

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

• This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

• The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

SEMANTICS, IMPLEMENTATION AND PRAGMATICS OF CLEAR,

A PROGRAM SPECIFICATION LANGUAGE

by

Donald Theodore Sannella

Doctor of Philosophy

University of Edinburgh

1982

-I-

ABSTRACT

Specifications are necessary for communicating decisions and

intentions and for documenting results at many stages of the program
development process. Informal specifications are typically used
today, but they are imprecise and often ambiguous. Formal
specifications are precise and exact but are more difficult to write
and understand. We present work aimed toward enabling the practical
use of formal specifications in program development, concentrating
on the Clear language for structured algebraic specification.

Two different but equivalent denotational semantics for Clear are
given. One is a version of a semantics due to Burstall and Goguen

with a few corrections, in which the category-theoretic notion of a

colimit is used to define Clear's structuring operations
independently of the underlying 'institution' (logical formalism).
The other semantics defines the same operations by means of
straightforward set-theoretic constructions; it is not institution-
independent but it can be modified to handle all institutions of
apparent interest.

Both versions of the semantics have been implemented. The set-
theoretic implementation is by far the more useful of the two, and

includes a parser and typechecker. An implementation is useful for
detecting syntax and type errors in specifications, and can be used
as a front end for systems which manipulate specifications. Several
large specifications which have been processed by the set-theoretic
implementation are presented.

A semi-automatic theorem prover for Clear built on top of the
Edinburgh LCF system is described. It takes advantage of the
structure of Clear specifications to restrict the available
information to that which seems relevant to proving the theorem at
hand. If the system is unable to prove a theorem automatically the
user can attempt the proof interactively using the high-level
primitives and inference rules provided.

We lay a theoretical foundation for the use of Clear in
systematic program development by investigating a new notion of the
implementation of a specification by a lower-level specification.
This notion extends to handle parameterised specifications. We show

that this implementation relation is transitive and commutes with
Clear's structuring operations under certain conditions. This means

that a large specification can be refined to a program in a gradual
and modular fashion, where the correctness of the individual
refinements guarantees the correctness of the resulting program.

-2-

CONTENTS

Abstract

Contents

Acknowledgements

Introduction

1

2

4

5

I. Clear and Hope 13
1. Clear 15

1.1. Theories and their models 15

1.2. Theory-building operations 17

1.3. Error theories and more 24
1.4. An example 26
1.5. Comparison with other approaches 28

2. HOPE 37

II. Prerequisites -- Basic concepts and notation
1. Signatures
2. Algebras
3. Equations
4. Simple theories
5. Data constraints and data theories

39
41

41
42
43
45

III. A set-theoretic semantics of Clear 51

1. Dealing with shared subtheories 53
2. Semantic operations 58

2.1. Combine 58
2.2. Enrich 59

2.3. Data enrich 59

2.4. Derive 61

2.5. Apply 62

2.6. Copy 67

3. Metatheories 69
4. Semantic equations 74

4.1. Dictionaries 74
4.2. Level I: Sorts, operators, terms 75

4.3. Level IIa: Enrichments 76
4.4. Level IIb: Signature changes 78
4.5. Environments 79
4.6. Level III: Theory building operations 81

5. A 'nonprolific' semantics 84
6. A generalisation 88

IV. An implementation of Clear and some specification examples 92
1. Implementation 94
2. Examples 103

2.1. Length of the longest upsequence 103
2.2. Lexical analysis problem 105

2.3. Polymorphic type checking 107

-3-

V. A category-theoretic semantics of Clear and its implementation 121
1. Computing colimits 124
2. Signatures, institutions, theories and based objects 133
3. Semantic operations 143

3.1. Combine 143
3.2. Enrich 143
3.3. Derive 144
3.4. Apply 146
3.5. Copy 148
3.6. Data 149
3.7. Enrichment 150
3.8. Add equality 152

4. Semantic equations 154
4.1. Dictionaries 154
4.2. Level I: Sorts, operators, terms 155
4.3. Level IIa: Enrichments 157
4.4. Level IIb: Signature changes 160
4.5. Environments 160
4.6. Level III: Theory-building operations 165

5. Implementation 169

VI. Proving theorems in Clear theories
1. Edinburgh LCF
2. The theorem prover
3. Inference rules
4. Tactics and strategies
5. Incompleteness
6. Implementation and an example
7. Possible improvements

172
175
177
180
189
201
203
210

VII. Implementation of specifications and program development 212
1. Clear with hierarchy constraints 214
2. A notion of implementation 219
3. Examples 229
4. Horizontal and vertical composition 233

Conclusion 248

References 254

Appendix I. HOPE 262
1. Data declarations 262
2. Expressions 263
3. Defining functions 265
4. Modules 267
5. An example 267
6. Advantages and disadvantages 270
7. Implementation 272

Appendix II. Library of basic specifications 275

Appendix III. Subset of PPLAMBDA used by the theorem prover 281

Appendix IV. Proof of soundness of the theorem prover 284

-4-

Acknowledgements

I would like most of all to express my gratitude to my supervisor

Rod Burstall for many inspiring talks, some gentle prodding,

constant guidance and encouragement, and for patiently reading

multiple drafts of this thesis. I am also grateful to Robin Milner

for acting as supervisor when Rod was away.

My thanks to David Rydeheard for category-theoretic expertise

(both electronic and otherwise) and collaboration, to Alan Mycroft

for help with the stubborn DEC-10, to Martin Wirsing for mighty

efforts in the course of our work on implementations and generous

hospitality, to David MacQueen for the HOPE system, to all of the

above and Luca Cardelli, Wei Li, Brian Monahan and Oliver Schoett

for interesting discussions and arguments, and to Monika and friends

for moral support and distraction.

This work was supported by a studentship from the University of

Edinburgh, and by the Science and Engineering Research Council.

Statement

This thesis builds upon previous work on the Clear specification

language, invented by Burstall and Goguen [1977]. The description

of HOPE in section 1.2 and appendix 1 is a revised version of

[Burstall, MacQueen and Sannella 1980]. The definitions in chapter

II and the semantic equations of section 111.4 are adapted from

[Burstall and Goguen 1980]. The semantics described in chapter V is

a corrected version of [Burstall and Goguen 1980]; the

implementation was a joint effort with David Rydeheard, building on

a improved version of a program to compute colimits due to Burstall

[1980]. Section VI.5 is abridged from [MacQueen and Sannella 1982].

Chapter VII is adapted from [Sannella and Wirsing 1982].

The remainder is my own work and this thesis was composed by

myself. Chapter II and most of chapter III have been published in a

different form as [Sannella 1981].

-5-

INTRODUCTION

Specifications play a part in every phase of program development.

The construction of a program cannot commence without some kind of
specification of what it is intended to do. Every program is
written to solve some problem, and the problem must be known before

work on the program is begun. In the course of a large programming

project specifications serve as a means of communication. Each

programmer is responsible for a certain component of the program

which may use facilities provided by several 'foreign' components.

Precise specifications of those components are required before any

program which relies on them can be written. These specifications
are produced during the design phase when a way of decomposing the

task is decided upon and the component subtasks recorded. It is
important that the specifications of the components avoid giving
away unnecessary details of the implementation. If nobody is able

to depend on the idiosyncratic features of a particular solution to
a subtask, then another solution may be easily substituted without
affecting the correctness of the program.

Once a program has been written some attempt is normally made to
check that it is correct. This check may be an informal test of the

program on a few values, or a formal proof of correctness. In any

case, some specification is needed to compare the program against; a

program is only correct with respect to some specification of its
expected behaviour. Finally, documentation is required, both for
the use of the customer and to aid the future maintenance and

modification of the program. This documentation is also a

specification of the program.

Up to now the word "specification" has been used in the broadest

possible sense. Every means of describing a program and its
behaviour is included, from informal English documentation to a

precise description in a formal specification language. Even the

text of a program itself is a specification, as is a vague idea in
the head of a programmer. Some kinds of specifications are useless

for certain purposes; for example, vague ideas are only useful if

-6-

the roles of customer, designer and programmer are all played by the

same person, and even then they are not enough for a formal proof of
correctness. The text of a program is not usually considered to be

a good specification because it is too detailed to be easily
understood and is not sufficiently abstract for some uses (e.g.
specification of the modules in a large program, as already

remarked), but a very simple and straightforward program may be

useful as a specification of an equivalent program which must be

complex in order to be efficient.

Informal specifications suffer from imprecision. This is a

serious fault because (for example) the use of a specification as

the basis of a formal proof of program correctness demands

precision, and heavy penalties can be incurred if a specification
used as a means of communication is misunderstood. Specifications
written in a formal language are necessarily precise, since the

meaning of each specification is given by the semantics of the

specification language and accordingly there is no room for
confusion. Various formal specification techniques and languages

exist; Liskov and Berzins [1977] survey those available in 1977. A

great deal of attention has recently been devoted to algebraic
methods of specification, which seem to yield specifications which

are both concise and easy to understand. Prominent in this area is
work by Guttag and his colleagues [Guttag, Horowitz and Musser 1978]

and by the ADJ group [Goguen, Thatcher and Wagner 1978], of which

the latter is the most mathematically rigorous. In this framework,

a specification consists of a signature -- a set of sorts (kinds of
data) and some operators (for constructing and manipulating data) --
together with axioms (normally equations) describing constraints on

the results produced by operators. Such a specification is called a

theory, and it describes a set of algebras (a set of data objects
for each sort, and a function on those sets for each operator),
where each algebra in the set is a model of the theory (it satisfies
the axioms). Programs can be considered to be algebras, so all
programs satisfying a theory are in its set of models.

Most workers in algebraic specification concentrate on the

specification of abstract data types, for which the method is

-.7-

particularly well suited. Although an algebraic specification could

be written for a large system, such a theory would be impossible to

understand because it would contain so many axioms. The value of a

specification depends on the ease with which it was written and can

be understood; a large number of pages full of axioms are not of

much use to anybody.

The Clear specification language was invented by Burstall and

Goguen [1977] to combat just this problem. Clear is a language for

writing structured algebraic specifications; that is, it provides

facilities for combining small theories in various ways to make

large theories. With a tool such as this, the specification of a

large real-world system can be built from small, easy to understand

and (in many cases) reusable bits.

An obvious way to combine theories is to simply add them

together, giving a theory which includes the sorts, operators and

axioms of each component. Clear also provides a facility for

parameterising a theory to give a theory procedure, which can be

applied to various different theories to produce new theories which

have been systematically enriched in some way. A typical example is

a parameterised theory of sorting, which would produce a theory of

sorting lists of numbers if applied to the theory of natural numbers

together with the usual < order relation. An operation called data

can be applied when adding new sorts and operators to a theory; this

constrains the set of models to a small number of 'best' ones.

Finally, some of the operators and sorts of a theory can be 'hidden'

to yield a less elaborate theory. Clear is described in detail in

chapter I.

With an intuitive understanding of Clear it is possible to begin

to write structured specifications which can be used in the

development of programs. Clear should be better than most

specification languages for this purpose because specifications have

structure, and the structure of a program will normally be similar

to the structure of the specification from which it was developed.

But in order to rigorously prove that a program implements a Clear

specification or to build a system incorporating Clear to aid in any

phase of program development, it is necessary to have a formal

-8-

semantics which gives the precise meaning of any Clear specification

(i.e. the theory described by the specification). A language which

has a formal syntax but no semantics gives an illusion of precision

but none of its benefits.

A formal semantics of Clear is given in chapter III, following

definitions of the underlying mathematical entities in chapter II.

This semantics defines the meanings of Clear's theory-building

operations using simple set-theoretic constructions. A denotational

semantics is then used to attach a syntax to these operations and to
provide for an environment of named theories. An earlier semantics

given by Burstall and Goguen [19803 relies heavily on a number of
ideas from category theory to define the meanings of Clear's theory-

building operations. This semantics is described in chapter V; this

is the only chapter which requires any knowledge of category theory,

and it is not necessary for the sequel.

Why is it necessary to give two separate versions of the

semantics? Surely one version is sufficient to define the meaning

of Clear. The answer is that although both versions of the

semantics are equivalent, each has its advantages over the other.

The category-theoretic semantics was developed at the same time as

the Clear language itself. The requirement that new features be

expressed using simple concepts of category theory acted as a

powerful filter for ideas, screening out some bad ideas and

suggesting non-obvious generalisations of others. Moreover, the

category-theoretic definitions are very elegant to those who

understand them. The advantage of the set-theoretic semantics is

that it is concrete and easy to understand, and is therefore more

useful for practical applications. The category-theoretic semantics

abstracts away from any particular definitions of the fundamental

elements of Clear (signatures, axioms and models) using the notion

of an institution, defining all at once the semantics of a large

class of Clear-like languages. But at the end of chapter III it is

shown that the set-theoretic semantics appears to be capable of

straightforward modifications to cover all cases of interest.

An important step on the way to the practical use of formal

specifications in program development is an implementation of the

g

specification language. But what does it mean to implement a

specification language? It is helpful to first consider the

relation of semantics to implementation in a more familiar context,
that of a programming language.

The denotational semantics of a programming language describes a

mapping between the syntax of the language (expressions, statements,

programs) and the mathematical objects they represent. In a typical
language, an expression maps to a function from states to numbers

(or to lists, or to some other domain of values); a statement maps

to a state-transforming function; and a program maps to a function
taking (for example) an input file to an output file. The

denotation of a program tells what the answer will be for any input.
The implementation of a programming language transforms a string of
characters representing a program into the function denoted by that
program.

The denotation of a Clear specification is a theory. This is
still only a specification; it specifies a set of algebras. The

transformation from a character string (representing a

specification) to a theory is complex but mechanical. This is what

an implementation of Clear does. Going from a theory to a model is
a much more formidable task -- this is the problem of program

synthesis.

It is easy to make mistakes when writing specifications in Clear

or in any other specification language, just as it is easy to make

errors when writing programs. An implementation of Clear -- a

parser together with an implementation of (a version of) the

semantics and a typechecker -- could be used to check specifications
for syntactic and semantic errors. Such an implementation could

also act as a front end to any system which requires specifications
as input (such as a program verification system). An implementation

of Clear using the set-theoretic version of its semantics is
discussed in chapter IV along with some specifications it has been

used to process. An implementation of the category-theoretic
semantics (without parser or typechecker) is discussed in chapter V.

A comparison of these implementations exposes another advantage of
the set-theoretic semantics -- its implementation is by far the

faster of the two.

A practical implementation of Clear opens the door for systems to
aid program development using Clear specifications. Already

mentioned was the possibility of a system for verifying programs;

another possibility is a high-level programming system like the one

envisioned by Winograd 11979], which is essentially a sophisticated
database containing the components of a large software project and

their specifications. A handy facility to begin with (and an

essential prerequisite for the construction of almost any system

making serious use of specifications) would be a system for proving
that a theorem follows from the axioms of a theory. A theorem

prover is in fact required by the Clear implementation to check the

semantic validity of specifications. In chapter VI a semi-automatic

theorem prover for Clear is described. This system takes advantage

of the structure of Clear specifications to restrict the information
available at any time (axioms and previously proved theorems) to
that which is relevant to the theorem at hand. This is an important

feature, for theorem provers easily get irretrievably bogged down in
exploring the large number of blind alleys made available by an

overabundance of (mostly irrelevant) information.

Some Clear specifications are actually executable; a sufficient
condition is that all data be anarchic (no axioms on data

'constructors') and that the axioms which define other operators be

equations with simple left-hand sides, enabling their use as rewrite
rules. This executable sublanguage is in fact HOPE [Burstall,
MacQueen and Sannella 1980], with slightly different notation
(except that HOPE has no equivalent to Clear's theory procedures).
Call specifications of this kind programs. Now, a program can be

evolved from a specification entirely in Clear by repeatedly
rewriting (refining) the theories in the specification until the

entire specification is in the executable sublanguage. This will
normally involve the introduction of auxiliary functions, particular
data representations and so on. This approach to program

development is related to the well-known programming discipline of
stepwise refinement advocated by Wirth [1971] and Dijkstra [1972] in

-1 1-

which the specifications are nonexecutable 'abstract programs'. In
chapter VII a theoretical foundation is laid for the use of Clear in
systematic program development. An adequate notion of the

implementation of one theory by another 'lower level' theory is
first established; a refinement-is only correct if the new theory is
an implementation of the old. Unlike most previous notions, this
generalises to handle parameterised theories as well as loose

theories (having an assortment of different models). It is then

shown that implementations of several theories can be put together

in the same way as the theories themselves are put together, the

result being an implementation of the composite theory. This allows
a large specification to be refined in a modular fashion, one theory
at a time.

Systems have been constructed which support systematic program

development in a manner similar to that just discussed. Examples

are ZAP [Feather 1982] and CIP [Bauer et al 1981]. In these systems

the programmer provides the insight, deciding which direction the

development will take, while the system performs the routine
clerical work and checks that the programmer's decisions are valid.
Fully automatic program synthesis is also possible (for small

examples) as demonstrated by Manna and Waldinger [1980,1981]. A

feature of each of these systems is that the finished program is
guaranteed to satisfy the original specification, since the system

checks every step in its development. A similar but more ambitious
system called CAT [Goguen and Burstall 1980] has been proposed to
support systematic program development using Clear. The results in
chapter VII are a first step toward the implementation of CAT.

It remains to be seen if writing a specification and carefully
refining it step by step to a program is easier than simply writing
a correct program in the first place. However, construction of
correct programs is well-known to be a very difficult endeavor. And

although some have claimed that writing specifications is more

difficult than writing programs, experience with Clear indicates
that the main barrier to easy specification is the computer

scientist's natural inclination towards algorithms rather than

descriptions. Precision and formality are crucial (as in a

-12-

programming language) but the most important feature of a

specification language like Clear is that it permits problems to be

described in a natural way.

-13-

CHAPTER ONE

CLEAR AND HOPE

This chapter is devoted to a brief review of Clear and HOPE, two

languages which figure greatly in the research reported in
subsequent chapters. Although they have been discussed in more

detail elsewhere, an outline of their features is given here in
order to make this work self-contained.

Clear is a specification language which is particularly suitable
for specifying large programs. It provides facilities for building
large theories in a structured fashion from small bits.
Constructing and understanding large specifications is made much

easier by this approach, since the small component theories may be

contemplated in isolation. A brief discussion of theories and their
models in section 1.1 is followed by an informal presentation of the

theory-building operations of Clear. The formal semantics of these

operations will be given in later chapters. An important feature of
Clear is that the definitions of the theory-building operations are

independent of the precise nature of the theories themselves; any

notion of signature, axiom, algebra and satisfaction will do

(provided they meet certain basic requirements). In section 1.3

examples of some different and possibly useful kinds of theories are

given. This is followed by an example of a small but complete Clear

specification in section 1.4. Finally, Clear is compared briefly
with some other specification approaches.

HOPE is a very high-level applicative programming language which

was used as an implementation tool for most of the programs

described here. It has the advantage of being sufficiently close to
the language of denotational semantics that semantic definitions can

be quickly and easily translated into an executable form. This fact
enabled the construction of the programs discussed in chapters IV

and V. Although HOPE is not so close to the language of some other
branches of mathematics, it contains high-level features which

permit the relatively painless expression of definitions and

constructions from category theory as described by Burstall [19801

-14-

and Rydeheard [1981]; this provides the foundation for the program

in chapter V. HOPE is not so different from ML (see (Gordon, Milner

and Wadsworth 1979]).

HOPE (without polymorphism) can be considered as a notational
variant of a subset of Clear. This is very convenient for the work

on stepwise implementation of specifications in chapter VII. A

refinement step takes a Clear specification to a 'lower level' Clear

specification, with a HOPE program as the eventual goal. Thus the

problem of translation into the target language can be neatly
ignored, and full attention can be devoted to the more interesting
problems of developing programs from specifications:

A third section of this chapter might have been devoted to a

brief description of Edinburgh LCF, an interactive theorem-proving

system upon which the Clear theorem prover described in chapter VI

is built. But since the remaining chapters are entirely independent

of LCF, the description has been relegated to the beginning of that
chapter.

-15-

1. Clear

This is a brief and non-technical account of Clear as a

specification language. It is intended to give the reader an idea

of nearly all the features of Clear and to convince him with an

example that the language can be put to use. The utility of

specification languages in general and the advantages of Clear over

other specification languages have already been detailed in the

introduction. More detailed informal descriptions of Clear appear

in [Burstall and Goguen 1977] and [Burstall and Goguen 1981]; see

also chapter IV for a few more examples.

1.1. Theories and their models

Clear is a language for describing theories; in turn, each theory

describes (or denotes) a class of algebras. A theory is a set of
sorts (names of data types), a set of (possibly nullary) aerators

for constructing and manipulating data, and a set of axioms (in the

form of equations) describing constraints on the results produced by

operators. The sorts and operators alone are called the signature.
For example, here is a theory of truth values:

const Bool =

theory
sorts bool
opns true, false : bool

not : bool -> bool
egns not(true) = false

not(not(p)) = p endth

The equations are implicitly universally quantified over all
variables; the equations here would be more properly written

all p:bool. not(not(p)) = p

and so on. The examples in the sequel will leave variable
declarations out of equations in the understanding that they could

easily be supplied by a mechanical typechecker.

An algebra is a family of named carriers (sets of data values)

and some named total functions on those carriers. An algebra is a

model of a theory if it satisfies all the equations in the theory

-16-

for any assignment of values to variables; this is provided that the

names of the carriers and functions in the algebra match the names

in the signature of the theory, of course.

Here are some models of the theory Bool:

M bootz(0,1); true=1; false=0; not(0)=1, not(1)=0
M1 boot={no,yes}; true=no; false=yes; not(no)=yes, not(yes)=no
M3 boot={42}; true=42; false=42; not(42)=42

But something is wrong; we do not want M3 to be a model for Bool,

yet it does satisfy all the necessary equations. We need some way

of excluding models like M3.

The problem with M3 is that it satisfies too many equations,
including ones like true = false which are not in Bool. We really
want as models of Bool only those algebras which satisfy exactly the

equations of Bool (and all of the equations which these entail), and

no others. In addition, we want each element in the carrier to be

the value of some (ground) term; this avoids models with useless

extra elements. We can rewrite Bool to indicate that this is the

class of models we want, using Clear's data operation:

const Bool =

theory
data sorts bool

opns true, false : bool
not : bool -> bool

egns not(true) = false
not(not(p)) = p endth

The new Bool has the class of models we want (including M1 and

M2, but not M3). These are called the initial models, and they have

the property that any two initial models are the same up to

isomorphism (i.e. except for renaming of data values -- compare M1

and M2). As pointed out by ADJ in [Goguen, Thatcher and Wagner

19781, the notion of an isomorphism class of algebras captures

precisely the meaning of the word "abstract" in "abstract data type"

-- we are not committed to any particular representation of data,

but only to the behaviour shared by all members of the class.
Furthermore, the isomorphism class containing the initial models of
a theory seems to be the one we want, although this position is not

-17--

universally accepted (see for example [Wand 19797).

Initial models seem so great that it may be hard to think of an

example where the full class of models is appropriate. But such

theories do exist; see Equiv in the next section, for example.

Since sometimes we want all models and sometimes we want only

initial models, the data operation is provided to allow the two

cases to be distinguished. See section 11.5 for a more detailed

discussion of this aspect of Clear.

The data operation does a little bit more than specify that we

want the class of initial models. It also adds an extra operator,
an equality predicate ==:s,s->bool for each 'data' sort s. For any

pair of terms p and q, p:=q = true if and only if p = q is entailed
by the equations (i.e. it holds for the initial models). Note that
the data operation can therefore only be used in theories which

include Bool, but this is not really much of a restriction.

1.2. Theory-building operations

Bool and its models (in the last section) were easy to
understand, and similar little theories like natural numbers, sets

of numbers, and stacks and arrays of truth values present no

difficulties. But what about a theory to specify a compiler for a

programming language like Pascal? This would have many sorts,
hundreds of operators and perhaps a thousand axioms.

Clear provides a set of simple theory-building operations which

allow a large theory like this to be built out of many small and

comprehensible component theories. For example, the theory of a

compiler for Pascal might be built from separate theories of the
semantics of Pascal and the semantics of the target machine:

const Pascal_compiler
enrich Pascal-semantics + VAX-semantics by

opns compile : pascal_program -> VAX program
eons VAX meaning(compile(p)) = pascal meaning(p) enden

The theories Pascal semantics and VAX semantics are in turn built
separately from many smaller theories. But the difficulty of
understanding the specification has already been roughly halved by

-18-

this simple decomposition, since Pascal semantics may be constructed
and contemplated entirely independently of VAX semantics (although

they will share some common subtheories like Bool and Nat).

Enrich

A theory can be enriched by some new sorts, operators and/or

axioms. The new material is just added to the existing theory. For

example, we could add some boolean operators to Bool:

const Boolopns =

enrich Bool
opns and, or, -> : bool,bool -> bool
e ns p and true = p

p and false = false
p or true = true
p or false = p

p -> q = not(p and not(q)) enden

Or, we could add natural numbers:

const Nat =

enrich Bool
data sorts nat

opns 0 : nat
succ : nat -> nat
+ : nat,nat -> nat

egns0+m=m
succ(n) + m = succ(n + m) enden

Note that infixed operators like or and + are allowed. Also note

that names (like Bool, Boolopns and Nat) can be given to theories
using the notation const Name = ... (const means constant). For

local declarations the syntax let Name = ... in ... is used (see the

example in section 1.4).

The data operation is associated with an enrichment as in Nat

above and not just with a theory. In fact, data does not in general

restrict to initial models but to models which are free extensions

of the models of the theory being enriched; see section 11-5 for

details. Observe that
theory ... endth

as used in the last section is equivalent to

enrich Empty ... enden

-19-

where Empty is the theory with no sorts or operators.

Here is an example of a theory in which we do not want to use

data:

const Equiv =

enrich Boolopns
sorts element
opns a : element,element -> bool
egns m m = true

mm n n a m

man and n p --> m p = true enden

If we use data for this enrichment then we get only trivial models

(apart from the portion associated with the sort and operators of
Boolopns); the carrier associated with the sort element is empty,

because there are no ground terms of sort element. But this is not

because the specification is silly; it is just not very specific.
It is intended to specify the set of algebras with one sort and an

equivalence relation. Equiv is called a loose theory, since its
models do not form an isomorphism class. It is also called a

non-data theory because it contains a sort which was added in a

non-data enrichment.

It is important to distinguish between the very similar notions

of loose and non-data theories. Non-data implies loose (except in
the case of a theory which is unsatisfiable or has only trivial
models) but not vice versa. Here is a theory which is loose but is
not non-data:

const Natx =

enrich Natord
opns x : nat
egns x < 2 = true enden

(Natord is Nat with an order relation, as given below.) This is a

simple example of the way that Clear can be used to write
specifications which are purposefully vague so as to allow some

freedom to the implementor.

Combine

The combination of two theories is (roughly speaking) just the

-20-

union of the sorts, operators and axioms. For example, the

combination of Boolopns and Nat (written Boolopns + Nat) has the

following sorts, operators and axioms:

sorts bool, nat
o ns true, false : bool

not : bool -> bool
and, or, --> : bool,bool -> bool
0 : nat
succ : nat -> nat
+ : nat,nat -> nat

e ns not(true) = false

Note that we get only one copy of the sorts and operators of Bool,

although Bool is included in both Boolopns and Nat (Bool is called a

shared subtheory in this case). This is important; wee do not want

several kinds of truth values rattling around in a large

specification (or several kinds of anything else, for that matter).

But different (separately defined) operators with the same names are

not combined; for example, if we add an operator 'and' to Nat

const Nat1 =

enrich Nat
opns and : nat,nat -> nat
egns n and m = n + m enden

then Boolopns + Nat1 will have two operators called and (and even

Boolopns + Nat will have two == operators). If there are two sorts
or operators with the same name there should be a way of
distinguishing between them (although a typechecker can often
determine the appropriate one); for this Clear provides the notation
"== of Nat".

Derive

The derive operation is used to 'forget' some of the sorts and

operators of a theory, possibly renaming those which remain. While

enrich and combine build elaborate theories from simple components,

derive takes a complex theory and reduces it to a more modest

subtheory. This turns out to be necessary in cases where it is
easier to define something by construction than by description; the

construction is built using enrich and combine, and then the

-21-

irrelevant details can be forgotten using derive.

For example, suppose we have a theory of natural numbers with an

order relation:

const Natord =

enrich Nat
opns < : nat,nat -> bool
egns 0 < m = true

succ(n) < 0 = false
succ(n) < succ(m) = n < m enden

Then we can use this to construct a theory of characters with the

usual lexical ordering:

const Char =

derive sorts char
opns 'A', ..., 'Z' : char

<, char,char -> bool
using Bool
from Natord
by char is nat,

'A' is 0,

'Z' is 25 endde

Char inherits the order on numbers and the data equality, but the

operators succ and + are forgotten, as well as all numbers greater
than 25. Bool is a shared subtheory of Char and Natord. The

correspondence between the signature of the result and the signature
of the original theory is given by a signature morphism:

char is nat, 'A' is 0, ... (This example assumes that the numbers

1-25 have been defined as operators in Natord; these definitions
were omitted above but they are easy to add.) Sorts and operators
which have the same name in both signatures may be omitted (< and

in this case).

It is very convenient to be able to specify an order relation on

characters in this way; a direct specification would require
hundreds of axioms. In some cases a direct specification is not

even possible without 'hidden' operators (see [Thatcher, Wagner and

Wright 1978] for an example).

--22-

Apply

In Clear procedures can be defined and applied, just as in a

programming language (actually, more like functions in a programming

language). But since Clear is a language for describing theories,

the arguments and result of a procedure are theories.

Here is an example of a theory procedure (usually called a

Rarameterised theory):

meta Ident =

enrich Boolopns
sorts element
opns eq : element,element -> bool
egns eq(n,n) = true

eq(n,m) = eq(m,n)
eq(n,m) and eq(m,p) --> eq(n,p) = true enden

roc Set(X:Ident)
let SetO =

enrich X
data sorts set

opns 0 : set
singleton : element -> set
U : set,set -> set

e ns 0 U S S

S U S = S

SUTTUS
SU (TUV) _ (SUT) UV enden in

enrich SetO
opns is in : element,set -> bool

choose : set -> element
egns a is in 0 = false

a is in singleton(b) = eq(a,b)
a is_in S U T= a is-in S or a is-in T
choose(singleton(a) U S) is-in (singleton(a) U S) = true

enden

Ident is a metatheory; it describes a class of theories rather
than a class of algebras. Ident describes those theories having at

least one sort together with an operator which satisfies the laws

for an equivalence relation on that sort. A metatheory will
ordinarily be a non-data theory (as is Ident).

Ident is used to give the 'type' of the parameter for the

procedure Set. The idea is that Set can be applied to any theory

which matches Ident. Ident is called the metasort or requirement of

-23-

Set. The declaration of Set can use the formal parameter X and the

sorts and operators of Ident. When Set is supplied with an

appropriate actual parameter theory, it gives the theory of sets
over the sort which matches element in Ident. For example

Set(Boolopns[element is bool, eq is =_])

gives the theory of sets of truth values and

Set(Nat[element is nat, eq is =_])

gives the theory of sets of natural numbers. Notice that a

signature morphism (called the fitting morphism) must be provided to
match the signature of Ident with the signature of the actual
parameter. Of course, procedures may have more than one parameter

if desired.

Metatheories are subtly different from ordinary constant

theories; see section 111.3 for details. Pragmatically, the

difference is unimportant as long as metatheories are always used

for giving the requirements of theory procedures, and for no other
purpose.

Note that for any actual parameter A and fitting morphism e,

Set(A[P]) will be a loose theory, even when A is not itself a loose

theory. The choose operator is loosely specified as selecting an

arbitra4y element from a non-empty set. This is not allowed by most

other notions of parameterised theory (see section 1.5).

Copy

Clear provides an operation called copy which makes a fresh copy

of a theory with the exception of a specified set of subtheories
(which are left as they are).

For example, here is a specification of the class of algebras

having two sorts (each with an equivalence relation) and a function
between them:

const Funct =

let CopyEquiv = copy Equiv using Boolopns in
enrich Equiv + CopyEquiv

opns f : element of Equiv -> element of CopyEquiv enden

-24-

Copy is used so that the two sorts named element and the two

operators will remain distinct in the combined theory

Equiv + CopyEquiv. But there is only one sort named bool in the

result because of the using clause. The same result could be

accomplished by explicitly writing out the definition of Equiv

again; copy simply saves the trouble.

1.3. Error theories and more

Sometimes when specifying the action of an operator we find
values for which it should not yield a result but instead should

return some kind of error. Division by zero is an example. It is
not sufficient to just leave cases like this unspecified; if a

division by zero is attempted, we want an error message and not just
any old result. We can extend the notion of theory given in section
1.1 to allow specification of errors; the new theories are called
error theories. Details of this approach are given by Goguen

[19781.

The idea is to add error elements to each sort which behave

differently from the ordinary (OK) elements. Error elements are

produced by error operators, and also by OK operators when applied

to exceptional arguments. We add error equations to specify how

errors are generated and manipulated.

Here is an example -- a specification of lists:

meta Triv =

theory sorts element endth

proc List(X:Triv) _

enrich X + Bool
data sorts list

opns nil : list
cons : element,list -> list
hd : list -> element
tl : list -> list

erroropns nohead : element
notail : list

egns hd(cons(a,l)) = a
tl(cons(a,l)) = 1

erroregns hd(nil) = nohead
tl(nil) = notail enden

-25-

The models of such a theory are error algebras, in which each

carrier contains distinguished error elements as well as OK

elements. To be a model it need not satisfy all the equations for
all variable assignments; it need only satisfy the OK equations for
assignments in which both sides of the equation evaluate to an OK

element, and the error equations for assignments in which either
side evaluates to an error element. Furthermore, error algebras are

restricted so as to propagate errors; that is, error operators

always produce error elements, and OK operators applied to error
elements produce error elements.

Another way we could extend the notion of theory is to add

conditional equations, such as

put(i,v,a)[j] = v if i==j

put(i,v,a)[j] = a[j] if not(i==j)

to specify indexing on arrays (see [Thatcher, Wagner and Wright

1976]). We could regard

a = b if c

as an abbreviation for
cond(c,a,b) = b

where cond : bool,s,s -> s is defined for each sort s by

cond(true,m,n) = m

cond(false,m,n) = n

But this means that all theories will contain a lot of extra
operators, which is untidy.

Another way would be to simply extend theories to include
conditional equations, calling the result a conditional theory. The

notion of satisfaction would have to be changed slightly to deal

with conditional equations.

Two ways of extending Clear have been mentioned. For error
theories we defined a new kind of signature (with sorts, OK

operators and error operators); a new notion of axiom (OK equations

and error equations); a new kind of algebra (error algebras, with
error elements); and a new notion of satisfaction. For conditional
theories we only needed to define a new kind of axiom and a new

notion of satisfaction; the signatures and algebras remain the same.

-26-

It is possible to define the theory-building operations of
section 1.2 without reference to any particular notions of
signature, signature morphism, axiom, algebra or satisfaction. This

approach was taken in [Burstall and Goguen 19801, and is explained

less formally in [Burstall and Goguen 19811. Any choice for these

five notions is appropriate as long as a few conditions hold.

Briefly and very roughly, it must be possible to 'put together'
signatures (the category of signatures and their morphisms must be

cocomplete) and the various definitions must satisfy certain natural
consistency conditions. Any such choice of notions is called an

institution (or sometimes a language) and gives rise to a

specification language like the one described in sections 1.1 and

1.2. The precise syntax of the language must be defined anew for
each institution, since arbitrary signatures and axioms will not fit
into the notation used above. For the data operation to work

something more than an institution is needed; an enrichment must

give rise to free extensions for the models of the enriched theory.
Call an institution with this extra property a data institution
(Goguen and Burstall [1980a] call this a liberal institution).

So Clear is not a specific language but instead a large family of
languages (although references to Clear in the sequel will usually
be to the particular language described in the last two sections --
this will be called ordinary Clear, or simply Clear). We are free
to use 'error Clear' or 'conditional Clear' once we verify that our

definitions describe a data institution. Other possibilities are:

polymorphic Clear (section 111.6), higher-order Clear (see [Dybjer

1981]), continuous Clear (see [Goguen, Thatcher, Wagner and Wright

1977]), order-sorted Clear (see [Goguen 1978a]) and predicate-
calculus Clear (see [Burstall and Goguen 1981]).

1.4. An example

Here is a Clear specification (from scratch) of a larger and more

interesting example than those which have appeared up to now. It
specifies the problem of determining if a sequence of natural
numbers is in ascending order.

-27-

const Bool =

let BoolO
theory

data sorts bool
opns true, false : bool endth in

enrich BoolO
opns not : bool -> bool

and, or, --> : bool,bool -> bool
egns not(true) = false

not(not(p)) = p

p and true = p

p and false = false
p or true = true
p or false = p

p -> q = not(p and not(q)) enden

meta Triv = theory sorts element endth

roc Sequence(X:Triv) _

enrich X + Bool
data sorts sequence

opns empty : sequence
unit : element -> sequence
. : sequence,sequence -> sequence

egns empty.s = s
s.empty = s
(s.t).v = s.(t.v) enden

meta Ident =

enrich Bool + Triv
opns a : element,element -> bool
egns maw = true

man = nam
man and nap --> map = true enden

meta POSet =

enrich Ident
opns < : element,element -> bool
egns m<m = true

m<n and n<m -> man = true
m<n and n<p -> m<p = true enden

roc Ordered(X:POSet) _

enrich Sequence(X)
opns isordered : sequence -> bool
egns isordered(empty) = true

isordered(unit(m)) = true
isordered(s.unit(m).unit(n).t) = isordered(s.unit(m))

and isordered(unit(n).t) and m<n enden

-28-

const Nat =

enrich Bool
data sorts nat

opns 0 : nat
succ : nat -> nat enden

const Natord =

enrich Nat
opns < : nat,nat -> bool
egns 0<n = true

succ(n)<0 = false
succ(n)<succ(m) = n<m enden

Ordered(Natord[element is nat, a is =_])

1.5. Comparison with other approaches

We now briefly compare Clear with a variety of other approaches

to specification. The features which set Clear apart from the

myriad of alternative approaches seem to be:

- Clear provides theory-building operations (enrich,
combine, derive, apply and copy) for constructing
specifications in a structured fashion.

- Use of the data operation yields theories containing data
constraints (section II.5), permitting loose
specifications where some details are left unspecified.
An example is the specification of sets with a choose
operator in section 1.2.

- Clear is a complete language with a precise formal
semantics.

- Clear is not dependent on any particular institution, so
the notions of axiom, algebra, etc. may be easily changed.

- The theory-building operations respect shared subtheories.

It will be instructive to keep these features in mind when comparing

Clear with the approaches described below.

Guttag, Horowitz and Musser [1978] present algebraic abstract
data type specifications in an informal way, stressing the practical

-29--

application of specifications in programming (for proofs of
correctness, program testing and program development). Guttag and

Horning [1978] give a more formal treatment oriented toward

providing guidelines for the construction of correct specifications.
They distinguish a single type of interest in any specification, in
contrast to Clear and many other approaches. Any algebra which

satisfies the axioms of a specification and is finitely generated

(every carrier element is the value of some term) with true9false is
acceptable as a model, although they seem to favour the 'final
algebra' view that two terms should have the same value unless they
are demonstrably different (see the notes on [Wand 1979] below).

The ADJ group [Goguen, Thatcher and Wagner 1978] is responsible
for the first rigorous approach to the semantics of algebraic
specifications. An equational theory specifies the isomorphism

class of its initial models. Errors are discussed, but the approach

is more primitive than that of Goguen [1978] which is adopted by

Clear.

The ADJ approach to parameterised theories has evolved from a

CLU-style view where application of a parameterised theory required
only the presence of certain sorts and operators in the actual
parameter [Goguen, Thatcher and Wagner 1978]. Starting with

[Thatcher, Wagner and Wright 1978], a parameterised theory P with

metasort theory R is seen as specifying a functor F taking any model

M of R to a single model of P (in fact, to the P-model freely

generated by M) - this is a special case of parameterised theories

in Clear, where the theory P(A) may have 'more' models than the

theory A. If M is the initial model of A, then F(M) is the initial

model of P(A) provided that P is well-behaved (i.e. persistent -
F(M) restricted to A is isomorphic to N - see section VII.4). In

the absence of data constraints, R is allowed to include conditional

axioms of the form

e1 and ... and en °>
en+1

where the ei may be equations or inequations. This work was a

significant influence on the design of Clear. Later in [Ehrig,

Kreowski, Thatcher, Wagner and Wright 1980] these were restricted to

universal Horn sentences [GrMtzer 1979] where el,...,en must be

-30-

equations, and application was defined as the pushout of R--4P with

the fitting morphism R--4A as in Clear -- see section V.3.4.

Application was generalised to allow composition of parameterised

theories (it would be easy to extend Clear to permit this).

Continuing along the same line, Ehrig [1981] permits R to contain
requirements of a general kind; anything having a well-defined set

of algebras satisfying it is allowed (this flexibility is very

reminiscent of Clear's institutional approach). Possible kinds of
requirements include functor image restrictions, a generalisation of
data constraints where any persistent functor is allowed in place of
the free functor (see [Burstall and Goguen 1980] for the category-
theoretic approach to data constraints). He suggests that this

approach to parameterised theories can be used to solve the problems

attacked by Clear of combining theories with shared subtheorie3 in
an easier way, but this remark does not seem to be justified. Ehrig

and Fey [1981] allow theories (not just parameterised theories) to
include requirements; such a theory may have an assortment of
nonisomorphic models. Such a requirements specification is seen as

a step between an informal specification and a design specification
(which does not include requirements and specifies the initial

model). Requirements in parameterised theories are still restricted
to the metasort R, and a parameterised theory is viewed as

specifying a functor taking any model of R to a model of the
parameterised theory P. This rules out specifications such as the

parameterised theory of sets with an operator choose:set->element

loosely defined to select an arbitrary element of a set (see section
1.2).

Ganzinger [1980] discusses parameterised theories from a purely

syntactic point of view (without considering models at all). The

metasort of a parameterised theory includes all primitive

subtheories (such as Bool and Nat); this is important for his notion

of implementation, and it also has the consequence that if A and P

share a common primitive subtheory T, P(A) will contain only one

copy of T (again as a primitive subtheory). This idea resembles

Clear's notion of a based theory (section III.1). All theories are

parameterised, and all parameterised theories are required to be

_31-

persistent. The example of sets with a choose function is not a

parameterised theory according to his definition of persistence.
Application of parameterised theories is defined by a construction.
The main emphasis is on proving that persistency guarantees correct
parameter passing (i.e. that A is 'protected' in P(A)).

Ehrich [1982] presents an approach to parameterised theories
building on earlier work by Ehrich and Lohberger [1978] which is
similar in many ways to that of Clear. A metasort theory R is
associated with each parameterised theory P, and a fitting morphism

from R to an actual parameter theory A is needed to produce the

application P(A) (as in Clear, this is defined using pushouts). A

theory is viewed as specifying its initial model, and consequently a

parameterised theory denotes a functor as in the ADJ approach. No

analogue to data constraints is considered (so loose specifications
are not permitted) and the problem of combining theories having

shared subtheories is not treated.

Hupbach, Kaphengst and Reichel [1980] present a specification
language and define its semantics. Theories may specify partial
functions and may include conditional equations. Canons are

theories which include initial restrictions (data constraints as we

call them) and may be loose, specifying any model satisfying the

axioms and initial restrictions. An operation like enrich is
defined (actually, two separate operations for data and non-data

enrichment) as well as a combine operation which is just union.

Identification of common sorts and operators is therefore entirely
by name, so overloading of identifiers is not permitted.
Parameterised theories are as in Clear, and application is defined
by means of a construction. The language also includes a construct
for specifying that one theory is an implementation of another (see

chapter VII).

Wand [1979] presents an alternative to ADJ's initial algebra

approach, using the framework of Lawvere theories [Lawvere 1963].

He argues that the initial model of a theory often retains too much

information. For example, consider the theory of sets of integers
with operators 0, add and is in, and the following equations:

-32-

n is in 0 = false
n is in add(n,S) = true
n is in add(m,S) = n is in S if not(n==m)

The equation add(1,add(2,0))=add(2,add(1,0)) is not satisfied in the

initial model since we have forgotten equations like
add(n.add(m,S)) = add(m,add(n,S))
add(n,add(n,S)) = add(n,S)

But even without these extra equations the two sets are

behaviourally equivalent (with respect to the sort bool); any

'computation' involving the given operators yielding a boolean value

will give the same result for both sets. This notion of behavioural

equivalence is captured by Wand's final algebra approach. In the

final algebra of a theory two terms have the same value unless they

are demonstrably different. In order for this approach to work it
is necessary to start with some primitive sort (e.g. bool) with some

values which are known to be unequal (true, false); otherwise no two

values will ever be demonstrably different in the absence of
inequations.

Another alternative to the initial algebra approach is advocated

by Lehmann and Smyth [1981] based on work by Scott [1976]. A data

type is specified by a recursive domain equation which defines an

endofunctor on a special category of complete partial orders; the

data type is regarded as the initial fixpoint of this functor. For

example, (finite) binary trees with labels from the domain A are

specified by the following equation:

BtreeA : 2 + A BtreeA BtreeA
(where 2={i,r} with i T, and a is coalesced (smash) product). A

parameterised data type is a functor as well. This approach seems

to work well for simple data types and has the advantage of
automatically extending to higher-order types, but there seems to be

no way of imposing equations on types so it is difficult to see how

to specify sets (for example).

Nakajima, Honda and Nakahara [1980] describe a language called

i (iota) for building specifications and implementing them with
programs. A theory can be either a type (Clear data theory) or a

sype (combining Clear non-data and meta theories). As the approach

is rather syntactic models are not discussed, but it seems from the

-33-

examples given that any finitely generated model satisfying the

axioms (which are in first-order logic) would be acceptable.

Specifications may include operations (returning results via
arguments) for specifying procedures, but these are viewed as

functions as well (an operation f:array (var),array,int is like the

function f:array,array,int->array). A type can be implemented by

writing a realisation as an ALGOL-like program, and a method for
proving correctness of realisations is given. A theory-building
operation which combines + and enrich is provided, and parameterised

theories are allowed as in Clear (the requirement theory is a sype).

These operations take proper account of shared subtheories, using

'tags' as in chapter III (but only operator names may be

overloaded). The notion of fitting morphism is somewhat more

restricted than in Clear (it must be an inclusion with the exception

of the name of the 'principle' sort) and building a sype by

enriching another sype is not allowed; no reason is given for either
restriction.

Bauer et al [1981] describe and give a semantics for CIP-L, a

'wide-spectrum' language including constructs suitable for
programming as well as specification. CIP-L is intended for use in
a program development system, and allows a program to be expressed

at every stage of its evolution from a specification to an efficient
program. Abstract data type specifications allow hidden sorts and

functions, partial functions and first-order axioms. Operations

similar to enrich, combine and apply in Clear are defined but name

clashes are forbidden. Parameterised types are viewed as type

schemes, and application is by textual substitution. When the

enrich operation is used, the theory being enriched is regarded as a

primitive subtheory of the result of the enrichment. Models are

required to be hierarchy preserving, meaning that all values of
primitive sorts must be generated by primitive operators. Models

must also be finitely generated and must satisfy the axioms. There

is no way to restrict consideration to the set of initial or freely
generated models, but because the axioms may include inequations and

because of the finite generation requirement this is not a problem,

although specifications tend to be longer than in Clear.

-34-

Meta-IV [Jones 1978], the meta-language of the Vienna development

method, is a notation for describing the denotational semantics of

large programming languages and systems. It has been used to

specify a subset of PL/I [Bekia et al 1974]. The abstract syntax of

the object language is described using a BNF-like notation which

provides constructors, recognisers and selectors for use in the rest
of the definition. Context conditions are then given to specify for

each syntax class which objects are well-formed. Next the semantic

domains are defined using combinators such as -4 (continuous

function). Meaning functions then provide denotations for all well-

formed objects. The meaning functions (and the context conditions)

are mutually recursive functions written in a language similar to

HOPE (section 2) but with a few nonalgorithmic constructs such as

"let var be s.t. condition". Meta-IV is not restricted to

specifying the semantics of programming languages; the abstract

syntax is merely a signature in disguise (or vice versa) and meaning

functions provide a (more constructive) substitute for equational

definitions, so specifications of abstract data types and programs

are also possible.

Abrial, Schuman and Meyer [1979] describe Z, a specification
language based on axiomatic set theory, and give a number of large
and interesting specification examples. Z is essentially a formal

(and rather verbose) language for describing sets. The natural
numbers, relations, sequences etc. can be viewed as sets using the

classical constructions. Since everything is a set (the elements of

a sets are themselves sets) there is no notion of type. The set

union function works equally well on sets, natural numbers and

relations; it is not clear what happens if a sequence is subtracted

from a number. Second- and higher-order functions can be specified
in the same way as ordinary functions. Definitions may be

parameterised (generic), but any set is accepted as an actual
parameter; there is no equivalent to Clear's metasort theory.

Structures (classes) consisting of a tuple of sets and some axioms

about them may be defined (examples are groups and rings).
Specifications are structured into chapters, and new chapters may be

built by enriching previous chapters. Theorems which the

definitions are expected to satisfy may be included, but these have

-35-

no effect on the specification itself.

SPECIAL [Roubine and Robinson 19771 is the specification language

for HDM [Spitzen, Levitt and Robinson 19781, (Levitt, Robinson and

Silverberg 19791, a design methodology which is based on suggestions

of Parnas [1972, 1972a] concerning the decomposition of large
systems into hierarchical collections of modules. A module

implements an abstract machine which is realised by a collection of
programs running on a lower-level abstract machine. A module can

also be viewed as an abstract data type. Modules are described in
SPECIAL by specifying how 0- (operation) functions change the

internal state of the module as visible through the use of V-

(value) functions. That is, the specifications of V-functions
describe the initial state of the module, and the specification of
an 0-function describes what changes a use of the 0-function causes

in the results returned by V-functions. Modules can be

parameterised, where the parameters are functions or values. A

module may reference the functions of other modules, and apparently

a call of an 0-function may even result in a change in the state of
another module. A feature is included for specifying that the

execution of a function will be delayed until some event takes

place; this permits the specification of systems of parallel
processes. Mapping functions which describe how a module is
implemented in terms of a lower-level module may also be specified.
An operational semantics of a subset of SPECIAL has been given by

Boyer and Moore [1978].

ORDINARY [Goguen and Burstall 1980a] is an attempt to combine the

rigorous theoretical foundation and theory-building ideas of Clear

with the state-machine specification approach of SPECIAL. Its
semantics will be given by translation into Clear, although the

translation has not yet been defined. ORDINARY provides facilities
for specifying clusters (like Clear theories) and modules (as in
SPECIAL), and both clusters and modules may be parameterised as in
Clear. The specification of modules is different from in SPECIAL.

The state is defined explicitly, rather than implicitly through the

collection of available V-functions. A function like add:int in a

set module (add the given integer to the set which forms the state)

-36-

is specified as add:[set],int->(set] (bracketed arguments and

results are invisible); the state is thus passed around as a secret

argument and result of appropriate functions. So although module

specifications are superficially different from cluster

specifications (with effects on the state defined using a SPECIAL-

like syntax rather than using ordinary equations) they are

essentially the same. In contrast to SPECIAL, states of modules are

never accessible from outside. Higher-order operators like lambda

are (tentatively) handled as macros. All the theory-building

operations of Clear are available (including data), albeit with a

more convenient syntax in some cases. Application of parameterised

clusters and modules is nonprolific (see section III.5) in contrast

to Clear. Like Clear, ORDINARY is independent of any particular

institution; a different application (such as specification of

concurrent systems) will be handled by switching to a' different

institution (such as temporal logic).

-37-

2. HOPE

This section contains only a very brief glimpse into the features
and nature of HOPE. A full description appears in Appendix 1.

The underlying goal in the design of HOPE was to produce by a

judicious selection of well-understood ideas a very simple

programming language which would encourage the construction of clear

and manipulable programs. HOPE is a purely applicative language

without an assignment statement or destructive operators. This was

felt to be an important simplification, encouraging a transparent

and less error-prone style of programming. Backus [1978] makes this

case strongly.

The user may freely define his own data types. A type is the sum

of a set of disjoint subtypes, each having its own data construction

function. There is no need to devise a complicated encoding of a

new type in terms of low-level types, since data constructors are

uninterpreted; this leads to inefficient use of space in some cases

but it make programs much easier to write. The type system is

strongly enforced but at the same time very flexible, allowing the

definition of polymorphic types and the free use of higher-order

types and overloaded operators.

Functions are defined by a set of recursion equations. The left-

hand side of each equation includes a pattern built from data

constructors and variables; the pattern is used both to select which

equation to use for a given argument and to bind the variables in

that equation to the appropriate parts of the argument. For

example:

--- reverse nil <= nil
--- reverse(a::l) <= reverse 1 <> [a]

The availability of arbitrary higher-order types allows functions to

be defined which 'package' recursion over data structures to save

writing it explicitly. These functions can be used to write

programs in a concise style similar to that of APL [Iverson 19621.

Lazily-evaluated lists (streams) are provided, allowing the use of

infinite lists which could be used to provide interactive

input/output and concurrency.

-38-

HOPE also includes a simple modularisation facility which allows

programs to be constructed as a collection of small self-contained
pieces communicating with each other in a disciplined and explicit
manner. A module may be used to protect the implementation of an

abstract data type, for example. Careful modular development is
felt to be the main trick in the construction of large bug-free

programs.

-39-

CHAPTER TWO

PREREQUISITES -- BASIC CONCEPTS AND NOTATION

The basic concepts which underlie the semantics of Clear will now

be defined. The notions of signature, algebra and equation are

similar to those used by most authors (see for example [Goguen,

Thatcher and Wagner 1978]), but theories in Clear are different from

the usual notion of theory elsewhere (which corresponds to a simple

theory presentation in Clear). The definitions themselves are taken

(with minor changes) from [Burstall and Goguen 1980].

In order to define the meaning of the data operation of Clear we

need the notion of a data constraint discussed in section 5.

Essentially the same concept is described by Reichel [1980] (cf.
Kaphengst and Reichel [1971]) and by Wirsing and Broy [1981] (cf.
Broy et al [1979]). Data constraints for Clear were defined very

technically in [Burstall and Goguen 1980] and then discussed

informally in [Burstall and Goguen 1981]; the presentation here is
precise but avoids the use of category theory, although this
necessarily restricts the discussion to data constraints in ordinary
Clear.

The data operation is used in Clear to specify that only the

initial models of a specification are desired (more precisely,
models which are free extensions of models of the theory which is

enriched using data). In contrast to this 'initial algebra

approach' is the final algebra approach of Wand (see [Wand 1979],

also [Guttag, Horowitz and Musser 1978]). This seems to offer a

viable alternative (which is even better in some respects) by

considering a different class of distinguished models. In this
thesis (apart from chapter VII) only the initial algebra approach to
specification will be discussed. The choice is irrelevant to the

bulk of the material presented; initial models are used in order to
avoid departing from previous work on Clear.

Although many of the definitions below (those concerning

signatures, algebras and equations) are special to ordinary Clear,

the definitions concerning theories and data constraints could be

-40-

generalised to the case of an arbitrary institution. In that event,

all the results given below would remain valid.

-41-

1. Signatures

A signature is a set of sorts (data type names) together with a

set of operators (operation names), where each operator has an arity

(such as s,t -> t where s and t are sorts). A signature morphism

maps the sorts and operators of one signature to sorts and operators

in another in such a way that arities are preserved.

Def: A (many-sorted) signature I is a pair <S,Z> where S is a set
(of sorts) and 2 is a family of sets (of operators) indexed by

S+=S xS. The index of a set Oej is the arity of every element of
0.

Def: A signature morphism o' is a pair <f,g> : <S,I> - <S',l'>
where f:S-4S' and g is a family of maps gUS'Sus__>SfE(u)f(s), where

uESE, seS and f*:SE->S'E is the extension of f to strings of sorts.
We write a(s) for f(s), (r(u) for fE(u) and (r(w) for gus(ty), where

wESus-

2. Algebras

A 7-algebra has a set (the elements of a data type) for each sort
of S and a function (operation) on those sets for each operator of
7. A S-homomorphism maps the 'data types' of one 7-algebra to those

of another in such a way that the operations are preserved. Given a

2'-algebra A and a signature morphism we can recover the

2-algebra buried inside A (since A is just an extension of this
algebra).

Let S be a signature.

Def: A Z-algebra A is a pair <A,a>, where A is an S-indexed

family of sets (the carriers of A) and a is an SExS-indexed family
of maps aus:2us->(Au->As) where uESE, sES and

Au1., = Au1 x...xAun. If we! us then the map a us(w):Au->As is
called the operation associated with w, and is referred to by the

name w when there is no ambiguity.

-42-

Def: A S-homomorphism f : <A,a> -> <A',a'>, where <A,a> and

<A',oc'> are 5-algebras, is a map f:A-A' (actually an S-indexed

family of maps fs:A5- As) such that for each w *j and each

1e' a As1 ...,anEAM
s n

f
s
(ac()(a

1
,...,a n)) = a'(w)(f

s1
(a

1
),...,fsn (a n)).

Def: If c,=<f,g> is a signature morphism and A'=<A',0('>
is a 2'-algebra, then the 2-restriction of A.' (along (7), written

A'IZ is the I-algebra <A,oc> where As=Af(s) and (c(w)=oc'(g(w)).
Normally o, is obvious from context, in which case the notation A'

1.2

may be used.

3. Equations

The definition of .1-equations and the meaning of applying a

signature morphism to a 2-equation are the obvious ones. A

2-algebra satisfies a .1-equation if the equation is 'true' (both

sides evaluate to the same thing) for all assignments to the

variables.

Def: A 7-equation e is a triple <X,T1,T2> where X is an S-indexed

set (of variables) and T1, T2 are Z-terms on X of the same sort.
The equation <X,T1,T2> is written 'for all X. T1 = T21

2-terms, a-# : 2-terms V-terms may be applied to a 2-equation e;

this application is written simply or(e).

Def: A }-algebra A=<A,a> satisfies a i-equation <X,T1,T
>

if for

all maps f:X-'iA, f#(T1) = f#(T2) where f# : Z-terms -p A is the

extension of f to Z-terms on X (f# evaluates a term using the

assignment of values to variables given by f). A satisfies e is
written Are. A I-algebra satisfies a set of I-equations if it

satisfies every equation in the set.

Satisfaction Lemma: If is a signature morphism, e is a

2-equation and A' is al I -algebra, then A' r(r(e) iff A'I r e.

Proof: See [Burstall and Goguen 1980].

4. Simple theories

A simple theory presentation is a signature together with a set

of equations on that signature. The closure of a set of equations

is that set together with all its (model-theoretic) logical
consequences. A simple theory is then a signature together with a

closed set of equations. This is a simple theory because no data

constraints (section 5) are included.

Def: A simple 5-theory presentation is a pair <S,E> where S is a

signature and E is a set of 3-equations.

Def: A S-algebra A satisfies a simple theory presentation <I,E>

if A satisfies E. Then A is called a model of <7,E>.

Def: If E is a set of S-equations, let E be the set of all
S-algebras which satisfy E.

Def: If M is a set of 5-algebras, let M be the set of all
7-equations which are satisfied by each algebra in M.

Fact: For any set E of equations (and dually replacing E by any

set M of algebras):

(i) E % E

(ii) If ESE' then E'*SE*
This is called a Galois connection (see [Birkhoff 1948J). The laws

(i) and (ii) together imply

(iii) E* ; E***

Def: The closure of a set E of 7-equations is the set E**,
written E. E is closed if E=.

Def: A simple -theory T is a simple theory presentation <S,E>

where E is closed. The simple 7-theory presented the

presentation <2,E> is <_Z,E>. A simple theory <_Z,(> is called
anarchic. A theory is called satisfiable if it has at least one

model.

-44-

Def: A simple theory morphism o : <j, E> - > <2',E'> is a

signature morphism such that v'(e)eE' for each e%E.

Closure Lemma: r(Y) S cr(E)

Proof: See [Burstall and Goguen 1980]; uses the Satisfaction

Lemma.

Presentation Lemma: If (7:1-W is a signature morphism and

<Z,E>, <',E'> are simple theory presentations then

a+ : <j,E> -> <j',E'> is a simple theory morphism iff o'(E)S E'.

Proof: See [Burstall and Goguen 1980]; uses the Closure Lemma.

The Presentation Lemma gives a shortcut for checking if a

signature morphism o is a simple theory morphism -- one must only

check, for each equation e of the source presentation, that o(e) can

be proved from the equations in the target presentation.

Theorem: The category of simple theories and simple theory

morphisms is finitely cocomplete (has finite colimits).

Proof: See section V.2.

The category-theoretic semantics of Clear given in chapter V

relies on this theorem. In that semantics the theory-building

operations of Clear are defined in terms of certain colimits in the

category of theories.

-45-

5. Data constraints and data theories

In the last section a definition was given for the meaning of an

algebra satisfying a simple theory (presentation). If an algebra

satisfies a theory, it is called a model for that theory. The

theory specifies a set of algebras, namely the set of all its

models.

Unfortunately, this notion of specification is too simple for

most uses. The problem is that a theory has far too many models,

some of which have trivial carriers. It turns out that in many

cases (for example, when a theory is written to specify an abstract

data type) the model which is really intended is easily

characterised; it is the initial model of the theory. See section

I.1.1 for some examples.

The word 'initial' comes from category theory; however, it is not

necessary to know about category theory to understand initial
models.

Def: An initial model of a theory presentation <7,E> is a

Z-algebra A which is a model of <<,E> such that

- A does not satisfy any_ ground (i.e. variable-free)
I-equation which is not in E.

- Every element in A is the value of some ground 7.-term.

In the last section the closure of a set of equations, E, was

defined as the set of equations satisfied by every model of E. One

may think of E as the set E together with all equations provable

from E using purely equational logic -- that is, using substitution

and the reflexive, symmetric and transitive properties of equality

(but without use of induction). This aids intuition but is slightly

inaccurate because of the incompleteness result to be given in

section VI.5. The set of equations satisfied by an initial model

correspond to the equations provable by equational deduction

together with induction, since the second extra condition above

amounts to an induction rule on each sort of >.

-46-

Fact: An initial model of a theory presentation <E,E> is T7./mE

where T7 is the 'initial' 2-algebra, consisting of ground ?-terms,

and .E is the !-congruence on T7. generated by E.

Proof: See [Goguen, Thatcher and Wagner 1978].

But in Clear the situation is more complicated than this.
Smaller theories are put together to make larger theories; if a

loose or non-data theory is put together with an 'initial' theory,
then what is the result? The models of the result should be all
models of the combined theory which satisfy the initiality
constraint for the appropriate sorts, operators and equations.

Consider the case where a non-data theory (Equiv from section
1.1.2) is extended by adding some data, as in the following:

const Set =

enrich Equiv
data sorts set

opns 0 : set
singleton : element -> set
U : set,set -> set

egns0US=S
S U S = S

S UTTUS
(SUT) UV=SU (T UV) enden

In this example the interpretation of the extension must depend

on the interpretation of Equiv, which can be any algebra having a

sort together with an equivalence relation. But given a particular
algebra for Equiv, Set should be interpreted initially based on that
algebra; that is, Set specifies an initial algebra relative to the

interpretation of Equiv. Set is a data extension of Equiv; each

Set-model is the free extension of the included interpretation of
Equiv.

It is necessary to keep track of more than just a signature and a

set of equations to determine the set of algebras specified by a

Clear specification; of equal importance are the details concerning

which enrichments are data extensions of which subtheories. The

constraint that an enrichment is to be interpreted as a data

extension is called a data constraint (or constraint for short).

-47-

Each application of the data operator contributes a data constraint.

Def: A Z-constraint c is a pair <i,o'> where i:T "T' is a simple

theory inclusion and o': signature (T')-->I is a signature morphism.

A constraint is a description of an enrichment (the theory

inclusion goes from the theory to be enriched to the enriched
theory) together with a signature morphism 'translating' the

constraint to the signature S.

A signature morphism from 2 to another signature I' can be

applied to a 2-constraint, translating it to a 2'-constraint, just
as it can be applied to a.Z-equation to give a.Z'-equation.

Def: If is a signature morphism and <i,o-> is a

2-constraint, then o'' applied to <i,o'> gives the V-constraint

A data constraint imposes a restriction on a set of algebras,
just as an equation does. In [Burstall and Goguen 1980] this

restriction was defined category-theoretically. Here is the same

definition from a different point of view:

Def: A 7-algebra A satisfies a 7-constraint

<i:T°--'>T' ,o':signature(T')-->J> if

[letting Atarget
signature(TI)
i a

and Asource ° Aisignature(T)]

Atarget
is a model of T' and

- "No confusion": Atarget does not satisfy any

signature(T')-equation e with variables only in sorts of T

for any injective assignment of variables to

values unless e is in egns(T')U Asource

- "No junk": Every element in Atarget is the value of a

T'-term which has variables only in sorts of T, for some

assignment of Asource values.

The diagram of the situation below may help make the notation

easier to understand.

-48-

.i sraLur..

th.ori a

al

si9(I') E

T I,

The "no confusion" condition requires that no two terms have the

same value in Atarget unless this is forced by the equations of T'

or by previous identification of the values of terms in A
-source

(such identifications are recorded in Asource' The assignment is
restricted to be injective because (for example) the equation x:y

will always be satisfied under some (noninjective) assignment, but

this equation will almost never be in egns(T')U Asource' The "no

junk" condition requires that all values in Atarget be 'generated'

by constants or by the application of functions to values in

Asource' The slogans are from [Burstall and Goguen 19811.

An alternative "no confusion" condition which may be slightly

easier to understand requires that Asource be countable. If a

signature 7 includes the signature of T, then let 2t be I together

with a (constant) operator ca for every

Similarly, if B is a 2-algebra and Asource is

Bt be the It-algebra obtained from B by

operator ca with the value a in B. Then:

value a in A --source'
a subalgebra of B, let

associating each new

- "No confusion": Atarget does not* satisfy any ground

equation which is not in egns(T) 'U Asource'

-49-

The new constants give names to the values which we previously could

only refer to using variables under an injective assignment.

Since data constraints behave just like equations, they can be

added to the equation set in a simple theory presentation to give a

data theory presentation (or theory presentation for short).

Def: A (data) 1-theory presentation is a pair <E,EC> where 2 is a

signature and EC is a set of I-equations and 2-constraints.

The notions of (data) theory, satisfaction (of a data theory),
closure and (data) theory morphism follow as in the 'simple' case.

The Satisfaction Lemma (section 3) holds for constraints as well as

equations, and all the results in section 4 still hold.

Note what happens if an attempt is made, to tamper with a theory

in a way which violates one of its constraints:

const Bool
theory

data sorts bool
opus true, false : bool

not : bool -> bool
e ns not(true) = false

not(not(p)) = p endth

const FunnyBool =

enrich Bool by

egns not(p) = p enden

The new equation in FunnyBool is inconsistent with the data

constraint produced by the application of data in Bool. FunnyBool

has no models, since no algebra exists which satisfies both the

constraint and the new equation.

For other presentations of this material, consult [Burstall and

Goguen 19801 (technical) or (Burstall and Goguen 19811 (informal).
The data constraints described here are a special case of those

discussed in [Burstall and Goguen 19801; general data constraints
never arise in ordinary Clear, but they are necessary for describing
the semantics of Clear under an arbitrary (data) institution. In
its more general form, a data constraint consists of an arbitrary
simple theory morphism (not necessarily an inclusion) together with
a signature morphism, and satisfaction of a data constraint is

-50-

defined using the category-theoretic notion of an adjunction. The

definition of data constraint satisfaction given above is an attempt

to capture, in this special case, the definition of Burstall and

Goguen [1980] using a different approach.

-51-

CHAPTER THREE

A SET-THEORETIC SEMANTICS OF CLEAR

In the Introduction we argued for the necessity of supplying a

specification language with a precise and formal semantics. A

specification language like Clear can be useful on an informal level

as a tool for the development of programs, providing a notation for

elaborating the theory behind and surrounding a problem. But

without a semantics the connection between specifications and

programs is tenuous at best, giving no possibility of proving that a

program is correct with respect to its specification (for example).

A semantics of Clear is presented here which uses the language of
set theory. The theory-building operations presented in chapter I

are described by means of elementary set-theoretic constructions.

In order to properly treat the problem of shared subtheories, a tag
is attached to every sort and operator to indicate its theory of

origin; this trick allows the combine operation to be expressed as

little more than the set-theoretic union of 'tagged' theories. The

remaining operations are only a little bit more difficult to

describe. A denotational semantics is then given which attaches a

syntax to these operations and provides for an environment of named

theories. An additional section gives the semantics for an improved

version of Clear, identical to ordinary Clear except for the absence

of an annoying characteristic. This shows how easily the semantics

can be changed to accommodate new features.

Burstall and Goguen [19801 have described a semantics of Clear

which relies heavily on a number of ideas from category theory to

describe the underlying concepts and operations of the language.

Their semantics is presented in chapter V. The semantics in the

present chapter was invented after Burstall and Goguen's semantics

as an equivalent but more accessible alternative. The category-

theoretic semantics, by abstracting away from any particular notion

of signature, model or axiom (using the concept of an institution

mentioned in section I.1.3), is able to describe all at once the

meaning of a large class of Clear-like specification languages. But

-52-

in the special case of ordinary Clear (the language described in
chapter I) this highly abstract treatment can be simplified to give

the semantics described here; this has the advantage of being

concrete and constructive and therefore more useful for practical
applications. And even this semantics can be generalised to give

the semantics of Clear under all institutions which have been

suggested up to now (see section 6).

-53-

1. Dealing with shared subtheories

Consider the following specification, defining the theory of
natural numbers with an order relation and the theory of upper case

alphabetic characters (it is assumed that the theory Bool of boolean

values has been previously defined):

const Nat =

enrich Bool
data sorts nat

opns 0 : nat
succ : nat -> nat
< : nat,nat -> bool

egns 0<n = true
succ(n)<0 = false
succ(n)<succ(m) = n<m enden

const Char =

enrich Bool
data sorts char

opns A, B, ..., Z : char
is-vowel : char -> bool

egns is-vowel(c) = c==A or c==E
or c==I or c==O or c==U enden

Notice that both Nat and Char 'include' the theory Bool; Bool is
a shared subtheory of Nat and Char. What does this mean formally?
And, how does the semantics of Clear define the theory-combining
operations so that the theory Nat + Char includes only one copy of
Bool?

In [Burstall and Goguen 1977], shared subtheories are explained
by analogy with the EQ predicate of LISP. The EQUAL function in
LISP tests whether two lists look the same (i.e. whether they

contain the same elements in the same order), while EQ tests whether

two lists are the same (occupy the same list cells in storage --
note that EQ(a,b) implies EQUAL(a,b) but not vice versa). The

important features of EQ are given by the following examples (a, b

and c are arbitrary lists):
i. EQ(CONS(a,b),CONS(a,b)) = false (but EQUAL(..,..) = true)

ii. (EQ(1,1) where 1=CONS(a,b)) = true

iii. EQ(CAR(CONS(a,b)),CDR(CONS(c,a))) = true

-54-

These examples show that

i. Writing down a CONS expression twice gives two different
lists.

ii. Two uses of the same variable refer to the same list.
iii. Two different lists can share a common sublist.

Now to complete the analogy, the theory-building operations of
Clear act like CONS and the behaviour of EQ indicates what is meant

by "identical" in the following:
Requirement: The theory-building operations should be defined

in such a way that a theory can never contain two identical
subtheories.

This leads (for example) to the following informal constraint on the

combine (+) operation:

Constraint: If B is a subtheory of A and D is a subtheory of C,
then B and D should be identified when forming A + C iff
they are identical.

In order to write a semantics for Clear we must devise some

representation of theories which makes it easy (or at least
possible) to determine if two theories are identical, so that the

above constraint can be satisfied. The category-theoretic semantics

of Burstall and Goguen [1980] uses a rather complicated

representation of a theory (called a based theory -- see section V.2

for details) which shows explicitly how the theory is related to

every one of its subtheories. In the special case of ordinary Clear

a much simpler representation can be used because the only way that
a theory and one of its subtheories can be related is by an

inclusion.

An important observation is the fact that the requirement above

is inherited by the sorts and operators of a theory (where identity
is again by analogy to EQ in LISP), giving:
Requirement: The theory-building operations should be defined

in such a way that a theory can never contain two identical
sorts or operators.

Moreover, if this low-level requirement is satisfied (and the

operations are defined in a reasonable way) then the previous
requirement will be satisfied as well. The above contraint on

combine also has a low-level equivalent.

-55-

Referring to our LISP analogy, the obvious way to define the
semantics of EQ (see [McCarthy et al 1962]) is to use a model of
storage where lists are stored in addressable cells and EQ simply
checks whether its arguments begin at the same address (although the
semantics of EQ can be defined in other ways -- see [Levy 1980] for
example). By associating a unique address with each non-EQ list
cell, the meaning of EQ is reduced to equality of addresses.

Sorts, operators and theories normally have nothing to do with
anything as mundane as storage and addresses. But by associating an

appropriate tag with each sort and operator we can easily determine
whether two tagged sorts or tagged operators are identical in the
sense given by analogy with EQ. If the name of the theory of origin
of a sort or operator is used as a tag, then the sort or operator
name together with the tag forms a unique and precise name for the
object (sort or operator). Then if (for example) w is an operator
belonging to both A and B, c., will appear once in A + B if w has the
same tag (theory of origin) in both A and B; otherwise w of A and

(,,) of B are really different operators which just happen to have the
same name, and A + B should include both. The language t (Iota)
[Nakajima, Honda and Nakahara 1980] also uses tags (to qualify
operator names).

Each theory is therefore represented in the semantics as a tagged

theory (a theory where the names are all tagged). The tagged

theories Nat and Char look like this, where tags appear as

subscripts (assuming that Bool contains the operators true, false,

not and ==);

Nat = sorts natNat, boolBool
opns ONat :

natNat
succNat : natNat -> natNat

INat' ==Nat : natNat,natNat -> boolBool
trueBool, falseBool : boolBool
notBool

:
boolBool -> boolBool

==Boot boolBool,boolBool -> boolBool
egns . . .

_56-

Char = sorts char Char, boolBool

opus AChar' ..., ZChar : charChar

is vowel
Char : char

Char -> boolBool

"Char : charChar,charChar -> boolBool

trueBoolfalseBool
:
boolBool

notBool
:
boolBool -> boolBool

==Boot :
boolBoolboolBool -> boolBool

egns . . .

Nat + Char is simply the set-theoretic union of these two tagged

theories:

sorts natNat, charChar, boolBool

opus CNat : natNat

SuccNat : natNat -> natNat

Nat' ==Nat : natNat,natNat -> boolBool

AChar, ZChar : charChar

is vowelChar : charChar -> boolBool

==Char : charChar,charChar -> boolBool

trueBool,falseBool
:
boolBool

notBool
:
boolBool -> boolBool

==Boot :
boolBool,boolBool -> boolBool

e ns . . .

The remaining semantic operations are fairly simple and

straightforward set-theoretic constructions.

It is necessary to keep track of the names of all subtheories of
a theory; the apply operation and Clear's 's of T' notation (to
refer to a sort or operation s in a subtheory T of the current
theory) both require it. Adding this information to a tagged theory
gives a based theory. The base is a subset of the global theory
environment, mapping each subtheory name to the theory bound to that
name. The addition of a base does not complicate the definition of

the sum of two theories; the base of the sum is simply the union of

the bases.

Def: A based theory is a pair <T,B> where T is a theory with
tagged sorts and operators and B: theory-name--> theory (the base) is a

map containing the subtheories of T. <T,B> is normally written TB.

-57-

Def: A based theory morphism o':TB-)TB, (where BB') is a theory
morphism o:T->T' such that o restricted to theories in B is the
identity.

This notion of based theory should not be confused with Burstall
and Goguen's [1980] notion, discussed in section V.2. Although the

definitions are different, both kinds of based theories serve the
same purpose (and in fact the two representations are isomorphic) so

we use the same name to draw attention to this similarity.

The particular tags used are not important; all that matters is
that the tags for two different sorts (or operators) which have the
same name, are different. Thus, X146 and Y27 would serve as well as

Bool and Nat above. Also (for example) succ and < need not have the

same tag. This fact will be useful in the semantics; it turns out

to be inconvenient to tag sorts and operators with the name of their

theory of origin.

-58-

2. Semantic operations

In this section the semantic operations which 'implement' the

theory-building operations of Clear are defined. This forms the

quintessence of Clear's semantics; the semantic equations given in
section 4 serve only to attach a syntax to the operations defined

here. The definitions depend heavily upon the special
representation of based theories described in section 1; the objects
defined in chapter II are used as well (signatures, equations,
constraints) but their representations are not important. The

definitions assume that the based theories to be put together are

compatible. This will always be the case in practice because all

available theories have been constructed using Clear.

Def: If 2=<S,2> and 2'=<S',2'> are tagged signatures then the

union of 2 and 2', written 2U2', is <SUS',2UV'> (where j and

are the extensions of 2 and 2' to indexed sets of operators over

SUS').

2.1. Combine

This implements the '+' theory-building operation of Clear.

combine : based-theory x based-theory -4 based-theory

combine(<L,EC>B, <i',EG'>BI) = <2U2',6 EG U6`EG' >BUB'

where a and a" are the signature inclusions

2U2

We will sometimes use '+' in the sequel rather than combine; this

should cause no confusion.

The result has the sorts and operators of both theories, the

closed union of the axioms (translated to give 2U2'-equations and

constraints), and the union of the two bases. Since 2 and 2' are

tagged signatures, M' will treat shared sorts and operators
properly.

-59-

2.2. Enrich

An enrichment consists of some new sorts, operators and

equations. The enrich operation takes a based theory and an

enrichment and produces the enriched based theory. Each new sort

and operator must be given a unique tag, according to the discussion

in the preceding chapter. This tagging is not done by the enrich

operation itself; we require that new sorts and operators be given

unique tags before they are used to enrich a theory. This is

necessary because the arity of a new operator may include one of the

new sorts, and this requires that the new sort be tagged. The tags

are attached by the semantic equations (as part of the semantics of
sort and operator declarations -- section 4.3).

enrich : based-theory x sort-set x operator-set x equation-set
-> based-theory

enrich(<I,EC>B, S', J', E') _ <_ZU<S'X>,o7(EC)U E'>B

where I' is indexed over sorts(2)US'
E' is a set of j U<S',j'> -equations

and o- is the signature inclusion

JU<S' .2'>

As mentioned above, it is understood that S' and I' have already

been given unique tags before enrich is applied.

2.3. Data enrich

When a theory is enriched by some new data, the axioms of the

resulting theory contain the constraint that the enrichment is to be

interpreted freely. Moreover, an equality predicate ==:s,s->bool

for each new sort s is included. Otherwise the result is the same

as for ordinary (non-data) enrich. We employ a model-theoretic

approach to obtain the equations which specify the meaning of the

new equality predicates.

Def: Suppose I is a tagged signature which includes the sort

boolBool and the operators true Bool,falseBoo1:boolBool, A is a

7.-algebra, EC is a set of 2-equations and constraints, x is a new

tag, S is a subset of the sorts of 1, and sES. Then:

- Fs is 2 with an additional operator ==x:s,s->boolBool' 2S

is defined similarly (i.e., an additional == operator for
each sort in S).

- As is a 1x-algebra just like A but with an operation
satisfying ==(a,b) = true iff a=b, for all a,beAs. As is
defined similarly.

ECS is the set of !S-equations and constraints given by

M*, where M = {AS i AF-EC }.

If S is the set of new sorts and EC is the set of equations and

constraints already in a theory, then ECS includes EC as well as all
the equations needed to define the new equality predicates on sorts

in S.

data-enrich : based-theory x sort-set x operator-set
x equation-set x tag - > based-theory

data-enrich(<2,EC>B, S', 2', E',tx
= < (2enr)x , (ECenr U<F,1enr>)x >Benr

where <Ienr,ECenr>Benr = enrich(<L9EC>B,S',2',E'>)
and F is the theory inclusion

<J,m> F <Zenr,E'>

data-enrich gives an error if 2enr does not include the sort
boolBool and the operators true Bool,falseBoo1:boolBool.

The result is the same as the result of enrich, with the addition
of an operator == for each new sort, the equations concerning those

operators, and the data constraint <F,1,Tenr> where F is the theory

morphism describing the enrichment.

2.4. Derive

The derive operation is used to 'forget' sorts and operators of a

theory, possibly renaming the ones remaining. The renaming is
accomplished by a signature morphism which takes the new names into
the old names. Given a .1-theory, a '-theory and a signature
morphism o-:Z- ', derive produces a theory with the signature and

base of the 7,-theory, and all the 7-equations and constraints which

are satisfied in all models of the I'-theory -- this turns out to be

the inverse image under cr of the equations and constraints of the

V-theory.

derive : based-theory x signature-morphism x based-theory
-4 based-theory

derive(<;,EC>B, (7, <2',EC'>B,) _ <21cT-1(EC1)>B

where cr-1(EC') = {e ; er(e)cEC' }

derive gives an error if c- is not a based theory morphism.

The result is a theory because of the following fact:

Fact: If EC is closed then r-1(EC) is closed.

Proof: (outline of the proof in (Burstall and Goguen 19801)

c7-1(EC) _ (EC*I)' = c'-1(EC)** via two applications of the

Satisfaction Lemma.

Also, EC 5 c'-1(EC') since cr is a theory morphism.

Intuitively, the derive operation should satisfy the following
law:

A' is a model of T' iff A'Isig(T) is a model of
derive(T,c-,T') -

The 'forward' implication (_>) follows by the proof of the previous

fact (c--1(EC) _
(EC*Isig(T))*,

so EC*Isig(T)S (r -1(EC)*).
Unfortunately, the reverse (<=) does not hold. Consider the

example:

coast AB =

enrich Bool
data sorts ab

opus a, b : ab enden

-62-

const ABC =

enrich AB
opns c : ab enden

const AC

derive sorts ac
opns a, c : ac

using Bool
from ABC
by ac is ab endde

The theory ABC has two models (up to isomorphism). Both models have

two elements in the carrier for sort ab; one model satisfies a=cib

and the other satisfies ajic=b. But AC has an infinity of non-

isomorphic models. The problem is that the inverse image of the

data constraint on sort ab of ABC is empty, so sort ac of AC is
unconstrained. It seems that this slightly unpleasant situation can

be put right by giving a somewhat more elaborate definition of data

constraints. But it is not yet clear that this is the right way to
handle the problem, and data constraints are already complex enough.

So we ignore this complication for now; although derive does not

have all the properties we want, in most cases this will not be a

problem.

2.5. Apply

Apply defines the meaning of applying a theory procedure to its
arguments. A procedure is represented as a based theory (the
procedure) together with a list of based theories (the metasorts).
This is the first argument of apply; the second is a list of
(based-theory x signature-morphism) -pairs (actual parameter x

fitting morphism). The third argument is the tag to be attached to
the 'new' sorts and operators.

apply : (based-theory x based-theory *) [procedure]
x (based-theory x

signature-morphism)*

[parameters]
x tag -4 based-theory

The definition of apply uses two auxiliary functions. The first
applies a signature morphism to a theory T with a signature

which includes 2; the sorts and operators in T but not in I are not

-63-

affected. This is used to apply a fitting morphism to a procedure,

and is also useful in defining the second auxiliary function.

altered by : theory x signature-morphism -> theory

Suppose _Z = <S,Z>, JA = <SA,ZA>, ZB = <SB,ZB>, <f,g> = o:jA-47,B
and ZAc 1. Then:

<L,EC> altered by o- _ <2',0'1 (EC)>

where 2' and o'' are constructed as follows:

for sES, let fl(s) = f f(s) if sESA
s otherwise

let S' {f'(s)
1 sS}

for u&S , vS and welt v,
let guv(w) fguv`w) if w*jAuv

w otherwise
for u'E S'e and v'ES',

let Vu'v' = U {guv(w) 1 wEIuv}
u,vEl

where I = {u,v.S ; f'e(uv)=u'v'}

then 2' = <S',2'>
and = <f',g'>

Informally, <L,EC> altered by o' just replaces the sorts and

operators of I which are in JA by their images in 2B.

The second auxiliary function attaches a given new tag to all of
the sorts and operators in a theory, excluding those sorts and

operators which belong to a distinguished subsignature.

retagged with preserving : theory x tag x signature --> theory

<2,EC> retagged with x preserving F' _ <2,EC> altered by mtag

where mtag is a signature morphism which gives each
of the sorts and operators in I - 2' the tag x

an error results if VA 2

Apply is now defined with the help of these two functions. The

idea is to first attach the given new tag to each sort and operator
in the procedure, excluding those belonging to a metatheory or base

-64-

theory. This is necessary so that (for example) the sort 'list' in
the theory List(Bool) will always remain distinct from the sort
'list' in List(Nat). The fitting morphisms are then applied to

change each reference to the metasort signature into the

corresponding reference to a sort or operator in the signature of
the actual parameter, and the base of the procedure is attached.

Finally, the actual parameters are added using combine to give the

result.

apply(<PBp, <2Mj,ECM1>BM1 ... <ZMn,ECMn>BMn>, <A1 ,m1> ... <An,mn>, x)

= Ai + ,.. + A
n

+ ((P retagged with x preserving told)
-J -

altered by ml U ... Umn)BP

where told = 2M1U...U 2Mn U<N, N>cBpsignature(TN)
apply gives an error if some mi:<-1Mi,ECMi>BMi -4Ai is not a based
theory morphism.

This construction is rather more elaborate than any of those

given previously. In order to understand it, consider first the

simple case in which all theories contain only sorts (no operators

or equations) and the procedure has only one argument. For example:

P = sorts boolBool' mM, natNat' Pp base Bool, Nat

M = sorts boolBool' mM base Bool

A = sorts boolBool' charChar, aA, a'A base Bool, Char

o' _ [boolBool HboolBool, mM H aA7

Now let us evaluate apply(<P,M>,<A,(r>,'J36'). The 'old' sorts upon

which P was built (sold) is:

sorts boolBool, mM, natNat

Retagging P while preserving Zold gives:
sorts boolBool' mM, natNat' pJ36

This is exactly P except that the sort p (which is 'new' in P) is
tagged with J36 to ensure that it remains distinct from the sort p

in the application of P to some other parameter. Applying the

fitting morphism d' and reattaching the base of P gives:
sorts boolBool' aA' natNat' pJ36 base Bool, Nat

and combining this with the actual parameter A gives the final

-65-

result:

sorts boolBool' aA, natNat' PJ36' char
Char, a'A

base Bool, Nat, Char

Before 6fter

For a more difficult example, consider the following Clear

specification (assuming the usual specification of Bool):

const Natmod2 =

enrich Bool
data sorts natmod2

opns 0 : natmod2
succ : natmod2 -> natmod2

egns succ(succ(n)) = n enden

meta Triv = theory sorts element endth

proc Pair(X:Triv)
enrich X + Bool by

data sorts pair
opns <_,_> : element,element -> pair
egns <a,b> _ <b,a> enden

Now the expression

Pair(Natmod2[element is natmod2))

should give the theory of (unordered) pairs of natural numbers

modulo 2.

The denotation of Natmod2 is the following based theory (ignoring
equations):

-66-

sorts boolBoo,, natmod2Natmod2
opus °Natmod2' succNatmod2' ==Natmod2' trueBool' '
e ns succ(succ(n)) = n

not(true) = false

base Bool, Natmod2

Triv gives just sorts elementTriv with the empty base.
Metatheories will be explained in section 3; briefly, the special
thing about a metatheory is that its base excludes metatheories,
itself included.

The procedure Pair has a denotation consisting of the following
based theory together with Triv:

sorts elementTriv, pairPair' boolBool
opns <-,_>Pair, ==Pair' trueBool'
e ns <a,b> = <b,a>

not(true) = false

base Bool

The environment contains Bool and Natmod2 (Triv and Pair are in
the metatheory and procedure environments, respectively).

Referring to the definition of apply, the value of Jold is:

Told = sorts element Triv, boolBool
opns trueBool+ false Bol, notBol, ==Bool

Retagging P (i.e., Pair without its base) with the new tag J37 while

preserving old gives:

sorts elementTriv' pair
J37'

boolBool
opns <-,_>J37' ==J37' trueBool' ...
egns . . .

Applying the fitting morphism [elementTriv H natmod2Natmod2] to this
theory and reattaching the base of Pair yields:

-67-

sorts natmod2Natmod2, pairJ37, boolgool

opus <_.2J37 ==J37 trueBool, ...
egns . . .

base Bool

Finally, this is combined with the actual parameter Natmod2 to give

the answer:

sorts natmod2Natmod2, pairJ37' boolgool
opns <_,_.>J37, ==J37, truegool, ... CNatmod2' ...
egns succ(succ(n)) _ n

not(true) = false

<a,b> _ <b,a>
base Bool, Natmod2

Note that applying a procedure P with formal parameter X and

metasort M to an argument A using signature morphism o, is the same

as rewriting the text of the procedure, with A substituted for X and

all occurrences of sorts and operators in M translated using o, to

the matching bits of A. For example,

Pair(Natmod2[element is natmod2)) is equivalent to:

enrich Natmod2 + Bool
data sorts pair

opns <_,_> : natmod2,natmod2 -> pair
egns <a,b> _ <b,a> enden

The definition of apply simulates this rewriting, using the trick
of attaching fresh tags to the sorts and operators which are 'new in
P' (i.e., not included in the base or metasorts) to distinguish them

from the corresponding objects produced in a different application
of the same procedure.

2.6. Copy

The copy operation is used to make a fresh copy of a theory,

preserving a given set of subtheories.

-68-

copy : based-theory x based-theory x tag --> based-theory

copy(T$, <2',EC'>B" x (T retagged with x
preserving 1')B A B

Given two based theories (the second theory is the combination of
the subtheories to be shared), copy simply gives the new tag x to

the sorts and operators of the first theory which are not in the

second theory. The base of the result is the intersection of the

bases of the argument theories.

-69-

3. Metatheories

In section I.1.2 the notion of a metatheojy was informally
introduced as a way of describing a class of theories (while an

'ordinary' theory describes a class of algebras). Metatheories are

used to give the metasorts (requirements) of theory procedures. For

example:

proc Set(X:Ident) _

enrich X . . .

Here, Ident is a metatheory (from section 1.1.2) 'describing' all

theories having at least one sort and an equivalence relation on

that sort. Any such theory can be used as an argument of Set. In

this section the relation between metatheories and ordinary theories

is discussed. The semantics of [Burstall and Goguen 1980] did not

treat this issue correctly, using ordinary theories to give

procedure requirements (this error was only discovered during

testing of the implementation of that semantics presented in chapter

V).

It turns out that a metatheory is not a new kind of theory, but

only an ordinary (based) theory used in a special way. The class of

theories described by a metatheory M is the class containing only

those based theories T for which a based theory morphism o:M-+T

exists. The definition of the apply operation in the last section

uses the 'fitting morphism' (supplied by the user) to construct the

result of a procedure application. But in order for this to work

the metatheory M must be handled in a slightly different way from an

ordinary theory; this is the reason why the meta construct is used

to define a metatheory.

It is helpful to compare a sample metatheory with a similar

ordinary theory. A typical metatheory is Ident, used above; this

will be called Idmeta for now:

meta Idmeta =

enrich Bool
sorts element
opns . : element,element -> bool
egns mam = true

enden

-70-

This gives the following based theory:

sorts elementIdmeta, boolBool

opns 'Idmeta
trueBool, falseBool,

ens . . .

base Bool

Now consider a similar ordinary theory. Idconst 'loosely'

specifies the set of algebras having one sort and an equivalence
relation (see the theory Equiv in section 1.1.2):

const Idconst =
enrich Bool

sorts element
opns = : element,element -> bool
ens m:-m = true

enden

which yields the based theory:

sorts elementIdconst, boolBool
opns OIdconst

trueBool, falseBool,
egns . . .

base Idconst, Bool

The only apparent difference between these two based theories is

that while Idmeta has a base consisting only of Bool, the base of

Idconst contains Idconst itself as well. Consider the consequences

if Idconst is used as the metasort of a theory procedure such as Set

(called Setconst for now):

PLO--c Setconst(X:Idconst)
enrich X . . . enden

What are the possible actual parameter theories to which Setconst
can be applied? Recall that a based theory morphism is used to fit
an actual parameter to its corresponding metasort; the morphism goes

from the metasort to the actual parameter. Since the base of the
target of a based theory morphism must include the base of the
source (and the morphism restricted to the base must be the

_71-

identity), the actual parameter must contain Idconst as a subtheory.

In essence, the only theory Setconst can be applied to is Idconst

itself. This is clearly neither intended nor desirable.

Now consider what happens if Idmeta is used as the metasort of
Set:

roc Setmeta(X:Idmeta) =

enrich X by . . . enden

Since the base of Idmeta contains Bool, any actual parameter of
Setmeta must include Bool as a subtheory. But it need only match

the rest of Idmeta; that is, it must include a sort with an

equivalence relation. Suitable actual parameter theories and

fitting morphisms are:

Nat [element is nat, a is =_]
Bool [element is bool, 'W-is ==1

and many others.

In the example above, an ordinary theory (Bool) was included in a

metatheory (Idmeta). In general, metatheories can be put together
(with each other and with ordinary theories) using the same

operations as for ordinary theories, since they are nothing more

than a special kind of ordinary theory. When such a conglomerate is
used as a metasort, any matching actual parameter must include all
of the ordinary theories in the metasort (not just some theories
which happen to resemble them), as well as sorts and operators which

match those of the metatheories.

The only difference we have so far encountered between a

metatheory and an ordinary theory is that the base of a metatheory

does not include the metatheory itself (and thus does not include
any other metatheories either). Unexpectedly, this is exactly the

result if a parameterless theory procedure is used in place of a

metatheory (this observation is due to R.M. Burstall):

-72-

proc Idproc() _
enrich Bool

sorts element
opns n : element,element -> bool
egns mmm = true

enden

roc Setproc(X:Idproc())
enrich X . . . enden

Accordingly, a metatheory is treated in this semantics as a

parameterless procedure. This is of course invisible to the user of
the language. In the category-theoretic semantics to be given in
chapter V, metatheories are treated as ordinary theories with
altered bases (which gives the same result, since there a sort or

operator may only be shared if it appears in a base theory). The

semantics of metatheories in both cases is incorporated into the

definition of environment operations.

A side-effect of the use of the apply operation to give the

semantics of metatheories is that writing a metatheory twice gives

two different theories; that is:
Idproc() + Idproc() Idproc()

This property is actually somewhat desirable for metatheories, since
otherwise some extra mechanism must be added to the semantics of
procedure declaration (in the next section) to keep separate

multiple instances of the same metatheory as metasorts in a single
procedure:

proc P(X:Idmeta,Y:Idmeta)

But this means that the theory-building operations do not respect

shared sub-metatheories. It is difficult to decide if this last
property (which also holds for metatheories in the category-

theoretic semantics) is desirable or not. In section 5 a

modification to the semantics is given which (among other things)
causes theory-building operations to respect shared sub-

metatheories.

The concept of a metatheory in Clear is similar to the notion of
a sype in the language t (Iota) [Nakajima, Honda and Nakahara 1980];

-73-

there too, a sype is not very different from an ordinary type,

although it can be regarded as a higher order concept.

--74-

4. Semantic equations

Now we are ready to give the semantic equations for Clear,

providing a 'syntactic dress' for the operations defined in section

2. The equations are divided into several levels. Level I deals

with the semantics of sort and operator names, and depends on the

notion of a dictionary. Level Ha contains the semantics of

enrichments (sort and operator declarations, and equations), and

level IIb describes signature changes (used in derive and in
application of a theory procedure). Finally, level III gives the

semantics of Clear's theory-building operations and procedure

declarations, based on the semantic operations defined in section 2.

It requires the definition of an environment. Most of the material

in this section is taken from [Burstall and Goguen 1980];

differences are recorded in section V.4.

4.1. Dictionaries

In Clear the notation 's of T' (where s is a sort name and T is a

theory name) may be used to refer to a sort which is included in a

subtheory T of the current theory (similarly to of T' for

operators). This may be necessary if the sort (or operator) name

alone is ambiguous. A dictionary gives the correspondence between

such an expression and the tagged sort or operator to which it

refers.

Def: A dictionary is a pair of functions <sd,od> where

sd : sort-name x theory-name -4 sort
od : operator-name x theory-name -4 operator

The operation dict is used to construct a dictionary from a based

theory; the resulting dictionary interprets sort and operator
expressions referring to sorts and operators in that theory.

-75-

diet : based-theory --> dictionary

diet(<2,EC>B) = <sd,od>

where sd(s,T) = the unique sort with name s in B(T)
and od(o,T) = the unique operator with name o in B(T)

sd(s,T) gives an error if T#domain(B), or if there is not a
unique sort called s in B(T) (similarly for od(o,T)).

Note that this definition means that the notation 's of T'

(similarly 'o of T') may only be used to refer to theories which are

in the base of the current theory.

4.2. Level I: Sorts, operators, terms

Syntactic categories

s : sort name (lower case identifier)
o : operator name (identifier or operator symbol)
T : theory name (capitalised identifier)
sex : sort expression
oex : operator expression
x : variable (identifier)
tex : term expression

Syntax

sex s s of T e.g.
oex o o of T e.g.

tex x oex(texi,...,texn) e.g.

Values

d : dictionary
X : sort-indexed variable set
tm : term

Semantic functions

element of X

not of Bool
or(p,q) (infixes
etc. also permitted)

Sex : sort-expression -* signature -* dictionary -* sort
Oex : operator-expression -* signature --> dictionary

-* operator
Tex : term-expression -* signature -* dictionary

sorted-variable-set -* term

--76-

Semantic equations

SexQ s jid = the unique sort in sorts() with name s
SexQ s of T]17,d = sd(s,T) where <sd,od> = d

Oex Qoi d = the unique operator in operators (_Z) with name o

Oexl o of TIIld = od(o,T) where <sd,od> = d

Text x jidX = x (a 1-term on X)

Tex1oex(texi,...,texn)ji dX =

let w= Oex1oexl d in
let tm1,...,tmn = Texl texiI2dX,...,Texl texn jTdX in

w(tmi,...,tmn) (a I-term on X)

4.3. Level IIa: Enrichments

Syntactic categories

sd : sort declaration
od : operator declaration
varl : variable list
eq : equation expression
enrb enrichment body
enr : enrichment

-77-

Syntax

sd ..= s e.g. nat
od :.= o: sex1,...,sexn->sex e.g. <: nat,nat->bool

varl ::= x11,...,xln :sex1,...,xm1,...,xmnm:sexm
e.g. i,j:nat, p:bool

eq all varl. text = tex2 e.g. all p:nat. p+O=p

enrb sorts sd1,...,sdm
opns odi...odn

e ns eg1...egp

enr enrb ; data enrb

e.g. data sorts bool
opns true: bool

false: bool
not: bool->bool

e ns all. not(true) = false
all p:bool. not(not(p)) = p

The notation

01,...,om: sex1,...,sexn->sex

is also allowed for operator declarations, defined by the obvious

expansion into a sequence of declarations.

Semantic functions

Sd : sort-declaration -+ tag -+ sort
Od : operator-declaration -4 tag -4 signature -4 dictionary

-4 (operator x arity)
Varl : variable-list --> signature -+ dictionary

--> sorted-variable-set
Eq : equation-expression -4 signature -4 dictionary -4 equation
Enrb : enrichment-body -4 tag -4 signature -4 dictionary

-3 (sort-set, (operator x arity) -set, equation-set)
Enr : enrichment --> tag -4 based-theory -> based theory

Semantic equations

SdEs]]x = sx

Odf o: sex, ,...,sexn->sex]]x5d =

let s, , ... ,sn,s = SexEsex, Sd, Sexsexn]J d, Sex1sex]J d in
--To , «s; , ... s n> , s»

-78-

Var1Qxil,....xnl:sexl,...,xmi,...,xmn :sexmI1 d =

let si, ... ,sm = SexQsex1I]2d, ... ,S%xQsexmI]Id in
{ <x11,sl>,...,<xlnl,51>,

<xm1,sm>"..,<xmnm,sm> }

EgQall varl. tex
1

= tex2Djd
let X = Varl f varlD2d in
let tm1,tm2 = TexQtex1DIdX,TexlItex2DZdX in

<X,tm1,tm2>

EnrbI sorts sd1,...,ad opns od ..odn egns eg1...eq]Jxxd =

let S' = ISdIsditx,...,Sdysdm]1x} in
let 2' = 2 U<S',O> in

let 2' = {Odlodi1]x2'd,...,Odlodn]Ix2'd} in
let 2"

= 2'U<¢,2'> in
let E' = {EqTeg1I12"d,..,EgTegp12"d} in

<S',2',E'>

Enrlf enrb]l xT = enrich(T,Enrbf enrb]J x signature(T)dict(T))

Enrifdata enrb]JxT =

data- enrich (T,Enrblf enrb I x signature (T)dict(T),x)

4.4. Level IIb: Signature changes

Syntactic categories

sc : sort change
oc : operator change
sic : signature change

Syntax

sc :.= s1 is sexl,...,sn is sexn
oc :.= 01 is oexl,...,on is oexn
sic sc,oc e.g. element is nat,

order is < of Nat

-79-

Semantic functions

Sc : sort-change --4 signature --4 signature -4 dictionary
--> (sort --> sort)

Oc : operator-change -4 signature - signature --> dictionary
-4 (operator -> operator)

Sic : signature-change --> signature -p signature
-4 dictionary --> signature-morphism

Semantic equations

Sc Qs1 is sexl,...,sn is sexnD22 'd'
{ <SexQs1D2d,Sexusex1Dj'd'>,

<SexIsnDld,SexusexnD2'd'> }

where d = <0,0> (the null dictionary)

OcUo1 is oexi,...,on is oexnD 'd'
{ <OexQo1D.,d,Oexuoex1D 'd'>,

<OexUonD2d,Oexuoex D2'd'> }
where d = <0,0> (the nuPl dictionary)

Sicusc,ocDM'd' _

let f = Sc I sc:u 'd' in
let g = OcUocD 'd' in
make_signature_morphism(l,f,g,

(where make _signature _morphism(_Z,f,g,2') is the

signature morphism <f,g>:j-3j' with gus the set of
all pairs <u,Y>eg such that tE2us)

4.5. Environments

Reference has already been made in the definition of based

theories to an environment of theories. In that case we were

referring- to the constant theory environment, only one of the three

environments we will need. This is simply a map binding names to
based theories. The other two environments store metatheory and

procedure bindings; the metatheory environment is again a map from

names to based theories, while in the procedure environment each

name is bound to a value consisting of a based theory (the
procedure) together with a list of based theories (the metasorts).

We define several operations on these environments. The

-80-

operation

bind : name x value x environment -> environment

returns an environment with an added association between the name

and value given (the type of value depends on the environment).

Similarly,

bind : name-list x value-list x environment - environment

binds a list of names to the corresponding elements in a list of
values.

The retrieve operation finds the value bound to a name in the
combined constant theory and metatheory environment and constructs
the corresponding based theory. Both environments must be checked

because there is otherwise no way of telling whether a name refers
to a constant theory or a metatheory. In case it refers to a

metatheory, a new tag must be provided for use in retagging sorts
and operators in the result. The procedure environment is accessed

simply as a map, so no retrieve function is needed for it.

retrieve : name x const-environment x meta-environment x tag
--> based-theory

retrieve(N,P,u,x) = .TB U<N T> where TB = e(N) if NEdomain(e)
1 apply(1(N),<>>,<>,x) if NEdomain()

retrieve gives an error if N is in neither or both domains

The apply operation is used to construct the result in the case of a

metatheory, as discussed in section 3.

The restrict operation restricts an environment (or the mini-
environment found in the base of a theory) to a subset of its
domain.

restrict : environment x name-set -> environment

This operation is useful for removing locally declared theories at

the end of their scope from the bases of theories they have been

used to build.

-81-

4.6. Level III: Theory building operations

Let '>r be a countably infinite list of distinct tags. This is
where the tags required by the representation discussed in section 1

come from. The functions

hd : tag-list --+ tag tl : tag-list - tag-list
split : tag-list x nat --+ (tag-list) -sequence

are defined by the following axioms:

hd [x1 x2 . . .] = x1

tl [x1 x2 . . . I _ [x2 . . .]
split [x1 x2 . . .] _ 1x1 xn+1 x2n+1 . . .

[x2 xn+2 x2n+2],

[xnx2nx3n. . .]

Syntactic categories

P : procedure name (capitalised identifier)

e : expression
spec : specification

Syntax

e :.= T theory enr endth
el + e2
enrich e by enr enden
derive enr using e1,...,en from e by sic endde

P e1 sn[sicn])
let T = el in e2
copy e using el,...,en

spec :.= e i const T = e spec
meta M = e spec
proc P(T1:e1,...,Tn:en) = e spec

e.g. const Bool = theory ... endth
meta Triv = theory ... endth
proc String X:Triv) = theory ... endth
String(Bool element is bool)

Values

T : based theory
: constant theory environment (name -+ based-theory)

11 metatheory environment (name -'> based-theory)
procedure environment (name - based-theory x based-theory)

L tag-list

-82-

Semantic functions

E : expression -4 environment -4 metatheory-environment
-4 procedure-environment -4 tag-list -4 based-theory

Spec : specification -4 environment -4 metatheory-environment
-4 procedure-environment -4 tag-list -+ based-theory

Semantic equations

EE[T]]P}IWL - retrieve(T,e,}1,hd(L))

EE{theo enr endth]]e?TL - nrEenr]]hd(L)II
(if is the empty based theory)

Ejej + e21]Ie L -
let L ,L - split(L,2) in

Ejej]I1 + EE{e2]P'2

Elf enrich e bX enr enden]IeITL = Enrlfenr]]hd(L)(EE[e]Iej'Wtl(L))

Elf derive enr using el,...,en from e by sic endde]Ie}IrL =

let L1,...,L +1 = split(L,n+1) in

let T = EE{ei IIe11 L1 + ... + Elfen]]PMn in
let T' = Enrlfenr]]T hd(Ln+1) in
let T" Elfe] eP w tl(Ln+1) in
let Sic I sic]]signature(T')signature(T")diet (T") in

derive(T',cr,T")

EE{P(el [sicl], ...,en[sicn])]]eUWL =

let Ll,...,Ln+l = split(L,n+1) in

let T, ,...,T = Ejel]Iei1 L1,...,Ejen]IeP Ln
let <T,<T1,..., >> = T(P) in
let (71,...,cs =

Sicfsicl]]signature(T1)signature(Ti)dict(T

SicI sicn]]signature(T_a)signature (T,)dict(T') in
apply(<T,<T1,...,Tn>>,<<TjQ 1>,...,<TT 'Tn>>,hd(Ln+l))

Elf let T = el in e2]Ie}WL =

let L1,L2 = split(L,2) in

let T = Ejej]I 11L1 in
let e' = bind(T,T,e) in

let T = Elfe2]Ie'P'L2 in
Trestrict(B,domain(B)-{T})

Elf copy e using el,...,en]]Pm -
let L1,...,L +2 = split(L,n+2) in

let T = ElfeP1111 in
let T' = Elfel]e0g2 + + El[en]Ie 11n+1

copy(T,T',hd(Ln+2))

-83-

Spec4e]{P}I'L = Ejeje}1TL

SpecE conet T = e specletr,wL
let = split(L2)

=

in

let e = bind (T,EE[eI{PUwL1,e) in
SpecE spec e' i1 2

SpecEmeta T = e spec 1j1TL =

re-T-L = split L,2) in
let u = bind(T,ElLele?TL1 ,11) in

Spec specleu,WL2

SpecEproc P(T1:e1,...,Tn:en) = e spec]le}1TL =

let L1,...,Ln+2 = Split (L,n+2) in
let i,...Tn = EEe1jPUTL1,...,EjeJPUTLn in
let e' bind(<T1.... ,Tn>,<T1,...,Tn>,e) in
let T$ = EEeje'?WLn+1 in
(let bind(P,<Trestrict(B,domain(B)-{T1,...,Tn}),

<T1 , ... , >>,W) in
SpecE spec11e1 'Ln+2) if {T1,...,Tn} c domain(B) else error

The denotation of a specification spec in the initial
environments e, p, * is then given by the value of Spec[spec1 a "1P

(recall that Ir is an infinite supply of distinct tags).

Consider the following procedure declaration:

proc Silly(X:Triv) = Bool

Because the body of this procedure does not include its metasort,

the final equation above yields an error. An earlier version of the

semantics (see [Sannella 1981]) did not produce an error in such

cases, treating the above declaration as equivalent to:

proc Silly(X:Triv) - Bool + X

-84-

5. A 'nonprolific' semantics

The semantic equations in the last section complete a new

semantics for Clear which yields exactly the same denotation for any

specification as the semantics given by Burstall and Goguen [1980]

(except for corrections to minor errors and the new metatheory

notion). Although the language it defines is a convenient tool for

writing specifications, it possesses at least one very annoying

characteristic, as described below. A revised semantics without

this characteristic is described here; only a few changes to the

existing semantics are required. This demonstrates how easily the

semantics can be changed to accommodate new features, as well as

providing the semantics for a useful new version of Clear.

An essential feature of Clear is the fact that different theories
(say, A and B) can share subtheories (say Bool) so that the

combination A + B has only one copy of Bool. But consider the

following specification:

const A = enrich Set(Bool[element is bool]) ... enden

const B = enrich Set(Bool[element is bool]) ... enden

Unfortunately, the combination A + B will have two copies of the

theory Set(Bool(element is bool]). In general, each application of
a procedure will give a fresh copy of the resulting theory and so in
the specification above Set(Bool[element is bool]) is not a shared

subtheory. This is called 'proliferation' by Burstall and Goguen

[1981]. It is due to the definition of the semantic operation

'apply' in section 2; in particular to the use of the retag

operation to give each of the new sorts and operators contributed by

the procedure a new tag. Proliferation is clearly not desirable and

therefore a 'nonprolific' semantics would be an improvement.

At first glance it might seem that the solution is simply to
leave out the retagging of new sorts and operators, leaving the tags

alone. But this is not quite right; the theory

Set(Bool[element is bool]) + Set(Nat[element is nat])
would then have just one copy of the sort 'set' (this would be in
effect the theory of sets containing both bool and nat, so the term

-85-

{true} U {3} would be well-typed). The proper modification is to

have apply change the tags of new sorts and operators in the

procedure to a value which describes the application in question;

this requires that tags like Set(Bool[element is bool]) be permitted

as well as the usual names like Bool and J37. Here is the

appropriate modification to the definition of apply (in section

2.5):
apply : (based-theory x based-theory *)

x (based-theory x
signature-morphism)*

-> based-theory

apply(< PBP, <2M, , ECM, >BM1 ... <.Mn, ECMn>BMn >, <A1 ,m1> ... <An,mn>)

A + ... + An + ((P retagged with Ptag preser'ing fold)
altered by m1 U ... Umn)BP'

where old MU...UMUN 1 n <N,T>eBPsignature(TN)
BP' {<N,TN altered by miU...U mn>;<N,TN>cBP}

and Ptag is the tag

<PBp, <jMj,ECM1>BM1 ... <'TMnoECMn>BMn>, <A1,m1> ... <Anmn>

This tag looks alarming, but it is simply the parameter list of the

apply operation. Consequently, the result of apply will be the same

when (and only when) it is applied to the same parameters. The

above definition includes a modification to alter the theories in

the base of the result according to the fitting morphisms. This is

necessary for cases where the procedure includes an application of

another procedure to the formal parameter, as changes below cause

the result of that application to appear in BP.

The level III equation which gives the semantics of procedure

application must now be altered to include the application in the

base of the result (see section 4.6 -- only the final line of that

definition has been changed):

E[P(ei[sic,],...,en[sicn])JJe WL -
let Li,...,Ln+i = split(L,n+1) in

let n = EE[eiTeUWLi,...,EI[enlerwLn in
let <T,<Tl,...,Tn>> = w(P) in
let 0-1 , ... , d"

SicEsic1Isignature(T1)signature(Tj)dict(Tj),

Sic[sicn signature(Tn)signature(T)dict(T) in

let TB = apply(<T,<T1,...,Tn>>,<<T;,d'j>,...,<T',d'n») in

TB U<P(ei[sici],...,en[sicn]),T" >
-LB

-86-

This change is necessary because the 'apply' semantic operation

requires that all shareable subtheories of a theory be recorded in

the base of that theory (they are needed to form lold), and the

theory which results from application of a theory procedure to some

arguments is shareable because of the previous changes.

A fortunate by-product of the above change is that metatheories

automatically become nonprolific along with theory procedures, since
the semantics of both use the same apparatus (recall that
metatheories can be thought of as parameterless procedures).

Because of this, the semantics of procedures must be changed

slightly; the problem is that in a theory procedure such as the

following:
roc P(X:Ident,Y:Ident)

the two metasorts merge into a single copy of Ident. The solution
is to make a new copy of each metasort (excluding the subtheories in
their bases) when a procedure is declared. The semantics of
procedure declaration becomes:

Specti pros P(Ti:ei,...,Tn:en) - e specieInM -
let Li,...,Ln+2 - split(L,n+2) in
let Tj,...,Tn - copy meta(EE[ejffe"tl(L1),hd(L1)),...,

copy meta(E T en1 Mtl(Ln),hd(Ln)) in
let e' - bind(<Ti,...,Tn>,<Ti,...,Tn>,e) in
let T$ - EIteie' 1TLn+1 in
(let bind(P,<Trestrict(B,domain(B)-{T1,...,Tn})+

<T,,...,Tn>>,T) in
Spec speciew'Ln+2) if {T1,...,Tn} domain(B) else error

where copy meta(TB,x) =

(T retagged with x preserving Zold)B

where fold - <N,TN>eBsignature(TN)

Level I of the semantic equations is concerned with providing a

meaning for sort and operator expressions such as 's of T'. Only a

slight modification is now necessary to extend the semantics to
expressions like 's of P(A)'. To extend sort expressions (operator
expressions are handled in exactly the same way) the level I BNF

syntax must be augmented:

-87-

sex s ; s of T ; s of P(e1[sic1],...,en[sicn])

The semantic equation for the new alternative is nearly identical to

the one which handles 's of T':

Sexis of P(ei[sici1....,en(sicn))DJd
sd(s,P(e1 (sic il,...,en[sicn])) where <sd,od> = d

The notion of dictionary needs no change, provided that expressions

of the form P(e1 (sic1],...,en[sicn)) are permitted as theory names.

The base of the result of a procedure application already includes

bindings to such names, as a result of the earlier change to the

level III equation giving the semantics of procedure application.

The modification just described has the defect that the procedure

application in an expression 's of P(ei(sic i),...,en[sicnJ)' must be

syntactically identical to the expression P(e1 [sic i),.... en[sicn])
which originally 'generated' the required sort (and similarly for
operators). Slightly better would be to bind the appropriate theory

in the base of the result of a procedure application to a semantic

object combining the denotations of the procedure P and each of the

theory expressions ej and signature changes sicj. The semantic

equations for sort and operator expressions would then need to
determine the denotations of procedures, theory expressions and

signature changes, requiring them to be supplied with the current
environment of procedures and theories (which in turn requires these

environments to be made available to all the semantic equations of
levels IIa and IIb). The necessary changes are not given here; they

are routine although widespread, affecting nearly all of the

semantic equations.

-88-

6. A generalisation

In section I.1.3 two extensions to Clear were discussed (error
Clear with error operators and error equations in addition to the

usual (OK) operators and equations; and conditional Clear with

conditional equations) and several more such extensions were

mentioned briefly. It was revealed that Clear can be regarded as a

family of languages, where the notions of signature, signature
morphism, axiom, algebra and satisfaction are not necessarily as

defined in chapter II but vary from one language to another. Any

choice for these five notions is satisfactory as long as a few

conditions hold (it must be possible to 'put together' signatures

and the definitions must satisfy certain consistency conditions).

Any such collection of notions is called an institution, and the

semantics of (most of) Clear can be described without reference to a

particular institution. This will be done in chapter V, where the

notion of an institution will be formalised.

The semantics just described does not work under an arbitrary

institution; it is a semantics of ordinary Clear (the language

described in chapter D. Its advantage lies in being very concrete

and easy to understand. But it is easy to see that the semantics

does not depend at all on the definition of:

- Axioms: We require only the existence of a map

(Tj:2-axioms--->Z'-axioms for every signature morphism
ca -41'. The discussion of data constraints in section
11.5 relies on axioms being equations, but the more
abstract discussion in [Burstall and Goguen 19801 is

equivalent and does not rely on the form of axioms.

- Algebras and satisfaction: The only references to

algebras and satisfaction in the semantics are in the
definition of the closure operation (on sets of equations
ang constraints), in the definition of data-enrich (where

EC is EC together with all the equations which are true

about the equality operators on sorts in the set S) and in

the discussion which justifies the definition of derive.

These depend not on the particular notion of algebra and
satisfaction but only on the validity of the Satisfaction
Lemma (section II.3).

So far, this is the same freedom as allowed by an institution;

there the Satisfaction Lemma must hold as well. The difference is

-89-

that the semantics presented in this chapter does depend on the

notions of signature and signature morphism, while an institution
permits use of any cocomplete category of signatures. This

dependency is a consequence of our use of the tagging trick in

representing theories. But in fact the semantics does not rely on

the exact definitions of signature and signature morphism, but only

on the following features of their definitions:

- Signatures must be sets (or collections of sets). The
definition of enrich and data-enrich here are dependent on
the exact structure of signatures, but it would be easy to
give appropriate definitions for any notion of signature.
The equality operators added by data rely on the existence
of sorts, but these are not a vital feature of the
semantics and cannot be included for an arbitrary
signature in the 'institutional approach' either.

- Signature morphisms must be functions (maps) between the
source and target signatures.

In addition, the tagging trick for representing theories with

sharing depends on the following:

- Enrichments must be inclusions (in the institutional
approach enrichments may be arbitrary theory morphisms).

Section 2 of this chapter (defining the semantic operations) could

easily be rewritten for Clear under any institution satisfying these

restrictions. The result would not be very much different from what

appears here; only the definitions of enrich and data-enrich would

change noticeably (since the remaining definitions are in terms of
operations like signature union and the image of a signature under a

signature morphism). Sections 1 and 3 would remain unchanged, being

independent of the definitions of signatures and their morphisms.

The semantic equations of section 4 would need to be changed

substantially, for the syntax of a language is naturally very

dependent on the entities it manipulates. But the level III
equations and the definition of environments would survive intact.
The semantics is given here for the special case of ordinary Clear

in order to make it easy to understand.

It is enlightening to see how restrictive the extra conditions on

signatures, signature morphisms and enrichments are. Perhaps

surprisingly, every one of the institutions which has ever (to my

knowledge) been proposed for Clear satisfies these extra conditions.

-90-

Error Clear: Signatures include an extra set containing
error operators. Signature morphisms map sorts to sorts,
OK-operators to OK-operators, and error-operators to
error-operators. Error equations must be distinguished
from OK-equations. Algebras and satisfaction are as
described in section I.1.3; see also [Goguen 1978].

Order-sorted Clear: The sort and operator sets of
signatures have extra structure -- the sort set is a
strict lower semilattice, and the operator set respects
coercions between sorts. Signature morphisms must
preserve this structure. Equations, algebras and
satisfaction are as defined in [Goguen 1978a].

Polymorphic Clear: The sort set of a signature contains
sort generators -- a normal sort like nat is a nullary
sort generator; list is a unary sort generator. These
generators give rise to a (possibly infinite) set of sorts
(sort terms, e.g. (nat, list(nat), list(list(nat)), ...]).
Operators may be polymorphic, so their arities are tuples
of sort terms (which may contain variables). Signature
morphisms map sort generators to sort generators and
operators to operators; they must preserve the structure
of signatures. A polymorphic algebra has a carrier for
every (variable-free) sort term and a function for every
instance of a polymorphic operator. Equations may be
polymorphic, in which case an algebra satisfies an
equation if the equation is satisfied for every type
instance.

Other examples are conditional Clear (section I.1.3), higher-order
Clear (see [Dybjer 1981]), continuous Clear (see [Goguen, Thatcher,

Wagner and Wright 1977]), and predicate-calculus Clear (see

[Burstall and Goguen 1981]). The version of Clear whose

implementation is described in chapter IV is a combination of error
Clear, conditional Clear and predicate-calculus Clear, with some

further extensions.

Are there any useful institutions which do not satisfy the extra

conditions? It is not difficult to think of a cocomplete category

which does not satisfy the conditions -- for example, the natural
numbers form a cocomplete category, where there is a (unique)

morphism n--+m iff n<m (we ignore the fact that natural numbers can

be represented as sets so that the extra conditions are satisfied)
-- but it is hard to imagine a useful specification language using

natural numbers for signatures. It may be that the greater
generality of an institution is not useful in practice, but it is
also possible that there is some undiscovered useful version of

-91-

Clear in which signatures and their morphisms do not satisfy our

extra conditions.

There is at least one useful non-institution which satisfies our

conditions. If signature morphisms in polymorphic Clear are

generalised so that sort generators can map to sort terms containing
variables (not just other sort generators) then signatures cannot be

'put together' in the required way (that is, the resulting category

of signatures is not cocomplete) although all the conditions given

above are still satisfied. This 'extended polymorphic Clear' seems

more natural than ordinary polymorphic Clear. For example, if T is
a theory of polymorphic lists (including the nullary sort generator

'nat' and the unary sort generator 'list') and 2 is a signature for
stacks of natural numbers (including the nullary sort generator

'stacknat'), then in extended polymorphic Clear we can write:
derive 2 from T o

where o = (stacknat Hlist(nat), ...]. This is not allowed in
ordinary polymorphic Clear. Burstall and Goguen's (1980] semantics

could be modified to permit generalisation to extended polymorphic

Clear (the category of signatures really need only have an initial
object, coproducts and a funny kind of asymmetric pushout --
arbitrary colimits are not required) but much of its elegance would

then be lost.

-92-

CHAPTER FOUR

AN IMPLEMENTATION OF CLEAR AND SC14E SPECIFICATION EXAMPLES

In this chapter an implementation of Clear is discussed along

with some of the specifications it has been used to process. This

implementation is somewhat unusual in that it is (with the exception

of a parser and a typechecker) a direct translation into HOPE of the

denotational semantics of Clear described in the last chapter. This

approach to language implementation is similar to that of Mosses

[1976] who has developed a system which carries out the translation
from denotational semantics to a lower-level language automatically.
Although such an approach results in an implementation which may be

inefficient (compared with a 'normal' implementation) it is nearly
guaranteed to be correct because it is only a short step away from

the formal definition of the language.

It is important to stress exactly what is meant by "an

implementation of Clear". Before Clear was invented, in order to
specify a problem we would have to write down a theory explicitly -
for a large problem this is a long list of sorts, operators and

axioms. Such a theory can be described in Clear in a highly
structured way as the combination (using theory-building operations
like combine and apply) of a number of small theories. The

semantics of Clear specifies the correspondence between such a

structured description and the theory it describes. An

implementation of Clear is then a program which takes a Clear

specification to the theory it denotes, checking in the process that
the syntax and types are correct. Since the set of axioms in the

resulting theory may be infinite, the program cannot represent it
explicitly; such sets will be described using a very simple

language. Although a data constraint gives rise to inequalities and

an induction rule (section VI.3), the implementation does not

perform the conversion.

An implementation of Clear is useful for a variety of reasons.

First, when the implementation is a direct translation of the

semantic definitions it can be used to debug the definitions

-93-

themselves; the semantics of any real language is large and complex

enough that errors are bound to crop up. In fact, several minor

errors were discovered in an earlier version of the semantics of
chapter III during testing of its implementation, and the

implementation of Clear's category-theoretic semantics (chapter V)

uncovered a serious error in Burstall and Goguen's [1980] original
semantics, as discussed in section 111.3-

A second use for an implementation would be in checking

specifications for syntactic and semantic errors. Although an

important goal of any specification language is to permit theories
to be easily described, mistakes are always easy to make. Some

errors are difficult for an implementation to catch (and of course

an implementation of the semantics cannot determine if a

specification has the class of models intended by its author), but

still it is comforting to know that a specification contains no

glaring mistakes -- this is similar to the peace of mind a HOPE

programmer (or a programmer in any other strongly typed language)

has when a program survives the typechecker's inspection without a

fault being discovered.

A third use for an implementation is simply to produce

denotations of specifications. These can be inspected by the user

to find out whether the result is as expected, or else used by a

theorem proving system (see chapter VI), a program development

system (see chapter VII), a program verification system, or for any

other purpose which requires specifications as input.

The Clear implementation is described in section 1. The intent
was to provide a practical implementation capable of being used for
the purposes described above. Some features are therefore supported

which make specifications easier to write but are not mentioned in
the semantics (errors, conditional equations, quantifiers and

typechecking). These are provided with an informal semantics based

on the semantic definitions of chapter III. The remainder of the

chapter is devoted to three specification examples, all of them

large enough to provide a challenge to the Clear system.

-94-

1. Implementation

The Clear implementation is composed of three parts: a parser, a

typechecker, and a semantic component (a fourth part -- a theorem

prover -- is discussed in chapter VI).

Parser
Semantic
component

Theorem
prover

(POP-2)
((HOPE) (ML/LCF)

I r

Typechecker
(POP-2)

The parser is adapted from David MacQueen's parser for HOPE, written
in POP-2. It parses the language described by the grammar of
section 111.4 (with a minor addition -- "T enriched Enr" is
permitted as an alternative to "enrich T Enr") and also provides

facilities for the declaration and use of 'distributed-fix'

operators as in HOPE and OBJ (Goguen and Tardo 19791. Distributed-

fix operators are declared in the same way as normal operators, but

with their special syntax displayed (surrounded by parentheses):

opns f : nat,nat -> nat
(+ _) : nat,nat -> nat
(if then - else _) : bool,nat,nat -> nat

e ns if n==0 then m+3 else (m+n) = f(n,m)

As shown, such operators may be used in equations once they are

declared. It is not possible to give a distributed-fix operator a

special precedence; for this reason the parentheses in the left-hand
side of the equation above are unavoidable, as + cannot be given a

higher precedence than else. The name of a distributed-fix operator

(for use in signature changes in derive's and procedure

applications) is the leftmost identifier in its declaration (so +

and if are the names of the operators declared above). A comment

may appear anywhere in a specification preceeded by an exclamation

mark (as in POP-2 and HOPE).

The typechecker is adapted from another piece of the HOPE system

-- David MacQueen's polymorphic typechecker with facilities for

-95-

resolving occurrences of overloaded operators. Polymorphic types

are not allowed in Clear, so the full facilities of the typechecker

are not needed. But if the system is ever extended to allow

polymorphism (as described in section 111.6) the same typechecker

can be used without modification. The Clear system does make use of

the facilities for resolving overloaded operators; this allows the

user to write equations without using qualified operators (such as

"o of T") except in the rare cases when the equation would otherwise

be truly ambiguous. The user is also not required to supply the

types of variables in equations, since the typechecker can determine

them automatically (but variable declarations can be given if

desired, and they are occasionally needed to help resolve

overloading).

The semantic component consists of the semantic definition of
Clear in chapter III translated into HOPE. This is the heart of the

Clear system -- the parser serves as a front end to the semantics,

and the typechecker extends the semantics to provide automatic
resolution of overloaded operators. Of course, both the parser and

the typechecker also report any errors they discover, providing a

valuable error-checking facility. Two versions of the system exist;
one is prolific and the other nonprolific (incorporating the changes

described in section 111.5).

The translation from the mathematical definitions of chapter III
to HOPE was a straightforward task. A function newname (which

produces a unique name each time it is called) was added to HOPE to
generate the tags used by the semantics. Strictly speaking, this
addition renders HOPE nonapplicative but it is far more convenient

than alternative ways of generating unique names. The only major

problem to be solved in translating the definitions was how to
represent and manipulate closed sets of equations and constraints in
HOPE, given that:

- A closed set of equations and constraints will normally be
infinite.

- The closure operation is defined model-theoretically.

- No complete proof system exists for Clear (see section
VI.5).

-96-

Faced with such insurmountable difficulties we are obviously unable

to give any explicit representation of a closed set of equations and

constraints. Such sets can only be described using some language

which must be left uninterpreted for the moment.

This matter is discussed at somewhat greater length in chapter

VI, where the problem of interpreting such a representation

(determining if a given equation is in the infinite closed set thus

described) is addressed. A closed set of equations and constraints
may be represented as an agglomerate, a value of a data type with

several uninterpreted constructor functions. An examination of the

semantics reveals that five constructors suffice for the

representation of all necessary values. Two constructors are used

to represent the result of the combine operation:

union : agglomerate x agglomerate -> agglomerate
translate : signature-morphism x agglomerate -'1 agglomerate

The first produces (an agglomerate representing) the closure of the

union of two closed sets, and the second produces (a representation

of) the closure of the set which results from applying a signature

morphism to each equation and constraint in a set. The enrich
operation needs the closure of a (finite) set of equations and

constraints:

close : equation-set x constraint-set --* agglomerate

Derive requires the inverse image of a set under a signature

morphism:

inv-translate : signature-morphism x agglomerate --j agglomerate

And data-enrich needs the result of adding to a set all equations

which are true about the equality predicates on a set of sorts (see

section III.2.3 for details -- for the purposes of the theorem

prover described in chapter VI we record the signature inclusion
o":j yx rather than the set of sorts S and the tag x):

add-equality : signature-morphism x agglomerate -4 agglomerate

The Clear semantics program does not use these constructors

-97-

directly; instead it uses functions which apply the appropriate

constructor and then simplify the result. Only a few

simplifications are applied, such as:

translate (o-,translate (o'',A)) = translate(o"'.cr,A)

Care is taken not to disturb the structure of agglomerates, since

the theorem prover described in chapter VI employs heuristics which

make use of this structure. We postpone the presentation of the

formal semantics of agglomerates until then; the informal meaning of
each constructor as given above should be enough for now. An

alternative name for an agglomerate would be structured theory,

because an agglomerate displays (in 'flattened' form, with procedure

applications removed) the structure of the original Clear

specification. An ordinary (data) theory (chapter II) contains only

a set of equations and constraints.

In developing the Clear system the intention was to provide a

practical system for writing and checking specifications which could

some day be incorporated in a program development or program

verification system. It is vitally important that specifications be

easy to write and understand, and that the specification language

itself possess a well-defined semantics. Clear satisfies the latter
goal, but not always the former; its limitations make it rather
difficult to write some specifications. The system therefore
supports several extensions which make specifications easier to
write but are not mentioned in the semantics. As each one of these

is described below it is provided with a (sometimes informal)
semantics to justify its inclusion and explain its meaning.

Errors

Error operators and error equations are allowed along with
ordinary (OK) operators and equations. This extension and its
semantics has already been discussed in sections I.1.3 and 111.6,

and is discussed at greater length in [Goguen 1978).

-98-

Conditional equations

Besides the usual equations, conditional equations such as the

following are allowed:

a is-in singleton(b) = false if not(a==b)

The condition must be a bool-valued term. Semantically, the

conditional equation t1=t2 if c is equivalent to the ordinary
equation cond(c,t1,t2)=t2, where cond:bool,s,s->s (for any sort s)

is a 'hidden' operator defined by the equations:

cond(true,a,b) = a cond(false,a,b) = b

Conditional equations have already been discussed in section I.1.3.

Multilevel binding

This is a convenience borrowed from HOPE (section A1.3). A

variable may be bound to the value of any term in an equation to
save writing the same term a second time, for example:

insert(R1 & insert(R,a,b), a, b) = R1

or alternatively:

insert(R1,a,b) = R1 where R1 = insert(R,a,b)

rather than insert(insert(R,a,b), a, b) = insert(R,a,b). This is a

purely syntactic feature; the system removes such bindings
immediately after parsing an equation containing them by replacing
each occurrence of the variable with a copy of the term. A variable
can only be so bound once in an equation, and may not itself appear

in the term to which it is bound.

Don't care variables

This is another feature borrowed from HOPE. Any variable which

appears only once in an equation may be replaced by an underscore to

-99-

save thinking of a name. The system replaces each underscore by a

uniquely generated variable name. The following two equations are

therefore equivalent:

isempty(push(,)) = false

isempty(push(v291,v292)) = false

Quantifiers

Equations may include existential and universal quantifiers, for
example:

even(n) exists m. (2 * m) _= n

prime(n) = n>1 and forall m, p. (1<m and 1<p) --> not(m*p == n)

The condition of a quantifier must be a bool-valued term, and the

result of a quantifier has type bool. It is easy to extend the

formal notion of equation and satisfaction (section 11-3) to
equations with quantifiers.

The system does not permit the use of quantifiers within data

enrichments. As noted in [Burstall and Goguen 1981], a data

enrichment of T in which quantifiers are included does not always

give rise to free extensions of models of T. If quantifiers are used

only outside data enrichments this is not a problem.

The prohibition on quantifiers within data enrichments could be

relaxed. Bergstra, Broy, Tucker and Wirsing [1981] describe a way

of coding quantifiers in ordinary Clear with equations using an

auxiliary operator. The only restriction is that quantification

must be over a previous 'data' sort; that is, a quantifier within a

data enrichment is safe as long as the quantified sort is not one of

those being added in the current enrichment.

Furthermore, note that the conditional equation:

t = t' if exists x. p(x)

is equivalent to:

-100-

t _ t' if p(x)

if x does not occur in t or t'. Existential quantifiers of this

special kind are therefore safe anywhere, even within the data

enrichment which adds the quantified sort. Neither of these two

exceptions to the exclusion of quantifiers within data enrichments

is recognised by the system.

Typechecking

The user is not required to provide variable declarations in
equations, or to use unambiguous operator names in equations and

signature changes. As already discussed, the typechecker includes

facilities for resolving overloaded operators which may be used to

disambiguate almost every reference to an overloaded operator. The

typechecker can also determine the types of variables automatically,

although the user may supply them if desired.

The semantics must be changed slightly to take advantage of the

facilities for disambiguation offered by the typechecker. An

operator name no longer denotes a single operator; it denotes the

set of all operators available with that name. The question of

which operator in the set is the right one is postponed until an

equation or signature change has been assembled. The typechecker is

then applied; it selects the appropriate operator from each set

based on the type information available from its context, yielding

an unambiguous equation or signature change.

But what if the equation or signature change is truly ambiguous,

and the typechecker is unable to select a single appropriate

operator from a set of well-typed possibilities? The obvious course

is to give an error message, telling the user that he must provide

more information (a variable declaration for example).

Unfortunately, there are some cases in which Clear does not provide

any way of unambiguously referring to a certain operator (or sort).

For example, in the theory

Set(Set(Nat[element is nat])[element is set]

there are two sorts called set and two operators

-101-

(_ U _):set,set->set. One of these sorts (and one of the operators)
may be unambiguously referenced using the expression "set of
Set(Nat[element is nat])" (respectively "U of

Set(Nat[element is nat])") in nonprolific Clear, but there is no way

of referring to the other sort (and operator). Another instance of

the same problem occurs in the specification example in section 2.2.

The solution adopted by the Clear system (the prolific version only)

is to select the operator with the largest tag (that is, the most

recently 'created' operator, since each tag includes a number and

tags are issued in increasing numerical order) whenever there is a

choice between several otherwise identical operators. The same

policy is used to select a sort when the reference given is

ambiguous. There is some logic in this choice; it should be easier

to refer to a recently created object than to an older object with
the same name, so in case of ambiguity it is natural to assume that
the most recently created object was intended. In the example just

discussed, the names set and U will refer to the otherwise

unnameable sort and operator. A warning message is produced

whenever this policy is applied.

The user is also not required to fully specify signature changes,

since in almost every case a signature change is nearly the identity
map, with just a few sorts and operators mapping onto different

objects. The system will 'fill in' signature changes, mapping each

sort and operator left unmentioned in the source signature onto the

same object in the target signature; if this fails then it is mapped

onto an object in the target signature with the same name but a

different tag, using the disambiguation policy mentioned above if

there is more than one choice. If there is still no match then the

system reports an error.

Theory library

The Clear system includes a library of basic theories which the

user may find useful in writing specifications. The library is
listed in Appendix 2.

-102-

The Clear system occupies 149K words on a DEC KL-10 computer (the

HOPE system itself occupies 66K words of this total, and the built-

in theory library occupies another 32K words). The timing figures

given after each example in the next section provide a measure of
the system's performance. Parsing and typechecking typically

account for about 6% of the processing time, with the remainder

consumed by the semantic component. Specifications may be typed

directly into the system or else read from files.

The system could be made much faster and smaller by recoding in a

lower-level language (such as BCPL) with some attention paid to

efficiency. It should be possible to process specifications at

least as rapidly as a typical compiler can process programs, since

there is nothing very complex about the computations required. The

program is slow because it is written mostly in HOPE; apart from the

speed of HOPE itself, the interfaces between the HOPE portions of

the program and the remaining portions (parser, typechecker and

theorem prover) contribute to its sluggishness.

--103-

2. Examples

The following subsections contain three specification examples

which have been processed by the Clear implementation described in

section 1. The first and third examples were processed by the

nonprolific version and the second example by the prolific version

of the program (but without the theorem prover discussed in chapter

VI) which failed to detect any errors. This does not ensure that

the specifications have the intended classes of models, but only

that their syntax and types are correct.

The examples are presented only as sample specifications;
although the problems are interesting in themselves, the discussion

which accompanies each example concentrates on very briefly
describing the specification and dealing with the problems of style

which arise. The time which was required to process each

specification is given to provide some indication of the system's

performance.

2.1. Length of the longest upsequence

This problem comes from a set of specification and program

development tasks [IFIP WG 2.1 1979] circulated prior to the

December 1979 IFIP WG 2.1 meeting in Brussels. The following

informal specification is taken from that source:

Given a sequence of n integers, a0, a1, ... an_1, an
upsequence is a subsequence which is ordered in ascending
order. A subsequence is any subset of the original sequence
where the original order is retained (there are 2n possible
subsequences). Ordered in ascending order means that no

element of the upsequence has a right hand neighbor smaller
than itself.

Give an algorithm which, given a sequence, computes the
length of its longest upsequence.

Note that all subsequences of length 1 are upsequences by
this definition.

There may be more than one longest upsequence having the
same length, for example the sequence (3,1,1,2,5,3) yields 4

for the maximum length, realised either by (1,1,2,5) or

(1,1,2,3).

The statement of the problem asks for an algorithm, but a

specification is given instead (an algorithm is given by Dijkstra

-104-

[1980]). The specification is quite straightforward; an upsequence

is defined as an ordered subsequence, and then a hidden operator

producing any of the longest upsequences of a sequence is used to

specify the length of the longest upsequence. The operator is

hidden because we do not wish to bias the specification toward

solutions which generate longest upsequences; it is possible to

determine the length of the longest upsequence without explicitly

generating the upsequence itself.

roc Subsequence(X:Ident) _

enrich Sequence(X)
opns (_ is_subsequence_of) : sequence,sequence -> bool
egns s is_subsequence_of exists a, b, x, y.

(a.b==s and x.y==t
and a is_subsequence_of x
and b is_subsequence_of y)

empty is_3ubsequence_of = true
s is_subsequence_of empty = s==empty
unit(a) is_subsequence_of t =

exists x, y. (x.unit(a).y==t) enden

proc Upsequence(X:POSet) _

enrich Subsequence(X)
opns (_ 13-ordered) : sequence -> bool

(_ is_upsequence_of) : sequence,sequence -> bool
egns s 13-ordered = forall x, a, y, b, z.

(x.unit(a).y.unit(b).z==s --> a=<b)
s is_upsequence_of t = s is_subsequence_of t

and (s 13-ordered) enden

proc LongestUpsegLength(X:POSet) _

let LongestUS =

enrich Upsequence(X)
opns longest_upseq : sequence -> sequence
e ns length(p)=<length(longest_upseq(s)) = true

if p is_upsequence_of s

longest_upseq(s) is_upsequence_of s = true enden in
derive o ns longest_upseq_length : sequence -> nat

using Upsequence(X)
from

enrich LongestUS
opns longest_upseq_length : sequence -> nat
e ns longest_upseq_length(s) = length(longest_upseq(s))

enden endde

This procedure may now be applied to (for example) the theory of
natural numbers (which includes =<) to specify the length of the

longest upsequence of a sequence of natural numbers:

LongestUpsegLength(Nat[element is nat])

-105-

Processing time: 1.65 minutes.

2.2. Lexical analysis problem

The following problem comes from the same source as the problem

in the last section (see [IFIP WG 2.1 19791) and the informal

specification below is taken from there. The problem bears some

resemblance to a part of the well-known 'Telegram problem' due to

Henderson and Snowdon [1972) but is slightly simpler.

A line consists of a sequence of characters composed of
letters and blanks only. A word is a sequence of letters
delimited by blanks or the end of the line. The parse of a

line is the sequence of words, in order, contained in the

line. Give the algorithm for obtaining the parse of a line,
given the line.

Again, a specification is given for the problem rather than an

algorithm. The specification relies heavily on the notion of a

regular expression and the set of strings described by a regular
expression (see [Hopcroft and Ullman 19791). Regular expressions

are used as a tool to specify the action of the 'parser'.

meta Classify
enrich Triv + Bool

sorts type
opns (_ isa element,type -> bool enden

Permissible parameters for RegExpr will be theories describing a

relation between objects and a set of basic types. The result of

applying RegExpr to such a theory is the theory of regular

expressions over the given types, providing a way of describing

sequences of objects using 'complex' types.

-106-

proc RegExpr(X:Classify)
let RE _

enrich X

data sorts regexpr
opns empty : regexpr

type -> regexpr
regexpr,regexpr -> regexpr

(*)r: regexpr -> regexpr
egns e* = empty U (e.(e*)) enden in

enrich RE + Sequence(X)
opns (_ isa _) : sequence,regexpr -> bool
egns s isa empty = s=:empty

unit(a) isa 't' = a isa t
s isa 't' = false if not(length(s)==1)
3 isa (el U e2) _ (s isa el) or (s isa e2)
s isa (el . e2) =

exists 31,32. (s==(s1.s2) and (s1 isa el)
and (s2 isa e2)) enden

CharacterClassify describes a classification of characters into
two disjoint types: separators (blanks) and letters (everything

else). The procedure application:

RegExpr(CharacterClassify[element is character])

gives the theory of regular expressions over these types. One such

regular expression is:

('letter' *) U ('separator' *)

denoting all sequences which contain either letters or separators

but not both. (The operator U is used rather than the usual +

because + is a Clear keyword.)

const CharacterClassify =

let Type =

enrich Bool by
data sorts type

opns letter, separator : type enden in
enrich Type + Character

opns (_ isa) : character,type -> bool
egns c isa separator = c==blank

c isa letter = not(c==blank) enden

WordsandGaps defines two special regular expressions which will

be useful in specifying the parser.

-107-

const WordsandGaps
enrich RegExpr(CharacterClassify[element is character])

opns word, gap : regexpr
e ns word = 'letter' . ('letter' *)

gap = 'separator' . ('separator' *) enden

The specification of the parser below is simple and direct. Gaps

in a sequence act as separators where the result is the

concatenation of the parses of the two halves. A sequence without a

gap is either a word (which parses to the unit sequence of words

containing the word itself) or empty. This specification was

processed by the prolific version of the Clear implementation

because it relies on the 'largest-tag' method (discussed earlier)
for disambiguation of a reference to the sort 'sequence'.

const Parse =

enrich Sequence(WordsandGaps[element is sequence])
opns parse : sequence of WordsandGaps -> sequence

I result sort resolved by the disambiguation
I method discussed in section 1 (Typechecking)

eqns parse(x.g.y) = parse(x).parse(y) if g isa gap

parse(empty) = empty
parse(x) = unit(x) if x isa word enden

Processing time: 1.04 minutes.

Regular expressions seem to be very useful in the specification
of problems of this kind as they provide quite a high-level way of
describing sequences; this permits very elegant specifications of
sequence-manipulation operators (such as parse above). The idea of
using regular expressions in Clear specifications is due to R.M.

Burstall.

2.3. Polymorphic type checking

The specification below describes a polymorphic typechecker for a

simple applicative language. Such typecheckers are used in the

implementation of HOPE (appendix 1) and ML [Gordon, Milner and

Wadsworth 19791. Informally, the problem is as follows: given an

expression exp in the language Exp generated by the following
grammar (where x is any identifier, function application is denoted

-108-

by juxtaposition, and fix x.e is the least fixed-point of Ax.e):

(e e') if e then e' else e" 1 lambda x.e
fix x.e let x=e in e'

with some predefined identifiers (of predefined types), assign a

polymorphic type to every subexpression of exp so that the result is

well-typed; if no well-typing exists then return an error. The

notion of a well-typed expression is defined in section 3 of [Milner

1978] and depends on the definitions of several subsidiary notions

so it is not reproduced here except in the specification itself. A

polymorphic type is any of the following:

- a basic type (e.g. bool)

- a type variable

- a -4 g, where a and S are polymorphic types.

Given the following predefined identifiers:

b : bool f : a -4 a n : num m : num

this Exp expression is well-typed:

(let g:a->a = f:(a-4a)->(a->(x) (f:a->a) : a->a in
(if g:bool->bool (b:bool) : bool
then g:num-i num (n:num) : num
else m:num) : num

num

but this expression is not:

(if b:bool then f:bool-*bool (b:bool) : num
else m:num) : num

(f:bool--*bool applied to b:bool gives a result of type bool, not

num).

The language Exp and the definition of polymorphic types are

rather simpler than a real language and its types would be. There

is no provision for tupling (and so functions always have one

argument), no type constructors (such as list, which can be used to

-109-

construct types like list(a), list(bool), and list(list(a)- 0)) and

no constants (but we imagine instead that some identifiers are bound

in advance to certain constant values). But the language as it
stands is large enough to expose the main problems arising in a

polymorphic typechecker for a larger language.

The specification is more or less a direct translation into Clear

of section 3 of [Milner 19781. Some explanation of the notions

defined by the specification is given below, but the careful reader

is encouraged to refer to [Milner 1978] for more background and

motivation. This is the largest specification which has so far been

processed by the Clear system. Some measure of the usefulness of
the system is given by the fact that it found 19 errors in
successive versions of the specification. The present version may

still contain some semantic errors, but at least it is better than

the first version of the specification.

The typechecking function will be defined 'implicitly'; once the

notion of a well-typed expression has been specified it is enough to

say that for any expression typecheck assigns a well-typing if one

exists. The specification of well-typed requires a number of prior
notions; the language Exp and a theory of types and typed

expressions is followed by the definition of technical notions
concerning type variable instantiation.

The specification begins with a definition of the abstract syntax

of the language Exp. After giving the theory of identifiers (by a

loose specification -- any set with an equivalence relation will do)

we specify Exp's syntax using distributed-fix operators for
readability. All Exp keywords are capitalised to avoid conflicts
with Clear syntax.

const Id =

enrich Bool
sorts id
opns (_ __) : id,id -> bool

e ns x==x = true
x==Y = Y==x
x==y and y==z -> x=:z = true enden

-110-

const Expr =

enrich Id

data sorts expr
o ns (VAR _) : id -> expr

(APPLY TO _) : expr,expr -> expr
(IF THEN ELSE _) : expr,expr,expr -> expr
(LAMBDA .~_), (FIX . _) : id,expr -> expr
(LET BE IN) : id,expr,expr -> expr enden

Next we specify polymorphic types. It is assumed that we are

given an arbitrary set of basic types which includes BOOL; therefore
the theory of basic types is just like the theory of identifiers Id

above except for the name of the sort and the addition of a

distinguished element called BOOL. Likewise, type variable names

are arbitrary and so again we use Id with a change of sort name.

Then a type is defined to be either a basic type, or a type
constant, or an 'arrow' type a--->q where a and q are types.

const BasicType =

let T =

derive sorts basictype
opns basictype,basictype -> bool

using Bool
from Id

basictype is id endde in

enrich T

opns BOOL : basictype enden

const TypeVar =

derive sorts typevar
o ns typevar,typevar -> bool

using Bool
from Id
by typevar is id endde

const Type =

enrich BasicType + TypeVar
data sorts type

opns constant : basictype -> type
var typevar -> type
(_ ---> _) : type,type -> type enden

A typed expression is an expression of Exp with types assigned to

all its subexpressions. The easiest way to define typed expressions

is to repeat the specification of Exp syntax, adding slots for the

insertion of type information. Initial keywords are prefixed with T

to avoid conflict with the distributed-fix operators declared in the

theory Expr; the parser does not permit two distributed-fix

operators having the same initial keyword but different subsequent

syntax. A operator typeof giving the (top-level) type of a typed

expression is defined for the convenience of later parts of the

specification.

The theory TypedExprEq defines another operator which will be

convenient later. It determines if an expression is identical to a

typed expression, forgetting about types.

con3t TypedExpr =

enrich Id + Type
data sorts typedexpr

opns (TVAR ; _) : id,type -> typedexpr
(TAPPLY TO ; _) :

typedexpr,typedexpr,type -> typedexpr
(TIF THEN ELSE 1 _) :

typedexpr, typedexpr,typedexpr,type -> typedexpr
(TLAMBDA

1
.

i), (TFIX i . _) :

-> typedexpr
(TLET ; BE IN ; _)

id,type,typedexp ,,typedexpr,type -> typedexpr
typeof : typedexpr -> type

e ns typeof(TVAR _;t) = t

typeof(TAPPLY TO _it) = t

typeof(TIF THEN ELSE _;t) = t

typeof(TLAMBDA . _;t) = t

typeof(TFIX _;t) = t

typeof(TLET BE IN ;t) = t enden

const TypedExprEq =

let TEE =

enrich TypedExpr + Expr
opns (_ __ _) : expr,typedexpr -> bool

forget : typedexpr -> expr
e ns forget(TVAR x;_) = VAR x

forget(TAPPLY a TO b;_) = APPLY forget(a) TO forget(b)
forget(TIF a THEN b ELSE c;_) =

IF forget(a) THEN forget(b) ELSE forget(c)
forget(TLAMBDA xi_ . a;_) = LAMBDA x . forget(a)
forget(TFIX x;_ . a;_) = FIX x . forget(a)
forget(TLET x;_ BE a IN b;_) _

LET x BE forget(a) IN forget(b)
e==te = e==forget(te) enden in

-112-

derive o ns (_ == _) : expr,typedexpr -> bool
using TypedExpr, Expr
from TEE endde

A (typed) prefix is a sequence of items of the form let x;t,
fix x;t or lambda xit where x is a variable and t is a type.

Initial keywords are prefixed with P to avoid conflict with Expr and

TypedExpr. A prefix can be thought of as a list of bound variables

('most local' bindings are rightmost) which records the way that
each variable was bound as well as its type. A prefixed expression

(pe) is a prefix together with a typed expression. We include an

'error' pe called illtyped for later use. The typechecker will be

defined to take a prefix and an (untyped) expression and return a

well-typed pe -- illtyped is the result if it is impossible to
assigned a well-typing to the input expression.

con3t Prefix

let PrefixElement =

enrich Id + Type

data sorts prefixelement
o ns (PLET _), (PLAMBDA (PFIX

id, type -> prefixelement enden in

derive sorts prefix
opns empty : prefix

unit : prefixelement -> prefix
() prefix,prefix -> prefix

prefix,prefix -> bool
using PrefixElement
from Sequence(PrefixElement[element is prefixelement])
by prefix is sequence endde

const PrefixExpr =

enrich Prefix + TypedExpr
data sorts prefixexpr

opns (_ ; _) : prefix,typedexpr -> prefixexpr
erroropns illtyped : prefixexpr enden

Each prefixed expression has a set of sub-pe's given by the

following rules, together with their reflexive-transitive closure:

- p;x has no sub-pe's except itself,

- p;(e e') has sub-pe's pie and pie',

-113-

- p;(if e then e' else a") has sub-pe's pie, pie' and pie",

- pi(lambda x.e) has sub-pe (p.lambda x)le,

- pi(fix x.e) has sub-pe (p.fix We,

- pi(let x=e in e') has sub-pe's pie and (p.let x)1e.

A sub-pe is thus a subexpression with a prefix consisting of all the

variable bindings which enclose it. We define below a operator

which yields the set of sub-pe's of a prefixed expression, where the

types in the sub-pe's are induced by the types in the pe.

const SubPE _

enrich PrefixExpr + Set(PrefixExpr[element is prefixexpr]) by

opns subpe : prefixexpr -> set
egns subpe(pe & (_ (TVAR _;_))) = singleton(pe)

subpe(pe & (p (TAPPLY a TO b;))) =

singleton(pe) U subpe(p;b)
subpe(pe & (p (TIF a THEN b ELSE ci_))) _

singleton(pe) U subpe(p;a) U subpe(pib)
U subpe(p;c)

subpe(pe & (p (TLAMBDA x;t . a;_))) = singleton(pe)
U subpe(p unit(PLAMBDA x;t) ; a)

subpe(pe & (p (TFIX x;t . a;))) = singleton(pe)
U subpe(p x;t) ;

a)

subpe(pe & (p 1 (TLET x;t BE a IN b;_))) = singleton(pe)
U subpe(p . unit(PLET x;t) ; b)

U subpe(p;a) enden

An item let x; t, fix x1 t or lambda x: t in a prefix p is said to

be active in p iff no prefix element containing x occurs to the

right of it in p. That is, a binding is active in a prefix if it has

not been hidden by a more local binding of the same identifier.

const Active =

let Var =

enrich Prefix
opns var : prefixelement -> id
e ns var(PLET x;) = x

var(PLAMBDA x;_) = x
var(PFIX x;-) x enden in

-114-

let IsActive =

enrich Var
opns (_ is-active-in _) : prefixelement,prefix -> bool
e ns is-active-in empty = false

p is-active-in (_ . unit(p)) = true

p is_active_in (s . unit(q)) = false
if not(p==q) and var(p)==var(q)

p is_active_in (s unit(q)) = p is-active-in s
if not(var(p):=var(q)) enden in

derive opns (_ is-active-in _) : prefixelement,prefix -> bool
using Prefix
from IsActive endde

Given a prefixed expression pie and a binding let x;t in p, a

type variable in t which does not occur in the type of any enclosing

lambda or fix binding (that is, in the type of any lambda or fix

item to the left of the let in p) is called generic for the binding

let x;t. Only generic type variables are instantiable; other type

variables are fixed (at least locally). The operator is-generic-in

is defined below to determine if the given type variable is generic

for the PLET prefix element at the rightmost extremity of the given

prefix. It is not defined for prefixes not ending with a PLET.

Milner [1978) also defines what it means for a type variable which

is in the expression part of a prefixed expression to be generic.

This concept is not needed to characterise well-typed expressions so

it is omitted here.

const VarsinType
enrich Type + Set(TypeVar[element is typevar))

opns varsintype : type -> set
egns varsintype(constant(_)) = empty

varsintype(var(x)) = singleton(x)
varsintype(tl ---> t2) = varsintype(tl) U varsintype(t2)

enden

const GenericVars =

let NonLetVarsinPrefix =

enrich Prefix + VarsinType
opns nonletvars : prefix -> set
e ns nonletvars(empty) = empty

nonletvars(unit(PLET _;)) = empty
;t)) = varsintype(t)

nonletvars(unit(PFIX ; t)) = varsintype(t)
nonletvars(s . t) = nonletvars(s) U nonletvars(t)

enden in

-115-

let GenVars =

enrich NonLetVarsinPrefix
o ns (is-generic-in _) : typevar,prefix -> bool
egns v is-generic-in (s.unit(PLET _;t))

(v is-in varsint7ype(t))
and not(v is-in nonletvars(s)) enden in

derive opns (_ is-generic-in w) : typevar,prefix -> bool
using Prefix, VarsinType
from GenVars endde

A generic instance of a type t of a prefix element let x;t is an

instance of t in which only generic type variables of t are

instantiated. We must first specify what it means for one type to

be an instance of another; "t1 is-instance-of t2 wrt S" is defined

below to be true iff t1 is an instance of t2 with respect to the

type variables in S. Note that any prefix given to

is-generic-instance-of must have the appropriate PLET at its

rightmost extremity; otherwise the result is not defined.

const Instance =

let Substitution =

enrich Type + Map(TypeVar[element is typevar],
Type[element is type])

opns substitute : type,map -> type
e ns substitute(constant(b),) = constant(b)

substitute(var(x),f) = f[x] if x is-in domain(f)
substitute(var(x),f) = var(x)

if not(x is-in domain(f))
substitute(t1--->t2,f)

substitute(tl,f) ---> substitute(t2,f) enden in

enrich Substitution
opns (_ is-instance-of wrt) : type,type,set -> bool
e ns tt is-instance-of t2 =

exists f. ((domain(f)==S)
and (substitute(t2,f)==t1)) enden

const GenericInstance =

enrich Instance + GenericVars
o ns (_ is_generic_instance_of type,prefix -> bool
egns t1 is_generic_instance_of (p & (_ . unit(PLET _;t2)))

exists S. (t1 is_instance_of t2 wrt S
and forall v. (v is_in S -->

v 13-generic-in p))

enden

116-

A prefixed expression pie is standard iff for every sub-pe p' :e'
the generic type variables of each let binding in p' occur nowhere

else in p':e'. For example, the following prefixed expression is
standard:

(lambda x:ac . let f:(c--->P) : (fi(X --->$ x:(X) : $)

(only 3 is generic, and it appears only in the let) but this one is
not:

(lambda x:(x . let f:oc--->5) (f1ac----> x: (X)

A well-typed prefixed expression is required to be standard for

technical reasons; the reader is referred to [Milner 19787.

const Standard =

let VarsinTypedExpr =

enrich TypedExpr + VarsinType
opns varsintypedexpr : typedexpr -> set
e ns varsintypedexpr(TVAR _:t) = varsintype(t)

varsintypedexpr(TAPPLY a TO bit) = varsintype(t)
U varsintypedexpr(a) U varsintypedexpr(b)

varsintypedexpr(TIF a THEN b ELSE c:t) = varsintype(t)
U varsintypedexpr(a) U varsintypedexpr(b)
U varsintypedexpr(c)

varsintypedexpr(TLAMBDA _:t1 . a:t2) = varsintype(tl)
U varsintype(t2) U varsintypedexpr(a)

varsintypedexpr(TFIX :t1 . a:t2) = varsintype(tl)
U varsintype(t2) U varsintypedexpr(a)

varsintypedexpr(TLET _:t1 BE a IN b:t2)
varsintype(tl)

U varsintype(t2) U varsintypedexpr(a)
U varsintypedexpr(b) enden in

let VarsinPrefix =

enrich Prefix + VarsinType by
opns varsinprefix : prefix -> set
egns varsinprefix(empty) = empty

varsinprefix(unit(PLET _:t)) = varsintype(t)
varsinprefix(unit(PLAMBDA :t)) = varsintype(t)
varsinprefix(unit(PFIX _:t)) = varsintype(t)
varsinprefix(s . t) _

varsinprefix(s) U varsinprefix(t)
enden in

-117-

let IsStandard =

enrich SubPE + GenericVars + VarsinTypedExpr
+ VarsinPrefix

opns (_ isstandard) : prefixexpr -> bool
genericvarsok : prefix,prefixexpr -> bool

I auxiliary opn -- checks a given PLET
exposelet : prefix -> prefix

I auxiliary opn -- exposes next PLET
egns pe isstandard =

forall p, e. ((pie) is-in subpe(pe)) -->
genericvarsok(exposelet(p),ple)

genericvarsok(empty,_) = true
genericvarsok(p & (s . unit()),pl e) _

forall v. ((p==(p.v))

forall x. (x is-in (varsintypedexpr(e)
U varsinprefix(s.v))

--> not(x is-generic-in p)))
and genericvarsok(exposelet(s),pl e)

exposelet(empty) = empty
exposelet(p & (. unit(PLET _;_))) = p

exposelet(s . unit(PLAMBDA _;_)) = exposelet(s)
exposelet(s . unit(PFIX ;)) = exposelet(s) enden in

derive opn3 (_ isstandard) : prefixexpr -> bool
using SubPE, GenericVars
from IsStandard endde

Armed with all the definitions given above, we can finally define

what it means for a prefixed expression to be well-typed (wt).

- pi(TVAR x;t) is wt iff it is standard, and either

lambda x;t or fix x;t is active in p, or

let x;t' is active in p and t is a generic instance
of t'.

- pi(TAPPLY a TO e'it") is wt iff pie and pie' are wt and
t = t'--fit", where t and t' are the types assigned to e and
e'.

- W TIF e THEN e' ELSE a";t) is wt iff pie, pie' and pie"
are wt, the type of e is BOOL and the types of e' and e"
are both t.

- pi(TLAMBDA x;t . e';t") is wt iff (p.PLAMBDA x;t);e' is wt
and t" = t--4t I, where t' is the type of e'.

- pi(TFIX xit . e'it") is wt iff (p.PFIX xit)ie' is wt, t=t"
and the type of e' is t.

- p;(TLET xit BE e IN e';t') is wt iff pie and

-118-

(p.PLET x;t);e' are wt, the type of e is t and the type of
e' is t'.

See the beginning of this section for examples of well- and ill-

typed expressions.

Once the operator is_welltyped has been defined, we specify the

typecheck operator by saying that anything typecheck returns is
well-typed and identical (except for types) to the prefixed
expression it was given, if some well-typing exists then typecheck

finds one (not necessarily the same one), and if no well-typing
exists then typecheck returns illtyped (the error pe). Note that
this specification only requires typecheck to find some type; the
type it finds is not necessarily the best (most general) one.

const WellTyped =

! expose a given (active) prefixelement
let Expo3eActive =

enrich Prefix by
opns exposeactive : prefixelement,prefix -> prefix
egns exposeactive(pe,p & (_ . unit(pe))) = p

exposeactive(p,s . unit(q)) = exposeactive(p,s)
if not(p==q) enden in

let I3WellTyped =

enrich Standard + Genericlnstance + Active + ExposeActive
opns (_ is_welltyped) : prefixexpr -> bool
egns (pe & (p ; (TVAR x;t))) is_welltyped =

((PLAMBDA xit) is-active-in p
or ((PFIX x1t) is-active-in p)
or (exists t1. ((PLET xitl) is-active-in p and

(t is-generic-instance-of
exposeactive(PLET x;tl,p)))))

and pe isstandard
p (TAPPLY a TO b;t) is_welltyped

(pia) is_welltyped and ((p;b) is_welltyped)
and typeof(a)==(typeof(b)--->t)

p (TIF a THEN b ELSE cit) is_welltyped
_ (pla) is_welltyped and ((p;b) is_welltyped)

and ((plc) is_welltyped) and typeof(b)==t
and typeof(c)==t and typeof(a)==constant(BOOL)

p (TLAMBDA x;tl . a;t2) is_welltyped
_ (p . unit(PLAMBDA xitl) ; a) is_welltyped

and t2;=(t1--->typeof(a))
p (TFIX xitl . a1t2) is_welltyped

(p . unit(PFIX x;tl) 1 a) is_welltyped
and tl==t2 and typeof(a)==t2

p (TLET x;tl BE a IN b;t2) is_welltyped
(p . unit(PLET xitl) ; b) is_welltyped
and (p;a) is_welltyped and tl==typeof(a)
and typeof(b)==t2 enden in

-119-

derive opns (_ is_welltyped) : prefixexpr -> bool

using Standard, Genericlnstance, Active
from IsWellTyped endde

const Typecheck =

enrich WellTyped + TypedExprEq
opns typecheck : prefix,expr -> prefixexpr
e ns (pie) is_welltyped and eO==e = true

if typecheck(p,eO)==(p;e)
exists el. (typecheck(p,eO)==(p;e1)) = true

if exists e. ((pie) is_welltyped and e0==e)
erroregns typecheck(p,eO) = illtyped

if not(exists e. ((pie) is_welltyped
and e0==e)) enden

Processing time: 15.1 minutes.

If an additional operator is defined which recognises if the type

of one prefixed expression is a generic instance of the type of
another:

(_ is-generic-instance-of _) : prefixexpr,prefixexpr -> bool

then adding the following equation to Typecheck specifies that the

operator typecheck always finds the most general type:

typecheck(p,eO) is-generic-instance-of pie = true
if (pie) is_welltyped and a==e0

This addition was omitted from the specification in the interests of
brevity.

The specification is a straightforward translation of [Milner
1978); its complexity is due almost entirely to the number and

complexity of the notions which must be defined in order to specify
which expressions are well-typed. It is of course more difficult to

specify concepts precisely in Clear than in English, since a phrase

like "... does not occur in any enclosing binding" must necessarily
be described as a search of some kind in Clear, probably involving
one or more auxiliary operators which for the sake of tidiness must

later be hidden using a derive. With higher-order types such

-120-

routine searches could largely be expressed using a few special

operators (such as

occurs : sequence,(element->bool) -> bool

for searching a sequence for an element satisfying a certain
condition) as in HOPE, but the Clear system does not yet permit such

operators. Goguen [1981] indicates that meta-operations (apparently

like macros) will be available in the Ordinary specification
language for this purpose.

It would be possible to give both a higher-level and a lower-
level specification of the same problem. The high-level
specification would give a semantics of the language Exp where some

expressions yield an error, and then define well-typed expressions

as those which do not result in errors. The low-level specification
would be an explicit algorithm for computing a well-typing.
Theorems in [Milner 1978] state that any expression which is well-
typed according to our specification will be well-typed according to
the high-level specification (but not the converse), and that any

expression accepted by the low-level algorithm will be well-typed
according to our specification (the converse is proved by Damas and

Milner [19821).

-121-

CHAPTER FIVE

A CATEGORY-THEORETIC SEMANTICS OF CLEAR AND ITS IMPLEMENTATION

In chapter III a semantics of Clear was given using simple set

theoretic constructions to describe the theory-building operations
of Clear. This chapter is devoted to a discussion of another

semantics of Clear, invented by Burstall and Goguen [1980]. This

semantics is intended as a generalisation of the set-theoretic

semantics of chapter III (although historically it came first) and

uses ideas from category theory to describe the underlying concepts

and operations of Clear. Although as remarked in chapter III this

results in a description which is rather inaccessible because it is

so abstract, there are some benefits to be gained from such an

approach. The most important advantage is that category theory acts

as a ruthless filter for ideas. If an idea cannot be expressed

gracefully using the standard concepts of category theory, then

often there is something wrong with the idea. If the idea can be

expressed, then its category-theoretic description will often

suggest a generalisation which may not have been obvious otherwise.

These are advantages for the language designer. But once the design

is complete the category-theoretic description will still often be

more elegant than an equivalent description in a different style,

although it may be more difficult to understand. Without this kind

of high-level motivation the set-theoretic constructions of chapter

III may seem to come out of thin air, appearing complex and

mysterious. And finally, in this case a category-theoretic

description makes it possible to abstract away from particular

notions of signatures, models or axioms, allowing a description of

(most of) Clear under an arbitrary institution. However, in section

111.6 we saw that the set-theoretic semantics can be readily altered

to accomodate all institutions of apparent interest.

Burstall and Goguen's category-theoretic semantics relies most

heavily on the notion of a colimit, which is used to give a meaning

to the combine and apply theory-building operations. A HOPE program

for computing colimits in arbitrary cocomplete categories and in a

kind of 'comma' category has been described by Burstall [1980].

-122-

Further developments along these lines are given by Rydeheard

[1981], who presents a category-theoretic approach to programming.

Burstall's colimit program provided a basis which allowed an

implementation of the category-theoretic semantics of Clear

following almost exactly Burstall and Goguen's original presentation
(this project was done in collaboration with David Rydeheard). The

ease with which this implementation and the original colimit program

were carried out can be attributed to the high-level features of
HOPE (in particular, the strong yet flexible type system) described

in appendix 1.

This chapter combines presentations of the semantics and the
implementation; the semantics is explained through descriptions of
the programs which implement it. The facilities provided by the

colimit program are described in section 1, although an explanation
of how the program works is not given (see [Burstall 19801 or

[Rydeheard 19811 for details). After a presentation of the

semantics of Clear and its implementation in sections 2, 3 and 4 the

outcome of the implementation attempt is briefly discussed in
section 5. For a less 'algorithmic' explanation of the semantics,

refer to (Burstall and Goguen 19801; for another presentation of the

semantics program see [Rydeheard 1981]. The program described here

is different from the one discussed in [Rydeheard 19811 for
expository reasons.

This program was an experiment in 'categorical programming' as

much as an attempt to provide a useful implementation of Clear. We

accordingly used category-theoretic ideas whenever possible, insofar
as this was practical. For example, the graphs which underlie
diagrams are represented as objects in a comma category, even though

this is not necessary for any of the algorithms used (see the next
section for the meaning of 'diagram' and 'comma category'). Our

attempts in this direction are related to the "doctrines" given by

ADJ in [Goguen, Thatcher, Wagner and Wright 1973]. Unfortunately,

all of these things are computationally expensive, and the resulting
program is too large and much too slow for practical use; see

section 5 for more on this matter.

-123-

This chapter assumes some previous knowledge of elementary

category theory. See [Arbib and Manes 1975] for the meanings of the

important concepts of category, morphism, functor and colimit

(especially important are the initial object, coproduct, coequaliser

and shout -- these are all special kinds of colimits). See

[MacLane 19711 for the definition of a comma category.

-124-

1. Computing colimits

The facilities provided by Burstall's colimit program (which has

since been reorganised and partially rewritten by Rydeheard and

myself) are described here only briefly. For a much more detailed

description consult [Burstall 1980] or [Rydeheard 1981]. See [Arbib

and Manes 1975] and [MacLane 1971] for the elementary category

theory which this program encodes.

A category is characterised by two HOPE types (objects and

morphisms) and four functions for manipulating morphisms. These

functions tell us the source and target objects of a morphism, the

identity morphism on an object, and how to compose morphisms. As a

HOPE declaration this is simply:

typevar o, m ! objects, morphisms

data Cat(o,m) _= cat((m->o),(m->o),(o->m),(m#m->m))
! source, target, identity, composition

(Comments in HOPE are preceded by an exclamation mark.) A

particular category is a data object of this type. We want

equations such as the following to hold in the category

cat(source,target,identity,compose):

source(identity(o)) = target(identity(o)) = o

source(ml) = source(compose(ml,m2))

target(m2) = target(compose(ml,m2))

but there is no convenient way in HOPE (or in other programming

languages) for these to be enforced, so the responsibility for
ensuring that the functions he supplies describe a legitimate
category rests with the user.

An example is the category of (finite) sets (not unrestricted
sets, but sets containing elements of a uniform type, as required by

the HOPE type system):

typevar alpha

data SetMor alpha == mor(set alpha,(alpha-->alpha),set alpha)
! source object, map, target object

-125-

dec source, target : Set Mor alpha -> set alpha
dec identity : set alpha -> Set_Mor alpha

dec comp : Set_mor alpha # Set_Mor alpha -> Set Mor alpha

--- source(mor(a,<= a

--- target(mor(_, ,b)) <= b

--- identity(a) <= nior(a,id map a,a)
--- comp(mor(al,ml,bl),mor(a2,m2,b2)) <=

mor(a1,m1.m2,b2) if bl:a2 else error()

dec cat of sets : Cat(set alpha,Set Mor alpha)

- cat-of-sets <: cat(source,target,identity,comp)

The notation alpha-->alpha in HOPE refers to a map; id-map and

(composition) are primitive functions on maps; and error() causes a

HOPE error, giving us a (crude) way of implementing the partial

function comp.

A functor is a pair of functions mapping objects and morphisms in
one category to objects and morphisms in another category. Again,

these functions should satisfy certain conditions (e.g. preservation
of identities) which the program must ignore.

typevar o, m, ol, ml

data Functor(o,m,ol,ml) _= functor((o->o1),(m->m1))
1 F : Cat(o,m) -> Cat(ol,ml)

A functor can be applied to an object or a morphism using an

(overloaded) infix function called "of".

Given two categories K:Cat(o,m) and L:Cat(ol,ml) and a functor
F:Functor(ol,ml,o,m) (i.e. F:K-L) the comma category (K,F) has

objects like (a,f,b) of type o#m#ol:

a f -o- F(b) b

[in K] [in L]

and morphisms like (i,j) of type m#m1 taking (a,f,b) to (a',f',b')
such that the following diagram commutes:

-126-

f
--ap F(b)

i F(,j)

' f a' ---* F(b')

(in K]
s¢ s

More general comma categories than this can be defined, but for our

purposes this version (actually a right comma category) is
sufficient.

Comma categories are used throughout the entire Clear semantics

program; it turns out that many common data types can be represented

in this way. Examples will crop up here and there; the first one is
the category of (directed) graphs. A graph can be considered to be

a map from a set of edges into a set of pairs of nodes:

2 b 3

e 5-d 4

is {a,b,c,d,e} G >{(1,1),(1,2),...,(5,5)} where G=(a'-(1,2),
b-4(2,3), c-4(2,5), d,--4(5,4), e,--4(1,5)].

A graph morphism from G to G' is a pair of maps. One map

associates nodes of G' with the nodes of G, and the other does the

same with the edges. The edge map must respect the sources and

targets of edges; that is,
source GI(edgemap(e)) = nodemap(sourceG(e)) and

targetG,(edgemap(e)) = nodemap(targetG(e)).

A graph can thus be seen as an object in the comma category
(Set,x) where x:Set--Set is the crossproduct functor taking a set S

to the set SxS. So the graph above is the triple

({a,b,c,d,e},G,{1,2,3,4,5}):

{a,b,c,d,e} Gto x{1,2,3,4,5} {1,2,3,4,5}

[in Set] [in Set]

-127-

Similarly, a graph morphism can be viewed as a morphism in the comma

category (Set,x):

E G - X N N

edgemap

I
x(nodemap)

i
nodemap

E' -- xN' N'

[in Set] [in Set]

In the program a slightly more complicated representation of the

morphisms in a comma category is used since the source and target
objects must be recorded as well as the morphism itself:

data FComma_Mor(o,m,ol,ml) __
fcommamor((o#m#ol),(m#ml),(o#m#ol))

! source object, morphisms, target object

Now we can construct the comma category (K,F) given the

categories K and L and the functor F:

dec functor_comma cat :

Cat(o,m) # Cat(ol,ml) # Functor(ol,ml,o,m)
-> Cat((o#m#ol),FComma Mor(o,m,ol,ml))

The definition is easy; for example, the 'identity part' of this
category is the function:

lambda obj & (a,_,b) =>

fcomma mor(obj,(idK a,idL b),obj)

where idK and idL are the identity parts of the categories K and L.

For the category of graphs we already have the two categories;

they are both cat of sets defined above. We need only the functor
x:Set-4Set. This is easy to define except for a snag with HOPE's

type system; the problem is that the natural way to define the

functor gives the type

dec crossprod : Functor(set alpha, set alpha,
set alpha#alpha, set alpha#alpha)

and the target of this does not match the type of the category we

want for K. We need a type which is the disjoint union of alpha and

-128-

alpha#alpha:

data Tag alpha == just(alpha) ++ pair(Tag alpha,Tag alpha)

Now crossprod can be easily defined, with the following type:

dec crossprod : Functor(set(Tag alpha), Set Mor(Tag alpha)
set(Tag alpha), Set+Mor(Tag alpha))

So we can define the category of graphs, and abbreviations for the

types of graphs and their morphisms:

type Graph alpha == set(Tag alpha) # Set_Mor(Tag alpha)
set(Tag alpha)

type Graph Mor alpha =_
FComma_Mor(set(Tag alpha), Set_Mor(Tag alpha),

set(Tag alpha), Set Mor(Tag alpha))

dec cat of graphs : Cat(Graph alpha, Graph Mor alpha)

--- cat-of-graphs <_
functor comma_cat(cat of sets,cat of sets,crossprod)

The advantage of defining something as an object in a comma

category is that colimits on the underlying categories can be

automatically 'lifted' to give colimits for the comma category.
This will be discussed in slightly more detail at the end of this
section.

One more function on comma categories will be helpful in writing

the semantics of Clear:

dec right-Compose : Cat(o,m) # Cat(ol,ml) # Functor(ol,ml,o,m)
-> (ml # (o#m#ol) -> (o#m#ol))

--- rightcompose(cat(_,_,,,cmp),cat(_,tl,_,_),F) <_
lambda g, (a,f,`) _> (a, cmp(f,F of g), tl g)

This function modifies an object in a comma category by composition

'on the right':

a f 0F(b) b g.c
[in K] [in LI

-129-

goes to

a f.F(g)
o F(c) c

[in Kl [in Ll

The function left compose can be defined analogously.

A diagram on a category K is a graph with objects of K attached

to the nodes and morphisms of K attached to the edges. A diagram

morphism from D to D' is a map f taking nodes of D to nodes of D',
together with another map which associates a morphism from the

object at n to the object at f(n) to each node n in D. We label the

nodes and edges of graphs with strings (character lists).

type Name == list char

data Diagram(o,m) _= diagram(Graph Name, (Name-->o), (Name-->m))
! diagram on a category of type Cat(o,m)

data Diagram_Mor(o,m) _= diagram_mor(Diagram(o,m), (Name-->Name),
(Name-->m), Diagram(o,m))

! source diagram, node-node map,
! node morphism map, target diagram

It is easy to define the category of diagrams

dec cat-of-diagrams :

Cat(o,m) -> Cat(Diagram(o,m),Diagram Mor(o,m))

A cone on a category K (actually a cocone, but the word "cone"

will be used throughout) is a diagram D (the base), an object x of

K (the apex) and a family of morphisms r from each node of D to x

(the flanks) such that all triangles of morphisms of the following
form commute:

x

r'(aY \r'(b)
D(a) D(e) i D(b)

where a e . b is an edge in the graph of D. A cone morphism from C

to C' is a diagram morphism from the base of C to the base of C' and

-130-

a K morphism from the apex of C to the apex of C', satisfying
certain commutation conditions. In the program the category of
cones on K is taken to be the comma category (Diag(K),unitdiag(K))
where the functor unitdiag(K):K->Diag(K) takes an object in K to the

diagram consisting of only a single node with that object attached.

The flanks r are embodied in the diagram morphism from the base to
unitdiag(K) of the apex.

D

O x

unitdiag(K)(x)
r

[in Diag(K)] [in K]

We supply abbreviations for the types of cones and their morphisms,

and define the category of cones:

type Cone(o,m) _= Diagram(o,m) # Diagram_Mor(o,m) # o

! cone on a category of type Cat(o,m)

type Cone_Mor(o,m) __
FComma Mor(Diagram(o,m),Diagram Mor(o,m),o,m)

dec cat of cones : Cat(o,m) -> Cat(Cone(o,m),Cone Mor(o,m))

--- cat-of-cones K <=
functor comma cat(cat of diagrams K,K,unitdiag K)

The colimit of a diagram D is a cone C with base D which is
'better' than all other such cones, in the sense that for any cone

C' (with base D) there is a unique cone morphism from C to C'. It

turns out that it is possible to construct the colimit of any

(finite) diagram (on a category K) given only the initial object of

K and functions which compute (binary) coproducts and coequalisers

in K. These have the following types:

type Initial_Obj(o,m) _= o # (o->m)

type Coproduct(o,m) _= o#o -> (o#m#m) # (o#m#m -> m)

type Coequaliser(o,m) _= m#m -> (o#m) # (o#m -> m)

Note that each of these includes a universal part; that is, besides

-131-

producing the coproduct (or whatever) a function computing the

unique morphism from the coproduct to any other object is also

provided.

Now we can define a coco plete category as a category with
initial object, coproducts and coequalisers:

data C_Cat(o,m) _= c_cat(Cat(o,m), Initial_Obj(o,m),
Coproduct(o,m), Coequaliser(o,m))

An example of a cocomplete category is the category of sets
defined above with appropriate initial object, coproducts and

coequalisers. We need a type which is the disjoint union of alpha

and alpha; this is accomplished by extending the earlier definition
of the type Tag alpha:

data Tag alpha == just(alpha) ++ . . ++ pink(Tag alpha)
++ blue(Tag alpha)

Then (for example) we can define the coproduct as follows:

dec coprod : Coproduct(set(Tag alpha),Set Mor(Tag alpha))

--- coprod(s,t) <=
let cp =_ (pink * s) U (blue * t) in
let univ =_

(lambda v, mor(a,f,b), mor(al,fl,bl) _>
error() if not(s=a and t=a1 and v=b and v=b1)

else let fg =_ (lambda pink x => f of x
blue x => f1 of x) in

mor(cp,fnto_map(cp,fg),v)) in
(cp, mor(s,fn_tomap(s,pink),cp),

mor(t,fn to map(t,blue),cp)), univ

Recall from appendix 1 that infix * in HOPE is just like LISP

mapcar:

f * [a1, ..., an] _ [f(a1), ..., f(an)]

The initial object (just the empty set) and coequaliser are not

difficult to define. The cocomplete category of sets is then:

dec c cat of sets : C Cat(set(Tag alpha),Set Mor(Tag alpha))

--- c cat of sets <= c cat(cat of sets,init,coprod,coeq)

-132-

Now the colimit program takes a cocomplete category and gives it
a colimit function. See [Burstall 1980] or (Rydeheard 1981] for the

definition; the types are as follows:

type Colimit(o,m) __
Diagram(o,m) -> Cone(o,m) # (Cone(o,m) -> Cone Mor(o,m))

dec colimit : C Cat(o,m) -> Colimit(o,m)

We can then define a colimit category; sets provide an example:

data Colimit Cat(o,m) colimit cat(Cat(o,m),Colimit(o,m))

dec colim_cat of_sets
Colimit Cat(set(Tag alpha),Set Mor(Tag alpha))

--- colim_cat of sets <=
colimit cat(cat of sets,colimit(c cat of sets))

As mentioned earlier, if we have colimits on the categories K and

L then we can compute colimits on the comma category (K,F) for any

functor F:L-K (see (Goguen and Burstall 1978]). This is an

advantage of using comma category representations, especially since

the Clear semantics program makes heavy use of colimits. See

(Rydeheard 1981] for the program; the type of the colimit function

is as follows:

dec lift_colimit :

Colimit Cat(o,m) # Colimit Cat(ol,ml) # Functor(ol,ml,o,m)
-> Colimit(o#m#ol, FComma Mor(o,m,ol,m1))

We can use this to define the colimit category of graphs (although

this is not used by the Clear semantics program):

dec colim_cat_of_graphs :
Colimit Cat(Graph alpha,Graph Mor alpha)

--- colim cat of graphs <=
colimit_ cat(cat of graphs,

lift_colimit(colim_cat_of_sets,colim_cat_of_sets,
crossprod))

-133-

2. Signatures, institutions, theories and based objects

In this section a program for computing colimits on the category

of based theories based on the programs in section 1 is described.

This is the foundation of the semantics of Clear to be given in
sections 3 and 4; the denotation of a specification is a based

theory, and the theory-building operations of Clear correspond to
simple colimits on that category.

We begin by defining signatures. However, they will not actually
be used until the end of section 3. All of the programs given until
then will be parameterised on an institution (this concept was

informally discussed in section I.1.3); that is, they do not depend

on particular definitions of signatures or axioms (or algebras or

the satisfaction relation, although these do not arise in the

program). Thus a general notion of theory can be defined, together
with a program for computing colimits in the category of theories.
But theories alone are not enough to give the semantics of Clear; we

need a notion of theories with sharing. We define based objects
(and their colimits), a general notion of objects with sharing.
This can be instantiated to give based theories, and is further
instantiated in section 4 to give based Clear theories (theories
with the 'usual' kinds of signatures, axioms and models).

As already defined, a signature is a set of sorts S together with
a family of sets of operators indexed by S*xS (or S+). A signature
morphism is a map from the sorts and operators of one signature to

those of another which preserves arities. We represent signatures
as objects in the comma category (Set,+) where + is a functor taking

a set to the set of nonempty strings over that set (and taking an

ordinary function over the set to a function on strings). For

example, here is the comma category representation of the signature

with the single sort bool and operators true, false and not:

-134-

true bool
false
I

bool.bool +{bool} {bool}
not bool.bool.bool

[in Set] [in Set]

There are two problems in defining the functor +:Set-4Set in
HOPE. The first problem is the same as the one we met when trying
to define the crossprod functor and the function coprod in section
1; the natural type of + is:

dec plus : Functor(set alpha,Set Mor alpha,
set(list alpha), Set Mor(list alpha))

and this clashes with the type required by the functor comma cat

function (for constructing the comma category of signatures).
Again, tags are used to solve this problem:

data Tag alpha := just(alpha) ++ . . . ++ string(list(Tag alpha))

The type of plus is then:

dec plus : Functor(set(Tag alpha), Set Mor(Tag alpha),
set(Tag alpha), Set_Mor(Tag alpha))

The second problem occurs when we try to define the 'object part'
of the functor plus. The result of applying plus to any non-empty

set will be infinite. HOPE is equipped to handle infinite sets

(lazy lists, see [Burstall, MacQueen and Sannella 1980]) but not

infinite sets, although lazy sets could probably be added. For the

purposes of the program, we can represent all infinite sets by the

constant bigset:

dec bigset : set alpha

We provide no definition of bigset, and so evaluating it will cause

an error. But we will never actually be interested in the value of
the object part of the plus functor, so this is sufficient. With a

similar 'definition' for bigmap (representing all infinite maps)

plus is easy to define, and the category of signatures with colimits

-135-

is then defined as follows:

type Signature alpha :_
Set(Tag alpha) # Set Mor(Tag alpha) # set(Tag alpha)

type Signature_Mor alpha =_
FComma_Mor(set(Tag alpha), Set_Mor(Tag alpha),

set(Tag alpha), Set Mor(Tag alpha))

dec colimcat_of_signatures :

Colimit_Cat(Signature alpha.Signature_Mor alpha)

--- colim_cat_ofsignatures <=

colimit_cat(functor comma cat(cat_of_sets,cat of sets,plus),
lift colimit(colim cat of sets ,colim+cat of sets,

plus))

As mentioned before, this definition will not actually be needed

until 'signed' theories are defined at the end of the next section.

Institutions were discussed informally in section I.1.3; they

provide a way of giving most of the semantics of Clear independently

of any particular definitions of signatures, axioms, algebras or the

satisfaction relation. Formally, an institution is any data object

of the following type:

typevar o, m, alpha, beta ! signatures, signature morphisms,
! algebras, axioms

data Institution(o,m,alpha,beta) __
institution(ColimitCat(o,m),

Functor(o,m,set alpha,Set Mor alpha),
Functor(o,m,set beta,SetMor beta),
(o -> (set alpha # set beta -> truval)))

The parts of an institution are:

- An arbitrary cocomplete category Sli of 'signatures'

- A functor Mod:S-->Setop (giving the set of models over a

signature). If is a morphism in Sig and M' is in
Mod(J') then we write M'IZ rather than Mod(o')(M').

- A functor Sen:Lil->Set (giving the set of axioms over a

signature -- e.g. equations and data constraints). If

is a morphism in Sig and S is in Sen(J) then we

write o-(S) rather than Sen(a-)(S).

- A relation ;=1 5 Mod(S) x Sen(S) for each object of

-136-

Sig satisfying M' ;=0'(S) iff M'('TP=S for each Q':j-* ' in
Sig, SGSen(D and M'r.Mod(2').

All of the functions defined from now until the end of the next

section will be parameterised by an institution. By extracting such

things as the particular category of signatures from the given

institution rather than using a fixed set of definitions, most of
the semantics is made orthogonal to the definition of these key

concepts. It is only when we come down to writing the semantic

equations (attaching a syntax to the mathematical operations we will
define) that it will be necessary to decide on a particular
institution.

A theory is a signature 2 together with a closed set of Z-axioms.

We can use the agglomerates of chapter IV to represent closed sets

of axioms with the same constructors as before. We parameterise the

definition by the types of signatures, signature morphisms, and

axioms:

typevar o, m, beta 1 signatures, signature morphisms, axioms

data Agglomerate(o,m,beta)
close(set beta)

++ union(Agglomerate(o,m,beta),Agglomerate(o,m,beta))
++ translate(m,Agglomerate(o,m,beta)),
++ invtranslate(m,Agglomerate(o,m,beta))
++ Name),Agglomerate(o,m,beta))

1 set(Tag Name) is a set of sort names

The definitions of theory and theory morphism are parameterised

by the same types:

data Theory(o,m,beta) _= theory(o,Agglomerate(o,m,beta))

data Theory Mor(o,m,beta) __
theory mor(Theory(o,m,beta),m,Theory(o,m,beta))

The category of theories is then easily defined, parameterised on an

institution. The identity and composition functions come from the

category of signatures contained in the institution.

dec cat of theories : Inatitution(o,m,alpha,beta) ->
Cat(Theory(o,m,beta),Theory Mor(o,m,beta))

-137-

But we will need to compute colimits in this category. As

mentioned before, the semantics of Clear is given in terms of
colimits in the category of theories (actually, in the category of
based theories, defined below -- but colimits for that category

depend on colimits in the category of theories). A program for
computing colimits follows the (constructive) proof of the following
theorem; it depends on the availability of colimits in the category

of signatures.

Theorem: The category of theories over any institution has

(finite) colimits.

Proof: (outline; from [Burstall and Goguen 1980])

As mentioned in section 1, it suffices to show that the category of

theories (over any institution) has an initial object, coproducts

and coequalisers. The category LiE of signatures contained in any

institution has these, by definition.

If I is the initial object of Sij, then <+,m> is the initial

object in the category of theories.

If the coproduct of 2 and Z' in Sig is given by

I

then the coproduct of the theories <Z,E> and <',E+> is given by

<J, E>

<J",o(E)Uvr'(E')>

<1',E'>

-138-

If the coequaliser of 0',0'':2->r in Sig is given by

c
0

a-'

then the coequaliser of c',c'1:<2,E>-i<r',E'> in the category of
theories is given by

<k,E> <?',E'> ° (E')>

Programs for computing the initial object, coproducts and

coequalisers in the category of theories can be written following
the constructions above. Here only the definition of the initial

object is given:

dec snit : Institution(o,m,alpha,beta) ->
Initial Obj(Theory(o,m,beta),Theory Mor(o,m,beta))

--- init(institution(colimit_cat(sigcat,sigcolim),_,_,_)) <_

let sigcone,siguniv == sigcolim nil-diagram in
let initsig apex, sigcone in

! the initial signature
let initth theory(initsig,close nilset)

! the initial theory
let univ ! the universal part

(lambda pth & theory(psig,_) =>
let univmor =_

siguniv(cone sigcat (nil diagram,nil map,psig)) in
theory mor(initth,apex_morphism univmor,pth)) in

(initth, univ)

The constants nil diagram, apex (the apex of a cone), apex morphism

(the apex part of a cone morphism) and cone (for constructing a cone

as a 'comma object', given the components) are auxiliary functions
whose definitions are omitted. The functions coprod and coeq (for
the coproduct and coequaliser) are just as easy to write, although a

bit longer. Using these we define the cocomplete category of
theories, and then the colimit program described in section 1 can be

employed to build the category of theories with colimits:

-139-

dec c cat of theories : Institution(o,m,alpha,beta) ->
C Cat(Theory(o,m,beta),Theory Mor(o,m,beta))

--- c cat of theories I <=
c cat(cat of theories I, snit I, coprod I, coeq I)

dec colim_cat_of theories : Institution(o,m,alpha,beta) ->
Colimit Cat(Theory(o,m,beta),Theory Mor(o,m,beta))

colim cat_of theories I <_
colimit-cat(cat of theories I,

colimit(c cat of theories I))

The function extend signature morphism will be used later in the

semantics to extend a signature morphism to a theory morphism.

dec extend_signature_morphism : Institution(o,m,alpha,beta) ->
(Theory(o,m,beta) # m # Theory(o,m,beta) ->

Theory Mor(o,m,beta))

--- extend_signaturemorphism I <= theory mor

When this function is applied to the arguments <2,E>,a°,<2',E'> where

and a°(E)4E' it should fail, since the result will not be a

proper theory morphism. This is something which cannot be

determined without the help of a theorem prover, so we do not check

for it (but see chapter VI).

In Clear, if the theory C has been used to build the theories A

and B in such a way that A and B both contain C, then C is called a

shared subtheory of A and B and we require that A+B contain only one

copy of C. The importance of taking account of shared subtheories
when combining theories has already been discussed. The names of
sorts and operators alone are not enough to distinguish shared

subtheories; we want the freedom to have several different sorts and

operators with the same names.

These requirements mean that the semantics of Clear must include
a mechanism for keeping track of the genealogy of theories -- it is
necessary to know which theories have been put together to produce

other theories. The set-theoretic semantics of chapter III used the

simple trick of attaching a tag to each sort and operator to record

its theory of origin. This will not work here, because the

-140-

institutional approach requires signatures to be viewed as

indivisible objects. Here the more elaborate notion of a based

theory defined in [Burstall and Goguen 1980] must be used. Note

that based theories here are not the same as the based theories used

in the set-theoretic semantics, although they serve a similar
purpose.

A based theory is a theory together with a set of morphisms to it
from the theories in the environment from which it was built. The

environment associates names with (constant) theories, analogous to

environments in the semantics of an ordinary language; however, now

the environment must also record the relationships between all the

named theories. The environment is therefore represented as a

diagram on the category of theories, where the edges describe how

theories are shared. (See section 4.5 for more about environments.)

A based theory is then a cone on the category of theories with a

base which is a subdiagram of the environment. The apex is the

theory of interest, and the flanks show how this theory is related

to the theories in the base. For example, here is a picture of the

based theory representing Nat + Char (these theories were given in

chapter I):

Not * Char

We can define based objects analogously, a general notion of
objects with sharing. The based objects on a category themselves

form a category; this is a subcategory of the category of cones (a

cone morphism f:C-4C' is a based object morphism iff the base of C

-141--

is included in the base of C' and the 'base part' of the cone

morphism is the inclusion). The four functions which determine a

category in our program (source, target, identity, composition) are

the same for both categories and so the category of based objects is
the same as the category of cones as far as our program is
concerned:

type BasedObj(o,m) == Cone(o,m)

type BasedObj_Mor(o,m) == Cone Mor(o,m)

dec cat-of-based-objects :

Cat(o,m) -> Cat(BasedObj(o,m),BasedObj_Mor(o,m))

--- cat-of-based-objects <= cat of cones

The colimit in the category of based objects is however not the

same as the colimit in the category of cones. A different

construction must be used:

Theorem: The category of based objects on a category C has

(finite) colimits if C has. 0
Proof: (outline; see [Burstall and Goguen 1980] for the full

proof)

Let D be a finite diagram in the category of based objects on C with

objects Di having apices Di and bases Pi. The colimit object of D

is the based object with base U Pi, and with apex the colimit in

C of the diagram which results from 'flattening' the apices and

flanks of the based objects Di into the diagram D. The flanks of the

colimit and the universal part are obtained from the colimit in C.

A program which produces the colimit in the category of based

theories can be written following the above construction. The

program is too long (about 60 lines) and complicated to include

here; we give only its type:

dec bo_colimit : Colimit_Cat(o,m) ->
Colimit(BasedObj(o,m),BasedObj_Mor(o,m))

Now the category of based objects with colimits can be defined:

-142-

dec colim_cat_of_based objects : Colimit Cat(o,m) ->
Colimit Cat(BasedObj(o,m),BasedObj Mor(o,m))

--- colim_cat_of_based objects(K & colimit cat(C,)) <=
colimit cat(cat of based objects, bo colimit K)

The careful reader may have observed that our definition of based

objects differs slightly from the definition in [Burstall and Goguen

1980]. There the category of based objects over a given diagram

(environment) is considered, while our category of based objects

makes no reference to a particular diagram. But this makes no

difference; the construction of the colimit is identical in both

cases.

We can instantiate the category of based objects to give the

category of based theories; this is the only instance of based

objects which we will need. This category will be used in the next

section to define the semantics of the theory-building operations.

type Based_Theory(o,m,beta) ==
BasedObj(Theory(o,m,beta),Theory Mor(o,m,beta))

type Based-Theory Mor(o,m,beta) ==
BasedObj Mor(Theory(o,m,beta),Theory Mor(o,m,beta))

dec colim_cat_of_based theories : Institution(o,m,alpha,beta) ->
Colimit_Cat(Based Theory(o,m,beta),

Based Theory Mor(o,m,beta))

--- colim_cat_of_based theories I <=
colim cat of based objects(colim cat of theories I)

-143-

3. Semantic operations

In this section the semantics of Clear's theory-building

operations will be given. These will then be used in the semantic

equations of the next section.

The definitions of these operations depend crucially on the

properties of the colimit in the category of based theories defined
in the previous section. The denotation of a Clear specification is
a based theory, and all of our work until now has been carefully
directed so that the combine and apply operations can be elegantly
defined as nothing more than simple colimits in this category. The

remaining operations (enrich, data and derive) are defined readily
but less gracefully in terms of lower-level manipulations of the

based theories themselves.

3.1. Combine

This function implements the '+' theory-building operation of
Clear.

dec combine : Institution(o,m,alpha,beta) ->
(Based Theory(o,m,beta) # Based_Theory(o,m,beta) ->

Based Theory(o,m,beta))

--- combine I <_
lambda t1,t2 :>

let colimitcat(_,bthcolim)
colimcat_of_based theories I in

let cpcone,_ := bthcolim(cpdiagram(t1,t2)) in
apex cpcone

That is, combine I (T1,T2) is the coproduct of the based theories Ti

and T2 (cpdiagram is an auxiliary function which produces a two-node

coproduct diagram, given the objects to be attached to the nodes).

Because we are dealing with based theories, combine will treat
shared subtheories properly.

3.2. Enrich

The treatment of enrich here is different from that in the set-
theoretic semantics. The denotation of an enrichment there was just

-144-

some new sorts, operators and axioms; here an enrichment is a theory

morphism of the form cr:<L,0>-><2',E'>, where 2 is the signature of
the theory being enriched, I' is the signature of the enriched

theory, and E' are the new axioms (closed). Enrich applies this
morphism to the based theory being enriched to give the enriched

based theory. This approach is necessary in order to define the

enrich operation under an arbitrary institution. The theory
morphism representing the enrichment must be built differently under

each institution, for it requires the manipulation of signatures as

something more than impenetrable objects in a category. The

enrichment operation is defined later in this section for the usual

institution of Clear; it takes the signature to be enriched and the

new sorts, operators and axioms, and gives the theory morphism

needed here (it will always be an inclusion in this case). The data

and add-equality operations (defined later) can be applied to this
morphism in the case of a data enrichment, modifying it to include
the appropriate new data constraint and equality operators.

dec enrich : Institution(o,m,alpha,beta) ->
(Based_Theory(o,m,beta) # Theory Mor(o,m,beta) ->

Based Theory(o,m,beta))

--- enrich I <_
lambda t, theory_mor(_,g,theory(sigl,egl)) _>

let th & theory(eq) _= apex t in
let thi == theory(sigl,union(eql,translate(g,eq))) in
right compose (cat-of diagrams(cat-of theories I),

cat of theories I,
unitdiag(cat_of_theories I))

(theory mor(th,g,thl), t)

That is, the result of enrich(T,(r:<J,O>--I,<2' E'>) is the

theory <2',E'Ucr(egns(T))> with the base of T attached (this is the

action of right-compose).

3.3. Derive

The derive operation is used to change the signature of a theory.

Under the usual institution this means forgetting some sorts and

operators and possibly renaming the ones remaining; under an

arbitrary institution signatures may not consist of names at all so

we cannot speak about forgetting or renaming. Yet, the semantics of

-145-

derive under an arbitrary institution is the same as that given in
the set-theoretic semantics for the special case of ordinary Clear.

Given a 7--theory and a 1'-theory and a signature morphism o-:l->r' ,

derive produces a theory with the signature and base of the

1-theory, which has for axioms the inverse image under or of the

axioms of the '-theory. The model-theoretic condition (the
Satisfaction Lemma) which made this the appropriate set of axioms in
the case of ordinary Clear reappears as a condition on the

satisfaction relation (=) of an institution, with the same result.

The semantics of derive is split into two parts. The quotient

function produces the resulting theory, which must then be attached

to the appropriate base.

Def: If T=<I,E> and T'=<2' ,E'> are theories and or:T-->T' is a

theory morphism, then the quotient of T by or (written T/(r) is the

theory <1,or-1(E')>, where or-1(E') _ {e ; or(e)*E'}. The identity
signature morphism 11 gives a theory morphism 12:T-4T/cr denoted by

quotient(T,(r) (because or is a theory morphism implies that
E4(r1(E')).

T/or will always be a theory because of the following fact, a

generalised version of a fact from chapter III:

Fact: If E is closed then or-1(E) is closed, under any

institution.

Proof: Identical to the proof outlined in section 111.2.4, except

that we appeal to the condition on the relation of an institution
rather than to the Satisfaction Lemma.

An intermediate step in the proof of this fact shows (by a model-

theoretic argument) why T/v- (with a suitable base) is the

appropriate result of the derive operation -- see section 111.2.4

for details.

Once the quotient function is defined as above, with type:

dec quotient : Institution(o,m,alpha,beta) ->
(Theory(o,m,beta) 4/ Theory Mor(o,m,beta)

Theory Mor(o,m,beta))

-146-

the derive operation can be easily defined:

dec derive : Institution(o,m,alpha,beta) ->
(Based_Theory(o,m,beta) # m # Based_Theory(o,m,beta) ->

Based Theory(o,m,beta))

---. derive I <=
lambda t1, sigma, t2 =>

let tsigma =_
extend_signature_morphism(apex tl,sigma,apex t2) in

right-compose (cat-of diagrams(cat-of theories I),
cat of theories I,

unitdiag(catof_theories I))

(quotient(apex tl,tsigma), tl)

That is, it is the quotient with the base of the first theory

attached.

3.4. Apply

Apply defines the application of a theory procedure to its
arguments. A theory procedure here is represented as a based theory

morphism (from the coproduct of the metasort theories to the theory

described by the procedure body); under the usual institution this
morphism is an inclusion. The result of a procedure application is

p shout of this morphism and the combined fitting morphism from the u

the coproduct of the metasorts to the coproduct of the actual
parameter theories:

P(Al,...,An)
F

P(M1,...,Mn) Al+...+An

M1+...+Mn

This is straightforward except for the construction of the combined

fitting morphism o-. We are given based theory morphisms a1:M1-->A10

..., oo-n:Mn-4An and wish to construct o-:M 1+...+Mn -4 Al+...+An.

Taking the two coproducts gives the following situation:

-147-

M1+...+Mn A,+...+An

Now the 'universal part' of the metasort coproduct may be used to
construct a morphism to the apex of the actual parameter colimit,
using the 'pretend coproduct' (i.e. another cone on the same base)

of the metasorts formed by composing 0`1 n with

r(1),...,r(n):
Mi+...+Mn ------ ---------> A,+...+An

This o- must be the correct morphism because it is the unique

morphism from M1+...+Mn to Ai+...+An for which everything commutes.

dec apply : Institution(o,m,alpha,beta) ->
(Based_Theory_Mor(o,m,beta)
list(Based Theory Mor(o,m,beta)) ->

Based-Theory(o,m,beta))

-148-

apply I <=

lambda proc, fittings list =>
let colimitcat(catbth,bthcolim)

colim cat of based theories I in
let Dm & diagram_mor(Ds,_,,Dt) ==

cpmdiagram catbth fittings list in
let actual-parameter,- == colimit Dt in
let univ == colimitDs in
let pretendcoprodcone =--

left-compose (cat-of diagrams catbth,
catbth,
unitdiag catbth)

(Dm, actual parameter) in
let fitting apex_morphism(univ pretendcoprodcone) in
let pocone,

colimit(podiagram catbth (proc,fitting)) in
apex pocone

Given the morphisms o1,...,on the constant cpmdiagram produces the
diagram morphism:

and podiagram produces a pushout diagram:

P J Al+...+An

pro / fitting
M1+...+Mn

The definitions of these auxiliary functions are omitted.

3.5. Copy

The copy operation makes a fresh copy of a theory, preserving a

given set of subtheories. This is just a matter of attaching a

restricted base to the theory, the base of the combined subtheories

to be preserved. The semantics of copy was not included in
[Burstall and Goguen 1980].

-149-

dec copy : Institution(o,m,alpha,beta) ->
(Based Theory(o,m,beta) # Based Theory(o,m,beta) ->

Based_Theory(o,m,beta))

--- copy I <=

lambda t1, t2 =>
left-compose cat-of-diagrams (cat-of-theories 1),

cat of theories I,

unitdiag (cat-Of theories I)

(diagram-inclusion (cat-of theories I)

(base t2, base t1),t1)

The constants base (base of a cone) and diagram inclusion (producing

a morphism which is the inclusion of one diagram in another) are

auxiliary functions whose definitions are omitted. The second

argument (of the lambda) of copy is the sum of the subtheories to be

preserved. The base of this subtheory is attached to the theory to
be copied using left compose.

3.6. Data

The data operation cannot be used under an arbitrary institution.
As mentioned in chapter I, we need a data institution; this is an

institution in which the models of a theory will always form a

category and a theory morphism gives rise to forgetful and free
functors (see [Burstall and Goguen 19801 for details). This is an

aspect we do not attempt to treat in our implementation. But the

other special characteristic of a data institution is that the class
of axioms must include data constraints. A data constraint is a

theory morphism together with a signature morphism, and so we can

define data axioms (axioms which include data constraints, but are

otherwise unspecified) as follows:

data Data_Axiom(o,m,beta) =_

axiom(beta) ++ data constraint(Theory Mor(o,m,beta),m)

A data institution is then an ordinary institution with the type of

axioms instantiated to data axioms:

type Data Institution(o,m,alpha,beta) ==
Institution(o,m,alpha,Data Axiom(o,m,beta))

Data theories and their morphisms are easily defined (based data

-150-

theories and their morphisms similarly):

type Data_Theory(o,m,beta) _= Theory(o,m,Data Axiom(o,m,beta))

type Data_Theory Mor(o,m,beta) ==
Theory Mor(o,m,Data Axiom(o,m,beta))

Now we can define the semantics of the data operation. It takes

a simple theory morphism representing an enrichment, and converts it
to a data theory morphism with a target which includes a data

constraint describing the enrichment. The modified enrichment can

then be used by the enrich operation (defined above) to 'data-
enrich' a theory. Since the data operation manipulates data

constraints, it works only under a data institution; this fact is
reflected in its type.

dec data : Data_Institution(o,m,alpha,beta) ->
(Theory Mor(o,m,beta) -> Data Theory Mor(o,m,beta))

--- data(institution(colimitcat(cat(_,_,id,),_),_,,)) <=
lambda F & theory

let constraint == data constraint(F,id sigl) in
let axioms == union(datafy E1,close {constraint}) in
let tl == theory(sigl,axioms) in
theory mor(t,sigma,tl)

If the enrichment is given by the (simple) theory morphism

o,:T--3<I' ,E'>, then the data constraint added by application of the

data operation will be C = <cr,120, and the resulting (data)

enrichment is cr:T-><Z',E'U (C}>. But E' is a simple agglomerate;

it must first be converted to a 'data agglomerate' using the

auxiliary constant 'datafy' whose definition is omitted.

3.7. Enrichment

This operation constructs a theory morphism representing a theory

enrichment for use by the enrich operation defined above. As

mentioned before, the enrichment operation must be dependent on a

particular institution for it deals with the internal structure of
signatures. The enrichment operation will be defined here for
ordinary Clear (Clear under the usual institution). Although the

definition is dependent on a particular notion of signature (the one

discussed in section 2) it is independent of the other elements of

-151-

an institution and so we can leave these unrestricted for now. The

enrichment operation is parameterised by a signed institution (that

is, an institution with the usual kind of signatures, where

character strings are used for sort and operator names):

type Signed Institution(alpha,beta) __
Institution(Signature Name,Signature Mor Name,alpha,beta)

The type Name was defined in section 1 as an abbreviation for
'list char'. Signed institutions could easily be parameterised by

the type of sort and operator names -- in fact, this is done in the
semantics program -- but for simplicity we will use the fixed type

Name. Signed theories and their morphisms are then defined as

follows (based signed theories and morphisms similarly):

type Signed Theory(beta) ==
Theory(Signature Name,Signature Mor Name,beta)

type Signed Theory Mor(beta) ==
Theory Mor(Signature Name,Signature Mor Name,beta)

Note that this specialisation to signed institutions and signed

theories is orthogonal to the previous specialisation to data

institutions and data theories. Signed data institutions, signed

data theories and their morphisms, and based signed data theories
and their morphisms are easily defined.

Enrichment takes the signature to be enriched (S) and some new

sorts, operators and axioms (S', 2', E'), and produces the theory

inclusion from <J,0> to <ZU<S',2'>,E'>. This operation is defined
using an auxiliary function whose definition is omitted which

produces the signature of the enriched theory; the inclusion
function on signatures (producing an inclusion of one signature in
another) is also not defined here.

type S _Name == Tag Name ! sort name

type 0 Name == Tag Name ! operator name

dec enriched signature :

Signature Name # set S_Name # set(0_Name # list S_Name) ->
Signature Name ! 0_Name # list S Name is an

! operator with its arity

-152-

dec enrichment : Signed_Institution(alpha,beta) ->
(Signature Name # set S_Name IF set(O_Name # list S -Name)

set beta -> Signed-Theory Mor(beta))

--- enrichment SI <_
lambda sig & (0,S), S1, 01, El =>

let sig2 == enriched _signature(sig,S1,01) in
let t == theory(sig,close nil set) in
let t2 theory(sig2,close E1) in
theory mor(t,inclusion(sig,sig2),t2)

Why must the sort and operator names be 'tagged' (types S Name

and 0 Name rather than simply Name)? The reason is that the arities
of the new operators may refer to sorts in the 'old' signature.
Since this signature may have been formed by putting together

several signatures (using combine, for example), it may contain
several sorts or operators with the same name (but tagged in
different ways as a result of the colimit inherent in the combine

operation). The enrichment operation must be supplied with tagged

arities to disambiguate in such cases, and the sort and operator
names are required to be tagged as well for uniformity. This is of
course invisible to the user of the specification language; it is a

detail which must be handled by the semantics (specifically, by the

notion of a dictionary discussed in section 4.1). Note that these

tags bear some resemblance to the tags of the set-theoretic
semantics, although here they are part of the colimit mechanism

rather than an explicit ingredient of the semantics.

3.8. Add equality

A side effect of the data operation is the introduction of an

equality predicate ==:s,s->bool for each 'data' sort s. The

operators are easily added to the signature, and the add equality
agglomerate constructor defined model-theoretically in section
111.2.3 is used here as well to add the axioms which specify the

meaning of the new operators.

If S is the set of new sorts and E is the set of axioms already

in a theory, then ES is E together with all the axioms needed to
define the new equality relations on sorts of S. This is denoted in

-153-

the program by the agglomerate add equality(S,E). Note that the

theory being enriched must include Bool.

To define the add equality operation (on theories), we use an

auxiliary function which produces an equality operator with arity

s,s->bool when given the sort s; its definition is omitted. The

enriched signature operation mentioned above is used to form a

signature which includes the new equality operators.

dec equality operator : S -Name -> O -Name # list S -Name

dec add-equality : Signed_Institution(alpha,beta) ->
(Signed Theory Mor(beta) -> Signed Theory Mor(beta))

---- add equality SI <=
lambda theory mor(t & theory(sig,_),sigma,theory(sigl,E1))=>

let data-sorts == S1 - S where (_,_,S) sig
where (S1) sigl in

let new operators == equality-operator data-sorts in
let sig2 == enriched_signature(sigl,nil_set,

new_operators) in
let t2 == theory(sig2,add_equality(S,E1)) in
theory mor(t,inclusion(sig,sig2),t2)

The definition is similar to that of the data operation above. A

theory morphism describing an enrichment is modified to further
enrich by the new equality operators and the axioms which define
them.

-154-

4. Semantic equations

In this section the semantic equations for Clear are given,
building on the semantic operations defined in the previous section.

This parallels section 4 of the set-theoretic semantics. Since many

of the equations are identical (i.e. all those in levels I and IIb)
only those which are different are given, along with new definitions
of dictionary and environment. The equations will be given in the

notation of denotational semantics, rather than in HOPE. This

should make them slightly easier to read, and the translation to
HOPE is straightforward (see section 4.2 for an example).

4.1. Dictionaries

The notion of a dictionary in this semantics is identical to the

one presented in section 111.4.1 of the set-theoretic semantics.

The only difference is the way that the diet operation (which

produces a dictionary) is defined. Recall that a dictionary gives

the correspondence between a sort expression or operator expression

(such as 's of T') and the sort or operator to which it refers.

Def: A dictionary is a pair of functions <sd,od> where

sd : sort-name x theory-name --> sort
od : operator-name x theory-name -4 operator

In the implementation, the two components of a dictionary are

functions which return tagged names; this is because there may be

more than one sort or operator with the same name, as discussed

earlier.

data Dictionary == dictionary((Name 1/ Name -> S Name),
(Name 1/ Name -> O Name))

The operation diet constructs a dictionary from a based theory,
yielding a dictionary which interprets expressions referring to
sorts and operators in that theory.

dec diet : Signed-Based-Theory(beta) -> Dictionary

--- dict(, diagram mor(-,-,nm,-), -) <,
let d ==

(lambda to =>
let theory mor(_,fcomma mor(,(mor(_,fo,_),

mor(_,fs,)),_),_)
nm of (const tn) in (fo,fs)) in

-155-

let sd =_ (lambda sn,tn u>
^- - et (_,fs) _= d(tn) in find(fs,sn)) in I

let od == (lambda on,tn =>
let (fo,) == d(tn) in find(fo,on)) in

dictionary(sd,od

In the above definition, nm is the map taking nodes in the base

of a based theory to theory morphisms from base theories to the apex

theory (the flanks). The nodes in the base of a based theory are
labelled by (tagged) theory names, since the base is always a

subdiagram of the environment (see section 4.5 for the reason for

the tag 'const'). The value of d applied to a theory name will thus

be a pair (fo,fs), where fo is a map taking operators in the base
theory to the corresponding operators in the apex theory, and fs

does the same for sorts. Given an expression 'sn of tn' (similarly

'on of tn'), the sort sn should appear in the domain of fs (where

(fo,fs) = d(tn)) and can thus be mapped to its name in the apex

theory. But sn itself will not be in the domain of fs; some tagged

version of sn will be (and it might not be simply 'just sn', since

the theory at node to may be the result of a combine or apply

operation). There should be only one such sort, or else the

expression is ambiguous. So the auxiliary function find is used to

search for the result corresponding to a tagged version of the sort

name; it gives an error if there is more than one choice. This is a

subtle point which was not revealed in [Burstall and Goguen 1980].

In general there is a problem in determining which sort or operator

in a theory produced using a series of theory-building operations

corresponds to a sort or operator name. The problem could be solved

by keeping track of the original name associated with each tagged

name. In our implementation this correspondence is fortunately easy

to establish.

4.2. Level I: Sorts, operators, terms

The semantic equations for level I are exactly the same as those

for level I of the set-theoretic semantics (section 111.4.2). In

order to justify writing the semantic equations using the notation

of denotational semantics rather than HOPE, an example of how the

translation may be accomplished will now be given.

-156-

The syntax of sort, operator and term expressions is defined in

section 111.4.2 by the following BNF syntax:

sex s s of T
oex :. = o o of T
tex x oex(texi.... .texn)

where s is a sort name (lower case identifier), o is an operator

name (identifier or operator symbol). T is a theory name

(capitalised identifier) and x is a variable name (identifier).
This may easily be converted to a sequence of HOPE data

declarations:

infix of : 5

distfix _ << >>

data Sex just Name ++ Name of Name
data Oex just Name ++ Name of Name
data Tex just Name ++ Oex << list Tex >>

Distributed-fix operators can be used to give an approximation to

Clear syntax. Mutually recursive data definitions are also possible
in HOPE using the with construct:

data
with
with

The three semantic functions of this level may be declared as

follows:

dec Sex : Sex -> (Signature Name -> (Dictionary -> S -Name))

dec Oex : Oex -> (Signature Name -> (Dictionary -> O -Name))

dec Tex : Tex -> (Signature Name -> (Dictionary ->
((Name --> S_Name) -> Term)))

Name --> S -Name associates variables with their sorts

The denotation of a term expression is a term:

data Term == just Name ++ O -Name << list Term >>

Now the semantic equations of section 111.4.2 can be translated
into HOPE. For example, the second equation defining the function

Tex is:

-157-

Tex Qoex(tex1 ,...,tex)I]SdX =

let w = OexIoex9J7d in
let tm1,...,tmn TexItex1 I]SdX,...,Texftexnl]SdX in
w(tmi,...,tmn) (a 7 -term on X)

This becomes:

Tex(oex << list tex >>) <=
(lambda sigma => (lambda d => (lambda X =>

let omega == Oex oex sigma d in
let list tm ==

(lambda tex => Tex tex sigma d X) * list_tex in
omega << list tm>>)))

The notation of denotational semantic will be used henceforth for

clarity, as mentioned already.

4.3. Level IIa: Enrichments

The level IIa semantic equations are very similar to those in the

set-theoretic semantics (section III.4.3). The equations for Sd and

Od (giving the semantics of sort and operator declarations) are the

same except that the unique tags required by the set-theoretic
semantics need not be attached here. The equations for Enrb and Enr

(the semantics of enrichments) are different because the definitions
of the enrich and data operations in section 3 operate on theory

morphisms rather than directly on theories.

The semantic operations from section 3 will be needed in the

equations below, so it is finally necessary to select a particular
institution. We want axioms to be equations:

distfix all H

data Eqn == all (Name-->S-Name) . Term = Term

Note that an Eqn is a semantic object, as distinct from the

equations which appear in specifications, defined as follows:

data Eq == all Varl . Tex = Tex

(Varl and Tex are other syntactic types.) The Eq semantic operation
defined below translates an Eq to an Eqn.

-158-

We have already decided in section 3 on the kind of signatures we

will use, so the institution we want is defined as follows:

dec Clear Institution : Signed Data Institution(alpha,Eqn)

--- Clear-Institution <= institution(colimit-cat-of signatures,
functor(.. ..),

functor(.... ...),

Our implementation does not deal at all with the model-theoretic

aspects of the semantics and does not manipulate equations in non-

trivial ways, so the first component of the institution (and all

types except those of models) are all that is needed. In the

program, the ...'s are replaced by the function 'error', but

anything (well-typed) will do since it will never be accessed.

The above definition is sufficient for the purposes of the

program. But to make sure that such an institution really exists we

must be more specific. All we have specified so far is the category

of signatures Sig and the form of axioms.

- The functor Sen:Sig-4Set takes a signature to the set of

axioms (equations and data constraints) on that signature,

and takes a morphism to the set morphism
c-:Sen(S)->Sen(S') defined in sections II.3 and II.5 which

translates a I -axiom to a 2'-axiom.

- We take as models the algebras defined in section 11.2;

the functor Mod:Si --Set°p takes a signature 7 to the set
of all i-algebras, and takes a morphism o-:7--W to the

set morphism (_)I':Mod(Z')-7Mod(Z) (which takes a

2'-algebra to its Z-restriction).

- The relation P-_j S Mod(7_) x Sen(7_) is the satisfaction
relation defined-in sections 11.3 and II.5 for equations
and data constraints respectively.

This is clearly an institution (recall the Satisfaction Lemma of
section II.3) so we can proceed.

We need to define theories and their morphisms under this
institution:

-159-

type Clear Theory == Signed-Data Theory(Eqn)

type Clear Theory Mor == Signed _Data Theory Mor(Egn)

Based Clear theories and morphisms are defined similarly.

Before we can use the enrichment operation below, we need to

define another institution for dealing with simple theories and

morphisms (i.e. without constraints). The definition is identical

to the definition of Clear Institution above except for the type

declaration:

dec Simple-Clear-Institution : Signed Institution(alpha,Eqn)

Simple Clear theories and morphisms are just the same as signed

theories and their morphisms, defined above.

Semantic functions

Sd, Od, Varl, Eq : same as in section II1.4.3
Enrb : enrichment-body -4 signature -4 dictionary

-3), simple-Clear-theory-morphism
Enr : enrichment -> signature -> dictionary

-> Clear-theory-morphism

Semantic equations

ShcsD = just s

Od Qo: sexi,...,sexn->sex] d =

let si t...,sn,s = Sex rsex1DSd,...,Sex Qsex n]] d,Sextsex]] d in
<just o,string(s1,.... sn,s)>

VarlEx11,...,xin :sex 1,.... xm1,...,xmn :sexm13 d =

let s1,..., m = SexUsex1DSd,...,SmexUsex mDSd in
{ <xl1,s1>,...,<x1n1,s1>,

<xm1'sm>'"
, <xmnm,sm> } (a map Name --> S -Name)

Eq Qall varl. tex
1

= tex2DSd =

let X = VarlUvarlD2d in
let tm1,tm2 = TexUtex1DSdX,TexUtex2DSdX in

all X. tm1 = tm2 (an Eqn)

-160-

Enrb Q sorts sd1,...,sdm opns od1...odn a ns eg1...egp112d =

let S' _ {SdQsd1:,...,SdQsdmI]} in
let Z' = enriched_signature(?,S',0) in
let _ {OdQod1jJ.'d,...,OdQodnl1'd} in
let = enriched signature(i',O,Z') in
let E' _ {EgQeg11]J"d,... ,EgQegpl]J"d} in

enrichment Simple-Clear-Institution (Z,S',Z',E')

EnrLenrb] d = datafy EnrbQenrb]5d

EnrQdata enrbUd =

add-equality Clear-Institution
(data Clear Institution EnrbQenrbl]2d)

Datafy (used in the first Enr equation above) is an auxiliary
function which converts a simple Clear theory morphism to a (data)
Clear theory morphism; its definition is omitted.

4.4. Level IIb: Signature changes

This level is absolutely identical with section 111.4.4 of the

set-theoretic semantics.

4.5. Environments

It has already been mentioned (when based objects were discussed

in section 2) that the environment must record the relationships
between values (theories) as well as the values themselves. This

leads to the natural representation of the environment as a diagram

on the category of theories, where the edges describe how theories
have been put together to make other theories. This is a

generalisation of the usual notion of environment in denotational
semantics, which simply maps names to values. Metatheories and

constant theories must both be stored in the same environment, since

the relationship between a metatheory and all its constant
subtheories must be recorded as well as the relationships between

constant theories. So two of the three environments used in the

-161-

set-theoretic semantics are combined here into a single environment,

where the two kinds of theories are bound in different ways; the

third environment (the procedure environment) remains separate.

Here several operations for creating and manipulating
environments are defined. Environments can be defined without
reference to the properties of the values which they contain, so

these operations are parameterised by an arbitrary category (with a

colimit function, which is needed for the node morphism operation).
The type of an environment is just the same as the type of a

diagram:

type Env(o,m) == Diagram(o,m)

None of the programs are given here; they are all straightforward
albeit somewhat long and complicated.

The first operation is easy; nil-diagram (the diagram with no

nodes) is the empty environment.

Next, we need to bind new values into the environment. Ordinary
(constant) theories are bound in a different way from metatheories,

since the two cases must be handled differently when the time comes

to retrieve values from the environment. Each name is tagged to

indicate whether the associated value is constant or meta (recall
that the names of nodes in a diagram are tagged already):

data Tag alpha == . . . ++ const alpha ++ meta alpha

The operation bind is used to bind a constant (theory) into the

environment:

dec bind : ColimitCat(o,m) ->
(Name # BasedObj(o,m) # Env(o,m) -> Env(o,m))

Bind is defined as follows:

-162-

Def: Given an environment diagram D, a name i not in D, and a

based object 0 (with base included in D), the value of bind(i,O,D)
is the diagram D' where:

- The nodes of D' are those of D together with a node with
the name const(i) and the value apex(O), and

- The edges of D' are those of D together with an edge for
each morphism in the flanks of 0 (going from the base node
in D' to the apex of 0 at const(i) in D').

The operation bind-seta for binding a meta(theory) into an

environment is defined identically (with the same type), except that

the name meta(i) is used instead of const(i).

The operation bind is also defined for n-tuples of names and

based objects:

dec bind : ColimitCat(o,m) ->
(list Name # list(BasedObj(o,m)) # Env(o,m)

-> Env(o,m))

This operation binds each name in the list to the corresponding

value (as a constant). There is no need for a bind meta operation

on n-tuples.

The retrieve operation finds the value in an environment which is

associated with a given name, and constructs the corresponding based

object. As mentioned, it works differently depending on whether the

value is a constant or a meta (theory); the only difference is that

the base of the result for a metatheory will not include the

metatheory itself.

dec retrieve : ColimitCat(o,m) ->
(Name # Env(o,m) -> BasedObj(o,m))

-163-

Def: Given a name i and an environment diagram D including either
const(i) or meta(i), the value of retrieve(i,D) is the based object
0 (with base included in D), where:

- The apex of 0 is the value attached to the node const(i)
or meta(i) in D.

- For the base of 0 there are two cases. By support(j,D) we

mean the set of nodes in D which have a path to j (but not
including j itself).

. D includes const(i): The base of 0 is D restricted
to the nodes support(const(i),D)U (const(i)}.

. D includes meta(i): The base of 0 is D restricted to
the nodes support(meta(i),D).

For each node k in the base of 0, the flank morphism from
k to the apex of 0 is the composition of morphisms along
the path from k to const(i) or meta(i).

The same result would be obtained if metatheories were treated as

parameterless procedures, as in section 111.4-5-

We will need an operation to restrict the base of a based object
to make it compatible with a restricted environment. This is
necessary for the semantics of local declarations, since locally
declared theories have limited scope. At the end of their scope

they must be removed from the bases of objects they have been used

to build.

dec restrict : Colimit_Cat(o,m) ->
(BasedObj(o,m) # Env(o,m) -> BasedObj(o,m))

Def: If 0 is a based object and D is an environment diagram, then

restrict(0,D) is the based object 0' where the base of 0' is the

intersection of the base of 0 and D, apex(0'):apex(O), and the flank
morphisms of 0' are those of 0 which come from nodes appearing in
the base of 0'.

The operation restrict is also defined on based object morphisms:

dec restrict : ColimitCat(o,m) ->
(BasedObj Mor(o,m) # Env(o,m) -> BasedObj Mor(o,m))

-164-

Finally, we need a special operation (called nodeJnorphism) for
constructing the denotation of a procedure which (as has already

been mentioned) is a based theory morphism from the coproduct of the

metasort theories to the theory described by the procedure body.

The metasort theories are (normally) included in the base of the

theory given by the body, so except for the complication of taking a

coproduct in the case of multiple metasorts the result is
essentially the flank morphism from the metasort to the apex of the

procedure body. For the case of a single metasort:

P M

dec nodemorphism : Colimit Cat(o,m) ->
(list Name 0 BasedObj(o,m) # Env(o,m)

-> BasedObj Mor(o,m))

Def: If D is an environment diagram, P is a based object (with
base included in D) and I:[i1,.... in] is a list of names of nodes in
D, then the value of node morphism(I,P,D) is:

- The unique morphism from the coproduct retrieve(i1,D) +
. + retrieve(in,D) to P, if the nodes i1,...,in are in

the base of P

- Error, if some node ii is not in the base of P

The result of node morphism is constructed using the 'universal
part' obtained from the coproduct of the metasort theories. If n-1,

then the result is as shown above.

All of these operations are parameterised by the (colimit)

-165-

category of values stored in the environment. In the case of
ordinary Clear the values are based Clear theories, defined

previously. The name 'Clear cat' will be used for this category

rather than the more descriptive but long-winded

'colim cat of based Clear theories'.

dec Clear cat : Colimit_Cat(BasedClear Theory,
Theory Mor)

--- Clear cat <= colim cat of based theories(Clear Institution)

The environment which keeps track of constant theories and

metatheories has just been defined. We also need an environment for
theory procedures. This is just a map from procedure names to their
values, as in the set-theoretic semantics. The denotation of a

theory procedure is a based theory morphism (from the coproduct of
the metasorts to the procedure body). However, in order to apply

the procedure we also need to know the metasort theories so that we

can determine the fitting morphisms between the metasorts and the

actual parameter theories. The procedure environment therefore must

map procedure names to pairs consisting of a based theory morphism

and a list of based theories (the metasorts):

type Proc_Env(o,m) _= Name --> Based_Theory Mor(o,m,beta)
I list(Based Theory(o,m,beta))

No special operations will be needed for manipulating procedure

environments; bind and retrieve are as usual for maps (we write
p(pn) to retrieve the value associated with the name pn from 1, and

n[v/pn] to bind the value v to pn in X).

4.6. Level III: Theory-building operations

The final level is similar to section 111.4.6 of the set-
theoretic semantics. The only differences are those stemming from

the use of a different set of semantic operations and the more

complex notion of environment.

-166-

Values

T : based Clear theory
e : environment (constant theories and metatheories)
R : procedure environment

Semantic functions

E : expression -4 environment -4 procedure-environment
-) based-Clear-theory

Spec : specification -4 environment -4 procedure-environment
-) based-Clear-theory

Semantic equations

E QTIJpW = retrieve Clear cat (T,p)

EQtheory enr endthU _
enrich Clear Institution (,Enr QenrU dict(1))

is
is the empty based theory;

the empty signature)

EQel + e2IJPW = combine Clear Institution (E Eel DPI',EQe2DW)

EQenrich e enr endenlJ(W _

let T = EQelJP1r in
enrich Clear-Institution (T,Enrffenrjsignature(T)dict(T))

E Qderive enr using el,...,en from e sic enddeUPW

let T = combine Clear Institution (E Qe1D(W,

combine Clear_Institution (E Qe2UpW,...)) in

let T' = enrich Clear-Institution

(T,Enr QenrUsignature(T)dict(T)) in

let T" = E Qe jF in
let o- = Sic QsicUsignature (T')signature (T")diet (T") in

derive Clear Institution (T',o-,T")

-167-

EQP(ei[sici]....,en[sicn])I1PW _

let jj,...,T1 = EQei W,...,EQenneW in
let <F,<Ti,..., >> = W(P) in
let o1,...' n =

Sic Qsic1Ilsignature(T1)signature(TI)dict(TI),

SicQsicnIsignature(Tn)signature(T)dict(T) in
let Fi,...,Fn =

extend-signature-morphism Clear-Institution

(T9cr 9TI)t

extend_signaturemorphism Clear-Institution

(TnenT) in
apply Clear-Institution (F,<F1,...,Fn>)

(where extend signature norphism is the corresponding

function on based theories rather than theories)

EQlet T = el in e2] 'W =

let T = EQe1]PW in
let P' = bind Clear-cat (T,T,p) in

restrict Clear cat (EQe2Ile'W,P)

EQco e using ei,...,en]pW
let T = EQeI1PW in
let T' = combine Clear-Institution (EQe1](aW,

combine Clear-Institution (E Qe2fleW....)) in

copy Clear Institution (T,T')

Spec[e]PW = EQe]PA

Spec Qconst T = e spec] W =

let P' = bind Clear cat (T,EQe]1FW,P) in
Spec Q spec]P'W

Spec[meta T = e specleW _

let P' = bind meta Clear-cat (T,EQe]WW,P) in
Spec Q spec I FIW

-168-

Spec[[proc P(Ti:ei,...,Tn:en) = e spec]lPW =

let Tj1...,Tn = EQe1IIPW,...,EQenJWW in
let P' = bind Clear cat (<Ti,...,Tn>,<T1,...,Tn>,P) in

let T' = EQellp'W in
let F = node _morphism Clear cat (<T1,...,Tn>,T',el) in

let F' = restrict Clear cat (F,P) in

let T, .,...,Tn' = restrict Clear cat (T1,P),

restrict Clear cat (Tn,F) in

let W' = 11'[<F',<Tll,...,TT'n>>/P] in
Spec[[spec]W'

-169-

5. Implementation

In the preceding sections an implementation of the category-

theoretic semantics of Clear has been presented in parallel with the

semantics itself. The finished program written entirely in HOPE is
about 1700 lines long and occupies 110K words on a DEC KL-10

computer (where the HOPE system itself occupies 66K words of this
total). The only theory in the initial environment of the system is
a simple version of Bool.

The system has been tested on several small examples, but as the

timing figures below demonstrate it is rather too slow to be used on

realistic large specifications such as those in section IV.2.

Example 1

The denotation of the specification

const Nat =

enrich Bool
data sorts nat

opns 0 : nat
pred, succ : nat -> nat

egns all n:nat. pred(succ(n)) = n

all n:nat. succ(pred(n)) = n enden

Nat + Nat

is the based theory

sorts nat, bool
opns 0, pred, succ, true, false,
egns . . .

The computation of this result required 4.325 minutes of CPU time

(excluding garbage collections).

-170-

Example 2

The denotation of the specification

meta Triv
theory sorts element endth

proc Pair(X:Triv)
enrich Bool + X

data sorts pair
opns mkpair : element of X,element of X -> pair
egns all n,m:element of X. mkpair(n,m) = mkpair(m,n)

enden
Pair(Bool[element is bool])

is the based theory

sorts pair, bool
opns mkpair, true, false, ...
egns . . .

The computation of this result required 1.85 minutes (excluding

garbage collections).

Nearly all of the time these rather trivial examples required was

consumed in the computation of colimits in the category of based

Clear theories. Recall that the application of a theory procedure

requires 3 simple colimits in the category of based theories. Each

of these colimits requires a larger colimit in the category of
theories, which in turn requires a number of colimits in the

category of signatures. Each colimit in the category of signatures
requires 2 colimits in the category of sets (the category of
signatures is a comma category) and each of these requires a number

of set coproducts and coequalisers. The second example above

required 88 set coproducts and 32 set coequalisers. An intricate
and complex manipulation of the results of these operations is then

required to convert them into the result of the theory procedure

-171-

application. Of course, the speed of the HOPE system itself is an

important factor; recoding an earlier version of the colimit program

in POP-2 resulted in a very substantial increase in speed.

Although the idea of giving a very general semantics of Clear

using colimits and the way that colimits in categories of complex

objects are built from colimits in categories of their components

are both (in some ways) extremely elegant, they contribute to a

computationally discouraging result. But some possibilities for
speeding up the program remain. Since it was written without regard

for efficiency, there is a chance that some of the algorithms used

can be substantially improved. Also, rewriting the program in POP-2

or LISP would certainly improve its performance, probably by at
least one order of magnitude. There is at least one special case

(i.e. a certain class of institutions) which can be treated
separately and made very much more efficient; when signatures are

essentially collections of sets and the morphisms within based

theories are all inclusions, the necessary colimits in the category

of based theories can be computed quickly using the representation
and algorithms described in the set-theoretic semantics of chapter

III. This class of institutions includes ordinary Clear and all
other institutions which have been proposed so far (see section
111.6). The necessary manipulations of theories in the special case

are actually very simple as compared with those performed when a

powerful general technique is applied as in the present program; the

same result can be computed for example 1 in 2.3 seconds, giving a

factor of more than 100 speedup.

-172-

CHAPTER SIX

PROVING THEOREMS IN CLEAR THEORIES

We have discussed in earlier chapters two versions of Clear's
semantics, and we have seen how an implementation of either
semantics can be useful both for checking the semantic definitions
for mistakes and for checking specifications for syntactic and

semantic errors. This is surely commendable in its own right, but

what is to be done with the theory produced by this program as the

denotation of a specification? It is nice to know that a

specification contains no errors (at least at the level of theories
-- whether or not it has the intended class of models is another

matter) but it would be even nicer if the result of laboriously
computing its denotation could be used to shed further light on the

specification and its models.

There are several things which could conceivably be done with the

denotation of a specification. The most obvious thing is to simply

print the signature and (some representation of) the set of
equations for the user to examine. The signature at least is often
slightly different from that expected; it is especially easy to
forget about the == operators contributed automatically by the data

operation. This could also be useful in determining the effect of
unusual uses of Clear's theory-building operations. Both Clear

implementations print their results, although the result printed by

the category-theoretic version is rather difficult to read.

A system like OBJ [Goguen and Tardo 1979] could be used to 'run'
the theory in some cases. OBJ evaluates expressions by treating the

equations as left-to-right rewrite rules, with special provisions
for permutative equations like a+b=b+a. With this the user could

check examples to see if the specified behaviour is consistent with
his intentions. Such a system could not cope with all theories;

loose and implicitly specified theories would both cause (probably)

insurmountable problems.

The DAISTS system [Gannon, McMullin and Hamlet 1981] tests if a

model (program) is consistent with an equational specification. The

-173-

idea is to run the program on a set of examples and see if the

results satisfy the equations. Such a system would have a use

similar to that of the OBJ-like system just mentioned; it would be

more laborious to use (the user has to write a program as well as a

specification) but it would be able to handle all specifications
with equal ease. Of course it could also be used to test if a

program satisfies its specification, provided that we are sure the

specification is correct. The system checks only for consistency

and not for completeness -- the program might satisfy some extra
(wrong) equations as well as those in the specification -- so it
will not always find the flaw in an incorrect program.

In a later chapter we shall see how the denotations of
specifications would be needed in a system for stepwise refinement
of specifications. The goal of such a system would be to check the

validity of (and perhaps assist with) the development of a program

from a specification by rewriting the specification at successively

lower and lower levels. The resulting program is guaranteed to
satisfy the specification, provided that the correctness of each

refinement step has been verified by the system.

But in this chapter we will discuss the problem of proving
theorems in the theory described by a specification. If a theorem

prover of some kind were available it could be used by the Clear

system itself to check that specifications are semantically well-
formed; the conditions attached to the apply and derive semantic

operations require that the signature morphism provided be a theory

morphism, which entails checking that the equations and constraints
in the source theory (translated via the signature morphism) hold in
the target theory. Even better, the user could pose questions about

his specification in the form of equations, which the theorem prover

would try to answer. Guttag and Horning [1980] demonstrate how this
can be of use in analysing specifications. Also, a program

development system would need a theorem prover to check the validity
of refinement steps.

Most useful would be a fully automatic theorem prover. But

theorem proving technology is not yet sufficiently advanced to

provide this, although some remarkably good automatic theorem

-174-

provers do exist (see for example [Boyer and Moore 1980]). Here we

will discuss how a semi-automatic theorem proving system based on

Edinburgh LCF [Gordon, Milner and Wadsworth 1979] was attached to
the set-theoretic implementation of Clear. This system proves many

theorems automatically, but in difficult cases it leaves the user to
design a proof strategy from high-level primitives. He also can

build his own primitives (tactics, in LCF jargon) using the

inference rules provided. The structure of Clear theories seems to
be very useful in directing the search for a proof in an interactive
system, although so far little experimentation has been done to
confirm this suspicion.

In section 5 it is shown that no complete proof system exists for
Clear. Although this result has important consequences, in practice
the difficulty of mechanical theorem proving is the limiting factor.
Usually the theorems we wish to prove will have routine proofs; our

task is to automate the easy proofs and provide the user with tools
for attacking the harder ones.

-175-

1. Edinburgh LCF

Since the system we are about to discuss both is built upon and

draws inspiration from Edinburgh LCF, we now briefly describe the

most important features of that system.

Edinburgh LCF (usually called simply 'LCF') is a large system,

and as such it is probably easiest to understand when it is
decomposed into several more or less independent subsystems. First
is ML, a general-purpose applicative language with polymorphic

types. ML is very much like HOPE; one useful feature which is found

in ML but not in HOPE is a failure generating (and failure trapping)

mechanism.

Built on top of ML is the second component, PPLAMBDA -- a family
of deductive calculi or theories with terms from typed lambda-

calculus and (for each member of the family) a set of types,

constants and axioms. There are facilities akin to enrich and

combine in Clear for putting together several theories and extending

the result to make a new theory. A.theorem in PPLAMBDA is an ML

data structure like a term or formula, but with a crucial

difference: the only way to construct a theorem is by application of

built-in inference rules. This ensures that any object of type thm

must be true in the theory in which it was formed. Thus the type

security provided by the ML type checker is used to maintain logical

security.

The final component of LCF is not a program but a methodology for

goal-directed proof in PPLAMBDA using ML. Given a theorem to be

proved (we use the notation a1...an t c), we apply a tactic; that is,

a proof rule in the form of a little ML program. This may fail if

the goal is not of the appropriate form. If it succeeds then it

delivers a list of subgoals together with a proof; this is a

function built from inference rules which will produce a theorem

(written a1...an l- c) corresponding to the original goal if it is

given a theorem corresponding to each of the subgoals.- Proving a

theorem is then a matter of applying one tactic after another until

the empty list of goals is obtained. Tacticals like

THEN : tactic x tactic -4 tactic

are provided for composing tactics into larger tactics called

-176-

strategies.

LCF is sometimes described as an interactive theorem-proving

system, but as it stands it is not well-adapted to this end

(although Luca Cardelli, Jacek Leszczylowski and Brian Monahan have

each written a collection of 'interactive' tactics). The

bookkeeping problem of remembering how to compose proof functions

(obtained by the application of tactics to goals at various stages

of the proof) is handled well by the tacticals but is nontrivial for
humans. LCF is most useful for interactively designing and testing
strategies for proof; the idea is to produce a strategy which will
solve the entire problem by reducing the top-level goal to the empty

goal list, rather than to attack subgoals individually by hand

(although this can be useful for designing a strategy).

-177-

2. The theorem prover

The denotation of a Clear specification is a theory -- that is, a

signature S together with a closed set of I-equations (and

2-constraints). Of course, the set is often infinite, so it cannot

be represented explicitly. Both Clear implementations represent a

closed set of equations by an agglomerate; this is a value of the

term algebra generated by the following constructors:

close : equation-set x constraint-set --) agglomerate
union : agglomerate x agglomerate --4 agglomerate
translate : signature-morphism x agglomerate -4 agglomerate
inv-translate : signature-morphism x agglomerate - agglomerate
add-equality : signature-morphism x agglomerate -> agglomerate

For the formal meanings of these operators, consult the next section

(they have already been defined informally in section IV.1). This

is a sufficient set of operators to describe the manipulations on

agglomerates required by the semantics of Clear. Roughly speaking,

each operator corresponds to a theory-building operation of Clear.

The operator close is used for enrich, union for combine (and

enrich), inv-translate for derive, and add-equality for data-enrich.

Translate is needed for enrich, combine, and apply. For example,

the Clear expression A + B generates the following agglomerate:

union (translate ((rA,A-agglomerate),
translate(a-B,B-agglomerate))

where
o-A

and o-B are the inclusions of the signatures of A and B

respectively into the signature of the combined theories.

The theorem prover's job is to implement the membership

operation, determining if an equation occurs in the set of equations

described by an agglomerate:

is-in : equation x agglomerate --> bool

Given an equation e and an agglomerate A, we try to show that e

is contained in the denotation of A; if this can be established then

we write A h- e. This is called a fact. Facts in our system coexist

with PPLAMBDA theorems (which we write with a subscripted turnstile,

tCF
from now on) and play a parallel role. Like theorems in

PPLAMBDA, facts can only be constructed by application of certain

rules of inference which we will shortly discuss. The system

provides a set of tactics for attacking goals (which are written

-178-

A !e -- LCF goals are henceforth written a1...an
FLCFc),

these are

analogous to LCF tactics and can be combined into strategies using

the standard tacticals.

Thus we adopt wholesale the LCF proof methodology, and use

exactly the same trick for ensuring the validity of facts as LCF

uses for theorems. We use PPLAMBDA forms for representing equations

and constraints, and perform all of the necessary straightforward
equational deduction using the standard PPLAMBDA rules of inference.
The system itself is written in ML. The only important feature of
LCF we do not use is the facility for building new PPLAMBDA theories
by extending old theories. The role of theories in PPLAMBDA is

played by agglomerates in our system. As we shall see shortly, much

of the work of the theorem prover consists of rapidly switching
contexts from one agglomerate to another (usually embedded) one --
LCF does not permit switching between PPLAMBDA theories in the

course of a proof (although such a facility could be added).

Moreover, agglomerates may be related in ways different from the

simple parent-daughter relationship between theories supported by

LCF. The theorem prover operates in a PPLAMBDA theory containing
all the types (sorts) and constants (operators) it will need to use

because these need to be declared before appearing in a form, but no

axioms are included except for those built into PPLAMBDA. The

axioms of a Clear specification are contained in the agglomerate

which is its denotation; these are brought into play in the course

of the proof but never become part of the underlying PPLAMBDA theory

itself.

We actually use an impoverished version of LCF in which many of
the usual built-in types, operations and inference rules of PPLAMBDA

are not available. This is necessary because of a mismatch between

the models of PPLAMBDA and Clear theories. Clear deals entirely
with total functions, while PPLAMBDA is designed for reasoning about

recursively-defined functions which may be partial. A model of a

PPLAMBDA theory is given by a family of domains, each with a

distinguished minimum element and an order relation (see [Milner,
Morris and Newey 1975]). A PPLAMBDA type always includes an

implicit minimum element and an order relation, and inference rules

-179--

are provided for reasoning about them. This means that the PPLAMBDA

rules of inference are not sound for reasoning about Clear theories;

an example will be given in section 3. Soundness is restored by

removing the implicit order and minimum element and all inference

rules concerning them. The subset of PPLAMBDA which remains is

described in appendix 3.

The goal of this system is to provide a set of tools sufficient
to enable a user to conduct proofs of 'facts' in LCF. As mentioned

earlier, our intent is not to give a general-purpose automatic proof

system, for this would be an impossible task. To this end the

system contains definitions of agglomerates and facts (with their

inference rules); a set of basic tactics are supplied as well,

although the user may design his own tactics from the inference

rules given. A strategy which is capable of automatically proving a

restricted class of facts is provided. If this strategy fails, it

will at least have reduced the problem at hand to one of ordinary

equational deduction using standard PPLAMBDA inference rules. At

this point the user must assume control of the proof attempt, with

all the usual facilities of LCF at his disposal.

-180-

3. Inference rules
Suppose we are somehow able to construct the fact Ar-e in our

system. We understand this to mean that e is a member of the set
described by the agglomerate A. We had better explore the semantics

of agglomerates before attempting to give inference rules for
reasoning about them; without a semantics, we cannot even prove the

soundness of our system.

The abstract syntax of agglomerates was given at the beginning of
the last section. They have a straightforward semantics, given by

the semantic function]E (recall that E refers to the model-

theoretic closure of E, and c'-1(E) _ {e;c'(e)6E}; see section
III.2.3 for the meaning of the notation ES, the augmentation of E by

equations defining the 'data' equality predicate == on the sorts of
S).

IE : agglomerate -4 (equation and constraint) -set

IEQclose(E,C)D = EUC

IEQunion(A,A')D = IEQADUIEQA'D
IEQtranslate (c,A)D = A)

IEQinv-translate(c,A)D = 0-1(IEQA11)
IEQadd-equality(Q',A)D = IEQADS (S=sorts(2'-V, where r:2"V)

where E denotes a set of equations,
C denotes a set of constraints,

and A denotes an agglomerate.

Observe that for any agglomerate A, IE QA D is closed (the
denotation of inv-translate is always closed due to a result in
section 111.2.4). Also note that not all terms are semantically

well-formed -- for example, if A denotes a set of k-equations and

constraints and is a signature morphism where 1/2', then

translate(o-,A) is meaningless. It is assumed throughout this
chapter that any restrictions necessary to maintain well-formedness

are tacitly stated whenever a term appears.

A number of identities follow from the semantics, including the

following:

translate (o,union (A,A')) = union (translate (c,A),translate (c,A'))
translate (c',inv-translate(Q,A)) = A

-181-

But the following identity does not hold in general:

inv-translate(cr,translate (cr,A)) = A

Using this semantics, we can give a set of inference rules which

allow us to reason about facts of the form At-e, where e is an

equation or a constraint. (Note that A f--e means ee]E.(1Af) The

problem with this is that we do not have any means available for

reasoning about constraints; we know what it means for an algebra to

satisfy a constraint and how to translate constraints by signature

morphisms, but this does not provide a rich deductive calculus

similar to what we have for equations. Moreover, constraints cannot

be converted into equations; the language of equations is not rich

enough to capture the meaning of a constraint. But certainly we do

not want to throw away the information encapsulated in constraints

if at all possible, since this would dramatically restrict the class

of facts we would be able to prove.

We need a notion of fact in which something more than an equation
is allowed on the right of the turnstile. This 'something' should

be powerful enough to express constraints, and should have a

readily-available proof theory. A very convenient choice is
PPLAMBDA forms (formulae); these include equations, and also allow

higher-order quantification and combination of forms with the

conjunction and implication connectives. We will see shortly that
an induction rule for a sort s (derived from a data constraint) can

be expressed as a second-order form b'P.`d Q. ... where P and Q have

the polymorphic type s-*. Moreover, we know how to reason about

forms; that is precisely what LCF was built to do.

It is easy to extend facts to be of the form Ar-f, where f is any

PPLAMBDA form. We can define Af-f to mean f]E QA D*+, where

* : (7.-equation and 7-constraint) -set ----> _Z-algebra set

is the function defined in section 11.4 (recall that E = E**) and

+ : I-algebra set --j 2-form set

is defined by:

M+ = {f;m satisfies f for each meM}

It turns out that even though the language of forms is

--182-

sufficiently powerful to express the information contained in a

constraint, it is impossible to extract all of it because of
incompleteness. But that portion of the information which is most

necessary for our purposes may be translated into a form.

To see how this arises we must examine the definition of

constraint satisfaction given in section 11.5. If we consider for

the moment only cases where the second part of the constraint (the

signature morphism) is the identity, then this amounts less formally

to the following definition:

Def (Constraint satisfaction, informally): An algebra A satisfies
a constraint <i:T-4T',13ig(T,)> if the following conditions hold:

1. A is a model of T'.

2. No terms are identified in A unless the equations of T'
force them to be.

3. Every A element is the value of a term having variables
only in sorts of T for some assignment of values to

variables.

These three conditions are statements which will be true of any

algebra in EQAU , for any constraint in]EQAB. This means that
any statement which follows from them which can be encoded as a form

will be in]E QA D +, and hence a fact in A.

Condition 1 is redundant. The equations of T' will appear

elsewhere in the agglomerate which contains the constraint, so we

can safely ignore them now. Condition 2 entails only inequations --
these can be given as PPLAMBDA forms (alb is written as "a=b IMP

TT=FF"), but it is impossible in general to determine which

inequations will hold because of the incompleteness result mentioned

earlier. This is not a problem if T' is anarchic. But because we

are mainly interested in proving equations, and because PPLAMBDA

does not include facilities for reasoning about inequations, we

choose to ignore this special case.

Condition 3 gives rise to an induction rule for each sort in
sorts(T')-sorts(T), since all values of these sorts are generated by

the 'constructors' in T'. This rule can be expressed as a

polymorphic second-order form -- in the case of natural numbers with

-183-

operations 0 and successor the rule becomes:

!P:nat->*. !Q:nat->*.
[P(0)=Q(0) & !x.[P(x)=Q(x) IMP P(succ

IMP
!x.[P(x)=Q(x)]]

x)=Q(succ x)]

In LCF the universal quantifier becomes '!', type variables are

written '*' (or **, ***, etc.), and IMP means logically implies. We

use the operator '=' instead of the LCF '_=' to write PPLAMBDA

equations in this chapter; the '_=' operator is reserved for Clear's
'data' equality predicate.

This rule could be instantiated to prove the equation

n+m>n = true (that is, to prove the fact A t-"!n.[n+m>n=true]" for
the agglomerate A which arises from enriching the natural numbers

with an order relation). The type variable * is instantiated to
nat->bool, P becomes Xn.Xm.n+m>n and Q becomes Xn.Xm.true to give:

Xm.0+m>O=Xm.true
& !x.[)m.x+m>x=Xm.true IMP Xm.succ(x)+m>succ(x)=>m.true]
IMP
!x.[Dm.x+m>x=Xm.true]

In general, given a constraint <i:Tc_)T',lsig(T')> and a sort
ssorts(T')-sorts(T) with

constructors(s) 3 (oopns(T');arity(o) is v->s, for some v}

= {..., w:u->s, ...},

we can extract the following induction rule:

!P:s->*. !Q:s->*.

& lxi:ui. .. !xn:un.[... & P(xi)=Q(xi) & ...

& ..

IMP

lx:s.[P(x)=Q(x)]]

where u=ui...un and uj=s.

IMP
P(w(xi,...,xn))=Q(w(xi,...,xn))]

Recall that the preceeding discussion related only to constraints
with the identity morphism (on the signature of T') as a second

part. Given a constraint <i:T`-->T1,d':signature(T1)-->2> (where d'

-184-

need not be the identity), we can produce an induction rule by first
generating a rule for the constraint <i,1sig(T?)> using the method

just described, and then applying the signature morphism o° to

translate the rule to the signature 2.

We have just described a way of extracting a set of induction

rules from a constraint; this gives a function

induction-rules : constraint ---> form-set

It is easy to define another function

eqn-to-form : equation -4 form

for converting equations to forms. Now we can have a try at an

inference rule:

fe(egn-to-form*E U induction-rules*C) close (E, C) f-f

This is a satisfactory rule, but since the original equations and

constraints are no longer of any use (but only the forms derived

from them) we could just as well forget them and deal only with
forms. Accordingly we modify the abstract syntax of agglomerates so

that close accepts a set of forms:

close : form-set -> agglomerate

The rest of the abstract syntax remains the same. The agglomerates

used by the Clear implementation (call them E-agglomerates) are

translated into agglomerates with the new close (F-agglomerates),

with the only nontrivial part of the translation being the

conversion of the constraints to forms. This translation occurs at
the interface between Clear and LCF, as described in a later
section.

An incidental benefit of the switch from equations to forms is
that the theorem prover is now equally capable of handling

specifications using conditional equations, predicate calculus
formulae, or any other kind of axioms which can be translated into
PPLAMBDA forms. The only difference is at the interface between the

specification language and the theorem prover, where the axioms must

be translated into forms.

A semantics for F-agglomerates is given by the semantic function

-185-

IF, defined as follows:

IF : agglomerate -4 form-set

1FQclose(F) D = F
IFIlunion(A,A')D = IFQADUIFQA'I1

All the semantic equations except for the close operation are

identical to those at the beginning of the section. Note that

F = F++, where the first + is the operation

+ : 2-form set 2-algebra set

defined by

F+ = {m;m satisfies F)

and the second + is
+ : 2-algebra set --> 2-form set

as described earlier.

Theorem: For any E-agglomerate A, IFQT(A) D c IE[LAD*+, where

,r:E-agglomerate-4F-agglomerate is the translation mentioned above.

Proof: See Appendix 4; the proof relies on a proof of the

Satisfaction Lemma (section II.3) for PPLAMBDA forms, also given.

This theorem tells us that the new semantics for agglomerates is
consistent with the old semantics -- so any fact we can prove using

inference rules which are sound with respect to the new semantics

will hold in the corresponding theory (but not vice versa).

The inference rules can now be stated. It is easy to prove from

the semantics that each of the rules is sound (note that W f f now

means f*IFIIA D). Each rule is given an upper-case name, following
LCF convention.

CLOSE: feF close(F) rf
UNIONLEFT: A[-f union(A,A')F-f
UNIONRIGHT: A'F-f union(A,A')F-f
TRANSLATE: AF-f Z> translate (a, A) -(r (f
INVTRANSLATE: AF-o- (f) inv-translate(o-,A) F-f
ADDEQUALITY: Ar-f add-equality((r,A)f-a (f)
EQUALITYOPN: w:s,s->boolBooleopns(j'-j) and

add-equality(c-,A)-!x:s.!y:s.[x:y IMP w(x,y)=trueBool]
LCFINFER: A-f1 & ... & A-fn & fI,.... fntCFf As--f

.186-

EQUALITYOPN provides us with a way of proving equality (the

operator w will always be the == data equality) but no way of
proving inequality. Proving inequality is impossible in general

because of incompleteness, but in the special case of an anarchic

theory it is trivial. Burstall [1980a] has devised a way of proving
inequality in a nonanarchic theory, but the method requires help

from the user, analogous to but different from supplying induction
hypotheses to a theorem prover. We do not attempt to deal with this
problem; no inference rules are provided for reasoning about

inequality. Note that inequalities are subtly different from

inequations, discussed earlier.

LCFINFER provides a 'gateway's between standard PPLAMBDA and the

superstructure of inference rules about facts which is needed to

adapt LCF to reason within Clear theories. Viewing the theorem

prover as a goal-manipulation system, the previous seven rules
provide a means for reducing a goal (prove a fact Al-f) to a problem

in ordinary equational logic. LCFINFER permits this to be

translated into an LCF goal, whereupon the proof can proceed using

the facilities of standard LCF.

We must be careful in our use of LCF for two reasons. The first
problem stems from the mismatch between the models of PPLAMBDA and

Clear theories mentioned in section 2. Recall that in standard

PPLAMBDA a type always includes an implicit minimum element (written
"UU"). If full PPLAMBDA is used then LCFINFER is not sound.

Consider the theory Bool; it contains a data constraint which gives

rise to the following induction rule:

!P:bool->*. !Q:bool->*.
[P(true)=Q(true) & P(false)=Q(false)

IMP
!x.[P(x)=Q(x)]

Taking the example

P(UU) = UU, P(true) = P(false) = true
and Q(UU) = Q(true) = Q(false) = true

this rule leads to the conclusion UU=true. A similar example can be

used to prove that UU=false, and by symmetry and transitivity this

means that true=false.

-187-

In order to retain soundness, we restrict PPLAMBDA so that
examples like the one above do not occur by excluding UU and all
inference rules which refer to UU or the order relation. In fact,
we really want to replace the turnstile

tCF
in LCFINFER by rQ,

where EQ is a system for purely equational deduction with the

ability to apply the induction rules described earlier. We use LCF

only for convenience and because it contains a powerful simplifier
which is capable of assuming much of the work of equational
deduction.

A second problem with the PPLAMBDA inference rules is
demonstrated by the following example from Goguen and Meseguer

[1981]:

const T = theory
sorts a, bool
opns true, false : bool

not : bool -> bool
and, or : bool,bool -> bool
f : a -> bool

egns not(true) = false not(false) = true
p or not(p) = true p and not(p) = false
p or p = p p and p= p
f(a) = not(f(a)) endth

We can now make the following deduction using the inference rules of
PPLAMBDA (symmetry, transitivity, substitutivity and specialisation
of quantifiers are sufficient):

true = f(a) or not(f(a))
= f(a) or f(a)
= f(a)

f(a) and f(a)
f(a) and not(f(a))

= false

But true=false is not satisfied by the model of T with
boot={true,false} and a=0 (with the usual interpretation of the

boolean operators).

This is again due to a mismatch between the models of PPLAMBDA

and Clear theories. The inference rule for specialising quantified
variables is not sound for many-sorted theories (e.g. Clear

theories) unless the variable is of a non-void sort:

-188-

Def: A sort s is void in a signature S if sesorts(S) and:

- There are no constants of sort s in 2, and

- There is no operator w:s1,...,sn->s in 1 with all of
311...,sn non-void.

It is difficult to change the inference rule because it is built
into the LCF simplifier, which plays a vital role in our equational

deduction tactic (this tactic is described at the end of the next

section). But void sorts are very unusual in practice. The

quantifier specialisation inference rule remains valid as long as

all sorts are nonvoid, so for reasonable examples there will be no

problem. It is best to eliminate unsound inference rules, so a

future reimplementation should incorporate a version of quantifier
specialisation modified to fail for variables of void sorts.

-189-

4. Tactics and strategies
The inference rules given in section 3 could be used to prove

theorems in a 'forward' direction, but the LCF style is to instead

proceed backwards in a goal-directed fashion. A step consists of

transforming the goal into a list of goals which, if they can be

achieved (converted to theorems), entail the desired theorem. The

transformation steps are carried out by backwards inference rules

called tactics, which can be composed using tacticals to give

strategies, as discussed in section 1.

The theorem prover provides tactics corresponding to each of the

inference rules given in section 3. These are all simple ML
7

programs, operating on goals of the form AF-f and returning a list

of goals (together with a proof, not shown).

CLOSETAC (F) -f [] if fF l f il l : F c ose a ure , e se

UNIONLEFTTAC A') (A f [A i f] :

UNIONRIGHTTAC:

TRANSLATEWITHTAC

- F- , on f un

union(A,A') F-f y [A' Lf]

f '--> translate(a A) 9-f' [A !f] : f ,

if o(f)=f', else failure

INVTRANSLATETAC: inv-translate(a,A) r-f L---> [AV-a (f)]

7 7
ADDEQUALITYTAC: add-equality((r,A) r-f '----> [A - f]

if a`-1(f)iO, else failure

EQUALITYOPNTAC: add-equality(o-,A)Fcj(x,y)=trueBool

'-> [add-equality((r,A) - x=y]

if w:s,s->boo1Booleopns(j'-2) where d':2"V, else failure

LCFINFERTAC: [Affil ***I A f-fn] ' A Ff ' [f 1, ' fn
FLCFf]

Each of these tactics gives a way of diving into an agglomerate

with a form, yielding a goal concerning a subagglomerate and the

(possibly transformed) form. UNIONRIGHTTAC and UNIONLEFTTAC take

different choices when given a union; similarly, TRANSLATEWITHTAC
7

yields a different result for the goal translate(o`,A)r-f depending

on which element of the set (r-1(f) it is given. The system provides

--190-

tacticals which automate these choices:

UNIONTACTHEN: tac t-4
(UNIONLEFTTAC THEN tac) ORELSE (UNIONRIGHTTAC THEN tac)

9
TRANSLATETACTHEN: tac r---> translate(o,A) rf r--

((TRANSLATEWITHTAC f1 THEN tac)
ORELSE ... ORELSE

9
(TRANSLATEWITHTAC f THEN tac)) translate(o',A) rf

where {fl, fn} = a' fl(f)

The standard LCF tactical ORELSE, given the two tactics tac
1

and

tact, applies tact to the goal unless it fails, in which case tac 2

is applied. The action of UNIONTACTHEN tac is therefore to first
try choosing the left-hand branch of the union; if this causes tac
to fail, then it tries the right-hand branch. TRANSLATETACTHEN tac

tries each possible choice of argument for TRANSLATEWITHTAC,

rejecting those which cause tac to fail.

It is helpful to think of an agglomerate as a tree. For example:

union

translate inv-translate

union close / \
inv-translate translate

add-equality close

close

Each of the tactics given so far dive from an agglomerate to the

subagglomerate(s) immediately underneath (with the exception of
EQUALITYOPNTAC, which remains at the same node). A composite

tactical called DIVETAC is provided which, given an LCF tactic
(i.e., a tactic for attacking LCF goals), explores the entire

-191-

agglomerate by diving repeatedly until it reaches a tip (a close

agglomerate). At this point LCFINFERTAC is applied, followed by the

tactic provided as argument. If this results in the empty goal

list, then the goal is achieved; otherwise a failure is generated

which is trapped at the most recent choice point (an application of

UNIONTACTHEN or TRANSLATETACTHEN). The same process is then used to

explore another branch of the tree (or the same branch, with a

different form), until the entire tree has been traversed.

DIVETAC: tac r- 4

--4

if g = close(F)J.:-f:
(TRY (LCFINFERTAC [close(F)I-f1

close(F)f-fn] THEN tac)) g

where F = {f fn}
if g = union(A,A')Ff: (UNIONTACTHEN DIVETAC tac) g

if g = translate(o,A) F-f: (TRANSLATETACTHEN DIVETAC tac) g

if g = inv-translate(o,A)-f: (INVTRANSLATETAC THEN DIVETAC tac) g

if g = add-equality(o,A) Ff:
((DO EQUALITYOPNTAC) THEN ADDEQUALITYTAC

THEN DIVETAC tac) g

This uses two auxiliary tacticals. The first is called TRY; it
fails unless the tactic supplied is able to achieve the goal.

TRY: tac r---> g r--4 if tac g = [I then [1, else failure

The second is called DO; it applies the given tactic, returning the

original goal if the result is failure.

DO: tac r-> g '-4 if tac g = failure then [g], else tac g

DIVETAC EQTAC (where EQTAC is an LCF tactic for performing
equational deduction; one such is described at the end of this
section) can automatically provide proofs for a wide range of facts,
provided that EQTAC performs adequately. It dives down to the tip

which contains the information needed to prove the fact at hand (of

course, finding the proper tip may involve a backtracking search),

and uses EQTAC to do the 'dirty work' of the proof.

This is quite a good way to go about proving facts concerning

-192-

large agglomerates. For example, if the goal is Ar-p+q=q+p where A

is obtained from the specification of a compiler, then almost all of
the information buried in A is completely irrelevant and should be

ignored lest the proof get bogged down by silly proof attempts.

DIVETAC will fail quickly when attempting to follow most silly paths

(going on to find the correct path) because of a mismatch between

the form at hand and the signature of the irrelevant subagglomerate.

For instance, the Clear expression Nat + Useless gives rise to the

agglomerate

union (translate (CNat:-1Naty-ZNat+Useless,ANat),
translate(7Useless: Useless 4_ Nat+Useless, AUseless))

An attempt to prove that p+q=q+p in the combined theory using

DIVETAC will ignore the subagglomerate AUseless because

TRANSLATETACTHEN anytac will fail immediately when applied to the

goal

translate (o UselessIAUseless) r p+q=q+p

for a'Useless(p+q=q+p) is empty. That is, provided that Useless
does not include the + operator.

Unfortunately, a large class of facts remains which cannot be

proved using DIVETAC. These are the cases in which there is not

enough information in any single tip to prove the fact. For

example, proving that the equation

length(append(l,k)) = length(l) + length(k)

holds in the theory of lists and natural numbers requires the use of
equations and induction rules from both subtheories. DIVETAC will
fail for this reason.

The theorem prover provides a tactic for handling this
eventuality. Instead of diving into an agglomerate with a form, we

want to 'dredge up' facts from the depths of the agglomerate,

forming the union of all the information available in the tips.
Then LCFINFER and EQTAC can be used to prove the form.

This is more difficult than it sounds. Consider the following

contrived but illustrative specification:

-193-

ABCD = theory sorts abcd
opns a,b,c,d : abcd endth

ACD = derive sorts acd
opus a,c,d : acd

from enrich ABCD
E ns a = b

b = c enden
by acd is abcd endde

This gives rise to the agglomerate
inv-translate((r, close (a=bib=c))

where o : acd -4 abcd
a s-4 a
c s-4 c
d o-4 d

The equation a=c holds in ACD. How are we to discover this? It is
easy to prove the fact

inv-translate (cr, close (a=bib=c))t-a=c

using DIVETAC, but extracting all of the facts which are true in a

situation like this (without knowing beforehand which facts are

needed) is difficult. It is impossible in general because of the

existence of theories which have finite presentations when derive is
allowed, but only infinite presentations otherwise (see [Thatcher,
Wagner and Wright 1978]).

DREDGETAC therefore does not try to dredge up all of the

information available, but only that which is conveniently
accessible. The following auxiliary function produces the set of

conveniently accessible forms from an agglomerate:

dredge: close(F) H F

union(AX) dredge (A) Udredge(A
translate ((Y,A) r-4 cr(dredge(A))
inv-translate(cr,A) H cr-1(dredge(A))
add-equality(c,A) H c(dredge(A))U

{lx:s.ly:s.[x=y IMP w(x,y)=truea0013
w:s,s->boolBoolropns(2'-2) where a':2 * '}

Note the similarity between the function dredge and the semantic

function IF defined in section 3. The only difference is that

dredge (being only a program running on a finite computer) must

abstain from use of the closure ('bar') and the add-equality-axioms

operations.

-194-

It is easy to prove the following derived inference rule, using

the fact that F S F and F 4 F' F G F' :

DREDGE: fadredge(A) A F--f

DREDGETAC uses dredge to extract forms form the agglomerate at

hand. Then LCFINFERTAC is applied to give an LCF goal, which has as

assumptions the set of facts thus accumulated.

DREDGETAC: A F - ' ' - f H LCFINFERTAC [A -f i , ... , A rfn] a bf
where {fl, ..., fn} = dredge(A)

We have seen that DIVETAC is capable of proving a certain class

of facts, yet DREDGETAC seems to be needed to collect the

information necessary for the proofs of other facts. DREDGETAC

alone (followed by EQTAC) is not capable of proving many of the

facts which are handled with ease by DIVETAC. Some combination of
diving and dredging seems to be necessary in a general strategy for
proof in Clear.

Our strategy rests on the observation (mentioned above) that
often the agglomerate at hand contains a great deal of information
which is utterly irrelevant to the proof of the desired fact. This

seems to be a pitfall to which most theorem-proving systems are

susceptible; it is easy to get irretrievably bogged down in
exploring the large number of blind alleys made available by a

wealth of information (see the introduction of [Boyer and Moore

19791, for example). It is therefore important to restrict the

available information as much as possible before attempting the

proof using standard techniques.

But how is the theorem prover to automatically determine exactly
which subset of the available information is necessary for the proof

of a fact? In the case of a conventional theorem prover, where the

axioms, previously proved theorems, etc. are stored in a list, the

only approach seems to be some kind of heuristic filter which passes

only 'relevant' facts. The construction of such a filter is a

formidable task, for it is not always immediately obvious what is
relevant.

-195-

This problem is not so perplexing when we are given the

information in a highly structured form, such as an agglomerate. As

we observed above, it is easy when diving to exclude certain

irrelevant subagglomerates entirely because a 'translate' node acts

as a barrier to inappropriate goals. Moreover, the agglomerate will

reflect the structure of the human-constructed specification from

which it arises, and so it is likely that all of the information

necessary to prove the fact will be located in a relatively small

subagglomerate. DREDGETAC applied to this subagglomerate will

normally collect all of the information neccessary to prove the

fact, without much that is irrelevant.

The strategy we use is based on DIVETAC and DREDGETAC, as

expected. Recalling the explanation of DIVETAC, the approach now is

to visit each node in the agglomerate in precisely the same order as

in DIVETAC, performing the same action at the tips. But after

trying both paths of a 'union' node and failing, DREDGETAC is used

to attempt the proof in the combined theory. This means that
dredging takes place on a subagglomerate only after all other

methods have failed.

This strategy is implemented by the tactical SUPERTAC (again,

this takes as parameter an LCF tactic for doing equational

deduction).

SUPERTAC: tac '--a g --a
0 if g = close(F)f-f:

(TRY (LCFINFERTAC [close(F)f-f1

close(F)f-fn) THEN tac)) g

where F = {f . fn)

if g = union(A.A')ff: ((UNIONTACTHEN SUPERTAC tac) ORELSE

(TRY (DREDGETAC THEN tac))) g

if g = translate(o-,A) r-f: (TRANSLATETACTHEN SUPERTAC tac) g

if g = inv-translate(c ,A) -f:
(INVTRANSLATETAC THEN SUPERTAC tac) g

if g = add-equality(c ,A) F-f:
((DO EQUALITYOPNTAC) THEN ADDEQUALITYTAC

THEN SUPERTAC tac) g

Note that DREDGETAC could be applied at nodes other than union, but

-196-

any fact which can be proved using DREDGETAC THEN tac on a non-union

node can also be proved using the appropriate diving tactic followed
by SUPERTAC tac, so this would be a waste of effort.

It is interesting to observe that the structure of the

specification from which the agglomerate is taken is an important
factor in the performance of SUPERTAC. It is certainly possible to
write a specification which defeats the heuristics upon which

SUPERTAC is based. But this specification would probably have a

rather strange structure. The locality of reference which SUPERTAC

exploits seems to be one criterion for a well-structured
specification.

There remains an important class of facts which cannot be

automatically proved using SUPERTAC. Recall the theory ACD given as

an example earlier in this section; this was used to demonstrate the

difficulty of dredging from an inv-translate. But in some cases

dredging is necessary; for example, consider the theory

Tricky = enrich ACD b

egns c = enden

This gives rise to the following agglomerate:

union

close(c=d) inv-translate((7,close (a=b.b=c))

where o is as before. Now suppose we want to prove the fact

ATricky
F-a=d. This requires a dredge, since the necessary

information is spread over both branches of the union. But the

important equation a=c cannot be dredged from the inv-translate, so

SUPERTAC will fail.

The lemma a=c is a necessary step in the proof. This can easily
be proved by diving down the right-hand branch of the union. It is

then easy to prove a=d using the equation c=d.

But where does the idea for this lemma come from? We avoid the

difficult problem of automatic lemma generation by requiring the

-197-

user to supply such lemmas. A new construct has been added to Clear

for this purpose to enable the user to propose lemmas along with the

specification; we feel that this is preferable to requiring the

lemmas to be inserted at theorem-proving time. To propose the lemma

a=c in the above specification, the user would write:

ACD' = enrich ACD

thms a = c enden

Easy = enrich ACD'
egns c = d enden

A 'thm' is treated exactly as an equation, except that it must be

provable from the existing equations and constraints or else an

error occurs. The theory Easy gives rise to the agglomerate

union

close(c=d) union

close(a=c) inv-translate(...)

and now the equation a=d may be proved easily using DREDGETAC. We

got this idea from the Z specification language [Abrial, Schuman and

Meyer 19791 which also permits theorems to be included in
specifications. This is a useful facility, apart from its use in
assisting the theorem prover. The user can insert theorems which he

believes to be correct as a check on the correctness of his
specification, or he can use a theorem to prominently display an

important consequence of the axioms.

It should be noted that Nelson and Open [19791 have described an

elegant method for combining decision procedures for several
independent theories into a decision procedure for the combined

theory; this can be seen as an alternative to our DREDGETAC.

Unfortunately, their method does not work when the theories share

operators, so in general it cannot be applied to the combination of
Clear theories. But in the special case where the theories do not

-198-

share operators (and perhaps also for cases with certain restricted
kinds of sharing) their algorithm could be applied in place of
DREDGETAC,

The theorem prover of the t system [Nakajima, Honda and Nakahara

1980] also exploits the structure of specifications to facilitate
proofs. It uses theory-focusing techniques [Honda and Nakajima

19791 which are related to the strategy embodied in SUPERTAC.

EE uational deduction

The strategies given above assume the existence of an LCF tactic
for performing equational deduction. We give here a brief
description of the one provided by the system; this is able to prove

a reasonable number of examples completely automatically, but it is
far from the best possible. Several equational theorem provers (see

[Musser 1980], [Goguen 1980] and [Huet and Hullot 1980]) have

recently been built using the Knuth-Bendix [1970] completion

algorithm; this method seems to give far better results than the

naive approach used here.

EQTAC is built from five component tactics, to be described

below. It tries each tactic in turn, repeating the sequence until a

tactic fails or the goal is achieved.

EQTAC = REPEAT (SIMPTAC THEN INDTAC THEN CONJTAC
THEN EXTTAC THEN IMPLTAC)

Actually, INDTAC (induction tactic) is the only one of these

which can fail, so EQTAC fails only if all possible induction

variables have disappeared.

SIMPTAC is the standard LCF simplification tactic. It uses the

basic simplification rules provided by LCF (beta-conversion, etc.)
together with all of the assumptions of the theorem EQTAC is trying
to prove (contributed by LCFINFERTAC) with the exception of
induction rules. If a permutative rule such as p+q = q+p is
included in a specification, then SIMPTAC will loop.

INDTAC does induction on the leftmost outermost universally
quantified variable in the goal for which an induction rule is

-199-

available. An example of its result when applied to the goal

tCFn+m>n=true was given in section 3, except that the result
shown there has already been simplified using beta-conversion.

CONJTAC converts a goal of the form

al,...,an
tCFfl

& ... & fm

to a list of goals
I al,... antCFf 1

al,...
anL_CFfm

This splits the goal generated by INDTAC into cases which can be

treated separately.

EXTTAC converts any occurrence of Xx.tl=Xx.t2 in a goal to

!x.(tl=t2). Equations like these are generated by INDTAC when it is
applied to an equation containing universally quantified variables
other than the induction variable.

IMPLTAC converts a goal of the form

a,,an kCF! x... [f l IMP f2]

to the goal
7 al,...,anIfl

CFf2
adding fl to the set of simplification rules. This assumes the

inductive assumptions generated by INDTAC. The next time around the

EQTAC loop, SIMPTAC will (we hope) simplify most of the goals to
tautologies and a further induction will be attempted on the

remaining variables.

EQTAC is able to prove routine theorems involving multiple
inductions without difficulty. Typical examples are the

transitivity of < and the associativity of addition and append.

Commutativity of addition is much more difficult because induction
causes rules like x=x+0 and x+y=y+x to be entered as assumptions for
use by SIMPTAC, causing it to loop. More care with the use of such

permutative equations as simplification rules is needed to avoid

this behaviour.

An example of a theorem which EQTAC cannot prove is

reverse(reverse(l))=1. The proof of this theorem requires the

application of a few clever heuristics rather than brute force.

Induction on 1 followed by simplification reduces the problem to one

-200-

of proving

reverse(append(reverse(l),cons(a,nil))) = cons(a,l)

with reverse (reverse (1))=1 as the inductive assumption. At this

point EQTAC fails. Boyer and Moore's [19791 theorem prover

continues the proof by applying the inductive assumption in reverse

to the right-hand side of the goal (they call this cross

fertilisation) and then replacing reverse(l) by the new variable z

everywhere (generalisation). This gives the goal

reverse(append(z,cons(a,nil))) = cons(a,reverse(z)) (*)
and induction on z completes the proof. Alternatively, the user

could supply a lemma such as (*) above; the theorem prover is able
to prove this lemma and then use it to complete the proof of the

theorem.

-201-

5. Incompleteness
Formally, we shall define a proof system as any relation between

theories and sentences such that the set of sentences provable in a

theory is recursively enumerable. In practice a proof system is a

set of inference rules together with a notion of proof leading to

such a relation. The recursive enumerability requirement captures

the idea that a proof system is an effective procedure for

generating the theorems of a theory.

Def: A proof system is a relation r-5 TheoriesxSentences such

that if a theory T is effectively given (e.g. T is a theory with a

finite presentation) then the set of provable sentences (slTr-s} is
recursively enumerable.

Def: A proof system r- is called complete for a theory T if any

sentence s of signature(T) which is satisfied in every model of T

(i.e. T ts) is provable from T using r- (i.e. Ti-s).

It is well-known that equational logic (i.e. reflexivity,

symmetry, transitivity and substitutivity) is complete for one-

sorted equational theories (this is due to Birkhoff [1935]). Goguen

and Meseguer [1981] show that this result extends to the many-sorted

case only if equational logic is modified slightly by the

introduction of explicit quantifiers and rules to add and delete

them. For initial models of equational theories, this modified

logic is complete with respect to ground equations but Nourani

[1981] shows that no proof system is sound and complete with respect

to non-ground equations (he actually shows that equational logic

with induction is not complete, but his proof generalises easily).

But the modified equational logic is not complete for Clear theories

(i.e. theories with equations and data constraints) with respect to

ground equations, even when induction is permitted. This fact is

demonstrated by the following simple example:

const T = enrich Nat
o ns f : nat -> nat
egns f(n) = 2*f(n+1) enden

where Nat is the usual theory of the natural numbers with addition
and multiplication. For all models A of T we have A :f(0)=O

-202-

(remember that f must be total and the sort nat does not include an

'infinite' element). But this equation is not provable by

equational logic with induction; this may be shown by induction and

case analysis on the terms which may be derived from f(0).

It is easy to prove the equation f(0)=O in T if proof by

contradiction is allowed. But for some theories there is no proof

system which is strong enough to prove even all true ground

equations:

Theorem: There exists no proof system for Clear which is sound

and complete with respect to ground equations.

Proof [MacQueen and Sannella 19821: Proposition 4 of [Bergstra,
Broy, Tucker and Wirsing 1981] states that for any total recursive

function f:]Nx]N--3 there is a finite Clear theory Tf having as its
only model (to within isomorphism) an algebra Af consisting of the

natural numbers IN enriched by the function

exf(y) = f 1 if 3x such that f(x,y)>O
1 0 otherwise

Suppose f is the total recursive function

f(x,y) 1 if x codes a convergent computation of Ty(y) { 0 otherwise

(where cry is the partial recursive function with Gadel number y).
Then exf is the characteristic function of the complete recursively

enumerable set K (see [Rogers 1967]) so exf is not recursive and

therefore its graph is not recursively enumerable. Hence the set of
equations exf(n)=m true in Af is not r.e., where n,m are ground

terms (succJ(0) for some j). Since for any proof system f- the set

of theorems which can be derived from a theory is r.e., there must

be ground terms n,m such that Af r-exf(n)=m (so Tf z exf(n)=m since Af
is the only model of Tf) but TfVexf(n)=m.

-203-

6. Implementation and an example

The theorem prover described here has been implemented on the

Edinburgh KL-10 computer, on top of the Edinburgh LCF system. The

system is called SOGGIE, which stands for Semi-Otomatic (sic) Goal-

directed Generation of Irrefutable Equations. The Clear

implementation described in chapter IV (only the prolific version,

so far) communicates with SOGGIE by constructing files containing ML

declarations which describe agglomerates corresponding to the

theories in which facts are to be proved. At present a file is

produced whenever the semantics demands that a signature morphism be

a theory morphism (i.e. one for each apply or derive in a

specification). To prove that o':<F,EC>-''<2',EC'> is a theory

morphism, we prove that o(EC)c. EC'; the file contains the two

agglomerates o(EC) and EC'. The user ensures that the specification

is semantically well-formed by using SOGGIE to prove in each case

that the denotation of one agglomerate (the second) is included in

the denotation of the other. The following rules allow this task to
1)

be decomposed into a list of goals of the form Al-f (SOGGIE does

this automatically):

Af-f1 & ... & Af-fn A IFQclose({f1,...,fn})DcIFQAD
IFQAD s IFQA"D & F [A' D c IFQA"D *, IFQunion(A, A') D c IFQA"D
F [AD s IFQinv-translate(o-,A') D C> ff Qtranslate(o,A) D S IFQA' D

ZF'QADS ff[translate(or,A')D IFQinv-translate(or,A)D c ff[A'D
(but not vice versa)

There is no analogous rule concerning add-equality. But this does

not cause a problem; it is very unusual in practice for the source

of an alleged theory morphism to include add-equality (which can

only arise from application of the data operation) except as part of
a subtheory shared with the target (such as Bool). In such a case

both agglomerates will include identical subagglomerates containing

add-equality nodes, and so the target agglomerate obviously includes
that fragment of the source agglomerate.

The tags attached to sorts and operators are retained; the tagged

name name tag becomes the LCF identifier name'tag (quotation marks

are permitted in LCF identifiers). Equations and constraints are

translated to PPLAMBDA forms as described in section 3. Error

-204-

equations are ignored at present, and quantifiers in equations are

not permitted. Although the specification is not strictly
semantically well-formed unless the facts given in the files are

proved, the responsibility for this is left to the user.

SOGGIE together with LCF fits into 128K words, with sufficient
workspace left for simple proofs (LCF itself accounts for 96K of
this total). The system can be expanded to provide extra workspace

for more ambitious proofs. Timing statistics may be misleading in
comparison with statistics obtained for other theorem provers; ML is
run interpretively, and SOGGIE was written without much concern for
efficiency.

As implemented, the theorem prover is slightly different than

described in the preceding sections. One difference is in the

inference rule LCFINFER. The version used in SOGGIE is as follows:

LCFINFER: A -f 1 & ... & A -fn & f 1, ... , fm tCFf A - f
where each f3 is a type instance of some fk

This modification is necessary because of a restriction on the

PPLAMBDA inference rule for type variable instantiation, which

requires us to instantiate type variables in induction rules on the

left-hand side of the tCF before using them. The change is
transparent so long as the built-in induction tactic INDTAC is used.

A second difference is that DREDGE is implemented as a primitive
inference rule, rather than constructed from other inference rules
as a derived rule. Also, DREDGE accepts a list of forms and

produces a list of facts, rather than transforming a single form to
a single fact. These changes are necessary for reasons of

efficiency; much of the time consumed by SOGGIE is devoted to
dredging (typically about forty percent) and so optimisation of this
step is important.

During the course of a proof attempt SOGGIE draws the shape of
the agglomerate as it explores. Each 'dive' exposes a new node of
the tree, labelling it according to its contructor. A 'dredge'

draws the outline of an entire subtree without labelling the nodes.

This enables the user to follow the progress of the proof as it

-205-

proceeds. Except for this, the user interface of SOGGIE is rather

primitive. To use the theorem prover, the user loads a file
containing the type and operator declarations for his theory and

then a file containing the agglomerates he wants to work with (both

these files are produced by the Clear system). This binds a list of
goals (agglomerate x form pairs) to be proved to the variable
goallist. The user selects a goal from this list and applies PROVE

to it. PROVE prepares the display for drawing the agglomerate and

then applies SUPERTAC EQTAC to the goal. This produces either the

empty goal list and a proof (a function which when applied to the

empty theorem list yields a fact corresponding to the goal), or else

failure.

A typical example for SOGGIE is to prove the equation

length(k) plus length(1) = length(append(k,l))

in the theory given by the following Clear specification:

const Nat =

let NatO =

enrich Bool
data sorts nat

opns zero : nat
succ : nat -> nat enden in

enrich NatO
opns (_ plus : nat,nat -> nat
egns zero plus n = n

succ(n) plus m = succ(n plus m) enden

meta Triv = theory sorts element endth

roc List(X:Triv)
let ListO =

enrich X + Bool
data sorts list

opns nil : list
cons : element,list -> list enden in

enrich ListO + Nat
opns length : list -> nat

append : list,list -> list
e ns length(nil) = zero

length(cons(a,l)) = succ(length(1))
append(nil,l) = 1

append(cons(a,l),m) = cons(a,append(l,m)) enden

-206-

roc Sequence(X:Triv)
enrich X + Bool

data sorts sequence
opns empty : sequence

unit : element -> sequence
(_ conc _) : sequence,sequence -> sequence

egns empty conc s = s
s conc empty = s
(s conc t) conc v = s conc (t conc v) enden

List(Sequence(Nat[element is nat]) [element is sequence])

Nonalphabetic operators such as . (sequence concatenation), + and 0

are not allowed in LCF (actually, 0 is allowed but tagged operators

like O'E24 are not allowed) so conc, plus and zero have been used

instead.

The agglomerate produced by the Clear system as the denotation of
this specification is shown on the next page in the form of a tree.

Note that the theory Nat appears twice in the tree, and Bool appears

four times.

The initial goal is a pair consisting of this agglomerate and the

PPLAMBDA form:

"lk:list'P22. ll:list'P22.
plus'E5(length'P22(k),length'P22(l)) = length'P22(append'P22(k,l))"

Note that sorts and operators are tagged, and that infix (and other

distributed-fix) operators have become prefix.

SUPERTAC EQTAC applied to the goal (via PROVE as described above)

begins by diving down the left branch of the topmost union node of
the agglomerate. But the first translate node forms a barrier to

further diving because the source of the signature morphism it
contains has no sort corresponding to list'P22 and no operator

corresponding to length'P22 or append'P22 (all information
pertaining to lists is contained in the right-hand subagglomerate of
the topmost union node). This failure causes the system to

backtrack and dive down the right branch of the union. It succeeds

in diving through the translate node and down the left branch of the

next union node. At this point it meets another barrier; no

un
io

n

tr
an

sl
at

e

I
/u

ni
on

f

tr
an

sl
at

e
tr

an
sl

at
e

tr
an

sl
at

e

I
un

io
n

tr
an

sl
at

e
Li

st
 e

qn
s

un
io

n
ad

d-
eq

ua
lit

y

I

tr
an

sl
at

e
N

at

ns

un
io

n

un
io

n

ra
n.

 a

e
tr

an
s

a
e

i
/

\
I

ad
d-

eq
ua

lit
y

un
io

n
S

eq
ue

nc
e

a
d
d
-
e
q
u
a
l
i
t
y

I

i
n
d
u
c
t
i
o
n

un
io

n
tr

an
sl

at
e

S
eq

ue
nc

e
eq

ns

I

tr
an

sl
at

e
N

at

in
du

ct
io

n
un

io
n

un
io

n
/

\

I
 O

tr
an

sl
at

e
N

at

eq
ns

i

/\
I

tr
an

sl
at

e
Li

st
 i

nd
uc

tio
n

ad
d-

eq
ua

lit
y

un
io

n
un

io
n

/u
ni

o\

tr
an

sl
at

e
B

oo
l
e
q
n
s

tr
an

sl
at

e
B

oo
l

eq
ns

tr

an
sl

at
e

N
at

in

du
ct

io
n

l
l

dd

tr
an

s
at

e
B

oo

eq
ns

a

-e
qu

al
ity

I
I

ad
d-

eq
ua

lit
y

B
oo

l
in

du
ct

io
n

ad
d-

eq
ua

lit
y

un
io

n

I

I

/

\

B
oo

l
i
n
d
u
c
t
i
o
n

B
oo

l
in

du
ct

io
n

tr
an

sl
at

e
B

oo
l

eq
ns

ad
d-

eq
ua

lit
y

B
oo

l
in

du
ct

io
n

-208-

operator corresponding with append'P22 or length'P22 is available
below this translate node. The system backtracks to the union node

immediately above and dives down the right branch to the close node

containing the equations defining append'P22 and length'P22.

LCFINFERTAC (applied to the set of equations available at that node)

THEN EQTAC is applied but this fails to achieve the goal. This

failure causes the system to backtrack again to the immediately

preceeding union node at which point it applies DREDGETAC THEN

EQTAC. DREDGETAC produces an LCF goal in which equations defining
plus'E5, length'P22 and append'P22 along with an induction rule for
list'P22 (as well as other equations and induction rules) are

available as assumptions. This goal is achieved by EQTAC; the proof
does an induction on k followed by two separate inductions on 1 (one

each for the base case and induction step). The result is an empty

goal list and a proof function which yields the desired fact when

applied to the empty thm list. The following is (an abbreviated

version of) the display drawn by SOGGIE while searching for the

proof:

union

/ \

trans trans

union
/ \

/ \

trans close

/ \

etc etc

The CPU time to achieve the original goal is 22.6 seconds (excluding

garbage collection); dredging accounts for 7 seconds of this total.

The CPU time to perform the proof (transforming the empty thm list
to the desired fact) is 11.5 seconds where dredging again accounts

for 7 seconds of this total.

It is important to note how easily the theorem prover was able to

-209-

avoid all the irrelevant information contained in the left half of
the agglomerate. It would use exactly the same sequence of
reasoning to prove the fact in the theory List(T) for any theory

T. This is because the fact is true of any sort of list, whether the

elements are sequences of natural numbers or something else. This

seems to be a common situation for proofs about parameterised

theories. If T is very large then it is important that the system

ignores T if it is irrelevant to the proof.

The example above is typical of the facts which SOGGIE is able to
handle. Experimentation with SOGGIE has so far been limited, but it
has been used to prove simple boolean identities, reflexivity and

transitivity of <, and associativity of + and append. In each case

the axioms relevant to the proof were buried within a larger
agglomerate. Comparison with a theorem proving system such as the

one described by Boyer and Moore [1979] would certainly not be

favourable, but this is entirely due to the mediocre facility for
equational deduction we use. Our goal is not to automatically prove

all theorems, but to provide a set of tools sufficient to enable a

user to construct his own proofs. It is nice that SOGGIE is able to
prove a certain class of theorems automatically, but more important
is that it is able to reduce any proof problem to one of ordinary
equational deduction. Also important is the way that SUPERTAC takes

advantage of the structure of Clear specifications to simplify the

theorem-proving task; this appears to be a novel approach to theorem

proving.

-210-

7. Poaaible improvements

It is easy to think of ways in which SOGGIE could be improved. A

better EQTAC which utilises state-of-the-art methods for equational

deduction would improve the performance of the system substantially.

Failing this, SOGGIE could at least be a little bit more careful

about adding equations to the simplification set. It is easy to

filter out at least the more obvious permutative rules, protecting

the system from looping in the course of simplification.

It would be great help if SOGGIE could check the consistency of
enrichments (i.e. that equations added in an enrichment do not

violate any previous data constraints). Again, this amounts to
proving inequality. As mentioned before this is easy in an anarchic

theory but impossible in general, so SOGGIE does not attempt to deal

with the problem.

The theorem prover needs most of all a good user interface. It
is important that when a proof attempt fails, the user should know

what happened and be able to return to the point of failure so that
he can fill in missing steps manually. A good first attempt at a

more friendly user interface would be a version of SUPERTAC which

upon failure prints a table containing the goals at which it failed
together with the sequence of choices which led to each of those

goals. The user could examine this list to find the goal which he

thinks would be easiest to achieve manually. He would then use

another tactic to repeat the particular line of reasoning which led

to the selected goal; this tactic would take as a parameter the

sequence of choices provided by SUPERTAC. Once the proper

environment has been re-established, the user would have all the

facilities of LCF at his disposal to achieve the goal. If he is
successful, then the proof of the goal can be composed with the

partial proof which SOGGIE was able to perform by itself to give the

proof of the original goal. Note that the goals at which the system

fails are always LCF goals; SOGGIE is able to automatically reduce

any problem to the level of equational deduction.

Once a fact has been established, it would be helpful to add it

to the agglomerate for use as a lemma in future proofs. If the

agglomerate were represented as a DAG (directed acyclic graph) with

-211-

identification of identical subagglomerates rather than as a tree
then the lemma would automatically be incorporated in the

appropriate places throughout the agglomerate. Common theories such

as Bool typically appear many times in even a small agglomerate. In

a similar vein, if the dredge function were altered to deposit
intermediate results at each node it visits (the dredge of each

subagglomerate would be deposited at its root), then subsequent

calls of dredge could be made to run much faster. These

enhancements require an ability to destructively update data

structures. This is awkward in DEC-10 ML but easy in Luca

Cardelli's version of ML for VAX.

Present users of SOGGIE are required to view a specification as a

huge and complex tree with an elaborate relation to the original
specification. This undesirable state of affairs results from the

separation of theorem proving into a separate activity which must be

performed in isolation. Ideally, SOGGIE would be combined with the

Clear semantics program into a single integrated system. This could

be done in such a way that the user would never have to know that
his theories denote complicated agglomerates, or that sorts and

operators carry tags, although agglomerates and tags would still
exist at some lower level. Interaction between the system and the

user would be in Clear, using the sorts and operators defined in the

user's specification. But the user needs some way of directing the

system when an automatic proof fails. LCF provides a powerful tool,
but the ordinary user would not be interested in writing his own

tactics in ML. A simple facility for interactive proof using a set

of tactics provided by the system would be sufficient for all but

the most sophisticated users. Such users could use ML in the usual

way to define higher-level strategies from the tactics provided.

-212-

CHAPTER SEVEN

IMPLEMENTATION OF SPECIFICATIONS AND PROGRAM DEVELOPMENT

Clear specifications can be viewed as abstract programs. Some

specifications are so completely abstract that they give no hint of
a method for finding
inverting an nxn matrix

an answer. For example, a function for
be specified as follows: can

const Inverse =

enrich Matrices
opns inv : matrix ->
eons inv(A) x A = I

A x inv(A) = I

matrix

end en

(provided that the theory Matrices includes specifications of matrix
multiplication and the identity nxn matrix). Other specifications

are just HOPE programs written in a slightly different notation.

For example:

roc Reverse(X:Triv)
enrich List(X)

opns reverse : list -> list
eons reverse(nil) = nil

reverse(a::l) = append(reverse(l),a::nil) enden

A Clear specification amounts to a HOPE program if all data is

anarchic and all axioms are equations with simple left-hand sides,

enabling their use as rewrite rules.

It is usually easiest to specify a problem at a relatively
abstract level. We can then work gradually and systematically
toward a low-level 'program' which satisfies the specification.
This will normally involve the introduction of auxiliary functions,
particular data representations and so on. This approach to program

development is related to the well-known programming discipline of
stepwise refinement advocated by Wirth [1971) and Dijkstra [19721.

A formalisation of this programming methodology depends on some

precise notion of the implementation of a specification by a lower-

level specification. This turns out to be a rather difficult and

subtle problem. Previous notions have been given for the

implementation of both non-parameterised specifications ([Goguen,

-213-

Thatcher and Wagner 1978], [Nourani 1979], [Hupbach 1980], [Ehrig,
Kreowski and Padawitz 1980], [Ehrich 1982]) and parameterised

specifications ([Ganzinger 1980], [Hupbach 1981], [Ehrig and

Kreowski 1982]), but none of these approaches deals adequately with
Clear-style specifications which may be constructed in a

hierarchical fashion using data and which may be loose. A

definition of implementation is presented in this chapter which

agrees with our intuitive notions built upon programming experience

and which handles Clear-style specifications, based on a new (and

seemingly fundamental) concept of the simulation of a theory by an

algebra. This definition extends to give a definition of the

implementation of parameterised specifications. An example of an

implementation is given and several other examples are sketched.

For most of the chapter a variant of Clear is employed in which

the notion of a data constraint is replaced by the weaker notion of
a hierarchy constraint. The result is still a viable specification
language, although specifications tend to be somewhat longer than in
ordinary Clear. We later show that all results hold for Clear with

data constraints, but only under more restrictive conditions.

The 'putting-together' theme of Clear and the proposals of Goguen

and Burstall [1980] for CAT (a proposed system for systematic

program development using Clear) lead us to wonder if
implementations can be put together as well. We prove that if P is
implemented by P' (where P and P' are 'well-behaved' parameterised

theories) and A is implemented by A', then P(A) is implemented by

P'(A').

We prove that implementations compose in another dimension as

well. If a high-level theory A is implemented by a lower-level
theory B which is in turn implemented by a still lower-level theory

C (and an extra compatibility condition is satisfied), then A is
implemented by C. These two results allow large specifications to
be refined in a gradual and modular fashion, a little bit at a time.

All of the definitions and results in this chapter are the

product of work done in collaboration with Martin Wirsing,

Technische Universitgt Mtlnchen, reported in [Sannella and Wirsing

19821.

-214-

1. Clear with hierarchy constraints

In section I.1.1 Clear's data operation was introduced as a way

of restricting the class of models of a theory to exclude trivial
and other undesirable models- In section 11.5 the notion of a data

constraint was defined; ar application of the data operation
contributes a data constraint to the resulting theory, and

satisfaction was defined so that only an algebra without 'Junk'
(elements which are not the value of any term) and without

'confusion' (identification of terms not required by the equations)
satisfies a data constraint, where the precise nature of junk and

confusion depend on the data constraint in question.

A notion for the implementation of one theory by another will be

given in the next section. In section 4 it is shown that the

implementation relation is transitive; in practical terms this means

that the result of refining a specification several times in
succession is an implementation of the original specification.
Another very desirable property would be that the theory-building
operations of Clear preserve implementations, so combining the

implementations of two theories gives an implementation of the

combined theory. Unfortunately, in the presence of data constraints
this property only holds in general under a seriously restrictive
condition. As a result, our notion of implementation is apparently

of limited usefulness in practice.

This situation can be improved if the notion of a data constraint
is replaced by the weaker notion of a hierarchy constraint (see

[Broy et al 19791 and [Wirsing and Broy 1981]). Hierarchy

constraints are identical to data constraints except that models

need only satisfy the inequation trueifalse rather than the stronger
"no confusion" condition. The same definition of implementation

works if theories include hierarchy constraints in place of data

constraints, and in this case more reasonable conditions guarantee

the preservation of implementations under Clear's theory-building
operations. Accordingly, for the bulk of this chapter we use

hierarchical Clear, where hierarchy constraints are contributed to a

theory by an operation called 'data'. Since hierarchy constraints

-215-

are weaker than data constraints, specifications in hierarchical
Clear tend to be somewhat longer than in ordinary Clear -- as in the

terminal algebra approach of Wand [1979], it is sometimes necessary

to add extra operators to avoid trivial models. At the end of the

chapter it is shown that all results hold for Clear with data

constraints but only under more restrictive conditions.

We now give formal definitions concerning hierarchy constraints;
note that in most respects hierarchy and data constraints are

identical.

Def: A 2-hierarchy constraint c is a pair <i,cr> where i:T -4T' is

a simple theory inclusion and cr:signature (T')-->2 is a signature
morphism.

Def: If cr':-Z' is a signature morphism and <i,c-> is a

2-hierarchy constraint, then cr' applied to <i,c7> gives the

V -hierarchy constraint <i,cr.c7'>.

Without loss of generality we assume that every theory contains

the theory Bool (with sort bool and constants true and false) as a

primitive subtheory.

Def: A }-algebra A satisfies a 2-hierarchy constraint

<i:TC*T',c.:sig(T')--),.> if

[letting Atarget
Ac'

o. and Asource "

Alisig(T)
]

Atarget is a model of T' and

- "No crime": A trueifalse (i.e. A _E true-false).

- "No junk": Every element in Atarget is the value of a

T'-term which has variables only in sorts of T, for some

assignment of Asource values.

Note that the only difference between a data constraint and a

hierarchy constraint is in the definition of satisfaction; compare

the "no crime" condition above with the "no confusion" condition in

section 11.5.

-216-

Def: A hierarchical 2-theory presentation is a pair <Z,EC> where

7 is a signature and EC is a set of 7-equations and 7-hierarchy
constraints.

The notions of hierarchical theory, satisfaction (of a

hierarchical theory), closure and hierarchical theorl+ morphism

follow as before. The denotation of a hierarchical Clear
specification is a hierarchical theory. For the remainder of the

chapter (except where noted at the end of section 4) all discussion
will concern only hierarchical Clear. We will use terms like
'theory' in place of longer terms like 'hierarchical theory'. For

the purposes of this chapter it is convenient to dispense with the

equality predicates == normally added by the data operation; these

extra operators cause no problems but only serve to make the

examples longer. We will assume in this chapter that all theories

have been constructed using Clear (so e.g. no theory may contain

both <TA' -4TA' ,a> and <TB yTB' ,a' > as constraints if TA c TB c TA'

and a-,(r' are inclusions). This assumption is implicit in some of
the proofs of section 4.

A short example will illustrate the difference between data and

hierarchy constraints. Consider the following specification in

ordinary Clear (with data constraints):

const Nat =

enrich Bool
data sorts nat

opns 0 : nat
succ : nat -> nat enden

const T =

enrich Nat
data sorts newnat

opns f : nat -> newnat enden

T includes two data constraints, C1=<I "Nat,sig(Nat) - sig(T)> and

C2=<Nat yT,lsig(T)>. Given a sig(T)-algebra, we can check if it

satisfies these constraints. For example:

Anat ' {0,1,2,...}

Anewnat = {O,I,II.... }

f(0)=O f(1)=I f(2)=O f(3):III f(4)=IV ...

-217--

(with the usual interpretation of Bool). This satisfies constraint
C1, but fails to satisfy the "no confusion" condition for constraint
C2 (consider the equation f(x)=f(y) under the injective assignment

[x'-40, yo-421). It also violates the "no junk" condition (the
element IIGAnewnat is not the value of any term). But if the

function f is altered so that f(2)=II then the constraint is
satisfied. In general, any algebra satisfying these data

constraints will have both carriers isomorphic to IN with f 1-1 and

onto.

Changing data above to 'data' changes both data constraints to
hierarchy constraints. The following algebra is then a model of T,

although it does not satisfy the "no confusion" condition for
constraint C2:

Anat = (0,1,2,...}

Anewnat =
(0}

f(O) = f(1) = f(2) _ ... = 0

(again with the usual interpretation of Bool). It is necessary to

add some new operators and equations to retain the original class of

models, for example:

const Nat' _

enrich Bool
'data' sorts nat

opns 0 : nat
succ : nat -> nat
eq : nat,nat -> bool

egns eq(n,n) = true
eq(n,m) = eq(m,n)
eq(0,succ(n)) = false

eq(succ(n),succ(m)) = eq(n,m) enden

const T' =

enrich Nat
'data' sorts newnat

opns f : nat -> newnat
eq : newnat,newnat -> bool

egns eq(f(n),f(m)) = eq(n,m) enden

Further examples appear throughout the rest of this chapter.

For later results we need a generalisation of Guttag's notion of
sufficient completeness [Guttag and Horning 1978] and of the

-218-

classical notion of conservativeness from logic:

Def: A theory T is sufficiently complete with respect to a set of
operators 2, sorts S, a subset of 2, and variables of sorts X

(where S, XS sorts(T), Iropns(T)) if for every term t of an S sort
containing operators of 5 and variables of X sorts, there exists a

term t' with variables of X sorts and operators of 2' such that
Tt-t=t'.

Def: A theory T is conservative with respect to a theory T'r T if

for all equations e containing operators only of T', T-e T'-e.

Sufficient completeness means that T does not contain any new

term of an old sort which is not provably equal to an old term

(where 'new' and 'old' depend on S, S, S' and X). Conservativeness

means that old terms (from T') are not newly identified in T.

Instances of these general notions guarantee that all models of a

theory possess a convenient hierarchical structure.

To apply the above definitions it will be convenient to refer to

the following notions of constrained sort and constructor.

Def: Let T" be a theory and let c=<T yT',o-:sig(T')-4sig(T")> be

a constraint of T".

- A sort s of T" is called constrained (with respect to c)

if sro-(sorts (T')-sorts(T)).

- An operator f:...->s of T" is called a constructor (with
respect to c) if ff o-(opns(T')) and sconstrained-sorts(c),

or if s4constrained-sorts(c).

-219-

2. A notion of implementation

A formal approach to stepwise refinement of specifications must

begin with some notion of the implementation of a specification by

another (lower level) specification. Armed with a precise
definition of this notion, we can prove the correctness of
refinement steps, providing a basis for a methodology for the

systematic development of programs which are guaranteed to satisfy
their specifications. But first we must be certain that the

definition itself is sound and agrees with our intuitive notions

built upon programming experience. It turns out that a formal

definition of implementation adequate to deal with all cases which

arise in practice is rather elaborate, and so it is better to
carefully examine the situation first from a less formal point of

view.

Suppose we are given two theories T=<2,EC> and T'=<2',EC'>. We

want to implement the theory T (the abstract specification) using

the sorts and operators provided by T' (the concrete specification).
Previous formal approaches (see [Goguen, Thatcher and Wagner 1978],

[Nourani 1979], [Hupbach 1980], [Ehrig, Kreowski and Padawitz 1980],

[Ganzinger 1980], [Ehrich 1982]) agree that T' implements T if there

is some way of deriving sorts and operators like those of T from the

sorts and operators of T'. Each approach considers a different way

of making the 'bridge' from T' to T. We will require that there be

a more or less direct correspondence between the sorts and operators

of T and those of T'. Each sort or operator in Z must be

implemented by a sort or operator in 2' -- this correspondence will
be embodied by a signature morphism Note that two

different sorts or operators in 2 may map to the same 2' sort or

operator, and also that there may be some (auxiliary) sorts and

operators in 2' which remain unused. This is a simplification over

previous approaches, which generally allow some kind of restricted
enrichment of T' to T" before matching T with T". But the power is
the same; we would say that T" implements T and leave the enrichment

from T' to T" to the user. As a consequence of a later theorem (see

section 4) our results extend to more complex notions.

-220-

Given a signature morphism what relationship must hold

between T and T' before we can say that T' implements T? One might

suspect that o-:T-4T' is required to be a theory morphism -- i.e.

that if A' is a model of T' then its restriction A'I5 must be a

model of T -- but this condition is too strong. We shall say that

T' implements T if the 5-restriction of each model of T' simulates

T. A 2-algebra simulates T if it satisfies the axioms of T after

allowing for the representation of data.

We have decomposed the notion of implementation into three

separate issues:

1. Enriching the concrete theory T' (adding derived
operators and possibly some new sorts) to give an
intermediate 2"-theory T".

2. Renaming some of the sorts and operators of 2" and

forgetting others, so as to match I.

3. Simulation of T by a 2-algebra (obtained by 2-restricting
a model of T")

As already mentioned we can safely ignore (1) and assume that T"=T'

because a later theorem allows all of our results to be extended to

the case where T"tT'. Issue (2) presents no problems since the

restriction of an algebra to a subsignature (with renaming) was

defined in chapter II. The fundamental issue is (3); we need a

satisfactory definition of simulation which captures our intuition

concerning data representation.

we said above that a 7-algebra A simulates a 7-theory .1 if it

satisfies the axioms of T modulo data representation. In
particular, we must allow for two kinds of flexibility:

- A subset of the values of an A sort may be used to
represent all the values of a T sort. Example: the
natural numbers are simulated by the integers, where the
negative integers are not needed.

- More than one A value may be used to represent the same T

value. Example: simulating sets by strings -- the order
does not matter, so "1.2.3" _ "3.2.1" (as sets).

Now A simulates T if (and only if) A is a model of T after these two

considerations have been taken into account. This ensures that
operators will yield the specified result (modulo data

-221-

representation) which seems to be the central issue.

For the definition of simulation we need an auxiliary notion. As

mentioned above, a subset of the values of A may be used to

represent all values required by T. Restricting the carriers of A

to the values which are actually used yields an intermediate algebra

which plays an important role in the definition of simulation. We

do not want to restrict the carrier for every sort, but only for

those sorts of 2 which are constrained in T (for unconstrained sorts
we do not know which values are unused). This is where we depart

from the usual practice of restricting to 'reachable' values (see

for example [Ehrig, Kreowski and Padawitz 1980]). We want the

subalgebra which has been reduced just enough to satisfy the "no

junk" condition for each constraint in T.

Def: If 2 is a signature, A is a 2-algebra and T is a 2-theory,
then restrictT(A) is the largest subalgebra A' of A satisfying the

"no junk" condition (section 1) for every constraint
<i:T' "T",Q-:sig(T")-->J> in T, that is:

[letting .target = A'Isig(T")
and .source = AlIsig(T')]

- Every element in Atarget is the value of a T"-term which
has variables only in sorts of T', for some assignment of
.-source values.

Note that the subalgebra A' does not always exist. Consider the

following example:

const T = let Nat = enrich Bool
'data' sorts nat

opns 0 : nat
succ : nat -> nat

enrich Nat
opns neg : nat enden

enden in

Let 2 be the signature of T. Suppose A is the 2-algebra with
carrier {-1,0,1,...}, the usual interpretation for the operators 0

and succ, and neg=-1. Now restrictT(A) does not exist because every

subalgebra of A must contain -1 (the value of neg) and hence fails
to satisfy tre "no junk" condition for the constraint of T.

-222-

A 5-algebra A simulates a 7-theory T if it satisfies the

equations and constraints of T after allowing for unused carrier
elements and multiple representations.

Def: If 5 is a signature, A,A' are i-algebras and T is a

S-theory, thn A simulates At if there is a surjective
3-homomorphism rep:restrictT(A)-9A'. A simulates T if there is a

model of T which is simulated by A.

Note that simulation of an algebra by an algebra is with respect

to a theory because it is defined in terms of the restrict
operation. It is not possible to allow for unused elements of the

'concrete' algebra otherwise; without the constraints of T we cannot

distinguish between an element (of a constrained sort) which is
truly unused and an element (of an unconstrained sort) which is not

the value of any term.

The following definition of simulation is equivalent to the

definition above (this is easy to show) but more constructive.

Def: If 5 is a signature, A is a 5-algebra and T=<2,EC> is a

2-theory, then A simulates T if restrictT(A)/EC (call this RIT(A))
exists and is a model of T.

(EC is the 2-congruence generated by EC -- i.e. the least

2-congruence on restrictT(A) containing the relation determined by

the equations in EC]

RI stands for restrict-identify, the composite operation which

forms the heart of this definition. To determine if a I-algebra A

simulates a hierarchical 2-theory T, we restrict A, removing those

elements from the carrier which are not used to represent the value

of any 1-term, for constrained sorts; the result of this satisfies
the "no junk" condition for each constraint in T. We then identify
multiple concrete representations of the same abstract value by

quotienting the result by the 2-congruence generated by the

equations of T, obtaining an algebra which (of course) satisfies
those equations and also continues to satisfy the "no junk"
condition of the constraints. If this is a model of T (i.e. it
satisfies the "no crime" condition for each constraint in T) then A

-223-

simulates T. Note that any model of T simulates T. It has been

shown by Ehrig, Kreowski and Padawitz [1980] that the order

restrict-identify gives greater generality than identify-restrict.

Clear (both the ordinary version and our variant) differs from

most specification approaches/languages in that it allows the

construction of loose theories having an assortment of non-

isomorphic models. Such a theory need not be implemented by a

theory with the same broad range of models. A loose theory leaves

certain details unspecified and an implementation may choose among

the possibilities or not as is convenient. That is:

- A loose theory may be implemented by a 'tighter' theory.
Example: implementing the operator choose:set->integer
(choose an element from a set of integers) by an operator
which chooses the smallest.

This is intuitively necessary because it would be silly to require

that a program (the final result of the refinement process) embody

all the vagueness of its original specification. This kind of

flexibility is already taken into account by the discussion above,

and is an important feature of our notion of implementation.

Previous notions do not allow for it because they generally consider

only a single model for any specification.

Now we are finally prepared to define our notion of the

implementation of one theory by another. This definition is

inspired by the notion of [Ehrig, Kreowski and Padawitz 1980] but it

is not the same; they allow a more elaborate 'bridge' but otherwise

their notion is more restrictive than ours. Our notion is even

closer to the one of Broy et al [1980] but there the 'bridge' is

less elaborate than ours. It also bears some resemblance to a more

programming-oriented notion due to Schoett [1981].

Def: If T=<Z,EC> and T'=<I',EC'> are satisfiable theories and

is a signature morphism, then T' implements T (via

written T_ > ', if for any model A' of T', A'
a, simulates T.

Note that any theory morphism o-:T--T' where T' is satisfiable is
an implementation T °>T'. In particular, if T' is an enrichment of
T (e.g. by equations which 'tighten' a loose theory) then T----->T'.

-224-

The following uiagram shows how the definitions of restriction,

simulation and implementation fit together:

T t. L-tn.onl

'a.wtlty G@ CD
A T eoM1

An implementation T-Z->T'

fo.q.t

T' to I'-theory)

A T' l

A simple example will show how this definition works (other
implementation examples are given in the next section). Consider

the theory of the natural numbers modulo 2, specified as follows:

const Natmod2 =

enrich Bool
'data' sorts natmod2

opns 0f 1 : natmod2
succ : natmod2 -> natmod2
iszero : natmod2 -> bool

e ns succ(O) = 1 succ(1) = 0

iszero(O) = true iszero(1) = false enden

Here is a picture which shows the situation described by the

equations:

succ
0

(iszero)

Can Natmod2 be implemented by the following theory?

-225-

const Fourvalues =

enrich Bool
'data' sorts fourvals

opns zero, one, zero', extra : fourvals
succ : fourvals -> fourvals
iszero : fourvals -> bool
eq : fourvals, fourvals -> bool

egns su(;c(zero) = one succ(one) = zero'
succ(zero') = one succ(extra) = zero
iszero(zero) = true iszero(one) = false
iszero(zero') = true iszero(extra) = false
eq(zero,one) = false eq(zero,zero') = false

eq(p,q)=eq(q,p) eq(p,p)=true enden

Here is the picture (omitting the eq operator):

succ

zero one
(iszero)

zero' extra
(iszero)

The iszero operator of Natmod2 and the eq operator of Fourvalues are

needed to avoid trivial models.

All models of Fourvalues have a carrier containing 4 elements,

and all models of Natmod2 have a 2-element carrier. Now consider

the signature morphism o:sig(Natmod2)-'>sig(Fourvalues) given by

Enatmod2'-4fourvals, O'--zero, 1'-4one, succ«->succ, iszero'->iszero]
(and everything in Bool maps to itself). Intuitively,

Natmod2----)Fourvalues (zero and zero' both represent 0, one

represents 1 and extra is unused) but is this an implementation

according to the definition? Consider any model of Fourvalues (e.g.

the term model -- all models are isomorphic). 'Forgetting' to the

signature sig(Natmod2) eliminates the operators zero', extra and eq.

Now we check if this algebra (call it A) simulates Natmod2.

- 'Restrict' removes the value of extra from the carrier.

- 'Identify' identifies the values of the terms "succ(1)" (=zero')
and "0" (=zero).

The "no crime" condition of Natmod2's constraint requires that

the values of true and false remain separate; this condition is

-226-

satisfied, so A simulates Natmod2 and Natmod2)Fourvalues is an

implementation.

Suppose that the equation succ(zero')=one in Fourvalues were

replaced by:

succ(zero')=zero.

Forget (producing an algebra B) followed by restrict has the same

effect on any model of Fourvalues, but now identify collapses the

carrier for sort natmod2 to a single element (the closure of the

equations in Natmod2 includes the equation succ(succ(p))=p, so

"succ(succ(0))" (=zero') is identified with "0" (=zero), and

"succ(succ(1))" (=zero) is identified with "1" (=one)).
Furthermore, the carrier for sort bool collapses;
"iszero(succ(succ(1)))" (=true) is identified with "iszero(1)"
(=false). The result fails to satisfy the "no crime" condition of
the constraint, so B does not simulate Natmod2 and

Natmod2----->Fourvalues is no longer an implementation.

It is not difficult to extend our notion of implementation to
deal with parameterised theories. We will consider here only the

single-parameter case, but the extension to multiple parameters

should pose no problems.

Since a parameterised theory R " P (that is, a procedure with
requirement theory R and body P -- R will always be included in P)

is a function taking a theory A as an parameter and producing a

theory P(A) as a result, an implementation R'c-)P' of R "P is a

function as well which takes any parameter theory A of P as argument

and produces a theory P'(A) which implements P(A) as result. But

this does not specify what relation (if any) must hold between the

requirement theories R and R'. Since every actual parameter A of
R "P (which must match R) should be an actual parameter of R'" P',

it must match R' as well. This requires a theory morphism N:R'-+R

(then a fitting morphism P:R--)A gives a fitting morphism

P.P: R '--->A) .

-227-
Def: If Rc-->P and R'c_ P' are parameterised theories, N:R'-->R is

a theory morphism and a:sig(P)--4sig(P') is a signature morphism,

then R'c_P' implements R CP (via o' and }i), written

R c-->P - -> R' c-' P', if for all theories A with fitting morphism

P:R-->A, P(A[P]))P'(A[P.P]) where o' is the extension of o' from P

to P(A[P]) defined using the universal property of the pushout

P(A[P]) in the obvious way (so o'Isig(P)-sig(R)'o- and o"Isig(A)°id).

R C

R' c

P

P(A[P])

.10

"'r -

Ordinarily R and R' will be the same theory, or at least the same

modulo a change of signature. Otherwise R' must be weaker than R.

Note that the definition of implementation for parameterised

theories requires a certain property to hold for every possible
actual parameter theory and fitting morphism. Better would be a

definition which refers only to the parameterised theories
themselves. Unfortunately, such a definition does not seem to work

under the existing framework. Perhaps it would be possible to give

some conditions on RCP and RI "PI under which the above

definition reduces to the simpler form, but we have so far been

unable to discover satisfactory ones.

Sometimes it is natural to split the implementation of a

parameterised theory into two or more cases, implementing it for
reasons of efficiency in different ways depending on some additional
conditions on the parameters. For example:

- Sets: A set can be represented as a binary sequence if
the range of possible values is small; otherwise it must
be represented as a sequence (or tree, etc) of values.

Parsing: Different algorithms can be applied depending on
the nature of the grammar (operator precedence, LR,
context sensitive, etc -- see [Aho and Ullman 1977]).

-228-

- Sorting: Distribution sort can be used if the range of
values is snail; otherwise quicksort (see [Knuth 1973]).

In each instance the cases must exhaust the domain of possibilities,

but they need not be mutually exclusive.

Our present notion of implementation does not treat such cases.

We could extend it to give a definition of the implementation of a

parameterised theory R y P by a collection of parameterised theories
'+R

1 "4P 1, ... , R'+RnC (where for every theory A with a theory
morphism c:R--*A there must exist some i>1 such that a':R'+Ri-4A
exists). But we force the case split to the abstract level, rather
than entangle it with the already complex transition from abstract
to concrete:

RyP --- - - - - - - * R+R yP = P(R+R) 1

y
R+Rn y Pn = P(R+n)

This collection of n parameterised theories is equivalent to the
original RyP, in the sense that every theory P(A[a'J) with a:R--*A

is the same as the theory Pi (A[a']) with a-' : R+Ri-9A for some i>1.
(A theory of the transformation of Clear specifications is needed to

discuss this matter in a more precise fashion; no such theory exists
at present.) Now each case may be handled separately, using the

normal definition of parameterised implementation:

R+R 1 HP R'+R
1

C- P,

R+R yPn ---.> R' +RR'yP-n

-229-

3. Examples

Sets can be implemented using sequences by representing a set S

as a sequence containing the elements of S in any order without

repetitions. Sets may be specified in hierarchical Clear as

follows:

proc Set(X:Ident) _

let SetO =

enrich X by
'data' sorts set

opns 0 : set
singleton : element -> set
(_ U _) : set,set -> set
(_ is-in _) : element,set -> bool

egns0USS
S U S = S

S U T T U S

S U (T U V) _ (S U T) U V

a is in 0 = false
a singleton(b) = a==b
a is-in S U T= a is-in S or a is-in T enden in

enrich SetO by
opns choose : set -> element
egns choose(singleton(a) U S) is-in (singleton(a) U S)

= true enden

This specification includes an operator choose which is defined

(loosely) as selecting an arbitrary element from a on-empty set.
The value of choose(0) is left undefined -- although the same notion
of implementation should work for error theories and algebras, we

prefer to avoid the issue of errors for now. Note that the

membership operator is-in is included within the 'data' in contrast
to the specification of sets in ordinary Clear in section 1.1.2.
This subtle change is necessary to avoid trivial models.

The concrete specification must include a definition of sequences

as well as operators on sequences corresponding to all the operators
in Set. he begin by defining everything except the choose operator:

-230-

proc Sequence(X:Triv)
enrich X + Bool a

'data' sorts sequence
opns empty : sequence

unit : element -> sequence
(. _) : sequence,sequence -> sequence
head : sequence -> element
tail : sequence -> sequence

egns empty.s = s

s.empty = s

s.(t.v) _ (s.t).v

head(unit(a).s) = a

tail(unit(a).s) = s enden

proc SequenceOpns(X:Ident)
enrich Sequence(X)

opns (_ is in) : element,sequence -> bool
add : element,sequence -> sequence
(_ U _) : sequence,sequence -> sequence

egns a is_in empty = false
a is in unit(b) = a==b
a is in s.t = a is-in s or a is-in t

add(a,s) = s if a is_in s
add(a,s) = unit(a).s if not(a is-in s)

empty U s = s

unit(a).t U s = add(a,t U s) enden

The head and tail operators of Sequence and their defining equations

are needed to avoid trivial models; they serve no other function in

the specification.

Before dealing with the choose operator, we split Set into two

cases:

meta TotalOrder =

enrich Ident
opns (_ < -) : element,element -> bool
e ns a<a = true

' a<b and b<a --> a==b = true

a<b and b<c --> a<c = true

a<b or b<a = true enden

IdentySet --- -- -4 IdentC4Set
- --* TotalOrder ySet' = Set(TotalOrder)

These two cases may be handled separately. The choose operator

can select the minimum element when the element type is totally

ordered; otherwise we can leave the precise choice unspecified as

-231-

before.

proc SequenceAsSet(X:Ident)
enrich SequenceOpns(X)

o ns choose : sequence -> element
egns choose(unit(a).t) is-in (unit(a).t) = true enden

proc SequenceAsSet'(X:TotalOrder)
enrich SequenceOpns(X)

opns choose : sequence -> element
egns choose(unit(a)) = a

choose(unit(a).unit(b).s) = choose(unit(a).s) if a<b
else choose(unit(b).s) enden

Now Ident'-'iSet -" Ident "SequenceAsSet and TotalOrder CSet'
- TotalOrder"SequenceAsSet', where 0' _ [element 'element,
_= r->==, set -4sequence, 0 -4empty, singleton r-4unit, U,---4u,

is in'-4is in, choose 'choose] (and everything in the signature of

Bool maps to itself), and }' and p' are the identity morphisms on

Ident and TotalCrder respectively. Note that an incorrect
implementation results if choose in SequenceAsSet is changed to

select the first element; Set contains an equation

choose(singleton(x) U singleton(y))
= choose(singleton(y) U singleton(x))

so the identify step would collapse the parameter sort (and

consequently bool).

This example illustrates all of the features of our notion of
implementation. Not all sequences are needed to represent sets --
sequences with repeated elements are not used. Each set is

represented by many sequences, since the sequence representation of

a set keeps track of the order in which elements were inserted. Set

is split into two theories before implementation, and finally

SequenceAsSet' is 'tighter' than Set' because the choose operator

(select an element) is implemented by an operator which chooses the

minimum element.

A nonparameterised example is obtained by applying Set or Set'

and SequenceAsSet or SequenceAsSet' to an argument, for example:

Set(Nat[element is nat]) ° >SequenceAsSet(Nat[element is nat])

-232-

where a- is the same as a- above except that element Helement is
replaced by nLt Hnat.

Two additional examples:

- Lists can be implemented using arrays of (value,index)
pairs, where the index points to the next value in the
list (and where some distinguished index value denotes
nil). There are many representations for the same list
(the relative positions of cells in the array are
irrelevant, for example) and circular structures are not
needed to represent the value of any list.

- The specification of matrix inversion in the Introduction
can be implemented by a specification of matrix inversion
using the Gauss-Seidel method. Conversely, this
specification can be implemented by the specification in
the Introduction (enriched by some auxiliary functions).

The matrix inversion example shows that the expectation that A --->B
should imply that B is 'lower level' than A is not always justified.
This is because the definition of implementation is concerned with
classes of models rather than with the equations used to describe

those classes. In this case both theories will have the same class
of models except that the Gauss-Seidel method will probably require
auxiliary operators.

-233-

4. Horizontal and vertical composition

Clear is a language for writing structured specifications,

providing facilities for combining small theories in various ways to

make large theories. These facilities allow a large specification

to be built in a modular fashion from smaller bits. Following

Goguen and Burstall [1980] the structure of such a specification

shall be called horizontal structure.

Likewise, the implementation of a large specification is not done

all at once; it is good programming practice to implement and test
pieces of the specification separately and then construct a final
system from the finished components. If the theories which make up

a Clear specification are implemented separately, it should be

possible to put together (horizontals compose) the implementations

in the same way that the theories themselves are put together,
yielding an implementation of the entire specification.

Although the problem of developing a program from a specification
is simplified by dividing it into smaller units, the step from

specification of a component to its implementation as a program is
still often uncomfortably large. A way to conquer this is to break

the development of a program into a series of consecutive refinement

steps. That is, the specification is refined to a lower level
specification, which is in turn refined to a still lower level
specification, and so on until a program is obtained. Again

following Goguen and Burstall (1980], this is called the vertical
structure (of the development process). If a specification A is
implemented by another specification B, and B is implemented by C,

then these implementations should vertically compose to give an

implementation cf A by C. That is, the implementation relation
should be transitive. Goguen and Burstall [1980] propose a system

called CAT for the structured development of programs from

specifications by composing implementations in both the horizontal
and vertical dimensions. (Note: Horizontal and vertical
compositions were originally defined on natural transformations.
The general structure admitting two such compositions is called a

2-category [Kelly and Street 1974].)

--234--

The vertical composition of two implementations is not always an

implementation. For example, consider the following theories:

const T = enrich Bool
o ns extra : bool enden

const T' = enrich Boo]
opns extra bool
egns extra = true enden

con3t T" = theory 'data' sorts threevals
o ns tt, ff, extra : threevals endth

Now T---->T' and T'---aT" but T-1-->T" (consider the model of T"

where ttOff0extra). The theories must satisfy an extra condition.

Def: A theory I is reachably complete with respect to a theory

T'E T if for all constraints c of T', T is sufficiently complete

with respect to opns(T'), constrained-sorts(c), constructors (c), and

variables of unconstrained-sorts(T').

In the example above T" is not reachably complete with respect to
T because extra is not provably equal to either tt or ff.

Reachable completeness with respect to a theory T is sufficient

to guarantee that the result of the operation restrictT will always

exist:

Restriction lemma: If a theory T is reachably complete with

respect to a-(T')C T then for every model M of T

restrict T'(MI ig(T')) exists.

Proof: We may assume for simplicity that T'c T and o- is the

inclusion; the following proof generalises to arbitrary T' and ar.

Let M be the sig(T')-subalgebra of Mlsig(T') which is finitely

generated by opns(T') and elements of unconstrained-sorts(TI) (i.e.

every element of M is the value of a term built from operators of T'

and variables cf unconstrained sorts of T', for some assignment of M

values). We will show that Iii satisfies the "no junk" condition for

every constraint c=<Tc "Tc',a-'> of T'; M is then clearly the

largest such subalgebra.

M Let a be an element of Mtarget = si'g(Tc')
Then a is the value

-235-

of some tern t built from opns(T') and variables of

unconstrained-sorts(T') for some assignment of these variables. If
a is not of a constrained sort of c then it trivially satisfies the

"no junk" condition. Otherwise, the reachable completeness of T

with respect to T' implies the existence of a term t' built from

constructors(c) and variables of unconstrained-sorts (T') such that
T F-t=t' .

Now, let t1,...,tk be the largest subterms of t' of 07'(sorts(Tc))
and consider the term t" containing variables x1,...,xk of
sort(t1),...,sort(tk) such that t' = t"[t1/x1,...,tk/xk]. Then t"
does not contain any operator f: ...->s with s4constrained-sorts(c).
Thus (since opns(t")e opns(t')) all operators of t" are in
o°'(opns(Tc')).

Since a=p(t)=f(t1)=Y(t"[yr(x1)1 ...,y(xk)]) for some assignments

and yJ such that f(ti)=yr(xi), a is the value of some sig(Tc')-term
with variables in sorts(Tc).
condition for c.

Thus M satisfies the "no junk"

We can use this lemma to prove that implementations can be

vertically composed if the target of the composition is reachably

complete with respect to the source.

Vertical composition theorem

1. [Reflexivity] T- id
>T (the proof is obvious).

2. [Transitivity] If T-7-4T ' and T'--7-- T" and T" is
reachably complete with respect to o-. c" (T), then

T .)T".

Proof of transitivity: Let M" be a model

FRIT(M") =def restrictT(M"Isig(T))/segns(T)'
FRIT(M") follows from the restriction lemma.

T'T",
homomorphism

FRIT(FRIT,(M")) Ftrueifalse.
from

of T" and consider

The existence of
Because T-914T' and

Since

FRIT(M") onto

FRIT(M") Ftruesfalse as well. Therefore M"l.ig(igT)

there is a

FRIT(FRIT,(M")),

simulates T.

-236-

Corollary

1. [Reflexivity of parameterised implementations]

R C P R yP (the proof is obvious).

.. ['transitivity of parameterised implementations] If
R `--P 1 R' "P' and R' "P'

N'
R""P" and P" is

reachably complete with respect to a*.o'(P), then

R HP
N' P "

R"--P".

Proof of transitivity: Suppose p:R--'A is a fitting morphism;

then so is P":R"--)A = V'.p.P. Let M" be a model of P"(A(p"]).
Since M"Isig(p") is a model of P" and P" is reachably complete with
respect to o'.o'(P), by the restriction lemma FRp(M") =def
restrictp(M"Isig(P)) exists. Since FRAM") = M"Isig(A) and all

theories are built using Clear, it follows that FR (M")
^ P(A(p])

exists. By definition P(A[p])-Z->P'(A[p.p]) and

P'(A[p.p]) P"(A[p"]) and so FRI (M") F trueOfalse by the

same argument as in the nonparameterised case. II

In the absence of constraints (as in the initial algebra [Goguen,

Thatcher and Wagner 1978] and final algebra [Wand 1979] approaches),

reachable completeness is guaranteed so this extra condition is
unnecessary.

To prove that implementations of large theories can be built by

arbitrary horizontal composition of small theories, it is necessary

to prove that each of Clear's theory-building operations preserves

implementations. We will concentrate here on the application of
parameterised theories and the enrich operation. Extension of these

results to the remaining operations should not be difficult.

For the apply operation our object is to prove the following
property of implementations:

Horizontal composition property: If R "P Rtc__>P', A- A',
and p:R--'A is a theory morphism, then P(A[P])--Z4P1(A1[p.p.o*1]),
where o'" is constructed from o*, o'', u and P (see the horizontal
composition theorem below for details).

-237-

But this is not true in general; in fact, P'(A'[u.P.(r']) is not
even always defined. Again, some extra conditions must be satisfied
for the desired property to hold.

Def: Let R UP be a parameterised theory.

- RCP is called structurally complete if P is sufficiently
complete with respect to the parameter R (i.e. with respect to
opn3(P), sort3(R), opns(R) and variables of
unconstrained-3orts(R)), and if for all constraints c of P, P

is sufficiently complete with respect to c (i.e. with respect
to opns(P), constrained-sorts(c), constructors(c), and

variables of unconstrained-sorts(P)). A nonparameterised
theory A is called structurally complete if 0 CA is
structurally complete.

- R c-4P is called parameter consistent if P is conservative with
respect to R.

- R y P is called persistent if it is both structurally complete
and parameter consistent.

If R'CP' is persistent snd reachably complete, and At is a

valid actual parameter of R'C-4P', then the horizontal composition

property holds. The proof of this result relies on the following
lemma:

Horizontal composition lemma: If Rc-'iP is persistent, p:R-)A and

pv-:R-->A' are theory morphisms and A--Z--->A' then
P(A[p1) P(Awhere ai sig(P(A[p]))-sig(A)=id and

o Isig(A)= °'
The proof of this lemma relies in turn on the following result:

Theorem [Wirsing and Broy 19811: If RCP is persistent then any

model of R can be extended to both an initial model and a terminal

model of P. Thus for every structurally complete and satisfiable
theory A with p:R-->A, P(A[p]) has both initial and terminal models.

Proof of the lemma: Let PA =def P(A[P]) and PA' =def P(A'

and suppose M is a model of PA'. We will show first that FRPA(M)

'def restrict PA(MIsig(PA)) exists, and then that FRIPA(M) =def

FRpA(M)/:egns(pA) = FRpA(M)/'egns(A) satisfies true false. Since

-238-

FRIPA(M) must satisfy the equations and the "no junk" condition of

the constraints of PA, this implies that FRIPA(M) is a model of PA

and therefore that PA' implements PA.

Let M be the sig(PA)-subalgebra of Mfsig(PA) which is finitely
generated by opns(PA), elements of M of unconstrained-sorts(PA), and

elements of FRA(M). Since RCP is sufficiently complete (with

respect to the parameter R) MIsig(A) = FRA(M) = FRA(MIsig(A')),

which satisfies the "no junk" condition for every constraint of A

since A--->A'. The only remaining constraints of PA are on sorts of
P-R, since P is built from R using Clear and P is a theory morphism.

Suppose c is such a constraint. An argument analogous to the proof

of the restriction lemma shows that (since R" P is sufficiently

complete with respect to c) M satisfies the "no junk" condition of

c. Therefore M satisfies the "no junk" condition for all
constraints of PA; it is clearly the largest such subalgebra of

MIsig(PA) so FRpA(M) = H.

To show that FRIPA(M) F trueifalse we begin by introducing a

constant ca for every element a in FRPA(M) =def FRPA(M)Isig(A).
Call this new algebra FRPA(M)- t. Let T be the theory with the

signature of FRPA(M)- t (i.e. sig(A) together with all the new

nullary operators ca) and the axioms (FRPA(M)-t) -- recall the

operation f defined in section 11.4. Since FRPA(M) satisfies all
the equations of P and all the constraints of PA, FRPA(M)- satisfies
all the equations and constraints of R (translated via P). Thus

p:R-T is a theory morphism and FRPA(M) (when appropriately
extended) is a model of P(T[P]).

Now, FRIA(M-) (which is FRpA(M) /egns(A) by structural
completeness of R"P) is a model of A (since A---3A') and FRIA(M-)

(when appropriately extended) is also a model of T. Moreover, since

R "P is persistent, FRIA(M-) can be extended to some model S of
P(T[P7). And since T is structurally complete and satisfiable,
P(T[P)) possesses a terminal model Z satisfying trueifalse. There

exist homomorphisms from S onto Z and from FRPA(M) to Z because Z is
terminal. Hence Z satisfies all equations of A (because of S) and

all equations satisfied by FRPA(M). Therefore there exists a

homomorphism from FRIPA(M) onto Z and Z Ftrueifalse implies

FRIpA(M) P--truefalse. 13

-239-

Corollary (Horizontal composition for enrich): If AaA' and

sig(A)c-->enrich sig(A) <stuff> is persistent then

enrich A <stuff> - - enrich A' &<stuff>,

Cisig(<stuff>)=id and Q'jsig(A)-'LT'

where

Proof: Consider the (persistent) parameterised theory R " P

where R <sig(A),O> and P = enrich R <stuff>. Since id:R--)A and

id.o-:R-)A' are (trivially) theory morphisms, the horizontal

composition lemma applies to give the desired result.

A consequence of this corollary is that our vertical and horizontal

composition theorems extend to more elaborate notions of

implementation such as the one discussed by Ehrig, Kreowski and

Padawitz [1980]. They would say that T is implemented by T' (which

we will write T*T') if there is a theory T" which is an

enrichment of T' (written T' "T") such that T -"4T' (in our sense).

In pictorial form:

TT' T T'

Then A iBA04C implies (under appropriate conditions) AAW-AhkC,

since if:

AB'R"4

B/C,11`
C

then by the corollary:

rll A`" B C

and then A---- >C" by the vertical composition theorem.

4T"

We can now use the above lemma to prove the horizontal
composition theorem.

-240-

Horizontal composition theorem: If R'C--4P' is persistent, P' is
reachably complete with respect to ar(P), R'-p R'CP' and

A-9-4A', and p:R-->A and p':R'-->A' are theory morphisms where

':p.p.a"', then P(A[p])-- >P'(A'[p']).

Proof: Let PA =def P(A[P]) and PA' =def P'(A[pP]). From the

reachable completeness of P' it follows that P'(A'[p']) is reachably

complete with respect to &.&'(PA) for all constraints of P. Let c

be a constraint of A. Suppose f:...->s where

p(s)Econstrained-sorts(c) is an operator of P-R; then sesorts(R).
Because R yP is structurally complete, any sig(P)-term f(...) is

provably equal to a sig(R)-term t'. Thus p(f(...)) is provably

equal to a 'constrained' sig(A)-term p(t') (where p:P--->PA is the

extension of p). Therefore P'(A'[p']) is reachably complete with

respect to &.&' (PA) for c.

Suppose M is a model of P'(A'[P']). By the restriction lemma,

FRPA(M) exists. According to the horizontal composition lemma,

PA'--14P'(A'[p']). By definition, PA - >PA'. Therefore,

FRIPA(FRIpA,(M)) rtruefalse. Since there is a homomorphism from

FRIPA(M) onto FRIPA(FRIPA,(M)), FRIPA(M) Ftrue false as well. G

In [Sannella and Wirsing 19821 examples are given which

demonstrate the necessity of all the conditions on this theorem. It
is also shown there that if R:R' (this is normally the case, as in

all of our examples) then reachable completeness of P' with respect

to a(P) is not needed.

The vertical and horizontal composition theorems give us freedom

to build the implementation of a large specification from many small

implementation steps. The correctness of all the small steps

guarantees the correctness of the entire implementation, which in
turn guarantees the correctness of the low-level 'program' with
respect to the high-level specification. This provides a formal

foundation for a methodology of programming by stepwise refinement.

An analogue of CAT's 'double law' [Goguen and Burstall 19801 is a

consequence of the vertical and horizontal composition theorems.

-241-

That is, given:

R'-4P ..-...J R' C-->P' A-.,-->A'
R' - P' --.; R"cl>P" A' -- --: A"

(and appropriate fitting morphisms) we can apply the horizontal

composition theorem to give:

1. P(A)----->P' (A') 2. P' (A')---->P"(A")

or else apply the vertical composition theorem (and its corollary)

to give:

3. R yP _..- R" C-4P" 4. A...A"

Now we can either apply the vertical composition theorem to (1) and

(2), or else apply the horizontal composition theorem to (3) and

(4); either way we get the same implementation of P(A) by P"(A").

This means that the order in which parts of an implementation are

composed makes no difference, and that our notion of implementation

is appropriate for use in CAT.

Our notions of simulation and implementation extend without

modification to ordinary Clear (with data constraints rather than

hierarchy constraints). The vertical and horizontal composition

results then hold only under additional conditions.

Vertical composition theorem (with data): In Clear with data,

1. [Reflexivity] TT (the proof is obvious as before).
2. [Transitivity] If T-7--->T', T'-M-->T", all sorts in T are

constrained and T" is reachably complete with respect to

6.6' (T), then T2:' T".

Proof of transitivity: Let M be a model of T". As in the

hierarchical case, FRT(M) exists because of the reachable

completeness of T". Let E be the set of all ground equations which

hold in restrictT(M), and define:

-242-

T_ =d e f enrich T e ns E

it =def enrich T' e ns ar(E)

T" °def enrich T" e ns d-.d'(E)

T-Z->V-T" implies that T °-->T'T". The reachable

completeness of T" ensures that for every ground sig(T)-term t there

exists a 'constrained' term t' such that Ef-t=t'. Thus T is

structurally complete, and since every sort of T is constrained it
has (up to isomorphism) only one model which is initial in the class

of 'hierarchical' models of T (i.e. in the class of algebras which

are models of T when the data constraints of T are viewed as

hierarchy constraints).

By the vertical composition theorem for hierarchical theories,
FRIT(M) =FRIT(M) is a hierarchical model of T. There is a

homomorphism from FRIT(M) onto FRIT(FRIT,(M)). The initiality of
FRIT(FRIT,(M)) implies the existence of a homomorphism in the

opposite direction. Thus FRIT(M) is initial in the class of
hierarchical models of T so (equivalently) it is a model of T.

Therefore it is a model of T. Q

An example showing that constraints on all sorts of T are

required for this theorem is given in [Sannella and Wirsing 1982].

Corollary: In Clear with data,

1. [Reflexivity of parameterised implementations]
R "P--id'R "P (the proof is obvious as before).

2. [Transitivity of parameterised implementations] If
R "P - + F j - - > R' - P' and R' "P' R""P", all
non-parameter sorts of Ry P are constrained and P" is
reachably complete with respect to or.o''(P) then

R _> p _F_7 P" .

The proof of transitivity relies on a lemma.

-2A_3 -

Lemma: In Clear with data, if R" P R' "P' and

R' "P' V,,) R""P", all non-parameter sorts of Rc-->P are

constrained, pit is reachably complete with respect to o'.o''(P) and

e:R-iA is a theory morphism where all sorts in A are constrained,

then P(A[P]))P"(A[N'.N.P]).

Proof of lemma: All sorts of P(A[P]) are constrained. Let M be

a model of P"(A[N'.p.P]) and let ground(M) be the set of
(constraints and) ground equations which hold in M. Then the theory

T =def enrich P"(A[p'.p.p]) X egns ground(M) is reachably complete

with respect to Q'.Q'(P(A[P])). M is a model of T and transitivity
in the nonparameterised case implies that FRIp(A[p])(M) is a model

of P(A[P]).

Proof of transitivity: Suppose p:R->A is a fitting morphism, and

let M be a model of A. Let Mt be the algebra obtained by

introducing a constant ca into M for every element a of M. Let T be

the theory with the signature of Mt and the axioms ground(Mt*); T

will include a data constraint for every sort of A. Then p:R--)T is

a theory morphism. Since every sort of T is constrained, the lemma

implies that for every model M of P"(T[N'.N.P]), Mlsig(p(T[P]))

simulates P(T[p]). Therefore Mlsig(P(A[P])) simulates P(A[P]).

Every model of P"(A[N'.p.p]) (suitably extended) is a model of

P"(T[N'.N.P]) for some such T, so this implies the desired result.

Def: A data theory T is hierarchical submodel consistent if for
every model M of T and every hierarchical submodel M of M (i.e.
every submodel of M satisfying the constraints of T when viewed as

hierarchy constraints), M satisfies the data constraints of T.

Horizontal composition lemma (with data): In Clear with data, if
R yP is persistent and P is hierarchical submodel consistent,
P:R-4A and P.o':R-4A' are theory morphisms and A--^A then r
P(A[P])-1-" P(Awhere &Isig(P(A[p]))-sig(A)=id and

&I sig(A)= Q'.

Proof: Let M be a model of P(A'[p.Q']), and let PA =def P(A[P]).

The horizontal composition lemma for hierarchical Clear says that

-244-

FRIPA(M) exists and is a model of PA when the data constraints are

viewed as hierarchy constraints. It remains to show that FRIPA(M)

satisfies the "no confusion" condition for every data constraint c

of PA.

Because R "P is persistent, M sig(A,) = M- where M- is a model

of A' in which all elements are finitely generated from operators

and elements of M of sorts unconstrained in A'. Thus FRPA(M)Isig(A)

= FRO-). Once more, persistency ensures that FRIPA(M)Isig(A)

FRIA(M). Since A_)A', FRIA(M) is a model of A and hence

FRIPA(M) satisfies the data constraints of A. Since a is a theory

morphism it also satisfies the data constraints of R.

FRPA(M) satisfies all the equations and constraints (when viewed

as hierarchy constraints) of P. Thus FRPA(M)Isig(p) is a

hierarchical model of P and moreover is a submodel of M.

Hierarchical submodel consistency of P guarantees that
FRPA(M)Isig(p) and thus FRPA(M) satisfies the "no confusion"

condition for every constraint of P. Then FRIPA(M) (which is

FRPA(M)/:egns(A)) satisfies the "no confusion" condition for the

constraints of P as well.

Corollary (Horizontal composition for enrich with data): If
A--T--)A' and sig(A) " P=enrich sig(A) <stuff> is persistent and P

is hierarchical submodel consistent then enrich A <stuff>

enrich A' (r<stuff>, where o'Isig(<stuff>)=id and ;.Isig(A)= °''

Proof: As before, applying the horizontal composition lemma to
the parameterised theory <sig(A),O>C9P.

Horizontal composition theorem (with data): In Clear with data.
if R''-P' is persistent and P' is hierarchical submodel consistent,
P' is reachably complete with respect to o'(P), all nonparameter

sorts of R c)P are constrained, R "P T R' yP' and A- A' where

all sorts of A are constrained, and P:R---)A and P':R'-->A' are theory
morphisms where then P(A[P])P'(A'[P']).

Proof: Let M be a model of P'(A'[p']), and let PA =def P(A[P])

and PA' =def P'(A[u.e]) The horizontal composition theorem for
hierarchical Clear says that FRIPA(M) exists and is a model of PA

-245-

when the data constraints are viewed as hierarchy constraints. It
remains to show that FRIPA(M) satisfies the "no confusion" condition
for every data constraint c of PA.

By the horizontal composition lemma, PA'°--P'(A'[P']) and by

definition, PA --3PA' . 't'hus M =def FRIPA(FRIPA, (M)) is a model of
PA (satisfying the data constraints of PA). Since FRPA(FRPA,(M))

FRPA(M), there is a homomorphism from FRIPA(M) onto M. Let
constr(PA) denote the theory PA with non-constructors omitted.

Since M satisfies the data constraints of PA, M =def

M1sig(constr(PA)) is an initial model of constr(PA). FRIPA(M) =def
FRI PA(M)131g(constr(PA)) is also a model of constr(PA) and there is -
a homomorphism from FRIPA(M)- onto M . On the other hand, the

initiality of M implies the existence of a homomorphism in the

opposite direction. Hence FRIPA(M) and M are isomorphic, and

FRIPA(M)- satisfies the data constraints of PA, which implies that
FRIPA(M) satisfies the "no confusion" condition of the data

constraints.

An example is given in [Sannella and Wirsing 1982] which shows

the necessity of the condition that all nonparameter sorts of RCP
be constrained. It is also shown there that if R=R' then this
condition can be dropped along with reachable completeness of P'

with respect to or(P) and the condition that all sorts of A be

constrained.

The vertical and horizontal composition results for theories with
data constraints are encouraging because ordinary Clear is easier to
use than our 'hierarchical' variant. However, the hierarchical
submodel consistency condition on the horizontal composition theorem

is rather strong and it may be that it is too restrictive to be of
practical use. Here is an example which shows that the proposition
(and therefore the theorem) does not hold without the hierarchical
submodel consistency condition:

-246-

meta Natlike
enrich Bool

sorts nat
opns 0 : nat

succ : nat -> nat enden

proc P(X:Natlike)
enrich X

data sorts s
opns a, b : s

f : nat -> s
egns f(0) = a

f(succ(x)) = b enden

const A = Nat as usual but with only the operators 0 and succ

const A' =

enrich Bool
data sorts nat'

opns -1, 0 : nat'
succ : nat' -> nat'

egns succ(-1) = 0 enden

Now A and A' are both valid actual parameters of Natlike CP, and

A..--.JA' (where -1 is an unused value). But P(A)-7"P(At) (since
P(A) r-a4b and P(A') r-a=b). The problem is that P is not

hierarchical submodel consistent. Consider the following model M of
P:

Mnat =
{-1,0,1,2,...}

Ms = {a)

succ defined on Mnat in the usual way

(with the usual interpretation of Bool). Now suppose we remove -1

from Mnat to give an algebra M :

Mnat {0,1,2,...}

Ms = (a)

succ as before

M- is a hierarchical submodel of M but it does not satisfy the "no

confusion" condition of the data constraint on the sort s, and

therefore P is not hierarchical submodel consistent. There may be

some weaker condition than hierarchical submodel consistency which

-247-

is sufficient to guarantee that implementations of data theories can
be horizontally composed, but we have so far been unable to discover
any such condition.

-248-

CONCLUSION

In the Introduction we described the wide variety of roles which

specifications play in the development of every program. A

specification of one sort or another is necessary to describe the

task which the program is to perform, for communication between

designers and programmers, for checking or proving the correctness

of the resulting program, and for documentation. Of course, this is
a very loose use of the word "specification" which includes

everything from the vague ideas in a programmer's head to a precise
description written in a formal language.

We argued that formal specifications are highly desirable because

all informal specifications are to some degree imprecise, and the

cost of ambiguity can be immense. It is not enough to write
specifications in a language with a formally-defined syntax; this
gives only a dangerous illusion of precision. It is essential that
the specification language have a complete formal semantics. Only

then can we be confident that our specifications have a precise and

unambiguous meaning - the exact meaning of any specification can be

determined mechanically by consulting the semantics.

Burstall and Goguen [1980] were the first to give a complete

formal semantics of a specification language. They define the

meaning of Clear's theory-building operations using the language of
category theory, and then supply a denotational semantics of the

language as a whole by building upon these definitions. Chapter V

describes the semantics and a HOPE program which implements it.
Besides being an experiment in 'categorical programming' as

practiced by Burstall [1980] and Rydeheard [1981], the program

exposed several minor errors and one rather serious error in
[Burstall and Goguen 1980]. The semantics given in chapter V is a

corrected version of the original semantics. The serious error was

a failure to distinguish between theories and metatheories

(necessary for supplying metasorts in parameterised theories); the

rather subtle difference is discussed in section III.3.
Unfortunately the program is too slow to be of much practical use.

-249-

A different but equivalent semantics for Clear is given in

chapter III. This uses straightforward set-theoretic constructions

to define the semantics of the theory-building operations; the

denotational semantics built upon these definitions is virtually the

same as in chapter V. The simplicity of the constructions depends

on the use of tags to distinguish different sorts and operators

which have the same name but originate in different theories. Both

versions of the semantics are prolific -- two applications of the

same parameterised theory to the same actual parameter (using the

same fitting morphism) give two different copies of the same theory.

Section 111.5 describes how the set-theoretic semantics can be

altered to remove this undesirable characteristic.

Why do we need two versions of the semantics? Is this not too

much of a good thing? The category-theoretic semantics was

developed at the same time as Clear was being designed. This had an

altogether positive effect on the resulting language, as predicted

by Ashcroft and Wadge [1982]; a desire to give Clear an elegant

category-theoretic semantics led Burstall and Goguen to reject
certain features and embrace others. The idea of 'parameterising'
by an institution came from the realisation that the semantics of
the theory-building operations relied only on the existence of
colimits in the category of signatures. The language of category

theory is perfect for expressing this kind of flexibility. The set-
theoretic semantics has the advantage of being down-to-earth and

constructive and therefore more useful for practical applications.
But without the motivation provided by the category-theoretic
semantics, the constructions of chapter III may seem mysterious and

complicated. The set-theoretic semantics does not seem to readily
generalise to an arbitrary institution, but in section 111.6 we show

that it can be easily adapted to deal with all institutions which

have so far been proposed.

Winograd [1979] has argued convincingly for the need to force
specifications into the foreground of the program development

process and code into the background, in contrast to present-day

programming practice. He makes the point that programming nowadays

is concerned more with the integration of existing modules into

-250-

larger systems and the modification of existing programs than with

the creation of new programs from scratch. In such cases a high-
level specification of a module is far more important than the

sequence of instructions which actually does the job. He suggests

that the organisation and manipulation of these specifications
should be regarded as a programmer's primary task. We agree

wholeheartedly with his proposals. But these ideas are not yet

practical because formal specifications are unfortunately rather
difficult (or at least tedious) to construct. Although formal

specifications have the advantage of precision, they are harder to

understand than informal specifications and it is difficult to be

sure that a formal specification is a correct description of the

intended idea or behaviour.

There are two ways to attack this problem. The first is to
develop an expressive and flexible specification language with a

solid mathematical basis, but which does not require a great deal of
mathematical sophistication to understand and use. Although

addition of ad hoc features is never desirable, it is important that
the language should not force specifications into an unnatural form

for reasons of theoretical elegance. With a carefully-designed
language users can worry about describing their problems without
struggling with the language. The specification language may even

aid users in expressing and thinking about their problems by

encouraging them to construct specifications in a certain systematic
way. Clear is a first attempt toward such a language -- the

facilities it provides for structuring specifications in particular
seem to be a great asset. But in many ways Clear is clumsy.

ORDINARY [Goguen and Burstall 1980a] seems to be continuing in the

right direction by retaining Clear's structuring facilities and

institutional approach but emphasising useability.

The other approach to the problem is to develop automated aids to
help us write, understand and manipulate specifications. Chapter IV

discusses an implementation in HOPE of the set-theoretic semantics

of chapter III, along with some examples of specifications which

have been processed. As well as helping expose bugs in early
versions of the semantics, this has shown itself to be invaluable in

-251-

checking specifications for syntax and type errors. It is
surprisingly difficult to write even a small specification without
making some kind of silly mistake. Since the semantics does not

assign any meaning to a syntactically or semantically ill-formed
specification it is imperative to detect such errors. The

implementation could also serve as a front end to any system which

requires specifications as input (such as a program verification or

development system). A helpful addition would be to add a check for
the persistency of enrichments, but this is a difficult problem

which is undecidable in general. On the other hand, it would be

easy to add a check for void sorts. The program described in
chapter IV is presently rather slow and lacks a really good user

interface, but these faults could easily be cured by a careful
reimplementation in some lower-level language with more attention to

error reporting and recovery.

A theorem prover is a useful tool for exploring the meaning of a

specification, and is a necessary basis for building almost any

system making serious use of specifications. In fact, the Clear

implementation needs a theorem prover to check that specifications
are semantically well-formed. In chapter VI a semi-automatic

theorem prover for Clear built on top of the Edinburgh LCF system

(Gordon, Milner and Wadsworth 19793 is described. It is able to

prove many theorems automatically, exploiting the structure of Clear

specifications to restrict the information available to that which

is relevant to the theorem at hand. If the built-in strategy fails
the user is free to attempt to prove the theorem using the high-
level primitives (LCF tactics) and inference rules provided; our use

of the LCF proof methodology guarantees that only valid theorems can

be proved. Our goal was not to produce a powerful theorem prover

full of clever heuristics, but to provide a set of tools sufficient
for users to conduct proofs interactively and to explore some of the

possibilities for automatic proof, with particular emphasis on

finding evidence for our suspicion that the structure of Clear

specifications can aid both interactive and automatic proof. A more

powerful equational deduction component which uses state-of-the-art
methods would improve the performance of the system substantially.
Another area for improvement is the user interface, which is at

-252-

present rather primitive.

Chapter VII lays a foundation for the use of Clear in program

development. A formal notion of the implementation of a theory by a

lower-level theory is given which seems to agree with our intuitive
ideas built on programming experience. This notion extends to give

a definition of the implementation of parameterised theories. We

prove that the implementation relation is transitive under certain
conditions, and that separate implementations of a parameterised

theory P and an actual parameter theory A can be combined to give an

implementation of the application P(A), again provided that the

theories are 'well-behaved'. These two results (together with an

analogous result for each of the remaining theory-building
operations of Clear -- we only considered the apply operation) mean

that large high-level specifications can be refined in a gradual and

modular fashion to low-level HOPE-style 'programs', where the

correctness of all the small individual refinements guarantees the

correctness of the final program. A question not addressed was how

to prove that a refinement is indeed a correct implementation

according to our model-theoretic definition. This seems to be a

difficult problem; Martin Wirsing and I have tried to produce a set

of conditions sufficient to guarantee correctness of
implementations, but so far we have had only limited success.

An ambitious project would be to integrate all of this work

(together with efforts like OBJ [Goguen and Tardo 1979] and DAISTS

[Gannon, McMullin and Hamlet 1981]) into a system for the

specification, verification and systematic development of programs.

The main barriers to such a system at present seem to be the lack of
a means of proving the correctness of refinement steps, and the

limitations of automatic theorem-proving technology. An important

problem to which we have not yet devoted much attention is the

construction of a comprehensive library of basic specifications

which can be used to build large specifications without starting

from scratch; the library in appendix 2 is just a feeble beginning.

A great deal of work must also be done to develop a specification

language which permits greater ease of expression than Clear, and on

other problems of user engineering.

-253-

It is almost certain that a systematic approach to program
development such as we have described will never be easier than the
'quick and dirty' approach. But in the long run the initial high
cost of carefully developing a program should be balanced by the
guaranteed correctness of the result and the relative ease of
maintenance and later modification.

-254-

REFERENCES

Abrial, J.R., Schuman, S.A. and Meyer, B. (1979) Specification
language Z. Massachusetts Computer Associates Inc., Boston,
Massachusetts.

Aho, A.V. and Ullman, J.D. (1977) Principles of Compiler Design.
Addison-Wesley.

Arbib, M.A. and Manes, E.G. (1975) Arrows, Structures and Functors.
Academic Press.

Ashcroft, E.A. and Wadge, W.W. (1982) 3 for semantics. TOPLAS 4, 2.

Aubin, R. (1977) Strategies for mechanizing structural induction.

Proc. 5th Intl. Joint Conf. on Artificial Intelligence, Cambridge,
Massachusetts, pp. 363-369.

Backus, J. (1978) Can programming be liberated from the von Neumann
style? A functional style and its algebra of programs. CACM 21, 8

pp. 613-641.

Bauer, F.L. et al (the CIP Language Group) (1981) Report on a wide
spectrum language for program specification and development
(tentative version). Report TUM-I8104, Technische Univ. MOnchen.

Beki6, H., Bjdrner, D., Henhapl, W., Jones, C.B. and Lucas,
P. (1974) A formal definition of a PL/I subset. IBM Vienna Technical
Report TR25.139.

Bergstra, J.A., Broy, M., Tucker, J.V. and Wirsing, M. (1981) On the
power of algebraic specifications. Proc. 10th Intl. Symp. on
Mathematical Foundations of Computer Science, Strbske Pleso,
Czechoslovakia. Springer Lecture Notes in Computer Science,
Vol. 118, pp. 193-204.

Birkhoff, G. (1935) On the structure of abstract algebras. Proc. of
the Cambridge Philosophical Society 31, pp. 433-454.

Birkhoff, G. (1948) Lattice Theory. American Mathematical Soc.
Colloq. Publications, Vol. 25, New York.

Boyer, R.S. and Moore, J.S. (1978) A formal semantics for the SRI
hierarchical program design methodology. Technical report, SRI
International.

Boyer, R.S. and Moore, J.S. (1979) A Computational Logic. Academic
Press.

Broy, M., Dosch, W., Partsch, H., Pepper, P. and Wirsing, M. (1979)
Existential quantifiers in abstract data types. Proc. 6th Intl.
Colloq. on Automata, Languages and Programming. Springer Lecture
Notes in Computer Science, Vol. 71, pp. 73-87.

-2'>5-

Broy, M., Mtlller, B., Pepper, P. and Wirsing, M. (1980) A model-
independent approach to implementations of abstract data types.
Proc. of the Symp. on Algorithmic Logic and the Programming Language
LOGLAN, Poznan, Poland. Springer Lecture Notes in Computer Science
(to appear).

Burge, W.H. (1975) Recursive Programming Techniques. Addison-Wesley.

Bur3tall, R.M. (1977) Design considerations for a functional
programming language. Infotech State of the Art Conference: The
Software Revolution, Copenhagen.

Burstall, R.M. (1980) Electronic category theory. Proc. 9th Intl.
Symp. on Mathematical Foundations of Computer Science, Rydzyna,
Poland. Springer Lecture Notes in Computer Science, Vol. 88,

pp. 22-39.

Burstall, R.M. (1980a) Proving inequalities. Unpublished notes.

Bur3tall, R.M. and Darlington, J. (1977) A transformation system for
developing recursive programs. JACM 24, 1 pp. 44-67.

Burstall, R.M. and Goguen, J.A. (1977) Putting theories together to

make specifications. Proc. 5th Intl. Joint Conf. on Artificial
Intelligence, Cambridge, Massachusetts, pp. 1045-1058.

Burstall, R.M. and Goguen, J.A. (1980) The semantics of Clear, a

specification language. Proc. of Advanced Course on Abstract
Software Specifications, Copenhagen. Springer Lecture Notes in

Computer Science, Vol. 86. pp. 292-332.

Burstall, R.M. and Goguen, J.A. (1981) An informal introduction to

specifications using Clear. The Correctness Problem in Computer
Science (R.S. Boyer nd J.S. Moore, eds.), Academic Press,

pp. 185-213.

Burstall, R.M., MacQueen, D.B. and Sannella, D.T. (1980) HOPE: an

experimental applicative language. Proc. 1980 LISP Conference,

Stanford, California, pp. 136-143; also Report CSR-62-80 (Revised
version, Feb. 1981), Dept. of Computer Science, Univ. of Edinburgh.

Dama3, L. and Milner, R. (1982) Principal type-schemes for
functional programs. Proc. 9th ACM Symp. on Principles of
Programming Languages, Albuquerque, New Mexico.

Darlington. J. and Reeve, M. (1981) ALICE: a multi-processor
reduction machine for the parallel evaluation of applicative
languages. Proc. ACM/MIT Conference on Functional Programming
Languages and Computer Architecture, Portsmouth, New Hampshire.

Dijkstra, E.W. (1972) Notes on structured programming. Notes on
Structured Programming (Dahl O.-J., Dijkstra, E.W. and Hoare,
C.A.R.), Academic Press, pp. 1-82.

Dijkstra, E.W. (1980) Some beautiful arguments using mathematical
induction. Acta Informatica 13 pp. 1-8.

-256-

Dybjer, P. (1981) Higher order continuous theories and their

algebras. Unpublished draft, Dept. of Computer Science, Univ. of

Edinburgh.

Ehrich, H.-D. (1981) On realization and implementation. Proc. 10th

Intl. Symp. on Mathematical Foundations of Computer Science,
Strbske Ple3o, Czechoslovakia. Springer Lecture Notes in Computer
Science, Vol. 118.

Ehrich, H.-D. (1982) On the theory of specification, implementation,
and parametrization of abstract data types. JACM 29, 1 pp. 206-227.

Ehrich, H.-D. and Lohberger, V.G. (1978) Parametric specification of
abstract data types, parameter substitution and graph replacements.
Proc. of Workshop on Graphentheoretische Konzepte in der Informatik,
Applied Computer Science, Carl Hanser Verlag.

Ehrig, H. (1961) Algebraic theory of parameterized specifications
with requirements. Proc. 6th CAAP, Genova, Italy.
Ehrig, H. and Fey, W. (1981) Methodology for the specification of
software systems: from formal requirements to algebraic design
specifications. Proc. GI 81.

Ehrig, H. and Kreowski, H.-J. (1982) Parameter passing commutes with
implementation of parameterized data types. Proc. 9th Intl. Colloq.

on Automata, Languages and Programming, Aarhus, Denmark. Springer

Lecture Notes in Computer Science (to appear).

Ehrig, H., Kreowski, H.-J. and Padawitz, P. (1980) Algebraic
implementation of abstract data types: concept, syntax, semantics
and correctness. Proc. 7th Intl. Colloq. on Automata, Languages and
Programming, Noordwijkerhout, Netherlands. Springer Lecture Notes in
Computer Science, Vol. 85, pp. 142-156.

Ehrig, H., Kreowski, H.-J., Thatcher, J.W., Wagner, E.G. and Wright,

J.B. (1980) Parameterized data types in algebraic specification

languages (short version). Proc. 7th Intl. Colloq. on Automata,

Languages and Programming, Noordwijkerhout, Netherlands. Springer

Lecture Notes in Computer Science, Vol. 85.

Feather, M.S. (1982) A system for assisting program transformation.
TOPLAS 4,1 1-20.

Gannon, J., McMullin, P. and Hamlet, R. (1981) Data-abstraction
implementation, specification, and testing. TOPLAS 3,3 pp. 211-223.

Ganzinger, H. (1980) Parameterized specifications: parameter passing
and implementation. TOPLAS (to appear).

Goguen, J.A. (1978) Abstract errors for abstract data types. Proc.
IFIP Working Conf. on the Formal Description of Programming
Concepts, New Brunswick, New Jersey.

Goguen, J.A. (1978a) Order sorted algebras: exceptions and error
sorts, coercions and overloaded operators. Semantics and Theory of

Computation Report No. 14, Computer Science Dept., UCLA.

-257-

Goguen, J.A. (1980) How to prove algebraic inductive hypotheses
without induction, with applications to the correctness of data type
implementation. Proc. 5th Conf. on Automated Deduction, Les Arcs,
France. Springer Lecture Notes in Computer Science, Vol. 87.

Goguen, J.A. (1981 Two ORDINARY specifications. Technical report
CSL-128, c.ompL.ter ,tener Laboratory, SRI International.

Goguen, J.A. and Burstall, R.M. (1978) Some fundamental properties
of algebraic theories: a tool for semantics of computation. Report
53, Dept. of Artificial Intelligence; to appear in Theoretical
Computer Science.

Goguen, J.A. and Eurstall, R.M. (1980) CAT, a system for the
structured elaboration of correct programs from structured
specifications. Technical report CSL-118, Computer Science
Laboratory, SRI International.

Goguen, J.A. and Burstall, R.M. (1980a) An ORDINARY design.
Unpublished draft, Computer Science Laboratory, SRI International.

Goguen, J.A. and Meseguer, 'J. (1981) Completeness of many-sorted
equational logic. SIGPLAN Notices 16, 7 pp. 24-32.

Goguen, J.A. and Tardo, J.J (1979) An introduction to OBJ: a

language for writing and testing formal algebraic program
specifications. Proc. of Conf. on Specification of Reliable
Software, Cambridge, Massachusetts.

Goguen, J.A., Thatcher, J.W. and ,agner, E.G. (1978) An initial
algebra approach to the specification, correctness, and
implementation of abstract data types. Current Trends in Programming
Methodology, Vol. 4: Data Structuring (R.T. Yeh, ed.),
Prentice-Hall, pp. 80-149.

Goguen, J.A.. Thatcher, J.W., Wagner, E.G. and Wright, J.B. (1973) A

junction between computer science and category theory I: basic
definitions and examples, part 1. IBM Research Report RC4526.

Goguen, J.A., Thatcher, J.W., Wagner, E.G. and Wright, J.B. (1977)
Initial algebra semantics and continuous algebras. JACM 24, 1

pp. 68-95.

Gordon, M.J., Milner, A.J.R. and Wadsworth, C.P. (1979) Edinburgh
LCF. Springer Lecture Notes in Computer Science, Vol. 78.

Grgtzer, G. (1979) Universal Algebra (2nd edition), Springer.

Guttag, J.V. and Horning, J.J. (1978) The algebraic specification of
abstract data types. Acta Informatica 10 pp. 27-52.

Guttag, J.V. and Horning, J.J. (1980) Formal specification as a

design tool. Proc. 7th ACM Symp. on Principles of Programming
Languages, Las Vegas.

Guttag, J.V., Horowitz, E. and Musser, D.R. (1978) Abstract data
types and software validation. CACM 21, 12 pp. 1048-1064.

-258-

Henderson, P. and Snowdon, R. (1972) An experiment in structured
programming. BIT 12 pp. 38-53.

Honda, M. and Nakajima, R. (1979) Interactive theorem proving on

hierarchically and modularly structured sets of very many axioms.
Proc. 6th Intl. Joint Conf. on Artificial Intelligence, Tokyo,
pp. 400-402.

Hopcroft, J.E. and Ullman, J.D. (1979) Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley.

Huet, G. and Hullot, J.-M. (1980) Proofs by induction in equational
theories with constructors. Rapport de Recherche 28, INRIA.

Hupbach, U.L. (1980) Abstract implementation of abstract data types.
Proc. 9th Intl. Symp. on Mathematical Foundations of Computer
Science, Rydzyna, Poland. Springer Lecture Notes in Computer
Science, Vol. 88, pp. 291-304.

Hupbach, U.L. (1981) Abstract implementation and parameter
substitution. Proc. 3rd Hungarian Computer Science Conference,
Budapest.

Hupbach, U.L., Kaphengst, H. and Reichel, H. (1980) Initial
algebraic specification of data types, parameterized data types, and
algorithms. VEB Robotron, Zentrum fOr Forschung and Technik,
Dresden.

IFIP WG 2.1 (1979) [Specification examples]. Document
WG 2.1 334 (Bru-2), distributed prior to December 1979 IFIP WG 2.1

meeting in Brussels.

Iverson, K. (1962) A Programming Language. John Wiley and Sons.

Jenks, R.D. (1974) The SCRATCHPAD language. Proc. Symp. on Very High
Level Languages.

Jones, C.B. (1978) The meta-language: a reference manual. The
Vienna Develo ment Method: The Meta-language (D. Bj rner and C.B.
Jones, eds. . Springer Lecture Notes in Computer Science, Vol. 61,

pp. 218-277.

Kaphengst, H. and Reichel, H. (1971) Algebraische
Algorithmentheorie. VEB Robotron, Zentrum fUr Forschung and
Technik, Dresden.

Kelly, G.M. and Street, R. (1974) Review of the elements of
2-categories. Category Seminar (G.M. Kelly, ed.), Springer Lecture
Notes in Mathematics, Vol. 420, pp. 75-103.

Knuth, D.E. (1973) The Art of Computer Programming, Vol. 3: Sorting
and Searching, Addison-Wesley.

Knuth, D.E. and Bendix, P.B. (1970) Simple word problems in
universal algebras. Computational Problems in Abstract Algebra (J.
Leech, ed.), Pergammon Press, pp. 263-297.

-259-

Landin, P.J. (1966) The next 700 programming languages. CACM 9, 3

pp. 157-166.

Lawvere, F.W. (1963) Functorial semantics of algebraic theories.
Proc. Nat. Acad. Sci. USA 50, pp. 869-872.

Lehmann, D.J. and Smyth, M.B. (1981) Algebraic specification of data
types: a synthetic approach. Mathematical Systems Theory 14,
pp. 97-139.

Levitt, K.N., Robinson, L. and Silverberg, B. (1979) HDM handbook
Vols. I, II, III. SRI International.

Levy, M.R. (1980) Specifying data types with variables and
referencing. Report DCS-5-IR, Dept. of Computer Science, University
of Victoria.

Liskov, B.H. and Berzins, V. (1977) An appraisal of program
specifications. MIT Computation Structures Group Memo 141-1.

Liskov, B., Snyder, A., Atkinson, R. and Schaffert, C. (1977)

Abstraction mechanisms in CLU. CACM 20, 8 pp. 564-576.

MacLane, S. (1971) Categories for the Working Mathematician.
Springer.

MacQueen, D.B. (1981) Structure and parameterization in a typed
functional language. Symp. on Functional Languages and Computer
Architecture, Gothenburg, Sweden.

MacQueen, D.B. and Sannella, D.T. (1982) Completeness of proof
systems for equational specifications. In preparation.

Manna, Z. and kaldinger, R. (1980) A deductive approach to program
synthesis. TOPLAS 2, 1 pp. 90-121.

Manna, Z. and Waldinger, R. (1981) Deductive synthesis of the

unification algorithm. Automatic Program Construction (G. Guiho,
ed.), NATO Scientific Series, D. Reidel Pub. Co., Dordrecht,
Holland.

McCarthy, J., Abrahams, P.W., Edwards, D.J., Hart, T.P. and Levin,
M.I. (1962) LISP 1.5 Programmer's Manual. MIT Press.

Milner, R.G. (1978) A theory of type polymorphism in programming.
JCSS 17, 3 pp. 348-375.

Milner, R., Morris, L. and Newey, M. (1975) A logic for computable
functions with reflexive and polymorphic types. Proc. of Conf. on
Proving and Improving Programs, Arc-et-Senans, France; also LCF
Report 1, Dept. of Computer Science, Univ. of Edinburgh.

Mosses, P.D. (1976) Compiler generation using denotational
semantics. Proc. 5th Intl. Symp. on Mathematical Foundations of
Computer Science, Gdansk, Poland. Springer Lecture Notes in Computer
Science, Vol. 45, pp. 436-441.

Musser, D.L. (1980) On proving inductive properties of abstract data
types. Proc. 7th ACM Symp. on Principles of Programming Languages,
Las Vegas, Nevada.

Mycroft, A. (1981) Abstract Interpretation and Optimising
Transformations for Applicative Programs. Ph.D. thesis, Dept. of
Computer Science, Univ. of Edinburgh.

Nakajima, R., Honda, M. and Nakahara, H. (1980) Hierarchical program
specification and verification --- a many-sorted logical approach.
Acta Informatica 14 pp. 135-155.

Nelson, G. and Oppen, D.C. (1979) Simplification by cooperating
decision procedures. TGPLAS 1, 2 pp. 245-257.

Nourani, F. (1979) Constructive extension and implementation of
abstract data types and algorithms. Ph.D. thesis, Dept. of Computer

Science, UCLA.

Nourani, F. (1981) On induction for programming logic: syntax,
semantics, and inductive closure. Bulletin EATCS 13, pp. 51-64.

Parnas, G.L. (1972) A technique for software module specification
with examples. CACM 15, 5 pp. 330-336.

Parna3, G.L. (1972a) Cn the criteria to be used in decomposing
systems into modules. CACM 15, 12 pp. 1053-1058.

Reichel, H. (1980) Initially-restricting algebraic theories. Proc.
9th Intl. Symp. on Mathematical Foundations of Computer Science,
Rydzyna, Poland. Springer Lecture Notes in Computer Science,
Vol. 86, pp. 5(j4-514.

Rogers, H. (1967) Theory of Recursive Functions and Effective
Computability. McGraw-Hill.

Roubine, C. and Robinson, L. (1977) SPECIAL reference manual (3rd
edition). SRI Technical Report CSG-45.

Rydeheard, D.E. (1981) Applications of category theory to
programming and program specification. Ph.D. thesis, Dept. of
Computer Science, Univ. of Edinburgh.

Sannella, C.T. (1981) A new semantics for Clear, Report CSR-79-81,
Dept. of Computer Science, Univ. of Edinburgh.

Sannella, D.T. and Mirsing, M. (1982) Implementation of
parameter13ed specifications. Report CSR-103-82, Dept. of Computer
Science, Univ. of Edinburgh; extended abstract in: Proc. 9th Intl.
Colloq. on Automata, Languages and Programming, Aarhus, Denmark.
Springer Lecture Notes in Computer Science (to appear).

Schoett, C. (1981) Ein Modulkonzept in der Theorie Abstrakter
Datentypen. Report IFI-HH-B-81/81, Fachbereich Informatik,
Universit5t Hamburg.

Scott, D.S. (1976) Data types as lattices. SIAM Journal on
Computing 5, 3 pp. 522-587.

261-

Spitzen, J.M., Levitt, K.N. and Robinson, L. (1978) An example of
hierarchical design and proof. CACM 21, 12 pp. 1064-1075.

Thatcher, J.W., Wagner, E.G. and Wright, J.B. (1976) Specification
of abstract data types using conditional axioms. IBM Research Report
RC6214.

Thatcher, J.6., Wagner, E.G. and Wright, J.B. (1978) Data type
specification: parameterization and the power of specification
techniques. SIGACT 10th Annual Symp. on the Theory of Computing, San
Diego, California.

Turner, D.A. (1979) SASL language manual. Dept. of Computer Science,
Univ. of St. Andrews.

Wand, M. (1979) Final algebra semantics and data type extensions.
JCSS 19 pp. 27-44.

Warren, D.H.D., Pereira, L.M. and Pereira, F.C.N. (1977) PROLOG --
the language and its implementation compared with LISP. Proc. ACM

Symp. on Artificial Intelligence and Programming Languages,

Rochester, New York.

Winograd, T. (1979) Beyond programming languages. CACM 22, 7

pp. 391-401.

Wirsing, M. and Broy, M. (1980) Abstract data types as lattices of
finitely generated models. Proc. 9th Intl. Symp. on Mathematical
Foundations of Computer Science, Rydzyna, Poland. Springer Lecture
Notes in Computer Science, Vol. 88, pp. 673-685.

Wir3ing, M. and Eroy, M. (1981) An analysis of semantic models for
algebraic specifications. Proc. 1981 Marktoberdorf Intl. Summer

School on Theoretical Foundations of Programming Methodology.

Wirth, N. (1971) Program development by stepwise refinement. CACM

14, 4 pp. 221-227.

-262-

APPENDIX ONE

HOPE

The following description of HOPE is a condensation of [Burstall,
MacQueen and Sannella 19801, brought up to date. Lazy evaluation is
not mentioned, since none of the programs in this thesis use that
facility of HOPE. After a brief presentation of the notation and

features of HOPE, a simple example of a HOPE program is given. This

is followed by a discussion of some of the advantages and

disadvantages of HOPE, and notes concerning its implementation.

A precursor of HOPE called NPL is described by Burstall [1977].

Major influences in the design of HOPE were LISP and ISWIM [Landin

1966]. It bears some resemblance to a number of other languages,

including PROLOG [Warren, Pereira and Pereira 1977], ML [Gordon,

Milner and Wadsworth 1979], SASL [Turner 1979], OBJ [Goguen and

Tardo 1979], SCRATCHPAD [Jenks 1974], and languages by Burge [1975]

and Backus [1978].

1. Data declarations

Conceptually, all data in HOPE is represented as terms consisting
of a data constructor applied to a number of subterms, each of which

in turn represents another data item. The tips of this tree are

nullary data constructors or functional objects. An example is
succ(succ 0) in which succ is a unary constructor and 0 is a nullary
one (i.e. a constant). Constructor functions are uninterpreted;
they just construct.

A data declaration is used to introduce a new data type along

with the data constructors which create elements of that type. For

example, the data declaration for natural numbers would be:

data num == 0 ++ succ num

defining a data type called num with data constructors 0 and succ.

So the elements of num are 0, succ(O), succ(succ 0), ... ; that is,
0, 1, 2,

To define a type 'tree-of-numbers' we could say

-263-

data numtree == empty ++ tip num ++ node(numtree,numtree)

One of the elements of numtree is:
node(tip(succ 0),node(tip(succ(succ 0)),tip 0))

But we would like to have trees of lists and trees of trees as

well, without having to define them all separately. So we declare a

type variable

typevar alpha

which when used in a type expression denotes any type (including
second- and higher-order types). A general definition of tree as a

parameterised type is now possible:

data tree(alpha) == empty ++ tip alpha
++ node(tree alpha,tree alpha)

Now tree is not a type but a unary type constructor -- the type

numtree can be dispensed with in favour of tree(num).

Another example of a data declaration is
data graph == mkg(set vertex,(vertex#vertex->truval))

(the sign # gives the cartesian product of types). This says that a

graph is (the data constructor mkg applied to) a set of vertices
together with a binary relation which tells if there is an edge

between any two vertices.

Another way to define graphs is using a type declaration:
type graph == set vertex # (vertex#vertex->truval)

Now graph is just an abbreviation for a type tuple, rather than a

new data type. With this definition no data constructor is used to
construct a graph. Type definitions may be parameterised in the

same way as data declarations, but they may not be recursive.

HOPE currently comes equipped with the data types num, truval,
char, list, set, and map (finite functions).

2. Expressions

The simplest expressions of HOPE are constants (i.e. data

constructors and functions -- the 'usual' concept of a constant is
just the class of nullary functions and data constructors) and

variables.

-264-

An application may be formed by simply juxtaposing two

expressions:

factorial 6

For functions of several arguments we use tuples, formed with

commas; thus 3,4 is a 2-tuple. Parentheses are used for grouping,

for example:

g (3,4)

In the expression

(f x) y

the subexpre3sion f x would have to produce a function; thus the

types would be

f : T1 -> T2 -> T3

with x:T1 and y:T2.

It is possible to use function symbols as infix or postfix
operators if they are declared and given a precedence; for example:

infix +, - : 8

A similar form is used to assign a precedence to a prefix symbol.

Distributed-fix operators (see [Goguen and Tardo 1979]) are also

available; for example:

distfix while do
distfix unless in which case

Some convenient notations have been implemented for built-in
types; thus e1::(e2:: ... ::nil) is abbreviated [e1,e2, ...],
['a','b', ...] is "ab..." and sets are written {e1,e2, ...}. Note

that we write cons as infix :: .

There are two equivalent forms of conditional expression:

e1 if c else e2

and

c then e1 else e2

(in many languages written if c then e1 else e2).

Lambda-expressions (denoting functions) are formed as described
in section 3.

-265-

Local variables may be introduced and associated with values

using either of the equivalent forms

e1 where p == e2

or

let p == e2 in e1

where p is an expression formed by application of data constructors
to a number of distinct variables (this is called a pattern). For

example:

a+b where a::(b::l) _= f(t)

Upon evaluation, f(t) is expected to yield a value which 'matches'

the pattern a::(b::l). The corresponding subterms in the value of
f(t) are then bound to a, b, and 1 while evaluating a+b.

3. Defining functions

Before a function is defined, its type must be declared. For

example:

dec reverse : list alpha -> list alpha

HOPE is a very strongly-typed language, and the HOPE system includes
a polymorphic typechecker (a modification of the algorithm in
[Milner 1978]) which is able to detect all type errors at compile

time. Function symbols may be overloaded. When this is done, the

typechecker is able to determine which function definition belongs

to each instance of the function symbol.

Functions are defined by a sequence of one or more equations,

where each equation specifies the function over some subset of the

possible argument values. This subset is described by a pattern
(see section 2) on the left-hand side of the equation. For example:

--- reverse nil <: nil (1)
--- reverse(a::l) <= reverse 1 <> [a] (2)

(the symbol <> is infix append). This defines the (top-level)
reverse of a list; for example:

reverse(1::(2::nil)) = reverse(2::nil) <> [1]
(reverse nil <> [21) <> [1]
(nil <> [21) <> [1]

So reverse [1,2] _ [2,1] (by two applications of equation 2 followed

by a single application of equation 1). The left-hand-side patterns

-266-

will normally be disjoint and be related to the structure of the

type definition:
data list alpha == nil ++ alpha :: list alpha

The set of equations defining a function should exhaust the

possibilities given in the data-statement introducing the argument

types. For example, a definition of the Fibonacci numbers:

dec fib : num -> num
fib 0 <= 1

--- fib(succ 0) <= 1

--- fib(succ(succ n)) <= fib(succ n) + fib n

In this case the three patterns 0, succ 0, and succ(succ n) exhaust

the set of values belonging to num. The pattern 1 may be used as

shorthand for succ(O).

Nullary 'functions' may also be defined; for example:

dec pi : rational
--- pi <= mkrational(22,7)

which assumes that the type rational has been defined.

Lambda-expressions are defined similarly. For example, a

function to compute the conjunction of two truth values (already
available as the function 'and'):

lambda true,p => p

false,p => false

Another example of a lambda-expression occurs in the definition
of function composition:

typevar alpha,beta,tau
dec compose : (alpha->beta) # (beta->tau) -> (alpha->tau) -- compose(f,g) <= lambda x => f(g x)

Patterns may be somewhat more complex than those used above; for
example:

-- f(1l & (.. (c:))) <= c::ll

This pattern uses "don't care" variables (underscores) to give the

shape of the pattern without specifying variable bindings, and the

multilevel pattern operation (ampersand) to bind variables to the
same value at different levels. The expression f(1,2,33 will have

the value [2,1,2,3).

-267-

4. Modules

Any sequence of statements may be made into a module by

surrounding it with the statements

module mname

and

end

Data types defined in a module may be referred to outside only if
a statement

btype tname

is included in the module. Similarly, constants (including data

constructors) may be referenced only if a statement

pubconst cname

is included.

Nothing defined outside a module may be referenced within it,
unless the module includes the statement

uses mname

In this case, all of the types and constants declared as public to

the indicated module are available. In addition, certain global

types and constants (num, truval, char, list, set and map, together

with some primitive operations) may be referenced within any module.

This is an effective tool for the encapsulation of data

abstractions; if the primitive constructors and low-level operations

on the data representation are not declared public, then the
implementation of the abstraction is hidden from the rest of the

program.

5. An example

An example of a complete HOPE program is given below. This

illustrates how we can use HOPE to implement a data type (ordered

trees), and then how that type can be used in a program for
treesort.

-268-

module ordered trees
pubtype otree
pubconst empty, insert, flatten

data otree == empty ++ tip num ++ node(otree,num,otree)

dec insert : num # otree -> otree
dec flatten : otree -> list num

-_ insert(n,empty) <= tip n

--- insert(n,tip m) <= n<m then node(tip n,m,empty)
else node(empty,m,tip n)

--- insert(n,node(t1,m,t2)) <= n<m then node(insert(n,t1),m,t2)
else node(t1,m,insert(n,t2))

--- flatten empty <= nil
--- flatten(tip n) <= [n]
--- flatten(node(t1,n,t2)) <= flatten t1 <> (n::flatten t2)

end

module list iterators
pubconst *, **

typevar alpha, beta

dec * : (alpha->beta) # list alpha -> list beta
dec ** : (alpha#beta->beta) # (list alpha # beta) -> beta

infix *, ** : 6

--- f * nil <= nil
--- f * (a::al) <_ (f a)::(f * al)

--- g ** (nil,b) <= b

--- g ** (a::al,b) <= g ** (al,g(a,b))

end

module tree sort
pubconst sort
uses ordered trees, list iterators

dec sort : list num -> list num

--- sort 1 <= flatten(insert ** (l,empty))

end

-269-

Ordered trees

The first module contains an implementation of the abstract type

ordered-tree-of-numbers (data type otree in the program). An otree
is defined to be either empty, a tip (containing a number), or a

node containing two otrees and a number. The special property of
otree is that for any term node(tl,n,t2), all numbers contained in
tl are less than n, which is in turn less than or equal to all
numbers contained in Q. We define three public constants:

empty the empty otree

insert adds a number to an otree, preserving the
'orderedness' of the otree

flatten inorder traversal of an otree

Ordinarily an abstract data type would have a few more

operations; only those which are used in the remainder of the

program have been included here.

Note that the data constructor 'node' is not public.
Consequently, the only functions available to the 'outside world'
for constructing and modifying otrees are 'empty' and 'insert'.
Both of the:e preserve the properties of otrees, so the integrity of
the implementation is assured. However, insert is not a data

constructor, and hence may not be used in patterns.

List iterators

This module defines two second-order functions which apply a

given function to every element of a list and collect the results.
These two functions are representatives of a group of functions
which are widely used in HOPE programs in an attempt to eliminate
explicit recursion as far as possible. Both of these are in fact
provided as primitive operations in HOPE, but their definitions are

repeated here nonetheless.

The function * is identical to mapcar in LISP. It produces a

list containing the results of applying the function supplied to
each element of the given list. This operation is not actually used

in the example.

-270-

The function ** is slightly more complicated. When supplied with
a function g of type alpha#beta -> beta, a list of alpha-objects,
and an 'initial' beta-object, it applies g to each element of the

list, beginning with the given beta-object as a second argument and

subsequently recycling the result of the previous application. This

operation is analogous to the 'reduction' operator of APL [Iverson
1962]; an example of its use would be to compute the union of a list
of sets:

union ** (setlist,nil set)

In this case, the module facility is used as a means of packaging

a number of related functions rather than as a device for protecting

a delicate abstraction. However, if one of the operations requires

an auxiliary function which has no utility of its own, then it might

be desirable to keep this function local to the module.

Tree sort

A function for sorting a list of numbers is now defined using the

primitives developed in the preceding modules. The ** operation

from list iterators is used to successively insert the list elements

into an initially empty otree. The result is then flattened to

produce the final answer.

6. Advantages and disadvantages

The greatest triumph of HOPE is that we have found it to be

significantly easier to construct programs in HOPE than in any other

programming language we know. In particular, it is rather easy to
write programs which are absolutely correct the first time they are

run. It seems quite difficult to commit an error which remains

undiscovered for long -- the simple errors are caught during

compilation by the typechecker, while the more fundamental errors
(stemming usually from an insufficient understanding of the problem)

display themselves glaringly during even a casual test.

An important aim of language design is to make it easier to
verify that a program meets a given specification. In this respect

-271-

applicative languages such as HOPE seem to offer considerable

advantages; the absence of assignment statements and the consequent

replacement of iteration by recursion gives programs a simple and

easy to analyse form. Powerful verification systems for applicative
languages have been written by Boyer and Moore [1980] and by Aubin

[1977].

HOPE has faults, too; one is illustrated in the example in the

last section. The sorting program will only sort a list of numbers,

because otree is 'ordered-tree-of-numbers'. We want a more general

sorting program, and this depends on a more general definition of
ordered trees; we would like to define 'ordered-tree-of-alphas'.
The data declaration is easy to generalise. But to generalise
insert to type

alpha # otree alpha -> otree alpha

we must have a more general order relation than <, which is defined

only for numbers. But a general order (of type alpha#alpha->truval)
cannot be defined; for each data type the order must be defined

separately.

The solution is to associate a collection of operations with each

data type (so types become algebras instead of simply sets). Rather

than generalising to otree(alpha) we could generalise to
otree(alpha[<]), requiring an order relation to exist on the

parameter type. This is the approach taken in CLU [Liskov, Snyder,

Atkinson and Schaffert 1977] and in Clear. We really want HOPE

modules to have parameters, a collection of types and operators,
just as CLU clusters have parameters.

As a further example, refer again to the sorting program and note

that the module tree sort does not depend on the fact that otrees
are trees, but just on certain properties of insert and flatten. We

may substitute a module ordered lists for ordered trees, where empty

becomes nil, insert becomes the obvious order-preserving insertion
in an ordered list, and flatten is the identity function.
Essentially, tree sort is a parameterised module which may be

'applied' to any module satisfying certain (nontrivial) properties.

Parameterised modules do not exist in present-day HOPE, but

-272-

MacQueen [1981) has proposed an extension to the type system of HOPE

based on ideas from Clear which accommodates them nicely. In

MacQueen's language, an abstraction is made up of an interface (the

'meta-type' of the abstraction, declaring the types and operators

which it makes available) and a structure (an implementation of the

types and operators promised by the interface). Interfaces and

structures are defined and manipulated separately, and may be

parameterised by other interfaces and structures.

7. Implementation

The HOPE system consists of a compiler (from HOPE programs to
code for an abstract stack machine) and an implementation of the

target machine. The system is written in POP-2, and currently runs

in approximately 51K words (plus a 15K shareable segment) on a DEC

KL-10.

Timing tests indicate that a program written in HOPE runs

approximately 3 times slower than the same algorithm coded in LISP

running under the Rutgers/UCI interpreter (and 50 times slower than

compiled LISP). Large programs run more slowly because of page

thrashing. A machine code implementation of the interpreter should

run a lot faster.

A very high-level language such as HOPE pays penalties of
inefficiency because it is remote from the machine level. It could

be thought of as a specification language in which the

specifications are 'walkable' (if not 'runnable'), or as a language

for making a first try at a programming project. But recent work on

efficiency issues in applicative languages gives us hope that we can

produce tolerably efficient programs with less effort than in a

conventional language.

An advantage of an applicative language is the fact that programs

lend themselves very well to the technique of program transformation
[Burstall and Darlington 1977), whereby a simple but inefficient
program is transformed into an acceptably efficient one by steps

which maintain its correctness. A very simple example of program

transformation would be the production of the following linear-time

-273-

program for generating Fibonacci numbers from the equivalent program

in section 3 which requires exponential time.

dec g : num -> num#num

--- g 0 <= 1,1
--- g(succ n) <_ (a + b),a where a,b == g n

dec fib' : num -> num
fib' 0 <= 1

--- fib' 1 <= 1

fib'(succ(succ n)) <= a + b where a,b == g n

Feather [1982] has produced a system for transforming large

programs, which is connected to an earlier version of the HOPE

system. Mycroft [1981] describes a method for detecting
automatically when 'applicative' operators can be replaced by

destructive operators in a program written in an applicative
language without changing its semantics. The transformed program

will consume storage less rapidly with the result that garbage

collection will occur less frequently.

In addition, there is another advantage of applicative languages

which may come to our rescue: applicative languages are not so

tightly bound to the notion of a sequential machine as are

imperative languages. The value of the function application

e0(e1, ... en)

is independent of the order of evaluation of the expressions

e0, ... en (if parameters are passed 'by value'); this is
guaranteed by the absence of an assignment statement. If a parallel
machine is available, e0, ... en may be evaluated simultaneously.
Not only that, but if e0, ... en are themselves function
applications, then their arguments may all be evaluated

simultaneously. Darlington and Reeve [1981] describe the

architecture of a machine which is capable of running HOPE programs

in such a parallel fashion.

HOPE is still somewhat incomplete, lacking such conveniences as

sensible input/output facilities. A way of neatly adding

interactive input/output to HOPE using streams was proposed by

Burstall, MacQueen and Sannella [1980], but this was never

implemented. At the present time there is no provision for

interactive input, and only the most rudimentary printing facility

-274--

is available (a function which has the side effect of printing its

argument at the terminal).

In order to make up for deficiencies such as these for the time

being, a facility has been added to HOPE which allows a HOPE

function to be defined by a POP-2 program. The function is declared

as usual, and its meaning is attached later using a set of POP-2

macros. This provides the means for supplying all the power of
POP-2 in HOPE (of particular interest is the possibility of using

POP-2 input/output facilities), and it also could be used to make

important HOPE programs more efficient. Naturally, there is no way

to typecheck the POP-2 code at compile time, and since there is no

runtime typechecking in HOPE it is easy to violate the HOPE type

system in this fashion. But when used with care and discretion this
facility makes it possible to construct large and useful systems in
HOPE. The Clear implementation described in chapter IV is an

example; it uses the HOPE parser and typechecker as well as input
and file handling routines written in POP-2.

-275-

APPENDIX TWO

LIBRARY OF BASIC SPECIFICATIONS

Listed below are all the theories included in the initial
environment of the Clear system described in chapter IV. All with

the exception of Bool are shown exactly as they are given to the

system (except that all keywords have been underlined). Bool must

be treated specially because the data-enrich operation expects the

tagged sort boolBool to be present, and if Bool is added in the

normal fashion the sort bool will be given an arbitrary tag.

const Bool =

let BoolO =

theory
data sorts bool

opns true, false : bool endth in
enrich BoolO

o ns not : bool -> bool

(or -), (_ and
egns not(true) = false

p or true = true
p and true = p
p-->q = not(p and not(q))

const Nat =

let NatO =

enrich Bool
data sorts nat

opns 0 : nat

bool,bool -> bool
not(false) = true
p or false = p

p and false = false
enden

succ : nat -> nat enden in
enrich NatO

opns 1, 2, 3, 4, 5, 6, 7, 8. 9 : nat

=<), (_ >= <), (>) : nat,nat -> bool
plus), (_

(div mod nat,nat -> nat
erroropns neg : nat
egns 1 = succ(0) 2 = succ(1) 3 = succ(2)

4 = succ(3) 5 = succ(4) 6 = succ(5)
7 = succ(6) 8 = succ(7) 9 = succ(8)
0=<n = true succ(m)=<0 = false
succ(m)=<succ(n) = m=<n m>=n n=<m
m<n = m=<n and not(m==n) m>n = n<m
0 plus n = n succ(m) plus n = succ(m plus n)
m plus n m= n O*n = 0
succ(m)*n = m*n plus n m*n plus p div m= n if p<m
m*n plus p mod m= p if p<m

erroregns m-n = neg if m<n enden

const Int =

let IntO =

enrich Bool
data sorts int

opus 0 : int
pred, succ : int -> int

eqns pred(succ(n)) = n
succ(pred(n)) = n enden in

enrich IntO
opns 1, 2, 3, 4, 5, 6, 7, 8, 9,

(_ _< _), (_ >_ _), (<), (>) : int,int -> bool
(-), magnitude : int -> int
(_ plus _), (_ - _), (_ _),

(div), (mod int,int -> int
egns 1 = succ(O) 2 = succ(1) 3 = succ(2)

4 = succ(3) 5 = succ(4) 6

7 = succ(6) 8 = succ(7) 9

n 0

= succ(5)
= succ(8)

= - n -
n=<n = true n=<pred(n) =

pred(n)=<m = true if n=<m n=<pred(m) =

false
false if not(n=<m)

n=<succ(m) = true if n=<m succ(n)=<m = false if not(n=<m)
m>=n = n=<m m<n = m=<n and not(m==n)
m>n = n<m 0 plus n= n
succ(m) plus n = succ(m plus n)
pred(m) plus n = pred(m plus n)

mplusn -m=n On=O
succ(m)*n = On plus n pred(m)*n = On - n
magnitude(m) = m if m>=O magnitude(m) _ - m if m<O

On plus p div m n if p<magnitude(m) and p>=0
On plus p mod m = p if p<magnitude(m) and p>=O

enden

const Character =

derive sorts character
opns blank, A, B, C, D, E, F, G, H, I : character

character,character -> bool
using Bool
from Nat
by character is nat, blank is 0,

A is 1, B is 2, C is 3.

D is 4, E is 5, F is 6,

G is 7. H is 8, I is 9 endde

meta Triv =

theory sorts element endth

meta Ident =

enrich Bool + Triv
opns (_ __ _) : element element -> bool
egns all i:element. i==i = true

all i,j:element. i:=J = J==i

all i,J:element. i==j and j==k -> (i==k) = true enden

meta POSet =

enrich Ident
opns (_ =< _) : element element -> bool
egns i=<i = true

i=<J and J=<i -> (i==J) = true
i=<j and J=<k -> (i=<k) = true enden

proc Sequence(X:Triv)
let SeqO =

enrich X + Bool
data sorts sequence

opns empty : sequence
unit element -> sequence
(. _) : sequence sequence -> sequence

e ns empty.s = s
s.empty = s
s.t.v = s.(t.v) enden in

enrich SeqO + Nat
opns length : sequence -> nat
e ns length(empty) = 0 length(unit(a)) = 1

length(s.t) = length(s) plus length(t) enden

roc Pair(X:Triv,Y:Triv) _

enrich X + Y + Bool
data sorts pair

opns (_ # _) : element of X,element of Y -> pair enden

proc Sum(X:Triv,Y:Triv)
enrich X + Y + Bool

data sorts sum
opns inl : element of X -> sum

inr : element of Y -> sum enden

proc Set(X:Triv) _

let SetO =

enrich X + Bool
data sorts set

opns empty : set
singleton : element -> set
(_ U _) : set,set -> set

egns S U empty = S

S U S = S

SUTTUS
S U T U V= S U (T U V) enden in

enrich SetO + Nat boy

opns (_ is in _) : element,set -> bool
-), (_ intersect set,set -> set

card set -> nat

e ns a is_in empty = false
a is in singleton(b) = singleton(a)==singleton(b)
a is in (S U T) = a is-in S or a is-in T

empty-S = empty
singleton(a)-S = empty if a is_in S
singleton(a)-S = singleton(a) if not(a is in S)

T U V- S= (T-S) U (V-S)

S intersect T = S-(S-T)
card(empty) = 0

card(singleton(a)) = 1

card(S U T) = card(S) plus card(T)-card(S intersect T)
enden

proc Bag(X:Triv)
let BagO =

enrich X + Bool
data sorts bag

opns empty : bag
singleton : element -> bag

(U _) : bag,bag -> bag
ensSUempty =S

SUT = T U S

S U T U V= S U (T U V) enden in
enrich BagO + Nat

opns (_ is in _) : element,bag -> bool
occurrences : element,bag -> nat

e ns a is in empty = false
a is in singleton(b) = singleton(a)==singleton(b)
a is-in (S U T) = a is in S or a is-in T

occurrences(a,empty) = 0

occurrences(a,singleton(b)) = 0

if not(a is_in singleton(b))

occurrences(a,singleton(b)) = 1 if a is_in singleton(b)
occurrences(a,S U T) = occurrences(a,S)

plus occurrences(a,T) enden

roc Stack(X:Triv) _

let StackO =

enrich X + Bool
data sorts stack

opns empty : stack
push : element, stack -> stack enden in

enrich StackO
opns top : stack -> element

pop : stack -> stack
isempty : stack -> bool

erroropns undef : element
underflow : stack

egns top(push(a,s)) = a pop(push(a,s)) = s
isempty(empty) = true isempty(push(a,s)) = false

erroregns top(empty) = undef pop(empty) = underflow enden

roc Map(X:Ident,Y:Triv)
let MapO =

enrich X + Y

data sorts map
opns empty : map

insert : map,element of X,element of Y -> map
e ns insert(insert(f,a,b),a,d) = insert(f,a,d)

insert(insert(f,a,b),c,d) = insert(insert(f,c,d),a,b)
if not(a==c) enden in

enrich MapO + Set(X)

opns (_ << >>) : map,element of X -> element of Y

domain : map -> set
(restrict to) : map,set -> map
(is-in _) : element of X,map -> bool

erroropns undef : element of Y

e ns insert(f,a,b)<<a>> = b
insert(f,a,b)<<c>> = f<<c>> if not(a==c)
domain(empty) = empty
domain(insert(f,a,b)) = singleton(a) U domain(f)
restrict empty to S = empty
restrict insert(f,a,b) to S = restrict f to S

if not(a is in S)
restrict insert(f,a,b) to S = insert(restrict f to S,a,b)

if a is-in S

a is-in f = a is-in domain(f)
erroregns empty<<a>> = undef enden

proc Relation(X:Ident,Y:Ident)
let RelO =

enrich X + Y

data sorts relation
opns empty : relation

insert : relation,element of X,element of Y

-> relation
egns insert(insert(R,a,b),a,b) = insert(R,a,b)

insert(insert(R,a,b),c,d)= insert(insert(R,c,d),a,b)

enrich RelO + Set(X)

if not(a==c) or not(b==d)
enden in

opns isrelated: relation,element of X,element of Y -> bool
domain : relation -> set

egns isrelated(empty,a,b) = false
isrelated(insert(R,a,b),a,b) = true
isrelated(insert(R,a,b),c,d) = isrelated(R,c,d)

if not(a==c) or not(b==d)
domain(empty) = empty
domain(insert(R,a,b)) = singleton(a) U domain(R) enden

-281-

APPENDIX THREE

SUBSET OF PPLAMBDA USED BY THE THEOREM PROVER

The impoverished version of PPLAMBDA used by the theorem prover

discussed in chapter VI is described here. It is necessary to
remove the implicit order relation and 'bottom' element because

models of Clear theories do not possess these; other irrelevant
elements of PPLAMBDA have been removed as well. Refer to [Gordon,

Milner and Wadsworth 1979) for details concerning the items

mentioned briefly below.

Types

The built-in type constructors 'prod' (cartesian product) and

'fun' (function space) are still available. The following type

constructors have been deleted: ., tr, u, sum

Constants

Only the built-in constant 'PAIR' is still available. The

following constants have been deleted: TT, FF, UU, COND, FST, SND,

INL, INR, OUTL, OUTR, ISL, FIX, UP, DOWN, DEF, ()

Formulae

All the usual PPLAMBDA formulae are allowed except for

inequations (e.g. f<<f').

Inference rules
The following inference rules are available:

AXTRUTH =
tCFTRUTH

ASSUME f = {w}fCFw

CONJ (A IECFf , A ' rECFf') = A U A' rCFf &f'

GEN x A tcFf = A tCF!x.f (fails if x occurs free in A)

DISCH f' A f = A I V f' IMP f (where A' is the set of
CF assumIons in A not alpha-convertible to f')

SEL 1 A fCFf &f ' _
A tFf

SEL2 A tCFf &f' = A tFf'

!x.f = A tFf[t/x) SPEC t A fCF'

MP AtCF(f IMP f') A'rLCFf = AUA'rCFf'

-282-

INST Ctl,xl;] A f = Af- f[tl/x1...]
(fails it'ny xi ocMfs free in A)

INSTTYPE Ctyl,vtyl;...] A f = A,- f(ty1/vty1...}
(fails if any vt T is not C iartype, or is a vartype in A)

REFL t % tCFt=t

SYM A tCFt=t' = A
rLCFt' =t

TRANS(A ICFt=t', A' rCFt'=t") = A U A' ECFt=t"

SUBST CA1tCFtl=t1',x1;...] f A'b f'[tl/x1...]
= Union(Ai)U a'"CCFf'[t1'/x1...]

SUBS [A1t'CFt1=tl1;...I A'LCFf' = Union(Ai)VA'rCFf'[tl'/t1...]

SUBSOCCS (intl1,A1 tl=t1';...] A'f- CFFf' = As for SUBS,
but sub ?itutes accordinkLo occurrence numbers in intli

APTERM t A tCFt' =t" = A t'CFt t' =t t"

APTHM A tCFt'_t" t A tCFt' t_t" t

LAMGEN x AtCFt=t' = Ar-C),x.t=)x.t'
(fails i1 f occurs free in A)

BETACONV (Ox.t)t' tCF()`x.t)t'=t[t'/x]

ETACONV Xx.(t x) tCF>'x.(t x)=t (fails if x occurs free in t)

EXT A tCFt x=t' x) = A- t=t'
(fails if x Wurs free in t or t')

ABS x A
fCFt

x=t' = A fCFt=Xx.t (fails if x occurs free in t or A)

SIMP ss AIECFf = A U A' r Ff' where f' is the result of simplifying f using and A' is a subset of the hypotheses of
theorems in ss

The following inference rules have been deleted: SYNTH, ANAL,

HALF1, HALF2, MIN, MINAP, MINFN, FIXPT, FIX, INDUCT, AXDEF, DEFUU,

DEFCONV, CONDCONV, CONDTRCONV, CASES, CONTR, DOT, DOWNCONV, UPCONV,

SELCONV, PAIRCONV, ISCONV, OUTCONV, INCONV

Simplification
The only simplification rules in BASICSS are those corresponding

with the inference rules BETACONV and ETACONV.

The following simplification rules have been deleted: MINAP,

MINFN, DEFCONV, CONDCONV, CONDTRCONV, UPCONV, DOWNCONV, SELCONV,

-283-

PAIRCONV, ISCONV, OUTCONV, INCONV

Tactics

The standard LCF tactics CASESTAC, CONDCASESTAC, INDUCTAC and

INDUCOCCSTAC have been deleted, leaving GENTAC, SUBSTAC,

SUBSOCCSTAC, SIMPTAC and all tactics provided by the Clear theorem

prover.

-284-

APPENDIX FOUR

PROOF OF SOUNDNESS OF THE THEOREM PROVER

The following results imply the soundness of the theorem prover

described in chapter VI; see section VI.3 for definitions and

motivation.

Notation: If A is a I-algebra, X is a set and f:X--),IAI , then

f#:W2(X)-- A is the unique homomorphism extending f.

Satisfaction Lemma: If a-:2->2' is a signature morphism, f is a

7-formula and A' is a '-algebra, then A' F-cr(f) iff At C F=f.

Proof (Satisfaction Lemma): By structural induction.

Case 1: f is TRUTH

trivial since a(TRUTH)=TRUTH for any a and A TRUTH for any A

Case 2: f is t=t'

A' r-a-(t:t')
O A

A a k:FV(a-(t) U)-4 IA' I . A' F=k#(cr(t))=k#(Cr(t')
A ah:FV(t)UFV(t')--CIA' I. All F=h#(t):h#(t')

(by the proof of the Satisaction Lemma for equations;
see (Burstall and Goguen 1980])

A A'IlFt:t'

Case 3 : f is f ' & f"; we know A' r_a- (f') CA' I P=f'
and similarly for f"

A' F=c-(f' & f")
A'F=a-(f') & c-(f")
A'F=c-(f') and A'F=a-(f")
A I2rf' and A' I 2r-f" (by the
A'Il$f' & f"

inductive assumptions)

Case 4: f is f' IMP f"; we know A'r_cr(f')gA'I2p=f'
and similarly for f"

A' F=a- (f' IMP f")
A A'F=a-(f') IMP c-(f")
A b'k:FV(a-(f'))UFV(a(f"))->IA'I. A'r-k#(a(f')) k#(0'(f"))
A b'k:FV(cr(f'))UFV(cr(f"))->IA'I. A'r-k#(Cr(f'))=>A'F=k#(Cr(f"))
A ah:FV(f')UFV(f")-4IA'I1I. A'IFh#(f') A'h(f")

(by the inductifie assumptions)
A b'h:FV(f')UFV(f")-4IA'IjI A'Il;=hl'(f') a h#(f")
f:> A' 17$f' IMP f"

-285-

Cayse 5: f is lx.f'; we know A'Fcr(f')C>A'IjFf'
A':o(lx.f')

C> A' 1=cr(f') (assuming As is nonempty, where x is of sort s;
otherwise A' =(r(lx.f') G:: A'I, =!x.f' vacuously)

* A'I2 }f' (by the inductive assumption)
b A'1j !x.f'

Theorem: For any E-agglomerate A, IFQT(A) D S
IEQAD*+,

where

T':E-agglomerate-F-agglomerate is the following translation

function:

union(A,A') '--9 union(T(A),T(A'))

1close(E,C) H close (eqn-to-form*E U induction-rules*C) T

Proof: By structural induction.

Case 1: A is close(E,C)

For any model M,

M ;=E C> M ;eqn-to-form*E
and M ;=C M Finduction-rules*C

so (E U C)*** (E U C)* S (eqn-to-form*E U induction-rules*C)+

hence (eqn-to-form*E U induction-rules*C)++ S E U C*+

so F[r(A)D S IEEAD*+

Case 2: A is translate(cr,A') ; we know IFQT(A') D S IEQA' D*+
1F'QT(translate(o-,A')) D

IF Qtranslate (o,,r(A')) D

c'(IF QT(AI)++
c,(IEEA,D*+)++ (by the inductive assumption)
(r(IE QA'D)*+ (by the Satisfaction Lemma; for any E,

o-(E*+)+ = o--1(E*++) o--1(E*)
= o-(E)*)

JEQtranslate(cy,A') D*+

Case 3: A is inv-translate(cY,A') ; we know IFQT(A') Dc]EQA' D
*+

IFQT(inv-translate(o-,A')) D

= IFQinv-trans1ate(cr,T(A')) D

0,-1(IFQ'r(AI)I)

C 0.-1(IEQA'D*+) (by the inductive assumption)
0,-1(IE EA'D)*+ (by the Satisfaction Lemma; for any closed E,

0,-1(E*+) = o-(E *)+ = o-(E*)**+ = 0.-1(E**)*+ 0'-1(E)+)
*

= IEQinv-translate(cr,A')D +

-286-

Case 4: A is union(A',A"); we know IFQT(A')I1c1EQA'j +

and IFELT(A") II S IEQA":*+
IFQ-r(union(A',A")) II

= IFQunion(T(A'),t(A")) II
_ (WEFr(A')IIU r(A")II)++

(]EQA'Il*+VgQAj*+)++ (by the inductive assumption)
(IEQA'IIVIEQA"D)*+

(because (IEQA'IIVIEQA"II)* satisfies IEQA']J*+ and IEQA"I1*+)
]EQunion(A',A")l-*+

Case 5: A is add-equality(d,A') ; we know F r(A') f s]EQA']J*+
IFQT(add-equality(o-,A')) II

= IFQadd-equality(o-,Z'(A')) l
= IFE r(A') l S (for appropriate S)

S IEEA']*+S (by the inductive assumption)
= IE QA' IIS*+

= IEQadd-equality(d',A')Il*+
This theorem says that the IF semantics is consistent with the IE

semantics, so any fact provable using inference rules which are
sound with respect to the IF semantics will be valid.

	PhD coversheet April 2012
	EDI-INF-PHD-82-009.pdf

