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Abstract 

The security of electricity supply has always been important, but it has recently 

become one of the critical issues for the planning and operation of modern electricity 

networks. There are several reasons for that, including increased demands and 

deregulation of electricity markets, resulting in much lower infrastructural investments, 

which both pushed existing networks to operate closer to their security limits. The 

increasing penetration levels of variable and inherently non-dispatchable renewable 

energy resource, as well as the implementation of demand-responsive controls and 

technologies on the demand side, together with the application of real-time thermal 

ratings for system components, have introduced an unprecedented level of 

uncertainties into the system operation. These uncertainties present genuinely new 

challenges for the maintenance of high system security levels. 

The first contribution of this thesis is the development of advanced computational tools 

to strengthen the decision-making capabilities of system operators and ensure secure 

and economic operation under high uncertainty levels. It initially evaluates the hosting 

capacities for wind-based generation in a distribution network subject to operational 

security limits. In order to analyse the impacts of variations and uncertainties in the 

wind-based generation, loads and dynamic thermal ratings of network components, 

both deterministic and probabilistic approaches are applied for hosting capacity 

assessment at each bus, denoted as “locational hosting capacity”, which is of interest 

to distributed generation (DG) developers. Afterwards, the locational hosting 

capacities are used to determine the hosting capacity of the whole network, denoted as 

“network hosting capacity”, which is of primary interest to system operators. As the 

available hosting capacities change after the connection of any DG units, a sensitivity 

analysis is implemented to calculate the variations of the remaining hosting capacity 

for any number of DG units connected at arbitrary network buses. 

The second contribution of this thesis is a novel optimisation model for the active 

management of networks with a high amount of wind-based generation and utilisation 

of dynamic thermal ratings, which employs both probabilistic analysis and 
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interval/affine arithmetic for a comprehensive evaluation of related uncertainties. 

Affine arithmetic is applied to deal with interval information, where the obtained 

interval solutions cover the full range of possible optimal solutions, with all 

realisations of uncertain variables. However, the interval solutions overlook the 

probabilistic characteristics of uncertainties, e.g. a likely very low probabilities around 

the edges of intervals. In order to consider realistic probability distribution information 

and to reduce overestimation errors, the affine arithmetic approach is combined with 

probabilistic (Monte Carlo) based analysis, to identify the suitable ranges of 

uncertainties for optimal balancing of risks and costs.  

Finally, this thesis proposes a general multi-stage framework for efficient management 

of post-contingency congestions and constraint violations. This part of the work uses 

developed thermal models of overhead lines and transformers to calculate the 

maximum lead time for system operators to resolve constraint violations caused by 

post-fault contingency events. The maximum lead time is integrated into the 

framework as the additional constraint, to support the selection of the most effective 

corrective actions. The framework has three stages, in which the optimal settings for 

volt-var controls, generation re-dispatch and load shedding are determined 

sequentially, considering their response times. The proposed framework is capable of 

mitigating severe constraint violations while preventing overheating and overloading 

conditions during the congestion management process. In addition, the proposed 

framework also considers the costs of congestion management actions so that the 

effective corrective actions can be selected and evaluated both technically and 

economically. 
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Lay Summary 

Modern power systems have developed rapidly in the past several years. On the 

demand side, the amount of load presents a fast increment due to economic growth, 

and on the generation side, the penetration of renewable energy source is rising steadily 

because of low generation cost and carbon emission. Those changes have contributed 

significantly to the benefits of power systems, both economic and environmental. 

However, the fast development of power systems also results in several challenges, 

among which security of electricity supply is one of the most severe. The increasing 

demand puts significant pressure on network facilities and the integration of large 

amounts of renewable energy source introduces new uncertainties in both power 

system planning and operation due to its intermittent characteristics. 

This thesis aims to develop advanced computational tools to improve the decision-

making capabilities of system operators to ensure the secure and economic operation 

with uncertainties. At first. This thesis uses probabilistic models to evaluate the 

uncertain parameters in power system planning and operation, which include ambient 

conditions, variations of wind-based generation and dynamic thermal ratings of 

network components. Afterwards, the developed uncertain models are used in the 

evaluation of hosting capacities of distribution networks for wind-based generation 

and the power flow analysis of networks with high wind penetration. The hosting 

capacity assessment and probabilistic power flow analysis show that the application of 

dynamic thermal ratings can provide significant benefits to wind energy integration in 

both planning stage and operational stage, but will further increase the uncertain level 

of system operation. Consequently, the operational risks will be higher at the same 

time, which deserve further attention.  

To solve those problems, a new optimization model is developed in this thesis for the 

secure operation of systems with large amounts of wind energy and dynamic thermal 

ratings. This proposed model can find the optimal wind curtailment strategies based 

on the interval information of uncertain input variables with low computational efforts, 

to maximize system economic performance while maintaining system security.  
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Probabilistic models of uncertain variables are used to verify the performance of the 

optimization model.  

In the ends, this thesis proposes a novel framework to identify remedial actions when 

contingency events, e.g. unexpected outages of transmission lines, occur. The 

unexpected contingency events may result in the overloading conditions and violations 

of voltage limits. In the proposed framework, the maximum lead time to clear the 

consequences of contingency events are taken into consideration, and the selection of 

remedial actions are divided into three stages according to the response times of 

different approaches. The proposed framework is able to identify the most efficient 

remedial actions in sequence and prevent the potential damages caused by overheating 

components when the remedial actions are implemented. 
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Chapter 1 
Introduction 

1.1 Introduction 

The proper evaluation and understanding of the complex interactions between the 

“supply-side” and “demand-side” play a significant role in the transformation of 

existing electricity networks into “smart grids” (SGs). From the perspective of SGs, 

the variations in the amounts of power flows and the changes in the forms of energy 

exchanges between the supply side and demand side are the most important 

contributing factors of those interactions. Significant changes in the fundamental 

principles of power system operation have already taken place on both the supply side 

and demand side of networks and are expected to be more pronounced in the future. 

Bi-directional power flows in both direct current (DC) and alternating current (AC) 

forms have started to replace the unidirectional power flows [1]. 

Some of the expected SG functionalities, e.g., increased use of network automation 

and reconfiguration schemes, implementation of advanced components, and flexible 

management of energy consumption will undoubtedly improve system reliability 

performance. However, they may also result in the more frequent congestions and 

voltage deviations, causing interruptions of electricity supply, i.e. in a possible 

deterioration of power system security. In addition, the increase in transients in SGs 

due to, e.g., high-speed transfer to alternative supply points, more frequent switching 

of power electronic devices, as well as conventional capacitor banks may cause the 

reduction of power quality levels. Off-grid operation of micro-grids may also result in 

the lower power quality levels within the micro-grids, and elsewhere in the network. 

Of further concerns are the higher dynamics of bi-directional power flows due to 

highly dispersed small-scale DG, which will reduce network fault currents and may be 

disconnected from the network, i.e. exactly when their output is needed. Therefore, 

additional concerns should be included in system performance analysis when some of 

these SG functionalities are implemented. 

Improvements in the security of supply are often assumed to be one of the fundamental 

aspects of the SGs, as the threat of supply disruption appears to resonate with many 
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segments of the public. It is significant to both end-users (electricity customers) and 

power supply companies, as well as to the other subjects involved with the generation, 

transmission, distribution, and utilisation of electrical energy, always drawing 

increasing attention among them. Maintaining the security of supply while improving 

economic operation and reducing environmental impact, such as CO2 emissions, have 

become one of the main themes in SG development [2]. However, the security of 

supply is threatened by many factors. For instance, many energy supply infrastructures 

are approaching the end of life in the UK [2]. Although some generation has been 

substituted by renewable generation such as wind turbines, new challenges are 

introduced due to the intermittent nature of renewable energy. Besides, the 

development of SGs will result in increasingly complex electricity networks, 

introducing more flexible controls, monitoring and communication systems and 

incorporating various demand-side management [1]. These new technologies will 

provide more flexible and fast-response controls for system operations. On the other 

hand, they may put considerable pressure on the delivery of a continuous and high-

quality supply of electrical energy. 

1.2 Need for advanced computational tools for 
security analysis of electricity supply systems 

Modern society increasingly relies on continuous electricity supply. System operators 

must maintain the security of electricity supply at all time, or for most of the time, 

regarding disturbances, such as severe weather events, random faults, and failures of 

ageing components and infrastructures. An insufficient level of security may result in 

frequent electricity supply interruptions, which will typically result in direct and 

indirect damages and costs to systems, as well as tremendous economic losses for 

customers. For example, the Northeast Blackout in 2003 affected 55 million people 

(estimated) in Canada and the US, whose economic losses were over $6 billion, as 

estimated by the US Department of Energy.  

From the perspective of system operation, security refers to the degree of risk in its 

ability to survive imminent disturbances (contingencies) without lengthy interruptions 

of electricity supply to all customers, or at least majority of customers [3]. A pre-

contingency network should be able to transmit the power from generation to 
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customers without violations of any operating limits, including thermal limits of 

transmission components, voltage constraints and stability constraints [4][5]. When 

contingencies occur, the network, however, may not be able to maintain the supply 

without constraint violations due to re-routed power flows based on the physical 

characteristics of the reconfigured network. The violation of network operating limits 

in post-contingency operating conditions will result in activation of protection systems, 

disconnecting impacted components and further reducing system security. 

Accordingly, system operators need to implement remedial actions to enhance system 

stability and mitigate thermal overloading and bus voltage violations. 

Over the last few decades, significant development has occurred in electric power 

systems, which brought new opportunities but also presented new challenges [6]. 

Firstly, the power system operating conditions are more “stressful” [7]. Electric 

networks have become one of the most complex human-made systems, the majority of 

which were designed and built decades ago. However, the constantly increasing 

electricity demands, because of economic growth, population increase and 

industrialization process, may outpace the upgrade of network infrastructures. System 

planners and operators prefer pushing networks closer to their operational security 

limits to maximize the benefits in the deregulated electricity market while deferring 

investments to upgrade network infrastructures. Additionally, large-scale investments 

have been made in the development of renewable generation. As the locations of new 

generation are generally different from those of the existing centralized generation, 

both the scale and the direction of power flows in the existing networks can be affected 

significantly. In addition, the renewable generation is highly variable and 

unpredictable, and cannot be dispatched as the conventional generation. Therefore, 

integration of renewable generation with high penetration levels has posed further 

challenges to network operation. 

Secondly, more uncertainties are introduced into system operation. These come from 

the increasing penetration level of variable renewable energy sources (RES), demand 

response from flexible loads, as well as the introduction of intra-day electricity markets, 

which all make the network operating conditions harder to forecast. The system is 

exposed to more significant deviations from their planned schedule. As a result, system 
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operators need to perform corrective actions, such as generation re-dispatch to 

maintain the power balance and system security, as the system is increasingly operated 

closer to the limits [8].  

Moreover, unlike conventional generators, most of the distributed generation (DG) is 

connected to the network electrically via power electronic interface rather than 

electromechanically. The increased penetration of that type of DG has resulted in the 

reduction of both system fault levels and system inertia. In the low-inertia networks, 

low-frequency electromechanical oscillations among synchronous generators may not 

be damped effectively, and even small disturbances could lead to system instability 

[9].  

In order to tackle the issues related to maintaining required security levels of electricity 

supply, it is necessary to develop advanced computational tools for system operators 

to improve their control and decision-making capabilities, so that the balance between 

the economic costs and security performance can be achieved. 

1.3 Research objectives and main contributions of the 
thesis 

The main research objective is to develop methodologies and incorporate them in a 

general framework for improving system security and optimisation of network 

economic benefits, which specifically focus on improving the system operators 

controls and decision-making capability for ensuring high security levels of electric 

supply in the presence of the high levels of uncertainties.  

Main results of this thesis have been presented in two journal papers [10], [11] and 11 

conference papers [12]–[22]. The main contributions are summarized as the following 

points: 

• Modelling of uncertain parameters in power system operations: In [14], 

mixture distributions are applied to model the uncertainties in wind energy 

resource (wind speeds and wind directions). The usual approach to model wind 

generation is the use of power curves, which specify the deterministic 

relationship between the wind speed and power output of a wind turbine. 
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However, as power curves provided by wind turbine manufacturers are 

generally obtained in controlled conditions, they ignore the effects of wind 

dynamics (fluctuations in wind speeds and wind directions), presence of 

turbulence, as well as site and application specific factors, which cause the 

deviations from the expected power outputs given by manufacturer power 

curves. In [14], the deviations are taken into account and modelled by mixture 

distributions. A more detailed analysis of the relationship between input wind 

energy conditions (wind speeds and wind directions) and power outputs from 

wind turbines is presented in [15], [17] and [22]. In [17], a novel model is 

developed for the evaluation of uncertainties in wind turbine power outputs, 

based on correlating wind speeds and wind directions, through Gaussian 

mixture Copula model and vine Copula. In [15] and [22], the outliers in the 

measured wind turbine data are identified and cleared at first. Then, the 

equivalent power curve models for individual wind turbines are developed, 

based on the remaining data. Afterwards, the aggregated wind farm power 

curve model is obtained, considering different operating states of wind turbines 

in the wind farm. In addition to evaluating uncertainties related to wind energy, 

approaches for assessing uncertainties and forecasting variations in demands 

are presented in [16] and [19]. 

• Impact of dynamic thermal ratings (DTR) on hosting capacity for wind-

based DG: A three-stage hosting capacity assessment for wind-based DG in a 

distribution network with the utilization of DTRs is presented in [20]. DTRs 

for overhead transmission lines and transformers are estimated with the 

dynamic thermal models of bare overhead conductors and transformers 

presented in [23] and [24]. In the first stage, locational hosting capacities (LHC) 

at each bus are evaluated considering the uncertainties introduced by wind 

power outputs, DTRs and load variations. In the second stage, optimization-

based approaches are presented to assess the hosting capacity for the whole 

network based on the first-stage LHC results, assuming that DG units are 

connected at all buses. In the third stage, bus-to-bus LHC sensitivity factors 

are calculated to estimate the changes in available LHCs for any number of DG 

units connected at arbitrary buses. 
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• A novel optimization model for the operation of networks with high 

penetration of wind energy generation: The results of MCS-based optimal 

power flow analysis presented in [14] show that the application of DTRs can 

increase wind integration effectively, but will cause potential overloading risks 

when the wind speed is low. In order to overcome these problems, a novel 

optimization model, which combines affine arithmetic (AA) and probabilistic 

optimal power flow (P-OPF), is proposed for the optimal operation of networks 

with DTR and wind generation [10]. The proposed method provides an 

improved analysis of underlying uncertainties in the generation, transmission 

capacity and system demands, which are represented by probability 

distributions (e.g. for wind speeds, wind directions and wind power generation) 

and interval values (e.g. demand variations). The combined AA-P-OPF method 

provides essential information that can be used by system operators to evaluate 

the trade-off between security and costs and then select the most optimal 

controls. 

• A multi-stage model for post-contingency congestion management: A 

multi-stage OPF-based approach is proposed to manage operational limit 

violations caused by disturbances, such as fault-caused contingencies in which 

the maximum lead time (MLT) available for network operators to resolve 

violated operational limits in post-contingency condition is evaluated based on 

the dynamic thermal models of overhead lines and power transformers. In the 

first stage, optimal settings of volt-var controls are determined. The second 

stage provides optimal generation re-dispatch, supported by fast-start 

generators. In the third and ultimate stage, optimal load shedding is 

implemented to mitigate all remaining constraint violations [12], [13], [18], 

[21].  

1.4 Thesis structure 

The thesis has seven chapters. The summary of the contents of each chapter is given 

as follows: 
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Chapter 1: This chapter gives a general introduction and overview of the thesis. It 

discusses the motivation and objectives of the research, as well as the summary of the 

main contributions, presented in the following chapters. 

Chapter 2: This chapter presents the theoretical backgrounds and reviews methods 

and models used in the thesis. 

Chapter 3: This chapter evaluates the hosting capacity of distribution networks for 

variable wind-based distributed generation, also considering variations in DTR and 

loading conditions. Both deterministic and probabilistic methods are used to determine 

the locational hosting capacity at individual buses and the hosting capacity of the 

whole network. 

Chapter 4: In this chapter, probabilistic models are developed for dealing with the 

uncertainties in system operation. Suitable analytical PDFs are used to fit the 

uncertainties introduced by several sources, including wind speeds, wind directions, 

and wind power outputs. The MCS-based analysis is used with the developed 

probabilistic models, and the correlated impacts of DTRs and wind power generation 

on network operation are analysed. 

Chapter 5: This chapter proposes a novel framework for network operation, in which 

AA and P-OPF are both applied to manage uncertainties represented by probabilistic 

distribution functions and range intervals. 

Chapter 6: This chapter proposes a multi-stage OPF-based model for congestion 

management (CM). Dynamic thermal models for overhead lines (OHLs) and 

transformers are applied to calculate the maximum lead time (MLT) available to 

system operators for implementing remedial actions.  

Chapter 7: This chapter gives the main conclusions from the presented work and 

findings of the research, as well as discussion of the contributions. Some limitations 

of the presented research and recommendations for future work are also discussed.  
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Chapter 2 
Overview of Approaches for Power System 

Security Control and Management of 
Uncertainties 

2.1 Introduction 

This chapter starts with an overview of power system security and the framework to 

achieve and maintain system security, in which fundamental functions of power 

system security are discussed first. Afterwards, the classifications of system operating 

states are provided, and different control strategies in each state to maintain system 

security are explained. Subsequently, this chapter presents a literature review of 

approaches for the management of uncertainties in power systems, in which some 

commonly used methods are introduced, their advantages and limitations are 

compared and discussed. Finally, this chapter introduces the general formulation of 

ACOPF method, which is an important tool to ensure secure and economical operation. 

As the OPF is generally nonconvex and NP-hard, this chapter presents some 

approximations and relaxations of ACOPF, which can significantly improve 

computational efficiency. 

2.2 Power system security 

A properly designed and operated system should meet several fundamental 

requirements. The system must be able to balance the total system generation against 

power consumption and losses. As the energy consumption in a network keeps varying 

and a large amount of electricity cannot be stored, the adequate spinning reserve should 

be scheduled to maintain power balance. The quality of power supply, including 

constancy of frequency and voltage, and the level of reliability, also need to be 

maintained based on specific requirements in standards. Finally, the system should 

operate with the lowest or most optimal cost of supplied energy and minimum 

environmental impact [25]. Apart from above, an equally important aspect of the 

power system operation is to maintain system security, which involves the practices 

and measures or actions to keep the system operating when contingency events occur. 

A contingency is defined as an event which affects the power system, causing the 
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failures, disconnections or removal from operational services of one or more network 

components, such as generators, transformers or transmission lines.  

A critical aspect of system security study is to guarantee the satisfaction of operating 

limits, e.g. branch power flow and bus voltage limits after contingency events. A 

particular system state is secure only regarding one or more specific contingency cases 

and a given set of quantities monitored for limit violations. The outage of one 

component will cause the redistribution of power flows in the remaining network, 

which may result in overloading conditions of other transmission components or 

instability conditions of generating units. The consequences of a single outage may 

spread in the network and lead to cascading failures, which are regarded as the leading 

cause for large system blackouts. Most power systems are operated with specific 

security criteria, such as “N-1 security criterion”, which specifies that the system will 

be able to withstand ae unexpected failure or outage of any single network component 

at all time and remain in the normal operating condition without constraint violations. 

System security consists of three primary functions, which are implemented by the 

system control centre: system monitoring, contingency analysis and corrective action 

analysis [26][27].  

2.2.1 System monitoring 

System monitoring provides system operators with real-time information on the status 

of system components and system operating conditions. Usually, voltages, power 

flows, frequency, as well as component status information, generation changes and 

load information, are collected, monitored and transmitted by telemetry systems. The 

telemetered data are used as the inputs for further security assessment, e.g. to inform 

system operators of the actual or expected constraint violations in the network. 

Additionally, system monitoring data, as well as state estimation, can be used to give 

the best estimates (in the statistical sense) of the current or future system conditions or 

operating states [27]. Such systems, combined with supervisory control systems that 

allow system operators to implement control actions remotely, are referred to as 

supervisory control and data acquisition system, termed as SCADA [25]. 
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2.2.2 Contingency analysis 

The second primary security function, contingency analysis, aims to analyse the 

impacts of the possible faults in the system and alert system operators to any potential 

constraint violation (or system stability issue). Contingency analysis has three states, 

i.e. contingency definition, contingency selection and contingency evaluation. In the 

first state, a list of credible contingencies with high probability to occur is prepared for 

various network configurations and operating conditions. In the second stage, the 

contingencies are ranked in rough order of their severity. The severity of specific 

contingencies is evaluated based on simulations with the high computational speed, 

such as DC power flow. In the last contingency evaluation stage, a detailed assessment 

with full AC power flow is performed for successive individual cases in the decreasing 

order of severity, until the cases with no post-contingency constraint violations are 

identified and a shortened contingency list is obtained [26]. 

2.2.3 Corrective action analysis 

The third security function is corrective action analysis, aiming to identify the proper 

or optimal control actions to remediate constraint violations caused by contingencies 

identified in the list in the previous sub-section.  

Electric power system control comprises generating unit control, system generation 

control and transmission control. Prime mover controls and excitation controls are two 

main functions of generating unit control. Prime mover controls have the 

functionalities of rotor speed regulation and control of mechanical energy sources, 

such as steam turbines. The excitation control aims to regulate generator voltages and 

reactive power outputs of the generation units. The dispatch of active power generation 

is determined by system generation control to balance the total system generation 

against system loads and losses so that the desired frequency and power balance within 

the whole system can be maintained. The transmission controls include the controls of 

power and voltage control devices, such as reactive power compensators, OLTC 

transformers, phase-shifting transformers and HVDC transmission controls [25], as 

well as controls of network topology, such as optimal transmission switching [28] and 

network reconfiguration [29]. 
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These control actions contribute significantly to system operation, so that the 

operational security limits, such as branch power flow and bus voltage limits, can 

always be satisfied, even if (credible or expected) disturbances occur. However, 

control objectives can vary significantly in different operating conditions. Under 

normal operating conditions, the control objective is generally subject to economic 

benefits, so the system can be operated as affordably and efficiently as possible, with 

higher utilization of network components. On the other hand, when the system is in 

abnormal operating conditions (e.g. due to a fault), the control objective is to recover 

the system to normal operating conditions as soon as possible and to prevent potential 

larger damages and economic losses [30].  

Classification of system operating states 

For the purpose of making proper control strategies for different operating conditions, 

system operating conditions are classified into different operating states. A three-stage 

framework for operating state classification is initially proposed in [31] and extended 

to five stages in [32]. System operating states are divided based on the level of system 

adequacy and system security. The adequacy is assessed based on power balance 

equations and availability of generating units to supply all loads plus losses, while 

security is evaluated with respect to the post-fault stable system operation and 

satisfaction of component and network operational limits. Figure 2.1 [25] depicts these 

operating states and transitions between the states. Table 2.1 lists the criteria for the 

state classifications and characteristics of each state. 

 
Figure 2.1: Power system operating states 
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In the normal state, the system can supply all the loads (adequacy) with all security 

limits satisfied. The network has a sufficient level of security margins, so it can 

withstand at least one contingency with or without the implementation of corrective 

control actions. In this state, system operators tend to maximise system economic 

benefits and minimise environmental impact. 

A relatively moderate and frequent disturbance, such as specific weather condition, 

can reduce system security level. For instance, high temperature can reduce 

transmission capacities of transmission lines, while snow/ice or wind can cause 

damages and failures of overhead lines. In such cases, the system will usually transit 

into the alert state, where both adequacy and security constraints are still satisfied if 

the constraint violations caused by any contingency can be removed by corrective 

actions. Proper preventive actions, such as generation shifting, or the increase of 

reserve generation, or system reconfiguration, can be applied to restore the system 

from alarm state to the normal state. 

If the control actions are not implemented or not efficient when a sufficiently severe 

disturbance occurs for the system in the alert state, the system will transfer to the 

emergency state. In this state, system adequacy can still be maintained, but security 

limits, such as bus voltage limits and short-term emergency ratings of transmission 

lines, will be violated. In order to prevent more severe consequences, such as cascading 

failures and blackouts, control actions should be implemented to mitigate violations of 

system security limits and bring the system back to alert state. 

Table 2.1: Classification of system operating states and their characteristics 

Operating 

states 

Operation

al limits 

satisfied? 

System 

Adequacy? 

N-1 

security 

criteria 

satisfied? 

Corrective 

actions 

required? 

Normal ✓ ✓ ✓  

Alert ✓ ✓  ✓ 

Emergency  ✓  ✓ 

In-extremis    ✓ 

Restorative ✓   ✓ 
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If the above actions are not applied or are ineffective, the system will enter the in-

extremis state, in which the cascading failures are likely to happen. To prevent the 

widespread blackout, control actions, such as load shedding and controlled system 

splitting, should be applied. 

Implementations of in-extremis control actions usually separate the network into 

several “islands”, so that further deterioration (within islands) is prevented. Finally, 

the system will enter the restorative state, when system operators try to recover the 

electricity supply by reconnecting separated parts of the system and network facilities, 

as well as implementing load restoration schemes. These actions will help the system 

to transfer into the normal or alert state, depending on the circumstances and the 

considered period of the overall restorative state. 

The classification of system operating states can provide system operators with a 

framework in which control strategies can be developed with specific control 

objectives and adequate control actions can be implemented effectively in different 

states. 

Preventive vs corrective control 

Control actions for power system security have been divided into two general 

categories: preventive and corrective controls. Preventive controls are implemented 

before disturbances, aiming to better prepare the network for future contingency events. 

In contrast, corrective controls are applied in post-disturbance states, to recover the 

system and return it into the normal/alert state, in such a way that the consequences 

can be minimized. Preventive control actions include generation rescheduling, 

network reconfiguration, voltage regulation, reactive power compensation and 

contracted load curtailment. Corrective actions consist of direct or indirect load 

shedding, generation shedding or connection of reserve generation, switching of shunt 

capacitors or reactors, and network splitting. Typically, the best or most optimal 

control actions are achieved by security-constrained optimization methods [30][33]. 

2.3 Uncertainty handling in power systems 

Mathematically, the term “uncertainty” is defined as the difference between the actual 

value and the measured, estimated, or calculated value [34]. In modern power systems, 
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decision makings in both planning and operational stages are subject to different 

uncertainties. In the UK, RES capacity has increased to around 45 GW by the end of 

2018. During 2018, the total renewable energy generation was around 110 TWh, which 

accounted for around 33.0% of the total electricity generated. Due to the uncertainties 

in RES, the power outputs of renewable generation are significantly more variable than 

these of traditional centralised and utility-controlled generation units. The increased 

penetration of RES has not only introduced new uncertainties, but it has also increased 

the levels of previously present uncertainties [35][36]. In order to maintain the security 

of electric power supply, it is essential to analyse characteristics of uncertainties with 

appropriate models and to manage them with adequate/optimal controls. 

In electric power systems, sources of uncertainties can be divided into two categories: 

technical parameter uncertainties and economic parameter uncertainties [37]. 

Technical uncertainties can be further classified into two subgroups, operational and 

topological parameter uncertainties. The uncertainties of operational parameters are 

the variations in generation outputs, changes of demand, etc. The availability of 

generation units and outages of network branches are topological parameter 

uncertainties. The uncertainties of economic parameters can also be subdivided into 

two groups, macroeconomic parameters, such as economic growth, and 

microeconomic parameters, which include variations in electricity prices, fuel costs 

and investment costs.  

There are multiple methods to handle uncertainties during the analysis of power 

systems. The main differences between those methods are in the models used to 

describe uncertainties. These approaches can be classified into three categories, 

probabilistic approaches, possibilistic approaches and hybrid approaches [36]. 

2.3.1 Probabilistic approaches 

Probabilistic approaches are commonly used for modelling uncertainties in the power 

system, where uncertain variables are modelled by specific probability density 

functions (PDFs). For instance, the variations in wind speed, system loads and solar 

irradiation can be modelled by Weibull distribution [37][38][39], Gaussian 

distribution [40] and Beta distribution [41][42][43], respectively. 
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Given a function 𝑌 = 𝐹(𝑋) , where 𝑋  represents the set of uncertain variables 

following specific PDFs, and 𝑦 represents the output, the probabilistic information of 

the output can be determined by three widely used approaches: Monte Carlo simulation 

(MCS), scenario-based analysis (SBA), and point estimation method (PEM) [44]. 

The MCS is a broad class of methods relying on repeated random sampling to obtain 

numerical results. The general steps of MCS are given as follows, in which 𝑁𝑠 denotes 

the sampling size; 𝑀𝑒𝑎𝑛𝑌 and 𝑆𝑡𝑑𝑌 are the mean value and standard deviation of 𝑌 

for the uncertainties. 

1. Initialize 𝑁𝑠, Set 𝑖 = 1 

2. Sample 𝑋𝑒,𝑖 according to specific distributions and compute 𝑌𝑒,𝑖 = 𝐹(𝑋𝑒,𝑖 ) 
3. 𝑖 = 𝑖 + 1. if 𝑖 > 𝑁𝑠 continue, otherwise, go to step 2. 

4. Calculate the mean and standard deviation as 𝑀𝑒𝑎𝑛𝑌 =
∑ 𝑌𝑒,𝑖
𝑁𝑠
𝑖=1

𝑁𝑠
 and 𝑠𝑡𝑑𝑌 =

√
∑ (𝑌𝑒,𝑖−𝑀𝑒𝑎𝑛𝑌)

2𝑁𝑠
𝑖=1

𝑁𝑠
  

The sampling size 𝑁𝑠 should be large enough to ensure the convergence criteria of 

MCS is satisfied. In the following research presented in this thesis, the convergence 

criterion is that the distribution characteristics (means, variances, etc.) of MCS results 

will not change significantly if the sampling size is further increased. The samples are 

generated by inverse transform sampling which generates random numbers from the 

uniform distribution between 0 and 1 initially, and then feed them through the inverse 

cumulative distribution functions (CDF) of typical distributions to obtain samples. 

In [39] and [45], MCS is applied to deal with uncertainties in demands and RES 

outputs in distribution networks during the planning stage. References [48] and [49] 

use MCS to handle uncertain parameters in optimal scheduling and dispatch problems 

introduced by RES outputs, demand variations, as well as power demand of electric 

vehicles. In [48] and [49], MCS is used to manage uncertain wind power outputs and 

load variations in transmission expansion planning. The MCS approach has been 

widely used in many fields of power system research due to its simplicity. However, 

the accuracy of MCS results is highly dependent on the number of sampling and may 

be reduced as the number of uncertain parameters increases. Thus, to achieve results 
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with a high level of accuracy on a large-scale problem with many uncertain variables, 

a very large number of trials may be required, which will result in significant 

computational requirements.  

The SBA is another category of approaches to managing uncertain variables in power 

systems. In these methods, a group of scenarios 𝑋𝑖, 𝑖 = 1, 2, … , 𝐾  for uncertain 

variables are selected and assigned with probabilities 𝑃𝑖 , 𝑖 = 1, 2, … , 𝐾 based on the 

corresponding PDFs. Then the mean value of the output can be determined by: 

𝑀𝑒𝑎𝑛𝑌 =∑𝑃𝑖𝐹(𝑋𝑖)

𝐾

𝑖=1

(2.1) 

SBA is an efficient approach to deal with stochastic programming (SP), which is an 

approach to model optimisation problems that involve uncertainty [50]. The most 

widely used SP model is the two-stage program [51]. The decision-maker takes actions 

in the first stage, then the random events get realised, which affect the outcome of the 

first-stage decision. After that, recourse decisions are made in the second stage to 

compensate for the negative effects which may be caused by first-stage decisions. The 

optimal solutions of this recourse model consist of a single first-stage decision and a 

collection of second-stage decisions corresponding to the realisations of uncertain 

variables. The mathematic formulation of the two-stage model is presented as [52]: 

min
𝑥1

𝑓(𝑥1) + 𝔼[𝑄(𝑥1, 𝜉)]

𝑠. 𝑡. 𝐺(𝑥1) = 0

𝐻(𝑥1) ≤ 0

(2.2) 

where 𝑥1 represents the vector of the first-stage decision variables and 𝜉 represents the 

vector of the random variables. 𝑓(𝑥1) , 𝐺(𝑥)  and 𝐻(𝑥)  represents the first-stage 

objective function, equality constraints and inequality constraints, respectively. 

𝔼[𝑄(𝑥1, 𝜉)] is the expected value of the recourse cost and 𝑄(𝑥1, 𝜉) is given by: 

𝑄(𝑥1, 𝜉) = min
𝑥2

𝑞(𝑥2, 𝜉)

𝑠. 𝑡. 𝐺𝑞(𝑥1, 𝑥2, 𝜉) = 0

𝐻𝑞(𝑥1, 𝑥2, 𝜉) ≤ 0

(2.3) 
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where 𝑥2  is the second-stage decision variables, 𝐺𝑞  and 𝐻𝑞  are the equality and 

inequality constraints in the second stage.  

In most applications, the closed form of solutions to the optimisation model presented 

by (2.2) and (2.3) is not available due to the implicit formulation of objective functions 

and constraints with random variables. SBA can be applied to formulate the 

computationally tractable approximation. Representing the random variables 𝜉 with 𝐾 

scenarios 𝜉𝑖, 𝑖 = 1,… , 𝐾  and corresponding probabilities 𝑃𝑖 , 𝑖 = 1,… , 𝐾 , the two-

stage model can be reformulated as: 

min
𝑥1,𝑥2

𝑓(𝑥1) +∑𝑃𝑖𝑞(𝑥2𝑖, 𝜉𝑖)

𝐾

𝑖=1

𝑠. 𝑡. 𝐺(𝑥1) = 0

𝐻(𝑥1) ≤ 0

𝐺𝑞(𝑥1, 𝑥2𝑖 , 𝜉𝑖) = 0, 𝑖 = 1,2, … , 𝐾

𝐻𝑞(𝑥1, 𝑥2𝑖 , 𝜉𝑖) ≤ 0, 𝑖 = 1,2, … , 𝐾

(2.4) 

Two-stage SP has been applied for day-ahead planning, reserve management and 

electricity market trading [53]–[56]. Similar to MCS, the increase of scenario numbers 

can improve the accuracy of the achieved results but will increase the computational 

burden. Consequently, the trade-off between the accuracy (loss of the information) and 

the reduction of the computational burden should be made carefully through scenario 

reduction [57]–[60].  

The PEM works based on the moments of uncertain inputs. For the problem 𝑌 = 𝐹(𝑋)  

in which the length of uncertain vector 𝑋 is 𝑛, the main steps to estimate the mean 

value and standard deviation of 𝑌  with two-point estimation method are given as 

follows [61]: 

1. Set 𝐸(𝑌) = 0, 𝐸(𝑌2) = 0, 𝑘 = 1 

2. Calculate the locations and probabilities of concentrations, 𝜖𝑘,𝑖 and 𝑃𝑘,𝑖: 

𝜖𝑘,𝑖 =
1

2

𝑀3(𝑋𝑘)

𝜎𝑋𝑘
3 + (−1)𝑖+1√𝑛 +

1

2
(
𝑀3(𝑋𝑘)

𝜎𝑋𝑘
3 )

2

 , 𝑖 = 1,2 (2.5) 
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𝑃𝑘,𝑖 =
(−1)𝑖𝜖𝑘,3−𝑖

2𝑛√𝑛 + 1
2
(𝑀3(𝑋𝑘)

𝜎𝑋𝑘
3 )

2
, 𝑖 = 1,2 (2.6)

 

where 𝑋𝑘  is the 𝑘𝑡ℎ  component of the uncertain variable 𝑋  and 𝑀3(𝑋𝑘) 

denotes the third-order central moment of 𝑋𝑘. 

3. Calculate the concentration points 𝑋𝑘,𝑖: 

𝑋𝑘,𝑖 = 𝑀𝑒𝑎𝑛𝑋𝑘 + 𝜖𝑘,𝑖 × 𝑠𝑡𝑑𝑋𝑘 , 𝑖 = 1,2 (2.7) 

where 𝑀𝑒𝑎𝑛𝑋𝑘 and 𝑠𝑡𝑑𝑋𝑘 are the mean and standard deviation of 𝑋𝑘 

4. Calculate 𝐸(𝑌) and 𝐸(𝑌2) as: 

𝐸(𝑌) = 𝐸(𝑌) +∑ 𝑃𝑘,𝑖𝐹(𝑥, 𝐗𝒊)
2

𝑖=1
(2.8) 

𝐸(𝑌2) = 𝐸(𝑌2) +∑ 𝑃𝑘,𝑖𝐹
2(𝑥, 𝐗𝒊)

2

𝑖=1
(2.9) 

where 𝐗𝒊 is the uncertain vector in which the 𝑘𝑡ℎ component is replaced by the 

concentration points calculated in Step 2, given as: 

𝐗𝒊 = [𝑋1, 𝑋2, …𝑋𝑘,𝑖, … , 𝑋𝑛], 𝑖 = 1,2 (2.10) 

5. 𝑘 = 𝑘 + 1 if 𝑘 ≥ 𝑛 continue, otherwise go to Step 2. 

6. Calculate the mean and standard deviation of 𝑌 by: 

𝑀𝑒𝑎𝑛𝑌 = 𝐸(𝑌) (2.11) 

𝑠𝑡𝑑𝑌 = √𝐸(𝑌2) − 𝐸2(𝑌) (2.12) 

PEM estimates the moments of outputs with only 2𝑛 function calculations. Compared 

with MCS and SBA, it is less computationally expensive. Some applications of PEM 

in power systems are provided by[62]–[66] 

In this thesis, the MCS method is used to generate samples for uncertain wind speeds 

and directions, power outputs of wind turbines as well as load variations, which is 

discussed in Chapter 4 and Chapter 5. 

2.3.2 Possibilistic method 

Possibilistic methods apply the fuzzy set theory proposed by [67] to model the 

uncertain variables, in which the uncertain parameters are presented by fuzzy sets.  
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Assuming that 𝑈 is a collection of objects denoted by 𝑥 and the deterministic set A 

can be represented by the characteristic function 𝜑𝐴 shown as (2.13), which maps 𝑈 

into two-element set {0,1} as: 

𝜑𝐴(𝑥) = {
0, 𝑥 ∉ 𝐴
1, 𝑥 ∈ 𝐴

, ∀𝑥 ∈ 𝑈 (2.13) 

Similarly, a fuzzy set 𝐴 in 𝑈 can be represented by a set of ordered pairs denoted as 

𝐴 = {(𝑥, 𝜇𝐴(𝑥))|𝑥 ∈ 𝑈}  in which 𝜇𝐴  is a membership function given as (2.14), 

mapping 𝑈 into the closed interval [0, 1]. The value of the membership function would 

be 0 if the object 𝑥 is out of the set and the value would be 1 if 𝑥 is exactly in the set. 

However, if the object 𝑥 is possibly in the set, the value of the membership function 

would be between 0 and 1. Triangle fuzzy membership function, which is in general 

use to represent the load uncertainty, can be given as [68]: 

𝜇𝐴(𝑥) =

{
 
 

 
 
𝑥 − 𝑑 − 𝑎

𝑎
,  𝑥 ∈ [(𝑑 − 𝑎), 𝑑]

(𝑑 + 𝑏) − 𝑥

𝑏
, 𝑥 ∈ [𝑑, 𝑑 + 𝑏]

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2.14) 

where 𝑑 is the most probable value of the uncertain parameter, 𝑎 and 𝑏 represent the 

inferior dispersion and superior dispersion, respectively. 

For the given problem 𝑌 = 𝐹(𝑋) in which the uncertain variables 𝑋 are modelled by 

fuzzy sets, the fuzzy set of the output can be determined by 𝛼-cut method [68]. The 

values of 𝛼 are between 0 and 1. Applying 𝛼-cuts to the fuzzy set 𝐴, the interval 𝐴𝛼, 

which includes all the individuals of 𝐴 whose membership function value is larger than 

𝛼 can be represented  as: 

𝐴𝛼 = {𝑥 ∈ 𝑈|𝜇𝐴(𝑥) ≥ 𝛼} (2.15) 

or 

𝐴𝛼 = [𝐴𝛼, 𝐴𝛼̅̅ ̅̅ ] (2.16) 

where 𝐴𝛼 and 𝐴𝛼̅̅ ̅̅  are the lower and upper bounds of the interval. 
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Then the calculation of fuzzy sets follows interval arithmetic [69]. Given two intervals 

[𝑎, 𝑏]  and [𝑐, 𝑑]  which are defined as [𝑎, 𝑏] = {𝑥|𝑎 ≤ 𝑥 ≤ 𝑏}  and [𝑐, 𝑑] = {𝑥|𝑐 ≤

𝑥 ≤ 𝑑}, interval arithmetic operations are defined by: 

[𝑎, 𝑏] + [𝑐, 𝑑] = [𝑎 + 𝑐, 𝑏 + 𝑑]
[𝑎, 𝑏] − [𝑐, 𝑑] = [𝑎 − 𝑑, 𝑏 − 𝑐]

[𝑎, 𝑏] ∙ [𝑐, 𝑑] = [min ( 𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑),max (𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑)]
[𝑎, 𝑏]

[𝑐, 𝑑]
= [min (

𝑎

𝑐
,
𝑎

𝑑
,
𝑏

𝑐
,
𝑏

𝑑
) ,max (

𝑎

𝑐
,
𝑎

𝑑
,
𝑏

𝑐
,
𝑏

𝑑
)]

(2.17) 

After obtaining the fuzzy set for the output, the defuzzification needs to be 

implemented to translate the fuzzy number to a real value. Multiple defuzzification 

methods can be used including the centroid method, maximum defuzzification 

technique, weighted average defuzzification technique [70], etc. 

In power system analysis, the fuzzy numbers can be used to model uncertainties, such 

as load and generation, and then the fuzzy power flow analysis can be solved with 

interval arithmetic method [71]. The fuzzy logic has been applied to deal with 

uncertainties in power plant maintenance scheduling [72], unit commitment [73] and 

economic dispatch [74]–[76] with RES. 

2.3.3 Other uncertainty handling approaches in power systems 

Apart from the methods presented above, there are some methods which can be used 

when both probabilistic and possibilistic information are not available. Interval 

arithmetic (IA) is one of these approaches, wherein the ranges of output variables 

based on the known ranges of input variables [69][77]. Interval power flow calculation 

is introduced by [78] and interval analysis has been used to deal with power system 

uncertainties in electricity market decision makings [79], unit commitment [80] and 

distribution network reconfiguration [81]. However, as IA assumes that the unknown 

values of the uncertain inputs can vary independently within the given intervals, the 

range estimated by IA tend to be much wider than the exact range of the results. In 

order to overcome this problem, affine arithmetic (AA), which takes into account the 

dependency between computed and input variables, is proposed for interval 

computation. This method is used to determine the optimal wind curtailment strategies 
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for networks with high wind penetration in this thesis, which is discussed in Chapter 

5. 

Robust optimisation (RO) [82] is another technique to manage interval uncertainties. 

It aims to find the solution which is feasible for any realisation of the uncertainties in 

the given sets, even if the worst scenario occurs. Given a network with uncertainties 

which include RES and load variations, RO is able to find the solution which provides 

the optimal scheduling of network control actions with the realization of the worst 

cases. Then the network can stand any realization of uncertain variables without 

constraint violations and provide a reasonable economic or environmental 

performance (objective function) [40], [83], [84].  

Chance-constrained programming (CCP) [85] is another formulation of stochastic 

programming discussed above, which can also be considered as a subclass of robust 

optimization methods. The robustness guaranteed in chance-constrained programming 

is probabilistic and constraint violations are allowed with usually very low pre-defined 

probability. Solution techniques to CCP are versatile. For a linear problem, assuming 

that the uncertain variables follow Gaussian distribution, the CCP can be transformed 

into a formulation of a second-order cone programming (SOCP), which is solvable in 

polynomial time using well-known methods of convex optimization [86]. However, 

solving chance constrained nonlinear optimization problems is still a challenging task, 

as it is difficult to evaluate the distributions of outputs from a nonlinear system, 

although the distributions of inputs are known. The additional check of the satisfaction 

of these chance constraints is either using MCS [87] or SBA [88][89], which can 

become time-consuming as the pre-defined constraint violation probability is low or 

when it is based on complicated multivariate integrations, which are highly non-

convex [90]. To deal with these challenging problems, convex relaxation proposed by 

[91]–[93] might be a potential option. 

When the information on uncertainties is to a large extent missing, information gap 

decision theory (IGDT) [94] can be applied, which only needs the nominal values for 

uncertain parameters. Given a decision-making model under uncertain conditions 

presented as (2.18): 
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min
𝑥
𝑓(𝑥, 𝜉) 

𝑠. 𝑡. 𝐺(𝑥, 𝜉) = 0 (2.18) 

𝐻(𝑥, 𝜉) ≤ 0 

The optimisation problem can be solved initially assuming that the uncertain 

parameters would not deviate from the nominal values. Then the question which would 

arise when the realised uncertain parameters are different from the predicted values is: 

whether the uncertainty will entail positive or negative outcomes? Two different IGDT 

strategies, risk adverse (RA) and opportunity seeker (OS), can address this problem. 

RA strategy is to find the decisions which can avoid the potential failures, while OS 

strategy aims to find the decisions that could be beneficial from the realizations of 

uncertainties [95].  

In IGDT-based approaches, the enveloped bound model described as (2.19) is one of 

the commonly used to describe uncertain variables: 

𝑈(𝑢𝑙, 𝜉0) = {𝜉: |
𝜉 − 𝜉0
𝜉0

| ≤ 𝑢𝑙} , 𝑢𝑙 ≥ 0 (2.19) 

where 𝑢𝑙 is the unknown uncertainty level of parameters 𝜉,  𝜉0 is the forecast value of 

the uncertain parameter and 𝑈(𝑢𝑙, 𝜉0) is the set of all values of 𝜉 whose deviation from 

the nominal value 𝜉0 will never be larger than 𝑢𝑙𝜉𝑜.  

The RA strategy tries to select the decisions which can make the objective function 

“immune” against the deviations of uncertain parameters. The most robust decision is 

obtained if the objective function “sustains” with respect to the maximum radius of 

uncertainty. The decision-making policy can be formulated as the bilevel optimisation 

model: 

max
𝑥
𝑢𝑙 

𝑠. 𝑡. 𝐺(𝑥, 𝜉) = 0 (2.20) 

𝐻(𝑥, 𝜉) ≤ 0 

where 𝑢𝑙̂ is given by the maximum value of the unknown uncertainty levels: 

𝑢𝑙̂ = max
𝑢𝑙

𝑢𝑙

𝑠. 𝑡. 𝑓(𝑥, 𝜉) ≤ 𝛽𝑐
(2.21) 
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in which 𝛽𝑐 is the predefined critical limit (Robustness) which the objective function 

value should avoid surpassing. 

In contrast to RA strategy, decision-makers who apply OS strategy are generally 

optimistic about the uncertain events that may bring about positive outcomes. In this 

strategy, the decision variables are selected, assuming that the positive outcomes can 

occur with a slight deviation of uncertain variables. The mathematical formulation of 

OS strategy is given as follows: 

min
𝑥
𝑢𝑙̌ 

𝑠. 𝑡. 𝐺(𝑥, 𝜉) = 0 (2.22) 

𝐻(𝑥, 𝜉) ≤ 0 

where 𝑢𝑙̌ is calculated by: 

𝑢𝑙̌ = min
𝑢𝑙
𝑢𝑙

𝑠. 𝑡. 𝑓(𝑥, 𝜉) ≤ 𝛽𝑜
(2.23) 

in which 𝛽𝑜 is the opportunity value that the objective function should be lower than. 

Applications of IGDT in energy systems are reviewed by [96]. 

2.3.4 Summaries of approaches for management of 
uncertainties in power systems 

The attributes of the commonly used uncertain management approaches in power 

systems are listed as Table 2.2.  

In probabilistic approaches, the uncertainties are described by distribution functions. 

The information from these distributions, such as expectation and variance of the 

output, is determined by sampling or scenario-based methods, which are easy to 

implement but require a significant number of sampling and computational efforts to 

achieve results with a high level of accuracy.  

Possibilistic methods model uncertain inputs with fuzzy numbers and calculate the 

fuzzy sets of outputs according to fuzzy logic. Although they convert the ambiguous 

uncertain information into effective numerical expressions, the applications may be 

restricted due to the complicated implementation.  
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Hybrid approaches, combining probabilistic and possibilistic methods, are capable of 

dealing with uncertainties described by different models but are also subject to the 

disadvantages of both methods.  

Interval arithmetic, robust optimization and IGDT-based methods can be applied when 

the information on uncertainties (e.g. their probability distributions) is severely 

missing. Nevertheless, the main disadvantage of these approaches is that their results 

are too conservative when the uncertain events are finally realized. Furthermore, 

interval arithmetic suffers from “the curse of dimension”, which may result in “error 

explosion” when applied to problems with many uncertain variables.  

Chance constrained programming, which applies probabilistic information instead of 

intervals, can avoid the conservativeness of the solutions. However, obtaining the 

tractable equivalent reformulation of CCP is still challenging, especially when the 

constraints with uncertain variables are nonlinear, as it is usually the case.  

Table 2.2: Summary of attributes of uncertain management approaches in power 

system 

Method 
Uncertainty 

representation 
Advantages Disadvantages 

Probabilistic PDFs Easy to implement 

High computational 

burden and 

approximate results 

Possibilistic Fuzzy sets 

Convert ambiguous 

information to numerical 

expression 

Complex to 

implement 

Hybrid 
PDFs & fuzzy 

sets 

Deal with multiple types 

of uncertainties 

Shortcomings of 

both probabilistic 

and possibilistic 

methods 

IA Intervals Applicable when 

uncertain information is 

severely missing; 

Robust solutions are 

obtained 

Too conservative; 

Error explosion 

RO Intervals 

Too conservative 
IGDT 

Forecast values 

and bounded 

models 

CCP PDFs 
Conservativeness is 

controlled 

Complicated 

formulation hard to 

solve 
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Considering the strengths and shortcomings of those methods, the selection of proper 

uncertain management approaches should be made carefully based on the types of 

uncertain variables. Additionally, further research efforts should be invested in the 

development of uncertain handling methods with higher robustness, less 

computational burden and simplicity of implementation. 

2.3.5 Hybrid probabilistic-possibilistic approaches 

In some cases, some uncertain parameters are modelled by PDFs while the others are 

modelled by fuzzy membership functions. To handle uncertainties in a way that some 

are modelled probabilistically while the others are represented possibilistically, the 

hybrid methods are required. Possibilistic-Monte Carlo approach and Possibilistic-

scenario based approach have been introduced in [97] and [98]. 

2.4 Optimal power flow 

Optimal power flow (OPF) problem was firstly formulated by [99] in 1962. It plays an 

essential role in the analysis of power systems. Typically, it is solved on a “year-by-

year” basis in system planning studies and on a “day-ahead” basis for electricity 

market analysis. Moreover, OPF is at the heart of the economically efficient and secure 

operation of networks [100]. 

2.4.1 General formulation of OPF 

The OPF problem aims to find the optimal operating point x ≔ {𝐏, 𝐐, |𝐕|, 𝛉} for an 

objective function, subject to both equality and inequality constraints. The general 

formulation of alternating current optimal power flow (ACOPF) problem is given by: 

Min
x
𝑓(x) (2.24) 

𝑠. 𝑡. 𝐺(x) = 0 (2.25) 

𝐻(x) ≤ 0 (2.26) 

where equation (2.24) represents the objective function, such as generation cost 

minimisation of active power loss minimisation. The equations (2.25) and (2.26) 

represent the equality constraints and inequality constraints, respectively. In ACOPF 

problem, the equality constraints include the AC power flow equations, while the 

inequality constraints consist of the security limits of power system operation, 
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including bus voltages, thermal ratings of branches and minimum/maximum generator 

power outputs. 

Equality constraints of OPF – AC power flow equations 

Given an electrical grid with a set of network buses 𝒩 and network branches ℒ, the 

relationships between branch flows and bus voltages are given by AC power flow 

equations shown as (2.27) and (2.28). 

 𝑃𝑔𝑖 − 𝑃𝑑𝑖 = |𝑉𝑖| ∑ |𝑉𝑗|(𝐺𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗) + 𝐵𝑖𝑗 sin(𝜃𝑖 − 𝜃𝑗))𝑗∈𝒩 , ∀𝑖 ∈ 𝒩 (2.27) 

 𝑄𝑔𝑖 − 𝑄𝑑𝑖 = |𝑉𝑖| ∑ |𝑉𝑗|(𝐺𝑖𝑗 sin(𝜃𝑖 − 𝜃𝑗) − 𝐵𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗))𝑗∈𝒩 , ∀𝑖 ∈ 𝒩 (2.28) 

where: 𝑃𝑔𝑖 and 𝑄𝑔𝑖 are active and reactive power outputs of the generator at bus 𝑖, 𝑃𝑑𝑖 

and 𝑄𝑑𝑖  are active and reactive demands at bus 𝑖 , |𝑉𝑖|,𝜃𝑖  and |𝑉𝑗|,𝜃𝑗  represent bus 

voltage magnitudes and voltage angles at bus 𝑖 and bus 𝑗 respectively, 𝐺𝑖𝑗 and 𝐵𝑖𝑗 are 

the conductance and the susceptance for the 𝑖𝑗 𝑡ℎ component of the admittance matrix 

Y, determined by: 

𝑌𝑖𝑗 =

{
 

 ∑ 𝑦𝑖𝑘
(𝑙,𝑖,𝑘)∈ℒi∪ℒi

𝑅
, 𝑖𝑓 𝑖 = 𝑗

−𝑦𝑖𝑗 , 𝑖𝑓 𝑖 ≠ 𝑗

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2.29) 

where for each branch (𝑙, 𝑖, 𝑘) ∈ ℒ, 𝑖 and 𝑘 are the 𝑓𝑟𝑜𝑚 and 𝑡𝑜 buses respectively, 

and 𝑙 is the branch id, ℒ𝑖 and ℒ𝑖
𝑅 are the subsets of branch ids with which the from end 

and the to end of the branch are bus 𝑖 respectively. 

Equations (2.27) and (2.28) define the relationship between the 4|𝒩| variables 𝑥 ≔

{𝐏𝐠, 𝐐𝐠, |𝐕|, 𝛉} at each bus. To solve those equations, the buses in the networks are 

divided into three categories, PV, PQ and slack bus. The buses at which generators 

with automatic voltage regulation are installed are defined as PV buses. For a PV bus, 

its active power injection and voltage magnitude are specified. PQ buses are usually 

load buses, or buses in which generators do not have voltage regulation capabilities. 

For the PQ bus, its active and reactive power injections are known. The slack bus aims 

to set the reference for voltage magnitudes, voltage angles and frequency of the system. 
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Slack bus will balance power flows and compensate transmission losses and has a 

predefined voltage magnitude and voltage angle, usually 1.0 pu and 0°. 

Inequality constraints – operational security limits 

In the OPF problem, the inequality constraints consist of the physical and operational 

limits of the electric power system. Violations of these limits will reduce system 

security levels, as it will likely result in the activation of related protection systems 

(e.g. overloading), So operations beyond these limits may lead to cascade failures of 

components and blackout. Consequently, system operators should ensure that the 

limits are always satisfied.  

Security limits presented as (2.30) include bus voltage limits and thermal limits of 

branches. These limits constrain the electricity transferred between nodes during the 

steady-state operating conditions. Operation beyond branch thermal limits will trigger 

the protection, and the corresponding overloading components will be tripped to 

prevent their damage due to overheating. Similarly, the steady-state voltage at each 

bus should be maintained within the specified voltage margin, as the violations of bus 

voltage limits may lead to damages, tripping or poor operation of equipment connected 

at the buses. 

{
  
 

  
 
𝑃𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑖 ≤ 𝑃𝑔𝑖

𝑚𝑎𝑥 , ∀𝑖 ∈ 𝒢

𝑄𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑔𝑖 ≤ 𝑄𝑔𝑖

𝑚𝑎𝑥 , ∀𝑖 ∈ 𝒢

𝑉𝑖
𝑚𝑖𝑛 ≤ |𝑉𝑖| ≤ 𝑉𝑖

𝑚𝑎𝑥 , ∀𝑖 ∈ 𝒩  

𝜃𝑖
𝑚𝑖𝑛 ≤ 𝜃𝑖 ≤ 𝜃𝑖

𝑚𝑎𝑥 , ∀𝑖 ∈ 𝒩

(𝑃𝑙𝑖𝑗)
2
+ (𝑄𝑙𝑖𝑗)

2
≤ (𝑆𝑙

𝑚𝑎𝑥)2, ∀(𝑙, 𝑖, 𝑗) ∈ ℒ

(2.30) 

where 𝒢 is the set of generator indices. 𝑃𝑙𝑖𝑗 and 𝑄𝑙𝑖𝑗 denote active and reactive power 

flows on the branches 𝑙. 

Objective functions 

In modern power system operation, two common objectives for OPF problems are 

minimisation of fuel cost of power generation and minimisation of active power losses. 

The objective functions for fuel cost minimisation and active power losses are 

formulated as follows: 
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 𝑓𝑐 = ∑ 𝑎𝑖𝑃𝑔𝑖
2 + 𝑏𝑖𝑃𝑔𝑖 + 𝑐𝑖𝑖∈𝒢 ($/ℎ)  (2.31) 

where 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖 are the cost coefficients of generator 𝑖. 

 𝑓𝑙 =
1

2
∑ [𝑔𝑖𝑗 (|𝑉𝑖|

2 − |𝑉𝑗|
2
) + 2𝑏𝑖𝑗|𝑉𝑖||𝑉𝑗|sin (𝜃𝑗 − 𝜃𝑖)](𝑙,𝑖,𝑗)∈ℒ  (2.32) 

where 𝑔𝑖𝑗 and 𝑏𝑖𝑗 are the series conductance and susceptance of branch 𝑙.  

2.4.2 Approximation and convex relaxation of ACOPF 

The ACOPF problem is non-convex due to nonlinear terms |𝑉𝑖|
2 and 𝑉𝑖𝑉𝑗

∗, where 𝑉𝑗
∗ 

is the conjugate of 𝑉𝑗 , as well as inequality constraints, So its solution can be NP-hard 

due to the nonconvexity. Significant research effort in previous literature has been 

invested in developing accurate approximations of ACOPF.  

The DC optimal power flow (DCOPF), which has been widely used in power system 

planning, is linear programming (LP) problem, for which the solution techniques are 

highly efficient and reliable, even for large-scale networks. Integer variables, such as 

the connection of generators and switching status/control of branches, can be 

integrated into the optimization problem conveniently and DCOPF is extended to 

mixed-integer linear programming (MILP), which are suitable for many applications, 

such as optimal transmission reconfiguration [101]–[103], unit commitment [104] and 

system expansion planning [105].  

In spite of DCOPF method, more accurate approximation of ACOPF have also been 

researched and significant research effort has been invested into convex relaxation. 

Nonconvexity of ACOPF is mainly caused by the AC power flow equations, as well 

as the inequality constraints on voltage magnitudes and power flows. By using proper 

reformulation, the non-convex formulation can be transferred into a convex 

programming problem, whose global optimum can be guaranteed. The solution of 

convex relaxed reformulation provides a lower bound for the solutions of the original 

problem. If the gap between two solutions is zero, the globally optimal solution to the 

original problem can be recovered from the solution to the relaxed problem [106]. 

Additionally, if the relaxed problem is infeasible, it can be guaranteed that the original 

problem is not feasible as well. Convex relations of ACOPF are based on second-order 
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cone programming (SOCP), quadratically constrained quadratic programming (QCQP) 

and semidefinite programming (SDP) [107], [108]. 

DC optimal power flow 

DCOPF is a common simplification of the full ACOPF in which reactive power is 

neglected. This simplification is based on three assumptions [25]: 

• Voltage magnitudes at all buses are close to the nominal values, |𝑉𝑖| = 1.0 pu; 

• Voltage angle differences between the from and to ends of any branches are 

close to 0, such that sin(𝜃𝑖 − 𝜃𝑗) ≈ 𝜃𝑖 − 𝜃𝑗 , cos (𝜃𝑖 − 𝜃𝑗) ≈ 1; 

• Transmission line series resistance and shunt admittance are ignored so that the 

transmission losses do not exist. 

Following these assumptions, the optimal variable set is reduced to x ≔ {𝐏𝐠, 𝛉}. The 

simplified DCOPF is given by: 

Min
x
𝑓(x) (2.33) 

𝑠. 𝑡. 𝑃𝑔𝑖 − 𝑃𝑑𝑖 =∑ 𝐵𝑖𝑗
𝑑𝑐𝜃𝑗

𝑗∈𝒩
, ∀𝑖 ∈ 𝒩 (2.34) 

𝑃𝑙𝑖,𝑗 =
1

𝑥𝑖𝑗
(𝜃𝑖 − 𝜃𝑗), ∀(𝑙, 𝑖, 𝑗) ∈ ℒ (2.35) 

{

𝑃𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑖 ≤ 𝑃𝑔𝑖

𝑚𝑎𝑥 , ∀𝑖 ∈ 𝒢

𝜃𝑖
𝑚𝑖𝑛 ≤ 𝜃𝑖 ≤ 𝜃𝑖

𝑚𝑎𝑥, ∀𝑖 ∈ 𝒩

𝑃𝑙𝑖𝑗
𝑚𝑖𝑛 ≤ 𝑃𝑙𝑖𝑗 ≤ 𝑃𝑙𝑖𝑗

𝑚𝑎𝑥 , ∀(𝑙, 𝑖, 𝑗) ∈ ℒ 

(2.36) 

where  𝐵𝑑𝑐 represents the susceptance matrix; 𝑥𝑖𝑗 is the series reactance of branch 𝑙. 

DCOPF suffers from several disadvantages, which limit its application in the control 

of modern power systems. Firstly, it is not applicable in applications in which the R/X 

ratio of branches is large so that the resistances and losses cannot be ignored, 

conflicting with the third assumption above. Secondly, the DCOPF solution may not 

be feasible (nonlinear power flow equations are not satisfied) and the operators need 

to tighten some constraints in DCOPF and resolve it, which reduces computational 
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efficiency significantly. The tightening of constraints typically relies on heuristic 

methods that are hard to apply for large-scale networks. Thirdly, the solution of the 

DCOPF is not optimal for the original problem and therefore the “quality” of the 

solution cannot be guaranteed. 

SOCP relaxation of ACOPF 

In the SOCP-ACOPF, new variables  𝑢𝑖 , 𝑐𝑖𝑗 and  𝑠𝑖𝑗 are introduced for each bus 𝑖 ∈ 𝒩 

and each branch 𝑙 ∈ ℒ to replace the quadratic terms, |𝑉𝑖|
2 and  𝑉𝑖𝑉𝑗

∗, [109], [110]: 

𝑢𝑖 ≔ |𝑉𝑖|
2, 𝑐𝑖𝑗 ≔ |𝑉𝑖||𝑉𝑗| cos(𝜃𝑖 − 𝜃𝑗) , 𝑠𝑖𝑗 ≔ −|𝑉𝑖||𝑉𝑗| sin(𝜃𝑖 − 𝜃𝑗) (2.37) 

The new introduced variables, termed as conic variables, follow the equality 

constraints (2.38) and (2.39) which are nonconvex: 

𝑢𝑖𝑢𝑗 = 𝑐𝑖𝑗
2 + 𝑠𝑖𝑗

2 , ∀(𝑙, 𝑖, 𝑗) ∈ ℒ (2.38) 

 𝜃𝑗 − 𝜃𝑖 − atan(
𝑠𝑖𝑗

𝑐𝑖𝑗
) = 0, ∀(𝑙, 𝑖, 𝑗) ∈ ℒ (2.39) 

In order to have a convex SOCP formulation, the equality constraints (2.38) are relaxed 

into convex inequality constraints as (2.49) and the voltage angle constraints (2.39) are 

dropped. The relaxed ACOPF needs to satisfy the following constraints: 

𝑃𝑔𝑖 − 𝑃𝑑𝑖 = 𝐺𝑖𝑖𝑢𝑖 + ∑ (𝐺𝑖𝑗𝑐𝑖𝑗 − 𝐵𝑖𝑗𝑠𝑖𝑗)

(𝑙,𝑖,𝑗)∈ℒi∪ℒi
𝑅

, ∀𝑖 ∈ 𝒩 (2.40)
 

𝑄𝑔𝑖 − 𝑄𝑑𝑖 = −𝐵𝑖𝑖𝑢𝑖 − ∑ (𝐵𝑖𝑗𝑐𝑖𝑗 + 𝐺𝑖𝑗𝑠𝑖𝑗)

(𝑙,𝑖,𝑗)∈ℒi∪ℒi
𝑅

, ∀𝑖 ∈ 𝒩 (2.41)
 

𝑃𝑙𝑖𝑗 = 𝑔𝑖𝑗(𝑐𝑖𝑖 − 𝑐𝑖𝑗) + 𝑏𝑖𝑗𝑠𝑖𝑗 , ∀(𝑙, 𝑖, 𝑗) ∈ ℒ (2.42) 

𝑄𝑙𝑖𝑗 = −𝑏𝑖𝑗(𝑐𝑖𝑖 − 𝑐𝑖𝑗) + 𝑔𝑖𝑗𝑠𝑖𝑗 , ∀(𝑙, 𝑖, 𝑗) ∈ ℒ (2.43) 

𝑃𝑙𝑖𝑗
2 + 𝑄𝑙𝑖𝑗

2 ≤ 𝑆𝑙
𝑚𝑎𝑥 , ∀(𝑙, 𝑖, 𝑗) ∈ ℒ (2.44) 

|𝑉𝑖
𝑚𝑖𝑛|

2
≤ 𝑐𝑖𝑖 ≤ |𝑉𝑖

𝑚𝑎𝑥|2, ∀𝑖 ∈ 𝒩 (2.45) 

𝑃𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑖 ≤ 𝑃𝑔𝑖

𝑚𝑎𝑥 , ∀𝑖 ∈ 𝒢 (2.46) 

𝑄𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑔𝑖 ≤ 𝑄𝑔𝑖

𝑚𝑎𝑥, ∀𝑖 ∈ 𝒢 (2.47) 

𝑐𝑖𝑗 = 𝑐𝑗𝑖 , 𝑠𝑖𝑗 = −𝑠𝑗𝑖, ∀(𝑙, 𝑖, 𝑗) ∈ ℒ (2.48) 
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𝑐𝑖𝑗
2 + 𝑠𝑖𝑗

2 ≤ 𝑐𝑖𝑖𝑐𝑗𝑗 , ∀(𝑙, 𝑖, 𝑗) ∈ ℒ (2.49) 

where (2.40) and (2.41) are the reformulated AC power flow equations and (2.42) -

(2.44) represent the power flows on each branch as well as branch flow limits. It should 

be noted that (2.44) are convex quadratic as both active and reactive power flow 𝑃𝑙𝑖𝑗 

and 𝑄𝑙𝑖𝑗 are linear with respect to conic variables. Equation (2.45) represents the bus 

voltage magnitude limits.  

It should be noted that this formulation is based on the relaxation of constraints (2.38) 

and (2.39). This relaxation is exact for OPF of a radial network and the optimal voltage 

angles can be easily recovered by (2.39). However, this relaxation may result in 

infeasible solutions to the original problems when applied to mesh networks, as the 

sum of voltage angle differences across the lines in a mesh network should always be 

equal to zero. To deal with this problem, multiple approaches have been proposed to 

reformulate the arctangent constraints (2.39) so that these constraints can be included 

while maintaining the convexity. The author in [111] proposes a sequential conic 

procedure based on a Taylor series approximation, resulting in an ACOPF 

approximation. Two conic quadratic constraints based on rectangular coordinates are 

introduced in [110] to replace the arctangent functions. 

SDP relaxation of ACOPF 

All the constraints of OPF can be formulated as linear functions of the entries of the 

quadratic matrix 𝐕𝐕∗, where 𝐕 is the vector of bus voltage, [𝑉𝑖, … , 𝑉𝒩]
𝑇, and  𝐕∗ is the 

conjugate transpose of the vector 𝐕. Similar to the SOCP formulation, the non-convex 

constraints of ACOPF can be relaxed to convex if the term 𝐕𝐕∗ is replaced with a new 

matrix variable 𝐖. In order to maintain the equivalence between 𝐕𝐕∗ and 𝐖, two 

additional constraints need to be introduced: 1) the new matrix 𝐖 should be positive 

semidefinite 0W , and 2) the rank of the matrix 𝐖  should be equal to 

1, 𝑟𝑎𝑛𝑘{𝐖} = 1.The constraint 𝑟𝑎𝑛𝑘{𝐖} = 1 is nonconvex. Ignoring this constraint, 

the SDP relaxation can be shown as [112]: 

min𝑓(𝑥) over x = {𝐏𝐠, 𝐐𝐠,𝐖} (2.50) 
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𝑠. 𝑡. 𝑃𝑔𝑖 − 𝑃𝑑𝑖 = ∑ Re{(𝑊𝑖𝑖 −𝑊𝑖𝑗)𝑦𝑖𝑗
∗ }

(𝑙,𝑖,𝑗)∈ℒi∪ℒi
𝑅

, ∀𝑖 ∈ 𝒩 (2.51)
 

𝑄𝑔𝑖 − 𝑄𝑑𝑖 = ∑ Im{(𝑊𝑖𝑖 −𝑊𝑖𝑗)𝑦𝑖𝑗
∗ }

(𝑙,𝑖,𝑗)∈ℒi∪ℒi
𝑅

, ∀𝑖 ∈ 𝒩 (2.52)
 

|𝑉𝑖
𝑚𝑖𝑛|

2
≤ 𝑊𝑖𝑖 ≤ |𝑉𝑖

𝑚𝑎𝑥|2, ∀𝑖 ∈ 𝒩 (2.53) 

𝑃𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑖 ≤ 𝑃𝑔𝑖

𝑚𝑎𝑥 , ∀𝑖 ∈ 𝒢 (2.54) 

𝑄𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑔𝑖 ≤ 𝑄𝑔𝑖

𝑚𝑎𝑥, ∀𝑖 ∈ 𝒢 (2.55) 

|(𝑊𝑖𝑖 −𝑊𝑖𝑗)𝑦𝑖𝑗
∗ | ≤ 𝑆𝑙

𝑚𝑎𝑥 , ∀(𝑙, 𝑖, 𝑗) ∈ ℒ (2.56) 

(2.57) 

If this SDP relaxation provides a rank-1 optimal solution 𝐖∗, then the relaxation is 

exact, and the bus voltages can be recovered. 

2.5 Conclusions 

This chapter first discussed the three primary functions of power system security, 

system monitoring, contingency analysis and corrective action analysis, followed by a 

classification of system operating states and a brief introduction to control strategies 

for different states. Then, different approaches to manage uncertainties in power 

systems were introduced and briefly discussed. According to the different models 

applied to describe uncertainty parameters, these approaches were divided into three 

groups: probabilistic methods, possibilistic methods and hybrid methods. In order to 

make proper decisions for maintaining system security considering economic and 

environmental aspects, for operating conditions with high levels of uncertainty, the 

OPF problem is an essential tool. This chapter presented the general formulation of 

the OPF problem. Moreover, considering the practical requirements on the robustness 

and computational efficiency of the solutions, a commonly used approximation, 

DCOPF, and two potential convex relaxation formulations, SOCP and SDP, were 

introduced. 

  

0W
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Chapter 3 
Assessment of Distribution Network Hosting 

Capacity for Wind-Based Renewable 
Generation 

3.1 Introduction 

In order to address rising concerns about the climate change and provision of 

affordable and sustainable energy supply, there was recently a significant increase of 

installations of various renewable-based electricity generation sources in distribution 

networks, which are anticipated to increase further in the future. Although renewable-

based DG units are typically with smaller rated powers, their aggregate impact in a 

local distribution network will be stronger as their numbers increase. As the number 

of DG units increases, they will also start to reverse power flows at specific periods of 

time, e.g. at minimum loading conditions and/or when DG outputs are high, when part 

of the network with DG will be a net active power exporter during these times. 

However, at the times of maximum demand and/or when DG outputs are low, the 

network will be a net importer of active power. 

Connection of a high amount of DG presents a number of challenges to distribution 

network operators (DNOs), as the existing electricity networks can accommodate 

increasing connections of DG only to a certain limit. This limit, which is usually 

denoted as a “hosting capacity” (HC), is typically determined with respect to specific 

technical or operational network constraints, including thermal limits, voltage 

constraints, power quality limits, etc. The concept of HC can be further interpreted in 

terms of an HC of an individual bus and HC of the whole network. For example, a DG 

owner who is planning to connect one or more DG units in a specific part of the 

distribution network will be interested in information on the maximum connectable 

DG power at one or more individual buses in the network, which is denoted as the 

“locational hosting capacity“ (LHC). On the other hand, DNOs are under significant 

pressure to allow for increased DG connections and they are interested not only in 

LHC but also in the overall maximum power of multiple DG units that can be 

connected in the whole network, which is denoted as the “network hosting capacity” 

(NHC). 
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Various studies have been carried out to investigate the potential approaches for HC 

assessment. EPRI developed a “streamlined HC” method [113] to calculate HC of a 

feeder, taking into account sizes, types and locations of DG and feeder physical 

characteristics, as an intermediate step between the quick estimations and extensive 

analytical studies. Assessment of HC is performed with analytical methods (e.g. [114]), 

probabilistic methods (e.g. Monte Carlo based sampling in [115]) and optimisation-

based methods (e.g. [116][117]). Both active and reactive management strategies, such 

as power curtailment [118], reactive power compensation [119], voltage control by 

OLTC transformers [120], or control of DG power factor [121], are used to maximise 

HC for DG in distribution systems. In [122] and [123], an optimisation model is 

developed to include uncertainties introduced by renewable DG, in which the objective 

function is to maximise the DG capacity connected into the network. Similarly, [124] 

- [125] presented multi-objective stochastic programming models for HC assessment 

under uncertainties. In [126], two objective functions focusing on economic aspects 

are considered: 1) the cost of the purchased energy from the upstream network and 2) 

operation and maintenance costs of DGs. In [127], two objective functions relative to 

technical aspects are used: 1) the maximization of the total installed DG capacity and 

2) the minimization of active losses.  

In a given network, LHC and NHC will vary with numbers and locations of connected 

DG units. Generally, maximum LHC at any network bus can be allocated when there 

is no other DG connected (“first-come-first-served” approach). Maximum available 

LHC will reduce to a different extent after connecting additional DG units. In this 

chapter, deterministic and probabilistic approaches are applied for HC allocation, 

considering variations of demands, DG outputs and DTRs of network components. 

The HC assessment has three steps, where maximum LHC of individual buses is 

calculated first, assuming the connection of a single DG unit in the network. 

Afterwards, results for maximum LHC are used to calculate NHC, assuming that DG 

units are connected at all network buses. This step gives minimum LHC from 

proportional allocation of available NHC. Finally, bus-to-bus LHC-sensitivity factors 

are calculated to determine how available LHC changes for any number of DG units 

connected at arbitrary network buses. 
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3.2 Dynamic thermal rating of overhead lines 

DTR can provide actual current-carrying capacities of network components, based on 

their real-time operating conditions, and in that way, allow for the higher utilisation of 

network components. The increase in the uncertainty levels of power system operation, 

more competitive energy markets, as well as more frequent cross-regional power 

exchanges, have all pushed the existing networks to operate closer to their technical 

limits, which in itself presents a range of new challenges to network operation. Rather 

than investing in network upgrading and re-enforcing, the application of DTRs can be 

a more effective option to mitigate potential system congestions, both economically 

and technically.  

The application of DTR has potential benefits for renewable energy integration, 

especially wind-based generation. Transmission and distribution overhead lines with 

DTR control system are able to facilitate the integration of higher wind energy sources 

when the wind speed is high, as the corresponding wind-cooling impact on line 

conductors is more intensive. The implementation of DTR can therefore increase wind 

energy delivery, reduce wind energy curtailment, and improve the reliability and 

security of systems with high wind penetration [128][129][130] [131].  

For an overhead transmission/distribution line (OHL), the thermal rating is defined 

with respect to the maximum operating temperature at which the line conductors can 

maintain line security/safety clearance and prevent annealing of conductors. 

Traditionally, OHLs were operated with static thermal rating (STR), which is 

calculated concerning the assumed ambient conditions. In ER P27 [132], the 

recommended wind speed for STR estimation is 0.5 m/s, while the ambient 

temperature is 9℃, 20℃ and 2℃ for spring/autumn, summer and winter, respectively. 

On the other hand, the DTR implies that the thermal rating of an overhead line is 

dynamically changing with environmental conditions and the calculation of DTR for 

OHL can be done based on the thermal model of bare overhead conductors. 

The thermal model of the bare overhead conductor presented by IEEE standard 738-

2012 [23] is described by the following heat balance equation. 
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𝑞𝑐 + 𝑞𝑟 +𝑚𝐶𝑝
𝑑𝑇𝑐

𝑑𝑡
= 𝑞𝑠 + 𝐼

2𝑅(𝑇𝑐) (3.1) 

where the left-hand side of the equation is the heat loss rate per unit length and the 

right-hand-side is the heat gain rate per unit length; 𝑞𝑐 and 𝑞𝑟 denote convection heat 

loss rate per unit length (W/m) and radiated heat loss rate per unit length (W/m) 

respectively; 𝑚𝐶𝑝 is the heat capacity of the conductor (J/(m℃)); 𝑇𝑐  represents the 

conductor surface temperature (℃). On the right-hand side of the equation, 𝑞𝑠 is the 

rate of solar heat gain per unit length (W/m) and 𝐼2𝑅(𝑇𝑐) is the rate of joule heat gain 

per unit length (W/m); 𝑅(𝑇𝑐) is the AC resistance of the conductor at the temperature 

of 𝑇𝑐 (Ω/m). 

After setting 
𝑑𝑇𝑐

𝑑𝑡
 to be zero, the steady-state heat balance equation can be obtained: 

𝑞𝑐 + 𝑞𝑟 = 𝑞𝑠 + 𝐼
2𝑅(𝑇𝑐) (3.2) 

For given ambient data and set value of the maximum allowed operating temperature, 

the maximum allowable steady-state current of the conductor can be calculated by: 

𝐼 = √
𝑞𝑐+𝑞𝑟−𝑞𝑠

𝑅(𝑇𝑐)
(3.3) 

3.2.1 Convection heat loss rate - 𝒒𝒄 

The convection heat loss rate is significantly affected by the wind condition. Natural 

convection heat loss which occurs when there is no wind is given by: 

𝑞𝑐𝑛 = 3.645𝜌𝑓
0.5𝐷0.75(𝑇𝑐 − 𝑇𝑎)

1.25 (3.4) 

where 𝜌𝑓 is the air density (kg/𝑚3), 𝐷 is the diameter of the conductor (m), and 𝑇𝑎 is 

the ambient temperature (℃), respectively. 

The forced convection heat loss rate at low wind speeds and high wind speeds are 

presented as follows. At any speed, the convection heat loss rate is calculated with two 

equations below and the larger value is selected. 

𝑞𝑐1 = [1.01 + 1.35 (
𝐷𝜌𝑓𝑉𝑤

𝜇𝑓
)
0.52

] 𝑘𝑓𝐾𝑎𝑛𝑔𝑙𝑒(𝑇𝑐 − 𝑇𝑎) (3.5) 
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𝑞𝑐2 = 0.754 (
𝐷𝜌𝑓𝑉𝑤

𝜇𝑓
)
0.6

𝑘𝑓𝐾𝑎𝑛𝑔𝑙𝑒(𝑇𝑐 − 𝑇𝑎) (3.6) 

where 𝑉𝑤 is the wind speed (m/s), 𝜇𝑓 is the dynamic viscosity of air (kg/(m∙s)). 𝑘𝑓 is 

the thermal conductivity of air (W/(m∙ ℃)).) at the temperature of the boundary layer 

of the conductor and the air, 𝑇𝑓𝑖𝑙𝑚, where: 

𝑇𝑓𝑖𝑙𝑚 =
𝑇𝑐+𝑇𝑎

2
(3.7) 

𝐾𝑎𝑛𝑔𝑙𝑒 is the wind direction factor which reflects the impact of wind direction on wind 

cooling effect: 

𝐾𝑎𝑛𝑔𝑙𝑒 = 1.194 − cos(𝜙) + 0.194 cos(2𝜙) + 0.368 sin(2𝜙) (3.8) 

where 𝜙 is the wind attacking angle which is between the wind direction and the 

conductor axis.  

3.2.2 Radiated heat loss rate - 𝒒𝒓 

The radiated heat loss rate is significantly dependent on the difference in temperature 

between conductor surface and its surrounding, which is assumed to be at ambient 

temperature.  

𝑞𝑟 = 17.8𝐷𝜀 [(
𝑇𝑐+273

100
)
4

− (
𝑇𝑎+273

100
)
4

] (3.9) 

where 𝜀 is the emissivity. 

3.2.3 Conductor heat capacity – 𝒎𝑪𝒑 

Conductor heat capacity is defined as the product of specific heat and mass per unit 

length. For the non-homogeneous stranded conductor such as aluminium conductor 

steel-reinforced (ACSR), the heat capacity can be calculated approximately as follows: 

𝑚𝐶𝑝 = ∑𝑚𝑖𝐶𝑝𝑖 (3.10) 

where 𝑚𝑖 is the mass per unit length of 𝑖𝑡ℎ conductor material (𝑘𝑔/𝑚) and 𝐶𝑝𝑖 is the 

specific heat capacity of 𝑖𝑡ℎ conductor material (𝐽/(𝑘𝑔℃)). 
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3.2.4 Solar heat gain rate (W/m) 

The solar heat gain is given by: 

𝑞𝑠 = 𝛼𝑄𝑠𝑒 sin(𝜃) 𝐴
, (3.11) 

where: 𝛼 is the solar absorptivity; 𝑄𝑠𝑒 is the total solar and sky radiated heat flux rate 

elevation corrected (W/𝑚2); 𝜃 is the effective angle of incidence of the sun’s rays 

(degrees); 𝐴′ is the projected area of conductor per unit length (𝑚2/𝑚).  

The effective sun’s ray incidence angle is calculated by: 

𝜃 = arccos[cos(𝐻𝑐) cos(𝑍𝑐 − 𝑍𝑙)] (3.12) 

where: 𝐻𝑐 is the altitude of the sun (degree), 𝑍𝑐 is the Azimuth of the sun (degree) and 

𝑍𝑙  is the Azimuth of the line (degree).   

For the conductor, the projected area per unit length is given by: 

𝐴, = 𝐷 (3.13) 

3.2.5 Joule heat gain rate (W/m) 

𝑅(𝑇𝑐) =  𝑅(20℃)(1 + 𝛼𝑒(𝑇𝑐 − 20℃)) (3.14) 

where 𝛼𝑒 is the temperature coefficient (%/℃). 

3.3 Dynamic thermal rating of transformers 

The thermal model introduced by IEEE Std C57.91-2011 [24] is used to determine the 

dynamic thermal ratings for transformers. Two temperatures are critical for 

transformer operation, top-oil temperature (TOT) as well as hottest-spot temperature 

(HST). 

The HST of a mineral oil-immersed transformer is calculated by: 

𝑇H = 𝑇𝑎 + ∆𝑇𝑡𝑜 + ∆𝑇𝐻 (3.15) 
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where 𝑇𝐻 is the winding hottest-spot temperature (HST, ℃) and ∆𝑇𝑡𝑜 is the top-oil rise 

over ambient temperature (℃), ∆𝑇𝐻  is the winding hottest-spot rise over top-oil 

temperature (℃).  

The TOT is given by: 

𝑇𝑡𝑜 = 𝑇𝑎 + ∆𝑇𝑡𝑜 (3.16) 

The TOT rise at a time following a step change in loading is given by: 

∆𝑇𝑡𝑜 = (∆𝑇𝑡𝑜,𝑈 − ∆𝑇𝑡𝑜,𝑖) (1 − exp (−
𝑡

𝜏𝑡𝑜
)) + ∆𝑇𝑡𝑜,𝑖 (3.17) 

where ∆𝑇𝑡𝑜,𝑖 and ∆𝑇𝑡𝑜,𝑈 are the initial and final TOT rise (℃) respectively, 𝜏𝑡𝑜 is the 

oil time constant (hours).  

The initial and final top-oil rise is estimated by (3.18) and (3.19). 

 ∆𝑇𝑡𝑜,𝑖 = ∆𝑇𝑡𝑜,𝑅 [
𝐾𝑖
2𝑅+1

𝑅+1
]
𝑛

 (3.18) 

 ∆𝑇𝑡𝑜,𝑈 = ∆𝑇𝑡𝑜,𝑅 [
𝐾𝑈
2𝑅+1

𝑅+1
]
𝑛

 (3.19) 

where ∆𝑇𝑡𝑜,𝑅 is the top-oil rise over ambient temperature at rated load (℃) and for the 

considered tap position, 𝐾𝑖 and 𝐾𝑈 are the ratios of load before and after step change 

to the rated load, 𝑛 is the empirically derived exponent used to calculate the variation 

of ∆𝑇𝑡𝑜  with changes in load and the exponent is determined by the transformer 

cooling type, 𝑅 is the ratio of load losses at rated load to no load at considered tap 

setting. 

The winding HST rise over top-oil temperature is estimated by: 

 ∆𝑇𝐻 = (∆𝑇𝐻,𝑈 − ∆𝑇𝐻,𝑖) (1 − exp (−
𝑡

𝜏𝑤
)) + ∆𝑇𝐻,𝑖 (3.20) 

where ∆𝑇𝐻,𝑖 and ∆𝑇𝐻,𝑈 are the initial and final HST rise over top-oil temperature (℃), 

𝜏𝑤 is the winding time constant at hot spot location (hours).  
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The initial and final HST rise is given by: 

 ∆𝑇𝐻,𝑖 = ∆𝑇𝐻,𝑅𝐾𝑖
2𝑚 (3.21) 

 ∆𝑇𝐻,𝑈 = ∆𝑇𝐻,𝑅𝐾𝑈
2𝑚 (3.22) 

where ∆𝑇𝐻,𝑅 is the winding HST rise over top-oil temperature at rated load on the 

considered tap position (℃), 𝑚 is the empirically derived exponent used to calculate 

the variation of ∆𝑇𝐻 with changes in load. 

3.4 Problem statement 

Two types of capacity allocations are usually available to DG developers: a) firm 

capacity, when allocated DG output power can be injected into the network under all 

normal operating conditions without any constraint violations, and b) “non-firm 

capacity”, when higher than firm capacity is allocated, but it will be curtailed/reduced 

to the firm capacity whenever higher DG outputs result in constraint violations. The 

main reason for considering non-firm capacity during the allocation process is that 

firm capacity might be too restrictive, as the constraint violations against which 

assessment is performed might be non-frequent “worst case scenarios”, e.g. 

coincidental minimum demand and maximum DG output. This is particularly true in 

case of wind-based DG technologies, which feature strong and inherently stochastic 

variations of power outputs, which should be evaluated together with daily, weekly 

and seasonal changes in demands and available DTRs of network components. The 

research presented in this chapter concentrates on the relationship between the 

installed DG capacity and system technical constraints, while the economics aspects 

are neglected. 

3.4.1 Network models 

Two networks shown in Figure 3.1 are used for analysis. The first is a generic MV 

network model from [133], representing typical rural network configuration in the 

UK/Scotland. It is connected to a 33 kV grid supply point via primary 33/11 kV 

substation. The substation has a 2.5 MVA oil natural-air natural (ONAN) cooling type 

transformer with OLTC control, supplying two 11 kV feeders (“Feeder A” and “Feder 

B”). Both feeders are made of two types of OHL conductors: “Type S” is all aluminium 
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alloy conductor (AAAC, 75℃) 100 mm2 Oak AL4, while “Type T” is ACSR 54/9  

mm2 (75℃). Each feeder supplies a number of secondary 11/0.4 kV distribution 

transformers, through which 34 load buses are connected, with maximum and 

minimum P/Q demands of 1.46 MW/0.48 Mvar and 0.2434 MW/0.0800 Mvar, 

respectively. All 48 buses are available for connection of wind-based DG units. The 

second network is IEEE 33-test network, for which data and information are available 

in [134]. 

3.4.2 Variations in loading conditions 

Variations in loading conditions are identified from the available hourly demand data, 

recorded over a period of six calendar years in an actual Scottish MV distribution 

network, representing demands of a predominantly residential class of customers. The 

corresponding daily load profiles, assumed to be the same at all load buses in the 

considered network, are shown in Figure 3.2. Demand data are normalised using the 

maximum demand recorded over the six years of monitoring. 

 

a) Typical Scottish/UK generic rural MV distribution network 
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b) IEEE 33-bus test network 

Figure 3.1: Two test networks used for HC analysis 

 

Figure 3.2: Daily load profiles of predominantly residential customers recorded over 

a period of six years in a Scottish distribution network 

Figure 3.2 indicates three general cases for input demand data availability in 

deterministic scenario-based analysis: a) only absolute maximum and absolute 

minimum annual demands amongst all hours of the day are available (two values), 

b) maximum and minimum annual demands registered at each of 24 hours of the day 

(24 minimum and 24 maximum values), c) coincidental values of demands when 

maximum and minimum annual DTR values are reached at a specific hour of the day 

(48 values for each set of DTR values, calculated in the next sub-section). In the 
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probabilistic analysis, time-stamped hourly demand values (8760 values in a calendar 

year) are synchronised with hourly values of ambient parameters and DTR values. 

3.4.3 Variations in power outputs of wind-based DG 

Wind energy resource features strong stochastic variations, resulting in wide variations 

of power outputs of wind-based DG. This is illustrated in Figure 3.3 using recorded 

data from an actual wind farm (WF) in Scotland for six years. It can be clearly seen 

that at any hour of the day and for any day of the year, the power output of a wind-

based DG can be anywhere between 0 and 1 pu. This is different from, e.g. PV-based 

DG, which is always zero during the night hours. In terms of assessing HC for wind-

based DG, this simply means that the maximum 1 pu power output should be 

considered as possible to occur at all hours of all days of the year. Variations of wind 

direction are similar, i.e. wind direction at any hour of the day and on any day of the 

year can be anywhere in a range from 0o to 360o. 

 
Figure 3.3: Variations of power outputs of a wind-based DG recorded at an actual 

wind farm in Scotland over the period of one calendar year 

In terms of correlating DG power outputs with the variations in DTR values of network 

components, it is important to identify the range of wind speeds at which 1 pu DG 

power output is obtained. Based on the recorded WF data, Figure 3.4 shows the 

operational power curve of one wind turbine (WT). It is clear that WT will produce 

1 pu power output for a relatively wide range of input wind speeds: the minimum is 

around 14.5 m/s, while the maximum is around 23 m/s (both are estimated from the 
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5th-95th percentile interval of all measured 1 pu WT power outputs). These two wind 

speed values are used for assessing variations in minimum and maximum DTR values 

in the next sub-section. Due to the relatively small size of the considered networks 

(10 km x 10 km, Figure 3.1 a)), it is assumed that maximum 1 pu. DG output in cases 

with two or more DG units will be produced by all connected DG units. 

 

Figure 3.4: Wind speeds for which an actual WT produces 1 pu power output 

3.4.4 Variations in DTR limits of network components 

Essentially, DTR analysis acknowledges that thermal characteristics of network 

components will change with the variations of ambient parameters, which in turn will 

impact their maximum MVA loading. For example, and in the context of the presented 

analysis, high wind speed will result in the increased power outputs of wind-based DG, 

but it will also cool-down and decrease the temperature of overhead lines through 

which DG power is exported, therefore allowing higher MVA loading before the 

thermal limit is reached. In the considered HC analysis, this means that for calculating 

minimum DTR of the lines, minimum wind speed at which wind-based DG produces 

1 pu power output should be used (14.5 m/s, Figure 3.4), while for calculating 

maximum DTR, maximum wind speed at which wind-based DG produces 1 pu power 

output should be used (23 m/s). Similarly, wind direction (“attacking angle”) of 0o 

(along the line) should be used for calculating minimum DTR values, while wind 

direction of 90o (perpendicular to the line) should be used for calculating maximum 
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DTR values. As shown in Figure 3.3, 1 pu power output of wind-based DG could be 

expected at any hour of any day of the year, which means that annual variations of two 

other ambient parameters that have an impact on DTR values (temperature and solar 

irradiance) should be considered next. The variations of ambient parameters are 

obtained for the same six-year period for which loading conditions are shown in Figure 

3.2 from datasets in [135], while DTR models of overhead lines are calculated by the 

thermal balance equation (3.3). The parameters for DTR calculation are available in 

[136]. 

Calculation of minimum and maximum DTR values is illustrated in Figure 3.5, where 

Figure 3.5a shows annual variations of temperature, Figure 3.5b shows annual 

variations of solar irradiance, while Figure 3.5c – Figure 3.5e show changes in DTR 

values for the OHL Types S and T and the 33/11 kV transformer in Figure 3.1 a). 

 
a) annual temperature variations 
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b) annual solar irradiance variations 

 

 

c) variations in minimum and maximum DTR values for OHL Type S for wind 
speeds of 14.5 m/s and 23 m/s, and wind directions of 0o and 90o 
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d) variations in minimum and maximum DTR values for OHL Type T for wind 
speeds of 14.5 m/s and 23 m/s, and wind direction of 0o and 90o 

 

e) Variations in DTR values for 33/11 kV transformer (no impact of wind speed 
considered)  

Figure 3.5: Calculated variations in minimum and maximum DTR values, with c) 

showing an example of coincidental DTR values with max/min demands 

Similarly to demands, Figure 3.5 indicates three general cases for deterministic 

scenario-based DTR analysis: a) only absolute maximum and minimum annual DTR 

values amongst all hours of the day, b)  maximum and minimum annual DTR values 

registered at each of 24 hours of the day, and c) DTR values coincidental with 

maximum and minimum annual demands at a specific hour of the day. In the 

probabilistic analysis, time-stamped calculated hourly DTR values (8760×6 values) 

are synchronised with hourly demand values.  
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3.5 Numerical results 

The presented HC assessment procedure has three stages. Firstly, maximum LHC of 

individual buses is calculated assuming connection of a single DG unit at a considered 

bus in the network, giving maximum possible LHC at any individual considered bus. 

Then, maximum LHCs are scaled-down, and an optimisation approach is used to 

calculate NHC, assuming the connection of DG units at all network buses. An 

alternative optimisation approach, in which DG at any bus was increased from 0 to 

maximum value, is used for checking optimality of solutions. This stage gives 

minimum LHC, obtained from a proportional allocation of available NHC. Finally, 

calculation of bus-to-bus LHC sensitivity factors is used to determine available LHC 

at individual buses for any number of DG units with different installed powers and 

connected at arbitrary network buses. 

Two approaches are implemented: a) “deterministic”, in which a limited number of 

selected scenarios with minimum and maximum values of demands, DTR limits and 

DG outputs are considered as the non-coincidental and coincidental inputs for the 

analysis, and b) probabilistic, based on the analysis of time-series of simultaneous 

hourly variations of all input parameters, providing their probability distributions.  

The results for LHC and NHC are presented as the ranges of values from 0% constraint 

violation (representing “firm capacity” allocation) to 100% constraint violation 

(representing the full range of possible “non-firm capacity” allocations). A simple 

analysis study is presented, with consideration of only overhead line and transformer 

DTR constraints, which can be easily extended to include additional technical, 

operational and other relevant constraints. The main reason for presenting ranges of 

0%-100% constraint violations is that allocation of “non-firm” capacity will be 

determined using different criteria by both DNOs and DG developers, so the actual 

allocation in practice is essentially done on a “case-by-case” basis. Therefore, this 

chapter presents the whole ranges of possible non-firm capacity allocations, regardless 

of the required amount of curtailment, which is considered out of the scope of this 

chapter. All the network models and power flow calculations are implemented via an 

open source distribution system analysis tool, openDSS [137]. 
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3.5.1 Scottish/UK generic rural MV distribution network 

Stage 1 with deterministic LHC assessment 

The 33/11 kV transformer’s DTR values in Figure 3.5e suggest that this transformer 

is a main limiting component/factor for connecting DG, as its DTR values are around 

½ of the DTR values of OHL Type T (Figure 3.5d) and around 1/3 of the DTR of OHL 

Type S (Figure 3.5c). This not only makes further HC assessment to be trivial (only 

loading constraints of one component should be considered) but also suggests that this 

transformer should be upgraded, before DNOs could connect any significant DG in 

this network, i.e. before they can start to allocate significant hosting capacity to DG 

developers. Also, in many cases, transformer upgrading is much easier, faster and with 

lower costs than upgrading of OHLs. Therefore, only loading constraints of OHLs are 

considered in further analysis and information is used for selecting the optimal size of 

transformer for upgrading. 

LHC assessment with non-coincidental absolute maximum and minimum 
annual demand and DTR values:  

These input values are used for evaluating LHC at individual network buses, always 

assuming the connection of a single DG unit in the network. They reflect practical 

situations in which only limited information is available, e.g. only minimum and 

maximum annual demands at load buses (no demand time series) or only absolute 

minimum and maximum DTR values of network components. Table 3.1 lists input 

data for this scenario, while Figure 3.6 presents results for all min-max combinations 

as black dashed lines. 

Table 3.1: Non-coincidental scenarios 

Scenario 
Wind speed 

(m/s) 

Attacking angle 

(degree) 

Ta 

(℃) 

Solar irradiance 

(W/m2) 

Load 

(p.u.) 

DTR 

(MVA) 

DTRmax 

Loadmax 
23.0 90 -4.99 0 1 

23.2518 (S) 

14.4367 (T) 

DTRmin 

Loadmin 
14.5 0 22.9 882.2350 0.1667 

10.2233 (S) 

6.3405 (T) 
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LHC assessment with non-coincidental annual maximum and minimum 
demand and DTR values for each of 24 hours of the day:  

When this more detailed information on variations in demands and DTR values is 

available, e.g. as in Figure 3.2 and Figure 3.5, it may be used to calculate corresponding 

non-coincidental LHC values, again assuming connection of a single DG unit in the 

network. Figure 3.6 shows these results as blue-coloured box-plots, constructed from 

the corresponding 24 maximum and 24 minimum demand and DTR values at every 

hour of the day. 

LHC assessment with coincidental annual maximum and minimum demand 
and DTR values for each of 24 hours of the day:  

When time-stamp information on the actual hour and day when minimum and 

maximum annual demands and minimum and maximum annual DTRs occur at each 

of 24 hours of a day, then coincidental DTR values can be obtained for minimum and 

maximum demands, and vice versa. These coincidental demand and DTR values 

(Figure 3.2 and Figure 3.5c) are realistic input data for HC assessment, as they reflect 

actual loading conditions in the considered network, which is generally not the case 

with non-coincidental data. The LHC results for this scenario are shown in Figure 3.6 

as red-coloured box-plot, each constructed from the corresponding 48 values (24 

demands coincidental with 24 maximum and 24 minimum DTR values, and 24 DTRs 

coincidental with 24 maximum and 24 minimum demands). 

Stage 1 with probabilistic LHC assessment 

Probabilistic LHC assessment is performed by statistical processing of time-stamped 

and synchronised (coincidental) hourly demands and hourly DTR values (8760 values 

in a calendar year for every dataset). These results are presented in Figure 3.6 as black-

coloured box-plots, constructed from min/max LHC values calculated for each 

demand and DTR conditions. For example, deterministic LHC scenarios, which 

correspond to firm capacity allocation and 0% constraint violations, might occur for 

only a short period during a calendar year, which will then result in a too conservative 

allocation of LHC. This can be seen in the results for Bus 14 in Figure 3.6b, where a 

5th percentile relaxation of the minimum coincidental LHC results in an increase of 

firm LHC of 3.11%. 
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Stage 2: NHC assessment 

Stage 1 LHC are obtained under the assumption that there is a single DG unit 

connected at the considered bus and that both firm and non-firm capacity allocations 

(up to 100% constraint violation) are available. Assessment of NHC is a more complex 

problem, as NHC will change with the numbers, sizes and actual locations of 

connected DG. Furthermore, allocation of non-firm capacity to a number of DG 

developers might result in operational difficulties, as required curtailment shall be 

distributed in some way between a number of DG units. Therefore, the further analysis 

considers only firm capacity. 

After Stage 1, firm NHC may be roughly assessed as the sum of maximum firm LHC 

for two feeders (A and B), which is 22.35 MW, or as a sum of LHCs for two DG units 

on Feeders A and B with the highest LHC, which is 21.33 MW. As these results are 

obtained for a single DG unit and do not allow to evaluate changes in operating and 

loading conditions, network power flows and losses for a number of connected DG 

units, two probabilistic optimisation methods are used next for NHC assessment. 

 
a) LHC values corresponding to non-firm capacity allocation (100% constraint 

violation limit) 

 

b) LHC values corresponding to firm capacity allocation (0% constraint 

violation limit) 

Figure 3.6: Comparison of ranges of LHC values assessed by deterministic and 

probabilistic approaches at individual network buses (for a single DG unit connected 

at a considered bus) 
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NHC assessment with “Direct Optimisation Approach”:  

In this case, NHC is obtained by classical optimisation approach, assuming that DG 

might be connected at all 48 network buses and that optimisation starts from zero DG 

initially connected at each bus. The objective function is to maximise the total 

connected DG in the network while satisfying constraints on the loading of the lines: 

𝑚𝑎𝑥∑𝑝𝑖
𝑔

𝑖∈𝒩

(3.23) 

𝑃𝑗
𝑙 = 𝑃𝑖

𝑙 − 𝑟𝑖𝑗
(𝑃𝑖

𝑙2 + 𝑄𝑖
𝑙2)

|𝑉𝑖|2
, ∀(𝑙, 𝑖, 𝑗) ∈ ℒ (3.24) 

𝑄𝑗
𝑙 = 𝑄𝑖

𝑙 − 𝑥𝑖𝑗
(𝑃𝑖

𝑙2 + 𝑄𝑖
𝑙2)

|𝑉𝑖|2
, ∀(𝑙, 𝑖, 𝑗) ∈ ℒ (3.25) 

𝑃𝑖
𝑙 = 𝑃𝑗

𝑙−1 + 𝑝𝑖
𝑔
− 𝑃𝑑𝑖 , ∀(𝑙, 𝑖, 𝑗) ∈ ℒ (3.26) 

𝑄𝑖
𝑙 = 𝑄𝑗

𝑙−1 + 𝑞𝑖
𝑔
− 𝑄𝑑𝑖, ∀(𝑙, 𝑖, 𝑗) ∈ ℒ (3.27) 

|𝑉𝑗|
2
= |𝑉𝑖|

2 −
2(𝑟𝑖𝑗𝑃𝑖

𝑙 + 𝑥𝑖𝑗𝑄𝑖
𝑙)

|𝑉1|
+ (𝑟𝑖𝑗

2 + 𝑥𝑖𝑗
2 ) 

(𝑃𝑖
𝑙2 + 𝑄𝑖

𝑙2)

|𝑉𝑖|2
, ∀(𝑙, 𝑖, 𝑗) ∈ ℒ (3.28) 

𝜃𝑗 = 𝜃𝑖 − atan

(

 
 

𝑃𝑖
𝑙𝑥𝑖𝑗 − 𝑄𝑖

𝑙𝑟𝑖𝑗
|𝑉𝑖|

|𝑉𝑖| −
𝑃𝑖
𝑙𝑟𝑖𝑗 + 𝑄𝑖

𝑙𝑥𝑖𝑗
|𝑉𝑖| )

 
 

(3.29) 

𝑆𝑖
𝑙 = √(𝑃𝑖

𝑙2 + 𝑄𝑖
𝑙2), 𝑆𝑗

𝑙 = √(𝑃𝑗
𝑙2 + 𝑄𝑗

𝑙2), ∀(𝑙, 𝑖, 𝑗) ∈ ℒ (3.30) 

𝑉𝑖
𝑚𝑖𝑛 < |𝑉𝑖| < 𝑉𝑖

𝑚𝑎𝑥 , ∀𝑖 ∈ 𝒩 (3.31)   

0 ≤ 𝑆𝑖
𝑙 ≤ 𝑆𝑙

𝑚𝑎𝑥 , 0 ≤ 𝑆𝑗
𝑙 ≤ 𝑆𝑙

𝑚𝑎𝑥, ∀(𝑙, 𝑖, 𝑗) ∈ ℒ (3.32) 

where: 𝑝𝑖
𝑔

 is the size of DG connected at bus 𝑖 for ∀𝑖 ∈ 𝒩, and 𝒩 is the set of bus 

indices, 𝑃𝑖
𝑙, 𝑄𝑖

𝑙 and 𝑃𝑗
𝑙, 𝑄𝑗

𝑙  are active and reactive power flows of line l measured at the 

𝑓𝑟𝑜𝑚 bus 𝑖 and to bus 𝑗, 𝑆𝑖
𝑙 and 𝑆𝑗

𝑙 are the apparent power flow in line 𝑙 measured at 

the 𝑓𝑟𝑜𝑚 bus 𝑖 and to bus 𝑗. 

Total of 100 runs of this optimisation method resulted in the close values of the 

objective function, i.e. NHC, which varied in the range between 23.63-23.86 MW. 

However, almost every run provided a different solution, with wide ranges of 
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variations for resulting numbers, locations and sizes of DG units. Figure 3.7 shows 

these LHC results from 100 runs by blue box-plots. 

NHC assessment with optimisation approach based on LHC values from stage 
1:  

In this case, NHC is obtained by a suitable proportional reduction of minimum LHC 

values obtained in Stage 1 for DG units connected at all buses (e.g. 10% of Stage 1 

minimum LHC values), with the violations of some DTRs and some bus limits. The 

objective function is to minimise the reduction from initially connected DG while 

satisfying constraints (3.24) - (3.32). 

For the selection of target buses for DG reduction, sensitivity analysis is implemented. 

Apparent power flow sensitivity factors and bus voltage sensitivity factors with the 

connected DG size are calculated with (3.33) and (3.34). 

𝑃𝐼𝑆𝐹𝑙
𝑖 =

𝜕𝑆𝑙

𝜕𝑝𝑖
𝑔 =

Δ𝑆𝑙

Δ𝑝𝑖
𝑔 , ∀(𝑙, 𝑖, 𝑗) ∈ ℒ𝑣𝑖𝑜 𝑎𝑛𝑑 ∀𝑖 ∈ 𝒩 (3.33) 

𝑃𝑉𝑆𝐹𝑖
𝑗
=
𝜕𝑉𝑖

𝜕𝑝𝑖
𝑔 =

Δ𝑉𝑖

Δ𝑝𝑖
𝑔 , ∀𝑖 ∈ 𝒩𝑣𝑖𝑜, 𝑗 ∈ 𝒩 (3.34) 

where ℒ𝑣𝑖𝑜 and 𝒩𝑣𝑖𝑜 denote the sets of indices of overloading branches and buses with 

voltage violations. 

The results of LHC-based optimisation are also illustrated in Figure 3.7, where they 

are close to the mean LHC values of 100 runs of the direct optimisation approach. The 

obtained NHC value is also close (23.72 MW). These results provide important 

information on the required upgrading of existing 33/11 kV transformer, which should 

be replaced by a transformer with DTR of around 25 MVA. 

Stage 3: LHC for any number of DGs with different powers connected at 

arbitrary buses 

Stage 3 tries to evaluate available firm LHC at a bus for any combination/number of 

DGs (with different powers) connected at arbitrary network buses. Available capacity 

is between boundary cases for firm LHC obtained in Stages 1 and 2 and can be 
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calculated by “bus-to-bus” LHC sensitivity factors of a bus i regarding installed 𝑝𝑔 at 

bus j, 𝐿𝐻𝐶𝑆𝐹𝑖
𝑗
: 

 
Figure 3.7: Comparison of two optimisation methods (DG at all buses) for the

 Typical Scottish/UK generic rural MV distribution network 

𝐿𝐻𝐶𝑆𝐹𝑖
𝑗
=
𝜕𝐿𝐻𝐶𝑖

𝜕𝑝𝑗
𝑔 = 

∆𝐿𝐻𝐶𝑖

∆𝑝𝑗
𝑔  for ∀𝑖, 𝑗 ∈ 𝒩 (3.35)   

The results for bus-to-bus LHC sensitivity factors are shown in Figure 3.8. It can be 

observed that the LHC at one bus will be affected by the DG units connected to buses 

in the same feeder. Those sensitivity factors allow to quickly find the impact of the 

connection of DG units at any buses on the available LHC at other buses in the network. 

The proposed method is more computationally efficient as it doesn’t need iterative 

power flow calculation. Table 3.2 presents the comparison of results for firm LHC at 

different buses (at the beginning, middle and end of each feeder and each line type) 

with accurate power flow analysis for Cases 1-4, corresponding to 5, 10, 20 and 30 

DG units randomly located in the considered network. There are errors between power 

flow based results and results of the sensitivity-based method, because the power flow 

equations are nonlinear and network loss is not taken into account. The maximum error 

occurs at bus 26 when 5 DG units are connected. The error is 10%. This method can 
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be used to provide initial estimation for system operators when making the plan for 

DG connection. 

Table 3.2: Comparison of Results for SFLHC and Power Flow (PF) for the Typical 

Scottish/UK generic rural MV distribution network 

Case 
BUS 1 BUS 9 BUS 26 

PF SF Error (%) PF SF Error (%) PF SF Error (%) 

1 4800 4382 8.71 4900 4740 3.27 5000 5502 10.0 

2 6100 5716 6.30 6300 5845 7.22 6400 6339 0.95 

3 6900 6557 4.97 7100 6652 6.31 7300 7037 3.61 

4 5900 5532 6.24 6200 5614 9.45 6300 6017 4.49 

 

 

Figure 3.8: Graphical illustration of bus-to-bus LHC sensitivity factors for the 

 Typical Scottish/UK generic rural MV distribution network 

3.5.2 IEEE 33-bus network 

The proposed approach is also tested on IEEE 33-bus network. The comparison 

between direct optimization and LHC-based optimization is presented in Figure 3.9. 

Two different number of DG units, 5% and 10% of the minimum LHC obtained in the 

first stage, are connected into the initial network initially, then optimal DG shedding 

is implemented at targeted buses determined by sensitivity analysis. The two analysis 

achieved similar NHC values of 6.8780 MW and 6.8821 MW, which are both close to 

the mean NHC obtained from one hundred runs of direct optimisation approach, 
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6.8655MW. However, the HC at each bus is different. The results obtained with 5% 

of LHC connected into the network initially are closer to the mean values of direct 

optimization results.  

Bus-to-bus LHC sensitivity factors are presented in Figure 3.10, while Table 3.3 shows 

results for firm LHC at different buses with accurate power flow analysis and 

sensitivity factor method (SFLHC) for three scenarios, corresponding to 5, 10, 20 units 

randomly located in the considered network. 

 

 

 
a) LHC-based optimization with the initial connection of 5% of LHC 
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b) LHC-based optimization with the initial connection of 10% of LHC 

Figure 3.9: Comparison of two optimisation methods (DG at all buses) for IEEE 33-

bus test system  

 
Figure 3.10: Graphical illustration of bus-to-bus LHC sensitivity factors for IEEE 33-

bus test system 

Table 3.3: Comparison of Results for SFLHC and Power Flow (PF) for IEEE 33-bus 

test system 

Case 
BUS 2 BUS 3 BUS 26 

PF SF Error (%) PF SF Error (%) PF SF Error (%) 

1 5400 5700 5.28 5400 5259 2.68 5400 4917 9.83 

2 5400 5586 3.32 5500 5177 6.25 6500 4865 13.1 

3 5400 5531 2.37 5600 5149 8.75 5600 4859 17.3 
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3.6 Conclusions 

This chapter used deterministic and probabilistic approaches for assessing HC of 

distribution networks for wind-based DG, considering variations of demands and DG 

power outputs, as well as DTR of network components. A three-stage HC assessment 

approach was presented, where maximum LHC of individual buses was calculated first, 

assuming the connection of a single DG unit in the network. Then, maximum LHCs 

were used to calculate NHC, assuming that DG units were connected at all network 

buses. Finally, bus-to-bus LHC-sensitivity factors were calculated to determine 

available LHC for any number of DG units connected at arbitrary network buses. 

Presented analysis can be used for a systematic evaluation of available HC and as a 

basis for a practical procedure for a fair/proportional HC allocation. 
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Chapter 4 
Probabilistic Models for Evaluation of 

Uncertainties in Power System Operation  

4.1 Introduction 

The previous chapter presented the hosting capacity assessment of wind-based DG in 

distribution networks with the application of DTRs. The increased penetration of wind-

based generation, as well as implementation of DTRs, will introduce a range of new 

challenges for network operation and control due to the related uncertainties. The 

power outputs of wind generation systems are highly variable and unpredictable and 

therefore, cannot be controlled and dispatched as the conventional generation plants. 

On the other hand, DTR, which evaluates real-time available line capacity [138], can 

vary in wide ranges due to variations in ambient conditions and actual loading 

conditions. A sudden change in weather conditions (“sudden” in terms of thermal time 

constants of network components) may cause the fluctuations in real-time thermal 

ratings, which cannot be compensated by generation dispatch or load curtailment due 

to short response times. Another problem related to DTR uncertainties are variations 

in DTR values due to, e.g. different wind attacking angles on different sections of an 

OHL and the general problem of finding the “hot spot” temperature, which, however, 

are not considered in this thesis. Consequently, to integrate DTR into system operation, 

accurate prediction of the uncertainties in real-time thermal rating and wind-based 

generation is essential. 

A typical approach for modelling wind generation is the use of power curves, which 

specify how output power of a wind turbine (WT) changes with the variations of input 

wind speed [139]–[142]. Power curves specified by the manufacturers are commonly 

used when there are no available field data, e.g. during the planning or general design 

phases of a wind farm (WF). However, manufacturer power curves are obtained in 

controlled conditions (e.g. in air-tunnels), where the effects of wind speed and wind 

direction variations, presence of turbulences, overall dynamics of WTs and other site 

and application specific factors are usually not fully and correctly represented. 

Consequently, if manufacturers’ power curve is used for the analysis, this might result 

in significant errors. This is discussed in [143], where two general approaches for 



60 

 

 

building equivalent power curve models of the whole WF based on the field 

measurement data are presented. These equivalent power curve models are formulated 

as the averaged aggregate representation of the outputs from all WTs and are 

specifically aimed for the estimation of annual energy production of the considered 

WF.  

Instead of using averaged power outputs, this chapter assesses ranges of variations of 

WF power outputs with the input wind speeds and formulates suitable probabilistic 

models using the best-fit PDF representations. The probabilistic models for wind speed 

and wind directions are also built up and used for the calculation of DTR values. The 

risk of line overloading is evaluated by MCS-based OPF analysis, which is 

implemented on a UK variant of IEEE 14-bus network.  

4.2 Uncertainties of wind conditions 

The evaluation of uncertainties in wind conditions is illustrated on the example of an 

actual Scottish wind farm. The wind farm contains six 3MW double-fed induction 

generator wind turbines, sited on relatively flat terrain. The available measurements 

are average 10-minute values of wind speeds, wind directions and the power outputs 

of six wind turbines. As the model of the wind farm requires simultaneous 

measurements at all individual wind turbines, the recorded data are filtered, and those 

measurements with missing data are discarded, as well as the corrupted data due to 

monitoring system faults and measurement errors. 

4.2.1 Probabilistic models for wind speed 

The original wind speed data are firstly grouped using the "method of bins" from [144], 

where wind speed values recorded with one decimal point accuracy are allocated to 

corresponding “bins” with a resolution of 1 m/s. Then the histogram plot of the wind 

speed can be obtained.  

Three distribution functions, 1) a two-parameter Weibull distribution (2-pW), 2) a 

three-parameter Weibull distribution (3-pW) and 3) a generalized normal distribution 

(GND) are applied for approximating the wind speed distribution. The PDF and CDF 

of 2-pW are given as follows: 



61 

 

 

𝑓(𝑥) = {
𝛽

𝜂
(
𝑥

𝜂
)
𝛽−1

exp (−(
𝑥

𝜂
)
𝛽
) 𝑥 ≥ 0

0 𝑥 < 0

(4.1)

𝐹(𝑥) = {1 − exp (−(
𝑥

𝜂
)
𝛽
) 𝑥 ≥ 0

0 𝑥 < 0

(4.2) 

where 𝛽 > 0 is the shape parameter and 𝜂 > 0 is the scale parameter. 

The PDF and CDF of 3-pW are presented as (3.3) and (3.4): 

𝑓(𝑥) = {
𝛽

𝜂
(
𝑥−𝛾

𝜂
)
𝛽−1

exp (−(
𝑥−𝛾

𝜂
)
𝛽
) 𝑥 ≥ 𝛾

0 𝑥 < 𝛾
(4.3) 

𝐹(𝑥) = {
1 − exp (− (

𝑥−𝛾

𝜂
)
𝛽
) 𝑥 ≥ 𝛾

0 𝑥 < 𝛾
(4.4) 

where 𝛾 is the location parameter. It can be obviously observed that 2-pW is a special 

condition of the 3-pW with the location parameter setting to zero. 

The PDF and CDF of GND are presented as (4.5) and (4.6): 

𝑓(𝑥) =
𝜙(𝑦)

𝜂 − 𝛽(𝑥 − 𝛾)
(4.5) 

𝐹(𝑥) = Φ(𝑦) (4.6) 

where 𝛾, 𝜂 and 𝛽 represent the location, scale and shape parameters respectively. 𝜙(𝑦) 

and Φ(𝑦) are the PDF and CDF of the standard normal distribution. The variable 𝑦 is 

given by: 

𝑦 =

{
 
 

 
 −

1

𝛽
log [1 −

𝛽(𝑥 − 𝛾)

𝜂
] 𝛽 ≠ 0

𝛽(𝑥 − 𝛾)

𝜂
𝛽 = 0

(4.7) 
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Parameter estimation method 

The parameters of the PDF functions are estimated with the method of moments 

(MOM). This method is based solely on the law of large numbers. For a set of 

independent random variables following an identical distribution with the mean of 𝜇, 

the mean value of this set will converge to the distribution mean 𝜇 as the size of the 

set increases. More generally, for a set of independent random variables x =

(𝑥1, 𝑥2, … 𝑥𝑛) which follow the identical distribution 𝑓(𝑥, 𝜒) where 𝜒 is the vector of 

distribution parameters and 𝑚(∙) is a real value function, if 𝑘(𝜒) = 𝐸𝜒(𝑚(x)) where 

𝐸𝜒(∙) is the mean of the distribution defined by 𝜒, then 

1

𝑛
∑𝑚(𝑋𝑖)

𝑛

𝑖=1

→ 𝑘(𝜒) 𝑎𝑠 𝑛 → ∞ 

Choosing 𝑚(𝑥) = 𝑥𝑚  and writing 𝜇𝑚 = 𝐸(𝑋𝑚) = 𝑘𝑚(𝜒) for the 𝑚𝑡ℎ  moment, the 

process of MOM can be given as follows: 

1. If the model has 𝑑 parameters, the first 𝑑𝑡ℎ moments can be represented by: 

𝜇𝑚 = 𝑘𝑚(𝜒1, 𝜒2, … , 𝜒𝑑),𝑚 = 1,2, … , 𝑑 

𝑑 equations with 𝑑 unknowns are obtained. 

2. Solving the above equations, the representation for each parameter can be 

determined as: 

𝜒𝑚 = 𝑔𝑚(𝜇1, 𝜇2, … , 𝜇𝑑),𝑚 = 1,2, … , 𝑑 

3. Based on the sampling data x = (𝑥1, 𝑥2, … , 𝑥𝑛), the first 𝑑 sample moments 

are: 

𝑥𝑚̅̅ ̅̅ =
1

𝑛
∑𝑥𝑖

𝑚

𝑛

𝑖=1

, 𝑚 = 1,2, … , 𝑑 

4. Replace the distribution moments 𝜇𝑚 in Step 2 with the sample moments, then 

the formulas of the method of moments estimators based on the sampling data 

x can be obtained: 
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𝜒 ̂𝑘(x) = 𝑔𝑘(𝑥̅, 𝑥2̅̅ ̅, … , 𝑥𝑑̅̅̅̅ ) 

Following the process, the parameters of 2-pW distribution can be estimated by 

solving the following equations: 

lnΓ (1 +
2

𝛽̂
) − 2lnΓ (1 +

1

𝛽̂
) − ln(𝑥2̅̅ ̅) + 2ln𝑥̅ = 0 (4.8) 

 𝜂̂ =
𝑥̅

Γ (1 +
1

𝛽̂
)

(4.9)
 

For GND, the location parameter 𝛾 always equals to the median. While the mean 𝜇 

and variance 𝜎2 are defined as: 

𝜇 = 𝛾 −
𝜂

𝛽
(exp(

𝛽2

2
) − 1) (4.10) 

𝜎2 =
𝜂2

𝛽2
exp(𝛽2) (exp(𝛽2) − 1) (4.11) 

The MOM estimators for GND are given by: 

𝜂̂ = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑥) (4.12) 

(exp (
𝛽̂2

2 ) − 1)

2

exp(2𝛽̂2) − exp(𝛽 ̂2)
=
(𝛾̂ − 𝑥̅)2

𝜂̂2
(4.13)

 

 𝜂̂ =
(𝛾 − 𝑥̅)𝛽̂

exp (
𝛽̂2

2 ) − 1

(4.14)
 

When estimating the parameters of 3-pW, a new type of moments need to be applied, 

defined as: 

𝜇𝑤𝑚 = ∫ (1 − 𝐹(𝑥))
𝑚
𝑑𝑥

∞

0
= 𝛾 +

𝜂Γ(1+
1

𝛽
)

𝑚
1
𝛽

(4.15) 
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where 𝐹(𝑥) is the CDF of the 3-pW distribution presented by (4.4). The parameters 

can be expressed by: 

𝛽 =
𝑙𝑛2

ln(𝜇𝑤1 − 𝜇𝑤2) − ln(𝜇𝑤2 − 𝜇𝑤4)
(4.16) 

𝛾 =
𝜇𝑤1𝜇𝑤4 − 𝜇𝑤2

2

𝜇𝑤1 + 𝜇𝑤4 − 2𝜇𝑤2
(4.17) 

𝜂 =
𝜇𝑤1 − 𝛾

Γ (1 +
1
𝛽
)

(4.18)
 

Given the ordered random sample 𝑥1 ≤ 𝑥2 ≤ ⋯ ≤ 𝑥𝑛 following the identical 3-pW 

distribution, the new moments can be estimated by: 

𝜇̂𝑤𝑘 = ∑(1 −
𝑖

𝑛
)
𝑘

(𝑥𝑖+1 − 𝑥𝑖)

𝑛−1

𝑖=0

, 𝑥0 = 0 (4.19) 

The parameter estimators are presented as: 

𝛽̂ =
𝑙𝑛2

ln(𝜇̂𝑤1 − 𝜇̂𝑤2) − ln(𝜇̂𝑤2 − 𝜇̂𝑤4)
(4.20) 

𝛾 =
𝜇̂𝑤1𝜇̂𝑤4 − 𝜇̂𝑤2

2

𝜇̂𝑤1 + 𝜇̂𝑤4 − 2𝜇̂𝑤2
(4.21) 

𝜂̂ =
𝜇̂𝑤1 − 𝛾

Γ (1 +
1

𝛽̂
)

(4.22)
 

Parameter estimation results 

To evaluate the performance of the three distributions, four indicators are used. The 

root-mean-square error (RMSE), which is used to evaluate the error between the fitted 

CDF and empirical CDF, is given by: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦̂𝑖 − 𝑦𝑖)2
𝑁
𝑖=1

𝑁
(4.23) 
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where  𝑦̂𝑖  and 𝑦𝑖  are the values of the empirical CDF function and the fitted CDF 

function at the middle point of the 𝑖𝑡ℎ bin respectively. 𝑁 is the total number of bins. 

Besides, maximum absolute error among all bins (MAEAAB), mean absolute error 

(MAE) and weighted mean absolute error (WMAE) calculated as follows are used to 

evaluate the performance of the fits of three analytical PDFs. 

𝑀𝐴𝐸𝐴𝐴𝐵 = max|𝑃̂𝑖 − 𝑃𝑖| , ∀𝑖 ∈ {1,… ,𝑁} (4.24) 

𝑀𝐴𝐸 =
∑ |𝑃̂𝑖 − 𝑃𝑖|
𝑁
𝑖=1

𝑁
(4.25) 

𝑊𝑀𝐴𝐸 =∑𝑃̂𝑖

𝑁

𝑖=1

|𝑃̂𝑖 − 𝑃𝑖| (4.26) 

where  𝑃̂𝑖  and 𝑃𝑖  are the probability values within the 𝑖𝑡ℎ  bin obtained from the 

sampled data and fitted PDFs, 𝑁 is the number of bins.  

Among the above four indicators, the RMSE gives a relatively high weight to 

significant errors, because the errors are squared before they are averaged. It is more 

useful when larger errors are particularly undesirable. MAEAAB describes the largest 

estimation error among all bins. MAE and WMAE are similar. The slight difference 

is that MAE gives the same weight to all errors, while WMAE considers the impact of 

the errors. 

The parameters of the fitted distribution functions, as well as the values of the above 

indicators, are presented in Table 4.1. Figure 4.1 shows the comparison of the three 

best-fit plots with a histogram of binned original wind speed data. 

Table 4.1: Estimated parameter values and goodness-of-fit indicators 

Model Parameter values RMSE MAEAAB MAE WMAE 

2-pW 
Shape 𝜼 2.081 

0.00289 0.01043 0.00155 0.00272 
Scale 𝜷 9.964 

3-pW 

Shape 𝜼 2.053 

0.00285 0.00990 0.00151 0.00272 Scale 𝜷 9.838 

Location 𝜸 0.113 

GND Shape 𝜼 -0.267 0.01166 0.01470 0.00283 0.00499 
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Scale 𝜷 4.283 

Location 𝜸 8.247 

 

 

a) PDF comparison 

 

b) CDF comparison 

Figure 4.1: Comparison of the best-fit PDF and CDF plots for 2p-W, 3p-W and GND 

with the histogram of the binned recorded wind speed data 

The results in Table 4.1 show that the recorded wind speed distribution can be more 

accurately represented with both 2p-W and 3p-W distributions than with GND. The 
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error with 2-pW distribution is slightly higher than for 3-pW distribution. However, 

considering the more straightforward formulation of 2-parameter Weibull distribution, 

it is used for accurate modelling of wind speeds. 

4.2.2 Probabilistic models for wind direction 

The use of a single analytical function is not suitable for modelling multimodal 

distributions of wind directions recorded for each of the binned wind speeds, as there 

are several prevailing wind directions recorded for each wind speed bin. Therefore, a 

combination of a number of 3p-W distributions with different parameters, denoted as 

a finite mixture of Weibull (MWB) distribution, is used, as well as a similar mixture 

of GNDs (MGND). In addition, a finite mixture of von Mises distributions (MvM) is 

also used for modelling wind directions. The PDFs and CDFs of single 3-pW and GND 

are given above. A single von Mises distribution, which is known as a circular normal 

distribution, is defined by two parameters: the location parameter 𝛾, which represents 

the prevailing wind direction, and the concentration parameter 𝜅, which indicates the 

variance around the mean. The PDF is given by: 

𝑓(𝑥) =
1

2𝜋𝐼0(𝜅)
exp(𝜅 cos(𝑥 − 𝛾)) (4.27) 

where 𝑥 is the random circular variable, 𝜅 ≥ 0, 0 ≤ 𝛾 ≤ 2𝜋, 0 ≤ 𝑥 ≤ 2𝜋 and 𝐼0(𝜅) is 

the modified Bessel function of the first kind and order zero: 

𝐼0(𝜅) =
1

√2𝜋
∫ exp(𝜅 cos(𝑥))𝑑𝑥
2𝜋

0

=∑
1

(𝑘!)2
(
𝜅

2
)
2𝑘

∞

𝑘=0

(4.28) 

The finite mixture model of simple distributions is defined by: 

𝑓𝑀(𝑥; 𝜔; 𝜒) =∑𝜔𝑖𝑓𝑖(𝑥; 𝜒𝑖)

𝑘

𝑖=1

(4.29) 

where 𝑓𝑀(∙) represents the PDF of the finite mixture model and 𝑓𝑖 is the PDF of the 

𝑖𝑡ℎ  single distribution, 𝜔 is the vector of the weights for every single distribution,  

𝜒 = [𝜒1
𝑇 , 𝜒2

𝑇 , … , 𝜒𝑘
𝑇]𝑇 is the matrix of the parameters for the mixture model, 𝜒𝑖 is the 

vector of the parameters for the 𝑖𝑡ℎ single distribution and 𝜔𝑖 is the weight of the 𝑖𝑡ℎ 
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single distribution, 𝑘 is the number of single distributions used in the mixture model. 

The weights of single distributions should satisfy the following constraints: 

0 ≤ 𝜔𝑖 ≤ 1 ∀𝑖 ∈ {1,… , 𝑘}, ∑𝜔𝑗 = 1

𝑘

𝑖=1

(4.30) 

Parameter estimation method 

To estimate the parameters of the considered finite mixture distributions, an 

optimization problem with the objective function presented as below is proposed: 

min𝑓𝑜𝑏𝑗 = √
1

𝑁
∑(𝑦̂𝑖 − 𝑦𝑖)2
𝑁

𝑖=1

(4.31) 

The objective function aims to minimize the RMSE between the empirical CDF values 

𝑦̂ and the CDF values of the fitted model 𝑦𝑖. 𝑁 is the number of total estimated points 

(sample size).  

When estimating the parameters for MWB, the optimization variables are the weight 

𝜔, the location parameter 𝛾, the shape parameter 𝛽, and the scale parameter 𝜂 for 

every single 3-pW. The following constraints should be satisfied: 

0 ≤ 𝛾𝑖 ≤ 2𝜋, 𝛽𝑖 > 0, 𝜂𝑖 > 0, ∀𝑖 ∈ {1,… , 𝑘} (4.32) 

For MGND, the optimization variables are the weight 𝜔, the location parameter 𝛾, the 

shape parameter 𝛽 , and the scale parameter 𝜂  for each single distribution. The 

following constraints should be met: 

0 ≤ 𝛾𝑖 ≤ 2𝜋, 𝜂𝑖 > 0, ∀𝑖 ∈ {1,… , 𝑘} (4.33) 

For MvM, the optimization variables include the weight, the location parameter 𝛾, and 

the concentration parameter 𝜅. The constraints are given as: 

0 ≤ 𝛾𝑖 ≤ 2𝜋, 𝜅𝑖 ≥ 0 ∀ 𝑖 ∈ {1,… , 𝑘} (4.34) 
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Apart from the above constraints for specific distributions, the constraints on the 

weights presented as (4.30) should be met for all three distributions. As the objective 

function is highly nonlinear and nonconvex, this optimization problem is solved by 

particle swarm solver of Global Optimization Toolbox (MATLAB R2016a). 

The number of single distributions in the mixture model is not treated as an 

optimization variable, because it is an integer and will impose additional constraints. 

In order to meet the balance between the model complexity and accuracy, a threshold 

is set for the objective function. In the beginning, the optimization problem is solved 

with one single distribution. If the objective value is lower than the threshold, the 

process stops. Otherwise, the number of separate distributions will increase by one, 

and the problem is solved again until the objective function is lower than the threshold. 

Parameter estimation results 

 
a.1) Wind speed = 6~7 m/s 

 
a.2) Wind speed = 11~12 m/s 
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a.3) Wind speed = 17~18 m/s 

 

 
a.4) Wind speed = 24~25 m/s 

 

a) wind rose for wind speed bin (N=0 degree) 

 

b.1) Wind speed = 6~7 m/s 

  

b.2) Wind speed = 11~12 m/s 
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b.3) Wind speed = 17~18 m/s 

 

b.4) Wind speed = 24~25 m/s 

b) PDFs for wind speed bins 

Figure 4.2: Comparison of the three best-fit PDFs and wind roses with the recorded 

wind directions. 

Figure 4.2 illustrates examples of the fitted PDF plots for the wind direction 

distribution with different wind speeds. Four wind speed bins are presented. For the 

convenience of the further calculation, the wind direction unit is transferred from 

radian to degree. The wind rose plots in Figure 4.2a show the prevailing wind 

directions with respect to different wind speeds. Figure 4.2b plots the histogram of the 

wind direction and the fitted PDFs of MWB, MGND and MvM. Tables 4.2-4.4 list the 

parameter values as well as the performance indicators of wind direction distributions 

for the wind speed bin of 11~12 m/s as an example. 
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Table 4.2: Parameter values for MWB (Wind Speed = 11-12m/s) 

Number Shape 𝛈 Scale 𝛃 Location 𝛄 Weight 𝛚 RMSE 

#1 1.332 0.513 4.658 0.357 

0.003 
#2 4.113 1.825 2.236 0.352 

#3 1.211 0.282 1.061 0.171 

#4 2.879 1.828 0.117 0.120 

 

 

Table 4.3: Parameter values for MGND (Wind Speed = 11-12m/s) 

Number Shape 𝜼 Scale 𝜷 Location 𝜸 Weight 𝛚 RMSE 

#1 0.187 0.336 3.822 0.184 

0.003 
#2 -0.832 0.293 1.335 0.250 

#3 -0.721 0.294 4.961 0.200 

#4 0.580 1.018 4.545 0.366 

Table 4.4: Parameter values for MvM (Wind Speed = 11-12m/s) 

Number Concentration 𝛋 Location 𝜸 Weight 𝛚 RMSE 

#1 6.595 3.784 0.139 

0.002 

#2 8.768 3.977 0.106 

#3 57.101 4.847 0.163 

#4 18.114 1.777 0.071 

#5 11.991 5.268 0.173 

#6 0.840 3.650 0.175 

#7 41.022 1.224 0.173 



73 

 

 

 

a) Fitting results comparison based on RMSE 

 

b) Fitting results comparison based on MAEAAB 

 

c) Fitting results comparison based on MAE 
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d) Fitting results comparison based on WMAE 

 

e) Fitting results comparison based on separate distribution numbers 

Figure 4.3: Wind speed fitting results comparisons 

Figure 4.3a – Figure 4.3d plots the errors of the fitted wind direction distributions to 

the wind speeds in each bin. Figure 4.3e presents the number of single distributions 

used for the finite mixture models. It can be observed that the three distributions all 

present competitive performances when the wind speed is lower than 20 m/s. However, 

as the wind speed increases over 20m/s, MvM is the most competitive among the three, 

whose CDFs are plotted as follows. 
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Figure 4.4: CDF of fitted MvM 

4.2.3 Probabilistic models for wind power output 

Due to a similar issue of multimodal distributions, the uncertainties in WF power 

generation are modelled using a mixture of Weibull distributions (MWB) and a 

mixture of GNDs (MGND). As von Mises distribution is a circular distribution, it is 

not used to model uncertainties in wind power outputs. The parameter values for both 

models are determined with the same approach presented in Section 4.2.2. Figure 4.5a 

shows manufacturer, recorded and average WF power outputs. For the considered 

wind turbine (Vestas v90 3.0 MW [145]) installed at the wind farm, the cut-in wind 

speed, rated wind speed and cut-out wind speed provided by manufacturer information 

are 4 m/s, 13 m/s and 25 m/s. The fitted results within two wind speed bins, 5-6 m/s 

and 11-12 m/s and 17-18 m/s, are plotted as examples in Figure 4.5b – Figure 4.5d. 
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a) manufacturer curve measured data and mean MWB and MGND values 

 
b) PDFs for 2-3 m/s wind speed bin 

 
c) PDFs for 11-12 m/s wind speed bin 
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d) PDFs for 17-18 m/s wind speed bin 

Figure 4.5: Comparison of PDF plots with the measured WF power outputs 

To further compare the performances of MWB and MGND, the performance 

indicators for both distributions (RMSE, MAEAAB, MAE, and WMAE) as well as 

the numbers of single distributions for mixture models are plotted as below: 

 
a) Fitting results comparison based on RMSE  
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b) Fitting results comparison based on MAEAAB 

 
c) Fitting results comparison based on MAE 

 
d) Fitting results comparison based on WMAE 
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e) Fitting results comparison based on single distribution numbers 

Figure 4.6: Wind power output fitting results comparisons 

4.3 Probabilistic power flow analysis 

The above analysis presents the PDFs for winds speeds, as well as wind directions and 

wind power outputs for each binned wind speed. In this part, they are used as the inputs 

for the Monte Carlo-based analysis to evaluate uncertainties in wind-based generation 

and real-time line capacities, as well as their impact on system operation. The ranges 

of variations are evaluated initially, and the actual risks of line overloading and wind 

power curtailments are calculated. 

4.3.1 Network specification 

The analysis is illustrated on a modified version (“UK variant”) of a widely used IEEE 

14-bus network, Figure 4.7 [146]. 
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Figure 4.7: UK variant of IEEE 14-bus network 

Generator G3 at Bus 8 is modelled as a WF with six 3 MW WTs, [145]. The parameters 

of OHLs used to estimate their thermal ratings (diameters, cross-section area, etc.) are 

taken from [136]. The line DTR values are estimated using recorded local temperatures 

from [147] (average 15.1℃ in July), while solar irradiation is calculated for the altitude 

and latitude of WF location. Figure 4.8 illustrates DTR values for an ACSR conductor 

(“242/39” from [136], with maximum operating temperature, 75℃, which is typical 

for ACSR-type conductors) for different wind speeds and wind directions and for two 

ambient temperatures: 2 ℃ and 20 ℃, representing winter and summer conditions, 

respectively [132]. Figure 4.8  also shows STR values for the same conductor and 

ambient temperatures, and wind speed of 0.5 m/s and attacking angle of 90 o as inputs 

in (1) [132]. 
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Figure 4.8: DTR of L1 (ACSR “242/39”) 

4.3.2 Network analysis and discussion 

Evaluation of DTR impact on wind integration 

First, power outputs of the wind farm at Bus 8 are estimated with the manufacturer 

provided power curve [145]. In this case, wind speed varies from 0 m/s to 30 m/s and 

two extreme wind attacking angles, 0o and 90o, are used to calculate DTR. To prevent 

overloading conditions, wind curtailment is necessary at specific wind conditions, 

plotted in Figure 4.9, which suggests that wind curtailment is necessary to mitigate the 

violations of STR for wind speeds between 10-25 m/s. It can be observed that the 

maximum wind curtailment is almost 6 MW and only 66% of available wind 

generation is dispatched at the same time. The application of DTR can avoid wind 

curtailment, as expected. Figure 4.10 plots the loading conditions of three most loaded 

lines, L1, L14 and L15, in which line loadings are given as the percentage ratios of 

line currents and STR. 𝑃𝑔𝑚𝑎𝑛, 𝑃𝑔min   and 𝑃𝑔max    represent the wind power outputs 

determined by manufacture power curve, minimum measured data and maximum 

measured data respectively. In Figure 4.11, conductor surface temperatures of L1, L14 

and L15, when DTR is applied, are plotted. When wind speed is high, the conductor 

surface temperatures are relatively low due to the strong wind cooling impact. 

However, when the wind speed is low (close to 0m/s), L14 and L15 will be exposed 

to the risk of overheating. This is not related to the connection of wind generation units, 
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as they will produce no output for wind speeds close to 0 m/s (it is an inherent flaw in 

the design of the network). 

 
Figure 4.9: Curtailed wind power variations with wind speed and wind direction 

 
Figure 4.10: Variations of line loading with wind speed and wind direction 
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Figure 4.11: Variations of conductor surface temperatures with wind speed and wind 

direction 

Evaluation of uncertainties from wind-based generation and DTR 

First, wind speed data are generated by Monte Carlo sampling from the developed 2p-

W model. For each generated wind speed value, the wind directions are sampled from 

corresponding MWB, GND and MvM models, while WF power outputs are sampled 

from associated MWB and GND models. Afterwards, DTR of each OHL is calculated 

for the sampled wind speed and wind direction, giving required wind power 

curtailment for the specific operating and ambient conditions. The total number of 

applied Monte Carlo simulations is set as 10,000, which means that 10,000 network 

operating points with different wind speeds, different wind directions and different 

WF power outputs are generated. Loading conditions are not varied. With respect to 

each scenario, the OPF problem with the objective function of wind curtailment 

minimization is solved. The bus voltages should be within 95% - 110% for 132kV 

buses and 94% - 106% for 33kV buses [148]. The power flow calculation, as well as 

optimal power flow, are implemented with MATPOWER [149][150] on a desktop 

equipped with Intel Xeon E3 processor. 
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Table 4.5: Wind power curtailment 

Thermal 

Types 

Wind Direction 

Model 

Wind Power Generation 

Model 

Curtailed Power 

(MW) 

Mean Std Max Min 

STR 
/ MWB 1.20 2.14 6 0 

/ MGND 1.21 2.13 6 0 

DTR 

MWB 

MWB 0 0 0 0 

MGND 0 0 0 0 

MVM 0 0 0 0 

MGND 

MWB 0 0 0 0 

MGND 0 0 0 0 

MVM 0 0 0 0 

 

 
Figure 4.12: Ranges (Min/Max values) of line loading with DTR 
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Figure 4.13: Ranges (Min/Max values) of conductor surface temperature with DTR 

The presented results shown by Figure 4.12 confirm that the implementation of DTR 

allows using additional line capacities, as the higher current/power flows for higher 

wind speeds do not result in conductor temperatures above the limit. When STR is 

used, the mean value of wind curtailment is 1.2 MW with the standard deviation of 

2.14 MW while the application of DTR can reduce the wind curtailment to zero.  

In addition, Figure 4.13 shows that temperatures of Lines 1, 5, 11, 13, 15 and 17 can 

be higher than their maximum temperature limits. As shown by Figure 4.11, the 

overheating conditions occur when wind speed is low and cannot be remediated by 

generation dispatch or wind curtailment, as the wind power output is zero. The 

overheating conditions can only be detected when DTR is used as the OPF cannot find 

feasible solutions. Relaxing the DTR slightly to STR, the OPF will provide feasible 

solutions. If system operators dispatch generation according to these solutions, STR 

can be satisfied, but the overheating conditions will occur and may cause potential 

damages to line conductors. The overheat probabilities for all the lines are presented 

in Figure 4.14. 
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Figure 4.14: Estimated probabilities (risks) of line overloading 

The MCS results show that the overheating probabilities of lines in Figure 4.13 at low 

wind speed are not higher than 1%. Nevertheless, the line overheating conditions may 

cause conductor loss of strength due to annealing and excessive line elongation (sag) 

and should be taken into consideration at both system planning and operational stages. 

4.4 Conclusions 

This chapter built up probabilistic models for wind speed, wind direction and wind-

based generation based on historically recorded data from a UK wind farm located at 

Dalry, Scotland. A UK variant of IEEE 14-bus network was used to evaluate the 

impacts of DTR on the integration of wind energy resource, whose output was 

determined by the power curve provided by manufacturers’ specifications. In addition, 

MCS-based analysis was implemented with the developed probabilistic models, in 

which the impacts of uncertainties in the wind-based generation and DTR on system 

operation was studied. The results presented that the application of DTR can increase 

the integration of wind energy and reduce energy curtailment efficiently. However, the 

unfavourable real-time thermal rating at low wind speed can result in unexpected 

overloading conditions which should be focused on system planning and operational 

stages.  
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Chapter 5 
Handling Uncertainties with Affine Arithmetic 

and Probabilistic OPF for Increased Utilisation 
of Overhead Lines 

5.1 Introduction 

Application of dynamic thermal rating (DTR) effectively avoids costly upgrading or 

reinforcing of system infrastructure, as it allows for higher utilisation of network 

components than if their static thermal ratings (STR) are used. Previous work has 

shown that application of DTR can increase thermal loading of overhead lines by 5% 

- 15% [151], and in that way release network capacity for connecting a higher number 

of generation units and supplying more loads [131], [152], [153].  

However, the utilisation of DTR also presents new problems for system operation due 

to its uncertainties. Additionally, the research presented in Chapter 4 has found that 

the application of DTR may result in unexpected congestions when the wind speed is 

low. In order to efficiently handle the large range of uncertainties introduced into 

power system operation, this chapter proposes a novel optimization model, which 

combines affine arithmetic (AA) and probabilistic optimal power flow (P-OPF) for 

networks with the application of DTR. The uncertainties in bus power injections, 

including wind generation and load, as well as in DTR limits, are initially formulated 

as interval values, obtained from time series generated from historically recorded data. 

The OPF problem with uncertainties is solved firstly with the AA approach, using 

Max-Min intervals of optimal objective function values, to identify optimal dispatch 

solutions. These AA interval solutions are usually too conservative, as they include all 

possible values of uncertain variables, regardless of their actual probabilities. 

Therefore, this chapter uses Monte Carlo Simulations (MCS’) for evaluation of 

probabilities and uncertainties in input values (and risks in output values), based on 

the methods developed in Chapter 4.  

Section 5.2 to Section 5.4 provide detail descriptions on affine arithmetic, affine 

arithmetic optimal power flow and affine formulation of DTR, which have been 
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presented by [10], [11] in details. Section 5.5 presents the numerical results for case 

studies based on three test cases. 

5.2 Affine Arithmetic 

Affine arithmetic (AA) is a self-validated numerical computation model, which is used 

to solve dependency problems in classical interval mathematic computations. It keeps 

track of the first-order correlations between input and computed output quantities 

[154][155]. Standard interval arithmetic (IA) often yields too much wider intervals 

than the actual (exact) ranges of the computed function, resulting in an overestimation 

that effectively limits the application of the IA. For instance, in chained computation, 

where the outputs of one step are inputs of the next step, the overestimation tends to 

get multiplied. This results in a cumulative error, also known as error explosion, which 

can be resolved by applying affine arithmetic.  

Assuming that 𝑥 is a variable which is subject to uncertainties, the affine form of 

uncertain variable,  𝑥̃ is: 

  𝑥̃ = 𝑥𝑜 + 𝑥1𝜀1 + 𝑥2𝜀2 +⋯+ 𝑥𝑛𝜀𝑛 (5.1) 

where 𝑥𝑜, is the central value, 𝑥𝑖 are deviations due to the ith uncertainty, for which 𝜀𝑖 

represents the noise symbol with the range 𝐔 = [−1,1] . The radius of  𝑥̃  can be 

expressed by 𝑟𝑎𝑑𝑥 =  ∑ |𝑥𝑖|
𝑛
𝑖=1 . [𝑥𝑙 , 𝑥𝑢], when the range of 𝑥̃ can be given as: 

 𝑥𝑙 = 𝑥𝑜 − 𝑟𝑎𝑑𝑥, 𝑥𝑢 = 𝑥𝑜 + 𝑟𝑎𝑑𝑥 (5.2) 

5.2.1 Computing with affine arithmetic 

Computations in affine arithmetic can be classified into two categories: affine 

operations and non-operations. For affine operations, the computation can be simply 

extended from primitive operations and functions to affine forms. However, for non-

affine operations, the additional transformations are required. 

Affine operations 

Affine arithmetic consists of affine and non-affine operations. For two interdependent 

affine forms 𝑥̃ = 𝑥𝑜 + ∑ 𝑥𝑖
𝑛
𝑖=1 𝜀𝑖  and 𝑦̃ = 𝑦𝑜 + ∑ 𝑦𝑖

𝑛
𝑖=1 𝜀𝑖 , the affine form 𝑧̃ , 

determined by affine combinations of 𝑥̃ and 𝑦̃, is: 
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 𝑧̃ = 𝑘1𝑥̃ ± 𝑘2𝑦̃ ± 𝑘3 = (𝑘1𝑥𝑜 ± 𝑘2𝑦𝑜 ± 𝑘3) + ∑ (𝑘1𝑥𝑖 ± 𝑘2𝑦𝑖)𝜀𝑖
𝑛
𝑖=1  (5.3) 

where the middle point of 𝑧̃ is given as 𝑧𝑜 = 𝛼𝑥𝑜 ± 𝛽𝑦𝑜 ± 𝛾 and deviation of the ith 

uncertainty is 𝑧𝑖 = 𝛼𝑥𝑖 ± 𝛽𝑦𝑖.  

Non-affine operations 

For a non-affine operation 𝑧 ← 𝑓(𝑥, 𝑦) , as 𝑓  is not affine, 𝑧  cannot be expressed 

exactly by affine combinations of noise symbols 𝜀𝑖 . An affine approximation is 

necessary in this case and an extra term 𝑧𝑘𝜀𝑘 should be introduced. 

 𝑧̃ = 𝑓(𝑥̃, 𝑦̃) = 𝑓∗(𝜀1, … , 𝜀𝑛) = 𝑓
𝑎(𝜀1, … , 𝜀𝑛) + 𝑧𝑘𝜀𝑘 (5.4) 

where the affine approximation is represented by 𝑓𝑎(𝜀1, … , 𝜀𝑛) = 𝑘1𝑥̃ ± 𝑘2𝑦̃ ± 𝑘3. 

The error of the affine approximation should be lower than the upper bound 𝛿.  

 𝛿 ≥ max
−1≤ε≤1

{|𝑓∗(𝜀1, … , 𝜀𝑛) − 𝑓
𝑎(𝜀1, … , 𝜀𝑛)|} (5.5) 

The extra term 𝑧𝑘𝜀𝑘 represents the approximation error and the coefficient 𝑧𝑘 equals 

to 𝛿.  

The noise symbol 𝜀𝑘 is a function of the other noise symbols 𝜀1, … , 𝜀𝑛. However, in 

the preceding computations with the input of 𝑧̃, the relationship between 𝜀𝑘 and the 

other noise symbols would be neglected and 𝜀𝑘  is an independent variable. 

Consequently, the introduction of the non-affine term 𝑧𝑘𝜀𝑘  implied a loss of 

information. However, if the affine approximation is selected properly, the value of 𝛿 

is usually a quadratic function with the ranges of the inputs. So the error can be 

decreased by shrinking the ranges of the inputs. 

5.2.2 Selecting good affine approximation 

As discussed above, to find a good affine approximation 𝑓𝑎  is significant to the 

computation with affine arithmetic. To minimize the error and to minimize the range 

are the two basic ideas to find the good affine approximation for a non-affine function.  

In the first approach, the affine approximation that has the smallest possible error over 
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the given input interval is preferred. This approximation is optimal in the Chebyshev 

(min-max) sense. In the second approach, the affine approximation with the smallest 

range, that is the same range as the original function, is selected. To illustrate the 

difference, an example presented in [156] is given as follows. In this example, the 

function 𝑓 is the univariate exponential function and the range of the single input is 

[𝑎, 𝑏]. The formulation of the affine approximation is： 

𝑓𝑎(𝑥̃) = 𝑘1𝑥̃ + 𝑘2 (5.6) 

Figure 5.1 shows the affine approximations provided by two approaches. The dotted 

lines represent the centre values of the affine approximation, and the grey regions are 

the zonotopes corresponding to the error terms. It can be observed that the zonotope 

of Chebyshev approximation is smaller than that of minimum range approximation, 

which illustrates that Chebyshev approximation provides a better approximation. 

However, the minimum range of approximation is usually easier to obtain. In the 

following study, Chebyshev approximation is used to find good affine approximations 

for non-affine operators. 

 
a) Chebyshev approximation 



92 

 

 

 
b) Minimum range approximation 

Figure 5.1: Comparison between Chebyshev approximation and minimum range 

approximation [156] 

5.2.3 Good affine approximation for some basic operations 

Square root in affine arithmetic 

Chebyshev approximation theory is presented as follows [156]: 

Let ℱ be some space of functions (polynomials, affine forms, etc.). An element of ℱ 

that minimizes the maximum absolute difference from a given function 𝑓 over some 

specified domain Ω is known as a Chebyshev (or minimax) ℱ-approximation of 𝑓 over 

Ω.  

For univariate functions, the Chebyshev approximation is characterized as follows 

[156]: 

Theorem 1: Let 𝑓  be a bounded and continuous function from some closed and 

bounded interval I = [a, b] to R. Let ℎ be the affine function that best approximates 𝑓 

in I under the minimax error criterion. Then, there exist three distinct points 

𝑢, 𝑣, 𝑎𝑛𝑑 𝜔 in I where the error 𝑓(𝑥) − ℎ(𝑥) has maximum magnitude; the sign of the 

error alternates when the three points are considered in increasing order. 

Based on Theorem 1, the optimum approximation can be found as follows [156]: 
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Theorem 2: Let 𝑓 be a bounded and twice differentiable function defined on some 

interval I = [a, b], whose second derivative 𝑓′′does not change sign inside I. Let 

𝑓𝑎(𝑥) = 𝑘1𝑥 + 𝑘2 be its minimax affine approximation in I, then: 

⚫ The coefficient 𝛼  is simply 
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
, the slope of the line r(x) that 

interpolates the points (a, f(a)) and (b, f(b)). 

⚫ The maximum absolute error will occur twice at the endpoints a and b of 

the range (with the same sign), and once (with the opposite sign) at an 

interior point u in I where 𝑓′(𝑢) = 𝑘1. 

⚫ The independent term 𝛾 is such that 𝑘1𝑢 + 𝑘2 = (𝑓(𝑢) + 𝑟(𝑢))/2, and the 

maximum absolute error is 𝛿 = |𝑓(𝑢) − 𝑟(𝑢)|/2. 

The affine approximation of square root is given as an example to illustrate the process 

provided by Theorem 2. 

Given that 𝑧̃ = √𝑥̃  where the range of 𝑥̃  is [a, b], the slope of the optimal affine 

approximation is: 

𝑘1 =
√𝑏 − √𝑎

𝑏 − 𝑎
(5.7) 

As illustrated in Theorem 2, the point 𝑢 is given by solving 𝑓′(𝑢) =
1

2√𝑢
=

√𝑏−√𝑎

𝑏−𝑎
. 

The value of u is: 

𝑢 =
𝑎 + 𝑏 + 2√𝑎𝑏

4
(5.8) 

The optimal independent term is: 

𝑘2 =
𝑓(𝑢) + 𝑟(𝑢)

2
− 𝛼𝑢 =

√𝑎 + √𝑏

8
+

√(𝑎𝑏)

2(√𝑎 + √𝑏)
 (5.9) 

The maximum error is: 
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𝛿 =
𝑓(𝑢) − 𝑟(𝑢)

2
=
(√𝑏 − √𝑎)

2

8(√𝑎 + √𝑏)
(5.10) 

The optimal affine form for 𝑧̃ = √𝑥̃ is 

𝑧̃ = 𝑧0 + 𝑧1𝜀1 +⋯+ 𝑧𝑛𝜀𝑛 + 𝑧𝑘𝜀𝑘 

where: 

𝑧0 = 𝑘1𝑥0 + 𝑘2 (5.11) 

𝑧𝑖 = 𝑘1𝑥𝑖  (𝑖 = 1,… , 𝑛) (5.12) 

𝑧𝑘 = 𝛿 (5.13) 

 Multiplication in affine arithmetic 

Given two affine forms 

𝑥̃ = 𝑥0 + 𝑥1𝜀1 +⋯+ 𝑥𝑛𝜀𝑛 

𝑦̃ = 𝑦0 + 𝑦1𝜀1 +⋯+ 𝑦𝑛𝜀𝑛 

Their product is  

𝑥̃𝑦̃ = (𝑥0 +∑𝑥𝑖𝜀𝑖

𝑛

𝑖=1

)(𝑦0 +∑𝑦𝑖𝜀𝑖

𝑛

𝑖=1

) = 𝑥0𝑦0 +∑(𝑥0𝑦𝑖 + 𝑥𝑖𝑦0)

𝑛

𝑖=1

𝜀𝑖

+∑𝑥𝑖

𝑛

𝑖=1

𝜀𝑖∑𝑦𝑖

𝑛

𝑖=1

𝜀𝑖

 

The affine form of the product can be written as: 

𝑥̃𝑦̃ = 𝑥0𝑦0 +∑(𝑥0𝑦𝑖 + 𝑥𝑖𝑦0)

𝑛

𝑖=1

𝜀𝑖 + 𝑧𝑘εk (5.14) 

where 
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|𝑧𝑘| ≥ max(|∑𝑥𝑖

𝑛

𝑖=1

𝜀𝑖∑𝑦𝑖

𝑛

𝑖=1

𝜀𝑖|) , 𝜀𝑖 ∈ 𝐔 

To simplify the computation, the upper bound for the approximation error can be [156]: 

𝑧𝑘 = (∑|𝑥𝑖|

𝑛

𝑖=1

)(∑|𝑦𝑖|

𝑛

𝑖=1

) (5.15) 

5.3 Affine arithmetic optimal power flow 

5.3.1 AA-based constrained optimization 

The general formulation of AA-based optimization problem is given as (5.16) 

min
𝑥̃
𝑓(𝑥̃) 

𝑠. 𝑡. 𝑔̃(𝑥̃) ≤ 0 (5.16) 

ℎ̃(𝑥̃) = 0 

To solve this problem, the minimization operator and the comparison operators are 

also required to extend into the affine domain. As presented by [157], the similarity 

operator, inequality operator and the minimization operator in the affine domain are 

introduced. 

 Similarity operator for affine forms 

Two affine forms 𝑥̃ = 𝑥0 + ∑ 𝑥𝑖
𝑛+𝑛𝑛𝑎
𝑖=1 𝜀𝑖  and 𝑦̃ = 𝑦0 + ∑ 𝑦𝑖

𝑛+𝑛𝑛𝑎
𝑖=1 𝜀𝑖  are similar with 

an approximation degree ℒ𝑥,𝑦, i.e. 𝑥̃ ≈ 𝑦̃, if and only if: 

{𝑥𝑖 = 𝑦𝑖 ∀𝑖 ∈ (0,… , 𝑛)} ∧ {ℒ𝑥,𝑦 = ∑ |𝑥𝑖| + |𝑦𝑖|

𝑛+𝑛𝑛𝑎

𝑖=𝑛+1

} (5.17) 

where  𝜀𝑛+1,…, 𝜀𝑛+𝑛𝑛𝑎 are the noise symbols generated by non-affine operations. 

Inequality operator for affine forms 

Given two affine forms 𝑥̃ = 𝑥0 + ∑ 𝑥𝑖
𝑛𝑥
𝑖=1 𝜀𝑖  and 𝑦̃ = 𝑦0 + ∑ 𝑦𝑖

𝑛𝑦
𝑖=1

𝜀𝑖 , 𝑥̃ < 𝑦̃  if and 

only if: 
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𝑥0 +∑|𝑥𝑖|

𝑛𝑥

𝑖=1

< 𝑦0 −∑|𝑦𝑖|

𝑛𝑦

𝑖=1

(5.18) 

Min operator for affine forms 

Given a differentiable, non-linear function 𝑓: 𝑅 → 𝑅  and the affine form 𝑥̃ = 𝑥0 +

∑ 𝑥𝑖
𝑛
𝑖=1 𝜀𝑖, the following AA-based minimization problem： 

min
𝑥̃
𝑓(𝑥̃) = 𝑓0(𝑥̃) +∑𝑓𝑖(𝑥̃)

𝑛

𝑖=1

𝜀𝑖 + ∑ 𝑓𝑖(𝑥̃)

𝑛+𝑛𝑛𝑎

𝑖=𝑛+1

𝜀𝑖  

𝑠. 𝑡. 𝑔̃(𝑥̃) ≤ 0 (5.19) 

ℎ̃(𝑥̃) = 0 

is equivalent to the multi-objective optimization problem presented as (5.20) which 

aims to minimize the central value and the radius of the original objective function 

simultaneously. This optimization model is able to provide the solutions where both 

central values and deviations of affine forms for decision and state variables are given. 

min
𝑥0,…,𝑥𝑛

{𝑓0(𝑥0, … , 𝑥𝑛), ∑ |𝑓𝑖(𝑥0, … , 𝑥𝑛)|
𝑛+𝑛𝑎
𝑖=1 }

𝑠. 𝑡. 𝑔̃(𝑥̃) ≤ 0 (5.20)

ℎ̃(𝑥̃) ≈ 0

Considering the simplicity and the robustness of the solution, weight factors are 

applied to two objectives; then the optimization problem is given as: 

min
𝑥0,…,𝑥𝑛

𝜔1𝑓0(𝑥0, … , 𝑥𝑛) + 𝜔2 ∑ |𝑓𝑖(𝑥0, … , 𝑥𝑛)|

𝑛+𝑛𝑎

𝑖=1

𝑠. 𝑡. 𝑔̃(𝑥̃) ≤ 0 (5.21)

ℎ̃(𝑥̃) ≈ 0

 

where 𝜔1 and 𝜔2 are the weights for the centre and the radius for the original objective 

function, which represent the preference to determinism and robustness of solutions, 

respectively. The performance of the AA-based OPF solution is highly dependent on 

the values of the weights.  
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5.3.2 AA-based optimal power flow 

Consider a power network  𝐺(𝒩, ℒ), with a set of network buses 𝒩  and network 

branches ℒ, the interval of following uncertainties are modelled as (5.22) and (5.23) ：  

For WF maximum supplied power: 

 𝑃̃𝑔w = 𝑃𝑔𝑤𝑜 + 𝑃𝑔𝑤𝜀𝑤   ∀𝑤 ∈ 𝒲 (5.22) 

where 𝒲 is the set of wind farm indices. 

while for load: 

 𝑃̃𝑑𝑖 = 𝑃𝑑𝑖𝑜 + 𝑃𝑑𝑖𝜀𝑖,   𝑄̃𝑑𝑖 = 𝑄𝑑𝑖𝑜 + 𝑄𝑑𝑖𝜀𝑖   ∀𝑖 ∈ 𝒩 (5.23) 

where each wind generation and load have different error symbols.  

The constraints of AA-OPF are listed as follows: 

Power balance equations 

𝑃̃𝑔𝑖 + ∑ 𝑃̃𝑤𝑤∈𝒲𝑖
− 𝑃̃𝑑𝑖 = ∑ 𝑃̃𝑙𝑖𝑗(𝑙,𝑖,𝑗)∈ℒ𝑖 

+ ∑ 𝑃̃𝑙𝑖𝑗(𝑙,𝑖,𝑗)∈ℒ𝑖
𝑅 , ∀𝑖 ∈ 𝒩 (5.24) 

𝑄̃𝑔𝑖 + ∑ 𝑄̃𝑤𝑤∈𝒲𝑖
− 𝑄̃𝑑𝑖 = ∑ 𝑄̃𝑙𝑖𝑗(𝑙,𝑖,𝑗)∈ℒ𝑖

+ ∑ 𝑄̃𝑙𝑖𝑗(𝑙,𝑖,𝑗)∈ℒ𝑖
𝑅 , ∀𝑖 ∈ 𝒩 (5.25) 

where 𝑃̃𝑔𝑖and 𝑄̃𝑔𝑖are affine active and reactive power outputs of the generator at bus 

𝑖, 𝑃̃𝑤 and 𝑄̃𝑤 are affine active and reactive power output of wind generation indexed 

by 𝑤 and 𝒲𝑖 is the index of wind generation attached at bus 𝑖, 𝑃̃𝑑𝑖 and 𝑄̃𝑑𝑖 are affine 

active and reactive demands at bus 𝑖.  

Line flow equations 

𝑉̃𝑖

𝑡𝑖𝑗
[(
𝑗𝑏𝑖𝑗

′

2
+ 𝑦𝑖𝑗)

𝑉̃𝑖

𝑡𝑖𝑗
− 𝑦𝑖𝑗𝑉̃𝑗 ]

∗

= 𝑃̃𝑙𝑖𝑗 + 𝑗𝑄̃𝑙𝑖𝑗 ∀ (𝑙, 𝑖, 𝑗)  ∈ ℒ (5.26)  

𝑉̃𝑗 [−𝑦𝑖𝑗
𝑉̃𝑖

𝑡𝑖𝑗
+ (

𝑗𝑏𝑖𝑗
′

2
+ 𝑦𝑖𝑗) 𝑉̃𝑗 ]

∗

= 𝑃̃𝑙𝑗𝑖 + 𝑗𝑄̃𝑙𝑗𝑖 ∀ (𝑙, 𝑖, 𝑗)  ∈ ℒ (5.27) 

 where 𝑏𝑖𝑗
′  is the shunt susceptance of line 𝑙. For the branch  (𝑙, 𝑖, 𝑗)  ∈ ℒ, 𝑃̃𝑙𝑖𝑗 and 𝑄̃𝑙𝑖𝑗 

are affine active and reactive power flow injected into branch 𝑙 at its from end; 𝑃̃𝑙𝑗𝑖and 
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𝑄̃𝑙𝑗𝑖 are affine active and reactive power flow injected into branch 𝑙 at its to end. 𝑉̃𝑖 

and 𝑉̃𝑗are affine voltages at from and to ends of branch 𝑙. 𝑡𝑖𝑗 is the transformer tap ratio. 

Conventional generator output  

𝑃𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑃̃𝑔𝑖 ≤ 𝑃𝑔𝑖

𝑚𝑎𝑥 , ∀𝑖 ∈ 𝒢 (5.28) 

𝑄𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑄̃𝑔𝑖 ≤ 𝑄𝑔𝑖

𝑚𝑎𝑥, ∀𝑖 ∈ 𝒢 (5.29) 

Wind power output 

0 ≤ 𝑃̃𝑤 ≤ 𝑃̃𝑔w, ∀𝑤 ∈ 𝒲 (5.30) 

Line thermal limits 

|𝑃̃𝑙𝑖𝑗 + 𝑗𝑄̃𝑙𝑖𝑗|
2
≤ (𝑆𝑙

𝑚𝑎𝑥)2,   |𝑃̃𝑙𝑗𝑖 + 𝑗𝑄̃𝑙𝑗𝑖|
2
≤ (𝑆𝑙

𝑚𝑎𝑥)2, ∀(𝑙, 𝑖, 𝑗) ∈ ℒ (5.31) 

Voltage magnitude limits 

(𝑉𝑖
𝑚𝑖𝑛)

2
≤ |𝑉̃𝑖|

2
≤ (𝑉𝑖

𝑚𝑎𝑥)2, ∀𝑖 ∈ 𝒩 (5.32) 

Bus voltages are represented in the rectangular form: 

𝑉̃𝑖 = 𝑒̃𝑖 + 𝑗𝑓𝑖 (5.33) 

where 𝑒̃𝑖 and 𝑓𝑖 are affine real and imaginary parts of the voltage at bus i. 

Slack bus voltage magnitude and angle should satisfy the following constraints: 

𝑒1̃ = 1, 𝑓1̃ = 0 (5.34) 

In the following study, two objective functions are used: 1) cost minimization and 2) 

wind curtailment minimization. The objective functions are given as follows: 

min𝑓𝑐(𝑃𝑔̃) =∑𝑎𝑖 ∗ 𝑃̃𝑔𝑖
2
+ 𝑏𝑖 ∗ 𝑃̃𝑔𝑖 + 𝑐𝑖

𝑖∈𝒢

(5.35) 

where 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖 are the cost coefficients of generator 𝑖. 

min ∑ 𝑃̃𝑐𝑢𝑟𝑡𝑤
2

𝑤∈𝒲

(5.36) 
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where the curtailed wind power 𝑃̃𝑐𝑢𝑟𝑡𝑤 is given by : 

𝑃̃𝑐𝑢𝑟𝑡𝑤 = 𝑃̃𝑔𝑤 − 𝑃̃𝑤, ∀𝑤 ∈ 𝒲 (5.37) 

Using the method described in Section 5.2, the AA-based OPF can be transformed into 

the formulation of deterministic optimization problem presented as (5.21).  

5.4 Affine formulation of DTR 

The affine formulation of DTR in this chapter considers uncertainties in wind speeds  

𝑉𝑤 and wind directions 𝜙, as previously presented in [158], which can be respectively 

expressed by (5.38) and (5.39). 

 𝑉𝑤̃ = 𝑉𝑤𝑜 + 𝑉𝑤𝜀𝑤 (5.38) 

 𝜙̃ = 𝜙𝑜 + 𝜙𝜀𝜙 (5.39) 

The affine form to represent DTR can be calculated as: 

 𝐼𝑟𝑎𝑡𝑒𝑑   = √
𝑞𝑐̃+𝑞𝑟̃−𝑞𝑠̃

𝑅̃
   (5.40) 

Neglecting the term introduced by non-affine operations, the final affine form is given 

by: 

 𝐼𝑟𝑎𝑡𝑒𝑑 = 𝐼𝑟𝑎𝑡𝑒𝑑0 + 𝐼𝑟𝑎𝑡𝑒𝑑𝑤𝜀𝑤 + 𝐼𝑟𝑎𝑡𝑒𝑑𝜙𝜀𝜙 (5.41) 

where  𝐼𝑟𝑎𝑡𝑒𝑑0, 𝐼𝑟𝑎𝑡𝑒𝑑𝑤, and 𝐼𝑟𝑎𝑡𝑒𝑑𝜙 are the centre value, partial deviation caused by 

wind speed variation and partial deviation caused by wind direction variation. 

5.5 Case study and numerical results 

In this section, a 3-bus system available from MATPOWER [149], a 10-bus system 

and the IEEE 33-bus test system [134] are used to illustrate AA-OPF method and 

compare it with MCS solution. The proposed AA optimization model is coded with 

YALMIP [159]. The AA-based OPF problem is solved by IPOPT [160], while the 
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MCS-based approach is implemented with MATPOWER [149][150]. The values of 

the weight factors in (5.21) are set as 1 and 0.5 as presented in [10], [11] 

5.5.1 The 3-bus system 

In the 3-bus system, a load with the nominal value of 3 MW, 0.8 Mvar is located at 

Bus 2. The load is forecast as 0.9 pu and it varies in a ±11% range of the forecast 

value. Lines L1-2 and L2-3 are overhead lines with ACSR conductors of types Gopher 

and Mole, whose specific parameters for DTR calculation can be obtained from [136]. 

The bus voltage is 11 kV and the bus voltage limits are 0.9 pu to 1.10 pu. The capacity 

of the wind turbine at Bus 3 is 2MW, whose power output is determined according to 

the manufacture power curve of Vestas 90-2.0MW [161], shown as Figure 5.3. The 

range of forecast wind speed is between [8m/s, 10m/s] and the forecast wind power 

output is 0.625pu and the range of its variation is ±28% of the forecast value. 

 
Figure 5.2: The 3-bus network configuration 
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Figure 5.3: Manufacture power curve for Vestas 90-2.0MW turbine  

Assuming that the wind attacking angle is fixed at 90o which can provide maximum 

cooling impacts for overhead lines, the affine forms of DTR on L1-2 and L2-3 can be 

calculated according to Section 5.4: 

𝐼𝑚𝑎𝑥𝐿1−2̃ = 337.8476 + 11.1464𝜀𝑣𝑤 + 0.1242𝜀𝑒1 + 0.094𝜀𝑒2 (5.42) 

𝐼𝑚𝑎𝑥
𝐿2−3̃ = 187.9407 + 6.2140𝜀𝑣𝑤 + 0. .693𝜀𝑒1 + 0.0525𝜀𝑒2 (5.43)

where 𝜀𝑤  is the noise symbol representing wind speed uncertainty, 𝜀𝑒1  and 𝜀𝑒2  are 

noise symbols introduced by non-affine operations in DTR calculation. As the 

deviations caused by 𝜀𝑒1 and 𝜀𝑒2 are quite small (0.1242 A and 0.094 A for L1-2, 

0.693 A and 0.0525 A for L2-3), these two terms can be neglected to simplify the 

calculation The fuel cost function of the generator at bus 1 is given as (5.35) where 

𝑎,𝑏 and 𝑐 are given as 0, 14 and 0 $/MW [149]. 

Implementing AA-OPF presented in Section 5.3.2, the optimal power output of 

conventional generator at Bus 1 (optimised to minimize fuel cost against wind and 

demand variations) can be obtained as: 

𝑃𝑔̃ = 1.4507 − 0.3501𝜀𝑤 + 0.3002𝜀𝐷 (5.44) 

       ±              

    ±    
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The centre value of the optimal power output 𝑃𝑔𝑜 is 1.4507 MW and the deviations 

caused by uncertainties in wind and demand are 0.3501 MW and 0.3002 MW. 

According to the definition of affine arithmetic, the radius of optimal power output 

𝑟𝑎𝑑𝑃𝑔 is 0.6503 MW. The optimal dispatch interval is therefore calculated as [𝑃𝑔𝑜 −

𝑟𝑎𝑑𝑃𝑔, 𝑃𝑔𝑜 + 𝑟𝑎𝑑𝑃𝑔], which is given as [0.8004 MW, 2.1010 MW]. The intervals 

obtained by the MCS method are the benchmark to check the validity of the obtained 

AA interval. In the MCS method, all the uncertainties inputs are assumed to be 

independent and distributed randomly within the ranges. The MCS-based method 

needs 2000 iterations to converge and the further increase of MCS iterations does not 

change the intervals significantly. The interval provided by the MCS-based approach 

is [0.8133 MW, 2.0967 MW]. The error between the upper bounds is 0.205% and the 

lower bound error is 1.611% 

Figure 5.4 depicts the intervals of bus voltage magnitudes, reactive power generation 

and line currents obtained by AAOPF and MCS-based OPF respectively. It can be seen 

that MCS-based intervals are slightly inside AA intervals, but they are quite close to 

each other. It demonstrates that the MCS-based method provides the exact intervals 

and AA intervals are too conservative in this case. For instance, AA interval of current 

flow on L1-2 is 60% wider than MCS results which means that the AA interval may 

cover power flow solutions with very low probability to occur. 
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b) Reactive power generation intervals 

 
c) Line current intervals 

Figure 5.4: Comparison between AA-based OPF and MCS-based OPF in 3-bus 

system 

The results based on the 3-bus system show that AA method is able to achieve similar 

results as MCS-based method but AA method is much faster as the MCS method 

requires 2000 iterations of OPF to converge, even for a simple test network. 

5.5.2 The 10-bus system 

The case study is based on a real transmission network in Italy, Figure 5.5, with a high 

penetration of wind power, where frequent OHL congestion (i.e. overloading of OHLs 
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buses, where Bus 1 is the slack bus (connection point to HV bulk power system). The 

nominal bus voltage for each bus is 150 kV. There are eight wind farms, WF1 to WF8, 

all operating with a unity power factor and two bulk load supply points, L1 and L2, 

located at Bus 3 and Bus 10, with peak demands of 56 MW, 6 Mvar and 50 MW, 

5 Mvar, respectively. All lines in network are OHLs, whose DTRs can be calculated 

according to the thermal model presented in Section 5.4. Detailed network information 

can be obtained from [11]. 

 

Figure 5.5: The 10-bus network configuration 

Wind profiles, load profiles and their uncertainties 

Two days are selected for analysis: one in summer (6th of June) and one in winter (2nd 

of January). To evaluate load profile uncertainties, two recorded load profiles (6 – year 

and the resolution of 30-minute) are used. The seconds-order Markov Chain (MC) 

model is applied to analyse the variations in load profiles, in which the probability of 

transferring from one state to the next state only depends on the two successive 

previous states. The model used to generate the load profiles with uncertainties is 

discussed in detail by [10]. Two days are selected for the following network analysis: 

one in summer (6th of June) and one in winter (2nd of January). The load profiles of L1 

and L2 in the two days are plotted as Figure 5.6. 

In order to evaluate seasonal variations in DTR limits and their impacts on wind energy 

integration, wind profiles are also needed for both wind farms and OHLs. Considering 

the number of wind farms and OHLs in the test network, 18 correlated wind speed 

profiles are required. However, due to the topology of the network, L1-2 is the main 
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limitation to the wind energy integration and the DTR limits of other OHLs will not 

be reached. Consequently, the wind conditions at all OHLs can be assumed to be the 

same to simplify the computation. Daily wind speed profiles for WF1-WF8 as well as 

a daily wind speed profiles for OHLs, are generated for these two days based on 

Copula theory [162], [163] and Markov Chain model. 

Copula function is a multivariate PDF with uniformly distributed marginal probability 

for each variable. Considering a bivariate distribution, if the marginal distributions XF  

and YF  are known, their joint distribution XYF  can be written as 

( ) ( ), ( ), ( )XY X YF x y C F x F y= . If XF  and YF  are continuous, then the Copula 

function C  is unique. If ( )XF x u=  and ( )YF y v= , where u  and v  are respectively 

realisations of uniformly distributed variables U  and V , 

( ) ( ) ( )( )1 1, ,UV X YC u v F F u F v− −=  can be used to build corresponding Copula function 

from multivariate distribution function and multivariate Gaussian Copula is applied to 

analyse high-dimensional correlations between wind speeds at several WFs, as well as 

for network OHLs.  

Multivariate Gaussian Copula function has one Copula linear correlation parameter 

g  for every bivariate dependence, so the d-dimensional Gaussian Copula can be 

written as: 

( ) ( )1 1 1
1 2 1 2, , , ; ( ), ( ), , ( )g d dC u u u u u u− − −=    

gg ρρ  (5.45) 

( )
( )1 2

1 2

1 2

1
T 12

, , , ;
, , , ;

1
exp ( )

2

d
g d

g d

d

C u u u
c u u u

u u u

− −


=

  

 
= − − 

 

g

g

g g g g

ρ
ρ

ρ ζ ρ I ζ

 (5.46) 

( )1 1 1
1 2( ), ( ), , ( )du u u− − −=   gζ  (5.47) 

The above equations transform marginal distributions into a uniform domain in [0,1]  

using marginal cumulative density function (CDF) and then transform the uniform 
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domain into a normal domain [164]. This approach expresses dependency between 

uncertain variables ( 1,2,3, , )ix i d=  by the dependency between their standard 

normal transforms. In fitting Gaussian Copula, the parameter gρ  is estimated using 

maximum likelihood estimation (MLE) method [165]. 

Since the correlation matrix gρ  is a positive definite matrix, it can be applied with 

Cholesky factorisation: 
*=gρ TT , where Τ  is a lower triangular matrix and *

T  is its 

conjugate transpose. The first step of sampling from a given Gaussian d-dimensional 

Copula is to generate a d-dimensional variable 1 2[ , , , ]d=Q q q q , which can be 

uncorrelated, and every dimension of the variable iq  (  1,2, ,i d= ) follows the 

standard normal distribution. The target correlated variable 1 2[ , , , ]d=Y y y y  can be 

obtained from =Y TQ . Afterwards, by applying inverse standard normal distribution, 

Y  can be transferred into a correlated variable in the uniform domain in [0,1] . 

The available datasets for wind speeds are 3-year recordings at nine uncorrelated 

locations: one (L1) with synchronous/simultaneous recording of wind speed and wind 

direction, and eight (L2-L9) with only wind speed measurements. The synchronous 

wind speed/direction time series are used for wind profile at the OHLs. For L2-L9, 

MC models are fitted based on the historical data and new eight auto-correlated wind 

speed time series are obtained based on the transition matrices. To generate required 

cross-correlated wind speed time series, the target correlation matrix gρ  in Table 5.1 

is assumed [166]: 
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Table 5.1: Target correlation matrix gρ  

 L1 L2 L3 L4 L5 L6 L7 L8 L9 

L1 1 0.900 0.840 0.810 0.650 0.890 0.680 0.670 0.770 

L2 0.900 1 0.930 0.940 0.830 0.910 0.850 0.850 0.860 

L3 0.840 0.930 1 0.940 0.820 0.840 0.860 0.850 0.800 

L4 0.810 0.940 0.940 1 0.860 0.820 0.910 0.910 0.860 

L5 0.650 0.830 0.820 0.860 1 0.750 0.860 0.850 0.750 

L6 0.890 0.910 0.840 0.820 0.750 1 0.790 0.790 0.880 

L7 0.680 0.850 0.860 0.910 0.860 0.790 1 0.980 0.860 

L8 0.670 0.850 0.850 0.910 0.850 0.790 0.980 1 0.870 

L9 0.770 0.860 0.800 0.860 0.750 0.880 0.860 0.870 1 

 

Nine auto-correlated, as well as cross-correlated wind speed time series, can be 

obtained by the method discussed above. Table 5.2 shows the calculated correlation 

coefficient matrix of the simulation results. 

Table 5.2: Calculated correlation matrix of simulation time series 

 L1 L2 L3 L4 L5 L6 L7 L8 L9 

L1 1 0.893 0.847 0.806 0.642 0.889 0.676 0.666 0.767 

L2 0.893 1 0.928 0.939 0.824 0.903 0.841 0.847 0.859 

L3 0.847 0.928 1 0.934 0.816 0.845 0.855 0.848 0.804 

L4 0.806 0.939 0.934 1 0.852 0.812 0.893 0.904 0.860 

L5 0.642 0.824 0.816 0.852 1 0.743 0.848 0.841 0.741 

L6 0.889 0.903 0.845 0.812 0.743 1 0.790 0.786 0.874 

L7 0.676 0.841 0.855 0.893 0.848 0.790 1 0.973 0.858 

L8 0.666 0.847 0.848 0.904 0.841 0.786 0.973 1 0.871 

L9 0.767 0.859 0.804 0.860 0.741 0.874 0.858 0.871 1 

 

Wind speed and wind direction profiles for OHL L1-2 are plotted in Figure 5.7 and 

Figure 5.8, all for the two selected days. For a given wind speed profiles, power outputs 

of wind turbines (WTs) in WF can be estimated through many approaches [167]. The 

most common approach is to use of manufacturer power curve, which specifies the 

relationship between the input wind speed and WT output power. However, as 

discussed in the previous chapter, manufacturer power curves are obtained in 

controlled conditions (air-tunnels), where the impact of variations in wind speeds and 

wind directions, WT dynamics and application specific factors are not considered. In 

order to fully represent uncertainties in WF power outputs, the MGND model 
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developed in chapter 4 is applied to estimate WF output generation profiles and their 

uncertainties according to generated input wind speed profiles, with Figure 5.9 giving 

an example for WF1. 

 

a) Load L1 at winter day 

 

b) Load L1 at summer day 
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c) Load L2 at winter day 

 
d) Load L2 at summer day 

Figure 5.6: Daily load profiles and uncertainties for load L1 and L2 
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a) Wind speed variations on a selected winter day 

 

b) Wind speed variations on a selected summer day 

Figure 5.7: Daily wind speed profile and uncertainties at OHL L1-2 
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a) Wind direction variations on a selected winter day 

 

b) Wind direction variations on a selected summer day 

Figure 5.8: Daily wind direction (line attacking angle) and uncertainties at OHL L1-2 
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a) Power output variations for WF1 on a selected winter day 

 
b) Power output variations for WF1 on a selected summer day 

Figure 5.9: Daily power output and uncertainties for WF1 
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input values in the AA-based OPF method. The evaluated upper and lower bounds of 

DTR values, as well as STR value, are plotted for the considered day and L1-2 in 

Figure 5.10. As the load profile is recorded with the resolution of 30 minutes, the DTR 

is also calculated with this resolution. The time constant of the considered OHL 

conductor is defined as the time duration which the conductor needs to reach 63.% of 
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its final steady-state temperature [168], [169]. Figure 5.11 plots time constant variation 

of the ACSR conductor with wind speed and wind attacking angle. The ambient 

temperature is 25 ℃, and the initial and final currents are 200 A and 600 A. The change 

of the final current will cause slight variations in the time constant values. As the time 

constant is not higher than 25 minutes and generally lower than 5 minutes when the 

wind speed is high, it can be assumed that the OHL conductor will reach steady-state 

thermal operating condition within each 30-minute period, i.e. that thermal capacitance 

of the OHL conductor can be neglected. 
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b) summer day 

Figure 5.10: Comparison between STR and AA-OPF DTR values for L1-2 

 
Figure 5.11: Thermal time constant of the ACSR conductor 
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Figure 5.10, the optimal wind curtailment for this deterministic scenario can give the 

currents on all lines as shown in Figure 5.12. This deterministic scenario presents the 

worst case from the perspective of wind integration as the load and DTR are the 

minimum while the wind generation is maximum (This is not realistic as DTR and 

wind generation should be correlated). The line currents presented in Figure 5.12 

shows that the main limitation of wind integration is the DTR of L1-2. The currents 

on the other lines are far from DTR limits except from L1-3. As the L1-3 is close to 

L1-2 according to network configuration, the assumption that all OHLs have the same 

wind profiles will not cause significantly different results from the cases with different 

wind profiles. 

 
Figure 5.12: Line currents for the worst scenario – 10-bus system (Maximum wind 

generation, minimum load and minimum DTR) 
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a) winter day 
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b) summer day 

Figure 5.13: Comparison of wind curtailments with STR and AA-OPF DTR limits  

To evaluate benefits of applying DTR limits for maximising wind power exported into 

the grid (and minimising wind curtailment), the AA-based OPF with DTR and STR 

limits are solved separately, and upper/lower bounds for the estimated total wind 

curtailments are plotted in Figure 5.13. DTR limits allow exporting much more 

generated wind power: for a winter day, as there is no curtailment at all (high-wind 

0 
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and low temperature), while for a summer day, there is some curtailment (medium-

wind and high temperature). 

Comparison between AA-based OPF and MCS-based P-OPF 

A probabilistic MCS-based OPF is then implemented to identify PDFs required for the 

optimal dispatch solutions in terms of the assessed curtailment risks. In this MCS-

based P-OPF, generated power of each WF is sampled according to probabilistic 

models developed in Section 4.2. MGND are used to represent the uncertainties in 

wind power outputs at specific wind speeds. At the same time, loads are sampled with 

normal distributions, where standard deviations are estimated according to 0.95 and 

0.05 quantiles in Figure 5.5. For each 30-minute time interval, 10,000 samples are 

generated for all uncertain variables (eight WF generations and two load demands, as 

well as wind speeds and wind directions at OHLs) and used as inputs to the OPF solver. 

10,000 OPF solutions yield the intervals which are defined by the maximum and 

minimum values. The increasing of MCS iterations does not change the mean values 

and standard deviations of solutions significantly.  

The daily maximum and minimum wind curtailments determined by MCS-based P-

OPF are compared with AA-OPF results in Figure 5.14, confirming that there is no 

curtailment for a winter day.  
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a) winter day 
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b) summer day 

Figure 5.14：Comparison of wind curtailment results with MCS and AA methods 

For a summer day, both MCS-OPF and AA-OPF results suggest possible substantial 

curtailments. But it can be observed the upper bound given by the MCS-based method 

is lower than that of AA method in most time of the day and the values are approaching 

zero sometimes. This is because AA-OPF uses the minimum and maximum values 

from the estimated ranges of variations, which have very low probabilities, resulting 

in too large ranges of uncertainties and possible inappropriate operational decisions 

related to wind curtailment strategies. 

To evaluate the above point in more detail, six time intervals in which the MCS-based 

method give close to zero curtailments are selected to show the distributions of P-OPF 

solutions. Histograms of wind curtailment are plotted together with AA-OPF Min-Max 

intervals, and AA-OPF intervals obtained when variations of input variables are 

limited to their 0.05 to 0.95 quantiles uncertainty ranges in Figure 5.15.  
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a) 02:00 

 
b) 05:00 

 
c) 06:30 

 
d) 14:30 

 
e) 19:00 

 
f) 22:30 

Figure 5.15：Comparison of AA-OPF and P-OPF solutions for wind curtailment 

It can be observed that the AA intervals will shrink significantly if the ranges of 

uncertain inputs are limited to their 0.05 to 0.95 quantiles. For example, at 02:00 and 

05:00 hours, AA Min-Max intervals are around [0.010 MW, 143.28 MW] and 

[0.059MW, 29.854 MW] while 5%-95% AA intervals reduce to [0.0877 MW, 

0.1463 MW] and [0.085 MW, 0.1575 MW]. The probability (i.e. risk) that the wind 

curtailment will fall out of this interval is obtained from the P-OPF distributions and 
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in both cases is less than 2%. At 19:00 and 22:30 hours, Min-Max AA intervals are 

[0.085 MW, 126.169 MW] and [0.72 MW, 71.815 MW], while 5%-95% AA intervals 

reduce to [0.112 MW, 0.152 MW] and [0.106 MW, 0.131MW] with the probability 

that wind curtailment will fall out of this interval less than 1%. 

5.5.3 The 33-bus Network 

In the 33-bus network, there are four WTs located at Buses 13, 21, 24 and 29, each 

with a rated power of 2 MW and operating with unity power factor. The bus voltage 

level is 12.66 kV. The total peak demand is 3.7 MW and 2.3 Mvar [134][149], which 

is represented with two different load profiles (Region 1 and Region 2). The system 

comprises 32 OHLs. Similar to the 10-bus network, the ampacity of L1-2 is the main 

factor that results in wind curtailment. Bus 1 is connected to the bulk transmission 

system and the variations in wind generation and demands are balanced by importing 

or exporting power at Bus 1. The same wind profiles and load profiles presented in 

Figure 5.6, 5.7 and 5.8 are applied to wind generation, demands and DTR calculation. 

The loads in Region 1 would follow the load profiles presented in Figure 5.6a and 

Figure 5.6b, while the loads in Region 2 would follow the load profiles given by Figure 

5.6c and Figure 5.6d. 

 
Figure 5.16：Configuration of the 33-bus Network 
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Comparison between DTR and STR values 

In this network, the conductor type of OHLs is “Fox” [136]. The comparison between 

DTR and STR values for the conductor in the summer day is presented in Figure 5.17. 

Similar to the 10-bus network, L1-2 in this 33-bus network is also most heavily loaded 

(30% higher than the second) as shown in Figure 5.18. In this case, DTR is only 

implemented for Line L1-2 to release the bottleneck, which can increase the dispatched 

wind power significantly, and for other OHLs, the STR of 200 A is applied. To prevent 

the violation of STRs, wind curtailment is necessary. The results of the AA method 

present that there is no wind curtailment in the winter day and the wind curtailments 

in the summer day with DTR and STR are both plotted in Figure 5.19.  

 
Figure 5.17: Comparison of DTR and STR values for L1-2 in the summer day (IEEE 

33-bus test network) 
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Figure 5.18: Line currents for the worst scenario – 33bus system (Maximum wind 

generation, minimum load and minimum DTR) 
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Figure 5.19: Comparison of wind curtailments with STR and AA-OPF DTR limits in 

the summer day (IEEE 33-bus test network) 
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Comparison between AA-based OPF and MCS-based P-OPF 
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Figure 5.20：Comparison of wind curtailment results with MCS and AA methods in 

the summer day (IEEE 33-bus test network) 

 
a) 8:30 

 
b) 10:00 

 
c) 10:30 

 
d) 12:00 
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e) 13:30 

 
f) 15:30 

Figure 5.21：Comparison of AA-OPF and P-OPF solutions for wind curtailment in 

the summer day (IEEE 33-bus test network) 

Maximum and minimum daily wind curtailment profiles obtained by AAOPF and 

MCS-based OPF are plotted in Figure 5.20. No wind curtailment is required on the 

winter day. However, on the summer day, significant wind curtailment might be 

implemented for most of the day.  

The PDFs of P-OPF solutions for wind curtailment for a summer day are plotted 

together with AA-OPF Min-Max intervals, and AA-OPF intervals obtained when 

variations of input variables are limited to their 0.05 to 0.95 quantiles uncertainty 

ranges in Figure 5.21. At 8:30, the interval obtained by MCS-based method is [0.053 

MW, 0.0766 MW] while the interval achieved by AA-OPF is [0.0321 MW, 1.311 

MW]. By limiting the variations of input uncertainties into their 5th-95th percentiles, 

the AA interval will reduce to [0.067MW, 0.072 MW], whose lower bound and upper 

bound are the 4th percentile and 99th percentile of MCS results. At 10:00, the MCS 

interval is [0.047 MW, 2.744 MW] and the Min-Max AA interval is [0.008 MW, 2.747 

MW]. The 5%-95% AA is [0.050 MW, 0.072 MW] and this interval contains 98.5% 

of solutions obtained by MCS.  

The case studies presented above indicate that AA-based method is capable to find out 

the solution intervals subject to the input intervals of uncertain variables with less 

computational time. For the 33-bus system, AA-based method needs 36.07 seconds on 

average to converge for each 30-minute time interval while the MCS-based method 

takes over 500 seconds. However, the intervals identified by AA-based method can be 

too wide compared with those achieved by the MCS method, as they include solutions 
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related to uncertain events with very low probability. In order to achieve the proper 

optimal dispatch intervals, a confidence level is set for all input uncertainties, and the 

input intervals are shrunk to 5th -95th percentile of their original ranges. The AA 

solution intervals with the 5th -95th percentile ranges are very close to those obtained 

by MCS-based method. 

5.6 Conclusions 

An AA-based OPF model with DTR limits was presented for day-ahead planning of 

networks with high wind penetration. In this model, uncertain information was 

represented by intervals and affine arithmetic was used to deal with interval inputs. 

However, case studies showed that the results of AA-based method were too 

conservative, although it was more computationally efficient compared with the MCS-

based method. For the case studies presented in this chapter, reducing the input 

intervals to the 5th percentile and 95th percentile of uncertain input variables based on 

their distribution functions can find AA intervals close to the MCS-based method. In 

the future work, the relationship between the range of input variables and width of 

output intervals need to be studied so that the approaches to determining proper 

confidence levels for input variables can be developed. Then the AA solutions can be 

tuned effectively without the implementation of MCS-based method. 
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Chapter 6 
Congestion Management with Maximum Lead 

Time 

6.1 Introduction 

Network congestions occur when the transmission system is unable to accommodate 

the desired power flows due to the violations of one or more system operating 

constraints [170]. The management of system operating constraints (e.g. bus voltages 

and branch thermal limits) is one of the critical tasks took by operators. Due to the 

increasing demand, deregulated market and growing penetration of RES, modern 

electricity networks are extensively operated closer to their technical loading and 

security limits. Consequently, congestion management (CM), which aims to manage 

constraints (e.g. available loading limits for the post-contingency power flows) and 

prevent their violation, has become an efficient tool to ensure network security. 

Network congestions can be caused by multiple reasons. For instance, the sudden 

increase of generation or demand may result in overloading conditions on specific 

transmission lines. Another main reason for network congestions is unexpected 

contingency events, such as short circuit faults and failures of network components. 

The management of these network congestions, involving the identification of violated 

constraints and selection of corrective actions, is denoted as “post-contingency 

congestion management”.  

Congestion management can be formulated as a nonlinear constrained optimization 

problem with the objective to find optimal control solutions that resolve all constraint 

violations while minimizing the cost of achieving that solution. It should be noted that 

this CM problem is similar to the OPF problem. The main differences between general 

OPF formulation and CM problem are the objective functions and the inequality 

constraints. In general OPF problem, the objective function is more relative to 

economic aspect, which aims to minimize fuel cost, or emission, or losses, considering 

normal operating constraints. However, CM formulation focuses on finding a feasible 

corrective control solution, especially for post-contingency congestion management. 

Normal operating constraints may result in an infeasible region when the contingency 
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events are severe, and the optimization problem would be infeasible in this case. To 

prevent the infeasibility, the normal constraints should be relaxed, and the emergency 

operating constraints need to be applied. For instance, in pre-contingency conditions, 

power flow in the network is limited by normal ratings, which can be carried by 

network facilities continuously without loss of life. While in post-contingency 

conditions, emergency ratings will be used. Emergency ratings specify the level of 

power flow that facilities can carry for a specific time to implement corrective actions, 

during which the loss of life to these facilities is acceptable.  

The corrective actions taken into account by post-contingency CM can be classified 

into two general groups: cost-free methods and non-cost-free methods [170]. The cost-

free methods include the modification of network topology, shifts of transformer taps, 

operation of compensation devices, etc. Those methods are at the disposal of system 

operators, and the involved economic cost, if any, is very low. The non-cost-free 

methods consist of generation re-dispatch and load curtailment. The implementation 

of these methods usually requires considering extra costs. 

Post-contingency congestion management is more challenging than congestion 

management due to several reasons. Firstly, the number of available corrective actions 

is usually limited, and the exact sequence of multiple control actions is hard to 

determine. For example, operational requirements for the French EHV networks in 

[171] specify that, following a contingency, no corrective action can be activated 

within one minute, and only one corrective action (usually a pre-defined topology 

change) is available in the following five minutes. Another challenge is that the time 

available to the network operator to devise and implement appropriate corrective 

actions (“lead time”) may be too short. Consequently, the information on lead time is 

very useful, as it allows the operators to correctly plan and properly implement the 

post-contingency corrective actions within the available lead time. For example, the 

overloading constraints or voltage limit violations can be remediated in time, before 

protection system trips additional components, and potential cascade failures can be 

prevented. In the worst case, if load shedding is inevitable, the amount of available 

load to be shed and their locations are also determined by the available lead time. 

Therefore, including lead time constraints into congestion management procedures is 
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especially important during severe contingency events.  However, the integration of 

lead time constraints into the CM model was considered in very few previous 

references. An optimization model is proposed in [172] for CM with dynamic line 

ratings, while an optimal real-time CM algorithm was proposed in [173], [174]. A 

security-constrained OPF model (SCOPF) to compute optimal controls for 

maximizing congestion clearing times is developed in [12], [18], with suitable 

penalties applied and solved by PSO method. 

The maximum operating temperature is a critical factor to guarantee the secure 

operation of both transmission lines and transformers. In the normal operating state, 

the line loadings are restricted by the thermal ratings with respect to the maximum 

operating temperatures under given ambient conditions. Following a severe 

contingency event, e.g., the simultaneous occurrence of two faults in an N-1 secure 

system, it is likely that several lines and transformers will be overloaded. Considering 

the thermal inertia of overloaded components, there would be a specific time interval 

before the overloading components reach its maximum operating temperature. This 

time interval, which depends on both pre- and post-contingency component loading 

conditions, is viewed as the lead time for system operators to manage the 

corresponding congestions, generally determined as the shortest time to reach the 

maximum temperature among all overloaded components. 

In this chapter, a multi-stage optimization model is built up to identify the correct 

actions for post-contingency congestion management, taking into account maximum 

lead time. At the first stage, optimal settings of volt-var controls, such as OLTC 

transformers and shunt capacitors are selected, taking into account voltage-dependent 

load models. The second stage provides optimal generation re-dispatch, supported by 

fast-start generators. At the third and ultimate stage, optimal load shedding is 

implemented to clear all remaining constraint violations. The OPF problem is solved 

by a hybrid metaheuristics method and illustrated on a modified IEEE 14-bus network 

(Not the same as that in Chapter 4). Obtained results demonstrate that all violated 

constraints can be efficiently resolved within the MLT available to network operators. 
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6.2 Dynamic thermal ratings and maximum lead time 
calculation 

Loading limits of overhead lines and transformers are important physical constraints 

that have to be considered in power system analysis. Violating the loading limit of an 

overhead line will result in excessively high temperature which may cause the 

elongation and sagging of the conductor, i.e. reduced safety clearance distances, as 

well as conductor annealing. Similarly, overloading of a transformer can cause an 

increase in its operation temperature, which has a significant impact on the ageing of 

transformers. Consequently, in order to prevent potential damages and safety hazards 

resulted from overheating conditions, both overhead line conductors and transformers 

should operate with the loading conditions that will prevent thermal overloading.  

As presented in Section 3.2, the thermal balance equation (3.1) describes the 

relationship between the current carried by a conductor, I, and the conductor’s surface 

temperature,𝑇𝑐. The relationship between the steady-state conductor temperature and 

its current is illustrated in Figure 6.1 with the standard ACSR conductor, “Sparrow 6/1” 

from [136]. The wind speed and the wind attacking angle are assumed to be 0.5 m/s 

and 90 degrees. For ACSR, a default temperature of 75 ℃ is used to determine normal 

rating (NR) and this temperature was used as the maximum design temperature by 

several power companies for their transmission lines. The long-term emergency rating 

(LTER) is calculated with 90 ℃, which is the maximum continuous operating 

temperature. The temperature of the conductor to specify the short-term emergency 

rating (STER) is defined with 100 ℃ [175]. The currents corresponding to the three 

steady-state conductor temperatures are also labelled in Figure 6.1.  



130 

 

 

 

Figure 6.1：Conductor surface temperature 𝑇𝑐 as a function of its current for specific 

fixed ambient conditions 

Emergency ratings are determined with both limiting temperature and fault duration. 

LTER is the rating with the fault duration measured in hours, while STER is the rating 

for the conductor to operate safely within a shorter fault duration times measured in 

minutes (5~15 minutes) [175]. Considering the thermal time constant of the overhead 

line conductor, the calculation of LTER can be based on the steady-state thermal 

balance equation (the transient term 
𝑑𝑇𝑐

𝑑𝑡
= 0), while the STER should be considered 

taking into account the transient thermal characteristics of the conductor. 

When a contingency event occurs, if the post-contingency current is higher than the 

pre-contingency current, the conductor temperature will start to increase according to 

(3.1), based on the pre-contingency current/temperature and the ambient conditions, 

as plotted in Figure 6.2. Upon reaching the maximum allowable operating temperature, 

thermal protection will be activated. The protection equipment in modern power 

system is designed based on the emergency ratings with specific fault durations. The 

overloading conditions caused by post-contingency currents have to be corrected 

within the specific durations, so as to prevent the overheating of conductors; otherwise, 

the overloaded lines will be tripped. In the proposed congestion management algorithm, 

the maximum allowed overloading time (OVT) for a conductor is defined with the 

following criteria: 
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1) If the final steady-state conductor temperature with the post-contingency 

current is between 75 ℃ and 90℃, i.e. the post-contingency current violates 

NR but it is still lower than LTER, the OHL will be allowed to operate for no 

longer than 30 minutes. It should be noted that although the protection system 

may tolerate this current for up to several hours, it is assumed that system 

operators will aim to recover the system to the normal operating state as soon 

as possible, typically within 30 minutes, so the OVT in this condition is given 

as 30 minutes, rather than several hours. 

2) If the final steady-state conductor temperature with the post-contingency 

current is between 90 ℃ and 100 ℃, i.e. the post-contingency current is 

between LTER and STER, the OHL will be allowed to operate for no longer 

than 5 minutes. The duration of 5 minutes is selected because STER is 

commonly given with the allowed duration of overloading conditions between 

5~15 minutes. 

3) If the final steady-state conductor temperature with the post-contingency 

current is higher than 100 ℃, which is generally the maximum allowable 

temperature of the ACSR, the OVT is defined as the time for which the 

conductor temperature will reach 100 ℃. 

The OVT for a conductor is calculated as:  

𝑂𝑉𝑇 =

{
 
 

 
 ∞
𝑡𝑁𝑅 + 1800
𝑡𝐿𝑇𝐸𝑅 + 300

𝑡𝑆𝑇𝐸𝑅

𝑇𝑐𝑓 ≤ 75℃

75℃ < 𝑇𝑐𝑓 ≤ 90℃

90℃ < 𝑇𝑐𝑓 ≤ 100℃

𝑇𝑐𝑓 ≥ 100℃

(6.2) 

where 𝑡𝑁𝑅, 𝑡𝐿𝑇𝐸𝑅 and 𝑡𝑆𝑇𝐸𝑅 are the time intervals that conductor temperature takes to 

reach 75℃, 90℃ and 100℃ after contingencies occur, 𝑇𝑐𝑓 is conductor temperature 

many time constants after the step-change of loading conditions. 

Figure 6.2 illustrates OVT calculation based on the maximum allowable conductor 

temperature of 100o C and pre-contingency temperature of 40o C (corresponding to a 

pre-contingency current of I0=100 A). The ambient temperature is 25  C, and the wind 

speed and wind attacking angle are 0.5 m/s and 90 degrees. Figure 6.2a shows the 
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variation of OHL conductor temperature with a contingency event occurs at 1500sec. 

It is assumed that the system will reach a viable steady-state after the contingency 

event. The post-contingency current is 250A. Figure 6.2b presents the transient 

temperature variation between 1440s and 1800 s. The time intervals that the conductor 

temperature takes to reach the thermal limits are labelled. It can be observed that the 

thermal protection will react when the conductor temperature reaches 100o C, giving 

OVT value of 207s, about 3.5 min. Figure 6.3 plots the relationship between OVT and 

pre- and post-contingency currents. 

 

a) Variation of conductor temperature 
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b) Transient temperature variation between 1440 sec and 1800 sec 

Figure 6.2: Illustration of OVT calculation 

 

Figure 6.3: OVT variation with post-contingency current 

The OVT calculation for the transformer is similar to the calculation of OHL. The NR, 

LTER and STER are defined with respect to 120℃, 130℃ and 160℃ for transformer 

winding hottest-spot temperature (HST) [24]. When the final steady-state HST is 

between 120℃ and 130℃, the transformer is allowed to operate for 4 hours. If the 
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temperature is between 130℃ and 160℃, the time is 30 minutes. The OVTs for PTs 

are defined as: 

𝑂𝑉𝑇 =

{
 
 

 
 ∞
𝑡𝑁𝑅 + 3600 ∗ 4
𝑡𝐿𝑇𝐸𝑅 + 1800

𝑡𝑆𝑇𝐸𝑅

𝑇𝐻𝑓 ≤ 120℃

120℃ < 𝑇𝐻𝑓 ≤ 130℃

130℃ < 𝑇𝐻𝑓 ≤ 160℃

𝑇𝐻𝑓 > 130℃

(6.3) 

The description of transformer thermal model used to calculate transformer OVT is 

provided by Chapter 3. 

As the tripping of any overloaded line will only worsen the post-contingency operating 

conditions, the minimum OVT of all overloaded components represents the time 

available for devising appropriate corrective actions by network operators, denoted as 

maximum lead time (MLT). After the first corrective action is taken, loading of the 

network components is again calculated and minimum OVT of all remaining 

overloaded components is the next MLT, and so on until there is no overloading. 

6.3 Proposed post-contingency congestion 
management (CM) method 

6.3.1 Proposed post-contingency CM algorithm 

A multi-stage optimization model is proposed to find the optimal corrective actions. 

At the first stage, the optimization model aims to maximize MLT by finding the 

optimal settings of fast response control actions, including generator automatic voltage 

regulators, transformer tap ratios and reactive power compensators, which are denoted 

as “volt-var controls”. These control actions are at the disposal of system operators 

and cost-free. At the second stage, the optimization problem is solved to find the 

amount of generation re-dispatch and connection of reserve generation to manage the 

congestions. The ramping up/down rates of connected generators, as well as the times 

required for connecting fast-start generators, are considered. If the generation re-

dispatch is not enough for congestion management, load shedding is inevitable. At the 

third and ultimate stage, optimal load shedding is implemented to resolve any 

remaining constraint violations. 
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In this algorithm, the time required to implement corrective actions has been 

considered. For example, it is assumed that volt/var control actions need 10 seconds 

to activate, while the generation re-dispatch is implement minute by minute. These 

values may vary in practical situations and are used here only as indicative values, 

without affecting the implementation of the proposed methodology. The branch flows 

and bus voltages are assumed to be constant during the time required to implement 

corrective actions. Furthermore, the corrective actions will cause a step-change in 

branch flows once they are activated. These time intervals are considered to estimate 

real-time temperatures of branches, and the algorithm will try to prevent the 

temperature rise that will result in violating maximum allowable operating 

temperatures during the CM process.  

If the corrective actions are efficient, the network security can be improved by 

relieving overloading conditions or reducing the number of voltage limit violations, 

and the MLT is expected to be prolonged after each corrective actions until all post-

contingency constraints are removed. However, the corrective actions may not always 

be available in the same order. For example, when the volt-var control or generation 

re-dispatch cannot relieve overloading conditions, the CM algorithm will decide 

whether to wait until the reserve provided by fast-start generators is available to be 

dispatched or to immediately implement load shedding based on the MLT.  

6.3.2 Formulation of post-contingency CM 

For each stage, the optimization problem is formulated as: 

min  𝑓(𝑥0, 𝑥𝑐, 𝑢0, 𝑢𝑐)    

𝑠. 𝑡.    𝐺(𝑥0, 𝑥𝑐 , 𝑢0, 𝑢𝑐) = 0 (6.4) 

𝐻(𝑥0, 𝑥𝑐 , 𝑢0, 𝑢𝑐) ≤ 0, 𝑐 ∈ 𝐶 = {0,1, 2, …𝑁𝑐} 

where x, u are state and control variables, 𝑐 is contingency index (zero for base case), 

𝐶 is the set of considered contingencies, 𝑓(∙) represents the objective function, 𝐺(∙) 

and 𝐻(∙)  are the equality and inequality constraints. Specifically, the equality 

constraints consist of AC power flow equations, while the inequality constraints are 

network secure operating limits. 
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Stage 1 –Optimal volt/var control 

At the first stage, the objective function is computed to maximize the maximum lead 

time for system operators: 

min𝑓𝑇 =
𝐴

𝑀𝐿𝑇
(6.5) 

where 𝐴 is a positive constant which is used to transfer the maximization of MLT to a 

minimum problem, and 𝑀𝐿𝑇 is the maximum lead time (in seconds) calculated with 

specific corrective actions. 

Equality constraints consist of nodal balance equations and AC power flow equations 

presented by (2.27) and (2.28) in Chapter 2. The inequality constraints represent 

network operating limits such as voltage limits and generator reactive power outputs 

are shown as (2.30). Apart from those, limits on shunt capacitor banks and OLTC tap 

positions should also be included:  

𝑏𝑖
𝑚𝑖𝑛 ≤ 𝑏𝑖

′ ≤ 𝑏𝑖
𝑚𝑎𝑥, ∀𝑖 ∈ 𝑁𝑠ℎ𝑢𝑛𝑡 (6.6) 

𝑡𝑖𝑗
𝑚𝑖𝑛 ≤ 𝑡𝑖𝑗 ≤ 𝑡𝑖𝑗

𝑚𝑎𝑥 , ∀(𝑙, 𝑖, 𝑗) ∈ ℒT (6.7) 

where 𝑏𝑖
′ is the shunt capacitor at Bus 𝑖, 𝑡𝑖𝑗 represents the tap ratio of the transformer 

(𝑙, 𝑖, 𝑗), 𝑁𝑠ℎ𝑢𝑛𝑡 is the set of shunt capacitor indices and ℒT is the set of transformer 

indices. 

The volt-var control can eliminate the voltage violations and the power flow will be 

changed at the same time. So the overload conditions may also be relieved. In the 

optimization problem, discrete variables, including OLTC positions and capacitor 

bank settings, are assumed to be continuous.  

Most of the electrical loads exhibit voltage-dependent changes in power demands. 

Considering the significant impacts of volt-var control on the load, the voltage-

dependent load models are applied in the optimization problem. The well-known ZIP 

model is adopted for each load. The active power and reactive power for a load 𝑖 at 

given voltage magnitude 𝑉𝑖 are shown as (6.8) and (6.9): 
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𝑃𝑑𝑖 = 𝑃𝑑𝑖
0 [𝑍𝑖

𝑃 (
𝑉𝑖
𝑉0𝑖
)
2

+ 𝐼𝑖
𝑃 (

𝑉𝑖
𝑉0𝑖
) + 𝑃𝑖

𝑃] ∀𝑖 ∈ 𝒩𝑃𝑄 (6.8) 

𝑄𝑑𝑖 = 𝑄𝑑𝑖
0 [𝑍𝑖

𝑄 (
𝑉𝑖
𝑉0𝑖
)
2

+ 𝐼𝑖
𝑄 (

𝑉𝑖
𝑉0𝑖
) + 𝑃𝑖

𝑄] ∀𝑖 ∈ 𝒩𝑃𝑄 (6.9) 

where 𝑃𝑑𝑖
0 and 𝑄𝑑𝑖

0  represent the active and reactive power at the nominal voltage 

magnitude 𝑉0𝑖, respectively. The general ZIP model consists of constant impedance 

𝑍𝑖
𝑃 and 𝑍𝑖

𝑄
, constant current 𝐼𝑖

𝑃 and 𝐼𝑖
𝑄

, and constant power 𝑃𝑖
𝑃 and 𝑃𝑖

𝑄
 terms. 

Stage 2 – Optimal generation re-dispatch 

In the second stage, optimal generation re-dispatch is implemented to relieve 

congestions. The tap ratios and reactive power compensators are fixed at the optimal 

settings given by the first-stage evaluation. At this stage, the primary objective is also 

to maximize maximum lead time, which is the same as at the first stage. The nodal 

balance equations, including generation re-dispatch, are given as (6.10) and (6.11). 

𝑃𝑔𝑖0 + ∆𝑃𝑔𝑖 − 𝑃𝑑𝑖 − 𝑔𝑖
′|𝑉𝑖|

2 = ∑ 𝑃𝑙𝑖𝑗
(𝑙,𝑖,𝑗)∈ℒi

+ ∑ 𝑃𝑙𝑗𝑖
(𝑙,𝑗,𝑖)∈ℒ𝑖

𝑅

, ∀𝑖 ∈ 𝒩 (6.10)
 

𝑄𝑔𝑖0 + ∆𝑄𝑔𝑖 − 𝑄𝑑𝑖 − 𝑏𝑖
′|𝑉𝑖|

2 = ∑ 𝑄𝑙𝑖𝑗
(𝑙,𝑖,𝑗)∈ℒ𝑖

+ ∑ 𝑄𝑙𝑗𝑖
(𝑙,𝑗,𝑖)∈ℒ𝑖

𝑅

, ∀𝑖 ∈ 𝒩 (6.11)
 

where 𝑃𝑔𝑖0 and 𝑄𝑔𝑖0 are the initial values of active and reactive power outputs from 

the generator at bus 𝑖,  ∆𝑃𝑔𝑖 and ∆𝑄𝑔𝑖 are the variations of generator outputs due to 

generation re-dispatch. The power flow on branches should be constrained by MVA 

limits: 

(𝑃𝑙𝑖𝑗)
2
+ (𝑄𝑙𝑖𝑗)

2
≤ (𝑆𝑙

𝑚𝑎𝑥)2, (𝑃𝑙𝑗𝑖)
2
+ (𝑄𝑙𝑗𝑖)

2
≤ (𝑆𝑙

𝑚𝑎𝑥)2, ∀(𝑙, 𝑖, 𝑗) ∈ ℒ (6.12) 

where 𝑆𝑙
𝑚𝑎𝑥 is the MVA limit on branch l, which can be either STR determined with 

assumed ambient conditions given by standards or engineering recommendations such 

as [132], or DTR calculated with real-time ambient conditions. For both STR and DTR, 

the thermal limit here is 75 ℃ (Normal rating). 
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Constraints on generation-re-dispatch and generator power outputs are given as (6.13) 

- (6.15). 

−𝑅𝑎𝑚𝑝𝐷𝑂𝑊𝑁
𝑖 ∗ 𝑀𝐿𝑇 ≤ ∆𝑃𝑔𝑖 ≤ 𝑅𝑎𝑚𝑝𝑈𝑃

𝑖 ∗ 𝑀𝐿𝑇, 𝑖 ∈ 𝒢 (6.13) 

𝑃𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑜𝑖 + ∆𝑃𝑔𝑖 ≤ 𝑃𝑔𝑖

𝑚𝑎𝑥 , 𝑖 ∈ 𝒢 (6.14) 

𝑄𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑔𝑜𝑖 + ∆𝑄𝑔𝑖 ≤ 𝑄𝑔𝑖

𝑚𝑎𝑥, 𝑖 ∈ 𝒢 (6.15) 

where ∆𝑃𝑔𝑖  represents the amount of generation re-dispatch for generator 𝑖  and 

𝑅𝑎𝑚𝑝𝐷𝑂𝑊𝑁
𝑖  and 𝑅𝑎𝑚𝑝𝑈𝑃

𝑖  are the ramp-down and ramp-up rates. At the beginning of 

the second stage, the MLT in (6.13) is determined by the power flow when the volt-

var control is finished. The available amount of generation re-dispatch is determined 

according to the MLT and ramp rates shown as (6.13). Meanwhile, the allowed 

generation active and reactive power outputs are represented by (6.14) and (6.15).  

Stage 3 –Optimal load shedding 

If the generation re-dispatch results provided by the second-stage optimization 

problem is not able to manage the congestions, load shedding, as the “last resort” 

corrective action, is inevitable. The target buses to implement load shedding are 

selected based on their sensitivities to affect power flows in the overloading branches 

and bus voltages at the undervoltage/overvoltage buses. Two sensitivity factors, PISF 

and QVSF, are calculated as (6.16) and (6.17). The buses that have the highest absolute 

PISF and QVSF values with respect to critically overloaded branches and OV/UV 

buses are selected as target buses.  

𝑃𝐼𝑆𝐹𝑙
𝑖 =

𝜕𝑆𝑙
𝜕𝑃𝑖

=
Δ𝑆𝑙
Δ𝑃𝑖

 ∀𝑖 ∈ 𝒩 𝑎𝑛𝑑 ∀(𝑙, 𝑖, 𝑗) ∈ ℒ (6.16) 

𝑄𝑉𝑆𝐹𝑙
𝑖 =

𝜕𝑉𝑖
𝜕𝑄𝑗

=
Δ𝑉𝑖
Δ𝑄𝑗

 ∀𝑖, 𝑗 ∈ 𝒩 (6.17) 

where 𝒩 is the set of bus indices and ℒ is the set of branch indices, ∆𝑃𝑖 is the variation 

in active power injection at bus 𝑖, Δ𝑆𝑙 represents the variation in apparent power flow 

on branch 𝑙 due to  ∆𝑃𝑖 , Δ𝑉𝑖 is the variation in bus voltage at bus i and Δ𝑄𝑗  is the 

variation in reactive power injection at bus j. 



139 

 

 

At this stage, the optimization model is solved to provide a solution to manage 

congestions by optimal load shedding at target buses.  

min(∑𝐶𝑟𝑒𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ(∆𝑃𝑔𝑖) + ∑ 𝐶𝑙𝑜𝑎𝑑𝑠ℎ𝑒𝑑𝑑𝑖𝑛𝑔(𝑃𝐿𝑆𝑗))

𝑁𝑡𝑎𝑟𝑔𝑒𝑡

𝑗=1

𝒢

𝑖=1

(6.18) 

where 𝑁𝑡𝑎𝑟𝑔𝑒𝑡  is the set of the target bus indices and  𝑃𝐿𝑆𝑗  is the amount of load 

shedding at bus 𝑗 . 𝐶𝑟𝑒𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ(∙)  and 𝐶𝑙𝑜𝑎𝑑𝑠ℎ𝑒𝑑𝑑𝑖𝑛𝑔(∙)  are the cost functions for 

generation re-dispatch and load shedding. To balance the reduced load, coordinate 

control of generation should also be implemented, so the cost of generation re-dispatch 

is also included in the objective function to find the economic generation re-dispatch. 

As the generation fuel cost at 𝑃𝑔𝑖𝑜 is given by 𝑎𝑃𝑔𝑖𝑜
2 + 𝑏𝑃𝑔𝑖𝑜 + 𝑐, the re-dispatch cost 

from 𝑃𝑔𝑖𝑜 with the amount of ∆𝑃𝑔𝑖 is calculated by (2𝑎𝑃𝑔𝑖𝑜 + 𝑏)|∆𝑃𝑔𝑖|. In order to 

reduce the amount of load shedding, it is assumed that the cost rate of load shedding 

is the same as the maximum cost rate of generation redispatch: 

𝐶𝑙𝑜𝑎𝑑𝑠ℎ𝑒𝑑𝑑𝑖𝑛𝑔 (𝑃𝐿𝑆𝑗) = max𝑖∈𝒢
(2𝑎𝑃𝑔𝑖𝑜 + 𝑏) ∗ 𝑃𝐿𝑆𝑗 (6.19) 

The amount of load shedding is limited by: 

0 ≤ 𝑃𝐿𝑆𝑖 ≤ 𝑃𝑑𝑖
0 − 𝑃𝑑𝑖

min, ∀𝑖 ∈ 𝑁𝑡𝑎𝑟𝑔𝑒𝑡 (6.20) 

where 𝑃𝑑𝑖
0  is the load at bus i at the nominal voltage and 𝑃𝑑𝑖

min is the minimum load to 

supply at bus i. The amount of load which is actually supplied, denoted as 𝑃𝑑𝑠𝑖 and 

𝑄𝑑𝑠𝑖, are given by: 

𝑃𝑑𝑠𝑖 = (𝑃𝑑𝑖
0 − 𝑃𝐿𝑆𝑖) [𝑍𝑖

𝑃 (
𝑉𝑖
𝑉0𝑖
)
2

+ 𝐼𝑖
𝑃 (

𝑉𝑖
𝑉0𝑖
) + 𝑃𝑖

𝑃] ∀𝑖 ∈ 𝑁𝑡𝑎𝑟𝑔𝑒𝑡 (6.21) 

𝑄𝑑𝑠𝑖 = (𝑄𝑑𝑖
0 − 𝑃𝐿𝑆𝑖𝑡𝑎𝑛𝜙𝑖) [𝑍𝑖

𝑃 (
𝑉𝑖
𝑉0𝑖
)
2

+ 𝐼𝑖
𝑃 (

𝑉𝑖
𝑉0𝑖
) + 𝑃𝑖

𝑃] ∀𝑖 ∈ 𝑁𝑡𝑎𝑟𝑔𝑒𝑡 (6.22) 

where 𝜙𝑖 is the power factor angle of the load at bus i. 
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The nodal balance equations at the target buses to implement load shedding are 

presented as: 

𝑃𝑔𝑖0 + ∆𝑃𝑔𝑖 − 𝑃𝑑𝑠𝑖 − 𝑔𝑖
′|𝑉𝑖|

2 = ∑ 𝑃𝑙𝑖𝑗
(𝑙,𝑖,𝑗)∈ℒ𝑖

+ ∑ 𝑃𝑙𝑗𝑖
(𝑙,𝑗,𝑖)∈ℒ𝑖

𝑅

, ∀𝑖 ∈ 𝒩 (6.23)
 

𝑄𝑔𝑖0 + ∆𝑄𝑔𝑖 − 𝑄𝑑𝑠𝑖 + 𝑏𝑖
′|𝑉𝑖|

2 = ∑ 𝑄𝑙𝑖𝑗
(𝑙,𝑖,𝑗)∈ℒ𝑖

+ ∑ 𝑄𝑙𝑖𝑗
(𝑙,𝑗,𝑖)∈ℒ𝑖

𝑅

, ∀𝑖 ∈ 𝒩 (6.24)
 

Apart from the above equality constraints, the operating limits (2.30) and (6.13) – (6.15) 

should also be satisfied. 

The flowchart of the proposed post-contingency CM algorithm has been shown in 

Figure 6.4. Once the contingency events occur, the post-contingency branch power 

flows and operating temperatures, bus voltages, as well as ambient conditions are 

obtained from the monitor system, and the number of security constraint violations are 

calculated. If any congestions or voltage limit violations caused by the contingency 

event have been identified, this algorithm will be used to identify the optimal actions 

for post-contingency CM. The optimal volt-var control will be given by the algorithm. 

If the optimal volt-var control actions are able to relieve the congestions, i.e. MLT is 

extended or number of constraint violations are reduced, system operators will 

implement these actions which take 10 seconds. Otherwise, the algorithm will go to 

stage 2 without the implementation of volt-var controls. At the beginning of the second 

stage, the MLT is evaluated. If the MLT is larger than 60 seconds, the algorithm starts 

to calculate and implement the optimal generation re-dispatch minute by minute. 

Otherwise, the algorithm will go to stage 3 directly as the generation re-dispatch could 

hardly manage loading conditions due to two reasons: 1) MLT < 60 seconds means 

that the contingency event is severe, 2) the ranges for generation re-dispatch are too 

small due to the ramp-up and ramp-down rates. 
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Figure 6.4: Post-contingency CM algorithm 
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6.3.3 Solution method - Canonical Differential Evolutionary 
Particle Swarm Optimization (C-DEEPSO) 

The proposed optimization model is solved by Canonical differential evolutionary 

particle swarm optimization (C-DEEPSO), which is a hybrid metaheuristic approach 

that combines particle swarm optimization (PSO) with evolutionary computation and 

differential evolution (DE) [176].  

This algorithm improves the overall fitness iteratively through repeated mutation, 

recombination and selection over a population of solutions to generate new solutions 

until the final stopping criteria is satisfied. Generation of new candidate solutions in 

C-DEEPSO is based on successive recombination operations applied on current and 

past solutions. The recombination is given by (6.25) and (6.26): 

𝑉𝑡 = 𝜔𝐼
∗ × 𝑉𝑡−1 + 𝜔𝐴

∗ × (𝑋𝑠𝑡 − 𝑋𝑡−1) + 𝜔𝑐
∗ × C × (𝑋𝑔𝑏

∗ − 𝑋𝑡−1) (6.25) 

𝑋𝑡 = 𝑋𝑡−1 + 𝑉𝑡 (6.26) 

where 𝑡 is the index of generation, 𝑋𝑡 and 𝑋𝑡−1 represents the solution in the current 

generation and last generation, 𝑋𝑠𝑡 is an individual generated by a specific strategy by 

the DE algorithm and 𝑋𝑔𝑏 is the best solution found so far, 𝜔𝐼, 𝜔𝐴 and 𝜔𝐶 are weights 

on the inertia, memory and communication in C-DEEPSO while ∗ indicates that the 

parameter is subject to the mutation process, C  is a diagonal matrix of random 

variables sampled at each iteration which follows a Bernoulli distribution with success 

probability 𝑃, 𝑉 is the velocity of solutions. 

The strategy used to generate 𝑋𝑠𝑡 is denoted as current-to-best, which can be expressed 

by: 

𝑋𝑠𝑡 = 𝑋𝑟 + 𝐹(𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑟) + 𝐹(𝑋𝑟1 − 𝑋𝑟2) (6.27) 

where 𝑋𝑟 denotes an individual different from 𝑋𝑡−1 that can be generated by specific 

sample rules, 𝑋𝑟1 and 𝑋𝑟2  are randomly sampled solutions, 𝐹 is a number that belongs 

to the interval [0, 2], aiming to control the amplification of differential variation, 𝑋𝑏𝑒𝑠𝑡 

is the best solution that ever found by this individual. 
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The sample rules for 𝑋𝑟 have five options: 

1) 𝑆𝑔: sampled from all individuals in the current generation; 

2) 𝑃𝑏: sampled from a Memory 𝐵 of the best individual found so far: 

3) 𝑆𝑔 − 𝑟𝑛𝑑 : sampled as uniform recombination from the individuals of the 

current generation; 

4) 𝑃𝑏 − 𝑟𝑛𝑑: sampled as uniform recombination within Memory 𝐵; 

5) 𝑆𝑔𝑃𝑏 − 𝑟𝑛𝑑: sampled as uniform recombination of the individuals from the 

current generation and Memory 𝐵. 

The mutation rule of the weight factors for an individual solution is given by: 

𝜔∗ = 𝜔 + 𝜏 × 𝑁(0,1) (6.28) 

where 𝜏 is the mutation rate set by users and 𝑁(0,1) represents the random number 

which follows the standard normal distribution. The values of weight factors should 

be within the range of [0,1]. 

To prevent the population from being trapped around local optima, the attracting 

position 𝑋𝑔𝑏 for each candidate solution also need to mutate slightly. The mutation 

rule is given by: 

𝑋𝑔𝑏
∗ = 𝑋𝑔𝑏[1 + 𝜏 × 𝑁(0,1)] (6.29) 

The pseudo-code for C-DEEPSO is given as follows in which 𝑀𝑎𝑥𝐺𝑒𝑛  is the 

maximum number of generations, 𝑁𝑃 is the population size, 𝑀𝐵 is memory 𝐵 size, 𝑃 

is communication probability rate [176]. The stopping criteria are: 1) the algorithm 

will stop when the number of generations is larger than 𝑀𝑎𝑥𝐺𝑒𝑛; 2) The fitness of the 

best candidate solution does not change within the past 100 generations. 
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Algorithm: Pseudo-code of C-DEEPSO 

Begin 
    INITIALIZE 𝑀𝑎𝑥𝐺𝑒𝑛, 𝑁𝑃, 𝑀𝐵, 𝑃 and 𝜏 
    EVALUATE 𝑁𝑃 
    UPDATE 𝑋𝑔𝑏 and 𝑀𝐵 

    while (stopping criterion is not satisfied) { 
        for (all individuals in the population) { 
            COMPUTE 𝑋𝑟 using 𝑆𝑔𝑃𝑏 − 𝑟𝑛𝑑 

            COPY 𝑋𝑡 
            MUTATE weights 
            COMPUTE velocity and UPDATE 𝑋𝑡 
            EVALUATE 𝑋𝑡 and its copy 
            SELECT 𝑋𝑏𝑒𝑠𝑡 to be part of the new 𝑁𝑃 
        } 
       UPDATE 𝑋𝑔𝑏 and 𝑀𝐵      

    } 
end 

The test presented in [176] shows that this algorithm has an efficient and competitive 

performance in solving large-scale OPF problems. The standard PSO algorithm is not 

able to find feasible solutions to this CM model based on the author’s experience. 

6.4 Numerical results 

A modified IEEE 14-bus network in Figure 6.5 is used to demonstrate the multi-stage 

CM model. The network configuration, as well as the related parameters, are taken 

from [177] and [178]. The fuel cost functions for generators are represented by (2.31) 

and fuel cost coefficients are presented in Table 6.1. The values for these coefficients 

are obtained from [178]. The total on-line generation capacity is 390 MW 

and -40 Mvar to 105 Mvar. The ramp-up and ramp-down rates for each generator are 

20% of the total capacity per minute. The total demand at nominal voltage is 259 MW 

and 73.5 Mvar. Two fast start-up generators (each rated 24.5 MW) are located at Bus 

9 and Bus 13 as the reserve, with post-contingency response times of 5 minutes and 

10 minutes, respectively [179]. Each transformer is with OLTC functionality and 

continuous tap ratio within the range of [0.9-1.1 pu]. Three shunt capacitors are located 

at Buses 6, 8 and 9, with capacities of 24 Mvar, 24 Mvar and 19 Mvar, respectively, 

at nominal voltage.  
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Table 6.1: Fuel cost coefficients for IEEE 14-bus system 

Gen No Bus No 𝒂 𝒃 𝒄 

G1 1 0.00375 2.00 0 

G2 2 0.0175 1.75 0 

G3 3 0.0625 1.00 0 

Reserve 1 (R1) 9 0.025 3.00 0 

Reserve 2 (R2) 13 0.025 3.00 0 

 

 

Figure 6.5: Modified IEEE 14-bus test network 

This section compares results for four different load types: constant P, constant I, 

constant Z and for load model developed from load profiles recorded in a real network, 

for which model parameters  [𝑍𝑃, 𝐼𝑃, 𝑃𝑃] and [𝑍𝑄 , 𝐼𝑄 , 𝑃𝑄] are: [0.38, 0.11, 0.51] and 

[0.58, -0.15, 0.57], respectively.  

To analyse the impacts of different line rating calculation strategies, the CM approach 

is implemented with both static thermal rating (STR) and DTR. The MVA limits 

provided by [177] is used as STR. The specific parameters of OHLs can be obtained 

from [136], and the conductor types which present the same ampacities as the STR 

with the summer ambient conditions in [132] are selected to represent the OHLs in the 

network. Then DTRs for the selected OHLs as well as transformers can be calculated 
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according to the assumed real-time ambient conditions: ambient temperature of 25℃, 

wind speed of 0.7 m/s and attacking angle of 90o  and this ambient condition is 

assumed to be constant during the CM process. The ambient conditions which provide 

DTR values only slightly higher than the STR values are selected for two reasons: 1) 

the benefits of DTR that can increase line capacities can be shown, and 2) the DTR 

values are not too high so that the contingency events can cause overloading conditions 

that need to implement congestion management. 

The optimization problem is solved by C-DEEPSO, and the system modelling and 

power flow calculation are implemented with MATPOWER [149][150]. 

6.4.1 Pre-Contingency State 

Two pre-contingency operating conditions are determined by two corresponding OPF 

solutions minimising fuel costs and active transmission loss, respectively. The voltage 

limits in pre-contingency conditions are set to 100±6%. Figure 6.6 and Figure 6.7 

show the MVA flows and bus voltage profiles in the pre-contingency state. In the first 

scenario with the objective function of fuel cost minimization, the power flows on L4-

5, T4-7 and T7-9 are approaching STR. The application of DTR can significantly 

increase the safety margin on these branches. However, the Branch L2-3 is heavily 

loaded with both STR and DTR. This branch is highly likely to be overloaded when 

the contingency events occur. In the scenario with the objective function of loss 

minimization, the loading condition on L1-2, L1-5 and L2-3 are significantly reduced. 

When the load type is constant P and real, the power flow on T4-7 reaches STR and 

the application of DTR will relax this constraint. For constant I and constant Z, the 

power flow is lower than STR for all the transmission components. 
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a) Cost minimization 

 

b) Loss minimization 

Figure 6.6: Branch power flow in the pre-contingency state 
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a) Cost minimization 

 

b) Loss minimization 

Figure 6.7: Voltage profiles in the pre-contingency state 
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Table 6.2: Pre-contingency optimization results 

Load type Constant P Constant I Constant Z Real 

Rating DTR STR DTR STR DTR STR DTR STR 

Cost ($/h) 771 848 717 788 652 709 728 800 

Loss (MW) 4.110 5.057 4.330 4.330 4.083 4.083 4.297 4.301 

 

The plots in Figure 6.6 and Figure 6.7, as well as results in Table 6.2, indicate the 

strong dependency of demands of different load types on bus voltages, which then 

results in different optimization results. The optimal solutions present significantly 

higher voltages for constant P load than those for the other three load types, as higher 

than 1pu voltage results in lower than 1pu demand for this load type; the same 

reduction in demands is obtained for three other load types by reducing bus voltages 

(known as “conservation voltage reduction”). Compared with STR, implementation of 

DTRs can further significantly reduce fuel costs for all load types and provide slightly 

lower transmission loss for constant P and real load type, as this allows for additional 

power flows on the branches where the STRs are reached. However, it will not change 

the transmission loss when the load type is constant I and constant Z because the power 

flow on all branches is lower than STR.  

6.4.2 Contingency (Double Fault) T4-9 & L6-13 

Immediate post-contingency state 

The analysed contingency event is a simultaneous double-fault of Transformer T4-9 

and Line L6-13, which causes forced outages of these two branches. It is assumed that 

the system will not lose stability and will reach a steady-state after the occurrence of 

contingencies. In post-contingency state, the voltage constraints are relaxed to [0.90, 

1.10] from the interval [0.94, 1.06]. 

Table 6.3 lists the overloaded branches with respect to both STR and DTR, as well as 

different pre-contingency conditions. The critical overloaded branches which have the 

shortest OVTs, giving MLT for analysis, are marked in bold. The MLTs for different 

scenarios are also presented. For the scenarios with pre-contingency of cost 

minimization, the numbers of overloading branches with DTR are less than those with 

STR. However, from the perspective of MLT, the congestions are more severe when 

DTR is implemented. This is because DTR will allow some components to be more 
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loaded in the pre-contingency state. Accordingly, the post-contingency power flow 

with DTR on these branches are higher than those with STR. It should be noticed that 

for the scenario with constant Z load type, and STR, the STRs of T4-7 and T4-9 are 

violated. However, considering the assumed ambient conditions, the temperature 

limits are still maintained, so the MLT is given as infinite according to (6.3). Compared 

with loss minimization, the scenarios with cost minimization generally have more 

severe overloading conditions, especially when the load type is constant P. For these 

scenarios (with STR & DTR), the Branch L12-13 is significantly overloaded, giving 

the OVT of around 10 minutes. Figure 6.8 shows the post-contingency power flow on 

each branch in detail. 

Table 6.3: Immediate post-contingency constraint violations (T4-9 & L6-13) 

Pre-contingency state Cost minimization Loss minimization 

Load Type Rating 
Overloaded 

branches 

MLT 

(s) 

Overloaded 

branches 

MLT 

(s) 

Constant P 

DTR T7-9, L12-13 567 
T4-7, T7-9, 

L12-13 
2090 

STR T4-7, T7-9, L12-13 690 
T4-7, T7-9, 

L12-13 
2090 

Constant I 

DTR L12-13 750 T4-7, T7-9 2218 

STR T4-7, T7-9, L12-13 2103 
T4-7, T7-9, 

L12-13 
2088 

Constant Z 
DTR L12-13 2521 T7-9 15029 

STR T4-7, T7-9 Inf T4-7, T7-9 Inf 

Real 

DTR L12-13 652 T4-7, T7-9 2163 

STR 
L2-3, T4-7, T7-9, 

L12-13 
1021 

T4-7, T7-9, 

L12-13 
871 

Inf: Final steady-state temperature is lower than the temperature 

corresponding to NR, MLT is infinite 
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a) Pre-contingency condition: cost minimization 

 

b) Pre-contingency condition: loss minimization 

Figure 6.8: Immediate post-contingency branch power flow 

Congestion management results 

In order to resolve the post-contingency congestions, the proposed multi-stage CM 

method is implemented. The optimal volt-var control actions listed in Table 6.4 and 
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Table 6.5 are taken at the first stage, assuming that the response time is 10 seconds. 

These actions relieve overloading conditions for all cases significantly, especially for 

the scenario with constant Z load and DTR. In this scenario, the congestions are cleared 

solely by volt-var control actions.  

Table 6.4: Post-contingency CM results (pre-contingency condition: cost 

minimization, T4-9 & L6-13) – Stage 1 

CM Actions 
Constant P Constant I Constant Z Real 

DTR STR DTR STR DTR STR DTR STR 

Tap 

ratio  

T4-7 1.04 0.95 0.95 0.98 0.94 0.98 0.95 0.93 

T5-6 1.04 0.90 0.94 1.00 1.00 0.95 0.93 0.99 

T7-8 0.99 0.98 0.91 0.91 1.00 1.00 0.91 0.91 

T7-9 0.90 0.91 0.94 1.01 1.03 0.99 0.94 0.95 

Shunt 

capacitor 

(Mvar) 

SC1 24 24 10.7 0 22.1 9.57 0 24 

SC2 19.5 19.5 6.73 6.70 4.21 15.1 17.5 3.57 

SC3 19 19 18.6 19 12.6 12.5 14.2 19 

MLT (s) 2397 2527 2474 2484 inf inf 2223 2427 

Table 6.5: Post-contingency CM results (pre-contingency condition: loss 

minimization, T4-9 & L6-13) – Stage 1 

CM Actions 
Constant P Constant I Constant Z Real 

DTR STR DTR STR DTR STR DTR STR 

Tap 

ratio  

T4-7 0.96  0.95  0.96  1.03  0.98  0.98  0.94  0.93  

T5-6 0.93  0.94  0.99  1.06  0.94  0.95  0.98  0.99  

T7-8 1.00  1.00  1.05  0.95  1.01  1.00  1.05  0.91  

T7-9 0.95  0.98  0.96  1.01  1.00  0.99  0.96  0.95  

Shunt 

capacitor 

(Mvar) 

SC1 8.82 12.8 22.2 6.55 14.5 10.9 16.5 24.0 

SC2 6.60 5.25 7.12 12.0 21.8 12.72 4.15 3.57 

SC3 19 19 19 19.0 17.9 12.5 19 19 

MLT (s) 2495 2493 2415 2490 Inf inf 2351 2463 

 

The optimal generation re-dispatch results of three on-line generators in the second 

stages are listed in Table 6.6 and Table 6.7 on a minute by minute basis. The response 

time of the first reserve generation (R1) at Bus 9 is 5 minutes, which clear congestions 

at all branches except for the case with realistic load type and STR.  
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Table 6.6: Post-contingency CM results (pre-contingency condition: cost 

minimization，T4-9 & L6-13) – Stage 2 

X: Control actions are not available 

-: CM is finished & No actions are needed 

Inf: Final steady-state temperature is lower than the temperature 

corresponding to NR, MLT is infinite 

 

CM Actions 
Constant P Constant I Constant Z Real 

DTR STR DTR STR DTR STR DTR STR 

Generation re-dispatch (1 min) 

∆𝑷𝑮𝟏 (MW) 0 0 -6.93 0 - 4.89 -12.07 4.60 

∆𝑷𝑮𝟐 (MW) 0 -2.32 3.62 0 - -4.72 4.54 -9.33 

∆𝑷𝑮𝟑 (MW) 0 2.97 2.52 0 - 0 2.70 2.59 

∑ |∆𝑷𝑮| (MW) 0 5.76 13.1 0 - 9.61 19.3 16.5 

Reserve 1 (MW) X X X X - X X X 

Reserve 2 (MW) X X X X - X X X 

Cost ($/h) 0 35.7 51.2 0 - 29.6 72.5 65.8 

MLT (s) 2337 2468 2415 2424 inf inf 2163 2367 

Generation re-dispatch (2 min) 

∆𝑷𝑮𝟏 (MW) 0.99 0 0 0 - -7.33 -12.07 -2.32 

∆𝑷𝑮𝟐 (MW) -1.72 0 0 0 - 2.15 4.54 -0.04 

∆𝑷𝑮𝟑 (MW) 0.42 0 0 0 - -1.08 2.70 0.50 

∑ |∆𝑷𝑮| (MW) 3.12 0 0 0 - 10.6 0 2.86 

Reserve 1 (MW) X X X X - X X X 

Reserve 2 (MW) X X X X - X X X 

Cost ($/h) 12.0 0 0 0 - 37.69 72.51 12.12 

MLT (s) 2286 2408 2355 2364 - inf 2103 2308 

Generation re-dispatch (3 min) 

∆𝑷𝑮𝟏 (MW) 0 0 0 0 - 0 0 0 

∆𝑷𝑮𝟐 (MW) 0 0 0 0 - 0 0 0 

∆𝑷𝑮𝟑 (MW) 0 0 0 0 - 0 0 0 

∑ |∆𝑷𝑮| (MW) 0 0 0 0 - 0 0 0 

Reserve 1 (MW) X X X X - X X X 

Reserve 2 (MW) X X X X - X X X 

Cost ($/h) 0 0 0 0 - 0 0 0 

MLT (s) 2226 2348 2295 2304 - inf 2043 2248 

Generation re-dispatch (4 min) 

∆𝑷𝑮𝟏 (MW) 0 0 0 -21.81 - 0 0 0 

∆𝑷𝑮𝟐 (MW) 0 0 0 1.72 - 0 0 0 

∆𝑷𝑮𝟑 (MW) 0 0 0 17 - 0 0 0 

∑ |∆𝑷𝑮| (MW) 0 0 0 40.5 - 0 0 0 

Reserve 1 (MW) X X X X - X X X 

Reserve 2 (MW) X X X X - X X X 

Cost ($/h) 0 0 0 224.1 - 0 0 0 

MLT (s) 2166 2288 2235 2245 - inf 1983 2188 

Generation re-dispatch (5 min) + Reserve Generation 1 (R1) 

∆𝑷𝑮𝟏 (MW) -23.62 -32.40 -32.79 -28.33 - -37.49 -6.39 -12.72 

∆𝑷𝑮𝟐 (MW) 8.37 2.92 11.17 5.00 - 18.31 0.82 -1.43 

∆𝑷𝑮𝟑 (MW) -1.01 3.15 -0.64 1.27 - 5.52 -4.35 -13.48 

∑ |∆𝑷𝑮| (MW) 33 38.5 44.6 34.6 - 61.3 11.6 24.7 

Reserve 1 (MW) 14.71 23.75 20.07 24.50 - 15.68 22.00 24.50 

Reserve 2 (MW) X X X X - X X X 

Cost ($/h) 157 214.5 207.0 190.0 - 259.6 120.0 200.3 

MLT (s) Inf inf inf inf - inf inf inf 

Generation re-dispatch (10 min) + Reserve Generation 1 (R1) + Reserve Generation 2 (R2) 

∆𝑷𝑮𝟏 (MW) - - - - - - - -2.93 

∆𝑷𝑮𝟐 (MW) - - - - - - - -3.13 

∆𝑷𝑮𝟑 (MW) - - - - - - - -2.35 

∑ |∆𝑷𝑮| (MW) - - - - - - - 8.41 

Reserve 1 (MW) - - - - - - - 24.50 

Reserve 2 (MW) - - - - - - - 7.73 

Cost ($/h) - - - - - - - 61.26 
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Table 6.7: Post-contingency CM results (pre-contingency condition: loss 

minimization，T4-9 & L6-13) – Stage 2 

X: Control actions are not available 

-: CM is finished & No actions are needed 

Inf: Final steady-state temperature is lower than the temperature 

corresponding to NR, MLT is infinite 

 

 

CM Actions 
Constant P Constant I Constant Z Real 

DTR STR DTR STR DTR STR DTR STR 

Generation re-dispatch (1 min) 

∆𝑷𝑮𝟏 (MW) 
- 

14.39 
0 0 0 - 13.82 0 0 

∆𝑷𝑮𝟐 (MW) 14.56 0 0 0 - -21.16 0 0 

∆𝑷𝑮𝟑 (MW) -0.08 0 0 0 - 2.99 0 0 

∑ |∆𝑷𝑮| (MW) 29.03 0 0 0 - 37.97 0 0 

Reserve 1 (MW) X X X X - X X X 

Reserve 2 (MW) X X X X - X X X 

Cost ($/h) 123.1 0 0 0 - 186.2 0 0 

MLT (s) 2435 2433 2355 2430 - inf 2310 2403 

Generation re-dispatch (2 min) 

∆𝑷𝑮𝟏 (MW) 0 15.33 0 0 - 0 0 0 

∆𝑷𝑮𝟐 (MW) 0 -15.23 0 0 - 0 0 0 

∆𝑷𝑮𝟑 (MW) 0 0 0 0 - 0 0 0 

∑ |∆𝑷𝑮| (MW) 0 30.55 0 0 - 0 0 0 

Reserve 1 (MW) X X X X - X X X 

Reserve 2 (MW) X X X X - X X X 

Cost ($/h) 0 128.1 0 0 - 0 0 0 

MLT (s) 2375 2373 2295 2370 - inf 2250 2343 

Generation re-dispatch (3 min) 

∆𝑷𝑮𝟏 (MW) 0 0 -10.37 0 - 0 0 0 

∆𝑷𝑮𝟐 (MW) 0 0 0.19 0 - 0 0 0 

∆𝑷𝑮𝟑 (MW) 0 0 9.24 0 - 0 0 0 

∑ |∆𝑷𝑮| (MW) 0 0 19.8 0 - 0 0 0 

Reserve 1 (MW) X X X X - X X X 

Reserve 2 (MW) X X X X - X X X 

Cost ($/h) 0 0 0 0 - 0 0 0 

MLT (s) 2315 2313 2235 2310 - inf 2190 2283 

Generation re-dispatch (4 min) 

∆𝑷𝑮𝟏 (MW) 27.13 0 0 0 - 0.17 0 0 

∆𝑷𝑮𝟐 (MW) 
- 

20.46 
0 0 0 - -0.19 0 0 

∆𝑷𝑮𝟑 (MW) -6.53 0 0 0 - -0.03 0 0 

∑ |∆𝑷𝑮| (MW) 54.12 0 0 0 - 0.39 0 0 

Reserve 1 (MW) X X X X - X X X 

Reserve 2 (MW) X X X X - X X X 

Cost ($/h) 282.8 0 0 0 - 1.754 0 0 

MLT (s) 2256 2253 2175 2250 - inf 2130 2223 

Generation re-dispatch (5 min) + Reserve Generation 1 (R1) 

∆𝑷𝑮𝟏 (MW) -0.49 8.11 -22.05 -30.39 - -34.96 -0.15 15.33 

∆𝑷𝑮𝟐 (MW) 
- 

13.02 
-23.36 17.42 24.00 - 10.88 5.07 -24.00 

∆𝑷𝑮𝟑 (MW) 6.61 -9.36 -8.19 -9.62 - 2.25 -12.90 -16.99 

∑ |∆𝑷𝑮| (MW) 20.12 40.83 47.66 64.01 - 48.09 18.11 56.32 

Reserve 1 (MW) 6.472 24.50 24.50 24.50 - 20.49 10.92 24.50 

Reserve 2 (MW) X X X X - X X X 

Cost ($/h) 181.2 349.5 334.1 403.0 - 226.3 231.3 458.9 

MLT (s) Inf inf inf inf - inf inf inf 

Total 

Cost ($/h) 
587.1 477.6 334.1 403.0 - 414.3 231.3 458.9 
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Figure 6.9 plots the variations of power flows and operating temperatures of L12-13 

and T7-9 during the CM process for the case with STR and realistic load type. It can 

be observed the temperatures on both components are prevented from violating the 

maximum allowable operating temperatures. In the immediate post-contingency 

condition, L12-13 is most heavily loaded with the MLT of 1021 seconds. The optimal 

volt-var control relieves the overloading condition of L12-13 but the power flow on 

T7-9 increases. However, as the thermal time constant of the transformer (around 2 

hours) is much larger than that of L12-13 (around 3 minutes), the MLT is extended to 

2427 seconds. The dispatch of the first reserve generation removes the violation of 

STR at L12-13 and reduces the power flow on T7-9 significantly, with which the 

hottest-spot temperature of T7-9 starts to decrease and will not violate the temperature 

limit (120 ℃). However, the power flow is still above the STR. The violation of STR 

at T7-9 will be eliminated when the second reserve generation dispatch is available. 

 

a) L12-13 
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b) T7-9 

Figure 6.9: Component loading and temperature variations during CM process. (T4-9 

& L9-14, Pre-contingency condition: cost minimization, load type: Real, STR) 

6.4.3 Contingency (Double Fault) L6-13 & L9-14 

Immediate post-contingency state 

The second contingency event to be analysed is a simultaneous double-fault of Lines 

L6-13 & L9-14. Compared with the previous contingency event, this event results in 

much severe post-contingency conditions, for which the overloading branches, 

undervoltage buses and MLTs are listed in Table 6.8. For most scenarios, the MLTs 

are less than 60 seconds, which are too short of implementing enough generation re-

dispatch and reserve dispatch to relieve constraint violations, considering the ramp-up 

and ramp-down rates of on-line generators and the response times of reserve 

generation.  
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Table 6.8: Immediate post-contingency constraint violations (L6-13 & L9-14) 

Pre-contingency 

state 
Cost minimization Loss minimization 

Load  

Type 
Rating 

Overloaded  

Components 

UV 

buses 

MLT 

(s) 

Overloaded 

Components 

UV 

buses 

ML

T (s) 

Constant  

P 

DTR 
L2-3, L6-12, 

L12-13, L13-

14 

13, 

14 
18 

L6-12, L12-

13, L13-14 

13, 

14 
28 

STR 
L2-3, L5-6, 

L6-12, L12-

13, L13-14 

12,13

, 14 
23 

T5-6, L6-12, 

L12-13, L13-

14 

12, 

13, 

14 

18 

Constant  

I 

DTR L12-13 
13, 

14 
48 L12-13 

13, 

14 
48 

STR 
L6-12, L12-

13, L13-14 

13, 

14 
48 

L6-12, L12-

13, L13-14 

13, 

14 
48 

Constant  

Z 

DTR L12-13 
13, 

14 
73 L12-13 

13, 

14 
73 

STR L12-13 
13, 

14 
73 L12-13 

13, 

14 
73 

Real 
DTR 

L12-13, L13-

14 

13, 

14 
42 

L12-13, L13-

14 

13, 

14 
42 

STR 
L6-12, L12-

13, L13-14 

13, 

14 
42 

L6-12, L12-

13, L13-14 

13, 

14 
42 

 

 

a) Pre-contingency condition: cost minimization 
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b) Pre-contingency condition: loss minimization 

Figure 6.10: Immediate post-contingency branch power flow (L6-13 & L9-14) 

Congestion management results 

Table 6.9 and Table 6.10 list the optimal settings provided by the first-stage CM 

algorithm, showing that these control actions can hardly extend MLTs. The bus 

voltages after volt/var control are plotted in Figure 6.11, which demonstrates that even 

after the volt-var control actions are implemented, there will be overvoltage conditions 

at Bus 6 and Bus 7, with only slightly improved undervoltage conditions at Bus 13. 

Considering the MLTs and numbers of bus voltage limit violations, the available volt-

var control is not efficient for this contingency event. Due to the short periods of OLTs 

(≤ 60  seconds), the CM algorithm decides to implement optimal load shedding 

immediately after the contingency event occurs. Based on the values of sensitivity 

factors calculated as (6.22) and (6.23), Bus 13 and Bus 14 are selected as the target 

buses to implement load shedding. The optimal load shedding results, as well as the 

coordinated control of generations provided by the third-stage CM model, are given 

by Table 6.10. It can be observed that the CM cost for the scenarios with DTR are 

generally lower, which presents the benefits of the application of DTR. Among the 

four load types, Constant Z load gives the lowest CM cost with both pre-contingency 

conditions. Figure 6.12 plots the variations in MVA loading and conductor surface 

temperature of L12-13 for the case with realistic load type and STR. 
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Table 6.9: Post-contingency CM results (pre-contingency condition: cost 

minimization, L6-13 & L9-14) – Stage 1 

CM Actions 
Constant P Constant I Constant Z Real 

DTR STR DTR STR DTR STR DTR STR 

Tap 

ratio  

T4-7 0.97 1.03 0.93 0.98 0.98 1.04 1.02 0.90 

T4-9 1.05 1.06 1.08 0.97 1.01 1.08 0.97 0.98 

T5-6 0.90 0.90 0.90 0.93 0.94 0.90 0.90 0.90 

T7-8 1.10 1.06 1.03 1.00 1.00 1.05 1.03 1.00 

T7-9 1.06 0.90 0.94 1.00 1.06 0.91 0.97 0.90 

Shunt 

capacitor 

(Mvar) 

SC1 10.0 2.97 18.7 24 19 9.45 18.9 19.0 

SC2 16.1 21.2 16.5 13 8.52 17.5 7.64 9.74 

SC3 7.90 4.49 17.3 19 19 7.06 19.0 15.7 

MLT (s) 27 29 38 38 69 56 36 35 

Table 6.10: Post-contingency CM results (pre-contingency condition: loss 

minimization, L6-13 & L9-14) – Stage 1 

CM Actions 
Constant P Constant I Constant Z Real 

DTR STR DTR STR DTR STR DTR STR 

Tap 

ratio  

T4-7 0.94 1.06 1.02 1.02 0.90 0.99 0.99 0.99 

T4-9 1.02 1.10 0.90 0.90 0.90 0.98 0.98 1.02 

T5-6 0.90 0.90 0.93 0.93 0.90 0.96 0.90 0.90 

T7-8 1.10 1.10 1.02 1.02 0.95 1.02 0.93 0.93 

T7-9 1.10 1.04 0.96 0.96 0.92 1.00 0.93 0.93 

Shunt 

capacitor 

(Mvar) 

SC1 3.98 23.6 19.0 19.0 10.8 19.0 3.02 11.2 

SC2 8.66 23.6 9.42 9.42 11.0 8.12 0 2.44 

SC3 17.6 19.0 11.1 11.1 0 18.8 0 4.59 

MLT (s) 24 20 38 38 56 69 35 36 

 

a) Pre-contingency condition: cost minimization 
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b) Pre-contingency condition: loss minimization 

Figure 6.11: Bus voltages after first-stage CM 

 

 Figure 6.12: Component loading and temperature variations during the CM process. 

(L6-13 & L9-14, Pre-contingency condition: cost minimization, load type: Real, 

STR) 
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Table 6.11: Post-contingency CM results – Stage 3 

Fuel cost minimization 

CM actions 
Constant P Constant I Constant Z Real 

DTR STR DTR STR DTR STR DTR STR 

∆𝑷𝑮𝟏 (MW) -12.35 -13.65 -1.99 -0.03 -3.84 -0.04 -0.13 0.00 

∆𝑷𝑮𝟐 (MW) -11.20 -11.20 -0.85 -1.95 0.01 -0.13 -6.95 -5.96 

∆𝑷𝑮𝟑 (MW) 0.00 0.00 -0.08 0.05 0.02 10.04 -0.01 0.00 

Reserve 1 (MW) X X X X X X X X 

Reserve 2 (MW) X X X X X X X X 

Selected buses 13, 14 13, 14 13, 14 13, 14 13, 14 13, 14 13, 14 13, 14 

𝑷𝑳𝑺 at Bus 13 (MW) 6.52 2.16 12.35 10.55 12.58 9.75 11.04 3.61 

𝑷𝑳𝑺 at Bus 14 (MW) 9.46 14.90 3.67 6.56 2.11 6.33 5.12 13.73 

∑ |𝑷𝑳𝑺| (MW) 15.98 17.06 16.02 17.11 14.69 16.08 16.16 17.34 

Total cost ($) 1211.36 1636.54 1083.06 1497.75 850.82 1344.74 1125.93 1551.36 

Active transmission loss minimization 

CM actions 
Constant P Constant I Constant Z Real 

DTR STR DTR STR DTR STR DTR STR 

∆𝑷𝑮𝟏 (MW) -22.10 -23.18 0.00 0.01 -1.75 -1.39 0.00 7.42 

∆𝑷𝑮𝟐 (MW) 0.00 0.00 0.00 0.03 0.00 0.01 0.00 0.00 

∆𝑷𝑮𝟑 (MW) 0.00 0.00 0.00 -0.02 0.00 0.00 0.00 0.00 

Reserve 1 (MW) X X X X X X X X 

Reserve 2 (MW) X X X X X X X X 

Selected buses 13, 14 13, 14 13, 14 13, 14 13, 14 13, 14 13, 14 13, 14 

𝑷𝑳𝑺 at Bus 13 (MW) 1.52 5.57 13.47 7.36 2.37 12.45 11.52 11.60 

𝑷𝑳𝑺 at Bus 14 (MW) 14.56 11.40 2.51 9.86 12.69 3.54 4.57 5.47 

∑ |𝑷𝑳𝑺| (MW) 16.08 16.97 15.98 17.22 15.06 15.99 16.09 17.11 

Total cost ($) 2221.50 2345.44 1972.24 2033.49 1517.13 1562.74 2115.07 2153.13 

 

6.5 Conclusions 

This chapter presented a novel multi-stage OPF-based approach for efficient 

management of severe contingency events. It detailed the development of dynamic 

thermal models for power transformers and overhead lines, which were required to 

correctly estimate the maximum lead time (MLT) available to network operators for 

corrective actions. 

The presented multi-stage congestion management (CM) method takes into account: 

a) volt-var controls, which do involve any high costs and have fast response time (first 

stage), b)  re-dispatch of on-line generators, taking into account their ramping up/down 

times on a minute-by-minute basis, and activation of reserve generation, which has 
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prescheduled response times (second stage), and c) optimal load shedding, which is 

implemented in the final third stage as the “last resort” measure to ensure that all 

remaining congestions are resolved. 

Another benefit of the presented CM approach is that it can provide network operators 

with information on the costs of available corrective actions, so their response can be 

based on techno-economic optimization. The presented results for different load types 

(constant power, constant current, constant impedance and realistic load models) 

highlights the importance of including the correct load model in the analysis. 

Comparison of results for STRs and DTRs on the two example contingency events 

demonstrates that DTRs allow network operators to utilize the additional capacity of 

network components for a more cost-efficient resolving of violated constraints. 
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Chapter 7 
Conclusions and Future Work 

7.1 Thesis summary 

Modern power system operating conditions are closer to their technical limits due to 

ageing infrastructure, deregulated electricity market, increased integration of 

renewable generation, etc. Furthermore, the growing penetration of renewable 

generation, the application of DTR and new technologies on the load side (e.g. 

demand-side management) have all significantly increased the level of uncertainties in 

power system operation. To ensure high levels of system security and techno-

economic performance, it is necessary to develop advanced computational tools for 

system operators to improve their decision-making capability in a highly uncertain 

environment. 

Chapter 2 presented an overview of approaches for power system security control. It 

introduced the three main functions of power systems security and the classification 

of system operating states. In addition, a literature review of methods to manage 

uncertainties in power system was provided. Those methods can be classified into 

three categories, probabilistic, possibilistic and hybrid approaches based on the 

different formulations of uncertainty models. This chapter also presented an 

introduction to the OPF problem and three approximated formulations. 

Chapter 3 evaluated the hosting capacity for wind-based distributed generation of a 

distribution network with the application of DTR. Both deterministic and probabilistic 

approaches were applied, and variations of demands and DG power outputs, as well as 

DTR of network components, were considered. The HC assessment has three steps. In 

the first step, maximum locational HC was calculated, assuming that only one DG unit 

is connected in the network. Then, assuming that DG units were calculated at all buses, 

the hosting capacity of the whole network (NHC) were calculated based on maximum 

LHCs obtained in the first step. Finally, bus-to-bus LHC-sensitivity factors were 

calculated to determine the variations of available LHCs after the connection of 

additional DG units at arbitrary network buses.  
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This work considers the uncertainty impacts in the planning stage. To analyse the 

uncertainty impacts in the operation stage, more accurate probabilistic models are 

necessary. Chapter 4 used several distributions, including 2-p WB, MvM and MGND 

to model the uncertainties due to wind energy: uncertainties in wind speed, wind 

direction, as well as variations in outputs of wind generation systems. Based on these 

probabilistic models, MCS-based analysis was implemented to analyse the impacts of 

DTR on wind energy integration. The results demonstrated the benefits of DTR 

application. A significant amount of wind curtailment can be avoided when the wind 

speed is high. However, the unfavourable real-time thermal rating at low wind speed 

can result in unexpected overloading conditions which should also be considered, 

although outputs of wind generation are zero for the low/zero wind conditions. 

To manage the operational risk arising from multiple uncertainties and improve system 

security, a novel OPF-based model which combines affine arithmetic and MCS-based 

approach was presented in Chapter 5. In this approach, uncertainties from different 

sources, such as input wind energy, output wind generation and load variations were 

initially represented by intervals and the model was solved with the AA approach at 

first. The AA-based results can provide the intervals of optimal dispatch solution 

corresponding to the Max-Min intervals of input uncertainties. However, the AA-

based results may be too conservative, as they include extreme events, such as the 

maximum and minimum values of uncertain variables, which are rarely occurring. 

Consequently, the MCS-based approach was implemented to generate the output 

sample results for uncertain input variables, based on the developed probabilistic 

models and to obtain the actual probabilities of optimal solutions. Compared to the 

MCS-based approach, the presented AA-P-OPF method is much more efficient in 

terms of the required computational times, as it does not need to solve the OPF problem 

for each sample repeatedly. It can also resolve the issue with too wide solution ranges 

obtained by AA-OPF method with Min-Max intervals and take into account 

probability distributions of input uncertainties. The presented method can be used by 

system operators for optimal generation dispatch and the selection of low-risk wind 

curtailment strategies, where the risk level is directly related to the specified 

confidence level in the evaluated uncertainty ranges. 
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The presented method can provide system operators with economically efficient 

dispatch solutions while maintaining system security level under normal operating 

conditions. However, the impacts of disturbances, such as contingencies, on system 

operation, have not been considered so far. Therefore, Chapter 6 proposed a multi-

stage OPF-based approach for the efficient management of severe contingency events. 

The presented multi-stage congestion management (CM) method took into account 

both cost-free and non-cost-free congestion management actions, which include volt-

var controls, generation re-dispatch and load shedding. The volt-var control was 

implemented firstly due to the short response time. Then, the generation re-dispatch 

was used in the second stage to mitigate the violations of branch thermal limits and 

bus voltages. As the response time of generation re-dispatch is relatively long, to 

prevent permanent damages to the equipment caused by post-contingency currents, the 

maximum lead time for system operators to implement corrective actions, estimated 

by dynamic thermal models of transmission lines and transformers, are included into 

the optimization model as constraints. Load shedding was used in the last stage to 

manage the remaining constraint violations. Four different load types (constant power, 

constant current, constant impedance, and realistic load models) were applied in the 

analysis, and the results demonstrate the importance to use accurate load model in 

post-contingency congestion management. Comparison of results for STR and DTR 

demonstrates that the use of DTR allows network operators to utilize the additional 

capacity of network components for more cost-efficient corrective actions to remediate 

constraint violations. 

7.2 Research implications 

The research presented by this thesis firstly introduced approaches to evaluate hosting 

capacity for wind-based generation in distribution networks with DTR application. 

Then a framework was proposed to handle uncertainties in network operation, 

introduced by the variations of wind generation, DTR, and load conditions. An affine 

arithmetic based optimization model, which combines both interval and probabilistic 

information of uncertainties, was developed. It can be a useful tool for system 

operators to identify optimal generation dispatch and select wind curtailment strategies 

with low risk for a network with high wind penetration. After introducing the AA-P-

OPF model for system optimal operation under normal operating conditions, this thesis 
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also proposed a framework for post-contingency CM, in which the optimal remedial 

actions are selected to mitigate branch overloading conditions and bus voltage 

violations within the maximum lead time. The response times for different actions 

were considered, and the remedial actions were determined in three stages, considering 

the limiting lead time av. Volt-var control is used to relieve congestion management 

at first due to its quick response, then generation re-dispatch and reserve dispatch are 

implemented. If the congestions cannot be removed by generation re-dispatch, load 

shedding is selected in the last step. 

This thesis has provided the required theoretical backgrounds and several approaches 

for improving system performance in both economic and security aspects subject to 

uncertainties at a high level. The presented methods can effectively extend the state-

of-the-art in power system optimization with uncertainties, which is expected to be of 

significant value to both system planners and operators. Those approaches improve the 

decision-making capability for system control centres to overcome challenges in the 

context of modern power systems.  

7.3 Limitations of the research and future work 

The proposed frameworks were implemented on the test networks or practical 

networks, which were all a relatively small size. To further examine the applicability 

of the presented methods, practical networks of larger sizes should be used. However, 

from the perspective of the author, the proposed methods should be applicable to larger 

networks in the presented form directly. 

The AA-P-OPF model proposed in Chapter 5 was based on the original formulation 

of the ACOPF problem, which is nonconvex and NP-hard. The complexity of the 

model will increase significantly as the number of uncertain variables increases. For 

instance, the number of constraints in AA-P-OPF with five uncertain variables, such 

as wind speed, wind direction, wind power output, dynamic thermal rating and load, 

will be almost six times of those in the original OPF formulation. In future work, 

principal component analysis or machine learning-based method should be 

implemented to reduce the number of uncertain resource to simplify the optimization 

model. Another promising direction is to develop a convex relaxed formulation for the 
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AA-P-OPF model. Compared with the nonconvex model solved by nonlinear solvers, 

such as Interior Point Optimizer (IPOPT), the convex model may achieve better 

solutions potentially with lower computational efforts.  

Furthermore, AA-P-OPF only included continuous variables. However, in power 

system operation, some control variables are discrete in nature, such as the setting of 

OLTC tap ratios, the switching of transmission lines in different configurations, 

discrete-step capacitor banks and the charging/discharging control of energy storage 

systems. In future work, these discrete variables and related control actions should be 

integrated into the convex relaxed model. To solve the mixed-integer nonlinear 

programming problem with linear integer parts and convex continuous parts, 

generalized benders decomposition or distributed optimization algorithms, such as 

alternating direction method of multipliers can be applied. 

The post-contingency CM model proposed in Chapter 6 was solved by a metaheuristic 

algorithm, which took longer computational time. The main reason to use the 

metaheuristic algorithm is that the CM model with MLT constraints involves some 

non-smooth or non-differentiable functions (e.g. component temperatures, MLT), 

which effectively limit the application of conventional gradient-based solver methods. 

To overcome these problems, proper linearization and approximations would be 

applied to smooth these functions. In addition, the sequence of corrective actions is 

predefined in the post-contingency CM model. The operators are suggested to use volt-

var control actions at first, then apply generation re-dispatch and connection of reserve 

generation. If these actions cannot mitigate congestions, load shedding is implemented 

in the end. However, in practical applications, the sequence can be more flexible. For 

instance, the operators may apply volt-var controls during generation re-dispatch, or 

apply control over the demand-manageable portion of the load, or “partial/contracted 

load shedding” before generation re-dispatch to prevent unwanted dynamics. To 

overcome this problem, dynamic programming, model predictive control and 

reinforcement learning may be promising options. 

Finally, system stability response has become more sensitive to small disturbances, as 

the displacement of synchronous generators with wind turbines has reduced system 

inertia. Consequently, dynamic security assessment plays an increasingly important 
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role in security analysis. In the future work, dynamic security constraints should be 

integrated into the post-contingency CM model to ensure not only steady-state system 

security, but also transient or dynamic system security.  
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