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ABSTRACT 

Specifications are necessary for communicating decisions and 

intentions and for documenting results at many stages of the program 
development process. Informal specifications are typically used 
today, but they are imprecise and often ambiguous. Formal 
specifications are precise and exact but are more difficult to write 
and understand. We present work aimed toward enabling the practical 
use of formal specifications in program development, concentrating 
on the Clear language for structured algebraic specification. 

Two different but equivalent denotational semantics for Clear are 
given. One is a version of a semantics due to Burstall and Goguen 

with a few corrections, in which the category-theoretic notion of a 

colimit is used to define Clear's structuring operations 
independently of the underlying 'institution' (logical formalism). 
The other semantics defines the same operations by means of 
straightforward set-theoretic constructions; it is not institution- 
independent but it can be modified to handle all institutions of 
apparent interest. 

Both versions of the semantics have been implemented. The set- 
theoretic implementation is by far the more useful of the two, and 

includes a parser and typechecker. An implementation is useful for 
detecting syntax and type errors in specifications, and can be used 
as a front end for systems which manipulate specifications. Several 
large specifications which have been processed by the set-theoretic 
implementation are presented. 

A semi-automatic theorem prover for Clear built on top of the 
Edinburgh LCF system is described. It takes advantage of the 
structure of Clear specifications to restrict the available 
information to that which seems relevant to proving the theorem at 
hand. If the system is unable to prove a theorem automatically the 
user can attempt the proof interactively using the high-level 
primitives and inference rules provided. 

We lay a theoretical foundation for the use of Clear in 
systematic program development by investigating a new notion of the 
implementation of a specification by a lower-level specification. 
This notion extends to handle parameterised specifications. We show 

that this implementation relation is transitive and commutes with 
Clear's structuring operations under certain conditions. This means 

that a large specification can be refined to a program in a gradual 
and modular fashion, where the correctness of the individual 
refinements guarantees the correctness of the resulting program. 
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INTRODUCTION 

Specifications play a part in every phase of program development. 

The construction of a program cannot commence without some kind of 
specification of what it is intended to do. Every program is 
written to solve some problem, and the problem must be known before 

work on the program is begun. In the course of a large programming 

project specifications serve as a means of communication. Each 

programmer is responsible for a certain component of the program 

which may use facilities provided by several 'foreign' components. 

Precise specifications of those components are required before any 

program which relies on them can be written. These specifications 
are produced during the design phase when a way of decomposing the 

task is decided upon and the component subtasks recorded. It is 
important that the specifications of the components avoid giving 
away unnecessary details of the implementation. If nobody is able 

to depend on the idiosyncratic features of a particular solution to 
a subtask, then another solution may be easily substituted without 
affecting the correctness of the program. 

Once a program has been written some attempt is normally made to 
check that it is correct. This check may be an informal test of the 

program on a few values, or a formal proof of correctness. In any 

case, some specification is needed to compare the program against; a 

program is only correct with respect to some specification of its 
expected behaviour. Finally, documentation is required, both for 
the use of the customer and to aid the future maintenance and 

modification of the program. This documentation is also a 

specification of the program. 

Up to now the word "specification" has been used in the broadest 

possible sense. Every means of describing a program and its 
behaviour is included, from informal English documentation to a 

precise description in a formal specification language. Even the 

text of a program itself is a specification, as is a vague idea in 
the head of a programmer. Some kinds of specifications are useless 

for certain purposes; for example, vague ideas are only useful if 
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the roles of customer, designer and programmer are all played by the 

same person, and even then they are not enough for a formal proof of 
correctness. The text of a program is not usually considered to be 

a good specification because it is too detailed to be easily 
understood and is not sufficiently abstract for some uses (e.g. 
specification of the modules in a large program, as already 

remarked), but a very simple and straightforward program may be 

useful as a specification of an equivalent program which must be 

complex in order to be efficient. 

Informal specifications suffer from imprecision. This is a 

serious fault because (for example) the use of a specification as 

the basis of a formal proof of program correctness demands 

precision, and heavy penalties can be incurred if a specification 
used as a means of communication is misunderstood. Specifications 
written in a formal language are necessarily precise, since the 

meaning of each specification is given by the semantics of the 

specification language and accordingly there is no room for 
confusion. Various formal specification techniques and languages 

exist; Liskov and Berzins [1977] survey those available in 1977. A 

great deal of attention has recently been devoted to algebraic 
methods of specification, which seem to yield specifications which 

are both concise and easy to understand. Prominent in this area is 
work by Guttag and his colleagues [Guttag, Horowitz and Musser 1978] 

and by the ADJ group [Goguen, Thatcher and Wagner 1978], of which 

the latter is the most mathematically rigorous. In this framework, 

a specification consists of a signature -- a set of sorts (kinds of 
data) and some operators (for constructing and manipulating data) -- 
together with axioms (normally equations) describing constraints on 

the results produced by operators. Such a specification is called a 

theory, and it describes a set of algebras (a set of data objects 
for each sort, and a function on those sets for each operator), 
where each algebra in the set is a model of the theory (it satisfies 
the axioms). Programs can be considered to be algebras, so all 
programs satisfying a theory are in its set of models. 

Most workers in algebraic specification concentrate on the 

specification of abstract data types, for which the method is 
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particularly well suited. Although an algebraic specification could 

be written for a large system, such a theory would be impossible to 

understand because it would contain so many axioms. The value of a 

specification depends on the ease with which it was written and can 

be understood; a large number of pages full of axioms are not of 

much use to anybody. 

The Clear specification language was invented by Burstall and 

Goguen [1977] to combat just this problem. Clear is a language for 

writing structured algebraic specifications; that is, it provides 

facilities for combining small theories in various ways to make 

large theories. With a tool such as this, the specification of a 

large real-world system can be built from small, easy to understand 

and (in many cases) reusable bits. 

An obvious way to combine theories is to simply add them 

together, giving a theory which includes the sorts, operators and 

axioms of each component. Clear also provides a facility for 

parameterising a theory to give a theory procedure, which can be 

applied to various different theories to produce new theories which 

have been systematically enriched in some way. A typical example is 

a parameterised theory of sorting, which would produce a theory of 

sorting lists of numbers if applied to the theory of natural numbers 

together with the usual < order relation. An operation called data 

can be applied when adding new sorts and operators to a theory; this 

constrains the set of models to a small number of 'best' ones. 

Finally, some of the operators and sorts of a theory can be 'hidden' 

to yield a less elaborate theory. Clear is described in detail in 

chapter I. 

With an intuitive understanding of Clear it is possible to begin 

to write structured specifications which can be used in the 

development of programs. Clear should be better than most 

specification languages for this purpose because specifications have 

structure, and the structure of a program will normally be similar 

to the structure of the specification from which it was developed. 

But in order to rigorously prove that a program implements a Clear 

specification or to build a system incorporating Clear to aid in any 

phase of program development, it is necessary to have a formal 
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semantics which gives the precise meaning of any Clear specification 

(i.e. the theory described by the specification). A language which 

has a formal syntax but no semantics gives an illusion of precision 

but none of its benefits. 

A formal semantics of Clear is given in chapter III, following 

definitions of the underlying mathematical entities in chapter II. 

This semantics defines the meanings of Clear's theory-building 

operations using simple set-theoretic constructions. A denotational 

semantics is then used to attach a syntax to these operations and to 
provide for an environment of named theories. An earlier semantics 

given by Burstall and Goguen [19803 relies heavily on a number of 
ideas from category theory to define the meanings of Clear's theory- 

building operations. This semantics is described in chapter V; this 

is the only chapter which requires any knowledge of category theory, 

and it is not necessary for the sequel. 

Why is it necessary to give two separate versions of the 

semantics? Surely one version is sufficient to define the meaning 

of Clear. The answer is that although both versions of the 

semantics are equivalent, each has its advantages over the other. 

The category-theoretic semantics was developed at the same time as 

the Clear language itself. The requirement that new features be 

expressed using simple concepts of category theory acted as a 

powerful filter for ideas, screening out some bad ideas and 

suggesting non-obvious generalisations of others. Moreover, the 

category-theoretic definitions are very elegant to those who 

understand them. The advantage of the set-theoretic semantics is 

that it is concrete and easy to understand, and is therefore more 

useful for practical applications. The category-theoretic semantics 

abstracts away from any particular definitions of the fundamental 

elements of Clear (signatures, axioms and models) using the notion 

of an institution, defining all at once the semantics of a large 

class of Clear-like languages. But at the end of chapter III it is 

shown that the set-theoretic semantics appears to be capable of 

straightforward modifications to cover all cases of interest. 

An important step on the way to the practical use of formal 

specifications in program development is an implementation of the 
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specification language. But what does it mean to implement a 

specification language? It is helpful to first consider the 

relation of semantics to implementation in a more familiar context, 
that of a programming language. 

The denotational semantics of a programming language describes a 

mapping between the syntax of the language (expressions, statements, 

programs) and the mathematical objects they represent. In a typical 
language, an expression maps to a function from states to numbers 

(or to lists, or to some other domain of values); a statement maps 

to a state-transforming function; and a program maps to a function 
taking (for example) an input file to an output file. The 

denotation of a program tells what the answer will be for any input. 
The implementation of a programming language transforms a string of 
characters representing a program into the function denoted by that 
program. 

The denotation of a Clear specification is a theory. This is 
still only a specification; it specifies a set of algebras. The 

transformation from a character string (representing a 

specification) to a theory is complex but mechanical. This is what 

an implementation of Clear does. Going from a theory to a model is 
a much more formidable task -- this is the problem of program 

synthesis. 

It is easy to make mistakes when writing specifications in Clear 

or in any other specification language, just as it is easy to make 

errors when writing programs. An implementation of Clear -- a 

parser together with an implementation of (a version of) the 

semantics and a typechecker -- could be used to check specifications 
for syntactic and semantic errors. Such an implementation could 

also act as a front end to any system which requires specifications 
as input (such as a program verification system). An implementation 

of Clear using the set-theoretic version of its semantics is 
discussed in chapter IV along with some specifications it has been 

used to process. An implementation of the category-theoretic 
semantics (without parser or typechecker) is discussed in chapter V. 

A comparison of these implementations exposes another advantage of 
the set-theoretic semantics -- its implementation is by far the 



faster of the two. 

A practical implementation of Clear opens the door for systems to 
aid program development using Clear specifications. Already 

mentioned was the possibility of a system for verifying programs; 

another possibility is a high-level programming system like the one 

envisioned by Winograd 11979], which is essentially a sophisticated 
database containing the components of a large software project and 

their specifications. A handy facility to begin with (and an 

essential prerequisite for the construction of almost any system 

making serious use of specifications) would be a system for proving 
that a theorem follows from the axioms of a theory. A theorem 

prover is in fact required by the Clear implementation to check the 

semantic validity of specifications. In chapter VI a semi-automatic 

theorem prover for Clear is described. This system takes advantage 

of the structure of Clear specifications to restrict the information 
available at any time (axioms and previously proved theorems) to 
that which is relevant to the theorem at hand. This is an important 

feature, for theorem provers easily get irretrievably bogged down in 
exploring the large number of blind alleys made available by an 

overabundance of (mostly irrelevant) information. 

Some Clear specifications are actually executable; a sufficient 
condition is that all data be anarchic (no axioms on data 

'constructors') and that the axioms which define other operators be 

equations with simple left-hand sides, enabling their use as rewrite 
rules. This executable sublanguage is in fact HOPE [Burstall, 
MacQueen and Sannella 1980], with slightly different notation 
(except that HOPE has no equivalent to Clear's theory procedures). 
Call specifications of this kind programs. Now, a program can be 

evolved from a specification entirely in Clear by repeatedly 
rewriting (refining) the theories in the specification until the 

entire specification is in the executable sublanguage. This will 
normally involve the introduction of auxiliary functions, particular 
data representations and so on. This approach to program 

development is related to the well-known programming discipline of 
stepwise refinement advocated by Wirth [1971] and Dijkstra [1972] in 
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which the specifications are nonexecutable 'abstract programs'. In 
chapter VII a theoretical foundation is laid for the use of Clear in 
systematic program development. An adequate notion of the 

implementation of one theory by another 'lower level' theory is 
first established; a refinement-is only correct if the new theory is 
an implementation of the old. Unlike most previous notions, this 
generalises to handle parameterised theories as well as loose 

theories (having an assortment of different models). It is then 

shown that implementations of several theories can be put together 

in the same way as the theories themselves are put together, the 

result being an implementation of the composite theory. This allows 
a large specification to be refined in a modular fashion, one theory 
at a time. 

Systems have been constructed which support systematic program 

development in a manner similar to that just discussed. Examples 

are ZAP [Feather 1982] and CIP [Bauer et al 1981]. In these systems 

the programmer provides the insight, deciding which direction the 

development will take, while the system performs the routine 
clerical work and checks that the programmer's decisions are valid. 
Fully automatic program synthesis is also possible (for small 

examples) as demonstrated by Manna and Waldinger [1980,1981]. A 

feature of each of these systems is that the finished program is 
guaranteed to satisfy the original specification, since the system 

checks every step in its development. A similar but more ambitious 
system called CAT [Goguen and Burstall 1980] has been proposed to 
support systematic program development using Clear. The results in 
chapter VII are a first step toward the implementation of CAT. 

It remains to be seen if writing a specification and carefully 
refining it step by step to a program is easier than simply writing 
a correct program in the first place. However, construction of 
correct programs is well-known to be a very difficult endeavor. And 

although some have claimed that writing specifications is more 

difficult than writing programs, experience with Clear indicates 
that the main barrier to easy specification is the computer 

scientist's natural inclination towards algorithms rather than 

descriptions. Precision and formality are crucial (as in a 
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programming language) but the most important feature of a 

specification language like Clear is that it permits problems to be 

described in a natural way. 
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CHAPTER ONE 

CLEAR AND HOPE 

This chapter is devoted to a brief review of Clear and HOPE, two 

languages which figure greatly in the research reported in 
subsequent chapters. Although they have been discussed in more 

detail elsewhere, an outline of their features is given here in 
order to make this work self-contained. 

Clear is a specification language which is particularly suitable 
for specifying large programs. It provides facilities for building 
large theories in a structured fashion from small bits. 
Constructing and understanding large specifications is made much 

easier by this approach, since the small component theories may be 

contemplated in isolation. A brief discussion of theories and their 
models in section 1.1 is followed by an informal presentation of the 

theory-building operations of Clear. The formal semantics of these 

operations will be given in later chapters. An important feature of 
Clear is that the definitions of the theory-building operations are 

independent of the precise nature of the theories themselves; any 

notion of signature, axiom, algebra and satisfaction will do 

(provided they meet certain basic requirements). In section 1.3 

examples of some different and possibly useful kinds of theories are 

given. This is followed by an example of a small but complete Clear 

specification in section 1.4. Finally, Clear is compared briefly 
with some other specification approaches. 

HOPE is a very high-level applicative programming language which 

was used as an implementation tool for most of the programs 

described here. It has the advantage of being sufficiently close to 
the language of denotational semantics that semantic definitions can 

be quickly and easily translated into an executable form. This fact 
enabled the construction of the programs discussed in chapters IV 

and V. Although HOPE is not so close to the language of some other 
branches of mathematics, it contains high-level features which 

permit the relatively painless expression of definitions and 

constructions from category theory as described by Burstall [19801 
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and Rydeheard [1981]; this provides the foundation for the program 

in chapter V. HOPE is not so different from ML (see (Gordon, Milner 

and Wadsworth 1979]). 

HOPE (without polymorphism) can be considered as a notational 
variant of a subset of Clear. This is very convenient for the work 

on stepwise implementation of specifications in chapter VII. A 

refinement step takes a Clear specification to a 'lower level' Clear 

specification, with a HOPE program as the eventual goal. Thus the 

problem of translation into the target language can be neatly 
ignored, and full attention can be devoted to the more interesting 
problems of developing programs from specifications: 

A third section of this chapter might have been devoted to a 

brief description of Edinburgh LCF, an interactive theorem-proving 

system upon which the Clear theorem prover described in chapter VI 

is built. But since the remaining chapters are entirely independent 

of LCF, the description has been relegated to the beginning of that 
chapter. 
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1. Clear 

This is a brief and non-technical account of Clear as a 

specification language. It is intended to give the reader an idea 

of nearly all the features of Clear and to convince him with an 

example that the language can be put to use. The utility of 

specification languages in general and the advantages of Clear over 

other specification languages have already been detailed in the 

introduction. More detailed informal descriptions of Clear appear 

in [Burstall and Goguen 1977] and [Burstall and Goguen 1981]; see 

also chapter IV for a few more examples. 

1.1. Theories and their models 

Clear is a language for describing theories; in turn, each theory 

describes (or denotes) a class of algebras. A theory is a set of 
sorts (names of data types), a set of (possibly nullary) aerators 

for constructing and manipulating data, and a set of axioms (in the 

form of equations) describing constraints on the results produced by 

operators. The sorts and operators alone are called the signature. 
For example, here is a theory of truth values: 

const Bool = 

theory 
sorts bool 
opns true, false : bool 

not : bool -> bool 
egns not(true) = false 

not(not(p)) = p endth 

The equations are implicitly universally quantified over all 
variables; the equations here would be more properly written 

all p:bool. not(not(p)) = p 

and so on. The examples in the sequel will leave variable 
declarations out of equations in the understanding that they could 

easily be supplied by a mechanical typechecker. 

An algebra is a family of named carriers (sets of data values) 

and some named total functions on those carriers. An algebra is a 

model of a theory if it satisfies all the equations in the theory 



-16- 

for any assignment of values to variables; this is provided that the 

names of the carriers and functions in the algebra match the names 

in the signature of the theory, of course. 

Here are some models of the theory Bool: 

M bootz(0,1); true=1; false=0; not(0)=1, not(1)=0 
M1 boot={no,yes}; true=no; false=yes; not(no)=yes, not(yes)=no 
M3 boot={42}; true=42; false=42; not(42)=42 

But something is wrong; we do not want M3 to be a model for Bool, 

yet it does satisfy all the necessary equations. We need some way 

of excluding models like M3. 

The problem with M3 is that it satisfies too many equations, 
including ones like true = false which are not in Bool. We really 
want as models of Bool only those algebras which satisfy exactly the 

equations of Bool (and all of the equations which these entail), and 

no others. In addition, we want each element in the carrier to be 

the value of some (ground) term; this avoids models with useless 

extra elements. We can rewrite Bool to indicate that this is the 

class of models we want, using Clear's data operation: 

const Bool = 

theory 
data sorts bool 

opns true, false : bool 
not : bool -> bool 

egns not(true) = false 
not(not(p)) = p endth 

The new Bool has the class of models we want (including M1 and 

M2, but not M3). These are called the initial models, and they have 

the property that any two initial models are the same up to 

isomorphism (i.e. except for renaming of data values -- compare M1 

and M2). As pointed out by ADJ in [Goguen, Thatcher and Wagner 

19781, the notion of an isomorphism class of algebras captures 

precisely the meaning of the word "abstract" in "abstract data type" 

-- we are not committed to any particular representation of data, 

but only to the behaviour shared by all members of the class. 
Furthermore, the isomorphism class containing the initial models of 
a theory seems to be the one we want, although this position is not 
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universally accepted (see for example [Wand 19797). 

Initial models seem so great that it may be hard to think of an 

example where the full class of models is appropriate. But such 

theories do exist; see Equiv in the next section, for example. 

Since sometimes we want all models and sometimes we want only 

initial models, the data operation is provided to allow the two 

cases to be distinguished. See section 11.5 for a more detailed 

discussion of this aspect of Clear. 

The data operation does a little bit more than specify that we 

want the class of initial models. It also adds an extra operator, 
an equality predicate ==:s,s->bool for each 'data' sort s. For any 

pair of terms p and q, p:=q = true if and only if p = q is entailed 
by the equations (i.e. it holds for the initial models). Note that 
the data operation can therefore only be used in theories which 

include Bool, but this is not really much of a restriction. 

1.2. Theory-building operations 

Bool and its models (in the last section) were easy to 
understand, and similar little theories like natural numbers, sets 

of numbers, and stacks and arrays of truth values present no 

difficulties. But what about a theory to specify a compiler for a 

programming language like Pascal? This would have many sorts, 
hundreds of operators and perhaps a thousand axioms. 

Clear provides a set of simple theory-building operations which 

allow a large theory like this to be built out of many small and 

comprehensible component theories. For example, the theory of a 

compiler for Pascal might be built from separate theories of the 
semantics of Pascal and the semantics of the target machine: 

const Pascal_compiler 
enrich Pascal-semantics + VAX-semantics by 

opns compile : pascal_program -> VAX program 
eons VAX meaning(compile(p)) = pascal meaning(p) enden 

The theories Pascal semantics and VAX semantics are in turn built 
separately from many smaller theories. But the difficulty of 
understanding the specification has already been roughly halved by 
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this simple decomposition, since Pascal semantics may be constructed 
and contemplated entirely independently of VAX semantics (although 

they will share some common subtheories like Bool and Nat). 

Enrich 

A theory can be enriched by some new sorts, operators and/or 

axioms. The new material is just added to the existing theory. For 

example, we could add some boolean operators to Bool: 

const Boolopns = 

enrich Bool 
opns and, or, -> : bool,bool -> bool 
e ns p and true = p 

p and false = false 
p or true = true 
p or false = p 

p -> q = not(p and not(q)) enden 

Or, we could add natural numbers: 

const Nat = 

enrich Bool 
data sorts nat 

opns 0 : nat 
succ : nat -> nat 
+ : nat,nat -> nat 

egns0+m=m 
succ(n) + m = succ(n + m) enden 

Note that infixed operators like or and + are allowed. Also note 

that names (like Bool, Boolopns and Nat) can be given to theories 
using the notation const Name = ... (const means constant). For 

local declarations the syntax let Name = ... in ... is used (see the 

example in section 1.4). 

The data operation is associated with an enrichment as in Nat 

above and not just with a theory. In fact, data does not in general 

restrict to initial models but to models which are free extensions 

of the models of the theory being enriched; see section 11-5 for 

details. Observe that 
theory ... endth 

as used in the last section is equivalent to 

enrich Empty ... enden 
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where Empty is the theory with no sorts or operators. 

Here is an example of a theory in which we do not want to use 

data: 

const Equiv = 

enrich Boolopns 
sorts element 
opns a : element,element -> bool 
egns m m = true 

mm n n a m 

man and n p --> m p = true enden 

If we use data for this enrichment then we get only trivial models 

(apart from the portion associated with the sort and operators of 
Boolopns); the carrier associated with the sort element is empty, 

because there are no ground terms of sort element. But this is not 

because the specification is silly; it is just not very specific. 
It is intended to specify the set of algebras with one sort and an 

equivalence relation. Equiv is called a loose theory, since its 
models do not form an isomorphism class. It is also called a 

non-data theory because it contains a sort which was added in a 

non-data enrichment. 

It is important to distinguish between the very similar notions 

of loose and non-data theories. Non-data implies loose (except in 
the case of a theory which is unsatisfiable or has only trivial 
models) but not vice versa. Here is a theory which is loose but is 
not non-data: 

const Natx = 

enrich Natord 
opns x : nat 
egns x < 2 = true enden 

(Natord is Nat with an order relation, as given below.) This is a 

simple example of the way that Clear can be used to write 
specifications which are purposefully vague so as to allow some 

freedom to the implementor. 

Combine 

The combination of two theories is (roughly speaking) just the 
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union of the sorts, operators and axioms. For example, the 

combination of Boolopns and Nat (written Boolopns + Nat) has the 

following sorts, operators and axioms: 

sorts bool, nat 
o ns true, false : bool 

not : bool -> bool 
and, or, --> : bool,bool -> bool 
0 : nat 
succ : nat -> nat 
+ : nat,nat -> nat 

e ns not(true) = false 

Note that we get only one copy of the sorts and operators of Bool, 

although Bool is included in both Boolopns and Nat (Bool is called a 

shared subtheory in this case). This is important; wee do not want 

several kinds of truth values rattling around in a large 

specification (or several kinds of anything else, for that matter). 

But different (separately defined) operators with the same names are 

not combined; for example, if we add an operator 'and' to Nat 

const Nat1 = 

enrich Nat 
opns and : nat,nat -> nat 
egns n and m = n + m enden 

then Boolopns + Nat1 will have two operators called and (and even 

Boolopns + Nat will have two == operators). If there are two sorts 
or operators with the same name there should be a way of 
distinguishing between them (although a typechecker can often 
determine the appropriate one); for this Clear provides the notation 
"== of Nat". 

Derive 

The derive operation is used to 'forget' some of the sorts and 

operators of a theory, possibly renaming those which remain. While 

enrich and combine build elaborate theories from simple components, 

derive takes a complex theory and reduces it to a more modest 

subtheory. This turns out to be necessary in cases where it is 
easier to define something by construction than by description; the 

construction is built using enrich and combine, and then the 
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irrelevant details can be forgotten using derive. 

For example, suppose we have a theory of natural numbers with an 

order relation: 

const Natord = 

enrich Nat 
opns < : nat,nat -> bool 
egns 0 < m = true 

succ(n) < 0 = false 
succ(n) < succ(m) = n < m enden 

Then we can use this to construct a theory of characters with the 

usual lexical ordering: 

const Char = 

derive sorts char 
opns 'A', ..., 'Z' : char 

<, char,char -> bool 
using Bool 
from Natord 
by char is nat, 

'A' is 0, 

'Z' is 25 endde 

Char inherits the order on numbers and the data equality, but the 

operators succ and + are forgotten, as well as all numbers greater 
than 25. Bool is a shared subtheory of Char and Natord. The 

correspondence between the signature of the result and the signature 
of the original theory is given by a signature morphism: 

char is nat, 'A' is 0, ... (This example assumes that the numbers 

1-25 have been defined as operators in Natord; these definitions 
were omitted above but they are easy to add.) Sorts and operators 
which have the same name in both signatures may be omitted (< and 

in this case). 

It is very convenient to be able to specify an order relation on 

characters in this way; a direct specification would require 
hundreds of axioms. In some cases a direct specification is not 

even possible without 'hidden' operators (see [Thatcher, Wagner and 

Wright 1978] for an example). 



--22- 

Apply 

In Clear procedures can be defined and applied, just as in a 

programming language (actually, more like functions in a programming 

language). But since Clear is a language for describing theories, 

the arguments and result of a procedure are theories. 

Here is an example of a theory procedure (usually called a 

Rarameterised theory): 

meta Ident = 

enrich Boolopns 
sorts element 
opns eq : element,element -> bool 
egns eq(n,n) = true 

eq(n,m) = eq(m,n) 
eq(n,m) and eq(m,p) --> eq(n,p) = true enden 

roc Set(X:Ident) 
let SetO = 

enrich X 
data sorts set 

opns 0 : set 
singleton : element -> set 
U : set,set -> set 

e ns 0 U S S 

S U S = S 

SUTTUS 
SU (TUV) _ (SUT) UV enden in 

enrich SetO 
opns is in : element,set -> bool 

choose : set -> element 
egns a is in 0 = false 

a is in singleton(b) = eq(a,b) 
a is_in S U T= a is-in S or a is-in T 
choose(singleton(a) U S) is-in (singleton(a) U S) = true 

enden 

Ident is a metatheory; it describes a class of theories rather 
than a class of algebras. Ident describes those theories having at 

least one sort together with an operator which satisfies the laws 

for an equivalence relation on that sort. A metatheory will 
ordinarily be a non-data theory (as is Ident). 

Ident is used to give the 'type' of the parameter for the 

procedure Set. The idea is that Set can be applied to any theory 

which matches Ident. Ident is called the metasort or requirement of 
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Set. The declaration of Set can use the formal parameter X and the 

sorts and operators of Ident. When Set is supplied with an 

appropriate actual parameter theory, it gives the theory of sets 
over the sort which matches element in Ident. For example 

Set(Boolopns[element is bool, eq is =_]) 

gives the theory of sets of truth values and 

Set(Nat[element is nat, eq is =_]) 

gives the theory of sets of natural numbers. Notice that a 

signature morphism (called the fitting morphism) must be provided to 
match the signature of Ident with the signature of the actual 
parameter. Of course, procedures may have more than one parameter 

if desired. 

Metatheories are subtly different from ordinary constant 

theories; see section 111.3 for details. Pragmatically, the 

difference is unimportant as long as metatheories are always used 

for giving the requirements of theory procedures, and for no other 
purpose. 

Note that for any actual parameter A and fitting morphism e, 

Set(A[P]) will be a loose theory, even when A is not itself a loose 

theory. The choose operator is loosely specified as selecting an 

arbitra4y element from a non-empty set. This is not allowed by most 

other notions of parameterised theory (see section 1.5). 

Copy 

Clear provides an operation called copy which makes a fresh copy 

of a theory with the exception of a specified set of subtheories 
(which are left as they are). 

For example, here is a specification of the class of algebras 

having two sorts (each with an equivalence relation) and a function 
between them: 

const Funct = 

let CopyEquiv = copy Equiv using Boolopns in 
enrich Equiv + CopyEquiv 

opns f : element of Equiv -> element of CopyEquiv enden 
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Copy is used so that the two sorts named element and the two 

operators will remain distinct in the combined theory 

Equiv + CopyEquiv. But there is only one sort named bool in the 

result because of the using clause. The same result could be 

accomplished by explicitly writing out the definition of Equiv 

again; copy simply saves the trouble. 

1.3. Error theories and more 

Sometimes when specifying the action of an operator we find 
values for which it should not yield a result but instead should 

return some kind of error. Division by zero is an example. It is 
not sufficient to just leave cases like this unspecified; if a 

division by zero is attempted, we want an error message and not just 
any old result. We can extend the notion of theory given in section 
1.1 to allow specification of errors; the new theories are called 
error theories. Details of this approach are given by Goguen 

[19781. 

The idea is to add error elements to each sort which behave 

differently from the ordinary (OK) elements. Error elements are 

produced by error operators, and also by OK operators when applied 

to exceptional arguments. We add error equations to specify how 

errors are generated and manipulated. 

Here is an example -- a specification of lists: 

meta Triv = 

theory sorts element endth 

proc List(X:Triv) _ 

enrich X + Bool 
data sorts list 

opns nil : list 
cons : element,list -> list 
hd : list -> element 
tl : list -> list 

erroropns nohead : element 
notail : list 

egns hd(cons(a,l)) = a 
tl(cons(a,l)) = 1 

erroregns hd(nil) = nohead 
tl(nil) = notail enden 
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The models of such a theory are error algebras, in which each 

carrier contains distinguished error elements as well as OK 

elements. To be a model it need not satisfy all the equations for 
all variable assignments; it need only satisfy the OK equations for 
assignments in which both sides of the equation evaluate to an OK 

element, and the error equations for assignments in which either 
side evaluates to an error element. Furthermore, error algebras are 

restricted so as to propagate errors; that is, error operators 

always produce error elements, and OK operators applied to error 
elements produce error elements. 

Another way we could extend the notion of theory is to add 

conditional equations, such as 

put(i,v,a)[j] = v if i==j 

put(i,v,a)[j] = a[j] if not(i==j) 

to specify indexing on arrays (see [Thatcher, Wagner and Wright 

1976]). We could regard 

a = b if c 

as an abbreviation for 
cond(c,a,b) = b 

where cond : bool,s,s -> s is defined for each sort s by 

cond(true,m,n) = m 

cond(false,m,n) = n 

But this means that all theories will contain a lot of extra 
operators, which is untidy. 

Another way would be to simply extend theories to include 
conditional equations, calling the result a conditional theory. The 

notion of satisfaction would have to be changed slightly to deal 

with conditional equations. 

Two ways of extending Clear have been mentioned. For error 
theories we defined a new kind of signature (with sorts, OK 

operators and error operators); a new notion of axiom (OK equations 

and error equations); a new kind of algebra (error algebras, with 
error elements); and a new notion of satisfaction. For conditional 
theories we only needed to define a new kind of axiom and a new 

notion of satisfaction; the signatures and algebras remain the same. 
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It is possible to define the theory-building operations of 
section 1.2 without reference to any particular notions of 
signature, signature morphism, axiom, algebra or satisfaction. This 

approach was taken in [Burstall and Goguen 19801, and is explained 

less formally in [Burstall and Goguen 19811. Any choice for these 

five notions is appropriate as long as a few conditions hold. 

Briefly and very roughly, it must be possible to 'put together' 
signatures (the category of signatures and their morphisms must be 

cocomplete) and the various definitions must satisfy certain natural 
consistency conditions. Any such choice of notions is called an 

institution (or sometimes a language) and gives rise to a 

specification language like the one described in sections 1.1 and 

1.2. The precise syntax of the language must be defined anew for 
each institution, since arbitrary signatures and axioms will not fit 
into the notation used above. For the data operation to work 

something more than an institution is needed; an enrichment must 

give rise to free extensions for the models of the enriched theory. 
Call an institution with this extra property a data institution 
(Goguen and Burstall [1980a] call this a liberal institution). 

So Clear is not a specific language but instead a large family of 
languages (although references to Clear in the sequel will usually 
be to the particular language described in the last two sections -- 
this will be called ordinary Clear, or simply Clear). We are free 
to use 'error Clear' or 'conditional Clear' once we verify that our 

definitions describe a data institution. Other possibilities are: 

polymorphic Clear (section 111.6), higher-order Clear (see [Dybjer 

1981]), continuous Clear (see [Goguen, Thatcher, Wagner and Wright 

1977]), order-sorted Clear (see [Goguen 1978a]) and predicate- 
calculus Clear (see [Burstall and Goguen 1981]). 

1.4. An example 

Here is a Clear specification (from scratch) of a larger and more 

interesting example than those which have appeared up to now. It 
specifies the problem of determining if a sequence of natural 
numbers is in ascending order. 
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const Bool = 

let BoolO 
theory 

data sorts bool 
opns true, false : bool endth in 

enrich BoolO 
opns not : bool -> bool 

and, or, --> : bool,bool -> bool 
egns not(true) = false 

not(not(p)) = p 

p and true = p 

p and false = false 
p or true = true 
p or false = p 

p -> q = not(p and not(q)) enden 

meta Triv = theory sorts element endth 

roc Sequence(X:Triv) _ 

enrich X + Bool 
data sorts sequence 

opns empty : sequence 
unit : element -> sequence 
. : sequence,sequence -> sequence 

egns empty.s = s 
s.empty = s 
(s.t).v = s.(t.v) enden 

meta Ident = 

enrich Bool + Triv 
opns a : element,element -> bool 
egns maw = true 

man = nam 
man and nap --> map = true enden 

meta POSet = 

enrich Ident 
opns < : element,element -> bool 
egns m<m = true 

m<n and n<m -> man = true 
m<n and n<p -> m<p = true enden 

roc Ordered(X:POSet) _ 

enrich Sequence(X) 
opns isordered : sequence -> bool 
egns isordered(empty) = true 

isordered(unit(m)) = true 
isordered(s.unit(m).unit(n).t) = isordered(s.unit(m)) 

and isordered(unit(n).t) and m<n enden 
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const Nat = 

enrich Bool 
data sorts nat 

opns 0 : nat 
succ : nat -> nat enden 

const Natord = 

enrich Nat 
opns < : nat,nat -> bool 
egns 0<n = true 

succ(n)<0 = false 
succ(n)<succ(m) = n<m enden 

Ordered(Natord[element is nat, a is =_]) 

1.5. Comparison with other approaches 

We now briefly compare Clear with a variety of other approaches 

to specification. The features which set Clear apart from the 

myriad of alternative approaches seem to be: 

- Clear provides theory-building operations (enrich, 
combine, derive, apply and copy) for constructing 
specifications in a structured fashion. 

- Use of the data operation yields theories containing data 
constraints (section II.5), permitting loose 
specifications where some details are left unspecified. 
An example is the specification of sets with a choose 
operator in section 1.2. 

- Clear is a complete language with a precise formal 
semantics. 

- Clear is not dependent on any particular institution, so 
the notions of axiom, algebra, etc. may be easily changed. 

- The theory-building operations respect shared subtheories. 

It will be instructive to keep these features in mind when comparing 

Clear with the approaches described below. 

Guttag, Horowitz and Musser [1978] present algebraic abstract 
data type specifications in an informal way, stressing the practical 
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application of specifications in programming (for proofs of 
correctness, program testing and program development). Guttag and 

Horning [1978] give a more formal treatment oriented toward 

providing guidelines for the construction of correct specifications. 
They distinguish a single type of interest in any specification, in 
contrast to Clear and many other approaches. Any algebra which 

satisfies the axioms of a specification and is finitely generated 

(every carrier element is the value of some term) with true9false is 
acceptable as a model, although they seem to favour the 'final 
algebra' view that two terms should have the same value unless they 
are demonstrably different (see the notes on [Wand 1979] below). 

The ADJ group [Goguen, Thatcher and Wagner 1978] is responsible 
for the first rigorous approach to the semantics of algebraic 
specifications. An equational theory specifies the isomorphism 

class of its initial models. Errors are discussed, but the approach 

is more primitive than that of Goguen [1978] which is adopted by 

Clear. 

The ADJ approach to parameterised theories has evolved from a 

CLU-style view where application of a parameterised theory required 
only the presence of certain sorts and operators in the actual 
parameter [Goguen, Thatcher and Wagner 1978]. Starting with 

[Thatcher, Wagner and Wright 1978], a parameterised theory P with 

metasort theory R is seen as specifying a functor F taking any model 

M of R to a single model of P (in fact, to the P-model freely 

generated by M) - this is a special case of parameterised theories 

in Clear, where the theory P(A) may have 'more' models than the 

theory A. If M is the initial model of A, then F(M) is the initial 

model of P(A) provided that P is well-behaved (i.e. persistent - 
F(M) restricted to A is isomorphic to N - see section VII.4). In 

the absence of data constraints, R is allowed to include conditional 

axioms of the form 

e1 and ... and en °> 
en+1 

where the ei may be equations or inequations. This work was a 

significant influence on the design of Clear. Later in [Ehrig, 

Kreowski, Thatcher, Wagner and Wright 1980] these were restricted to 

universal Horn sentences [GrMtzer 1979] where el,...,en must be 
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equations, and application was defined as the pushout of R--4P with 

the fitting morphism R--4A as in Clear -- see section V.3.4. 

Application was generalised to allow composition of parameterised 

theories (it would be easy to extend Clear to permit this). 

Continuing along the same line, Ehrig [1981] permits R to contain 
requirements of a general kind; anything having a well-defined set 

of algebras satisfying it is allowed (this flexibility is very 

reminiscent of Clear's institutional approach). Possible kinds of 
requirements include functor image restrictions, a generalisation of 
data constraints where any persistent functor is allowed in place of 
the free functor (see [Burstall and Goguen 1980] for the category- 
theoretic approach to data constraints). He suggests that this 

approach to parameterised theories can be used to solve the problems 

attacked by Clear of combining theories with shared subtheorie3 in 
an easier way, but this remark does not seem to be justified. Ehrig 

and Fey [1981] allow theories (not just parameterised theories) to 
include requirements; such a theory may have an assortment of 
nonisomorphic models. Such a requirements specification is seen as 

a step between an informal specification and a design specification 
(which does not include requirements and specifies the initial 

model). Requirements in parameterised theories are still restricted 
to the metasort R, and a parameterised theory is viewed as 

specifying a functor taking any model of R to a model of the 
parameterised theory P. This rules out specifications such as the 

parameterised theory of sets with an operator choose:set->element 

loosely defined to select an arbitrary element of a set (see section 
1.2). 

Ganzinger [1980] discusses parameterised theories from a purely 

syntactic point of view (without considering models at all). The 

metasort of a parameterised theory includes all primitive 

subtheories (such as Bool and Nat); this is important for his notion 

of implementation, and it also has the consequence that if A and P 

share a common primitive subtheory T, P(A) will contain only one 

copy of T (again as a primitive subtheory). This idea resembles 

Clear's notion of a based theory (section III.1). All theories are 

parameterised, and all parameterised theories are required to be 
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persistent. The example of sets with a choose function is not a 

parameterised theory according to his definition of persistence. 
Application of parameterised theories is defined by a construction. 
The main emphasis is on proving that persistency guarantees correct 
parameter passing (i.e. that A is 'protected' in P(A)). 

Ehrich [1982] presents an approach to parameterised theories 
building on earlier work by Ehrich and Lohberger [1978] which is 
similar in many ways to that of Clear. A metasort theory R is 
associated with each parameterised theory P, and a fitting morphism 

from R to an actual parameter theory A is needed to produce the 

application P(A) (as in Clear, this is defined using pushouts). A 

theory is viewed as specifying its initial model, and consequently a 

parameterised theory denotes a functor as in the ADJ approach. No 

analogue to data constraints is considered (so loose specifications 
are not permitted) and the problem of combining theories having 

shared subtheories is not treated. 

Hupbach, Kaphengst and Reichel [1980] present a specification 
language and define its semantics. Theories may specify partial 
functions and may include conditional equations. Canons are 

theories which include initial restrictions (data constraints as we 

call them) and may be loose, specifying any model satisfying the 

axioms and initial restrictions. An operation like enrich is 
defined (actually, two separate operations for data and non-data 

enrichment) as well as a combine operation which is just union. 

Identification of common sorts and operators is therefore entirely 
by name, so overloading of identifiers is not permitted. 
Parameterised theories are as in Clear, and application is defined 
by means of a construction. The language also includes a construct 
for specifying that one theory is an implementation of another (see 

chapter VII). 

Wand [1979] presents an alternative to ADJ's initial algebra 

approach, using the framework of Lawvere theories [Lawvere 1963]. 

He argues that the initial model of a theory often retains too much 

information. For example, consider the theory of sets of integers 
with operators 0, add and is in, and the following equations: 
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n is in 0 = false 
n is in add(n,S) = true 
n is in add(m,S) = n is in S if not(n==m) 

The equation add(1,add(2,0))=add(2,add(1,0)) is not satisfied in the 

initial model since we have forgotten equations like 
add(n.add(m,S)) = add(m,add(n,S)) 
add(n,add(n,S)) = add(n,S) 

But even without these extra equations the two sets are 

behaviourally equivalent (with respect to the sort bool); any 

'computation' involving the given operators yielding a boolean value 

will give the same result for both sets. This notion of behavioural 

equivalence is captured by Wand's final algebra approach. In the 

final algebra of a theory two terms have the same value unless they 

are demonstrably different. In order for this approach to work it 
is necessary to start with some primitive sort (e.g. bool) with some 

values which are known to be unequal (true, false); otherwise no two 

values will ever be demonstrably different in the absence of 
inequations. 

Another alternative to the initial algebra approach is advocated 

by Lehmann and Smyth [1981] based on work by Scott [1976]. A data 

type is specified by a recursive domain equation which defines an 

endofunctor on a special category of complete partial orders; the 

data type is regarded as the initial fixpoint of this functor. For 

example, (finite) binary trees with labels from the domain A are 

specified by the following equation: 

BtreeA : 2 + A BtreeA BtreeA 
(where 2={i,r} with i T, and a is coalesced (smash) product). A 

parameterised data type is a functor as well. This approach seems 

to work well for simple data types and has the advantage of 
automatically extending to higher-order types, but there seems to be 

no way of imposing equations on types so it is difficult to see how 

to specify sets (for example). 

Nakajima, Honda and Nakahara [1980] describe a language called 

i (iota) for building specifications and implementing them with 
programs. A theory can be either a type (Clear data theory) or a 

sype (combining Clear non-data and meta theories). As the approach 

is rather syntactic models are not discussed, but it seems from the 
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examples given that any finitely generated model satisfying the 

axioms (which are in first-order logic) would be acceptable. 

Specifications may include operations (returning results via 
arguments) for specifying procedures, but these are viewed as 

functions as well (an operation f:array (var),array,int is like the 

function f:array,array,int->array). A type can be implemented by 

writing a realisation as an ALGOL-like program, and a method for 
proving correctness of realisations is given. A theory-building 
operation which combines + and enrich is provided, and parameterised 

theories are allowed as in Clear (the requirement theory is a sype). 

These operations take proper account of shared subtheories, using 

'tags' as in chapter III (but only operator names may be 

overloaded). The notion of fitting morphism is somewhat more 

restricted than in Clear (it must be an inclusion with the exception 

of the name of the 'principle' sort) and building a sype by 

enriching another sype is not allowed; no reason is given for either 
restriction. 

Bauer et al [1981] describe and give a semantics for CIP-L, a 

'wide-spectrum' language including constructs suitable for 
programming as well as specification. CIP-L is intended for use in 
a program development system, and allows a program to be expressed 

at every stage of its evolution from a specification to an efficient 
program. Abstract data type specifications allow hidden sorts and 

functions, partial functions and first-order axioms. Operations 

similar to enrich, combine and apply in Clear are defined but name 

clashes are forbidden. Parameterised types are viewed as type 

schemes, and application is by textual substitution. When the 

enrich operation is used, the theory being enriched is regarded as a 

primitive subtheory of the result of the enrichment. Models are 

required to be hierarchy preserving, meaning that all values of 
primitive sorts must be generated by primitive operators. Models 

must also be finitely generated and must satisfy the axioms. There 

is no way to restrict consideration to the set of initial or freely 
generated models, but because the axioms may include inequations and 

because of the finite generation requirement this is not a problem, 

although specifications tend to be longer than in Clear. 
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Meta-IV [Jones 1978], the meta-language of the Vienna development 

method, is a notation for describing the denotational semantics of 

large programming languages and systems. It has been used to 

specify a subset of PL/I [Bekia et al 1974]. The abstract syntax of 

the object language is described using a BNF-like notation which 

provides constructors, recognisers and selectors for use in the rest 
of the definition. Context conditions are then given to specify for 

each syntax class which objects are well-formed. Next the semantic 

domains are defined using combinators such as -4 (continuous 

function). Meaning functions then provide denotations for all well- 

formed objects. The meaning functions (and the context conditions) 

are mutually recursive functions written in a language similar to 

HOPE (section 2) but with a few nonalgorithmic constructs such as 

"let var be s.t. condition". Meta-IV is not restricted to 

specifying the semantics of programming languages; the abstract 

syntax is merely a signature in disguise (or vice versa) and meaning 

functions provide a (more constructive) substitute for equational 

definitions, so specifications of abstract data types and programs 

are also possible. 

Abrial, Schuman and Meyer [1979] describe Z, a specification 
language based on axiomatic set theory, and give a number of large 
and interesting specification examples. Z is essentially a formal 

(and rather verbose) language for describing sets. The natural 
numbers, relations, sequences etc. can be viewed as sets using the 

classical constructions. Since everything is a set (the elements of 

a sets are themselves sets) there is no notion of type. The set 

union function works equally well on sets, natural numbers and 

relations; it is not clear what happens if a sequence is subtracted 

from a number. Second- and higher-order functions can be specified 
in the same way as ordinary functions. Definitions may be 

parameterised (generic), but any set is accepted as an actual 
parameter; there is no equivalent to Clear's metasort theory. 

Structures (classes) consisting of a tuple of sets and some axioms 

about them may be defined (examples are groups and rings). 
Specifications are structured into chapters, and new chapters may be 

built by enriching previous chapters. Theorems which the 

definitions are expected to satisfy may be included, but these have 
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no effect on the specification itself. 

SPECIAL [Roubine and Robinson 19771 is the specification language 

for HDM [Spitzen, Levitt and Robinson 19781, (Levitt, Robinson and 

Silverberg 19791, a design methodology which is based on suggestions 

of Parnas [1972, 1972a] concerning the decomposition of large 
systems into hierarchical collections of modules. A module 

implements an abstract machine which is realised by a collection of 
programs running on a lower-level abstract machine. A module can 

also be viewed as an abstract data type. Modules are described in 
SPECIAL by specifying how 0- (operation) functions change the 

internal state of the module as visible through the use of V- 

(value) functions. That is, the specifications of V-functions 
describe the initial state of the module, and the specification of 
an 0-function describes what changes a use of the 0-function causes 

in the results returned by V-functions. Modules can be 

parameterised, where the parameters are functions or values. A 

module may reference the functions of other modules, and apparently 

a call of an 0-function may even result in a change in the state of 
another module. A feature is included for specifying that the 

execution of a function will be delayed until some event takes 

place; this permits the specification of systems of parallel 
processes. Mapping functions which describe how a module is 
implemented in terms of a lower-level module may also be specified. 
An operational semantics of a subset of SPECIAL has been given by 

Boyer and Moore [1978]. 

ORDINARY [Goguen and Burstall 1980a] is an attempt to combine the 

rigorous theoretical foundation and theory-building ideas of Clear 

with the state-machine specification approach of SPECIAL. Its 
semantics will be given by translation into Clear, although the 

translation has not yet been defined. ORDINARY provides facilities 
for specifying clusters (like Clear theories) and modules (as in 
SPECIAL), and both clusters and modules may be parameterised as in 
Clear. The specification of modules is different from in SPECIAL. 

The state is defined explicitly, rather than implicitly through the 

collection of available V-functions. A function like add:int in a 

set module (add the given integer to the set which forms the state) 
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is specified as add:[set],int->(set] (bracketed arguments and 

results are invisible); the state is thus passed around as a secret 

argument and result of appropriate functions. So although module 

specifications are superficially different from cluster 

specifications (with effects on the state defined using a SPECIAL- 

like syntax rather than using ordinary equations) they are 

essentially the same. In contrast to SPECIAL, states of modules are 

never accessible from outside. Higher-order operators like lambda 

are (tentatively) handled as macros. All the theory-building 

operations of Clear are available (including data), albeit with a 

more convenient syntax in some cases. Application of parameterised 

clusters and modules is nonprolific (see section III.5) in contrast 

to Clear. Like Clear, ORDINARY is independent of any particular 

institution; a different application (such as specification of 

concurrent systems) will be handled by switching to a' different 

institution (such as temporal logic). 
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2. HOPE 

This section contains only a very brief glimpse into the features 
and nature of HOPE. A full description appears in Appendix 1. 

The underlying goal in the design of HOPE was to produce by a 

judicious selection of well-understood ideas a very simple 

programming language which would encourage the construction of clear 

and manipulable programs. HOPE is a purely applicative language 

without an assignment statement or destructive operators. This was 

felt to be an important simplification, encouraging a transparent 

and less error-prone style of programming. Backus [1978] makes this 

case strongly. 

The user may freely define his own data types. A type is the sum 

of a set of disjoint subtypes, each having its own data construction 

function. There is no need to devise a complicated encoding of a 

new type in terms of low-level types, since data constructors are 

uninterpreted; this leads to inefficient use of space in some cases 

but it make programs much easier to write. The type system is 

strongly enforced but at the same time very flexible, allowing the 

definition of polymorphic types and the free use of higher-order 

types and overloaded operators. 

Functions are defined by a set of recursion equations. The left- 

hand side of each equation includes a pattern built from data 

constructors and variables; the pattern is used both to select which 

equation to use for a given argument and to bind the variables in 

that equation to the appropriate parts of the argument. For 

example: 

--- reverse nil <= nil 
--- reverse(a::l) <= reverse 1 <> [a] 

The availability of arbitrary higher-order types allows functions to 

be defined which 'package' recursion over data structures to save 

writing it explicitly. These functions can be used to write 

programs in a concise style similar to that of APL [Iverson 19621. 

Lazily-evaluated lists (streams) are provided, allowing the use of 

infinite lists which could be used to provide interactive 

input/output and concurrency. 
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HOPE also includes a simple modularisation facility which allows 

programs to be constructed as a collection of small self-contained 
pieces communicating with each other in a disciplined and explicit 
manner. A module may be used to protect the implementation of an 

abstract data type, for example. Careful modular development is 
felt to be the main trick in the construction of large bug-free 

programs. 
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CHAPTER TWO 

PREREQUISITES -- BASIC CONCEPTS AND NOTATION 

The basic concepts which underlie the semantics of Clear will now 

be defined. The notions of signature, algebra and equation are 

similar to those used by most authors (see for example [Goguen, 

Thatcher and Wagner 1978]), but theories in Clear are different from 

the usual notion of theory elsewhere (which corresponds to a simple 

theory presentation in Clear). The definitions themselves are taken 

(with minor changes) from [Burstall and Goguen 1980]. 

In order to define the meaning of the data operation of Clear we 

need the notion of a data constraint discussed in section 5. 

Essentially the same concept is described by Reichel [1980] (cf. 
Kaphengst and Reichel [1971]) and by Wirsing and Broy [1981] (cf. 
Broy et al [1979]). Data constraints for Clear were defined very 

technically in [Burstall and Goguen 1980] and then discussed 

informally in [Burstall and Goguen 1981]; the presentation here is 
precise but avoids the use of category theory, although this 
necessarily restricts the discussion to data constraints in ordinary 
Clear. 

The data operation is used in Clear to specify that only the 

initial models of a specification are desired (more precisely, 
models which are free extensions of models of the theory which is 

enriched using data). In contrast to this 'initial algebra 

approach' is the final algebra approach of Wand (see [Wand 1979], 

also [Guttag, Horowitz and Musser 1978]). This seems to offer a 

viable alternative (which is even better in some respects) by 

considering a different class of distinguished models. In this 
thesis (apart from chapter VII) only the initial algebra approach to 
specification will be discussed. The choice is irrelevant to the 

bulk of the material presented; initial models are used in order to 
avoid departing from previous work on Clear. 

Although many of the definitions below (those concerning 

signatures, algebras and equations) are special to ordinary Clear, 

the definitions concerning theories and data constraints could be 
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generalised to the case of an arbitrary institution. In that event, 

all the results given below would remain valid. 
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1. Signatures 

A signature is a set of sorts (data type names) together with a 

set of operators (operation names), where each operator has an arity 

(such as s,t -> t where s and t are sorts). A signature morphism 

maps the sorts and operators of one signature to sorts and operators 

in another in such a way that arities are preserved. 

Def: A (many-sorted) signature I is a pair <S,Z> where S is a set 
(of sorts) and 2 is a family of sets (of operators) indexed by 

S+=S xS. The index of a set Oej is the arity of every element of 
0. 

Def: A signature morphism o' is a pair <f,g> : <S,I> - <S',l'> 
where f:S-4S' and g is a family of maps gUS'Sus__>SfE(u)f(s), where 

uESE, seS and f*:SE->S'E is the extension of f to strings of sorts. 
We write a(s) for f(s), (r(u) for fE(u) and (r(w) for gus(ty), where 

wESus- 

2. Algebras 

A 7-algebra has a set (the elements of a data type) for each sort 
of S and a function (operation) on those sets for each operator of 
7. A S-homomorphism maps the 'data types' of one 7-algebra to those 

of another in such a way that the operations are preserved. Given a 

2'-algebra A and a signature morphism we can recover the 

2-algebra buried inside A (since A is just an extension of this 
algebra). 

Let S be a signature. 

Def: A Z-algebra A is a pair <A,a>, where A is an S-indexed 

family of sets (the carriers of A) and a is an SExS-indexed family 
of maps aus:2us->(Au->As) where uESE, sES and 

Au1., = Au1 x...xAun. If we! us then the map a us(w):Au->As is 
called the operation associated with w, and is referred to by the 

name w when there is no ambiguity. 
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Def: A S-homomorphism f : <A,a> -> <A',a'>, where <A,a> and 

<A',oc'> are 5-algebras, is a map f:A-A' (actually an S-indexed 

family of maps fs:A5- As) such that for each w *j and each 

1e' a As1 ...,anEAM 
s n 

f 
s 
(ac()(a 

1 
,...,a n)) = a'(w)(f 

s1 
(a 

1 
),...,fsn (a n)). 

Def: If c,=<f,g> is a signature morphism and A'=<A',0('> 
is a 2'-algebra, then the 2-restriction of A.' (along (7), written 

A'IZ is the I-algebra <A,oc> where As=Af(s) and (c(w)=oc'(g(w)). 
Normally o, is obvious from context, in which case the notation A' 

1.2 

may be used. 

3. Equations 

The definition of .1-equations and the meaning of applying a 

signature morphism to a 2-equation are the obvious ones. A 

2-algebra satisfies a .1-equation if the equation is 'true' (both 

sides evaluate to the same thing) for all assignments to the 

variables. 

Def: A 7-equation e is a triple <X,T1,T2> where X is an S-indexed 

set (of variables) and T1, T2 are Z-terms on X of the same sort. 
The equation <X,T1,T2> is written 'for all X. T1 = T21 

2-terms, a-# : 2-terms V-terms may be applied to a 2-equation e; 

this application is written simply or(e). 

Def: A }-algebra A=<A,a> satisfies a i-equation <X,T1,T 
> 

if for 

all maps f:X-'iA, f#(T1) = f#(T2) where f# : Z-terms -p A is the 

extension of f to Z-terms on X (f# evaluates a term using the 

assignment of values to variables given by f). A satisfies e is 
written Are. A I-algebra satisfies a set of I-equations if it 

satisfies every equation in the set. 

Satisfaction Lemma: If is a signature morphism, e is a 

2-equation and A' is al I -algebra, then A' r(r(e) iff A'I r e. 

Proof: See [Burstall and Goguen 1980]. 



4. Simple theories 

A simple theory presentation is a signature together with a set 

of equations on that signature. The closure of a set of equations 

is that set together with all its (model-theoretic) logical 
consequences. A simple theory is then a signature together with a 

closed set of equations. This is a simple theory because no data 

constraints (section 5) are included. 

Def: A simple 5-theory presentation is a pair <S,E> where S is a 

signature and E is a set of 3-equations. 

Def: A S-algebra A satisfies a simple theory presentation <I,E> 

if A satisfies E. Then A is called a model of <7,E>. 

Def: If E is a set of S-equations, let E be the set of all 
S-algebras which satisfy E. 

Def: If M is a set of 5-algebras, let M be the set of all 
7-equations which are satisfied by each algebra in M. 

Fact: For any set E of equations (and dually replacing E by any 

set M of algebras): 

(i) E % E 

(ii) If ESE' then E'*SE* 
This is called a Galois connection (see [Birkhoff 1948J). The laws 

(i) and (ii) together imply 

(iii) E* ; E*** 

Def: The closure of a set E of 7-equations is the set E**, 
written E. E is closed if E=. 

Def: A simple -theory T is a simple theory presentation <S,E> 

where E is closed. The simple 7-theory presented the 

presentation <2,E> is <_Z,E>. A simple theory <_Z,(> is called 
anarchic. A theory is called satisfiable if it has at least one 

model. 
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Def: A simple theory morphism o : <j, E> - > <2',E'> is a 

signature morphism such that v'(e)eE' for each e%E. 

Closure Lemma: r(Y) S cr(E) 

Proof: See [Burstall and Goguen 1980]; uses the Satisfaction 

Lemma. 

Presentation Lemma: If (7:1-W is a signature morphism and 

<Z,E>, <',E'> are simple theory presentations then 

a+ : <j,E> -> <j',E'> is a simple theory morphism iff o'(E)S E'. 

Proof: See [Burstall and Goguen 1980]; uses the Closure Lemma. 

The Presentation Lemma gives a shortcut for checking if a 

signature morphism o is a simple theory morphism -- one must only 

check, for each equation e of the source presentation, that o(e) can 

be proved from the equations in the target presentation. 

Theorem: The category of simple theories and simple theory 

morphisms is finitely cocomplete (has finite colimits). 

Proof: See section V.2. 

The category-theoretic semantics of Clear given in chapter V 

relies on this theorem. In that semantics the theory-building 

operations of Clear are defined in terms of certain colimits in the 

category of theories. 
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5. Data constraints and data theories 

In the last section a definition was given for the meaning of an 

algebra satisfying a simple theory (presentation). If an algebra 

satisfies a theory, it is called a model for that theory. The 

theory specifies a set of algebras, namely the set of all its 

models. 

Unfortunately, this notion of specification is too simple for 

most uses. The problem is that a theory has far too many models, 

some of which have trivial carriers. It turns out that in many 

cases (for example, when a theory is written to specify an abstract 

data type) the model which is really intended is easily 

characterised; it is the initial model of the theory. See section 

I.1.1 for some examples. 

The word 'initial' comes from category theory; however, it is not 

necessary to know about category theory to understand initial 
models. 

Def: An initial model of a theory presentation <7,E> is a 

Z-algebra A which is a model of <<,E> such that 

- A does not satisfy any_ ground (i.e. variable-free) 
I-equation which is not in E. 

- Every element in A is the value of some ground 7.-term. 

In the last section the closure of a set of equations, E, was 

defined as the set of equations satisfied by every model of E. One 

may think of E as the set E together with all equations provable 

from E using purely equational logic -- that is, using substitution 

and the reflexive, symmetric and transitive properties of equality 

(but without use of induction). This aids intuition but is slightly 

inaccurate because of the incompleteness result to be given in 

section VI.5. The set of equations satisfied by an initial model 

correspond to the equations provable by equational deduction 

together with induction, since the second extra condition above 

amounts to an induction rule on each sort of >. 
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Fact: An initial model of a theory presentation <E,E> is T7./mE 

where T7 is the 'initial' 2-algebra, consisting of ground ?-terms, 

and .E is the !-congruence on T7. generated by E. 

Proof: See [Goguen, Thatcher and Wagner 1978]. 

But in Clear the situation is more complicated than this. 
Smaller theories are put together to make larger theories; if a 

loose or non-data theory is put together with an 'initial' theory, 
then what is the result? The models of the result should be all 
models of the combined theory which satisfy the initiality 
constraint for the appropriate sorts, operators and equations. 

Consider the case where a non-data theory (Equiv from section 
1.1.2) is extended by adding some data, as in the following: 

const Set = 

enrich Equiv 
data sorts set 

opns 0 : set 
singleton : element -> set 
U : set,set -> set 

egns0US=S 
S U S = S 

S UTTUS 
(SUT) UV=SU (T UV) enden 

In this example the interpretation of the extension must depend 

on the interpretation of Equiv, which can be any algebra having a 

sort together with an equivalence relation. But given a particular 
algebra for Equiv, Set should be interpreted initially based on that 
algebra; that is, Set specifies an initial algebra relative to the 

interpretation of Equiv. Set is a data extension of Equiv; each 

Set-model is the free extension of the included interpretation of 
Equiv. 

It is necessary to keep track of more than just a signature and a 

set of equations to determine the set of algebras specified by a 

Clear specification; of equal importance are the details concerning 

which enrichments are data extensions of which subtheories. The 

constraint that an enrichment is to be interpreted as a data 

extension is called a data constraint (or constraint for short). 



-47- 

Each application of the data operator contributes a data constraint. 

Def: A Z-constraint c is a pair <i,o'> where i:T "T' is a simple 

theory inclusion and o': signature (T')-->I is a signature morphism. 

A constraint is a description of an enrichment (the theory 

inclusion goes from the theory to be enriched to the enriched 
theory) together with a signature morphism 'translating' the 

constraint to the signature S. 

A signature morphism from 2 to another signature I' can be 

applied to a 2-constraint, translating it to a 2'-constraint, just 
as it can be applied to a.Z-equation to give a.Z'-equation. 

Def: If is a signature morphism and <i,o-> is a 

2-constraint, then o'' applied to <i,o'> gives the V-constraint 

A data constraint imposes a restriction on a set of algebras, 
just as an equation does. In [Burstall and Goguen 1980] this 

restriction was defined category-theoretically. Here is the same 

definition from a different point of view: 

Def: A 7-algebra A satisfies a 7-constraint 

<i:T°--'>T' ,o':signature(T' )-->J> if 

[ letting Atarget 
signature(TI) 
i a 

and Asource ° Aisignature(T) ] 

Atarget 
is a model of T' and 

- "No confusion": Atarget does not satisfy any 

signature(T')-equation e with variables only in sorts of T 

for any injective assignment of variables to 

values unless e is in egns(T')U Asource 

- "No junk": Every element in Atarget is the value of a 

T'-term which has variables only in sorts of T, for some 

assignment of Asource values. 

The diagram of the situation below may help make the notation 

easier to understand. 
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.i sraLur.. 

th.ori a 

al 

si9(I') E 

T I, 

The "no confusion" condition requires that no two terms have the 

same value in Atarget unless this is forced by the equations of T' 

or by previous identification of the values of terms in A 
-source 

(such identifications are recorded in Asource' The assignment is 
restricted to be injective because (for example) the equation x:y 

will always be satisfied under some (noninjective) assignment, but 

this equation will almost never be in egns(T')U Asource' The "no 

junk" condition requires that all values in Atarget be 'generated' 

by constants or by the application of functions to values in 

Asource' The slogans are from [Burstall and Goguen 19811. 

An alternative "no confusion" condition which may be slightly 

easier to understand requires that Asource be countable. If a 

signature 7 includes the signature of T, then let 2t be I together 

with a (constant) operator ca for every 

Similarly, if B is a 2-algebra and Asource is 

Bt be the It-algebra obtained from B by 

operator ca with the value a in B. Then: 

value a in A --source' 
a subalgebra of B, let 

associating each new 

- "No confusion": Atarget does not* satisfy any ground 

equation which is not in egns(T) 'U Asource' 
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The new constants give names to the values which we previously could 

only refer to using variables under an injective assignment. 

Since data constraints behave just like equations, they can be 

added to the equation set in a simple theory presentation to give a 

data theory presentation (or theory presentation for short). 

Def: A (data) 1-theory presentation is a pair <E,EC> where 2 is a 

signature and EC is a set of I-equations and 2-constraints. 

The notions of (data) theory, satisfaction (of a data theory), 
closure and (data) theory morphism follow as in the 'simple' case. 

The Satisfaction Lemma (section 3) holds for constraints as well as 

equations, and all the results in section 4 still hold. 

Note what happens if an attempt is made, to tamper with a theory 

in a way which violates one of its constraints: 

const Bool 
theory 

data sorts bool 
opus true, false : bool 

not : bool -> bool 
e ns not(true) = false 

not(not(p)) = p endth 

const FunnyBool = 

enrich Bool by 

egns not(p) = p enden 

The new equation in FunnyBool is inconsistent with the data 

constraint produced by the application of data in Bool. FunnyBool 

has no models, since no algebra exists which satisfies both the 

constraint and the new equation. 

For other presentations of this material, consult [Burstall and 

Goguen 19801 (technical) or (Burstall and Goguen 19811 (informal). 
The data constraints described here are a special case of those 

discussed in [Burstall and Goguen 19801; general data constraints 
never arise in ordinary Clear, but they are necessary for describing 
the semantics of Clear under an arbitrary (data) institution. In 
its more general form, a data constraint consists of an arbitrary 
simple theory morphism (not necessarily an inclusion) together with 
a signature morphism, and satisfaction of a data constraint is 
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defined using the category-theoretic notion of an adjunction. The 

definition of data constraint satisfaction given above is an attempt 

to capture, in this special case, the definition of Burstall and 

Goguen [1980] using a different approach. 
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CHAPTER THREE 

A SET-THEORETIC SEMANTICS OF CLEAR 

In the Introduction we argued for the necessity of supplying a 

specification language with a precise and formal semantics. A 

specification language like Clear can be useful on an informal level 

as a tool for the development of programs, providing a notation for 

elaborating the theory behind and surrounding a problem. But 

without a semantics the connection between specifications and 

programs is tenuous at best, giving no possibility of proving that a 

program is correct with respect to its specification (for example). 

A semantics of Clear is presented here which uses the language of 
set theory. The theory-building operations presented in chapter I 

are described by means of elementary set-theoretic constructions. 

In order to properly treat the problem of shared subtheories, a tag 
is attached to every sort and operator to indicate its theory of 

origin; this trick allows the combine operation to be expressed as 

little more than the set-theoretic union of 'tagged' theories. The 

remaining operations are only a little bit more difficult to 

describe. A denotational semantics is then given which attaches a 

syntax to these operations and provides for an environment of named 

theories. An additional section gives the semantics for an improved 

version of Clear, identical to ordinary Clear except for the absence 

of an annoying characteristic. This shows how easily the semantics 

can be changed to accommodate new features. 

Burstall and Goguen [19801 have described a semantics of Clear 

which relies heavily on a number of ideas from category theory to 

describe the underlying concepts and operations of the language. 

Their semantics is presented in chapter V. The semantics in the 

present chapter was invented after Burstall and Goguen's semantics 

as an equivalent but more accessible alternative. The category- 

theoretic semantics, by abstracting away from any particular notion 

of signature, model or axiom (using the concept of an institution 

mentioned in section I.1.3), is able to describe all at once the 

meaning of a large class of Clear-like specification languages. But 
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in the special case of ordinary Clear (the language described in 
chapter I) this highly abstract treatment can be simplified to give 

the semantics described here; this has the advantage of being 

concrete and constructive and therefore more useful for practical 
applications. And even this semantics can be generalised to give 

the semantics of Clear under all institutions which have been 

suggested up to now (see section 6). 



-53- 

1. Dealing with shared subtheories 

Consider the following specification, defining the theory of 
natural numbers with an order relation and the theory of upper case 

alphabetic characters (it is assumed that the theory Bool of boolean 

values has been previously defined): 

const Nat = 

enrich Bool 
data sorts nat 

opns 0 : nat 
succ : nat -> nat 
< : nat,nat -> bool 

egns 0<n = true 
succ(n)<0 = false 
succ(n)<succ(m) = n<m enden 

const Char = 

enrich Bool 
data sorts char 

opns A, B, ..., Z : char 
is-vowel : char -> bool 

egns is-vowel(c) = c==A or c==E 
or c==I or c==O or c==U enden 

Notice that both Nat and Char 'include' the theory Bool; Bool is 
a shared subtheory of Nat and Char. What does this mean formally? 
And, how does the semantics of Clear define the theory-combining 
operations so that the theory Nat + Char includes only one copy of 
Bool? 

In [Burstall and Goguen 1977], shared subtheories are explained 
by analogy with the EQ predicate of LISP. The EQUAL function in 
LISP tests whether two lists look the same (i.e. whether they 

contain the same elements in the same order), while EQ tests whether 

two lists are the same (occupy the same list cells in storage -- 
note that EQ(a,b) implies EQUAL(a,b) but not vice versa). The 

important features of EQ are given by the following examples (a, b 

and c are arbitrary lists): 
i. EQ(CONS(a,b),CONS(a,b)) = false (but EQUAL(..,..) = true) 

ii. (EQ(1,1) where 1=CONS(a,b)) = true 

iii. EQ(CAR(CONS(a,b)),CDR(CONS(c,a))) = true 
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These examples show that 

i. Writing down a CONS expression twice gives two different 
lists. 

ii. Two uses of the same variable refer to the same list. 
iii. Two different lists can share a common sublist. 

Now to complete the analogy, the theory-building operations of 
Clear act like CONS and the behaviour of EQ indicates what is meant 

by "identical" in the following: 
Requirement: The theory-building operations should be defined 

in such a way that a theory can never contain two identical 
subtheories. 

This leads (for example) to the following informal constraint on the 

combine (+) operation: 

Constraint: If B is a subtheory of A and D is a subtheory of C, 
then B and D should be identified when forming A + C iff 
they are identical. 

In order to write a semantics for Clear we must devise some 

representation of theories which makes it easy (or at least 
possible) to determine if two theories are identical, so that the 

above constraint can be satisfied. The category-theoretic semantics 

of Burstall and Goguen [1980] uses a rather complicated 

representation of a theory (called a based theory -- see section V.2 

for details) which shows explicitly how the theory is related to 

every one of its subtheories. In the special case of ordinary Clear 

a much simpler representation can be used because the only way that 
a theory and one of its subtheories can be related is by an 

inclusion. 

An important observation is the fact that the requirement above 

is inherited by the sorts and operators of a theory (where identity 
is again by analogy to EQ in LISP), giving: 
Requirement: The theory-building operations should be defined 

in such a way that a theory can never contain two identical 
sorts or operators. 

Moreover, if this low-level requirement is satisfied (and the 

operations are defined in a reasonable way) then the previous 
requirement will be satisfied as well. The above contraint on 

combine also has a low-level equivalent. 
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Referring to our LISP analogy, the obvious way to define the 
semantics of EQ (see [McCarthy et al 1962]) is to use a model of 
storage where lists are stored in addressable cells and EQ simply 
checks whether its arguments begin at the same address (although the 
semantics of EQ can be defined in other ways -- see [Levy 1980] for 
example). By associating a unique address with each non-EQ list 
cell, the meaning of EQ is reduced to equality of addresses. 

Sorts, operators and theories normally have nothing to do with 
anything as mundane as storage and addresses. But by associating an 

appropriate tag with each sort and operator we can easily determine 
whether two tagged sorts or tagged operators are identical in the 
sense given by analogy with EQ. If the name of the theory of origin 
of a sort or operator is used as a tag, then the sort or operator 
name together with the tag forms a unique and precise name for the 
object (sort or operator). Then if (for example) w is an operator 
belonging to both A and B, c., will appear once in A + B if w has the 
same tag (theory of origin) in both A and B; otherwise w of A and 

(,,) of B are really different operators which just happen to have the 
same name, and A + B should include both. The language t (Iota) 
[Nakajima, Honda and Nakahara 1980] also uses tags (to qualify 
operator names). 

Each theory is therefore represented in the semantics as a tagged 

theory (a theory where the names are all tagged). The tagged 

theories Nat and Char look like this, where tags appear as 

subscripts (assuming that Bool contains the operators true, false, 

not and ==); 

Nat = sorts natNat, boolBool 
opns ONat : 

natNat 
succNat : natNat -> natNat 

INat' ==Nat : natNat,natNat -> boolBool 
trueBool, falseBool : boolBool 
notBool 

: 
boolBool -> boolBool 

==Boot boolBool,boolBool -> boolBool 
egns . . . 
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Char = sorts char Char, boolBool 

opus AChar' ..., ZChar : charChar 

is vowel 
Char : char 

Char -> boolBool 

"Char : charChar,charChar -> boolBool 

trueBoolfalseBool 
: 
boolBool 

notBool 
: 
boolBool -> boolBool 

==Boot : 
boolBoolboolBool -> boolBool 

egns . . . 

Nat + Char is simply the set-theoretic union of these two tagged 

theories: 

sorts natNat, charChar, boolBool 

opus CNat : natNat 

SuccNat : natNat -> natNat 

Nat' ==Nat : natNat,natNat -> boolBool 

AChar, ZChar : charChar 

is vowelChar : charChar -> boolBool 

==Char : charChar,charChar -> boolBool 

trueBool,falseBool 
: 
boolBool 

notBool 
: 
boolBool -> boolBool 

==Boot : 
boolBool,boolBool -> boolBool 

e ns . . . 

The remaining semantic operations are fairly simple and 

straightforward set-theoretic constructions. 

It is necessary to keep track of the names of all subtheories of 
a theory; the apply operation and Clear's 's of T' notation (to 
refer to a sort or operation s in a subtheory T of the current 
theory) both require it. Adding this information to a tagged theory 
gives a based theory. The base is a subset of the global theory 
environment, mapping each subtheory name to the theory bound to that 
name. The addition of a base does not complicate the definition of 

the sum of two theories; the base of the sum is simply the union of 

the bases. 

Def: A based theory is a pair <T,B> where T is a theory with 
tagged sorts and operators and B: theory-name--> theory (the base) is a 

map containing the subtheories of T. <T,B> is normally written TB. 
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Def: A based theory morphism o':TB-)TB, (where BB') is a theory 
morphism o:T->T' such that o restricted to theories in B is the 
identity. 

This notion of based theory should not be confused with Burstall 
and Goguen's [1980] notion, discussed in section V.2. Although the 

definitions are different, both kinds of based theories serve the 
same purpose (and in fact the two representations are isomorphic) so 

we use the same name to draw attention to this similarity. 

The particular tags used are not important; all that matters is 
that the tags for two different sorts (or operators) which have the 
same name, are different. Thus, X146 and Y27 would serve as well as 

Bool and Nat above. Also (for example) succ and < need not have the 

same tag. This fact will be useful in the semantics; it turns out 

to be inconvenient to tag sorts and operators with the name of their 

theory of origin. 
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2. Semantic operations 

In this section the semantic operations which 'implement' the 

theory-building operations of Clear are defined. This forms the 

quintessence of Clear's semantics; the semantic equations given in 
section 4 serve only to attach a syntax to the operations defined 

here. The definitions depend heavily upon the special 
representation of based theories described in section 1; the objects 
defined in chapter II are used as well (signatures, equations, 
constraints) but their representations are not important. The 

definitions assume that the based theories to be put together are 

compatible. This will always be the case in practice because all 

available theories have been constructed using Clear. 

Def: If 2=<S,2> and 2'=<S',2'> are tagged signatures then the 

union of 2 and 2', written 2U2', is <SUS',2UV'> (where j and 

are the extensions of 2 and 2' to indexed sets of operators over 

SUS' ). 

2.1. Combine 

This implements the '+' theory-building operation of Clear. 

combine : based-theory x based-theory -4 based-theory 

combine( <L,EC>B, <i',EG'>BI ) = <2U2',6 EG U6`EG' >BUB' 

where a and a" are the signature inclusions 

2U2 

We will sometimes use '+' in the sequel rather than combine; this 

should cause no confusion. 

The result has the sorts and operators of both theories, the 

closed union of the axioms (translated to give 2U2'-equations and 

constraints), and the union of the two bases. Since 2 and 2' are 

tagged signatures, M' will treat shared sorts and operators 
properly. 
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2.2. Enrich 

An enrichment consists of some new sorts, operators and 

equations. The enrich operation takes a based theory and an 

enrichment and produces the enriched based theory. Each new sort 

and operator must be given a unique tag, according to the discussion 

in the preceding chapter. This tagging is not done by the enrich 

operation itself; we require that new sorts and operators be given 

unique tags before they are used to enrich a theory. This is 

necessary because the arity of a new operator may include one of the 

new sorts, and this requires that the new sort be tagged. The tags 

are attached by the semantic equations (as part of the semantics of 
sort and operator declarations -- section 4.3). 

enrich : based-theory x sort-set x operator-set x equation-set 
-> based-theory 

enrich( <I,EC>B, S', J', E' ) _ <_ZU<S'X>,o7(EC)U E'>B 

where I' is indexed over sorts(2)US' 
E' is a set of j U<S',j'> -equations 

and o- is the signature inclusion 

JU<S' .2'> 

As mentioned above, it is understood that S' and I' have already 

been given unique tags before enrich is applied. 

2.3. Data enrich 

When a theory is enriched by some new data, the axioms of the 

resulting theory contain the constraint that the enrichment is to be 

interpreted freely. Moreover, an equality predicate ==:s,s->bool 

for each new sort s is included. Otherwise the result is the same 

as for ordinary (non-data) enrich. We employ a model-theoretic 

approach to obtain the equations which specify the meaning of the 

new equality predicates. 



Def: Suppose I is a tagged signature which includes the sort 

boolBool and the operators true Bool,falseBoo1:boolBool, A is a 

7.-algebra, EC is a set of 2-equations and constraints, x is a new 

tag, S is a subset of the sorts of 1, and sES. Then: 

- Fs is 2 with an additional operator ==x:s,s->boolBool' 2S 

is defined similarly (i.e., an additional == operator for 
each sort in S). 

- As is a 1x-algebra just like A but with an operation 
satisfying ==(a,b) = true iff a=b, for all a,beAs. As is 
defined similarly. 

ECS is the set of !S-equations and constraints given by 

M*, where M = {AS i AF-EC }. 

If S is the set of new sorts and EC is the set of equations and 

constraints already in a theory, then ECS includes EC as well as all 
the equations needed to define the new equality predicates on sorts 

in S. 

data-enrich : based-theory x sort-set x operator-set 
x equation-set x tag - > based-theory 

data-enrich( <2,EC>B, S', 2', E',tx 
= < (2enr)x , (ECenr U<F,1enr>)x >Benr 

where <Ienr,ECenr>Benr = enrich(<L9EC>B,S',2',E'>) 
and F is the theory inclusion 

<J,m> F <Zenr,E'> 

data-enrich gives an error if 2enr does not include the sort 
boolBool and the operators true Bool,falseBoo1:boolBool. 

The result is the same as the result of enrich, with the addition 
of an operator == for each new sort, the equations concerning those 

operators, and the data constraint <F,1,Tenr> where F is the theory 

morphism describing the enrichment. 



2.4. Derive 

The derive operation is used to 'forget' sorts and operators of a 

theory, possibly renaming the ones remaining. The renaming is 
accomplished by a signature morphism which takes the new names into 
the old names. Given a .1-theory, a '-theory and a signature 
morphism o-:Z- ', derive produces a theory with the signature and 

base of the 7,-theory, and all the 7-equations and constraints which 

are satisfied in all models of the I'-theory -- this turns out to be 

the inverse image under cr of the equations and constraints of the 

V-theory. 

derive : based-theory x signature-morphism x based-theory 
-4 based-theory 

derive( <;,EC>B, (7, <2',EC'>B, ) _ <21cT-1(EC1)>B 

where cr-1(EC') = {e ; er(e)cEC' } 

derive gives an error if c- is not a based theory morphism. 

The result is a theory because of the following fact: 

Fact: If EC is closed then r-1(EC) is closed. 

Proof: (outline of the proof in (Burstall and Goguen 19801) 

c7-1(EC) _ (EC*I)' = c'-1(EC)** via two applications of the 

Satisfaction Lemma. 

Also, EC 5 c'-1(EC' ) since cr is a theory morphism. 

Intuitively, the derive operation should satisfy the following 
law: 

A' is a model of T' iff A'Isig(T) is a model of 
derive(T,c-,T') - 

The 'forward' implication (_>) follows by the proof of the previous 

fact (c--1(EC) _ 
(EC*Isig(T))*, 

so EC*Isig(T)S (r -1(EC)*). 
Unfortunately, the reverse (<=) does not hold. Consider the 

example: 

coast AB = 

enrich Bool 
data sorts ab 

opus a, b : ab enden 
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const ABC = 

enrich AB 
opns c : ab enden 

const AC 

derive sorts ac 
opns a, c : ac 

using Bool 
from ABC 
by ac is ab endde 

The theory ABC has two models (up to isomorphism). Both models have 

two elements in the carrier for sort ab; one model satisfies a=cib 

and the other satisfies ajic=b. But AC has an infinity of non- 

isomorphic models. The problem is that the inverse image of the 

data constraint on sort ab of ABC is empty, so sort ac of AC is 
unconstrained. It seems that this slightly unpleasant situation can 

be put right by giving a somewhat more elaborate definition of data 

constraints. But it is not yet clear that this is the right way to 
handle the problem, and data constraints are already complex enough. 

So we ignore this complication for now; although derive does not 

have all the properties we want, in most cases this will not be a 

problem. 

2.5. Apply 

Apply defines the meaning of applying a theory procedure to its 
arguments. A procedure is represented as a based theory (the 
procedure) together with a list of based theories (the metasorts). 
This is the first argument of apply; the second is a list of 
(based-theory x signature-morphism) -pairs (actual parameter x 

fitting morphism). The third argument is the tag to be attached to 
the 'new' sorts and operators. 

apply : (based-theory x based-theory *) [procedure] 
x (based-theory x 

signature-morphism)* 

[parameters] 
x tag -4 based-theory 

The definition of apply uses two auxiliary functions. The first 
applies a signature morphism to a theory T with a signature 

which includes 2; the sorts and operators in T but not in I are not 
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affected. This is used to apply a fitting morphism to a procedure, 

and is also useful in defining the second auxiliary function. 

altered by : theory x signature-morphism -> theory 

Suppose _Z = <S,Z>, JA = <SA,ZA>, ZB = <SB,ZB>, <f,g> = o:jA-47,B 
and ZAc 1. Then: 

<L,EC> altered by o- _ <2',0'1 (EC)> 

where 2' and o'' are constructed as follows: 

for sES, let fl(s) = f f(s) if sESA 
s otherwise 

let S' {f'(s) 
1 sS} 

for u&S , vS and welt v, 
let guv(w) fguv`w) if w*jAuv 

w otherwise 
for u'E S'e and v'ES', 

let Vu'v' = U {guv(w) 1 wEIuv} 
u,vEl 

where I = {u,v.S ; f'e(uv)=u'v'} 

then 2' = <S',2'> 
and = <f',g'> 

Informally, <L,EC> altered by o' just replaces the sorts and 

operators of I which are in JA by their images in 2B. 

The second auxiliary function attaches a given new tag to all of 
the sorts and operators in a theory, excluding those sorts and 

operators which belong to a distinguished subsignature. 

retagged with preserving : theory x tag x signature --> theory 

<2,EC> retagged with x preserving F' _ <2,EC> altered by mtag 

where mtag is a signature morphism which gives each 
of the sorts and operators in I - 2' the tag x 

an error results if VA 2 

Apply is now defined with the help of these two functions. The 

idea is to first attach the given new tag to each sort and operator 
in the procedure, excluding those belonging to a metatheory or base 
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theory. This is necessary so that (for example) the sort 'list' in 
the theory List(Bool) will always remain distinct from the sort 
'list' in List(Nat). The fitting morphisms are then applied to 

change each reference to the metasort signature into the 

corresponding reference to a sort or operator in the signature of 
the actual parameter, and the base of the procedure is attached. 

Finally, the actual parameters are added using combine to give the 

result. 

apply(<PBp, <2Mj,ECM1>BM1 ... <ZMn,ECMn>BMn>, <A1 ,m1> ... <An,mn>, x ) 

= Ai + ,.. + A 
n 

+ ((P retagged with x preserving told) 
-J - 

altered by ml U ... Umn)BP 

where told = 2M1U...U 2Mn U<N, N>cBpsignature(TN) 
apply gives an error if some mi:<-1Mi,ECMi>BMi -4Ai is not a based 
theory morphism. 

This construction is rather more elaborate than any of those 

given previously. In order to understand it, consider first the 

simple case in which all theories contain only sorts (no operators 

or equations) and the procedure has only one argument. For example: 

P = sorts boolBool' mM, natNat' Pp base Bool, Nat 

M = sorts boolBool' mM base Bool 

A = sorts boolBool' charChar, aA, a'A base Bool, Char 

o' _ [boolBool HboolBool, mM H aA7 

Now let us evaluate apply(<P,M>,<A,(r>,'J36'). The 'old' sorts upon 

which P was built (sold) is: 

sorts boolBool, mM, natNat 

Retagging P while preserving Zold gives: 
sorts boolBool' mM, natNat' pJ36 

This is exactly P except that the sort p (which is 'new' in P) is 
tagged with J36 to ensure that it remains distinct from the sort p 

in the application of P to some other parameter. Applying the 

fitting morphism d' and reattaching the base of P gives: 
sorts boolBool' aA' natNat' pJ36 base Bool, Nat 

and combining this with the actual parameter A gives the final 
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result: 

sorts boolBool' aA, natNat' PJ36' char 
Char, a'A 

base Bool, Nat, Char 

Before 6fter 

For a more difficult example, consider the following Clear 

specification (assuming the usual specification of Bool): 

const Natmod2 = 

enrich Bool 
data sorts natmod2 

opns 0 : natmod2 
succ : natmod2 -> natmod2 

egns succ(succ(n)) = n enden 

meta Triv = theory sorts element endth 

proc Pair(X:Triv) 
enrich X + Bool by 

data sorts pair 
opns <_,_> : element,element -> pair 
egns <a,b> _ <b,a> enden 

Now the expression 

Pair(Natmod2[element is natmod2)) 

should give the theory of (unordered) pairs of natural numbers 

modulo 2. 

The denotation of Natmod2 is the following based theory (ignoring 
equations): 
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sorts boolBoo,, natmod2Natmod2 
opus °Natmod2' succNatmod2' ==Natmod2' trueBool' ' 
e ns succ(succ(n)) = n 

not(true) = false 

base Bool, Natmod2 

Triv gives just sorts elementTriv with the empty base. 
Metatheories will be explained in section 3; briefly, the special 
thing about a metatheory is that its base excludes metatheories, 
itself included. 

The procedure Pair has a denotation consisting of the following 
based theory together with Triv: 

sorts elementTriv, pairPair' boolBool 
opns <-,_>Pair, ==Pair' trueBool' 
e ns <a,b> = <b,a> 

not(true) = false 

base Bool 

The environment contains Bool and Natmod2 (Triv and Pair are in 
the metatheory and procedure environments, respectively). 

Referring to the definition of apply, the value of Jold is: 

Told = sorts element Triv, boolBool 
opns trueBool+ false Bol, notBol, ==Bool 

Retagging P (i.e., Pair without its base) with the new tag J37 while 

preserving old gives: 

sorts elementTriv' pair 
J37' 

boolBool 
opns <-,_>J37' ==J37' trueBool' ... 
egns . . . 

Applying the fitting morphism [elementTriv H natmod2Natmod2] to this 
theory and reattaching the base of Pair yields: 
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sorts natmod2Natmod2, pairJ37, boolgool 

opus <_.2J37 ==J37 trueBool, ... 
egns . . . 

base Bool 

Finally, this is combined with the actual parameter Natmod2 to give 

the answer: 

sorts natmod2Natmod2, pairJ37' boolgool 
opns <_,_.>J37, ==J37, truegool, ... CNatmod2' ... 
egns succ(succ(n)) _ n 

not(true) = false 

<a,b> _ <b,a> 
base Bool, Natmod2 

Note that applying a procedure P with formal parameter X and 

metasort M to an argument A using signature morphism o, is the same 

as rewriting the text of the procedure, with A substituted for X and 

all occurrences of sorts and operators in M translated using o, to 

the matching bits of A. For example, 

Pair(Natmod2[element is natmod2)) is equivalent to: 

enrich Natmod2 + Bool 
data sorts pair 

opns <_,_> : natmod2,natmod2 -> pair 
egns <a,b> _ <b,a> enden 

The definition of apply simulates this rewriting, using the trick 
of attaching fresh tags to the sorts and operators which are 'new in 
P' (i.e., not included in the base or metasorts) to distinguish them 

from the corresponding objects produced in a different application 
of the same procedure. 

2.6. Copy 

The copy operation is used to make a fresh copy of a theory, 

preserving a given set of subtheories. 
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copy : based-theory x based-theory x tag --> based-theory 

copy( T$, <2',EC'>B" x (T retagged with x 
preserving 1')B A B 

Given two based theories (the second theory is the combination of 
the subtheories to be shared), copy simply gives the new tag x to 

the sorts and operators of the first theory which are not in the 

second theory. The base of the result is the intersection of the 

bases of the argument theories. 
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3. Metatheories 

In section I.1.2 the notion of a metatheojy was informally 
introduced as a way of describing a class of theories (while an 

'ordinary' theory describes a class of algebras). Metatheories are 

used to give the metasorts (requirements) of theory procedures. For 

example: 

proc Set(X:Ident) _ 

enrich X . . . 

Here, Ident is a metatheory (from section 1.1.2) 'describing' all 

theories having at least one sort and an equivalence relation on 

that sort. Any such theory can be used as an argument of Set. In 

this section the relation between metatheories and ordinary theories 

is discussed. The semantics of [Burstall and Goguen 1980] did not 

treat this issue correctly, using ordinary theories to give 

procedure requirements (this error was only discovered during 

testing of the implementation of that semantics presented in chapter 

V). 

It turns out that a metatheory is not a new kind of theory, but 

only an ordinary (based) theory used in a special way. The class of 

theories described by a metatheory M is the class containing only 

those based theories T for which a based theory morphism o:M-+T 

exists. The definition of the apply operation in the last section 

uses the 'fitting morphism' (supplied by the user) to construct the 

result of a procedure application. But in order for this to work 

the metatheory M must be handled in a slightly different way from an 

ordinary theory; this is the reason why the meta construct is used 

to define a metatheory. 

It is helpful to compare a sample metatheory with a similar 

ordinary theory. A typical metatheory is Ident, used above; this 

will be called Idmeta for now: 

meta Idmeta = 

enrich Bool 
sorts element 
opns . : element,element -> bool 
egns mam = true 

enden 
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This gives the following based theory: 

sorts elementIdmeta, boolBool 

opns 'Idmeta 
trueBool, falseBool, 

ens . . . 

base Bool 

Now consider a similar ordinary theory. Idconst 'loosely' 

specifies the set of algebras having one sort and an equivalence 
relation (see the theory Equiv in section 1.1.2): 

const Idconst = 
enrich Bool 

sorts element 
opns = : element,element -> bool 
ens m:-m = true 

enden 

which yields the based theory: 

sorts elementIdconst, boolBool 
opns OIdconst 

trueBool, falseBool, 
egns . . . 

base Idconst, Bool 

The only apparent difference between these two based theories is 

that while Idmeta has a base consisting only of Bool, the base of 

Idconst contains Idconst itself as well. Consider the consequences 

if Idconst is used as the metasort of a theory procedure such as Set 

(called Setconst for now): 

PLO--c Setconst(X:Idconst) 
enrich X . . . enden 

What are the possible actual parameter theories to which Setconst 
can be applied? Recall that a based theory morphism is used to fit 
an actual parameter to its corresponding metasort; the morphism goes 

from the metasort to the actual parameter. Since the base of the 
target of a based theory morphism must include the base of the 
source (and the morphism restricted to the base must be the 
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identity), the actual parameter must contain Idconst as a subtheory. 

In essence, the only theory Setconst can be applied to is Idconst 

itself. This is clearly neither intended nor desirable. 

Now consider what happens if Idmeta is used as the metasort of 
Set: 

roc Setmeta(X:Idmeta) = 

enrich X by . . . enden 

Since the base of Idmeta contains Bool, any actual parameter of 
Setmeta must include Bool as a subtheory. But it need only match 

the rest of Idmeta; that is, it must include a sort with an 

equivalence relation. Suitable actual parameter theories and 

fitting morphisms are: 

Nat [element is nat, a is =_] 
Bool [element is bool, 'W-is ==1 

and many others. 

In the example above, an ordinary theory (Bool) was included in a 

metatheory (Idmeta). In general, metatheories can be put together 
(with each other and with ordinary theories) using the same 

operations as for ordinary theories, since they are nothing more 

than a special kind of ordinary theory. When such a conglomerate is 
used as a metasort, any matching actual parameter must include all 
of the ordinary theories in the metasort (not just some theories 
which happen to resemble them), as well as sorts and operators which 

match those of the metatheories. 

The only difference we have so far encountered between a 

metatheory and an ordinary theory is that the base of a metatheory 

does not include the metatheory itself (and thus does not include 
any other metatheories either). Unexpectedly, this is exactly the 

result if a parameterless theory procedure is used in place of a 

metatheory (this observation is due to R.M. Burstall): 
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proc Idproc() _ 
enrich Bool 

sorts element 
opns n : element,element -> bool 
egns mmm = true 

enden 

roc Setproc(X:Idproc()) 
enrich X . . . enden 

Accordingly, a metatheory is treated in this semantics as a 

parameterless procedure. This is of course invisible to the user of 
the language. In the category-theoretic semantics to be given in 
chapter V, metatheories are treated as ordinary theories with 
altered bases (which gives the same result, since there a sort or 

operator may only be shared if it appears in a base theory). The 

semantics of metatheories in both cases is incorporated into the 

definition of environment operations. 

A side-effect of the use of the apply operation to give the 

semantics of metatheories is that writing a metatheory twice gives 

two different theories; that is: 
Idproc() + Idproc() Idproc() 

This property is actually somewhat desirable for metatheories, since 
otherwise some extra mechanism must be added to the semantics of 
procedure declaration (in the next section) to keep separate 

multiple instances of the same metatheory as metasorts in a single 
procedure: 

proc P(X:Idmeta,Y:Idmeta) 

But this means that the theory-building operations do not respect 

shared sub-metatheories. It is difficult to decide if this last 
property (which also holds for metatheories in the category- 

theoretic semantics) is desirable or not. In section 5 a 

modification to the semantics is given which (among other things) 
causes theory-building operations to respect shared sub- 

metatheories. 

The concept of a metatheory in Clear is similar to the notion of 
a sype in the language t (Iota) [Nakajima, Honda and Nakahara 1980]; 
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there too, a sype is not very different from an ordinary type, 

although it can be regarded as a higher order concept. 
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4. Semantic equations 

Now we are ready to give the semantic equations for Clear, 

providing a 'syntactic dress' for the operations defined in section 

2. The equations are divided into several levels. Level I deals 

with the semantics of sort and operator names, and depends on the 

notion of a dictionary. Level Ha contains the semantics of 

enrichments (sort and operator declarations, and equations), and 

level IIb describes signature changes (used in derive and in 
application of a theory procedure). Finally, level III gives the 

semantics of Clear's theory-building operations and procedure 

declarations, based on the semantic operations defined in section 2. 

It requires the definition of an environment. Most of the material 

in this section is taken from [Burstall and Goguen 1980]; 

differences are recorded in section V.4. 

4.1. Dictionaries 

In Clear the notation 's of T' (where s is a sort name and T is a 

theory name) may be used to refer to a sort which is included in a 

subtheory T of the current theory (similarly to of T' for 

operators). This may be necessary if the sort (or operator) name 

alone is ambiguous. A dictionary gives the correspondence between 

such an expression and the tagged sort or operator to which it 

refers. 

Def: A dictionary is a pair of functions <sd,od> where 

sd : sort-name x theory-name -4 sort 
od : operator-name x theory-name -4 operator 

The operation dict is used to construct a dictionary from a based 

theory; the resulting dictionary interprets sort and operator 
expressions referring to sorts and operators in that theory. 
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diet : based-theory --> dictionary 

diet( <2,EC>B ) = <sd,od> 

where sd(s,T) = the unique sort with name s in B(T) 
and od(o,T) = the unique operator with name o in B(T) 

sd(s,T) gives an error if T#domain(B), or if there is not a 
unique sort called s in B(T) (similarly for od(o,T) ). 

Note that this definition means that the notation 's of T' 

(similarly 'o of T') may only be used to refer to theories which are 

in the base of the current theory. 

4.2. Level I: Sorts, operators, terms 

Syntactic categories 

s : sort name (lower case identifier) 
o : operator name (identifier or operator symbol) 
T : theory name (capitalised identifier) 
sex : sort expression 
oex : operator expression 
x : variable (identifier) 
tex : term expression 

Syntax 

sex s s of T e.g. 
oex o o of T e.g. 

tex x oex(texi,...,texn) e.g. 

Values 

d : dictionary 
X : sort-indexed variable set 
tm : term 

Semantic functions 

element of X 

not of Bool 
or(p,q) (infixes 
etc. also permitted) 

Sex : sort-expression -* signature -* dictionary -* sort 
Oex : operator-expression -* signature --> dictionary 

-* operator 
Tex : term-expression -* signature -* dictionary 

sorted-variable-set -* term 
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Semantic equations 

SexQ s jid = the unique sort in sorts() with name s 
SexQ s of T ]17,d = sd(s,T) where <sd,od> = d 

Oex Qoi d = the unique operator in operators (_Z) with name o 

Oexl o of TIIld = od(o,T) where <sd,od> = d 

Text x jidX = x (a 1-term on X) 

Tex1oex(texi,...,texn)ji dX = 

let w= Oex1oexl d in 
let tm1,...,tmn = Texl texiI2dX,...,Texl texn jTdX in 

w(tmi,...,tmn) (a I-term on X) 

4.3. Level IIa: Enrichments 

Syntactic categories 

sd : sort declaration 
od : operator declaration 
varl : variable list 
eq : equation expression 
enrb enrichment body 
enr : enrichment 
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Syntax 

sd ..= s e.g. nat 
od :.= o: sex1,...,sexn->sex e.g. <: nat,nat->bool 

varl ::= x11,...,xln :sex1,...,xm1,...,xmnm:sexm 
e.g. i,j:nat, p:bool 

eq all varl. text = tex2 e.g. all p:nat. p+O=p 

enrb sorts sd1,...,sdm 
opns odi...odn 

e ns eg1...egp 

enr enrb ; data enrb 

e.g. data sorts bool 
opns true: bool 

false: bool 
not: bool->bool 

e ns all. not(true) = false 
all p:bool. not(not(p)) = p 

The notation 

01,...,om: sex1,...,sexn->sex 

is also allowed for operator declarations, defined by the obvious 

expansion into a sequence of declarations. 

Semantic functions 

Sd : sort-declaration -+ tag -+ sort 
Od : operator-declaration -4 tag -4 signature -4 dictionary 

-4 (operator x arity) 
Varl : variable-list --> signature -+ dictionary 

--> sorted-variable-set 
Eq : equation-expression -4 signature -4 dictionary -4 equation 
Enrb : enrichment-body -4 tag -4 signature -4 dictionary 

-3 (sort-set, (operator x arity) -set, equation-set) 
Enr : enrichment --> tag -4 based-theory -> based theory 

Semantic equations 

SdEs]]x = sx 

Odf o: sex, ,...,sexn->sex]]x5d = 

let s, , ... ,sn,s = SexEsex, Sd, .... Sexsexn]J d, Sex1sex]J d in 
--To , «s; , ... s n> , s» 
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Var1Qxil,....xnl:sexl,...,xmi,...,xmn :sexmI1 d = 

let si, ... ,sm = SexQsex1I]2d, ... ,S%xQsexmI]Id in 
{ <x11,sl>,...,<xlnl,51>, 

<xm1,sm>"..,<xmnm,sm> } 

EgQall varl. tex 
1 

= tex2Djd 
let X = Varl f varlD2d in 
let tm1,tm2 = TexQtex1DIdX,TexlItex2DZdX in 

<X,tm1,tm2> 

EnrbI sorts sd1,...,ad opns od ..odn egns eg1...eq ]Jxxd = 

let S' = ISdIsditx,...,Sdysdm]1x} in 
let 2' = 2 U<S',O> in 

let 2' = {Odlodi1]x2'd,...,Odlodn]Ix2'd} in 
let 2" 

= 2'U<¢,2'> in 
let E' = {EqTeg1I12"d,..,EgTegp12"d} in 

<S',2',E'> 

Enrlf enrb ]l xT = enrich(T,Enrbf enrb]J x signature(T)dict(T)) 

Enrifdata enrb]JxT = 

data- enrich (T,Enrblf enrb I x signature (T)dict(T),x) 

4.4. Level IIb: Signature changes 

Syntactic categories 

sc : sort change 
oc : operator change 
sic : signature change 

Syntax 

sc :.= s1 is sexl,...,sn is sexn 
oc :.= 01 is oexl,...,on is oexn 
sic sc,oc e.g. element is nat, 

order is < of Nat 
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Semantic functions 

Sc : sort-change --4 signature --4 signature -4 dictionary 
--> (sort --> sort) 

Oc : operator-change -4 signature - signature --> dictionary 
-4 (operator -> operator) 

Sic : signature-change --> signature -p signature 
-4 dictionary --> signature-morphism 

Semantic equations 

Sc Qs1 is sexl,...,sn is sexnD22 'd' 
{ <SexQs1D2d,Sexusex1Dj'd'>, 

<SexIsnDld,SexusexnD2'd'> } 

where d = <0,0> (the null dictionary) 

OcUo1 is oexi,...,on is oexnD 'd' 
{ <OexQo1D.,d,Oexuoex1D 'd'>, 

<OexUonD2d,Oexuoex D2'd'> } 
where d = <0,0> (the nuPl dictionary) 

Sicusc,ocDM'd' _ 

let f = Sc I sc:u 'd' in 
let g = OcUocD 'd' in 
make_signature_morphism(l,f,g, 

(where make _signature _morphism(_Z,f,g,2') is the 

signature morphism <f,g>:j-3j' with gus the set of 
all pairs <u,Y>eg such that tE2us) 

4.5. Environments 

Reference has already been made in the definition of based 

theories to an environment of theories. In that case we were 

referring- to the constant theory environment, only one of the three 

environments we will need. This is simply a map binding names to 
based theories. The other two environments store metatheory and 

procedure bindings; the metatheory environment is again a map from 

names to based theories, while in the procedure environment each 

name is bound to a value consisting of a based theory (the 
procedure) together with a list of based theories (the metasorts). 

We define several operations on these environments. The 
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operation 

bind : name x value x environment -> environment 

returns an environment with an added association between the name 

and value given (the type of value depends on the environment). 

Similarly, 

bind : name-list x value-list x environment - environment 

binds a list of names to the corresponding elements in a list of 
values. 

The retrieve operation finds the value bound to a name in the 
combined constant theory and metatheory environment and constructs 
the corresponding based theory. Both environments must be checked 

because there is otherwise no way of telling whether a name refers 
to a constant theory or a metatheory. In case it refers to a 

metatheory, a new tag must be provided for use in retagging sorts 
and operators in the result. The procedure environment is accessed 

simply as a map, so no retrieve function is needed for it. 

retrieve : name x const-environment x meta-environment x tag 
--> based-theory 

retrieve(N,P,u,x) = .TB U<N T> where TB = e(N) if NEdomain(e) 
1 apply(1(N),<>>,<>,x) if NEdomain() 

retrieve gives an error if N is in neither or both domains 

The apply operation is used to construct the result in the case of a 

metatheory, as discussed in section 3. 

The restrict operation restricts an environment (or the mini- 
environment found in the base of a theory) to a subset of its 
domain. 

restrict : environment x name-set -> environment 

This operation is useful for removing locally declared theories at 

the end of their scope from the bases of theories they have been 

used to build. 
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4.6. Level III: Theory building operations 

Let '>r be a countably infinite list of distinct tags. This is 
where the tags required by the representation discussed in section 1 

come from. The functions 

hd : tag-list --+ tag tl : tag-list - tag-list 
split : tag-list x nat --+ (tag-list) -sequence 

are defined by the following axioms: 

hd [x1 x2 . . . ] = x1 

tl [x1 x2 . . . I _ [x2 . . . ] 
split [x1 x2 . . . ] _ 1x1 xn+1 x2n+1 . . . 

[x2 xn+2 x2n+2 ], 

[xnx2nx3n. . . ] 

Syntactic categories 

P : procedure name (capitalised identifier) 

e : expression 
spec : specification 

Syntax 

e :.= T theory enr endth 
el + e2 
enrich e by enr enden 
derive enr using e1,...,en from e by sic endde 

P e1 sn[sicn]) 
let T = el in e2 
copy e using el,...,en 

spec :.= e i const T = e spec 
meta M = e spec 
proc P(T1:e1,...,Tn:en) = e spec 

e.g. const Bool = theory ... endth 
meta Triv = theory ... endth 
proc String X:Triv) = theory ... endth 
String(Bool element is bool ) 

Values 

T : based theory 
: constant theory environment (name -+ based-theory) 

11 metatheory environment (name -'> based-theory) 
procedure environment (name - based-theory x based-theory ) 

L tag-list 
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Semantic functions 

E : expression -4 environment -4 metatheory-environment 
-4 procedure-environment -4 tag-list -4 based-theory 

Spec : specification -4 environment -4 metatheory-environment 
-4 procedure-environment -4 tag-list -+ based-theory 

Semantic equations 

EE[T]]P}IWL - retrieve(T,e,}1,hd(L)) 

EE{theo enr endth]]e?TL - nrEenr]]hd(L)II 
(if is the empty based theory) 

Ejej + e21]Ie L - 
let L ,L - split(L,2) in 

Ejej ]I1 + EE{e2]P'2 

Elf enrich e bX enr enden]IeITL = Enrlfenr]]hd(L)(EE[e]Iej'Wtl(L)) 

Elf derive enr using el,...,en from e by sic endde]Ie}IrL = 

let L1,...,L +1 = split(L,n+1) in 

let T = EE{ei IIe11 L1 + ... + Elfen]]PMn in 
let T' = Enrlfenr]]T hd(Ln+1 ) in 
let T" Elfe] eP w tl(Ln+1) in 
let Sic I sic]]signature(T')signature(T")diet (T") in 

derive(T',cr,T") 

EE{P(el [sicl ], ...,en[sicn])]]eUWL = 

let Ll,...,Ln+l = split(L,n+1) in 

let T, ,...,T = Ejel]Iei1 L1,...,Ejen]IeP Ln 
let <T,<T1,..., >> = T(P) in 
let (71,...,cs = 

Sicfsicl]]signature(T1)signature(Ti)dict(T 

SicI sicn]]signature(T_a)signature (T,)dict(T') in 
apply(<T,<T1,...,Tn>>,<<TjQ 1>,...,<TT 'Tn>>,hd(Ln+l)) 

Elf let T = el in e2]Ie}WL = 

let L1,L2 = split(L,2) in 

let T = Ejej ]I 11L1 in 
let e' = bind(T,T,e) in 

let T = Elfe2]Ie'P'L2 in 
Trestrict(B,domain(B)-{T}) 

Elf copy e using el,...,en]]Pm - 
let L1,...,L +2 = split(L,n+2) in 

let T = ElfeP1111 in 
let T' = Elfel ]e0g2 + + El[en]Ie 11n+1 

copy(T,T',hd(Ln+2)) 
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Spec4e]{P}I'L = Ejeje}1TL 

SpecE conet T = e specletr,wL 
let = split(L2) 

= 

in 

let e = bind (T,EE[ eI{PUwL1,e) in 
SpecE spec e' i1 2 

SpecEmeta T = e spec 1j1TL = 

re-T-L = split L,2) in 
let u = bind(T,ElLele?TL1 ,11) in 

Spec specleu,WL2 

SpecEproc P(T1:e1,...,Tn:en) = e spec]le}1TL = 

let L1,...,Ln+2 = Split (L,n+2) in 
let i,...Tn = EEe1jPUTL1,...,EjeJPUTLn in 
let e' bind(<T1.... ,Tn>,<T1,...,Tn>,e) in 
let T$ = EEeje'?WLn+1 in 
(let bind(P,<Trestrict(B,domain(B)-{T1,...,Tn}), 

<T1 , ... , >>,W) in 
SpecE spec11e1 'Ln+2) if {T1,...,Tn} c domain(B) else error 

The denotation of a specification spec in the initial 
environments e, p, * is then given by the value of Spec[spec1 a "1P 

(recall that Ir is an infinite supply of distinct tags). 

Consider the following procedure declaration: 

proc Silly(X:Triv) = Bool 

Because the body of this procedure does not include its metasort, 

the final equation above yields an error. An earlier version of the 

semantics (see [Sannella 1981]) did not produce an error in such 

cases, treating the above declaration as equivalent to: 

proc Silly(X:Triv) - Bool + X 
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5. A 'nonprolific' semantics 

The semantic equations in the last section complete a new 

semantics for Clear which yields exactly the same denotation for any 

specification as the semantics given by Burstall and Goguen [1980] 

(except for corrections to minor errors and the new metatheory 

notion). Although the language it defines is a convenient tool for 

writing specifications, it possesses at least one very annoying 

characteristic, as described below. A revised semantics without 

this characteristic is described here; only a few changes to the 

existing semantics are required. This demonstrates how easily the 

semantics can be changed to accommodate new features, as well as 

providing the semantics for a useful new version of Clear. 

An essential feature of Clear is the fact that different theories 
(say, A and B) can share subtheories (say Bool) so that the 

combination A + B has only one copy of Bool. But consider the 

following specification: 

const A = enrich Set(Bool[element is bool]) ... enden 

const B = enrich Set(Bool[element is bool]) ... enden 

Unfortunately, the combination A + B will have two copies of the 

theory Set(Bool(element is bool]). In general, each application of 
a procedure will give a fresh copy of the resulting theory and so in 
the specification above Set(Bool[element is bool]) is not a shared 

subtheory. This is called 'proliferation' by Burstall and Goguen 

[1981]. It is due to the definition of the semantic operation 

'apply' in section 2; in particular to the use of the retag 

operation to give each of the new sorts and operators contributed by 

the procedure a new tag. Proliferation is clearly not desirable and 

therefore a 'nonprolific' semantics would be an improvement. 

At first glance it might seem that the solution is simply to 
leave out the retagging of new sorts and operators, leaving the tags 

alone. But this is not quite right; the theory 

Set(Bool[element is bool]) + Set(Nat[element is nat]) 
would then have just one copy of the sort 'set' (this would be in 
effect the theory of sets containing both bool and nat, so the term 
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{true} U {3} would be well-typed). The proper modification is to 

have apply change the tags of new sorts and operators in the 

procedure to a value which describes the application in question; 

this requires that tags like Set(Bool[element is bool]) be permitted 

as well as the usual names like Bool and J37. Here is the 

appropriate modification to the definition of apply (in section 

2.5): 
apply : (based-theory x based-theory *) 

x (based-theory x 
signature-morphism)* 

-> based-theory 

apply(< PBP, <2M, , ECM, >BM1 ... <.Mn, ECMn>BMn >, <A1 ,m1> ... <An,mn> ) 

A + ... + An + ((P retagged with Ptag preser'ing fold) 
altered by m1 U ... Umn)BP' 

where old MU...UMUN 1 n <N,T>eBPsignature(TN) 
BP' {<N,TN altered by miU...U mn>;<N,TN>cBP} 

and Ptag is the tag 

<PBp, <jMj,ECM1>BM1 ... <'TMnoECMn>BMn>, <A1,m1> ... <Anmn> 

This tag looks alarming, but it is simply the parameter list of the 

apply operation. Consequently, the result of apply will be the same 

when (and only when) it is applied to the same parameters. The 

above definition includes a modification to alter the theories in 

the base of the result according to the fitting morphisms. This is 

necessary for cases where the procedure includes an application of 

another procedure to the formal parameter, as changes below cause 

the result of that application to appear in BP. 

The level III equation which gives the semantics of procedure 

application must now be altered to include the application in the 

base of the result (see section 4.6 -- only the final line of that 

definition has been changed): 

E[P(ei[sic,],...,en[sicn])JJe WL - 
let Li,...,Ln+i = split(L,n+1) in 

let n = EE[eiTeUWLi,...,EI[enlerwLn in 
let <T,<Tl,...,Tn>> = w(P) in 
let 0-1 , ... , d" 

SicEsic1Isignature(T1)signature(Tj)dict(Tj), 

Sic[ sicn signature(Tn)signature(T)dict(T) in 

let TB = apply(<T,<T1,...,Tn>>,<<T;,d'j>,...,<T',d'n») in 

TB U<P(ei[sici],...,en[sicn]),T" > 
-LB 
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This change is necessary because the 'apply' semantic operation 

requires that all shareable subtheories of a theory be recorded in 

the base of that theory (they are needed to form lold), and the 

theory which results from application of a theory procedure to some 

arguments is shareable because of the previous changes. 

A fortunate by-product of the above change is that metatheories 

automatically become nonprolific along with theory procedures, since 
the semantics of both use the same apparatus (recall that 
metatheories can be thought of as parameterless procedures). 

Because of this, the semantics of procedures must be changed 

slightly; the problem is that in a theory procedure such as the 

following: 
roc P(X:Ident,Y:Ident) 

the two metasorts merge into a single copy of Ident. The solution 
is to make a new copy of each metasort (excluding the subtheories in 
their bases) when a procedure is declared. The semantics of 
procedure declaration becomes: 

Specti pros P(Ti:ei,...,Tn:en) - e specieInM - 
let Li,...,Ln+2 - split(L,n+2) in 
let Tj,...,Tn - copy meta(EE[ ejffe"tl(L1),hd(L1)),..., 

copy meta(E T en1 Mtl(Ln),hd(Ln)) in 
let e' - bind(<Ti,...,Tn>,<Ti,...,Tn>,e) in 
let T$ - EIteie' 1TLn+1 in 
(let bind(P,<Trestrict(B,domain(B)-{T1,...,Tn})+ 

<T,,...,Tn>>,T) in 
Spec speciew'Ln+2) if {T1,...,Tn} domain(B) else error 

where copy meta(TB,x) = 

(T retagged with x preserving Zold)B 

where fold - <N,TN>eBsignature(TN) 

Level I of the semantic equations is concerned with providing a 

meaning for sort and operator expressions such as 's of T'. Only a 

slight modification is now necessary to extend the semantics to 
expressions like 's of P(A)'. To extend sort expressions (operator 
expressions are handled in exactly the same way) the level I BNF 

syntax must be augmented: 
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sex s ; s of T ; s of P(e1[sic1],...,en[sicn]) 

The semantic equation for the new alternative is nearly identical to 

the one which handles 's of T': 

Sexis of P(ei[sici1....,en(sicn))DJd 
sd(s,P(e1 (sic il,...,en[sicn])) where <sd,od> = d 

The notion of dictionary needs no change, provided that expressions 

of the form P(e1 (sic1],...,en[sicn)) are permitted as theory names. 

The base of the result of a procedure application already includes 

bindings to such names, as a result of the earlier change to the 

level III equation giving the semantics of procedure application. 

The modification just described has the defect that the procedure 

application in an expression 's of P(ei(sic i),...,en[sicnJ)' must be 

syntactically identical to the expression P(e1 [sic i),.... en[sicn]) 
which originally 'generated' the required sort (and similarly for 
operators). Slightly better would be to bind the appropriate theory 

in the base of the result of a procedure application to a semantic 

object combining the denotations of the procedure P and each of the 

theory expressions ej and signature changes sicj. The semantic 

equations for sort and operator expressions would then need to 
determine the denotations of procedures, theory expressions and 

signature changes, requiring them to be supplied with the current 
environment of procedures and theories (which in turn requires these 

environments to be made available to all the semantic equations of 
levels IIa and IIb). The necessary changes are not given here; they 

are routine although widespread, affecting nearly all of the 

semantic equations. 
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6. A generalisation 

In section I.1.3 two extensions to Clear were discussed (error 
Clear with error operators and error equations in addition to the 

usual (OK) operators and equations; and conditional Clear with 

conditional equations) and several more such extensions were 

mentioned briefly. It was revealed that Clear can be regarded as a 

family of languages, where the notions of signature, signature 
morphism, axiom, algebra and satisfaction are not necessarily as 

defined in chapter II but vary from one language to another. Any 

choice for these five notions is satisfactory as long as a few 

conditions hold (it must be possible to 'put together' signatures 

and the definitions must satisfy certain consistency conditions). 

Any such collection of notions is called an institution, and the 

semantics of (most of) Clear can be described without reference to a 

particular institution. This will be done in chapter V, where the 

notion of an institution will be formalised. 

The semantics just described does not work under an arbitrary 

institution; it is a semantics of ordinary Clear (the language 

described in chapter D. Its advantage lies in being very concrete 

and easy to understand. But it is easy to see that the semantics 

does not depend at all on the definition of: 

- Axioms: We require only the existence of a map 

(Tj:2-axioms--->Z'-axioms for every signature morphism 
ca -41'. The discussion of data constraints in section 
11.5 relies on axioms being equations, but the more 
abstract discussion in [Burstall and Goguen 19801 is 

equivalent and does not rely on the form of axioms. 

- Algebras and satisfaction: The only references to 

algebras and satisfaction in the semantics are in the 
definition of the closure operation (on sets of equations 
ang constraints), in the definition of data-enrich (where 

EC is EC together with all the equations which are true 

about the equality operators on sorts in the set S) and in 

the discussion which justifies the definition of derive. 

These depend not on the particular notion of algebra and 
satisfaction but only on the validity of the Satisfaction 
Lemma (section II.3). 

So far, this is the same freedom as allowed by an institution; 

there the Satisfaction Lemma must hold as well. The difference is 
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that the semantics presented in this chapter does depend on the 

notions of signature and signature morphism, while an institution 
permits use of any cocomplete category of signatures. This 

dependency is a consequence of our use of the tagging trick in 

representing theories. But in fact the semantics does not rely on 

the exact definitions of signature and signature morphism, but only 

on the following features of their definitions: 

- Signatures must be sets (or collections of sets). The 
definition of enrich and data-enrich here are dependent on 
the exact structure of signatures, but it would be easy to 
give appropriate definitions for any notion of signature. 
The equality operators added by data rely on the existence 
of sorts, but these are not a vital feature of the 
semantics and cannot be included for an arbitrary 
signature in the 'institutional approach' either. 

- Signature morphisms must be functions (maps) between the 
source and target signatures. 

In addition, the tagging trick for representing theories with 

sharing depends on the following: 

- Enrichments must be inclusions (in the institutional 
approach enrichments may be arbitrary theory morphisms). 

Section 2 of this chapter (defining the semantic operations) could 

easily be rewritten for Clear under any institution satisfying these 

restrictions. The result would not be very much different from what 

appears here; only the definitions of enrich and data-enrich would 

change noticeably (since the remaining definitions are in terms of 
operations like signature union and the image of a signature under a 

signature morphism). Sections 1 and 3 would remain unchanged, being 

independent of the definitions of signatures and their morphisms. 

The semantic equations of section 4 would need to be changed 

substantially, for the syntax of a language is naturally very 

dependent on the entities it manipulates. But the level III 
equations and the definition of environments would survive intact. 
The semantics is given here for the special case of ordinary Clear 

in order to make it easy to understand. 

It is enlightening to see how restrictive the extra conditions on 

signatures, signature morphisms and enrichments are. Perhaps 

surprisingly, every one of the institutions which has ever (to my 

knowledge) been proposed for Clear satisfies these extra conditions. 
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Error Clear: Signatures include an extra set containing 
error operators. Signature morphisms map sorts to sorts, 
OK-operators to OK-operators, and error-operators to 
error-operators. Error equations must be distinguished 
from OK-equations. Algebras and satisfaction are as 
described in section I.1.3; see also [Goguen 1978]. 

Order-sorted Clear: The sort and operator sets of 
signatures have extra structure -- the sort set is a 
strict lower semilattice, and the operator set respects 
coercions between sorts. Signature morphisms must 
preserve this structure. Equations, algebras and 
satisfaction are as defined in [Goguen 1978a]. 

Polymorphic Clear: The sort set of a signature contains 
sort generators -- a normal sort like nat is a nullary 
sort generator; list is a unary sort generator. These 
generators give rise to a (possibly infinite) set of sorts 
(sort terms, e.g. (nat, list(nat), list(list(nat)), ...]). 
Operators may be polymorphic, so their arities are tuples 
of sort terms (which may contain variables). Signature 
morphisms map sort generators to sort generators and 
operators to operators; they must preserve the structure 
of signatures. A polymorphic algebra has a carrier for 
every (variable-free) sort term and a function for every 
instance of a polymorphic operator. Equations may be 
polymorphic, in which case an algebra satisfies an 
equation if the equation is satisfied for every type 
instance. 

Other examples are conditional Clear (section I.1.3), higher-order 
Clear (see [Dybjer 1981]), continuous Clear (see [Goguen, Thatcher, 

Wagner and Wright 1977]), and predicate-calculus Clear (see 

[Burstall and Goguen 1981]). The version of Clear whose 

implementation is described in chapter IV is a combination of error 
Clear, conditional Clear and predicate-calculus Clear, with some 

further extensions. 

Are there any useful institutions which do not satisfy the extra 

conditions? It is not difficult to think of a cocomplete category 

which does not satisfy the conditions -- for example, the natural 
numbers form a cocomplete category, where there is a (unique) 

morphism n--+m iff n<m (we ignore the fact that natural numbers can 

be represented as sets so that the extra conditions are satisfied) 
-- but it is hard to imagine a useful specification language using 

natural numbers for signatures. It may be that the greater 
generality of an institution is not useful in practice, but it is 
also possible that there is some undiscovered useful version of 
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Clear in which signatures and their morphisms do not satisfy our 

extra conditions. 

There is at least one useful non-institution which satisfies our 

conditions. If signature morphisms in polymorphic Clear are 

generalised so that sort generators can map to sort terms containing 
variables (not just other sort generators) then signatures cannot be 

'put together' in the required way (that is, the resulting category 

of signatures is not cocomplete) although all the conditions given 

above are still satisfied. This 'extended polymorphic Clear' seems 

more natural than ordinary polymorphic Clear. For example, if T is 
a theory of polymorphic lists (including the nullary sort generator 

'nat' and the unary sort generator 'list') and 2 is a signature for 
stacks of natural numbers (including the nullary sort generator 

'stacknat'), then in extended polymorphic Clear we can write: 
derive 2 from T o 

where o = (stacknat Hlist(nat), ...]. This is not allowed in 
ordinary polymorphic Clear. Burstall and Goguen's (1980] semantics 

could be modified to permit generalisation to extended polymorphic 

Clear (the category of signatures really need only have an initial 
object, coproducts and a funny kind of asymmetric pushout -- 
arbitrary colimits are not required) but much of its elegance would 

then be lost. 
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CHAPTER FOUR 

AN IMPLEMENTATION OF CLEAR AND SC14E SPECIFICATION EXAMPLES 

In this chapter an implementation of Clear is discussed along 

with some of the specifications it has been used to process. This 

implementation is somewhat unusual in that it is (with the exception 

of a parser and a typechecker) a direct translation into HOPE of the 

denotational semantics of Clear described in the last chapter. This 

approach to language implementation is similar to that of Mosses 

[1976] who has developed a system which carries out the translation 
from denotational semantics to a lower-level language automatically. 
Although such an approach results in an implementation which may be 

inefficient (compared with a 'normal' implementation) it is nearly 
guaranteed to be correct because it is only a short step away from 

the formal definition of the language. 

It is important to stress exactly what is meant by "an 

implementation of Clear". Before Clear was invented, in order to 
specify a problem we would have to write down a theory explicitly - 
for a large problem this is a long list of sorts, operators and 

axioms. Such a theory can be described in Clear in a highly 
structured way as the combination (using theory-building operations 
like combine and apply) of a number of small theories. The 

semantics of Clear specifies the correspondence between such a 

structured description and the theory it describes. An 

implementation of Clear is then a program which takes a Clear 

specification to the theory it denotes, checking in the process that 
the syntax and types are correct. Since the set of axioms in the 

resulting theory may be infinite, the program cannot represent it 
explicitly; such sets will be described using a very simple 

language. Although a data constraint gives rise to inequalities and 

an induction rule (section VI.3), the implementation does not 

perform the conversion. 

An implementation of Clear is useful for a variety of reasons. 

First, when the implementation is a direct translation of the 

semantic definitions it can be used to debug the definitions 
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themselves; the semantics of any real language is large and complex 

enough that errors are bound to crop up. In fact, several minor 

errors were discovered in an earlier version of the semantics of 
chapter III during testing of its implementation, and the 

implementation of Clear's category-theoretic semantics (chapter V) 

uncovered a serious error in Burstall and Goguen's [1980] original 
semantics, as discussed in section 111.3- 

A second use for an implementation would be in checking 

specifications for syntactic and semantic errors. Although an 

important goal of any specification language is to permit theories 
to be easily described, mistakes are always easy to make. Some 

errors are difficult for an implementation to catch (and of course 

an implementation of the semantics cannot determine if a 

specification has the class of models intended by its author), but 

still it is comforting to know that a specification contains no 

glaring mistakes -- this is similar to the peace of mind a HOPE 

programmer (or a programmer in any other strongly typed language) 

has when a program survives the typechecker's inspection without a 

fault being discovered. 

A third use for an implementation is simply to produce 

denotations of specifications. These can be inspected by the user 

to find out whether the result is as expected, or else used by a 

theorem proving system (see chapter VI), a program development 

system (see chapter VII), a program verification system, or for any 

other purpose which requires specifications as input. 

The Clear implementation is described in section 1. The intent 
was to provide a practical implementation capable of being used for 
the purposes described above. Some features are therefore supported 

which make specifications easier to write but are not mentioned in 
the semantics (errors, conditional equations, quantifiers and 

typechecking). These are provided with an informal semantics based 

on the semantic definitions of chapter III. The remainder of the 

chapter is devoted to three specification examples, all of them 

large enough to provide a challenge to the Clear system. 
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1. Implementation 

The Clear implementation is composed of three parts: a parser, a 

typechecker, and a semantic component (a fourth part -- a theorem 

prover -- is discussed in chapter VI). 

Parser 
Semantic 
component 

Theorem 
prover 

(POP-2) 
( (HOPE) (ML/LCF) 

I r 

Typechecker 
(POP-2) 

The parser is adapted from David MacQueen's parser for HOPE, written 
in POP-2. It parses the language described by the grammar of 
section 111.4 (with a minor addition -- "T enriched Enr" is 
permitted as an alternative to "enrich T Enr") and also provides 

facilities for the declaration and use of 'distributed-fix' 

operators as in HOPE and OBJ (Goguen and Tardo 19791. Distributed- 

fix operators are declared in the same way as normal operators, but 

with their special syntax displayed (surrounded by parentheses): 

opns f : nat,nat -> nat 
( + _) : nat,nat -> nat 
(if then - else _) : bool,nat,nat -> nat 

e ns if n==0 then m+3 else (m+n) = f(n,m) 

As shown, such operators may be used in equations once they are 

declared. It is not possible to give a distributed-fix operator a 

special precedence; for this reason the parentheses in the left-hand 
side of the equation above are unavoidable, as + cannot be given a 

higher precedence than else. The name of a distributed-fix operator 

(for use in signature changes in derive's and procedure 

applications) is the leftmost identifier in its declaration (so + 

and if are the names of the operators declared above). A comment 

may appear anywhere in a specification preceeded by an exclamation 

mark (as in POP-2 and HOPE). 

The typechecker is adapted from another piece of the HOPE system 

-- David MacQueen's polymorphic typechecker with facilities for 
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resolving occurrences of overloaded operators. Polymorphic types 

are not allowed in Clear, so the full facilities of the typechecker 

are not needed. But if the system is ever extended to allow 

polymorphism (as described in section 111.6) the same typechecker 

can be used without modification. The Clear system does make use of 

the facilities for resolving overloaded operators; this allows the 

user to write equations without using qualified operators (such as 

"o of T") except in the rare cases when the equation would otherwise 

be truly ambiguous. The user is also not required to supply the 

types of variables in equations, since the typechecker can determine 

them automatically (but variable declarations can be given if 

desired, and they are occasionally needed to help resolve 

overloading). 

The semantic component consists of the semantic definition of 
Clear in chapter III translated into HOPE. This is the heart of the 

Clear system -- the parser serves as a front end to the semantics, 

and the typechecker extends the semantics to provide automatic 
resolution of overloaded operators. Of course, both the parser and 

the typechecker also report any errors they discover, providing a 

valuable error-checking facility. Two versions of the system exist; 
one is prolific and the other nonprolific (incorporating the changes 

described in section 111.5). 

The translation from the mathematical definitions of chapter III 
to HOPE was a straightforward task. A function newname (which 

produces a unique name each time it is called) was added to HOPE to 
generate the tags used by the semantics. Strictly speaking, this 
addition renders HOPE nonapplicative but it is far more convenient 

than alternative ways of generating unique names. The only major 

problem to be solved in translating the definitions was how to 
represent and manipulate closed sets of equations and constraints in 
HOPE, given that: 

- A closed set of equations and constraints will normally be 
infinite. 

- The closure operation is defined model-theoretically. 

- No complete proof system exists for Clear (see section 
VI.5). 
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Faced with such insurmountable difficulties we are obviously unable 

to give any explicit representation of a closed set of equations and 

constraints. Such sets can only be described using some language 

which must be left uninterpreted for the moment. 

This matter is discussed at somewhat greater length in chapter 

VI, where the problem of interpreting such a representation 

(determining if a given equation is in the infinite closed set thus 

described) is addressed. A closed set of equations and constraints 
may be represented as an agglomerate, a value of a data type with 

several uninterpreted constructor functions. An examination of the 

semantics reveals that five constructors suffice for the 

representation of all necessary values. Two constructors are used 

to represent the result of the combine operation: 

union : agglomerate x agglomerate -> agglomerate 
translate : signature-morphism x agglomerate -'1 agglomerate 

The first produces (an agglomerate representing) the closure of the 

union of two closed sets, and the second produces (a representation 

of) the closure of the set which results from applying a signature 

morphism to each equation and constraint in a set. The enrich 
operation needs the closure of a (finite) set of equations and 

constraints: 

close : equation-set x constraint-set --* agglomerate 

Derive requires the inverse image of a set under a signature 

morphism: 

inv-translate : signature-morphism x agglomerate --j agglomerate 

And data-enrich needs the result of adding to a set all equations 

which are true about the equality predicates on a set of sorts (see 

section III.2.3 for details -- for the purposes of the theorem 

prover described in chapter VI we record the signature inclusion 
o":j yx rather than the set of sorts S and the tag x): 

add-equality : signature-morphism x agglomerate -4 agglomerate 

The Clear semantics program does not use these constructors 
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directly; instead it uses functions which apply the appropriate 

constructor and then simplify the result. Only a few 

simplifications are applied, such as: 

translate (o-,translate (o'',A)) = translate(o"'.cr,A) 

Care is taken not to disturb the structure of agglomerates, since 

the theorem prover described in chapter VI employs heuristics which 

make use of this structure. We postpone the presentation of the 

formal semantics of agglomerates until then; the informal meaning of 
each constructor as given above should be enough for now. An 

alternative name for an agglomerate would be structured theory, 

because an agglomerate displays (in 'flattened' form, with procedure 

applications removed) the structure of the original Clear 

specification. An ordinary (data) theory (chapter II) contains only 

a set of equations and constraints. 

In developing the Clear system the intention was to provide a 

practical system for writing and checking specifications which could 

some day be incorporated in a program development or program 

verification system. It is vitally important that specifications be 

easy to write and understand, and that the specification language 

itself possess a well-defined semantics. Clear satisfies the latter 
goal, but not always the former; its limitations make it rather 
difficult to write some specifications. The system therefore 
supports several extensions which make specifications easier to 
write but are not mentioned in the semantics. As each one of these 

is described below it is provided with a (sometimes informal) 
semantics to justify its inclusion and explain its meaning. 

Errors 

Error operators and error equations are allowed along with 
ordinary (OK) operators and equations. This extension and its 
semantics has already been discussed in sections I.1.3 and 111.6, 

and is discussed at greater length in [Goguen 1978). 
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Conditional equations 

Besides the usual equations, conditional equations such as the 

following are allowed: 

a is-in singleton(b) = false if not(a==b) 

The condition must be a bool-valued term. Semantically, the 

conditional equation t1=t2 if c is equivalent to the ordinary 
equation cond(c,t1,t2)=t2, where cond:bool,s,s->s (for any sort s) 

is a 'hidden' operator defined by the equations: 

cond(true,a,b) = a cond(false,a,b) = b 

Conditional equations have already been discussed in section I.1.3. 

Multilevel binding 

This is a convenience borrowed from HOPE (section A1.3). A 

variable may be bound to the value of any term in an equation to 
save writing the same term a second time, for example: 

insert(R1 & insert(R,a,b), a, b) = R1 

or alternatively: 

insert(R1,a,b) = R1 where R1 = insert(R,a,b) 

rather than insert(insert(R,a,b), a, b) = insert(R,a,b). This is a 

purely syntactic feature; the system removes such bindings 
immediately after parsing an equation containing them by replacing 
each occurrence of the variable with a copy of the term. A variable 
can only be so bound once in an equation, and may not itself appear 

in the term to which it is bound. 

Don't care variables 

This is another feature borrowed from HOPE. Any variable which 

appears only once in an equation may be replaced by an underscore to 
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save thinking of a name. The system replaces each underscore by a 

uniquely generated variable name. The following two equations are 

therefore equivalent: 

isempty(push( , )) = false 

isempty(push(v291,v292)) = false 

Quantifiers 

Equations may include existential and universal quantifiers, for 
example: 

even(n) exists m. (2 * m) _= n 

prime(n) = n>1 and forall m, p. (1<m and 1<p) --> not(m*p == n) 

The condition of a quantifier must be a bool-valued term, and the 

result of a quantifier has type bool. It is easy to extend the 

formal notion of equation and satisfaction (section 11-3) to 
equations with quantifiers. 

The system does not permit the use of quantifiers within data 

enrichments. As noted in [Burstall and Goguen 1981], a data 

enrichment of T in which quantifiers are included does not always 

give rise to free extensions of models of T. If quantifiers are used 

only outside data enrichments this is not a problem. 

The prohibition on quantifiers within data enrichments could be 

relaxed. Bergstra, Broy, Tucker and Wirsing [1981] describe a way 

of coding quantifiers in ordinary Clear with equations using an 

auxiliary operator. The only restriction is that quantification 

must be over a previous 'data' sort; that is, a quantifier within a 

data enrichment is safe as long as the quantified sort is not one of 

those being added in the current enrichment. 

Furthermore, note that the conditional equation: 

t = t' if exists x. p(x) 

is equivalent to: 
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t _ t' if p(x) 

if x does not occur in t or t'. Existential quantifiers of this 

special kind are therefore safe anywhere, even within the data 

enrichment which adds the quantified sort. Neither of these two 

exceptions to the exclusion of quantifiers within data enrichments 

is recognised by the system. 

Typechecking 

The user is not required to provide variable declarations in 
equations, or to use unambiguous operator names in equations and 

signature changes. As already discussed, the typechecker includes 

facilities for resolving overloaded operators which may be used to 

disambiguate almost every reference to an overloaded operator. The 

typechecker can also determine the types of variables automatically, 

although the user may supply them if desired. 

The semantics must be changed slightly to take advantage of the 

facilities for disambiguation offered by the typechecker. An 

operator name no longer denotes a single operator; it denotes the 

set of all operators available with that name. The question of 

which operator in the set is the right one is postponed until an 

equation or signature change has been assembled. The typechecker is 

then applied; it selects the appropriate operator from each set 

based on the type information available from its context, yielding 

an unambiguous equation or signature change. 

But what if the equation or signature change is truly ambiguous, 

and the typechecker is unable to select a single appropriate 

operator from a set of well-typed possibilities? The obvious course 

is to give an error message, telling the user that he must provide 

more information (a variable declaration for example). 

Unfortunately, there are some cases in which Clear does not provide 

any way of unambiguously referring to a certain operator (or sort). 

For example, in the theory 

Set(Set(Nat[element is nat])[element is set] 

there are two sorts called set and two operators 
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(_ U _):set,set->set. One of these sorts (and one of the operators) 
may be unambiguously referenced using the expression "set of 
Set(Nat[element is nat])" (respectively "U of 

Set(Nat[element is nat])") in nonprolific Clear, but there is no way 

of referring to the other sort (and operator). Another instance of 

the same problem occurs in the specification example in section 2.2. 

The solution adopted by the Clear system (the prolific version only) 

is to select the operator with the largest tag (that is, the most 

recently 'created' operator, since each tag includes a number and 

tags are issued in increasing numerical order) whenever there is a 

choice between several otherwise identical operators. The same 

policy is used to select a sort when the reference given is 

ambiguous. There is some logic in this choice; it should be easier 

to refer to a recently created object than to an older object with 
the same name, so in case of ambiguity it is natural to assume that 
the most recently created object was intended. In the example just 

discussed, the names set and U will refer to the otherwise 

unnameable sort and operator. A warning message is produced 

whenever this policy is applied. 

The user is also not required to fully specify signature changes, 

since in almost every case a signature change is nearly the identity 
map, with just a few sorts and operators mapping onto different 

objects. The system will 'fill in' signature changes, mapping each 

sort and operator left unmentioned in the source signature onto the 

same object in the target signature; if this fails then it is mapped 

onto an object in the target signature with the same name but a 

different tag, using the disambiguation policy mentioned above if 

there is more than one choice. If there is still no match then the 

system reports an error. 

Theory library 

The Clear system includes a library of basic theories which the 

user may find useful in writing specifications. The library is 
listed in Appendix 2. 
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The Clear system occupies 149K words on a DEC KL-10 computer (the 

HOPE system itself occupies 66K words of this total, and the built- 

in theory library occupies another 32K words). The timing figures 

given after each example in the next section provide a measure of 
the system's performance. Parsing and typechecking typically 

account for about 6% of the processing time, with the remainder 

consumed by the semantic component. Specifications may be typed 

directly into the system or else read from files. 

The system could be made much faster and smaller by recoding in a 

lower-level language (such as BCPL) with some attention paid to 

efficiency. It should be possible to process specifications at 

least as rapidly as a typical compiler can process programs, since 

there is nothing very complex about the computations required. The 

program is slow because it is written mostly in HOPE; apart from the 

speed of HOPE itself, the interfaces between the HOPE portions of 

the program and the remaining portions (parser, typechecker and 

theorem prover) contribute to its sluggishness. 
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2. Examples 

The following subsections contain three specification examples 

which have been processed by the Clear implementation described in 

section 1. The first and third examples were processed by the 

nonprolific version and the second example by the prolific version 

of the program (but without the theorem prover discussed in chapter 

VI) which failed to detect any errors. This does not ensure that 

the specifications have the intended classes of models, but only 

that their syntax and types are correct. 

The examples are presented only as sample specifications; 
although the problems are interesting in themselves, the discussion 

which accompanies each example concentrates on very briefly 
describing the specification and dealing with the problems of style 

which arise. The time which was required to process each 

specification is given to provide some indication of the system's 

performance. 

2.1. Length of the longest upsequence 

This problem comes from a set of specification and program 

development tasks [IFIP WG 2.1 1979] circulated prior to the 

December 1979 IFIP WG 2.1 meeting in Brussels. The following 

informal specification is taken from that source: 

Given a sequence of n integers, a0, a1, ... an_1, an 
upsequence is a subsequence which is ordered in ascending 
order. A subsequence is any subset of the original sequence 
where the original order is retained (there are 2n possible 
subsequences). Ordered in ascending order means that no 

element of the upsequence has a right hand neighbor smaller 
than itself. 

Give an algorithm which, given a sequence, computes the 
length of its longest upsequence. 

Note that all subsequences of length 1 are upsequences by 
this definition. 

There may be more than one longest upsequence having the 
same length, for example the sequence (3,1,1,2,5,3) yields 4 

for the maximum length, realised either by (1,1,2,5) or 

(1,1,2,3). 

The statement of the problem asks for an algorithm, but a 

specification is given instead (an algorithm is given by Dijkstra 
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[1980]). The specification is quite straightforward; an upsequence 

is defined as an ordered subsequence, and then a hidden operator 

producing any of the longest upsequences of a sequence is used to 

specify the length of the longest upsequence. The operator is 

hidden because we do not wish to bias the specification toward 

solutions which generate longest upsequences; it is possible to 

determine the length of the longest upsequence without explicitly 

generating the upsequence itself. 

roc Subsequence(X:Ident) _ 

enrich Sequence(X) 
opns (_ is_subsequence_of ) : sequence,sequence -> bool 
egns s is_subsequence_of exists a, b, x, y. 

(a.b==s and x.y==t 
and a is_subsequence_of x 
and b is_subsequence_of y) 

empty is_3ubsequence_of = true 
s is_subsequence_of empty = s==empty 
unit(a) is_subsequence_of t = 

exists x, y. (x.unit(a).y==t) enden 

proc Upsequence(X:POSet) _ 

enrich Subsequence(X) 
opns (_ 13-ordered) : sequence -> bool 

(_ is_upsequence_of ) : sequence,sequence -> bool 
egns s 13-ordered = forall x, a, y, b, z. 

(x.unit(a).y.unit(b).z==s --> a=<b) 
s is_upsequence_of t = s is_subsequence_of t 

and (s 13-ordered) enden 

proc LongestUpsegLength(X:POSet) _ 

let LongestUS = 

enrich Upsequence(X) 
opns longest_upseq : sequence -> sequence 
e ns length(p)=<length(longest_upseq(s)) = true 

if p is_upsequence_of s 

longest_upseq(s) is_upsequence_of s = true enden in 
derive o ns longest_upseq_length : sequence -> nat 

using Upsequence(X) 
from 

enrich LongestUS 
opns longest_upseq_length : sequence -> nat 
e ns longest_upseq_length(s) = length(longest_upseq(s)) 

enden endde 

This procedure may now be applied to (for example) the theory of 
natural numbers (which includes =<) to specify the length of the 

longest upsequence of a sequence of natural numbers: 

LongestUpsegLength(Nat[element is nat]) 
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Processing time: 1.65 minutes. 

2.2. Lexical analysis problem 

The following problem comes from the same source as the problem 

in the last section (see [IFIP WG 2.1 19791) and the informal 

specification below is taken from there. The problem bears some 

resemblance to a part of the well-known 'Telegram problem' due to 

Henderson and Snowdon [1972) but is slightly simpler. 

A line consists of a sequence of characters composed of 
letters and blanks only. A word is a sequence of letters 
delimited by blanks or the end of the line. The parse of a 

line is the sequence of words, in order, contained in the 

line. Give the algorithm for obtaining the parse of a line, 
given the line. 

Again, a specification is given for the problem rather than an 

algorithm. The specification relies heavily on the notion of a 

regular expression and the set of strings described by a regular 
expression (see [Hopcroft and Ullman 19791). Regular expressions 

are used as a tool to specify the action of the 'parser'. 

meta Classify 
enrich Triv + Bool 

sorts type 
opns (_ isa element,type -> bool enden 

Permissible parameters for RegExpr will be theories describing a 

relation between objects and a set of basic types. The result of 

applying RegExpr to such a theory is the theory of regular 

expressions over the given types, providing a way of describing 

sequences of objects using 'complex' types. 
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proc RegExpr(X:Classify) 
let RE _ 

enrich X 

data sorts regexpr 
opns empty : regexpr 

type -> regexpr 
regexpr,regexpr -> regexpr 

( *)r: regexpr -> regexpr 
egns e* = empty U (e.(e*)) enden in 

enrich RE + Sequence(X) 
opns (_ isa _) : sequence,regexpr -> bool 
egns s isa empty = s=:empty 

unit(a) isa 't' = a isa t 
s isa 't' = false if not(length(s)==1) 
3 isa (el U e2) _ (s isa el) or (s isa e2) 
s isa (el . e2) = 

exists 31,32. (s==(s1.s2) and (s1 isa el) 
and (s2 isa e2)) enden 

CharacterClassify describes a classification of characters into 
two disjoint types: separators (blanks) and letters (everything 

else). The procedure application: 

RegExpr(CharacterClassify[element is character]) 

gives the theory of regular expressions over these types. One such 

regular expression is: 

('letter' *) U ('separator' *) 

denoting all sequences which contain either letters or separators 

but not both. (The operator U is used rather than the usual + 

because + is a Clear keyword.) 

const CharacterClassify = 

let Type = 

enrich Bool by 
data sorts type 

opns letter, separator : type enden in 
enrich Type + Character 

opns (_ isa ) : character,type -> bool 
egns c isa separator = c==blank 

c isa letter = not(c==blank) enden 

WordsandGaps defines two special regular expressions which will 

be useful in specifying the parser. 
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const WordsandGaps 
enrich RegExpr(CharacterClassify[element is character]) 

opns word, gap : regexpr 
e ns word = 'letter' . ('letter' *) 

gap = 'separator' . ('separator' *) enden 

The specification of the parser below is simple and direct. Gaps 

in a sequence act as separators where the result is the 

concatenation of the parses of the two halves. A sequence without a 

gap is either a word (which parses to the unit sequence of words 

containing the word itself) or empty. This specification was 

processed by the prolific version of the Clear implementation 

because it relies on the 'largest-tag' method (discussed earlier) 
for disambiguation of a reference to the sort 'sequence'. 

const Parse = 

enrich Sequence(WordsandGaps[element is sequence]) 
opns parse : sequence of WordsandGaps -> sequence 

I result sort resolved by the disambiguation 
I method discussed in section 1 (Typechecking) 

eqns parse(x.g.y) = parse(x).parse(y) if g isa gap 

parse(empty) = empty 
parse(x) = unit(x) if x isa word enden 

Processing time: 1.04 minutes. 

Regular expressions seem to be very useful in the specification 
of problems of this kind as they provide quite a high-level way of 
describing sequences; this permits very elegant specifications of 
sequence-manipulation operators (such as parse above). The idea of 
using regular expressions in Clear specifications is due to R.M. 

Burstall. 

2.3. Polymorphic type checking 

The specification below describes a polymorphic typechecker for a 

simple applicative language. Such typecheckers are used in the 

implementation of HOPE (appendix 1) and ML [Gordon, Milner and 

Wadsworth 19791. Informally, the problem is as follows: given an 

expression exp in the language Exp generated by the following 
grammar (where x is any identifier, function application is denoted 
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by juxtaposition, and fix x.e is the least fixed-point of Ax.e): 

(e e') if e then e' else e" 1 lambda x.e 
fix x.e let x=e in e' 

with some predefined identifiers (of predefined types), assign a 

polymorphic type to every subexpression of exp so that the result is 

well-typed; if no well-typing exists then return an error. The 

notion of a well-typed expression is defined in section 3 of [Milner 

1978] and depends on the definitions of several subsidiary notions 

so it is not reproduced here except in the specification itself. A 

polymorphic type is any of the following: 

- a basic type (e.g. bool) 

- a type variable 

- a -4 g, where a and S are polymorphic types. 

Given the following predefined identifiers: 

b : bool f : a -4 a n : num m : num 

this Exp expression is well-typed: 

(let g:a->a = f:(a-4a)->(a->(x) (f:a->a) : a->a in 
(if g:bool->bool (b:bool) : bool 
then g:num-i num (n:num) : num 
else m:num) : num 

num 

but this expression is not: 

(if b:bool then f:bool-*bool (b:bool) : num 
else m:num) : num 

(f:bool--*bool applied to b:bool gives a result of type bool, not 

num). 

The language Exp and the definition of polymorphic types are 

rather simpler than a real language and its types would be. There 

is no provision for tupling (and so functions always have one 

argument), no type constructors (such as list, which can be used to 
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construct types like list(a), list(bool), and list(list(a)- 0 )) and 

no constants (but we imagine instead that some identifiers are bound 

in advance to certain constant values). But the language as it 
stands is large enough to expose the main problems arising in a 

polymorphic typechecker for a larger language. 

The specification is more or less a direct translation into Clear 

of section 3 of [Milner 19781. Some explanation of the notions 

defined by the specification is given below, but the careful reader 

is encouraged to refer to [Milner 1978] for more background and 

motivation. This is the largest specification which has so far been 

processed by the Clear system. Some measure of the usefulness of 
the system is given by the fact that it found 19 errors in 
successive versions of the specification. The present version may 

still contain some semantic errors, but at least it is better than 

the first version of the specification. 

The typechecking function will be defined 'implicitly'; once the 

notion of a well-typed expression has been specified it is enough to 

say that for any expression typecheck assigns a well-typing if one 

exists. The specification of well-typed requires a number of prior 
notions; the language Exp and a theory of types and typed 

expressions is followed by the definition of technical notions 
concerning type variable instantiation. 

The specification begins with a definition of the abstract syntax 

of the language Exp. After giving the theory of identifiers (by a 

loose specification -- any set with an equivalence relation will do) 

we specify Exp's syntax using distributed-fix operators for 
readability. All Exp keywords are capitalised to avoid conflicts 
with Clear syntax. 

const Id = 

enrich Bool 
sorts id 
opns (_ __ ) : id,id -> bool 

e ns x==x = true 
x==Y = Y==x 
x==y and y==z -> x=:z = true enden 
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const Expr = 

enrich Id 

data sorts expr 
o ns (VAR _) : id -> expr 

(APPLY TO _) : expr,expr -> expr 
(IF THEN ELSE _) : expr,expr,expr -> expr 
(LAMBDA .~_), (FIX . _) : id,expr -> expr 
(LET BE IN ) : id,expr,expr -> expr enden 

Next we specify polymorphic types. It is assumed that we are 

given an arbitrary set of basic types which includes BOOL; therefore 
the theory of basic types is just like the theory of identifiers Id 

above except for the name of the sort and the addition of a 

distinguished element called BOOL. Likewise, type variable names 

are arbitrary and so again we use Id with a change of sort name. 

Then a type is defined to be either a basic type, or a type 
constant, or an 'arrow' type a--->q where a and q are types. 

const BasicType = 

let T = 

derive sorts basictype 
opns basictype,basictype -> bool 

using Bool 
from Id 

basictype is id endde in 

enrich T 

opns BOOL : basictype enden 

const TypeVar = 

derive sorts typevar 
o ns typevar,typevar -> bool 

using Bool 
from Id 
by typevar is id endde 

const Type = 

enrich BasicType + TypeVar 
data sorts type 

opns constant : basictype -> type 
var typevar -> type 
(_ ---> _) : type,type -> type enden 

A typed expression is an expression of Exp with types assigned to 



all its subexpressions. The easiest way to define typed expressions 

is to repeat the specification of Exp syntax, adding slots for the 

insertion of type information. Initial keywords are prefixed with T 

to avoid conflict with the distributed-fix operators declared in the 

theory Expr; the parser does not permit two distributed-fix 

operators having the same initial keyword but different subsequent 

syntax. A operator typeof giving the (top-level) type of a typed 

expression is defined for the convenience of later parts of the 

specification. 

The theory TypedExprEq defines another operator which will be 

convenient later. It determines if an expression is identical to a 

typed expression, forgetting about types. 

con3t TypedExpr = 

enrich Id + Type 
data sorts typedexpr 

opns (TVAR ; _) : id,type -> typedexpr 
(TAPPLY TO ; _) : 

typedexpr,typedexpr,type -> typedexpr 
(TIF THEN ELSE 1 _) : 

typedexpr, typedexpr,typedexpr,type -> typedexpr 
(TLAMBDA 

1 
. 

i ), (TFIX i . _) : 

-> typedexpr 
(TLET ; BE IN ; _) 

id,type,typedexp ,,typedexpr,type -> typedexpr 
typeof : typedexpr -> type 

e ns typeof(TVAR _;t) = t 

typeof(TAPPLY TO _it) = t 

typeof(TIF THEN ELSE _;t) = t 

typeof(TLAMBDA . _;t) = t 

typeof(TFIX _;t) = t 

typeof(TLET BE IN ;t) = t enden 

const TypedExprEq = 

let TEE = 

enrich TypedExpr + Expr 
opns (_ __ _) : expr,typedexpr -> bool 

forget : typedexpr -> expr 
e ns forget(TVAR x;_) = VAR x 

forget(TAPPLY a TO b;_) = APPLY forget(a) TO forget(b) 
forget(TIF a THEN b ELSE c;_) = 

IF forget(a) THEN forget(b) ELSE forget(c) 
forget(TLAMBDA xi_ . a;_) = LAMBDA x . forget(a) 
forget(TFIX x;_ . a;_) = FIX x . forget(a) 
forget(TLET x;_ BE a IN b;_) _ 

LET x BE forget(a) IN forget(b) 
e==te = e==forget(te) enden in 
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derive o ns (_ == _) : expr,typedexpr -> bool 
using TypedExpr, Expr 
from TEE endde 

A (typed) prefix is a sequence of items of the form let x;t, 
fix x;t or lambda xit where x is a variable and t is a type. 

Initial keywords are prefixed with P to avoid conflict with Expr and 

TypedExpr. A prefix can be thought of as a list of bound variables 

('most local' bindings are rightmost) which records the way that 
each variable was bound as well as its type. A prefixed expression 

(pe) is a prefix together with a typed expression. We include an 

'error' pe called illtyped for later use. The typechecker will be 

defined to take a prefix and an (untyped) expression and return a 

well-typed pe -- illtyped is the result if it is impossible to 
assigned a well-typing to the input expression. 

con3t Prefix 

let PrefixElement = 

enrich Id + Type 

data sorts prefixelement 
o ns (PLET _), (PLAMBDA (PFIX 

id, type -> prefixelement enden in 

derive sorts prefix 
opns empty : prefix 

unit : prefixelement -> prefix 
( ) prefix,prefix -> prefix 

prefix,prefix -> bool 
using PrefixElement 
from Sequence(PrefixElement[element is prefixelement]) 
by prefix is sequence endde 

const PrefixExpr = 

enrich Prefix + TypedExpr 
data sorts prefixexpr 

opns (_ ; _) : prefix,typedexpr -> prefixexpr 
erroropns illtyped : prefixexpr enden 

Each prefixed expression has a set of sub-pe's given by the 

following rules, together with their reflexive-transitive closure: 

- p;x has no sub-pe's except itself, 

- p;(e e') has sub-pe's pie and pie', 
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- p;(if e then e' else a") has sub-pe's pie, pie' and pie", 

- pi(lambda x.e) has sub-pe (p.lambda x)le, 

- pi(fix x.e) has sub-pe (p.fix We, 

- pi(let x=e in e') has sub-pe's pie and (p.let x)1e. 

A sub-pe is thus a subexpression with a prefix consisting of all the 

variable bindings which enclose it. We define below a operator 

which yields the set of sub-pe's of a prefixed expression, where the 

types in the sub-pe's are induced by the types in the pe. 

const SubPE _ 

enrich PrefixExpr + Set(PrefixExpr[element is prefixexpr]) by 

opns subpe : prefixexpr -> set 
egns subpe(pe & (_ (TVAR _;_))) = singleton(pe) 

subpe(pe & (p (TAPPLY a TO b;))) = 

singleton(pe) U subpe(p;b) 
subpe(pe & (p (TIF a THEN b ELSE ci_))) _ 

singleton(pe) U subpe(p;a) U subpe(pib) 
U subpe(p;c) 

subpe(pe & (p (TLAMBDA x;t . a;_))) = singleton(pe) 
U subpe(p unit(PLAMBDA x;t) ; a) 

subpe(pe & (p (TFIX x;t . a;))) = singleton(pe) 
U subpe(p x;t) ; 

a) 

subpe(pe & (p 1 (TLET x;t BE a IN b;_))) = singleton(pe) 
U subpe(p . unit(PLET x;t) ; b) 

U subpe(p;a) enden 

An item let x; t, fix x1 t or lambda x: t in a prefix p is said to 

be active in p iff no prefix element containing x occurs to the 

right of it in p. That is, a binding is active in a prefix if it has 

not been hidden by a more local binding of the same identifier. 

const Active = 

let Var = 

enrich Prefix 
opns var : prefixelement -> id 
e ns var(PLET x;) = x 

var(PLAMBDA x;_) = x 
var(PFIX x;-) x enden in 
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let IsActive = 

enrich Var 
opns (_ is-active-in _) : prefixelement,prefix -> bool 
e ns is-active-in empty = false 

p is-active-in (_ . unit(p)) = true 

p is_active_in (s . unit(q)) = false 
if not(p==q) and var(p)==var(q) 

p is_active_in (s unit(q)) = p is-active-in s 
if not(var(p):=var(q)) enden in 

derive opns (_ is-active-in _) : prefixelement,prefix -> bool 
using Prefix 
from IsActive endde 

Given a prefixed expression pie and a binding let x;t in p, a 

type variable in t which does not occur in the type of any enclosing 

lambda or fix binding (that is, in the type of any lambda or fix 

item to the left of the let in p) is called generic for the binding 

let x;t. Only generic type variables are instantiable; other type 

variables are fixed (at least locally). The operator is-generic-in 

is defined below to determine if the given type variable is generic 

for the PLET prefix element at the rightmost extremity of the given 

prefix. It is not defined for prefixes not ending with a PLET. 

Milner [1978) also defines what it means for a type variable which 

is in the expression part of a prefixed expression to be generic. 

This concept is not needed to characterise well-typed expressions so 

it is omitted here. 

const VarsinType 
enrich Type + Set(TypeVar[element is typevar)) 

opns varsintype : type -> set 
egns varsintype(constant(_)) = empty 

varsintype(var(x)) = singleton(x) 
varsintype(tl ---> t2) = varsintype(tl) U varsintype(t2) 

enden 

const GenericVars = 

let NonLetVarsinPrefix = 

enrich Prefix + VarsinType 
opns nonletvars : prefix -> set 
e ns nonletvars(empty) = empty 

nonletvars(unit(PLET _;)) = empty 
;t)) = varsintype(t) 

nonletvars(unit(PFIX ; t)) = varsintype(t) 
nonletvars(s . t) = nonletvars(s) U nonletvars(t) 

enden in 
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let GenVars = 

enrich NonLetVarsinPrefix 
o ns ( is-generic-in _) : typevar,prefix -> bool 
egns v is-generic-in (s.unit(PLET _;t)) 

(v is-in varsint7ype(t)) 
and not(v is-in nonletvars(s)) enden in 

derive opns (_ is-generic-in w) : typevar,prefix -> bool 
using Prefix, VarsinType 
from GenVars endde 

A generic instance of a type t of a prefix element let x;t is an 

instance of t in which only generic type variables of t are 

instantiated. We must first specify what it means for one type to 

be an instance of another; "t1 is-instance-of t2 wrt S" is defined 

below to be true iff t1 is an instance of t2 with respect to the 

type variables in S. Note that any prefix given to 

is-generic-instance-of must have the appropriate PLET at its 

rightmost extremity; otherwise the result is not defined. 

const Instance = 

let Substitution = 

enrich Type + Map(TypeVar[element is typevar], 
Type[element is type]) 

opns substitute : type,map -> type 
e ns substitute(constant(b),) = constant(b) 

substitute(var(x),f) = f[x] if x is-in domain(f) 
substitute(var(x),f) = var(x) 

if not(x is-in domain(f)) 
substitute(t1--->t2,f) 

substitute(tl,f) ---> substitute(t2,f) enden in 

enrich Substitution 
opns (_ is-instance-of wrt ) : type,type,set -> bool 
e ns tt is-instance-of t2 = 

exists f. ((domain(f)==S) 
and (substitute(t2,f)==t1)) enden 

const GenericInstance = 

enrich Instance + GenericVars 
o ns (_ is_generic_instance_of type,prefix -> bool 
egns t1 is_generic_instance_of (p & (_ . unit(PLET _;t2))) 

exists S. (t1 is_instance_of t2 wrt S 
and forall v. (v is_in S --> 

v 13-generic-in p)) 

enden 
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A prefixed expression pie is standard iff for every sub-pe p' :e' 
the generic type variables of each let binding in p' occur nowhere 

else in p':e'. For example, the following prefixed expression is 
standard: 

(lambda x:ac . let f:(c--->P) : (fi(X --->$ x:(X) : $) 

(only 3 is generic, and it appears only in the let) but this one is 
not: 

(lambda x:(x . let f:oc--->5) (f1ac----> x: (X) 

A well-typed prefixed expression is required to be standard for 

technical reasons; the reader is referred to [Milner 19787. 

const Standard = 

let VarsinTypedExpr = 

enrich TypedExpr + VarsinType 
opns varsintypedexpr : typedexpr -> set 
e ns varsintypedexpr(TVAR _:t) = varsintype(t) 

varsintypedexpr(TAPPLY a TO bit) = varsintype(t) 
U varsintypedexpr(a) U varsintypedexpr(b) 

varsintypedexpr(TIF a THEN b ELSE c:t) = varsintype(t) 
U varsintypedexpr(a) U varsintypedexpr(b) 
U varsintypedexpr(c) 

varsintypedexpr(TLAMBDA _:t1 . a:t2) = varsintype(tl) 
U varsintype(t2) U varsintypedexpr(a) 

varsintypedexpr(TFIX :t1 . a:t2) = varsintype(tl) 
U varsintype(t2) U varsintypedexpr(a) 

varsintypedexpr(TLET _:t1 BE a IN b:t2) 
varsintype(tl) 

U varsintype(t2) U varsintypedexpr(a) 
U varsintypedexpr(b) enden in 

let VarsinPrefix = 

enrich Prefix + VarsinType by 
opns varsinprefix : prefix -> set 
egns varsinprefix(empty) = empty 

varsinprefix(unit(PLET _:t)) = varsintype(t) 
varsinprefix(unit(PLAMBDA :t)) = varsintype(t) 
varsinprefix(unit(PFIX _:t)) = varsintype(t) 
varsinprefix(s . t) _ 

varsinprefix(s) U varsinprefix(t) 
enden in 
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let IsStandard = 

enrich SubPE + GenericVars + VarsinTypedExpr 
+ VarsinPrefix 

opns (_ isstandard) : prefixexpr -> bool 
genericvarsok : prefix,prefixexpr -> bool 

I auxiliary opn -- checks a given PLET 
exposelet : prefix -> prefix 

I auxiliary opn -- exposes next PLET 
egns pe isstandard = 

forall p, e. ((pie) is-in subpe(pe)) --> 
genericvarsok(exposelet(p),ple) 

genericvarsok(empty,_) = true 
genericvarsok(p & (s . unit( )),pl e) _ 

forall v. ((p==(p.v)) 

forall x. (x is-in (varsintypedexpr(e) 
U varsinprefix(s.v)) 

--> not(x is-generic-in p))) 
and genericvarsok(exposelet(s),pl e) 

exposelet(empty) = empty 
exposelet(p & ( . unit(PLET _;_))) = p 

exposelet(s . unit(PLAMBDA _;_)) = exposelet(s) 
exposelet(s . unit(PFIX ; )) = exposelet(s) enden in 

derive opn3 (_ isstandard) : prefixexpr -> bool 
using SubPE, GenericVars 
from IsStandard endde 

Armed with all the definitions given above, we can finally define 

what it means for a prefixed expression to be well-typed (wt). 

- pi(TVAR x;t) is wt iff it is standard, and either 

lambda x;t or fix x;t is active in p, or 

let x;t' is active in p and t is a generic instance 
of t'. 

- pi(TAPPLY a TO e'it") is wt iff pie and pie' are wt and 
t = t'--fit", where t and t' are the types assigned to e and 
e'. 

- W TIF e THEN e' ELSE a";t) is wt iff pie, pie' and pie" 
are wt, the type of e is BOOL and the types of e' and e" 
are both t. 

- pi(TLAMBDA x;t . e';t") is wt iff (p.PLAMBDA x;t);e' is wt 
and t" = t--4t I, where t' is the type of e'. 

- pi(TFIX xit . e'it") is wt iff (p.PFIX xit)ie' is wt, t=t" 
and the type of e' is t. 

- p;(TLET xit BE e IN e';t') is wt iff pie and 
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(p.PLET x;t);e' are wt, the type of e is t and the type of 
e' is t'. 

See the beginning of this section for examples of well- and ill- 

typed expressions. 

Once the operator is_welltyped has been defined, we specify the 

typecheck operator by saying that anything typecheck returns is 
well-typed and identical (except for types) to the prefixed 
expression it was given, if some well-typing exists then typecheck 

finds one (not necessarily the same one), and if no well-typing 
exists then typecheck returns illtyped (the error pe). Note that 
this specification only requires typecheck to find some type; the 
type it finds is not necessarily the best (most general) one. 

const WellTyped = 

! expose a given (active) prefixelement 
let Expo3eActive = 

enrich Prefix by 
opns exposeactive : prefixelement,prefix -> prefix 
egns exposeactive(pe,p & (_ . unit(pe))) = p 

exposeactive(p,s . unit(q)) = exposeactive(p,s) 
if not(p==q) enden in 

let I3WellTyped = 

enrich Standard + Genericlnstance + Active + ExposeActive 
opns (_ is_welltyped) : prefixexpr -> bool 
egns (pe & (p ; (TVAR x;t))) is_welltyped = 

( (PLAMBDA xit) is-active-in p 
or ((PFIX x1t) is-active-in p) 
or (exists t1. ((PLET xitl) is-active-in p and 

(t is-generic-instance-of 
exposeactive(PLET x;tl,p)))) ) 

and pe isstandard 
p (TAPPLY a TO b;t) is_welltyped 

(pia) is_welltyped and ((p;b) is_welltyped) 
and typeof(a)==(typeof(b)--->t) 

p (TIF a THEN b ELSE cit) is_welltyped 
_ (pla) is_welltyped and ((p;b) is_welltyped) 

and ((plc) is_welltyped) and typeof(b)==t 
and typeof(c)==t and typeof(a)==constant(BOOL) 

p (TLAMBDA x;tl . a;t2) is_welltyped 
_ (p . unit(PLAMBDA xitl) ; a) is_welltyped 

and t2;=(t1--->typeof(a)) 
p (TFIX xitl . a1t2) is_welltyped 

(p . unit(PFIX x;tl) 1 a) is_welltyped 
and tl==t2 and typeof(a)==t2 

p (TLET x;tl BE a IN b;t2) is_welltyped 
(p . unit(PLET xitl) ; b) is_welltyped 
and (p;a) is_welltyped and tl==typeof(a) 
and typeof(b)==t2 enden in 
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derive opns (_ is_welltyped) : prefixexpr -> bool 

using Standard, Genericlnstance, Active 
from IsWellTyped endde 

const Typecheck = 

enrich WellTyped + TypedExprEq 
opns typecheck : prefix,expr -> prefixexpr 
e ns (pie) is_welltyped and eO==e = true 

if typecheck(p,eO)==(p;e) 
exists el. (typecheck(p,eO)==(p;e1)) = true 

if exists e. ((pie) is_welltyped and e0==e) 
erroregns typecheck(p,eO) = illtyped 

if not(exists e. ((pie) is_welltyped 
and e0==e)) enden 

Processing time: 15.1 minutes. 

If an additional operator is defined which recognises if the type 

of one prefixed expression is a generic instance of the type of 
another: 

(_ is-generic-instance-of _) : prefixexpr,prefixexpr -> bool 

then adding the following equation to Typecheck specifies that the 

operator typecheck always finds the most general type: 

typecheck(p,eO) is-generic-instance-of pie = true 
if (pie) is_welltyped and a==e0 

This addition was omitted from the specification in the interests of 
brevity. 

The specification is a straightforward translation of [Milner 
1978); its complexity is due almost entirely to the number and 

complexity of the notions which must be defined in order to specify 
which expressions are well-typed. It is of course more difficult to 

specify concepts precisely in Clear than in English, since a phrase 

like "... does not occur in any enclosing binding" must necessarily 
be described as a search of some kind in Clear, probably involving 
one or more auxiliary operators which for the sake of tidiness must 

later be hidden using a derive. With higher-order types such 
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routine searches could largely be expressed using a few special 

operators (such as 

occurs : sequence,(element->bool) -> bool 

for searching a sequence for an element satisfying a certain 
condition) as in HOPE, but the Clear system does not yet permit such 

operators. Goguen [1981] indicates that meta-operations (apparently 

like macros) will be available in the Ordinary specification 
language for this purpose. 

It would be possible to give both a higher-level and a lower- 
level specification of the same problem. The high-level 
specification would give a semantics of the language Exp where some 

expressions yield an error, and then define well-typed expressions 

as those which do not result in errors. The low-level specification 
would be an explicit algorithm for computing a well-typing. 
Theorems in [Milner 1978] state that any expression which is well- 
typed according to our specification will be well-typed according to 
the high-level specification (but not the converse), and that any 

expression accepted by the low-level algorithm will be well-typed 
according to our specification (the converse is proved by Damas and 

Milner [19821). 
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CHAPTER FIVE 

A CATEGORY-THEORETIC SEMANTICS OF CLEAR AND ITS IMPLEMENTATION 

In chapter III a semantics of Clear was given using simple set 

theoretic constructions to describe the theory-building operations 
of Clear. This chapter is devoted to a discussion of another 

semantics of Clear, invented by Burstall and Goguen [1980]. This 

semantics is intended as a generalisation of the set-theoretic 

semantics of chapter III (although historically it came first) and 

uses ideas from category theory to describe the underlying concepts 

and operations of Clear. Although as remarked in chapter III this 

results in a description which is rather inaccessible because it is 

so abstract, there are some benefits to be gained from such an 

approach. The most important advantage is that category theory acts 

as a ruthless filter for ideas. If an idea cannot be expressed 

gracefully using the standard concepts of category theory, then 

often there is something wrong with the idea. If the idea can be 

expressed, then its category-theoretic description will often 

suggest a generalisation which may not have been obvious otherwise. 

These are advantages for the language designer. But once the design 

is complete the category-theoretic description will still often be 

more elegant than an equivalent description in a different style, 

although it may be more difficult to understand. Without this kind 

of high-level motivation the set-theoretic constructions of chapter 

III may seem to come out of thin air, appearing complex and 

mysterious. And finally, in this case a category-theoretic 

description makes it possible to abstract away from particular 

notions of signatures, models or axioms, allowing a description of 

(most of) Clear under an arbitrary institution. However, in section 

111.6 we saw that the set-theoretic semantics can be readily altered 

to accomodate all institutions of apparent interest. 

Burstall and Goguen's category-theoretic semantics relies most 

heavily on the notion of a colimit, which is used to give a meaning 

to the combine and apply theory-building operations. A HOPE program 

for computing colimits in arbitrary cocomplete categories and in a 

kind of 'comma' category has been described by Burstall [1980]. 
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Further developments along these lines are given by Rydeheard 

[1981], who presents a category-theoretic approach to programming. 

Burstall's colimit program provided a basis which allowed an 

implementation of the category-theoretic semantics of Clear 

following almost exactly Burstall and Goguen's original presentation 
(this project was done in collaboration with David Rydeheard). The 

ease with which this implementation and the original colimit program 

were carried out can be attributed to the high-level features of 
HOPE (in particular, the strong yet flexible type system) described 

in appendix 1. 

This chapter combines presentations of the semantics and the 
implementation; the semantics is explained through descriptions of 
the programs which implement it. The facilities provided by the 

colimit program are described in section 1, although an explanation 
of how the program works is not given (see [Burstall 19801 or 

[Rydeheard 19811 for details). After a presentation of the 

semantics of Clear and its implementation in sections 2, 3 and 4 the 

outcome of the implementation attempt is briefly discussed in 
section 5. For a less 'algorithmic' explanation of the semantics, 

refer to (Burstall and Goguen 19801; for another presentation of the 

semantics program see [Rydeheard 1981]. The program described here 

is different from the one discussed in [Rydeheard 19811 for 
expository reasons. 

This program was an experiment in 'categorical programming' as 

much as an attempt to provide a useful implementation of Clear. We 

accordingly used category-theoretic ideas whenever possible, insofar 
as this was practical. For example, the graphs which underlie 
diagrams are represented as objects in a comma category, even though 

this is not necessary for any of the algorithms used (see the next 
section for the meaning of 'diagram' and 'comma category'). Our 

attempts in this direction are related to the "doctrines" given by 

ADJ in [Goguen, Thatcher, Wagner and Wright 1973]. Unfortunately, 

all of these things are computationally expensive, and the resulting 
program is too large and much too slow for practical use; see 

section 5 for more on this matter. 
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This chapter assumes some previous knowledge of elementary 

category theory. See [Arbib and Manes 1975] for the meanings of the 

important concepts of category, morphism, functor and colimit 

(especially important are the initial object, coproduct, coequaliser 

and shout -- these are all special kinds of colimits). See 

[MacLane 19711 for the definition of a comma category. 
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1. Computing colimits 

The facilities provided by Burstall's colimit program (which has 

since been reorganised and partially rewritten by Rydeheard and 

myself) are described here only briefly. For a much more detailed 

description consult [Burstall 1980] or [Rydeheard 1981]. See [Arbib 

and Manes 1975] and [MacLane 1971] for the elementary category 

theory which this program encodes. 

A category is characterised by two HOPE types (objects and 

morphisms) and four functions for manipulating morphisms. These 

functions tell us the source and target objects of a morphism, the 

identity morphism on an object, and how to compose morphisms. As a 

HOPE declaration this is simply: 

typevar o, m ! objects, morphisms 

data Cat(o,m) _= cat((m->o),(m->o),(o->m),(m#m->m)) 
! source, target, identity, composition 

(Comments in HOPE are preceded by an exclamation mark.) A 

particular category is a data object of this type. We want 

equations such as the following to hold in the category 

cat(source,target,identity,compose): 

source(identity(o)) = target(identity(o)) = o 

source(ml) = source(compose(ml,m2)) 

target(m2) = target(compose(ml,m2)) 

but there is no convenient way in HOPE (or in other programming 

languages) for these to be enforced, so the responsibility for 
ensuring that the functions he supplies describe a legitimate 
category rests with the user. 

An example is the category of (finite) sets (not unrestricted 
sets, but sets containing elements of a uniform type, as required by 

the HOPE type system): 

typevar alpha 

data SetMor alpha == mor(set alpha,(alpha-->alpha),set alpha) 
! source object, map, target object 
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dec source, target : Set Mor alpha -> set alpha 
dec identity : set alpha -> Set_Mor alpha 

dec comp : Set_mor alpha # Set_Mor alpha -> Set Mor alpha 

--- source(mor(a,<= a 

--- target(mor(_, ,b)) <= b 

--- identity(a) <= nior(a,id map a,a) 
--- comp(mor(al,ml,bl),mor(a2,m2,b2)) <= 

mor(a1,m1.m2,b2) if bl:a2 else error() 

dec cat of sets : Cat(set alpha,Set Mor alpha) 

- cat-of-sets <: cat(source,target,identity,comp) 

The notation alpha-->alpha in HOPE refers to a map; id-map and 

(composition) are primitive functions on maps; and error() causes a 

HOPE error, giving us a (crude) way of implementing the partial 

function comp. 

A functor is a pair of functions mapping objects and morphisms in 
one category to objects and morphisms in another category. Again, 

these functions should satisfy certain conditions (e.g. preservation 
of identities) which the program must ignore. 

typevar o, m, ol, ml 

data Functor(o,m,ol,ml) _= functor((o->o1),(m->m1)) 
1 F : Cat(o,m) -> Cat(ol,ml) 

A functor can be applied to an object or a morphism using an 

(overloaded) infix function called "of". 

Given two categories K:Cat(o,m) and L:Cat(ol,ml) and a functor 
F:Functor(ol,ml,o,m) (i.e. F:K-L) the comma category (K,F) has 

objects like (a,f,b) of type o#m#ol: 

a f -o- F(b) b 

[in K] [in L] 

and morphisms like (i,j) of type m#m1 taking (a,f,b) to (a',f',b') 
such that the following diagram commutes: 
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f 
--ap F(b) 

i F(,j) 

' f a' ---* F(b' ) 

(in K] 
s¢ s 

More general comma categories than this can be defined, but for our 

purposes this version (actually a right comma category) is 
sufficient. 

Comma categories are used throughout the entire Clear semantics 

program; it turns out that many common data types can be represented 

in this way. Examples will crop up here and there; the first one is 
the category of (directed) graphs. A graph can be considered to be 

a map from a set of edges into a set of pairs of nodes: 

2 b 3 

e 5-d 4 

is {a,b,c,d,e} G >{(1,1),(1,2),...,(5,5)} where G=(a'-(1,2), 
b-4(2,3), c-4(2,5), d,--4(5,4), e,--4(1,5)]. 

A graph morphism from G to G' is a pair of maps. One map 

associates nodes of G' with the nodes of G, and the other does the 

same with the edges. The edge map must respect the sources and 

targets of edges; that is, 
source GI(edgemap(e)) = nodemap(sourceG(e)) and 

targetG,(edgemap(e)) = nodemap(targetG(e)). 

A graph can thus be seen as an object in the comma category 
(Set,x) where x:Set--Set is the crossproduct functor taking a set S 

to the set SxS. So the graph above is the triple 

({a,b,c,d,e},G,{1,2,3,4,5}): 

{a,b,c,d,e} Gto x{1,2,3,4,5} {1,2,3,4,5} 

[in Set] [in Set] 
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Similarly, a graph morphism can be viewed as a morphism in the comma 

category (Set,x): 

E G - X N N 

edgemap 

I 
x(nodemap) 

i 
nodemap 

E' -- xN' N' 

[in Set] [in Set] 

In the program a slightly more complicated representation of the 

morphisms in a comma category is used since the source and target 
objects must be recorded as well as the morphism itself: 

data FComma_Mor(o,m,ol,ml) __ 
fcommamor((o#m#ol),(m#ml),(o#m#ol)) 

! source object, morphisms, target object 

Now we can construct the comma category (K,F) given the 

categories K and L and the functor F: 

dec functor_comma cat : 

Cat(o,m) # Cat(ol,ml) # Functor(ol,ml,o,m) 
-> Cat((o#m#ol),FComma Mor(o,m,ol,ml)) 

The definition is easy; for example, the 'identity part' of this 
category is the function: 

lambda obj & (a,_,b) => 

fcomma mor(obj,(idK a,idL b),obj) 

where idK and idL are the identity parts of the categories K and L. 

For the category of graphs we already have the two categories; 

they are both cat of sets defined above. We need only the functor 
x:Set-4Set. This is easy to define except for a snag with HOPE's 

type system; the problem is that the natural way to define the 

functor gives the type 

dec crossprod : Functor(set alpha, set alpha, 
set alpha#alpha, set alpha#alpha) 

and the target of this does not match the type of the category we 

want for K. We need a type which is the disjoint union of alpha and 
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alpha#alpha: 

data Tag alpha == just(alpha) ++ pair(Tag alpha,Tag alpha) 

Now crossprod can be easily defined, with the following type: 

dec crossprod : Functor(set(Tag alpha), Set Mor(Tag alpha) 
set(Tag alpha), Set+Mor(Tag alpha)) 

So we can define the category of graphs, and abbreviations for the 

types of graphs and their morphisms: 

type Graph alpha == set(Tag alpha) # Set_Mor(Tag alpha) 
# set(Tag alpha) 

type Graph Mor alpha =_ 
FComma_Mor(set(Tag alpha), Set_Mor(Tag alpha), 

set(Tag alpha), Set Mor(Tag alpha)) 

dec cat of graphs : Cat(Graph alpha, Graph Mor alpha) 

--- cat-of-graphs <_ 
functor comma_cat(cat of sets,cat of sets,crossprod) 

The advantage of defining something as an object in a comma 

category is that colimits on the underlying categories can be 

automatically 'lifted' to give colimits for the comma category. 
This will be discussed in slightly more detail at the end of this 
section. 

One more function on comma categories will be helpful in writing 

the semantics of Clear: 

dec right-Compose : Cat(o,m) # Cat(ol,ml) # Functor(ol,ml,o,m) 
-> (ml # (o#m#ol) -> (o#m#ol)) 

--- rightcompose(cat(_,_,,,cmp),cat(_,tl,_,_),F) <_ 
lambda g, (a,f,`) _> (a, cmp(f,F of g), tl g) 

This function modifies an object in a comma category by composition 

'on the right': 

a f 0F(b) b g.c 
[in K] [in LI 
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goes to 

a f.F(g) 
o F(c) c 

[in Kl [in Ll 

The function left compose can be defined analogously. 

A diagram on a category K is a graph with objects of K attached 

to the nodes and morphisms of K attached to the edges. A diagram 

morphism from D to D' is a map f taking nodes of D to nodes of D', 
together with another map which associates a morphism from the 

object at n to the object at f(n) to each node n in D. We label the 

nodes and edges of graphs with strings (character lists). 

type Name == list char 

data Diagram(o,m) _= diagram(Graph Name, (Name-->o), (Name-->m)) 
! diagram on a category of type Cat(o,m) 

data Diagram_Mor(o,m) _= diagram_mor(Diagram(o,m), (Name-->Name), 
(Name-->m), Diagram(o,m)) 

! source diagram, node-node map, 
! node morphism map, target diagram 

It is easy to define the category of diagrams 

dec cat-of-diagrams : 

Cat(o,m) -> Cat(Diagram(o,m),Diagram Mor(o,m)) 

A cone on a category K (actually a cocone, but the word "cone" 

will be used throughout) is a diagram D (the base), an object x of 

K (the apex) and a family of morphisms r from each node of D to x 

(the flanks) such that all triangles of morphisms of the following 
form commute: 

x 

r'(aY \r'(b) 
D(a) D(e) i D(b) 

where a e . b is an edge in the graph of D. A cone morphism from C 

to C' is a diagram morphism from the base of C to the base of C' and 
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a K morphism from the apex of C to the apex of C', satisfying 
certain commutation conditions. In the program the category of 
cones on K is taken to be the comma category (Diag(K),unitdiag(K)) 
where the functor unitdiag(K):K->Diag(K) takes an object in K to the 

diagram consisting of only a single node with that object attached. 

The flanks r are embodied in the diagram morphism from the base to 
unitdiag(K) of the apex. 

D 

O x 

unitdiag(K)(x) 
r 

[in Diag(K)] [in K] 

We supply abbreviations for the types of cones and their morphisms, 

and define the category of cones: 

type Cone(o,m) _= Diagram(o,m) # Diagram_Mor(o,m) # o 

! cone on a category of type Cat(o,m) 

type Cone_Mor(o,m) __ 
FComma Mor(Diagram(o,m),Diagram Mor(o,m),o,m) 

dec cat of cones : Cat(o,m) -> Cat(Cone(o,m),Cone Mor(o,m)) 

--- cat-of-cones K <= 
functor comma cat(cat of diagrams K,K,unitdiag K) 

The colimit of a diagram D is a cone C with base D which is 
'better' than all other such cones, in the sense that for any cone 

C' (with base D) there is a unique cone morphism from C to C'. It 

turns out that it is possible to construct the colimit of any 

(finite) diagram (on a category K) given only the initial object of 

K and functions which compute (binary) coproducts and coequalisers 

in K. These have the following types: 

type Initial_Obj(o,m) _= o # (o->m) 

type Coproduct(o,m) _= o#o -> (o#m#m) # (o#m#m -> m) 

type Coequaliser(o,m) _= m#m -> (o#m) # (o#m -> m) 

Note that each of these includes a universal part; that is, besides 
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producing the coproduct (or whatever) a function computing the 

unique morphism from the coproduct to any other object is also 

provided. 

Now we can define a coco plete category as a category with 
initial object, coproducts and coequalisers: 

data C_Cat(o,m) _= c_cat(Cat(o,m), Initial_Obj(o,m), 
Coproduct(o,m), Coequaliser(o,m)) 

An example of a cocomplete category is the category of sets 
defined above with appropriate initial object, coproducts and 

coequalisers. We need a type which is the disjoint union of alpha 

and alpha; this is accomplished by extending the earlier definition 
of the type Tag alpha: 

data Tag alpha == just(alpha) ++ . . ++ pink(Tag alpha) 
++ blue(Tag alpha) 

Then (for example) we can define the coproduct as follows: 

dec coprod : Coproduct(set(Tag alpha),Set Mor(Tag alpha)) 

--- coprod(s,t) <= 
let cp =_ (pink * s) U (blue * t) in 
let univ =_ 

(lambda v, mor(a,f,b), mor(al,fl,bl) _> 
error() if not(s=a and t=a1 and v=b and v=b1) 

else let fg =_ (lambda pink x => f of x 
blue x => f1 of x) in 

mor(cp,fnto_map(cp,fg),v) ) in 
(cp, mor(s,fn_tomap(s,pink),cp), 

mor(t,fn to map(t,blue),cp)), univ 

Recall from appendix 1 that infix * in HOPE is just like LISP 

mapcar: 

f * [a1, ..., an] _ [f(a1), ..., f(an)] 

The initial object (just the empty set) and coequaliser are not 

difficult to define. The cocomplete category of sets is then: 

dec c cat of sets : C Cat(set(Tag alpha),Set Mor(Tag alpha)) 

--- c cat of sets <= c cat(cat of sets,init,coprod,coeq) 
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Now the colimit program takes a cocomplete category and gives it 
a colimit function. See [Burstall 1980] or (Rydeheard 1981] for the 

definition; the types are as follows: 

type Colimit(o,m) __ 
Diagram(o,m) -> Cone(o,m) # (Cone(o,m) -> Cone Mor(o,m)) 

dec colimit : C Cat(o,m) -> Colimit(o,m) 

We can then define a colimit category; sets provide an example: 

data Colimit Cat(o,m) colimit cat(Cat(o,m),Colimit(o,m)) 

dec colim_cat of_sets 
Colimit Cat(set(Tag alpha),Set Mor(Tag alpha)) 

--- colim_cat of sets <= 
colimit cat(cat of sets,colimit(c cat of sets)) 

As mentioned earlier, if we have colimits on the categories K and 

L then we can compute colimits on the comma category (K,F) for any 

functor F:L-K (see (Goguen and Burstall 1978]). This is an 

advantage of using comma category representations, especially since 

the Clear semantics program makes heavy use of colimits. See 

(Rydeheard 1981] for the program; the type of the colimit function 

is as follows: 

dec lift_colimit : 

Colimit Cat(o,m) # Colimit Cat(ol,ml) # Functor(ol,ml,o,m) 
-> Colimit(o#m#ol, FComma Mor(o,m,ol,m1)) 

We can use this to define the colimit category of graphs (although 

this is not used by the Clear semantics program): 

dec colim_cat_of_graphs : 
Colimit Cat(Graph alpha,Graph Mor alpha) 

--- colim cat of graphs <= 
colimit_ cat(cat of graphs, 

lift_colimit(colim_cat_of_sets,colim_cat_of_sets, 
crossprod)) 
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2. Signatures, institutions, theories and based objects 

In this section a program for computing colimits on the category 

of based theories based on the programs in section 1 is described. 

This is the foundation of the semantics of Clear to be given in 
sections 3 and 4; the denotation of a specification is a based 

theory, and the theory-building operations of Clear correspond to 
simple colimits on that category. 

We begin by defining signatures. However, they will not actually 
be used until the end of section 3. All of the programs given until 
then will be parameterised on an institution (this concept was 

informally discussed in section I.1.3); that is, they do not depend 

on particular definitions of signatures or axioms (or algebras or 

the satisfaction relation, although these do not arise in the 

program). Thus a general notion of theory can be defined, together 
with a program for computing colimits in the category of theories. 
But theories alone are not enough to give the semantics of Clear; we 

need a notion of theories with sharing. We define based objects 
(and their colimits), a general notion of objects with sharing. 
This can be instantiated to give based theories, and is further 
instantiated in section 4 to give based Clear theories (theories 
with the 'usual' kinds of signatures, axioms and models). 

As already defined, a signature is a set of sorts S together with 
a family of sets of operators indexed by S*xS (or S+). A signature 
morphism is a map from the sorts and operators of one signature to 

those of another which preserves arities. We represent signatures 
as objects in the comma category (Set,+) where + is a functor taking 

a set to the set of nonempty strings over that set (and taking an 

ordinary function over the set to a function on strings). For 

example, here is the comma category representation of the signature 

with the single sort bool and operators true, false and not: 
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true bool 
false 
I 

bool.bool +{bool} {bool} 
not bool.bool.bool 

[in Set] [in Set] 

There are two problems in defining the functor +:Set-4Set in 
HOPE. The first problem is the same as the one we met when trying 
to define the crossprod functor and the function coprod in section 
1; the natural type of + is: 

dec plus : Functor(set alpha,Set Mor alpha, 
set(list alpha), Set Mor(list alpha)) 

and this clashes with the type required by the functor comma cat 

function (for constructing the comma category of signatures). 
Again, tags are used to solve this problem: 

data Tag alpha := just(alpha) ++ . . . ++ string(list(Tag alpha)) 

The type of plus is then: 

dec plus : Functor(set(Tag alpha), Set Mor(Tag alpha), 
set(Tag alpha), Set_Mor(Tag alpha)) 

The second problem occurs when we try to define the 'object part' 
of the functor plus. The result of applying plus to any non-empty 

set will be infinite. HOPE is equipped to handle infinite sets 

(lazy lists, see [Burstall, MacQueen and Sannella 1980]) but not 

infinite sets, although lazy sets could probably be added. For the 

purposes of the program, we can represent all infinite sets by the 

constant bigset: 

dec bigset : set alpha 

We provide no definition of bigset, and so evaluating it will cause 

an error. But we will never actually be interested in the value of 
the object part of the plus functor, so this is sufficient. With a 

similar 'definition' for bigmap (representing all infinite maps) 

plus is easy to define, and the category of signatures with colimits 
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is then defined as follows: 

type Signature alpha :_ 
Set(Tag alpha) # Set Mor(Tag alpha) # set(Tag alpha) 

type Signature_Mor alpha =_ 
FComma_Mor(set(Tag alpha), Set_Mor(Tag alpha), 

set(Tag alpha), Set Mor(Tag alpha)) 

dec colimcat_of_signatures : 

Colimit_Cat(Signature alpha.Signature_Mor alpha) 

--- colim_cat_ofsignatures <= 

colimit_cat(functor comma cat(cat_of_sets,cat of sets,plus), 
lift colimit(colim cat of sets ,colim+cat of sets, 

plus)) 

As mentioned before, this definition will not actually be needed 

until 'signed' theories are defined at the end of the next section. 

Institutions were discussed informally in section I.1.3; they 

provide a way of giving most of the semantics of Clear independently 

of any particular definitions of signatures, axioms, algebras or the 

satisfaction relation. Formally, an institution is any data object 

of the following type: 

typevar o, m, alpha, beta ! signatures, signature morphisms, 
! algebras, axioms 

data Institution(o,m,alpha,beta) __ 
institution(ColimitCat(o,m), 

Functor(o,m,set alpha,Set Mor alpha), 
Functor(o,m,set beta,SetMor beta), 
(o -> (set alpha # set beta -> truval)) ) 

The parts of an institution are: 

- An arbitrary cocomplete category Sli of 'signatures' 

- A functor Mod:S-->Setop (giving the set of models over a 

signature). If is a morphism in Sig and M' is in 
Mod(J') then we write M'IZ rather than Mod(o')(M'). 

- A functor Sen:Lil->Set (giving the set of axioms over a 

signature -- e.g. equations and data constraints). If 

is a morphism in Sig and S is in Sen(J) then we 

write o-(S) rather than Sen(a-)(S). 

- A relation ;=1 5 Mod(S) x Sen(S) for each object of 
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Sig satisfying M' ;=0'(S) iff M'('TP=S for each Q':j-* ' in 
Sig, SGSen(D and M'r.Mod(2'). 

All of the functions defined from now until the end of the next 

section will be parameterised by an institution. By extracting such 

things as the particular category of signatures from the given 

institution rather than using a fixed set of definitions, most of 
the semantics is made orthogonal to the definition of these key 

concepts. It is only when we come down to writing the semantic 

equations (attaching a syntax to the mathematical operations we will 
define) that it will be necessary to decide on a particular 
institution. 

A theory is a signature 2 together with a closed set of Z-axioms. 

We can use the agglomerates of chapter IV to represent closed sets 

of axioms with the same constructors as before. We parameterise the 

definition by the types of signatures, signature morphisms, and 

axioms: 

typevar o, m, beta 1 signatures, signature morphisms, axioms 

data Agglomerate(o,m,beta) 
close(set beta) 

++ union(Agglomerate(o,m,beta),Agglomerate(o,m,beta)) 
++ translate(m,Agglomerate(o,m,beta)), 
++ invtranslate(m,Agglomerate(o,m,beta)) 
++ Name),Agglomerate(o,m,beta)) 

1 set(Tag Name) is a set of sort names 

The definitions of theory and theory morphism are parameterised 

by the same types: 

data Theory(o,m,beta) _= theory(o,Agglomerate(o,m,beta)) 

data Theory Mor(o,m,beta) __ 
theory mor(Theory(o,m,beta),m,Theory(o,m,beta)) 

The category of theories is then easily defined, parameterised on an 

institution. The identity and composition functions come from the 

category of signatures contained in the institution. 

dec cat of theories : Inatitution(o,m,alpha,beta) -> 
Cat(Theory(o,m,beta),Theory Mor(o,m,beta)) 
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But we will need to compute colimits in this category. As 

mentioned before, the semantics of Clear is given in terms of 
colimits in the category of theories (actually, in the category of 
based theories, defined below -- but colimits for that category 

depend on colimits in the category of theories). A program for 
computing colimits follows the (constructive) proof of the following 
theorem; it depends on the availability of colimits in the category 

of signatures. 

Theorem: The category of theories over any institution has 

(finite) colimits. 

Proof: (outline; from [Burstall and Goguen 1980]) 

As mentioned in section 1, it suffices to show that the category of 

theories (over any institution) has an initial object, coproducts 

and coequalisers. The category LiE of signatures contained in any 

institution has these, by definition. 

If I is the initial object of Sij, then <+,m> is the initial 

object in the category of theories. 

If the coproduct of 2 and Z' in Sig is given by 

I 

then the coproduct of the theories <Z,E> and <',E+> is given by 

<J, E> 

<J",o(E)Uvr'(E')> 

<1',E'> 
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If the coequaliser of 0',0'':2->r in Sig is given by 

c 
0 

a-' 

then the coequaliser of c',c'1:<2,E>-i<r',E'> in the category of 
theories is given by 

<k,E> <?',E'> ° (E')> 

Programs for computing the initial object, coproducts and 

coequalisers in the category of theories can be written following 
the constructions above. Here only the definition of the initial 

object is given: 

dec snit : Institution(o,m,alpha,beta) -> 
Initial Obj(Theory(o,m,beta),Theory Mor(o,m,beta)) 

--- init(institution(colimit_cat(sigcat,sigcolim),_,_,_)) <_ 

let sigcone,siguniv == sigcolim nil-diagram in 
let initsig apex, sigcone in 

! the initial signature 
let initth theory(initsig,close nilset) 

! the initial theory 
let univ ! the universal part 

(lambda pth & theory(psig,_) => 
let univmor =_ 

siguniv(cone sigcat (nil diagram,nil map,psig)) in 
theory mor(initth,apex_morphism univmor,pth) ) in 

(initth, univ) 

The constants nil diagram, apex (the apex of a cone), apex morphism 

(the apex part of a cone morphism) and cone (for constructing a cone 

as a 'comma object', given the components) are auxiliary functions 
whose definitions are omitted. The functions coprod and coeq (for 
the coproduct and coequaliser) are just as easy to write, although a 

bit longer. Using these we define the cocomplete category of 
theories, and then the colimit program described in section 1 can be 

employed to build the category of theories with colimits: 
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dec c cat of theories : Institution(o,m,alpha,beta) -> 
C Cat(Theory(o,m,beta),Theory Mor(o,m,beta)) 

--- c cat of theories I <= 
c cat(cat of theories I, snit I, coprod I, coeq I) 

dec colim_cat_of theories : Institution(o,m,alpha,beta) -> 
Colimit Cat(Theory(o,m,beta),Theory Mor(o,m,beta)) 

colim cat_of theories I <_ 
colimit-cat(cat of theories I, 

colimit(c cat of theories I)) 

The function extend signature morphism will be used later in the 

semantics to extend a signature morphism to a theory morphism. 

dec extend_signature_morphism : Institution(o,m,alpha,beta) -> 
(Theory(o,m,beta) # m # Theory(o,m,beta) -> 

Theory Mor(o,m,beta)) 

--- extend_signaturemorphism I <= theory mor 

When this function is applied to the arguments <2,E>,a°,<2',E'> where 

and a°(E)4E' it should fail, since the result will not be a 

proper theory morphism. This is something which cannot be 

determined without the help of a theorem prover, so we do not check 

for it (but see chapter VI). 

In Clear, if the theory C has been used to build the theories A 

and B in such a way that A and B both contain C, then C is called a 

shared subtheory of A and B and we require that A+B contain only one 

copy of C. The importance of taking account of shared subtheories 
when combining theories has already been discussed. The names of 
sorts and operators alone are not enough to distinguish shared 

subtheories; we want the freedom to have several different sorts and 

operators with the same names. 

These requirements mean that the semantics of Clear must include 
a mechanism for keeping track of the genealogy of theories -- it is 
necessary to know which theories have been put together to produce 

other theories. The set-theoretic semantics of chapter III used the 

simple trick of attaching a tag to each sort and operator to record 

its theory of origin. This will not work here, because the 



-140- 

institutional approach requires signatures to be viewed as 

indivisible objects. Here the more elaborate notion of a based 

theory defined in [Burstall and Goguen 1980] must be used. Note 

that based theories here are not the same as the based theories used 

in the set-theoretic semantics, although they serve a similar 
purpose. 

A based theory is a theory together with a set of morphisms to it 
from the theories in the environment from which it was built. The 

environment associates names with (constant) theories, analogous to 

environments in the semantics of an ordinary language; however, now 

the environment must also record the relationships between all the 

named theories. The environment is therefore represented as a 

diagram on the category of theories, where the edges describe how 

theories are shared. (See section 4.5 for more about environments.) 

A based theory is then a cone on the category of theories with a 

base which is a subdiagram of the environment. The apex is the 

theory of interest, and the flanks show how this theory is related 

to the theories in the base. For example, here is a picture of the 

based theory representing Nat + Char (these theories were given in 

chapter I): 

Not * Char 

We can define based objects analogously, a general notion of 
objects with sharing. The based objects on a category themselves 

form a category; this is a subcategory of the category of cones (a 

cone morphism f:C-4C' is a based object morphism iff the base of C 
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is included in the base of C' and the 'base part' of the cone 

morphism is the inclusion). The four functions which determine a 

category in our program (source, target, identity, composition) are 

the same for both categories and so the category of based objects is 
the same as the category of cones as far as our program is 
concerned: 

type BasedObj(o,m) == Cone(o,m) 

type BasedObj_Mor(o,m) == Cone Mor(o,m) 

dec cat-of-based-objects : 

Cat(o,m) -> Cat(BasedObj(o,m),BasedObj_Mor(o,m)) 

--- cat-of-based-objects <= cat of cones 

The colimit in the category of based objects is however not the 

same as the colimit in the category of cones. A different 

construction must be used: 

Theorem: The category of based objects on a category C has 

(finite) colimits if C has. 0 
Proof: (outline; see [Burstall and Goguen 1980] for the full 

proof) 

Let D be a finite diagram in the category of based objects on C with 

objects Di having apices Di and bases Pi. The colimit object of D 

is the based object with base U Pi, and with apex the colimit in 

C of the diagram which results from 'flattening' the apices and 

flanks of the based objects Di into the diagram D. The flanks of the 

colimit and the universal part are obtained from the colimit in C. 

A program which produces the colimit in the category of based 

theories can be written following the above construction. The 

program is too long (about 60 lines) and complicated to include 

here; we give only its type: 

dec bo_colimit : Colimit_Cat(o,m) -> 
Colimit(BasedObj(o,m),BasedObj_Mor(o,m)) 

Now the category of based objects with colimits can be defined: 
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dec colim_cat_of_based objects : Colimit Cat(o,m) -> 
Colimit Cat(BasedObj(o,m),BasedObj Mor(o,m)) 

--- colim_cat_of_based objects(K & colimit cat(C, )) <= 
colimit cat(cat of based objects, bo colimit K) 

The careful reader may have observed that our definition of based 

objects differs slightly from the definition in [Burstall and Goguen 

1980]. There the category of based objects over a given diagram 

(environment) is considered, while our category of based objects 

makes no reference to a particular diagram. But this makes no 

difference; the construction of the colimit is identical in both 

cases. 

We can instantiate the category of based objects to give the 

category of based theories; this is the only instance of based 

objects which we will need. This category will be used in the next 

section to define the semantics of the theory-building operations. 

type Based_Theory(o,m,beta) == 
BasedObj(Theory(o,m,beta),Theory Mor(o,m,beta)) 

type Based-Theory Mor(o,m,beta) == 
BasedObj Mor(Theory(o,m,beta),Theory Mor(o,m,beta)) 

dec colim_cat_of_based theories : Institution(o,m,alpha,beta) -> 
Colimit_Cat(Based Theory(o,m,beta), 

Based Theory Mor(o,m,beta)) 

--- colim_cat_of_based theories I <= 
colim cat of based objects(colim cat of theories I) 
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3. Semantic operations 

In this section the semantics of Clear's theory-building 

operations will be given. These will then be used in the semantic 

equations of the next section. 

The definitions of these operations depend crucially on the 

properties of the colimit in the category of based theories defined 
in the previous section. The denotation of a Clear specification is 
a based theory, and all of our work until now has been carefully 
directed so that the combine and apply operations can be elegantly 
defined as nothing more than simple colimits in this category. The 

remaining operations (enrich, data and derive) are defined readily 
but less gracefully in terms of lower-level manipulations of the 

based theories themselves. 

3.1. Combine 

This function implements the '+' theory-building operation of 
Clear. 

dec combine : Institution(o,m,alpha,beta) -> 
(Based Theory(o,m,beta) # Based_Theory(o,m,beta) -> 

Based Theory(o,m,beta)) 

--- combine I <_ 
lambda t1,t2 :> 

let colimitcat( _,bthcolim) 
colimcat_of_based theories I in 

let cpcone,_ := bthcolim(cpdiagram(t1,t2)) in 
apex cpcone 

That is, combine I (T1,T2) is the coproduct of the based theories Ti 

and T2 (cpdiagram is an auxiliary function which produces a two-node 

coproduct diagram, given the objects to be attached to the nodes). 

Because we are dealing with based theories, combine will treat 
shared subtheories properly. 

3.2. Enrich 

The treatment of enrich here is different from that in the set- 
theoretic semantics. The denotation of an enrichment there was just 
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some new sorts, operators and axioms; here an enrichment is a theory 

morphism of the form cr:<L,0>-><2',E'>, where 2 is the signature of 
the theory being enriched, I' is the signature of the enriched 

theory, and E' are the new axioms (closed). Enrich applies this 
morphism to the based theory being enriched to give the enriched 

based theory. This approach is necessary in order to define the 

enrich operation under an arbitrary institution. The theory 
morphism representing the enrichment must be built differently under 

each institution, for it requires the manipulation of signatures as 

something more than impenetrable objects in a category. The 

enrichment operation is defined later in this section for the usual 

institution of Clear; it takes the signature to be enriched and the 

new sorts, operators and axioms, and gives the theory morphism 

needed here (it will always be an inclusion in this case). The data 

and add-equality operations (defined later) can be applied to this 
morphism in the case of a data enrichment, modifying it to include 
the appropriate new data constraint and equality operators. 

dec enrich : Institution(o,m,alpha,beta) -> 
(Based_Theory(o,m,beta) # Theory Mor(o,m,beta) -> 

Based Theory(o,m,beta)) 

--- enrich I <_ 
lambda t, theory_mor(_,g,theory(sigl,egl)) _> 

let th & theory( eq) _= apex t in 
let thi == theory(sigl,union(eql,translate(g,eq))) in 
right compose ( cat-of diagrams(cat-of theories I), 

cat of theories I, 
unitdiag(cat_of_theories I) ) 

( theory mor(th,g,thl), t ) 

That is, the result of enrich(T,(r:<J,O>--I,<2' E'>) is the 

theory <2',E'Ucr(egns(T))> with the base of T attached (this is the 

action of right-compose). 

3.3. Derive 

The derive operation is used to change the signature of a theory. 

Under the usual institution this means forgetting some sorts and 

operators and possibly renaming the ones remaining; under an 

arbitrary institution signatures may not consist of names at all so 

we cannot speak about forgetting or renaming. Yet, the semantics of 
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derive under an arbitrary institution is the same as that given in 
the set-theoretic semantics for the special case of ordinary Clear. 

Given a 7--theory and a 1'-theory and a signature morphism o-:l->r' , 

derive produces a theory with the signature and base of the 

1-theory, which has for axioms the inverse image under or of the 

axioms of the '-theory. The model-theoretic condition (the 
Satisfaction Lemma) which made this the appropriate set of axioms in 
the case of ordinary Clear reappears as a condition on the 

satisfaction relation (=) of an institution, with the same result. 

The semantics of derive is split into two parts. The quotient 

function produces the resulting theory, which must then be attached 

to the appropriate base. 

Def: If T=<I,E> and T'=<2' ,E'> are theories and or:T-->T' is a 

theory morphism, then the quotient of T by or (written T/(r) is the 

theory <1,or-1(E')>, where or-1(E') _ {e ; or(e)*E'}. The identity 
signature morphism 11 gives a theory morphism 12:T-4T/cr denoted by 

quotient(T,(r) (because or is a theory morphism implies that 
E4(r1(E')). 

T/or will always be a theory because of the following fact, a 

generalised version of a fact from chapter III: 

Fact: If E is closed then or-1(E) is closed, under any 

institution. 

Proof: Identical to the proof outlined in section 111.2.4, except 

that we appeal to the condition on the relation of an institution 
rather than to the Satisfaction Lemma. 

An intermediate step in the proof of this fact shows (by a model- 

theoretic argument) why T/v- (with a suitable base) is the 

appropriate result of the derive operation -- see section 111.2.4 

for details. 

Once the quotient function is defined as above, with type: 

dec quotient : Institution(o,m,alpha,beta) -> 
(Theory(o,m,beta) 4/ Theory Mor(o,m,beta) 

Theory Mor(o,m,beta)) 
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the derive operation can be easily defined: 

dec derive : Institution(o,m,alpha,beta) -> 
(Based_Theory(o,m,beta) # m # Based_Theory(o,m,beta) -> 

Based Theory(o,m,beta)) 

---. derive I <= 
lambda t1, sigma, t2 => 

let tsigma =_ 
extend_signature_morphism(apex tl,sigma,apex t2) in 

right-compose ( cat-of diagrams(cat-of theories I), 
cat of theories I, 

unitdiag(catof_theories I) ) 

( quotient(apex tl,tsigma), tl ) 

That is, it is the quotient with the base of the first theory 

attached. 

3.4. Apply 

Apply defines the application of a theory procedure to its 
arguments. A theory procedure here is represented as a based theory 

morphism (from the coproduct of the metasort theories to the theory 

described by the procedure body); under the usual institution this 
morphism is an inclusion. The result of a procedure application is 

p shout of this morphism and the combined fitting morphism from the u 

the coproduct of the metasorts to the coproduct of the actual 
parameter theories: 

P(Al,...,An) 
F 

P(M1,...,Mn) Al+...+An 

M1+...+Mn 

This is straightforward except for the construction of the combined 

fitting morphism o-. We are given based theory morphisms a1:M1-->A10 

..., oo-n:Mn-4An and wish to construct o-:M 1+...+Mn -4 Al+...+An. 

Taking the two coproducts gives the following situation: 
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M1+...+Mn A,+...+An 

Now the 'universal part' of the metasort coproduct may be used to 
construct a morphism to the apex of the actual parameter colimit, 
using the 'pretend coproduct' (i.e. another cone on the same base) 

of the metasorts formed by composing 0`1 n with 

r(1),...,r(n): 
Mi+...+Mn ------ ---------> A,+...+An 

This o- must be the correct morphism because it is the unique 

morphism from M1+...+Mn to Ai+...+An for which everything commutes. 

dec apply : Institution(o,m,alpha,beta) -> 
(Based_Theory_Mor(o,m,beta) 
# list(Based Theory Mor(o,m,beta)) -> 

Based-Theory(o,m,beta)) 
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apply I <= 

lambda proc, fittings list => 
let colimitcat(catbth,bthcolim) 

colim cat of based theories I in 
let Dm & diagram_mor(Ds,_,,Dt) == 

cpmdiagram catbth fittings list in 
let actual-parameter,- == colimit Dt in 
let univ == colimitDs in 
let pretendcoprodcone =-- 

left-compose ( cat-of diagrams catbth, 
catbth, 
unitdiag catbth ) 

( Dm, actual parameter ) in 
let fitting apex_morphism(univ pretendcoprodcone) in 
let pocone, 

colimit(podiagram catbth (proc,fitting)) in 
apex pocone 

Given the morphisms o1,...,on the constant cpmdiagram produces the 
diagram morphism: 

and podiagram produces a pushout diagram: 

P J Al+...+An 

pro / fitting 
M1+...+Mn 

The definitions of these auxiliary functions are omitted. 

3.5. Copy 

The copy operation makes a fresh copy of a theory, preserving a 

given set of subtheories. This is just a matter of attaching a 

restricted base to the theory, the base of the combined subtheories 

to be preserved. The semantics of copy was not included in 
[Burstall and Goguen 1980]. 
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dec copy : Institution(o,m,alpha,beta) -> 
(Based Theory(o,m,beta) # Based Theory(o,m,beta) -> 

Based_Theory(o,m,beta)) 

--- copy I <= 

lambda t1, t2 => 
left-compose cat-of-diagrams (cat-of-theories 1), 

cat of theories I, 

unitdiag (cat-Of theories I) 

( diagram-inclusion (cat-of theories I) 

(base t2, base t1),t1) 

The constants base (base of a cone) and diagram inclusion (producing 

a morphism which is the inclusion of one diagram in another) are 

auxiliary functions whose definitions are omitted. The second 

argument (of the lambda) of copy is the sum of the subtheories to be 

preserved. The base of this subtheory is attached to the theory to 
be copied using left compose. 

3.6. Data 

The data operation cannot be used under an arbitrary institution. 
As mentioned in chapter I, we need a data institution; this is an 

institution in which the models of a theory will always form a 

category and a theory morphism gives rise to forgetful and free 
functors (see [Burstall and Goguen 19801 for details). This is an 

aspect we do not attempt to treat in our implementation. But the 

other special characteristic of a data institution is that the class 
of axioms must include data constraints. A data constraint is a 

theory morphism together with a signature morphism, and so we can 

define data axioms (axioms which include data constraints, but are 

otherwise unspecified) as follows: 

data Data_Axiom(o,m,beta) =_ 

axiom(beta) ++ data constraint(Theory Mor(o,m,beta),m) 

A data institution is then an ordinary institution with the type of 

axioms instantiated to data axioms: 

type Data Institution(o,m,alpha,beta) == 
Institution(o,m,alpha,Data Axiom(o,m,beta)) 

Data theories and their morphisms are easily defined (based data 
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theories and their morphisms similarly): 

type Data_Theory(o,m,beta) _= Theory(o,m,Data Axiom(o,m,beta)) 

type Data_Theory Mor(o,m,beta) == 
Theory Mor(o,m,Data Axiom(o,m,beta)) 

Now we can define the semantics of the data operation. It takes 

a simple theory morphism representing an enrichment, and converts it 
to a data theory morphism with a target which includes a data 

constraint describing the enrichment. The modified enrichment can 

then be used by the enrich operation (defined above) to 'data- 
enrich' a theory. Since the data operation manipulates data 

constraints, it works only under a data institution; this fact is 
reflected in its type. 

dec data : Data_Institution(o,m,alpha,beta) -> 
(Theory Mor(o,m,beta) -> Data Theory Mor(o,m,beta)) 

--- data(institution(colimitcat(cat(_,_,id,),_),_,,)) <= 
lambda F & theory 

let constraint == data constraint(F,id sigl) in 
let axioms == union(datafy E1,close {constraint}) in 
let tl == theory(sigl,axioms) in 
theory mor(t,sigma,tl) 

If the enrichment is given by the (simple) theory morphism 

o,:T--3<I' ,E'>, then the data constraint added by application of the 

data operation will be C = <cr,120, and the resulting (data) 

enrichment is cr:T-><Z',E'U (C}>. But E' is a simple agglomerate; 

it must first be converted to a 'data agglomerate' using the 

auxiliary constant 'datafy' whose definition is omitted. 

3.7. Enrichment 

This operation constructs a theory morphism representing a theory 

enrichment for use by the enrich operation defined above. As 

mentioned before, the enrichment operation must be dependent on a 

particular institution for it deals with the internal structure of 
signatures. The enrichment operation will be defined here for 
ordinary Clear (Clear under the usual institution). Although the 

definition is dependent on a particular notion of signature (the one 

discussed in section 2) it is independent of the other elements of 
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an institution and so we can leave these unrestricted for now. The 

enrichment operation is parameterised by a signed institution (that 

is, an institution with the usual kind of signatures, where 

character strings are used for sort and operator names): 

type Signed Institution(alpha,beta) __ 
Institution(Signature Name,Signature Mor Name,alpha,beta) 

The type Name was defined in section 1 as an abbreviation for 
'list char'. Signed institutions could easily be parameterised by 

the type of sort and operator names -- in fact, this is done in the 
semantics program -- but for simplicity we will use the fixed type 

Name. Signed theories and their morphisms are then defined as 

follows (based signed theories and morphisms similarly): 

type Signed Theory(beta) == 
Theory(Signature Name,Signature Mor Name,beta) 

type Signed Theory Mor(beta) == 
Theory Mor(Signature Name,Signature Mor Name,beta) 

Note that this specialisation to signed institutions and signed 

theories is orthogonal to the previous specialisation to data 

institutions and data theories. Signed data institutions, signed 

data theories and their morphisms, and based signed data theories 
and their morphisms are easily defined. 

Enrichment takes the signature to be enriched (S) and some new 

sorts, operators and axioms (S', 2', E'), and produces the theory 

inclusion from <J,0> to <ZU<S',2'>,E'>. This operation is defined 
using an auxiliary function whose definition is omitted which 

produces the signature of the enriched theory; the inclusion 
function on signatures (producing an inclusion of one signature in 
another) is also not defined here. 

type S _Name == Tag Name ! sort name 

type 0 Name == Tag Name ! operator name 

dec enriched signature : 

Signature Name # set S_Name # set(0_Name # list S_Name) -> 
Signature Name ! 0_Name # list S Name is an 

! operator with its arity 
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dec enrichment : Signed_Institution(alpha,beta) -> 
(Signature Name # set S_Name IF set(O_Name # list S -Name) 

# set beta -> Signed-Theory Mor(beta)) 

--- enrichment SI <_ 
lambda sig & (0,S), S1, 01, El => 

let sig2 == enriched _signature(sig,S1,01) in 
let t == theory(sig,close nil set) in 
let t2 theory(sig2,close E1) in 
theory mor(t,inclusion(sig,sig2),t2) 

Why must the sort and operator names be 'tagged' (types S Name 

and 0 Name rather than simply Name)? The reason is that the arities 
of the new operators may refer to sorts in the 'old' signature. 
Since this signature may have been formed by putting together 

several signatures (using combine, for example), it may contain 
several sorts or operators with the same name (but tagged in 
different ways as a result of the colimit inherent in the combine 

operation). The enrichment operation must be supplied with tagged 

arities to disambiguate in such cases, and the sort and operator 
names are required to be tagged as well for uniformity. This is of 
course invisible to the user of the specification language; it is a 

detail which must be handled by the semantics (specifically, by the 

notion of a dictionary discussed in section 4.1). Note that these 

tags bear some resemblance to the tags of the set-theoretic 
semantics, although here they are part of the colimit mechanism 

rather than an explicit ingredient of the semantics. 

3.8. Add equality 

A side effect of the data operation is the introduction of an 

equality predicate ==:s,s->bool for each 'data' sort s. The 

operators are easily added to the signature, and the add equality 
agglomerate constructor defined model-theoretically in section 
111.2.3 is used here as well to add the axioms which specify the 

meaning of the new operators. 

If S is the set of new sorts and E is the set of axioms already 

in a theory, then ES is E together with all the axioms needed to 
define the new equality relations on sorts of S. This is denoted in 
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the program by the agglomerate add equality(S,E). Note that the 

theory being enriched must include Bool. 

To define the add equality operation (on theories), we use an 

auxiliary function which produces an equality operator with arity 

s,s->bool when given the sort s; its definition is omitted. The 

enriched signature operation mentioned above is used to form a 

signature which includes the new equality operators. 

dec equality operator : S -Name -> O -Name # list S -Name 

dec add-equality : Signed_Institution(alpha,beta) -> 
(Signed Theory Mor(beta) -> Signed Theory Mor(beta)) 

---- add equality SI <= 
lambda theory mor(t & theory(sig,_),sigma,theory(sigl,E1))=> 

let data-sorts == S1 - S where (_,_,S) sig 
where ( S1) sigl in 

let new operators == equality-operator data-sorts in 
let sig2 == enriched_signature(sigl,nil_set, 

new_operators) in 
let t2 == theory(sig2,add_equality(S,E1)) in 
theory mor(t,inclusion(sig,sig2),t2) 

The definition is similar to that of the data operation above. A 

theory morphism describing an enrichment is modified to further 
enrich by the new equality operators and the axioms which define 
them. 
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4. Semantic equations 

In this section the semantic equations for Clear are given, 
building on the semantic operations defined in the previous section. 

This parallels section 4 of the set-theoretic semantics. Since many 

of the equations are identical (i.e. all those in levels I and IIb) 
only those which are different are given, along with new definitions 
of dictionary and environment. The equations will be given in the 

notation of denotational semantics, rather than in HOPE. This 

should make them slightly easier to read, and the translation to 
HOPE is straightforward (see section 4.2 for an example). 

4.1. Dictionaries 

The notion of a dictionary in this semantics is identical to the 

one presented in section 111.4.1 of the set-theoretic semantics. 

The only difference is the way that the diet operation (which 

produces a dictionary) is defined. Recall that a dictionary gives 

the correspondence between a sort expression or operator expression 

(such as 's of T') and the sort or operator to which it refers. 

Def: A dictionary is a pair of functions <sd,od> where 

sd : sort-name x theory-name --> sort 
od : operator-name x theory-name -4 operator 

In the implementation, the two components of a dictionary are 

functions which return tagged names; this is because there may be 

more than one sort or operator with the same name, as discussed 

earlier. 

data Dictionary == dictionary((Name 1/ Name -> S Name), 
(Name 1/ Name -> O Name)) 

The operation diet constructs a dictionary from a based theory, 
yielding a dictionary which interprets expressions referring to 
sorts and operators in that theory. 

dec diet : Signed-Based-Theory(beta) -> Dictionary 

--- dict( , diagram mor(-,-,nm,-), -) <, 
let d == 

(lambda to => 
let theory mor(_,fcomma mor( ,(mor(_,fo,_), 

mor(_,fs,)),_),_) 
nm of (const tn) in (fo,fs)) in 
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let sd =_ (lambda sn,tn u> 
^- - et (_,fs) _= d(tn) in find(fs,sn)) in I 

let od == (lambda on,tn => 
let (fo, ) == d(tn) in find(fo,on)) in 

dictionary(sd,od 

In the above definition, nm is the map taking nodes in the base 

of a based theory to theory morphisms from base theories to the apex 

theory (the flanks). The nodes in the base of a based theory are 
labelled by (tagged) theory names, since the base is always a 

subdiagram of the environment (see section 4.5 for the reason for 

the tag 'const'). The value of d applied to a theory name will thus 

be a pair (fo,fs), where fo is a map taking operators in the base 
theory to the corresponding operators in the apex theory, and fs 

does the same for sorts. Given an expression 'sn of tn' (similarly 

'on of tn'), the sort sn should appear in the domain of fs (where 

(fo,fs) = d(tn)) and can thus be mapped to its name in the apex 

theory. But sn itself will not be in the domain of fs; some tagged 

version of sn will be (and it might not be simply 'just sn', since 

the theory at node to may be the result of a combine or apply 

operation). There should be only one such sort, or else the 

expression is ambiguous. So the auxiliary function find is used to 

search for the result corresponding to a tagged version of the sort 

name; it gives an error if there is more than one choice. This is a 

subtle point which was not revealed in [Burstall and Goguen 1980]. 

In general there is a problem in determining which sort or operator 

in a theory produced using a series of theory-building operations 

corresponds to a sort or operator name. The problem could be solved 

by keeping track of the original name associated with each tagged 

name. In our implementation this correspondence is fortunately easy 

to establish. 

4.2. Level I: Sorts, operators, terms 

The semantic equations for level I are exactly the same as those 

for level I of the set-theoretic semantics (section 111.4.2). In 

order to justify writing the semantic equations using the notation 

of denotational semantics rather than HOPE, an example of how the 

translation may be accomplished will now be given. 
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The syntax of sort, operator and term expressions is defined in 

section 111.4.2 by the following BNF syntax: 

sex s s of T 
oex :. = o o of T 
tex x oex(texi.... .texn) 

where s is a sort name (lower case identifier), o is an operator 

name (identifier or operator symbol). T is a theory name 

(capitalised identifier) and x is a variable name (identifier). 
This may easily be converted to a sequence of HOPE data 

declarations: 

infix of : 5 

distfix _ << >> 

data Sex just Name ++ Name of Name 
data Oex just Name ++ Name of Name 
data Tex just Name ++ Oex << list Tex >> 

Distributed-fix operators can be used to give an approximation to 

Clear syntax. Mutually recursive data definitions are also possible 
in HOPE using the with construct: 

data 
with 
with 

The three semantic functions of this level may be declared as 

follows: 

dec Sex : Sex -> (Signature Name -> (Dictionary -> S -Name)) 

dec Oex : Oex -> (Signature Name -> (Dictionary -> O -Name)) 

dec Tex : Tex -> (Signature Name -> (Dictionary -> 
((Name --> S_Name) -> Term))) 

Name --> S -Name associates variables with their sorts 

The denotation of a term expression is a term: 

data Term == just Name ++ O -Name << list Term >> 

Now the semantic equations of section 111.4.2 can be translated 
into HOPE. For example, the second equation defining the function 

Tex is: 
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Tex Qoex(tex1 ,...,tex )I]SdX = 

let w = OexIoex9J7d in 
let tm1,...,tmn TexItex1 I]SdX,...,Texftexnl]SdX in 
w(tmi,...,tmn) (a 7 -term on X) 

This becomes: 

Tex(oex << list tex >>) <= 
(lambda sigma => (lambda d => (lambda X => 

let omega == Oex oex sigma d in 
let list tm == 

(lambda tex => Tex tex sigma d X) * list_tex in 
omega << list tm>> ))) 

The notation of denotational semantic will be used henceforth for 

clarity, as mentioned already. 

4.3. Level IIa: Enrichments 

The level IIa semantic equations are very similar to those in the 

set-theoretic semantics (section III.4.3). The equations for Sd and 

Od (giving the semantics of sort and operator declarations) are the 

same except that the unique tags required by the set-theoretic 
semantics need not be attached here. The equations for Enrb and Enr 

(the semantics of enrichments) are different because the definitions 
of the enrich and data operations in section 3 operate on theory 

morphisms rather than directly on theories. 

The semantic operations from section 3 will be needed in the 

equations below, so it is finally necessary to select a particular 
institution. We want axioms to be equations: 

distfix all H 

data Eqn == all (Name-->S-Name) . Term = Term 

Note that an Eqn is a semantic object, as distinct from the 

equations which appear in specifications, defined as follows: 

data Eq == all Varl . Tex = Tex 

(Varl and Tex are other syntactic types.) The Eq semantic operation 
defined below translates an Eq to an Eqn. 
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We have already decided in section 3 on the kind of signatures we 

will use, so the institution we want is defined as follows: 

dec Clear Institution : Signed Data Institution(alpha,Eqn) 

--- Clear-Institution <= institution(colimit-cat-of signatures, 
functor( .. .. ), 

functor( .... ... ), 

Our implementation does not deal at all with the model-theoretic 

aspects of the semantics and does not manipulate equations in non- 

trivial ways, so the first component of the institution (and all 

types except those of models) are all that is needed. In the 

program, the ...'s are replaced by the function 'error', but 

anything (well-typed) will do since it will never be accessed. 

The above definition is sufficient for the purposes of the 

program. But to make sure that such an institution really exists we 

must be more specific. All we have specified so far is the category 

of signatures Sig and the form of axioms. 

- The functor Sen:Sig-4Set takes a signature to the set of 

axioms (equations and data constraints) on that signature, 

and takes a morphism to the set morphism 
c-:Sen(S)->Sen(S') defined in sections II.3 and II.5 which 

translates a I -axiom to a 2'-axiom. 

- We take as models the algebras defined in section 11.2; 

the functor Mod:Si --Set°p takes a signature 7 to the set 
of all i-algebras, and takes a morphism o-:7--W to the 

set morphism (_)I':Mod(Z')-7Mod(Z) (which takes a 

2'-algebra to its Z-restriction). 

- The relation P-_j S Mod(7_) x Sen(7_) is the satisfaction 
relation defined-in sections 11.3 and II.5 for equations 
and data constraints respectively. 

This is clearly an institution (recall the Satisfaction Lemma of 
section II.3) so we can proceed. 

We need to define theories and their morphisms under this 
institution: 
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type Clear Theory == Signed-Data Theory(Eqn) 

type Clear Theory Mor == Signed _Data Theory Mor(Egn) 

Based Clear theories and morphisms are defined similarly. 

Before we can use the enrichment operation below, we need to 

define another institution for dealing with simple theories and 

morphisms (i.e. without constraints). The definition is identical 

to the definition of Clear Institution above except for the type 

declaration: 

dec Simple-Clear-Institution : Signed Institution(alpha,Eqn) 

Simple Clear theories and morphisms are just the same as signed 

theories and their morphisms, defined above. 

Semantic functions 

Sd, Od, Varl, Eq : same as in section II1.4.3 
Enrb : enrichment-body -4 signature -4 dictionary 

-3), simple-Clear-theory-morphism 
Enr : enrichment -> signature -> dictionary 

-> Clear-theory-morphism 

Semantic equations 

ShcsD = just s 

Od Qo: sexi,...,sexn->sex] d = 

let si t...,sn,s = Sex rsex1DSd,...,Sex Qsex n]] d,Sextsex]] d in 
<just o,string(s1,.... sn,s)> 

VarlEx11,...,xin :sex 1,.... xm1,...,xmn :sexm13 d = 

let s1,..., m = SexUsex1DSd,...,SmexUsex mDSd in 
{ <xl1,s1>,...,<x1n1,s1>, 

<xm1'sm>'" 
, <xmnm,sm> } (a map Name --> S -Name) 

Eq Qall varl. tex 
1 

= tex2DSd = 

let X = VarlUvarlD2d in 
let tm1,tm2 = TexUtex1DSdX,TexUtex2DSdX in 

all X. tm1 = tm2 (an Eqn) 
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Enrb Q sorts sd1,...,sdm opns od1...odn a ns eg1...egp112d = 

let S' _ {SdQsd1:,...,SdQsdmI]} in 
let Z' = enriched_signature(?,S',0) in 
let _ {OdQod1jJ.'d,...,OdQodnl1'd} in 
let = enriched signature(i',O,Z') in 
let E' _ {EgQeg11]J"d,... ,EgQegpl]J"d} in 

enrichment Simple-Clear-Institution (Z,S',Z',E') 

EnrLenrb] d = datafy EnrbQenrb]5d 

EnrQdata enrbUd = 

add-equality Clear-Institution 
(data Clear Institution EnrbQenrbl]2d) 

Datafy (used in the first Enr equation above) is an auxiliary 
function which converts a simple Clear theory morphism to a (data) 
Clear theory morphism; its definition is omitted. 

4.4. Level IIb: Signature changes 

This level is absolutely identical with section 111.4.4 of the 

set-theoretic semantics. 

4.5. Environments 

It has already been mentioned (when based objects were discussed 

in section 2) that the environment must record the relationships 
between values (theories) as well as the values themselves. This 

leads to the natural representation of the environment as a diagram 

on the category of theories, where the edges describe how theories 
have been put together to make other theories. This is a 

generalisation of the usual notion of environment in denotational 
semantics, which simply maps names to values. Metatheories and 

constant theories must both be stored in the same environment, since 

the relationship between a metatheory and all its constant 
subtheories must be recorded as well as the relationships between 

constant theories. So two of the three environments used in the 
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set-theoretic semantics are combined here into a single environment, 

where the two kinds of theories are bound in different ways; the 

third environment (the procedure environment) remains separate. 

Here several operations for creating and manipulating 
environments are defined. Environments can be defined without 
reference to the properties of the values which they contain, so 

these operations are parameterised by an arbitrary category (with a 

colimit function, which is needed for the node morphism operation). 
The type of an environment is just the same as the type of a 

diagram: 

type Env(o,m) == Diagram(o,m) 

None of the programs are given here; they are all straightforward 
albeit somewhat long and complicated. 

The first operation is easy; nil-diagram (the diagram with no 

nodes) is the empty environment. 

Next, we need to bind new values into the environment. Ordinary 
(constant) theories are bound in a different way from metatheories, 

since the two cases must be handled differently when the time comes 

to retrieve values from the environment. Each name is tagged to 

indicate whether the associated value is constant or meta (recall 
that the names of nodes in a diagram are tagged already): 

data Tag alpha == . . . ++ const alpha ++ meta alpha 

The operation bind is used to bind a constant (theory) into the 

environment: 

dec bind : ColimitCat(o,m) -> 
(Name # BasedObj(o,m) # Env(o,m) -> Env(o,m)) 

Bind is defined as follows: 
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Def: Given an environment diagram D, a name i not in D, and a 

based object 0 (with base included in D), the value of bind(i,O,D) 
is the diagram D' where: 

- The nodes of D' are those of D together with a node with 
the name const(i) and the value apex(O), and 

- The edges of D' are those of D together with an edge for 
each morphism in the flanks of 0 (going from the base node 
in D' to the apex of 0 at const(i) in D'). 

The operation bind-seta for binding a meta(theory) into an 

environment is defined identically (with the same type), except that 

the name meta(i) is used instead of const(i). 

The operation bind is also defined for n-tuples of names and 

based objects: 

dec bind : ColimitCat(o,m) -> 
(list Name # list(BasedObj(o,m)) # Env(o,m) 

-> Env(o,m)) 

This operation binds each name in the list to the corresponding 

value (as a constant). There is no need for a bind meta operation 

on n-tuples. 

The retrieve operation finds the value in an environment which is 

associated with a given name, and constructs the corresponding based 

object. As mentioned, it works differently depending on whether the 

value is a constant or a meta (theory); the only difference is that 

the base of the result for a metatheory will not include the 

metatheory itself. 

dec retrieve : ColimitCat(o,m) -> 
(Name # Env(o,m) -> BasedObj(o,m)) 
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Def: Given a name i and an environment diagram D including either 
const(i) or meta(i), the value of retrieve(i,D) is the based object 
0 (with base included in D), where: 

- The apex of 0 is the value attached to the node const(i) 
or meta(i) in D. 

- For the base of 0 there are two cases. By support(j,D) we 

mean the set of nodes in D which have a path to j (but not 
including j itself). 

. D includes const(i): The base of 0 is D restricted 
to the nodes support(const(i),D)U (const(i)}. 

. D includes meta(i): The base of 0 is D restricted to 
the nodes support(meta(i),D). 

For each node k in the base of 0, the flank morphism from 
k to the apex of 0 is the composition of morphisms along 
the path from k to const(i) or meta(i). 

The same result would be obtained if metatheories were treated as 

parameterless procedures, as in section 111.4-5- 

We will need an operation to restrict the base of a based object 
to make it compatible with a restricted environment. This is 
necessary for the semantics of local declarations, since locally 
declared theories have limited scope. At the end of their scope 

they must be removed from the bases of objects they have been used 

to build. 

dec restrict : Colimit_Cat(o,m) -> 
(BasedObj(o,m) # Env(o,m) -> BasedObj(o,m)) 

Def: If 0 is a based object and D is an environment diagram, then 

restrict(0,D) is the based object 0' where the base of 0' is the 

intersection of the base of 0 and D, apex(0'):apex(O), and the flank 
morphisms of 0' are those of 0 which come from nodes appearing in 
the base of 0'. 

The operation restrict is also defined on based object morphisms: 

dec restrict : ColimitCat(o,m) -> 
(BasedObj Mor(o,m) # Env(o,m) -> BasedObj Mor(o,m)) 
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Finally, we need a special operation (called nodeJnorphism) for 
constructing the denotation of a procedure which (as has already 

been mentioned) is a based theory morphism from the coproduct of the 

metasort theories to the theory described by the procedure body. 

The metasort theories are (normally) included in the base of the 

theory given by the body, so except for the complication of taking a 

coproduct in the case of multiple metasorts the result is 
essentially the flank morphism from the metasort to the apex of the 

procedure body. For the case of a single metasort: 

P M 

dec nodemorphism : Colimit Cat(o,m) -> 
(list Name 0 BasedObj(o,m) # Env(o,m) 

-> BasedObj Mor(o,m) ) 

Def: If D is an environment diagram, P is a based object (with 
base included in D) and I:[i1,.... in] is a list of names of nodes in 
D, then the value of node morphism(I,P,D) is: 

- The unique morphism from the coproduct retrieve(i1,D) + 
. + retrieve(in,D) to P, if the nodes i1,...,in are in 

the base of P 

- Error, if some node ii is not in the base of P 

The result of node morphism is constructed using the 'universal 
part' obtained from the coproduct of the metasort theories. If n-1, 

then the result is as shown above. 

All of these operations are parameterised by the (colimit) 



-165- 

category of values stored in the environment. In the case of 
ordinary Clear the values are based Clear theories, defined 

previously. The name 'Clear cat' will be used for this category 

rather than the more descriptive but long-winded 

'colim cat of based Clear theories'. 

dec Clear cat : Colimit_Cat(BasedClear Theory, 
Theory Mor) 

--- Clear cat <= colim cat of based theories(Clear Institution) 

The environment which keeps track of constant theories and 

metatheories has just been defined. We also need an environment for 
theory procedures. This is just a map from procedure names to their 
values, as in the set-theoretic semantics. The denotation of a 

theory procedure is a based theory morphism (from the coproduct of 
the metasorts to the procedure body). However, in order to apply 

the procedure we also need to know the metasort theories so that we 

can determine the fitting morphisms between the metasorts and the 

actual parameter theories. The procedure environment therefore must 

map procedure names to pairs consisting of a based theory morphism 

and a list of based theories (the metasorts): 

type Proc_Env(o,m) _= Name --> Based_Theory Mor(o,m,beta) 
I list(Based Theory(o,m,beta)) 

No special operations will be needed for manipulating procedure 

environments; bind and retrieve are as usual for maps (we write 
p(pn) to retrieve the value associated with the name pn from 1, and 

n[v/pn] to bind the value v to pn in X). 

4.6. Level III: Theory-building operations 

The final level is similar to section 111.4.6 of the set- 
theoretic semantics. The only differences are those stemming from 

the use of a different set of semantic operations and the more 

complex notion of environment. 
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Values 

T : based Clear theory 
e : environment (constant theories and metatheories) 
R : procedure environment 

Semantic functions 

E : expression -4 environment -4 procedure-environment 
-) based-Clear-theory 

Spec : specification -4 environment -4 procedure-environment 
-) based-Clear-theory 

Semantic equations 

E QTIJpW = retrieve Clear cat (T,p) 

EQtheory enr endthU _ 
enrich Clear Institution ( ,Enr QenrU dict(1)) 

is 
is the empty based theory; 

the empty signature) 

EQel + e2IJPW = combine Clear Institution (E Eel DPI',EQe2DW) 

EQenrich e enr endenlJ(W _ 

let T = EQelJP1r in 
enrich Clear-Institution (T,Enrffenrjsignature(T)dict(T)) 

E Qderive enr using el,...,en from e sic enddeUPW 

let T = combine Clear Institution (E Qe1D(W, 

combine Clear_Institution (E Qe2UpW,...)) in 

let T' = enrich Clear-Institution 

(T,Enr QenrUsignature(T)dict(T)) in 

let T" = E Qe jF in 
let o- = Sic QsicUsignature (T')signature (T")diet (T") in 

derive Clear Institution (T',o-,T") 
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EQP(ei[sici]....,en[sicn])I1PW _ 

let jj,...,T1 = EQei W,...,EQenneW in 
let <F,<Ti,..., >> = W(P) in 
let o1,...' n = 

Sic Qsic1Ilsignature(T1)signature(TI)dict(TI), 

SicQsicnIsignature(Tn)signature(T )dict(T) in 
let Fi,...,Fn = 

extend-signature-morphism Clear-Institution 

(T9cr 9TI)t 

extend_signaturemorphism Clear-Institution 

(TnenT) in 
apply Clear-Institution (F,<F1,...,Fn>) 

(where extend signature norphism is the corresponding 

function on based theories rather than theories) 

EQlet T = el in e2] 'W = 

let T = EQe1 ]PW in 
let P' = bind Clear-cat (T,T,p) in 

restrict Clear cat (EQe2Ile'W,P) 

EQco e using ei,...,en]pW 
let T = EQeI1PW in 
let T' = combine Clear-Institution (EQe1](aW, 

combine Clear-Institution (E Qe2fleW....)) in 

copy Clear Institution (T,T') 

Spec[e]PW = EQe]PA 

Spec Qconst T = e spec] W = 

let P' = bind Clear cat (T,EQe]1FW,P) in 
Spec Q spec ]P'W 

Spec[meta T = e specleW _ 

let P' = bind meta Clear-cat (T,EQe]WW,P) in 
Spec Q spec I FIW 
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Spec[[proc P(Ti:ei,...,Tn:en) = e spec]lPW = 

let Tj1...,Tn = EQe1IIPW,...,EQenJWW in 
let P' = bind Clear cat (<Ti,...,Tn>,<T1,...,Tn>,P) in 

let T' = EQellp'W in 
let F = node _morphism Clear cat (<T1,...,Tn>,T',el) in 

let F' = restrict Clear cat (F,P) in 

let T, .,...,Tn' = restrict Clear cat (T1,P), 

restrict Clear cat (Tn,F) in 

let W' = 11'[<F',<Tll,...,TT'n>>/P] in 
Spec[[spec]W' 
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5. Implementation 

In the preceding sections an implementation of the category- 

theoretic semantics of Clear has been presented in parallel with the 

semantics itself. The finished program written entirely in HOPE is 
about 1700 lines long and occupies 110K words on a DEC KL-10 

computer (where the HOPE system itself occupies 66K words of this 
total). The only theory in the initial environment of the system is 
a simple version of Bool. 

The system has been tested on several small examples, but as the 

timing figures below demonstrate it is rather too slow to be used on 

realistic large specifications such as those in section IV.2. 

Example 1 

The denotation of the specification 

const Nat = 

enrich Bool 
data sorts nat 

opns 0 : nat 
pred, succ : nat -> nat 

egns all n:nat. pred(succ(n)) = n 

all n:nat. succ(pred(n)) = n enden 

Nat + Nat 

is the based theory 

sorts nat, bool 
opns 0, pred, succ, true, false, 
egns . . . 

The computation of this result required 4.325 minutes of CPU time 

(excluding garbage collections). 
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Example 2 

The denotation of the specification 

meta Triv 
theory sorts element endth 

proc Pair(X:Triv) 
enrich Bool + X 

data sorts pair 
opns mkpair : element of X,element of X -> pair 
egns all n,m:element of X. mkpair(n,m) = mkpair(m,n) 

enden 
Pair(Bool[element is bool]) 

is the based theory 

sorts pair, bool 
opns mkpair, true, false, ... 
egns . . . 

The computation of this result required 1.85 minutes (excluding 

garbage collections). 

Nearly all of the time these rather trivial examples required was 

consumed in the computation of colimits in the category of based 

Clear theories. Recall that the application of a theory procedure 

requires 3 simple colimits in the category of based theories. Each 

of these colimits requires a larger colimit in the category of 
theories, which in turn requires a number of colimits in the 

category of signatures. Each colimit in the category of signatures 
requires 2 colimits in the category of sets (the category of 
signatures is a comma category) and each of these requires a number 

of set coproducts and coequalisers. The second example above 

required 88 set coproducts and 32 set coequalisers. An intricate 
and complex manipulation of the results of these operations is then 

required to convert them into the result of the theory procedure 
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application. Of course, the speed of the HOPE system itself is an 

important factor; recoding an earlier version of the colimit program 

in POP-2 resulted in a very substantial increase in speed. 

Although the idea of giving a very general semantics of Clear 

using colimits and the way that colimits in categories of complex 

objects are built from colimits in categories of their components 

are both (in some ways) extremely elegant, they contribute to a 

computationally discouraging result. But some possibilities for 
speeding up the program remain. Since it was written without regard 

for efficiency, there is a chance that some of the algorithms used 

can be substantially improved. Also, rewriting the program in POP-2 

or LISP would certainly improve its performance, probably by at 
least one order of magnitude. There is at least one special case 

(i.e. a certain class of institutions) which can be treated 
separately and made very much more efficient; when signatures are 

essentially collections of sets and the morphisms within based 

theories are all inclusions, the necessary colimits in the category 

of based theories can be computed quickly using the representation 
and algorithms described in the set-theoretic semantics of chapter 

III. This class of institutions includes ordinary Clear and all 
other institutions which have been proposed so far (see section 
111.6). The necessary manipulations of theories in the special case 

are actually very simple as compared with those performed when a 

powerful general technique is applied as in the present program; the 

same result can be computed for example 1 in 2.3 seconds, giving a 

factor of more than 100 speedup. 
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CHAPTER SIX 

PROVING THEOREMS IN CLEAR THEORIES 

We have discussed in earlier chapters two versions of Clear's 
semantics, and we have seen how an implementation of either 
semantics can be useful both for checking the semantic definitions 
for mistakes and for checking specifications for syntactic and 

semantic errors. This is surely commendable in its own right, but 

what is to be done with the theory produced by this program as the 

denotation of a specification? It is nice to know that a 

specification contains no errors (at least at the level of theories 
-- whether or not it has the intended class of models is another 

matter) but it would be even nicer if the result of laboriously 
computing its denotation could be used to shed further light on the 

specification and its models. 

There are several things which could conceivably be done with the 

denotation of a specification. The most obvious thing is to simply 

print the signature and (some representation of) the set of 
equations for the user to examine. The signature at least is often 
slightly different from that expected; it is especially easy to 
forget about the == operators contributed automatically by the data 

operation. This could also be useful in determining the effect of 
unusual uses of Clear's theory-building operations. Both Clear 

implementations print their results, although the result printed by 

the category-theoretic version is rather difficult to read. 

A system like OBJ [Goguen and Tardo 1979] could be used to 'run' 
the theory in some cases. OBJ evaluates expressions by treating the 

equations as left-to-right rewrite rules, with special provisions 
for permutative equations like a+b=b+a. With this the user could 

check examples to see if the specified behaviour is consistent with 
his intentions. Such a system could not cope with all theories; 

loose and implicitly specified theories would both cause (probably) 

insurmountable problems. 

The DAISTS system [Gannon, McMullin and Hamlet 1981] tests if a 

model (program) is consistent with an equational specification. The 
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idea is to run the program on a set of examples and see if the 

results satisfy the equations. Such a system would have a use 

similar to that of the OBJ-like system just mentioned; it would be 

more laborious to use (the user has to write a program as well as a 

specification) but it would be able to handle all specifications 
with equal ease. Of course it could also be used to test if a 

program satisfies its specification, provided that we are sure the 

specification is correct. The system checks only for consistency 

and not for completeness -- the program might satisfy some extra 
(wrong) equations as well as those in the specification -- so it 
will not always find the flaw in an incorrect program. 

In a later chapter we shall see how the denotations of 
specifications would be needed in a system for stepwise refinement 
of specifications. The goal of such a system would be to check the 

validity of (and perhaps assist with) the development of a program 

from a specification by rewriting the specification at successively 

lower and lower levels. The resulting program is guaranteed to 
satisfy the specification, provided that the correctness of each 

refinement step has been verified by the system. 

But in this chapter we will discuss the problem of proving 
theorems in the theory described by a specification. If a theorem 

prover of some kind were available it could be used by the Clear 

system itself to check that specifications are semantically well- 
formed; the conditions attached to the apply and derive semantic 

operations require that the signature morphism provided be a theory 

morphism, which entails checking that the equations and constraints 
in the source theory (translated via the signature morphism) hold in 
the target theory. Even better, the user could pose questions about 

his specification in the form of equations, which the theorem prover 

would try to answer. Guttag and Horning [1980] demonstrate how this 
can be of use in analysing specifications. Also, a program 

development system would need a theorem prover to check the validity 
of refinement steps. 

Most useful would be a fully automatic theorem prover. But 

theorem proving technology is not yet sufficiently advanced to 

provide this, although some remarkably good automatic theorem 
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provers do exist (see for example [Boyer and Moore 1980]). Here we 

will discuss how a semi-automatic theorem proving system based on 

Edinburgh LCF [Gordon, Milner and Wadsworth 1979] was attached to 
the set-theoretic implementation of Clear. This system proves many 

theorems automatically, but in difficult cases it leaves the user to 
design a proof strategy from high-level primitives. He also can 

build his own primitives (tactics, in LCF jargon) using the 

inference rules provided. The structure of Clear theories seems to 
be very useful in directing the search for a proof in an interactive 
system, although so far little experimentation has been done to 
confirm this suspicion. 

In section 5 it is shown that no complete proof system exists for 
Clear. Although this result has important consequences, in practice 
the difficulty of mechanical theorem proving is the limiting factor. 
Usually the theorems we wish to prove will have routine proofs; our 

task is to automate the easy proofs and provide the user with tools 
for attacking the harder ones. 
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1. Edinburgh LCF 

Since the system we are about to discuss both is built upon and 

draws inspiration from Edinburgh LCF, we now briefly describe the 

most important features of that system. 

Edinburgh LCF (usually called simply 'LCF') is a large system, 

and as such it is probably easiest to understand when it is 
decomposed into several more or less independent subsystems. First 
is ML, a general-purpose applicative language with polymorphic 

types. ML is very much like HOPE; one useful feature which is found 

in ML but not in HOPE is a failure generating (and failure trapping) 

mechanism. 

Built on top of ML is the second component, PPLAMBDA -- a family 
of deductive calculi or theories with terms from typed lambda- 

calculus and (for each member of the family) a set of types, 

constants and axioms. There are facilities akin to enrich and 

combine in Clear for putting together several theories and extending 

the result to make a new theory. A.theorem in PPLAMBDA is an ML 

data structure like a term or formula, but with a crucial 

difference: the only way to construct a theorem is by application of 

built-in inference rules. This ensures that any object of type thm 

must be true in the theory in which it was formed. Thus the type 

security provided by the ML type checker is used to maintain logical 

security. 

The final component of LCF is not a program but a methodology for 

goal-directed proof in PPLAMBDA using ML. Given a theorem to be 

proved (we use the notation a1...an t c), we apply a tactic; that is, 

a proof rule in the form of a little ML program. This may fail if 

the goal is not of the appropriate form. If it succeeds then it 

delivers a list of subgoals together with a proof; this is a 

function built from inference rules which will produce a theorem 

(written a1...an l- c) corresponding to the original goal if it is 

given a theorem corresponding to each of the subgoals.- Proving a 

theorem is then a matter of applying one tactic after another until 

the empty list of goals is obtained. Tacticals like 

THEN : tactic x tactic -4 tactic 

are provided for composing tactics into larger tactics called 
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strategies. 

LCF is sometimes described as an interactive theorem-proving 

system, but as it stands it is not well-adapted to this end 

(although Luca Cardelli, Jacek Leszczylowski and Brian Monahan have 

each written a collection of 'interactive' tactics). The 

bookkeeping problem of remembering how to compose proof functions 

(obtained by the application of tactics to goals at various stages 

of the proof) is handled well by the tacticals but is nontrivial for 
humans. LCF is most useful for interactively designing and testing 
strategies for proof; the idea is to produce a strategy which will 
solve the entire problem by reducing the top-level goal to the empty 

goal list, rather than to attack subgoals individually by hand 

(although this can be useful for designing a strategy). 
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2. The theorem prover 

The denotation of a Clear specification is a theory -- that is, a 

signature S together with a closed set of I-equations (and 

2-constraints). Of course, the set is often infinite, so it cannot 

be represented explicitly. Both Clear implementations represent a 

closed set of equations by an agglomerate; this is a value of the 

term algebra generated by the following constructors: 

close : equation-set x constraint-set --) agglomerate 
union : agglomerate x agglomerate --4 agglomerate 
translate : signature-morphism x agglomerate -4 agglomerate 
inv-translate : signature-morphism x agglomerate - agglomerate 
add-equality : signature-morphism x agglomerate -> agglomerate 

For the formal meanings of these operators, consult the next section 

(they have already been defined informally in section IV.1). This 

is a sufficient set of operators to describe the manipulations on 

agglomerates required by the semantics of Clear. Roughly speaking, 

each operator corresponds to a theory-building operation of Clear. 

The operator close is used for enrich, union for combine (and 

enrich), inv-translate for derive, and add-equality for data-enrich. 

Translate is needed for enrich, combine, and apply. For example, 

the Clear expression A + B generates the following agglomerate: 

union (translate ((rA,A-agglomerate), 
translate(a-B,B-agglomerate)) 

where 
o-A 

and o-B are the inclusions of the signatures of A and B 

respectively into the signature of the combined theories. 

The theorem prover's job is to implement the membership 

operation, determining if an equation occurs in the set of equations 

described by an agglomerate: 

is-in : equation x agglomerate --> bool 

Given an equation e and an agglomerate A, we try to show that e 

is contained in the denotation of A; if this can be established then 

we write A h- e. This is called a fact. Facts in our system coexist 

with PPLAMBDA theorems (which we write with a subscripted turnstile, 

tCF 
from now on) and play a parallel role. Like theorems in 

PPLAMBDA, facts can only be constructed by application of certain 

rules of inference which we will shortly discuss. The system 

provides a set of tactics for attacking goals (which are written 
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A !e -- LCF goals are henceforth written a1...an 
FLCFc), 

these are 

analogous to LCF tactics and can be combined into strategies using 

the standard tacticals. 

Thus we adopt wholesale the LCF proof methodology, and use 

exactly the same trick for ensuring the validity of facts as LCF 

uses for theorems. We use PPLAMBDA forms for representing equations 

and constraints, and perform all of the necessary straightforward 
equational deduction using the standard PPLAMBDA rules of inference. 
The system itself is written in ML. The only important feature of 
LCF we do not use is the facility for building new PPLAMBDA theories 
by extending old theories. The role of theories in PPLAMBDA is 

played by agglomerates in our system. As we shall see shortly, much 

of the work of the theorem prover consists of rapidly switching 
contexts from one agglomerate to another (usually embedded) one -- 
LCF does not permit switching between PPLAMBDA theories in the 

course of a proof (although such a facility could be added). 

Moreover, agglomerates may be related in ways different from the 

simple parent-daughter relationship between theories supported by 

LCF. The theorem prover operates in a PPLAMBDA theory containing 
all the types (sorts) and constants (operators) it will need to use 

because these need to be declared before appearing in a form, but no 

axioms are included except for those built into PPLAMBDA. The 

axioms of a Clear specification are contained in the agglomerate 

which is its denotation; these are brought into play in the course 

of the proof but never become part of the underlying PPLAMBDA theory 

itself. 

We actually use an impoverished version of LCF in which many of 
the usual built-in types, operations and inference rules of PPLAMBDA 

are not available. This is necessary because of a mismatch between 

the models of PPLAMBDA and Clear theories. Clear deals entirely 
with total functions, while PPLAMBDA is designed for reasoning about 

recursively-defined functions which may be partial. A model of a 

PPLAMBDA theory is given by a family of domains, each with a 

distinguished minimum element and an order relation (see [Milner, 
Morris and Newey 1975]). A PPLAMBDA type always includes an 

implicit minimum element and an order relation, and inference rules 



-179-- 

are provided for reasoning about them. This means that the PPLAMBDA 

rules of inference are not sound for reasoning about Clear theories; 

an example will be given in section 3. Soundness is restored by 

removing the implicit order and minimum element and all inference 

rules concerning them. The subset of PPLAMBDA which remains is 

described in appendix 3. 

The goal of this system is to provide a set of tools sufficient 
to enable a user to conduct proofs of 'facts' in LCF. As mentioned 

earlier, our intent is not to give a general-purpose automatic proof 

system, for this would be an impossible task. To this end the 

system contains definitions of agglomerates and facts (with their 

inference rules); a set of basic tactics are supplied as well, 

although the user may design his own tactics from the inference 

rules given. A strategy which is capable of automatically proving a 

restricted class of facts is provided. If this strategy fails, it 

will at least have reduced the problem at hand to one of ordinary 

equational deduction using standard PPLAMBDA inference rules. At 

this point the user must assume control of the proof attempt, with 

all the usual facilities of LCF at his disposal. 
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3. Inference rules 
Suppose we are somehow able to construct the fact Ar-e in our 

system. We understand this to mean that e is a member of the set 
described by the agglomerate A. We had better explore the semantics 

of agglomerates before attempting to give inference rules for 
reasoning about them; without a semantics, we cannot even prove the 

soundness of our system. 

The abstract syntax of agglomerates was given at the beginning of 
the last section. They have a straightforward semantics, given by 

the semantic function ]E (recall that E refers to the model- 

theoretic closure of E, and c'-1(E) _ {e;c'(e)6E}; see section 
III.2.3 for the meaning of the notation ES, the augmentation of E by 

equations defining the 'data' equality predicate == on the sorts of 
S). 

IE : agglomerate -4 (equation and constraint) -set 

IEQclose(E,C)D = EUC 

IEQunion(A,A')D = IEQADUIEQA'D 
IEQtranslate (c,A)D = A ) 

IEQinv-translate(c,A)D = 0-1(IEQA11) 
IEQadd-equality(Q',A)D = IEQADS (S=sorts(2'-V, where r:2"V ) 

where E denotes a set of equations, 
C denotes a set of constraints, 

and A denotes an agglomerate. 

Observe that for any agglomerate A, IE QA D is closed (the 
denotation of inv-translate is always closed due to a result in 
section 111.2.4). Also note that not all terms are semantically 

well-formed -- for example, if A denotes a set of k-equations and 

constraints and is a signature morphism where 1/2', then 

translate(o-,A) is meaningless. It is assumed throughout this 
chapter that any restrictions necessary to maintain well-formedness 

are tacitly stated whenever a term appears. 

A number of identities follow from the semantics, including the 

following: 

translate (o,union (A,A')) = union (translate (c,A),translate (c,A')) 
translate (c',inv-translate(Q,A)) = A 



-181- 

But the following identity does not hold in general: 

inv-translate(cr,translate (cr,A)) = A 

Using this semantics, we can give a set of inference rules which 

allow us to reason about facts of the form At-e, where e is an 

equation or a constraint. (Note that A f--e means ee]E.(1Af ) The 

problem with this is that we do not have any means available for 

reasoning about constraints; we know what it means for an algebra to 

satisfy a constraint and how to translate constraints by signature 

morphisms, but this does not provide a rich deductive calculus 

similar to what we have for equations. Moreover, constraints cannot 

be converted into equations; the language of equations is not rich 

enough to capture the meaning of a constraint. But certainly we do 

not want to throw away the information encapsulated in constraints 

if at all possible, since this would dramatically restrict the class 

of facts we would be able to prove. 

We need a notion of fact in which something more than an equation 
is allowed on the right of the turnstile. This 'something' should 

be powerful enough to express constraints, and should have a 

readily-available proof theory. A very convenient choice is 
PPLAMBDA forms (formulae); these include equations, and also allow 

higher-order quantification and combination of forms with the 

conjunction and implication connectives. We will see shortly that 
an induction rule for a sort s (derived from a data constraint) can 

be expressed as a second-order form b'P.`d Q. ... where P and Q have 

the polymorphic type s-*. Moreover, we know how to reason about 

forms; that is precisely what LCF was built to do. 

It is easy to extend facts to be of the form Ar-f, where f is any 

PPLAMBDA form. We can define Af-f to mean f]E QA D*+, where 

* : (7.-equation and 7-constraint) -set ----> _Z-algebra set 

is the function defined in section 11.4 (recall that E = E**) and 

+ : I-algebra set --j 2-form set 

is defined by: 

M+ = {f;m satisfies f for each meM} 

It turns out that even though the language of forms is 
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sufficiently powerful to express the information contained in a 

constraint, it is impossible to extract all of it because of 
incompleteness. But that portion of the information which is most 

necessary for our purposes may be translated into a form. 

To see how this arises we must examine the definition of 

constraint satisfaction given in section 11.5. If we consider for 

the moment only cases where the second part of the constraint (the 

signature morphism) is the identity, then this amounts less formally 

to the following definition: 

Def (Constraint satisfaction, informally): An algebra A satisfies 
a constraint <i:T-4T',13ig(T,)> if the following conditions hold: 

1. A is a model of T'. 

2. No terms are identified in A unless the equations of T' 
force them to be. 

3. Every A element is the value of a term having variables 
only in sorts of T for some assignment of values to 

variables. 

These three conditions are statements which will be true of any 

algebra in EQAU , for any constraint in ]EQAB. This means that 
any statement which follows from them which can be encoded as a form 

will be in ]E QA D +, and hence a fact in A. 

Condition 1 is redundant. The equations of T' will appear 

elsewhere in the agglomerate which contains the constraint, so we 

can safely ignore them now. Condition 2 entails only inequations -- 
these can be given as PPLAMBDA forms (alb is written as "a=b IMP 

TT=FF"), but it is impossible in general to determine which 

inequations will hold because of the incompleteness result mentioned 

earlier. This is not a problem if T' is anarchic. But because we 

are mainly interested in proving equations, and because PPLAMBDA 

does not include facilities for reasoning about inequations, we 

choose to ignore this special case. 

Condition 3 gives rise to an induction rule for each sort in 
sorts(T')-sorts(T), since all values of these sorts are generated by 

the 'constructors' in T'. This rule can be expressed as a 

polymorphic second-order form -- in the case of natural numbers with 



-183- 

operations 0 and successor the rule becomes: 

!P:nat->*. !Q:nat->*. 
[ P(0)=Q(0) & !x.[P(x)=Q(x) IMP P(succ 

IMP 
!x.[P(x)=Q(x)] ] 

x)=Q(succ x)] 

In LCF the universal quantifier becomes '!', type variables are 

written '*' (or **, ***, etc.), and IMP means logically implies. We 

use the operator '=' instead of the LCF '_=' to write PPLAMBDA 

equations in this chapter; the '_=' operator is reserved for Clear's 
'data' equality predicate. 

This rule could be instantiated to prove the equation 

n+m>n = true (that is, to prove the fact A t-"!n.[n+m>n=true]" for 
the agglomerate A which arises from enriching the natural numbers 

with an order relation). The type variable * is instantiated to 
nat->bool, P becomes Xn.Xm.n+m>n and Q becomes Xn.Xm.true to give: 

Xm.0+m>O=Xm.true 
& !x.[)m.x+m>x=Xm.true IMP Xm.succ(x)+m>succ(x)=>m.true] 
IMP 
!x.[Dm.x+m>x=Xm.true] 

In general, given a constraint <i:Tc_)T',lsig(T')> and a sort 
ssorts(T')-sorts(T) with 

constructors(s) 3 (oopns(T');arity(o) is v->s, for some v} 

= {..., w:u->s, ...}, 

we can extract the following induction rule: 

!P:s->*. !Q:s->*. 

& lxi:ui. .. !xn:un.[ ... & P(xi)=Q(xi) & ... 

& .. 

IMP 

lx:s.[P(x)=Q(x)] ] 

where u=ui...un and uj=s. 

IMP 
P(w(xi,...,xn))=Q(w(xi,...,xn)) ] 

Recall that the preceeding discussion related only to constraints 
with the identity morphism (on the signature of T') as a second 

part. Given a constraint <i:T`-->T1,d':signature(T1)-->2> (where d' 
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need not be the identity), we can produce an induction rule by first 
generating a rule for the constraint <i,1sig(T?)> using the method 

just described, and then applying the signature morphism o° to 

translate the rule to the signature 2. 

We have just described a way of extracting a set of induction 

rules from a constraint; this gives a function 

induction-rules : constraint ---> form-set 

It is easy to define another function 

eqn-to-form : equation -4 form 

for converting equations to forms. Now we can have a try at an 

inference rule: 

fe(egn-to-form*E U induction-rules*C) close (E, C) f-f 

This is a satisfactory rule, but since the original equations and 

constraints are no longer of any use (but only the forms derived 

from them) we could just as well forget them and deal only with 
forms. Accordingly we modify the abstract syntax of agglomerates so 

that close accepts a set of forms: 

close : form-set -> agglomerate 

The rest of the abstract syntax remains the same. The agglomerates 

used by the Clear implementation (call them E-agglomerates) are 

translated into agglomerates with the new close (F-agglomerates), 

with the only nontrivial part of the translation being the 

conversion of the constraints to forms. This translation occurs at 
the interface between Clear and LCF, as described in a later 
section. 

An incidental benefit of the switch from equations to forms is 
that the theorem prover is now equally capable of handling 

specifications using conditional equations, predicate calculus 
formulae, or any other kind of axioms which can be translated into 
PPLAMBDA forms. The only difference is at the interface between the 

specification language and the theorem prover, where the axioms must 

be translated into forms. 

A semantics for F-agglomerates is given by the semantic function 
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IF, defined as follows: 

IF : agglomerate -4 form-set 

1FQclose(F) D = F 
IFIlunion(A,A')D = IFQADUIFQA'I1 

All the semantic equations except for the close operation are 

identical to those at the beginning of the section. Note that 

F = F++, where the first + is the operation 

+ : 2-form set 2-algebra set 

defined by 

F+ = {m;m satisfies F) 

and the second + is 
+ : 2-algebra set --> 2-form set 

as described earlier. 

Theorem: For any E-agglomerate A, IFQT(A) D c IE[LAD*+, where 

,r:E-agglomerate-4F-agglomerate is the translation mentioned above. 

Proof: See Appendix 4; the proof relies on a proof of the 

Satisfaction Lemma (section II.3) for PPLAMBDA forms, also given. 

This theorem tells us that the new semantics for agglomerates is 
consistent with the old semantics -- so any fact we can prove using 

inference rules which are sound with respect to the new semantics 

will hold in the corresponding theory (but not vice versa). 

The inference rules can now be stated. It is easy to prove from 

the semantics that each of the rules is sound (note that W f f now 

means f*IFIIA D). Each rule is given an upper-case name, following 
LCF convention. 

CLOSE: feF close(F) rf 
UNIONLEFT: A[-f union(A,A')F-f 
UNIONRIGHT: A'F-f union(A,A')F-f 
TRANSLATE: AF-f Z> translate (a, A) -(r (f 
INVTRANSLATE: AF-o- (f) inv-translate(o-,A) F-f 
ADDEQUALITY: Ar-f add-equality((r,A)f-a (f) 
EQUALITYOPN: w:s,s->boolBooleopns(j'-j) and 

add-equality(c-,A)-!x:s.!y:s.[x:y IMP w(x,y)=trueBool] 
LCFINFER: A-f1 & ... & A-fn & fI,.... fntCFf As--f 
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EQUALITYOPN provides us with a way of proving equality (the 

operator w will always be the == data equality) but no way of 
proving inequality. Proving inequality is impossible in general 

because of incompleteness, but in the special case of an anarchic 

theory it is trivial. Burstall [1980a] has devised a way of proving 
inequality in a nonanarchic theory, but the method requires help 

from the user, analogous to but different from supplying induction 
hypotheses to a theorem prover. We do not attempt to deal with this 
problem; no inference rules are provided for reasoning about 

inequality. Note that inequalities are subtly different from 

inequations, discussed earlier. 

LCFINFER provides a 'gateway's between standard PPLAMBDA and the 

superstructure of inference rules about facts which is needed to 

adapt LCF to reason within Clear theories. Viewing the theorem 

prover as a goal-manipulation system, the previous seven rules 
provide a means for reducing a goal (prove a fact Al-f) to a problem 

in ordinary equational logic. LCFINFER permits this to be 

translated into an LCF goal, whereupon the proof can proceed using 

the facilities of standard LCF. 

We must be careful in our use of LCF for two reasons. The first 
problem stems from the mismatch between the models of PPLAMBDA and 

Clear theories mentioned in section 2. Recall that in standard 

PPLAMBDA a type always includes an implicit minimum element (written 
"UU"). If full PPLAMBDA is used then LCFINFER is not sound. 

Consider the theory Bool; it contains a data constraint which gives 

rise to the following induction rule: 

!P:bool->*. !Q:bool->*. 
[ P(true)=Q(true) & P(false)=Q(false) 

IMP 
!x.[P(x)=Q(x)] 

Taking the example 

P(UU) = UU, P(true) = P(false) = true 
and Q(UU) = Q(true) = Q(false) = true 

this rule leads to the conclusion UU=true. A similar example can be 

used to prove that UU=false, and by symmetry and transitivity this 

means that true=false. 
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In order to retain soundness, we restrict PPLAMBDA so that 
examples like the one above do not occur by excluding UU and all 
inference rules which refer to UU or the order relation. In fact, 
we really want to replace the turnstile 

tCF 
in LCFINFER by rQ, 

where EQ is a system for purely equational deduction with the 

ability to apply the induction rules described earlier. We use LCF 

only for convenience and because it contains a powerful simplifier 
which is capable of assuming much of the work of equational 
deduction. 

A second problem with the PPLAMBDA inference rules is 
demonstrated by the following example from Goguen and Meseguer 

[1981]: 

const T = theory 
sorts a, bool 
opns true, false : bool 

not : bool -> bool 
and, or : bool,bool -> bool 
f : a -> bool 

egns not(true) = false not(false) = true 
p or not(p) = true p and not(p) = false 
p or p = p p and p= p 
f(a) = not(f(a)) endth 

We can now make the following deduction using the inference rules of 
PPLAMBDA (symmetry, transitivity, substitutivity and specialisation 
of quantifiers are sufficient): 

true = f(a) or not(f(a)) 
= f(a) or f(a) 
= f(a) 

f(a) and f(a) 
f(a) and not(f(a)) 

= false 

But true=false is not satisfied by the model of T with 
boot={true,false} and a=0 (with the usual interpretation of the 

boolean operators). 

This is again due to a mismatch between the models of PPLAMBDA 

and Clear theories. The inference rule for specialising quantified 
variables is not sound for many-sorted theories (e.g. Clear 

theories) unless the variable is of a non-void sort: 
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Def: A sort s is void in a signature S if sesorts(S) and: 

- There are no constants of sort s in 2, and 

- There is no operator w:s1,...,sn->s in 1 with all of 
311...,sn non-void. 

It is difficult to change the inference rule because it is built 
into the LCF simplifier, which plays a vital role in our equational 

deduction tactic (this tactic is described at the end of the next 

section). But void sorts are very unusual in practice. The 

quantifier specialisation inference rule remains valid as long as 

all sorts are nonvoid, so for reasonable examples there will be no 

problem. It is best to eliminate unsound inference rules, so a 

future reimplementation should incorporate a version of quantifier 
specialisation modified to fail for variables of void sorts. 
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4. Tactics and strategies 
The inference rules given in section 3 could be used to prove 

theorems in a 'forward' direction, but the LCF style is to instead 

proceed backwards in a goal-directed fashion. A step consists of 

transforming the goal into a list of goals which, if they can be 

achieved (converted to theorems), entail the desired theorem. The 

transformation steps are carried out by backwards inference rules 

called tactics, which can be composed using tacticals to give 

strategies, as discussed in section 1. 

The theorem prover provides tactics corresponding to each of the 

inference rules given in section 3. These are all simple ML 
7 

programs, operating on goals of the form AF-f and returning a list 

of goals (together with a proof, not shown). 

CLOSETAC (F) -f [] if fF l f il l : F c ose a ure , e se 

UNIONLEFTTAC A') (A f [ A i f ] : 

UNIONRIGHTTAC: 

TRANSLATEWITHTAC 

- F- , on f un 

union(A,A') F-f y [ A' Lf ] 

f '--> translate(a A) 9-f' [ A !f ] : f , 

if o(f)=f', else failure 

INVTRANSLATETAC: inv-translate(a,A) r-f L---> [ AV-a (f) ] 

7 7 
ADDEQUALITYTAC: add-equality((r,A) r-f '----> [ A - f ] 

if a`-1(f)iO, else failure 

EQUALITYOPNTAC: add-equality(o-,A)Fcj(x,y)=trueBool 

'-> [ add-equality((r,A) - x=y ] 

if w:s,s->boo1Booleopns(j'-2) where d':2"V, else failure 

LCFINFERTAC: [ Affil ***I A f-fn ] ' A Ff ' [ f 1, ' fn 
FLCFf ] 

Each of these tactics gives a way of diving into an agglomerate 

with a form, yielding a goal concerning a subagglomerate and the 

(possibly transformed) form. UNIONRIGHTTAC and UNIONLEFTTAC take 

different choices when given a union; similarly, TRANSLATEWITHTAC 
7 

yields a different result for the goal translate(o`,A)r-f depending 

on which element of the set (r-1(f) it is given. The system provides 
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tacticals which automate these choices: 

UNIONTACTHEN: tac t-4 
(UNIONLEFTTAC THEN tac) ORELSE (UNIONRIGHTTAC THEN tac) 

9 
TRANSLATETACTHEN: tac r---> translate(o,A) rf r-- 

((TRANSLATEWITHTAC f1 THEN tac) 
ORELSE ... ORELSE 

9 
(TRANSLATEWITHTAC f THEN tac)) translate(o',A) rf 

where {fl, fn} = a' fl(f) 

The standard LCF tactical ORELSE, given the two tactics tac 
1 

and 

tact, applies tact to the goal unless it fails, in which case tac 2 

is applied. The action of UNIONTACTHEN tac is therefore to first 
try choosing the left-hand branch of the union; if this causes tac 
to fail, then it tries the right-hand branch. TRANSLATETACTHEN tac 

tries each possible choice of argument for TRANSLATEWITHTAC, 

rejecting those which cause tac to fail. 

It is helpful to think of an agglomerate as a tree. For example: 

union 

translate inv-translate 

union close / \ 
inv-translate translate 

add-equality close 

close 

Each of the tactics given so far dive from an agglomerate to the 

subagglomerate(s) immediately underneath (with the exception of 
EQUALITYOPNTAC, which remains at the same node). A composite 

tactical called DIVETAC is provided which, given an LCF tactic 
(i.e., a tactic for attacking LCF goals), explores the entire 
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agglomerate by diving repeatedly until it reaches a tip (a close 

agglomerate). At this point LCFINFERTAC is applied, followed by the 

tactic provided as argument. If this results in the empty goal 

list, then the goal is achieved; otherwise a failure is generated 

which is trapped at the most recent choice point (an application of 

UNIONTACTHEN or TRANSLATETACTHEN). The same process is then used to 

explore another branch of the tree (or the same branch, with a 

different form), until the entire tree has been traversed. 

DIVETAC: tac r- 4 
# 

--4 

if g = close(F)J.:-f: 
(TRY (LCFINFERTAC [ close(F)I-f1 

close(F)f-fn ] THEN tac)) g 

where F = {f fn} 
if g = union(A,A')Ff: (UNIONTACTHEN DIVETAC tac) g 

if g = translate(o,A) F-f: (TRANSLATETACTHEN DIVETAC tac) g 

if g = inv-translate(o,A)-f: (INVTRANSLATETAC THEN DIVETAC tac) g 

if g = add-equality(o,A) Ff: 
((DO EQUALITYOPNTAC) THEN ADDEQUALITYTAC 

THEN DIVETAC tac) g 

This uses two auxiliary tacticals. The first is called TRY; it 
fails unless the tactic supplied is able to achieve the goal. 

TRY: tac r---> g r--4 if tac g = [I then [1, else failure 

The second is called DO; it applies the given tactic, returning the 

original goal if the result is failure. 

DO: tac r-> g '-4 if tac g = failure then [g], else tac g 

DIVETAC EQTAC (where EQTAC is an LCF tactic for performing 
equational deduction; one such is described at the end of this 
section) can automatically provide proofs for a wide range of facts, 
provided that EQTAC performs adequately. It dives down to the tip 

which contains the information needed to prove the fact at hand (of 

course, finding the proper tip may involve a backtracking search), 

and uses EQTAC to do the 'dirty work' of the proof. 

This is quite a good way to go about proving facts concerning 
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large agglomerates. For example, if the goal is Ar-p+q=q+p where A 

is obtained from the specification of a compiler, then almost all of 
the information buried in A is completely irrelevant and should be 

ignored lest the proof get bogged down by silly proof attempts. 

DIVETAC will fail quickly when attempting to follow most silly paths 

(going on to find the correct path) because of a mismatch between 

the form at hand and the signature of the irrelevant subagglomerate. 

For instance, the Clear expression Nat + Useless gives rise to the 

agglomerate 

union (translate (CNat:-1Naty-ZNat+Useless,ANat), 
translate(7Useless: Useless 4_ Nat+Useless, AUseless)) 

An attempt to prove that p+q=q+p in the combined theory using 

DIVETAC will ignore the subagglomerate AUseless because 

TRANSLATETACTHEN anytac will fail immediately when applied to the 

goal 

translate (o UselessIAUseless) r p+q=q+p 

for a'Useless(p+q=q+p) is empty. That is, provided that Useless 
does not include the + operator. 

Unfortunately, a large class of facts remains which cannot be 

proved using DIVETAC. These are the cases in which there is not 

enough information in any single tip to prove the fact. For 

example, proving that the equation 

length(append(l,k)) = length(l) + length(k) 

holds in the theory of lists and natural numbers requires the use of 
equations and induction rules from both subtheories. DIVETAC will 
fail for this reason. 

The theorem prover provides a tactic for handling this 
eventuality. Instead of diving into an agglomerate with a form, we 

want to 'dredge up' facts from the depths of the agglomerate, 

forming the union of all the information available in the tips. 
Then LCFINFER and EQTAC can be used to prove the form. 

This is more difficult than it sounds. Consider the following 

contrived but illustrative specification: 
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ABCD = theory sorts abcd 
opns a,b,c,d : abcd endth 

ACD = derive sorts acd 
opus a,c,d : acd 

from enrich ABCD 
E ns a = b 

b = c enden 
by acd is abcd endde 

This gives rise to the agglomerate 
inv-translate((r, close (a=bib=c)) 

where o : acd -4 abcd 
a s-4 a 
c s-4 c 
d o-4 d 

The equation a=c holds in ACD. How are we to discover this? It is 
easy to prove the fact 

inv-translate (cr, close (a=bib=c))t-a=c 

using DIVETAC, but extracting all of the facts which are true in a 

situation like this (without knowing beforehand which facts are 

needed) is difficult. It is impossible in general because of the 

existence of theories which have finite presentations when derive is 
allowed, but only infinite presentations otherwise (see [Thatcher, 
Wagner and Wright 1978]). 

DREDGETAC therefore does not try to dredge up all of the 

information available, but only that which is conveniently 
accessible. The following auxiliary function produces the set of 

conveniently accessible forms from an agglomerate: 

dredge: close(F) H F 

union(AX) dredge (A) Udredge(A 
translate ((Y,A) r-4 cr(dredge(A)) 
inv-translate(cr,A) H cr-1(dredge(A)) 
add-equality(c,A) H c(dredge(A))U 

{lx:s.ly:s.[x=y IMP w(x,y)=truea0013 
w:s,s->boolBoolropns(2'-2) where a':2 * '} 

Note the similarity between the function dredge and the semantic 

function IF defined in section 3. The only difference is that 

dredge (being only a program running on a finite computer) must 

abstain from use of the closure ('bar') and the add-equality-axioms 

operations. 
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It is easy to prove the following derived inference rule, using 

the fact that F S F and F 4 F' F G F' : 

DREDGE: fadredge(A) A F--f 

DREDGETAC uses dredge to extract forms form the agglomerate at 

hand. Then LCFINFERTAC is applied to give an LCF goal, which has as 

assumptions the set of facts thus accumulated. 

DREDGETAC: A F - ' ' - f H LCFINFERTAC [ A -f i , ... , A rfn ] a bf 
where {fl, ..., fn} = dredge(A) 

We have seen that DIVETAC is capable of proving a certain class 

of facts, yet DREDGETAC seems to be needed to collect the 

information necessary for the proofs of other facts. DREDGETAC 

alone (followed by EQTAC) is not capable of proving many of the 

facts which are handled with ease by DIVETAC. Some combination of 
diving and dredging seems to be necessary in a general strategy for 
proof in Clear. 

Our strategy rests on the observation (mentioned above) that 
often the agglomerate at hand contains a great deal of information 
which is utterly irrelevant to the proof of the desired fact. This 

seems to be a pitfall to which most theorem-proving systems are 

susceptible; it is easy to get irretrievably bogged down in 
exploring the large number of blind alleys made available by a 

wealth of information (see the introduction of [Boyer and Moore 

19791, for example). It is therefore important to restrict the 

available information as much as possible before attempting the 

proof using standard techniques. 

But how is the theorem prover to automatically determine exactly 
which subset of the available information is necessary for the proof 

of a fact? In the case of a conventional theorem prover, where the 

axioms, previously proved theorems, etc. are stored in a list, the 

only approach seems to be some kind of heuristic filter which passes 

only 'relevant' facts. The construction of such a filter is a 

formidable task, for it is not always immediately obvious what is 
relevant. 
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This problem is not so perplexing when we are given the 

information in a highly structured form, such as an agglomerate. As 

we observed above, it is easy when diving to exclude certain 

irrelevant subagglomerates entirely because a 'translate' node acts 

as a barrier to inappropriate goals. Moreover, the agglomerate will 

reflect the structure of the human-constructed specification from 

which it arises, and so it is likely that all of the information 

necessary to prove the fact will be located in a relatively small 

subagglomerate. DREDGETAC applied to this subagglomerate will 

normally collect all of the information neccessary to prove the 

fact, without much that is irrelevant. 

The strategy we use is based on DIVETAC and DREDGETAC, as 

expected. Recalling the explanation of DIVETAC, the approach now is 

to visit each node in the agglomerate in precisely the same order as 

in DIVETAC, performing the same action at the tips. But after 

trying both paths of a 'union' node and failing, DREDGETAC is used 

to attempt the proof in the combined theory. This means that 
dredging takes place on a subagglomerate only after all other 

methods have failed. 

This strategy is implemented by the tactical SUPERTAC (again, 

this takes as parameter an LCF tactic for doing equational 

deduction). 

SUPERTAC: tac '--a g --a 
0 if g = close(F)f-f: 

(TRY (LCFINFERTAC [ close(F)f-f1 

close(F)f-fn ) THEN tac)) g 

where F = {f . fn) 

if g = union(A.A')ff: ((UNIONTACTHEN SUPERTAC tac) ORELSE 

(TRY (DREDGETAC THEN tac))) g 

if g = translate(o-,A) r-f: (TRANSLATETACTHEN SUPERTAC tac) g 

if g = inv-translate(c ,A) -f: 
(INVTRANSLATETAC THEN SUPERTAC tac) g 

if g = add-equality(c ,A) F-f: 
((DO EQUALITYOPNTAC) THEN ADDEQUALITYTAC 

THEN SUPERTAC tac) g 

Note that DREDGETAC could be applied at nodes other than union, but 
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any fact which can be proved using DREDGETAC THEN tac on a non-union 

node can also be proved using the appropriate diving tactic followed 
by SUPERTAC tac, so this would be a waste of effort. 

It is interesting to observe that the structure of the 

specification from which the agglomerate is taken is an important 
factor in the performance of SUPERTAC. It is certainly possible to 
write a specification which defeats the heuristics upon which 

SUPERTAC is based. But this specification would probably have a 

rather strange structure. The locality of reference which SUPERTAC 

exploits seems to be one criterion for a well-structured 
specification. 

There remains an important class of facts which cannot be 

automatically proved using SUPERTAC. Recall the theory ACD given as 

an example earlier in this section; this was used to demonstrate the 

difficulty of dredging from an inv-translate. But in some cases 

dredging is necessary; for example, consider the theory 

Tricky = enrich ACD b 

egns c = enden 

This gives rise to the following agglomerate: 

union 

close(c=d) inv-translate((7,close (a=b.b=c)) 

where o is as before. Now suppose we want to prove the fact 

ATricky 
F-a=d. This requires a dredge, since the necessary 

information is spread over both branches of the union. But the 

important equation a=c cannot be dredged from the inv-translate, so 

SUPERTAC will fail. 

The lemma a=c is a necessary step in the proof. This can easily 
be proved by diving down the right-hand branch of the union. It is 

then easy to prove a=d using the equation c=d. 

But where does the idea for this lemma come from? We avoid the 

difficult problem of automatic lemma generation by requiring the 
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user to supply such lemmas. A new construct has been added to Clear 

for this purpose to enable the user to propose lemmas along with the 

specification; we feel that this is preferable to requiring the 

lemmas to be inserted at theorem-proving time. To propose the lemma 

a=c in the above specification, the user would write: 

ACD' = enrich ACD 

thms a = c enden 

Easy = enrich ACD' 
egns c = d enden 

A 'thm' is treated exactly as an equation, except that it must be 

provable from the existing equations and constraints or else an 

error occurs. The theory Easy gives rise to the agglomerate 

union 

close(c=d) union 

close(a=c) inv-translate( ... ) 

and now the equation a=d may be proved easily using DREDGETAC. We 

got this idea from the Z specification language [Abrial, Schuman and 

Meyer 19791 which also permits theorems to be included in 
specifications. This is a useful facility, apart from its use in 
assisting the theorem prover. The user can insert theorems which he 

believes to be correct as a check on the correctness of his 
specification, or he can use a theorem to prominently display an 

important consequence of the axioms. 

It should be noted that Nelson and Open [19791 have described an 

elegant method for combining decision procedures for several 
independent theories into a decision procedure for the combined 

theory; this can be seen as an alternative to our DREDGETAC. 

Unfortunately, their method does not work when the theories share 

operators, so in general it cannot be applied to the combination of 
Clear theories. But in the special case where the theories do not 
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share operators (and perhaps also for cases with certain restricted 
kinds of sharing) their algorithm could be applied in place of 
DREDGETAC, 

The theorem prover of the t system [Nakajima, Honda and Nakahara 

1980] also exploits the structure of specifications to facilitate 
proofs. It uses theory-focusing techniques [Honda and Nakajima 

19791 which are related to the strategy embodied in SUPERTAC. 

EE uational deduction 

The strategies given above assume the existence of an LCF tactic 
for performing equational deduction. We give here a brief 
description of the one provided by the system; this is able to prove 

a reasonable number of examples completely automatically, but it is 
far from the best possible. Several equational theorem provers (see 

[Musser 1980], [Goguen 1980] and [Huet and Hullot 1980]) have 

recently been built using the Knuth-Bendix [1970] completion 

algorithm; this method seems to give far better results than the 

naive approach used here. 

EQTAC is built from five component tactics, to be described 

below. It tries each tactic in turn, repeating the sequence until a 

tactic fails or the goal is achieved. 

EQTAC = REPEAT (SIMPTAC THEN INDTAC THEN CONJTAC 
THEN EXTTAC THEN IMPLTAC) 

Actually, INDTAC (induction tactic) is the only one of these 

which can fail, so EQTAC fails only if all possible induction 

variables have disappeared. 

SIMPTAC is the standard LCF simplification tactic. It uses the 

basic simplification rules provided by LCF (beta-conversion, etc.) 
together with all of the assumptions of the theorem EQTAC is trying 
to prove (contributed by LCFINFERTAC) with the exception of 
induction rules. If a permutative rule such as p+q = q+p is 
included in a specification, then SIMPTAC will loop. 

INDTAC does induction on the leftmost outermost universally 
quantified variable in the goal for which an induction rule is 
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available. An example of its result when applied to the goal 

tCFn+m>n=true was given in section 3, except that the result 
shown there has already been simplified using beta-conversion. 

CONJTAC converts a goal of the form 

al,...,an 
tCFfl 

& ... & fm 

to a list of goals 
I al,... antCFf 1 

al,... 
anL_CFfm 

This splits the goal generated by INDTAC into cases which can be 

treated separately. 

EXTTAC converts any occurrence of Xx.tl=Xx.t2 in a goal to 

!x.(tl=t2). Equations like these are generated by INDTAC when it is 
applied to an equation containing universally quantified variables 
other than the induction variable. 

IMPLTAC converts a goal of the form 

a,, ....an kCF! x... [f l IMP f2] 

to the goal 
7 al,...,anIfl 

CFf2 
adding fl to the set of simplification rules. This assumes the 

inductive assumptions generated by INDTAC. The next time around the 

EQTAC loop, SIMPTAC will (we hope) simplify most of the goals to 
tautologies and a further induction will be attempted on the 

remaining variables. 

EQTAC is able to prove routine theorems involving multiple 
inductions without difficulty. Typical examples are the 

transitivity of < and the associativity of addition and append. 

Commutativity of addition is much more difficult because induction 
causes rules like x=x+0 and x+y=y+x to be entered as assumptions for 
use by SIMPTAC, causing it to loop. More care with the use of such 

permutative equations as simplification rules is needed to avoid 

this behaviour. 

An example of a theorem which EQTAC cannot prove is 

reverse(reverse(l))=1. The proof of this theorem requires the 

application of a few clever heuristics rather than brute force. 

Induction on 1 followed by simplification reduces the problem to one 
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of proving 

reverse(append(reverse(l),cons(a,nil))) = cons(a,l) 

with reverse (reverse (1))=1 as the inductive assumption. At this 

point EQTAC fails. Boyer and Moore's [19791 theorem prover 

continues the proof by applying the inductive assumption in reverse 

to the right-hand side of the goal (they call this cross 

fertilisation) and then replacing reverse(l) by the new variable z 

everywhere (generalisation). This gives the goal 

reverse(append(z,cons(a,nil))) = cons(a,reverse(z)) (*) 
and induction on z completes the proof. Alternatively, the user 

could supply a lemma such as (*) above; the theorem prover is able 
to prove this lemma and then use it to complete the proof of the 

theorem. 
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5. Incompleteness 
Formally, we shall define a proof system as any relation between 

theories and sentences such that the set of sentences provable in a 

theory is recursively enumerable. In practice a proof system is a 

set of inference rules together with a notion of proof leading to 

such a relation. The recursive enumerability requirement captures 

the idea that a proof system is an effective procedure for 

generating the theorems of a theory. 

Def: A proof system is a relation r-5 TheoriesxSentences such 

that if a theory T is effectively given (e.g. T is a theory with a 

finite presentation) then the set of provable sentences (slTr-s} is 
recursively enumerable. 

Def: A proof system r- is called complete for a theory T if any 

sentence s of signature(T) which is satisfied in every model of T 

(i.e. T ts) is provable from T using r- (i.e. Ti-s). 

It is well-known that equational logic (i.e. reflexivity, 

symmetry, transitivity and substitutivity) is complete for one- 

sorted equational theories (this is due to Birkhoff [1935]). Goguen 

and Meseguer [1981] show that this result extends to the many-sorted 

case only if equational logic is modified slightly by the 

introduction of explicit quantifiers and rules to add and delete 

them. For initial models of equational theories, this modified 

logic is complete with respect to ground equations but Nourani 

[1981] shows that no proof system is sound and complete with respect 

to non-ground equations (he actually shows that equational logic 

with induction is not complete, but his proof generalises easily). 

But the modified equational logic is not complete for Clear theories 

(i.e. theories with equations and data constraints) with respect to 

ground equations, even when induction is permitted. This fact is 

demonstrated by the following simple example: 

const T = enrich Nat 
o ns f : nat -> nat 
egns f(n) = 2*f(n+1) enden 

where Nat is the usual theory of the natural numbers with addition 
and multiplication. For all models A of T we have A :f(0)=O 
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(remember that f must be total and the sort nat does not include an 

'infinite' element). But this equation is not provable by 

equational logic with induction; this may be shown by induction and 

case analysis on the terms which may be derived from f(0). 

It is easy to prove the equation f(0)=O in T if proof by 

contradiction is allowed. But for some theories there is no proof 

system which is strong enough to prove even all true ground 

equations: 

Theorem: There exists no proof system for Clear which is sound 

and complete with respect to ground equations. 

Proof [MacQueen and Sannella 19821: Proposition 4 of [Bergstra, 
Broy, Tucker and Wirsing 1981] states that for any total recursive 

function f:]Nx]N--3 there is a finite Clear theory Tf having as its 
only model (to within isomorphism) an algebra Af consisting of the 

natural numbers IN enriched by the function 

exf(y) = f 1 if 3x such that f(x,y)>O 
1 0 otherwise 

Suppose f is the total recursive function 

f(x,y) 1 if x codes a convergent computation of Ty(y) { 0 otherwise 

(where cry is the partial recursive function with Gadel number y). 
Then exf is the characteristic function of the complete recursively 

enumerable set K (see [Rogers 1967]) so exf is not recursive and 

therefore its graph is not recursively enumerable. Hence the set of 
equations exf(n)=m true in Af is not r.e., where n,m are ground 

terms (succJ(0) for some j). Since for any proof system f- the set 

of theorems which can be derived from a theory is r.e., there must 

be ground terms n,m such that Af r-exf(n)=m (so Tf z exf(n)=m since Af 
is the only model of Tf) but TfVexf(n)=m. 
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6. Implementation and an example 

The theorem prover described here has been implemented on the 

Edinburgh KL-10 computer, on top of the Edinburgh LCF system. The 

system is called SOGGIE, which stands for Semi-Otomatic (sic) Goal- 

directed Generation of Irrefutable Equations. The Clear 

implementation described in chapter IV (only the prolific version, 

so far) communicates with SOGGIE by constructing files containing ML 

declarations which describe agglomerates corresponding to the 

theories in which facts are to be proved. At present a file is 

produced whenever the semantics demands that a signature morphism be 

a theory morphism (i.e. one for each apply or derive in a 

specification). To prove that o':<F,EC>-''<2',EC'> is a theory 

morphism, we prove that o(EC)c. EC'; the file contains the two 

agglomerates o(EC) and EC'. The user ensures that the specification 

is semantically well-formed by using SOGGIE to prove in each case 

that the denotation of one agglomerate (the second) is included in 

the denotation of the other. The following rules allow this task to 
1) 

be decomposed into a list of goals of the form Al-f (SOGGIE does 

this automatically): 

Af-f1 & ... & Af-fn A IFQclose({f1,...,fn})DcIFQAD 
IFQAD s IFQA"D & F [A' D c IFQA"D *, IFQunion(A, A') D c IFQA"D 
F [AD s IFQinv-translate(o-,A') D C> ff Qtranslate(o,A) D S IFQA' D 

ZF'QADS ff[translate(or,A')D IFQinv-translate(or,A)D c ff[A'D 
(but not vice versa) 

There is no analogous rule concerning add-equality. But this does 

not cause a problem; it is very unusual in practice for the source 

of an alleged theory morphism to include add-equality (which can 

only arise from application of the data operation) except as part of 
a subtheory shared with the target (such as Bool). In such a case 

both agglomerates will include identical subagglomerates containing 

add-equality nodes, and so the target agglomerate obviously includes 
that fragment of the source agglomerate. 

The tags attached to sorts and operators are retained; the tagged 

name name tag becomes the LCF identifier name'tag (quotation marks 

are permitted in LCF identifiers). Equations and constraints are 

translated to PPLAMBDA forms as described in section 3. Error 
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equations are ignored at present, and quantifiers in equations are 

not permitted. Although the specification is not strictly 
semantically well-formed unless the facts given in the files are 

proved, the responsibility for this is left to the user. 

SOGGIE together with LCF fits into 128K words, with sufficient 
workspace left for simple proofs (LCF itself accounts for 96K of 
this total). The system can be expanded to provide extra workspace 

for more ambitious proofs. Timing statistics may be misleading in 
comparison with statistics obtained for other theorem provers; ML is 
run interpretively, and SOGGIE was written without much concern for 
efficiency. 

As implemented, the theorem prover is slightly different than 

described in the preceding sections. One difference is in the 

inference rule LCFINFER. The version used in SOGGIE is as follows: 

LCFINFER: A -f 1 & ... & A -fn & f 1, ... , fm tCFf A - f 
where each f3 is a type instance of some fk 

This modification is necessary because of a restriction on the 

PPLAMBDA inference rule for type variable instantiation, which 

requires us to instantiate type variables in induction rules on the 

left-hand side of the tCF before using them. The change is 
transparent so long as the built-in induction tactic INDTAC is used. 

A second difference is that DREDGE is implemented as a primitive 
inference rule, rather than constructed from other inference rules 
as a derived rule. Also, DREDGE accepts a list of forms and 

produces a list of facts, rather than transforming a single form to 
a single fact. These changes are necessary for reasons of 

efficiency; much of the time consumed by SOGGIE is devoted to 
dredging (typically about forty percent) and so optimisation of this 
step is important. 

During the course of a proof attempt SOGGIE draws the shape of 
the agglomerate as it explores. Each 'dive' exposes a new node of 
the tree, labelling it according to its contructor. A 'dredge' 

draws the outline of an entire subtree without labelling the nodes. 

This enables the user to follow the progress of the proof as it 
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proceeds. Except for this, the user interface of SOGGIE is rather 

primitive. To use the theorem prover, the user loads a file 
containing the type and operator declarations for his theory and 

then a file containing the agglomerates he wants to work with (both 

these files are produced by the Clear system). This binds a list of 
goals (agglomerate x form pairs) to be proved to the variable 
goallist. The user selects a goal from this list and applies PROVE 

to it. PROVE prepares the display for drawing the agglomerate and 

then applies SUPERTAC EQTAC to the goal. This produces either the 

empty goal list and a proof (a function which when applied to the 

empty theorem list yields a fact corresponding to the goal), or else 

failure. 

A typical example for SOGGIE is to prove the equation 

length(k) plus length(1) = length(append(k,l)) 

in the theory given by the following Clear specification: 

const Nat = 

let NatO = 

enrich Bool 
data sorts nat 

opns zero : nat 
succ : nat -> nat enden in 

enrich NatO 
opns (_ plus : nat,nat -> nat 
egns zero plus n = n 

succ(n) plus m = succ(n plus m) enden 

meta Triv = theory sorts element endth 

roc List(X:Triv) 
let ListO = 

enrich X + Bool 
data sorts list 

opns nil : list 
cons : element,list -> list enden in 

enrich ListO + Nat 
opns length : list -> nat 

append : list,list -> list 
e ns length(nil) = zero 

length(cons(a,l)) = succ(length(1)) 
append(nil,l) = 1 

append(cons(a,l),m) = cons(a,append(l,m)) enden 
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roc Sequence(X:Triv) 
enrich X + Bool 

data sorts sequence 
opns empty : sequence 

unit : element -> sequence 
(_ conc _) : sequence,sequence -> sequence 

egns empty conc s = s 
s conc empty = s 
(s conc t) conc v = s conc (t conc v) enden 

List( Sequence(Nat[element is nat]) [element is sequence] ) 

Nonalphabetic operators such as . (sequence concatenation), + and 0 

are not allowed in LCF (actually, 0 is allowed but tagged operators 

like O'E24 are not allowed) so conc, plus and zero have been used 

instead. 

The agglomerate produced by the Clear system as the denotation of 
this specification is shown on the next page in the form of a tree. 

Note that the theory Nat appears twice in the tree, and Bool appears 

four times. 

The initial goal is a pair consisting of this agglomerate and the 

PPLAMBDA form: 

"lk:list'P22. ll:list'P22. 
plus'E5(length'P22(k),length'P22(l)) = length'P22(append'P22(k,l))" 

Note that sorts and operators are tagged, and that infix (and other 

distributed-fix) operators have become prefix. 

SUPERTAC EQTAC applied to the goal (via PROVE as described above) 

begins by diving down the left branch of the topmost union node of 
the agglomerate. But the first translate node forms a barrier to 

further diving because the source of the signature morphism it 
contains has no sort corresponding to list'P22 and no operator 

corresponding to length'P22 or append'P22 (all information 
pertaining to lists is contained in the right-hand subagglomerate of 
the topmost union node). This failure causes the system to 

backtrack and dive down the right branch of the union. It succeeds 

in diving through the translate node and down the left branch of the 

next union node. At this point it meets another barrier; no 



un
io

n 

tr
an

sl
at

e 

I 
/u

ni
on

 

f
 

tr
an

sl
at

e 
tr

an
sl

at
e 

tr
an

sl
at

e 

I 
un

io
n 

tr
an

sl
at

e 
Li

st
 e

qn
s 

un
io

n 
ad

d-
eq

ua
lit

y 

I
 

tr
an

sl
at

e 
N

at
 

ns
 

un
io

n 

un
io

n 

ra
n.

 a
 

e 
tr

an
s 

a 
e 

i 
/ 

\ 
I 

ad
d-

eq
ua

lit
y 

un
io

n 
S

eq
ue

nc
e 

a
d
d
-
e
q
u
a
l
i
t
y
 

I
 

i
n
d
u
c
t
i
o
n
 

un
io

n 
tr

an
sl

at
e 

S
eq

ue
nc

e 
eq

ns
 

I
 

tr
an

sl
at

e 
N

at
 

in
du

ct
io

n 
un

io
n 

un
io

n 
/
 
\
 

I
 O
 

tr
an

sl
at

e 
N

at
 

eq
ns

 
i 

/\ 
I 

tr
an

sl
at

e 
Li

st
 i

nd
uc

tio
n 

ad
d-

eq
ua

lit
y 

un
io

n 
un

io
n 

/u
ni

o\
 

tr
an

sl
at

e 
B

oo
l 
e
q
n
s
 

tr
an

sl
at

e 
B

oo
l 

eq
ns

 
tr

an
sl

at
e 

N
at

 
in

du
ct

io
n 

l 
l 

dd
 

tr
an

s 
at

e 
B

oo
 

eq
ns

 
a 

-e
qu

al
ity

 

I 
I 

ad
d-

eq
ua

lit
y 

B
oo

l 
in

du
ct

io
n 

ad
d-

eq
ua

lit
y 

un
io

n 

I
 

I
 

/
 
\
 

B
oo

l 
i
n
d
u
c
t
i
o
n
 

B
oo

l 
in

du
ct

io
n 

tr
an

sl
at

e 
B

oo
l 

eq
ns

 

ad
d-

eq
ua

lit
y 

B
oo

l 
in

du
ct

io
n 



-208- 

operator corresponding with append'P22 or length'P22 is available 
below this translate node. The system backtracks to the union node 

immediately above and dives down the right branch to the close node 

containing the equations defining append'P22 and length'P22. 

LCFINFERTAC (applied to the set of equations available at that node) 

THEN EQTAC is applied but this fails to achieve the goal. This 

failure causes the system to backtrack again to the immediately 

preceeding union node at which point it applies DREDGETAC THEN 

EQTAC. DREDGETAC produces an LCF goal in which equations defining 
plus'E5, length'P22 and append'P22 along with an induction rule for 
list'P22 (as well as other equations and induction rules) are 

available as assumptions. This goal is achieved by EQTAC; the proof 
does an induction on k followed by two separate inductions on 1 (one 

each for the base case and induction step). The result is an empty 

goal list and a proof function which yields the desired fact when 

applied to the empty thm list. The following is (an abbreviated 

version of) the display drawn by SOGGIE while searching for the 

proof: 

union 

/ \ 

trans trans 

union 
/ \ 

/ \ 

trans close 

/ \ 

etc etc 

The CPU time to achieve the original goal is 22.6 seconds (excluding 

garbage collection); dredging accounts for 7 seconds of this total. 

The CPU time to perform the proof (transforming the empty thm list 
to the desired fact) is 11.5 seconds where dredging again accounts 

for 7 seconds of this total. 

It is important to note how easily the theorem prover was able to 
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avoid all the irrelevant information contained in the left half of 
the agglomerate. It would use exactly the same sequence of 
reasoning to prove the fact in the theory List(T) for any theory 

T. This is because the fact is true of any sort of list, whether the 

elements are sequences of natural numbers or something else. This 

seems to be a common situation for proofs about parameterised 

theories. If T is very large then it is important that the system 

ignores T if it is irrelevant to the proof. 

The example above is typical of the facts which SOGGIE is able to 
handle. Experimentation with SOGGIE has so far been limited, but it 
has been used to prove simple boolean identities, reflexivity and 

transitivity of <, and associativity of + and append. In each case 

the axioms relevant to the proof were buried within a larger 
agglomerate. Comparison with a theorem proving system such as the 

one described by Boyer and Moore [1979] would certainly not be 

favourable, but this is entirely due to the mediocre facility for 
equational deduction we use. Our goal is not to automatically prove 

all theorems, but to provide a set of tools sufficient to enable a 

user to construct his own proofs. It is nice that SOGGIE is able to 
prove a certain class of theorems automatically, but more important 
is that it is able to reduce any proof problem to one of ordinary 
equational deduction. Also important is the way that SUPERTAC takes 

advantage of the structure of Clear specifications to simplify the 

theorem-proving task; this appears to be a novel approach to theorem 

proving. 
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7. Poaaible improvements 

It is easy to think of ways in which SOGGIE could be improved. A 

better EQTAC which utilises state-of-the-art methods for equational 

deduction would improve the performance of the system substantially. 

Failing this, SOGGIE could at least be a little bit more careful 

about adding equations to the simplification set. It is easy to 

filter out at least the more obvious permutative rules, protecting 

the system from looping in the course of simplification. 

It would be great help if SOGGIE could check the consistency of 
enrichments (i.e. that equations added in an enrichment do not 

violate any previous data constraints). Again, this amounts to 
proving inequality. As mentioned before this is easy in an anarchic 

theory but impossible in general, so SOGGIE does not attempt to deal 

with the problem. 

The theorem prover needs most of all a good user interface. It 
is important that when a proof attempt fails, the user should know 

what happened and be able to return to the point of failure so that 
he can fill in missing steps manually. A good first attempt at a 

more friendly user interface would be a version of SUPERTAC which 

upon failure prints a table containing the goals at which it failed 
together with the sequence of choices which led to each of those 

goals. The user could examine this list to find the goal which he 

thinks would be easiest to achieve manually. He would then use 

another tactic to repeat the particular line of reasoning which led 

to the selected goal; this tactic would take as a parameter the 

sequence of choices provided by SUPERTAC. Once the proper 

environment has been re-established, the user would have all the 

facilities of LCF at his disposal to achieve the goal. If he is 
successful, then the proof of the goal can be composed with the 

partial proof which SOGGIE was able to perform by itself to give the 

proof of the original goal. Note that the goals at which the system 

fails are always LCF goals; SOGGIE is able to automatically reduce 

any problem to the level of equational deduction. 

Once a fact has been established, it would be helpful to add it 

to the agglomerate for use as a lemma in future proofs. If the 

agglomerate were represented as a DAG (directed acyclic graph) with 
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identification of identical subagglomerates rather than as a tree 
then the lemma would automatically be incorporated in the 

appropriate places throughout the agglomerate. Common theories such 

as Bool typically appear many times in even a small agglomerate. In 

a similar vein, if the dredge function were altered to deposit 
intermediate results at each node it visits (the dredge of each 

subagglomerate would be deposited at its root), then subsequent 

calls of dredge could be made to run much faster. These 

enhancements require an ability to destructively update data 

structures. This is awkward in DEC-10 ML but easy in Luca 

Cardelli's version of ML for VAX. 

Present users of SOGGIE are required to view a specification as a 

huge and complex tree with an elaborate relation to the original 
specification. This undesirable state of affairs results from the 

separation of theorem proving into a separate activity which must be 

performed in isolation. Ideally, SOGGIE would be combined with the 

Clear semantics program into a single integrated system. This could 

be done in such a way that the user would never have to know that 
his theories denote complicated agglomerates, or that sorts and 

operators carry tags, although agglomerates and tags would still 
exist at some lower level. Interaction between the system and the 

user would be in Clear, using the sorts and operators defined in the 

user's specification. But the user needs some way of directing the 

system when an automatic proof fails. LCF provides a powerful tool, 
but the ordinary user would not be interested in writing his own 

tactics in ML. A simple facility for interactive proof using a set 

of tactics provided by the system would be sufficient for all but 

the most sophisticated users. Such users could use ML in the usual 

way to define higher-level strategies from the tactics provided. 
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CHAPTER SEVEN 

IMPLEMENTATION OF SPECIFICATIONS AND PROGRAM DEVELOPMENT 

Clear specifications can be viewed as abstract programs. Some 

specifications are so completely abstract that they give no hint of 
a method for finding 
inverting an nxn matrix 

an answer. For example, a function for 
be specified as follows: can 

const Inverse = 

enrich Matrices 
opns inv : matrix -> 
eons inv(A) x A = I 

A x inv(A) = I 

matrix 

end en 

(provided that the theory Matrices includes specifications of matrix 
multiplication and the identity nxn matrix). Other specifications 

are just HOPE programs written in a slightly different notation. 

For example: 

roc Reverse(X:Triv) 
enrich List(X) 

opns reverse : list -> list 
eons reverse(nil) = nil 

reverse(a::l) = append(reverse(l),a::nil) enden 

A Clear specification amounts to a HOPE program if all data is 

anarchic and all axioms are equations with simple left-hand sides, 

enabling their use as rewrite rules. 

It is usually easiest to specify a problem at a relatively 
abstract level. We can then work gradually and systematically 
toward a low-level 'program' which satisfies the specification. 
This will normally involve the introduction of auxiliary functions, 
particular data representations and so on. This approach to program 

development is related to the well-known programming discipline of 
stepwise refinement advocated by Wirth [1971) and Dijkstra [19721. 

A formalisation of this programming methodology depends on some 

precise notion of the implementation of a specification by a lower- 

level specification. This turns out to be a rather difficult and 

subtle problem. Previous notions have been given for the 

implementation of both non-parameterised specifications ([Goguen, 
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Thatcher and Wagner 1978], [Nourani 1979], [Hupbach 1980], [Ehrig, 
Kreowski and Padawitz 1980], [Ehrich 1982]) and parameterised 

specifications ([Ganzinger 1980], [Hupbach 1981], [Ehrig and 

Kreowski 1982]), but none of these approaches deals adequately with 
Clear-style specifications which may be constructed in a 

hierarchical fashion using data and which may be loose. A 

definition of implementation is presented in this chapter which 

agrees with our intuitive notions built upon programming experience 

and which handles Clear-style specifications, based on a new (and 

seemingly fundamental) concept of the simulation of a theory by an 

algebra. This definition extends to give a definition of the 

implementation of parameterised specifications. An example of an 

implementation is given and several other examples are sketched. 

For most of the chapter a variant of Clear is employed in which 

the notion of a data constraint is replaced by the weaker notion of 
a hierarchy constraint. The result is still a viable specification 
language, although specifications tend to be somewhat longer than in 
ordinary Clear. We later show that all results hold for Clear with 

data constraints, but only under more restrictive conditions. 

The 'putting-together' theme of Clear and the proposals of Goguen 

and Burstall [1980] for CAT (a proposed system for systematic 

program development using Clear) lead us to wonder if 
implementations can be put together as well. We prove that if P is 
implemented by P' (where P and P' are 'well-behaved' parameterised 

theories) and A is implemented by A', then P(A) is implemented by 

P'(A'). 

We prove that implementations compose in another dimension as 

well. If a high-level theory A is implemented by a lower-level 
theory B which is in turn implemented by a still lower-level theory 

C (and an extra compatibility condition is satisfied), then A is 
implemented by C. These two results allow large specifications to 
be refined in a gradual and modular fashion, a little bit at a time. 

All of the definitions and results in this chapter are the 

product of work done in collaboration with Martin Wirsing, 

Technische Universitgt Mtlnchen, reported in [Sannella and Wirsing 

19821. 
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1. Clear with hierarchy constraints 

In section I.1.1 Clear's data operation was introduced as a way 

of restricting the class of models of a theory to exclude trivial 
and other undesirable models- In section 11.5 the notion of a data 

constraint was defined; ar application of the data operation 
contributes a data constraint to the resulting theory, and 

satisfaction was defined so that only an algebra without 'Junk' 
(elements which are not the value of any term) and without 

'confusion' (identification of terms not required by the equations) 
satisfies a data constraint, where the precise nature of junk and 

confusion depend on the data constraint in question. 

A notion for the implementation of one theory by another will be 

given in the next section. In section 4 it is shown that the 

implementation relation is transitive; in practical terms this means 

that the result of refining a specification several times in 
succession is an implementation of the original specification. 
Another very desirable property would be that the theory-building 
operations of Clear preserve implementations, so combining the 

implementations of two theories gives an implementation of the 

combined theory. Unfortunately, in the presence of data constraints 
this property only holds in general under a seriously restrictive 
condition. As a result, our notion of implementation is apparently 

of limited usefulness in practice. 

This situation can be improved if the notion of a data constraint 
is replaced by the weaker notion of a hierarchy constraint (see 

[Broy et al 19791 and [Wirsing and Broy 1981]). Hierarchy 

constraints are identical to data constraints except that models 

need only satisfy the inequation trueifalse rather than the stronger 
"no confusion" condition. The same definition of implementation 

works if theories include hierarchy constraints in place of data 

constraints, and in this case more reasonable conditions guarantee 

the preservation of implementations under Clear's theory-building 
operations. Accordingly, for the bulk of this chapter we use 

hierarchical Clear, where hierarchy constraints are contributed to a 

theory by an operation called 'data'. Since hierarchy constraints 
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are weaker than data constraints, specifications in hierarchical 
Clear tend to be somewhat longer than in ordinary Clear -- as in the 

terminal algebra approach of Wand [1979], it is sometimes necessary 

to add extra operators to avoid trivial models. At the end of the 

chapter it is shown that all results hold for Clear with data 

constraints but only under more restrictive conditions. 

We now give formal definitions concerning hierarchy constraints; 
note that in most respects hierarchy and data constraints are 

identical. 

Def: A 2-hierarchy constraint c is a pair <i,cr> where i:T -4T' is 

a simple theory inclusion and cr:signature (T')-->2 is a signature 
morphism. 

Def: If cr':-Z' is a signature morphism and <i,c-> is a 

2-hierarchy constraint, then cr' applied to <i,c7> gives the 

V -hierarchy constraint <i,cr.c7'>. 

Without loss of generality we assume that every theory contains 

the theory Bool (with sort bool and constants true and false) as a 

primitive subtheory. 

Def: A }-algebra A satisfies a 2-hierarchy constraint 

<i:TC*T',c.:sig(T' )--),.> if 

[ letting Atarget 
Ac' 

o. and Asource " 

Alisig(T) 
] 

Atarget is a model of T' and 

- "No crime": A trueifalse (i.e. A _E true-false). 

- "No junk": Every element in Atarget is the value of a 

T'-term which has variables only in sorts of T, for some 

assignment of Asource values. 

Note that the only difference between a data constraint and a 

hierarchy constraint is in the definition of satisfaction; compare 

the "no crime" condition above with the "no confusion" condition in 

section 11.5. 
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Def: A hierarchical 2-theory presentation is a pair <Z,EC> where 

7 is a signature and EC is a set of 7-equations and 7-hierarchy 
constraints. 

The notions of hierarchical theory, satisfaction (of a 

hierarchical theory), closure and hierarchical theorl+ morphism 

follow as before. The denotation of a hierarchical Clear 
specification is a hierarchical theory. For the remainder of the 

chapter (except where noted at the end of section 4) all discussion 
will concern only hierarchical Clear. We will use terms like 
'theory' in place of longer terms like 'hierarchical theory'. For 

the purposes of this chapter it is convenient to dispense with the 

equality predicates == normally added by the data operation; these 

extra operators cause no problems but only serve to make the 

examples longer. We will assume in this chapter that all theories 

have been constructed using Clear (so e.g. no theory may contain 

both <TA' -4TA' ,a> and <TB yTB' ,a' > as constraints if TA c TB c TA' 

and a-,(r' are inclusions). This assumption is implicit in some of 
the proofs of section 4. 

A short example will illustrate the difference between data and 

hierarchy constraints. Consider the following specification in 

ordinary Clear (with data constraints): 

const Nat = 

enrich Bool 
data sorts nat 

opns 0 : nat 
succ : nat -> nat enden 

const T = 

enrich Nat 
data sorts newnat 

opns f : nat -> newnat enden 

T includes two data constraints, C1=<I "Nat,sig(Nat) - sig(T)> and 

C2=<Nat yT,lsig(T)>. Given a sig(T)-algebra, we can check if it 

satisfies these constraints. For example: 

Anat ' {0,1,2,...} 

Anewnat = {O,I,II.... } 

f(0)=O f(1)=I f(2)=O f(3):III f(4)=IV ... 
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(with the usual interpretation of Bool). This satisfies constraint 
C1, but fails to satisfy the "no confusion" condition for constraint 
C2 (consider the equation f(x)=f(y) under the injective assignment 

[x'-40, yo-421). It also violates the "no junk" condition (the 
element IIGAnewnat is not the value of any term). But if the 

function f is altered so that f(2)=II then the constraint is 
satisfied. In general, any algebra satisfying these data 

constraints will have both carriers isomorphic to IN with f 1-1 and 

onto. 

Changing data above to 'data' changes both data constraints to 
hierarchy constraints. The following algebra is then a model of T, 

although it does not satisfy the "no confusion" condition for 
constraint C2: 

Anat = (0,1,2,...} 

Anewnat = 
(0} 

f(O) = f(1) = f(2) _ ... = 0 

(again with the usual interpretation of Bool). It is necessary to 

add some new operators and equations to retain the original class of 

models, for example: 

const Nat' _ 

enrich Bool 
'data' sorts nat 

opns 0 : nat 
succ : nat -> nat 
eq : nat,nat -> bool 

egns eq(n,n) = true 
eq(n,m) = eq(m,n) 
eq(0,succ(n)) = false 

eq(succ(n),succ(m)) = eq(n,m) enden 

const T' = 

enrich Nat 
'data' sorts newnat 

opns f : nat -> newnat 
eq : newnat,newnat -> bool 

egns eq(f(n),f(m)) = eq(n,m) enden 

Further examples appear throughout the rest of this chapter. 

For later results we need a generalisation of Guttag's notion of 
sufficient completeness [Guttag and Horning 1978] and of the 
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classical notion of conservativeness from logic: 

Def: A theory T is sufficiently complete with respect to a set of 
operators 2, sorts S, a subset of 2, and variables of sorts X 

(where S, XS sorts(T), Iropns(T)) if for every term t of an S sort 
containing operators of 5 and variables of X sorts, there exists a 

term t' with variables of X sorts and operators of 2' such that 
Tt-t=t'. 

Def: A theory T is conservative with respect to a theory T'r T if 

for all equations e containing operators only of T', T-e T'-e. 

Sufficient completeness means that T does not contain any new 

term of an old sort which is not provably equal to an old term 

(where 'new' and 'old' depend on S, S, S' and X). Conservativeness 

means that old terms (from T') are not newly identified in T. 

Instances of these general notions guarantee that all models of a 

theory possess a convenient hierarchical structure. 

To apply the above definitions it will be convenient to refer to 

the following notions of constrained sort and constructor. 

Def: Let T" be a theory and let c=<T yT',o-:sig(T')-4sig(T")> be 

a constraint of T". 

- A sort s of T" is called constrained (with respect to c) 

if sro-(sorts (T')-sorts(T)). 

- An operator f:...->s of T" is called a constructor (with 
respect to c) if ff o-(opns(T')) and sconstrained-sorts(c), 

or if s4constrained-sorts(c). 
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2. A notion of implementation 

A formal approach to stepwise refinement of specifications must 

begin with some notion of the implementation of a specification by 

another (lower level) specification. Armed with a precise 
definition of this notion, we can prove the correctness of 
refinement steps, providing a basis for a methodology for the 

systematic development of programs which are guaranteed to satisfy 
their specifications. But first we must be certain that the 

definition itself is sound and agrees with our intuitive notions 

built upon programming experience. It turns out that a formal 

definition of implementation adequate to deal with all cases which 

arise in practice is rather elaborate, and so it is better to 
carefully examine the situation first from a less formal point of 

view. 

Suppose we are given two theories T=<2,EC> and T'=<2',EC'>. We 

want to implement the theory T (the abstract specification) using 

the sorts and operators provided by T' (the concrete specification). 
Previous formal approaches (see [Goguen, Thatcher and Wagner 1978], 

[Nourani 1979], [Hupbach 1980], [Ehrig, Kreowski and Padawitz 1980], 

[Ganzinger 1980], [Ehrich 1982]) agree that T' implements T if there 

is some way of deriving sorts and operators like those of T from the 

sorts and operators of T'. Each approach considers a different way 

of making the 'bridge' from T' to T. We will require that there be 

a more or less direct correspondence between the sorts and operators 

of T and those of T'. Each sort or operator in Z must be 

implemented by a sort or operator in 2' -- this correspondence will 
be embodied by a signature morphism Note that two 

different sorts or operators in 2 may map to the same 2' sort or 

operator, and also that there may be some (auxiliary) sorts and 

operators in 2' which remain unused. This is a simplification over 

previous approaches, which generally allow some kind of restricted 
enrichment of T' to T" before matching T with T". But the power is 
the same; we would say that T" implements T and leave the enrichment 

from T' to T" to the user. As a consequence of a later theorem (see 

section 4) our results extend to more complex notions. 
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Given a signature morphism what relationship must hold 

between T and T' before we can say that T' implements T? One might 

suspect that o-:T-4T' is required to be a theory morphism -- i.e. 

that if A' is a model of T' then its restriction A'I5 must be a 

model of T -- but this condition is too strong. We shall say that 

T' implements T if the 5-restriction of each model of T' simulates 

T. A 2-algebra simulates T if it satisfies the axioms of T after 

allowing for the representation of data. 

We have decomposed the notion of implementation into three 

separate issues: 

1. Enriching the concrete theory T' (adding derived 
operators and possibly some new sorts) to give an 
intermediate 2"-theory T". 

2. Renaming some of the sorts and operators of 2" and 

forgetting others, so as to match I. 

3. Simulation of T by a 2-algebra (obtained by 2-restricting 
a model of T") 

As already mentioned we can safely ignore (1) and assume that T"=T' 

because a later theorem allows all of our results to be extended to 

the case where T"tT'. Issue (2) presents no problems since the 

restriction of an algebra to a subsignature (with renaming) was 

defined in chapter II. The fundamental issue is (3); we need a 

satisfactory definition of simulation which captures our intuition 

concerning data representation. 

we said above that a 7-algebra A simulates a 7-theory .1 if it 

satisfies the axioms of T modulo data representation. In 
particular, we must allow for two kinds of flexibility: 

- A subset of the values of an A sort may be used to 
represent all the values of a T sort. Example: the 
natural numbers are simulated by the integers, where the 
negative integers are not needed. 

- More than one A value may be used to represent the same T 

value. Example: simulating sets by strings -- the order 
does not matter, so "1.2.3" _ "3.2.1" (as sets). 

Now A simulates T if (and only if) A is a model of T after these two 

considerations have been taken into account. This ensures that 
operators will yield the specified result (modulo data 
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representation) which seems to be the central issue. 

For the definition of simulation we need an auxiliary notion. As 

mentioned above, a subset of the values of A may be used to 

represent all values required by T. Restricting the carriers of A 

to the values which are actually used yields an intermediate algebra 

which plays an important role in the definition of simulation. We 

do not want to restrict the carrier for every sort, but only for 

those sorts of 2 which are constrained in T (for unconstrained sorts 
we do not know which values are unused). This is where we depart 

from the usual practice of restricting to 'reachable' values (see 

for example [Ehrig, Kreowski and Padawitz 1980]). We want the 

subalgebra which has been reduced just enough to satisfy the "no 

junk" condition for each constraint in T. 

Def: If 2 is a signature, A is a 2-algebra and T is a 2-theory, 
then restrictT(A) is the largest subalgebra A' of A satisfying the 

"no junk" condition (section 1) for every constraint 
<i:T' "T",Q-:sig(T")-->J> in T, that is: 

[ letting .target = A'Isig(T") 
and .source = AlIsig(T') ] 

- Every element in Atarget is the value of a T"-term which 
has variables only in sorts of T', for some assignment of 
.-source values. 

Note that the subalgebra A' does not always exist. Consider the 

following example: 

const T = let Nat = enrich Bool 
'data' sorts nat 

opns 0 : nat 
succ : nat -> nat 

enrich Nat 
opns neg : nat enden 

enden in 

Let 2 be the signature of T. Suppose A is the 2-algebra with 
carrier {-1,0,1,...}, the usual interpretation for the operators 0 

and succ, and neg=-1. Now restrictT(A) does not exist because every 

subalgebra of A must contain -1 (the value of neg) and hence fails 
to satisfy tre "no junk" condition for the constraint of T. 
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A 5-algebra A simulates a 7-theory T if it satisfies the 

equations and constraints of T after allowing for unused carrier 
elements and multiple representations. 

Def: If 5 is a signature, A,A' are i-algebras and T is a 

S-theory, thn A simulates At if there is a surjective 
3-homomorphism rep:restrictT(A)-9A'. A simulates T if there is a 

model of T which is simulated by A. 

Note that simulation of an algebra by an algebra is with respect 

to a theory because it is defined in terms of the restrict 
operation. It is not possible to allow for unused elements of the 

'concrete' algebra otherwise; without the constraints of T we cannot 

distinguish between an element (of a constrained sort) which is 
truly unused and an element (of an unconstrained sort) which is not 

the value of any term. 

The following definition of simulation is equivalent to the 

definition above (this is easy to show) but more constructive. 

Def: If 5 is a signature, A is a 5-algebra and T=<2,EC> is a 

2-theory, then A simulates T if restrictT(A)/EC (call this RIT(A)) 
exists and is a model of T. 

( EC is the 2-congruence generated by EC -- i.e. the least 

2-congruence on restrictT(A) containing the relation determined by 

the equations in EC ] 

RI stands for restrict-identify, the composite operation which 

forms the heart of this definition. To determine if a I-algebra A 

simulates a hierarchical 2-theory T, we restrict A, removing those 

elements from the carrier which are not used to represent the value 

of any 1-term, for constrained sorts; the result of this satisfies 
the "no junk" condition for each constraint in T. We then identify 
multiple concrete representations of the same abstract value by 

quotienting the result by the 2-congruence generated by the 

equations of T, obtaining an algebra which (of course) satisfies 
those equations and also continues to satisfy the "no junk" 
condition of the constraints. If this is a model of T (i.e. it 
satisfies the "no crime" condition for each constraint in T) then A 
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simulates T. Note that any model of T simulates T. It has been 

shown by Ehrig, Kreowski and Padawitz [1980] that the order 

restrict-identify gives greater generality than identify-restrict. 

Clear (both the ordinary version and our variant) differs from 

most specification approaches/languages in that it allows the 

construction of loose theories having an assortment of non- 

isomorphic models. Such a theory need not be implemented by a 

theory with the same broad range of models. A loose theory leaves 

certain details unspecified and an implementation may choose among 

the possibilities or not as is convenient. That is: 

- A loose theory may be implemented by a 'tighter' theory. 
Example: implementing the operator choose:set->integer 
(choose an element from a set of integers) by an operator 
which chooses the smallest. 

This is intuitively necessary because it would be silly to require 

that a program (the final result of the refinement process) embody 

all the vagueness of its original specification. This kind of 

flexibility is already taken into account by the discussion above, 

and is an important feature of our notion of implementation. 

Previous notions do not allow for it because they generally consider 

only a single model for any specification. 

Now we are finally prepared to define our notion of the 

implementation of one theory by another. This definition is 

inspired by the notion of [Ehrig, Kreowski and Padawitz 1980] but it 

is not the same; they allow a more elaborate 'bridge' but otherwise 

their notion is more restrictive than ours. Our notion is even 

closer to the one of Broy et al [1980] but there the 'bridge' is 

less elaborate than ours. It also bears some resemblance to a more 

programming-oriented notion due to Schoett [1981]. 

Def: If T=<Z,EC> and T'=<I',EC'> are satisfiable theories and 

is a signature morphism, then T' implements T (via 

written T_ > ', if for any model A' of T', A' 
a, simulates T. 

Note that any theory morphism o-:T--T' where T' is satisfiable is 
an implementation T °>T'. In particular, if T' is an enrichment of 
T (e.g. by equations which 'tighten' a loose theory) then T----->T'. 
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The following uiagram shows how the definitions of restriction, 

simulation and implementation fit together: 

T t. L-tn.onl 

'a.wtlty G@ CD 
A T eoM1 

An implementation T-Z->T' 

fo.q.t 

T' to I'-theory) 

A T' l 

A simple example will show how this definition works (other 
implementation examples are given in the next section). Consider 

the theory of the natural numbers modulo 2, specified as follows: 

const Natmod2 = 

enrich Bool 
'data' sorts natmod2 

opns 0f 1 : natmod2 
succ : natmod2 -> natmod2 
iszero : natmod2 -> bool 

e ns succ(O) = 1 succ(1) = 0 

iszero(O) = true iszero(1) = false enden 

Here is a picture which shows the situation described by the 

equations: 

succ 
0 

(iszero) 

Can Natmod2 be implemented by the following theory? 
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const Fourvalues = 

enrich Bool 
'data' sorts fourvals 

opns zero, one, zero', extra : fourvals 
succ : fourvals -> fourvals 
iszero : fourvals -> bool 
eq : fourvals, fourvals -> bool 

egns su(;c(zero) = one succ(one) = zero' 
succ(zero') = one succ(extra) = zero 
iszero(zero) = true iszero(one) = false 
iszero(zero') = true iszero(extra) = false 
eq(zero,one) = false eq(zero,zero') = false 

eq(p,q)=eq(q,p) eq(p,p)=true enden 

Here is the picture (omitting the eq operator): 

succ 

zero one 
(iszero) 

zero' extra 
(iszero) 

The iszero operator of Natmod2 and the eq operator of Fourvalues are 

needed to avoid trivial models. 

All models of Fourvalues have a carrier containing 4 elements, 

and all models of Natmod2 have a 2-element carrier. Now consider 

the signature morphism o:sig(Natmod2)-'>sig(Fourvalues) given by 

Enatmod2'-4fourvals, O'--zero, 1'-4one, succ«->succ, iszero'->iszero] 
(and everything in Bool maps to itself). Intuitively, 

Natmod2----)Fourvalues (zero and zero' both represent 0, one 

represents 1 and extra is unused) but is this an implementation 

according to the definition? Consider any model of Fourvalues (e.g. 

the term model -- all models are isomorphic). 'Forgetting' to the 

signature sig(Natmod2) eliminates the operators zero', extra and eq. 

Now we check if this algebra (call it A) simulates Natmod2. 

- 'Restrict' removes the value of extra from the carrier. 

- 'Identify' identifies the values of the terms "succ(1)" (=zero') 
and "0" (=zero). 

The "no crime" condition of Natmod2's constraint requires that 

the values of true and false remain separate; this condition is 
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satisfied, so A simulates Natmod2 and Natmod2)Fourvalues is an 

implementation. 

Suppose that the equation succ(zero')=one in Fourvalues were 

replaced by: 

succ(zero')=zero. 

Forget (producing an algebra B) followed by restrict has the same 

effect on any model of Fourvalues, but now identify collapses the 

carrier for sort natmod2 to a single element (the closure of the 

equations in Natmod2 includes the equation succ(succ(p))=p, so 

"succ(succ(0))" (=zero') is identified with "0" (=zero), and 

"succ(succ(1))" (=zero) is identified with "1" (=one)). 
Furthermore, the carrier for sort bool collapses; 
"iszero(succ(succ(1)))" (=true) is identified with "iszero(1)" 
(=false). The result fails to satisfy the "no crime" condition of 
the constraint, so B does not simulate Natmod2 and 

Natmod2----->Fourvalues is no longer an implementation. 

It is not difficult to extend our notion of implementation to 
deal with parameterised theories. We will consider here only the 

single-parameter case, but the extension to multiple parameters 

should pose no problems. 

Since a parameterised theory R " P (that is, a procedure with 
requirement theory R and body P -- R will always be included in P) 

is a function taking a theory A as an parameter and producing a 

theory P(A) as a result, an implementation R'c-)P' of R "P is a 

function as well which takes any parameter theory A of P as argument 

and produces a theory P'(A) which implements P(A) as result. But 

this does not specify what relation (if any) must hold between the 

requirement theories R and R'. Since every actual parameter A of 
R "P (which must match R) should be an actual parameter of R'" P', 

it must match R' as well. This requires a theory morphism N:R'-+R 

(then a fitting morphism P:R--)A gives a fitting morphism 

P.P: R '--->A) . 
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Def: If Rc-->P and R'c_ P' are parameterised theories, N:R'-->R is 

a theory morphism and a:sig(P)--4sig(P') is a signature morphism, 

then R'c_P' implements R CP (via o' and }i), written 

R c-->P - -> R' c-' P', if for all theories A with fitting morphism 

P:R-->A, P(A[P]))P'(A[P.P]) where o' is the extension of o' from P 

to P(A[P]) defined using the universal property of the pushout 

P(A[P]) in the obvious way (so o'Isig(P)-sig(R)'o- and o"Isig(A)°id). 

R C 

R' c 

P 

P(A[P]) 

.10 

"'r - 

Ordinarily R and R' will be the same theory, or at least the same 

modulo a change of signature. Otherwise R' must be weaker than R. 

Note that the definition of implementation for parameterised 

theories requires a certain property to hold for every possible 
actual parameter theory and fitting morphism. Better would be a 

definition which refers only to the parameterised theories 
themselves. Unfortunately, such a definition does not seem to work 

under the existing framework. Perhaps it would be possible to give 

some conditions on RCP and RI "PI under which the above 

definition reduces to the simpler form, but we have so far been 

unable to discover satisfactory ones. 

Sometimes it is natural to split the implementation of a 

parameterised theory into two or more cases, implementing it for 
reasons of efficiency in different ways depending on some additional 
conditions on the parameters. For example: 

- Sets: A set can be represented as a binary sequence if 
the range of possible values is small; otherwise it must 
be represented as a sequence (or tree, etc) of values. 

Parsing: Different algorithms can be applied depending on 
the nature of the grammar (operator precedence, LR, 
context sensitive, etc -- see [Aho and Ullman 1977]). 
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- Sorting: Distribution sort can be used if the range of 
values is snail; otherwise quicksort (see [Knuth 1973]). 

In each instance the cases must exhaust the domain of possibilities, 

but they need not be mutually exclusive. 

Our present notion of implementation does not treat such cases. 

We could extend it to give a definition of the implementation of a 

parameterised theory R y P by a collection of parameterised theories 
'+R 

1 "4P 1, ... , R'+RnC (where for every theory A with a theory 
morphism c:R--*A there must exist some i>1 such that a':R'+Ri-4A 
exists). But we force the case split to the abstract level, rather 
than entangle it with the already complex transition from abstract 
to concrete: 

RyP --- - - - - - - * R+R yP = P(R+R) 1 

y 
R+Rn y Pn = P(R+n) 

This collection of n parameterised theories is equivalent to the 
original RyP, in the sense that every theory P(A[a'J) with a:R--*A 

is the same as the theory Pi (A[a' ]) with a-' : R+Ri-9A for some i>1. 
(A theory of the transformation of Clear specifications is needed to 

discuss this matter in a more precise fashion; no such theory exists 
at present.) Now each case may be handled separately, using the 

normal definition of parameterised implementation: 

R+R 1 HP R'+R 
1 

C- P, 

R+R yPn ---.> R' +RR'yP-n 
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3. Examples 

Sets can be implemented using sequences by representing a set S 

as a sequence containing the elements of S in any order without 

repetitions. Sets may be specified in hierarchical Clear as 

follows: 

proc Set(X:Ident) _ 

let SetO = 

enrich X by 
'data' sorts set 

opns 0 : set 
singleton : element -> set 
(_ U _) : set,set -> set 
(_ is-in _) : element,set -> bool 

egns0USS 
S U S = S 

S U T T U S 

S U (T U V) _ (S U T) U V 

a is in 0 = false 
a singleton(b) = a==b 
a is-in S U T= a is-in S or a is-in T enden in 

enrich SetO by 
opns choose : set -> element 
egns choose(singleton(a) U S) is-in (singleton(a) U S) 

= true enden 

This specification includes an operator choose which is defined 

(loosely) as selecting an arbitrary element from a on-empty set. 
The value of choose(0) is left undefined -- although the same notion 
of implementation should work for error theories and algebras, we 

prefer to avoid the issue of errors for now. Note that the 

membership operator is-in is included within the 'data' in contrast 
to the specification of sets in ordinary Clear in section 1.1.2. 
This subtle change is necessary to avoid trivial models. 

The concrete specification must include a definition of sequences 

as well as operators on sequences corresponding to all the operators 
in Set. he begin by defining everything except the choose operator: 
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proc Sequence(X:Triv) 
enrich X + Bool a 

'data' sorts sequence 
opns empty : sequence 

unit : element -> sequence 
( . _) : sequence,sequence -> sequence 
head : sequence -> element 
tail : sequence -> sequence 

egns empty.s = s 

s.empty = s 

s.(t.v) _ (s.t).v 

head(unit(a).s) = a 

tail(unit(a).s) = s enden 

proc SequenceOpns(X:Ident) 
enrich Sequence(X) 

opns (_ is in ) : element,sequence -> bool 
add : element,sequence -> sequence 
(_ U _) : sequence,sequence -> sequence 

egns a is_in empty = false 
a is in unit(b) = a==b 
a is in s.t = a is-in s or a is-in t 

add(a,s) = s if a is_in s 
add(a,s) = unit(a).s if not(a is-in s) 

empty U s = s 

unit(a).t U s = add(a,t U s) enden 

The head and tail operators of Sequence and their defining equations 

are needed to avoid trivial models; they serve no other function in 

the specification. 

Before dealing with the choose operator, we split Set into two 

cases: 

meta TotalOrder = 

enrich Ident 
opns (_ < -) : element,element -> bool 
e ns a<a = true 

' a<b and b<a --> a==b = true 

a<b and b<c --> a<c = true 

a<b or b<a = true enden 

IdentySet --- -- -4 IdentC4Set 
- --* TotalOrder ySet' = Set(TotalOrder) 

These two cases may be handled separately. The choose operator 

can select the minimum element when the element type is totally 

ordered; otherwise we can leave the precise choice unspecified as 
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before. 

proc SequenceAsSet(X:Ident) 
enrich SequenceOpns(X) 

o ns choose : sequence -> element 
egns choose(unit(a).t) is-in (unit(a).t) = true enden 

proc SequenceAsSet'(X:TotalOrder) 
enrich SequenceOpns(X) 

opns choose : sequence -> element 
egns choose(unit(a)) = a 

choose(unit(a).unit(b).s) = choose(unit(a).s) if a<b 
else choose(unit(b).s) enden 

Now Ident'-'iSet -" Ident "SequenceAsSet and TotalOrder CSet' 
- TotalOrder"SequenceAsSet', where 0' _ [element 'element, 
_= r->==, set -4sequence, 0 -4empty, singleton r-4unit, U,---4u, 

is in'-4is in, choose 'choose] (and everything in the signature of 

Bool maps to itself), and }' and p' are the identity morphisms on 

Ident and TotalCrder respectively. Note that an incorrect 
implementation results if choose in SequenceAsSet is changed to 

select the first element; Set contains an equation 

choose(singleton(x) U singleton(y)) 
= choose(singleton(y) U singleton(x)) 

so the identify step would collapse the parameter sort (and 

consequently bool). 

This example illustrates all of the features of our notion of 
implementation. Not all sequences are needed to represent sets -- 
sequences with repeated elements are not used. Each set is 

represented by many sequences, since the sequence representation of 

a set keeps track of the order in which elements were inserted. Set 

is split into two theories before implementation, and finally 

SequenceAsSet' is 'tighter' than Set' because the choose operator 

(select an element) is implemented by an operator which chooses the 

minimum element. 

A nonparameterised example is obtained by applying Set or Set' 

and SequenceAsSet or SequenceAsSet' to an argument, for example: 

Set(Nat[element is nat]) ° >SequenceAsSet(Nat[element is nat]) 
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where a- is the same as a- above except that element Helement is 
replaced by nLt Hnat. 

Two additional examples: 

- Lists can be implemented using arrays of (value,index) 
pairs, where the index points to the next value in the 
list (and where some distinguished index value denotes 
nil). There are many representations for the same list 
(the relative positions of cells in the array are 
irrelevant, for example) and circular structures are not 
needed to represent the value of any list. 

- The specification of matrix inversion in the Introduction 
can be implemented by a specification of matrix inversion 
using the Gauss-Seidel method. Conversely, this 
specification can be implemented by the specification in 
the Introduction (enriched by some auxiliary functions). 

The matrix inversion example shows that the expectation that A --->B 
should imply that B is 'lower level' than A is not always justified. 
This is because the definition of implementation is concerned with 
classes of models rather than with the equations used to describe 

those classes. In this case both theories will have the same class 
of models except that the Gauss-Seidel method will probably require 
auxiliary operators. 
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4. Horizontal and vertical composition 

Clear is a language for writing structured specifications, 

providing facilities for combining small theories in various ways to 

make large theories. These facilities allow a large specification 

to be built in a modular fashion from smaller bits. Following 

Goguen and Burstall [1980] the structure of such a specification 

shall be called horizontal structure. 

Likewise, the implementation of a large specification is not done 

all at once; it is good programming practice to implement and test 
pieces of the specification separately and then construct a final 
system from the finished components. If the theories which make up 

a Clear specification are implemented separately, it should be 

possible to put together (horizontals compose) the implementations 

in the same way that the theories themselves are put together, 
yielding an implementation of the entire specification. 

Although the problem of developing a program from a specification 
is simplified by dividing it into smaller units, the step from 

specification of a component to its implementation as a program is 
still often uncomfortably large. A way to conquer this is to break 

the development of a program into a series of consecutive refinement 

steps. That is, the specification is refined to a lower level 
specification, which is in turn refined to a still lower level 
specification, and so on until a program is obtained. Again 

following Goguen and Burstall (1980], this is called the vertical 
structure (of the development process). If a specification A is 
implemented by another specification B, and B is implemented by C, 

then these implementations should vertically compose to give an 

implementation cf A by C. That is, the implementation relation 
should be transitive. Goguen and Burstall [1980] propose a system 

called CAT for the structured development of programs from 

specifications by composing implementations in both the horizontal 
and vertical dimensions. (Note: Horizontal and vertical 
compositions were originally defined on natural transformations. 
The general structure admitting two such compositions is called a 

2-category [Kelly and Street 1974].) 
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The vertical composition of two implementations is not always an 

implementation. For example, consider the following theories: 

const T = enrich Bool 
o ns extra : bool enden 

const T' = enrich Boo] 
opns extra bool 
egns extra = true enden 

con3t T" = theory 'data' sorts threevals 
o ns tt, ff, extra : threevals endth 

Now T---->T' and T'---aT" but T-1-->T" (consider the model of T" 

where ttOff0extra). The theories must satisfy an extra condition. 

Def: A theory I is reachably complete with respect to a theory 

T'E T if for all constraints c of T', T is sufficiently complete 

with respect to opns(T'), constrained-sorts(c), constructors (c), and 

variables of unconstrained-sorts(T'). 

In the example above T" is not reachably complete with respect to 
T because extra is not provably equal to either tt or ff. 

Reachable completeness with respect to a theory T is sufficient 

to guarantee that the result of the operation restrictT will always 

exist: 

Restriction lemma: If a theory T is reachably complete with 

respect to a-(T')C T then for every model M of T 

restrict T'(MI ig(T')) exists. 

Proof: We may assume for simplicity that T'c T and o- is the 

inclusion; the following proof generalises to arbitrary T' and ar. 

Let M be the sig(T')-subalgebra of Mlsig(T') which is finitely 

generated by opns(T') and elements of unconstrained-sorts(TI) (i.e. 

every element of M is the value of a term built from operators of T' 

and variables cf unconstrained sorts of T', for some assignment of M 

values). We will show that Iii satisfies the "no junk" condition for 

every constraint c=<Tc "Tc',a-'> of T'; M is then clearly the 

largest such subalgebra. 

M Let a be an element of Mtarget = si'g(Tc') 
Then a is the value 
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of some tern t built from opns(T') and variables of 

unconstrained-sorts(T') for some assignment of these variables. If 
a is not of a constrained sort of c then it trivially satisfies the 

"no junk" condition. Otherwise, the reachable completeness of T 

with respect to T' implies the existence of a term t' built from 

constructors(c) and variables of unconstrained-sorts (T') such that 
T F-t=t' . 

Now, let t1,...,tk be the largest subterms of t' of 07'(sorts(Tc)) 
and consider the term t" containing variables x1,...,xk of 
sort(t1),...,sort(tk) such that t' = t"[t1/x1,...,tk/xk]. Then t" 
does not contain any operator f: ...->s with s4constrained-sorts(c). 
Thus (since opns(t")e opns(t')) all operators of t" are in 
o°'(opns(Tc')). 

Since a=p(t)=f(t1)=Y(t"[yr(x1)1 ...,y(xk)]) for some assignments 

and yJ such that f(ti)=yr(xi), a is the value of some sig(Tc')-term 
with variables in sorts(Tc). 
condition for c. 

Thus M satisfies the "no junk" 

We can use this lemma to prove that implementations can be 

vertically composed if the target of the composition is reachably 

complete with respect to the source. 

Vertical composition theorem 

1. [Reflexivity] T- id 
>T (the proof is obvious). 

2. [Transitivity] If T-7-4T ' and T'--7-- T" and T" is 
reachably complete with respect to o-. c" (T), then 

T . )T". 

Proof of transitivity: Let M" be a model 

FRIT(M") =def restrictT(M"Isig(T))/segns(T)' 
FRIT(M") follows from the restriction lemma. 

T'T", 
homomorphism 

FRIT(FRIT,(M")) Ftrueifalse. 
from 

of T" and consider 

The existence of 
Because T-914T' and 

Since 

FRIT(M") onto 

FRIT(M") Ftruesfalse as well. Therefore M"l.ig( igT) 

there is a 

FRIT(FRIT,(M")), 

simulates T. 
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Corollary 

1. [Reflexivity of parameterised implementations] 

R C P R yP (the proof is obvious). 

.. ['transitivity of parameterised implementations] If 
R `--P 1 R' "P' and R' "P' 

N' 
R""P" and P" is 

reachably complete with respect to a*.o'(P), then 

R HP 
N' P " 

R"--P". 

Proof of transitivity: Suppose p:R--'A is a fitting morphism; 

then so is P":R"--)A = V'.p.P. Let M" be a model of P"(A(p"]). 
Since M"Isig(p") is a model of P" and P" is reachably complete with 
respect to o'.o'(P), by the restriction lemma FRp(M") =def 
restrictp(M"Isig(P)) exists. Since FRAM") = M"Isig(A) and all 

theories are built using Clear, it follows that FR (M") 
^ P(A(p]) 

exists. By definition P(A[p])-Z->P'(A[p.p]) and 

P'(A[p.p]) P"(A[p"]) and so FRI (M") F trueOfalse by the 

same argument as in the nonparameterised case. II 

In the absence of constraints (as in the initial algebra [Goguen, 

Thatcher and Wagner 1978] and final algebra [Wand 1979] approaches), 

reachable completeness is guaranteed so this extra condition is 
unnecessary. 

To prove that implementations of large theories can be built by 

arbitrary horizontal composition of small theories, it is necessary 

to prove that each of Clear's theory-building operations preserves 

implementations. We will concentrate here on the application of 
parameterised theories and the enrich operation. Extension of these 

results to the remaining operations should not be difficult. 

For the apply operation our object is to prove the following 
property of implementations: 

Horizontal composition property: If R "P Rtc__>P', A- A', 
and p:R--'A is a theory morphism, then P(A[P])--Z4P1(A1[p.p.o*1]), 
where o'" is constructed from o*, o'', u and P (see the horizontal 
composition theorem below for details). 



-237- 

But this is not true in general; in fact, P'(A'[u.P.(r']) is not 
even always defined. Again, some extra conditions must be satisfied 
for the desired property to hold. 

Def: Let R UP be a parameterised theory. 

- RCP is called structurally complete if P is sufficiently 
complete with respect to the parameter R (i.e. with respect to 
opn3(P), sort3(R), opns(R) and variables of 
unconstrained-3orts(R)), and if for all constraints c of P, P 

is sufficiently complete with respect to c (i.e. with respect 
to opns(P), constrained-sorts(c), constructors(c), and 

variables of unconstrained-sorts(P)). A nonparameterised 
theory A is called structurally complete if 0 CA is 
structurally complete. 

- R c-4P is called parameter consistent if P is conservative with 
respect to R. 

- R y P is called persistent if it is both structurally complete 
and parameter consistent. 

If R'CP' is persistent snd reachably complete, and At is a 

valid actual parameter of R'C-4P', then the horizontal composition 

property holds. The proof of this result relies on the following 
lemma: 

Horizontal composition lemma: If Rc-'iP is persistent, p:R-)A and 

pv-:R-->A' are theory morphisms and A--Z--->A' then 
P(A[p1) P(Awhere ai sig(P(A[p]))-sig(A)=id and 

o Isig(A)= °' 
The proof of this lemma relies in turn on the following result: 

Theorem [Wirsing and Broy 19811: If RCP is persistent then any 

model of R can be extended to both an initial model and a terminal 

model of P. Thus for every structurally complete and satisfiable 
theory A with p:R-->A, P(A[p]) has both initial and terminal models. 

Proof of the lemma: Let PA =def P(A[P]) and PA' =def P(A' 

and suppose M is a model of PA'. We will show first that FRPA(M) 

'def restrict PA(MIsig(PA)) exists, and then that FRIPA(M) =def 

FRpA(M)/:egns(pA) = FRpA(M)/'egns(A) satisfies true false. Since 
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FRIPA(M) must satisfy the equations and the "no junk" condition of 

the constraints of PA, this implies that FRIPA(M) is a model of PA 

and therefore that PA' implements PA. 

Let M be the sig(PA)-subalgebra of Mfsig(PA) which is finitely 
generated by opns(PA), elements of M of unconstrained-sorts(PA), and 

elements of FRA(M). Since RCP is sufficiently complete (with 

respect to the parameter R) MIsig(A) = FRA(M) = FRA(MIsig(A')), 

which satisfies the "no junk" condition for every constraint of A 

since A--->A'. The only remaining constraints of PA are on sorts of 
P-R, since P is built from R using Clear and P is a theory morphism. 

Suppose c is such a constraint. An argument analogous to the proof 

of the restriction lemma shows that (since R" P is sufficiently 

complete with respect to c) M satisfies the "no junk" condition of 

c. Therefore M satisfies the "no junk" condition for all 
constraints of PA; it is clearly the largest such subalgebra of 

MIsig(PA) so FRpA(M) = H. 

To show that FRIPA(M) F trueifalse we begin by introducing a 

constant ca for every element a in FRPA(M) =def FRPA(M)Isig(A). 
Call this new algebra FRPA(M)- t. Let T be the theory with the 

signature of FRPA(M)- t (i.e. sig(A) together with all the new 

nullary operators ca) and the axioms (FRPA(M)-t) -- recall the 

operation f defined in section 11.4. Since FRPA(M) satisfies all 
the equations of P and all the constraints of PA, FRPA(M)- satisfies 
all the equations and constraints of R (translated via P). Thus 

p:R-T is a theory morphism and FRPA(M) (when appropriately 
extended) is a model of P(T[P]). 

Now, FRIA(M-) (which is FRpA(M) /egns(A) by structural 
completeness of R"P) is a model of A (since A---3A') and FRIA(M-) 

(when appropriately extended) is also a model of T. Moreover, since 

R "P is persistent, FRIA(M-) can be extended to some model S of 
P(T[P7). And since T is structurally complete and satisfiable, 
P(T[P)) possesses a terminal model Z satisfying trueifalse. There 

exist homomorphisms from S onto Z and from FRPA(M) to Z because Z is 
terminal. Hence Z satisfies all equations of A (because of S) and 

all equations satisfied by FRPA(M). Therefore there exists a 

homomorphism from FRIPA(M) onto Z and Z Ftrueifalse implies 

FRIpA(M) P--truefalse. 13 
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Corollary (Horizontal composition for enrich): If AaA' and 

sig(A)c-->enrich sig(A) <stuff> is persistent then 

enrich A <stuff> - - enrich A' &<stuff>, 

Cisig(<stuff>)=id and Q'jsig(A)-'LT' 

where 

Proof: Consider the (persistent) parameterised theory R " P 

where R <sig(A),O> and P = enrich R <stuff>. Since id:R--)A and 

id.o-:R-)A' are (trivially) theory morphisms, the horizontal 

composition lemma applies to give the desired result. 

A consequence of this corollary is that our vertical and horizontal 

composition theorems extend to more elaborate notions of 

implementation such as the one discussed by Ehrig, Kreowski and 

Padawitz [1980]. They would say that T is implemented by T' (which 

we will write T*T') if there is a theory T" which is an 

enrichment of T' (written T' "T") such that T -"4T' (in our sense). 

In pictorial form: 

TT' T T' 

Then A iBA04C implies (under appropriate conditions) AAW-AhkC, 

since if: 

AB'R"4 

B/C,11` 
C 

then by the corollary: 

rll A`" B C 

and then A---- >C" by the vertical composition theorem. 

4T" 

We can now use the above lemma to prove the horizontal 
composition theorem. 
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Horizontal composition theorem: If R'C--4P' is persistent, P' is 
reachably complete with respect to ar(P), R'-p R'CP' and 

A-9-4A', and p:R-->A and p':R'-->A' are theory morphisms where 

':p.p.a"', then P(A[p])-- >P'(A'[p']). 

Proof: Let PA =def P(A[P]) and PA' =def P'(A[pP]). From the 

reachable completeness of P' it follows that P'(A'[p']) is reachably 

complete with respect to &.&'(PA) for all constraints of P. Let c 

be a constraint of A. Suppose f:...->s where 

p(s)Econstrained-sorts(c) is an operator of P-R; then sesorts(R). 
Because R yP is structurally complete, any sig(P)-term f(...) is 

provably equal to a sig(R)-term t'. Thus p(f(...)) is provably 

equal to a 'constrained' sig(A)-term p(t') (where p:P--->PA is the 

extension of p). Therefore P'(A'[p']) is reachably complete with 

respect to &.&' (PA) for c. 

Suppose M is a model of P'(A'[P']). By the restriction lemma, 

FRPA(M) exists. According to the horizontal composition lemma, 

PA'--14P'(A'[p']). By definition, PA - >PA'. Therefore, 

FRIPA(FRIpA,(M)) rtruefalse. Since there is a homomorphism from 

FRIPA(M) onto FRIPA(FRIPA,(M)), FRIPA(M) Ftrue false as well. G 

In [Sannella and Wirsing 19821 examples are given which 

demonstrate the necessity of all the conditions on this theorem. It 
is also shown there that if R:R' (this is normally the case, as in 

all of our examples) then reachable completeness of P' with respect 

to a(P) is not needed. 

The vertical and horizontal composition theorems give us freedom 

to build the implementation of a large specification from many small 

implementation steps. The correctness of all the small steps 

guarantees the correctness of the entire implementation, which in 
turn guarantees the correctness of the low-level 'program' with 
respect to the high-level specification. This provides a formal 

foundation for a methodology of programming by stepwise refinement. 

An analogue of CAT's 'double law' [Goguen and Burstall 19801 is a 

consequence of the vertical and horizontal composition theorems. 
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That is, given: 

R'-4P ..-...J R' C-->P' A-.,-->A' 
R' - P' --.; R"cl>P" A' -- --: A" 

(and appropriate fitting morphisms) we can apply the horizontal 

composition theorem to give: 

1. P(A)----->P' (A' ) 2. P' (A')---->P"(A") 

or else apply the vertical composition theorem (and its corollary) 

to give: 

3. R yP _..- R" C-4P" 4. A...A" 

Now we can either apply the vertical composition theorem to (1) and 

(2), or else apply the horizontal composition theorem to (3) and 

(4); either way we get the same implementation of P(A) by P"(A"). 

This means that the order in which parts of an implementation are 

composed makes no difference, and that our notion of implementation 

is appropriate for use in CAT. 

Our notions of simulation and implementation extend without 

modification to ordinary Clear (with data constraints rather than 

hierarchy constraints). The vertical and horizontal composition 

results then hold only under additional conditions. 

Vertical composition theorem (with data): In Clear with data, 

1. [Reflexivity] TT (the proof is obvious as before). 
2. [Transitivity] If T-7--->T', T'-M-->T", all sorts in T are 

constrained and T" is reachably complete with respect to 

6.6' (T), then T2:' T". 

Proof of transitivity: Let M be a model of T". As in the 

hierarchical case, FRT(M) exists because of the reachable 

completeness of T". Let E be the set of all ground equations which 

hold in restrictT(M), and define: 
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T_ =d e f enrich T e ns E 

it =def enrich T' e ns ar(E) 

T" °def enrich T" e ns d-.d'(E) 

T-Z->V-T" implies that T °-->T'T". The reachable 

completeness of T" ensures that for every ground sig(T)-term t there 

exists a 'constrained' term t' such that Ef-t=t'. Thus T is 

structurally complete, and since every sort of T is constrained it 
has (up to isomorphism) only one model which is initial in the class 

of 'hierarchical' models of T (i.e. in the class of algebras which 

are models of T when the data constraints of T are viewed as 

hierarchy constraints). 

By the vertical composition theorem for hierarchical theories, 
FRIT(M) =FRIT(M) is a hierarchical model of T. There is a 

homomorphism from FRIT(M) onto FRIT(FRIT,(M)). The initiality of 
FRIT(FRIT,(M)) implies the existence of a homomorphism in the 

opposite direction. Thus FRIT(M) is initial in the class of 
hierarchical models of T so (equivalently) it is a model of T. 

Therefore it is a model of T. Q 

An example showing that constraints on all sorts of T are 

required for this theorem is given in [Sannella and Wirsing 1982]. 

Corollary: In Clear with data, 

1. [Reflexivity of parameterised implementations] 
R "P--id'R "P (the proof is obvious as before). 

2. [Transitivity of parameterised implementations] If 
R "P - + F j - - > R' - P' and R' "P' R""P", all 
non-parameter sorts of Ry P are constrained and P" is 
reachably complete with respect to or.o''(P) then 

R _> p _F_7 P" . 

The proof of transitivity relies on a lemma. 
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Lemma: In Clear with data, if R" P R' "P' and 

R' "P' V,,) R""P", all non-parameter sorts of Rc-->P are 

constrained, pit is reachably complete with respect to o'.o''(P) and 

e:R-iA is a theory morphism where all sorts in A are constrained, 

then P(A[P]) )P"(A[N'.N.P]). 

Proof of lemma: All sorts of P(A[P]) are constrained. Let M be 

a model of P"(A[N'.p.P]) and let ground(M) be the set of 
(constraints and) ground equations which hold in M. Then the theory 

T =def enrich P"(A[p'.p.p]) X egns ground(M ) is reachably complete 

with respect to Q'.Q'(P(A[P])). M is a model of T and transitivity 
in the nonparameterised case implies that FRIp(A[p])(M) is a model 

of P(A[P]). 

Proof of transitivity: Suppose p:R->A is a fitting morphism, and 

let M be a model of A. Let Mt be the algebra obtained by 

introducing a constant ca into M for every element a of M. Let T be 

the theory with the signature of Mt and the axioms ground(Mt*); T 

will include a data constraint for every sort of A. Then p:R--)T is 

a theory morphism. Since every sort of T is constrained, the lemma 

implies that for every model M of P"(T[N'.N.P]), Mlsig(p(T[P])) 

simulates P(T[p]). Therefore Mlsig(P(A[P])) simulates P(A[P]). 

Every model of P"(A[N'.p.p]) (suitably extended) is a model of 

P"(T[N'.N.P]) for some such T, so this implies the desired result. 

Def: A data theory T is hierarchical submodel consistent if for 
every model M of T and every hierarchical submodel M of M (i.e. 
every submodel of M satisfying the constraints of T when viewed as 

hierarchy constraints), M satisfies the data constraints of T. 

Horizontal composition lemma (with data): In Clear with data, if 
R yP is persistent and P is hierarchical submodel consistent, 
P:R-4A and P.o':R-4A' are theory morphisms and A--^A then r 
P(A[P])-1-" P(Awhere &Isig(P(A[p]))-sig(A)=id and 

&I sig(A)= Q'. 

Proof: Let M be a model of P(A'[p.Q']), and let PA =def P(A[P]). 

The horizontal composition lemma for hierarchical Clear says that 
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FRIPA(M) exists and is a model of PA when the data constraints are 

viewed as hierarchy constraints. It remains to show that FRIPA(M) 

satisfies the "no confusion" condition for every data constraint c 

of PA. 

Because R "P is persistent, M sig(A,) = M- where M- is a model 

of A' in which all elements are finitely generated from operators 

and elements of M of sorts unconstrained in A'. Thus FRPA(M)Isig(A) 

= FRO-). Once more, persistency ensures that FRIPA(M)Isig(A) 

FRIA(M ). Since A_ )A', FRIA(M ) is a model of A and hence 

FRIPA(M) satisfies the data constraints of A. Since a is a theory 

morphism it also satisfies the data constraints of R. 

FRPA(M) satisfies all the equations and constraints (when viewed 

as hierarchy constraints) of P. Thus FRPA(M)Isig(p) is a 

hierarchical model of P and moreover is a submodel of M. 

Hierarchical submodel consistency of P guarantees that 
FRPA(M)Isig(p) and thus FRPA(M) satisfies the "no confusion" 

condition for every constraint of P. Then FRIPA(M) (which is 

FRPA(M)/:egns(A)) satisfies the "no confusion" condition for the 

constraints of P as well. 

Corollary (Horizontal composition for enrich with data): If 
A--T--)A' and sig(A) " P=enrich sig(A) <stuff> is persistent and P 

is hierarchical submodel consistent then enrich A <stuff> 

enrich A' (r<stuff>, where o'Isig(<stuff>)=id and ;.Isig(A)= °'' 

Proof: As before, applying the horizontal composition lemma to 
the parameterised theory <sig(A),O>C9P. 

Horizontal composition theorem (with data): In Clear with data. 
if R''-P' is persistent and P' is hierarchical submodel consistent, 
P' is reachably complete with respect to o'(P), all nonparameter 

sorts of R c)P are constrained, R "P T R' yP' and A- A' where 

all sorts of A are constrained, and P:R---)A and P':R'-->A' are theory 
morphisms where then P(A[P])P'(A'[P']). 

Proof: Let M be a model of P'(A'[p']), and let PA =def P(A[P]) 

and PA' =def P'(A[u.e]) The horizontal composition theorem for 
hierarchical Clear says that FRIPA(M) exists and is a model of PA 
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when the data constraints are viewed as hierarchy constraints. It 
remains to show that FRIPA(M) satisfies the "no confusion" condition 
for every data constraint c of PA. 

By the horizontal composition lemma, PA'°--P'(A'[P']) and by 

definition, PA --3PA' . 't'hus M =def FRIPA(FRIPA, (M)) is a model of 
PA (satisfying the data constraints of PA). Since FRPA(FRPA,(M)) 

FRPA(M), there is a homomorphism from FRIPA(M) onto M. Let 
constr(PA) denote the theory PA with non-constructors omitted. 

Since M satisfies the data constraints of PA, M =def 

M1sig(constr(PA)) is an initial model of constr(PA). FRIPA(M) =def 
FRI PA(M)131g(constr(PA)) is also a model of constr(PA) and there is - 
a homomorphism from FRIPA(M)- onto M . On the other hand, the 

initiality of M implies the existence of a homomorphism in the 

opposite direction. Hence FRIPA(M) and M are isomorphic, and 

FRIPA(M)- satisfies the data constraints of PA, which implies that 
FRIPA(M) satisfies the "no confusion" condition of the data 

constraints. 

An example is given in [Sannella and Wirsing 1982] which shows 

the necessity of the condition that all nonparameter sorts of RCP 
be constrained. It is also shown there that if R=R' then this 
condition can be dropped along with reachable completeness of P' 

with respect to or(P) and the condition that all sorts of A be 

constrained. 

The vertical and horizontal composition results for theories with 
data constraints are encouraging because ordinary Clear is easier to 
use than our 'hierarchical' variant. However, the hierarchical 
submodel consistency condition on the horizontal composition theorem 

is rather strong and it may be that it is too restrictive to be of 
practical use. Here is an example which shows that the proposition 
(and therefore the theorem) does not hold without the hierarchical 
submodel consistency condition: 
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meta Natlike 
enrich Bool 

sorts nat 
opns 0 : nat 

succ : nat -> nat enden 

proc P(X:Natlike) 
enrich X 

data sorts s 
opns a, b : s 

f : nat -> s 
egns f(0) = a 

f(succ(x)) = b enden 

const A = Nat as usual but with only the operators 0 and succ 

const A' = 

enrich Bool 
data sorts nat' 

opns -1, 0 : nat' 
succ : nat' -> nat' 

egns succ(-1) = 0 enden 

Now A and A' are both valid actual parameters of Natlike CP, and 

A..--.JA' (where -1 is an unused value). But P(A)-7"P(At) (since 
P(A) r-a4b and P(A') r-a=b). The problem is that P is not 

hierarchical submodel consistent. Consider the following model M of 
P: 

Mnat = 
{-1,0,1,2,...} 

Ms = {a) 

succ defined on Mnat in the usual way 

(with the usual interpretation of Bool). Now suppose we remove -1 

from Mnat to give an algebra M : 

Mnat {0,1,2,...} 

Ms = (a) 

succ as before 

M- is a hierarchical submodel of M but it does not satisfy the "no 

confusion" condition of the data constraint on the sort s, and 

therefore P is not hierarchical submodel consistent. There may be 

some weaker condition than hierarchical submodel consistency which 
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is sufficient to guarantee that implementations of data theories can 
be horizontally composed, but we have so far been unable to discover 
any such condition. 
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CONCLUSION 

In the Introduction we described the wide variety of roles which 

specifications play in the development of every program. A 

specification of one sort or another is necessary to describe the 

task which the program is to perform, for communication between 

designers and programmers, for checking or proving the correctness 

of the resulting program, and for documentation. Of course, this is 
a very loose use of the word "specification" which includes 

everything from the vague ideas in a programmer's head to a precise 
description written in a formal language. 

We argued that formal specifications are highly desirable because 

all informal specifications are to some degree imprecise, and the 

cost of ambiguity can be immense. It is not enough to write 
specifications in a language with a formally-defined syntax; this 
gives only a dangerous illusion of precision. It is essential that 
the specification language have a complete formal semantics. Only 

then can we be confident that our specifications have a precise and 

unambiguous meaning - the exact meaning of any specification can be 

determined mechanically by consulting the semantics. 

Burstall and Goguen [1980] were the first to give a complete 

formal semantics of a specification language. They define the 

meaning of Clear's theory-building operations using the language of 
category theory, and then supply a denotational semantics of the 

language as a whole by building upon these definitions. Chapter V 

describes the semantics and a HOPE program which implements it. 
Besides being an experiment in 'categorical programming' as 

practiced by Burstall [1980] and Rydeheard [1981], the program 

exposed several minor errors and one rather serious error in 
[Burstall and Goguen 1980]. The semantics given in chapter V is a 

corrected version of the original semantics. The serious error was 

a failure to distinguish between theories and metatheories 

(necessary for supplying metasorts in parameterised theories); the 

rather subtle difference is discussed in section III.3. 
Unfortunately the program is too slow to be of much practical use. 
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A different but equivalent semantics for Clear is given in 

chapter III. This uses straightforward set-theoretic constructions 

to define the semantics of the theory-building operations; the 

denotational semantics built upon these definitions is virtually the 

same as in chapter V. The simplicity of the constructions depends 

on the use of tags to distinguish different sorts and operators 

which have the same name but originate in different theories. Both 

versions of the semantics are prolific -- two applications of the 

same parameterised theory to the same actual parameter (using the 

same fitting morphism) give two different copies of the same theory. 

Section 111.5 describes how the set-theoretic semantics can be 

altered to remove this undesirable characteristic. 

Why do we need two versions of the semantics? Is this not too 

much of a good thing? The category-theoretic semantics was 

developed at the same time as Clear was being designed. This had an 

altogether positive effect on the resulting language, as predicted 

by Ashcroft and Wadge [1982]; a desire to give Clear an elegant 

category-theoretic semantics led Burstall and Goguen to reject 
certain features and embrace others. The idea of 'parameterising' 
by an institution came from the realisation that the semantics of 
the theory-building operations relied only on the existence of 
colimits in the category of signatures. The language of category 

theory is perfect for expressing this kind of flexibility. The set- 
theoretic semantics has the advantage of being down-to-earth and 

constructive and therefore more useful for practical applications. 
But without the motivation provided by the category-theoretic 
semantics, the constructions of chapter III may seem mysterious and 

complicated. The set-theoretic semantics does not seem to readily 
generalise to an arbitrary institution, but in section 111.6 we show 

that it can be easily adapted to deal with all institutions which 

have so far been proposed. 

Winograd [1979] has argued convincingly for the need to force 
specifications into the foreground of the program development 

process and code into the background, in contrast to present-day 

programming practice. He makes the point that programming nowadays 

is concerned more with the integration of existing modules into 



-250- 

larger systems and the modification of existing programs than with 

the creation of new programs from scratch. In such cases a high- 
level specification of a module is far more important than the 

sequence of instructions which actually does the job. He suggests 

that the organisation and manipulation of these specifications 
should be regarded as a programmer's primary task. We agree 

wholeheartedly with his proposals. But these ideas are not yet 

practical because formal specifications are unfortunately rather 
difficult (or at least tedious) to construct. Although formal 

specifications have the advantage of precision, they are harder to 

understand than informal specifications and it is difficult to be 

sure that a formal specification is a correct description of the 

intended idea or behaviour. 

There are two ways to attack this problem. The first is to 
develop an expressive and flexible specification language with a 

solid mathematical basis, but which does not require a great deal of 
mathematical sophistication to understand and use. Although 

addition of ad hoc features is never desirable, it is important that 
the language should not force specifications into an unnatural form 

for reasons of theoretical elegance. With a carefully-designed 
language users can worry about describing their problems without 
struggling with the language. The specification language may even 

aid users in expressing and thinking about their problems by 

encouraging them to construct specifications in a certain systematic 
way. Clear is a first attempt toward such a language -- the 

facilities it provides for structuring specifications in particular 
seem to be a great asset. But in many ways Clear is clumsy. 

ORDINARY [Goguen and Burstall 1980a] seems to be continuing in the 

right direction by retaining Clear's structuring facilities and 

institutional approach but emphasising useability. 

The other approach to the problem is to develop automated aids to 
help us write, understand and manipulate specifications. Chapter IV 

discusses an implementation in HOPE of the set-theoretic semantics 

of chapter III, along with some examples of specifications which 

have been processed. As well as helping expose bugs in early 
versions of the semantics, this has shown itself to be invaluable in 
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checking specifications for syntax and type errors. It is 
surprisingly difficult to write even a small specification without 
making some kind of silly mistake. Since the semantics does not 

assign any meaning to a syntactically or semantically ill-formed 
specification it is imperative to detect such errors. The 

implementation could also serve as a front end to any system which 

requires specifications as input (such as a program verification or 

development system). A helpful addition would be to add a check for 
the persistency of enrichments, but this is a difficult problem 

which is undecidable in general. On the other hand, it would be 

easy to add a check for void sorts. The program described in 
chapter IV is presently rather slow and lacks a really good user 

interface, but these faults could easily be cured by a careful 
reimplementation in some lower-level language with more attention to 

error reporting and recovery. 

A theorem prover is a useful tool for exploring the meaning of a 

specification, and is a necessary basis for building almost any 

system making serious use of specifications. In fact, the Clear 

implementation needs a theorem prover to check that specifications 
are semantically well-formed. In chapter VI a semi-automatic 

theorem prover for Clear built on top of the Edinburgh LCF system 

(Gordon, Milner and Wadsworth 19793 is described. It is able to 

prove many theorems automatically, exploiting the structure of Clear 

specifications to restrict the information available to that which 

is relevant to the theorem at hand. If the built-in strategy fails 
the user is free to attempt to prove the theorem using the high- 
level primitives (LCF tactics) and inference rules provided; our use 

of the LCF proof methodology guarantees that only valid theorems can 

be proved. Our goal was not to produce a powerful theorem prover 

full of clever heuristics, but to provide a set of tools sufficient 
for users to conduct proofs interactively and to explore some of the 

possibilities for automatic proof, with particular emphasis on 

finding evidence for our suspicion that the structure of Clear 

specifications can aid both interactive and automatic proof. A more 

powerful equational deduction component which uses state-of-the-art 
methods would improve the performance of the system substantially. 
Another area for improvement is the user interface, which is at 
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present rather primitive. 

Chapter VII lays a foundation for the use of Clear in program 

development. A formal notion of the implementation of a theory by a 

lower-level theory is given which seems to agree with our intuitive 
ideas built on programming experience. This notion extends to give 

a definition of the implementation of parameterised theories. We 

prove that the implementation relation is transitive under certain 
conditions, and that separate implementations of a parameterised 

theory P and an actual parameter theory A can be combined to give an 

implementation of the application P(A), again provided that the 

theories are 'well-behaved'. These two results (together with an 

analogous result for each of the remaining theory-building 
operations of Clear -- we only considered the apply operation) mean 

that large high-level specifications can be refined in a gradual and 

modular fashion to low-level HOPE-style 'programs', where the 

correctness of all the small individual refinements guarantees the 

correctness of the final program. A question not addressed was how 

to prove that a refinement is indeed a correct implementation 

according to our model-theoretic definition. This seems to be a 

difficult problem; Martin Wirsing and I have tried to produce a set 

of conditions sufficient to guarantee correctness of 
implementations, but so far we have had only limited success. 

An ambitious project would be to integrate all of this work 

(together with efforts like OBJ [Goguen and Tardo 1979] and DAISTS 

[Gannon, McMullin and Hamlet 1981]) into a system for the 

specification, verification and systematic development of programs. 

The main barriers to such a system at present seem to be the lack of 
a means of proving the correctness of refinement steps, and the 

limitations of automatic theorem-proving technology. An important 

problem to which we have not yet devoted much attention is the 

construction of a comprehensive library of basic specifications 

which can be used to build large specifications without starting 

from scratch; the library in appendix 2 is just a feeble beginning. 

A great deal of work must also be done to develop a specification 

language which permits greater ease of expression than Clear, and on 

other problems of user engineering. 
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It is almost certain that a systematic approach to program 
development such as we have described will never be easier than the 
'quick and dirty' approach. But in the long run the initial high 
cost of carefully developing a program should be balanced by the 
guaranteed correctness of the result and the relative ease of 
maintenance and later modification. 
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APPENDIX ONE 

HOPE 

The following description of HOPE is a condensation of [Burstall, 
MacQueen and Sannella 19801, brought up to date. Lazy evaluation is 
not mentioned, since none of the programs in this thesis use that 
facility of HOPE. After a brief presentation of the notation and 

features of HOPE, a simple example of a HOPE program is given. This 

is followed by a discussion of some of the advantages and 

disadvantages of HOPE, and notes concerning its implementation. 

A precursor of HOPE called NPL is described by Burstall [1977]. 

Major influences in the design of HOPE were LISP and ISWIM [Landin 

1966]. It bears some resemblance to a number of other languages, 

including PROLOG [Warren, Pereira and Pereira 1977], ML [Gordon, 

Milner and Wadsworth 1979], SASL [Turner 1979], OBJ [Goguen and 

Tardo 1979], SCRATCHPAD [Jenks 1974], and languages by Burge [1975] 

and Backus [1978]. 

1. Data declarations 

Conceptually, all data in HOPE is represented as terms consisting 
of a data constructor applied to a number of subterms, each of which 

in turn represents another data item. The tips of this tree are 

nullary data constructors or functional objects. An example is 
succ(succ 0) in which succ is a unary constructor and 0 is a nullary 
one (i.e. a constant). Constructor functions are uninterpreted; 
they just construct. 

A data declaration is used to introduce a new data type along 

with the data constructors which create elements of that type. For 

example, the data declaration for natural numbers would be: 

data num == 0 ++ succ num 

defining a data type called num with data constructors 0 and succ. 

So the elements of num are 0, succ(O), succ(succ 0), ... ; that is, 
0, 1, 2, ... . 

To define a type 'tree-of-numbers' we could say 
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data numtree == empty ++ tip num ++ node(numtree,numtree) 

One of the elements of numtree is: 
node(tip(succ 0),node(tip(succ(succ 0)),tip 0)) 

But we would like to have trees of lists and trees of trees as 

well, without having to define them all separately. So we declare a 

type variable 

typevar alpha 

which when used in a type expression denotes any type (including 
second- and higher-order types). A general definition of tree as a 

parameterised type is now possible: 

data tree(alpha) == empty ++ tip alpha 
++ node(tree alpha,tree alpha) 

Now tree is not a type but a unary type constructor -- the type 

numtree can be dispensed with in favour of tree(num). 

Another example of a data declaration is 
data graph == mkg(set vertex,(vertex#vertex->truval)) 

(the sign # gives the cartesian product of types). This says that a 

graph is (the data constructor mkg applied to) a set of vertices 
together with a binary relation which tells if there is an edge 

between any two vertices. 

Another way to define graphs is using a type declaration: 
type graph == set vertex # (vertex#vertex->truval) 

Now graph is just an abbreviation for a type tuple, rather than a 

new data type. With this definition no data constructor is used to 
construct a graph. Type definitions may be parameterised in the 

same way as data declarations, but they may not be recursive. 

HOPE currently comes equipped with the data types num, truval, 
char, list, set, and map (finite functions). 

2. Expressions 

The simplest expressions of HOPE are constants (i.e. data 

constructors and functions -- the 'usual' concept of a constant is 
just the class of nullary functions and data constructors) and 

variables. 
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An application may be formed by simply juxtaposing two 

expressions: 

factorial 6 

For functions of several arguments we use tuples, formed with 

commas; thus 3,4 is a 2-tuple. Parentheses are used for grouping, 

for example: 

g (3,4) 

In the expression 

(f x) y 

the subexpre3sion f x would have to produce a function; thus the 

types would be 

f : T1 -> T2 -> T3 

with x:T1 and y:T2. 

It is possible to use function symbols as infix or postfix 
operators if they are declared and given a precedence; for example: 

infix +, - : 8 

A similar form is used to assign a precedence to a prefix symbol. 

Distributed-fix operators (see [Goguen and Tardo 1979]) are also 

available; for example: 

distfix while do 
distfix unless in which case 

Some convenient notations have been implemented for built-in 
types; thus e1::(e2:: ... ::nil) is abbreviated [e1,e2, ...], 
['a','b', ...] is "ab..." and sets are written {e1,e2, ...}. Note 

that we write cons as infix :: . 

There are two equivalent forms of conditional expression: 

e1 if c else e2 

and 

c then e1 else e2 

(in many languages written if c then e1 else e2). 

Lambda-expressions (denoting functions) are formed as described 
in section 3. 
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Local variables may be introduced and associated with values 

using either of the equivalent forms 

e1 where p == e2 

or 

let p == e2 in e1 

where p is an expression formed by application of data constructors 
to a number of distinct variables (this is called a pattern). For 

example: 

a+b where a::(b::l) _= f(t) 

Upon evaluation, f(t) is expected to yield a value which 'matches' 

the pattern a::(b::l). The corresponding subterms in the value of 
f(t) are then bound to a, b, and 1 while evaluating a+b. 

3. Defining functions 

Before a function is defined, its type must be declared. For 

example: 

dec reverse : list alpha -> list alpha 

HOPE is a very strongly-typed language, and the HOPE system includes 
a polymorphic typechecker (a modification of the algorithm in 
[Milner 1978]) which is able to detect all type errors at compile 

time. Function symbols may be overloaded. When this is done, the 

typechecker is able to determine which function definition belongs 

to each instance of the function symbol. 

Functions are defined by a sequence of one or more equations, 

where each equation specifies the function over some subset of the 

possible argument values. This subset is described by a pattern 
(see section 2) on the left-hand side of the equation. For example: 

--- reverse nil <: nil (1) 
--- reverse(a::l) <= reverse 1 <> [a] (2) 

(the symbol <> is infix append). This defines the (top-level) 
reverse of a list; for example: 

reverse(1::(2::nil)) = reverse(2::nil) <> [1] 
(reverse nil <> [21) <> [1] 
(nil <> [21) <> [1] 

So reverse [1,2] _ [2,1] (by two applications of equation 2 followed 

by a single application of equation 1). The left-hand-side patterns 
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will normally be disjoint and be related to the structure of the 

type definition: 
data list alpha == nil ++ alpha :: list alpha 

The set of equations defining a function should exhaust the 

possibilities given in the data-statement introducing the argument 

types. For example, a definition of the Fibonacci numbers: 

dec fib : num -> num 
fib 0 <= 1 

--- fib(succ 0) <= 1 

--- fib(succ(succ n)) <= fib(succ n) + fib n 

In this case the three patterns 0, succ 0, and succ(succ n) exhaust 

the set of values belonging to num. The pattern 1 may be used as 

shorthand for succ(O). 

Nullary 'functions' may also be defined; for example: 

dec pi : rational 
--- pi <= mkrational(22,7) 

which assumes that the type rational has been defined. 

Lambda-expressions are defined similarly. For example, a 

function to compute the conjunction of two truth values (already 
available as the function 'and'): 

lambda true,p => p 

false,p => false 

Another example of a lambda-expression occurs in the definition 
of function composition: 

typevar alpha,beta,tau 
dec compose : (alpha->beta) # (beta->tau) -> (alpha->tau) -- compose(f,g) <= lambda x => f(g x) 

Patterns may be somewhat more complex than those used above; for 
example: 

-- f(1l & ( .. (c: ))) <= c::ll 

This pattern uses "don't care" variables (underscores) to give the 

shape of the pattern without specifying variable bindings, and the 

multilevel pattern operation (ampersand) to bind variables to the 
same value at different levels. The expression f(1,2,33 will have 

the value [2,1,2,3). 
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4. Modules 

Any sequence of statements may be made into a module by 

surrounding it with the statements 

module mname 

and 

end 

Data types defined in a module may be referred to outside only if 
a statement 

btype tname 

is included in the module. Similarly, constants (including data 

constructors) may be referenced only if a statement 

pubconst cname 

is included. 

Nothing defined outside a module may be referenced within it, 
unless the module includes the statement 

uses mname 

In this case, all of the types and constants declared as public to 

the indicated module are available. In addition, certain global 

types and constants (num, truval, char, list, set and map, together 

with some primitive operations) may be referenced within any module. 

This is an effective tool for the encapsulation of data 

abstractions; if the primitive constructors and low-level operations 

on the data representation are not declared public, then the 
implementation of the abstraction is hidden from the rest of the 

program. 

5. An example 

An example of a complete HOPE program is given below. This 

illustrates how we can use HOPE to implement a data type (ordered 

trees), and then how that type can be used in a program for 
treesort. 
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module ordered trees 
pubtype otree 
pubconst empty, insert, flatten 

data otree == empty ++ tip num ++ node(otree,num,otree) 

dec insert : num # otree -> otree 
dec flatten : otree -> list num 

-_ insert(n,empty) <= tip n 

--- insert(n,tip m) <= n<m then node(tip n,m,empty) 
else node(empty,m,tip n) 

--- insert(n,node(t1,m,t2)) <= n<m then node(insert(n,t1),m,t2) 
else node(t1,m,insert(n,t2)) 

--- flatten empty <= nil 
--- flatten(tip n) <= [n] 
--- flatten(node(t1,n,t2)) <= flatten t1 <> (n::flatten t2) 

end 

module list iterators 
pubconst *, ** 

typevar alpha, beta 

dec * : (alpha->beta) # list alpha -> list beta 
dec ** : (alpha#beta->beta) # (list alpha # beta) -> beta 

infix *, ** : 6 

--- f * nil <= nil 
--- f * (a::al) <_ (f a)::(f * al) 

--- g ** (nil,b) <= b 

--- g ** (a::al,b) <= g ** (al,g(a,b)) 

end 

module tree sort 
pubconst sort 
uses ordered trees, list iterators 

dec sort : list num -> list num 

--- sort 1 <= flatten(insert ** (l,empty)) 

end 
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Ordered trees 

The first module contains an implementation of the abstract type 

ordered-tree-of-numbers (data type otree in the program). An otree 
is defined to be either empty, a tip (containing a number), or a 

node containing two otrees and a number. The special property of 
otree is that for any term node(tl,n,t2), all numbers contained in 
tl are less than n, which is in turn less than or equal to all 
numbers contained in Q. We define three public constants: 

empty the empty otree 

insert adds a number to an otree, preserving the 
'orderedness' of the otree 

flatten inorder traversal of an otree 

Ordinarily an abstract data type would have a few more 

operations; only those which are used in the remainder of the 

program have been included here. 

Note that the data constructor 'node' is not public. 
Consequently, the only functions available to the 'outside world' 
for constructing and modifying otrees are 'empty' and 'insert'. 
Both of the:e preserve the properties of otrees, so the integrity of 
the implementation is assured. However, insert is not a data 

constructor, and hence may not be used in patterns. 

List iterators 

This module defines two second-order functions which apply a 

given function to every element of a list and collect the results. 
These two functions are representatives of a group of functions 
which are widely used in HOPE programs in an attempt to eliminate 
explicit recursion as far as possible. Both of these are in fact 
provided as primitive operations in HOPE, but their definitions are 

repeated here nonetheless. 

The function * is identical to mapcar in LISP. It produces a 

list containing the results of applying the function supplied to 
each element of the given list. This operation is not actually used 

in the example. 
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The function ** is slightly more complicated. When supplied with 
a function g of type alpha#beta -> beta, a list of alpha-objects, 
and an 'initial' beta-object, it applies g to each element of the 

list, beginning with the given beta-object as a second argument and 

subsequently recycling the result of the previous application. This 

operation is analogous to the 'reduction' operator of APL [Iverson 
1962]; an example of its use would be to compute the union of a list 
of sets: 

union ** (setlist,nil set) 

In this case, the module facility is used as a means of packaging 

a number of related functions rather than as a device for protecting 

a delicate abstraction. However, if one of the operations requires 

an auxiliary function which has no utility of its own, then it might 

be desirable to keep this function local to the module. 

Tree sort 

A function for sorting a list of numbers is now defined using the 

primitives developed in the preceding modules. The ** operation 

from list iterators is used to successively insert the list elements 

into an initially empty otree. The result is then flattened to 

produce the final answer. 

6. Advantages and disadvantages 

The greatest triumph of HOPE is that we have found it to be 

significantly easier to construct programs in HOPE than in any other 

programming language we know. In particular, it is rather easy to 
write programs which are absolutely correct the first time they are 

run. It seems quite difficult to commit an error which remains 

undiscovered for long -- the simple errors are caught during 

compilation by the typechecker, while the more fundamental errors 
(stemming usually from an insufficient understanding of the problem) 

display themselves glaringly during even a casual test. 

An important aim of language design is to make it easier to 
verify that a program meets a given specification. In this respect 
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applicative languages such as HOPE seem to offer considerable 

advantages; the absence of assignment statements and the consequent 

replacement of iteration by recursion gives programs a simple and 

easy to analyse form. Powerful verification systems for applicative 
languages have been written by Boyer and Moore [1980] and by Aubin 

[1977]. 

HOPE has faults, too; one is illustrated in the example in the 

last section. The sorting program will only sort a list of numbers, 

because otree is 'ordered-tree-of-numbers'. We want a more general 

sorting program, and this depends on a more general definition of 
ordered trees; we would like to define 'ordered-tree-of-alphas'. 
The data declaration is easy to generalise. But to generalise 
insert to type 

alpha # otree alpha -> otree alpha 

we must have a more general order relation than <, which is defined 

only for numbers. But a general order (of type alpha#alpha->truval) 
cannot be defined; for each data type the order must be defined 

separately. 

The solution is to associate a collection of operations with each 

data type (so types become algebras instead of simply sets). Rather 

than generalising to otree(alpha) we could generalise to 
otree(alpha[<]), requiring an order relation to exist on the 

parameter type. This is the approach taken in CLU [Liskov, Snyder, 

Atkinson and Schaffert 1977] and in Clear. We really want HOPE 

modules to have parameters, a collection of types and operators, 
just as CLU clusters have parameters. 

As a further example, refer again to the sorting program and note 

that the module tree sort does not depend on the fact that otrees 
are trees, but just on certain properties of insert and flatten. We 

may substitute a module ordered lists for ordered trees, where empty 

becomes nil, insert becomes the obvious order-preserving insertion 
in an ordered list, and flatten is the identity function. 
Essentially, tree sort is a parameterised module which may be 

'applied' to any module satisfying certain (nontrivial) properties. 

Parameterised modules do not exist in present-day HOPE, but 
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MacQueen [1981) has proposed an extension to the type system of HOPE 

based on ideas from Clear which accommodates them nicely. In 

MacQueen's language, an abstraction is made up of an interface (the 

'meta-type' of the abstraction, declaring the types and operators 

which it makes available) and a structure (an implementation of the 

types and operators promised by the interface). Interfaces and 

structures are defined and manipulated separately, and may be 

parameterised by other interfaces and structures. 

7. Implementation 

The HOPE system consists of a compiler (from HOPE programs to 
code for an abstract stack machine) and an implementation of the 

target machine. The system is written in POP-2, and currently runs 

in approximately 51K words (plus a 15K shareable segment) on a DEC 

KL-10. 

Timing tests indicate that a program written in HOPE runs 

approximately 3 times slower than the same algorithm coded in LISP 

running under the Rutgers/UCI interpreter (and 50 times slower than 

compiled LISP). Large programs run more slowly because of page 

thrashing. A machine code implementation of the interpreter should 

run a lot faster. 

A very high-level language such as HOPE pays penalties of 
inefficiency because it is remote from the machine level. It could 

be thought of as a specification language in which the 

specifications are 'walkable' (if not 'runnable'), or as a language 

for making a first try at a programming project. But recent work on 

efficiency issues in applicative languages gives us hope that we can 

produce tolerably efficient programs with less effort than in a 

conventional language. 

An advantage of an applicative language is the fact that programs 

lend themselves very well to the technique of program transformation 
[Burstall and Darlington 1977), whereby a simple but inefficient 
program is transformed into an acceptably efficient one by steps 

which maintain its correctness. A very simple example of program 

transformation would be the production of the following linear-time 
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program for generating Fibonacci numbers from the equivalent program 

in section 3 which requires exponential time. 

dec g : num -> num#num 

--- g 0 <= 1,1 
--- g(succ n) <_ (a + b),a where a,b == g n 

dec fib' : num -> num 
fib' 0 <= 1 

--- fib' 1 <= 1 

fib'(succ(succ n)) <= a + b where a,b == g n 

Feather [1982] has produced a system for transforming large 

programs, which is connected to an earlier version of the HOPE 

system. Mycroft [1981] describes a method for detecting 
automatically when 'applicative' operators can be replaced by 

destructive operators in a program written in an applicative 
language without changing its semantics. The transformed program 

will consume storage less rapidly with the result that garbage 

collection will occur less frequently. 

In addition, there is another advantage of applicative languages 

which may come to our rescue: applicative languages are not so 

tightly bound to the notion of a sequential machine as are 

imperative languages. The value of the function application 

e0(e1, ... en) 

is independent of the order of evaluation of the expressions 

e0, ... en (if parameters are passed 'by value'); this is 
guaranteed by the absence of an assignment statement. If a parallel 
machine is available, e0, ... en may be evaluated simultaneously. 
Not only that, but if e0, ... en are themselves function 
applications, then their arguments may all be evaluated 

simultaneously. Darlington and Reeve [1981] describe the 

architecture of a machine which is capable of running HOPE programs 

in such a parallel fashion. 

HOPE is still somewhat incomplete, lacking such conveniences as 

sensible input/output facilities. A way of neatly adding 

interactive input/output to HOPE using streams was proposed by 

Burstall, MacQueen and Sannella [1980], but this was never 

implemented. At the present time there is no provision for 

interactive input, and only the most rudimentary printing facility 
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is available (a function which has the side effect of printing its 

argument at the terminal). 

In order to make up for deficiencies such as these for the time 

being, a facility has been added to HOPE which allows a HOPE 

function to be defined by a POP-2 program. The function is declared 

as usual, and its meaning is attached later using a set of POP-2 

macros. This provides the means for supplying all the power of 
POP-2 in HOPE (of particular interest is the possibility of using 

POP-2 input/output facilities), and it also could be used to make 

important HOPE programs more efficient. Naturally, there is no way 

to typecheck the POP-2 code at compile time, and since there is no 

runtime typechecking in HOPE it is easy to violate the HOPE type 

system in this fashion. But when used with care and discretion this 
facility makes it possible to construct large and useful systems in 
HOPE. The Clear implementation described in chapter IV is an 

example; it uses the HOPE parser and typechecker as well as input 
and file handling routines written in POP-2. 
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APPENDIX TWO 

LIBRARY OF BASIC SPECIFICATIONS 

Listed below are all the theories included in the initial 
environment of the Clear system described in chapter IV. All with 

the exception of Bool are shown exactly as they are given to the 

system (except that all keywords have been underlined). Bool must 

be treated specially because the data-enrich operation expects the 

tagged sort boolBool to be present, and if Bool is added in the 

normal fashion the sort bool will be given an arbitrary tag. 

const Bool = 

let BoolO = 

theory 
data sorts bool 

opns true, false : bool endth in 
enrich BoolO 

o ns not : bool -> bool 

( or -), (_ and 
egns not(true) = false 

p or true = true 
p and true = p 
p-->q = not(p and not(q)) 

const Nat = 

let NatO = 

enrich Bool 
data sorts nat 

opns 0 : nat 

bool,bool -> bool 
not(false) = true 
p or false = p 

p and false = false 
enden 

succ : nat -> nat enden in 
enrich NatO 

opns 1, 2, 3, 4, 5, 6, 7, 8. 9 : nat 

=< ), (_ >= < ), ( > ) : nat,nat -> bool 
plus ), (_ 

( div mod nat,nat -> nat 
erroropns neg : nat 
egns 1 = succ(0) 2 = succ(1) 3 = succ(2) 

4 = succ(3) 5 = succ(4) 6 = succ(5) 
7 = succ(6) 8 = succ(7) 9 = succ(8) 
0=<n = true succ(m)=<0 = false 
succ(m)=<succ(n) = m=<n m>=n n=<m 
m<n = m=<n and not(m==n) m>n = n<m 
0 plus n = n succ(m) plus n = succ(m plus n) 
m plus n m= n O*n = 0 
succ(m)*n = m*n plus n m*n plus p div m= n if p<m 
m*n plus p mod m= p if p<m 

erroregns m-n = neg if m<n enden 



const Int = 

let IntO = 

enrich Bool 
data sorts int 

opus 0 : int 
pred, succ : int -> int 

eqns pred(succ(n)) = n 
succ(pred(n)) = n enden in 

enrich IntO 
opns 1, 2, 3, 4, 5, 6, 7, 8, 9, 

(_ _< _), (_ >_ _), ( < ), ( > ) : int,int -> bool 
(- ), magnitude : int -> int 
(_ plus _), (_ - _), (_ _), 

( div ), ( mod int,int -> int 
egns 1 = succ(O) 2 = succ(1) 3 = succ(2) 

4 = succ(3) 5 = succ(4) 6 

7 = succ(6) 8 = succ(7) 9 

n 0 

= succ(5) 
= succ(8) 

= - n - 
n=<n = true n=<pred(n) = 

pred(n)=<m = true if n=<m n=<pred(m) = 

false 
false if not(n=<m) 

n=<succ(m) = true if n=<m succ(n)=<m = false if not(n=<m) 
m>=n = n=<m m<n = m=<n and not(m==n) 
m>n = n<m 0 plus n= n 
succ(m) plus n = succ(m plus n) 
pred(m) plus n = pred(m plus n) 

mplusn -m=n On=O 
succ(m)*n = On plus n pred(m)*n = On - n 
magnitude(m) = m if m>=O magnitude(m) _ - m if m<O 

On plus p div m n if p<magnitude(m) and p>=0 
On plus p mod m = p if p<magnitude(m) and p>=O 

enden 

const Character = 

derive sorts character 
opns blank, A, B, C, D, E, F, G, H, I : character 

character,character -> bool 
using Bool 
from Nat 
by character is nat, blank is 0, 

A is 1, B is 2, C is 3. 

D is 4, E is 5, F is 6, 

G is 7. H is 8, I is 9 endde 

meta Triv = 

theory sorts element endth 



meta Ident = 

enrich Bool + Triv 
opns (_ __ _) : element element -> bool 
egns all i:element. i==i = true 

all i,j:element. i:=J = J==i 

all i,J:element. i==j and j==k -> (i==k) = true enden 

meta POSet = 

enrich Ident 
opns (_ =< _) : element element -> bool 
egns i=<i = true 

i=<J and J=<i -> (i==J) = true 
i=<j and J=<k -> (i=<k) = true enden 

proc Sequence(X:Triv) 
let SeqO = 

enrich X + Bool 
data sorts sequence 

opns empty : sequence 
unit element -> sequence 
( . _) : sequence sequence -> sequence 

e ns empty.s = s 
s.empty = s 
s.t.v = s.(t.v) enden in 

enrich SeqO + Nat 
opns length : sequence -> nat 
e ns length(empty) = 0 length(unit(a)) = 1 

length(s.t) = length(s) plus length(t) enden 

roc Pair(X:Triv,Y:Triv) _ 

enrich X + Y + Bool 
data sorts pair 

opns (_ # _) : element of X,element of Y -> pair enden 

proc Sum(X:Triv,Y:Triv) 
enrich X + Y + Bool 

data sorts sum 
opns inl : element of X -> sum 

inr : element of Y -> sum enden 



proc Set(X:Triv) _ 

let SetO = 

enrich X + Bool 
data sorts set 

opns empty : set 
singleton : element -> set 
(_ U _) : set,set -> set 

egns S U empty = S 

S U S = S 

SUTTUS 
S U T U V= S U (T U V) enden in 

enrich SetO + Nat boy 

opns (_ is in _) : element,set -> bool 
- ), (_ intersect set,set -> set 

card set -> nat 

e ns a is_in empty = false 
a is in singleton(b) = singleton(a)==singleton(b) 
a is in (S U T) = a is-in S or a is-in T 

empty-S = empty 
singleton(a)-S = empty if a is_in S 
singleton(a)-S = singleton(a) if not(a is in S) 

T U V- S= (T-S) U (V-S) 

S intersect T = S-(S-T) 
card(empty) = 0 

card(singleton(a)) = 1 

card(S U T) = card(S) plus card(T)-card(S intersect T) 
enden 

proc Bag(X:Triv) 
let BagO = 

enrich X + Bool 
data sorts bag 

opns empty : bag 
singleton : element -> bag 

( U _) : bag,bag -> bag 
ensSUempty =S 

SUT = T U S 

S U T U V= S U (T U V) enden in 
enrich BagO + Nat 

opns (_ is in _) : element,bag -> bool 
occurrences : element,bag -> nat 

e ns a is in empty = false 
a is in singleton(b) = singleton(a)==singleton(b) 
a is-in (S U T) = a is in S or a is-in T 

occurrences(a,empty) = 0 

occurrences(a,singleton(b)) = 0 

if not(a is_in singleton(b)) 

occurrences(a,singleton(b)) = 1 if a is_in singleton(b) 
occurrences(a,S U T) = occurrences(a,S) 

plus occurrences(a,T) enden 



roc Stack(X:Triv) _ 

let StackO = 

enrich X + Bool 
data sorts stack 

opns empty : stack 
push : element, stack -> stack enden in 

enrich StackO 
opns top : stack -> element 

pop : stack -> stack 
isempty : stack -> bool 

erroropns undef : element 
underflow : stack 

egns top(push(a,s)) = a pop(push(a,s)) = s 
isempty(empty) = true isempty(push(a,s)) = false 

erroregns top(empty) = undef pop(empty) = underflow enden 

roc Map(X:Ident,Y:Triv) 
let MapO = 

enrich X + Y 

data sorts map 
opns empty : map 

insert : map,element of X,element of Y -> map 
e ns insert(insert(f,a,b),a,d) = insert(f,a,d) 

insert(insert(f,a,b),c,d) = insert(insert(f,c,d),a,b) 
if not(a==c) enden in 

enrich MapO + Set(X) 

opns (_ << >>) : map,element of X -> element of Y 

domain : map -> set 
(restrict to ) : map,set -> map 
( is-in _) : element of X,map -> bool 

erroropns undef : element of Y 

e ns insert(f,a,b)<<a>> = b 
insert(f,a,b)<<c>> = f<<c>> if not(a==c) 
domain(empty) = empty 
domain(insert(f,a,b)) = singleton(a) U domain(f) 
restrict empty to S = empty 
restrict insert(f,a,b) to S = restrict f to S 

if not(a is in S) 
restrict insert(f,a,b) to S = insert(restrict f to S,a,b) 

if a is-in S 

a is-in f = a is-in domain(f) 
erroregns empty<<a>> = undef enden 



proc Relation(X:Ident,Y:Ident) 
let RelO = 

enrich X + Y 

data sorts relation 
opns empty : relation 

insert : relation,element of X,element of Y 

-> relation 
egns insert(insert(R,a,b),a,b) = insert(R,a,b) 

insert(insert(R,a,b),c,d)= insert(insert(R,c,d),a,b) 

enrich RelO + Set(X) 

if not(a==c) or not(b==d) 
enden in 

opns isrelated: relation,element of X,element of Y -> bool 
domain : relation -> set 

egns isrelated(empty,a,b) = false 
isrelated(insert(R,a,b),a,b) = true 
isrelated(insert(R,a,b),c,d) = isrelated(R,c,d) 

if not(a==c) or not(b==d) 
domain(empty) = empty 
domain(insert(R,a,b)) = singleton(a) U domain(R) enden 
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APPENDIX THREE 

SUBSET OF PPLAMBDA USED BY THE THEOREM PROVER 

The impoverished version of PPLAMBDA used by the theorem prover 

discussed in chapter VI is described here. It is necessary to 
remove the implicit order relation and 'bottom' element because 

models of Clear theories do not possess these; other irrelevant 
elements of PPLAMBDA have been removed as well. Refer to [Gordon, 

Milner and Wadsworth 1979) for details concerning the items 

mentioned briefly below. 

Types 

The built-in type constructors 'prod' (cartesian product) and 

'fun' (function space) are still available. The following type 

constructors have been deleted: ., tr, u, sum 

Constants 

Only the built-in constant 'PAIR' is still available. The 

following constants have been deleted: TT, FF, UU, COND, FST, SND, 

INL, INR, OUTL, OUTR, ISL, FIX, UP, DOWN, DEF, () 

Formulae 

All the usual PPLAMBDA formulae are allowed except for 

inequations (e.g. f<<f'). 

Inference rules 
The following inference rules are available: 

AXTRUTH = 
tCFTRUTH 

ASSUME f = {w}fCFw 

CONJ (A IECFf , A ' rECFf' ) = A U A' rCFf &f' 

GEN x A tcFf = A tCF!x.f (fails if x occurs free in A) 

DISCH f' A f = A I V f' IMP f (where A' is the set of 
CF assumIons in A not alpha-convertible to f') 

SEL 1 A fCFf &f ' _ 
A tFf 

SEL2 A tCFf &f' = A tFf' 

!x.f = A tFf[t/x) SPEC t A fCF' 

MP AtCF(f IMP f') A'rLCFf = AUA'rCFf' 
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INST Ctl,xl;] A f = Af- f[tl/x1...] 
(fails it'ny xi ocMfs free in A) 

INSTTYPE Ctyl,vtyl;...] A f = A,- f(ty1/vty1...} 
(fails if any vt T is not C iartype, or is a vartype in A) 

REFL t % tCFt=t 

SYM A tCFt=t' = A 
rLCFt' =t 

TRANS(A ICFt=t', A' rCFt'=t") = A U A' ECFt=t" 

SUBST CA1tCFtl=t1',x1;...] f A'b f'[tl/x1...] 
= Union(Ai)U a'"CCFf'[t1'/x1...] 

SUBS [A1t'CFt1=tl1;...I A'LCFf' = Union(Ai)VA'rCFf'[tl'/t1...] 

SUBSOCCS (intl1,A1 tl=t1';...] A'f- CFFf' = As for SUBS, 
but sub ?itutes accordinkLo occurrence numbers in intli 

APTERM t A tCFt' =t" = A t'CFt t' =t t" 

APTHM A tCFt'_t" t A tCFt' t_t" t 

LAMGEN x AtCFt=t' = Ar-C ),x.t=)x.t' 
(fails i1 f occurs free in A) 

BETACONV (Ox.t)t' tCF()`x.t)t'=t[t'/x] 

ETACONV Xx.(t x) tCF>'x.(t x)=t (fails if x occurs free in t) 

EXT A tCFt x=t' x) = A- t=t' 
(fails if x Wurs free in t or t') 

ABS x A 
fCFt 

x=t' = A fCFt=Xx.t (fails if x occurs free in t or A) 

SIMP ss AIECFf = A U A' r Ff' where f' is the result of simplifying f using and A' is a subset of the hypotheses of 
theorems in ss 

The following inference rules have been deleted: SYNTH, ANAL, 

HALF1, HALF2, MIN, MINAP, MINFN, FIXPT, FIX, INDUCT, AXDEF, DEFUU, 

DEFCONV, CONDCONV, CONDTRCONV, CASES, CONTR, DOT, DOWNCONV, UPCONV, 

SELCONV, PAIRCONV, ISCONV, OUTCONV, INCONV 

Simplification 
The only simplification rules in BASICSS are those corresponding 

with the inference rules BETACONV and ETACONV. 

The following simplification rules have been deleted: MINAP, 

MINFN, DEFCONV, CONDCONV, CONDTRCONV, UPCONV, DOWNCONV, SELCONV, 
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PAIRCONV, ISCONV, OUTCONV, INCONV 

Tactics 

The standard LCF tactics CASESTAC, CONDCASESTAC, INDUCTAC and 

INDUCOCCSTAC have been deleted, leaving GENTAC, SUBSTAC, 

SUBSOCCSTAC, SIMPTAC and all tactics provided by the Clear theorem 

prover. 
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APPENDIX FOUR 

PROOF OF SOUNDNESS OF THE THEOREM PROVER 

The following results imply the soundness of the theorem prover 

described in chapter VI; see section VI.3 for definitions and 

motivation. 

Notation: If A is a I-algebra, X is a set and f:X--),IAI , then 

f#:W2(X)-- A is the unique homomorphism extending f. 

Satisfaction Lemma: If a-:2->2' is a signature morphism, f is a 

7-formula and A' is a '-algebra, then A' F-cr(f) iff At C F=f. 

Proof (Satisfaction Lemma): By structural induction. 

Case 1: f is TRUTH 

trivial since a(TRUTH)=TRUTH for any a and A TRUTH for any A 

Case 2: f is t=t' 

A' r-a-(t:t' ) 
O A 

A a k:FV(a-(t) U )-4 IA' I . A' F=k#(cr(t))=k#(Cr(t') 
A ah:FV(t)UFV(t')--CIA' I. All F=h#(t):h#(t') 

(by the proof of the Satisaction Lemma for equations; 
see (Burstall and Goguen 1980]) 

A A'IlFt:t' 

Case 3 : f is f ' & f"; we know A' r_a- (f') CA' I P=f' 
and similarly for f" 

A' F=c-(f' & f") 
A'F=a-(f') & c-(f") 
A'F=c-(f') and A'F=a-(f") 
A I2rf' and A' I 2r-f" (by the 
A'Il$f' & f" 

inductive assumptions) 

Case 4: f is f' IMP f"; we know A'r_cr(f')gA'I2p=f' 
and similarly for f" 

A' F=a- (f' IMP f") 
A A'F=a-(f') IMP c-(f") 
A b'k:FV(a-(f'))UFV(a(f"))->IA'I. A'r-k#(a(f')) k#(0'(f")) 
A b'k:FV(cr(f'))UFV(cr(f"))->IA'I. A'r-k#(Cr(f'))=>A'F=k#(Cr(f")) 
A ah:FV(f')UFV(f")-4IA'I1I. A'IFh#(f') A'h(f") 

(by the inductifie assumptions) 
A b'h:FV(f')UFV(f")-4IA'IjI A'Il;=hl'(f') a h#(f") 
f:> A' 17$f' IMP f" 
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Cayse 5: f is lx.f'; we know A'Fcr(f')C>A'IjFf' 
A':o(lx.f') 

C> A' 1=cr(f') (assuming As is nonempty, where x is of sort s; 
otherwise A' =(r(lx.f') G:: A'I, =!x.f' vacuously) 

* A'I2 }f' (by the inductive assumption) 
b A'1j !x.f' 

Theorem: For any E-agglomerate A, IFQT(A) D S 
IEQAD*+, 

where 

T':E-agglomerate-F-agglomerate is the following translation 

function: 

union(A,A') '--9 union(T(A),T(A')) 

1close(E,C) H close (eqn-to-form*E U induction-rules*C) T 

Proof: By structural induction. 

Case 1: A is close(E,C) 

For any model M, 

M ;=E C> M ;eqn-to-form*E 
and M ;=C M Finduction-rules*C 

so (E U C)*** (E U C)* S (eqn-to-form*E U induction-rules*C)+ 

hence (eqn-to-form*E U induction-rules*C)++ S E U C*+ 

so F[r(A)D S IEEAD*+ 

Case 2: A is translate(cr,A') ; we know IFQT(A') D S IEQA' D*+ 
1F'QT(translate(o-,A')) D 

IF Qtranslate (o,,r(A')) D 

c'(IF QT(AI)++ 
c,(IEEA,D*+)++ (by the inductive assumption) 
(r(IE QA'D)*+ (by the Satisfaction Lemma; for any E, 

o-(E*+)+ = o--1(E*++) o--1(E*) 
= o-(E)*) 

JEQtranslate(cy,A') D*+ 

Case 3: A is inv-translate(cY,A') ; we know IFQT(A') Dc]EQA' D 
*+ 

IFQT(inv-translate(o-,A')) D 

= IFQinv-trans1ate(cr,T(A')) D 

0,-1(IFQ'r(AI)I) 

C 0.-1(IEQA'D*+) (by the inductive assumption) 
0,-1(IE EA'D)*+ (by the Satisfaction Lemma; for any closed E, 

0,-1(E*+) = o-(E *)+ = o-(E*)**+ = 0.-1(E**)*+ 0'-1(E)+) 
* 

= IEQinv-translate(cr,A')D + 
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Case 4: A is union(A',A"); we know IFQT(A')I1c1EQA'j + 

and IFELT(A") II S IEQA":*+ 
IFQ-r(union(A',A")) II 

= IFQunion(T(A'),t(A")) II 
_ (WEFr(A')IIU r(A")II)++ 

(]EQA'Il*+VgQAj*+)++ (by the inductive assumption) 
(IEQA'IIVIEQA"D)*+ 

(because (IEQA'IIVIEQA"II)* satisfies IEQA']J*+ and IEQA"I1*+) 
]EQunion(A',A")l-*+ 

Case 5: A is add-equality(d,A') ; we know F r(A') f s ]EQA' ]J*+ 
IFQT(add-equality(o-,A')) II 

= IFQadd-equality(o-,Z'(A')) l 
= IFE r(A') l S (for appropriate S) 

S IEEA']*+S (by the inductive assumption) 
= IE QA' IIS*+ 

= IEQadd-equality(d',A')Il*+ 
This theorem says that the IF semantics is consistent with the IE 

semantics, so any fact provable using inference rules which are 
sound with respect to the IF semantics will be valid. 


	PhD coversheet April 2012
	EDI-INF-PHD-82-009.pdf

