

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Software-Defined

Datacenter Network Debugging

Praveen Tammana
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute of Computing Systems Architecture

School of Informatics

University of Edinburgh

2017

Abstract
Software-defined Networking (SDN) enables flexible network management, but as net-

works evolve to a large number of end-points with diverse network policies, higher

speed, and higher utilization, abstraction of networks by SDN makes monitoring and

debugging network problems increasingly harder and challenging. While some prob-

lems impact packet processing in the data plane (e.g., congestion), some cause policy

deployment failures (e.g., hardware bugs); both create inconsistency between opera-

tor intent and actual network behavior. Existing debugging tools are not sufficient to

accurately detect, localize, and understand the root cause of problems observed in a

large-scale networks; either they lack in-network resources (compute, memory, or/and

network bandwidth) or take long time for debugging network problems.

This thesis presents three debugging tools: PathDump, SwitchPointer, and Scout,

and a technique for tracing packet trajectories called CherryPick. We call for a dif-

ferent approach to network monitoring and debugging: in contrast to implementing

debugging functionality entirely in-network, we should carefully partition the debug-

ging tasks between end-hosts and network elements. Towards this direction, we present

CherryPick, PathDump, and SwitchPointer. The core of CherryPick is to cherry-pick the

links that are key to representing an end-to-end path of a packet, and to embed picked

linkIDs into its header on its way to destination.

PathDump is an end-host based network debugger based on tracing packet trajec-

tories, and exploits resources at the end-hosts to implement various monitoring and

debugging functionalities. PathDump currently runs over a real network comprising

only of commodity hardware, and yet, can support surprisingly a large class of net-

work debugging problems with minimal in-network functionality.

The key contributions of SwitchPointer is to efficiently provide network visibility

to end-host based network debuggers like PathDump by using switch memory as a

"directory service" — each switch, rather than storing telemetry data necessary for

debugging functionalities, stores pointers to end hosts where relevant telemetry data is

stored. The key design choice of thinking about memory as a directory service allows

to solve performance problems that were hard or infeasible with existing designs.

Finally, we present and solve a network policy fault localization problem that arises

in operating policy management frameworks for a production network. We develop

Scout, a fully-automated system that localizes faults in a large scale policy deploy-

ment and further pin-points the physical-level failures which are most likely cause for

observed faults.

i

Lay Summary

Data centers have compute, storage, and network infrastructure that house critical on-

line applications like search engine, social networks, and big data applications. Bil-

lions of users all over the world depend on these applications in their day-to-day ac-

tivities. Typically, in a large data center, applications are deployed in hundreds of

thousands of servers and they communicate with each other via thousands of network

devices. In specific, network infrastructure moves a massive amount of data between

compute and storage devices. In such a large network, network problems are inevitable.

Performance degradation of an application due to network problems even for a short

period of time would severely hurts the quality of service. Ideally network operators

want an fully automated debugging tool that consumes minimal resources, easy to use,

and also quickly allows to detect, locate, and fix the network problems. To this end,

we focus on building tools that ease the network operator’s job of debugging network

problems. In this thesis, we study the problems observed in data center networks and

build efficient and scalable tools to debug the problems.

ii

Acknowledgements

Supervisors. I would like to thank my primary supervisor, Myungjin Lee for his

amazing guidance. As a Supervisor, he taught me how to find a research problem that

is worth pursuing, spent lot of time in explaining the network problems, met every

week (even when he was away), gave advise on time management, kept me focused,

and provided feedback on writing. He introduced me to application driven systems

and networking research which I enjoyed thoroughly while executing it and would

like to continue with this approach in the future. His suggestions on presentation of

research work be it on a paper or in a talk are invaluable, especially he taught me how

to articulate the take away message from a paragraph/slide, how to explain a concept

clearly that should make it look obvious, and highlight the novelty of a solution. He

cared about my personal life and helped in what ever way he can.

It was a great learning experience working with Rachit Agarwal, collaborated with

him for four years on three projects that are part of this thesis. Among many other

things that I have learned from him some of them are: how to pitch a research problem

and convey its challenges to research community, explaining a complex problem in

plain and simple terms, and dividing a problem into subproblems and focus on the

most important one. This list barely scratches his research style which is admirable. I

am looking forward to continue the collaboration with Rachit in the future.

I have wonderful official second supervisor, Mahesh Marina. His insightful feed-

back during yearly review meetings has greatly improved the thesis quality. Discus-

sions we had on Scout project was super useful.

Cisco Systems. I would like to thank Network Assurance team at Cisco systems,

especially Ramana Kompella, Chandra Nagarajan, and Sundar Iyer for giving me an

opportunity to work on Scout project for one year as an intern. The internship was a

unique experience. It gave me a chance to understand how a start up works, trains the

team, and solves hard and challenging problems. I admire Ramana’s way of explaining

network problems by comparing with real world examples. Chandra is a great mentor,

always there to answer my calls; his expertise on Cisco’s ACI (SDN product) is excep-

tional. From Sundar I learned that it is not the technology, strategy, or products that

brings success to an organization, it is the trust between people who build those things

brings the success. I believe it applies to research collaborations as well.

My Examiners. I would like to thank Pramod Bhatotia and Dimitrios Pezaros for their

insightful feedback and suggestions that helped to shape the thesis structure. I thank

iii

Rik Sarkar for being in the yearly review meetings and his feedback.

I would like to thank Murray Cole (ICSA director) for awarding travel grants to

attend conferences. I also thank School of informatics, level 1 administration staff for

all the paper work and assistance in flight bookings.

Friends and colleagues. It was a great fun working with my colleagues at Cisco:

Advait Dixit, Ramki, Divjoth Singh seth, Pavan Mamillapalli, and Mani. We had

many discussions on work, career, and non-work related things. I had a wonderful

time with colleagues, lab mates, and NetSys group members at Edinburgh: Rui li,

Kiran Chandramohan, Murali Emani, Zhenyu, Manik, Arpit, Abhijith, Yota, Priyank,

and Mohammed Kasim.

Family. I thank my telugu speaking friends in Edinburgh: Bharath, Siva, Gangi, Span-

dana, and Srikanth. We all lived like a family. Siva, like me chosen an academic career.

He is one year senior, so one step ahead and shares the realities of academic life and

the job market. I enjoyed discussions with Siva and Spandana on the role of an aca-

demician in the digital world. Bharath, Gangi, Srikant, and I debated a great deal on

Indian politics, history, culture, education, movies, and what not.

My parents dream was to see their three children doing white collar jobs in an

organized sector. They struggled (financially, mentally, and physically) for 30 years

to educate their children. Now, as they wished, both my elder brothers and I are

leading a very comfortable life. The grit of my parents to realize their dream keeps

inspiring me. I don’t even imagine where I would be now, if their priorities were

different. I am grateful to have Rupa, my life partner. I thank her for supporting me

throughout the PhD journey; while working as an intern at a different location, before

the conference deadlines, at the times when we were living on a meager income, and

the lonely weekends she had while I was fixing bugs in the lab :). I dedicate this thesis

to her and my parents.

iv

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

Some of the material used in Chapter 4, Chapter 5, Chapter 6, and Chapter 7 have been

published in the following papers:

• CherryPick: Tracing Packet Trajectory in Software-defined Datacenter Networks.

Praveen Tammana, Rachit Agarwal, and Myungjin Lee.

In ACM SIGCOMM Symposium on SDN Research (SOSR), 2015.

• Simplifying Datacenter Network Debugging with PathDump.

Praveen Tammana, Rachit Agarwal, and Myungjin Lee.

In USENIX Symposium on Operating Systems Design and Implementation (OSDI), 2016.

• Distributed Network Monitoring and Debugging with SwitchPointer.

Praveen Tammana, Rachit Agarwal, and Myungjin Lee.

In USENIX Symposium on Networked Systems Design and Implementation (NSDI), 2018.

• Fault Localization in Large-Scale Network Policy Deployment.

Praveen Tammana, Chandra, Pavan, Ramana Kompella, and Myungjin Lee.

In IEEE International Conference on Distributed Computing Systems (ICDCS), 2018.

(Praveen Tammana)

v

Table of Contents

1 Introduction 1
1.1 Problems and contributions . 3

1.2 Thesis organization . 7

2 Background 8
2.1 The data center environment . 8

2.2 Network data plane faults . 11

2.3 Flow contention . 13

2.4 Summary . 14

3 Related work 15
3.1 In-network debugging . 15

3.2 Distributed network monitoring . 17

3.3 Fault localization in network policy deployment 20

3.4 Summary . 21

4 CherryPick: Tracing Packet Trajectory in Software-Defined Datacenter
Networks 23
4.1 Introduction . 23

4.2 CherryPick . 25

4.2.1 Preliminaries . 25

4.2.2 Overview of CherryPick . 27

4.2.3 Design . 29

4.3 Evaluation . 32

4.3.1 Switch flow rules . 33

4.3.2 Packet header space . 34

4.3.3 End host resources . 34

4.4 Summary . 36

vi

5 Simplifying Data center Network Debugging with PathDump 37
5.1 Introduction . 37

5.2 Overview . 40

5.2.1 Interface . 42

5.2.2 Design Overview . 42

5.2.3 Example applications . 43

5.2.4 Reducing debugging space . 45

5.3 Implementation . 46

5.3.1 Tracing packet trajectory . 47

5.3.2 Server stack . 49

5.3.3 PathDump controller . 52

5.4 Applications . 53

5.4.1 Path conformance check . 53

5.4.2 Load imbalance diagnosis . 55

5.4.3 Silent random packet drops . 57

5.4.4 Blackhole diagnosis . 58

5.4.5 Routing loop debugging . 58

5.4.6 TCP performance anomaly diagnosis 60

5.5 Evaluation . 61

5.5.1 Experimental setup . 61

5.5.2 Query performance . 61

5.5.3 Overheads . 63

5.6 Limitations . 64

5.7 Summary . 65

6 Distributed Network Monitoring and Debugging with SwitchPointer 66
6.1 Introduction . 66

6.2 Motivation . 70

6.2.1 Too much traffic . 70

6.2.2 Too many red lights . 71

6.2.3 Traffic cascades . 73

6.2.4 Other SwitchPointer use cases . 74

6.3 Overview . 74

6.4 SwitchPointer . 77

6.4.1 Switches . 77

vii

6.4.2 End-hosts . 81

6.4.3 Analyzer . 82

6.5 Applications . 83

6.5.1 Too much traffic . 83

6.5.2 Too many red lights . 84

6.5.3 Traffic cascades . 85

6.5.4 Load imbalance diagnosis . 85

6.6 Evaluation . 86

6.6.1 Switch overheads . 86

6.6.2 Query performance . 89

6.7 Limitations . 90

6.8 Summary . 91

7 Fault Localization in Large-Scale Network Policy Deployment 92
7.1 Introduction . 92

7.2 Background . 94

7.2.1 Network policy . 94

7.2.2 Network state inconsistency . 96

7.3 Shared Risks in Network Policy . 97

7.3.1 A case study in a production cluster 98

7.3.2 Risk models . 99

7.3.3 Augmenting risk models . 100

7.4 Fault Localization . 101

7.4.1 General idea . 101

7.4.2 Existing algorithm: SCORE . 102

7.4.3 Proposed algoirthm: Scout . 103

7.5 Scout System . 106

7.5.1 Physical-level root cause diagnosis 106

7.5.2 Example usecases . 107

7.6 Evaluation . 108

7.6.1 Evaluation environment . 108

7.6.2 Results . 109

7.7 Limitations . 111

7.8 Summary . 112

viii

8 Conclusion 113
8.1 Future work . 113

8.2 Contributions . 115

8.3 Towards automated network debugging 115

Bibliography 116

ix

Chapter 1

Introduction

Today, data centers are a key computing infrastructure that drives the Internet. Nu-

merous services such as search, online social media, big data analytics, and cloud ap-

plications rely on data centers. Information technology giants like Microsoft, Google,

Facebook, and Amazon build and maintain data centers that have hundreds of thou-

sands of servers, thousands of network devices, and storage devices [112]. Using this

infrastructure, a huge amount of data is generated and consumed every day by billions

of users in the globe.

As size of network elements in the data centers grow, Software-Defined Network-

ing (SDN) has emerged as a key technology for managing the network infrastructure.

In SDN, network administrators express their desire to meet application demands as a

network policy and provide the policy to a centralized controller. The controller further

converts policy into low-level per-switch instructions. For example, a routing policy

is converted to low-level forwarding rules (see Figure 1.1), security policy to access

control list (ACL) rules, load balance policy to equal-cost multi-path (ECMP) config-

urations, and quality of service (QoS) policy to per-port priority queue configurations.

Upon receiving the packet, switch data plane makes forwarding decisions based on the

forwarding and ACL rules, and puts the packet into appropriate queue as defined by a

load balance and QoS policy.

In a large complex network environment network problems are inevitable. While

troubleshooting a network problem, operators need to think of multiple possibilities. A

problematic network behavior could be due to many reasons — misconfiguration (e.g.,

incorrect forwarding rules), malfunction of network devices (e.g., faulty interface), or

lack of network resources (e.g., congestion due to buffer overflow), and their combi-

nation. The presence of these problems would create inconsistency between network

1

Chapter 1. Introduction 2

Policy
“Group X should talk with
group Y at 1 Gbps rate”

Control planeA

Network
inconsistency

Network
debugger

A = B

A = C

Scout

PathDump &
SwitchPointer

Ingress
port

Ingress
queue

Forwarding
table

ACL
table

Egress
queue

Egress
port

Switch fabricB

Packet In
Enqueue Match/

Action
Match/
Action Enqueue Dequeue

Packet Out

Data planeC

Figure 1.1: A policy is compiled to low-level switch rules and configurations. Based

on the rules and configurations, switch data plane makes packet forwarding deci-

sions. However, problems in the data plane (e.g., ECMP collisions, network conges-

tion) cause inconsistency between control plane (A) and actual network behavior.

Similarly, policy deployment failures due to physical-level faults (e.g., TCAM memory

overflow, control channel disruption, etc.) might cause inconsistency between control

plane (A) and switch rules and configurations (B).

admin’s intent and actual network behavior which in-turn triggers spurious events; e.g.,

high job completion times, degradation in quality of search query results, etc.

Ideally network administrators want a fully automated debugging tool — a key

component in self-driving networks — that consumes minimal in-network resources

(e.g., switch cpu, switch memory, and network bandwidth) for monitoring and allows

to debug a large class of network problems. Moreover, it should allows to detect,

localize, inspect, and fix the problems at fine-time scales in the order of milliseconds

to seconds.

Monitoring and debugging network problems is complex. There have been many

recent systems (e.g., Trumpet [71], EverFlow [112], PathQuery [75] Marple [74]) for

debugging network problems. While each of these works has different approach, de-

bugging problems observed in a large-scale network still remains challenging. More-

over, as data centers evolve to a large number of end-points (> 100k), diverse network

policies (routing, security, and QoS), higher utilization (aggregate traffic can exceed

100Tbps), and higher speed (10/40/100G), monitoring and debugging become more

challenging.

To better understand the nature of network problems, we have investigated prob-

lems handled in many recent works and broadly divided them into two categories.

First category has the network problems in the switch data plane that impact packet

Chapter 1. Introduction 3

processing. Moreover, these problems cannot be detected at a centralized point either

by analyzing network policies or corresponding switch configurations, but their pres-

ence impact actual network behavior in the data plane (C in Figure 1.1). Some example

problems are load imbalance due to ECMP poor hashing [12], random packet drops by

a faulty interface [112], etc.

Second category has the problems that cause the inconsistency between control

plane policy and low-level per-switch rules and configurations. The inconsistency be-

tween the policy and the network state could be detected at a centralized controller

either by continuously monitoring updates pushed to the network [60], or by period-

ically collecting and analyzing the rules and configurations [66] such as routing con-

figurations, switch table rules, etc. However, it is hard to localize and find the root

cause that creates such inconsistency. Some possible causes are errors in routing or

security policy compilation, control channel disruption, device memory overflow, and

their combination.

This thesis presents three debugging tools PathDump, SwitchPointer, and Scout,

and also a packet trajectory tracing technique called CherryPick. While CherryPick,

PathDump and SwitchPointer together enables debugging a large class of network prob-

lems in the data plane (first category), Scout is an end-to-end system that localizes

failures and also pinpoints the cause for a failure in a large-scale policy deployment

(second category). Note, the tools do not target “automated” debugging but rather

allows to build a framework to simplify the debugging process, and enables network

operators to quickly detect, localize, and understand the cause for a large class of net-

work problems.

1.1 Problems and contributions
This section provides discussion on the two problems addressed in this thesis. It covers

recent works in network debugging, their limitations, and outlines the thesis contribu-

tions.

Problem 1: Existing systems are insufficient to monitor and debug network problems

in the data plane. Debugging requires both network visibility and resources to capture

the visibility.

Managing large-scale networks is complex. Even short-lived problems due to fail-

ures, load imbalance, faulty hardware and software bugs can severely impact perfor-

mance and revenue [44, 71, 112].

Chapter 1. Introduction 4

Existing tools to monitor and debug network problems operate at one of the two

extremes. On the one hand, proposals for in-network monitoring argue for capturing

telemetry data (e.g., flowIDs, packet headers) at switches [13, 63, 107, 64, 50], and

querying this data using new switch interfaces [74, 41, 75, 6] and hardware [51, 74].

Such in-network approaches provide visibility into the network that may be necessary

to debug a class of network problems; however, these approaches are often limited by

data plane resources (switch memory and/or network bandwidth) and thus have to rely

on sampling or approximate counters which are not accurate enough for monitoring

and diagnosing many network problems (§6.2).

At the other extreme are recent systems [71, 44] that use end-hosts to collect and

monitor telemetry data, and to use this data to debug spurious network events. The

motivation behind such end-host based approaches is two-fold [71]. First, hosts not

only have more available resources than switches but also already need to process

packets; thus, monitoring and debugging functionalities can potentially be integrated

within the packet processing pipeline with little additional overhead. Second, hosts

offer the programmability [71] needed to implement various monitoring and debugging

functionalities without any specialized hardware. While well-motivated, such purely

end-host based approaches lose the benefits of network visibility offered by in-network

approaches.

Contributions. This thesis calls for a radically different approach for network mon-

itoring and debugging: in contrast to implementing the debugging functionalities en-

tirely in-network or at end-hosts, we should carefully partition the debugging tasks

between end-hosts and network elements. This approach not only reduces the over-

head on network resources, but also allows to debug the problems one can see the

other cannot.

Towards this direction, this thesis presents CherryPick, PathDump, and SwitchPointer,

all three together integrates the best of two worlds — resources and programmability

of end-hosts, and network visibility offered by the network elements. CherryPick is

a scalable, yet simple technique for tracing packet trajectories in SDN-enabled data

center networks. The main idea is instead of picking every link that a packet traverse

towards the destination, CherryPick exploits common data center network topologies

like fat-tree, VL2, and selectively chooses the links that are sufficient to represent the

end-to-end path. More details of CherryPick can be found in Chapter 4 and §5.3.1.

PathDump is an end-host based network debugger that exploits resources and pro-

grammability of end-hosts to collect and store telemetry data necessary for debugging

Chapter 1. Introduction 5

network problems. In addition, each individual end-host also expose query service

that allows PathDump to filter telemetry data stored across multiple end-hosts in a dis-

tributed manner. PathDump design is based on tracing packet trajectories using link

sampling technique like CherryPick. Visibility at each individual end-host, along with

path information provided by CherryPick allows PathDump to debug a large class of

network problems (present in C of Figure 1.1) with minimal in-network functionality

(see Table 5.2 for the supported problems). More details of PathDump can be found in

Chapter 5.

Although end-hosts in PathDump know paths of every packet they receive, and

debugs problems for which path information is sufficient, PathDump still losses the

in-network visibility, thus unable to debug a class of performance problems. For in-

stance, hosts cannot localize (e.g., specific switch in the path) and understand the cause

(e.g., contending flows and packets) of a spurious event (e.g., latency, packet drops).

SwitchPointer efficiently enable network visibility to end-host based monitoring sys-

tems like PathDump by using switch memory as a "directory service" — in contrast to

in-network approaches where switches store telemetry data [75, 74, 107] necessary to

diagnose network problems, SwitchPointer switches store pointers to end-hosts where

the relevant telemetry data is stored. The distributed storage at switches thus operates

as a distributed directory service; when an end-host triggers a spurious network event,

SwitchPointer uses the distributed directory service to quickly filter the data (potentially

distributed across multiple end-hosts) necessary to debug the event. The key design

choice of thinking about network switch storage as a directory service rather than a

data store allows to efficiently solve many problems that are hard or even infeasible for

existing systems. More details of SwitchPointer can be found in Chapter 6.

Discussion on the supported network problems, that is, coverage of CherryPick,

PathDump and SwitchPointer can be found athttps://github.com/PathDump/

Applications.

Problem 2: Debugging network policy deployment failures takes time.

A number of frameworks (e.g.., PGA [82] APIC [15], Merlin [92], Frenetic [41],

Pyretic [69], GBP [9]) aid network policy management tasks through abstraction, pol-

icy composition, and deployment. However, these frameworks are not immune to vari-

ous faulty situations that can rise from misconfiguration [60], software bugs, hardware

failure [112, 44], etc. Many of them incur a flow of instructions from a centralized

controller, to a software agent in a network device and finally to ternary content ad-

dressable memory (TCAM) in that device. A failure of any element in this data flow

https://github.com/PathDump/Applications
https://github.com/PathDump/Applications

Chapter 1. Introduction 6

or at physical-level can significantly disturb the network policy deployment process.

Typically, policy management frameworks [82, 15] represent the intent of network

admins using policy objects (in short, objects) such as marketing group, DB tier, filter,

and so on. When a network policy is not rendered in the network (e.g., a large number

of low-level TCAM rules are missing) admins observe a large number of failure noti-

fications. So, admins should first understand which part (set of objects) of the policy

has been affected. Today, it is challenging to localize because the low-level rules is the

final outcome after compilation of a large number of policy objects and their inter de-

pendencies. So, admins can end up spending lot of time examining tens of thousands

of low-level rules to localize a small set of objects that become faulty due to failures

— a needle-in-a-haystack problem. Therfore, admins require a fully-automated means

that quickly nail down to the part of the policy they should look into or further diagnose

in order to fix a large number of observed failures.

There have been many recent works [59, 60, 66] on detecting inconsistency be-

tween high-level network policy (A in Figure 1.1) at the controller and low-level table

entries and configurations (B in Figure 1.1). But, localization and identifying the root

cause for inconsistency between A and B which is as equally important as detecting

inconsistency is understudied. In specific, an ideal debugging tool should localize

high-level faulty policy object (in A) that the operator should dig deeper (to fix the

problem), and also provide most likely root cause (e.g., physical-level failure) for the

objects to become faulty.

Contribution. We call the problem of finding out the impaired parts of the policy as

a network policy fault localization problem. This thesis presents Scout, an end-to-end

system that automatically pinpoints not only faulty policy objects, but also physical-

level failures; the cause for policy objects becoming faulty. We tackle it via risk

modeling [62]; risks are modeled as simple bipartite graphs that capture dependen-

cies between risks (i.e., objects) and nodes (e.g., endpoints or end user applications)

in low-level rules. We then annotate the risk models for those risks and nodes that are

associated with the observed failures. Using those models, we devise a greedy fault

localization algorithm that outputs a hypothesis, a minimum set of most-likely faulty

policy objects (i.e., risks) that explains most of the observed failures. More details in

Chapter 7.

Chapter 1. Introduction 7

1.2 Thesis organization
This thesis is organized into the following chapters.

Chapter 2 provides background on the data center network environment. It also

explains how network problems degrades performance of applications, and technical

challenges in debugging those problems.

Chapter 3 discusses related work on network monitoring and debugging. It pro-

vides shortcomings of the existing approaches, and how CherryPick, PathDump, SwitchPointer,

and Scout fill the gap.

Chapter 4 presents CherryPick, a packet trajectory tracing technique operates in

L2/L3 layer. CherryPick works for common data center topologies like fat-tree and

VL2 that contains commodity OpenFlow compatible switches, and requires no changes

to hardware. This chapter is based on work published in ACM SIGCOMM SOSR,

2015.

Chapter 5 presents PathDump, an end-host based network debugger that simplifies

network debugging and enables debugging a large class of network problems with

minimal in-network functionality. It explains the details of PathDump design (§5.2),

implementation (§5.3), and example applications (§5.4). This chapter is based on the

work published in USENIX OSDI, 2016.

Chapter 6 presents SwitchPointer, a distributed network monitoring and debugging

tool. The key contribution of SwitchPointer is to enable network visibility to end-host

based monitoring approaches like PathDump. It explains the details of SwitchPointer

design (§6.4), implementation, and a few SwitchPointer usecases (§6.5). This chapter

is based on the work published in USENIX NSDI, 2018.

Chapter 7 presents Scout, an end-to-end system that localizes the policy objects

become faulty due to policy deployment failures and also pin-points the root cause

for the object become faulty in-terms of physical-level failures. More details on risk

models (§7.3), a greedy-based fault localization algorithm (§7.4), and the Scout system

(§7.5) can be found in this chapter. This chapter is based on the work to appear in IEEE

ICDCS, 2018.

Chapter 8 concludes the thesis. It outlines areas of future work and key contribu-

tions of this thesis.

Chapter 2

Background

This chapter discusses the data center network environment, a few physical-level faults

observed in production networks, and some challenging problems that draw the atten-

tion of the data center networking community.

2.1 The data center environment

Network role in a data center. Many applications deployed in data centers expect

non-blocking communication between their compute and storage servers. So, network

in a data center moves data traffic between the servers that run both delay-sensitive

(e.g., web search) and bandwidth-intensive applications (e.g., big data).

To better understand the network role inside a data center, consider how a search

query might work. When a user makes a search query, the query hits a server in a

data center. This server might query several other servers, which communicate with

several other servers and so on. Responses from the individual servers are collated,

and the final search response is sent to the user. For one query, there might be a large

number of server to server interactions, and deadline of each interaction could be as

small as 10ms [20]. This kind of communication pattern is referred to as scatter-gather

or partition-aggregation.

Scatter-gather is not exclusive to the search. Similar communication pattern is

observed while loading web pages. For instance, a recent study in Facebook data

center [78] while loading a popular web page shows that there are 521 internal requests

on average, at 95 percentile, internal requests are over 1700. Further, data centers

often run big data analytics tools such as Hadoop, Spark, and Database joins, which

all process data to provide a response to queries. These big data processing tools move

massive amounts of data around.

8

Chapter 2. Background 9

C1 C2 C3 C4

Pod 1

A1 A2

T2T1
Pod 2

A3 A4

T4T3
Pod 3

A5 A6

T6T5
Pod 4

A7 A8

T8T7

Core

Agg

ToR

Figure 2.1: 4-ary fat-tree topology

Workloads. Broadly, the applications and their flow sizes can be categorized into

three types [20]: query traffic (2KB to 20KB), latency sensitive short messages (1MB

to 100MB), and throughput sensitive long flows (longer than 100MB). Some example

applications are: ARP, DNS (latency sensitive); hadoop, spark, and database joins (la-

tency and throughput sensitive); VM migration, and large size file transfers (throughput

sensitive).

Multi-rooted tree topologies. Data center networks are built based on scale-out archi-

tectures that consist of switches in multiple layers. For instance, consider fat-tree [17]

network topology. It has switches at three layers: top of rack (ToR), aggregate and

core. Hosts are connected to a ToR switch, a group of ToR switches is connected to an

aggregate switch, and finally, a core switch connects a group of aggregate switches. A

K-ary fat-tree topology has K pods; a pod has K/2 ToR and K/2 aggregate switches.

K/2 ports of a ToR switch are connected to end-hosts, and the remaining K/2 ports are

connected to K/2 aggregate switches in the same pod. Furthermore the other (K/2)

aggregate switch ports are connected to (K/2) core switches.

To meet application demands, in some cases, switches are configured to forward an

end-host pair traffic across multiple paths. For example, in a K-ary fat-tree topology

there are (K/2)2 equal length shortest paths between any source-destination pair (for

K=48, there are 576 shortest paths [17]).

Equal-cost multi-path (ECMP). Switches configured with ECMP load balance traffic

among equal cost paths [18]. In specific, for each incoming packet a switch applies

hash on header fields (e.g., 5-tuple flow ID) and generates a key. The Key space is

divided equally by the number of possible output ports. In other words, each divided

region in the key space is mapped to one output port. If the packet’s key falls into one

of the subregions, then the port mapped to the region is selected as the next hop.

Software-Defined Networking (SDN). In conventional network switches, the control

Chapter 2. Background 10

logic is co-located with the switching logic [26]. Therefore, a network policy is re-

alized by configuring individual switches. But as the size of the network increases,

managing box by box becomes hard. SDN makes network management easier. It de-

couples the network control plane (brain) from the data plane (forwarding engine) [26];

the control logic is separated from the switches and moved to a centralized controller.

This way SDN abstracts underlying network infrastructure complexity, and the SDN

applications program the network treating it as a single logical entity (one big switch).

Some key network management applications that drive SDN are: 1) VLAN configu-

ration during VM migration [43]; 2) Quick allocation of network resources to meet

user application demands; and 3) Enforcement of policies like QoS, isolation, and se-

curity [56].

Commodity switches. Large-scale data center networks primarily use low-cost com-

modity switches that have limited resources [17]. These switches should process pack-

ets in nano seconds to keep up with high-speed line rates (e.g., 10Gbps, 40Gbps and

more). To enable fast look up, switches store the state required (lookup tables) for for-

warding packets in expensive and power-hungry memories (SRAM and TCAM), and

these memories are limited in size due to cost and power constraints.

In general, SRAM stores look-up tables that have entries similar to key-value

pairs [63]. For example, a set of destination MAC addresses is assigned to a particular

interface [43]. When an incoming packet’s destination matches any particular entry, it

is forwarded to the assigned interface. Similarly, TCAM stores wild-card entries, each

entry can have don’t care values, either 1 or 0. Typically, access control list (ACL)

rules that allow, discard, or rate-limit packets are stored in TCAM. Note, TCAM is

more expensive and consumes more power than SRAM.

Despite the fact that switch memory is costly and limited, operators want to fully

utilize the memory (store a large number of entries to route traffic). If some applica-

tions need different QoS and access control, it requires even more memory. Likewise,

monitoring functionality also require memory resources [74, 63] to maintain counters,

flow statistics, etc.

Strict limits on per-packet operations and limited available memory make it hard

to maintain a set of active flows at the merchant silicon. There is limited time on

each packet to spend; only 12 ns to process a 64 byte packet arrive on a 40Gbps port.

Modern on chip SRAM has about 1 ns access time. Assuming the whole 12 ns is

assigned to monitoring, it is still challenging to do SRAM lookup, perform a few ALU

operations, and write back within the given time budget [63].

Chapter 2. Background 11

End-host networking. Many recent works instrumented end-hosts in data centers to

enable multiple network related tasks [32, 97, 55]; e.g., congestion control, tunneling,

access control, monitoring, and debugging. Some of the key motivations for involv-

ing end-hosts are: (1) Availability of computation power, memory, and storage; (2)

Higher visibility into the behavior of applications it hosts with little overhead; and (3)

Complete control of datacenter-wide network, storage, and compute resources under a

single administrative domain [106, 97, 71].

2.2 Network data plane faults
This section describes a few data plane faults observed in the production data cen-

ters, and the challenges to diagnose these problems with existing debugging tools.

CherryPick, PathDump and SwitchPointer system designs are motivated to address these

problems.

Silent packet drops. It is challenging to localize the culprit switch silently dropping

packets. This could be because of a faulty interface dropping a fraction of packets at

random [112], or bit flaps in a switch fabric module [44]. Such type of faults cause

performance degradation (due to high TCP retransmissions) to network-wide flows

passing through the faulty switch.

Furthermore, the higher the level of the faulty switch in the network topology, the

more severe in-terms of number of flows or applications would suffer. With hundreds

of switches in the network and multiple equal-cost paths between a source-destination

pair, localizing the faulty switch or link is not trivial. Conventional tools like ping and

trace-route may not observe the problems encountered by actual traffic. So, operators

have to run the tests from multiple places, infer the rough location, and inspect indi-

vidual switches in the location. Because there is a large number of links (e.g., 25,000),

using these tools to localize the problem has significant overhead and can take several

hours [112].

Silent blackhole. It is a type of routing blackhole that does not show up in forwarding

tables. For example, a forwarding table entry in the switch TCAM is corrupted [112].

It may cause packets with a specific source-destination IP address pair or source desti-

nation port numbers to be dropped [44]. Such faults cannot be detected by examining

switch forwarding tables. To illustrate the impact of the fault, suppose that a faulty

switch is present in one of the multiple paths between a pair of end-hosts. Oper-

ators might observe some requests between the end-hosts are success, while others

Chapter 2. Background 12

fail [112]. Unless the operators look into all possible paths and every switch present in

those paths, the faulty switch cannot be easily localized. Therefore, debugging a silent

blackhole is as challenging as the silent random packet drop problem.

ECMP load imbalance. ECMP load imbalance due to poor hashing [12] would de-

grades application performance. Even though, load imbalance can be detected after

looking at the difference between interface counters using tools like SNMP link moni-

tor, the coarse-grained interface counters are not sufficient to understand the root cause

of load imbalance. Debugging load imbalance requires fine-grained telemetry data

(e.g., contending flows, packet headers) in fine time-scales (e.g., order of milliseconds

to seconds)

For instance, it is essential for network operators to distinguish between two possi-

ble causes for the load imbalance: Is there a hardware bug causing ECMP poor hashing

on flow tuple, or is there any particular application that sends a sudden burst of traf-

fic on a particular interface that lead to an imbalance between two interface counters.

To find out answers, first the operator needs to know which flows (and their sizes)

contribute to those counters. In other words, per-flow statistics (5-tuple flow ID, and

its size) at regular intervals is essential to the operator to make a right decision (re-

configure ECMP function or limit application bandwidth rate). However, maintaining

flow-level visibility comes at the cost of per-packet operations that require additional

CPU and memory resources [75, 74, 63].

Inflated end-to-end latency. Many datacenter applications have tight deadlines on

flow completion times (e.g., 1 ms per network tier [112]). But packet delays due to

queue build-up at a single switch, or at multiple switches en-route to the destination

may miss the completion deadlines. Troubleshooting end-to-end latency is challeng-

ing. For instance, consider in-network load balancing technique like ECMP is active.

There is no easy way to identify the set of links or switches that a packet has traversed.

Even in a case where the links traversed by a packet are known in advance, a link

could be shared by multiple flows. If there is a hash collision, it is hard to tell which

flows are contributing to large queue size [74]. Such fine-grained visibility is essential

to understand the root cause of the delay. However, conventional tools like traceroute

are not sufficient to debug latency problems mainly because of two reasons: First,

the RTT inferred from the test packets could be different from what original packet has

encountered. Second, since the test packet is handled by the switch CPU, RTT could be

inflated by the control plane, therefore inferred RTT could be noisy or unusable [112].

Chapter 2. Background 13

2.3 Flow contention
Many recent studies on application communication patterns showed that multiple flows

contend for the same outgoing port. Contention causes congestion that eventually

inflates flow completion time (due to packet loss, time outs, etc). There have been

numerous works that proposed ways to mitigate contention; e.g., changes to end-host

congestion control mechanisms [84], efficient scheduling at switches [68], dynamic

path changes [18, 21, 19, 57], and coordination between switches and end-hosts [20].

However, as applications evolve, network operators may see new traffic patterns, and

need to update prior contention control techniques. This section provides discussion on

three popular application communication patterns that effect application performance

and solutions proposed to mitigate the collisions.

ECMP collisions. Despite the load balancing, the main drawback of ECMP technique

is collisions due to the stateless behavior of hashing technique [18]. Since data cen-

ter commodity switches have shallow buffers, collision of big flows (i.e., flows that

occupy a significant bandwidth of link capacity) on the same outgoing port quickly

fill the queue buffers, in-turn causes packet drops. Moreover, a collision of big flows

and latency-sensitive small flows adds more queuing delay to small flow packets. For

example, if two flows contending (i.e. due to hash collision) for a single output link

with capacity 1Gbps, there will be 50% throughput loss for each flow.

One idea is to collect flow information from the switches and avoid ECMP col-

lisions by scheduling heavy hitter flows over other under-utilized paths [18]. An al-

ternative approach is to detect heavy flow from endhost socket logs [32] and alarm

intermediate switches about the flow. This technique reduces monitoring overhead on

switches and helps to detect heavy flow before it become significant.

TCP in-cast. To handle latency-sensitive queries efficiently, certain data center ap-

plications follow partition-aggregation communication pattern. Some example appli-

cations are social media, web queries, and big data. Typically, the communication

tree for these applications has non-leaf aggregate nodes and leaf worker nodes. Re-

quested queries are first handled by a set of aggregate nodes, which in-turn distribute

requests among worker nodes present in next level. If there is any unexpected delay

in the response from any worker, a timeout occurs that eventually reduces the quality

of final results. Specifically, during the aggregate phase, all flows carrying responses

are directed towards a single output port to which the aggregate node is connected.

The switch buffer suddenly overflows and the switch drops packets. In the worst case,

Chapter 2. Background 14

packet drops not only degrade application performance, but also under utilize the link

capacity. This classic problem is named as TCP in-cast [20], and many works that

includes DCTCP [20], CONGA [19], and pFabric [21]) provide solutions to address

the problem.

TCP outcast. Another problem observed in application communication pattern is TCP

outcast [83]. When a large set of tcp flows and a small set of tcp flows arrive on dif-

ferent switch ports and contend for the same output port, packet loss due to port black-

out (common in commodity switches) preferentially cause timeouts for a small set of

flows. This is due to the fact that consecutive packet drops have more performance

impact on the small set of flows as they lose the tail of entire congestion window and

result in a timeout, eventually creating unfairness for the flows present in the small set.

2.4 Summary
This chapter provides background on the data center network environment, explains

a representative network faults in the data plane, and describes flow-level contention

observed at the network switches. In the next chapter, we present related work on mon-

itoring and debugging network problems introduced in this Chapter and Section 1.1.

Chapter 3

Related work

In this chapter, Section 3.1 discusses in-network debugging systems using complex

in-network techniques. Next, Section 3.2 elaborates on why the existing monitoring

solutions are either hard or infeasible to debug network problems. Finally, Section 3.3

discusses most related work on fault localization problems in the literature.

3.1 In-network debugging
Many existing debugging tools have incorporated increasingly complex in-network

techniques. The idea of in-network techniques is to exploit programmable switches to

capture debugging information at switches and then send it to a centralized collector

to do further analysis and debug the network problems. This Section illustrates the

complexity of the existing in-network techniques.

Data plane snapshots. Several recent works [59, 66, 60] have proposed to take a

snapshot of the entire data plane state, build models, and analyze (by checking various

conditions) this in the background for network debugging purposes. The data plane

state includes switch forwarding tables, ACLs, routing configurations, etc. However,

collecting the network state in a consistent manner may require freezing the entire

network, take a snapshot and then unfreeze the network, which is hard. Moreover,

these works do not deal with debugging problems occur while processing packets in

the data plane like network congestion, silent packet drops, silent black holes etc.

Per-switch per-packet logs. Dataplane snapshots can be avoided by collecting packet

logs for every packet at every switch [47]. Thus, one can analyze these logs to debug

both persistent (e.g., reachability) and transient network problems (e.g., packet drops).

Suppose that 1000 byte packet traverses five switches and each log is 40 bytes, then for

15

Chapter 3. Related work 16

each packet, you are generating 200 bytes of data. If traffic is 100Tbps, then log gen-

eration requires 20 Tbps of additional network bandwidth. Therefore, this technique

has high bandwidth overhead.

Packet sampling and mirroring. Bandwidth overhead can be greatly reduced by

selectively sampling packets [85, 112, 11]. We can generate packet logs only for those

sampled packets or in fact, there is some technique to completely mirror the entire

packet to be able to do a more in-depth analysis. However, the question is which

packets to sample? For example, consider one of the network problems we mentioned

earlier, the silent random packet drop case. If the switch is dropping one out of 1000

packets in a flow, unless we sample exactly that packet the switch is dropping, we will

not be able to debug the problem. Since these are random packet drops, figuring out

which packet to sample is not trivial.

Everflow [112] selectively mirrors traffic to reduce storage and processing over-

head. In specific, Everflow traces flows by capturing only control packets (e.g., TCP-

SYN packet) assuming that subsequent data packets follow the same path of the control

packets. Furthermore, it uses a guided probing technique; carefully injects test pack-

ets with customized headers to match with a specific match-action rule. However, the

functionality implemented at the network elements (precisely the elements that these

tools are trying to debug) is even more complex.

Dynamic rule updates. In contrast to previously discussed tools, a class of tools [75]

executes SQL-like queries on switches while storing the query state in the packet

header. However, it has the complexity of dynamic rule installations in order to ex-

ecute a query such as adding or deleting flow rules across multiple switches.

Packet probes. Another line of work sends packet probes [16, 109, 44] into the net-

work and infers what went wrong with the original packets from the performance of

the probed packets. For instance, pingmesh [44] leverages all servers to launch TCP

or HTTP pings to provide maximum latency measurement coverage. The measured

latency data is collected and analyzed while troubleshooting performance problems.

Similarly, ATPG [109] sends test packets to check liveness properties such as reach-

ability failures (due to link faults, missing forward entry, etc.) and throughput degra-

dation (due to network congestion). However, test packet generation is insufficient

to debug transient problems like poor ECMP hash collisions, load imbalance, silent

random packet drop, etc., that require per-packet visibility.

Networks are complex because of its scale, complex dependencies, and diverse

Chapter 3. Related work 17

network policies to be enforced. Existing in-network debugging tools have incorpo-

rated increasingly complex techniques on an already complex network. In contrast,

we propose PathDump, a simple end-host based network debugger for data center net-

works. With PathDump, there is no collection of dataplane snapshots, no per-packet

per-switch logs, no packet sampling, no packet mirroring, no active probing, and no

dynamic switch rule installation. PathDump, by pushing much of the network debug-

ging functionality to the end-hosts, it gives up on a small class of network debugging

problems (more details in Chapter 5), while executing debugging with high accuracy

at fine-grained time-scales with low overhead.

3.2 Distributed network monitoring
Traditionally, flow-level network monitoring supports vital network management tasks

such as traffic engineering, anomaly detection, accounting, understanding traffic struc-

ture, detecting worms, scans and botnet activities. As data centers evolve, to meet

network service level agreements (SLAs) of user applications, operator needs to add

more management and debugging tasks to the list. This ever-growing list of tasks ne-

cessitates fine-grained visibility at packet-level, this is in contrast to sampled flow-level

information provided by many popular monitoring tools like NetFlow and sFlow. To

this end, there have been many recent proposals that capture telemetry data at packet-

level using new data structures at switches [107, 63], and query this data using new

switch software or hardware interfaces [74, 75]. But, as network evolves in-terms of

speed, utilization, and diverse policies, monitoring and debugging network problems

become more challenging.

Switch data structures. Typically, network flow monitoring involves per-packet oper-

ations; hash function calculation on 5-tuple, memory (SRAM) lookup, run a few ALU

operations, and write to memory (update counters). But, for high-speed interfaces (e.g.,

40 Gbps), processor and memory for updating flow entry cannot keep up with the line

rate. To be more precise, at 40 Gbps rate, a packet has to be processed in 12 ns. This

is challenging, because packet processing involves stages such as packet header pars-

ing, layer 2/3 forwarding, ACL, etc., in addition to monitoring tasks. Therefore, Cisco

introduced sampled NetFlow [13] to reduce overhead, where 1 out of N packets is

sampled. When using sampled NetFlow, the actual counts are estimated by multiply-

ing with N.

Following this idea and respecting the resource constraints, many sophisticated

Chapter 3. Related work 18

inference techniques with some guarantees on accuracy are proposed. Initial works

embrace approximation techniques that trade off accuracy for switch memory. These

techniques can be broadly divided into two categories: (1) packet sampling [89, 90,

38, 37]; and (2) task-specific measurements [101, 38, 107, 63, 50]. The next two

paragraphs discuss these techniques.

The idea of packet sampling is to sample a subset of packets with some probabil-

ity, aggregate sampled packets, then generate reports. Researchers observed [38] large

portion of traffic is occupied by small percentage of large flows, and the key manage-

ment tasks such as traffic engineering and accounting need such flow statistics. Since,

packet sampling is biased towards large flows, the probability of sampling small flow

packets is very low, therefore it offers inadequate accuracy to many management tasks

that rely on small flow statistics like anomaly detection, scans, etc.

With the goal to improve flow monitoring coverage, cSamp [89] proposed a frame-

work for network-wide flow monitoring. The main idea is to assign a hash range to

each switch, such that, if hash value of a flow (based on 5-tuple) key that is extracted

from the packet fall in the hash range assigned to the switch, then the switch monitor

(maintain counters) that flow. Furthermore, a different hash range is assigned to each

switch. Thus, same flow is not sampled by more than one switch. This way the re-

sources distributed across the switches allows to monitor a more number of flows, thus

more coverage.

Another way to address the limitations of packet sampling techniques is with task-

oriented monitoring. The broad idea is to share available memory among a set of

measurement tasks, and only monitor the traffic relevant to the task at line rate. This

is possible using data streaming [101, 38] or sketch algorithms [107, 50] designed to

address particular tasks such as flow-size distribution, super spreader, heavy hitters,

etc.

But task-oriented approaches lack generality and also make it harder for network

equipment vendors to realize it in practice. It is due to this fact that, early commit-

ment is necessary for designing hardware and hard to modify in future. Moreover,

recent sketch-based solutions [107, 63, 50, 64] have a fundamental trade-off between

measurement accuracy and resource usage, being inappropriate to debug problems that

require more switch resources and high accuracy.

In contrast to the above techniques, SwitchPointer switches only stored pointers to

end-hosts to locate telemetry data for monitoring and debugging. Thus, SwitchPointer

requires minimal switch resources (4-6 MB of SRAM and 1-2 Mbps of bandwidth

Chapter 3. Related work 19

between the control plane and data plane), but can still debug network problems that

are hard or infeasible by sketch or stream-based approaches.

Switch interfaces. A body of work defines programming abstractions [75, 41, 45, 69]

for network monitoring. These approaches enable flow monitoring by installing flow

level rules either in forwarding tables or separate tables. For instance, PathQuery [75]

supports network debugging by dynamically installing switch flow rules, and run SQL-

like queries on these switches. But the problem is operators need to know in advance

the network problems that they wish to monitor. Without prior knowledge, it is hard to

obtain relevant monitoring data.

Switch hardware. Some recent works [6, 51] is quite similar to SwitchPointer (more

details in Chapter 6) in that they use network switches to embed telemetry data (in-

put port, output port, queue size, etc) into the packet header. The embedded data is

extracted at the end-points (e.g., edge swtiches, end-hosts), used later to debug net-

work problems by executing queries on the data distributed across all end-points. The

key difference between these approaches and SwitchPointer is that SwitchPointer can

locate the useful telemetry data easily but they have to search for it across all the end-

points in the network, unless all the data are centrally collected, which is prohibitively

expensive.

Another recent work Marple [74] programs switch hardware that allows to install

predicates (e.g., Does a packet observed high queuing delays?). The predicates are

checked against each incoming packet directly on the switch data plane. When a pred-

icate is satisfied at a switch, it reports telemetry data necessary for debugging the prob-

lem to an analyzer. However, if a network problem occurs due to spurious events (e.g.,

delay) distributed across multiple switches, then Marple cannot debug the problem.

For example, if a packet is delayed for 10 msec distributed across multiple switches

in its path, then the switch close to the destination detects the problem and reports to

analyzer. But we cannot debug the cause for delay since it requires telemetry data of

contending flows and packets at other switches in the packet’s path. Moreover, Marple

requires processing and memory resources to execute installed predicates. The amount

of required resources varies for each predicate.

End-host monitoring. Several recent proposals have advocated moving the monitor-

ing functionality to the edge-points [28, 71, 106]. SNAP [106] logs events (e.g., TCP

statistics and socket-calls) at the end-hosts to infer network problems. Hone [97] stud-

ied host-network traffic management by deploying user-defined programs onto end-

Chapter 3. Related work 20

hosts. These programs monitor local traffic at an end-host, and transmit the required

data for management tasks running on a centralized controller. Trumpet [71] proposes

to push the debugging functionality to the end-host. Specifically, the end-host agent

in trumpet inspects every single packet at line rate, and checks a wide set of events.

Finally, Felix [28] proposed a declarative query language for end-host based network

measurement.

While end-host based approaches work well in monitoring application performance

due to lack of visibility into network core, they are insufficient to accurately debug tran-

sient performance problems (e.g., latency, packet loss). On the contrary, SwitchPointer

has knowledge of two worlds — application performance at end-hosts, and fine-grained

visibility of contending flows and packets in the network at millisecond level timescale.

Therefore, operators can relate application performance drop with network events and

better understand the root cause. In fact, since SwitchPointer rely on end-host based

network monitoring like PathDump and Trumpet, it can benefit by adopting features

(e.g., timely triggering mechanisms in Trumpet [71]) from those systems.

3.3 Fault localization in network policy deployment
A large body of research work has been conducted for network fault localization [62,

53, 23, 72, 34, 54, 61, 94]. Most of them focus on failures involving physical com-

ponents such as fiber-optic cable disruption, interface faults, system crash, etc., in ISP

networks where network components are not necessarily under a single administra-

tion. At a high level, these fault localization approaches have a trade-off between

accuracy [62] and computation overhead [23, 53].

ISP networks. SCORE [62] used risk models and greedy approximation based fault

localization algorithms to identify faulty components in ISP networks. The failure data

collected from the network can have either noise or lack all necessary information, thus

it requires ad hoc thresholds to overcome the negative impact on the accuracy of the

proposed algorithms. Unlike SCORE, sherlock [23, 53] captured the noise or miss-

ing data with probabilistic dependencies between the graph nodes, and then inference

mechanisms such as bayesian [93] or belief propagation [94] are applied to identify

the most likely root causes for network-wide faults. [95] provide an extensive study

of these inference based approaches. A hybrid approach, Gestalt [72], leverages both

approaches (greedy and bayesian) and offers an accurate and lower overhead solution

for specific applications.

Chapter 3. Related work 21

On the contrary, Scout focus is on fault localization of the network policy configu-

ration process in multi-tenant data center networks driven by network policies. Thus,

the context of Scout is quite different from that of these prior works. Also, the infor-

mation and properties captured by the models address the problems that are different

from ISP networks. Unlike Scout, many of these approaches do not scale well beyond

a few nodes (more than 50) in the network [81].

Enterprise and data center networks. As mentioned before in Section 3.1, many

recent works [58, 66, 59] collect data plane snapshots, checks the consistency between

the control plane policy and data plane configurations (e.g., per-switch routing rules,

ACL rules, etc). While, these works goal is to detect the inconsistency between the

control plane policy and the data plane configurations, Scout goal is to localize, and

find the root cause of such inconsistency. In other words, Scout takes output of these

systems as one of the inputs, analyzes, and helps the operators in two aspects: (1)

nails down to the part of the policy that the operator should look at to fix the observed

failures (or inconsistency); and (2) infers the most likely physical-level root cause for

the inconsistency.

Most recent work on network provenance systems [111, 27] keeps track of events

associated with packets and rules, while Scout only compares network policies with

actual rules deployed in the network.

Other works [82, 15, 41, 69, 92, 39, 56] focus on the automation of conflict-free,

error-free composition and deployment of network policies to reduce the likelihood of

network problem occurrences. While these frameworks are greatly useful in managing

network policies, it is hard to completely shield their management plane from fail-

ure, which may cause the inconsistency between the policies and the actual network

state. Scout can identify the impacted network policies. Thus, Scout can be useful in

reinstating the network policies when these frameworks may not work correctly.

3.4 Summary
This chapter presented related work on network monitoring, network debugging, and

network fault localization. To summarize, networks are complex, and the tools to de-

bug these networks are even more complex. In-network monitoring approaches offer

network visibility, but often limited by available switch data plane resources (e.g., cpu,

memory). So, they incorporate increasingly complex in-network techniques which

require more network bandwidth resources or make it hard to debug the network prob-

Chapter 3. Related work 22

lems. On the contrary, end-host based monitoring loses the benefits offered by in-

network monitoring approaches. Existing work on network verification focused on

detecting the inconsistency between intent and actual network behavior. In contrast,

this thesis focuses on localizing and finding the cause that creates the inconsistency.

Chapter 4

CherryPick: Tracing Packet Trajectory

in Software-Defined Datacenter

Networks

4.1 Introduction
A particularly interesting problem in SDN debugging is to be able to reason about

flow of traffic (e.g., tracing individual packet trajectories) through the network [47,

59, 60, 66, 73, 110]. Such a functionality enables measuring network traffic matrix,

detecting traffic anomalies caused by congestion [36], localizing network failures [59,

60, 66], or simply ensuring that forwarding behavior at the data plane matches the

policies at the control plane [47]. Note that existing tools for tracing packet trajectories

can use one of the two broad approaches. On the one hand, tools like NetSight [47]

support a wide range of queries using after-the-fact analysis, but also incur large “out-

of-band” data collection overhead. In contrast, “in-band” tools (e.g., PathQuery [73]

and PathletTracer [110]) significantly reduce data collection overhead at the cost of

supporting a narrower range of queries.

We present CherryPick, a scalable, yet simple “in-band” technique for tracing packet

trajectories in SDN-enabled datacenter networks. CherryPick is designed with the

goal of minimizing two data plane resources: the number of switch flow rules and

the packet header space. Indeed, existing approaches to tracing packet trajectories in

SDN trade off one of these resources to minimize the other. At one end of the spec-

trum is the most naïve approach of assigning each network link a unique identifier and

switches embedding the identifier into the packet header during the forwarding pro-

23

Chapter 4. CherryPick: Tracing Packet Trajectory in Software-Defined Datacenter Networks24

CherryPick PathletTracer Naïve

Path length 4 6 8 4 6 8 4 6 8

#Flow rules 48 48 48 576 1.2M 1.7B 48 48 48

#Header bits 11 22 33 10 21 31 24 36 48

Table 4.1: CherryPick achieves the best of the two existing techniques for trac-

ing packet trajectories — the minimal number of switch flow rules required

by the naïve approach and close to the minimal packet header space required

by PathletTracer [110]. These results are for a 48-ary fat-tree topology; M and

B stand for million and billion respectively. See §4.3 for details.

cess. This minimizes the number of switch flow rules required, but has high packet

header space overhead especially when the packets traverse along non-shortest paths

(e.g., due to failures along the shortest path). At the other end are techniques like

PathletTracer [110] that aim to minimize the packet header space, but end up requiring

a large number of switch flow rules (§4.3); PathQuery [73] acknowledges a similar

limitation in terms of switch resources.

CherryPick minimizes the number of switch flow rules required to trace packet tra-

jectories by building upon the naïve approach — each network link is assigned a unique

identifier and switches simply embed the identifier into the packet header during the

forwarding process. However, in contrast to the naïve approach, CherryPick minimizes

the packet header space by selectively picking a minimum number of essential links to

represent an end-to-end path. By exploiting the fact that datacenter network topologies

are often well-structured, CherryPick requires packet header space comparable to state-

of-the-art solutions [110], while retaining the minimal switch flow rule requirement of

the naïve approach. For instance, Table 4.1 compares the number of switch flow rules

and the packet header space required by CherryPick against the above two approaches

for a 48-ary fat-tree topology.

Chapter 4. CherryPick: Tracing Packet Trajectory in Software-Defined Datacenter Networks25

C1 C2 C3 C4

Pod 1

A1 A2

T2T1

Pod 2

A3 A4

T4T3

Pod 3

A5 A6

T6T5

Pod 4

A7 A8

T8T7

Figure 4.1: A 4-ary fat-tree topology.

In summary, this chapter makes three contributions:

• We design CherryPick, a simple and scalable packet trajectory tracing technique

for SDN-enabled datacenter networks. The main idea in CherryPick is to exploit

the structure in datacenter network topologies to minimize number of switch

flow rules and packet header space required to trace packet trajectories. We apply

CherryPick to a fat-tree topology in this chapter to demonstrate the benefits of the

technique (§4.2).

• We show that CherryPick can trace all 4- and 6-hop paths in an up-to 72-ary

fat-tree with no hardware modification by using IEEE 802.1ad double-tagging

(§4.2).

• We evaluate CherryPick over a 48-ary fat-tree topology. Our results show that

CherryPick requires minimal number of switch flow rules while using packet

header space close to state-of-the-art techniques (§4.3).

4.2 CherryPick
This section describes the CherryPick design in detail with a focus on enabling L2/L3

packet trajectory tracing in a fat-tree network topology.

4.2.1 Preliminaries

The fat-tree topology. A k-ary fat-tree topology contains three layers of k-port switches:

Top-of-Rack (ToR), aggregate (Agg) and core. A 4-ary fat-tree topology is presented

in Figure 4.1 (ToR switches are nodes with letter T , Agg with letter A and core with let-

ter C). The topology consists of k pods, each of which has a layer of k/2 ToR switches

Chapter 4. CherryPick: Tracing Packet Trajectory in Software-Defined Datacenter Networks26

and a layer of k/2 Agg switches. k/2 ports of each ToR switch are directly connected

to servers and each of remaining k/2 ports connected to k/2 Agg switches. The re-

maining k/2 ports of each Agg switch are connected to k/2 core switches. There are

a total of k2/4 core switches where port i on each core switch is connected to pod i.

To ease the following discussion, links present in the topology are grouped into two

categories: i) intra-pod link and ii) pod-core link. An intra-pod link is one connecting

a ToR and an Agg switch, whereas a pod-core link is one connecting an Agg and a

core switch. Note that there are k2/4 intra-pod links within a pod and a total of k3/4

pod-core links. In addition, affinity core segment, or affinity segment, is a group of

core switches that can be directly reached by each Agg switch at a particular position

in each pod. In Figure 4.1, C1 and C2 in affinity segment 1 are directly reached by

Agg switches at the lefthand side in each pod (i.e., A1, A3, A5, and A7).

Routing along non-shortest paths. While datacenter networks typically use short-

est path routing, packets can traverse along non-shortest paths due to several rea-

sons. First, node and/or link failures can enforce routing of packets along non-shortest

paths [30, 76, 104]. Consider, for instance, the topology in Figure 4.1 where a packet is

being routed between Src and Dst along the shortest path Src→ T1→A1→ C1→A3

→ T3→ Dst. If link C1→ A3 fails upon the packet arrival, the packet will be forced

to traverse a non-shortest path. Second, recently proposed techniques reroute pack-

ets along alternate (potentially non-shortest) paths [83, 100, 108] to avoid congested

links. Finally, misconfiguration may also create similar situations. The term “detour”

is defined to collectively refer to situations that force packets to traverse along a non-

shortest path. The ability to be able to trace packet trajectories in case of packet detours

is, thus, important since this may reveal network failures and/or misconfiguration is-

sues.

However, packet detours complicate trajectory tracing due to the vastly increased

number of possible paths even in a medium-size datacenter. For instance, given a 48-

ary fat-tree topology, the number of shortest paths (i.e., 4-hop paths) between a host

pair in different pods is just 576. On the other hand, there exist almost 1.31 million

6-hop paths for the same host pair. As shown in §4.3, techniques that work well for

tracing shortest paths [110] do not necessarily scale to the case of packet detours.

Detour model. CherryPick is designed to work with arbitrary routing schemes. How-

ever, to ease the discussion, this work focused on a simplified detour model where

once the packet is forwarded by the Agg switch in the source pod, it does not traverse

Chapter 4. CherryPick: Tracing Packet Trajectory in Software-Defined Datacenter Networks27

any ToR switch other than the ones in the destination pod. For instance, in Figure 4.1,

consider a packet traversing from Src in Pod 1 to Dst in Pod 2. Under this simplifica-

tion, the packet visits none of ToR switches T5, T6, T7 and T8 once it leaves T1. Of

course, in practice, packets may visit ToR switches in non-destination pods. In such a

case, packet following a path longer than 6 hops, which is not common, is forwarded

to controller. Then, controller verify routing policies, and take the necessary actions

(e.g. re-injects the packet into network, raises the alarm).

4.2.2 Overview of CherryPick

This section gives a high-level description of CherryPick design. Consider the naïve

approach that embeds in the packet header an identifier (ID) for each link that the

packet traverses. For a 48-port switch, it is easy to see that this approach requires

dlog(48)e= 6 bits to represent each link. Indeed, the header space requirement for

this naïve approach is far higher than the theoretical bound, log(P) bits, where P is

the number of paths between any source-destination pair. For tracing 4-hop paths, the

naïve scheme requires 24 bits whereas only 10 bits are theoretically required since P

is 576 (P = k2/4).

CherryPick builds upon the observation that data center network topologies are of-

ten well-structured and allow reconstructing the end-to-end path without actually stor-

ing each link as the packet traverses. CherryPick, thus, cherry-picks a minimum number

of links essential to represent an end-to-end path. For instance, for the fat-tree topol-

ogy, it suffices to store the ID of the pod-core link to reconstruct any 4-hop path. To

handle a longer path, in addition to picking a pod-core link, CherryPick selects one

extra link every additional 2 hops. Hence, tracing any n-hop path (n ≥ 4) requires

only (n−4)/2+1 links worth of header space1. However, the cherry-picking of links

makes it impossible to use local port IDs as link identifiers and using global link IDs

requires a large number of bits per ID due to the sheer number of links in the topology.

CherryPick, thus, assigns link IDs in a manner that each link ID requires fewer bits

than a global ID and that the end-to-end path between any source-destination pair can

be reconstructed without any ambiguity. Section 4.2.3, discuss how CherryPick recon-

structs end-to-end paths using cherry-picking the links along with a careful assignment

of non-global link IDs.

CherryPick leverages VLAN tagging to embed chosen links in the packet header.

1A 2-hop path is the shortest path between servers in the same pod, for which CherryPick simply
picks one intra-pod link at Agg.

Chapter 4. CherryPick: Tracing Packet Trajectory in Software-Defined Datacenter Networks28

Port IP Src IP Dst Action

3 10.pod.0.0/16 10.pod.0.0/16 write_metadata: 0x0/0x0

4 10.pod.0.0/16 10.pod.0.0/16 write_metadata: 0x0/0x0

3 10.pod.0.0/16 * push_vlan_id: linkID(3)

4 10.pod.0.0/16 * push_vlan_id: linkID(4)

(a) ToR switch

Port IP Src IP Dst Action

1 * 10.pod.0.0/16 push_vlan_id: linkID(1)

2 * 10.pod.0.0/16 push_vlan_id: linkID(2)

(b) Aggregate switch

Port IP Src IP Dst Action

1 * * push_vlan_id: linkID(1)

2 * * push_vlan_id: linkID(2)

3 * * push_vlan_id: linkID(3)

4 * * push_vlan_id: linkID(4)

(c) Core switch

Figure 4.2: OpenFlow table entries at each switch layer for the 4-ary fat-tree.

In this example, the address follows the form of 10.pod.switch.host, where pod

denotes pod number (where switch is), switch denotes position of switch in

the pod, host denotes the sequential ID of each host. These entries are stored

in a separate table which will be placed at the beginning of a table pipeline.

In (a), 3 and 4 are port numbers connected to Agg layer. In (b), 1 and 2 are

port numbers connected to ToR layer.

While the OpenFlow standard [79] does not dictate how many VLAN tags can be in-

serted in the header, typically commodity SDN switches only support IEEE 802.1ad

double-tagging. With two tags, CherryPick can keep track of all 1.31 million 6-hop

paths in the 48-ary fat-tree while keeping switch flow memory overhead low. As hard-

ware programmability in SDN switch increases [25, 51], we expect that the issue raised

by the limited number of tags can be mitigated.

Chapter 4. CherryPick: Tracing Packet Trajectory in Software-Defined Datacenter Networks29

4.2.3 Design

This section discuss CherryPick design in depth. The focus is on three aspects of the

design: (1) selectively picking links that allow reconstructing the end-to-end path and

configuring switch rules to enable link picking; (2) careful assignment of link IDs to

further minimize the packet header space; and (3) the path reconstruction process using

the link IDs embedded in the packet header.

Picking links. Consider a packet arriving at an input port. The link attached to the

input port is called as ingress link. For each packet, every switch has a simple link

selection mechanism that can be easily converted into OpenFlow rules. If the packet

matches one of the rules, the ingress link is picked; and its ID is embedded into the

packet using VLAN tag.

The following describes the link selection mechanism at each switch level, and

Figure 4.2 shows flow rules derived from the mechanisms:

• ToR: If a ToR switch receives the packet from an Agg switch and if the packet’s

source belongs to the same pod, the switch picks the ingress link connected to the

Agg switch that forwarded the packet. However, if both source and destination are

in the same pod, the switch ignores the ingress link (we use write_metadata

command to implement the “do nothing” operation). For all other cases, no link is

picked.

• Aggregate: If an Agg switch receives the packet from a ToR switch and if the

packet’s destination is in the same pod, the ingress link is chosen. Otherwise, no

link is picked.

• Core: Core switch always picks the ingress link.

Using the above set of rules, CherryPick selects the minimum number of links re-

quired to reconstruct the end-to-end path of any packet. For ease of exposition, four

examples are present in Figure 4.3. First, Figure 4.3(a) illustrates the baseline 4-hop

scenario. In this scenario, core switch C2 only picks an ingress link and other switches

(e.g., A1, A3 and T3) do nothing. In case of one detour at source pod (Figure 4.3(b)),

T2 and C2 will choose each ingress link of a packet while others not. A similar

picking process is undertaken in case of one detour at destination pod (Figure 4.3(c)).

When one detour occurs between aggregate and core switch (Figure 4.3(d)), only core

switches which see the detoured packet pick the ingress links.

Link ID assignment. CherryPick assigns IDs for intra-pod links and pod-core links

Chapter 4. CherryPick: Tracing Packet Trajectory in Software-Defined Datacenter Networks30

Picking NodePicked Link✓Packet Trajectory

Dst

C1 C2 C3 C4

A1 A2

T2T1

A3 A4

T4T3

Src

✓

(a) (4, -)

Dst

C1 C2 C3 C4

A1 A2

T2T1

A3 A4

T4T3

Src

✓

✓

(b) (6, src pod)

Dst

C1 C2 C3 C4

A1 A2

T2T1

A3 A4

T4T3

Src

✓

✓

(c) (6, dst pod)

Dst

C1 C2 C3 C4

A1 A2

T2T1

A3 A4

T4T3

Src

✓

A5

T5

✓

(d) (6, core)

Figure 4.3: An illustration of link cherry-picking in CherryPick. (x , y) means

x number of hops and detour at location y.

separately.

i) Intra-pod links: Since pods are separated by core switches, the same set of links

IDs is used across all pods. Since each pod has (k/2)2 intra-pod links, we need (k/2)2

IDs. Links at the same position across pods have the same link ID.

ii) Pod-core links: Assigning IDs to pod-core links such that the correct end-to-end

path can be reconstructed while minimizing the number of bits required to represent

the ID is non-trivial. Indeed, one way to assign IDs is to consider all pod-core links,

and assign each link a unique ID. However, there are k3/4 pod-core links and such

an approach would require dlog(k3/4)e many bits per link ID. It can be significantly

reduced by viewing the problem as an edge coloring problem of a complete bipartite

graph. In this problem, the goal is to assign colors to the edges of the graph such that

adjacent edges of a vertex have different colors. Edge-coloring a complete bipartite

graph requires α different colors where α is the graph’s maximum degree.

Chapter 4. CherryPick: Tracing Packet Trajectory in Software-Defined Datacenter Networks31

(a) 4-ary fat-tree

Pod 1 Pod 2 Pod 3 Pod 4

Affinity

Segment 1

Affinity

Segment 2

Cluster
edge

Cluster
edge

(b) A bipartite graph

Pod 1 Pod 2 Pod 3 Pod 4

Affinity

Segment 1

Affinity

Segment 2

(c) Uniquely colored links (d) Edge-colored fat-tree

Figure 4.4: Edge-coloring pod-core links in a 4-ary fat-tree.

To view a fat-tree as a complete bipartite graph with two disjoint sets, a pod is

treated as a vertex in the first set and an affinity core segment as a vertex in the second

set (compare Figures 4.4(a) and 4.4(b)). Then, edges (links) from an Agg switch are

grouped to an affinity core segment and supersede them by one edge named as cluster

edge (Figure 4.4(b)). Since the maximum degree is k (i.e., the number of cluster edges

at an affinity core segment), we need k different colors to edge-color this bipartite

graph. Note that one cluster edge is a collection of all k/2 links. Therefore, we need k

different color sets such that each color set has k/2 different colors and any two color

sets are disjoint (Figure 4.4(c)). Thus in total k(k/2) different colors are required.

The actual color assignment is done by applying a near-linear time algorithm [31].

Figure 4.4(d) shows an accurate color allocation.

Putting it together, the number of unique IDs required is 3k2/4 ((k/2)2 for the

intra-pod links and k(k/2) for the pod-core links). Thus, CherryPick requires a total

of dlog(3k2/4)e bits to represent each link. For 48-ary and 72-ary fat-tree, CherryPick

requires just 11 and 12 bits respectively to represent each link. CherryPick can thus

support an up-to 72-ary fat-tree topology using the 12 bits available in VLAN tag.

Path reconstruction. With this scheme, when a packet reaches its destination, it con-

tains a minimum set of link IDs necessary to reconstruct a complete path. To keep it

simple, suppose that those link IDs in the header are extracted and stored in the order

that they were selected. At the destination, a network topology graph is given and each

link in the graph is annotated with one ID. Path reconstruction process begins from

Chapter 4. CherryPick: Tracing Packet Trajectory in Software-Defined Datacenter Networks32

source ToR switch in the graph. Initially, a list S contains the source ToR switch. Until

all the link IDs are consumed, the following steps are executed: i) take one link ID

(say, l) from the ID list and find, from the topology graph, a link whose ID is l (if l is

in the pod ID space, search for the link in either source or destination pod depending

on whether pod-core link is consumed; otherwise, search for it in the current affinity

segment); ii) identify two switches (say, sa and sb) that form the link; iii) out of the

two, choose one (say, sa) closer to the switch (say, sr) that was most recently added

to S; iv) find a shortest path (which is simple because it is either 1-hop or 2-hop path)

between sa and sr and add all intermediate nodes (those closer to sr first) and sa later

to S; v) add the remaining switch sb to S. After all link IDs are consumed, we add

to S the switches that form a shortest path from the switch included last in S to the

destination ToR switch. Finally, we obtain a complete path by enumerating switches

in S.

4.3 Evaluation
This section presents preliminary evaluation results for CherryPick, and compare it

against PathletTracer [110] over a 48-ary fat-tree topology. The two schemes are eval-

uated in terms of number of switch flow rules (§4.3.1), packet header space (§4.3.2)

and end-host resources (§4.3.3) required for tracing packet trajectories. While prelim-

inary, evaluation suggests that:

• CherryPick requires minimal number of switch flow rules to trace packet trajec-

tories. In particular, CherryPick requires as many rules as the number of ports per

switch. In contrast, PathletTracer requires number of switch flow rules linear in

the number of paths that the switch belongs to. For tracing 6-hop paths in a 48-

ary fat-tree topology, for instance, CherryPick requires three orders of magnitude

fewer switch rules than PathletTracer while supporting similar functionality.

• CherryPick requires packet header space close to state-of-the-art techniques. Com-

pared to PathletTracer, CherryPick trades off slightly higher packet header space

requirements for significantly improved scalability in terms of number of switch

flow rules required to trace packet trajectories.

• CherryPick requires minimal resources at the end hosts for tracing packet trajec-

tories. In particular, CherryPick requires as much as three orders of magnitude

fewer entries at the destination when compared to PathletTracer for tracing 6-hop

paths on a 48-ary fat-tree topology.

Chapter 4. CherryPick: Tracing Packet Trajectory in Software-Defined Datacenter Networks33

���

���

���

���

���

����

� � �
�
�
��
�
��
�
�
�
��
�
��
�

�����������

����������
�������������

(a) ToR

���

���

���

���

���

����

� � �
�����������

(b) Aggregate

���

���

���

���

���

����

� � �

�����������

�����������

(c) Core

Figure 4.5: CherryPick requires number of switch flow rules comparable to

PathletTracer for tracing shortest paths. However, for tracing non-shortest

paths (e.g., packets may traverse such paths in case of failures), the number

of switch flow rules required by PathletTracer increases super-linearly. In con-

trast, the number of switch flow rules required by CherryPick remains constant.

4.3.1 Switch flow rules

CherryPick, for any given switch, requires as many flow rules as the number of ports

at that switch. In contrast, for any given switch, PathletTracer requires as many switch

flow rules as the number of paths that contain that switch. Since the latter depends

on the layer at which the switch resides, number of switch flow rules are plotted for

CherryPick and PathletTracer across each layer separately (see Figure 4.5).

It is observed that for tracing shortest paths only, the number of switch flow rules

required by PathletTracer is comparable to those required by CherryPick. However, if

one desires to trace non-shortest paths (e.g., in case of failures), the number of switch

flow requirement of PathletTracer grows super-linearly with the number of hops con-

stituting the paths2. For tracing 6-hop paths, for instance, PathletTracer requires over

a million rules on ToR switch, tens of thousands of rules on Aggregate switch, and

2The number of switch flow rules required by PathletTracer could be reduced by tracing “pathlets”
(a sub-path of an end-to-end path) at the cost of coarser tracing compared to CherryPick.

Chapter 4. CherryPick: Tracing Packet Trajectory in Software-Defined Datacenter Networks34

��

���

���

���

���

���

���

�� �� �� ��� ���

�
�
��
�
��
�
�
�
�
�
��
�
���

�����������

����������
�������������

Figure 4.6: CherryPick requires packet header space comparable to Pathlet-

Tracer for tracing packet trajectories. In particular, for tracing 6-hop paths

in a 48-ary fat-tree topology, CherryPick requires 22 bits while PathletTracer

requires 21 bits worth of header space.

thousands of rules on Core switch. This means that PathletTracer would not scale well

for path tracing at L3 layer because packets may follow non-shortest paths. In contrast,

CherryPick requires a small number of switch flow rules independent of path length.

4.3.2 Packet header space

We now evaluate the number of bits in the packet header required to trace packet tra-

jectories (see Figure 4.6). Recall from §4.2 that to enable tracing of any n-hop path

in a fat-tree topology, CherryPick requires embedding (n−4)/2+1 links in the packet

header. The number of bits required to uniquely represent each link increases logarith-

mically with number of ports per switch; for a 48-ary fat-tree topology, each link re-

quires 11 bits worth of space. PathletTracer requires log(P) bits worth of header space,

where P is the number of paths between the source and the destination. We observe

that CherryPick requires slightly higher packet header space than PathletTracer (espe-

cially for longer paths); however, as discussed earlier, CherryPick trades off slightly

higher header space requirement with significantly improved scalability in terms of

switch flow rules.

4.3.3 End host resources

Finally, performance of CherryPick is compared against PathletTracer in terms of the

resource requirements at the end host. Each of the two schemes stores certain entries

at the end host to trace the packet trajectory using the information carried in the packet

header. Processing the packet header requires relatively simple lookups into the stored

entries for both schemes, which is a lightweight operation. We hence only quantify the

Chapter 4. CherryPick: Tracing Packet Trajectory in Software-Defined Datacenter Networks35

���

���

���

����

����

� � �
�
�
��
�
��
�
�
�
�
�
��
�
��
�
��
��
�

�����������

����������
�������������

Figure 4.7: CherryPick requires significantly fewer entries than PathletTracer

at each end host compared to trace packet trajectories. In particular, for trac-

ing 6-hop paths in a 48-ary fat-tree topology, CherryPick requires less than

1MB worth of entries while PathletTracer requires approximately 12GB worth

of entries at each end host.

number of entries required for both schemes.

CherryPick stores, at each destination, the entire set of network links, each anno-

tated with a unique identifier. PathletTracer requires storing a “codebook”, where each

entry is a code assigned to each of the unique path. For fair comparison, we assume

that individual hosts in PathletTracer store an equal-sized subset of the codebook that

is only relevant to them.

Figure 4.7 shows that PathletTracer needs to store non-trivial number of entries if

non-shortest paths need to be traced. For instance, PathletTracer requires more than

109 entries at each end host to trace 6-hop paths, which translates to approximately

12GB worth of entries as each entry is about 12 bytes long. As discussed earlier, this

overhead for PathletTracer could be reduced at the cost of tracing at coarser granulari-

ties. In contrast, since CherryPick stores only the set of links constituting the network,

it requires a small, fixed number of entries (∼56K entries per host for a 48-ary fat-tree

topology).

Chapter 4. CherryPick: Tracing Packet Trajectory in Software-Defined Datacenter Networks36

4.4 Summary
This chapter presents CherryPick, a simple yet scalable technique for tracing packet

trajectories in SDN-enabled datacenter networks. The core idea in CherryPick is that

structure in datacenter network topologies enable reconstructing end-to-end paths us-

ing a few essential links. To that end, CherryPick “cherry-picks” a subset of links along

the packet trajectory and embeds them into the packet header. CherryPick is applied

to a fat-tree topology in this chapter and showed that it requires minimal switch flow

rules to enable tracing packet trajectories, while requiring packet header space close to

state-of-the-art techniques.

Chapter 5

Simplifying Data center Network

Debugging with PathDump

5.1 Introduction
Data center networks are complex. Networks are built based on scale-out topologies,

that consists of tens of thousands of network devices, and aggregate traffic can easily

exceed 100 Tbps [112]. Such a large-scale network also involves complex dependen-

cies [112, 44] among these many network components. Despite this complexity, users

continue to demand very high performance for their applications. Performance degra-

dation of these services, even for short period of time, can cause millions of dollars

revenue loss. For instance, Amazon reports [1] that every 100 ms delay costs 1% of

its e-commerce revenue. The network becomes even more complex, with enforcement

of policies like security and isolation. Increasingly, many data centers are using pro-

grammable hardware [10]. In these data centers, network switches can be dynamically

programmed to achieve various goals. This programmability adds to the complexity of

networks.

In such a large, complex and dynamic environment, network problems in the data

plane are inevitable. For example, failures or bugs can trigger forwarding rule updates

and temporarily create loops in the network. A faulty interface drops packets at random

and does not update respective counters, thus creating a silent random packet drop

problem [112]. In the presence of such data plane problems, what is happening in the

network may not match with the network operator’s intention, which could result in

performance degradation [109, 112] or even network outages [59]. Ideally, the operator

wants to debug and fix such network problems in real time using debugging tools. To

37

Chapter 5. Simplifying Data center Network Debugging with PathDump 38

this end, there have been lots of recent efforts in building debugging tools [36, 107, 96,

112, 75, 66, 60, 47, 63].

Network debuggers are even more complex. Over the years, the class of network

problems supported by existing network debugging tools has grown significantly. Ac-

cordingly, the tools have incorporated increasingly complex techniques — collecting

data plane snapshots [66, 60, 59, 58, 40], collecting per-packet per-switch packet

logs [112, 77, 47, 86, 107, 96, 36, 13], selective mirroring of packets [112], packet

sampling [107, 96, 36, 13], using active probe packets [16, 109, 112], replaying traf-

fic [103], dynamic rule installation [75, 46] — and this list barely scratches the surface

of all the sophisticated techniques used in existing network debugging tools.

Our goal is not add to the impressive collection of network debugging techniques.

Instead, we ask whether there are a non-trivial number of network debugging problems

that could obviate the need for sophisticated in-network techniques. Thus, our focus is

not to try to beat existing tools in either generality or in performance, but to help them

focus on a smaller subset of nails (debugging problems) that we need a hammer (de-

bugging techniques) for. The hope is that by focusing on a smaller subset of problems,

the already complex networks1 and the debugging tools for these networks can be kept

as simple as possible.

PathDump design. We present PathDump, an end-host based network debugger that

demonstrates our approach by enabling a large class of debugging problems with min-

imal in-network functionality. PathDump design is based on tracing packet trajectories

and comprises of the following:

• Switches are simple; they neither require dynamic rule updates nor perform any

packet sampling or mirroring. In addition to its usual operations, a switch checks

for a condition before forwarding a packet; if the condition is met, the switch

embeds its identifier into the packet header (e.g., with VLAN tags).

• An edge device, upon receiving a packet, records the list of switch identifiers

in the packet header on a local storage and query engine; a number of entries

stored in the engine (used for debugging purposes) are also updated based on

these switch identifiers.

• Entries at each edge device can be used to trigger and debug anomalous network

behavior; a query server can also slice-and-dice entries across multiple edge

1as eloquently argued in [112]; in fact, our question about simpler networks and debugging tools
was initially motivated by the arguments about network complexity in [112].

Chapter 5. Simplifying Data center Network Debugging with PathDump 39

devices in a distributed manner (e.g., for debugging functionalities that require

correlating entries across flows).

PathDump’s design, by requiring minimal in-network functionality, presents several

benefits as well as raises a number of interesting challenges. The benefits are rather

straightforward. PathDump not only requires minimal functionality to be implemented

at switches, but also uses minimal switch resources; thus, the limited switch resources [33,

70] can be utilized for exactly those tasks that necessitate an in-network implementa-

tion2. PathDump also preserves flow-level locality — information about all packets

in the same flow is recorded and analyzed on the same end-host. Since PathDump

requires little or no data transfer in addition to network traffic, it also alleviates the

bandwidth overheads of several existing in-network debuggers [47, 86, 112].

PathDump challenges. PathDump resolves several challenges to achieve the above

benefits. First challenge is regarding generality — what class of network problems

can PathDump debug with minimal support from network switches? To get a rela-

tively concrete answer in light of numerous possible network debugging problems, we

examined all the problems discussed in several recent works [47, 51, 75, 112] (see

Table 5.2). Interestingly, we find that PathDump can already support more than 85%

of these problems. For some problems, network support seems necessary; however, we

show that PathDump can help “pinpoint” these problems to a small part of the network.

We discuss the design, implementation and evaluation of PathDump for the supported

functionality in §5.2.3 and §5.4.

PathDump also resolves the challenge of packets not reaching the edge devices

(e.g., due to packet drops or routing loops). A priori, it may seem obvious that PathDump

must not be able to debug such problems without significant support from network

switches. PathDump resolves the packet drop problem by exploiting the fact that data-

centers typically perform load balancing (using ECMP or packet spraying [35]); specif-

ically, we show that the difference between number of packets traversing along multi-

ple paths allows identifying spurious packet drops. PathDump can in fact debug routing

loops by leveraging the fact that commodity SDN switches recognize only two VLAN
2As PathDump matures, we envision it to incorporate (potentially simpler than existing) in-

network techniques for debugging problems that necessitate an in-network implementation. As
network switches evolve to provide more powerful functionalities (e.g., on-chip sampling) and/or
larger resource pools, partitioning the debugging functionality between the edge devices and the
network elements will still be useful to enable capturing network problems at per-packet granularity
— a goal that is desirable and yet, infeasible to achieve using today’s resources. Existing in-network
tools that claim to achieve per-packet granularity (e.g., Everflow [112]) have to resort to sampling
to overcome scalability issues and thus, fail to achieve per-packet granularity.

Chapter 5. Simplifying Data center Network Debugging with PathDump 40

tags in hardware and processing more than two tags involves switch CPU (§5.4.5).

Finally, PathDump carefully optimizes the use of data plane resources (e.g., switch

rules and packet header space) and end-host resources (e.g., CPU and memory). PathDump

extends our prior work, CherryPick (Chapter 4), for per-packet trajectory tracing us-

ing minimal data plane resources. For end-host resources, we evaluate PathDump over

a wide range of network debugging problems across a variety of network testbeds

comprising of commodity network switches and end-hosts; our evaluation shows that

PathDump requires minimal CPU and memory at end-hosts while enabling network

debugging over fine-grained time scales.

PathDump contributions. Overall, PathDump makes three main contributions:

• Make a case for partitioning the network debugging functionality between the

edge devices and the network elements, with the goal of keeping network switches

free from complex operations like per-packet log generation, dynamic rule up-

dates, packet sampling, packet mirroring, etc.

• Design and implementation of PathDump3, a network debugger that demon-

strates that it is possible to support a large class of network management and

debugging problems with minimal support from network switches.

• Evaluation of PathDump over operational network testbeds comprising of com-

modity network hardware demonstrating that PathDump can debug network events

at fine-grained time-scales with minimal data plane and end-host resources.

This chapter is organized as follows: Section 5.2 gives overview of PathDump, Sec-

tion 5.3 has details of PathDump’s implementation, Section 5.4 discusses various de-

bugging applications enabled using PathDump, and Section 5.5 presents the PathDump

system’s evaluation.

5.2 Overview
We start with an overview of the PathDump interface (§5.2.1) and PathDump design

(§5.2.2). We then provide several examples of using the PathDump interface for de-

bugging network problems (§5.2.3, §5.2.4).

3Available at: https://github.com/PathDump.

https://github.com/PathDump

Chapter 5. Simplifying Data center Network Debugging with PathDump 41

Host API Description

getFlows(linkID, timeRange) Return list of flows that traverse linkID

during specified timeRange.

getPaths(flowID, linkID, timeRange)Return list of Paths that include linkID,

and are traversed by flowID during speci-

fied timeRange.

getCount(Flow, timeRange) Return packet and byte counts of a flow

within a specified timeRange.

getDuration(Flow, timeRange) Return the duration of aflowwithin a spec-

ified timeRange.

getPoorTCPFlows(Threshold) Return the flowIDs for which

protocol = TCP and the number

of consecutive packet retransmissions

exceeds a threshold.

Alarm(flowID, Reason, Paths) Raise an alarm regarding flowID with a

reason code (e.g., TCP performance alert

(POOR_PERF)), and corresponding list of

Paths.

Controller API Description

execute(List〈HostID〉,Query) Execute aQuery once at each host specified

in list of HostIDs; a Query could be any

of the ones from Host API.

install(List〈HostID〉,Query,Period) Install a Query at each host specified in

list of HostIDs to be executed at regular

Periods. If the Period is not set, the

query execution is triggered by a new event

(e.g., receiving a packet).

uninstall(List〈HostID〉,Query) Uninstall a Query from each host specified

in list of HostIDs

Table 5.1: PathDump Interface. See §5.2.1 for definitions and discussion.

Chapter 5. Simplifying Data center Network Debugging with PathDump 42

5.2.1 Interface

PathDump exposes a simple interface for network debugging; see Table 5.1. We as-

sume that each switch and host has a unique ID. We use the following definitions:

• A linkID is a pair of adjacent switchIDs (〈Si,Sj〉);

• A Path is a list of switchIDs (〈Si,Sj, . . .〉);

• A flowID is the usual 5-tuple (〈srcIP, dstIP, srcPort, dstPort, protocol〉);

• A Flow is a (〈flowID, Path〉) pair; this will be useful for cases when packets

from the same flowID may traverse along multiple Paths.

• A timeRange is a pair of timestamps (〈ti,tj〉);

PathDump supports wildcard entries for switchIDs and timestamps. For

instance, (〈?,Sj〉) is interpreted as all incoming links for switch Sj and (〈ti,?〉) is inter-

preted as “since time ti”.

Note that each host exposes the host API in Table 5.1 and returns results for “local”

flows, that is, for flows that have this host as their dstIP. To collect the results dis-

tributed across PathDump instances at individual end-hosts, the controller may use the

controller API — to execute a query, to install a query for periodic execution,

or to uninstall a query.

5.2.2 Design Overview

The central idea in PathDump is to trace packet trajectories. To achieve this, each

switch embeds its switchID in the packet header before forwarding the packet. How-

ever, naïvely embedding all the switchIDs along the packet trajectory requires large

packet header space, especially when packets may traverse a non-shortest path (e.g.,

due to failures along the shortest path) [98]. PathDump uses the link sampling idea

from CherryPick (see §4.2) to trace packet trajectories using commodity switches.

However, CherryPick supports commonly used datacenter network topologies (e.g.,

FatTree, VL2, etc.) and does not work with arbitrary topologies. Note that this limi-

tation on supported network topologies is merely an artifact of today’s hardware — as

networks evolve to support larger packet header space, PathDump will support more

general topologies without any modification in its design and implementation.

An edge device, upon receiving a packet, extracts the list of switchIDs in the packet

header and records them on a local storage and query engine (along with associated

Chapter 5. Simplifying Data center Network Debugging with PathDump 43

metadata, e.g., flowID, timestamps, number of packets, number of bytes, etc.). Each

edge device stores:

• A list of flow-level entries that are used for debugging purposes; these entries

are updated upon each event (e.g., receiving a packet).

• A static view of the datacenter network topology, including the statically as-

signed identifiers for each switch. This view provides PathDump with the “ground

truth” about the network topology and packet paths.

• And, optionally, network configuration files specifying forwarding policies. These

files are also used for monitoring and debugging purposes (e.g., ensuring packet

trajectories conform to specified forwarding policies). The operator may also

push these configuration files to the end-hosts dynamically using the Query

installation in controller API.

Finally, each edge device exposes the API in Table 5.1 for identifying, triggering and

debugging anomalous network behavior. The entries stored in PathDump (within an

edge device or across multiple edge devices) can be sliced-and-diced for implement-

ing powerful debugging functionalities (e.g., correlating entries across flows going to

different edge devices). PathDump currently disregards packet headers after updating

the entries to avoid latency and throughput bottlenecks in writing to persistent storage;

extending PathDump to store and query at per-packet granularity remains an intriguing

future direction.

5.2.3 Example applications

We now discuss several examples for network debugging applications using PathDump

API.

Path conformance. Suppose the operator wants to check for policy violations on

certain properties of the path taken by a particular flowID (e.g., path length no more

than 6, or packets must avoid switchID). Then, the controller may install the

following query at the end-hosts:

Paths = getPaths(flowID, <*, *>, *)

for path in Paths:

if len(path)>=6 or switchID in path:

result.append (path)

if len(result) > 0:

Alarm (flowID, PC_FAIL, result)

Chapter 5. Simplifying Data center Network Debugging with PathDump 44

PathDump executes the query either upon each packet arrival, or periodically when

a Period is specified in the query; an Alarm() is triggered upon each violation.

Load imbalance. Understanding why load balancing works poorly (as explained in

Section 2.2) is of interest to operators because uneven traffic splits may cause severe

congestion, thereby hurting throughput and latency performance. PathDump helps di-

agnose load imbalance problems, independent of the underlying scheme used for load

balancing (e.g., ECMP or packet spraying). The following example constructs flow

size distribution for each of two egress ports (i.e., links) of interest on a particular

switch:

result = {}; binsize = 10000

linkIDs = (l1, l2); tRange = (t1, t2)

for lID in linkIDs:

flows = getFlows (lID, tRange)

for flow in flows:

(bytes, pkts) = getCount (flow, tRange)

result[lID][bytes/binsize] += 1

return result

Through cross-comparison of the flow size distributions on the two egress ports,

the operator can tell the degree of load imbalance. Even finer-grained diagnosis on

load balancing is feasible; e.g., when packet spraying is used, PathDump can identify

whether or not the traffic of a flow in question is equally spread along various end-to-

end paths. We demonstrate these use cases in §5.4.2.

Silent random packet drops. This network problem occurs when some faulty inter-

face at switch drops packets at random (§2.2) without updating the discarded packet

counters at respective interfaces. It is a critical network problem [112] and is often

very challenging to localize.

PathDump allows a network operator to implement a localization algorithm such

as MAX-COVERAGE [61]. The algorithm, as input, requires logs or observations on

a network problem (that is, failure signatures). Using PathDump, a network operator

can install a TCP performance monitoring query at the end-hosts for periodic

monitoring (e.g., period set to be 200 ms):

flowIDs = getPoorTCPFlows()

for flowID in flowIDs:

Alarm (flowID, POOR_PERF, [])

Chapter 5. Simplifying Data center Network Debugging with PathDump 45

Every time an alarm is triggered, the controller sends the respective end-host (by pars-

ing flowID) the following query and collects failure signatures (that is, path(s) taken

by the flow that suffers serious retransmissions):

flowID = (sIP, sPort, dIP, dPort, 6)

linkID = (*, *); tRange = (t1, *)

paths = getPaths (flowID, linkID, tRange)

return paths

The controller receives the query results (that is, paths that potentially include faulty

links), locally stores them, and runs the MAX-COVERAGE algorithm implemented

as only about 50 lines of Python code. This procedure repeats whenever a new alert

comes up. As more path data of suffering TCP flows get accumulated, the algorithm

localizes faulty links more accurately.

Traffic measurement. PathDump also allows to write queries for various measure-

ments such as traffic matrix, heavy hitters, top-k flows, and so forth. The following

query computes top-1000 flows at a given end-host:

h = []; linkID = (*, *); tRange = (t1, t2)

flows = getFlows (linkID, tRange)

for flow in flows:

(bytes, pkts) = getCount (flow, tRange)

if len(h) < 1000 or bytes > h[0][0]:

if len(h) == 1000: heapq.heappop (h)

heapq.heappush (h, (bytes, flow))

return h

To obtain top-k flows from multiple end-hosts, the controller can execute this query

at the desired subset of the end-hosts.

5.2.4 Reducing debugging space

As discussed in §5.1, some network debugging problems necessitate an in-network

implementation. One such problem is network switches incorrectly modifying the

packet header — for some corner case scenarios, it seems hard for any end-host based

system to be able to debug such problems.

One precise example in case of PathDump is switches inserting incorrect switchIDs

in the packet header. In case of such network anomalies, PathDump may not be

able to identify the problem. For instance, consider the path conformance appli-

cation from §5.2.3 and suppose we want to ensure that packets do not traverse a

Chapter 5. Simplifying Data center Network Debugging with PathDump 46

Controller

Trajectory Information

Base (TIB)

AgentOVS

Update

Extract

trajectory info

Request

& Reply

Packet carries its trajectory information

in its header

Debugging

Applications

Packet

stream

Raise alarm

TIB

PathDump

APIs

Lookup

TCP Perf

Monitoring

(e.g., loop)

Trap packets traversing

suspiciously long paths

Figure 5.1: PathDump system overview

switch s1 (that is, switchID=s1 in the example). Suppose the packet trajectory

{src,s1,s2,...,dst} actually involves s1 and hence, PathDump must raise an

alarm.

The main problem is that if s1 inserts a wrong switchID, say s′1, then PathDump

will not raise an alarm. However, in many cases, the trajectory {src,s′1,s2,...,dst}

in itself will be infeasible — either because s′1 is not one of the switchIDs or be-

cause the switch with ID s′1 does not connect directly to either src or s2. In such

cases, PathDump will be able to trigger an alarm stating that one of the switches has

inserted incorrect switchID; this is because PathDump continually compares the ex-

tracted packet trajectory to the ground truth (network topology) stored in PathDump.

5.3 Implementation
PathDump implementation comprises of three main components (Figure 5.1):

• In-network implementation for tracing packet trajectories using packet headers

and static network switch rules (§5.3.1); PathDump’s current implementation

relies entirely on commodity OpenFlow features for packet trajectory tracing.

• A server stack that implements a storage and query engine for identifying, trig-

gering and debugging anomalous network behavior (§5.3.2); we use C/C++ and

Python for implementing the stack.

• A controller running network debugging applications in conjunction with the

server stack (§5.3.3). The current controller implementation uses Flask [4] — a

Chapter 5. Simplifying Data center Network Debugging with PathDump 47

micro framework supporting a RESTful web service — for exchange of query-

responses messages between the controller and the end-hosts.

We describe each of the individual components below. As mentioned earlier, PathDump

implementation is available at https://github.com/PathDump.

5.3.1 Tracing packet trajectory

PathDump traces packet trajectories at per-packet granularity by embedding into the

packet header the IDs of switches that a packet traverses. To achieve this, PathDump

resolves two related challenges.

First, the packet header space is a scarce resource. The naïve approach of having

each switch embed its switchID into the header before forwarding the packet would

require large packet header space, especially when packets can traverse non-shortest

paths (e.g., due to failures along the shortest path). For instance, tracing a 8-hop path on

a 48-ary FatTree topology would require 4 bytes worth of packet header space, which

is not supported using commodity network components4. PathDump traces packet

trajectories using close to optimal packet header space by using the link sampling idea

presented in our preliminary work, CherryPick §4.2. Intuitively, CherryPick builds

upon the observation that most frequently used datacenter network topologies are very

structured (e.g., FatTree, VL2) and this structure enables reconstructing an end-to-end

path by keeping track of a few carefully “sampled” links along any path. We provide

more details below.

The second challenge that PathDump resolves is implementation of packet trajec-

tory tracing using commodity off-the-shelf SDN switches. Specifically, PathDump

uses the VLAN and the MPLS tags in packet headers along with carefully constructed

network switch rules to trace packet trajectories. One key challenge in using VLAN

tags is that the ASIC of SDN switch (e.g., Pica8 P-3297) typically offers line rate pro-

cessing of a packet carrying up to two VLAN tags (i.e., QinQ). Hence, if a packet

somehow carries three or more tags in its header, a switch attempting to match TCP/IP

header fields of the packet would trigger a rule miss and usually forward it to the

controller. This can hurt the flow performance. We show that PathDump can enable

per-packet trajectory tracing for most frequently used datacenter network topologies

(e.g., FatTree and VL2), even for non-shortest paths (e.g., up to 2 hops in addition
4We believe networks will evolve to support larger packet header space. We discuss how

PathDump could exploit this to provide even stronger functionality. However, we do note that even
with availability to larger packet header space, ideas in PathDump may be useful since this additional
packet header space will be shared by multiple applications.

https://github.com/PathDump

Chapter 5. Simplifying Data center Network Debugging with PathDump 48

to the shortest path), using just two VLAN tags. Note that these limitations on sup-

ported network topologies and path lengths are merely an artifact of today’s hardware

— PathDump achieves what is possible with today’s networks, and as networks evolve

to support larger packet header space, PathDump will support more general topologies

(e.g., Jupiter network [91]) and/or longer path lengths without any modification in its

design and implementation.

However, not all non-shortest paths need to be saved and examined at end-hosts.

In particular, when a path is suspiciously long, instant inspection at the controller is

desirable while packets are on the fly; it may indeed turn out to be a serious problem

such as routing loop. PathDump allows the network operator to define the number

of hops that would constitute a suspiciously long path (we use 4 hops in addition to

the shortest path length as default because packets rarely traverse such a long path in

datacenter networks).

For the ease of understanding, we briefly review the ideas from CherryPick below;

we refer the readers to §4.2 for more detailed discussion and evaluation. We then

close the subsection with a discussion on identifying and trapping packets traversing a

suspiciously long path.

Tracing technique. The need for techniques like CherryPick is clear; a naïve approach

of embedding link ID of each hop into the packet header simply does not work (more

details in §4.2). Assuming 48-port switches, embedding a 6-hop path requires 36 bits

in the header space whereas two VLAN tags only allow 24 bits.

The core idea of CherryPick is to sample links that suffice in representing an end-

to-end path. One key challenge is that sampling links makes a local identifier inappli-

cable. Instead, each link should be assigned a global identifier. Clearly, the number of

physical links is far more than that of available link IDs (c.f., 4,096 unique link IDs

expressed in a 12 bit VLAN identifier vs. 55,296 physical links in a 48-ary fat-tree

topology).

In addressing the issue, the following observation is used: aggregate switches be-

tween different lower level blocks (e.g., pods) must be interconnected only through

core switches. Therefore, instead of assigning global IDs for the links in each pod,

it becomes possible to share the same set of global IDs across pods. In addition,

the scheme efficiently assigns IDs to core links by applying an edge-coloring tech-

nique [31]. The following describes how the links should be picked for fat-tree and

VL2:

Chapter 5. Simplifying Data center Network Debugging with PathDump 49

• Fat-tree: A key observation in it is that given any 4-hop path, when a packet

reaches a core switch, the ToR-aggregate link it traversed becomes easily known, and

there is only a single route to destination from the core switch. Hence, to build the

end-to-end path, it is sufficient to pick one aggregate-core link that the packet traverses.

When the packet is diverted from its original shortest path, the technique selects one

extra link every additional 2 hops. Thus, two VLAN tags make it feasible to trace any

6-hop path. The mechanism is easily converted into OpenFlow rules (see §4.2). The

number of rules at switch grows linearly over switch port density.

• VL2: VL2 requires to sample three links for tracing any 6-hop path. Hence, we

additionally use DSCP field. However, because the field is only 6-bits long, we use it

in order to sample an ToR-aggregate link in pod where there are only k links. After

the DSCP field is spent, VLAN tags are being used over a subsequent path. If a packet

travels over a 6-hop path, it carries one DSCP value and two VLAN tags at the end.

In this way, rule misses on data plane is prevented for packets traversing a 6-hop path.

We need two rules per ingress port: one for checking if DSCP field is unused, and the

other to add VLAN tag otherwise, thus still keeping low switch rule overheads.

Given a 12-bit link ID space (i.e., 4,096 link IDs), the scheme supports a fat-tree

topology with 72-port switches (about 93K servers). Since DSCP field is additionally

used for VL2, the scheme can support a VL2 topology with 62-port switches (roughly

19K servers).

Instant trap of suspiciously long path. PathDump by design supports identifying

and trapping packets traversing a suspiciously long path. When a packet traverses one

such path, it cannot help but carry at least three tags. An attempt to parse IP layer

for forwarding at switch ASIC would cause a rule miss and the packet is sent to the

controller. The controller then can immediately identify the suspiciously long path.

We leverage this ability of PathDump to implement a real-time routing loop detection

application (see §5.4.5).

5.3.2 Server stack

The modules in the server stack conduct three tasks mainly. The first is to extract and

store the path information embedded in the packet header. Next, a query processing

module receives queries from the controller, consumes the stored path data and pro-

vides responses. The final task is to do active monitoring of flows’ performance and

prompt raise of alerts to the controller.

Trajectory information management. The trajectory information base (TIB) is a

Chapter 5. Simplifying Data center Network Debugging with PathDump 50

Topology

Packet

stream

Link ID

extraction

Trajectory

construction

Trajectory

memory

Open vSwitch

User-level

to upper stack

Export per-path flow record

Create/Update per-path flow record with link IDs

Trajectory Information Base (TIB)

Trajectory

cache

Lookup

Update

<flow ID, path, stime, etime, #bytes, #pkts>

TIB record

Figure 5.2: Trajectory information update procedure.

repository where packet trajectory information is stored. Because storing path infor-

mation of individual packets can waste too much disk space, we do per-path aggre-

gation given a flow. In other words, we maintain unique paths and their associated

counts for each flow. First, a packet is classified based on the usual 5-tuple flow ID

(i.e., <srcIP, dstIP, srcPort, dstPort, proto>). Then, a path-specific classification is

conducted. Figure 5.2 illustrates an overall procedure of updating TIB.

When a packet arrives at a server, we first retrieve its metadata (flow ID, path

information (i.e., link IDs) and bytes). Because the path information is irrelevant to

the upper layer protocols, we strip it off from the packet header in Open vSwitch

(OVS) before it is delivered to the upper stack via the regular route. Next, using the

flow ID and link IDs together as a key, we create or update a per-path flow record in

trajectory memory. Note that link IDs do not represent a complete end-to-end path

yet. Each record contains flow ID, link IDs, packet and byte counts and flow duration.

That is, one per-path flow record corresponds to statistics on packets of the same flow

that traversed the same path. Thus, at a given point in time, more than one per-path

flow record can be associated with a flow. Similar to NetFlow, if FIN or RST packet is

seen or a per-path flow record is not updated for a certain time period (e.g., 5 seconds),

the flow record is evicted from the trajectory memory and forwarded to the trajectory

construction sub-module.

The sub-module then constructs an end-to-end path with link IDs in a per-path flow

record. It first looks up the trajectory cache with srcIP and link IDs. If there is a cache

hit, it immediately converts the link IDs into a path. If not, the module maps link IDs

Chapter 5. Simplifying Data center Network Debugging with PathDump 51

to a series of switches by referring to a physical topology, and builds an end-to-end

path. It then updates the trajectory cache with (srcIP, link IDs, path). In this process, a

“static” physical network topology graph suffices, and there is no need for dynamically

updating it unless the topology changes physically. Finally, the module writes a record

(<flow ID, path, stime, etime, #bytes, #pkts>) to TIB.

We add to OVS about 150 lines of C code to support the trajectory extraction and

store function, and run the modified OVS on DPDK [3] for high-speed packet process-

ing (e.g., 10 Gbps). The module is implemented with roughly 600 lines of C++ code.

We build TIB using MongoDB [7].

Query processing. PathDump maintains TIB in a distributed fashion (across all servers

in the datacenter). The controller sends server agents a query, composed of PathDump

APIs (§5.2.1), which in turn processes the TIB data and returns results to the controller.

The querying mechanism is composed of about 640 lines of Python code.

Depending on debugging applications, the controller needs to consult more than

one TIB. For instance, to check path conformance of a packet or flow, accessing only

one TIB is sufficient. On the other hand, some debugging queries (e.g., load imbalance

diagnosis; see §5.4.2) need path information from all distributed TIBs.

To handle these different needs properly, we implement two types of query mecha-

nisms: (i) direct query and (ii) multi-level query. The former is a query that is directly

sent to one specific TIB by the controller. Inspired by Dremel [67] and iMR [65], we

design a multi-level query mechanism whereby the controller creates a multi-level ag-

gregation tree and distributes it alongside a query. When a server receives query and

tree, it performs two tasks: (i) query execution on local TIB and (ii) redistribution of

both query and tree.

In general, multi-level data aggregation mechanisms including ours can be inef-

fective in improving response times when the data size is not large and there is no

much data reduction during aggregation along the tree. In §6.6, we present the tradeoff

through two multi-level queries—flow size distribution and top-k flows.

Finally, when a query is executed, the latest TIB records relevant to the query

may reside in the trajectory memory, yet to be exported to the TIB. We handle this by

creating an IPC channel and allowing the server agent to look up the trajectory memory.

Not all debugging applications require to access the trajectory memory. Instead, the

alerts raised by Alarm() trigger the access to the memory for debugging at even

finer-grained time scales.

Chapter 5. Simplifying Data center Network Debugging with PathDump 52

Controller

Server

Server

execute

Alarm (..., POOR_PERF, …)

Event-driven

debugging

Applications

On-demand

debugging

Applications

Operator

Figure 5.3: Workflow of PathDump.

Active monitoring module. Timely triggering of a debugging process requires fast

detection of symptoms on network problems. Servers are a right vantage point to

instantly sense the symptoms like TCP timeouts, high retransmission rates, large RTT

and low throughput.

We thus implement a monitoring module at server that checks TCP connection

performance passively, and promptly raises alerts to the controller in the advent of

abnormal TCP behavior. Specifically, by using tcpretrans script in perf-tools5,

the module checks the packet retransmission of individual flows at regular intervals

(configured by installing a query). If packet retransmissions are observed more than a

configured frequency, an alert is raised to the controller, which can subsequently take

actions in response. Thus, this active TCP performance monitoring allows fast trou-

bleshooting. We exploit the alert functionality to expedite debugging tasks such as

silent packet drop localization (§5.4.3), blackhole diagnosis (§5.4.4) and TCP perfor-

mance anomaly diagnosis (§5.4.6).

In addition, network behavior desired by operators can be expressed as network

invariants (e.g., maximum path length), which can be installed on end-hosts using

install(). This module uses Alarm() to inform any invariant’s violation as

depicted in §5.2.3.

5.3.3 PathDump controller

PathDump controller plays two roles: installing flow rules on switches and executing

debugging applications.

It installs flow rules in switches that append link IDs in the packet header (using

push_vlan output action) in order to enable packet trajectory tracing. This is one-

time task when the controller is initialized, and the rules are not modified once they are

5https://github.com/brendangregg/perf-tools

https://github.com/brendangregg/perf-tools

Chapter 5. Simplifying Data center Network Debugging with PathDump 53

A B

S1

S4

S5

S2 S6

S3 S7

Expected path Actual path

Src MAC S6-S7 S2-S3Dst MAC

Two VLAN tags containing trajectory info

Link failure

X

Figure 5.4: An example of path conformance check. The dotted green line is

an expected path and the red line is an actual path that packet traverses.

installed. We use switches that support a pipeline of flow tables and that are therefore

compatible with OpenFlow specification v1.3.0.

Debugging applications can be executed under two contexts as depicted in Figure 5.3:

(i) event-driven, and (ii) on-demand. It is event-driven when the controller receives

alerts from the active monitoring module at end-hosts. The other, obvious way is that

the operator executes debugging applications on demand. Queries and results are ex-

changed via direct query or multi-level query. The controller consists of about 650

lines of Python code.

5.4 Applications
PathDump can support various debugging applications for datacenter network prob-

lems including both persistent and transient ones (see Table 5.2 for a comprehensive

list of debugging applications). In this section, we highlight a subset of those applica-

tions.

5.4.1 Path conformance check

A path conformance test is to check whether an actual path taken by a packet conforms

to operator policy. To demonstrate that, we create an experimental case shown in

Figure 5.4. In the figure, the intended path of a packet is a 4-hop shortest path from

server A to B. However, a link failure between switches S3 and S4 makes S3 forward

the packet to S6 (we implement a simple failover mechanism in switches with a few

flow rules). As a result, the packet ends up traversing a 6-hop path. The PathDump

agent in B is configured with a predicate, as a query (as depicted in §5.2.3), that a

6-hop or longer path is a violation of the path conformance policy. The agent detects

Chapter 5. Simplifying Data center Network Debugging with PathDump 54

Application Description PathDump PathQuery[75] Everflow[112] NetSight[47] TPP[51]

Loop freedom [47] Detect forwarding loops 3 3 3 3 ?

Load imbalance Get fine-grained statistics of
3 3 3 3 3

diagnosis [112] all flows on set of links

Congested link Find flows using a congested
3 3 3 3 3

diagnosis [75] link, to help rerouting

Silent blackhole Find switch that drops all
3 3 3 3 7

detection [112, 75] packets silently

Silent packet Find switch that drops
3 3 3 3 7

drop detection [112] packets silently and randomly

Packet drops Localize packet drop sources
3 3 3 3 3

on servers [112] (network vs. server)

Overlay loop Loop between SLB and
7 3 3 3 ?

detection [112] physical IP

Protocol bugs [112]
Bugs in the implementation

3 3 3 3 ?
of network protocols

Isolation [47]
Check if hosts are allowed

3 3 3 3 3
to talk

Incorrect packet Localize switch that modifies
7 3 ? 3 7

modification [47] packet incorrectly

Waypoint Identify packets not passing
3 3 3 3 3

routing [47, 75] through a waypoint

DDoS Get statistics of DDoS
3 3 3 3 3

diagnosis [75] attack sources

Traffic matrix [75]
Get traffic volume between

3 3 3 3 3
all switch pairs in a switch

Netshark [47]
Nework-wide path-aware

3 3 3 3 3
packet logger

Max path No packet should exceed
3 3 3 3 3

length [47] path length of size n

Table 5.2: Debugging applications supported by existing tools and PathDump.

The table assumes that Everflow performs per-switch per-packet mirroring. Of

course, this will have much higher bandwidth requirements than the network

traffic itself. If Everflow uses the proposed sampling to minimize bandwidth

overheads, many of the above applications will not be supported by Everflow.

such packets in real time and alerts the controller to the violation along with the flow

key and trajectory.

Chapter 5. Simplifying Data center Network Debugging with PathDump 55

Pod 1 Pod 2 Pod 3 Pod 4

SAgg

SC1 SC2

Link 1

Link 2

(a) SAg g poorly load-balances traffic

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

Imbalance rate (%)

(b) Load imbalance rate

 0

 0.2

 0.4

 0.6

 0.8

 1

102 104 106 108

C
D

F

Flow size (bytes)

Link 1
Link 2

(c) Flow size distribution

Figure 5.5: Load imbalance diagnosis. (a) illustrates a load imbalance case.

(b) shows, as reference, the load imbalance rate between links 1 and 2. (c)

shows the flow size distribution built by querying all TIBs.

5.4.2 Load imbalance diagnosis

Datacenter networks employ load-balancing mechanisms such as ECMP and packet

spraying [35] to exploit numerous equal-cost paths. However, when these mecha-

nisms work poorly, uneven load splits can hurt throughput and flow completion time.

PathDump can help narrow down the root causes of load imbalance problems, which

we demonstrate using two load-balancing mechanisms: (i) ECMP and (ii) packet

spraying.

ECMP load-balancing. This scenario (Figure 5.5(a)) assumes that a poor hash func-

tion always creates collisions among large flows. For the scenario, we configure switch

SAg g in pod 1 such that it splits traffic based on flow size. Specifically, if a flow is larger

than 1 MB in size, it is pushed onto link 1. If not, it is pushed onto link 2. Based on

the web traffic model in [21], we generate flows from servers in pod 1 to servers in

the remaining pods. As a metric, we use imbalance rate, λ= (Lmax/L−1)×100 (%)

where Lmax is the maximum load on any link and L is the mean load over all links [80].

Figure 5.5(b) shows the load imbalance rate between the two links measured every

5 seconds for 10 minutes. During about 80% of the time, the imbalance rate is 40%

or higher. With the load imbalance diagnosis application in §5.2.3, PathDump issues

a multi-level query to all servers and collects byte counts of flows that visited those

two links. As shown in Figure 5.5(c), flow size distributions on the two links are

sharply divided around 1 MB. With flow IDs and their sizes in the TIBs, operators can

reproduce this load imbalance scenario for further investigation.

This scenario illustrates how PathDump handles a persistent problem. The appli-

Chapter 5. Simplifying Data center Network Debugging with PathDump 56

 10

 20

 30

 40

 50

Path1 Path2 Path3 Path4

B
y
te

s
 (

M
B

) Balance
Imbalance

Figure 5.6: Traffic distribution of a flow along four different paths under bal-

anced and imbalanced cases.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150

A
vg

 re
ca

ll

Time (sec)

4
2
1

(a) Recall

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150
A

vg
 p

re
ci

si
on

Time (sec)

4
2
1

(b) Precision

Figure 5.7: Performance of the silent random packet drop debugging algo-

rithm. Average recall and precision are presented over 10 runs. The network

load is set to 70% and each faulty interface drops packets at 1% rate. The

numbers (i.e., 1, 2 and 4) in legend denote the number of faulty interfaces.

cation can be easily extended for tackling transient ECMP hash collisions among long

flows by exploiting the TCP performance alert function.

Packet spraying. In this scenario, packets of a flow are split among four possible

equal-cost paths between a source and destination. For demonstration, we create two

cases: (i) a balanced case and (ii) an imbalanced case. In a balanced case, the split

process is entirely random, thereby ensuring fair load-balance, whereas in an imbal-

anced case, we configure switches so that more packets are deliberately forwarded to

one of the paths (i.e., Path 3 in Figure 5.6). The flow size is set to 100 MB. Figure 5.6

is drawn using per-path statistics of the flow obtained from the destination TIB. As

shown in the figure, operators can check whether packet spraying works well or not.

In case of poor load-balancing, they can tell which path (more precisely, which link)

is under- or over-utilized. The per-packet path tracing ability of PathDump allows this

Chapter 5. Simplifying Data center Network Debugging with PathDump 57

 0

 20

 40

 60

 80

 1 2 3 4

Ti
m

e
(s

ec
)

Loss rate (%)

4
2
1

(a) Network load = 70%

 0

 40

 80

 120

 160

 200

 30 50 70 90

Ti
m

e
(s

ec
)

Network load (%)

4
2
1

(b) Loss rate = 1%

Figure 5.8: Time taken to reach 100% recall and precision. The numbers (i.e.,

1, 2 and 4) in legend denote the number of faulty interfaces. The error bar is

standard error, i.e., σ/
p

n where σ is standard deviation and n is the number

of runs (= 10).

level of detailed analysis. For real-time monitoring, it is sufficient to install a query

(using install()) that monitors the traffic amount difference among subflows.

5.4.3 Silent random packet drops

We implement the silent packet drop debugging application as described in §5.2.3 and

conduct experiments in a 4-ary fat-tree topology, where each end-host generates traffic

based on the same web traffic model. We configure 1-4 randomly selected interfaces

such that they drop packets at random. We run the MAX-COVERAGE algorithm

and evaluate its performance based on two metrics: recall and precision. Recall is
#T Ps

#T Ps+#FNs while precision is #T Ps
#T Ps+#F Ps where true positive is denoted as TP, false

negative as FN, and false positive as FP.

In our experiment, as time progresses, the number of alerts received by the con-

troller increases; so does the number of failure signatures. Hence, from Figure 5.7, we

observe the accuracy (both recall and precision) also increases accordingly; the recall

increases faster than the precision. It is clear from Figure 5.8, as loss rate or network

load increase, the controller receives alerts from end-hosts at higher rate, and thus the

algorithm takes less time to obtain 100% recall and precision, making it possible to

debug the silent random packet drops fast and accurately.

Chapter 5. Simplifying Data center Network Debugging with PathDump 58

5.4.4 Blackhole diagnosis

We demonstrate how PathDump reduces a debugging search space with a blackhole

scenario in the network with a 4-ary fat-tree topology where packet spraying is de-

ployed. Again, we generate the same background traffic used in §5.4.3 to create noises

in the debugging process. We create a 100 KB TCP flow and its packets are randomly

routed through four possible paths and test two cases.

Blackhole at an aggregate-core link. Obviously, the subflow traffic passing the black-

hole link is all dropped. The controller receives an alarm from PathDump agent at

sender in 1 sec, immediately retrieves all TIB records for the flow and finds one record

for the dropped subflow missing. While examining the paths found in TIB records, it

finds that one path did not appear in the TIB. Since only one path (hence, one subflow)

was impacted, it produces three switches as a potential culprit: core switch, source and

destination aggregate switches (thus avoiding the search of all 10 switches in the four

paths).

Blackhole at a ToR-aggregate link in the source pod. This blackhole impacts two

subflows. The controller identifies two paths that impacted the two subflows using the

same way as before. By joining the two paths, the controller can pick four common

switches, which should be examined with higher priority.

Note that if more number of flows (and their subflows) are impacted by the black-

hole, PathDump can localize the exact source of the blackhole.

5.4.5 Routing loop debugging

PathDump debugs routing loop in real-time by trapping a suspiciously long path in the

network. As discussed in §5.3.1, a packet carrying more than two tags is automatically

directed to the controller. This feature is a foundation of making routing loops naturally

manifest themselves at the controller. More importantly, the fact that the controller has

a direct control over suspicious packets makes it possible to detect routing loops of any

size.

Real timeliness. We create a 4-hop routing loop as shown in Figure 5.9(a). Specif-

ically, switch S4 is misconfigured and all core switches are configured to choose an

alternative egress port except the ingress port of a packet. In the figure, switches from

S2 to S5 constitute the loop. Under this setup, it takes about 47 ms on average until the

controller detects the loop. When the packet trapped in this loop ends up carrying three

tags (see Figures 5.9(b)–5.9(d)) and appears at the controller, two of the tags have the

Chapter 5. Simplifying Data center Network Debugging with PathDump 59

S1

S2

S3 S5

A B
S6

S4

Controller

(a) A routing loop case

S2-S3

S1

S2

S3 S5

A B
S6

S4

Controller

(b) Step 1

S1

S4-S5 S2-S3

S2

S3 S5

A B
S6

S4

Controller

(c) Step 2

S1 S6

Controller

S2

S3 S5

S4

S4-S5 S2-S3S2-S3

A B

(d) Step 3

Figure 5.9: Debugging a routing loop. (a) A routing loop is illustrated. (b) A

packet carries a VLAN tag whose value is an ID for link S2−S3 appended by

S3. (c) S4 bounces the packet to S5; S5 forwards the packet to one remaining

egress port (to S2) while appending an ID for link S4−S5 to the packet header.

(d) S3 appends a third tag of which the value is a ID for link S2−S3; at S4,

the packet is automatically forwarded to the controller since ASIC in switches

only recognizes two VLAN tags whilst the packet carries three; at this stage,

the controller immediately detects the loop by finding the repeated link S2−S3

from the packet header.

same link ID (S2−S3 in Figure 5.9(d)). Hence, the loop is detected immediately at this

stage.

Detecting loops of any size. In this scenario, we create a 6-hop routing loop (not

shown for brevity). The controller finds no repeated link IDs from three tags when

it sees the packet for the first time. The controller locally stores the three tags, strips

them off from the packet header, and sends the packet back to the switch. Since the

Chapter 5. Simplifying Data center Network Debugging with PathDump 60

 0

 20

 40

 60

 80

1 2 3 4 5 6 7 8 9 101112131415

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Flow ID

(a)

T

R

2

4

12

141

15

2

2

4 4

f8 f9 f10f11 f12 f13 f14f15

f2 f3

f1

f4 f5 f6 f7

Outcast flow

2 2 2 2

(b)

Figure 5.10: Diagnosis of TCP outcast. Unfairness of throughput is shown in

(a). In (b), the communication graph is mapped onto a physical topology, and

edge weight is the number of flows arriving at an input port. Both data sets

are made available from TIB.

packet is trapped in the 6-hop loop, it will have another set of three tags and be for-

warded to the controller. This time, comparing link IDs in previous and current tags,

the controller observes that there is at least one repeated link ID and detects the loop.

The whole process took ∼115 ms. Detecting even larger loops involves exactly the

same procedure.

5.4.6 TCP performance anomaly diagnosis

PathDump can diagnose incast [29] and outcast [83] problems in a fine-grained manner

although they are transient. In particular, we test a TCP outcast scenario. For a realistic

setup, we generate the same type of TCP background traffic used in §5.4.4. In addition

to that, 15 TCP senders send data to a single receiver for 10 seconds. Thus, as shown

in Figure 5.10(b), a flow from f1 and 14 flows from f2− f15 arrive on two different

input ports at switch T . They compete for the same output port at the switch toward

receiver R. As a result, these flows experience the port blackout phenomenon, and the

flow from f1 sees the most throughput loss (see [83] for more details).

Every 200 ms (default TCP timeout value) the server agents run a query that gener-

ates alerts when their TCP flows repeatedly retransmit packets. The diagnosis applica-

tion at the controller starts to work when it sees a minimum of 10 alerts from different

sources to a particular destination. Since all alerts specify R as receiver, the application

requests flow statistics (i.e., bytes, path) from R and diagnoses the root cause for high

alerts. It first analyzes the throughput for each sender (Figure 5.10(a)) and constructs a

Chapter 5. Simplifying Data center Network Debugging with PathDump 61

path tree for all 15 flows (Figure 5.10(b)). It then identifies that the flow from f1 (one

closest to the receiver) is most highly penalized. PathDump concludes the TCP unfair-

ness stems from the outcast because these patterns fit the outcast’s profile. We observe

that the application initiates its diagnosis in 2-3 seconds since the onset of flows and

finishes it within next 200 ms.

5.5 Evaluation
We first study the performance of direct and multi-level queries in terms of response

time and data overheads. We then evaluate CPU and memory overheads at end-host in

processing packet stream and in executing queries.

5.5.1 Experimental setup

We build a real testbed that consists of 28 physical servers; each server is equipped

with Xeon 4-core 3.1 GHz CPU and a dual-port 1 GbE card. Using the two interfaces,

we separate management channel from data channel. The controller and servers com-

municate with each other through the management channel to execute queries. Each

server runs four docker containers (in total, 112 containers). Each container is assigned

one core and runs a PathDump agent to access TIB in it. In this way, we test up to 112

TIBs (i.e., 112 end-hosts). We only refer to container as end-host during the query

performance evaluation. Each TIB has 240K flow entries, which roughly corresponds

to the number of flows seen at a server for about an hour. We estimate the number

based on the observation that average flow inter-arrival time seen at server is roughly

15 ms (∼67 flows/sec) [55].

For multi-level query execution, we construct a logical 4-level aggregation tree

with 112 end-hosts. Our PathDump controller sits on the top of the tree (level 0). Right

beneath the controller are 7 nodes or end-hosts (level 1). Each first-level node has, as

its child, four nodes (level 2), each of which has four nodes at the bottom (level 3).

For the packet progressing overhead experiment, we use another server equipped

with a 10 GbE card. In this test, we forward packets from all other servers to a virtual

port in DPDK vSwitch via the physical 10GbE NIC.

5.5.2 Query performance

We compare the performance of direct query with that of multi-level query. To under-

stand which type of query suits well to a debugging application, we measure two key

metrics: i) end-to-end response time, and ii) total data volume generated. We test two

Chapter 5. Simplifying Data center Network Debugging with PathDump 62

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 30 60 90 120

R
es

po
ns

e
tim

e
(s

ec
)

No. of end-hosts

Direct
Multi-level

(a) Response time

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

 30 60 90 120

N
et

w
or

k
tra

ffi
c

(K
B

)

No. of end-hosts

Direct
Multi-level

(b) Traffic amount

Figure 5.11: Average end-to-end response time and traffic amount of a flow

size distribution query.

queries—flow size distribution of a link and top-k flows. For the top-k flows query, we

set k to 10,000. Results are averaged over 20 runs.

Results. Through these experiments, we make two observations (confirmed via Fig-

ures 5.11 and 5.12) as follows.

1) When more servers are involved in a query, multi-level query is in general better

than direct query. Figure 5.11(a) shows that multi-level query initially takes longer

than direct query. However, the response time gap between the two gets smaller as the

number of servers increases. This is due to three reasons. First, the aggregation time

(the time to aggregate responses at the controller) of direct query is always larger than

that of multi-level query. Second, the aggregation time of direct query linearly grows

in proportion to the number of end-hosts whereas that of multi-level query gradually

grows. Lastly, network delays of both queries change little regardless of the number of

servers.

2) If aggregation reduces response data amount substantially, multi-level query is

more efficient than direct query. When multi-level query is employed for computing

the top-k flows, (ni−1) ·k number of key-value pairs are discarded at level i−1 dur-

ing aggregation where ni is the number of nodes at level i (i < 3). A massive data

reduction occurs through the aggregation tree. Hence, the data amount exchanged in

multi-level query is similar to that in direct query (Figure 5.12(b)). Moreover, the com-

putation overhead for aggregation is distributed across multiple intermediate servers.

On the contrary, in direct query, the controller alone has to process a large number of

key-value pairs (i.e., k ·n3 where n3 is the total number of servers used). Hence, the

Chapter 5. Simplifying Data center Network Debugging with PathDump 63

 1
 2
 3
 4
 5
 6
 7
 8

 30 60 90 120

R
es

po
ns

e
tim

e
(s

ec
)

No. of end-hosts

Direct
Multi-level

(a) Response time

 0

 20

 40

 60

 80

 30 60 90 120

N
et

w
or

k
tra

ffi
c

(M
B

)

No. of end-hosts

Direct
Multi-level

(b) Traffic amount

Figure 5.12: Average end-to-end response time and traffic amount of a top-

10,000 flows query.

 0
 2
 4
 6
 8

 10

64 128 256 512 1024 1500

Th
ro

ug
hp

ut
 (G

bp
s)

Packet size (Bytes)

PathDump
vSwitch

(a) Throughput in Gbits per second

 0

 1

 2

 3

 4

64 128 256 512 1024 1500

Th
ro

ug
hp

ut
 (M

pp
s)

Packet size (Bytes)

PathDump
vSwitch

(b) Throughput in million-packets per second

Figure 5.13: Forwarding throughput of PathDump and vSwitch. Each bar rep-

resents an average over 30 runs.

majority of the response time is attributed to computation at the controller, and the

response time grows linearly as the number of servers increases (Figure 5.12(a)). Due

to the horizontal scaling nature of multi-level query, its response times remain steady

regardless of the number of servers. In summary, these results suggest that multi-level

query can scale well even for a large cluster and direct query is recommended when a

small number of servers are queried.

5.5.3 Overheads

Packet processing. We generate traffic by varying its packet size from 64 to 1500 bytes.

Each packet carries 1-2 VLAN tags. While keeping about 4K flow records (roughly

equivalent to 100K flows/sec at a rack switch connected to 24 hosts) in the trajectory

memory, PathDump does about 0.8–3.6M lookups/updates per second (0.8M for 1500B

packets and 3.6M for 64B). Under these conditions, we measure average throughput

Chapter 5. Simplifying Data center Network Debugging with PathDump 64

in terms of bits and packets per second over 30 runs.

From Figure 5.13, we observe that PathDump introduces a maximum of 4% through-

put loss compared to the performance of the vanilla DPDK vSwitch. The figure

omits confidence intervals as they are small. In all cases, the throughput difference

is marginal. Note that due to the limited CPU and memory resources allocated, DPDK

vSwitch itself suffers throughput degradation as packet size decreases. Nevertheless,

it is clear that PathDump introduces minimal packet processing overheads atop DPDK

vSwitch.

Query processing. We measure CPU resource demand for continuous query process-

ing at end-host. The controller generates a mix of direct and multi-level queries con-

tinuously in a serialized fashion (i.e., a new query after receiving response for previous

one). We observe that less than 25% of one core cycles is consumed at end-host. As

datacenter servers are equipped with multi-core CPUs (e.g., 18-core Xeon E5-2699 v3

processor), the query processing introduces relatively less overheads.

Storage. PathDump only needs about 10 MB of RAM at a server for packet trajectory

decoding, trajectory memory and trajectory cache. It also needs about 110 MB of

disk space to store 240K flow entries (roughly equivalent to an hour’s worth of flows

observed at a server).

5.6 Limitations

Debugging network problems. PathDump does not require network switches to per-

form complex operations, yet it supports a large class of debugging problems. Table 5.2

shows a list of debugging applications supported by PathDump, except two; Overlay

loop detection and incorrect packet modification. Overlay loop could be formed in the

following way; a packet’s destination server decaps the outer header (VXLAN) and

mistakenly injects the packet back into the network, then a network load balancer en-

caps the VXLAN header, and again forwards to the destination server. With the packet

trajectory tracing technique like CherryPick, decoder at an end-host may not have all

the information to reconstruct the loop path. Eventually, PathDump could not pin-point

the origin of overlay loop (i.e., load balancer).

PathDump allows to view a sub-set of all properties of a packet at each hop. For

instance, it can tell switch input and output port that the packet traversed, but not the

packet header values and the matched flow table version. Suppose, one of the switches

in the path modifies the packet headers incorrectly, then PathDump does not give a clue

Chapter 5. Simplifying Data center Network Debugging with PathDump 65

of which is the problematic switch in the packet’s path.

Impact of packet drops. PathDump end-hosts reconstruct the packet trajectory from

the link IDs present in the packet header. However, a packet may not reach the desti-

nation for a multitude of reasons, including packet drops due to network congestion,

a black hole, or a faulty interface. PathDump resolves the packet drop problem by ex-

ploiting the fact that many datacenters typically perform load balancing (using ECMP

or packet spraying). In particular, we show in §5.4.3 that the correlation of paths of

all impacted flows allows to localize the culprit switch, or link, and the localization

accuracy improves as path data of poor flows accumulates. However, in the absence of

sufficient data (e.g., only few flows observed the problem), the accuracy would be very

low.

End-host agent. User applications are not aware of the link IDs embedded into the

packet headers. End-host agent strips link IDs off from the packet headers, updates

per-path flow statistics (flowID and path together as a key), then forwards the packet

to upper layers. Currently, the agent is implemented and evaluated in OpenVswitch

(OVS), both kernel and DPDK versions. For completeness, we should have tested the

agent overhead in other virtual switch platforms such as mSwitch [48], Hyper-V virtual

switch [5], etc.

Switch flow rules. In section §4.2.3, we have only presented OpenFlow table entries at

each switch layer for tracing packet trajectory. In a heterogeneous network setup that

has both traditional (operate in L2/L3 mode) and OpenFlow-compatible switches from

different switch vendors, enabling packet trajectory tracing may require a different set

of table entries to be installed.

5.7 Summary
This chapter presents PathDump, an end-host based network debugger that carefully

partitions the debugging functionality between the edge devices and the network switches

(in contrast to an entirely in-network implementation used in existing tools). PathDump

does not require network switches to perform complex operations like dynamic switch

rule updates, per-packet per-switch log generation, packet sampling, packet mirror-

ing, etc., and yet helps debug a large class of network problems over fine-grained

time-scales. Evaluation of PathDump over operational network testbeds comprising

of commodity network switches and end-hosts show that PathDump requires minimal

data plane resources and end-host resources.

Chapter 6

Distributed Network Monitoring and

Debugging with SwitchPointer

6.1 Introduction
Debugging network problems require resources like compute, memory, and network

bandwidth to collect and monitor telemetry data. As networks evolve to a large number

of end-points, higher speeds, and higher utilizations, the amount of resources required

to monitor the telemetry data also increases. Moreover, debugging performance prob-

lems (e.g., delays, packet drops) need to inspect every packet and collect telemetry data

at packet level [112]. This is in contrast to sampled flow-level information provided by

existing monitoring tools such as NetFlow, sFlow. However, packet-level monitoring

requires even more resources. Increasingly, many data centers need real-time monitor-

ing systems to detect thousands of network events within a few milliseconds [71]. For

example, we can use these systems to install predicates that are checked against each

packet and report telemetry data of those packets violating the predicates. Enabling

real time diagnosis adds to the resources required for network debugging.

Given the ever growing resource requirements, where should the telemetry data

necessary to debug the problems should be captured? On the one hand we have in-

network monitoring approaches that collect and monitor telemetry data at switches [13,

63, 107, 64, 50], and query this data using new software or hardware interfaces [74,

41, 75, 6, 51]. Though they provide high network visibility, but often limited by avail-

able data plane resources. For example commodity switches have only 10’s of Mbits of

SRAM for monitoring [74] and strict limits on types of per-packet operation [63]. Lim-

ited by these resources, these approaches have to rely on highly aggregated data [74], or

66

Chapter 6. Distributed Network Monitoring and Debugging with SwitchPointer 67

selectively sampled network traffic [112], or approximate counters [107] which some-

times may not accurate enough to diagnose network problems (§6.2).

At the other extreme, we have end-host based monitoring and debugging approaches

(e.g., PathDump, Trumpet [71], Pingmesh [44]). These approaches exploit the re-

sources to collect and monitor telemetry data, and use this data to debug network prob-

lems. Also, hosts offer the programmability needed to implement various monitoring

and debugging functionalities, without need for specialized hardware. But, they lose

the benefits of network visibility offered by in-network monitoring approaches.

We present SwitchPointer, a network monitoring and debugging system that in-

tegrates the best of the two worlds — resources and programmability of end-host

based approaches, and the visibility of in-network approaches. SwitchPointer exploits

end-host resources and programmability to collect and monitor telemetry data, and

to trigger spurious network events (e.g., using existing end-host based systems like

PathDump (Chapter 5). The key contribution of SwitchPointer is to efficiently enable

network visibility for such end-host based systems by using switch memory as a “direc-

tory service” — in contrast to in-network approaches where switches store telemetry

data necessary to diagnose network problems, SwitchPointer switches store pointers

to end-hosts where the relevant telemetry data is stored. The distributed storage at

switches thus operates as a distributed directory service; when an end-host triggers a

spurious network event, SwitchPointer uses the distributed directory service to quickly

filter the data (potentially distributed across multiple end-hosts) necessary to debug the

event.

SwitchPointer design. The key design choice of thinking about network switch storage

as a directory service rather than a data store allows SwitchPointer to efficiently solve

many problems that are hard or even infeasible for existing systems. For instance,

consider the network problems shown in Figure 6.1. We provide an in-depth discussion

in §6.2, but note here that existing systems are insufficient to debug the reasons behind

high latency, packet drops or TCP timeout problems for the red flow since this requires

maintaining temporal state (that is, flow IDs and packet priorities for all flows that the

red flow contends with in Figure 6.1(a)), combining state distributed across multiple

switches (required in Figure 6.1(b)), and in some cases, maintaining state even for

flows that do not trigger network events (for the blue flow in Figure 6.1(c)).

Chapter 6. Distributed Network Monitoring and Debugging with SwitchPointer 68

A ...

m hosts

B ...

(a) Too much traffic

A D E

B C F

S1 S3S2

(b) Too many red lights

A D E

B C F

S1 S3S2

(c) Traffic cascades

Figure 6.1: Three example network problems. Green, blue and red flows have de-

creasing order of priority. Red flow observes high latency (or even TCP timeout due to

excessive packet drops) due to: (a) contention with many high priority flows at a sin-

gle switch; (b) contention with multiple high priority flows across multiple switches;

and (c) cascading problems — green flow (highest priority) delays blue flow, resulting

in blue flow contending with and delaying red flow (lowest priority). Please see more

details in §6.2.

SwitchPointer is able to solve such problems using a simple design (detailed dis-

cussion in §6.4):

• Switches divide the time into epochs and maintain a pointer to all end-hosts to

which they forward the packets in each epoch;

• Switches embed their switchID and current epochID into the packet header be-

fore forwarding a packet;

• End-hosts maintain a storage and query service that allows filtering the headers

for packets that match a (switchID, epochID) pair; and,

• End-hosts trigger spurious events, upon which a controller (or an end-host) uses

pointers at the switches to locate the data necessary to debug the event.

SwitchPointer challenges. While SwitchPointer design is simple at a high-level, real-

izing it into an end-to-end system requires resolving several technical challenges. The

first challenge is to decide the epoch size — too small an epoch would require either

large storage (to store pointers for several epochs) or large bandwidth between the data

plane and the control plane (to periodically push the pointers to persistent storage);

too large an epoch, on the other hand, may lead to inefficiency (a switch may forward

packets to many end-hosts). SwitchPointer resolves this challenge using a hierarchical

Chapter 6. Distributed Network Monitoring and Debugging with SwitchPointer 69

data structure, where each subsequent level of the hierarchy stores pointers over ex-

ponentially larger time scales. We describe the data structure in §6.4.1.1, and discuss

how it offers a favourable tradeoff between switch memory and bandwidth, and system

efficiency.

The second challenge in realizing the SwitchPointer design is to efficiently maintain

the pointers at switches. The naïve approach of using a hash table for each level of the

hierarchy would either require large amount of switch memory or would necessitate

one hash operation per level per packet for the hierarchical data structure, making it

hard to achieve line rate even for modest size packets. SwitchPointer instead uses a

perfect hash function [2, 42] to efficiently store and update switch pointers in the hi-

erarchical data structure. Perfect hash functions require only 2.1 bits of storage per

end-host per-level for storing pointers and only one hash operation per packet (inde-

pendent of number of levels in the hierarchical data structure). We discuss storage and

computation requirements of perfect hash functions in §6.4.1.2.

The final two challenges in realizing SwitchPointer design into an end-to-end sys-

tem are: (a) to efficiently embed switchIDs and epochIDs into packet header; and (b)

handle the fact that switch and end-host clocks are typically not synchronized per-

fectly. For the former, SwitchPointer can of course use clean-slate approaches like

INT [6]; however, we also present a design in §6.4.1.3 that allows SwitchPointer to

embed switchIDs and epochIDs into packet header using commodity switches (un-

der certain assumptions). SwitchPointer resolves the latter challenge by exploiting the

fact that while the network devices may not be perfectly synchronized, it is typically

possible to bound the difference between clocks of any pair of devices within a data

center. This allows SwitchPointer to handle asynchrony by carefully designing epoch

boundaries in its switch data structures.

SwitchPointer contribution. We have implemented SwitchPointer into an end-to-end

system that currently runs over a variety of network testbeds comprising commodity

switches and end-hosts. Evaluation of SwitchPointer over these testbeds (§6.5, §6.6)

demonstrates that SwitchPointer can monitor and debug network events at sub-second

timescales while requiring minimal switch and end-host resources.

This chapter is organized as follows: Section 6.2 presents the problems that moti-

vates the need for SwitchPointer, Section 6.4 elaborates on SwitchPointer design, and

§6.5 presents network problems supported by SwitchPointer which are hard or infea-

sible to debug for existing systems. Finally, Section 6.6 has SwitchPointer evaluation

results.

Chapter 6. Distributed Network Monitoring and Debugging with SwitchPointer 70

6.2 Motivation
In this section we discuss several network problems that motivate the need for SwitchPointer.

6.2.1 Too much traffic

The first class of problems are related to priority-based and microburst-based con-

tention between flows.

Priority-based flow contention. Consider the case of Figure 6.1(a), where a low-

priority flow competes with many high-priority flows on an output port. As a result,

the low priority flow may observe throughput drop, high inter-packet arrival times, or

even TCP timeouts.

To demonstrate this problem, we set up an experiment. We create a low-priority

TCP flow between two hosts A and B that lasts for 100ms. We then create 5 batches of

high-priority UDP bursts; each burst lasts for 1ms and has increasingly larger number

of UDP flows (m in Figure 6.1(a)) all having different source-destination pairs. We use

Pica8 P-3297 switches in our experiment; the switch allows us to delay processing of

low-priority packets in the presence of a high-priority packet.

Figure 6.2(a) demonstrates that high-priority UDP bursts hurt the throughput and

latency performance of the TCP flow significantly. With increasingly larger number of

high-priority flows in the burst, the TCP flow observes increasingly more throughput

drop eventually leading to starvation (e.g., 0 Gbps for ∼10 ms in case of 16 UDP

flows). The figure also shows that increasing number of high-priority flows in the

burst results in increasingly larger inter-arrival times for packets in the TCP flow. The

reduced throughput and increased packet delays may, at the extreme, lead to TCP

timeout.

Microburst-based flow contention. We now create a microburst based flow con-

tention scenario, where congestion lasts for short periods, from hundreds of microsec-

onds to a few milliseconds, due to bursty arrival of packets that overflows a switch

queue. To achieve this, we use the same set up as priority-based flow contention with

the only difference that we use a FIFO queue instead of a priority queue at each switch

(thus, all TCP and UDP packets are treated equally). The results in Figure 6.2(b) show

a throughput drop similar to priority-based flow contention, but a slightly different plot

for inter-packet arrival times — as expected, the increase in inter-packet delays is not

as significant as in priority-based flow contention since all packets get treated equally.

Limitations of existing techniques. The two problems demonstrated above can be

Chapter 6. Distributed Network Monitoring and Debugging with SwitchPointer 71

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

Th
ro

ug
hp

ut
 (G

bp
s)

Timeline (ms)

1 2 4 8 16

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

In
te

r-
pa

ck
et

 a
rr

iv
al

 ti
m

e
(m

s)

Timeline (ms)

1 2 4 8 16

(a) Throughput (left) and inter-packet arrival time (right) of a low-

priority TCP flow under priority-based flow contention.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

Th
ro

ug
hp

ut
 (G

bp
s)

Timeline (ms)

1 2 4 8 16

 0

 0.1

 0.2

 0.3

 0.4

 0 20 40 60 80 100

In
te

r-
pa

ck
et

 a
rr

iv
al

 ti
m

e
(m

s)

Timeline (ms)

1 2 4 8 16

(b) Throughput (left) and inter-packet arrival time (right) of a TCP

flow under microburst-based flow contention.

Figure 6.2: Too much traffic problem depicted in Figure 6.1(a). Five UDP burst

batches are introduced with a gap of 15 ms between each other. The gray lines high-

light the five batches, all of which last for 1 ms. The number in circle denotes the

number of UDP flows used in each batch.

detected and diagnosed using specialized switch hardware and interfaces [74]. With-

out custom designed hardware, these problems can still be detected at the destination

of the suffering flow(s), but diagnosing the root cause is significantly more challeng-

ing. Packet sampling based techniques would miss microbursts due to undersampling;

switch counter based techniques would not be able to differentiate between the priority-

based and microburst-based flow contention; and finally, since diagnosing these prob-

lems requires looking at flows going to different end-hosts, existing end-host based

techniques [71, 99] are insufficient since they only provide visibility at individual end-

hosts.

6.2.2 Too many red lights

We now consider the network problem shown in Figure 6.1(b). Our set up uses a low-

priority TCP flow from host A to host F (the red flow) that traverses switches S1, S2

Chapter 6. Distributed Network Monitoring and Debugging with SwitchPointer 72

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 2 4 6 8 10
Th

ro
ug

hp
ut

 (G
bp

s)
Timeline (ms)

(a) Throughput of flow A-F at S1

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 2 4 6 8 10

Th
ro

ug
hp

ut
 (G

bp
s)

Timeline (ms)

(b) Throughput of flow A-F at S2

Figure 6.3: Too many red lights problem depicted in Figure 6.1(b). UDP is used for

flows B-D and C-E and TCP for flow A-F.

and S3. The TCP flow contends with two high-priority UDP flows (B-D and C-E),

each lasting for 400µs in a sequential fashion (that is, flow C-E starts right after flow

B-D finishes). Consequently, the TCP flow gets delayed for about 400µs at S1 due to

UDP flow B-D and another 400µs at S2 due to UDP flow C-E.

The result is shown in Figure 6.3. The destination of the TCP flow sees a sudden

throughput drop almost down to 200 Mbps. This is a consequence of performance

degradation accumulated across two switches S1 and S2 — Figures 6.3(a) and 6.3(b)

show that the throughput is around 600Mbps at S1 and around 200 Mbps at S2 (at

around 6 ms time point). In fact, the problem is not limited to reduced throughput for

the TCP flow — taken to the extreme, adding more “red lights” can easily result in a

timeout for the TCP flow.

Limitations of existing techniques. The too many red lights problem highlights the

importance of combining in-network and end-host based approaches to network mon-

itoring and debugging.

Indeed, it is hard for purely in-network techniques to detect the problem — switches

are usually programmed to collect relevant flow- or packet-level telemetry information

if a predicate (e.g., throughput drop is more than 50% or queuing delay is larger than

1ms) is satisfied, none of which is the case in the above phenomenon. Since the per-

formance of the TCP flow degrades gradually due to contention across switches, the

net effect becomes visible closer to the end-host of the TCP flow.

On the other hand, existing end-host based techniques allow detecting the through-

put drop (or for that matter, the TCP timeout); however, these techniques do not pro-

vide the network visibility necessary to diagnose the gradual degradation of throughput

Chapter 6. Distributed Network Monitoring and Debugging with SwitchPointer 73

 0
 0.2
 0.4
 0.6
 0.8

Flow B-D

 0
 0.2
 0.4
 0.6
 0.8

Th
ro

ug
hp

ut
 (G

bp
s)

Flow A-F

 0
 0.2
 0.4
 0.6
 0.8

 0 10 20 30 40 50
Timeline (ms)

Flow C-E

(a)

 0
 0.2
 0.4
 0.6
 0.8

 0
 0.2
 0.4
 0.6
 0.8

Th
ro

ug
hp

ut
 (G

bp
s)

 0
 0.2
 0.4
 0.6
 0.8

 0 10 20 30 40 50
Timeline (ms)

(b)

Figure 6.4: Traffic cascades problem depicted in Figure 6.1(c). Throughput of flows

(a) without traffic cascades; (b) with traffic cascades. UDP is used for flows B-D and

A-F, and TCP for flow C-E.

across switches in the too-many-red-lights phenomenon.

6.2.3 Traffic cascades

Finally, we discuss the traffic cascade phenomenon from Figure 6.1(c). Here, we have

three flows, B-D, A-F and C-E, with flow priorities being high, middle and low, respec-

tively. Flows B-D and A-F use UDP and last for 10ms each whereas flow C-E uses

TCP and transfers 2MB of data. A cascade effect happens when the high-priority flow

B-D affects the middle-priority flow A-F which subsequently affects the low-priority

flow C-E. Specifically, if flow B-D and flow A-F do not contend at switch S1, the flow

A-F will depart from switch S2 before flow C-E arrives resulting in no flow contention

in the network (Figure 6.4(a)). However, due to contention of flow B-D and flow A-F

at switch S1 (for various reasons, including B-D being rerouted due to failure on a dif-

ferent path), flow A-F is delayed at switch S1 and ends up reducing the throughput for

flow C-E at switch S2 (Figure 6.4(b)).

Limitations of existing techniques. Diagnosing the root cause of the traffic cascade

problem is challenging for both in-network and for end-hosts based techniques. It not

only requires capturing the temporal state (flowIDs and packet priorities for all con-

tending flows) across multiple switches, but also requires to do so even for flows that

Chapter 6. Distributed Network Monitoring and Debugging with SwitchPointer 74

h2

h2

h3

h1

Telemetry data

SwitchID
EpochID

Pointer to
end-hosts

(a)

h2
h2

h3

h1

Query / Response

Analyzer

(b)

Figure 6.5: (a) Switch divides time into epochs and for each epoch, switch maintains

pointer to end-hosts seen in that epoch. In addition, switch also embeds telemetry

data (e.g., switchID, epochID) within the packet header. (b) Analyzer uses pointer to

end-hosts at switches to identify end-hosts that has relevant telemetry data to debug

network problems.

do not observe any noticeable performance degradation (e.g., the B-D flow). Existing

in-network and end-host based techniques fall short of providing such functionality.

6.2.4 Other SwitchPointer use cases

There are many other network monitoring and debugging problems for which in-

network techniques and end-host based techniques, in isolation, are either insufficient

or inefficient (in terms of data plane resources). We have compiled a list of such

network problems along with a detailed description of how SwitchPointer is able to

monitor and diagnose such problems in [14].

6.3 Overview
SwitchPointer integrates the benefits of end-host based and in-network approaches

into an end-to-end system for network monitoring and debugging. To that end, the

SwitchPointer system has three main components. This section provides a high-level

overview of these components and how SwitchPointer uses these components to mon-

itor and debug network problems. Figure 6.5 gives an overview of SwitchPointer sys-

tem.

SwitchPointer Switches. The first component runs at network switches and is respon-

sible for three main tasks: (1) embedding the telemetry data into packet header; (2)

maintaining pointers to end hosts where the telemetry data for packets processed by

the switch are stored; and (3) coordinating with an analyzer for monitoring and debug-

ging network problems.

Chapter 6. Distributed Network Monitoring and Debugging with SwitchPointer 75

SwitchPointer switches embed at least two pieces of information in packet headers

before forwarding a packet. The first is to enable tracing of packet trajectory, that is, the

set of switches traversed by the packet; SwitchPointer uses solutions similar to [98, 99]

for this purpose. The second piece of information is to efficiently track contending

packets and flows at individual ports over fine-grained time intervals. To achieve this,

each SwitchPointer switch divides (its local view of) time into epochs and embeds into

the packet header the epochID at which the packet is processed. SwitchPointer can of

course use clean-slate approaches like INT [6] to embed epochIDs into packet headers;

however, we also present a design in §6.4.1.3 that extends the techniques in [98, 99] to

efficiently embed these epochIDs into packet headers along with the packet trajectory

tracing information.

Embedding path and epoch information within the packet headers alone does not

suffice to debug network problems efficiently. Once a spurious network event is trig-

gered, debugging the problem requires the ability to filter headers contributing to that

problem (potentially distributed across multiple end hosts); without any additional

state, filtering these headers would require contacting all the end hosts. To enable effi-

cient filtering of headers contributing to the triggered network problem, SwitchPointer

uses distributed storage at switches as a directory service — switches store “pointers”

to destination end hosts of the packets processed by the switch in different epochs.

Once an event is triggered, this directory service can be used to quickly filter out head-

ers for packets and flows contributing to the problem.

Using epochs to track contending packets and flows at switches, and storing point-

ers to destination end-hosts for packets processed in each epoch leads to several design

and performance tradeoffs in SwitchPointer. Indeed, too large an epoch size is not de-

sirable — with increasing epoch size, a switch may forward packets to increasingly

many end-hosts within an epoch, leading to inefficiency (at an extreme, this would

converge to trivial approach of contacting all end-hosts for filtering relevant headers).

Too small an epoch size is also undesirable since with increasing number of epochs,

each switch would require either increasingly large memory (SRAM for storing the

pointers) or increasingly large bandwidth between the data plane and the control plane

(for periodically transferring the pointers to persistent storage).

SwitchPointer achieves a favorable tradeoff between switch memory, bandwidth be-

tween the data plane and the control plane, and the efficiency of debugging network

problems using a hierarchical data structure, where each subsequent level of the hier-

archy stores pointers over exponentially larger time scales. This data structure enables

Chapter 6. Distributed Network Monitoring and Debugging with SwitchPointer 76

both real-time (potentially automated) debugging of network problems using pointers

for more recent epochs, and offline debugging of network problems by transferring

only pointers over coarse-grained time scales from the data plane to the control plane.

We discuss this data structure in §6.4.1.1. Maintaining a hierarchy of pointers also

leads to challenges in maintaining an updated set of pointers while processing packets

at line rate; indeed, a naïve implementation that uses hash tables would require one op-

eration per packet per level of hierarchy to update pointers upon each processed packet.

We present, in §6.4.1.2, an efficient implementation that uses perfect hash functions to

efficiently maintain updated pointers across the entire hierarchy using just one opera-

tion per packet (independent of number of levels in the hierarchical data structure).

SwitchPointer End-hosts. SwitchPointer, similar to recent end-host based monitor-

ing systems [99, 71], uses end hosts to collect and monitor telemetry data carried

in packet headers, and to trigger spurious network events. SwitchPointer uses Path-

Dump (Chapter 5) to implement its end-host component; however, this requires sev-

eral extensions to capture additional pieces of information (e.g., epochIDs) carried in

SwitchPointer’s packet headers and to query headers. We describe SwitchPointer’s end-

host component design and implementation in §6.4.2.

SwitchPointer Analyzer. The third component of SwitchPointer is an analyzer that

coordinates with SwitchPointer switches and end-hosts. The analyzer can either be

colocated with the end-host component, or on a separate controller. A network opera-

tor, upon observing a trigger regarding a spurious network event, uses the analyzer to

debug the problem. We describe the design and implementation of the SwitchPointer

analyzer in §6.4.3.

An example for using SwitchPointer:
We now describe how a network operator can use SwitchPointer to monitor and debug

the too many red lights problem from Figure 6.1 and §6.2.2. The destination end-host

of the victim TCP flow A-F detects a large throughput drop and triggers the event. The

operator, upon observing the trigger, uses the analyzer module to extract the end-hosts

that store the telemetry data relevant to the problem — the analyzer module internally

queries the destination end-host for flow A-F to extract the trajectory of its packets

(switches S1, S2 and S3 in this example) and the corresponding epochIDs, uses this

information to extract the pointers from the three switches (for corresponding epochs),

and returns the relevant pointers corresponding to the end-hosts that store the relevant

headers for flows that contended with the victim TCP flow (D and E in this example).

Chapter 6. Distributed Network Monitoring and Debugging with SwitchPointer 77

The operator then filters the relevant headers from the end-hosts to learn that flow A-F

contended with flow B-D and C-E, and can interactively debug the problem using these

headers. SwitchPointer debugs other problems in a similar way (more details in §6.5).

6.4 SwitchPointer
In this section, we discuss design and implementation details for various SwitchPointer

components.

6.4.1 Switches

SwitchPointer provides the network visibility necessary for debugging network prob-

lems by using the memory at network switches as a distributed directory service, and

by embedding telemetry information in the packet headers. We now describe the data

structure stored at and packet processing pipeline of SwitchPointer switches.

6.4.1.1 Hierarchical data structure for pointers

SwitchPointer switches divide their local view of time into epochs and enable tracking

of contending packets and flows at switches by storing pointers to destination end-

hosts for packets processed in different epochs. SwitchPointer stores these pointers

using a hierarchical data structure, where each subsequent level of the hierarchy stores

pointers over exponentially larger time scales. We describe this data structure and

discuss how it achieves a favorable tradeoff between switch memory (to store pointers)

and bandwidth between data plane and control plane (to periodically transfer pointers

from switch memory to persistent storage).

Figure 6.6 shows SwitchPointer’s hierarchical data structure with k levels in the hi-

erarchy. Suppose the epoch size is α ms. At the lowermost level, the data structure

stores α set of pointers, each corresponding to destinations for packets processed in

one epoch; thus the set of pointers at the lowermost level provide a per-epoch infor-

mation on end-hosts storing headers to all contending packets and flows over an α2 ms

period. In general, at level h (1≤ h≤ k−1), the data structure stores α set of point-

ers corresponding to packets processed in consecutive αh ms intervals. The top level

stores only one set of pointers corresponding to packets processed in last αk ms of time

period.

The hierarchical data structure, by design, maintains some redundant information.

For instance, the first set of pointers in level h+1 correspond to packets processed in

last αh+1 ms of time period, collectively similar to all the set of pointers in level h.

Chapter 6. Distributed Network Monitoring and Debugging with SwitchPointer 78

α
k
 ms

Pointer

Update

Function

Dst IP

...

... α
2
 ms

...

α
3
 ms...

Time

...

Level k

Level 1α set of pointers α ms

α set of pointers

...

Level 3

Update

k pointers

Update

k pointers
Level 2

α set of pointers

Figure 6.6: SwitchPointer’s hierarchical data structure for storing pointers. For each

packet that a switch forwards, SwitchPointer stores a pointer to the packet’s destina-

tion end-host along a hierarchy of k levels. For epoch size αms, level h (1≤ h≤ k−1)

stores pointers to destination end-hosts for packets processed in last consecutive αh

epochs (that is, αh+1 ms) across α set of pointers. The topmost level stores only one

set of pointers corresponding to packets processed in last αk ms.

It is precisely this redundancy that allows SwitchPointer to achieve a favorable trade-

off between switch memory and bandwidth. We return to characterizing this tradeoff

below, but note that pointers at the lower level of the hierarchy provide a more fine-

grained view of packets and flows contending at a switch and are useful for real-time

diagnosis; the set of pointers on the upper levels, on the other hand, provide a more

coarse-grained view and are useful for offline diagnosis.

SwitchPointer allows pointers at all levels to be accessed by the analyzer under

a pull model. For instance, suppose the epoch size is α= 10 and the data structure

has k = 3 levels. Then, each set of pointers at level 1 correspond to 10 ms of time

period while those at level 2 correspond to 100 ms of time period. If a network oper-

ator wishes to obtain the headers corresponding to packets and flows processed by the

switch for last 50 ms (i.e., 5 epochs), it can pull the five most recent set of pointers from

level 1; for last 150 ms period, the operator can pull the two most recent pointers from

level 2 (which, in fact, correspond to 200 ms time period). In addition to supporting

access to the hierarchical data structure using a pull model, SwitchPointer also pushes

the topmost level of pointers to the control plane for persistent storage every αk ms

which can then be used for offline diagnosis of network events. The toplevel pointers

provide coarse-grained view of contending packets and flows at switches which may

be sufficient for offline diagnosis but using a push model only for the topmost level

pointers significantly reduces the requirements on bandwidth between the data plane

and the control plane.

Chapter 6. Distributed Network Monitoring and Debugging with SwitchPointer 79

Tradeoff. The hierarchical data structure, as described above, exposes a tradeoff be-

tween switch memory and the bandwidth between the data plane and the control plane

via two parameters — k and α. Specifically, let the storage needed by a set of pointers

to be S bits (this storage requirement depends on the maximum number of end-hosts in

the network, and is characterized in next subsection); Then, the overall storage needed

by the hierarchical data structure is α · (k−1) ·S+S bits. Moreover, since only the

topmost pointer is pushed from the data plane to the control plane (once every αk ms),

the bandwidth overhead of SwitchPointer is bounded by S× (103/αk) bps. For a fixed

network size (and hence, fixed S), as k and α are increased, the memory requirements

increase and the bandwidth requirements decrease. We evaluate this tradeoff in §6.6

for varying values of k and α; however, we note that misconfiguration of k and α

values may result in longer diagnosis time (the analyzer may touch more end-hosts to

filter relevant headers) but does not result in correctness violation.

6.4.1.2 Maintaining updated pointers at line rate

We now describe the technique used in SwitchPointer to minimize the switch memory

requirements for storing the hierarchical data structure and to minimize the number of

operations performed for updating all the levels in the hierarchy upon processing each

packet.

Strawman: a simple hash table. A plausible solution for storing each set of pointers

in the hierarchical data structure is to use a hash table. However, since SwitchPointer

requires updating k set of pointers upon processing each packet (one at each level

of hierarchy), using a standard hash table would require k operations per packet in

the worst case. This may be too high a overhead for high-speed networks (e.g., with

10Gbps links). One way to avoid such overhead is to use hash tables with large number

of buckets so as to have a negligible collision probability. Using such a hash table

would reduce the number of operations per packet to just one (independent of number

of levels in the hierarchy); however, such a hash table would significantly increase the

storage requirements. For instance, consider a network with m destinations; given a

hash table with n buckets, the expected number of collisions under simple uniform

hashing is m− (n−n(1−1/n)m). Suppose that m= 100K and the target number of

collisions is 0.001m (i.e., 0.1% of 100K keys). To achieve this target, the number of

buckets in the hash table should be close to 50 million, 500× larger than the number

of keys. Thus, this strawman approach becomes quickly infeasible for our hierarchical

Chapter 6. Distributed Network Monitoring and Debugging with SwitchPointer 80

data structure — it would either require multiple operations per packet to update the

data structure or would require very large switch memory.

Our solution: Minimal perfect hash function. Our key observation is that the maxi-

mum number of end-hosts in a typical datacenter is known a priori and that it changes

at coarse time scales (hours or longer). Therefore, we can construct a minimal perfect

hash function to plan ahead on the best way to map destinations to buckets to avoid

hash collisions completely. In fact, since each level in the hierarchy uses the same per-

fect hash function, SwitchPointer needs to perform just one operation per packet to find

the index in a bit array of size equal to the maximum number of destinations; the same

index needs to be updated across all levels in the hierarchy. Upon processing a packet,

the bit at the same index across the bit array is set in parallel. Lookups are also easy

— to check if a packet to a particular destination end-host was processed in an epoch,

one simply needs to check the corresponding bit (given by the perfect hash function)

in the bit array.

The minimal perfect hash function provides O(1) update operation and expresses

a 4-byte IP address with 1 bit (e.g., 100Kbits for 100K end-hosts). While an addi-

tional space is required to construct a minimal perfect hash function, it is typically

small (70 KB and 700 KB for for 100K and 1M end-hosts respectively; see §6.6.1).

Moreover, while constructing a perfect hash function is a computationally expensive

task, small storage requirement of perfect hash tables allow us to recompute the hash

function only at coarse-grained time intervals — temporary failures of end-hosts do

not impact the correctness since the bits corresponding to those end-hosts will simply

remain unused. For resetting pointers at level h, an agent at the switch control plane

updates a register with the memory address of next pointer every αh ms and resets its

content. The agent conducts this process for pointers at all levels.

6.4.1.3 Embedding telemetry data

SwitchPointer requires two pieces of information to be embedded in packet headers.

The first is the trajectory of a packet, that is, the set of switches (i.e., switchIDs) tra-

versed by the packet between the source and the destination hosts. The second is epoch

information (i.e., epochID) on when a packet traverses those switches.

SwitchPointer extends the link sampling idea from CherryPick and PathDump, to

efficiently enable packet trajectory tracing and epoch embedding for commonly used

datacenter network topologies (e.g., clos networks like fat-tree, leaf-spine and VL2)

Chapter 6. Distributed Network Monitoring and Debugging with SwitchPointer 81

S1 Core S3
S2 S5S4

Pod 1 Pod 2

ei S2-S3MAC header

1st tag: Link ID2nd tag: Epoch ID

Figure 6.7: Telemetry data embedding using two VLAN tags using a modified version

of the technique used in CherryPick. See §6.4.1.3 and §6.4.2.1 for discussion.

without any hardware modifications. Specifically, it is shown in Chapter 4 that an end-

to-end path in typical datacenter network topologies can be represented by selectively

picking a small number of key links. For instance, in a fat-tree topology the technique

reconstructs a 5-hop end-to-end path by selecting only one aggregate-core link and

embedding its linkID into the packet header. For embedding epochIDs in addition to

the linkID, we extend the technique that relies on IEEE 802.1ad double tagging. When

a linkID is added to the packet header using a VLAN tag, we add an epochID using

another tag (see Figure 6.7).

The number of rules for embedding linkID increases linearly with respect to the

number of switch ports whereas only one flow rule is for epochID embedding. How-

ever, the switch needs a rule update once every epoch — as the epoch changes, the

switch should be able to increment epochID and add a new epochID for incoming

packets. A commodity OpenFlow switch that we use is capable of updating flow rules

every 15 ms, giving us a lower bound on α granularity for commodity switches.

We note that the limitations on supported topologies and α granularity in our imple-

mentation over commodity switches are merely an artifact of today’s switch hardware

— it is possible to use SwitchPointer with clean-slate solutions such as INT [6] to sup-

port trajectory tracing and epoch embedding over arbitrary topologies.

6.4.2 End-hosts

SwitchPointer uses PathDump to collect and monitor telemetry data carried in packet

headers, and to trigger spurious network events. In this subsection, we discuss the ex-

tensions needed in PathDump to capture additional pieces of information (e.g., epochIDs)

carried in SwitchPointer’s packet headers and to query headers.

Chapter 6. Distributed Network Monitoring and Debugging with SwitchPointer 82

6.4.2.1 Decoding telemetry data

When a packet arrives at its destination, the destination host extracts the telemetry data

from the packet header. If the network supports clean-slate approaches like INT [6],

this is fairly straight forward. For implementation using commodity switches (using

techniques discussed in §6.4.1.3), the host extracts two VLAN tags containing the

switchID and the epochID associated with the switchID. Using the switchID, the end-

to-end path can be constructed using techniques in CherryPick and PathDump, giving

us a list of switches visited by the packet. Next, we decide a list of epochIDs for

each of those switches. However, since only one epochID is available at the end-host,

it is hard to determine the missing epochIDs for those switches correctly. Thus, we

set a range of epochs that the switches should examine. Specifically, we may need to

examine max_delay/α number of pointers at each switch due to uncertainty in epoch

identification.

Let∆ denote the a maximum one hop delay and ε be a maximum time drift among

all switches. Given epochID ei of switch S and an end-to-end path, the epochIDs for

switches along the path are identified as follows.

For the upstream switches of switch S, the epoch range is [ei− (ε+ j ·∆)/α,ei+

ε/α] and for the downstream switches of S, it is [ei−ε/α,ei+(ε+ j ·∆)/α], where j

is hop difference between an upstream (or downstream) switch and switch S. Suppose

α= 10 ms, ε= α and ∆= 2 ·α. For instance, in the example of Figure 6.7, we set

[ei−3,ei+1] for switch S2, [ei−1,ei+3] for S4, and so forth. This provides a rea-

sonable bound due to two reasons. First, a maximum queuing delay is within tens of

milliseconds in the datacenter network (e.g., 14 ms in [20]). Second, millisecond-level

precision is sufficient as SwitchPointer epochs are of similar granularity.

6.4.2.2 Event trigger and query execution

The end-host also has an agent that communicates with and executes queries on behalf

of the analyzer. The agent is implemented using a microframework called flask [4],

and implements a variety of techniques (similar to those in existing end-host based

systems, PathDump and Trumpet [71]) to monitor spurious network events.

6.4.3 Analyzer

The analyzer is also implemented using flask microframework. It communicates with

both switch and end-host agents. From the switch agent, the analyzer obtains pointers

Chapter 6. Distributed Network Monitoring and Debugging with SwitchPointer 83

 0

 20

 40

 60

 80

 100

1 2 4 8 16

T
im

e
 (

m
s
)

No. of UDP flows

Problem detection

Alert to analyzer

Pointer retrieval

Diagnosis

Figure 6.8: Debugging time of the priority-based flow contention problem de-

picted in Figure 6.2(a). SwitchPointer is able to monitor and debug the prob-

lem in less than 100ms. We provide a break down of the diagnosis latency

later in Figure 6.13.

to end-hosts for epoch(s). From the end-host agent, it receives alert messages, and

exchanges queries and responses. Another responsibility is that it constructs a minimal

perfect hash function whenever there are permanent changes in the number of end-

hosts in the network, especially when end-hosts are newly added. It then distributes

the minimal perfect hash function to all the switches in the network. The analyzer also

does pre-processing of pointers by leveraging network topology, flow rules deployed

in the network, etc. For example, to diagnose the network problem experienced by a

flow, the analyzer filters out irrelevant end-hosts in the pointer if the paths between the

flow’s source and those end-hosts do not share any path segment of the flow. This way,

the analyzer reduces search radius, i.e., number of end-hosts that it has to contact.

6.5 Applications
In this section, we demonstrate some key monitoring applications SwitchPointer sup-

ports.

6.5.1 Too much traffic

We debug the problem discussed in §6.2 using SwitchPointer. This problem include

two different cases: (i) priority-based flow contention and (ii) microburst-based flow

contention. The debugging processes of both cases are similar; the only difference is

the former case requires the analyzer to examine flow’s priority value. Thus, we only

Chapter 6. Distributed Network Monitoring and Debugging with SwitchPointer 84

discuss the former case.

Figure 6.8 shows the breakdown of times it took to diagnose the priority-based

flow contention case. First, we instrument hosts with a simple trigger that detects

drastic throughput changes. The trigger measures throughput every 1 ms interval and

generates an alert to the analyzer if throughput drop is more than 50%. The problem

detection takes less than 1 ms, thus almost invisible from the figure (3-4 ms for the

microburst-based contention case). Then, it takes 2-3 ms to send the analyzer an alert

and to receive an acknowledgment. The alert contains a series of <switchID, a list

of epochIDs, a list of byte counts per epoch> tuples that tell the analyzer when and

where packets of the TCP flow visit. The analyzer uses the switchIDs and epochIDs,

and obtains relevant pointers from switches. In this scenario, it only takes about 7-8 ms

to retrieve a pointer from one switch.

Next, the analyzer learns hosts encoded in the pointer, and diagnoses the problem

by consulting them; it collects telemetry data such as UDP flow’s priority, the number

of bytes in UDP flow during the epoch when the TCP flow experiences high delay.

The analyzer finally draws a conclusion that the presence of high-priority UDP flows

aggravated the performance of the low-priority TCP flow. As shown in Figure 6.8,

the time for the diagnosis increases as the number of consulted hosts (i.e., each UDP

flow is destined to a different host) increases. Although not too large, the diagnosis

overhead inflation pertains to the implementation of connection initiation; we discuss

this matter and its optimization in §6.6.2.

6.5.2 Too many red lights

This problem illustrated in Figure 6.1(b) (for its behavior, see Figure 6.3) requires spa-

tial correlation of telemetry data across multiple switches for diagnosis. While this

problem is challenging to existing tools, SwitchPointer easily diagnoses it as follows.

First, destination F triggers an alert to the analyzer in no time (∼1 ms) by using

our throughput drop detection heuristic introduced in §6.5.1. The alert contains IDs for

switches S1,S2 and S3 and their corresponding epochID ranges. The analyzer contacts

all of the switches and retrieves pointers that match the epoch IDs for each switch in

10 ms, and then conducts diagnosis (another 20 ms) by obtaining telemetry data for

UDP flows B-D and C-E from hosts D and E, respectively. The analyzer finds out that

low (A-F) and high prority (B-D and C-E) flows have at least one common epochID,

and finally concludes (in about 30 ms) that both flows B-D and C-E contributed to the

actual impact on the TCP flow.

Chapter 6. Distributed Network Monitoring and Debugging with SwitchPointer 85

 0

 100

 200

 300

 400

4 8 16 32 64 96D
ia

g
n

o
s
is

 t
im

e
 (

m
s
)

No. of servers with relevant flows

Figure 6.9: Latency for diagnosing load imbalance problem.

6.5.3 Traffic cascades

This problem is a more challenging problem to existing tools because debugging it

requires spatial and temporal correlation of telemetry data (see Figure 6.1(c) for the

problem illustration and Figure 6.4(b) for its behavior). SwitchPointer diagnoses the

problem as follows.

First, the low-priority TCP flow C-E observes a large throughput drop at around

26 ms (see Figure 6.4(b)) and triggers an alert along with switchIDs and corresponding

epoch details. Then, the analyzer retrieves pointers that match with epochIDs from

S2 and S3, contacts F and finds out the presence of middle-priority flow A-F on S2

caused the contention in ∼25 ms. Since flow A-F has middle-priority, the analyzer

subsequently examines pointers from switches (i.e., S1 and S2) along the path of flow

A-F in order to see whether or not the flow was affected by some other flows. From

a pointer from switch S1, the analyzer comes to know that flow B-C made flow A-F

delayed, which in turn had flows A-F and C-E collide. This part of debugging takes

another 25 ms. Hence, the whole process takes about 50 ms in total.

Of course, in a large datacenter network, debugging this kind of problem can be

more complex than the example we studied here. Therefore, in practice the debugging

process may be an off-line task (with a pointer at a higher level that covers many

epochs) rather than an online task. However, independent of whether it is an off-line or

online task, SwitchPointer showcases, with this example, that it is feasible to diagnose

network problems that need both spatial and temporal correlation.

6.5.4 Load imbalance diagnosis

To demonstrate the way SwitchPointer works for diagnosing load imbalance, we create

the same problematic setup used in Section 5.4.2. In that setup, a switch that is con-

Chapter 6. Distributed Network Monitoring and Debugging with SwitchPointer 86

figured to malfunction, forwards traffic unevenly to two egress interfaces; specifically,

packets from flows whose size is less than 1 MB are output on one interface; other-

wise, packets are forwarded to the other interface. We vary the number of flows from

4 to 96. Each flow is destined to a different end-host. Using this setup, we can under-

stand how the number of end-hosts contacted by the analyzer impacts SwitchPointer’s

performance.

The debugging procedure is similar to that of other problems we already studied.

This problem is detected by monitoring interface byte counts per second. The analyzer

fetches the pointers corresponding to the most recent 1 sec. It then obtains the end-

hosts in the pointers, and sends them a query that computes a flow size distribution

for each of the egress interfaces of the switch. Finally, the analyzer finds out that

there is a clean separation in flow size between two distributions. Figure 6.9 shows the

diagnosis time of running a query as a function of the number of end-hosts consulted

by the analyzer. The diagnosis time increases almost linearly as the analyzer consults

more end-hosts. Since this trend comes from the same cause, we refer to §6.6.2 for

understanding individual factors that contribute to the diagnosis time.

6.6 Evaluation
We prototype SwitchPointer on top of Open vSwitch [8] over Intel DPDK [3]. To

build a minimal perfect hash function, we use the FCH algorithm [42] among others

in CMPH library [2]. We also implement the telemetry data extraction and epoch

extrapolation module (§6.4.2.1) on OVS. The module maintains a list of flow records;

one record consists of the usual 5-tuple as flowID, a list of switchIDs, a series of epoch

ranges that correspond to each switchID, byte/packet counts and a DSCP value as flow

priority. This flow record is initially maintained in memory and flushed to a local

storage, implemented using MongoDB [7]. We now evaluate SwitchPointer in terms of

switch overheads and query performance under real testbeds that consist of 96 servers.

6.6.1 Switch overheads

To quantify switch overheads, we vary epoch duration (α ms), the number of levels

in a pointer (k), the number of IP addresses (n) and packet size (p). We set up two

servers connected via a 10GE link. From one server, we generate 100K packets, each

of which has a unique destination IP (hence, 100K flows); we play those 100K packets

repeatedly to the other server where SwitchPointer is running using one 3.1 GHz CPU

core. Under the setup, we measure i) throughput, ii) the amount of memory to keep

Chapter 6. Distributed Network Monitoring and Debugging with SwitchPointer 87

 0
 2
 4
 6
 8

 10

64 128 ≥ 256Th
ro

ug
hp

ut
 (G

bp
s)

Packet size (Bytes)

OVS
SwitchPointer (k = 1)
SwitchPointer (k = 5)

Figure 6.10: For smaller packet sizes, SwitchPointer is unable to sustain line

rate due to overheads of perfect hash function. SwitchPointer is able to achieve

line rate for a 10GE interface for packets of size 256bytes and more.

pointers on data plane, iii) bandwidth to offload pointers from SRAM (data plane) to

off-chip storage (control plane), and iv) pointer recycling period.

Throughput. We compare SwitchPointer’s throughput with that of vanilla OVS (base-

line) over Intel DPDK. We set k = 1 and 5. Here one pointer of SwitchPointer is

configured to record 100K unique end-hosts. We then measure the throughput of

SwitchPointer while varying p. Our current implementation in OVS processes about

7 million packets per second. From Figure 6.10, we observe that OVS and both con-

figurations of SwitchPointer achieve a full line rate (∼9.99 Gbps) when p≥ 256 bytes.

In contrast, when p< 256 bytes, both OVS and SwitchPointer face throughput degra-

dation. For example, when p is 128 bytes, OVS achieves about 9.29 Gbps whereas

SwitchPointer’s throughput is about 22% less than that of OVS. However, since an av-

erage packet size in data centers is in general larger than 256 bytes (e.g., 850 bytes [24],

median value of 250 bytes for hadoop traffic [87]), the throughput of SwitchPointer can

be acceptable. We also envision that a hardware implementation atop programmable

switch [25, 51] would eliminate the limitation of a software version.

Memory. Perfect hash functions account for about 70 KB (n= 100K) and 700 KB

(n = 1M). In addition, n also governs the pointer’s size: 12.5 KB (n = 100K) and

125 KB (n= 1M). Together SwitchPointer requires to have 82.5 KB and 825 KB, re-

spectively. These are the minimum amount of memory requirement for SwitchPointer.

Figure 6.11(a) shows the memory overhead; the memory requirement increases in pro-

portion to each of k and α. When n= 1M, α= 10 and k= 3, SwitchPointer consumes

3.45 MB; for n= 100K, it is only 345 KB.

Bandwidth. In contrast to memory overhead, the bandwidth requirement of system

Chapter 6. Distributed Network Monitoring and Debugging with SwitchPointer 88

 0
 2
 4
 6
 8

 10
 12

 1 2 3 4 5

M
em

or
y

(M
B

)

k (No. of levels)

(n = 1M, α = 20)
(1M, 10)
(100K, 20)
(100K, 10)

(a) Memory overhead

 0

 20

 40

 60

 80

 100

 1 2 3 4 5

B
an

dw
id

th
 (M

bp
s)

k (No. of levels)

(n = 1M, α = 20)
(1M, 10)

(100K, 20)
(100K, 10)

(b) Bandwidth overhead

Figure 6.11: Overheads of SwitchPointer. At (n, α) in the legend, n denotes the

maximum number of IP addresses traced by SwitchPointer, and α is an epoch

duration in ms.

101

102

103

104

105

 10 20 30

P
oi

nt
er

 re
cy

cl
in

g
pe

rio
d

(m
s)

α (epoch duration in ms)

level 1
level 2

Figure 6.12: Recycling period of a pointer when k= 3.

bus between SRAM and off-chip storage decreases as we increase k and α because

larger values of those parameters make the pointer flush less frequent. In particular, k

has a significant impact in controlling the bandwidth requirement; increasing it drops

the requirement exponentially. For n= 1M and α= 10 (the most demanding setting in

Figure 6.11(b)), the bandwidth requirement reduces from 100 Mbps (k=1) to 10 Mbps

(k= 2).

The results in Figures 6.11(a) and 6.11(b) present a clear tradeoff between mem-

ory and bandwidth. Depending on the amount of available resources and user’s re-

quirements, SwitchPointer provides a great flexibility in adjusting its parameters. For

instance, if memory is a scarce resource, it may be better to keep k≤ 3 and α≤ 10.

Pointer recycling period. Except for top level pointers, pointers are recycled after

all the pointers on the same layer are used. The pointer recycling period at level h is

expressed as α(αh−1) ms where 1≤ h< k. Figure 6.12 shows a tradeoff between α

Chapter 6. Distributed Network Monitoring and Debugging with SwitchPointer 89

 0

 0.1

 0.2

 0.3

 0.4

1 8 16 32 64 96

R
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
)

No. of servers

Connection initiation
Request
Query execution
Response

(a) PathDump

 0

 0.1

 0.2

 0.3

 0.4

1 8 16 32 64 96

R
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
)

No. of servers

(b) SwitchPointer

Figure 6.13: Top-100 query response time. Most of SwitchPointer latency over-

heads are due to connection initiation requests from the analyzer to the end-

hosts and can be improved with a more optimized RPC implementation.

and k. As expected, the recycling period exponentially increases as the level increases

(when α= 10, the recycling period of a pointer at level 1 is 90 ms and it is 900 ms

at level 2). Because too small α may always let SwitchPointer end up accessing a

higher-level pointer, α should be chosen carefully.

6.6.2 Query performance

We now evaluate the query performance of SwitchPointer, which we compare with

that of PathDump (baseline). We run a query that seeks top-k flows in a switch in our

testbed where there are 96 servers. The key difference between SwitchPointer and Path-

Dump is that SwitchPointer knows which end-hosts it needs to contact but PathDump

does not. Thus, PathDump executes the query from all the servers in the network. To

see the impact of the difference, we vary the number of servers that contain telemetry

data of flows that traverse the switch.

From Figure 6.13 we observe that the response time of SwitchPointer gradually

increases as the number of servers increases. On the other hand, PathDump always has

the longest response time as it has to contact all 96 servers anyway. Both of them only

have a similar response time when all the servers have relevant flow records and thus

SwitchPointer has to contact all of them.

A closer look reveals that most of the response time is because of connection initia-

tion for both SwitchPointer and PathDump. In our current implementation, the analyzer

creates one thread per server to initiate connection when a query should be executed.

This on-demand thread creation delays the execution of query at servers. This is an im-

Chapter 6. Distributed Network Monitoring and Debugging with SwitchPointer 90

plementation issue, not a fundamental flaw in design. Thus, it can be addressed with

proper technique such as thread pull management. However, since PathDump must

contact all the servers regardless of whether or not the servers have useful telemetry

data, it wastes servers’ resources. On the contrary, SwitchPointer only spends right

amounts of server resources, thus offering a scalable way of query execution.

6.7 Limitations

Supporting arbitrary range queries. SwitchPointer switch divides time into epochs

and maintains pointers to end-hosts that the switch has seen in that epoch. Section 6.4

provided discussion on the right epoch duration (too small vs, too large), and the need

for hierarchical data structure to store pointers. Such a data structure supports both

real-time and off-line queries. In brief, for a given time range query, SwitchPointer

responds with a minimum number of pointers that covers the range. However, range

queries sometimes may not sufficient to accurately identify contending flows and pack-

ets. So, we envision support for arbitrary time range queries (not multiple of epoch

duration (α) set initially) would improve usability of SwitchPointer. More work on the

design is required to close the gap between epoch duration and arbitrary time range

queries.

Inaccuracies in determining epochs. There are many ways to embed telemetry data

(switch ID, epoch ID) into packet header. One idea is to use a clean state approach

like INT [51]. But INT has packet header space limitation in current deployments. In

this work, SwitchPointer extends the link sampling technique presented in CherryPick.

It works for popular data center topologies using commodity OpenFlow-compatible

switches. But, SwitchPointer does not provide the exact epoch at which a packet is

processed by pod switches (not present in core layer). Instead, it exploits the fact that

generally we can set bounds on clock difference and maximum queuing delays be-

tween any pair of devices in a data center. So, using CherryPick, SwitchPointer can

only provides a range of switch epoch IDs for pod switches. It requires more eval-

uation in a controlled environment to understand the impact of time drift or queuing

delay variations on determining the epochs. Of course, embedding techniques like INT

would overcome inaccuracies and also simplifies determining the switch epoch IDs.

Scalability. Due to limited resources at servers in our testbed, we could only evaluate

SwitchPointer’s throughput with 100K flows on a 10GE link. Our testbed has quad-

core servers equipped with modest memory (4MB) and 10GE interface cards. For

Chapter 6. Distributed Network Monitoring and Debugging with SwitchPointer 91

scalability, throughput test could have evaluated up to one million flows (requires more

memory to generate and consume traffic at line rate) on a 40GE link.

6.8 Summary
This chapter presents SwitchPointer, a system that integrates the benefits of end-host

based approaches and in-network approaches to network monitoring and debugging.

SwitchPointer uses end-host resources and programmability to collect and monitor

telemetry data, and to trigger spurious network events. The key technical contribution

of SwitchPointer is to enable network visibility by using switch memory as a “direc-

tory service” — SwitchPointer switches use a hierarchical data structure to efficiently

store pointers to end-hosts that store relevant telemetry data. Using experiments on

real-world testbeds, we have shown that SwitchPointer efficiently monitors and debugs

a large class of network problems, many of which were either hard or even infeasible

with existing designs.

Chapter 7

Fault Localization in Large-Scale

Network Policy Deployment

7.1 Introduction
Software-defined Networking (SDN) enables flexible and intent-based policy manage-

ment [82, 92, 15, 41, 69, 102, 9]. As programmability offered by SDN makes network

management easier, troubleshooting network problems become increasingly challeng-

ing. An ideal troubleshooting tool for admins should allows to quickly detect, localize,

inspec, fix the network problem. In specific, the tool should quickly nail downs to the

part of the policy that the admin should further look at to fix observed failures. To-

wards this direction, we built Scout, an end-to-end system that automatically pinpoints

not only faulty policy objects, but also physical-level failures, the root cause for policy

objects to become faulty.

In the existing policy management frameworks [82, 15], low-level rules are built

from policy objects (in short, objects) such as marketing group, DB tier, filter, and so

on. Our study on a production cluster reveals that even one object can be used to create

TCAM rules for over thousands of endpoints. This implies that a fault of that single

object can lead to a communication outage for those numerous endpoints. In order

to find which particular part of the policy failure is the main cause, examining all of

the TCAM rules associated with the endpoints is a needle-in-a-haystack problem and

would be tedious.

Scout design. We call the problem of finding out the impaired parts of the policy as

a network policy fault localization problem, which we tackle via risk modeling [62].

We model risks as simple bipartite graphs that capture dependencies between risks

92

Chapter 7. Fault Localization in Large-Scale Network Policy Deployment 93

(i.e., objects) and nodes (e.g., endpoints or end user applications) that rely on those

risks. We then annotate the risk models for those risks and nodes that are associated

with the observed failures. Using those models, we devise a greedy fault localization

algorithm that outputs a hypothesis, a minimum set of most-likely faulty policy objects

(i.e., risks) that explains most of the observed failures.

Scout challenges. At first glance, solving this policy fault localization problem looks

straightforward as a similar problem has been studied for IP networks [62]. However,

there are two key challenges. First, it is difficult to represent risks in the network pol-

icy as a single model. Solving many risk models can be computationally expensive.

In our modeling, we fortunately require two risk models only: switch risk model and

controller risk model (§7.3.2). We make the two models based on our observation

that faults of policy objects occur at two broad layers (controller and switch). If the

controller malfunctions, unsuccessful policy deployment can potentially affect all the

switches in the network (thus, controller risk model). On the contrary, a policy deploy-

ment failure can be limited to a switch [112, 44] if that switch only becomes faulty

(thus, switch risk model).

Our second challenge stems from the fact that the degree of impact on endpoints

caused by a faulty object varies substantially. When a fault event occurs, some objects

are responsible for all of the impacted endpoints. On the contrary, some other objects

cause trouble to a small fraction of total number of endpoints that rely on them. This

variety makes accurate fault localization difficult. An existing algorithm [62] tends to

choose policy objects in the former case while it treats objects in the latter case as input

noise. However, in our problem, some objects do belong to the latter case. To handle

this issue, Scout employs a 2-stage approach; it first picks objects only if all of their

dependent endpoints are in failure; next, for (typically a small number of) objects left

unexplained in the risk model, it looks up the change logs (maintained at a controller)

and selects the objects to which some actions are recently applied (§7.4). Despite its

simplicity, this heuristic effectively localizes faults (§7.6).

Scout contributions. Overall, the main contributions addressing fault localization

problem in this thesis are:

• We introduce and study a network policy fault localization problem (§7.2). This

is a new problem that gained little attention but is of utmost importance in oper-

ating a policy management framework safely.

• We introduce two risk models (switch and controller risk models) that precisely

Chapter 7. Fault Localization in Large-Scale Network Policy Deployment 94

capture the characteristics of the problem and help its formulation.

• We devise a policy fault localization algorithm that quickly narrows down a small

number of suspicious faulty objects (§7.4). We then design and implement Scout

(§7.5), a system that conducts an end-to-end automatic fault localization from

failures on policy objects to physical-level failures that made the objects faulty.

• We evaluate Scout using a real production cluster and extensive simulations

(§7.6). Our evaluations show that Scout achieves 20-50% higher accuracy than

an existing solution and is scalable. Scout runs a large-scale controller risk model

of a network with 500 leaf switches, under 130 seconds in a commodity machine.

This chapter is organized as follows: Section 7.2 presents the background to under-

stand network policy deployment procedure, Section 7.3 formulates the fault localiza-

tion problem with shared risk models, Section 7.4 describes the proposed algorithm

that localize faulty policy objects, and Section 7.5 presents an end-to-end system,

Scout that conducts analysis from faulty policy object localization to physical-level

root cause diagnosis.

7.2 Background

7.2.1 Network policy

In general network policies dictate the way traffic should be treated in a network. In

managing network policies, tenant/admins should be able to express their intent on

traffic via a model and to enforce the policies at individual network devices. To en-

able more flexible composition and management of network policies, several frame-

works [82, 15, 9] present the network policies in an abstracted model (e.g., a graph) that

describes communication relationships among phyiscal/logical entities such as servers,

switches, middleboxes, VMs, etc.

Intent illustration. As an example, consider a canonical 3-tier web service that con-

sists of Web, App and DB servers (or VMs) as shown in Figure 7.1(a). Here the tenant

intent is to allow communication on specific ports between the application tiers, i.e.,

port 80 between Web and App, ports 80 and 700 between App and DB. A network

policy framework transforms intent of users (tenant, network admins, etc.) into an

abstracted policy as illustrated in Figure 7.1(b).

Network policy presentation. For driving our discussion, we here apply a network

policy abstraction model in [15], which is quite similar to other models (e.g., GBP [9],

Chapter 7. Fault Localization in Large-Scale Network Policy Deployment 95

S3

S1

S2

EP1

EP2

EP3

Deploy

network

policy

Filter:
port 80/allow

Filter:
port 700/allow

EPG:
Web

EPG:
App

EPG:
DB

Contract:
Web-App

Contract:
App-DB

Virtual Routing & Forwarding
(VRF):101

Filter:
port 80/allow

Filter:
port 700/allow

EPG:
Web

EPG:
App

EPG:
DB

Contract:
Web-App

Contract:
App-DB

Virtual Routing & Forwarding
(VRF):101

(c) Logical view at S1 and S2

Web

App

DB

Virtual private network

101

port 80: allow

port 80 & 700: allow

Web

App

DB

Virtual private network

101

port 80: allow

port 80 & 700: allow

(a) Tenant intent (b) Tenant network policy

Controller

VRF:101

EPG:
App

Contract:
Web-App

Contract:
App-DB

Filter:
80/allow

Filter:
700/allow

EPG:
Web

EPG:
DB

VRF:101

EPG:
App

Contract:
Web-App

Contract:
App-DB

Filter:
80/allow

Filter:
700/allow

EPG:
Web

EPG:
DB

VRF:101

EPG:
App

Contract:
Web-App

Contract:
App-DB

Filter:
80/allow

Filter:
700/allow

EPG:
Web

EPG:
DB

VRF:101

Contract:
Web-App

Filter:
80/allow

EPG:
App

EPG:
Web

EPG:
App

EPG:
Web

VRF:101

Contract:
Web-App

Filter:
80/allow

EPG:
App

EPG:
Web

VRF:101

Contract:
Web-App

Filter:
80/allow

EPG:
App

EPG:
Web

VRF:101

EPG:
App

Contract:
Web-App

Contract:
App-DB

Filter:
80/allow

Filter:
700/allow

EPG:
Web

EPG:
DB

VRF:101

Contract:
Web-App

Filter:
80/allow

EPG:
App

EPG:
Web

Figure 7.1: An example of network policy management framework. EP stands

for endpoint, and EPG denotes endpoint group.

PGA [82]); and our work for localizing faults in network policy management is ag-

nostic to policy abstraction model itself. Figure 7.1(b) illustrates a network policy (as

a graph represented with policy objects) transformed from the tenant intent shown in

Figure 7.1(a). We discuss each of those policy objects next.

An endpoint group (EPG) represents a set of endpoints (EPs), e.g., servers, VMs,

and middleboxes, that belong to the same application tier. A filter governs access

control between EPGs. This policy entity takes a whitelisting apporach, which by

default blocks all traffic in the absence of filters.

A mapping between EPGs and filters is indirectly managed by an object called

contract, which serves as a glue between EPGs and filters. A contract defines what

filters need to be applied to which EPGs. Thus, a contract enables easy modification of

filters. For example, in Figure 7.1(b), suppose EPG:App and EPG:DB no longer need

to talk to each other on port 700. One can simply remove “Filter: port 700/allow” from

the Contract:App-DB without need to modify the contract.

Finally, the scope of all EPGs in a tenant policy is defined using a layer-3 virtual

private network, realized with a virtual routing and forwarding (VRF) object.

Network policy deployment. A network policy should be realized through deploy-

ment. A centralized controller maintains the network policy and makes changes on it.

When updates (add/delete/modify) on a network policy are made, the controller com-

piles the new policy and produces instructions that consist of policy objects and the

update operations associated with the objects. The controller then distributes the in-

structions to respective switch agents. The switch agents also keep a local view on the

network policy to which the instructions from the controller are applied. The switch

agents transform any changes on the logical view into low-level TCAM rules.

Consider a network topology (Figure 7.1) where EP1 is attached to switch S1,

Chapter 7. Fault Localization in Large-Scale Network Policy Deployment 96

No. Rule Action

1 VRF:101,Web,App,Port80 Allow

2 VRF:101,App,Web,Port80 Allow

3 VRF:101,App,DB,Port80 Allow

4 VRF:101,DB,App,Port80 Allow

5 VRF:101,App,DB,Port700 Allow

6 VRF:101,DB,App,Port700 Allow

7 *,*,*,* Deny

Figure 7.2: TCAM rules in switch S2. Note that here a rule is annotated with

object types in it for ease of exposition.

EP2 to S2 and EP3 to S3. Let us assume that EP1 ∈ EPG:Web, EP2 ∈ EPG:App and

EP3 ∈ EPG:DB. Putting it altogether, the controller sends out the instructions about

EPG:Web to switch S1 (as EP1 is connected to S1), those about EPG:App to switch S2,

and so forth. As the three switches receive the instructions on those EPGs for the first

time, they build a logical view from scratch (see Figure 7.1(c) for example). Hence,

a series of add operations invoke TCAM rule installations in each switch. Figure 7.2

shows access control list (ACL) rules rendered in TCAM of S2.

7.2.2 Network state inconsistency

Network policy enforcement is by nature a distributed process and involves the man-

agement of three key elements: (i) a global network policy at controller, (ii) a local

network policy at switch agent, and (iii) TCAM rules generated from the local policy.

Ideally, the states among these three elements should be equivalent in order for the

network to function as intended by admins.

In reality, these elements may not be in an equivalent state due to a number of

reasons. A switch agent may crash in the middle of TCAM rule updates. A temporal

disconnection between the controller and switch agent during the instruction push.

TCAM has insufficient space to add new ACL rules, which renders the rule installation

incomplete. The agent may run a local rule eviction mechanism, which even worsens

the situation because the controller may be unaware of the rules deleted from TCAM.

Even TCAM is simply corrupted due to hardware failure. All of these cases can create

a state mismatch among controller, switch agent and TCAM level, which compromises

the integrity of the network.

One approach to this issue is to make network policy management frameworks

Chapter 7. Fault Localization in Large-Scale Network Policy Deployment 97

more resilient against failures. However, failures are inevitable, so is the network state

inconsistency.

7.3 Shared Risks in Network Policy
We exploit shared risk models for our network policy fault localization problem. The

shared risk model has been well studied in IP networks [62]. For instance, when a fibre

optic cable carries multiple logical IP links, the cable is recognized as a shared risk for

those IP links because the optical cable failure would make the IP links fail or perform

poorly.

Deploying a network policy also presents shared risks. A network policy comprises

policy objects (such as VRF, EPGs, contract, filter, etc). The relationship among those

objects dictates how a network policy must be realized. If an object is absent or ill-

represented in any of controller, switch agent and TCAM layers, all of EPG pairs that

rely on that object would be negatively impacted. Thus, these policy objects on which

a set of EPG pairs rely are shared risks in the network policy deployment.

Figure 7.2 depicts that a TCAM rule is expressed as a combination of objects pre-

sented in a logical model at switch S2. If the 5th and 6th TCAM rules in the figure are

absent from TCAM, all the traffic between EPG:App and EPG:DB via port 700 would

be dropped. The absence of correct rules boils down to a case where one or more

objects are not rendered correctly in TCAM; a corrupted TCAM may write a wrong

VRF identifier (ID) or EPG ID for those rules; S2 may drop the filter ‘port 700/allow’

from its logical view due to software bug. Such absence or mispresentation of objects

directly affect the EPG pairs that share the objects. Thus, shared risk objects for App-

DB EPG pair are VRF:101, EPG:App, EPG:DB, Contract:App-DB, Filter:80/allow,

and Filter:700/allow.

A key aspect of shared risks is that they can create different degree of damages to

EPG pairs. If an incorrect VRF ID is distributed from the controller to switch agents,

all pairs of EPGs belonging to the VRF would be unable to communicate. In con-

trast, if one filter is incorrectly deployed in one switch, the impact would be limited to

the endpoints in the EPG pairs that are directly connected to the switch (and to other

endpoints that might attempt to talk to those endpoints).

In a network policy, a large number of EPG pairs may depend on a shared risk

(object) and/or a single EPG pair may rely on multiple shared risk objects. These not

only signify the criticality of a shared risk but also the vulnerability of EPG pairs.

More importantly, a dense correlation between shared risks and EPG pairs makes it

Chapter 7. Fault Localization in Large-Scale Network Policy Deployment 98

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104 105

C
D
F

#EPG pairs per object

Switches
VRFs
EPGs
Filters
Contracts

Figure 7.3: Number of EPG pairs per object.

promising to apply risk modeling techniques to fault localization of network policy

deployment.

To understand the degree of sharing between EPG pairs and policy objects, we

analyze policy configurations from a real production cluster that comprises about 30

switches and hundreds of servers. Figure 7.3 shows the cumulative distribution func-

tion on the number of EPG pairs sharing a policy object, from which we make the

following observations:

7.3.1 A case study in a production cluster

• A failure in deploying VRF would lead to a breakdown of a number of EPG

pairs. A majority of VRF objects has more than 100 EPG pairs. 10% VRFs are

shared by over 1,000 EPG pairs and 2-3% VRFs by over 10,000 EPG pairs.

• EPGs are configured to talk to many EPGs. About 50% of EPGs belong to more

than 100 EPG pairs, which implies that the failure of an EPG is communication

outage with a significant number of EPGs.

• The failure of a physical object such as switch would create the biggest impact

on EPG pairs. About 80% of switches maintain at least 1,000s of EPG pairs.

• Contract and filter are mostly shared by a small number of EPG pairs. 70% of

the filters and 80% of the contracts are used by less than 10 EPG pairs.

Overall, it is evident that failures in a shared risk affect a great number of EPG

pairs. Thus, spatial correlation holds promise in localizing problematic shared risks

among a huge number of shared risks in large-scale networks.

Chapter 7. Fault Localization in Large-Scale Network Policy Deployment 99

Contract:Web-App

Filter:port80/allow

EPG:App

EPG:Web

Filter:port700/allow

VRF:101

EPG:DB

Contract:App-DB

Web-App

App-DB

Shared RisksEPG pair

fail
success



(a) Switch risk model for switch S2

Shared RisksSwitch-

EPGs tuple

S1-Web-App

S2-App-DB

S2-Web-App

S3-Web-App

S3-App-DB

S1-Web-App

S2-App-DB

S2-Web-App

S3-Web-App

S3-App-DB

Contract:Web-App

Filter:port80/allow

EPG:App

EPG:Web

Filter:port700/allow

VRF:101

EPG:DB

Contract:App-DB

Contract:Web-App

Filter:port80/allow

EPG:App

EPG:Web

Filter:port700/allow

VRF:101

EPG:DB

Contract:App-DB

fail
success



(b) Controller risk model

Figure 7.4: Risk models for switch S2. When the 1st rule is missing from the

TCAM in S2 in Figure 7.2, the edges associated with the Web-App EPG pair are

marked as fail (details on §7.3.3).

7.3.2 Risk models

We adopt a bipartite graph model that has been actively used to model risks in the tra-

ditional IP network [62]. A bipartite graph demonstrates associations between policy

objects and the elements that would be affected by those objects. At one side of the

graph are policy objects (e.g., VRF, EPG, filter, etc.); and the affected elements (e.g.,

EPG pairs) are located at the other side. An edge between a pair of nodes in the two

parties is created if an affected element relies on a policy object under consideration.

In modeling risks for network policy, one design question is how to represent risks

in the 3-tier deployment hierarchy that involves controller, switch agent and TCAM.

During rule deployment, there are two major places that eventually cause the failure

of TCAM rule update—one from controller to switch agent and the other from switch

agent to TCAM. The former may cause global faults whereas the latter does local

faults. For instance, if the controller cannot reach out to a large number of switches

for some reason, the policy objects across those unreachable switches are not updated.

On the other hand, when one switch is unreachable, a switch agent misbehaves or

TCAM has hardware glitches, the scope of risk model should be restricted to a partic-

ular switch level. Thus, in order to capture global- and local-level risks properly, we

propose two risk models: (i) switch and (ii) controller risk model.

Switch risk model. A switch risk model consists of shared risks (i.e., policy objects)

and the elements (i.e., EPG pair) that can be impacted by the shared risks on a per-

Chapter 7. Fault Localization in Large-Scale Network Policy Deployment 100

switch basis. The model is built from a network policy and the physical locations of

endpoints belonging to EPGs in the network. Figure 7.4(a) shows an example of switch

risk model for switch S2 given the local view on network policy in Figure 7.1(c). The

left-hand side in the model shows all EPG pairs deployed in switch S2. Each EPG pair

has an edge to those policy objects (on the right-hand side in the model) that it relies on

in order to allow traffic between endpoints in the EPG pair. For instance, the Web-App

EPG pair has outgoing edges to EPG:Web, EPG:App, VRF:101, Filter:port80/Allow,

and Contract:Web-App. An edge is flagged as either success or fail, soon discussed in

§7.3.3.

Controller risk model. A controller risk model captures shared risks and their rela-

tionships with vulnerable elements across all switches in the network. A controller

risk model is constructed in a similar manner of a switch risk model. In the con-

troller risk model, a switch ID and an EPG pair form a triplet (on the left-hand side in

Figure 7.4(b)). A triplet has edges to policy objects that the EPG pair relies on in that

specific switch. Since the same policy object can be present in more than one switch,

an EPG pair in multiple switches can have an edge to the object.

7.3.3 Augmenting risk models

In a conventional risk model, when an element affected by shared risks experiences a

failure, it is referred to as an observation. In case of switch risk model, an EPG pair is

an observation when endpoints in the EPG pair are allowed to communicate but fail to

do so.

In our work, an observation is made by collecting the TCAM rules (T-type rules)

deployed across all switches periodically and/or in an event-driven fashion, and by

conducting an equivalence check between logical TCAM rules (L-type rules) con-

verted from the network policy at the controller and the collected T-type rules. For

this, we use an in-house equivalence checker. The equivalence check is to compare

two reduced ordered binary decision diagrams (ROBDDs); one from L-type rules, and

the other from T-type rules. If both ROBDDs are equivalent, there is no inconsistency

between the desired state (i.e., the network policy) and actual state (i.e., the collected

TCAM rules). If not, the tool generates a set of missing TCAM rules that explains

the difference and that should have been deployed in the TCAM but absent from the

TCAM). Those missing rules allow to annotate edges in the risk models as failure,

thereby providing more details on potentially problematic shared risks. Note that sim-

ply reinstalling those missing rules is a stopgap, not a fundamental solution to address

Chapter 7. Fault Localization in Large-Scale Network Policy Deployment 101

the real problem that creates state inconsistency.

Potentially, the L-T equivalence checker can produce a large number of missing

rules. As demonstrated by our study on dependencies between objects (§7.3.1 and

Figure 7.3), one ill-presented object at controller and/or switch agent can cause policy

violations for over thousands of EPG pairs and make thousands of rules missing from

the network. Unfortunately, it is expensive to do object-by-object checking present

in the observed violations. Thus, we treat all objects in the observed violations as a

potential culprit. We then mark (augment) the edges between the malfunctioning EPG

pair (due to the missing rule) and its associated objects in the violation as fail.

Figure 7.4(a) illustrates how the switch risk model is augmented with suspect ob-

jects if the 1st rule is missing from the TCAM in S2 in Figure 7.2. To pinpoint cul-

prit object(s), one practical technique is to pick object(s) that explains the observa-

tion best (i.e., the famous Occam’s Razor principle); in this example, EPG:Web and

Contract:Web-App would explain the problem best as they are solely used by the Web-

App EPG pair. The lack of the augmented data would make it hard to localize fault

policy objects as it suggests that all objects appear equally plausible. Note that the

example is deliberately made simple to ease discussion. In reality many edges be-

tween EPG pairs and shared risks can be marked as fail (again, see the high degree of

dependencies between objects from Figure 7.3).

7.4 Fault Localization
We now build a fault localization algorithm that exploits the risk models discussed in

§7.3. We first present a general idea, explain why the existing approach falls short in

handling the problem at hand and lastly describe our proposed algorithm.

7.4.1 General idea

In the switch risk model, for instance, an EPG pair is marked as fail, if it has at least

one failed edge between the pair and a policy object (see Figure 7.4(a)). Otherwise,

the EPG pair is success. Each EPG pair node marked as fail is an observation. A set

of observations is called a failure signature. Any policy object shared across multiple

EPG pairs becomes a shared risk.

If all edges to an object are marked as fail, it is highly likely that the failure of

deploying that object explains the observations present in the failure signature, and

such an object is added to a set called hypothesis. Recall in Figure 7.4(a) that the

EPG:Web and Contract:Web-App objects best explain the problem of Web-App EPG

Chapter 7. Fault Localization in Large-Scale Network Policy Deployment 102

pair. On the other hand, other objects such as VRF:101 and EPG:App are less likely

to be the culprit because they are also shared by App-DB EPG pair which has no

problem. An ideal algorithm should be able to pick all the responsible policy objects

as a hypothesis.

In many cases, localizing problematic objects is not as simple as shown in Figure 7.4(a).

Multiple object failures can take place simultaneously. In such a case, it is prohibitive

to explore all combinations of multiple objects that are likely to explain all of the ob-

servations in a failure signature. Therefore, the key objective is to identify a minimal

hypothesis (in other words, a minimum number of failed objects) that explains most of

the observations in the failure signature. An obvious algorithmic approach would be

finding a minimal set of policy objects that covers risk models presented as a bipartite

graph. This general set cover problem is known to be NP-complete [52].

7.4.2 Existing algorithm: SCORE

We first take into account a greedy approximation algorithm used by SCORE [62]

system that attempts to solve the min set coverage problem and that offers O(logn)-

approximation to the optimal solution [62], where n is the number of affected elements

(e.g., EPG pairs in our problem). We first explain the SCORE algorithm and further

discuss its limitation.

Algorithm. The greedy algorithm in the SCORE system picks policy objects to maxi-

mize two utility values—(i) hit ratio and (ii) coverage ratio—computed for each shared

risk. We first introduce a few concepts in order to define them precisely under our

switch risk model. The same logic can be applied to the controller risk model.

Let Gi be a set of EPG pairs that depend on a shared risk i, Oi be a subset of Gi

in which EPG pairs are marked as fail (observations) due to failed edges between the

EPG pairs and the shared risk i, and F be the failure signature, a set of all observations,

i.e., F =
⋃

Oi for all i. For shared risk i, a hit ratio, hi is then defined as:

hi = |Gi∩Oi|/|Gi|= |Oi|/|Gi|

In other words, a hit ratio is a fraction of EPG pairs that are observations out of all

EPG pairs that depend on a shared risk. A hit ratio is 1 when all EPG pairs that depend

on a shared risk are marked as fail. And a coverage ratio, ci is defined as:

ci = |Gi∩Oi|/|F |= |Oi|/|F |

A coverage ratio denotes a fraction of failed EPG pairs associated with a shared risk

from the failure signature.

Chapter 7. Fault Localization in Large-Scale Network Policy Deployment 103

The algorithm chooses shared risks whose hit ratio is above some fixed threshold

value. Next, given the set of selected shared risks, the algorithm outputs those shared

risks that have the highest coverage ratio values and that maximize the number of

explained observations.

Limitation. The algorithm treats a shared risk with a small hit ratio as noise and simply

ignores it. However, in our network policy fault localization problem, we observe that

while some policy objects such as filter have a small hit ratio (≈ 0.01), they are indeed

responsible for the outage of some EPG pairs. The algorithm excludes those objects,

which results in a huge accuracy loss (results in §7.6.2).

It turns out that not all EPG pairs that depend on the object are present in the failure

signature. For instance, suppose that 100 EPG pairs depend on a filter, which needs

100 TCAM rules. In this case, if one TCAM rule is missing, a hit ratio of the filter

is 0.01. This can happen if installing rules for those EPG pairs is conducted with a

time gap. For instance, 99 EPG pairs are configured first, and the 100th EPG pair is a

newly-added service, hence configured later.

To make it worse, in reality the hit ratio can vary significantly too. In the previous

example, if 95 TCAM rules are impacted, the hit ratio is 0.95. The wide variation of hit

ratio values can occur due to (1) switch TCAM overflow; (2) TCAM corruption [112]

that causes bit errors on a specific field in a TCAM rule or across TCAM rules; and

(3) software bugs [105] that modify object’s value wrong at controller or switch agent.

While the SCORE algorithm allows change of a threshold value to handle noisy input

data, such a static mechanism helps little in solving the problem at hand, confirmed by

our evaluation results in §7.6.

7.4.3 Proposed algoirthm: Scout

We propose Scout algorithm that actively takes into account policy objects whose hit

ratio percentage is less than 100% and thus overcomes the limitation of the SCORE

algorithm. Basically, our algorithm also greedily picks the faulty objects and outputs

hypothesis that has a minimal set of objects most likely explains all the observations

in a failure signature.

Algorithm 1 shows the core part of our fault localization algorithm. The algorithm

takes failure signature F and risk model R as input. F has a set of observations, e.g.,

EPG pairs marked as fail in the switch risk model. For each observation in F , the algo-

rithm obtains a list of policy objects with fail edges to that observation and computes

the utility values (i.e., hit and coverage ratios) for all those objects (lines 6-10). Then,

Chapter 7. Fault Localization in Large-Scale Network Policy Deployment 104

Algorithm 1 Scout (F, R, C)

1: . F : failure signature, R: risk model, C: change logs

2: . P: unexplained set, Q: explained set, H: hypothesis

3: P←F; Q←;; H←;
4: while P 6= ; do

5: K←; . K: a set of shared risks

6: for observation o ∈ P do

7: ob js←getFailedObjects(o,R)

8: updateHitCovRatio(ob js,R)

9: K← K
⋃

ob js

10: end for

11: f aul t ySet←pickCandidates(K)

12: if f aul t ySet = ; then

13: break

14: end if

15: a f f ec ted←GetNodes(f aul t ySet,R)

16: R←Prune(a f f ec ted,R)

17: P← P \a f f ec ted; Q←Q
⋃

a f f ec ted

18: H←H
⋃

f aul t ySet

19: end while

20: if P 6= ; then

21: for observation o ∈ P do

22: ob js←lookupChangeLog(o,R,C)

23: H←H
⋃

ob js

24: end for

25: end if

26: return H

based on the utility values of shared risks in the model, the algorithm picks a subset of

the shared risks and treats them as faulty (line 11 and Algorithm 2). In Algorithm 2, if

the hit ratio of a shared risk is 1, the risk is included in a candidate risk set (lines 3-7);

and then from the set, the shared risks that have the highest coverage ratio values are

finally chosen; i.e., a set of shared risks that covers a maximum number of unexplained

observations (line 8).

If f aul t ySet is not empty, all EPG pairs that have an edge to any shared risk in the

f aul t ySet are pruned from the model (lines 15-16), and failed EPG pairs (observa-

Chapter 7. Fault Localization in Large-Scale Network Policy Deployment 105

Algorithm 2 pickCandidates(riskVector)

1: hitSet←;
2: maxCovSet←;
3: for risk r ∈ riskVector do

4: if hitRatio(r) = 1 then

5: hitSet← hitSet
⋃

{r}
6: end if

7: end for

8: maxCovSet←getMaxCovSet(hitSet)

9: return maxCovSet

Hypothesis (H) = { F2 }

h = 1

c = 0.4

E1-E2 E2-E3 E3-E4 E4-E5 E5-E6 E6-E7

C1 F1 F2 C2 C3 F3

h = 0

c = 0

h = 1

c = 0.8

h = 1

c = 0.4

h = 0.3

c = 0.2

h = 0.3

c = 0.2

E5-E6 E6-E7

C3 F3

h = 0.5

c = 0.5

h = 0.5

c = 0.5

H = { F2, F3 }

Figure 7.5: An illustration of SCOUT algorithm using a switch risk model.

Edges and nodes in red color are fail and those in black are success. Note

that h refers to hit ratio and c to coverage ratio.

tions) are moved from unexplained to explained (line 17). Finally, all the shared risks

in the f aul t ySet are added to the hypothesis set, H . This process repeats until either

there are no more observations left unexplained or when f aul t ySet is empty.

Some observations may remain unexplained because the shared risks associated

with those observations have a hit ratio less than 1 and thus are not selected during

the above candidate selection procedure. To handle the remaining unexplained obser-

vations, the Scout algorithm searches logs about changes made to objects (which are

obtained from the controller), and selects the objects to which some actions are re-

cently applied (lines 21-24 in Algorithm 1). Despite its simplicity, this heuristic makes

huge improvement in accuracy (§7.6.2).

Example. Figure 7.5 shows an example of how the Scout algorithm works. The

lines 4-19 in Algorithm 1 cover the following: (i) filter F2 is identified as a candi-

date because it has the highest coverage ratio among the shared risks with a hit ratio of

1; (ii) all the EPG pairs that depend on F2 are pruned from the model; (iii) and F2 is

added to hypothesis. The lines 21-24 ensure that the algorithm adds filter F3 (assuming

Chapter 7. Fault Localization in Large-Scale Network Policy Deployment 106

Event correlation engineL-T equivalence checker

Logical model (L)Logical model (L)TCAM rules (T)TCAM rules (T)

Missing rules Hypothesis

Policy change logs
from controller

Policy change logs
from controller

Network fault logs
from devices

Network fault logs
from devices

Fault localization engine

• Build controller and switch risk models
• Augment the models with failure data
• Run Scout fault localization algorithm

Most likely
root causes
Most likely
root causes

Figure 7.6: Overview of Scout system.

F3 is lately modified) to the hypothesis since there are no shared risks with a hit ratio

of 1.

7.5 Scout System
We present Scout system that can conduct an end-to-end analysis from fault local-

ization of policy objects to physical-level root cause diagnosis. The system mainly

consists of (i) fault localization engine and (ii) event correlation engine. The former

runs the proposed algorithm in §7.4.3 and produces policy objects (i.e., hypothesis)

that are likely to be responsible for policy violation of EPG pairs. The latter correlates

the hypothesis and two system-level logs from the controller and network devices,

and produces the most-likely root causes at physical level that caused object failures.

Our prototype is written in about 1,000 lines of Python code. We collect the logical

network policy model and its change logs from Cisco’s application centric controller,

and switch TCAM rules and the device fault logs from Nexus 9000 series switches.

Figure 7.6 illustrates the overall architecture of Scout system.

7.5.1 Physical-level root cause diagnosis

Knowing root causes at a physical level such as control channel disruption, TCAM

overflow, bugs, system crashes, etc. is as equally important as fixing failed objects in

the network policy. In general, when a trouble ticket is raised, the current practice is

to narrow down possible root causes by analyzing system logs such as fault logs from

network devices. However, a majority in a myriad of log data is often irrelevant to the

caused failure. Filtering out such noises can be done to some extent by correlating the

logs with the generation time of the trouble ticket, but not effective enough to reduce

search space.

The event correlation engine shown in Figure 7.6 is a systematic and automated

approach to the above problem. The engine correlates the fault logs from network de-

vices, the change logs from the network policy controller and the hypothesis generated

from the fault localization engine. It then infers the most likely physical-level root

causes through the correlation.

Chapter 7. Fault Localization in Large-Scale Network Policy Deployment 107

The engine works in three simple steps: (i) Using the hypothesis, it first identifies a

set of change logs that it has to examine; (ii) with the timestamps of those change logs,

it then narrows down the relevant faulty logs (those that are logged before the policy

changes and keep alive); and (iii) it finally associates impacted policy objects with the

fault(s) found in the relevant fault logs and outputs them.

The engine is pre-configured with signatures for known faults (e.g., disconnected

switch, TCAM overflow), composed by network admins with their domain knowledge

and prior experience. When fault logs match a signature, faults are identified and

associated with the impacted policy objects. Otherwise, the objects are tagged with

‘unknown’. Note that signatures can be flexibly added to the engine, and the system’s

ability would be naturally enhanced with more signatures.

7.5.2 Example usecases

We explain three realistic use cases in a testbed and demonstrate the workflow of our

system and its efficacy on fault localization. For this purpose, we use the network

policy for the 3-tier web service shown in Figure 7.1(a). We first test a TCAM overflow

case by continously adding one new filter after another to the Contract:App-DB object.

For the other two cases, we make a switch not respond to the controller in the middle

of updates, by silently dropping packets to the switch. Note that across all cases, we

let the switch generate 1000s of noisy logs in addition to the actual fault log.

TCAM overflow. Due to TCAM overflow, several filters were not deployed at TCAM.

The switch under test generated fault logs that indicate TCAM overflow when its

TCAM utilization was beyond a certain level. Our system first localized the faulty

filter objects with risk models, correlated them with the change logs for ‘add filter’

instruction, and subsequently the change logs with the fault logs. Our system had the

fault signature of TCAM overflow, so it was able to match the fault logs with that

signature and tag those failed filters accordingly.

Unresponsive switch. In this use case, the switch under test became unresponsive

while the controller was sending the ‘add filter’ instructions to the switch. The equiv-

alence checker reported that the rules associated with some filters are missing. Then,

the Scout algorithm localized those filters as faulty objects. Using filter creation times

from the change logs and the fault logs that indicate the switch was inactive (both

maintained at the controller), the correlation engine was able to detect that filters were

created when the switch was inactive.

Chapter 7. Fault Localization in Large-Scale Network Policy Deployment 108

Too many missing rules. As a variant of the above scenario, we pushed a policy

with a large number of policy objects onto the unresponsive switch. We found out that

more than 300K missing rules were reported by the equivalence checker. Without fault

localization, it is extremely challenging for network admins to correlate and identify

the set of underlying objects that are fundamentally responsible for the problem. Scout

narrowed it down and reported the unresponsive switch as the root cause behind these

huge number of rule misses.

7.6 Evaluation
We evaluate Scout in terms of (i) suspect set reduction, (ii) accuracy, and (iii) scala-

bility. We mean by suspect set reduction a ratio, γ between the size of hypothesis (a

set of objects reported by Scout) and the number of all objects that failed EPG pairs

rely on; the smaller the ratio is, the less objects network admins should examine. As

for accuracy, we use precision (|G∩H|/|H|) and recall (|G∩H|/|G|) where H is hy-

pothesis and G is a set for ground truth. A higher precision means fewer false positives

and a higher recall means fewer false negatives. Finally, we evaluate scalability via

measuring running times across different network sizes.

7.6.1 Evaluation environment

Setup. We conduct our evaluation under two settings.

Simulation: We build our simulation setup with network policies used in our pro-

duction cluster that comprises about 30 switches and 100s of servers. The cluster

dataset contains 6 VRFs, 615 EPGs, 386 contracts, and 160 filters.

Testbed: We build a network policy that consists of 36 EPGs, 24 contracts, 9 filters,

and 100 EPG pairs, based on the statistics of the number of EPGs and their dependency

on other policy objects obtained from the above cluster dataset.

Fault injection. We define two types of faults that cause inconsistency between net-

work policy and switch TCAM rules. (i) Full object fault means that all TCAM rules

associated with an object are missing. (ii) Partial object fault is a fault that makes some

of the EPG pairs that depend on an object fail to communicate. That is, some TCAM

rules associated with the object are missing. For both simulation and experiment, we

randomly generate the two types of faults with equal weight.

Chapter 7. Fault Localization in Large-Scale Network Policy Deployment 109

��
�����
�����
�����
�����

����

���� ����� ����� �����

�

����������������

(a) Faults in testbed

��
�����
�����
�����
�����

����
�����

���� ����� ������ ������� ��������

�

����������������

(b) Simulated faults

Figure 7.7: Suspect set reduction.

7.6.2 Results

Suspect set reduction. We first compare the size of hypothesis with the number of

policy objects (a suspect set) that EPG pairs in failure depend on. We use the metric

γ defined earlier for this comparison. Figure 7.7 shows the suspect set reduction ratio

in the simulation and testbed. We generate 1,500 faults of object in the simulation and

200 faults of object in the testbed; for each object fault, we compute the total number

of objects, that the EPG pairs impacted by the faulty object depend on. From the figure,

we see γ is less than 0.08 in most cases. Scout reports at maximum 10 policy objects

in the hypothesis whereas without fault localization network admin should suspect as

many as a thousand policy objects. This smaller γ value means that network admins

need to examine a relatively small number of objects to fix inconsistencies between a

network policy and deployed TCAM rules. Therefore, Scout can greatly help reduce

repair time and necessary human resources.

Accuracy. While it is great that Scout produces a handful of objects that require inves-

tigation, a more important aspect is that the hypothesis should contain more number of

truly faulty objects and less number of non-faulty objects. We study this using preci-

sion and recall. In addition, we compare Scout’s accuracy with SCORE’s. We use two

different error threshold values for SCORE to see if changing parameters would help

improve its accuracy.

Figures 7.8(a) and 7.8(b) show recall and precision of fault localization with multi-

ple number of simultaneous faulty objects (x-axis) in the switch risk model. From the

Chapter 7. Fault Localization in Large-Scale Network Policy Deployment 110

����

����

����

����

����

��

���������������������

�
��
�
��
��
�

�������������

�����
���������
�������

(a) Precision

����

����

����

����

����

��

���������������������

�
�
�
�
��

�������������

(b) Recall

Figure 7.8: Fault localization performance on switch risk model. X in SCORE-

X is an error threshold set for hit ratio. The results are averaged over 30 runs.

����

����

����

����

����

��

���������������������

�
��
�
��
��
�

�������������

�����
���������
�������

(a) Precision

����

����

����

����

����

��

���������������������

�
�
�
�
��

�������������

(b) Recall

Figure 7.9: Fault localization performance on controller risk model with faulty

policy objects across switches. X in SCORE-X is an error threshold set for hit

ratio. Each data point is an average over 30 runs.

figures, we observe Scout’s recall is 20-30% better than SCORE’s without any compro-

mise on precision. The error threshold values make little change in the performance

of SCORE. Also, the high recall of Scout suggests that Scout can always find most

faulty objects. Moreover, high precision (close to 0.9) suggests fewer false positives.

For instance, with 10 faulty objects in the network policy, Scout reports on average one

additional object as faulty. In Figures 7.9(a) and 7.9(b) we observe similar trends for

the controller risk model.

Figures 7.10(a) and 7.10(b) compare the accuracy of Scout and SCORE with up

to 10 simultaneous faults in the testbed. SCORE’s error threshold is set to 1. From

the figures, we observe Scout’s recall is much better (20-50%) than SCORE’s while

its precision is comparable to SCORE’s. Scout detects all faulty objects when there

Chapter 7. Fault Localization in Large-Scale Network Policy Deployment 111

����

����

����

��

���������������������

�
��
�
��
��
�

�������������

�����
�����

(a) Precision

����

����

����

����

��

���������������������

�
�
�
�
��

�������������

(b) Recall

Figure 7.10: Fault localization performance when policy objects fail to be de-

ployed in a switch. Each data point is an average over 10 runs.

are less than four faults, i.e., with 100% recall and about 98% precision. When there

are five or more faults, Scout’s accuracy (especially, recall) begins to decrease. The

difference in accuracy between the simulation and testbed setup is mainly because of

a low degree of risk sharing among EPG pairs in the testbed, when compared to the

simulation dataset obtained from the production cluster.

Scalability. We measure running time of Scout under a controller risk model from the

network policy deployed in 10 switches in the production cluster. We scale the model

up to 500 switches by adding new EPG and switch pairs. We observe that Scout takes

about 45 and 130 seconds with 200 and 500 switches respectively, on a machine with

a 4-core 2.6 GHz CPU and 16GB memory.

7.7 Limitations

Routing policy deployment failures. In general, there are mainly two types of net-

work policies: security and routing policies. Low-level rules like access control list,

are installed into edge switches based on security policies, and enforce which traffic

to drop, forward, or modify. On the other hand, routing policies enforce which path

the traffic should follow between an ingress and an egress edge switch. In this chapter,

we present Scout, an end-to-end system that localizes faults while deploying security

policies. Scout can be extended to provide support for routing policy deployment fail-

ures as well. This is important because, an edge switch processes traffic as defined by

both routing and security policy. Perhaps, similar to Scout, we can introduce models

that capture routing policy deployment failures, run a fault localization algorithm, and

Chapter 7. Fault Localization in Large-Scale Network Policy Deployment 112

localize the minimal set of policy objects that explains most of the routing failures.

Maintaining signatures of known faults. The event correlation engine infers the most

likely physical-level failures, like a disconnected switch, TCAM overflow, etc., which

might be the root cause for policy deployment failures. In this work, we pre-configured

the engine with signatures of all known physical-level failures. When a spurious net-

work event is detected, network fault logs are matched against the signatures, and infer

the root cause. However, in practice, updating (add, delete, or modify) a signature list

requires domain knowledge and prior experience. For now, we manually update the

signatures, instead of automatically creating them.

7.8 Summary
Network policy abstraction enables flexible and intuitive policy management. How-

ever it also makes network troubleshooting prohibitively hard when network policies

are not deployed as expected. In this chapter we introduced and solved a network pol-

icy fault localization problem where the goal is to identify faulty policy objects that

have low-level rules go missing from network devices and thus are responsible for net-

work outages and policy violations. We formulated the problem with risks models and

proposed a greedy algorithm that accurately pinpoints faulty policy objects and built

Scout, an end-to-end system that automatically pinpoints not only faulty policy objects

but also physical-level failures.

Chapter 8

Conclusion

To conclude, this chapter outlines the areas of future works and summarizes thesis

contributions.

8.1 Future work

Per-packet logs support. PathDump and SwitchPointer make a case for shifting de-

bugging functionality from networks to end-hosts. Because storing individual packet

header has a high latency and throughput bottleneck at high line rates (e.g., 10Gig,

40Gig), end-host agent aggregate all packets within a flow and store records on a per-

flow (5-tuple) basis. However, some debugging applications that run SQL-like queries

on various packet header fields require per-packet logs, therefore may not fully ben-

efit with flow-level statistics. For example, queries that execute on custom packet

header fields (defined to enable specific functionality), like VXLAN header fields in

CONGA [19], TPP fields in [51], etc.

Can we provide support to capture, store, and execute queries on per-packet logs

while respecting end-host resources? Some possibilities are integrating advanced data

structures advocated in trumpet [71], use hardware-based packet capture [47], or filter

packet headers that represents a spurious network event in the hardware. Such a per-

packet log capability at end-hosts would enable debugging a class of network problems

in addition to those currently supported by PathDump and SwitchPointer.

Universal packet trajectory tracing. In a large-scale data center, there exist hundreds

of paths between a pair of end-hosts. While debugging network problems, knowing

the packet path greatly reduces debugging space [44, 112, 49, 22, 88]. Some of the

techniques to trace packet trajectory are: enforcing path-let routing [110], embedding

113

Chapter 8. Conclusion 114

each linkID that a packet traverse into the packet header [51], collect per-packet per-

switch logs [47], and link sampling technique like CherryPick. In this thesis, based

on a link sampling technique, we provide OpenFlow rules for tracing a packet path

in two popular topologies, fat-tree and VL2. We also showed this technique requires

minimal switch rules and small packet header space (one VLAN tag for 4-hops), so

that CherryPick works in a network with commodity SDN switches. However, due to

packet header space and switch hardware limitation, CherryPick may not support other

topologies like DCell, BCube, HyperX, etc.

We envision this limitations would go away with the emergence of programmable

hardware. So, a promising future work would be to come up with a system for tracing

packet trajectory irrespective to underlying network topology. The system should ex-

ploit topology characteristics, and automatically generate switch flow rules, such that,

it uses optimal switch resources and packet header space. One possibility is to lever-

age switch hardware programmability, and define a packet parser, match-action rules,

and packet header bits that work for a specific topology. Such a system abstracts the

underlying network topology’s details, and ease operators while debugging network

problems.

Policy for maximum resource utilization. Typically, multiple tenants share the net-

work infrastructure. Tenants could be application owners in a cloud, business units in

an enterprise network, or departments in a campus network. In addition to the usual

operations, a SDN controller converts a tenant policy to low-level rules, and also guar-

antees performance isolation. For example, access control rules derived from a policy

are deployed in edge switches, as if the customer is the only one using the switch

resources. From the cloud provider’s perspective, in addition to optimizing resource

allocation for a single tenant, the provider should also satisfy other tenants such that

resource utilization is maximized.

Can we dynamically recommend a network policy that best meets both tenant needs

(security, isolation) and cloud provider requirements (maximum resource utilization)?

Perhaps, one approach is to build a global model similar to bipartite models in Scout,

that captures tenant policies and their resources utilization, run optimization algorithms

on the model, and recommend a win-win policy to the tenants.

SwitchPointer on-chip support. We envision that a hardware prototype that imple-

ments SwitchPointer pointer would be the good next step to realize our idea — dis-

tributed switch storage as distributed directory service. It would eliminate the perfor-

Chapter 8. Conclusion 115

mance limitations of the current software versions we have built. One approach is to

study the available constructs (hashing, per-packet memory update) in programmable

hardware such as P4 and NetFPGA, if necessary also implement new constructs.

8.2 Contributions
Monitoring and debugging data plane problems in large-scale networks is complex.

Existing solutions operate at one of the two extremes — systems running at end-hosts

(more resources but less visibility into the network) or at network switches (more

visibility, but limited resources). This thesis calls for a different approach for net-

work debugging: it carefully partitions the monitoring and debugging functionality

between network elements and end-hosts. Towards this direction, this thesis presents

CherryPick, PathDump, and SwitchPointer, together integrates in-network visibility and

resources and programmability of end-hosts. In specific, we showed that an end-host

based network debugger, PathDump gain in-network visibility with SwitchPointer (with

its pointers to end-hosts at switches) and CherryPick (with its packet trajectory tracing

technique), and allows to debug a large class of network problems which includes those

that are hard or even infeasible to debug with existing systems.

While CherryPick, PathDump, and SwitchPointer focus on debugging problems in

the network data plane, Scout deals with network policy deployment failures. Scout

is an end-to-end system that first localizes faulty policy objects, then conduct analysis

to identify physical level failure; a possible root cause for objects become faulty. The

impact of Scout remains to be seen. Scout work is tested and evaluated on Cisco’s

SDN solution for data center networks — Application Centric Infrastructure (ACI) —

integration of Scout into Cisco’s in-house debugging tool is part of the future plan.

8.3 Towards automated network debugging
A fully automated debugging tool — a key component in self-driving networks —

should detect, locate, and find root cause of network problems. In specific, it should tell

about where and what is the problem, instead of using human skills and expertise which

might take many man-hours. This thesis does not target "automated" debugging but

rather builds a framework to simplify the debugging process. We hope this thesis would

guide network admins while designing debugging tools for self-driving networks.

Bibliography

[1] Amazon.com suffers outage: Nearly $5m down the drain? http://tinyurl.

com/od7vhm8.

[2] CMPH - C Minimal Perfect Hashing Library. http://cmph.sourceforge.

net/.

[3] DPDK: Data Plane Development Kit. http://dpdk.org/.

[4] Flask. http://flask.pocoo.org/.

[5] Hyper-V virtual switch. https://tinyurl.com/y8orbkkp.

[6] In-band Network Telemetry. https://github.com/p4lang/p4factory/

tree/master/apps/int.

[7] MongoDB. https://www.mongodb.org/.

[8] Open vSwitch. http://openvswitch.org/.

[9] OpenDaylight Group Policy. https://wiki.opendaylight.org/view/

Group_Policy:Main.

[10] Programmable hardware switches. https://www.sdxcentral.com/

articles/news/att-picks-barefoot-networks-programmable-switches/

2017/04/.

[11] sFlow. http://www.sflow.org/.

[12] Solving the mystery of link imbalance. http://tinyurl.com/m9vv4zj.

[13] Sampled NetFlow. http://www.cisco.com/c/en/us/td/docs/ios/

12_0s/feature/guide/12s_sanf.html, 2003.

[14] PathDump. https://github.com/PathDump, 2016.

[15] Cisco Application Centric Infrastructure. https://goo.gl/WQYqnv, 2017.

116

http://tinyurl.com/od7vhm8
http://tinyurl.com/od7vhm8
http://cmph.sourceforge.net/
http://cmph.sourceforge.net/
http://dpdk.org/
http://flask.pocoo.org/
https://tinyurl.com/y8orbkkp
https://github.com/p4lang/p4factory/tree/master/apps/int
https://github.com/p4lang/p4factory/tree/master/apps/int
https://www.mongodb.org/
http://openvswitch.org/
https://wiki.opendaylight.org/view/Group_Policy:Main
https://wiki.opendaylight.org/view/Group_Policy:Main
https://www.sdxcentral.com/articles/news/att-picks-barefoot-networks-programmable-switches/2017/04/
https://www.sdxcentral.com/articles/news/att-picks-barefoot-networks-programmable-switches/2017/04/
https://www.sdxcentral.com/articles/news/att-picks-barefoot-networks-programmable-switches/2017/04/
http://www.sflow.org/
http://tinyurl.com/m9vv4zj
http://www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/guide/12s_sanf.html
http://www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/guide/12s_sanf.html
https://github.com/PathDump
https://goo.gl/WQYqnv

Bibliography 117

[16] AGARWAL, K., ROZNER, E., DIXON, C., AND CARTER, J. SDN Traceroute: Tracing SDN

Forwarding Without Changing Network Behavior. In ACM HotSDN (2014).

[17] AL-FARES, M., LOUKISSAS, A., AND VAHDAT, A. A Scalable, Commodity Data Center

Network Architecture. In ACM SIGCOMM (2008).

[18] AL-FARES, M., RADHAKRISHNAN, S., RAGHAVAN, B., HUANG, N., AND VAHDAT, A. Hed-

era: Dynamic flow scheduling for data center networks. In USENIX NSDI (2010).

[19] ALIZADEH, M., EDSALL, T., DHARMAPURIKAR, S., VAIDYANATHAN, R., CHU, K., FINGER-

HUT, A., LAM, V. T., MATUS, F., PAN, R., YADAV, N., AND VARGHESE, G. Conga: Dis-

tributed congestion-aware load balancing for datacenters. In ACM SIGCOMM (2014).

[20] ALIZADEH, M., GREENBERG, A., MALTZ, D. A., PADHYE, J., PATEL, P., PRABHAKAR, B.,

SENGUPTA, S., AND SRIDHARAN, M. Data center TCP (DCTCP). In ACM SIGCOMM

(2010).

[21] ALIZADEH, M., YANG, S., SHARIF, M., KATTI, S., MCKEOWN, N., PRABHAKAR, B., AND

SHENKER, S. pFabric: minimal near-optimal datacenter transport. In ACM SIGCOMM

(2013).

[22] ARZANI, B., CIRACI, S., CHAMON, L., ZHU, Y., LIU, H., PADHYE, J., OUTHRED, G., AND

LOO, B. T. Closing the network diagnostics gap with vigil. In ACM SIGCOMM Posters

and Demos (2017).

[23] BAHL, P., CHANDRA, R., GREENBERG, A., KANDULA, S., MALTZ, D. A., AND ZHANG,

M. Towards highly reliable enterprise network services via inference of multi-level

dependencies. In ACM SIGCOMM (2007).

[24] BENSON, T., ANAND, A., AKELLA, A., AND ZHANG, M. Understanding Data Center Traffic

Characteristics. ACM SIGCOMM CCR 40, 1 (Jan. 2010).

[25] BOSSHART, P., GIBB, G., KIM, H.-S., VARGHESE, G., MCKEOWN, N., IZZARD, M., MUJICA,

F., AND HOROWITZ, M. Forwarding Metamorphosis: Fast Programmable Match-action

Processing in Hardware for SDN. In ACM SIGCOMM (2013).

[26] CASADO, M., FREEDMAN, M. J., PETTIT, J., LUO, J., MCKEOWN, N., AND SHENKER, S.

Ethane: Taking control of the enterprise. ACM SIGCOMM.

[27] CHEN, A., WU, Y., HAEBERLEN, A., ZHOU, W., AND LOO, B. T. The Good, the Bad,

and the Differences: Better Network Diagnostics with Differential Provenance. In ACM

SIGCOMM (2016).

Bibliography 118

[28] CHEN, H., FOSTER, N., SILVERMAN, J., WHITTAKER, M., ZHANG, B., AND ZHANG, R.

Felix: Implementing traffic measurement on end hosts using program analysis. In ACM

SIGCOMM SOSR (2016).

[29] CHEN, Y., GRIFFITH, R., LIU, J., KATZ, R. H., AND JOSEPH, A. D. Understanding TCP

Incast Throughput Collapse in Datacenter Networks. In ACM Workshop on Research on

Enterprise Networking (2009).

[30] CHIESA, M., NIKOLAEVSKIY, I., PANDA, A., GURTOV, A., SCHAPIRA, M., AND SHENKER,

S. Exploring the Limits of Static Failover Routing. CoRR abs/1409.0034 (2014).

[31] COLE, R., OST, K., AND SCHIRRA, S. Edge-Coloring Bipartite Multigraphs in O(E log

D) Time. Combinatorica 21, 1 (2001).

[32] CURTIS, A. R., KIM, W., AND YALAGANDULA, P. Mahout: Low-overhead datacenter traffic

management using end-host-based elephant detection. In IEEE INFOCOM (2011).

[33] CURTIS, A. R., MOGUL, J. C., TOURRILHES, J., YALAGANDULA, P., SHARMA, P., AND

BANERJEE, S. Devoflow: scaling flow management for high-performance networks. In

ACM SIGCOMM (2011).

[34] DHAMDHERE, A., TEIXEIRA, R., DOVROLIS, C., AND DIOT, C. NetDiagnoser: Trou-

bleshooting Network Unreachabilities Using End-to-end Probes and Routing Data. In

ACM CoNEXT (2007).

[35] DIXIT, A., PRAKASH, P., HU, Y. C., AND KOMPELLA, R. R. On the Impact of Packet

Spraying in Data Center Networks. In IEEE INFOCOM (2013).

[36] DUFFIELD, N. G., AND GROSSGLAUSER, M. Trajectory Sampling for Direct Traffic Ob-

servation. IEEE/ACM ToN 9, 3 (2001).

[37] ESTAN, C., KEYS, K., MOORE, D., AND VARGHESE, G. Building a better netflow. In ACM

SIGCOMM (2004).

[38] ESTAN, C., AND VARGHESE, G. New directions in traffic measurement and accounting.

In ACM SIGCOMM (2002).

[39] FERGUSON, A. D., ET AL. Participatory networking: An api for application control of

sdns. In ACM SIGCOMM (2013).

[40] FOGEL, A., FUNG, S., PEDROSA, L., WALRAED-SULLIVAN, M., GOVINDAN, R., MAHAJAN,

R., AND MILLSTEIN, T. A General Approach to Network Configuration Analysis. In

USENIX NSDI (2015).

Bibliography 119

[41] FOSTER, N., HARRISON, R., FREEDMAN, M. J., MONSANTO, C., REXFORD, J., STORY,

A., AND WALKER, D. Frenetic: A network programming language. In ACM SIGPLAN

ICFP (2011).

[42] FOX, E. A., CHEN, Q. F., AND HEATH, L. S. A Faster Algorithm for Constructing Minimal

Perfect Hash Functions. In ACM SIGIR (1992).

[43] GREENBERG, A., HAMILTON, J. R., JAIN, N., KANDULA, S., KIM, C., LAHIRI, P., MALTZ,

D. A., PATEL, P., AND SENGUPTA, S. VL2: A Scalable and Flexible Data Center Network.

In ACM SIGCOMM (2009).

[44] GUO, C., YUAN, L., XIANG, D., DANG, Y., HUANG, R., MALTZ, D., LIU, Z., WANG, V.,

PANG, B., CHEN, H., LIN, Z.-W., AND KURIEN, V. Pingmesh: A Large-Scale System for

Data Center Network Latency Measurement and Analysis. In ACM SIGCOMM (2015).

[45] GUPTA, A., BIRKNER, R., CANINI, M., FEAMSTER, N., MAC-STOKER, C., AND WILLINGER,

W. Network monitoring as a streaming analytics problem. In ACM HotNets (2016),

HotNets ’16.

[46] HANDIGOL, N., HELLER, B., JEYAKUMAR, V., MAZIÉRES, D., AND MCKEOWN, N. Where

is the Debugger for My Software-defined Network? In ACM HotSDN (2012).

[47] HANDIGOL, N., HELLER, B., JEYAKUMAR, V., MAZIÈRES, D., AND MCKEOWN, N. I Know

What Your Packet Did Last Hop: Using Packet Histories to Troubleshoot Networks. In

USENIX NSDI (2014).

[48] HONDA, M., HUICI, F., LETTIERI, G., AND RIZZO, L. mswitch: A highly-scalable, mod-

ular software switch. In ACM SIGCOMM SOSR (2015).

[49] HUANG, P., GUO, C., ZHOU, L., LORCH, J. R., DANG, Y., CHINTALAPATI, M., AND YAO, R.

Gray failure: The achilles’ heel of cloud-scale systems. In ACM HotOS (2017).

[50] HUANG, Q., JIN, X., LEE, P. P. C., LI, R., TANG, L., CHEN, Y.-C., AND ZHANG, G. Sketchvi-

sor: Robust network measurement for software packet processing. In ACM SIGCOMM

(2017).

[51] JEYAKUMAR, V., ALIZADEH, M., GENG, Y., KIM, C., AND MAZIÈRES, D. Millions of Little

Minions: Using Packets for Low Latency Network Programming and Visibility. In ACM

SIGCOMM (2014).

[52] JOHNSON, D. S. Approximation algorithms for combinatorial problems. Journal of

computer and system sciences 9, 3 (1974), 256–278.

Bibliography 120

[53] KANDULA, S., ET AL. Shrink: A tool for failure diagnosis in ip networks. In ACM

SIGCOMM workshop on Mining network data (2005).

[54] KANDULA, S., MAHAJAN, R., VERKAIK, P., AGARWAL, S., PADHYE, J., AND BAHL, P. De-

tailed Diagnosis in Enterprise Networks. In ACM SIGCOMM (2009).

[55] KANDULA, S., SENGUPTA, S., GREENBERG, A., PATEL, P., AND CHAIKEN, R. The Nature

of Data Center Traffic: Measurements & Analysis. In ACM IMC (2009).

[56] KANG, N., ET AL. Optimizing the "one big switch" abstraction in software-defined net-

works. In ACM CoNEXT (2013).

[57] KATTA, N., HIRA, M., KIM, C., SIVARAMAN, A., AND REXFORD, J. Hula: Scalable load

balancing using programmable data planes. In ACM SOSR (2016).

[58] KAZEMIAN, P., CHANG, M., ZENG, H., VARGHESE, G., MCKEOWN, N., AND WHYTE, S.

Real Time Network Policy Checking Using Header Space Analysis. In USENIX NSDI

(2013).

[59] KAZEMIAN, P., VARGHESE, G., AND MCKEOWN, N. Header Space Analysis: Static Check-

ing for Networks. In USENIX NSDI (2012).

[60] KHURSHID, A., ZOU, X., ZHOU, W., CAESAR, M., AND GODFREY, P. B. VeriFlow: Verify-

ing Network-Wide Invariants in Real Time. In USENIX NSDI (2013).

[61] KOMPELLA, R. R., YATES, J., GREENBERG, A., AND SNOEREN, A. C. Detection and

localization of network black holes. In IEEE INFOCOM (2007).

[62] KOMPELLA, R. R., YATES, J., GREENBERG, A., AND SNOEREN, A. C. Fault localization via

risk modeling. IEEE Transactions on Dependable and Secure Computing 7, 4 (2010),

396–409.

[63] LI, Y., MIAO, R., KIM, C., AND YU, M. FlowRadar: A Better NetFlow for Data Centers.

In USENIX NSDI (2016).

[64] LIU, Z., MANOUSIS, A., VORSANGER, G., SEKAR, V., AND BRAVERMAN, V. One sketch to

rule them all: Rethinking network flow monitoring with univmon. In ACM SIGCOMM

(2016).

[65] LOGOTHETIS, D., TREZZO, C., WEBB, K. C., AND YOCUM, K. In-situ MapReduce for Log

Processing. In USENIX ATC (2011).

[66] MAI, H., KHURSHID, A., AGARWAL, R., CAESAR, M., GODFREY, P. B., AND KING, S. T.

Debugging the Data Plane with Anteater. In ACM SIGCOMM (2011).

Bibliography 121

[67] MELNIK, S., GUBAREV, A., LONG, J. J., ROMER, G., SHIVAKUMAR, S., TOLTON, M., AND

VASSILAKIS, T. Dremel: Interactive analysis of web-scale datasets. In VLDB (2010).

[68] MITTAL, R., AGARWAL, R., RATNASAMY, S., AND SHENKER, S. Universal packet schedul-

ing. In ACM HotNets (2015).

[69] MONSANTO, C., REICH, J., FOSTER, N., REXFORD, J., AND WALKER, D. Composing

Software-defined Networks. In USENIX NSDI (2013).

[70] MOSHREF, M., YU, M., GOVINDAN, R., AND VAHDAT, A. Dream: dynamic resource

allocation for software-defined measurement. In ACM SIGCOMM (2014).

[71] MOSHREF, M., YU, M., GOVINDAN, R., AND VAHDAT, A. Trumpet: Timely and Precise

Triggers in Data Centers. In ACM SIGCOMM (2016).

[72] MYSORE, R. N., ET AL. Gestalt: Fast, Unified Fault Localization for Networked Systems.

In USENIX ATC (2014).

[73] NARAYANA, S., REXFORD, J., AND WALKER, D. Compiling Path Queries in Software-

defined Networks. In ACM HotSDN (2014).

[74] NARAYANA, S., SIVARAMAN, A., NATHAN, V., GOYAL, P., ARUN, V., ALIZADEH, M.,

JEYAKUMAR, V., AND KIM, C. Language-Directed Hardware Design for Network Per-

formance Monitoring. In ACM SIGCOMM (2017).

[75] NARAYANA, S., TAHMASBI, M., REXFORD, J., AND WALKER, D. Compiling Path Queries.

In USENIX NSDI (2016).

[76] NELAKUDITI, S., LEE, S., YU, Y., ZHANG, Z.-L., AND CHUAH, C.-N. Fast local rerouting

for handling transient link failures. In IEEE/ACM ToN (2007).

[77] NELSON, T., YU, D., LI, Y., FONSECA, R., AND KRISHNAMURTHI, S. Simon: Scriptable

Interactive Monitoring for SDNs. In ACM SIGCOMM SOSR (2015).

[78] NISHTALA, R., FUGAL, H., GRIMM, S., KWIATKOWSKI, M., LEE, H., LI, H. C., MCELROY,

R., PALECZNY, M., PEEK, D., SAAB, P., STAFFORD, D., TUNG, T., AND VENKATARAMANI,

V. Scaling memcache at facebook. In USENIX NSDI (2013).

[79] OPEN NETWORKING FOUNDATION. OpenFlow Switch Specification Version 1.4.0.

http://tinyurl.com/kh6ef6s, 2013.

[80] PEARCE, O., GAMBLIN, T., DE SUPINSKI, B. R., SCHULZ, M., AND AMATO, N. M. Quan-

tifying the Effectiveness of Load Balance Algorithms. In ACM ICS (2012).

http://tinyurl.com/kh6ef6s

Bibliography 122

[81] PEARL, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-

ence. Morgan Kaufmann Publishers Inc., 1988.

[82] PRAKASH, C., ET AL. PGA: Using Graphs to Express and Automatically Reconcile

Network Policies. In ACM SIGCOMM (2015).

[83] PRAKASH, P., DIXIT, A., HU, Y. C., AND KOMPELLA, R. The TCP Outcast Problem: Ex-

posing Unfairness in Data Center Networks. In USENIX NSDI (2012).

[84] RAICIU, C., BARRE, S., PLUNTKE, C., GREENHALGH, A., WISCHIK, D., AND HANDLEY,

M. Improving Datacenter Performance and Robustness with Multipath TCP. In ACM

SIGCOMM (2011).

[85] RASLEY, J., STEPHENS, B., DIXON, C., ROZNER, E., FELTER, W., AGARWAL, K., CARTER,

J., AND FONSECA, R. Planck: Millisecond-scale monitoring and control for commodity

networks. In ACM SIGCOMM (2014).

[86] RASLEY, J., STEPHENS, B., DIXON, C., ROZNER, E., FELTER, W., AGARWAL, K., CARTER,

J., AND FONSECA, R. Planck: Millisecond-scale monitoring and control for commodity

networks. In ACM SIGCOMM (2014).

[87] ROY, A., ZENG, H., BAGGA, J., PORTER, G., AND SNOEREN, A. C. Inside the social

network’s (datacenter) network. In ACM SIGCOMM (2015).

[88] ROY, A., ZENG, H., BAGGA, J., AND SNOEREN, A. C. Passive realtime datacenter fault

detection and localization. In USENIX NSDI (2017).

[89] SEKAR, V., REITER, M. K., WILLINGER, W., ZHANG, H., KOMPELLA, R. R., AND ANDER-

SEN, D. G. Csamp: A system for network-wide flow monitoring. In USENIX NSDI

(2008).

[90] SEKAR, V., REITER, M. K., AND ZHANG, H. Revisiting the case for a minimalist approach

for network flow monitoring. In ACM IMC.

[91] SINGH, A., ET AL. Jupiter Rising: A Decade of Clos Topologies and Centralized Control

in Google’s Datacenter Network. In ACM SIGCOMM (2015).

[92] SOULÉ, R., ET AL. Merlin: A Language for Provisioning Network Resources. In ACM

CoNEXT (2014).

[93] STEINDER, M., AND SETHI, A. S. Increasing robustness of fault localization through

analysis of lost, spurious, and positive symptoms. In IEEE INFOCOM (2002).

[94] STEINDER, M., AND SETHI, A. S. Probabilistic Fault Localization in Communication

Systems Using Belief Networks. IEEE/ACM ToN 12, 5 (2004).

Bibliography 123

[95] STEINDER, M., AND SETHI, A. S. A survey of fault localization techniques in computer

networks. Science of Computer Programming 53, 2 (2004), 165 – 194.

[96] SUH, J., KWON, T. T., DIXON, C., FELTER, W., AND CARTER, J. B. OpenSample: A Low-

Latency, Sampling-Based Measurement Platform for Commodity SDN. In IEEE ICDCS

(2014).

[97] SUN, P., YU, M., FREEDMAN, M. J., REXFORD, J., AND WALKER, D. Hone: Joint host-

network traffic management in software-defined networks. JNSM 23, 2 (Apr. 2015).

[98] TAMMANA, P., AGARWAL, R., AND LEE, M. CherryPick: Tracing Packet Trajectory in

Software-defined Datacenter Networks. In ACM SIGCOMM SOSR (2015).

[99] TAMMANA, P., AGARWAL, R., AND LEE, M. Simplifying Datacenter Network Debugging

with PathDump. In USENIX OSDI (2016).

[100] TSO, F. P., HAMILTON, G., WEBER, R., PERKINS, C. S., AND PEZAROS, D. P. Longer is

better: exploiting path diversity in data center networks. In IEEE ICDCS (2013).

[101] VENKATARAMAN, S., SONG, D. X., GIBBONS, P. B., AND BLUM, A. New streaming algo-

rithms for fast detection of superspreaders.

[102] VOELLMY, A., ET AL. MAPLE: Simplifying SDN Programming Using Algorithmic Poli-

cies. In ACM SIGCOMM (2013).

[103] WUNDSAM, A., LEVIN, D., SEETHARAMAN, S., AND FELDMANN, A. OFRewind: Enabling

Record and Replay Troubleshooting for Networks. In USENIX ATC (2011).

[104] YANG, B., LIU, J., SHENKER, S., LI, J., AND ZHENG, K. Keep forwarding: Towards k-link

failure resilient routing. In IEEE INFOCOM (2014).

[105] YIN, Z., CAESAR, M., AND ZHOU, Y. Towards understanding bugs in open source router

software. SIGCOMM CCR 40, 3 (2010).

[106] YU, M., GREENBERG, A., MALTZ, D., REXFORD, J., YUAN, L., KANDULA, S., AND KIM,

C. Profiling Network Performance for Multi-tier Data Center Applications. In USENIX

NSDI (2011).

[107] YU, M., JOSE, L., AND MIAO, R. Software defined traffic measurement with OpenSketch.

In USENIX NSDI (2013).

[108] ZARIFIS, K., MIAO, R., CALDER, M., KATZ-BASSETT, E., YU, M., AND PADHYE, J. DIBS:

Just-in-time Congestion Mitigation for Data Centers. In ACM EuroSys (2014).

Bibliography 124

[109] ZENG, H., KAZEMIAN, P., VARGHESE, G., AND MCKEOWN, N. Automatic Test Packet

Generation. IEEE/ACM ToN 22, 2 (2014), 554–566.

[110] ZHANG, H., LUMEZANU, C., RHEE, J., ARORA, N., XU, Q., AND JIANG, G. Enabling

Layer 2 Pathlet Tracing Through Context Encoding in Software-defined Networking. In

ACM HotSDN (2014).

[111] ZHOU, W., SHERR, M., TAO, T., LI, X., LOO, B. T., AND MAO, Y. Efficient Querying and

Maintenance of Network Provenance at Internet-scale. In ACM SIGMOD (2010).

[112] ZHU, Y., KANG, N., CAO, J., GREENBERG, A., LU, G., MAHAJAN, R., MALTZ, D., YUAN, L.,

ZHANG, M., ZHAO, B. Y., AND ZHENG, H. Packet-Level Telemetry in Large Datacenter

Networks. In ACM SIGCOMM (2015).

	cover sheet
	thesis(1)
	Introduction
	Problems and contributions
	Thesis organization

	Background
	The data center environment
	Network data plane faults
	Flow contention
	Summary

	Related work
	In-network debugging
	Distributed network monitoring
	Fault localization in network policy deployment
	Summary

	CherryPick: Tracing Packet Trajectory in Software-Defined Datacenter Networks
	Introduction
	CherryPick
	Preliminaries
	Overview of CherryPick
	Design

	Evaluation
	Switch flow rules
	Packet header space
	End host resources

	Summary

	Simplifying Data center Network Debugging with PathDump
	Introduction
	Overview
	Interface
	Design Overview
	Example applications
	Reducing debugging space

	Implementation
	Tracing packet trajectory
	Server stack
	PathDump controller

	Applications
	Path conformance check
	Load imbalance diagnosis
	Silent random packet drops
	Blackhole diagnosis
	Routing loop debugging
	TCP performance anomaly diagnosis

	Evaluation
	Experimental setup
	Query performance
	Overheads

	Limitations
	Summary

	Distributed Network Monitoring and Debugging with SwitchPointer
	Introduction
	Motivation
	Too much traffic
	Too many red lights
	Traffic cascades
	Other SwitchPointer use cases

	Overview
	SwitchPointer
	Switches
	End-hosts
	Analyzer

	Applications
	Too much traffic
	Too many red lights
	Traffic cascades
	Load imbalance diagnosis

	Evaluation
	Switch overheads
	Query performance

	Limitations
	Summary

	Fault Localization in Large-Scale Network Policy Deployment
	Introduction
	Background
	Network policy
	Network state inconsistency

	Shared Risks in Network Policy
	A case study in a production cluster
	Risk models
	Augmenting risk models

	Fault Localization
	General idea
	Existing algorithm: SCORE
	Proposed algoirthm: Scout

	Scout System
	Physical-level root cause diagnosis
	Example usecases

	Evaluation
	Evaluation environment
	Results

	Limitations
	Summary

	Conclusion
	Future work
	Contributions
	Towards automated network debugging

	Bibliography

