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ABSTRACT 

A review of lattice gauge theory calculations is 

presented, and the advantages of two dimensional models as 

a testing ground for numerical techniques are summarised. A 

review of analytical continuum results for the Schwinger 

model and its generalisations is followed by a new analysis 

of the massive quenched model in the continuum. 

The models are formulated on a two dimensional 

hypercubic lattice, according to a Euclidean discretisation, 

using Kogut-Susskind fermions. The continuum flavours 

hidden in the lattice action are identified according to the 

ICahier-Dirac formulation. The flavour degeneracy of the 

lattice formulation is broken by a one-link mass term. This 

is used to decouple one of the flavours by giving it a mass 

of order the cut-off. Mesonic operators for both the two 

flavour and one flavour models are identified. 

Numerical techniques are reviewed, and tested with free 

fermions. 

Calculations of the fermion condensate and of particle 

masses are presented for the two flavour and one flavour 

models, and for both the quenched and the unquenched cases. 



CONTENTS 

 Lattice Gauge Theory 1 

 The Continuum Schwinger Model 25 

2.1 The Massless One Species Model 25 

2.2 The Massive One. Species Model 32 

2.3 The Two Species Model 36 

2.4 The Massive One Species Model in 

the Quenched Approximation 	. 38 

The Lattice Schwinger Model 	 45 

3.1 	Lattice Fermions 	 45 

3.2 	The Lattice Two Species Model 	 51 

3.3 	The Lattice One Species Model 	 59 

3.4 	Correlation Functions 	 62 

Numerical Techniques 	 70 

4.1 	Generalities 	 71 

4.2 	The Metropolis Algorithm 	 74 

4.3 	Dynamical Fermions and Monte Carlo Methods 	76 

4.4 	The Heat Bath Algorithm for Pseudofermions 	82 

4.5 	The Conjugate Gradient Algorithm 	 87 

4.6 	Free Fermion Results 	 93 

Numerical Simulation of Two Dimensional 

OED with Two Flavours 	 100 

5.1 	The Quenched Approximation 	 100 



	

5.2 	The Unquenched Model 	 112 

	

5.3 	Conclusions 	 119 

	

6. 	Numerical Simulation of Two Dimensional 

OED with One Flavour 	 121 

	

6.1 	The Quenched Approximation 	 121 

	

6.2 	The Unquenched Model 	 126 

	

6.3 	Conclusions 	 130 

Conclusions 	 132 

Appendix 	 136 

References 	 142 



CHAPTER ONE 

LATTICE GAUGE THEORY 

Present day particle physics is dominated by gauge 

theories, the most successful of which to date is quantum 

electrodynamics. The detection of the W and Z bosons in 

1982 at CERN justified belief in the electroweak theory of 

Glashow, Sala, 'm and Weinberg. The prime candidate for a 

fundamental theory of the strong interactions is quantum 

chromodynamics, a generalisation of QED in which the Abelian 

U(1) gauge group of QED is replaced by a non-Abelian SU(3) 

colour group. In QCD, the fundamental charges, quarks, 

interact through an octet of gauge bosons, the gluons, via 

the minimal Yang-Mills interaction. The gluon fields are 

able to interact with themselves due to the non-Abelian 

nature of the gauge group. Within this picture, hadrons are 

bound states of quark and gluon fields. 

Our belief in the existence of quarks is supported by 

deep inelastic lepton-hadron scattering experiments, which 

suggest the existence of point-like objects within the 

hadrons, and by the eightfold way of Gell-Mann and Ne'eman 

(1964), so successful in predicting the low energy hadron 

spectrum, in terms of different 'flavours of quarks. These 

phenomenological ideas are put on a firmer theoretical 

footing in QCD. 

Whilst QCD may be an aesthetically pleasing model, it 

does not form as simple a calculation model as QED. 

Calculations in QED have centred on perturbation theory, 

where the expansion parameter is the fermion-gauge 

coupling, g, and whilst the short distance behaviour of QCD 

can be calculated within the framework of standard 



perturbation theory, as the coupling is small at high 

energies (asymptotic freedom), the large distance behaviour 

of QCD remains an unsolved problem, due to infra-red 

singularities. At short distances perturbative calculations 

successfully predict the scaling properties observed in deep 

inelastic scattering experiments, but at large distances, 

where the QCD coupling moves out of the perturbative 

regime, it becomes difficult to disentangle non-perturbative 

effects from those that are genuinely perturbative. As an 

isolated quark has never been observed (no coloured state 

has ever been seen), one is led to speculate on the 

existence of an exact confining mechanism for the quarks 

and gluons. The confinement phenomenon makes QCD 

qualitatively different from gauge theories of weak and 

electromagnetic forces - the fundamental fields of the 

Lagrangian do not appear in the physical spectrum, and it 

becomes necessary to study the theory outside the 

framework of perturbation theory. 

The introduction of a space or space-time lattice is one 

way in which the limits of perturbation theory can be 

overcome. This prescription seems a little strange, as it 

clearly destroys the continuous symmetries of the Lorentz 

group, but as a mathematical trick it provides a gauge 

invariant cut-off that removes ultra-violet divergences by 

the simple expedient of eliminating all wavelengths less 

than twice the lattice spacing. As with any regulator, the 

lattice must be removed after renormalisation, and one 

hopes that in the limit of zero lattice spacing one recovers 

Lorentz invariance and is able to extract real physics. 

On a lattice, a field theory becomes mathematically 

well-defined, and may be studied in various ways. Ordinary 

perturbabi9n theory, though awkward, may be performed, and 

yields results in agreement with other regularisation 

schemes. The lattice formulation of field theory emphasises 
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the deep connection with statistical mechanics: in Euclidean 

space, the Feynman path integral formulation of a quantum 

field theory is identical to the partition function of an 

analagous statistical system, the square of the field 

theoretic coupling corresponding directly with the 

temperature of the statistical system. Thus the particle 

physicist is able to use the techniques of the statistical 

physicist. 

The lattice formulation is particularly well suited to 

strong coupling (high temperature) expansions, and in this 

limit confinement occurs naturally, the theory reducing to 

one of quarks on the ends of strings with a finite energy 

per unit length, as is shown below. However, the coupling 

constant on the lattice represents a bare coupling at a 

length scale of the lattice spacing. We have already noted 

that QCD displays asymptotic freedom, and the consequence 

of this for the lattice theory is that the bare coupling 

must go to zero as the lattice spacing goes to zero. Thus, 

in the language of statistical physics, we are led from a 

high temperature region to one of low temperature in 

approaching the continuum limit. In a statistical system, 

one might then expect to encounter phase transitions and if 

this were to occur in the lattice gauge theory, it would be 

difficult to extract continuum results. Investigations of the 

phase structure of lattice gauge theories are therefore 

important, and studies have been performed. The most 

important results of these studies are summarised below. 

We now discuss the formulation of a gauge theory on a 

lattice in more detail. 

The lattice may be introduced in a number of ways, the 

most obvious and widely used of which is the hypercubic 

Euclidean lattice. The connection with ordinary Minkowski 

space is made through a Wick rotation, enabling an 

:3 



interpretation of ones results in the usual physical space 

at the end of a calculation, with no loss of information. 

The hypercubic lattice is clearly the simplest choice, but 

any lattice is in principle possible, provided that in the 

limit of zero lattice spacing, the correct continuum limit is 

recovered. Christ, Friedberg and Lee (1982) have examined a 
oJ 

formulation in which the lattice sites, themselves randomly 

distributed. The choice of lattice is closely connected to 

renormalisation group and fixed point considerations. 

An alternative formulation of lattice gauge theory is the 

Hamiltonian approach of Kogut and Susskind (1975). One 

remains in Minkowski space, discretising only the spatial 

directions. The fields are quantised according to the usual 

canonical prescription. This method will not be pursued 

further here, and from hereon we work on a Euclidean 

lattice :  

The field theory is quantised using the path integral 

formalism. We define an action, S[p],  depending on some set 

of classical fields, .p(x). Then some physical quantity, the 

expectation value of some operator, O(p), is given by: 

<a> 
= k 	ep 

(i.i) 

;= J aT 	S(P11 

On the lattice, there is no problem with the definition of 

the measure, as there is in the continuum: the functional 

integral is defined as the product (finite on a finite 

lattice, denumerable on an infinite lattice) of the integrals 

over the fields at every site of the lattice. 
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In constructing a lattice gauge theory, one would like to 

display the gauge symmetry of the continuum theory 

explicitly in the lattice formulation, and in the continuum 

limit recover the Yang-Mills action. The first theory to 

have a local gauge symmetry on a lattice was a 

generalisation of the Ising model introduced by Wegner 

(1971). His interest in introducing a local invariance group 

arose from the fact that spontaneous magnetisation is 

forbidden in such a theory. Despite the absence of a local 

order parameter, Wegner showed that the model has a phase 

transition, and suggested ways in which the phases could be 

labelled and distinguished. Wilson (1974) generalised the 

Ising lattice gauge theory from the discrete group Z 2  to 

continuous groups, of more interest to the particle 

physicist. We now consider Wilson's formulation in some 

detail. 

Taking a general gauge group G, we associate an 

independent element of G with each link of the lattice, 

joining two nearest neighbour sites: 

: G- 
	

(1.2) 

p labels the direction of the link, and n labels a lattice 

site. On traversing the link in the opposite direction, one 

should obtain the inverse element: 

(+a) = 
	

(1. 

where e is a unit vector in the p direction. We now 
-p 

consider G to be the group SU(N). Define a vector potential 

by writing 

= 
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where g is the field theoretic coupling, and t. are the 

generators of SU(N). The group volumes are finite, so that 

the group integrals necessary to the path integral 

formulation of the quantum field theory are well-defined. 

Local gauge symmetry corresponds to an arbitrary group 

rotation, G(n), at every lattice site. Link variables then 

transform as: 

uP ( - 	= G ( 	(+o.) 

G(n) defines the orientation of a local colour frame of 

reference at each site, and U(n) transports us from one 

reference frame to another. It should be noted that 

faithfulness to an exact gauge symmetry is not a 

prerequisite of a regularisation scheme: the physics of a 

renormalisable theory should be independent of the details 

of the regularisation scheme. Nevertheless, Wilson's 

formulation is particularly elegant, and almost 'universally 

employed. 

To determine the dynamics of the field variables, we need 

to construct an action. In the continuum limit, we require 

that the lattice action reduce to the classical Yang-Mills 

action. The field strength is a generalised curl of the 

vector potential, and this suggests using integrals of the 

vector potential A around small closed contours. On the 

lattice, this means constructing products of U matrices 

around closed paths. Such an action is clearly gauge 

invariant, because all SU(N) indices are locally contracted. 

The simplest such action is composed of the sum of products 

of U matrices around elementary squares of the lattice, 

called plaquettes: 
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- 	 U ( 	U ( 	) U  

The additive constant here ensures that the action vanishes 

when the group elements' approach the identity. N is a 

normalisation, equal to the dimensionality of the group 

matrices. The trace may be performed in any representation 

of the group. We consider only the fundamental 

representation here, and show now that this action indeed 

reduces to the ordinary Yang-Mills action in the continuum 

limit, a'O. Consider a vector potential smooth enough to 

enable us to Taylor expand the slowly varying field: 

p 7  (+O4p= Pv.t+ 	 + oC)61)  

Using the Baker-Campbell-Hausdorff identity, we can write 

Jr(Uv(p)Ut(*0) 3(I) 

= xp 	 - 	(\+ o(o)} 

The leading term here is clearly the Yang-Mills field 

strength, F, with corrections of higher order in a 2  which 

do 'not contribute in the naive continuum limit. For slowly 

varying smooth fields, we have a 2 gF<<1 and hence, 

expanding the exponential: 

— [uuutUt - 	A5cv) 

-rri— j- 	+0(0,6 
	

c) 

The 0(a 2 ) term disappears as we are dealing with hermitian 

matrices (for unitary groups) and Trl contains no dynamics, 

and can be dropped. Finally, we make the replacement: 

L 	 (i•to) 
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and thus obtain the Euclidean Yang-Mills action: 

4 	i0 	
(OA) 

where we have idntified the coupling 0 as: 

tZ 
r- 	•L 

for an SU(N) gauge group in 4 dimensions. The terms of 

higher order in a 2  vanish in the continuum limit, although 

they can give rise to a finite renornialisation of the 

coupling constant. The local invariance of the lattice action 

ensures that we recover the standard field strength tensor. 

The resulting continuum action is clearly Euclidean 0(4) 

invariant - the discrete hypercubical symmetry of the 

lattice disappears into the higher order terms. Actions that 

differ from that we have considered only in higher order 

terms clearly have the same continuum limit, and thus are 

equally acceptable lattice actions. Such actions need 

investigation, as it may be possible to write a lattice 

action that is in some sense closer to the continuum 

(Symanzik, 1982; Martinelli, Parisi, Petronzio, 1982; Weisz, 

1982; Berg, Meyer, Montvay, Symanzik, 1983). 

Having defined our action, we quantise the theory by 

writing down the path integral: 

- 	Je, 

(For a discussion of the meaning of the group measure see 

for example 'Quarks, Gluons and Lattices' ,Creutz, 1983). As 

noted earlier, the expectation value of some operator (U) 
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is given by 

A  < 0 	(Q) zi'~a U 

In the quantum mechanical Hilbert space, this is the vacuum 

expectation value of the corresponding time ordered 

operators. Note that no gauge fixing term has been included 

in the path integral, a procedure which is necessary in the 

continuum to control divergences resulting from integration 

over all gauges. Here, the gauge variables are elements of a 

compact group, and as a result, the gauge orbits are 

themselves compact. For gauge invariant quantities, it is 

harmless to include an integral over all gauges, although in 

order to formulate perturbation theory, such gauge fixing is 

necessary. No such gauge fixing is required in numerical 

simulations of lattice gauge theory, and hence we do not 

pursue the subject any further here. 

The Wilson form of the pure gauge theory emphasises the. 

analogy with statistical, mechanics, particularly with models 

of magnetism. The gauge variables tJ(n) are much like spins 

located on crystal bonds, interacting through the four spin 

coupling of the Wilson action. This leads us to ask whether 

the lattice gauge theory can ever develop a spontaneous 

magnetisation. Thus, we might look for phases of the 

lattice gauge theory where: 

* 0 	 (i-s) 

However, in lattice gauge theory, such an expectation. 

value breaks the local symmetry of gauge invariance. Hence 

the magnetisation vanishes in a pure gauge theory (Elitzur, 

1975) and so cannot be used as an order parameter to 
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distinguish phases. To get around this problem, we need to 

look for a gauge invariant paramda.For the pure gauge theory, 

the simplest gauge invariant operator is the trace of the 

product of 'four link variables around a plaquette. Its 

expectation value is the internal energy of the 

corresponding thermodynamic system, and is given by a 

derivative of the partition function: 

U> = 1
3  L 	(.t) 

The factor of 1/6 is the ratio of the number of sites to 

the number of plaquettes in four dimensions. 

It should be noted that this order parameter lacks the 

useful property of a magnetisation in that it never vanishes 

identically, except exactly at zero temperature. Wilson has 

generalised this simple local order parameter to a non-local 

order parameter, the Wilson loop. This is the trace of a 

product of link variables around any closed path, and is 

clearly gauge invariant. The expectation value of such an 

operator is the Wilson loop 

= <-i (1 

C is any closed contour, and the group elements are path 

ordered. To understand the significance of such a quantity, 

consider its continuum analogue (Kogut, 1983). This is 

intimately related to the heavy quark potential. 

Suppose one adiabatically separates a q pair to a 

distance R, holds this configuration for a time T and then 

allows the quark-antiquark pair to annihilate. The Euclidean 

amplitude for this process 15: 
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- 

where H is the Hamiltonian of the theory, and i and f label 

initial and final states respectively, that is a q pair a 

distance R apart. Then: 

OL 	 ei)c 

- 	_______________________________________ 

J is an external current, Ca the Fadeev-Popov ghost fields. 

For the path we are discussing, J is equal to unity along 

the contour C tracing out the closed path of the quarks, 

and equal to zero elsewhere. Hence: 

<LLe(4) 	
- 

As the process is static, and ji> and If> are identical, 

= 

that is, the energy difference between the ground state of 

the Hamiltonian with the charges included and with charges 

omitted is purely potential. V(R) is the heavy quark 

potential if we define: 

V(t)=-- 	4 	 (.zz 

P reminds us that operator order is important 
	

The 

quantity 

<-177 _PeAP '%-b 4C A~'  ckx?~ > 
	

(i.) 
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is the continuum analogue of the Wilson loop defined above. 

Hence, on the lattice, the heavy quark potential is given by: 

= -- 
(:•ht) 

L\cc. 

If the heavy quark potential grows linearly at large 

separation: 

CID 
lo 

then, for large loops, we expect: 

and so the loop expectation value grows with the 

exponential of the area of the loop, and the coefficient of 

this area law is the coefficient of the linear potential (the 

string tension). In this case, an infinite amount of energy 

would be required to separate the quarks, and consequently 

they are confined. 

In a theory without confinement, the energy of a 

quark-antiquark pair should not grow indefinitely with 

separation, but rather approach twice the self energy of an 

isolated quark, so that a new pair may be created from the 

vacuum. The Wilson loop then decreases more slowly with 

loop size. In fact, 

\'J (c) 	 - '(2. T) 	
(iz) 

and we have perimeter law behaviour. 
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To examine the strong coupling behaviour of a lattice 

pure gauge theory, we need to know how to perform 

functional integrals over the link variables, U(n). In fact, 

we need only the following properties of group integrals: 

JRU ( 9J  

for some normalisation, c. The behaviour of W(C) is now 

obtained by expanding the exponential of the action in the 

functional integral. The lowest order behaviour is obtained 

by diagrammatically covering the interior of the contour C 

with plaquettes. Each plaquette is associated with a factor 

1/g2 ,  and hence this minimal tiling procdure gives a leading 

order term: 

U() = (
t 
 ) = 

 

is the minimal number of plaquettes contained in C, and 

is a measure of the area. This area law leads to a 

confining potential for heavy quarks, as we have seen, and 

we can identify the string tension at strong coupling as: 

G = 
	

() 

Higher orders in strong coupling may be obtained by 

considering tiling the surface in a way that is not minimal, 

but contains surface fluctuations. The first order term, 

then, consists of moving a single plaquette out of the plane 

of the contour C by one lattice spacing, and inserting an 

additional four plaquettes to connect the displaced 

plaquette with the rest of the minimally tiled surface. This 

process can be extended to higher orders. 
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So we have seen that confinement arises naturally in the 

strong coupling limit of a lattice pure gauge theory. Note 

that the string tension provides another order parameter 

for lattice gauge theory, one which does vanish in 

non-confining phases, remaining finite whenever the quark 

sources experience a linear long-range potential. 

We note, without further comment here, that the area 

law criterion for confinement loses its value when quarks 

are introduced as dynamical variables. In this case, widely 

seperated sources may reduce their energy by pair 

production from the vacuum, and the Wilson loop then 

measures the potential between two mesons rather than 

simple bare quarks. 

The lattice, considered as an ultraviolet cut-off, must 

finally be removed - the lattice spacing must be allowed to 

go to zero, and we approach the continuum limit. As when 

removing any cut-off, physical variables should approach 

their measureable, observable values. Consider a physical 

quantity q, with dimensions d in a theory with a 

dimensionless coupling. Then we may write: 

'3 f 	 (i.%t) 
T() 

The dependence of q on the lattice spacing is trivial, and 

the non-trivial aspects of the theory are embodied in the 

dimensionless function f, of the coupling. One may define a 

non-trivial continuum limit only if as a-'O, g can be 

renormalised so that q remains finite. There must exist a 
* 

critical, value g such that: 
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If q is to remain finite, g must be a function of the lattice 

spacing: 

	

I = 
	 () 

* 
Also the critical point, g=g , must have scaling properties, 

that is, once the functional relationship between g and a is 

established by demanding constancy of a definite observable, 

the same relation must make all other observables tend to 

well-defined values as a-'O. To establish the existence of 

such a scaling critical point is a non-trivial problem, but 

for non-Abelian gauge theories, perturbative arguments show 

that g=O is such a point: the infra-red unstable fixed point 

in the neighbourhood of which one can use perturbation 

theory. 

In the continuum limit, all physical quantities should 

become independent of the lattice cut-off, that is: 

	

0 a; 	0 = L 	- (2 

where 

The Callan-Symanzik 13 function has been calculated in 

perturbation theory by Politzer (1973) and by Gross and 

Wilczek (1973): 

- 	
(v?4 

where for an SUM theory: 
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t i N 
A 	Lirt  

=  

Consider a physical mass m in the theory. One may write: 

i 
= CL 

Then writing: 

=0 	 (f.tfl 
64, 

we have: 

~ w +  

whence: 

c5 

k ) - 
c.c.p  

One can then write down the functional relationship 

between a and g in the general form: 

- 	

. 
() 

A 

and SO: 

= I exp 	J  (a  c 
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where Att  is a physical mass which sets the scale for all 

masses in the theory. One can write A 
lattin  terms of 

and p 	 (Gross and Wilczek, 1973; Politzer, 1973; Caswell, 

1974; Jones, 1974): 

A 
	

exp 
	 /p 

and hence we find that ratios of dynamically generated 

masses are pure numbers depending only on the gauge group 

- once the scale is set, all the masses of the theory are 

determined with no free parameters. Thus, one concludes 

that for pure gauge theories, the strong interaction has no 

free parameters. The cut-off is absorbed into g(a), and this 

is in turn absorbed into the renormalisation group 

dependence of physical masses. The only remaining 

dimensionful parameter is A. Coleman and Weinberg (1973) 

have given this process the name dimensional transmutation. 

One is now able to relate lattice calculations to ones 

based on continuum regularisation schemes by relating their 

A parameters. This is done by calculating both the 

divergent and finite parts of the one-loop coupling constant 

renormalisation. Hasenfratz and Hasenfratz (1980) found, in 

the Feynman gauge: 

- A 

(\L 

So far, we have shown that the pure gauge theory is 

confining in the strong coupling limit, and that the 

continuum limit is reached when g=0. If the phenomenon of 

confinement is to remain in the continuum limit, it is 

necessary that there be no phase transition for 

intermediate values of the coupling separating the two 

17 



regimes. It is known that such a transition occurs in the 

tJ(1) gauge theory: there is a critical point separating the 

charge confining phase from the free charge phase. This is 

of course as it should be: continuum QED in four dimensions 

is not a confining theory. Much work has been done on the 

investigation of phase diagrams for various gauge theories 

using a variety of techniques: high and low temperature 

expansions, duality transformations, mean field theory, and 

numerical simulations based on a search-for hysteresis loops 

in the behaviour of some quantity as the coupling 13  is 

varied, which occur due to a critical slowing down of 

numerical algorithms as a critical point is approached. 

Having constructed our pure gauge theory and shown that 

it has some potentially useful properties, we wish to 

formulate a theory of interacting fermionic and gauge fields 

on a lattice, but before going on to do so, we first mention 

some of the quantities that have been calculated in pure 

gauge theories., with particular attention to Monte Carlo 

results. For more details, see the various reviews in the 

literature (Kogut, 1979; Kogut, 1983; Creutz, Jacobs and 

Rebbi, 1983; Creutz, 1983). 

Above, we discussed the importance of the critical points 

of the lattice theory. Monte Carlo results are particularly 

well suited to a study of the non-perturbative effects 

responsible for the critical behaviour of a statistical 

system. The tJ(1) phase transition mentioned above has been 

studied by Lautrup and Nauenberg (1980), and by Bhanot 

(1981) and Hamber (1981). The results of these analyses 

provide strong evidence for a second order phase transition. 

DeGrand and Toussaint (1980) identified the condensation of 

monopoles at the critical point as being the physical 

mechanism responsible for this phase transition. 
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The critical properties of spin systems depend crucially 

upon the dimensionality of the lattice, and in view of the 

deep analogies between gauge theories and spin systems, one 

expects the existence of critical dimensions for gauge 

theories. In particular, the tJ(1) model in four dimensions 

has a continuum limit describing free massless photons, as 

we would expect. The question is whether d4 is the 

critical dimension for gauge theories. It seems that for 

d<4, the pure U(1) theory confines photons, of importance 

for the Schwinger model, and we expect that for d>4, the 

confining properties of non-Abelian models will be lost. 

Investigations of SU(2) and SU(3) have' been performed 

using discrete subgroups. These simulations suggest the 

absence of a phase transition for the pure SUM gauge 

theory in four dimensions, though in five dimensions, there 

is evidence of a first order transition. Hence, in four 

dimensions, SUM is confining at all temperatures, though in 

higher dimensions there is a deconfining transition. This has 

been rigorously proved (Tomboulis, 1983). 

Investigations of SU(3) have proved more difficult, but 

here too there appears to be no deconfining phase 

transition in four dimensions. 

Mention was made earlier of the string tension which 

measures the large distance attractive force felt by two 

static quarks. This is obtained from measurements of the 

Wilson loop, using (1.11). In practise, one calculates 

( (rzr = - M 
('Jcz, 	i- r- i 	

(t.) 

where W(I,J) is a Wilson loop of dimensions I and J in the 

two directions. The above expression is used in an attempt 

to eliminate the dependence on size, the true string tension 
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being obtained 	in 	the 	limit 	of 	large 	I and 	J, 	though of 

course in practice quite small values of I and J have to be 

used. The 	results, 	obtained 	initially 	by Creutz 	(1980) and 

subsequently reproduced 	by 	others, 	give a 	string 	tension, 

K(g), which follows 	strong 	coupling results 	for 	small 13  and 

then, for larger 13 follows a scaling behaviour 
,1 

k () 	( 	 =XL 	

6 (?) 

For larger values of 13, one obtains the perturbative 

behaviour: 	 - 

K ( 	ctt , 

In fact, rather than determining the string tension, by 

assuming it to be a basic observable, we fix the value of 

Att, setting the scale for all the physical quantities of 

the theory. 

A second quantity of interest is the mass gap. In a 

confining theory, where there are no long range forces, one 

expects the absence of massless mediating particles, and so 

the mass spectrum of the theory should begin with the 

first state above the vacuum having some positive mass, m, 

the mass gap of the theory. This represents the mass of a 

well-defined particle like excitation of the pure gauge 

system, called a glueball, and in the absence of fermions, 

the lowest lying such state must be stable, although clearly 

the state could be broadened by coupling to fermions. 

Numerical simulations to calculate this quantity are 

performed by choosing some operator 0(,t) that has a 

non-zero overlap with the required state and then 

calculating the connected correlation function: 

L 

<Ô (,k 6(',o)- elo ) 
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This may be expanded by inserting a complete set of 

energy-momentum eigenstates, In>, and assuming 

translational invariance: 

A -t- L -  -!) 

() 

Summing over the spatial directions picks out the zero 

momentum state, and gives: 

I I - 	t 

I. 	<"i c L0'> e 	
() 

C. 

where m is the mass of the state I n>. For sufficiently 

large t, only the lightest state remains: 

%L G-'eb) 
C- 00 

and mg  may be measured from the exponential fall-off of 

the propagator. 

Measurements are complicated by the fact that higher 

mass states also in general have a non-zero overlap with 

O(,t), and consequently contribute to G(t).  Hence, to see a 

clear glueball mass, we need to go to large times. However, 

as the correlation length of the glueball state, 1/m ;  is 

quite small over the range of couplings for which the Monte 

Carlo calculations may be performed, the propagator falls 

off very quickly and becomes of the same order as the 

statistical fluctuations after only three or four lattice 

spacings. Numbers have been obtained for the glueball mass 

(tshikawa, Teper and Schierholz, 1982; Berg and Billoire, 1982 

a and b ; Michael and Teesdale, 1982), and there is a broad 

21 



agreement on a lightest glueball mass: 

, 	-± 50 MV 	 (\.g2) 

( 0% 100 MQ.'I 

Various 	other interesting 	calculations have 	been 

performed in lattice theories: the quark potential has been 

measured; the restoration of rotational symmetry in the 

continuum limit has been investigated; and topological 

charges have been measured. However, of most interest here 

are the particle mass calculations that have been performed 

using Monte Carlo methods. These masses are calculated by 

first generating a set of gauge field configurations, either 

according to a quenched action in which the effects of 

dynamical fermions (i.e. the effects of internal fermion 

loops) are neglected, or according to an action in which 

dynamical fermions are included, according to some scheme. 

Next, some lattice operator is written down that has the 

quantum numbers of the particle whose mass we wish to 

measure. For mesons, this operator consists of a 

quark-antiquark operator, together with some matrices. 

giving the operator its appropriate flavour, parity, etc.. 

For baryons it consists of some totally anti-symmetric 

combination of three quarks, again with appropriate 

matrices. It should be noted that in general such a lattice 

operator will not represent a unique continuum state, but 

rather will have a non-zero overlap with a whole series of 

states with the same quantum numbers, but differing in 

energy. The calculation proceeds by finding the correlation 

function of the appropriate lattice operator, and averaging 

this over configurations of the gauge field. Clearly, a 

knowledge of the correlation function of meson and baryon 

operators requires a knowledge of the correlation functions 

of the individual quarks, that is of the quark propagators, 

and it is these that are calculated for each gauge 
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configuration, and put together to form the various particle 

propagators. Following an idenLical argument as for the 

glueball mass calculations, one can show that particle 

propagators, when summed over the spatial directions, 

should fall off exponentially wi the mass of the particle. 

Again, one is interested in the behaviour of this so-called 

'time slice propagator' at larye times, where one expects 

the lightest particle state to be exposed. Of course, if one 

is interested in particles of even moderate mass, their 

correlation lengths will be quite small, and hence the 

propagator quickly disappears into statistical noise. In 

summary, then one calculates: 

& Z<("(0 ) > 
	— MAt 

where A is an operator with the correct quantum numbers, 

m  is the mass of the state of interest, and cc  is a few 

lattice spacings. 

Mass calculations are subjeci: to an array of problems, 

stemming from finite size effects and statistical errors, but 

nevertheless many essential features of QCD emerge. The 

pion appears as the lightest meson, and may thus be 

interpreted as a Goldstone boson by a suitable extrapolation 

to vanishing quark mass. The. fermion condensate, 

measuring chiral symmetry breaking in the theory has been 

measured, and the rho is measured to be heavier than the 

pion, with a mass that remains finite in the limit of 

vanishing pion mass. 

However it is clear that many features of the finite 

lattice approximation have an important effect upon the 

measurements which need to be better understood. The 

small lattices on which simulations are presently performed 

present an immediate problem 'rzhen their physical size is 
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considered: in most cases they are about the size of a 

proton. Correlations between successive gauge 

configurations present problems in obtaining good statistical 

data, and the number of configurations averaged over is 

generally rather small. The algorithms used for finding 

quark propagators are often slow in the region of small 

quark masses, and as a result it is usually necessary to 

perform some extrapolation to zero mass, possibly 

introducing more error. 

Finally, we note that some work has also been done with 

two dimensional systems, with various gauge groups, 

including both U(1) and StJ(2). It is clearly easier to do 

simulations with such models than with four dimensional 

theories. Also, analytical results are often available for 

comparison. In the context of four dimensional QCD, for 

instance, most work has been done in the quenched 

approximation, where internal quark loops are neglected, but 

if we wish to work with smaller quark masses, nearer their 

physical values, then we need to be able to include the 

effects of dynamical fermions. Such effects are obviously 

more easily considered in two dimensions than in four. The 

computer time required for a two dimensional simulation 

will in general be less, and finite size effects cause less 

problems, because there is a smaller proportion of lattice 

sites on the boundary. In the work presented here, we 

perform numerical simulations for one such two dimensional 

system (and generaliscrt ions of it): the Schwinger model. In 

the next chapter we present continuum results for this 

model, and in subsequent chapters present the lattice 

version and the numerical results we have obtained. 
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CHAPTER TWO 

THE CONTINUUM SCHWINGER MODEL 

The Schwinger model (Schwinger, 1962 	is quantum 

electrodynamics of a massless fermion with charge g in 1+1 

dimensions. It is exactly soluble. The massive theory is not, 

although some of its properties are known. 

The model displays many of the features of 3+1 

dimensional QCD in a relatively simple form. In particular it 

displays both asymptotic freedom and confinement of the 

fundamental charges ('quarks'). One hopes, then, that the 

methods developed for an an investigation of the Schwinger 

model may be of use in an investigation of QCD. 

2.1 The Massless One Species Schwinger Model. 

The model may be described by the Lagrangian density: 

(.t) 

with 

( )(_O ,t) 

ia 	A 	 Os 	$0 

0 = 
- 05 = - 
	 € o0 	0 

IV 	t 
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The equations of motion are given by: 

= C 

3 

The coupling constant g has dimensions of mass and the 

model is consequently super -renormalisable. No infinite 

renormalisations are necessary apart from a trivial 

renormalisation of the zero point energy. Both g and m are 

finite (though bare) parameters. 

Following Schwinger, alternative solutions of the massless 

model have been given by Casher, Kogut and Susskind (1974); 

by Coleman, Jackiw and Susskind (1975); and by Baaquie (1982) 

amongst others. 

Casher, Kogut and Susskind solve the model in terms of 

the degrees of freedom of the Lagrangian given above (this 

is not necessary: an alternative solution in terms of bosonic 

fields is outlined below). They are able to show that the 

single fermion Greens function for a right moving particle, 

in the Coulomb gauge, is given by: 

K ("?) 
= 	 (2.' 

with 

2. 
_______ 

Cø.S 	t 	 1 3 	2. 
kc 1  

where X satisfies the free field equation for a right 

mover: 
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\ 3x0 
 4- 	. )'x 	 (zc) 

For x0=O, the integral defining K(x 1  ,x0 ) converges and 

tends to zero as x tends to zero. In this limit, the 

propagator looks like a free field propagator. For x0 *O the 

integral diverges for all values of x 1 , and the propagator 

vanishes. Thus there are no real asymptotic fermions in the 

theory. 

It is further shown that: 

(,') = _<oI1,"C'4 

= 
	JAIO 

where A is the Feynman propagator, and m 2=g 2 /u, and j  is 

given in (2.3). 

Thus the particle spectrum contains only one boson of 

mass m2 =g2 /Tr. 

Baaquie (1982) similarly solves the model in terms of the 

original degrees of freedom in Euclidean space, using a 

functional approach. In this approach, the gauge field A is. 

decomposed into a gauge invariant pseudoscalar field and a 

gauge dependent scalar field: 

= 	 C,'-) +  
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Gauge transformations may be be performed on the Fermi 

fields to eliminate the scalar field p,  although this limits 

calculations in the Fermi sector of the theory to gauge 

invariant quantities. 

Baaquie shows that the Ward identity for the vector 

field is satisfied: 

) 0 

but that there is an axial anomaly: 

= 	 = 	At 

The coupling of the gauge field to the fermions is shown 

to be via this anomaly. 

Baaquie's approach also makes it possible to calculate the 

Wilson loop integral for the gauge field in the interacting 

theory. Let C denote a circular contour of radius L, 

enclosing a unique area. Then: 

W(c 

where Z is the partition function: 

__3__ J as 	:. 'i.) 51I 

for the action, A: 

F, FJ~-%' * J (.* + Us 
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Then, in the Landau gauge (3A=0): 

w = - 
IL 

1rçLT1 GvtL)  

where I and K are the associated Bessel functions of the 

first and second kind. This expression is exact, and has the 

following asymptotic behaviour: 
tO 

1 

For g>O, there is a perimeter law rather than the area law 

which is the usual confinement criterion for pure gauge 

theories. The area law applies only in the absence of 

fermions, i.e. g=O. Baaquie thus interprets the results in 

the following way: if the loop integral shows area law 

behaviour for the pure gauge field, then when this gauge 

field is coupled to fermions the fermions are confined, 

although area law behaviour is not expected for the 

interacting case. Hence, the Wilson loop has no direct 

interpretation in terms of virtual paths for fermions. 

Coleman, Jackiw and Susskind solve the model by making a 

correspondence with a boson theory. The correspondences 

between boson and fermion theories in 1+1 dimensions have 

been investigated by Coleman, by Kogut and Susskind, by 

Mandelstam (1975) and by Bander (1976). The correspondence 

for the Schwinger model is as follows: 4.  is a Dirac field 

with chiral components 
(ZP \  

() 
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satisfying 

- (  57, ~ 	 =0 

2. ) 
a\14  

... - 

tp is a massless boson field, with canonical momentum it, and 

partition function: 

	

exp (rrH1t+M) 	 's) 

with 

a. 	a 
- 

zt) 

Then, identify: 

= (e) 

	

J 
-,6 

where 	R is 	a 	spatial 	cut-off, 	introduced to 	keep the 

integrals finite, 	and 	set 	to 	infinity 	at 	the end 	of the 

calculation; A is a momentum cut-off, which is also allowed 

to go 	to infinity, 	and 	-y 	is 	Euler's 	constant. In order to 

construct an interacting theory with massive fermions, we 

also 	need correspondences 	for 	composite 	operators. In 

particular: 
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= Ccos Cz 41-T C 

(•zi' 

C 

Nm here means normal ordering with respect to mass m 

(Coleman, 1975). This has the effect of replacing the 

divergent loop integral of figure 2.1 according to: 

	

\J kt *
k 	

- kt .4fvz 

If m2  is set to equal to p 2, the usual prescription, the 

graph is cancelled completely. 

In the Coulomb gauge, A 1 =O, we have, from (2.1): 

so that the effective Lagrangian for ferrnions is: 

- 

24 
(z.2') 

and hence by making the correspondence with the scalar 

field: 

	

2 	

2. 

2 IM 

This may be simplified to the action for a massive boson 

of mass m 2 2 =g /1T=p 
2 

2. 	
- 	 (z) 

2 
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Fig 2.1 

Tadpole diagram for the Bose 

form of the Shwinger model. 



In summary then the massless model is exactly soluble 

and possesses the following properties. Local electric 

charge conservation is spontaneously broken but no 

Goldstone boson appears as the Goldstone mode may be 

gauged away. Global chiral symmetry is also spontaneously 

broken and the vacuum is infinitely degenerate. Different 

vacua may be labelled by an angle 8c[0,2ir], and global chiral 

transformations rotate one vacuum into another. Again no 

Goldstone boson appears, as the axial current is afflicted 

with an anomaly. The parameter 8 may be identified with a 

constant background electric field. This field could be 

introduced into 4-dimensional QED but here the vacuum 

would suffer dielectric breakdown. In 4-dimensions it is 

always energetically favourable for the vacuum to emit 

pairs until the background field is brought down to zero. In 

one spatial dimension, however, the energetics of pair 

production are different, and it is not energetically 

favourable for the vacuum to produce a pair if the 

background field F is such that tF14e/2. If IFI>e/2,  pairs 

will be produced until IFIe/2. Physics is thus a periodic 

function of F, with period e, and 8 may be identified as 

2.2 The Massive One Species Model. 

The model so far considered may be extended by giving 

the fermions a mass: 
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The model model is no longer exactly soluble, but it is possible 

to do perturbation theory in the mass parameter (Kogut and 

Susskind, 1974; Coleman, Jackiw and Susskind, 1975). In terms 

of the boson theory, adding a mass term for the fermions 

changes the Lagrangian to: 

'Vt\ 	Lir) 	(2•z' 2 T 
()2  

The massive model is still dependent upon the parameter 

9 of the massless model, labelling different vacua. The mass 

term of course explicitly breaks the chiral invariance, so 

that the vacua are no longer degenerate, but all the vacua 

remain stable as a result of the absence of Goldstone 

bosons. This is unusual: generally, when one adds a 

symmetry breaking term to a theory that displays 

spontaneous symmetry breaking, the symmetry breaking term 

removes the degeneracy of the vacua of the original theory 

(as here) and all the vacua other than the one of lowest 

energy become unstable, decaying through the emission of 

Goldstone bosons. 

Although the Lagrangian has been written in terms of 

boson fields, this does not immediately imply that the 

spectrum of the theory contains no free fermions. Both 

weakly coupled and the sine-Gordon equation are counter 

examples. However, Coleman, Jackiw and Susskind show that 

the interaction energy between two widely separated 

external charges of charge Q is: 

= 
'- L E (9 - 	 € I 
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where c(8) is the vacuum energy per unit length, and L is 

the distance between the charges. Thus there is no long 

range force between the charges if Q is an integral multiple 

of g (remember that physics is periodic in 8, with period 

2u), independent of perturbation theory. On the other hand, 

for arbitrary Q the long range force is present, at least in 

mass perturbation theory. The disappearance of the long 

range force is connected with the easy polarisability of the 

vacuum, and hence with the absence of free ferrnions from 

the mass spectrum. 

From henceforth we consider only the case 8=0. 

For m<<g the Lagrangian describes a heavy quantum 

interacting with itself through a weak attractive ip 4  

interaction (this comes from expanding the cosine in (2.2.'); 
2 the term in p shifts the mass of the meson)(Carroll, Kogut, 

Sinclair, and Susskind, 1976). The model always contains at 

least one particle, the original pseudoscalar meson of mass: 

4 r- 
Aff - 

I 

Any other particles present will be weakly bound 

n-mesons of mass nM (plus corrections). In particular, the 

next particle is a scalar meson of mass: 

- 

NVt 	- Lir . - 4 
0 ( 2.) 

As m tends to infinity, the fermion decouples from the 

theory, and the model reduces to a pure U(1) gauge theory 

which may be solved by transfer matrix methods. A suitable 
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gauge transformation shows the pure gauge theory to be 

equivalent to a set of independent one-dimensional XY spin 

models, with free energy: 

= 

and average plaquette energy (proportional to energy 

density): 

where B is the directed sum of links around a plaquette.PV  
In this confining theory, a square Wilson loop r, enclosing 

the unique area A is: 

= 	 (2-SS) 

and the string tension is: 

O- U) 

with 

L+o() 

* o() 	(2>) i 

For m<g, strong coupling 	expansions, provide a systematic 

and simple method for calculating the particle spectrum of 

the 	theory (Banks, Susskind and 	Kogut, 1976; 	Carroll, 	Kogut, 
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Sinclair and Susskind, 1976; Kenway and Hamer, 1978). The 

expansion parameter is (1/ga) (a is the lattice spacing) and 

when this is small, the kinetic terms may be treated as a 

perturbation on the static terms. The strong coupling limit 

is confining, and in order to extract continuum results it is 

necessary to extrapolate to the weak coupling regime. In 

order that the extrapolation be smooth, it is necessary 

that there be no intermediate phase transition. Monte 

Carlo simulations of the pure gauge theory and approximate 

renormalisation group analysis (Migdal, 1975; Kadanoff, 1976) 

both appear to show that this is so. Applied to the 

Schwinger model, these methods provide good agreement 

with continuum results, where they can be compared (in 

many cases to 2 or 3%) 

2.3 The Two Species Schwinger Model. 

The generalisation of the Schwinger model to a model 

with flavour was first introduced by Coleman (1975). The 

new model is described by the Lagrangian density: 

= 5: 	c- 
' 'I 

(zi) 

11 	 74= QP\p. 

When the fermions are given equal masses, the model has 

an internal global SU(2) symmetry, called isospin. The Dirac 

field forms an isodoublet whereas the gauge field is an 

isosinglet. In two dimensions there is no spontaneous 

breakdown of continuous internal symmetries unless the 

Riggs mechanism occurs or the current conservation 

equations are afflicted with anomalies (Coleman, 1973). 
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Neither happens here and so the particles of the theory 

reside in isomultiplets. 

Doubling the number of fermion flavours has some odd 

dynamical consequences. In particular, the massless model 

does not confine quarks. Only the charges coupled to the 

gauge field are confined. The fundamental flavour 

representation appears among the physical states as 

electrically neutral isospin one-half particles. The 

introduction of the mass term, however, filters out these 

states (except for special values of the background field 

which will not be discussed here). 

Coleman finds that for m<<g, the lowest mass particles 

reside in a pseudoscalar isotriplet, even when the isospin 

symmetry of the Lagrangian is explicitly broken by giving 

the quarks different masses. The next state is a scalar 

isosinglet, lying a factor /3 higher in mass. 

For weak coupling, the results are generalizations of 

those of the one-flavour model. There are four times as 

many particles, arranged in - isotriplets and isosinglets. The 

lowest lying states are the pseudoscalars with isospin one 

and zero. Above them are the scalars. In the passage from 

weak to strong coupling, the 
I=O 

 and 0+  levels cross. 

The results for the 1 and 0+  are: 

> 

m 7 
	 0 
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2.4 The Massive One Species Schwinger Model in the Quenched 

Approximation. 

The quenched Schwinger model corresponds to an 

approximation in which the internal fermion loops 

contributing to any physical process are neglected. The 

approximation has been previously investigated for the 

massless theory by van den Doel (1984). We (Carson and 

Kenway, 1984) investigate the massive model in the strong 

coupling regime by means of the replica trick, which 

consists of generalising the model to one containing N 

identical fermion species, and taking the limit N-)O at the 

end of the calculation. This removes the fermionic 

determinant that arises from the fermion integration in the 

partition function and, significantly, works regardless of 

whether the fermion has a mass (van den Doel subtracts out 

the known determinant for massless fermions). 

We begin with the continuum N species model, described 

by the Euclidean action: 

= ¼ 	
+ Lot (+MY4 	 (zo) 

with 

= 	- - 	= 	 (2; 4) 

We next make the correspondence with the Bose theory, 

using (2.21) (the first of these gets a minus sign in 

Euclidean space). We then use the equations of motion to 

eliminate the gauge fields, and finally obtain: 

3 
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The quenched approximation to the one species model 

corresponds to setting N0 in tp, Green functions. 

We compute the properties of the theory defined by (2.42) 

in the strong coupling regime as a perturbative expansion in 

m/g. First consider the massless theory. The momentum 

space propagator for the scalar field p  is: 

(o)  - 	+ 
1 

= 

	

r 
	 'S 	) L 

The superscript indicates that we are at zeroth order in 

perturbation theory. Thus, we recover the result of 

Schwinger for <qp>G11 (0 when N=1, and the result of van 

den Doel when N=O, that is, in the quenched approximation: 

= 

which is infrared divergent. 

To expand in powers of rn/g, it is best to re-normal 

order the cosine interaction in (2.42) with respect to the 

scalar field propagator. First introduce an infrared 

regulator, 1.1: 

Now undo the normal ordering with respect to the ordinary 

scalar propagator (N=1): 
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= () cs 

where a is a short distance cut-off, and the ordinary scalar 

propagator in configuration space is: 

(o) 
- (xio; I ' 

O 	 L CMO 
t2. + 

NV% 	4T 

Finally, normal order with respect to (2.4%), denoting this by 

Z4irq'0 ')= ()'Ac? btz °I 
(. tfE) 

XdCc& (Ljicq,) 

In configuration space, the scalar propagator is: 

(a) 

 WO 

( Ftz 	+0. 

K 0  is the associated Bessel function of the second kind. 

Assuming pa<<1, we have: 

(o 
(t+ 

Substituting in (2.4€): 

¶v 	 p-(t-t- 	 cos 	 z•s) 
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'v-rm this. we may obtain the order Parameter for chiral 

symmetry breaking in the massless Schwinger model: 

- 	 <CW' 	 2kcV,)) 

1L 

= 

and for the quenched approximation: 

(742J) 	= 	
' 

/J'O t4—o 

CtA. 	312Js 
M-o 

2. 
= 2VA 

which is the infrared divergence discovered by van den Doel. 

This divergence may be traced to massless propagation in 

the tadpole diagrams. 

The properly organised action for an expansion in m/g is: 

MINP4 

Z., cc(zAjrq 0 ) 

Note that the effective expansion parameter diverges for 

p-0 when N<1, and so studying the quenched approximation 

in this way is likely to lead to failure. It is easy to write 

down the scalar field propagator to first order in m/g: 

%
(o ) 
(?lM+

N 
*,2 + ( (2.$) 
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For the unquenched one species model, we set N=1 and p=O, 

and find the pole in the scalar propagator at: 

0) 

which is the familiar result. 

The quenched approximation suffers from infrared 

divergences. Taking the limit N-3O before -3O, we have: 

V; 	-I. 	 - 4 
t 

(v+*cM1 	
/') 

-, 
1ta-O 	

4T C-rA)W 

Note that the momentum dependence drops out as the 

infrared regulator is removed. In this limit, all the 

fermions become trapped in local minima of the gauge field 

potential, and are thus localised. 

Perturbation theory in m/g assumes that massless 

particles are propagating around the tadpole diagrams, and 

is clearly not a good approximation for the situation we 

have described. Hence we take account of these 

localisations (i.e. the tendency for the scalar field to 

acquire a large mass) in a self-consistent way as follows: 

re-normal order (2.55) with respect to G13O)(p;X),  where x is 

chosen such that: 

4L 	 VLN 
= pk 	 -I—TX L 

 ) 

+ LTC ( + 

t 
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This makes G ° (p;A) the 	scalar propagator to 	order m/g, 

and 	also the propagator used 	for 	normal 	ordering 	the 

interaction. Thus, X is 	the scalar 	particle 	mass. 	For 	N=1, 

this gives the same result to first order in m/g as before 

(2.57). 	For N=O, however, we have: 

t ~ 

 

-- 	rIP 

=  

(? t )%  

with 

t 

	

= 	 6o) 

This has a unique solution, as is clear from figure 2.2, 

satisfying O<)<oo, even for p=O, and so we can remove the 

cut-off without encountering any infrared divergences, 

provided that m>O. The expansion parameter is now small 

((m)/g)) so perturbation theory is valid. We conclude that 

the pseudoscalar particle exists in the quenched 

approximation with mass: 

The order parameter for chiral symmetry breaking is: 

C Xe. 	 2.z) 

These equations may be solved numerically, to obtain M/g 

and <4>/g as functions of m/g. The results are shown in 

figures 2.3 and 2.4. Also, in the limit m/g-O, we have: 
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Showing. that equation (2.60) has a unique solution. 
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_N=o 

J-ZL( Lflrcr 

so that the pseudoscalar mass vanishes slowly, and the 

massless quenched theory agrees with that of van den Doel. 

However, the divergence in < 74> as m/g-)O is much weaker 

than van den DoeYs result. As rn/g increases, we note that 

the result for N=O and N=1 are becoming similar. This is to 

be expected: as the fermion mass becomes greater, the 

effects of internal loops become less important. 
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CHAPTER THREE 

THE LATTICE SCHWINGER MODEL 

In this chapter, we shall formulate the Sckwinger model on 

a lattice, paying attention not only to how to formulate 

the basic Lagrangian, but also to how to form the mesonic 

operators from the fundamental fields of the Lagrangian. 

Before going into details about the lattice Schwinger 

model, we need first to consider how to put the Dirac 

equation on the lattice. 

3.1 Lattice Fermion5. 

Consider the action for free fermions in the continuum: 

S~- = j dz"x ii (trY4# 	 (I-0 

in d-dimensional Euclidean space. This action represents one 

fermion of mass m. We discretise the action by making the 

replacement 

where n represents a site of the four dimensional Euclidean 

lattice, e is a unit vector in the p direction, and a is the 

lattice spacing. The lattice action is then 
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	 -14 (t- a:g,)j + 7—  

for free ferTnions. From this action we can calculate the 

momentum space propagator 

(;-(,) 	

I 

" 4r_  

For free massless ferinions, it is clear that G(p) has poles 

for p=0 or u/a, and hence represents 
2d  fermion species. 

Even in a system initially containing particles corresponding 

to only one pole, the introduction of gauge fields causes 

the other allowed particles to be pair produced and so 

contribute to intermediate processes. For instance, in a 

perturbative expansion all internal fermion loops contribute 

with a factor 2d  times their continuum counterparts (Guerin 

and Kenway, 1980; Sharatchandra, Thun and Weisz, 1981). This 

causes the loss of asymptotic freedom for the SU(2) colour 

group, and its near loss for SU(3). 

This species doubling has been overcome completely, and 

without loss of chiral invariance, by a method due to Drell, 

Weinstein and Yankielowicz (1976). The naive lattice 

discretisation of the Dirac operator is replaced by a highly 

non-local term by first going to momentum space: 

1 k= 
	 (&) 

where 
-L 

iL- 
v 

V is the volume of the lattice (a=1 here) 

non-local, this so-called SLAC derivative is 

Being highly 

of no use in 
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Monte Carlo simulations, and moreover fails to recover 

locality or Lorentz invariance in the continuum limit 

(Karsten and Smit, 1979). 

Wilson has invented a method whereby the unwanted 

fermion species are given a mass of order (1/a), and hence 

disappear in the continuum limit. This is done by adding to 

the naive fermionic action a term which is of order the 

cut-off - such terms clearly disappear as a-?O. In particular, 

add a term corresponding to the lattice version of the 

second derivative of the fermion field, multiplied by an 

arbitrary factor, r. The modified action is then: 

F Z& 

* 

The momentum space propagator is: 

1 

= 
/ 
	L 	 Cos 

and the only remaining non-zero mass pole is that at p=O. 

Note that for the special case r=1, (-1) and (c-,-1) are just 

projection operators, and that for aiO, we have the correct 

continuum proagator: 

I 

o_- 	'+" 	
(a") 
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The Wilson fermion method, although it does solve the 

doubling problem, has the disadvantage that chiral 

symmetery is explicitly broken, even for m=O. This is 

important because chiral invariance is an approximate 

symmetry of QCD, one of the consequences of which is the 

small pion mass. 

We now turn our attention, to the method of Susskind 

(1977). Here, the fermion degeneracy is reduced from 2 to 

in d Euclidean dimensions. The resulting lattice action 

possesses a continuous remnant of chiral symmetry, and this 

makes lattice studies of the mechanism for the spontaneous 

chiral symmetry breaking sensible: no tuning of the bare 

quark mass is necessary to recover a massless pion, as it is 

for Wilson fermions. 

The method consists of reducing the fermion degrees of 

freedom at any given site by distributing them on 

sublattices. To thin the degrees of freedom, we spin 

diagonalise the naive lattice action by defining a field x as 

follows (Kawamoto and Smit, 1981): 

where n, i=1,...,d, are the components of the vector 

labelling lattice sites. Independently: 

•4 (v :\  = 
	 Vn 	ht  

Rewriting the action (3.3) in terms of the fields 	and x we 

have: 

Sç 	j; Z. 	 (3.2) 

8 



where 

- 	 (.t13) 

and the index a labels the Dirac components of the original 

fermion fields, and runs from 1 to 2I2.  We see then that 

the action has been diagonalised in spin space, that is, it 

has completely decoupled into 2 	 identical spinor copies. 

All but one of these may be thrown away, and the 

degeneracy in the continuum is reduced from 
2d  to 

Kluberg-Stern et al. have 	pointed out that all 

transformations like (3.10) and (3.11) that diagonalise the 

action are equivalent. The diagonalisation may alternatively 

be carried out in momentum space (Sharatchandra, Thun and 

Weisz, 1981). Retaining only one copy of the action, then: 

This action has a global U(1U(1) symmetry if m=O, which is 

a remnant of the chiral symmetry of the continuum theory. 

This symmetry arises from the fact that x fields situated 

at odd (even) sites are only coupled to fields at even 

(odd) sites. It is explicitly broken down to its diagonal 

subgroup, U(1), by the mass term, which couples two 

fermions at the same site. The propagator for the single 

component Susskind fermions on an N 4  periodic lattice is 

given by: 

P4 

%t4 LV\ 
p 
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and we see that translational invariance by one lattice 

spacing is lost, but that translational invariance by two 

lattice spacings in a given direction is retained. This is a 

reflection of the fact that physical quark fields should be 

identified with combinations of the Susskind fields around 

hypercubes, as we show below. Note also that the poles 

of the momentum space propagator occur in the same places 

as for the naive propagator (=O or N), the difference being 

that the spinor degrees of freedom have been thinned. 

So far we have failed to construct a lattice theory of 

free fermions with just one fermion and continuous chiral 

symmetry, with a covariant continuum limit. The reason is 

intimately connected with the Adler -Bell-Jackiw anomaly 

(Adler, 1969; Bell and Jackiw, 1969; Karsten and Smit, 1981): 

the doubling occurs in such a way that even if we put a 

single left handed spinor on the lattice, it would reappear 

doubled with a right handed counterpart in the continuum 

limit, and is thus no longer chiral. The connection between 

doubling and chirality is formalised in the Nielson- Ninomiya 

theorem (1981). 

Because we wish to investigate the spectrum and chiral 

symmetry properties of the Schwinger model at light quark 

masses, we choose to work with the Susskind formulation. 

We have shown that, in two dimensions, the Susskind action 

for free fermions represents two continuum flavours. It is 

more natural, then, in the lattice formulation of the 

Schwinger model, to consider first its two species 

generalisation, whose continuum version was considered in 

the last chapter. 
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3.2 The Lattice Two Species Schwinger Model. 

Our starting point in this section is the lattice action 

for free Susskind fermions in two dimensions. We shall 

consider the introduction of gauge fields later. The action, 

then, is: 

T and  x are one-component spinor fields placed on sites n of 

the lattice, and e and e 2  are unit vectors in the two 

directions. We know that this action describes two 

continuum flavours, but it is not immediately obvious how 

one should identify them. 

We follow Kluberg-Stern et. al. (1983) and construct Dirac 

fields with two components, out of the fields and x, for 

which the propagator has only one pole in momentum space. 

These new Dirac fields are governed by an action that goei 

to the continuum action for Dirac fermions with two 

flavours and a flavour invariant mass term in the limit a+O. 

Relabel 7(n) and X(fl): 

ly 2by% 	)<('4 

% 

Next define first and second order derivatives on the new 

lattice of spacing 2a formed by the sites 2y: 

I 	.)=  

2. 

r: .  

rn 



Finally define (H=tp,1,2,12): 

— 
— 1 

% 
(a•at 

with: 

'-; 	 '.='c 

Then the free massless action may be written as: 

= ~ 	 IOL 7-1 

We wish now to define quark fields such that the kinetic 

term is of the form jf 
P  A  1i  q

,  and so from (3.2), we define: 

(ZtqrJ 
—ow 
S  AFZ- 

which may be inverted to give: 

	

4 	2: 

	

= 
AJ 	

H 

h 

Inserting these expressions into the free lattice action 



(3.16), we have: 

= 

4-% i:. •()(i c i 	fr) 

In the quark bilinears, the first matrix acts in spinor space 

(Greek indices), the second in flavour space (Latin indices). 

Note that the second term, involving second order lattice 

derivatives, is formally of order a with respect to the 

first, and lifts the flavour degeneracy. Hence the flavour 

symmetry of the continuum theory is lost on the lattice. 

From (3.26), we can write the free momentum space quark 

propagator: 

q ()  

+ p.  
_Zy(Li)1 

The momentum p lies in the first Brillouin zone associated 

with the lattice of spacing 2a, that is: 

- 	<' 1 	
('7). Z%)  

so that t sin 2(2ap) in the denominator disappears only for 

p=O in the allowed range of momentum. 

The action (3.26) is in fact equivalent to a. natural 

discretisation of the Kahler-Dirac equation (Rabin, 1982; 

Becher, 1981; Becher and Joos, 1982; Banks, Dothan and Horn, 

1982; Kahier, 1962). This is a geometric formulation of the 

Dirac equation in the language of differential forms, which 

can be reduced in the continuum into 2d,12 
 decoupled Dirac 
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equations, as a result of the underlying Clifford algebra, for 

which the four matrices, (in two dimensions), form a 

representation. The Kahier-Dirac equation has a rather 

natural lattice formulation that has the same flavour 

degeneracy as the continuum equation, although the 

decoupling can only be done in momentum space. Although 

for free fermions, the lattice form of the Kahier-Dirac 

equation and the Kogut-Susskind form of the Dirac equation 

are equivalent, in the interacting case they are not. In the 

Kahier-Dirac formulation all Dirac components of the quark 

fields transform in the same way under gauge 

transformations, being associated with the same spacetime 

point, whereas in the Kogut-Susskind formulation the Dirac 

components are at different spacetime points and so 

transform differently. We have chosen to work with the 

Kogut-Susskind formulation of lattice fermions, and hence 

wish to construct lattice operators from the fields j and x 
appearing in the action (3.16) rather than the and q fields 

appearing in (3.26). Before considering lattice particle 

operators, however, we first consider the introduction of 

gauge fields into the action. 

Gauge fields are introduced into the fermionic action in 

such a way as to make the action gauge invariant. As we 

chose to work with the Kogut-Susskind formulation we 

should introduce these fields on the original lattice of 

spacing a. Hence, (3.16) becomes: 

= 	E. 2('(j I 9M  

#w'#' Lc(X 
	 (z 

The definition of the physical quark fields may be 

generalised to: 
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= 4 
;; çJc7c 

.O(&( 	

A 

	 Ul 

where tJ11 (1) is the product of link variables U() along any 

definite path going from 2n to 	With this definition, 

the fields 	and q transform under the gauge group 

transformation associated with the site 2n. 

We now have all the expressions we need to identify 

mesonic operators on the lattice. A meson is a bound q 

state with definite quantum numbers, and hence we may 

write a general lattice meson in terms of the physical 

quark fields as: 

IsI\ ( 	=(T"- c 

where rA  and r   are 2x2 matrices which may be formed from 

the four matrices of the Clifford algebra, the first matrix 

acting in spinor space, the second in flavour space. As we 

shall work in the Kogut-Susskind formulation of the theory, 

we need to translate (3.31) into an operator written in 

terms of the fields 7 and x of the'small' lattice. Using 

(3.24), and writing indices explicitly for clarity: 

NA A 
	T." X,. 

3) 

= 

	

= ± - 	v 

Mesons with particular quantum numbers may now be 

55 



explicitly constructed, by appropriate choices of r  (defining 

parity), and r  (defining isospin). The form of CHK  is 

dependent on choice of - matrices, because the isospin 

(Pauli) matrices are fixed. The isosinglet state is generated 

by: 

	

-i 	 () 

and the three members of the isotriplet by: 

a;= 
() 

	
I-  I = t A 

72, = 
	 o 	

( 	i) 	
:3;3=o 

/0 0\ 

The matrices of the Clifford algebra may now be chosen 

to make the mesonic operators as local as possible, for 

convenience in Monte Carlo calculations. For instance, 

choosing f 5  diagonal, the iT state, (j,13)P=(1,Q),  is given by: 

(%, o) 	= 
IA K 

 ; 	cuoc• 	 (') 
H 
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= 	(ctr3jc) 

0\ 

/01 0 

0 0 	1 	01 	
(3/ 

\% 00 0! 

and so the 1T°  operator is local: 

where 

= 	e 14 

If on the other hand 	had been chosen diagonal, then 

'0 - 	0 
I i ô 0 

= 1 0 0 	0 -i I 
\o 0 	oJ 

and the operator is thus one link. These two possible 

definitions for the pion are compared in chapter five. The 

0+ operator is always local; the 0 is always two-link; and 

the (1,±1) ±  operators are either a mixture of local and two 

link pieces, or purely one link, depending upon the choice of 

the representation of the Clifford algebra. 

We have chosen to make ç2  diagonal, and hence, 

cataloguing the possible CHK 
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(10 = 	(çtj) 	1 
 k. 	 2 2. 

O\ 

( 0001 1 

0100 
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1) 
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= 	
= ( 0 -1 0 

0 00/ 

/0 1 0 0\
\  to0 o t-(rt 	r1y) 

= 	0 0 	 • 	(3•tq- 
rr  

00 1 0 

.± 

(oOtO  

° C 0 0 O  
0100 	 00 

WA 

0 .0k 1 
(9c) 

0-% 

Having made this identification of particle operators for 

free fermions, we now introduce the gauge fields in the 

obvious way to make them gauge invariant (Kluberg-Stern et. 

al., 1983): 

'ti 
( 	X ) •'• 

 

where 	is the product of gauge variables along any
HK 

path linking 7 and X. 
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3.3 The One Species Schwinger Model 

We wish now to modify the lattice action so that only 

one species is produced in the continuum. We shall do this 

by introducing a mass term that gives the two continuum 

species different masses, and then we shall let the mass of 

one of the species become very large so that it decouples 

from the theory (Mitra and Weisz, 1983; Mitra, 1983; Burkitt 

and Kenway, 1983; Burkitt, Kenway and Kenway, 1983). In the 

next chapter, we present numerical evidence that this 

procedure indeed causes one of the flavours to disappear 

from the theory. 

Consider 	the free 	action (3.2) 	We 	can introduce. 

different 	masses for 	the two fermion 	flavours by 	making 

the replacement: 

2 (L®4-') c 

= 	ZL 

- 

sums on repeated indices being understood. We next write: 

&L= cl ()c\ (( 

= 1 

where: 
(c..) 

Let the two quark flavours be called up (u) and down (d). 

Then, if we make 12  diagonal, we have: 
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(u.) 

- 	 (so) 

	

I 	- 

where p(U) 
and p(d) are projection operators for the up and 

down quarks respectively, and: 

- 	E 	*&) + 	* 	 (3-s t) 

Now use (3.24.)  to write this mass term in terms of the 

lattice fields (n) and  X(fl): 

J4_ = 
k)k3)-' 

(rt< 
(3.sz) 

el=  

where 	 0 	 0 
\ 

I 1 	flW& 	0 	 \ (s\ 

= Z 	 6 	hi,4 	0 

 ) 

	

M-i3 	c VK 

Hence, the Susskind action for non-degenerate flavours is: 

SF = Z J 	t\t7,(n\ [U  

	

1- 	 (.st) 

Note that this action is not unique. Choosing 2  diagonal 

results in a one link mass term in the two direction, but 

we could have chosen equivalently 	diagonal, giving a one 

link mass term in the one direction. Choosing 	diagonal 

results in a two link mass term, with 	given by: 
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In'tYt%e 	0 	0 	L (— Yb'\ 

1 1 	o 	 ' (M&- w% 
dm  = 	

0  H 	 —' (n1- i\ 	 0 
. 

0 	0 

We have chosen 	diagonal, as a one link mass term is 

clearly easier for numerical simulations than a two link 

term. However, this has some disadvantages for lattice 

particle propagators, as we shall see below, as well as 

destroying discrete 0(2) invariance on the lattice. 

With the action (3.54), we are able to give the two 

continuum flavours different masses. We simulate the one 

species model by giving one of the flavours a mass: 

CL 

whilst the other flavour remains light. The heavy quark is 

hopefully so heavy that it decouples entirely from the 

theory. This procedure is not entirely satisfactory, as in 

the limit in which the mass of the heavy species goes to 

(although it is not clear what it means to give a particle a 

mass greater than the cut-off), it appears that the number 

of the light poles in the free propagator doubles again 

(Verstegen, 1984). We demonstrate this numerically in the 

next chapter. 

Now consider 	mesonic operators 	for the 	one 	species 

model. We can still define operators according to (3.31), but 

clearly r  	now has 	no 	meaning. If 	the d quark 	is 	made 

heavy, then all useful mesonic operators must have a 	<tiu> 

piece 	in 	their 	definition. Thus, 	according to the particular 

identification scheme given above for the two species model, 

only those operators with 1 3 =0 are useful in the simulation 
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of the one species model, and only their parity is important. 

3.4 Correlation Functions. 

In chapter one, we argued that sums on spatial directions 

of particle propagators (time slice propagators) should decay 

exponentially in Euclidean time with the mass of the 

particle. In this section we discuss the basic correlation 

functions and time slice propagators for both the two 

species and one species models. 

Consider first the two species model. Equation (3.3) 

tells us how to identify the mesonic operators. In a 

representation where the - matrices are real, mesonic 

propagators are given by: 

jVNZ- 
	

T 

 

Expanding this and putting in Dirac and flavour indices 

explicitly: 

OC& 	 AID 

C() \ 	1 

	

)c (c ) (r 
)0.O 

(I; 	(Vi) 	(2•.5z) 

The action, (3.26), contains a term that breaks the flavour 

symmetry of the continuum action, but is formally of order-

a (the lattice spacing) with respect to the other terms. If, 

then, we are near the continuum limit, we can consider only 

flavour conserving currents, and we have: 
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N 
- 	P.  

Q<4(\c1 	, %c1 	 c 

(c 	ç (ç -< ( 	()< c Ca 

Hence, the flavour non-singlet states (1=1) get no 

contribution from the second term in (3.59), because if 

U md then <iu>=<dd>, and rB is traceless. Notice also that 

it is exactly the second term that causes the splitting 

between the 1=0 and the (1 1 13 )(1,0) states, because (rB)2 is 

identical for both states. This is consistent with Coleman's 

comments (1976), who states that in the continuum two 

species model, it is the annihilation diagrams that lift the 

degeneracy of the isosinglet and isotriplet states. These 

diagrams are shown in figure 3.1. They are those in which 

two fermion loops are connected by photons, and are 

non-zero in the continuum only for those states with I=0 

(because the photon is an isosinglet), although both scalar 

and pseudoscalar states get contributions as the photon is 

a pseudoscalar. Pseudoscalar states are connected by an odd 

number of photons and scalar states by an even number. 

Particle masses may now be calculated by inserting 

appropriate gauge fields into (3.S) in order to make the 

correlation functions gauge invariant. 

The above system of particle identification yields mesonic 

operators that have well-defined quantum numbers. However 

as these operators are often non-local, they must be 

multiplied by gauge fields in order to make them gauge 

invariant. As far as Monte Carlo calculations are concerned, 

this has the adverse effect of worsening statistical errors. 

It is possible to define local operators on a single site of 

the lattice, but these no longer describe single particles 

with well-defined quantum numbers. However, as these are 
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(as) 

(b) 

Fig 3.1 

The two types of diagram contributing to meson propagation. 

Fig 3.1(b) represents the annihilation terms that lift the 

degeneracy between 1=0 and 1=1 states. 



by far the easiest operators to use in a Monte Carlo 

calculation, we consider them here. 

Mesonic operators are defined by (3.31): 

M 	( 	= 	(t) (r ®ç')c1\ 	 (3t) 

these are local if rArB. 

MA (j) = • ((4) (r 	rA) (V%) (%o) 

Clearly then in two dimensions, there are four local 

operators of this type, given by: 

TA 

r 	L 

c- 	•;=' 

In Euclidean space, we are free to choose either direction 

as time. This choice determines the parity of the mesonic 

operators: if time is the 1-direction, then rA=l  or -Y, yields 

a scalar, whereas or (5  yields a pseudoscalar. The 

isospin of the local operators depends on the choice of - 

matrices. Choosing -y 2  diagonal, we have: 

•1 	 c 	(D 	t) 	
(•i) , = ( 

t 	0 
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and so in terms of the Pauli matrices (noting that it is r  
that is important according to (3.33)): 

= 	+ c 	= 	= 	- 	()  Cr 

Thus rA=l  yields the isoscalar, whereas the other particles 

all have 1=1. Choosing '(5  diagonal produces a different 

identification of the quantum numbers, causing mixing among 

the isotriplet members with respect to the above 

identification. 

Now consider operators of the form: 

= 

These are the most convenient for Monte carlo calculations. 

They are defined on a single lattice site. e is some phase, 

and and x  have no H subscript as p, here labels sites of 

the original lattice. As we shall want to sum over the 

sites in the spatial direction in order to extract meson 

masses (as we discussed in chapter one), define (having 

chosen time to be the one direction): 

= Z 

= I. 	C Yt 
2.. 	

(a . $) 

(t = 

L 

where t=n 1  and G(Q,fl)=<x(fl)x(Q)>.  These operators exhaust 

the possibilities for the phase in two dimensions. 
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Correlation functions for the local mesons MA  defined in 

(3.60), when summed over the spatial direction, give: 

10) 

M, t)
= L t 	( ® 	(t&) c (o) cc ') ?) I 

'1. 

= L 

M t 	1. 	 5S®51 

We note that GHK(Q,fl)=G(.,2fl+.K)=(_1)eMI~eH+ek.+\GHK(fl,Q)  and 

invoking translational invariance, we have: 

l&Q;v.,2 
• 1. 

" 3zlo . 	+t(oz&+t)+  

= 2 L 2t 	2k) r+ t G (C;  
In writing the first of these expressions, we have neglected 

the annihilation diagrams whose importance for the singlet 

state was noted earlier. Hence, we cannot expect to 

extract a reliable estimate of the mass of the 0  state 

from any local operators. With this caveat 'in mind, 

however, we proceed to extract masses. (Similar 

calculations by Gilchrist et. al.(1984) in four dimensions for 

the e meson produced unsatisfacory results.) The time slice 

propagators are expected to behave like exponentials in the 

meson masses. Hence we may assume (remembering the 

degeneracy of the isotriplet): 
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K,+ 	
-M 0# t 	—M 0* (-r- 2 

	

e. 	*e. 

- M+ 2¼ 	Vik %* (r-  2.&) 
= 	 + €• 

Mr (r-2*) 

	

- I e 	M 1 - Lt 	- 	- L-r_,&.' a 
K.— 	I * -. 

T is the temporal extent of the lattice. We notice that: 

'AL$ (2t) = 
L2.. 

M Lt (24 
LIL 

and hence write: 

- 	PsJ\ 14) = JL2Mft  (2-Q - 	(* t) - M 

- 	(k) = £ 12A( 2-0 - M (tit +t) M(-t)\ 

M2. (t) = 2 l2 Ms  p  (2k) 4 	ç (.2¼*)  

these may be solved for Ms  and M 5 . We find 

1 6 

(' 	ç -Mk. 

coc).. %k 1- 

e. 	—b 

t6 cotL 
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M CO = k- (i-uc4.a 

6c 

- 

t6 

-MC 	—M1 (r-t 
k€. 

k

+  (t* 

i6 cc, 1A* 

U -co 	r') 	
-A-  

i6 cL 

Similar expressions have been obtained in four dimensions 

(Gilchrist et. al., 1984). In the continuum limit, a-90, these 

expressions reduce to: 

k 4e 4t * 	 - 1..(t-t)1 

(-v 

= j; 	
CT—t)1 

Note that Mps  propagates both the 1+  and 1 states, which 

is not the Oase in four dimensions. Also note that the 0 

state does not mix with any of these simple local 

operators. This is because it is not possible to find any 

representation of the Clifford algebra in which the 0 

operator has any local pieces. This is always possible for 

the 0+ ,  1+ and 1 states. Hence the mass of the 0 particle 

may only be calculated using non-local mesonic operators. 

Now 	consider correlation functions 	for the 	one 	species 

model. 	Meson propagators are still 	given by 	(3.31), 	but 	to 

ensure 	that the 	propagator contains 	a <iiu> 	piece, 	we 

require 	that r  	be 	diagonal. Note that now <tiu>*<dd> 	and 

hence that the second term (the 	annihilation term) in 	(35 

is 	important for 	all 	meson operators. However, 	Coleman 
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(1976) argues that the annihilation force is negligible for 

weak coupling in the one species model, and at least does 

not alter the qualitative features of the mesonic spectrum 

at strong coupling. 

Now consider the definition of local particles for the one 

species model. In the derivation of equations (3.7) and 

(3.74) given above, we used the fact that: 

j• €111.* £-t• €k1 (c) 

G;*" 
	

G- (v,) 
"I'. 	- 

This relation is only true for the two species model: the 

one link mass term in the action invalidates this equation, 

although had we chosen a two link mass term to lift the 

degeneracy, (3.75) would still have been valid. The relation 

is used to enable us to find GT,  the transpose of the quark 

Green function, from G. In the one species model, we are 

forced to calculate both G and G  separately. Then, we can 

form: 

%' %4 it I 

(-t) 	a (9,') C'v 

which is the analogue of I G(n,2)1 2  for the two species 

model. Note that if is diagonal, M 1 (t) and M 12 (t) are 

meaningless for the one species model, and hence only Ms(t) 

retains any usefulness, mixing the scalar and pseudoscalar 

particles. Again, note that had we chosen diagonal, then 

M 1 (t) and M 2 (t) would have become meaningless, so that 

M(t) and M(t) would both have propagated only a single 

state, Ms(t)  the scalar, and Mps(t)  the pseudoscalar. 

However, it must be noted that any local definition of 

mesonic operators for the one species model necessarily 

neglects the annihilation terms, and hence produces 

unreliable results. 
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CHAPTER FOUR 

NUMERICAL TECHNIQUES 

In chapter three, we showed how to formulate the 

Schwinger model on a lattice, and how to lift the mass 

degeneracy of the naive discretisation of the action with a 

one-link mass term. We can proceed now in two ways: 

either by performing strong or weak coupling expansions for 

the physical quantities of interest, or by simulating the 

system numerically. We shall perform numerical simulations 

of the theory, for the one and two species models, and for 

the quenched and unquenched models. Some Monte Carlo 

results already exist for the Schwinger model (Mari.nari, 

Parisi and Rebbi, 1981; Ranft, 1983), though only juënched 

results exist for the particle masses (Carpenter, 1983). 

Some strong coupling results have also appeared (Hamer and 

Kenway, 1981; Carroll et al., 1976) 

In this chapter, we shall present the numerical 

techniques used in this work: the Metropolis algorithm, 

which was used for updating the gauge fields (the faster 

heat bath method would not have been suitable because of 

the technique we used to simulate the effects of dynamical. 

fermions in the unquenched model); the pseudofermion heat 

bath technique, used to produce unquenched gauge 

configurations, and also used in the calculation of <4(m)>, 

the fermion condensate; and the conjugate gradient method, 

used for the calculation of the quark Green functions within 

a given gauge field configuration. As well as defining the 

algorithms, we shall emphasise how they may be efficiently 

implemented on a parallel machine, in particular, the ICL 

Distributed Array Processor (DAP), the machine actually used 

in all these calculations. As a simple introduction to the 
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special features of a parallel processor a short appendix 

appears at the end of this work. 

We also present in this chapter a few free fermion 

results, as examples of the use of the pseudofermion and 

conjugate gradient programmes, and as examples of the 

importance of fermionic boundary conditions. 

4.1 Generalities 

As we have already seen, the expectation value of a 

physical observable in a quantum field theory is given by 

the functional integral: 

<> 	

-(c 	

() 

where p denotes generically the dynamical field variables in 

the theory. The idea of the Monte Carlo method is to 

replace this integral by an average over field 

configurations, C.: 

A 	1.. 0 (CL)  

At equilibrium, the configurations, C, are distributed with 

the Boltzmann factor, exp(-S), and hence the field 

configurations with large action will not contribute 

significantly to the sum (4.2). We are faced, then, with the 

problem of somehow generating a representative sample of 

equilibrium configurations that contribute significantly to 

the quantum average (4.2). 

The Monte Carlo technique is designed to generate such a 

set of configurations. One begins with some arbitrary field 
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configuration, 	C, and from this generates a new 

configuration, C. The passage from one configuration to the 

next is determined by the transition matrix, P(C-)C), 

satisfying the constraints of stochastic matrices: 

P(c - cj) ,o 

C,  

Generally, one implements Monte Carlo algorithms by 

updating just one dynamical variable at a time - in the case 

of gauge theories, one updates a particular link variable, 

U(n)+U(), and then moves on to the next, eventually 

updating all links and completing one sweep through the 

lattice. Hence, one does not define a single transition 

matrix, P(C-C), but rather a whole collection, P (C - C), 

coinciding with the transition probability P(U(n)-U(n)), the 

other dynamical variables being kept fixed. In what follows, 

we leave the indices on P implicit. 

One wishes, then to define a stochastic sequence such 

that, once statistical equilibrium is reached, the probability 

of finding any configuration C becomes proportional to 

exp{-S(C)I. A sufficient (but not necessary) condition for 

this is that each step of the transition matrix should 

satisfy detailed balance: 

—S(c. 
1 (c-p 	=  

It is now easy to show that e- S  is an eigenvector of the 

stochastic process: 

- 

(i.$) 

by (L+) 
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To study the convergence to the Boltzmann distribution, 

define a distance between two ensembles of configurations, 

E and E, each containing many configurations, as: 

where P(C) and P (C) are the probability density for 

configuration C in I and E respectively, and the sum runs 

over all possible configurations. Now suppose that E 

resulted from the application of a Monte Carlo algorithm 

satisfying (4.4) to E. Then: 

= 
	 f) 

If Eeq  is an equilibrium ensemble, then: 

C. ,  

~ 
S  

If P(C4C) never vanishes, the inequality is strict, unless we 

are already in equilibrium, and hence the algorithm always 

takes us closer to equilibrium. 

The detailed balance condition does not uniquely 

determine the transition probabilities, and we go on now to 

consider the Metropolis algorithm, used for updating the 

gauge fields. 
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4.2 The Metropolis Algorithm 

Consider a gauge field configuration, M. From this, we 

wish to generate a new configuration, {U'}, by updating a 

single link, (J(n). This is done by selecting arbitrarily a 

new variable, tJ(n), giving a new configuration, A. Next 

calculate the change in the action, S: 

= -s ( i 5\) — z ([ U') 	 (q) 

If AS40, the change is accepted, and we have U 1 (n)=U(n) and 

{U'}={U}. If LiS>O, the new configuration is accepted with the 

conditional probability, exp(-1,S). In practisc.e, this is done by 

choosing a pseudorandom number, r, selected in the interval 

O<r< 1, with uniform probability distribution. If 

— 

44.10) 

the change is accepted, and {TJ}={U}. Otherwise the change is 

rejected and {U}={U}. We have in summary, then: 

•P( {'J -' u') 
It 	

j. .s(!u1 b 	(Ltj9) 

and 50: 

1:( tU'1-3 tut) 

T 	— ISO 
	

('i-t2 
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which is the condition for detailed balance. To specify the 

Metropolis algorithm completely, one needs now to specify 

how to choose a new link variable, Un) In the case of 

models like gauge theories, where the dynamical variables 

belong to continuous groups, we must invent a procedure 

that can cover the gauge group space uniformly, thus 

respecting the Haar measure of the partition function. For 

an SU(3) theory, one can generate a table of random StJ(3) 

matrices, and their Hermitian adjoints, and use these to 

change a particular link variable by multiplication, finally 

executing the standard algorithm, outlined above. Repeated 

applications of matrices chosen from this table to any 

arbitrary SU(3) matrix takes one arbitrarily close to any 

other member of the group (Wilson, 1980). 

In the work presented here, with a U(1) gauge group, the 

choice of new link variables is made particularly simple: 

(3) 

where 8(n)  is some angle in the range [0,2ir). A new gauge 

field variable is then selected by generating random numbers 

in the interval [0,1), and multiplying these by 27r to obtain 

a value for 8(n). In practise, B(n)  is chosen close to 

for reasons that will become obvious below. 

We now turn our attention to the implementation of the 

algorithm on a parallel machine. The action for the pure 

gauge theory: 

Ea (ii)=pi )JCto "J , (\  

is local: each link variable interacts only with those 

variables with which it forms elementary plaquettes. The 
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change in the action, AS, caused by updating any particular 

link, depends only on those links with which it interacts, 

all other terms in the sum on n of the action cancelling 

out. It should be obvious then that we can simultaneously 

update all those variables which are not connected by the 

action. It is clearly important to find the largest such 

subset of non-interacting variables to update at the same 

time. In a two dimensional lattice gauge theory with the 

Wilson form of the action (4.14),  it is easy to see that the 

optimum pattern is achieved by updating link variables in 

any one direction in a chessboard pattern. Thus, half the 

link variables in a particular direction may be 

simultaneously updated, clearly saving much of the time 

required on an ordinaky serial machine, where only one link 

may be updated at a time. 

Finally, before leaving the Metropolis algorithm, we note 

that it can be considerably improved, for the pure gauge 

system, by repeating the algorithm more than once on the 

same link before proceeding to the next Monte Carlo step. 

As . the number of hits made on one particular link is 

increased, this modified Metropolis algorithm tends to the 

heat bath algorithm, discussed below for fermionic degrees 

of freedom. This method is not suitable if we wish to 

include dynamical fermions, as we discuss below. 

4.3 Dynamical Fermions and Monte Carlo Methods. 

The gauge field action given above (4.14) represents only 

a pure gauge system, and if one generates configurations of 

the gauge field with this action, in any subsequent 

calculation (e.g. of particle masses) one will be neglecting 

the effects of dynamical fermions, that is, in terms of 

Feynman diagrams, one will be neglecting internal fermion 

loops. Although it is argued that internal quark loops 
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should not be very important in QCD (Barbour, 1983) as the 

quark mass is decreased in numerical simulations in an 

attempt to reach physical quark mass values, these loops 

clearly become increasingly important. Hence, to make 

reliable extrapolations to zero quark masses, one would like 

to include fermions dynamically in lattice gauge theory 

calculations. The introduction of anticommuting variables 

directly in a computer simulation is well nigh impossible, 

since, on a lattice with N sites, the N anticommuting 

variables span an algebra with 21I  generators. One would 

like then to devise some approximation in order to obtain 

useful results within acceptable computer time. 

The standard Euclidean action for a gauge theory with 

dynamical fermions is: 

wY9'& 	() 

where SG(U)  is the pure gauge action (4.13), n and m label 

lattice sites, and A nm(U)  is the lattice version of the the 

Dirac operator (in either its simple form, describing 

flavours, or with the flavour symmetry breaking mass term). 

To simulate the effect of the fermionic part of the action, 

one first eliminates the Grassmann variables, 	and tl . This 

is done analytically using the standard Matthews-Salam 

formulae (Matthews and Salam, 1954,1955): 

J 
If det((U)} does not change sign as afunction of U, it can be 

absorbed into an effective action for the bosonic gauge 

field, U: 

-qçç (U) - 	('J) - -rr L 	(U) 's 
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However, even this purely bosonic action is no good for 

Monte Carlo calculations: it is non-local, due to the 

determinant of the Dirac operator that appears. Direct 

evaluation of the determinant is not practical, since the 

matrix A 1 (U) is NxN, where N is the number of lattice 

sites. In fact, the determinant consists of "N 3  terms, and 

is produced by cancellation between them. To deal with 

this non-local determinant, many approximate methods have 

been developed, that make use of the sparse nature of 

A nm(U) (the Dirac operator couples only nearest neighbours, 

so that A rim(U) is essentially tridiagonal, although periodic 

or antiperiodic boundary conditions on the fermion • fields 

introduce non-zero elements in the corners of the matrix). 

One of these methods, the hopping parameter expansion (Lang 

and Nicolai, 1982; Hasenfratz and Hasenfratz, 1981), is in 

many respects analogous to the high temperature series 

expansion used in the study of phase transitions, and has 

been used in the study of the SU(3) hadron spectrum 

(Hasenfratz, Hasenfratz, Kunszt and Lang, 1982a,b; Langguth 

and Montvay, 1984). The hopping parameter is proportional 

to the amplitude for moving a quark by one lattice spacing, 

and the order of the expansion is the length of the quark 

paths considered. So long as the order of the expansion is 

compatible with the size of the hadron, the results are 

supposed to be fairly accurate. 

• A second method proposed by Kuti (1982) is related to the 

hopping parameter expansion, but generates the quark paths 

stochastically, so that the quarks perform random walks 

around the lattice. 

There is another method due to Scalapino and Sugar (1981) 

which requires an initial knowledge of the entire quark 

Green function, and then makes use of the fact that a 
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change in gauge variable on a single link induces changes in 

n m (U) only for those elements near the link. These 

elements may be updated between successive changes of the 

gauge field. Rounding errors, which cause (U) to stray 

from its true value after many iterations are reduced by a 

correction procedure carried out periodically. 

Many other methods also exist (see, e.g. Kogut, 1983), and 

some have been tested in the context of the Schwinger 

model (Duncan and Furman, 1981; Martin and Otto, 1982; 

Ranft and Schiller, 1983; Burkitt, 1983; Ranft, 1983), and we 

now turn our attention to the pseudofermion method of 

Fucito, Marinari, Parisi and Rebbi (1980). 

Consider the effective action (4.17). First replace (4.1w) 

e44(U) = S3 :;. (U\ - 	k (u)  

where: 

14(U) 

The problem with using this action directly for Monte Carlo 

calculations is the non-local nature of the fermionic 

determinant. Consider updating the gauge field variable on 

one link,' UW,  say. Then if we wish to implement the 

Metropolis algorithm discussed in the previous section, we 

need to find the change in the action: 

S4ç w) 	-x 	- 	
(u 

t(U) (.2) t 

If the new link variable is chosen so that it is close to 

.79 



the old one, we can. linearise the expression for the change 

in the effective action: 

fl — .cç 1i = &f'i'r— S: ju1 

-- 	k' 2.  - 

2 

- 

(g4..') 

As we are updating only one gauge link, 6K/6U is non-zero 

only for very few values of n and rn, namely for those sites 

neighbouring the link being updated. Hence, we only need 

the element of K_ 1 for sites neighbouring this link, rather 

than the entire Green function. These elements can be 

calculated in a variety of ways (Burkitt, 1983), but in the 

pseudofermion method of Fucito et. al. these elements are 

calculated . approximately using a Monte Carlo technique. 

Note that: 

 IV k(  u) .= 

- Jcc 

Outp (-S 

where: 

= 	. C(v k. 
- - 

SPF is the action for the pseudofermionic variables, (p and ) 

which are complex bosonic fields. Now we can calculate 

K _ 1 approximately, for a given gauge configuration, by 

performing successive updates of the pseudofermion fields, 

according to the above action, and then using an expression 

exactly analogous to (4.2): 

I 	= 	

41 

'Ic U'i 	NW 1qc 	
- 
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where NPF is the number of pseudofermion sweeps 

performed, and {p,p} denotes the pseudofermion 

configurations. These values are fed back into the effective 

action for the gauge fields as these are updated, according 

to a Metropolis algorithm with action: 

	

S(U)Sç(u) - 	zcp; çç 	 c> kZ 	(u) 

and the pseudofermion fields are again updated several 
* 

times to obtain values of <P 	 in the new gauge field 

configuration. 

The computer time required for this process is clearly 

proportional to NPF,  the number of pseudofermion sweeps 

performed between each gauge field update, independently of 

the lattice size. The exact result, apart from errors 

proportional to (5U) 2  is obtained in the limit N400. The 

method then depends on the value of NPF  required to give 

reliable results, which must be found by experiment. In the 

simulation of the Schwinger model by Marinari, Parisi and 

Rebbi (1981), it was found that the values of NPF  required 

to extrapolate to were manageable. However, as one 

proceeds to smaller masses than those used by Marinari et. 

al., the convergence of the algorithm deteriorates (Burkitt, 

1983), and many more pseudofermion steps are required 

between each update of the gauge field. The work of 

Marinari et. al., and that of Burkitt, was performed using a 

Metropolis -algorithm for both gauge fields and 

pseudofermion fields. Gauge field updates must be done with 

a Metropolis algorithm, if we are to be able to use the 

small angle update approximation for linearisation of the 

effective action, but there is a much more efficient 

algorithm available for the update of the pseudofermion 

field : the heat bath. In the next section, we shall show 

how this algorithm is implemented for the pseudofermion 
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fields, in the hope that the faster convergence of the 

algorithm will enable us to generate good unquenched gauge 

field configurations at lower quark masses than the 

Metropolis algorithm in a reasonable amount of computer 

time. 

4.4 The Heat Bath Algorithm For Pseudofermions. 

Consider the pseudofermionic action, (4.23): 

ZIPF 2 c ( K 
01 

where K 	is essentially the square of the lattice Diracnm  
operator. Our aim is to update the pseudofermionic 

variables in a fixed gauge configuration according to a 

Boltzmann distribution, exp(-SPF).  We could do this by 

considering the change in the action caused by changing any 

one pseudofermionic variable and applying the Metropolis 

algorithm discussed in section 4.2. But we know that using 

the Metropolis algorithm, unless we choose a new 

pseudofermionic variable quite close to the old one, the 

algorithm is likely to reject the update. Hence, the 

Metropolis algorithm moves only slowly away from an initial 

configuration, sampling only a small part of the distribution 

of equilibrium configurations. The heat bath algorithm 

enables us to choose a new pseudofermionic variable 

independently of the old one, and hence we can sample 

equilibrium configurations far away from our original 

configuration very quickly. 

Consider updating a particular pseudofermionic variable, 

say p(). Write the action in terms of p(r): 

a.( 	c()t# '(+ p*( t (t  + 	 42h) 
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The coefficient of the quadratic term comes from the part 

of the action coupling (p(i)  to itself, and is independent of 

, apart from a phase; the linear coefficients b(r) and b(r) 

depend on the pseudofermionic variables to which tp(r) is 

coupled (nearest neighbours and next nearest neighbours), 

which are held fixed whilst t)() is updated; and c(r) is 

independent of and arises from interactions between all 

other pseudofermionic variables on the lattice, which are 

also held fixed whilst p() is updated (though we relax this 

constraint when we consider parallel programming below). 

From (4.23), we see that: 

and  

If we write the lattice Dirac operator symbolically as: 

L 	(U) = 	-- ') 

then a consideration of the explicit form of the action 

(3.18) gives: 

and hence: 

= 	• 	 (L4.) 

So, we have: 

= 
(t 
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Writing the complex scalar field as: 

cp (r 	(r + 

we see that the action is quadratic in both 	and 

separately: 

SF [pc + 	= 	 + 	4  C -\ 

7- 
- 	 - 2b) ccr 

where bR,  b1  and c   and 	c1 	are, respectively, 	the real and 

imaginary parts of b and c. 	Now, because at equilibrium the 

pseudoferrnionic 	variables are distributed 	with the 

Boltzmann factor, exp(-SPF), 	we see 	that 	the 	real and 

imaginary parts of p() are separately distributed according 

to a Gaussian distribution, exp{-(1 /2o2 	with: 

I 

and 

 

A consideration of the action gives explicitly: 

/ .. + 	vv\ I M .* = (-I) 	( H- 	 2  )+1 

The explicit form of b is not particularly illuminating, but 

consists of both one and two link terms resulting from the 

application of the Dirac operator and its hermitian 

conjugate at the site r. 
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The heat bath algorithm, then, consists of choosing a 

pseudo random number with a Gaussian distribution N(1,0) (in 

the notation N(o 2,1)), and rescaling this to obtain a new 

pseudofermionic variable with the correct Boltzmann 

distribution. That is, pick a random number, r, with 

distribution 	exp(-r2 /2), 	and 	then 	define 	a 	new 

pseudofermionic variable according to: 

	

-

- 	__ 

I 	- 

___ 

This procedure is carried out independently for both the 

real and imaginary parts of p(r). 

When we considered updating the gauge fields in section 

4.2, we argued that we could simultaneously update any 

subset of the gauge fields not connected by the action. The 

same is true of pseudofermionic updates, and hence, as for 

the gauge fields, we seek the largest such subset of 

variables, to make the greatest use of the parallelism of 

the DAP. The simple Kogut-Susskind action for degenerate 

flavours leads to a pseudofermionic action that couples next 

nearest neighbours. Hence, although we cannot 

simultaneously update any given pseudofermionic variable and 

any of its eight next nearest neighbours, we can 

simultaneously update the variable and any one of its four 

immediate neighbours. The introduction of the one link mass 

term does not change the resulting one in four update 

pattern, provided that we simultaneously update nearest 

neighbours in the direction perpendicular to that of the 

mass term. A two link mass term, however, does destroy 

the one in four update pattern, a one in six pattern being 

the best we can do, although, because we work on a 64x64 

lattice (the DAP consists of 64x64 processing elements, each 

representing a site of the lattice), a one in eight update 

pattern is easier to implement. 
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In fact, the one in four update pattern, whilst at first 

sight seeming to waste rather a lot of the power of the 

DAP, is very efficient. To calculate the coefficients a and b 

of the heat bath algorithm, we require the action of the 

operator th on every pseudofermionic variable to be 

updated. In practice, this was done by calculating at the 

four nearest neighbour sites the action of the first order 

operator A (the lattice Dirac operator), and then multiplying 

these quantities by the gauge fields linking them to the 

update site, weighted to simulate the action of a at the 

update site. The calculation of the action of A is the most 

time consuming part of the programmes, and we note that 

our one in four update pattern requires a knowledge of the 

operator at every lattice site, hence exploiting to the full 

the parallelism of the DAP. 

Note too that the expression 

implemented using the expression: 

(414) 	is 	actually 

'S ,çç  

= - 	 +O() 

by (4.2S) and (4.1q). The inverse matrix elements are found 

using: 

= PF  

. 	

(i 	q 
fC1 

and 

hA) = (-., '+Mj '  .= 	\qq  
PF Spç  

iL 	 E~ cc1 	(1i4.) 
N.\ çç  (p1 q 
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where ZPF is the pseudofermionic partition function. Hence, 

we see that the implementation of the Metropolis algorithm 

for the gauge fields requires a knowledge of the operation 

of A at each end of the update link, and the optimal one in 

two chessboard update pattern for the gauge fields thus 

requires the calculation of Atp at every site, and is also 

efficient in exploiting the parallelism of the DAP. 

45 The Conjugate Gradient Algorithm. 

Once we have generated gauge configurations, be they 

quenched or unquenched, we need to calculate quark Green 

functions within these configurations, and from these form 

the mesonic propagators considered in the last chapter. We 

are interested in the propagator from some fixed site, the 

origin, out to some site : 

= 

The Green function satisfies: 

Ii. 	Q -(v,L = 

As j is fixed in the calculation of interest, we need 

calculate only one column of the Green function. We are 

faced, then, with the problem of solving a matrix equation 

of the type: 

AX = 

for the vector x. There are many ways of solving this 
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problem, a common one being the Gauss-Seidel iterative 

scheme (Bowler, Pawley and Wallace, 1983). We present here 

the method of conjugate gradients, due to Hestenes and 

Stiefel (1952; see also Householder, 1964; Reid, 1971; Stoer 

and Bulirsch, 1980) which we have tested and found to be 

much faster than the Gauss-Seidel scheme for the sparse 

matrices of interest. 

Let A be symmetric and positive definite. 	This 

immediately implies that its inverse is also symmeteric 

positive definite. Suppose we guess a solution to (4.4), . 

Form the vector of residuals, : 

= 

From this define the positive error function, 1i2: 

rtt = (,  

This must have a real positive value for all possible vectors 

, except the correct solution, x. Substituting (4.4'1) into 

(4.45) we have: 

(-2,)-ir 	 (Lt.if) 

Let x be some n-dimensional vector in the space in which A 

acts, and write: 

= 

d' defines a direction in which we have to move a distance 

a. to reach . Substituting in h 2 , we have: 
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L) 	 . *o& 	 (k I 
A, 	 444-0 

2 (ir' 	
2o(',)-,' 

So, h2  has a local minimum (because A is positive definite) 

for a value of a given by: 

a CL 

namely: 

This then suggests the following algorithm: take a starting 

vector, x, and' form the corresponding residual: 

= 

Set p0 =r0 , and then for i=0,1,2,... find the vectors x, r 1  
1+1 and p 	and the scalars ai  and (j  using: 

=4-oc 

= 	
(14..5L) 

= (—E Z+I A')/(, P) 
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= 	r 	 -# 

stopping if either r 1  or P is zero. The inner product is the 

ordinary scalar product: 

= 

The vectors of the algorithm satisfy the orthogonality 

relations: 

O (qi 

(', = (f5 

41) 

These may be proved by induction. The method, then 

consists of choosing a starting point 2SOand a direction p 0 , 

and minimising the residuals in this direction. A new 

direction is then chosen, as nearly as possible the direction 

of steepest descent from the local minimum, but with the 

overriding condition that the direction vectors be mutually 

conjugate, that is, mutually orthogonal with respect to A 

(4.551). 

The orthogonality relations together with the fact that 

which may also be proved by induction, enables us to write 

a version of the algorithm which is more efficient 
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computationally, and which is identical in the absence of 

round-off. Replace (4.52) by: 

= 

4+I 

= 	- CtL A 	 - 	
(4-59) 

(2. 	(!', 
r.;+, ) / (',!) 

= 

This version of the algorithm is preferable as each iteration 

involves the computation of one less scalar product. 

Numerical experiments by Reid (1971) suggest that 'there is 

very little difference between the accuracy obtained with 

the two versions, using the same number of iterations. 

Strictly speaking, the conjugate gradient method is not 

an iterative technique (in the absence of round-off). From 

the recurrences for p 1  and r know that these vectors 

both lie in the space 

=  

Note that SCS 1  (1=0,1,2,...) and if m is the smallest integer 

such that A m  r 
0  is contained in Sm!  then the dimension of Si 

is i for im and m for i>m. Usually m is equal to the order 

of A, but if A has any multiple 	eigenvalues, or if r 0  has a 

zero 	component 	of any eigenvector 	of 	A, 	then m<n. 	The 

relation 	(4.S6) 	tells us that 	the 	residuals r' 	are the same 
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vectors as those obtained from the sequence r0, 	o'" by 

orthogonalisation, and the vectors p 1  may similarly be 

obtained using (4.55). Hence, pl,r1O  for i<m, and pm=rm=O,  so 

that the algorithm is finite and terminates after exactly m 

steps. Unfortunately, this property no longer holds in the 

presence of roundoff, although in practice many fewer than 

n iterations are necessary to achieve good accuracy. 

Finally we note 	that all we have 	said applies only to 

positive 	definite 	symmetric matrices, 	and the matrix 	we 

wish 	to invert, 	the lattice Dirac 	operator, is 	not positive 

definite. 	We 	get round 	this in the same way as for 	the 

pseudofermionic 	technique 	discussed 	above and 	solve 	the 

normal equations obtained by multiplying through by At:  

AtA 	=. 

with the following algorithm: 

c=k - A 	 At 

= 

= X L+ 

= (E'', -')/(-j 	F') 
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The orthogonality relations become: 

(.!:' j 	
) = 0 	L> 	 (iz) 

/ 	..* 

610 

We now have all the algorithms we need to calculate 

particle masses in the Schwinger model. 

4.6 Free Fermion Results. 

In this section we use free fermion results to illustrate 

the programmes developed for an investigation of the 

Schwinger model, and to provide guidelines for the 

investigation of the fully interacting theory. 

Consider first the fermionic Green function, G(n,rn).  This 

was calculated using both the conjugate gradient algorithm 

discussed above, and the more widely used Gauss-Seidel 

scheme, with relaxation. This scheme solves a system of 

equations: 

by an iterative method, whereby, from an initial guess at 

the vector x, successively better approximations are 

generated according to the formula: 

q• 4• E.(-A 
	

(Lk . ) 
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The parameter c is varied until, empirically, some optimum 

value is found. It was found that the conjugate gradient 

method converged much more quickly than the Gauss-Seidel 

scheme, even though a single iteration for the latter was 

much quicker. For example, in the free two species model, 

where both quark masses were set equal to 0.10 (in units of 

the reciprocal lattice spacing), each Gauss-Seidel iteration 

took 0.028 seconds, whilst each conjugate gradient step took 

0.070 seconds. However, to achieve eight figure accuracy in 

the time slice quark propagator required only about 70 

conjugate gradient iterations, compared with 5000 

Gauss-Seidel steps with c=0.02. 

In figure 4. 1, we show the time slice propagator for the 

fundamental fermion fields in the Lagrangian, 	and x, in the 

two species model with m=mO1O The oscillation in the 

Green function can be traced to the finiteness and 

(anti)periodicity of the lattice. It is reassuring that this 

oscillation does not appear in the free propagator of the 

continuum Kahier-Dirac fields u and d, constructed according 

to: 

f+( )  
oo' 	f c '& a() = 	c()+ 
	X1 

ç(_() 

(L4:?) 

in 	the 	notation 	of chapter three. This 	is 	illustrated 	in 

figure 	4.2. 

To 	illustrate 	*the effect of 	the one-link 	mass 	term 

introduced 	to 	enable us to decouple one of the 	continuum 

flavours, we 	present figures 4.3a 	to 4.3d. 	In 	these, 	the 	d 

quark mass is increased from md=O.lO  up to md=SO.O,  whilst 
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the u quark mass is held fixed at m=010 We also show 

plots of the effective mass: 

L IW\ =L( 4  

where A is the time slice propagator of the x field, and t 

labels the time coordinate in lattice spacings. These plots 

show clearly the two quark masses: the u quark propagating 

forwards, and the d quark backwards. Again it is reassuring 

that the u and d quark propagators decay across the lattice 

with only a single mass. 

These figures show that when m= 1 .O (the natural cut-off 

of the theory), the d quark seems to have decoupled 

completely, and the propagator decays with the u quark 

mass right across the lattice, jumping at the end only to 

satisfy periodicity. Note, though, that when m d is increased 

beyond this natural cut-off, we see a second fermion 

flavour once more beginning to. propagate back across the 

lattice. At very large values of md, we seem once again to 

have fermion flavours, degenerate in the u quark mass. This 

result was subsequently verified analytically by Verstegen 

(1984). Note too that as the d quark mass is increased, 

points in the time slice propagator become associated in 

pairs, so that the propagator becomes stepped. This is most 

clearly seen at md=l.O,  and is, of course, due to the 

coupling between lattice points introduced by the one link 

mass term, which is proportional to the mass splitting. This 

also explains why, for very large md, although the 

oscillation in the fermionic time slice propagator returns, it 

does so with only half the frequency of the oscillations 

occurring for md<l.O: the coupling freezes the fields 

together in pairs along one direction effectively doubling 
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the lattice spacing. 

From the quark Green functions discussed above, we can 

construct meson propagators according to the local or 

better defined non-local definitions discussed in chapter 

three. This is done by multiplying together the appropriate 

Green functions of the fundamental fermionic fields. 

Examples of the resulting time slice propagators are shown 

in figures 4.4 and 4.5. Figures 4.4a and 4.4b show the two 

possible local mesonic time slice propagators for the two 

species model. As for the x propagators, the local mesonic 

propagators oscillate, because, as we showed in chapter 

three, these operators mix two of the physical ststes, one 

with an oscillating phase. Figures 4.5a to 4.5d show the 

time slice propagators for the non-local (Kahier-Dirac) 

definition of the mesonic operators. We pointed out in 

chapter three that if we neglect the annihilation diagrams 

that contribute to the mesonic propagators, then the states 

are degenerate in isospin. For the free propagators, of 

course, the annihilation diagrams do not contribute, and we 

do indeed see that the isospin states are degenerate. Two 

alternative definitions of the pion are used. In figure 4.5d, 

we show the time slice propagator for a pion defined with 

2 diagonal. In figure 4.5e, we show the operator defined 

with - diagonal. This freedom in the definition of particle 

operators no longer remains in the one species model, where 

the definition of the mass term determines the choice of 

the gamma matrices. It is also possible to calculate free 

propagators for the mesonic states with 1 3 *0. These states 

are a mixture of local and two link pieces with diagonal, 

and display behaviour identical with the 1 3 =0 states. 

We may similarly calculate free mesonic propagators for 

the one species model, with m=l.O. 
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The pseudofermion heat bath programmes may be tested 

by calculating the fermionic chiral condensate, <(m)>, for 

the one and two species models and comparing the results 

with analytical results. This allows us to investigate the 

effects of boundary conditions for small quark masses. The 

condensate for the two species model is calculated 

according to: 

1L 

=- 	L I 
ts3 

where Z is the partition function of the theory, N the 

number of lattice sites, and we have averaged over the 

lattice. Hence: 

= •1 x& X&) 

-4. )7( <((t+cxe%\) 	(*--;o)
-  

_ 	— 
: 	) 

= <• () 2(() 

z(L ) 

2 2 

These quantities are averaged over the entire lattice. 
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For the two flavour model, mU=md,  we expect <flu>=<dd>, 

and when the algorithm has converged, this is indeed what 

we find. In figure 4.6 wt plot values of <4j> for the two 

species model, where: 

= 	 + <ck)) 	(iz) 

as a function of the quark mass, for both periodic and 

antiperiodic boundary conditions. We expect boundary 

conditions to be important only if the relevant correlation 

length is larger than the extent of the lattice. For free 

fermions the correlation length is (1/ma), where m is the 

quark mass, and hence, we would expect differences to 

appear between antiperiodic and periodic boundary conditions 

for values of the quark mass of rna=O.OZ This is indeed what 

we find. At small quark masses, imposition of periodic 

boundary conditions causes divergence of <4n),  due to the 

presence of the zero mode in the propagator. The value of 

<4> calculated with antiperiodic boundary conditions goes 

to zero with the quark mass: these boundary conditions 

exclude the zero mode. 

For the one species model, the same picture emerges: 

periodic boundary conditions result in a divergence of <au> 
at small values of the mass (when the d quark mass is set 

to unity), whereas for antiperiodic boundary conditions, <au> 
is forced to zero. Again the results begin to separate only 

for values of the quark mass whose correlation length is 

comparable with the size of the system. 

Which boundary conditions are the correct ones to use is 

not 	clear, at least 	for the 	one species 	model. 	An analytic 

calculation of 	<u> 	in the 	free case 	on an 	infinite lattice 

shows that there is a breaking of chiral symmetry even at 

zero quark mass, 	(this 	is 	due 	to the heavy d quark feeding 
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Fig 4.7 

Fermion condensate in the one species model, 

showing the effects of boundary conditions. 
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back into the light fermion sector in a similar manner to 

the way in which the r term of Wilson fermions breaks 

chiral symmetry) and we see that at small quark masses, 

the result for periodic boundary conditions rises above the 

expected infinite lattice result, whereas the antiperiodic 

result falls below. In the two species model, <4> does go 

to zero on an infinite lattice, and hence antiperiodic 

boundary conditions are better. However, in the interacting 

case, where quarks are confined, boundary conditions are no 

longer so important, on a big lattice like 64x64, even at 

the smallest quark masses. 
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CHAPTER FIVE 

NUMERICAL SIMULATION OF TWO DIMENSIONAL QED WITH TWO FLAVOURS 

So far, we have presented continuum results and examined 

how we may hope to reproduce these on the lattice. In the 

last chapter, we discussed some of the numerical techniques 

available to us, and we now present the results of the 

actual simulations. We begin in this chapter with the two 

flavour model, as it is the more natural to simulate with 

Kogut-Susskind fermions. 

5.1 The Quenched Approximation. 

In the quenched approximation, we neglect the effects of 

internal fermion loops, that is, we generate gauge field 

configurations with the action (4.16) using the Metropolis 

algorithm. Because these loops have been neglected, we 

need only generate one set of configurations which may be 

used for any fermion mass, and for both the one and two 

flavour versions of the model. With a maximum update angle 

of O.lx2ir, and at 1/ga) 2=3.0, approximately 85% of the 

gauge fields were updated per sweep through the lattice, 

whereas with an update angle of 0.2x2ir, this proportion 

dropped to approximately 73%. We elected to use an update 

angle of 0.2x2n, and performed 10250 sweeps through the 

lattice between configurations, generating 30 configurations. 

Of these 30, the first six were thrown away, as the gauge 

fields take some time to come into equilibrium. Figure 5.1 

shows how the average plaquette energy approaches 

equilibrium from a cold start (where all the gauge fields 

are initially set to U(fl)=1). The value of P used, =3.0, 
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ensures that we are well into the strong coupling regime 

for the range of quark masses used, where reliable 

analytical results exist. It also ensures that the the 

correlation lengths of the physical particles are greater 

than the lattice spacing, and that the lattice is 

sufficiently large to accomodate all the physical states 

with ease. Having generated these configurations, we may 

use them to calculate' the fermionic condensate <jp>, and 

the particle masses. 

The fermionic condensate was calculated using the 

pseudofermionic technique discussed in chapter four. The 

pseudofermions were first allowed to come into equilibrium 

with a given gauge field configuration by updating many 

times, and then a value of <iiu> and <dd> was calculated and 

averaged over all subsequent updates, before being finally 

averaged over the entire lattice. To test for equilibration, 

the process is repeated for the same gauge field 

configuration, using the final pseudofermionic configuration 

of the first calculation as the starting point of the second. 

We also used other pseudofermionic configurations, generated 

at different quark masses, as the starting point, to allow 

the pseudofermions to come into equilibrium from above and 

from below, as a further check on equilibration. In practise, 

was averaged over about 5000 pseudofermionic sweeps, 

after about 5000 sweeps for equilibration. At the large 

quark masses (mU=md=O.lO)  a few hundred sweeps would 

probably have been sufficient, but at small quark masses, 

equilibration is very slow, and at least a thousand sweeps 

are needed for good equilibration. This process is then 

repeated for other gauge configurations. We found that 

<4> varied by only a few percent (5% at most) from 

configuration to configuration, and in general, we averaged 

over only two widely seperated configurations, to obtain an 

estimate of the errors. This whole process was repeated 

for both periodic and antiperiodic boundary conditions at 
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seven values of the quark mass. The results are shown in 

figure 5.2. It is clear first that the importance of boundary 

conditions is much smaller than for free ferrnions, the 

difference being only about 7 or 8% at even the smallest 

quark mass values. This is not surprising: we know that in 

two dimensions, QED is confining, so that the quarks are 

unaware of the finiteness of the system. Secondly, we see 

that <> diverges at small values of the quark mass for 

both periodic and antiperiodic boundary conditions, a result 

that we do not expect to find in the unquenched case. 

If we are truly near the continuum limit, then our 

results should be independent of the lattice spacing, a. To 

check that this is so, we need to vary the lattice spacing, 

by varying the value of the dimensionless coupling, ag; to 

shrink the lattice spacing, we increase P. Setting 13 =oo  

freezes out the gauge fields, and gives us the free theory 

on the lattice, and so we cannot just set 13=oo.  In fact, we 

are very limited in the range of 13  values available to us. 

The larger the value of 13,  the smaller the change in the 

gauge fields that will be accepted by the Metropolis 

algorithm, so that longer equilibration times are required by 

the gauge fields. Also, as we wish to compare our quenched 

results with unquenched results, we want to work at as 

small a value of (m/g) as possible, so that the difference 

between the two cases is as large as possible. 

Unfortunately, as we shall see, the pseudofermion method 

used for producing unquenched configurations converges more 

slowly the lower the quark mass. If we reduce the value of 

the dimensionless lattice coupling, ag, then to maintain a 

constant value of (m/g), we need to reduce the 

dimensionless mass parameter, am, and hence encounter 

equilibration problems. Also, as we shall show later, 

pseudofermion programmes that have antiperiodic boundary 

conditions imposed on them equilibrate much more slowly 

than periodic programmes. In fact we found that at least 
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in the quenched case boundary conditions have no observable 

effect on particle masses, but if we are to use periodic 

boundary conditions in the unquenched case and be sure of 

avoiding finite size effects, we cannot realistically work 

with quark masses less than about 0.02. Reducing the value 

of ag does have one positive effect: the analytical results 

show that reducing ag increases the correlation lengths of 

the particles, and hence the signal in the time slice 

propagators should stand out from the statistical noise for 

more lattice spacings. 

For the two species model, then, we have chosen to work 

at two alternative values of the coupling: 0=0.25 and =8.0. 

The first of these has the advantage that as p is smaller 

than the previous value, the gauge fields equilibrate faster, 

and working at a quark mass of 0.035 (which corresponds to 

a mass of about 0.010 at =3.0), the pseudofermion technique 

converges quite quickly and we avoid problems from finite 

size effects. However, the lattice is rather coarse at this 

value, and in fact the correlation lengths of the 1+  and 0 

states shrink to less than one lattice spacing, making 

calculations of their masses rather meaningless. 

A value of =8.0 takes nearer the continuum limit by 

shrinking the lattice spacing, but involves us with the 

equilibration problems outlined above. 

At both these new values of the coupling, 16 

configurations were generated, with 10250 sweeps through 

the lattice separating each one, after discarding the first 

few for equilibration. At =0.25 an update angle of 0.2x2w 

was used, and at =8.0, an update angle of 0.08x2-ff. Again 

the pseudofermion technique was used to calculate <4>, in 

four of the configurations. Results are shown in figure 5.3 

The results for <> agree ,  well with theory. We believe 

that in the quenched case, the one and two species models 
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should be very similar, and at least for this calculation, 

this is true. Figures 5.2 and 5.3 should be compared with 

figures 6.1 and 6.2 showing the fermion condensate in the 

quenched one species model at the same values of the 

coupling. Note that whilst results at =3.0 and =8.0 are in 

very good agreement, those at =0.25, though still showing a 

divergence in <4> in the limit of zero quark mass, differ 

slightly. This may be an indication that we are moving 

away from the continuum limit. 

We now turn to the calculation of the particle masses. 

We have seen that there are two ways of defining mesonic 

operators on the lattice: we may either use local operators, 

which are the modulus squared of the quark Green functions, 

multiplied by some appropriate phase, and which mix two of 

the physical states, or we can use the ICahler-Dirac form of 

the operators, and hopefully form a purer operator. 

In either case, the first step is to calculate the quark 

Green functions, using the conjugate gradient technique. To 

obtain good accuracy, we iterated the algorithm until the 

error function defined in (44) was 10 or smaller. 

-: This value was more than 

sufficient to ensure that even the smallest element of the 

quark Green function did not change within machine accuracy 

on further iteration. Having obtained the quark Green 

functions, we multiply them together, with gauge fields if 

necessary, to form gauge invariant operators. The resulting 

mesonic operators are then summed over the spatial 

direction (the choice of which is arbitrary), and the 

resulting time-slice propagators are averaged over 24 

configurations. 

We now face a major difficulty in trying to extract 

masses for the isosinglet states. As we noted in chapter 

three, to obtain good estimates of the masses of these 
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states, we need to include annihilation diagrams. In terms 

of the quark Green functions, these have the form: 

L 	Q (,Q •) (, 

H. 
I4KWK.' 	 (s.t) 

and it is clear that the conjugate gradient method is going 

to be of no use here, because we need to know all the 

elements of the propagator matrix along a diagonal band and 

the use of conjugate gradient would therefore require a 

calculation of the entire Green function, rather than of a 

particular row or column. This wouldL  hours of computer 

time at the lightest quark mass values for even a single 

gauge field configuration (at mu=m d=O.Ol,  approximately 2500 

conjugate gradient steps were required to achieve the 

required accuracy). The pseudofermionic technique does allow 

us to calcula'te these diagrams, as it allows calculation of 

any element of the Green function. However, the method is 

subject to large statistical errors (being a Monte Carlo 

technique, rather than an essentially exact technique like 

conjugate gradient), as we shall see when we consider the 

unquenched model, and produces disappointing results. The 

computer time required for the calculation, although less 

than that which would be required were we to use the 

conjugate gradient algorithm, is considerable. We have 

already seen that several thousand sweeps were required to 

produce reliable estimates for <4>,  even when it was 

possible to average over the lattice, and when calculating 

particle masses we need to average over many 

configurations. We therefore neglect the annihilation terms 

and can realistically calculate masses only for the isotriplet 

states, I and 1. Even here there is a problem for the 

states with 1 3 *0 ?  because on the lattice, as we showed in 

chapter three, there is a flavour breaking term in the 
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action, so that annihilation terms should contribute to the 

propagation of these states (the annihilation terms cancel 

for the 1 3 =0 states). Hence for these states we impose 

flavour symmetry artificially, by neglecting the annihilation 

terms, and so perhaps force the theory nearer the 

continuum limit, where the flavour symmetry is exact. 

Having calculated the time slice propagators, we need to 

extract masses. We do this by fitting the data to 

exponentials. In chapter one, we showed that the time slice 

propagator was expected to fall off exponentially in 

Euclidean time with the mass of the particle, and stated 

that the lattice operator would have non-zero overlap not 

only with the ground state of the particle with the same 

quantum numbers as the lattice operator, but also with 

higher mass excited states. Thus, with the Kahler-Dirac 

definition of particle operators, we choose to fit the data 

to a function of the form: 

rA 

= A% &z)  

where t is the time coordinate in lattice units, and A, B, 

and m2  are chosen so as to minimise: 

[t Lt) - 41_'ol'  
2 	 (-) 

+  

where (t) is the time slice propagator. We note that 

because of the boundary conditions, we should really fit to 

hyperbolic cosines, rather than exponentials, but because we 

are on such a large lattice the contribution from backward 

propagation across the lattice is negligible near the origin, 

where we must needs fit because of the small correlation 

lengths of even the lightest states. 
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When we consider the local definition of particle 

operators, which we know mix two of the physical states, 

we fit to a function of the form: 

- Ae'+ 	 (6-4) 

where m1 and m2  now represent the masses of two 

different physical states, rather than of the ground state 

and the first radial excitation as in (5.2). No attempt is 

made to fit to any radial excitation here: the quality of 

the data makes even a four parameter fit like (5.4) 

unreliable. 

If we consider the correlation lengths of the physical 

particle states in the two species Schwinger model, we see 

that we are going to encounter severe difficulties in 

extracting masses for any but the lightest state. The mass 

of the 1 + state in lattice units at =3.0 is about 0.4, and 

hence we see that the correlation length is little over two 

lattice spacings. When we consider the Kahier-Dirac form of 

the operators, we have to work on a lattice whose spacing 

is twice that of the original, where the correlation length 

of the 1+  state is only about one lattice spacing, and hence 

we may expect the time slice propagator to disappear into 

noise very rapidly. This would perhaps not be so bad if the 

lattice operator produced only a 1 state, with no 

contamination from other states. However, this does not 

appear to be SO: at large times, the time slice propagator. 

for every operator we considered behaved remarkably like 

the pion, although it should be noted that at these large 

times, the signal is often below the level of the statistical 

noise. These observations are supported by the results of 

the fitting routine: fitting the 1 + operator data near the 

origin gives a mass significantly greater than that of the 

pion, and compatible with the expected 1  mass. However, 
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as we fit to more and more points, moving us further from 

the origin, the mass we extract begins to fall to about the 

value expected for the pion. Because we have so few points 

from which we can sensibly extract a mass for the heavy 

states, then, the calculated errors are considerable. We 

tried to improve the data by averaging the data on both 

sides of the origin, and by summing separately on both 

directions to produce the time slice propagator (as we have 

a free choice of which direction to choose as time on a 

Euclidean lattice). For every particle state, we fitted the 

data over 2,3,4,6 and 10 timeslices (throwing away the 

origin), and averaged in each case over 24 gauge 

configurations. The 24 configurations were subdivided into 

bins of 12 and of 6 configurations, and for each bin a 

separate particle mass was calculated, allowing us to 

estimate the statistical error arising from the gauge field 

average. The calculation was repeated for periodic and 

antiperiodic boundary conditions. 

In figure 5.4 we show examples of the timeslice 

propagators, averaged over the 24 gauge configurations, and 

on the same scale we plot the standard deviation of the 

gauge average. The statistical errors are considerably 

worsened in the case of operators that are one or two link 

and hence must be multiplied by gauge fields. This may be 

seen clearly in figure 5.5, which shows the (1,0) (the pion) 

operator defined with If
2 
 diagonal (a one link operator, 

with diagonal (when the operator is local in the sense 

that it requires no gauge field multiplications to make it 

gauge invariant). The 0+  operator, which, like the 'local' 

pion contains no gauge link variables, still suffers badly 

from statistical errors. This is because the operator is 

produced by cancellations between quark propagators, as we 

see from (3.40): 

Ii K. 
XH CX I) = 
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so that the propagator is given by: 

< 	 = 
I". 

= 
+ 

V C  

The 'local' pion is given by: 	 + 	e3tø 3.tt 

and hence is produced by a sum of positive terms, and as 

such 	is 	not subject to 	such large 	statistical 	errors. 

Similarly, we can show that 	in terms of the quark Green 

functions defined from the origin, the (1,O)+  state is also 

produced by cancellations, whereas the one link (1,0) 

operator is produced by a sum of positive terms. In fact, 

this result is true more generally: the scalar states are all 

produced by cancellations, and are hence subject to large 

statistical fluctuations whereas the pseudoscalar states are 

produced from sums of positive terms, and are much less 

affected by these fluctuations. 

The mass calculations were repeated at 13=8.0 and 0.25. As 

we expect, at 13=8.0,  where correlation lengths, are longer, 

the statistical noise does not become larger than the signal 

as soon as at 13=3.0,  although for 13=0.25,  the signal from the 

1+ state does not rise above the noise, except at the 

origin. 
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Consider first the Kahier-Dirac extended form of the 

mesonic operators. Using this definition, we calculated 

masses for the 0+  and 0 states, and for the (1,0)+ and 

(1,0) 	states, and their isotriplet partners, the (1, ±1)± 

states. As we made no attempt to include the effects of 

the annihilation terms, the masses we extract for the 0+ 

and 0 states should correspond with the masses of the 1 + 

and 1 states respectively, as we pointed out in chapter 3. 

We found that the local definition of the pion (1'5  diagonal) 

produced the clearest signal, and the mass extracted did 

not alter significantly from bin to bin, nor on a change in 

the definition of the time direction. In fact, the signal 

from the local Kahler-Dirac pion is so clean that the fitting 

routine fails to extract a second mass, representing an 

excited state. The routine returns the same mass twice. 

This mass must be supposed to be the ground state mass 

rather than some effective mass resulting from 

contamination from excited states as it does not alter with 

the number of timeslices fitted, nor does it change when 

points near the origin are discarded in the fit. However, in 

all other cases, statistical fluctuations coupled to the fact 

that we have so few points to fit, result in masses which 

vary from bin to bin and also with definition of the time 

direction. The results are really only reliable as an order 

of magnitude estimate. In figure 5.6 we plot particle 

masses (divided by g) as a function of the dimensionless 

parameter, (in/g). Errors are estimated by comparing the 

gauge field configuration bins, and altering the definition of 

the time direction. 

Despite the large errors, we can draw some tentative 

conclusions from our results: the 0+  and 0 states do indeed 

behave like the 1 + and 1 -  minus states respectively, the 0 +  

remaining heavy in the limit of vanishing quark mass, and 

the 0 mass going to zero. This difference is due to the 

absence of the annihilation terms in the numerical results. 
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Fig 5.6(O. 

Particle masses for Kahier-Dirac particles in the 

quenched approximation. 
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The (1,0)+ operator remains heavy as the quark mass goes to 

zero, as we expect, and the states with 1 3 *0 are degenerate 

with the 1=1, 1 3 =0 states. 

We have also extracted masses from the local definitions 

of the particle operators. Here again, we find we can only 

obtain a reliable estimate of the pion mass. The second 

mass to which we fit (which should be the mass of the 

state) has such a large error associated with it as to be 

meaningless. We also note that unlike the four-dimensional 

case, where the local operator of the form I G 1 2  has an 

overlap only with the physical pion state, the pion mass we 

extract from the local definition in two dimensions is not 

as clean as the local Kahler-Dirac definition, and has a 

larger error associated with it. In fitting the local 

operators, as we cannot allow for contributions from radial 

excitations near the origin, we have investigated the effect 

of discarding points near the origin, in an attempt to 

eliminate these excitations. 

Note that although we are here investigating the 

quenched model, we do not see any marked departure from 

the expected analytical behaviour of the unquenched model. 

The local Kahier-Dirac definition of the pion, where 

departure from unquenched behaviour might be expected to 

be most clearly exhibited, seems to behave exactly as the 

unquenched pion. This is true at all the values of the 

coupling that we investigated. 

Finally, note that the above calculations were repeated 

with both periodic and antiperiodic boundary conditions. The 

results in the two cases were identical. The masses 

extracted for the local Kahler-Dirac pion lie on top of each 

other when plotted against fermion mass. This is of 

particular importance in a study of the unquenched model, 

as we shall see. 
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5.2 The Unquenched Model. 

To investigate the effect of dynamical fermions, we need 

to generate gauge configurations using the effective action 

(4.27), and using the pseudofermion technique to calculate 

elements of the quark Green function, as described in 

chapter four. It is now necessary to generate a different 

set of configurations at each value of the quark mass. In 

all, at least 24 configurations were generated at =3.0 for 

7 values of the quark mass having discarded at least 4 

configurations for equilibration. Initially, 50 pseudofermion 

sweeps of the lattice were carried out between each 

update of the gauge fields. An update angle of 0.lx2ff was 

used, a compromise between the need to linearise the action 

as in (4.27), and thus to mimimise (8U) 2  errors, and the need 

to generate statistically independent gauge field 

configurations in a reasonable amount of computer time. 100 

sweeps through the lattice were performed on the gauge 

field between configurations that were actually used. The 

procedure was repeated for both periodic and antiperiodic 

fermionic boundary conditions. As a by-product of 

generating the gauge field configurations, the 

pseudofermionic configurations give us the value of <i%> 

within the gauge field configurations. As configurations 

were generated, a calculation of <1,>  was performed for 

each gauge field update. We found that from a cold start, 

the value of <4> slowly increased for about the first 400 

gauge field updates (=20000 pseudofermionic updates), before 

settling down to some value that would then fluctuate by 

at most 2 or 3% on subsequent gauge field updates. As the 

gauge fieds were updated only once for every 50 

pseudofermionic updates, and changed by only a small 

amount, where the pseudofermions were updated with a heat 

bath algorithm, it seemed reasonable to assume that the 

pseudofermions had thus come into equilibrium with the 
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gauge fields. 	To check this, after generating 24 

configurations, the last pseudofermionic configuration was 

saved, and holding the gauge field fixed, the pseudofermions 

were updated a further 5000 times, and a new value of <t1> 

was then calculated over a further 5000 sweeps. 

Surprisingly, we found that at small quark mass values, the 

value of <4>  thus calculated was different from that 

returned during the generation of the configurations. In 

fact with periodic boundary conditions on the 

pseudofermions, the two values agree down to about 

U mdO.O 5 , and disagree by only about 10% at m=0.04. At 

m=0.03, the disagreement is about 20% and at m=0.01, about 

60% In all cases, the second value, generated by the long 

pseudofermion run on the final gauge field configuration, 

was higher than that produced during the generation, both 

values, though, being below that produced in the quenched 

case. Hence, it seems that with only 50 pseudofermionic 

sweeps between gauge field updates at the small quark 

mass values, we are producing configurations which are 

partially quenched. The true value of <;4) > might be 

expected to lie somewhere between our two numerical 

values. To try and obtain good estimates for <0 in the 

unquenched theory, the number of pseudofermionic sweeps 

performed between gauge field updates was increased, and 

several hundred gauge field updates performed, until the 

pseudofermions had once again settled down to some 

constant value. Very long pseudofermionic runs were then 

performed on the final gauge field configuration, and the 

two values of <> thus obtained were compared. The 

number of pseudofermionic sweeps was then increased again, 

and the whole procedure repeated, until the two values of 

<> obtained agreed with each other. 

The results for the unquenched theory with periodic 

boundary conditions are summarised in figures 5.8 to 5.10. 

The first of these shows the value of <> obtained with 
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50 pseudofermionic sweeps between gauge field updates. In 

the second we show the effects of increasing the number of 

pseudofermionic sweeps, at the lightest quark mass, m=0.01. 

By plotting <q> against the reciprocal of the number of 

sweeps, we can sensibly extrapolate to a value that might 

be obtained in the limit of an infinite number of 

pseudofermionic sweeps between gauge field updates.. In the 

last figure, we plot <4nj>  as a function of quark mass, 

where <40 has been calculated from extrapolations like the 

above. The free fermion results have been subtracted out 

from this last figure. 

If we impose antiperiodic boundary conditions on the 

pseudofermions, the situation is much worse. In figure 5.8 

we plot the values of <4> obtained with 50 

pseudofermionic updates between gauge field updates. We 

see that <> is much lower than when we impose periodic 

boundary conditions. Our experience with the quenched 

model leads us to expect that <14>  calculated with periodic 

and antiperiodic boundary conditions should not differ by 

more than a few percent at even the lowest quark mass 

values, and we thus conclude that the antiperiodic case is 

taking much longer to equilibrate. Indeed, performing long 

pseudoferrnionic runs on the final gauge field configuration 

produces reults far more like the quenched case than when 

using periodic boundary conditions. Again we tried 

increasing the number of pseudofermionic sweeps between 

each gauge field update, and found <*i> increasing. In figure 

5.11 we show how <tni> varies with the number of 

pseudoferrnionic sweeps between gauge field updates at the. 

heaviest quark mass, m=0.10, with antiperiodic boundary 

conditions on the pseudofermions, together with the periodic 

results for comparison. We do at least find that with a 

very large number of pseudofermionic sweeps between gauge 

field updates, periodic and antiperiodic values are in 

agreement. Quite why imposing antiperiodic boundary 
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conditions should slow equilibration down so much is not 

clear, but if true, calls into question the usefuilness of 

pseudofermions for generating unquenched configurations in 4 

dimensions, where one is usually forced to work on quite 

small lattices, and thus wants to use antiperiodic boundary 

conditions in order to eliminate finite size effects. 

The results of calculations in the quenched theory, where 

<4)4)0 varies only slightly between periodic and antiperiodic 

cases, and where the pion mass is identical, within errors 

in the two cases, give us confidence in proceeding with the 

calculations in the unquenched case using periodic boundary 

conditions. We emphasize that the boundaries are at least 

30 correlation lengths apart in our simulation, so that the' 

particles should not see them. Hence, particle masses 

masses are calculated in this way, although we also 

analysed the antiperiodic configurations we generated for 

comparison. 

Figure 5.10, giving the value of <4)4)>  against quark mass, 

for periodic boundary conditions does show a difference 

from the quenched case. We see no divergence of <ij40, but 

instead see a small dynamical breaking of chiral symmetry. 

Particle 	masses 	were 	calculated 	exactly 	as 	in the 

quenched case, and with very similar results. 	Nearly all the 

comments made for the quenched case are equally valid here. 
+ The 0 + and 0 	operators seem to behave like the 1 	and 1 

operators 	respectively, 	when 	the 	annihilation 	terms are 

neglected, although once again the error bars on the masses 

are considerable, and the results not so clear cut as in the 

quenched case. 	The local Kahler-Dirac pion is once again the 

clearest operator, and again the fitting routine fails to fit 

to 	any 	excited 	state, 	returning 	only 	a 	single 	mass. The 

local operators once again only give a reliable estimate of 

the pion mass, and again the mass extracted is not as free 
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from error as a similar result in 4 dimensions would be, due 

to the mixing of states other than the pion with the local 

operators. Results are shown in figure 5.12. Our results are 

in reasonable agreement with theory, in particular, the pion 

mass is in excellent agreement. Note that the pion mass we 

extract in the unquenched case is in better agreement with 

theory than in the quenched case. In both cases, though, we 

seem to be seeing the expected unquenched result. However, 

if the quenched two species model is indeed like the 

quenched one species model (as we argued earlier), then we 

would expect to see the pion mass going to zero in both 

quenched and unquenched cases. 

In the unquenched case, an attempt was made to 

calculate the contribution to the 0 and 0+  states from 

annihilation terms, using the pseudofermion technique. 

Consider the 0+  operator. We know that in terms of the 

fields and x  we have: 

cD+  ( 	=Dc (_ 	( 
14 

and hence the propagator is given by: 

K 	X 4 t2 

= Z XV4 
 

- 

- c 
1414 -'- 

= 21. 
 

tc, 	-t e 	Gr  (44- -t 	e=  
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in the notation of chapter three. It is the second term 

that causes problems, as it cannot be calculated using the 

conjugate gradient technique in any reasonable amount of 

time. However, we may use pseudofermions by observing 

that: 

\= 
= 	 q(,> \{u 

(s to) 

L L L(* 	*()c.p( 	
1u1 NIF £q 1 c 

where ip represents the pseudofermionic field, (Ø+m) 	is 	the 

lattice 	Dirac operator, 	and the sum is 	over pseudofermion 

configurations in a fixed 	gauge field 	configuration. 	Finally, 

of 	course, we 	have 	to 	average 	over gauge 	field 

configurations. 	We calculated the annihilation terms for the 

0+ state and the 	0 	state at three values of the 	quark 

mass 	- 	0.01, 0.05, 	0.10 	- 	at 	13=3.0. 	In 	order to make the 

signal 	stand out 	from 	the 	statistical 	noise as 	clearly 	as 

possible, 	we averaged 	over 	all 	possible 	origins on 	the 

lattice. 	That is, rather than calculate: 

2: Q(c,4) G(2*c.,2t*c.) 	 (6u) 

14K 

we calculated: 

(2 +  2 	 @tz) 

where 322  is the number of possible origins on a 64x64 

lattice, when using the Kahier-Dirac definition of the 
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mesonic operators. For a given gauge configuration, about 

5000 pseudofermion sweeps were performed to allow the 

pseudoferrnions to come into equilibrium with the the gauge 

fields. Pseudofermionic averages were then calculated over 

a further 5000 sweeps. This procedure was carried out for 

all 24 gauge configurations at each mass value. Finally, the 

value of the square of the operator was subtracted out, as 

this clearly does not contribute to the propagation of the 

physical state. The annihilation terms were then combined 

with the conjugate gradient results, and new fits to the 

data performed. The results were unfortunately 

disappointing. The errors on the masses extracted from the 

time slice propagators are sufficiently large as to obscure 

any effect the annihilation terms might have on the masses. 

The time slice propagators do show some evidence of a 

signal but this disappears into the noise after only one or 

two lattice spacings, and it is not then surprising that 

errors are very large. In figure 5.13 we show the masses of 

these two states at the three quark masses where the 

annihilation terms have been included. 

As in the quenched case, we repeat all our calculations 

at =0.25 and 8.0. Here, as in the quenched case, we find 

good agreement with calculations performed at =3.0. At 

both these new values of the coupling, we generated 16 

configurations at a single quark mass: at =0.25, we set 

m=0.035, and at =8.0, m=0.030. These values correspond to 

masses of about 0.010, and 0.049 repectively, at 3=3.0, and 

are sufficiently large to eliminate finite size effects. In 

both cases, 300 pseudofermion sweeps were performed 

between gauge field updates. Again, we see no difference 

between the quenched and unquenched results. 
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5.3 Conclusions. 

The results we have obtained in this investigation of the 

two species Schwinger model are somewhat disappointing. 

We have been unable to obtain unambiguous values for any 

of the meson masses, except for the pion, due to large 

statistical fluctuations in the mesonic time slice 

propagators when these are defined according to the 

Kahier-Dirac prescription. These statistical fluctuations are 

due to the introduction of gauge fields into the mesonic 

operators, making them gauge invariant. In two dimensions, 

at least for the quenched theory, it would be possible to 

increase the number of gauge field configurations averaged 

over, and thus reduce the statistical error. For the 

unquenched theory, where the time required to generate 

good configurations increases dramatically, averaging over 

large numbers of configurations becomes prohibitively 

expensive in computer time. This is especially true in four 

dimensions, where one wishes to work with non-Abelian 

groups, and where one is forced to work on small lattices, 

and therefore should use antiperiodic boundary conditions. 

However, the fact that the Kahier-Dirac definition of the 

pion that is local in the sense that it needs no gauge field 

multiplications to make it gauge invariant produces such a 

clear signal, in excellent agreement with the theoretical 

prediction, encourages us in the belief that this definition 

of mesonic operators is indeed the correct one, especially 

when one compares it with the rather poorer results 

obtained from local operators. 

We have succeeded in showing some difference between 

the quenched and unquenched models. Our calculations 

indicate that (t> diverges for the quenched theory, whilst 

there is a small chiral symmetry breaking in the unquenched 
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theory (although difficulties with equilibration make these 

last results unreliable). However no such striking difference 

is seen in the particle masses, not even in the case of the 

local Kahler-Dirac pion. This is at first sight surprising. 

However, our analytical results for the one species model 

(chapter 2) show that whilst <> diverges in the quenched 

case, and there. is a dynamical breaking of chiral symmetry 

in the unquenched, the pion behaves qualitatively similarly 

at large quark masses, and only at very small quark masses 

are the two models significantly different. In the two 

species model, a similar phenomenon may occur, and as we do 

not know how large an effect we are looking for, it may be 

that that a small difference is hidden in the error bars. If 

so, this difference can only be of the order of 10%. 

Alternatively, it may be that poor equilibration of the 

unquenched configurations has reduced real differences in 

the particle masses. This was investigated by calculating 

particle masses in configurations with a greater number of 

pseudoferniionic sweeps between gauge field updates. No 

noticeable change was seen in the pion mass. 
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CHAPTER SIX 

NUMERICAL SIMULATION OF TWO DIMENSIONAL QED WITH ONE FLAVOUR 

In this final chapter, we present the results of our 

numerical simulation of the one species model. This is 

simulated using the one link mass term to lift the flavour 

degeneracy as described in chapter three. The mass of the 

d quark is set to unity in reciprocal lattice spacings. Much 

of what has already been said for the two species model in 

chapter five, regarding methods and sources of error, is 

equally valid here. 

6.1 The Quenched Approximation. 

Measurements of the fermionic condensate, <44>,  are made 

as for the quenched two species model (section 5.1). As we 

are dealing with fermions of unequal masses, we measure 

<tiu> and <dd> separately. We use the same configurations 

as for the two species quenched model: as these were 

generated without including the effects of internal fermion 

loops, they may be used at any values of the quark masses. 

As in the two species model, we calculate <u>. and <dd> 

using the pseudofermion technique, allowing 5000 

pseudoferinionic sweeps for equilibration, and a further 5000 

sweeps for the average. At 13=3.0, we average over a few 

configurations, again as in the two species case. We 

repeated the calculation for both periodic and antiperiodic 

boundary conditions, and at 7 values of the quark mass. The 

results are shown in figure 6.1 together with the analytical 

results derived in chapter two. Free fermion results have 
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been subtracted out. ''.Je' find quite good agreement, 

observing a divergence in the value of <u> in the limit of 

vanishing quark mass. The value of <d> remains constant, 

within errors, as the u quark mass varies, encouraging us in 

the belief that the d quark is indeed decoupled from the 

model. We find that the boundary conditions are not 

important, periodic and antiperiodic cases differing by only 

a few percent at even the lightest quark mass values. 

Again, as in the two species model, to check that we are 

near the continuum limit, we wish to repeat our 

calculations at a smaller value of the coupling, 3. In the 

one species model, all the particle masses are quite large, 

so that we have not done calculations at f3=0.25, as at this 

value of the coupling, the correlation lengths of the 

physical particle states are less than one lattice spacing. 

However, we have repeated all the calculations at 0=8.0, 

using 16 quenched configurations. The generation of these 

configurations is described in chapter five. We find good 

agreement with the result at 3=3.0, at four values of the 

quark mass. The results at f3=8.0 are shown in figure 6.2, 

for periodic boundary conditions. 

It is far more difficult in the one species model to 

extract particle masses than in the two species model. 

Because we have chosen to use a one link mass term to 

break the flavour degeneracy rather than the two link term 

also discussed in chapter three, there are no Kahler-Dirac 

operators that do not require gauge field multiplications to 

make them gauge invariant, except the 0 operator (although 

isospin has no meaning in the one species model, we 

continue to use the notation established in chapter three 

for clarity. We expect that in the one species model the 

operators corresponding to different isospin states in the 

two species model should be degenerate. Only those states 

with 1 3 =0 in the two species model, and which do not 
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therefore contain terms like Tad, retain any meaning). There 

is no version of the local Kahler-Dirac pion in the one 

species model, when using the one link mass term, and hence 

we might expect to find large statistical errors on the 

masses we extract. 

A second difficulty lies in the fact that as there is no 

isospin symmetry in the one species model, annihilation 

terms contribute to all the states. As we have already 

seen in the two species model, the calculation of these 

terms does not yield good results, and is very time 

consuming. In the quenched case, then, we have chosen to 

calculate particle masses without these troublesome terms. 

If we extract any results from this procedure it will be 

because the lightest mass state might be expected to 

contaminate almost any operator. At one mass value, and at 

one value of the coupling, we do calculate the annihilation 

terms in the quenched theory, to see if there is any 

significant difference when these terms are included. 

The presence of the heavy d quark does seem, to have a 

beneficial effect on the convergence of the conjugate 

gradient algorithm. In the one species model, this is 

significantly faster than in the two species model. For 

example, to reduce the error function ( 4.45) to a value of 

at most 10 0 
 required about 2500 conjugate gradient steps 

at a quark mass of 0.01 in the two species model, whereas 

in the one species model, only about 1500 conjugate gradient 

steps were required to achieve the same accuracy. 

In fact, we found that the results extracted by 

neglecting the annihilation terms were in good agreement 

with the expected analytical results. The error bars on the 

masses, however, are large, due to the statistical 

fluctuations introduced with the gauge field multiplications. 

These are sufficiently large so as to obscure any difference 
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between the quenched and unquenched cases. In figures 6.3 

we present examples of the time slice propagators of the 

the four states: 0, 0+, 1, it In figure 6.4 we present the 

masses, divided by the coupling g, against, the quark mass 

parameter, (m/g). Included in figure 6.4 is the point 

produced with the annihilation terms included at =8.0. 

At this stage, we make mention of a time saving 

procedure we have used in the calculation of time slice 

propagators. In general, given some mesonic operator, IM>, 

we are interested in the matrix element of the Hamiltonian, 

<MIe_HtIM>. As in chapter one, we have: 

-wt 
<It€ 	tA) 

v'o 
.t) 

t 

Alto 

At large values of t, only the lightest state remains, and: 

Thisisall as we had before. But now note that we do not 

need to use the full operator at Q ' all we require at 

the origin is any operator that has a non-zero overlap with 

the state we wish to measure. For example, consider the 

0+ operator: 

'4 

The full mesonic propagator is given by: 

= <XM'4XX) 

4K. (2,& 	 * 
RK 
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and hence, we have to calculate four quark propagators 

from the Kahier-Dirac origin, out to the site y,  and four 

back from i  to 0. This is no problem in the two species 

case, where the simple relationship between the quark Green 

function and its transpose means that we only need to 

calculate the propagators in one direction. However, there 

is no such simple relationship between the quark Green 

function and its transpose when using the one link mass 

term, and both have to be calculated separately. Hence, 

rather than use (6.4), we use only part of the operator at 

the origin, say (0)x(0), which has a non-zero overlap with 

the mesonic operator. Then we calculate: 

<;(x(& O'()) 	

. ... 

= 	G q  

Hence, we only need to calculate one quark propagator from 

the origin to the site y and four propagators back from y 

to Q. We have checked the validity of this procedure in the 

two species model, where it is easy to do, and find no 

difference in the quality of the results from using full 

operators rather than the reduced form, and the local 

Kahier-Dirac pion remains clean when the reduced form is 

used. The reduced form of the operator at the origin 

corresponds to creating at the origin a whole set of 

physical states that have a non-zero overlap with the 

reduced operator (for example, 
YCAP (0) will create both the 

0+ state and the local pion in the two species model), but 

this should not matter so long as we measure only single 

state3 at the site 1  (together of course with its radial 
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excitations). 

So far, we have discussed only the Kahler-Dirac definition 

of the particle operators. It is also possible to define local 

operators as for the two species model, that mix two of 

the physical states. Note though that if we use the local 

operators we are necessarily neglecting the annihilation 

terms. In fact, defining time in the one direction, as in 

chapter three, only one of the local operators mixes with 

the physical states. 	This is the operator G(Q,)GT(O,.), 

corresponding to 	l)e-1-e+eq.e4I  G(O,.i) i 2  in the two species 

model. As in the two species model, we find we can 

sensibly extract only the pion mass from the time slice 

propagators, the second mass returned by the fitting 

routine being so variable as to be meaningless. The results 

for the pion are plotted in figure 6.5, a point at =8.0 

being included. We see that the local operators yield 

masses that do not agree well with analytical results, and 

with errors that make the results almost meaningless. In 

this case, then, it is the non-local Kahler-Dirac operators 

that produce the better results. 

6.2 The Unquenched Model 

To investigate the unquenched one species model, we need 

to generate new configurations at each value of the u 

quark mass. This was done as described in chapter five for 

the two species model, the d quark mass being held 

constant at unity as the u quark mass was varied. 24 

configurations at each of 7 quark masses were generated, 

with, initially, 50 pseudofermionic sweeps between gauge 

field updates. An update angle on the gauge fields of 0.lx2Tr 

was used, with 100 gauge field updates being performed 

between the configurations used in the mass calculations. 
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The first four gauge configurations generated at each mass 

value were discarded to allow for equilibration. This 

process was repeated for both periodic and antiperiodic 

pseudofermionic boundary conditions. 

Whilst the gauge field configurations were being 

generated, we used the pseudofermionic configurations to 

calculate values of <üu> and <ad>, as in the two species 

case. Consider first the results obtained using periodic 

boundary conditions. 

Encouragingly, the value of <ad> returned remained 

constant as the u quark mass was varied, and in fact is the 

same as that produced in the quenched case and in the free 

case. We also found that on generating unquenched 

configurations at =8.0, the value of <ad> returned was 

again the same. Thus, the d quark does indeed appear to be 

decoupled from the model. The value of <ilu> returned is 

significantly different from the quenched case, but we must 

check that the configurations are properly equilibrated. We 

did this by performing long pseudofermionic runs on the last 

gauge configuration of several thousand updates, holding the 

gauge fields fixed, as in the two species model. If the 

configurations are well equilibrated unquenched 

configurations, then the value of <iiu> returned in this long 

run should be the same as that calculated during the 

generation of the configurations. We found that the 

situation in the one species model is much better than in 

the two species case. As we mentioned in section 6.1 when 

discussing the convergence of the conjugate gradient 

algorithm, the presence of the heavy d quark seems to 

improve the equilibration of the pseudofermion technique. 

Certainly, performing long runs on the last gauge 

configuration produces a value of <tiu> that differs from 

that generated during the production of the gauge field 

configurations by only about 10% at even the smallest quark 
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mass values. In figure 6.6, we present the values of <Tiu> in 

the unquenched model, together with the analytical result 

derived in chapter two. Free fermions have been subtracted 

out. We find quite good agreement with analytical result 

(note the scale on figure 6.6). At some of the mass values 

we investigated, we increased the number of pseudofermion 

sweeps between gauge field configurations, and calculated 

new values of <tiu>. These new values do not differ from 

those generated with 50 pseudofermion sweeps between 

gauge field updates by more than a few percent at even the 

lowest quark masses. 

When we consider the results produced with antiperiodic 

pseudofermionic boundary conditions, we find, as in the two 

species model, that the values of <ilu> are much lower than 

in the periodic case. Once again, if we increase the number 

of pseudofermionic sweeps between gauge field updates, this 

value slowly increases towards that produced in the 

periodic case. However, the number, of pseudofermionc 

sweeps that would have to be performed to produce a value 

in accord with the periodic results (and with the analytical 

results) make the generation of unquenched configurations 

with antiperiodic pseudofermionic boundary conditions 

prohibitively expensive in terms of computer time. In figure 

6.7, we show the values of <ilu> calculated with periodic 

and antiperiodic boundary conditions between gauge field 

updates. Free fermions have not been subtracted out here. 

Particle masses were calculated as in the quenched case, 

in configurations generated with periodic boundary 

conditions on the pseudofermions. In the unquenched case, 

we also calculated the annihilation terms at 3 quark masses 

- 0.03, 0.05, 0.07. These were calculated as in the quenched 

case, and as in the two species model, by allowing the 

pseudofermions 5000 sweeps to come into equilibrium with 

the gauge fields, and then averaging over a further 5000 
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sweeps to produce the annihilation terms, finally averaging 

over the 24 unquenched configurations available at each 

value of the u quark mass. Again, we tried to improve 

statistics by averaging over all possible origins within a 

given configuration, as we described in chapter five. 

In figure 6.8,we show the particle masses for the various 

mesonic operators, calculated without the inclusion of the 

annihilation terms. Once again, we see good agreement with 

the analytical results, for both the pseudoscalar (pion) 

state, and the scalar state, which is a sign that perhaps 

the annihilation terms are not as important to the one 

species model as we know them to be to the two species 

model. Note that the analytical results are obtained in 

perturbation theory, to first order in (m/g), and might 

therefore differ from the numerical results at large values 

of the quark mass. We again find large errors on the 

masses we extract, although we note that the errors are 

not as large as those on the one and two link mesonic 

operators in the two species model. 

In figure 6.9 we show the particle masses at the three 

values of the quark mass at which we calculated the 

annihilation terms. The results are no improvement on those 

obtained by neglecting these terms. As in the two species 

model, the unquenched and quenched results for the mesonic 

masses are not significantly different. 

As in the quenched case, we are also able to extract 

masses for the pseudoscalar state from the local operators. 

We have calculated this mass at 7 values of the quark mass, 

as for the Kahier-Dirac particle definition discussed above 

and at a mass of 0.03 at 13=8.0. The results are shown in 

figure 6.10. As in the quenched case, they are poor. 
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6.3 Conclusions 

The conclusions we can draw from our study of the one 

species model are much the same as for the two species 

model. The results for the mesonic masses, extracted from 

the non-local Kahier-Dirac definition of the mesonic 

operators are disappointing: once again, large statistical 

fluctuations together with a restricted number of time 

slices to which we may realistically fit result in large 

errors on the masses extracted. For the quenched theory, 

it would be practicable to increase the number of gauge 

configurations averaged over, and hence hopefully reduce 

this statistical error. However, as in the two species case, 

to increase the number of configurations significantly is 

prohibitively expensive in terms of computer time in the 

unquenched case. 

We have unfortunately failed to see any significant 

difference between particle masses in the quenched and 

unquenched cases. However, the difference could well be 

hidden in the errors - analytical results suggest that it is 

small except at very small quark masses. It would be 

interesting to see what differences would be seen if one 

were to define diagonal in the one species model. This 

would enable us to define a local Kahier-Dirac pion (local in 

the sense used in chapter five: no gauge field 

multiplications would be required to make it gauge 

invariant). Whilst it is true that it would still be 

necessary to include annihilation terms in the calculation of 

the mass of this state, our results suggest that these may 

not be so important. Making diagonal would necessitate 

the use of a two link mass term to lift the flavour 

degeneracy. This is harder to programme, and would require 
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longer equilibration times (because each pseudofermionic 

sweep would require longer), but the clearer pion signal 

that would certainly be produced might enable us to 

observe the difference between the unquenched and quenched 

cases, and to assess the real importance of the annihilation 

terms to this model. 

The local operators in this case do not produce good 

results at all. The errors associated with the extracted 

masses are larger than for the non-local Kahler-Dirac 

operators, and the values are far away from the analytical 

results. In the one species model, then, the Kahier-Dirac 

definition of particle operators is the better. 

As in the two species model, we have succeeded in 

showing some difference between the quenched and 

unquenched cases in our calculation of <tiu>: this quantity 

diverges for the quenched theory, in accordance with the 

analytical prediction of chapter two, and there is a finite 

breaking of chiral symmetry in the unquenched case, again in 

agreement with analytical predictions. Of course, this 

difference is much more marked than the difference 

predicted for the particle masses, and hence we need not be 

surprised that the latter cannot be resolved. 
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CONCLUSIONS 

In this work, we have examined quantum electrodynamics 

in two dimensions, with both one and two flavours of 

massive fermions. We have attempted to simulate 

numerically both the fully interacting theory and its 

quenched counterpart, where internal fermionic loops have 

been neglected. The Kahier-Dirac prescription has been used 

in an effort to correctly identify the continuum flavours 

hidden in the Kogut-Susskjncj formulation of lattice fermions, 

and the resulting definition of mesonic operators has been 

compared with the easier local definition of these 

operators. The effects of boundary conditions on the 

results have been investigated. We have also made an 

attempt to calculate the annihilation terms contributing to 
a correct definition of particle propagators in both the one 

and two species models. 

On the whole our results are somewhat disappointing and 
ambiguous. However, some interesting points have emerged. 

The local Kahier-Dirac definition of the pion in the two 

species model is extremely clear and gives unambiguous 

results at all values of the quark mass, in good agreement 

with theoretical predictions. In two dimensions, no local 

operator has an overlap solely with the pion, but they 

rather mix two physical states of different mass. In four 

dimensions there is a local operator that overlaps only with 

the pion. Hence, it is easier in two dimensions to assess 

the usefulness of the Kahier-Dirac definition of particle 

operators. The local Kahler-Dirac pion in two dimensions 

yields results that are much better than the results 

extracted from the local particle definition, and it thus 
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seems clear that the Kahier-Dirac definition is the one we 

must use to extract correct continuum results. This is 

especially true when we remember that some states - the 

0- in two dimensions, for example - have no overlap with 

any local operators, and that we have been unable to 

extract masses for any particles other than the pion from 

the local operator definitions. However, the fact that most 

of the Kahier-Dirac operators require gauge field 

multiplications to make them gauge invariant means that 

statistical errors are large when averaging over only a 

small number of gauge field configurations. This is 

especially true in four dimensions, where it is not easy to 

increase the number of configurations, even in the quenched 

approximation. 

It is difficult to assess how successful we have been in 

simulating the effects of dynamical fermions. Certainly, our 

results for <> in both the one and two species models 

suggest that we are seeing the effects of internal fermion 

loops. When we consider particle masses, however, there is 

no clear difference between the quenched and unquenched 

cases. The fact that we need to average over many 

configurations to produce reliable masses prevents us from 

doing as exhaustive a job in checking equilibration as we 

have done for <4>. However, if. our unquenched 

configurations are really 'partially quenched', in the sense 

that the effects of internal fermionic loops have not fully 

been taken into account, we might expect to see results 

that differ from the unquenched analytical predictions, 

perhaps interpolating between expected quenched and 

unquenched cases. As it is, we fail to see any difference, 

even on varying the number of pseudofermionic sweeps 

performed between gauge field updates. In the two species 

model, we have a good operator, the local Kahler-Dirac pion, 

in which any difference might be expected to be displayed, 

but we see no difference. We do not know how big an 
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effect we are looking for, as we have no analytical results 

for the quenched two species model, but if we assume that 

it is basically the same as the quenched one species model, 

then the effect will be small. Such an effect could then be 

hidden within the errors. For the one species model, where 

we do have analytical results for both quenched and 

unquenched models, there is no operator whose signal is 

clear enough to reveal the difference. 

The calculation of annihilation terms has also been 

disappointing. Whilst the p5 eudofermions equilibrate well 

after 5000 updates within a given gauge configuration, and 

produce a good average over a further 5000 updates, the 

signal that is left after subtracting out the disconnected 

piece suffers from large statistical errors. It is true that 

the signal is not expected to be clear for more than one or 

two lattice spacings, due to the small correlation lengths 

of the physical states, and our results do show a small 

signal over this distance. It seems, then, that the method 

could be useful, were the particle correlation lengths 

somewhat larger: the results are no worse than those 

produced using the conjugate gradient algorithm to calculate 

the other terms in the mesonic propagators. To produce 

operators with larger correlation lengths, though, is not 

easy. In the two flavour model, particle masses (for the 

lightest states) go like g 1  and hence a large decrease in 

g is required to produce a significant gain in signal. If we 

wish to see a difference between quenched and unquenched 

cases, we must work at small values of m g, and hence if we 

decrease g we must also decrease m. Decreasing g slows 

down the Metropolis algorithm, whilst decreasing m slows 

down the pseudofermion algorithm. 

The implementation of the one link mass term to break 

the flavour degeneracy of the Kogut-Susskind action seems 

to have been successful. Our results for the one species 
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model agree well with the theoretical predictions. The 

presence of the heavy d quark seems to speed up the 

convergence of the algorithms when compared with the two 

species model, and results suggest that this quark is indeed 

decoupled from the theory. 

Finally, we note that in the quenched model, boundary 

conditions have not proved to be important. Particle 

correlation lengths are sufficiently small, and the lattice so 

large, that the physical states are insensitive to the 

finiteness of the system. However, in the unquenched case, 

we observed the puzzling slowing down of the pseudofermion 

algorithm when using antiperiodic boundary conditions. In 

view of the results for the quenched model, we felt 

confident in proceeding with calculations with periodic 

boundary conditions on the fermions. However, in four 

dimensions, where one is forced to use smaller lattices, 

finite size effects are more important, especially at small 

quark masses, and it is necessary to use the correct 

boundary conditions for fermions (Barbour et. al., 1983). 

Clearly, then, this phenomenon must be understood more 

fully. 
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APPENDIX 

The work presented 	here has 	been numerical in nature, 

and 	the 	quality of 	the 	results 	depend 	largely on 	the 

computing 	power available. 	In 	this 	appendix, 	we outline 

some of the features of the ICL Distributed Array Processor 

(DAP) 	used in this 	work. 	We 	outline 	some of 	the 

architecture and software central to lattice gauge theory 

calculations (see also 	Hockney 	and 	Jesshope, 	1981; Bowler, 

1983). 

The DAP combines computational power with a technology 

that is inexpensive in a machine with a wide performance 

range. Present versions use only relatively modest 

technology and only low levels of integration. Developments 

in very large scale integration offer the prospect of 

substantial improvements in computer times and in the size 

of lattice that might be contemplated in lattice gauge 

theory calculations. 

Architecture 

The DAP is designed to emulate a memory module for an 

ICL mainframe (called a host machine in this context). The 

DAP can provide store for the host in the conventional way 

when it is not operating as a parallel processor. The basic 

hardware of the DAP, indicated schematically in figure A.1, 

consists of a 64x64 array of processing elements (PE's) each 

having 4Kbits of store associated with it (giving a total of 

2 Mbytes of store attached to the host). The array is 
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connected two dimensionally, with each PE having four 

neighbours to which it is connected. These are identified by 

points of the compass, N, S, W, E. The connections at the 

edge of the array depend on whether the machine is 

instructed to operate with PLANAR or CYCLIC geometry. 

PLANAR geometry defines a zero input at the edges, whereas 

CYCLIC geometry connects the edges of the DAP to form a 

2-torus. In addition to the 4Kbit store, each PE contains 

three 1-bit registers (labelled AQ, and C), two multiplexers 

and a 1-bit full adder, the most interesting of which is the 

A register. Certain instructions may be made conditional 

upon the setting of the A register in each processor. There 

is also a master control unit (MCtJ) which handles certain 

simple scalar functions such as control of DO loop variables 

in Fortran, and which also broadcasts instructions to the PE 

array. 

Software Features 

To take advantage of the DAYs parallel processing 

abilities, a language called DAP Fortran has been developed 

from ordinary Fortran. A DAP programme is -run as a 

subroutine of a master Fortran programme run on the host 

machine. Communication between the DAP Fortran and 

Fortran routines is achieved through the use of shared 

COMMON blocks, loaded into the DAP store. Processing is 

initiated in the usual way with control being passed to a 

Fortran master programme which sets up the input routines 

and data, and might include some pre-processing to be 

performed by the host. Control is then passed to one of 

any number' of DAP Fortran entry subroutines, which can in 

turn in turn call other DAP Fortran subroutines. 

Periodically, or on termination Of the run, control is passed 

back to the host for Fortran post-processing and output. 
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The three basic types of variable in DAP Fortran are 

scalars, vectors and matrices. A scalar corresponds to an 

ordinary Fortran variable, whereas vectors have a range up 

to 64 in two dimensions. Variables and constants may be 

either of type REAL, of length 3 to 8 bytes, INTEGER, of 

length 1 to 8 bytes, or LOGICAL, and are declared in a 

manner similar to ordinary Fortran. For example, the code: 

DIMENSION A(,),B(,),C(,) 
(A-0 

C=A+B 

means that at every PE the values of A and B are added and 

put into the the appropriate store for C, and this is done 

simultaneously at each of the 4096 PE's. 

The two DAP Fortran features which give it considerable 

flexibility involve the ability to shift information between 

PE's and the use of logical matrices to provide local 

autonomy for the PE's by masking them out of a particular 

command. In order to bring information stored at one PE to 

another, there are a number of shift operations. For 

example: 

DIMENSION A(,),B(,),C(,) 

(A.l) 

C=B+SHWC(A,3) 

The effect of this statement at any PE is to assign to C 

the sum of the element of B stored at that PE and the 

element of A which is stored three sites away in an 

Easterly direction, with cyclic boundary conditions imposed 

in the East-West direction. Similarly, there are shifts 

North, South, and East, with either cyclic (SHNC, SHSC, SHEC) 

or planar (SHNP, SHSP, SHED, SHWP) boundary conditions. It is 
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also possible to use the DAP in long vector mode, in which 

we may think of the numbers as being stored in a vector of 

length 4096. It is then possible to do shifts along this 

vector by means of the operations SHLC, SHRC, SHLP, SHRP, 

which denote shifts left or right with either cyclic or 

planar boundary conditions. 

Operations and assignments may be made conditional upon 

the value of logical matrices (called masks in this context) 

at the processing elements. The logical mask sets the 

A-register mentioned earlier. Such masks can be either 

generated within a programme or defined using built-in 

logical functions available in DAP Fortran. For example, the 

function ALTR(N) sets the first N rows .FALSE. and the next 

N rows .TRUE. and so on until completion. More elaborate 

masks may be constructed using these standard logical 

operators in conjunction with both the shifts discussed 

above and standard logical statements. For example: 

LOGICAL LMASK(,) 

() 

LMASK=ALTR( 1 ).LEQ.ALTC( 1) 

sets up a chessboard pattern, in which each PE is 

alternatively .TRUE. and .FALSE., as illustrated in figure A.2. 

Assignments may then be made conditional upon such a mask 

in the following way: 

REAL*4 A(,),B(,) 

A(LMASK)=B 
	

(A *) 

Only those elements of A at which LMASI< is .TRUE. are 

assigned the corresponding values of B. At all other PE's, 

the value of A remains unchanged. Another important use of 

logical masks is in conjunction with MERGE statements: 
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DIMENSION A(,), B(,), C(,) 

(A.5) 

C=MERGE(A,B, LMASK) 

Here, C takes the value of A at those PE's where LMASK is 

.TRUE., and the values of B where Ltisk is .FALSE.. 

Lattice Gauge Theory Calculations 

The parallelism of the DAP makes it ideally suited to 

Monte Carlo simulations of lattice gauge theory, in which 

essentially the same sequence of steps is repeated a large 

number of times. The question of how to use this 

parallelism in the most efficient way is an important one. 

The situation is very different from that with a serial 

computer. In two dimensional models, the question of how 

one should map the lattice variables onto a 64x64 array is 

straightforward: in this work, we have identified each site 

of 'the lattice with one PE on the DAP, so that the natural 

choice of lattice was 64x64. At each PE were stored the 

gauge field variables situated on the links emanating in the 

positive direction from that site. In this way, the locality 

of the action ensures that variables need only be moved 

between PE's that are near each other. In higher 

dimensions, the situation becomes more complex. '  For an 

account of how one maps an 8 lattice onto the DAP, see 

Bowler (1983). 

in chapter four, we pointed out how the parallelism of 

the DAP could be used in an optimum way in the generation 

of gauge field configurations, both quenched and periodic. 

The pure gauge theory was optimally simulated by updating 

one in two gauge fields in a given direction. The update 

pattern on the DAP, then, required the use of the logical 
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mask defined by: 

LMASK=ALTR( 1 ).LEQ.ALTC( 1) 	 A. 4) 

The pseudofermion procedure used for generating 

unquenched configurations, and in the calculation of 

annihilation terms, involved not nearest neighbour 

interactions, but rather next nearest neighbours. The 

optimum update pattern was different from that used for 

the gauge fields, then, since sites two lattice spacings 

apart could not be updated simultaneously. In the two 

species model, where there is no one link mass term, there 

are no nearest neighbour interactions. When a one link mass 

term was introduced the nearest neighbours in the direction 

of the mass term are linked, but nearest neighbours in a 

direction perpendicular to that of the mass term remain 

unconnected. The same update pattern may therefore be 

used in either case, the necessary mask being given by: 

LMASK=(ALTR(2).LEQ.ALTC(2)).AND.(ALTC( 1)) (A4) 

This is shown in figure A.2. 
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