THE UNIVERSITY
of EDINBURGH

This thesis has been submitted in fulfiiment of the requirements for a postgraduate degree
(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following
terms and conditions of use:

* This work is protected by copyright and other intellectual property rights, which are
retained by the thesis author, unless otherwise stated.

* A copy can be downloaded for personal non-commercial research or study, without
prior permission or charge.

* This thesis cannot be reproduced or quoted extensively from without first obtaining
permission in writing from the author.

* The content must not be changed in any way or sold commercially in any format or
medium without the formal permission of the author.

* When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given.

SEMANTICS, IMPLEMENTATION AND PRAGMATICS OF CLEAR,
A PROGRAM SPECIFICATION LANGUAGE

by
Donald Theodore Sannella

Doctor of Philosophy
University of Edinburgh
1982

-1

ABSTRACT

Specifications are necessary for communicating decisions and
intentions and for documenting results at many stages of the program
development process. Informal specifications are typically used
today, but they are 1imprecise and often ambiguous. Formal
specifications are precise and exact but are more difficult to write
and understand. We present work aimed toward enabling the practical
use of formal specifications in program development, concentrating
on the Clear language for structured algebraic specification.

Two different but equivalent denotational semantics for Clear are
given. One is a version of a semantics due to Burstall and Goguen
with a few corrections, in which the category-theoretic notion of a
colimit is used to define C(Clear's structuring operations
independently of the underlying 'institution' (logical formalism).
The other semantics defines the same operations by means of
straightforward set-theoretic constructions; it is not institution-
independent but it c¢an be modified to handle all institutions of
apparent interest.

Both versions of the semantics have been implemented. The set-
theoretic implementation is by far the more useful of the two, and
includes a parser and typechecker. An implementation 1is useful for
detecting syntax and type errors in specifications, and can be used
as a front end for systems which manipulate specifications. Several
large specifications which have been processed by the set-theoretic
implementation are presented.

A semi-automatic theorem prover for Clear built on top of the
Edinburgh LCF system is described. It takes advantage of the
structure of Clear specifications to restrict the available
information to that which seems relevant to proving the theorem at
hand. If the system is unable to prove a theorem automatically the
user can attempt the proof interactively using the high-level
primitives and inference rules provided.

We lay a theoretical foundation for the use of Clear 1in
systematic program development by investigating a new notion of the
implementation of a specification by a lower-level specification.
This notion extends to handle parameterised specifications. We show
that this implementation relation is transitive and commutes with
Clear's structuring operations under certain conditions. This means
that a large specification can be refined to a program in a gradual
and modular fashion, where the correctness of the individual
refinements guarantees the correctness of the resulting program.

-2-

CONTENTS

Abstract

Contents

Acknowledgements

Introduction

I. Clear and Hope

1. Clear
1.1, Theories and their models
2. Theory-building operations
3. Error theories and more
.4, An example
5. Comparison with other approaches
2. HO

II. Prerequisites -- Basic concepts and notation

III.

1. Signatures

2. Algebras

3. Equations

4, Simple theories

5. Data constraints and data theories

A set-theoretic semantics of Clear
1. Dealing with shared subtheories
2. Semantic operations
2.1. Combine
2.2. Enrich
2.3. Data enrich
2.4, Derive
2.5. Apply
2.6. Copy
3. Metatheories
4, Semantic equations
4.1, Dictionaries
.2. Level I: Sorts, operators, terms
.3. Level IIa: Enrichments
.4. Level IIb: Signature changes
.5. Environments
.6. Level I1I: Theory building operations
nonprolific' semantics
generalisation

LR i — i g i

5. A
6. A

IV. An implementation of Clear and some specification examples

1. Implementation

2. Examples
2.1. Length of the longest upsequence
2.2. Lexical analysis problem
2.3. Polymorphic type checking

V. A category-theoretic semantics of Clear and its implementation 121

1. Computing colimits
2. Signatures, institutions, theories and based objects
3. Semantic operations
3.1. Combine
Enrich
. Derive
Apply
Copy
Data
. Enrichment
Add equality
ic equations
Dictionaries
. Level I: Sorts, operators, terms
Level IIa: Enrichments
Level IIb: Signature changes
. Environments
. Level III: Theory-building operations
5. Implementation

W
n

ct o

4, Sema

OOV EWN =3 o~ 00Wn & W

ErosssrsB wWwLLLWLwWw
. .

VI. Proving theorems in Clear theories
1. Edinburgh LCF
2. The theorem prover
3. Inference rules
4, Tactics and strategies
5. Incompleteness
6. Implementation and an example
7. Possible improvements

VII. Implementation of specifications and program development
1. Clear with hierarchy constraints
2. A notion of implementation
3. Examples
4, Horizontal and vertical composition

Conclusion
References

Appendix I. HOPE

. Data declarations
Expressions
Defining functions
Modules

An example

Advantages and disadvantages
Implementation

OV W N
e & »

Appendix II. Library of basic specifications
Appendix III. Subset of PPLAMBDA used by the theorem prover

Appendix IV. Proof of soundness of the theorem prover

124
133
143
143
143
144
146
148
149
150
152
154
154
155
157
160
160
165
169

172
175
177
180
189
201
203
210

212
214
219
229
233

2u8
254

262
262
263
265
267
267
270
272

275
281

284

Acknowledgements

I would like most of all to express my gratitude to my supervisor
Rod Burstall for many inspiring talks, some gentle prodding,
constant guidance and encouragement, and for patiently reading
multiple drafts of this thesis. I am also grateful to Robin Milner

for acting as supervisor when Rod was away.

My thanks to David Rydeheard for category-theoretic expertise
(both electronic and otherwise) and collaboration, to Alan Mycroft
for help with the stubborn DEC-10, to Martin Wirsing for mighty
efforts in the course of our work on implementations and generous
hospitality, to David MacQueen for the HOPE system, to all of the
above and Luca Cardelli, Wwei Li, Brian Monahan and Oliver Schoett
for interesting discussions and arguments, and to Monika and friends

for moral support and distraction.

This work was supported by a studentship from the University of
Edinburgh, and by the Science and Engineering Research Council.

Statement

This thesis builds upon previous work on the Clear specification
language, invented by Burstall and Goguen [1977]. The description
of HOPE in section I.2 and appendix 1 is a revised version of
[Burstall, MacQueen and Sannella 1980]. The definitions in chapter
II and the semantic equations of section III.Y4 are adapted from
[(Burstall and Goguen 1980]. The semantics described in chapter V is
a corrected version of [Burstall and Goguen 1980]; the
implementation was a joint effort with David Rydeheard, building on
a improved version of a program to compute colimits due to Burstall
[1980]. Section VI.S5 is abridged from [MacQueen and Sannella 1982].
Chapter VII is adapted from [Sannella and Wirsing 1982].

The remainder is my own work and this thesis was composed by
myself. Chapter II and most of chapter III have been published in a
different form as [Sannella 1981].

INTRODUCTION

Specifications play a part in every phase of program development.
The construction of a program cannot commence without some kind of
specification of what it 1is intended to do. Every program is
written to solve some problem, and the problem must be known before
work on the program is begun. In the course of a large programming
project specifications serve as a means of communication. Each
programmer 1is responsible for a certain component of the program
which may use facilities provided by several 'foreign' components.
Precise specifications of those components are required before any
program which relies on them can be written. These specifications
are produced during the design phase when a way of decomposing the
task is decided upon and the component subtasks recorded. It 1is
important that the specifications of the components avoid giving
away unnecessary details of the implementation. If nobody is able
to depend on the idiosyncratic features of a particular solution to
a subtask, then another solution may be easily substituted without

affecting the correctness of the program.

Once a program has been written some attempt is normally made to
check that it is correct. This check may be an informal test of the
program on a few values, or a formal proof of correctness. In any
case, some sSpecification is needed to compare the program against; a
program is only correct with respect to some specification of its
expected behaviour. Finally, documentation is required, both for
the use of the customer and to aid the future maintenance and
modification of the program. This documentation 1is also a

specification of the program.

Up to now the word "specification" has been used in the broadest
possible sense, Every means of describing a program and its
behaviour 1is included, from informal English documentation to a
precise description in a formal specification language. Even the
text of a program itself is a specification, as is a vague idea in
the head of a programmer. Some kinds of specifications are useless

for certain purposes; for example, vague ideas are only useful if

the roles of customer, designer and programmer are all played by the
same person, and even then they are not enough for a formal proof of
correctness., The text of a program is not usually considered to be
a good specification because it 1is too detailed to be easily
understood and is not sufficiently abstract for some uses (e.g.
specification of the modules in a 1large program, as already
remarked), but a very simple and straightforward program may be
useful as a specification of an equivalent program which must be

complex in order to be efficient.

Informal specifications suffer from imprecision. This is a
serious fault because (for example) the use of a specification as
the basis of a formal proof of program correctness demands
precision, and heavy penalties can be incurred if a specification
used as a means of communication is misunderstood. Specifications
written in a formal language are necessarily precise, since the
meaning of each specification is given by the semantics of the
specification language and accordingly there is no room for
confusion. Various formal specification techniques and languages
exist; Liskov and Berzins [1977] survey those available in 1977. A
great deal of attention has recently been devoted to algebraic
methods of specification, which seem to yleld specifications which
are both concise and easy to understand. Prominent in this area is
work by Guttag and his colleagues [Guttag, Horowitz and Musser 1978]
and by the ADJ group [Goguen, Thatcher and Wagner 1978], of which
the latter is the most mathematically rigorous. In this framework,
a specification consists of a signature -- a set of sorts (kinds of
data) and some operators (for constructing and manipulating data) —-
together with axioms (normally equations) describing constraints on
the results produced by operators. Such a specification is called a
theory, and it describes a set of algebras (a set of data objects
for each sort, and a function on those sets for each operator),
where each algebra in the set is a model of the theory (it satisfies
the axioms). Programs can be considered to be algebras, so all

programs satisfying a theory are in its set of models.

Most workers in algebraic specification concentrate on the

specification of abstract data types, for which the method 1is

particularly well suited, Although an algebraic specification could
be written for a large system, such a theory would be impossible to
understand because it would contain so many axioms. The value of a
specification depends on the ease with which it was written and can

be understood; a large number of pages full of axioms are not of

much use to anybody.

The Clear specification language was invented by Burstall and
Goguen [1977] to combat just this problem. Clear is a language for
writing structured algebraic specifications; that is, it provides
facilities for combining small theories in various ways to make
large theories, With a tool such as this, the specification of a
large real-world system can be built from small, easy to understand

and (in many cases) reusable bits.

An obvious way to combine theories is to simply add them
together, giving a theory which includes the sorts, operators and
axioms of each component. Clear also provides a facility for
parameterising a theory to give a theory procedure, which can be

applied to various different theories to produce new theories which

have been systematically enriched in some way. A typical example is
a parameterised theory of sorting, which would produce a theory of
sorting lists of numbers if applied to the theory of natural numbers
together with the usual < order relation., An operation called data
can be applied when adding new sorts and operators to a theory; this
constrains the set of models to a small number of 'best' ones.
Finally, some of the operators and sorts of a theory can be 'hidden'

to yield a less elaborate theory. Clear is described in detail 1in
chapter 1I.

With an intuitive understanding of Clear it 1s possible to begin
to write structured specifications which can be used in the
development of programs. Clear should be better than most
specification languages for this purpose because specifications have
structure, and the structure of a program will normally be similar
to the structure of the specification from which it was developed.
But in order to rigorously prove that a program implements a Clear
specification or to build a system incorporating Clear to aid in any

phase of program development, it 1is necessary to have a formal

semantics which gives the precise meaning of any Clear specification
(i.e. the theory described by the specification). A language which
has a formal syntax but no semantics gives an illusion of precision
but none of its benefits.

A formal semantics of Clear is given in chapter III, following
definitions of the underlying mathematical entities in chapter II.
This semantics defines the meanings of Clear's theory-building
operations using simple set=theoretic constructions. A denotational
semantics is then used to attach a syntax to these operations and to
provide for an environment of named theories. An earlier semantics
given by Burstall and Goguen [1980] relies heavily on a number of
ideas from category theory to define the meanings of Clear's theory-
building operations. This semantics is described in chapter V; this
is the only chapter which requires any knowledge of category theory,

and it is not necessary for the sequel.

Why 1is it necessary to give two separate versions of the
semantics? Surely one version is sufficient to define the meaning
of C(Clear. The answer 4is that although both versions of the
semantics are equivalent, each has its advantages over the other.
The category-theoretic semantics was developed at the same time as
the Clear language itself. The requirement that new features be
expressed using simple concepts of category theory acted as a
powerful filter for 1ideas, screening out some bad ideas and
suggesting non-obvious generalisations of others, Moreover, the
category-~theoretic definitions are very -elegant to those who
understand them. The advantage of the set-theoretic semantics is
that it is concrete and easy to understand, and is therefore more
useful for practical applications. The category-theoretic semantics
abstracts away from any particular definitions of the fundamental
elements of Clear (signatures, axioms and models) using the notion
of an institution, defining all at once the semantics of a large
class of Clear-like languages. But at the end of chapter III it is
shown that the set-theoretic semantics appears to be capable of

straightforward modifications to cover all cases of interest.

An important step on the way to the practical use of formal

specifications in program development is an implementation of the

specification language. But what does it mean to implement a
specification 1language? It is helpful to first consider the
relation of semantics to implementation in a more familiar context,

that of a programming language.

The denotational semantics of a programming language describes a
mapping between the syntax of the language (expressions, statements,
programs) and the mathematical objects they represent. In a typical
language, an expression maps to a function from states to numbers
(or to lists, or to some other domain of values); a statement maps
to a state-~transforming function; and a program maps to a function
taking (for example) an 1input file to an output file. The
denotation of a program tells what the answer will be for any input.
The implementation of a programming language transforms a string of
characters representing a program into the function denoted by that

program.

The denotation of a Clear specification is a theory. This is
still only a specification; it specifies a set of algebras, The
transformation from a character string (representing a
specification) to a theory is complex but mechanical. This is what
an implementation of Clear does. Going from a theory to a model is
a much more formidable task -~ this 1is the problem of program

synthesis.

It is easy to make mistakes when writing specifications in Clear
or in any other specification language, just as it is easy to make
errors when writing programs. An implementation of C(Clear -- a
parser together with an implementation of (a version of) the
semantics and a typechecker —- could be used to check specifications
for syntactic and semantic errors. Such an implementation could
also act as a front end to any system which requires specifications
as input (such as a program verification system). An implementation
of Clear using the set-theoretic version of 1its semantics is
discussed in chapter IV along with some specifications it has been
used to process,. An implementation of the category-theoretic
semantics (without parser or typechecker) is discussed in chapter V.
A comparison of these implementations exposes another advantage of

the set-theoretic semantics -~ its implementation is by far the

faster of the two.

A practical implementation of Clear opens the door for systems to
aid program development using Clear specifications. Already
mentioned was the possibility of a system for verifying programs;
another possibility is a high-level programming system like the one
envisioned by Winograd [1979], which is essentially a sophisticated
database containing the components of a large software project and
their specifications. A handy facility to begin with (and an
essential prerequisite for the construction of almost any system
making serious use of specifications) would be a system for proving
that a theorem follows from the axioms of a theory. A theorem
prover is in fact required by the Clear implementation to check the
semantic validity of specifications. 1In chapter VI a semi-automatic
theorem prover for Clear is described. This system takes advantage
of the structure of Clear specifications to restrict the information
available at any time (axioms and previously proved theorems) to
that which is relevant to the theorem at hand. This is an important
feature, for theorem provers easily get irretrievably bogged down in
exploring the large number of blind alleys made available by an

overabundance of (mostly irrelevant) information.

Some Clear specificitions are actually executable: a sufficient
condition is that all data be anarchic (no axioms on data
'constructors') and that the axioms which define other operators be
equations with simple left-hand sides, enabling their use as rewrite
rules. This executable sublanguage is in fact HOPE [Burstall,
MacQueen and Sannella 1980], with slightly different notation
(except that HOPE has no equivalent to Clear's theory procedures).
Call specifications of this kind programs. Now, a program can be
evolved from a specification entirely in Clear by repeatedly
rewriting (refining) the theories in the specification until the
entire specification is in the executable sublanguage. This will
normally involve the introduction of auxiliary functions, particular
data representations and so on. This approach to program
development is related to the well-known programming discipline of

stepwise refinement advocated by Wirth [1971] and Dijkstra [1972] in

-]~

which the specifications are nonexecutable 'abstract programs'. In
chapter VII a theoretical foundation is laid for the use of Clear in

systematic program development. An adequate notion of the

implementation of one theory by another 'lower 1level' theory is
first established; a refinement is only correct if the new theory is
an implementation of the old. Unlike most previous notions, this
generalises to handle parameterised theories as well as loose
theories (having an assortment of different models), It is then
shown that implementations of several theories can be put together
in the same way as the theories themselves are put together, the
result being an implementation of the composite theory. This allows

a large specification to be refined in a modular fashion, one theory
at a time.

Systems have been constructed which support systematic program
development in a manner similar to that just discussed. Examples
are ZAP (Feather 1982] and CIP [Bauer et al 1981]. In these systems
the programmer provides the insight, deciding which direction the
development will take, while the system performs the routine
clerical work and checks that the programmer's decisions are valid.
Fully automatic program synthesis is also possible (for small
examples) as demonstrated by Manna and Waldinger [(1980,1981]. A
feature of each of these systems is that the finished program is
guaranteed to satisfy the original specification, since the system
checks every step in its development. A similar but more ambitious
system called CAT [Goguen and Burstall 1980] has been proposed to
support systematic program development using Clear. The results in

chapter VII are a first step toward the implementation of CAT.

It remains to be seen if writing a specification and carefully
refining it step by step to a program is easier than simply writing
a correct program in the first place. However, construction of
correct programs is well-known to be a very difficult endeavor. And
although some have claimed that writing specifications 1is more
difficult than writing programs, experience with Clear indicates
that the main barrier to easy specification 1is the computer
scientist's natural 1inclination towards algorithms rather than

descriptions. Precision and formality are crucial (as in a

-12-

programming language) but the most important feature of a

specification language like Clear is that it permits problems to be

described in a natural way.

-13-

CHAPTER ONE
CLEAR AND HOPE

This chapter is devoted to a brief review of Clear and HOPE, two
languages which figure greatly in the research reported in
subsequent chapters. Although they have been discussed in more
detail elsewhere, an outline of their features is given here 1in

order to make this work self-contained.

Clear is a specification language which is particularly suitable
for specifying large programs, It provides facilities for building
large theories in a structured fashion from small Dbits.
Constructing and understanding large specifications is made much
easier by this approach, since the small component theories may be
contemplated in isolation. A brief discussion of theories and their
models in section 1.1 is followed by an informal presentation of the
theory-building operations of Clear. The formal semantics of these
operations will be given in later chapters. An important feature of
Clear 1is that the definitions of the theory-building operations are
independent of the precise nature of the theories themselves; any
notion of signature, axiom, algebra and satisfaction will do
(provided they meet certain basic requirements). In section 1.3
examples of some different and possibly useful kinds of theories are
given. This is followed by an example of a small but complete Clear
specification in section 1.4. Finally, Clear 1is compared briefly

with some other specification approaches,

HOPE is a very high-level applicative programming language which
was used as an implementation tool for most of the programs
described here. It has the advantage of being sufficiently close to
the language of denotational semantics that semantic definitions can
be quickly and easily translated into an executable form. This fact
enabled the construction of the programs discussed in chapters IV
and V. Although HOPE is not so close to the language of some other
branches of mathematics, it contains high-level features which
permit the relatively painless expression of definitions and

constructions from category theory as described by Burstall [1980]

-14-~

and Rydeheard [1981]; this provides the foundation for the program
in chapter V. HOPE is not so different from ML (see [Gordon, Milner
and Wadsworth 19791),

HOPE (without polymorphism) can be considered as a notational
variant of a subset of Clear. This is very convenient for the work
on stepwise implementation of specifications in chapter VII. A
refinement step takes a Clear specification to a 'lower level' Clear
specification, with a HOPE program as the eventual goal. Thus the
problem of translation into the target 1language can be neatly
ignored, and full attention can be devoted to the more interesting

problems of developing programs from specifications.

A third section of this chapter might have been devoted to a
brief description of Edinburgh LCF, an interactive theorem-proving
system upon which the Clear theorem prover described in chapter VI
is built. But since the remaining chapters are entirely independent
of LCF, the description has been relegated to the beginning of that

chapter.

-15-

1. Clear

This 1is a brief and non-technical account of Clear as a
specification language. It is intended to give the reader an idea
of nearly all the features of Clear and to convince him with an
example that the language can be put to use. The utility of
specification languages in general and the advantages of Clear over
other specification languages have already been detailed in the
introduction. More detailed informal descriptions of Clear appear
in [Burstall and Goguen 1977] and [Burstall and Goguen 1981]; see

also chapter IV for a few more examples.
1.1. Theories and their models

Clear is a language for describing theories; in turn, each theory
describes (or denotes) a class of algebras. A theory is a set of
sorts (names of data types), a set of (possibly nullary) operators
for constructing and manipulating data, and a set of axioms (in the
form of equations) describing constraints on the results produced by
operators. The sorts and operators alone are called the signature.
For example, here is a theory of truth values:

const Bool =

theory
sorts bool
opns true, false : bool
not : bool => bool

eqns not(true) = false
not(not(p)) = p endth

The equations are implicitly universally quantified over all
variables; the equations here would be more properly written

all p:bool. not(not(p)) = p
and so on, The examples in the sequel will 1leave variable
declarations out of equations in the understanding that they could

easily be supplied by a mechanical typechecker.

An algebra is a family of named carriers (sets of data values)
and some named total functions on those carriers. An algebra is a

model of a theory if it satisfies all the equations in the theory

~-16-

for any assignment of values to variables; this is provided that the
names of the carriers and functions in the algebra match the names

in the signature of the theory, of course.

Here are some models of the theory Bool:

M, : bool={0,1}; true=1; false=0; not(0)=1, not(1)=0
M. : boolz{no,yes}; truezno; falsezyes; not(no)=yes, not(yes)=zno
M3 : bool={42};: true=ld2; false=l42; not(u2)=42

But something is wrong; we do not want M, to be a model for Bool,

3
yet it does satisfy all the necessary equations. We need some way

of excluding models like M3.

The problem with M3

including ones like true = false which are not in Bool. We really

is that it satisfies too many equations,

want as models of Bool only those algebras which satisfy exactly the
equations of Bool (and all of the equations which these entail), and
no others, In addition, we want each element in the carrier to be
the value of some (ground) term; this avoids models with useless
extra elements, We can rewrite Bool to indicate that this is the

class of models we want, using Clear's data operation:

const Bool =

theorx
data sorts bool

opns true, false : bool
not : bool -> bool

eqns not(true) = false
not(not(p)) = p endth

The new Bool has the class of models we want (including M, and
M2, but not M3). These are called the initial models, and they have
the property that any two 1initial models are the same up to
isomorphism (i.e. except for renaming of data values -~ compare M1
and MZ)‘ As pointed out by ADJ in [Goguen, Thatcher and Wagner
19781, the notion of an isomorphism class of algebras captures
precisely the meaning of the word "abstract" in "abstract data type"
-- We are not committed to any particular representation of data,
but only to the behaviour shared by all members of the class.
Furthermore, the isomorphism class containing the initial models of

a theory seems to be the one we want, although this position is not

-17-

universally accepted (see for example [Wand 19791]).

Initial models seem so great that it may be hard to think of an
example where the full class of models is appropriate. But such
theories do exist; see Equiv in the next section, for example.
Since sometimes we want all models and sometimes we want only
initial models, the data operation is provided to allow the two
cases to be distinguished. See section II.5 for a more detailed

discussion of this aspect of Clear.

The data operation does a little bit more than specify that we
want the class of initial models. It also adds an extra operator,
an equality predicate =z=z:s,s->bool for each 'data' sort s. For any
pair of terms p and q, p==q = true if and only if p = q 1s entailed
by the equations (i.e. it holds for the initial models). Note that
the data operation can therefore only be used in theories which

include Bool, but this is not really much of a restriction.
1.2. Theory-building operations

Bool and its models (in the 1last section) were easy to
understand, and similar little theories like natural numbers, sets
of numbers, and stacks and arrays of truth values present no
difficulties. But what about a theory to specify a compiler for a
programming language like Pascal? This would have many sorts,

hundreds of operators and perhaps a thousand axioms.

Clear provides a set of simple theory-building operations which
allow a large theory 1like this to be built out of many small and
comprehensible component theories. For example, the theory of a
compiler for Pascal might be built from separate theories of the

semantics of Pascal and the semantics of the target machine:

const Pascal_ compiler =
enrich Pascal semantics + VAX semantics by
opns compile : pascal_program -> VAX program
eqns VAX_meaning(compile(p)) = pascal_meaning(p) enden

The theories Pascal_semantics and VAX semantics are in turn built
separately from many smaller theories. But the difficulty of
understanding the specification has already been roughly halved by

-18-

this simple decomposition, since Pascal_semantics may be constructed
and contemplated entirely independently of VAX semantics (although

they will share some common subtheories like Bool and Nat).

Enrich

A theory can be enriched by some new sorts, operators and/or
axioms. The new material is just added to the existing theory. For

example, we could add some boolean operators to Bool:

const Boolopns =
enrich Bool by
opns and, or, --> : bool,bool -> bool
eqns p and true = p
and false = false
or true = true
or false = p
—> q = not(p and not(q)) enden

‘0 ‘0 0 O

Or, we could add natural numbers:

const Nat =
enrich Bool by
data sorts nat
opns 0 : nat
succ : nat -> nat
+ : nat,nat => nat

eqns 0 + m = m

suce(n) + m = suce(n + m) enden

Note that infixed operators like or and + are allowed. Also note
that names (like Bool, Boolopns and Nat) can be given to theories
using the notation const Name = ... (ggﬂgg means constant). For
local declarations the syntax let Name = ... in ... is used (see the

example in section 1.4).

The data operation is associated with an enrichment as in Nat
above and not just with a theory. 1In fact, data does not in general

restrict to initial models but to models which are free extensions

of the models of the theory being enriched; see section II.5 for
details. Observe that

theory ... endth
as used in the last section is equivalent to

enrich Empty by ... enden

-19-

where Empty is the theory with no sorts or operators.

Here is an example of a theory in which we do not want to use

data:

const Equiv =
enrich Boolopns by
sorts element

opns = : element,element -> bool
eqgns m s m = true
mMen=n=m
mMmesnand nep-->map = true enden

If we use data for this enrichment then we get only trivial models
(apart from the portion associated with the sort and operators of
Boolopns); the carrier associated with the sort element is empty,
because there are no ground terms of sort element. But this is not
because the specification is silly; it is Jjust not very specific.
It is intended to specify the set of algebras with one sort and an

equivalence relation. Equiv is called a loose theory, since its

models do not form an isomorphism c¢lass, It 1is also called a

non-data theory because it contains a sort which was added in a

non-data enrichment.

It is important to distinguish between the very similar notions
of loose and non-data theories. Non-data implies loose (except in
the case of a theory which is unsatisfiable or has only trivial

models) but not vice versa. Here is a theory which is loose but 1is

not non-data:

const Natx =
enrich Natord by
opns x : nat
egns x £ 2 = true enden

(Natord is Nat with an order relation, as given below.) This is a
simple example of the way that Clear can be wused to write

specifications which are purposefully vague so as to allow some

freedom to the implementor,

Combine

The combination of two theories is (roughly speaking) Jjust the

=20~

union of the sorts, operators and axioms. For example, the
combination of Boolopns and Nat (written Boolopns + Nat) has the

following sorts, operators and axioms:

sorts bool, nat
opns true, false : bool
not : bool -> bool
and, or, -==> : bool,bool =-> bool
0 : nat
sucec : nat => nat
+ : nat,nat -> nat
eqns not(true) = false

Note that we get only one copy of the sorts and operators of Bool,
although Bool is included in both Boolopns and Nat (Bool is called a
shared subtheory in this case). This is important; we do not want

several kinds of truth values rattling around 1in a 1large
specification (or several kinds of anything else, for that matter).
But different (separately defined) operators with the same names are
not combined:; for example, if we add an operator 'and' to Nat
const Natl =
enrich Nat by

opns and : nat,nat -> nat
egns n and m=n+m enden

then Boolopns + Nat1 will have two operators called and (and even
Boolopns + Nat will have two == operators). If there are two sorts
or operators with the same name there should be a way of
distinguishing between them (although a typechecker can often
determine the appropriate one); for this Clear provides the notation

"== of Nat".

Derive

The derive operation is used to 'forget' some of the sorts and
operators of a theory, possibly renaming those which remain. While
enrich and combine build elaborate theories from simple components,
derive takes a complex theory and reduces it to a more modest
subtheory. This turns out to be necessary in cases where it is
easier to define something by construction than by description; the

construction 1is built wusing enrich and combine, and then the

~21-

irrelevant details can be forgotten using derive.

For example, suppose we have a theory of natural numbers with an

order relation:

const Natord =
enrich Nat by
opns 5 : nat,nat -=> bool
egns 0 < m = true
suce(n) < 0 = false
succ(n) < suce(m) = n <m enden

Then we can use this to construct a theory of characters with the

usual lexical ordering:

const Char =
derive sorts char
opns 'A', ..., 'Z' : char
5' == : char,char => bool
using Bool
from Natord
by char is nat,
! E 0’

'Z' is 25 endde

Char inherits the order on numbers and the data equality, but the
operators succ and + are forgotten, as well as all numbers greater
than 25. Bool is a shared subtheory of Char and Natord. The
correspondence between the signature of the result and the signature

of the original theory 1is given by a signature morphism:

char is nat, 'A' is 0, ... (This example assumes that the numbers
1-25 have been defined as operators in Natord; these definitions
were omitted above but they are easy to add.) Sorts and operators
which have the same name in both signatures may be omitted (< and ==

in this case).

It is very convenient to be able to specify an order relation on
characters in this way; a direct specification would require
hundreds of axioms. In some cases a direct specification is not
even possible without 'hidden' operators (see [Thatcher, Wagner and
Wright 1978] for an example).

22

Apply

In Clear procedures can be defined and applied, Jjust as in a
programming language (actually, more like functions in a programming
language). But since Clear is a language for describing theories,

the arguments and result of a procedure are theories.

Here 1is an example of a theory procedure (usually called a

parameterised theory):

meta Ident =
enrich Boolopns by
sorts element
opns eq : element,element -> bool
egns eq(n,n) = true
eq(n,m) = eq(m,n)
eq(n,m) and eq(m,p) =--> eq(n,p) = true enden

proc Set(X:Ident) =
let Set0 =
enrich X by
data sorts set
opns @ : set
singleton : element -)> set

U : set,set -> set
eqgns P U S =8
SUS =38
SUT=TUS
SU(CTUV) =(SUT) UV enden in

enrich Set0 by

opns is in : element,set -> bool
choose : set -> element

egns a is_in @ = false
a is_in singleton(b) = eq(a,b)
ais inSUT=ais in Sor a is inT
choose(singleton(a) U S) is in (singleton(a) U S) = true

enden

Ident is a metatheory; it describes a class of theories rather
than a class of algebras. Ident describes those theories having at
least one sort together with an operator which satisfies the laws
for an equivalence relation on that sort. A metatheory will

ordinarily be a non-data theory (as is Ident).

Ident is wused to give the 'type' of the parameter for the
procedure Set. The idea is that Set can be applied to any theory

which matches Ident. Ident is called the metasort or requirement of

-23=~

Set. The declaration of Set can use the formal parameter X and the
sorts and operators of Ident. When Set is supplied with an
appropriate actual parameter theory, it gives the theory of sets
over the sort which matches element in Ident. For example
Set(Boolopns[element is bool, eq is ==])
gives the theory of sets of truth values and
Set(Nat[element is nat, eq is ==])
gives the theory of sets of natural numbers. Notice that a

signature morphism (called the fitting morphism) must be provided to

match the signature of Ident with the signature of the actual

parameter. Of course, procedures may have more than one parameter
if desired.

Metatheories are subtly different from ordinary constant
theories; see section III.3 for details. Pragmatically, the
difference is unimportant as long as metatheories are always used

for giving the requirements of theory procedures, and for no other

purpose.

Note that for any actual parameter A and fitting morphism @,
Set (A[P]) will be a loose theory, even when A is not itself a loose
theory. The choose operator is loosely specified as selecting an
arbitraiy element from a non-empty set. This is not allowed by most

other notions of parameterised theory (see section 1.5).

Cogz

Clear provides an operation called copy which makes a fresh copy
of a theory with the exception of a specified set of subtheories
(which are left as they are).

For example, here is a specification of the class of algebras
having two sorts (each with an equivalence relation) and a function

between them:

const Funct =
let CopyEquiv = copy Equiv using Boolopns in
enrich Equiv + CopyEquiv by
opns f : element of Equiv -> element of CopyEquiv enden

-24-

Copy is used so that the two sorts named element and the two =
operators will remain distinct in the combined theory
Equiv + CopyEquiv. But there is only one sort named bool in the
result because of the using clause. The same result could be
accomplished by explicitly writing out the definition of Equiv
again; copy simply saves the trouble.

1.3. Error theories and more

Sometimes when specifying the action of an operator we find
values for which it should not yield a result but instead should
return some kind of error. Division by zero is an example. It is
not sufficient to just leave cases like this unspecified; if a
division by zero is attempted, we want an error message and not Jjust
any old result. We can extend the notion of theory given in section
1.1 to allow specification of errors; the new theories are called
error theories. Details of this approach are given by Goguen
(19781.

The idea 1is to add error elements to each sort which behave
differently from the ordinary (OK) elements. Error elements are
produced by error operators, and also by OK operators when applied
to exceptional arguments. We add error equations to specify how

errors are generated and manipulated.

Here is an example -~ a specification of lists:

meta Triv =
theory sorts element endth

proc List(X:Triv) =
enrich X + Bool by
data sorts list
opns nil : list
cons : element,list -> list
hd : list -> element
tl : list -> list
erroropns nohead : element
notail : list
eqns hd(cons(a,l)) = a
tl(cons(a,l)) =1
erroregns hd(nil) nohead
tl(nil) notail enden

~25..

The models of such a theory are error algebras, in which each

carrier contains distinguished error elements as well as OK
elements. To be a model it need not satisfy all the equations for
all variable assignments; it need only satisfy the OK equations for
assignments in which both sides of the equation evaluate to an OK
element, and the error equations for assignments in which either
side evaluates to an error element. Furthermore, error algebras are
restricted sSo as to propagate errors; that 1is, error operators

always produce error elements, and OK operators applied to error

elements produce error elements,

Another way we could extend the notion of theory is to add
conditional equations, such as

put(i,v,a)(j] v 1{ i==j
put(i,v,a)[J] = alj] if not(i==J)

to specify indexing on arrays (see [Thatcher, Wagner and Wright
1976]). We could regard
a=b ifec

as an abbreviation for
cond(c,a,b) = b
where cond : bool,s,s -> s is defined for each sort s by

cond(true,m,n) = m
cond(false,m,n) = n

But this means that all theories will contain a 1lot of extra
operators, which is untidy.

Another way would be to simply extend theories to include
conditional equations, calling the result a conditional theory. The

notion of satisfaction would have to be changed slightly to deal

with conditional equations.

Two ways of extending Clear have been mentioned. For error
theories we defined a new kind of signature (with sorts, OK
operators and error operators); a new notion of axiom (OK equations
and error equations); a new kind of algebra (error algebras, with
error elements):; and a new notion of satisfaction. For conditional
theories we only needed to define a new kind of axiom and a new

notion of satisfaction; the signatures and algebras remain the same,

~26~

It 1is possible to define the theory-building operations of
section 1.2 without reference to any particular notions of
signature, signature morphism, axiom, algebra or satisfaction. This
approach was taken in [Burstall and Goguen 1980], and is explained
less formally in [Burstall and Goguen 1981]. Any choice for these
five notions 1is appropriate as long as a few conditions hold.
Briefly and very roughly, it must be possible to ‘'put together'
signatures (the category of signatures and their morphisms must be
cocomplete) and the various definitions must satisfy certain natural
consistency conditions. Any such choice of notions is called an
institution (or sometimes a language) and gives rise to a
specification language like the one described in sections 1.1 and
1.2. The precise syntax of the language must be defined anew for
each institution, since arbitrary signatures and axioms will not fit
into the notation used above. For the data operation to work
something more than an institution is needed; an enrichment must
give rise to free extensions for the models of the enriched theory.
Call an institution with this extra property a data institution
(Goguen and Burstall [1980a] call this a liberal institution).

So Clear is not a specific language but instead a large family of
languages (although references to Clear in the sequel will usually
be to the particular language described in the last two sections --

this will be called ordinary Clear, or simply Clear). We are free

to use 'error (Clear' or 'conditional Clear' once we verify that our
definitions describe a data institution. Other possibilities are:
polymorphic Clear (section III.6), higher-order Clear (see [Dybjer
1981]), continuous Clear (see [Goguen, Thatcher, Wagner and Wright
1977]), order-sorted Clear (see [Goguen 1978al]) and predicate-
calculus Clear (see [Burstall and Goguen 19811).

1.4. An example

Here is a Clear specification (from scratch) of a larger and more
interesting example than those which have appeared up to now. It
specifies the problem of determining if a sequence of natural

numbers is in ascending order.

-27-

const Bool =
let BoolO =
theory
data sorts bool
opns true, false : bool endth in
enrich BoolO by
opns not : bool ~> bool
and, or, -=> : bool,bool -> bool
eqns not(true) = false
not(not(p)) = p
and true = p
and false = false
or true = true
or false = p
-—> q = not(p and not(q)) enden

T T T T T

meta Triv = theory sorts element endth

proc Sequence(X:Triv) =
enrich X + Bool by
data sorts sequence
opns empty : sequence
unit : element -> sequence
. . sequence,sequence -> sequence

egns empty.s = s
s.empty = s
(s.t).v = s.(t.v) enden

meta Ident =
enrich Bool + Triv by
opns & : element,element -> bool
eqns mam = true

man = nam
msn and nsp --> m&Ep = true enden
meta POSet =

enrich Ident by

opns < : element,element -> bool
eqns m<m = true

m<{n and n{m --> man

m<n and n{p --=> m<{p

true
true enden

proc Ordered(X:POSet) =
enrich Sequence(X) by
opns isordered : sequence -> bool
eqns isordered(empty) = true
isordered(unit(m)) = true
isordered(s.unit(m).unit(n).t) = isordered(s.unit(m))
and isordered(unit(n).t) and m<n enden

~28-

const Nat =
enrich Bool by
data sorts nat
opns 0 : nat
succ : nat => nat enden

const Natord =
enrich Nat by
opns < : nat,nat -> bool
egns 0<n = true
suce(n)<0 = false
succ(n)<succ(m) = n<m enden

Ordered(Natord(element is nat, & is ==])

1.5. Comparison with other approaches

We now briefly compare Clear with a variety of other approaches
to specification. The features which set Clear apart from the
myriad of alternative approaches seem to be:

- Clear provides theory-building operations (enrich,

combine, derive, apply and copy) for constructing
specifications in a structured fashion.

- Use of the data operation yields theories containing data
constraints (section II1.5), permitting loose
specifications where some details are 1left unspecified.
An example is the specification of sets with a choose
operator in section 1.2.

- Clear 1s a complete 1language with a precise formal
semantics.

- Clear 1is not dependent on any particular institution, so
the notions of axiom, algebra, etc. may be easily changed.

- The theory-building operations respect shared subtheories.

It will be instructive to keep these features in mind when comparing

Clear with the approaches described below.

Guttag, Horowitz and Musser [1978] present algebraic abstract

data type specifications in an informal way, stressing the practical

~29.

application of specifications in programming (for proofs of
correctness, program testing and program development). Guttag and
Horning [1978] give a more formal treatment oriented toward
providing guidelines for the construction of correct specifications.
They distinguish a single type of interest in any specification, in
contrast to Clear and many other approaches. Any algebra which

satisfies the axioms of a specification and is finitely generated

(every carrier element is the value of some term) with true#false is
acceptable as a model, although they seem to favour the 'final
algebra' view that two terms should have the same value unless they

are demonstrably different (see the notes on [Wand 1979] below).

The ADJ group [Goguen, Thatcher and Wagner 1978] is responsible
for the first rigorous approach to the semantics of algebraic
specifications. An equational theory specifies the isomorphism
class of its initial models. Errors are discussed, but the approach
is more primitive than that of Goguen [1978] which is adopted by

Clear.

The ADJ approach to parameterised theories has evolved from a
CLU-style view where application of a parameterised theory required
only the presence of certain sorts and operators in the actual
parameter [Goguen, Thatcher and Wagner 1978]. Starting with
{Thatcher, Wagner and Wright 1978)], a parameterised theory P with
metasort theory R is seen as specifying a functor F taking any model
M of R to a single model of P (in fact, to the P-model freely
generated by M) —— this is a special case of parameterised theories
in Clear, where the theory P(A) may have 'more' models than the
theory A. If M is the initial model of A, then F(M) is the initial
model of P(A) provided that P is well-behaved (i.e. persistent -——
F(M) restricted to A is isomorphic to M —— see section VII.#)., 1In
the absence of data constraints, R is allowed to include conditional
axioms of the form

ey and ... and e, => €ns1

where the e; may be equations or inequations. This work was a
significant influence on the design of Clear. Later in [Ehrig,
Kreowski, Thatcher, Wagner and Wright 1980] these were restricted to

universal Horn sentences [GrHtzer 1979] where €q,+..,€, must be

-30-

equations, and application was defined as the pushout of R—>»P with
the fitting morphism R—>A as in Clear -~ see section V.3.4,
Application was generalised to allow composition of parameterised

theories (it would be easy to extend Clear to permit this).

Continuing along the same line, Ehrig [1981] permits R to contain
requirements of a general kind; anything having a well-defined set
of algebras satisfying it is allowed (this flexibility is very

reminiscent of Clear's institutional approach). Possible kinds of

requirements include functor image restrictions, a generalisation of

data constraints where any persistent functor is allowed in place of
the free functor (see {Burstall and Goguen 1980] for the category-
theoretic approach to data constraints). He suggests that this
approach to parameterised theories can be used to solve the problems
attacked by Clear of combining theories with shared subtheories in
an easier way, but this remark does not seem to be justified. Ehrig
and Fey [1981] allow theories (not just parameterised theories) to
include requirements; such a theory may have an assortment of

nonisomorphic models. Such a requirements specification is seen as

a step between an informal specification and a design specification

(which does not include requirements and specifies the initial
model). Requirements in parameterised theories are still restricted
to the metasort R, and a parameterised theory is viewed as
specifying a functor taking any model of R to a model of the
parameterised theory P. This rules out specifications such as the
parameterised theory of sets with an operator choose:set->element
loosely defined to select an arbitrary element of a set (see section
1.2).

Ganzinger [1980)] discusses parameterised theories from a purely
syntactic point of view (without considering models at all). The
metasort of a parameterised theory includes all primitive
subtheories (such as Bool and Nat); this is important for his notion
of implementation, and it also has the consequence that if A and P
share a common primitive subtheory T, P(A) will contain only one
copy of T (again as a primitive subtheory). This idea resembles

Clear's notion of a based theory (section III.1). All theories are

parameterised, and all parameterised theories are required to be

~31--

persistent. The example of sets with a choose function is not a
parameterised theory according to his definition of persistence.
Application of parameterised theories is defined by a construction.
The main emphasis is on proving that persistency guarantees correct

parameter passing (i.e. that A is 'protected' in P(A)).

Ehrich [1982] presents an approach to parameterised theories
building on earlier work by Ehrich and Lohberger [1978] which is
similar in many ways to that of Clear. A metasort theory R is
associated with each parameterised theory P, and a fitting morphism
from R to an actual parameter theory A is needed to produce the
application P(A) (as in Clear, this is defined using pushouts). A
theory is viewed as specifying its initial model, and consequently a
parameterised theory denotes a functor as in the ADJ approach. No
analogue to data constraints is considered (so loose specifications
are not permitted) and the problem of combining theories having

shared subtheories is not treated.

Hupbach, Kaphengst and Reichel ([1980] present a specification
language and define its semantics. Theories may specify partial
functions and may include conditional equations. Canons are

theories which include initial restrictions (data constraints as we

call them) and may be loose, specifying any model satisfying the
axioms and initial restrictions. An operation 1like enrich 1is
defined (actually, two separate operations for data and non-data
enrichment) as well as a combine operation which is just union.
Identification of common sorts and operators is therefore entirely
by name, so overloading of identifiers is not permitted.
Parameterised theories are as in Clear, and application is defined
by means of a construction. The language also includes a construct
for specifying that one theory 1is an implementation of another (see
chapter VII).

Wand [1979] presents an alternative to ADJ's initial algebra
approach, using the framework of Lawvere theories [Lawvere 19631].
He argues that the initial model of a theory often retains too much
information., For example, consider the theory of sets of integers

with operators @, add and is in, and the following equations:

-32-

n is_in @ = false
n is_in add(n,S)
n is in add(m,S)

The equation add(1,add(2,@))=add(2,add(1,d)) is not satisfied in the
initial model since we have forgotten equations 1like

add(n,add(m,S)) = add(m,add(n,S))
add(n,add(n,S)) = add(n,S)

true
n is in S if not(n==m)

But even without these extra equations the two sets are

behaviourally equivalent (with respect to the sort bool); any

'computation' involving the given operators yielding a boolean value
will give the same result for both sets. This notion of behavioural

equivalence is captured by Wand's final algebra approach. In the

final algebra of a theory two terms have the same value unless they
are demonstrably different. 1In order for this approach to work it
i3 necessary to start with some primitive sort (e.g. bool) with some
values which are known to be unequal (true, false); otherwise no two
values will ever be demonstrably different in the absence of

inequations.

Another alternative to the initial algebra approach is advocated
by Lehmann and Smyth [1981] based on work by Scott [1976]. A data
type is specified by a recursive domain equation which defines an
endofunctor on a special category of complete partial orders; the

data type is regarded as the initial fixpoint of this functor. For

example, (finite) binary trees with labels from the domain A are
specified by the following equation:
BtreeA = 2 + AeBtreeAeBtreeA

(where 2=z{i,7} with 1T, and e is coalesced (smash) product). A
parameterised data type is a functor as well. This approach seems
to work well for simple data types and has the advantage of
automatically extending to higher-order types, but there seems to be
no way of imposing equations on types so it is difficult to see how

to specify sets (for example).

Nakajima, Honda and Nakahara [1980] describe a language called
1 (iota) for building specifications and implementing them with
programs. A theory can be either a type (Clear data theory) or a
sype (combining Clear non-data and meta theories). As the approach

is rather syntactic models are not discussed, but it seems from the

«33-

examples given that any finitely generated model satisfying the
axioms (which are in first-order 1logic) would be acceptable.
Specifications may include operations (returning results via
arguments) for specifying procedures, but these are viewed as
functions as well (an operation f:array (var),array,int is like the
function f:array,array,int->array). A type can be implemented by
writing a realisation as an ALGOL-like program, and a method for
proving correctness of realisations is given. A theory=-building
operation which combines + and enrich is provided, and parameterised
theories are allowed as in Clear (the requirement theory is a sype).
These operations take proper account of shared subtheories, using
'tags' as 1in chapter III (but only operator names may be
overloaded). The notion of fitting morphism is somewhat more
restricted than in Clear (it must be an inclusion with the exception
of the name of the 'principle' sort) and building a sype by
enriching another sype is not allowed; no reason is given for either

restriction.

Bauer et al [1981] describe and give a semantics for CIP-L, a
'wide-spectrum' language including constructs suitable for
programming as well as specification. CIP-L is intended for use in
a program development system, and allows a program to be expressed
at every stage of its evolution from a specification to an efficient
program. Abstract data type specifications allow hidden sorts and
functions, partial functions and first-order axioms. Operations
similar to enrich, combine and apply in Clear are defined but name
clashes are forbidden. Parameterised types are viewed as type
schemes, and application is by textual substitution. When the
enrich operation is used, the theory being enriched is regarded as a
primitive subtheory of the result of the enrichment. Models are

required to be hierarchy preserving, meaning that all values of

primitive sorts must be generated by primitive operators. Models
must also be finitely generated and must satisfy the axioms. There
is no way to restrict consideration to the set of initial or freely
generated models, but because the axioms may include inequations and
because of the finite generation requirement this is not a problem,

although specifications tend to be longer than in Clear.

-34-~

Meta-IV [Jones 1978], the meta-language of the Vienna development
method, is a notation for describing the denotational sSemantics of
large programming languages and systems. It has been used to
specify a subset of PL/I [Bekié¢ et al 1974]. The abstract syntax of
the object language is described using a BNF-like notation which
provides constructors, recognisers and selectors for use in the rest

of the definition. Context conditions are then given to specify for

each syntax class which objects are well-formed. Next the semantic
domains are defined using combinators such as —» (continuous

function). Meaning functions then provide denotations for all well~

formed objects. The meaning functions (and the context conditions)
are mutually recursive functions written in a language similar to
HOPE (section 2) but with a few nonalgorithmic constructs such as
"let var be s.t. condition". Meta-IV is not restricted to
specifying the semantics of programming languages; the abstract
syntax is merely a signature in disguise (or vice versa) and meaning
functions provide a (more constructive) substitute for equational
definitions, so specifications of abstract data types and programs

are also possible.

Abrial, Schuman and Meyer [1979] describe Z, a specification
language based on axiomatic set theory, and give a number of large
and interesting specification examples. Z is essentially a formal
(and rather verbose) language for describing sets. The natural
numbers, relations, sequences etc. can be viewed as sets using the
classical constructions. Since everything is a set (the elements of
a sets are themselves sets) there is no notion of type. The set
union function works equally well on sets, natural numbers and
relations; it is not clear what happens if a sequence is subtracted
from a number. Second- and higher-order functions can be specified
in the same way as ordinary functions. Definitions may be
parameterised (generic), but any set is accepted as an actual
parameter; there 1is no equivalent to Clear's metasort theory.
Structures (classes) consisting of a tuple of sets and some axioms
about them may be defined (examples are groups and rings).
Specifications are structured into chapters, and new chapters may be
built by enriching previous chapters. Theorems which the
definitions are expected to satisfy may be included, but these have

~35-

no effect on the specification itself.

SPECIAL [Roubine and Robinson 1977) is the specification language
for HDM (Spitzen, Levitt and Robinson 1978), (Levitt, Robinson and
Silverberg 1979], a design methodology which is based on suggestions
of Parnas (1972, 1972a)] concerning the decomposition of large
systems into hierarchical collections of modules. A module

implements an abstract machine which is realised by a collection of

programs running on a lower-level abstract machine. A module can
also be viewed as an abstract data type. Modules are described in
SPECIAL by s3pecifying how O~ (operation) functions change the
internal state of the module as visible through the use of V-
(value) functions. That 1is, the specifications of V-functions
describe the initial state of the module, and the specification of
an O-function describes what changes a use of the O-function causes
in the results returned by V-functions. Modules can Dbe
parameterised, where the parameters are functions or values. A
module may reference the functions of other modules, and apparently
a call of an O-function may even result in a change in the state of
another module. A feature 1is included for specifying that the
execution of a function will be delayed until some event takes
place; this permits the specification of systems of parallel
processes. Mapping functions which describe how a module 1is

implemented in terms of a lower-level module may also be specified.
An operational semantics of a subset of SPECIAL has been given by
Boyer and Moore [1978].

ORDINARY {Goguen and Burstall 1980al] is an attempt to combine the
rigorous theoretical foundation and theory~building ideas of Clear
with the state-machine specification approach of SPECIAL. Its
semantics will be given by translation into Clear, although the
translation has not yet been defined. ORDINARY provides facilities
for specifying clusters (like Clear theories) and modules (as in
SPECIAL), and both clusters and modules may be parameterised as in
Clear. The specification of modules is different from in SPECIAL.
The state is defined explicitly, rather than implicitly through the
collection of available V-functions. A function like add:int in a

set module (add the given integer to the set which forms the state)

~36~-

is specified as add:[set],int->[set] (bracketed arguments and
results are invisible); the state is thus passed around as a secret
argument and result of appropriate functions. So although module
specifications are superficially different from cluster
specifications (with effects on the state defined using a SPECIAL-
like syntax rather than wusing ordinary equations) they are
essentially the same. In contrast to SPECIAL, states of modules are
never accessible from outside. Higher-order operators like lambda
are (tentatively) handled as macros. All the theory-building
operations of Clear are available (including gggg). albeit with a
more convenient syntax in some cases. Application of parameterised
clusters and modules is nonprolific (see section III.S5) in contrast
to Clear. Like Clear, ORDINARY is independent of any particular
institution; a different application (such as specification of
concurrent systems) will be handled by switching to a’ different
institution (such as temporal logic).

-37=

2, HOPE

This section contains only a very brief glimpse into the features

and nature of HOPE. A full description appears in Appendix 1.

The underlying goal in the design of HOPE was to produce by a
judicious selection of well-understood 1ideas a very simple
programming language which would encourage the construction of clear
and manipulable programs. HOPE is a purely applicative language
without an assignment statement or destructive operators. This was
felt to be an important simplification, encouraging a transparent
and less error-prone style of programming. Backus [1978] makes this

case strongly.

The user may freely define his own data types. A type is the sum
of a set of disjoint subtypes, each having its own data construction
function. There is no need to devise a complicated encoding of a
new type in terms of low-level types, since data constructors are
uninterpreted; this leads to inefficient use of space in some cases
but it make programs much easier to write. The type system 1is
strongly enforced but at the same time very flexible, allowing the
definition of polymorphic types and the free use of higher-order

types and overloaded operators.

Functions are defined by a set of recursion equations. The left-
hand side of each equation includes a pattern built from data
constructors and variables; the pattern is used both to select which
equation to use for a given argument and to bind the variables in
that equation to the appropriate parts of the argument. For
example:

——- reverse nil <= nil
——- reverse(a::1l) <= reverse 1 <> [a]

The availability of arbitrary higher-order types allows functions to
be defined which 'package' recursion over data structures to save
writing 1t expliecitly. These functions can be used to write
programs in a concise style similar to that of APL [Iverson 1962].
Lazily-evaluated lists (streams) are provided, allowing the use of
infinite 1lists which «could be wused to provide interactive

input/output and concurrency.

-38-

HOPE also includes a simple modularisation facility which allows
programs to be constructed as a collection of small self-contained
pieces communicating with each other in a disciplined and explicit
manner, A module may be used to protect the implementation of an
abstract data type, for example. Careful modular development is
felt to be the main trick in the construction of large bug-free

programs,

-39-

CHAPTER TWO
PREREQUISITES -- BASIC CONCEPTS AND NOTATION

The basic concepts which underlie the semantics of Clear will now
be defined. The notions of signature, algebra and equation are
similar to those used by most authors (see for example [Goguen,
Thatcher and Wagner 1978]), but theories in Clear are different from
the usual notion of theory elsewhere (which corresponds to a simple

theory presentation in Clear). The definitions themselves are taken

(with minor changes) from [Burstall and Goguen 1980].

In order to define the meaning of the data operation of Clear we
need the notion of a data constraint discussed 1in section 5.
Essentially the same concept is described by Reichel [1680] (ef.
Kaphengst and Reichel [1971]) and by Wirsing and Broy [1981] (ecf.
Broy et al [1979]). Data constraints for Clear were defined very
technically in [Burstall and Goguen 1980] and then discussed

informally in [Burstall and Goguen 1981]; the presentation here is
precise but avoids the use of category theory, although this
necessarily restricts the discussion to data constraints in ordinary

Clear.

The data operation is used in Clear to specify that only the
initial models of a specification are desired (more precisely,

models which are free extensions of models of the theory which is

enriched wusing gg&g). In contrast to this 'initial algebra
approach' is the final algebra approach of Wand (see [Wand 1979],
also [Guttag, Horowitz and Musser 1978]). This seems to offer a
viable alternative (which 1is even better in some respects) by
considering a different class of distinguished models. In this
thesis (apart from chapter VII) only the initial algebra approach to
specification will be discussed. The choice is irrelevant to the
bulk of the material presented; initial models are used in order to

avoid departing from previous work on Clear.

Although many of the definitions below (those concerning
signatures, algebras and equations) are special to ordinary Clear,

the definitions concerning theories and data constraints could be

-40~

generalised to the case of an arbitrary institution., In that event,

all the results given below would remain valid.

-41-

1. Signatures

A signature is a set of sorts (data type names) together with a
set of operators (operation names), where each operator has an arity

(such as s,t -> t where s and t are sorts). A signature morphism

maps the sorts and operators of one signature to sorts and operators

in another in such a way that arities are preserved.

Def: A (many-sorted) signature > is a pair <S,2> where S is a set
(of sorts) and 2 is a family of sets (of operators) indexed by
*
S*=S xS. The index of a set Q€S is the arity of every element of
O.

Def: A signature morphism o is a pair <f,g> : <S,3> —> <S',3">

where f:S—>S'" and g is a family of maps guszzus

*] *
ueS*, s€S and f :S —>S' 1is the extension of f to strings of sorts,

_92}’(u)f(s)' where

*
We write o(s) for f(s), o(u) for f (u) and o(w) for gus(w). where

weZ o

2. Algebras

A 3-algebra has a set (the elements of a data type) for each sort
of 3 and a function (operation) on those sets for each operator of
2. A Z-homomorphism maps the 'data types' of one Z-algebra to those
of another in such a way that the operations are preserved. Given a
2'-algebra A and a signature morphism o:3—>2', we can recover the
2-algebra buried inside A (since A is Jjust an extension of this
algebra). '

Let 3 be a signature.

Def: A Z-algebra A 1is a pair <A,x>, where A is an S-indexed

#
family of sets (the carriers of A) and « is an S xS-indexed family

*
of maps Xyt s> (A, —>A,) where ues , seS and

Au1...un = Au1x"'XAun' If ”‘zus then the map aus(un:Au—éAs is
called the operation associated with w, and is referred to by the

name w when there is no ambiguity.

wd D=

Def: A JS-homomorphism f : <A,&x> —> <A',x'>, where <A,x> and
<A',x'> are J-algebras, is a map f:A—>A' (actually an S-indexed

family of maps fs:As—éAé) such that for each we¢? and each

..,aneAsn fs(a(a»(a1.....an)) = a'(a»(fs1(a1).....fsn(an)).

a.eA_ ,.
1 sS4

Def: If o=<f,g> is a signature morphism ow;g—zg' and A'=<A',x'>
is a 2'-algebra, then the Z-restriction of A' (along ¢), written

A'|§ 1is the Z-algebra <A,&> where Ag=Al(g) and a&(w)=a'(gw)).
Normally o is obvious from context, in which case the notation A},Z

may be used.

3. Equations

The definition of J-equations and the meaning of applying a
signature morphism o:3—>Z' to a Z-equation are the obvious ones. A
Z—algebra satisfies a J-equation if the equation is 'true' (both

sides evaluate to the same thing) for all assignments to the

variables.

Def: A J-equation e is a triple <X,7’,Té> where X is an S-indexed

set (of variables) and Ty T, are 2-terms on X of the same sort.

The equation <X,?},Té> is written 'for all X, 1} = Té'.

If ¢ is a signature morphism G:z—éz' then the extension of ¢ to
2-terms, ot . 2-terms —> 3'-terms may be applied to a Z-equation e;
this application is written simply o(e).

Def: A Z-algebra A=<A,x> satisfies a Z-equation <X,T;,7,> if for
all maps f:Xx—=>A, f#(1)) = £#(1,) where f* : 3-terms = A is the
extension of f to J2-terms on X (f# evaluates a term using the
assignment of values to variables given by f). A satisfies e is
written AfFe. A Z-algebra satisfies a set of 2Z-equations if it
satisfies every equation in the set.

Satisfaction Lemma: If ¢:3—>3' is a signature morphism, e is a
2-equation and A' is a J'-algebra, then A'[Eo(e) iff A',gFe.

Proof: See [Burstall and Goguen 1980].

43~

4, Simple theories

A simple theory presentation is a signature together with a set
of equations on that signature. The closure of a set of equations
is that set together with all its (model~theoretic) logical
consequences. A simple theory is then a signature together with a
closed set of equations. This is a simple theory because no data

constraints (section 5) are included.

Def: A simple 3-theory presentation is a pair <3,E> where 3 is a

signature and E is a set of J-equations.

Def: A J-algebra A satisfies a simple theory presentation <3,E>
if A satisfies E. Then A is called a model of <Z,E>.

*
Def: If E is a set of J-equations, let E be the set of all
2-algebras which satisfy E.

*
Def: If M is a set of J-algebras, let M be the set of all
Z—equations which are satisfied by each algebra in M.

Fact: For any set E of equations (and dually replacing E by any
set M of algebras):
% %
(i) Ee<E
% %
(ii) If E<E' then E' <sE
This is called a Galois connection (see [Birkhoff 1948]). The laws
(i) and (ii) together imply

*
(1i1) E = E "

Def: The closure of a set E of .Z-equations is the set E",

written E. E is closed if E=E.

Def: A simple 3-theory T is a simple theory presentation <3,E>
where E 1s closed. The simple zftheory presented by the
presentation <Z,E> is <3,E>. A simple theory <3,8> is called
anarchic., A theory is called satisfiable if it has at least one

model.

44~

Def: A simple theory morphism o : <Z,E> —> <Z',E'> 1is a
signature morphism ¢:3—>2' such that o (e)eE' for each e<E.

Closure Lemma: o(E) € o(E)

Proof: See [Burstsll and Goguen 1980]; uses the Satisfaction

Lemma.

Presentation Lemma: If c:;—%;' is a signature morphism and

<2 E>, <S',EY are simple theory presentations then
o : <S,E> —> <3',E'> is a simple theory morphism iff o (E)E'.

Proof: See [Burstall and Goguen 198C]; uses the Closure Lemma.
The Presentation Lemma gives a shortcut for checking if a

signature morphism ¢ is a simple theory morphism -- one must only

check, for each equation e of the source presentation, that o(e) can

be proved from the equations in the target presentation.

Theorem: The category of simple theories and simple theory

morphisms is finitely cocomplete (has finite colimits).

Proof: See section V.2.

The category-theoretic semantics of Clear given in chapter V
relies on this theorem. In that semantics the theory-building
operations of Clear are defined in terms of certain colimits in the

category of theories,

-45-

5. Data constraints and data theories

In the last section a definition was given for the meaning of an
algebra satisfying a simple theory (presentation). If an algebra
satisfies a theory, it is called a model for that theory. The
theory specifies a set of algebras, namely the set of all its

models.

Unfortunately, this notion of specification is too simple for
most uses. The problem is that a theory has far too many models,
some of which have trivial carriers. It turns out that in many
cases (for example, when a theory is written to specify an abstract
data type) the model which 1is really intended is easily
characterised; it is the initial model of the theory. See section

I.1.1 for some examples.

The word 'initial' comes from category theory; however, it is not

necessary to know about category theory to understand initial

models,

Def: An initial model of a theory presentation <Z.E> is a
2-algebra A which is a model of <2,E> such that

- A does not satisfy any_ ground (i.e. variable-free)
2-equation which is not in E.

- Every element in A is the value of some ground 2-term.

In the last section the closure of a set of equations, E, was
defined as the set of equations satisfied by every model of E., One
may think of E as the set E together with all equations provable
from E using purely equational logic -- that is, using substitution
and the reflexive, symmetric and transitive properties of equality
(but without use of induction). This aids intuition but is slightly
inaccurate because of the incompleteness result to be given in
section VI.5. The set of equations satisfied by an initial model
correspond to the equations provable by equational deduction
together with induction, since the second extra condition above

amounts to an induction rule on each sort of 2.

-46-

Fact: An initial model of a theory presentation <Z.E> is ?Z/-E
where TZ is the 'initial! Z-algebra. consisting of ground Erterms,
and =g is the chongruence on ?Z generated by E.

Proof: See [Goguen, Thatcher and Wagner 1978].

But in Clear the situation 1is more complicated than this.
Smaller theories are put together to make larger theories; 1if a
loose or non-data theory is put together with an 'initial' theory,
then what is the result? The models of the result should be all
models of the combined theory which satisfy the initiality

constraint for the appropriate sorts, operators and equations,

Consider the case where a non-data theory (Equiv from section

I.1.2) is extended by adding some data, as in the following:

const Set =
enrich Equiv by
data sorts set
opns : set
ingleton : element -> set
: set set -~> set

2
s
U
eqgns P US =S
SUS=3S
S U T T
(u

Vll u n

Us
S U V=3SU(TUV) enden

In this example the interpretation of the extension must depend
on the interpretation of Equiv, which can be any algebra having a
sort together with an equivalence relation. But given a particular
algebra for Equiv, Set should be interpreted initially based on that
algebra; that is, Set specifies an initial algebra relative to the

interpretation of Equiv. Set is a data extension of Equiv; each

Set-model 1is the free extension of the included interpretation of

Equiv.

It is necessary to keep track of more than just a signature and a
set of equations to determine the set of algebras specified by a
Clear specification; of equal importance are the details concerning

which enrichments are data extensions of which subtheories. The
constraint that an enrichment 1is to be interpreted as a data

extension is called a data constraint (or constraint for short).

47~
Each application of the data operator contributes a data constraint,

Def: A J-constraint ¢ is a pair <i,o> where 1:T<>T' is a simple

theory inclusion and o:signature(T')—>2 is a signature morphism.

A constraint is a description of an enrichment (the theory
inclusion goes from the theory to be enriched to the enriched
theory) together with a signature morphism 'translating' the

constraint to the signature 3.

A signature morphism from ‘Z to another signature .Z' can be
applied to a 2-constraint, translating it to a g'-constraint, just
as it can be applied to a 2-equation to give a 2'-equation.

Def: If o':3—>3' 1is a signature morphism and <i,o> is a

2-constraint, then o' applied to <i,o> gives the 2'-constraint
{i,c.0'>,

A data constraint imposes a restriction on a set of algebras,
just as an equation does. In [Burstall and Goguen 1980] this
restriction was defined category-theoretically. Here is the same

definition from a different point of view:

Def': A >-algebra A satisfies a 2-constraint
<1:T<>T',c:signature(T')—>2> if

- o
[letting Atarget - A,signature(j_')

i.0
and Agoyrce = A'signature(l)]

t
Atarget is a model of T' and

- "No confusion': Atarget does not satisfy any
signature(T')-equation e with variables only in sorts of T

for any injective assignment gf variables to Asource

values unless e is in eqns(T')UAgource:

- "No Jjunk": Every element in -Atarget is the value of a
T'~term which has variables only in sorts of T, for some

assignment of A values.

The diagram of the situation below may help make the notation

easier to understand.

-48-

’ _,_.——-—z—"""—’ z
signatures .igT”) (
|
3
theories T _—1—-"-’ I’ ||
I] I
‘ ! 1
‘ | |
| , l
5 | !
: - '
T |
I
|
algebros
A
target A

The "no confusion" condition requires that no two terms have the

same value in A ¢ unless this is forced by the equations of T'

—targe
or by previous identification of the :alues of terms in Asource
(such identifications are recorded in Asource)' The assignment is
restricted to be injective because (for example) the equation x=y

will always be satisfied under some (noninjective) assignment, but

"
this equation will almost never be in eqnsS(T')UAg urce* The "no

junk" condition requires that all values in ﬁtarget be 'generated'
by constants or by the application of functions to values in

A The slogans are from [Burstall and Goguen 1981].

=source’

An alternative "no confusion" condition which may be slightly

easier to understand requires that A oyrce P© countable, If a

signature 2 includes the signature of T, then let Z* be 2 together

v alue A .
every val a in A, ce

with a (constant) operator c, for
Similarly, if B is a S-algebra and Agoyrce 1S a subalgebra of B, let
Bt be the Jt-algebra obtained from B by associating each new

operator c_ with the value a in B. Then:

a

- "No confusion": Azarget does not satisfy any ground
equation which is not in eqns(T')¥Asoyrge-

~49-

The new constants give names to the values which we previously could

only refer to using variables under an injective assignment.

Since data constraints behave just like equations, they can be
added to the equation set in a simple theory presentation to give a

data theory presentation (or theory presentation for short).

Def: A (data) 3-theory presentation is a pair <2,EC> where 2 is a

signature and EC is a set of 2Z-equations and zyconstraints.

The notions of (data) theory, satisfaction (of a data theory),

closure and (data) theory morphism follow as in the 'simple' case.

The Satisfaction Lemma (section 3) holds for constraints as well as

equations, and all the results in section 4 still hold.

Note what happens if an attempt is made to tamper with a theory

in a way which violates one of its constraints:

const Bool =

theory

data sorts bool
opns true, false : bool
not : bool => bool
eqns not(true) = false
not(not(p)) = p endth

const FunnyBool =
enrich Bool by
egns not(p) = p enden

The new equation in FunnyBool 1is inconsistent with the data
constraint produced by the application of data in Bool. FunnyBool
has no models, since no algebra exists which satisfies both the

constraint and the new equation.

For other presentations of this material, consult [Burstall and
Goguen 1980] (technical) or [Burstall and Goguen 1981] (informal).
The data constraints described here are a special case of those
discussed in [Burstall and Goguen 1980]; general data constraints
never arise in ordinary Clear, but they are necessary for describing
the semantics of Clear under an arbitrary (data) institution. 1In
its more general form, a data constraint consists of an arbitrary
simple theory morphism (not necessarily an inclusion) together with

a signature morphism, and satisfaction of a data constraint is

-50-

defined using the category-theoretic notion of an adjunction. The
definition of data constraint satisfaction given above is an attempt
to capture, in this special case, the definition of Burstall and

Goguen [1980] using a different approach.

-51-

CHAPTER THREE
A SET-THEORETIC SEMANTICS OF CLEAR

In the Introduction we argued for the necessity of supplying a
specification language with a precise and formal semantics. A
specification language like Clear can be useful on an informal level
as a tool for the development of programs, providing a notation for
elaborating the theory behind and surrounding a problem. But
without a semantics the connection between specifications and
programs is tenuous at best, giving no possibility of proving that a

program is correct with respect to its specification (for example).

A semantics of Clear is presented here which uses the language of
set theory. The theory-building operations presented in chapter I
are described by means of elementary set-theoretic constructions.
In order to properly treat the problem of shared subtheories, a tag
is attached to every sort and operator to indicate its theory of
origin; this trick allows the combine operation to be expressed as
little more than the set-theoretic union of 'tagged' theories. The
remaining operations are only a 1little bit more difficult to
describe. A denotational semantics is then given which attaches a
syntax to these operations and provides for an environment of named
theories. An additional section gives the semantics for an improved
version of Clear, identical to ordinary Clear except for the absence
of an annoying characteristic., This shows how easily the semantics

can be changed to accommodate new features.

Burstall and Goguen [1980] have described a semantics of Clear
which relies heavily on a number of ideas from category theory to
describe the underlying concepts and operations of the 1language.
Their semantics 1is presented in chapter V. The semantics in the
present chapter was invented after Burstall and Goguen's semantics
as an equivalent but more accessible alternative. The category-
theoretic semantics, by abstracting away from any particular notion
of signature, model or axiom (using the concept of an institution
mentioned in section I.1.3), is able to describe all at once the

meaning of a large class of Clear-like specification languages. But

-52-

in the special case of ordinary Clear (the language described in
chapter I) this highly abstract treatment can be simplified to give
the semantics described here; this has the advantage of being
concrete and constructive and therefore more useful for practical
applications. And even this semantics can be generalised to give
the semantics of Clear under all institutions which have been

suggested up to now (see section 6).

-53~

1. Dealing with shared subtheories

Consider the following specification, defining the theory of
natural numbers with an order relation and the theory of upper case
alphabetic characters (it is assumed that the theory Bool of boolean

values has been previously defined):

const Nat =
enrich Bool by
data sorts nat

opns 0 : nat
succ : nat -> nat
< : nat,nat -> bool

eqns 0<n = true
suce(n)<0 = false
succ(n)<succ(m) = n<m enden

const Char =
enrich Bool by
data sorts char
opns A, B, ..., Z : char
is_vowel : char -> bool
eqns is vowel(c) = c==A or c==
or c==I or c¢==0 or c== enden

Notice that both Nat and Char 'include' the theory Bool; Bool 1is
a shared subtheory of Nat and Char. What does this mean formally?

And, how does the semantics of Clear define the theory-combining
operations so that the theory Nat + Char includes only one copy of
Bool?

In [Burstall and Goguen 1977], shared subtheories are explained
by analogy with the EQ predicate of LISP. The EQUAL function in
LISP tests whether two 1lists look the same (i.e. whether they
contain the same elements in the same order), while EQ tests whether
two lists are the same (occupy the same list cells in storage --
note that EQ(a,b) implies EQUAL(a,b) but not vice versa). The
important features of EQ are given by the following examples (a, b

and ¢ are arbitrary lists):
i. EQ(CONS(a,b),CONS(a,b)) = false (but EQUAL(..,..) = true)
ii. (EQ(1,1) where 1=CONS(a,b)) = true

iii. EQ(CAR(CONS(a,b)),CDR(CONS(c,a))) = true

-54~
These examples show that

i, Writing down a CONS expression twice gives two different
lists.

ii. Two uses of the same variable refer to the same list.

iii. Two different lists can share a common sublist.

Now to complete the analogy, the theory-building operations of
Clear act like CONS and the behaviour of EQ indicates what is meant
by "identical" in the following:

Requirement: The theory-building operations should be defined
in such a way that a theory can never contain two identical
subtheories.

This leads (for example) to the following informal constraint on the
combine (+) operation:

Constraint: If B is a subtheory of A and D is a subtheory of C,
then B and D should be identified when forming A + C iff
they are identical.

In order to write a semantics for Clear we must devise some
representation of theories which makes it easy (or at 1least
possible) to determine if two theories are identical, so that the
above constraint can be satisfied. The category-theoretic semantics
of Burstall and Goguen {1980] uses a rather complicated
representation of a theory (called a based theory -- see section V.2
for details) which shows explicitly how the theory 1is related to

every one of its subtheories. 1In the special case of ordinary Clear
a much simpler representation can be used because the only way that
a theory and one of its subtheories can be related is by an

inclusion.

An important observation is the fact that the requirement above
is inherited by the sorts and operators of a theory (where identity
is again by analogy to EQ in LISP), giving:

Requirement: The theory-building operations should be defined
in such a way that a theory can never contain two identical
sorts or operators.

Moreover, if this low-=level requirement is satisfied (and the
operations are defined in a reasonable way) then the previous
requirement will be satisfied as well. The above contraint on

combine also has a low-=-level equivalent.

-55.-

Referring to our LISP analogy, the obvious way to define the
semantics of EQ (see [McCarthy et al 1962]) is to use a model of
storage where lists are stored in addressable cells and EQ simply
checks whether its arguments begin at the same address (although the
semantics of EQ can be defined in other ways -- see [Levy 1980] for
example) . By associating a unique address with each non-EQ 1list

cell, the meaning of EQ is reduced to equality of addresses.

Sorts, operators and theories normally have nothing to do with
anything as mundane as storage and addresses. But by associating an
appropriate tag with each sort and operator we can easily determine

whether two tagged sorts or tagged operators are identical in the

sense given by analogy with EQ. If the name of the theory of origin
of a sort or operator is used as a tag, then the sort or operator
name together with the tag forms a unique and precise name for the
object (sort or operator). Then if (for example) w is an operator
belonging to both A and B, w will appear once in A + B if « has the
same tag (theory of origin) in both A and B; otherwise w of A and
w of B are really different operators which just happen to have the
same name, and A + B should include both. The 1language 1 (Iota)
[Nakajima, Honda and Nakahara 1980] also uses tags (to qualify

operator names).

Each theory is therefore represented in the semantics as a tagged
theory (a theory where the names are all tagged). The tagged
theories Nat and Char 1look 1like this, where tags appear as
subscripts (assuming that Bool contains the operators true, false,

not and ==):

Nat = sorts natNat' b°°1Bool

opns Oygy * naty.e
SUCCNat . natNat - natNat

SNat® *=Nat ° Babyat.abygg => DoOlpge)

trueBool, falseBool : b°°1Bool

notp,o1 ¢ boolBool -> b°°1Bool

=2ggol ! POO0lpygysb00lpygy => Doolpyyy
eqns . . .

~56—

Char = sorts charChar, b°°lBool

opns AChar’ ooy zChar : CharChar
i;_vowelChar : CharChar -> boolBool

*“Char * Chalcpar.Charchae —> boOlpy,
trueBool,falseBool : b°°lBool

“°tBool : boolBool -> b°°lBool
ZRool ¢ POOlpygysb00lp,yy => boolg, g

eqns .

Nat + Char is simply the set-theoretic union of these two tagged

theories:

sorts natNat, charChar, boolBool

opns oNat : natNat
SucCya¢ ¢ natNat -> “atNat

SNat® *“Nat @ PatyatsPatyay => boolpye)

AChar’ ceey zChar‘ : Char'Char'
is_vowelChar : charChar -> b°°lBool

==char ° charChar,charChar -> b°°lBool
trueBool,falseBool : b°°lBool

notBool : boolBool -> boolBool
::Bool : boolBool,boolBool —> boolBool
equs .

The remaining semantic operations are fairly simple and

straightforward set-theoretic constructions.

It is necessary to keep track of the names of all subtheories of
a theory; the apply operation and C(Clear's 's of T' notation (to
refer to a sort or operation s in a subtheory T of the current
theory) both require it. Adding this information to a tagged theory

gives a based theory. The base is a subset of the global theory

environment, mapping each subtheory name to the theory bound to that
name. The addition of a base does not complicate the definition of
the sum of two theories; the base of the sum is simply the union of

the bases,.

Def: A based theory is a pair <T,B> where T is a theory with

tagged sorts and operators and B:theory-name—>theory (the base) is a

map containing the subtheories of T. <T,B> is normally written Ig.

~57-

Def: A based theory morphism o':_'_I’_B—->I'B. (where B&B') is a theory
morphism o :T—>T' such that o restricted to theories in B is the
identity.

This notion of based theory should not be confused with Burstall
and Goguen's [1980] notion, discussed in section V.2. Although the
definitions are different, both kinds of based theories serve the
same purpose (and in fact the two representations are isomorphic) so

we use the same name to draw attention to this similarity.

The particular tags used are not important; all that matters is
that the tags for two different sorts (or operators) which have the
same name, are different. Thus, X146 and Y27 would serve as well as
Bool and Nat above. Also (for example) succ and < need not have the
same tag. This fact will be useful in the semantics; it turns out
to be inconvenient to tag sorts and operators with the name of their

theory of origin.

-58~

2. Semantic operations

In this section the semantic operations which 'implement' the
theory-building operations of Clear are defined. This forms the
quintessence of Clear's semantics; the semantic equations given in
section 4 serve only to attach a syntax to thé operations defined
here, The definitions depend heavily upon the special
representation of based theories described in section 1; the objects
defined in chapter II are used as well (signatures, equations,

constraints) but their representations are not important. The

definitions assume that the based theories to be put together are
compatible. This will always be the case in practice because all

available theories have been constructed using Clear.

Def: If 2=<S,2> and §j=<S',§'> are tagged signatures then the
union of 2 and 2', written EU_E_', is <SVUS',3U3'> (where 3 and 3'
are the extensions of 3 and 3' to indexed sets of operators over

SuUs').
2.1. Combine

This implements the '+' theory-building operation of Clear.

combine : based-theory x based-theory —> based-theory

combine(<Z,EC>g, <Z',EC'>p:) = <3US",6(EC)UG " (EC')>pyp:

where ¢ and ¢' are the signature inclusions

(28
T4
G,'

I~

2

We will sometimes use '+' in the sequel rather than combine; this

should cause no confusion.

The result has the sorts and operators of both theories, the
closed union of the axioms (translated to give 3U3'-equations and
constraints), and the union of the two bases. Since Z_and gf are
tagged signatures, g}Jgj will treat shared sorts and operators

properly.

-59-

2.2. Enrich

An enrichment consists of some new sorts, operators and
equations, The enrich operation takes a based theory and an
enrichment and produces the enriched based theory. Each new sort
and operator must be given a unique tag, according to the discussion
in the preceding chapter. This tagging is not done by the enrich
operation itself; we require that new sorts and operators be given
unique tags before they are used to enrich a theory. This is
necessary because the arity of a new operator may include one of the
new sorts, and this requires that the new sort be tagged. The tags
are attached by the semantic equations (as part of the semanties of
sort and operator declarations -- section 4.3).

enrich : based-theory x sort-set x operator-set x equation-set
—> based-theory

enrich(<3,EC>g, S', 3', E') = <FuU<S',2'>,0(EC)VUE' >R
where 3' is indexed over sorts(3)US'

E' is a set of JU<S',3'> -equations
and o is the signature inclusion

S < = > SULS', 2"

As mentioned above, it is understood that S' and 3' have already

been given unique tags before enrich is applied.

2.3. Data enrich

When a theory is enriched by some new data, the axioms of the
resulting theory contain the constraint that the enrichment is to be
interpreted freely. Moreover, an equality predicate ==:s,s->bool
for each new sort s is included. Otherwise the result is the same
as for ordinary (non-data) enrich. We employ a model~theoretic
approach to obtain the equations which specify the meaning of the

new equality predicates.

-60~

Def: Suppose 3 is a tagged signature which includes the sort

boolg,,; and the operators truepgolsfalsepyy)iP99lpools A is a

2-algebra, EC is a set of Z-equations and constraints, x is a new

tag, S is a subset of the sorts of &, and seS. Then:

S
- £3 is 3 with an additional operator == :s,s->boolp,s- 2
is defined similarly (i.e., an additional == operator for

each sort in S).

- ﬁi is a Z;-algebra Just like A but with an operatio%
satisfying ==(a,b) = true iff a=b, for all a,beAg. Ay is

defined similarly.

- ECS is the set of Zs-e%uatlons and constraints given by
*
M , where M = {AS ! AeEC }
If S is the set of new sorts and EC is the set of equations and
constraints already in a theory, then Eci includes EC as well as all
the equations needed to define the new equality predicates on sorts

in S.
data-enrich : based-theory x sort-set x operator-set
x equation-set x tag - based-theory

data-enrich(<§_,EC>B , S, ','x)
< (2 enr) , (ECenrU<F, 1§enr>)s >Benr

where <Jenr,ECenr>go,. = enrich(<3, EC>g,S',3',E™)
and F is the theory inclusion

<g,0> e—>F > Genr, B>

data-enrich gives an error if zenr does not include the sort
b°°1Bool and the operators trueBool.falseBool:boolBool.

The result is the same as the result of enrich, with the addition
of an operator == for each new sort, the equations concerning those
operators, and the data constraint <F'1Zenr> where F is the theory

morphism describing the enrichment.

._61.-
2.4, Derive

The derive operation is used to 'forget' sorts and operators of a
theory, possibly renaming the ones remaining. The renaming 1is
accomplished by a signature morphism which takes the new names into
the old names. Given a J-theory, a Zf—theory and a signature
morphism ow;&—}z', derive produces a theory with the signature and
base of the J-theory, and all the J-equations and constraints which
are satisfied in all models of the z'-theory -- this turns out to be

the inverse image under o of the equations and constraints of the

2'-theory.

derive : based-theory x signature-morphism x based-theory
—> based-theory

derive(<Z,EC>g, o, <3',EC'>p,) = <307 (EC')>p
where o~ 1(EC') = {e | o(e)eEC'}

derive gives an error if o is not a based theory morphism.

The result is a theory because of the following fact:

Fact: If EC is closed then o~ (EC) is closed.

Proof: (outline of the proof in [Burstall and Goguen 1980])
o~ 1(EC) = (EC' 2)' = 0'1(EC)" via two applications of the

Satisfaction Lemma.

Also, ECe o~ 1(EC') since o is a theory morphism.

Intuitively, the derive operation should satisfy the following
law:

A' 1s a model of T' Iiff A'l is a model of
derive(T,o,T') sig(T)

The 'forward' implication (=>) follows by the proof of the previous

=1 _ #* #* # -1 *
fact (07 1(EC) = (EC |g3g(T)) » so EC|gig(ry€ @ (EC)).
Unfortunately, the reverse (<z) does not hold, Consider the
example:

const AB =

enrich Bool by
data sorts ab
opns a, b : ab enden

-52=

const ABC =
enrich AB by
opns ¢ : ab enden

const AC =
derive sorts ac
opns a, ¢ : ac
using Bool
from ABC
by ac is ab endde

The theory ABC has two models (up to isomorphism). Both models have
two elements in the carrier for sort ab; one model satisfies a=c#b
and the other satisfies a#c=b. But AC has an infinity of non-
isomorphic models. The problem 1is that the inverse image of the
data constraint on sort aBb of ABC is empty, so sort ac of AC is
unconstrained. It seems that this slightly unpleasant situation can
be put right by giving a somewhat more elaborate definition of data
constraints. But it is not yet clear that this is the right way to
handle the problem, and data constraints are already complex enough.
So we 1ignore this complication for now; although derive does not
have all the properties we want, in most cases this will not be a

problem.

2.5. Apply

Apply defines the meaning of applying a theory procedure to its
arguments. A procedure is represented as a based theory (the
procedure) together with a list of based theories (the metasorts).
This is the first argument of apply; the second is a 1list of
(based-theory x signature-morphism) -pairs (actual parameter b4
fitting morphism), The third argument is the tag to be attached to
the 'new' sorts and operators.

apply : (based-theory x based-theory*) . Eprocedure]

x (based-theory x signature-morphism) parameters
x tag —> based-theory

The definition of apply uses two auxiliary functions. The first
applies a signature morphism d:z—éz' to a theory T with a signature

which includes 23 the sorts and operators in T but not in Z are not

-63-

affected, This is used to apply a fitting morphism to a procedure,

and is also useful in defining the second auxiliary function.
_ altered by _ : theory x signature-morphism —> theory

Suppose 2 = <S,3>, 2A = <SA,2A>, 2B = <SB,2B>, <f,g> = 0:3A—>7B
and ZAc 2. Then:

<3,EC> altered by o = <3',o'(EC)>

where 3' and o' are constructed as follows:

for se€S, let f'(s) = f(s) 1if seSA
s otherwise

let S' = {f'(s) | seS}

for usS* veS and wel
let gly (@ = fg, t0) if we3A,
u»otherwise

for u'eS" and v'eS',

let 3' vy = U {guvm) | we,,)
u,vel

where I = {u véS | (uv) u'v'}
then 3' = <S'.2'>
and o':3—3' = <f',g">

Informally, <3,EC> altered by o just replaces the sorts and
operators of J which are in 2A by their images in 3B.

The second auxiliary function attaches a given new tag to all of
the sorts and operators in a theory, excluding those sorts and

operators which belong to a distinguished subsignature.
_ retagged with _ preserving _ : theory x tag x signature —> theory

<Z,EC> retagged with x preserving 3' = <3,EC> altered by mtag

where mtag is a signature morphism which gives each
of the sorts and operators in 3 - 3' the tag x

an error results if 3'£3

Apply is now defined with the help of these two functions. The
idea is to first attach the given new tag to each sort and operator

in the procedure, excluding those belonging to a metatheory or base

-64-

theory. This is necessary so that (for example) the sort 'list' in
the theory List(Bool) will always remain distinet from the sort
'list' in List(Nat). The fitting morphisms are then applied to
change each reference to the metasort signature into the
corresponding reference to a sort or operator in the signature of
the actual parameter, and the base of the procedure is attached.

Finally, the actual parameters are added using combine to give the

result.

apply(<gBP,<gn1,ECM1>BM1...<gnn,ECMn>BMn>,<£4,m1>...<5n,mn>,x}

= Aq o v A ((P retagged with x preserving Jold)
altered by m U... Umn)BP

where gold = 2M,U...U3M U <N’TNXBF,signature(TN)

apply gives an error if some mi:<ZMi,ECMi>BMi—9Ai is not a based
theory morphism.

This construction is rather more elaborate than any of those
given previously. In order to understand it, consider first the
simple case in which all theories contain only sorts (no operators

or equations) and the procedure has only one argument. For example:

P

sorts b°°1Bool’ Dy "atNat’ Pp base Bool, Nat

M

sorts b°°IBool’ My base Bool
A = sorts b°°1Bool’ charChar, a, a'A base Bool, Char

o

[b°°IBoolp_>b°°15001’ my*>ay]

Now let us evaluate apply(<P,M>,<A,¢>,'J36'). The 'old' sorts upon
which P was built (2old) is:

sorts boolgggys Mys Matyay
Retagging P while preserving Jold gives:

sorts boolgggy s Myr MAtyaes Py3g
This is exactly P except that the sort p (which is 'new' in P) is
tagged with J36 to ensure that it remains distinct from the sort p
in the application of P to some other parameter. Applying the
fitting morphism ¢ and reattaching the base of P gives:

sorts boolg,,ys @y, Aty 4, Py3g base Bool, Nat

and combining this with the actual parameter A gives the final

—65-

result:

1
sorts b°°1Bool’ ap, natNat' pJ36' CharChar' a'y
base Bool, Nat, Char

n base of P

Before

For a more difficult example, consider the following Clear

specification (assuming the usual specification of Bool):

const Natmod2 =
enrich Bool by
data sorts natmod?2
opns 0 : natmod2
succ : natmod2 -> natmod2

eqns succ(suce(n)) = n enden
meta Triv = theory sorts element endth

proc Pair(X:Triv) =
enrich X + Bool by
data sorts pair
opns <_, > : element,element <> pair
egns <a,b> = <b,a> enden

Now the expression
Pair(Natmod2[element is natmod2])
should give the theory of (unordered) pairs of natural numbers

modulo 2.

The denotation of Natmod2 is the following based theory (ignoring

equations):

-66—

sorts boolp, 1 natmod2y . o4o

oPnS Oyatmod2® SUCCNatmod2® =“Natmod2® PrU€pools -+

eqns succ(succ(n)) = n
not(true) = false

. . .

base Bool, Natmod2

Triv gives just sorts elementr.;, with the

empty Dbase.

Metatheories will be explained in section 3; briefly, the special

thing about a metatheory is that its base excludes metatheories,

itself included.

The procedure Pair has a denotation consisting of the following

based theory together with Triv:

sorts elementTriv, pairpair, b°°lBool
opns <_, Ppaips ==paips Eruepgoy, ...
egns <a,b> = <b,a>

not(true) = false

. . .

base Bool

The environment contains Bool and Natmod2 (Triv and Pair are in

the metatheory and procedure environments, respectively).

Referring to the definition of apply, the value of zpld is:

20ld = sorts element....., bool
= —_— Triv Bool
opns trueBool, falseBool, nOtBool' ==pool

Retagging P (i.e., Pair without its base) with the new tag J37 while

Preserving 2old gives:

sorts elementTriv, pairJ37, boolBool

opns <-—’-->J37’ ==J37’ trueBool, e
egqns . . .

Applying the fitting morphism [elementTrivP—)natmodZNatmodZJ to this

theory and reattaching the base of Pair yields:

-67-

sorts natmod2ya.tmod2» Pair 37 boolpool
<2337+ =337 truepoolr ---

Bool

FF
S |13
W j

bas

[

|

Finally, this is combined with the actual parameter Natmod2 to give

the answer:

sorts natmod2yatmod2, Pairj37. boolpool
opns <_, 2337+ =337, truepools e« ONatmod2® *°*
eqns succ(suce(n)) = n

not(true) = falge

<a,b> = <b,a>
base Bool, Natmod2

Note that applying a procedure P with formal parameter X and
metasort M to an argument A using signature morphism ¢ is the same
as rewriting the text of the procedure, with A substituted for X and

all occurrences of sorts and operators in M translated using o to

the matching bits of A. For example,

Pair(Natmod2[element is natmod2]) is equivalent to:

enrich Natmod2 + Bool by
data sorts pair

natmod2,natmod2 -=> pair
<b,a> enden

(1]

=]

/]

A

[+ V]
ol
v

i ee

The definition of apply simulates this rewriting, using the trick
of attaching fresh tags to the sorts and operators which are 'new in
P' (i.e., not included in the base or metasorts) to distinguish them

from the corresponding objects produced in a different application

of the same procedure.
2.6. Copy

The copy operation is used to make a fresh copy of a theory,

preserving a given set of subtheories.

-68-
copy : based-theory x based-theory x tag —> based-theory

copy(Ty, <2',EC'>gr, x) = (T retagged with x
preserving 3')pap’

Given two based theories (the second theory is the combination of
the subtheories to be shared), copy simply gives the new tag x to
the sorts and operators ~of the first theory which are not in the
second theory. The base of the result is the intersection of the

hases of the argument theories.

~-59=

3. Metatheories

In section I.1.2 the notion of a metatheory was informally
introduced as a way of describing a class of theories (while an
tordinary' theory describes a class of algebras)., Metatheories are

used to give the metasorts (requirements) of theory procedures. For

example:

proc Set(X:Ident) =
enrich X by . .

Here, Ident is a metatheory (from section I.1.2) 'describing' all
theories having at least one sort and an equivalence relation on
that sort. Any such theory can be used as an argument of Set. In
this section the relation between metatheories and ordinary theories
is discussed. The semantics of [Burstall and Goguen 1980] did not
treat this 1issue correctly, using ordinary theories to give
procedure requirements (this error was only discovered during
testing of the implementation of that semantics presented in chapter

V).

It turns out that a metatheory is not a new kind of theory, but
only an ordinary (based) theory used in a special way. The class of
theories described by a metatheory M is the class containing only
those based theories T for which a based theory morphism o :M—>T
exists. The definition of the apply operation in the last section
uses the 'fitting morphism' (supplied by the user) to construct the
result of a procedure application. But in order for this to work
the metatheory M must be handled in a slightly different way from an
ordinary theory; this is the reason why the meta construct is used

to define a metatheory.

It is helpful to compare a sample metatheory with a similar
ordinary theory. A typical metatheory is Ident, used above; this

will be called Idmeta for now:

meta Idmeta =
enrich Bool by
sorts element
opns = : element,element -> bool
eqns mam = true
« .o enden

-70-

This gives the following based theory:

sorts eleme“tldmeta' b°°1Bool

OPNS S1dmeta
trueBool, falseBool, ces

egqns . . .

base Bool

Now consider a similar ordinary theory. Idconst 'loosely!
specifies the set of algebras having one sort and an equivalence

relation (see the theory Equiv in section I.1.2):

const Idconst =
enrich Bool by
sorts element
opns = : element,element => bool
egns mam = true

e o e enden

which yields the based theory:

sorts elementldconst' boolBool

2OPNS =r4const
trueBool, falseBool, see

eqns . . .

base Idconst, Bool

The only apparent difference between these two based theories is
that while Idmeta has a base consisting only of Bool, the base of
Idconst contains Idconst itself as well. Consider the consequences
if Idconst is used as the metasort of a theory procedure such as Set
(called Setconst for now):

proc Setconst(X:Idconst) =
enrich X by . . . enden

What are the possible actual parameter theories to which Setconst
can be applied? Recall that a based theory morphism is used to fit
an actual parameter to its corresponding metasort; the morphism goes
from the metasort to the actual parameter. Since the base of the
target of a based theory morphism must include the base of the

source (and the morphism restricted to the base must be the

-71-

identity), the actual parameter must contain Idconst as a subtheory.
In essence, the only theory Setconst can be applied to is Idconst
itself. This is clearly neither intended nor desirable.

Now consider what happens if Idmeta is used as the metasort of
Set:

proc Setmeta(X:Idmeta) =
enrich X by . . . enden

Since the base of Idmeta contains Bool, any actual parameter of
Setmeta must include Bool as a subtheory. But it need only match
the rest of Idmeta; that is, it must include a sort with an
equivalence relation. Suitable actual parameter theories and
fitting morphisms are:

Nat (element is nat, a is
Bool (element is bool, m i

and many others.

In the example above, an ordinary theory (Bool) was included in a
metatheory (Idmeta). In general, metatheories can be put together
(with each other and with ordinary theories) wusing the same
operations as for ordinary theories, since they are nothing more
than a special kind of ordinary theory. When such a conglomerate is
used as a metasort, any matching actual parameter must include all
of the ordinary theories in the metasort (not Jjust some theories
which happen to resemble them), as well as sorts and operators which

match those of the metatheories.

The only difference we have 8so far encountered between a
metatheory and an ordinary theory is that the base of a metatheory
does not include the metatheory itself (and thus does not include
any other metatheories either). Unexpectedly, this is exactly the
result if a parameterless theory procedure is used in place of a

metatheory (this observation is due to R.M. Burstall):

~72-

proc Idproc() =
enrich Bool by
sorts element
opns = : element,element -> bool
eqns mam = true
o« o enden

proc Setproc(X:Idproc()) =
enrich X by . . . enden

Accordingly, a metatheory is treated in this semantics as a
parameterless procedure. This is of course invisible to the user of
the 1language. In the category-theoretic semantiecs to be given in
chapter V, metatheories are treated as ordinary theories with
altered bases (which gives the same result, since there a sort or
operator may only be shared if it appears in a base theory). The
semantics of metatheories in both cases is incorporated into the

definition of environment operations.

A side-effect of the use of the apply operation to give the
semantics of metatheories is that writing a metatheory twice gives
two different theories; that is:

Idproc() + Idproc() # Idproc()
This property is actually somewhat desirable for metatheories, since
otherwise some extra mechanism must be added to the semantics of
procedure declaration (in the next section) to keep separate
multiple instances of the same metatheory as metasorts in a single
procedure:

proc P(X:Idmeta,Y:Idmeta) = . . .
But this means that the theory-building operations do not respect
shared sub-metatheories, It is difficult to decide if this last
property (which also holds for metatheories in the category-
theoretic semantics) 1is desirable or not. In section 5 a
modification to the semantics is given which (among other things)
causes theory-building operations to respect shared Sub-

metatheories.

The concept of a metatheory in Clear is similar to the notion of

a sype in the language t (Iota) [Nakajima, Honda and Nakahara 19801];

~73=

there too, a sype is not very different from an ordinary type,

although it can be regarded as a higher order concept.

-7 4=

4, Semantic equations

Now we are ready to give the semantic equations for Clear,
providing a 'syntactic dress' for the operations defined in section
2. The equations are divided into several levels. Level I deals
with the semantics of sort and operator names, and depends on the
notion of a dictionary. Level IIa contains the semantics of
enrichments (sort and operator declarations, and equations), and
level 1IIb describes signature changes (used in derive and 1in
application of a theory procedure). Finally, level III gives the
semantics of Clear's theory-building operations and procedure
declarations, based on the semantic operations defined in section 2.
It requires the definition of an environment. Most of the material
in this section 1is taken from [Burstall and Goguen 1980];

differences are recorded in section V.4.

4.1. Dictionaries

In Clear the notation 's of T' (where s is a sort name and T is a
theory name) may be used to refer to a sort which is included in a
subtheory T of the current theory (similarly 'o of T' for
operators). This may be necessary if the sort (or operator) name
alone is ambiguous. A dictionary gives the correspondence between
such an expression and the tagged sort or operator to which it

refers.

Def: A dictionary is a pair of functions <sd,od> where

sd : sort-name x theory-name — sort
od : operator-name x theory-name —> operator

The operation dict is used to construct a dictionary from a based
theory; the resulting dictionary interprets sort and operator

expressions referring to sorts and operators in that theory.

~75-

dict : based-theory —> dictionary

dict((Z,EC)B) = <sd,od>

the unique sort with name s in B(T)
the unique operator with name o in B(T)

where sd(s,T)
and od(o,T)

sd(s,T) gives an error if T¢domain(B), or if there is not a
unique sort called s in B(T) (similarly for od(o,T)).

Note that this definition means that the notation 's of T'
(similarly 'o of T') may only be used to refer to theories which are

in the base of the current theory.

4.,2. Level I: Sorts, operators, terms

Syntactic categories

8 : sort name (lower case identifier)
O : operator name (identifier or operator symbol)
T : theory name (capitalised identifier)

sex : sort expression

oex : operator expression

X : variable (identifier)
tex : term expression

Syntax
sex ::=8 | sof T e.g. element of X
oex ::z=0 i 0of T e.g. not of Bool
tex ::z x | oex(texy,...,tex,) e.g. or(p,q) (infixes
etc. also permitted)
Values

d : dictionary
X : sort-indexed variable set
tm : term

Semantic functions

Sex : sort-expression —> signature — dictionary — sort
Oex : operator-expression — signature — dictionary

—> operator
Tex : term-expression — signature — dictionary

—> sorted-variable-set — term

~76-

Semantic equations

Sex[sl3d = the unique sort in sorts(Z) with name s
Sex[s of TI2d = sd(s,T) where <sd,od> = d

Oex[ollZd = the unique operator in operators(3) with name o
Oex[o of TI3d = od(o,T) where <sd,od> = d

TexIxD2dX = x (a 2~term on X)
TexEoex(tex1.....texn)ﬂqu =z
let w= OexToexI3d in
let tmy,...,tm = TexEtex1Dde.....TexEteanZdX in
w(tmy,...,tmy) (a 2-term on X)

4,3. Level IIa: Enrichments

Syntactic categories

sd : sort declaration

od : operator declaration
varl : variable list

eq : equation expression
enrdb : enrichment body
enr : enrichment

~77-

Syntax
sd ::= s e.g. nat
od = o: SeXq,...,3ex =>sex e.g. <: nat,nat->bool

varl ::= x11.....x1n1:sex1.....xm1.....xmnm:sexm

e.g. 1,Jj:nat, p:bool
eq ::= all varl. tex1 = tex2 e.g. all p:nat. p+0=p
enrb ::= sorts sd1....,sdm

opns od1...odn

eqns eq1...eqp
enr ::= enrb | data enrbdb

e.g. data sorts bool
opns true: bool
false: bool
not: bool=>bool
egns all. not(true) = false
all p:bool. not(not(p)) = p

The notation

Oq1e4440 : Sex1.....sexn->sex

m
ig also allowed for operator declarations, defined by the obvious

expansion into a sequence of declarations.

Semantic functions

Sd : sort-declaration —> tag —> sort
0d : operator-declaration —> tag —> signature — dictionary
—> (operator x arity)
Varl : variable-list —> signature —> dictionary
—> sorted-variable-set
Eq : equation-expression —> signature —> dictionary —> equation
Enrb : enrichment-body — tag —> signature —> dictionary
— (sort-set, (operator x arity) -set, equation-set)
Enr : enrichment —> tag — based-theory —> based theory

Semantic equations

Sd[[s:ﬂx =8,

0df[o: sexy,...,sex ->sex]x5d =
let s1,...,sn,s==Sexﬂsex1]2ﬂ,..-.Sexﬂsexn]2§,8exﬂsexﬂ§d in
'—7?ox,<<s1,... 8,>,8>> -

-78-

varlEX11'--o'x1n :sex1'0-o’xm1'oo.'xmn :Sexm]]Zd -

let Sq,...,8p = SexEsex1ﬂzd,....

{ <x11.s1>,...,<x1n1.s1>,

<xm1,sm>,‘...<x

mnm,sm> }

Eqall varl. tex; = tex2]Zd =
let X = VarllvarlI2d in
let tm,,tm, = Tex([tex,D3dX,Tex[tex,]3dX in

<X,tmq,tmy>

Enrbﬁsorts sd1,...,sd

let s' = {Sd[[sd1'ﬁ
let 3' = 3U<s',@>
let 5' =
let 3" = 3,3
let E

<s',2',E">

opns od ...odn eqns eq
X,e00,5d sdmﬂx} in

in

> in

x[sex,3d in

1...eqpﬂx2ﬁ =

{Od[[od1]]x-_._'i_—'d,...,Od[[oan]xZ'd} in

= {Eqfleq J5"q,...,Eq[eq,]2"d} in

Enr[enrb]]xT = enrich(T,Enrb[enrb]lx signature(T)dict(T))

Enr[[data enrb]]x'_l‘_ =

data—enrich(E_, Enrb[[enrbI]x signature(_'ll) dic t(_'Il) ,X)

k.4, Level IIb: Signature

Syntactic categories

sc : sort change
oc : operator change

sic : signature change
Syntax

sc iz 8, is S€Xq1ye00y8

oc :i= 0, is 08X 1400040

sic ::= sc,o0c

changes

n‘%g sex,
n 1s oex,
e.g.

element is nat,
order is < of Nat

-79-

Semantic functions

Sc : sort-change — signature —> signature —> dictionary
--> (sort - sort)

Oc : operator-change — signature —> signature — dictionary
~—> (operator —> operator)

Sic : signature-change — signature — signature
—> dictionary —> signature-morphism

Semantic equations

Sells; is sex,,...,s, is sex nl22'd' =
K <SexEs1D2d SexEsex]2 d'>,

<Sex[[s J3d,SexOsex J3'd'> }
where d = <Z 2> (the null “dictionary)

Oclo, is oex.,,...,0, is oex]ZZ'd' =
T <OexEo1DZﬁ Oex[oex]Z d'>,

<OexEo 03d,0ex[oex 03'd'> }
where d = <Z 2> (the nufl “dictionary)

Siclsc,0cl33'd" =
let f = Sclse]33'd' in
let g = OchcDZZ d’ in
" make signature morphism(Z,f,g8,2")
(where make_signature morphism(z f,8,2') is the
signature morphlsm <f,g>: 2—92 with g,5 the set of
all pairs <e,v>eg such that weZ)

4.5. Environments

Reference has already been made in the definition of based
theories to an environment of theories. In that case we were
referring to the constant theory environment, only one of the three
environments we will need. This is simply a map binding names to
based theories. The other two environments store metatheory and
procedure bindings; the metatheory environment is again a map from
names to based theories, while in the procedure environment each
name 1is bound to a value consisting of a based theory (the

procedure) together with a list of based theories (the metasorts).

We define several operations on these environments. The

-80-

operation

bind : name x value x environment —> environment

returns an environment with an added association between the name

and value given (the type of value depends on the environment).

Similarly,

bind : name-list x value-list x environment —> environment

binds a list of names to the corresponding elements in a list of

values.

The retrieve operation finds the value bound to a name in the
combined constant theory and metatheory environment and constructs
the corresponding based theory. Both environments must be checked
because there is otherwise no way of telling whether a name refers
to a constant theory or a metatheory. In case it refers to a
metatheory, a new tag must be provided for use in retagging sorts
and operators in the result. The procedure environment is accessed

simply as a map, so no retrieve function is needed for it.

retrieve : name x const-environment x meta-environment x tag
— based-theory

retrieve(N,P,%,x) = Tgy«n,Ty where Tp = P(N) if Nedomain(P)
apply (<F(N),<>>,<>,x) if Nedomain(})

retrieve gives an error if N is in neither or both domains
The apply operation is used to construct the result in the case of a
metatheory, as discussed in section 3.

The restrict operation restricts an environment (or the mini-
environment found in the base of a theory) to a subset of its

domain.
restrict : environment x name-set — environment

This operation is useful for removing locally declared theories at

the end of their scope from the bases of theories they have been

used to build.

..81_.
4.6. Level III: Theory building operations

Let T be a countably infinite list of distinct tags. This is
where the tags required by the representation discussed in section 1
come from. The functions

hd : tag-list —> tag

tl : tag-list — tag-list
split : tag-list x nat —> (tag-list) -sequence

are defined by the following axioms:

hd [x1 Xy o«] = x4

t1 [x1 X5 ¢ o o] = [x2 o o .]

split [x1 Xy + o .] = [x1 X4y Xopsq o o o 1,
X2 Xn+2 *2n+2 ¢ - ¢ s

[xn Xon Xap v o]

Syntactic categories

P : procedure name (capitalised jdentifier)
e : expression
spec : specification

Szgtax

i theory enr endth

| el + e2

| enrich e by enr enden

| derive enr using e,,...,e, from e by sic endde
I —_—
|

I

|

I

P(e1rlc1], cee,€ [slcn])
let T = in e,

‘copy e u31ng €qy-ees€p

const T = e apec
meta M = e spec

l
i
%
| proc P(T1:e1,.. y T8 n) = e spec

e.g. const Bool = theory ... endth
meta Triv = theory ... endth
proc StrlngEX :Triv) = theory ... endth

String(Bool{ element is bool])
Values
T : based theory
@ : constant theory environment (name —> based-theory)
P : metatheory environment (name —> based-theory)
W : procedure environment (name —> based-theory x based-theory)
L : tag-list

-82-

Semantic functions

E : expression — environment —> metatheory-enviromment

~—> procedure-environment —> tag-list —> based-theory
Spec : specification —> enviromment -3 metatheory-environment

— procedure-environment —> tag-list —> based-theory

Semantic equations

E[T oy = retrieve(T,Q,},hd(L))

E[theory enr endth]QWL = %nr[enr]hd(L)%
§ is the empty based theory)

EEe1 + e%yeuWL =

= gplit(L,2) in
=3I]]s?m, + B[e, 0,

Efenrich e by enr enden]leV™L = Enr[enr]hd(L)(EEe]PP‘tl(L))

E[derive enr'using e;,...,e, from e by sic endde]|OF"L =
let Ly,.ee Ly = split(L,n+1) in
let T = E[e1xj]€Fn1 + voo + E[e JloP"L, in
let T' = Enr[enr]T hd(L_,y) in
let T" = E[eflop® t1(Lp,4) in
let o = 810[310]31gnature(T)signature(T")dlct(T) in
derive(T',o,T")

E[P(e1[sic1],...,e [sic,]) JoyL =
let Ly,..e,Lyyy = split(L,n+1) in
let Ti,...,T, = E[[e1]](>u"L1,...,Eﬂ:e Jepw in
let <T,<Ty,...,T>> = ®(P) in
let T gyeesyC
Slcmglc1]81gnature(T)signature(T;)dlct(T),
Sic[[sic]31gnature(T)signature(T,)dlct(gn) in
apply(<T, <1, ,...,T >>,<KT1,0 4>, o ey KT, 07y >y d(L 1))

Eﬂ:let T = e1 _J_£ 62]191’1'1; =
let L,,L, = split(L,2) in
let T = E[e) JOR"L, 1in
let ' = bind(T,T,P) in
let Ty = E[e,]0'#™L, in

Eiestrict(B,domain(B)—{T})

E[copy e using R BPP'L =
let Ly,..o,L = split(L,n+2) in
let T = Efe :ﬁll‘mﬂ in
let 7' = Efe, Jew, + ... + E[e JoW . 12
copy(T,T',hd(Lp,o))

-83-~

spec[eJep . = E[eJopmL

Spec[const T = e spec]] L =
l?ET], = split(L 2) in
let o' = bind(T Eﬁ Jep™L,,e) in
Spec[[specl]e

Spec[[meta T =e spec]]()}"'L =

]. = splltE[L ,2) in

let p' ="bind(T,E[e]leb™,,p) in
Spec[[specl]eu "'LZ

Spec[[p_roc P(T1:e1,...,Tn:en) - e spec]]e]»l"L =
let Ly,...,L 4o = split(L,n+2) in
let 7,,...,7 = E[e,Jop™L,,... ,E[e Jop™L in
let o' = b1nd(<T1,.. T2 <Tyyeee,I>,0) in
let Ty = EleJo'p™ , in

' =
(let bind(P, <Trestrlct(B domaln(B) {T1 ,...,Tn})'
<Tyyeeen IO, ¥) in

spec[[spec Jop»' Ln+2) if {T ...,Tn}gdomain(B) else error

The denotation of a specification spec in the initial

environments @, P, W is then given by the value of Spec[[specl]e}l"n‘

(recall that T is an infinite supply of distinct tags).

Consider the following procedure declaration:

proc Silly(X:Triv) = Bool

Because the body of this procedure does not include its metasort,

the final equation above yields an error. An earlier version of the

semantics (see [Sannella 1981]) did not produce an error in such

cases, treating the above declaration as equivalent to:

proc Silly(X:Triv) = Bool + X

-84-

5. A 'nonprolific' semantics

The semantic equations in the last section complete a new
semantics for Clear which yields exactly the same denotation for any
specification as the semantics given by Burstall and Goguen [1980]
(except for corrections to minor errors and the new metatheory
notion). Although the language it defines is a convenient tool for
writing specifications, it possesses at least one very annoying
characteristic, as described below. A revised semantics without
this characteristic is described here; only a few changes to the
existing semantics are required. This demonstrates how easily the
semantics can be changed to accommodate new features, as well as

providing the semantics for a useful new version of Clear.

An essential feature of Clear 1is the fact that different theories
(say, A and B) can share subtheories (say Bool) so that the
combination A + B has only one copy of Bool. But consider the
following specification:

const A = enrich Set(Bool[element is bool]) by ... enden
const B = enrich Set(Bool[element is bool]) by ... enden

Unfortunately, the combination A + B will have two copies of the
theory Set(Bool[element is bool]). In general, each application of
a procedure will give a fresh copy of the resulting theory and so in
the specification above Set(Bool[element is bool]) is not a shared
subtheory. This is called 'proliferation' by Burstall and Goguen
[1981]. It 1is due to the definition of the semantic operation
'apply' in section 2; in particular to the use of the retag
operation to give each of the new sorts and operators contributed by
the procedure a new tag. Proliferation is clearly not desirable and

therefore a 'nonprolific' semantics would be an improvement.

At first glance it might seem that the solution is simply to
leave out the retagging of new sorts and operators, leaving the tags
alone. But this is not quite right; the theory

Set(Bool[element is bool]) + Set(Nat[element is natl])
would then have Jjust one copy of the sort 'set' (this would be in

effect the theory of sets containing both bool and nat, so the term

-85~

{true} U {3] would be well-typed). The proper modification is to
have apply change the tags of new sorts and operators in the
procedure to a value which describes the application in question;
this requires that tags like Set(Bool[element is bool]) be permitted
as well as the usual names like Bool and J37. Here is the
appropriate modification to the definition of apply (in section
2.5):

apply : (based-theory x based—theory')

x (based-theory x signature—morphism)‘ —> based-theory
apply((fBP,<§ﬂ1,ECM1>BM1...<2ﬂn,ECMn>BMn>,<£4,m1>...<én,mn>)

+ ... + A+ ((P retagged with Ptag preserving Sold)
altered by m,U... Um,)pp

= Ay

where 2old = 3M;VU... UM U\ TySeppSignature(TN)
BP' = {<N,TN altered by m,VU...Um> | <N,TN>€BP}
and Ptag is the tag
<£BP'<ZM1'ECM1>BM1"‘<§Mn'ECMn>BMn>'<ﬂ1'm1>"‘<ﬁn'mn>

This tag looks alarming, but it is simply the parameter list of the
apply operation. Consequently, the result of apply will be the same
when (and only when) it is applied to the same parameters. The
above definition includes a modification to alter the theories in
the base of the result according to the fitting morphisms. This is
necessary for cases where the procedure includes an application of
another procedure to the formal parameter, as changes below cause

the result of that application to appear in BP.

The level III equation which gives the semantics of procedure
application must now be altered to include the application in the
base of the result (see section 4,6 -- only the final line of that

definition has been changed):

EEP(e1[sic1],...,en[sicn])BPF'L =
let Ly,eee Ly = split(L,n+1) in
let T;,...,T. = E[e, Jop™,,... ,E[e JOP™ in
let <T,<Ty,...,T,>> = ¥(P) in
let 61,...,0
Sicﬁgic1ﬂsignature(24)signature(gj)dict(zj),
Sicﬂsicnﬂsignature(gn)signature(gé)dict(g;) in

let Tp = apply(<T,<T1,...,Tn>>,<<g'_1,<r1>,...,<gn,<yn>>) in

Iﬁt’(?(e1[sic1],...,en[sicn]),zi >

-86-~

This change is necessary because the 'apply' semantic operation
requires that all shareable subtheories of a theory be recorded in
the base of that theory (they are needed to form Jold), and the
theory which results from application of a theory procedure to some

arguments is shareable because of the previous changes.

A fortunate by-product of the above change is that metatheories
automatically become nonprolific along with theory procedures, since
the semantics of both wuse the same apparatus (recall that
metatheories can be thought of as parameterless procedures).
Because of this, the semantics of procedures must be changed
slightly; the problem is that in a theory procedure such as the
following:

proc P(X:Ident,Y:Ident) = .
the two metasorts merge into a single copy of Ident. The solution
is to make a new copy of each metasort (excluding the subtheories in
their bases) when a procedure is declared. The semantics of
procedure declaration becomes:

Spec[[proc P(Ti:eq,...,T ie,) = e spec oW =

let Ly,...,L .5 = split(L,n+2) in
let Ty,...,T = copx_meta(E[e1]€P'tl(L1),hd(L,)),...,
copx_meta(EEenBGP'tl(Ln).hd(Ln)) in
let ' = bind(<Ty,...,T >,<T,,...,T>,p) in
lsi.!ﬁ = EEGBP'F'Ln+1 in
(let ¥ = bind(P,<Tregtrict(B,domain(B)-{T,, .., T })’
<Ty,...,1.>>,%) in
Spec[spec]@P"Lu+2) if {T1,...,Tn} domain(B) else error

where copx_meta(IB,x) =
(T retagged with x preserving 2old)g

where 3old = <N’TN>eBsignature(TN)

Level I of the semantic equations is concerned with providing a
meaning for sort and operator expressions such as 's of T'. Only a
slight modification is now necessary to extend the semantics to
expressions like 's of P(A)'. To extend sort expressions (operator
expressions are handled in exactly the same way) the level I BNF

syntax must be augmented:

-87-

sex :iz=8 | sof T | sof P(e1[sic1].....en[sicn])

The semantic equation for the new alternative is nearly identical to
the one which handles 's of T':

Sex([[s of P(e [sic1]....,en[sicn])DZd =
sd(s,P(e1[sic1].....en[sicn])) where <sd,od> = d

The notion of dictionary needs no change, provided that expressions
of the form P(e [sic;],...,e [slc,]) are permitted as theory names.
The base of the result of a procedure application already includes
bindings to such names, as a result of the earlier change to the

level III equation giving the semantics of procedure application,

The modification just described has the defect that the procedure
application in an expression 's of P(e1[sic1].....en[sicn])’ must be

syntactically 1dentical to the expression P(e1[sic1],....en[sicn])

which originally 'generated' the required sort (and similarly for
operators). Slightly better would be to bind the appropriate theory
in the base of the result of a procedure application to a semantic
object combining the denotations of the procedure P and each of the
theory expressions ey and signature changes sicJ. The semantic
equations for sort and operator expressions would then need to
determine the denotations of procedures, theory expressions and
signature changes, requiring them to be supplied with the current
environment of procedures and theories (which 1in turn requires these
environments to be made available to all the semantic equations of
levels IIa and IIb). The necessary changes are not given here; they
are routine although widespread, affecting nearly all of the

Semantic equations.

~-88~
6. A generalisation
In section I.1.3 two extensions to Clear were discussed (error

Clear with error operators and error equations in addition to the

usual (OK) operators and equations; and conditional Clear with

conditional equations) and several more such extensions were
mentioned briefly. It was revealed that Clear can be regarded as a
family of languages, where the notions of signature, signature
morphism, axiom, algebra and satisfaction are not necessarily as
defined in chapter II but vary from one language to another. Any
choice for these five notions is satisfactory as long as a few
conditions hold (it must be possible to 'put together' signatures
and the definitions must satisfy certain consistency conditions).
Any such collection of notions is called an institution, and the
semantics of (most of) Clear can be described without reference to a
particular institution. This will be done in chapter V, where the

notion of an institution will be formalised,

The semantics just described does not work under an arbitrary

institution; it is a semantics of ordinary Clear (the 1language

described in chapter I). 1Its advantage lies in being very concrete
and easy to understand, But it 13 easy to see that the semantics

does not depend at all on the definition of:

- Axioms: We require only the existence of a map
T :z-axioms—$2'-axioms for every signature morphism
o: —9;'. The discussion of data constraints in section
II1.5 relies on axioms being equations, but the more
abstract discussion in {Burstall and Goguen 1980] 1is
equivalent and does not rely on the form of axioms.

- Algebras and satisfaction: The only réferences to
algebras and satisfaction in the semantics are in the
definition of the closure operation (on sets of equations
ang constraints), in the definition of data-enrich (where
EC” is EC together with all the equations which are true
about the equality operators on sorts in the set S) and in
the discussion which justifies the definition of derive.
These depend not on the particular notion of algebra and
satisfaction but only on the validity of the Satisfaction
Lemma (section II.3).

So far, this is the same freedom as allowed by an institution;

there the Satisfaction Lemma must hold as well. The difference is

-89-

that the semantics presented in this chapter does depend on the
notions of signature and signature morphism, while an institution
permits wuse of any cocomplete category of signatures. This
dependency is a consequence of our use of the tagging trick in
representing theories, But in fact the semantics does nol rely on
the exact definitions of signature and signature morphism, but only
on the following features of their definitions:
- Signatures must be sets (or collections of sets). The
definition of enrich and data-enrich here are dependent on
the exact structure of signatures, but it would be easy to
give appropriate definitions for any notion of signature.
The equality operators added by data rely on the existence
of sorts, but these are not a vital feature of the

semantics and cannot be included for an arbitrary
signature in the 'institutional approach' either.

-~ Signature morphisms must be functions (maps) between the
source and target signatures.

In addition, the tagging trick for representing theories with
sharing depends on the following:
- Enrichments must be inclusions (in the institutional
approach enrichments may be arbitrary theory morphisms).

Section 2 of this chapter (defining the semantic operations) could
easily be rewritten for Clear under any institution satisfying these
restrictions. The result would not be very much different from what
appears here; only the definitions of enrich and data-enrich would
change noticeably (since the remaining definitions are in terms of
operations like signature union and the image of a signature under a
signature morphism). Sections 1 and 3 would remain unchanged, being
independent of the definitions of signatures and their morphisms,
The semantic equations of section 4 would need to be changed
substantially, for the syntax of a language 1s naturally very
dependent on the entities it manipulates. But the level III
equations and the definition of environments would survive intact.
The semantics 1s given here for the special case of ordinary Clear

in order to make it easy to understand.

It is enlightening to see how restrictive the extra conditions on
signatures, signature morphisms and enrichments are. Perhaps
surprisingly, every one of the institutions which has ever (to my

knowledge) been proposed for Clear satisfies these extra conditions.

-90-

- Error Clear: Signatures include an extra set containing
error operators. Signature morphisms map sorts to sorts,
OK-operators to OK-operators, and error-operators to
error-operators. Error equations must be distinguished
from OK-equations. Algebras and satisfaction are as
described in section I.1.3; see also [Goguen 1978].

- Order-sorted Clear: The sort and operator sets of
signatures have extra structure —-- the sort set is a
strict lower semilattice, and the operator set respects
coercions Dbetween sorts. Signature morphisms must
preserve this structure, Equations, algebras and
satisfaction are as defined in [Goguen 1978al.

- Polymorphic Clear: The sort set of a signature contains
sort generators -- a normal sort like nat is a nullary
sort generator; list 1is a unary sort generator. These
generators give rise to a (possibly infinite) set of sorts
(sort terms, e.g. {(nat, list(nat), list(list(mat)), ...}).
Operators may be polymorphic, so their arities are tuples
of sort terms (which may contain variables). Signature
morphisms map sSort generators to sort generators and
operators to operators; they must preserve the structure
of signatures. A polymorphic algebra has a carrier for
every (variable-free) sort term and a function for every
instance of a polymorphic operator. Equations may be
polymorphic, in which case an algebra satisfies an
equation 1if the equation 1is satisfied for every type
instance.

Other examples are conditional Clear (section I.1.3), higher-order
Clear (see [Dybjer 1981)), continuous Clear (see [Goguen, Thatcher,

Wagner and Wright 1977]), and predicate-calculus Clear (see
[Burstall and Goguen 1981]). The version of Clear whose
implementation is described in chapter IV is a combination of error

Clear, conditional Clear and predicate-calculus C(lear, with some

further extensions.

Are there any useful institutions which do not satisfy the extra
conditions? It is not difficult to think of a cocomplete category
which does not satisfy the conditions -~ for example, the natural
numbers form a cocomplete category, where there is a (unique)
morphism n—m iff n<m (we ignore the fact that natural numbers can
be represented as sets so that the extra conditions are satisfied)
-— but it is hard to imagine a useful specification language using
natural numbers for signatures, It may be that the greater
generality of an institution is not useful in practice, but it is

also possible that there is some undiscovered useful version of

-91-

Clear in which signatures and their morphisms do not satisfy our

extra conditions.

There is at least one useful non-institution which satisfies our
conditions. If signature morphisms in polymorphic Clear are
generalised so that sort generators can map to sort terms containing
variables (not just other sort generators) then signatures cannot be
'put together' in the required way (that is, the resulting category
of signatures is not cocomplete) although all the conditions given
above are still satisfied. This 'extended polymorphic Clear' seems
more natural than ordinary polymorphic Clear. For example, if T is
a theory of polymorphic lists (including the nullary sort generator
'nat' and the unary sort generator 'list') and z is a signature for
stacks of natural numbers (including the nullary sort generator

'stacknat'), then in extended polymorphic Clear we can write:

derive 2 from T by o

where o = [stacknat+~>list(nat), ...]. This 1is not allowed in
ordinary polymorphic Clear. Burstall and Goguen's [1980] semantics
could be modified to permit generalisation to extended polymorphic
Clear (the category of signatures really need only have an initial
object, coproducts and a funny kind of asymmetric pushout -
arbitrary colimits are not required) but much of its elegance would

then be lost.

~-92-

CHAPTER FOUR
AN IMPLEMENTATION OF CLEAR AND SOME SPECIFICATION EXAMPLES

In this chapter an implementation of Clear is discussed along
with some of the specifications it has been used to process. This
implementation is somewhat unusual in that it is (with the exception
of a parser and a typechecker) a direct translation into HOPE of the
denotational semantics of Clear described in the last chapter. This
approach to language implementation 18 similar to that of Mosses
(1976]) who has developed a system which carries out the translation
from denotational semantics to a lower-level language automatically.
Although such an approach results in an implementation which may be
inefficient (compared with a 'normal' implementation) it is nearly
guaranteed to be correct because it is only a short step away from

the formal definition of the language.

It 1s important to stress exactly what 1is meant by "an
implementation of Clear". Before Clear was invented, in order to
specify a problem we would have to write down a theory explicitly —
for a large problem this is a long list of sorts, operators and
axioms. Such a theory can be described in Clear in a highly
structured way as the combination (using theory-building operations
like combine and apply) of a number of small theories. The
semantics of Clear specifies the correspondence between such a
structured description and the theory it describes. An
implementation of Clear is then a program which takes a Clear
specification to the theory it denotes, checking in the process that
the syntax and types are correct. Since the set of axioms in the
resulting theory may be infinite, the program cannot represent it
explicitly; such sets will be described using a very simple
language. Although a data constraint gives rise to inequalities and
an induction rule (section VI.3), the implementation does not

perform the conversion.

An implementation of Clear is useful for a variety of reasons.
First, when the implementation is a direct translation of the

semantic definitions it can be wused to debug the definitions

-~93-

themselves; the semantics of any real language is large and complex
enough that errors are bound to crop up. In fact, several minor
errors were discovered in an earlier version of the semantics of
chapter III during testing of its implementation, and the
implementation of Clear's category-theoretic semantics (chapter V)
uncovered a serious error in Burstall and Goguen's [1980] original

semantics, as discussed in section III.3.

A second use for an implementation would be 1in checking
specifications for syntactic and semantic errors. Although an
important goal of any specification language is to permit theories
to be easily described, mistakes are always easy to make. Some
errors are difficult for an implementation to catch (and of course
an implementation of the semantics cannot determine if a
specification has the class of models intended by its author), but
still it 1is comforting to know that a specification contains no
glaring mistakes -~ this is similar to the peace of mind a HOPE
programmer (or a programmer in any other strongly typed language)
has when a program survives the typechecker's inspection without a

fault being discovered.

A third use for an implementation 1is simply to produce
denotations of specifications. These can be inspected by the user
to find out whether the result is as expected, or else used by a
theorem proving 3ystem (see chapter VI), a program development
system (see chapter VII), a program verification system, or for any

other purpose which requires specifications as input.

The Clear implementation is described in section 1. The intent
was to provide a practical implementation capable of being used for
the purposes described above. Some features are therefore supported
which make specifications easier to write but are not mentioned in
the semantics (errors, conditional equations, quantifiers and
typechecking). These are provided with an informal semantics based
on the semantic definitions of chapter III. The remainder of the
chapter is devoted to three specification examples, all of them

large enough to provide a challenge to the Clear system.

-94-

1. Implementation
The Clear implementation is composed of three parts: a parser, a
typechecker, and a semantic component (a fourth part -- a theorem

prover -~ is discussed in chapter VI).

Semantic Theorem

?grse;) —_— component —_— prover
oP- (HOPE) (ML/LCF)

l 1

Typechecker
(POP-2)

The parser is adapted from David MacQueen's parser for HOPE, written
in POP-2. It parses the language described by the grammar of
section III.4 (with a minor addition -~ "T enriched by Enr" is
permitted as an alternative to "enrich T by Enr") and also provides
facilities for the declaration and wuse of ‘'distributed-fix'
operators as in HOPE and OBJ [Goguen and Tardo 1979]. Distributed-
fix operators are declared in the same way as normal operators, but
with their special syntax displayed (surrounded by parentheses):
opns f : nat,nat -> nat
+) : nat,nat => nat

(
(if _ then _ else _) : bool,nat,nat -> nat
if n==0 then m+3 else (m+n) = f(n,m)

eqgns

As shown, such operators may be used in equations once they are
declared. It is not possible to give a distributed-fix operator a
special precedence; for this reason the parentheses in the left-hand
side of the equation above are unavoidable, as + cannot be given a
higher precedence than else. The name of a distributed-fix operator
(for use in signature changes in derive's and ©procedure
applications) is the leftmost identifier in its declaration (so +
and if are the names of the operators declared above). A comment
may appear anywhere in a specification preceeded by an exclamation

mark (as in POP-2 and HOPE).

The typechecker is adapted from another piece of the HOPE system
-- David MacQueen's polymorphic typechecker with facilities for

~95~

resolving occurrences of overloaded operators. Polymorphic types
are not allowed in Clear, so the full facilities of the typechecker
are not needed. But if the system is ever extended to allow
polymorphism (as described in section III.6) the same typechecker
can be used without modification. The Clear system does make use of
the facilities for resolving overloaded operators; this allows the
user to write equations without using qualified operators (such as
"o of T") except in the rare cases when the equation would otherwise
be truly ambiguous. The user 1s also not required to supply the
types of variables in equations, since the typechecker can determine
them automatically (but variable declarations can be given 1{f
desired, and they are occasionally needed to help resolve

overloading).

The semantic component consists of the semantic definition of
Clear in chapter III translated into HOPE. This is the heart of the
Clear system -— the parser serves as a front end to the semantics,
and the typechecker extends the semantics to provide automatic
resolution of overloaded operators. Of course, both the parser and
the typechecker also report any errors they discover, providing a
valuable error-checking facility. Two versions of the system exist;

one is prolific and the other nonprolific (incorporating the changes
described in section III.5).

The translation from the mathematical definitions of chapter III
to HOPE was a straightforward task. A function newname (which
produces a unique name each time it is called) was added to HOPE to
generate the tags used by the semantics. Strictly speaking, this
addition renders HOPE nonapplicative but it is far more convenient
than alternative ways of generating unique names. The only major
problem to be solved in translating the definitions was how to
represent and manipulate closed sets of equations and constraints in
HOPE, given that:

- A closed set of equations and constraints will normally be
infinite.

- The closure operation is defined model-theoretically.

- No complete proof system exists for Clear (see section
VI.5).

-96-

Faced with such insurmountable difficulties we are obviously unable
to give any explicit representation of a closed set of equations and
constraints. Such sets can only be described using some language

which must be left uninterpreted for the moment.

This matter is discussed at somewhat greater length in chapter
VI, where the problem of interpreting such a representation
(determining if a given equation is in the infinite closed set thus
described) is addressed. A closed set of equations and constraints
may be represented as an agglomerate, a value of a data type with
several uninterpreted constructor functions. An examination of the
semantics reveals that five constructors suffice for the
representation of all necessary values. Two constructors are used

to represent the result of the combine operation:

union : agglomerate x agglomerate —> agglomerate
translate : signature-morphism x agglomerate —> agglomerate

The first produces (an agglomerate representing) the closure of the
union of two closed sets, and the second produces (a representation
of) the closure of the set which results from applying a signature
morphism to each equation and constraint in a set. The enrich
operation needs the closure of a (finite) set of equations and

constraints:
close : equation-set x constraint-set — agglomerate
Derive requires the inverse image of a set under a signature

morphism:

inv-translate : signature-morphism x agglomerate —> agglomerate

And data-enrich needs the result of adding to a set all equations
which are true about the equality predicates on a set of sorts (see
section III.2.3 for details -- for the purposes of the theorem
prover described in chapter VI we record the signature inclusion

G:zf—ézi rather than the set of sorts S and the tag x):

add-equality : signature-morphism x agglomerate —> agglomerate

The Clear semantics program does not wuse these constructors

-97-

directly; instead it wuses functions which apply the appropriate
constructor and then simplify the result. Only a few

simplifications are applied, such as:

translate(o,translate(o',A)) = translate(o'.o,A)

Care is taken not to disturb the structure of agglomerates, since
the theorem prover described in chapter VI employs heuristics which
make use of this structure. We postpone the presentation of the
formal semantics of agglomerates until then; the informal meaning of
each constructor as given above should be enough for now. An

alternative name for an agglomerate would be structured theory,

because an agglomerate displays (in 'flattened' form, with procedure
applications removed) the structure of the original C(Clear
specification. An ordinary (data) theory (chapter II) contains only

a set of equations and constraints.

In developing the Clear system the intention was to provide a
practical system for writing and checking specifications which could
some day be incorporated in a program development or program
verification system. It is vitally important that specifications be
easy to write and understand, and that the specification language
itself possess a well-defined semantics. Clear satisfies the latter
goal, but not always the former; its limitations make it rather
difficult to write some specifications. The system therefore
supports several extensions which make specifications easier to
write but are not mentioned in the semantics. As each one of these
is described below it is provided with a (sometimes informal)

semantics to justify its inclusion and explain its meaning.

Errors

Error operators and error equations are allowed along with
ordinary (OK) operators and equations. This extension and 1{its
semantics has already been discussed in sections I.1.3 and III.6,

and is discussed at greater length in [Goguen 1978].

-98-

Conditional equations

Besides the usual equations, conditional equations such as the

following are allowed:
a is_in singleton(b) = false if not(a==b)

The condition must be a bool-valued ternm. Semantically, the
conditional equation t1=t2 if ¢ 1is equivalent to the ordinary
equation cond(c.t1.t2)=t2. where cond:bool,s,s->s (for any sort 8)

is a 'hidden' operator defined by the equations:
cond(true,a,b) = a cond(false,a,b) = b
Conditional equations have already been discussed in section I.1.3.

Multilevel binding

This 1is a convenience borrowed from HOPE (section A1.3). A
variable may be bound to the value of any term in an equation to

save writing the same term a second time, for example:
insert(R1 & insert(R,a,b), a, b) = R1

or alternatively:
insert(R1,a,b) = R1 where R1 = insert(R,a,b)

rather than insert(insert(R,a,b), a, b) = insert(R,a,b). This is a
purely syntactic feature; the sSystem removes sSuch bindings
immediately after parsing an equation containing them by replacing
each occurrence of the variable with a copy of the term. A variable
can only be so bound once in an equation, and may not itself appear

in the term to which it is bound.

Don't care variables

This is another feature borrowed from HOPE. Any variable which

appears only once in an equation may be replaced by an underscore to

-99.
save thinking of a name. The system replaces each underscore by a

uniquely generated variable name. The following two equations are

therefore equivalent:

isempty(push(_,)) = false

isempty(push(v291,v292)) = false

Quantifiers

Equations may include existential and universal quantifiers, for

example:
even(n) = exists m, (2 * m) == n

prime(n) = n>! and forall m, p. (1<m and 1<p) -=> not(m*p == n)

The condition of a quantifier must be a bool-valued term, and the
result of a quantifier has type bool. It is easy to extend the
formal notion of equation and satisfaction (section 1II.3) to

equations with quantifiers.

The system does not permit the use of quantifiers within data
enrichments. As noted in [Burstall and Goguen 1981], a data
enrichment of T in which quantifiers are included does not always
give rise to free extensions of models of T. If quantifiers are used

only outside data enrichments this is not a problem.

The prohibition on quantifiers within data enrichments could be
relaxed. Bergstra, Broy, Tucker and Wirsing [1981] describe a way
of coding quantifiers in ordinary Clear with equations using an
auxiliary operator. The only restriction is that quantification
must be over a previous 'data' sort; that is, a quantifier within a
data enrichment is safe as long as the quantified sort is not one of

those being added in the current enrichment.

Furthermore, note that the conditional equation:
t = t' if exists x. p(x)

is equivalent to:

~100-

t =t' if p(x)

if x does not occur in t or t'. Existential quantifiers of this
special kind are therefore safe anywhere, even within the data
enrichment which adds the quantified sort. Neither of these two
exceptions to the exclusion of quantifiers within data enrichments

is recognised by the system.

Typechecking

The user 1is not required to provide variable declarations in
equations, or to use unambiguous operator names in equations and
signature changes. As already discussed, the typechecker includes
facilities for resolving overloaded operators which may be used to
disambiguate almost every reference to an overloaded operator. The
typechecker can also determine the types of variables automatically,

although the user may supply them if desired.

The semantics must be changed slightly to take advantage of the
facilities for disambiguation offered by the typechecker. An
operator name no longer denotes a single operator; it denotes the
set of all operators available with that name. The question of
which operator in the set is the right one is postponed until an
equation or signature change has been assembled. The typechecker is
then applied; it selects the appropriate operator from each Sset
based on the type information available from its context, yielding

an unambiguous equation or signature change.

But what if the equation or signature change is truly ambiguous,
and the typechecker 18 wunable to select a single appropriate
operator from a set of well-typed possibilities? The obvious course
is to give an error message, telling the user that he must provide
more information (a variable declaration for example).
Unfortunately, there are some cases in which Clear does not provide
any way of unambiguously referring to a certain operator (or sort).
For example, in the theory

Set(Set(Nat[element is nat])[element is set]

there are two sorts called set and two operators

-101-

(_ U _):set,set->set. One of these sorts (and one of the operators)
may be unambiguously referenced using the expression "set of
Set(Nat(element is nat])" (respectively "y of
Set(Nat{element is nat])") in nonprolific Clear, but there is no way
of referring to the other sort (and operator). Another instance of
the same problem occurs in the specification example in section 2.2.
The solution adopted by the Clear system (the prolific version only)
is to select the operator with the largest tag (that is, the most
recently 'created' operator, since each tag includes a number and
tags are issued in increasing numerical order) whenever there is a
choice between several otherwise 1identical operators. The Ssame
policy 1is used to select a sort when the reference given {s
ambiguous. There 1is some logic in this choice; it should be easier
to refer to a recently created object than to an older object with
the same name, 30 in case of ambiguity it is natural to assume that
the most recently created object was intended. 1In the example just
discussed, the names set and U will refer to the otherwise

unnameable sort and operator. A warning message 1s produced

whenever this policy is applied.

The user is also not required to fully specify signature changes,
since in almost every case a signature change is nearly the identity
map, with Jjust a few sorts and operators mapping onto different
objects. The system will 'fill in' signature changes, mapping each
sort and operator left unmentioned in the source signature onto the
same object in the target signature; if this fails then it is mapped
onto an object in the target signature with the same name but a
different tag, using the disambiguation policy mentioned above if

there is more than one choice. If there is still no match then the

System reports an error.

Theory library

The Clear system includes a library of basic theories which the
user may find useful in writing specifications. The 1library is
listed in Appendix 2.

-102-

The Clear system occupies 149K words on a DEC KL-10 computer (the
HOPE system itself occupies 66K words of this total, and the built-
in theory library occupies another 32K words). The timing figures
given after each example in the next section provide a measure of
the system's performance. Parsing and typechecking typically
account for about 6% of the processing time, with the remainder
consumed by the semantic component. Specifications may be typed

directly into the system or else read from files.

The system could be made much faster and smaller by recoding in a
lower-level language (such as BCPL) with some attention paid to
efficiency. It should be possible to process specifications at
least as rapidly as a typical compiler can process programs, since
there is nothing very complex about the computations required. The
program is slow because it is written mostly in HOPE; apart from the
speed of HOPE itself, the interfaces between the HQOPE portions of
the program and the remaining portions (parser, typechecker and

theorem prover) contribute to its sluggishness.

~103-

2. Examples
The following subsections contain three specification examples
which have been processed by the Clear implementation described in
section 1, The first and third examples were processed by the
nonprolific version and the second example by the prolific version
of the program (but without the theorem prover discussed in chapter
VI) which failed to detect any errors. This does not ensure that
the specifications have the intended classes of models, but only

that their syntax and types are correct.

The examples are presented only as sample specifications;
although the problems are interesting in themselves, the discussion
which accompanies each example concentrates on very briefly
describing the specification and dealing with the problems of style
which arise. The time which was required to process each

specification is given to provide some indication of the system's

performance.

2.1. Length of the longest upsequence

This problem comes from a set of Specification and program
development tasks [IFIP WG 2.1 1979] circulated prior to the
December 1979 IFIP WG 2.1 meeting in Brussels. The following

informal specification is taken from that source:

Given a sequence of n integers, ags @3y ... 8, 4, an
upsequence is a subsequence which 1is ordered in ascending
order. A subsequence is any subset of the original sequence
where the original order is retained (there are 2" possible
subsequences). Ordered in ascending order means that no
element of the upsequence has a right hand neighbor smaller
than itself.

Give an algorithm which, given a sequence, computes the
length of its longest upsequence.

Note that all subsequences of length 1 are upsequences by
this definition.

There may be more than one longest upsequence having the
same length, for example the sequence (3,1,1,2,5,3) yields 4
for the maximum length, realised either by (1,1,2,5) or
(1,1,2,3).

The statement of the problem asks for an algorithm, but a
specification is given instead (an algorithm is given by Dijkstra

-104-~

[1980]). The specification is quite straightforward; an upSequence
is defined as an ordered subsequence, and then a hidden operator
producing any of the longest upsequences of a sequence is used to
specify the 1length of the longest upsequence. The operator 1is
hidden because we do not wish to bias the specification toward
solutions which generate 1longest upsequences; it 1is possible to
determine the length of the longest upsequence without explicitly

generating the upsequence itself.

proc Subsequence(X:Ident) =
enrich Sequence(X) by
opns (_ is-subsequence_of _) : sequence,sequence -> bool
eqns s is_subsequence_of t = exists a, b, x, y.
(a.b==s and x.y==t
and a is_subsequence.of x
and b is_subsequence_of y)

empty is.subsequence.of _ = true
8 is_subsequence_of empty = s==empty
unit(a) is_subsequence_of t =
exists x, y. (x.unit(a).y==t) enden

proc Upsequence(X:POSet) =
enrich Subsequence(X) by
opns (_ is.ordered) : sequence -> bool
(_ is_upsequence_of _) : sequence,sequence -> bool
eqns 8 is.ordered = forall x, a, y, b, z.
(x.unit(a).y.unit(b).z==8 ==> a=<b)
8 is_upsequence_of t = s is_subsequence_of t
and (s is_ordered) enden

proc LongestUpseqlength(X:POSet) =
let LongestUS =
enrich Upsequence(X) by
opns longest_upseq : sequence -> sequence
eqgns length(p)=<length(longest_upseq(s)) = true
if p is_upsequence.of s
longest_upseq(s) is_upsequence_of s = true enden in
derive opns longest_upseq-length : sequence -> nat
using Upsequence(X)
from
enrich LongestUS by
opns longest_upseq-length : sequence -> nat

eqns longest.upseq-length(s) = length(longest_upseq(s))
enden endde

This procedure may now be applied to (for example) the theory of
natural numbers (which includes =<) to specify the length of the

longest upsequence of a sequence of natural numbers:

LongestUpseqlength(Nat[element is natl])

-105~

Processing time: 1.65 minutes.

2.2. Lexical analysis problem

The following problem comes from the same source as the problem
in the last section (see [IFIP WG 2.1 1979]) and the informal
specification below 1s taken from there. The problem bears some
resemblance to a part of the well-known 'Telegram problem' due to
Henderson and Snowdon [1972] but is slightly simpler.

A line consists of a sequence of characters composed of
letters and blanks only. A word 1s a sequence of letters
delimited by blanks or the end of the line. The parse of a
line is the sequence of words, in order, contained in the
line, Give the algorithm for obtaining the parse of a line,
given the line.

Again, a specification is given for the problem rather than an
algorithm. The specification relies heavily on the notion of a
regular expression and the set of strings described by a regular
expression (see [Hopcroft and Ullman 1979]). Regular expressions

are used as a tool to specify the action of the 'parser’'.

meta Classify =
enrich Triv + Bool by

sorts type
opns (_ isa _) : element,type -> bool enden

Permissible parameters for RegExpr will be theories describing a
relation between objects and a set of basic types. The result of
applying RegExpr to such a theory is the theory of regular
expressions over the given types, providing a way of describing

sequences of objects using 'complex' types.

-106-

proc RegExpr(X:Classify) =
Tet RE =
enrich X by
data sorts regexpr
opns empty : regexpr
(' _ ') : type => regexpr
(_U_), (_._) : regexpr,regexpr => regexpr
(_ ") : regexpr -> regexpr
eqns e* = empty U (e.(e*)) enden in
enrich RE + Sequence(X) by
opns (_ isa _) : sequence,regexpr -> bool
eqns 8 isa empty = s==zempty
unit(a) isa 't' = a isa t
s isa 't' = false if not(length(s)=z=1)
S isa (el U e2) = (s isa el1) or (s isa e2)
s isa (el . e2) =
exists s1,32. (s==(81.82) and (81 isa el)
and (s2 isa e2)) enden

CharacterClassify describes a classification of characters into
two disjoint types: separators (blanks) and letters (everything

else). The procedure application:
RegExpr(CharacterClassify(element is character])

gives the theory of regular expressions over these types. One such

regular expression is:
('letter' #*) U ('separator' ¥)

denoting all sequences which contain either letters or separators
but not both. (The operator U is used rather than the usual +

because + is a Clear keyword.)

const CharacterClassify =

let Type =

enrich Bool by

data sorts type
opns letter, separator : type enden lﬂ

enrich Type + Character by

opns (_ isa _) : character,type -> bool

eqns c¢ isa separator = c==zblank

c isa letter = not(c==blank) enden

WordsandGaps defines two special regular expressions which will

be useful in specifying the parser.

-107-

const WordsandGaps =
enrich RegExpr(CharacterClassifylelement is character]) by

opns word, gap . regexpr
eqns word = 'letter' . ('letter' %)
gap = 'separator' . ('separator' %) enden

The specification of the parser below is simple and direct. Gaps
in a sequence act as separators where the result 1is the
concatenation of the parses of the two halves. A sequence without a
gap is either a word (which parses to the unit sequence of words
containing the word itself) or empty. This specification was
processed by the prolific version of the C(lear implementation
because it relies on the 'largest-tag' method (discussed earlier)
for disambiguation of a reference to the sort 'sequence',

const Parse =

enrich Sequence(WordsandGaps(element is sequencel) by
opns parse : sequence of WordsandGaps -> sequence
! result sort resolved by the disambiguation
! method discussed in section 1 (Typechecking)
eqns parse(x.g.y) = parse(x).parse(y) if g isa gap

parse(empty) = empty
parse(x) = unit(x) if x isa word enden

Processing time: 1.04 minutes.

Regular expressions seem to be very useful in the specification
of problems of this kind as they provide quite a high-level way of
describing sequences; this permits very elegant specifications of
sequence-manipulation operators (such as parse above). The idea of
using regular expressions in Clear specifications 1is due to R.M.

Burstall.

2.3. Polymorphic type checking

The specification below describes a polymorphic typechecker for a
Simple applicative 1language. Such typecheckers are used in the
implementation of HOPE (appendix 1) and ML [Gordon, Milner and
Wadsworth 1979]. Informally, the problem is as follows: given an
expression exp in the language Exp generated by the following
grammar (where x is any identifier, function application is denoted

-108-

by juxtaposition, and fix x.e 18 the least fixed-point of Ax.e):

e i:=2x | (e e') | 1f e then e' else e" | lambda x.e
i fix x.e | let x=ze in e!

with some predefined identifiers (of predefined types), assign a
polymorphic type to every subexpression of exp so that the result is
well-typed; 1f no well-typing exists then return an error. The
notion of a well-typed expression is defined in section 3 of [Milner
1978] and depends on the definitions of several subsidiary notions

so 1t 1is not reproduced here except in the specification itself. A

polymorphic type is any of the following:

- a basic type (e.g. bool)
- a type variable

- @ — 8, where @ and B8 are polymorphic types.

Given the following predefined identifiers:
b : bool f:x —« n : num m ! num

this Exp expression is well-typed:

(let g:x—a = fi(ax—a)—>(a—a) (fix—a) @ x—>a« in
“__(12 g:bool—»bool (b:bool) : bool

then g:num—>num (n:num) : num

else m:num) : num

) ¢ num

but this expression is not:

(if b:bool then f:bool—>bool (b:bool) : num
else m:num) : num

(f:bool—bool applied to b:bool gives a result of type bool, not

num),

The 1language Exp and the definition of polymorphic types are
rather simpler than a real language and its types would be. There
is no provision for tupling (and so functions always have one

argument), no type constructors (such as list, which can be used to

-109-

construct types like list(x), list(bool), and list(list(x)—>8)) and
no constants (but we imagine instead that some identifiers are bound
in advance to certain constant values). But the language as it
stands is large enough to expose the main problems arising in a

polymorphic typechecker for a larger language.

The specification is more or less a direct translation into Clear
of section 3 of [Milner 1978]. Some explanation of the notions
defined by the specification is given below, but the careful reader
is encouraged to refer to [Milner 1978] for more background and
motivation. This is the largest specification which has so far been
processed by the (Clear system. Some measure of the usefulness of
the system is given by the fact that it found 19 errors in
successive versions of the specification. The present version may
still contain some semantic errors, but at least it is better than

the first version of the specification.

The typechecking function will be defined 'implicitly'; once the
notion of a well-typed expression has been specified it is enough to
say that for any expression typecheck assigns a well-typing if one
exists. The specification of well~-typed requires a number of prior
notions; the language Exp and a theory of types and typed
expressions is followed by the definition of technical notions

concerning type variable instantiation.

The specification begins with a definition of the abstract syntax
of the language Exp. After giving the theory of identifiers (by a
loose specification -—- any set with an equivalence relation will do)
we specify Exp's syntax using distributed-fix operators for

readability. All Exp keywords are capitalised to avoid conflicts
with Clear syntax.

const Id =
enrich Bool by
sorts id
opns (_ ==) : id,id -> bool
eqns X==x = true
x::y = y==X
X=sy and y==2z --> x==Z = true enden

-110~

const Expr =
enrich Id by
data sorts expr
opns (VAR _) : id -> expr

(APPLY _ TO _) : expr,expr -> expr

(IF _ THEN _ ELSE _) : expr,expr,expr => expr
(LAMBDA _ .), (FIX _ . _) : id,expr => expr
(LET _ BE _ IN _) : id,expr,expr -> expr enden

Next we specify polymorphic types. It is assumed that we are
given an arbitrary set of basic types which includes BOOL; therefore
the theory of basic types is just like the theory of identifiers Id
above except for the name of the sort and the addition of a
distinguished element called BOOL. Likewise, type variable names
are arbitrary and so again we use Id with a change of sort name.
Then a type 1is defined to be either a basic type, or a type

constant, or an 'arrow' type x—8 where « and B are types.

const BasicType =

let T =
derive sorts basictype
opns (_ ==) : basictype,basictype -> bool
using Bool
from Id

by basictype is id endde in

enrich T by
opns BOOL : basictype enden

const TypeVar =
derive sorts typevar
opns (_ == _) : typevar,typevar => bool

using Bool
from Id

by typevar is id endde

const Type =
enrich BasicType + TypeVar by
data sorts type
opns constant : basictype -> type
var : typevar -> type
(_ ===>_) : type,type -> type enden

A typed expression is an expression of Exp with types assigned to

~111-

all its subexpressions. The easiest way to define typed expressions
is to repeat the specification of Exp syntax, adding slots for the
insertion of type information. 1Initial keywords are prefixed with T
to avoid conflict with the distributed-fix operators declared in the
theory Expr; the parser does not permit two distributed-fix
operators having the same initial keyword but different subsequent
syntax. A operator typeof giving the (top-level) type of a typed

expression is defined for the convenience of later parts of the

specification.

The theory TypedExprEq defines another operator which will be
convenient later. It determines if an expression is identical to a
typed expression, forgetting about types.

const TypedExpr =

enrich Id + Type by
data sorts typedexpr

opns (TVAR i _) ¢ id,type -> typedexpr

(TAPPLY TO D I
typedexpr typedexpr type -> typedexpr

(TIF THEN ELSE)
typedexpr typedexpr typedexpr type -> typedexpr

(TLAMBDA _ | _ . _ !), (TFIX _ | _ . _ 1)z
id type,typedexpr.type -> typedexpr

(TLET i BE IN 1)¢

idjfyﬁg,typ;dexpr,typedexpr.type -> typedexpr
typeof : typedexpr -> type
eqns typeof(TVAR _jt) =t

typeof (TAPPLY _ TO _it) = t
typeof (TIF THEN ELSE _it) =t
typeof(TLAMBDA :_ . _:t) =t
typeof (TFIX _| . _it) =t
typeof (TLET _|_ BE _IN_it) = ¢t enden
const TypedExprEq =
let TEE =
enrich TypedExpr + Expr by
opns (_ ==) : expr,typedexpr -> bool

forget : typedexpr -> expr
eqns forget(TVAR xi_) = VAR x
forget(TAPPLY a TO bi_) = APPLY forget(a) TO forget(b)
forget(TIF a THEN b ELSE ci_) =
IF forget(a) THEN forget(b) ELSE forget(c)
forget (TLAMBDA xi{_ . a]_) = LAMBDA x . forget(a)
forget(TFIX xi_ . ai_) = FIX x . forget(a)
forget (TLET x{_ BE a IN b}) =
LET x BE forget(a) IN forget(b)
ex==te = ez=forget(te) enden in

-112-

derive opns (_ == _) : expr,typedexpr => bool
using TypedExpr, Expr
from TEE endde

A (typed) prefix 1is a sequence of items of the form let xit,
fix xit or lambda xit where x is a variable and t is a type.
Initial keywords are prefixed with P to avoid conflict with Expr and
TypedExpr. A prefix can be thought of as a list of bound variables
('most local' bindings are rightmost) which records the way that

each variable was bound as well as its type. A prefixed expression

(pe) is a prefix together with a typed expression. We include an
'error' pe called illtyped for later use. The typechecker will be
defined to take a prefix and an (untyped) expression and return a
well-typed pe - 1illtyped .is the result if it is impossible to
assigned a well-typing to the input expression.

const Prefix =
let PrefixElement =

enrich Id + Type by
data sorts prefixelement

opns (PLET _ | _), (PLAMBDA _ |), (PFIX _ |) :
id, type -> prefixelement enden in

derive sorts prefix
opns empty : prefix
unit : prefixelement -> prefix
(_ . _) : prefix,prefix => prefix
(_ == _) : prefix,prefix => bool
using PrefixElement
from Sequence(PrefixElement[element is prefixelement])

by prefix is sequence endde

const PrefixExpr =
enrich Prefix + TypedExpr by
data sorts prefixexpr
opns (_ { _) : prefix,typedexpr -> prefixexpr
erroropns illtyped : prefixexpr enden

Each prefixed expression has a set of sub-pe's given by the

following rules, together with their reflexive-transitive closure:
- pix has no sub-pe's except itself,

- pi(e e') has sub-pe's pie and ple!',

-113-

p!(if e then e' else e") has sub-pe's pie, pie' and ple",

pi(lambda x.e) has sub-pe (p.lambda Xx)ie,

pi(fix x.e) has sub-pe (p.fix x)le,

pi(let x=e in e') has sub-pe's pie and (p.let x)le.

A sub-pe is thus a subexpression with a prefix consisting of all the
variable bindings which enclose it. We define below a operator
which ylelds the set of sub-pe's of a prefixed expression, where the

types in the sub-pe's are induced by the types in the pe.

const SubPE =
enrich PrefixExpr + Set(PrefixExpr{element is prefixexpr]) by
opns subpe : prefixexpr -> set
eqns subpe(pe & (_ | (TVAR _i_))) = singleton(pe)
subpe(pe & (p | (TAPPLY a TO bi_))) =
singleton(pe) U subpe(pia) U subpe(pib)
subpe(pe & (p ! (TIF a THEN b ELSE ci_))) =
singleton(pe) U subpe(pia) U subpe(pib)
U subpe(pic)
subpe(pe & (p | (TLAMBDA xit . ai_))) = singleton(pe)
U subpe(p . unit(PLAMBDA xit) | a)
subpe(pe & (p | (TFIX xit . ai_))) = singleton(pe)
U subpe(p . unit(PFIX xit) | a)
subpe(pe & (p | (TLET xit BE a IN b{_))) = singleton(pe)
U subpe(p . unit(PLET xit) | b)
U subpe(pia) enden

An item let xit, fix xit or lambda xit in a prefix p is said to
be active in p iff no prefix element containing x occurs to the
right of it in p. That is, a binding is active in a prefix if it has
not been hidden by a more local binding of the same identifier.

const Active =

enrich Prefix by
opns var : prefixelement -> id
eqns var(PLET x|_) = x
var(PLAMBDA xi_) = x
var(PFIX x|) = x enden in

-114-

let IsActive =
enrich Var by
opns (_ is_active.in _) : prefixelement,prefix -=> bool
eqns is_active_in empty = false
p is.active.in (_ . unit(p)) = true
p is_active_in (s . unit(q)) = false
if not(p==q) and var(p)==var(q)
p is_active.in (s . unit(q)) = p is.active.in s
if not(var(p)=svar(q)) enden in

derive opns (_ is.active.in _) : prefixelement,prefix ~> bool
using Prefix
from IsActive endde

Given a prefixed expression pie and a binding let xit in p, a
type variable in t which does not occur in the type of any enclosing
lambda or fix binding (that is, in the type of any lambda or fix

item to the left of the let in p) is called generic for the binding
let xit. Only generic type variables are instantiable; other type
variables are fixed (at least locally). The operator is_generic.in
is defined below to determine if the given type variable is generic
for the PLET prefix element at the rightmost extremity of the given
prefix. It is not defined for prefixes not ending with a PLET.
Milner [1978] also defines what it means for a type variable which
is in the expression part of a prefixed expression to be generic.
This concept is not needed to characterise well-typed expressions so
it is omitted here.

const VarsinType =
enrich Type + Set(TypeVar([element is typevar]) by
opns varsintype : type -> set
eqns varsintype(constant(_)) = empty
varsintype(var(x)) = singleton(x)
varsintype(t1 ---> t2) = varsintype(t1) U varsintype(t2)
enden

const GenericVars =

let NonletVarsinPrefix =
enrich Prefix + VarsinType by

opns nonletvars : prefix -> set

eqns nonletvars(empty) = empty
nonletvars(unit(PLET _|)) = empty
nonletvars(unit(PLAMBDA _{t)) = varsintype(t)
nonletvars(unit(PFIX _it)) = varsintype(t)
nonletvars(s . t) = nonletvars(s) U nonletvars(t)

enden in

-115-

let GenVars =
enrich NonlLetVarsinPrefix by
opns (_ is.generic-in _) : typevar,prefix -> bool
eqns v is_generic.in (s.unit(PLET _it))
=z (v is.in varsintype(t))
and not(v is.in nonletvars(s)) enden in

derive opns (_ is_generic.in _) : typevar,prefix => bool

using Prefix, VarsinType
from GenVars endde

A zeneric instance of a type t of a prefix element let x|t is an

instance of t in which only generic type variables of t are
instantiated. We must first specify what it means for one type to
be an instance of another; "t1 is_instance_of t2 wrt S™ is defined
below to be true iff t1 is an instance of t2 with respect to the
type variables in S. Note that any prefix given to
is_generic_instance_of must have the appropriate PLET at its

rightmost extremity; otherwise the result is not defined.
const Instance =

let Substitution =
~enrich Type + Map(TypeVar[element is typevarl],
Type[element is type]) by
opns substitute : type,map -> type
eqns substitute(constant(b),_) = constant(b)
substitute(var(x),f) = f[x] if x is.in domain(f)
substitute(var(x),f) = var(x)
if not(x is.in domain(f))
substitute(tl—==>t2,f) =
substitute(t1,f) ~---> substitute(t2,f) enden in
enrich Substitution by
opns (_ is-instance.of _ wrt _) : type,type,set -> bool
egqns t1 is_instance_of t2 wrt S =
exists f. ((domain(f)==z3)
and (substitute(t2,f)==t1)) enden

const GenericlInstance =
enrich Instance + GenericVars by
opns (_ is_generic_instance.of _) : type,prefix -> bool
eqns t1 is_generic.instance-of (p & (_ . unit(PLET _it2)))
= exists S. (t1 is.instance_of t2 wrt S
and forall v. (v is_in S —-=>
v is_generic.in p))
enden

- 116~

A prefixed expression pie is standard iff for every sub-pe p'le'
the generic type variables of each let binding in p' occur nowhere

else in p'je'. For example, the following prefixed expression is

standard:
(lambda xia . let flx-=~=>B) i (fla===>§ xiax) | &)

(only 8 is generic, and it appears only in the let) but this one is

not:

(lambda xiax . let fjx-==>B) i (flx===>8 xiax) | B)

A well-typed prefixed expression is required to be standard for

technical reasons; the reader is referred to [Milner 1978].

const Standard =

let VarsinTypedExpr =
enrich TypedExpr + VarsinType by
opns varsintypedexpr : typedexpr -> set
eqns varsintypedexpr(TVAR _it) = varsintype(t)
varsintypedexpr (TAPPLY a TO bit) = varsintype(t)
U varsintypedexpr(a) U varsintypedexpr(b)
varsintypedexpr(TIF a THEN b ELSE cit) = varsintype(t)
U varsintypedexpr(a) U varsintypedexpr(b)
U varsintypedexpr(c)
varsintypedexpr(TLAMBDA _it1 . ait2) = varsintype(t1)
U varsintype(t2) U varsintypedexpr(a)
varsintypedexpr(TFIX _i{t1 . ait2) = varsintype(t1)
U varsintype(t2) U varsintypedexpr(a)
varsintypedexpr (TLET _it1 BE a IN bi{t2) =

varsintype(t1)
U varsintype(t2) U varsintypedexpr(a)
U varsintypedexpr(b) enden in

let VarsinPrefix =
enrich Prefix + VarsinType by

opns varsinprefix : prefix -> set

eqns varsinprefix(empty) = empty
varsinprefix(unit(PLET _i{t)) = varsintype(t)
varsinprefix(unit(PLAMBDA _i{t)) = varsintype(t)
varsinprefix(unit(PFIX _it)) = varsintype(t)
varsinprefix(s . t) =

varsinprefix(s) U varsinprefix(t)

-117~

let IsStandard =
enrich SubPE + GenericVars + VarsinTypedExpr
+ VarsinPrefix by
opns (_ isstandard) : prefixexpr -> bool
genericvarsok : prefix,prefixexpr -> bool
! auxiliary opn -- checks a given PLET
exposelet : prefix -> prefix
! auxiliary opn -- exposes next PLET
eqns pe isstandard =
forall p, e. ((ple) is_-in subpe(pe)) ==>
genericvarsok(exposelet(p),pie)
genericvarsok(empty,) = true
genericvarsok(p & (s . unit(_)),plle) =
forall v. ((p==(p.v)) ==>
forall x. (x is_in (varsintypedexpr(e)
U varsinprefix(s.v))
--> not(x is_generic_in p)))
and genericvarsok(exposelet(s),plje)
exposelet(empty) = empty
exposelet(p & (_ . unit(PLET _}))) = p
exposelet(s . unit(PLAMBDA _|)) = exposelet(s)
exposelet(s . unit(PFIX _i_)) = exposelet(s) enden in

derive opns (_ isstandard) : prefixexpr => bool
using SubPE, GenericVars
from IsStandard endde

Armed with all the definitions given above, we can finally define

what

it means for a prefixed expression to be well-typed (wt).
pi(TVAR xit) is wt Iff it is standard, and either
. lambda xit or fix x|t is active in p, or

. let xit' is active in p and t 1is a generic instance
of t'.

i (TAPPLY e TO e'|t") 1is wt iff pile and pile' are wt and
= t'—t", where t and t' are the types assigned to e and

® ¢rO

1

pi(TIF e THEN e' ELSE em"it) is wt 1iff ple, pie' and pie"
are wt, the type of e is BOOL and the types of e' and e"
are both t.

p!(TLAMBDA x!t . e'}t") is wt iff (p.PLAMBDA xit)ie' is wt
and t" = t-t', where t' is the type of e',

PI(TFIX x!t . e'!t") is wt iff (p.PFIX xit)|e' 1is wt, t=t"
and the type of e' is t.

p!(TLET x!t BE e IN e'it") is wt iff pie and

-118-

(p.PLET xit)|e' are wt, the type of e is t and the type of
e' is t'.

See the beginning of this section for examples of well- and ill-

typed expressions.

Once the operator is_welltyped has been defined, we specify the
typecheck operator by saying that anything typecheck returns 1is
well-typed and identical (except for types) to the prefixed
expression it was given, if some well-typing exists then typecheck
finds one (not necessarily the same one), and if no well-typing
exists then typecheck returns illtyped (the error pe). Note that
this specification only requires typecheck to find some type; the

type it finds 1is not necessarily the best (most general) one.
const WellTyped =

! expose a given (active) prefixelement
let ExposeActive =
enrich Prefix by
opns exposeactive : prefixelement,prefix -> prefix
egns exposeactive(pe,p & (_ . unit(pe))) = p
exposeactive(p,s . unit(q)) = exposeactive(p,s)
if not(p==q) enden in

let IsWellTyped =
enrich Standard + Genericlnstance + Active + ExposeActive by
opns (_ is_welltyped) : prefixexpr -> bool
eqns (pe & (p | (TVAR xit))) is_welltyped =
((PLAMBDA x{t) is_active_in p
or ((PFIX xit) is_active_in p)
or (exists t1. ((PLET x{t1) is_active.in p and
(t is_generic_instance_of
exposeactive(PLET xit1,p)))))
and pe isstandard
p i (TAPPLY a TO b;t) is_welltyped
= (pia) is_welltyped and ((pib) is_welltyped)
and typeof(a)==(typeof(b)~=~=>t)
p i (TIF a THEN b ELSE cit) is_welltyped
= (pia) is.welltyped and ((pib) is_welltyped)
and ((pic) is_welltyped) and typeof(b)==t
and typeof(c)=z=t and typeof(a)==constant(BOOL)
p | (TLAMBDA xit1 . ait2) is_welltyped
= (p . unit(PLAMBDA xit1) | a) is.welltyped
and t2==(t1--=>typeof(a))
p i (TFIX xit1 . ajt2) is_welltyped
= (p . unit(PFIX xit1) | a) is_welltyped
and t1==t2 and typeof(a)==t2
p (TLET xit1 BE a IN bjt2) is_welltyped
= (p . unit(PLET x/t1) | b) is.welltyped
and (pja) is.welltyped and ti1s=typeof(a)
and typeof(b)=z=z=t2 enden in

-119-

derive opns (_ is_welltyped) : prefixexpr -> bool
using Standard, Genericlnstance, Active
from IsWellTyped endde

const Typecheck =
enrich WellTyped + TypedExprEq by
opns typecheck : prefix,expr -> prefixexpr
eqns (pie) is_welltyped and eO==e = true
if typecheck(p,e0)==(pie)
exists el, (typecheck(p,e0)==(piel)) = true
if exists e. ((pie) is_welltyped and eQ==ze)

erroreqns typecheck(p,e0) = illtyped
if not(exists e. ((ple) is.welltyped
and eO=zze)) enden

Processing time: 15.1 minutes.

If an additional operator is defined which recognises if the type
of one prefixed expression is a generic instance of the type of

another:
(_ is.generic_instance_of _) i prefixexpr,prefixexpr -> bool

then adding the following equation to Typecheck specifies that the

operator typecheck always finds the most general type:

typecheck(p,e0) is_generic_instance.of ple = true
if (pie) is.welltyped and e==ze0

This addition was omitted from the specification in the interests of
brevity.

The specification is a straightforward translation of ([Milner
19781; 1its complexity is due almost entirely to the number and
complexity of the notions which must be defined in order to specify
which expressions are well-typed. It is of course more difficult to
specify concepts precisely in Clear than in English, since a phrase
like "... does not occur in any enclosing binding" must necessarily
be described as a search of some kind in Clear, probably involving
one or more auxiliary operators which for the sake of tidiness must

later be hidden using a derive. With higher-order types such

-120-

routine searches could largely be expressed using a few special
operators (such as

occurs : sequence,(element->bool) -> bool
for searching a sequence for an element satisfying a certain
condition) as in HOPE, but the Clear system does not yet permit such
operators. Goguen [1981] indicates that meta-operations (apparently

like macros) will be available in the Ordinary specification
language for this purpose.

It would be possible to give both a higher-level and a lower-
level specification of the same problenm. The high-level
specification would give a semantics of the language Exp where some
expressions yield an error, and then define well-typed expressions
as those which do not result in errors. The low-level specification
would be an explicit algorithm for computing a well-typing.
Theorems in [Milner 1978] state that any expression which is well-
typed according to our specification will be well-typed according to
the high-level specification (but not the converse), and that any
expression accepted by the low-level algorithm will be well-typed
according to our specification (the converse is proved by Damas and
Milner [1982]).

-121~
CHAPTER FIVE

A CATEGORY-THEORETIC SEMANTICS OF CLEAR AND ITS IMPLEMENTATION

In chapter III a semantics of Clear was given using simple set-
theoretic constructions to describe the theory-building operations
of Clear. This chapter is devoted to a discussion of another
semantics of Clear, invented by Burstall and Goguen [1980]. This
semantics 1s intended as a generalisation of the set-theoretic
semantics of chapter III (although historically it came first) and
uses ideas from category theory to describe the underlying concepts
and operations of Clear. Although as remarked in chapter III this
results in a description which is rather inaccessible because it is
so abstract, there are some benefits to be gained from such an
approach. The most important advantage is that category theory acts
as a ruthless filter for ideas. If an idea cannot be expressed
gracefully using the standard concepts of category theory, then
often there is something wrong with the idea. If the idea can be
expressed, then 1its category-theoretic description will often
suggest a generalisation which may not have been obvious otherwise.
These are advantages for the language designer. But once the design
is complete the category-theoretic description will still often be
more elegant than an equivalent description in a different style,
although it may be more difficult to understand. Without this kind
of high-level motivation the set-theoretic constructions of chapter
III may seem to come out of thin air, appearing complex and
mysterious. And finally, in this case a category-theoretic
description makes it possible to abstract away from particular
notions of signatures, models or axioms, allowing a description of
(most of) Clear under an arbitrary institution. However, in section
I11.6 we saw that the set-theoretic semantics can be readily altered

to accomodate all institutions of apparent interest.

Burstall and Goguen's category-theoretic semantics relies most
heavily on the notion of a colimit, which is used to give a meaning
to the combine and apply theory-building operations. A HOPE program
for computing colimits in arbitrary cocomplete categories and in a

kind of 'comma' category has been described by Burstall {[1980].

~122-
Further developments along these 1lines are given by Rydeheard

(19811, who presents a category-theoretic approach to programming.

Burstall's colimit program provided a basis which allowed an
implementation of the <category-theoretic semantics of Clear
following almost exactly Burstall and Goguen's original presentation
(this project was done in collaboration with David Rydeheard). The
ease with which this implementation and the original colimit program
were carried out can be attributed to the high-level features of

HOPE (in particular, the strong yet flexible type system) described
in appendix 1.

This chapter combines presentations of the semantics and the
implementation; the semantics is explained through descriptions of
the programs which implement it. The facilities provided by the
colimit program are described in section 1, although an explanation
of how the program works 1is not given (see [Burstall 1980] or
[(Rydeheard 1981] for details). After a presentation of the
semantics of Clear and its implementation in sections 2, 3 and 4 the
outcome of the implementation attempt 1is briefly discussed 1in
section 5. For a less 'algorithmic' explanation of the semantics,
refer to [Burstall and Goguen 1980]; for another presentation of the
semantics program see [Rydeheard 1981]. The program described here

is different from the one discussed 1in [Rydeheard 1981] for

expository reasons.

This program was an experiment in 'categorical programming' as
much as an attempt to provide a useful implementation of Clear. We
accordingly used category-theoretic ideas whenever possible, insofar
as this was practical. For example, the graphs which underlie
diagrams are represented as objects in a comma category, even though
this is not necessary for any of the algorithms used (see the next
section for the meaning of ‘'diagram' and 'comma category'). Our
attempts in this direction are related to the "doctrines" given by
ADJ in ([Goguen, Thatcher, Wagner and Wright 1973]. Unfortunately,
all of these things are computationally expensive, and the resulting

program is too large and much too slow for practical use; see

section 5 for more on this matter.

-123-

This chapter assumes some previous knowledge of elementary
category theory. See [Arbib and Manes 1975] for the meanings of the
important concepts of category, morphism, functor and colimit
(especially important are the initial object, coproduct, coequaliser
and pushout -- these are all special kinds of colimits). See
[(MacLane 1971] for the definition of a comma category.

-124~
1. Computing colimits

The facilities provided by Burstall's colimit program {(which has
since been reorganised and partially rewritten by Rydeheard and
myself) are described here only briefly. For a much more detailed
description consult [Burstall 1980] or [Rydeheard 1981]. See [Arbib

and Manes 1975] and [MacLane 1971] for the elementary category
theory which this program encodes.

A category 1is characterised by two HOPE types (objects and
morphisms) and four functions for manipulating morphisms. These
functions tell us the source and target objects of a morphism, the
identity morphism on an object, and how to compose morphisms. As a

HOPE declaration this is simply:

typevar o, m ! objects, morphisms

data Cat(o,m) == cat((m->0),(m=>o),(0o->m),(m#m->m))
! source, target, identity, composition

(Comments in HOPE are preceded by an exclamation mark.) A
particular category is a data object of this type. We want
equations sSuch as the following to hold in the category
cat(source,target,identity,compose):

source(identity(o)) = target(identity(o)) = o

source(m1) = source(compose(ml,m2))

target(m2)

target(compose(m1,m2))

but there is no convenient way in HOPE (or in other programming
languages) for these to be enforced, so the responsibility for
ensuring that the functions he supplies describe a legitimate

category rests with the user.

An example is the category of (finite) sets (not unrestricted

sets, but sets containing elements of a uniform type, as required by
the HOPE type system):

typevar alpha

data Set_Mor alpha == mor(set alpha,(alpha-->alpha),set alpha)
! source object, map, target object

-125~

dec source, target : Set Mor alpha -> set alpha
dec identity : set alpha -> Set_Mor alpha
dec comp : Set mor alpha # Set Mor alpha -> Set Mor alpha

~-- source(mor(a, ,_)) <= a

-—= target(mor(_,_,b)) <= b

——- ldentity(a) <= mor(a,id map a,a)

~=— comp(mor(al,mi1,b1),mor(a2,m2,b2)) <=
mor(al,m1.m2,b2) if bl=a2 else error()

dec cat_of sets : Cat(set alpha,Set_Mor alpha)

-~-- cat_of sets <= cat(source,target,identity,comp)

The notation alpha-->alpha in HOPE refers to a map; id_map and
(composition) are primitive functions on maps; and error() causes a
HOPE error, giving us a (crude) way of implementing the partial

function comp.

A functor is a pair of functions mapping objects and morphisms in
one category to objects and morphisms in another category. Again,
these functions should satisfy certain conditions (e.g. preservation

of identities) which the program must ignore.

typevar o, m, o1, ml

data Functor(o,m,o01,m1) == functor((o=>01),(m=>m1))
! F: Cat(o,m) => Cat(ol,m1)

A functor can be applied to an object or a morphism using an

(overloaded) infix function called "of".

Given two categories K:Cat(o,m) and L:Cat(ol,m1) and a functor
F:Functor(ol,ml,0,m) (i.e. F:K-—L) the comma category (K,F) has
objects like (a,f,b) of type o#m#o1:

a —L 5 F(b) b
(in K] (in L]

and morphisms like (i,j) of type m#m! taking (a,f,b) to (a',f',b')

such that the following diagram commutes:

-126-

a—f»F(b) b
i F(J) J
y I
a' —.—» F(b") b!
{in ﬁ] [in g]

More general comma categories than this can be defined, but for our

purposes this version (actually a right comma category) is
sufficient,

Comma categories are used throughout the entire Clear semantics
program; it turns out that many common data types can be represented
in this way. Examples will crop up here and there; the first one is
the category of (directed) graphs. A graph can be considered to be

a map from a set of edges into a set of pairs of nodes:

is {a,b,c.d,e} —8 3 {(1,1),(1,2),...,(5,5)} where G=[a+—>»(1,2),
b+—>(2,3), c=>»(2,5), d=—>(5,4), e—>(1,5)].

A graph morphism from G to G' is a pair of maps. One map
associates nodes of G' with the nodes of G, and the other does the
same with the edges. The edge map must respect the sources and

targets of edges; that is,
sourceG,(edgemap(e)) = nodemap(sourcec(e)) and

target;(edgemap(e)) = nodemap(target;(e)).

A graph can thus be sSeen as an object in the comma category
(Set,x) where x:Set—>Set is the crossproduct functor taking a set S

to the set SxS. So the graph above is the triple
({a,b,c,d,e},G,{1,2,3,4,5}):

{a.b,c,d.e}——G-—’ X{1,2,3,‘4,5} {1'2'3"4'5}

[in E&EJ (in Eg;]

-127-

Similarly, a graph morphism can be viewed as a morphism in the comma

category (Set,x):

E—S 5 xN N
edgemap x(nodemap) nodemap
Gv
EV__’ XN' N'
(in Set] [(in Set]

In the program a slightly more complicated representation of the
morphisms in a comma category is used since the source and target
objects must be recorded as well as the morphism itself:

data FComma_Mor(o,m,01,m1) ==

fcomma_mor ((o#m#01), (m#m1), (o#m#o1))
! source object, morphisms, target object

Now we can construct the comma category (K,F) given the
categories K and L and the functor F:
dec functor_comma_cat :

Cat(o,m) # Cat(ol,m1) # Functor(ol,m1,0,m)
-> Cat((o#m#o1),FComma_Mor(o,m,01,m1))

The definition is easy; for example, the 'identity part' of this
category is the function:

lambda obj & (a,_,b) =>
fcomma_mor(obj, (idK a,idL b),obj)

where idK and idL are the identity parts of the categories K and L.

For the category of graphs we already have the two categories;

they are both cat_of sets defined above. We need only the functor
x:Set—Set. This is easy to define except for a snag with HOPE's

type system; the problem is that the natural way to define the
functor gives the type

dec crossprod : Functor(set alpha, set alpha,
set alpha#alpha, set alpha#alpha)

and the target of this does not match the type of the category we
want for K. We need a type which is the disjoint union of alpha and

-128-
alpha#alpha:

data Tag alpha == just(alpha) ++ pair(Tag alpha,Tag alpha)

Now crossprod can be easily defined, with the following type:

dec crossprod : Functor(set(Tag alpha), Set_ Mor(Tag alpha)
set(Tag alpha), Set_Mor(Tag alpha))

So we can define the category of graphs, and abbreviations for the

types of graphs and their morphisms:

type Graph alpha == set(Tag alpha) # Set_Mor(Tag alpha)
set(Tag alpha)

type Graph Mor alpha ==
FComma Mor(set(Tag alpha), Set Mor(Tag alpha),
set(Tag alpha), Set_Mor(Tag alpha))

dec cat_of graphs : Cat(Graph alpha, Graph Mor alpha)

--- cat_of graphs <=z
functon_comma_cat(cap_o{_sets,ca;_of_sets,crossprod)

The advantage of defining something as an object in a comma
category 1is that colimits on the underlying categories can be
automatically 'lifted' to give colimits for the comma category.

This will be discussed in slightly more detail at the end of this

section.

One more function on comma categories will be helpful in writing

the semantics of Clear:

dec right_compose : Cat(o,m) # Cat(o1,m1) # Functor(ol,m1,0,m)
-> (m1 # (o#m#tol) -> (oi#m#o1))

-—- right_compose(cat(_,_,_,emp),cat(_,tt1, ,),F) <=
lambda g, (a,f,) => (a, cmp(f,F of g), t1 g)

This function modifies an object in a comma category by composition

'on the right':
f g
a__’.F(b) b___...’c

[in 5] [in k]

-129-

goes to
a_tﬂg)_’l?(c) c
(in K] [in L]

The function left compose can be defined analogously.

A diagram on a category K is a graph with objects of K attached
to the nodes and morphisms ;f K attached to the edges. -k diagram
morphism from D to D' is a map_f taking nodes of D to nodes of D',
together with another map which associates a morphism from the
object at n to the object at f(n) to each node n in D. We label the
nodes and edges of graphs with strings (character lists).

type Name == list char

data Diagram(o,m) == diagram(Graph Name, (Name-->0), (Name-->m))
! diagram on a category of type Cat(o,m)

data Diagram Mor(o,m) == diagram mor(Diagram(o,m), (Name-->Name),
(Name-->m), Diagram(o,m))
! source diagram, node-node map,
! node_morphism map, target diagram

It is easy to define the category of diagrams

dec cat of diagrams :
Cat(o,m) -> Cat(Diagram(o,m),Diagram Mor(o,m))

A cone on a category i (actually a cocone, but the word "cone"
will be used throughout) is a diagram D (the base), an object x of
K (the apex) and a family of morphisms " from each node of D to x
(the flanks) such that all triangles of morphisms of the following

form commute:

r'(i>///1 R.\\\r'(b)

D(a) —_’ D(b)

where a —S b is an edge in the graph of D. A cone morphism from C

to C' is a diagram morphism from the base of C to the base of C' and

~130-
a X morphism from the apex of C to the apex of C', satisfying
ce;;ain commutation conditions. In the program the category of
cones on K is taken to be the comma category (Diag(K),unitdiag(K))
where the-}unctor unitdiag(g):éfégéggﬂg) takes an obJEEt in é to ;he

diagram consisting of only a single node with that object attached.
The flanks T’ are embodied in the diagram morphism from the base to

unitdiag(K) of the apex.

g \ o)
D r

[in Diag(g)] (in é]

We supply abbreviations for the types of cones and their morphisms,

and define the category of cones:

type Cone(o,m) == Diagram(o,m) # Diagram_Mor(o,m) # o
! cone on a category of type Cat(o,m)

type Cone_Mor(o,m) ==
FComma_Mor(Diagram(o,m),Diagram Mor(o,m),o,m)

dec cat_of cones : Cat(o,m) -> Cat(Cone(o,m),Cone Mor(o,m))

--- cat_of cones K <=
functor_comma_cat(cat_of diagrams K,K,unitdiag K)

The colimit of a diagram D is a cone C with base D which is
'better' than all other such cones, in the sense that for any cone
C' (with base D) there is a unique cone morphism from C to C'. It
turns out that it 1is possible to construct the colimit of any
(finite) diagram (on a category K) given only the initial object of
ﬁ and functions which compute (;inary) coproducts and coequalisers

in é. These have the following types:
type Initial Obj(o,m) == o # (o->m)
type Coproduct(o,m) == o#o => (o#mim) # (ofm#m <> m)

type Coequaliser(o,m) == m#m -> (o#m) # (offm -> m)

Note that each of these includes a universal part; that 1s, besides

~131~

producing the coproduct (or whatever) a function computing the
unique morphism from the coproduct to any other object is also

provided.

Now we can define a cocomplete category as a category with

initial object, coproducts and coequalisers:

data C_Cat(o,m) == c_cat(Cat(o,m), Initial Obj(o,m),
Coproduct(o,m), Coequaliser(o,m))

An example of a cocomplete category 1is the category of sets
defined above with appropriate initial object, coproducts and
coequalisers. We need a type which is the disjoint union of alpha
and alpha; this is accomplished by extending the earlier definition

of the type Tag alpha:

data Tag alpha == just(alpha) ++ . . . ++ pink(Tag alpha)
++ blue(Tag alpha)

Then (for example) we can define the coproduct as follows:
dec coprod : Coproduct(set(Tag alpha),Set Mor(Tag alpha))

--= coprod(s,t) <=
let cp == (pink * 3) U (blue * t) in
let univ ==
(lambda v, mor(a,f,b), mor(al,f1,b1) =>
error() if not(sza and t=al and v=b and v=b1)
else let fg == (lambda pink x => f of x
i blue x => f1 of x) in
mor(cp,fn_to_map(ecp,fg),v)) in
(cp, mor(s,fn_to_map(s,pink),cp),
mor(t,fn_to_map(t,blue),cp)), univ

Recall from appendix 1 that infix # in HOPE 1is just 1like LISP

mapcar:

f * [a ceos an] = [f(a1). .ees f(an)]

1

The 1initial object (just the empty set) and coequaliser are not
difficult to define. The cocomplete category of sets is then:

dec c_cat_of_sets : C_Cat(set(Tag alpha),Set Mor(Tag alpha))

—-— c_cat_of_sets <= q_cat(ca;_of_sets,init,coprod,coeq)

-132~-

Now the colimit program takes a cocomplete category and gives it
a colimit function. See [Burstall 1980] or [Rydeheard 1981] for the
definition; the types are as follows:

type Colimit(o,m) ==
Diagram(o,m) ~> Cone(o,m) # (Cone(o,m) -> Cone_Mor(o,m))

dec colimit : C_Cat(o,m) -> Colimit(o,m)

We can then define a colimit category; sets provide an example:

data Colimit_Cat(o,m) == colimit_cat(Cat(o,m),Colimit(o,m))

dec colim cat_of_sets ==
Colimit _Cat(set(Tag alpha),Set Mor(Tag alpha))

-=- colim_cat of sets <=
colimit cat(cat_of_sets,colimit(c_cat_of sets))

As mentioned earlier, if we have colimits on the categories K and
L then we can compute colimits on the comma category (K,F) fo;-any
functor F:L—K (see [Goguen and Burstall 19781]). “This is an
advantage 6} ﬁ;ing comma category representations, especially since
the Clear semantics program makes heavy use of colimits. See

[Rydeheard 1981] for the program; the type of the colimit function

is as follows:

dec 1lift_colimit :
Colimit Cat(o,m) # Colimit_ Cat(o1,m1) # Functor(ol,m1,0,m)
-> Colimit(o#m#o1, FComma Mor(o,m,01,m1))

We can use this to define the colimit category of graphs (although
this is not used by the Clear semantics program):

dec colim_cat_of "_graphs :
Colimit _Cat(Graph alpha,Graph Mor alpha)

~--- colim_cat_of_graphs <=
colimit cat(cat_of graphs,
lift colimit(colim cat_of sets,colim cat_of_sets,
crossprod))

=133~

2. Signatures, institutions, theories and based objects

In this section a program for computing colimits on the category
of based theories based on the programs in section 1 is described.
This is the foundatior of the semantics of Clear to be given in
sections 3 and 4; the denotation of a specification is a based
theory, and the theory-building operations of Clear correspond to

simple colimits on that category.

We begin by defining signatures. However, they will not actually
be used until the end of section 3. All of the programs given until
then will be parameterised on an institution (this concept was
informally discussed in section I.1.3); that is, they do not depend
on particular definitions of signatures or axioms (or algebras or
the satisfaction relation, although these do not arise in the
program). Thus a general notion of theory can be defined, together
with a program for computing colimits in the category of theories.
But theories alone are not enough to give the semantics of Clear; we

need a notion of theories with sharing. We define based objects

(and their colimits), a general notion of objects with sharing.
This c¢an be instantiated to give based theories, and is further

instantiated in section 4 to give based Clear theories (theories

with the 'usual' kinds of signatures, axioms and models).

As already defined, a signature is a set of sorts S together with
a family of sets of operators indexed by s*xs (or 8*). A signature
morphism is a map from the sorts and operators of one signature to
those of another which preserves arities. We represent signatures
as objects in the comma category (Set,+) where + is a functor taking
a set to the set of nonempty str{;;; over that set (and taking an
ordinary function over the set to a function on strings). For
example, here is the comma category representation of the signature

with the single sort bool and operators true, false and not:

-134-

true /™ bool

fal — bool.bool +{bool} {bool}

se///’
not bool.bool.bool

[in gsg] {in 2;;]

There are two problems in defining the functor +:Set—Set in
HOPE. The first problem is the same as the one we met when trying
to define the crossprod functor and the function coprod in section

1; the natural type of + is:

dec plus : Functor(set alpha,Set Mor alpha,
set(list alpha), Set Mor(list alpha))

and this clashes with the type required by the functor_comma_cat
function (for constructing the comma category of signatures).

Again, tags are used to solve this problem:

data Tag alpha =z just(alpha) ++ . . . ++ string(list(Tag alpha))

The type of plus is then:

dec plus : Functor(set(Tag alpha), Set_Mor(Tag alpha),
set(Tag alpha), Set_Mor(Tag alpba))

The second problem occurs when we try to define the 'object part'
of the functor plus. The result of applying plus to any non-empty
set will be infinite. HOPE is equipped to handle infinite sets
(lazy lists, see {[Burstall, MacQueen and Sannella 1980]) but not
infinite sets, although lazy sets could probably be added. For the
purposes of the program, we can represent all infinite sets by the

constant bigset:

dec bigset : set alpha

We provide no definition of bigset, and so evaluating it will cause
an error. But we will never actually be interested in the value of
the object part of the plus functor, so this is sufficient. With a
similar 'definition' for bigmap (representing all infinite maps)

plus is easy to define, and the category of signatures with colimits

~135~

is then defined as follows:

type Signature alpha ==
Set(Tag alpha) # Set Mor(Tag alpha) # set(Tag alpha)

type Signature Mor alpha ==
FComma_Mor(set(Tag alpha), Set_ Mor(Tag alpha),
set(Tag alpha), Set_Mor(Tag alpha))

dec colim cat_of_signatures :
Colimit _Cat(Signature alpha,Signature Mor alpha)

-=-- colim_cat_of_signatures <=
colimit cat(functor comma_cat(cat_of_ sets,cat of sets,plus),
lift colimit(colim cat of sets, colim cat_of_ sets,
plus))

As mentioned before, this definition will not actually be needed

until 'signed' theories are defined at the end of the next section.

Institutions were discussed informally in section I.1.3; they

provide a way of giving most of the semantics of Clear independently
of any particular definitions of signatures, axioms, algebras or the
satisfaction relation. Formally, an institution is any data object

of the following type:

typevar o, m, alpha, beta ! signatures, signature morphisms,
! algebras, axioms

data Institution(o,m,alpha,beta) ==
institution(Colimit_Cat(o,m),
Functor(o,m,set alpha,Set Mor alpha),
Functor(o,m,set beta,Set Mor beta),

(o => (set alpha # set beta > truval)))

The parts of an institution are:

- An arbitrary cocomplete category Sig of 'signatures'

A functor Mod: §15—+Set°p (giving the set of models over a
signature). If o: 2—92' is a morphism in Sig and M' is in
Mod(2') then we write M'lz rather than Mod(c&)(M').

A functor Sen:Sig—Set (giving the set of axioms over a
signature -- e.g. equations and data constraints). If

o:3—>2' is a morphism in Sig and S is in Sen(3) then we
write o (S) rather than Sen(e¢)(S).

A relation Fstod(Z) x Sen(Z) for each object Z of

-136-

Sig satisfying M'[Fo(S) iff M'IZF:S for each O":Z——)Z' in
Sig, SeSen(g) and M'eMod(E').

All of the functions defined from now until the end of the next
section will be parameterised by an institution. By extracting such
things as the particular category of signatures from the given
institution rather than using a fixed set of definitions, most of
the semantics 1is made orthogonal to the definition of these key
concepts, It is only when we come down to writing the semantic
equations (attaching a syntax to the mathematical operations we will
define) that it will be necessary to decide on a particular

institution.

A theory is a signature 2 together with a closed set of 2-axioms.

We can use the agglomerates of chapter IV to represent closed sets

of axioms with the same constructors as before. We parameterise the
definition by the types of signatures, signature morphisms, and

axioms:
typevar o, m, beta ! signatures, signature morphisms, axioms

data Agglomerate(o,m,beta) ==
close(set beta)
++ union(Agglomerate(o,m,beta),Agglomerate(o,m,beta))
++ translate(m,Agglomerate(o,m,beta)),
++ inv_translate(m,Agglomerate(o,m,beta))
++ add equality(set(Tag Name),Agglomerate(o,m,beta))
T ! set(Tag Name) is a set of sort names

The definitions of theory and theory morphism are parameterised

by the same types:
data Theory(o,m,beta) =z theory(o,Agglomerate(o,m,beta))

dat

[+H)

Theory Mor(o,m,beta) ==
theory mor(Theory(o,m,beta),m,Theory(o,m,beta))

The category of theories is then easily defined, parameterised on an
institution. The identity and composition functions come from the

category of signatures contained in the institution.

dec cat_of theories : Institution(o,m,alpha,beta) ->
Cat(Theory(o,m,beta),Theory Mor(o,m,beta))

-137-~

But we will need to compute colimits in this category. As
mentioned before, the semantics of Clear is given in terms of
colimits in the category of theories (actually, in the category of
based theories, defined below -- but colimits for that category
depend on colimits in the category of theories). A program for
computing colimits follows the (constructive) proof of the following
theorem; it depends on the availability of colimits in the category

of signatures.

Theorem: The category of theories over any 1institution has
(finite) colimits.

Proof: (outline; from [Burstall and Goguen 1980])
As mentioned in section 1, it suffices to show that the category of

theories (over any institution) has an initial object, coproducts
and coequalisers. The category Sig of signatures contained in any
institution has these, by definition.

If ¢ is the initial object of Siﬁ, then <¢.5> is the initial
object in the category of theories.

If the coproduct of 2 and 2' in Sig is given by
2
X’
z"
Z'%
then the coproduct of the theories <2,E> and <Z'.E'> is given by

\
<", oc(E)Uc'(E')>
/

<G'EY

<3,E>

-138-

If the coequaliser of o ,0':3—>3' in Sig is given by

o "
E —’—’ S ___g_'__, Sn
£ pr 9 £

then the coequaliser of 0.0”:<§.E>—9<§'.E'> in the category of
theories is given by

- o - n - — .
GE> T3 <3 ES —Z—» ", TE)
o-'

Programs for computing the 1initial object, coproducts and

coequalisers in the category of theories can be written following
the constructions above. Here only the definition of the initial

object is given:

dec init : Institution(o,m,alpha,beta) ->
Initial Obj(Theory(o,m,beta),Theory_Mor(o,m,beta))

-— init(institution(colimit_cat(sigecat,sigeolim),_ ,_,_)) <=
let sigcone,siguniv == sigcolim nil diagram in
Iet initsig == apex sigcone in -
! the initial signature
let initth == theory(initsig,close nilset)
! the initial theory
let univ == ! the universal part

(lambda pth & theory(psig,_) =>
let univmor ==
" siguniv(cone sigecat (nil _diagram,nil_map,psig)) in
theory mor(initth,apex_ morphism univmor, pth)) in
(initth, univ)~

The constants nil_diagram, apex (the apex of a cone), apex_morphism
(the apex part of a cone morphism) and cone (for constructing a cone
as a 'comma object', given the components) are auxiliary functions
whose definitions are omitted. The functions coprod and coeq (for
the coproduct and coequaliser) are just as easy to write, although a
bit 1longer. Using these we define the cocomplete category of
theories, and then the colimit program described in section 1 can be

employed to build the category of theories with colimits:

~139~

dec c_cat_of theories : Institution(o,m,alpha,beta) ->
C_Cat(Theory(o,m,beta),Theory Mor(o,m,beta))

--—- c_cat_of_ theories I <=
c_cat(cat_of_ theories I, init I, coprod I, coeq I)

dec colim_cat_of theories : Institution(o,m,alpha,beta) ->
Colimit_Cat(Theory(o,m,beta),Theory Mor(o,m,beta))

--— colim_cat_of theories I <=
colimit_cat(cat_of_ theories I,
colimit(c_cat_of_ theories I))

The function extend signature_morphism will be used later in the
semantics to extend a signature morphism to a theory morphism.
dec extend signature morphism : Institution(o,m,alpha,beta) ->

(Theory(o,m,beta) # m # Theory(o,m,beta) ->
Theory Mor(o,m,beta))

--- extend_signature_morphism I <= theory mor

When this function is applied to the arguments <2,E>,c,<2',E'> where
c':z—->z' and c‘(E)¢E’ it should fail, since the result will not be a
proper theory morphism. This 1is something which cannot be

determined without the help of a theorem prover, so we do not check

for it (but see chapter VI).

In Clear, if the theory C has been used to build the theories A
and B in such a way that A and B both contain C, then C is called a

shared subtheory of A and B and we require that A+B contain only one

copy of C. The importance of taking account of shared subtheories
when combining theories has already been discussed. The names of
sorts and operators alone are not enough to distinguish shared
subtheories; we want the freedom to have several different sorts and

operators with the same names.

These requirements mean that the semantics of Clear must include
a mechanism for keeping track of the genealogy of theories -~ it is
necessary to know which theories have been put together to produce
other theories. The set-theoretic semantics of chapter III used the
simple trick of attaching a tag to each sort and operator to record

its theory of origin. This will not work here, because the

-140-

institutional approach requires signatures to be viewed as
indivisible objects. Here the more elaborate notion of a based
theory defined in [Burstall and Goguen 1980] must be used. Note
that based theories here are not the same as the based theories used

in the set-theoretic semantics, although they serve a similar

purpose.

A based theory is a theory together with a set of morphisms to it
from the theories in the environment from which it was built. The
environment associates names with (constant) theories, analogous to
environments in the semantics of an ordinary language; however, now
the environment must also record the relationships between all the
named theories. The environment is therefore represented as a
diagram on the category of theories, where the edges describe how
theories are shared. (See section 4.5 for more about environments.)
A based theory is then a cone on the category of theories with a
base which is a subdiagram of the environment. The apex 1is the
theory of interest, and the flanks show how this theory is related
to the theories in the base. For example, here is a picture of the

based theory representing Nat + Char (these theories were given in

chapter I):

Nat + Chor

We can define based objects analogously, a general notion of

objects with sharing. The based objects on a category themselves

form a category; this is a subcategory of the category of cones (a

cone morphism f:C—>»C' is a based object morphism iff the base of C

-141~
is included in the base of C' and the 'base part' of the cone
morphism is the inclusion). The four functions which determine a
category in our program (source, target, identity, composition) are
the same for both categories and so the category of based objects is
the same as the category of cones as far as our program is

concerned:
type BasedObj(o,m) == Cone(o,m)
type BasedObj Mor(o,m) == Cone_Mor(o,m)

dec cat_of based_objects :
Cat(o,m) -> Cat(BasedObj(o,m),BasedObj_Mor(o,m))

-—— cat_of_based_objects <= cat_of_ cones

The colimit in the category of based objects is however not the
same as the colimit in the category of cones. A different

construction must be used:

Theorem: The category of based objects on a category C has

(finite) colimits if 2 has.

Proof: (outline; see [Burstall and Goguen 1980] for the full
proof)
Let D be a finite diagram in the category of based objects on C with
ob jects Di having apices Bi and bases 51. The colimit objec: of D
is the based object with base T 51. and with apex the colimit in
C of the diagram which results from 'flattening' the apices and

flanks of the based objects D; into the diagram D. The flanks of the
colimit and the universal part are obtained from the colimit in C.

A program which produces the colimit in the category of based
theories can be written following the above construction. The

program is too 1long (about 60 lines) and complicated to include

here; we give only its type:

dec bo_colimit : Colimit Cat(o,m) ->
Colimit(BasedObj(o,m),BasedObj Mor(o,m))

Now the category of based objects with colimits can be defined:

-142~

dec colim cat_of based objects : Colimit_Cat(o,m) ->
Colimit Cat(BasedObJ(o m) ,BasedObj_Mor(o,m))

--- colim cat_of based objects(K & colimit_ cat(C,)) <=
colimit cat(cat_of based objects, bo_colimit K)

The careful reader may have observed that our definition of based
objects differs slightly from the definition in [Burstall and Goguen
1980]. There the category of based objects over a given diagram
(environment) is considered, while our category of based objects
makes no reference to a particular diagram. But this makes no
difference; the construction of the colimit is identical in both

cases.

We can instantiate the category of based objects to give the
category of based theories; this is the only instance of based
objects which we will need. This category will be used in the next
section to define the semantics of the theory-building operations.

type Based Theory(o,m,beta) ==
BasedObj(Theory(o,m,beta),Theory Mor(o,m,beta))

type Based Theory Mor(o,m,beta) ==
BasedObj_Mor(Theory(o,m,beta),Theory Mor(o,m,beta))

dec colim_cat_of_based_theories : Institution(o,m,alpha,beta) =>
Colimit Cat(Based _Theory(o,m,beta),
Based | Theory Mor(o,m,beta))

-— colim cat_of_ based_theories I <=
colim cat of based obgects(colim cat_of_ theories I)

~143~

3. Semantic operations

In this section the semantics of Clear's theory-building
operations will be given., These will then be used in the semantic

equations of the next section.

The definitions of these operations depend crucially on the
properties of the colimit in the category of based theories defined
in the previous section. The denotation of a Clear specification is
a based theory, and all of our work until now has been carefully
directed so that the combine and apply operations can be elegantly
defined as nothing more than simple colimits in this category. The
remaining operations (enrich, data and derive) are defined readily
but less gracefully in terms of lower-level manipulations of the

based theories themselves.

3.1, Combine

This function implements the '+' theory-building operation of

Clear.

dec combine : Institution(o,m,alpha,beta) ->
(Based_Theory(o,m,beta) # Based_Theory(o,m,beta) ->
Based_Theory(o,m ,beta))”

~=- combine I <=
lambda t1,t2 =>
let colimit_cat(_,bthcolim) ==
colim cat of_based theories I in
let cpcone,_ = btheolim(cpdiagram(t1,t2)) in
‘apex cpcone

That is, combine I (T4,T,) is the coproduct of the based theories T,

and Eé

coproduct diagram, given the objects to be attached to the nodes).

(cpdiagram is an auxiliary function which produces a two-node

Because we are dealing with based theories, combine will treat

shared subtheories properly.

3.2. Enrich

The treatment of enrich here is different from that in the set-

theoretic semantics. The denotation of an enrichment there was just

-144-~

some new sorts, operators and axioms; here an enrichment is a theory
morphism of the form c:<z;6>—7<z',5'>, where & is the signature of
the theory being enriched, zf is the signature of the enriched
theory, and E' are the new axioms (closed). Enrich applies this
morphism to the based theory being enriched to give the enriched
based theory. This approach is necessary in order to define the
enrich operation under an arbitrary institution. The theory
morphism representing the enrichment must be built differently under
each institution, for it requires the manipulation of signatures as
something more than impenetrable objects in a category. The
enrichment operation is defined later in this section for the usual
institution of Clear; it takes the signature to be enriched and the
new sorts, operators and axioms, and gives the theory morphism
needed here (it will always be an inclusion in this case). The data
and add-equality operations (defined later) can be applied to this
morphism in the case of a data enrichment, modifying it to include
the appropriate new data constraint and equality operators.
dec enrich : Institution(o,m,alpha,beta) ->

(Based_Theory(o,m,beta) # Theory Mor(o,m,beta) ->
Based_Theory(o,m,beta))

—— enrich I <=
lambda t, theory mor(_,g,theory(sigl,eq1)) =>
let th & theory(,eq) == apex t in

Tet th1 == theory(sigl,union(eqi,translate(g,eq))) in
right compose (cat of diagrams(cat of theories I),
- cat of theories I, =
unitdiag(cat_of theories I))
(theory mor(th,g,th1), t)

That 1is, the result of enrich(I,0:<Z,0>=><S',E'>) is the
theory <§',E'llc(eqns(l))> with the base of T attached (this is the

action of right_compose).

3.3. Derive

The derive operation is used to change the signature of a theory.
Under the usual institution this means forgetting some sorts and
operators and possibly renaming the ones remaining; under an
arbitrary institution signatures may not consist of names at all so

we cannot speak about forgetting or renaming. Yet, the semantics of

-145-

derive under an arbitrary institution is the same as that given in
the set-theoretic semantics for the special case of ordinary Clear.
Given a 2-theory and a ;'-theory and a signature morphism c:zfﬁz'.
derive produces a theory with the signature and base of the
thheory. which has for axioms the inverse image under o of the
axioms of the Z'-theory. The model-theoretic condition (the
Satisfaction Lemma) which made this the appropriate set of axioms in
the case of ordinary Clear reappears as a condition on the

satisfaction relation (k) of an institution, with the same result.

The semantics of derive is split into two parts. The quotient
function produces the resulting theory, which must then be attached

to the appropriate base.

Def: If T=<Z,E> and T'=<Z',E'> are theories and o:T—>T' is a
theory morphism, then the guotient of T by o (written T/¢o) is the
theory <3,0”(E')>, where 0" 1(E') = {e | o(e)6E'}. The identity
signature morphism 12 gives a theory morphism 1E:If42/0 denoted by
quotient(T,o) (because o 1is a theory morphism implies that
Eso(E").

T/0 will always be a theory because of the following fact, a

generalised version of a fact from chapter III:

Fact: If E 1is closed then 6-1(5) is closed, wunder any

institution.

Proof: Identical to the proof outlined in section III.2.4, except
that we appeal to the condition on the |k relation of an institution

rather than to the Satisfaction Lemma.

An intermediate step in the proof of this fact shows (by a model-
theoretic argument) why T/oc (with a suitable base) 1is the
appropriate result of the derive operation -- see section III.2.4

for details.

Once the quotient function is defined as above, with type:

dec quotient : Institution(o,m,alpha,beta) =>
(Theory(o,m,beta) # Theory Mor(o,m,beta) ->
Theory_Mor(o,m,beta))

-146-

the derive operation can be easily defined:

dec derive : Institution(o,m,alpha,beta) =>
(Based_Theory(o,m,beta) # m # Based_jheory(o.m,beta) ->
Based Theory(o,m,beta))

--- derive 1 <=
lambda t1, sigma, t2 =>
let tsigma ==
extend_signature_morphism(apex t1,sigma,apex t2) in

right_compose (cat_of diagrams(cat_of theories I),
cat_of theories I, -
unitdiag(cat_of theories I))

(quotient(apex t1,tsigma), t1)

That 1is, it 1is the quotient with the base of the first theory
attached.

3.4, Apply

Apply defines the application of a theory procedure to its
arguments. A theory procedure here is represented as a based theory
morphism (from the coproduct of the metasort theories to the theory
described by the procedure body); under the usual institution this
morphism is an inclusion. The result of a procedure application is
the pushout of this morphism and the combined fitting morphism from
the coproduct of the metasorts to the coproduct of the actual

parameter theories:

F "
7 N
7 M
P(M1,....Mn) A1+...+An
“\\\\\ ’////;
M1+...+Mn

This is straightforward except for the construction of the combined
fitting morphism o. We are given based theory morphisms 01:M1—QA1,
cesey o M —A and wish to construct oM +...+M —> A_+...+A .

n" ' n n 1 n 1 n
Taking the two coproducts gives the following situation:

~147~

M1+"’+Mn A1+...+An

n

Now the 'universal part!'! of the metasort coproduct may be used to
construct a morphism to the apex of the actual parameter colimit,
using the 'pretend coproduct' (i.e. another cone on the same base)

of the metasorts formed by composing TqreeesCy with
T oo, T (n):

M1+...+Mn ——————— - - > A1+...+An

This o must be the correct morphism because it is the unique

morphism from M1+...+Mn to A1+...+An for which everything commutes.

dec apply : Institution(o,m,alpha,beta) ->
(Based_Theory Mor(o,m,beta)
list(Based_Theory Mor(o,m,beta)) ->
Based_Theory(o,m,beta))

-148-

-== apply I <=
lambda proc, fittings list =>
let colimit_ cat(catbth,bthcolim) =
colim cat_of based_ theories Iin
let Dm & diagram mor(Ds, o_oDt) ==
cpmdiagram catbth fittings list in
let actual parameter, == colimit Dt in
let ,univ == colimit Ds in
Tet pretendcoprodcone ==
left_compose (cat_of diagrams catbth,
catbth,
unitdiag catbth)

(Dm, actual_parameter) in
let fitting == apex_morphism(univ pretendcoprodcone) in
let pocone, ==

colimit(podiagram catbth (proc,fitting)) in
apex pocone

the constant cpmdiagram produces the

Given the morphisms O qseeesTp

diagram morphism:

and podiagram produces a pushout diagram:

P A1+...+An

pro:\\\ ////’}itting

M1+"'+Mn

The definitions of these auxiliary functions are omitted.
3.5. Copy

The copy operation makes a fresh copy of a theory, preserving a
given set of subtheories. This is Jjust a matter of attaching a
restricted base to the theory, the base of the combined subtheories
to be preserved. The semantics of copy was not included 1in
[Burstall and Goguen 1980].

~149-

dec copy : Institution(o,m,alpha,beta) ->
(Based_Theory(o,m,beta) # Based_Theory(o,m,beta) ->
Based_Theory(o,m,beta))

-—= copy I <=
lambda t1, te =>
left_compose (cat_of diagrams (cat_of theories I),
cat_ of theories I,
unitdiag (cat_of theories I))
(diagram_inclusion (cat_of_theories I)
(base t2, base t1), t1)

The constants base (base of a cone) and diagram_inclusion (producing
a morphism which is the inclusion of one diagram in another) are
auxiliary functions whose definitions are omitted. The second
argument (of the lambda) of copy is the sum of the subtheories to be
preserved. The base of this subtheory is attached to the theory to

be copied using left compose.

3.6. Data

The data operation cannot be used under an arbitrary institution.

As mentioned in chapter I, we need a data institution; this is an

institution in which the models of a theory will always form a
category and a theory morphism gives rise to forgetful and free
functors (see [Burstall and Goguen 1980] for details). This is an
aspect we do not attempt to treat in our implementation. But the
other special characteristic of a data institution is that the class
of axioms must include data constraints. A data constraint is a
theory morphism together with a signature morphism, and so we can
define data axioms (axioms which include data constraints, but are
otherwise unspecified) as follows:

data Data_Axiom(o,m,beta) ==
axiom(beta) ++ data _constraint(Theory Mor(o,m,beta),m)

A data institution is then an ordinary institution with the type of

axioms instantiated to data axioms:

type Data_Institution(o,m,alpha,beta) ==
TInstitution(o,m,alpha,Data _Axiom(o,m,beta))

Data theories and their morphisms are easily defined (based data

~150-

theories and their morphisms similarly):
type Data Theory(o,m,beta) == Theory(o,m,Data_Axiom(o,m,beta))

type Data Theory Mor(o,m,beta) ==
Theory Mor(o,m,Data Axiom(o,m,beta))

Now we can define the semantics of the data operation. It takes
a simple theory morphism representing an enrichment, and converts it
to a data theory morphism with a target which includes a data
constraint describing the enrichment. The modified enrichment can
then be used by the enrich operation (defined above) to 'data-
enrich' a theory. Since the data operation manipulates data
constraints, it works only under a data institution; this fact is
reflected in its type.

dec data : Data_Institution(o,m,alpha,beta) ->
(Theory Mor(o,m,beta) -> Data_Theory_ Mor(o,m,beta))

-— data(institution(colimit_cat(cat(_,_,id,_),_), _,_,_)) <=
lambda F & theory mor(t,sigma,theory(sig1,E1)) =>
let constraint == data constraint(F,id sig1) in
let axioms == union(datafy E1,close {constraint}) in
let t1 == theory(sigl,axioms) in
theory mor(t,sigma,t1)

If the enrichment is given by the (simple) theory morphism
G:If+<§'.E'>. then the data constraint added by application of the
data operation will be C = <o.1z'>. and the resulting (data)
enrichment is U:If9<z';ETUTfﬁ>. But E' is a simple agglomerate;
it must first be converted to a 'data agglomerate' using the
auxiliary constant 'datafy' whose definition is omitted.

3.7. Enrichment

This operation constructs a theory morphism representing a theory
enrichment for use by the enrich operation defined above. As
mentioned before, the enrichment operation must be dependent on a
particular institution for it deals with the internal structure of
signatures, The enrichment operation will be defined here for
ordinary Clear (Clear under the usual institution). Although the
definition is dependent on a particular notion of signature (the one

discussed in section 2) it is independent of the other elements of

-151~

an institution and so we can leave these unrestricted for now. The

enrichment operation is parameterised by a signed institution (that

is, an institution with the wusual kind of signatures, where
character strings are used for sort and operator names):

type Signed Institution(alpha,beta) ==
Institution(Signature Name,Signature Mor Name,alpha,beta)

The type Name was defined in section 1 as an abbreviation for
'list char!'. Signed institutions could easily be parameterised by
the type of sort and operator names -- in fact, this is done in the
semantics program -- but for simplicity we will use the fixed type

Name. Signed theories and their morphisms are then defined as

follows (based signed theories and morphisms similarly):

type Signed Theory(beta) ==
Theory(Signature Name, Signature_Mor Name,beta)

type Signed Theory Mor(beta) ==
Theory Mor(Signature Name, Signature_Mor Name,beta)

Note that this specialisation to signed institutions and signed
theories 1is orthogonal to the previous specialisation to data

institutions and data theories. Signed data institutions, signed

data theories and their morphisms, and based signed data theories

and their morphisms are easily defined.

Enrichment takes the signature to be enriched (3) and some new
sorts, operators and axioms (S', 3', E'), and produces the theory
inclusion from <3,@> to <3W<s',3'>,E'>. This operation is defined
using an auxiliary function whose definition is omitted which
produces the signature of the enriched theory; the inclusion
function on signatures (producing an inclusion of one signature in

another) is also not defined here.

type S_Name == Tag Name ! sort name
type O Name == Tag Name ! operator name

dec enriched_signature :
Signature Name # set S_Name # set(O_Name # list S _Name) ->
Signature Name 1 0 Name # list S Name is an
! operator with its arity

-152-

dec enrichment : Signed Institution(alpha,beta) ->
(Signature Name # set S Name # set(O Name # list S_Name)
set beta -> Signed Theory Mor(beta))

---~ enrichment SI <=
lambda sig & (0, ,S), s1, 01, E1 =>
let sig2 == ‘enriched |_signature(sig,S1,01) in
let t == theory(sig close nil_set) in
let t2 == theory(sig2,close E1) in
theory mor(t inclusion(sig,sig2), Tt2)

Why must the sort and operator names be 'tagged' (types S Name
and O _Name rather than simply Name)? The reason is that the arities
of the new operators may refer to sorts in the 'old' signature.
Since this signature may have been formed by putting together
several signatures (using combine, for example), it may contain
several sorts or operators with the same name (but tagged in
different ways as a result of the colimit inherent in the combine
operation). The enrichment operation must be supplied with tagged
arities to disambiguate in such cases, and the sort and operator
names are required to be tagged as well for uniformity. This is of
course invisible to the user of the specification language; it is a
detail which must be handled by the semantics (specifically, by the
notion of a dictionary discussed in section 4.1). Note that these
tags bear some resemblance to the tags of the set-theoretic
semantics, although here they are part of the colimit mechanism

rather than an explicit ingredient of the semantics.

3.8. Add equality

A side effect of the data operation is the introduction of an
equality predicate ==:s,s->bool for each ‘'data' sort 8. The
operators are easily added to the signature, and the add_equality
agglomerate constructor defined model-theoretically in section
III.2.3 is used here as well to add the axioms which specify the

meaning of the new operators.

If S i3 the set of new sorts and E is the set of axioms already
in a theory, then ES is E together with all the axioms needed to

define the new equality relations on sorts of S. This is denoted in

-~153-

the program by the agglomerate adq_equality(S,E). Note that the

theory being enriched must include Bool.

To define the add equality operation (on theories), we use an

auxiliary function which produces an equality operator with arity
The

s,8->bool when given the sort s; its definition is omitted.

enriched signature operation mentioned above is used to form a

signature which includes the new equality operators.
dec equality operator : S Name -> O_Name # list S_Name

dec add_equality : Signed_Institution(alpha,beta) ->

(Signed_Theory Mor(beta) -> Signed_ Theory Mor(beta))

--- add_equality SI <=

lambdatheory mor(t & theory(sig,_),sigma,theory(sigl,E1)) =>

let data_ “sorts == S1 - S where (_+_»S) == sig
where (_, ,S1) == sigl in

let new_operators ==z equality operator * data_sorts in

Tet sig2 == enriched_signature(sigl,nil_set,

new operators) in

let t2 == theory(sig2,add equality(s, ET)) in
theory mor(t,inclusion(sig,sig2),t2)

The definition is similar to that of the data operation above.

A

theory morphism describing an enrichment is modified to further

enrich by the new equality operators and the axioms which define

them.

-154-

4, Semantic equations

In this section the semantic equations for Clear are given,
building on the semantic operations defined in the previous section.
This parallels section U4 of the set-theoretic semantics. Since many
of the equations are identical (i.e. all those in levels I and IIb)
only those which are different are given, along with new definitions
of dictionary and environment. The equations will be given in the
notation of denotational semantics, rather than in HOPE, This
should make them slightly easier to read, and the translation to

HOPE is straightforward (see section 4.2 for an example).

4,1. Dictionaries

The notion of a dictionary in this semantics is identical to the
one presented in section III.4.1 of the set-theoretic semantics.
The only difference is the way that the dict operation (which
produces a dictionary) is defined. Recall that a dictionary gives
the correspondence between a sort expression or operator expression

(such as 's of T') and the sort or operator to which it refers.

Def: A dictionary is a pair of functions <sd,od> where

sd : sort-name x theory-name —> sort
od : operator-name x theory-name — operator

In the implementation, the two components of a dictionary are
functions which return tagged names; this is because there may be
more than one sort or operator with the same name, as discussed
earlier.

data Dictionary == dictionary((Name # Name -> S_Name),
(Name # Name -> O_Name))

The operation dict constructs a dictionary from a based theory,
yielding a dictionary which interprets expressions referring to

sorts and operators in that theory.
dec dict : Signed Based Theory(beta) -> Dictionary

--- dict(_, diagram mor(_, ,nm,_), _) <=
let T =-
(lambda tn =>
let theory mor(_,fcomma mor(_,(mor(_,fo,),
mor(_,fs,)),),) ==
nm of (const tn) in (fo,fs)) in

~155-

let sd == (lambda sn,tn =>

Tet (_,fs) == d(tn) in
let od == (lambda on,tn =)

let (fo,) == d(tn) in find(fo,on)) in
dictionary(sd,od)

In the above definition, nm is the map taking nodes in the base

find(fs,sn)) in

o]

of a based theory to theory morphisms from base theories to the apex
theory (the flanks). The nodes in the base of a based theory are
labelled by (tagged) theory names, since the base is always a
subdiagram of the environment (see section 4.5 for the reason for
the tag 'const'). The value of 4 applied to a theory name will thus
be a pair (fo,fs), where fo is a map taking operators in the base
theory to the corresponding operators in the apex theory, and fs
does the same for sorts. Given an expression 'sn of tn' (similarly
'on of tn'), the sort sn should appear in the domain of fs (where
(fo,fs) = d(tn)) and can thus be mapped to its name in the apex
theory. But sn itself will not be in the domain of fs; some tagged
version of sn w#ll be (and it might not be simply 'just sn', since
the theory at node tn may be the result of a combine or apply
operation). There should be only one such sort, or else the
expression is ambiguous. So the auxiliary function find is used to
search for the result corresponding to a tagged version of the sort
name; it gives an error if there is more than one choice. This is a
subtle point which was not revealed in [Burstall and Goguen 1980].
In general there is a problem in determining which sort or operator
in a theory produced using a series of theory-building operations
corresponds to a sort or operator name. The problem could be solved
by keeping track of the original name associated with each tagged
name. In our implementation this correspondence is fortunately easy

to establish.

4,2. Level I: Sorts, operators, terms

The semantic equations for level I are exactly the same as those
for level I of the set-theoretic semantics (section III.4.2). In
order to justify writing the semantic equations using the notation
of denotational semantics rather than HOPE, an example of how the

translation may be accomplished will now be given.

-156-

The syntax of sort, operator and term expressions is defined in

section III.4.2 by the following BNF syntax:

where s is a sort name (lower case identifier), o 1is an operator

name (identifier or operator symbol), T is a theory name
(capitalised identifier) and x is a variable name (identifier).
This may easily be converted to a sequence of HOPE data
declarations:

infix of : §
distfix _<L_»

data Sex == just Name ++ Name of Name
data Oex == just Name ++ Name of Name
data Tex == just Name ++ Oex << list Tex >>

Distributed-fix operators can be used to give an approximation to
Clear syntax. Mutually recursive data definitions are also possible

in HOPE using the with construct:

x

[

ct

=
won

The three semantic functions of this level may be declared as

follows:

ec Sex : Sex -> (Signature Name -> (Dictionary -> S_Name))

o))

Q.
(1]
Q

Oex : Oex -> (Signature Name -> (Dictionary -> O_Name))

Tex : Tex -> (Signature Name => (Dictionary ->
((Name --> S _Name) -> Term)))
! Name --> S Name associates variables with their sorts

Q.
(1]
0

The denotation of a term expression is a term:

data Term == just Name ++ O_Name << list Term >>

Now the semantic equations of section III.4.2 can be translated
into HOPE. For example, the second equation defining the function

Tex is:

-157-

TexEoex(tex1,...,tex YI3dX =
let w = OexEoex%’d in
let tm ,...,tmn = TexEtex D’dX,...,TexEtex JZdX in

u)(tm1....,tm) (a 3-term on X)

This becomes:

-—- Tex(oex << list tex >>) <=
(lambda sigma => (lambda d => (lambda X =>
let omega == Oex oex sigma d in
let list tm ==
(lambda tex => Tex tex sigma d X) * list_tex in
omega << list_tm>>)))

The notation of denotational semantic will be used henceforth for

clarity, as mentioned already.

4,3, Level Ila: Enrichments

The level IIa semantic equations are very similar to those in the
set-theoretic semantics (section III.4.3). The equations for Sd and
0d (giving the semantics of sort and operator declarations) are the
same except that the unique tags required by the set-theoretic
semantics need not be attached here. The equations for Enrb and Enr
(the semantics of enrichments) are different because the definitions
of the enrich and data operations in section 3 operate on theory

morphisms rather than directly on theories.

The semantic operations from section 3 will be needed in the

equations below, so it is finally necessary to select a particular

institution. We want axioms to be equations:
distfix all . =z

data Eqn == all (Name-->S Name) . Term = Term

Note that an Eqn is a semantic object, as distinect from the

equations which appear in specifications, defined as follows:

data EqQ == all Varl . Tex = Tex

(Varl and Tex are other syntactic types.) The Eq semantic operation

defined below translates an Eq to an Eqn.

-158-

We have already decided in section 3 on the kind of signatures we

will use, so the institution we want is defined as follows:

dec Clear_Institution : Signed_Data Institution(alpha,Eqn)

~-~ Clear_Institution <= 1nstitution(colimip_caq_of_signatures,
functor(..., ...),
functor(..., ...),
® o0)

Our implementation does not deal at all with the model-theoretic
aspects of the semantics and does not manipulate equations in non-
trivial ways, so the first component of the institution (and all
types except those of models) are all that is needed. In the
program, the ...'s are replaced by the function 'error', but

anything (well-typed) will do since it will never be accessed.

The above definition 1is sufficient for the purposes of the

program. But to make sure that such an institution really exists we
must be more specific. All we have specified so far is the category

of signatures Sig and the form of axioms.

- The functor Sen:Sig—>Set takes a signature to the set of
axioms (equations and data constraints) on that signature,

and takes a morphism o:3—>3' to the set morphism
o :Sen(3)—>Sen(3') defined in sections II.3 and II.5 which

translates a 2-axiom to a Z'-axiom.

- We take as models the algebras defined in section II,2:
the functor Mod:Sig—>SetP takes a signature 3 to the set
of all J-algebras, and takes a morphism o:3—>3' to the
set morphism Q_)IgEMod(Z')—vMod(;) (which takes a
2'-algebra to its Z-restriction).

- The relation }:stod(g) x Sen(Z) 1is the satisfaction
relation defined in sections II.3 and II.5 for equations

and data constraints respectively.
This is clearly an institution (recall the Satisfaction Lemma of

section II.3) so we can proceed,

We need to define theories and their morphisms under this

institution:

-159~

type Clear_Theory == Signed_Data_Theory(Egn)

type Clear_Theory Mor == Signed Data Theory_ Mor(Eqn)

Based Clear theories and morphisms are defined similarly.

Before we can use the enrichment operation below, we need to
define another institution for dealing with simple theories and
morphisms (i.e. without constraints). The definition is identical
to the definition of Clear_Institution above except for the type

declaration:

dec Simple Clear_ Institution : Signeq_Institution(alpha,Eqn)

Simple Clear theories and morphisms are just the same as signed

theories and their morphisms, defined above.

Semantic functions

Sd, 0d, Varl, Eq : same as in section III.4.3
Enrb : enrichment-body — signature — dictionary
—> simple-Clear-theory-morphism
Enr : enrichment — signature — dictionary
—>» Clear-~theory-morphism

Semantic equations

SdIs] = just s

Odlo: sex1,...,sexn->sexn$d =
let s ,.00y8 ,8= Sexﬁ%ex1]7d,....8exﬁsex JZd,SexIsexI3d in
~<just o, string(sy,...,s,,8)>

Varlllx, ,,...,X $S€X pecesX _peserX ssex BSd =
11 1n, 1 m1 mn
let SyseeesSp = SexEsex1BZp,...,§%xEsex I3d in

{ <x11,s1>,...,<x1n1,s1>

<xm1,sm>,...,<xmnm,sm> } (a map Name --> S_Name)

Eqlall varl. tex1 = texzﬂzg =
let X = Varlvarll2d in
let tm,,tm, = TexItex,D2dX,Tex[tex,I3dX in
all X. tmy = tm, (an Eqn)

-160-

Enrb[sorts sdq,...,sd, opns od,...od, eqns eq1...eqpﬂ§q =

let S' = {SdIsd;D,...,SdIsd,I} in

let 3' = enriched signature(2,S',8) in
let 3' = {0dlod,I3'd,...,0dlod,I3"d} in
let 3" = enriched_signature(3',9,2') in
let E' = {Equq1BZ"d,...,EququZ"d} in

enrichment Simple Clear_Institution (Z,s',2',E')

Enr[enrb]3>d = datafy EnrbIenrbI3d

Enr([data enrb]23d =
add_equality Clear_Institution
(data Clear_Institution EnrbIenrb]2d)

Datafy (used in the first Enr equation above) is an auxiliary
function which converts a simple Clear theory morphism to a (data)

Clear theory morphism; its definition is omitted.

4.4, Level IIb: Signature changes

This level is absolutely identical with section III.4.4 of the

set-theoretic semantics.

4.5. Environments

It has already been mentioned (when based objects were discussed
in section 2) that the environment must record the relationships
between values (theories) as well as the values themselves. This
leads to the natural representation of the environment as a diagram
on the category of theories, where the edges describe how theories
have been put together to make other theories. This 1is a
generalisation of the usual notion of environment in denotational
semantics, which simply maps names to values. Metatheories and
constant theories must both be stored in the same environment, since
the relationship between a metatheory and all 1its constant
subtheories must be recorded as well as the relationships between

constant theories. So two of the three environments used in the

-161-

set-theoretic semantics are combined here into a single environment,
where the two kinds of theories are bound in different ways; the

third environment (the procedure environment) remains separate.

Here several operations for creating and manipulating
environments are defined. Environments can be defined without
reference to the properties of the values which they contain, so
these operations are parameterised by an arbitrary category (with a
colimit function, which is needed for the node morphism operation).
The type of an environment is just the same as the type of a

diagram:

type Env(o,m) == Diagram(o,m)

None of the programs are given here; they are all straightforward

albeit somewhat long and complicated.

The first operation is easy; nil _diagram (the diagram with no

nodes) is the empty environment.

Next, we need to bind new values into the environmment. Ordinary
(constant) theories are bound in a different way from metatheories,
since the two cases must be handled differently when the time comes
to retrieve values from the environment. Each name is tagged to
indicate whether the associated value is constant or meta (recall

that the names of nodes in a diagram are tagged already):

data Tag alpha == . . . ++ const alpha ++ meta alpha

The operation bind is used to bind a constant (theory) into the

environment:

dec bind : Colimit_Cat(o,m) ->
(Name # BasedObj(o,m) # Env(o,m) -> Env(o,m))

Bind is defined as follows:

-162-

Def: Given an environment diagram D, a name i not in D, and a
based object O (with base included in D), the value of bind(i,0,D)
is the diagram D' where:

- The nodes of D' are those of D together with a node with
the name const(i) and the value apex(0), and

- The edges of D' are those of D together with an edge for
each morphism in the flanks of O (going from the base node
in D' to the apex of O at const(i) in D').

The operation bind_meta for binding a meta(theory) into an
environment 1is defined identically (with the same type), except that

the name meta(i) is used instead of const(i).

The operation bind is also defined for n-tuples of names and

based objects:

dec bind : Colimit_Cat(o,m) ->
(list Name # list(BasedObj(o,m)) # Env(o,m)
-> Env(o,m))

This operation binds each name in the 1list to the corresponding
value (as a constant). There is no need for a bind_meta operation

on n-tuples.

The retrieve operation finds the value in an environment which is
associated with a given name, and constructs the corresponding based
object. As mentioned, it works differently depending on whether the
value is a constant or a meta (theory); the only difference is that
the base of the result for a metatheory will not include the
metatheory itself.

dec retrieve : Colimit_Cat(o,m) =>
(Name # Env(o,m) -> BasedObj(o,m))

-163-

Def: Given a name i and an environment diagram D including either
const(i) or meta(i), the value of retrieve(i,D) is the based object
O (with base included in D), where:

- The apex of O is the value attached to the node const(i)
or meta(i) in D.

- For the base of O there are two cases. By support(j,D) we
mean the set of nodes in D which have a path to j (but not
including j itself).

. D includes const(i): The base of O is D restricted
to the nodes support(const(i),D)U {const(i)}.

. D includes meta(i): The base of 0 is D restricted to
the nodes support(meta(i),D).

- For each node k in the base of 0, the flank morphism from
k to the apex of O is the composition of morphisms along
the path from k to const(i) or meta(i).

The same result would be obtained if metatheories were treated as

parameterless procedures, as in section III.4.S.

We will need an operation to restrict the base of a based object
to make 1t compatible with a restricted environment. This 1is
necessary for the semantics of local declarations, since 1locally
declared theories have limited scope. At the end of their scope
they must be removed from the bases of objects they have been used
to build.

dec restrict : Colimit Cat(o,m) ->
(BasedObj(o,m) # Env(o,m) => BasedObj(o,m))

Def: If O is a based object and D is an environment diagram, then
restrict(0,D) 1is the based object 0O' where the base of 0' is the
intersection of the base of 0 and D, apex(0')=zapex(0), and the flank
morphisms of O' are those of O which come from nodes appearing in

the base of 0!,

The operation restrict is also defined on based object morphisms:

dec restrict : Colimit_Cat(o,m) ->
(BasedObj_Mor(o,m) # Env(o,m) -> BasedObj Mor(o,m))

-164-

Finally, we need a special operation (called node_morphism) for

constructing the denotation of a procedure which (as has already
been mentioned) is a based theory morphism from the coproduct of the
metasort theories to the theory described by the procedure body.
The metasort theories are (normally) included in the base of the
theory given by the body, so except for the complication of taking a
coproduct in the case of multiple metasorts the result is
essentially the flank morphism from the metasort to the apex of the
procedure body. For the case of a single metasort:

p m P

DI N

dec node_morphism : Colimit_Cat(o,m) ->

(list Name # BasedObj(o,m) # Env(o,m)
-> BasedObj_Mor(o,m))

Iz
|
|
|
|
|
!

Def: If D is an environment diagram, P is a based object (with
base included in D) and I=[11""'1n] is a list of names of nodes in

D, then the value of node morphism(I,P,D) is:
- The unique morphism from the coproduct retrieve(11.D) +
cee + retrieve(in.D) to P, if the nodes 11""'1n are in
the base of P

- Error, if some node 1J is not in the base of P

The result of node morphism is constructed using the 'universal
part' obtained from the coproduct of the metasort theories. If n=1,

then the result is as shown above.

All of these operations are parameterised by the (colimit)

-165-

category of values stored in the environment. In the case of
ordinary Clear the values are based Clear theories, defined
previously. The name 'Clear_cat' will be used for this category
rather than the more descriptive but long-winded
'colim_cat_of_ based Clear_theories'.

dec Clear_cat : Colimit_Cat(Based Clear_Theory,
Based_Clear_Theory Mor)

---~ Clear_cat <= col1m_cap_oﬂ_baseq_theories(Cleap_Institution)

The environment which keeps track of constant theories and
metatheories has just been defined. We also need an environment for
theory procedures. This is just a map from procedure names to their
values, as 1in the set-theoretic semantics. The denotation of a
theory procedure is a based theory morphism (from the coproduct of
the metasorts to the procedure body). However, in order to apply
the procedure we also need to know the metasort theories so that we
can determine the fitting morphisms between the metasorts and the
actual parameter theories. The procedure environment therefore must
map procedure names to pairs consisting of a based theory morphism
and a list of based theories (the metasorts):

type Proc_Env(o,m) == Name --> Based_Theory Mor(o,m,beta)
list(Based_Theory(o,m,beta))

No special operations will be needed for manipulating procedure
environments; bind and retrieve are as usual for maps (we write

W(pn) to retrieve the value associated with the name pn from %, and

Wlv/pn] to bind the value v to pn in W).

4,6. Level III: Theory-building operations

The final level is similar to section III.4.6 of the set-
theoretic semantics. The only differences are those stemming from

the use of a different set of semantic operations and the more

complex notion of environment.

-166-

T : based Clear theory
P : environment (constant theories and metatheories)
W : procedure environment

Semantic functions

E : expression — environment — procedure-environment
—> based-Clear-theory

Spec : specification — environment —> procedure-environment
—> based-Clear-theory

Semantic equations

ECTIe¥ = retrieve Clear_cat (T,P)

E[theory enr endth]fW =
enrich Clear Institution (i.EanenrDidict(i))

(9 is the empty based theory;
is the empty signature)

Ele, + e,]PW = combine Clear_Institution (Ele,IPW,ELe,IfW)

Elenrich e by enr enden]lPW =
let T = E[eIP¥ in
enrich Clear_Institution (T,Enr[enrlsignature(T)dict(T))

-

Elderive enr using e1..:..en from e by sic endde]f¥ =
let T = combine Clear_Institution (E[leqIlEW,
combine Clear_Institution (Ele,IeW,...)) in

let T' = enrich Clear_Institution
(T,EnrlenrJsignature(T)dict(T)) in
let T" = ELelPW in

let o = Sic[sic]lsignature(T')signature(T")dict(I") in
derive Clear_ Institution (T',o,T")

-167-

ECP(eq[sicy],... e [sic, 1) 10N =
let I‘ p oo .I"] = E[Ie1new, o 00 .EEennp" L‘l
let <F,<Tqy,e.0 Tp>> = W(P) in
let TqreeesTp =
Sicsic,llsignature(T,)signature(T})dict(T}),
SicIsic,IIsignature(T,)signature(T})dict(T}) in
let F1.....Fn =
extend signature_morphism Clear_Institution
(11 00'1 'I’]) ’
extend signature morphism Clear Institution
(Ty00 . T8) in
apply Clear_Institution (F,<Fy4,... Fp>)
(where extend__signature__morphis:n is the corresponding
function on based theories rather than theories)

EQlet T = e, in e, I =
let T = EQe, T in
let ' = bind Clear_cat (T,T,P) in
restrict Clear_cat (E(e,]P'¥,P)

Efcopy e using e1.....enI]P17 =
let T = E[eDPW in
let T' = combine Clear_Institution (E{e,Ifw,
combine Clear_Institution (Efe,I@W,...)) in
copy Clear_Institution (T,T')

SpecleloW = E[ellOW

Spec{[const T = e spec]f¥ =
let ' = bind Clear_cat (T,E[elfW,P) in
Spec{[speclP'W

SpecImeta T = e speclPW =
let ' = bind meta Clear cat (T,E[eIlfW,P) in
SpecIspecIp'W

-168-

Spec{lproc P(T1:e1,...,Tn:en) = e spec]lPW =
let Tqyeee Ty = E[[e1]]9’n’,...,E[[en]]91T_i_rl

let @' = bind Clear_cat (KTqyeeesTp>4<Tq,...,T,>,0) in
let T' = E[el0'W in

let F = node_morphism Clear_cat (KTq4eee s Tp>,T0,00)

let F' = restrict Clear_cat (F,P) in

let T,...,T} = restrict Clear_cat (1.8,
restrict Clear_cat (T ,P) in

let W' = WI<F',<T},...,T}>>/P] in

SpecspecIPW!’

(=3

in

~169-

5. Implementation

In the preceding sections an implementation of the category-
theoretic semantics of Clear has been presented in parallel with the
semantics itself. The finished program written entirely in HOPE is
about 1700 lines 1long and occupies 110K words on a DEC KL-10
computer (where the HOPE system itself occupies 66K words of this
total). The only theory in the initial environment of the system is

a simple version of Bool.

The system has been tested on several small examples, but as the
timing figures below demonstrate it is rather too slow to be used on

realistic large specifications such as those in section IV.Z2.

Example 1

The denotation of the specification

const Nat =
enrich Bool by
data sorts nat
opns 0 : nat

pred, succ : nat -> nat

eqns all n:nat, pred(succ(n)) = n
all n:nat. succ(pred(n)) = n enden

Nat + Nat

is the based theory

sorts nat, bool
opns 0, pred, succ, true, false, ...

eqns . . .

Nat <————rn—2 Bool

The computation of this result required 4.325 minutes of CPU time

(excluding garbage collections).

~170-

Example 2

The denotation of the specification

meta Triv =
theory sorts element endth

proc Pair(X:Triv) =
enrich Bool + X by
data sorts pair
opns mkpair : element of X,element of X -> pair
eqns all n,m:element of X. mkpair(n,m) = mkpair(m,n)
enden

Pair(Bool[element is bool])

is the based theory

sorts pair, bool
opns mkpair, true, false, ...

eqns . . .

Bool

The computation of this result required 1.85 minutes (excluding

garbage collections).

Nearly all of the time these rather trivial examples required was
consumed in the computation of colimits in the category of based
Clear theories, Recall that the application of a theory procedure
requires 3 simple colimits in the category of based theories. Each
of these colimits requires a larger colimit in the category of
theories, which in turn requires a number of colimits in the
category of signatures. Each colimit in the category of signatures
requires 2 colimits in the category of sets (the category of
signatures is a comma category) and each of these requires a number
of set coproducts and coequalisers. The second example above
required 88 set coproducts and 32 set coequalisers. An intricate
and complex manipulation of the results of these operations is then

required to convert them into the result of the theory procedure

-171~-

application. Of course, the speed of the HOPE system itself is an
important factor; recoding an earlier version of the colimit program

in POP-2 resulted in a very substantial increase in speed.

Although the idea of giving a very general semantics of Clear
using colimits and the way that colimits in categories of complex
objects are built from colimits in categories of their components
are both (in some ways) extremely elegant, they contribute to a
computationally discouraging result. But some possibilities for
speeding up the program remain. Since it was written without regard
for efficiency, there is a chance that some of the algorithms used
can be substantially improved. Also, rewriting the program in POP-2
or LISP would certainly improve its performance, probably by at
least one order of magnitude. There is at least one special case
(i.e. a certain class of institutions) which can be treated
Separately and made very much more efficient; when signatures are
essentially collections of sets and the morphisms within based
theories are all inclusions, the necessary colimits in the category
of based theories can be computed quickly using the representation
and algorithms described in the set-theoretic semantics of chapter
III. This class of institutions includes ordinary Clear and all
other institutions which have been proposed so far (see section
III.6). The necessary manipulations of theories in the special case
are actually very simple as compared with those performed when a
powerful general technique is applied as in the present program; the
same result can be computed for example 1 in 2.3 seconds, giving a

factor of more than 100 speedup.

~172-
CHAPTER SIX
PROVING THEOREMS IN CLEAR THEORIES

We have discussed in earlier chapters two versions of Clear's
semantics, and we have seen how an 1implementation of either
semantics can be useful both for checking the semantic definitions
for mistakes and for checking specifications for syntactic and
semantic errors. This is surely commendable in its own right, but
what 1s to be done with the theory produced by this program as the
denotation of a specification? It is nice to know that a
specification contains no errors (at least at the level of theories
—- whether or not it has the intended class of models is another
matter) but it would be even nicer if the result of laboriously
computing its denotation could be used to shed further light on the

specification and its models.

There are several things which could conceivably be done with the
denotation of a specification. The most obvious thing is to simply
print the signature and (some representation of) the set of
equations for the user to examine. The signature at least is often
slightly different from that expected; it 1s especially easy to
forget about the == operators contributed automatically by the data
operation. This could also be useful in determining the effect of
unusual uses of Clear's theory-building operations. Both Clear
implementations print their results, although the result printed by

the category-theoretic version is rather difficult to read.

A system like OBJ [Goguen and Tardo 1979] could be used to 'run'
the theory in some cases. OBJ evaluates expressions by treating the
equations as left-to-right rewrite rules, with special provisions
for permutative equations like a+b=b+a. With this the user could
check examples to see if the specified behaviour is consistent with
his intentions. Such a system could not cope with all theories;
loose and implicitly specified theories would both cause (probably)

insurmountable problems.

The DAISTS system [Gannon, McMullin and Hamlet 1981] tests if a

model (program) is consistent with an equational specification. The

-173~
idea is to run the program on a set of examples and see if the
results satisfy the equations. Such a system would have a use
similar to that of the OBJ-like system Jjust mentioned; it would be
more laborious to use (the user has to write a program as well as a
specification) but it would be able to handle all specifications
with equal ease. Of course it could also be used to test if a
program satisfies its specification, provided that we are sure the
specification is correct. The system checks only for consistency
and not for completeness -- the program might satisfy some extra
(wrong) equations as well as those in the specification -- so it

will not always find the flaw in an incorrect program.

In a later chapter we shall see how the denotations of
specifications would be needed in a system for stepwise refinement
of specifications. The goal of such a system would be to check the
validity of (and perhaps assist with) the development of a program
from a specification by rewriting the specification at successively
lower and lower levels. The resulting program 1s guaranteed to
satisfy the specification, provided that the correctness of each

refinement step has been verified by the system.

But in this chapter we will discuss the problem of proving
theorems in the theory described by a specification. If a theorem
prover of some kind were available it could be used by the (Clear
system itself to check that specifications are semantically well-
formed; the conditions attached to the apply and derive semantic
operations require that the signature morphism provided be a theory
morphism, which entails checking that the equations and constraints
in the source theory (translated via the signature morphism) hold in
the target theory. Even better, the user could pose questions about
his specification in the form of equations, which the theorem prover
would try to answer. Guttag and Horning [1980] demonstrate how this
can be of wuse 1in analysing specifications. Also, a program
development system would need a theorem prover to check the validity

of refinement steps.

Most useful would be a fully automatic theorem prover, But
theorem proving technology 1s not yet sufficiently advanced to

provide this, although some remarkably good automatic theorem

-174-
provers do exist (see for example [Boyer and Moore 1980]). Here we
will discuss how a semi-automatic theorem proving system based on
Edinburgh LCF [Gordon, Milner and Wadsworth 1979] was attached to
the set-theoretic implementation of Clear. This system proves many
theorems automatically, but in difficult cases it leaves the user to
design a proof strategy from high-level primitives. He also can
build his own primitives (tactics, in LCF Jjargon) wusing the
inference rules provided. The structure of Clear theories seems to
be very useful in directing the search for a proof in an interactive
system, although so far little experimentation has been done to

confirm this suspicion,

In section 5 it is shown that no complete proof system exists for
Clear. Although this result has important consequences, in practice
the difficulty of mechanical theorem proving is the limiting factor.
Usually the theorems we wish to prove will have routine proofs; our
task is to automate the easy proofs and provide the user with tools

for attacking the harder ones.

-175-

1. Edinburgh LCF
Since the system we are about to discuss both is built upon and
draws inspiration from Edinburgh LCF, we now briefly describe the

most important features of that system.

Edinburgh LCF (usually called simply 'LCF') is a large system,
and as such it 1is probably easiest to understand when it is
decomposed into several more or less independent subsystems. First
is ML, a general-purpose applicative language with polymorphic
types. ML is very much like HOPE; one useful feature which is found
in ML but not in HOPE is a failure generating (and failure trapping)

mechanism.

Built on top of ML is the second component, PPLAMBDA -- a family
of deductive calculi or theories with terms from typed lambda-
calculus and (for each member of the family) a set of types,
constants and axioms. There are facilities akin to enrich and
combine in Clear for putting together several theories and extending
the result to make a new theory. A _theorem in PPLAMBDA is an ML
data structure 1like a term or formula, but with a crucial
difference: the only way to construct a theorem is by application of
built-in inference rules. This ensures that any object of type thm
must be true in the theory in which it was formed. Thus the type
security provided by the ML type checker is used to maintain logical

security.

The final component of LCF is not a program but a methodology for
goal-directed proof in PPLAMBDA using ML. Given a theorem to be
proved (we use the notation a1...anfzc), we apply a tactic; that is,
a proof rule in the form of a little ML program. This may fail if
the goal is not of the appropriate form. If it succeeds then it
delivers a 1list of subgoals together with a proof; this 1is a

function built from inference rules which will produce a theorem

(written a1...an}—c) corresponding to the original goal if it is
given a theorem corresponding to each of the subgoals.. Proving a
theorem is then a matter of applying one tactic after another until
the empty list of goals is obtained. Tacticals like

THEN ! tactic x tactic — tactic

are provided for composing tactics into 1larger tactics called

-176-
strategies.

LCF 1s sometimes described as an interactive theorem-proving
system, but as it stands it is not well-adapted to this end
(although Luca Cardelli, Jacek Leszczylowski and Brian Monahan have
each written a collection of ‘'interactive' tactics). The
bookkeeping problem of remembering how to compose proof functions
(obtained by the application of tactics to goals at various stages
of the proof) is handled well by the tacticals but is nontrivial for
humans. LCF is most useful for interactively designing and testing
strategies for proof; the idea is to produce a strategy which will
solve the entire problem by reducing the top-level goal to the empty
goal 1list, rather than to attack subgoals individually by hand
(although this can be useful for designing a strategy).

-177-

2. The theorem prover

The denotation of a Clear specification is a theory -- that is, a
signature > together with a closed set of J-equations (and
Z—constraints). Of course, the set is often infinite, so it cannot
be represented explicitly. Both Clear implementations represent a
closed set of equations by an agglomerate; this is a value of the
term algebra generated by the following constructors:
close : equation-set x constraint-set —> agglomerate
union : agglomerate x agglomerate —> agglomerate
translate : signature-morphism x agglomerate —> agglomerate

inv-translate : signature-morphism x agglomerate —> agglomerate
add-equality : signature-morphism x agglomerate —> agglomerate

For the formal meanings of these operators, consult the next section
(they have already been defined informally in section IV.1). This
is a sufficient set of operators to describe the manipulations on
agglomerates required by the semantics of Clear. Roughly speaking,
each operator corresponds to a theory-building operation of Clear.
The operator close is used for enrich, union for combine (and
enrich), inv-translate for derive, and add-equality for data-enrich,
Translate is needed for enrich, combine, and apply. For example,

the Clear expression A + B generates the following agglomerate:

union(translate(o,,A-agglomerate),
translate(GB.B-agglomerate))
where oy and og are the inclusions of the signatures of A and B
respectively into the signature of the combined theories.

The theorem prover's job 1is to implement the membership
operation, determining if an equation occurs in the set of equations
described by an agglomerate:

is-in : equation x agglomerate —> bool

Given an equation e and an agglomerate A, we try to show that e
is contained in the denotation of A; if this can be established then
we write Al-e. This is called a fact. Facts in our system coexist
with PPLAMBDA theorems (which we write with a subscripted turnstile,
'ECF from now on) and play a parallel role. Like theorems 1in
PPLAMBDA, facts can only be constructed by application of certain
rules of inference which we will shortly discuss. The system

provides a set of tactics for attacking goals (which are written

-178~

?
nlCcF
analogous to LCF tactics and can be combined into strategies using

f,
Al-e -- LCF goals are henceforth written a;...a c}; these are

the standard tacticals.

Thus we adopt wholesale the LCF proof methodology, and use
exactly the same trick for ensuring the validity of facts as LCF
uses for theorems. We use PPLAMBDA forms for representing equations
and constraints, and perform all of the necessary straightforward
equational deduction using the standard PPLAMBDA rules of inference.
The system itself is written in ML. The only important feature of
LCF we do not use is the facility for building new PPLAMBDA theories
by extending old theories. The role of theories in PPLAMBDA is
played by agglomerates in our system. As we shall see shortly, much
of the work of the theorem prover consists of rapidly switching
contexts from one agglomerate to another (usually embedded) one -~
LCF does not permit switching between PPLAMBDA theories in the
course of a proof (although such a facility could be added).
Moreover, agglomerates may be related in ways different from the
simple parent-daughter relationship between theories supported by
LCF. The theorem prover operates in a PPLAMBDA theory containing
all the types (sorts) and constants (operators) it will need to use
because these need to be declared before appearing in a form, but no
axioms are included except for those built into PPLAMBDA. The
axioms of a Clear specification are contained in the agglomerate
which 1is its denotation; these are brought into play in the course
of the proof but never become part of the underlying PPLAMBDA theory
itself.

We actually use an impoverished version of LCF in which many of
the usual built-in types, operations and inference rules of PPLAMBDA
are not available. This is necessary because of a mismatch between
the models of PPLAMBDA and Clear theories. Clear deals entirely
with total functions, while PPLAMBDA is designed for reasoning about
recursively-defined functions which may be partial. A model of a
PPLAMBDA theory 1is given by a family of domains, each with a
distinguished minimum element and an order relation (see [Milner,
Morris and Newey 19751). A PPLAMBDA type always includes an

implicit minimum element and an order relation, and inference rules

-179-
are provided for reasoning about them. This means that the PPLAMBDA
rules of inference are not sound for reasoning about Clear theories;
an example will be given in section 3. Soundness is restored by
removing the implicit order and minimum element and all inference
rules concerning them. The subset of PPLAMBDA which remains is
described in appendix 3.

The goal of this system is to provide a set of tools sufficient

to enable a user to conduct proofs of 'facts' in LCF. As mentioned
earlier, our intent is not to give a general-purpose automatic proof
system, for this would be an impossible task. To this end the
system contains definitions of agglomerates and facts (with their
inference rules); a set of basic tactics are supplied as well,
although the user may design his own tactics from the inference
rules given. A strategy which is capable of automatically proving a
restricted class of facts is provided. If this strategy fails, it
will at least have reduced the problem at hand to one of ordinary
equational deduction using standard PPLAMBDA inference rules. At
this point the user must assume control of the proof attempt, with

all the usual facilities of LCF at his disposal.

-180-~
3. Inference rules
Suppose we are somehow able to construct the fact A}-e in our

system. We understand this to mean that e 1is a member of the set
described by the agglomerate A. We had better explore the semantics
of agglomerates before attempting to give inference rules for

reasoning about them; without a semantics, we cannot even prove the

soundness of our system.

The abstract syntax of agglomerates was given at the beginning of
the last section. They have a straightforward semantics, given by
the semantic function E (recall that E refers to the model-
theoretic closure of E, and 6—1(5) = {elo(e)eE}; see section
III.2.3 for the meaning of the notation ES, the augmentation of E by
equations defining the 'data' equality predicate == on the sorts of
S).

IE : agglomerate — (equation and constraint) =-set

E{close(E,C)] = EUC

Efunion(A,A')] = ETAJUE(IA']

E(ltranslate(c,A)] = o(ELAL)

E{linv-translate(c,A)] = o~ (ETAD)

E{Jadd-equality(c,A)] = ELATS (S=sorts(Z'-Z), where ¢:3=>3")

where E denotes a set of equations,
C denotes a set of constraints,
and A denotes an agglomerate.

Observe that for any agglomerate A, IE[IA] is closed (the
denotation of inv-translate is always closed due to a result in
section III.2.H4). Also note that not all terms are semantically
well-formed -- for example, if A denotes a set of Zrequations and
constraints and 012'—92" is a signature morphism where gﬁZ', then
translate(o-,A) 1is meaningless. It 1is assumed throughout this

chapter that any restrictions necessary to maintain well-formedness

are tacitly stated whenever a term appears.
A number of identities follow from the semantics, including the
following:

translate(o,union(A,A')) = union(translate(oc,A),translate(o,A'))
translate(o,inv-translate(c,A)) = A

-181-
But the following identity does not hold in general:

inv-translate(o,translate(c,A)) = A

Using this semantics, we can give a set of inference rules which
allow us to reason about facts of the form A}j-e, where e 13 an
equation or a constraint. (Note that Af-e means e€E[lAll.) The
problem with this is that we do not have any means available for
reasoning about constraints; we know what it means for an algebra to
satisfy a constraint and how to translate constraints by signature
morphisms, but this does not provide a rich deductive calculus
similar to what we have for equations. Moreover, constraints cannot
be converted into equations; the language of equations is not rich
enough to capture the meaning of a constraint. But certainly we do
not want to throw away the information encapsulated in cqnstraints
if at all possible, since this would dramatically restrict the class

of facts we would be able to prove.

We need a notion of fact in which something more than an equation
is allowed on the right of the turnstile. This 'something' should

be powerful enough to express constraints, and should have a
readily-available proof theory. A very convenient choice 1is
PPLAMBDA forms (formulae); these include equations, and also allow
higher—order quantification and combination of forms with the
conjunction and implication connectives. We will see shortly that
an induction rule for a sort s (derived from a data constraint) can

be expressed as a second-order form VP.¥Q. ... where P and Q have

the polymorphic type s—>*®*, Moreover, we know how to reason about

forms; that is precisely what LCF was built to do.

It is easy to extend facts to be of the form A|-f, where f is any
PPLAMBDA form. We can define A|-f to mean fe]E[IAIl’*. where
* ! (J-equation and J-constraint) -set —> J-algebra set
is the function defined in section II.4 (recall that E = E") and
+ i 2-algebra set —> Z-form set
is defined by:
M* = {f!m satisfies f for each meM}

It turns out that even though the 1language of forms is

-182-

sufficiently powerful to express the information contained in a
constraint, it is impossible to extract all of it because of
incompleteness. But that portion of the information which is most

necessary for our purposes may be translated into a form.

To see how this arises we must examine the definition of
constraint satisfaction given in section II.5. If we consider for
the moment only cases where the second part of the constraint (the
signature morphism) is the identity, then this amounts less formally

to the following definition:

Def (Constraint satisfaction, informally): An algebra A satisfies

a constraint <1:1=—)I',1518(T,)> if the following conditions hold:

1. A is a model of T'.

2. No terms are identified in A unless the equations of T'
force them to be.

3. Every A element is the value of a term having variables
only in sorts of T for some assignment of values to
variables.

These three conditions are statements which will be true of any
#

algebra in E[IAID , for any constraint in E[TAID. This means that

any statement which follows from them which can be encoded as a form

#*
will be in ETAD *, and hence a fact in A.

Condition 1 1s redundant. The equations of T' will appear
elsewhere in the agglomerate which contains the constraint, so we
can safely ignore them now. Condition 2 entails only inequations --

these can be given as PPLAMBDA forms (aZb 1is written as "“a=b IMP
TT=FF"), but it 1s impossible 1in general to determine which

inequations will hold because of the incompleteness result mentioned
earlier. This is not a problem if T' is anarchic. But because we
are mainly interested in proving equations, and because PPLAMBDA
does not include facilities for reasoning about inequations, we

choose to ignore this special case.

Condition 3 gives rise to an induction rule for each sort in
sorts(I')-sorts(I), since all values of these sorts are generated by
the 'constructors' in T'. This rule can be expressed as a

polymorphic second-order form —— in the case of natural numbers with

-183~

operations 0 and successor the rule becomes:

IP:nat->%*, IQ:nat->*%,
[P(0)=Q(0) & !x.[P(x)=Q(x) IMP P(succ x)=Q(sucec x)]
IMP
Ix.[P(x)=Q(x)]]

In LCF the universal quantifier becomes '!', type variables are
written '#' (or #% ##% etc,), and IMP means logically implies. We
use the operator '=' instead of the LCF '==' to write PPLAMBDA
equations in this chapter; the 'z=' operator is reserved for C(Clear's

'data' equality predicate.

This rule «could be instantiated to prove the equation
n+m>n = true (that is, to prove the fact Arﬂﬂn.[n+m2n=true]" for
the agglomerate A which arises from enriching the natural numbers
with an order relation). The type variable #* i3 instantiated to
nat->bool, P becomes In.lm.n+m>n and Q becomes Mn.\m.true to give:

Am.0+m>0=\m.true
& !x.[hm.x+m>x=)m.true IMP hm.succ(x)+m>succ(x)=z)lm.true]

IMP
!x.[\m.x+m>x=) m.truel

In general, given a constraint <i:I°—}I',1318(T,)> and a sort
sesorts(T')-sorts(T) with B

constructors(s) s {oeopns(T') arity(o) is v->s, for some v}
= {.0., wiu=>s, ...},

we can extract the following induction rule:

IPis=>%, 1Qis->%,

[...
& Ix,cul, o0 Ix tu [... & P(x,)=Q(x.) & ...
171 n°'n IMP J J
. P(w(x1,....xn))=Q(w(x1,....xn))]
IMP

!x:8.[P(x)=Q(x)]]

where u=u.,... and u,=s.
1 Un J

Recall that the preceeding discussion related only to constraints
with the identity morphism (on the signature of T') as a second
part. Given a constraint <i:T“>T',c:signature(I')—>2> (where o

-184~
need not be the identity), we can produce an induction rule by first

generating a rule for the constraint <1'1518(T')> using the method
just described, and then applying the sigﬁ;ture morphism ¢ to
translate the rule to the signature Q.

We have Jjust described a way of extracting a set of induction
rules from a constraint; this gives a function
induction-rules : constraint —> form-set
It is easy to define another function
eqn-to-form : equation — form
for converting equations to forms. Now we can have a try at an

inference rule:

fe(eqn-to-form*E U induction-rules*C) = close(E,C)}f

This 1s a satisfactory rule, but since the original equations and
constraints are no longer of any use (but only the forms derived
from them) we could Jjust as well forget them and deal only with
forms. Accordingly we modify the abstract syntax of agglomerates so

that close accepts a set of forms:

close : form-set — agglomerate

The rest of the abstract syntax remains the same. The agglomerates
used by the Clear implementation (call them E—aéglomerates) are
translated into agglomerates with the new close (F-agglomerates),
with the only nontrivial part of the translation being the
conversion of the constraints to forms. This translation occurs at
the interface between Clear and LCF, as described in a later

section.

An incidental benefit of the swit¢h from equations to forms is
that the theorem prover 1is now equally capable of handling
specifications using conditional equations, predicate calculus
formulae, or any other kind of axioms which can be translated into
PPLAMBDA forms. The only difference is at the interface between the

specification language and the theorem prover, where the axioms must

be translated into forms.

A semantics for F-agglomerates is given by the semantic function

~185-
F, defined as follows:
IF : agglomerate — form-set

Flclose(F)] = F
FQunion(A,A')] = FOIAJUTFOIA'D

. . .

All the semantic equations except for the close operation are
identical to those at the beginning of the section. Note that
F = F++, where the first + is the operation

+ : 2-form set —> 2-algebra set
defined by

F* = {m|!m satisfies F}
and the second + is

+ : 3-algebra set —> 3I-form set
as described earlier.

»
Theorem: For any E-agglomerate A, TFir(A)Ils IEQIAD *, where

v :E~-agglomerate—>F-agglomerate is the translation mentioned above.

Proof: See Appendix U4; the proof relies on a proof of the
Satisfaction Lemma (section II.3) for PPLAMBDA forms, also given.

This theorem tells us that the new semantics for agglomerates is
consistent with the old semantics -- S0 any fact we can prove using
inference rules which are sound with respect to the new semantics

will hold in the corresponding theory (but not vice versa).

The inference rules can now be stated. It is easy to prove from
the semantics that each of the rules is sound (note that Apf now

means feIFMIAIl). Each rule is given an upper-case name, following

LCF convention.

CLOSE: feF
UNIONLEFT: Al-f
UNIONRIGHT: A'|-f
TRANSLATE: ARt

close(F) |-f
union(A,A") |-f
union(A,A'") |-f
translate(o,A) o (f)
INVTRANSLATE: Ao (f) inv-translate(o,A) |-f
ADDEQUALITY: Af-f add-equality(o,A) o (f)
EQUALITYOPN: w:s.s->boolB°°leopns(z'1Z) and o:3<=>2'
=> add-equality(o,A)}-!x:s.!y:s.[x=y IMP w(x,y):trueBool]
LCFINFER: A|-f1 & ... & Al-fn & f1""'fn|-I:CFf = Alf

UUVUVUUUY

--186~

EQUALITYOPN provides us with a way of proving equality (the
operator w will always be the =z data equality) but no way of
proving inequality. Proving inequality %s impossible in general
because of incompleteness, but in the special case of an anarchic
theory it is trivial. Burstall [1980a] has devised a way of proving
inequality in a nonanarchic theory, but the method requires help
from the user, analogous to but different from supplying induction
hypotheses to a theorem prover. We do not attempt to deal with this
problem; no inference rules are provided for reasoning about
inequality. Note that 1inequalities are subtly different from

inequations, discussed earlier.

LCFINFER provides a 'gateway"between standard PPLAMBDA and the
superstructure of inference rules about facts which is needed to
adapt LCF to reason within Clear theories. Viewing the theorem
prover as a goal-manipulation system, the previous seven rules
provide a means for reducing a goal (prove a fact A}f) to a problem
in ordinary equational 1logic. LCFINFER permits this to be
translated into an LCF goal, whereupon the proof can proceed using

the facilities of standard LCF.

We must be careful in our use of LCF for two reasons. The first
problem stems from the mismatch between the models of PPLAMBDA and
Clear theories mentioned in section 2. Recall that in standard
PPLAMBDA a type always includes an implicit minimum element (written
nyum), If full PPLAMBDA is wused then LCFINFER is not sound.
Consider the theory Bool; it contains a data constraint which gives
rise to the following induction rule:

!P:bool->*, 1Q:bool->%,
[P(true)=Q(true) & P(false)=Q(false)

IMP
Ix.[P(x)=Q(x)] 1]

Taking the example

P(UU) = UU, P(true) = P(false) = true
and Q(UU) = Q(true) = Q(false) = true

this rule leads to the conclusion UU=true. A similar example can be

used to prove that UU=false, and by symmetry and transitivity this

means that true=false.

-187-

In order to retain soundness, we restrict PPLAMBDA so that
examples like the one above do not occur by excluding UU and all
inference rules which refer to UU or the order relation. In fact,
we really want to replace the turnstile ECF in LCFINFER by Eb'
where EQ is a system for purely equational deduction with the
ability to apply the induction rules described earlier. We use LCF
only for convenience and because it contains a powerful simplifier
which 1is capable of assuming much of the work of equational

deduction.

A second problem with the PPLAMBDA inference rules 1is
demonstrated by the following example from Goguen and Meseguer
[1981]:

const T = theory
sorts a, bool
opns true, false : bool
not : bool -> bool
and, or : bool,bool -> bool
f : a -> bool

eqgns not(true) = false not(false) = true
p or not(p) = true p and not(p) = false
porp=p pand p = p
f(a) = not(f(a)) endth

We can now make the following deduction using the inference rules of

PPLAMBDA (symmetry, transitivity, substitutivity and specialisation
of quantifiers are sufficient):

f(a) or not{(f(a))
f(a) or f(a)

f(a)

f(a) and f(a)

f(a) and not(f(a))
false

true

But true=false 1s not satisfied by the model of T with
bool={true,false} and az=@ (with the usual interpretation of the

boolean operators).

This is again due to a mismatch between the models of PPLAMBDA
and Clear theories. The inference rule for specialising quantified
variables is not sound for many-sorted theories (e.g. Clear

theories) unless the variable is of a non-void sort:

-188-
Def: A sort s is void in a signature Z if sesorts(z) and:
- There are no constants of sort s in Z, and

- There 1is no operator cu:s1....,sn->s in ‘; with all of

SqyrevesSy non-void.

It is difficult to change the inference rule because it is built
into the LCF simplifier, which plays a vital role in our equational
deduction tactic (this tactic is described at the end of the next
section). But void sorts are very unusual in practice, The
quantifier specialisation inference rule remains valid as 1long as
all sorts are nonvoid, so for reasonable examples there will be no
problem. It is best to eliminate unsound inference rules, so a
future reimplementation should incorporate a version of quantifier

specialisation modified to fail for variables of void sorts.

-189-

4, Tactics and strategies

The inference rules given in section 3 could be used to prove
theorems in a 'forward' direction, but the LCF style is to instead
proceed backwards in a goal-directed fashion. A step consists of
transforming the goal into a list of goals which, if they can be
achieved (converted to theorems), entail the desired theorem. The
transformation steps are carried out by backwards inference rules
called tactics, which can be composed using tacticals to give

strategies, as discussed in section 1.

The theorem prover provides tactics corresponding to each of the
inference rules given in section 3. These are all simple ML

2
programs, operating on goals of the form A}Lf and returning a list

of goals (together with a proof, not shown).

2
CLOSETAC: close(F)-f > [] if feF, else failure
2
UNIONLEFTTAC: union(A, AN Ef —> [APf]
UNIONRIGHTTAC: union(A,A") of v—> [A'f]

TRANSLATEWITHTAC: f = translate(o,A)Bf' w—> [APE]
if o(f)=f"', else failure

INVIRANSLATETAC: inv-translate(o,A) Bf w3 [APo(f)]

] 4
ADDEQUALITYTAC: add-equality(ec-,A) F‘f' —> [A F-f']
if 6-1(f)£¢. else failure

?
EQUALITYOPNTAC: add-equality(o'.A)|-'—w(x.y)=trueBool
2
— [add-equality(c,A) |- x=y]
if w:s,s->boolpyo1€0pns(2'-2) where o:3<>3', else failure

. 2 ?
LCFINFERTAC: DARE . e AR D == AEE = [, £ o f]

Each of these tactics gives a way of diving into an agglomerate
with a form, yielding a goal concerning a subagglomerate and the
(possibly transformed) form. UNIONRIGHTTAC and UNIONLEFTTAC take
different choices when given a union; similarly, TRANSLATEWITHTAC
yields a different result for the goal translate(c.Alef depending

on which element of the set 6-1(f) it is given. The system provides

-190-
tacticals which automate these choices:

UNIONTACTHEN: tac r—
(UNIONLEFTTAC THEN tac) ORELSE (UNIONRIGHTTAC THEN tac)

')
TRANSLATETACTHEN: tac > translate(o,A) |f
((TRANSLATEWITHTAC f1 THEN tac)

ORELSE ... ORELSE R
(TRANSLATEWITHTAC f_ THEN tac)) translate(o,A) |-f

where {f1. oo fn} =0 (f)

The standard LCF tactical ORELSE, given the two tactics tac1 and
tac2. applies tac1 to the goal unless it fails, in which case tac2
is applied. The action of UNIONTACTHEN tac is therefore to first
try choosing the left-hand branch of the union; if this causes tac
to fail, then it tries the right-hand branch. TRANSLATETACTHEN tac
tries each possible choice of argument for TRANSLATEWITHTAC,

rejecting those which cause tac to fail.

It is helpful to think of an agglomerate as a tree. For example:

union
translate inv~-translate
union close
inv-translate translate
add-equality close

close

Each of the tactics given so far dive from an agglomerate to the
subagglomerate(s) immediately underneath (with the exception of
EQUALITYOPNTAC, which remains at the same node). A composite
tactical called DIVETAC is provided which, given an LCF tactic
(i.e., a tactic for attacking LCF goals), explores the entire

~-191~
agglomerate by diving repeatedly until it reaches a tip (a close
agglomerate). At this point LCFINFERTAC is applied, followed by the
tactic provided as argument. If this results in the empty goal
list, then the goal is achieved; otherwise a failure 1is generated
which is trapped at the most recent choice point (an application of
UNIONTACTHEN or TRANSLATETACTHEN). The same process is then used to
explore another branch of the tree (or the same branch, with a

different form), until the entire tree has been traversed.

DIVETAC: tac »—> § —

if g = close(F)f:

(TRY (LCFINFERTAC [close(F)}-—f‘1

close(F)[—f‘n] THEN tac)) g

where F = {ﬂg, ooy fn}
if g = union(A,A')[lf:O (UNIONTACTHEN DIVETAC tac) g
if g = translate(oc,A) |-f: O(TRANSLATETACTHEN DIVETAC tac) g
if g = inv-translate(ch)JLf: (INVTRANSLATETAC THEN DIVETAC tac) g
if g = add-equality(oc,A) }-f:

((DO EQUALITYOPNTAC) THEN ADDEQUALITYTAC
THEN DIVETAC tac) g

This uses two auxiliary tacticals. The first is called TRY; it
fails unless the tactic supplied is able to achieve the goal.

TRY: tac —> g > if tac g = [] then [], else failure

The second is called DO; it applies the given tactic, returning the
original goal if the result is failure.

DO: tac > g > if tac g = failure then [g], else tac g

DIVETAC EQTAC (where EQTAC 1is an LCF tactic for performing
equational deduction; one such 18 described at the end of this
Section) can automatically provide proofs for a wide range of facts,
provided that EQTAC performs adequately. It dives down to the tip
which contains the information needed to prove the fact at hand (of
course, finding the proper tip may involve a backtracking search),

and uses EQTAC to do the 'dirty work' of the proof.

This is quite a good way to go about proving facts concerning

-192-

?
large agglomerates. For example, if the goal is A[;p+q=q+p where A

is obtained from the specification of a compiler, then almost all of
the information buried in A 1is completely irrelevant and should be

ignored lest the proof get bogged down by silly proof attempts.
DIVETAC will fail quickly when attempting to follow most silly paths
(going on to find the correct path) because of a mismatch between
the form at hand and the signature of the irrelevant subagglomerate.

For instance, the Clear expression Nat + Useless gives rise to the

agglomerate

union(translate(TNat 2Nat “2Nat+Useless'ANat)
tra”SIa‘e(dUseless:-I-Uselessc_azNat«rUseless'AUseless))

An attempt to prove that p+q=q+p 1in the combined theory using
DIVETAC will ignore the subagglomerate Aygeless because
TRANSLATETACTHEN anytac will fail immediately when applied to the
goal
?
translate(cuseless.Auseless)l‘P*Q=Q*P
for aG;eless(p¢q=q+p) is empty. That is, provided that EUseless

does not include the + operator.

Unfortunately, a large class of facts remains which cannot be
proved using DIVETAC. These are the cases in which there is not
enough information 1in any single tip to prove the fact. For
example, proving that the equation

length(append(l,k)) = length(l) + length(k)
holds in the theory of lists and natural numbers requires the use of
equations and induction rules from both subtheories. DIVETAC will

fail for this reason.

The theorem prover provides a tactic for handling this
eventuality. Instead of diving into an agglomerate with a form, we
want to 'dredge up' facts from the depths of the agglomerate,
forming the union of all the information available in the tips.
Then LCFINFER and EQTAC can be used to prove the form.

This is more difficult than it sounds. Consider the following
contrived but illustrative specification:

-193~-

ABCD = theory sorts abcd
opns a,b,c,d : abcd endth

ACD = derive sorts acd
opns a,c,d @ acd
from enrich ABCD by
€qng a = b
b = ¢ enden
by acd is abcd endde

This gives rise to the agglomerate
inv-translate(o,close(a=b,b=c))

where o: acd ~» abced
a »—» a
c =~ ¢C
d — d

The equation a=c holds in ACD. How are we to discover this? It is
easy to prove the fact

inv-translate(o,close(a=b,b=c)) fra=c
using DIVETAC, but extracting all of the facts which are true in a

situation 1like this (without knowing beforehand which facts are
needed) is difficult. It is impossible in general because of the

existence of theories which have finite presentations when derive is
allowed, but only infinite presentations otherwise (see [Thatcher,

Wagner and Wright 1978]).

DREDGETAC therefore does not try to dredge up all of the

information available, but only that which 1is conveniently
accessible. The following auxiliary function produces the set of

conveniently accessible forms from an agglomerate:

dredge: close(F) —> F
union(A,A") > dredge(A)Udredge(A')
translate(co,A) —> co-(dredge(A))

inv-translate(o,A) 0'1(dredge(A))
add-equality(c,A) + o (dredge(A))VU
{1x:s.ty:s.[x=y IMP w(x,y)strueg, ;]
| w:s.s->boolBooleopns(z'—Z§ where ¢:3<>3'}

Note the similarity between the function dredge and the semantic
function ¥ defined in section 3. The only difference 1is that
dredge (being only a program running on a finite computer) must
abstain from use of the closure ('bar') and the add-equality-axioms

operations,

-194~

It is easy to prove the following derived inference rule, using

the fact that FSF and F§F' = FgF':

DREDGE: fedredge(A) = A|-f

DREDGETAC uses dredge to extract forms form the agglomerate at
hand. Then LCFINFERTAC is applied to give an LCF goal, which has as
assumptions the set of facts thus accumulated.

f)
DREDGETAC: A[-f > LCFINFERTAC [Aff,, ..., ARf,] afs
where {f;, ..., fn} = dredge(A)

We have seen that DIVETAC is capable of proving a certain class
of facts, yet DREDGETAC seems to be needed to collect the
information necessary for the proofs of other facts. DREDGETAC
alone (followed by EQTAC) is not capable‘of proving many of the
facts which are handled with ease by DIVETAC. Some combination of
diving and dredging seems to be necessary in a general strategy for

proof in Clear.

Our strategy rests on the observation (mentioned above) that
often the agglomerate at hand contains a great deal of information
which is utterly irrelevant to the proof of the desired fact. This
seems to be a pitfall to which most theorem-proving systems are
susceptible; it 1s easy to get irretrievably bogged down in
exploring the 1large number of blind alleys made available by a
wealth of information (see the introduction of [Boyer and Moore
1979]), for example). It 1is therefore important to restrict the
available information as much as possible before attempting the

proof using standard techniques.

But how is the theorem prover to automatically determine exactly
which subset of the available information is necessary for the proof
of a fact? 1In the case of a conventional theorem prover, where the
axioms, previously proved theorems, etc. are stored in a 1ist, the
only approach seems to be some kind of heuristic filter which passes
only 'relevant' facts. The construction of such a filter is a
formidable task, for it is not always immediately obvious what is

relevant.

-195-

This problem is not So perplexing when we are given the
information in a highly structured form, such as an agglomerate. As
we observed above, it 1is easy when diving to exclude certain
irrelevant subagglomerates entirely because a 'translate' node acts
as a barrier to inappropriate goals. Moreover, the agglomerate will
reflect the structure of the human-~constructed specification from
which it arises, and so it is likely that all of the information
necessary to prove the fact will be located in a relatively small
subagglomerate. DREDGETAC applied to this subagglomerate will
normally collect all of the information neccessary to prove the

fact, without much that is irrelevant.

The strategy we use 1is based on DIVETAC and DREDGETAC, as
expected. Recalling the explanation of DIVETAC, the approach now is
to visit each node in the agglomerate in precisely the same order as
in DIVETAC, performing the same action at the tips. But after
trying both paths of a 'union' node and failing, DREDGETAC is used
to attempt the proof in the combined theory. This means that
dredging takes place on a subagglomerate only after all other

methods have failed.

This strategy 1is implemented by the tactical SUPERTAC (again,
this takes as parameter an LCF tactic for doing equational

deduction).

SUPERTAC: tac t+— g t—
9
if g = close(F)|-f:
(TRY (LCFINFERTAC [close(F)r-f1

close(F)f-f 1 THEN tac)) g

where F = {qﬂ. oo fn}
union(A.A'),—f: ((UNIONTACTHEN SUPERTAC tac) ORELSE

if g =

(TRY (DREDGETAC THEN tac))) g
if g = translate(c,A)[f: 7(TRANSLATETACTHEN SUPERTAC tac) g
if g = inv-translate(oc,A) }-f:

” (INVTRANSLATETAC THEN SUPERTAC tac) g
if g = add-equality(c,A) }f:
((DO EQUALITYOPNTAC) THEN ADDEQUALITYTAC
THEN SUPERTAC tac) g

Note that DREDGETAC could be applied at nodes other than union, but

-196-

any fact which can be proved using DREDGETAC THEN tac on a non-union

node can also be proved using the appropriate diving tactic followed
by SUPERTAC tac, so this would be a waste of effort.

It 1is 1interesting to observe that the structure of the
specification from which the agglomerate is taken 1s an important
factor in the performance of SUPERTAC. It is certainly possible to
write a specification which defeats the heuristics upon which
SUPERTAC 1is based. But this specification would probably have a
rather strange structure. The locality of reference which SUPERTAC
exploits seems to be one criterion for a well-structured

specification.

There remains an important class of facts which cannot be
automatically proved using SUPERTAC. Recall the theory ACD given as
an example earlier in this section; this was used to demonstrate the
difficulty of dredging from an 1inv-translate. But in some cases

dredging 1s necessary; for example, consider the theory

Tricky = enrich ACD b
egns ¢ = enden

This gives rise to the following agglomerate:

union

close(c=d) inv-translate(o,close(a=b,b=c))

where o 1s as before. Now suppose we want to prove the fact
ATricky*_a=d‘ This requires a dredge, since the necessary
information 1s spread over both branches of the union. But the
important equation a=c cannot be dredged from the inv-translate, so
SUPERTAC will fail.

The lemma a=c 18 a necessary step in the proof. This can easily
be proved by diving down the right-hand branch of the union. It is

then easy to prove a=d using the equation c=d.

But where does the idea for this lemma come from? We avoid the

difficult problem of automatic lemma generation by requiring the

-197-

user to supply such lemmas. A new construct has been added to Clear
for this purpose to enable the user to propose lemmas along with the
specification; we feel that this is preferable to requiring the
lemmas to be inserted at theorem-proving time. To propose the lemma

azc in the above specification, the user would write:

ACD' = enrich ACD by
thms a = ¢ enden
Easy = enrich ACD' by

egns ¢ = d enden

A 'thm' is treated exactly as an equation, except that it must be
provable from the existing equations and constraints or else an

error occurs. The theory Easy gives rise to the agglomerate

union

/

close(c=d) union

close(a=c) inv-translate(...)

and now the equation a=d may be proved easily using DREDGETAC. We
got this idea from the Z specification language [Abrial, Schuman and
Meyer 1979] which also permits theorems to be 1included 1in
specifications. This is a useful facility, apart from its use in
assisting the theorem prover. The user can insert theorems which he
believes to be correct as a check on the correctness of his
specification, or he can use a theorem to prominently display an

important consequence of the axioms.

It should be noted that Nelson and Oppen [1979] have described an
elegant method for combining decision procedures for several
independent theories 1into a decision procedure for the combined
theory; this can be seen as an alternative to our DREDGETAC.
Unfortunately, their method does not work when the theories share
operators, so in general it cannot be applied to the combination of

Clear theories. But in the special case where the theories do not

-198-
share operators (and perhaps also for cases with certain restricted

kinds of sharing) their algorithm could be applied in place of
DREDGETAC.

The theorem prover of the t system (Nakajima, Honda and Nakahara

1980] also exploits the structure of specifications to facilitate
proofs. It uses theory-focusing techniques [Honda and Nakajima

1979] which are related to the strategy embodied in SUPERTAC.

Equational deduction

The strategies given above assume the existence of an LCF tactic
for performing equational deduction. We give here a brief
descriptiecn of the one provided by the system; this is able to prove
a reasonable number of examples completely automatically, but it is
far from the best possible. Several equational theorem provers (see
[Musser 1980], [Goguen 1980] and [Huet and Hullot 1980]) have
recently been built wusing the Knuth-Bendix [1970] completion
algorithm; this method seems to give far better results than the

naive approach used here.

EQTAC is built from five component tactics, to be described
below. It tries each tactic in turn, repeating the sequence until a
tactic fails or the goal is achieved.

EQTAC = REPEAT (SIMPTAC THEN INDTAC THEN CONJTAC
THEN EXTTAC THEN IMPLTAC)

Actually, INDTAC (induction tactic) is the only one of these
which can fail, so EQTAC fails only if all possible induction

variables have disappeared.

SIMPTAC is the standard LCF simplification tactic. It uses the
basic simplification rules provided by LCF (beta-conversion, etc.)
together with all of the assumptions of the theorem EQTAC is trying
to prove (contributed by LCFINFERTAC) with the exception of
induction rules. If a permutative rule such as p+gq = g+p 1is
included in a specification, then SIMPTAC will loop.

INDTAC does induction on the 1leftmost outermost universally

quantified variable in the goal for which an induction rule is

-199-

available. An example of 1its result when applied to the goal
...[%CFn+m2n=true was given in section 3, except that the result

shown there has already been simplified using beta-conversion.

CONJTAC converts a goal of the form

2
a1.....ant-ch1 & ... & fm
to a list of goals

? ?
a1.....an[ECFf1 .« .. a1""'an'ECFfm
This splits the goal generated by INDTAC into cases which can be

treated separately.

EXTTAC converts any occurrence of Mx.tlzXx.t2 in a goal to
1x.(t1=t2). Equations like these are generated by INDTAC when it is
applied to an equation containing universally quantified variables

other than the induction variable.

IMPLTAC converts a goal of the form
?
81.....an'ECF!X...[f1 IMP f2]

to the goal

a1.....an.f1|5CFf2
adding f1 to the set of simplification rules. This assumes the
inductive assumptions generated by INDTAC. The next time around the
EQTAC loop, SIMPTAC will (we hope) simplify most of the goals to
tautologies and a further induction will be attempted on the

remaining variables.

EQTAC is able to prove routine theorems involving multiple
inductions without difficulty. Typical examples are the
transitivity of € and the associativity of addition and append.
Commutativity of addition is much more difficult because induction
causes rules like x=x+0 and x+yzy+x to be entered as assumptions for
use by SIMPTAC, causing it to loop. More care with the use of such
permutative equations as simplification rules 1is needed to avoid

this behaviour.

An example of a theorem which EQTAC cannot prove |is
reverse(reverse(l))=1. The proof of this theorem requires the
application of a few clever heuristics rather than brute force.

Induction on 1 followed by simplification reduces the problem to one

-200-
of proving
reverse(append(reverse(l),cons(a,nil))) = cons(a,l)
with reverse(reverse(l))=1 as the inductive assumption. At this
point EQTAC fails. Boyer and Moore's [1979] theorem prover
continues the proof by applying the inductive assumption in reverse
to the right-hand side of the goal (they call this cross

fertilisation) and then replacing reverse(l) by the new variable z

everywhere (generalisation). This gives the goal

reverse(append(z,cons(a,nil))) = cons(a,reverse(z)) (*)
and induction on z completes the proof. Alternatively, the user
could supply a lemma such as (¥*) above; the theorem prover is able

to prove this lemma and then use it to complete the proof of the

theoren.

~201-

5. Incompleteness

Formally, we shall define a proof system as any relation between
theories and sentences such that the set of sentences provable in a
theory 1is recursively enumerable. In practice a proof system is a
set of inference rules together with a notion of proof leading to
such a relation. The recursive enumerability requirement captures
the 1idea that a proof system 1s an effective procedure for

generating the theorems of a theory.

Def: A proof system is a relation |- cTheoriesx Sentences such

that if a theory T is effectively given (e.g. T is a theory with a
finite presentation) then the set of provable sentences {slIf—s} is

recursively enumerable.

Def: A proof system | is called complete for a theory T if any
sentence s of signature(z) which 1s satisfied in every model of T

(i.e. TFs) is provable from T using |- (i.e. T}-s).

It 1s well-known that equational 1logic (i.e. reflexivity,
symmetry, transitivity and substitutivity) 1s complete for one-
sorted equational theories (this is due to Birkhoff [1935]). Goguen
and Meseguer [1981] show that this result extends to the many-sorted
case only 1if equational 1logic 1is modified slightly by the
introduction of explicit quantifiers and rules to add and delete
them. For initial models of equational theories, this modified
logic 1is complete with respect to ground equations but Nourani
[1981] shows that no proof system 1is sound and complete with respect
to non-ground equations (he actually shows that equational logic
with induction 1is not complete, but his proof generalises easily).
But the modified equational logic is not complete for Clear theories
(i.e. theories with equations and data constraints) with respect to
ground equations, even when induction 1s permitted. This fact is
demonstrated by the following simple example:

const T = enrich Nat by

opns f : nat -> nat
eqns f(n) = 2%*f(n+1) enden

where Nat 1is the usual theory of the natural numbers with addition

and multiplication. For all models A of T we have AEf(0)=0

-202~

(remember that f must be total and the sort nat does not include an
'infinite' element). But this equation 1is not provable by
equational logic with induction; this may be shown by induction and

case analysis on the terms which may be derived from f(0).

It is easy to prove the equation f(0)=0 in T if proof by
contradiction is allowed. But for some theories there is no proof
system which 18 strong enough to prove even all true ground

equations:

Theorem: There exists no proof system for (Clear which is sound

and complete with respect to ground equations.

Proof [MacQueen and Sannella 1982]: Proposition 4 of [Bergstra,
Broy, Tucker and Wirsing 1981] states that for any total recursive
function f:INxIN—>IN there is a finite Clear theory Tf having as its
only model (to within isomorphism) an algebra Af consisting of the
natural numbers IN enriched by the function

exf(y) = 1 if JxeN such that f(x,y)>0
0 otherwise

Suppose f is the total recursive function

f(x,y) = 1 if x codes a convergent computation of 9y(y)
0 otherwise

(where ¢y is the partial recursive function with G3del number Yy).
Then exs is the characteristic function of the complete recursively
enumerable set K (see [Rogers 1967]) so exe is not recursive and
therefore its graph is not recursively enumerable. Hence the set of
equations exf(n)zm true in Ay 1s not r.e., where n,m are ground
terms (such(O) for some j). Since for any proof system |- the set
of theorems which can be derived from a theory is r.e., there must
be ground terms n,m such that AfFZexf(n)=m (so TeFexp(n)=m since Ag
is the only model of T;) but Tf}‘exf(n)=m.

~203-

6. Implementation and an example

The theorem prover described here has been implemented on the
Edinburgh KL-10 computer, on top of the Edinburgh LCF system. The
system is called SOGGIE, which stands for Semi-Otomatic (sic) Goal-
directed Generation of Irrefutable Lhquations. The Clear
implementation described in chapter IV (only the prolific version,
so far) communicates with SOGGIE by constructing files containing ML
declarations which describe agglomerates corresponding to the
theories in which facts are to be proved. At present a file is
produced whenever the semantics demands that a signature morphism be
a theory morphism (i.e. one for each apply or derive in a
specification). To prove that c:(Z.EC)*?(E'.EC') is a theory
morphism, we prove that o(EC)e<EC'; the file contains the two
agglomerates o (EC) and EC'. The user ensures that the specification
is semantically well-formed by using SOGGIE to prove in each case
that the denotation of one agglomerate (the second) 1is included in
the denotation of the other. The following rules allow this task to

d
be decomposed into a list of goals of the form A|f (SOGGIE does
this automatically):

A-f, & ... & ARf & TFlelose({f,,...,f)]s FIA]
FIADs FIA"D & FIA'DI ¢ FIA"] « F(lunion(A,A'")] e IFIA"]

FIAD e Flinv-translate(o,A')] & TFltranslate(o,A)]e FFIA']
FIADe FItranslate(o,A')] = Flinv-translate(o,A)] e FIA']

(but not vice versa)

There 1is no analogous rule concerning add-equality. But this does

not cause a problem; it is very unusual in practice for the source
of an alleged theory morphism to include add-equality (which can
only arise from application of the data operation) except as part of
a subtheory shared with the target (such as Bool). In such a case
both agglomerates will include identical subagglomerates containing

add-equality nodes, and so the target agglomerate obviously includes

that fragment of the source agglomerate.

The tags attached to sorts and operators are retained; the tagged

name nametag becomes the LCF identifier name'tag (quotation marks

are permitted in LCF identifiers). Equations and constraints are

translated to PPLAMBDA forms as described in section 3. Error

-204-

equations are ignored at present, and quantifiers in equations are

not permitted. Although the specification 1is not strictly
semantically well-formed unless the facts given in the files are

proved, the responsibility for this is left to the user.

SOGGIE together with LCF fits into 128K words, with sufficient
workspace left for simple proofs (LCF itself accounts for 96K of
this total). The system can be expanded to provide extra workspace
for more ambitious proofs. Timing statistics may be misleading in
comparison with statistics obtained for other theorem provers; ML is
run interpretively, and SOGGIE was written without much concern for

efficiency.

As implemented, the theorem prover is slightly different than
described in the preceding sections. One difference 1s in the

inference rule LCFINFER. The version used in SOGGIE is as follows:

LCFINFER: A}-—f1 & ... & Ak%h & f;,....fékka > AFf
where each fj is a type instance of some fk

This modification 18 necessary because of a restriction on the
PPLAMBDA inference rule for type variable instantiation, which
requires us to instantiate type variables in induction rules on the
left-hand side of the IECF before using them. The change 1is
transparent so long as the built-in induction tactic INDTAC is used.

A second difference is that DREDGE is implemented as a primitive
inference rule, rather than constructed from other inference rules
as a derived rule. Also, DREDGE accepts a 1list of forms and
produces a list of facts, rather than transforming a single form to
a single fact. These changes are necessary for reasons of
efficiency; much of the time consumed by SOGGIE is devoted to
dredging (typically about forty percent) and so optimisation of this
step is important.

During the course of a proof attempt SOGGIE draws the shape of
the agglomerate as it explores. Each 'dive' exposes a new node of
the tree, labelling it according to its contructor. A 'dredge'
draws the outline of an entire subtree without labelling the nodes.

This enables the user to follow the progress of the proof as it

-205-

proceeds. Except for this, the user interface of SOGGIE is rather
primitive. To use the theorem prover, the user loads a file
containing the type and operator declarations for his theory and
then a file containing the agglomerates he wants to work with (both
these files are produced by the Clear system). This binds a list of
goals (agglomerate x form pairs) to be proved to the variable
goallist. The user selects a goal from this list and applies PRCVE
to it. PROVE prepares the display for drawing the agglomerate and
then applies SUPERTAC EQTAC to the goal. This produces either the
empty goal list and a proof (a function which when applied to the
empty theorem 1list yields a fact corresponding to the goal), or else

failure.

A typical example for SCGGIE is to prove the equation
length(k) plus length(l) = length(append(k,1))
in the theory given by the following Clear specification:

const Nat =
let Nato =
enrich Bool by
data sorts nat
opns zero : nat
succ : nat -=> nat enden iﬂ
enrich NatO by
opns (_ plus _) : nat,nat -> nat
eqns zero plus a = n
succ(n) plus m = succ(n plus m) enden

meta Triv = theory sorts element endth

proc List(X:Triv) =
let ListO =
enrich X + Bool by
data sorts list
opns nil : list
cons : element,list -> list enden in
enrich List0 + Nat by
opns length : list -> nat
append : list,list -> list
eqns length(nil) = zero
length(cons(a,l)) = succ(length(l))
append(nil,l) =1
append(cons(a,l),m) = cons(a,append(l,m)) enden

-206-

proc Sequence(X:Triv) =
enrich X + Bool by
data sorts sequence
opns empty : sequence
unit ! element -> sequence
(_ conc _) : sequence,sequence -> sequence
eqns empty conc s = 38
s conc empty = s
(s conc t) conc v = 8 conc (t conc v) enden

List(Sequence(Nat(element is nat]) [element is sequence])

Nonalphabetic operators such as . (sequence concatenation), + and 0
are not allowed in LCF (actually, O is allowed but tagged operators
like O'E24 are not allowed) so conc, plus and zero have been used

instead.

The agglomerate produced by the Clear system as the denotation of
this specification is shown on the next page in the form of a tree.

Note that the theory Nat appears twice in the tree, and Bool appears

four times.

The initial goal is a pair consisting of this agglomerate and the
PPLAMBDA form:

"tk:list'P22. !l:list'P22.
plus'E5(length'P22(k),length'P22(1)) = length'P22(append'P22(k,1))"

Note that sorts and operators are tagged, and that infix (and other

distributed-fix) operators have become prefix.

SUPERTAC EQTAC applied to the goal (via PROVE as described above)
begins by diving down the left branch of the topmost union node of
the agglomerate. But the first translate node forms a barrier to
further diving because the source of the signature morphism it
contains has no sort corresponding to 1list'P22 and no operator
corresponding to length'P22 or append'P22 (all information
pertaining to lists is contained in the right-hand subagglomerate of
the topmost union node). This failure causes the system to
backtrack and dive down the right branch of the union. It succeeds
in diving through the translate node and down the left branch of the

next union node. At this point it meets another barrier; no

uot3onput Tood

K3y1enba-ppe

subs 1004 ajevIsuel) :o«uosm:_.« 1008 :o«uusv:_« 10089
uoyun K3iy1enba-ppe :o«uo:vﬂ« 10089 K3y1enba-ppe
uot13IONpUT JeN @jersuri) sube 1oog 332 4:101:5 &

K311enba-ppe suba 1008
uotun

?jeysueIl
Yoyun suba AOA 0u\m~m:nuu uoyun
K3yt1enba-ppe uot3lonpuy 3IST1 ?jeTsueal
I suba jeN
7
o
b

uoTUn UOTIONPUT JeN oajeTsueRI}
@jeTsueI] uotun suba eouanbag @jeTBURIY
/ :o«::\

uotun
uotlonput / \ _
Kaytenbe-ppe oo:osvom/ \ uotun K3y :.:m_vmuvvm
ouﬂm:duu/ e3visueiy :o«_:: subs umz/ \oumamcnuu
:o«::\\\\\\\\\ KA3y1enbe-ppe
suba 1811

uotun
@jvIsURIY

ejersuei) ajevisuri)y
/:Oa:: \

uoyun
?3vIsuUPI)

ajvI8URIY
lllllllllIlllllllllllllllllllllll.=0a==

-208~

operator corresponding with append'P22 or 1length'P22 1is available
below this translate node. The system backtracks to the union node
immediately above and dives down the right branch to the close node
containing the equations defining append'P22 and 1length'P22.
LCFINFERTAC (applied to the set of equations available at that node)
THEN EQTAC is applied but this fails to achieve the goal. This
failure causes the system to backtrack again to the immediately
preceeding union node at which point it applies DREDGETAC THEN
EQTAC. DREDGETAC produces an LCF goal in which equations defining
plus'E5, length'P22 and append'P22 along with an induction rule for
list'P22 (as well as other equations and induction rules) are
avallable as assumptions. This goal is achieved by EQTAC; the proof
does an induction on k followed by two separate inductions on 1 (one
each for the base case and induction step). The result is an empty
goal 1list and a proof function which yields the desired fact when
applied to the empty thm 1list. The following is (an abbreviated
version of) the display drawn by SOGGIE while searching for the

proof:

union

/ \

/ \
trans trans

union

/ \
/ 0\

trans close

/ \
/ 0\

1 '
1 I

ete ete

The CPU time to achieve the original goal is 22.6 seconds (excluding
garbage collection); dredging accounts for 7 seconds of this total.
The CPU time to perform the proof (transforming the empty thm list
to the desired fact) is 11.5 seconds where dredging again accounts
for 7 seconds of this total.

It is important to note how easily the theorem prover was able to

~-209-

avoid all the irrelevant information contained in the left half of
the agglomerate. It would use exactly the same sSequence of
reasoning to prove the fact in the theory List(T) for any theory
T. This is because the fact is true of any sort of list, whether the
elements are sequences of natural numbers or something else. This
seems to be a common situation for proofs about parameterised
theories. If T is very large then it is important that the system
ignores T if it is irrelevant to the proof.

The example above is typical of the facts which SOGGIE is able to
handle. Experimentation with SOGGIE has so far been limited, but it
has been used to prove simple boolean identities, reflexivity and
transitivity of <, and associativity of + and append. In each case
the axioms relevant to the proof were buried within a larger
agglomerate. Comparison with a theorem proving system such as the
one described by Boyer and Moore [1979] would certainly not be
favourable, but this is entirely due to the mediocre facility for
equational deduction we use. Our goal is not to automatically prove
all theorems, but to provide a set of tools sufficient to enable a
user to construct his own proofs. It is nice that SOGGIE is able to
prove a certain class of theorems automatically, but more important
is that it is able to reduce any proof problem to one of ordinary
equational deduction. Also important is the way that SUPERTAC takes
advantage of the structure of Clear specifications to simplify the
theorem-proving task; this appears to be a novel approach to theorem

proving.

-210-

7. Possible improvements

It i3 easy to think of ways in which SOGGIE could be improved. A
better EQTAC which utilises state-of-the-art methods faqr equational
deduction would improve the performance of the system substantially.
Failing this, SOGGIE could at least be a little bit more careful
about adding equations to the simplification set. It is easy to
filter out at least the more obvious permutative rules, protecting

the system from looping in the course of simplification.

It would be great help if SOGGIE could check the consistency of
enrichments (i.e. that equations added in an enrichment do not
violate any previous data constraints). Again, this amounts to
proving inequality. As mentioned before this is easy in an anarchic
theory but impossible in general, so SOGGIE does not attempt to deal
with the problem.

The theorem prover needs most of all a good user interface. It
is important that when a proof attempt fails, the user should know
what happened and be able to return to the point of failure so that
he can fill in missing steps manually. A good first attempt at a
more friendly user interface would be a version of SUPERTAC which
upon failure prints a table containing the goals at which it failed
together with the sequence of choices which led to each of those
goals. The user could examine this 1list to find the goal which he
thinks would be easiest to achieve manually. He would then use
another tactic to repeat the particular line of reasoning which led
to the selected goal; this tactic would take as a parameter the
sequence of choices provided by SUPERTAC. OCnce the proper
environment has been re-established, the user would have all the
facilities of LCF at his disposal to achieve the goal. If he 1is
successful, then the proof of the goal can be composed with the
partial proof which SOGGIE was able to perform by itself to give the
proof of the original goal. Note that the goals at which the system
fails are always LCF goals; SOGGIE is able to automatically reduce

any problem to the level of equational deduction.

Once a fact has been established, it would be helpful to add it
to the agglomerate for use as a lemma in future proofs. If the

agglomerate were represented as a DAG (directed acyclic graph) with

-211-

identification of identical subagglomerates rapher than as a tree
then the lemma would automatically be incorporated in the
appropriate places throughout the agglomerate. Common theories such
as Bool typically appear many times in even a small agglomerate. In
a similar vein, 1if the dredge function were altered to deposit
intermediate results at each node it visits (the dredge of each
subagglomerate would be deposited at its root), then subsequent
calls of dredge could be made to run much faster. These
enhancements require an ability to destructively update data
structures. This is awkward in DEC-10 ML but easy 1in Luca
Cardelli's version of ML for VAX.

Present users of SOGGIE are required to view a specification as a
huge and complex tree with an elaborate relation to the original
specification. This undesirable state of affairs results from the
separation of theorem proving into a separate activity which must be
performed in isolation. Ideally, SOGGIE would be combined with the

Clear semantics program into a single integrated system. This could
be done in such a way that the user would never have to know that
his theories denote complicated agglomerates, or that sorts and

operators carry tags, although agglomerates and tags would still
exist at some lower level. Interaction between the system and the

user would be in Clear, using the sorts and operators defined in the
user's specification. But the user needs some way of directing the
system when an automatic proof fails. LCF provides a powerful tool,

but the ordinary user would not be interested in writing his own
tactics in ML. A simple facility for interactive proof using a set

of tactics provided by the system would be sufficient for all but

the most sophisticated users. Such users could use ML in the usual

way to define higher-level strategies from the tactics provided.

-212~
CHAPTER SEVEN
IMPLEMENTATION OF SPECIFICATIONS AND PROGRAM DEVELOPMENT

Clear specifications can be viewed as abstract programs. Some
specifications are so completely abstract that they give no hint of
a method for finding an answer. For example, a function for

inverting an nxn matrix can be specified as follows:

const Inverse =
enrich Matrices Ex
opns inv : matrix -> matrix

egns inv(A) x A = I
A x inv(A) = 1 enden

(provided that the theory Matrices includes specifications of matrix
multiplication and the identity nxn matrix). Other specifications
are Jjust HOPE programs written in a slightly different notation.
For example:
proc Reverse(X:Triv) =
enrich List(X) by

opns reverse : list -> list

eqns reverse(nil) = nil
reverse(a::1) = append(reverse(l),a::nil) enden

A Clear specification amounts to a HOPE program if all data is
anarchic and all axioms are equations with simple left-hand sides,

enabling their use as rewrite rules.

It 1is wusually easiest to specify a problem at a relatively
abstract 1level. We can then work gradually and systematically
toward a low-level 'program' which satisfies the specification.
This will normally involve the introduction of auxiliary functions,
particular data representations and so on. This approach to program
development is related to the well-known programming discipline of
stepwise refinement advocated by Wirth [1971] and Dijkstra [1972].

A formalisation of this programming methodology depends on some
precise notion of the implementation of a specification by a lower-

level specification. This turns out to be a rather difficult and

subtle problem. Previous notions have been given for the

implementation of both non-parameterised specifications ([Goguen,

-213~

Thatcher and Wagner 1978], [Nourani 19791, (Hupbach 1980], [Ehrig,
Kreowski and Padawitz 1980], [Ehrich 1982]) and parameterised
specifications ([Ganzinger 1980], [(Hupbach 1981], [(Ehrig and
Kreowski 1982]), but none of these approaches deals adequately with
Clear-style specifications which may be constructed in a
hierarchical fashion wusing data and which may be loose, A
definition of implementation is presented in this chapter which
agrees with our intuitive notions built upon programming experience
and which handles C(Clear-style specifications, based on a new (and
seemingly fundamental) concept of the simulation of a theory by an
algebra. This definition extends to give a definition of the
implementation of parameterised specifications. An example of an

implementation is given and several other examples are sketched.

For most of the chapter a variant of Clear is employed in which
the notion of a data constraint is replaced by the weaker notion of

a hierarchy constraint. The result is still a viable specification

language, although specifications tend to be somewhat longer than in
ordinary Clear. We later show that all results hold for Clear with

data constraints, but only under more restrictive conditions.

The 'putting-together' theme of Clear and the proposals of Goguen
and Burstall {1980] for CAT (a proposed system for systematic
program development using Clear) lead us to wonder if
implementations can be put together as well. We prove that if P is
implemented by P' (where P and P' are 'well-behaved' parameterised
theories) and A is implemented by A', then P(A) is implemented by
P'(A'"),

We prove that implementations compose in another dimension as
well. If a high-level theory A is implemented by a lower-level
theory B which is in turn implemented by a still lower-level theory
C (and an extra compatibility condition is satisfied), then A is
implemented by C. These two results allow large specifications to

be refined in a gradual and modular fashion, a little bit at a time.

All of the definitions and results in this chapter are the
product of work done in collaboration with Martin Wirsing,

Technische Universit#t Mtinchen, reported in [Sannella and Wirsing
19821.

-214-

1. Clear with hierarchy constraints

In section I.1.1 Clear's data operation was introduced as a way
of restricting the class of models of a theory to exclude trivial
and other undesi:able models. In section II.5 the notion of a data
constraint was defined; ar application of the data operation
contributes a data constraint to the resulting theory, and
satisfaction was defined so that only an algebra without 'junk'
(elements which are not the value of any term) and without
'confusion' (identification of terms not required by the equations)
satisfies a data constraint, where the precise nature of Jjunk and

confusion depend on the data constraint in question.

A notion for the implementation of one theory by another will be
given in the next section. In section 4 it 1is shown that the
implementation relation is transitive; in practical terms this means
that the result of refining a specification several times in
succession 1s an 1implementation of the original specification.
Another very desirable property would be that the theory-bullding
operations of C(Clear preserve implementations, sSo combining the
implementations of two theories gives an 1implementation of the
combined theory. Unfortunately, in the presence of data constraints
this property only holds in general under a seriously restrictive
condition. As a result, our notion of implementation is apparently

of limited usefulness in practice.

This situation can be improved if the notion of a data constraint
is replaced by the weaker notion of a hierarchy constraint (see
(Broy et al 1979] and (Wirsing and Broy 1981]). Hierarchy

constraints are identical to data constraints except that models

need only satisfy the inequation true#false rather than the stronger
"no confusion" condition. The same definition of implementation
works if theories 1include hierarchy constraints in place of data
constraints, and in this case more reasonable conditions guarantee
the preservation of implementations under C(Clear's theory-building
operations. Accordingly, for the bulk of this chapter we use

hierarchical Clear, where hierarchy constraints are contributed to a

theory by an operation called 'data'. Since hierarchy constraints

=215~
are weaker than data constraints, specifications in hierarchical
Clear tend to be somewhat longer than in ordinary Clear -~ as in the
terminal algebra approach of Wand [1979], it is sometimes necessary
to add extra operators to avoid trivial models. At the end of the
chapter it 1is shown that all results hold for Clear with data

constraints but only under more restrictive conditions.

We now give formal definitions concerning hierarchy constraints;
note that in most respects hierarchy and data constraints are

identical.

Def: A J-hierarchy constraint c¢ is a pair <i,0> where 1i:T<>T' is

a simple theory inclusion and o:signature(T')—>3 is a signature

morphism.

Def: If o':3—>2' is a signature morphism and <i,o> is a
g-hierarchy constraint, then o' applied to <i,0> gives the
3'-hierarchy constraint <i,0.0'>.

Without loss of generality we assume that every theory contains
the theory Bool (with sort bool and constants true and false) as a

primitive subtheory.

Def: A J-algebra A satisfies a g-hierarchy constraint
1:TeT',0:81g(T")—2> if

o
(letting ﬂtarget = ﬁlsig(l')
g ii.o
and Asource - Alsis(z) :
A is a model of T' and

—~target
- "No crime": A.F: trueffalse (i.e. A }£ true=false).

- "No junk": Every element in ﬁtarget is the value of a

T'~term which has variables only in sorts of T, for some

assignment of values.

Asource

Note that the only difference between a data constraint and a
hierarchy constraint is in the definition of satisfaction; compare

the "no crime" condition above with the "no confusion" condition in

section II.S5.

-216-

Def: A hierarchical J-theory presentation is a pair <Z,EC> where

2 1s a signature and EC is a set of 2-equations and Z-hierarchy

constraints.

The notions of hierarchical theory, satisfaction (of a

hierarchical theory), «closure and hierarchical theory morphism

follow as before. The denotation of a hierarchical C(lear
specification is a hierarchical theory. For the remainder of the
chapter (except where noted at the end of section 4) all discussion

will concern only hierarchical Clear. We will use terms 1like

'theory' in place of longer terms like 'hierarchical theory'. For
the purposes of this chapter it is convenient to dispense with the
equality predicates ==z normally added by the data operation; these
extra operators cause no problems but only serve to make the
examples longer. We will assume in this chapter that all theories
have been constructed using Clear (so e.g. no theory may contain
both <TAe—>TA',0> and <TB<->TB',¢'> as constraints if TA<TB&TA'
and o,0' are inclusions). This assumption is implicit in some of

the proofs of section 4.

A short example will illustrate the difference between data and
hierarchy constraints. Consider the following specification in

ordinary Clear (with data constraints):

const Nat =
enrich Bool by
data sorts nat
opns 0 : nat
succ : nat -> nat enden

const T =
enrich Nat by
data sorts newnat
opns f : nat -> newnat enden

T includes two data constraints, C1=<§<>Nat,sig(Nat)<>sig(T)> and
C2=<Nat=—>T.1sig(T)>. Given a sig(T)-algebra, we can check if it

satisfies these constraints. For example:

Aoe = {0,1,2,...}

Apewnat = {0,I,II,...}

£(0)=0 f(1)=I f£(2)=0 f£(3)=III f(4)=IV ...

~217-

(with the usual interpretation of Bool). This satisfies constraint
C1, but fails to satisfy the "no confusion" condition for constraint
C2 (consider the equation f(x)=f(y) under the injective assignment
[x+—0, y—2]). It also violates the "no junk" condition (the
element II6A . .. 18 not the value of any term). But if the
function f 1is altered so that f(2)=II then the constraint is
satisfied. In general, any algebra =satisfying these data

constraints will have both carriers isomorphic to IN with f 1-1 and

onto.

Changing data above to 'data' changes both data constraints to
hierarchy constraints. The following algebra is then a model of T,

although it does not satisfy the "no confusion™ condition for

constraint C2:

f(O0) = £(1) = f(2) = ... =0

(again with the usual interpretation of Bool). It is necessary to

add some new operators and equations to retain the original class of

models, for example:

const Nat' =
enrich Bool by
'data'’ sorts nat

opns O : nat
succ : nat -=> nat
eq : nat,nat -> bool

eqns eq(n,n) = true
eq(n,m) = eq(m,n)
eq(0,succ(n)) = false
eq(succ(n),suce(m)) = eq(n,m) enden

const T' =
enrich Nat by
'data' sorts newnat
opns f : nat -> newnat
eq : newnat,newnat -=> bool
egns eq(f(n),f(m)) = eq(n,m) enden

Further examples appear throughout the rest of this chapter.

For later results we need a generalisation of Guttag's notion of

sufficient completeness [Guttag and Horning 1978] and of the

-218-

classical notion of conservativeness from logic:

Def: A theory T is sufficiently complete with respect to a set of

operators 2., sorts S, a subset 2' of E, and variables of sorts X
(where S,X¢ sorts(T), 2gopns(T)) if for every term t of an S sort
containing operators of > and variables of X sorts, there exists a
term t' with variables of X sorts and operators of 2' such that
Tht=t'.

Def: A theory T is conservative with respect to a theory T'e T if

for all equations e containing operators only of T', Tlre = T'}-e.

Sufficient completeness means that T does not contain any new
term of an old sort which is not provably equal to an old term
(where 'new' and 'old' depend on 2, S, 2' and X). Conservativeness
means that old terms (from T') are not newly identified in T,
Instances of these general notions guarantee that all models of a

theory possess a convenient hierarchical structure.

To apply the above definitions it will be convenient to refer to

the following notions of constrained sort and constructor.

Def: Let T" be a theory and let c=<T<=>T',c:sig(T')—>sig(I")> be
a constraint of T".

- A sort s of T" is called constrained (with respect to ¢)
if sec(sorts(T')=-sorts(T)).

- An operator f:...->s of T" is called a constructor (with
respect to ¢) if féo(opns(T')) and seconstrained-sorts(e),
or if sgconstrained-sorts(c).

-219-

2. A notion of implementation

A formal approach to stepwise refinement of specifications must

begin with some notion of the implementation of a specification by

another (lower level) specification. Armed with a precise
definition of this notion, we can prove the correctness of
refinement steps, providing a basis for a methodology for the
systematic development of programs which are guaranteed to satisfy
their specifications. But first we must be certain that the
definition 1itself 1s sound and agrees with our intuitive notions
built upon programming experience. It turns out that a formal
definition of implementation adequate to deal with all cases which
arise in practice 1is rather elaborate, and so it is better to
carefully examine the situation first from a less formal point of

view.

Suppose we are given two theories l=<§,EC> and I':(Z',EC'). We
want to implement the theory T (the abstract specification) using
the sorts and operators provided by T' (the concrete specification).
Previous formal approaches (see [Goguen, Thatcher and Wagner 1978],
{Nourani 1979], (Hupbach 1980], [Ehrig, Kreowski and Padawitz 1980],
(Ganzinger 1980], [Ehrich 1982]) agree that T' implements T if there
is some way of deriving sorts and operators like those of T from the
sorts and operators of T'. Each approach considers a different way
of making the 'bridge' from T' to T. We will require that there be
a more or less direct correspondence between the sorts and operators
of T and those of T'. Each sort or operator in 2 must be
implemented by a sort or operator in 2' -- this correspondence will
be embodied by a signature morphism ¢:3—3'. Note that two
different sorts or operators in 3 may map to the same 2' sort or
operator, and also that there may be some (auxiliary) sorts and
operators in 2' which remain unused. This is a simplification over
previous approaches, which generally allow some kind of restricted
enrichment of T' to T" before matching T with T". But the power is
the same; we would say that T" implements T and leave the enrichment
from T' to T" to the user. As a consequence of a later theorem (see

section 4) our results extend to more complex notions.

-220~

Given a signature morphism ¢:2—>23', what relationship must hold
between T and T' before we can say that T' implements T? One might
suspect that o:T—T' is required to be a theory morphism -- i.e.
that if A' is a model of T' then its restriction A' g must be a
model of T -- but this condition is too strong. We sh;ll say that
T' implements T if the J-restriction of each model of T' simulates
I. A Zfalgebra simulates T if it satisfies the axioms of T after

allowing for the representation of data.

We have decomposed the notion of implementation into three
separate issues:
1. Enriching the concrete theory T' (adding derived

operators and possibly some new sorts) to give an
intermediate J"-theory T".

2. Renaming some of the sorts and operators of 2" and
forgetting others, so as to match 2.

3. Simulation of T by a J2-algebra (obtained by 2-restricting
a model of T").
As already mentioned we can safely ignore (1) and assume that T"=T'
because a later theorem allows all of our results to be extended to
the case where T"#T'. Issue (2) presents no problems since the
restriction of an algebra to a subsignature (with renaming) was
defined in chapter II. The fundamental issue is (3); we need a
satisfactory definition of simulation which captures our intuition

concerning data representation.

we said above that a J-algebra A simulates a J-theory T if it
satisfies the axioms of T modulo data representation. In
particular, we must allow for two kinds of flexibility:
- A subset of the values of an A sort may be used to
represent all the values of a T sort. Example: the

natural numbers are simulated by the integers, where the
negative integers are not needed.

- More than one A value may be used to represent the same T
value. Example: simulating sets by strings -- the order
does not matter, so "1.2.3" = "3,2.1" (as sets).

Now A simulates T if (and only if) A is a model of T after these two
considerations have been taken into account. This ensures that

operators will yield the specified result (modulo data

-221-

representation) which seems to be the central issue.

For the definition of simulation we need an asuxiliary notion. As
mentioned above, a subset of the values of A may be used to
represent all values required by T. Restricting the carriers of A
to the values which are actually used yields an intermediate algebra
which plays an important role in the definition of sSimulation. We
do not want to restriect the carrier for every sort, but only for
those sorts of 2 which are constrained in T (for unconstrained sorts
we do not know which values are unused). This is where we depart
from the usual practice of restricting to 'reachable' values (see
for example [Ehrig, Kreowski and Padawitz 1980]). We want the
subalgebra which has been reduced just enough to satisfy the "no

Junk" condition for each constraint in T.

Def: If J is a signature, A is a J-algebra and T is a Z-theory,

then restricty(A) is the largest subalgebra A' of A satisfying the

"no Junk" "~ condition (section ID] for every constraint

A:T'e>T",0:81g(T")—>2> in T, that is:

[letting Agarget = A' 'sig(T"
and Agoyrce = A' lsig(T') J

- Every element in Atarget is the value of a T"-term which
has variables only in sorts of T', for some assignment of

!
Asource Vvalues.

Note that the subalgebra A' does not always exist. Consider the

following example:

const T = let Nat = enrich Bool by
'data' sorts nat

opns 0 : nat

suce : nat -> nat enden in

enrich Nat by
opns neg : nat enden

Let _2_ be the signature of T. Suppose A 1is the z-algebra with
carrier {-1,0,1,...}, the usual interpretation for the operators 0

and succ, and neg=-1. Now restrictT(A) does not exist because every

subalgebra of A must contain -1 (the value of neg) and hence fails

to satisfy tke "no junk" condition for the constraint of T.

-222-
A zralgebra A simulates a Zrtheory T if it satisfies the
equations and constraints of T after allowing for unused carrier

elements and multiple representations.

Def: If 2 1is a signature,
2-theory, then A simulates
2-homomorphism rep:restrictp(A)—>A'. A simulates T if there is a
model of T which is simulated by A.

A' are 2-algebras and T is a

A,
A' if there 1is a surjective

Note that simulation of an algebra by an algebra is with respect
to a theory because it 1is defined in terms of the restrict
operation. It 1s not possible to allow for unused elements of the
'concrete' algebra otherwise; without the constraints of T we cannot
distinguish between an element (of a constrained sort) which is
truly unused and an element (of an unconstrained sort) which is not

the value of any term.

The following definition of simulation is equivalent to the

definition above (this is easy to show) but more constructive.

Def: If 3 1is a signature, A is a J-algebra and T=<Z,EC> is a
2-theory, then A simulates T if restrictq(A)/mg. (call this RI(A))

exists and is a model of T,

[mgc is the chongruence generated by EC -- i.e. the least
2-congruence on restrictT(A) containing the relation determined by
the equations in EC] B

RI stands tor restrict-identify, the composite operation which
forms the heart of this definition. To determine if a 2-algebra A
simulates a hierarchical 2-theory T, we restrict A, removing those
elements from the carrier which are not used to represent the value
of any 2-term, for constrained sorts; the result of this satisfies
the "no junk" condition for each constraint in T. We then identify
multiple concrete representations of the same abstract value by
quotienting the result by the chongruence generated by the
equations of T, obtaining an algebra which (of course) satisfies
those equations and also continues to satisfy the "no junk"
condition of the constraints. If this is a model of T (i.e. it

satisfies the "no crime" condition for each constraint in I) then A

~223 -
simulates T. DMote that any model of T simulates T. It has been
shown by Ehrig, Kreowski and Padawitz [1980] that the order
restrict-identify gives greater generality than identify-restrict.

Clear (both the ordinary version and our variant) differs from
most specification approaches/languages in that it allows the
construction of loose theories having an assortment of non-
isomorphic models. Such & theory need not be implemented by a
theory with the same broad range of models. A loose theory leaves
certain details unspecified and an implementation may choose among
the possibilities or not as is convenient. That is:

- A loose theory may be implemented by a 'tighter' theory.

Example: implementing the operator choose:set->integer

(choose an element from a set of integers) by an operator
which chooses the smallest.

This 1is intuitively necessary because 1t would be sSilly to require
that a program (the final result of the refinement process) embody
all the vagueness of its original specification. This kind of
flexibility is already taken into account by the discussion above,
and 1is an important feature of our notion of implementation.
Previous notions do not allow for it because they generally consider

only a single model for any specification.

Now we are finally prepared to define our notion of the
implementation of one theory by another. This definition is
inspired by the notion of [Ehrig, Kreowski and Padawitz 1980] but it
is not the same; they allow a more elaborate 'bridge' but otherwise
their notion is more restrictive than ours. Our notion 1is even
closer to the one of Broy et al (1980] but there the 'bridge' is
less elaborate than ours. It also bears some resemblance to a more

programming-oriented notion due to Schoett [1981].

Def: If T=<2,EC> and T'=<3',EC'> are satisfiable theories and
0':_2_-—)2' is a signature morphism, then T' implements T (via o),
written I~E;él'. if for any model A' of T', A'Ig-simulates T.

Note that any theory morphism o:l—%@f where T' is satisfiable is

an implementaticn I}gLél'. In particular, if T' is an enrichment of
T (e.g. by equations which 'tighten' a loose theory) then T—>T',

~224-

The following calagram shows how the definitions of restriction,

simulation and implementation fit together:

L4
T ts I-twory) AAAS AAANANAAANAAAAANAAAAAAAANANANINUAANANASAANAN VAAND T la E""‘“’W’
LS
- . 1
-
~ o i,
-~ U
~ \‘Qb

~
~

-~
=~ s
N
tdwacily restrice forqet
e eme Crvmrmmen o

A Y sodel

\ N / AT

1-algebras

An implementation Iﬁg;él'

A simple example will show how this definition works (other
implementation examples are given in the next section). Consider

the theory of the natural numbers modulo 2, specified as follows:

const Natmod2 =
enrich Bool by
'data'’ sorts natmod?
opns O, 1 : natmod2
suce : natmod2 -> natmod2
iszero : natmod2 -> bool
egns succ(0) = 1 succ(1) =
iszero(0) = true iszero(1)

0
= false ggggg

Here 1is a picture which shows the situation described by the

equations:

succe

v

0 &

(iszero)

Can Natmod2 be implemented by the following theory?

const Fourvalues =
enrich Bool by
'data' sorts fourvals

opns zero, one, zero', extra : fourvals
succ : fourvals -> fourvals
iszero : fourvals -> bool
¢q . fourvals, fourvals -> bool

eqns succ(zero) = one succ(one) = zero'
succ(zero') = one succ(extra) = zero
iszero(zero) = true iszero(one) = false
iszero(zero') = true iszero(extra) = false
eq(zero,one) = false eq(zero,zero') = false

eq(p,q) = eqlq,p) eq(p,p) = true enden

Here is the picture (omitting the eq operator):

succ

zero ——» one
(iszero)

zero' extra
(iszero)

The iszero operator of Natmod2 and the eq operator of Fourvalues are

needed to avoid trivial models.

All models of Fourvalues have a carrier containing 4 elements,
and all models of Natmod2 have a 2-element carrier. Now consider
the signature morphism o:sig(Natmod2)—>sig(Fourvalues) given by
(natmod2 ~>fourvals, 0»>zero, 1+>one, succ+>succ, iszeror>iszero]
(and everything in Bool maps to itself). Intuitively,
Natmod2~>—>Fourvalues (zero and zero' both represent 0, one
represents 1 and extra is unused) but is this an implementation
according to the definition? Consider any model of Fourvalues (e.g.
the term model -- all models are isomorphic). 'Forgetting' to the
signature sig(Natmod2) eliminates the operators zero', extra and eq.

Now we check if this algebra (call it A) simulates Natmod2.
- 'Restrict' removes the value of extra from the carrier.

- 'Identify' identifies the values of the terms "succ(1)" (=zzero!')
and "0" (=zero).

The "no crime" condition of Natmod2's constraint requires that

the values of true and false remain separate; this condition is

~-226-
satisfied, so A simulates Natmod2 and Natmod2~2;9Fourvalues is an

implementation.

Suppose that the equation succ(zero')=one in Fourvalues were

replaced bty:

succ{zero')=zero.
Forget (producing an algebra B) followed by restrict has the same
effect on any model of Fourvalues, but now identify collapses the
carrier for sort natmod2 to a single element (the closure of the
equations in Natmod2 includes the equation succ{succ(p))=p, so
"succ(succ(0))" (=zero') is identified with "O" (=zero), and
"succ(succ(1))" (=zero) is identified with nn (=one)).
Furthermore, the carrier for sort bool collapses;
niszero{succ(succ(1)))" (=true) 1is 1identified with "iszero(1)"
(=false). The result fails to satisfy the "no crime" condition of
the constraint, so B does not simulate Natmod2 and

Natmod2~>~—>Fourvalues is no longer an implementation.

It is not difficult to extend our notion of implementation to
deal with parameterised theories. We will consider here only the
single~parameter case, but the extension to multiple parameters

should pose no groblems.

Since a parameterised theory R“>P (that 1is, a procedure with
requirement theory R and body P -- R will always be included in P)
is a function taking a theory A as an parameter and producing a
theory P(A) as a result, an implementation R'&>P' of R<>P is a
function as well which takes any parameter theory A of P as argument
and produces a theory P'(A) which implements P(A) as result. But
this does not specify what relation (if any) must hold between the
requirement theories R and R'. Since every actual parameter A of
Re—>P (which must match R) should be an actual parameter of R'<2P',
it must match R' as well. This requires a theory morphism P:E'—%ﬂi
(then a fitting morphism P@:R—>A gives a fitting morphism
P.e:R'A).

-227-

Def: If R“>P and R'“>P' are parameterised theories, P:R'—R is
a theory morphism and o:sig(P)—>sig(P') is a signature morphism,
then R'<>P' implements R<>P (via o and §), written
RSP ~%;9 R'"“>P', if for all theories A with fitting morphism
p:R—A4, E(A(PJ)“3;9E'(£[P-9]) where & is the extension of ¢ from P
to P(A[P]) defined using the universal property of the pushout
P(Alp]) in the obvious way (so &Isis(ﬂ)—sig(ﬂ)zc—a"d &lsig(ﬁ)=id)'

R < >P
A \\s
\s: | __»PaALeD
p| AzI] o &
‘~"‘Ps
/;_9 ~> P (A[Y.01)
y -7
R' — > P!

Ordinarily R and R' will be the same theory, or at least the same

modulo a change of signature. Otherwise R' must be weaker than R.

Note that the definition of implementation for parameterised
theories requires a certain property to hold for every possible
actual parameter theory and fitting morphism. Better would be a
definition which refers only to the parameterised theories
themselves. Unfortunately, such a definition does not seem to work
under the existing framework. Perhaps it would be possible to give
some conditions on R“>P and R'“>P' under which the above
definition reduces to the simpler form, but we have so0o far been

unable to discover satisfactory ones.

Sometimes it 1is natural to split the implementation of a
parameterised theory into two or more cases, implementing it for
reasons of efficiency in different ways depending on some additional
conditions on the parameters. For example:

- Sets: A set can be represented as a binary sequence if

the range of possible values is small; otherwise it must
be represented as a sequence (or tree, etc) of values.

—~ Parsing: Different algorithms can be applied depending on
the nature of the grammar (operator precedence, LR,
context sensitive, etc -- see [Aho and Ullman 19771).

-228-

- Sorting: Distribution sort can be used if the range of
values 1s small; otherwise quicksort (see [Knuth 19731]).

In each instance the cases must exhaust the domain of possibilities,

but they need not be mutually exclusive.

Our present notion of implementation does not treat such cases.
We could extend it to give a definition of the implementation of a
parameterised theory R<>P by a collection of parameterised theories
R'+R{<9Pj, ..., R'+R <P, (where for every theory A with a theory
morphism o :R—A there must exist some i>1 such that o':R'+R;—A
exists). But we force the case split to the abstract level, rather
than entangle it with the already complex transition from abstract

to concrete:

R&P == ---=-- >» R+R P, = Z(Bf51)
\\\\
\\\
* R4R_ <P = P(R+R.)
I T T 2\

This collection of n parameterised theories is equivalent to the
original R“->P, in the sense that every theory P(Alc]) with o:R—A
is the same as the theory P,(Alc']) with o':R+R;—A for some i21.
(A theory of the transformation of Clear specifications is needed to
discuss this matter in a more precise fashion; no such theory exists
at present.) Now each case may be handled separately, using the

normal definition of parameterised implementation:

R4R, 5P, —> R'4R}<P!

1 ~1

!
R+R ©P —> R'4R! <SP

-229-

3. Examples

Sets can be implemented using sequences by representing a set S
as a sequence containing the elements of S in any order without
repetitions. Sets may be specified in hierarchical Clear as

follows:

proc Set(X:Ident) =

let SetO =
enrich X by
'data' sorts set

opns @ : set

singleton : element -> set
(_U_) : set,set => set

_1is in _) : element,set -> bool
eqns

S
=(SUT UV

is in @ = false

is_in singleton(b) = a==b

is in S UT = a is in S or a is_in T enden in

I~ C

enrich Set0 by
opns choose : set -> element
eqns choose(singleton(a) U S) is_in (singleton(a) U S)
= true enden

This specification includes an operator choose which 1is defined
(loosely) as selecting an arbitrary element from a 'on-empty set.
The value of choose(@) is left undefined -- although the same notion
of implementation should work for error theories and algebras, we
prefer to avoid the issue of errors for now, Note that the
membership operator is in is included within the ‘'data' in contrast
to the specification of sets in ordinary Clear in section I.1.2.

This subtle change is necessary to avoid trivial models.

The concrete specification must include a definition of sequences
as well as operators on sequences corresponding to all the operators

in Set. We begin by defining everything except the choose operator:

-230-

proc Sequence(X:Triv) =
enrich X + Bool by
'data' sorts sequence
opns empty @ sequence

unit : element -> sSequence

(_ . _) : sequence,sequence -> sequence
head : sequence -> element

tail : sequence -> sequence

eqns empty.s = s
s.empty = s
s.(t,v) = (s.t).v
head(unit(a).s) = a
tail(unit(a).s) = s enden

proc SequenceOpns(X:Ident) =
enrich Sequence(X) by

opns (_ is_in _) : element,sequence -> bool
add : element,sequence -> sequence
(_ U _) : sequence,sequence -> sequence

eqns a is_in empty = false
a 1s_in unit(b) = a==b
a is_in s.t = a is_in s or a is_in t
add(a,s) = s if a is_in s

add(a,s) = unit(a).s if not(a is_in s)
empty Us = s
unit(a).t U s = add(a,t U s) enden

The head and tail operators of Sequence and their defining equations
are needed to avoid trivial models; they serve no other function in

the specification.

Before dealing with the choose operator, we split Set into two

cases:

meta TotalOrder =
enrich Ident by
opns (_ < _) : element,element -> bool
egns a<a = true
Y a<b and b<a --=> a=zb = true
a<b and b<c -=> alc = true
a<b or b<a = true enden

Ident¢—>Set == — — - - » Ident «<>Set
T T == TotalOrderc—>Set' = Set(TotalOrder)

These two cases may be handled separately. The choose operator
can select the minimum element when the element type 1is totally

ordered; otherwise we can leave the precise choice unspecified as

-231-
before.

proc SequenceAsSet(X:Ident) =
enrich SequenceOpns(X) by
opns choose : sequence -> element
egns choose(unit(a).t) is_in (unit(a).t) = true enden

proc SequenceAsSet'(X:TotalOrder) =
enrich SequenceOpns(X) by
opns choose : sequence -> element
eqns choose(unit(a)) = a
choose(unit(a).unit(b).s) = choose(unit(a).s) if agb
else choose(unit(b).s) enden

Now Ident“>Set ~%;9 Ident “>SequenceAsSet and TotalOrder “>Set'

~g+$ TotalOrder “>SequenceAsSet', where ¢ = [element*>element,
==z ==, set —>sequence, ¢ r—>empty, singleton—>unit, Ur—>U,
is_in»>is_in, choose ~>choose] (and everything in the signature of
Bool maps to itself), and ¥ and P' are the identity morphisms on
Ident and TotalCrder respectively. Note that an 1incorrect
implementation results if choose in SequenceAsSet 1s changed to
select the first element; Set contains an equation

choose(singleton(x) U singleton(y))
= choose(singleton(y) U singleton(x))

so the identify step would collapse the parameter sort (and

consequently bool).

This example illustrates all of the features of our notion of
implementation. Not all sequences are needed to represent sets ==
sequences with repeated elements are not used. Each set is
represented by many sequences, sSince the sequence representation of
a set keeps track of the order in which elements were inserted. Set
is split 1into two theories before implementation, and finally
SequenceAsSet' is 'tighter' than Set' because the choose operator
(select an element) is implemented by an operator which chooses the

minimum element.

A nonparameterised example is obtained by applying Set or Set!

and SequenceAsSet or SequenceAsSet' to an argument, for example:

Set(Nat(element is nat])~E;9SequenceAsSet(Nat[element is natl)

-232-

where o 1s the same as o above except that element+>element 1is

replaced by né&ét»—>nat.

Two additional examples:

- Lists can be implemented using arrays of (value,index)
pairs, where the index points to the next value in the
list (and where some distinguished index value denotes
nil). There are many representations for the same list
(the relative positions of cells in the array are
irrelevant, for example) and circular structures are not
needed to represent the value of any list.

- The specification of matrix inversion in the Introduction
can be implemented by a specification of matrix inversion
using the Gauss-Seidel method. Conversely, this
specification can be implemented by the specification in
the Introduction (enriched by some auxiliary functions).

The matrix inversion example shows that the expectation that A~~>B
should imply that B is 'lower level' than A is not always Justified.
This is because the definition of implementation is concerned with
classes of models rather than with the equations used to describe
those classes. In this case both theories will have the same class
of models except that the Gauss-Seidel method will probably require

auxiliary operators.

-233-

4, Horizontal and vertical composition

Clear 1is a 1language for writing structured specifications,
providing facilities for combining small theories in various ways to
make large theories. These facilities allow a large specification
to be bullt in a modular fashion from smaller bits. Following
Goguen and Burstall ([1980] the structure of such a specification

shall be called horizontal structure.

Likewise, the implementation of a large specification is not done
all at once; it 1is good programming practice to implement and test
pleces of the specification separately and then construct a final
system from the finished components. If the theories which make up
a Clear specification are implemented separately, it should be

possible to put together (horizontally compose) the implementations

in the same way that the theories themselves are put together,

yielding an implementation of the entire specification.

Although the problem of developing a program from a specification
is simplified by dividing it into smaller units, the step from
specification of a component to its implementation as a program is
still often uncomfortably large. A way to conquer this is to break
the development of a program into a series of consecutive refinement
steps. That 1s, the specification is refined to a lower level
specification, which 1s 1in turn refined to a still lower level
specification, and so on until a program 1is obtained. Again
following Goguen and Burstall [1980], this is called the vertical
structure (of the development process). If a specification A is
implemented by another specification B, and B is implemented by C,
then these implementations should vertically compose to give an

implementation c¢f A by C. That is, the implementation relation
should be transitive. Goguen and Burstall [1980] propose a system
called CAT for the structured development of programs from
specifications by composing implementations in both the horizontal
and vertical dimensions. (Note: Horizontal and vertical
compositions were originally defined on natural transformations.
The general structure admitting two such compositions 1is called a
2-category [Kelly and Street 1974],)

-234--

The vertical composition of two implementations is not always an

implementation. For example, consider the following theories:

const T = enrich Bool by
opns extra : bool enden

const T' = enrich Bool by

opns extra : bool

egns extra = true enden
const T" = theory 'data' sorts threevals

opns tt, ff, extra : threevals endth

Now T~—>T' and T'=——>T" but T~A=T" (consider the model of T"

where tt#fffextra). The theories must satisfy an extra condition.

Def: A theory T is reachably complete with respect to a theory

T'e T if for all constraints ¢ of T', T is sufficiently complete
with respect to opns(T'), constrained-sorts(c), constructors(c), and

variables of unconstrained-sorts(T').

In the example above T" is not reachably complete with respect to

T because extra is not provably equal to either tt or ff.

Reachable completeness with respect to a theory T is sufficient
to guarantee that the result of the operation restrictT will always

exist:

Restriction lemma: If a theory T is reachably complete with

respect to o(T')eT then for every model M of T

restrictl.(Mlglg(I.)) exists.

Proof: We may assume for simplicity that T'€¢T and o is the

inclusion; the following proof generalises to arbitrary T' and o.

Let i be the sig(T')-subalgebra of Mlsig(T') which is finitely
generated by opns(T') and elements of unconst?ained—sorts(l') (i.e.

every element of M is the value of a term built from operators of T'
and variables cf unconstrained sorts of T', for some assignment of M

values). We will show that M satisfies the "no Junk" condition for

every constraint c¢=<Tc*>Tec',0'> of T'; M is then clearly the

largest such subalgebra.

- vl Lo 2 .
Let a be an element of M gy = M,SIS(IS')' Then a is the value

-235-

of some tern t built from opns(T') and variables of
unconstrained-sorts(T') for some assignment of these variables. If
a 1s not of a constrained sort of c then it trivially satisfies the
"no Jjunk"™ condition. Otherwise, the reachable completeness of T
with respect to T' implies the existence of a term t' built from
constructors(c) and variables of unconstrained-sorts(T') such that
Thtst'.

Now, let t,,...,t, be the largest subterms of t' of o '(sorts(Tc))
and consider the term t" containing variables XqreoosXy of
sort(t1).....sort(tk) such that t' = t"[t1/x1,...,tk/xk]. Then t"
does not contain any operator f:...->sS with sg¢constrained-sorts(ec).
Thus (since opns(t")gopns(t')) all operators of t" are in

o '(opns(Tc')).

Since a=g(t)=¢(t')=p(t"(y(x,),...,y(x,)]) for some assignments
¢ and y such that ?(ti)=v(xi)' a is the value of some sig(Te')-term

with variables in sorts(Tc). Thus M satisfies the "no Junk"
condition for c. QO

We can use this lemma to prove that implementations can be
vertically composed if the target of the composition is reachably

complete with respect to the source.

Vertical composition theorem

1. [(Reflexivity] I~1991_(the proof is obvious).

2. [Transitivity] If I~2;9I' and I‘~g:91" and T" is
reachably complete with respect to o.c'(T), ‘then
T..g-‘..g:.'-)'rn.

Proof of transitivity: Let M" be a model of T" and consider

c.o'
FRII(M") def reStriCtI(M",sig(I))/'eqns(I)' The existence of
FRIp(M") follows from the restriction lemma. Because Iﬁg;él' and
!
T'-Z51", FRI;(FRIp,(M")) Ftrueffalse. Since there 1is a
homomorphism from FRLp (M") onto FRIL(FRLp, (N™)),

FRII(M")Ftrue;éfalse as well. Therefore M"'g‘f&i) simulates T. @A

-236~

Corollary

1. [Reflexivity of parameterised implementations]
B‘—f£~%%¢§‘—>g (the proof is obvious).

«. [1ransitivity of parameterised implementations] If
R“PP ~f— R'“>P' and R'P! -gT'-)_g"f-—ag" and P" is
reachably complete with respect to o.o'(P), then

ReP g Rrespn,

Proof of transitivity: Suppose Q:R—>A is a fitting morphism;
then so is P™:R"—>A = W'.y.p. Let M" be a model of P"(Ale"]).
Since M"'sig(P") is a model of P" and P" is reachably complete with

respect to o.0'(P), by the restriction lemma FRP(M") Zdef

restrictz(M"lgf;?;)) exists. Since FRA(M") = M"Isig(Z) and all
theories are built using Clear, it follows that FRP(A[Q])(M)
exists. By definition P(A[P])—g;éP'(A[P el and
Pr(Aly. 9])~Q;9P"(A[9"]) and so FRIP(A[O])(M")Flrue#false by the

same argument as in the nonparameterised case., 0O

In the absence of constraints (as in the initial algebra ([Goguen,
Thatcher and Wagner 1978] and final algebra [Wand 1979] approaches),
reachable completeness is guaranteed so this extra condition is

unnecessary.

To prove that implementations of large theories can be built by
arbitrary horizontal composition of small theories, 1t is necessary
to prove that each of Clear's theory-building operations preserves
implementations. We will concentrate here on the application of
parameterised theories and the enrich operation. Extension of these

results to the remaining operations should not be difficult.

For the apply operation our object is to prove the following

property of implementations:

Horizontal composition property: If 3}—72 ~%;9 3"—72’. Afgzié’,
and P:R—>A is a theory morphism, then 2(5[9])~Q:;§f(A’[P.P.w’]),
where o" is constructed from ¢, o', Y and P (see the horizontal

composition theorem below for details),

-237-

But this is not true in general; in fact, P'(A'[(Y.P.c']) is not
even always defined. Again, sone extra conditions must be satisfied

for the desired property to hold.

Def: Let Rc—P be a parameterised theory.

- R&>P 1is called structurally complete if P is sufficiently
complete with respect to the parameter R (i.e. with respect to
opns(P), sorts(R), opns(R) and variables of
unconstrained-sorts(R)), and if for all constraints ¢ of P, P
is sufficiently complete with respect to ¢ (i.e. with respect
to opns(P), constrained-sorts(c), constructors(e), and
variables of unconstrained-sorts(P)). A nonparameterised
theory A 1is called structurally complete 1if @%>A is
structurally complete.

- RSP 1is called parameter consistent if P is conservative with
respect to R.

-~ Re—>P is called persistent if it is both structurally complete
and parameter consistent.

If R'¢>P' is persistent znd reachably complete, and A' is a
valid actual parameter of R'&->P', then the horizontal composition

property holds. The proof of this result relies on the following

lemma:

Horizontal composition lemma: If R<>P is persistent, P:R—A and

.0 :R—A' are theory morphisms and 579;95' then
E(A[P])LE(A'[Q.C’]). where &ISIS(E(_A_[P]))"SIS(A)= id and
c'I:sig(_tl)zc"

The proof of this lemma relies in turn on the following result:

Theorem (Wirsing and Broy 1981]: If R<5P is persistent then any
model of R can be extended to both an initial model and a terminal
model of P, Thus for every structurally complete and satisfiable

theory A with @:R—>A, P(A[P]) has both initial and terminal models.

Proof of the lemma: Let PA =, . P(A[P]) and PA' =, P(A'(f.c]),
and suppose M is a model of PA'. We will show first that FRp, (M)

“def

- reStr1°tpA(M|sig(§5)) exists, and then that FRIEﬁ(M) 2der
FRfi(M)/=eqns(£A)

= FRfi(M)/=eqn5(5) satisfies true#false. Since

-238-
FRIPA(M) must satisfy the equations and the "no Jjunk" condition of

the constraints of PA, this implies that FRIp,(M) is a model of PA
and therefore that PA' implements PA. -

Let M be the sig(PA)-subalgebra of Mlsig(PA) which is finitely
generated by opns(PA), elements of M of unconstrained-sorts(PA), and

elements of FRA(M). Since R“P is sufficiently complete (with
respect to the_parameter R) ﬁlsig(é_) = FRA(M) z FR_&(M'sig(_&'))'
which satisfies the "no junk" condition for every constraint of A
since _1_&_--9'--)&'. The only remaining constraints of PA are on sorts of
P-R, since P is built from R using Clear and @ is a theory morphism.
Suppose ¢ 1is such a constraint. An argument analogous to the proof
of the restriction lemma shows that (since R“>P is sufficiently
complete with respect to c¢) Fl satisfies the "no junk"™ condition of
c. Therefore ﬁ satisfies the "no Jjunk" condition for all

constraints of PA; it is clearly the largest such subalgebra of
Mlsig(ﬂ) 30 FR_P_A_(M) = M.

To show that FRIPA(M)Ftruetfalse we begin by introducing a
constant ¢, for everrelement a in FR_P_A(M)" Zdef FRﬂ(M)lsig(A)'
Call this new algebra FRPA(M)-T' Let T be the theory with the
signature of FRPA(M)'T (i.e. sig(A) together with all the new
nullary operator:s_ ca) and the axioms (FRPA(M)-?)' -- recall the
operation ®* defined in section II.4. Since FRPA(M) satisfies all
the equations of P and all the constraints of PA, FRp,(M)™ satisfies
all the equations and constraints of R (translated via P). Thus
P:R—T 1is a theory morphism and FRPA(M) (when appropriately

extended) is a model of P(T[(P]).

Now, FRIA(M-) (which 1is FRQ_(M)-/'eqns(_l_t_) by structural
completeness of R“>P) is a model of A (since A~—>A') and FRI,(M7)
(when appropriately extended) is also a model of T. Moreover, since
R<>P is persistent, FRIA(M') can be extended to some model S of
P(rlel. And since T is structurally complete and satisfiable,
P(T[P]) possesses a terminal model Z satisfying true#false. There
exist homomorphisms from S onto Z and from FRpy (M) to Z because Z is
terminal. Hence Z satisfies all equations of A (because of 3) and
all equations satisfied by FRPA(M). Therefore there exists a
homomorphism from FRIPA(M) o;_t_o Z and Zftrue#false implies

FRIB_&(M) f=trueffalse. QO

-239-

Corollary (Horizontal composition for enrich): If A~g;9é' and

sig(A)G—éenrich sig(A) by <stuff> is persistent then
enrich A by <stuff> ~&—> enrich A' by G<stuff>, where

o’Isig(<st:uff>)=j‘d and o’lsig(_@)“"'

Proof': Consider the (persistent) parameterised theory R<-P
where R = <sig(A),®> and P = enrich R by <stuff>. Since id:R—A and
id.oc:R—A' are (trivially) theory morphisms, the horizontal

composition lemma applies to give the desired result. O

A consequence of this corollary is that our vertical and horizontal
composition theorems extend to more elaborate notions of
implementation such as the one discussed by Ehrig, Kreowski and
Padawitz [1980]. They would say that T is implemented by T' (which
we will write TARAPT') if there is a theory T" which is an
enrichment of T' (written T'<T") such that T-445T' (in our sense).

In pictorial form:

tP'T"“\o
T AR T! =g T T!

Then ARRDPBARYC implies (under appropriate conditions) ARAYC,
since if:

B’ c!
then by the corollary:

,-r"'"C"
AN)'\,
A B c
and then A——C" by the vertical composition theorem.

We can now use the above lemma to prove the horizontal
composition theorem.

-240-

Horizontal composition theorem: If R'€>P' is persistent, P' is
reachably complete with respect to o(P), 5‘-—)5—%—)_&?_"—9}_’_' and
5_~9:-!->_A_'. and P:R—>A and @':R'—>A' are theory morphisms where
p'zp.p.0", then P(aLp])-L+El5pr(a'p]).

Proof: Let PA =;.. P(A[P]) and PA' =, . P'(A[Y¥.P]). From the
reachable completeness of P' it follows that P'(A'[p']) is reachably
complete with respect to o.o'(PA) for all constraints of P. Let ¢
be a constraint of A. Suppose fio..=>8 where
p(s)eéconstrained-sorts(c) is an operator of P-R; then sesorts(R).
Because R€—5P is structurally complete, any sig(P)-term f(...) is
provably equal to a sig(R)-term t'. Thus E(f(...)) is provably
equal to a 'constrained' sig(A)-term ¢@(t') (where @:P—>PA is the
extension of P). Therefore P'(A'[P']) is reachably complete with

respect to &.3'(PA) for c.

Suppose M is a model of P'(A'[P']). By the restriction lemma,
FRPA(M) exists. According to the horizontal composition lemma,
—_—n ~
_PA'-L;E'(A'[P']). By definition, PA~S5PA'. Therefore,
FRIPA(FRIPA.(M))f:truet!false. Since there is a homomorphism from
FRIE(M) onto FRIpy (FRIpy, (M), FRIpy (W) Ftrueffalse as well. O

In [Sannella and Wirsing 1982] examples are given which
demonstrate the necessity of all the conditions on this theorem. It
is also shown there that if R=R' (this is normally the case, as in
all of our examples) then reachable completeness of P' with respect

to o(P) is not needed.

The vertical and horizontal composition theorems give us freedom
to build the implementation of a large specification from many small
implementation steps. The correctness of all the small steps
guarantees the correctness of the entire implementation, which 1in
turn guarantees the correctness of the low-level 'program' with
respect to the high-level specification. This provides a formal
foundation for a methodology of programming by stepwise refinement.
An analogue of CAT's 'double law' [Goguen and Burstall 1980] is a

consequence of the vertical and horizontal composition theorems.

-241-

That is, given:

RESP —> R' <3P A—>p!
R'e>P' —> R"eP" Al>AT
(and appropriate fitting morphisms) we can apply the horizontal

composition theorem to give:

1. P(A)—~—>P'(A") 2. P'(A")=PP"(A")

or else apply the vertical composition theorem (and its corollary)

to give:

3. Re9P > R"P" b, Amm2A"

Now we can either apply the vertical composition theorem to (1) and
(2), or else apply the horizontal composition theorem to (3) and
(4); either way we get the same implementation of P(A) by P"(A").
This means that the order in which parts of an implementation are
composed makes no difference, and that our notion of implementation

is appropriate for use in CAT.

Our notions of simulation and implementation extend without
modification to ordinary Clear (with data constraints rather than
hierarchy constraints). The vertical and horizontal composition

results then hold only under additional conditions.

Vertical composition theorem (with data): In Clear with data,

1. [Reflexivity] 2~igéz (the proof is obvious as before).

1
2. [Transitivity] If 272;92', 2'~2;92", all sorts in T are

constrained and T" is reachably complete with respect to
]
6.6 (1), then T-Z+&oTn,

Proof of transitivity: Let M be a model of T". As in the

hierarchical case, FRT(M) exists Dbecause of the reachable

completeness of T". Let E be the set of all ground equations which

hold in restrictT(M). and define:

-242~

T Zdef enrich T by eqns E

i' z4er enrich T' by eqns o (E)
i" =der enrich T" by eqns ¢.0'(E)
T-Z 57 -5 mpiy T Zof 1 ZHFn
T T T plies that T—~==T'~=2T", The reachable

completeness of T" ensures that for every ground sig(T)-term t there
exists a 'constrained' term t' such that Ef-tst'. Thus T is

structurally complete, and since every sort of i is constrained it
has (up to isomorphism) only one model which is initial in the class

of 'hierarchical' models of i (i.e. in the class of algebras which
are models of i when the data constraints of i_ are viewed as

hierarchy constraints).

By the vertical composition theorem for hierarchical theories,
FRI;(M) =FRIF(M) 1is a hierarchical model of I. There is a
homomorphism from FRIf(M) onto FRI%(FRI%.(M)). The 1initiality of
FRIF(FRIF,(M)) 1implies the existence of a homomorphism in the
opposite direction. Thus FRIT(M) is initial 1in the class of
hierarchical models of T so (equivalently) it is a model of T.
Therefore it is a model of T. (O

An example showing that constraints on all sorts of T are
required for this theorem is given in [Sannella and Wirsing 1982].

Corollary: In Clear with data,

1. [Reflexivity of parameterised implementations]
B“*ﬂ“}&*ﬁ‘—9ﬂ (the proof is obvious as before).

2. [Transitivity of parameterised implementations] If
ReSP > R'>P' and R'<P! ~g-,-'-> R"ESP", all
non-parameter sorts of R<—>P are constrained and P" is

reachably complete with respect to oc.oc'(P) then

R g RmePn.

The proof of transitivity relies on a lemma.

-243 -

Lemma: In Clear with data, if R<>P -%—-) R'“>P' and
R'&>P! —%—,:-) R"<>P", all non-parameter sorts of R“>P are
constrained, P" is reachably complete with respect to o.c'(P) and
P:R—>A is a theory morphism where all sorts in A are constrained,
then P(ale])Z-E5pn(atpr.p.p1).

Proof of lemma: All sorts of P(A(P]) are constrained. Let M be

*
a model of P"(Alp'.p.pl) and 1let ground(M) be the set of
(constraints and) ground equations which hold in M. Then the theory

»
T =4er &nrich Pr(A(p'.p.p]) by eqns ground(M) is reachably complete
with respect to o.c(P(A[P])). M is a model of T and transitivity
in the nonparameterised case implies that FRIP(A[p])(M) is a model

of P(Ale]). O

Proof of transitivity: Suppose P:R—>A is a fitting morphism, and
let M be a model of A. Let MY be the algebra obtained by

introducing a constant c_ into M for every element a of M. Let T be

a
the theory with the signature of M? and the axioms ground(M*'); T
will include a data constraint for every sort of A. Then P:R—>T is
a theory morphism. Since every sort of T is constrained, the lemma
implies that for every model i~ of P"(T[p'.p.el), ﬁ'SIg(_E(I[P]))
simulates P(T(el). Therefore MIsig(_li(_A_[?])) simulates P(A[e]).
Every model of P"(A[p'.p.pl]) (suitably extended) is a model of

Pr(T(¥'.¥.P]) for some such T, so this implies the desired result. O

Def: A data theory T is hierarchical submodel consistent if for

every model M of T and every hierarchical submodel M~ of M (i.e.

every submodel of M satisfying the constraints of T when viewed as

hierarchy constraints), M satisfies the data constraints of T.

Horizontal composition lemma (with data): In Clear with data, if

Re—>P 1is persistent and P 1is hierarchical submodel consistent,

p:R—>A and P.0:R—>A' are theory morphisms and yﬁ-—w then
o~

PAED-EP(A'[P.0]), where Tlsig(p(alpl))-sig(a)=id and

o'lsig(ﬂ_fo"

Proof: Let M be a model of P(A'(P.c']), and let PA =, . P(A[P]).

The horizontal composition lemma for hierarchical Clear says that

-244~

FRIp)(M) exists and is a model of PA when the data constraints are
viewed as hierarchy constraints. It remains to show that FRIPA(M)
satisfies the "no confusion" condition for every data constraint ¢

of PA.

Because R<>P 1is persistent, M sig(ﬂ') = M~ where M~ 1is a model
of A' in which all elements are finitely generated from operators
and elements of M of sorts unconstrained in A'. Thus FRPA(M)Isig(A)
= FRy(M™). Once more, persistency ensures that FRIPA(M)lsig(A) =
FRIA(M‘) Since A~Za!, FRI)(M") 1s a model of A and hence

4 (M) satisfies the data constraints of A. Since @ is a theory

morphism it also satisfies the data constraints of R.

FRPA(M) satisfies all the equations and constraints (when viewed
as hierarchy constraints) of P. Thus FR_E_A_(M)lsig(f_) is a
hierarchical model of P and moreover is a submodel of M.
Hierarchical submodel consistency of P guarantees that

n

PA(M)lsig(P) and thus FREA(M) satisfies the "no confusion
condition for every constraint of P. Then FRIPA(M) (which 1is
FREA(M)/sean(A)) satisfies the "no confusion" condition for the

constraints of P as well. [J

Corollary (Horizontal composition for enrich with data): If
A-i-éﬂ_' and sig(A)¢>P=enrich sig(A) by <stuff> is persistent and P
is hierarchical submodel consistent then enrich A by <stuff> ~§-'-->

' - o - o -
enrich A' by o<stuff>, where o'lsig(<stut‘t‘>)'id and 0'|51g(ﬂ)-0'.

Proof: As before, applying the horizontal composition lemma to
the parameterised theory <sig(5_),0>"——)£. 0

Horizontal composition theorem (with data): In Clear with data,
if R'<—>P' is persistent and P' is hierarchical submodel consistent,

P' 1is reachably complete with respect to 0'(P) all nonparameter

sorts of R&>P are constrained, REDP ~= P ~=~> R'<>P' and A--->A' where
all sorts of A are constrained, and P'R—>A and p':R'—>A' are theory
morphisms where P'=y.p.o', then P(A[p]) P'(A'[P .

Proof: Let M be a model of P'(A'(P']), and let PA =,.r P(AlP])
and PA' = . P'(A(V.P]). The horizontal composition theorem for
hierarchical Clear says that FRI;, (M) exists and is a model of PA

~245-

when the data constraints are viewed as hierarchy constraints. It
remains to show that FRIPA(M) satisfies the "no confusion” condition

for every data constraint c of PA.

By the horizontal composition lemma, PA'~§:9P'(A'[P']) and by
definition, gﬂfé;égﬂ'. Thus M Zdef FRIPA(FRIPAl(M)) is a model of
PA (satisfying the data constraints of fﬂ) Since FRPA(FRPA.(M)) =
FRpp(M), there is a homomorphism from FRIpy (M) onto M Let
constr(PA) denote the theory PA with non-constructors omitted.
Since M satisfies the data constraints of PA, M =zger
Mlsig(constr(PA)) is an initial model of constr(PA). FRIpy(M)” =ger
FRIPA(M)lsig(constr(PA)) is also a model of constr(PA) and there is
a homomorphism from FRIPA(H) onto M~ On the other hand, the
initiality of M implies the existence of a homomorphism in the
opposite direction. Hence FRIPA(M)- and ﬁ- are isomorphic, and
FRIp, (M)~ satisfies the data constraints of PA, which implies that

RIPA(M) satisfies the "no confusion" condition of the data

conggraints. a

An example is given in [Sannella and Wirsing 1982] which shows
the necessity of the condition that all nonparameter sorts of ﬁF—ig
be constrained. It is also shown there that if R=R' then this
condition can be dropped along with reachable completeness of P!
with respect to o(P) and the condition that all sorts of A be

constrained.

The vertical and horizontal composition results for theories with
data constraints are encouraging because ordinary Clear is easier to
use than our 'hierarchical' variant. However, the hierarchical
submodel consistency condition on the horizontal composition theorem
is rather strong and it may be that it is too restrictive to be of
practical use. Here is an example which shows that the proposition
(and therefore the theorem) does not hold without the hierarchical

submodel consistency condition:

-246-

meta Natlike =
enrich Bool by
sorts nat

opns 0 : nat

sucec : nat -> nat enden

proc P(X:Natlike) =
enrich X by
data sorts s

opns a, b : s
f : nat -> s

eqns f(0) = a
f(sucel(x)) = b enden

const A = Nat as usual but with only the operators 0 and succ

const A' =
enrich Bool by
data sorts nat'
opns -1, 0 : nat'
succ : nat' -> nat'
eqns succ(-1) = 0 enden

Now A and A' are both valid actual parameters of Natlike®—P, and
A—>A' (where -1 is an unused value). But P(A)~4A>P(A') (since
P(A)Fafb and P(A')[a=b). The problem 1is that P is not
hierarchical submodel consistent. Consider the following model M of
P:

Mnat = {-1,0,1,2,...}

Mg = {a}

succ defined on Mnat in the usual way

(with the usual interpretation of Bool). Now suppose we remove -1

from M., to give an algebra M

Mgat = {0,1,2,...1}

Mg = {a}

succ as before

M~ is a hierarchical submodel of M but it does not satisfy the "no
confusion™ condition of the data constraint on the sort s, and
therefore P is not hierarchical submodel consistent. There may be

some weaker condition than hierarchical submodel consistency which

-247-

is sufficient to guarantee that implementations of data theories can

be horizontally composed, but we have so far been unable to discover
any such condition.

~-248-

CONCLUSION

In the Introduction we described the wide variety of roles which
specifications play in the development of every progranm. A
specification of one sort or another 1is necessary to describe the
task which the program is to perform, for communication between
designers and programmers, for checking or proving the correctness
of the resulting program, and for documentation. Of course, this is
a very 1loose use of the word "specification"™ which includes
everything from the vague ideas in a programmer's head to a precise

description written in a formal language.

We argued that formal specifications are highly desirable because
all informal specifications are to some degree imprecise, and the
cost of ambiguity can be immense. It is not enough to write
specifications in a language with a formally-defined syntax; this
gives only a dangerous illusion of precision. It is essential that
the specification language have a complete formal semantics. Only
then can we be confident that our specifications have a precise and
unambiguous meaning — the exact meaning of any specification can be

determined mechanically by consulting the semantics.

Burstall and Goguen [1980] were the first to give a complete
formal semantics of a specification language. They define the
meaning of Clear's theory-building operations using the language of
category theory, and then supply a denotational semantics of the
language as a whole by building upon these definitions. Chapter V
describes the semantics and a HOPE program which implements it,
Besides being an experiment 1in 'categorical programming' as
practiced by Burstall [1980] and Rydeheard [1981], the program
exposed several minor errors and one rather serious error in
{Burstall and Goguen 1980]. The semantics given in chapter V is a
corrected version of the original semantics. The serious error was

a failure to distinguish between theories and metatheories

(necessary for supplying metasorts in parameterised theories); the
rather subtle difference is discussed in section III.3.

Unfortunately the program is too slow to be of much practical use.

-249-

A different but equivalent semantics for Clear 1is given in
chapter III. This uses straightforward set-theoretic constructions
to define the semantics of the theory-building operations; the
denotational semantics built upon these definitions is virtually the
same as in chapter V. The simplicity of the constructions depends
on the use of tags to distinguish different sorts and operators
which have the same name but originate in different theories. Both
versions of the semantics are prolific -~ two applications of the
same parameterised theory to the same actual parameter (using the
same fitting morphism) give two different copies of the same theory.
Section III.5 describes how the set-theoretic semantics can be

altered to remove this undesirable characteristic.

Why do we need two versions of the semantics? Is this not too
much of a good thing? The category-theoretic semantics was
developed at the same time as Clear was being designed. This had an
altogether positive effect on the resulting language, as predicted
by Ashcroft and Wadge [1982); a desire to give Clear an elegant
category-theoretic semantics 1led Burstall and Goguen to reject
certain features and embrace others, The idea of 'parameterising'
by an institution came from the realisation that the semantics of
the theory-building operations relied only on the existence of
colimits in the category of signatures. The language of category
theory is perfect for expressing this kind of flexibility. The set-
theoretic semantics has the advantage of being down-to-earth and
constructive and therefore more useful for practical applications.
But without the motivation provided by the category-theoretic
semantics, the constructions of chapter III may seem mysterious and
complicated. The set-theoretic semantics does not seem to readily
generalise to an arbitrary institution, but in section III.6 we show
that it can be easily adapted to deal with all institutions which

have so far been proposed.

Winograd [1979] has argued convincingly for the need to force
specifications 1into the foreground of the program development
process and code into the background, in contrast to present-day
programming practice. He makes the point that programming nowadays

is concerned more with the integration of existing modules into

-250~

larger Ssystems and the modification of existing programs than with
the creation of new programs from scratch. In such cases a high-
level specification of a module 1is far more important than the
sequence of instructions which actually does the Jjob. He suggests
that the organisation and manipulation of these specifications
should be regarded as a programmer's primary task. We agree
wholeheartedly with his proposals. But these ideas are not yet
practical because formal specifications are unfortunately rather
difficult (or at least tedious) to construct. Although formal
specifications have the advantage of precision, they are harder to
understand than informal specifications and it is difficult to be
sure that a formal specification is a correct description of the

intended idea or behaviour.

There are two ways to attack this problem. The first is to
develop an expressive and flexible specification language with a
solid mathematical basis, but which does not require a great deal of
mathematical sophistication to wunderstand and use. Although
addition of ad hoc features is never desirable, it is important that
the language should not force specifications into an unnatural form
for reasons of theoretical elegance. With a carefully-designed
language users can worry about describing their problems without
struggling with the language. The specification language may even
aid users in expressing and thinking about their problems by
encouraging them to construct specifications in a certain systematic
way. Clear is a first attempt toward such a language -- the
facilities it provides for structuring specifications in particular
seem to be a great asset. But in many ways Clear 1is clumsy.
ORDINARY [Goguen and Burstall 1980a] seems to be continuing in the
right direction by retaining Clear's structuring facilities and
institutional approach but emphasising useability.

The other approach to the problem is to develop automated aids to
help us write, understand and manipulate specifications. Chapter IV
discusses an implementation in HCPE of the set-theoretic semantics
of chapter III, along with some examples of specifications which
have been processed. As well as helping expose bugs in early

versions of the semantics, this has shown itself to be invaluable in

~-251-

checking specifications for syntax and type errors. It 1is
surprisingly difficult to write even a small specification without
making some kind of silly mistake. Since the semantics does not
assign any meaning to a syntactically or semantically ill-formed
specification 1t s 1imperative to detect such errors. The
implementation could also serve as a front end to any system which
requires specifications as input (such as a program verification or
development system). A helpful addition would be to add a check for
the persistency of enrichments, but this 1is a difficult problem
which is undecidable in general. On the other hand, it would be
easy to add a check for void sorts. The program described in
chapter IV 1is presently rather slow and lacks a really good user
interface, but these faults could easily be cured by a careful
reimplementation in some lower-level language with more attention to

error reporting and recovery.

A theorem prover is a useful tool for exploring the meaning of a
specification, and 1s a necessary basis for building almost any
system making serious use of specifications. In fact, the Clear
implementation needs a theorem prover to check that specifications
are semantically well-formed. In chapter VI a semi-automatic
theorem prover for Clear built on top of the Edinburgh LCF System
[Gordon, Milner and Wadsworth 1979] is described. It is able to
prove many theorems automatically, exploiting the structure of Clear
specifications to restrict the information available to that which
i3 relevant to the theorem at hand. If the built-in strategy fails
the user is free to attempt to prove the theorem using the high-
level primitives (LCF tactics) and inference rules provided; our use
of the LCF proof methodology guarantees that only valid theorems can
be proved. OQur goal was not to produce a powerful theorem prover
full of clever heuristics, but to provide a set of tools sufficient
for users to conduct proofs interactively and to explore some of the
possibilities for automatic proof, with particular emphasis on
finding evidence for our suspicion that the structure of C(lear
specifications can aid both interactive and automatic proof. A more
powerful equational deduction component which uses state-of-the-art
methods would improve the performance of the system substantially.

Another area for improvement is the user interface, which 1is at

-252~

present rather primitive,

Chapter VII lays a foundation for the use of Clear in program

development. A formal notion of the implementation of a theory by a

lower-level theory is given which seems to agree with our intuitive
ideas built on programming experience. This notion extends to give
a definition of the implementation of parameterised theories. We
prove that the implementation relation is transitive under certain
conditions, and that separate implementations of a parameterised
theory P and an actual parameter theory A can be combined to give an
implementation of the application P(A), again provided that the
theories are 'well-behaved'. These two results (together with an
analogous result for each of the remaining theory-building
operations of Clear -- we only considered the apply operation) mean
that large high-level specifications can be refined in a gradual and
modular fashion to 1low-level HOPE-style ‘'programs', where the
correctness of all the small individual refinements guarantees the
correctness of the final program, A question not addressed was how
to prove that a refinement 18 indeed a correct implementation
according to our model-theoretic definition. This seems to be a
difficult problem; Martin Wirsing and I have tried to produce a set
of conditions sufficient to guarantee correctness of

implementations, but so far we have had only limited success.

An ambitious project would be to integrate all of this work
(together with efforts like OBJ [Goguen and Tardo 1979] and DAISTS
(Gannon, McMullin and Hamlet 1981]) 1into a system for the
specification, verification and systematic development of programs.
The main barriers to such a system at present seem to be the lack of
a means of proving the correctness of refinement steps, and the
limitations of automatic theorem-proving technology. An important
problem to which we have not yet devoted much attention is the
construction of a comprehensive 1library of basic specifications
which can be used to build large specifications without starting
from scratch; the library in appendix 2 is just a feeble beginning.
A great deal of work must alsoc be done to develop a specification
language which permits greater ease of expression than Clear, and on

other problems of user engineering.

-253-

It is almost certain that a systematic approach to program
development such as we have described will never be easier than the
'quick and dirty' approach. But in the long run the initial high
cost of carefully developing a program should be balanced by the
guaranteed correctness of the result and the relative ease of

maintenance and later modification.

-254-

REFERENCES

Abrial, J.R., Schuman, S.A. and Meyer, B. (1979) Specification
language Z. Massachusetts Computer Associates Inc., Boston,
Massachusetts.

Aho, A.V. and Ullman, J.D. (1977) Principles of Compiler Design.
Addison-Wesley.

Arbib, M.A. and Manes, E.G. (1975) Arrows, Structures and Functors.
Academic Press.

Ashcroft, E.A. and wadge, W.W. (1982) % for semantics. TOPLAS 4, 2.

Aubin, R. (1977) Strategies for mechanizing structural induction.
Proc. Sth Intl. Joint Conf. on Artificial Intelligence, Cambridge,
Massachusetts, pp. 363-369.

Backus, J. (1978) Can programming be liberated from the von Neumann
style? A functional style and its algebra of programs. CACM 21, 8

pp. 613-641.

Bauer, F.L. et al (the CIP Language Group) (1981) Report on a wide
spectrum language for program specification and development
(tentative version). Report TUM~I8104, Technische Univ. M@inchen.

Bekié, H., Bjérner, D., Henhapl, W., Jones, C.B. and Lucas,
P. (1974) A formal definition of a PL/I subset. IBM Vienna Technical
Report TR25.139.

Bergstra, J.A., Broy, M., Tucker, J.V. and Wwirsing, M. (1981) On the
power of algebraic specifications. Proc. 10th Intl. Symp. on
Mathematical Foundations of Computer Science, Strbske Pleso,
Czechoslovakia. Springer Lecture Notes 1in Computer Science,
Vol. 118, pp. 193-204.

Birkhoff, G. (1935) Cn the structure of abstract algebras. Proc. of
the Cambridge Philosophical Society 31, pp. 433-454,

Birkhoff, G. (1948) Lattice Theory. American Mathematical Soc.
Colloq. Publications, Vol. 25, New York.

Boyer, R.S. and Moore, J.S. (1978) A formal semantics for the SRI
hierarchical program design methodology. Technical report, SRI
International.

Boyer, R.S. and Moore, J.S. (1979) A Computational Logic. Academic
Press.

Broy, M., Dosch, Ww., Partsch, H., Pepper, P. and Wirsing, M. (1979)
Existential quantifiers in abstract data types. Proc. 6th Intl.
Colloq. on Automata, Languages and Programming. Springer Lecture
Notes in Computer Science, Vol. 71, pp. 73-87.

-255=-

Broy, M., M8ller, B., Pepper, P. and Wirsing, M. (1980) A model-
independent approach to implementations of abstract data types.
Proc. of the Symp. on Algorithmic Logic and the Programming Language
LOGLAN, Poznan, Poland. Springer Lecture Notes in Computer Science
(to appear).

Burge, W.H. (1975) Recursive Programming Techniques. Addison-Wesley.

Burstall, R.M. (1977) Design considerations for a functional
programming language. Infotech State of the Art Conference: The
Software HRevolution, Copenhagen.

Burstall, R.M. (1980) Electronic category theory. Proc. 9th Intl.
Symp. on Mathematical Foundations of Computer Science, Rydzyna,
Poland. Springer Lecture Notes in Computer Science, Vol. 88,

pPp. 22-39.
Burstall, R.M. (1980a) Proving inequalities. Unpublished notes.

Burstall, R.M, and Darlington, J. (1977) A transformation system for
developing recursive programs. JACM 24, 1 pp. Lu4-67.

Burstall, R.M. and Goguen, J.A. (1977) Putting theories together to
make specifications. Proc. 5th Intl. Joint Conf. on Artificial

Intelligence, Cambridge, Massachusetts, pp. 1045-1058.

Burstall, R.M. and Goguen, J.A. (1980) The semantics of Clear, a
specification language. Proc. of Advanced Course on Abstract
Software Specifications, Copenhagen. Springer Lecture Notes in
Computer Science, Vol. 86, pp. 292-332.

burstall, R.M. and Goguen, J.A. (1981) An informal introduction to
specifications using Clear. The Correctness Problem in Computer
Science (R.S. Boyer .nd J.S. Moore, eds.), Academic Press,

pp. 185-213.

Burstall, R.M., MacQueen, D.B. and Sannella, D.T. (1980) HOPE: an
experimental applicative language. Proc. 1980 LISP Conference,
Stanford, California, pp. 136-143; also Report CSR-62-80 (Revised
version, Feb. 1981), Dept. of Computer Science, Univ. of Edinburgh.

Damas, L. and Milner, R. (1982) Principal type-schemes for
functional programs. Proc. 9th ACM Symp. on Principles of
Programming Languages, Albuquerque, New Mexico.

Darlington, J. and Reeve, M. (1981) ALICE: a multi-processor
reduction machine for the parallel evaluation of applicative
languages. Proc. ACM/MIT Conference on Functional Programming
Languages and Computer Architecture, Portsmouth, New Hampshire.

Dijkstra, E.w. (1972) Notes on structured programming. Notes on
Structured Programming (Dahl O0O.-J., Dijkstra, E,W. and Hoare,
C.A.R.), Academic Press, pp. 1-82.

Dijkstra, E.W. (1980) Some beautiful arguments using mathematical
induction. Acta Informatica 13 pp. 1-8.

-256-

Dybjer, P. (1981) Higher order continuous theories and their
algebras. Unpublished draft, Dept. of Computer Science, Univ. of

Edinburgh.

Ehrich, H.-D. (1981) On realization and implementation. Proc. 10th
Intl. Symp. on Mathematical Foundations of Computer Science,
Strbske Pleso, Czechoslovakia. Springer Lecture Notes in Computer
Science, Vol. 118.

Ehrich, H.-D. (1982) Cn the theory of specification, implementation,
and parametrization of abstract data types. JACM 29, 1 pp. 206-227.

Ehrich, H.-D. and lohberger, V.G. (1978) Parametric specification of
abstract data types, parameter substitution and graph replacements,
Proc. of workshop on Graphentheoretische Konzepte in der Informatik,
Applied Computer Science, Carl Hanser Verlag.

Ehrig, H. (1961) Algebraic theory of parameterized specifications
with requirements. Proc. 6th CAAP, Genova, Italy.

Ehrig, H. and Fey, Ww. (1981) Methodology for the specification of
software systems: from formal requirements to algebraic design
specifications. Proc. GI 81.

Ehrig, H. and Kreowski, H.-J. (1982) Parameter passing commutes with
implementation of parameterized data types. Proc. 9th Intl. Collog.
on Automata, Languages and Programming, Aarhus, Denmark. Springer

Lecture Notes in Computer Science (to appear).

Ehrig, H., Kreowski, H.-J. and Padawitz, P. (1980) Algebraic
implementation of abstract data types: concept, syntax, semantics
and correctness. Proc. 7th Intl. Colloq. on Automata, Languages and
Programming, Noordwijkerhout, Netherlands. Springer Lecture Notes in
Computer Science, Vol. 85, pp. 142-156.

Ehrig, H., Kreowski, H.-J., Thatcher, J.W., Wwagner, E.G. and Wright,
J.B. (1980) Parameterized data types in algebraic specification
languages (short version). Proc. 7th Intl. Collog. on Automata,
Languages and Programming, Noordwijkerhout, Netherlands. Springer
Lecture Notes in Computer Science, Vol. 85.

Feather, M.S. (1982) A system for assisting program transformation.
TOPLAS 4,1 1-20.

Gannon, J., McMullin, P. and Hamlet, R. (1981) Data-abstraction
implementation, specification, and testing. TOPLAS 3,3 pp. 211-=223.

Ganzinger, H. (1980) Parameterized specifications: parameter passing
and implementation. TOPLAS (to appear).

Goguen, J.A. (1978) Abstract errors for abstract data types. Proc.
IFIP Working Conf. on the Formal Description of Programming
Concepts, New Brunswick, New Jersey.

Goguen, J.A. (1978a) Order sorted algebras: exceptions and error
sorts, coercions and overloaded operators. Semantics and Theory of
Computation Report No. 14, Computer Science Dept., UCLA.

-257~-

Goguen, J.A. (1980) How to prove algebraic inductive hypotheses
without induction, with applications to the correctness of data type
implementation. Proc. 5th Conf. on Automated Deduction, Les Arcs,
France. Springer Lecture Notes in Computer Science, Vol. 87.

Goguen, J,A. (1981 Two ORDINARY specifications. Technical report
CSL-128, (ompiter Sctierce Laboratory, SRI International.

Goguen, J.A. and Burstall, R.M. (1978) Some fundamental properties
of algebraic theories: a tool for semantics of computation. Report
53, Dept. of Artificial Intelligence; to appear in Theoretical

Computer Science,

Goguen, J.A. and Burstall, R.M. (1980) CAT, a system for the
structured elaboration of —correct programs from structured
specifications. Technical report CSL-118, Computer Science
Laboratory, SRI International.

Goguen, J.A. and Burstall, R.M. (1980a) An ORDINARY design.
Unpublished draft, Computer Science Laboratory, SRI International.

Goguen, J.A. and Meseguer, J. (1981) Completeness of many-sorted
equational logic. SIGPLAN Notices 16, 7 pp. 24=32.

Goguen, J.A. and Tardo, J.J (1979) An introduction to OBJ: a
language for writing and testing formal algebraic program
specifications. Proc. of Conf. on Specification of Reliable
Software, Cambridge, Massachusetts.

Goguen, J.A., Thatcher, J.W. and wagner, E.G. (1978) An initial

algebra approach to the specification, correctness, and
implementation of abstract data types. Current Trends in Programming
Methodology, Vol, 4: Data Structuring (R.T. Yeh, ed.),

Prentice-Hall, pp. 80-149,

Goguen, J.A., Thatcher, J.w., Wagner, E.G. and Wwright, J.B. (1973) A
junction between computer science and category theory I: basic
definitions and examples, part 1. IBM Research Report RC4526.

Goguen, J.A., Thatcher, J.W., Wagner, E.G. and Wright, J.B. (1977)
Initial algebra semantics and continuous algebras. JACM 24, 1
pp. 66=95.

Gordon, M.J., Milner, A.J.R. and Wwadsworth, C.P. (1979) Edinburgh
LCF. Springer Lecture Notes in Computer Science, Vol. 78.

GrBtzer, G. (1979) Universal Algebra (2nd edition), Springer.

Guttag, J.V. and Horning, J.J. (1978) The algebraic specification of
abstract data types. Acta Informatica 10 pp. 27-52.

Guttag, J.V. and Horning, J.J. (1980) Formal specification as a
design tool. Proc. 7th ACM Symp. on Principles of Programming
Languages, Las Vegas.

Guttag, J.V., Horowitz, E., and Musser, D.R. (1978) Abstract data
types and software validation. CACM 21, 12 pp. 1048-1064.

-258-

Henderson, P. and Snowdon, R. (1972) An experiment in structured
programming. BIT 12 pp. 38-53.

Honda, M. and Nakajima, R. (1979) Interactive theorem proving on
hierarchically and modularly structured sets of very many axioms.
Proc. 6th Intl. Joint Conf. on Artificial Intelligence, Tokyo,
pp. 400-402,

Hopcroft, J.E. and Ullman, J.D. (1979) Introduction to Automata
Theory, Langusges, and Computation. Addison-Wesley.

Huet, G. and Hullot, J.-M. (1980) Proofs by induction in equational
theories with constructors. Rapport de Recherche 28, INRIA.

Hupbach, U.L. (1980) Abstract implementation of abstract data types.
Proc. 9th 1Intl. Symp. on Mathematical Foundations of Computer
Science, Rydzyna, Poland. Springer Lecture Notes 1in Computer
Science, Vol. 88, pp. 291-304.

Hupbach, U.L. (1981) Abstract implementation and parameter
substitution. Proc. 3rd Hungarian Computer Science Conference,
Budapest.

Hupbach, U.L., Kaphengst, H. and Reichel, H. (1980) Initial
algebraic specification of data types, parameterized data types, and
algorithms. VEB Robotron, Zentrum fOr Forschung und Technik,
Dresden.

IFIP wG 2.1 (1979) [Specification examples]. Document
WG 2.1 334 (Bru-2), distributed prior to December 1979 IFIP WG 2.1
meeting in Brussels.

Iverson, K. (1962) A Programming Language. John Wiley and Sons.

Jenks, R.D. (1974) The SCRATCHPAD language. Proc. Symp. on Very High
Level Languages.

Jones, C.B. (1978) The meta-language: a reference manual. The
Vienna Development Method: The Meta-language (D. Bjérner and C.B.
Jones, eds.). Springer Lecture Notes in Computer Science, Vol. 61,

pp. 218-2717.

Kaphengst, H. and Reichel, H. (1971) Algebraische
Algorithmentheorie. VEB Robotron, Zentrum ffir Forschung und
Technik, Dresden.

Kelly, G.M. and Street, R. (1974) Review of the elements of
2-categories. Category Seminar (G.M, Kelly, ed.), Springer Lecture
Notes in Mathematics, Vol. 420, pp. 75-103.

Knuth, D.E. (1973) The Art of Computer Programming, Vol. 3: Sorting
and Searching, Addison-wWesley.

Knuth, D.E. and Bendix, P.B. (1970) Simple word problems in
universal algebras. Computational Problems in Abstract Algebra J.
Leech, ed.), Pergammon Press, pp. 263-297.

~259~

Landin, P.J. (1966) The next 700 programming languages. CACM 9, 3
pp. 157-166.

Lawvere, F.W. (1963) Functorial semantics of algebraic theories.
Proc. Nat. Acad. Sci. USA 50, pp. 869-872.

Lehmann, D.J. and Smyth, M.B. (1981) Algebraic specification of data
types: a synthetic approach. Mathematical Systems Theory 14,

pp. 97-139.
Levitt, K.N., Robinson, L. and Silverberg, B. (1979) HDM handbook
Vols. I, II, III. SRI International.

Levy, M.R. (1980) Specifying data types with variables and
referencing. Report DCS-5-IR, Dept. of Computer Science, University

of Victoria.

Liskov, B.H. and Berzins, V. (1977) An appraisal of program
specifications. MIT Computation Structures Group Memo 1411,

Liskov, B., Snyder, A., Atkinson, R. and Schaffert, C. (1977)
Abstraction mechanisms in CLU. CACM 20, 8 pp. 564-576.

MacLane, S. (1971) Categories for the Working Mathematician.
Springer.

MacQueen, D.B. (1981) Structure and parameterization in a typed
functional 1language. Symp. on Functional Languages and Computer
Architecture, Gothenburg, Sweden.

MacQueen, D.B. and Sannella, D.T. (1982) Completeness of proof
systems for equational specifications. In preparation.

Manna, Z. and haldinger, R. (1980) A deductive approach to program
synthesis. TGCPLAS 2, 1 pp. 90-121,

Manna, 2. and Waldinger, R. (1981) Deductive synthesis of the
unification algorithm. Automatic Program Construction (G. Guiho,
ed.), NATO Scientific Series, D. Reidel Pub. Co., Dordrecht,
Holland.

McCarthy, J., Abrahams, P.w., Edwards, D.J., Hart, T.P. and Levin,
M.I. (1962) LISP 1.5 Programmer's Manual. MIT Press.

Milner, R.G. (1978) A theory of type polymorphism in programming.
JCSS 17, 3 pp. 348-375.

Milner, R., Morris, L. and Newey, M., (1975) A logic for computable
functions with reflexive and polymorphic types. Proc. of Conf, on
Proving and Improving Programs, Arc-et-Senans, France; also LCF
Report 1, Dept. of Computer Science, Univ. of Edinburgh.

Mosses, P.D. (1976) Compiler generation wusing denotational
semantics. Proc. 5th Intl. Symp. on Mathematical Foundations of
Computer Science, Gdansk, Poland. Springer Lecture Notes in Computer
Science, Vol. 45, pp. 436-441,

- H(=-

Musser, D.L. (1980) On proving inductive properties of abstract data
types. Proc. Tth ACM Symp. on Principles of Programming Languages,
Las Vegas, Nevada.

Mycroft, A. (1981) Abstract Interpretation and Optimising
Transformations for Applicative Programs. Ph.D. thesis, Dept. of
Computer Science, Univ. of Edinburgh.

Nakajima, R., Honda, M. and Nakahara, H. (1980) Hierarchical program
specification and verification -~ a many-sorted logical approach.
Acta Informatica 14 pp. 135-155.

Nelson, G. and Oppen, D.C. (1979) Simplification by cooperating
decision procedures. TOPLAS 1, 2 pp. 245-257.

Nourani, F. (1979) Constructive extension and implementation of
abstract data types and algorithms. Ph.D. thesis, Dept. of Computer

Science, UCLA.

Nourani, F. (1981) On 1induction for programming 1loglc: syntax,
semantics, and inductive closure. Bulletin EATCS 13, pp. 5164,

Parnas, D.L. (1972) A technique for software module specification
with examples. CACM 15, 5 pp. 330-336.

Parnas, D.L. (1672a) Cn the criteria to be used in decomposing
systems into modules. CACM 15, 12 pp. 1053-1058.

Reichel, H. (198C) Initially-restricting algebraic theories. Proc.
9th Intl. Symp. on Mathematical Foundations of Computer Science,
Rydzyna, Poland. Springer Lecture Notes 1in Computer Science,
vol. 86, pp. SLl-514,

Rogers, H. (1667) Theory of Recursive Functions and Effective
Computability. McGraw-Hill.

Roubine, C. and Robinson, L. (1977) SPECIAL reference manual (3rd
edition). SRI Technical Report CSG-45.

Rydeheard, ©[D.E, (1961) Applications of category theory to
programming and program specification. Ph.D. thesis, Dept. of
Computer Science, Univ. of Edinburgh.

Sannella, C.T. (1981) A new semantics for Clear, Report CSR-79-81,
Dept. of Computer Science, Univ. of Edinburgh.

Sannella, D.T. and wirsing, M. (1982) Implementation of
parameterised specifications. Report CSR-103-82, Dept. of Computer
Science, Univ. of Edinburgh; extended abstract in: Proc. 9th Intl.
Colloq. on Automata, Languages and Programming, Aarhus, Denmark.
Springer Lecture Notes in Computer Science (to appear).

Schoett, C, (1981) Ein Modulkonzept 1in der Theorie Abstrakter
Datentypen. Report IFI-HH-B-81/81, Fachbereich Informatik,

Universitt Hamburg.

Scott, D.S. (1976) Data types as lattices. SIAM Journal on
Computing 5, 3 pp. 522-587.

261~

Spitzen, J.M., Levitt, K.N. and Robinson, L. (1978) An example of
hierarchical design and proof. CACM 21, 12 pp. 1064-1075.

Thatcher, J.w., Wwagner, E.G. and Wright, J.B. (1976) Specification
of abstract data types using conditional axioms. IBM Research Report
RC6214.

Thatcher, J.w., Wagner, E.G. and Wright, J.B. (1978) Data type
specification: parameterization and the power of specification
techniques. SIGACT 10th Annual Symp. on the Theory of Computing, San
Diego, California.

Turner, D.A. (1979) SASL language manual. Dept. of Computer Science,
Univ. of St. Andrews.

wand, M. (1979) Final algebra semantics and data type extensions.
JCSS 19 pp. 27-44,

Warren, D.H.D., Pereira, L.M. and Pereira, F.C.N. (1977) PROLOG -=-
the language and its implementation compared with LISP. Proc. ACM
Symp. on Artificial Intelligence and Programming Languages,
Rochester, New York.

wWinograd, T. (1979) Beyond programming languages. CACM 22, 7
pp. 391-401,

wirsing, M. and Broy, M. (1980) Abstract data types as lattices of
finitely generated models. Proc. 9th Intl. Symp. on Mathematical
Foundations of Computer Science, Rydzyna, Poland. Springer Lecture
Notes in Computer Science, Vol. 88, pp. 673-685.

Wirsing, M. and troy, M. (1681) An analysis of semantic models for
algebraic specifications. Proc. 1981 Marktoberdorf Intl. Summer
School on Theoretical Foundations of Programming Methodology.

Wirth, N. (1971) Program development by stepwise refinement. CACM
14, 4 pp. 221=-227.

-262-
APPENDIX ONE
HOPE

The following description of HOPE is a condensation of [Burstall,
MacQueen and Sannella 1980], brought up to date. Lazy evaluation is
not mentioned, since none of the programs in this thesis use that
facility of HOPE. After a brief presentation of the notation and
features of HOPE, a simple example of a HOPE program is given., This
is followed by a discussion of some of the advantages and

disadvantages of HOPE, and notes concerning its implementation.

A precursor of HOPE called NPL is described by Burstall [1977].
Major influences in the design of HOPE were LISP and ISWIM [Landin
19661]. It bears some resemblance to a number of other languages,
including PROLOG (Warren, Pereira and Pereira 1977], ML [Gordon,
Milner and Wadsworth 1979], SASL (Turner 1979], OBJ [Goguen and
Tardo 19791, SCRATCHPAD (Jenks 1974], and languages by Burge [1975]
and Backus [1978].

1. Data declarations

Conceptually, all data in HOPE is represented as terms consisting

of a data constructor applied to a number of subterms, each of which

in turn represents another data item. The tips of this tree are
nullary data constructors or functional objects. An example is
succ(suce 0) in which succ is a unary constructor and 0 is a nullary
one (i.e. a constant). Constructor functions are uninterpreted;

they just construct.

A data declaration is used to introduce a new data type along

with the data constructors which create elements of that type. For
example, the data declaration for natural numbers would be:

data num == 0 ++ succ num
defining a data type called num with data constructors 0 and succ.
So the elements of num are 0, succ(0), succ(suce 0), ... ; that is,
0, 1, 2, «vv &

To define a type 'tree-of-numbers' we could say

-263~-

data numtree == empty ++ tip num ++ node(numtree,numtree)
One of the elements of numtree is:

node(tip(sucec 0),node(tip(succ(suce 0)),tip 0))

But we would like to have trees of lists and trees of trees as
well, without having to define them all separately. So we declare a
type variable

typevar alpha

which when used in a type expression denotes any type (including

second- and higher-order types). A general definition of tree as a
parameterised type is now possible:

data tree(alpha) =z empty ++ tip alpha
++ node(tree alpha,tree alpha)

Now tree is not a type but a unary type constructor -~ the type

numtree can be dispensed with in favour of tree(num).

Another example of a data declaration is

data graph == mkg(set vertex,(vertex#vertex->truval))
(the sign # gives the cartesian product of types). This says that a
graph is (the data constructor mkg applied to) a set of vertices
together with a binary relation which tells if there is an edge

between any two vertices.

Another way to define graphs is using a type declaration:

type graph == set vertex # (vertex#vertex->truval)
Now graph is just an abbreviation for a type tuple, rather than a
new data type. With this definition no data constructor is used to
construct a graph. Type definitions may be parameterised in the

same way as data declarations, but they may not be recursive.

HOPE currently comes equipped with the data types num, truval,

char, list, set, and map (finite functions).

2. Expressions

The simplest expressions of HOPE are constants (i.e. data
constructors and functions -- the 'usual' concept of a constant is
just the class of nullary functions and data constructors) and

variables.

~-264~
An application may be formed by simply Juxtaposing two
expressions:

factorial 6

For functions of several arguments we use tuples, formed with
commas; thus 3,4 is a 2-tuple. Parentheses are used for grouping,

for example:

g (3.4)

In the expression
(f x) vy
the subexpression f x would have to produce a function; thus the
types would be

T1 -> T2 -> T3

with x:T1 and y:T2.

It 1is possible to wuse function symbols as infix or postfix

operators if they are declared and given a precedence; for example:

infix «, - : 8

A similar form is used to assign a precedence to a prefix symbol.

Distributed-fix operators (see [Goguen and Tardo 1979]) are also
available; for example:

distfix while _ do _
distfix _ unless _ in which case _

Some convenient notations have been implemented for built-in
types; thus e;::i(e,i: ... ::nil) is abbreviated [e1,e2, ceedy

(*a','b', ...] is "ab..." and sets are written {e1.e2. ...}. Note
that we write cons as infix ::

There are two equivalent forms of conditional expression:
e1‘1£ c else e,

and

¢ then e1 else e2

(in many languages written if ¢ then e, else e2).

Lambda-expressions (denoting functions) are formed as described
in section 3.

-265~-

Local variables may be introduced and associated with values
using either of the equivalent forms

€, wWhere p == €
or

let p==e, ine,
where p is an expression formed by application of data constructors
to a number of distinct variables (this is called a pattern). For
example:

a+b where a::(b::1) == f(t)
Upon evaluation, f(t) is expected to yield a value which 'matches'
the pattern a::(b::1). The corresponding subterms in the value of

f(t) are then bound to a, b, and 1 while evaluating a+b.

3. Defining functions

Before a function is defined, its type must be declared. For
example:

dec reverse : list alpha -> list alpha
HOPE is a very strongly-typed language, and the HOPE system includes
a polymorphic typechecker (a modification of the algorithm 1in
{Milner 1978]) which is able to detect all type errors at compile
time. Function symbols may be overloaded. When this is done, the
typechecker is able to determine which function definition belongs

to each instance of the function symbol.

Functions are defined by a sequence of one or more equations,
where each equation specifies the function over some subset of the

possible argument values. This subset 1s described by a pattern

(see section 2) on the left-hand side of the equation. For example:

--- reverse nil <= nil (1)
——— reverse(a::1) <= reverse 1 <> [a] (2)

(the symbol <> 1is infix append). This defines the (top-level)

reverse of a list; for example:

reverse(2::nil) < [1]
(reverse nil <& [2]) ¢ [1]
(nil & [2]) ¢ [1]

So reverse [1,2] = [2,1] (by two applications of equation 2 followed

reverse(1::(2::nil))

(LI [T}

by a single application of equation 1). The left-hand-side patterns

~266-

will normally be disjoint and be related to the structure of the
type definition:
data list alpha == nil ++ alpha :: 1list alpha

The set of equations defining a function should exhaust the
possibilities given in the data-statement introducing the argument

types. For example, a definition of the Fibonacci numbers:

dec fib : num -> num

-—- fib 0 <= 1

-—= fib(sucec 0) <=z 1

~—~ fib(succ(suce n)) <= fib(succ n) + fib n

In this case the three patterns 0, succ 0, and succ(succ n) exhaust
the set of values belonging to num, The pattern 1 may be used as

shorthand for succ(0).

Nullary 'functions' may also be defined; for example:

dec pi : rational
—— pi <= mkrational(22,7)

which assumes that the type rational has been defined.

Lambda~expressions are defined similarly. For example, a
function to compute the conjunction of two truth values (already
available as the function 'and'):

lambda true,p => p
| false,p => false

Another example of a lambda-expression occurs in the definition

of function composition:

typevar alpha,beta,tau
dec compose : (alpha->beta) # (beta->tau) -> (alpha->tau)
-—— compose(f,g) <= lambda x => f(g x)

Patterns may be somewhat more complex than those used above; for
example:

~— f(11 & (_ :: (e::))) <= c::1l
This pattern uses "don't care" variables (underscores) to give the
shape of the pattern without specifying variable bindings, and the
multilevel pattern operation (ampersand) to bind variables to the
same value at different levels. The expression f[1,2,3] will have

the value [2,1,2,3].

-267-

4, Modules

Any sequence of statements may be made into a module by
surrounding it with the statements
module mname
and

end

Data types defined in a module may be referred to outside only if
a statement
pubtype tname
is included 1in the module. Similarly, constants (including data

constructors) may be referenced only if a statement

pubconst cname
is included.

Nothing defined outside a module may be referenced within it,
unless the module includes the statement

uses mname
In this case, all of the types and constants declared as public to
the indicated module are available. In addition, certain global
types and constants (num, truval, char, list, set and map, together

with some primitive operations) may be referenced within any module.

This is an effective tool for the -encapsulation of data
abstractions; if the primitive constructors and low-level operations
on the data representation are not declared public, then the
implementation of the abstraction is hidden from the rest of the

program.

5. An example

An example of a complete HOPE program is given below. This
illustrates how we can use HOPE to implement a data type (ordered
trees), and then how that type can be wused in a program for

treesort.

-268-

module ordered_trees

pubtype otree
pubconst empty, insert, flatten

data otree == empty ++ tip num ++ node(otree,num,otree)

dec insert : num # otree -=> otree
dec flatten : otree => list num

-—— insert(n,empty) <= tip n
——- insert(n,tip m) <= n<m then node(tip n,m,empty)
else node(empty,m,tip n)
-—~ insert(n,node(t1,m,t2)) <= n<m then node(insert(n,t1),m,t2)
else node(ti,m,insert(n,t2))

--- flatten empty <= nil
--- flatten(tip n) <= [n]
——- flatten(node(t1,n,t2)) <= flatten t1 <> (n::flatten t2)

end

module list iterators
pubconst *#, ##

typevar alpha, beta

dec * : (alpha->beta) # list alpha -> list beta
dec ** : (alpha#beta->beta) # (list alpha # beta) -> beta

— f % nil <=z nil
- £ ® (a3::al) <= (f a)::(f % al)

—— g %% (nil,b) <= b
- g %% (a::31,b) <= g ** (al,g(a,b))

module tree_ sort
pubconst sort
uses ordered_trees, list iterators
dec sort : list num -> list num

-== s0ort 1 <z flatten(insert ** (1 ,empty))

end

~269~

Ordered trees

The first module contains an implementation of the abstract type
ordered-tree-of-numbers (data type otree in the program). An otree
is defined to be either empty, a tip (containing a number), or a
node containing two otrees and a number. The special property of
otree is that for any term node{(t1,n,t2), all numbers contained in
t1 are less than n, which is in turn less than or equal to all
numbers contained in t2. We define three public constants:

empty the empty otree

insert adds a number to an otree, preserving the
'orderedness' of the otree

flatten inorder traversal of an otree
Ordinarily an abstract data type would have a few more
operations; only those which are used in the remainder of the

program have been included here.

Note that the data constructor ‘'node' is not public.
Consequently, the only functions available to the 'outside world'
for constructing and modifying otrees are 'empty' and 'insert'.
Both of theze preserve the properties of otrees, so the integrity of
the implementation is assured. However, 1insert 1is not a data

constructor, and hence may not be used in patterns,

List iterators

This module defines two second-order functions which apply a
given function to every element of a list and collect the results.
These two functions are representatives of a group of functions
which are widely used in HOPE programs in an attempt to eliminate
explicit recursion as far as possible. Both of these are in fact
provided as primitive operations in HOPE, but their definitions are

repeated here nonetheless.

The function * is identical to mapcar in LISP, It produces a
list containing the results of applying the function supplied to

each element of the given list. This operation is not actually used

in the example.

=270~

The function #*#* is slightly more complicated. When supplied with
a function g of type alpha#beta -> beta, a list of alpha-objects,
and an 'initial' beta-object, it applies g to each element of the
list, beginning with the given beta-object as a second argument and
subsequently recycling the result of the previous application. This
operation is analogous to the 'reduction' operator of APL [Iverson
1962); an example of its use would be to compute the union of a list
of sets:

union ** (setlist,nil set)

In this case, the module facility is used as a means of packaging
a number of related functions rather than as a device for protecting
a delicate abstraction. However, 1f one of the operations requires
an auxiliary function which has no utility of its own, then it might
be desirable to keep this function local to the module.

Tree sort

A function for sorting a list of numbers is now defined using the
primitives developed in the preceding modules. The #%* operation
from list_iterators is used to successively insert the list elements
into an initially empty otree, The result is then flattened to

produce the final answer,

6. Advantages and disadvantages

The greatest triumph of HOPE 1is that we have found it to be
significantly easier to construct programs in HOPE than in any other
programming language we know. In particular, it is rather easy to
write programs which are absolutely correct the first time they are
run. It seems quite difficult to commit an error which remains
undiscovered for 1long -- the simple errors are caught during
compilation by the typechecker, while the more fundamental errors
(stemming usually from an insufficient understanding of the problem)

display themselves glaringly during even a casual test.

An important aim of language design is to make it easier to

verify that a program meets a given specification, In this respect

-271-

applicative 1languages such as HOPE seem to offer considerable
advantages; the absence of assignment statements and the consequent
replacement of iteration by recursion gives programs a simple and
easy to analyse form. Powerful verification systems for applicative
languages have been written by Boyer and Moore [1980] and by Aubin
(19771,

HOPE has faults, too; one is illustrated in the example in the
last section. The sorting program will only sort a list of numbers,
because otree is 'ordered-tree-of-numbers'. We want a more general
sorting program, and this depends on a more general definition of
ordered trees; we would like to define 'ordered-tree-of-alphas’'.
The data declaration is easy to generalise. But to generalise
insert to type

alpha # otree alpha -> otree alpha
we must have a more general order relation than <, which is defined
only for numbers. But a general order (of type alphaf#alpha->truval)
cannot be defined; for each data type the order must be defined

separately.

The solution is to associate a collection of operations with each
data type (so types become algebras instead of simply sets). Rather
than generalising to otree(alpha) we could generalise to
otree(alpha(<]), requiring an order relation to exist on the
parameter type. This is the approach taken in CLU [Liskov, Snyder,
Atkinson and Schaffert 1977] and in Clear. We really want HOPE
modules to have parameters, a collection of types and operators,

just as CLU clusters have parameters.

As a further example, refer again to the sorting program and note
that the module tree_sort does not depend on the fact that otrees
are trees, but just on certain properties of insert and flatten. We
may substitute a module ordered_lists for ordered trees, where empty
becomes nil, insert becomes the obvious order-preserving insertion
in an ordered 1list, and flatten 18 the identity function.
Essentially, tree_sort is a parameterised module which may be

'applied' to any module satisfying certain (nontrivial) properties.

Parameterised modules do not exist in present-day HOPE, but

-272-

MacQueen [1981] has proposed an extension to the type system of HOPE
based on 1ideas from Clear which accommodates them nicely. In
MacQueen's language, an abstraction is made up of an interface (the
'meta-type' of the abstraction, declaring the types and operators
which it makes available) and a structure (an implementation of the
types and operators promised by the interface). Interfaces and
structures are defined and manipulated separately, and may be

parameterised by other interfaces and structures.

7. Implementation

The HOPE system consists of a compiler (from HOPE programs to
code for an abstract stack machine) and an implementation of the
target machine. The sSystem is written in POP-2, and currently runs
in approximately 51K words (plus a 15K shareable segment) on a DEC
KL-10.

Timing tests 1indicate that a program written in HOPE runs
approximately 3 times slower than the same algorithm coded in LISP
running under the Rutgers/UCI interpreter (and 50 times slower than
compiled LISP). Large programs run more slowly because of page
thrashing. A machine code implementation of the interpreter should

run a lot faster.

A very high-level 1language such as HOPE pays penalties of
inefficiency because it 1s remote from the machine level. It could
be thought of as a specification 1language in which the
specifications are 'walkable' (if not 'runnable'), or as a language
for making a first try at a programming project. But recent work on
efficiency issues in applicative languages gives us hope that we can
produce tolerably efficient programs with less effort than in a

conventional language.

An advantage of an applicative language is the fact that programs
lend themselves very well to the technique of program transformation
[Burstall and Darlington 1977], whereby a simple but inefficient
program is transformed into an acceptably efficient one by steps
which maintain its correctness. A very simple example of program

transformation would be the production of the following linear-time

-273-

program for generating Fibonacci numbers from the equivalent program
in section 3 which requires exponential time.

dec g : num ~> num#num
-— g 0 <= 1,1
-= g(succ n) <= (a + b),a where a,b z= g n

dec fib' : num -> num

- fib' 0 <= 1

- fib' 1 <= 1

——-~ fib'(succ(sucec n)) <= a + b where a,b == g n

Feather [1982] has produced a system for transforming large
programs, which is connected to an earlier version of the HOPE
system. Mycroft [1981] describes a method for detecting
automatically when 'applicative' operators can be replaced by
destructive operators in a program written in an applicative
language without changing its semantics. The transformed program
will consume storage less rapidly with the result that garbage

collection will occur less frequently.

In addition, there is another advantage of applicative languages
which may come to our rescue: applicative languages are not so
tightly bound to the notion of a sequential machine as are
imperative languages. The value of the function application

epleqs ..o vep)
is independent of the order of evaluation of the expressions
€gr e 1€ (if parameters are passed 'by value'); this is
guaranteed by the absence of an assignment statement. If a parallel
machine is available, €gs .. &y Mmay be evaluated simultaneously.
Not only that, but 1if egr -+ ,&, are themselves function
applications, then their arguments may all be evaluated
simultaneously. Darlington and Reeve [1981] describe the
architecture of a machine which is capable of running HOPE programs

in such a parallel fashion.

HOPE is still somewhat incomplete, lacking such conveniences as
sensible input/output facilities. A way of neatly adding
interactive input/output to HOPE using streams was proposed by
Burstall, MacQueen and Sannella [1980], but this was never
implemented. At the present time there 1is no provision for

interactive input, and only the most rudimentary printing facility

-274~

is available (a function which has the side effect of printing its

argument at the terminal).

In order to make up for deficiencies such as these for the time
being, a facility has been added to HOPE which allows a HOPE
function to be defined by a POP-2 program., The function is declared
as usual, and 1its meaning 1s attached later using a set of POP-2
macros. This provides the means for supplying all the power of
POP-2 in HOPE (of particular interest is the possibility of using
POP-2 input/output facilities), and it also could be used to make
important HOPE programs more efficient., Naturally, there is no way
to typecheck the POP-2 code at compile time, and since there is no
runtime typechecking in HOPE it is easy to violate the HOPE type
system in this fashion. But when used with care and discretion this
facility makes it possible to construct large and useful systems in
HOPE. The Clear 1implementation described in chapter IV is an
example; 1t uses the HOPE parser and typechecker as well as input

and file handling routines written in POP-2.

~275=-

APPENDIX TWO
LIBRARY OF BASIC SPECIFICATIONS

Listed below are all the theories included in the initial
environment of the Clear system described in chapter IV. All with
the exception of Bool are shown exactly as they are given to the
system (except that all keywords have been underlined). Bool must
be treated specially because the data-enrich operation expects the
tagged sort boolg,,; to be present, and if Bool is added in the

normal fashion the sort bool will be given an arbitrary tag.

const Bool =
let Bool0 =
theory
data sorts bool
opns true, false : bool endth in
enrich Bool0 by
opns not : bool -> bool

(_or), (_and_), (_=-=>_) : bool,bool => bool
egns not(true) = false not(false) = true
p or true = true p or false = p
p and true = p p and false = false
p—>q = not(p and not(q)) enden
const Nat =
let Nat0 =

enrich Bool by
data sorts nat
opns 0 : nat
succ : nat -> nat enden in

enrich Nat0 by -

opns 1, 2, 3, 4, 5,6, 7, 8 9 : nat

(L=<, (CU>=), (_<), (_>_) : nat,nat -> bool
(_plus), (_=~-_), C*),
(_div), (_mod _) : nat,nat -> nat

erroropns neg : nat

eqns 1 = succ(0) 2 = succ(l) 3 = succ(2)
4 = succ(3) 5 = succ(¥4) 6 = succ(5)
7 = suce(6) 8 = suce(7) 9 = succ(8)
0=<n = true succ(m)=<0 = false
succ(m)=<sucec(n) = m=<n md>=n = n=<m
m<n = m=<n and not(m==n) m>n = n<m
0 plus n =n succ(m) plus n = succ{m plus n)
mplus n-m=n 0%n = 0
succ(m)®*n = m*n plus n m*n plus p divm=n if p<m

m*n plus p mod m = p 1if p<m
erroreqns m-n = neg 1if m<n enden

-276-

const Int =
let IntO =
enrich Bool by
data sorts int
opns 0 : int
pred, succ : int -> int
eqns pred(succ(n)) =
succ(pred(n)) = n enden in
enrich Int0 by —_
opns 1, 2, 3, 4, 5, 60 7, 8, 9,
(_ =<_), (>=), (_ <), (_>_) : int,int <> bool
(-), “magnitude : int -> int
(_ Pplus Dy C=2), C*),
(div). (_mod) : int,int => int

eqns 1 = succ(0) 2 = succ(1) 3 = succ(2)
4 = suce(3) 5 = succ(4l) 6 = succ(5)
7 = succ(6) 8 = succ(7) 9 = succ(8)
0O -n=-=-n
n=<n = true n=<pred(n) = false
pred(n)=z<m = true if n=<m n=z=<pred(m) = false if not(n=<m)
n={succ(m) = true if nz=<m succ(n)=<m = false if not(n=<m)
m>=n = n=<m m<n = m=<n and not(m==n)
m>n = n<m 0O plusn=n

succ(m plus n)
pred(m plus n)

succ(m) plus
pred(m) plus

n s S
S o

mplus n - m O%n = 0
succ(m)®n = m®*n plus n pred(m)®*n = m#n - n
magnitude(m) = m if m>=0 magnitude(m) = - m if m<O

n if p<magnitude(m) and p>= 0
o 1{ p<magnitude(m) and p>=0
enden

m*n plus p div m
m*n plus p mod m

const Character =
derive sorts character
opns blank, A, B, C, D, E, F, G, H, I : character
(_ ==z _), (_ =< _). (_ >= __). (<). (>)
character character -> bool

using Bool
from Nat
by character is nat, blank is 0,
A is 1, B is 2, C 15 3,
D 1s 4, E is 5, F 1_ 6,
G is 7, H is 8, Iis 9 endde
meta Triv =

theory sorts element endth

-277-

meta Ident =
enrich Bool + Triv by
T opns (_ ==) : element,element -> bool
eqns a i:element., i==i = true
all i,jielement. iz=zj = j==
all i,j:element. i==j and j==k —> (i==k) = true

meta POSet =
enrich Ident by
opns (_ =< _) : element,element -> bool

eqgns =<i = true
iz<j and j=<i -=> (i==j) true

i=<j and Jj=<k —=> (i=<k) = true enden

proc Sequence(X:Triv) =
_l_e_t_:_ Seq0 =
enrich X + Bool by
data sorts sequence
opns empty : sequence
unit : element -> sequence
(_ . _) : sequence,sequence -> sSequence
eqgns empty.s = s
s.empty = s
s.t.v = s.(t.v) enden in
enrich Seq0 + Nat by
opns length : sequence -> nat
eqns length(empty) = 0 length(unit(a)) =
length(s.t) = length(s) plus length(t) enden

proc Pair(X:Triv,Y:Triv) =
enrich X + Y + Bool by
data sorts pair
opns (#) : element of X,element of Y -> pair

proc Sum(X:Triv,Y:Triv) =
enrich X + Y + Bool by
data sorts sum
opns inl : element of X -> sum
inr : element of Y -> sum enden

enden

enden

-278-

proc Set(X:Triv) =
let Set0O =
enrich X + Bool by

data sorts set

opns empty : set
singleton : element -> set
(_U_) : set,set -> set

eqns S U empty = S
SUS =S
SUT=TUS
SUTUV=SU(TUV) enden in
Set0 + Nat by
(_is_in _) : element,set -> bool
(_=_), (_ intersect _) : set,set -> set

card : set -> nat

a is in empty = false

a is_in singleton(b) = singleton(a)==singleton(b)

ais in (SUT) =ais inSor ais in T

empty-S = empty

singleton(a)-S = empty if a is_in S

singleton(a)-S = singleton(a) if not(a is in S)

TUV =S8 = (T=-S) U (v=3S)

S intersect T = S-(S-T)

card(empty) = 0

card(singleton(a)) = 1

card(S U T) = card(S) plus card(T)-card(S intersect T)
enden

proc Bag(X:Triv) =
let Bagl =
enrich X + Bool by

data sorts bag

enrich

opns
eqns

opns empty : bag
singleton : element -> bag
(_U_) : bag,bag -> bag

eqns S U empty = S
SUT=TUS
SUTUV=85U(TUV) enden in

Bag0 + Nat by
(_ is_in) : element,bag -> bool
occurrences : element,bag -> nat
a is in empty = false
a is_in singleton(b) = singleton(a)==singleton(b)
ais in (SUT) =ais in Sor a is in T
occurrences(a,empty) = 0
occurrences(a,singleton(b)) = 0

if not(a is_in singleton(b))
occurrences(a,singleton(b)) = 1 if a is in singleton(b)
occurrences(a,S U T) = occurrences(a,S)

plus occurrences(a,T) enden

-279-

proc Stack(X:Triv)
let StackO
enrich X + Bool by
data sorts stack

opns empty : stack
push : element, stack -> stack enden in
enrich StackO by
opns top : stack -> element
pop : stack -> stack
isempty : stack -> bool
erroropns undef : element
underflow : stack
eqns top(push(a,s)) = a pop(push(a,s)) = s
isempty(empty) = true isempty(push(a,s)) = false
erroreqns top(empty) = undef pop(empty) = underflow enden
proc Map(X:Ident,Y:Triv) =
let MapO =
enrich X + Y by
data sorts map
opns empty : map

insert : map,element o

f X,element of Y -> map

egns insert(insert(f,a,b),a,d) = insert(f,a,d)

insert(insert(f,a,b),c

enrich Map0 + Set(X) by
opns (_ << _ >>) : map,element of

,d) = insert(insert(f,c,d),a,b)
if not(a==c) enden in

X => element of Y

p -> bool

domain : map => set
(restrict _ to _) : map,set -> map
(_ is_in) : element of X,ma

element of Y

erroropns undef :

eqns insert(f,a,b)<<a>> = b
insert(f,a,b)<<e>> = f<Ke>>
domain(empty) = empty
domain(insert(f,a,b)) = singl

restrict empty to S = empty
restrict insert(f,a,b) to S

restrict insert(f,a,b) to S

a is in f = a is_in domain(f)
erroreqns empty<<a>> undef

en

if not(a==c)

eton(a) U domain(f)

restrict f to S
if not(a is_in S)
insert(restrict f to S,a,b)
if a is in S

den

~-280~

proc Relation(X:Ident,Y:Ident) =
let RelO =
enrich X + Y by
data sorts relation
opns empty : relation
insert : relation,element of X,element of Y
-> relation
eqns insert(insert(R,a,b),a,b) = insert(R,a,b)
insert(insert(R,a,b),c,d) = insert(insert(R,c,d),a,b)
if not(a==c) or not(b==d)
enden in
enrich Rel0 + Set(X) by -_
opns isrelated: relation,element of X,element of Y -> bool
domain : relation -> set
eqns isrelated(empty,a,b) = false
isrelated(insert(R,a,b),a,b) = true
isrelated(insert(R,a,b),c,d) = isrelated(R,c,d)
if not(a==c) or not(b==d)
domain(empty) = empty
domain(insert(R,a,b)) = singleton(a) U domain(R) enden

-281~
APPENDIX THREE
SUBSET OF PPLAMBDA USED BY THE THEOREM PROVER

The impoverished version of PPLAMBDA used by the theorem prover
discussed in chapter VI 1is described here. It is necessary to
remove the implicit order relation and 'bottom' element because
models of Clear theories do not possess these; other irrelevant
elements of PPLAMBDA have been removed as well. Refer to [Gordon,
Milner and Wadsworth 1979] for details concerning the items
mentioned briefly below.

Types

The built-in type constructors 'prod' (cartesian product) and
'fun' (function space) are still available. The following type
constructors have been deleted: ., tr, u, sum
Constants

Only the built-in constant 'PAIR' is still available. The
following constants have been deleted: TT, FF, UU, COND, FST, SND,
INL, INR, OUTL, OUTR, ISL, FIX, UP, DOWN, DEF, ()

Formulae

All the usual PPLAMBDA formulae are allowed except for

inequations (e.g. f<<f').

Inference rules

The following inference rules are available:

1

AXTRUTH = ECFTRUTH
ASSUME f = {W} ECFH

GEN x A'ECFf = A}ECF!x.f‘ (fails if x occurs free in A)

DISCH f' Awt Ff‘ = A'|-._f' IMP f (where A' is the set of
Y assumﬁffbns in A not alpha-convertible to f')

SEL1 Afrcpfaf' = Alcpf
SEL2 Alcpfaf' = Al pf’
SPEC t Algop!x-f = Al pflt/x]

P Afcp(f IMP £') Alifepf = AUAITEL!

-282-

INST [t1.X1;. fle1/x1...]
(fails 1’fica§1y xi oclﬂgxfs free in A)

INSTTYPE [tyl,vty1; 'I; f{ty1/vtyl...}
(fails 1f any vt q?is not 5 artype, or is a vartype in A)

REFL t = ECtht
t=t' = -
SYM A'ECF ArI:CFt t
TRANS (A ,Ecpt-'-t' » A [ECFt'zt") = AUA! rI:CFt=t"

SUBST [Alfcptt=tit,x15...] ¢ A'|— £rit1/x1...]
z Union(Ai)U cpf'lt1'/x1...]

SUBS [AVcpt1=t1'5 .. A'frcpf' = Union(AL)WA'frepf'lt1'/t1...]

suBsocCS tint11.A1ﬁ; t1=t1';...]1 A" = As for SUBS,
but subQFtutes accordin&'gb occurrence numbers in intli

APTERM t A'ECFt'zt" = A'ECFt t'st t"

APTHM AI.ECFt'zt" t “fCFt' t=t" ¢t

LAMGEN x A t=t' = Ax.t=)hx.t!
tCF (fails i} { occurs free in A)

BETACONV (Xx.t)t' = ECF()x.t)t'zt[t'/x]
ETACONV Mx.(t x) = ECFXX.(t x)=t (fails if x occurs free in t)

EXT A Ix.(t x=t' x) = t=t!
kCF (fails if x éggﬁrs free in t or t')

-t ! - -
ABS x AkkFt x=t = Akth-Xx.t (fails if x occurs free in t or A)

SIMP ss ArI:CFf = AUA'[Ff' where f' is the result of simplifying
f using &g and A' is a subset of the hypotheses of

theorems in ss

The following inference rules have been deleted: SYNTH, ANAL,
HALF1, HALF2, MIN, MINAP, MINFN, FIXPT, FIX, INDUCT, AXDEF, DEFUU,
DEFCONV, CONDCONV, CONDTRCONV, CASES, CONTR, DOT, DOWNCONV, UPCONV,
SELCONV, PAIRCONV, ISCONV, OUTCONV, INCONV

Simplification

The only simplification rules in BASICSS are those corresponding
with the inference rules BETACONV and ETACONV.

The following simplification rules have been deleted: MINAP,
MINFN, DEFCONV, CONDCONV, CONDTRCONV, UPCONV, DOWNCONV, SELCONV,

-283-

PAIRCONV, ISCONV, QUTCONV, INCONV
Tactics

The standard LCF tactics CASESTAC, CONDCASESTAC, INDUCTAC and
INDUCOCCSTAC have been deleted, leaving GENTAC, SUBSTAC,
SUBSOCCSTAC, SIMPTAC and all tactics provided by the Clear theorem

prover.

The

~284-

APPENDIX FOUR
PROOF OF SOUNDNESS OF THE THEOREM PROVER

following results imply the soundness of the theorem prover

described in chapter VI; see section VI.3 for definitions and

motivation.

Notation: If A is a J-algebra, X is a set and f:X—>|A|, then
f#:wz(X)—éA is the unique homomorphism extending f.

Satisfaction Lemma: If o :3->3' is a signature morphism, f is a

3-formula and A' is a J'-algebra, then A'fFo(f) iff A' g'f:f,

Proof (Satisfaction Lemma): By structural inductien.

Case

1: £ is TRUTH

trivial since o (TRUTH)=TRUTH for any o and AETRUTH for any A
Case 2: f is t=t!

o
1=
&L

L=

Case

Lol
o
o
1~

Case 4: f is f' IMP f"; we know A'fo(f')<OA"

¢o0 0000

A'Eo(tzt?)

A'Eo(t)=o(t")

Yk:FV(o(t)Ua(t))— At], A';:k (o(0)) =k¥(o(t1))

Yh: FV(t)UFV(t')-—)IA'th zr Ehf(t)=n¥(tr)
(by the proof of t Satisfaction Lemma for equations;
see [Burstall and Goguen 1980])

A'|2f:t=t'

3: f 1s f' & f"; we know A'pc(f')QA'lzl:f'
and similarly for f"
A'Eo(f' & £")
A'Fo(f') & o(f™)
A'Eo(f') and A'[Eo(f")
A'Iz;:f' and A'Iz;:f" (by the inductive assumptions)
A'IE':f' & "

sFf
and similarly for f" =
A'Eo(f' IMP ")
A'Eo(f') IMP o (f")
Yk:FV(o(£1))UFV(a(£"))—>|ar]. A'Fk#(c(f')) > k(o))
VYK:FV(o(£f'))UFV(o ("))—->|A'| A'Fk Fo(er)):A';:k#(c(f"))
Vh:FV(f')UFV(f")-—)IA'I . A'I f:h ey A" f:h#(f"

(by the inductiﬁé assumptions)
Vh:FV(f')UFV(f")-—)lA'Iz Iz{:h#(f') > nf(m)
A'lz':f' IMP £ -

~285-

Case 5: f is !x.f'; we know A'Fo-(f')CDA"zFf"
A'Fo(lx.f'") -
<& A'Eo(f') (assuming Ag is nonempty, where x is of sort s;
otherwise A'fo(!1x.f') & A"z}:!x.f" vacuously)
& A'lEFf' (by the inductive assumption)
& A 3ELx.L

*
Theorem: For any E-agglomerate A, FOIt(A)D<ETAD *, where
T:E-agglomerate—F-agglomerate is the following translation

function:

union(A,A') > union(T(A),T(A'))
T . e
close(E,C) ™ close(eqn-to-form*E U induction-rules#*C)

Proof: By structural induction,
Case 1: A is close(E,C)

For any model M,

MFE © M[eqn-to~-form*E
and MES*D M[:indt:ction-rules'c .

so (EUC) = (EUC) @ (eqn-to-form*E U induction-rules#C)

hence (eqn-to-form*E U induction-rules*C)** < E_U_C*"'

so FIv(A)] « ECAD™*
Case 2: A is translate(c,A'); we know F(IT(A')Is IE[[A'II""
-_T[[T(translate(cr.l\'))ll
F(Qtranslate(o,T(A'))]
o(FIraA")IH*

so-(IE[[A'I]*"')"'"' (by the inductive assumption)

= c(IE[[A'I])"" (by the Satisfaction Lemma; for any E,

c(E"™)* = o7 E™Y) = o~V EY = @)

= Eltranslate(c,A')D"* .
Case 3: A is inv-translate(o,A'); we know FOT(A')I<EQA'D *
F(Iv(inv-translate(o,A'))]
Flinv-translate(oc,T(A'))]
o N(FrTan) D)
5_0"1(IE[[A'1]*"') (by the inductive assumption)
o~ V(Era'D)** (by the Satisfaction Lemma; for any closed E,

-1, #s LI oRE, AP LIS S ,
o*(E)=0'(E)*=0'(E) =g (E)" =0 (EYT)

Elinv-translate(c, AN D "

-286-

Case U4: A is union(A',A"); we know]F[['t'(l\')]]EJI-Z[I:A']]”+
and FIT(AM)DeELA"]"™*

FIt(union(A',A"))]
Flunion(T(A'),t(Am)) I
(FIv(AY)IUFIr(AamIH*
(ETA'D"*UEIA"T™H)** (by the inductive assumption)
(ELA'TUELA"D) ™ .

(because (ETA'IUELA"]) satisfies ELA'I™* and ECa"1*)
EQunion(A',AMT"*
Case 5: A is add-equality(c,A'); we know FIT(A')TI < ErA'T™
FIv(add-equality(c,A'))]
F[add-equality(o,T(A"))]
]F[IT(A')]]S (for appropriate S)

= ECA'D *S (by the inductive assumption)

= ELA'DS**

=]l-:[[add--equalit‘.y(c'.A')]]“+
This theorem says that the F semantics is consistent with the E

s
13

H

Semantics, so any fact provable using inference rules which are
sound with respect to the IF semantics will be valid.

	PhD coversheet April 2012
	EDI-INF-PHD-82-009.pdf

