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Abstract

This thesis examines the dynamics of a long flexible horizontal circular cylin-
der when immersed in water and exposed to waves. The cylinder exhibits a
flexural resonance, dependent on its stiffness, which is stimulated by particular
combinations of wave frequency and angle. Linearity i1s assumed and analysis
performed in the frequency domain.

Experimental work is based on a 16 metre long 125 millimetre diameter
model consisting of 40 segments with motorised joints of controllable stifiness.
The bending moment and relative angular velocity are measured at each joint.
The model is tested in a three-dimensional wave tank in which multiple wave-
fronts of specified amplitude, frequency, angle and phase can be generated. The
model response to single wavefronts is displayed as an array of plots of bending
moment against distance along the cylinder axis. The shape and size of the
plots vary strongly with wave frequency and angle, and cylinder stiffness.

Two theoretical descriptions are explored. One treats the model as a finite
continuous beam, combining beam stiffness with hydrodynamic forces in an

equation which is solved analytically. The other is a more exact nodal analysis

treating each segment as a rigid body, specifying the forces and moments on it,
and solving by a matrix operation for all segments.

Both approaches require knowledge of the body hydrodynamics as a function
of frequency. This 1s obtained in a set of experiments using short cylinders in a
two-dimensional wave tank. Each experiment measures the wave field, the force
on the cylinder and its velocity when the cylinder is driven in the water and
acted on by waves. A matrix calculation is performed on the data to extract the
wave force coefficient and the radiation impedance in a single operation which
eliminates the masking effect of wave reflections in the tank.

When these hydrodynamic data are used with the nodal beam theory to
predict bending moments in single wavefronts there is good agreement with
experiment. The model is then tested in multiple-wavefront sea-states repre-
sentative of the North Atlantic. The results are compared with calculations for
each sea-state made by superposing the theoretical responses of the cylinder to
the component wavefronts. The agreement is good enough to allow the use of

nodal beam theory as a predictive tool.
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SYNOPSIS

This thesis develops an analysis of the dynamics of a long flexible cylinder in

ocean waves and compares the results with experiment. One application is for

the spine of a wavepower station; others include marine pipelines and cables.
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Chapter 1
Introduction

SUMMARY

Ocean waves and the extraction of energy from them is discussed.

The Edinburgh Duck wavepower device and the spine on which rows of Ducks
are mounted are described.

The present work is set in the context of theoretical and experimental work on

cylinders in water waves.

1.1 Background

Solar energy drives the world’s weather. The sun heats the globe differentially;
huge volumes of warm air rise from the tropics, spread and eventually descend
many thousands of kilometres north and south of the equator. This tropical air
brings not only warmth and water vapour but also momentum due to the higher
tangential velocity of the Earth’s spin at the equator. Satellite photographs
of the world graphically demonstrate this vast transport of heat, vapour and
momentum in the vortices of cloud that wreath the temperate portions of the
globe. The world’s rainfall and winds are concentrated in two bands between
40 and 60 degrees latitude in both the northern and southern hemispheres.
The wind dissipates itself by friction: over the ocean this frictional shear
on the water surface results in the transfer of momentum to the water to form
waves. Though the water itself does not travel, the waves do, carrying energy

with great efficiency across thousands of kilometres of ocean. It has been esti-



mated (Curran, 1979) that of the 173 PW of solar power that strike the Earth
(as a yearly average) 370 TW are converted to wind power, and 2 TW end up
as wave power incident on the world’s coasts.

Power produced by storms over oceans radiates out as waves to the shores,
but not isotropically: more power is directed along the lines of the prevailing
winds. For that reason the Atlantic seaboard of Norway, Britain and Ireland
has one of the most powerful wave climates in the world. Estimates vary, but a
mean figure of T0kW per metre of wave-front (Mollison, 1985) is typical 100km
from the Scottish coast. Estimates for the total resource available along the
1500km seaboard of the British Isles range from 60-120 GW average per year.
The fact that wave power, replenished over the whole surface of the oceans, is
harvestable at its edges makes it an attractive renewable power resource. The

ocean acts as an integrator of wind power in space and time, producing waves

that are more constant than wind. And unlike direct solar power, it is available
at night and more abundant in winter, Furthermore this is mechanical power -
the first conversion from heat has been performed naturally. And unlike wind,

where the translation of the medium sets an upper extraction limit (the Betz

limit) of 16/27, waves merely oscillate, and 100% extraction is theoretically
possible.

s r—————
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There has been sporadic interest over the past 150 years in the utilisation of
this energy: the most recent research effort has been concentrated in Britain,

Japan, Norway and Ireland from 1974 to the present. The British program was
the most ambitious, setting the target of the design of a 2 GW wave power
station, and spawning over a dozen projects. However, to date, the only com-
mercial construction undertaken has been by Norwegian companies at around

the 1 MW scale.

Much use was made of data collected in the two previous decades by the
Institute of Oceanographic Sciences (Crabb, 1980). These indicated that there
was a dominant direction for wave energy flux, a dominant frequency, and
patterns of spread of these parameters which could be correlated with weather
patterns.

Like most renewable resources the power varies with time in both the short
and long term around these averages. Power above the limitof the notional wave

energy converter must be allowed to pass, and conversely, waves which are too



weak will not overcome the starting losses of the device. These upper and lower
limits depend on the device, but estimates suggest an overall effieciency of about
30%. (Davies et al, 1985)

Notable among the British devices were the Lanchester Clam, the Bristol
Cylinder, the Belfast and National Engineering Laboratory versions of the Os-
cillating Water Column and the Edinburgh Duck. Sections of the devices are
1llustrated schematically in figure 1.1.

The four types shown have been chosen to represent the diversity of the
technological responses to the environmental challenges. To date only models,
up to 1/10 scale, of any device have been built.

The OWCs were shore-based, the rest deployed offshore. The OWCs coupled
an oscillatory column of water, via an air space to an air turbine. The Clam and
the Bag also had air turbines, but coupled these to air-filled rubber bags which
respired under the pressure of waves. This arrangement isolated the turbines
from contact with sea water and debris. The Cylinder and the Duck coupled
the moving mass of their structures to hydraulic pumps.

There were three types of reaction frame. The OWCs were anchored to rock.

The Cylinder was anchored to the sea bed via hydraulic pumps. The Duck
contained a set of gyroscopes which in addition to providing inertial reference
could also store about 3/4 hour of the Duck’s full power output. All the rest used

phase differences in the wave as it passed along the device to drive the power

take-off. The Clam and Bag both used spines: long rigid structures comparable
to the wavelength of the waves, moored into the waves in the case of the Bag,
and at 35 degrees to it in the case of the Clam. The spine experienced a sum
of wave phases and so underwent an average motion much less than the local
wave motion at any point. This provided an inertial reference that the much
smaller air bag, responding to the local wave motion, could react against. A
further advantage of the crest averaging spine was that its mooring loads were
reduced in proportion to the reduction of motion.

The penalty paid for these advantages is the bending moments incurred
in the spine. The material and the construction must be able to resist the
maximum stresses and the fatizue over the design life. The Clam and Bag
devices used spines which had no joints and were not designed to yield any more

than their material allowed. For this reason their lengths were kept shorter than



Figure 1.1 :

Sections of four wavepower devices.

CLAM CYLINDER
Low freeboard respiring air bag Submerged tethered buoyant cylinder
Sealed pneumatic power train Hydraulic power take-coff in mooring
Bags react against a short rigid spine Tuned and damped mooring, 42m depth
Low-rate mooring, 100m depth point or array absorber

DUCK oWC
Low freeboard pitching cam High-freeboard oscillating water column
Hydraulic power train Open pneumatic power train

Gyroscopic reaction frame/energy storage Fixed to sea bed, 25m depth
Long flexible spine Point or array absorber

Low-rate mooring, 100m depth




one average wavelength.

The Edinburgh Duck also used a spine, but of a different structure and for
different reasons. The gyroscopes in each Duck provided an internal reaction
frame for piich; but early experiments by Salter and Jeffrey (1978) showed that
Duck productivity could be increased by appropriate heave and surge motion
of the duck mounting. Salter (1985) suggests that this motion can be provided
by a controllable spine. Each Duck was 40m long, and was designed to pro-

duce 2.4 MW. In order to meet the DEn 2 GW design brief, 896 were needed,
with a total length of 40km. Connecting the Ducks in lines greatly reduced

the mooring loads, and offered many other economies of scale, such as power
conditioning and distribution. Strings of up to 100 units were envisaged with
spine lengths of 4 km. There are no precedents for a marine structure like the
spine which combines enormous mass with spectacular length. Supertankers
have displacements up to 500 ktonnes and lengths of 500m; they therefore span
many wavecrests and have a high section moment to resist the resultant bend-
ing moments. And all ships are designed to be stable, to minimize motion.
Oil platforms have high mass, but deliberately place the bulk of their structure
well above and below the water surface. They are designed to be transparent to
waves. Wavepower devices are designed to have high interaction with waves: to
be opaque to them, and to maximize motion. Calculations of the possible bend-
ing moments were high, so the spine was designed in segments which could yield
to wave forces non-destructively. There is a trade-off between bending moment
and motion: the spine must neither break, not bend so much it causes adjacent
Ducks to collide. The Duck units absorb power, and in small and medium seas
will reduce the wave forces on the spine. But above the Duck power limit, the
spine is effectively on its own, and must therefore be capable of withstanding
the worst possible ocean conditions.

The goal of the work described in this thesis was to develop a mathematical
description of the spine which would enable engineers to calculate the maximum
stresses and fatigue loading on it given the spine parameters and the necessary
wave data. The experimental studies were carried out at the University of
Edinburgh Wavepower Project which has a 5.8m long 2-dimensional wave tank,
and a 25m wide 3-dimensional wave basin. It also has a 1/100th scale articulated

spine model which is both instrumented and controllable, allowing testing over

3



a range of lengths and stiffnesses in a wide variety of wave conditions. This
enabled the theoretical models as they were developed to be checked against
experiment, with the goal of eventually replacing experiment by computation.

A description of the experimental environment is given in Chapter 2, and the
force rigs and models are described in the appropriate experimental chapters.
The rest of this introduction is devoted to a discussion of fluid behaviour, ocean

waves, forces on objects in waves, and previous related work.



1.2 Fluid Behaviour

The Navier-Stokes equation may be written in vector form as follows:

dq

1
= + 4.V = ;V(p + pgh) + vV3q (1.1)

where ¢ is the three-dimensional velocity vector, p is the pressure, p is the
density of the fluid, gh is the potential due to gravity and v is the fluid viscosity.
It expresses the substantive acceleration of the fluid at a given point in terms of
the forces pe-r unit mass due to pressure, gravity and viscosity. It is a differential
equation in time and space and requires initial and boundary conditions for its
solution. The conditions relate to the practical situation and may be static or
kinematic - the geometry of the fluid container, or the motion of an immersed
object, or the deformation of a free surface of the fluid.

The Navier-Stokes equation can in general be solved numerically, but it
1s convenient to make simplifying assumptions both on it and the boundary
conditions in order that analytic solutions may be found. These assumptions
must be reasonably related to practical conditions in the fluid. This thesis
concerns the behaviour of objects in water interacting with waves on a free
surface.

A fluid offers no permanent resistance to shear. Consequently a practical
fluid 1in motion will eventually exhibit some degree of chaotic behaviour. The

greater the fluid velocities, the more likely this is. The Reynolds number

R, = %5 (1.2)

where L is a characteristic length over which the velocity changes in magnitude
by U, is a measure of the ratio of inertial to viscous forces. In nature and
the laboratory Reynolds number can span many orders of magnitude. Above
Re = 100 viscous forces should be insignificant in the body of fluid. However in
a boundary layer adjacent to a fixed surface the velocity gradients are steep and
viscous forces high. And abave about Re = 100 the boundary layer separates
from the surface and its local shear is convected into the bulk of the fluid as
a vortex. When this happens repeatedly, the trail of vortices forms a wake.
The qualities of this wake and of its interaction with the remaining boundary

layer change with Reynolds number, and its influence on forces in the fluid
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are very great. However the wake takes a finite time to appear after a flow

starts. For reciprocating motion of the fluid relative to a body, or vice-versa,
the wake may not have time to form before the flow reverses. Consequently
a second dimensionless number is of use in determining the type of flow. The

Keulegan-Carpenter number is defined (Keulegan, Carpenter, 1958)

UT 2ma
I = — 5 = o8 (1.3)

where T is the period of the motion, U is the velocity amplitude, D the body

dimension and a the amplitude of motion.
For flow around a cylinder in water, Chaplin (1984) observes that there is

no vortex generation until X > 2. At low values of K it is reasonable to make

the simplification that the fluid flow is vortex-free or irrotational, ie the curl of

the velocity vector is zero
VXxg=0 (1.4)

This condition allows the definition of a velocity potential ¢ such that

qg=V¢ (1.5)

A second simplification is that liquids are essentially incompressible so the

dilatation can be set to zero. ie:

V.g=0 (1.6)

substitution of equation 1.5 into equation 1.6 yields the Laplace equation

V2¢5 =0 (1.7)

Substitution of the velocity potential from equation 1.5 into the Navier-
Stokes equation, neglecting the viscosity terms because of the irrotationality
condition, yields the Bernoulli equation

1, ¢

l 1.8
q+8t+ Etrgh=0 (1.8)

which relates the fluid velocity to the fluid pressure.



1.3 Water waves

The solution of the Laplace equation depends upon boundary conditions. Of
interest in the current work i1s the case where water is bounded by a surface
and a rigid bottom, where small sinusoidal waves are travelling on the surface.
Such a solution may be found, for example, in Newman (1977).

For horizontal coordinate # and vertical coordinate z, the linearised free

surface boundary condition is

0%d s,
4= = =0, . 9
a2+ 75z 0 =0, (1.9)

and the rigid-bottom boundary condition is

J9 . .
5; — O, z=-—h (1.10)
The solution is A cosh K )
- g_cos 2 -+ . -
¢ = — sin(kz — wt) - (1.11)

where A is the wave amplitude, and w is its angular frequency given by
w? = gktanhkh (1:12)
where k = 2x /) for a wave of length A. The phase velocity is given by ‘
V, =w/k = [% tanh kh]/? (1.13)

In shallow water when kh <« 1, tanh kh — kh and

w? = gk*h (1.14)
SO
= .2..“_f’. (1.15)
W
and
V, = (gh)!/? (1.16)

V, is therefore a constant for all frequencies. However, in deep water, kh > 1

and tanhkh — 1
w* = gk (1.17)



= —= ' (1.18)

This result has the important consequence that for models, time scales as the

square root of length scale. Also
Vp =g /w (1.19)

So in deep water a wave travels at a velocity inversely proportional to frequency;
le, the waves are dispersive with frequency. The difference in V,, between deep |
and shallow water causes waves to refract towards the fall-line of the sea floor
as they enter shallower water.

The water particles have velocities in the horizontal and vertical directions

given by -
0p gkAcoshk(z+ h)
_ 94 _ oshk(z +h) _ 20
U e ~ g cos(kz — wt) (1.20)
v = 9% _ ghdsinhk(z+ h) sin(kz — wt) (1.21)

8z w coshkh
When kh > 1 and tanh kh — 1, these expressions contract to

U = g—k}ekz cos(kz — wt) (1.22)
v = -g-éfe’“ sin(kz — wt) (1.23)

The horizontal and vertical water particle velocities differ by 7/2 in phase,
so that in water of infinite depth and for small waves the particles move in ap-
proximately circular paths with radii which decrease exponentially with depth.

In water of finite depth the particles move in ellipses, which get flatter as the

water gets shallower.
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1.4 Ocean waves

Textbook description and laboratory observation of waves do not prepare one
for the structural richness of the ocean surface. A review of ocean wave statis-
tics and the relevance to wave energy conversion is given by Mollison (1985).
Excerpts from his paper are presented in this and the next section; his con-
vention of using wave period in addition to wave frequency is retained, where
T=1/f.

Most ocean wave energy is carried by waves with lengths between 50m and

300m, and the ocean is deep by comparison, so by analogy with equations 1.19
and 1.18
Vo= gT/2n (1.24)

and

A= gT?*/2m (1.25)

An effect apparent when observing a small group of waves is that they travel
at a group velocity which 1s half the phase velocity. Individual waves seem to
arise behind the group, grow as they pass through it, then disappear into the

calm water ahead.

The total energy per plan area of wave 1s

1
E = -é-pi:;;A2 = pgH? (1.26)

where H is the root-mean-square wave amplitude. The water particle energy
varies cyclically between kinetic and potential. Over the course of a complete
wave cycle KF = PE = E/2. The energy in a wave travels at the group

velocity. Thus energy flux (power) through a unit line is given by
Py
P=EV,/2="—H'T (1.27)
T

For a sea state, the individual sinusoidal components sum to a Gaussian
random process. It is convenient to define a spectral distribution S(f, #) whose
overall integral is unity. This enables the definition of an energy period T, which

is the average value of T with respect to the distribution.

T, = f / TS(f,6) df df (1.28)

11



then
1 2
P = / / _EV,S(f,0)dfdd = =2, T. (1.29)

471, rms

where H,,,, is the root-mean-square wave height. T, is then the same as the
period of a sinewave having the same power and H,,,, as the distribution. It is
useful also to define the mean wavelength A., and the ratio Hyms/A. is then a
measure of the steepness of the sea state.

The energy of a sea state increases with the fetch, the distance z over which

the wind has been blowing. The wave height increases such that

H? =16x10""Uz/g (1.30)

rmas

where U;g denotes the windspeed measured at 10 metres above the sea surface.
Pierson and Moskowitz define a wave spectrum for a fully developed sea.

This is one for which a steady wind has been blowing for sufficient time, and

over sufficient distance or fetch for its spectrum to be invariant.

/Of S(2)dz = H?, ,exp[—0.675(fT.)~*] (1.31)

Its spectral width o7 = 0.28 and its steepness Hypms/Ae = 1/115 are independent
of the windspeed. But windspeed—measured at 19.5 metres above the sea
surface—does correlate with the following. T, = 0.625U, 95, H,ms = 0.0053U%, ;

and V. = 0.975U95. Hence H,ms = 0.0136T2. The fetch required to develop
the sea 1s about 3000...

The steady-state arises from a dynamic balance between the input of energy
from the wind, due to air pressure and shear stress on the water surface, and
the loss of energy as the higher-frequency waves in the sea break. They do this
for steepnesses between 1/7 and 1/4 depending on the degree of focussing of
the wave. Waves start small in both amplitude and wavelength, but non-linear
wave interactions generate higher and lower frequencies. The lower frequencies
endure, but waves of increasing frequency eventually break, and disappear.
The steady state arrives when their dissipation loss equals the energy input by
the wind. The process favours the production of waves with a phase velocity
comparable to the wind velocity.

In practice, few seas are fully developed, and when bivariate histograms are
drawn of the periods and heights of waves, there is substantial scatter around
the square law line H,,,, = 0.013672.

12



1.5 Angular distributions

Most early wave recordings were made by instruments which recorded only
wave height”with time, thus allowing only wave amplitude and frequency to
be determined. More recently, buoys which record three-or more degrees of
freedom have enabled directional data to be acquired.

The range of wave angle is approximately equal to the angle subtended by
a distant storm front at the wave-buoy. The distribution can be fitted to a

function of the type
S(0) = C(s)cos®(8 — ;) - (1.32)

where s is an arbitrary spreading parameter, for waves due to distant storms.

For more locally-generated sea-states an equation of the form
S(0) = C(s) cos**((0 — 6,/2) | (1.33)

allows the function to be positive for ~r <=0 -0, <=7
Mitsuyasu (1975) from measurements taken with a cloverleaf buoy measur-

ing heave, roll and pitch, fitted the following function to the data
S(T,0) = S(T)C,.cos™((6 — 6,)/2) (1.34)

where the spreading coefficient depends on period

T -5
m = 15.85 = T >=T, (1.35)
1o
T 2.5
m = 15.851'—_'- T < To (1.36)
0

and C,, i1s a normalizing coefficient

4+ : |
Cpn=1/ cos™((0 — 60)/2) df — 7 <=theta— 6y <=n (1.37)
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1.6 Body forces

The force on a cylinder immersed-in an unbounded two-dimensional flow which
is 1nviscid, unseparated and without circulation can be represented in the form

(see Sarpkaya and Isaacson, 1981)
F=C,npVU (1.38)

where F' is the force per unit length on a cylinder of volume per unit length
V. The force required to accelerate the cylinder in fluid otherwise at rest 1s of
the same magnitude but opposite sign. The coefficient C,, = 2 for a circular
cylinder; the disturbance caused by the presence of the cylinder in the flow is

equivalent to adding a mass of fluid equal to that displaced by the cylinder.
If the fluid is bounded by a surface, the motion of the cylinder will produce

waves on the surface. These carry energy away from the cylinder, damping its
motion. A force appears in phase with the velocity, in quadrature with the
acceleration, and C,, becomes complex and frequency dependent. This also
applies to a cylinder absorbing energy by moving in waves.

For waves of length comparable to the cylinder diameter, the flow will no
longer be uniform across the cylinder. There will be a phase difference, and

thus a partial cancellation of the force on the cylinder. The reduction increases
with the ratio D/A. (M\

wavelength
It 1s convenient to decompose the ideal flow around an immersed object in

the following form

¢ = ¢i+ ¢, + i d; (1.39)

—~
where ¢; represents the incident potential on the object, ¢, the scattered po-
tential, and ¢; the potential due to the motion of the object in the 7 th degree

of freedom. ¢ must satisty:

1. the Laplace equation in the field;

2. a linearised boundary condition on the surface;
3. a radiation condition in the far field;

4. the normal velocity at the container bottom must be zero;

14



5. the normal component of fluid velocity relative to the body on the body

surface 1s zero.

The first four conditions have been expressed in section 1.3 for the finite-depth

water-wave solution. The last condition is given by

9¢
—_— = 1.40

. an n ( )
where U,, is the body velocity in the direction of the‘normal vector n. Having
solved for ¢, the pressure around the body can be obtained from the linearised

form of the Bernoulli equation

p = p%‘.:i , (1.41)

then the force is given by the integrated pressure over the surface of the body.

f=- /S pndS (1.42)

Diffraction problems of this kind have been solved analytically by Ogilvie
(1963) and Mehlum (1980) for fixed cylinders in waves; and by Ursell (1949)

for a heaving cylinder at the water surface. In general the scattering problem
for a moving body has to be solved by semi-numerical techniques, for example
by boundary elements with a Green’s function. This is the approach taken by
Standing (1978) and Greenhow (1982) for the Duck wavepower device at the
water surface; and for long cylinders in 3 dimensional waves by Battjes (1982),
Garrison (1984) and Isaacson (1986).

There are also purely empirical equations. In an attempt to rationalise
the data for forces on vertical piles in a variety of flows, Morison et al (1950)

proposed that the total force on the pile be considered as the sum of inertial

and drag forces.

F 1 2 o 1
S— -— — 1-43
T Cmp47l'D U+ 2Od.DU|U| ( )

Sarpkaya. (1963) derived a theoretical expression for the force on a cylinder

accelerating uniformly from rest. It had an identical form to Morison’s equation.

Garrison (1980) provides a review of Morison’s equation from experiments with

cylinders in U-tubes, concluding that its form is correct but that Cr, and Cy are

not constant but functions of Keulegan-Carpenter number, Reynolds number,

15



relative roughness and phase angle of the flow. While this does complicate
laboratory work, marine designers are aided by the fact that C,, and Cy vary
little with Re in the region of postcritical flow.

The ratio of drag to inertia force is derived from equation 1.43 using the

relationships U = wA and U = w?A where A is the wave amplitude.
Fd _ = = K (1.44)

where K is the Keulegan-Carpenter number. Typical values for Cm and Cd are
2 and 1, so the drag force is negligible—less than 5%—if K < 1.

The full-scale Reynolds number is of the order of 107, whereas for 100th
scale laboratory work it is of the order of 10*. The drag regimes will therefore
not be comparable. However, in the current work, the highest value of I{ 1s

1, so that this difference is irrelevant. This work covers a range of D/A of
0.008 to 0.32, and wave diffraction is important. These values of I and D/A

should be compared with figure 1.2, after Isaacson (1979), with the conclusion
that it should be possible to describe the forces on the spine as linear inertial
forces modified by diffraction. In consequence it was decided that the most
appropriate way to proceed was to determine the hydrodynamic characteristics

of the spine by experiment. A discussion of non-linear effects is deferred to

Chapter 7.
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Figure 1.2

Wave force regimes (Isaacson, 1979)

Keulegan-Carpenter number K against diameter/wavelength.
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1.7 The present work In context

This present work 1s concerned with the theoretical and experimental modelling
of a long flexible horizontal circular cylinder in ocean conditions, moored with
1ts top just piercing the ocean surface.

As observed by Sarpkaya and Isaacson (1979) most of the experimental
studies on cylinders in waves have been on vertical ones, either piles or risers.
The little work that has been done on horizontal cylinders relates to bracing
elements and pipelines. These are of relatively small diameter and hence the
studies have been at high Keulegan-Carpenter number.

This present research builds upon and extends a body of earlier work on the
spine and duck. Standing (1978) modelled the duck using potential flow theory
and a source potential method. He obtained good agreement with the experi-
mental results of Jeffrey (1978) for the efliciency of the duck in monochromatic
two-dimensional waves. When Standing extended this work to include the spine
(1980) in a crossed regular wave he predicted bending moments which peaked
in the centre of the spine, and grew rapidly as the length of the spine was in-
creased. Taylor (1984) assembled a large body of experimental data using the
Edinburgh Wavepower Project articulated spine model. He found that bending
moments increased only up to a limit, which was not exceeded however much
longer the spine was made. The bending moments did peak in the middle—but
only for short spines. For longer spines a central plateau of bending moment
formed, somewhat lower than the peaks close to both ends. Bryden (1983)
derived the beam equation, solving it analytically for the boundary condition
of it being single-ended (ie semi-infinite), and numerically for the double-ended
condition. For the most part, his data agreed well with Taylor’s experiments on
the spine at a variety of stiffnesses in a variety of Pierson-Moskowitz spectra.
He also confirmed the experimental result that spine bending moments are a
maximum about one crestlength in from the ends. For a spine of length equal to
two crestlengths, these two maxima coincide giving the highest bending moment
for all possible lengths. For the North Atlantic conditions this worst length is
about 400-600 metres at full scale, increasing slightly with stiffness. Guilloud

and Vignat (1974) computed the response of a pipeline using the beam equation

combined with Morison’s equation (including the drag term because of the high
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Keulegan-Carpenter number) and solved numerically.

The purpose of this thesis is to develop a mathematical analysis which 1s
sufficiently good to predict the performance of the spine when it is used to
support a string of ducks in mixed seas, and more generally, the motion of long
flexible cylinders representing pipelines, cables, etc.

In addition to the two different analyses of the cylinder developed in chap-
ters 5 and 6, the thesis contains supporting experimentation on an articulated
cylinder model of controllable stiffness in a 3D wave tank in both regular waves
and mixed seas, and on short cylinders in a 2D wave tank. The experimental
facilities of the Edinburgh Wavepower Project are described in chapter 2, and
the author’s personal contributions to this thesis begin thereafter.

In chapter 3 the hydrodynamic coefficients of cylinders are measured in the
2D wave tank over a large range of D/ ratio, using a matrix technique which

removes the effects of wave reflection in the tank. These coefficients are com-
bined with the equations for a continuous, finite beam and solved analytically.
The spine model is tested over the whole range of wave frequency and angle
that the 3D tank can usefully produce, and the results compared with calcula-
tions from the continuous beam model. A further nodal analysis is made of the
spine which takes its segmentation into account. This latter analysis is used to
predict the spine response in a set of 46 widely ranging sea spectra representa-
tive of annual conditions in the North Atlantic. The nodal model satisfactorily

predicts the variation of bending moment response down the length of the spine
in both regular waves and mixed seas.

A linear treatment is adopted for the entirety of this work. It has the
following advantages.

1. It is mathematically and computationally simpler.

2. Frequency-domain methods (eg Fourier analysis) can be used.

3. The superposition principle applies. The effect of waves of different fre-

quency (and in three dimensions, different angle) can simply be added.

Chapter 7 lists its disadvantages, and gives an experimental critique, before
a test of the superposition principle is carried out in Chapter 8, where the

experimental spine response in mixed seas is compared with theory.
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Chapter 2

The experimental environment

SUMMARY
The host computer, the sampling and control system, the 2D and 3D wave

tanks and the wavegauges are described.
They are used 1n an experiment to determine various characteristics of the 2D

wave tank, including wave reflection and attenuation.

2.1 Preamble

A large variety of experimental equipment was used: two wave tanks; wavegauge

arrays; an instrumented and controllable long cylinder model; short cylinder
models mounted in a force rig; sampling and control multiplex systems; and a
variety of computers. All the equipment was extant: the author had no need
to construct_‘appara,tus.

The scale of the wave tanks and models is nominally 1:100. Note that be-
cause of the dispersion relation, equation 1.12 time scales as the square root
of the linear scale; a 0.1Hz ocean wave scales to a 1Hz tank wave. The short
cylinder models and their force rig are described in Chapter 3, as are the wave o
gauges and the processing of wave data. The long active cylinder model,in
Chapter 4. This format places the model descriptions alongside the experi-
mental descriptions and results. The rest of the experimental environment 1s

described here.
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Figure 2.1 1s a schematic diagram showing the components of the exper-

imental environment. The system is designed so that lengthy and complex

experiments can be automated.

The experiment control computer is a DEC PDP-11/60, a 0.5MIP machine.
It 1s programmed in IMP, an Edinburgh University systems programming lan-
guage with similarities to C, in that it allows high-level structured programming,
and efficient interfa.c;ing to the experimental environment. Direct memory access
allows reading of samples without the bottleneck of serial links.

Separate programs are written for running experiments, processing data,

and displaying data. This modularity helps to organize the very large amounts

of data gathered, and to stay within the limits of the PDP, namely 64kB of
virtual memory and 13MB of disk space allocated for sampled data.

The construction of waveforms for driving the 3D wave tank was dedicated
to a real time computer, a Plessey Mipfoc 4 MIP machine. The PDP specifies
the wavefronts required in the tank in terms of their amplitude, frequency,
angle and phase. The Miproc calculates the resultant instantaneous value of
the composite waveform at the refresh rate. The processor speed sets the limit
on number of calculations and hence the complexity of output. The Miproc was
capable of calculating 75 wavefronts for 80 wavemakers, at a rate of 20 Hz. A
second Miproc was used for control of the spine model, where force command
signals needed to implement the controllable stiffness were required in real time.
For the experiments in the 2D tank, a purpose-built rack machine was recently
added as a real time controller for both the wavemakers and the force rig drive.

A clock signal, of frequency selectable between 5Hz and 320Hz rising in
powers of 2, synchronises sampling with the generated waveforms. Sampling
may be delayed by an arbitrary wait time. It is normal to record a binary
power of samples over an integral number of cycles so that the Fast Fourier
Transform algorithm may be used to process the data.

A sampling interface handles the time-multiplexed signals from the gauges
around the laboratory. Sampled data have their values passed to the PDP or
real time controller when their address is selected. The real time controller can

also send signals to the system.
Eight multiplex ribbon cables are provided; four are dedicated to the spine,

the others may be routed anywhere in the laboratory. Sampling of up to 2048
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Figure 2.1

The experimental hierarchy:.
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channels is possible. Signals are passed in analog form around the tank with a
signal range of 15V, and converted by a 14 bit analog-to-digital converter in

the sampling interface. The size of the least significant bit is thus 2mV, setting

the sampling error to 1mV. The level of broadband noise-on channels is of the
order of 2-10mV.

2.2 The 3D wave tank

Figure 2.2 shows a dimensioned plan of the tank. The working area of the tank is
considerably smaller than the external area due to the need to include beaches.
These are passive metal-mesh triangular prisms with their apices facing into
the waves to provide a gradual impedance match from the waves to the tank
walls. The beaches have amplitude reflections of between 2 and 20%, absorption
increasing with wave steepness. Beaches are not provided at the control end
of the tank, where a glass window is mounted. Consequently, there is a local

reflection field, which is avoided when positioning models in the tank.

WAVEMAKER SPECIFICATIONS

width 300 mm
hinge depth 540mm
max angle +15°

Wave amplitude maximum

at 1 Hz 110 mm
Frequency range
for 20 mm amplitude 0.4 -2.0 Hz

The frequency range for a given amplitude is limited by the displacement of
the wavemaker at the low-frequency end, and by wave steepness and breaking
at the upper end.

The wavemakers have force and velocity feedback, enabling them to absorb
spurious energy in the tank. They are of an earlier design than those in the
2D wave tank, with less open-loop gain available to counteract stiction, and

hence less ability to absorb waves of low amplitude. However, the combination
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Figure 2.2
The 3D tank: plan and coordinate system.
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of beach and wavemaker absorption allowed the tank to adjust to new wave
conditions in a settling time of about 20 seconds.

Eighty wavemakers with a pitch of 305 mm provide wave generation along
a 20 metre width. They can be driven in common mode, producing parallel-
crested waves up to 110 mm in amplitude at 1 Hz. When driven with a constant
phase difference between paddles, they will produce angled waves, up to a maxi-
mum of 90°. More elaborate phase difference schemes can produce, for example,
a focussed circular wave with a maximum amplitude of 250 mm at 0.8 Hz.

For a wavemaker pitch of P, and a wavelength of A a phase difference ¢

between wavemaker n and wavemaker n + 1 produces an angle o

. OA
a = arcsin 5— (2.1)

At higher wave frequency, an angle limitation appears. From the equation
above, it is clear that for a given angle as A decreases, § must increase. At some
point the phase difference between wavemaker n and its predecessor, wavemaker
n — 1 will be small enough to generate a wave of different angle in the other
direction. The angle limit appears at 90° at 1.6Hz, dropping to 20° at 1.95 Hz.

Waves produced perpendicular to the wavemakers cover the entire work area.
Angled waves leave triangular areas of calm water at the end from which the
waves travel. The spine model was placed to maximise its exposure to waves,
discrepancies only arising at the largest angles.

A time delay of 0.6ms appeared between adjacent wavemakers due to the
multiplexing of the wavemaker drive signal. This produced a systematic error
in the angle of wave propagation which can be calculated from equation 2.1
above. At 1Hz it was 40.2 degrees. The error was corrected only after this
work was complete.

Skyner (1987) measured the wave reflection in the centre of the 3D tank to
be about 5 to 10% between 0.8-2.0Hz. Bryden (1983) measured the root-mean-
square wave amplitude over the whole surface of the tank using a travelling

wavegauge array with 10 gauges spaced 0.56m apart. He discovered that the
rms amplitude of a 1Hz wave propagating normally to the wavemakers varied by

up to +15% over the working area of the tank. In a mixed sea (a 1Hz Pierson-
Moskowitz with Mitsuyasu angular spreading, principal direction normal to the

wavemakers) the variation dropped to half this range. Some of the variation
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may be due to an inhomogeneous wave field produced by the wavemakers, but
most is likely to be reflection. Since the technique showed a large increase

in energy close to the glass wall, this area was avoided during testing, and in
regular wave testing the waves were given angular headings away from 1it.

To allow for the small evaporative losses and leaks, the tank water is topped
up to the 1.2m depth before each experiment. The 300 tonnes of water is cycled
through a sand filter to reduce turbidity. It is treated with a proprietory mix of

corrosion inhibitor and biocide, in low enough concentration negligibly to affect

the physical properties of the water.

2.3 The 2D wave tank

Figure 2.3 1s a dimensioned elevation of the tank. A wavemaker is installed
at each end of the tank. Their performance is measured later in this chapter.
It 1s possible to use just one wavemaker and a passive beach to give better
absorption of unwanted waves, but the twin wavemaker design allows greater

flexibility of experiment design, the production of novel waves and the exact

definition of a tank centre. Evaporative losses require that the tank be topped
up to the 0.58m depth before each experiment.

The wavemakers control absorption of waves propagating along the tank,
but cannot attenuate cross-waves. The wavemakers are attached by gussets
to the side walls, and these gussets move at half the velocity of the paddle.

They therefore provoke cross-waves in the tank which are undamped by the
paddles, only by the viscosity and surface tension of the water. These waves

constructively interfere when integral multiples of the half-wavelength coincide
with the tank width. The first resonance appears at 1.58 Hz, the second at 2.2

Hz, the third at 2.7Hz and so on in accordance with the wavelength formula
equation 1.18. However, models in the narrow tank are usually designed to span

the tank and so will experience the average wave height. And the wavegauge

arrays described below are constructed to eliminate most of the effect of cross-

WaVves.
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Figure 2.3
The 2D tank: elevation.
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2.4 The wave gauge arrays

Twin-wire wavegauges were used of a type similar to those described by Fryer
and Wilkie (1975). Those authors discovered twin-wire alternating-current re-
sistive gauges to be considerably superior to capacitance or heaving-float gauges
in their linearity and frequency response. The gauges used here offer a further
improvement in being driven by constant-current sources, and hence immune
to impedance effects. They also have electronic compensation for changes in
water conductivity.

Photograph 2.1 shows one of the two identical wave gauge arrays. A light-
alloy frame supports 4 wave gauges. The knurled discs clamp the frame in
position on the glass walls of the 2d tank. Each wave gauge consists of two
parallel stainless-steel rods held separate by a perspex block. The short sec-
tions of rod which protrude from the bottom of the block are used to measure

and hence compensate for the effect of water conductivity. In use, the rods are

mounted vertically half-immersed in the water. The conduction between the
rods is measured as a voltage using a nominal 1kHz AC current source. The

close proximity of the four gauges necessitated the use of 4 different drive fre-
quencies, anharmonically related, to avoid beat interference. The wavegauges
are calibrated by measuring the voltage outputs when in the rest position, and
when raised 50 mm on the square-section pegs bolted to the frame.

Each wavegauge is located a quarter tank width in from the tank walls.
When the signals from the pa,iré of gauges across the tank are added, they elim-
inate much of the effect of cross waves in the tank, by averaging. Consideration
of the geometry shows that they average the first cross-wave to the correct mean
value, and so on for all odd higher order spatial harmonics. They also correctly
average out the second cross wave.

The two lateral pairs of gauges are mounted 150 mm apart, and their sep-

aration in space allows them to measure the phase difference of waves passing
them. Matrix arithmetic on the two complex measurements allows the ampli-
tude of the waves in both directions to be calculated. The method is shown

below.
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2.5 Processing wavegauge data

The wavegauge definition sketch is shown in figure 2.4; the origin is at the water
surface 1n th-e middle of the tank. Two wavegauges are disposed symmetrically
about the origin with a separation 2d. Each wavegauge represents a pair of
wavegauges across the tank, whose signals have been averaged to reduce the
effect of cross-waves.

Waves in the tank are assumed to be linear sinusoids, hence decomposable
in frequency by a discrete Fourier transform. At any one frequency there can
only be two waves, travelling in the positive and negative z directions. The
wavegauges measure the elevation of the water surface. For continuous sinu-
soidal waves of complex amplitude A, angular frequency w and wavenumber %

the instantaneous elevation varies according to
zy = R{A, w52} (2.2)

z_ = R{A_e'lwitha)} (2.3)

The complex amplitude G measured at each wavegauge 1s the local sum of the

two wave trains.
Goeiwt — A+ei(wt—k(—d)) 4 A_ei(wt+k(—d)) — eiwt[A+e£kd + A_e—t'kd] (2.4)

Gleiwt — A+ei(wt—k(+d)) + A_ei(wt+k(+d)) — eiwt[A_I_e—t'kd + A_et'kd] (2.5)

Defining P = ¢** and Q = e~**? and writing equations 2.4 and 2.5 as a matrix

(ﬁ)%éﬁ)(j) (26)

The equation is solved for A by elimination.

equation.

The sensitivity of A to errors in G must be determined. Rewriting equa-

tion 2.6 explicitly
Go=PA,  + QAL (2.7)

Subtracting Q times equation 2.8 from P times equation 2.7
PGQ — QGl — P2A+ -— Q2A+ (29)
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Figure 2.4
Wavegauge definition sketch.

not to scale
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PGy— QG

A, = PT 02 (2.10)
The rate of change of A, with respect to Gy is given by
0A, P etkd __coskd+isinkd (2.11)
: 0Gy P?2—Q? e?kd —e=i2kd  4isinkdcos kd '
As kd — 0, sinkd — kd,coskd — 1 and
OA,
l Sr| ™ 1/4kd (2.12)
As kd — n/2,coskd — n/2 — kd,sinkd — 1 and
OA .
SG | 1/4kd (2.13)

So at both extremes the function tends to infinity. Clearly the other partial
derivatives of amplitude with respect to gauge measurements will have the same
form. If G, exhibits a similar (but uncorrelated) error to Go, we can expect the
total error to increase by a factor of /2 at these frequencies. This figure repre-
sents the error in the larger of the two waves and hence the limit of resolution

of the smaller wave.

2.6 Wavegauge calibration

The wavegauges were calibrated by sampling the outputs for each gauge in two
positions. Pegs attached to the array frame allowed the wavegauges to be raised
50 mm for this purpose. The calibrations were checked before and after each
experiment. Over the course of a few hours drift was found to be of the order
of 0.1%.

The dynamic calibration of the wavegauges was tested in an earlier exper-
iment (Skyner 1987). A wavegauge was attached at various points along the
length of a lever whose free end could be oscillated vertically. The wavegauge
was then driven up and down in water over a range of amplitudes at 1 Hz. Its
calibration at amplitudes down to 1 mm was typically within 1% of nominal
— that is, within the geometrical error of the lever itself. Below 1 mm the

calibration began to drop, reading 80% of nominal at 0.5 mm. The error is

probably caused by the response of the water meniscus.
Fryer and Wilkie showed the frequency response of twin-wire resistive gauges
to be flat over the tested range (0-2.5 Hz).
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2.7 A wavegauge experiment

An experiment was run to test the 2D tank characteristics using the wavegauges

set up as in figure 2.4. The experimental parameters were:

samples 2048
sampling rate 20.0Hz
frequency range 0.24 - 2.03Hz

wave amplitude Smm

Using the matrix arithmetic of the previous section,.the amplitudes and

phases of the incident and reflected waves were measured as a function of fre-
quency. The phase of the wave A_ of wavelength A transmitted from the wave-
maker was extrapolated to the position of the wavemaker (2.9m away) by adding

272.9/) to the phase measured at the wavegauge array. This calculated phase,
and the measured wave amplitude was used to implement the ‘tank transfer
function’ which adjusts the command signal to the wavemaker so that the wave
amplitude is approximately constant and the phase approximately zero at the
wavemaker, across the whole frequency band.

The, experiment was then rerun using two wavegauge arrays placed sym-
metrically 1.5 m either side of the tank centre. This time the amplitude and

phase of the transmitted and reflected waves at the two positions was used to

construct gréphs of the various tank characteristics.
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2.8 Results

Figure 2.5 collects the wavemaker characteristics on one page. The gauge error
ratio 1s calculated from the modulus of the expression in equation 2.11. This
ratio is the factor by which the individual gauge errors must be multiplied to
indicate overall error with frequency. It shows a minimum at kd = 7 /4 of 1/2:
the error is divided between the two oppositely travelling waves. It also shows
the expected rise at high and low frequency confirming the limited range of
the wavegauge array. As mentioned above, individual gauge errors are of the
order of 1%, and therefore their effect in the array rises to about 5% over the
frequency range shown.

The wavelength error is the fractional difference between the theoretical
length from equation 1.18 and the length implied by the 3m separation of the
wavegauge arrays and the phase difference for the wave between the arrays. As
can be seen, there is less than 1% difference over the range 0.5-2.0Hz. Below
0.5Hz the measured wave gets shorter, by about 10% at 0.25Hz. However, it is
not possible to say whether this is a physical departure from linear wave theory

or an error due to the wavegauges.

The wave attenuation is the fractional attenuation per metre of the wave
as it passes down the tank. This is calculated from the amplitude of the wave
transmitted from the wavemaker as measured at the two sites. The smoothed
curve through the data suggests that attenuation is about 1%/m over most of
the range. The rise in attenuation to about 5%/m suggests that the attenuating
mechanism 1s steepness related. The large amount of scatter shows that the
attenuation 1s of the same order as the amplitude error in wave measurement.

For this reason, the eflects of attenuation have been neglected elsewhere in this

text.

The graph for wave reflection shows the ratio of the reflected to transmitted
wave, measured at the array closest the wavemaker, and uncorrected for attenu-
ation. Again, there is much scatter, but the smoothed curve shows a maximum
of about 25% at around 1.4Hz. As will be seen, the effect of this reflection 1s
considerable, and it is essential that it can be measured using these wavegauge

arrays.
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Figure 2.5

2D tank characteristics.

gauge error raollo

wavelength error
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Chapter 3

Measurements on cylinders in 2

dimensions

SUMMARY

A force rig for testing the hydrodynamic characteristics of immersed cylinders
1s described and its intrinsic impedance measured.

Wave force coeflicients and radiation impedances are determined experimentally
for cylinders with a range of diameters in the 2D tank. Matrix arithmetic is
used to remove the effect of tank reflections.

The data are used to calculate the equivalent values for the composite diameters

of the long cylinder model.

3.1 The Pitch-Heave-Surge rig

All the experiments in this chapter were performed using the PHS rig. Photo-
graph 3.1 shows the rig mounted on the 2D tank. It consists of a massive frame
- about 40kg - resting on the rails of the tank on disc feet. Two of the feet -
one 1s visible at the left - are eccentrically mounted to permit levelling of the
frame.

A linkage projects from the frame at the left, and supports the test object,
in this case a 125mm diameter cylinder. This linkage is a light and rigid space
frame jointed by ball bearings and leaf springs to give a structure which allows
120mm of motion peak-to-peak in a plane parallel to the tank walls, but with

little play or bearing loss. The linkage transforms motion in this plane into
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rotation about two axes; these are coaxial with the two hollow cylinders pro-
jecting from the frame out of the picture. Each cylinder contains a steel strip
used as a torsion spring. These provide restoring force to the motion of the test
object. Clamps sliding down the outside of the cylinder adjusts the spring rate;
and rotating the cylinder from its null position provides an offset force used to
cancel the buoyancy of the test object. Counterbalance weights may also be
mounted inside the body for test objects which are exceptionally heavy.
Mounted in line with the springs but hidden behind them are torque motors
which drive the rig under computer control. The motion of each of the axes is
coupled via leaf springs to the galvanometers—used in reverse as tachogenerators—
bolted to the frame next to the cylinders. Above them is a circuit board con-
taining signal conditioning circuitry both for the velocity outputs, and for the
outputs from strain gauges mounted in the prow of the linkage. The ten-turn
potentiometers mounted at the top of the circuit board allow nulling of the DC
offset of the-strain ga,{lge signals (which can vary considerably with the buoy-
ancy of the test object) so that the full voltage range of the amplifiers can be

used. A second set of galvanometers, strain gauges and circuitry is mounted on
the far side of the rig, and the two sets of signals are combined to give a total
reading. The cables at the right carry power and signals to and from the rig,

An outrigger can be attached to the linkage to measure forces and velocities

in pitch. For these experiments this was not required and therefore not attached.

3.2 Rig geometry and signal processing

Figure 3.1 shows a schematic of the rig geometry. The geometry is derived from
a Watt’s linkage, and is designed to transform heave and surge motion of the test
object into independent rotations about rig axes R; and R;. These axes can be
driven directly by torque motors, and they are coupled by small parallelogram
linkages to galvanometers which measure the rotational velocities 11 and v,.

The heave and surge velocities can be expressed in terms of the rotations by

linear approximations.

U, = avy (3.1)
Uh = awh (32)
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Figure 3.1
Schematic diagram of the Pitch-Heave-Surge rig.

not to scale
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The orthogonality of these motions is only true to first order. Rotation of
axis R, actually causes the test object to move on an arc, with spurious vertical
motion of second order and higher. Rotation around axis R, also causes spurious
horizontal motion, but because link C is half the length of link B, the even order
terms cancel, leaving only third and higher order odd terms. The effects are
small: 20 mm surge motion of the test object causes 1% crosstalk in heave.

Note that surge motion of the test object 1s accompanied by first-order pitch;
motion of 20 mm amplitude will cause a 4° amplitude pitch. Heave motion will
cause a spurious pitch of second-order and higher.

Torsional strain gauges are mounted at the end of the linkage, torque on
them provides output. The local geometry mixes heave and surge forces in
both gauges. Note from the diagram that because strain gauge 7, is mounted
vertically above the test object, it can never experience any torque due to heave
forces, but only surge. For strain gauge 7, the moment arm of heave and surge

forces is the same, hence the reading 71 may simply be subtracted to leave the

moment due to heave.

Fr,=(n —m)/a (3.3)
F, — Tz/a (3.4)

The end of the linkage is a moving coordinate reference frame for force.
This leads to a first order crosstalk term of sin § between channels when it 1s
displaced by angle 6 from the rest position. For a surge displacement of 20 mm
this corresponds to about 7% crosstalk.

Surge motion of the test object causes an angular displacement 6 of the
linkage which then behaves like a pendulum with restoring force 82 where

2a
2a is the effective pendulum length, and w is the effective_weight (that is the

weight of the test object minus any buoyancy). This effect appears as a spurious
spring term of 2= when the rig is used to measure surge impedances.

The geometrical conversions given above are performed in hardware. The
heave and surge velocity measurement and drives are orthogonal, but the forces
must be treated to be so. The test axis is fixed and the rig driven in one mode
while the force reading in the other mode is electronically trimmed to zero.

None of the cross-talk terms mentioned above is corrected: i1n the experi-

ments in this thesis, amplitudes of motion in heave and surge were kept below
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20 mm. The pendulum effect is appreciable however, and is corrected for when

impedance graphs are drawn.

The force outputs are calibrated with known weights. The velocity outputs
are calibrated by driving the test axis by an external motorised rig in a circle
of known amplitude, at a measured rate. The estimated calibration error is =+
1%, 1n force and velocity, with a comparable calibration drift over the course of

the experimental period.

3.3 The test cylinders

Three sizes were fabricated, their data are tabulated below.

length mm diameter mm volume litre mass kg
295 75 1.303 1.294
295 100 2.317 2.304

=295 125 3.620 4.216

3.4 IExperimental parameters

For all the experiments in this chapter the following conditions were constant:

samples 2048
sampling rate 40Hz
frequency range | 0.39-2.03Hz
number of frequencies 85

The frequencies are chosen so that sampling occurs over an integral number of

wave cycles

3.5 Measuring the rig impedance

The strain gauges are mounted at the end of the linkage to minimise the rig’s

contribution to force measurements. Though small, it is not negligible, and it
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was measured by driving the rig and measuring the forces on it due to the reac-
tion of its own inertia and damping. The rig was driven in air by its own torque
motors, with no test cylinder attached. The experimental parameters were as

recorded above. A constant force drive signal was used and the rig motion kept

below 20mm peak-to-peak at all frequencies. The forces and velocities of the

test object in heave and surge were sampled.

The equation for the impedance can be written in vector form as
F=_ZU (3.5)

where all the variables are frequency dependent. Explicitly

B2
Fs Zsh Zss Ua

To determine the 4 unknowns in Z, 2 independent experiments are required.
These are: measurements in heave and surge while driving the rig in heave; and

the same while driving in surge. -

.Dh .D, -Dh Ds

Fun Fre ) (Zhh Zhs) Unh  Uhs (3.7)
Fah Fss Zah Z.u Ush Uss |

The order of the subscripts determines the conditions of the experiment: for
example, U, is the velocity of the rig in heave when driven in surge. Note
that arrangement of the elements of the matrix places the largest values on the
diagonal, hence maximising accuracy for a solution using matrix inversion.
The results are plotted in Figure 3.2 as a matrix graph, with the real and
imaginary parts plotted for each of the elements in the array. Experimental
data are drawn as points connected by straight lines. Each graph displays the
frequency dependence of that element. The real part is in phase with velocity,
and is damping; the imaginary part is a combination of spring and inertia.
The imaginary part of Z;, shows a fairly linear increase with frequency and is
therefore due to mass. The imaginary part of Z,, is a combination of a line for
mass with a curve inversely proportional to frequency due to the negative spring
of the pendulum effect. The real part of Z,, shows a slight rise as frequency

decreases; a true damping would remain constant. The real part of Z;, 1s
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negative over all its range; since any damping should be positive, this implies
some degree of phase error and crosstalk between heave and surge. The cross-
impedances Z;, and Z,;, are non-zero because of the definition of the surge force
in equation 3.4, and because of the fact that most of the mass in the end of the

linkage is between the two force gauges, and hence the signal from 7, is large,

and 7y small.

3.6 Measuring cylinder impedance in water

An experiment was performed with the 75mm cylinder to measure its impedance
in water. It was mounted in the middle of the 2D tank and driven in heave and
surge while recording torque and velocity signals. The impedance was calculated
by the method shown above. The impedance due to the rig and the effects
due to the mass of the cylinder and the negative spring due to the pendulum
effect were subtracted; this process is discussed in detail in section 3.8. The
results are plotted in figure 3.3. The most striking feature is the systematic
ripple apparent on each graph. It can be deduced that this is due to waves
transmitted from the oscillating cylinder being reflected from the imperfectly
absorbing wavemakers. The frequency spacing of the spikes corresponds to
an integral number of half-wavelengths fitted into the 5.8 m round trip from
cylinder to wavemaker. At any frequency there will be a standing wave at the

centre of the tank whose orientation in the heave-surge plane will depend upon

the phase of the reflected wave with respect to the transmitted wave, and hence
will depend upon frequency. Consequently the ripple on Z;, is in antiphase with

that of Z,;. The ripple almost completely masks the data._Clearly a means of
eliminating it 1s essential for obtaining usable impedance curves.

This is done by taking account of the effect of the waves generated by the
motion of the cylinder. To do this requires knowledge of the wave force co-
efficient, determined by measuring the forces on the cylinder in waves—which
also will be corrupted by the effect of reflections. However the wave field at the
position of the cylinder can be extrapolated from measurements made with the

wave gauge arrays. The calculation for the wave force coefficient on the cylin-
der and the impedance of the cylinder can then be performed in a simultaneous

matrix operation.
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Figure 3.2

PHS rig impedance against frequency.
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Figure 3.3

Imi:»eda.nce of the 7Smm diameter cylinder, freeboard -20mm

showing the effect of wave reflections.
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3.7 The extrapolated wave field

Figure 3.4 shows an elevation of the narrow tank with the cylinder model
halfway between the two wavemakers. The wavegauge arrays are symmetri-
cally disposed either side of the cylinder. Each cross-tank pair of gauges 1s
represented as a single line, and their readings are assumed averaged to a single
value in the treatment which follows.

The gauge-gauge distance 2d is 150 mm, the array-cylinder distance S
centre-to-centre, is 1.5 m. The waves are assumed sinusoidal and linear, and
hence may be separated by Fourier transformation. Considering a single fre-
quency, there are four waves in the tank: their directions and complex am-

plitudes are shown in the diagram, and their specifications in time and space

are.
Ah+ei(wt—k:r)
A ei(wt-l—k:r)

A;l+et(wt-ka:)

;I_ei(wt+kz)

The gauges measure the vector sum of the pairs of waves

Gy = ciwt[ Any o3k (S+d) + Ap_ e-—i‘k(S+d)] (3.8)
Gl — eiwt[Ah_i_eik(S-—d) + Ah_e—ik(S—d)] (39)
G, = eiwt[A;l_'-eik(S—d) + Al _e-ik(S-d)] (310)
Gs = e“'[A}, "5+ + A} e~ k(S+d)] (3.11)

Setting P = e¥{5+9) and Q = ¢**(°-9), then

Go P1P o0 o)/ A
G, 0 0 1/Q Q@ t
Ga o o 1/P P\ A

which may be solved for A by elimination.
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Figure 3.4

Wave extrapolation definition sketch.

not to scale

|
|

S
9

G, Gs
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The surge component of positive direction waves lags heave by 7/2 radi-

ans, while the surge component of negative direction wavesleads heave by 7 /2

radians. Therefore
Agp = Ah+6i(w"kx_ﬂ/2) = Ah.|.e£r/2 = 1Apy (3.13)

and
A,m = Ap_e'Withetml2) — A, e=i7/2 = 44, _ (3.14)

The cylinder will only be affected by waves travelling towards it from ei-
ther direction, hence the resultant heave and surge components of the waves

impinging on the cylinder can be written
Ap = Ay + Al _ (3.15)

A, =iAp, —iA}_ (3.16)

The heave resultant is the complex sum of the components; the surge resultant

is the complex difference.

3.8 Processing experimental data

Following Evans (1979) the hydrodynamic forces on the cylinder are treated as
the sum of two parts: the force on the body when held fixed in an incident

wave; and the force on the body assuming it to be oscillating with its induced

motion in absence of the incident wave.

Writing a vector equation of motion equating the sum of the forces on the

cylinder to its mass times acceleration.

where the force F' measured by the rig is exerted by the rig on the cylinder. W
is the waveforce coefficient, Z is the radiation impedance and U the cylinder

velocity and M is the cylinder mass in both degrees of freedom. This can be

rewritten

F'=WA+2U (3.18)
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where a new impedance Z’ incorporates the cylinder inertial force, also the rig
impedance and the rig pendulum effect. These latter two effects also result in

the modification of the force to F’. Rewriting the matrices explicitly:

Ap

F! Win Wi, Zl, Zi A,
h — hh h hh hs (3-19)

F; Wsh W,, Z;h Z;s Uh

U,

To determine the 8 unknowns in W and Z 4 independent experiments are
required. These are: waves in the two directions; and the cylinder driven in z

and y.

A, A. D, D,

FI:+ F}:— F}:h Ffis
o+ oo Fuy F
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A, A. D, D,
Ay An- Apn Aps
(Wi Wi 2L 2N\ | A A, Ap A,
(Wah We 2y, ZL) Ut Unr- Unp Uy
Ua+ Ua- Uah Uss

Which as before is solved for the hydrodynamic coefficients by elimination.

(3.20)

For reasons of symmetry it is only necessary to perform one of the wave exper-
iments, A—. The result of A; is synthesised by reversing the horizontal forces,
velocities, and wave displacements measured for the A_ experiment. When the
experiment 1s performed, and the data processed in the above way, the correct

W is produced. However, the composite value for the impedance matrix results,

and from this must be subtracted

e the rig impedance

o the effect of cylinder mass miw

¢ the pendulum effect of the cylinder (m=pV)g

2atw
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3.9 Measurements on cylinders

Cylinders were mounted in the PHS rig in the middle of the tank. They were
exposed to waves over a range of frequency, and the rig was driven in heave and
surge over the same range of frequency. The experimental parameters were as

. tabulated at the beginning of this chapter, and the wave amplitude was 5 mm.

The following variables were measured:

heave and surge forces
heave and surge velocities

fore and aft incident and reflected waves

Each experiment was composed of 255 tests (85 frequencies in each of the
three wave or drive conditions). The order of the tests was randomised so that
any systematic errors in the experiment also became random; appearing merely
as extra scatter in the graphs, and could not be misinterpreted. So, for example,

the small changes which occur due to the evaporation of a millimetre or so of

water from the tank during the course of the experiment do not appear as a

systematic change with frequency.

It is possible to lock each undriven mode in the PHS rig so that, for example,
the cylinder could have been fixed while experiencing forces on it due to waves,
or have been driven in heave while locked in surge. However, the data processing
used, which is a matrix operation applied at any given frequency to all the
degrees of frcedom of the system,.make this unnecessary. Furthermore, leaving
the whole system free allowed the experiment to be fully automated and the
randomization of tests referred-to above.

An experiment was performed with the 75 mm diameter cylinder, with a
freeboard of -20 mm. The full matrix calculation of equation 3.8 was used.
The results of the impedance calculation are plotted in figure 3.5. They can be
compared with figure 3.3, in which only the force and velocity measurements
from this experiment were used, noting that the scale is identical. It is clear that
the ripple due to reflection has been virtually eliminated. Drawing a smooth

curve through the data points is now justifiable.

48



Figure 3.5
Impedance of the 75mm diameter cylinder, freeboard -20mm

Corrected for wave reflections
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The cross-impedances Z;, and Z,;, are very close to zero over most of their
range. This suggests that the heave and surge axes are orthogonal both geo-
metrically and fluid dynamically. The anomalies between 0.7 and 1.0 Hz are

probably due to the resonances of the rig compliance coupled to the cylinder
mass. The amplitude of cylinder motion will increase at these points, increas-
ing the possibility of non-linear crosstalk. Z;, and Z,, would be identical in
an unbounded fluid. In these graphs they are very similar, showing that the
influence of the surface even only 20mm away from the top of the cylinder is
small. |

Figure 3.6 shows the wave force coefficient. The elements are identified
by their subscripts: for example W}, is the force experienced in heave due to
surge displacements of the wave. Again the cross-terms are small. Because the

different amplitudes of the waves in heave and surge have been accounted for,

the two curves are again very similar.

Impedance results for another experiment, the 125 mm diameter cylinder
at a freeboard of +20 mm are shown in figure 3.7. Note the change of scale.
The volume of the cylinder has increased by a factor of 2.8. The freeboard
has produced a radical difference between the heave and surge impedances. In
heave, the real part of the impedance has dropped to very low values, implying
that the cylinder radiates only very small waves when vibrated in heave. The

imaginary part is now dominated by the negative spring due to buoyancy:.

Similar radical changes are apparent in the graphs for the wave force coeffi-
cient in figure 3.8. It is clear that large changes result from changes in cylinder
size and freeboard. The spine model contains sections of different lengths and

freeboards, and 1t i1s essential to determine accurate values of W and Z.

3.10 Cylinder diameter and freeboard

A set of experiments was performed to determine the effects of cylinder diameter
and proximity to the surface. Nine experiments were performed with three
diameters and three freeboards.

Freeboards were impossible to set by trying to locate the top of the cylinder

at the required distance below the surface because of the effects of surface
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Figure 3.6
Wave force coefficient of 75mm diameter cylinder, freeboard -20mm.
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Figure 3.7

Impedance of 125mm diameter cylinder, freeboard +20mm.
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Figure 3.8

Wave force coefficient of 125mm diameter cylinder,
freeboard +20mm.
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tension, which caused the water surface to run up the sides of the cylinder.
Therefore the cylinder axis was set at the corresponding distance below the

surface, so that the correct freeboard was attained. Freeboards were set by

adjusting the offset of the torsion springs on the rig. In the case of the 125mm
cylinder, additional counterbalance weights were set inside the rig.

The spring rates kept constant, and consequently the resonance due to the
mass of the cylinder coupled to the spring varied with the cylinder size. The
100mm cylinder had a surge resonance of 0.6Hz and a heave resonance (when
fully immersed) of 0.8Hz. For positive freeboard the additional spring due
to buoyancy will raise the resonance. It is clear that all the cylinders have
resonances in the frequency band used. However care was taken that in none of
the experiments did the amplitude of cylinder motion exceed 20mm. Typically
it was around 2-5mm.

The results are plotted in the four figures 3.9 to 3.12. Because the cross-
terms are small they have not been plotted. The figures consist of 4 pages for

W and Z in heave and surge, and on each are the 9 cylinder plots in real and

imaginary. The effects due to the rig, and the pendulum effect due to non-
neutral buoyancy have been subtracted from the impedance curves. Smoothed
curves have been drawn through all the data.

Figures 3.9 and 3.10 show the impedance in heave and surge. The real part
of the impedance, representing the extent to which energy is radiated away from
the cylinder as it moves, of course never drops below zero. But the imaginary

part, representing the added mass and spring, can be of either sign.

One effect of the variation of cylinder size can be seen most clearly for the
-20mm freeboard case. As diameter increases, so does the overall size of the
impedance curve; and the peak of the curve shifts to lower frequencies. A larger
cylinder can make waves of larger amplitude; but diffraction effects reduce the
efficiency with which shorter waves are produced.

The most dramatic effects on the graphs are those due-to a change in free-
board. These seem out of all proportion to the freeboard range, which is less
than a third of the largest cylinder diameter. In heave, there is only a slight
change in the curves in going from -20 to Omm freeboard—and then a profound
one as soon as the top surface of the cylinder is clear of the water surface. At

+20mm freeboard the real part of the impedance is very low, implying that
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+20mm freeboord

Omm freeboord

-20mm freeboord

Figure 3.9

Heave 1mpedances.

3 cylinder diameters; 3 freeboards

frequency 0.2-2.2Hz; impedance +:100Ns/m.

75mm dtameter 100mm dtameter
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Omm Freeboord +20mm fFreeboaord

-20mm freeboard

Figure 3.10
Surge impedances.

3 cylinder diameters; 3 freeboards
frequency 0.2-2.2Hz; impedance £:100Ns/m

/Smm dlLameter 100mm ditometler
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the cylinder is much less capable of radiating wave energy. The imaginary part
demonstrates the effects of buoyancy. Since the freeboard is constant, an in-
crease 1n cylinder diameter increases the waterline area, hence increasing the
spring due to buoyancy. The curves therefore show a steady increase in negative
spring with cylinder diameter.

In surge the results for the +20 and -20mm freeboard cases are not dissimilar.
But at the surface, there is a large change in magnitude and in the difference
between the real and imaginary curves with frequency, implying rapid changes
in the phase of the impedance for the surface-grazing condition.
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