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Abstract

Glucocorticoids play key roles in cell differentiation, central nervous system

function, intermediary metabolism and the immune response. During stress they act

to restore homeostasis. Secretion of glucocorticoids by the adrenal glands is

regulated by the hypothalamic-pituitary-adrenal (HPA) axis. Negative feedback
effects at the hypothalamus and pituitary gland, and effects at other brain regions,

especially the hippocampus, suppresses glucocorticoid secretion. Dysregulation of
the HPA axis is associated with depression, Alzheimer's disease, obesity, type II

diabetes, and altered immunocompetence. In rats, early life events can permanently
increase (neonatal handling, via altered serotonergic neurotransmission) or decrease

(in utero dexamethasone exposure) hippocampal glucocorticoid receptor (GR) levels,
with life-long effects on HPA axis responsiveness. Levels of GR expression can also
be permanently determined or "programmed" in peripheral tissues by perinatal

manipulations. Hepatic GR is permanently increased by prenatal glucocorticoid

exposure, altering glucose tolerance; this may be of relevance in the development of

non-insulin-dependent diabetes mellitus in later life.

To begin to dissect the mechanisms of perinatal programming of GR, it is necessary

to have an understanding of the transcriptional regulation of the GR gene.

Regulation of the GR gene is likely to be complex since glucocorticoids have diverse
functions in many tissues, and these functions vary during development. Previous
work from this laboratory has identified 12 alternate untranslated exons 1 in GR

mRNAs transcribed from the rat GR gene, which may reflect transcription regulated

by alternative promoters. The majority of these alternate exons 1 lie within a CpG
island. The aims of this thesis were to investigate tissue-specific regulation of the rat

GR gene and how this relates to perinatal programming ofGR levels.

RNase protection analysis was used to determine the relative tissue distributions of
alternate exon 1-containing GR mRNAs. One alternate exon 1, exon 1 io, was found
to be present in the majority (56-87%) of GR mRNAs in a variety of tissues,
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including hippocampus, liver and thymus. Mapping of the 5' end of exon li0
revealed substantial heterogeneity in transcription initiation points. Other alternate
exons 1 exhibited tissue-specific distributions. For example, exon 11-containing GR
mRNAs were restricted to thymus, while exon 17-containing GR mRNAs are

hippocampus-specific.

To address the mechanisms of perinatal programming of GR levels, RNase

protection analysis was used to assess changes in the abundances of alternate GR
mRNAs in the livers of adult rats exposed to dexamethasone in ntero. A significant
reduction (13%, p<0.05) in the proportion of exon 1 io-containing GR was detected,

suggesting an increase in the proportion of a minor GR mRNA variant. Further

experiments, however, did not identify a variant GR mRNA upregulated by this

manipulation. 5'-Rapid amplification of cDNA ends PCR performed on primary

hippocampal cultures revealed that the majority of GR mRNAs expressed by these
cultures contain exon lio and strengthened the earlier finding that transcription
initiation of this variant transcript exhibits considerable heterogeneity. RT-PCR

performed on these cultures revealed that primary hippocampal cultures express GR
mRNAs containing exon 17, which is specifically induced in the hippocampus by
neonatal handling, suggesting that these cultures might provide a useful system to

elucidate the mechanisms by which neonatal handling leads to permanently increased

hippocampal GR.

To determine whether promoter activity is associated with alternate exons 1, a series
of genomic constructs was generated and used in transient transfection assays. A
construct spanning the entire CpG island had the highest activity of any construct in

hepatoma, neuroblastoma and glioma cell lines. A construct designed to assess

promoter activity associated with exon I7 alone had relatively higher activity in
CNS-derived cell lines compared with hepatoma cells. In contrast, other constructs

designed to determine promoter activity associated with individual exons 1 exhibited
similar activity in all three cell lines. More detailed analysis identified a 134 base

pair region conferring significant promoter activity which was substantially higher in
neuroblastoma cells than hepatoma cells. The 134 base pair region is also able to act
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as an orientation-independent enhancer on a heterologous promoter. Sequence

analysis revealed the presence of a putative NGFI-A and an AP2 site in this region:
NGFI-A and AP2 are induced in the hippocampus by neonatal handling. Thus,
neonatal handling may increase hippocampal GR via a signal cascade culminating in
induction of a promoter associated with exon I7 by NGFI-A or AP2. It is well

established that glucocorticoids regulate expression of their own receptor. Transient
n

transfection assays using glioma cells showed that 10" M dexamethasone was able to

suppress promoter activity of the whole CpG island region by 37%, showing that GR

autoregulation occurs at least partly at the level of the GR promoter.

These data show that regulation of the rat GR gene involves use of multiple tissue-

specific promoters, which are used differentially during perinatal programming of
GR levels. An understanding of the molecular mechanisms underlying programming
of GR is of great importance in gaining an understanding of how tissue-specific

regulation ofGR occurs and how early life events influence adult disease.
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Chapter 1: Introduction

1.1 Glucocorticoids

Glucocorticoids, secreted by the adrenal glands, act to restore homeostasis after

stress, and play key roles in cell differentiation, central nervous system function, and

intermediary metabolism. Gross alterations in circulating glucocorticoid levels
results in disease. Primary adrenal insufficiency (Addison's disease), in which there
is insufficient production of glucocorticoids, is characterised by weakness, fatigue,

weight loss and gastrointestinal complaints (Orth D.N. et al. 1998). Cushing's

syndrome is the result of excessive glucocorticoid secretion. Symptoms include
central obesity, muscle atrophy, hypertension, diabetes, osteoporosis, depression and

memory loss (Orth D.N. et al. 1998). Secretion of glucocorticoids is controlled by
the hypothalamic-pituitary-adrenal (HPA) axis, with circulating glucocorticoids

exerting important negative feedback effects to suppress their own production.
Glucocorticoids act by binding to two types of cytoplasmic receptors, glucocorticoid

receptors (GR) and mineralocorticoid receptors (MR), which on binding ligand
translocate to the cell nucleus where they regulate gene expression by a variety of
mechanisms. There are several ways in which glucocorticoid action can be

modulated, e.g. by interconversion of hormone between active and inactive forms in
different tissues by specific enzymes. Another important regulatory mechanism
involves alterations in the levels of GR and MR themselves, which can have

profound physiological effects. For example, permanent alterations in GR levels in
the liver or in the hippocampal formation of the brain around birth lead to permanent

physiological changes that can influence the development of pathology in later life.
An understanding of how the GR gene is transcriptionally regulated is therefore
crucial to understand not only how glucocorticoids act in general terms, but also how

events in early life can "program" GR levels and affect the development of disease
later in life.
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1.1.1 Glucocorticoid biosynthesis

Glucocorticoids are synthesised in the zona fasiculata/reticularis of the adrenal

cortex, though there is in vitro evidence of synthesis by other cell types e.g. thymic

epithelial cells (Vacchio, M.S. et al. 1994) and possibly glial cells (reviewed in

GarciaSegura, L. M. et al. 1996). Cholesterol is the precursor for all steroid
hormones and is predominantly delivered to steroidogenic cells by low-density

lipoprotein. Cholesterol can also be synthesised de novo from acetate or mobilised
from intracellular cholesteryl ester pools. The biosynthetic pathway of

glucocorticoid production is outlined in Figure 1.1. Firstly, the cholesterol side chain
is removed by side-chain cleavage enzyme to form pregnenolone; this is the first step
in the synthesis of all steroid hormones, and is rate-limiting. Subsequent reactions
result in the production of corticosterone, the predominant glucocorticoid in the rat,

or Cortisol in humans. Glucocorticoids are not stored by the adrenals, but are

released immediately into the circulation. The mineralocorticoid aldosterone is

synthesised in the zona glomerulosa of the adrenal gland, which expresses

aldosterone synthase.

1.1.2 Control ofglucocorticoidproduction and secretion

1.1.2.1 Secretion from the adrenal cortex

Secretion of glucocorticoids by the adrenal cortex follows a circadian rhythm,

regulated by the suprachiasmatic nucleus of the hypothalamus, with plasma

glucocorticoid levels peaking prior to activity (i.e. in the morning in humans and in
the evening in rats). Importantly, glucocorticoid secretion is also increased in

response to "stress". Release of glucocorticoids is governed by the level of activity
of the hypothalamic-pituitary-adrenal (HPA) axis (Figure 1.2). The hypothalamus
secretes corticotropin-releasing hormone (CRH), arginine vasopressin (AVP) and
other peptides from its parvocellular paraventricular neurons in response to

stimulatory inputs from a variety of brain regions. These peptides are released into
the hypophyseal portal circulation and are delivered to the anterior pituitary, where
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they increase production of pro-opiomelanocortin (POMC), the precursor for

adrenocorticotrophic hormone (ACTH) (Orth, D. N et al. 1998). ACTH is the main

stimulus for glucocorticoid synthesis at the adrenal cortex and binds to cell surface

receptors coupled to adenylyl cyclase. Increasing cyclic adenosine monophosphate

(cAMP) levels rapidly activate side-chain cleavage enzyme activity, and ACTH also
increases the synthesis of steroidogenic enzymes over a period of days (Orth, D. N et

al. 1998).

1.1.2.2 Feedback regulation at the hypothalamus andpituitary

Glucocorticoid secretion is autoregulated via a negative feedback loop. In the

parvocellular neurons of the hypothalamus, glucocorticoid administration decreases
and adrenalectomy increases CRH mRNA levels (Thompson, R. C. et al. 1987). GR

may repress CRH expression by binding to a negative GRE (nGRE) in the CRH gene

promoter (Malkoski, S. P. et al. 1997) (section 1.4.2.2). In the posterior

magnocellular division of the paraventricular nucleus, adrenalectomy increases AVP
mRNA and this increase can be prevented by dexamethasone treatment (Davis, L. G.
et al. 1986). In the pituitary, POMC synthesis and hence ACTH synthesis and
secretion are reduced by glucocorticoids (Drouin, J. et al. 1990). Again, GR appears

to repress POMC expression by binding to a nGRE (Drouin, J. et al. 1990). Mice

expressing an antisense GR RNA ubiquitously have elevated ACTH and
corticosterone levels, possibly due to hypothalamic and pituitary glucocorticoid

hyposensitivity (Pepin, M. C. et al. 1992).

1.1.2.3 Central regulation ofthe HPA axis

The hippocampal region of the brain expresses high levels of both MR and GR

(reviewed in deKloet, E. R. et al. 1998). The role of hippocampal GR in modulating
HPA axis activity is a matter of controversy; overall, the hippocampus exerts an

inhibitory influence (Jacobson, L. et al. 1991). The hippocampus does not influence
HPA axis activity directly but projects excitatory neurons to the lateral bed nucleus
of the stria terminalis (BST), which exerts an inhibitory effect on the hypothalamus
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(reviewed in Raber, J. 1998). Maintenance of basal HPA activity appears to be
mediated by hippocampal MR (high affinity glucocorticoid receptors).
Intraventricular administration of a MR antagonist elevates basal plasma

glucocorticoid levels at the morning nadir (Ratka, A. et al. 1989). Dexamethasone, a

poor ligand for MR, but a high affinity ligand for GR, does not suppress

adrenalectomy-induced elevations in ACTH levels when implanted in the dorsal

hippocampus, whereas corticosterone (which binds to both GR and MR) implants do

(Kovacs, K. J. et al. 1988). After stress, and during the circadian peak of

glucocorticoid secretion, GR become progressively occupied. The GR antagonist
RU38486 has no effect on nadir levels of plasma corticosterone (Ratka, A. et al.

1989) but decreases basal ACTH levels as glucocorticoid levels rise (vanHaarst, A.
D. et al. 1997). Thus, hippocampal GR activation appears to disinhibit tonic
maintenance of HPA axis activity by MR. These data correlate well with the

opposing effects of GR and MR on neuronal excitability and hippocampal outflow

(Joels, M. et al. 1995; Joels, M. et al. 1997; reviewed in deKloet, E. R. et al. 1998).

A large number of studies suggest that GR activation is involved in negative
feedback regulation of the HPA axis (Figure 1.2). Reduced hippocampal GR levels
are associated with glucocorticoid hypersecretion after stress (Sapolsky, R. M. et al.

1984a) and CRH inhibition is directly proportional to hippocampal GR occupancy

(Sapolsky, R. M. et al. 1990). Hippocampal lesions increase CRH and AVP

expression and inhibit suppression of the HPA axis following stress (Herman, J. P. et
al. 1989a). Several manipulations that decrease hippocampal GR levels diminish the

efficacy of feedback regulation, with elevated plasma glucocorticoid levels

consistently associated with reduced hippocampal GR (Meaney, M. J. et al. 1989;

Jacobson, L. et al. 1991; Henry, C. et al. 1994). These studies, however, are

correlative, and it has been suggested that increased hippocampal GR indirectly

improve HPA feedback regulation by altering behaviour, e.g. by strengthening the

ability of an animal to "cope" with a stressful situation (Vallee, M. et al. 1997;

Anisman, H. et al. 1998; reviewed in deKloet, E. R. et al. 1998) (section 1.2.6).
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Figure 1.2: The hypothalamic-pituitary-adrenal axis

Secretion of CRH and AVP from the paraventricular nucleus (PVN) of the
hypothalamus into the pituitary portal circulation stimulates ACTH release from the
anterior pituitary, leading to subsequent glucocorticoid secretion from the adrenal
cortex. Glucocorticoids exert negative feedback effects at the level of the pituitary
and hypothalamus. At the circadian peak of glucocorticoid secretion, and during the
stress response, negative feedback effects may also indirectly via the hippocampus.
The amygdala exerts positive effects on HPA axis activity, either by direct actions of
CRH on the paraventricular nucleus or by suppressing activity of the bed nucleus of
the stria terminalis (BST) which sends inhibitory inputs to the hypothalamus. The
hippocampus suppresses HPA axis activity by activating BST outflow.
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The amygdala also plays a role in central HPA axis regulation, though in contrast to

the hippocampus, the effect is stimulatory (reviewed in Raber, J. 1998). The

amygdala plays a key role in anxiety and fear-related memory (section 1.2.6) and
these processes are relevant in stress; thus during stress, the amygdala increases HPA
axis activity, and fear memory is strengthened (reviewed in Raber, J. 1998). The

amygdala inhibits outflow from the BST and may also directly project excitatory
neurons onto the hypothalamus (reviewed in Raber, J. 1998). Indeed, lesions of the
BST attenuate corticosterone secretion induced by conditioned fear (Gray, T. S. et al.

1993).

1.1.3 The mechanism ofGR action

In common with all members of the steroid hormone family, glucocorticoids exert

their actions primarily by binding to intracellular receptors. In tissues expressing
little or no 11 P-hydroxysteroid dehydrogenase 2 (llp-HSD2) (section 1.1.4.1), e.g.
the hippocampus (Robson, A. C. et al. 1998), MR are essentially occupied by

glucocorticoids and activated under basal conditions. GR, in contrast, is a lower-

affinity site for glucocorticoids and is only -10% occupied by basal glucocorticoid
levels but becomes progressively occupied (75-100% during the diurnal peak or

stress response (deKloet, E. R. 1991). Tissue levels ofMR may therefore affect GR-
mediated effects of glucocorticoids. This may be of particular importance in
feedback regulation ofHPA axis activity by the hippocampus (section 1.1.2.3).

The steroid hormone receptors are a family of structurally related proteins that
include the glucocorticoid receptor, (GR), mineralocorticoid receptor (MR),

oestrogen receptors (ER) forms a and p (encoded by distinct genes), and

progesterone receptors forms A and B (encoded by a single gene); all form a

subgroup, with the androgen receptor, of the nuclear receptor (reviewed in Beato, M.

1989; reviewed in Beato, M. et al. 1996). All members of the steroid receptor family
function via a similar mechanism, as ligand-dependent transcription factors that
interact with specific DNA sequences to either increase or decrease their rate of

transcription (section 1.4.2). Structurally, these receptors consist of a variable
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amino-terminal transactivation domain, a central and highly conserved DNA binding
domain (DBD), and a moderately conserved carboxy-terminal domain responsible
for ligand-binding, dimerisation and transactivation (Mangelsdorf, D. J. et al. 1995;

Evans, S. J. et al. 1998).

As discussed above, glucocorticoids act by binding intracellular receptors. There is,

however, some evidence suggesting the existence of distinct membrane-associated

glucocorticoid receptors (Harrison, R. W. et al. 1979; Orchinik, M. et al. 1991;
Evans, S. J. et al. 1998) that signal via G proteins (Iwasaki, Y. et al. 1997). These

putative receptors may mediate the rapid, nongenomic effects of glucocorticoids that
have been observed, particularly in neuronal tissues (Iwasaki, Y. et al. 1997; Evans,
S. J. et al. 1998). It is generally accepted that the highly lipophilic glucocorticoids
enter the cytoplasm of cells by free diffusion across the lipid bilayer, though there

may be an active transport system involved (Orth, D. N et al. 1998). In the absence
of ligand, GR is located in the cytoplasm in an inactive state, as a result of its
association with the regulatory heat shock protein complex which includes hsp 90
and hsp 56 (Pratt, W. B. 1993; Smith, D. F. et al. 1993). On ligand binding, GR is
activated by a change in conformation, dissociation from the hsp complex, and

hyperphosphorylation (Picard, D. et al. 1987; Bodwell, J. E. et al. 1991; Sanchez, E.
R. et al. 1994). Activated GR translocates to the cell nucleus and binds to specific
DNA sequences as a homodimer (reviewed in Beato, M. 1989; reviewed in Beato,
M. et al. 1996). The DNA binding domain of GR consists of two zinc ions co¬

ordinated with eight cysteine residues to form zinc finger motifs (Luisi, B. F. et al.

1991). The third and fourth cysteines of the first zinc finger form the first turn of an
a-helix. GR subunits interact with the major grooves of the DNA via this a-helix;
the other finger is involved in protein-protein interactions between the dimer subunits

(Hard, T. et al. 1990; Pina, B. et al. 1990; Archer, T. K. et al. 1991). The DNA

sequence to which GR homodimers bind (glucocorticoid-responsive element, GRE)
is related to the consensus sequence 5'-GGTACAnnnTGTTCT-3' (reviewed in

Beato, M. 1989). Once bound to a GRE, GR can activate or repress transcription of
the target gene though repression by GR can also occur via mechanisms not

involving binding ofGR to a GRE (section 1.4.2.2).
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1.1.4 Modulation ofglucocorticoid actions

1.1.4.1 General mechanisms

There are several main mechanisms by which the actions of glucocorticoids can be
modulated. Firstly, the amount of glucocorticoid available to bind GR can vary

depending on levels of synthesis. As described in section 1.1.2.1, plasma

glucocorticoid concentrations fluctuate diurnally, with a peak in the morning in
humans (evening in rodents), and under conditions of stress. Binding to

corticosteroid binding globulin (CBG) further modifies availability. In vivo, about
90% of circulating glucocorticoids are bound to CBG; the majority of the remainder
is bound to albumin (Dunn, J. F. et al. 1981). There are two conflicting hypotheses
with regard to the role of CBG and steroid-binding plasma proteins in general. The
free hormone hypothesis states that the intracellular concentration of a hormone and
therefore its biological activity are proportional to the concentration of free hormone
in plasma, and not to the protein-bound hormone concentration (reviewed in Mendel,
C. M. 1989). In contrast, the free hormone transport hypothesis suggests that a

hormone enters tissues exclusively after dissociation from CBG (reviewed in

Mendel, C. M. 1989). The principal function of CBG may be to ensure uniform

ligand distribution among the cells of target tissues by acting as a glucocorticoid

delivery system (Pardridge, W. M. 1987). Specific, high activity receptors for CBG
are present on target cell membranes (Singer, C. J. et al. 1988; Rosner, W. 1990).
CBG shares a high degree of homology with members of the serine protease inhibitor

superfamily (Hammond, G. L. et al. 1987). Cleavage of CBG at the plasma
membrane by a serine protease (which acts as the CBG receptor) results in release of
bound glucocorticoid (Pemberton, P. A. et al. 1988; Hammond, G. L. et al. 1990),

possibly resulting in local delivery of a larger amount of glucocorticoid than is

possible by a free-hormone mechanism.

Metabolism of glucocorticoids is another important means by which their

bioavailability is altered. The 11 (3-hydroxysteroid dehydrogenase isozymes (lip~

HSDs) convert Cortisol (corticosterone in the rat) to inactive cortisone (11-
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dehydrocorticosterone in rats) (11P-HSD2) or catalyse the reverse reaction to

generate active glucocorticoids (lip-HSDl) (reviewed in Chapman, K. E. et al.

1997). Since MR has high affinity for glucocorticoids, 11P-HSD2 "protects" MR

from glucocorticoids in aldosterone-target tissues such as kidney (Funder, J. W. et al.

1988; Edwards, C. R. W. et al. 1988; Agarwal, A. K. et al. 1989). It also protects the

developing foetus from potentially harmful levels of maternal glucocorticoids by

forming a "barrier" in the placenta (Stewart, P. M. et al. 1995; Benediktsson, R. et al.

1997). llp-HSDl reactivates inactive glucocorticoids in glucocorticoid-target
tissues (Lakshmi, V et al. 1988). This may be important in regulating the actions of

glucocorticoids in the hippocampus (Rajan, V et al. 1996). Glucocorticoids can also
be inactivated by a variety of reduction, oxidation and hydroxylation reactions prior
to urinary excretion (Orth D.N. et al. 1998).

The activity of GR may be modulated directly in the nucleus by interactions with
other transcription factors (discussed in detail in section 1.4.2.2). The two

components of the transcription factor API, Jun and Fos have been shown to

antagonize the action ofGR in vivo (Konig, H. et al. 1992) and in vitro (Kerppola, T.
K. et al. 1993) by a mechanism likely to involve direct protein-protein interaction

(Pfahl, M. 1993). It has been suggested that MR and GR may form heterodimers

capable of binding GREs (Trapp, T. et al. 1994). MR and GR homodimers can affect

transcription from different GRE-containing genes to different degrees, so

heterodimer formation may exert subtle effects on gene expression in tissues in
which MR and GR are colocalized (Rupprecht, R. et al. 1993). Furthermore, a splice
variant of human GR has been described, GRp, that differs from GRa at its C-

terminus and is hence unable to bind ligand (Hollenberg, S. M. et al. 1985). GRp is
also widely expressed but is localized to the cell nucleus in the absence of ligand and
is unable to activate transcription of glucocorticoid-responsive reporter genes

(Hollenberg, S. M. et al. 1985; Giguere, V et al. 1986). It may therefore antagonize
GR effects by acting as a dominant negative regulator of transactivation (Bamberger,
C. M. et al. 1995; Oakley, R. H. et al. 1996; Oakley, R. H. et al. 1997; Oakley, R. H.
et al. 1999). However, the relevance of GRP in vivo has been questioned (Hecht, K.
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et al. 1997; De Lange, P. et al. 1999), and due to the lack of a homologous splice site,

GRP is absent from mice (Otto, C. et al. 1997).

1.1.4.2 Regulation ofGR expression levels

The level of cellular GR expression is closely correlated with the magnitude of

glucocorticoid sensitivity in vitro (Vanderbilt, J. N. et al. 1987). In vivo, mice

expressing antisense GR RNA ubiquitously (with a subsequent reduction in GR

protein levels to around 30-50% of wild type levels) show signs of glucocorticoid
resistance (Pepin, M. C. et al. 1992). Similarly, humans expressing GR from only
one allele have receptor levels 50% of normal and are glucocorticoid resistant (Karl,
M. et al. 1993). Thus, effective regulation ofGR expression is critical.

The mechanisms by which levels of GR are regulated are poorly understood and
most studies addressing this issue have focussed on autoregulation of GR gene

expression. Hippocampal GR are downregulated under conditions of glucocorticoid

excess, including chronic stress, high-dose glucocorticoid treatment, and age-related

glucocorticoid hypersecretion (Sapolsky, R. M. et al. 1984b; Sapolsky, R. M. et al.

1985; Herman, J. P. et al. 1989b; Makino, S. et al. 1995; Kitraki, E. et al. 1999). In

contrast, adrenalectomy upregulates GR at the protein and mRNA level (Herman, J.
P. et al. 1989b; Reul, J. M. H. M. et al. 1989; Herman, J. P. S. 1998). Thus,

glucocorticoids appear to modulate their own effects in the hippocampus by

regulating their own receptor. Downregulation of GR mRNA levels follows high-
dose glucocorticoid treatment in kidney, spleen and adrenal gland (Kalinyak, J. E. et
al. 1987), and in kidney adrenalectomy leads to upregulation (Kalinyak, J. E. et al.

1987).

In vivo studies of GR expression in rat liver (Dong, Y. et al. 1988), and in vitro

studies using rat hepatoma (Dong, Y. et al. 1988), rat pancreatic tumour (Rosewicz,
S. et al. 1988), rat colonic adenocarcinoma (Meyer, T. et al. 1997) and human

lymphoma (Rosewicz, S. et al. 1988) cell lines indicate that autoregulation is likely
to occur chiefly at the level of transcription in most cell types. A comparison of the

20



effect of dexamethasone on the half-lives of GR mRNA and protein suggests an

element of post-translational control (Dong, Y. et al. 1988). In the human GR gene a

region -250 to -750 relative to the transcription start of the exon 1 in the published
human GR cDNA is implicated in autoregulation, and an unidentified protein binds
to this region (Leclerc, S. et al. 1991). A mechanism for autoregulation of the human
GR gene has been proposed in which ligand-bound monomeric GR interacts with the
Jun component of the AP1 transcription factor, reducing induction of GR expression

by API binding to sites in the GR promoter (Vig, E. et al. 1994).

Other regulators of GR expression include MR (in the hippocampus) (Herman, J. P.
S. 1998; Chao, H. M. et al. 1998), 5-hydroxytryptamine (5-HT or serotonin) (Seckl,
J. R. et al. 1990; Mitchell, J. B. et al. 1990a; Mitchell, J. B. et al. 1992; Yau, J. L. W.

et al. 1994), and cAMP-mediated pathways in human bronchial epithelial cells and in
HeLa cells (Korn, S. H. et al. 1998; Penuelas, I et al. 1998).

In vivo, GR are expressed ubiquitously (Ballard, P. L. et al. 1974), though GR levels

vary widely between tissues. For example, testis expresses low levels of GR

(Kalinyak, J. E. et al. 1987; Whorwood, C. B. et al. 1992) whereas lung expresses

high levels (Kalinyak, J. E. et al. 1987; Whorwood, C. B. et al. 1992). Levels of GR

vary within tissues (e.g. Herman, J. P. et al. 1989b), during development (Cole, T. J.
et al. 1995a) and in response to environmental manipulations (Olsson, T. et al. 1994
and section 1.3). Since GR is expressed ubiquitously, it is a member of the family of

genes referred to as "housekeeping" genes (reviewed in Dynan, W.S. 1986).

However, the mechanisms of transcriptional regulation of the GR gene are poorly
understood (section 1.4.4), particularly with regard to how varying degrees (up or

down) of GR expression are superimposed onto a basal level of GR expression (e.g.

by programming (section 1.3)).
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1.2 Physiological actions of glucocorticoids

1.2.1 The Stress Response

The actions of glucocorticoids during stress are probably their most important during
adult life. Acute physical (e.g. infection) or emotional stress activates HPA axis

activity thereby increasing glucocorticoid secretion. The effects of glucocorticoids
on metabolism enhance energy availability. Furthermore, during illness

glucocorticoids protect the body from over-reactivity by suppressing the immune

response. The stress response is terminated by the negative feedback actions of

glucocorticoids on HPA axis activity (section 1.1.2); effective feedback control is
critical to prevent the development of pathologies associated with prolonged

exposure to even slightly raised glucocorticoid levels.

1.2.2 Transgenic models

Glucocorticoids have effects on virtually all tissues due to the ubiquitous expression
of GR (section 1.1.4.2). In recent years, elucidation of the role of glucocorticoid
action has been helped greatly by the development of several mutant mouse models.
The various models will be outlined in this section, and in later sections, they will be
referred to, where relevant, with regard to GR function in specific tissues.

The earliest mouse model derived expresses an antisense GR RNA (Pepin, M. C. et
al. 1992). The original intention of this model was to restrict expression of the
antisense GR RNA to brain by placing the transgene under the control of a human
neurofilament gene promoter element, but in practice the transgene was also

expressed in liver and pituitary (Pepin, M. C. et al. 1992), and in thymus (section

1.2.4), and possibly ubiquitously (though no other tissues were examined). In the

hypothalamus and frontal cortex, endogenous GR mRNA was reduced by 50-70%; in
liver the reduction was 30-55% (Pepin, M. C. et al. 1992). The reduction in GR
mRNA was reflected by decreased GR protein levels (Pepin, M. C. et al. 1992).
These mice exhibit a general disturbance of HPA regulation, including decreased
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glucocorticoid feedback efficiency (Pepin, M. C. et al. 1992; Stec, I et al. 1994;

Barden, N. et al. 1997; Karanth, S. et al. 1997), enhanced CRH- and stress-induced
increases in plasma ACTH but not corticosterone (Montkowski, A. et al. 1995;

Barden, N. et al. 1997; Karanth, S. et al. 1997) and adrenal hyporesponsiveness to

ACTH (Barden, N. et al. 1997). Pepin et al. showed an increase in basal plasma
corticosterone levels in these transgenic mice (Pepin, M. C. et al. 1992), though later

analysis showed no difference (Barden, N. et al. 1997), suggesting the levels

originally reported were not basal.

To determine the actions of glucocorticoids in T-cell development, a transgene

expressed predominantly in immature thymocytes has been developed (King, L. B. et
al. 1995). In this case, antisense GR is targeted with the Ick promoter, which is
active mainly in immature thymocytes, but not in mature peripheral T-cells (Garvin,
A. M. et al. 1990). Expression of this transgene appears to be thymus-specific,

resulting in a 2-fold reduction in GR mRNA and protein, and there are no changes in

plasma corticosterone levels (King, L. B. et al. 1995).

An early attempt to create mouse completely lacking GR by inserting a neomycin
cassette into exon 2 was unsuccessful (Cole, T. J. et al. 1995a; Cole, T. J. et al.

1995b), since mRNA encoding an amino-terminal truncated protein containing the

DNA-binding domain persists (Tranche, F. et al. 1998). The majority of mice

homozygous for this hypomorphic allele (GRhypo/hyp°s) die soon after birth, due to

atalectasis of the lungs, indicating that absence of GR is incompatible with survival,
but 5-10% survive to adulthood ( Cole, T. J. et al. 1995a; Cole, T. J. et al. 1995b).
All Q^'ypo/hypo express low levels of an N-terminus truncated form of GR; those

surviving may be expressing a level of this form of GR just above the threshold
needed for survival as a result of subtle differences in conditions experienced in

utero (e.g. receiving more nutrients by being the first pup in contact with the
maternal circulation). Indeed, the number of surviving mice has been reported to be

up to 20% (Finotto, S. et al. 1999). In surviving mice, glucocorticoid feedback on

the HPA axis is impaired, as reflected by increased plasma levels of ACTH and
corticosterone (Cole, T. J. et al. 1995a; Cole, T. J. et al. 1995b). Furthermore, in the
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hypothalamus, there is little change in AVP levels but a massive increase in CRH

levels suggesting CRH, not AVP, is the major target for glucocorticoid feedback at

the hypothalamus (Kretz, O. et al. 1999).

A complete GR null mouse ((}R""///""//) has been generated recently by deleting exon

3 (encoding zinc finger 1) of the mouse GR gene (Finotto, S. et al. 1999). The
GR""/'/""" genotype leads to neonatal lethality in 100% of mice. In common with the
q^hypo/hypo mouse5 Q^nuii/nuii mjce have impaired induction of gluconeogenic

enzymes and glucocorticoid-induced T-cell apoptosis is abolished (Cole, T. J. et al.
1995a; Cole, T. J. et al. 1995b; Tronche, F. et al. 1998). Due to the lethality of this

transgene soon after birth, however, this mouse will be most useful for determining
the actions of glucocorticoids during gestation.

Using a Cre transgene under the control of the nestin promoter, a mouse with a brain-

specific disruption of the GR gene (GR is reduced by 90%) has recently been

generated (Tronche, F. et al. 1999). In the hypothalamus of this mouse, CRH is
increased dramatically but AVP is not in comparison to wild type mice, in agreement

with data from the GRA>/M//?>po mouse (Kretz, O. et al. 1999). Basal plasma
corticosterone levels are raised suggesting glucocorticoid feedback at the pituitary is
insufficient to counter the increased POMC production caused by raised CRH levels,
and central MR cannot compensate for the lack of GR in the brain to suppress the
HPA axis (Tronche, F. et al. 1999).

A "knock-in" mutant expresses GR with a point mutation in its DNA binding
domain/dimerisation interface (Reichardt, H. M. et al. 1998). In vitro studies showed
that this mutant form of GR, GR'7"", no longer binds co-operatively to GREs (Heck,
S. et al. 1994). Furthermore, in the presence of glucocorticoids, GR'7"" shows a

reduced ability to induce a mouse mammalian tumour virus (MMTV)-based reporter

(Heck, S. et al. 1994) and completely fails to induce the tyrosine amino transferase

(TAT) gene (Reichardt, H. M. et al. 1998). However, repression of API dependent

gene activation, which relies on direct protein-protein interactions between GR and
not DNA binding by GR (section 1.4.2.2), is unaffected. Mice generated with this
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mutation share the transactivational and repressive properties of GRrf"" in vitro

(Heck, S. et al. 1994; Reichardt, H. M. et al. 1998). Due to impaired feedback
control by GR, plasma levels of corticosterone levels are raised under basal

conditions, and in the pituitary, levels of ACTH and its precursor POMC are

increased (Reichardt, H. M. et al. 1998). It should be noted, however, that
dimerisation of ligand-occupied GR could possibly occur via protein-protein
interactions between the ligand binding domains of GR monomers, so GR''""7''""
mutant GRs may not truly be unable to dimerize. Furthermore, in vitro, activity of
an MMTV-based reporter is not completely ablated, so genes with high affinity
GREs may still be activated at a low level in the mouse knock-in due to non-co-

operative binding of GR monomers at GRE half-sites.

1.2.3 Intermediary metabolism

Glucocorticoids regulate practically all metabolic processes. After food,

glucocorticoids and insulin act together to increase energy stores by effects on

glucogenic and glycolytic pathways. Hepatic glycogen stores are increased by
activation of glycogen synthase and inactivation of glycogen phosphorylase, the

glycogen-mobilizing enzyme (Orth, D. N et al. 1998). Absolute glycogen synthase
levels are unchanged by glucocorticoids, but activation occurs via

dephosphorylation, either by glucocorticoid-induced activation of a phosphatase or

indirectly by inactivation of glycogen phosphorylase (Orth, D. N et al. 1998).

During starvation, glucocorticoids inhibit glucose uptake and utilisation in peripheral
tissues and increase gluconeogenesis in the liver, partly by increasing substrate

availability by stimulation of the release of glucogenic amino acids from peripheral

tissues, such as skeletal muscle (Orth, D. N et al. 1998). In addition, glucocorticoids

directly induce the expression of key hepatic gluconeogenic enzymes, notably

glucose-6-phosphatase and phosphoenolpyruvate carboxykinase (PEPCK)

(Nyirenda, M. J. et al. 1998; Orth, D. N et al. 1998). When administered exogenous

glucocorticoids, Q^'ypo/hypo mice exhibit impaired induction of hepatic gluconeogenic

enzymes (Cole, T. J. et al. 1995a; Cole, T. J. et al. 1995b), as do GRdim/dim mice

(Reichardt, H. M. et al. 1998). Furthermore, GRd"n/d,m mice show no induction of
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hepatic tyrosine amino transferase (Reichardt, H. M. et al. 1998), which diverts

tyrosine into the gluconeogenic pathway. Finally, glucocorticoids acutely activate

lipolysis in adipose tissue, thus enhancing free-fatty acid release (Orth, D. N et al.

1998). At birth, glucocorticoids in combination with other hormones, especially

glucagon, activate key hepatic gluconeogenic enzymes e.g. glucose-6-phosphatase
and PEPCK (Liggins, G. C. 1976; Imai, E. et al. 1993). Exposure to glucocorticoids
in utero also has an important effect on the development of the liver, as well as

hippocampus (section 1.3).

1.2.4 Immune System

Glucocorticoids are powerful immunosuppressors: their actions on the immune

system have led to therapeutic applications e.g. in the treatment of asthma (reviewed
in Barnes, P. J. 1995) and rheumatoid arthritis (Kirkham, B. W. et al. 1991). In this
section I shall focus on the effects of glucocorticoids on the thymus (the site of T-cell

generation and selection) and T-cell development.

All lymphocytes express functional GR (Plaut, M. 1987), though levels differ

considerably depending on cell maturity and location (Miller, A. H. et al. 1998).
Immature thymic T-cells express high levels of GR whereas mature splenic cells

express relatively low levels (Miller, A. H. et al. 1998); this might be related to the
role of GR in T-cell selection (see below). Adrenalectomy leads to thymic

hypertrophy, suggesting that basal levels of glucocorticoids are important in

maintaining a normal thymus.

Glucocorticoids are involved in thymic development during gestation. In rats, the

thymus primordium is initially colonized by T-cell precursors from foetal liver on

days 13-14 of gestation (Vicente, A. et al. 1998). Subsequently, CD4+CD8+ cells

appear (day 18), followed by mature cells in the thymus on day 20 and in the

periphery on day 21 (Vicente, A. et al. 1998) (the role of glucocorticoids in T-cell
selection is discussed below). Adrenalectomy of pregnant rats accelerates all stages
of this pattern of development by one or two days in the developing foetus, and
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corticosterone replacement reverses this effect (Sacedon, R. et al. 1999a). Mice

expressing antisense GR RNA ubiquitously (Pepin, M. C. et al. 1992) exhibit similar
advancement in the arrival of precursors into the thymus and their intrathymic

proliferation (Morale, M. C. et al. 1995). These data differ slightly to those obtained

using mice expressing antisense GR RNA targeted specifically to developing T-cells
which showed no change in precursor arrival (King, L. B. et al. 1995). These
differences could be due to the more drastic changes in whole body physiology
induced by a lack of maternal glucocorticoids or ubiquitous transgene expression.
Another consideration is expression of steroidogenic enzymes and secretion of

glucocorticoids even in foetal and early life by a subset of thymic epithelial cells

(Vacchio, M. S. et al. 1994). Local secretion of glucocorticoids may account for the

high level of T-cell apoptosis observed after maternal adrenalectomy (Sacedon, R. et
al. 1999a), or alternatively prevention of antagonism of T-cell receptor (TCR)-
induced apoptosis by GR may be responsible (see below).

A key effect of glucocorticoids in the thymus is the induction of apoptosis in
immature thymocytes. Physiological glucocorticoid levels achieved during stress are

sufficient to induce apoptosis (Gruber, J. et al. 1994). In contrast, mature T cells are

resistant to glucocorticoid-induced apoptosis (Miller, A. H. et al. 1998). This
difference in glucocorticoid sensitivity may be due to the difference in GR levels
between mature and immature T-cells (Miller, A. H. et al. 1998). The apoptotic
effect is important in the selection of T-cells bearing TCRs that recognise self-

antigens with low-to-moderate avidity, rather than those with near-nil avidity (which
would be useless immunologically), or high avidity (which would pose autoimmune

problems). The mechanism of glucocorticoid action appears to involve an

interaction between GR- and TCR- signalling pathways (King, L. B. et al. 1995;
reviewed in Ashwell, J. D. et al. 1996; Tolosa, E. et al. 1998). Glucocorticoids or

TCR-ligation independently cause apoptotic death of T-cell hybridomas and
immature thymocytes, but simultaneous stimulation results in survival (Zacharchuk,
C. M. et al. 1990; Iwata, M. et al. 1991). Inhibition of local glucocorticoid synthesis
in vitro by metyrapone increases thymocyte apoptosis in response to TCR activation

(Vacchio, M. S. et al. 1994). Furthermore, inhibition of local glucocorticoid
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synthesis in mice expressing a TCR transgene increases apoptosis, with increased
death of the CD4+CD8+ subset of cells that would normally have undergone positive
selection (Vacchio, M. S. et al. 1997). MRL-lpr/lpr mice are spontaneously
autoimmune due to selection of a subset of CD4"CD8" cells bearing a specific TCR

(TCR VP) (Theofilopoulos, A. N. et al. 1985). Mice bearing the T-cell-specific GR

transgene were backcrossed onto the MRL-lpr/lpr for six generations and then
intercrossed (Tolosa, E. et al. 1998). Phenotypically, the resulting mice exhibit a

reduction in numbers of TCR VP cells and reduced autoimmunity (Tolosa, E. et al.

1998). Thus, in the absence of a normal response to glucocorticoids, the binding of
TCRs that normally cause positive selection results in apoptosis. These data suggest

that the balance of GR and TCR activation is critical in determining whether

developing T-cells survive or die. The precise mechanism of glucocorticoid action

during apoptosis is unknown, but regulation of Bcl-2, an important component of the

apoptotic pathway, may be important (reviewed in Ashwell, J. D. et al. 1996).

Recently, an alternative mechanism of T-cell selection has been proposed. Using the
mouse model ubiquitously expressing antisense GR RNA, the reduction in
CD4+CD8+ cells during gestation was proposed to be due to a partial blockade of
differentiation at an intermediate stage of selection rather than apoptosis in response

to glucocorticoids (Sacedon, R. et al. 1999b). Furthermore, Q]lliypo/hypo and GIT'"'"'""
mice exhibit a lack of T-cell apoptosis in response to dexamethasone (Tranche, F. et
al. 1998). Elowever, the reduction in thymic GR specifically in QRl'vl""'l'y1'" and
GRf/""/f/"" mice may have been insufficient to exclude a role for apoptosis in T-cell
selection in wild type animals.

In the foetal thymus of transgenic mice ubiquitously expressing antisense GR RNA
there are large alterations in the thymic stroma, including disappearance of the
laminin network under some blood vessels which in the adult results in the

appearance of large areas devoid of epithelial cells (Sacedon, R. et al. 1999b). Such

epithelium-free areas have previously been identified in thymus, but in the transgenic
mice they are much larger (Sacedon, R. et al. 1999b). Thus, glucocorticoids appear

to be responsible for maintenance of the thymic epithelium. Indeed, thymic
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epithelial cells are responsive to glucocorticoids (Stojanovic, S. et al. 1995) and in

vitro express levels of GR ten times higher than thymocytes (Dardenne, M. et al.

1986).

The functions of various immune cells alter in response to glucocorticoids. In

lymphocytes, an important effect is the inhibition of nuclear factor kappa B (NF-kB)

(Mukaida, N. et al. 1994; Ray, A. et al. 1994; Scheinman, R. I. et al. 1995a), a key

proinflammatory and proimmune transcription factor in B- and T-cells. NF-kB
induces a wide range of cytokines and chemokines, including IL-1, IL-2, IL-6,

TNFa, P- and y- interferons, as well as TCRs a and p (reviewed in McKay, L. I. et
al. 1999). The inhibitory effect of glucocorticoids on NF-kB may occur via direct

protein-protein interactions between GR and NF-kB (Ray, A. et al. 1994), or via

glucocorticoid induction of members of the I-kB family, which act to retain NF-kB
in the cytoplasm and hence prevent activation ofNF-kB target genes (Auphan, N. et
al. 1995; Scheinman, R. I. et al. 1995b). GR also antagonizes gene activation by

API, which has been shown to induce genes involved in inflammatory diseases such
as asthma (Adcock, I. M. et al. 1994; reviewed in Barnes, P. J. et al. 1998). API and
NF-kB can act synergistically in the induction of some proinflammatory genes in

lung epithelium (reviewed in Barnes, P. J. et al. 1998), and many inflammatory genes

suppressed by glucocorticoids lack nGREs in their promoters but do carry binding
sites for API as well as for NF-kB (Cato, A. C. B. et al. 1996). Thus,

glucocorticoids may further affect NF-kb-mediated immune responses by interfering
with API actions.

1.2.5 Developmental effects

Glucocorticoids promote the development and maturation of many tissues. The

embryonic adrenal gland begins to synthesize glucocorticoids early in its

development; circulating glucocorticoid levels rise steadily and peak at birth (Arai,
M. et al. 1993; Nagaya, M. et al. 1995).
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Glucocorticoids promote lung maturation by inducing morphological changes and
surfactant production in type II pneumocytes (reviewed in Brody, J. S. et al. 1992).

Activity of the rate-limiting enzyme in surfactant synthesis, cholinephosphate

cytidylyltransferase (CTP), is increased by the synthetic glucocorticoid
betamethasone in vivo (Mallampalli, R. K. et al. 1994). This effect is apparently a

consequence of the metabolic effects of glucocorticoids, which result in increased
levels of lipid activators of CTP including phosphatidyl glycerol and fatty acids.
Direct glucocorticoid regulation of the genes for the surfactant proteins SP-A, SP-B
and SP-C also occurs (McCormick, S. M. et al. 1994; Ballard, P. L. et al. 1996). The
actions of glucocorticoids in lung maturation are essential for life. gr'"'///""// miCe die
within a few minutes of birth due to atalectasis of the lungs (Finotto, S. et al. 1999).
In contrast, a small proportion of Q^iypo/hypo mice (Cole, T. J. et al. 1995a; Cole, T. J.
et al. 1995b) and all Q^dun/d"n mice (Reichardt, H. M. et al. 1998) survive to

adulthood. In the case of surviving GR/'>/Jo//'>po mice, residual activity of the truncated
form of GR they express may to be above the threshold level required for induction
of the genes required for normal lung function or alternatively that DNA binding and
dimerisation is not required for induction of these genes. The fact that all GR''""7''""
survive suggests that mutant GR may still bind DNA, since dimerisation of ligand-

occupied GR may occur via protein-protein interactions between the ligand binding
domains ofGR monomers.

Neural crest cells are precursors for a variety of cell types, including autonomic

ganglion cells and adrenomedullary cells (Orth, D. N et al. 1998). Neural crest cells
have two basic potential differentiation options, depending on whether they are

exposed to glucocorticoids (inducing differentiation to a chromaffin phenotype) or
neuronal growth factor (inducing differentiation to a neuronal phenotype) (reviewed
in Anderson, D. J. 1993). Glucocorticoids exert both positive and negative
influences on the phenotype of neural crest cells that have migrated to the developing
adrenal gland, thus promoting development of a chromaffin cell phenotype (reviewed
in Anderson, D. J. 1993). Chromaffin cells are the peripheral sites for the synthesis
and secretion of the catecholamines adrenaline and noradrenaline.

Phenylethanolamine-N-methyl transferase (PNMT), the enzyme that converts
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noradrenaline to adrenaline, is induced by glucocorticoids in a subset of neural crest
cells destined to become chromaffin cells (Teitelman, G. et al. 1982; Jiang, W. et al.

1989; Ross, M. E. et al. 1990; Michelsohn, A. M. et al. 1992) but not those destined

to become neuronal (Jiang, W. et al. 1989). Furthermore, glucocorticoids prevent

differentiation of neural crest cells to a neuronal phenotype by repressing several

neuron-specific genes, including SCG10 (Stein, R. et al. 1988). Very recently,

however, analysis of developing adrenals from GR""// ""// mice has suggested that GR

may play no role in chromaffin cell development, since the numbers of chromaffin
cells in these mice are normal during gestation (there is no reduction in tyrosine

hydroxylase, a chromaffin cell marker) (Finotto, S. et al. 1999). However, PNMT

expression is completely abolished in these animals, as expected given the role of
GR in expression of the PNMT gene. Furthermore, there appeared to be no switch to

a neuronal phenotype. In QYihypo/hyp" mice the adrenal medulla is disorganised and
PNMT expression reduced (Cole, T. J. et al. 1995a; Cole, T. J. et al. 1995b) but
Grdun/dun m|ce exhibited no changes in PNMT expression or medulla organisation

(Reichardt, H. M. et al. 1998), again suggesting GR might still be able to bind DNA
in these mice.

1.2.6 Central effects ofglucocorticoids

GR are expressed in virtually all brain regions, but expression levels are particularly

high in the hippocampus (Arriza, J. L. et al. 1988; Sousa, R. J. et al. 1989). Other

brain regions expressing high levels of GR include the cerebellum (Pavlik, A. et al.

1984), amygdala (see below), cortex, thalamus and hypothalamus. Distribution of
MR is more restricted, with the majority located in the hippocampus (reviewed in

deKloet, E. R. et al. 1998). Since the hippocampus does not express 11(3-HSD2

(Robson, A. C. et al. 1998), hippocampal MR effectively function as glucocorticoid

receptors.

In addition to its role in HPA axis regulation (section 1.1.2.3), the hippocampus plays
an important role in mood, memory and behaviour (Seckl, J. R. et al. 1995; deKloet,
E. R. et al. 1998). Both excessive and inadequate glucocorticoid levels have been
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proposed to lead to memory impairment (Luine, V. N. 1997). Therefore,

glucocorticoid levels must be maintained within tight limits for normal hippocampal
function. Low levels of glucocorticoids (sufficient to activate MR but not GR) or
MR agonists enhance memory (reviewed in deKloet, E. R. et al. 1998). Stress, high

glucocorticoid levels and GR agonists attenuate memory (reviewed in deKloet, E. R.
et al. 1998). Indeed, young rats subject to daily restraint stress for 3 weeks have

impaired spatial memory (Luine, V et al. 1994; Luine, V. N. 1997). Importantly, this

memory impairment is not permanent. However, prolonged exposure to excessive

glucocorticoid levels throughout life is likely to contribute to irreversible age-related

cognitive dysfunction (Seckl, J. R. et al. 1995). Prolonged glucocorticoid
administration or chronic stress may lead to hippocampal neuronal death and

adrenalectomy causes death of granule cells in the hippocampus and a reduction in
size of dentate gyrus (DG) (Conrad, C. D. et al. 1993; Conrad, C. D. et al. 1995).

Exposure to inadequate levels of glucocorticoid impairs spatial memory (Conrad, C.
D. et al. 1993; Conrad, C. D. et al. 1995), though paradoxically, glucocorticoid

replacement restores spatial memory but does not affect hippocampal morphology

(Conrad, C. D. et al. 1995). The importance of hippocampal GR levels in spatial

memory is emphasized by studies using transgenic mice; mice expressing antisense
GR RNA ubiquitously have impaired spatial memory (Steckler, T. et al. 1999), as do
GRhypo/hypo mice (Qitzl, M. S. et al. 1997).

Patients with major depressive disorders hypersecrete Cortisol (Murphy, B. E. P.

1991; reviewed in Seckl, J. R. et al. 1995). Depression in old age is often

accompanied by cognitive abnormalities and some data suggest that many elderly

patients with depression subsequently develop dementia (Emery, V. O. et al. 1992).

Antidepressant treatment of depressed patients normalizes HPA axis suppressibility
and improves outcome (Holsboer, F. et al. 1996; Barden, N. 1999); the effects of

antidepressants on serotonergic neurotransmission are especially interesting, given
the potential role of 5-HT in regulation of hippocampal GR (section 1.3). Indeed, in

primary rat hippocampal cultures, long-term antidepressant treatment increases GR
mRNA and binding sites (Okugawa, G. et al. 1999). The hippocampus is also a key

target for damage in Alzheimer's disease (AD) (Pasquier, F. et al. 1994). Elevated
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Cortisol levels, increased urinary free Cortisol excretion and defective HPA

suppressibility are found in many patients with AD (Davis, K. L. et al. 1986; Dodt,

C. et al. 1991; Seckl, J. R. et al. 1993) and correlate with hippocampal damage

(Deleon, M. J. et al. 1988). Recently, Cortisol levels during aging have been shown to

correlate with hippocampal atrophy and memory deficits during aging (Lupien, S. J.
et al. 1998).

The amygdala plays a key role in behavioural responses to fear and anxiety and these

responses are mediated by CRH produced in the amygdala itself, as well as by CRH
secreted by the hypothalamus (reviewed in Raber, J. 1998). Glucocorticoids increase
CRH expression in the amygdala (Hsu, D. T. et al. 1998), enhancing anxiety whereas

adrenalectomy results in decreased expression of CRH (Palkovits, M. et al. 1998).
Mice expressing antisense GR RNA ubiquitously exhibit either increased (Korte, S.
M. et al. 1996; Strohle, A. et al. 1998) or decreased anxiety (Strohle, A. et al. 1998).
These conflicting data may be due to complex effects of the ubiquitous reduction in
GR occurring in these animals, which have altered HPA axis function, or differences
in housing environments, experimental conditions orr the ages of the animals used

(Pepin, M. C. et al. 1992; Barden, N. et al. 1997). Recently, however, mice bearing a

conditional GR transgene (controlled by Cre recombinase) targeted to the brain have
been generated (Tronche, F. et al. 1999). When GR expression is knocked-out in
these mice (in the brain only), they exhibit reduced anxiety (Tronche, F. et al. 1999).

Paradoxically, these mice weigh less than normal mice and have reduced abdominal
fat deposits (Tronche, F. et al. 1999). The increased HPA activity observed in these
mice (section 1.2.2) would be predicted to lead to increased abdominal fat

(reminiscent of Cushing's syndrome). Glucocorticoid actions in the amygdala are

associated with the development of obesity (reviewed in Raber, J. 1998).
Corticosterone implants in the amygdala activate the amygdala and promote

accumulation of abdominal fat (Akana, S. et al. 1997). The reduction in anxiety
observed in these mice suggests that CRH is reduced in the amygdala, and this may

counteracting the effects of increased HPA axis activity on fat distribution.
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When addressing the roles of glucocorticoids in functioning of the central nervous

system glial cells are often overlooked. The term "glia" actually covers a very

heterogeneous class of cell types that can be broadly split into two groups: macroglia
and microglia (reviewed in GarciaSegura, L. M. et al. 1996). Glia and neuronal cells
interact in many ways to mutually influence each other's differentiation,

development and metabolism (reviewed in GarciaSegura, L. M. et al. 1996).

Furthermore, signalling systems and ionic conductances in both cell types are similar

(reviewed in GarciaSegura, L. M. et al. 1996). Glial cells maintain synaptic
transmission in the hippocampus (Keyser, D. O. et al. 1994), modulate potassium
currents in neuronal membranes (Wu, R. L. et al. 1994) and regulates neuronal

activity by enhancing glucose utilisation (Pellerin, L. et al. 1994). Neurons

reciprocally glial affect electrical, metabolic and transcriptional responses (reviewed
in GarciaSegura, L. M. et al. 1996). Specific actions of glucocorticoids in glial cells
include potentiation of oligodendrocyte differentiation by regulating the expression
ofmyelin basic protein and proteolipid protein at the post-transcriptional (Kumar, S.
et al. 1989) and transcriptional levels (Tsuneishi, S. et al. 1991). In vitro,

glucocorticoids inhibit astroglia proliferation (Kniss, D. A. et al. 1985) and, in vivo,

suppress mitosis of astroglia cells in the adult rat dentate gyrus subregion of the

hippocampus (Gould, E. et al. 1990). Glucocorticoids may also have adverse effects
on neuronal function by inducing necrotic death of glia. Dexamethasone enhances
death of C6 glioma cells deprived of serum (Morita, K. et al. 1999); this may be
relevant during acute neurological insults such as ischaemia. Local synthesis and
metabolism of glucocorticoids by glial cells may also play a role in mediating the
effects of glucocorticoids on both glial and neuronal cells (reviewed in GarciaSegura,
L. M. et al. 1996).

1.3 Perinatal programming of GR levels

Early life events can permanently program the development of tissues and organs,

thus influencing adult physiology and later pathophysiology (the foetal origins

hypothesis) (Barker, D. J. P. 1990a).
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In humans, low birth weight is correlates with the development of hypertension

(Barker, D. J. P. et al. 1990b), glucose intolerance (Hales, C. N. et al. 1991), non-

insulin-dependent diabetes mellitus (NIDDM) (McCance, D. R. et al. 1994) and
death from ischaemic heart disease (Barker, D. J. P. 1991; Valdez, R. et al. 1994) in
adult life. Administration of glucocorticoids to pregnant humans (throughout

pregnancy) results in offspring with reduced birth weight (Reinisch, J. M. et al. 1978)
and foetal Cortisol levels are increased in human intrauterine growth disorder

(Goland, R. S. et al. 1993). In rats, reduced birth weight (Reinisch, J. M. et al. 1978)
and similar physiological and metabolic changes in adulthood (Nyirenda, M. J. et al.

1998) can be induced by exposure to dexamethasone in utero. This suggests that
increased glucocorticoid exposure in utero may be responsible for programming in

humans, as in rats. A major contributing factor to the development of NIDDM

appears to be increased hepatic gluconeogenesis (Consoli, A. et al. 1990). In rats,

prenatal dexamethasone exposure in the third (i.e. final) week of pregnancy appears

to be critical in producing fasting and post-glucose hyperglycaemia in the offspring
once adult (Nyirenda, M. J. et al. 1998). Furthermore, levels of PEPCK and GR
mRNA expression are permanently elevated in the periportal region of the liver, the

major site of hepatic gluconeogenesis in these animals (Nyirenda, M. J. et al. 1998).

However, the precise mechanisms involved in this programming effect are unknown.

In utero dexamethasone exposure also permanently programs hippocampal GR

levels, with treatment during the third week of pregnancy appearing critical (Levitt,
N. S. et al. 1996). In contrast to the effect of prenatal dexamethasone on hepatic GR,

hippocampal GR is permanently decreased, as is hippocampal MR (Levitt, N. S. et
al. 1996). In behavioural tests these animals showed impaired learning and increased

anxiety (possibly as a consequence of elevated CRH expression in the amygdala)

(Welberg, L. A. M et al. 2000). It would be interesting to examine hippocampal
function in aged rats exposed to dexamethasone in utero given the role of

hippocampal GR in HPA axis regulation and age-related cognitive disorders (section

1.2.6). Similarly, maternal restraint stress during pregnancy (which increases foetal

exposure to maternal glucocorticoids) leads to a long-term reduction in hippocampal
GR and impaired post-stress HPA axis feedback in the adult offspring (Henry, C. et
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al. 1994), as well as increased anxiety in response to novelty stress (Vallee, M. et al.

1997). Postnatal exposure to dexamethasone, in the first week of life, permanently
reduces hippocampal GR, but not MR, with no changes in basal corticosterone

(Felszeghy, K. et al. 1996). In this study, however, the authors did not study the
effects of neonatal dexamethasone treatment on stress responses.

Neonatal handling involves short (15 min) maternal separation of rat pups during the
first 3 weeks of life and has profound effects that last for the entire lifetime of the
animal. In early adulthood, there are no differences in basal ACTH and
corticosterone levels between handled and non-handled rats (Meaney, M. J. et al.

1988; Meaney, M. J. et al. 1989). However, handled animals show blunted ACTH
and corticosterone responses to stress, and more effective shut-down of HPA axis

activity following stress (Meaney, M. J. et al. 1988; Meaney, M. J. et al. 1989).

Compared with aged non-handled rats, aged rats handled in early life have increased
GR mRNA and protein in the hippocampus and frontal cortex (Sarrieau, A. et al.

1988; Meaney, M. J. et al. 1989; Henry, C. et al. 1994), maintain low basal
corticosterone levels, and show reduced hippocampal cell loss (Meaney, M. J. et al.

1988) and improved spatial memory in old age (Meaney, M. J. et al. 1988). The
HPA axis dysregulation, neuronal loss and cognitive deficits in aged non-handled
animals may be a consequence of increased exposure to excessive glucocorticoid
levels following stress throughout life. Thus, neonatal handling appears to protect

the animal from the chronic detrimental effects of stress-activation of the HPA axis.

The effects of neonatal handling are the result of altered maternal behaviour, with
increased maternal licking and grooming of handled pups, induced by the brief

separation (Liu, D. et al. 1997).

Prolonged maternal separation has the opposite effect to the relatively brief

separation used in the handling paradigm. When separated from their mother for 3
hours every day for the first 3 weeks of life or 24 hours once at postnatal days 3-4,
rats exhibit elevated ACTH levels in response to mild stress in adulthood (Plotsky, P.
M. et al. 1993). Furthermore, hippocampal GR is reduced (AvishaiEliner, S. et al.

1999) and spatial memory may be impaired in old age (Meaney, M. et al. 1994;
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Meaney, M. J. et al. 1996) compared with non-separated animals. In contrast to

handled animals, those exposed to protracted separation lack the reduced anxiety in

response to novelty seen in handled animals (Biagini, G. et al. 1998). Thus,

maternally separated animals may be less able to "cope" with stress.

The mechanisms underlying the influence of maternal behaviour on development of
the HPA axis are incompletely understood, though much progress in their elucidation
has been made. In handled pups, circulating levels of thyroxine and its intracellular
metabolite triiodothyronine are increased (Meaney, M. J. et al. 1996). In turn,

thyroxine (and/or triiodothyronine) alters 5-HT turnover in the hippocampus

(Meaney, M. J. et al. 1987; Mitchell, J. B. et al. 1990b). Activation of 5-HT

receptors in the hippocampus is essential for the handling effect to occur. In vivo,

administration of the 5-HT receptor antagonist ketanserin or administration of the 5-
HT neurotoxin 5, 7-DHT (which reduces serotonergic input to the hippocampus from
the raphe nucleus), decrease the effect of handling on GR expression (Mitchell, J. B.
et al. 1990b). In primary cultures of hippocampal neurons, 5-HT increases GR levels

(Mitchell, J. B. et al. 1990b; Mitchell, J. B. et al. 1992), but not glial cells (Mitchell,
J. B. et al. 1990a). The link between 5-HT receptor activation and induction of GR

expression involves an increase in cellular cAMP levels. Hippocampal levels of
cAMP are increased in neonatal rats immediately post-handling (Meaney, M. J. et al.

1996). 5-HT treatment of primary hippocampal cultures leads to a four-fold increase
in cAMP levels (Mitchell, J. B. et al. 1990a), and treatment with a stable cAMP

analogue, 8-bromo-cAMP, increases GR levels (Mitchell, J. B. et al. 1992).
Maternal separation and prenatal dexamethasone exposure might decrease GR

expression by inhibitory effects on this putative signal cascade.

The early life environment can also program the immune system (reviewed in

Chandra, R. K. 1993; Aaby, P. et al. 1993), though whether GR plays a role in setting
immune responses is unclear. Maternal malnutrition leads to reduced

immmunocompetence in humans and animals, predominantly via a reduction in the
number of mature spleen cells (Chandra, R.K. 1974; reviewed in Chandra, R. K.
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1993). The immunological effects of malnutrition can persist for years after
reinstatement of adequate nutrition (Spirer, Z. et al. 1981).

During development, receptor levels are influenced by the first encounter of receptor
with ligand ("hormonal imprinting") (Gaal, A. et al. 1997; Csaba, G. et al. 1998).
For example, a single neonatal dexamethasone treatment leads to a prolonged
reduction in thymic GR levels (InczefiGonda, A. et al. 1985). The programming
effect of prenatal dexamethasone on hepatic GR may also be considered an

imprinting effect (Nyirenda, M. J. et al. 1998). Perinatally, molecules similar in
structure to the specific ligand can bind receptors and cause false imprinting. In
utero exposure to a single dose of the pollutant benzpyrene permanently reduces

thymic GR (Csaba, G. et al. 1991; Csaba, G. et al. 1992) and this alteration can

persist across generations (Csaba, G. et al. 1998). Administration of a single dose of
vitamin A to neonatal rats permanently increases thymic GR levels (Gaal, A. et al.

1997); this may be relevant in the relation to the effects of excessive or insufficient
vitamin A levels on immune function (reviewed in Chandra, R. K. 1993).

1.4 Transcriptional regulation in eukaryotes

1.4.1 Basal transcription in eukaryotes

In eukaryotic cell nuclei, RNA polymerase II (RNAP-II) transcribes genes encoding
mRNAs which are translated into proteins, as well as some small nuclear RNA.
RNAP-II is a large multiprotein complex, the exact composition of which remains
unclear ( reviewed in Aso, T. et al. 1995; Pugh, B. F. 1996; Parvin, J. D. et al. 1998).
The basal or general transcription factors (GTFs) (TFIIA, TFIIB, TFIID, TFIIE,

TFIIF, and TFIIH) interact with the core promoter elements (see below) and are

sufficient to allow RNAP-II to bind specifically and transcribe at low levels in vitro.

RNAP-II directly interacts with many GTFs, mainly through the C-terminal domain
of its largest subunit (Zehring, W. A. et al. 1988). Previous models suggested that

assembly of the GTFs and RNAP-II on the promoter occurred in a stepwise manner

(reviewed in Aso, T. et al. 1995). More recent evidence favours binding of a pre-
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assembled holoenzyme complex, though the precise nature of this complex is unclear
and may vary depending on the specific promoter and cell type (reviewed in Aso, T.
et al. 1995). The first step in transcription initiation is binding of TBP (a component
of TFIID) to the TATA box (see below), which induces a large bend and distortion
into the DNA (Nikolov, D. B. et al. 1992; Parkhurst, K. M. et al. 1999; Grove, A. et

al. 1999; Tsai, F. T. F. et al. 2000). TFIID can also bind to the Initiator element of
TATA-less promoters (Purnell, B. A. et al. 1993; Kaufmann, J. et al. 1994),

suggesting a universal role for TFIID in transcription initiation. A large number of

transcriptional coactivators (e.g. the TAF subunits of TFIID, the USA coactivators
and CREB binding protein) act to link sequence-specific factors (e.g. GR) to GTFs to

influence transcription initiation.

Several short DNA sequences are associated with the core promoter in most genes

(Lewin, B. 2000). The initiator, present in TATA-containing promoters, as well as
TATA-less promoters is a short, poorly conserved element that includes the

transcription start site. The TATA box (if present), is centred at about -30, (+1
describes the first nucleotide transcribed) which is involved in positioning the

transcription machinery; mutations in the TATA box do not prevent initiation but
rather lead to variable initiation points (Lewin, B. 2000). Several other promoter
elements that bind sequence-specific transcription factors lie around -70 to -100 in
some promoters. These include the CAAT box, GC boxes and octamers (Lewin, B.

2000). A vast array of regulatory transcription factors, most of which recognise

specific sequences, either directly or indirectly act to enhance or reduce the basal
level of transcription (Lewin, B. 2000). Enhancers increase the formation of the

transcription initiation complex at the promoter and therefore increase transcription
initiation. Enhancer and repressor elements differ from the core promoter region in
that they can function in either direction (the core promoter acts unidirectionally to

point RNAP-II in the correct direction) and their position relative to the transcription
initiation point can vary considerably (Lewin, B. 2000). GR itself is a transcription
factor that can either increase or decrease transcription by binding to DNA directly,
or by indirect mechanisms (section 1.4.2).
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In vivo, the eukaryotic genome is packaged into chromatin, the basic unit of which is
the nucleosome, containing 145 base pairs of DNA wrapped around an octamer of
core histone proteins. Packaging of genes into chromatin plays a key role in gene

expression, and generally represses transcription by inhibiting the binding of both

general and sequence-specific transcription factors to the DNA. Remodelling of
chromatin structure (e.g. by the BRG1/BAF complex) allows access of transcription
factors to the DNA to activate gene transcription. GR has been shown to interact
with chromatin remodelling complexes, leading to activation of transcription (section

1.4.2.1).

1.4.2 GR is a sequence-specific transcription factor

1.4.2.1 Transcriptional activation

GR itself can recruit and stabilise the preinitiation complex (Freedman, L. P. et al.

1989; Tsai, S. Y. et al. 1990; McEwan, I. J. et al. 1994). GR contains two

transactivation regions, one located in the N-terminus that has cell-type and promoter

specific activity (Giguere, V et al. 1986), and one in the ligand binding domain that
is ligand-dependent (Giguere, V et al. 1986). Transactivation by the N-terminal and
the C-terminal domains seems to depend on the formation of an a-helix (McEwan, I.

J. et al. 1993; DahlmanWright, K. et al. 1995; DahlmanWright, K. et al. 1996) and
the presence of hydrophobic residues, which are likely to be involved in protein-

protein interactions (DahlmanWright, K. et al. 1995; Almlof, T. et al. 1998). In

vitro, GR makes contacts with numerous components of the transcriptional

machinery (reviewed in Robyr, D. et al. 2000). These interactions are likely to

modulate the effects ofGR on target gene expression.

As well as directly interacting with the transcriptional machinery, GR activates

transcription through chromatin remodelling. An extensively studied model system
to assess transcriptional activation from chromatin templates by GR is the mouse

mammary tumour virus long terminal repeat (MMTV LTR) which contains several
GREs. Transcriptional activation by GR requires DNA binding, disruption of local
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chromatin structure and assembly of a transcription complex, also including NF-1
and Oct-1, at a TATA box (Archer, T. K. et al. 1991). The GR dimer recognises

adjacent major grooves on only one face of the DNA (in contrast to many

transcription factors that contact both faces of the DNA) (Pina, B. et al. 1990;

Archer, T. K. et al. 1991). Since both GR subunits of the activated GR homodimer

bind to one side of the DNA helix (section 1.1.3), GR binding to nucleosomal DNA
will be less affected by steric hindrance than other transcription factors. Via GR,

glucocorticoids cause a small rearrangement of the nucleosome that allows additional

binding of the transcription factors NF-1 and Oct-1 (Luisi, B. F. et al. 1991; Archer,
T. K. et al. 1992; Truss, M. et al. 1995). The nucleosomal reorganisation of the
MMTV promoter may thus be a prerequisite for simultaneous binding of all three
factors and maximal transcriptional activation. The key effect of GR during MMTV
LTR activation is recruitment of the BRG1/BAF complex (homologous to the
SWI/SNF complex in yeast), which is an ATP-dependent chromatin remodelling
machine (Muchardt, C. et al. 1993; Farrants, A. K. O. et al. 1997; Fryer, C. J. et al.

1998). Histone hyperacetylation increases transcriptional activation from chromatin

templates (Torchia, J. et al. 1998; Bresnick, E. H. et al. 1990), though the actions of
histone acetyltransferases, e.g. CBP, appear to be less important in MMTV LTR
activation than BRG1/BAF complex recruitment (Bresnick, E. FT. et al. 1990; Fryer,
C. J. et al. 1998).

1.4.2.2 Transcriptional repression by GR

Direct repression of transcription by GR can occur via several mechanisms (Figure

1.3). Firstly, GR can bind directly to a nGRE on the target gene (Drouin, J. et al.

1990; Drouin, J. et al. 1993; Malkoski, S. P. et al. 1997). In the case of the POMC

gene, GR forms a 3 subunit complex at the nGRE: a GR homodimer binds one side
of the element (consensus TGACCT), followed by binding of a GR monomer to the
other side (Drouin, J. et al. 1993). In contrast to a GRE, GR binding to a nGRE
reduces gene transcription, by preventing binding of transcriptional activators.
Transient transfection assays in AtT-20 cells showed that a nGRE-luciferase
construct is not activated by dexamethasone (Drouin, J. et al. 1993). Furthermore,

41



mutating the nGRE to a GRE in the POMC promoter leads to transcriptional
activation by dexamethasone. The nGRE in the human osteocalcin gene promoter

region overlaps the TATA-box suggesting that in this case GR functions as a

repressor by competing with a specific TFIID-induced promoter, inhibiting
formation of the transcription initiation complex (Meyer, T. et al. 1997) (Figure 1.3).

Secondly, GR represses the activity of some transcriptional activators bound to their

consensus sites on DNA (e.g. API and NF-kB), and appears to require only direct

protein-protein interactions between these factors and ligand-bound GR monomers.

These sites are referred to as tethering GREs (Figure 1.3). The concentration of

ligand required for this effect is much lower than that required for transcriptional
activation by GR homodimers (Vayssiere, B. M. et al. 1997). The interaction
between API and GR has been well characterised. API is a ubiquitous transcription
factor with diverse actions during cell growth, differentiation and development, and
inflammation (Angel, P. et al. 1987; Lee, W. et al. 1987). The API binding site is

recognized by Jun homodimers and Jun/Fos heterodimers; binding of Fos is

dependent on heterodimer formation (Lee, W. et al. 1987). GR can interact directly,
via its DBD, to both homodimers and heterodimers, though Fos appears to be the

preferred target (Schule, R. et al. 1990; Kerppola, T. K. et al. 1993). The effects of
API on transcriptional activation are thus antagonised by GR, and API reciprocally

antagonizes the actions of GR (Schule, R. et al. 1990; Yangyen, H. F. et al. 1990).

Similarly, GR can repress, and be repressed by direct interactions with the pro¬

inflammatory transcription factor NF-kB, without binding to DNA (reviewed in

McKay, L. I. et al. 1999). The importance of both of these examples of reciprocal

antagonism may be related to the opposing effects of API/NF-kB and GR upon

inflammatory responses (section 1.2.4 and reviewed in McKay, L. I. et al. 1999).

Finally, at sites termed composite GREs, GR can bind the DNA close to other DNA-
bound transcription factors and repress or stimulate transcription depending on the

composition of activators bound (Figure 1.3). For example, a 25 base pair region,
termed plfG, upstream of the proliferin gene confers 12-0-tetradecanoyl phorbol-13-

acetate-responsiveness and repression by GR, and footprints both API and GR

(Diamond, M. I. et al. 1990). The interaction of GR with API is essential for
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hormonal regulation, and Jun homodimers specify activation, and Jun/Fos
heterodimers repression by GR (Diamond, M. I. et al. 1990).

A distinct mechanism of repression has also been proposed in which GR represses

the activity of NF-kB. Glucocorticoids induce expression of members of the I-kB

family, which sequester NF-kB in the cytoplasm, hence preventing activation ofNF-

icB-target genes (Auphan, N. et al. 1995; Scheinman, R. I. et al. 1995b).

1.4.3 CpG islands and DNA methylation

Overall the CpG dinucleotide is poorly represented in the genome but is clustered in
the promoter regions of many genes. The carbon atom at the 5 position in the

cytosine of the CpG dinucleotide is the target for methylation by DNA

methyltransferase. Generally, tissue-specific genes are methylated in every tissue
where they are not expressed, but unmethylated in expressing tissues (reviewed in

Mostoslavsky, R. et al. 1997). CpG islands are defined as regions of DNA greater

than 200bp with a GC content >0.5 and an observed/expected presence of CpG >0.6

(reviewed in Gardiner-Garden, M. et al. 1987). All housekeeping genes, and

possibly the majority of all genes, appear to possess 5' CpG islands (Antequera, F. et
al. 1993), yet are unmethylated in all tissues and consitutively active. DNA

methylation thus appears to act as a suppressor of gene expression.
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Simple GRE Tethering GRE

Composite GRE Competitive nGRE

□

Figure 1.3: Mechanisms oftranscriptional regulation by GR binding directly/indirectly
to DNA

The three proposed mechanisms of transcriptional repression by GR at GREs are
depicted (see section 1.4.2 for details). The bold region represents the GRE; boxes
represent upstream activating factors e.g. API or basal transcription factors e.g. TBP.
Upward arrows represent transcriptional activation by GR and downward arrows
represent transcriptional repression by GR. Note that at the composite GRE, GR can
either decrease or increase gene transcription depending on the non-receptor factors
bound. The simple GRE, at which GR activates transcription is also shown.
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DNA methylation at CpGs has been shown to be essential for development, since
mice with a targeted disruption of the DNA methyltransferase I gene fail to develop

past mid-gestation, despite having 30% residual methylation activity (presumably
due to activity of alternate DNA methyltransferases) (Li, E. et al. 1992). The overall
action of DNA methylation is the repression of gene activity. Methylation may be
crucial in suppression of transcriptional "noise" and tissue-specific gene expression
and is also important in genomic imprinting. Four DNA methyltransferases, five

methyl-CpG-binding proteins (MeCPs) and a candidate demethylase have been
identified though the precise functions of all of these proteins in vivo are unclear

(reviewed in Bird, A. P. et al. 1999).

Only a small number of transcription factors appear to be directly hindered from

binding to DNA by methylation. The main mechanism of repression by methylation

appears to be due to effects of methylation on nucleosome stability and positioning to

deny access of transcription factors to the DNA. Activators or GTFs may be

prevented from binding to DNA by binding ofMeCPs to methylated CpG sites (Tate,
P. H. et al. 1993). MeCPl appears to bind less tightly to DNA than MeCP2, and may

have transient effects on CpG island repression; MeCP2, on the other hand, may be

responsible for long term suppression (Ng, H. H. et al. 1999a). Both MeCPl and
MeCP2 are associated with histone deacetylase activity (Ng, H. El. et al. 1999a; Ng,
H. H. et al. 1999b). Furthermore, trichostatin A, a specific histone deacetylase

inhibitor, is able to induce transcription from methylated genes, even though the

genes remain methylated (Ng, H. H. et al. 1999a). Recently, a protein complex,

NuRD, with histone deacetylase and nucleosome remodelling properties was

identified (Tong, J. K. et al. 1998; Zhang, Y. et al. 1998), suggesting that these two

activities are functionally related. NuRD is also targeted to methylated DNA

(Zhang, Y. et al. 1999); the effects of this complex on nucleosomal arrangement

along with its histone deacetylase activity may explain how CpG methylation leads
to gene repression or silencing.

CpG islands normally correspond to promoter regions or other regulatory elements
and have the highest density of nonmethylated CpGs in the genome. Many
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promoters associated with CpG islands lack TATA boxes and hence exhibit

heterogeneous transcription initiation points. During development, there is

generalized demethylation in the early preblastula embryo; after implantation most

CpGs become methylated, but those in CpG islands are unaltered (reviewed in

Mostoslavsky, R. et al. 1997). It is unclear precisely how CpG islands escape

methylation. Steric hindrance of DNA methyltransferase (by transcription factors)

throughout the entire length of a typical CpG island is unlikely, since CpG islands

adopt a relatively "open" chromatin conformation that nucleases can still access

(reviewed in Antequera, F. et al. 1999). A recent model proposes that promoters
active early in development can exclude methylation by recruiting the molecules that
initiate DNA replication (reviewed in Antequera, F. et al. 1999). This results in a

stretch ofmethylation-free DNA that coextends with an initiation loop intermediate.
Inactive CpG islands would not be able to form replication origins and would thus be

methylated. Later in development, tissue-specific genes are selectively demethylated
in their cell-type of expression, or remain permanently silenced (reviewed in

Mostoslavsky, R. et al. 1997).

1.4.4 Transcriptional regulation ofthe GR gene

Surprisingly little is known about the transcriptional regulation of the GR gene itself.
The human GR cDNA was cloned by Hollenberg et al in 1985 (Hollenberg, S. M. et
al. 1985). Subsequent isolation of the gene identified 9 exons, with a non-coding
exon 1. Primer extension, ribonuclease protection analysis (Zong, J. et al. 1990) and
SI nuclease analysis (Encio, I. J. et al. 1991) of GR mRNA has revealed at least four

transcription starts for this human cDNA. Furthermore, the regions flanking (up to -

860, ATG designated +1) this exon 1 contain no obvious TATA or CAAT boxes, but

multiple GC boxes (which are bound by Spl and related factors) are present (Zong,
J. et al. 1990; Encio, I. J. et al. 1991). Transient transfections of constructs fusing
GR genomic DNA to a reporter gene have identified regions important in

determining differential promoter activity in a variety of cell lines, and DNase I

footprinting and gel mobility shift analysis reveal that AP2 may an important
activator of the gene (Nobukuni, Y. et al. 1995). An Spl binding site is also present
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in the promoter close to the AP2 site (Leclerc, S. et al. 1991; Nobukuni, Y. et al.

1995). Very recent evidence suggests that at least 2 other alternate exons 1 exist
within the human GR gene (Breslin, M.B. et al. 1998; V. Lyons personal

communication), one of which lies at least 15 kilobases (kb) upstream of the
translation start (Breslin, M. B. et al. 1998) (Figure 1.4).

At least 5 alternate exons 1 have been identified in GR mRNAs in the mouse

(Strahle, U. et al. 1992; Chen, F. H. et al. 1999a) (Figure 1.4). Four of these alternate
exons 1 lie within a CpG island (IB - IE), while one (1A) lies approximately 32 kb

upstream of the translation start. At least three of the alternate exons 1 (1A, IB and

1C) exhibit considerable heterogeneity in their 5' ends (Strahle, U. et al. 1992) and
two of the alternate exons 1 appear to be ubiquitously expressed (IB and 1C). It has
been suggested that exon 1A is restricted to T lymphocytes; it is present in T-

lymphoma cell lines, but not liver or a limited range of other cell lines (Strahle, U. et
al. 1992). Recently, however, a more widespread tissue distribution of exon 1A-

containing GR mRNAs has been suggested (Chen, F. H. et al. 1999a). Exons ID and

IE-containing GR mRNAs are also widely expressed (Chen, F. H. et al. 1999a).
Consistent with ubiquitous activity of putative exon IB and lC-associated promoters,

DNase I hypersensitive sites are associated with regions just upstream of these exons

1 in liver and LTK" cells (fibroblasts) (Strahle, U. et al. 1992). Exon 1A has been

proposed to target GR to the cell membrane, and this may be of relevance in

glucocorticoid-induced T cell death (Chen, F. H. et al. 1999a; Chen, F. H. et al.

1999b). However, this remains to be demonstrated conclusively.
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Figure 1.4: 5 '-heterogeneity ofGR mRNA is conserved across species

Schematic representation (not to scale) of alternate exons 1 identified to date in the
rat ends (Gearing, K. L. et al. 1993; McCormick, J. A. et al. 2000), mouse (Strahle,
U. et al. 1992; Chen, F. H. et al. 1999a) and human gene (Hollenberg, S. M. et al.
1985; Breslin, M.B. et al. 1998; V. Lyons personal communication) GR genes (for
the rat gene, not all known alternate exons 1 are shown). Homologous exons
(including exon 2) are filled in the same colour (except for white filled exons 1,
which lack identified homologues). The approximate locations of the exons 1 are
shown, relative to the translation start in exon 2 (ATG). The 5' extents of variant
exons 1 show considerable heterogeneity that is not represented in this figure.
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Rat GR mRNA exhibits considerable heterogeneity at the 5' ends (Gearing, K. L. et
al. 1993; McCormick, J. A. et al. 2000). At least 12 alternate exons 1 are be present

in the rat GR gene; Lyons, V. personal communication); 5 of these correspond to

those identified in the mouse GR gene and one corresponds to that published for the
human GR gene (Figure 1.4). Ten of these alternate exons 1 lie in a CpG island

spanning 3 kb; three are likely to lie at least 15 kb upstream of the translation start

since they are not present in the genomic clone Z208, which contains exon 2 and

approximately 15kb of the rat GR gene flanking the 5'-end of exon 2 (McCormick, J.
A. et al. 2000).

In each species, each alternate exon 1 is spliced from a fixed 3' donor site to the
same 5' acceptor site in exon 2. An in-frame stop codon present immediately

upstream of the translation start in exon 2 means that the amino acid sequence of GR
itself is unaffected by splicing of alternate exons 1. Thus, alternate exons 1 may

reflect alternative promoter usage (section 1.4.5).

1.4.5 Gene regulation by alternative promoter usage

The use of alternative promoters in gene regulation provides an efficient means of

controlling complex patterns of gene expression. The simplest form of alternative

promoter usage involves two tandemly arranged promoters within the same exon

(e.g. the myc gene (reviewed in Marcu, K. B. et al. 1992)). The first exon can be
either coding or non-coding. Alternative promoter usage can also result in
alternative exons 1 spliced to a common exon 2, for example in the MR (Zennaro, M.
C. et al. 1995; Zennaro, M. C. et al. 1996; Vazquez, D. M. et al. 1998), ER (Griffin,
C. et al. 1998) and GR (section 1.4.4) genes, and again in these cases the first exon is

non-coding. More complex forms of alternate promoter usage include formation of
mRNAs encoding proteins with N-terminal extensions, e.g. where the leader exons
are overlapping and mRNAs derived from the upstream promoter contain a

translation initiation codon (the shorter isoform may or may not contain a translation
start codon). Regulation of the progesterone receptor gene is an example of this type

of alternate promoter usage (Kastner, P. et al. 1990).
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The use of alternate promoters can affect gene expression in a variety of ways. The
human porphobilinogen deaminase gene (PBGD) is an example of a gene containing
both a "housekeeping" and a tissue-specific promoter (Chretien, S. et al. 1988).

Housekeeping genes are a set of genes expressed ubiquitously and probably required
for basal functioning of all cell types. The housekeeping promoter of the PBGD

gene has no obvious TATA-box, has multiple Spl-binding sites, multiple

transcription starts and lies within a CpG island, all classic properties of a

housekeeping gene. A second, tissue-specific promoter is located 3kb downstream
from the housekeeping promoter and is only active in erythroid cells (Chretien, S. et
al. 1988). Using promoters of different strengths can influence the level of

expression of a gene. For example, the a-amylase gene has a weak downstream

promoter, active in liver and a strong upstream promoter, active in the parotid gland

(Schibler, U. et al. 1983).

In addition, production ofmRNAs with different untranslated 5' leader sequences by
alternative promoter usage can affect gene expression by variations in stability or

translation efficiency of these mRNAs. Studies of alternate myc oncogene mRNAs
have shown differences in translational efficiency between mRNA species with
different untranslated exons 1 (Kozak, M. 1991). Furthermore, cells transfected with

myc show discrepancies between myc mRNA and protein levels suggesting an

element of translational control (reviewed in Marcu, K. B. et al. 1992). The

synthesis of mRNAs with GC-rich 5' leaders may have a profound influence on

translational efficiency due to the formation of secondary structures. Gene products

containing alternate 5'-untranslated regions with low free energy are inefficiently
translated (Kozak, M. 1991). The presence of short open reading frames (sORFs)
within the leader sequence may also be important (reviewed in Geballe, A. P. et al.

1994). For example, the 5' leader of the human cytomegalovirus gp48 mRNA
contains a 22 codon upstream open reading frame that represses translation of the
downstream cistron (Cao, J. H. et al. 1996). Translational repression in this case

involves ribosomal arrest at the end of the upstream sORF, as opposed to an effect of

higher initiation efficiency at the upstream sORF. In other cases, differences in
initiation efficiency at upstream sORFs might lead to differences in translational
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efficiency between mRNAs (Geballe, A. P. et al. 1994). Translational regulation can

also occur by interactions between mRNAs and proteins e.g. the iron regulatory
element/iron regulatory factor (Theil, E. C. 1994).

1.5 Aims

This thesis examines the transcriptional regulation of the rat GR gene. GR are

involved in many physiological processes, and exert important effects during

development. Their role in the hippocampus may be especially important, since

changes in GR density alters HPA axis regulation, which can subsequently affect all
GR-mediated functions in the organism. During development, environmental effects
can permanently program GR levels. Paradoxically, a prenatal manipulation

(dexamethasone exposure) that permanently increases hepatic GR levels permanently
reduces hippocampal GR. Hippocampal GR can also be permanently increased by
another perinatal manipulation, neonatal handling. All these perinatal programming
effects influence adult physiology, and may lead to the development of pathology in
later life. An understanding of the transcriptional regulation of the GR gene is thus

important not only in general physiological terms, but also to elucidate the
mechanisms ofGR programming.

There were several key aims of the work described in this thesis. Firstly, to gain an

insight into general transcriptional regulation of the GR gene by determining the
tissue distributions of alternate exon 1-containing GR mRNAs. For the purpose of
this thesis, I shall define a promoter as a region of DNA that directs RNAP-II to
initiate transcription from initiation points resulting in mRNAs containing a

particular alternate GR exon 1. With this definition in mind, differences in the tissue
abundances of alternate exon 1-containing GR mRNAs might reflect differences in

promoter usage between tissues. Next, to determine if promoter activity is indeed
associated with alternate exons 1, and if so to identify important regulatory regions.

Finally, to examine programming effects on alternate exon 1-containing GR mRNAs.

Specifically, to determine whether prenatal dexamethasone treatment affects the
abundance of exon 1-containing GR mRNA (to identify a promoter responsible for
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the increase in hepatic GR following this treatment), and examine the effects of 5-HT
in primary hippocampal cultures, which mimics the effect of neonatal handling.
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Chapter 2: Materials and Methods

2.1 Materials

2.1.1 Chemicals

All chemicals were obtained from BDH Chemicals Ltd, Magna Park, Lutterworth,
Leicestershire LEI7 4XN or Sigma Chemicals Ltd, Fancy Road Poole, Dorset, BH17
7NH unless otherwise stated.

Agarose and low melting point agarose Life Technologies Ltd, 3 Fountain

Drive,

Caesium chloride Paisley PA3 9RF

Agar

Nucleotide triphosphates Amersham Pharmacia Biotech UK Ltd,

Little Chalfont, Bucks HP7 9NA

Ethanol Hayman Ltd, 70, Eastways Industrial

Park,

Witham, Essex CM8 3YE

Bactotryptone
Yeast extract

Agar

Beckton Dickinson, Between Towns

Road, Cowley, Oxford 0X4 3LY

Beetle luciferin Promega Ltd, Delta House, Chilworth
Research Centre, Southampton SOI
7NS

D19 developer
Amfix fixative

H.A. West Ltd, 41 Watson Crescent,

Edinburgh EH11 1ES
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2.1.2 Radiochemicals

All radiochemicals were supplied by Pharmacia Amersham International pic (see
above).

Compound Specific activity

[a-32P]-GTP
[a-32P]-UTP

3000 Ci/mmol

3000 Ci/mmol

[a-33P] ddNTPs
2.1.3 Enzymes

500 Ci/mmol

All enzymes, with the exception of those listed below, were supplied by Promega Ltd

(see above).

Alkaline phosphatase

High activity DNA ligase

Roche Diagnostics Ltd, Bell Lane,

Lewe,

East Sussex BN7 1LG

2.1.4 Miscellaneous

DNA size markers (lkb ladder)
TRIzol reagent

Glassmax DNA isolation system

5'-RACE system version 2.0

Life Technologies Ltd (see above)

Autoradiographic film H.A. West Ltd (see above)

NICK columns

above)

Pharmacia Amersham Biotech (see
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Reverse transcription system Promega (see above)

Galacto Light Plus assay kit Tropix Ltd, 47, Wiggins Ave, Bedford

MA, USA

Pico-fluor 40 scintillant fluid Canberra Packard, Brook House, 14

Station Road, Pangbourne, Berkshire
RG87DT

Hybaid Recovery DNA purification kit II Hybaid Ltd, Action Court, Ashford

Road, Ashford, Middlesex TW15 1XB

Hybspeed RPA kit AMS Biotechnology, Milton Park,
RPAII kit Abingdon, Oxfordshire

Vectastain Elite ABC Kit Novacastra, Benton Lane, Newcastle-

upon-Tyne NE12 8EW

2.1.5 General buffers and solutions

Unless stated, distilled water was used to prepare all solutions. All solutions, except
those marked * were sterilized in an autoclave before use.

DEPC water 0.5ml DEPC was added to 500ml

ultrapure water and left for at least lh
before autoclaving

DNA loading buffer* 0.25% (w/v) bromophenol blue, 0.25%

(w/v) xylene cyanol, 30% glycerol

0.5M EDTA (pH 8.0) 800ml water was added to 186.1 g

Na2EDTA.2H20. pH was adjusted to
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8.0 with NaOH and the volume adjusted
to 1000ml

Formamide loading buffer* 34.03% bromophenol blue, 0.03%

xylene cyanol, 20mM EDTA in
deionised formamide

GTE 50mM glucose, 25mM Tris-HCl (pH

8.0), lOmM EDTA

Alkaline SDS solution* 0.2M NaOH, 1% SDS

1M Tris-HCl, pH 8.0

5M potassium acetate

121.1 g Tris base in 800ml water. pH
was adjusted to 8.0 with concentrated
HC1 and the volume adjusted to 1000ml
with water.

245.6g potassium acetate was dissolved
in 300ml water. The volume was

adjusted to 500ml by adding 57.5ml

glacial acetic acid and 142.5ml water

PBS 8g NaCl, 0.2g KC1, Na2HP04, 0.24g

KH2PO4 in 800ml water. pH was

adjusted to 7.4 and the volume adjusted
to 1000ml with water

TBE(lOx) 108g Tris base, 55 g boric acid, 20ml
0.5M EDTA, made up to 1000ml in
DEPC water

TEClx)" lOmM Tris-HCl (pH 8.0), ImM EDTA
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Glycerol tolerant buffer (20x)

Probe elution buffer (5Ox)

Denaturing solution for RNA preps*

2M Sodium acetate pH 4.0

MEA buffer (lOx)

0.1M Tris phosphate pH 7.8

Transfection lysis buffer*

Luciferase assay buffer (2x)*

216g Tris base, 72g taurine, 4g

Na2EDTA.2H20, dissolved in 1000ml

water

2M Tris, 1M glacial acetic acid, 50mM
EDTA (pEl 8.0), 10% lauryl sulphate.
Made up in DEPC water

4.73g guanidium thiocyanate, 0.318ml

0.75M, sodium citrate (pH 7), 0.476ml

10% sarcosyl, 0.072ml P-

mercaptoethanol, 5.540ml DEPC water

272g sodium acetate.3H2O was

dissolved in 800ml water. The pH was

adjusted to 4.0 with glacial acteic acid
and the volume made up to 1000ml

200mM MOPS acid, 50mM Sodium

acetate, lOmM EDTA, pH to 7.2

900pl 18.1M phosphoric acid was

added to 500ml water. The pH was

adjusted to 7.8 by adding Trizma base
solid

25mM Tris phosphate pH 8.0, 2mM

DTT, 1% Triton X-100, 10% glycerol

40mM Tricine, 67mM DTT, 0.2mM

Na2EDTA.2H20, 2mM MgS04,
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0.25mM coenzyme A, pH adjusted to

7.8

2.1.6 Molecular biology buffers (excluding restriction enzyme buffers)

All enzymes and buffers were supplied by Promega unless stated

Large scale in vitro transcription buffer (lx)

(made in lab)

80mM Hepes-KOH, 24mM

MgCl2,
2mM spermidine, 40mM DTT

Transcription optimized buffer (lx) 40mM Tris-HCl (pH 7.9), 6mM

MgCl2, 2mM spermidine, lOmM
NaCl

T4 polynucleotide kinase buffer (lx) 70mM Tris-HCl (pH 7.6),
lOmM MgCl2, 5mM DTT

T4 DNA ligase buffer (lx) 30mM Tris-HCl (pH 7.8),
lOmM MgCl2, lOmM DTT,
ImM ATP

Reverse transcription buffer (lx) lOmM Tris-HCl pH 8.8, 50mM

KC1, 0.1% Triton X-100

2.1.7 Restriction enzyme buffers

All supplied by Promega unless stated

Universal restriction buffer (lx) (prepared in lab) 500mM NaCl, 500mM Tris-HCl

pH 8.0, llOmM MgCl2, 60mM
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P-mercaptoethanol, lmg/ml
bovine serum albumin

EcoRl, Pstl restriction buffer (lx) 90mM Tris-HCl, lOmM MgCl2,
50mM NaCl, ImM DTT. (pH
7.5 at 37°C)

Ncol, Sail restriction buffer (lx)

Sphl restriction buffer (lx)

6mM Tris-HCl, 6mM MgCl2,
150mM NaCl, ImM DTT. (pH
7.9 at 37°C)

lOmM Tris-HCl, lOmM MgCl2,
150mM KC1. (pH 7.4 at 37°C)

Sspl restriction buffer (lx)

2.1.8 Cells and animals

6mM Tris-HCl, 6mM MgCl2,
lOOmM NaCl, ImM DTT (pH

7.5 at 37°C)

2.1.8.1 Bacteria for cloning

E. coli strains HB101 and JM109 were supplied by Promega (see above)

2.1.8.2 Cell lines

B103 cells were kindly provided by Professor David Schubert of the Salk Institute
All other cell lines were already held in this laboratory
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2.1.8.3 Animals

Animals were supplied by Charles River UK Ltd, Margate, Kent, UK

2.1.9 Bacterial media

Luria-Bertoni broth (LB) 1% (w/v) bactotryptone, 0.5% (w/v) yeast

extract, 0.5% (w/v) NaCl

LB-agar LB with 1.5% (w/v) agar. To pour plates, LB-

agar was melted in a microwave, and allowed
to cool until warm before pouring into 100mm

petri dishes. If required, ampicillin was added

(lOOpg/ml) before pouring plates.

2.1.10 Cell Culture Media

Unless indicated, all media and additives for maintenance of cell lines were supplied

by Life Technologies (see above).

Modified Eagle Medium a medium (MEM a medium)

Dulbecco's modified Eagle medium (DMEM)
Nutrient Mixture F-10 (HAM)
Hank's Balanced Salts Solution

Trypsin/EDTA (lOx)

Hepes (1M) (Sigma)

D-(+)-Glucose solution (45%) (Sigma)

Penicillin/Streptomycin (10000U/ml:10000pg/ml)
Foetal calf serum

Horse serum

L-glutamine (200mM)
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2.1.11 DNAs

2.1.11.1 Oligonucleotides

All oligonucleotides were supplied by Oswel DNA Service, University of

Southampton, Southampton SO 16 7PX

5'-RACE PCR

GSP1: 5'-AAGGGATGCTGTATTCA-3'

Anchor Primer:

5' -CUACUACUACUAGGCCACGCGTCGACTAGTACGGGIIGGGIIGGGIIG-3'

GSP2: 5'-ACTCCAAATCCTTCAAGAGGTCA-3'

M6002: 5'-AAGCCTGTTTCACTGTCCAT-3'

M6003: 5'-CAACAGATCTGATCTCCAGG-3'

UAP: 5'-CUACUACUACUAGGCCACGCGTCGACTAGTAC-3'

GSP3: 5' -TTGGAATCTGCCTGAGAAGC

Sequencing

5'-RACE PCR products: used GSP3

Sp6: 5'-TGTAATACGACTCACTATAG-3'
T7: 5' -TGTAATACGACTCACTATAG-3'

Transfection construct l7b: 5'-CTGCAGACACGCCCTCT-3'

Oligonucleotides for pGL3-Basic modification

A5351: 5'-GAGCTCGGTACCGCATGCAGATCTGCGATCTAAGTG-3'

A5352: 5'-CATGGTGGCTTTACCAACAGTACCGGAATCCCACTT-3'

A6594: 5'-AGCTCCTGCAGTCGACAAGCTTGACGTCGGATCCGTAC-3'

B4697: 5 '-GGATCCGACGTCAAGCTTGTCGACTGCTG-3'

B4698: 5' -AGATCGCAGATCTGCATGCGGTACCG-3'
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B4699: 5'-GGATTCCGGTACTGTTGGTAAAGCCAC-3'

RT-PCR

Exon 2: 5' -CATGGACAGTGAAACGGC-3'

Exon 17: 5' -AAAGAAACTCGGTTTCCCTC-3'

Exon 110: 5'-GTTGACTTCCTTCTCCGTGA-3'

16-specific primer: 5'-ACCTGGCGGCACGCGA-3'

2.1.11.2 Plasmids

Cloning

pGL3-Basic

pGL3-Promoter

pGEM-T

pGEM T-Easy

Expression plasmids

pSV2L

pRSVluc

pCHllO

C/EBPa and C/EBPp
WT-1

NGFI-A

HNFla

pKC275

All Promega (see above)

Promega

Amersham Pharmacia Biotech Ltd

Amersham Pharmacia Biotech Ltd

Gift from S. L McKnight
Gift from R. Davies

Gift from J. Millbrandt

Gift from M. Pontoglio and M.
Gift from K.E. Chapman
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2.1.11.3 Construction ofplasmids

To generate constructs for transient transfections, fragments of pVL152, pVL154 and

pVL156 (subclones of 1208, a genomic clone encoding exon 2 and approximately
15kb of the rat GR gene flanking the 5'-end of exon 2 kindly supplied by M.

Jacobson and K. Yamamoto) were ligated into pGL3-Basic with a modified

polylinker (pGL3-BM) digested with appropriate restriction enzymes (constructs are

summarised in Figure 4.4). All digests and fragment recoveries were performed as

describe in sections 2.2.5.1 and 2.2.5.2.

The polylinker in pGL3-Basic was modified to simplify construct generation. The
modification was performed by Val Lyons. Six overlapping oligonucleotides

(section 2.1.10.1) were ligated into pGL3-Basic digested with Kpnl and Ncol and

purified through a low-melting point agarose gel (section 2.2.5.2). Oligonucleotides
A5352 and B4699 were 5'-phosphorylated to enable ligation; for each

oligonucleotide, a 30pl reaction contained 9pg oligonucleotide, lOOmMM Tris-HCl

pH 8.0, lOmM MgCl2, 5mM DTT, 0.3mM ATP and 5U T4 polynucleotide kinase.
Reactions were incubated at 37°C for 45min, then 65°C for lOmin. Pairs of

oligonucleotides (A5351/B4698, A5352/B4699 and A6594/B4697) were annealed by

incubating 1.5pg of each at 65°C for lOmin and cooling to room temperature slowly.

The three annealed pairs of oligonucleotides were combined, and 7.5pl of this mix

ligated (section 2.2.9.1) to lpl of vector in a lOpl reaction; 0.5U T4 DNA ligase was

used. This ligation reaction was used in a transformation with HB101 cells, and a

clone containing the modified polylinker identified by appropriate restriction digests.
It should be noted that the intended Pstl restriction site was not present in the original
clone identified and used to generate the majority of constructs since the sequence of
the A6594 oligonucleotide was incorrectly transcribed when purchased. The

corresponding B4697 oligonucleotide, however, contained the correct sequence for
this site, so DNA repair mechanisms would repair this mismatch to the correct Pstl
site in 50% of clones. The original ligation was used to transform HB101 cells again
and a clone containing the correct Pstl site identified.
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P2 (-4572 to -9) was a Hindlll/Sspl fragment; P2 (reversed) contained the same

fragment in the reverse orientation (-9 to -4572); Pl5 (-4572 to -3552) a Hindlll/Sphl

fragment; Pl6 (-4572 to -3336) a Hindlll/Pstl fragment; PI7 (-4572 to -2927) a

Hindlll/Bgll fragment; Pig (-4572 to -2803) a Hindlll/Kpnl fragment; PI9/10 (-4572
to 2532) a Hindlll/Sad fragment; PI 10 (-4572 to -2318) a Hindlll/Hincll fragment;

Pln (-4572 to -1767) a Hindlll/Pstl fragment; P0, (-4572/-796) a Hindlll/Hindlll

fragment, and H3 (-871/-9) a Hindlll/Sspl fragment (Figure 4.4 for a summary). All
numbers relate to the translation start site, +1.

Subclones of PI7 were generated to allow more detailed analysis of elements

conferring activity to Pl7 in transient transfections (Figure 4.9). PI7a (-3552/-2927)
an Sphl/Bglll fragment; Pl7b (-3341/-2927) a Pstl/Bgll fragment, and Pl7C (-3207/-

2927) a Pstl/Bgll fragment.

The 134bp Pstl/Pstl fragment (-3341/-3207) was subcloned into pGL3-BM and

pGL3-Promoter (pGL3-P) in both orientations. First, it was subcloned into pGL3-
BM digested with Pstl: all clones obtained contained the insert in the incorrect. To

generate a construct containing the insert in the correct orientation (P134C)
HinclHSstl fragment from BM134C was subcloned into pGL3-P digested with
SmallSstl. To obtain the fragment in the incorrect orientation in pGL3-P (PI341),
BM134I was digested with HinclHBglll and the insert subcloned into pGL3-P

digested with SmallBglll. P134C digested with KpnllBglll provided the insert for

generation a construct with the 134bp fragment in pGL3-BM in the correct

orientation (BM134C).

For all constructs, the presence and orientation of inserts was checked by appropriate
restriction digests and/or cycle sequencing. Plasmid DNAs used in transfections
were purified by CsCl density gradient centrifugation.
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2.2 Methods

2.2.1 Animals

Animals were maintained under controlled lighting (lights on 07.00 to 19.00h) and

temperature (22°C) with water and food available ad libitum. For RNA isolation
adult (3-8 months) male Wistar rats were killed, tissues immediately dissected,
frozen on dry ice and stored at -80°C.

Animals treated in utero with dexamethasone were male offspring of female Wistar
rats. Time-mated female rats (5 females per group) were given dexamethasone

(lOOpg/kg per d) subcutaneously during the third week of pregnancy; controls
received vehicle (4% ethanol-0.9% saline) throughout pregnancy. Male offspring,
selected at random from a total of 5 litters, were used when adult (8 months). Dr.

Moffat Nyirenda treated, killed and collected tissues from these animals. For

primary hippocampal cultures, female Wistar rats were mated and killed on day 18 of

pregnancy. Pups were dissected from the uterus and killed by placing on ice in a

50ml universal container.

2.2.2 Primary hippocampal cultures

Hippocampi were dissected and immediately placed in 1.5ml Hank's buffer/0.015M

Hepes pH 7.4 (H/H) in a sterile 6ml tube. Hippocampi were washed with 2ml H/H
and the H/H removed with a sterile plastic pasteur pipette, along with any floating

particles. This wash step was repeated twice. The hippocampi were then dissociated

by adding 1ml of trypsin 1.25mg/ml and incubating at 37°C for 15min. The tube

was gently tapped every 5min to mix. Trypsin was removed and 1.5ml medium

(Modified Eagle Medium a supplemented with 0.015M Hepes, lOpg/ml penicillin
and streptomycin, 200mM KC1 and 0.5% w/v glucose) added. After lmin, medium
was removed and the hippocampi washed 3 times with H/H. Hippocampal cells
were dispersed by triturating 20 times in the final H/H wash using a plastic pasteur

pipette, followed by three gentle passes through a 25G needle. Dispersed
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hippocampal cells were transferred to 5ml of medium in a 50ml universal tube and

centrifuged for 5min at 500rpm, room temperature. Cells were resuspended in
medium allowing 1ml medium per 2 hippocampi. Cell density was determined using
an Improved Neubauer haemocytometer (Hawksley) and adjusted to 1.5-2 x 106
cells/ml. Cell viability was determined by adding lOOpl cells to lOOpl 0.4% (w/v)

Trypan blue and counting the number of cells taking up dye (dead cells) and those
not. Viability was typically 80-90%. 3ml of suspended cells were plated on 60mm
culture dishes (pre-coated for at least lh with 1ml poly-D-lysine (0.25mg/ml), which
was removed before adding cells), and placed in an incubator at 37°C with 5% CO2,

where they were maintained for the entire culture period. 2d after plating, the
medium was aspirated from the cells and 3ml fresh medium containing 20p,M uridine

and 20pM 5-fluorodeoxyuridine was added. After a further 3d, the medium was

aspirated and fresh medium containing either lOOnM 5-HT or vehicle (water) added.
Cells were harvested after 4d further incubation with 5-HT for RNA extraction.

2.2.2.1 Immunocytochemistry

To ensure that primary hippocampal cultures were predominantly neuronal in cell

population, immunocytochemistry was carried out using the Vectastain Elite ABC
Kit (Novocastra). Primary hippocampal cultures were established as described above
and maintained in culture for 6 days before testing. All washes and incubations were

performed on an orbital shaker, set to low speed, at room temperature unless stated.
Each dish of cells was washed with 1ml PBS, followed by incubation with 1ml 40%

paraformaldehyde for 20min. Cells were then washed with 1ml PBS, incubated with
lml 0.1 Triton X-100/PBS for 5min, incubated with 0.25% BSA/PBS for lh.

Primary antibodies were diluted 1 in 1,000 in 0.25% BSA/PBS and lml of these

dilutions were added to the cells. The antibodies used were anti-glial fibrillary acidic

protein (GFAP), to identify glial cells, and anti-neuron-specific enolase (NSE), to

identify neuronal cells. As a negative control, lml of 0.25% BSA/PBS was added to
cells. Each test was performed in duplicate. Cells were incubated with primary

antibodies at 4°C overnight. Cells were washed with 0.25% BSA/PBS for lOmin.

Secondary antibody (anti-rabbit IgG) was diluted 1 in 200 in 10ml PBS and 150pl of
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blocking serum added. 1ml of this solution was added to each dish of cells and

incubated at room temperature for 45min. Cells were washed with 1ml PBS for

lOmin and incubated with Vectastain (200pl each of solution A and solution B in
10ml PBS made 30min before use) for 30min. Cells were washed for lOmin with

PBS, incubated for 2min with AEC substrate (150pl 3-amino-9-ethyl carbazole

(AEC), lOOpl buffer, lOOpl hydrogen peroxide and 5ml distilled water), and given a

final wash with water for 5min. Cells were then examined using a Nikon at xlO

magnification and photographed.

2.2.3 Gel electrophoresis

2.2.3.1 Analytical agarose gels

Agarose gels were prepared by adding solid agarose to 0.5x TBE 0.8-2.5% (w/v)
followed by boiling in a microwave oven. 50pg/ml of ethidium bromide was added
to the gel mix which was then poured into a gel mould with an appropriate comb
after mixing. Once set the gel was submerged in 0.5x TBE in a Elorizon 58 (30ml

gel) or Horizon 11.54 (100ml gel) electrophoresis tank (Life Technologies), lkb
DNA markers and samples containing lpl DNA/RNA loading buffer were then
loaded into the wells and electrophoresed at 100-200V until the DNA fragments
were resolved. DNA was visualised on a UV transilluminator at 254nm, imaged

using an Appligene Imager and recorded on Seikosha video printer paper.

2.2.3.2 Preparative agarose gels

To gel purify DNA fragments (e.g. in subcloning procedures) a 1% (w/v) agarose gel
was prepared as above except low melting point agarose (Life Technologies) was

used and the gel poured in a cold room (4°C). Samples were electrophoresed at

100V until the desired fragment was resolved. DNA was visualized on a UV

transilluminator at 365nm to prevent UV damage to DNA, the required band excised
with a scalpel and DNA purified as described in section 2.2.5.2.
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2.2.3.3 RNA gels

Integrity of total RNA (for RNA isolation see section 2.2.4) was verified by

denaturing agarose gel electrophoresis. Gel trays, tanks and combs were scrubbed in
hot soapy water, soaked in 0.1M NaOH for 30min and rinsed with ultrapure water

before use. Typically, a 1% (w/v) gel was prepared by weighing out 0.25g agarose,

adding 18ml DEPC water and boiling in a microwave for 30sc. Once cooled

slightly, 4.5ml 40% (w/v) formaldehyde solution (Sigma) and 2.5ml lOx MEA was

added, and the gel was cast. Once set the gel was aged by submerging in a Horizon
58 electrophoresis tank in lx MEA for 15min. Meanwhile, l-2pl of RNA sample
was denatured by adding to a mix of 2.5pl 40% (w/v) formaldehyde, 2.5pl lOx

MEA, lOpl deionised formamide and incubating at 65°C for 15min. 2pl of a 1:5 mix
of lOmg/ml ethidium bromide and gel loading buffer was added to the denatured

samples which were then loaded onto the gel and resolved for 20-30min at 100V.
RNA was visualised on a UV transilluminator at 254nm and photographed as before.

2.2.3.4 Denaturingpolyacrylamide gel electrophoresis

Prior to use, glass plates used in polyacrylamide gel electrophoresis were scrubbed
with detergent, rinsed with dH20 then rinsed with absolute ethanol. "Sequencing

gels" contained 6% polyacrylamide. To check cRNA probe quality a 5% gel was

used; for gel purification of cRNA probes and in analysis of RNase protection

assays, a 4% gel was used.

For sequencing gels, two clean glass plates (45cm x 35cm) had 0.3mm spacers

inserted between them; after clamping with bulldog clips the edges were sealed with
2% agarose (w/v). 42g of urea was dissolved in 15ml 40% acrylamideibis-

acrylamide (19:1), 4ml 20x glycerol tolerant buffer, 600pl 10% ammonium

persulphate (w/v), made up to 100ml with DEPC water and filtered through
Whatman #1 filter paper. Polymerisation was started by adding 40pl TEMED, and
the gel mix was cast immediately. For DNA sequencing, the flat side of a comb was

inserted to allow use of a shark-tooth comb once the gel was set; for other gels a 20
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tooth comb was inserted. The gel was left overnight to polymerise before assembly
into the electrophoresis tank (Kodak Biomax STS 451) with 0.8x glycerol tolerant
buffer as running buffer. The gel was pre-run at 1800V for 30min and the wells
flushed with buffer before loading samples denatured in formamide loading buffer at
95°C for 3min. Gels were typically run at 1800V until the bromophenol blue had

reached the bottom of the gel, but to read more 5' in sequencing experiments a

second loading of sample was sometimes performed at this point. In such cases the

gel was run until the bromophenol blue of the second loading reached the bottom of
the gel. After electrophoresis the gel was transferred to Whatman 3MM paper and
dried under vacuum at 80°C on a BioRad 583 gel drier. The gel was exposed to

autoradiographic film overnight and then developed; if necessary the gel was then re-

exposed for longer.

5% gels were made by dissolving 3.6g urea in 1.25ml 40% acrylamide:bis-

acrylamide (19:1), 1ml lOx TBE, lOOpl 10% ammonium persulphate (w/v) and

making up to 10ml with DEPC water. Two glass plates (8cm x 10cm) cleaned as

described above were assembled with 1mm spacers to make the gel cast.

Polymerisation was started by adding lOpl of TEMED and the gel was poured

immediately. A 10 tooth comb was inserted and the gel allowed to polymerise for at
least 30min before use. 5% gels were run using a vertical electrophoresis tank

(Sigma) with lx TBE; samples were denatured in formamide loading buffer at 95°C
for 3min before loading and the gel run at 20mA for 15min. After electrophoresis
the gel was transferred to Whatman 3MM paper, wrapped in clingfilm and exposed
to autoradiographic film for lh.

For a 4% gel, two glass plates (15cm x 17cm) were cleaned as described, assembled
with 0.8mm spacers and sealed with 2% agarose (w/v). 21g of urea was dissolved in
5ml 40% acrylamide:bis-acrylamide (19:15) 5ml lOx TBE, 300pl 10% ammonium

persulphate (w/v) and made up to 50ml with DEPC water. lOOjal TEMED was

added to start polymerisation and the gel poured immediately. A 20 tooth comb was

inserted and the gel allowed to polymerise for at least 2h before assembly into the

electrophoresis tank (Model VI6 vertical gel electrophoresis system, Life
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Technologies). Wells were flushed with buffer before loading samples denatured in

formamide loading buffer at 95°C for 3min. The gel was run at 30mA until the

bromophenol blue just ran off the bottom of the gel. The gel was then transferred to

Whatman 3MM paper and dried under vacuum at 80°C on a BioRad 583 gel drier.
The gel was exposed to autoradiographic film overnight and then developed; if

necessary the gel was then re-exposed for longer. For analysis using the

phosphorimager, after an initial exposure to film the gel was then exposed to the

phosphorimager screen for l-5d depending on the autoradiography result.

2.2.3.5 Autoradiography

Dried 6% gels were exposed to DuPont NEF 485 autoradiographic film in a cassette

containing a single intensifying screen (Kodak). P gels were exposed at -80°C to

take advantage of the intensifying screen. After an appropriate exposure time the
film was developed in D19 developer for 2min and fixed in Amfix fixative (1 in 5

dilution), rinsed in tap water and left to dry before analysis.

2.2.3.6 Phosphorimagery

Gels were exposed to a Molecular Dynamics or Fuji phosphor screen for 1 to 7 days

depending on autoradiography results and then analysed using a Molecular

Dynamics or Fuji Film FLA-2000 phosphorimager.

2.2.4 Ribonucleic acid (RNA) Preparation

2.2.4.1 Sample preparation

Total RNA was prepared using either TRIzol reagent or guanidium isothiocyanate
extraction. For extraction from cells in culture, each dish of cells was washed twice

with 3ml PBS, the appropriate volume of TRIzol reagent or denaturing solution
added and cells harvested using a cell scraper; extractions were performed

immediately. For extraction from tissues except hippocampus, material was
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disrupted by grinding under liquid nitrogen in a pestle and mortar, aliquoted into

1.5ml eppendorf tubes in approximately lOOmg aliquots and stored at -70°C until

needed. Hippocampus was disrupted in TRIzol or denaturing solution using syringes

(section 2.2.4.2) without prior disruption in liquid nitrogen.

2.2.4.2 TRIzol extraction

lml of TRIzol reagent was used to extract RNA from lOOmg of ground tissue or one

hippocampal half. After addition of TRIzol reagent, sample were disrupted using

syringes with needles of decreasing gauge (19, 23, and 25 gauge) and incubated for
5min at room temperature. 0.2ml of chloroform was added, samples incubated at

room temperature for 3min and centrifuged in a microcentrifuge at 14,000rpm for
15min at 4°C. The aqueous phase was transferred to a fresh eppendorf tube and
RNA precipitated by adding 0.5ml isopropanol. Samples were incubated at room

temperature for lOmin and centrifuged in a microcentrifuge at 4°C for lOmin at

14,000rpm. The supernatant was removed with a drawn-out glass pasteur pipette and

pellets washed with lml cold (4°C) 75% ethanol. After vortexing, samples were

centrifuged in a microcentrifuge at 4°C for 5min at 7500rpm. The supernatant was

removed with a drawn-out glass pasteur pipette and pellets allowed to air-dry for
5min at room temperature. Pellets were resuspended in 10-150pl DEPC water,

depending on pellet size, by incubating at 65°C for 15min and vortexing vigorously.

2.2.4.3 Guanidium isothiocyanate extraction

0.5ml denaturing solution was used to extract RNA from one 60mm dish of cells (4.5
to 6 x 106 cells), lOOmg of ground tissue or one hippocampal half. Samples were

disrupted using needles as before, then 50pl of 2M Sodium acetate (pH 4.0) added

followed by vortexing. 500pl of phenol saturated with 0.1M citrate buffer, pH 4.3

was added, followed by vortexing. lOOpl chloroform:isoamyl 24:1 mix was added,

samples vortexed vigorously for 10s and placed on ice for 15min. Samples were

then centrifuged at 14,000rpm for 20min in a microfuge and the supernatants

immediately transferred to fresh 1.5ml eppendorf tubes. RNA was precipitated by
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adding 200pl isopropanol and incubating at -20°C for at least lh. RNA was

collected by centrifuging at 14,000rpm for 20min in a microfuge, the supernatant

was removed with a drawn out glass pasteur pipette, and the pellets were

resuspended in 60pl denaturing solution. RNA was pelleted by adding 60pl

isopropanol, incubating at -20°C for at least lh and centrifuging at 14,000rpm for

lOmin. Pellets were washed with 200pl 75% ethanol and centrifuged at 14,000rpm

for 1Omin. The supernatant was aspirated with a drawn out glass pasteur pipette and
the pellet air dried for a few minutes, until the edges began to turn translucent.
Pellets were resuspended in 10-150pil DEPC water, depending on pellet size, by

incubating at 65°C for 15min and vortexing vigorously. The concentrations of RNA

samples were determined using the GeneQuant RNA/DNA calculator (Amersham
Pharmacia Biotech) and integrity checked on a 1% agarose denaturing gel (section

2.2.3.3).

2.2.5 Manipulation ofDNA

2.2.5.1 Restriction digests

Plasmid DNA was digested using 5-15U of restriction endonuclease in lx

appropriate restriction buffer in a final volume of 10-40jal at 37°C for 1-2 h. To

digest "minipreps" approximately 0.5pg of DNA was digested; for subcloning and
for linearisation of cRNA probe templates, 10pg of DNA was used. Digestion was

verified by agarose gel electrophoresis. Where the insert and vector to be ligated had
been cut with the same enzyme (that generated an overhang), an equal volume of TE
and 1U alkaline phosphatase was added followed by incubation at 37°C for lh,
followed by 15min at 65°C to inactivate the alkaline phosphatase. Where a blunt end
was required for ligation, the 5' overhang was blunted by adding 5U Klenow

fragment, l/10vol 2mM dNTPs and incubating at room temperature for 37°C for
lOmin followed by 65°C for lOmin. Note that if a blunt end and overhanging end
were required Klenow treatment was performed after digestion by the first restriction

enzyme, then the second enzyme was added to the reaction that was then incubated
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for a further 2h at 37°C. For minipreps the whole digest was run; for subcloning and

template linearisation, a 1 pi aliquot of digest was electrophoresed.

2.2.5.2 DNA fragment recovery

DNA fragments for subcloning were purified using a Hybaid Recovery DNA
Purification Kit II. Fragments were resolved on a 1-2% low melting point agarose

gel run at 100V, visualised with a UV transilluminator at 365nm (to prevent damage
to DNA) and the required fragments excised. Gel slices were placed in a spin filter

to which 400pl of resuspended Binding Buffer had been added. The sample was

placed at 55°C for 5min, the tube flicked to mix and then centrifuged in a

microcentrifuge for 30s at 14,000rpm. 500pl ofWash Solution was added to the spin
filter and centrifuged as before. This wash step was repeated, the pellet dried by a

further lmin centrifugation and the spin filter transferred to a new catch tube. 18pi
of Elution Solution was added, the binding matrix/DNA resuspended by flicking and
DNA recovered by centrifugation as before. Recovery of DNA was checked by

electrophoresing a l-2pl aliquot on a 1% agarose gel.

2.2.5.3 Purification oftemplatesfor cRNA probes

Template linearisation was verified by agarose gel electrophoresis, the DNA purified

by phenol-chloroform extraction. DEPC water was added to give a working volume
of lOOpl. An equal volume of TE-saturated phenol-chloroforrmisoamyl (25:24:1)
mix was added followed by brief vortexing. The sample was centrifuged at

14,000rpm in a microcentrifuge for 2min and the supernatant transferred to a fresh

eppendorf tube taking care to avoid the interface. A tenth vol of 5M NaCl was
added, the tube vortexed and then 2.5 vol ethanol added. The tube was vortexed and

placed at -70°C for 20min. The sample was centrifuged at 14,000rpm for 5min and
the supernatant removed. The pellet was washed with 1ml cold 70% ethanol (made
with DEPC water) and centrifuged at 14,000rpm for 5min. The supernatant was

removed and the pellet air-dried for 15min before resuspending in lOpl DEPC water.
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Recovery was checked by electrophoresis of an aliquot on a 1% agarose gel and the
linearised plasmid DNA stored at -20°C until needed.

2.2.6 Ribonuclease Protection Assays

2.2.6.1 Synthesis ofcRNA probes

Probes for RNase protection assays were synthesized using corresponding 5'-RACE
clones as templates (Table 3.2), with the exception of the exon 16 probe whose

template was made by subcloning an RT-PCR product generated from total rat liver
RNA using GSP3 and U-specific primer (section 2.1.10.1). All templates, except
that for the exon 14 probe, were linearised with Ncol and probes transcribed with SP6

phage polymerase. The exon 14 template was linearised with Sail and the probe
transcribed with T7 phage polymerase. A reaction was set up containing

approximately lpg linearised DNA template, lx transcription optimized buffer,
3mM each ofATP, CTP and GTP or UTP, 10pM DTT, 0.5pl lOmg/ml bovine serum

albumin and 20U RNasin RNase inhibitor. 5pl of [a-32P]-UTP or [a-j2P]-GTP
(3000 Ci/mmol) was added (if unlabelled UTP or GTP respectively had been used in
the reaction mix) followed by 20U of SP6 or T7 phage polymerase. Reactions were

incubated at 37°C for 2h, 1U DNase added followed by a further 15min incubation at

37°C. Probes were purified through Sephadex G-50 DNA grade ("NICK" columns)

equilibriated with 3ml TE or DEPC water. The reaction was added to the column
and allowed to enter the gel bed. 400pl TE or DEPC water was added and the eluate

collected and discarded. A further 400pl TE or DEPC water was added to the

column and the eluate collected, lpl of eluate (purified probe) was added to 1ml of
Pico-fluor 40 scintillant fluid and counted for lmin in a Wallac 1450 Microbeta plus

liquid scintillation counter. Probe integrity was verified by electrophoresing 105 cpm
of probe on a 5% denaturing polyacrylamide gel (section 2.2.3.4). Typically, probes
with over 2 x 105 cpm/pl were used in experiments. Due to the high GC content of

the DNA templates, several bands were often observed after autoradiography,

suggesting "stalling" and dissociation of RNA polymerase; if the full-length product
did not predominate, the probe was not used.
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2.2.6.2 Large scale in vitro transcription of "sense " RNA transcripts

To synthesize "sense" exon 110 and exon In-containing transcripts for optimization
of RNase protection assays, a large scale in vitro transcription reaction was

performed. Templates for exon 1 io and exon In synthesis were pJIM2 digested with
Pvull and pVL132 digested with PvulI respectively, purified by phenol chloroform
extraction (section 2.2.5.3). In both cases, all the recovered template (approximately
10pg DNA) was used in the transcription reaction. The volume of template DNA

was adjusted to 40pi with DEPC water and a 1 OOpl reaction was set up containing

40pl template DNA, 20pl reaction buffer, 30pl of 25mM NTPs (25mM each ATP,

CTP, GTP, TTP) and 100-200U T7 RNA phage polymerase. The reaction was

incubated at 37°C for 4h. 9U of DNase I was added to the reaction, followed by a

further 15min incubation at 37°C. The "sense" RNA was then recovered by phenol
chloroform extraction (2.2.5.3, except citrate-saturated phenol was used) and

aliquoted into 5pl aliquots and stored at -70°C. The concentration of the recovered
"sense" RNA was determined using the GeneQuant RNA/DNA calculator

(Amersham Pharmacia Biotech) and integrity checked on a 1% agarose denaturing

gel (section 2.2.3.3).

2.2.6.3 Gelpurification ofcRNA probes

The exon 16-exon 2 cRNA probe was found to successfully hybridize to target

mRNA transcripts only if the cRNA was completely full length, making it necessary
to gel purify the exon \(, probes. This may have been a consequence of the C%

sequence close to the 3' end of exon ft that could lead to the formation of a large
number of self-interactions. Other probes made at the same time as the exon

16+exon 2 cRNA probe which were also gel purified, showed no difference in the

quality of the RPA results (data not shown). Accordingly, only the exon 16-exon 2
cRNA probe was gel purified.

Probes synthesised at the same time as the exon probe were gel purified in

tandem. After probe synthesis (section 2.2.6.1), 50pl of formamide loading buffer
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was added to the entire purified probe sample which was then electrophoresed on a

5% denaturing acrylamide gel with enlarged wells (6 teeth of the 20 tooth comb were

taped together) for 1.5h. The gel was exposed to autoradiographic film for lOmin
with the position of the film in relation to the gel carefully marked. After developing
the film the full-length probe band was located on the gel, excised and placed in a

1.5ml eppendorf tube. The gel was then re-exposed to autoradiographic film for
lOmin to check the correct band had been taken. Probes were eluted from the gel
slice using a Bio-Rad Model 422 Electro-Eluter. Membrane Caps were soaked for at
least lh at 60°C in lx probe elution buffer. The apparatus was assembled according

to the manufacturer's instructions and elution performed in lx probe elution buffer at

lOmA/glass tube for 1 hour. After elution, the polarity was reversed for lmin to

remove probes from the dialysis membrane. After draining the upper buffer chamber
the buffer left in the glass tube was removed down to the level of the frit and
discarded. The silicone adaptor and membrane cap were removed and the buffer in
the membrane cap (approximately 400pl) containing purified probe transferred to a

1.5ml eppendorf tube. Membrane caps for individual probes were stored in 0.05%
sodium azide. lpl of recovered probe was counted in a scintillant counter and

integrity verified on a 5% denaturing polyacrylamide gel (section 2.2.3.4).

2.2.7 Ribonuclease Protection Assays

2.2.7.1 Ribonuclease Protection Assays

Ribonuclease protection assays were performed using the HybSpeed RPA kit

(Ambion). 50pg of total RNA (experimental) or 20pg yeast tRNA (positive and

negative controls) was co-precipitated with 10 x lO5 cpm cRNA probe (5 x 105 cpm

if gel purified) by adding 1/10 vol 5M ammonium acetate, 2.5 vol ethanol and

placing at -20°C for 15min. The precipitate was collected by centrifugation in a

microcentrifuge for 15min at 14,000rpm and allowed to air dry for 2min. Pellets

were resuspended in 20pl hybridization buffer (provided in kit) by incubating at

95°C and vortexing several times. Resuspension was confirmed by pipetting the

sample from the eppendorf tube and holding next to a Geiger-Muller counter: if
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approximately 70% of the counts were in the pipette tip, the sample was considered

resuspended. Samples were incubated at 95°C for a further 3min and quickly

transferred to 68°C for lh. lOOpl of a 1/25 dilution of RNase A/Ti (supplied in kit)

was added (for positive controls digestion buffer without RNase A/Ti was used) and
reactions incubated at 37°C for 30min, vortexing after RNase addition and after

15min incubation. 150pl RNase Inactivation/Precipitation solution (provided with

kit) was added, reactions vortexed and placed at -20°C for 15min. RNA pellets were

recovered by centrifugation at 14,000rpm for 15min, resuspended in 8pl gel loading
buffer (provided with kit) and resolved on a 4% denaturing polyacrylamide gel.
Positive control samples were diluted so the amount of radioactivity loaded on the

gel was equivalent to that of the most radioactive experimental sample.

2.2.7.2 Analysis ofdata

Data were quantified using a Molecular Dynamics or Fuji Film FLA-2000

phosphorimager, after exposure of the dried gel to a phosphor screen for 1 to 7 days,

depending on the strength of signal obtained on the corresponding autoradiograph.

Background was set for individual bands by placing a line just above the band of
interest and measuring intensity (i.e. pixels). Band areas were enclosed with an oval
and the intensity within this area determined by 3D densitometry. Background was

subtracted and values corrected for size differences (Table 3.2). The abundance of
each exon 1 was then expressed as a percentage of total GR mRNA transcripts: exon
1/exon 2 band intensity/exon 1/2 band + exon 2 band intensities x 100. When

performed, Student T-tests for independent variables were carried out using the
Statistica software package (version 5) with p <0.05.
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2.2.8 PCR-based techniques

2.2.8.1 5 '-RACE PCR

2.2.8.1.1 First strand DNA synthesis

5'-RACE PCR was performed using a kit obtained from Life Technologies. 2.5pmol

GSP1 (section 2.1.10.1) was annealed to 5pg total RNA in a total volume of 15pl by

denaturing at 70°C for 7min and then placing on ice for lmin. First strand cDNA

synthesis was carried out in a 25pi reaction mixture containing 20mM Tris-HCl (pH

8.4), 50mM KC1, 3mM MgCl2, lOmM DTT, 400pM dNTPs (all supplied with kit),

incubating at 42°C for 2min, adding 200U Superscript II reverse transcriptase (RT)

and incubating for a further 30min. The reaction was incubated at 68°C for 15min to

inactivate RT, and lpl RNase mix added followed by incubation at 37°C for 30min.

2.2.8.1.2 cDNA purification

GR cDNA was purified using a GlassMAX DNA Isolation Spin Cartridge (Life

Technologies). lOOpl of ultrapure water was equilibriated to 65°C for use later and

the binding solution (6M Nal) was equilibriated to room temperature. 120pl of

binding solution was added to the RT reaction and the cDNA/Nal solution
transferred to a GlassMAX spin cartridge. The spin cartridge was centrifuged at

14,000rpm for 20s and the flowthrough discarded. 400pl of cold (4°C) lx wash
buffer was added to the spin cartridge followed by centrifugation at 14,000rpm for
20s. This wash step was repeated two additional times. The cartridge was washed in
the same way twice with 400pl of cold (4°C) 70% ethanol and centrifuged at

14,000rpm for lmin after the final wash. The spin cartridge was transferred into a

fresh sample recovery tube and 50pl of the water pre-equilibriated to 65°C added.
cDNA was eluted by centrifugation at 14,000rpm for 20s.
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2.2.8.1.3 Terminal deoxynucleotidyl transferase (TdT) tailing ofcDNA

1 Ofal of purified cDNA was transferred to a 0.5ml eppendorf tube for use as an

"untailed" cDNA control in PCR; the remainder was dried using a Speedvac

(Savant), resuspended in lOpl ultrapure water and used in a 25pi reaction that

contained lOmM Tris-HCl (pH 8.4), 25mM KC1, 1.5mM MgCE (supplied as 5x

tailing buffer with kit), and 200pM dCTP. The reaction mix was incubated for 2min

at 94°C, chilled on ice for lmin and 10U TdT added. After mixing gently, the

reaction was incubated for lOmin at 37°C; TdT was inactivated by incubating at

65°C for lOmin.

2.2.8.1.4 Polymerase chain reaction

For each RNA sample tested, two rounds of PCR were performed to increase

specificity. For the first round of PCR lOpl tailed cDNA was used in a reaction with
400nM UAP "anchor" primer (section 2.1.10.1) and 400nM primer GSP2, 20mM

Tris-HCl, 50mM KC1, 1.5mM MgCk, and 200pM dNTPs. Positive control reactions

contained lOpl "untailed" cDNA and 400nM primers 6002 and 6003 section (section

2.1.10.1) instead of "anchor" primer and GSP2. Negative controls contained no

cDNA. Reactions were overlaid with 2 drops of mineral oil and incubated at 94°C

for 5min before adding 2.5U Taq DNA polymerase (Promega) and starting the

cycling program. 35 cycles of PCR amplification (96°C, 45sec; 45°C, 40sec; 72°C,

1.5min) were performed. Nested PCR reactions were carried out on the products
from the "tailed" cDNA and negative control reactions, using the same conditions
with 400nM each of primers UAP and GSP3, instead of "anchor" primer and GSP2.
PCR products from nested PCR on "tailed" cDNA were cloned in pGEM-T easy

(section 2.2.9.1) and if of sufficient length, sequenced for analysis.

2.2.8.2 Reverse transcriptase polymerase chain reaction (RT-PCR)

First strand cDNA synthesis was performed using the Reverse Transcription System

(Promega). 2pg total RNA was reverse transcribed in a 40pl reaction mixture
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containing 5mM MgCl2, lx reverse transcription buffer, ImM each of dATP, dCTP,

dGTP and dTTP, 40U RNasin, lpg oligo(dT)i5 primer, and 30U AMV-RT was

prepared (made up to a total volume of 40pi with DEPC water) and incubated for

45min at 42°C. 5pl of reaction product was then used in a PCR reaction containing

200nM of each primer (section 2.1.10.1), 20mM Tris-HCl, 50mM KC1, 1.5mM

MgCb, and 200pM dNTPs. A negative control reaction containing water was

performed in parallel. Reactions were overlaid with 2 drops of mineral oil and
incubated at 94°C for 5min before adding 2.5U Taq DNA polymerase and starting
the cycling program. 35 cycles of PCR amplification (96°C, 45s; 45°C, 40s; 72°C,

1.5min) were performed. To determine whether primary hippocampal cultures

expressed exon 17-containing GR mRNA (Chapter 5), the PCR conditions were 35

cycles, 95°C, 5min; 50°C, 45s; 72°C, 1.5min. PCR products were analysed by

electrophoresing on a 1% agarose gel.

2.2.8.3 Cycle sequencing

DNA sequencing was done using the Thermo Sequenase radiolabeled terminator

cycle sequencing kit (Amersham). Termination mixes were prepared by mixing 2pl
of dGTP nucleotide master mix and 0.5pl of [a-33P] ddNTP (G, A, T, or C; one of
each per sequencing reaction) in 0.5ml eppendorf tubes to produce a termination mix
for each ddNTP. A reaction mix was made by mixing 2pl reaction buffer, lpl DNA,

0.05pmol primer (section 2.1.10.1), 13pl distilled water and 8U Thermo Sequenase

polymerase. 4.5pi of reaction mix was added to each termination tube and the tubes
transferred to a pre-heated thermal cycling block. A cycling program with the

following parameters was performed: 40 cycles of 95°C, 30s; 45°C, 30s; 72°C, 1

min. Upon completion of the cycling program, 4pl of stop solution was added and

reactions stored at -20°C for a maximum of 3d. Samples were resolved on 6%

glycerol tolerant sequencing polyacrylamide gels.
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2.2.9 Cloning ofDNA

2.2.9.1 DNA ligation

Fragments recovered from low melting point agarose gels were ligated using 1-5U of
T4 DNA ligase in lx supplied buffer in a final volume of lOpl. Typically, 2-4pl

(approximately 50ng) of insert DNA was used, and 0.5-lpl (approximately lOOng)
vector DNA. Reactions were incubated at 4°C overnight before transforming into

competent E.coli.

2.2.9.2 Preparation ofcompetent E.coli

For general cloning procedures, the recA HB101 strain was used. Transformation-

competent cells were prepared by inoculating 1ml of Luria broth was inoculated with
a single colony of bacteria and incubating in a rotator at 37°C overnight. 50ml of LB
was then inoculated with this culture and incubated at 37°C in a shaking incubator

for 1.5 to 2h so the cells were still in the late log phase of multiplication when made

competent. The culture was then centrifuged in a Beckman J2-MC centrifuge at

7000 rpm for 5min and the pellet resuspended in 20ml of cold 0.1M CaCf^. Cells
were left lOmin to 2h on ice, centrifuged at 7000rpm for 5min and resuspended in
2ml of cold 0.1M CaCh. The resulting competent cells were either used immediately
or stored up to 4d on ice at 4°C, with daily changes of ice. For cloning of 5'-RACE
PCR products, commercially bought competent JM109 E.coli were used.

2.2.9.3 Transformations

For general cloning ofDNA, HB101 cells were used; super-competent commercially
obtained JM109 cells were used for cloning of 5'RACE-PCR products.

To transform competent FIB 101 cells, 200pl of cells were placed in a pre-chilled

1.5ml eppendorf tube on ice. 200-500ng of DNA was added to the cells and left on

ice for 15min. The cells were then heat shocked for 2min at 42°C and left on ice for
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2min to recover. The entire contents of the tube were then plated onto LB agar plates

left to air dry for lOmin and then placed upside down in an incubator at 37°C

overnight.

To transform JM109 cells, cells were removed from storage at -80°C and allowed to

thaw on ice. The cells were gently flicked to mix, and lOOpl transferred to a pre-

chilled 1.5ml eppendorf tube. 200-500ng of DNA added and the mixture gently
flicked to mix. The reaction was placed on ice for 1 Omin, heat shocked at 42°C for
50s and allowed to recover on ice for 2min. 400pl of room temperature LB was

added and the cells placed in a rotating incubator at 37°C for 30min prior to plating

200pl on LB agar (containing 40pl 50mg/ml X-GAL, 40pl 0.1M IPTG and

lOOpg/ml ampicillin). The plates were then allowed to air dry for lOmin before

being placed upside down in an incubator at 37°C overnight.

2.2.9.4 Screening ofclones: minipreps

Screening of transformants was carried out by small-scale preparation of plasmid
DNA followed by appropriate restriction digests and agarose gel electrophoresis.

Following transformation, single transformant colonies were picked and used to seed
2ml of LB containing 100p.g/ml ampicillin. After overnight incubation in a rotating

incubator at 37°C, cultures were transferred into 1.5ml eppendorf tubes, centrifuged

in a microcentrifuge at 14,000rpm for lmin and the pellets resuspended in lOOpl

GTE. 200pl fresh 0.2M NaOH/1% SDS (w/v) was added, the tubes vortexed and

placed on ice for 2min. 150pl 5M potassium acetate (pH 4.8) was added, the tubes
vortexed and placed on ice for 5min. The tubes were then centrifuged in a

microcentrifuge at 14,000rpm for 5min and the supernatant transferred to fresh

eppendorfs tubes. 225pl chloroform/isoamyl alcohol (24:1) and 225pl Tris-HCl
saturated phenol was added, the tubes vortexed and centrifuged in a microcentrifuge
for 2min. The supernatant was transferred to a fresh eppendorf tube, 2 volumes of
absolute ethanol added and the tubes vortexed prior to incubation at room

temperature for 5min. The tubes were centrifuged at 14,000rpm in a microcentrifuge
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for 5min, the supernatant removed with a drawn-out glass pasteur pipette and the

pellet left to air dry for lOmin. The pellet was then resuspended in 50ql TE

containing 50ng RNase A and stored at -20°C until needed.

2.2.9.5 Large scale plasmid DNA preparation: CsCl density gradient centrifugation

Single colonies of transformants containing the required plasmid were used to

innoculate 2ml of LB containing 100p.g/ml ampicillin and grown for 8h at 37°C in a

rotating incubator. This culture was transferred to 500ml LB containing lOOpg/ml

ampicillin and grown overnight at 37°C in a shaking incubator. Cells were pelleted
at 6000rpm for 5min at 4°C in a Beckman J2-MC centrifuge using a JA-14 rotor.

The pellet was resuspended in 12ml of GTE, mixed with 24ml of fresh 0.2M
NaOH/1% SDS (w/v), and placed on ice for at least lOmin. 16ml of cold 5M

potassium acetate was added, mixed gently, and placed on ice for lOmin, prior to

centrifugation at 6000rpm for lOmin at 4°C. The supernatant was filtered through

gauze into fresh centrifuge pots, 32ml of isopropanol added and the DNA

precipitated at room temperature for 30min. The DNA was pelleted by

centrifugation at 10,000rpm for 3min at 4°C. The pellet was air-dried and

resuspended in 2.2ml TE, then 3g of CsCl added and dissolved. lOOpl of ethidium
bromide (lOmg/ml) was added and the DNA solution transferred into a 3ml
Beckman Quickseal tube and centrifuged for either 4h at 100,000rpm, or for 16 to

20h at 70,000rpm in a TLA100.3 rotor in a Beckman Optima TLX Ultracentrifuge.
The plasmid DNA band was removed using a needle and syringe through the tube
wall and transferred to a fresh tube. CsCl/TE (lg + 1ml) was added to fill the tube
and the tube centrifuged as before. Closed circular plasmid DNA was removed and
the ethidium bromide extracted using isopropanol until no pink colour was observed.
Plasmid DNA was then dialysed against three changes of 2L TE at 4°C.

Concentration and quality (absorbance ratio A280/A260) of plasmid DNA was

determined using a GeneQuant spectrophotometer (Pharmacia Biotech). Plasmid

DNA was stored at -20°C until needed.
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2.2.10 Transient transfection studies

2.2.10.1 Maintenance ofcell lines

HepG2 (human hepatoma), C6 (rat glioma) and B103 (rat neuroblastoma) cells were

maintained in Dulbecco's minimal essential medium (DMEM) supplemented with

10% heat-inactivated foetal calf serum, lOOpg/ml penicillin/streptomycin and 2mM

L-glutamine. GH3 (rat pituitary tumour) cells were maintained in Nutrient Mixture F-
10 (HAM) supplemented with 15% heat-inactivated horse serum and 2.5% heat-

inactivated foetal calf serum, 100pg/ml penicillin/streptomycin and 2mM L-

glutamine. HepG2 and C6 were routinely split 1:5 when confluent; GH3 and B103
cells reached approximately 50% confluence and were split 1:5 and 1:20

respectively. To harvest and split cells, they were washed with 8ml serum-free

DMEM, then treated with 1.5ml lx trypsin/EDTA in HBSS for l-2min to release the
cells then resuspended in 9ml DMEM with serum. Cells were then diluted as

appropriate in DMEM with serum. To freeze stocks of cells for storage under liquid

nitrogen, cells from a single confluent flask were resuspended in 3ml freezing
medium (10% DMSO, 90% heat inactivated foetal calf serum), and transferred in
1 ml aliquots to cryotubes (Nalgene). The tubes were then sandwiched in polystyrene
and placed at -70°C overnight before storing under liquid nitrogen.

2.2.10.2 Transient transfections: calcium phosphate precipitation method

24h before transfection cells were seeded on 60mm dishes, allowing 3 dishes per

transfection. Cells were harvested by centrifugation at lOOOrpm for 5min and

resuspended in sufficient medium to allow 1ml of resuspended cells/60mm dish.
Cells were counted using an Improved Neubauer haemocytometer (Hawksley) and if

necessary diluted further to give a cell count of 5-7 x 10s cells/ml for HepG2 and C6
cells or 2 x 105 cells/ml for B103 cells. 1ml of cells was added to 60mm dishes

containing 3ml of medium and incubated at 37°C with 5% CO2 for 24h before

transfection.

84



All solutions used were equilibriated to room temperature prior to use. Medium on

cells was replaced with 3ml of fresh medium at least lh prior to transfection. For

each construct DNA solutions (300pl total) were set up in triplicate in filter-sterilised

water and contained 37pl filter-sterilised 2M CaC^. Control DNA solutions

consisted of (i) 10pg pGEM3 (inert DNA) and (ii) 5pg pSV2 luciferase, lpg

pCHllO (containing the p-galactosidase gene) and 4pg pGEM3 to give a total of

1 Opg DNA. Due to the large variation in the insert lengths of the test plasmids, the

amounts used were corrected so equimolar amounts were used; lpg pCFUlO was

used in each transfection and the amount of pGEM3 adjusted accordingly to give a

total of 10pg DNA. For cotransfections with expression plasmids encoding

transcription factors, O.Spg of plasmid encoding the relevant factor was added before

adjustment to 10pg DNA. DNA solutions were briefly vortexed to mix. 20-30min
before transfection, DNA solutions were added dropwise to 300pl 2x F1EPES-

buffered saline with slow agitation and incubated at room temperature for 20min.
After briefly vortexing, the DNA solutions were added slowly to the dishes of cells
with agitation. 24h after transfection the medium on the cells was replaced with 3ml
fresh medium; to treat cells with 10"7M dexamethasone, ImM dexamethasone (in

ethanol) was diluted into medium and added to cells. 24h later, cells were harvested
for assays. Medium was aspirated, HepG2 and C6 cells were washed with 3ml

phosphate-buffered saline (B103 cells became detached if washed) and 300pl of lysis
buffer added to the dishes. After incubation at room temperature for 15min, cells
were scraped and pipetted into eppendorf tubes; cell debris was pelleted by

centrifugation at 14,000rpm for 2min in a microcentrifuge. All transfections were

performed using two independently prepared plasmid DNAs.

2.2.10.3 Transient transfections: electroporation method

Cells were harvested as described above and resuspended in medium to give 7.5 x

106 cells/ml (3 x 106 cells/sample were required). For each sample, 400pl of cells
were placed in a 50mm x 4mm cuvette (Equibio). Due to the large variation in the
insert lengths of the test plasmids, the amounts used were corrected so equimolar
amounts were used (N.B. double the amounts of all DNAs were used for
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electroporation); 2pg pKC275 (encoding the lacz gene controlled by the RSV LTR

promoter) was used and the amount of pGEM3 adjusted accordingly to give a total of

20pg DNA. Control DNA solutions consisted of (i) lOpg pGEM3 (inert DNA) and

(ii) 10pg pRSV luciferase, 2pg pKC275 and 4pg pGEM3 to give a total of 10pg
DNA. All transfections were performed in triplicate. The DNA solutions were

added to the cells which were then subjected to a discharge of 200V, 950pF in a

Gene Zapper 450/2500 (IBI Kodak). Samples were then incubated for lOmin at

room temperature before adding to 60mm culture dishes containing 3ml medium.
Cells were harvested for luciferase and P-galactosidase assays 24h later.

2.2.10.4 Luciferase assays

Since luciferase is labile, luciferase assays were performed in duplicate on the same

day that cells were harvested. All solutions were equilibriated to room temperature,

then 40pl of sample was added to lOOpl 2x assay buffer with 5pl 0.1M ATP in a 5ml
borosilicate tube (Starstedt). Luciferase activity was assayed using a Lumat LB9501

luminometer that injected 105pl ImM beetle luciferin. Values recorded were the
means of the duplicate measurements performed.

2.2.10.5 (3-galactosidase assays

P-galactosidase activity was assayed using a Galacto-Light Plus kit obtained from

Tropix and all samples were assayed in duplicate. All solutions used were

equilibriated to room temperature prior to use. Galacton-Plus substrate was diluted
1:100 with Reaction Buffer Diluent to make the reaction buffer which was then

dispensed in 67pl aliquots into 5ml Rohren tubes. lOpl of sample was added, left to
incubate at room temperature for 15-60min and then assayed using a Lumat LB 9501

luminometer (Berthold) which injected 105pi Light Emission Accelerator. Values
recorded were the means of the duplicate measurements performed.
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2.2.10.6 Data analysis

Data were analysed using a Microsoft Excel spreadsheet. The means of the

background luciferase and P-galactosidase assay values (those for transfections with

pGEM3 only) were subtracted from experimental values and promoter activity

expressed as luciferase activity/p-galactosidase activity, thus controlling for
differences in cell number and transfection efficiency. The mean value obtained for

empty vector (pGL3-BM) was then set to a value of 1 and mean experimental
activities expressed relative to this value. The value obtained with pSV2 luciferase
confirmed successful transfection; transfections in which low pSV2 luciferase
activities were obtained were excluded from analysis. The Statistica software

package (version 5) was used to analyse data. For experiments involving multiple

groups, ANOVA analysis was performed, followed by a post-hoc Fisher test with p

set to <0.05. For other experiments Student t tests for were performed with p set to

<0.05. For clearer graphical representation, data was expressed relative to the whole

promoter region (P2), which was set at 100% activity, unless stated.
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Chapter 3: Tissue-specific distribution of alternate exon 1-

containing GR mRNA transcripts

3.1 Introduction

The importance of glucocorticoid actions is reflected by the presence of GR in

virtually every tissue (Ballard, P. L. et al. 1974). Levels of GR vary between

(Kalinyak J. E. et al. 1987; Whorwood, C. B. et al. 1992) and within tissues

(Herman, J.P. et al. 1989b), and are also dynamic within tissues depending on the

stage of development (Cole, T. J. et al. 1995b) and environmental conditions

(Olsson, T. et al. 1994). In liver, glucocorticoid activation of GR regulates many

genes involved in glucose homeostasis (section 1.2.3). In thymus, glucocorticoids

play a role in T-lymphocyte maturation, with an excess of GR activation causing
death of cells whose T cell antigen receptors have inadequate avidity for self-

antigen/MHC (reviewed in Ashwell, J. D. et al. 1996; Tolosa, E. et al. 1998;

Vacchio, M. S. et al. 1998). GR activation in hippocampus has many effects

including alterations of HPA axis activity and effects on memory and cognition

(section 1.2.6).

The wide variation in GR expression both spatially and temporally suggests complex

regulation of the GR gene. Work from this laboratory (McCormick, J. A. et al. 2000)
has demonstrated the existence ofmultiple alternate exon 1-containing GR mRNAs,
which might reflect transcription initiated at alternative promoters. The 3' ends of
these alternate exons 1 that are fused to exon 2 are shown in Table 3.1.

The experiments described in this chapter were designed to determine the relative
abundance of alternate exon 1-containing GR mRNA transcripts within various
tissues. Tissue-specific differences in alternate exon 1 usage would suggest tissue-

specific regulation of the GR gene. The tissues examined were hippocampus,

thymus and liver, in which glucocorticoids have distinct actions (section 1.2).
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Exon source 3'-boundary position
11 Thymus

12 Thymus

..CTGGGATGAAG 5'of-15000

..AGGGCGACCGG 5' of -15000

..GCAACAGCAAG 5'of-15000

..CCGAGGGGCAGgt.... -4238 to-4011

..TTCCTCCGAGTgt.... -3592 to-3538

..CCGGGCTCACAgt.... -3322 to-3269

..TCCCAGGCCAGgt.... -2981 to-2929

..GTCGCCGACAGgt.... -2838 to-2738

..ACGGATTCTAAgt.... -2557 to-2479

. .CGGGTGCTGAGgt.... -2417 to -2217

. .GAACTCAACAGgt.... -1812 to -1705

13 Hippocampus

14 Hippocampus

15 Hippocampus

16 Liver*

17 Hippocampus

18 Hippocampus

19 Hippocampus
1 [o Hippocampus, thymus

111 Hippocampus

Table 3.1: 5'-RACE reveals at least 11 alternative exons 1 in GR mRNA

A total of 10 different alternative exons 1 were found in GR mRNA from

hippocampus or thymus. 54 independent 5'-RACE clones were isolated from a total
of 8 different 5'-RACE reactions carried out on hippocampal RNA and a further 4
clones were isolated from thymus RNA. *Exon 16 (present in the published rat
cDNA sequence (Miesfeld, R. et al. 1986)) was not detected by 5'-RACE PCR, but is
included for completeness. Taken from McCormick, J. A. et al. 2000.

3.2 Methods

3.2.1 Experimental design

To determine the relative abundance of alternate exons 1 in rat tissues, ribonuclease

protection assays (RPA) were employed. The assay was designed so that the levels
of individual exons 1 could be expressed as a percentage of total GR mRNA

transcripts and is outlined in Figure 3.1. Templates for cRNA probes (with the

exception of the exon 16 probe, see below) were derived from 5'-RACE PCR clones,
which contained 186 nucleotides of exon 2 and a unique exon 1 sequence, depending
on the clone. The length of exon 1 varied between clones. Probe fragments

protected by GR mRNA transcripts could therefore be of two lengths; 186
nucleotides representing protection by GR transcripts containing exon 2 (common to
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all GR mRNA transcripts) but not the specific exon 1, and a longer fragment

representing protection by transcripts containing the specific exon 1 in the probe in
addition to the common exon 2 (Figure 3.1). When resolved on a denaturing

polyacrylamide gel and analysed using a phosphorimager, the proportion of GR
mRNAs containing the specific exon 1 of interest can be expressed as a proportion of
total GR mRNAs. The predicted sizes of protected fragments containing both exon 2
and the specific exon 1 of interest are shown in Table 3.2.

Exon 1 Plasmid name Vector Size of protected
fragment (nucs)

li pVL166 pGEM T-easy 228

r pVL167 pGEM T-easy 238

14 pVL133 pGEMT 336

Is pVL135 pGEMT 242

r pJIM5 pGEMT 221

17 pVL134 pGEMT 245

110 pJIM2 pGEM T-easy 306

In pVL132 pGEMT 247

Table 3.2: Predicted sizes of cRNA probe fragments protected by alternate GR exon
1 -containing mRNAs by RNase protection analysis

3.2.2 Generation oftemplate for exon 1$ cRNA probe

Exon R was not detected amongst the products of 5'-RACE PCR on hippocampal

RNA, possibly as a result of the hybridization of the 5'-RACE UAP-anchor primer

(which contains a G(GGIIG)3 sequence) to a Cs sequence close to the 3' end of exon

16; 5'-RACE products likely to contain only very short amounts of exon 1 sequence

were not analyzed by sequencing. To synthesise an exon R+exon 2 cRNA probe it
was therefore necessary to generate a template by performing RT-PCR on total rat
liver RNA (see Chapter 2), subcloning products into pGEM T-easy and identifying
an exon 16-containing transformant. The resulting probe contained 186 nucleotides
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of exon 2 (as for those derived from 5'-RACE PCR clones) and 35 nucleotides of

exon 16-

3.2.3 Optimisation ofexperimental system

Initial experiments were performed using the RPA II kit (Ambion). Preliminary data

suggested that exon 1 io accounted for approximately 30% of GR mRNA transcripts
in total RNA from liver and hippocampus (Figure 3.2). In addition to the expected

fragments, however, several fragments were obtained with sizes intermediate to

those expected for the exon 2 and exons 1+2 protected fragments (186 nucleotides
and 306 nucleotides respectively). These products may have resulted from

protection of the probe by mRNA transcripts produced from additional initiation

points or may merely have been artefacts. If they were real, they would have to be
included in the analysis, so it was necessary to resolve this question. A plasmid

containing the exon lio insert, pJIM2, was linearised with Pvull in order to

synthesise a "sense" exon 1 io transcript. The template was transcribed with T7

phage polymerase as for probe synthesis (section 2.2.6.1) except non-radiolabelled

UTP was used. After purification, 50pl (1/8) of the product was phenol-chloroform

extracted, resuspended in 5pi DEPC water and electrophoresed on a 1% denaturing

agarose gel. From this gel it was estimated that the yield in 50pl was between 0.1 ng

and lng. The "sense" exon Go was used in a range of dilutions (neat to 10"6) in an

RPA against radiolabeled "antisense" exon Go probe (Figure 3.3). This experiment
was performed using the HybSpeed RPA kit (Ambion) which involves a much
shorter hybridization time (10 minutes instead of overnight as for the RPA II kit).
The data obtained showed that the multiple protected fragments observed with total
liver RNA (lane L) are obtained when the "sense" exon Go transcript is used (lanes N
to 10"2). Since the "sense" exon 1 io transcript is initiated from a single promoter (the
T7 promoter in pGEM T-easy) this confirms that the protected fragments apparent

between 186 and 306 nucleotides in length are artefacts, most likely due to secondary
structure in the probe, which has a high GC content. These data did, however, raise
another problem; in this experiment, exon Go-containing transcripts appeared to

represent the majority ofGR mRNA, in contrast to the 30% estimated using the RPA
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II kit. This difference could have been due to the increased sensitivity, the reduced

hybridization time, or varying reagent components between the 2 kits.

A comparison of the two RPA kits, both supplied by the same manufacturer

(Ambion) was performed to determine which provided more accurate quantitation of
the relative abundance of GR mRNAs. This was carried out using a mixture of two
"sense" probes, encoding exon lio+exon 2 and exon Gi+exon 2, mixed in known

proportions. The plasmid pVL132, which provided the template for an exon In

probe, was linearised with Pvull in order to synthesise "sense" exon 111 transcripts.
To generate large amounts of "sense" transcripts which could be quantified

accurately, a large scale in vitro transcription reaction was used to synthesise "sense"
exon 1 io and In transcripts (both of which also contained 186 nucleotides of exon 2)

(section 2.2.6.2). The concentrations and integrity of these transcripts were

determined and they were then mixed in equal amounts to give a concentration of

approximately 6pg/pl of each. This mixture was diluted to give a stock solution

containing approximately 0.25ng/pl of each transcript. RPAs were then performed
32

using dilutions of this stock solution against [ P]-UTP-labelled exon lio and In
cRNA probes with the RPAII and HybSpeed RPA kits. The data obtained with the
RPAII kit were uninterpretable since the samples had degraded in the overnight
incubation (data not shown); those obtained with the HybSpeed RPA kit (in which

hybridization was only 10 minutes) are shown in Figure 3.4. When incubated with a

mixture of sense exon lio and Gi transcripts, the sizes of protected fragments of the
exon Go-containing cRNA probe will be 384 nucleotides (i.e. protection of the exon

Go+exon 2 containing portion of the probe by the sense exon Go transcript) and 264
nucleotides (i.e. the exon 2 portion protected by the sense exon Gi transcript).

Similarly, these sense transcripts will protect 258 (protection of the exon 2 portion by
the sense exon Go transcript) and 377 (protection of the exon Gi+exon 2 containing

portion of the probe by the sense exon 111 transcript) nucleotides of the probe. Since
the sense transcripts were equimolar, the two protected fragments obtained using
each probe should be of equal intensity (after adjustment for fragment size). In

practice, the intensity of the 384 nucleotide fragment of the exon Go-containing
cRNA probe was much greater than that of the 264 nucleotide fragment (Figure 3.4,
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12 •lanes 110 10" , 10"). Using the exon In-containing cRNA probe, the 258 nucleotide

fragment was more intense than the 377 nucleotide fragment (Figure 3.4, lanes In
1 210" , 10" ). These data suggested that the HybSpeed RPA kit is inaccurate at

estimating the relative abundances of these transcripts. lOmin hybridization time
was possibly insufficient to reach equilibrium; indeed the HybSpeed RPA kit

probe/RNA hybridization kinetics are biphasic (Ambion, personal communication).

Optimization of hybridization time was done by performing an RPA using a 10"
dilution of the "sense" transcript mix against P-UTP-labelled "antisense" an exon

1 n+exon 2 probe at different time-points (Figure 3.5). The results showed that when
the "antisense" exon 111 probe was used, 60min of hybridization gave protected

fragments of 258 nucleotides and 377 nucleotides with approximately equal intensity

compared to other hybridization times which were far from equal intensity (Figure

3.5). The results of this experiment therefore suggested an optimal hybridisation
time of 60 min, and this hybridisation time was used for all subsequent RPAs.

3.3 Results

3.3.1 Exon 110-containing transcripts account for the majority of GR mRNA

transcripts in a screen ofrat tissues

RPAs performed using total RNA from various rat tissues showed levels of exon 1 io-

containing transcripts accounted for between 56% and 87% of total GR mRNA

transcripts (Figure 3.6 and Table 3.2). In liver 76% of GR mRNA transcripts
contained exon lio, in hippocampus 63%, and in thymus 56% (Figure 3.6 and Table

3.2). Several tissues were only screened for exon Go transcript levels and contained

heart, 75%; kidney, 79%; lung, 87% and testis, 80% (Figure 3.6).

3.3.2 Exon ^-containing transcripts show widespread tissue distribution

The exon G+exon 2 cRNA probe was found to successfully hybridize to target

mRNA transcripts only if the cRNA was completely full length, making it necessary
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to gel purify the exon G probes. Exon 16-containing transcripts, were expressed in

hippocampus (19% of GR transcripts), liver (10%) and thymus (21%) (Figure 3.7
and Table 3.2).

3.3.3 Other exon 1-containing GR mRNAs exhibit tissue-specific distributions

Other exon 1-containing GR transcripts exhibited more limited, tissue-specific
distributions. Exon 11, identified in a 5'RACE clone from thymus was present only
in thymus RNA (27% of GR mRNA) and not in liver and hippocampus (Figure 3.8
and Table 3.3). It should be noted that the exon 1 i-protected cRNA probe consists of
two distinct fragments both of which appear to be specific (Figure 3.8); this may

result from transcription initiation from two different starts close to one another or

secondary structure forming in the mRNA. Exon 15-containing mRNA transcripts
accounted for 8% of GR mRNA in hippocampus but were not detected in thymus or

liver. (Figure 3.9 and Table 3.3). Exon G-containing mRNAs were also

hippocampus-specific and accounted for 8% of hippocampal GR transcripts (Figure
3.10 and Table 3.3). Exon In-containing transcripts were relatively more abundant
in hippocampus than in liver and were not present in thymus (Figure 3.11 and Table

3.3). Levels of exon G and exon U-containing GR mRNA transcripts, identified by
5'-RACE PCR of thymic and hippocampal RNA respectively, were below the limit
of detection of the RPA (Figure 3.8, Table 3.3 and data not shown).
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exon 1 . exon 2
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Digest with RNase
Stop reaction
Separate fragments on gel
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Together, labelled products give total amount of
GR mRNA

Express exon 1 as % of total GR mRNA

Figure 3.1: Experimental designfor RNase protection analysis

A radiolabelled cRNA probe is incubated with total RNA isolated from the tissue of
interest. 186 nucleotides, complementary to the 5' end of exon 2 can hybridise with
all GR mRNAs. A region at the 3' end of the probe can also hybridise with the
specific exon 1 to which it is complementary, if that variant GR mRNA is present in
the sample. Regions of a probe molecule hybridised to a target mRNA are protected
from degradation by RNase, and following RNase treatment can be resolved on a
denaturing polyacrylamide gel. Probe molecules hybridising with GR mRNAs
lacking the specific exon 1 complemented by the full-length probe give rise to
protected fragments 186 nucleotides in length. Probe molecules hybridising with GR
mRNAs containing the exon 1 of interest give rise to longer protected fragments of
defined length (see Table 3.2). The sum of the intensities of these two fragments
gives the total amount of GR mRNA in the sample; the amount of the specific exon 1
of interest can then be expressed as a percentage of total GR mRNAs.
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Figure 3.2: RNase protection analysis of the abundance of exon 1 io-containing GR
mRNAs in rat hippocampus and liver using the RPA II kit (Ambion)

An RNase protection assay was carried out on 50pg total RNA from adult male rat
hippocampus (H) and liver (L). Lanes marked Y contained yeast RNA, +, undigested
probe and M, markers. Arrowheads indicate the positions of the 186 nucleotide
fragment protected by GR mRNA transcripts containing exon 2 but not exon 1 io, and
the 306 nucleotide fragment protected by transcripts containing exon 1 io and exon 2.

Y +
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Figure 3.3: RNaseprotection analysis using "sense" exon 1 io-containing GR RNA to
establish which fragments represent exon 1 io-containing GR mRNA transcripts in
vivo

An RNase protection assay was carried out using the HybSpeed RPA kit (Ambion)
with a [a- P]-GTP-labelled cRNA probe containing exons lio and 2. "Sense" exon
lio-containing transcripts were synthesised from pJIM2 linearised with PvuW with T7
phage RNA polymerase by the same method used to synthesise the radiolabeled
cRNA probe (section 2.2.6.1). "Sense" exon lio-containing transcripts were used in
the assay at the dilutions indicated, ranging from neat (N) to a 10"6 dilution; lOpg
yeast RNA was added to normalise samples. 50pg total RNA from adult male rat
liver (L) was used as a control to confirm protection. Lanes marked Y contained
yeast RNA only and +> undigested probe. Arrowheads indicate the positions of the
186 nucleotide fragment protected by GR mRNA transcripts containing exon 2 but
not exon 1 io, the 380 nucleotide fragment protected by synthetic "sense" exon 1 io
transcripts and the 306 nucleotide fragment protected by transcripts containing exon
1 io and exon 2. Note that lanes L, N and 10"' are from a shorter exposure (2d
compared with 1 Od) of the same experiment.
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Figure 3.4: RNaseprotection analysis to determine quantitative accuracy ofthe
HybSpeedRPA kit

An RNase protection assay was performed using exons 1 io and In-containing cRNA
probes against a mixture of "sense" transcripts containing exons 1 io and In. "Sense"
transcripts were synthesised using a large-scale in vitro transcription method (section
2.2.6.2) and quantified using a Genequant (Pharmacia Biotech) spectrophotometer. A
stock solution of 6gg/pl with respect to each "sense" transcript was prepared and
diluted to give a 0.25ng/|ol solution. This solution was diluted 10'1, 10 2, and 10"3.
2p.l of these dilutions were added to lOpg yeast RNA and used in the RNase
protection assay. Lanes marked Y contained yeast RNA and +, undigested probe.
Arrowheads indicate the sizes ofprotected fragments.
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Figure 3.5: RNaseprotection analysis to determine optimal hybridisation time for
alternate exon 1-containing GR cRNA probes with the HybSpeed RPA kit

RNase protection assays were performed using an exon In-containing cRNA probe
against a mixture of "sense" transcripts containing exons 1 io and In. 1 Opg of "sense"
transcript mixture (5pg each transcript) was used, with lOpg yeast RNA added to
normalise. 50pg total RNA from adult male rat liver (L) was used as a control to
confirm protection. Hybridisation times (in minutes) were varied as indicated in the
figure. Lanes marked Y contained yeast RNA, +, undigested probe, and 10"3, a 10"3
dilution of probe not subjected to the RNase protection procedure. Arrowheads
indicate sizes ofprotected fragments.
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Figure 3.6: RNase protection analysis of the abundance of exon 1 io-containing GR
mRNA in various rat tissues

RNase protection assays were carried out on 50pg total RNA from adult male rat
hippocampus (H), liver (L), heart (He), kidney (K), Lung (Lu), Testis (T) and thymus
(Th). Lanes marked Y contained yeast RNA, +, undigested probe and M, markers.
Arrowheads indicate the positions of the 186 nucleotide fragment protected by GR
mRNA transcripts containing exon 2 but not exon 1 io, and the 306 nucleotide
fragment protected by transcripts containing exon 1 io and exon 2. The data presented
is a composite of several experiments run under identical conditions.
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Figure 3.7: RNase protection analysis of the abundance of exon 1^-containing GR
mRNA in rat liver, hippocampus and thymus

RNase protection assays were carried out on 50pg total RNA from adult male rat
hippocampus (H), liver (L) and thymus (Th). Lanes marked Y contained yeast RNA,
and +, undigested probe. Arrowheads indicate the positions of the 186 nucleotide
fragment protected by GR mRNA transcripts containing exon 2 but not exon U, and
the 221 nucleotide fragment protected by transcripts containing exon U and exon 2.
The data presented is a composite of two experiments run under identical conditions.
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Figure 3.8: RNaseprotection analysis ofthe abundance ofexon 1 /-containing GR
mRNA in rat liver, hippocampus and thymus

An RNase protection assay was carried out on 50pg total RNA from adult male rat
hippocampus (H), liver (L) and thymus (Th). Lanes marked Y contained yeast RNA,
and +, undigested probe. Arrowheads indicate the positions of the 186 nucleotide
fragment protected by GR mRNA transcripts containing exon 2 but not exon 11, and
the 228 nucleotide fragment protected by transcripts containing exon li and exon 2.
Note that, for quantitation, the 215 nucleotide band (which probably also contains
exon 11 spliced to exon 2) was included.

102



M H L Y ThThY

300#

4- 228

200 •

I 4- 186

Figure 3.9: RNase protection analysis of the abundance of exon 15-containing GR
mRNA in rat liver, hippocampus and thymus

RNase protection assays were carried out on 50pg total RNA from adult male rat
hippocampus (H), liver (L) and thymus (Th). Lanes marked Y contained yeast RNA,
and +, undigested probe. Arrowheads indicate the positions of the 186 nucleotide
fragment protected by GR mRNA transcripts containing exon 2 but not exon I5, and
the 228 nucleotide fragment protected by transcripts containing exon 15 and exon 2.
The data presented is a composite of two experiments run under identical conditions.
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Figure 3.10: RNase protection analysis of the abundance of exon 1 y-containing GR
mRNA in rat liver, hippocampus and thymus

An RNase protection assay was carried out on 50pg total RNA from adult male rat
hippocampus (H), liver (L) and thymus (Th). Lanes marked Y contained yeast RNA,
and +, undigested probe. Arrowheads indicate the positions of the 186 nucleotide
fragment protected by GR mRNA transcripts containing exon 2 but not exon 17, and
the 247 nucleotide fragment protected by transcripts containing exon 17 and exon 2.
Data presented is a composite of two experiments performed under identical
conditions.
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Figure 3.11: RNase protection analysis of the abundance of exon lu-containing GR
mRNA in rat liver, hippocampus and thymus

An RNase protection assay was carried out on 50pg total RNA from adult male rat
hippocampus (H), liver (L) and thymus (Th). Lanes marked Y contained yeast RNA,
and +, undigested probe. Arrowheads indicate the positions of the 186 nucleotide
fragment protected by GR mRNA transcripts containing exon 2 but not exon 111 and
the 247 nucleotide fragment protected by transcripts containing exon In and exon 2.
Note that for quantitation an approximately 230 nucleotide band (which probably also
contains exon In spliced to exon 2) that was sometimes seen (not in this example)
was included. Data presented is a composite of two experiments performed under
identical conditions.
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Exon Hippocampus Liver Thymus

G 0 0 25.6%, 27.1%
I2 0 0 0

G 0 0 0

15 8.1%, 7.4% 0 0

G 17.0%, 20.7% 10.0 ± 1.3% (6) 21.9%, 19.9%
I7 8.0% ±3.7% (3) 0 0

lio 61.3%, 63.8% 74.8%, 77.5% 52.7%, 58.9%
Gi 12.5%, 7.9% 2.1%, 1.7% 0

Table 3.3: Relative abundance of alternative exon 1-containing GR mRNA in rat
hippocampus, liver and thymus

Summary of RNase protection assays performed on total RNA from rat liver,
hippocampus and thymus (see text for description of quantitation technique). In each
case, the amount of exon 1 is expressed as a percentage of the total amount of GR
mRNA in that particular tissue. Where individual values are shown, the results for
each of two independent experiments are given. Where the experiment was carried
out more than twice, values shown represent the mean ± SEM (n). Levels of exon
I4- and exon G-containing mRNA were below the limits of detection (~1%) in the
three tissues examined in each of two experiments.

3.4 Discussion

RPAs have shown that of at least 12 alternate GR exons 1 identified in cDNA clones

isolated from libraries (exon G) or by 5'RACE-PCR, at least 6 of the alternate GR
exons 1 are present in vivo: exons 11, 15, G, I7, 110 and In. Other exon 1-containing
mRNAs (identified by 5'-RACE PCR on hippocampus (exon I4) or thymus (exon

I2)) (McCormick, J. A. et al. 2000) were not detected, presumably because they were
below the limits of detection of the RPA. There are several other alternate exons 1

which have been identified (McCormick, J. A. et al. 2000) but which were not

assayed: exons I3, Is and I9 from hippocampus (McCormick, J. A. et al. 2000) and
exon I4.5 from liver (Lyons, V., personal communication). Exon I3-, lg- and I9-

containing GR mRNAs are unlikely to be present at significant levels in

hippocampus under basal conditions since they were poorly represented in the 5'-
RACE PCR. Furthermore, the sum of the exon 1 variants of GR that were examined
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was close to 100%, suggesting that the identified exon 1-containing GR mRNA

transcripts probably account for the total ofGR mRNA in hippocampus. Similarly, it
is unlikely that any other alternate exon 1-containing transcripts will be of

significance in thymus, since the total of those examined was close to 100%. In

contrast only 88% of GR transcripts were accounted for in liver, suggesting either
untested exon 1 variants are present or further novel variants exist.

In liver, hippocampus and thymus, as well as in heart, kidney, lung and testis,

transcripts containing exon 1 io accounted for the majority of GR mRNAs (56%-87%
of total GR mRNA). Exon 1 io-containing transcripts also account for the majority of
GR mRNA transcripts in rat skeletal muscle (Cleasby, M., personal communication).

Although 5'RACE-PCR is not a quantitative technique, it is worth noting that the
number of clones containing exon 1 io obtained with this technique (55% in hepatoma
cell line RNA, Jacobson, M. and Yamamoto, K.R., personal communication; 57% in

hippocampus and 50% in thymus, Lyons, V. and Chapman, K.E., personal

communication) support the finding that exon lio is the predominant exon 1 in GR
mRNA in the rat. These data suggest that exon lio-containing GR mRNAs are

expressed ubiquitously and may be derived from transcription initiated from a

constitutively active promoter. GR mRNA transcripts containing exon 16 were also

present in all 3 tissues examined (11-21% of total GR transcripts). Although their

presence in other tissues remains to be determined, these data suggest that transcripts

containing exon G may also be products of a constitutively active promoter. Both
exons Go and G have been previously identified in rat; exon Go in liver GR mRNA

(Gearing, K. L. et al. 1993) and exon G in the published rat GR cDNA sequence

(Miesfeld, R. et al. 1986). In rat liver, 4 putative alternate exons 1 were identified by
5'-RACE PCR, but only one (exon Go) was detectable by RNase protection analysis
on total liver RNA (Gearing, K. L. et al. 1993). Exon G was also identified, but was
not detectable by RPA, possibly for the same reasons that made detection difficult in
the studies presented here. Of the two remaining "exons 1" identified previously,
one corresponded to genomic sequence immediately upstream of exon 2; the final
one is contained within exon I4.5 (Gearing, K. L. et al. 1993).
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Exon 11 was present in 21% of GR mRNA in thymus, but was absent from liver and

hippocampus. Exon li corresponds to exon 1A identified in mouse T-cell lines

(Dieken, E. S. et al. 1990; Chen, F. H. et al. 1999a), (70% identity). Exon 1A-

containing transcripts are absent from liver and brain (Strahle, U. et al. 1992).
Previous work has shown that exon 1A is present in 50% of GR transcripts in mouse

thymus, that the T-lymphoma cell lines S49 and WEHI-7 contain exon 1 A, and exon

1A-containing transcripts are derived from a promoter limited to T-cells (Cole, T. J.
et al. 1995a). This last conclusion is strengthened by the observation that a DNasel

hypersensitive site, situated over the promoter, is only detected in T-lymphocyte cell
lines (Strahle, U. et al. 1992).

Hippocampal RNA exhibited the greatest heterogeneity in alternate exon 1

population with 5 different exons 1 accounting for close to 100% of GR transcripts.
The contributions of exons 1 io and U have already been described and together make

up 82% of total GR transcripts. There are significant levels of GR mRNA containing
exons I5 and 17, which were undetectable in liver or thymus (these are detectable,

however, by the more sensitive technique of RT-PCR (section 4.4). Exon I5-

containing mRNA transcripts accounted for 8% of GR mRNA in hippocampus but
were not detected in thymus or liver despite being identified in a rat hepatoma cell
line by 5'-RACE PCR (Jacobson, M. and Yamamoto, K.R., personal

communication). Furthermore, exon In, which was present at low levels in liver and
absent from thymus, represented 10% ofGR mRNA in hippocampus.

In mouse, 5 different promoters have been implicated in transcription of the GR

gene, resulting in 5 alternate exons 1 spliced onto a common exon 2 (Strahle, U. et
al. 1992; Chen, F. H. et al. 1999a) (see Figure 1.4). Exon 1A corresponds to exon li
in rat; exon IB corresponds to exon % and exon 1C to exon 110 (Strahle, U. et al.

1992). Exons IB and 1C are located in a large CpG island, highly conserved with
the CpG island present in the rat GR gene (Chapter 4), and have been shown by PCR
and RPAs to be ubiquitous (Dieken, E. S. et al. 1990). Recently, two additional
exons 1 have been identified in mouse (Chen, F. H. et al. 1999a). Exon ID

corresponds to the rat exon I5 and IE to the rat exon 111 (they match exactly at their
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3' ends). Exon ID-containing GR mRNAs were found by RNase protection analysis
to be ubiquitous, with high expression in liver, and exon IE-containing transcripts
were expressed highly in liver and muscle, with lower levels of expression in kidney,

spleen, brain and pancreas (Chen, F. H. et al. 1999a). The reliability of these data is

questionable, however, since exon lA-containing GR mRNAs were found to be

expressed at high levels in T lymphoma cell line S-49, liver and muscle, and present

in all other tissues examined except thymus. The authors discuss the data of Strahle
et al., but do not offer an interpretation of their own data, which directly contradicts
that of Strahle et al, and also disagrees with the data presented here for the

homologous rat exon 1.

Having established the existence of alternate exons 1 with tissue-specific

abundances, the question remains as to their biological relevance. It has been

suggested that regulation of GR by promoter 1A is linked to the role glucocorticoids

play in T-lymphocyte apoptosis and maturation (Cole, T. J. et al. 1995a; Chen, F. H.
et al. 1999a; Chen, F. H. et al. 1999b). It is, however, debatable as to whether exon

11 really is T-cell-specific. RPAs performed in our laboratory have shown that exon

11 is equally expressed in a similar proportion of GR mRNA (~20-25%) in thymic

epithelium, thymocytes and mature CD4+ T-cells (Dammermann, A., personal

communication). These data do not necessarily mean that promoter 1A (presuming
exon 11-containing transcripts are derived from a homologous rat promoter) is not

important in regulation of GR in the immune system, but suggest the role of

promoter 1A is more general in immune tissues. Further experiments on other
immune tissues such as lymph nodes and peripheral blood mononuclear cells would

help to resolve these issues. Indeed, experiments described in Chapter 5 indicate that
exon li is detectable at a level of ~1% of GR mRNA in liver. This exon li-

containing population of mRNAs is likely to be from lymphocytes present in the

relatively large volume of blood perfusing the liver.

Glucocorticoids are widely used in the treatment of leukaemias and lymphomas

(Csoka, M. et al. 1997) and their mode of action in these conditions has been

attributed to activation of a membrane-associated GR (Gametchu, B. et al. 1994;
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Sackey, F. N. A. et al. 1997). Recently, it has been suggested that exon 1A may be

responsible for the expression of the membrane-associated GR (Chen, F. H. et al.

1999a; Chen, F. H. et al. 1999b). The membrane-associated form of GR derived

from exon 1A-containing transcripts was found to be of higher molecular weight
than GR, though it is unclear how exon 1A could contribute to protein targeting. It is
unclear how a membrane form of GR could signal following binding of ligand, and

although a membrane-associated receptor has been reported for MR, it is the product
of an independent gene and is structurally totally different to MR (Wehling, M. 1997;

Schmidt, B. M. W. et al. 1998). Most importantly, the in-frame stop codon at the

beginning of exon 2 means that the GR protein derived form exon 1A-containing

transcripts will be identical to all other GR proteins.

In human, only a single exon 1 has been described in the literature (Zong, J. et al.

1990) corresponding to rat exon lio. However, recent work from this laboratory and
others has identified additional exon 1 sequences present in human GR mRNA

including one homologous to exon G (Lyons, V. and Chapman, K.E., personal

communication; Breslin, M. B. et al. 1998) and an additional human exon 1 (Breslin,
M. B. et al. 1998). RPAs have shown that in humans, exons 1 homologous to rat

exons Go and G are present in the majority of GR mRNA (in approximately equal

amounts) in human liver and peripheral blood mononuclear cells (Nelson, R.,

personal communication). The presence of alternate exons 1 in GR mRNA may

therefore be a universal characteristic in mammals.

The hippocampus consists of 5 major subregions: dentate gyrus, and the CA1, CA2,
CA3 and CA4 pyramidal cell fields. The distribution of alternate exon 1-containing
GR mRNA transcripts within the hippocampus has been examined in our laboratory

by in situ mRNA hybridisation analysis. Similar to distribution seen for "pan" GR

probes (encoding part of exon 2 or exons 6-9), exon Go (present in 63% of GR

transcripts in whole hippocampus) is highly expressed in the dentate gyrus, with
intermediate expression in CA1 and much lower expression in CA3 and CA4

(McCormick, J. A. et al. 2000). In contrast, GR mRNA transcripts containing exons

15, G, or Ri showed a more homogenous distribution, although in each case
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expression was highest in the dentate gyrus and CA1 region of hippocampus. A

possible explanation for the great variety of alternate exons 1 in hippocampus

compared with other tissues is that the hippocampus is a complex and highly plastic

region of the brain, exhibiting high sensitivity to both endocrine and neurochemical

signals (Sapolsky, R. M. et al. 1984a). Hippocampal GR can vary greatly depending
on genotype. For example, Brattleboro rats, congenitally deficient in vasopressin,
have reduced GR in hippocampus but normal levels in the rest of the brain (Veldhuis,
H. D. et al. 1982). Furthermore, hippocampal GR can be both upregulated and

downregulated by various manipulations, including neonatal handling which

permanently increases hippocampal GR (section 1.3). There is evidence that GR
mRNA may exhibit similar 5'-heterogeneity in mouse brain, though only whole
brain has been examined and not hippocampus specifically. The previously

published mouse exons IB and 1C have been found in GR mRNA isolated from
whole mouse brain (Strahle, U. et al. 1992) and RT-PCR from this laboratory

suggests that homologues to rat GR exons 14, I5 and In also exist in mouse brain

(Freeman, A. and Whiteley, L., personal communication). In combination with data

suggesting the existence of multiple human GR exons 1 (Lyons, V., Nelson, R. and

Chapman, K.E., personal communication) these data add further weight to the

hypothesis that regulation of the GR gene by multiple promoters is universal, as one

might predict.

There are many examples of genes whose products contain multiple 5'-untranslated

regions. The existence of these alternate exons 1 is usually attributed to transcription
from alternative promoters. Alternative promoters are commonly used to express the
same gene product at different stages of development or in different cell types. MR,
which like GR, is highly expressed in hippocampus is also derived from mRNAs

exhibiting 5'-heterogeneity, with 3 alternate exons 1 (Kwak, S. P. et al. 1993). The 3
variant MR mRNAs, differ in relative abundance in hippocampus and kidney (Kwak,
S. P. et al. 1993). Furthermore, relative abundance varies within subregions of the

hippocampus in adult rats, (Kwak, S. P. et al. 1993) and also within hippocampal

subregions, during development and in response to adrenalectomy (Vazquez, D. M.

et al. 1998). At least 5 alternate exons 1 for the human oestrogen receptor a exist
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and these differ in their relative abundances between tissues and between sexes

(Flouriot, G. et al. 1998). Other genes whose products contain multiple 5'-UTRs
indicative of alternate promoter usage include ovine growth hormone receptor

(Adams, T. E. 1995), y-ghitamyl transpeptidase (Sepulveda, A. R. et al. 1994) and

insulin-like growth factor (Holthuizen, P. et al. 1990) genes. In common with many

of these genes, the GR gene is expressed in a wide variety of tissues at varying

levels, and is developmental^ and differentially regulated.

The use of multiple and tissue-specific promoters provides a flexible means of

regulating levels of GR, which are widely but variably expressed. There are several

ways by which GR levels could be subtly altered, with biologically significant

consequences, by the production of mRNAs with alternate exons 1 from multiple

promoters. Firstly, if multiple promoters do indeed govern transcription of alternate
rat GR exons 1, activity of each promoter will depend on the transcription factors

present in a cell/tissue as well as the signal transduction pathways activated within
the cell. Additionally, there are two means by which alternate exons 1 could regulate
amounts of GR at the level of translation. The alternate exon 1-containing GR
mRNA transcripts may vary in their translational efficiency, due to differences in the

degree of secondary structure they contain. Gene products containing alternate 5'-
untranslated regions with low free energy are inefficiently translated (Kozak, M.

1991). Since the alternate GR exons 1 are GC rich there is a high probability that

translationally unfavourable secondary structures will exist, with some exons 1

possessing secondary structures more unfavourable than others. Sequence analysis
of the CpG island revealed the existence of an sORF lying within exon lio, located at

-2140 to -2119, and two starting in exon I4 (at -4219 and -4708) that terminate at —

12 in exon 2. Similar sORFs in, for example, GCN4 or the BCR/ABL oncogene

mRNAs have been shown to be involved in the translational control of their

expression (Mueller, P. P. 1986; Muller, A. J. et al. 1989). However, since only a

few sORFs were identified in the rat GR promoter region, in the most commonly

found exon 1 in GR mRNAs (exon 110), and in the minor variant exon 14 sequence, it
is unlikely that this is an important control mechanism. Finally, there may be
differences in the stabilities of alternate exon 1-containing mRNAs, resulting in
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lower usage of some exon 1-containing transcripts as translational templates before

degradation.

GR mRNA transcripts exhibit extensive 5'-heterogeneity in their 5'-untranslated

regions. At least one of these classes of exons 1 (1 io) is ubiquitous, present in the

majority of GR mRNAs and may result from transcription from a constitutively
active promoter; other exons 1 exhibit tissue-specific distributions (with the probable

exception of exon U). Since it has been shown in mouse that the GR gene is

regulated by multiple promoters producing mRNAs containing alternate 5'-
untranslated regions and this phenomenon has been described for many other genes,
it is likely that the rat GR gene is regulated in the same manner. A functional

analysis of the putative promoter regions is described in Chapter 4.
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Chapter 4: In vitro regulation of GR gene transcription

4.1 Introduction

GR mRNA shows great variation in abundance between tissues. For example, levels are

very low in testis, high in lung and moderate in liver and brain (Kalinyak, J. E. et al.

1987; Whorwood, C. B. et al. 1992). Adrenalectomy increases GR mRNA in brain and

kidney, but does not alter liver and lung GR mRNA; in contrast dexamethasone
treatment decreases GR mRNA by 40-60% in a wide variety of tissues (Kalinyak, J. E.
et al. 1987). Dexamethasone-induced downregulation also occurs in cultured cells,

including HeLa S3 (Cidlowski, J. A. et al. 1981) and AtT-20 mouse pituitary tumour

cells (Svec, F. et al. 1981). In adult rats, administration of corticosterone or chronic
stress down-regulate GR mRNA and protein levels in the hippocampus in a site-specific
manner (Sapolsky, R. M. et al. 1984b; Sapolsky, R. M. et al. 1985). Down-regulation
of hippocampal GR mRNA occurs primarily at the level of transcription of the GR gene

(Rosewicz, S. et al. 1988; Hoeck, W. et al. 1989), though post-transcriptional events

may also be important (Dong, Y. et al. 1988). Hippocampal GR mRNA can also be

upregulated, as observed when neonatal rats are handled (Sarrieau, A. et al. 1988;

Meaney, M. J. et al. 1988; Meaney, M. J. et al. 1996).

The data presented in Chapter 3 show that GR mRNA species differing in their
untranslated exons 1 exhibit tissue-specific differences in distribution. Sequence

analysis of 5kb of DNA flanking the 5' end of exon 2 of the rat GR gene revealed that
most (10) exons 1 lie within a CpG island (68% CG, with a CG/GC ratio of >0.8
between -1620 and -4520 relative to the translation start at +1) highly conserved
between rat, mouse and human. CpG islands are frequently associated with multiple

transcription initiation sites, resulting in transcripts with alternate exons 1 spliced at the
same 3' splice donor site onto exon 2 (Koller, E. et al. 1991; Ye, K. et al. 1993). It is
also likely that the exons 1 upstream of the CpG island are differentially regulated, since
at least one (exon li) is present in GR mRNAs in thymus but absent for hippocampus
and liver (section 3.3.3). Thus, the tissue-specific differences in alternate GR exon 1 -
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containing mRNAs may reflect tissue-specific promoter usage both within the CpG
island and further upstream, providing a mechanism for the variation in levels of GR
mRNAs between. Furthermore, the existence of multiple promoters may explain how

adrenalectomy and dexamethasone induce changes in GR mRNA levels, the degrees of
which vary between tissues (Kalinyak, J. E. et al. 1987), and even within subregions of
the hippocampus (Sapolsky, R. M. et al. 1984a; Sapolsky, R. M. et al. 1985).

The focus of the work described in this chapter was to begin to dissect the means by
which the rat GR gene is transcriptionally regulated. Initial studies to examine

transcriptional regulation of the GR gene involved 5'-RACE PCR, which led to the
isolation of a large number of exon lio-containing (approximately 60) clones

((McCormick, J. A. et al. 2000) and Table 5.2). 5'-RACE PCR is one procedure for

mapping the 5' of mRNA, and hence the transcription initiation point, though ideally
more than one approach should be used to map transcription starts to avoid erroneous

mapping due to artefacts. Therefore, RNase protection analysis was used to determine

transcription initiation points for exon 1 io- To determine whether promoter activity is
associated with alternate exons 1, a series of genomic constructs was made and used in
transient transfection assays. Since tissue-specific differences in the relative
abundances of alternate GR exons 1 were previously observed (Table 3.3), constructs
were tested in relevant cell lines. Some of these constructs were then cotransfected with

expression plasmids encoding various transcription factors predicted to bind to sites
within the CpG island in the GR promoter region to identify possible regulators of GR

promoter activity. The effects of dexamethasone on promoter activity were also studied
to assess whether the GR promoter is autoregulated.
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TAGTATAGGTTTTCCTTCTTGAGGTATCAAGCTTCTATTCCTTTGCCAAGATGGCTGCCCTGGATCCCATGGAGGTAGCGACCGTGCGGCATCTCTGCCC

AAGGAGCCCGCTTACAGTCACGTTCTCCCCGTGCAAAGCGGACGATACATTGGGCAGCCTTTAAGCTTTTCATCCAAGAAAGAACGACTCGGGTTTGACG

CCAAAGAGCACCTTTGCCAAGATGGTGACCGTGCGGCGTCACTGCTCTTTACCAAGATGGCGGCGAGGGACTTCCGGCACGCGCTTCCCCAATCAGGGAT

GCCGCACAGTCACCCTACGCCCCTTTCCTGTCCTAGGGGGACCGGCCATGTGTTTCTCTTGGAGACCCGGGGACTCGTATTGGGCACAGCTGGACGGAGC

TAAAAGCTGACGTTTTAAAGATGCATGTTTTTGTTTTATTTGGAGGGACAGAGGGGTCCCTGGAACCCAGAAAGCTGAGCAAGGCACCGAGCCTGGAGCA

GCAAATGTCAAGATTCGGGGGAGGGGCCTCCGCGGGGAGCTTGGATGCTGGCCCCGAAGGGGGTGGAAGGAGAGGTCAGGAGTTTGGGTAAGAGGAGGGC

TCTGCTTTGCAACTTCTCCCGGTTGCGAGCGAGCGCGCGCGCGGCGGCGGCGGCGGCGGCTGCAGACGGGGCCGCCC

^<S(M'C^^OM3!C<!S^:<2CCM^3SM>tCII,GTATGTATGCGCTGACCCTCTCCTCTGCGCTCCCCTCCCCAGGCCTCCCCAGAGGGCGTGTCTGCAGT

CCTGCCCCGAGAGCAAGCGGCCAGGGCTCTGCGGCACCGTTTCCGTGCCATCCTGTAGCCCCTCTGCTAGTGTGACACACTTCGCGCAACTCCGCAGTTG

GGAGCTGGGCGGGGGCGGG|»iMii»m»WOT^^^lOTlTOlffi^«i«GTCGGCACCCGCTGCCGCACTTTTTCTC

GTTCCTTGGGTGGGGAAAGGCGAAGCCGCGCGCCCCAGCGAGGCGATGCCCTGAGCCGCGGG&M&&SM'£®Z

GGGGAGCGGCCGGGGGTGGAGTGGGAGCGCGTGTGTGCGAGTGTGTGCGCGCCGTGGCGCCGCCTCCGCCCGCCCCTCGCTCGGTCCCGCTCGCCTGCCG

CGGCCGGGCGGCCCTTTCGCGTGTCCGCGCTCCCCCCCCTCCCC^C^'^fO^^ffff^Gl5^C»^fOT'f^0^MCCalA^C<jlCCGCCG

HfGTGGGTGGAACAAGACGCCGCAGCCGGGCGGCGCGGCGCCGGGACGGGGGAC'

ySHiiM86ia8agg!BBaB!lBgBM^Mlffiffi»BBBE«3MM8M^agBaBlB«liE^GTGAGCGGGGGCTGGG

CGAGCGGGCGAGCGGGGCCGGCCCGCGCTGAGGTGAGCCGGACTGGGCGCGCTCCCCTAGGGGCTCGGCACCGGGGGCGGCCGGACTTGGCAAACTTTTG

CCAGCCCGGGGTTGGGGGTGGAGGCTGGCGAGGGCAGGGTGACGGTGACGAAAGGGCCTTGGCGGTGACAGCGCTGGCGCTTCCTCTCCCCGCACCGCCA

TCCCTGGCCCAGCGCGCTGCCCCGCCGTGGAGCCTCGGGCGCCCGGGCGGGAGTCTGGCGTCCTTTTTGGTTTTGCTTTTGCCGCAAGCCCTCGGGTCTT

CGCTGTCCTCGGAGCCGCCGAGACACCCGCTTTTCCCGGGGGGCAAGGTAGAGCGCCGTCTGGGACCGGCGGGCTCAGGGCGCGCGG(^|j$$i&$e$3

GGACACATTTCTCCCTTCACCTCCCACCTTTCTCCCTCCTTCTCCCCCAACCCCACCCCCGACAACTTGGGCGCTAGCTTTGGGGCATGATTTCGCGCCT

TTTGAGGTTGCAGCCTCGGTAATTGCAGCCTTACCACTTAAGACCCTGGGCAAGGTTCGTGTGACTAATGTCACAGGGTTATTTACAGTTTTAACTGGGG

GATAAATGTCGCTTAAGGGAGCATCTTGTTTTATGAAGTGTTACGGTTTCGGGCTGGAAGGGGCAGTTGTCAAAAAAGCAGGTCTGAAAATTCTTTAAGG

TCTATTAGATATCTTACATTTAGAGATCCTTATCAAAGGCATAGGACCGACCGGGGTTCTGAGAGAGAAGCCCTTTACAGGGAAGAATCCTAGGGTAGGT

TCCACCCCTCTCCACCTTCCCTGAATTTCCCTTTCAGAGAAGGTGGTCATACTTAATGTCTTGGTACAGGAAAAGTTTACCATTGTATTGGGGATCCCAA

ATATATTTGTCATAGTCTTTGCCAGCCCCTCAAAACATTTTGATTATTACTAACATACTAGCAATCTGGAGGAATACAGTAAAGGTTTAAAACTACAGAG

AGTATTTTTTCTGAGCGTTTTCTTGAATGGGGTTTATTTGAGTTTATATGTGATTTGACTGTCCAGTTTTTCTGTTTTCCCGGTATTTACATCTTTGGAA

AGAAAAATCTTAAACTTATAGATAAAATATTTTATACTGAGTATATCAAACAATTTTTAAAAAAGAATACAATTCCATAAATCTTGGTGTTAGGAATTTT

AATAAGCTTTGCTCTATTACACTATTTAAATAGGTTAAAATTATAGTGAAGAAGCCAGTACAAATTCTACTCTGTTTTTAAAGATATACATTTTAGGCTG

TATATAATATCTATAATTTCTTATCTCCAAAATTTGAAGGTAGGTGATACTAGACAGGCATATTTATTTGAAAATAGAGTTTCAAAGTAAGAGCCTTTCC

TCGGCACAGGTGAAATTGTCAATCATAAAATGTGTAAACATTTATATTGTAGCATTTATCAAACGGTTTATGTATTGGTTTCCAGAAAGGCAATCACTCA

ATCGAAAGGGGCTGGAAATGTAAGGATCATGCCTTTAAAAAAAAAAAGTTAAATACTTTGACATCAACTTGAACCTTTACAATAATTGCGTATGACAAAT

TACAATCCCCATGGTTACCAAATGTGTATGTTTAGCGAGTGACAGGATAAACAGTCAAATTCAGTTGGTTCAATGTAACTTTGTTGTCTCTGTGCAAATG

AGCTGCCTTGCAGATGGGAAACGGGGGTGGGGGTATAGCTTTATTTTAAAAGATAGGAACTATTTTTCTGATAATGGAGACTTTGATTTGGGAGTTACCT

ATGGACTCCAAA

Figure 4.1: Sequence of5 '-DNA flanking exon 2 ofthe rat GR gene

The legend for this figure is given on page 117.
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Figure 4.1: Sequence of5 '-DNA flanking exon 2 of the rat GR gene

Numbering is with respect to the translation start, at +1. Shaded regions indicate exon 1
sequences found in 5'-RACE PCR clones amplified from hippocampal GR mRNA. In
the case of exon U (which was not represented among the 5'-RACE PCR clones), the
bold nucleotides are those present in the published rat cDNA sequence (Miesfeld, R.
1986). Note that exons lg and 110 have since been shown to overlap (section 4.3.1) The
start of exon 2 is at -13. Adapted from (McCormick, J. A.et al. 2000).

4.2 Experimental design

The region spanning the entire CpG island in the putative GR gene promoter region
used to generate the constructs described in this chapter is shown in Figure 4.1.

4.2.1 Mapping ofExon 110 transcription startpoints

To determine the positions of transcription starts for exon 110, RNase protection analysis
was employed. A cRNA probe was synthesised from pVL163, a plasmid containing

genomic sequence extending 631 bp 5' of the 3' splice donor site in exon 110, into exon

lg (Figure 4.2). This probe was used in an RNase protection assay as described in

Chapter 2, hybridising for lOmin against 50pg rat liver total RNA. To provide markers
to estimate the sizes of any protected fragments and hence the 5' extent and

transcription initiation sites of exon 110-containing transcripts, pVL163 was sequenced
with a primer complementary to the T7 RNA polymerase promoter present in the

plasmid.

Attempts to map transcription starts by primer extension proved unsuccessful: control

experiments using yeast tRNA revealed the same pattern of extension products as liver
RNA, suggesting a problem with primer design (data not shown). Two different

primers gave the same data, suggesting the GC-rich nature of the region of interest was

interfering with the experiments.
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4.2.2 Transfection studies

A series of genomic constructs was made by subcloning fragments of pVL154 into

pGL3-BM (pGL3-Basic, containing a modified polylinker, described in 2.1.10.3). The
constructs effectively formed a 3' deletion series of the rat GR promoter fused to

luciferase. The 5' end (5' of exon I4 and the CpG island) was invariant; the 3' extent of
the constructs was variable (Figure 4.4). P2 was fused to luciferase within exon 2; the

activity of P2 therefore reflects the activity of the whole promoter region since all

transcripts initiated can be spliced to exon 2, resulting in luciferase gene transcription

(Figure 4.4). P2 (rev) contained the same sequence as P2 but was fused to the luciferase

gene in the reverse (3' to 5') orientation. Luciferase activity detected using other
constructs reflects activity of any promoter immediately 5' of the exon 1 fused to the
luciferase gene. Although other promoters on the same genomic fragment may be

active, transcripts initiated at more 5' putative promoters are not transcriptionally fused
to luciferase (there is no 3' splice acceptor) and will not, therefore result in luciferase

activity. Cell lines used were B103 (rat neuroblastoma), C6 (rat glioma) and FIepG2

(human hepatoma). A limited number of transfections were carried out with GH3 (rat

pituitary tumour) cells. Apart from GH3 cells, which were transfected by electroporation

(section 2.2.10.2), all cells were transfected by the calcium phosphate precipitation
method (section 2.2.10.3). Note that, for all transfections, DNA solutions for each dish
of cells was prepared independently (representing an n value of one). For experiments

involving multiple groups, ANOVA analysis was performed, followed by a post-hoc
Fisher test with p set to <0.05. For other experiments Student t tests for were performed
with p set to <0.05.

4.3 Results

4.3.1 Mapping ofExon 110 transcription startpoints

RNase protection analysis of total liver RNA using a cRNA synthesised from the

genomic clone pVL163 resulted in a large number of protected fragments (Figure 4.2).
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TCGA LLY +

219P-
207*

Figure 4.2: RNase protection analysis reveals considerable heterogeneity in
transcription starts for exon 1 io-containing GR mRNAs in liver

An RNase protection assay was carried out on 50gg total RNA from adult male rat
liver (L). The template used to generate the cRNA probe (pVL163) extended 631bp
upstream of the 3' splice donor site in exon 1 io-containing GR mRNA. Lanes
marked Y contained yeast RNA, +, undigested probe. A sequencing reaction of
pVL163 was used as size markers (T, C, G and A). Arrowheads indicate protected
fragments; these were mapped onto exon li0 (Figures 4.3 and 4.13).
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Figure 4.3: Mapping offragments detected by RNase protection analysis onto the GR
gene

The protected fragments detected by RNase protection analysis (Figure 4.2) using a
cRNA probe synthesised from pVL163 were mapped onto exon 1 io- The cRNA
extended from the Hincll site to the Kpnl sites marked. The positions of exon 1 g, 19
and 110 are marked by boxes. Closed ends indicate the known 3' ends of exons lg and
I9; open ends indicate either the most upstream transcription start known (at -2557 for
exon I9 and at -2544 for exon 110), or the fact that the 5' and 3' ends of the probe do
not extend into regions known to be contained in exons lg and 110- Protected probe
fragments are marked 5' and 3' to reflect the corresponding stretch ofmRNA.
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The sizes of protected fragments were 220, 196, 183, 171, 150, 144, 138, 70, 46, 45, 43,

35, 30, 29 and 28 nucleotides. The most prominent protected fragments were those

ranging in size from 28 to 46 nucleotides and the one at 220 nucleotides. All fragments
were mapped onto exon 1 io in relation to the 3' end of the Hindi restriction site which

lies at the 5' end of the cRNA probe (Figure 4.3 and summarized in Figure 4.13). This

analysis revealed considerable heterogeneity in the 5' ends of exon 1 io-containing
mRNAs.

4.3.2 GR CpG island constructs exhibit cell line-specificpromoter activity

Transient transfection studies using a series of deletion constructs spanning the GR gene

CpG island (Figure 4.4) showed that sequences within this region were able to drive
luciferase gene transcription (Figure 4.5). Activities, however, varied considerably both
within and between cell line. P2, which spans the entire CpG island (-4572/-9) and is
fused to luciferase within exon 2, showed the highest activity in all cell lines in which it
was tested (Figure 4.5). When compared to promoterless vector, P2 activity was

approximately 20 fold higher than vector in B103 and C6 cells; in HepG2 it was

approximately 55 fold higher. The same fragment in the reverse orientation with

respect to luciferase had no significant activity in any cell line (Figure 4.5). To make

comparisons between cell lines easier, activities of constructs were expressed relative to

P2 activity, nominally set at 100%. The most active construct in HepG2 cells after P2
was PI9/10; activity of this construct was also considerable in both B103 and C6 cells

(Figure 4.5). PI 10 had significant activity in B103 and HepG2 cells, but in C6 cells was

not significantly different to vector (Figure 4.5). The PI7 construct showed the highest

activity of any individual promoter in B103 and C6 cells; this construct showed lower
but significant activity in HepG2 cells (Figure 4.5). Pl6 and Pig showed significant

activity in all cell lines (Figure 4.5). Pin activity was only significant in HepG2 cells

(Figure 4.5). Activity of PI5 was not significant in C6 or HepG2 cells and was

significant but very low in B103 cells (Figure 4.5). H3, fused to luciferase upstream of
exon 2 but not within an identified exon 1 was significantly active in B103 and FlepG2
cells but was not significantly active in C6 cells. Surprisingly, a region containing no
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identified exon 1 but fused to luciferase within exon 2 (PO construct) also exhibited
substantial activity in all cell lines (Figure 4.5).

4.3.3 A PI9/w construct exhibitspromoter activity in a pituitary tumour line

Transient transfection of GH3 cells proved difficult. The calcium phosphate

precipitation is ideally suited to rapidly dividing cells: GH3 cells reached 50%
confluence after 10 days and tests confirmed that this technique was unsuitable for these
cells. Experiments using Lipofectin (Life Technologies) also proved unsuccessful so
cells were transfected by electroporation. Pl8, which was active to varying degrees in

B103, C6 and HepG2 cells had no activity in GH3 cells (Figure 4.6). PI9/10, the most

active construct other than P2 in HepG2 cells, had significant activity in GH3 cells, with

activity 5 fold greater than promoterless vector (Figure 4.6). No other constructs were

available for testing when these initial transfections were performed.

4.3.4 Overexpression ofHNF-1 a, C/EBPa or C/EBP/3 does not increase P2 activity in

HepG2 cells

The GR gene contains putative binding sites for HNF-la, C/EBPa and C/EBPp. In

order to test if these transcription factors could potentially regulate GR gene

transcription, cotransfections of P2 with plasmids encoding candidate transcriptional

regulators of GR were performed in HepG2 cells. None of these transcription factors
increased P2 activity significantly (Figure 4.7). As a positive control, a plasmid

encoding 11 -(3 hydroxysteroid dehydrogenase (pVL108) was cotransfected with

C/EBPa, resulting in induction (approximately 20-fold) ofpVL108 activity, as expected

(Williams, L. J. S. et al. 2000) (Figure 4.7).
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Figure 4.4: Design oftransfection constructs

To determine whether promoter activity was associated with alternate GR exons 1, a
series of constructs in which rat genomic DNA fragments were fused to a luciferase
reporter gene (section 2.1.10.3), were used in transient transfection assays. All
constructs with the exception of P0 (which had a 5' end downstream of exon In) had
the same 5' end but differed in their 3' ends. The 3' end of P2 was fused to luciferase
within exon 2 while other constructs were fused within known exons 1, or in the case of
H3 and P0 at sites not within any known exons 1. Genomic DNA present in the parent
plasmids used to generate the constructs (pVL152, pVL154 and pVL156) is also
indicated.
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Figure 4.5: Cell line-specific activity ofGR gene constructs

Transient transfection analysis of regions of the GR gene was carried out in HepG2
(human hepatoma), C6 (rat glioma) and B103 (rat neuroblastoma) cells. Activity of
P2 (spanning the whole CpG island, fused to luciferase within exon 2) was nominally
set at 100% for each cell line and activity of the other constructs expressed relative to
this value. n=6-9 (2 independent plasmid DNA preparations), means ± SEM. Two-
way ANOVA analysis revealed significant differences in activities between
constructs (Fio,2,20=35, p=0.0001) but no significant differences in activities between
cell lines (see text for details of differences).

124



P18

Vector

0 1 2 3 4 5 6

Relative activity

Figure 4.6: PI9/10 exhibitspromoter activity in GH3 (ratpituitary tumour) cells

Transient transfection analysis of Pig and PI9/10 constructs was carried out in GH3
cells by electroporation. Activity was expressed relative to vector (PGL3-BM). n=3,
means ± SEM. One-way ANOVA analysis revealed significant differences between
groups (F2,6=266, p=0.0001). * p<0.05, post-hoc Fisher PLSD test.
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Relative activity

Figure 4.7: Overexpression ofHNF-la, C/EBPa or C/EBP/3 does not increase P2
activity in ElepG2 cells

The effects of overexpression of HNF-la, C/EBPa and C/EBPP on P2 activity in
HepG2 cells were determined by transient transfection analysis. Activity of P2 was
nominally set at 100% and activity of P2 cotransfected with transcription factors
expressed relative to this value. The effect of C/EBPa on pVL108 activity (a
construct containing the 1 ip-hydroxysteroid dehydrogenase I promoter region fused
to luciferase) was used as a positive control. n=3, means ± SEM. One-way ANOVA
analysis revealed no significant differences between groups.
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4.3.5 Overexpression ofNGFI-A, HNF-la, WT-1 and C/EBPa does not increase PI 7

activity in B103 cells but HNF-la overexpression leads to a small decrease in P2

activity

NGFI-A has been implicated in the increase in hippocampal GR following neonatal

handling, and handling specifically increases exon 17-containing GR mRNA levels

(McCormick, J. A. et al. 2000). WT-1 is a member of the zinc finger family of

transcription factors that includes NGFI-A and Spl (reviewed in Little, M. et al. 1999).
To begin to understand how the cell line-specific activity of PI 7 shown in Figure 4.5 is

regulated, PI7 was cotransfected with plasmids encoding NGFI-A, HNF-la, WT-1 and

C/EBPa in B103 cells. P2 was also cotransfected with these transcription factors in
B103 cells. No significant induction of PI7 was observed with any of the transcription

factors used (Figure 4.8). FINF-la overexpression led to a small but significant
reduction (15% decrease) in P2 activity in B103 cells while the other factors had no

significant effect on P2 activity (Figure 4.8).

4.3.6 A 134bp region ofPI 7 is responsible for its cell line-specific activity

Transfection of the 3' deletion series shown in Figure 4.4, showed that a construct fused
to luciferase within exon I7 had considerably higher activity in B103 and C6 cells than
in HepG2 cells (Figure 4.5). In order to identify the sequence elements responsible for

conferring cell line-specific activity on PI7, a 5' deletion series of the PI 7 construct was

generated by subcloning appropriate restriction fragments (Figure 4.9 and section

2.1.10.3) to create Pl7a (-3575/-2931), Pl7b (-3341/-2931), and Pl7c (-3207/-2931).
These 3 constructs, with P2 and PI7, were assayed in transfected HepG2 and B103 cells.
In HepG2 cells, P2 and PI7 had high activity relative to vector (Figure 4.10a), as

observed previously (Figure 4.5). Pl7a and PGb had similar activity to PI7, and Pl7C

activity was close to vector (Figure 4.10a). PI 7b activity was significantly lower than

PI7 activity. In B103 cells, P2 and PI7 constructs had high activity relative to vector

(Figure 4.10b), as observed previously (Figure 4.5). Removal of a 997bp piece ofDNA

upstream of PI7 (Pl7a) had no significant effect on activity (Figure 4.10b). Further
deletion, including removal of exon U (PI 7b) increased activity relative to PGa (but not
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Pl7) while further deletion (P17c) virtually ablated promoter activity in B103 cells

(Figure 4.10b). There were no significant differences between Pl7 activity and Pl7a and

Plb activity. In both cell lines, activities of Pl7a and Pl7b were significantly higher than
that of Pl7c.

4.3.7 A 134bp region acts as an orientation-independent enhancer in neuroblastoma
cells but not in hepatoma cells

The 134bp region of Pl7 that resulted in the large increase in luciferase activity in B103
cells was subcloned into both pGL3-BM and pGL3-P (which contains an SV40

promoter), in both orientations to give the constructs BM134C (pGL3-BM, correct

orientation), BM134I (pGL3-BM, incorrect orientation), P134C (pGL3-P, correct

orientation) and P134C (pGL3-P, incorrect orientation). These constructs were

transiently transfected into B103 cells and HepG2 cells. In both cell lines, activity of

pGL3-P was 25 times greater than that of pGL3-BM (Figure 4.11). In B103 cells,
constructs BM134I had significantly higher activity (11-fold higher) than pGL3-BM,
but BM134C did not (Figure 4.11a). In HepG2 cells activities of both of these
constructs differed significantly to pGL3-BM (1.5-fold higher for BM134C and 3-fold

higher for BM134I) (Figure 4.11b). Constructs P134C and P134I had significantly

higher activity than pGL3-P (1.5- and 2-fold higher respectively) in B103 cells (Figure
4.1 la). In contrast, activity of P134C was significantly lower than activity of pGL3-P

(approximately 50% less active) in HepG2 cells (Figure 4.11b); P134I activity did not

differ from pGL3-P activity significantly (Figure 4.lib).

4.3.8 Dexamethasone regulates P2 activity in a cell-type specific manner

To investigate autoregulation of the GR promoter P2 was transfected into C6 and

HepG2 cells, which were treated with the synthetic glucocorticoid dexamethasone (at
7 ♦ •

10" M, a concentration previously shown to maximally downregulate GR mRNA in

vitro (Rosewicz, S. et al. 1988) 24h post-transfection; cells were harvested 24h later.
Dexamethasone had no significant effect on P2 activity in HepG2 cells (Figure 4.12a)
but resulted in a 34% decrease in P2 activity in C6 cells (Figure 4.12b).
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Figure 4.8: Overexpression ofNGFI-A, HNF-la, WT-1 or C/EBPa does not increase
PI7 activity in BIOS cells but HNF-la overexpression leads to a small decrease in
P2 activity

The effects of overexpression of NGFI-A, HNF-la, WT-1 and C/EBPa on (a) PI7
and (b) P2 activities were determined by transient transfection analysis in B103 cells.
Activity of P2 was nominally set at 100% for each cell line and activity of P2
cotransfected with transcription factors expressed relative to this value. n=3, means ±
SEM. One-way ANOVA analysis revealed significant differences between groups in
(b) (F^io^.O, p=0.01) but not in (a). * $<0.05, post-hoc Fisher PLSD test.
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Figure 4.9: Design ofP17 subclones

Construct PI7, fused to luciferase within exon I7, was used as the parent plasmid to
generate a 5' deletion series for use in transient transfection assays, to identify
regions important for the high promoter activity of PI7 in B103 and C6 cells.
Relevant restriction sites are shown; fragments were fused to luciferase at a common
BglII site.
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Figure 4.10: A 134bp region ofPI 7 is responsiblefor its cell line-specific activity

To define regions important in conferring cell line-specific activity of PI7, three
subclones: Pl7a (-3575/-2931), Pl7b (-3341/-2931), and Pl7c (-3207/-2931), in
addition to P2 and Pl7 were transiently transfected into (a) HepG2 cells and (b) B103
cells. Activity of P2 was nominally set at 100% and activity of the other constructs
expressed relative to this value. n~5-6 (using 2 independent plasmid DNA
preparations), means ± SEM. One-way ANOVA analysis revealed significant
differences between groups in B103 (F3j9=T9.5, p=0.0001 between Pl7 and its
subclones) and in HepG2 (F3t2o=9.8, p=0.03 between Pl7 and its subclones) cells. *
p<0.05, post-hoc Fisher PLSD test.
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Figure 4.11: A 134bp region ofPly acts as an orientation-independent enhancer in
neuroblastoma cells but not in hepatoma cells

To examine the properties of the 134bp region conferring high activity to PI7, this
region was subcloned into both pGL3-BM and pGL3-P, in both orientations to give
the constructs BM134C (pGL3-BM, correct orientation), BM134I (pGL3-BM,
incorrect orientation), P134C (pGL3-P, correct orientation) and P134I (pGL3-P,
incorrect orientation). Transient transfection analysis of these constructs, along with
P2 and PI7 was performed in (a) B103 cells and (b) HepG2 cells. Activities of
constructs are expressed relative to pGL3-BM, nominally set to 1. n=3, means ±
SEM. One-way ANOVA analysis revealed significant differences between groups in
B103 (Ft,5=181.5, p=0.0001 for pGL3-BM and F2>5=18.1, p=0.05 for pGL3-P
constructs) and in HepG2 (F2,6=57.8, p=0.0001 for pGL3-BM and F2,6=18.0, p<0.05
for pGL3-P constructs) cells. * p<0.05, post-hoc Fisher PLSD test.
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Figure 4.12: Dexamethasone represses P2 activity in a cell-line specific manner

To investigate potential autoregulation of the GR gene CpG island region, the effect
of dexamethasone on P2 activity was assessed, (a) HepG2 cells and (b) C6 cells were
transfected with pGL3-BM (vector) or P2 then treated 24h later with 10"7M
dexamethasone (red bars) or vehicle (ethanol) (green bars) for 24h. Activity of P2 in
the absence of dexamethasone was nominally set at 100% and activity of vector and
P2 in the presence of dexamethasone expressed relative to this value. n=6 to 9 ±
SEM. * p<0.05, Student t test.

133



4.4 Discussion

Mapping of transcription starts by RNase protection analysis revealed the existence of

multiple transcription initiation sites for exon 110 (summarised in Figure 4.13). This
was consistent with sequence analysis of 5'-RACE PCR clones suggested considerable

heterogeneity in the 5' end of exons 1 in hippocampus, primary hippocampal cultures
and thymus (Figure 4.13). The longest hippocampal 5'-RACE PCR clone containing
exon 1 io corresponds to one of the transcription starts mapped for human GR mRNA

(Zong, J. et al. 1990). Interestingly, there were many differences between the locations
of 5' ends mapped in liver by RNase protection analysis and those identified by 5'-
RACE PCR. This could reflect the different experimental techniques. Alternatively,
this could reflect the different tissues used; RNase protection was carried out on liver
RNA whereas the other starts were mapped using RNA from hippocampus, primary

hippocampal cultures and thymus. The population of exon 1-containing GR mRNA is
more heterogeneous in hippocampus (Table 3.3), so differences between the populations
of transcription factors in liver and hippocampus may result in the use of alternative

transcription starts. The RNase protection analysis was performed before detailed

analysis of the 5'-RACE PCR clones. It was anticipated that a predominant

transcription start would be identified near the 5' end of the exon 110, with a few other
minor initiation points located in a cluster around this predominant start. This is clearly
not the case since starts appear to be spread over approximately 230 nucleotides (i.e.
almost all of exon No). Since the cRNA probe used in the RNase protection analysis
has a 5' end 98 nucleotides upstream of the 3' end of exon 1 io, a large number of starts

may have been overlooked by using this probe. A probe extending to the very 3' end of
exon 1 iowould, with hindsight, have been more appropriate for this experiment.
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Figure 4.13: Summary of data from RNase protection analysis and 5'-RACE PCR
showing multiple transcription starts existfor exon 1 ^-containing GR mRNA

Transcription starts of exon 1 io in liver (Figures 4.2 and 4.3) and 5'-RACE PCR on
hippocampus, primary hippocampal cultures and thymus were mapped onto exon 110.
The Hincll site used to determine starts mapped by RNase protection analysis is
boxed. The oval at -2167 indicates the 3' end of exon 1 io- The region underlined
represents sequence present in exon I9.A hippocampal 5'-RACE PCR (carried out by
V. Lyons) (where the site was only mapped approximately, this is shown bvl 1);A
thymus 5'-RACE PCR (carried out by V. Lyons)A primary hippocampal culture 5'-
RACE PCR (Chapter 5)andA summary of data presented in Figures 4.2 and 4.3.
Numbers in triangles and boxes indicated the number of independent 5'-RACE PCR
clones mapping to a given nucleotide.
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It is possible that some protected fragments result from protection of the probe by exon

19-containing GR mRNA, since the 3' end and longest known 5' end of this exon lie
within the region to which the cRNA probe is complementary. Furthermore, fragments
below 68 nucleotides could have arisen from protection of the probe by exon 18-

containing GR mRNAs; the 3' end of the probe lies at a Kpnl site within exon Is, 61
nucleotides upstream of the 3' end of exon Is. Both of these possibilities are unlikely,

however, since these exons 1 are unlikely to comprise a large (if any) proportion of
variant GR mRNAs in liver (most have been accounted for (Chapter 3)).

Multiple transcription initiation sites are typical of TATA-less GC-rich promoters, so it
is unsurprising that this is the case for exon lio-containing transcripts, initiating as they
do in a CpG island. Indeed, data from 5'-RACE PCR suggests multiple 5' ends exist
for all exon 1-containing GR mRNAs originating within the CpG island (data not

shown; Val Lyons personal communication).

Transient transfection assays showed that a genomic construct (P2) spanning the entire
GR CpG island and encoding the 5' end of exon 2 exhibited substantial promoter

activity in a variety of cell lines and had the highest activity of any construct tested. P2

activity most likely reflects the activities of all promoters in the CpG island since a

splice acceptor site exists 5' of exon 2 for all initiated exon 1 transcripts to be spliced to.

In contrast, activities of constructs fused to luciferase within exon 1 represent activities
of promoters immediately 5' of the fused exon 1. Although the broad pattern of activity
for these constructs was similar between cell lines, there were one or two exceptions.
Promoter activities of constructs PI9/10 and PI 10 probably represent overall activity of
PI 10, with little of the activity due to the PI9 promoter, despite the PI 9/10 construct being
fused within exon PI9. RPAs showed that exon 110-containing transcripts accounted for
the majority of GR mRNAs in all tissues studied (Table 3.3), and since the PI9/10
construct had considerable activity in all cell lines (B103, C6, GH3 and HepG2), this

probably reflects predominantly PI 10 activity. Interestingly, the P17 construct had the

highest activity of any construct other than P2 in B103 and C6 cells, both CNS-derived
cell lines (rat neuroblastoma and rat glioma cells respectively); in HepG2 cells (human

hepatoma) activity was considerably lower. Exon 17-containing GR mRNAs are
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present at significant levels in hippocampus, but are absent from liver (Chapter 3).
Taken together, these data suggest that regions of PI7 may important in tissue-specific

regulation of the GR gene, and transcription factors present in B103 and C6 cells result
in the high activity of PI7 in these cells compared with HepG2 cells. Pl6 exhibited

significant activity in all cell lines tested, possibly reflecting the ubiquitous tissue
distribution of exon ^-containing GR mRNAs shown by RPAs (Table 3.3). Pis

activity was significant in all cell lines except GH3 cells but was highest in B103 cells;
exon lg was originally identified by 5'-RACE PCR carried out on rat hippocampal
RNA. Activity of Pin was only significantly above basal levels in HepG2 cells,
whereas in vivo exon In-containing GR mRNAs are present at significant levels in

hippocampus as well as liver (Chapter 3). Data obtained from in vitro studies can not

always be extrapolated to in vivo studies, and this might explain the discrepancy
between Pin activity in CNS-derived cell lines and exon ln-containing mRNA levels
determined by RPA on hippocampal RNA.

H3, fused to luciferase 5' of exon 2 but not within an identified exon 1 (-4572/-797),
exhibited substantial activity in B103 cells, low but significant activity in HepG2 cells
and no significant activity in C6 cells. Furthermore, a fragment (P0, -872/-9) fusing to

luciferase within exon 2 with no known exons 1 present on the fragment (and therefore
no known promoters) had a similar pattern of activity: considerable activity in B103
cells but relatively low activity in HepG2 and C6 cells. Taken together, these data that
there may be at least 1 more as yet unidentified exon 1 3' of exon In, reflecting a level
of transcription initiation throughout and even downstream of the CpG island. It is
worth noting that the 5' end of P0 and the 3' end of H3 overlap, so sequences in this

specific region of overlap may be acting as a promoter in B103 cells. This putative

promoter may be tissue-specific, reflected in the differences in activity observed
between cell lines. RT-PCR or Northern analysis would confirm the existence of a
novel exon 1 derived from this region which lies 3' of the CpG island.

A search for putative transcription factor binding sites revealed a number of putative

binding sites including 25 CCAAT/enhancer-binding protein (C/EBP) sites, two NGFI-
A sites (-2292 and -3316) and a single HNF-1 site (-13). C/EBPa is highly expressed in
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liver and is an important determinant of terminal cell differentiation and function:

ablation of C/EBPa expression in mice results in gross abnormalities of liver structure
and function (Wang, N. D. et al. 1995; Flodby, P. et al. 1996). In addition,

dexamethasone indirectly represses C/EBPa in adipocytes by rapidly inducing C/EBP5

(MacDougald, O. A. et al. 1994). C/EBPp was originally identified as a mediator of
Interleukin 6 (11-6) signalling, binding to IL-6-responsive elements in the promoters of
acute phase response genes (Poli, V et al. 1990; Akira, S. et al. 1990). Lack of C/EBPp
is also associated with neonatal lethality and decreased hepatic gluconeogenesis

(Croniger, C. et al. 1997). Furthermore mice lacking C/EBPp are deficient in

glucocorticoid signalling (Arizmendi, C. et al. 1999). PEPCK expression is induced by
GR in vitro (Friedman, J. E. et al. 1993). Finally, HNF-la is implicated in glucose
homeostasis (Yamagata, K. et al. 1996) and is involved in the regulation of numerous

hepatic genes (reviewed in Hanson, R.W. 1994). Since these three transcription factors
are closely linked to the actions of GR in liver, their effects on P2 activity (which spans

the entire CpG island of the GR promoter region) were studied in HepG2 cells.

Surprisingly, none of the cotransfections resulted in any induction of P2 activity, though
this does not mean that these factors play no role in regulation of the GR promoter. It is

possible that the putative binding sites actually binding these factors are fully occupied
under basal conditions thus preventing any further induction of activity. HepG2 cells

express C/EBPp and HNF-la, but only low levels of C/EBPa, which induced activity
of pVL108. Furthermore, the in vitro setting of the transfection is rather artificial, and
the lack of induction may simply reflect the particular cell line used or a requirement for
a chromatin template (Struhl, K. 1996; Smith, C. L. et al. 1997). Band shift

experiments would help to determine whether any of these factors are potentially able to

bind to the putative binding sites present in P2 and footprint analysis would identify

important sequence elements involved in protein-DNA binding.

Neonatal handling specifically increases the level of exon 17-containing GR mRNAs in

hippocampus (McCormick, J. A. et al. 2000). 5-HT activation of adenylyl cyclase may

be the crucial link between handling and induction of hippocampal GR (section 1.3.1).

cAMP, in turn, may regulate the activity or expression of transcription factors, which
then act on the GR promoter region to increase GR gene transcription. Neonatal
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handling and 5-HT increases NGFI-A and AP2 mRNA and protein in hippocampus

(Meaney, M. J. et al. 1996). Handling also substantially reduces cyclic nucleotide

response element binding modulators (CREMs) (Meaney, M. J. et al. 1996): CREMs

antagonize the actions of cyclic nucleotide response element binding proteins (CREBs)
which are activated by cAMP, so the reduction in CREMs levels may increase the

promoter binding activity of CREBs.

The presence of two putative NGFI-A binding sites immediately upstream of exon 17 is

strongly suggestive as to the mechanism of hippocampal GR programming in the
neonatal handling paradigm, since neonatal handling induces both NGFI-A and exon I7-

containing GR mRNA in the hippocampus. Furthermore, placing adult rats in an

"enriched" environment leads to increased expression ofNGFI-A and GR mRNA in the
CA2 subregion of the hippocampus (Olsson, T. et al. 1994). However, a more recent

study did not link NGFI-A and GR expression (Dahlqvist, P. et al. 1999), but
interactions with other transcription factors may be important. To examine possible

regulation of PI7 by NGFI-A, a plasmid encoding NGFI-A was cotransfected with Pl7
in B103 cells. WT-1, which binds to the same DNA sequence as NGFI-A (Crosby, S.
D. et al. 1991) was also tested, as were C/EBPa and HNF-la; the effects of these

factors on P2 activity were also determined. No large effect on P17 activity was seen

with any of the transcription factors used, although HNF-la cotransfection resulted in a

very small but significant decrease in P2 activity, while the other factors had no effect.

It should be noted, however, that these cotransfection data are only from one experiment

performed in triplicate. Furthermore, in both cell lines, effects may have been seen had
a GR promoter construct with low basal activity been used (e.g. PI7, has relatively low

activity in HepG2 cells). Alternatively, other transcription factors may be binding to

these sites, and not any of those tested.

Transfections using a 5' deletion series of PI7 identified a 134bp region important for

conferring high promoter activity to PI7. Pl7C, the shortest construct, had no significant

activity in either B103 cells or HepG2 cells. P17a and Pl7b exhibited significant activity
in both cell lines and this activity was significantly higher than Pl7c activity. At first
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glance this data seems to contradict that presented in Figure 4.5, which showed that PI7

activity was significantly higher in B103 cells than in HepG2 cells. When the data for

PI7 shown in Figure 4.10 is compared with vector, which had higher basal activity in

FIepG2 cells, this cell-line specificity is clear. The activity of P17 in B103 cells is 16-

fold higher than vector; in HepG2 it is only 6-fold higher. A similar analysis reveals the
extent of the importance of the 134bp fragment in conferring cell line-specificity to PI 7

activity. P17a, PI7b and Pl7C have 12-, 19-, and 2-fold higher activity than vector in
B103 cells (though the differences are only significant for Pl7a and PI7b)- In contrast

the corresponding values in HepG2 cells are 5-, 4-, and 1.5-fold respectively. Thus, the

134bp region seems to be inducing promoter activity to a much greater degree in B103
cells than in HepG2 cells. Interestingly, addition of a region from -3341 to -3575 led to

a small but significant reduction in activity in B103 cells (PI7b compared with Pl7a).

PI7a contains a region extending upstream of the longest known 5' end of exon 16-

Activity of PI6, reflecting activity associated with exon le, is substantial in B103 cells

(Figure 4.5). Thus, the drop in activity resulting from addition ofDNA to PI7b to create

PI7a could be due to competition for transcription factors between the promoters

associated with exon \s and exon I7. Alternatively, a binding site for a transcriptional

repressor may be contained in the added region. In further support of these conclusions,
the activities of Pl7a and PI7b did not differ significantly from P17 in B103 cells,
whereas in HepG2 cells PI7b activity was significantly lower than PI7 activity while

PI7a activity was not.

PI7c contains the putative NGFI-A site at -2992; PI7b contains both this site and the one

at -3316. The massive increase in activity seen when the -3316 NGFI-A site was added
raises the possibility that this site may contribute to cell line-specific activity of PI7.
The site at -2992 may not bind NGFI-A, or may require co-operative binding of a factor
at -3316. When placed in front of a heterologous promoter (SV40 promoter, in pGL3-

P), the 134bp region was able to act as an orientation-independent enhancer (albeit a

relatively weak one) in B103 cells. This enhancer activity did not require the presence

of any elements (e.g. the other putative NGFI-A site at -2992) in the downstream

region, though they may be required for maximal promoter activity. In HepG2 cells the

134bp region was unable to act as an enhancer. Indeed, when subcloned into pGL3-P in
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the correct orientation, it appeared to act as a repressor. Thus, the cell line-specific

activity of P17 may involve binding of repressors or activators depending on the cell

type. When subcloned into pGL3-BM in the correct orientation, the 134bp region acted
as a weak promoter. When subcloned into pGL3-BM in the incorrect orientation, the

134bp region acted as a promoter in both B103 and HepG2 cells. This activity was

probably an artifact, however, since when the entire Pl7 insert was subcloned into

pGL3-BM in the incorrect manner, activity higher than that of P2 was observed in some

experiments but not others (data not shown). Future experiments involving DNase I

footprinting analysis and gel mobility shift assays would identify transcription factors

binding the 134bp that may regulate PI7 activity.

Interestingly, an Spl binding site has been identified in the human GR which

corresponds to the putative NGFI-A site at -2992 in the rat gene (Nobukuni, Y. et al.

1995), so the possibility that this site acts co-operatively with the more 5' putative
NGFI-A site is strong. Other putative transcription factor sites exist within the 134bp

region, including one for AP2; it remains possible that activity is increased by the

binding of a factor to one of these rather than to the putative NGFI-A site. Indeed, AP2
has also been implicated in the induction of GR in hippocampus following neonatal

handling or 5-HT treatment of primary hippocampal cultures (Meaney, M. J. et al.

2000). Furthermore, a sequence in the human gene that binds AP2 in vitro (Nobukuni,
Y. et al. 1995) is completely conserved in the rat GR gene (at -2718). Another possible
candidate activator ofPI 7 activity is Sp4, which binds to GC and GT boxes with affinity
identical to that of Spl (Hagen, G. et al. 1992). In vivo, Sp4 transcripts are abundant in
brain but barely detectable in other organs (Hagen, G. et al. 1992) so Sp4 may

contribute to the cell-specific activity ofPI 7.

Glucocorticoids are involved in the homologous downregulation of GR, with regulation

occurring at the level ofGR gene transcription (Kalinyak, J. E. et al. 1987; Rosewicz, S.
et al. 1988; Dong, Y. et al. 1988; Meyer, T. et al. 1997). Dexamethasone treatment of
C6 glioma cells transfected with P2 resulted in a substantial (37%) decrease in P2

activity; no effect was observed in HepG2 cells. Since dexamethasone is a poor ligand
for MR, this effect is likely to be mediated by GR. These data suggest that
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autoregulation of GR occurs on the GR gene promoter and is cell line-specific.

Autoregulation of GR rnRNA has been shown to occur in a tissue-specific manner with

relatively more downregulation of GR mRNA in brain compared with liver (Kalinyak,
J. E. et al. 1987). The lack of effect in HepG2 cells compared with C6 cells may reflect
different pools of transcription factors within the cell lines: autoregulation may depend
on interactions between ligand-activated GR and other transcription factors. There are

several means by which activation of GR may lead to repression of GR gene

transcription (summarised in Figure 1.3). Firstly, there may be direct competition
between GR and other transcription factors for binding sites on the promoter

(Akerblom, I. E. et al. 1988). Secondly, transcriptional repression by glucocorticoids

may be mediated by direct protein-protein interaction with a positive regulator, e.g. API

(Mordacq, J. C. et al. 1989; Schule, R. et al. 1990; Yangyen, H. F. et al. 1990; Pfahl, M.

1993). In this case, repression does not require actual binding to a GRE, but depends on
a protein-protein interaction between GR and either Jun or Fos, the components ofAPI

(Jonat, C. et al. 1990; Touray, M. et al. 1991). Indeed, it has been suggested that

autoregulation of the human GR gene occurs via interactions between ligand-bound
monomeric GR and Jun, leading to a reduction in the amount of AP1 available to induce

GR gene expression by binding a putative API site in the GR promoter (Vig, E. et al.

1994). Glucocorticoids can repress gene activation mediated by NF-kB in a similar
manner (Mukaida, N. et al. 1994; Ray, A. et al. 1994; Scheinman, R. I. et al. 1995a).

Indeed, sequence analysis revealed the presence of a number of putative binding sites
for both API and NF-kB. However, it is unlikely that API or NF-kB act as activators
of the GR gene in vitro since they generally act as antagonists of GR (reviewed in

McKay, L. I. et al. 1999). Thirdly, repression may occur via glucocorticoid induction of

a repressor of the GR gene, analogous to the GR induction of I-kB, which acts to retain

NF-kB in the cytoplasm and hence prevent activation of NF-kB target genes

(Scheinman, R. I. et al. 1995a). Finally, the effect of dexamethasone on P2 activity may
be the result of activated GR binding directly to a nGRE. Evidence has been presented
for the existence of a negative GRE (with consensus sequence 5 '-CGTCCA) at

nucleotide -63 in the pro-opiomelanocortin gene (Drouin, J. et al. 1990; Drouin, J. et al.

1993). It has been suggested that an exact match for the consensus of this site is present
in the human GR gene promoter region at -1786 (Zong, J. et al. 1990). However, the
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published human GR sequence (Zong, J. et al. 1990) differs to that in the Genbank

(accession number U10403) database (5'-CCTCCA). The reverse antisense sequence

5'-TGGACT at -1482 in the human GR sequence corresponds to the sequence 5'-
TGGCAG at —3381 in the rat sequence, and is thus a poor match for a negative GRE in
rat. It is therefore questionable that this sequence does indeed resemble a nGRE.

A region from -250 to -750 relative to the transcription start of the exon 1 in the

published human GR cDNA is implicated in autoregulation of the human GR gene, and
an unidentified protein binds to this region (Leclerc, S. et al. 1991). This region

corresponds to -2539 to -3013 in the rat GR gene, i.e. near the most 5' transcription
start known for exon lio-containing GR mRNA, and 5' of the most 5' end of exon I7-

containing GR mRNA so far identified. Therefore, constructs PI7, Pis, PI9/10 and PI 10
would be the best constructs to use initially to define the regions repressed by

glucocorticoids in C6 cells.

Several GRE-like elements have been identified in human GR cDNA (Webster, J. C. et
al. 1994). Transfection studies in COS1 and CHO cells using human GR cDNA have

suggested that the GR cDNA contains sufficient information to downregulate both
mRNA and protein by binding to these GRE-like elements (Bellingham, D. L. et al.

1992). The sequences responsible for this effect are located towards the 3' end of the
GR cDNA, and binding of GR leads to subsequent down-regulation of the human GR

cDNA. Since the human GR cDNA used lacks any of the putative promoters it is

unlikely that down-regulation is via an effect on the GR promoter (Webster, J. C. et al.

1994). The effect might, however, be due to ligand-activated GR bound to the GR
cDNA blocking transcription by RNAP-II, though this is unlikely, since RNAP-II can
transcribe through regions bound by transcription factors. It should be noted that since
no GR promoter elements were present in the constructs used in these experiments, the

intragenic GREs are unlikely to be of relevance to the effect of dexamethasone on P2 in
C6 cells. There is evidence that GR participates in chromatin remodeling of

glucocorticoid-responsive promoters (Fryer, C. J. et al. 1998) and alterations in
chromatin structure may be involved in dexamethasone-induced repression of the GR
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promoter. The data presented here indicate that autoregulation of the GR gene is at least

partly chromatin-independent.

Experimental demonstration of promoter activity of the putative GR promoter region
has only previously been shown for the human GR gene; for the mouse gene, only the
existence of alternate exons 1 has been described with the mapping of their transcription
starts. Activity of the human GR promoter region was tested using a 5' deletion series

(Nobukuni, Y. et al. 1995), transfected into several cell lines including HepG2 cells: in
those experiments, promoter activity therefore reflected activity of all promoters

contained on the genomic DNA fragments and hence it was not possible to detect any
cell line-specific promoter activities in these experiments. The longest construct

spanned -857/+38 (+1 refers to the transcription start for the human exon 1

(homologous to the rat exon lio) in IM9 cells (Encio, I. J. et al. 1991). A construct

spanning -374/+38 contained sufficient information to confer maximum luciferase

activity in these experiments. Furthermore, in this laboratory, RNase protection

analysis has shown that the published human exon 1 is present in approximately 50% of
GR mRNA in human liver (Nelson, R., personal communication). The data presented
in this chapter show that a 3' deletion series fused to luciferase within specific exons 1
drive luciferase expression in a cell line-specific manner, and activity of each construct

most likely represents activity of an individual promoter. Rather surprisingly, no

functional studies (i.e. transient transfection assays) have previously been performed

using the rat or mouse GR gene promoter regions, though the existence of multiple
exons 1 proposed to derive from alternate promoter usage has been reported (Gearing,
K. L. et al. 1993; Chen, F. H. et al. 1999a).

In a similar manner to the mouse and human GR genes, the rat GR gene contains

multiple exons 1. In rat, three of these untranslated exons 1 lie 5' of -15000; the
remainder lie within a CpG island that extends from -1620 to -4520 relative to the
translation start at +1. Data presented here indicate that the entire region extending
from -9 to -4572 has high promoter activity and individual exons 1 are associated with

promoter activity that varies in a cell line-specific manner. A region 5' of exon G

appears to possess enhancer activity, which shows a degree of specificity for CNS-
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derived cell lines. Multiple transcription initiation sites have been mapped for exon 110,
as is common for mRNAs containing untranslated 5' ends initiated in GC-rich regions.
For simplicity, such mRNAs can be said to be derived from an individual "promoter".
The pool of transcription factors within a given cell type, which can vary depending on

environmental factors (e.g. induction of NGFI-A in hippocampal neurons by
environmental enrichment), will therefore determine which alternate exons 1 are

expressed, though some appear to be constitutively expressed (Chapter 3).
Cotransfections of promoter constructs with putative activators failed to reveal any large
increases in promoter activity, though the roles of these transcription factors in

regulation of the GR gene cannot be entirely dismissed. Dexamethasone treatment of
cells transfected with a construct spanning the whole CpG island resulted in a

significant reduction in the promoter activity of this construct, demonstrating
autoregulation of the GR gene at the promoter level. The role of alternate promoters in

programming ofGR levels during development is examined in the following chapter.
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Chapter 5: Differential expression of alternate exon 1-containing GR
mRNAs following early life manipulations

5.1 Introduction

Environmental conditions in early life can have profound consequences on

physiology and pathology in adult life. Such early life events permanently program

or imprint the development of tissues and organs, with individual organ systems

differing in vulnerability according to the nature of the manipulation and the timing
of exposure (section 1.3). Steroid hormones are involved in the development and
maturation of foetal and postnatal organ systems and perinatal exposure produces

permanent programming effects (Levine, S. et al. 1966; Levitt, N. S. et al. 1996;

Nyirenda, M. J. et al. 1998).

In rats, in utero exposure to dexamethasone permanently increases hepatic PEPCK
and induces glucose intolerance and hypertension in adulthood; the critical window
of exposure is week 3 of gestation (Nyirenda, M. J. et al. 1998). Hepatic GR itself is

permanently programmed by prenatal exposure to dexamethasone (Figure 5.1)

(Nyirenda, M. J. et al. 1998), providing a possible mechanism for permanent PEPCK
induction. Conversely, GR levels are permanently reduced in the hippocampi of
these animals, with permanent effects on HPA axis reactivity to stress (Levitt, N. S.
et al. 1996).

Hippocampal GR levels are also permanently programmed by neonatal handling

(Figure 5.2). This manipulation permanently increases hippocampal GR, probably
via a specific increase in the level of exon 17-containing GR mRNAs (McCormick, J.
A. et al. 2000). The neonatal handling effect appears to be mediated by increased

serotonergic neurotransmission in the hippocampus (Mitchell, J. B. et al. 1990b).

Primary hippocampal cultures have been used to study the effects of 5-HT on GR

expression (Mitchell, J. B. et al. 1990a; Mitchell, J. B. et al. 1992). 5-HT maximally
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induces GR mRNA and protein levels in primary hippocampal cultures after 4d of

exposure (Mitchell, J. B. et al. 1992).

The aims of the experiments described in this chapter were to determine whether
alterations in GR following in utero dexamethasone exposure or 5-HT treatment of

primary hippocampal cultures were reflected by changes in alternate exon 1-

containing GR mRNAs. Any changes observed would suggest differences in

promoter usage, which could then help to explain how levels of GR are programmed

by perinatal manipulations.

5.2 Methods

5.2.1 Effect of in utero dexamethasone on abundances ofalternate exon 1-containing
GR mRNAs

To determine if prenatal dexamethasone exposure led to any changes in levels of
alternate exon 1-containing GR mRNAs, RNase protection assays (section 2.2.7.1)
were performed on total RNA isolated from the livers of treated and control animals.
Tissues were provided by Moffat Nyirenda, and were removed from 8m old male
Wistar rats (Nyirenda, M. J. et al. 1998) (section 2.2.1). Following preliminary

experiments, in which no increase in the level of a specific exon 1-containing GR
mRNA was detected, 5'-RACE PCR was performed by Val Lyons on liver RNA
from the animals previously shown to express the lowest or highest level of GR
mRNA (Nyirenda, M. J. et al. 1998). This was done to identify any novel exons 1
induced by prenatal dexamethasone exposure, or detect any increase in

representation of a known exon 1 in clones obtained (data not shown). Exon 14.5 was
a novel candidate exon 1 identified by 5'-RACE PCR on liver from rats exposed to

dexamethasone in utero and was therefore screened for in the assays. The 3'-

boundary of exon I4.5 is AGGAGTTTGGgt and 21 bp was isolated (resulting in a

specific exon 14.5-containing GR mRNA protected fragment of 207 nucleotides in
RNase protection analysis). The position (determined so far) of exon 14.5 in the GR

gene is -3734 to -3714.
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Figure 5.1: Effect ofprenatal dexamethasone on hepatic GR mRNA expression in 8m
old offspring

Hepatic GR expression in fed offspring of dams that received vehicle alone (green
bars) or dexamethasone in week 3 of pregnancy (red bars) was measured by in situ
hybridisation at the ages of 8m. Results are expressed as a percentage of mRNA in
control animals for each region. Values represent mean ± SEM; n=9-ll. *, p<0.05.
Taken from Nyirenda M. J. et al. 1998.
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Figure 5.2: Exon 17-containing GR mRNA is induced in hippocampus by neonatal
handling

In situ mRNA hybridisation analysis of GR mRNA containing exon I7 (a) or exon 110
(b) within the dentate gyrus (DG), the CA1 and CA3 pyramidal cell fields of the
hippocampus and the cortex (CTX). Expression was measured in handled animals
(red bars) and non-handled animals (green bars), and is expressed as the number of
grains over an area equivalent to a CA1 neuron. Values represent mean ± SEM; n=5.
*, P<0.05. Adapted from McCormick, J. A. et al. 2000.
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5.2.2 Effects of 5-HT on alternate exon 1-containing GR mRNAs in primary

hippocampal cultures

To determine whether 5-HT affects alternate exon 1-containing GR mRNAs, 5'-
RACE PCR was performed on total RNA extracted from primary hippocampal
cultures exposed to lOOnM 5-HT for 4d and control cultures. The cell-type

composition of the primary hippocampal cultures was assessed by

immunocytochemistry, to verify that cultures consisted predominantly of neurons.
5'-RACE PCR was used to determine whether any previously unidentified exons 1
were induced by 5-HT treatment, as well as to determine if any known alternate exon

1-containing GR mRNAs became more abundant post-treatment. RT-PCR was used
to determine whether exon 17-containing GR mRNAs were present in primary

hippocampal cultures.

5.3 Results

5.3.1 Prenatal dexamethasone exposure reduces the proportion of exon 110-

containing GR mRNA levels in the livers ofadult rats

RPAs performed on total RNA from the livers of animals exposed to dexamethasone
in utero revealed significantly lower levels of hepatic exon 110-containing GR
mRNA (73% of total GR mRNA transcripts) compared with control animals (82% of
total GR transcripts) (p<0.05) (Figure. 5.3 and Table 5.1).

5.3.2 Prenatal dexamethasone exposure has no effect on the levels of exons 11, lr„

I4.5, I5, I7, or 11/-containing GR mRNAs in the livers of8m old rats

No effect on the relative proportion of GR mRNA containing exons 11, I4.5, 15, %,

I7, or In-containing GR mRNAs in liver was detected following prenatal
dexamethasone exposure (Figure 5.4 and Table 5.1). Exon 16-containing GR
mRNAs accounted for 9% of total GR mRNA transcripts in both groups. Other exon
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1-containing GR mRNA remained very low or were undetectable (Figure 5.4 and
Table 5.1).

5.3.3 Exon 1 io-containing GR mRNAs probably account for the majority of GR
mRNA transcripts in primary hippocampal cultures

5'-RACE PCR was performed using several independent RNA preparations from

primary hippocampal cultures established on different dates. Immunocytochemistry
confirmed that the cultures consisted predominantly of neuronal cells (Figure 5.5),
with approximately 80% of cells being positive for neuron-specific enolase and 20%

positive for glial acidic fibrillary protein. 5'-RACE PCR only yielded a limited
number of independent clones. The majority of clones obtained contained exon lio;
the only other exon 1 identified was exon In (Table 5.2). There was no detectable
effect of 5-HT treatment upon the relative proportions of clones containing exon lio
and G l in primary hippocampal cultures.

5.3.4 RT-PCR reveals the presence of exon 17-containing GR mRNAs in primary

hippocampal neurons

RT-PCR performed on total RNA extracted from primary hippocampal cultures not

treated with exogenous 5-HT showed that primary hippocampal cultures expressed
exon 17-containing GR mRNAs, as well as exon Go (used as a positive control)

(Figure 5.6). As described in Chapter 3, hippocampus also expressed both of these
variant GR mRNAs (Figures 3.6 and 3.10 and Table 3.3).
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% of total GR mRNAs

Exon 1 Control Dexamethasone

li 1(5) 1(5)

I4.5 0(4) 0(5)

15 0(5) 0(5)

16 9(5) 9(4)

I7 0(5) 0(5)
1 10 82 (9) 73* (10)

111 0(5) 0(5)

Table 5.1: Summary of the effects ofprenatal dexamethasone on variant GR mRNA
levels in liver

RNase protection analysis was performed on 50pg total liver RNA isolated from
animal exposed to dexamethasone in utero. Data are presented as a proportion of
total GR mRNA transcripts and are mean values; the number of independent RNA
samples (i.e. animals) is presented in brackets. * denotes a significant difference in
the level of a given variant GR mRNA between control animals and animal exposed
to dexamethasone in utero, p<0.05. (n) = number of animals.

Number of independent clones

Exon Control +5-HT

110 11 11

In 3 2

Table 5.2: Summary Table of 5'-RACE PCR clones obtainedfrom control or 5-HT-
treatedprimary hippocampal cultures

Four independent 5'-RACE PCR reactions were each performed on 5pg total RNA
isolated from 3 independent primary hippocampal cultures treated with lOOnM 5-HT
for 4d (+5-HT) or vehicle (Control). Cultures were maintained for 4d after treatment
before harvesting and isolation of RNA; RNA samples were pooled for individual
animals from each group (section 2.2.2).
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Figure 5.3: RNase protection analysis of the effect of prenatal dexamethasone
exposure on the abundance ofexon 1w-containing GR mRNA in rat liver

RNase protection assays were carried out on 50pg total RNA from the livers of adult
male rats exposed to dexamethasone in utero. Lanes 1 -4 contained RNA from control
animals and lanes 5-9 contained RNA from animals exposed to dexamethasone in
utero. Lanes marked Y contained yeast RNA and +, undigested probe. Arrowheads
indicate the positions of the 186 nucleotide fragment protected by GR mRNA
transcripts containing exon 2 but not exon 1 io, and the 306 nucleotide fragment
protected by transcripts containing exon 1 io and exon 2.
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Figure 5.4: RNase protection analysis of the effect of prenatal dexamethasone
exposure on the abundance ofexon 14,5-containing GR mRNA in rat liver

RNase protection assays were carried out on 50fig total RNA from the livers of adult
male rats exposed to dexamethasone in utero. Odd-numbered lanes marked
contained RNA from control animals and even-numbered lanes contained RNA from
animals exposed to dexamethasone in utero. Lanes marked Y contained yeast RNA
and +, undigested probe. Arrowheads indicate the positions of the 186 nucleotide
fragment protected by GR mRNA transcripts containing exon 2 but not exon I4.5.
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(a) GFAP

Figure 5.5: Immunocytochemistry on primary hippocampal cultures confirms a
predominantly neuronal cell composition

Immunocytochemistry on primary hippocampal cultures using (a) anti-glial fibrillary
acidic protein (GFAP) and (b) anti-neuron-specific enolase (NSE) primary antibodies.
The chromagen used to localise peroxidase was 3-amino-9-ethyl carbazole; xlO
magnification.
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Figure 5.6: Primary hippocampal cultures express exon 1 y-containing GR mRNA

2pg of total RNA isolated from primary hippocampal cultures (C) and hippocampus
(H) was reverse transcribed and subjected to PCR as described (section 2.2.2.8.2). 5'
primers were specific to either exon I7 or exon 110; the 3' primer to exon 2. 10pl of
product was electrophoresed on a 1% agarose gel (+); control from which reverse
transcriptase was omitted (-RT) or which contained water instead of RNA (w) were
run in parallel. The predicted sizes of the PCR products were 364bp for exon 17 and
438bp for exon li0.
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5.4 Discussion

RNase protection analysis has demonstrated that prenatal exposure to dexamethasone

significantly reduces the level of exon 1 io-containing GR mRNAs as a proportion of
total GR mRNAs. As discussed in Chapter 3, it is likely that exon lio-containing

transcripts initiate from a constitutively active promoter. In these animals, prenatal
dexamethasone exposure in week 3 of gestation resulted in a 25% increase in GR
mRNA expression in the periportal region of the livers when the rats reached 8m of

age (Nyirenda, M. J. et al. 1998). If prenatal dexamethasone exposure does not

affect expression of hepatic exon lio-containing GR mRNAs, one would expect

relative levels of exon 1 io-containing GR mRNAs to decrease as a proportion of total
GR mRNAs as absolute levels of GR mRNA increase following dexamethasone

exposure. Presuming there is no change in the absolute level of exon Go-containing
GR mRNAs, the 10% decrease as a proportion of GR mRNAs described here is not

quite sufficient to account for the 25% increase in absolute GR mRNA levels
observed in these animals. The 25% increase in hepatic GR mRNA levels is,

however, restricted to the periportal region of the liver; the RPAs performed here
were performed using RNA from whole liver. Therefore it is likely that the decrease
in relative levels of exon Go-containing GR mRNAs has been somewhat "diluted".

Thus, it seems likely that a minor variant exon 1 is induced by prenatal
dexamethasone exposure, reflecting increased activity of an associated promoter. I
was unable to identify an induced exon 1; this may also have been partly due to

"dilution" of periportal GR mRNAs by using total RNA from whole liver. However,
the experiments did reveal some interesting data pertaining to tissue distribution of
alternate exon 1-containing GR mRNAs (the focus of Chapter 3). Firstly, exon R-

containing GR transcripts were detected in liver, though at a very low level (1% of
total GR transcripts); previously, transcripts containing this alternate exon 1 were

undetectable (Figure 3.8 and Table 3.8). There are two possible explanations for this
difference. Firstly, the rats used in the set of experiments described in Chapter 3
were 4m old whereas those used in these experiments were 8m old. The difference
observed may therefore be age-related. More likely, however, is the second

possibility that the exon R -containing GR mRNA is not derived from hepatocytes,
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but is expressed in lymphocytes in the large volume of blood perfusing the liver.

Secondly, 5'-RACE PCR performed by Val Lyons on total RNA isolated from the
livers of animals exposed to dexamethasone in utero identified a novel exon 1

variant, exon 14 5, not found by 5'-RACE PCR in hippocampus. This exon 1 variant
was also present in livers from control animals. The tissue abundance of exon I4.5-

containing GR mRNAs was not determined in the experiments described in Chapter

3, and the sums of abundances already obtained suggested that the majority of (but
not all) GR mRNA had already been accounted for by the exons 1 examined. The
5'-RACE experiments suggested that exon I4.5 was expressed more highly in the
livers of animals exposed to dexamethasone in utero than in control animals (data not

shown). However, RNase protection analysis failed to detect the presence of exon

14.5-containing GR mRNA in total RNA from the livers of either group, presumably
because the expression level was below the sensitivity of the assay.

Although the magnitude of the increase in hepatic GR programmed by prenatal
dexamethasone treatment may be small, the potential pathophysiological effects may
be profound (Levitt, N. S. et al. 1996; Nyirenda, M. J. et al. 1998; Welberg, L. A. M
et al. 2000). The association between glucocorticoids and growth retardation may be
linked to the regulation of key growth factors by GR. Dexamethasone in late

gestation induces expression of hepatic insulin-like growth factor binding protein-1

(IGFBP-1), which antagonises the actions of insulin-like growth factor (IGF), a key

growth factor in late gestation (Price, W. A. et al. 1992; Heyner, S. et al. 1994).

Interestingly, overexpression of IGFBP-1 in transgenic mice results in low birth

weight and subsequent hyperglycaemia (Rajkumar, K. et al. 1995). A key hepatic

enzyme involved in the control of plasma glucose is PEPCK (Friedman, J. E. et al.

1993), the rate-limiting enzyme in gluconeogenesis. As well as increased hepatic

GR, prenatal dexamethasone permanently increases PEPCK mRNA in the periportal

region of the liver (Nyirenda, M. J. et al. 1998), the major site of hepatic

gluconeogenesis. PEPCK overexpression in a rat hepatoma cell line impairs

suppression of gluconeogenesis (Rosella, G. et al. 1993) and overexpression in vivo
causes glucose intolerance (Valera, A. et al. 1994). Regulation of PEPCK by GR

may therefore be critical in the development of glucose intolerance, and ultimately
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NIDDM. The link between low birth weight and subsequent adult pathology may

pivot critically on hepatic GR levels. The data presented here show that prenatal
dexamethasone reduces the proportion of GR mRNA containing the major variant
exon 1 (exon lio) in liver. The clear implication is that another, minor, variant GR
mRNA is induced by prenatal dexamethasone, though I was unable to identify one.

Interestingly, prenatal dexamethasone leads to a permanent reduction in hippocampal
GR (Levitt, N. S. et al. 1996). Thus, the same treatment results in the opposite effect
in different tissues, namely hippocampus and liver. Differences in transcriptional

regulation of the GR gene might explain how GR increases in liver but decreases in

hippocampus. Elucidation of the precise mechanism of hepatic GR regulation by

prenatal dexamethasone will help explain the link between low birth weight and
adult disease.

In rats, hippocampal GR levels are programmed by neonatal handling (Sarrieau, A. et
al. 1988; Meaney, M. J. et al. 1988); the critical time window for the handling effect
is the first week of life. Handled rats have lower basal plasma corticosterone levels,

improved suppression of the HPA axis in response to stress and improved cognitive
function in old age (Sarrieau, A. et al. 1988; Meaney, M. J. et al. 1988). Given the

proposed role of GR activation in feedback regulation of the HPA axis, HPA axis

suppression would be predicted to improve with elevation of hippocampal GR levels.

Improved cognitive function in old age may be related to a reduction in exposure of

hippocampal neurons to damaging levels of elevated glucocorticoids (section 1.2.6).
The mechanism of the handling-induced increase in hippocampal GR is related to

altered 5-HT neurotransmission (Mitchell, J. B. et al. 1990b) and it has been shown
that the effects of 5-HT expression can be recapitulated in vitro. Administration of
5-HT to primary hippocampal cultures results in increased GR expression, which is
maintained after removal of 5-HT from the culture medium (Mitchell, J. B. et al.

1990a; Mitchell, J. B. et al. 1992). The data presented here showed no effect of 5-
HT treatment on the distribution of known variant exons 1 in primary hippocampal

culture, and no induction of novel exons 1. It should be noted, however, that very

few independent clones were obtained, so no quantitative interpretation can be made
of these data. The majority of clones obtained from both groups contained exon 1 io;
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a small number of exon In-containing clones were also isolated. These data are

similar to those describing abundances of alternative exon 1-containing GR mRNAs
in hippocampus (Table 3.3). In hippocampus, the majority of GR mRNAs contain
exon 1 io, a small proportion exon In, and the remainder other variant exons 1,

including the hippocampus-specific exon I7. Thus, the 5'-RACE PCR data described
here suggests that primary hippocampal neurons in culture resemble adult

hippocampus in their exon 1 -containing GR mRNA composition.

Neonatal handling permanently programmes hippocampal GR and might do this by

inducing exon 17 variant GR mRNA. Handling leads to a 2.5-3-fold increase in exon

17-containing GR mRNAs across all subfields of the hippocampus while exon lio, I5
and In-containing GR mRNAs are unaffected (McCormick, J. A. et al. 2000). In

cortex, where neonatal handling has no effect on GR expression, exon 17-containing
GR mRNA levels are unchanged by handling (McCormick, J. A. et al. 2000). No
exon 17-containing clones were obtained by 5'-RACE PCR on RNA from primary

hippocampal cultures. One explanation for this is that primary hippocampal foetal
cultures do not express exon 17-containing GR mRNA. Another is simply that
clones containing exon I7 were missed: clones containing inserts that appeared to be
identical in size were not sequenced to ensure sequenced clones were independent.
Some of these discarded clones may have differed in size slightly and thus have been

independent. Furthermore, clones with inserts close to the cut-off size of

approximately 220bp (the size of inserts containing exon 2 and polylinker sequence
after EcoRl digestion in all clones) were not sequenced since it was thought they
would not contain a reasonable length of exon 1 sequence. Since neonatal handling
increases exon 17-containing GR mRNA levels in hippocampus, and 5-HT treatment

of primary hippocampal cultures increases GR expression (Mitchell, J. B. et al.

1990a; Mitchell, J. B. et al. 1992), RT-PCR was used to determine whether primary

hippocampal cultures express exon 17-containing GR mRNA. The data described
here show that primary hippocampal cultures do express exon 17-containing GR
mRNA. Primary hippocampal cultures may therefore provide an appropriate in vitro

system to further dissect the molecular mechanisms of GR upregulation by neonatal

handling. Indeed, the transcription factors AP2 and NGFI-A have been implicated in
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the induction of GR in the hippocampus following handling or with 5-HT (Meaney,
M. J. et al. 2000). As described in detail in Chapter 4, a region upstream of exon I7

conferring CNS-derived cell line-specific promoter activity contains putative binding
sites for AP2 and NGFI-A. Hence, there is the intriguing possibility that the

handling effect on GR expression is mediated by the actions of one of these

transcription factors on activity of the promoter associated with exon I7.
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Chapter 6: Discussion

GR has many functions in many tissues, and levels of GR can vary greatly between
tissues. Levels can also vary within tissues both perinatally and in adulthood in

response to environmental stimuli (sections 1.1.4.2 and 1.3). Thus, the transcriptional

regulation of the GR gene is likely to be complex in order to allow effective control of
GR levels. Transcription of the rat GR gene results in the production of at least 12
alternate exon 1-containing GR mRNAs (McCormick, J. A. et al. 2000) which may

reflect transcription controlled by alternate promoters. The aims of this thesis were to

determine whether variant GR mRNAs differ in their tissue distribution, if promoter

activity is associated with alternate exons 1, and whether perinatal programming of GR
is established by differential regulation ofGR promoters.

The data described in Chapter 3 reveal that exon 1 io-containing GR mRNA is

ubiquitous and is present in the majority of GR mRNAs in heart, hippocampus, kidney,

liver, lung and thymus. Other alternate exons 1 mRNAs exhibit tissue-specific

distributions, though exon ^-containing GR mRNA may also be expressed

ubiquitously. Notably, exon 1 [-containing GR mRNA is only detectable in thymus
while exon lycontaining GR mRNA is only detectable in hippocampus. Ubiquitous

expression of exon Uo-containing GR mRNA (and possibly exon 16-containing GR

mRNA) may reflect use of a constitutive promoter that maintains a basal level of GR

expression. Tissue-specific distributions of other exons 1 may reflect regulated

expression. There are several examples of genes containing a promoter with a

ubiquitous expression and alternative promoters with a more restricted spatial or

temporal expression pattern; the human porphobilinogen deaminase gene contains both
a housekeeping and a tissue-specific promoter (Chretien, S. et al. 1988). There is
evidence from in vivo studies that there is a minimum level of GR expression in

hippocampus and amygdala. A 2-4 fold increase in endogenous corticosterone in

chronically stressed rats results in specific decreases (not attributable to loss of neurons)
in GR levels in these regions (Sapolsky, R. M. et al. 1984a). Increasing serum

corticosterone with further injections led to no further reductions in GR levels.
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Furthermore, aged rats display significant declines in GR levels in hippocampus and

amygdala (Sapolsky, R. M. 1983; Sapolsky, R. M. 1985a), and chronic stress results in
no further reductions (Sapolsky, R. M. et al. 1984b). These data suggest a "floor-

effect", or minimal level of constitutive production of GR; it would be interesting to

determine whether the GR mRNA populations in the hippocampi of such animals are

purely exon 1 io-containing (and/or exon 16-containing). The lowest level of exon lio

expression is in the CA3 subregion of hippocampus (McCormick, J. A. et al. 2000).

Interestingly, there are differing effects of glucocorticoids on electrophysiological

properties of neurons in the CA1 and CA3 subregions of the hippocampus (Okuhara, D.
Y. et al. 1998). Thus, variations in hippocampal GR levels between hippocampal

subregions may be critical in determining hippocampal functions. Chronic exposure to

various stressors can down-regulate GR mRNA and/or protein in the CA1 and CA2

hippocampal subregions (Sapolsky, R. M. et al. 1984a; Sapolsky, R. M. et al. 1985b;

Makino, S. et al. 1995; Kitraki, E. et al. 1999), while GR mRNA is not altered in the
CA3 subregion (Kitraki, E. et al. 1999). However, CA3 neurons are the most

susceptible to damage by chronic stress (Watanabe, Y. et al. 1992). Thus it is
conceivable that in CA3, GR promoter activity is already minimal, with no possibility
of further reduction. Reduction of GR in CA1 and CA2 may serve to protect neurons

from the neurotoxic effects of GR, but since CA3 neurons project onto CA1 and CA2,

loss of CA3 neurons will influence the functional integrity of the entire hippocampus.
Further evidence for a minimal level of GR expression comes from the experiments in

Chapter 4 in which C6 glioma cells transfected with P2 (activity of which reflects

activity of all promoters in the CpG island) were treated with dexamethasone.

Autoregulation of GR appears to occur at least partly at the promoter level but a

concentration of dexamethasone known to decrease GR expression maximally

(Rosewicz, S. et al. 1988) did not eliminate P2 activity completely. Future work will

identify the precise regions associated with this autoregulatory effect and determine the
mechanism ofGR gene repression by glucocorticoids.

Transient transfection assays (Figure 4.5) revealed that promoter activity is associated
with the CpG island that contains 10 of the alternate exons 1. Furthermore, promoter

activity is associated with individual exons 1. GC-rich sequences are able to interact
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with a large number of different transcription factors, including Spl and AP2

(Azizkhan, J. C. et al. 1993), and this may provide greater regulatory options via
alternate signal transduction pathways. Exon lio-containing GR mRNA exhibits a large

degree of heterogeneity in transcription start sites (Figure 4.13) as is typical of genes

containing CpG islands in their promoter regions. Other GR exons 1 also have multiple

transcription starts (data not shown; V. Lyons, personal communication). This may

simply reflect the large size of the CpG island. The reason that certain exons 1 are more

highly expressed in some tissues may be a result of differences in the populations of

transcription factors between tissues, or differences between promoters in their affinities
for transcription factors (e.g. the promoter associated with exon 1]0 is likely to contain

high affinity sites). In addition to merely increasing GR protein levels by increasing GR

mRNA, increased activity of alternate GR promoters may increase GR expression by

producing GR mRNAs with increased stability. Alternatively, mRNAs with a large

degree of secondary structure are likely to be translated less efficiently (Kozak, M.

1991). The existence of so many alternate promoters may allow more effective fine-

tuning ofGR levels.

One intriguing possibility is that there is transcription of all the possible exons 1 within
the CpG island. In vivo, differing affinities for transcription factors will lead to

promoter competition for the limited pool of factors. Low affinity sites will still bind

transcription factors to some degree, resulting in a very low expression of transcripts
derived from associated promoters. As signal transduction pathways are activated and
levels of transcription factors increase, promoters associated with low affinity binding
sites will become more active. There is preliminary evidence from this laboratory that
all the putative promoters lying within the CpG island may be "constitutively" active,

although those active at very low levels are unlikely to be of significance in vivo since
their contribution to total GR mRNA levels will be extremely small. Recent work has
shown that most exons 1 located in the CpG island (exons I4.5 to In) are detectable by
RT-PCR (which can theoretically detect a single transcript) in all tissues examined

(Freeman, A., personal communication), including those in which expression is
undetectable by RPA (with a lower limit detection of about 0.5% of total GR mRNAs).

One would predict that GR transcripts containing exons 11, I2 and 13, which lie outside
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the CpG island and are located 5' of-15000 exhibit true tissue-specific regulation,

being present in some tissues but absent from others due to their controlling promoters

being "on" or "off. One problem with testing this hypothesis, however, is that if they
are expressed in lymphocytes (as has been demonstrated to a limited extent for exon
1 io), peripheral blood contamination of tissues may result in false positive results (Table

5.1). Indeed, RT-PCR is able to detect the presence of exon 1 i-containing GR mRNA
in all tissues studied, including non-immune tissues (Freeman, A., personal

communication). One solution to this problem would be to flush out peripheral blood
from tissues by perfusing with cold saline prior to killing the animal or to look in cell
lines. However, the use of cell lines would impose the difficulty of extrapolating to the
in vivo situation.

The mechanism by which heterogeneous transcription starts results in alternate splicing
to generate multiple exons 1, some of which are overlapping may hinge on how the
donor splice site is determined. It may merely be a "default" mechanism that can

sometimes be inaccurate (e.g. in hippocampus giving rise to a large number of alternate
exons 1 present at significant levels). Alternatively, the process may be regulated by the

splicing machinery, or simply splicing at the first suitable splice donor site.

The perinatal environment can permanently program levels of GR expression within
tissues with profound consequences on adult physiology and pathophysiology (section

1.3). Data presented within Chapter 5 begin to elucidate the mechanism of

programming ofGR.

When adult, rats exposed to dexamethasone in utero exhibit a reduction in the

proportion of exon lio in their livers (Table 5.1). This suggests the level of a minor
variant GR mRNA is increased, accounting for the increase in hepatic GR associated
with this treatment. I was unable to identify a minor variant upregulated by prenatal
dexamethasone which may account for the increased hepatic GR observed in these
animals but this may have been due to a "dilution" effect, or induction of an untested or

as yet unidentified exon 1 -containing GR mRNA. Prenatal dexamethasone permanently

programs hepatic GR specifically in the periportal region of the liver (Nyirenda, M. J. et
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al. 1998), and this may occur via a classic hormonal imprinting mechanism (Levine, S.
et al. 1966). Furthermore, prenatal dexamethasone treatment permanently increases

periportal PEPCK mRNA expression, with consequences on glucose metabolism

(Nyirenda, M. J. et al. 1998). Whether this induction of PEPCK is a direct result of the

increased GR is unclear. The best way to assess precisely which alternate GR mRNA is
increased by prenatal dexamethasone would be in situ mRNA hybridisation. This
would allow precise localisation of variant GR mRNA levels (notably at the periportal

region) without the dilution problem associated with using RNA prepared from whole
liver. Interestingly, the increase in hepatic GR following prenatal dexamethasone is
more pronounced 5d after birth. Examination of these tissues may provide a more

sensitive means of elucidating the programming mechanism.

The hippocampus-specific expression of exon 17-containing GR mRNA is especially

interesting. In rats, neonatal handling permanently increases hippocampal GR, leading
to permanent alterations in HPA axis suppressibility post-stress and a reduction in age-

related cognitive impairment (section 1.2.6). Altered serotonergic neurotransmission is
associated with the handling effect, and in primary hippocampal cultures 5-HT leads to

a long-term increase in GR expression that persists after removal of 5-HT from the
culture medium (Mitchell, J. B. et al. 1990a; Mitchell, J. B. et al. 1992). We have
shown that neonatal handling specifically increases the expression level of exon 17-

containing GR mRNA in hippocampus but not in other brain regions (McCormick, J. A.
et al. 2000). Primary rat hippocampal cultures may be a useful model system to study
the mechanism of GR induction by 5-HT (and by extrapolation in rat hippocampus by
neonatal handling) since they express GR mRNA containing exon 17 (Figure 5.6).

Interestingly, a construct in which transcription runs through exon 17 exhibits

substantially higher promoter activity in C6 and B103 cells (both CNS-derived) than in

HepG2 (hepatoma) cells (Figures 4.5 and 4.10). Further analysis of a region flanking
exon I7 revealed that a 134bp fragment acts as an orientation-independent enhancer in
B103 cells but not in HepG2 cells. This 134bp region contains putative binding sites
for NGFI-A and AP2, transcription factors whose expression is increased in the

hippocampus by neonatal handling (Meaney, M. J. et al. 2000). In contrast, stress is
associated with a reduction in hippocampal GR (section 1.1.4.2); intriguingly, NGF
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binding is reduced in the hippocampus after cold stress (Taglialatela, G. et al. 1991).
Further analysis is required to determine if these transcription factors do indeed bind to

this region and play a role in regulation of an associated promoter.

Another interesting candidate transcription factor for regulation of the rat GR gene

promoter is Spl, which can bind to the same DNA binding site as NGFI-A. Spl can be

permanently increased in the rat hippocampus by a single kainic acid treatment, and this

programming of Spl parallels a permanent induction of the proenkephalin gene (Feng,
Z. H. et al. 1999). Furthermore, Spl expression in the brain has been reported to

decrease with age (Ammendola, R. et al. 1992), raising the possibility that the reduction
in Spl is linked to HPA axis dysregulation in old age by reducing hippocampal GR

expression. Spl has been linked to the maintenance of methylation-free CpG islands

(Brandeis, M. 1994; MacLeod 1994, D.). Induction of Spl or related transcription
factors (including NGFI-A) by neonatal handling may protect regulatory regions
associated with exon I7 expression from methylation and hence silencing. Animals that
have not been handled do not exhibit zero expression of exon 17-containing GR mRNA,
so perhaps rather than being completely silenced by methylation, only a few key

regulatory elements are affected, leading to the permanent reduction in expression.

Though the majority ofDNA methylation associated with gene silencing occurs early in

development (section 1.4.3), de novo DNA methylation can occur in later life (Issa, J. P.
J. et al. 1994; Issa, J. P. J. et al. 1996).

Other interesting avenues to explore with regard to regulation of hippocampal GR
include the effects of prenatal dexamethasone exposure, which permanently reduces

hippocampal GR. The effects of this treatment on the cognitive function of aged
animals is unknown, though younger animals exposed to dexamethasone in utero

exhibit higher anxiety-related behaviours (Welberg, L. A. M et al. 2000). It would be

interesting to see if this manipulation reduces exon 17-containing GR mRNA expression
in the hippocampus and/or amygdala. In rats, hippocampal GR expression follows a

diurnal rhythm, peaking in the morning and troughing in the evening (the nadir of

plasma corticosterone is in the morning and the peak in the evening) (Holmes, M. C. et
al. 1995). In contrast to other exon 1-containing GR mRNAs, exon 17-containing GR
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mRNA levels appear to be highly variable (Chapter 3) though an attempt to determine
whether this reflected the time of tissue sampling was unsuccessful (data not shown).

Little is known about programming of GR in the immune system, though HPA axis

dysregulation is associated with alterations in immune responses (section 1.2.6). GR
levels can be permanently programmed in the thymus by various environmental

manipulations but the effects of this programming on immune function are unclear.
Exon 11-containing GR mRNA accounts for a substantial proportion of GR mRNA in

thymus (Table 3.3). It has been suggested that expression of a homologous mouse exon

1 targets GR to the plasma membrane and may mediate the apoptosis of lymphocytes
induced by glucocorticoids (Chen, F. H. et al. 1999a; Chen, F. H. et al. 1999b), though
both of these hypotheses have not been conclusively proven. The location of exon 11

(and exon G) upstream of the CpG island may reflect the evolutionary development of

transcriptional regulation of the GR gene.

In summary, the data presented in this thesis show that alternative exon 1-containing
GR mRNAs are expressed in a tissue-specific manner. Most of these alternate exons 1
lie within a large (approximately 3kb) CpG island; considerable heterogeneity in

transcription initiation points for alternate GR mRNAs reflects this promoter region
structure. Transient transfection assays revealed that promoter activity is associated
with this CpG island, and also with individual exons 1. The promoter activity
associated with the entire CpG island can be repressed by the GR agonist

dexamethasone, confirming that GR autoregulation occurs at least partly at the promoter
level. Perinatal manipulations can permanently alter the expression level of GR in a

number of tissues with long-term effects on physiology and pathophysiology. I have
shown that prenatal dexamethasone exposure, which permanently reduces hepatic GR,
leads to a decrease in the proportion of hepatic GR mRNAs expressing exon lio, the

ubiquitously expressed variant GR mRNA. This suggests that a minor variant GR
mRNA is induced by prenatal dexamethasone that results in increased hepatic GR

expression, though I was unable to determine the specific variant. Neonatal handling
leads to a permanent increase in hippocampal GR probably via an induction of a

promoter associated with the hippocampus-specific exon 17. Treatment of primary
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hippocampal cultures with 5-HT mimics the handling effect, and I have shown that they

express exon 17-containing GR mRNA. These cultures may therefore provide a useful
model system to study the handling effect in vitro. A 134bp region associated with the
5' end of exon I7 acts as an orientation-independent enhancer in neuroblastoma cells but
not in hepatoma cells and contains putative binding sites for NGFI-A and AP2, both of
which are induced by neonatal handling. This adds weight to the hypothesis that the

signal transduction pathway activated by neonatal handling increases hippocampal GR

by inducing a promoter associated with exon I7. However, further experiments are

required to confirm this.
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Glucocorticoid receptor (GR) gene expression is
regulated in a complex tissue-specific manner, no¬
tably by early-life environmental events that pro¬
gram tissue GR levels. We have identified and char¬
acterized several new rat GR mRNAs. All encode a

common protein, but differ in their 5'-leader se¬
quences as a consequence of alternate splicing of,
potentially, 11 different exon 1 sequences. Most
are located in a 3-kb CpG island, upstream of exon
2, that exhibits substantial promoter activity in
transfected cells. Ribonuclease (RNase) protection
analysis demonstrated significant levels of six al¬
ternate exons 1 in vivo in rat, with differences be¬
tween liver, hippocampus, and thymus reflecting
tissue-specific differences in promoter activity.
Two of the alternate exons 1 (exons 16 and 110)
were expressed in all tissues examined, together
present in 77-87% of total GR mRNA. The remain¬
ing GR transcripts contained tissue-specific alter¬
nate first exons. Importantly, tissue-specific first
exon usage was altered by perinatal environmental
manipulations. Postnatal handling, which perma¬
nently increases GR in the hippocampus, causing
attenuation of stress responses, selectively ele¬
vated GR mRNA containing the hippocampus-spe¬
cific exon 17. Prenatal glucocorticoid exposure,

0888-8809/00/S3.00/0
Molecular Endocrinology
Copyright © 2000 by The Endocrine Society

which increases hepatic GR expression and pro¬
duces adult hyperglycemia, decreased the propor¬
tion of hepatic GR mRNA containing the predomin¬
ant exon 110, suggesting an increase in a minor
exon 1 variant. Such tissue specificity of promoter
usage allows differential GR regulation and pro¬
gramming. (Molecular Endocrinology 14: 506-517,
2000)

INTRODUCTION

Glucocorticoids maintain homeostasis after stress and

play key roles in differentiation, nervous system func¬
tion, and intermediary metabolism (1). The principal
receptor for glucocorticoids, the type II or glucocorti¬
coid receptor (GR), a member of the nuclear receptor
family (reviewed in Ref. 2), is essential for life ex utero
(3). Although GRs are expressed in almost all cells, the
level of expression and receptor regulation vary con¬
siderably between tissues, and even within a tissue
[e.g. hippocampus (4)]. The importance of maintaining
an appropriate level of expression of GR for the func¬
tional effects of glucocorticoids has been demon¬
strated in vitro (5) and in transgenic mice a reduction of
30-50% in tissue levels of GR results in major neu¬
roendocrine, metabolic, and immunological abnormal¬
ities (6, 7). The level of expression of GR is thus critical
for the correct level of function of a cell. In some

tissues, GRs are regulated by glucocorticoids them-
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selves, but again the regulation is highly tissue spe¬
cific, with GR down-regulated by glucocorticoids in
some tissues, but unaltered or even induced in others
(8-10). This regulation occurs chiefly at the level of
transcription (9, 11). GR gene transcription therefore
must be tightly regulated with appropriately high ex¬
pression for the function of any particular cell.
Much evidence suggests that GR gene transcription

is, in part, permanently determined or programmed by
perinatal events, again in a cell-specific manner. Thus,
animals exposed to short periods of infantile stimula¬
tion (handling) have, as adults, permanently elevated
GR expression selectively in hippocampal neurons (12).
The hippocampus is a site of glucocorticoid feedback
inhibition upon the hypothalamic-pituitary-adrenal (HPA)
axis, and adult rats handled as neonates are therefore
more sensitive to glucocorticoid-negative feedback with
decreased HPA responsivity to stress throughout life (12,
13). In contrast, prenatal treatment of rats with the syn¬
thetic glucocorticoid dexamethasone permanently re¬
duces GR mRNA in the hippocampus (14), but increases
GR mRNA in the liver (15). These animals have perma¬
nently elevated levels of plasma corticosterone, fasting
hyperglycemia (attributable to elevated levels in liver of
the glucocorticoid-inducible enzyme, phosphoenolpyru-
vate carboxykinase, the rate limiting step in gluconeo-
genesis), hyperinsulinemia (15), and hypertension (14). A
key question therefore, is how can GR mRNA levels be
regulated in a cell-specific and even opposite manner
during adult life and particularly by prenatal mani¬
pulations?
Surprisingly little is known of the mechanisms that

control GR gene transcription. The GR gene spans
more than 80 kb and contains 8 coding exons (exons
2 to 9) (16, 17). The human (16, 18), mouse (17, 19),
and rat (20) (M. D. Jacobson and K. R. Yamamoto,
unpublished data) GR gene promoter regions have
been cloned and partially characterized. A single pro¬
moter has been described for the human GR gene (16,
18). In mouse, expression of the GR gene is controlled
by at least 3 promoters, resulting in GR transcripts
with different 5'-untranslated exons designated exons
1A (restricted to T cell lines), 1B, and 1C (the latter is
homologous to the exon 1 present in the human GR
cDNA) (17), and very recent evidence suggests the
existence of 2 more (21). It has been suggested that rat
GR mRNA might also exhibit 5'-heterogeneity (20).
Little is known about GR promoter usage in tissues in
vivo. Here we demonstrate tissue-specific 5'-hetero-
geneity of rat GR mRNA and present compelling evi¬
dence for early-life environmental programming of
specific GR gene promoters in the hippocampus.

RESULTS

DNA Sequence of the Rat GR Gene Flanking the
5'-End of Exon 2

We have determined the sequence of 4600 bp of the
rat GR gene flanking the 5'- end of exon 2 (Fig. 1). The
majority of this region corresponds to a CpG island

(68% CG, with a CG/GC ratio of >0.8 between -1620
and -4520 relative to the translation start at +1, within
exon 2) and contains the exon 1 sequence present in
the published rat GR cDNA sequence (22) (-3269 to
-3322; here designated exon 16). The sequence is
highly conserved when compared with the mouse GR
gene (19) (91% identity throughout the whole region),
including the mouse exons 1B and 1C (17). The rat
sequence shows moderate conservation with the cor¬
responding human GR gene sequence (18, 23) (-70%
identity over the CpG island; nucleotides -1600 to
-4220, but only 40% identity over the region between
-50 and -1600), including exon 1 present in the hu¬
man GR cDNA (24).

5'-RACE (Rapid Amplification of cDNA Ends)-PCR
Identifies at Least 11 Alternative 5'-Leader

Sequences in GR mRNA

To investigate 5'-heterogeneity in rat GR mRNA, we
carried out 5'-RACE-PCR on total RNA isolated from
rat hippocampus or thymus. Eight separate 5'-RACE
reactions were carried out on the products of 5 differ¬
ent dC-tailed cDNA reactions from hippocampal RNA;
one 5'-RACE reaction was carried out on dC-tailed
cDNA produced from thymus RNA. Subcloned prod¬
ucts were sequenced with a primer complementary to
exon 2 of GR. A total of 54 independent 5'-RACE
products were obtained from hippocampal RNA, de¬
riving from independent cDNAs generated in the initial
reverse transcription reactions (the 5'-ends of the
cDNAs terminate at different positions in exon 1, indi¬
cating they are unlikely to be generated by PCR from
the same initial tailed cDNA). In addition, four indepen¬
dent 5'-RACE products were obtained from thymus
RNA. The cDNA products fall into 10 classes based on
the sequences immediately upstream of exon 2 (Table
1). The majority of clones (31) from rat hippocampal
GR mRNA contained exon 110 (corresponding to exon
1C of the mouse GR gene and the exon 1 sequence
present in the human GR cDNA sequence). In addition,
we found 7 novel exon 1 sequences present in rat
hippocampal GR mRNA, exons 13, 14, 15, 17, 18, 19
and 1„ (Table 1); exons 15 and 1ln are likely to cor¬
respond to the recently described mouse exons 1D
and 1E (21), respectively. Of the minor exon 1 species,
exons 17 and 1,, represented the major variants,
present in 8 (exon 17) and 5 (exon 1„) of the indepen¬
dent clones. Exons 14, 15 and 19 were present in,
respectively, 3, 2, and 3 of the independent 5'-RACE
clones. Two of the classes (13 and 1g) were repre¬
sented each by a single independent clone. No clones
were found corresponding to the exon 1 sequence
present in the published rat GR cDNA sequence (22)
(but see below). Of the 4 independent clones pro¬
duced from 5'-RACE PCR of thymus RNA, 2 con¬
tained exon 110. In addition, a further 2 novel variants
of rat GR mRNA were identified in thymus RNA, con¬
taining exons 1n and 12 (Table 1). Exon 1, is likely to
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- 46 0 0 tagtataggttttccttcttgaggtatcaagcttctattcctttgccaagatggctgccctggatcccatggaggtagcgaccgtgcggcatctctgccc

-45 0 0 aaggagcccgcttacagtcacgttctccccgtgcaaagcggacgatacattgggcagcctttaagcttttcatccaagaaagaacgactcgggtttgacg

- 4 40 0 ccaaagagcacctttgccaagatggtgaccgtgcggcgtcactgctctttaccaagatggcggcgagggacttccggcacgcgcttccccaatcagggat

-4300 ctccaagaggtg.aggcagaggagaccgcccttcgagtcgaagtx^ggcgcgagccgcttctgccgccggccgcgggag<3g'catoaggtggagtcatggcc :

-410 0 cccccaaatcctagcctatogcatgaggtagaggggcxcggtcccggcgtcgccccagcctgcctaacacagaggacacccgaggggcaggtactgcgcg

- 40 0 0 gccgcacagtcaccctacgcccctttcctgtcctagggggaccggccatgtgtttctcttggagacccggggactcgtattgggcacagctggacggagc

-3900 taaaagctgacgttttaaagatgcatgtttttgttttatttggagggacagaggggtccctggaacccagaaagctgagcaaggcaccgagcctggagca

-3800 gcaaatgtcaagattcgggggaggggcctccgcggggagcttggatgctggccccgaagggggtggaaggagaggtcaggagtttgggtaagaggagggc

- 3 7 0 0 GGACTTCAGCAGCAACTTACTATTCGGTCTGCAACTTGCTTCTAGGCCTGCACACACCCCCTCCCGCCCCGCAAGGCTTCCTTAATCACAATTTTTTTTT

a*am ft: a#:
- 3 600 TAAGTGCAAAGAAACCCAGCTCTCTCAGAGGGTTTTGCATTCGGCATGCAACTTCCTCCGAGTGTGAGCGCGCTGGCAGGCGGGGAGGGAGCGGTGGGGG

-3 500 TTGAACTTGGCAGGCGGCGCCTCCTGCTGCCGCCGCCGCCGCCGCCTCTCAGACTCGGGGAAGAGGGTGGGGGACGATCGGGGCGCGGGGGAGGGTGGGT

-3400 TCTGCTTTGCAACTTCTCCCGGTOGCGAGCGAGCGCGCGCGCGGCGGCGGCGGCGGCGGClGCAGACGGGGCCGCCCAjG£^^6G^!GiG^^<3GGA(j:!
-3 3 00 ^f©Jc,GOCA<^|:GK<^iC^?C^CK3H^^^GAGTATGTATGCGCTGACCC^TCCTCTGCGCTCCCCTCCCCAGGCCTCCCCAGAGGGCGTGTCTGCAGT
-3200 CCTGCCCCGAGAGCAAGCGGCCAGGGCTCTGCGGCACCGTTTCCGTGCCATCCTGTAGCCCCTCTGCTAGTGTGACACACTTCGCGCAACTCCGCAGTTG

1n

- 2100 ccagcccggggttgggggtggaggctggcgagggcagggtgacggtgacgaaagggccttggcggtgacagcgctggcgcttcctctccccgcaccgcca

-2000 tccctggcccagcgcgctgccccgccgtggagcctcgggcgcccgggcgggagtctggcgtcctttttggttttgcttttgccgcaagccctcgggtctt

-1900 cgctgtcctcggagccgccgagacacccgcttttcccggggggcaaggtagagcgccgtctgggaccggcgggctcag
%.<$$<<t % r< %>»>.* m

GCGGCTCCGGGCTGCGG'.

ogccggcccggccttatctggtagaagtgggcgtgccgcagagaactcaacaggtct

-17 0 0 ggacacatttctcccttcacctcccacctttctccctccttctcccccaaccccacccccgacaacttgggcgctagctttggggcatgatttcgcgcct

-16 00 gacttttctgagtggtccccttttagaaagagaccctccctagccgcagtttttgatgcagcga'l'rri'lTl'rri'ri'l'l'rrTGACAAGTGCTACTTTGACA

-150 0 tttgaggttgcagcctcggtaattgcagccttaccacttaagaccctgggcaaggttcgtgtgactaatgtcacagggttatttacagttttaactgggg

-14 0 0 gATAAATGtcGCttaagggagcatcttgTTTTATGAAGTGttacggtttcgggctggAAGGggcAGTTGTCAAAAAAGCAGGtctgaaaattctttAAGG

-13 0 0 tctattagatatcttacatttagagatccttatcaaaggcataggaccgaccggggttctgagagagaagccctttacagggaagaatcctagggtaggt

-12 0 0 tccacccctctccaccttccctgaatttccctttcagagaaggtggtcatacttaatgtcttggtacaggaaaagtttaccattgtattggggatcccaa

-1100 atatatttgtcatagtctttgccagcccctcaaaacattttgattattactaacatactagcaatctggaggaatacagtaaaggtttaaaactacagag

-1000 agtattttttctgagcgttttcttgaatggggtttatttgagtttatatgtgatttgactgtccagtttttctgttttcccggtatttacatctttggaa

agaaaaatcttaaacttatagataaaatattttatactgagtatatcaaacaatttttaaaaaagaatacaattccataaatcttggtgttaggaatttt

aataagctttgctctattacactatttaaataggttaaaattatagtgaagaagccagtacaaattctactctgtttttaaagatatacattttaggctg

tatataatatctataatttcttatctccaaaatttgaaggtaggtgatactagacaggcatatttatttgaaaatagagtttcaaagtaagagcctttcc

-900

-800

-700

-600

-500

-400

-300

-200

-100

+1

TCGGCACAGGTGAAATTGTCAATCATAAAATGTGTAAACATTTATATTGTAGCATTTATCAAACGGTTTATGTATTGGTTTCCAGAAAGGCAATCACTCA

ATCGAAAGGGGCTGGAAATGTAAGGATCATGCCTTTAAAAAAAAAAAGTTAAATACTTTGACATCAACTTGAACCTTTACAATAATTGCGTATGACAAAT

TACAATCCCCATGGTTACCAAATGTGTATGTTTAGCGAGTGACAGGATAAACAGTCAAATTCAGTTGGTTCAATGTAACTTTGTTGTCTCTGTGCAAATG

AGCTGCCTTGCAGATGGGAAACGGGGGTGGGGGTATAGCTTTATTTTAAAAGATAGGAACTATTTTTCTGATAATGGAGACTTTGATTTGGGAGTTACCT

,3 -Vvi!',- M >>

-3100 gcgggcgcggaccacccctgcggctctgccggctggctgtcaccctcgggggctctggctgccgacccacggggcgggctcccgagcggttccaagcctc

-3000

-2900

-2800

- 27 oo ggggj|gcggccgggggtggagtgggagcgcgtgtgtgcgagtgtgtgcgcgccgtggcxk:cgcctccgcccgcccctcgctcggtcccgctcgcctgccg

-2600

-2500

-2400

-2300

-2200 cgagcgggcgagcggggccggcccgcgctgaggtgagccggactgggcgcgctcccctaggggctcggcaccgggggcggccggacttggcaaacttttg
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Table 1. 5' -RACE Reveals at Least 11 Alternative Exons 1 in GR mRNA

Exon Source 3'-Boundary Position

11 Thymus . . . TGGGATGAAG.... 5' of -15,000
^2 Thymus . . . GGGCGACCGG. . . . 5' of -15,000
^3 Hippocampus . . . CAACAGCAAG. . . . 5'of-15,000

Hippocampus . . . CGAGGGGCAGgt. . . -4238 to -4011

i5 Hippocampus . . . TCCTCCGAGTgt. . . -3592 to -3538

^6 Liver" . . . CGGGCTCACAgt. . . -3322 to -3269

17 Hippocampus . . . CCCAGGCCAGgt. . . -2981 to -2929

"U Hippocampus . . . TCGCCGACAGgt. . . -2838 to -2738
1 9 Hippocampus . . . CGGATTCTAAgt. . . -2557 to -2479

110 Hippocampus, thymus . . . GGGTGCTGAGgt. . . -2417 to -2217

1,1 Hippocampus . . . AACTCAACAGgt. . . -1812 to -1705

A total of 10 different alternative exons 1 were found in GR mRNA from hippocampus or thymus. 54 independent 5'-RACE clones
were isolated from a total of 8 different 5'-RACE reactions carried out on hippocampal RNA and a further 4 clones were isolated
from thymus RNA. Sequences shown in uppercase are those at the 3'-end of each exon 1; sequences shown in lowercase (gt)
represent the consensus splice site at the beginning of the following intron.
" Exon 16 [present in the published rat cDNA sequence (22)] was not detected in 5'-RACE, but is included for completeness.

T I4 I5 ^6 ^7^8 ^9^10 ^11 2

I B Mini 1 o
Fig. 2. Relative Positions of Alternative Exons 1 of the Rat
GR Gene

Shown are the relative positions of exons "U' ^5' I71 ''si
19, 110, and 111t all located within the CpG island 5' of exon
2. Exon 1, is located at least 15 kb 5' of exon 2. Note, the size
of exon 2 is not to scale.

correspond to mouse exon 1A (76% identity) (25),
reportedly specific to T lymphocytes (17).
Sequence comparisons located 8 of the alternate

exons 1 to the CpG island upstream of exon 2 (Table
1; summarized in Fig. 2). Each of the exons 1 that
mapped to this region was flanked, at the 3' end, by
the conserved GT dinucleotide splice donor site (Table
1). Sequences corresponding to exons 1-,, 12 and 13
were not found within the sequenced region, and
Southern blot hybridization showed they were not lo¬
cated within A208 (see Materials and Methods for de¬
tails of A208), indicating that they lie at least 15 kb 5'
of exon 2 (data not shown).

Exon 110 Is Present in the Majority of GR mRNA
Transcripts in Hippocampus, Liver, and Thymus,
but Some Other Promoters Are Tissue Specific

To investigate the relative abundance of each of the
variant GR mRNA transcripts, RNase protection anal¬

ysis was carried out with cRNA probes generated
using 5'-RACE clones as templates. Each probe was

complementary to a specific exon 1, and also to 186
nucleotides of exon 2 (common to all GR mRNA tran¬
scripts), thus giving 2 protected products; a fragment
of 186 nucleotides representing GR transcripts con¬

taining exon 2 but lacking the target exon 1 sequence,
and a larger fragment complementary to transcripts
containing both exons 1 and 2. The sum of both frag¬
ments equates to total GR mRNA, allowing the amount
of exon 1 -exon 2 containing mRNA to be calculated as
a percentage of total GR mRNA transcripts, after cor¬
rection for differences in specific activity. In hippocam¬
pus, liver, and thymus, as well as heart, kidney, lung,
and testis, transcripts containing exon 110 predomi¬
nate (Fig. 3A, Table 2, and data not shown). Interest¬
ingly, although exons 15 and 17 were both present in
hippocampal GR mRNA (together accounting for
-17% of GR mRNA in hippocampus), in liver and
thymus they were below the limit of detection of
the RNase protection assay (i.e. <1% of the total)
(Table 2). Furthermore, exon 1.,.,-containing tran¬
scripts were relatively more abundant in hippocampus
than in liver RNA but were below the limit of detection
of the assay in thymus (Table 2). Exon 11p identified in
a 5'-RACE clone from thymus, was detectable only in
thymus RNA by RNase protection analysis (Fig. 3B
and Table 2). Exon 16 was not detected among the
products of 5'-RACE PCR on hippocampal RNA, pos¬
sibly as a consequence of the hybridization of the

Fig. 1. Sequence of 5'-DNA Flanking Exon 2 of the Rat GR Gene
Numbering is with respect to the translation start, at +1. Shaded regions indicate exon 1 sequences found in 5'-RACE clones

amplified from hippocampal GR mRNA. In the case of exon 16 (which was not represented among the RACE clones) the shaded
nucleotides are those present in the cDNA sequence (22). The start of exon 2 is at -13. GC boxes referred to in the text are
underlined-, a putative NGFI-A site and a sequence identical to a footprinted region in the human GR gene which binds AP2
(referred to in the text) are boxed.
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Fig. 3. RNase Protection Analysis of the Abundance of Alternative Exon 1-Containing GR mRNAs in Rat Hippocampus, Liver,
and Thymus

RNase protection assays were carried out on 50 jxg total RNA from adult male rat hippocampus (H), liver (L), or thymus (T).
Lanes marked Y contained yeast RNA. Lanes marked + contained undigested probe; M, markers. A, RNase protection of exon
110-containing GR mRNA. Arrowheads indicate the positions of the 186-nucleotide fragment protected by GR mRNA transcripts
containing exon 2 but not exon 110 and the 306-nucleotide fragment protected by transcripts containing exon 110 and exon 2.
The lane containing thymus RNA was from an adjacent gel run in parallel under identical conditions. B, RNase protection of exon
1.,-containing GR mRNA. Arrowheads mark the 186-nucleotide fragment protected by GR mRNA transcripts containing exon 2
but not exon 1, and the 228-nucleotide fragment containing exon 1, and exon 2. Note that, for quantitation, the 215-nucleotide
band (which also contains exon 1, spliced to exon 2) was included.

Table 2. Relative Abundance of Alternative Exon 1-

Containing GR mRNA in Rat Hippocampus, Liver,
and Thymus
Exon Hippocampus Liver Thymus

1, 0 0 25.6%, 27.1%
^2 0 0 0

14 0 0 0

% 8.1%, 7.4% 0 0
^ 6 17.0%, 20.7% 10.0 ± 1.3% (6) 21.9%, 19.9%
17 8.0 ± 3.7% (3) 0 0

110 61.3%, 63.8% 74.8%, 77.5% 52.7%, 58.9%
In 12.5%, 7.9% 2.2%, 1.7% 0

Summary of RNase protection assays carried out as de¬
scribed in the text. In each case, the amount of exon 1 is
expressed as a percentage of the total amount of GR mRNA
in that particular tissue. Where individual values are shown,
the results for each of two independent experiments are
given. Where the experiment was carried out more than
twice, values shown represent the mean ± sem (n). Levels of
exon 14- and exon 12-containing mRNA were below the limits
of detection (—1 %) in the three tissues examined in each of
two experiments.

5'-RACE UAP-anchor primer [which contains a
G(GGIIG)3 sequence] to a C8 sequence close to the
3'-end of exon 16; 5'-RACE products likely to contain
only very short amounts of exon 1 sequence were not
analyzed. However, exon 16 mRNA transcripts were
expressed in all three tissues, representing around
10-20% of total GR mRNA (Table 2). Levels of exon
14_- and exon 12-containing GR mRNA were below the

limit of detection of the RNase protection assay
(Table 2).

Distribution of Alternate Exon 1 -Containing GR
mRNA Transcripts within the Hippocampus

Using in situ mRNA hybridization, we mapped the
distribution of transcripts containing the major alter¬
nate first exons of the GR gene expressed in the
hippocampus. A similar sized cRNA probe comple¬
mentary to the 5'-end of the common exon 2 hybrid¬
ized in a pattern equivalent to that documented for GR
mRNA in previous studies (26) (Fig. 4A). Using cRNA
probes specific to the major alternate first exons em¬

ployed in the hippocampus, we found that the pre¬
dominant exon 110-containing transcript was distrib¬
uted very similarly to total GR mRNA, with high
expression in the dentate gyrus and CA1 and lower
expression in CA3 and CA4 (Fig. 4E). In contrast, GR
mRNA transcripts containing exons 15, 17, or 1„
showed a more homogeneous distribution, although in
each case expression was highest in the dentate gyrus
and CA1 region of hippocampus (Fig. 4F, C, and G,
respectively).

Promoter 17 Activity Is Highest in Central
Nervous System (CNS)-Derived Cells

To investigate whether the alternate exons 1 are as¬
sociated with promoter activity, regions of the rat GR
gene were joined, within each of the alternate exons 1,
directly to a luciferase reporter gene (Fig. 5A). Lucif-
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Fig. 4. In Situ Hybridization Analysis of the Distribution of GR mRNA within Hippocampus
In situ mRNA hybridization was carried out on rat hippocampus using exon 1 -specific cRNA probes. Distribution of GR mRNA

containing (A) exon 2 (total GR mRNA) and alternative exons 1 as follows: (C) exon 17; (E) exon 110; (F) exon 15; and (G) exon 11v
Representative sense controls are shown in (B) exon 2 (sense control) and (D) exon 17 (sense control). Arrows indicate dentate
gyrus (DG), CA1, and CA3. Exposure times were 5 days (A, B, and G), 6 days (C, D, and E), and 12 days (F).

erase activity therefore arises from chimeric RNA tran¬
scripts encoding part of an alternate exon 1 of the GR
gene at the 5'-end and represents the activity of the
promoter that directs transcription through that indi¬
vidual exon 1. Although transcription may additionally
originate from alternate promoters present on the
same genomic DNA fragment, these transcripts will
not be transcriptional fusions to luciferase and will not,
therefore, result in luciferase activity (there is no splice
acceptor site upstream of the luciferase gene in these
constructs). To measure promoter activity of the whole
CpG island, including exons 14-1n, plasmid P2 was
constructed in which the GR gene is joined to lucif¬
erase within exon 2 Oust before the translation start)
(Fig. 5A). In P2, RNA initiating at any of the transcrip¬
tion start sites will be spliced, from the donor site at
the 3'-end of the respective exon 1 onto the acceptor
site at the 5'-end of the common exon 2; luciferase
reporter activity therefore reflects the total promoter
activity of the DNA fragment inserted into P2.

Promoter activity was assayed in transiently trans-
fected HepG2 (human hepatoma), C6 (rat glioma), and
B103 (rat neuroblastoma) cells. P2 had the highest
promoter activity in all three cell lines examined,
whereas the same fragment in the reverse orientation
with respect to luciferase had no significant activity
(Fig. 5B). Activity of all constructs was similar in all
three cell lines with the exception of P17. P17 was,
apart from P2, the most active construct in B103 and
C6 cells but was relatively less active in HepG2 cells
(Fig. 5B). Promoter activity of P110 was high and P1
activity low in all three cell lines (Fig. 5B).

Differential Regulation of Variant GR mRNA
Transcripts by Early-Life Events

Neonatal handling causes marked and permanent in¬
creases in GR mRNA expression in hippocampus (27).
Strikingly, neonatal handling induced expression of
GR mRNA containing the hippocampus-specific exon
17 by 2.5- to 3-fold selectively across all hippocampal
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Fig. 5. Transfection Analysis of Promoter Activity Associated with the Alternate Exons 1 of the Rat GR Gene
A, Diagrammatic representation of constructs used in transfection analysis. Restriction fragments containing regions of the rat

GR gene were fused, within specific exons, to the luciferase reporter gene in a modified pGL3-Basic vector. P2(rev) contains the
identical fragment to P2, in the reverse orientation with respect to luciferase. ▲ indicates the splice acceptor site in the intron 5'
of exon 2. B, Promoter activity of regions of the GR gene in three cell lines, HepG2 hepatoma cells, C6 glioma cells, and B103
neuroblastoma cells. Activity of P2 (spanning the whole CpG island, fused to luciferase within exon 2) was nominally set to 100%
for each cell line, and activity of the other constructs was expressed relative to this value. Values represent means ± sem.

CA1 CA3 CTX

Fig. 6. Exon 17-containing GR mRNA Is Induced in Hippocampus by Neonatal Handling
In situ mRNA hybridization analysis of GR mRNA containing exon 17 (A) or exon 110 (B) within the dentate gyrus (DG), the CA1

and CA3 pyramidal cell fields of the hippocampus and the cortex (CTX). Expression was measured in handled animals (hatched
columns) and nonhandled animals (black columns) and is expressed as the number of grains over an area equivalent to a CA1
neuron. Values represent mean ± sem; n = 5. *, P < 0.05.

subfields (Fig. 6A), whereas expression of exon 17-
containing GR mRNA in cortex, where neonatal han¬
dling has no effect on expression of GR, was un¬
changed by the manipulation (Fig. 6A). In contrast, the
level of expression and distribution of the major exon
110, and the other hippocampus-specific exons 15-
and 1.,.,-containing GR mRNAs were unaffected by
neonatal handling (Fig. 6B and data not shown). To

start to examine whether this effect was confined to
the hippocampus, we examined rats exposed prena-
tally to dexamethasone (dexamethasone administered
during week 3 of gestation). This manipulation selec¬
tively and permanently increases hepatic GR mRNA
levels by 25% (15). In these animals RNase protection
assays show a significant decrease in the relative
amount of exon 110-containing GR mRNA in the liver in
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the dexamethasone-treated group (73 ± 3%; n = 10)
compared with controls (82 ± 2%; n = 9, P < 0.05) (an
increase in one of the minor GR mRNA species would
reduce the level of exon 110-containing RNA as a
percentage of the total). These data suggest that pre¬
natal dexamethasone treatment induces one of the
minor mRNA variants. However, RNase protection as¬
says demonstrated that the level of exon 16-containing
GR mRNA was unchanged in livers from adult rats
treated with dexamethasone prenatally (9 ± 1%; n =

4), compared with controls (9 ± 1%; n = 5). Exon 1,,
15> 17, and 1.,.,-containing GR mRNAs remained very
low or were undetectable, suggesting that an as yet
unidentified exon 1 -containing GR mRNA is induced in
these animals.

DISCUSSION

The organization of the 5'-end of the rat GR gene is
complex. Here we show the gene encodes at least 11
alternate first exons, some of which are tissue-spe¬
cific, and one of which is differentially and permanently
induced by early-life manipulation. None of the alter¬
nate exons 1 is predicted to alter the amino acid
sequence of the GR itself; there is an in-frame stop
codon present immediately 5' to the translation initia¬
tion site in exon 2, common to all the mRNA variants.
Of the 10 alternate exons 1 we identified by 5'-RACE,
4 correspond to alternative exons 1 previously identi¬
fied in mouse, exons 1,, 15, 19, and 110 (17, 21). Rat
exon 1, lies at least 15 kb upstream of exon 2 (it is not
present on A208 containing 15 kb of DNA 5' of exon 2)
and is probably in a similar position to the correspond¬
ing mouse exon. All the other alternate exons 1 iden¬
tified here are novel. Sequence analysis of DNA flank¬
ing the 5'-end of exon 2 revealed that most of the
novel exons 1 lie within a CpG island highly conserved
between rat and mouse. The 3-kb CG-rich region,
therefore, contains at least 8 alternate exons 1 (includ¬
ing exon 16, present in the published rat GR cDNA
sequence), at least 5 of which are conserved in the
mouse. The CpG island is also conserved in the hu¬
man GR gene, indicating that the use of alternate
exons 1 in GR gene expression may also occur in
humans.
At least 6 of the alternate exons 1 are present in vivo

in rat GR mRNA. In all adult rat tissues examined, GR
mRNA containing exon 110 predominated, accounting
for at least half of total GR transcripts. Exon 16 was
also present ubiquitously, in a substantial minority of
total GR mRNA. All other alternate exons 1 were, to
varying extents, expressed in a tissue-specific man¬
ner. Exon 1n was well represented in GR mRNA in
thymus, but was absent from hippocampus and liver.
Preliminary data suggest that exon 1is not restricted
to a specific subset of cells in thymus, but is ex¬
pressed similarly in thymocytes and thymic epithelium
(A. Dammermann, C. Blackburn, and K.E. Chapman,

unpublished observations). Hippocampal RNA con¬
tained significant levels of the minor exon 15-, 17-, and
1.,.,-containing GR mRNA variants that were ex¬
pressed at either low or undetectable levels in liver and
thymus. Five other exon 1 variants (12, 13, 14, 1a, and
19) are unlikely to be of significance as they were
poorly represented in the 5'-RACE PCR or were un¬
detectable by RNase protection assays. It is unlikely
that any further GR mRNA variants are present at
significant levels in hippocampus as the sum of the
exon 1 variants examined was close to 100% of total
mRNA. Interestingly, exon 110-, 16-, and 1-,.,-contain¬
ing transcripts accounted for only 90% of the GR
mRNA in liver, suggesting that additional novel exon 1
sequences may be present.

In transient transfection experiments, a construct
encoding the whole CpG island of the GR gene, in¬
cluding 8 of the alternate exons 1 and the splice ac¬
ceptor site within the intron 5' of exon 2, fused to a
luciferase reporter gene within exon 2 (P2), exhibited
substantial promoter activity in all cell lines tested.
This activity results from transcripts originating at any
point within the CpG island that are spliced from an
appropriate donor site onto the splice acceptor site 5'
to exon 2, and represents the sum of the activity of
individual promoters on the genomic DNA fragment.
Promoter activity was also associated with particular
regions of the CpG island, where the fusion to lucif¬
erase was made within specific exon 1 sequences. In
these cases, no splice acceptor site is available within
the luciferase gene, and a transcriptional fusion is
generated between the specific exon 1 and the lucif¬
erase reporter; luciferase activity therefore reflects
transcription through the specific exon 1. Relative ac¬
tivity of these constructs in different cell types was
similar with one notable exception, P17 (see below).
The low activity of P1-n, compared with the shorter
constructs or to P2, probably results from promoter
competition by the stronger promoters directing tran¬
scription of exon 16 and exon 1,0, neither of which will
generate productive RNA transcripts encoding lucif¬
erase, due to the lack of a splice acceptor site. Inter¬
estingly, P17, fused to luciferase within exon 17, had
the highest activity of any single promoter construct
(P2 activity reflecting activity of the whole region) in
B103 and C6 cells, both CNS derived. The activity of
this construct was low in hepatic cells, in which P16
and P110 had the highest activity. In vivo, GR mRNA
transcripts containing exon 17 were present at signif¬
icant levels in hippocampus, but absent from liver,
suggesting that factors present in cells of CNS origin
are responsible for transcription initiation at the pro¬
moter upstream of exon 17 in rat hippocampus.
Neonatal handling induces an increase of approxi¬

mately 50% in total GR mRNA levels in all subfields of
the hippocampus, but not in cortex (27). Only the 17
variant GR mRNA was induced in the hippocampus by
handling, with a 2- to 3-fold increase, also across all
fields of the hippocampus. RNase protection assays,
carried out on RNA extracted from the whole hip-
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pocampus (which will include glia and interneurons, as
well as pyramidal cells and the granule cells of the
dentate gyrus) showed that exon 17-containing GR
mRNA is normally present in approximately 10% of
total GR mRNA in hippocampus. The observed induc¬
tion of 17 may not appear sufficient to account for the
overall increase of approximately 50% in steady state
GR mRNA levels after handling (27). However, the
heterogeneity of the hippocampus as a whole may
have resulted in a dilution of exon 17-containing GR
mRNA if it is expressed predominantly in the pyramidal
cell layers of the hippocampus and granule cells of the
dentate gyrus, thereby lowering the estimate of the
amount of exon 17-containing GR mRNA present in
these hippocampal neuronal layers obtained by
RNase protection assays of whole hippocampus. In¬
deed, we have previously noted a similar discrepancy
between the magnitude of change in mRNA encoding
the type I inositol 1,4,5-triphosphate receptor during
human pregnancy measured by RNase protection as¬
says and in situ mRNA hybridization (28). Although we
cannot exclude the possibility that an additional minor
variant of GR mRNA is induced by neonatal handling,
none of the other main variant GR transcripts were
altered by handling. These data suggest that neonatal
handling programs increased hippocampal GR via in¬
creased transcription from a novel promoter, 17, active
predominantly in CNS-derived cells. A similar perma¬
nent induction of a minor promoter of the GR gene
appears likely in the liver after prenatal dexametha-
sone exposure. Within the overall increase in GR
mRNA in liver of prenatally treated rats, the proportion
containing the predominant exon 110 fell, although we
were unable to identify a specific transcript induced.
Nevertheless, the clear implication is that early life
programming events selectively alter otherwise minor
tissue-specific GR gene transcripts, whereas the ma¬
jor and ubiquitous promoters are unaffected, thus pro¬
gramming GR levels for the lifetime of the animal in a
tissue-specific manner. Conversely, it is possible that
manipulations that decrease GR levels may decrease
the levels of the minor GR mRNA variants.
5HT appears crucial in mediating the effects of neo¬

natal handling upon GR expression in hippocampus
(29, 30), with subsequent effects upon HPA axis ac¬

tivity (31, 32). The transcription factors NGFI-A and
AP2 have been implicated in the induction of GR in the
hippocampus after handling or with 5HT (33). Intrigu-
ingly, a sequence in the human GR gene that binds
AP2 in vitro (34) is completely conserved in the rat GR
gene (at -2718). Additionally, within the CpG island,
the GR gene contains 16 GC boxes (GGGCGG), which
form the core consensus Sp1 site (35) and which may
also bind NGFI-A; indeed, there is a sequence exactly
matching the consensus binding site for the family of
zinc finger proteins that includes NGFI-A (36) immedi¬
ately upstream of exon 17. We speculate that the in¬
creases in AP2 and NGFI-A induced by neonatal han¬
dling cause increased transcription from a promoter

adjacent to exon 17, leading to increased total GR
mRNA.

It remains possible that transcription may originate
at a common promoter further upstream, resulting in a
common exon 0, which is then spliced upstream of the
alternate exons 1. We consider this to be extremely
unlikely for the following reasons. First, sequence
analysis of 58 independent 5'-RACE clones neither
provided evidence for a common 5'-leader sequence
nor revealed any lack of colinearity with the genomic
sequence. Second, the predominant rat exon 110 is
homologous to exon 1 of the human GR gene (16, 18)
for which a transcription start site has been mapped. A
number of transcription start sites exist (typically for a
TATA-less CG-rich promoter), but all are located
within the region corresponding to rat exon 110, and all
appear to extend to the same 3'-splice site (16, 18).
Similarly, sequencing of our 5'-RACE clones and
RNase protection analysis (to map transcription start
sites) suggests that a number of transcription starts
exist at least for exon 110 and probably for other exons
1 also (J. A. McCormick, V. Lyons, and K. E. Chapman,
unpublished observations). Indeed, the 5'-end of the
longest of our 5'-RACE clones containing exon 110
corresponds exactly to one of the transcription starts
mapped for human GR mRNA (18) (Fig. 1). Finally, our
transfection data suggest that promoter activity is as¬
sociated with the 5'-flanking regions of specific exons
1. Thus, it is most probable that alternate exon 1 usage
results from transcription initiation at a number of pre¬
dominant transcription start sites within the CpG is¬
land, associated with promoter activity. CpG islands
are frequently associated with multiple transcription
initiation sites, often spread over a distance of up to 1
kb, resulting in transcripts with differing exons 1, all of
which, however, are spliced at the same 3'-splice
donor site onto exon 2 (e.g. Refs. 37 and 38). Multiple
5'-ends are not usually associated with alternate
splice donor sites, giving rise to discrete alternate
exons 1, as we have observed for the rat GR gene. It
is possible that, as the CpG island in the GR gene is
very large, transcription initiates at a large number of
initiation sites spread over the entire 3-kb region. The
probability of splice donor sites occurring within such
a large region is high, and the splicing machinery
associated with the RNA polymerase complex may
simply splice from the first appropriate splice donor
site that occurs to the splice acceptor site before exon
2. This hypothesis is supported by the sequence of
mouse exon 1E (corresponding to exon 1„) which, at
the 5'-end, includes a portion of exon 1C (correspond¬
ing to exon 110) as well as the intervening genomic
DNA (21). Possibly, transcription originated too far 3'
within exon 1 , 0 to utilize the exon 1,0 splice donor site;
splicing then occurred at the next available splice do¬
nor site, 3' of exon 11V Certain sites within the CpG
island will be favored for transcription initiation, and
this will probably vary in a tissue-specific manner.
Indeed, we see the highest number of variant exons 1
in hippocampus, a tissue exhibiting a high degree of
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complexity. This hypothesis predicts that more alter¬
native exons 1 may exist in the CpG island if more
splice donor sites are predicted, and we have prelim¬
inary evidence that this is the case (V. Lyons and K. E.
Chapman, unpublished observations).
The use of multiple and tissue-specific promoters

provides a flexible mechanism for distinct tissue-spe¬
cific regulation of individual promoters by hormonal
signals and has been described for other members of
the steroid receptor family (39-41). GRs are widely
expressed in virtually all cell types, although expres¬
sion levels and functions vary considerably. The com¬
plex organization of the 5'-end of the GR gene may
reflect this need for diverse tissue-specific regulation.
We speculate that exon 1 0 is constitutively expressed
in all tissues, providing a basal or minimal constitutive
level of GR gene transcription {e.g. Ref. 8). The exis¬
tence of tissue-specific promoters (e.g. 1, in thymus
and 17 in hippocampus) permits differential regulation
of GR in specific cell types and may explain the op¬
posite regulatory effects of glucocorticoid hormones
on the levels of GR in T lymphocytes and hippocam¬
pus (10, 42). In addition, the presence of several minor
promoters clustered together may permit regulation of
one or more by signal transduction pathways, result¬
ing in moderate, but biologically significant, changes
in total GR mRNA in a specific cell type and thus,
ultimately, the glucocorticoid signal on the target
genes. Our data illustrate the complexity of transcrip¬
tional regulation of GR and provide a basis to under¬
stand tissue-specific effects of early-life programming.

MATERIALS AND METHODS

Experimental Animals

Animals were maintained under controlled lighting (lights on
0700 to 1900 h) and temperature (22 C) with water and food
available ad libitum. Tissues for RNA isolation and in situ

hybridization were from adult (3-8 months) male Wistar rats
(Charles River UK Ltd, Margate, Kent, UK). Animals treated in
utero with dexamethasone were male offspring (8 months
old) of female Wistar rats administered dexamethasone (100
pg/kg per day) during week 3 of pregnancy, as previously
described (15). For neonatal handling, Long-Evans rats
(Charles River Canada, St. Constant, Quebec, Canada) were
used as previously described (30). Handling was carried out
daily for 2 weeks. Male animals were selected at random from
a total of five litters and were used when they reached adult
age (3-5 months).

All studies involving animals described herein were ap¬
proved of by the UK Home Office and were performed in
strict accordance with the UK Home Office Animals (Scien¬
tific Procedures) Act, 1986.

Isolation of RNA

Total RNA was isolated using the guanidinium isothiocyanate
method (43). Integrity was verified by electrophoresis on
formaldehyde-agarose gels.

5 -RACE PCR

5'-RACE PCR was performed using a commercial kit (Life
Technologies , Gaithersburg, MD) according to the manufac¬
turer's instructions. First-strand synthesis of GR cDNA was
carried out at 42 C for 30 min on 5 j^g total RNA using 8 U/pl
Superscript II RT and 100 nM primer GSP1 (5'-AAGGGAT-
GCTGTATTCA-3') in a 25 pi reaction containing 20 mM Tris
HCI (pH 8.4), 50 mM KCI, 3 mM MgCI2, 10 mM dithiothreitol,
400 fiM deoxynucleoside triphosphates (dNTPs). After RNase
H treatment, cDNA was added to a 24 pi reaction containing
20 mM Tris HCI (pH 8.4), 50 mM KCI, 1.5 mM MgCI2, 200 pM
dCTP, and 0.4 U/pl terminal deoxynucleotidyl transferase.
dC-tailed cDNA (5 pi) was used in a PCR reaction with 400 nM
anchor primer (5'-CUACUACUACUAGGCCACGCGTCGAC-
TAGTACGGGIIGGGIIGGGIIG-3'), 440 nM primer GSP2 (5'-
ACTCCAAATCCTTCAAGAGGTCA-3'), 20 mM Tris HCI (pH
8.4), 50 mM KCI, 1.5 mM MgCI2,200 pM dNTPs, and 2.5 U Tag
DNA polymerase (Promega Corp., Madison, Wl), with 35
cycles of PCR amplification (96 C, 45 sec; 45 C, 40 sec; 72 C,
1.5 min), followed by 10 min, 72 C. A nested PCR was carried
out on the products of the first PCR reaction, under the same
conditions with the following primers: UAP (5'-CUACUAC-
UACUAGGCCACGCGTCGACTAGTAC-3') and GSP3 (5'-TT-
GGAATCT-GCCTGAGAAGC-3'). PCR products were cloned
into pGEM-T or pGEM-T-easy (Promega Corp.) and se¬
quenced using GSP3.

Subcloning and Sequence Analysis of the Rat GR
Promoter

A208 contains exon 2 and approximately 15 kb of the rat GR
gene flanking the 5'-end of exon 2 (M. D. Jacobson, unpub¬
lished data). The sequence between -4600 and +500 (the
translation start close to the 5'-end of exon 2 is designated
+ 1) was determined from restriction fragments subcloned
from A208 on both strands using the Sequenase II system
(Amersham International, Buckinghamshire, UK) or the
Thermo Sequenase 33P-radiolabeled terminator cycle se¬
quencing system (Amersham International). Sequence anal¬
ysis, including identification of putative transcription factor-
binding sites was carried out using computer software
available at the UK MRC Human Genome Mapping Project
Resource Centre.

Accession Number

The nucleotide sequence data reported in this paper will
appear in the EMBL, GenBank, and DDBJ Nucleotide Se¬
quence Databases under the accession number AJ271870.

Transfection Analysis Of GR Promoter Activity

Plasmids that fused the rat GR gene to a luciferase reporter
gene were constructed from appropriate restriction frag¬
ments ligated into pGL3-Basic (Promega Corp.) containing a
modified polylinker as follows: P2, a H/ndlll/Sspl fragment
encoding rat GR from -4572 to -9 (the ATG translation start
is designated +1); P2(rev), the same fragment in the reverse
orientation with respect to luciferase; P16, a Hfndlll/Psfl frag¬
ment encoding -4572 to -3336; P17, a Hind\\\/Bgl\ fragment
encoding -4572 to -2931; P110, a H/ndlll/H/'ncll fragment
encoding -4572 to -2318, and P1„, a H/'ndlll/Psfl fragment
encoding -4572 to -1767. Plasmid DNAs used for transfec-
tions were purified by CsCI density gradient centrifugation.

HepG2 (human hepatoma), C6 (rat glioma), and B103 (rat
neuroblastoma) cells were maintained in DMEM supple¬
mented with 10% (vol/vol) FBS, 100 lU/ml penicillin, and 100
pg/ml streptomycin. Twenty four hours prior to transfection,
HepG2 and C6 cells were seeded at 5-7 x 10s cells per
60-mm dish and B103 cells at 2 x 105 cells per 60-mm dish.
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Cells were transfected using the calcium phosphate proce¬
dure (44) with 1 p.g modified pGL3-Basic or an equimolar
amount of GR promoter-luciferase plasmid (plasmids varied
markedly in size), 1 ixg of the /3-galactosidase expression
plasmid pCH110 (Pharmacia Biotech, Piscataway, NJ), and
carrier pGEM-3 (Promega Corp.) to a total of 10 /xg. Forty
eight hours after transfection, cells were lysed and luciferase
activity determined as previously described (44). /3-Galacto-
sidase activity was determined using the Tropix Galacto-
Light kit (Cambridge Bioscience, Cambridge, UK), and lucif¬
erase activity/3-galactosidase activity was calculated.
Transfections were carried out in triplicate; each experiment
was repeated at least twice and two independently prepared
plasmid DNAs were used for each promoter construct.

RNase Protection Assays

With the exception of exon 16 (see below), exon 1-specific
cRNA probes were synthesized from corresponding 5'-RACE
subclones, linearized, and transcribed with either T7 or SP6
phage polymerase, as appropriate, in the presence of either
[a-32P]-UTP or [a-32P]-GTP (3000 Ci/mmol; Amersham Inter¬
national). The template used to synthesize an exon 1 ^spe¬
cific cRNA probe was made by subcloning into pGEM-T-easy
an RT-PCR product generated from total rat liver RNA using
GSP3 (complementary to exon 2) and 5'-primer (5'-ACC-
TGGCGGCACGCGA-3').

RNase protection assays were carried out using a Hyb-
Speed RPA kit (Ambion, Inc., Austin, TX). Hybridization con¬
ditions were optimized in preliminary experiments using syn¬
thetic RNA templates. Total RNA (50 /xg) was coprecipitated
with 5-10 x 105 cpm cRNA probe, resuspended in 20 p.1
hybridization buffer (supplied with the kit) at 95 C, and incu¬
bated at 68 C for 1 h. Reactions were incubated with RNase
A/T, (1:25 dilution) for 30 min, 37 C, and RNA products were
separated on a 4% polyacrylamide gel containing 7 M urea
and visualized using autoradiography or a Phosphorlmager
(Molecular Dynamics, Inc., Sunnyvale, CA). Data were ana¬
lyzed using Student's f test. Significance was set at P < 0.05.

In Situ mRNA Hybridizations

[35S]UTP-labeled RNA probes were synthesized as previ¬
ously described (26). After DNase I treatment, unincorporated
nucleotides were removed by passage over a Sephadex
G-50 Nick column (Pharmacia Biotech, St Albans, UK). Exon
15-, 17-, 1,,-. and exon 2-specific templates were generated
by PCR carried out on subclones of A208 using the following
oligonucleotides tagged with sequences encoding either a T3
promoter (to make sense RNA) or a T7 promoter (to make
cRNA or antisense RNA): 15, 5'-primer (5'-TATTAACCCT-
CACTAAAGGGTAAGAGGAGGGCGGACT-3'), 3'-primer (5'-
TTAAT-ACGACTCACTATAGGGCCAGCGCGCTCACACT-
3'); 17, 5'-primer (5'-CATTAACC-CTCACTAAAGGGC-
ACCGTTTCCGTGCAT-3'), 3'-primer (5'-TTAATACGACT-
CAC-TATAGGGCAGCGTGTGCCGACCT-3'); 1„, 5'-primer
(5'-TATTAACCCTCACTAAA-GGGAGCGGCGTCTGGACC-
3'), 3'-primer (5'-TTAATACGACTCACTATAGGGCTA-
GCGCTCAAGTTGTC-3') and exon 2, 5'-primer (5'-
ATTAACCCTCACTAAAGGGCC-AATGGACTCCAAAGAA-3')
and 3'-primer (5'-ATAATACGACTCACTATAGGGAA-
TCTGCCTGAGAAGC-3'). The template used to synthesize
exon 110-specific cRNA was generated by PCR from an exon
110 5'-RACE clone using UAP and 3'-primer (5'-
ATAATACGACTCACTATAGGGCTTTGGAGTCCA-
TTGGCA-3').

In situ-hybridization histochemistry was carried out as pre¬
viously described (26, 45). Silver grains were counted under
bright-field illumination using an image analysis system
(MCID, Research Imaging, St. Catherine's, Ontario, Canada).
Results were analyzed blind and background, counted over

adjacent areas of neuropil, was subtracted. Data were ana¬
lyzed using Student's f test. Significance was set at P < 0.05.
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