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Abstract
Speech technology can facilitate human-machine interaction and create new communi-

cation interfaces. Text-To-Speech (TTS) systems provide speech output for dialogue,

notification and reading applications as well as personalized voices for people that have

lost the use of their own. TTS systems are built to produce synthetic voices that should

sound as natural, expressive and intelligible as possible and if necessary be similar to

a particular speaker. Although naturalness is an important requirement, providing the

correct information in adverse conditions can be crucial to certain applications. Speech

that adapts or reacts to different listening conditions can in turn be more expressive and

natural. In this work we focus on enhancing the intelligibility of TTS voices in additive

noise. For that we adopt the statistical parametric paradigm for TTS in the shape of a

hidden Markov model (HMM-) based speech synthesis system that allows for flexible

enhancement strategies.

Little is known about which human speech production mechanisms actually in-

crease intelligibility in noise and how the choice of mechanism relates to noise type,

so we approached the problem from another perspective: using mathematical models

for hearing speech in noise. To find which models are better at predicting intelligibility

of TTS in noise we performed listening evaluations to collect subjective intelligibility

scores which we then compared to the models’ predictions. In these evaluations we

observed that modifications performed on the spectral envelope of speech can increase

intelligibility significantly, particularly if the strength of the modification depends on

the noise and its level. We used these findings to inform the decision of which of

the models to use when automatically modifying the spectral envelope of the speech

according to the noise. We devised two methods, both involving cepstral coefficient

modifications. The first was applied during extraction while training the acoustic mod-

els and the other when generating a voice using pre-trained TTS models. The latter

has the advantage of being able to address fluctuating noise. To increase intelligibility

of synthetic speech at generation time we proposed a method for Mel cepstral coef-

ficient modification based on the glimpse proportion measure, the most promising of

the models of speech intelligibility that we evaluated. An extensive series of listen-

ing experiments demonstrated that this method brings significant intelligibility gains

to TTS voices while not requiring additional recordings of clear or Lombard speech.

To further improve intelligibility we combined our method with noise-independent

enhancement approaches based on the acoustics of highly intelligible speech. This

combined solution was as effective for stationary noise as for the challenging com-
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peting speaker scenario, obtaining up to 4dB of equivalent intensity gain. Finally, we

proposed an extension to the speech enhancement paradigm to account for not only en-

ergetic masking of signals but also for linguistic confusability of words in sentences.

We found that word level confusability, a challenging value to predict, can be used

as an additional prior to increase intelligibility even for simple enhancement methods

like energy reallocation between words. These findings motivate further research into

solutions that can tackle the effect of energetic masking on the auditory system as well

as on higher levels of processing.
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Chapter 1

Introduction

Speech is ultimately a communication tool, it gives us the possibility to interact with

the world through the transmission of a message. Speech technology can improve com-

munication by means of enhancing speech, making it more compact for transmission

or storage and more robust to adverse conditions. In the field of speech technology,

Text-To-Speech (TTS) systems provide the connection between text and speech, giv-

ing voices to those that have lost the ability to communicate and enabling machines

to transmit messages through speech output. To maintain communication success, hu-

mans change the way they speak and hear according to many factors, like the age,

gender, native language and social relationship between talker and listener. Other fac-

tors are dictated by how communication takes place, such as environmental factors like

an active competing speaker or limitations on the communication channel. As in natu-

ral interaction, we expect to communicate with and use synthetic voices that can also

adapt to different listening scenarios and keep the level of intelligibility high. Research

in speech technology needs to account for this to change the way we transmit, store

and artificially generate speech accordingly.

In this work, we focus on creating strategies to enhance intelligibility of synthetic

speech in noise. In particular, we are interested in increasing intelligibility of Text-

To-Speech voices generated by parametric statistical models (Zen et al., 2009). The

statistical and parametric nature of hidden Markov model (HMM)-based speech syn-

thesis offers a high degree of control over the generated speech. By modifying the

models or extracted parameters we are able to control the acoustic characteristics of

the generated speech without the need for new data. Intelligibility of HMM-generated

synthetic speech is comparable to natural speech in clean environments (Yamagishi

et al., 2008b), but in noisy environments the gap between natural and synthetic speech

1
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grows with the level of the noise (King and Karaiskos, 2010).

One possible way of decreasing this gap is to mimic acoustic changes observed

in highly intelligible speech. It is however not fully understood how these acoustic

changes depend on the noise type and level. The naive solution of merely increasing

the intensity of the speech signal is also not desirable as it can result in unpleasant and

distorted speech as the noise level increases.

We hypothesize that it is possible to increase the intelligibility of speech in noise

by modifying speech automatically according to the noise signal. We posit that this

can be achieved using models of the human auditory system to provide estimates of

the impact of noise on the processing of speech and to inform how speech should be

enhanced.

1.1 Organization of this thesis

Speech produced in noise – Lombard speech – is more intelligible than speech pro-

duced in quiet due a mixture of conscious and reflex mechanisms. These mechanisms

are in charge of controlling speech production according to what we hear and see. To

permit the design of an automatic strategy it is important then to investigate what the

mechanism of hearing speech in noise are as well as the possible strategies humans use

to produce more intelligible speech. In Chapter 2, we present a survey of models of

hearing and speech production in noise, pointing towards the models and strategies we

will adopt in different parts of this thesis. We then describe existing methods for intel-

ligibility enhancement, categorized into those that use additional recordings of highly

intelligible speech, those that are based on acoustics and those that (similar to ours)

modify speech automatically according to the noise signal.

Most of these methods and studies were performed with natural speech. To under-

stand how synthetic speech is generated and how this might influence its intelligibility

we present in Chapter 3 the theoretical background supporting the TTS system used in

this work: HMM-based speech synthesis. TTS systems convert text to speech through

the completion of two tasks: text processing and waveform generation. Text process-

ing is the conversion of the text message into relevant linguistic specifications that

drive the process of waveform generation. The waveform generation is responsible

for converting this specification in to an acoustic realization of speech. The acoustic

model used for waveform generation in this work is based on HMMs. To train these

models it is necessary to extract a linguistic specification and acoustic parameters from
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speech corpora. The acoustic models are then trained to maximize the likelihood of

the data and at generation time the linguistic specification is used to find the sequence

of HMM models that best defines the utterance. The acoustic parameters extracted

from this sequence are then used to construct a speech waveform. The intelligibility

of HMM-generated synthetic speech is quite high in clean environments but similar to

other types of synthesizers intelligibility in noise is highly compromised.

We hypothesize that it is possible to increase intelligibility automatically by using

models of auditory processing but first we need to find which model to use. In Chap-
ter 4, we describe two experiments that evaluate existing objective measures on the

task of predicting intelligibility scores of HMM-generated speech in noise. With these

experiments we want to discover an effective objective measure and a modification

strategy. To choose the measure, we calculate the correlation between objective scores

and subjective scores obtained in the listening tests and compare this correlation across

many objective measures. To discover a promising strategy, we also evaluate the in-

telligibility of speech that has been modified. We chose to separately modify acoustic

dimensions that are known to change in Lombard conditions: speaking rate, funda-

mental frequency, spectral sharpness and tilt. From these experiments we observed

that a few measures – the ones based on an auditory model – perform quite well in

the conditions used, including the case when speech was modified, with a correlation

coefficient above 0.8. We also found that changes in the spectral envelope can be very

effective across different noise types.

At this point, we have possible candidates for auditory-based measures and modi-

fication strategies. In Chapter 5, we present a new intelligibility enhancement method

that uses one of these measures to extract cepstral coefficients that are used for training

the synthesis models. We propose a cepstral extraction method based on the glimpse

proportion (GP) measure. To use the GP measure for the task, we reformulate it into a

measure that depends only upon the speech magnitude spectrum rather than the wave-

form. We then integrate this measure into an existing optimization method for cepstral

extraction. Listening experiments with modified speech indicates that although GP

values increase, subjective scores of intelligibility are not always higher. We hypoth-

esized this happened because there was no proper control of how the glimpses were

created.

To improve on these results we propose in Chapter 6 a method for processing Mel

cepstral coefficients – cepstral coefficients defined on the Mel scale. In this method,

the modification happens at generation time from pre-trained synthesis models which
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enables a solution for fluctuating noises like a competing speaker. In this reformula-

tion, it is easier to control the amount of modification, or better yet limit the distortions

introduced by modifying speech, and as a consequence improve subjective intelligibil-

ity. To do so, we limit the frequency resolution of the modification, modifying only

the first few cepstral coefficients. Listening experiments with speech-shaped noise

show that voices generated by modifying only the first two Mel cepstral coefficients

are more intelligible and that this voice is as intelligible as voice built with Lombard

speech data in the speech-shaped noise case. In a competing speaker scenario, intelli-

gibility gains are smaller, even when Mel cepstral coefficients are obtained using the

Lombard speech data.

In Chapter 7, we evaluate the GP-based method against other methods in a series

of three large scale listening experiments with many participants and stimuli. The first

evaluation compares the proposed modification with acoustic models adapted to Lom-

bard speech recordings of that speaker. Results show that Lombard-adapted changes

to duration and excitation signal can bring large intelligibility improvements in the

competing speaker masker condition. The GP method obtains comparable gains in

speech-shaped noise without requiring the additional recordings of speech produced

in noise. In the second evaluation, we investigate whether it is possible to improve

results in the competing speaker condition by combining the GP-based method with

dynamic range compression (DRC), a strategy that reallocates energy across different

time segments of speech to maximize intensity levels. Results indicate that adding

DRC improves intelligibility in all noise scenarios. In the third experiment, we test a

further combination: GP-based modifications applied to the spectral parameters, Lom-

bard adaptation of excitation and duration parameters and finally the DRC applied to

the synthesized waveform. With this combined strategy we improve intelligibility in

the competing speaker scenario to match the performance in stationary noise. In both

noises, for a medium SNR we increase intelligibility of speech by 4 dB of equivalent

intensity gain.

We successfully created a strategy that increases subjective intelligibility of speech

in noise averaged across words and listeners. There is however a great amount of vari-

ability in the intelligibility of words, which raises the question of whether all words

should be treated in the same way, being driven only by the acoustics of the speech and

the noise. In Chapter 8, we shift our focus to how to use top-down information for

speech enhancement. One possible top-down source of information is the unit of the

word. Word intelligibility depends on the listener’s familiarity with the word and how
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likely it is that this word is going to be said given the context (linguistic confusability).

Word intelligibility also depends on how many phonetically similar words exist in the

language or in the listener’s lexicon (acoustic confusability). To avoid unnecessary

modification a strategy to increase intelligibility should also account for these factors.

In the experiments described in this chapter, we exploit word-level acoustic confus-

ability to change the intensity of words in a sentence, constrained by a fixed SNR per

sentence. We show that intelligibility of TTS in quiet of words in isolation can be

quite low for words that have many neighbours (words that sound alike). In a sentence,

intelligibility improves significantly across all words. We also show the potential for

creating intelligibility enhancement strategies based on word-level information. This

information is however still very difficult to predict as it involves semantic information

and the acoustics of not only the word but also the other words in the sentence.



Chapter 2

Noise compensation strategies

We are interested in increasing the intelligibility of speech automatically according to

the noise signal. For that, we need to find a method that can predict the effect noise has

on intelligibility and find an effective strategy, i.e. which aspects of speech are worth

enhancing. Before looking into evaluating different models and strategies we survey

the literature on models of hearing and speaking in noise.

There are many perception studies which have investigated natural speech in noise,

but rather than showing their findings we focus on the possible mechanisms that are

involved in the process of hearing in noise, pointing to the ones we will further investi-

gate in this thesis. The speech production in noise literature is also very extensive. We

summarise what type of acoustic changes have been observed and in which listening

circumstances. These findings will guide us in choosing intelligibility enhancement

strategies and an interesting set of acoustic analyses that will help us evaluate them.

2.1 Hearing in noise

In a conversation, speakers and listeners adopt numerous strategies to compensate for

additive noise. The listener for their part brings, consciously or not, extra effort to focus

on the speaker over other sound sources. In many situations in fact, we are forced to

deal with a great number of different sound sources and retrieve information from this

“scene”. The mechanism that explains why, and to a certain extent how, we are able

to understand speech in a mixtures of sound sources concerns several different stages

of processing. These mechanisms include: auditory grouping, glimpsing, linguistic

adjustments and the regard for spatial and visual cues (Loizou, 2007).

Auditory grouping, also known as auditory streaming, is the capacity of a listener

6
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to group together different time-frequency regions of speech and associate them to

a single audio source (Bregman, 1990). This phenomenon can happen in two ways:

simultaneous grouping, the capacity of grouping units appearing all at a certain time

but at different spectral bands, and sequential grouping, which is the grouping of sound

units that appear sequentially in time but at the same spectral band. In order to identify

regions of speech that happen simultaneously as coming from the same source we can

for instance track fundamental frequency (F0) to identify regions that contain similar

harmonics as coming from the same source. To group speech that appears sequentially

it is important to track the evolution of speech features across time, in particular those

features that are continuous and slowly changing such as formants and spectral peaks.

Another important auditory mechanism that aids source separation is so-called

glimpsing, which is the ability to extract time-frequency regions where the corrupted

speech signal is less masked and therefore less distorted (Cooke, 2003). This ability

can help explain why stationary noises are stronger maskers than competing speakers,

as the latter provide more gaps to the listener (Festen and Plomp, 1990). The glimpsing

phenomenon also indicates that humans attend to changes in the local signal to noise

ratio (SNR). It still remains unknown, however, what constitutes a useful glimpse and

how to measure whether a certain region with high enough SNR is going to contribute

to intelligibility gains. As we will see in Chapters 5 and 6, the glimpsing model will

prove to be very useful for the sort of enhancement strategy we are focusing on. A

more detailed explanation of how the model can be used to make a prediction of intel-

ligibility will be described then.

When immersed in an adverse condition, listeners also make use of top-down pro-

cessing: the linguistic information. This information can limit the number of possible

guesses for what a word could have been given the lexicon and the context, which

makes the decoding task much easier. Phone confusions in minimal word pairs that

can arise due to noise can then be disambiguated with aid of the context information

when we know that a certain word in that pair is more likely to appear in that context. A

linguistic context advantage can appear in the shape of semantic and syntactic context

as listeners expect sentences to be both semantically and syntactically correct. It is not

clear how to use linguistic information to drive modification but a first attempt at using

acoustic confusability – how confusable a word is given the lexicon of a language –

will be presented in Chapter 8.

Other mechanisms that come into play when hearing speech in noise are based on

the availability of spatial and visual cues. Spatial release of masking, that is when
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target and masker sources are located in different regions of the acoustic space, can

increase intelligibility by significant amounts due to the additional cues of intensity

and time of arrival differences between ears, which can lead to an advantage of 2 to

7 dB equivalent intensity gain (Hawley et al., 2004). Visual information provided by

the speaker can also increase recognition rates. Looking at the lips of the person talking

can be crucial in distinguishing phones like /t/ and /p/ which are highly confusable in

noise but are produced using different articulators. Such visual cues can give up to

11 dB in equivalent intensity gains (Macleod and Summerfield, 1987). In our work, we

focus on creating strategies from the acoustics only, so we will not investigate a visual

strategy. Spatial separation will also not be exploited as we assume no knowledge of

the location of the noise source – although this could be estimated with the help of a

microphone array.

2.2 Speaking in noise

To increase the success of communication, humans adapt to their immediate context

by changing the way they produce speech. This adaptation can happen at different

levels, that is, at an acoustic level with changes in phonation, place and manner of

articulation or at a linguistic level, with changes in words and vocabulary (Lindblom,

1990; Picheny et al., 1985; Summers et al., 1988; Howell et al., 2006; Uther et al.,

2007; Patel and Schell, 2008; Cooke and Lu, 2010).

The increase in vocal effort observed in speech produced in noise is generally called

the Lombard effect (Lombard, 1911) and speech produced in noise is known as Lom-

bard speech. Many acoustic changes have been reported for Lombard speech: an

increase in intensity, increase in vowel duration, reduction in speaking rate, a shift in

the energy distribution of the spectral content from low to middle and high frequency

regions which results in flatter spectral tilt, increase in the first formant and in some

studies increases in the second formant were also observed, increase in F0 (both the

average and the range) (Summers et al., 1988; Junqua, 1993; Hansen, 1996; Garnier

et al., 2006; Lu and Cooke, 2008). It has also been reported that energy shifts from

consonant to vowels (Junqua, 1993; Womack and Hansen, 1996; Garnier et al., 2006)

and from semivowels to vowels and consonants (Hansen, 1996). More recently, Drug-

man and Dutoit (2010) showed that the glottal source is also significantly modified

due to the increase in vocal effort: increases in F0, decreases in the H1-H2 ratio (the

ratio between the amplitude of the glottal spectrum at F0 and at the second harmonic)
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and increases in the amount of harmonics in the amplitude spectrum. Drugman and

Dutoit (2010) also observed increases in the energy of specific spectrum frequency

bands (which includes both the glottal and vocal tract changes): increases in E21 (the

energy ratio between the frequency band 1-3 kHz and 0-1 kHz) and E31 (the energy ra-

tio between band 3-8 kHz and 0-1 kHz); increases in E21 are substantially higher than

E31. Also recently, Godoy and Stylianou (2012) presented a study on the loudness of

Lombard speech, where it is observed that the loudness of Lombard speech is higher

on average but not for all segments individually. Voiced segments are louder, unvoiced

segments however are more quiet, in accordance with the energy shift from consonant

to vowels observed in Junqua (1993).

Some studies have also observed that the Lombard effect changes according to

many factors: the noise spectral content (Lu and Cooke, 2009a), the noise energetic

and informational nature (Lu and Cooke, 2008; Cooke and Lu, 2010), the noise level

(Summers et al., 1988; Lu and Cooke, 2008), the type of speaking task (whether it is

read speech or conversational speech) (Aubanel et al., 2011), the presence of visual

cues (Fitzpatrick et al., 2011) and the linguistic content (Patel and Schell, 2008).

Although noise dependencies have been observed, it is still not clear how the acous-

tic changes relate to the noise. Lu and Cooke (2009a) collected Lombard speech pro-

duced in low-pass and high-pass filtered noise and observed that, although flattening

of the spectral tilt was presented in Lombard speech induced by both noise types, the

flattening was not as strong in the presence of high frequency noise. Flattening the

spectral tilt is a bad strategy to adopt in the presence of high frequency noise as it real-

locates energy to the most masked region. These results adds to the discussion on how

much of the Lombard effect is conscious and how well we can adapt to changes in the

background noise given the physical constraints of our phonation system.

Lombard speech is known to be more intelligible than speech produced in quiet

even when presented at the same level, that is at the same signal to noise ratio (Sum-

mers et al., 1988; Junqua, 1993; Lu and Cooke, 2008). It remains relatively unknown

however which aspects of Lombard speech contribute to this intelligibility gain as well

as how they relate to the characteristics of the environmental noise and the task in-

volved. Although changes in F0 have been observed, it is not yet clear what their role

in the contribution to the intelligibility gain is. Lu and Cooke (2009b) noted that in

the presence of speech-shaped noise, changes in F0 do not contribute to intelligibil-

ity gains. To increase intensity, speakers involuntarily raise their vocal effort in two

ways: by flattening the spectral slope (relative energy of upper harmonics increases)
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and increasing F0 itself. The increase in F0 can then be seen as an involuntary (reflex)

response to the increase in intensity.

2.3 Speech modifications

The different mechanisms of speech production in noise show that it is possible to

modify speech in such a way that the mixture of speech and noise is more intelligible

for the listener without an overall level increase. To emulate such an effect one could

for instance modify speech produced in quiet by mimicking the acoustic changes seen

in studies of speech produced in noise. Methods under this category include: boosting

the consonant-vowel power ratio (an effect usually observed in clear speech) (Nieder-

john and Grotelueschen, 1976; Skowronski and Harris, 2006; Yoo et al., 2007), spectral

tilt flattening and formant enhancement (McLoughlin and Chance, 1997; Raitio et al.,

2011a), manipulation of duration and prosody (Huang et al., 2010), increasing of du-

ration, intensity and F0 of content words (Patel et al., 2006) and both formant and

loudness enhancement (Zorilă et al., 2012). Because it is not known to what extent

the acoustic changes relate to the characteristics of the noise, these types of speech

modifications are noise-independent.

Another strategy is to make direct use of available recordings of Lombard speech

data through voice conversion techniques (Langner and Black, 2005) and adaptation

techniques (Raitio et al., 2011a; Picart et al., 2013). This requires recordings of Lom-

bard speech data from the speaker whose voice is to be synthesized. A different ap-

proach, described by Nicolao et al. (2012), also makes use of adaptation to map be-

tween normal, hypo, and hyper-articulated speech, without having to acquire more

than plain speech data.

Recent work – much of which has been proposed through the course of this thesis

– has also been carried out using estimates of the noise context for so-called noise-

dependent methods. These approaches include modification of the local SNR (Sauert

and Vary, 2006; Tang and Cooke, 2010), unit-selection unit cost based on the speech

intelligibility index (SII) (Cerňak, 2006), optimisation of spectral power reallocation

based on the SII (Sauert and Vary, 2010, 2011) and a global fixed optimization to

maximize the glimpse proportion (GP) (Tang and Cooke, 2012) as well as different

strategies for the insertion of small pauses (Tang and Cooke, 2011) and GP-based

duration changes (Aubanel and Cooke, 2013). Recently, Taal et al. (2012) presented

an optimisation algorithm based on a spectro-temporal perceptual distortion measure
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and in Petkov et al. (2012) an algorithm based on a statistical model of speech was

described. In Chapter 7, we present a series of evaluations comparing our strategies to

some of the methods mentioned above, at which point we will present a more detailed

description of them.

Providing speech that is easier to understand in noisy environments is of special

interest in digital communication, where it is possible to modify the speech signal at

both ends of the communication channel as long as the processing delay is low. During

transmission degradation can arise from quantization and from the background acous-

tic noise of both the sending (far) or the receiving (near) end of the channel. Noise

suppression algorithms can be applied to the far-end signal as a pre-processing stage

to remove noise before transmission. It is also possible to improve the intelligibility

of the transmitted quantized signal by applying post-processing techniques. In this

scenario, speech intelligibility enhancement is often referred to as near-end or source-

based speech enhancement, referring to where the enhancement process takes place. In

this category we find a range of post-filtering techniques such as: formant structure and

pitch peaks enhancement (Chen and Gersho, 1995; Grancharov et al., 2008), high-pass

filtering (Hall and Flanagan, 2010; Jokinen et al., 2012), Lombard inspired modifica-

tions like spectral tilt flattening, formant sharpening and F0 adaptive high-pass filtering

(Jokinen et al., 2013), spectral power reallocation for maximizing the SII (Sauert and

Vary, 2006, 2010) and spectral tilt modification followed by dynamic range compres-

sion (Erro et al., 2012). Due to the requirements of mobile communication these sort

of techniques have to work with narrowband speech signals (speech signal sampled at

8 kHz), be robust to noise estimation and work at a low computational cost and low

processing delay.

In synthetic speech intelligibility enhancement evaluation (Cooke et al., 2012, 2013)

it is common to adopt a sentence-level energy constraint which will also be adopted in

this thesis: the energy of the modified speech – calculated over the entire sentence –

is normalized to be equal to the energy of the unprocessed speech signal. For speech

transmission, however, evaluation is more strict: the energy per frame should not be

modified. While one might argue against it, per sentence energy normalization allows

for a wider range of long-term strategies to be applied such as boosting certain words,

phonetic units or regions to the detriment of other parts of speech that can potentially

be exploited in applications such as TTS and the reproduction of pre-recorded speech.
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HMM-based speech synthesis

In this chapter, we present the theoretical basis from which the contributions of our

work, described in the chapters to follow, is structured upon. We describe in detail

HMM-based speech synthesis in terms of the vocoder and the acoustic models used

and then give an overview on how to evaluate synthetic speech.

Speech can be generated from text in a variety of ways. The first TTS methods

proposed were constructed by rules on how speech sounds are produced. This was

implemented by either following rules on the realization of acoustic components like

the formants and the fundamental frequency (formant synthesizers), one such exam-

ple is the DECtalk system proposed in (Klatt, 1980), or physical components like the

position of the articulators (articulatory synthesizers). Rule-based TTS systems are

created from prototypical rules of speech production that can create intelligible but

very unnatural voices. The parametrization of production enables controllability, how-

ever devising rules for formant and articulator placement manually requires a great

deal of expert knowledge. Instead of following production rules, the next generation

of TTS systems create speech from the concatenation of natural speech components.

These components are derived during the training of the system from a large database

of several hours of speech. Concatenative systems were first proposed in the shape

of fixed component units, diphone synthesizers (Moulines and Charpentier, 1990). A

diphone is a segment defined from the middle of one phone to the middle of the subse-

quent phoneme. These segments were represented by linear predictive analysis com-

ponents extracted during training (Moulines and Charpentier, 1990). As more storage

and computing power became available, the second generation of concatenative sys-

tems appeared: unit selection systems (Sagisaka et al., 1992; Hunt and Black, 1996;

Beutnagel et al., 1999). In unit selection, the segments – units – of concatenation

12
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are variable in size. The best unit is selected according to the linguistic specification

extracted from the text to minimize two costs: a unit cost – which segment best de-

scribes the text – and the join cost – which segment sequence generates the least join

errors. Given a large enough speech database (at least 6 hours) unit selection voices’

quality and naturalness can be quite high. Segmental quality is however compromised

when unseen units are not represented correctly and segments are not correctly com-

bined. The quality of the voice is strongly tied to the quality and coverage of the

recordings used for building the voice which in turn limits the flexibility of the system.

Controlling dimensions like speaker characteristics and speaking style require either a

substantial amount of additional recordings or a great deal of signal processing. Issues

with segmental quality will also affect the performance of any sort of post processing

enhancement technique.

Proposed at the end of the 1990s, another paradigm for creating speech from text

appeared based on units derived from statistical models, the statistical parametric TTS

systems (Yoshimura et al., 1999; Zen et al., 2007a; Ling et al., 2006; Black, 2006). At

synthesis time, the models are used to generate a low dimension parametric representa-

tion of speech. Instead of storing a large database of units this system represents units

of speech by model parameters of lower dimensionality. The most widely used statisti-

cal model for statistical parametric TTS is the hidden Markov model (HMM), creating

what is referred to the HMM-based speech synthesis systems. HMMs are used in other

areas of speech technology like speech enhancement, conversion and quite extensively

in the field of automatic speech recognition. Advances in this field led to many differ-

ent methods and criteria for training, clustering and adapting HMMs, alongside freely

available toolboxes such as HTK (Young et al., 2006) and HTS (Tokuda et al., 2009).

Using statistical models as a choice for acoustic modelling has also influenced research

in parametric representations of speech that can offer good interpolation and compres-

sion properties.

Due to its statistical and parametric nature, HMM-based speech synthesis presents

many advantages over the other TTS paradigms:

– generalization: wider coverage of the acoustic space. Although still limited by

the examples in the training data, it is able to generate waveforms that do not

appear in this database through the combination of the extracted parameters;

– smaller footprint: storage of the statistics of acoustic models rather than wave-

form templates;
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– versatility: new voices of different speakers and speaking styles can be eas-

ily obtained by transforming model parameters through well established model

adaptation techniques that require small amounts of additional recordings;

– robustness: the quality of generated speech is more robust to variability in record-

ing conditions and speaking quality as reported in Yamagishi et al. (2008a);

– unified learning: text and acoustic analysis can be jointly performed in an unified

statistical approach;

– controllability: parametrization and context dependency allow for localized con-

trol strategies;

– multilingual support: a large recording database of a particular language is not

required to build a voice with good quality.

The process of generating an acoustic realization from unseen texts can be divided

into two main tasks: text analysis and waveform generation, the so-called front-end

and back-end. The task of the front-end is to convert written text into a sequence of

linguistic specifications. This feature extraction defines the linguistic aspect of speech

that characterize its acoustic realization. Linguistic specifications can be for instance

phonemes, syllables, pause and tone predictions. Systems that are used to obtain these

linguistic specifications from text are: letter-to-phoneme conversion, phoneset assign-

ment, part-of-speech tagger, phrase-break predictor and pitch-accent predictor. Al-

though performed automatically through machine learning techniques, building each

of these tools requires a degree of high level knowledge of the language as all this

information is strongly tied to language and its regional variation. The linguistic spec-

ification can be represented in a series of yes and no answers obtained using these

tools. The output of the front-end is a vector sequence of around 2000 binary val-

ues defining the linguistic specification of a phone. This information will be used to

identify linguistic contexts that characterize acoustically similar segments of speech as

represented by the acoustic models.

Given these linguistic specifications, the back-end is responsible for the genera-

tion of acoustic segments of speech. First attempts of back-ends as mentioned previ-

ously were constructed following speech production rules. With the increase of stor-

age power and with the development of algorithms that can deal with larger amounts

of data a second paradigm for back-end appeared: the data-base paradigm. First by

concatenation of speech segments derived from a speech database – diphone and unit
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selection synthesis – and secondly by generation of parametric sequences obtained by

data-driven rule modelling – statistical parametric synthesizers.

HMM-speech synthesis systems generate speech by using HMMs for modelling

vocoder parameters (Zen et al., 2009). The models are trained with parameters ex-

tracted from natural speech, to maximize the likelihood of the training data. The source

can be represented by the fundamental frequency and the aperiodicity band energies

and the spectral envelope by Mel generalized cepstral coefficients (Tokuda et al., 1994)

or line spectral pairs (Itakura, 1975a). The block diagram structure of an HMM-based

speech synthesis system is displayed in Fig. 3.1. In the training part at the analysis

stage, a set of parameters is extracted from the natural speech database to form the

observation vector OOO. These parameters describe the excitation signal and spectral en-

velope separately. HMM models are then used to model these observation vectors. The

parameter set characterising the model λ is obtained by maximizing the likelihood of

the training data:

λmax = argmax
λ

P(OOO|λ,W ) (3.1)

where OOO is the set of observation vectors – representing the acoustic parameters ex-

tracted by the vocoder – and W is the linguistic specification sequence corresponding

to OOO.

The system is trained with linguistic and prosodic contexts contained in the labels.

Each distinct linguistic specification would ideally be represented by a separate model,

but such context-dependency would result in a vast number of possible models that

could not be covered by a database except in a sparse manner. To improve context

coverage and allow for unseen context, it is necessary to decrease the possible number

of models by means of iewstate clustering. In this thesis, clustering is performed

with decision trees, where splits are made using the linguistic specification so that

the log-likelihood of the data given the tied model of the tree leaves is maximized.

First, monophone HMM models that are context independent are trained, then context

dependent HMMs are trained. Their states are then clustered. The parameters of the

clustered states are then further trained.

The parameter generation (Tokuda et al., 2000) is achieved by the maximization of

the output probabilities given a trained model:

OOOmax = argmax
OOO

P(OOO|w,λmax) (3.2)

The generated observation sequence is fed to the synthesis part of the vocoder

responsible for reconstructing the waveform from this low dimensional representation
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Figure 3.1: Block diagram of an HMM-based speech synthesis adapted from Zen et al.

(2009), vocoder components in blue and acoustic model related components in red.

of the spectral envelope and the excitation signal.

In the next two sections, we will describe this process in more detail, first the

vocoder analysis and synthesis methods and then the acoustic model and the operations

of training, generating and adapting. We will focus here on the methods that composed

the system used in this thesis, pointing to the literature regarding possible alternatives.
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3.1 Vocoder

The vocoder is the mechanism responsible for analysing and synthesizing speech

through the use of a intermediate representation of the speech waveform. The most

common vocoder used in statistical parametric TTS is based on the source-filter model

of speech production. This model assumes that speech is generated by passing a sig-

nal, the source, referred to as the excitation signal, through a filter that represents the

vocal tract, as presented in Fig. 3.2. It is desirable to find parametrizations that provide

a high degree of separation between source and filter so that independence assump-

tions are better met. There are however other vocoders based on a sinusoidal model for

speech (Hemptinne, 2006; Banos et al., 2008), for example. In this section, we present

details on how the source-filter model can be designed in terms of the choices for what

represents the source and the filter, pointing to the ones we use in this thesis, following

a more detailed presentation of the analysis and synthesis of the vocoder we used.

SOURCE
vocal tract

FILTER speech

Figure 3.2: Source filter model of speech production.

3.1.1 Source

The source is represented by the excitation signal, i.e. the signal that excites the vocal

tract filter. The ideal excitation signal is the residual signal defined according to the

vocal tract filter by inverse filtering as shown in Fig. 3.3. The inverse filtering operation

converts speech into the residual signal by applying the inverse of the filter that models

the vocal tract given an available speech waveform. Any residual error that arises from

representing speech by using a minimum-phase filter (where the stability of the inverse

operation is guaranteed) will be contained in the residual. Perfect reconstruction can

be achieved if the residual signal is not transformed: speech is synthesized by filtering

the residual signal using the vocal tract filter. The residual signal can be better com-

pressed than the speech waveform as it contains less information. This property has

motivated a series of speech coding techniques – techniques for representing speech at

a lower rate – based on residual coding. Instead of transmitting or storing the speech

waveform, parameters of the vocal tract filter and a lower dimensional representation
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Figure 3.3: Residual signal. The vocal tract filter is calculated from speech and its

inverse is used for obtaining the residual signal.

of the residual signal are obtained, leading to techniques like code-book excited linear

prediction (CELP) (Schroeder and Atal, 1985).

The ideal excitation signal as said previously is the residual signal obtained from

the speech waveform via inverse filtering. It is not straightforward how one could use

residual signals for statistical parametric TTS as the synthesis models do not provide

the representation of the speech waveform. An attempt towards using residual signals

for HMM-based synthesis is described in Maia et al. (2007). The authors propose the

extraction of filters that, at generation time, would be used to create a mixed excitation

signal. These filters are obtained by maximizing the likelihood of the residual signal

obtained from the training set, so that the excitation signal generated by these filters

and the residual signal extracted from inverse filtering are similar. In that way, the

excitation signal is obtained by minimizing the residual error of the source filter model.

Another example of using the residual signal is described in Drugman et al. (2009)

where the residual signals obtained at the training stage are stored in a codebook.

During generation this codebook is accessed by a lower dimensional representation of

the residual signal generated from the synthesis models.

The alternative way to represent the source is to use a parametric representation

of the excitation signal. The most basic parametrization creates the so called sim-

ple excitation signal, seen in Fig. 3.4, where the source is modelled as either a pulse

train (harmonics) or white noise (stochastic), representing the periodic and aperiodic

segments of speech. This was the excitation signal used in the first HMM-based statis-

tical parametric TTS systems (Yoshimura et al., 1999). This is a very simplified way

of modelling the source as it is known that many speech segments contain both peri-

odic and aperiodic excitation components, creating low quality buzzy vocoded speech.

Other parametrizations have been proposed based on a mixed signal: excitation is cre-

ated by a mixture of periodic and aperiodic signals as presented in Fig. 3.5. This type
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vocal tract

FILTER speech

pulse
generator

noise
generator

Figure 3.4: Simple excitation: the source is modelled by either a pulse train (voiced) or

a random noise (unvoiced) sequence.

SOURCE
vocal tract

FILTER speech

pulse
generator

noise
generator

Figure 3.5: Mixed excitation: the source is modelled as a mixture of pulse and noise.

of excitation signal was first proposed for statistical parametric TTS in Yoshimura et al.

(2001) and since then has been widely adopted. It is a design decision how to create

these signals and how to mix them. The vocoder used in our experiments is based on

a multiband mixed excitation signal where the excitation is represented by a spectral

weighted mixture of a pulse and of white noise.

Yet another way of representing the source is to characterize the signal generated by

the vocal folds: the glottal signal. Two notable methods of using glottal source signals

for HMM-based speech synthesis are based on a library of glottal pulses (Raitio et al.,

2008, 2011b) and a parametric model of the glottal-flow derivative (Cabral et al., 2007,

2008).



Chapter 3. HMM-based speech synthesis 20

SOURCE

Linear Prediction

speech

pulse
generator

noise
generator

H(z)

Figure 3.6: Linear predictive analysis.

3.1.2 Filter

3.1.2.1 Linear predictive analysis

Linear predictive analysis defines the spectral envelope H(z) as an all-pole filter:

H(z) =
G

AM(z)
=

G
1−∑

M
m=1 amz−m

(3.3)

where {ai}M
i=1 are the linear prediction (LP) coefficients and G is a gain factor. Another

way of interpreting this in the context of the source-filter model is that speech can be

represented by an autoregressive (AR) process (Itakura and Saito, 1970). A process is

an AR process of order M when its current value is a linear combination of its past M

values plus an innovation component represented by white noise:

H(z) =
S(z)
E(z)

=
G

1−∑
M
m=1 amz−m

(3.4)

s(n) =
M

∑
m=1

ams(n−m)+Ge(n) (3.5)

where S(z) and E(z) are the Z-transforms of the speech signal s(n) and the excitation

signal e(n).

To calculate the LP coefficients one can use the autocorrelation method. Given

LP coefficients and a source, speech can be vocoded through a filtering operation, as

presented in Fig. 3.6. Stability of the synthesis filter H(z) is guaranteed when the LP

coefficients are obtained via the autocorrelation method, but the process of statistical

modelling, that can be seen as a process of averaging, does not guarantee that the

generated coefficients will create stable synthesis filters. To avoid this problem, one

can represent the spectral envelope in the linear prediction paradigm by modelling an
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intermediate representation where stability can be guaranteed more easily. One such

intermediate representation is the set of so called line spectral pairs (LSP) (Itakura,

1975a).

The motivation behind the LSP parametrization is that the vocal tract, as modelled

by an AR process, can be represented by two higher order polynomials P(z) and Q(z)

that correspond respectively to the resonance conditions of the vocal cavity: closed and

open glottis (Deller Jr. et al., 2000). The spectrum of the linear prediction coefficients

can be represented by a symmetric and a non symmetric part:

AM(z) =
P(z)+Q(z)

2
(3.6)

where P(z) and Q(z) are the M+1 order polynomials named the antisymmetric and

symmetric, referring to the complete closure and the complete opening of the vocal

folds, represented by the additional filter coefficient.

The line spectral pairs or frequencies (LSP or LSF) are the roots of the P(z) and

Q(z) polynomials, that are so defined:

P(z) = AM(z)+ z−(M+1)AM(z−1) (3.7)

Q(z) = AM(z)− z−(M+1)AM(z−1) (3.8)

The roots of the polynomial are interlaced with each other on the unit circle so to find

the LSP it is sufficient to find their angles.

A line pair defines a resonator, a peak or a valley in the spectral envelope. The

distribution of the pairs across the frequency domain relates to the distribution of the

energy of the spectral envelope: frequency bands densely populated with LSPs are

more energetic. LSP have good quantization and interpolation qualities (Koishida,

1998). If the roots of the polynomials lie on the unit circle and are interlaced than

the roots of A(z) are inside the unit circle which ensures stability of the synthesis

filter. For speech synthesis, the generation of LSPs that are not interlaced might lead

to synthesis filters that are not stable, degrading the quality of synthesized speech.

Although stability checks in the LSP domain are much easier to perform than in the

LP domain, in other filter representations like the minimum-phase cepstral coefficient

stability is always guaranteed.

3.1.2.2 Cepstrum analysis

According to the source-filter model, the speech signal s(n) is the output of a linear

filter – that has h(n) as the impulse response – whose input is the excitation signal
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e(n):

s(n) = e(n)∗h(n) (3.9)

The Fourier transform F {.} turns the convolution operation ∗ into a multiplication

operation and the logarithm in the spectral domain further turns it into a summation:

F {s(n)}= F {e(n)}F {h(n)} (3.10)

S(e jω) = E(e jω)H(e jω) (3.11)

logS(e jω) = logE(e jω)+ logH(e jω) (3.12)

The complex cepstrum c(m) of s(n) is calculated as the inverse Fourier transform

of its log spectrum:

c(m) = F −1{logS(e jω)} (3.13)

= F −1{logE(e jω)}+F −1{logH(e jω)} (3.14)

= ce(m)+ ch(m) (3.15)

where ce(m) and ch(m) are the complex cepstrum of e(n) and h(n).

The complex cepstrum is an infinite and non-causal sequence. If s(n) is a real

sequence then its complex cepstrum is also a real sequence. The term complex refers

to the fact that the complex cepstrum is calculated from the inverse Fourier transform

of the logarithm of the spectrum, a complex sequence. The real cepstrum ĉ(m), often

simply referred to as the cepstrum, is calculated from the log magnitude spectrum

instead:

ĉ(m) = F −1{log |S(e jω)|} (3.16)

As the real cepstrum does not contain any phase information of the signal it is not

possible to reconstruct a signal from it. The real cepstrum is attractive as it is a causal

sequence which guarantees a causal synthesis filter. The real cepstrum can be obtained

from the complex cepstrum as follows:

ĉ(m) =
c(m)+ c(−m)

2
(3.17)

If the s(n) is considered to be a minimum-phase sequence, its complex cepstrum

becomes a causal sequence and it is possible to calculate it from the real cepstrum as

follows:

c(m) =


2ĉ(m) if m > 0

ĉ(m) if m = 0

0 if m < 0
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Figure 3.7: Cepstrum analysis.

A cepstrum calculated using the minimum-phase assumption is called the minimum-

phase cepstrum, which is the cepstral representation that we use in this thesis. However

the minimum-phase assumption – a synthesis filter whose poles and zeros are all in-

side the unit circle and is therefore, together with its inverse, both causal and stable

– is not strictly necessary for TTS as causality is not a strong requirement. Recently,

Maia et al. (2013) proposed how one could use the complex cepstrum for statistical

parametric speech synthesis by incorporating the additional phase information from

the decomposed all-pass filter into the excitation signal.

The log-magnitude spectrum of a signal can be represented by the summation of

cosines weighted by the complex cepstrum:

log |S(e jω)|=
∞

∑
m=0

c(m)cos(mω) (3.18)

The cepstral domain can then be seen as a frequency representation of the log-

magnitude spectrum: high frequency fluctuations of the spectrum are represented by

the higher order cepstral coefficients, while the low frequency fluctuations are repre-

sented by low order coefficients.

This is an especially attractive property of the cepstrum for modelling speech sig-

nals as the spectral envelope is characterized by low frequency resolution fluctuations

while the spectrum of the excitation signal presents high fluctuation. These distinctive

fluctuation patterns implies that ce(m) and ch(m) are not covering the same cepstrum

region and can therefore be separated by a filter (liftering) operation. As presented in

Fig. 3.7, from the estimated value of ch(m) it is possible to obtain the spectral envelope
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and its impulse response:

H(e jω) = expF {ch(m)} (3.19)

h(m) = F −1{expF {ch(m)}} (3.20)

When pitch-synchronous analysis is performed with an analysis window set to two

pitch periods, the excitation signal can be considered to be a unit impulse response,

implying ch(m) ≈ c(m). The short-term spectral envelope can be estimated from a

truncated M-order c(m) sequence as follows:

H(e jw) = exp
M

∑
m=0

c(m)e− jmw (3.21)

3.1.3 Analysis

During analysis, the parameters that represent the excitation signal and the spectral en-

velope are extracted from the speech waveform. These parameters are extracted sepa-

rately as presented in the diagram of Fig. 3.8 by using the high quality vocoder known

as STRAIGHT (Kawahara et al., 1999). STRAIGHT extracts a high dimensional rep-

resentation of the spectrum and the aperiodicity contained in the speech signal which

is then converted to a lower dimension representation that is easier to model. In the

following sections we will describe each of these blocks in more detail.

STRAIGHT 
smoothed spectrum
extraction

spectral parameters
extraction

STRAIGHT 
aperiodicity measure
extraction

critical band
aperiodicity energy
calculation

F0 values
extraction

ANALYSIS

PAP (ω) EAP (n)

PS (ω) c(m)

F0

Figure 3.8: The analysis structure of the vocoder used in this thesis.
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Figure 3.9: Aperiodicity spectrum of order 2049 calculated by STRAIGHT for a voiced

speech frame and 25 energy bands linearly spaced on the Bark scale, referred to as

the aperiodicity band energy EAP(n).

3.1.3.1 Excitation signal

The parameters that describe the excitation signal in the system are the aperiodicity

band energy EAP(n) and the fundamental frequency F0. If the excitation signal is rep-

resented by simple excitation then extraction and modelling of F0 is sufficient. In this

work, we use a multiband mixed excitation signal to represent the source signal, that

is, the excitation signal is represented by a weighted mixture of periodic and aperi-

odic components. The amount of voicing, that is the weight given to the periodic

signal, is controlled by the aperiodicity band energy parameters. These energy values

are calculated from the higher dimensional aperiodicity measure PAP(ω) extracted by

STRAIGHT (Kawahara et al., 2001). STRAIGHT extracts this measure from |S(ω)|2,

a power spectrum representation that contains the harmonic structure. Two smoothed

spectral envelopes: the upper envelope SU , constructed by connecting the peaks of

the spectrum, and the lower envelope SL, constructed by connecting the valleys, are

calculated from the power spectrum representation. The aperiodicity measure is aver-

aged across the spectral frequencies of the ratio between the lower and upper spectral

representations and is weighted by the power spectrum |S(ω)|2:

PAP(ω
′) =

∫
ωERB(ω;ω′) |S(ω)|2 Γ

(
|SL(ω)|2
|SU (ω)|2

)
dω∫

ωERB(ω;ω′) |S(ω)|2dω
(3.22)

where ωERB(ω;ω′) refers to a simplified auditory filter that selects a frequency band

around ω′ from the integral thus smoothing the power spectrum at centre frequency

ω′. The symbol Γ(.) refers to a table-look-up operation built from known aperiodic
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signals.

If the ratio between the lower and the upper envelope is high, i.e. the upper en-

velope is just slightly above the lower envelope, then the value of the aperiodicity

measure is high (Kawahara et al., 2001).

Aperiodicity band energies referred to as EAP(n) in Fig. 3.8 are calculated by taking

the energy of the aperiodicity measure contained in a set of frequency bands indexed

by n. Fig. 3.9 presents the aperiodicity spectrum (aperiodicity measure) of order 2049

and the 25 aperiodicity band energies calculated for a voiced segment. The bands are

spaced linearly on the Bark scale.

To create the periodic component of the excitation signal the fundamental fre-

quency F0 needs to be extracted. In STRAIGHT, F0 is extracted by the the TEMPO

algorithm proposed in Kawahara (1997), which takes the fundamental frequency as

the central frequency of the Gabor filter that presents the highest signal-to-noise ratio.

However, in this work, we use the ESPS – SNACK toolkit – implementation based on

the Robust Algorithm for Pitch Tracking (RAPT) (Talkin, 1995) to calculate F0 instead.

The RAPT algorithm is based on a normalized cross correlation function (NCCF). The

RAPT algorithm works in two passes. First it processes the framed signal at a lower

sample frequency rate and locates the peaks of the NCCF calculated over the whole

range of interest. Then the NCCF of the higher sampling frequency signal is calcu-

lated around the neighbours of these collected peaks. This provides a better resolution

whilst still keeping a lower computational complexity. For this method, a dynamic pro-

gramming postprocessing step is performed to select between pitch candidates across

time.

3.1.3.2 Spectral envelope

To calculate the spectral envelope parametrization, first the speech spectrum is ex-

tracted using STRAIGHT (Kawahara et al., 1999). Kawahara et al. (1999) claim that

STRAIGHT can extract a spectrum representation that is less affected by the period-

icity contained in the signal, compared to for instance the short term Fourier analysis-

derived spectrum. The STRAIGHT-derived spectrum provides a spectral envelope rep-

resentation with maximized separation from the fundamental frequency, making the

independence between the spectral and excitation streams stronger.

To calculate the smoothed spectrum, STRAIGHT uses a time frequency analysis

based on two window functions that are both pitch-adaptive – the length is set to two

times the pitch period. The shape of the first window is set to be the convolution of
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a Gaussian function and a second order cardinal B-spline function, offering similar

resolutions in the time and frequency domains. The length of this window is set to be

twice the pitch period in order to minimize the effect of the pitch period on the short

term analysis, which makes frequency smoothing more robust to errors in estimating

F0. While the first window attenuates the periodic interference by smoothing the peaks

of the spectrum the second window smooths the valley areas. The second window is

constructed from the first window and it acts as a compensation window resolving the

spectrum holes that the first window creates. The window is computed by multiplying

the first window by a sinusoid function that produces maximas where the original

spectogram has holes. The smoothed power spectrum is obtained by the weighted

squared summation of the power spectra obtained using the original window P2
O(ω) and

the compensation window P2
C(ω) where the weight ξ is set to minimize the temporal

variation of the resulting smoothed spectrum:

PS(ω) =
√

P2
O(ω)+ξP2

C(ω) (3.23)

The STRAIGHT power spectrum is a high dimensional representation and for sta-

tistical modelling a lower dimensional representation is better. To extract a lower

dimensional representation of the smooth spectrum one can use representations like

linear prediction coefficients or cepstral coefficients, described in the Section 3.1.2.

This lower dimensional representation is referred in Fig. 3.8 as the spectral parameters

c(m). The unifying approach of Mel Generalized Cepstral (MGC) analysis (Tokuda

et al., 1994) incorporates linear prediction, cepstral analysis and frequency warping,

all in one equation:

H(z) =

{ (
1+ γ∑

M
m=0 cα,γ(m)z−m

α

)1/γ , 0 < |γ| ≤ 1

exp∑
M
m=0 cα,γ(m)z−m

α , γ = 0
(3.24)

where cα,γ are referred to as the MGC coefficients and the all-pass frequency warping

operation is defined as:

z−1
α =

z−1−α

1−αz−1 (3.25)

The parameter α controls the frequency warping. If α is equal to zero then the

frequency axis is linear, if not, some sort of transformation in that domain is occurring.

The parameter γ controls the logarithmic function, if γ = 1 then the function is linear

and no transform is applied. In this case, the spectrum is modelled as an all-zero model.

If γ = −1, the spectrum is modelled as an all-pole function using linear prediction
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Figure 3.10: STRAIGHT spectrum of order 2049 and spectrum calculated from cepstral

coefficients of order 59 extracted from the STRAIGHT spectrum.

(LP) analysis and if γ = 0 the transform applied to the spectrum is logarithmic and the

spectrum is modelled through cepstral coefficients (cepstral analysis).

To extract MGC coefficients cα,γ(m) from the smoothed spectrum PS(ω), a method

based on the unbiased estimator for the log spectrum (UELS) by Imai and Furuichi

(1988) is used. In Chapter 5, we show how to extract cepstral coefficients using

this method (Tokuda et al., 1995). The UELS-based extraction method has been ex-

tended to other parameters: Mel cepstral coefficients (Fukada et al., 1992), generalized

cepstral coefficients (Tokuda et al., 1989) and Mel generalized cepstral coefficients

(Tokuda et al., 1994). Fig. 3.10 presents the spectrum extracted using STRAIGHT and

the spectrum calculated with cepstral coefficients extracted using the UELS method

from the STRAIGHT spectrum.

From the generalized spectral envelope coefficients (γ = 0) it is possible to de-

rive the Mel generalized LSP (MGC-LSP). MGC-LSP are the roots of the polynomials

defining the filter obtained when using the generalized form of the spectral envelope.

The process of obtaining the so called MGC-LSP is: extraction of MGC then conver-

sion from MGC to MGC-LSP; a full derivation can be found in Koishida (1998).

3.1.4 Synthesis

The synthesis component of a vocoder is responsible for reconstructing the speech

waveform from the intermediate model representation. In the system that we use this

entails two operations: spectral envelope calculation and excitation signal creation.

The speech waveform is obtained by the inverse Fourier transform of the multiplication
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Figure 3.11: The synthesis structure of the vocoder used in this thesis.

of these two frequency representations. The process is pitch synchronous and the last

operation is the overlap and addition of the analysis windows to the construction of the

speech waveform.

Fig. 3.11 shows the synthesis procedure using the multiband mixed excitation sig-

nal. Although not explicitly shown in the block diagram, this process is pitch-

synchronous, i.e. the window length is equal to twice the length of the pitch period for

voiced segments and a fixed length for unvoiced ones. Fig. 3.11 shows the synthesis

of a voiced segment, where the excitation signal is composed of the mixture of aperi-

odic (noise) and periodic (pulse) frequency representations. For unvoiced sounds the

excitation is modelled as white noise only.

To obtain the excitation signal of voiced segments, the Fourier transform of the

periodic and the stochastic sources are each multiplied by stepwise functions Wp and

Wa respectively. This stepwise weighting function is obtained from the aperiodicity

band energies in the following way (Yamato et al., 2006):

Wa(ω) = min(1,T (EAP(ω)) (3.26)

Wp(ω) =
√

1−W 2
a (ω) (3.27)

where T (.) = L(.)−L(0)
L(1)−L(0) and L(.) is a sigmoid function.
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To attenuate the buzziness introduced by using a pulse as the periodic signal, the

phase of its weighted frequency representation is adjusted by an all-pass filtering oper-

ation presented in Fig. 3.11 as the phase manipulation block with frequency response

Φ(ω). This phase adjustment introduces signal dispersion through group delay ma-

nipulation, turning the pure pulse into a shape that better resembles the glottal pulse.

Details of how this filter is constructed can be found in Kawahara (1997).

Speech is synthesized in the frequency domain Y (ω) as follows:

Y (ω) = X(ω)H(ω) (3.28)

X(ω) =
√

1/F0 D(ω)Φ(ω)Wp(ω)+N(ω)Wa(ω) (3.29)

where D(ω) is the Fourier transform of the delta pulse, N(ω) is the discrete Fourier

transform of white noise. The spectrum H(ω) is calculated from the spectral parame-

ters c(m) using the discrete frequency version of Eq.(3.24).

The noise is modelled by a random sequence with zero mean and unit variance. For

the impulse train to have the same energy as the noise signal, the pulse is multiplied by√
1/F0.

Alternatively, speech can be synthesized in the time domain by a filter operation

using the spectral envelope described in Eq.(3.24) as the filter frequency response.

As the spectral envelope described in Eq.(3.24) is not a rational function it can not

be implemented directly. An approximation for it is given by the Mel log spectrum

approximation (MLSA) filter proposed in Fukada et al. (1992) for γ = 0 and the Mel-

generalized log spectrum approximation (MGLSA) filter in Tokuda et al. (1994).

The excitation signal can also be obtained simply by the generated F0: that is, the

so called simple excitation, instead of a mixture. For voiced segments, the excitation

signal is a pulse and for unvoiced segments, white noise.

3.2 Acoustic model

This section will describe how to train HMMs using the extracted acoustic parame-

ters described in the previous section. We also present how the sequence of spectral

envelope and excitation parameters that feed the synthesis mechanism of the vocoder

are generated from HMM-based acoustic models. Additionally, we show how to adapt

acoustic models to other speakers and speaking styles and methods proposed to allevi-

ate oversmoothing of vocoded parameters due to statistical modelling.
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3.2.1 Hidden Markov models

HMMs are generative models that represent data through a sequence of states of a

Markov chain. The Markov chain defines a discrete and finite state space, the num-

ber of states is a design decision. HMMs are widely used to represent time series of

data where modelling data in sequential states seems like a natural choice. The Markov

property implies a limitation to the model as there is an assumption that the future state

depends only on the current one. In each state, data is represented by a distribution that

can be, for instance, a Gaussian mixture model (GMM) or a more complex distribution

such as a deep belief network or a restricted Boltzmann machine. HMMs can be clas-

sified as discrete or continuous, depending on the type of data they are representing. In

the first case, discrete – categorical – data is represented by discrete probabilities asso-

ciated with each state while in the second, the state output probabilities are continuous

distributions in the form of probability density functions. The “hidden” term in HMM

refers to the fact that the state sequence is an unknown variable, which in practice

means that the parameters of an HMM are estimated by marginalizing the objective

function across all possible state sequences.

The three core problems associated with HMMs are:

– Efficient evaluation of the marginal over all states: how to compute the probabil-

ity density of an observation sequence given an HMM, the so-called likelihood

– how likely the data is to be generated by that model. Method: the forward-

backward algorithm.

– Model parameter estimation: how to estimate the parameters that define an

HMM given a training dataset. Method: the expectation maximization algo-

rithm.

– Computation of the optimal state sequence: given the observation sequence how

to find the most probable state sequence. Method: Viterbi algorithm.

A comprehensive tutorial on how these problems are tackled is given in Rabiner

(1989). In the next section we present how to train HMMs following the derivations

described in Rabiner (1989).

An HMM is defined by the number of states it contains, the state transition prob-

ability distribution matrix AAA = {ai j} which holds the probability of transitioning from

state i to state j, the emission probability distribution for each state, referred to as the

output probability distribution BBB = {bi(.)} and finally the probability of a state being
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the initial state of a sequence, referred to as the initial state probability ΠΠΠ = {πi}. It is

common to see an HMM being represented with the following notation:

λ = (AAA,BBB,ΠΠΠ) (3.30)

When the state output probability distribution bi(.) is modelled by a single mul-

tivariate – the output is a vector rather than a scalar – Gaussian distribution, we can

write the following:

bi(ooot) = N (ooot ;µµµi,ΣΣΣi) (3.31)

=
1√

(2π)d|ΣΣΣi|
exp
{
−1

2
(ooot−µµµi)

>
ΣΣΣ
−1
i (ooot−µµµi)

}
(3.32)

where ooot is the observation vector of dimension d consisting of parameters extracted

by the vocoder at frame t and > is the transpose operator. The parameters that define

the Gaussian distribution are: the Gaussian mean vector µµµi of dimension dx1 and its

covariance matrix ΣΣΣi of dimension dxd.

In the next sections we will show how to train HMMs, how to train HMMs as

synthesis models and how to generate parameters from them, assuming always that the

state output probability distribution is modelled by one Gaussian only.

3.2.2 Training HMMs

Training an HMM is the process of finding the parameters that define it, given a training

dataset. One way of finding the model parameters is to maximize the likelihood of the

training data acoustic parameters OOO given the model λ:

λmax = argmax
λ

p(OOO | λ) (3.33)

where OOO = [ooo>1 ,ooo
>
2 , ..ooo

>
T , ]
> and T is the parameter sequence length.

The maximization of the likelihood when the state sequence is unknown is obtained

by applying the expectation maximization (EM) algorithm, also called the Baum-

Welch algorithm when applied to HMMs. The EM algorithm is a method for max-

imizing the likelihood of distributions that depend on hidden variables, i.e. whose

values are not available in a supervised fashion. The basic idea behind the EM algo-

rithm is that the hidden variable, in this case the state sequence, can be eliminated by

marginalization. When that is done, the maximization of the log-likelihood is achieved

by the maximization of the so-called auxiliary function, defined as:

Q(λκ,λκ+1) = ∑
all qqq

P(qqq|OOO,λκ) log p(OOO,qqq|λκ+1) (3.34)
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where qqq = {q1,q2, . . . ,qT} is a state sequence and the index κ refers to the iteration, so

λκ and λκ+1 are the models of the current and the subsequent iteration.

In the EM algorithm, the maximization of the auxiliary function is obtained itera-

tively. Given a model initialization, in each iteration the auxiliary function is estimated

and then maximized providing the model for the next iteration. The maximization is

achieved through the calculation of the probabilities of state occupancy and transition

given the observation vector sequence and the model posterior probabilities. The pos-

terior probabilities γt(i), the probability of being in state i at time t and ξt(i, j), the

probability of transitioning from state i to state j at time t, are given by:

γt(i) = p(qt = i|OOO,λ) (3.35)

=
αt(i) βt(i)

p(OOO|λ)
(3.36)

=
αt(i) βt(i)

∑
N
j=1 αt( j) βt( j)

(3.37)

ξt(i, j) = P(qt = i,qt+1 = j|OOO,λ) (3.38)

=
αt(i) ai j b j(ooot+1) βt+1( j)

∑
N
j=1 αt( j) βt( j)

(3.39)

where:

αt(i) = p([ooo1,ooo2, ...,ooot ] , qt = i|λ) (3.40)

βt(i) = p([ooot+1,ooot+2, ...,oooT ] , qt = i|λ) (3.41)

αt(i) is the so called forward and βt(i) the backward probability.

The forward and backward probabilities can be calculated by following the given

relation:

p(OOO,qqq|λ) = p(OOO|qqq,λ)P(qqq|λ) (3.42)

= πq0

T

∏
t=1

aqt−1qt bqt (ooot) (3.43)

The calculation of the posteriors from the estimated model parameters allows for

the maximization step of EM that will then update the model parameters. Consider-

ing the state output probability distribution made of a single Gaussian, we have the
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following update equations:

πi = γ1(i) (3.44)

ai j =
∑

T−1
t=1 ξt(i, j)

∑
T−1
t=1 γt(i)

(3.45)

µµµi =
∑

T
t=1 γt(i)ooot

∑
T
t=1 γt(i)

(3.46)

ΣΣΣi =
∑

T
t=1 γt(i)(ooot−µµµi)(ooot−µµµi)

>

∑
T
t=1 γt(i)

(3.47)

3.2.3 Training synthesis models

To obtain models that can generate acoustic sequences to drive a vocoder and syn-

thesize high quality speech, the standard HMM training as used for automatic speech

recognition has been reformulated to account for the following requirements: addi-

tional acoustic features, explicit duration modelling and a full-context dependency.

We will see in the next few sections how each of these requirements have been met for

the training of synthesis models.

3.2.3.1 Feature vectors and state emission probabilities

A typical observation vector is constructed from the vocoded parameters by a con-

catenation of their static values plus their dynamics, represented by delta ∆ccc>t and

delta-delta ∆2ccc>t values as follows:

ooot = [ccc>t ,∆ccc>t ,∆
2ccc>t ]

> (3.48)

where ccct is a static parameter of order M with the vocoded parameters extracted for

analysis window t and ooot the observation vector of dimension 3Mx1. The dynamics

are calculated from the statics as follows:

∆
(n)ccct =

L(n)

∑
τ=−L(n)

w(n)
τ ccct 0 6 n 6 2 (3.49)

where 2L(n)+ 1 is the size of the window used to calculate the dynamics of order n,

L(0) = 0 and w(0)
0 = 1.

As presented previously, the synthesis module of the vocoder requires parameters

that describe both the spectral envelope and the excitation signal. To drive the gen-

eration of the excitation signal, F0 values need to be modelled. Unlike the spectral
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and aperiodicity parameters, F0 is not strictly continuous. For voiced segments, F0 is

continuously defined but for unvoiced segments it is undefined, however, this does not

mean that it takes the value of zero. One of the ways of handling this is to consider F0

as a multispace variable (Tokuda et al., 2002), where one space assumes continuous

values and the other space a discrete distribution. For each state, there is a label that

indicates which space F0 is and which distribution is attributed to it.

In order to maintain synchronization between the different parameters (spectral,

aperidiodicity and F0), the observation vector adopted in TTS is composed of multiple

separate streams in a multistream HMM (Young et al., 2006). Each stream contains

static and dynamic representations of this data. Each stream refers here to sections

of the observation vector that are considered to be statistically independent of each

other. When the observation vector is made up of more than one stream, the output

probability is the product of the probability of each stream as follows:

bi(ooo) =
S

∏
s=1

bis(ooos) =
S

∏
s=1

{
wisN (ooos;µµµis,ΣΣΣis)

}
(3.50)

where S is the number of streams, wis is a weight associated with the output probability

of state i and stream s and N (ooos;µµµis the output probability associated with stream i and

state s modelled as a single Gaussian. Multistream training keeps the synchronization

of spectral and excitation models while still allowing them to be separately tied, as we

will soon discuss.

3.2.3.2 Duration modelling

Without explicit duration modelling, the state duration of an HMM would be given

by the distribution of the transition probabilities which in turn give an exponential de-

caying distribution. As this is not a good model to generate natural sounding phone

durations, explicit duration modelling in the form of the semi-Markov structure (Fer-

guson, 1980; Zen et al., 2007c) was proposed. Under this framework, the duration of

state k is modelled by a Gaussian distribution:

pk(dk) =
1√

2πσ2
k

exp
(
−(dk−µk)

2

2σ2
k

)
(3.51)

where dk, µk and σk are the duration of state k, the mean and the variance of the duration

distribution of state k.
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3.2.3.3 Context dependency and parameter tying

In automatic speech recognition, a triphone defines an HMM model: a different model

is trained for a phone segment depending on the phonemes that come before and af-

ter. Although using triphone context might be sufficient for the decoding of text from

acoustics, to characterize high quality natural sounding speech, a wider context is re-

quired. Context dependency for speech synthesis should take into account, in addi-

tion to phoneme assignment, information about lexical stress, pitch accent, tone and

part-of-speech, i.e. linguistic information that can potentially influence the acoustic

realization. A richer context can potentially create a vast amount of models which

means in practice some contexts will not have any or very few example in the training

set. Consequently, it is possible that at generation time unseen contexts will appear.

The number of possible contexts have to be restricted. It is however not clear which

linguistic specification is sufficient to define an acoustic model. Rather than creating

rules for what is a relevant context, such as the triphone rule used for speech recog-

nition, in statistical parametric synthesis the underlying context dependency is found

automatically (Yoshimura et al., 1999).

HMM training is carried out first for each monophone in context-independent train-

ing, creating context-independent HMMs (CI-HMMs). The CI-HMMs are then tied

together using a stream-dependent tree-based state clustering: a different decision tree

will be built for spectral, excitation and duration parameters. The streams of spectral,

excitation and duration parameters are clustered independently with the assumption

that their dependency on the linguistic context will be different: F0 and duration are

more affected by supra-segmental linguistic specification while spectral parameters

are affected by localised linguistic characteristics like the phone. Each leaf of the deci-

sion tree refers to a context-dependent state (CD-HMMs). The linguistic specification

determined by the questions leading to the leaf nodes indexes the CD-HMMs. The

questions associated with the decision trees in practice define regions in the linguistic

space (the multidimensional space covered by all possible linguistic specifications) so

an unseen specification will be associated with the model of the region it comes from.

In other words, any context will reach one of the leaf nodes, from the root node then

selecting the next node depending on the answer about the current context. In the clus-

tering technique, the size of the decision tree is automatically controlled based on the

minimum description length criterion (Shinoda and Watanabe, 2000).
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3.2.4 Parameter generation

In the synthesis part, the text to be synthesized is converted by the front-end to a se-

quence of linguistic specifications. Each linguistic specification will drive the selection

of a CD-HMM by answering the linguistic questions of the decision trees. Given this

concatenated sequence of CD-HMMs, the utterance HMM λ is constructed. The most

likely observation sequence is given by the maximization of the likelihood function

P(OOO|λ). There is no known method to find a closed form solution to this maximization

problem. Tokuda et al. (2000) show how to find the solution iteratively by using the

EM algorithm. Tokuda et al. (2000) also show that a closed form solution can be found

if we consider just the most likely state sequence:

OOOmax = argmax
OOO

p(OOO|λ) (3.52)

= argmax
OOO

∑
all qqq

p(OOO,qqq|λ) (3.53)

w argmax
OOO

max
qqq

p(OOO,qqq|λ) (3.54)

= argmax
OOO

max
qqq

p(OOO|qqq,λ)P(qqq|λ) (3.55)

where, following the definitions from Section 3.2.2, qqq = {q1,q2, . . . ,qT} is a state se-

quence and OOO= [ooo>1 ,ooo
>
2 , ..ooo

>
T , ]
> is the speech parameter observation sequence column

vector with length 3MT , M being the length of the static vector ccct and T the number

of states.

The problem can be divided into two maximizations:

qqqmax = argmax
qqq

P(qqq|λ) (3.56)

OOOmax = argmax
OOO

p(OOO|qqqmax,λ) (3.57)

Assuming the HMM state transition goes from left-to-right without skipping states,

it is possible to find the state sequence from the model by using the state duration

probability, which in the HSMM paradigm is explicitly modelled by a distribution:

qqqmax = argmax
qqq

P(qqq|λ) (3.58)

= argmax
qqq

K

∏
k=1

pk(dk) (3.59)

where pk(dk) is the probability of duration dk in state k, i.e. the probability that a

segment of dk duration is emitted from state k; K is the number of states visited dur-

ing the duration of T – given by the model specification. The total duration has to
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be achieved so ∑
K
k=1 dk = T . For the Gaussian distribution, the state durations that

maximize Eq.(3.59) is given by (Yoshimura et al., 1998):

dk = µk +ρ σ
2
k (3.60)

ρ =

(
T −

K

∑
k=1

µk

)
�

K

∑
k=1

σ
2
k (3.61)

where µk and σk are the mean and the variance of the duration distribution of state

k and ρ is a parameter that can be controlled by a desired total duration as we will

soon show. From the values of dk, we know how many frames are emitted by each

state and therefore the state sequence. When synthesizing a sentence it is possible to

set a desired total duration T . From the equations above, we are able to calculate the

state duration dk, however, rounding errors in the process of approximating a real value

(time) to a integer value (number of states) means that the generated sentence will not

necessarily have exactly duration T .

It is possible to control the speaking rate by changing the value of ρ. When ρ is set

to zero then ∑
K
k=1 µk = T , if ρ is negative then total duration is smaller – faster – and if

positive overall duration if longer – slower rate. Alternatively, to control the speaking

rate by changing ρ we can define a scaling factor ϕ:

ρ =

(
ϕ

K

∑
k=1

µk−
K

∑
k=1

µk

)
�

K

∑
k=1

σ
2
k (3.62)

where ϕ = 1 sets ρ to zero and the normal speaking rate, ϕ > 1 slows down the rate

and ϕ < 1 speeds it up.

Given that the state sequence is now known, we can proceed to find the observation

sequence OOOmax:

OOOmax = argmax
OOO

p(OOO|qqqmax,λ) (3.63)

= argmax
OOO

N (OOO|µµµq,ΣΣΣq) (3.64)

Without any constraints, the maximization in Eq.(3.64) will set OOOmax to be the

sequence of the Gaussian mean vectors. To create parameters whose temporal trajec-

tories are not a sequence of abrupt transitions through the mean vectors of the sequence

of HMMs, a constraint needs to be added. This constraint is given by the relation be-

tween the static and dynamic components that define the observation vector, seen in

Eq.(3.48). The following holds:

OOO =WWWCCC (3.65)
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where:

CCC = [ccc>1 ,ccc
>
2 , ..ccc

>
T , ]
> (3.66)

WWW = [WWW 1,WWW 2, ...,WWW T ]
>⊗ IIIMxM (3.67)

where ⊗ is the tensor product, IIIMxM the identity matrix of dimension MxM, WWW is a

3T xT matrix and WWW t a 3T x1 vector constructed from the weights w seen in Eq.(3.49)

which define how the delta values are calculated from the static values:

WWW t = [www(0)
t ,www(1)

t ,www(2)
t ] (3.68)

www(0)
t = [000t−1,1,000T−t ]

> (3.69)

www(1)
t = [000t−L(1)−1,w

(1)
−L(1), ...,w

(1)
0 , ...,w(1)

L(1),000T−L1−t ]
> (3.70)

www(2)
t = [000t−L(2)−1,w

(2)
−L(2), ...,w

(2)
0 , ...,w(2)

L(2),000T−L2−t ]
> (3.71)

where 000k is a kx1 vector of zeros.

With the constraint of Eq.(3.65), the maximization in Eq.(3.64) becomes:

CCCmax = argmax
CCC

N (WWWCCC|µµµq,ΣΣΣq) (3.72)

= (WWW>ΣΣΣ
−1WWW )−1WWW>ΣΣΣ

−1µµµ (3.73)

ΣΣΣ = diag[ΣΣΣ−1
q1
,ΣΣΣ−1

q2
, ...,ΣΣΣ−1

qT
]> (3.74)

where:

µµµ = diag[µµµ−1
q1
,µµµ−1

q2
, ...,µµµ−1

qT
]> (3.75)

Rewriting Eq.(3.73), the generated parameter sequence is given by:

CCCmax = RRR−1rrr (3.76)

where:

RRR = WWW>ΣΣΣ
−1WWW (3.77)

rrr = WWW>ΣΣΣ
−1µµµ (3.78)

The parameter generation algorithm has a closed form as in Eq.(3.76) in the case

where the state sequence is assumed independent of the observation sequence, and

thus can be found (or provided externally) in advance. As previously stated, a more

complex iterative solution using EM is required if this independence assumption is not

made and it is desired to jointly optimise for state sequence and observation sequence.
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By utilizing the constraints on the dynamics for parameter generation, the trajectories

of the parameters over time are smoother (rather than being a sequence of means)

which in turn increases the quality of the generated speech. As we saw in the previous

section, this constraint was not used at training time: the HMMs are trained as if

the static and dynamic components of the observation vector are independent of each

other. To include the explicit relation ooo = WWWccc and correct for the training/generation

inconsistency Zen et al. (2007b) proposed a reformulation of the training algorithm

referred to as the trajectory HMM. Trajectory HMMs can accommodate the dynamic

constraints with no additional model parameters.

3.2.5 Adaptation

The statistical framework enables the use of model adaptation techniques that can ad-

just trained models in such a way that they better describe a new dataset. Adaptation

methods for HMMs in speech technology were first proposed in the context of speech

recognition in order to adapt a system for a particular speaker, channel condition or lan-

guage (Gauvain and Lee, 1994; Digalakis et al., 1995; Leggetter and Woodland, 1995).

For TTS, adaptation techniques are used, for instance, to create voices for a particular

speaker from a small amount of speech data through the use of a model trained with

a large amount of data from other speakers – the average voice model (Yamagishi,

2006). Speaker adaptation can also be used to create voices with different speaking

styles, which could be emotional states like happy and sad or production-related styles

like hyper and hypo articulation, clear speech and noise-driven Lombard speech. In

this context, it is possible to adapt a model trained with neutral speech data to one

of these styles using a small amount of style-matched training data (Yamagishi et al.,

2004; Picart et al., 2011; Raitio et al., 2011a)

The main techniques for adaptation of HMMs are based on linear regression ap-

plied to the model parameters: Gaussian means and covariance matrices are adjusted

using a linear transform. Maximum likelihood linear regression (MLLR) adaptation

updates the mean vectors in order to maximize the likelihood of the data used for

adaptation (Leggetter and Woodland, 1995; Tamura et al., 2001). The same transform

is shared across different states because the limited adaptation data might not cover all

models. MLLR performs linear transforms of mean vectors of the state output proba-

bility distributions in the following way:

bi(ooot) = N (ooot ; ζζζkµµµi + εεεk , ΣΣΣi) (3.79)
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where ζζζk and εεεk are a dxd matrix and a d-dimensional vector, respectively. k denotes

k-th regression class.

In addition to adapting the means, one can also adapt the covariance in the models

using the same matrices, this is called the constrained MLLR (CMLLR) (Gales, 1998).

The state output probability distribution is affine-transformed as follows:

bi(ooot) = N (ooot ; ζζζkµµµi + εεεk , ζζζkΣΣΣiζζζ
>
k ) (3.80)

Linearly transforming the mean and covariance parameters of the Gaussian dis-

tribution can be translated to a linear transformation of the observation vector in the

following way (Gales, 1998):

bi(ooot) = N (ooot ; ζζζkµµµi + εεεk , ζζζkΣΣΣiζζζ
>
k ) (3.81)

= |ζζζ′|N (ζζζ
′
kooot− εεε

′
k ; µµµi,ΣΣΣi) (3.82)

where ζζζ
′
= ζζζ

−1 and εεε′k = ζζζ
−1

εεεk. A linear transformation applied to the Mel cepstral

coefficients can be transposed to a linear transformation of the model parameters.

The transforms [ζζζ;εεε] can be estimated using different criteria like MLLR, CMLLR

and maximum a posterior (MAP)-based criteria like the structured MAP linear regres-

sion (SMAPLR) and the constrained structural MAP linear regression (CSMAPLR)

(Yamagishi et al., 2009). Given enough data for adaptation, it is useful to combine lin-

ear regression adaptation with MAP adaptation (CSMAPLR-MAP) (Yamagishi et al.,

2009).

Additionally, it is possible to combine LR-based model adaptation with other types

of model transformation such as vocal tract length normalization (VTLN) (Saheer

et al., 2012). The transformation applied in VTLN is done by one parameter only,

the warping factor. As it is a much simpler transformation, VTLN requires very little

adaptation data but does not capture as much of the speaker characteristics as linear

transformation based adaptations do. Using VTLN is especially attractive for TTS

because transformation can be done with no additional parameters when the MGC

spectral parametrization, described in Section 3.1.3.2, is adopted (Pitz and Ney, 2005;

Saheer et al., 2010). The MGC parametrization enables spectral envelope warping via

the parameter α. This means that the relation between MGCs of a linear and a warped

spectral envelope can be described by α, so no additional model parameters needs to

be added.
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3.2.6 Oversmoothing

The parameters generated by the acoustic model to synthesize speech are the mean

vectors of the Gaussian models, which in turn are calculated by averaging observation

vectors extracted at training time as seen in Eq.(3.46). This averaging creates an over-

smoothed spectral envelope, the rich details of peaks and valleys is lost. To overcome

this problem, a few methods have been proposed: post filtering (Ling et al., 2006),

Global Variance (GV) (Toda and Tokuda, 2005, 2007) and minimum generation error

training (MGE) (Wu and Wang, 2006).

A simple solution to create less smoothed spectral envelopes is to modify the gen-

erated spectral parameters. One possible way of enhancing spectral sharpness is to

bring line spectral pairs closer to each other as proposed by Ling et al. (2006). We will

see a fuller description of this in Chapter 4. Although it can increase the quality of

generated speech, it is done independently of the naturally occurring spectral peaks, so

such post filtering can introduce audible artefacts.

A different way of looking at the problem is to model the variance observed in the

training stage and reproduce it at generation time. The global variance (GV) method

(Toda and Tokuda, 2005, 2007) is used to counteract the over smoothing problem by

modelling the GV – variance calculated across a utterance – of the parameters extracted

during training. At training time, the GV vectors – the variance calculated for each

dimension of the observation vector – are calculated for each utterance in the training

corpus and a single multivariate Gaussian distribution is used to model them. The

maximum likelihood training then considers the maximization of the likelihood of both

the model trained with vocoded parameters and the GV model. At generation time, the

observation vector is obtained by maximizing the likelihood of the HMM model and

the GV model. The additional term makes it hard to find a closed form solution, so

Toda and Tokuda (2007) proposed an iterative method based on gradient descent. The

solutions for the first order and second order gradient descent are presented in Toda

and Tokuda (2007).

GV remediates oversmoothing by modelling variance explicitly. Alternatively, one

can improve one of the causes of oversmoothing: the training criterion. Acoustic model

training using ML does not consider the mismatch between generated and natural pa-

rameters. To fix this problem the Minimum Generation Error (MGE) HMM training

method was proposed (Wu and Wang, 2006). MGE training aims at minimising the

generation error of the modelled acoustic parameters during training. In that way,
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the training procedures incorporate the parameter generation for the error calculation.

An appropriate choice of error criterion guides the quality of the generated acoustic

features. In its simpler form, MGE training operates on the Viterbi-aligned HMM

sequence, initialised by the results of ML training. The first proposed optimization

function (Wu and Wang, 2006) for MGE training was simple Euclidian distance be-

tween original and generated line spectral pairs (LSP). Since then, other versions of

MGE have been proposed: log spectral distance from LSPs (Wu and Tokuda, 2008)

and from the STRAIGHT extracted spectrum (Wu and Tokuda, 2009).

3.3 Subjective evaluation

It is common to illustrate the performance of HMM-based speech synthesis by present-

ing spectral distortion measures like cepstrum distance and model distortion measures

like the likelihood of the training set (Zen et al., 2007b; Yamagishi et al., 2009; Ling

and Dai, 2012). Although they serve as an indication of how well the synthesis model

represents natural speech, measuring the quality of synthetic speech automatically is a

challenge even when a reference natural speech signal is available, which is most likely

not the case (Möller and Falk, 2009). Although non-intrusive measures, measures that

do not require a reference speech signal, have been proposed for TTS (Falk et al., 2008;

Norrenbrock et al., 2012) for a true measure of quality, listening tests remain the gold

standard.

3.3.1 Procedure

Through listening tests, it is possible to assess different quality dimensions by asking

listeners to perform different tasks. Listening tests can provide scores for naturalness,

speaker similarity, expressiveness and intelligibility in both quiet and adverse condi-

tions. When designing a listening test it is important to consider all factors that may

affect the scores. It is thus very important to select stimuli and presentation method

carefully and to test a sufficient number of listeners. For instance, a poor quality syn-

thetic voice will likely be judged worse if better voices are present in the same test

even when participants are not explicitly asked to compare them. The same effect can

occur when including both natural speech and synthetic speech in the same test. As

each listener and test generates different scores, comparing between tests is potentially

“dangerous”, unless due care is taken. Listener variability is also a factor that needs
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to be controlled, for example having native and non native speakers in the same test

can create conflicting results as it was noted that these two listeners types perceive

speech in clean (Flege et al., 1997) and in noise (van Wijngaarden et al., 2002) very

differently. It is better to first treat their data separately and point out the differences

between them before averaging scores. Another factor that needs to be accounted for

is listening impairment. A basic hearing test can be done that assesses whether par-

ticipants can detect a pulse signal emitted at a certain level (30 or 25dB depending

on the criteria) at a range of frequencies bilaterally. One fails the test if two different

frequencies are not detected by the same ear or if the same frequency is not detected

by both ears. Participants that fail the screening are still asked to take the listening test

as they can not be informed, for ethical reasons, whether they passed the test or not.

Their scores are however not counted.

3.3.2 Types of listening test

The most common type of task is to ask participants to judge how natural a stimulus is

on a scale of one to five, the average of these ratings is then taken to generate the mean

opinion score (MOS). In the field of speech code evaluation this kind of test is also

referred to as the absolute category rating (ACR) test as quality judgements are made

without any reference. To compare speech signals with small perceptual differences,

the most appropriate method is a direct comparison test. In degradation category rat-

ing (DCR) tests participants listen to a reference signal (non degraded) as well and are

asked to rate (on a scale from one to five) the perceived degradation in quality with

regards to this signal. To allow for a random ordering of presentation, comparison cat-

egory rating (CCR) tests ask listeners to rate the second stimulus compared to the first

one on a scale that ranges from minus 3 (much worse) to 3 (much better). Additionally,

the so-called MUSHRA (multi-stimulus test with hidden reference and anchors) test

allows for the comparison of multiple stimuli. Participants are presented with several

speech samples and a known reference which should not be rated. Each stimuli is then

rated on a continuous scale defined from 0 (lowest quality) to 100 (i.e. best quality).

The scores quantify the quality degradation of each stimuli under test compared to the

reference signal. It is also possible to judge naturalness by preference tests using the

AB test: is stimuli A more natural than stimulus B, and the ABX test: is stimuli X

perceptually closer to A or to B. Comparison tests and MOS can also be used to mea-

sure speaker similarity. The MOS similarity task can also be viewed as a comparison
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test as participants are asked to scale similarity to a particular speaker. These are the

most common type of tests, and although they can tell us about the general quality of

a voice, they do not provide segment-level judgements.

For the purposes of this thesis, it is intelligibility that we wish to assess. There

are a number of tests available for testing intelligibility, a few examples of which we

will explain here. Lexical decision tasks involve identifying whether the sample heard

is a dictionary word (eg. coloured) or a nonword (eg. coobered). Word recognition

tasks require the participant to identify which word was spoken or at which point a

word becomes identifiable - known as the gating paradigm. Word recall tasks involve

asking participants which word or sentence they heard to test for instance the effect on

memory and cognitive overload. We chose to use a transcription test, which requires

the participant to type in what they hear. The results can then be compared to the text

used to generate the stimuli to provide a measure of the intelligibility through word ac-

curacy rates (WAR) or phoneme error rates. A design decision crucial to transcription

tasks is the choice of sentences or words. Examples used in our work include Ma-

trix sentences (Dreschler, 2006), semantically unpredictable sentences (SUS) (Benoit,

1990) and Harvard sentences (IEEE, 1969). Other sentence types exist and some tests

require the design of specific sentence or word material. A common sub-version of the

transcription test is the modified rhyme test (MRT) (Fairbanks, 1958), which although

not used explicitly in this thesis, has been used extensively in the research that helped

inform it. MRT uses a set of 300 words organised in groups of six, where words in

a group differ from each other at only one position. Participants listen to a subset of

the words and must either report which word they heard (open set) or choose the word

from the list of six possibilities (closed set).

3.3.3 Intelligibility studies

Extensive work has been done on measuring the intelligibility of synthetic speech and

a good survey can be found in Winters and Pisoni (2006). Knowing in which circum-

stances synthetic speech is less intelligible can help in the design of better TTS sys-

tems as well as providing insights into how speech is perceived. In particular, speech

perception researchers want to know what the advantages of natural speech are over

synthetic speech. The main body of work done in speech perception of TTS has been

performed using formant-based TTS voices. In comparison, very few studies have

evaluated the intelligibility of concatenative and HMM-based systems. Studies with
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both formant and concatenative systems all point to the same conclusion: compared

to natural speech, synthetic speech is harder to perceive and therefore less intelligible

(Winters and Pisoni, 2006). This result has been observed in many different studies

that vary by the choice of TTS system, sentence material, listening condition, task and

listener group.

3.3.3.1 Segment-level

Early studies, e.g. (Nye and Gaitenby, 1973; Pisoni et al., 1985; Logan et al., 1989),

investigated segmental intelligibility errors using MRT. To provide greater detail, the

majority of these studies report not only word error rates but also phoneme error rates,

organized in groups of phonemes. Results of these studies from both open and closed

set MRTs showed higher error rates for rule-based synthetic speech than for natural

speech (Logan et al., 1989). One issue with MRTs for intelligibility testing is their

relative simplicity. Small numbers of potentially confusable words mean that with

natural speech and good quality synthesizers a ceiling is inevitably reached, albeit less

quickly in open set conditions.

Testing intelligibility in noise reduces the likelihood of reaching this ceiling. In-

telligibility in noise is of course of interest in its own right as it reflects more realistic

listening conditions. In noise, both synthetic and natural speech become less intelligi-

ble, however the intelligibility degradation when noise levels increase is significantly

worse for TTS voices (Koul and Allen, 1993). MRT evaluations reveal not only more

instances of errors found in clean conditions but also new phoneme confusions for

synthetic speech (Winters and Pisoni, 2003). As might reasonably be expected, the

potential confusions are dependent on the type of speech and the type of noise.

More recently, a study compared formant and concatenative TTS systems (Venkata-

giri, 2003) by evaluating segmental intelligibility in noise – multitalker babble – using

the MRT words in a open set fashion. This study found that all TTS methods tested

were significantly less intelligible than natural speech at both SNRs tested, by at least

22%. Additionally, the study found that concatenative systems created more vowel

confusions while the formant-based system gave more consonant confusions, which

indicates that concatenative techniques are better at modelling consonants while for-

mants are better at modelling vowels. MRT can lead to useful findings, but alone

it is not sufficient because it provides quite a limited number of confusions and the

phoneme distribution across the test is not balanced. More complex methods are also

required because MRT is valid only at the single word or phoneme level.
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3.3.3.2 Sentence level

For greater understanding, it is necessary to move beyond isolated words to look at

complete sentences. Results of sentence tasks can help us identify the semantic and

sentential factors in the perception of speech. It has been shown that perception of syn-

thetic words in a sentence is significantly better than in isolation (Hoover et al., 1987;

Mirenda and Beukelman, 1987). For poor quality synthesizers it was found that the se-

mantic context gives more improvement than moving from isolation to a sentence – the

sentential context (Hoover et al., 1987). For high quality TTS voices, an improvement

caused by sentential context was also observed (Mirenda and Beukelman, 1987).

Due to its relative newness there have been far fewer segmental studies performed

for the perception of HMM-based systems, but a substantial body of work that has

been done with sentences on the evaluation of corpus-based TTS systems originated

with the introduction of the annual Blizzard challenge in 2005 (Black and Tokuda,

2005). HMM-based TTS entries featured and have continued to do so in every subse-

quent challenge including a baseline provided by the challenge organisers. The chal-

lenge evaluates different TTS systems trained with the same database. Scores are ob-

tained using the same text material, listening conditions and listeners, to provide a fair

comparison of the different TTS systems. Listening tasks judge naturalness in MOS

scores, similarity and intelligibility in quiet and noise. The first few challenges 2005-

2009 evaluated intelligibility of sentences in quiet, some without the natural speech

baseline for comparison. Some systems obtained intelligibility scores comparable to

natural speech, including HMM-based entries e.g. (Yamagishi et al., 2008b). Overall

the intelligibility differences between the synthetic voices and natural speech ranged

between 5% to 40% across the entries. In 2010, the Blizzard challenge was expanded

to include the evaluation of intelligibility in noise. Overall intelligibility was seen to

drop faster for synthetic speech (King and Karaiskos, 2010). Synthetic speech can

however be more intelligible than natural speech in noisy situations when the synthe-

sizer is modified as in the Blizzard 2010 entry described by Suni et al. (2010). In this

entry the formant structure was enhanced via a post-filtering technique during the open

phase of the glottal cycle, pitch was raised and the spectral tilt was halved via mod-

ifications to the glottal pulse harmonic structure, a combination that resulted in large

intelligibility gains in noise.

It is also of interest to evaluate TTS at higher speaking rates. Intelligibility at

higher speaking rates is important to people with visual disabilities – a large proportion
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of TTS users – as they tend to listen to TTS at faster speeds because they are expert

users. A large scale test has recently evaluated the intelligibility of eight different TTS

voices across a range of speaking rates (Syrdal et al., 2012). Two systems of each

type: formant, diphone, unit selection and HMM-based synthesis were tested using

SUS at 200-450 words per minute in quiet conditions. Significant differences were

found between the systems, with unit selection systems achieving higher scores across

all rates. Errors increase significantly with speech rate. Contrary to what was found

in studies with visually impaired people (Stent et al., 2011), this study found the unit

selection systems to be more intelligible than formant synthesizers at higher rates. The

HMM system was as intelligible as the unit selection system at the human default

speaking rate of 200 words per minute.

3.3.3.3 Special cases

Organizing traditional listening experiments can be costly, complex and time consum-

ing, especially if a large number of participants is required or the target language is

not the native language spoken where the test is taking place. Wolters et al. (2010)

investigated whether Amazon mechanical turk (AMT) can be used to compare the in-

telligibility of speech synthesis systems. AMT is a platform provided by Amazon that

allows tasks to be crowdsourced. Participants are recruited and paid through Amazon

and do the task using their own computer. It is impossible to control the listening con-

ditions but there are some ways of checking whether listeners are performing the task

appropriately. The word error rates for SUS in quiet conditions found by Wolters et al.

(2010) using AMT are much worse than those obtained in controlled lab conditions

but the relative differences between the systems are similar. Findings such as the ones

reported in Wolters et al. (2010) have led to the adoption of AMT by many research

groups.

Whereas most previous evaluations have required participants to use headphones

and often soundproof booths, Raitio et al. (2012) evaluated the intelligibility of HMM-

based TTS in noise in a more realistic listening environment. Instead of playing the

stimuli over headphones, participants were exposed to stimuli played over an array of

loudspeakers, allowing for spatial separation of speech and the noise source. Results

indicate that the ordering of the systems is the same in both the headphone and in the

surround sound set-up, which confirms that experiments with headphones give a good

prediction of performance in more realistic scenarios. Results from the surround sound

set-up presented greater differences between the systems tested. Synthetic speech pre-
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sented in a stereo set-up – headphones and stereo noise – was more intelligible than

in a mono set-up – headphones but the same noise played in each ear. The mono and

multichannel set-up results were very similar, even though the last scenario offered

spatial separation, which the authors say indicates that the room impulse response has

a negative impact on intelligibility.



Chapter 4

Evaluation of objective intelligibility

measures

In this chapter, we present two experiments designed to evaluate objective measures of

speech with regards to intelligibility prediction of HMM-generated synthetic speech

in additive noise. We first explain how objective measures of speech operate and the

different categories of measures. We then talk about how to use these measures to

evaluate speech enhancement and speech modification algorithms and how to evaluate

objective measures of intelligibility. We subsequently detail each of the experiments

we designed, describing the listening set-up and speech material as well as presenting

the subjective intelligibility scores and correlation coefficient results obtained in each

one. Experiment I dealt mostly with non-modified synthetic speech and Experiment II

with modified synthetic speech. We also comment on the impact of noise and modifi-

cation type on the performance of the measures. All this is followed by discussions and

conclusions. This work was partially published in Valentini-Botinhao et al. (2011b,a).

Audio samples are available at https://wiki.inf.ed.ac.uk/CSTR/Modifications

4.1 Introduction

Objective measures for speech are tools for predicting dimensions such as quality

and intelligibility, that otherwise would have to be obtained using subjective listening

tests. Listening tests are time consuming, often expensive and not easily reproducible.

Therefore objective measure are an attractive proposition. These measures can be used

to evaluate and compare different methods of storing, transmitting, processing and

generating speech, in the fields of speech coding and speech enhancement. In some
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of these fields they have eventually replaced listening test experiments by providing

reliable enough evidence to support improvements brought by the algorithms. But be-

yond their use for evaluation, could these measures be used as a control mechanism

for speech generation or modification algorithms? The measure could, for instance,

control the effect of a speech enhancement algorithm like noise suppression, derever-

beration or source separation. Moreover a measure could be used to control the type

and degree of speech modification required to enhance certain acoustic properties of

clean speech, in the context of what we refer to here as speech intelligibility enhance-

ment. If we wish to use objective measures in this way, we must first discover whether

the predictions they make are accurate across different noise types, listening condi-

tions, and speech modifications.

Several studies have shown the correlation between subjective and objective mea-

sures for quality and intelligibility prediction. Early studies concerned quality predic-

tion for speech coders (Barnwell, T., III, 1980; Quackenbush et al., 1988; Kubichek

et al., 1991). More recently-introduced measures and evaluation methods are de-

signed to measure the quality and intelligibility of noise-corrupted speech processed

using noise reduction algorithms (Hu and Loizou, 2006, 2008a; Ma et al., 2009; Taal

et al., 2009; Ma and Loizou, 2011; Gomez et al., 2011) and dereverberation algorithms

(Kokkinakis and Loizou, 2011).

We have seen in Chapter 2 that human speech production is affected by background

noise, and that some of the modifications made by talkers are helpful to listeners. It is

a natural step to incorporate similar behaviour into a text-to-speech (TTS) system. The

TTS system would then be able to generate speech that is as intelligible as possible for

any given listening condition. For this class of speech intelligibility improvement al-

gorithms, where the clean speech is available and can be modified before being mixed

with noise, there have been far fewer evaluation studies. Tang and Cooke (2011) report

how well a set of objective measures perform for a range of modifications made to nat-

ural speech. However no extensive study has yet been performed involving many types

of objective measures, diverse noise conditions and, crucially, with modified synthetic

speech. But prior to conducting that study, we must first evaluate how well these objec-

tive measures correlate with subjective scores for unmodified synthetic speech. This

questioning arises from the fact that these measures were originally proposed to predict

quality or intelligibility of distorted natural speech. Here we are using them to eval-

uate distorted synthetic speech where distortion refers to the additive noise only and

not the process of Text-To-Speech generation. The predictive power of the measures
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Acronym Measure

GP Glimpse proportion (Cooke, 2006)

Dau Dau measure (Christiansen et al., 2010)

STOI Short Term Objective Measure (Taal et al., 2010)

SII Speech Intelligibility Index (ANSI, 1997)

PESQ Perceptual Evaluation of Speech Quality (Rix et al., 2001)

FWS Frequency Weighted SNR (Tribolet et al., 1978)

WSS Weighted Spectral Slope (Klatt, 1982)

CEP Cepstral distance (Gray and Markel, 1976)

LSD Log Spectral Distance (Gray and Markel, 1976)

IS Itakura Saito distance (Gray and Markel, 1976)

LLR Log Likelihood Ratio (Gray and Markel, 1976)

Table 4.1: Objective measures evaluated in this chapter.

could decrease as we are not using natural speech as a reference for clean undistorted

speech.

To be able to produce acoustic changes leading to speech intelligibility improve-

ment in a noisy environment, a statistical parametric speech synthesis system as de-

scribed in Chapter 3 is a promising framework. This framework offers a great deal of

flexibility during both model training and speech generation. There is the potential to

generate synthetic speech that is most intelligible for a particular noise type and SNR

without the need to train models on matched training data, but rather by modifying the

model parameters or the generated speech parameters. In this study, we first investi-

gate whether measures designed to predict the intelligibility of natural speech can also

predict the intelligibility of hidden Markov model (HMM) generated synthetic speech,

in noise. Our second concern is whether the measures can predict the impact on intel-

ligibility of changes made to synthetic speech at a speech parameter level. Last, but

not least, we investigate whether the modifications we chose to apply actually have a

significant positive effect on subjective intelligibility.

In the course of two experiments, we evaluate the eleven different objective mea-

sures presented in Table 4.1. The relationship between speech quality and intelligibil-

ity is not a simple one: several well known speech enhancement – noise suppression

– algorithms are not able to improve intelligibility although speech quality improves

(Hu and Loizou, 2007a,b). This motivates us to include not only measures for in-
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telligibility but also measures for quality, similar to the evaluation described in Taal

et al. (2009). Four out of the eleven measures we evaluate are specifically designed

to predict intelligibility – the Dau measure, the Glimpse proportion, the Short Time

Objective Intelligibility (STOI) measure and the Speech Intelligibility Index (SII) –

and one of them was specifically designed to measure quality – Perceptual Evalua-

tion of Speech Quality (PESQ). The remainder are simpler measures, also commonly

employed to measure quality.

In our first experiment, we evaluate the measures for intelligibility prediction of

synthetic speech either unmodified, or modified with an ideal binary mask; the mask

is of the type employed by some noise reduction algorithms. Some of the results of

this experiment were previously reported in Valentini-Botinhao et al. (2011b). The

results reported in this chapter were obtained from subjective and objective scores

averaged across sentences and listeners, whereas in Valentini-Botinhao et al. (2011b),

we averaged only across listeners. For this reason results presented here differ from

the ones presented in that paper.

In our second experiment, we evaluate the same measures but this time for synthetic

speech which has been modified by a range of simple, one dimensional, frame-wise

modifications inspired by the acoustic properties of Lombard speech (Summers et al.,

1988; Junqua, 1993; Castellanos et al., 1996). The modifications are: enhancement

of spectral peaks, changes in fundamental frequency (F0), shift of line spectral pairs

(LSPs) and change in speaking rate. Some of the results from this experiment were

previously reported in Valentini-Botinhao et al. (2011a). For both experiments, we

also evaluate the effect of the modifications on subjective intelligibility. The results

reported here for the Dau measure are slightly but not significantly different from the

ones reported in the published papers as we found an error in the calculation of the

measure further on in our work.

The remainder of this chapter is organised as follows. In Section 4.2, we describe

the objective measures we chose to evaluate. In Section 4.3, we show how to quantify

the measures’ predictive power. In Sections 4.4 and 4.5, we present the evaluation

results using data from experiments I and II respectively and in Section 4.6, we discuss

our findings, followed by conclusions in Section 4.7.
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4.2 Objective intelligibiliy measures

Several objective measures of quality or intelligibility of natural speech have been

proposed, operating in a variety of manners by prioritising certain dimensions of the

speech signal that are thought to reflect the perceptual cues that humans attend to when

evaluating quality or intelligibility.

Predicting quality using objective measures has seen more success than predicting

intelligibility. One of the most commonly used objective measures for speech quality,

the Perceptual Evaluation of Speech Quality (PESQ) shows a high correlation with

Mean Opinion Score (MOS) for various types of distortions (Rix et al., 2001). Ob-

jective measures of intelligibility do not correlate as well with subjective intelligibility

scores.

The relationship between speech quality and intelligibility is not entirely clear.

There have been various studies evaluating the usefulness of speech quality measures

as predictors of intelligibility. One of the most recent (Taal et al., 2009) compared

conventional methods based on SNR and linear prediction coefficients to perceptually-

based measures and concluded that the latter are better predictors.

Fig. 4.1 gives two block diagrams representing the different ways these measures

can operate, annotated with the names of the measures, which we will now introduce.

The measures in the lefthand diagram in Fig. 4.1 are designed to estimate the intel-

ligibility of speech with additive noise only as they require access to both the clean

speech signal and the noise signal. They can be seen as audibility-based measures as

they make predictions bases on the audibility of speech in noise. In this group there are

SNR-based measures including Frequency Weighted Segmental SNR (FWS) (Tribolet

et al., 1978) and the Speech Intelligibility Index (SII) (ANSI, 1997); there is also the

auditory model-based measure called the Glimpse Proportion (GP) (Cooke, 2006).

The measures in the other group, on the righthand side of Fig. 4.1, can in principle

calculate the intelligibility of other types of distortions, such as reverberation, coding

and other non linear channel distortions like speech enhancement methods. To predict

the intelligibility of a given speech signal, these measures need a reference undistorted

speech signal and the distorted signal. In this group we find most of the measures

evaluated in our current work, including spectral envelope-based distance measures

like the Cepstral Distance (CEP), Log Spectral Distance (LSD), Itakura-Saito (IS) and

Log-Likelihood Ratio (LLR) (Gray and Markel, 1976); there is also the Weighted-

Spectral Slope Metric (WSS) (Klatt, 1982), the quality standard Perceptual Evaluation
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speech

noise

intelligibility 
score of speech 

in noise

intelligibility
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speech

speech intelligibility
score of degraded 

speech

intelligibility
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GP
SII

FWS   SNR

Dau  STOI
PESQ

WSS   CEP   LSD   IS   LLR

Figure 4.1: Objective measures of speech intelligibility and quality categories: mea-

sures for additive noise (left) and measures for any type of distortion (right). The

acronyms refer to the measures we chose to evaluate in this study, with the exception

of the SNR measure.

of Speech Quality (PESQ) (Rix et al., 2001), the Dau measure (DAU) (Christiansen

et al., 2010) and the Short-Time Objective Intelligibility (STOI) measure (Taal et al.,

2010).

All measures shown in Fig. 4.1 are called intrusive measures (based on so-called

single-ended or full-reference models) because they need the clean or undistorted

speech signal to make their prediction. Non-intrusive measures aim to predict a sub-

jective dimension by analysing only the distorted speech. These types of measures are

useful in applications where the clean undistorted speech signal is not available, like

for instance quality monitoring during live calls (ITU, 2004) or quality and intelligi-

bility prediction of disordered speech (Falk et al., 2011) and TTS systems (Falk and

Möller, 2008; Falk et al., 2008; Norrenbrock et al., 2012). Here however we evaluate

predictions of synthetic speech in noise intelligibility using only intrusive measures by

using the synthetic speech as the clean undistorted signal.

In the following subsections, we describe how each of the eleven measures operate,

grouped into four categories: spectrum-based, perceptually-motivated, standards and

perceptual-model based.

4.2.1 Spectrum-based measures

The earliest approaches to quality prediction were based on simple metrics calculated

on a spectral envelope derived from linear predictive analysis. In this group we have,

amongst others, the Cepstral Distance (CEP), Log Spectral Distance (LSD), Itakura-

Saito (IS) and Log-Likelihood Ratio (LLR) (Gray and Markel, 1976). These measures

are usually calculated frame-by-frame and the final score is the average across frames,

excluding silent frames. Here for simplicity we present the formulae for a single time
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frame.

The Cepstral Distance (CEP) (Gray and Markel, 1976) is the unweighted Euclidian

distance of cepstral coefficients:

dCEP =

√
M

∑
m=0

(c(m)− c(m))2 (4.1)

where c(m) and c(m) are the cepstral coefficient m of the reference speech signal and

of the speech signal being tested respectively.

The Log Spectral Distance (LSD) (Gray and Markel, 1976), as the name states, is

the difference between the log spectrum envelopes:

dLSD =
1

2π

∫
π

−π

[
log
(
H(ω)

)
− log(H(ω))

]2 dω (4.2)

where H(ω) and H(ω) are the spectral envelopes of the reference speech signal and of

the speech signal being tested respectively.

The CEP and the LSD measures are related to each other. As seen in Chapter 3,

the cepstral coefficients are the Fourier series representation of the logarithm of the

spectral envelope. This means that the CEP measure converges to the LSD measure if

the number of cepstral coefficients is made infinite (Gray and Markel, 1976).

The Log-likelihood ratio (LLR), also called the Itakura distance, is defined as:

dLLR = log10

(
1

2π

∫
π

−π

∣∣∣∣H(ω)

H(ω)

∣∣∣∣2 dω

)
(4.3)

= log10

(
1+

1
2π

∫
π

−π

∣∣∣∣H(ω)−H(ω)

H(ω)

∣∣∣∣2 dω

)
(4.4)

The LLR represents the log of the ratio of the energy of the residual signal of the

reference and processed speech signal spectrum envelope. The residual signals are

calculated by filtering the reference speech signal with the inverse of the spectrum

envelope calculated from the reference and the processed signal, respectively. This

means that the ratio is always larger than one as the residual signal energy will always

be higher when speech and spectrum envelope are mismatched. Itakura (1975b) has

shown that the ratio is actually a likelihood ratio under certain assumptions (Gray and

Markel, 1976).

The Itakura-Saito (IS) distance proposed in Itakura and Saito (1970) is defined as:

dIS =
1

2π

∫
π

−π

(∣∣∣∣H(ω)

H(ω)

∣∣∣∣2− log
∣∣∣∣H(ω)

H(ω)

∣∣∣∣2−1

)
dω (4.5)
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The IS distance is derived from Itakura’s studies on the maximum likelihood for-

mulation of the linear prediction coefficient calculation: speech is assumed to come

from a Gaussian process, white noise filtered through an all-pole filter.

4.2.2 Perceptually-motivated measures

Following on from the methods described above are the measures that include some

sort of explicit frequency-dependent weight, inspired by known properties of the hu-

man auditory system or psychoacoustics. In this work, we evaluate the Frequency

Weighted Segmental SNR (FWS) (Tribolet et al., 1978) and the Weighted-Spectral

Slope Metric (WSS) (Klatt, 1982).

The Frequency Weighted Segmental SNR (FWS) (Tribolet et al., 1978) is defined

in a certain time frame as:

dFWS =
∑

K
k=1 wk SNR(k)

∑
K
k=1 wk

(4.6)

where K is the number of frequency bands, wk is a dynamic weight for frequency band

k and:

SNR(k) = 10log10
X2(k)

(X(k)−X(k))2 (4.7)

is the SNR value at frequency band k, X(k) and X(k) are the values of the filterbank

amplitudes for the kth frequency band for the reference speech signal and the signal

being tested. The weight wk was originally defined as |X(k)|0.2, which means higher

weights are given to areas where the magnitude spectrum of the reference speech signal

is higher.

The Weighted-Spectral Slope Metric (WSS) (Klatt, 1982) is defined for a single

time frame as:

dWSS =
K

∑
k=1

wk(S(k)−S(k))2 (4.8)

where S(k) and S(k) are the slopes for the reference speech signal and the signal to be

tested. The slopes S(k) are calculated as the first order differences in the critical-band

spectra X(k):

S(k) = X(k+1)−X(k) (4.9)

S(k) = X(k+1)−X(k) (4.10)

and the weights wk are chosen so that differences in slope around the spectral peaks

are more important than around valleys and that the largest peak is more important
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than others. This measure is more sensitive to spectral peak location than to their

magnitudes, which makes it more appropriate for speech quality prediction than the

spectrum-based measures described in the previous section (Klatt, 1982). Together

with PESQ, the WSS measure is widely used for evaluating blind source separation

and dereverberation algorithms (Di Persia et al., 2007, 2008).

4.2.3 Standards for quality and intelligibility

Various standards have been proposed to predict quality and intelligibility; these of-

ten incorporate some knowledge of psychoacoustics. The Perceptual Evaluation of

Speech Quality (PESQ) (Rix et al., 2001) was designed as a measure for predicting the

quality of speech signals transmitted over telephone lines and it became an ITU stan-

dard for evaluating telecommunication networks in 2000. This measure consists of the

following stages: pre-processing, time alignment, auditory transform and disturbance

processing. Pre-processing consists of gain equalization (based on the region between

350-3250 kHz - PESQ requires signals to be sampled at 16 kHz) and processing with

a telephone headset frequency response filter. Time alignment is done through cross-

correlation of temporal envelopes of the reference and degraded signal. The auditory

transform calculates the loudness spectra of both signals and the disturbance is the dif-

ference between these contours. The measure is the disturbance signal averaged over

time and frequency, mapped into a one to five scale to match the mean opinion score

scale.

The Speech Intelligibility Index (SII) (ANSI, 1997) calculates a weighted SNR

in the frequency domain, considering frequency-domain masking effects and auditory

thresholds. The weights used in the SII calculation are fixed over time. It became a

ANSI standard for intelligibility prediction of speech in additive noise in 1997. Be-

cause the SII is an SNR-based measure it cannot predict intelligibility in the presence

of non-linear distortions; an extension for non-linear distortions has been proposed un-

der the name cSII (coherence SII) (Kates and Arehart, 2005). The original SII measure

is calculated over the entire signal. The extended SII (Rhebergen et al., 2006) is cal-

culated over smaller intervals of the signal and then averaged across them, so it is then

able to predict the intelligibility of speech in fluctuating noise. What we refer in our

experiments as SII is in fact this extended version.
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4.2.4 Perceptual model-based measures

The objective measures of intelligibility that have been shown to best correlate with

subjective scores of natural speech intelligibility tend to be the ones that include elabo-

rate auditory processing stages (Taal et al., 2009). These measures compare an internal

representation of the clean reference speech signal with an internal representation of

the noisy signal, or of the noise alone, in order to predict how intelligible the noisy

signal is.

In this group, notable measures include the Dau measure (DAU) (Christiansen

et al., 2010), based on the Dau model (Dau et al., 1996) of the effective processing

which takes place in the human auditory system. The model gives a time-domain repre-

sentation that incorporates aspects of temporal adaptation. It consists of: basilar mem-

brane filtering (gammatone filterbank spaced on the equivalent rectangular bandwidth

(ERB) scale (Moore and Glasberg, 1996)), hair cell transformation (half-wave recti-

fication and low pass filtering), auditory nerve response (nonlinear adaptation loops

with linear sensitivity to fast temporal changes and logarithmic steady-state response;

the nonlinear loops can also simulate forward masking as output does not return to the

initial condition immediately after stimuli switch off) and a modulation low pass filter-

ing stage (the Dau model proposes a modulation filter bank but the measure simplifies

this stage). The measure is effectively the weighted normalized correlation coefficient

of the internal representation derived by the Dau model for the reference and the noisy

signals. Different weights are given to time frames of different RMS levels (low-level,

mid-level and high-level), as proposed by Christiansen et al. (2010).

The Glimpse proportion measure (GP) (Cooke, 2006) is derived from the Glimpse

model for auditory processing. The measure is the proportion of spectral-temporal

regions where speech is more energetic than noise, based on the idea that humans

mainly attend to those ‘glimpses’ of speech that are not masked by noise. The spectral-

temporal representation is obtained by the following stages: Gammatone filterbank

whose central frequencies are linearly spaced on the ERB scale, temporal envelope

extraction (absolute value operation and low pass filtering) and then averaging across

limited time intervals.

The Short-Time Objective Intelligibility (STOI) (Taal et al., 2010) is the linear

correlation coefficient between a time-frequency (T-F) representation of clean and a

normalized T-F representation of noisy speech averaged over time frames. The T-F

representation is obtained by: one-third octave band analysis of windowed time frames
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of 25.6 ms with 50 % overlap. The normalized T-F representation sets the energy of the

noisy T-F representation to be the same as the clean speech local energy which depends

on the previous 30 time frames, around 400 ms. The normalization also includes a

clipping stage to set a upper bound for signal to noise distortion. This measure is

claimed to work especially well for conditions where noisy speech is processed by a

T-F weighting algorithm for noise reduction or speech separation (Taal et al., 2010).

4.3 Prediction of the intelligibility of modified speech

in noise

In order to evaluate an objective measure we need to compare intelligibility scores

predicted by the objective measure with subjective intelligibility scores obtained from

listening tests using the same speech material. The material should cover a wide range

of listening conditions, i.e. different noise types and noise levels, so we can draw

conclusions about the stability and generality of the measure’s performance.

A commonly used evaluation metric is the normalized correlation coefficient –

Pearson’s correlation – between the objective and subjective scores. The higher the

correlation, the better the measure performs. The correlation coefficient is defined as:

r =
∑

N
n=1(Sn− S̄)(Mn− M̄)√

∑
N
n=1(Sn− S̄)2 ∑

N
n=1(Mn− M̄)2

(4.11)

where Sn is the subjective score for listening condition n, S̄ is the average score ob-

tained for all conditions in that group, Mn is the objective score given by the measure

for listening condition n, M̄ is the average score given by the measure for all condi-

tions in that group. A listening condition can refer to the noise type, SNR and speech

(unmodified or enhanced).

Another metric that is usually used to evaluate objective measures (Hu and Loizou,

2008a; Ma and Loizou, 2011) is the estimate of the standard deviation of the error of

using an objective measure rather than subjective scores. We refer to this value as the

standard deviation of the error:

σe = σs

√
1− r2 (4.12)

where σs is the standard deviation of the subjective intelligibility scores in a given

condition. The standard deviation of the error will be smaller for measures that are
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better intelligibility predictors. Although the scatter plots presented in this chapter

show the subjective scores as percent scale 0-100, we present tables with values of σe

on scale of 0-1 (instead of 0-100) as is conventional for objective measure evaluation

(Hu and Loizou, 2008b) (Ma and Loizou, 2011).

Distance-type measures like CEP, LSD, IS, LLR and WSS increase when speech is

less intelligible, whereas correlation- and audibility-based measures like FWS, PESQ,

SII, Dau, STOI and GP decrease. The objective measures are also not necessarily

linearly correlated with subjective scores. It is therefore common to apply a map-

ping before calculating the correlation coefficient. This will take care of the different

dynamic ranges in the various measures and the non linear relationship. In this chap-

ter, we show correlation coefficients obtained after applying a logistic mapping to the

objective data. We found the parameters of the logistic function for unmodified and

modified speech signals separately using all the data available as we have very few

data points, as has also been done in other objective measure evaluations (Taal et al.,

2009). Other studies have divided the data into 2/3 for obtaining the mapping and 1/3

for obtaining the correlation coefficient (Christiansen et al., 2010). Since we are test-

ing fewer conditions (noise types, SNRs and voice types) we do not have enough data

points for making such a partition. Therefore, as seen in other evaluation studies (Ma

et al., 2009), we also provide correlation results when not performing any mapping:

see Appendix A.

We are interested in evaluating these measures in the context of speech intelligibil-

ity enhancement, that is modifying clean speech so that the mixture of speech in noise

is more intelligible. Fig. 4.2 shows how we can use these objective measures when

clean speech is modified. When a measure requires access to the speech and noise

separately (measures on the left-hand diagram of Fig 4.1), the evaluation is straight-

forward: the speech signal is the modified speech (top diagram of Fig. 4.2). However

when the measure needs both the corrupted speech and a clean reference speech signal

(measures on the right-hand diagram of Fig 4.1) , a choice must be made to which sig-

nal should be used as the reference. The corrupted speech will always be the modified

speech plus noise, as this is the signal we are predicting upon (this is also the signal

that participants hear in our listening tests). As far as the reference speech signal is

concerned we see here two options: use clean modified speech as the reference (mid-

dle diagram of Fig. 4.2) or clean unmodified speech (bottom diagram of Fig. 4.2). The

first option judges only the impact of the additive noise; the second, judges the impact

of both the modification and of adding noise. Depending on the type of modification
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Measure CPU time (secs.) Elapsed time (secs.)

GP 1.14 0.94

Dau 1.35 1.34

STOI 0.55 0.56

SII 0.46 0.46

PESQ 0.32 0.31

FWS 0.24 0.24

WSS 1.08 1.08

CEP 0.06 0.06

LSD 0.41 0.41

IS 0.26 0.26

LLR 0.26 0.26

Table 4.2: Average processing time to analyse one sentence using Matlab. All mea-

sures were calculated using a fixed window length of 30 ms with a 10 ms time shift.

and measure, one choice might be better than the other, which is something that we are

also investigating here.

For the experiments shown here, we used the implementation found in (Loizou,

2007) of the spectrum-based and perceptually-based measures, and of the PESQ stan-

dard. We used the extended version of the SII measure. The implementations of STOI

and GP were each provided by the respective author of the proposed measure and the

Dau model was obtained from the computational auditory signal processing and per-

ception (CASP) model (Jepsen et al., 2008). All measures are calculated over a 30ms

window frame, with a frame shift of 10ms. Table 4.2 shows the processing time that

each measure takes to predict the intelligibility of a sentence used in this experiment.

We can see that measures like Dau, GP and WSS have a substantial computational cost

when compared to other measures – almost twice as slow to compute. The measures

with lower computational cost are: FWS, IS and LLR.
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Figure 4.2: Block diagram describing how to use an objective measure to evaluate a

speech modification algorithm for additive noise: objective measures that do not require

reference speech signal (top) and objective measures that require reference speech

signal (middle and bottom). The middle and bottom diagram reflect different choices for

reference speech signal, modified and unmodified speech respectively.

4.4 Experiment I: synthetic speech and modifications

based on the ideal binary mask

4.4.1 Experimental data

Similar to the evaluation described in Taal et al. (2009), we used so-called matrix sen-

tences of the form “name verb numeral adjective noun”. Each word in the sentence is

chosen from an English ten-word list found in Dreschler (2006). In total, 108 sentences

were synthesized using a statistical parametric synthesizer toolkit (HTS) (Tokuda et al.,

2009). The synthesis models were trained with 4000 sentences from a professional

male British English speaker named rjs.

The acoustic model we used for synthesizing speech was a hidden semi Markov

model. The observation vectors for the spectral and excitation parameters contained

static, delta and delta-delta values. We used one stream for the spectrum and three

streams for the logF0. The models used 45 dimension mel-generalized cepstrum line
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Figure 4.3: Long Term Average Spectrum (LTAS) in sound pressure level of the noises

used in Experiment I and II: speech-shaped, cafeteria, car and high frequency noise.

The speech-shaped noise LTAS was set to match the cafeteria LTAS.

spectral pairs (MGC-LSP) acoustic features as spectral features (Tokuda et al., 1994).

For the excitation parameters we extracted F0 and 25 aperiodicity band aperiodicity

energies to construct the mixed multi-band excitation signal (Kawahara et al., 2001).

The training sentences were sampled at 48kHz. The synthesized speech was produced

at 48kHz then downsampled to 20kHz. This downsampling was necessary as the

STOI measure operates only at this lower sampling rate. For PESQ it was necessary to

downsample to 16 kHz.

We used four different types of noise: speech-shaped, cafeteria, car and high fre-

quency noise. The Long Term Average Spectrum (LTAS) of the utilized noises can

be seen in Fig. 4.3. The LTAS is calculated as the power spectral density averaged

across time frames of 10 ms length and 50 % overlap. This averaged representation

is then presented in dB sound pressure level. The speech-shaped and high frequency

noises were generated from filtered white noise. The cafeteria and car noises were

actual recordings and are non stationary. The car noise has a periodic content that

changes with time. The high frequency noise is not a realistic signal but is used here in

order to investigate whether Lombard inspired modifications – usually caused by the

presence of a low frequency masker – could bring intelligibility benefits in the high

frequency noise. All noises were added at five different SNRs, chosen to be: −10 dB,

−5 dB, 0 dB, 5 dB and 10 dB for speech-shaped noise and cafeteria, −30 dB, −25 dB,

−20 dB,−15 dB and−10 dB for car noise and−40 dB,−35 dB,−30 dB,−25 dB and
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−20 dB for high frequency noise.

In total we created 36 different listening conditions, by varying the noise and

speech modification. The first set of conditions, where no modification was applied

to the speech, constitutes 20 of these (four different additive noises each added at five

different SNRs). The second set employed modified speech and constitute the other

16 conditions (four noises added at two different levels to speech modified with two

different modification strengths).

4.4.2 Speech modification

In this experiment, the modified speech was created from clean speech by applying

an Ideal Binary Mask (IBM) to it (Brungart et al., 2006; Kjems et al., 2009). The

IBM is defined as a time-frequency (T-F) binary filter, with T-F bins equals to ’1’

when the local SNR is above a certain threshold and ’0’ otherwise. The T-F space is

an auditory inspired one as it is achieved by a frequency decomposition that uses a

Gammatone filterbank whose center frequencies are linearly spaced on the equivalent

rectangular bandwidth scale. In the context of noise suppression, the IBM is applied

to the noisy mixture and it provides the only known criterion that can significantly

improve speech intelligibility of a noisy mixture signal (Loizou and Kim, 2011), for

both normal-hearing (Brungart et al., 2006; Kjems et al., 2009) and hearing-impaired

listeners (Hu and Loizou, 2008b). However it requires the noise signal to be separate

from the speech signal, something that is not available to noise suppression algorithms.

In our experiments, the mask is calculated according to the noisy mixture but ap-

plied to the clean speech before mixing it with noise. Since the root mean square

energy of clean speech is normalized to remain unmodified, what this process does is

to concentrate the signal in those time-frequency bins of speech that will be more en-

ergetic than the noise while removing the bins that will be below the level of the noise,

with the aim of increasing the intelligibility of the mixture. The local SNR thresh-

old used to create the IBM was a parameter we varied, leading to the two different

strengths of modification: s1 = SNRS +5 and s2 = SNRS +10, where SNRS refers to

the SNR at a sentence level. The strength s2 is the strongest modification as the local

SNR level required for a time-frequency bin to be left unprocessed is higher, meaning

that speech is highly filtered in this condition. This modification was tested only at the

lowest two SNRs (−10 dB and−5 dB). The authors in Kjems et al. (2009) provided us

with an implementation of the IBM mask processing.
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Figure 4.4: Experiment I: average subjective scores (in percent) of unmodified and

modified synthetic speech. The applied modification was to filter the clean speech with

an ideal binary mask. There were two SNR conditions for binary mask construction: s1

and s2. All scores significantly different to the one obtained with the unmodified speech

are marked with circles.

4.4.3 Listening set-up

A total of 41 native English speakers aged mostly between 20 and 30 years old with no

reported listening impairments participated in the listening test. Each participant lis-

tened to each condition three times with different sentences each time and in a random

order. All signals were played at 20kHz sampling rate over headphones to participants

in sound-isolated booths. Each individual sentence could be played only once before

the participant had to type in what he or she heard.

4.4.4 Subjective intelligibility scores

We calculated the subjective score of word accuracy rate (WAR) as the percent of

correct words in a sentence (Hu and Loizou, 2007b), taking into account misspelling

and spelling variations. Fig. 4.4 shows the average subjective scores in percent for the

listening conditions where synthetic speech was processed by an ideal binary mask.

The solid line connects the values obtained by unmodified speech and each dashed

line connects values for modified speech at the different modification strength s1 and

s2. The circles indicate significant differences at a 5% level, when compared to the

corresponding score for the unmodified speech. As we can see, for most noise types

and SNRs, this particular modification decreases intelligibility. Only for the lowest

SNRs there was a significant increase in intelligibility, in the presence of cafeteria noise

(from 10% to 28%) and of car noise (from 21% to 34%). Only in this condition did

applying an IBM with the chosen configuration have a positive impact on intelligibility.
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Dau GP STOI PESQ WSS SII FWS IS CEP LSD LLR

r 0.94 0.94 0.90 0.83 0.77 0.77 0.67 0.38 0.32 0.32 0.32

σe 0.10 0.10 0.13 0.16 0.18 0.18 0.21 0.27 0.27 0.27 0.27

Table 4.3: Experiment I: correlation coefficient r and standard deviation of the error σe

for unmodified synthetic speech.

ssn cafeteria car highfreq
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Figure 4.5: Experiment I: scatter plots of word accuracy (%) against the Dau measure

(left) and GP measure (right) predictions of accuracy, for unmodified speech in all noise

conditions. Each point refers to the score average across sentences and listeners for a

certain noise condition (noise type and level).

4.4.5 Evaluation results

We calculated the normalized correlation coefficient and the standard deviation of the

error using the subjective scores obtained in each listening condition, averaged across

listeners and sentences.

Table 4.3 shows the correlation coefficients obtained for the unmodified speech

material in decreasing order according to the best results each measure achieved. We

can see that the Dau and Glimpse Proportion (GP) measures are the better predictors

for intelligibility, with correlation coefficients of 0.94 both and standard deviation of

the error of 0.10 both. The STOI measure is the third best measure with a correlation

coefficient of 0.90 and a standard deviation of 0.13. The spectrum-based measures

LSD, CEP, LLR and IS performed the worst: CEP, LSD and LLR achieved the same

correlation coefficient of 0.32 and IS a higher coefficient of 0.38. The standards and

perceptually-motivated ones are somewhere in between, PESQ obtaining the best result
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Figure 4.6: Experiment I: correlation coefficient and confidence intervals for unmodified

synthetic speech, broken down by noise type. The measures are ordered in decreasing

order of correlation coefficient averaged across noise type.

of 0.83 followed by WSS and SII with 0.77 and FWS with 0.67. When we compare

the results in Table 4.3 with the correlation coefficients obtained across different natural

speech evaluations (Taal et al., 2009; Cooke, 2006; Christiansen et al., 2010; Taal et al.,

2010) we observe a loss of prediction performance for all measures when the speech is

synthetic rather than natural, particularly for the SII measure and the spectrum-based

measures. Fig. 4.5 shows scatter plots of subjective scores against objective scores

obtained by the measures that had the best performance with unmodified synthetic

speech: Dau and GP. Each point corresponds to a different condition of noise type and

level (20 points in total).

To better understand the effect of the noise type on the objective measures, we cal-

culated correlation coefficients for each noise type; these results are shown in Fig. 4.6

with their 5% confidence intervals. We can see that all measures exhibit a drop in per-

formance for the high frequency noise case, especially the spectrum-based measures

which do not incorporate psychoacoustic knowledge about human auditory sensitivity

to high frequency noise. For these results, as we did not have many data points for

each noise type, we averaged the subjective scores across listeners, but not across sen-

tences. We can see that many measures obtain correlation coefficients above 0.8 in all

noise types, except the high frequency noise. The drop of performance under this noise

might explain the overall drop in performance of measures like LSD, CEP, LLR and IS.

Car noise seems to be challenging for the PESQ and FWS measures, although PESQ

obtained quite a high correlation coefficient when considering all noises together. The
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Dau GP STOI PESQ WSS SII FWS IS CEP LSD LLR

Case 1

r 0.01 0.52 0.42 0.30 0.12 0.37 0.07 0.22 0.04 0.13 0.14

σe 0.13 0.11 0.12 0.13 0.13 0.12 0.13 0.13 0.13 0.13 0.13

Case 2

r 0.01 - 0.42 0.30 0.55 - - 0.70 0.13 0.06 0.12

σe 0.13 - 0.12 0.13 0.11 - - 0.09 0.13 0.13 0.13

Table 4.4: Experiment I: correlation coefficient r and standard deviation of the error

σe for modified synthetic speech, when using modified speech (Case 1) or unmodified

speech (Case 2) as the reference clean speech signal for calculating the objective mea-

sures that require a reference signal. The results of the measures that do not require a

reference speech signal - GP, SII and FWS - are presented as belonging to Case 1.

measures that are more robust to different noise types are Dau, GP, STOI and WSS,

particularly the first three measures as they showed good prediction performance when

all noise types are considered.

We now present the results with modified speech in Table 4.4. We can see that all

measures perform worse for modified synthetic speech. When the modified speech is

taken to be the reference, Case 1 in the Table, the GP and the STOI measures seems

to perform best, obtaining a correlation coefficient of 0.52 and 0.42 respectively and

the smallest standard deviations 0.11, 0.12. This result could be expected because

this measure predicts intelligibility from the proportion of time-frequency bins that

are above the noise, which matches the type of modification we performed. Table 4.4

also shows the correlation coefficients obtained when the unmodified speech is used

as the reference signal, Case 2. The correlation coefficient of the measures that do not

need a reference signal (the GP, FWS and SII) are presented as Case 1 as they only

use the modified speech signal. It seems that using the unmodified speech signal as

the reference signal improves the correlation coefficient considerably for the IS and

WSS measures, that now obtain correlations of 0.70 and 0.55 and standard deviations

of the error of 0.09 and 0.11 respectively. The other measures seem to have similar

performance on both cases. Fig. 4.7 shows the scatter plots of subjective scores against

objective scores obtained by the IS and WSS measures with modified synthetic speech.
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Figure 4.7: Experiment I: scatter plots of word accuracy (%) against the IS measure

(left) and WSS measure (right) predictions for the modified speech. Each point rep-

resents scores averaged across sentences and listeners for a certain noise condition

(noise type and level).

4.5 Experiment II: synthetic speech and modifications

based on Lombard speech

4.5.1 Experimental data

In total, we synthesized 96 different sentences using the same models and configuration

as used in Experiment I. The format of the test sentences was once again “name verb

numeral adjective noun” (i.e., matrix sentences), with each word being chosen from a

ten-word list taken from (Dreschler, 2006).

We used the same four noises as in Experiment I: speech-shaped noise (ssn), cafe-

teria, car and high frequency noise at four different SNRs. For this experiment, we per-

formed a small calibration test to choose the SNRs that corresponded roughly to word

accuracies of 20%, 40%, 60% and 80% for each noise type when using unmodified

synthetic speech. For this calibration test we used 9 listeners, each heard sentences

played at 24 different SNR conditions mixed with each four maskers. Fig. 4.8 shows

the average subjective word accuracy obtained in the calibration test and the fitting

curves calculated for each noise type. We can see that different SNR values can lead

to similar intelligibility levels depending on the noise type, which is precisely why this

calibration step is required before the main listening test. The high frequency noise re-

quires a much lower SNR than speech-shaped and cafeteria noise to result in the same
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Figure 4.8: Experiment II - calibration test results: fitting curves and scatter plots of

subjective word accuracy in percent against SNR for each noise type obtained in the

calibration test with unmodified synthetic speech. Each point represents scores av-

eraged across sentences and listeners for a certain noise condition (noise type and

SNR).

WAR (%)

20% 40% 60% 80%

ssn -11.8 -8.8 -6.2 -3.1

cafeteria -9.5 -6.8 -4.6 -1.9

car -31.9 -28.4 -25.5 -22.0

high frequency -43.5 -37.6 -32.7 -26.8

Table 4.5: Experiment II: SNR values (in dB) of each noise type corresponding to four

different word accuracy rates in percentages.

intelligibility level. Note that the slope of the curve is also noise-dependent: small

SNR differences can lead to larger changes in intelligibility for speech-shaped and

cafeteria noise, compared to high frequency and car noise. The SNRs corresponding

to the 20%, 40%, 60% and 80% WAR conditions are shown in Table 4.5.

4.5.2 Speech modifications

As mentioned in Chapter 2, it has been observed that, compared to speech produced

in quiet conditions, speech produced in noise tends to present sharper spectral peaks,

higher fundamental frequency, flatter spectral tilt and longer duration (Summers et al.,
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1988; Junqua, 1993; Castellanos et al., 1996). The exact phenomena observed depend

on the phonetic unit and the effect is slightly different for female and male speakers.

In this experiment our goal is to discover which of these acoustic changes – when pre-

sented individually – actually contribute towards intelligibility increases, and whether

their effect can be predicted by objective measures. In order to simulate the acoustic

properties of natural Lombard speech we use one control parameter, referred here as

strength, to individually modify the spectrum envelope, fundamental frequency and

speech rate. The following modifications were chosen:

• peak: spectral peak enhancement performed using the post filter described in

Ling et al. (2006) using two different levels for the parameter the authors refer to

as α: s1 (α=0.7) and s2 (α=0.6). A lower value of α reflects stronger enhance-

ment. The peak enhancement is done recursively by readjusting the line spectral

pairs (LSPs) so that consecutive frequencies are closer together with decreasing

α as follows:

ωk = ωk−1 +dk−1 +
d2

k−1

d2
k−1 +d2

k
[(ωk+1−ωk−1)− (dk +dk−1)] (4.13)

where ωk is the k-th line spectral frequency and dk = α (ωk+1−ωk).

• F0: changes in the fundamental frequency (F0): one reduction s1 (30% lower)

and two increases s2 and s3 (30% and 50% higher), applied directly to the gen-

erated sequence of F0.

• LSP shift: frequency shift of Line Spectral Pairs (LSPs) as described in (McLough-

lin and Chance, 1997) at three different strengths s1 (γ = 1.015), s2 (γ = 1.025)

and s3 (γ = 1.05), always shifting towards the high frequency region. The shift

is performed on the k-th line spectral frequency ωk using the following transfor-

mation:

ωk = ωk +ωk(γ−1)(π−ωk)/π (4.14)

If γ > 1 the shift is towards the high frequency, if not the LSP are shifted towards

the low frequency, with γ= 1 LSPs are not modified. This modification is applied

to all frames and in the Mel scale.

• rate: changes in the speaking rate are obtained by modifying the parameter

Yoshimura et al. (1998) call ρ, different values of ρ were set by changing the
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Figure 4.9: Experiment II: long term average spectrum (LTAS) of an unmodified ut-

terance compared to modified speech in which the LSPs are shifted towards higher

frequencies.

scale factor ϕ defined in Section 3.2.4. We increased the speaking rate in per-

centages of the original duration: s1 (60%) and decreased it s2 (140%) and s3

(200%).

We chose the various values of modification strength such that they generated audi-

ble differences when compared to the clean speech condition. All modifications were

applied to the generated sequence of speech parameters at a frame level obtained using

previously-trained models and before they were passed to the synthesis filter. The mod-

ifications of speaking rate had a different impact on each phonetic unit, as the effect

is proportional to the standard deviation of their duration distribution. This means that

vowel duration tends to increase more compared to consonant duration, as observed in

Lombard speech (Junqua, 1993).

To illustrate the effect of shifting the LSPs we plot the LTAS of unmodified speech

and LSP-shifted speech in Fig. 4.9. We can see that the spectral tilt becomes flatter and

we expect that the formant frequencies also increase. The average spectral tilt, com-

puted as described in Lu and Cooke (2009b) of the unmodified speech was −1.51 dB

per octave and for the three strengths of shifts, s1, s2 and s3, the average spectral tilt

was found to be −1.02 dB, −0.69 dB and −0.09 dB per octave, respectively.

In order to add the speech signals to noise at the same SNR, we first normalized

both the unmodified and the modified speech signals sentence by sentence to yield the
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Figure 4.10: Experiment II: average subjective word accuracy for each noise type and

SNR level. The curves represent different modification strengths for spectral peak en-

hancement. No significant differences were found among these scores.

same overall signal level. This means that any intelligibility change observed when

applying a certain modification would not be the result of changes in overall energy

levels. In total we generated 192 distinct listening conditions from all combinations

of noise type (four), SNR (four), speech modification type (four) and modification

strength (three), including an unmodified case for the spectral peak modification.

4.5.3 Listening set-up

We had a total of 88 native English speakers aged mostly between 20 and 30 years old

and with no reported hearing impairment participating in the listening experiment. As

we had so many listening conditions, each participant listened to only one quarter of all

possible conditions twice, each time with different sentences - a total of 96 sentences.

Across each group of 4 listeners, all conditions were covered. The order of sentences



Chapter 4. Evaluation of objective intelligibility measures 75

−15 −10 −5
0

20

40

60

80

100

W
or

d 
ac

cu
ra

cy
 (%

)

SNR (dB)

ssn

−10 −5 0
0

20

40

60

80

100

W
or

d 
ac

cu
ra

cy
 (%

)

SNR (dB)

cafeteria

−35 −30 −25 −20
0

20

40

60

80

100

W
or

d 
ac

cu
ra

cy
 (%

)

SNR (dB)

car

−45 −40 −35 −30 −25
0

20

40

60

80

1

W
or

d 
ac

cu
ra

cy
 (%

)

SNR (dB)

highfreq

non-modified
level s1 (low)
level s2 (high)
level s3 (higher)

Figure 4.11: Experiment II: average subjective word accuracy for each noise type and

SNR level. The curves represent different modification strengths for fundamental fre-

quency changes. No significant differences were found among these scores.

and listening conditions was random, as was the selection of listening conditions.

We played all signals over headphones to participants in sound-isolated booths and

each individual sentence could be played only once before the participant had to type

in what he or she heard. Before the actual test took place each participant heard a few

samples, including several listening conditions with modified and unmodified speech,

to familiarize themselves with the task.

4.5.4 Subjective intelligibility scores

Following the same procedure adopted in Experiment I, we calculated the subjective

word accuracy as the percent of correct words in a sentence, taking into account mis-

spelling and spelling variations. The word accuracy results are displayed separately

for each modification type in Figs. 4.10, 4.11, 4.12 and 4.13. These figures show the
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Figure 4.12: Experiment II: average subjective word accuracy for each noise type and

SNR level. The curves represent different modification strengths for LSP shift changes.

The scores significantly different to the score obtained with unmodified speech are

marked with circles.

subjective scores, averaged over sentences and participants, for each noise type at each

SNR value for these modification types. The solid line is a piecewise linear repre-

sentation of the unmodified condition accuracy data point results and the dashed lines

correspond to different modification strengths: s1, s2 and s3. The circles indicate when

a value is significantly different from the score for unmodified speech in the same noise

condition at a 5% level.

Although the authors of the post filter report an increase in speech quality (Ling

et al., 2006), Fig. 4.10 shows that spectral peak enhancement did not have any signifi-

cant impact on intelligibility in this experiment. Increasing the fundamental frequency,

see Fig. 4.11, showed no significant impact on intelligibility scores either. Lowering

F0, strength s1, provided a significant improvement for high frequency noise at the
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Figure 4.13: Experiment II: average subjective word accuracy for each noise type

and SNR level. The curves represent different modification strengths for speaking

rate changes. The scores significantly different to the score obtained with unmodified

speech are marked with circles.

highest SNR. The modifications that had a significant impact on word accuracy were

the LSP shift and speaking rate.

We obtained the largest improvements in word accuracy for the LSP shift modifi-

cation, as shown in Fig. 4.12. In the presence of car noise, for the lowest SNR case,

there was an improvement from 13% to 61% and for higher SNRs in that same noise

category the word accuracy improved from 38% to 72% and from 42% to 80%. For

the highest SNR level there was no significant improvement. For the ssn case there

was also significant improvements from 40% to 63%, 59% to 76% and 72% to 90%.

In the presence of cafeteria noise, the improvements were from 32% to 61% and 50%

to 76%. Shifting the LSPs does not always increase intelligibility though. For high

frequency noise, as we can see in Fig. 4.12, the level s3 (i.e., the largest shift in the



Chapter 4. Evaluation of objective intelligibility measures 78

LSPs) results in a significant drop in word accuracy, while the smaller shifts s2 give a

significant improvement for the higher SNR cases. This happens because the high fre-

quency noise contains some energy in the middle frequency band, as seen in Fig. 4.3.

This means that shifting LSPs by small amounts towards the high frequency region,

which has the effect illustrated in Fig. 4.9, can bring intelligibility gains by boosting

these mid-range frequencies.

Slower speaking rates produced significant improvements in the presence of cafe-

teria noise (from 50% to 73%), and speech-shaped noise (from 72% to 90%), as seen

in Fig. 4.13. Unsurprisingly, speaking faster, strength s1, always reduces intelligibility.

4.5.5 Evaluation results

We compared the performance of each measure by calculating the normalized corre-

lation coefficient and the standard deviation of the error using the subjective score for

each listening condition, averaged across listeners and sentences. In all figures and

tables in this section, the measures are ordered from left to right in decreasing order of

the correlation coefficient obtained for unmodified speech.

The results for each objective measure obtained for the unmodified speech are

shown in Table 4.6, confirming that the measures based on auditory models outperform

the other spectrum-based methods, as they did in the previous experiment. Differences

between the results obtained in this experiment arise from the differences in chosen

SNR values and SNR range. The spectrum-based measures IS, LSD, CEP and LLR

had considerably smaller correlation coefficients. The DAU measure outperforms all

measures, with a correlation coefficient of 0.94, followed by the GP measure with 0.83

and STOI with 0.79.

Fig. 4.14 shows the correlation coefficients obtained for each modification type

as well as their 5% confidence intervals. Most measures show a substantial loss in

performance when speaking rate is altered, this particularly applies to the DAU, GP

and STOI measures. The Dau measure obtained 0.47 for speaking rate and an average

of 0.89 for the other three modifications. Smaller drops occur for the GP measure,

from 0.79 to 0.52, and the STOI measure from 0.71 to 0.46. Scatter plots for the Dau

and GP measures are shown in Fig. 4.15.

Table 4.7 shows the results across all modifications. There is an overall drop in the

predictive power of all measures and especially for the FWS and IS measures. The

GP measure had the highest correlation coefficient of 0.72, followed by the Dau mea-
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Dau GP STOI WSS PESQ FWS SII IS LSD CEP LLR

r 0.94 0.83 0.80 0.74 0.63 0.55 0.55 0.49 0.32 0.32 0.27

σe 0.07 0.12 0.13 0.15 0.17 0.18 0.18 0.19 0.21 0.21 0.21

Table 4.6: Experiment II: correlation coefficient r and standard deviation of the error σe

for unmodified synthetic speech.
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Figure 4.14: Experiment II: correlation coefficients and confidence intervals broken

down by modification type. The measures are ordered in decreasing order of corre-

lation coefficient for unmodified synthetic speech.

sure with 0.71 and STOI with 0.61. Table 4.7 also shows the correlation coefficients

obtained when the unmodified speech is used as the reference signal (Case 2). The

differences between the results obtained in Case 1 and Case 2 are presented for each

modification type in Fig. 4.16. We can see that using the unmodified speech signal as

the reference signal improves the correlation coefficient of the conventional measures

IS, LSD, CEP and LLR as well as the WSS, particularly for the LSP shift modification.

The Dau and the PESQ measures seem to correlate better with subjective scores when

the reference signal is the modified speech and we can see that this drop is mostly due

to the changes in F0. Note that for the speaking rate modification, the modified speech

was used as the reference throughout; this is because the objective measures require

the reference and test signals to have the same duration.

Table 4.8 shows the correlation coefficients across unmodified speech and when the

most effective modification is applied, the LSP shift. The unmodified speech signal is

used as the reference speech signal because for this modification most measures have
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Figure 4.15: Experiment II: scatter plots of word accuracy (%) against the Dau measure

(left) and GP measure (right) predictions for all modifications. Each point represents

scores averaged across sentences and listeners for a certain noise condition (noise

type and SNR).

better results using this reference. We can see that in this scenario the Dau measure

obtained correlation of 0.77 and the GP 0.81, followed by the 0.76 obtained with the

WSS. Fig. 4.17 shows the scatter plots of subjective intelligibility scores and objective

scores obtained by the measures that performed the best for the more effective mod-

ification - LSP shift. Each dot represents a different listening condition combination:

modification level (four in total, one for unmodified and 3 for the different LSP shift

strengths), noise type (four) and noise level (four).

4.6 Discussion

The subjective intelligibility scores obtained in the two experiments with modified

speech can tell us which modifications are most effective for the speech intelligibility

enhancement task. In the first experiment, we applied an ideal binary mask to reallo-

cate speech energy from time-frequency regions where it would be masked by noise to

regions where it would not. This extreme reallocation strategy does not seem to be a

good one as it generally did not give significant subjective intelligibility improvements

across noise types and SNRs.

In our second experiment, we were interested to see whether a different class of

modifications to the speech signal – Lombard-inspired modifications – have a more
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Dau GP STOI WSS PESQ FWS SII IS LSD CEP LLR

Case 1

r 0.71 0.72 0.61 0.48 0.35 0.13 0.45 0.16 0.27 0.25 0.17

σe 0.17 0.17 0.20 0.22 0.23 0.24 0.22 0.24 0.24 0.24 0.24

Case 2

r 0.71 - 0.62 0.54 0.31 - - 0.21 0.34 0.32 0.30

σe 0.17 - 0.19 0.21 0.23 - - 0.24 0.23 0.23 0.24

Table 4.7: Experiment II: correlation coefficient r and standard deviation of the error σe

for modified synthetic speech, when we using modified speech (Case 1) or unmodified

speech (Case 2) as the reference clean speech signal for calculating the objective mea-

sures that require a reference signal. The results of the measures that do not require a

reference speech signal - GP, SII and FWS - are presented as belonging to Case 1.
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Figure 4.16: Experiment II: changes in correlation coefficients broken down by modifi-

cation type when using the unmodified speech as reference.

positive effect on intelligibility and, again, which objective measures can usefully pre-

dict what the effect will be. We took generated synthetic speech and modified it at

the speech parameter level to enhance spectral peaks, and to change fundamental fre-

quency, spectral tilt and speaking rate. The subjective scores obtained indicated that

the modification that increased intelligibility the most was the one that altered spectral

tilt, i.e. the shift of LSPs towards higher frequencies. This modification has the effect

of not only moving the formants but also of flattening the spectral tilt. We observed,

however, that this modification does not always increase intelligibility and that the ef-

fect on intelligibility depends on the noise type and the SNR. This observation suggests

that there is some optimal value of modification strength, which depends not only on
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Dau GP STOI WSS PESQ FWS SII IS LSD CEP LLR

r 0.77 0.81 0.68 0.76 0.27 0.001 0.46 0.46 0.42 0.39 0.33

σe 0.16 0.15 0.18 0.16 0.24 0.25 0.22 0.22 0.23 0.23 0.24

Table 4.8: Experiment II: correlation coefficient r and standard deviation of the error σe

for unmodified synthetic speech and LSP shift modification.
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Figure 4.17: Experiment II: scatter plots of word accuracy rate (%) against the Dau

measure (left) and GP measure (right) predictions for the LSP shift modification includ-

ing the unmodified case. Each point represents scores averaged across sentences and

listeners for a certain noise condition (noise type and SNR).

the noise type, i.e. its spectral and temporal characteristics, but also on the SNR, i.e.

on the noise energy level. Although found in natural Lombard speech, spectral peak

enhancement and increased F0 did not seem to provide any significant improvement in

intelligibility in the tested conditions. This last result is consistent with another study

in which natural speech F0 was modified (Lu and Cooke, 2009b). Production studies

have also noted that F0 changes are related to the increase in vocal effort: changes

in F0 are a passive result of changes of subglottal (lung) pressure and tension of the

vocal folds that are required for the increase in vocal intensity (Gramming et al., 1988;

Alku et al., 2002). The passive effect on F0 of vocal effort increases (e.g., in the case

of noise-induced changes) could explain why modifying F0 does not directly impact

intelligibility as observed in our experiments. Slowing the speaking rate seemed to be

a good strategy only for a few combinations of noise type and level. A different mod-

ification method for changing duration, F0 and spectral peak might however obtain

positive results.
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Whilst the findings regarding which modifications are most effective are interesting

in themselves, they are of secondary importance in the current context. The main goal

of this part of the work is to discover whether objective measures can make useful

predictions about the change in intelligibility that will be brought about by various

modifications to speech.

The results of the two experiments indicate that not all objective measures are suit-

able for the task of predicting speech intelligibility in the case where the speech is

synthetic and possibly modified. In particular, the spectrum-based measure showed

relatively poor performance when the noise contains energy in the higher frequency

regions and when synthetic speech is modified. This means that those measures are

not guaranteed to work in diverse listening conditions and would not be useful for

automatically controlling the type and strength of modifications to synthetic speech.

The measures that seem to perform the best across diverse listening conditions are the

Dau and the GP measures; these exhibited correlation coefficients of 0.77 and 0.81 for

the condition that involved unmodified speech and for the most effective modification

type respectively. The predictive power of these measures is much more limited for

speaking rate modifications. The explanation is most probably that changes in dura-

tion affect higher levels of processing involved in the listener’s perception of speech;

these cognitive levels are not taken into account by measures that attempt to model

only the peripheral auditory system.

We can also remark on what the best approach is for choosing the reference signal

to be used by those objective measures that require one (refer back to Fig. 4.2, results

in Table 4.4 and Fig. 4.16). When a modification does not have a significant impact

on intelligibility, as it is the case for fundamental frequency changes and spectral peak

enhancement, choosing the modified speech seems to be the best choice for measures

like Dau and PESQ. For the modifications that did have a great impact on intelligi-

bility scores, positive or not, (IBM and LSP shift) choosing the unmodified signal as

the reference signal can bring significant improvements in prediction, particularly for

the measures WSS, IS, CEP, LSD and LLR. One might think that measures that use a

reference signal (like the Dau measure) would perform better than ones based only on

the audibility of speech in noise (like GP) as they can predict the impact of both mod-

ification and additive noise. The GP measure however obtained either better or similar

results on predicting the intelligibility of modified speech in noise for all modifications

we tested, see Table 4.4 and Fig. 4.16.

Improving the measures that we evaluated is out of the scope of this work, but the
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cases where the measures failed can tell us something about their limitations, particu-

larly for changes in speaking rate. For the measures that do require a reference speech

signal, we believe that results for speaking rate changes could have been better if un-

modified speech had been used as a reference, but this would require a time alignment

because all measures assume that the processed and reference signals are of the same

length. That is, none of these measures can predict the effect of changes in duration

on the intelligibility of clean or noisy speech. We also believe that measures that do

not require a reference speech signal would perform better on speaking rate changes

if they would carry out a summation over time rather than an average of the audibility

level calculated for each time frame. This should account for the increase or decrease

in intelligibility that is observed when speaking rate is made slower or faster.

4.7 Conclusion

We have presented two experiments designed to evaluate the predictive power of ob-

jective measures on the intelligibility of HMM-generated synthetic speech in additive

noise listening conditions. A wide variety of objective measures from several cat-

egories were used, ranging from conventional spectrum-based measures to recently-

proposed measures based on rather complex models of the human auditory system.

We described how we wish to use these measures to automatically control the type and

degree of modification in a speech intelligibility enhancement system.

The main findings of this work are that model-based measures – notably Dau and

GP – have the highest predictive power under diverse listening conditions of varying

noise type and speech modification type. We also found that simple modifications at

a spectral level – notably shifting LSPs – can have a significant positive impact on the

intelligibility of HMM-generated synthetic speech in noise. By combining a modifi-

cation strategy that improves intelligibility with an objective measure that accurately

predicts the effect of that modification, we will arrived at a first version of what we

were aiming for: automatically-controlled speech intelligibility enhancement.



Chapter 5

Cepstral extraction using the glimpse

proportion measure

We saw in the last chapter how effective it is to modify the spectral envelope of speech

to enhance TTS intelligibility in noise. Additionally, we saw that the Glimpse pro-

portion measure highly correlates with subjective intelligibility scores of modified and

unmodified TTS. In this chapter, we introduce a new cepstral extraction method based

on an intelligibility measure for speech in noise, the Glimpse proportion measure. We

first explain in more details how this measure operates then show how the measure

can be integrated into an existing spectral envelope parameter extraction method com-

monly used in the HMM-based speech synthesis framework. We present how this new

method changes the modeled spectrum according to the characteristics of the noise

and show results for vocoded and HMM synthetic speech. Part of this chapter was

published in Valentini-Botinhao et al. (2012a).

5.1 Introduction

We showed in the previous chapter that simple changes in the spectral domain can re-

sult in significant gains in intelligibility for HMM-generated synthetic speech in noise.

In the same study, we also evaluated which intelligibility measures can predict these in-

telligibility gains. Looking at the results for unmodified and modified synthetic speech

the measures that performed best were: Dau and GP. The calculation of the Dau mea-

sure involves an additional processing step – the auditory nerve response see Section

4.2.4. The GP and Dau, however, achieved comparable results. Taking into considera-

tion both performance and simplicity, we select the Glimpse Proportion (GP) measure

85
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(Cooke, 2006) as the most appropriate measure for the task of speech intelligibility

enhancement. Our idea in this chapter is to modify the spectral envelope of speech by

using the Glimpse proportion measure. To do this, we alter the optimization criterion

of a cepstral coefficient extraction method commonly used in the HMM-based synthe-

sis framework (Tokuda et al., 1995). The optimization criterion of the new cepstral

extraction method proposed here, referred to as GP-based cepstral extraction, takes

into account not only the mismatch between the higher dimensional spectral envelope

and the cepstral-generated one but also the intelligibility in noise as given by the GP

measure.

Sections 5.2 and 5.3 of this chapter provide the essential background knowledge

needed to understand how to implement this idea: the maximum likelihood-based cep-

stral coefficient analysis method and the intelligibility measure. Section 5.4 shows how

we propose to reformulate the Glimpse measure for use as a cost function for cepstral

extraction. In Section 5.5, we define the proposed GP-based cepstral extraction method

and show how to solve this new optimization problem. Section 5.6 presents experimen-

tal results on the acoustic analysis of the modifications and intelligibility evaluation of

vocoded and HMM-generated synthetic speech. We then draw conclusions based on

the obtained experimental results and point to the next steps to be taken.

5.2 Maximum likelihood-based cepstral analysis

In this section, we explain the cepstral extraction method proposed by Tokuda et al.

(1995). First, we show how this method relates to the idea behind the Unbiased Es-

timator of the Log Spectrum (UELS) (Imai and Furuichi, 1988). We then derive the

actual cost function this method minimizes and show how to solve the optimization

problem.

The cepstral coefficient extraction method described in Tokuda et al. (1995) was

first proposed for the extraction of cepstral coefficients and further extended to other

spectral parameters like Mel cepstral (Fukada et al., 1992), generalized cepstral (Tokuda

et al., 1989) and Mel generalized cepstral coefficients (Tokuda et al., 1994). It is com-

monly used to extract spectral parameters for training the models of an HMM-based

speech synthesizer.

Tokuda et al. (1995) also proposed an adaptive version of the method using an

instantaneous estimate for the gradient. Here we only show the Steepest Descent and

the Newton Raphson solutions that use the real value of the gradient and therefore
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achieve better results than using the instantaneous estimate.

5.2.1 Unbiased estimator of the log spectrum

The method proposed by Imai and Furuichi (1988) gives a solution to the unbiased esti-

mation problem of the log spectrum given the speech periodogram. In this subsection,

we show how the authors reached the proposed cost function for the estimator.

The authors define the modified periodogram of a wide-sense stationary process

s(n) as:

IN(ω) =
|∑N−1

n=0 w(n)s(n)e− jωn|2

∑
N−1
n=0 w2(n)

(5.1)

where w(n) is a window function and s(n) is the speech signal waveform. Under the

assumption that the modified periodogram is asymptotically unbiased we can represent

it as:

IN(ω) = (1+ξ(ω))|H(e jω)|2 for N→ ∞ (5.2)

E[ξ(ω)] = 0 (5.3)

where |H(e jω)| is the magnitude spectrum of s(n) and ξ(ω) is a stochastic function.

We can reformulate this as:

E[ξ(ω)] = E
[

IN(ω)

|H(e jω)|2
−1
]

(5.4)

= E[expR(ω)−1] (5.5)

where

R(ω) = log IN(ω)− log |H(e jω)|2 (5.6)

The stochastic function ξ(ω) has a uniform distribution over the frequency ω. This

allows us to replace the stochastic expectation operation by frequency domain averag-

ing:

E[ξ(ω)] = E[expR(ω)−1] (5.7)

=
1

2π

∫
π

−π

{expR(ω)−1}dω (5.8)

The authors define the residue of the unbiased error as the evaluation criterion for the
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estimator. The residue of the unbiased error is:

ρ(ω) =
∫ R(ω)

0
ξ(ω) dX (5.9)

=
∫ R(ω)

0
exp(X)−1 dX (5.10)

= expR(ω)−R(ω)−1 (5.11)

Replacing once again the stochastic expectation operation by frequency domain

averaging, the evaluation criterion is given by:

E =
1

2π

∫
π

−π

ρ(ω)dω (5.12)

=
1

2π

∫
π

−π

{expR(ω)−R(ω)−1}dω (5.13)

This evaluation criterion is the same as the Itakura-Saito distance as seen in the last

chapter, or the Itakura-Saito error evaluation for AR-model in the maximum likelihood

(ML) estimation method (Gray and Markel, 1976).

5.2.2 Cepstral coefficient extraction using UELS

Here we show some of the derivations found in the original paper that proposed this

extraction method (Tokuda et al., 1995).

The cepstral coefficients {cm}M
m=0 define the spectrum of the speech signal s(n) in

the following way:

H(e jω) = exp
M

∑
m=0

cme− jmω (5.14)

= K exp
M

∑
m=1

cme− jmω (5.15)

= KD(e jω) (5.16)

where K = expc0 and D(e jω) is the gain normalized version of H(e jω).

We can obtain the cepstral coefficients by minimizing the criterion defined earlier

in Eq.(5.13) for the unbiased condition:

E =
1

2π

∫
π

−π

{expR(ω)−R(ω)−1}dω (5.17)

Since H(e jω) as defined in Eq.(5.14) is a minimum phase system it is possible to prove

that minimizing E with respect to {cm}M
m=1 is the same as minimizing the following
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cost function:

ε =
1

2π

∫
π

−π

IN(ω)

|D(e jω)|2
dω (5.18)

Likewise by setting the derivative ∂E/∂c0 to zero we find that at this point:

K =
√

εmin (5.19)

5.2.2.1 Solving the optimization problem

Here we show how to update the vector of cepstral coefficients ccc = [c1 c2 . . . cM]>

when using the Steepest Descent and Newton Raphson methods. The two methods

approximate the cost function by means of a Taylor series expansion of first order

(Steepest Descent) and second order (Newton Raphson).

The update formula for the cepstral coefficients vector is:

ccc(i+1) = ccc(i)+µ∆∆∆c(i) (5.20)

where µ is the stepsize, ∆∆∆c(i) the increment vector and i is the index for the iteration.

The calculation of the increment vector for both Steepest Descent and Newton Raphson

involves the gradient vector, so let us first show how we can calculate the gradient

vector:

∇∇∇ε =
∂ε

∂ccc
(5.21)

=−2rrr (5.22)

=−2[r1 r2 . . . rM]> (5.23)

where

rm =
1

2π

∫
π

−π

IN(ω)

|D(e jω)|2
e jmω dω , m = 1, ...M (5.24)

The increment vector of the Steepest Descent method is:

∆∆∆c(i) =−∇∇∇ε

∣∣∣∣
ccc=ccc(i)

(5.25)

The increment vector of the Newton-Raphson method is:

∆∆∆c(i) =−H−1
∇∇∇ε

∣∣∣∣
c=c(i)

(5.26)
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Figure 5.1: ML-based cepstral coefficient extraction using Steepest Descent.

The Hessian matrix elements are {H}i, j = 2ri− j + 2ri+ j. In this report we will focus

on the Steepest Descent solution as shown in Fig. 5.1. From now on we adapt the nota-

tion H(ω) to represent the discrete spectrum previously represented in the continuous

domain as H(e jω). The discrete frequency magnitude spectrum is given by:

|H(ωk)|= exp
M

∑
m=0

cm cos(mωk) (5.27)

where k = 1 ...N is the index that covers the linear frequency scale uniformly. We will

also adopt the following vector notation as seen in Fig. 5.1:

sss =
[
s(n) s(n−1) . . . s(n−N)

]>
vector Nx1 - speech signal waveform

hhh =
[
|H(ω1)| . . . |H(ωN)|

]>
vector Nx1 - magnitude spectrum of windowed speech signal sss

IIIN =
[

IN(ω1) . . . IN(ωN)
]>

vector Nx1 - periodogram of windowed speech signal sss

N scalar - number of samples in the analysis window

ccc =
[
c1 c2 . . . cM

]>
vector Mx1 - cepstral coefficients

5.3 The glimpse proportion measure

The Glimpse Proportion measure was originally proposed in the context of the Glimpse

model for speech perception in noise (Cooke, 2003). The model was motivated by

the ability of humans to obtain information from those time-frequency regions where

speech is less masked by noise and therefore less distorted (Cooke, 2003).

The GP measure (Cooke, 2006) is based on this concept: in a noisy environment,

humans focus their auditory attention on ‘glimpses’ of speech that are not masked
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Figure 5.2: The glimpse proportion measure calculation. The measure is the percent-

age of glimpses detected over the entire time-frequency representation of the signals.

by noise. Rather than being a correlation, a distance or a ratio, the GP is based on

audibility of speech in noise. To measure the number of available glimpses of a given

speech signal in a given noise, we need the speech and noise signals to be available

separately.

The GP correlates well with subjective scores for intelligibility of natural speech

in noise (Cooke, 2006). In the experiments presented in the previous chapter, we also

observed similar behaviour for the intelligibility of HMM-generated speech in noise

even when that speech has been modified. In that experiment, we modified parameters

such as the fundamental frequency (F0) and spectral tilt to emulate Lombard speech

properties; even under such modifications, GP was a reasonable intelligibility predic-

tor (correlation coefficient above 0.8 for the most effective modification). In all these

different scenarios, GP outperformed most other measures in terms of accurate pre-

dictions of intelligibility of speech in noise. An attractive property of GP is that its

implementation can potentially be performed on a frame-by-frame basis as opposed to

the STOI and the Dau.

The GP measure is simply the proportion of spectro-temporal regions, so called

‘glimpses’, where speech is more energetic than noise. To detect such glimpse the

spectro-temporal excitation pattern (STEP) representation of speech and noise is com-

pared, as shown in Fig. 5.2. To represent a signal in terms of STEP – see Fig. 5.3 – we

first decompose its waveform into different frequency channels using a Gammatone

filterbank whose central frequencies are linearly spaced on the Equivalent Rectangular

Bandwidth (ERB) scale (Moore and Glasberg, 1996). For each channel, the tempo-

ral envelope is extracted with an absolute value operation, smoothed with a low pass
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Figure 5.3: The spectro temporal excitation pattern (STEP) calculation used in the GP

measure.

filter and then averaged across limited time intervals. A glimpse is detected in a time

frequency region when the speech STEP value in that region is higher than the noise

value.

The parameters that define the GP measure and their values are: the range of the

Gammatone filters’ centre frequencies (100-7500Hz), the number of Gammatone fil-

ters N f (55 filters), the temporal integration time for the smoothing filter τ (8ms), the

size of the time frame (30ms) and its period (10ms).

The centre frequencies of the Gammatone filters are linearly spaced on the ERB

scale and are defined as w̃ f on the ERB scale and ω f in Hz.

The frequency response IIR1, f of the Gammatone filter for frequency channel f is

given by:

IIR1, f (z) =
1+4a f z−1 +4a2

f z−2

1−4a f z−1 +6a2
f z−2−4a3

f z−3 +a4
f z−4

(5.28)

where a f = e−1.019 w̃ f
2π

Fs .

Cooke (1993) designed this digital filter using the impulse invariant transform

method. This means that this filter is the fourth order approximation of the Z-transform

of the sampled version of the gammatone actual impulse response.

The gain ζ as shown in Fig. 5.3 normalizes the filter response gain across filters,

defined as:

ζ f =
[1.019 w̃ f

2π

Fs
]4

3
(5.29)

The smoothing filter is defined by the τ value as:

IIR2(z) =
1− e−

1
τFs

1− e−
1

τFs z−1
(5.30)



Chapter 5. Cepstral extraction using the glimpse proportion measure 93

5.4 Proposed GP approximation

In this section, we show how we can approximate the GP measure so that it is com-

pletely defined by the short term magnitude spectrum of speech and consequently by

the sequence of cepstral coefficients. To obtain a closed and differentiable formula that

relates spectral parameters to the GP measure we make the following approximations

and correspondences:

• the input signals are no longer the signal waveforms of speech and noise but

the short term magnitude spectrum calculated from the short-time cepstral co-

efficients of speech and from the short-time discrete Fourier transform of noise

(approximation)

• the previous approximation implies that all operations are carried out in the fre-

quency domain rather than the time domain (correspondence)

• the filtering operations in the time domain are replaced by multiplications in the

frequency domain with a truncated version of the frequency responses of the

infinite impulse response filters (approximation due to the truncation)

• the absolute value in the time domain is replaced by a power operation that can

be represented in the frequency domain as the circular convolution operation

(approximation)

• the hard threshold detection of glimpses is replaced by a soft decision threshold

defined by a sigmoid function (generalization).

ht
circular 

convolutionX yt,f

Gammatone filtering envelope smoothing average

Gf

X

S

X

b

magnitude 
spectrum

sp

Figure 5.4: Proposed approximation for STEP calculation.
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The proposed approximated GP measure is then given by:

GP =
100

N f Nt

Nt

∑
t=1

N f

∑
f=1

L(ysp
t, f − yns

t, f ) (5.31)

where the following scalars are defined as:
ysp

t, f STEP approximation for speech at analysis window t and frequency

channel f

yns
t, f STEP approximation for noise at analysis window t and frequency

channel f

Nt number of time frames

N f number of frequency channels

t analysis window index

f frequency channel index

L(.) a logistic sigmoid function defined as:

L(x) =
1

1+ e−ηx (5.32)

where η defines the slope of the curve. The STEP approximation as seen in Fig. 5.4 is

given by:

ysp
t, f =

1
N
(GGG f hhht N© GGG f hhht)

> SSSbbb (5.33)

where:
N number of frequency bins of the spectrum

hhht =
[
|Ht(ω1)| . . . |Ht(ωN)|

]>
vector Nx1 - magnitude spectrum of windowed speech signal sss at

analysis window t

GGG f = diag
([

g f ,1 . . . g f ,N
])

matrix NxN - diagonal matrix, diagonal contains the Gammatone filter

frequency response for frequency channel f

SSS = diag
([

s1 . . . sN
])

matrix NxN - diagonal matrix, diagonal contain the frequency

response of the smoothing filter

bbb =
[

b1 . . . bN
]

vector Nx1 - coefficients of average filter

N© circular convolution operation dimension N
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Figure 5.5: Correlation coefficients broken down by modification type obtained by the

original GP measure and the GP approximation on the modified synthetic speech data

described in the previous chapter in Section 4.5.

5.4.1 Evaluation of the proposed GP measure

The approximation for the GP measure that we just proposed turns the GP into a mea-

sure that depends only on the spectral envelope, in this case modelled by cepstral coef-

ficients. As we saw in the previous chapter, spectrum-based measures poorly correlate

with subjective intelligibility scores. Here we calculate the correlation coefficient of

the GP approximation in Experiment II for each modification. These results are shown

in Fig. 5.5. We can see that the GP approximation is not as strongly correlated to

subjective scores as the original measure for the peak enhancement and fundamental

frequency modifications. The drop in correlation is much smaller for the LSP shift

modification and we found that the GP approximation is as good a predictor for speak-

ing rate changes as the original GP. Compared to the other measures (see Fig. 4.14) the

GP approximation is still a much better predictor of modified synthetic speech, even

though it is now a spectrum-based measure.

5.5 GP-based cepstral coefficient extraction

In this section, we show how to integrate the approximated GP measure shown in the

previous section into the existing cost function for cepstral coefficient extraction shown

in Section 5.2.
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Figure 5.6: GP-based cepstral coefficient extraction using Steepest Descent.

5.5.1 Cost function

In order to keep a compromise between the minimization of the cost function defined

in Eq.(5.18) and the maximization of the intelligibility measure given by Eq.(5.31) we

need to define an extra parameter that controls the weight given to each criterion. This

parameter is called β. We can then redefine the cost function as:

Et = εt−βGPt (5.34)

where

GPt =
100
N f

N f

∑
f=1

L(ysp
t, f − yns

t, f ) (5.35)

The spectral parameter vector ccct = [ct,1 ct,2 . . . ct,M]> is then given by:

ccc∗t = argminEt(ccct) (5.36)

= argmin
[
εt(ccct)−βGPt(ccct)

]
(5.37)

It is clear that when β=0.0 the GP-based cepstral extraction method becomes the orig-

inal cepstral coefficient extraction method of Section 6.2.

5.5.2 Steepest descent solution

Fig. 5.6 shows a block diagram representation of how we update the cepstral coef-

ficients iteratively using the Steepest Descent method given the spectral envelope hhh,

periodogram IIIN and internal representations of speech yyysp and noise yyyns.

The update equation for cepstral coefficients using Steepest Descent is:

ccc(i+1) = ccc(i)+µ∆∆∆c(i) (5.38)

= ccc(i)−µ∇∇∇E(i)
t (5.39)
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where µ = 1/||∇∇∇E(i)
t ||. The gradient vector is:

∇∇∇E(i)
t = ∇∇∇ε

(i)
t −β∇∇∇GP(i)

t (5.40)

The gain is still updated as:

K(i) =

√
ε
(i)
min (5.41)

From now on we will drop the iteration index (i) for clarity. To solve the optimiza-

tion using Steepest Descent we need to calculate the new term of the gradient defined

in Eq.(5.40), that is the gradient of the GP function:

∇∇∇GPt =
∂GPt

∂ccct
=

100
N f

N f

∑
f=1

∂L(ysp
t, f − yns

t, f )

∂ccct
(5.42)

=
100
N f

N f

∑
f=1

∂L(ysp
t, f − yns

t, f )

∂ysp
t, f

∂ysp
t, f

∂ccct
(5.43)

We can write the first term in the summation of Eq.(5.43) as:

∂L(ysp
t, f − yns

t, f )

∂ysp
t, f

= ηL(ysp
t, f − yns

t, f )
[
1−L(ysp

t, f − yns
t, f )
]

(5.44)

The second term in the summation of Eq.(5.43) is given by:

∂ysp
t, f

∂ccct
=

∂hhht

∂ccct

∂ysp
t, f

∂hhht
(5.45)

The first term on the right side of Eq.(5.45) is a matrix of dimension MxN defined as:

HHHct ≡
∂hhht

∂ccct
=


∂|Ht(ω1)|

∂ct,1

∂|Ht(ω2)|
∂ct,1

. . . ∂|Ht(ωN)|
∂ct,1

∂|Ht(ω1)|
∂ct,2

∂|Ht(ω2)|
∂ct,2

. . . ∂|Ht(ωN)|
∂ct,2

...
∂|Ht(ω1)|

∂ct,M

∂|Ht(ω2)|
∂ct,M

. . . ∂|Ht(ωN)|
∂ct,M


When the spectrum is modeled by cepstral coefficients as in Eq.(5.27) the elements of

this matrix are:

{HHHct}m,k =
∂|Ht(ωk)|

∂ct,m
= |Ht(ωk)|cos(mωk) (5.46)

where k is the index for the spectrum frequency bin and m as defined previously is the

index for the cepstral coefficients.
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The second term of Eq.(5.45) depends on the definition of the STEP approximation

in Eq.(5.33) and it is then given by:

∂ysp
t, f

∂hhht
=

∂lllt, f

∂hhht

∂ysp
t, f

∂lllt, f
(5.47)

=
1
N

∂lllt, f

∂hhht
SSSbbb (5.48)

=
1
N

∂GGG f hhht

∂hhht

∂lllt, f

∂GGG f hhht
SSSbbb (5.49)

=
1
N

GGG f
∂lllt, f

∂GGG f hhht
SSSbbb (5.50)

=
1
N

GGG f (2ΓΓΓN N© GGG f hhht)SSSbbb (5.51)

where lllt, f = (GGG f hhht N© GGG f hhht) and ΓΓΓN is the identity matrix of dimension N.

The operation (ΓΓΓN N© GGG f hhht) defines a matrix NxN of the following form:
eee1 N© (GGG f hhht)

>

eee2 N© (GGG f hhht)
>

...

eeeN N© (GGG f hhht)
>


where eeen is the n-th column of the identity matrix ΓΓΓN .

Connecting eqs.(5.44), (5.46) and (5.51), the gradient vector is given by:

∇∇∇GPt =
100
N f N

N f

∑
f=1

ηL(ysp
t, f − yns

t, f )
[
1−L(ysp

t, f − yns
t, f )
]
HHHct GGG f (2ΓΓΓN N© GGG f hhht)SSSbbb

(5.52)
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Algorithm using Steepest Descent
Given the speech periodogram IIIN and the noise waveform, for each time frame t:

• Calculate internal representation of noise: yyyns
t =

[
yns

t,1 . . . yns
t,N f

]>
• Initialize [Kt ccct ] as the first M + 1 values of the minimum-phase cepstrum:

F −1
{

0.5log IN(ω)
}

, where F −1 is the inverse discrete Fourier transform op-

eration.

• Optimization loop:

– Given the new spectral envelope hhht calculate the speech internal represen-

tation yyysp
t =

[
ysp

t,1 . . . ysp
t,N f

]>
– Calculate gradient vector ∇∇∇Et

– Update ccct , set Kt =
√

εmin and calculate the new spectral envelope hhht

– If converges or distortion is above threshold then stop.

5.5.3 Energy normalization

In this section we explain how to reformulate the optimization problem in order to keep

the overall energy of speech constant. For clarity reasons we drop the time index t in

the equations and use the continuous representation of the spectrum H(e jω).

If the 0-th cepstral coefficient is not modified we can not guarantee that the energy

is kept constant because this coefficient does not represent the energy of the spectral

envelope but the log-energy:

c0 =
1

2π

∫
π

−π

log |H(e jω)|2 dω (5.53)

Let us first define the quantity we refer here as overall energy of speech in a certain

time frame:

N−1

∑
n=0
|s(n)|2 = ψ (5.54)

where N is the size of the time window frame. From Parseval we have that:

N−1

∑
n=0
|s(n)|2 = 1

2π

∫
π

−π

|S(e jω)|2 dω = ψ (5.55)

where S(e jω) is the discrete time Fourier transform of time signal s(n).
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Figure 5.7: GP-based cepstral coefficient extraction using Steepest Descent with en-

ergy normalization.

This can be related to the spectral envelope H(e jω) and the frequency representa-

tion E(e jω) of the excitation signal:

ψ =
1

2π

∫
π

−π

|H(e jω)E(e jω)|2 dω (5.56)

We can assume that |E(e jω)| is constant over the frequency domain for both voiced

and unvoiced segments. For voiced speech segments this is true if the size of the

analysis window is set to two pitch periods and for unvoiced segments this is true

because at these segments the excitation signal is white noise. Under this assumption

and considering that the cepstral extraction method does not modify the excitation

signal we can assume that in order to keep the energy in the time domain constant it is

sufficient to keep the following constant:

ψ =
1

2π

∫
π

−π

|H(e jω)|2 dω (5.57)

The minimization of the cost function as given in Eq.(5.37) should then be solved

subject to the above constraint. Solving a nonconvex optimization problem is how-

ever a hard task. One feasible solution is to perform, at each iteration of the Steepest

Descent method, an energy normalization operation and alter the objective function

and consequentially the gradient vector accordingly. Fig. 5.7 shows this solution. To

explain how the gradient should be modified we first need to define the operation that

normalizes the energy of the spectrum.

The following operation modifies the spectrum |H(e jω)| with overall energy ψ so

that the resulting spectrum |H ′(e jω)| has an overall energy equal to ψ′:

|H ′(e jω)|= |H(e jω)|√
1
ψ′

∫
π

−π
|H(e jω)|2dω

=
|H(e jω)|√

ψ

ψ′

(5.58)
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In order to modify the gradient we need to see the impact of this operation in the

cepstral coefficient domain. The normalization operation transforms a set of cepstral

coefficients cm that model the spectrum |H(e jω)|with overall energy ψ, into parameters

c′m that model a spectrum |H ′(e jω)| with overall energy equal to ψ′ in the following

way:

|H ′(e jω)|= |H(e jω)|√
ψ

ψ′

(5.59)

=

exp
M

∑
m=0

cm cos(mω)√
ψ

ψ′

(5.60)

=

exp
M

∑
m=0

cm cos(mω)

exp
[

log
√

ψ

ψ′
] (5.61)

= exp
[( M

∑
m=0

cm cos(mω)
)
−0.5log

(
ψ

ψ′

)]
(5.62)

= exp
M

∑
m=0

c′m cos(mω) (5.63)

The energy-normalized cepstral coefficients c′m are then given by:

c′m =

 c0−0.5log
(

ψ

ψ′

)
m = 0

cm m 6= 0
(5.64)

Only the first cepstral coefficient changes so we can write:

|H ′(e jω)|= |K′||D(e jω)| (5.65)

where

K′ = exp(c′0) (5.66)

= exp
[
c0−0.5log

(
ψ

ψ′

)]
(5.67)

If ψ is equal to ψ′, i.e. the energy-normalization operation has no impact on the

spectrum, we can see that c′m is equal to cm. The only term in the gradient vector ∇∇∇GP

that needs to be adjusted is the one given by Eq.(5.46). To show how this term changes

we adopt the discrete representation H(ω1), . . . ,H(ωN) of the spectrum. Eq.(5.57) is

then approximated to:

ψ =
N

∑
k=1
|H(ωk)|2 (5.68)
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With the energy normalization operation the derivative in Eq.(5.46) becomes:

∂|H ′(ωk)|
∂cm

=
∂|K′||D(ωk)|

∂cm
(5.69)

=
∂|K′|
∂cm
|D(ωk)|+ |K′|

∂|D(ωk)|
∂cm

(5.70)

= |K′|
∂c′0
∂cm
|D(ωk)|+ |K′||D(ωk)|cos(mωk) (5.71)

= |H ′(ωk)|
∂c′0
∂cm

+ |H ′(ωk)|cos(mωk) (5.72)

= |H ′(ωk)|
(

∂c′0
∂cm

+ cos(mωk)
)

(5.73)

The derivative term in the previous equation is given by:

∂c′0
∂cm

=
∂c0

∂cm
−0.5

ψ′

ψ

1
ψ′

∂ψ

∂cm
(5.74)

=
∂c0

∂cm
− 1

ψ

N

∑
l=1
|H(ωl)|2 cos(mωl) (5.75)

=
∂c0

∂cm
− 1

ψ′

N

∑
l=1
|H ′(ωl)|2 cos(mωl) (5.76)

∂c′0
∂cm

=

{
0.0 m = 0

− 1
ψ′ ∑

N
l=1 |H ′(ωl)|2 cos(mωl) m 6= 0

(5.77)

The derivative in Eq.(5.46) then becomes:

∂|H ′(ωk)|
∂cm

=

 |H ′(ωk)| m = 0

|H ′(ωk)|
(

cos(mωk)− 1
ψ′ ∑

N
l=1 |H ′(ωl)|2 cos(mωl)

)
m 6= 0

(5.78)

Comparing this equation with Eq.(5.46) we can see that the energy normalization

constraint just added a new term to the equation. Using this new gradient calculation,

and normalising the speech energy at each iteration, guarantees that the energy of the

speech signal is fixed during gradient descent optimization. Because the optimization

is performed per analysis window, the energy of each window will not change, meaning

that there is no reallocation of energy across windows and that the maximisation of the

GP is bounded by the amount of energy initially available in the analysis window.
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Algorithm using Steepest Descent and energy normalization
Given the speech periodogram IIIN and the noise waveform, for time frame t:

• Calculate internal representation of noise: yyyns
t =

[
yns

t,1 . . . yns
t,N f

]>
• Initialize [Kt ccct ] as the first M + 1 values of the minimum-phase cepstrum:

F −1
{

0.5log IN(ω)
}

, where F −1 is the inverse discrete Fourier transform op-

eration.

• Calculate the overall energy ψ′ from the periodogram

• Optimization loop:

– Normalize spectrum so that overall energy is ψ′→ hhh′t and ccc′t

– Given the new spectral envelope hhh′t calculate speech internal representation

yyysp
t =

[
ysp

t,1 . . . ysp
t,N f

]>
– Calculate gradient vector ∇∇∇Et

– Update ccct and calculate hhht

– If converges or distortion is above threshold then stop.

5.6 Evaluation

To find whether the proposed method for cepstral extraction increases the number

of glimpses under the original glimpse definition, we evaluate two sets of speech

data: vocoded and synthetic speech. Vocoded speech is natural speech that has been

vocoded, i.e. analysed into a compact parametric representation and then reconstructed.

To generate modified vocoded speech, we extract cepstral parameters using the pro-

posed GP-based method. To test synthetic speech we compare a TTS voice trained

with cepstral coefficients extracted with the original method to a voice built with cep-

stral coefficients extracted with the proposed GP-based method. Additionally, to find

whether the increase in glimpses actually resulted in an increase in subjective intelligi-

bility score, we perform a listening test with these two types of speech material added

to speech-shaped and high frequency noise – the noises that were used to drive the

GP-based cepstral extraction method.
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5.6.1 Stimuli

The speech material we used to generate vocoded speech was the semantically unpre-

dictable sentences (SUS) set from the Blizzard Challenge 2010 (King and Karaiskos,

2010). The samples were of the British male speaker named rjs – the same speaker

used to train the synthetic voice for the evaluations of the last chapter – sampled at

20kHz. To train the synthesis models we used 1000 different sentences from the same

speaker also at 20kHz. The text of the sentences used to generate vocoded speech were

used as test sentences for the HMM-generated synthetic speech. To generate vocoded

and synthetic speech we used as synthesis filter the log spectrum approximation filter

(Tokuda et al., 1995) with simple excitation as input.

We used the same set of spectral and excitation parameters to analyse natural

speech for both the generation of vocoded speech and the training of the acoustic

model. Using the proposed method we extracted 52 cepstral coefficients for differ-

ent β values – the value that controls the weights of cost functions in Eq.(5.34) – ,

including the β= 0 case for comparison. The periodogram was set to be the smoothed

spectrum extracted using STRAIGHT (Kawahara et al., 1999), see Section 3.1.3.2 for

how STRAIGHT smoothed spectrum is extracted from speech waveform. We initial-

ize the algorithm with the first M + 1 values of the minimum phase cepstrum. The

step size was set to µ(i)= 1/||∇∇∇E(i)
t ||. We used both total error convergence and maxi-

mum distortion, defined as the UELS cost function given by Eq.(5.18), as the stopping

criterion.

The acoustic model that we used for synthetic speech was a hidden semi-Markov

model. The observation vectors for the spectral and excitation parameters contained

static, delta and delta-delta values. We used one stream for the spectrum and three

streams for the logF0. We used the Global Variance method (Toda and Tokuda, 2007)

to compensate for the oversmoothing effect of the acoustical modeling.

For these experiments, we added vocoded and HMM-generated synthetic speech to

two different types of stationary noise, speech-shaped noise (SSN) and high frequency

noise (HF), the same noise types used for the experiments in the previous chapter.

Each masker was added at a different SNR: 0dB for SSN and and −20dB for HF. We

compare the intelligibility of the different voices under a fixed SNR, which is computed

at a sentence level. As the modification method proposed here keeps the energy level

within each analysis frame fixed, no other energy normalization had to be performed

to guarantee that the energy level of the sentence was not modified.
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5.6.2 GP scores

We calculated the value of the GP at a sentence level and then averaged across the

test set. The results of the original/proposed cepstral extraction method using vocoded

speech are: 22.6/26.8 (HF) and 16.5/23 (SSN). Results for synthetic speech are: 22.2/26.2

(HF) and 15.1/19.1 (SSN). Even though the proposed method for cepstral extraction

maximizes an approximated version of the GP, the results show that the original GP

measure also increased.

5.6.3 Acoustic analysis

Fig. 5.8 shows the Long Term Average Spectrum (LTAS) of vocoded speech generated

using the original and the proposed method when noise is speech-shaped. In the figure

we can also see the LTAS of the noise. We can see that on average the proposed method

reallocates energy mostly to the frequency range between 800Hz and 4.8kHz, the band

where the auditory human system is most sensitive. The attenuation occurs mostly in

the lower frequency regions below 800Hz. Fig. 5.9 shows the LTAS of vocoded speech

generated using the original and the proposed cepstral extraction method for the high

frequency masker. In this noise the energy boost occurs in a similar region, but in a

much smaller strength. We can also observe some attenuation in the high frequency

region, as this region is highly masked by noise.

5.6.4 Listening experiment

For the listening test we played all signals over headphones to participants in sound-

isolated booths. Each individual sentence could be played only once before the par-

ticipant had to type in what he or she heard. A total of eight native English speakers

participated in the experiment with vocoded speech and another eight participants were

assigned to the experiment with synthetic speech. Each participant heard twelve dif-

ferent sentences per noise type.

5.6.5 Results and discussion

Fig. 5.10 shows the word accuracy rates obtained in the listening test with vocoded

(left) and synthetic speech (right). Each group mean is represented by a circle; two

means are significantly different at a 0.05 level only if their intervals are disjoint.
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Figure 5.8: Long term average spectrum curves extracted for vocoded speech gener-

ated using the original method (β=0) and the proposed method (β 6=0) for speech-

shaped noise at 0dB SNR.

We can see that the proposed method does not produce any significant differences

in word accuracy for vocoded speech. However for synthetic speech and speech-

shaped noise there is a significant improvement of word accuracy from 31% to 44%

(a gain of 44% relative).

For the high frequency noise case it seems that, although not significantly, the

proposed method decreases the word accuracy rates. We believe this happens because

the modifications imposed by such noise leads to less natural speech which in turn

degrades intelligibility.

The impact of the proposed method seems to be stronger for synthetic speech al-

though the GP gains were smaller or similar for synthetic speech, most probably be-

cause in harder tasks smaller glimpse variations lead to stronger effects.

5.7 Conclusion

In this chapter, we showed how to use a measure of speech intelligibility in noise

to modify HMM-synthetic speech and make it more intelligible for a certain noise.

We proposed a new cepstral extraction method that aims not only to minimize the

mismatch between periodogram and modelled spectrum but also to maximize speech

intelligibility in noise, as defined by the Glimpse Proportion measure.
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Figure 5.9: Long term average spectrum curves extracted for vocoded speech gener-

ated using the original method (β=0) and the proposed method (β 6=0) for high fre-

quency noise at −20dB SNR.

In the background sections, we explained an existing method for cepstral coeffi-

cient extraction commonly used in the HMM-based speech synthesis framework. We

then explained the intelligibility measure we chose to make use of, the Glimpse Pro-

portion measure, and why we chose this measure.

We then proposed how this measure can be reformulated to be used in the context of

cepstral coefficient extraction and how to integrate it to the existing cost function. We

call this new proposed method GP-based cepstral coefficient extraction. We showed

how the optimization problem can be solved using the gradient information and how

to keep overall energy of speech constant during optimization.

The listening tests with vocoded and synthetic speech showed the effectiveness of

the method for speech-shaped noise but not for high frequency noise, which might

indicate that the amount of distortion introduced into the speech by the modification

was too large.

We have seen that increasing GP values does not necessarily result in intelligibility

improvements. This shows us how important it is to control the strength of modifica-

tion up to a certain acceptable level where the measure operates correctly. Our next

step is to handle distortion in a better way as well as extending the proposed method

for Mel cepstral coefficients, since the quality of HMM-synthetic speech trained with

these coefficients is superior to voices trained with cepstral coefficients.

We also plan to apply a similar idea as a post processing method for modifying the
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Figure 5.10: Word accuracy rates of listening test with vocoded (left) and synthetic

(right) speech.

generated sequence of spectral coefficients. Under this framework, we would be able

to train a single synthesis model and then further refine its inferred parameters so that

intelligibility of generated speech in a given noise environment is increased. This is

obviously preferable to training individual synthesis models for each noise situation.

Performing intelligibility enhancement at generation time rather than at training time

allows for modifications that compensate for noises that change at generation time, i.e.

fluctuating noises like a competing talker situation. We will also compare the GP-based

approach to other methods for intelligibility enhancement, like for instance using clear

or Lombard speech data to train or adapt the models.



Chapter 6

Mel cepstral modification using the

glimpse proportion measure

In Chapter 5, we proposed a method to extract cepstral coefficients that not only min-

imizes the errors of modelling the spectrum with a small set of cepstral coefficients

but also maximizes the glimpse measure for a particular noise masker. In this chapter,

we propose an alternative to this method which can be applied at generation time: a

cepstral coefficient modification. This new method alters the Mel cepstral coefficients

– cepstral coefficients defined on the Mel scale – in order to increase the intelligibility

of the speech in the presence of a known noise. The method can operate at generation

time which means that it can deal with non-stationary noises like a competing speaker.

Similar to the earlier extraction method, the new method is based on the Glimpse Pro-

portion (GP) measure approximation proposed in the previous chapter. We first show

how to modify the Mel cepstral coefficients iteratively using the GP measure approx-

imation as an optimization criterion and how to control the modification by limiting

its frequency resolution. Then, to evaluate the method, we built eight different voices

from normal read-text speech data from a male speaker. We present results of an acous-

tic analysis and subjective intelligibility scores. This work was partially published in

(Valentini-Botinhao et al., 2012c,d, 2013c).

6.1 Introduction

We observed in Chapter 4 that the Glimpse Proportion (GP) measure for speech intel-

ligibility in noise (Cooke, 2006) has a high correlation coefficient with subjective in-

telligibility scores for HMM-generated synthetic speech whose spectral envelope has

109
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been modified. Moreover, modifications in the spectral envelope domain can achieve

quite high intelligibility gains. In Chapter 5, we proposed a cepstral extraction method

based on the GP measure for the HMM-based synthesis framework. This method was

shown to provide a significant intelligibility improvement, although not for all noise

types. We hypothesise that this is due to distortions introduced by the method itself.

The compromise between increasing glimpses and minimizing the mismatch between

spectrum and the spectral envelope as modelled by cepstral coefficients is not an easy

one to attend: glimpses can be created with the introduction of audible distortions.

Another disadvantage of that approach is having to train a different synthesis model

for each noise type as the noise-dependent modification is performed as part of feature

extraction. Now, we propose a method that can be applied at generation time, and does

not require any information about the spectral envelope of natural speech to achieve

distortion control. In this new method, we maximize the GP alone. The maximization

of the GP without any constraint will generate glimpses across all spectral envelope

generating audible distortions. To control the modification and the distortion we act in

two ways: using a stopping criteria based on the mismatch between the auditory rep-

resentations of modified and unmodified speech, as proposed by the GP measure, and

only modifying the first few cepstral coefficients, thus limiting the frequency resolu-

tion of the modifications. A further extension proposed here is the possibility of using

this method for Mel cepstral coefficients, which can provide higher speech quality with

fewer coefficients (Imai, 1983; Fukada et al., 1992).

Although the formulation of the problem allows for the extension to other types

of spectral parametrization such as the Mel Generalized Cepstral coefficients (MGC)

(Koishida et al., 1996) we can not guarantee that the synthesis filter created from such

modified MGCs is stable, see Section 3.1.3.2. Stability is always guaranteed for any

value of Mel cepstral coefficients though. To modify the MGC parameters it would be

necessary to first transform them into a representation where stability is easily ensured

like the MGC-LSP as proposed in Koishida et al. (2000).

In Section 6.2, we show how Mel cepstral coefficients model the speech spectrum.

In Section 6.3, we introduce the new method for Mel cepstral modification based on

the GP measure. We then provide, in Section 6.4, experimental results from listening

experiments to support our conclusions.
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6.2 Mel cepstral coefficients

We can represent the spectrum H(e jω) by a M-th order Mel cepstral coefficient set

{cm}M
m=0 using the following equation (Fukada et al., 1992):

H(e jω) = exp
M

∑
m=0

cme− jm ω̃ (6.1)

ω̃ = tan−1 (1−α2)sinω

(1+α2)cosω−2α
(6.2)

where α is the warping factor that controls the frequency scaling.

We can choose α such that ω̃ spans the frequency axis on a particular scale, for in-

stance the Mel scale, creating so-called Mel cepstral coefficients (Fukada et al., 1992).

When using the Mel scale warping, we can represent the spectral envelope with fewer

coefficients than when using a linear frequency scale, without a loss in quality (Imai,

1983).

According to Eq.(6.1), the magnitude spectrum is defined by the Mel cepstral co-

efficients as follows:

|H(e jω)|= exp
M

∑
m=0

cm cos(m ω̃) (6.3)

From now on we adapt the notation H(ω) to represent the discrete spectrum pre-

viously represented in the continuous domain as H(e jω). The previous equation be-

comes:

|Ht(ωk)|= exp
M

∑
m=0

cm cos(m ω̃k) (6.4)

where k = 1 ...N is the index that covers a frequency scale uniformly.

6.3 GP-based Mel cepstral modification

6.3.1 Cost function

Given a set of Mel cepstral coefficients and a noise signal we want to obtain a new set

of Mel cepstral coefficients ccct = [ct,1 . . . ct,m . . . ct,M]> that maximizes GPt , the value

of the function described in Eq.(5.31) at time frame t. We then have:

ccc∗t = argmaxGPt(ccct) (6.5)
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GPt(ccct) =
100
N f

N f

∑
f=1

L(ysp
t, f (ccct)− yns

t, f ) (6.6)

See here that in contrast to the cost function of the GP-based cepstral coefficient

proposed in the previous chapter, this cost function only depends on the GP measure.

6.3.2 Steepest descent solution

As the function we are maximizing is not necessarily convex with respect to the Mel

cepstral coefficients, we use a Steepest Descent method to solve the optimization. The

update equation is:

ccc(i+1)
t = ccc(i)t +µ∇∇∇GP(i)

t (6.7)

where ∆∆∆c(i) is the Mel cepstral coefficient increment in iteration i, ∇∇∇GP(i)
t (ccct) is the

gradient of the function defined in Eq.(6.6) with regards to Mel cepstral coefficients in

iteration i and µ is the stepsize.

From now on we will drop the iteration index (i). As we showed in the previous

chapter, we can find the gradient vector as follows:

∇∇∇GPt =
∂GPt

∂ccct
=

100
N f

N f

∑
f=1

∂L(ysp
t, f − yns

t, f )

∂ysp
t, f

∂ysp
t, f

∂ccct
(6.8)

The first term in this summation, see Eq.(5.44), is given by:

∂L(ysp
t, f − yns

t, f )

∂ysp
t, f

= ηL(ysp
t, f − yns

t, f )
[
1−L(ysp

t, f − yns
t, f )
]

(6.9)

The second term in this summation, see Eq.(5.45), is given by:

∂ysp
t, f

∂ccct
=

∂hhht

∂ccct

∂ysp
t, f

∂hhht
(6.10)

where:

HHHct ≡
∂hhht

∂ccct
=


∂|Ht(ω1)|

∂ct,1

∂|Ht(ω2)|
∂ct,1

. . . ∂|Ht(ωN)|
∂ct,1

∂|Ht(ω1)|
∂ct,2

∂|Ht(ω2)|
∂ct,2

. . . ∂|Ht(ωN)|
∂ct,2

...
∂|Ht(ω1)|

∂ct,M

∂|Ht(ω2)|
∂ct,M

. . . ∂|Ht(ωN)|
∂ct,M


When the spectrum is modelled by Mel cepstral coefficients as in Eq.(6.4) the ele-

ments of this matrix are:

{HHHct}m,k =
∂|Ht(ωk)|

∂ct,m
= |Ht(ωk)|cos(m ω̃k) (6.11)



Chapter 6. Mel cepstral modification using the glimpse proportion measure 113

Following the same derivation as seen in the last chapter Section 6.3, the second

term of Eq.(6.10) depends on the definition of the STEP approximation presented in

the last chapter , see Eq.(5.33), and it is then given by:

∂ysp
t, f

∂hhht
=

1
N

GGG f (2ΓΓΓN N© GGG f hhht)SSSbbb (6.12)

where ΓΓΓN is the identity matrix of dimension N, SSS is an NxN diagonal matrix, whose

diagonal contains the frequency response of the smoothing filter of the GP approxima-

tion and bbb a Nx1 vector containing the coefficients of the average filter used for the GP

approximation. The operation (ΓΓΓN N© GGG f hhht) defines a matrix NxN of the following

form: 
eee1 N© (GGG f hhht)

>

eee2 N© (GGG f hhht)
>

...

eeeN N© (GGG f hhht)
>


where eeen is the n-th column of the identity matrix ΓΓΓN . The gradient vector is given by:

∇∇∇GPt =
100
N f N

N f

∑
f=1

ηL(ysp
t, f − yns

t, f )
[
1−L(ysp

t, f − yns
t, f )
]
·

HHHct GGG f (2ΓΓΓN N© GGG f hhht)SSSbbb (6.13)

Note here that the only difference between the GP gradient calculated here and the

one calculated for the GP-based cepstral coefficient extraction is the fact that vector hhht

and matrix HHHct are defined by Mel cesptral coefficients.

6.3.3 Energy normalization

A derivation similar to what has been showed in the previous chapter in Section 5.5.3

is shown here for finding the steepest descent solution that includes an energy normal-

ization implicit constraint.

We do not wish to modify the energy of the speech signal:

ψ =
N−1

∑
n=0
|s(n)|2 (6.14)

=
1

2π

∫
π

−π

|S(e jω)|2 dω (6.15)

=
1

2π

∫
π

−π

|H(e jω)E(e jω)|2 dω (6.16)

=
1

2π

∫
π

−π

|H(e jω)|2 dω (6.17)
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Figure 6.1: GP-based Mel cepstral coefficient modification using steepest descent with

energy normalization.

where N is the size of the time window frame, S(e jω) is the discrete time Fourier

transform of time signal s(n), H(e jω) and E(e jω) the frequency representation of the

excitation signal. The equality of the last equation arises from the assumption that

E(e jω) is constant over the frequency domain, see Section 5.5.3 for further explanation.

Finding a closed solution for a non-convex constrained optimization problem is a

hard task. One possible solution is to solve it with steepest descent by adding an energy

normalization step at each iteration and changing the gradient accordingly. Fig. 6.1

shows this solution.

The normalization operation transforms a set of Mel cepstral coefficients cm that

model the spectrum |H(e jω)| with overall energy ψ, into parameters c′m that model a

spectrum |H ′(e jω)| with overall energy equal to ψ′ in the following way:

|H ′(e jω)|= |H(e jω)|√
ψ

ψ′

=

exp
M

∑
m=0

cm cos(m ω̃)

exp
[

log
√

ψ

ψ′
] (6.18)

= exp
[( M

∑
m=0

cm cos(m ω̃)
)
−0.5log

(
ψ

ψ′

)]
(6.19)

= exp
M

∑
m=0

c′m cos(m ω̃) (6.20)

The energy-normalized Mel cepstral coefficients c′m are then given by:

c′m =

 c0−0.5log
(

ψ

ψ′

)
m = 0

cm m 6= 0
(6.21)

Only the c0 coefficient changes, so we can write the energy normalized magnitude

spectrum as:

|H ′(e jω)|= |K′||D(e jω)| (6.22)



Chapter 6. Mel cepstral modification using the glimpse proportion measure 115

where K′ = exp(c′0) and D(e jω) = exp
M

∑
m=1

cme− jm ω̃.

With the energy normalization operation, the derivative in Eq.(6.11) becomes:

∂|H ′(ωk)|
∂cm

=
∂|K′||D(ωk)|

∂cm
(6.23)

=
∂|K′|
∂cm
|D(ωk)|+ |K′|

∂|D(ωk)|
∂cm

(6.24)

= |K′|
∂c′0
∂cm
|D(ωk)|+ |K′||D(ωk)|cos(m ω̃k) (6.25)

= |H ′(ωk)|
∂c′0
∂cm

+ |H ′(ωk)|cos(m ω̃k) (6.26)

= |H ′(ωk)|
(

∂c′0
∂cm

+ cos(m ω̃k)
)

(6.27)

The derivative term in the previous equation is given by:

∂c′0
∂cm

=
∂c0

∂cm
−0.5

ψ′

ψ

1
ψ′

∂ψ

∂cm
(6.28)

=
∂c0

∂cm
− 1

ψ

N

∑
l=1
|H(ωl)|2 cos(m ω̃l) (6.29)

=
∂c0

∂cm
− 1

ψ′

N

∑
l=1
|H ′(ωl)|2 cos(m ω̃l) (6.30)

∂c′0
∂cm

=

{
0.0 m = 0

− 1
ψ′ ∑

N
l=1 |H ′(ωl)|2 cos(m ω̃l) m 6= 0

(6.31)

The derivative in Eq.(6.11) then becomes:

∂|H ′(ωk)|
∂cm

=

 |H ′(ωk)| m = 0

|H ′(ωk)|
(

cos(m ω̃k)− 1
ψ′ ∑

N
l=1 |H ′(ωl)|2 cos(m ω̃l)

)
m 6= 0

(6.32)

As it was for the previous chapter, the frame-by-frame energy normalization implies

that no energy is reallocated across time and the modifications are therefore limited by

the energy initially available in each analysis window. It is possible to prove that is

unnecessary to update the first Mel cepstral coefficient c0 in each iteration since the

normalization operation updates it to a certain value regardless of the additional ∆c0

term.

6.3.4 Distortion control

An audibility-based measure like GP predicts the effect of additive noise by compar-

ing the levels of speech and noise. If speech is modified in a way that it creates many
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Figure 6.2: Cosines associeted with the first c1 and second c2 Mel cepstral coefficient

in the (a) full frequency band and (b) the narrow frequency band.

glimpses but also generates distortions, the GP measure will increase independent of

the distortion. This happens because the GP does not require any reference of undis-

torted speech signal: it assumes that speech has not been modified. An issue we face

then when using the GP measure on its own as an optimization criterion is the need to

limit the distortions caused by the modifications. For instance, if the spectral envelope

is modified to maximize the number of glimpses without any additional constraint this

would result in a spectral envelope just above the noise spectrum, i.e. speech would

be shaped by the noise. Recent research on improving the GP measure to account for

speech that has been modified is described in Tang et al. (2013). Tang et al. (2013) pro-

poses to weight the time-frequency bins defined by the STEP representation with the

cross-correlation of the temporal envelopes of clean unmodified and noisy modified

speech. Our work was however based on the original measure (Cooke, 2006).

To define the audible distortion, we use the Euclidian distance between the STEP

representations of modified and unmodified speech. Including this as an explicit con-

straint is hard because the constraint is non linear to the variable we are optimizing

upon, in addition to non-convexity of the problem. Instead, we use it as a stopping

criterion.

We also hypothesize that limiting the frequency resolution of the modifications

should generate fewer distortions. This is implemented simply by setting the gradient

vector for higher dimensions to zero, and so the method modifies only the first few Mel

cepstral coefficients, which represent the coarse properties of the spectrum.

To illustrate the effect that each coefficient has on the composition of the magnitude
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Figure 6.3: Original and modified spectral envelope. Modification here refers to de-

creasing the value of the first coefficient c1 (top left), the second c2 (top right) and both

first c1 and second c2 Mel cepstral coefficients.

spectrum we present, in Fig. 6.2, the cosines in the summation that define the log-

spectrum whose amplitude are the first and second Mel cepstral coefficients. The left

hand figure shows the cosine covering a frequency range of 0-24 kHz and the figure on

the right zooms into the narrower band of 0-8 kHz which will help us understand the

effect of our results when we extract Mel cepstral coefficients from a signal sampled

at 48 kHz and then downsample the signal to 16 kHz.

In Fig. 6.3, we can see the effect of changing the first, second and both first and

second Mel cepstral coefficients on the long term average spectrum of speech (LTAS).

To create these figures, we subtracted a constant value from the first, second and both

first and second coefficients defining a speech segment and calculated the LTAS of the

unmodified (original) and the modified segment. We can see that changing the first

coefficient allows for energy reallocation across two different frequency regions. If

the cepstral coefficients were defined for a linear scaled spectrum then these regions
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would divide the whole frequency range in half, as the first coefficient corresponds to

the amplitude of the first cosine defining the log spectrum. Since these are Mel cep-

stral coefficients however, these two regions span the same frequency range on the Mel

scale. This means that changing the first Mel cepstral coefficient allows us to reallocate

energy from quite low frequency components, that on average have higher energy lev-

els, to higher frequency regions. Changing the second Mel cepstral coefficient defines

three different regions as we are now changing the amplitude of the second cosine.

Although we do not present a proof here, we expect that changing both first and sec-

ond coefficients allows for a more independent control of the region boundaries, the

number of regions and their gains.

Algorithm using Steepest Descent and energy normalization
Given the Mel cepstral coefficient set ccct and the noise waveform, for time frame t:

• Calculate internal representation of noise: yns
t =

[
yns

t,1 . . . yns
t,N f

]>
• Calculate the overall energy ψ′ of the spectrum modelled by Mel cepstral coef-

ficients

• Optimization loop:

– Normalize spectrum so that overall energy is ψ′→ hhh′t and ccc′t

– Given the new spectral envelope hhh′t calculate the speech internal represen-

tation

ysp
t =

[
ysp

t,1 . . . ysp
t,N f

]>
– Calculate gradient vector ∇∇∇GPt

– Update ccct and calculate hhht

– If converges or distortion is above threshold then stop.

6.4 Evaluation

In this section, we investigate whether the proposed Mel cepstral modification can in-

crease subjective scores of intelligibility. First however we present the details of how

the synthesis models were built and the parameters that we set for the proposed mod-

ification. We want to evaluate the idea of restricting the frequency resolution of the

modifications by updating only the first few Mel cepstral coefficients. For that we cre-
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Voice Adaptation Mel cepstral coefficient modification

N - -

N-M59 - all coefficients

N-M10 - first 10 coefficients

N-M2 - first 2 coefficients

N-L only spectral parameters -

L all parameters -

L-E all parameters extrapolated -

L-E-M2 all parameters extrapolated first 2 coefficients

Table 6.1: Voices built for the evaluation.

ate a range of TTS voices by changing the number of coefficients to be modified. As an

additional baseline comparison we include a TTS voice trained with Lombard speech

– speech produced in noise – of the same speaker. We present a detailed acoustic anal-

ysis of the modified synthetic speech signal and then describe how we designed the

listening experiments and finally the results of the experiment.

6.4.1 Voice building

We used two different datasets recorded by the same British male speaker Nick: normal

(plain, read-text) speech data and Lombard speech. The Lombard speech was recorded

by Cooke et al. (2012) while speech-modulated noise (modulated by the speech from

a different male speaker (Dreschler et al., 2001)) was played over headphones at a

absolute value of 84dBA.

Table 6.1 presents the eight different voices we built for this evaluation. The base-

line unmodified voice N was created from a high quality average voice model adapted

to 2803 sentences of the normal speech database (three hours of material). The adap-

tation technique used to create the adapted voices of this work is the CSMAPLR-MAP

adaptation described in (Yamagishi et al., 2009). The average voice model was built

with female British speaker data and it provided smaller likelihood than a male model,

more details on how the model was built can be found in Dall et al. (2012). Building a

speaker-dependent voice was not possible because the normal speech dataset was not

sufficiently phonetically balanced. The modified voices N-M59, N-M10 and N-M2

were created from voice N by modifying all, just the first ten (c1 until c10), or just the
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first two (c1 and c2) Mel cepstral coefficients using the proposed method, as described

in the previous section.

We built the other set of voices N-L, L, L-E and L-E-M2 using the Lombard speech

portion of the database in addition. Lombard voice L was built by further adapting

all parameters (duration, excitation, spectral) of voice N using 780 sentences from the

Lombard speech dataset (53 minutes). The reason for not building a voice only with the

Lombard dataset was again the lack of phonetic balance in the dataset. Voice N-L was

also created from voice N by adapting this time only the Mel cepstral coefficients (i.e.,

spectral model parameters) to the Lombard data. Voices L-E and L-E-M2 are versions

of voice L where we extrapolated the adaptation in all dimensions at an extrapolation

factor of 1.2 for Mel cepstral coefficients and 1.35 for duration (voice L-E), and then

further modified the two first Mel cepstral using the proposed method (voice L-E-M2).

The extrapolation factors used were found empirically as the maximum extrapolation

factor that does not generate audible artefacts.

We trained and adapted the models using the described data sampled at a rate of

48kHz. We extracted the following acoustic features: 59 Mel cepstral coefficients

(α=0.77), Mel scale F0 and 25 aperiodicity band energies extracted using STRAIGHT

(Kawahara et al., 1999). We used a hidden semi-Markov model as the acoustic model.

The observation vectors for the spectral and excitation parameters contained static,

delta and delta-delta values, with one stream for the spectrum, three streams for F0

and one for the band-limited aperiodicity. We applied the Global Variance method

(Toda and Tokuda, 2007) to compensate for the over smoothing effect caused by the

statistical nature of the acoustical modelling. The labels used to train and generate the

test sentences were built using the pronunciation lexicon Combilex (Richmond et al.,

2010).

For the GP-based Mel cepstral modifications, we set the following values for the

STEP calculation: 55 Gammatone filters with centre frequencies covering the range of

50-7500Hz (because the noise signal used for testing was sampled at 16kHz, and so

the audio bandwidth was 8kHz), 8 ms of temporal integration time for the smoothing

filter and frame length and period of 30 and 10ms. For the steepest descent optimiza-

tion we used a normalized step size defined at each iteration i as µ(i)= µ/||∇∇∇GP(i)
t ||

(where µ=0.4 for N-M59 and µ=0.8 for N-M10 and N-M2). As stopping criteria we

use both error convergence and a maximum threshold set to 10% of relative increase

in distortion. We define distortion here as the Euclidian distance between the original

and the modified STEP representation of speech. After synthesizing, the speech wave-
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Figure 6.4: Convergence of GP (top) and distortion (bottom) for a certain single time

frame. Distortion is measured as the percentage increase in the Euclidian distance

between the STEP representation of original and modified spectrum. The stopping

criterion was not applied to illustrate the convergence.

form was downsampled to 16 kHz. This was necessary because the noise signals were

produced at this lower sampling rate.

6.4.2 Convergence analysis

Fig. 6.5 shows the convergence of the GP and distortion values. We can see that, as

GP increases, distortion also increases as expected, and that the algorithm is well-

behaved (i.e., it converges to a stable value within a reasonable number of iterations).

The algorithm is frame-based, meaning that the stopping criteria are applied on a per-

frame basis. For individual frames, the convergence presented in Fig. 6.4 is somewhat

less smooth-looking than that illustrated in the Fig. 6.5. On average, five iterations are

sufficient to meet one or other of the stopping criteria for each frame, and more often

than not it is the distortion criterion that is met first.
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Figure 6.5: Convergence of GP (top) and distortion (bottom), averaged over all frames

of one sentence. Distortion is measured as the percentage increase in the Euclidian

distance between the STEP representation of original and modified spectrum. The

stopping criterion was not applied to illustrate the convergence.

6.4.3 Acoustic analysis

In this section, we examine the impact of the modifications on the whole set of sen-

tences and at sentence and phone class level. The results are shown in terms of spec-

tral tilt, GP values and spectral gains, calculated using the long term average spectrum

(LTAS).

First, we present a broad analysis across the whole set of sentences used in the

listening experiment. Table 6.2 shows the average duration of speech and pauses, av-

erage F0 and average spectral tilt across all sentences used in the listening test for the

normal (N), modified (N-M2) and Lombard (L) voices. We can see that, as expected,

the Lombard voice produces sentences with longer duration and longer pauses, greatly

increased F0 mean and flattening of the spectral tilt. The spectral tilt reflects changes in

both spectral envelope and excitation signal. The modified voice N-M2 also presents a

flatter spectral tilt, though not to the same extent as the Lombard voice.
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voice
duration

(secs.)

pauses

(secs.)

F0 mean

(Hz)

spectral tilt

(dB/oct.)

N
2.11 0.16 104.5

-2.24

N-M2 -1.88

L 2.80 0.19 145.0 -1.70

Table 6.2: Acoustic properties observed in normal N, modified N-M2 and Lombard L

voices calculated at a sentence level and averaged across the whole set of 110 sen-

tences.
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Figure 6.6: Glimpses detected on the STEP time-frequency representation in speech-

shaped noise at a SNR of −4 dB (in black) for a sentence generated by (a) unmodified

voice N and modified voices (b) N-M59 (c) N-M10 and (d) N-M2
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For a more detailed inspection (sentence-level) of the proposed method in opera-

tion, Fig. 6.6 shows the glimpses (in black) detected in the presence of speech-shaped

noise at −4 dB SNR for (from left to right) a sentence generated by the unmodified

voice N and the modified voices N-M59, N-M10 and N-M2. The glimpses are shown

here in the STEP frequency domain across different time frames, the frequency axis is

linearly spaced in the ERB frequency scale as defined by the Gammatone filter bank

used to extract the STEP representation. We can see that the glimpsed regions become

larger and that new glimpses start to appear when we modify all, just the first ten and

the first two Mel cepstral coefficients. We also see that when we modify fewer coeffi-

cients, the new glimpses tend to be in more coherent regions, creating larger glimpses

rather than scattered small glimpses. This is an expected and desired result of modify-

ing only those coefficients that define the coarse shape of the log magnitude spectrum.

Fig. 6.7 shows the GP value for each frame as defined in Eq.(6.6) for the same

sentence as shown in Fig. 6.6, generated by the unmodified voice N and the modified

voice N-M2, together with the segmented phone description as defined by the combilex

phoneset for that particular sentence “The birch canoe slid on the smooth planks”.
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Figure 6.7: The GP measure across the different frames of the sentence “The birch ca-

noe slid on the smooth planks” generated by the original unmodified voice N versus the

modified voice N-M2 (top) and the Lombard adapted voice L (bottom), in the presence

of speech-shaped noise at −4 dB. The horizontal axis gives the phone segmentation in

the Combilex phoneset.
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We observe in Fig. 6.7 that, although the number of glimpses on average increases,

the increase in glimpses differs between segments. Since the noise that was driving this

modification is stationary, this variation comes from the speech signal itself: the dif-

ferent spectral shapes of the various phonetic units will result in fewer or greater num-

bers of glimpses. In this example sentence, the number of glimpses hardly increases

in fricatives and stops, whereas the most substantial increases happen in vowels and

nasals. This does not mean that fricatives and stops are not being modified though,

but does mean that the proposed method fails to create more glimpses of them for the

listener. Although we are not aiming to recreate the Lombard effect, we present in the

bottom plot of Fig. 6.7 the GP values calculated using the voice L. Compared to the

GP gains obtained by voice N-L over voice N, the voice L has smaller GP gains during

vowels while fricatives’ GP values are slightly higher.

To find which frequency regions are boosted and which are attenuated, we compute

the spectral gain in (dB). The spectral gain is a measure that captures the gain over a

reference LTAS curve. It is calculated as the difference between the LTAS of the signal

and the LTAS of the reference signal, in our case the voice N. The LTAS is calculated

as the averaged power spectral density calculated using hamming windows of 10 ms

length and 50 % overlap. This averaged representation is then presented in (dB) by

means of 10 ∗ log10 operation. We computed the spectral gain of voice N-M2 over

the original unmodified voice N, averaged across all test sentences, for speech-shaped

noise at −4dB. Fig. 6.8 shows the overall pattern of spectral gain at a sentence level.
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Figure 6.8: Gain in (dB) of the LTAS of voice N-M2 over the LTAS of unmodified voice N

calculated (for speech-shaped noise) at a sentence level and averaged across the set

of sentences used in the listening test.
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Figure 6.9: Gain in (dB) of the LTAS of voice N-M2 over the LTAS of unmodified voice

N calculated (for speech-shaped noise) averaged across vowels (top left), nasals (top

right) and approximants (bottom).

From Fig. 6.8, we observe that, compared to voice N, voice N-M2 exhibits en-

hanced energy in the region of 1-4kHz and attenuated energy below 1kHz.

To observe how different segments of speech change, we calculated the gains

curves for different phonetic classes using the state boundaries to select the units.

Figs. 6.9 and 6.10 present the gain calculated for different phonetic classes averaged

over all tokens of that class in the test set. One clear observation we can make when

comparing the gains for specific phone classes as displayed in Figs. 6.9 and 6.10 is

that the curves as well as the gain values vary substantially across different phonetic

classes. In the first group (vowels, nasals and approximants) the gains are at least

five times larger than those obtained for the second group (fricatives, affricates and

stops). This is a consequence of the shapes and values of the unmodified speech LTAS
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Figure 6.10: Gain in (dB) of the LTAS of voice N-M2 over the LTAS of unmodified voice

N calculated (for speech-shaped noise) averaged across stops (top left), fricatives (top

right) and affricates (bottom).

for these classes. We present the LTAS curves of unmodified speech segments aver-

aged across these classes in the Figs. 6.11 and 6.12 as well as the noise LTAS curve,

speech-shaped noise at −4 dB SNR as a reference. As we can see in Figs. 6.11 and

6.12 the first group of phonetic units LTAS curves reach levels of up to 40 dB at lower

frequencies and are steeper compared to the second group whose LTAS curve values

are far from reaching the noise LTAS and are also quite flat. We can see that there was

probably not enough “energy budget” in those phonetic units to make the substantial

modifications that need to be made in order to increase the number of glimpse regions

in the spectrum, which resulted in lower LTAS gains and very few gains in terms of

GP as we observed in the Fig. 6.7.

From the gain curves of the first group displayed in Fig. 6.9 we can see a similar
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Figure 6.11: Long term average spectrum (LTAS) of speech shaped noise and un-

modified speech average across vowels (top left), nasals (top right) and approximants

(bottom).

pattern across vowels, nasals and approximants: a large enhancement varying from 8

to 12 dB in the frequency region between approximatively 800 Hz (this number varies

across the different classes) and 5 kHz as well as an apparent attenuation of around 2 dB

for the lower frequency region. For both vowels and approximants, we also see a clear

gain region between 5-8 kHz that is separated by a gain reduction at approximately

5 kHz. The shapes of these gain curves follow the shape of the LTAS of these phonetic

classes, for instance we can see a bump from 5-8kHz in the vowels and approximants.

The nasals are the units that are most strongly enhanced reaching a maximum of 12dB

gain which can be explained by the fact that they seem to be highly energetic with an

even less flat spectrum than the other sounds.

A similar trend for vowels, nasals and liquids can be seen in a study performed

on Lombard speech of 5 male Spanish native speakers (Castellanos et al., 1996). The



Chapter 6. Mel cepstral modification using the glimpse proportion measure 129

0 1 2 3 4 5 6 7 8−30

−20

−10

0

10

20

30

40

50 stops

Freq. (kHz)

LT
AS

 (d
B)

 

 

stops
noise

0 1 2 3 4 5 6 7 8−30

−20

−10

0

10

20

30

40

50 fricatives

Freq. (kHz)

LT
AS

 (d
B)

 

 

fricatives
noise

0 1 2 3 4 5 6 7 8
−30

−20

−10

0

10

20

30

40

50 affricates

Freq. (kHz)

LT
AS

 (d
B)

 

 

affricates
noise

Figure 6.12: Long term average spectrum (LTAS) of speech shaped noise and unmodi-

fied speech average across stops (top left), fricatives (top right) and affricates (bottom).

GRID Lombard corpus composed of 8 English native speakers also shows a spectral

gain with similar bi-modal characteristics – a peak in the formant region and a slight

peak in the 6−7kHz region – as the sentence spectral gain presented in Fig. 6.8 (Godoy

and Stylianou, 2012). Spectral gains of the Lombard database that was used in this

work also present a bi-modal nature but the high frequency mode is more boosted than

the formant region, see Appendix B for the curves.

The gains obtained for the other class (stops, fricative and affricates) are, as pre-

viously stated, much smaller. For both stops and fricatives an average maximum of

2 dB increase was found and the region most enhanced is between 1-5 kHz as seen for

the other group. The affricates show even lower gains and narrow enhanced regions

between 1-3 kHz with a valley around 2 kHz.

On average across different phonetic units in the same sentence we show in Fig. 6.13

the long term average spectrum of the normal (N), modified (N-M2) and Lombard (L)
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Figure 6.13: Long term average spectrum of the normal N, normal modified N-M2 and

Lombard L voices for speech-shaped noise.

voices, for the case of speech-shaped noise. Compared to voice N, voice N-M2 ex-

hibits enhanced energy in the frequency region of 1-4kHz and attenuated below 1kHz.

Voice L shows enhancement and attenuation in the same regions as N-M2, although

these changes are not as pronounced, attenuation is also seen between 4-5.5kHz and

enhancement at frequencies above this.

6.4.4 Listening experiments

We mixed the eight different synthetic voices with two noises: speech-shaped noise

and speech from a single competing female talker. For intelligibility testing, it is im-

portant to avoid floor or ceiling effects on word accuracy rate. Therefore, in order to

obtain intelligibility scores in similar ranges for each noise, we mixed them at differing

SNRs: -4dB for speech-shaped noise and -14dB for the competing speaker. As in the

previous chapter, no other energy normalization had to be performed to guarantee that

the energy level of the sentence was not modified, since the GP-based modification

proposed here does not modify the energy of the signal.

32 native English speakers listened to the noisy samples over headphones in sound-

isolated booths. Each participant typed in what he or she heard for a total of six differ-

ent sentences per condition, i.e., voice and noise type (16 conditions). Each sentence

could only be played once and the same sentence was never played again in the same
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Figure 6.14: Word accuracy rates for speech-shaped noise.
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Figure 6.15: Word accuracy rates for competing speaker.

listening test. We used the first ten sets of the Harvard sentences (IEEE, 1969). The

Harvard sentences are a group of 720 sentences organized in sets of 10, where each set

is designed to be phonetically-balanced. The sentences are also more representative of

everyday speech than the semantically unpredictable sentences used in other TTS in-

telligibility listening experiments (King and Karaiskos, 2010). Another one of the sets

was used as a practice session done prior to the experiment. All words were considered

when calculating the subjective word accuracy rate.
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6.4.5 Results and discussion

Figs. 6.14 and 6.15 show the mean word accuracy rate (WAR) obtained by each voice

when mixed with speech-shaped noise and a competing speaker respectively, along

with 95% confidence intervals. Fig. 6.14 shows that the modified voices N-M59, N-

M10 and N-M2 achieve higher WAR than the unmodified voices N (40.9%), and this

is significantly higher for the N-M10 (50.7%) and N-M2 (57.8%). The N-M2 voice

obtains a higher WAR than the N-L voice (49.5%). The Lombard voices L (63.6%),

L-E (68.2%) and L-E-M2 (70.1%) performed better than the normal speech voices

although we did not find a significant difference between N-M2 and L. The extrapo-

lated voice L-E is more intelligible than voice L, a trend that is further enhanced by

applying our modifications to it, as in voice L-E-M2. The results obtained for the com-

peting speaker situation are displayed in Fig. 6.15 and show a slightly different trend.

There is a drop in performance for N-M59 and N-M10 when compared to N (36.6%),

although this is not significant. The N-M2 (42.7%) voice performs better than the

unmodified counterpart N and obtains a similar WAR to N-L (43.6%). All Lombard

voices performed significantly better than the other voices, in particular the L voice

(62.2%). The other versions, L-E (60.5%) and L-E-M2 (59.3%), do not appear to

increase intelligibility.

As predicted by our hypothesis that distortions were defeating potential gains in in-

telligibility in our previously-published experiments (Valentini-Botinhao et al., 2012a),

the voices where we modify only the first few Mel cepstral coefficients achieved a bet-

ter WAR, indicating that very fine frequency modifications cause distortions that cancel

out any potential intelligibility gain they may offer. Compared to the N-L voice, for

which the spectral parameters were obtained using Lombard speech, the modifications

proposed here obtained a similar or higher intelligibility score. The intelligibility gains

obtained by the full Lombard voice L over the N-L voice reflect the impact of changes

in duration patterns, F0 and the aperiodicity parameters that define the excitation signal,

as pointed out in Table 6.2. We can see, then, that there is a lot to gain from modifying

those parameters in addition to the spectral ones. The spectral modifications proposed

here increased the gains obtained with the Lombard voice for speech-shaped noise, as

we can see from the results for voice L-E-M2, which shows that there are still gains to

be had over and above simply building voices on recorded Lombard speech.

For the competing talker, spectral changes seem to contribute less than for speech-

shaped noise. For the competing talker, duration stretches as well as F0 increases are
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more important. This suggests that for non-stationary noise it is more effective to

perform temporal energy re-allocation (e.g., taking advantage of quiet or silent regions

in the noise signal) than it is to reallocate energy across different frequencies.

6.5 Conclusions

We have presented a method for increasing the intelligibility of HMM-generated syn-

thetic speech in the presence of noise, based on the Glimpse Proportion measure. The

method operates on the Mel cepstral coefficients generated by acoustic models which

were trained only on natural read speech collected in quiet conditions, of the type

normally used to build text-to-speech systems. The method updates the Mel cepstral

coefficients iteratively via gradient descent such that the glimpse proportion increases,

without changing the overall energy. We observed that sentences generated with such

modified Mel cepstral coefficients have a boost in frequencies between 1-4 kHz and

that this boost is highly dependent on the phonetic units: vowels and nasals are more

enhanced than fricatives and stops. Results with a speech-shaped noise masker show

that the modified voice is as intelligible as a synthetic voice trained with plain speech

then adapted to Lombard speech. When mixed with a competing talker the gains are

more modest for both the proposed method and for adaptation of Mel cepstral coeffi-

cients to Lombard speech.

In the next chapter, we provide a more extensive comparison with a wider variety

of other intelligibility enhancement methods, and an investigation of method combina-

tion, particularly with methods that reallocate energy across time and change duration

in a successful way.



Chapter 7

Evaluation of intelligibility

enhancement methods

In this chapter, we present the result of three large scale listening experiments compar-

ing the modification proposed in the previous chapter, referred now as GP, to other in-

telligibility enhancement methods applied to the same TTS baseline. Additionally, we

evaluate a series of method combinations of GP with the following noise-independent

methods: dynamic range compression, spectral shaper and adaptation to Lombard ex-

citation and duration HMM models. The results presented as Evaluation I were ob-

tained as part of a wider listening experiment, with entries for modifications applied

to natural speech as well, described in Cooke et al. (2012). The results of Evaluation

II were obtained from a listening test that we carried out using a similar design but

comparing modifications applied only to TTS signals. We present the results of all

voices involved in this evaluation. Evaluation III was part of Evaluation I follow-up

experiment called the Hurricane Challenge (Cooke et al., 2013) with an even wider

number of entries. For the first and third evaluations we present here only the re-

sults of our TTS entries and of the natural speech baselines. Our results in Evalu-

ation I were partially published in (Valentini-Botinhao et al., 2012b), Evaluation II

was published in (Valentini-Botinhao et al., 2013a) and our entries in Evaluation III

were published in (Valentini-Botinhao et al., 2013d). Audio samples can be found

at https://wiki.inf.ed.ac.uk/CSTR/TtsHc and https://wiki.inf.ed.ac.uk/

CSTR/HcExternal.
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Figure 7.1: Psychometric curves obtained for natural speech in competing speaker and

speech-shaped noise, figure extracted from Cooke et al. (2012). In this chapter, we

refer to keywords correct as the word accuracy rate (WAR).

7.1 Stimuli material

The three evaluations we present here use the same TTS unmodified baseline as well

as the same noise conditions, that is masker type and level. The TTS baseline used in

the three evaluation was also used in the evaluation section of the previous chapter.

7.1.1 TTS

7.1.1.1 TTS baseline

The TTS baseline voice used here is voice N evaluated in the previous chapter. For

details on how the TTS baseline voice was built see Section 6.4.1.

7.1.1.2 TTSGP

As we observed in the previous chapter, higher intelligibility gains were obtained when

changing just the first two Mel cepstral coefficients, for this experiment we modify

only these two coefficients. The voice that we call TTSGP here is the voice previously

known as N-M2. More details on how this voice was created see Section 6.4.1.
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7.1.2 Noise conditions

We mixed speech with two different maskers: speech-shaped noise and speech from a

single competing female talker. The noises were mixed at preselected signal to noise

ratios (SNRs) chosen to achieve approximately 25, 50 and 75% word accuracy rates

(-9dB, -4dB, 1dB for speech-shaped noise and -21dB, -14dB, -7dB for competing

talker). These SNR are referred here as ‘Low SNR’, ‘Mid SNR’, and ‘High SNR’. The

values were obtained from a separate listening test where natural speech intelligibility

was evaluated in both noise maskers at nine different levels, obtaining the psychometric

curves seen in Fig. 7.1. As these values were obtained using natural speech and not

TTS we do not expect to have the same WAR values but do expect a similar spread in

WAR.

For the GP modification, as in the previous chapter, no other energy normalization

had to be performed to guarantee that the energy level of the sentence was not modified

since modification does not modify the energy of the signal. For the samples generated

with adaptation or dynamic range compression, the energy across a sentence had to be

normalized to be equal to the plain unmodified synthetic voice generated sample.

7.1.3 Listening experiment

In all evaluations, the first 180 sentences of the Harvard corpus (IEEE, 1969) were

used in a balanced arrangement, such that listeners never hear the same sentence more

than once.

As in the other experiments presented so far, participants consisted mostly of un-

dergraduate students from the University of Edinburgh, that is between 20 and 30 years

old. All participants were British Native English speakers. Here we present the results

across participants that had passed the audiological screening as described in Sec-

tion 3.3.1. The participants heard stimuli presented over headphones in sound-isolated

booths.

Results are presented as percent word accuracy rates (WAR) and equivalent inten-

sity changes (EIC) in dB. The word accuracy rate was scored as the average across

each listeners’ individual scores for a particular voice in a particular noise condition,

so the standard errors reflect listeners deviation rather than sentence material. Follow-

ing the rules of the large scale evaluation (Cooke et al., 2012) the WAR scores were

computed per sentence accounting only for content words (the words ‘a’, ‘the’, ‘in’,

‘to’, ‘on’, ‘is’, ‘and’, ‘of’, ‘for’ were excluded from scoring) as oppose to counting all
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words as was done in our previous evaluations. Although Cooke et al. (2012) refers to

these scores as keyword correct rate we refer them here as WAR (%). We present here

also the EIC, which is a relative measure of the performance of one voice compared to

another. EIC is calculated by mapping the WAR scores that two voices obtain in a par-

ticular noise to the psychometric curve of that noise, as seen in Fig. 7.1 and calculating

the effective change in dB (Cooke et al., 2012). Some results are reported with their

corresponding standard Fisher’s least significant differences, computed separately for

each SNR level and masker type using ANOVAs with the single factor of modification

type to allow for easier comparison across many modifications. Although not reported

here, ANOVAs were computed with the single factor as the modification type and in

all noise conditions significant differences were found across methods. We report in

bar plots the standard error.

As done in the previous evaluations of this thesis, in this chapter we judge speech

enhancement strategies with regard to their intelligibility benefit: naturalness or quality

judgements were not obtained. This is because we focus here on finding the best tech-

nique in terms of intelligibility. Quality or naturalness could be used as a secondary

criterion to compare techniques that provide similar intelligibility gains for instance.

As was shown in the previous chapters, methods that degrade speech quality less can

provide more intelligibility benefits. In that sense it is important to control the amount

of perceived degradation. In this work this was done by limiting the amount of modi-

fication and providing to the listeners what we judged to be a reasonable quality.

7.2 Evaluation I: GP versus adaptation

We evaluated two natural voices plus three synthetic voices, whose acronyms are pre-

sented in Table 7.1. This evaluation was part of a large scale listening experiment

described in Cooke et al. (2012) but in this section only we present the results of the

synthetic speech entries as well as the results obtained for the natural and Lombard

natural speech.

Using the same natural speech database described in our previous experiment we

built three different voices for this evaluation: TTS, TTSGP and TTSLomb. The TTS

and TTSGP voices here refer as said previously to the voices described as N and N-M2

in the previous chapter. The voice TTSLomb is built similar to the voice L but for this

evaluation we limited the durations of voice L so that the maximum overall duration

increase was no more than half a second per sentence. This has been done according
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Voice Modification Adaptation to Lombard

Natural speech

Normal - -

Lombard - -

Synthetic speech

TTS - -

TTSLomb - all parameters

TTSGP GP -

Table 7.1: Evaluation I – voices.

duration F0 mean F0 range spectral tilt loudness

(s) (Hz) (Hz) (dB/oct.) (sone)

Natural speech

Normal 2.06 107.1 34.60 -2.14 11.43

Lombard 2.32 136.8 46.74 -1.83 11.96

Synthetic speech

TTS
1.95 104.5 22.45

-2.26 10.96

TTSGP -1.90 12.43

TTSLomb 2.43 145.2 42.55 -1.71 12.06

Table 7.2: Evaluation I – Acoustic properties of the two natural voices: Normal and

Lombard and the three synthetic voices: TTS, TTSGP and TTSLomb. These were

calculated on a sentence level and averaged across the whole set of sentences.

to the rules of the extensive evaluation described in Cooke et al. (2012).

7.2.1 Acoustic analysis

In Table 7.2, we provide a sentence-level acoustic analysis of duration, fundamental

frequency F0 (mean and range), spectral tilt and loudness. To measure loudness we

used the ISO-532B method (ISO 532, 1975), the F0 range was calculated as the differ-

ence between the 80-th and 20-th percentiles and the spectral tilt was measured as the

slope of the linear regression of the long term average spectrum on a one-third octave

band scale as done previously. These values, presented in Table 7.2, are first calculated
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per sentence and then averaged across the 180 sentences that were used in the listening

test.

The natural Lombard sentences are on average 0.26 s longer than speech produced

in quiet (a relative increase of 12%) and the synthetic Lombard TTSLomb sentences

are 0.48s longer (which corresponds to a relative increase of almost 25%). The mean

fundamental frequency value F0 is also higher for the Lombard voices, an increase

of 27% and 39% for natural and synthetic speech respectively. The F0 range also

increases by 35% for natural and 90% for synthetic speech. Spectral tilt is found to

be flatter: a relative change of 14% for natural and 24% for synthetic speech. The

Lombard natural samples are on average 5% louder than normal speech ones and the

Lombard synthetic voice TTSLomb is 11% louder than the normal synthetic voice

TTS.

The voice built using the spectrum modification method TTSGP has the same du-

ration and prosody as the TTS voice, but spectral tilt and loudness differ. The modified

voice TTSGP presents a flatter spectral tilt when compared to the TTS voice (16%

flatter) , though not to the same extent as the Lombard voice TTSLomb. The TTSGP

is however slightly louder than the TTSLomb, a relative increase of 13% over the TTS

voice.

The acoustic differences found here for the natural speech data are similiar to what

has been reported in other studies of Lombard speech data described in Section 2.2:

duration increases, F0 mean and range increases, flatter spectral tilt and increase in

loudness. A similar but stronger trend was observed for the synthetic voices.
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Figure 7.2: Long term average spectrum of one sentence of the natural voices.
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Figure 7.3: Long term average spectrum of one sentence from the TTS voices. Se-

lected sentence was the same as in Fig. 7.2

Figs. 7.2 and 7.3 show the long term average spectrum (LTAS) of a sentence from

the natural speech recordings and from the generated synthetic speech, respectively.

In both figures we also display the LTAS of the noise that was used when creating

the TTSGP voice: speech-shaped noise presented at -4dB. We can see from Fig. 7.3

that, compared to the TTS curve, the curves for TTSLomb and TTSGP are attenuated

at low frequencies, mostly below 1kHz and enhanced in the range above that. The

TTSGP curve is mostly attenuated below 900 Hz and enhanced in the region between

900-4000 Hz. The TTSLomb voice curve is less pronounced in this region but shows

a boost in the region above 5 kHz. We can also see this effect in the natural Lombard
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speech curve displayed in the Fig. 7.2. The Lombard voices, both natural and synthetic,

also present a shift in fundamental frequency and formants.

7.2.2 Listening experiment

The listening test involved 154 native English speakers, 15 of which did not pass the

audiological screening so only the results of 139 participants were considered (Cooke

et al., 2012). Each participant listen to 4 different sentences of each noise/SNR/voice

combination.

7.2.3 Results and discussion

Fig. 7.4 shows the word accuracy rates (WAR) of speech mixed with speech-shaped

noise (SSN) and competing speaker (CS) for each SNR tested.

An obvious first comparison to draw is the difference in performance gain when

using natural and synthetic Lombard speech. Averaged across the three different SNRs

the gains in intelligibility obtained by the Lombard synthetic voice TTSLomb over

the normal synthetic voice TTS are larger (47% for SSN and 42% for CS) than the

gains obtained by the Lombard natural speech over the normal natural speech (17% for

SSN and 13% for CS). The effects are most pronounced for the lower SNRs cases for

speech-shaped noise and for the middle SNR case for the competing talker condition.

The noise played when recording the Lombard dataset used in this evaluation was

different to the ones used in the listening test. We can thus infer that Lombard speech

can still be more intelligible than speech produced in quiet even in a mismatched sce-

nario. This could indicate that certain modifications can provide improvements inde-

pendent of the noise.

Most importantly we see that the GP-based Mel cepstral modification (TTSGP) can

provide intelligibility gains over the non-Lombard synthetic voice (TTS). The word ac-

curacy rates obtained by the TTSGP voice are comparable to those obtained with the

TTSLomb voice for speech-shaped noise even though no modification was made to

duration or to the excitation signal. Averaged across SNRs, the relative gains obtained

over the TTS voice were 44% for SSN and 5% for CS. For the competing talker only

moderate improvements were obtained by TTSGP over TTS, suggesting a greater im-

portance of prosody and duration in this scenario.
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Figure 7.4: Evaluation I – Word accuracy rates for natural voices (Normal, Lombard)

and synthetic voices (TTS, TTSLomb, TTSGP) mixed with speech-shaped noise (left)

and competing speaker (right) at the conditions high SNR (top), mid SNR (middle) and

low SNR (bottom).
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The TTS voices obtained lower WAR when compared to natural voices. On average

across different noises and SNRs the TTS voice WAR is 23% lower than natural speech

and TTSLomb WAR is 18% lower than the Lombard voice.

The method employed in Cooke et al. (2012) uses a psychometric function which

means we are able to express the change in intelligibility in terms of “equivalent inten-

sity change” (EIC) relative to normal natural speech, which is an intuitively appealing

way of presenting the results on a dB scale. This is shown in Fig. 7.5 for SSN and CS.

We can see the effective loss (in dB) of using synthetic speech compared to natural

speech (average across SNR: TTS−4.3 dB for SSN and−5.9 dB for CS) and how this

loss can be substantially mitigated by modifying the synthetic voice spectral envelope

using our proposed method (TTSGP −1.8 dB for SSN and −5.6 dB for CS ) or by

adapting the models to Lombard speech from the same speaker (TTSLomb −1.9 dB

for SSN and −2.7 dB for CS).
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Figure 7.5: Evaluation I – Equivalent intensity change relative to natural speech, for

speech-shaped noise (top) and competing speaker (bottom). LSD indicates Fisher’s

least significant difference converted to dB via the psychometric function for this masker.

Figures adapted from (Cooke et al., 2012).
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7.3 Evaluation II: Noise-dependent and -independent

methods

While TTS voices can be as intelligible as natural speech in clean conditions, intelligi-

bility drops quite rapidly in adverse conditions (King and Karaiskos, 2010), motivating

the use of intelligibility enhancement methods and potentially requiring knowledge of

the noise masker. However, noise-dependent methods, either for natural or TTS voices,

have only recently been proposed and it remains relatively unknown to what extent ex-

ploiting spectro-temporal characteristics of the masker is useful. To evaluate a range of

enhancement algorithms, both noise-dependent and independent, Cooke et al. (2012)

describes a large scale listening experiment with 5 methods for natural speech and 2

for TTS evaluated under the same conditions and which results were presented in the

previous section. In this evaluation, it was observed that noise-independent spectral

shaping with Dynamic Range Compression (SSDRC) (Zorilă et al., 2012) provided

the best results of the modifications on natural speech while the method proposed in

Sauert and Vary (2011), although noise-dependent, did not perform as well. We ob-

served in the previous section that a noise-dependent approach applied to a TTS voice

can produce a voice that is as intelligible as a Lombard-adapted voice in some station-

ary noise conditions, but still not as intelligible as natural speech. A significantly large

intelligibility gap was also confirmed between TTS and the natural voice in almost all

noise conditions.

In this section, we investigate whether intelligibility enhancement methods origi-

nally proposed for natural speech can also improve intelligibility of a TTS voice and

help bridge this gap. Furthermore, we seek to discover whether it is possible to improve

a noise-independent method (Zorilă et al., 2012) and the noise-dependent method de-

scribed in the previous chapter by combining them, effectively offering insight on the

extent to which noise dependency is required in terms of achieving significant intelli-

gibility gains.

7.3.1 Methods

We evaluate one natural voice and a total of seven TTS modified voices, as shown

in Table 7.3: two noise-independent methods (SS-DRC (Zorilă et al., 2012) and SSE-

DRC), two noise-dependent methods (TTSGP and OptSII (Sauert and Vary, 2011)) and

two method combinations (TTSGP-DRC and TTSGP-SS-DRC). The TTSGP method
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Voice Modification ND

Natural speech

Normal - -

Synthetic speech

TTS - no

TTS-SS-DRC spectral shaping (SS) followed by dynamic range no

compression (DRC) (Zorilă et al., 2012)

TTS-SSE-DRC extended version of SS (SSE) followed by DRC no

TTS-OptSII SII optimisation (Sauert and Vary, 2011) yes

TTSGP GP yes

TTSGP-DRC GP followed by DRC yes

TTSGP-SS-DRC GP followed by SS-DRC yes

Table 7.3: Evaluation II – voices, ND stands for noise dependency.

is applied directly to the generated spectral parameters, all other methods work as

a post processing of the waveform generated by the TTS model (represented by the

addition of the acronym TTS-). The following describes each of the methods in more

detail.

SS-DRC (Zorilă et al., 2012) performs spectral shaping (SS) followed by dynamic

range compression (DRC). Spectral shaping consists of two cascaded subsystems which

are adaptive to the probability of voicing: (i) an adaptive sharpening where the formant

information is enhanced, and (ii) an adaptive pre-emphasis filter. A third fixed spectral

shaping is used to prevent attenuation of high frequencies in the speech signal during

the signal reproduction. The output of the spectral shaping system is then input to the

DRC, inspired by compression strategies used in sound recording and reproduction,

audio broadcasting as well in amplification techniques in hearing aids (Blesser, 1969).

The extended spectral shaping (SSE) is carried out on all voiced frames and con-

sists of three components: (i) a fixed filter to increase the spectral energy gain in

certain frequency bands, (ii) peak enhancement via cepstral liftering and (iii) slight

formant shifting via frequency warping. First, the fixed filter is bi-modal, with the

most gain (12 dB) between 1-4 kHz, mimicking the spectral gains observed in Lom-

bard speech (Godoy and Stylianou, 2012), and the secondary mode has approximately

half of the maximal gain and is concentrated between 5.5-7.5 kHz. Second, the peak-

enhancement follows the peak-weighted cepstral lifter (α=0.85) presented in Kim and
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Lee (2000) for enhancement in speech recognition. Third, the frequency warping shifts

the first and second formants moderately (less than 100 Hz) on average upwards in fre-

quency. The frequency warping function is constant and derived from observations on

the expanded vowel space of two speakers in a separate clear speech corpus involving

the Harvard sentences.

In the OptSII method (Sauert and Vary, 2011, 2012) the audio power of the speech

signal is spectrally reallocated with respect to the speech intelligibility index (SII)

(ANSI, 1997). A recursive closed-form optimisation scheme calculates, for each time

frame, the spectral weights in 21 Bark-scaled subbands which maximise the SII, given

the current disturbance spectrum levels, with the additional constraint of an unchanged

short-term audio power of the speech signal. Opposed to Sauert and Vary (2011) and

the OptSII style used in Cooke et al. (2012), in this evaluation a moving average noise

estimator is used, which is also able to track CS noise.

7.3.2 Acoustic analysis

As all methods modify the speech spectrum, while maintaining prosody and duration,

we present here acoustic analysis based only in terms of spectral gains. Similar to the

phone level acoustic analysis presented in the previous chapter, we calculated these

gains at the phone level and grouped the results in phone classes: vowels, nasals, ap-

proximants, stops, fricatives and affricates as seen in Figs. 7.6 and 7.7. To obtain these

gains, we calculated the phone periodogram by extracting a 512 point discrete Fourier

transform calculated using a 20 ms hamming window at every 10 ms and averaged

across the time frames within the phone boundaries. The gain is then the difference of

the phone periodogram in dB for a certain method and the periodogram for the unmod-

ified TTS speech. For the noise-dependent methods, this was calculated for speech-

shaped noise (SSN) in the mid SNR condition: results will differ for other noise types

and levels.

For the majority of the methods, the average spectral gains can be interpreted as a

sort of correction filter that re-allocates spectral energy and remains largely constant

across phones for stationary maskers like the SSN. For TTS-SS-DRC, the gain curve

shape is determined primarily by the SS fixed filter (seen for all phones), but the ef-

fective scale of the gains is affected by the DRC. As we can see in Figs. 7.6 and 7.7,

the SS fixed-filter has a very wide-flat gain between 1-4 kHz and a gradual rolloff with

increasing frequency. The gain curves in TTSGP, TTS-SSE-DRC and TTS-OptSII, on
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the other hand, are generally bi-modal. Note that the shape of the fixed-filters or gain

curves is most apparent with the voiced phones, particularly with vowels. As observed

in Sauert and Vary (2012) at low SNR, OptSII shows a bandpass characteristic, at mid

SNR the general spectral shape of the speech signal tends to follow the shape of the

noise, and at higher SNR the spectral gains are quite low.

When comparing TTSGP and TTSGP-DRC, we can clearly see the effect DRC

has: gain reduction especially on vowels and increased gain on stop and fricatives,

while also determining an upward-sloping linear-like gain curve shape on these last

phones. That is, DRC is re-allocating energy of frames in such a way as to increase

loudness of the unvoiced parts of speech.

Looking at the gain curves for the TTSGP-SS-DRC method, we can see that the

fixed-filter shape of SS dominates, but the GP gain curve is apparent in the roundness

of the first mode in the voices (first three categories). More importantly, the scale of

the gain is compounded by combining the GP-SS as seen from the gain obtained on

the voiced segments.
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Figure 7.6: Evaluation II – Spectral gains (dB) exhibited by each voice compared to the

unmodified baseline TTS. Voice TTS-SSE-DRC (top) and TTS-OptSII (bottom).
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Figure 7.7: Evaluation II – Spectral gains (dB) exhibited by each voice compared to

the unmodified baseline TTS. Voices TTSGP & TTSGP-DRC (top) and TTS-SS-DRC &

TTSGP-SS-DRC (bottom).
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7.3.3 Listening experiment

In order to obtain listening scores for word accuracy, we performed a listening test

with 88 native English speakers. Groups of 4 participants heard 15 different sentences

for each listening condition (noise/SNR/voice).

7.3.4 Results and discussion

We evaluated the seven different TTS styles displayed in Table 7.3 as well as natural

speech in a large listening experiment. We present intelligibility scores in terms of

word accuracy rates (WAR) in % and equivalent intensity change (EIC) in dB.

Fig. 7.8 shows the WAR calculated across all sentences for each voice in each lis-

tening condition. The dashed line corresponds to the WAR obtained for the natural

speech in that condition. The results are organized by noise type and level. Fig. 7.9

presents the EIC in dB relative to natural speech.

Overall, we can see that the most effective method is the TTS-SS-DRC. It seems

that the width and the gain of the primary mode is very important as TTSGP, TTS-

SSE-DRC and TTS-OptSII suffer slightly as a result of too narrow or curved gains

indicating that, for example, the gains around 1 kHz should be higher. The secondary

mode does not seem to benefit intelligibility as much.

7.3.4.1 DRC effect

All methods except the TTSGP perform some sort of high frequency boosting which

enhances voiced segments. This significantly aids intelligibility in the SSN and CS

conditions as these noises have stronger low frequency components. We can clearly

see this intelligibility gain by comparing the results of TTSGP-DRC and TTSGP: DRC

improves TTSGP performance in all noisy conditions, particularly for the SSN Mid

SNR condition. TTSGP-DRC and TTS-OptSII obtained similar performance: in SSN

TTSGP-DRC performs better in the mid and high conditions and no significant dif-

ferences appeared in CS. At lower SNRs, larger gain at higher frequencies (observed

for TTS-SS-DRC and TTS-OptSII) seems to be more beneficial most likely due to the

masker.
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7.3.4.2 Combination effect

Applying SS-DRC to a TTSGP style voice did not improve the intelligibility as we see

that TTSGP-SS-DRC either obtained worse or similar WARs compared to TTS-SS-

DRC. The compounded gain of SS-GP seen in the acoustic analysis is most beneficial

at Low SNR (specifically for SSN). Otherwise, it seems excessive and TTSGP-DRC

or TTS-SS-DRC are sufficient.

A few methods were as intelligible as natural speech in SSN Mid SNR and Low

SNR conditions. TTS-OptSII, TTS-SS-DRC and TTSGP-SS-DRC were significantly

more intelligible than natural speech in SSN Low SNR. For the CS case TTS-SS-

DRC was as intelligible as natural speech at Low SNR. Natural speech in CS for all

SNRs was significantly more intelligible than the TTS styles. The differences among

the methods is attenuated in CS, that is the gains obtained by the noise-independent

method TTS-SS-DRC were attenuated.

These results can be converted to equivalent intensity changes (EIC) relative to

normal natural speech on a dB scale as proposed by Cooke et al. (2012). Calculating

this with respect to natural speech, see Fig. 7.9, we found that TTS-SS-DRC was 2.0 dB

more intelligible than natural speech in SSN Low SNR; this gain is lower for the Mid

SNR condition: 0.7 dB. A higher gain was obtained by TTSGP-SS-DRC: 2.25 dB in

SSN Low SNR. The gap between modified TTS and natural speech is larger for CS;

for Mid and High SNR conditions. Most methods were at least 4 dB less intelligible

than natural speech while for the Low SNR condition TTS-SS-DRC decreased the gap

to −0.7 dB.

We saw that a few methods made the TTS voice even more intelligible than the nat-

ural one. Although noise-dependent methods did not improve gains, the intelligibility

differences found in distinct noises motivates such dependency.
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Figure 7.8: Evaluation II – Word accuracy rate (WAR) obtained in the listening evalua-

tion for speech-shaped noise (top) and competing speaker (bottom). The dashed line

corresponds to the WAR obtained for natural speech in that condition. LSD is Fisher’s

least significant difference.
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Figure 7.9: Evaluation II – Equivalent intensity change (EIC) relative to natural speech,

for speech-shaped noise (top) and competing speaker (bottom).
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7.4 Evaluation III: Adaptation and noise dependency

In the previous chapter, we found that is possible to obtain larger intelligibility gains

by performing spectral modifications, than by adapting a plain speech TTS spectral

model to Lombard data. Moreover, we found in the previous section of the current

chapter that dynamic range compression can further boost this gain. Although we ob-

tained substantial gains in speech-shaped noise, our results in the case of a competing

speaker were not as good. To improve this performance, we propose to incorporate

duration and excitation changes from Lombard speech, by combining three different

modification strategies: spectral changes based on the glimpse proportion measure

(GP), dynamic range compression (DRC) and adaptation to Lombard duration and ex-

citation.

Although observed in natural Lombard speech (Junqua, 1993; Lu and Cooke, 2008;

Hazan and Baker, 2011), reproducing changes in duration and fundamental frequency

(F0) does not necessarily generate significant intelligibility gains (Lu and Cooke, 2009b;

Villegas et al., 2012). In Chapter 4, we manipulated the duration and F0 of a TTS voice

and no significant increases in intelligibility were observed when increasing F0 in the

four noise types tested (car, high frequency, speech-shaped and cafeteria). Slowing the

speaking rate resulted in a few significant gains in the speech-shaped noise and cafe-

teria masker. In Chapter 6, however, we saw that quite a significant gain came from

using Lombard-adapted fundamental frequency and duration in the competing speaker

scenario, even though the noise used for inducing such changes was not matched to the

competing speaker masker. A combined solution for improving results in competing

speaker noise while maintaining the gains already achieved in speech-shaped noise,

is to use Lombard-derived excitation and duration changes (noise-dependent but not

matched) through voice adaptation (Yamagishi et al., 2009), apply the GP-based spec-

tral shaper and follow this by DRC. We refer to this combination of strategies as the

TTSLGP-DRC voice.

As previously stated, the results shown here are derived from a wider evaluation

called the Hurricane Challenge, which compared other types of speech intelligibility

enhancement methods applied to natural and TTS (Cooke et al., 2013). Results from

all entries are reported separately in Appendix C.
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Voice Modification Adaptation to Lombard

Natural speech

Normal - -

Synthetic speech

TTS - -

TTSLGP-DRC GP followed by DRC excitation and duration

Table 7.4: Evaluation III – voices.

7.4.1 Methods

Voice TTSLGP-DRC was based on voice TTS but the models for duration and excita-

tion were further adapted. The two first Mel cepstral coefficients were modified using

the method proposed in Chapter 6 and we applied a dynamic range compressor (DRC)

(Zorilă et al., 2012) to the synthesized waveform.

According to the rules of the Hurricane Challenge, each sentence can not be longer

than its corresponding noise file, as provided by the challenge, which is around one sec-

ond longer than the corresponding natural speech signal. To keep within this rule, we

had to restrict the duration of the generated sentences, because otherwise they would

have been on average 0.69 s. longer than the natural speech, with a significant num-

ber of sentences more than one second longer than natural speech. We decided to

restrict the duration of each generated sentence to be no more than 300ms longer than

the corresponding natural speech, to allow 300ms leading / 200ms lagging noise sig-

nal before/after the stimuli presented to the listeners. To achieve this, we forced the

overall duration of the sentence to be within this rule (when necessary) (Yoshimura

et al., 1998). Because changing the overall duration of the sentence does not actually

guarantee a sufficiently reduced duration (due to rounding errors mentioned in Sec-

tion 3.2.4), we iteratively decrease the duration (in steps of 100ms) until it was within

the required limits. In the final stimuli, the average duration difference (compared to

natural speech) was 0.45 s with only once sentence above the 0.5 s limit (0.53 s).

7.4.2 Acoustic analysis

To give more insights into the results, we provide in Table 7.5 a sentence-level acous-

tic analysis of duration, fundamental frequency F0 (mean and range), spectral tilt and

loudness (measured using the ISO procedure), calculated in the same manner as Ta-

ble 7.2 described in Section 7.2.1.
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duration

(s)

mean/range

F0 (Hz)

spectral tilt

(dB/oct.)

loudness

(sone)

Natural speech

plain 2.06 107.1 / 34.60 -2.14 11.43

Lombard 2.32 136.8 / 46.74 -1.83 11.96

Synthetic speech

TTS

1.95 104.5 / 22.45

-2.26 10.96

TTSGP -1.90 12.43

TTSGP-DRC -1.45 13.37

TTSLGP-DRC 2.49
145.2 / 42.55

-1.46 13.12

TTSLomb 2.43 -1.71 12.06

Table 7.5: Evaluation I, II and IIII – Acoustic properties at sentence level averaged

across the dataset of the two natural voices: Normal and Lombard and the five syn-

thetic voices: TTS, TTSGP (Evaluation I), TTSGP-DRC (Evaluation II), TTSLGP-DRC

(Evaluation III) and TTSLomb (Evaluation I).

Fig. 7.10 shows the long term average spectrum calculated per sentence and aver-

aged across sentences, for some of the TTS voices.
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Figure 7.10: Long term average spectrum calcualted at a sentence level and averaged

across the dataset.

We see a tendency for GP and DRC to increase the loudness of speech and flatten

the spectral tilt, even more so than for the Lombard natural voice. Changes in the spec-
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Figure 7.11: Evaluation III – WAR and EIC relative to TTS baseline (values inside boxes)

for speech-shaped noise (left) and competing speaker (right).

tral tilt observed when DRC is applied are a consequence of the temporal modifications

this method performs. DRC boosts regions of the speech waveform that are of a lower

level and these regions correspond to the higher frequency components of the speech

spectrum, i.e. a flatter spectrum. We see the boosting effect that GP has around the

formant frequency range, and the boosting that DRC gives to higher frequencies. F0

and its range (within a sentence) is increased in voices built with Lombard excitation.

7.4.3 Listening experiment

In total 175, native English speakers participated in the listening test. Each participant

transcribed 9 different stimuli per voice.

7.4.4 Results and discussion

Fig. 7.11 shows word accuracy rates (WAR) and standard errors for the synthetic voices

TTS and TTSLGP-DRC and the natural plain speech entry, mixed with speech-shaped

noise (left) and competing speaker (right). In all noise conditions, the gap between

natural and TTS is smaller with the TTSLGP-DRC voice, particularly for the lower

SNR cases in both noise types.

Fig. 7.11 also presents EIC gain values inside boxes. Relative to TTS, the proposed

voice achieved gains of 2.7, 4.1 and 4.0 dB in the SSN condition, going from highest to

lowest SNR. When mixed with a CS the gains are 1.4, 3.8 and 4.9 dB. If we compare
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the Mid and Low SNR gains across noises on the dB scale they appear more similar

than on the WAR scale.

7.5 Comparing across different listening tests

To be able to understand the contribution of each component (GP, DRC and Lombard

excitation & duration), we compared the changes relative to natural speech for each of

the TTS voices described in Table 7.5. We show these results expressed in WAR and

EIC (values inside boxes) in Fig. 7.12.

As all the listening tests had the same set-up (sentence material, noise types and

SNRs, stimuli presentation) and same scoring rules; we can compare results across

them by calculating the gains that each modification obtained relative to the results

that the natural speech entry obtained in that particular test. Similar to the scoring

methodology used thus far, we present the WAR change averaged across the gains

obtained by each voice for each listener, and again this means that the standard error

measures the variability across listeners. The number of points that define the standard

error is defined by the number of participants: 139 in Evaluation I, 88 in Evaluation II

and 175 in Evaluation III. As the TTS entry was present in all three experiments, we

show the WAR change for that system averaged across all participants (402 points).

When comparing the voices TTS, TTSGP, TTSGP-DRC and TTSLGP-DRC we

can see the gain that each component adds. This addition depends on the noise type

and SNR, meaning that some components are more important in one condition than

another. In speech-shaped noise, as shown in the top part of Fig. 7.12, GP and DRC

contribute most. Duration and excitation changes start contributing only at quite low

SNRs. The picture is different for the competing speaker condition in the lower part of

Fig. 7.12, where GP and DRC gains are quite modest (apart from the significant gain

observed in the highest SNR condition for DRC – where the masker is more an en-

ergetic masker than an informational one) and the Lombard-based changes contribute

most for the Mid and Low SNR conditions, where ‘filling the gaps’ in time/frequency

is more beneficial than being louder (as seen in Table 7.5).

Comparing TTSLGP-DRC and TTSLomb we can see the additional gain that GP

and DRC provide over adapting spectral parameters as well as duration and excitation

parameters, particularly for the mid and low SNR conditions of SSN and for the low

SNR for competing speaker.
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Figure 7.12: WAR change and EIC relative to natural speech (value inside boxes) for

speech-shaped noise (top) and competing speaker (bottom). The results for TTSGP

and TTSLomb were obtained from Evaluation I, TTSGP-DRC from Evaluation II and

TTSLGP-DRC Evaluation III.
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7.6 Conclusions

In this chapter, we presented the results of three large scale listening experiments com-

paring the GP-based Mel cepstral modification proposed in the previous chapter to

other intelligibility enhancement methods. The three listening evaluations tested intel-

ligibility in two different maskers: speech-shaped noise (SSN) and competing speaker

(CS). Each masker was presented at three different SNR levels.

In the first evaluation, we compared the GP method to HMM-adaptation of Lom-

bard speech (TTSLomb). In this experiment, we also evaluated two natural voices,

one plain read-speech (Normal) and other read but noise-induced speech (Lombard).

The results show the large gap between intelligibility in noise of natural speech and an

unmodified TTS voice. The gap was made smaller by GP modification and adaptation,

particularly in SSN. Adaptation was better in the CS scenario showing the importance

of changes in duration and excitation signal.

In the second evaluation, we compared the GP method to two noise-independent

approaches – a spectral shaper and a dynamic range compressor (TTS-SS-DRC and

TTS-SSE-DRC) – and to one noise-dependent method also based on a speech intelligi-

bility objective measure – the speech intelligibility measure (TTS-OptSII). These three

methods were originally proposed for natural speech but in this evaluation were used

to post process TTS generated speech. We also evaluated two method combinations

(TTSGP-DRC and TTSGP-SS-DRC) and natural plain speech. Although the methods

shared similar spectral gain shapes, the absolute gains and their modal natures – the

shape of the boosting and the number of boosted regions – were quite different. The

most effective strategy in SSN was TTS-SS-DRC, a noise-independent unimodal spec-

tral gain combined with DRC. We also observed that some styles were more intelligible

than natural speech, which shows how effective these methods can be when applied to

a synthetic voice. In the CS masker, all methods performed significantly worse than

natural unmodified speech, except for the lower SNR condition where TTS-SS-DRC

obtained intelligibility scores similar to natural speech. Although noise-dependency

did not give any additional gains, the difference in intelligibility results obtained for

the two maskers motivates the use of noise-dependent methods.

Our third evaluation, compared the TTS unmodified baseline and natural speech

plain baseline to a combination of enhancement strategies, each of which was shown

to be individually successful: the perceptually-motivated spectral shaper based on the

Glimpse Proportion measure proposed in the previous chapter, dynamic range com-
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pression, and adaptation to Lombard excitation and duration patterns. With this com-

bination we achieved substantial intelligibility improvements relative to unmodified

synthetic speech: 4.9 dB in competing speaker and 4.1 dB in speech-shaped noise.

An analysis conducted across this and the other two evaluations shows that the spectral

shaper and the compressor (both of which are loudness boosters) contribute most under

higher SNR conditions, particularly for speech-shaped noise. Duration and excitation

Lombard-adapted changes are more beneficial in lower SNR conditions, and for the

competing speaker noise.

By combining duration and excitation changes with other techniques, we have man-

aged to increase intelligibility for competing speaker noise to a level comparable to that

already obtained for stationary noise. Although the Lombard changes made by the nat-

ural talker were induced by a mismatched masker, adaptation to Lombard duration and

excitation models contributed to gains not only in the competing speaker but also for

the stationary masker at the lowest SNR. This approach however still entails the use of

recorded Lombard speech of that particular speaker.

We mentioned in Section 2.1 that several mechanisms are involved in the percep-

tion of speech in noise: auditory grouping, glimpsing, linguistic-driven adjustments

and spatial and visual cues. Auditory grouping and glimpsing take place in the low

level peripheral auditory process and deal with the effect of energetic masking. The

linguistic knowledge driven mechanism takes place in higher levels of processing, re-

lying on a more abstract representation of speech. In the next chapter, we will present

studies on how to use some higher-level information – the confusability of a word – to

enhance intelligibility of synthetic speech in noise.



Chapter 8

Using top-down information

Thus far, to enhance intelligibility of TTS voices in noise, we have mainly focused

on minimizing the energetic masking effect on the peripheral auditory system. We

have shown that it is possible to get substantial intelligibility improvements by mod-

ifying spectral and duration components in such a way that more glimpses of speech

appear in noise. The process of hearing in noise however involves other mechanisms.

As discussed in Section 2.1, top-down information is also used by listeners to aid in-

telligibility in noise. As opposed to the information provided by the acoustic scene

(bottom-up), the top-down information can provide cues that are derived from higher

and more abstract representations of speech stored in the brain: language. This linguis-

tic information can provide a prior to the listener that will help recognize information

in adverse conditions. For instance, the expectation that spoken sentences are congru-

ent, sensible, and grammatically correct, aids the intelligibility of speech as it limits

the number of possible interpretations, making the decoding process easier. Linguis-

tic information also manifests itself by the existence of a basic finite set of spoken

units: the words. The lexicon of a listener can help the hearing task by providing a

further constraint to the decoding process. There is a wealth of literature on the in-

fluence of words in the perception of speech in adverse listening conditions. Inspired

by this literature, we exploit the use of top-down information provided by words to

increase intelligibility of synthetic speech in noise. Part of the work presented here

was published in Valentini-Botinhao et al. (2013b).

163
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8.1 Spoken word recognition

Successful communication depends on word recognition, the process where a highly

variable signal like speech is mapped to a discrete set of representations, the words.

In a sentence or in isolation in either clean or steady noise conditions, words are not

equally confusable. This inherent property of words interacts with factors like the

communication channel (noise) and the context: different confusions arise in different

noises and contexts. As all these factors interact with each other, predicting word

confusability is not an easy task. Modelling word confusability is a much broader

concept than modelling word intelligibility as it aims to provide not only a prediction

for how intelligible a word is but also the possible confusions that can arise from

hearing a word in a particular context and acoustic scene.

The objective measures for intelligibility evaluated in Chapter 4 provide predic-

tions that are highly correlated with subjective scores of intelligibility at a word-level

(is the transcription correct or not) when averaged across speakers, listeners, words

and context. This shows how these measures are robust to different listening scenar-

ios. However, as we will see in this chapter, when correlations are taken across all

datapoints, including the effect of words and context, predictions are much poorer. In

a nutshell, a complete model of word confusability in a sentence needs to consider

what we refer to here as acoustic confusability (how similar words are compared with

other words in the lexicon of the listener) and linguistic confusability (how likely a

word is to be spoken in a particular context).

There are many studies investigating what influences spoken-word recognition. It

is beyond the scope of this work to introduce them in great detail. A good summary of

spoken-word recognition theories can be found in McQueen (2007) and a discussion

of a model for spoken-word recognition and their limitations can be found in Luce and

McLennan (2008) . McQueen (2007) mentions the three following units as sources

of information provided to the process of word recognition: segmental (phone level),

suprasegmental (syllable and word stress) and word-form (word frequency and phonol-

ogy). To account for these sources on the process of word activation and competition

Luce and Pisoni (1998) proposed the neighbourhood activation model. This model

claims that in a listening task a group of words will be activated by a spoken word

when they are similar to the target. The set of neighbouring words defines what they

call a similarity neighbourhood, which is affected by two factors: the neighbourhood

density (ND) – number of words in the neighbourhood – and the neighbourhood fre-
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quency – how frequent these words are. They provide a formula to account for recog-

nition rate as the ratio of a word’s own frequency to the weighted sum of this value plus

the frequency of its neighbours, accounting for the frequency of the word on its own

as the basis of linguistic confusability. This means that words with more neighbours

and with neighbours whose frequencies are higher are harder to recognize. Words with

fewer neighbours and with neighbours that are not as frequent are easier to understand

or recognize. Neighbours are weighted by phonetic distances obtained with confusion

matrices derived from listening experiments. Other definitions of activation have been

proposed based on the dynamics of lexical competition, which entails the impact over

time of word frequency (facilitatory), onset density – words that begin with the same

syllable or phone(s)– (inhibitory) and neighbourhood density (Magnuson et al., 2007).

Lexical complexity, that is how complex the word structure is, also influences the

intelligibility of a spoken word. In adverse conditions such as additive noise we can

expect that morphologically complex words (longer duration, more syllables) might

be easier to recognize as their complexity provides more structural cues for the listen-

ers. Francis and Nusbaum (1999) looked into the effects of lexical complexity on the

intelligibility of natural and Text-To-Speech generated by the Votrax Type-n-Talk and

DECTalk systems. They found that that morphological complexity does not aid intelli-

gibility in quiet of the lower quality TTS stimuli, to the contrary of what was observed

for natural speech. The authors suggest this could be due to the fact that low quality

TTS systems provide poor segmental structure, so more complex word structures can

become harder to recognize.

One can also look at word confusability as a source of listening adversity which in

turn can influence how words are pronounced. To find whether we pronounce highly

confusable words more clearly, similar to studies in Lombard speech, studies with

highly confusable words have also observed that different acoustic patterns arise in

words that are highly confusable, showing the intent of speakers to overcome this ad-

versity. A study on the effect of lexical frequency and the Lombard reflex in Cantonese

(Zhao and Jurafsky, 2009) found that both word frequency and noise influence tonal

production: speech produced in noise showed higher F0 contours as did the lower

frequency words produced in quiet. Lower frequency words also presented wider F0

range (tone dispersion) which was not seen for Lombard speech. If talkers, under the

physical constrains of language production, make a specific effort towards wishing to

be more understood, we would expect confusable words to be pronounced in a hyper-

articulated fashion. In Buz and Jaeger (2012) we see a discussion on the matter of du-
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ration and vowel space changes. For isolated word and scripted sentence production,

phonological confusability, approximated using the phonological neighbourhood den-

sity model described previously, results in greater vowel dispersion and longer spoken

word duration (Scarborough, 2010). In unscripted speech however the effect observed

was in fact the opposite: highly confusable words were shorter and presented a smaller

vowel space (Yao, 2011; Gahl et al., 2012). Buz and Jaeger (2012) claim this conflict

comes from the fact that previous studies were not looking into contextual confusabil-

ity, a factor that also affects speech recognition and speech production as their results

seem to indicate. The influence of linguistic content on the Lombard effect has been

investigated in Patel and Schell (2008). The authors wanted to investigate whether in-

formation bearing words (content words) are more enhanced when produced in noise

compared to function words. They observed this effect only in the more adverse condi-

tions, higher levels of noise. Words that referred to agents, objects and locations were

prolonged and in some cases further enhanced by an increase in F0. At moderate noise

levels the modifications were more uniform across different word classes. This moti-

vates speech modification strategies that take into account word-level confusability.

8.2 Using word confusability to increase intelligibility

Some words are inherently more intelligible than others i.e., they are less likely to be

confused with other words. This property of words is currently ignored by intelligi-

bility enhancing methods – none of the twenty entries of the Hurricane challenge used

this (Cooke et al., 2013) – but it could potentially be exploited when applying speech

modifications to TTS. The premise is that modifications aimed at improving intelligi-

bility should not necessarily be “on” the whole time. For example, we can think in

terms of energy budget whereby energy in a sentence is reallocated on the basis of

the expected intelligibility of a word. More or less energy is expended depending on

the predicted intelligibility of a word. Additionally, word confusability can be used

to control the balance between naturalness/quality degradation and intelligibility im-

provements that modifications create. A modification can be seen as a deviation from

natural sounding speech and might introduce unnecessary distortions. In this case, the

level of modification could be constrained by the degree of distortion it introduces and

the word confusability.

This chapter is a first attempt towards making use of a model of spoken word

activation, the neighbourhood density model, in an energy-based speech modification.
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For that we address two questions: how reliably can we predict intelligibility at a

word-level and can we use this information to improve overall word recognition by

selectively boosting highly confusable words.

There are many factors that influence the intelligibility of a word: acoustic confus-

ability, linguistic confusability, the inherent intelligibility of a speaker, environmental

factors (e.g., noise types) and listener characteristics. How to predict which words in a

sentence are going to be easily intelligible and which ones are harder is not straightfor-

ward. Our previous intelligibility enhancement methods did not consider word-level

information and in order to make the use of this information in a measurable task, we

decided on the following constraints: we only consider word-level acoustic confusabil-

ity (no linguistic confusability), we focus on synthetic speech from one speaker and on

one type of noise (speech-shaped noise). As said previously word-level intelligibility

can be used to control the amount of modification serving as a balance between the

increase in intelligibility and the deviation from plain speech production. It is not clear

however how to measure this deviation and more importantly what is an acceptable

level of distortion. In order to constrain the amount of modification we adopt instead

the SNR, a clearly defined value. As done in previous chapters we constrain the mod-

ification to a fixed sentence level SNR. The modification we are looking at then is

energy reallocation across words, which we view as a starting point for other types of

modifications.

The remainder of this chapter describes the work through the design and results

of three listening tests. In the first experiment, we evaluate intelligibility of isolated

words in noise. For this, we select words according to their neighbourhood density and

frequency. In the following two experiments, these words are placed in matrix style

sentences and we evaluate different energy reallocation strategies based on the intelli-

gibility scores obtained in the isolated word experiment. In the second experiment, we

evaluate intelligibility improvements of boosting one word using the energy from an-

other word in the sentence and in the third experiment boosting one word with energy

taken from all other words in the sentence. The following sections describe the set-up

of the experiments, our findings and a discussion of the results.

8.3 Measuring word confusability

In Chapter 4 we evaluated a set of objective measures against subjective scores of

intelligibility. Although we found measures that are highly correlated with subjective
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scores we present here a possible set of objective measures that can be used for a more

challenging task: measuring word-level confusability.

8.3.1 Neighbourhood density

Lexical or phonological neighbourhood density (ND) plays an important role in word

recognition. Words with many lexical neighbours, differing by one phoneme insertion,

deletion or substitution are more difficult to recognise than words with few lexical

neighbours (Luce and Pisoni, 1998). In Cara and Goswami (2002) a second definition

of phonological neighbourhood is given: the OVC-metric. In this metric, words that

differ by insertions, deletions or substitutions in either the onset, vowel or coda of a

word are counted. Words like main and strain are phonological neighbours in addition

to for example main and gain according to the OVC-metric.

8.3.2 HMM-based distance

Measuring word confusability automatically using statistical models in the context of

automatic speech recognition (ASR) is a way to analyse word error rate variability

across datasets. In this context, studies focus on predicting from text how well an

ASR system might perform. Although a different task from predicting human speech

recognition, this can give us some insight as to how one can use a statistical model for

word-level confusability measurement.

Bouwman et al. (2004) proposes to predict ASR word correct rate from what they

call acoustic and linguistic confusability. A word A is considered to be acoustically

confusable when its feature representation causes acoustic models of word B, where

B 6= A, to produce likelihood scores that are equal to or higher than the score of the

word’s own model. Linguistic confusability follows a similar concept but concerns the

likelihood scores assigned by the language model. To measure acoustic confusability

(AC) between two words Bouwman et al. (2004) use a Kullback-Leibler (KL) diver-

gence measure between the probability density functions of two different word models.

The set of possible confusable words is limited by a fixed amount (ten) nearest neigh-

bours and the overall AC score is given by the log of the average of the exponentiated

divergence scores. The authors measure linguistic confusability (LC) using a bigram

language model. They create a predictor for word correct rate (WCR) by clustering the

two dimensional space covered by AC and LC measures calculated on a dataset into 36

regions and calculating the average WCR for each region. Testing on another dataset
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they found that for on average 94% of cluster points WCR did not differ significantly

from the predicted cluster value.

We can transpose this idea into the problem of measuring word confusability of

speech generated by statistical models. In that sense we are measuring confusability

arising from the speaker rather than confusability originating in the listener. We can

predict for instance how well a TTS voice can distinguishably pronounce neighbouring

words by looking into the distance between the models that generate these words. For

that we look into the following distance measure between two observation vectors of

different lengths (Juang and Rabiner, 1985):

DS(λ,λi) =
D(λ,λi)+D(λi,λ)

2
(8.1)

where

D(λ,λi) =
1
T
[logP(OOO|λ)− logP(OOO|λi)]

D(λi,λ) =
1
Ti

[
logP(OOO(i)|λi)− logP(OOO(i)|λ)

]
(8.2)

where λ is the model that generated the target word, λi the model that generates the

neighbour i, OOO and OOO(i) are the observation vectors generated by models λ and λi

respectively of length T and Ti.

To calculate confusability using this measure we can define the following value:

C(λ) =
N

∑
i=1

1
DS(λ,λi)

(8.3)

If the index i is covering the N size neighbourhood as defined by the OVC metric,

then this measure is a weighted sum of OVC neighbours, where the weight is set to

be the inverse of the distance between the neighbour and the target word. That is, the

further the neighbour is from the target word the less it contributes to the confusability

of the target word.

In the context of providing weights for the ND calculation we can see the HMM-

based distance as a speaker dependent objective alternative for confusion matrices that

are obtained through listening experiments as done in Luce and Pisoni (1998). An

illustration of how this distance works is shown in Fig. 8.1, where we present a two

dimensional Sammon mapping, a type of multidimensional scaling analysis, done on

the distance matrix built for the verbs sell, buy and see and two coda neighbours (share

the same ending). We obtained the distance matrix by calculating the HMM-based dis-

tance given by Eq.(8.1) between the models of each of these words (matrix of dimen-

sion 9x9). To calculate the distance between word described by the model sequence λ
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Figure 8.1: Multidimensional scaling of the HMM-distance matrix built for three verbs

and their neighbours via a two dimensional Sammon mapping.

and λi we first generate observation vectors OOO and OOO(i) from these models. We then

calculate the likelihoods of Eq.(8.2). The synthesis models used for this calculation

are the ones that will be used for the experiments of this chapter. A description of how

it was trained and how we synthesized isolated words from it will be given in Sections

8.4 and 8.5.2. We can see in Fig. 8.1 that the dispersion within neighbours, like the

words three, see and knee, is smaller than between different neighbourhoods. Addi-

tionally, words like shell and shy, that are onset neighbours, are closer to each other

than words that share neither onset or coda, such as the words shell and buy.

8.4 Stimuli material

The synthetic voice we use in this experiment was built from plain read speech in the

same manner as the TTS voice described in the previous chapter. For details on how

this TTS voice was built see Section 6.4.1. As opposed to the experiments described

in the previous chapter here we do not downsample the generated speech, instead we

use the high quality generated signals sampled at 48 kHz.

To use as masker for the three experiments described in this chapter we gener-

ated speech-shaped noise from recordings of a female speaker sampled at 48 kHz, the

same process that generated the speech-shaped noise used in our previous experiments

(Cooke et al., 2012). As we decided to carry out the listening experiments with higher

quality signals – sampled at a higher rate – this speech-shaped noise was obtained from

the recordings of the female speaker sampled at 48 kHz rather than 16 kHz.
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8.5 Isolated word experiment

The main goal of this work is to investigate whether we can improve enhancement

methods by using additional information about word intelligibility. It is not clear how-

ever how to obtain this information and whether this can be obtained just from the

words or the acoustics. In order to find this information we perform first a listening

experiment with the words whose intelligibility we need to know. These subjective

word intelligibility scores can be used to test whether signal based measures like the

glimpse proportion, described in the Chapter 5 and the HMM-based measure described

in this chapter are good predictors for word-level intelligibility. Also we can observe

how much the neighbourhood density of a word affects its intelligibility in isolation.

8.5.1 Word selection criteria

As we are interested in investigating how to use a model of word-level intelligibility to

improve the intelligibility of words in a sentence, to explain the selection of words we

must first explain the design of the sentences. To control duration and complexity the

desired sentences should have a fixed structure: same number of words and same syn-

tactic organization. Additionally because we are investigating acoustic confusability,

each word in the desired sentence should be as semantically predictable as the others.

That is, the context is a factor but it affects all words equally. The appropriate set of

sentences for this experiment is very similar to the sentences we used in Chapter 4, the

Matrix sentences (Dreschler, 2006). Matrix sentences have a fixed syntactic structure:

[name] [verb] [numeral] [adjective] [noun], for example: “Rachel has 5 blue rings”.

To fill in each syntactic slot a word is chosen from a set of 10 words.

For our experiments we created Matrix-style sentences of a slightly different form:

[imperative verb] the [adjective] [adjective] [noun], for example “Buy the French new

car”. The choice of a different form was mainly due to the coverage of the monosyl-

labic lexical database (Cara and Goswami, 2002) used for the word selection which did

not include proper names and conjugated verbs. The numeral slot was replaced by an

adjective slot as there are not enough monosyllabic numbers to create a representative

range of neighbourhood density values.

The word selection was done from an existing monosyllabic lexical database (Cara

and Goswami, 2002). We chose 10 verbs, 20 adjectives – 10 for each sentence slot –

and 10 nouns. This lexical database, provided in Cara and Goswami (2002), contains

both neighbourhood density and frequency statistics which allowed us to select words
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based on these values. Our first selection criteria, similar to the one used by Cooke

(2009), was to only choose words whose frequency in written and spoken language

is above 10 appearances per million. We are interested in looking into the effect of

acoustic confusability only and to minimize the effect of a word spoken and written

frequency we choose words that are familiar enough. As we were interested in covering

a wide range of acoustic confusability our second criterion was to chose, for each

syntactic category, words that fell into the two following categories:

• hard - words from a dense neighbourhood, ND-OVC ≥ NH

• easy - words from a sparse neighbourhood, ND-OVC ≤ NE

Another criterion used in word selection was sentence congruency, that is we

choose words that could potentially create congruent sentences. For that we selected

nouns to be only objects which can be acted upon and adjectives that can be associated

to most of the nouns. Under all these three constraints the resulting easy and hard

ND-OVC threshold values were: NH = 37 and NE = 17. Fig. 8.2 shows the histogram

distribution of the ND-OVC for verbs (top), adjectives (middle) and nouns (bottom),

where easy and hard words are represented by blue and red bars respectively. Note

that the interval that separates easy and hard words is not the same across the different

syntactic categories. For the list of words that we selected and their classification (easy

or hard) refer to Table D.1 in Appendix D.

8.5.2 Word stimuli generation

As the TTS models were trained with sentences rather than isolated words, to obtain

isolated words from the TTS voice we synthesize speech from carrier sentences of

the format: “Now we will say “pause” word “pause” again”. We included the pauses

to minimize coarticulation between the target word and the surrounding words which

in turn minimizes segmentation artefacts. The target words were automatically seg-

mented from the carrier sentence and added to noise with 200ms initial and final lags.

8.5.3 Listening experiment design

To find which words can benefit from being presented at higher SNR levels we need to

obtain word intelligibility scores at a range of different SNR values. The SNR levels

were chosen in a separate listening experiment that involved 10 participants. We chose
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Figure 8.2: Histogram of the ND-OVC spread of the selected words: verbs (top), adjec-

tives (middle) and nouns (bottom). Easy words are represented by the blue bars and

hard words by the red bars.

a range so that in the highest SNR words classified as hard were intelligible and in the

lowest SNR easy words were not intelligible, which resulted in the SNR range of −8

to 10 dB. Five SNR values were chosen from that range: −8, −3.5, 1, 5.5 and 10 dB.

For the actual test we had 25 native British English speakers with no hearing prob-

lem transcribing the words played in noise over headphones in sound-isolated rooms.

Before the test, participants had to go through a practice session which included 20

other words synthesized in a similar manner as described in the last section and pre-

sented at the middle range SNR. After hearing all words presented at the five different

SNRs, starting from the lowest to the highest SNR divided into four blocks, partici-

pants were also asked to transcribe the words in clean conditions, i.e. no speech-shaped

noise present. Every participant heard the same stimuli (words and noise condition)

but in a different order.
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8.5.4 Results

In this section we present word accuracy rate (WAR) results calculated as the percent-

age correct word transcriptions across the 25 listeners. Figs. 8.3(a) and 8.3(b) show

scatter plots of ND (ND-OVC) values versus the WAR obtained for each word in clean

and in one of the noisy conditions (SNR= 5.5 dB). These results show that even in

clean conditions a number of words were poorly understood, obtaining less than 60%

WAR. We can also see that these words are mostly from a dense neighbourhood, be-

longing to the “hard” category. Although the linear correlation between ND and WAR

is quite low (−0.46 for the clean condition and −0.31 for the noisy condition) when

comparing the scatter plots of clean and noisy conditions we can see that the “easy”

words are more robust to noise. That is, the dispersion towards the low WAR region

triggered by the presence of noise is smaller.

As each word was presented in noise at five different SNRs we are able to draw

psychometric curves for each word. We present these curves in Fig. 8.4 for the verbs

(top), nouns (middle) and adjectives (bottom). According to the NAM model we expect

words classified as easy to have higher WAR than hard words. We can see however

some words do not behave as expected. For instance the verb have classified as an

easy word is in fact poorly recognized and that the verb see is easier to recognize than

expected from its ND category. The easy and hard curves are less clearly distinguish-

able for the selected nouns. Easy words like knife and dress present quite a steep slope

and are quite unintelligible in low SNRs, while the easy word film presents quite a flat

and low WAR curve. The word chair, although a hard word, was the most intelligible

noun across the SNR range. The hard and easy categories are more clear when look-

ing at the psychometric curves of the adjectives, with fewer cases of words where the

ND category expectations and the psychometric curve values are mismatched. A clear

mismatch is the word vast that presents a WAR curve much lower than expected.

Although it is out of the scope of this work to explain why the ND categories of

easy and hard did not perfectly match the intelligibility scores obtained in this isolated

word experiment we comment on what we think may have contributed to this mis-

match. Linguistic context and coarticulation, two factors that were not considered in

the classification of easy and hard words, did not contribute to the mismatch as this

was a isolated word experiment. We expect however that not only the ND of words

but also both speaker and the noise contribute to the WAR observed. As the speech

used in our experiment is not natural but from a TTS voice it can be expected that
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there is an effect of the quality of the synthetic speech. This can be seen in the WAR

results in the clean condition, shown in Fig. 8.3(a). We saw that some words are very

poorly transcribed even in the clean condition at a much lower than expected rate than

seen for natural speech. For instance, in the experiment described in Luce and Pisoni

(1998) only 36 out of 918 words (around 4 % of all words) were recognized at less

than 90 % correct. In our experiment, 9 out of 40 words obtained less than 60 % WAR,

representing 22.5 % of all words. Although the words in Luce and Pisoni’s (1998)

experiment and in ours were not the same, we think that the difference in recognition

rates is notable. The speaker effect also presents itself in another way: words with few

neighbours are more likely to be poorly generated by the TTS acoustic models. This

is due to the fact that model accuracy is higher in fragments where more training data

covering similar acoustic contexts is available in the training set. The opposite effect

can arise then: easy words become hard words.

The noise on the other hand will interact with different words in distinct ways,

affecting the possible word activations that form its neighbourhood. As the noise which

the words were presented in is highly energetic in the formant region, we see that

words that contain higher frequency components like chair, see and spare are more

intelligible in noise than words composed mostly of vowel and nasal sounds. Word

duration, which can be interpreted as an indication of lexical complexity, is another

factor to consider as quite short words like have, vast and film although classified as

easy words present a low intelligibility rate in our experiments.

To illustrate how challenging it is to “represent” intelligibility at the word-level we

present in Fig. 8.5 predictions of word-level intelligibility using the glimpse propor-

tion measure (GP) versus the subjective WAR results of all datapoints (40 words in 5

SNR). We showed in Chapter 4 that the GP measure obtained a high correlation coef-

ficient (up to 0.94) with subjective intelligibility scores of a male TTS voice in diverse

noise conditions when both GP and WAR scores were calculated at a word-level but

averaged across the different words. Fig. 8.5 however shows a very poor correlation

(0.44 correlation coefficient) between GP and WAR calculated for individual words.

In turn, when both GP and WAR scores are averaged across words for each of the

five different SNR conditions, values illustrated by the red dots in the figure, a much

stronger correlation appears. Normalizing the GP measure with the ND value of each

word improves the word-level correlation to 0.58, as presented in Fig. 8.6. By using the

HMM-distance measure defined in Eq.(8.3) to calculate a weighted sum of the number

of neighbours we can further improve this correlation to 0.62 as presented in Fig. 8.7.
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Figure 8.3: Neighbourhood density versus word accuracy rates for a clean (a) and in

noise (b). Easy words are represented in blue and hard words in red.
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Figure 8.4: Psychometric curves of verbs (top), nouns (middle) and adjectives (bottom).
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distance measure and WAR values calculated at the word-level in all SNRs.
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8.6 Sentence experiment: giver and receiver

The main goal of this work is to find whether we can improve overall sentence intelli-

gibility by using a prior on word intelligibility. To show that, we decided to selectively

boost words in a sentence as a starting point for more complex modifications. We

found from the previous evaluation which words from a pool of 40 words can benefit

from increasing SNR, i.e. energy boosting. We did that by looking into their psycho-

metric curves in isolation. Now we will use this information to derive energy boosting

strategies for the sentence experiments. We start with the strategy of boosting a word

– the receiver – with power taken from another word – the giver.

8.6.1 Giver and receiver proposed classification

For the sentence experiment we split the 40 words used in the previous experiment

into two categories: giver and receiver. Because the ND, the GP and the HMM-based

measures did not show a high correlation with the subjective data we decided to use

the actual subjective scores as the classification criterion. A word was considered

to be a giver if the WAR in isolation for all SNRs tested as either quite low – hard

giver – or quite high – easy giver. Easy and hard now relate to their intelligibility

scores rather than their ND values. That allows for two different strategies, attenuate

words that are highly intelligible as they will not suffer as much from the attenuation.

The second is to attenuate words that are too difficult to understand so they are not

worth spending energy on. The receivers were words that had presented steep slopes

in the isolation experiment, providing us evidence that at higher SNR values they were

more intelligible. Our expectation was that they would benefit from energy boosting.

Table D.2, in Appendix D, shows the list of words and their proposed giver/receiver

classification. We present the psychometric curves averaged across receivers and givers

(easy and hard) in Fig. 8.8. We can see that both giver curves are quite flat across the

SNR range and that on average receivers are more sensitive to changes in SNR, which

makes them promising candidates for selective boosting.

8.6.2 Sentence material

To create the sentence material we built Matrix-style sentences of the form: [imperative

verb] [adjective] [adjective] [noun] so that in each sentence there is a word pair of

giver/receiver. The other words in the sentence, referred to as fillers, were randomly
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Figure 8.8: Psychometric curves of givers and receivers in isolation.

selected from the 40 word pool, so that each word does not appear more than six times

in the whole set of sentences. As we had givers and receivers for all word categories,

we could rule out, or analyse, the effect of the position of the giver/receiver words in

the sentence by creating 12 different sentence groups. A sentence group is defined by

the position of both the giver and the receiver in the sentence. The list of sentences

and their sentence group is shown in Appendix D Table D.3 for the proposed word pair

selection and in Table D.4 for a random word pair selection. A sentence group named

G1 R2 refers to sentences where the giver is the first word in the sentence (verb) and

the receiver in the second (adjective). Five different sentences were created for each

group, resulting in 60 sentences in total.

Although we chose the nouns to be objects which can be acted upon, and adjectives

attributes that can be associated to most of these nouns, we did not focus on designing

sentences that made sense. This will also contribute to make the semantic context a

smaller factor. The structure of the sentence, that is the fact that every sentence is of the

structure [verb] [adjective] [adjective] [noun], will however be a considerable factor as

it restricts the number of possible words that can fit in each slot. Participants were not

made aware of this structure beforehand.
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Figure 8.9: Curve of giver/receiver RMS exchange calculated for each word pair and

averaged across all 60 pairs. The curve shows the relation where the RMS of the

sentence is kept fixed. The black point illustrates the operation point chosen for our

experiment: give 6 dB and receive 2.7 dB.

8.6.3 Modifications

To investigate whether selectively boosting the receiver word by attenuating the giver

word can increase overall intelligibility we compared two types of modifications:

• proposed - select givers and receivers according to the results of the isolated

word experiment, see classification criterion in Section 8.6.1;

• random - select pairs of givers/receivers randomly.

From the results of the previous experiment we expect that different receivers need

different amounts of boosting to raise their WAR to a similar value, but to simplify the

experiments we decided to fix the amount of power level loss to 6 dB. On average the

receivers power increases to 2.7 dB with the constraint that the overall energy level of

the sentence remains unchanged. The amount of power received by a word depends on

the power values of both giver and receiver and on their durations, that is a shorter and

quieter receiver will effectively be boosted more than a longer and highly energetic

word. The power value being transferred depends on the giver: a long highly energetic

giver will give more energy than a short and quieter one. To illustrate this, Fig. 8.9

shows how much in dB on average a word can receive from a certain amount of given

power value so that the overall power of both words is fixed. The operational point
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that we chose, illustrated by the black square, is a compromise between not losing too

much energy and receiving enough energy: give 6 dB and receive 2.7 dB.

To change the power of the signal for the segments defining the giver and receiver

words first we calculate where the word starts and finish by using the state level du-

ration information generated by the TTS models. Second, to change the power of the

signal defined by these time stamps we apply a scale factor to the speech waveform.

As we would like to keep the power of the sentence – or the energy since sentence

duration is not modified – the following holds:

SNR = 10log
(

PS

PN

)
(8.4)

PS =
T

∑
t=1

s2(t) (8.5)

PS = PR +PG +PF (8.6)

PS = P′R +P′G +PF (8.7)

PR +PG = P′R +P′G (8.8)

where PS is the power of the whole sentence, PN the power of the noise signal across

the whole sentence, and PR, PG and PF the power contained in time interval defining

the receiver, the giver and the filler words. P′G and P′R are the modified power values of

the giver and receiver word segments.

If the giver loses 6 dB its new power level P′G is given by:

10logP′G = 10logPG−6 (8.9)

P′G = 10(10logPG−6)/10 (8.10)

The scale factor βG that needs to be applied to the giver word to result in the P′G
level is calculated in the following way:

P′G =
TG, f

∑
t=TG,i

(βGs(t))2 (8.11)

= β
2
G

TG, f

∑
t=TG,i

s2(t) (8.12)

= β
2
GPG (8.13)

βG =

√
P′G
PG

(8.14)

=

√
10(10logPG−6)/10

PG
(8.15)
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where TG,i and TG, f define the initial and final time index that define the segment con-

taining the giver.

From the giver new power P′G we can define the receiver new power level P′R as:

P′R = PR +PG−P′G (8.16)

The scale factor βR for the receiver is then given by:

P′R = β
2
RPR (8.17)

βR =

√
P′R
PR

(8.18)

=

√
PR +PG−P′G

PR
(8.19)

To attenuate artefacts that can arise from scaling the waveform using a rectangular

window, we applied a trapezoid window instead. The trapezoid starts with the be-

ginning of the word – as given by the state duration sequence – and ends with the

completion of the word – also given by the state duration. The initial transition seg-

ment – from scale factor 1 to the midsegment of the trapezoid – lasts for 5 ms, as does

the final transition segment. The length of any given word in the sentence set we use

for this experiment is between 165 ms and 475 ms.

8.6.4 Listening experiment design

As said previously we created a set of 60 sentences organized in 12 groups defined by

the position of the giver/receiver pair in the sentence. The 60 sentences were evaluated

at three different modifications. In order to ensure that no listener heard any sentence

more than once we divided the experiment across three groups of listeners. Each lis-

tener heard all 60 sentences once and the modification type applied to each sentence

was spread across the listeners so the whole test (180 stimuli) was covered by each

group of 3 listeners.

To simplify the experiment, we tested the three conditions (two modifications and

unmodified) at only one SNR level. Before the main test we carried out a small listen-

ing experiment with five participants to find the sentence SNR level that would lead

to an average of 50% WAR across the 60 unmodified sentences. The SNR found was

−3 dB.

Prior to the actual experiments, participants had to take a practice session which

involved 20 sentences of the same structure filled with other words. At the end of the
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Figure 8.10: Absolute changes in WAR (in %) of proposed and random modification with

respect to unmodified. Values for unmodified speech are: WAR = 49.6% and for pro-

posed/random: WARR = 51.25/53.3%, WARG = 50.5/49.9% and WARF = 48.3/47.6%.

test all participants were also asked to transcribe the 60 sentences in clean. In total, 60

participants performed the test.

8.6.5 Results

We present the results averaged across words and listeners (deviation represents word

dispersion only) for each modification in Fig. 8.10 in terms of absolute change com-

pared to the unmodified case. The acronyms WAR, WARR, WARG and WARF refer to

the intelligibility of all words, receivers, givers and fillers. As a reference, the rates ob-

tained for unmodified speech were: WAR = 49.6% and for proposed/random: WARR

= 51.25/53.3%, WARG = 50.5/49.9% and WARF = 48.3/47.6%.

We can see that for both modifications boosting a word at the detriment of an-

other word decreases WAR results. The intelligibility of the givers drops significantly

in both cases, more than a 25% absolute drop, while the receivers only gained up to

12% in word accuracy. The results also show that on average choosing the pairs ran-

domly rather than according to the isolated word experiment generates more gains for

receivers and smaller WAR drops for givers. The following sections present a more

localized analysis of the differences between the scores for the isolated word and sen-

tence experiments, the effect of the position in the sentence of the giver and receiver

pairs and revisit the overall findings.
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Figure 8.11: Word accuracy scores obtained in isolation and in a sentence in clean

conditions. The dots refer to scores obtained for a word in different sentences.

easy words hard words

isolation 93.2 (3.8) 71.2 (6.5)

sentence 97.8 (0.8) 94.4 (2.0)

Table 8.1: WAR (%) and standard error of easy and hard words in isolation and in a

sentence in clean conditions.

8.6.5.1 Words in isolation versus words in sentence

Comparing the WAR for each word obtained in the isolated word experiment and in

the sentence experiment we can see the effect that co-articulation and context or sen-

tence structure have on the intelligibility of receivers and givers. In this section, we

present this comparison for the clean condition in Fig. 8.11 and the noisy condition in

Figs. 8.12 and 8.13(a) at the word class level (easy givers, hard givers and receivers)

and in Fig. 8.13(b) at the word-level.

Fig. 8.11 shows the averaged WAR obtained in the clean condition, in isolation and

in the sentence experiment. No energy reallocation is applied to the sentences used

in clean. We see up to six dots for the sentence results referring to scores obtained

by the same word in different context, i.e. different sentences. We can see that in

clean conditions and in a sentence most words can reach more than 80% accuracy and

that words that we saw as being very hard to recognize like the words right, have and
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main are highly intelligible in a sentence. On average across all six possible contexts,

all words are more intelligible in a sentence than in isolation when they are presented

without any noise. We present the WAR of easy and hard words in Table 8.1 obtained

in isolation and in a sentence. Easy words are more intelligible in both scenarios but

the difference is less pronounced in a sentence than in isolation. These results indicate

that the effect of neighbourhood density on the intelligibility of words is limited when

a word is presented with context.

To compare results across the two experiments in noise we first calculate the SNR

at which each word was presented in the sentence experiment. This allows us to com-

pare results for the same SNR, so that any difference in WAR is only due to the isola-

tion/sentence effect. Although we set the sentence SNR to−3 dB it does not mean that

each word in the sentence is presented at this SNR. We calculate for each sentence the

SNR that the giver and receiver is presented at. As the same word appears as a giver

(or receiver) in more than one sentence, we obtain the word SNR by averaging across

its occurrences (as either a giver or receiver, filler is not being counted here). In the

end we have one unique SNR per word. The same procedure is done to calculate the

WAR of each of the 40 words in their functions as givers and receivers. The results

are then averaged within each category: easy givers, hard givers and receivers. These

values and their standard error (which represents the variance across the words in the

category) are shown in Fig. 8.12. Note that the sentence results only contain two points

along the x-axis (SNR), because words were either boosted (receivers) or attenuated

(givers), whereas in the isolated word experiment words were played at five different

SNR values.

We can see that, in general, words played in noise are also more intelligible in a

sentence than in isolation: hard givers and receivers are more intelligible in a sentence

than in isolation (WARs: 11% to 31% hard giver; 31% to 58% receiver). Easy givers

are on average less intelligible in a sentence (WARs: 88% to 74%) and most of this

drop comes from the words huge, French and strange.

The slopes of the curves are also different, that is, the easy and hard givers’ WAR

drops more than expected and receivers do not increase as much. It seems that too

much energy is being taken from the giver and the receiver is still not getting enough,

which is why the WAR rate per sentence does not increase.

To see how each word contributes to this difference we present in Fig.8.13(a) a

scatter plot of WAR obtained in a sentence against the WAR in isolation, calculated

by mapping the SNR presented at in the sentence to find the WAR using the psycho-
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Figure 8.12: Psychometric curves of givers and receivers in isolation and in a sentence

with the proposed modification (dashed).

metric curves of each word group – easy and hard givers and receiver. We can see

that the group division does not transpose to the sentence experiment, as we see a lot

of dispersion of WAR in a sentence within each group. When we map the sentence

SNR to word individual psychometric curves obtained in isolation, see Fig. 8.13(b))

we can see that the effect of being in a sentence is more uniform across words but still

not the same for all words: while most words are more intelligible in sentences some,

particularly the easier words in isolation, became harder to understand in the sentence

experiment.

Additionally we present in Fig. 8.14 the psychometric curves of randomly cho-

sen givers and receivers. We can see that choosing giver and receiver pairs randomly

brings their psychometric curves closer to each other. The givers lose less, as they

are not mainly made of easy givers that we saw previously lose quite a lot. Although

the SNR boost is quite similar to the proposed modification, receivers WAR increase

significantly more.
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Figure 8.13: Scatter plot of word-level accuracy rates obtained in isolation (by mapping

each word to their group (a) or isolated word (b) psychometric curve obtained in exp1)

and in a sentence (from exp2).
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Figure 8.14: Psychometric curves of givers and receivers in isolation and in a sentence

with the proposed modification (dashed) and the random modification (dotted).

8.6.5.2 Word pair position

Although we saw in Fig. 8.10 that the intelligibility of filler words WARF, averaged

across sentences, changes relatively little when we boost and attenuate pairs of words

(from 48% to 47%), there is a large variation across sentences. To look into that we plot

in Fig. 8.15(a) the relative WAR changes with respect to unmodified for the proposed

modification separated into the 12 sentence groups as seen in Table D.3. Each group

represents a different giver/receiver position in the sentence, their acronyms reflecting

that – G1: giver position 1 and R3: receiver position three. Results for the random

modification are presented in Fig. 8.15(b).

When we group the sentences into pair positions we see that the intelligibility of

fillers changes more than 15% absolute WAR. As we do not have enough conditions

in which the words chosen as fillers do not change we can not say how the position of

the pair affects the fillers but we could see that even when we make localized changes

other words in the sentence are also affected.

It is hard to tell what is the best position strategy but we can point out two strategies

that did work for receivers: receiver that increase more are the verbs (groups: G1 R2,

G2 R1 and G4 R1) and adjectives (groups: G1 R3, G2 R3 and G3 R2). Boosting the

last word, the noun, did not bring any substantial improvements (groups with R4).
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Figure 8.15: Relative changes in WAR (in %) for the proposed (top) and random (bot-

tom) modification with respect to unmodified.
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8.6.5.3 Overall findings

Isolation versus sentence:

• In clean conditions all words are more intelligible in a sentence than in isolation;

• giver/receiver psychometric curves in speech-shaped noise change significantly

from isolation to sentence, both in terms of offset and slope;

• easy givers are less intelligible in a sentence than in isolation and see a larger

WAR decrease than expected;

• hard givers are less intelligible in isolation and also lose intelligibility more than

expected;

• boosted receivers on the other hand are not as intelligible as expected, in some

cases presenting even a drop in intelligibility as we saw when boosting the nouns.

Modification strategy:

• Boosting RMS is not enough to increase receiver WAR above the losses of givers

(for both proposed and random modification)

• Although we do not modify the SNR of the filler words we observed that their

intelligibility changes;

• In a design where only one word gives to another, choosing the word that gives

and the word that receives randomly generates a larger WAR gain – receivers –

and less WAR drop – givers – than choosing according to their intelligibility in

isolation.

8.7 Sentence experiment: boosting one word

We saw in the last experiment that boosting one word and attenuating another word

from the same sentence impacts on the intelligibility of the other words in the sentence.

Not only that, removing energy from one word to give to another does not improve

overall intelligibility rates, mostly because the intelligibility of the attenuated word

drops at a much higher rate than the boosted word increases. To overcome these two

issues, we now try a different type of energy reallocation: we reallocate energy from

the whole sentence to boost one word. In other words we emphasize one word in a
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sentence while making the rest of the words quieter, which is also a naturally occurring

modification. Although we saw in the previous experiment that randomly selecting

givers and receivers resulted in higher receiver gains, for this experiment we still select

receivers according to their scores in isolation (proposed selection). We decided to

do so to be able to analyse the performance of the proposed selection under a more

promising modification strategy and to see under which circumstances can this strategy

improve scores.

8.7.1 Sentence material

In this experiment, the same sentence material is used as in the previous experiment,

that is the 60 sentences displayed in Table D.3, Appendix D.

8.7.2 Modification

To check whether boosting one word in the sentence while keeping the overall SNR

fixed can increase intelligibility we evaluate the following modifications:

• Medium boost - boost receiver and attenuate all other words in the sentence.

Relative power level boost of 3 dB

• High boost - boost receiver and attenuate all other words in the sentence. Rela-

tive power level boost of 5 dB

In this experiment, we focus on giving the same boost across sentences and at two

different levels of boosting. The boost values were chosen by fixing the amount of

relative boost between receiver and the rest of the sentence to 3 dB and 5 dB, resulting

in the Medium and High boost modifications. We can see these two operation points

in Fig. 8.16 which represents the power levels received and given calculated for each

sentence and averaged across the sentence set. The red line represents the relative gain

between receiver and giver and the black/red dots the operation points chosen for this

experiment. When comparing this figure to Fig. 8.9 we can see that for much lower

values of attenuation it is possible to obtain similar RMS boosts when attenuation is

carried out across the whole sentence rather than one word.
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Figure 8.16: Curve of giver/receiver RMS exchange calculated for each pair and aver-

aged across different pairs. The curve shows the relation where the overall RMS of the

sentence is kept fixed. The points that we chose for our experiment: Medium boost give

0.9 dB and receive 2.1 dB (relative gain of 3 dB) and High Boost give 1.8 dB and receive

3.2 dB (relative gain of 5 dB).

The scale factor βR that needs to be applied to the receiver word so it is boosted

3 dB can be calculated in the following way:

P′R =
TR, f

∑
t=TR,i

(βRs(t))2 (8.20)

= β
2
R

TR, f

∑
t=TR,i

s2(t) (8.21)

= β
2
RPR (8.22)

βR =

√
P′R
PR

(8.23)

=

√
10(10logPR+3)/10

PR
(8.24)

where TR,i and TR, f define the initial and final time index that define the segment con-

taining the receiver.

To boost a word in a sentence we first boost the word intensity and then attenuate

the whole sentence. Consider first then that only the power contained in the interval
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defining the receiver word is modified:

PS = PR +PO (8.25)

P′S = P′R +PO (8.26)

where PO is the power contained in the rest of the sentence and P′S is the sentence

new power value. To find the scale factor βS to be applied to the whole sentence to

normalize its power the following:

PS =
TR, f

∑
t=TR,i

(βSs′(t))2 (8.27)

= β
2
S

T

∑
t=1

(s′(t))2 (8.28)

= β
2
SP′S (8.29)

βS =

√
PS

P′S
(8.30)

=

√
PS

β2
RPR +PO

(8.31)

=

√
PS

β2
RPR +PS−PR

(8.32)

=

√
PS

PR(β
2
R−1)+PS

(8.33)

Instead of applying the receiver scale factor as a rectangular window we use a

trapezoid window instead.

8.7.3 Listening experiment design

24 participants took part in this experiment. Each transcribed the 60 sentences once.

The listening condition (two modification and unmodified) was balanced across listen-

ers so that the whole test was covered by each group of 3 listeners, similar to previous

experiment. The sentence SNR was the same as the previous experiment: −3 dB. Be-

fore the test started, the participants were given 20 sentences to transcribe to familiarize

them with the task, as done in the previous experiment.
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Figure 8.17: Absolute changes in WAR (in %) of Medium boost and High Boost with

respect to unmodified. The WAR values obtained for unmodified speech were: WAR =

54.5 %, WARR = 56.0 % and WARO = 53.9 %.

8.7.4 Results

Fig. 8.17 shows WAR results averaged across words and listeners (deviation represents

word dispersion only) in terms of absolute change compared to the unmodified case

for the Medium and the High boost modifications. The acronyms WAR, WARR and

WARO refer to the intelligibility of all words, receivers and others - words that were

attenuated which could include words that were classified as givers or receivers de-

pending on the sentence. As a reference, the WAR values obtained for unmodified

speech were: WAR = 54.5 %, WARR = 56.0 % and WARO = 53.9 %.

We can see that for both modifications boosting a word leads to a decrease in WAR

but to a smaller extent than we saw in the previous experiment. The intelligibility of

givers drops for both boosting values, but by no more than a 7.0 % absolute drop, while

the receivers increase up to 4.0 % word accuracy. Particularly we note that the Medium

boost modification WARR gains are comparable to the ones obtained in the proposed

modification of the previous section (around 3.0 % absolute gain) however, the loss in

WARO is much smaller (from 29.0 % to 1.9 % absolute drop) indicating that boosting

one word in a sentence is a much better strategy.

Similar to the previous experiment we will now present a more localized analysis

of the differences between intelligibility scores of words in isolation and in a sentence,

the effect of the receiver position and intelligibility and then revisit the overall findings.
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8.7.4.1 Words in isolation versus words in sentence

As done for the previous experiment, we compare here the word accuracy results of

the isolated word and the sentence experiment by finding the presentation SNR of

each word in a sentence and obtaining the psychometric curves of receivers and others.

These values and their standard error (which represents the variance across the words

in the category) are shown in Fig. 8.18 for the Medium boost modification which had

comparable WARR results to the proposed modification. We can see that the slope of

receivers for the Medium boost modification is similar to slope for the proposed mod-

ification and that the slope for others is similar to the easy givers, as others included

not only givers but also receivers.
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Figure 8.18: Psychometric curves of givers and receivers in isolation, in a sentence

with the proposed Medium boost (darker dotted).

8.7.4.2 Receiver position and accuracy

To see the variability of the results across sentences and identify under which condi-

tions there was an increase of word intelligibility, we present two different analyses of

the effect of the receiver position and intelligibility.

Fig. 8.19 shows the WAR results, calculated for all words, receivers and others for

each of the four sentence groups. The groups are named according to the position of



Chapter 8. Using top-down information 197

the receiver in the sentence: R1 (verb), R2 (first adjective), R3 (second adjective) and

R4 (noun). The top figure shows the accuracy obtained for the unmodified sentence

material and the figures in the middle and bottom shows the absolute changes with re-

spect to this result obtained for the Medium and High boost modification, respectively.

It is clear from the Medium boost results that, as we found in the previous exper-

iments, receivers gain a great deal in intelligibility when compared to the attenuation

suffered to words in the others category, however boosting the last word, the noun,

on average made the word less intelligible. When we increase the boost (see results

for High boost) the verbs increase WAR but adjectives’ intelligibility starts dropping.

When the last word is boosted the other words become less intelligible at a higher rate

as well.

To identify under which conditions there was an increase of word intelligibility we

present in Fig. 8.20 a sentence level analysis: WARR results for each of the 60 sen-

tences. The sentences are ordered according to the WARR obtained in the unmodified

case. The continuous curve in red represents the WARR for the Medium boost (left)

and the High boost (right) modifications. The dashed red curves represent these results

averaged across each sentence interval. A sentence interval is taken as the range where

unmodified WARR results are constant. We can clearly see that for highly intelligible

words boosting can decrease WARR, for both Medium and High boost modifications.

It seems that if a word is more intelligible than a certain threshold then boosting is

harmful and that this threshold depends on the boosting level. We can also see that the

effect of the boosting value depends on the WAR of the receiver: poor receivers should

be boosted more and highly intelligible receivers should not be boosted at all. Fig. 8.21

presents the same sentence ordering for the WAR results – the score for all words. We

observe that boosting words selectively can increase WAR up to 15 % when the word

to be boosted is a poorly intelligible one and when enough boost is applied. That is,

the best strategy is to boost the most unintelligible words in the sentence and apply a

RMS boost inversely proportional to the intelligibility of the word.



Chapter 8. Using top-down information 198

WAR WAR_R WAR_O
30

35

40

45

50

55

60

65

70

75

80

W
AR

 (%
)

 

 
R1
R2
R3
R4

WAR WAR_R WAR_O
−20

−15

−10

−5

0

5

10

15

20

25

a
b
s
o
lu

te
 W

A
R

 c
h
a

n
g

e
 (

%
)

 

 

R1

R2

R3

R4

WAR WAR_R WAR_O
−20

−15

−10

−5

0

5

10

15

20

25

a
b
s
o
lu

te
 W

A
R

 c
h
a
n
g
e
 (

%
)

 

 

R1

R2

R3

R4

Figure 8.19: Experiment 3: Word accuracy results of unmodified (top) and word accu-

racy changes relative to unmodified for Medium boost (middle) and High boost (bottom).

Results are calculated for each word and averaged across words for all words (WAR),

receivers (WARR) and others (WARO). The numbers in the sentence group names R1,

R2, R3 and R4 refer to the position of the receiver word in the sentence.
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Figure 8.20: Experiment 3: word accuracy of receivers (WARR) for each of the 60

sentences. The sentence index is ordered according to the unmodified scores (blue).

Modified scores are presented on a sentence level (red continuous line) and a sentence

group level (red dashed line).
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Figure 8.21: Experiment 3: word accuracy of all words (WAR) for each of the 60 sen-

tences. The sentence index is ordered according to the unmodified scores (blue). Mod-

ified scores are presented on a sentence level (red continuous line) and a sentence

group level (red dashed line).
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8.8 Conclusion

Motivated by the fact that words are not equally confusable we explored the idea of

using word-level intelligibility predictions to selectively boost words in a sentence.

To do so we first evaluated the intelligibility of words in isolation through a listening

experiment to find which words might benefit from SNR boosting and which words

could possibly be attenuated. For this evaluation, we selected 20 words with dense and

20 words with sparse neighbourhood densities according to the OVC metric in order

to cover a wide range of confusability, that is hard and easy words. The results show

however that not only neighbourhood density affects intelligibility in isolation but also

the speaker (a TTS voice), the masker (speech-shaped noise) and the lexical complex-

ity of each word (duration). So instead of using ND to select words to boost – receivers

– and attenuate – givers – we used the actual subjective intelligibility scores of words

in isolation. Using information from that we performed two sentence experiments. We

created a set of 60 sentences, each composed of four words from the isolated word

experiment, two of which were a pair of giver and receiver of energy and the other two

were filler words whose intensity value remained unmodified. We chose the follow-

ing boost and attenuation values: 2.7dB and 6dB. The results showed that boosting a

word to the detriment of another is not a good strategy, independent of the selection of

the words: the intelligibility of the giver word drops an absolute value of 30% while

receivers only increase 3%. Moreover, selecting the word pairs according to their intel-

ligibility scores in isolation was not as good as choosing them randomly. Additionally,

the intelligibility of words whose RMS value we did not modify also changed, showing

the strategy is not appropriate. Following from these results we performed a second

sentence experiment to selectively boost a word while attenuating all other words in

the sentence, which also reflects a more natural way of emphasising words. Results

show that we managed to decrease the intelligibility losses of givers by spreading the

attenuation across all other words in the sentence: from 30% to 3% absolute drop. The

gain of receivers was similar for both experiments but for a stronger boost intelligi-

bility gains dropped. We also observed that overall intelligibility increases for those

sentences where we boost a highly confusable word and that the boost value that in-

creases intelligibility the most has to be set according to the intelligibility of this word.

That is, if we had a reliable way of predicting word-level intelligibility it would be

possible to increase sentence intelligibility by selectively boosting the RMS value of

a highly confusable word. This is a promising result that advocates for the additional
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use of word intelligibility as prior knowledge for more complex modifications. The

poor word-level intelligibility prediction results using the neighbourhood density, the

glimpse proportion measure and an HMM-based measure indicates that much work

needs to be done in order to obtain reliable measures of word-level confusability even

for the simplest scenario of words in isolation. Additionally the fact that subjective

scores of words in isolation poorly predicts their scores in a sentence indicates that

this prediction has to consider the context of the word in a sentence, not only for the

additional linguistic cues but also for the acoustic coarticulation ones as well.



Chapter 9

Conclusions

We set out from the idea that speech perception models can be used to increase the

intelligibility of synthetic speech in noise. We thought to automatically modify text-

to-speech production according to the environmental noise, in much the same way as

humans control their speech. It transpired that not all objective measures can reliably

predict the intelligibility of synthetic speech in noise. Those that did work were based

on models of the internal processing that takes place in the human auditory system.

With this information our logical next step was to modify synthetic speech to improve

intelligibility as defined by the scores from one of these measures. We observed in

listening tests that spectral envelope modifications based on the glimpse proportion

measure significantly increased intelligibility in stationary noise conditions, particu-

larly if combined with a noise-independent strategy like dynamic range compression.

To achieve similar gains in the competing speaker condition further changes to the ex-

citation signal and duration, based on Lombard speech, were most effective. Finally,

to investigate whether top-down information such as word-level intelligibility can be

used as a prior to inform how much modification is required, we tested different SNR

boosting strategies. We observed that selectively boosting words according to their

intelligibility levels can be beneficial.

We will now present the main contributions of this work to the different areas

of knowledge: objective measures of intelligibility, speech perception in noise and

synthetic speech.

202
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9.1 Contributions

9.1.1 Intelligibility prediction

We showed in this thesis that objective measures like the glimpse proportion (GP) can

be used to improve intelligibility in noise. We list our main contributions to the field:

• The development of a new spectrum-based objective measure.

In order to use the GP measure for cepstral coefficient manipulation we pro-

posed an approximation, which turned the GP into a spectrum-based measure.

Compared to other spectrum-based measures like the log-spectral distance, the

likelihood ratio and the cepstrum and Itakura Saito distances, this reformulation

of the GP displays much higher correlations with subjective intelligibility scores

of synthetic speech in noise.

• Objective measure evaluation of intelligibility enhanced speech.

We performed the first large scale evaluation of objective measures for the pur-

pose of predicting the intelligibility of enhanced synthetic speech in noise. Re-

sults motivate more research into measures that are specially designed to predict

intelligibility of enhanced speech in noise. The need for instance for the creation

of measures that can better predict changes in speaking rate was clear. We also

noted no advantage of measures that require a reference for unmodified speech

(correlation and distance-based) over the GP (audibility-based). An extended

version of the GP that uses a reference obtains better results showing that this

additional information is useful (Tang et al., 2013).

• Word-level intelligibility score evaluation.

In our final experiments, we noted that GP scores are poorly correlated with

word-level subjective scores. Cooke (2009) refers to the GP and the other mea-

sures that were evaluated in this work, as macroscopic measures: they can pre-

dict an average level of intelligibility but can not give localized (word or seg-

ment) predictions. Our results illustrate the pitfalls of macroscopic measures

and motivates the development of microscopic models that not only account for

energetic masking at the auditory system level but at higher levels of processing

as well.
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9.1.2 Perception of synthetic speech in noise

During the course of this work we evaluated several intelligibility improvement strate-

gies. The results of these experiments provide evidence about how synthetic speech is

perceived in noise and how to improve it:

• Methods to increase intelligibility of synthetic speech in noise.

We observed that loudness enhancement and spectral tilt flattening via spectral

and temporal shaping is very effective in stationary noises or at high SNRs. For

lower SNRs and for competing speaker, making prosodic changes is more bene-

ficial.

• Perception of synthetic speech in noise.

As in other studies, we found that synthetic speech is less intelligible than natu-

ral speech in noise and that the rate of deterioration is higher for increased noise

levels. In particular, synthetically generated words played in isolation are very

poorly recognised compared to natural speech. In a sentence, intelligibility in-

creases because even words with many acoustically similar neighbours are more

readily recognized.

• Further investigations into noise dependency.

Our studies with noise-dependent and independent methods showed that in sta-

tionary noise (speech-shaped noise) dependency is not strictly necessary. It is

possible to achieve comparable or better gains by simply mimicking the acoustic

changes usually seen in highly intelligible natural speech with no regard paid to

the noise type. For the fluctuating noise (competing speaker), noise dependency

may be required. Recent work on noise-dependent duration modifications based

on the GP is showing promising results (Aubanel and Cooke, 2013).

• Contributions of fundamental frequency and speaking rate changes.

The use of synthetic speech made it straightforward to try perception experi-

ments like individually changing the acoustic properties that are modified in the

production of Lombard speech, that is: speaking rate, F0 and spectral modifica-

tions (tilt and peaks). Our results indicate that changes in F0 alone do not lead

to significant changes in the intelligibility and that lowering the speaking rate is

not as beneficial as changing the spectral tilt.
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9.1.3 Speech synthesis

Although all contributions mentioned thus far are relevant to speech synthesis, we

mention here items that contribute directly to the design of better synthetic voices:

• A new method for cepstral extraction and cepstral modification.

To increase intelligibility of synthetic speech in noise we proposed new methods

for cepstral extraction and modification both based on the GP measure. For the

proposed method, cepstral coefficients are extracted through the maximisation of

the GP and the minimisation of a distortion measure based on the Itakura Saito

distance. These cepstral coefficients can then be used for training synthesis mod-

els. If noise is not stationary and is unknown at training time, the alternative is to

modify cepstral coefficients generated from text at synthesis time to maximize

the GP measure.

• The identification of measures that can best predict the intelligibility of syn-
thetic speech in noise.

Although there have been attempts at creating non-intrusive measures that can

predict the quality of synthesizers, no proper study had been performed for the

evaluation of existing intrusive measures of the intelligibility of TTS in noise.

Intelligibility of synthetic speech can be quite high so the process of generating

speech from text should not necessarily be measured as a source of distortion.

The assumption was then made that measures created for natural speech could

also be used to predict intelligibility of synthetic in noise. On performing such a

study we discovered that although performance dropped it was not far below the

results for natural speech and there were several measures that worked quite well

even for modified synthetic speech, like for instance the GP, the Dau measure and

the STOI.

• Measuring intelligibility of synthetic speech using a measure derived from
the synthesis models.

The intent was to use a statistical-based measure to help the prediction of word-

level intelligibility combined with the neighbourhood density. Normally the lex-

ical distance between competitors is measured using listening tests with con-

fusion matrices built from the results. Instead we proposed to predict these

distances from the synthesis models. Although the correlation scores found be-
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tween the HMM-based measure and the subjective scores were low, the improve-

ment upon using only the GP motivates further research into a combined solution

that uses both the synthesis models and the audibility measure.

9.2 Future work

Intelligibility of HMM-generated synthetic speech can be very high when good quality

recordings are available for training and synthetic speech is played in good listening

conditions. When synthetic speech is heard in noise, recognition is compromised.

Although we have showed in this thesis how one can increase recognition scores, the

gap between natural plain read speech and synthetic speech built from it highlights

inherent problems in the process of generating speech from text.

Perception studies with formant-based synthesizers indicate that synthetic speech is

harder to perceive in adverse conditions as it lacks both the variability and redundancy

found in natural speech. The same might also be said about HMM-based synthesiz-

ers. The process of vocoding (parametrization) and statistical modelling (averaging)

removes important acoustic cues that are irrelevant to the decoding process in clean but

become decisive in noisy conditions. The fact that we found significant differences in

the intelligibility of vocoded and synthetic speech in Chapter 5 indicates that statistical

modelling is responsible for removing essential perceptual cues. More investigation

needs to be done to identify which aspects of training a synthetic voice are responsi-

ble for this. We believe that some of the objective measures evaluated in this work

can help with this task. Additionally, they can be used as a measure for training suc-

cess in a closed-loop analysis-by-synthesis strategy similar to what has been proposed

in residual modelling for TTS (Maia et al., 2007) and for minimum generation error

training (Wu and Wang, 2006). In order to do so one should investigate first whether

the GP and the approximated version proposed in this thesis can be used to measure

non-linear distortions. The GP measure as it stands can only predict the audibility

of speech in noise but one could use the internal representation as proposed by the

glimpsing model to measure other sort of distortions, turning the GP into a correlation

or a distance-based sort of measure.

Possible extensions that can follow the work from this thesis include further analy-

sis into the quality of enhanced synthetic speech. While speech intelligibility increases,

naturalness and quality can be compromised, especially if the modified speech is heard

in clean conditions. To decrease artefacts that could arise from the frame-by-frame
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processing of the GP-based modification, we can imagine two solutions. One of these

would be to apply the GP-based Mel cepstral modification not to the generated pa-

rameters but to the the static components of the observation vector. The maximum

likelihood parameter generation (Tokuda et al., 2000) would then be responsible for

smoothing the differences between consecutive frames. It is possible that updating

the spectral coefficients at a slower analysis window rate would reduce artefacts while

keeping similar intelligibility gains. It is to us however not clear how one should eval-

uate the quality of enhanced speech, whether quality scores should be given to speech

listened to in noise or not, how to judge its appropriateness and what is more important

in a given scenario: quality or intelligibility.

The most intelligible voice created in this work is a combination of different en-

hancing strategies: GP-based modification, dynamic range compression and Lombard-

adapted duration and excitation. This voice obtained up to 5.8 dB of equivalent inten-

sity gain, however it required additional recordings of Lombard speech of the speaker

for which we built the voice. It would be interesting to investigate whether similar in-

telligibility gains could be obtained by applying cross-speaker adaptation of duration

and excitation while maintaining quality and speaker similarity.
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Objective measures of intelligibility

Here we present the results of the evaluation of objective measure evaluation without

mapping the objective scores to a logistic function.

Dau GP STOI PESQ WSS SII FWS IS CEP LSD LLR

r 0.90 0.86 0.87 0.80 -0.778 0.75 0.60 -0.38 -0.33 -0.33 -0.33

σe 0.12 0.15 0.14 0.18 0.18 0.19 0.23 0.27 0.27 0.27 0.27

Table A.1: Experiment I: correlation coefficient r and standard deviation of the error σe

for unmodified synthetic speech.

Dau GP STOI PESQ WSS SII FWS IS CEP LSD LLR

Case 1

r 0.01 0.52 0.42 -0.29 0.13 0.38 0.07 -0.22 0.04 -0.14 -0.14

σe 0.13 0.11 0.12 0.13 0.13 0.12 0.13 0.13 0.13 0.13 0.13

Case 2

r 0.01 0.52 0.42 -0.29 -0.51 0.38 0.07 -0.62 0.14 -0.06 -0.17

σe 0.13 0.11 0.12 0.13 0.11 0.12 0.13 0.11 0.13 0.13 0.13

Table A.2: Experiment I: correlation coefficient r and standard deviation of the error σe

for modified synthetic speech.
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Dau GP STOI WSS PESQ FWS SII IS LSD CEP LLR

r 0.86 0.84 0.81 -0.62 0.62 0.57 0.54 -0.49 -0.32 -0.32 -0.27

σe 0.10 0.12 0.13 0.17 0.17 0.18 0.18 0.19 0.21 0.21 0.21

Table A.3: Experiment II: correlation coefficient r and standard deviation of the error σe

for unmodified synthetic speech.

Dau GP STOI WSS PESQ FWS SII IS LSD CEP LLR

Case 1

r 0.71 0.73 0.61 -0.26 0.34 0.12 0.45 -0.16 -0.27 -0.25 -0.17

σe 0.17 0.17 0.20 0.24 0.23 0.24 0.22 0.24 0.24 0.24 0.24

Case 2

r 0.71 0.73 0.62 0.28 0.31 0.12 0.45 0.18 0.34 0.32 0.30

σe 0.17 0.17 0.19 0.24 0.23 0.24 0.22 0.24 0.23 0.23 0.23

Table A.4: Experiment II: correlation coefficient r and standard deviation of the error σe

for modified synthetic speech.

Dau GP STOI WSS PESQ FWS SII IS LSD CEP LLR

r 0.77 0.81 0.69 -0.58 0.27 -0.001 0.46 -0.31 -0.43 -0.39 -0.33

σe 0.16 0.15 0.18 0.20 0.24 0.25 0.22 0.24 0.23 0.23 0.24

Table A.5: Experiment II: correlation coefficient r and standard deviation of the error σe

for unmodified synthetic speech and LSP shift modification.
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Spectral gains of Lombard speech

We present here the spectral gains of the Lombard voices (natural and TTS) over the

plain voices (normal and TTS) calculated at a sentence level and averaged across a set

of sentences.
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Figure B.1: Spectral gains of the natural (top) and TTS (bottom) Lombard voices.
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Hurricane Challenge results

We present the results from all entries of the Hurricane Challenge, descriptions can be

found in Cooke et al. (2013). Our entry, described in Section 7.4.1, is TTSLGP-DRC.
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Figure C.1: Hurricane challenge results for SNR High: EICs in dB relative to Plain

(dotted green lines) and TTS baselines (dotted blue lines) for the SSN and CS maskers.

Green: natural speech entries; blue: TTS entries.
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Using top-down information

Hard Easy

Verbs see give

buy have

sell want

like change

win move

Adjectives new front

rare huge

blue next

grey strong

right strange

main vast

wet French

spare good

whole brown

weak close

Nouns chair desk

shoe house

car knife

ball dress

wheel film

Table D.1: Words classified according to their OVC ND.
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Giver (hard) Giver (easy) Receiver

Verbs have change move

like see give

buy sell

want

win

Adjectives whole huge close

right strong next

weak strange spare

rare French blue

wet grey

vast front

good

new

brown

main

Nouns film chair knife

ball house wheel

dress

car

shoe

desk

Table D.2: Words classified according to experiment 1 WAR.
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Sentence group Giver Receiver Sentence

1 G1 R2 have the next French car.

G1 R2 like the blue strange dress.

G1 R2 buy the spare main desk.

G1 R2 change the grey rare shoe.

G1 R2 see the close new ball.

2 G1 R3 have the huge brown dress.

G1 R3 like the spare wet shoe.

G1 R3 buy the whole main knife.

G1 R3 change the strong good car.

G1 R3 see the blue front desk.

3 G1 R4 have the spare vast shoe.

G1 R4 like the grey main knife.

G1 R4 buy the huge new car.

G1 R4 change the grey strange dress.

G1 R4 see the spare brown wheel.

4 G2 R1 move the whole strange wheel.

G2 R1 give the weak front chair.

G2 R1 sell the right French film.

G2 R1 want the strong good house.

G2 R1 win the huge rare desk.

5 G2 R3 move the whole front knife.

G2 R3 want the right good ball.

G2 R3 give the weak brown desk.

G2 R3 sell the huge main wheel.

G2 R3 win the strong new dress.

6 G2 R4 give the strong wet knife.

G2 R4 sell the right rare dress.

G2 R4 want the whole vast car.

G2 R4 win the huge brown wheel.

G2 R4 move the weak wet shoe.

Continued on next page
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Sentence group Giver Receiver Sentence

7 G3 R1 move the blue wet knife.

G3 R1 give the next rare film.

G3 R1 sell the strong French chair.

G3 R1 want the close strange desk.

G3 R1 win the close vast house.

8 G3 R2 change the close vast wheel.

G3 R2 win the next strange ball.

G3 R2 like the blue rare car.

G3 R2 buy the spare French knife.

G3 R2 have the grey wet shoe.

9 G3 R4 change the next wet dress.

G3 R4 move the weak rare wheel.

G3 R4 have the close strange car.

G3 R4 want the right French shoe.

G3 R4 like the next vast desk.

10 G4 R1 give the blue French ball.

G4 R1 sell the grey good chair.

G4 R1 want the whole good film.

G4 R1 win the weak new chair.

G4 R1 move the right brown house.

11 G4 R2 see the spare new film.

G4 R2 change the blue main chair.

G4 R2 sell the next front house.

G4 R2 buy the close vast ball.

G4 R2 like the grey main house.

12 G4 R3 buy the huge front film.

G4 R3 see the whole brown chair.

G4 R3 see the weak new house.

G4 R3 have the right front ball.

G4 R3 give the strong good film.

Table D.3: Sentences, proposed giver and receiver assignment.
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Sentence group Giver Receiver Sentence

1 G1 R2 have the huge brown dress

G1 R2 see the close new ball

G1 R2 sell the huge main wheel

G1 R2 sell the right French film

G1 R2 want the whole good film

2 G1 R3 have the close strange car

G1 R3 have the grey wet shoe

G1 R3 buy the spare main desk

G1 R3 buy the huge front film

G1 R3 want the strong good house

3 G1 R4 change the blue main chair

G1 R4 like the blue strange dress

G1 R4 move the weak wet shoe

G1 R4 sell the strong French chair

G1 R4 like the spare wet shoe

4 G2 R1 like the blue rare car

G2 R1 move the whole strange wheel

G2 R1 sell the grey good chair

G2 R1 give the strong good film

G2 R1 move the whole front knife

5 G2 R3 have the next French car

G2 R3 like the grey main knife

G2 R3 buy the whole main knife

G2 R3 sell the right rare dress

G2 R3 change the next wet dress

6 G2 R4 win the strong new dress

G2 R4 have the right front ball

G2 R4 see the blue front desk

G2 R4 win the huge rare desk

G2 R4 buy the spare French knife

7 G3 R1 buy the close vast ball

G3 R1 want the whole vast car

Continued on next page
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Sentence group Giver Receiver Sentence

G3 R1 move the blue wet knife

G3 R1 change the close vast wheel

G3 R1 see the weak new house

8 G3 R2 like the next vast desk

G3 R2 have the spare vast shoe

G3 R2 give the weak brown desk

G3 R2 give the weak front chair

G3 R2 change the grey strange dress

9 G3 R4 win the huge brown wheel

G3 R4 like the grey main house

G3 R4 buy the huge new car

G3 R4 move the right brown house

G3 R4 sell the next front house

10 G4 R1 see the whole brown chair

G4 R1 change the strong good car

G4 R1 see the spare brown wheel

G4 R1 win the next strange ball

G4 R1 change the grey rare shoe

11 G4 R2 give the next rare film

G4 R2 want the right good ball

G4 R2 give the blue French ball

G4 R2 see the spare new film

G4 R2 give the strong wet knife

12 G4 R3 move the weak rare wheel

G4 R3 want the right French shoe

G4 R3 win the weak new chair

G4 R3 win the close vast house

G4 R3 want the close strange desk

Table D.4: Sentences, random giver and receiver assignment.



Bibliography

Alku, P., Vintturi, J., and Vilkman, E. (2002). Measuring the effect of fundamental

frequency raising as a strategy for increasing vocal intensity in soft, normal and

loud phonation. Speech Communication, 38(34):321 – 334.

ANSI (1997). ANSI S3.5-1997 Methods for the calculation of the speech intelligibility

index.

Aubanel, V. and Cooke, M. (2013). Information-preserving temporal reallocation of

speech in the presence of fluctuating maskers. In Proc. Interspeech, Lyon, France.

Aubanel, V., Cooke, M., Villegas, J., and Lecumberri, M. L. G. (2011). Conversing in

the presence of a competing conversation: effects on speech production. In Proc.

Interspeech, pages 2833 – 2836, Florence, Italy.

Banos, E., Erro, D., Bonafonte, A., and Moreno, A. (2008). Flexible har-

monic/stochastic modeling for HMM-based speech synthesis. In In V Jornadas en

Tecnologias del Habla, pages 145–148, Bilbao, Spain.

Barnwell, T., III (1980). Correlation analysis of subjective and objective measures for

speech quality. In Proc. ICASSP, volume 5, pages 706 – 709, Denver, USA.

Benoit, C. (1990). An intelligibility test using semantically unpredictable sen-

tences: towards the quantification of linguistic complexity. Speech Communication,

9(4):293–304.

Beutnagel, B., Conkie, A., Schroeter, J., Stylianou, Y., and Syrdal, A. (1999). The

AT&T Next-Gen TTS system. In Proc. Joint ASA, EAA and DAEA Meeting, pages

15–19, Berlin, Germany.

Black, A. and Tokuda, K. (2005). The Blizzard Challenge – 2005: Evaluating corpus-

based speech synthesis on common datasets. In Proc. Blizzard Challenge Workshop,

Lisbon, Portugal.

220



Bibliography 221

Black, A. W. (2006). CLUSTERGEN: A statistical parametric synthesizer using tra-

jectory modeling. In Proc. Interspeech, pages 1762–1765, Pittsburgh, USA.

Blesser, B. (1969). Audio dynamic range compression for minimum perceived distor-

tion. IEEE Trans. on Audio and Electroacoustics, 17(1):22–32.

Bouwman, G., Cranen, B., and Boves, L. (2004). Predicting word correct rate from

acoustic and linguistic confusability. In Proc. Interspeech, Jeju Island, Korea.

Bregman, A. (1990). Auditory scene analysis. MIT Press, Cambridge, USA.

Brungart, D. S., Chang, P. S., Simpson, B. D., and Wang, D. (2006). Isolating the

energetic component of speech-on-speech masking with ideal time-frequency seg-

regation. Journal of the Acoustical Society of America., 120(6):4007–4018.

Buz, E. and Jaeger, T. F. (2012). Effects of phonological confusability on speech

duration. In The 25th CUNY Sentence Processing Conference, page 46, New York,

NY.

Cabral, J., Renals, S., Richmond, K., and Yamagishi, J. (2007). Towards an improved

modeling of the glottal source in statistical parametric speech synthesis. In Proc.

SSW, pages 113–118, Bonn , Germany.

Cabral, J., Renals, S., Richmond, K., and Yamagishi, J. (2008). Glottal spectral sep-

aration for parametric speech synthesis. In Proc. Interspeech, pages 1829–1832,

Brisbane, Australia.

Cara, B. and Goswami, U. (2002). Similarity relations among spoken words: The

special status of rimes in English. Behavior Research Methods, Instruments and

Computers, 34:416–423.

Castellanos, A., Benedi, J., and Casacuberta, F. (1996). An analysis of general

acoustic-phonetic features for Spanish speech produced with the Lombard effect.

Speech Communication, 20(1-2):23 – 35.

Cerňak, M. (2006). Unit selection speech synthesis in noise. In Proc. ICASSP, pages

761–764, Toulouse, France.

Chen, J.-H. and Gersho, A. (1995). Adaptive postfiltering for quality enhancement of

coded speech. IEEE Trans. on Speech and Audio Processing, 3(1):59–71.



Bibliography 222

Christiansen, C., Pedersen, M. S., and Dau, T. (2010). Prediction of speech intelli-

gibility based on an auditory preprocessing model. Speech Communication, 52(7-

8):678–692.

Cooke, M. (1993). Modelling auditory processing and organisation. Cambridge Uni-

versity Press, Cambridge, UK.

Cooke, M. (2003). Glimpsing speech. Journal of Phonetics, 31:579 – 584.

Cooke, M. (2006). A glimpsing model of speech perception in noise. Journal of the

Acoustical Society of America., 119(3):1562–1573.

Cooke, M. (2009). Discovering consistent word confusions in noise. In Proc. Inter-

speech, pages 1887 – 1890, Brighton, UK.

Cooke, M. and Lu, Y. (2010). Spectral and temporal changes to speech produced in the

presence of energetic and informational maskers. Journal of the Acoustical Society

of America., 128(4):2059–2069.

Cooke, M., Mayo, C., and Valentini-Botinhao, C. (2013). Intelligibility-enhancing

speech modifications: the Hurricane Challenge. In Proc. Interspeech, Lyon, France.

Cooke, M., Mayo, C., Valentini-Botinhao, C., Stylianou, Y., Sauert, B., and Tang, Y.

(2012). Evaluating the intelligibility benefit of speech modifications in known noise

conditions. Speech Communication, 55:572–585.

Dall, R., Veaux, C., Yamagishi, J., and King, S. (2012). Analysis of speaker clustering

strategies for HMM-based speech synthesis. In Proc. Interspeech, Portland, USA.
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