 0 level: the unperturbed 
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(i.e. in the absence of the hyperfine interaction) position, E 0 , of 

the non-strange sector and an overall strength parameter, D, for the 

hyperfine interaction, where D is defined to be: 

4c cz 3  
D 	
=s 	

(1.44) 
3,/ m2 

Isgur and Karl take into account second-order effects in the hyper-

fine interaction by calculating the mixing between the ground-state 

baryons and the positive-parity excited states associated with the 

N = 2 level of the harmonic oscillator quark model, using the masses 

and compositions of 	these excited states.as  determined from their 

study of the N = 2 level (Isgur and Karl 1979a). As a result, 

E0 > 2 (MN + MA). 	The agreement with experiment found by Isgur and 

Karl for the N = 0 baryons is such that the discrepancies are prac-

tically at the level of electromagnetic corrections. That the agree-

ment is so good is undoubtedly because some of the inadequacies of the 

model are hidden in the fitting of the parameters of the model; 

nonetheless, one can rest assured that the model is describing several 

real effects. In particular, second-order effects play a significant 

rle in determining the N = 0 baryon spectrum. The nave (E-A) mass 

difference (c.f. equation (1.26)): 

- MA = 4(1 - 	(M - MN) 	 (1.45) 
S 

obtained by De Rcijula et al. (1975), whilst being numerically correct, 

is, in fact, modified by two competing effects. Wavefunction dis-

tortion due to the attendant heavier mass of the strange quark compared 

to the non-strange-quark mass serves to bring the strange quark in 

m closer to the other two quarks and tends to compensate for x = - < 1. 

This effect reduces ME - MA by approximately 30 MeV. (Isgur and Karl 
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1979b). On the other hand, the A is much more strongly mixed with N = 2 

states than is the E and this tends to open up the (E-A) mass gap. 

These two contributions in practice nearly cancel so that the naive 

result is numerically accurate. 

In the non-strange sector of the N = 1 level, the orbital wave-

functions 	and 	(m = -1, 0, 1) are combined with the spin and 

isospin wavefunctions of the three quarks according to the prescriptions 

of the symmetric quark model to give the well-known S = N, S = - N 

and S = 	A states; the spin and orbital angular momentum are then 

coupled to give states of fixed total angular momentum, J. 

The contact interaction: 

Hc0rtact 	- 	 1 	(s. s.)6 3 (r. .) 	 (1.46) - 	9 	s . . 
1<3 

 m 13  .m. -1 —J 	-13 

elevates the S = N states and the S = A states relative to the 

S = -T N states. This pattern of mass shifts, due to the contact inter- 
3 action, occurs because the wavefunctions of both the S = N states 

and the S = t states are sums of products of flavour and spin factors 

which are symmetric and mixed: symmetric spin and mixed flavour for the 

3 	 1 S = N states and mixed spin and symmetric flavour for the S = -. t 

states, so that, in both cases, the A-component of the spatial wavefunction, 

which is symmetric in the coordinates of quarks 1 and 2, is multiplied 

by wavefunctions symmetric in both the flavour and spin of quarks 1 and 

2. Thus, the contact interaction acts with probabilityand, when it 

acts, the pair of quarks 1 and 2 has spin 1. Since, in the non-strange 

sector, both the form of the contact interaction and the 	- 

SU(6) 
f lavourx spin 8 0(3) baryon wavefunctions are symmetric, the matrix 

elements of the contact interaction in equation (1.46) are proportional 

to the corresponding matrix elements of (2 1 .s 2). Therefore, the contact 

interaction shifts both the S = N states and the S A states by 
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the same amount. For the S = 	states, both the flavour and spin 

wavefunctions are mixed, and the A-component of the spatial wavefunction 

is multiplied by SU(6) f1avourX spin wavefunctions which are both sym-  

metric or both antisymmetric in quarks 1 and 2 with equal probability. 

Thus, as far as the contact interaction, which still acts with proba-

bility 1, is concerned, it is equally likely that the pair of quarks 

1 and 2 has spin 0 or spin 1: the contact interaction therefore shifts 

the S = 1 N states by a different amount from the other states. These 

considerations, together with the usual calculation of matrix elements 

of 	for spin 0 and spin 1 states, via the identity: 

s *s =I 	+.E2 )2  - 	- ! I 
	

(1.47) 

lead to the result that the S = N and S = A states are raised, and 

the S = N states are lowered, by the same absolute amount (Isgur and 

Karl 1977). This effect is clearly visible amongst the non-strange 

members of the N = 1 [70, 1] supermultiplet: the S = states 

N(l675).., N(1700). and N(16704 and the S = 	states 

(l655)- 	and 	(1685).- lie about 150 MeV above the S = 	states 

N(1530)-- and N(1520) 7  

The tensor part of the Fermi-Breit interaction: 

Hts0r =.. m.m. • 

	

E . 
	 - 

1<3 1 3 	
(1.48) 

which is absent in the N = 0 [56, 0] supermultiplet, enters here 

for the quark pairs in a relative L = 1 state, and produces signi-

ficant mixings between S = 3 	 1 
and S = -, but only small mass shifts. 

The value of a found from the (A-N) mass difference in the N = 0 

[56, 01 supermultiplet normalises both of these effects absolutely. 

The agreement with experiment, particularly for the mixings which were 

found from decay data, is striking (Isgur and Karl 1977, Cashmore et al. 
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1975). For N(1520)4 , the mixing angle, 0, between S = and S = 

is 6.3°  versus 100  experimentally, and for N(1530)-. ,the mixing angle 

is -31.7 versus -32 experimentally, where 0 is defined by: 

NJ> 	= 	sin 0S= 4,> + cosOIS= .., J> 
	

(1.49) 

In the strangeness S = -1 sector of the N = 1 [70, 1] super-

multiplet, Isgur and Karl (1978a) were able to account for the experi-

mental observation that the pair of states A f (1830) and E 	(1765) 

is inverted relative to the ground-state pair 

 
1+

(11l5) and 4(1190). 

These authors interpret this observation as a direct consequence of 

the splitting of the p- and A-normal modes in the strangeness 

S = -1 sector. Both negative-parity states have J P = 5  .- and are 

"fully stretched" in the coupling of the orbital angular momentum 

L = 1 to the total quark spin S = . The spin wavefunction of both 

the 4 and the 4 is totally symmetric under permutations of the 

5 	 i three quarks. The A- , being an sospin-singlet state, has the 

isospin wavefunction: 

= -i- (ud - du)s 
/i 

(1.50) 

which is antisymmetric under the interchange of the non-strange quarks 

and therefore must correspond to the p-orbitally excited state which 

is also antisymmetric under interchange of the non-strange quarks. 

Similar reasoning leads one to deduce that the 5 , with unit 

isospin, has the isospin wavefunction: 

---(ud+ du) s 
	

(1.51) 

and therefore must correspond to the X-orbitally excited state. These 

two orbital states are non-degenerate in zeroth-order: the 4 and 

are split before the hyperfine interaction is introduced. Using 

equation (1.39) with w = 520 MeV and x = 0.6, one finds: 
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M (Ak' - M (E) = w - w 	75 MeV, (tr = 1) 	 (1.52) o 2 	o 2 	p 	A 

where M denotes the zeroth-order contribution to the mass of a given state, 

in reasonable agreement with the observed mass difference (Isgur and Karl 

1978a and references therein): 

M(4 	50 ± 15 MeV 
	

(1.53) 

The effect of the hyperfine interaction, while small, accounts 

for the discrepancy: evaluated with harmonic-oscillator wavefunctions, 

these interactions reduce the predicted splitting to approximately 50 MeV 

(Isgur and Karl 1978b). The relative ineffectiveness of the hyperfine 

interaction in this case is due both to these states having identical spin 

structure and to their being coupled to the highest total angular momentum 

possible. 

We conclude the introduction to this thesis by briefly assessing 

the validity of the assumption inherent in the harmonic oscillator 

quark model that the quarks move with non-relativistic velocities. 

1.5 	Scales and Relativity 

Following Lipkin (1980), we compare constituent quark models for 

hadrons with analogous constituent models for atoms and nuclei. There 

are several important differences characterised by a set of different 

scales. Any bound state has several features with the dimensions of 

length or mass including: 

.the mass of the bound state or its Compton wavelength; 

the size of the bound state or its Bohr radius; 

the excitation energy for orbitally-excited states; 

the fine or hyperfine structure arising from spin-dependent 

interactions. 

The -four - mass scales are-'listed-in Table 1.1 for three different bound 

state models. (In Table 1.1, A refers to the atomic number of a given 

nucleus). 
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Bound states 	Mass 	Size () 	Excitation Hyperfine 
Energy 	Energy 
(SE) 

1 	 1 Positronium 	1 MeV 	1.MeV 	
(137)2 MeV 
	

(137)3 MeV 

Nuclei 	 A GeV 	50-100 MeV 
	

5-10 MeV 

Hadrons 	 1 GeV 	200 MeV 
	

600 MeV 
	

300 MeV 

Table 1.1 	Scales of bound states 

In atomic physics, represented by positronium as the simplest system 

bound by atomic forces with both constituents having the same mass, the 

four scales decrease monotonically in steps of 	. In nuclei, the 137 

scales decrease monotonically in steps of about an order of magnitude. 

However, in hadrons, these scales are all approximately equal and the 

excitation energy is actually larger than the energy defined by the 

size. 

These scales have implications for the validity of the non-

relativistic approximation. A particle moving in a non-relativistic 

orbit has v  << 1. 	But the velocity, v, is just the product of the 

radius of the orbit, r, and the angular velocity, w, and this angular 

frequency in a quantum system is related to the orbital excitation 

energy, EE. Thus: 

v 	- rw 	- 	r,E 
C 	 C 	 11 c (1.54) 

A more rigorous derivation employing the Heisenberg equations of motion 

and some matrix algebra (Lipkin 1980) gives: 

= 	
31 (1.55) 
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where ! is some mean excitation energy for states of opposite parity 

from the ground state. Certainly, 	E must be greater than the excita- 

tion energy of the lowest odd-parity excited state. This gives 

of the order of 	for positronium, 	for nuclei, but unity for 

hadrons. Thus, it would appear that any model for a hadron which fits 

both the size of the proton as measured by its mean-square-radius, and 

its excitation spectrum as measured by the excitation energy of its 

first odd-parity N*,  cannot be non-relativistic (Lipkin 1980). This 

statement is model-independent. 

How, then, is one to justify the use of a non-relativistic quark 

model? By drawing an analogy with the renormalisation prescription of 

quantum electrodynamics, Lipkin (1980) suggests that the resolution of 

this dilemma may lie in some hitherto-unknown principle of rela-

tivistic regularisation. In this thesis, we simply assume that a non-

relativistic treatment is valid, although we recognise that there are 

difficulties in trying to justify this assumption. We take heart from 

observations such as the one made by Isgur (1980) viz, that an 

harmonic-oscillator wavefunction for the quarks in a proton, if 

adjusted to reproduce the observed proton charge radius: 

I 
2 

<I q. r.2> 	= 
1-1 

1 	 proton 
(1.56) 

where q i  denotes the electric charge on the i th  quark, r. its 

position and c is the usual harmonic-oscillator constant, gives the 

quarks (whose mass = 350 MeV) less than 100 MeV of kinetic energy: 

=! < / > 	 < lOOMeV 2m proton 	2m 	 . 	 (1.57) 

Further, as Gromes (1980) points out, although one finds in such 

models that <- /m2 > 	1, so that one might be led to conclude 

that a non-relativistic approximation is invalid, typical approximations 
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involved in the derivation of the effective Hamiltonian such as: 

/(m2 + 2) 	m + p 2 /2tn 	 (1.58) 

are not so bad for p 2 = m2 
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CHAPTER 2 

CLASSIFICATION AND CONSTRUCTION OF HARMONIC-OSCILLATOR STATE FUNCTIONS 

2.1 	Classification of State Functions 

The group theory of the harmonic oscillator has been discussed ex-

tensively in the literature (Wybourne 1974), especially in connection 

with its application to non-relativistic quark models (Horgan 1976b). 

In this section, we develop the formalism leading, for the 3-body case, 

to the unitary dynamical (or degeneracy) group, U(6), and to the 

symplectic spectrum-generating group, Sp(12,R). These groups provide 

a novel and direct means of labelling and constructing the harmonic-

oscillator state functions of given total orbital angular momentum, 

parity and permutation symmetry. 

We begin by introducing the creation and annihilation operators 

a(p), a(A), a() and a.(A) (i = x, y, z) associated with the 

p.- and A-oscillators. In a spherical basis, we define: 

+ 	= 	J._ + 	 + 
{a (p) ± ia (p)} 	 (2.la) a+i(& 	 y 

+ 	 + 
a (p) 	= 	a(p) 	 (2. lb) 

satisfying the commutation relations: 

[a PLO , a, (p)] 	= 	cS, 	(i.i, p' = +1, 0, -1; fl = 1) 

(2.2) 

with similar expressions for the A-mode. 

In the non-strange sector, with which we deal exclusively 

throughout the remainder of this thesis, the general excited state of 

the zeroth-order Hamiltonian, H 0 , in equation (1.32), corresponding 

to principal quantum number, N, orbital angular momentum, L, and 

permutation symmetry, P (= S, A, M or Mx)  may be written: 
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with: 

IN> 	I q)p > 	p (P) 10> 	 (2.3a) LL 	 LL z 	 z 

0> 	10>
P 0> A 	 (2.3b) 

and 	an Nth-order monomial of creation operators. 

The creation and annihilation operators a(p), a(A), a(p) 

and a(A) may be viewed as components of the 6-vectors: 

(a
I  ) = 	(a ia ) = 	(a(p), -- a(A)) -- (2.4a) 

+ 
(a ) 

I 
+ 

= 	(a. 	) = 	(a(p), a(A)) (2.4b) 

with I = 1,2,3 ; a = 1,2; and I = 1,2, ..., 6. They satisfy the 

commutation relations: 

+ + 
[a1 , a] 	= 	(a 	= 	0 	 (2.5a) 

+ 	 + 
[a1 , a] 	= 	[a 	, a. ] = 	ES.. 	= 	 ( 2.5b) ia jb 	13 ab 	IJ 

for I, J = 1,2, ..., 6. 

With this notation, the Hamiltonian H 
0  takes the form: 

6 
H - 3m 	= 	w E 1{a 1  a1 } , 	 (2.6) 

1=1 
.1 

where w= (-) . The dynamical (or degeneracy) group is revealed 

by noting that all 36 bilinear operators: 

E1 	= 	a} 	 (2.7) 

commute with H 0  and satisfy the commutation relations: 

[E1 , EJ 	= 	cSJK EIL - 61L EKJ 	 (2.8) 

of the real Lie algebra of GL(6,C), whose complex form is well-known 

as the Lie algebra of U(6). It follows that degenerate oscillator 
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states are associated with unitary, finite - dimensional irreducible 

representations of IJ(6). In the canonical labelling scheme based on 

the structure U(6) " SU(6) 0 U(l), one of the state labels is, of 

course, the principal quantum number N associated with the U(l) 

subgroup whose generator E1J S' is proportional to (H - 3m). 

The spectrum consists of the N = 0 vacuum state 0>, trans-

forming as the representation {o} = 1 of U(6); the N = 1 states 

410>, transforming as {l} = 6 of U(6); the N = 2 states 

4aIo>, transforming as {2} = 21 of U(6) and so on. [Throughout 

this thesis, we use the standard notation for irreducible representa-

tions of unitary, orthogonal and symplectic groups, namely {A 1 ,A 2 , ...} 

	

.I and 	<X1 ,A 2 ..... >, respectively, where A 1 , A 2 ..... 

is the partition specifying the Young diagram with row lengths A,. A2 , 

and so on. We also use the notation (X 1 , A 2 ..... ) for an irre-

ducible representation of the symmetric group, S, where 

equals n]. 

One way to generate this spectrum involves the set of bilinear 

operators which can be formed from the components a 1  and 4 of the 

12-vector: 

(a A ) 	= 	(a I 	ia 	
+ 

) = (a 	) = (a(p), a(X), a (p), a(X)) 

(2.9) 

with I = 1,2, ..., 6; ct = 1 (annihilation operator), 2 (creation 

operator); and A = 1,2 ..... 12. These satisfy the commutation 

relations: 

	

[a A ,  aBI 	= 	[a1,aJ = 6IJ• 	= 'TAB 	
(2.10) 

for A,B = 1,2 ..... , 12, with: 

01 

	

c 	= 	-1 	
and J = ô 0 c . 	 (2.11) 
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The 78 bilinear operators: 

	

S 	= 	{a A ,  aB } 	 (2.12) 

satisfy the commutation relations: 

	

[S,SCD] 	= BC SAD + AD SBC + AC SBD + BD SAC 	(2.13) 

of the real Lie algebra of Sp(12,R). The significance of this en-

larged group is that the complete Fock space of the oscillator 

spectrum decomposes into just two infinite-dimensional, unitary 

irreducible representations of Sp(12,R): states of even or odd N. 

This follows from the fact that the Sp(12,R) generators, SAB,  are 

bilinear in the creation and annihilation operators and therefore 

ladder in steps of two (or zero). The Lie algebra of Sp(12,R) is 

referred to as a spectrum-generating algebra, analogous for the 3-

quark case to the algebra Sp(2N,R) for the single N-dimensional 

oscillator. 

In contrast to this, there exists another way in which the 

physical oscillator states are manifested as basis states: this time 

of finite-dimensional, non-unitary irreducible representations of 

Sp(12,R). This comes about because both the creation and annihilation 

operators themselves and, more generally, monomials of them form the 

bases of such representations. This follows from the existence of 

the map: 

S: 	a C - [ S , a ] 	= 	JACaB 	BC A 
+ J a 	 (2.14) 

and its generalisations: 

S: a 
C  a  D -* [S , aCa.D] 	= JACaBaD + JBCaAaD + JADaCaB 

+ JBDaCaA 	 (2.15) 
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and so on. It is clear, in particular, that the operators 1, aA, 

(aAaB + aBaA), (aAaBaC + aBaCaA + aCaAaB + a B  a  A  a  C + aCaB aA + aAaCaB), 

form bases of the symmetric representations <0> = 1, <1> = 12, 

<2> = 78, <3> = 364. ...... of Sp(12,R). Since the variables 1, a, 

++ 	+++ 
a1a1  alaJaK. ..... belong to these bases, the physical oscillator 

states are indeed associated with finite-dimensional irreducible repre-

sentations as claimed. The physical states of the representation <N> 

are precisely those for which 

IJ IJ 
12 = S112 .S 	= E1 .S 	, 	 (2.16) 

acting as in equations (2.14) and (2.15), has eigenvalue N. 

This generator, besides being the U(l) generator encountered 

earlier, belongs to the algebra of the subgroup Sp(2,R) of Sp(12,R), 

whose generators are: 

S 	= 	SI cLJ8 •S 
 Ii 	

(2.17) 

This group is locally isomorphic 

S0(2,1) as can be seen by noting 

P2  = 4.(s11 - S22) and P3  = 

	

- 	 3 

	

[P.,?.] 	= 	i E 
k=l 

to the pseudo-orthogonal group 

that p1 = ( s 11  + S 22), 

Z satisfy: 

Cijk kk k 	 (2.18) 

where: 

1 0 0 

= 0 	1 	0 	 (2.19) 

0 0-1 

The physical states are those components of the S0(2,1) multiplets 

of pseudospin 101 = 1 	[fl = 2 	[1] = 3 •••, EN /21 = N+l...... 

with maximum third component 0, 2  1 , 1......./2, 	The corres- 

ponding Sp(2,R) multiplets are denoted by <0> = 1, <1> = 2, 

<2> = 3......<N> = N+l. .... . 
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Just as in the case of a single 3-dimensional oscillator (c.f. 

Chapter 4), the physical states with fixed pseudospin quantum numbers 

may be further classified into multiplets of-an orthogonal group. In 

the case of three particles, this is the subgroup 0(6) of Sp(12,R), 

with generators: 

0 11 = 	SIJ .c 	= 	E1  - E 1 	 (2.20) 

satisfying: 

[0j,0J 	6JK 0 I + 6 1L 0 J - 6 1K 0 J - JL°IK • 	(2.21) 

The group 0(6) contains as a subgroup, 0(3) 0 0(2), whose con-

stituents, 0(3) and 0(2), respectively, are generated by: 

and: 

0 	- 	 ab 
ii 	- 	0iajb • 	 (2.22) 

ij 
0 a 	= 	°iajb 	. 	 (2.23) 

The former serve to specify the total orbital angular momentum of the 

physical states through the familiar generators: 

= 	i C1 0 j 	 (2.24) 

while the latter is the generator of rotations in the 2-dimensional 

space associated with the p-  and A-modes of oscillation. Typically, 

a rotation through 0 is given in this space by: 

	

R(0) 	= 	cosO -sine 	 (2.25) 
[sine 	cosO 

It should-be stressed, however, that the full group 0(2) also includes 

the reflection: 

	

a 	= 	-10 	 (2.26) 

0-1 

This is particularly important because the permutation group, S 3 . is 
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a subgroup of 0(2) but not of S0(2). This can be seen by noting 

that the permutations P(123) and P(12), which generate S 3 , are 

given in the 2-dimensional, faithful irreducible representation 

(2,1) =Mby: 

P(123) 	= 	R(21T/3) 	 (2.27a) 

P(12) 	= 	a 
	

(2.27b) 

Thus, to summarise, the subgroup chain to be used in labelling the. 

oscillator states is: 

Sp(12,R) = Sp(2,R) 6 0(6) 3 Sp(2,R) 0 0(3) 0 0(2) 

U(1) 0 S0(3) 0 S 3  . 	(2.28) 

Its key labels N, L and P are associated with the irreducible 

representations of U(1), S0(3) and S 3 , respectively. 

In order to enumerate at each level, specified by N, the 

0(3) 0 S 3 	 flavourxspin multiplets and hence the SU(6) 	 . 0 0(3) super- 

multiplets, we require the branching rules for various subgroup 

embeddings. In the case of the continuous groups, these are given by 

simple Young diagram techniques (King 1975). These techniques enable 

one to deduce, for example, how the symmetric tensor representation 

<N> of Sp(12,R) reduces on restriction to Sp(2,R) 0 0(6). One obtains: 

N=0: 
	

(2.29a) 

N=l: 	12D206 
	

(2.29b) 

N = 2: 
	
7830(201)1015 
	

(2.29c) 

i.e. ____ 	=0 le (I I le). - 0 R 
N = 3: 
	

364 =P 4 0 (50 0 6) 	2 0 (64 • 6) 
	

(2.29d) 

i.e.  
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N=4: 1365 D 5 @ (105 • 20 • 1) $ 3 0 (175 19 20 	15) 9 1 0 (84 $ 20 0 1) 
(2.29e) ____  

I I IO([j I II I( H~ 	I 	s - - ) 

and so on. Since it is required that the corresponding physical 

oscillator states have pseudospin E  and be associated with the 

Sp(2,R) representation <N>, it follows that the relevant 0(6) 

niultiplets [M] have M = N, N-2, N-4...... . where the sequence 

terminates with either 1 or 0. This is in accordance with the 

result expected through consideration of the degeneracy. group U(6), 

since the totally symmetric tensor representation {N} of U(6) yields 

just these representations [M] of 0(6) on restriction to this sub-

group. 

The corresponding branching rule (King 1975) for the reduction 

0(6) 0(3) 0 0(2) yields in the case of the representation [M] 

of 0(6), the following multiplets of 0(3) 0 0(2): 

N=0: ! z  !®! 
	

(2.30a) 

M=l: 	
•• 	

. 	 (2.30b) 

M = 2: 	20 = (5.  • 1 )  0 2  • 	I • 0 1* 	 (2.30c) 

i.e. I I I 	(I I I • 06 I I I • = ®. a 	 0  R 
M= 3: 	50 	m (703)0 23 	(753)02l (2.30d) 

i.e. 	IIII(IIIiD)0IIII(I! 
lIeU 

I 



-43- 

	

M=4: 105 	(9e1)0 4e (997@5@3),@(9@5@1)016)(7@5)01q . * 	( 2. 30e) 

	

i.e. 	 I 	(I 	I 	I 	I 	I • 	I 	I 	I 	)ø 	I 	I 	I 	I 

	

I I I I • [j I I • I I I • [Ti) @ I 	I 

and so on. 

The final reduction from.0(2) to S 3  proceeds as follows. The 

* 	* 
scalar, [0] = 1, and pseudoscalar, [1 2 ] = [0] = 1 , representations 

of 0(2) are, of course, symmetric and antisymmetric, respectively, 

under S 3 , and thus yield on restriction to this subgroup (3) = S 

and (is) = A. The remaining irreducible representations of 0(2) are 

the doublets [m] = 2 , labelled by a quantum number m (integer 

or half-integer, in general) such that R(0) is mapped to R(mO). 

In what we consider, only integer values of m occur and it is easy 

to deduce that under the restriction from 0(2) to S 3 : 

	

[m] 	
• A , 	if m E 0 (mod 3 	

(2.31) 
-- 	- 

if m E 1,2 (mod 3) 

This allows us to complete the reduction procedure and thereby 

determine the SUM flavourxspin 0 0(3) supermultiplets at each 

degeneracy level specified by N. 	The results for N = 0, 1, 2, 3 

and 4 are displayed in Table 2.1. 
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N 	0(6) 	 0(3)00(2) 	 [SU(6),L] 

0 	1 	 10 .1 	 [56,O] 

1 	6 	 302
1 
	 [70,1] 

2 	20 	 (p!) 0 2 	 [70,2+ 1, [7001 

[20,1] 

2) 

1. 	 1 0 1 	 E5., 01 

3 	50 	 (73) 0 2 3 	 [56,3],[20,3],[56,1],[20,1] 

	

(7e53) o2 	 [7o,3] , [70,2], [70,1] 

[70,1] 

4 	105 	 (915G1)0 

0 

(9e5(D1)0 1 

* 
(7e5)0 1 

(70,4+1,[70,2 + 1,[70,0+ 1 

[70,4+1,[70,3+1,[70,2'1,[70,1+ 1 

[56,4],[56,2k],[56,0k ] 

[20,?], [20,2] 

20 	 (5e1)e 	 [70,2k] ( 70 + ] 

0 1* 	 []] 

x 1 	 (56,2 k ] 

I 1 0 1 	 [56°] 

Table 2.1 	SU(6) 	 . 0 0(3) supermultiplet structure of flavourxspin 

the harmonic oscillator quark model: levels N=0 to N=4 
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2.2 	Construction of state functions 

Making use of the variables: 

= 	p+iA 
	

(2.32a) 

Ti 	= 	 (2.32b) 

the physical states are now remarkably easy to construct in terms of 

auxiliary creation operators which we define by: 

+ 	 + 

	

a () 	= 	a (p) + ia (A) 	 (2.33a) 

	

+ () 	= 	! 	- ia 	. 	 (2.33b) 

These are the basis states of two 1-dimensional irreducible repre-

sentations of SO(2). The transformation to this basis then serves 

to diagonalise all the rotation matrices R(0) including 

Under the action of the permutations of S 3 : 

	

P(12)a() 	= 	-a+  (n) 	 (2.34a) 

	

P(12)a+ (n) 	= 	-a() 	 (2.34b) 

and: -i 27r 

	

P(123)a) 	= 	e 	3 a) 	 (2.35a) 

i 2rr 

	

P(l23)a() 	= 	e 	'3 a() 	 (2.35b) 

so it is trivial to determine the transformation properties of mono-

mials in these operators. Consider the particular monomial: 

W(,) = !+ 
	+ 
().a (r)}

a 
 {a+ 

 
• (i)! (..)}

+ 	
b ! + (fl)• + 
	c +.: (r)} {a ()}P x 

- - — 

X {a(1 — )}[a+(1)a+()]1 	 (2.36) 
+1.  

where: 

+ 	+ 	
+1 	

+ 	+ 	+ 	+ 
[a ()a (flfl 	= 	a ()a() - a ()a() . 	(2.37) 

+1. 	
04.j 
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The monomial W(r,) in equation (2.36) creates a stretched state of orbital 

angular momentum L = L = p + q + c, with corresponding principal quan- 

tum number N = 2(a+b+c+a) + (p+q). The factor: 

..+ () ..+ () 	= 	{ a+ ( p )12  + {a+(X)1 2 	 (2.38) 

is an 0(6) invariant so that the monomial W(C,) belongs to the re-

presentation [M] of 0(6) with M < N - 2a. Furthermore, if 

m = 2(b-c) + (p-q), the corresponding 0(2) representation [m] is 

2-dimensional with basis states W(r,) and 	where: 

= 
	

(2.39) 

unless W(C,ri) = ± W(n,), in which case m0 and the corresponding 

0(2) representation [ml = [0] or [0] *  is 1-dimensional. From 

these basis states W(,) and 	of irreducible representations 

of SO(2), the basis states of irreducible representations of S 3  are 

recovered in the form: 

= 	{W(C,ii) + 	(,n)} (2.40a) 

W(,n) = - i{wq,n) - 	 . (2.40b) 

The results depend only upon m (mod 6) and are given in Table 2.2 

in which S, A, M and M A signify basis states of the representations 

(3) = S, (1) = A and (2,1) = M of S 3 , with M and M X transforming 

under permutations in exactly the same manner as p and A. 

m (mod 6) 	0 	1 	2 	3 	4 	5 

XW 	S 	N 	M 	A 	-N 	N p p 

A 	M 	M 	S 	N 
P 	 p 

Table 2.2 Monomials of definite permutation symmetry: 

XW  = (w4) and W = -.(W-). 
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The particular factor 	 is antisymmetric in the 

sense that: 

whilst: 

= - (a(l)a(fl)] 1 	(2.41a) 

= 	 (2.4lb) 

It is, therefore, a basis state of the type A. This factor, moreover, 

satisfies a syzygy-like identity: 

+ 	+ 	2 	+ 	+ 	+ 	 + 	+ 	+ 

	

{[a ()a (r))+l} 	= (a ().a ()){a (n)}
')  + (a ().a ()){a ()} 

+1 	 +1 

- 2(a () 	())a 1  (c) a  (n) 	. 	( 2.42) 

The implication of this and the use of W and W in equations 

(2.40a) - (2.40b) is that in constructing all the independent oscillator 

states for a given value of N, it is only necessary to consider those 

distinct monomials W(,)  of degree N with ta 0 and ct = 0 or 1. 

The N=2 and N=3 states derived in this way are given explicitly 

in Tables 2.3 and 2.4: 

	

[su(6),L] 	0(3) 0 0(2) 	S3 	Monomial 

	

[56,0 
+ 1 
	1 0  1 	S 	& 	(..) 	(a)) 

	

[700] 	!®2 	
M 

M 	( 	(j)) 

	

[20,1] 	
30!* 	 A 

	

[56,2+ ] 	5 0 1 	 S (a 1 ()a 1 (n)) 

	

[70,21 	5 0 2 	 M 	({a 1 ()} 2 ) 

Table 2.3 State-function'monomials at the N = 2 level 
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[su(6),L"] 0(3) 0 0(2) S3  Monomial 

[56,3] 7 0 2 S 

[20,3- 1 7 0 2 A 

Z231 7 ® 2 M 

M 

[70,2] 50 2 M 

[56,1- 1 3 0 2 S I (! () !(C) } 

[20,1- 1 3 0 2 A . ({a'
+

( c) -a 	(c)la 	i 

[70,1] 3 .0 1  .2 M2  

M •({ 	(C) - a (0}a+1  (&) 

l] 3 0 M '- ({ 	(i.) 	(n.) 	(j)) 

M S ({+() 	)} a()) 

Table 2.4 State-function monomials at the N = 3 level 

The procedure used in constructing such states of definite orbital 

angular momentum, parity and permutation symmetry is thus extremely 

simple and somewhat more direct than previous procedures. The simpli-

fication is in large measure due to the use of the (,)-basis. This - 

contrasts with the complexities associated with the use of the 

(p,A)-basis, which are apparent in the construction procedure of Karl 

and Obryk (1968) based on the reduction: 

1.1(6) 	S0(3) 0 S 3 , 	 (2.43) 

and even more strikingly in that of Horgan (1976b), based on the 

subgroup chain: 

U(6) 	U(3) 0 U(2) 	S0(3) 0 S 3 . 	 (2.44) 
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We shall make use of the subgroup chain: 

Sp(12,R) m U(6) m 0(6) 	0(3) 0 0(2) = S0(3) 0 S 3 	(2.45) 

which incorporates the group 0(6), whose use has been advocated and 

adopted in this context by Cutkosky and Hendrick (1977a) and which 

appears naturally in the subgroup chain in equation (2.28) by virtue 

of equation (2.20). However, our scheme is not ideal in that the 

states obtained directly from equation (2.36) are not all associated 

with a unique irreducible representation of 0(6). In general, M 

can take on the values N-2a, N-2a-2, N-2a-4 ...... and a more complete 

labelling scheme involving the specification of M can be Obtained 

merely by orthogonalising states commencing with the state of lowest 

value of M which corresponds to the largest value of a for a 

given N in equation (2.36). 

At the N=2 level, there are no ambiguities and this ortho-

gonalisation is not necessary, but at the N=3 level, there are two 

P = M [70,1] supermultiplets which may be distinguished by the 0(6) 

labels [3] = 50 and [1] = 6, as can be seen from Table 2.1. The 

necessary orthogonal combinations of the states given in Table 2.4 

are: 

• - +()+ 	()}a 1 ()) 
[] 	,11 (2.46a) 

({a)•a(ç)}a 1 (fl) - 

and: (2.46b) 

&({a()•a(fl)}a(C)) 1 (2.47a)  
[1] 	[70, 1- 1 . 

LM . 	(2.47b) 

A similar orthogonalisation procedure is required at the N=4 level 

to distinguish, for example, the two P = S [56,2 k] states labelled by 

M = 4 and M = 2. Tlis difficulty is also experienced in making use of 
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the states of Karl and Obryk (1968) which, in this particular case, 

coincide with those given by equation (2.36). 

In contrast to this, in the case cited by Horgan (1976b) of the 

N = 4, P = N [704+]  states, the two pairs of states, M and 

are-again not mutually orthogonal in the scheme of Karl and Obryk 

(1968). Horgan (1976b) constructs orthogonal states by diagonalising 

a matrix K whose eigenvalues then serve to label the states. However, 

the method used here leads unambiguously to the four states 

IN, M, L, L = L, in, P>: 

4,4,4,4,4,M> = 	1 	- a 1 (p){a 1 (X)} 3 ) 	(2.48a) 

1 4 , 4 , 4 , 4 , 4 ,M 	
1

x> = - (-{ a 1 (p)} + 6{a1(p)}2{a1(X)}2 - {a 1 (X)}) 
8V5 

- 	 (2.48b) 

and: 

	

= ..L ({a 1 (p)}a 1 (X) + a 1 (p){a 1 (A)}) 	(2.49a) 
2/ 

14,4,4,4,2,Mx> - 	({a(p)} - Ca 1 (X)}) 	, 	 (2.49b) 
4J - 

where equations (2.33a) - (2.33b) have been used to express the 	- 

states in terms of a(p) and a(X). In this case, it is the label m 

of the 0(2) representation [m] = 2 which distinguishes the states and 

guarantees their orthogonality. 

For higher values of N, branching multiplicities in the chain in 

equation (2.45) lead to other labelling ambiguities and the need to 

orthogonalise further states (King 1980). For N < 4, the chain in 

equation (2.45) does, however, provide a complete labelling scheme. 



CHAPTER 3 

A PHENOMENOLOGICAL STUDY OF THE N=2 AND N=3 LEVELS OF THE 

ISGUR-KARL MODEL 

3.1 Method of Computation 

In this chapter, we take as our starting point the form of the 

harmonic oscillator quark model suggested by Isgur and Karl (Isgur 

1980 and references therein), incorporating anharmonic perturbations, 

quark mass differences and some effects of the non-relativistic re-

duction of coloured-gluon exchange, and which is described by the 

Hamiltonian (c.f. equations (1.28) and (1.31)): 

H 	= 	E(m. + p? 	
1<3 

/2m.) + E (Kr?. 	+ U(r. .))+ E  hyp 
 (3.1) 

1 
1 

	

-13 	 13 	 13 

	

By treating U(r.) and the hyperfine interaction, 	perturbatively 

in the harmonic-oscillator basis, Isgur and Karl (1979a) obtained a 

good description of both strange and non-strange, positive-parity 

baryon resonances up to about 2 GeV in mass, which they assigned to 

the N=2 level of the harmonic oscillator model. In this chapter, we 

deal only with the non-strange sectors of the N=2 and N=3 levels, 

wherein all three quarks may be assigned a common mass, m, and we 

further simplify matters by postponing until Chapter 6 any considera- 

tion of the hyperfine interaction. 

on the Hamiltonian: 

H = H 0  + I U(r 
1 	

..) . 
<3  

. 	13 	'  

Thus, we base our present analysis 

(3.2) 

where H0  is as defined in equation (1.32) and U(r)  is an unknown ij 

anharmonic perturbation depending only on the magnitude, r 1 	of the 

N 7g\ 
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separation of quarks i and j. We shall treat U(r..) to first-

order in perturbation theory using the eigenstates of H as basis 

states. Thus, we content ourselves for the present with predicting 

only the mean masses of the various harmonic-oscillator supermulti-

plets. This approach is already known to lead to an intriguing 

result for the N=2 supermultiplets (Isgur and Karl 1979a). Figure 

3 shows the pattern of the degeneracy-breaking induced by an 

arbitrary anharmonic perturbation. Apart from an overall sign, the 

relative splittings are independent of the detailed form of U(r 1 ). 

[For example, Gromes and Stamatescu (1976, 1979) have shown that, 

if U(r1 ) is assumed to have a power-law form: 

k 
U(r. 

13 	 13 
.) 	= 	Ar.. , 	A , k> 0 	 (3.3) 

then the pattern of splittings is as indicated in Figure 3 if 

0 < k < 2, but is inverted if k > 2]. This suggests that the 

result may be derived from purely group-theoretic considerations and 

corresponds to the breaking of a symmetry of the unperturbed Hamil- 

tonian, H0 , by the perturbation E U(r 1 •). We. shall demonstrate that 
i<j 	3 

this is indeed the case in Chapter 5. The pattern of splittings 

at the N=2 level - with the lowering of the radially-excited super-

multiplet [56, 0] below the [70, 0 ], [56, 2 ] and [70, 2] super-

multiplets - seems to correspond well with the physical situation 

and lends confidence to the belief that the pattern of splittings at 

the N=3 level will be of interest. 

In the absence of hyperfine interactions, the calculation of the 

first-order energy shifts induced by the anharmonic perturbation, 

I U(r..), is straightforward. We exploit the permutational sym- 
1<) 

metry of the SU(6)flavourxspin  0 0(3) 3-quark states, 4>, to reduce 

the problem to a calculation involving the p-oscillator alone: 



[ a2 1  

70J  2+1 
1, 
'5 

[,21 
10 	[ZQ,O1 

Figure 3 	The pattern of sptittings 

of the N =2 supermuttiptets 

induced by the cinharmonic 

perturbation 
kj 
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<I z U(r..)j4> 	= 	3<IU('p)I> 	. 	 (3.4) 
i<j 

The p-oscillator matrix elements may, of course, be evaluated using 

explicit oscillator wavefunctions (Isgur and Karl 1979a, Dalitz and 

Horgan 1973, Gromes and Stamatescu 1976) or, more elegantly, by an 

algebraic procedure which exploits the commutation relations of the 

creation and annihilation operators. As the latter method does not 

appear to be widely used, we give an example from the N=2 level. 

Table 3.1 gives the correctly-normalised monomials, constructed by 

the procedure given in Chapter 2, for the five N=2 supermultiplets 

of the harmonic oscillator model: 

[SU(6) ,L] 	 Monomial 

[56, - O ] 
(s) 	- 

poo 	- 
1 	+ 
- [[a (p)]2 + [a(X)]2} 

-- 

0+1 p =  
2/ 
1 	+ 	+ [70, 

00 
- 	a (p) -a (A) 

- 

- 1 	+ 
- {[a (p)]2 	- [a(A)] 2 } 
2i -- 

[20, l] 
'(A) 	= 
p 11  

1 	+ -- {a 	(p)a(X) - a(X)a(p)) 1  

[56, - 
21 (s) 	- 

22 	-. 
1 	+ 
{[a+1(p2 + 	[a 1 (A)] 2 } )] 

122., 21 
(M) 

22 	= a 1 (p)a+1 (X) 

(Mx) 
= 

1 	+ 
-{[a1(p)J2 	- [a 1 (X)] 2 } 

22 

Table 3.1 The correctly-orthonormalised monomials for the 

N = 2 states. 

Note that only monomials with maximal L are given in Table 3.1. 
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The energy shift for the N 2 [56, O] supermultiplet is 

given by: 

= 4o 	{[a (p)] 2}U(ñp) [()]20> 
x<oI.o>x 

+ <0I{[a+ (p)] 2} +  U(v'ip)O> 	<OI[a+(A)]2IO> 

+<o1 U(V'iP)[a(p)] 2 jO> 	<0{[a+ (X)] 2 } + IO> 

+ <01 U(ñp)IO> 	<0I{[a+(A)]21+[a+(A)]2I0>} . (3.5) 

Clearly: 

= 	<0I{[2+ ( X)] 2} +  0> 	= 	0 	 (3.6) 

and: 

= 	1, 

whilst, by repeated use of the commutation relation: 

[a.(X), a(A)) = 	S.. 	, 	 (3.8) 

we readily find that: 

<0I{[a+(A)]2}+[a+(X)]210>X 	= 	6 	 (3.9) 

so that: 

= .1 <oIu(v'P)lO> + .. <oI{[!+ (&] 2 } +  U(/P)[!(&]'1O> - 	2- p 
- 	 (3.10) 

The RHS of equation (3.10) can be expressed in terms of Gaussian moments 

of the perturbing potential, as noted by Gromes and Stamatescu (1976), 

and by Isgur and Karl (1979a). Thus, trivially: 

c 3  
<OIU(/p)lO> 	

= 	312 Id
3  pU(/Ip)e 

71 

(3.11) 

where, as usual, 	a4  = 3Km, while, with just a little more work: 



-55- 

<° I { 	(2.)] 2 }U (Jp) [ 	(2..)] 2 I 0> 	-  

	

P 	- 	3/2 !d
3p pU(/p)e'22  

it 

9a 3 	3 	
. 

35 fd
3pp 2U(l'ip)e 	+ 	3/2 

(3.12) 

(Jip)e 3/2 
it 	 4Tr 

(3.12) 

Isgur and Karl (1979a) define parameters a, b and c as follows: 

	

3a3
a 	

= 	3/2 / d
3p U(v'Ip)e 	 (3.13a) 

71 

	

3a5
b 	= 	3/2 	d3pp 2  U(p)e 	 (3.13b) 

71 

3a7  

	

c 	
= 	3/2 
	d3 PPU(V'p)e 	 (3.13c) 

it 

yielding the result: 

E.[560+ 	5 	1 

	

- I = 	a-b+c 	. 	 (3.14) 

Thus, we may write: 

= E 0  + 2Q 
C56,0+3

where: 

E 	= 	3m + 3w + a 	 (3.16a) 

	

= 	w-4a+.b 	 (3.16b) 

	

= 	- a + b - .j .c . 	 (3.l6c) 

The remainder of the N = 2 results are readily obtained: 

	

E [700+] 	= 	E + 22 - 	 (3.17) 
0 

	

E[2+] 	
= 	E + 20 - . 	 (3.18) 
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E [2+
1 
	= 	E0  + 29 - 	 . 	(3.19) 

E 	 = 
[20,1] 	

+ 22 	 (3.20) 

giving the pattern of splittings displayed in Figure 3. 

We now consider the corresponding calculation for the eight N = 3 

supermultiplets. The orthonormalised monomials are given in Table 3.2: 

[SU(6), 	L] Monomial 

[56, 
- 31 

(s) 	= - 	L{ [a 	(A) ]3_  +1- 3 [a 	(p) I 2a 	(A) } +1- 	+1- r 
[ 31 

33 ._L{[a:i(p)13 - 3[a+1 (A)] 2  a(p)} 

[70, f] 
;p)= 

;{ [a1 (& ]3 + ] 2 a1 (& 

[a 1 (A)] + 	[a 1 (p)] 	a 1 (A)} 

21 = - _{al (A) a (p) - a+l (p) a (A)} a+ l 	) 

—{a1(x)a(p) 
-a+1 

 (p) 	(A)). a 1 (p) 

[56, 1  (s) 	= 
11 

1 	([a 	(p)]2 - 	[a(A)]2 )a 	(A) 	+ 2[a(p).a(A)]. +1- - -- 2/if 

• a 1 (p)} 

[20, 
- 

11 (A) = 
11 

1 	([a +(p)]2 - 	[a(A)] 2)a 	(p) 
- - 2V1ö - - 	+1- 

- 2(a (p)-a+ (X)la   i Q } 

[70, 1] 
;p)= 

L. {([a +(p)]2 - 3 [ + (A)] 2 ) + ()[ + ( + ( I +  

3J:1 ...() 	+ 4[a(p).a(A)]a1(ç 

[70, 1 IP 	= 1{[a(p)]2 	-- 	[a(X)J2}a(p) 

,.(M 	) 

11 	= 
• 	{ [ 	(& ] 2 + 	[! (A) ] 2  } 

Table 3.2 	The correctly-orthonormalised monomials for the N = 3 states 
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Note that only monomials with maximal L z are given in Table 3.2, and 

that, for the two degenerate [70, 1] supermultiplets, we have taken the 

particular orthogonal combinations of the monomials that are given by 

equations (2.46a) - (2.46b) and (2.47a) - (2.47b). 

As has been noted in the literature (Horgan 1976a, Dalitz et al. 

1977b), three of the perturbed N = 3 supermultiplets depend only on 

the parameters of the N < 2 levels. Thus: 

	

E[56 	
_] 	

= 	E -+ 3 -  
11 
 (3.21) 

0 

	

[ 70,  2] 	= 	E + 39 - 	 (3.22) 

	

(56,  31 	= 	E0  + 3c - 	. 	 (3.23) 

The remaining five N = 3 supermultiplets depend on a new parameter, d, 

where: 

- 	3a9
d 	 !d3  p 6  U(v'p)e 	. 	 (3.24) 

- 

If we define the quantity: 

= 	b - -c + 	d, 	 (3.25)
35  

the remaining perturbed N = 3 energy levels may be written: 

	

E[70 3 ] 
	

= 	E + 3c - - 	+ 	 (3.26) 

	

- 	 0 	 10 2  

	

E[20 	
] 	

= 	E + 3ç - - + 	 (3.27) 
- 3 	 0 	 5 

	

= 	E 0  + 32 - 5 	+ 	
(3.28) 

29 	7 

-  

	

E170 
1]

= 	E0  + 32 - 4 	+ 8 
6 ± 

-  

± j{[.-(6 - .!_t)]2 + (3.29) 

with the two (previously-degenerate) [70, 1] supermultiplets mixed 

and split by the perturbation. 
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3.2 Phenomenological considerations 

After inclusion of the hyperfine interaction, calculated per-

turbatively to lowest-order in 	Isgur and Karl (Isgur 1980 and 

references therein) were able to obtain a reasonable phenomenological 

description of the N = 2 level with E 
0 

= 1150 MeV and 	 440 

MeV. Using these values, we find that the mean mass of the non-strange 

sector of the N = 3 [56, 1] supermultiplet, given here by equation 

(3.21), is around 1985 MeV - close to the mass of the tD35 (1940) 

resonance at 1940 ± 30 MeV (Cutkosky 1980). Given the simplicity of 

the model and, in particular, our neglect of the hyperfine interaction, 

this is remarkably good agreement. Of course, the effect of including 

the hyperfine interaction on the prediction for the tD35 (1940) state 

remains to be seen and we examine this in detail in Chapter 6. Note 

also that, with E 
0 
= 1150 MeV and 0 = A = 440 MeV, the [56, 1] 

supermultiplet necessarily lies lowest of the three levels given-by 

equations (3.21) - (3.23). 

Dalitz et al. (1977b) have looked in detail at the question of 

the assignment of the D35 (1940) state to the N = 3 [56, 1] super-

multiplet. Instead of just looking at mean masses of supermultiplets 

in the harmonic oscillator quark model, they attempted to do better 

than that, and obtained a sum rule relating the mass of the AD35 of 

the N = 3 [56, 1] supermultiplet to masses of known t states which 
- 	

+ 	 an.cL 

they assigned to the N = 0 [56, 0 ] and N = 2,[56, 21 supermulti-

plets. Specifically, these authors quote the result: 

M(ED35) = 
3 	 1 5  M(F37) + •M(P31) + .v1(P33*) - M(P33) (3.30) 

relating the masses of the N = 3 [56, l, the N = 2 [56, O] and 

[56, 2,and the N = 0 [56, 0] supermultiplets. Identifying the 
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SF37 (1930) and AP31 (1940) as belonging to the N = 2 [56, 2] super-

multiplet, and the AP33*(1690) as belonging to the N = 2 [56, 0] 

supermultiplet, they predict: 

M(D35) 	= 	2088 ± 25 MeV, 	 (3.31) 

some 150 MeV higher in mass than the candidate observed by Cutkosky 

et al. (Cutkosky 1980). The sum rule in equation (3.30) is derived 

by performing a spin-average over A states within the N = 2 [56, 0+] 

and [56, 2] supermultiplets, and the RHS of equation (3.30) is 

actually independent of the magnitude of the spin-orbit effects which 

these authors consider. In general, however, spin-orbit forces will 

be expected to mix the EiD35 states belonging to the N = 3 [56, 1] 

and [70, 2] supermultiplets: Dalitz and collaborators (1977b) esti-

mate that such mixing will be small. At first sight, therefore, it 

seems that the sum rule in equation (3.30) provides a better, and more 

specific, test of the assignment of the AD35 (1940) state to the 

N = 3 [56, 1] supermultiplet than our less ambitious procedure of 

estimating merely the mean non-strange supermultiplet mass using the 

parameters of the Isgur-Karl model. However, the whole analysis of 

Dalitz et al. (1977b) is dependent on the neglect of spin-tensor 

forces. Such tensor forces can mix A states of the same total 

angular momentum, J, within the N = 2 band and also, of course, 

they can mix the tD35 states of the N = 3 [56, 1],  [70,  2],  [56, 3_I 

and [70, 3] supermultiplets. 	Since the analysis of Isgur and 

Karl (Isgur 1980 and references therein) suggests that spin-tensor 

forces are indeed important in determining the masses and mixing of 

the individual states of SU(6) flavourxspin 
 0 0(3) supermultiplets, 

the status of the sum rule in equation (3.30) for the tD35 (1940) is 

somewhat obscure. In fact, the detailed predictions of the Isgur-Karl 



model for the N = 2 states (Isgur and Karl 1979a) indicate that the 

P31 (1940), classified by Dalitz et al. (1977b) as a pure N = 2 

[56, 2+1state,  is actually an almost complete mixture of N = 2 [56, 2+1 

and [70, 0+]  basis states. 

In view of all these uncertainties, we content ourselves for the 

present with examining the zeroth-order, non-strange, mean masses of 

the N = 3 supermultiplets in an attempt to gain a first indication of 

whether or not an assignment of the AD35 (1940) to the N = 3 [56, 1] 

supermultiplet is at all plausible, postponing until Chapter 6 a 

detailed study of the tD35 (1940) state within the framework of the 

Isgur-Karl model with due-inclusion of hyperfine effects. In this 

respect, our present analysis is more akin to the earlier analysis of 

Horgan (1976a), who discussed such mean masses in the context of his 

STJ(6) 	 . flavourxspin mass fits. Horgan predicted the central mass value 

of the N = 3 [56, 1] supermultiplet to be around 2080 ± 50 MeV, 

about 100 MeV higher than our value for the mean mass of the non- 

strange sector. 	Given the fundamental differences of approach of 

the Isgur-Karl Hamiltonian, which includes an SU(6) 	 . - flavourxspin 

independent anharmonic perturbation, U(r..), together with spin- 

tensor interactions, and of Horgan, who introduces SU(6) 	 - flavourxspin 

dependent anharinonic perturbations and does not include tensor forces, 

the two estimates are surprisingly close. In fact, the algebraic 

structure of our results for the N = 3 [56, 1],  [70, 2] and [56, 3] 

supermultiplets may be obtained from the more general results of Horgan 

(1976a) by identifying the parameter a 4  (in Horgan's notation) with 

the (in principle, independent) parameter b 4 . 	Phenomenologically, 

Horgan found the values (Horgan 1976a): 

a4 	= 	2000 MeV 	 (3.32a) 

b4 	= 	2100 MeV, 	 (3.32b) 
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thus lending support to Isgur and Karl's (and-our) less general treat-

ment of anharinonic perturbations. 

In contrast to these approaches, all based on the non-relativistic 

harmonic oscillator quark model, Cutkosky and Hendrick (1977a, 1977b) 

investigated the status of the N = 3 [56, 1] supermultiplet in a quark 

model based on the relativistic string picture of confinement. Their 

model depicts a non-strange baryon as a system of three light quarks 

bound together by "strings" which represent gluon fields. The leading 

term in the potential energy of the baryon system is proportional to 

the minimum total string length needed to connect the three quarks in 

a given configuration. To represent phenomenologically the kinetic 

energy and momentum carried by the strings, a fourth constituent is 

added to the baryon: the monad, which is assumed to be a colourless, 

massless, neutral, scalar particle. Cutkosky and Hendrick refer to 

the baryon system composed of three quarks and a monad bound by 

string-length-potential interactions as the 4C model, and to the 

more conventional picture of a baryon as composed of three quarks 

interacting via -string-length-potentials as the 3C model. 

The three quarks need not lie along a single string in either 

the 3C or 4C models; a 3-string vertex is allowed and at least one 

string is attached to each quark. In the 3C model, the minimum-

length configuration has three strings meeting at 1200,  provided all 

interior angles of the quark triangle are less than 1200,  as in-

dicated in Figure 4(a); otherwise, there are two strings meeting 

at the obtuse-angle vertex, as in Fig. 4(b). In the 4C model, the 

minimum-length configuration always has two strings attached to the 

monad. One of these strings joins a single quark to the monad 

whilst the other string is part of a minimum-string-length system 

which joins the monad and the other two quarks, as in Figures 5(a) 



A 

(a) 	 (b) 

Figure 4 	Minimum 'string-length 

configurations in the 

3C mod el 



(ci) 	 (b) 

Figure 5 	Minimum- string- length 

configurations in the 

4C model 
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and 5(b). In both Figures 4 and 5, the solid lines represent gluon 

strings. 

Cutkosky and Hendrick (1977b) found that, in the 3C model, the 

mean mass of the N = 3 [56, 1] supermultiplet came out more than 

200 MeV too high for the AD35 (1940) to be accommodated in this 

supermultiplet, even although the (56, 1 	was found tobe the 

lowest-lying of the N = 3 superinultiplets. These authors obtained 

qualitative agreement for the mean positions of other STJ(6) flavourxspin 

® 0(3) supermultiplets, but no attempt was made to perform detailed 

fits including hyperfine splittings. 	By way of contrast, they 

found that the 4C model provided an adequate picture of the N = 3 

[56, 1] superinultiplet in which the monad is in an orbital angular 

momentum L = 1 state relative to the three quarks in a symmetric 

ground state, in much the same way that the bag can be in an L = 1 

state relative to the symmetric 3-quark state to give a low-lying 

[56, 11 superinultiplet in the MIT bag model (Rebbi 1976 and 

references therein). In terms of their 4C model, therefore, the 

D35 (1940) appears to be a good candidate for a new type of baryon, 

in which gluonic degrees of freedom are excited. 

What conclusions can we come to? It is certainly true that 

the Isgur-Karl Hamiltonian has had more success than any other quark 

model in fitting the enormous amount of baryon data available for 

both negative- and positive-parity states to the N = 1 and N = 2 

oscillator levels, respectively. In view of this, it seems entirely 

reasonable to take this model as the most reliable guide to the baryon 

spectrum, and examine the model's predictions for the N = 3 states. 

In the approximation of neglecting hyperfine interactions, and taking 

Isgur and Karl's parameters determined from their fit to the N = 2 

level (Isgur 1980 and references therein), we predict a mean mass for 
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the non-strange sector of the N = 3 [56, 1] supermultiplet only 

45 MeV above the quoted mass, 1940 ± 30 MeV, for the AD35 (1940) 

(Cutkosky 1980). While it is clear that hyperfine interactions will 

mix and shift the masses of the A states at the N = 3 oscillator 

level (which effects we shall study in detail in Chapter 6), it 

seems impressive that such a constrained and simple model as the one 

described in this chapter can get so close to the mass of the AD35 

(1940), with no "fine tuning" of the three parameters E, 0 and 

A. We therefore conclude that, contrary to the claim of Cutkosky and 

Hendrick (1977a, 1977b), the AD35 (1940) does not constitute unam-

biguous evidence for some new degree of freedom inside baryons. We 

shall see in Chapter 6 that a more detailed investigation including 

hyperfine effects serves to strengthen this conclusion. 



-64- 

CUADPVD I. 

THE 2-BODY SYSTEM - A PROTOTYPE CALCULATION 

4.1 	Introduction 

In this chapter, we consider the group-theoretic aspects of the 

simpler problem of a system of two equal-mass particles. We have in 

mind, for example, applications to quark-antiquark bound states, but, 

in view of the present unhappy state of meson spectroscopy, our main 

purpose must be pedagogic; the calculations presented here serve as 

prototypes for the 3-quark problem which we discuss in the next 

chapter. 

The 2-body system possesses many interesting symmetries if the 

particles are bound by harmonic forces, notably the spatial symmetries 

associated with the dynamical (or degeneracy) group, U(3), and the 

spectrum-generating group, Sp(6,R), of the 3-dimensional oscillator. 

These groups can be used to classify the oscillator states in a manner 

akin to that described in §2.1 for the 3-quark system and which we 

review briefly in §4.2. In §4.3, we examine the effect on the energy 

spectrum of allowing a small, anharmonic potential in the Hamiltonian, 

using first-order perturbation theory and explicit oscillator wave-

functions. We then re-interpret this effect as the breaking of the 

dynamical U(3) symmetry of the unperturbed system by examining 

explicitly the transformation properties of the perturbing potential 

under the subgroup, SU(3), of U(3) in §4.4 and by employing the 

spectrum-generating group, Sp(6,R), in §4.5 to re-derive the perturbed 

spectrum. 
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4.2 A brief review of the classification of the 3-dimensional 

oscillator states 

A system of two quarks, each of mass m, bound by an harmonic 

potential, is described by a Hamiltonian of the form: 

2 
H 	= 	2m + E 	i/2m + I Kr 12 , 	 (4.1) 

i=l 

where r 	 = !.l - .E2  and K is a measure of the oscillator strength.
12  

We can rewrite H as: 

H 	= 	2m + 
	+ K l2 	

' 	 (4.2) 

where the reduced mass of the system p = I 
2MII P=12 and we have 

neglected a term representing the kinetic energy of translation of the 

system as a whole. 

The general excited state of this Hamiltonian is given by 

(Dicke and Wittke 1960): 

m + 2. + +(n_2.Y2 
n2.m 	

= 	N(L_)2. (a+l) 	
) 	 (4.3)  

where N is anormalisation constant, 	represents the ground
000 

state of the 3-dimensional harmonic oscillator and the creation operators 

are defined by analogy with equations (2.1a) - (2.1b). Denoting E.12 

by r throughout the remainder of this chapter, and recalling that: 

1 
a + 	x,y,z 	(4.4) 

1 	 1 	r2a ar. 
1. 

where, in the present context, &+ = 2Kp, we can easily generate the 

required wavefunctions. The "stretched" states of angular momentum, 

for which m = 2., are displayed in Table 4.1 for the following values 

of the principal quantum number, n: 0,1,2,3 and 4: 



in 

"Stretched" wavefunction 

a 3  I - 1cz 2r2  0 
000 	

iT 
372 	

e 	- 

1 	 lll = - 	3/2 (x + i
y) e a 

IT 

a2 	a3  
2 	'222 = 	

(x + iy)2 ea 

2OO 	
/r•  2 a - a (_ 	Cr2 - 

it 
3/2  

3 	
= 	a 3 	a 3  

333 	
- 372 (x + iy) 3  

311 = 
- 	a (2)2 - 	)(x+iy)e 2  

IT 

4 	
= 	__ 

3/2 (x + iy) 

it 

ct 	a 3  
422 = 	

(3,22 - a_2)Cx + iy)2 e_22 

Y 	1T 

-2 2 
400 = 2I 	

- 20a r + 

Table 4.1 "Stretched" wavefunctions of the 3-dimensional harmonic 

oscillator for n = 0,1,2,3 and 4. 

We may immediately infer the following from the considerations of 

Chapter 2: 

A. 	The nine bilinear quantities: 

E.. 	 a.} , 	i,j = 1,2,3 	 (4.5) 

which satisfy the commutation relations: 
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[E1 	EkJ 	= 	ójk E1 -.lit Ekj 	 (4.6) 

and each of which commutes with the oscillator Hamiltonian in equation 

(4.2), which in turn is proportional to their diagonal sum: 

3 

H-2m 	= 	wE E.. , 	 (47) 
i1 	 11 	 - 

serve as the generators of the U(3) dynamical symmetry group of the 

3-dimensional harmonic oscillator. The physical oscillator states 

corresponding to principal quantum number n (where n is associated 

with the U(l) subgroup of U(3) corresponding to the structure 

U(3) " SU(3) x  U(l)) transform as the symmetric irreducible representa-

tion {n,O,O} of U(3), whose dimension,(n+l)(n+2), is immediately 

recognisable as the degeneracy of the n 
th  level of the 3-dimensional 

harmonic oscillator. 

B. 	The twenty-one bilinear quantities: 

S AB= 	{aA,  aB} , 	A,B = 1,2,..., 6 	(4.8) 

where 

a 	
= (a,a) E a. 	, 	i = 1,2,3 	 (4.9) 

= 1 (annihilation operator), 

2 (creation operator) 

generate the spectrum-generating group, Sp(6,R), of the 3-dimensional 

harmonic oscillator. The physical oscillator states corresponding to 

principal quantum number, n, are associated with the symmetric irre-

ducible representation <n,O,O> of Sp(6,R). 

Fradkin (1965) provides us with a direct physical interpretation 

of the generators of the dynamical symmetry group U(3) in terms of the 

geometry of the corresponding classical 3-dimensional harmonic 



oscillator. By noting that the eigenvalue problem for the quantum-

mechanical 3-dimensional harmonic oscillator - has a separable solution 

in terms of both Cartesian and spherical-polar coordinates, Fradkin 

is able to construct the conserved symmetric tensor operator: 

 [ 	
- ^ 

. 	 1 = 	 -+ (mw) 2  r jrjj , 	= x,y,z 	(4.10) 

in addition to the orbital angular momentum vector operator: 

=r x P 	 (4.11) 

which is also conserved. Examination of the corresponding classical 

equation of motion: 

p+mw2r 	0, 	 (4.12) 

whose general solution corresponds to an elliptical orbit, leads 	
-- - 

Fradkin to deduce that A.., the classical counterpart of the operator 

in equation (4.10), completely specifies the orientation of the 

elliptical orbit (in a manner analogous to the Runge-Lenz vector for 

the Kepler problem), whilst the orbital angular momentum vector, L, 

serves to define the normal to the plane of the orbit. It is precisely - 

because of the periodic nature of the motion, i.e. because the orbit 

is re-entrant, that one can construct conserved quantities which provide 

a complete description of the orbit. In the (non-relativistic) Kepler 

problem, for which the dynamical symmetry group is 0(4), the orbit is 

also elliptical and there exists a conserved vector quantity, A (the 

Runge-Lenz vector) whose direction is from the force centre at one of 

the foci to the centre of the ellipse and whose magnitude is related 

to the eccentricity of the ellipse. In contrast, for the 3-dimensional 

harmonic oscillator problem, the force centre is located at the centre 

of the elliptical orbit so that the orientation of the major axis cannot 



I .  

be specified by a vector with a unique sense. In this case, the 

necessary quantity to define the principal axes of the orbit is a 

symmetric tensor. 

Observing that the trace of the quantum-mechanical symmetric 

tensor operator, A1 	is (neglecting the term 2m in equation (4.2)) 

just the Hamiltonian, Fradkin is able to make the connection with the 

corresponding dynamical symmetry group U(3) by demonstrating how the 

remaining five independent components of the traceless symmetric 

tensor operator derived from A.. ii  can be combined to form a new set 

of five independent operators which, taken together with the three 

independent components of the orbital angular momentum vector 

operator, satisfy the commutation relations characteristic of the 

generators of the subgroup, SU(3), of IJ(3). 

For our part, we shall be concerned in this chapter with the 

following chain of subgroup embeddings: 

(6, R) 

SO(3) 0 Sp(2,R) 	771J(3) 

SO (3) 0 U(l) 

Consider, firstly, the subgroup embedding Sp(6,R) 	SO(3) 0 Sp(2,R). 

The irreducible representations of Sp(6,R) of interest to us, and their 

reductions under this embedding, are as follows: 

n = 0: 	1 	1 0 	 (4.13a) 

n1: 	6302 	 (4.13b) 

n=2: 	 (4.13c) 

n3: 	 0. 	®a 	 (4.13d) 

n = 4: 126 	(9e51) 0 5 • (705(D3)0 3S(5l)0 1 	 (4.13e) 
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In addition, the physicaloscillator states at level n must belong 

to the symmetric irreducible representation <n> of Sp(2,R), since the 

creation operators, a, satisfy Bose commutation relations. The 

generators of Sp(2,R), S, are given by 

S 	= 	S AB 	
dij 	= 	s 	 (4.14) 

	

As in Chapter 2, we may think of the S 	as carrying a quantumaa  
number which we call "pseudospin". In particular, the third component 

of pseudospin is given by the eigenvalue of the operator: 

P3  = 	S12 = 	 = 	{a.1,a12} = 	+ 

(4.15) 

where the eigenvalue of P3  acting on the tensor operator, T, is 

defined to be p 3  if: 

[P 3 ,T] = 	p3 .T . 	 (4.16) 

We see from equation (4.15) that the operator P 3 *is simply propor-

tional to the unperturbed oscillator Hamiltonian. Since: 

	

+nl 
	!!(a+ )n 

	

 
L3, (a.) j 	= (4.17) 

we assign a pseudospin ofn to the physical oscillator states with 

principal quantum number, n. This assignment of pseudospin is con-

sistent with the dimensionality of the Sp(2,R) representation, <n>, 

which is equal to n+l = 2(i) + I. 

Recalling that the physical states at level n necessarily 

belong to an (n+l)-dimensional irreducible representation of Sp(2,R), 

we can immediately deduce from equations (4.13a) - (4.13e) that the 

angular momentum content of the first five oscillator levels is: 

11 = 0 	k= 0 	 (4.18a) 

n = 1 	Z= 1 	 (4. 18b) 
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n = 2: 	=2 9 k= 0 	 (4.18c) 

n = 3: 2.. = 	= 1 	 (4.18d) 

n'= 4: 	2. = 42. = 22. 	= 0 . 	(4.18e) 

Alternatively, we may consider the subgroup embedding 

U(3) 	SO(3) ® U(l), where the U(l) subgroup is generated by the 

operator P3  or, equivalently, by the number operator, n . The 

irreducible representations of U(3) of interest to us, and their 

reductions under this embedding, are as follows: 

n 	= 	0 : lløl (4.19a) 

n 	1 	: 3 3 0 1 (4.19b) 

n 	= 	2 	: 6 (.P ® 1 (4.19c) 

n 	= 	3 : 10 (73) 0 13  (4. 19d) 

n 	= 	4 	: 15 (95(D1) 0 i4 . (4.19e) 

Thus, for n = 0,1,2,3 and 4, we deduce the angular momentum content 

given by equations (4.18a) - (4.18e). In general, the symmetric irre-

ducible representation {n,0,0} of U(3) has angular momentum content: 

{n,0,0} D 9.. =n • 9.. = n - 2 • 2. = n - 4 $ .... 	2. = {} 

(4.20) 
odd if n is even 

4.3 Explicit wavefunction techniques 

An harmonic potential is an unlikely candidate for the confining 

potential between two quarks in the real world. Accordingly, we choose 

to mimic' the model of Isgur and Karl for baryons (Isgur 1980 and 

references therein) by. writing the confining potential between two 

quarks, V(r), as: 

V(r)= 	Kr2  + U(r) 	 (4.21) 
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so that the Hamiltonian in equation (4.2) becomes: 

2 
H 	= 	2m ~ 2. /2ii + 1Kr2  + U(r) . 	 (4.22) 

In the absence of the anharmonic perturbation, U(r), the eigen-

states of H are just the oscillator eigenstates, ip x , given by 

equation (4.3), with energy: 

E ° 	= 2m + (n + )w . 	 (ti = 1) 	 (4.23) 

We calculate the change in energy, 	 due to inclusion of the 

anharmonic term, U(r), in H, using first-order perturbation theory 

with the oscillator eigenstates as basis states. The resulting energy 

of the state j 
n2,m 

(r) is: 

= E° + AEflL = 2m + (n + )w+ <n,9IU(r) In,2>. 

(4.24) 

The matrix elements <n,9.U(r) In,> which occur for n = 0,1,2,3 and 4 

are given in Table 4.2. 

The notation used in Table 4.2 is as follows: 

A 
= 

	
3-F' 2  d3r U(r)e2r 	 (4.25a) 

c 	

f 
B 	

= 3/2 
 

d 3r 
- cL 2 r 2  r2  U(r)e (4.25b) 

ct 7  
C 	

= 	3/2 	I 
1 

d 3 r 
- 2r2  

r 14  U(r)e (4.25c) 
•11 

____ 
D 	

= 	3/2 •11 
 f-d 3 r -ct 2 r 2  

 r6  U(r)e (4.25d) 

11 

E 	
= 	¶3/2 j 

I d 3 r 
-c2r2 

r 8U(r)e 	. (4.25e) 

Note that in proceeding from one level to the next, only one extra 

parameter appears in the formulae in Table 4.2. 
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ii 	 <n,lU(r)In,> 

0 	<O,OIU(r)IO,O> = A 

1 	<1,1ITJ(r)I1,1> = 

2 	<2,21U(r)12,2> = 

<2,OIU(r)12,0> = 	- 2B + 

3 	<3,31U(r)13,3> = 

<3,1lU(r) 13,1> = 	- + 

4 	<4,4IU(r)14,4> 
16 

= ttE  
<4,21U(r)14,2> = - t5 D + TE  

<4,0 lU(r) 14,0> 
15 

= 
13 	4 	2 

- 5B + tC - 	+ 

	

Table 4.2 	Matrix elements of the perturbing potential, !J(r). 

4.4 Transformation properties of U(r) under U(3) and SU(3) 

It is easy to see, using the Wigner-Eckart theorem, that 

<n, 9.IU(r) n,2> vanishes unless U(r) couples to the U(3) product 

{n,0,0} 0 {n,O,O}. It is not difficult to show, using Young diagram 

techniques (Lichtenberg 1970), that in U(3) (or SU(3)): 

	

n = 0: 	1 @ 1 	= 	1 	 (4.26a) 

	

n = 1: 	®3 	= 	18 	 (4.26b) 

	

n = 2: 	6 0 6 	= 	8 • 27 	 (4.26c) 

= 3i 	0 1= 	 27 	64 - 	 (4.26d) 

	

n=:.--0 15= 	1 e 8 @ 27 	64 0 125 . 	(4.26e) 

In terms of dimensions, the general case reads: 

n 
(n+1)(n+2) 0 (n+l)(n+2) 	= 	Z (p+l) 3 	 (4.27) 

P=O 
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We can simplify matters even further by noting that U(r) is a 

central potential, and therefore must transform as a scalar under the 

rotation group, SO(3). 	Thus, U(r) can couple only to those irre- 

ducible representations of SU(3) on the RHS of equations (4.26a)-

(4.26e) which have an 2. = 0 component. These are: 

1, 27 and 125 
	

(4.28) 

We turn now to the problem of constructing tensor operators which 

transform as the 2. = 0 component of the SU(3) irreducible representa- 

tions ! 27 and 125, out of the creation and annihilation operators, 

+i 	+ 
1 

a. 	
1 

and a., respectively. Introduce the notation a 	a 1  . and recall 

that an irreducible tensor operator of SU(3) denoted by: 

11 	 i 
T 	 (4.29) 

•] q  

is necessarily symmetric in both sets of indices {i 19 i 2 ,..., i} and 

12 9 *" 1q1 and is necessarily traceless (Dalitz 1965). 

We illustrate the method with a simple example, viz, the construc-

tion of the tensor operator transforming as 8 of SU(3). The re-

quired tensor is necessarily of the form: 

S 	= 	a 1a. . 	 (4.30) 

All that remains to do is to construct a traceless tensor, T'., from 

S 1 .. Clearly: 

T1 . = 	s -  - 4 i5k 	 (4.31) 

i.e. 	T 1 . = 	a1a. - l
( + )  51 	, 	 (4.32) 

noting a' ak = a.a . In.Table 4.3, we have listed the irreducible 

tensor operators transforming as 1' 8, 27, 64 and 125, respectively, 

under SU(3): 
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SU(3) irreducible 	 SU(3) irreducible tensor operator 
representation 

	

[!]fl0 	 T = 1 

i 	i 	1 + 	i 

	

n=1 	
T. =a a. -.(a.a)â. 

ii 	ii 	1+  
Tk2, = a a aka2,  - 	.a - 1) [5 k   a2, + 3 perms.] 

+ 52. (ak
. - l)(a.a)(6k63 + 1 perm.] 

ijk 	i j k 	1 + 	i aaka  a 

	

n=3 	 2.mn [64] 	 T 	=aaaa 2,  a  m  a  n 	7 -- 	 2, (a.a-2)[6 	inn 
—--  

+ 8 perms.] 

1 	+ 	ij k in + 	.a - 2)(a+ .  a - 1)[ 6  2, 6  a a + 17 pers.] 

-- 2) 	- 1)  () 
[6 1 2,6 J 6k + 

+ 5 perms.] 

ijk 	ijkL 	 1 -- 

	

[125] n=4 	
T mnpq = a a a a a m n p q a a a - -

9
(a .a - 3) x 

—-- 

x [61 3k ak aa a + 15 perms.] 
in 	 n p q 

1 	+ 	+ 	ij k2, 
+ --( . - 3) 	. - 2)[6 6 a a apaq  + 

+ 17 perms.] 

1 	+ 	+ 	+ 	- 
- 9.8.7(-..- 3)( 
	2)(a 	1) x 

	

I 	jk 	2, 
x [6 -6 	6 	a a + -'95 perms.] 

m 	n 	p 	q 	 -- •- 

1 	 + 	- 
! - 3)(. 	- 2)(a+ 
	+ 
.a - 1)(a .a)x +  

x [61 
in 	n ô 	p 	

q + 23 perms.] 	-- 	 - 

- 	- 	- 

-TABLE- 4.3 	Irreducible tensor operators of SU(3). 
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One note of caution, however: the total number of tensor indices 

before we perform any contractions must equal 2n, where n is the 

principal quantum number of the relevant level. Thus, strictly speaking, 

the tensor operator T 1 	in equation (4.32) represents the 8 in the 

SU(3) product: 

= 	 • 	 (4.33) 

In order to construct the tensor operator transforming as 8 in 

e.g. the SU(3) product: 

= !!L 	, 	 (4.34) 

we must consider a tensor of the form: 

l 1 
S. . 	= 	a a a. a. 	. 	 (4.35) 

13 2 	 1 2 

This is trivially symmetric in { 1 ,I2} and { 1 i 2} because of the 

commutation relations: 

[a1 a] 	= 	ó j 	 (4.36a) 

[a1 ,a3 ] 	=O; 	[a.,a.] 	0 . 	 (4.36b) 

We must construct from S. . 	a tensor T 1 . which is traceless. After 

some labour, we find the required tensor is: 

T 1 . 	= 	(a.a - 1) [a1a. - 	 . 	(4.37) 

Note that this is just the T 1 . of equation (4.32) multiplied by a 

function of a+.a E n, the number operator. 

The general form of expression for the tensor operators t11rI' L)n 

21 n' 	1n and [125], where [iJ, [8]n. ..... denotes the tensor 

operator transforming as 1, 8, ... 	 in the outer product 

{n,O} 0 {n,O} of STJ(3), is as follows: 
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Wn=r = 	n(n-1) 	.... 	(n - r + 	1) 	[l] (4.38a) 

= 	(n-1) (n-2) 	. ...(n - r + 1) (4.38b) 

Z)n=r = 	(n-2) (n-3) .... (n - r + 1) 2-1n=2 
(4.38c) 

= 	(n-3) (n-4) .... (n - r + 1) [64] 3  (4.38d) 

[1251 = 	(n-4) (n-5) .... (n - r + 1) [125] 4 	. (4.38e) 

Note that in equations (4.38a) - (4.38e), and throughout the remainder 

of this chapter, we make repeated use of the fact that: 

+ 
a .a 	E 	n . 	 (4.39) 

Of more immediate interest to us are the 2.. = 0 components of the 

tensor operators transforming as 1 (trivially, the number 1), 27 and 

125. These we obtain by performing further contractions, e.g. in the 

case of 27 (appearing in the STJ(3) product T 0 6 = 1 	8 9 27), 

with the corresponding irreducible tensor operator given by (c.f. 

Table 4.3): 
i i.., 

T.l.L 	, 	 (4.40) 
l2 

we contract i 1  with i 2  ndj 1  with 	to obtain: 

T 	= 	a1a1a.a. - (a.a)(a.a - 1) . 	 (4.41) 

	

33 	 33 	- - -- 

We can rewrite this in terms of ñ and 2,2  where: 

	

2. 	angular momentum operator = i(axa). 	(4.42) 

After some labour, we obtain 

T 7°  = 	T
i 
 = 	 - 2. 2  . 	 (4.43) 

 ii 

Similarly, we find: 
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iijj 	i I j j 	 8 ++ 	i I T125 = Tkkz = a a a a a .aa2,a2, + 	..-2) ( .!-3)a a aa 27 

+ 	(a.a)(a.a-1)(a.a-2)(a.a-3) 	(4.44) 54 — 

which reduces to: 

T 2 	= {n(n+i)- j212+  {.y(n-2)(rt_3) - 2(2n-1)}1:n(n+l) - £2 1 

+ 	n(n-1) (n-2) (n-3) . 	 (4.45) 
49 

We are now in a position to calculate matrix elements of the per-

turbing potential: 

AE 	 = n, 2.. (4.46) 

We consider the cases n = 0,1,2,3 and 4 and, in what follows, 8, i, 

A, ji, 0, •, p, a and T denote undetermined reduced matrix elements: 

= 0 	: 	<0, OIU(r) 10,0> = 	8<0,01 [T°] 	10,0> 	= 	8 (4.47) 

= 1 	: 	<1,1 IU(r) 11,1> = 	yl,ll 	[T ° ] 	I1,i (4.48) 
- 	n=l 

= 	y<1,1I1.[T °] 0 I1,1>= 	y (4.49) 

n 	=-2 	: 	<2,2,IU(r)l2,2> = A<2, 94 [T°] 	21 2,2.>  + 

+ 	u<2,2..j01 	2 1 2, R.> 	, (4.50) 

where 	Z = 0,2 

=A<2,ZI2.1[T ° ] 012,Ji>+ 

27 	n=2 
(4.51) 

so that 

<2,21U(r)12,2> = 	2A - p .(4.52a) 

<2, OIU(r) 	2,0> = 	2A + 5i 	. (4.52b) 
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n = 3: <3,ZIU(r)I3,2> = 1 	=3 I3'> -+ 

+ 4)<3,2.I[T 	]=3 I3L>, 

where 2 = 1,3 

= 0<3,2.j3.2.l[T ° ] 
o
13> + 

+4)<3,Il.[T°] 	=2''> 

(4.53) .  

(4.54) 

so that: 

<3,31U(r) 3,3> 	= 	60 - 34) 	 (4.-  55a) 

<3,1IU(r)13,1> 	= 	60 + 74) . 	 (4.55b) 

n = 4: <4,1U(r)14,> = p<4,I [TT0] 4I4> +
27 

+ T<4,9..1 [T 	3 	414,L> , 	(4.56) 
125 n= 

where 2 = 0,2,4 

= p<4,I4.3.2.l[TL_0] 	1 4 ,> + 1 n=0 

• a<4 , 2 I 2 .l[T ° J 	4,2.> 27 n2 

• T< 4 ,I[T1 4 1 4 ,> 	 (4.57) 125 n= 

so that 	<4,41U(r)14,4> = 24p - 12a + 	 (4.58a) 

<4,21U(r)14,2> = 
812 

24p + 16a + --r 	 (4.58b) 

<4,OIU(r) 	4,0> = 
4148  

+ 28a + 	. 	 (4.58c) 
27 

It is at this point that the limitations of using the dynamical 

symmetry group, U(3), to predict the spectrum of excited states are 

fully revealed to us. We can only compare matrix elements of the 

perturbation U(r) sandwiched between states having the same value of n, 



the principal quantum number, i.e. between states belonging to the 

same irreducible representation of SIJ(3). We have no way of deciding 

how the reduced matrix elements which appear in the n = 2 case are 

related to the reduced matrix elements which appear in the n = 3 

case, for example. Thus, it is not possible to make a direct com-

parison between the results obtained for AE 	 in §4.3 using 

explicit wavefunction techniques and those obtained from a group 

theory point of view via the dynamical symmetry group, TJ(3). How-

ever, for n 4, we can contrive some sort of check on our results, 

e.g. for n = 4: 

Define 
	

Ap-= 	<4,pIU(r)14,p> - <4,qU(r)4,q> 
	

(4.59) 

It serves as 'a useful check on our results that both the explicit cal-

culations and the group theory considerations predict that the ratio: 

1O A 2 	7t 	= 	
1 . 	 (4.60) 

3L: - 06 
0 

 

4.5 	Spectrum-generating group, Sp(6,R) of the 3-dimensional 

harmonic oscillator 

In this section, we re-address the problem of computing group-

theoretically the effect on the oscillator energy levels of switching 

on the anharinonic perturbation, U(r). We are interested in cal-

culating the matrix elements: 

AE 	= <n,LIU(r)In,> 
	

(4.61) 

Since the states {In,i>:2., = n, n-2. .... } are associated with the 

irreducible representation <n,0,0> of Sp(6,R), the Wigner-Eckart 
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theorem implies that U(r) had better couple to the Sp(6,R) product 

<n,O,O> 0 <n,O,O> ; otherwise, AE 	 = 0. 

We assume that U(r) admits a power series expansion in powers 

of r2 : 

U(r) 	= 	
E 8(2)(2)i 	, 	 (4.62) 

- 	3 

where the strengths of each order, j, are governed by the values of 

the distinct coupling constants, a (2j 	justification for this 

form is two-fold. Firstly, a very large class of potentials may be 

expected to have an expansion as in equation (4.62), which is con-

sistent with a perturbation scheme based on the dominant harmonic 

term having j = 1. Secondly, without invoking non-linear realisa-

tions, the Sp(6,R) algebra of the operators SAB  in equation (4.8) 

is associated with a Fock space in which only multinomials, bilinear 

in aA, have a well-defined action. If we write equation (4.62) 

in the form: 

TJ(r) 	= 	z (2j) u(2j) 	, 	 (4.63) 
.3 

then the form of equation (4.62) ensures that each term u(2j) trans-

forms as a component of the totally symmetric representation 

<2j,0,0> of Sp(6,R). Hence U(r) transforms as a sum of symmetric 

irreducible representations of the group Sp(6,R), so that, at the 

oscillator level, n, the splitting pattern is controlled by tensor 

operators transforming under Sp(6,R) as: 

<2n,0,0> 	<2n-2,0,0> 	........ • <4,0,0> • <2,0,0> 	<0,0,0>. 

(4.64) 

Equation (4.64) explains why only one extra parameter appears in the 

formulae in Table 4.2 for AE 	as we pass from one level to the 
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next. As n increases by one unit, one additional tensor operator 

enters equation (4.64) and contributes to the splitting pattern. For 

example, at the n = 1 level, only tensor operators transforming as 

1 (<0,0,0>) or 21 (<2,0,0>) under Sp(6,R) can contribute, whilst, 

at the n = 2 level, the only contributions come from operators 

transforming as 1, 21 or 126 (<4,0,0>) under Sp(6,R). 

The SO(3) transformation properties of U 	 are easy to deduce. 

Since U(r) is a central potential, U 	 must transform as a 

scalar, !' under S0(3), for all 3. 

In order to identify the Sp(2,R) content of U 	it is suf- 

ficient to note that, since 	r = 	[a(r) + a(r)], the ex- 

(2) 
pansion of U 	yields amonoinial of degree 23 which is totally 

symmetric under permutations of the Sp(2,R) indices. It follows that 

transforms under Sp(2,R) as a sum of components of the sym-

metric representation, <23>. This corresponds to the statement that 

has pseudospin j. It should be noted that not every component 

of U 
(2j)  contributesto the values of the energy levels. The only 

effective component of U 	 is necessarily a U(l) singlet, which 

ensures that its third component of pseudospin is zero. Any other 

value merely gives a contribution to the matrix element 

which automatically vanishes. In terms of the 

monomial constituting 	 this condition corresponds to the fact 

that, besides being symmetric under the interchange of creation and 

annihilation operators, it is of the same degree in these operators 

taken separately. 

We only concern ourselves in what follows with the cases n = 0 2 1 

and 2. We shall need the following Sp(6,R) outer products: 
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n=O: 101 = 

n 	: 606 = 

n=2: 21021 = 

1 

1 • 14 19 21 

1142190 	126189 

(4.65a) 

(4.65b) 

(4.65c) 

In addition, the following Sp(6,R) =0  SO(3) 0 Sp(2,R) reductions 
will prove useful: 

. :10 11 	 (4.66a) 

21 	(5$1)0330l 	 (4.66b) 

126 	(995l)0 5 e (7e53)0 3 e (5e1)0 1 . 	(4.66c) 

We address each of the levels n = 0, 1 and 2, in turn: 

n = 0: 	The tensor operator which contributes must transform as 

(1;1;1) under (Sp(6,R); SO(3); Sp(2,R)) and have third component of 

pseudospin = 0. The Wigner-Eckart theorem then gives: 

AE 0.'0= 	
<0,OIU(r) 10,0> 	= < II Oil >.I, 	(4.67) 

where <11011> denotes the appropriate reduced matrix element. 

n = 1: 	In addition to the operator which contributes at the n = 0 

level, the only other operator which can contribute must transform as 

(21;1;3) under (Sp(6,R); S0(3); Sp(2,R)) and have third component of 

pseudospin = 0. This operator is proportional to the unperturbed 

oscillator Hamiltonian or, equivalently, the number operator, n. 

The Wigner-Eckart theorem then gives: 

= 	<l,lIU(r)I1,l> 	= < II01I>. 1 + < Illll>.l (4.68) 

where <11011 > is the same reduced matrix element as appears in the 

n = 0 case, by virtue of the fact that Sp(6,R) is the spectrum-  

generating group for the 3-dimensional oscillator - we shall expand 
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on this point in the next chapter - and < 1 	is a new reduced 

matrix element required by the Wigner-Eckart theorem. 

n = 2: 	In addition to the two operators which contribute at the 

n = 1 level, there is one further operator which contributes. This 

transforms as (126;1;5) under (Sp(6,R); S0(3); Sp(2,R)) and necessarily 

has vanishing third component of pseudospin. In order to construct 

this operator, we must first construct the tensor operator which 

transforms as 126 under Sp(6,R). This is clearly: 

126 
XD = aAaBaCaD + 23 permutations 	 (4.69) 

126 

	

i.e. X— = 4[{S,S cD } + {SAC ,  SBD} + {S, SBC}] . 	(4.70)lu  
ABCD 

The next step is to identify the component of this tensor which trans-

forms as 1 0 5 under S0(3) 0 Sp(2,R). Using the notation: 

(4.71) 
SO(3)0 Sp(2,R) 

we deduce: 

T!-. 	= 	 + 	 + 
	

(4.72) 
iaijyjS 	ictiyjjf5 	icd6jjy 

26 
In particular, the component of T1  with vanishing third component 

105 
of pseudospin is: 	 -- 

(T2 ) 	= 	 + 2x!. 	 (4.73) 
.1®.5 	ililj2j2 	ili2jlj2 

Omitting terms with P 3 j 0, we find, on the other hand: 

4a 4  (r2)2 	= 	2 (a+) 2   + (a') 2a2 + (! + 	a) 2 
	(4.74) 

	

i.e 4c&4 (r2 ) 2 	= 	. F,126 	+ 2X-- 	1 	(4.75) 
12 L ililj2j2 	ili2jlj2J 
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so that we deduce: 

(T) 	= 	48c(r2 ) 2  . 	 (4.76) 
105 P3  0 

It is worthwhile pausing for a moment at this stage to consider 

the reduction Sp(6,R) n U(3). We find,, in particular, that: 

ll 
	

(4.77a) 

21 n l668 
	

(4.77b) 

(4.77c) 

The only irreducible representations of U(3) occurring on the RHS of 

equations (4.77a) - (4.77c), which contain an 	9 = 0, P 3  = 0 component, 

are 	1 	and 	27, in agreement with our conclusions from §4.4 that the 

only operators contributing to AE 2 	necessarily transform as I or 

27 under SU(3) or U(3). 	Further, we are now in a position to under- 

stand the limitations of using the dynamical symmetry group, U(3), to 

infer the pattern of splittings. We know that the tensor operators 

responsible for the breaking of the dynamical U(3) symmetry of the 

n = 2 level of the unperturbed system must transform as 1 or 27 

under SU(3) or TJ(3). It is clear from equations (4.77a) - (4.77c) 

that the symmetry-breaking operator transforming as 1 under U(3) will be 

a linear combination of the U(3) singlets occurring in the reduction 

of 1, 21 and 126 of Sp(6,R), whilst the tensor operator transforming 

as a U(3) singlet and responsible for the symmetry-breaking at the n = 1 

level will be a different linear combination of the U(3) singlets 

occurring in the reduction of 1 and 21 of Sp(6,R). Since we have 

not attempted to determine precisely what these linear combinations 

are, we cannot deduce any relation between the reduced matrix elements 

A 	and p occurring in equations (4.48) - (4.52b). 



The final stage of the calculation is to construct expectation 

values of (T - -) 	by an explicit algebraic formula. In order to 
!°. p3= 0 

achieve this, we must consider the full subgroup labelling chain: 

Sp(6,R) 

S0(3) 	 U (3) øSR) 

S0(3) 0 U(l) 

which includes the reduction U(3) M,  S0(3) 0 U(l), the U(l) being 

generated by P 3 , or, equivalently, by n. 

126 
We assume that we can expand (T-) - 	in terms of the quadratic 

L®5 P 3=O 

Casimir invariants of Sp(6,R) and the subgrouç6of Sp(6,R) which we have 

been considering. We set: 

126 = 	a C2{l} + bC2 {3} + cC2<2> + dC2 <6> + eC2 (3], 
!®. P3=o 

(4.78) 

iC2 {n} 
where 	C2<n> 

C2 [n] 

represents the quadratic Casimir invariant operator of 

Sp(n) . At this stage a, b, c, d and e are unknown coefficients 

SO(n)J 

which we must determine. We do so by considering five matrix elements 

of 	(T!) 	which we know from the Wigner-Eckart theorem must 
1®. P3=0 	 -

126 
vanish. The five states from which we form matrix elements of 

105 P =0 
have the following transformation properties under (Sp(6,R); S0(3)T 

Sp(2,R); U(3); U(l) ): 
3 
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(4.79a) 

(4.79b) 

(4.79c) 

(4.79d) 

(4.79e) 

The eigenvalues of the quadratic Casimir operators are evaluated using 

the standard formulae for U(n), Sp(n) and SO(n), respectively (Jarvis 

1979): 

C2  {n} 	= 	E X(X + n+1- 2r) 	 : (4.80a) 

C2  <n> 	
= 2E A(A + n + 2 - 2r) 	 <4.80b) 

C2  [n]
=  2E X(A +n -- 2r) 	 (4.80c) 

where A 1 , A2 .....is the partition specifying the Young. diagram 

with row lengths All  A ......The elgenvalues are given in 

Table 4.4: 

Group 

State Sp(6,R) S0(3) Sp(2,R) U(3) U(1) 

14 4 6 3 1 

24 4 16 4 4 

(14;3;3;8;l) 24 4 16 6 0 

(14;5;1;8;1) 24 12 0 6 0 

(21;3;1;8;1) 32 4 0 6 0 

TABLE 4.4 Eigenvalues of quadratic Casimir invariant operators 
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We obtain the following set of five simultaneous equations in 

a,b,c,d and e: 

a + 3b + 6c + 14d + 4e = 0 

4a + 4b + 16c + 24d + 4e 	= 0 

6b + 16c + 24d + 4e 	= 0 

6b +24d+12e = 0 

6b +32d+4e = 0. 

(4.81a) 

(4.8lb) 

(4.8lc) 

(4.8ld) 

(4.8le). 

These have the unique solution: 

a = 6, 	b = 12, 	c = -1, d = -2, e = -2 (4.82) 

giving: 

= 6C2 {l} + 12C 2 {3} - 	- 2C2<6> - 2C2 [3].(4.83) 

!®.. P3=0 

For physical oscillator states, only symmetric irreducible representa-

tions occur and equations (4.80a) - (4.80c) reduce to the simpler set 

of formulae: 

c 2 {1} n (4.84a) 

C2 {3} = 	n(n+2) (4.84b) 

=. 	2n(n+2) (4.84c) 

= 	2n (n+6) (4.84d) 

C2[3] = 	22, 2 	, (4.84e) 

leading to: 

1 126 = 	n(3n-1) - 2,2 	 (4.85) 
!®5 '30 	

0 

Thus, using the Wigner-Eckart theorem, we deduce for the n = 2 level: 

= <2,5tIU(r)12,Z> 	= 	< 11 0  IJ > .1+<II1 II>. 2  

+ <112 11 >.{2.5-i(+l)}, 	(4.86) 



where <11011> and  <11111> are the same reduced matrix elements as 

appear in the n = 1 case, and 4 2 11 > is a new reduced matrix element 

required by the Wigner-Eckart theorem. 

Recalling the results for the n = 0 and n = 1 levels from 

equations (4.67) and (4.68), we deduce: 

	

<o,OIU(r) 10,0> 	= 	< Ito II > 	 (4.87a) 

	

<l,lIU(r)ll,l> 	= 	< 11011> + <11111> 	 (4.87b) 

	

<2,2U(r)12,2> 	= 	< 11011> + 2< 11 1 11 >  + 4<11211> 	(4.87c) 

	

<2,OITJ(r)12,0> 	= 	< 11011> + 2 <11 1 11> +10<11211> . 	(4.87d) 

We obtain complete agreement with the results obtained by explicit 

wavefunction techniques in §4.3 for the n = 0, 1 and 2 levels, 

as displayed in Table 4.2, if we make the correspondence: 

<11011> 	A 	 (4.88a) 

<11 1 11 > 	= 	-A + 	 (4.88b) 

<11211> 	= 	-A - 	+ 	. 	 (4.88c) 

Again, it is interesting to digress for a moment and consider the 

subgroup U(3) of Sp(6,R) in a little more detail. We can use the method 

of expanding an operator in terms of quadratic Casimir invariants to 

check the validity of equation (4.43). Recalling the embedding 

U(3) 	S0(3) 0 U(1), we set: 

£ =0 
T 	= 	C2{1} + xC2 {3} + yC 2 [3] (4.89) 

where x and y are coefficients to be determined, and we have set 

the coefficient of c 2 {l} equal to unity, for convenience. Since, in 

U(3),. 	8 3 does not contain 27, we may write: 



<.iT70I.> 	= 	0 	 (4.90a) 

<ITI> 	= 	0 , 	 (4.90b) 
27 

obtaining two simultaneous equations for x and y, viz.: 

1+3x+4y = 	0 (4.91a) 

4+4x+4y = 	0 (4.9lb) 

with the unique solution: 

X 	= 	-3, 	y 	= 	2 . 	 (4.92) 

Thus: 

= 	c 2 {l} - 3C 2 {3} + 2C2[3] . 	 (4.93) 

It is interesting to note that the precise linear combination of 

c 2{i} and C2 {3} which appears in equation (4.93) is simply 

(-3)x the quadratic Casimir invariant operator of SU(3). Acting on 

physical oscillator states, equation (4.93) reduces to: 

T 7° 	= 	-2{n(n+3) - 2i 2 } 	 (4.94) 

by virtue of equations (4.84a), (4..84b) and (4.84e). Since an overall multi-

plicative factor in T 7°  is unimportant, the validity of equation 

(4.43) is upheld. 

Remarkably, it appears not to be possible to construct an 

expression for T 2  solely in terms of Casimir invariant operators. 
- 9=0 

Our considerations for T 27 	suggest that we should try to expand 

9 	i =0 	 i 	 i T125  n terms of the independent Casimir nvariant operators of 

SU(3), SO(3) and U(l), which we may take as C 2 '{3} and C 3 T {3}, 

C2 [3] and C1 {l}, respectively. The notation C 2 1  {3} and C31{3} 
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denotes, respectively, the quadratic and cubic Casimir invariant 

operators of SU(3), as distinct from their U(3) counterparts C 2 {3} 

and C 3{3}, and C1 {l} represents the linear Casimir invariant 

operator of U(l) [C 2 {11 =  (C1 {l}) 2 ]. 	The most general form we 

can write down for T 	 is then: 
125 

T 125 	- 	x + Y c2 [3] + Z(C2 [3]) 2 	 (4.95) 

where 

X = A(C1{1})' + B(C 1 {l}) 3  + D(C 1 {l}) 2 + FC 1{l} + G(C 1 {l}) 2 C2 '{3} 

+ HC{l}C 2 '{3}+ JC 1{l}C3 t {3} + KC 3 T {3} + L(C 2 '{3}) 2  + MC 2 '{3} 

(4.96a) 

Y = N(C1 {1}) 2  + PC 1{l} + QC 2 '{3} + R 	 (4.96b) 

and A, B, D, F, G, H, J K, L, M, N, P, Q, R and Z denote coefficients 

to be determined. 

We can demonstrate that the expression for T 2  in equation 

(4.95) must be incomplete by noting, in particular, that 125 is not 

contained in the SU(3) outer product: 

U' 0 15' = 1 8 0 8 $ 10 • 10 G 27 27 • 35 35 	64 

(4.97) 

where 15' is the SU(3) irreducible representation corresponding to 

the partition X 1  = A2  = 1 [as distinct from 15, which corres- 

ponds to X 1  = 	A2  = 01. 	This fact, coupled with the reduction: 

(L2) 
	

(4.98) 

under the embedding U(3) 	S0(3) 0 U(l), enables one to deduce that 

the matrix elements of T 2 	sandwiched between the (SU(3); S0(3); U(l)) 

states: 
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( 1 .' ; 7 	!) 	 (4.99a) 

(15  ; .. . 14) 	 (4.99b) 

(1 	; I ; 14) 	 (4.99c) 

necessarily vanish. We thus obtain the following set of simultaneous 

equations for X, Y and Z: - 

X + 24Y + 576Z = 	0 (4.100a) 

X + 12Y + 144Z = 	0 (4.100b) 

X + 	4Y + 	16Z = 	0 (4.100c) 

with the unique (trivial) solution: 

x = Y = Z = 0. 	 (4.101) 

This proves that the expression for T 	 in equation (4.95) must 
125 

be incomplete. 	 - 

Although we do not pursue this particular example any further, we 

take away from it an important clue which will prove to be of use to 

us in the next chapter, viz., we must be careful to take proper account 

of the possibility of including non-Casimir invariant operators in 

expressions such as the one in equation (4.95). We shall elaborate on 

this point in the next chapter. 
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Sp(12,R) AND ANHARMONIC SYMMETRY-BREAKING 

The introduction of anhartuonic 2-body potentials into the har-

monic oscillator quark model for baryons represents a breaking of 

the symmetry in the U(6) degeneracy group sector. The aim of this 

chapter is to amplify this assertion. In particular, we shall show 

how the first-order mass splittings in equations (3.15) and (3.17)- 

(3.20) for the N = 2 level, derived in Chapter 3 by explicit state-

function and operator techniques, can be understood both qualitatively 

and quantitatively as a mass formula of the Gell-Mann - Okubo type. 

We shall also demonstrate how these techniques can be usefully applied 

at the N = 3 level. 

To bring about this understanding, it is necessary to consider 

not just the degeneracy group U(6) but the spectrum-generating group 

Sp(12,R) as well. This follows from the fact that the anharmonic 

perturbation is a function of all twelve components of the vector 

(aA) through the dependence of the potential upon p and A and hence 

upon a(p), a(p), a(A) and a(A). We assume that this potential 

may be cast in the form: 

V(p,A) = U(/ip) + U(- -k -- p +/ A) + U(- 	P _,4X) (5.1) 

where (c.f. equation (4.62)): 

U(Jp) 	= 	
(2j)j 	 (5.2) 

3 

and 	
(2j) 	= 0,1,2,.... are arbitrary coefficients independent of p. 

The justification for this form, quite apart from the requirement that 

it be totally symmetric and composed of 2-body contributions, was given 

in §4.5. It follows that: 
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V(p,X) 	= 	E 	(2j) v(2j) , 	 (5.3) 
3 

where, at each order j, the perturbation V 	is realised as an 

homogeneous polynomial in P and X and hence in aA,  of degree 23. The 

strengths of each order are governed by the values of the distinct 

coupling constants, a 2j)•  The symmetry of equation (5.1) and the 

form of equation (5.2) ensure,' furthermore, that each term 

transforms as a component of the totally symmetric tensor representation 

<2j> of Sp(12,R). 

It is necessary, in order to achieve a quantitative understanding 

of the level splitting, to determine the transformation properties of 

the various terms V 	 with respect to the subgroups of Sp(12,R) 

discussed in Chapter 2. By construction, V 
(2j)  isboth an 0(3) and 

an S 3  singlet, transforming as [0] = 	and (3) = S, respectively. 

With regard to its 0(2) properties, it is convenient to make use 

once more of the (ç, )-basis introduced in equations (2.32a) -. 

(2.32b). In terms of these vectors: 

= (p.p)3 + [(-p + .Q A).(-p + 	X)] + 

+ [(-2 - -
A).(-p - -X)] 	 (5.4) 

= 	 + 
43 

+ [(_l)(_1)]J} 	 (55) 

i.e. 

= -L- 	 + 	 + 
43 

+ (_1 2)•3} 	 (5.6) 

• 2ir 
1 	/ 3  

where w = e 	• 	Hence: 
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= 	 (5.7) 

= 	.{2(.n)2 + (•)(mii) 	 (5.8) 

={8(t.)3 + 	 + (. c) 3+ (.r)} 	(5.9) 

and so on. 

The first of these terms is just the familiar harmonic term: 

= 3(p2 + A 2 ) 
	

(5.10) 

which is both an 0(2) and an 0(6) singlet. However, V (4) is not an 

0(6) singlet, although it is a linear combination of 0(2) singlets. 

It is, in fact, a linear combination of terms transforming as 

0(3) 0 0(2) singlet members of the 0(6) representations [4] = 105 

and [0] = 1. The term V 6 	is not even an 0(2) singlet, involving 

as it does a term transforming as the S 3  singlet S state of the 

0(2) representation [6] = 

In order to identify the Sp(2,R) content of V 	it suffices 

to expand C and r in terms of the annihilation and creation 

operators a  = a.a, distinguished by a = 1 and 2, respectively. 

Since p = L 	+ a (p)] and A = -L [a(A) + a+(;\)] 

the expansion of V 	 yields a monomial of degree 2j which is 

totally symmetric under permutations of the indices, a. It follows 

that V 	 transforms under Sp(2,R) as a sum of components of the 

symmetric representation <2j> . 	In the terminology appropriate to 

the locally-isomorphic group S0(2,1), this corresponds to the 

statement that V 2j)  haspseudospin, j. 

As in §4.5, we stress that not every component of V 	 contributes 

to the values of the energy levels. Quite apart from the requirement 

used in constructing V 	 that it be an 0(3) 0 S 3  singlet, the only 
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effective component is necessarily a U(1) singlet, thus ensuring that 

its third component of pseudospin is zero. In the case j = 1, for 

example, this implies that the effective part of V 	given in 

equation (5.10), is simply proportional to the Hamiltonian H 

(modulo the term 3m) in equation (2.6). 

	

The fact that the operators V 	 are not, for each value of 

j, associated with a single irreducible representation of 0(6), 

makes it convenient to consider other subgroups of Sp(12,R). These 

include the group Sp(6,R) with generators: 

j 

	

ab 	 ab 

PQ S 	iaja 
 = SpQbS 	= S ia•  ct b 	 (5.11) 

= 

with P, Q = 1,2.....6. This subgroup appears in the labelling 

chain: 

Sp(12,R) =1  Sp(6,R) 0 0(2) = Sp(2,R) 0 0(3) 0 0(2) 
U(l) 0 S0(3) 0 S 3 	 (5.12) 

which is an alternative to the chain in equation (2.28). That the 

labelling chain in equation (5.12) is useful in dealing with 

is a consequence of this operator transforming as a symmetric, 0(3) 

singlet, pseudospin j, component of the symmetric Sp(12,R) repre-

sentation <2j> . The branching rules for the embeddings 

Sp(12,R) 	Sp(6,R) 0 0(2) and Sp(6,R) 	Sp(2,R) 0 0(3) (King 1975) 

then ensure that this component necessarily belongs to the irreducible 

representation <2j> of Sp(6,R). 

Having established the transformation properties of the terms 

in the perturbation expansion of the potential in equation (5.3), it 

is necessary to discuss their role in determining the breaking of the 

degeneracy at each level, N. This involves calculating: 

= 	<NIV2lN> 	j = 0,1,2,... 	(5.13) 
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which, by virtue of the Wigner-Eckart theorem, factorises into the 

product of a reduced matrix element signified by <11 2 j 11 > and an 
appropriate Clebsch-Gordan coefficient. There are many approaches 

to such calculations: here we describe a method which has been dis-

cussed in detail by Jarvis (1979) and which leads to an algebraic 

formula of the Gell-Mann - Okubo type, together with a very simple 

method of checking the results. 

At each level N, the relevant operators are those coupling to 

the Sp(12,R) product: 

<N> 0 <N> = <2N> • <2N-2> @ <2N-4> • <2N-1,1> 0 <2N-3,1> 0 

(5.14) 

The operators transforming as <0> = 1 and <2> = 78 of Sp(12,R), 

corresponding to j = 0 and j = 1, produce no splitting, since the 

former gives an overall shift in energy: 

= 	<11011> 	 (5 .15a) 

and the latter is just an harmonic term giving: 

= 	c 1 {1} <11 2  11 > , 	 ( 5.15b) 

where C 1 {1}, the linear Casimir invariant operator of U(l), has 

eigenvalue N. At the N = 0 and N = 1 levels, there are no further 

contributions as can be seen from equation (5.14). However, the N = 2 

level is split by the single operator V, transforming as 

<4> = 1365 of Sp(12,R), whilst the N = 3 level is split by the 

operators V 	and V 6 ', transforming as <4> = 1365 and 

<6> = 12376 of Sp(12,R), respectively. 

Concentrating on the lowest-order anharmonic term with j = 2, 

this is labelled with respect to the groups Sp(12,R); Sp(6,R); Sp(2,R); 

U(l); 0(3); 0(2); S 3  by: 



<0 ; <4> ; <4> ; {O} ; [0] ; [0] ; (3) 	 (5.16a) 

= 	1365 ;l26;.5 	; 	1 	; 	1 	; 	1 ; S 	. 	 (5.16b) 

It is a straightforward task to construct the corresponding tensor 

operator in the enveloping algebra of Sp(12,R). It is a symmetrised 

second—order product of generators. An arbitrary component of 

<4> = 1365 is simply: 

XABCD 	{S, ScD }  + { SAC ,  SBD }  + { SAD ,  SBc} • 	(5.17) 

In the Sp(6,R) 0 0(2) basis of Sp(12,R), representing A E iaa by 

Pa, the tensor operator transforming as the 126 0 1 component of 

1365 is clearly: 

ab cd 
PQRS 	PaQbRcSd + XP aRbQcSd + XPaSbQcRd)6 . 	(5.18) 

and similarly, in the Sp(2,R) 0 0(3) basis of Sp(6,R), replacing P by 

ice, the tensor operator transforming as the 5 0 1 component of 

126 is 

y6 	38kyô + iajyk8LÔ + i 	 ijôk 	 (5.19) z 	(Y 

The P 3  = 0 component of 	 and thus the desired tensor operator, 

is: 

° 	z1122 . 	 (5.20) 

Using these definitions, we can rewrite V 
(4) in terms of the 

various combinations {SAB,SCD}, each of which is a U(l) 0 0(3) 0 0(2) 

invariant. There are fourteen independent ways of using the tensors 

ijab 	aa 
6 , 6 	and c , ensuring a = 1,2 equally often, to make such 

invariants, and we find, after some labour, that: 



jaljal' S.b2ib2 }  +{Sia1ibl S ja2jb2 	ialjal } + 1S 	,Sib2jb2} 

+ {Sialjbj Sia2jb2 }  + {Si Ubi'  Sib2.  2 + {S:j.2, S.bljb2} 

+ Sj aljb2 }  + { Sil.b2 ,  Sjblj a2 }  + {Sialja2 1b1b2 

• is 
ialjb2' Sil.b2 }  + { Sia1jb2 Siblj a2 } +{ Sia1j a2 Sb1jb2 }  

• {Sialjb2 Sj a.lib2 }  + { Sil.b2 ,  Sjblia2} *• (5.21) 

This operator can be expanded in terms of the set of quadratic Casimir 

invariant operators of Sp(12,R) and its subgroups. The algebraic 

formula involves several different labelling chains including those 

containing U(6), 0(6) and Sp(2,R) which we have already mentioned. 

The required embedding diagram is presented in Figure 6. Thirteen 

different subgroups are involved and Table 5.1 defines these sub-

groups by specifying their generators explicitly: 



Sp(l 

Sp(6,R)i 

Sp(2 

Sp(6,R 

U(1 
	

(3)' 

UM 	
- 3 

Figure 6 
	

Sp(12R) [abetting chains 
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Subgroup Generators 

U(l) E13 6 1 

 E. 
iaj b 

 E 	óab iajb 

U(6) E1 	= S121  

Sp(2,R) 5IcJ$ô IJ 

Sp(4,R) S TJiVj 

Sp(6,R) SPaQb 6 ab 

0(2) 0. iaj b 

0(3) 
0ab 
iaj b 

0(6) 
czI3 = S 1 e 	= E1 	- 

(0 i 	+ 0i 	
+ iO 1. 	- iO i

ljl 	2j2 	132 	2j 

Sp(6,R)' JIM  E 
	+ JJMEMI 

TABLE 5.1 Subgroup generators 

In Table 5.1, the Sp(4,R) index U 	a. 

The corresponding quadratic Casimir invariant operators are 

defined in Table 5.2. 

In addition, the expansion of V 	 as a component of XABCD 

involves at least one of the operators: 

ijkabcd ctyS 
E 	= 	6 6 6 E c { Sik ,  S.d6b} 	 (5.22a) 

and 

16 ij 6  k2. ab cd ct3 I' = 
	6 6 	C 	yd iackcy' SLbojd }  • 	(5.22b) 

These are invariants of the subgroups Sp(4,R) 0 0(3) and Sp(6,R) 0 0(2), 



-101- 	 - 

Subgroup 
	

Quadratic Casimir invariant operator 

13(1) C 211 =12{S iai ia2' Sibl  jb2 

13(2) C2  21 = I{S 
ial i.b2' Sibl  ja2 

13(3) C2{3} = 	{Siai ja2' 5jbl ib2 

13(6) C2{6} = 	{Siai jb2'  Sibl  ia2 

Sp(2,R) C2<2> = {Siai ia2' Si bl I b2 - {S ial ia 1' Sib2  jb21 

Sp(4,R) C2<4> = {Siai ib2' S• 1 . I a2 - 	{s. ia1 1 •bl' Sia2  jb21 

Sp(6,R) C2<6> = { S jai ja2' S jbi I ib2 - {s ial jai,. S ib2 jb2 }  

0(2) c[2] 	= {S ial ib2' Sibl  ja2' - {Sj.a1 ib2'  Sia].  jb21 

0(3) c2[3] 	= {S ial ja2' S jbi I ib2 - {s ial ja 2' Sibl  jb2} 

0(6) C2[61 	= { S jai jb2'  Sibl  ia2 - {Siai jb2'  Siai  jb2} 

13(3)' C2{3'I = 41({Siai jb2' S ibi ja2 	ial jb2' Sib].  ia2 

+ 	ial ja2' Sibl  ib2 	({s ial 3b2' Sjai  ib2 

+ {s. ial jb2'ial 3b2 	ial ja + {s 	2' Sibl  jb2} 

Sp(6,R)' 	C2<6'> = {Siai jb2'  Sib].  ia2" + {Siai jb2'  Sib].  ja21 

- {S. ial ja2' Sibl  jb21 

TABLE 5.2 	Quadratic Casimir invariant operators 

respectively, of Sp(12,R), in that they commute with the generators of 

these groups. However, they do not belong to the enveloping algebra 

of these groups and are thus not Casimir operators. 

The eigenvalues of the quadratic Casimir invariant operators are 

easily evaluated. For example, the quadratic Casimir operator of 
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Sp(12,R) is given by 

C2<12> 	= 
	

DB CA SAD SBC 
	 (5.23) 

the corresponding eigenvalues may be evaluated by making use of the 

finite-dimensional representations discussed in Chapter 2 and defined 

by equation (2.14) and its generalisations. This implies that: 

C2 : apaQ  ......-+ J 
DB 

 J 
CA

[Sn
, 

[S BC'  a
paQ .... I] =C2<12>aaQ .... 

(5.24) 

Since the results depend only on the commutation relations, they are 

identical with the finite -dimensional compact case which gives rise 

to the formulae in equations (4.80a) - (4.80c) (Jarvis 1979); in 

particular: 

C 
2 
 <12> 	= 21E  r r (X +l4-2r) 

r 
(5.25) 

in the representation <X 1 , X 2 .....> 

By comparison, the computation of the aigenvalues of the non-

Casimir invariant operators, E and Z', is much less straightforward. 

Interestingly enough, E and E' are not unrelated: simple mani-

pulation of the definitions reveals that: 

C2 [6] + C 2  [3] - 4C 2 {3'} . 	(5.26) 

Accordingly, we shall treat E and E' together by assuming that the 

corresponding symmetry group is Sp(s) 0 0(t), and denote this 

generic form by A. In common with quadratic Casimir operators, A is 

a bilinear operator of the form {S, S'} , and must, therefore, be 

evaluated on tensor operator states, T, by means of double com-

mutators [S, [S', TI] + [S', [S,T]] . We define: 

KL 
A 	= 	J°  J 	G' G 	IcKy' SJcSL8} 	 (5.27) 
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for a, a = 1,2. s and I,J = 1,2 	• t, where G and 

J are the symmetric and antisyinmetric metrics of 0(t) and Sp(s), 

respectively. We find for - symmetric tensors X1  X1 	and XIJ8KY, 

in particular, that: 

	

[A, x I 	= 	- Ia 	 Ia 2(s+t)X 	 (5.28a) 

	

[A, X' 	] 	= 	- 4(s+t)X 	-4G XL' 	G 	+ 4J 

	

IaJ 	 IctJB 	, IJ aN$ a$ IYJ6 

(5.28b) 

LM 	 124 
[A, X 	] =IaJKy 	 IaJKy - 6(s+t)X 	- 4GIJ 	G - 4G XIaLBMYG 

- 4 G1 
XLaJMy  G + 4JXIaJTKY iaT 

+ 4 	
r IctJa 

	

X 	 + 4JctyXIaJKT aT . 	(5.28c) 

If we consider only the "stretched" states of angular momentum, as in 

equation (2.36), neither the J traces, nor the G LM  traces (other 

than those corresponding to [a+(C).a+(fl)]a  in the original tensor) 

can contribute, and we have explicitly: 

[A, X1 	I 	= _'4(S+tj)Xiaj (5.29a) 

[A, G' XIjB ] 	= - 4(s+2t)G'Xiaj (5.29b) 

[A, XIJKy  I 	= - 6(S+t)XIJKy (5.29c) 

[A, G'XIJ8KI] .- .- (6s -'- lOt + 8)GXIJ8Ky. (5.29d) 

The eigenvalues of both the relevant quadratic Casimirinvariant 

operators and the non-Casimir invariant operator, Z, are set out 

for the cases N = 2 and N = 3 in Tables 5.3 and 5.4, respectively. 



[Su(6) ,L '] 	[20, 11 	 [70, ?i 	 [56 21 	 [70, 01 	 [56, 0] 

Subgroup H 	Represen- 	
Represen- c2(H) 	

Represen- 	 Represen- c2(H) 
	

Represen- C (H) 
tation 	

c2(H) 	tation 	 tation 	C2(H) 	tation 	 tation 	2 

UM {2} = 12 4 {2} = 12 4 {2} = 12 {2} = 
4 (2) = 12 

 {2}= T 2 {2} = 3 6 {2} = 3 6 {2} = 3 6 {2} = 3 6 

 {12}= 4 {2} = 6 8 (2) = 6 8 {2} = 6 8 (2) = 6 8 

U(3)' {2,1}= 8 6 (2) = 6 8 {2,1}= 8 6 {2} = 6 8 (0) = 1 0 

U(6) {2} = 21 14 {2} = 21 14 {2} = 21 14 {2} = 21 14 (2) = 21 14 

Sp(2,R) <2> = 3 16 <2> = 3 16 <2> = 3 16 <2> = 3 16 <2> = 3 16 

Sp(4,R) <12 >= 5 16 <2> = 10 24 <2> = 10 24 <2> = 10 24 <2> = 10 24 

Sp(6,R) <12>= 14 24 <2> = 21 32 <2> = 21 32 <2> = 21 32 <2> = 21 32 

Sp(6,R)' <2> = 21 32 <2> = 21 32 <2> = 21 32 <2> = 21 32 <2> = 21 32 

Sp(12,R) <2> = 78 56 <2> = 78 56 <2> = 78 56 <2> = 78 56 <2> = 78 56 

0(2) [0,] *= 1* 0 [2] = 	-2 8 [o]= 1 0 [2] = 	-2 8 [0] = 1 0 

0(3) = 3 4 [2] = 5 12 [2] 	= 5 12 101 = 1 0 [0] = 1 0 

0(6) = 20 24 [2] = 20 24 [2] 	= 20 24 [2] = 20 24 [0] = 1 0 

Z -28 -28 -28 -40 -40 

AE 
0 16 32 40 80 

TABLE 5.3 Subgroup representation labels and operator eigenvalues for N = 2 



TABLE 5.4: 	Subgroup representation labels and operator elgenvalues for N = 3. 

[SU(6) ,L] 	[70,2] 	[20,3-1,[56,3- 1 	[70,3] 	[20,1-1,[56,1 - 1 	[70,1] 	 [70,1] 

Subgroup 	Represen- C2 (H) 	Represen- C2 (H) 	Represen- C 2 (H) 	Represen- C2 (H) 	Represen- C 2 (H) 	Represen- C 2 (H) 
H 	 tation 	 tation 	 tation 	 tation 	 tation 	 tation 

U(l) {3} -13  9 {3} =13  9 (31 =1 9 {31 
-! 

131 =13 {} =! 9 

 {2,1} = 2' 6 {3} =4 12 (31 = 4 12 (3) = 4 12 {3} = 4 12 (3) = 4 12 

(2,11 = 2' 6 {2,1} = 2' 6 

 {2,1} = 8 9 (3) = 10 15 (31 = 10 15 {3} = 10 15 (3) = 10 15 {2,1} = 8. 9 

{3,1) = 15 11 131 = 10 15 {3,1} = 15 11 {3} = 10 15 {3,1} = 15 11 {3,1} = 15 11 

{1}=3 3 (11=3 3 

U(6) {3} = 56' 24 {3} = 56 24 {3) = 56 24 {3} = 56 24 {3} = 56 24 (3) = 56 24 

Sp(2,R) <3> = 4 30 <3> = 4 30 <3> = 4 30 <3> = 4 30 <3> = 4 30 <3> = 4 30 

Sp(4,R) <2,1> = 16 30 <3> = 20 42 <3> = 20 42 <3> = 20 42 <3> = 20 42 <3> = 20 42 

<2,1> = 16 30 <2,1> = 16 30 

Sp(6,R) <2,1> = 64 42 <3> = 56 54 <3> = 56 54 <3> = 56 54 <3> = 56 54 <2,1> = 64 42 

Sp(6,R)' <3> = 56 54 <3> = 56 54 <3> = 56 54 <3> = 56 54 <3> = 56 54 <3> = 56 54 

Sp(12,R) <3> = 364 90 <3> = 364 90 <3> = 364 90 <3> = 364 90 <3> = 364 90 <3> = 364 90 

0(2) [1] = 2i 2 [3] = 2 3  18 [i-] = 
2 [3] = 2 3  18 [1] = 21 2 [1] = 2 1  2 

0(3) [2] = 5 12 [3] = 7 24 [3] = 7 24 [1] = 3 4 [1] = 3 4 [1] = 3 4 

0(6) [3] = 50 42 [3] = 50 42 [3] = 50 42 [3] = 50 42 [3] = 50 42 [3] = 50 42 

[1] =6 10 [1] = 	6 10 

-42 -42 -42 ' -62 -62 -62 

E 
iI 	4 11 	> 32 48 80 88 - - 
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In terms of these eigenvalues, the resulting mass formula is: 

= <11411 >{3C 2  {11 + 6C 2 {2} + 12C2 {3} - 4C 2 {3'} - 	- C2 <4> 

- C2<6> + 3C2<6> - C2<12> - C2[2] - 3c 2 [31 + E} 	(5.30) 

whence the values of AE4/<lI4 > displayed in Tables 5.3 and 5.4. 

Several aspects of this formula should be noted. Firstly, the use 

of overcomplete, non-commuting labelling chains is familiar from similar 

studies of symmetry-breaking in non-relativistic SU(6) f lavourx spin 

models, where the labelling structure is: 

SU(6) 

SU(4) 1 ®J(2) 	ØU (l) 
 YXa 	Y 

SU(2) 1 'ø U(l) 0 SU(2) 

where Wignerts SU(4)ixa and the familiar SU(2) YXal are used to place dif-

ferent isospin and hypercharge submultiplets into larger multiplets (Jarvis, 

1980). In the present context, the over-completeness means that for 

Sp(12,R), just as for SU(6) flavourxspin , the formula is only useful 

for states which are associated with a unique irreducible representation 

of each subgroup. Thus, for example, at the N = 3 level, the formula 

fails for the [70, 1] states which may be diagonalised with respect 

to 0(6), as in Table 2.1, but not simultaneously with respect to 

Sp(6,R). This cannot be avoided and is a result of the proliferation 

of subgroup chains and labels, necessitated by the non-maximal nature 

of the embedding of the physical symmetry group U(l) 0 S0() 0 S' -3  in Sp(l2,R) 

The validity of equation (5.30) is easy to verify once it is 

	

realised that the expansion of V 	in the form of components of 

XCD in equation (5.17) can involve only quadratic Casimir operators 
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and I (or I'). This is accomplished by expanding V 	 in terms 

of the complete set of fourteen operators with arbitrary coefficients. 

These coefficients are then fixed by noting that <NIV 4 IN> is 

necessarily zero for all the states bearing the (Sp(12,R); Sp(6,R); 

Sp(2,R)) labels: 

(<1>; <1>; <1>); (<1 2>; <2>; <2>); (<12>;  <2>; <0>); (<1 2>; <1 2>; <2>); 

(<1 2 >; <12>;  <0>); (<2>; <12>;  <2>;); (<2>; <12>;  <0>); (<2>; <2> <0>), 

(5.31) 

in a manner analogous to the derivation of equation (4.83). In fact, 

the last seven of the sets of labels in equation (5.31) provide enough 

information, through eighteen conditions, to £ ix and check the co-

efficients (King 1980). 

Notice, therefore, that the formula for AE
(4)  in equation (5.30) 

has been derived in two different ways. The first method involved the 

explicit construction of V 	 and its re-expression in terms of 

quadratic Casimir operators and a single non-Casimir invariant operator, 

I. 	The second approach determined the coefficients of the Casimir 

operators and I by taking matrix elements of V 	 between specific 

states of the N = 0, 1 and 2 levels which necessarily vanish by 

virtue of the Wigner-Eckart theorem. The equivalence of these two 

approaches demonstrates explicitly that the reduced matrix element 

<II 411> is indeed independent of the state label, N. Recall that 

we anticipated this result in writing down equations (4.68) and 

(4.86), stating there that the result was characteristic of a 

spectrum-generating algebra. 

Returning to the application of equation (5.30), the splittings 

for N = 2 are precisely those of Chapter 3 with: 

<II 4  II 	. = 	..(44'a - .!j.b + 	c), 	(5.32) 



where a, b and c are the familiar Isgur-Karl parameters defined in 

equations (3.13a) - (3.13c). The total effect of the anhartnonic per -

turbation on the N = 2 states is given by: 

=AE 	 + AE 	 + AE 	 (5.33) 

where: 

= 	<11011> 	 (5.34a) 

= 	cl 	2 11 > 	 (5.34b) 

and AE 	 is given by equation (5.30). The correspondence between 

the parameters of Isgur and Karl and the reduced matrix elements is 

<11  O 11 > 	H 	a 	E 	E - (3m+3w) 	 (5.35a) 

<11  2 11 > 	- 	+ - b 	0 - 	 (5.35b) 

and <II 411 > 	is given by equation (5.32). 
As we established earlier, in the N = 3 case, there are two 

anharmonic reduced matrix elements, viz. <114 11 > and <116  11 > . In 
fact, as was demonstrated explicitly in Chapter 3, for the states 

belonging to the [56, 11, [70, 21 and [56, 3] SU(6)f1 	rxsin 0 

0(3) supermultiplets, the Clebsch-Gordan coefficient multiplying 

<11 6 II > vanishes, so that the level splittings are again given by 
equation (5.30) in terms of <11411> alone. One of the zeroes has 

the same origin as that appropriate to the N = 2 [20,1 k] super-

multiplet for which AE 	 = 0 by virtue of this supermultiplet 

carrying the Sp(6,R) label <12> = 14. The same argument implies 

that AE 	 = 0 for the N = 3 [70,2): supermultiplet which carries 

the Sp(6,R) label <2,1> = 64 and therefore decouples from V 6  

which transforms as a component of the Sp(6,R) representation 

<6> = 462. 

Other zeroes owe their origin to the SP(6R) subgroup of Sp(12, R) 
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which we encountered (but did not at the time identify as such) in 

Chapter 4 in our study of the single-oscillator problem. The relevance 

of this subgroup stems from the fact that, for physical states, 	>: 

<4V(p,A) Ii> = 3<IU(b" p) > , (5.36) 

implying that matrix elements may be calculated merely by looking at 

the expectation value of (2)3, = 0,1,2 ..... . For the case j = 3, 

it is clear that the SP(6R) 	representation associated with 

is <6> = 462 and that, at the N = 3 level, only those states with 

maximal Sp(6R) assignment <3> = 56 may couple to 	For the 

states constructed in Chapter 2 in terms of a+()  and a(n),  it 

is necessary to examine only the leading power in a+(p).  Any 

factor )  to the total Sp(6,R) and Sp(6,R) 

being non-maximal: the states belonging to the N = 3 [70,2] 

supermultiplet are of this type. Of the remaining monomials, 

CC (N+m) I (N-  P) 	 N
TI 	 ) has leading power p and is therefore 

(N+m) 	(N-m) 
associated with maximal Sp(6,R), whereas 	( 	 ) has 

leading power p 
N-1 and is therefore non-maximal. States of this 

latter form at the N = 3 level belong to the [56,1] and [56,3] 

supermultiplets. Thus, the states belonging to the N = 3 (56,11, 

[70,2] and [56,3] supermultiplets decouple from V 	The level 

splittings produced by V 	 can be calculated from equation (5.30) 

and the results are indicated in Tables 5.3 and 5.4. When combined 

with the results obtained from equations (5.34a) - (5.34b) in the 

manner indicated in equation (5.33), they agree with the explicit 

state-function and operator calculations of Chapter 3. 

However, by virtue of equation (5.36), we need look only to 

S(6R) to recover the splitting pattern of the N = 2 states 

displayed in Figure 3. The considerations of Chapter 4 for the 
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single-oscillator problem imply that the splitting is attributable to. 

126 
a unique symmetry-breaking operator (T- .) 0  (notation:105 3= 

/TSP( 6, R) 
SO(3) øSP(2R)) 1, the form of which we infer directly from equation 

(4.85) to be: 

126 	 ' 	 .- 

(T—) 	N(3N -l)-L2  
10.P30 	

p 	p 	-j: 
(5.37) 

where N denotes the number operator for the p-oscillator and L 
P 	 - 	 -p 

is the corresponding orbital angular momentum operator. It only 

remains to classify the N = 2 states under SP(6R) 	and its rele- 

vant subgroups. To this end, we make the following identifications: 

II; j; 1; 1; .10 > 	IN = 0, L ~)=  0> 	(5.38a) 

.(& IO> 	 !> 	IN = 1, L= 1> 	(5.38b) 

[a1 (&] 2 IO> 	I.i; .; .; 2.; !2>p 	42- 1 N '  = 2, L= 2> 	(5.38c) 

[a(P)] 2 lO>p 	La; .-; !.2.' !fp 	 = 2, L= 0>. (5.38d) 

The intermediate step in equations (5.38a) -  (5.38d) corresponds to 

the classification of the various physical states of the p-oscillator 

under 	sP(6R); U(3); S0(3); Sp(2,R); U(l)> . Note also the 

appearance of normalisation factors on the RHS of equations (5.38a) -  

(5.38d): their inclusion is crucial. 

We illustrate the method by reference to a specific example: 

the N = 2 [56, 0} supermultiplet. We know from equation (3.10) 

that: 

AE [560+]  = 2. <OIuc: (ip)O> + I <oj{[a(p)]2} U(V'ip)[a(P) ] 2lO> . 
— 	2p 	 p 4p 

(5.39) 

Since we are interested only in the relative shifts of the N = 2 states, 

for which the operator, (TL
26  -0 in equation (5.37) is solely 
-- 3 



responsible, we we may consider instead: 

cc 	. 	1; 1; 1; 1; !I (T2-±) 0  Ii; 1; 1; 1; 
[.5 6 ,0' 1 	 -- 	 (5.40) 

+ 	<21; 6; 1; 3; !2kT! 	0 La; ; 1; ..; 12> P 	 105 3=0  

where we have made use of the intermediate step in equations (5.38a) and 

(5.38d). The first term on the RHS of equation (5.40) vanishes by 

virtue of the Wigner-Eckart theorem, and we may use the second step 

in equation (5.38d), together with equation (5.37), to deduce: 

AE'+ 	cc •<Np=2 L=0I{N(3N-1) - !±}IN2 L=O> . 	(5.41) 

Similarly, one finds: 

cc 	N 14 p 
=2, L =0I{N p 	p 

(3N -1) - £2 1IN =2, -p p 	 p 
L =0> 

p 
(5.42) 

[7O,O] 

cc 	
3 N =2, L 	21[N  (3N -1) - L2}IN =2, L=2> (5.43) 

[56,2  p p 	p p 	p 	p p 

AE. 3 
cc 	-<N 

p 
=2, L =2[N(3N--1) 

p 	p 

2 
- L}IN =2, L =2> 

p 
(5.44) 

[70,2+] p 	p 

AE' = 	0 (by virtue of the Wigner-Eckart theorem). +  
[20,1 	] (5.45) 

The constant of proportionality common to equations (5.41) - (5.45) 

is just a reduced matrix element, <11 	>, as required by the Wigner- 

Eckart theorem. Equations (5.41) - (5.45) then imply: 

+ 	= 
[56,0 ] 

= 

[70,0k ] 

AE' 	= 
[56,2 k ] 

E 702+ ]  = 

15<11 II> 

15 <II II> T ii ii 

6 < II 

3<11 II> 

(5.46a) 

(5.46b) 

(5.46c) 

(5.46d) 

= 	0 	 (5.46e) 120,1  1 
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from which the pattern of splittings of the N = 2 states in Figure 

3 follows, provided <fi 	> < 0. 	If <11 11>>O, the 

pattern is inverted. 
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HYPERFINE INTERACTIONS IN NEGATIVE-PARITY BARYONS 

6.1 	The tD35 (1940) Resonance 

We return in this chapter to study in more detail the suggestion 

by Cutkosky and Hendrick (1977a, 1977b) that the D35(1940) resonance 

may be evidence for new degrees of freedom in the baryon spectrum. In 

Chapter 3, we predicted a mean mass of 1985 MeV for the non-strange 

sector of the N = 3 (56,1] supérmultiplet, to which the D35(1940) 

is most plausibly assigned, and concluded that the D35(1940) did not 

represent unambiguous evidence for gluonic degrees of freedom inside 

baryons. Whilst we worked strictly within the framework of the 

Isgur-Karl model in Chapter 3, we failed to take account of hyperfine 

effects, such as arise from the non-relativistic reduction of one-

gluon-exchange. It is the aim of this chapter to investigate the 

effect of including such hyperfine effects upon the mass and com-

position predicted for the D35(1940) resonance, and to re-examine 

the implications of the result of the most recent phase-shift analysis 

performed by Cutkosky et al. (Cutkosky 1980) for the mass of the 

iD35(1940) resonant state, viz.: 

M(D35) 	= 	1940 ± 30 MeV. 	 (6.1) 

We may rewrite the effective hyperfine interaction between two 

quarks 1 and 2, arising out of coloured-gluon-exchange, as (c.f. 

equation (1.30)): 

= _ +p5[3(s1.p)(s2.p) - 

(6.2) 

where s and !2 
 are the quark spins, -lip = 	- 1.2 is a vector 



joining the two quarks, ct is the usual harmonic-oscillator constant, 

and D is a constant to be identified with the (A-N) mass difference 

in the N = 0 [56,0] supermultiplet. As in equation (1.44): 

4czct 3  
D 	

=s 	 (6.3) 
3,f27 m 

Isgur and Karl (1978b, 1979a) have stressed that the two terms in 

equation (6.2), with the relative strength indicated, are two parts of 

a single physical interaction, viz, the static interaction of two. 

intrinsic colour-magnetic dipoles. The first term ("contact" term) 

may be visualised as arising from the Ri . B 
internal interaction of 

colour-magnet i with the colour-magnetic field internal to 

j 

	colour- 

magnet 	ii magnet 	; the second term ( " tensor " 	i term) s just the 	B.
external 

 

interaction of colour-magnet i with the external magnetic-dipole field 

of colour-magnet j and is the colour analogue of the familiar force 

between two macroscopic magnets (Isgur 1980). The situation is 

i 

	illus- 

trated in Figure 7. The factor of -- n equation (6.2) is just a 

geometrical factor, viz. 2 x 4ir 	 471 
-r' where the factor of T comes 

from the volume of the sphere in which the colour-magnetic field, B., 

of quark j is parallel to the colour-magnetic dipole moment, kil 

of quark i. The contact term, being a scalar operator in both space 

and spin variables, operates only when the quark pair has zero orbital 

angular momentum, whilst the tensor term, which is an operator of 

rank two in both space and spin variables, is operative only when the 

quark pair has non-zero orbital angular momentum. 

The full Hamiltonian can be written (c.f. equations (1.28) and 

(1.31)): 

H 	= H + E H 	 (6.4a) 

	

0 	
1
. . 	13 

<3  

where 1. 



contact term operates 

tensor term operates 

Figure 7 	A diagrammatic 

representation of the 

origin of the contact 

and tensor terms 
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H 	= E (m+ '/2m)+ 
0 	 . 

1 - -- 	 - 	1<3 

	

(!Kr? . 	
13 

+ TJ(r.. 

	

13 	
)). (6. 4b) 

Note that, since we are concerned only with non-strange resonances, 

we may take all three quarks to have the same mass, m. Inclusion 

of the hyperfine term induces splitting and mixing amongst the N = 3 

states: in particular, the tensor term will give rise to mixing of 

the AD35 states belonging to the N ,=  3 [56,1], [70,2], [56,3] and 

[70,3] supermultiplets. In Appendix A. we explain the nomenclature 

for non-strange baryon resonances and list, for completeness, all 

possible mixings amongst N = 3 supermultiplets which exist for these 

resonance. 

The matrix elements of the contact term can be computed by means 

of the identity: 

<A 	 L J 
2S+l 	- 

3/2 
D I'<ssI{(s1+s2)2 - 

= LL' 6 SS' a LL 	LL 

(6.5) 

whereas the matrix elements of the tensor term are found via the 

identity (Brink and Satchler 1962): 

< 2 S+lLJ_lp_ 5 [3( s p)( s p)_( s s)p 2 ]I 2St+1LTJ_> 

= ( l)JLS(2L+1)2(2s+1) 2w(LLIssI ;2J) 

x<S 	(s 1 s 2  + s 1  s24 - 4s1 52 )II S'> 

x P <L1112P_ 5 (p2 - 3p 2 	L'> 
	

(6.6) 

where W is a Racah coefficient and the last two factors on the RHS 

of equation (6.6) are reduced matrix elements of the tensors whose 

zeroth-components are displayed. I 2 S Lpf> represents a negative- 
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parity 	state of orbital angular momentum, L, total spin, S, 

and total angular momentum, J. 	P is the permutation symmetry of the 

spatial wavefunction. The form of the spatial wavefunction, IiP > LL  

can be inferred from: 

= I1)P  > 
LL 	LL (6.7) 

the corresponding monomial of creation operators, ipg), is given in 

Table 3.2. The required spin wavefunctions are listed in Table 6.1: 

Spin state 	 . 	Spin wavefunction-.. 	1 

I.
33S 	

1+14> -> 

31S 	 1 
132•2-> 	 - { I+++> + l+++> + 

3 	iS 	 1 
I-._ •-> 	 {I+++> + 1+14> + 

,33S 
- •:> 

I l 1 M 	
{+++> - 2T 

11 
I3j •> 	 - { I++> - 

1 i MX 	 1 {t+++> + l+++> - 2 1+++>}  

MA 	

- 

1 {l+++> + I+++> - 2 1+++ > } 

	

TABLE 6.1 	3-quark spin wavefunctions 

We illustrate the method with a specific example - the calculation 

of the matrix element of 	E 07 for the IA 4p 	> state or, 
1 <J 	

s2 

equivalently, the AD35 state belonging to the N = 3 [56,1 1 
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supermultiplet: 

Contact term 

.IHcontactfp 	
>  s2 	 s f 	 (6.8) 

7r
3/2 	 3 1 33s s - T 	D s <3  

- 	3 	I{(!l+..2)2 - }i-> 

using equation (6.5). We have, from Table 6.1: 

33s 
I 	= 	I+++> 	 (6.9) 

so that: 

s33 3 33s 	1 
- }I3> 	= 	. 	 (6.10) 

S 
The spatial wavefunction, 	ill 

 is given by: 

=_a. [(p 2-X 2 )(X +iX ) 
vT5 -- x y 

+ 2(p.A)(p+ip)]. a 
 3 

3/2 exp[ - cL 2 (p 2 +X 2 )] 	(6.11) 
IT 

and a little labour reveals: 

s 	 7 3  
<'lI(&Il1> 	= 	

ct
3/2 8ir 

(6.12) 

Thus, we obtain, finally: 

IHc0nttIp 57> 	= 	Tr
3/2

D 	1 	D. (6.13) 
s2 	 s2 	

a3 	
2 	8ir 3/2 	

16 

Tensor term 

The permutational symmetry of the non-strange sector allows us 

to write: 

P5 	IHt50rIP5 L 	= 	3<EP 	IH flSOr1+ 	>. 	(6.14) 
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We can use equations (6.2) and (6.6) to rewrite this as: 

	

- 	 - 	 5 3 
<i' - IHts0n Ip 	> = 3. 	 .) 

	

s2 	 s2 	 22 	2 
4ct 

s 3 1 
22 

x <--(s s + s 	s 	- 4s s ) lz 2z 1+2- 	1- 2+ 

x s < 1 	(2 - 3p) 111' > s . 	(6.15) 

The value of the Racah coefficient is found to be (Biedenharn and 

Van Dam 1965): 

- 
W(11 -. ; 2 	

- 	
(6.16) 

and noting that, because of the Wigner-Eckart theorem: 

s 	i 1 	 -4s 	s 
)113s 

<--iI -(s1s2_+ 1-2~ 	 lz 2z 

- 	s33I1(_ 	+ S1S2+  - 4s1s24> 	(6.17a) 
- 3 3 3 2O> 2. 2 

and: 

= < iI 52  - s <1 11 	 (p2 - 2 ( 	- 3p)II 1> 	 , 	(6.17b) 
<211112101> 

we obtain: 

<iP 51 11tensor1 + 	i-> 	= 	• 	 1 	• 
s2 	 s2 	 2 	ct3 	10  r6-  

s 3 3!! 
	

3 3 S 
x 

<f 
	(S S 	+S S 	-4s S 

2 1+2- 	1-2+ 	lz 2z 

x < 	iI_5-2 ....3p 2 )l 1 > . 	 (6.18) 

Note that we have evaluated the Clebsch-Gordan coefficients 

(Abramowitz and Stegun 1965): 
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<2 	12 
.2 0  3= 	_!_. 	 (6.19a) 

222 	2 	2 

[notation: <j 1j 2jmlj ij2mim2 >1 
<2 1 1 11 2 1 0 1> = 	 (6.19b) 

in arriving at equation (6.18). Using equations (6.9) and (6.11), 

we deduce: 

s 3 3 1  1—( 	 - < 	s s - + s s 	4s s ) 	 = 	 (6.20a) 222 1+2 	1 2+ 	lz2z 1 22 	 2 

whilst: 

< IP S 
 !p5(a2 - 3)I 1 > 	= 	

- 2a 
(6.20b) 

Thus,  finally, we have: 

() 	
(2cx 	

) = r0. (6.21) 5  lHt501lp 5 	= 	3 D/ir  

a3 	 75/i 

Equations (6.13) and (6.21) together lead to: 

<" 	I 	
Hhyp 
	-> = 	(- 	+ r)D . 	 (6.22)  16 

1<J 

In exactly the same fashion, we find, in terms of the basis 

states: 

(P 	, 	2DM - , 	F 
L 	 2M - 	

(6.23a) 

corresponding to: 

(LD35(56,1), 	D35(70,2), LD35(56,3), 	D35(70,3)): 	(6.23b) 
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+ 
:3I 	9/2-1.D  

0 	10 161)D} 	200 D 	- 700 	2800 D 

3 V'5 	 2 ) . 
D 	 {E +3c-- 

• i55• 	 o 	5 	175 	0  

RD3S = 
9Jf v'i 	

{E +3S- 	+ D  
- 700 

175D 	
5 	- 350 

+ -)D} - 

9V 3v' 2- +3- E 	_-A+ 
- 2800 D D 0 	

- 350 
to 

 + 	D} 

(6.24) 

having first recalled the matrix elements of H 0  in equations (3.21) - (3.23) 

and (3.26). Whilst the lack of data for possible N=3 resonances prevents us fro 

assigning a best-fit value to S, we can find approximate values for 

E 0 , 	and D. 

Isgur and Karl (1978b) obtained a good description of the low-lying, 

negative-parity baryon states assigned to the N = 1 oscillator level 

using the values E 
0 
= 1090 MeV, 1 = 520 MeV and D = 300 MeV, whilst 

the same authors (Isgur and Karl 1979a) found a whole host of positive-

parity, excited baryon states could be accommodated neatly into the 

N = 2 oscillator level by choosing E 0  + 22 = 2020 MeV, i = 420 MeV 

and D = 300 MeV. More recently, Isgur and Karl (1979b) have success-

fully fitted the ground-state baryons to the N=0 oscillator level 

by setting E0  = 1135 MeV and D = 260 MeV. 

The point we wish to stress is that, as is clear from the fits of 

Isgur and Karl to the N = 0, 1 and 2 oscillator levels, it is not sur-

prising that the most reasonable assignments for the parameters E 0 , 0, 

and D will vary, albeit slightly, from one oscillator level to the 

next. We emphasise that the Isgur-Karl model remains, despite its many 

successes, a simple, naive model of the interactions between the quarks 

confined in a baryon. An harmonic oscillator potential is an unlikely 
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candidate for the confining potential of the real world; if we choose as 

a first approximation to the confining potential between two quarks an 

harmonic oscillator potential, we should anticipate that its curvature 

will change as we pass from one level to the next. Thus, it is entirely 

reasonable to expect that the effective oscillator-spacing, Q, will 

vary, albeit fairly smoothly, from one level to the next (Hey 1981). 

We take account of the possibility of such small variations by 

taking the parameters to lie in the following ranges: 

E 1150 ± 50 MeV (6.25a) 

440 ± 20 MeV (6.25b) 

440 ± 20 MeV (6.25c) 

D 280 ± 20 NeV 	. (6.25d) 

We find good agreement with the result of Cutkosky (1980) for the mass 

of the ,D35(1940) resonance, viz.: 

M(D35) 	= 	1940 ± 30 MeV 
	

(6.26) 

by taking E 0  = 1100 NeV, 0 = 420 MeV, A = 460 MeV and D = 280 MeV, 

and diagonalising the matrix 11D35 
 numerically, for a range of values 

of the parameter 6. Specifically, 6 was allowed to vary, in steps 

of 50 MeV, from -600 MeV to + 600 MeV. The results are shown graphically 

in Figure 8. We find that the value of the lowest eigenvalue of 11D35 

[to be identified as the prediction of this model for the mass of the 

D35(1940) state] and the composition of the corresponding eigenvector 

are highly insensitive to variations in the value of 6, provided 6 

remains positive. Let us choose, for the purposes of illustration, a 

value of 6 = 50 MeV: we obtain the spectrum of mean N = 3 non-strange 

supermultiplet masses which is displayed in Figure 9. With 6 = 50 NeV, 
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Figure 8 
	

M(iD35) as a function 

of 	A (with E0 ,fl,L 

and D fixed) 
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Figure 9 	Mean N = 3 non-strange 

supermuttiptet masses 

when S=50 Mev
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we find the lowest eigenvalue of }L035  to be approximately 1975 MeV 

and the composition of the corresponding eigenvector to be (0.9881, 

-0.0585. 0.1144, 0.0839), i.e. the tD35(1940) state is predicted to be an 

almost pure [56,1] state. 

We conclude that, after inclusion of hyperfine effects and with 

reasonable values for the parameters E, 0, A,.6 and D, the Isgur-

Karl model can easily accommodate the result of Cutkosky (1980) for 

the mass of the iD35(1940) state, and that, contrary to previous claims 

in the literature (Cutkosky and Hendrick 1977a, 1977b), the LiD35 (1940) 

resonance does not represent unambiguous evidence for new degrees of 

freedom inside baryons. 

6.2 Negative-parity resonances in the D35, G37 and G39 sectors of 

the N = 3 spectrum 

We demonstrate in this section how further information can be ex-

tracted from the calculations performed in §6.1. 	In particular, we 

examine within the framework of the Isgur-Karl model the implications 

of preliminary observations in the G37 and G39 sectors, and the possible 

observation of a second resonance in the D35 channel, as reported 

recently by Cutkosky (1980). As demonstrated in §6.1, the tensor term 

gives rise to mixing of the four tD35 states belonging to the N = 3 

[56,1], [70,2), [56,3] and [70,3] supermultiplets; it also causes 

mixing between the two AG37 states belonging to the N = 3 [56,3) 

and [70,3] supermultiplets (c.f. Appendix A). It is a relatively 

simple matter to infer from the form of IL 35  in equation (6.24) that, 

in terms of the basis states: 

(F 	, 2FM 2 
	 (6.27a) 

corresponding to: 
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(G37(56,3), 	G37(70,3)) 
	

(6.27b) 

• [E +3-+(+)D 
1 ° 

HG37 = 

	

3/i 
D 

140  

3/i - 1 
{
E +3-+ 	

+j 
0 	T6 

(6.28) 

Further, since the quantum numbers of the AG39 resonance necessarily 

imply that it be assigned to the N = 3 [56,3) supermultiplet, the 

mass of the tG39 state is given by: 

M(G39) 	= 	E + 32 - 	+ (.. - 
	

(6.29) 

Note that this expression is independent of S. 

The results in equations (6.28) and (6.29) follow from the obser-

vations: 

Matrix elements of the contact term depend only on the orbital 

angular momenta, L and L', and the total spins, S and S', of 

the states involved, and not on how L and S (or L' and S') are 

coupled to form the total angular momentum, J. Thus, for example: 

<F5 7 L H otactI A L F  ..> 	= 	<F5 	lHc0nttlF 	-> = 

(6.30) 

recalling equation (6.24). 

Matrix elements of the tensor term depend explicitly on J via a 

phase factor 
(_1)J  and a Racah coefficient W(LL'SS'; 2J), as is 

clear from equation 

<F LIHtet0r 
s2 

< FlHte10r 
s2 

(6.6). Thus, for example: 

I4F 2. > 	 7 	5 W(33fl.; 2 	-_ 10 s 2 	(-l2 -  

l&F 	.> 	= s2 	
W(33i2) - 3 

(6.31) 
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whence: 

<pIHts0hiFs 	
>= 	

D, 	 (6.32) 

upon recalling equation (6.24). 

Included in the results of the most recent phase-shift analysis 

by Cutkosky et al. (Cutkosky 1980) are the following observations which 

are listed in Table 6.2: 

State Mass (MeV) Rating SU(6) 	 . 	0 0(3) flavourxspin 

D35 1940 ± 30 [56,1] 

D35 2400 ± 125 ** not quoted 

G37 2200 ± 80 ** [70,31 

G39 2300 ± 100 ** not quoted 

Table 6.2 Experimentally-determined masses and compositions of 

some N = 3 non-strange baryon resonances in the 

D35, G37 and G39 channels. 

The SU(6) flavourxspin 
0 0(3) assignments in Table 6.2 are taken 

from an earlier article by Cutkosky et al. (1979). 

We present in Table 6.3 the results we obtain by taking E 0  = 1100 

MeV, Q = 420 MeV, A = 460 MeV, tS = 600 MeV and D = 280 MeV and 

diagonalising the matrices11D35  and HG37,  numerically. We stress that 

a value of 50 MeV was assigned to 6 in §6.1 purely for the purposes 

of illustration and that increasing the value of 6 (with the parameters 

E0 , 9, A and D fixed at the values indicated in §6.1) serves only 

to improve, albeit slightly, the good agreement found in §6.1 with the 

result of Cutkosky et al. (Cutkosky 1980) for the mass and composition 

of the ED35 (1940) state. 
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State Approx. 
Mass 
(MeV) 

Approx. composition SU(6) f1 .0

content 

0(3) 

D35 1975 (0.99, 	-0.06, 	0.11, 	0.03)([56,11,[70,21,[56,31,[70,3J) 

D35 2120 (-0.12, 	-0.25, 	0.96, 	0.05)([56,1],[70,2],[56,3],[70,3]) 

D35 2180 (0.03, 0.97, 	0.25, 0.02) ([56,i3,[70,2],[56,3],[70,3]) 

D35 2390 (-0.02, 	-0.01, -0.06,0.99)([56, 1 ],[ 70 , 2 ],[56 , 3 ],[ 70 , 3 ]) 

G37 2145 (0.99, -0.04) ([56,3 	1, 	[70,3]) 

G37 2390 (0.04, 0.99) Q56,3 1, 	[70,3]) 

G39 2105 1.00 [56,3] 

TABLE 6.3 Predicted masses and compositions of the N = 3 non-strange 

baryon resonances in the D35, G37 and G39 channels. 

The first remark we wish to make is that the value we obtain for the mass 

of the AG39 state is somewhat lower than that observed by Cutkosky et al. 

(Cutkosky 1980). We believe that this discrepancy simply reflects the 

fact that the values we have assigned to the parameters E, 0, i, tS and D 

are not best-fit values. A full fit to the N = 3 non-strange spectrum 

is currently being performed by other authors (Forsyth 1981) who, in a 

private communication, have already confirmed the validity of the matrix 

elements in equation (6.24): we are confident that the best-fit values 

appropriate to the N = 3 level for the parameters E 0 , Q, L and D 

will lie in the ranges quoted in equations (6.25a)-(6.25d). If we sub-

stitute these values for E 0,, A 	and D into equation (6.29), we 

deduce 

M(G39) 	2230 ± 125 MeV 	 (6.33) 

so that the preliminary result of Cutkosky et al. (Cutkosky 1980), viz.: 

M(G39) = 2300 ± 100 MeV 	 (6.34) 
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can be easily accommodated. 

Our second remark concerns the preliminary observation, as reported 

by Cutkosky (1980), of a resonance in the G37 channel, for which a mass 

of 2200 ± 80 MeV is quoted. In our scheme, there are two tG37 resonances 

of mass 2145 MeV and 2390 MeV, respectively. The former EG37 state is 

predicted to be an almost pure [56,3] state, whilst the latter G37 

state is an almost pure [70,3] state. We find that the mass and corn-

position of the lower-mass tG37 state are highly insensitive to 

variations in the-value of 6, provided 6 remains above 200 MeV, whilst 

the mass of the higher-mass tG37 resonance increases uniformly with S. 

We suggest, therefore, that the G37(2200) state observed by Cutkosky 

et al. (Cutkosky 1980) may be more naturally assigned to the N = 3 

[56,3] supermultiplet rather than to the N = 3 [70,3] supermultiplet 

as these authors suggest (Cutkosky et al. 1979). 

Finally, we remark that we can easily accommodate the preliminary 

result of Cutkosky et al. (Cutkosky 1980) for the mass of the 2-star 

D35 resonance, viz.: 

M(tD35) 	= 	2400 ± 125 MeV 	 (6.35) 

provided we identify this resonance with the highest-mass state of our 

quartet of 1D35 resonances. We assign an approximate mass of 2390 MeV 

to this resonance and predict that it be an almost pure [70,3] state. 

We have no explanation to offer as to why the remaining intermediate - 

mass AD35 resonances in our scheme have not been observed so far. We 

find that the masses and compositions of the two intermediate-mass AD35 

• resonances are highly insensitive-  to variations in the value of 6, pro- 

vided6 remains greatethai 200 MeV. 

We conclude that we can recover the pertinent features of the most 

recent preliminary phase-shift analysis performed by Cutkosky et al. 

(Cutkosky 1980), within the framework of the Isgur-Karl model, with due 
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inclusion of hyperfine effects arising out of coloured-gluon exchange. 

The determination of the best-fit values appropriate to the N' =  3 

level for the paramters E, , t, S 	and D remains the outstanding 

problem. 
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rUADTVD •7 

CONCLUSIONS 

The observation by Isgur and Karl (1979a) that the pattern of 

splittings of the N = 2 superinultiplets in Figure 3, induced by an 

arbitrary anharmonic perturbation, I U(r.) 	is independent of the 
1<3 

detailed form of U(r) suggests that the result may be derived 
ij 

from purely group-theoretical arguments and corresponds to the breaking 

of a symmetry of the unperturbed system. The principal aim of this 

thesis has been to justify this assertion. 

The results for the N = 2 level (Isgur and Karl 1979a) and 

some results at the N = 3 level (Dalitz et al. 1977b) were originally 

derived using explicit oscillator wavefunction techniques. However, 

we presented in Chapter 3 an alternative derivation of these results 

based on an algebraic procedure which relies for its effect on the 

commutation relations of the creation and annihilation operators of 

the harmonic oscillator. 

As a first step towards recovering these results via group-

theoretical techniques, we studied in Chapter 4 the simpler system 

of two equal-mass particles bound principally by harmonic-oscillator 

forces. It might be expected that adding an arbitrary anharmonic 

potential into the Hamiltonian would introduce a large number of 

parameters. However, direct calculation using first-order perturba-

tion theory revealed that the perturbed energy levels are given in 

terms of a small number of independent parameters, to be identified 

as moments of the perturbing potential: on proceeding from one level 

to the next, only one extra parameter appears. We re-interpreted our 

results as manifesting the breaking of the dynamical U(3) symmetry 



-129- 

of the unperturbed system and successfully recovered our results for 

n < 2 by means of the spectrum-generating group, Sp(6,R). 

Encouraged by this success, we extended our considerations to 

embrace a system of three equal-mass quarks, confident that we could 

successfully employ the spectrum-generating group, Sp(12,R), to 

account for the pattern of splittings in Figure 3 in terms of the 

breaking of the dynamical U(6) symmetry of the unperturbed system. 

We had previously introduced the necessary formalism in Chapter 2, 

where we described in detail a novel and particularly simple and 

direct method of utilising the group Sp(12,R) and its subgroups 

appearing in the embedding chain in equation (2.28) to classify the 

unperturbed oscillator eigenstates and construct the corresponding 

spatial wavefunctions of definite angular momentum and permutation-

symmetry type: the 0(2) subgroup is particularly convenient for 

the enumeration and construction of states of definite symmetry under 

the permutation group, S 3 , and the S0(3) subgroup gives the 

angular momentum content. The relevance of the group Sp(12,R) to 

the splitting pattern induced by the anharmonic perturbation is that 

U(r) is naturally classified under Sp(12,R). 	For example, at 

the N = 2 level, there is a unique breaker of Sp(12,R) which can 

contribute to the splitting pattern, and we explicitly constructed 

in Chapter 5 an algebraic mass formula, involving the quadratic 

Casimir invariants of the various subgroups which appear in Figure 6, 

plus one non-Casimir invariant, which successfully reproduces the 

splitting pattern of Figure 3. We had previously been alerted to the 

need to include non-Casimir invariants in our considerations in 

Chapter 4. 

Having thus achieved our principal goal, we were naturally led 

to consider the phenomenological implications of our results for baryon 
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spectroscopy. Whilst it is true that the non-relativistic harmonic 

oscillator quark model has been remarkably successful in accounting 

for many features of the baryon spectrum (Isgur 1980 and references 

therein), nevertheless the theoretical foundations of this non- 

relativistic potential model are not well understood - certainly 

not from a fundamental standpoint like that of QCD. It is therefore 

important to examine possible deviations from this rather simple 

picture of baryons. The failure of previous attempts in the literature 

(Cutkosky and Hendrick 1977a, 1977b;Dalitz et al. 1977b) to account 

for the iD35(1940) resonant state as a genuine 3-quark excitation - 

the mass predicted by Dalitz et al. (1977b) for theD35(1940) state 

was some 150 MeV higher than the experimentally-determined mass of 

1940 ± 30 MeV (Cutkosky 1980) - strongly suggested that a new degree 

of freedom in the baryon spectrum was being excited. Several possible 

realisations of such "extra" degrees of freedom exist. For example, 

the rigid, spherical-cavity approximation to the MIT bag model (De Grand 

et al. 1975) gives a good description of the ground-state [56,0 k ] 

supermultiplet. However, in order to generate the negative-parity 

resonances, the rigidity of the surface must be relaxed to allow small 

surface oscillations. Rebbi (1976) identified a [70,1] superinulti-

plet together with extra [56,1] supermultiplets which may be visualised 

as arising from oscillations of the 3-quark system with respect to the 

bag walls. One of these [56,1] supermultiplets is identified with the 

zero mode corresponding to translation of the ground state: the rest 

are presumably extra non-3-quark physical [56,1] supermultiplets. 

The detailed calculations of Rebbi (1976) suggested that the first such 

superinultiplet should lie below 2 GeV. 

On the face of it, then, it seemed unlikely that the AD35(1940) 

state could be a genuine 3-quark state. Nonetheless, the fact that the 
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sum rule in equation (3.30) derived by Dalitz et al. (1977b) was based 

on the specific assumption of neglecting spin-tensor forces prompted 

us to re-examine this result. The success enjoyed by the Isgur-Karl 

model (Isgur 1980 and references therein) in providing a good semi-

quantitative guide to both positive- and negative-parity, strange and 

non-strange baryon resonances up to about 2 GeV in mass is powerful 

testimony to the currently-held belief that such spin-tensor forces 

are important, more important certainly than the spin-orbit forces 

retained in the detailed SU(6) flavourxspin 
 mass analyses performed 

by Horgan and others (Horgan 1976a and references therein). 

Our initial approach was considerably less ambitious than that 

of Dalitz et al. (1977b) in that we contented ourselves with pre- 

dicting only the mean masses of the non-strange sectors of the various 

SU(6) flavourxspin 
0 0(3) supermultiplets, with total neglect of the 

one-gluon-exchange hyperfine interactions. The interesting new physics 

occurs at the N = 3 level where the following eight supermultiplets 

are expected: 	[56,3], 	[56,11, [70,3 ], [70,2], [70,1], [70,1], 

[20,3], and [20,1]. 	Turning on the anharmonic perturbation, Z U(r.), 
i<j 

splits these supermultiplets and introduces a new parameter, 5, which 

is defined in equation (3.25), specific to the N = 3 level. An 

important feature to note is that the masses of three of the N = 3 

supermultiplets, viz., the [56,1], [70,2] and [56,3] supermulti-

plets, are independent of S: their masses are determined entirely by 

the N = 2 level parameters. Isgur and Karl (Isgur 1980 and references 

therein) obtained reasonable phenomenology for the N = 0, 1 and 2 

levels by setting E = 1150 MeV and 0 = A = 440 MeV. Using these 

values, we predict that the [56,1] superinultiplet necessarily lies 

lowest of the N = 3 supermultiplets and we assign a mean mass of 

approximately 1985 MeV to the non-strange sector of the [56,1] 
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supermultiplet, only 45 MeV above the quoted mass, 1940 ± 30 MeV, for 

the D35(1940) state (Cutkosky 1980). Given the simplicity of the model 

and our neglect of hyperfine interactions, this is remarkably good 

agreement, and lends confidence to our belief that,contrary to previous 

claims in the literature (Cutkosky and Hendrick 1977a, 1977b), the 

D35(1940) does not constitute unambiguous evidence for gluonic degrees 

of freedom in the baryon spectrum. 

Of course, a properly-consistent treatment of the D35(1940) prob-

lem demands consideration of hyperfine effects and we duly considered 

these in Chapter 6. An important point contained in Chapter 6 is the 

realisation that the best-fit values for the parameters in the Isgur-

Karl model may change, albeit slightly, from one level to the next. 

With this point firmly in mind, we confidently assert that the best-

fit values appropriate to the N = 3 level for the parameters E 0 , 

and D very likely lie in the ranges indicated in equations 

(6.25a)-(6.25d); the lack of data for possible N = 3 baryon 

resonances, however, precludes the assignment of a best-fit value to 

he parameter, S. Instead, we chose to diagonalise the Hamiltonian 

matrix HD35  for a range of values of 5, whilst fixing E0  = 1100 

MeV, Q = 420 MeV, i= 460 MeV and D = 280 MeV. We found that the 

value of the lowest eigenvalue of 11D35  and the composition of the 

corresponding eigenvector are highly insensitive to variations in the 

value of 5, provided S remains positive. In particular, setting 

= 50 MeV implies an approximate mass of 1975 MeV for the 1D35(1940) 

state, which, in addition, is predicted to be an almost pure N = 3 

[56,1] state. We conclude that the D35(1940) state does not 

represent unambiguous evidence for the presence of non-3-quark degrees 

of freedom in baryons. 

We turned, finally, in 56.2 to investigate the G37 and G39 sectors 
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of the N = 3 baryon spectrum, reassured in the knowledge that the 

Hamiltonian matrices for these sectors could be easily inferred from 

the form of HD35.  With E0  = 1100 MeV, 0 = 420 MeV, A = 460 MeV, 

iS = 600 MeV and D = 280 MeV, we found we could recover the pertinent 

features appropriate to the D35, G37 and G39 sectors of the most recent 

phase-shift analysis performed by Cutkosky et al. (Cutkosky 1980). 

We stress that, in this respect, our aim has been simply to demonstrate 

that it is possible to assign values, appropriate to the N = 3 level, 

to the parameters of the Isgur-Karl model so as to ensure reasonable 

agreement with the results reported by Cutkosky (1980). By no means 

are we claiming that the best-fit value for 	5, once it is na.U4J 

determined, will lie in the near vicinity of 600 MeV. We are not 

unduly worried by the sizeable discrepancy which exists between our 

predicted mass of 2105 MeV for the tG39 resonant state and that 

quoted by Cutkosky (1980), viz. 2300 ± 100 NeV. Observing that the 

predicted mass for this state is independent of the value of 	5, and 

that the range of values in equations (6.25a) - (6.25d) for the para- 

meters E 0 , 0, 	and D gives M(G39) = 2230 ± 125 MeV, we are 

confident that the discrepancy simply reflects the fact that the values 

we have assigned to these parameters are not the best-fit values 

appropriate to the N = 3 level. The determination of the best-fit 

values appropriate to the N = 3 level for the parameters E 0 , 	0, 

Ap iS and D remains the outstanding problem. 
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EPILOGUE 

The work described in this thesis, then, has produced no evidence 

to suggest that the Isgur-Karl model will be any less successful in des-

cribing the full N = 3 baryon spectrum than it has been in accounting 

for the many features of the baryon spectrum up to about 2 GeV in mass 

(Isgur 1980 and references therein). Indeed, the Isgur-Karl model has 

been shown to be almost embarrassingly successful, so much so that it 

is difficult to imagine any model doing very much better. This state 

of affairs has earned the description of "the great Isgur-Karl 

disaster" from Hey (1980) who suggested, in somewhat tongue-in-cheek 

fashion, that there remains little in the context of baryon spectro-

scopy to be solved. However, to subscribe in earnest to such a view 

would be both short-sighted of us and an (unintentional) affront to 

those members of the physics community who have investigated in detail 

the role of spin-orbit forces in determining the baryon spectrum 

(Reinders 1980 and references therein). Far be it from us to indulge 

at this stage in any form of iconoclasm; nonetheless, this thesis 

would be shamefully incomplete without some discussion of sp.in-orbit 

forces. 

The non-relativistic reduction of an arbitrary potential, V(r), 

originating from either scalar coupling (g = 0) or from vector 

coupling (g = 1), gives rise to the spin-orbit interaction 

(Reinders 1980 and references therein): 

so 	1 
H.= 	2r.. d 	

{(2971) 

[ 	

Xp).S. 	
- 	 + 

+ m. 	x p.) .s. - 	 (E. 1) 



-135- 

where the g-independent terms are generated by the mechanism of 

Thomas precession in the potential V. Clearly, if V contains 3-body 

interactions, there will be corresponding 3-body terms in its spin- 

orbit component, 	E H?, after the non-relativistic reduction; 
i<j 	3 

however, such terms have not yet been invoked in the literature (Close 

and Dalitz 1981 and references therein). In the equal-mass case, 

where rn1  =m = m, equation (E.l) can be re-arranged to give: 

H9 = {(4g-l) 
[Eij x 

- 	x (.+P.)]. (.C!j) } 	• 	 (E. 2) 

Notice the presence of a (g-independent) translation-non-invariant 

term proportional to (p 1-fp) in equation (E.2). At first sight, this 

seems rather worrying. However, Close and Osborn (1970) have stressed 

that great care is needed concerning the relationship between centre-

of-mass-frame (CM) and laboratory-frame variables when the particles 

have intrinsic spin. Conventionally, the calculation and specification 

of 2-particle interactions are carried out in the rest frame of the 

two particles; yet, these self-same interactions are then used to 

calculate the energy of the 3-particle system, constituting the baryon, 

in its rest frame which is not the frame in which the 2-particle inter-

action was originally calculated. Close and Osborn (1970) showed that: 

ri  - r. 	= 	r.. - 	( S. - s.) x  P + higher-order terms (E.3) 

where (r. - r.) is the relative position vector of quarks i and j 

as measured in the rest frame of the baryon, r 	 is the genuineij  

internal degree of freedom as measured in the rest frame of quarks i 
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and j, and M and P denote the mass and momentum, respectively, of. 

the whole system. Thus, one must be careful to distinguish between 

(r 1  - r) and r 	 in the leading (spin-independent) potential termij  

V(r. - r.), with the result that: 

V(r. - r.) 	= 	V(r..) 
+ 	ri -   - 	 x P).(s. - s.)+ ... (E.4) 

ij 	13 

where .....denotes higher-order corrections. Notice that the second 

term on the RHS of equation (E.4) has precisely the form of a spin-orbit 

interaction and we must ensure, therefore, that it is included in 

equation (E.2), which then becomes: 

H9 _1 ._LT{(4g1) 
[

Ei. x (p._p.)].(s. + s.) - 

x(P.

+. - 

-j P)]. (s - s.) } . 	 (E.5) 

In particular, we may write: 

	

SO 	1 	1 d 	 1 
p x  p ).(s +s ) 

- 
11 	 (4g- l)(12 	= 	

- -p -1 -2 	- (pxp) . 	 } 

(E.6) 

where p and A are defined in equations (1.12b) and (1.12c). This 

expression is clearly translation-invariant. The terms in equation (E.6) 

proportional to (p x p. ) . (.El -~s 2 )  and (p x E) • !l2 	are commonly 

referred to as 2-body spin-orbit and 3-body spin-orbit interactions, 

respectively. 	[However, as Close and Dalitz (1981) point out, the latter 

term of reference is something of a misnomer, since the physical process 

of particle exchange which gives rise to V involves only the two par-

ticles i and j.] 

There are two possible origins for the spin-orbit component of 

quark-quark interactions in baryons, viz.: 
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the one-gluon-exchange potential, V gluon 

This originates from the exchange of a vector particle (gluon) - 

see Figure 1 - so that we must set g =1 in equation (E.6). The 

leading contribution to V gluon 
 is Coulombic: 

Vg1j0 (I) 	= 	- 	
(E.7) 

 3r ij 

and the resulting spin-orbit contribution is: 

HSO 	(12) 
= 	S 	[ca 	-1 + 

x 2• gluon 	2V' m2p 3  

1 x 	
- 2] • 
	 (E.8) 

31 

the confining potential, V conf. 

Although the precise functional form of V conf.  is unknown, it is 

assumed to be of scalar origin (Reinders 1978 and references therein) 

and to be composed of pairwise interactions between the quarks: 

V 	= 	z V 	(ij) conf. 	. conf. 
1<3 

(E. 9) 

In their study of the negative-parity baryons most plausibly assigned 

to the N = 1 oscillator level, Isgur and Karl (1978b) assume an 

harmonic confining potential: 

V 	= 	I 
conf. 	1. . 	-13 

<3  
(E. 10) 

which gives rise to the spin-orbit interaction: 

HSO 	(12) = - K [( x 	12) + _
L-( x 2).cal-..2)]. (E.11) conf. 	 2m2 

Following Isgur and Karl (1978b), we may write the full contribution 

to the spin-orbit interaction as: 
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HSO(l2) 	= 	H(l2) + H(12) 	 (E.12) 

	

2B 	 3B 

where 

so H(12) 	
1 	S 

	

= 	—z ( 	- K)(pxp).(s 1+s 2) (2-body spin-orbit) 
'lip 3  (E.13a) 

H(12)= - 
	1 	___ + 

3K)(pxpx).(si_s2). (3-body spin-orbit) 
6ñm2 j3 	 (E.13b) 

For the states assigned to the N = 1 (70,1] supermultiplet, all 

so 
relevant matrix elements of H 2 are proportional to (D - F), whilst 

all relevant matrix elements of H 
so 3B are proportional to (D + 3F), 

where: 
4c 5  c3 

D 	= 	 (c.f. equation (1.44)) 	(E.14a) 
3V m2  

F 
K 	 (E.14b) 
MZ = 

(Isgur and Karl 1978b). We stress that these results hold true only 

in the limit of exact SU(3)flavour  symmetry, i.e. neglecting the dif-

ference in the mass of the strange and non-Strange quarks. In their 

fit to the N = 1 baryon spectrum, Isgur and Karl (1978b) assigned 

the values (D - F) = 85 MeV and (D + 3F) = 945 Mev. 

These assignments, however, raise immediate difficulties for the 

Isgur-Karl model, as was illustrated by Close and Dalitz (1981) with 

the following three well-chosen examples: 

A. (D33 - tS31) mass difference 

The contributions of the various spin-dependent interactions to the 

masses of these two states (Isgur and Karl 1978b) are listed in Table 

E. 1: 
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State Hcontact Ht0 SO 
H2B 

SO 
H3B 

D33 D 0 0 -(D+3F) 
12 

A.S31 D 0 0 - 	 (D+3F) 

TABLE E.1 Contributions to the (D33 - S31) mass difference 

The results in Table E.1 imply that: 

M(LD33) - M(S31) 	= 	(D + 3F) = 235 MeV (E.15) 

The Particle Data Group (1980), however, lists both the tD33 and iS31 

states as 4-star resonances, whose masses lie in the respective ranges 

1630 - 1740 MeV and 1600 - 1650 MeV. Thus, the experimental data would 

appear to be consistent with a mass difference lying anywhere in the 

region 0 - 140 MeV. Indeed, the Isgur-Karl model (i.e. including the 

contact and tensor interactions, but neglecting any spin-orbit terms) 

predicts that these states are degenerate. However, Kelly (1980) has 

recently emphasised that, although different pion-nucleon-scattering 

phase-shift analyses do differ quite widely in the absolute mass values 

which they assign to these resonances, they appear to agree that the mass 

differeiice, M(iD33)-M(S31), lies in - the range. 80100 MeV. 	The ex-,- 

perimental data, then, would appear to suggest that the LD33 state is 

not degenerate with the tS31 state, but lies some 90 MeV above it. 

Thus, the calculated mass splitting in equation (E.15) has the correct 

sign, but its magnitude is roughly three times too large. 

B. 	(ND15 - S31) mass difference 

Table E.2 lists the contributions of the various spin-dependent inter-

actions to the masses of these two states (Isgur and Karl 1978b): 
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State HC 0fltt Hte0r SO 
H2B 

SO 
H3B 

ND15 I D - -i- D (D-F) 0 
20 

S31 4- D 0 0 - 	 (D+3F) 

TABLE E,2 Contributions to the (ND15 - S31) mass difference 

The results in Table E.2 imply that: 

M(ND15) - M(S31) = - - D + (D-F) +--(D+3F) = 205 MeV, 	(E.16) 

whereas the experimental data (Particle Data Group 1980) suggest a mass 

difference of approximately 20 MeV. Whilst the Isgur-Karl model (with 

no spin-orbit forces), in predicting a mass splitting of - 	D = -15 

MeV, finds good agreement with the magnitude of the observed splitting, 

it fails to account for the sign of the observed mass difference. In-

cluding spin-orbit forces, as is clear from equation (E.16), results in 

a predicted mass splitting which is an order of magnitude too large. 

C. 	(AD03 - ASO1) mass difference 

A proper treatment of this mass difference requires that we take 

into account the mass difference between the strange and non-strange 

quarks; however, as pointed out by Close and Dalitz (1981), whilst 

any discrepancies in the masses of these two states which are found 

to exist will be modified by this effect, they will not be removed. 

Accordingly, we list in Table E.3 the contributions of the various 

spin-dependent interactions to the masses of these two states, cal-

culated in the limit of exact SU(3) flavour 
 'symmetry (Isgur and 

Karl 1978b): 
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State Hcontact Hten50  
SO 

H2B 
SO 

H3B 

AD03 
3 - D 4 0 (D_F) L 

- 	 (D+3F) 12 

ASOl 3 
- D 4 0 - CD-F) 4 -(D+3F) 

TABLE E.3 Contributions to the (AD03 - AS01) mass difference 

We deduce from the results contained in Table E.3 that: 

M(AD03) - M(ASOI) 	= 	•-(D-F) - -(D+3F) = - 110 MeV 
	

(E. 17) 

In fact, 'a proper treatment, including quark mass differences, gives 

M(AD03) - M(ASO1) = -190 MeV (Close and Dalitz 1981). The Particle Data 

Group (1980), however, reports the existence of a 4-star A 

resonance at 1520 NeV, and a 4-star A 	resonance at 1405 MeV, so 

that the experimentally-observed mass difference is approximately 

115 MeV. Indeed, the AD03(1520) - AS01(1405) mass splitting is the 

only firm evidence at present for the presenèe of spin-orbit effects 

in the N = 1 [70,1) supermultiplet. As such, it constitutes a very 

real problem for the Isgur-Karl model, and has prompted Isgur and Karl 

to suggest that the observed low mass of the AS01(1405) state may be 

a direct consequence of its proximity to the kaon-nucleon (KR) threshold. 

It is well-known that mass shifts due to mixing with virtual decay 

channels can be quite strong in the vicinity of a threshold: such an 

effect could significantly depress the AS01(1405) state since it is 

strongly-coupled to 	(Isgur and Karl 1978b). 

What conclusions are we to form, then, finally? It is beyond 

contention that, in its modern guise incorporating anharmonic perturba-

tions, quark mass differences and some effects of the non-relativistic 

reduction of coloured-gluon exchange, the Isgur-Karl model has been 
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remarkably successful in accounting for many features of the baryon 

spectrum. And yet this very statement of fact is filled with polemic. 

The controversy centres on the use of the word "some" and immediately 

raises the question: why do we need to include only the contact and 

tensor interactions in our considerations, in order to achieve a 

successful description of baryon resonances up to about 2 GeV in mass, 

with no apparent need (nor room) for the spin-orbit interaction? 

The findings of Isgur and Karl (1978b, 1979a) suggest that spin-

orbit effects, if present at all in the baryon spectrum, are at a 

level much reduced (10% 20%) from naive expectations from the non- 

relativistic reduction of one-gluon-exchange. Yet we know from rather 

general considerations that the spin-orbit interaction must exist, 

and indeed the observed (tD33 - S31) and (AD03 - AS01) mass dif-

ferences require the existence of a spin-orbit interaction in such a 

model. The situation is further complicated, however, because: 

the observed (iD33 - AS31) splitting, for which only a 3-body 

spin-orbit interaction can be held responsible in such models, suggests 

that the 3-body spin-orbit force is present only to within approxi-

mately 30% of its expected strength; 

the observed (AD03 - AS01) mass difference, 115 ± 5 MeV, which 

can be attributed to the existence of a strong spin-orbit interaction, 

has the opposite sign from the calculated separation. 

The experimental evidence to hand, then, provides one with con-

flicting signals as to the strength and sign of the spin-orbit effects 

present in shaping the N = 1 baryon spectrum. We can prescribe no 

remedy to resolve this dilemma. However, implicit in the results obtained 

by Isgur and Karl (1978b) for the spin-orbit matrix elements relevant to 

the non-strange sector of the N = 1 [70,1] supermultiplet is the 

assumption that it is not inappropriate to employ an harmonic oscillator 
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form for the confining potential and the corresponding harmonic 

oscillator orbitals as basis states. Certainly, it is unlikely that 

the confining potential is an harmonic oscillator potential, although 

the approximation of using harmonic oscillator orbitals appears to be 

well supported by the experimental data (Isgur and Karl 1978b). It is 

instructive to relax both these constraints and the results for the 

non-strange sector of the N = 1 [70,1] supermultiplet which follow 

are displayed in Table E.4: 

State 	 H2 
So  
B 	 H 

so 
3B 

4 5_ 

23 
10  2 

4 3,2 3 1 	.ito 
2 	r8 

1 (D1-F1) 

8 -- 	4 

12 2 + 3F 2 ) 

0 	
10, 
24 (D2+3F 2 ) 

LFO 0 

2 3 
12 

4(D1-F 1 ) - -.(D2+3F 2) 

21 
10  2 

4 1,2 

[SI 
	 - .-(D2+3F2 ) 

1 	5 	l 	 I  
I 0 	- I 

12 1 
-I (D-F1) 	I 	I (D2+3F2) 

1 	I 
0 J 

2 

1-i 
	 - (D 1-F1 ) 
	 .-(D2+3F 2 ) 

TABLE E.4 	Spin-orbit matrix elements for the N = 1 [70,1] 

supermultiplet calculated in the SU(3) 	limit 
flavour 

for an arbitrary confining potential. 



D1  = D 	 = 	D 

F1  = 	F2  

(E. 19a) 

(E. 19b) 

-144- 

The notation for the states in Table E.4 is 2S+lsU(3) 	J, where flavour 

S and J denote the total spin and total angular momentum, respectively. 

The reduced matrix elements appearing in Table E.4 are defined as follows: 

D1  = 	- 	£ 2mZ 11 (x)Jll 
> P (E. 18a) 

D2  = - 2)111 
>X 

(E.l8b) 

F 1 = 
- 	1 	p<1 II 

conf. 	
x lap) Ill > 

dp 	 —p p 
(E.18c) 

2/1m2 

F2 P <llI 1'coflf. (PX x)l>A  (E.18d) 
m2 

It is easy to show, using either explicit wavefunction techniques or an 

algebraic method based on the commutation relations satisfied by the 

creation and annihilation operators (as was employed in Chapter 3), that 

the assumption of harmonic-oscillator orbitals leads to: 

where D is defined in equation (E.14a). For example, Gromes and 

Stamatescu (1979) consider within the context of this assumption the 

case of a power-law confining potential: 

k 
(E .20) V f 	= 	E Ar.. 

i<j 

for which 	
(k+l)t 	(E.21) F1 	= F2 	

= 	
(k-2)2 

In particular, the case k = 2 leads to: 

F 	= 	F 	= 	 (E.22) 
1 	2 	

m2 
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which coincides with the expression for F in equation (E.14b) upon 

setting A = 1K, as it must. [The case of a logarithmic confining 

potential: 

r.. 
V 	= 
conf. 	

E A log (r  -n-) 	A > 0 	 (E.23) . 	. 1<3 	 0 

where r0  is an arbitrary length-scale,, can be dealt with rather 

neatly by noting: 

_- [ 	-1 k=O 	- 	log r, 	 (E.24) 

with the result that: 

F 	= 	F 	 . 	 (E.25) 
1 	2 	3m21 

Returning to the results in Table E.4, it is clear that we can easily 

assign values to the parameters D 1 , D2 , F 1  and F2  so as to account 

for the sign and magnitude, as determined experimentally, of the spin-

orbit contributions to mass splittings such as (D33 - tS31) and 

(AD03 - AS01). [This procedure has much in common with the analysis 

of Reinders (1978), who treated the reduced matrix elements as free 

parameters to be fitted to the experimental data; Reinders, however, 

did not relax the constraint of using harmonic-oscillator orbitals.] 

However, we do not find this prescription particularly satisfying. 

Much of the appeal of the Isgur-Karl model derives from its simplicity: 

it strikes us that relaxing the restriction to harmonic-oscillator 	- 

orbitals introduces an unnecessary complication into the model. 

The need to resolve this dilemma underlines the importance of 

determining the precise form of the confining potential, Vcoflf , as 

is clear from equations (E.18c) and (E.18d): the near-cancellation. 

of 2-body spin-orbit effects in the N = 1 baryon spectrum, as reported 
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by Isgur and Karl (1978b), depends crucially on these authors assuming 

an harmonic-oscillator form for the confining potential. Yet, this 

dilemma further serves as a timely reminder that the Isgur-Karl model 

is no more than a simple and naive model of the interactions of the 

quarks in a baryon: one should be wary of falling into the trap of 

assuming that the Isgur-Karl model is the last word on baryon 

phenomenology. Indeed, had the Isgur-Karl model provided "perfect" 

phenomenology, one would have been faced with the even greater 

dilemma of having to conclude either that the underlying quark dynamics 

in a baryon is governed by 2-body forces, and not by 3-body forces as 

QCD would have one believe, or that the underlying forces are 3-body 

in nature but that baryon spectroscopy can never have anything funda-

mental to say about quark dynamics, in pretty much the manner of a 

"black box", the parameters of which have no deep significance and 

bear no simple relation to the QCD Lagrangian (Hey 1980). What is 

true is that the confusion currently reigning over the role of the 

spin-orbit interaction in shaping the baryon spectrum poses a very 

real problem for any attempt to understand how a model such as the 

Isgur-Karl model might be derived from the fundamental standpoint 

of QCD. Viewed in this light, the resolution of the spin-orbit 

problem is seen to be highly desirable, since it may provide important 

clues leading, ultimately, to a deeper understanding of the strong 

interaction. For the time being, however, the Isgur-Karl model must 

remain, despite its myriad successes, "QCD-inspired". 
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APPENDIX A 

We explain briefly the nomenclature used in this thesis to label 

non-strange baryon resonances. These resonances are observed in irN 

scattering: 

irN 	-'- 	X 	4- 	final state, 	 (A. 1) 

where X denotes the resonant state. We are not concerned here with 

the composition of the final state. The notation employed to label 

the resonance X is: 

XA(21) (2J) 
	

(A. 2) 

where X 	N (nucleon-type) or t (delta-type), A( S,P,D,F ...... ) 

is the spectroscopic symbol specifying the angular momentum, 

L TIN (= 0,1,2,3......), of the irN partial-wave amplitude in which the 

resonance X is observed, and I and J denote the isospin and spin, 

respectively, of the resonance X. L 	and J are not independent, 

since: 

J= 	ILN ± 	. 	 (A. 3a) 

The parity, P, of the resonance is given by: 

P 	
= 	TIN + 1) 
	

(A. 3b) 

In Chapter 6, we investigated in detail some negative-parity 

Li-resonances which are most plausibly assigned to the N = 3 level of 

the harmonic oscillator quark model. We indicate now how one deter- 

mines with which N = 3 SU(6) flavourxspin 
0 0(3) supermultiplets a 

given non-strange resonance can mix. We illustrate the method with 

reference to a specific example: the tiD35 state: 
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AD35 state 

For this state, L = 2 and J = -. The N = 3 level of the 
TrN 	 2 

harmonic oscillator quark model comprises eight SU(6) 	 . 0 0(3) flavour sp in 

supermultiplets in all (c.f. Figure 2), viz.: the [56,3], [70,3], 

[20,3], [70,2], [56,1], [70,1], [70,1] 	and [20,1] supermulti- 

plets. The decompositions: 

56 	10 0 4$ 	 (A.4a) 

70 	10 0 2 • 8 0 4 • 8 0 2 S 1 0 2 	(A.4b) 

• 1 0 4 	 (A.4c) 

under the reduction STJ(6) 	 STJ(3) 	0 SU(2) 
flavourxspin 	flavour 	spin, 

reveal that: 

a &state belonging to a 56 	 [70 	 . 1 —flavourxspin —flavourxspin.j 

multiplet necessarily has total quark spin S = 3 is 
=1 

a ti-state cannot belong to a 20 	 multiplet. 
—flavourxspin 

Recalling that: 

= 	 (A. 5) 

where L (not to be confused with LN)  denotes the orbital angular 

momentum of a given [SUM, LJ supermultiplet, and that J = 

for the AD35 state, we quickly deduce that the AD35 state can, in 

principle, mix with the N =. 3 [56,1],[70,2 - ], [56,3] and [70,3] 

supermultiplets. 

We list, for completeness, all possible N = 3 N- and s-type 

resonances in Table A.l, where we also give the possible mixings 

with SU(6) flavourxspin 0 0(3) supermultiplets: 



-149- 

State SU(6) flavourxspin ® 0(3) content 

NSll [70,2_]3/2, [56,1],  [70 , 1_] 2 , 	[70 , l]h/ 2 , 	[70 , l_] 3 / 2 ,  

[70 , 1] 3 ' 2 ,  [20,1} 

ND13 [70 3_] 3 ' 2  (70,2]h/2, [70,2- 1 3/2, 	[561} 	[70,1_]1'2 

o,f]huul2, [70,1_1 
3/2 	[70,1_132, 

ND15 [56,3], [70, 3_] 1 ' 2 ,  [70,3_]3'2, 	[20,3], 	[70,2- 1  

[70 l] 3 / 2  [70, 1_] 3 h/2  

NG17 [563] [70 , 3_]l' 2 ,  [7o,3_]3/2, 	[20,3], 	[70,2]3'2 

NG19 13)3/2 

,S31 [56,1], [70 , 1_] 112 ,  [70 , 1_] 1 / 2  

D33 [,3], [70,2_]'2, [56,1], 	[70 , 1_] 1' 2 , 	[70 , 1) 1 / 2  

b.D35 [56,3], 
[7,3_]l/2, [70,2-1  1/2 	[..,l_] 

G37 [70,3_]h/2 

G39 

TABLE A.1 N = 3 N- and s-type resonances and their possible 

SU(6) flavourxspin 0 0(3) content. 

In Table A.l, the notation [70 , L]S ,  where the total quark spin 

S = 	or 	-, is used. 
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