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Abstract
Discriminative confidence estimation along with confidence
normalisation have been shown to construct robust decision
maker modules in spoken term detection (STD) systems.
Discriminative confidence estimation, making use of term-
dependent features, has been shown to improve the widely used
lattice-based confidence estimation in STD. In this work, we
augment the set of these term-dependent features and show a
significant improvement in the STD performance both in terms
of ATWV and DET curves in experiments conducted on a Span-
ish geographical corpus. This work also proposes a multiple lin-
ear regression analysis to carry out the feature selection. Next,
the most informative features derived from it are used within
the discriminative confidence on the STD system.
Index Terms: confidence estimation, feature selection, spoken
term detection, speech recognition

1. Introduction
Information retrieval from speech has received much interest in
the last years, particularly for finding relevant information from
audio archives. This led NIST to organise the Spoken Term De-
tection (STD) evaluation [1], and suggested the development of
practical systems, including [2]–[9]. The standard STD archi-
tecture consists of an ASR subsystem to produce the word/sub-
word lattices and a STD subsystem for term detection, as it is
depicted in Figure 1.

Figure 1: The standard STD architecture: the speech recogni-
tion generates the lattices from the speech signal; a term detec-
tor searches these lattices for putative occurrences of the search
terms; a decision maker sets if each putative detection is reli-
able. The NIST tool is used for system evaluation, in terms of
ATWV and DET curves.

Searching in the output of Large Vocabulary Continuous
Speech Recognition (LVCSR) systems, i.e, word lattices, has

been shown to work well when the query terms are just com-
posed of in-vocabulary words. However, as claimed by Logan
[10], at about 12% of the users’ queries contain OOV words,
which cannot be retrieved from word lattices. Common ap-
proaches to solve this problem consist of searching on sub-word
lattices the phonetic representation of the enquiry terms ( [11]–
[13], among others). As this work focuses on OOV words, the
STD system is built from a phone recognizer to extract a phone
lattice and a term detection tool to search for putative occur-
rences of the enquiry terms through this lattice.

An essential component of a STD system is the decision
maker, which examines each putative detection and decides if
it is considered to be a hit or a false alarm (FA) based on con-
fidence measures. In a previous work [14] the confidence for
each detection cp(d) was derived from a mapping of three dif-
ferent lattice-based features:

g : (cf (d), R0(K), R1(K)) −→ cp(d) (1)

where cf (d) is the lattice-based confidence proposed by Wessel
et al. [15] and R0(K) and R1(K) represent the effective occur-
rence rate and the effective false alarm rate and are defined as
follows:

R0(K) =

P
i cf (dK

i )

T
(2)

and

R1(K) =

P
i (1− cf (dK

i ))

T
(3)

where cf (dK
i ) represents the lattice-based confidence of the i-

detection of the term K and T is the total length of the audio.
Next, to construct g, two well-known discriminative ap-

proaches (MLP and SVM) were employed, and the resulting
confidence cp(d) was passed through a confidence normalisa-
tion process to compute the final confidence for each detection
ζ(cp(d)). This discriminative confidence was shown to over-
come the drawbacks of tradicional lattice-based confidence ap-
proaches [2],[5],[16]. Readers are referred to [14] for more de-
tails about the confidence normalisation. The mapping derived
to construct g provides with a flexible framework in which mul-
tiple features can be easily integrated into the discriminative
model to compose the discriminative confidence from a new
mapping m as follows:

m : (cf (d), R0(K), R1(K), f0, f1, ...) −→ cp(d) (4)



where f0, f1,... denote aditional features.
Next, the confidence normalisation converts this discrimi-

native confidence cp(d) into ζ(cp(d)), which represents the fi-
nal confidence for each detection d. Given the power of the
discriminative confidence estimation for STD, we hypothesise
in this work that the addition of new features in this mapping
may enhance the hit/FA discrimination, leading to a significant
improvement in the STD system. However, the choice of these
aditional features is not an easy task and some quick and op-
timal mechanism is necessary since a random selection crite-
ria is sub-optimal and may provide with worse performance.
Therefore, the novelty of this work focuses on three different
parts: 1) we present a putative set of relevant (both domain- and
vocabulary-independent) features for the new mapping m, 2)
we conduct a linear regression analysis to measure which fea-
tures are more likely to contribute more to the discriminative
confidence estimation and 3) we check the consistency of such
analysis on STD performance. We chose the MLP as discrim-
inative model since the previous work [14] did not report any
meaningful difference between MLP and SVM.

The rest of the paper is organised as follows: The individ-
ual features used in the analysis and in the new mapping are
described in Section 2. The experimental setup is presented in
Section 3. The linear regression-based feature analysis is pre-
sented in Section 4. The STD results are presented in Section 5.
The work is discussed in Section 6 and concluded in Section 7.

2. Individual features
In building the mapping to the discriminative confidence esti-
mator (MLP in our work) and partially inspired from the work
presented by Goldwater et.al [17], where they studied a set of
factors (features) that can contribute to a higher Word Error Rate
(WER) in ASR systems, the following sets of features have been
studied:

• Lattice-based features (LAT): This set of features com-
prises: the lattice-based confidence for each detection
(i.e., cf (dK

i ), computed as in [14]), R0 (i.e, the effec-
tive occurrence rate for each term defined by Equation 2)
and R1 (i.e, the effective false alarm rate for each term
defined by Equation 3).

• Lexical features (LEX): This set of features comprises
the total number of graphemes, vowel graphemes, con-
sonant graphemes, phones, vowel phones and consonant
phones for each term.

• Levenshtein distance features (LEV): The minimum,
maximum and mean Levenshtein distance for each term
against the other terms.

• Duration features (DUR): This set of features comprises
the duration of each detection, the duration divided by
the number of phones (phone speech rate) and divided
by the number of vowels (vowel speech rate) of each de-
tection.

• Position (POS): It represents if the detection was found
the first in the lattice, the last in the lattice or in any other
position.

• Prosodic features (PROS): They comprise the pitch
(maximum, minimum and mean pitch for each detec-
tion), the intensity (maximum, minimum and mean in-
tensity for each detection) and the voicing percentage
(i.e, the percentage of voiced speech for each detection

in the speech signal). All these features were collected
using Praat [18].

3. Experimental setup
The experiments were conducted on the geographical domain of
the ALBAYZIN database [19]. The geographic training set was
used for MLP training and parameter tuning while the geo-
graphic test set was used for the STD evaluation. We first
selected 605 OOV terms from the geographic training set for
MLP training and confidence normalisation. 500 terms of them,
which had 12651 occurrences in this set (henceforth training
set) were used for MLP training and 105 terms, with 10423
occurrences, (henceforth development set) for confidence nor-
malisation tuning. For the STD evaluation, we selected 400
OOV terms which had 11331 ocurrences in the geographic test
set (henceforth test set).

We built a phoneme-based speech recognizer from the HTK
tool [20] in N-best mode to produce a phone lattice. It used
state-clustered triphone models and 39-dimensional MFCC fea-
tures. A bigram was used as LM trained from the phonetic
training set. A grapheme-to-phone conversor was used to pre-
dict pronunciations for all the OOV terms. As term detector, we
used the Lattice2Multigram tool developed by Brno University
of Technology (BUT), which finds for an exact match of the
phone transcription of each term in the phone lattice.

We ran the STD system over the training set and detections
were labeled as hit or false alarm prior to train the MLP whose
parameters were optimised by cross-validation in this set. As
in [14], to account for the imbalance between positive and train-
ing examples, we trained balanced models with the same num-
ber of hits and false alarms. As in [14] the confidence normal-
isation parameters were estimated by running the STD system
over the development set. The STD evaluation, conducted over
the test set, used the MLP trained from the training set and the
confidence normalisation parameters tuned from the develop-
ment set.

4. Linear Regression Analysis
The final goal of our work is to improve confidence estimation
for STD by expanding the set of features used in the previous
work [14]. In Section 2 we have defined new sets of features
that hopefully will improve the ability to estimate the confi-
dence of a putative detection. Unfortunately, the computational
cost of evaluating all combinations of these features with an
MLP is prohibitive. Therefore we need to use a simpler and
less costly method to find out the most interesting features and
feature combinations to test within the MLP framework.

The method we have used is based on multiple linear re-
gression. We start by balancing the number of hits and false
alarms on the set used for MLP training. After that we apply
multiple linear regression to explain the binary decision of clas-
sifying each putative detection as a false alarm (0) or as a hit
(1) in terms of the features considered in Section 2. Instead of
considering each feature individually, we considered them as
belonging to the sets defined in Section 2. These sets could ei-
ther be wholly included or wholly excluded from the multiple
linear regression model. With these restrictions we performed
a stepwise optimisation in which at each step the set of features
that maximise the R2 statistic was added to the model. This
statistic can be interpreted as the amount of variance in the out-
put variable that is explained by the multiple linear regression
model, and the increment in R2 can be interpreted as the addi-



tional variance explained with the introduction of the new set
of features. Our hope is that the amount of additional variance
explained by each set of features is related to the improvement
achieved by the MLP when this set of features is added. Table
1 shows the results of this analysis, which indicate that Lattice-
based features used in a previous work [14] seem to be the most
informative set of features, followed by duration, prosodic and
lexical features. It is worth noting that the amount of additional
variance explained by the additional set of features is dramati-
cally reduced as new sets of features are added. This suggests
that the amount of information added by the newly proposed
features is somewhat residual, particularly for the two last sets
of features added. In next section, we will obtain ATWV results
using an MLP as confidence estimator using the sets of features
in Table 1 to check for correlation between the multiple linear
regression results and the MLP results.

Feature Sets R2 (%) R2 Increment (%)
LAT 52.3077 52.3077
+DUR 59.3618 7.0541
+PROS 60.0592 0.6974
+LEX 60.4241 0.3649
+LEV 60.5647 0.1406
+POS 60.5649 0.0002

Table 1: Stepwise Multiple Linear Regression results. Feature
sets are added in the order that maximises R2. Results show the
R2 statistic in percentage and its absolute increment in percent-
age attributed to the last feature set added.

5. STD results
5.1. Lattice-based features for discriminative confidence

We first present the improvement of the discriminative mod-
elling over the lattice-based confidence for confidence estima-
tion. Results presented in Table 2, and consistent with the pre-
vious work [14], show that the use of the discriminative confi-
dence outperforms the lattice-based confidence. Moreover, in
this work, the use of the discriminative confidence makes the
ATWV possitive. As the terms chosen for the STD evaluation
contain a number of phones that vary from 3 to 15, these 3-
phone terms cause many FAs in the STD system, making neces-
sary the discriminative confidence to achieve a positive ATWV.
Pairwise t-tests show the significant improvement (p < 0.001)
of the full set of lattice-based features over the single cf (dK

i )
feature in the discriminative confidence and over the lattice-
based confidence. Therefore, for the augmented set of features
for the discriminative confidence which is presented next, the
full set of lattice-based features was selected as baseline.

5.2. Augmented features for discriminative confidence

Experiments used the different features presented in Section 2
for the MLP-based discriminative confidence estimation and re-
sults are presented in Table 3. These experiments were con-
ducted in such a way that each set of features is incrementally
incorporated into the discriminative confidence as suggested by
the multiple linear regression analysis (see Section 4) (i.e, in-
corporating in each step the set of features that maximises R2).
Our results show that the new features proposed are able to im-
prove significantly the STD performance. Pairwise t-tests show
a significant improvement on the STD performance over the
lattice-based features (p < 0.001) when the lattice, duration,

Confidence Features ATWV
Lattice-based - -0.034
Discriminative cf (dK

i ) 0.0617
Discriminative cf (dK

i ), R0(K), R1(K) 0.2126

Table 2: STD performance with the lattice-based confidence
and the discriminative confidence from the cf (dK

i ) and the full
set of lattice-based features (i.e, cf (dK

i ), RO(K) and R1(K))
with the best result in bold.

and prosodic features are glued together to estimate the con-
fidence and a weak significant improvement (p < 0.03) with
these features over the combination of the lattice- and duration-
based features. DET curves presented in Figure 2 present more
remarkable differences for each set of features than a single op-
erating point based on ATWV. They show that the augmented
sets of features that contribute a considerably increment in R2

(above 0.6% in each step), outperform the lattice-based features
either for all the range or for much of the range, specially for the
set of features that maximises the STD performance in terms of
ATWV. Contrary, the set of features that contributes marginally
to such increment in each step (below 0.4%) achieves worse
performance.

Discriminative confidence features ATWV
LAT 0.2126
+DUR 0.2249
+PROS 0.2379
+LEX 0.2263
+LEV 0.2294
+POS 0.2284

Table 3: STD performance according to the introduction of each
set of features in the discriminative confidence with the best re-
sult in bold.

 0.001 0.002  0.005 0.01  0.02  0.05   0.1   0.2  0.5    1     2   

  40  

  60  

  80  

  90  

  95  

  98  

False Alarm probability (in %)

M
is

s 
pr

ob
ab

ili
ty

 (
in

 %
)

 

 

LAT
+DUR
+PROS
+LEX
+LEV
+POS

Figure 2: The DET curves according to the relevance of the
sets of features for discriminative confidence. The name of each
curve is given as in Table 1.

6. Discussion
By inspecting the multiple linear regression analysis in terms of
variance contribution and STD performance in terms of ATWV
and DET curves, we can observe consistent results regarding to



the feature selection. The lattice-based features, as they incor-
porate an actual confidence for each detection, explain much
of the variance at first step in the linear regression analysis.
The duration-based features, which were added to the model in
the second step, may help much on restricting the threshold for
short detections so that FAs caused by short terms or fast speak-
ing can be managed. Prosodic features were the third group
added in, and explained the most variance in the regression be-
sides lattice- and duration-based features. It may be attributed
to the fact that extreme values of pitch and energy usually cause
many ASR errors, as stated in [17].Taking pitch and energy into
account may help to compensate for this degradation, and may
control the detection errors it causes, mainly FAs in our case.

The rest of features, such as lexical features, position,
etc, do not contribute to explain much of the variance (with
a marginal gain ≈ 0.6% in total); accordingly, they lead to a
worse performance on STD. This suggests that their contribu-
tion have been fully addressed by the features that have been
introduced previously. The DET curves convey the same infor-
mation, about that the unsignificant features in fact reduced the
STD performance in most of the operation region. It must be
also noted, however, that R2 and ATWV measure the contribu-
tion of a candidate feature in different ways. R2 is computed
from the training data (i.e, the model fits the training data and
the increase in the variance is computed from this set as well)
and will never decrease with new features added in. On the con-
trary, ATWV is computed on the evaluation set, and therefore is
affected by the generality of the statistical model in use (MLP in
our case). This means that STD performance could be reduced
by unsignificant features even though they may increase R2 in
the regression analysis, due to the generalisation property of the
model.

7. Conclusions
This paper presents our investigation on feature selection for
model-based discriminative confidence for STD. Particularly,
we studied the feasibility of using a linear regression analysis
to select the most relevant features. Results of our experiments
show that the variance increase in the linear regression is highly
consistent with the performance increase in STD, and the fea-
tures selected based on the linear regression substantially en-
hanced the STD performance in a consistent way. This sug-
gests that a linear regression, although simple, is an efficient
method to select informative features for discriminative confi-
dence estimation. We also found that feeding all possible fea-
tures blindly into the discriminative model does not necessarily
improve the model power - trivial and noninformative features
might be detrimental. Extension of this study might hopefully
contribute to speech recognition in general.
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[7] S. Parlak and M. Saraçlar, “Spoken term detection for Turkish
broadcast news,” in Proc. ICASSP’08, Las Vegas, Nevada, USA,
March 2008, pp. 5244–5247.

[8] C. Parada, A. Sethy, and B. Ramabhadran, “Balancing false
alarms and hits in spoken term detection,” in Proc. ICASSP’10,
vol. 1, March 2010, pp. 5286–5289.

[9] D. Wang, S. King, and J. Frankel, “Stochastic pronunciation mod-
elling for spoken term detection,” in Proc. Interspeech’09, vol. 1,
September 2009, pp. 2135–2138.

[10] B. Logan, P. Moreno, J.-M. V. Thong, and E. Whittaker, “An ex-
perimental study of an audio indexing system for the web,” in
Proc. ICSLP’00, vol. 2, October 2000, pp. 676–679.

[11] M. Saraclar and R. Sproat, “Lattice-based search for spoken ut-
terance retrieval,” in Proc. HLT-NAACL 2004, Boston, USA, May
2004, pp. 129–136.

[12] J. Mamou, B. Ramabhadran, and O. Siohan, “Vocabulary inde-
pendent spoken term detection,” in Proc. ACM-SIGIR’07, Ams-
terdam, The Netherlands, July 2007, pp. 615–622.

[13] D. Can, E. Cooper, A. Sethy, C. White, B. Ramabhadran, and
M. Saraclar, “Effect of pronunciations on OOV queries in spoken
term detection,” in Proc. ICASSP’09, Taipei, Taiwan, April 2009,
pp. 3957–3960.

[14] D. Wang, S. King, J. Frankel, and P. Bell, “Term-dependent
confidence for out-of-vocabulary term detection,” in Proc. Inter-
speech’09, Brighton, UK, September 2009, pp. 2139–2142.

[15] F. Wessel, K. Macherey, and R. Schlüter, “Using word probabili-
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