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Abstract

Kinetic energy extraction devices for ocean and river flows are often located in the

vicinity of the fluid free surface. This differs from wind turbines where the atmosphere

may be considered to extend to infinity for the purposes of numerical modelling. As

most kinetic energy extraction devices are based on lifting surfaces, a numerical model

is sought which can model both lifting and free surface flows. One such model is the

boundary element method which has been successfully applied to free surface problems

and to lifting flows as well as the combined problem.

This study seeks to develop a high order boundary element method that is capable

of modelling unsteady lifting and free surface flows in three dimensions. Although high

order formulations of boundary element methods are common for free surface problems,

providing improved accuracy and computational time, their usage for lifting flows is

less frequent. This may be due to the hypersingular boundary integral equation (HBIE)

which must be solved in order to find the velocity of the vortex wakes behind lifting

surfaces.

In previous lifting flow studies using high order boundary element methods the

wake velocities have been determined at the element centres and then interpolated to

the collocation points. Not until the paper of Gray et al. (2004b) has a method been

available for the direct solution of the HBIEs at the edges of three dimensional high

order elements with C0 continuous interfaces. The solution employs a technique known

as the Galerkin boundary element method.

This study shows, for the first time, that the Galerkin boundary element method is

applicable to the solution of the HBIE on the vortex wake of a lifting body. The

application of the technique is then demonstrated as part of the numerical model

developed herein. The model is based on the high order boundary element method

developed by Xü (1992) for non-linear free surface flows. This formulation is extended

to include steady uniform flow throughout the computational domain as well as the

presence of lifting and non-lifting bodies. Several verification cases are implemented to

test the accuracy of the model.
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Chapter 1

Introduction

1.1 Context for the Research

1.1.1 Tidal Energy as a Renewable Energy Resource

In recent times the way in which the human race uses and generates its energy has

become of extreme social, economical and environmental importance. Predictions

of damaging increases in mean global temperatures (see Solomon et al., 2007) have

increased the need for carbon emitting energy technologies to be replaced by low

carbon alternatives. Additional long term economic factors are also playing their part

in shifting momentum to new technologies, in particular the concerns about oil and

natural gas supplies. Demand for oil and gas is expected to outstrip supply within the

current century, leading to inflated prices and energy security issues. Unfortunately,

although the resource and environmental issues are occurring simultaneously, they are

not necessarily mutually supportive. For instance, once the price for oil has reached a

certain value it can be economically synthesised from coal, providing no environmental

benefits. In fact, if the market were left to choose a method for replacing dwindling

oil resource then this is one of the most likely substitutes; even in light of population

growth, coal reserves are estimated to last for hundreds of years (see Jaccard, 2005)

and thus the cost is low.

With markets failing to deliver the necessary changes, it has become the responsi-

bility of governments to intervene under the premise that the predicted environment

and economical consequences of inaction will outweigh the costs incurred by immediate

action. This is a tough political task as, particularly in the United Kingdom (UK),

1
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energy markets have followed a trend of liberalised trading which makes strategic

decision making extremely challenging. Private investment is unlikely to match policy,

unless the policy is seen to be long term and economically advantageous; a virtual

impossibility when scientific and economic opinions of the market requirements are so

uncertain. In addition, the likelihood of direct governmental intervention in the form

of capital investment is now looking more unlikely, due to the recent financial crisis.

Capital spending is set to fall significantly in order to reduce deficits endured to rescue

the banking sector.

Despite the potential funding problems, the UK Government’s Climate Change

Act 2008 (see DEFRA, 2008) introduced for the first time legally binding targets for

greenhouse gas emissions from within the UK. The targets set an 80% reduction of

greenhouses gases by 2050 and a 26% reduction of carbon-dioxide (CO2) emissions by

2020 with respect to 1990 levels. This is set in the context of Britain’s pre-existing

target to reduce CO2 emissions by 12% as a ratified signatory of the Kyoto Protocol

and a European Union proposal to cut EU wide greenhouse gas emissions by 20% by

2020 each with respect to 1990 levels. Electricity generation in the United Kingdom

accounts for 37% of all CO2 emissions and as part of the government’s greenhouse gas

reduction strategy it will seek to reduce this to zero by 2030 (see CCC, 2008). Given

the enormity of this task it is foreseen that a varied mix of low/zero carbon electricity

generating technologies will be required.

As such, a melting pot of renewable and sustainable energy technologies have begun

to compete to become part of a ‘post-carbon’ energy mix. Some of these technologies

are well established, such a nuclear, biomass and wind, others less so, such as solar

photovoltaic and marine energy. In addition, carbon emitting technologies such as coal

remain an attractive option for governments and investors alike, as carbon capture and

storage technology promises to store away the greenhouse gases emitted in combustion.

However, carbon capture and storage is still an unproven technology and thus, the

future costs of this and many other of the new energy technologies are hard to predict

and are, at present, highly contestable; ultimately, over the long term, energy cost is

the most likely deciding factor as to which technologies will feature most. Hence, each

industry is working hard to reduce costs via research and innovation.

Academic research is particularly important in the marine energy industry as the

costs and risks of full scale testing at sea are extremely high. For both wave and tidal
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technologies, developers and consultants work closely with academic institutions such

as The University of Edinburgh for guidance as to the state of the art in both resource

and technology. It is hoped that numerical and physical experiments away from the sea

will allow device developers to avoid costly mistakes that may retard confidence in the

viability of this fledgling industry. Tidal current technology is particularly vulnerable

to unforeseen eventualities at sea, as the costs of deployment and recovery are so high.

As such, the academic community has been tasked with identifying and quantifying the

risks faced when generating electricity by tidal currents.

The premise for generating power from tidal currents is the extraction of kinetic

energy from the flows of water generated as the tidal bulges circumnavigate the globe.

These tidal bulges are primarily driven by the combined rotation of the earth-moon

system about their combined centre of mass. The moon’s gravity draws one bulge of

water towards it, while inertial effects produce a second bulge on the far side of the

earth. Subsequently, as the earth rotates about its own axis faster than the earth and

moon together, the tidal bulges move relative to the Earth’s surface, producing the two

pairs of high and low tides seen daily1. Although, in general, these flows of water are

very slow, they can be significantly faster in regions of favourable geography such as

the Pentland Firth located between the north east coast of Scotland and the Orkney

Islands. Here tidal currents can exceed 8m/s in places. The Sustainable Development

Commission (see Craig et al., 2007) estimated that the annual power output from the

Pentland Firth would be 636GWh/year from a 200MW capacity array of tidal energy

converters. To put this in context, the United Kingdom’s total electricity supplied in

2008 was 400TWh (see DUKES, 2009).

1.1.2 Research Aim

Interest in fully submerged horizontal axis, kinetic tidal energy extraction devices has

become significant during the last three decades. These devices are, in part, analogous

to a wind turbine, however, the tidal turbine will operate in a medium which is 800

times more dense, has the ability to cavitate (the sudden formation and collapse of

low-pressure bubbles in liquids by means of mechanical forces, such as those resulting

from rotation of a marine propeller) and is bounded by both a free surface and a

1In addition, the gravitational pull of the sun creates extreme high and low tides, known as the
‘spring/neap cycle’, which repeat every two weeks.
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bottom boundary. In fact, the free surface is the principal driver for tidal flows at

local geographic scale, the ‘head’ (or elevation) providing the potential energy to drive

the current. These factors leads to a number of new research questions that may

already be well understood for wind turbines. These include quantifying the maximum

extractable energy by a single device (known as the Betz limit in wind turbine problems)

and the role of the free surface on both the device and the wake of the device. At even

greater resolution, surface waves and marine turbulence could contribute to reducing the

performance and efficiency of these machines. Furthermore, the interaction of multiple

devices or multiple rotors will further complicate the physics. It is expected that the

outcomes of research into these issues will have a significant impact on the design of

tidal turbines and the positioning of individual devices and farms.

The overarching goal of this study was to develop a means by which the free surface

interaction with a horizontal axis tidal turbine at device scale could be qualitatively

and quantitatively understood. Experimental testing of tidal energy devices is highly

demanding, particularly scaling for both Reynolds and Froude numbers. In addition,

the taking of fluid measurements in the near wake of a turbine is extremely challenging.

Thus, a numerical approach was sought which could both accurately define the evolution

of a free surface in time and model lifting bodies internal to the fluid.

1.2 Review of Tidal Turbine Modelling

1.2.1 Wind Turbine Numerical Modelling

At the onset of this project no numerical models for the near wake of tidal turbines

yet existed. Thus, given the obvious analogies, wind turbine numerical modelling was

the first resource for inspiration. Analysis, application and development of existing

wind turbine models, to and for the marine environment, presented a clear research

approach. Wind turbine research is 40 years old and the models designed for wind

energy conversion are well understood and offer many potential solutions to tidal turbine

problems. There are three main types of wind turbine model. These are ‘Actuator Disk

Models’, ‘Vortex Wake Models’ and ‘Navier-Stokes Models’.

Actuator disk models simulate a wind turbine by representing it as a permeable

surface, normal to the wind direction, in which the blade forces are distributed evenly
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across the area of the disc. This method is used in the most basic, and most common,

type of wind turbine modelling known as blade element/momentum theory. This theory

uses empirical performance data for a known blade design together with a theoretical

turbine with an infinite number of blades which is equivalent to the actuator disk.

A basic example of an actuator disk model can be found in Manwell et al. (2002).

Actuator disk models are often embedded within models that simulate the Navier-

Stokes equations. The majority of these models have quasi-two-dimensional (2D)

geometry combining 2D aerofoil data. A three dimensional (3D) actuator disk model

has been developed by Sørensen and Shen (2002), which has the advantage of allowing

the forces to be radially distributed along the blade lengths within a full 3D viscous

Navier-Stokes solver. Nevertheless, aerofoil data is still required to accurately simulate

the loading on the blades.

Vortex wake models use lifting lines or surfaces to represent the rotor blades and the

shed vorticity in the wake of the turbine. At the blade’s trailing edge the vortex strength

is determined from the circulation generated about the blade by the incoming flow.

Variations in this circulation generates vortex filaments along the spanwise direction

of the blade which in turn are shed into the wake as the blade rotates over time.

From the modelled blade and resultant vortex sheets, the flow field can be generated,

combining the undisturbed flow and the induced velocity field. In three dimensions,

‘boundary element2’ or ‘panel method’ approaches allow the geometry of a turbine

blade to be taken into account. Many examples can be found of vortex methods used

in wind energy research such as those presented by Afjeh and Keith (1986), Simoes and

Graham (1992) and Whale et al. (2000a). Vortex wake models have also been used to

correct blade element momentum models (see Whale et al., 2000b). Even the less well

known Darrieus vertical axis turbine has been modelled using a vortex method by Ponta

and Jacovkis (2001). Generally these method are inviscid and irrotational apart from

the vortex wake, but additional viscous effects can be included by coupling a boundary

layer solver in the region near to the blades. Overall, the primary advantage of vortex

methods for lifting flows is their ability to track the evolution of the vortex wake in a

Lagrangian manner. Eulerian grid based methods must find some alternative means

2The terms boundary element and boundary integral are often interchanged. Strictly, the boundary
integral is the governing equation whilst the boundary element is the discretised version which is solved
numerically.
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of tracking the evolution of the wake, to ensure that the grid resolution is sufficient at

areas of high vorticity.

The final model type is known as Navier-Stokes. The Navier-Stokes equations (see

Katz and Plotkin, 2001, ch. 1) represent the most complete formulation for the physics

of a fluid flow. Research into the aerodynamics of helicopters and fixed wing aircraft

has led to the development of ‘Computational Fluid Dynamics’ (CFD) algorithms

for wind turbines. The primary advances have been in the areas of grid generation

and turbulence. Wind turbines do differ in operation from many typical aeronautical

problems, as wind turbines operate at a much lower speed and often in stall conditions

where the flow is separated from the blades. However, these methods have been shown

to model wind turbines with great accuracy but they have the disadvantage of being

extremely computationally expensive. Examples of such methods can be found in

Duque et al. (2003), Sørensen and Shen (2002) and Xu and Sankar (2000).

1.2.2 Boundary Element Methods for Marine Problems

A close, but sometimes overlooked, relative to the marine turbine are marine propellers

and hydrofoils. There has been a great deal of research into free surface and cavitation

effects on propellers and hydrofoils using panel methods or boundary element methods.

Professor Kinnas and colleagues have a long history of publications investigating marine

propellers, numerical wave tanks and cavitating hydrofoils in the presence of a free

surface, all based on boundary element methods (see Bal and Kinnas, 2002, 2003; Choi

and Kinnas, 2003; Kinnas and Fine, 1993; Kinnas and Hsin, 1992; Lee and Kinnas, 2004,

2005a,b; Pyo and Kinnas, 1997; Young and Kinnas, 2003, 2004). In addition, Politis

(2004) produced a free wake panel method for a marine propeller using a boundary

element formulation. Zhu et al. (2006) have also developed a combined hydrofoil and

free surface simulation using a boundary element method.

Boundary element methods also have a long and successful history in non-linear

water wave modelling. Since the pioneering work of Longuet-Higgins and Cokelet

(1976), numerous non-linear water wave simulations have been carried out in two and

three dimensions (see Grilli et al. (1989, 2000) and Xue et al. (2001) for examples).

Furthermore, numerical wave tanks encompassing wave generation by moving bound-

aries have been developed using boundary element methods, as was investigated by

Forehand (1998).
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The available literature clearly indicates there is an obvious, and previously ex-

ploited, union between the boundary element methods used to model aerofoils, wind

turbines, propellers and hydrofoils and those used to model non-linear free surfaces and

waves. As such, a boundary element provides a convenient solution to coupling the

time dependant motion of a free surface and the wake of a submerged lifting body.

1.2.3 Tidal Turbine Numerical Modelling

Given the infancy of kinetic tidal energy extraction technology, it is no surprise that

there are, as yet, no definitive numerical models that can successfully model the com-

plete flow about a tidal turbine at device scale, including the interaction with a dynamic

free surface. Over recent years, however, a small body of research has begun to

formulate the building blocks for such models. Li and Çalişa (2010) have developed a

hybrid viscid-inviscid discrete vortex method to predict the wake structure and acoustic

intensities of a marine turbine. This model was successfully verified, even though no

free surface was taken into account. Moreover, Baltazar and Falcão de Campos (2008)

have applied a low order panel method to the problem, although this model once

again contains no free surface. Furthermore, Navier-Stokes formulations have also been

used to model tidal turbines. One such example is the vorticity transport equation

formulation used by McCombes et al. (2009). Another is the commercial Computational

Fluid Dynamics (CFD) approach taken by Gretton et al. (2009). These models can

potentially resolve more fluid physics than the previous two (such as viscous effects),

however, neither of these approaches is yet capable of resolving the dynamic wake and

the free surface in conjunction. As such, the need remains for the development of a

model capable of resolving both turbine wake and free surface.

As an alternative approach to the tidal turbine modelling problem, which naturally

incorporates a robust free surface model, a quasi-potential lifting boundary element

code was adopted within this thesis. The remaining sections of this chapter detail the

reasoning behind this decision and introduce the novel theoretical additions to this

mature modelling technique.
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1.3 Review of the Key Literature

1.3.1 Historical Divergence of Applications

What follows is an in-depth discussion of the literature that was key to the development

of the present thesis. This begins with a historical review of boundary element methods

and their development in three particular fields. The development of these three distinct

divisions is critical to the work within this thesis. Each branch has been built upon the

fundamental basis of potential theory laid out by Kellogg (1929), nonetheless it would

take another thirty years before numerical methods based on potential theory would

be developed for each application. This delay can be attributed to the advancement

of computer science; it wasn’t until 1936 that the Church-Turing thesis laid out the

basis for modern computing algorithms. By 1960 transistor based computing machines

were commonplace for large industry and post-1960 would see transition to solid state

transistor chips, which are still in use today. The availability of this computing power

would lead scientists and engineers to develop numerical methods using potential theory

for fracture mechanics, lifting and non-lifting flows, and water waves amongst others.

Surprisingly, each formulation, although related through Kellogg, was developed nearly

simultaneously and independently of the others.

The first potential flow based numerical methods relevant to the present project is

attributed to the Douglas Aircraft Company (later to become the McDonnell Douglas

Corporation and eventually to merge with Boeing). The first two dimensional numerical

method for non-lifting flows about arbitrary bodies was developed by Smith and Pierce

(1958). Hess and Smith (1962) would develop the three dimensional extension shortly

afterwards. In 1972 the Douglas Aircraft Company model would be extended to three

dimensional lifting flows by Hess (1972), by which time the important concepts of the

vortex wake and numerical Kutta condition had become well understood in academia

(see Djojodihardjo and Widnall, 1969). The vortex wake would be the key to allowing

the viscous phenomenon of vortex shedding from the trailing edge of an aerofoil to be

included in potential flow models; the Kutta condition (a consequence of the famous

Kutta-Joukowski theorem) would govern the strength of the wake (see section 2.4 for

more detail). The accumulation of this knowledge would become known as the panel

method. For a more comprehensive historical background to the panel method see Hess
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(1990).

Due to advances in aircraft technology and increased computing power, the use

of panel methods in the aeronautical industry has been superseded by computational

fluid dynamics. However, panel methods are still commonly used for other low-speed

aeronautical or hydrodynamical problems such as wind turbines and propellers (see

section 1.2.1). The decline of the use of panel methods in the aeronautical industry

may well be an indicator as to why the theory of the method has not advanced greatly

in recent years; a fact that is somewhat exploited in the present thesis.

Around the same time that Smith and Pierce began to formulate the use of boundary

elements for potentials flows, Jaswon (1963) and Symm (1963) laid down the founda-

tions for the use of potential theory based numerical methods in fracture mechanics.

Over time, boundary element methods in fracture mechanics have become a highly

distinct and advanced subset of the applications of potential theory. In the author’s

opinion it is currently the most advanced theoretically (see eg. Bonnet, 1999) and has

made underlying advances in boundary element methods where, say, panel methods

have not. In addition, the advances in fracture mechanics are not often transferred

into the realm of other boundary element based methods. This is, in part, due to

the different notation and formulations of fracture mechanics problems. Moreover,

some - perhaps historical - unawareness of the other applications is also apparent. In

particular, exciting advances in the solution to the hypersingular boundary integral

equation for high order discretisations have been made by authors such as Guiggiani

(1998) and Gray et al. (2004b). The solution to the hypersingular boundary integral

equation is critical to determining the velocity on a vortex wake, which can then be used

to advance the wake in time. Thus, such advances in their solution are ideally suited

to application to lifting flows. Indeed, the opportunity to apply the work of Gray et al.

(2004b) to lifting flows is taken for the first time herein. For a more detailed history of

boundary integrals/elements in fracture mechanics see Cheng and Cheng (2005).

The final application of numerical methods based on potential flow impacting on

the current work, is non-linear free surface water waves. The seminal paper of Longuet-

Higgins and Cokelet (1976) showed that boundary element methods could be suc-

cessfully applied to such problems. Although Longuet-Higgins and Cokelet make no

reference to previous authors (not even Kellogg!), the possibility of application of panel

methods to free surface problems was discussed in Hess (1972) and Giesing and Smith
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(1967), although that paper used a linearised free surface boundary condition. The

method of Longuet-Higgins and Cokelet forms the basis of many advanced boundary

element methods for free surface problems such as those developed by Grilli et al.

(2001) and Xue et al. (2001). The emphasis for boundary elements in free surface

problems has been the accurate time evolution of waves governed by the non-linear free

surface boundary conditions. To achieve this, methods using high order discretisations

have been developed in order to accurately calculate free surface velocities, in addition

to explicit time stepping schemes which allow the use of dynamic time steps at low

computational cost (see Grilli et al., 2001).

The separate development of the aforementioned fields is reunified within the present

method. The requirement of a non-linear free surface is provided by a method based on

the work of Longuet-Higgins and Cokelet and in particular, the high order 3D scheme

developed by Xü (1992). Including submerged lifting surfaces requires an application of

the work developed by Hess and colleagues. Amalgamations of free surface and lifting

body have already been developed, such as in the work of Zhu et al. (2006). Frequently,

however, such methods rely on low order discretisation. To enhance boundary element

methods for lifting bodies near free surfaces a high order discretisation should be used

throughout. This is achieved through the addition of work from fracture mechanics,

and, in particular, the work of Gray et al. (2004b). A similar application of the work

of Guiggiani (1998) has been applied to high order potential lifting flows by Bernasconi

and Richelsen (2008). The apparent need for the use of higher order discretisations is

discussed in the next section.

1.3.2 High Order Boundary Element Formulations

Before discussing the choice of order for the present boundary element method, a

short explanation of the term ‘order’ is merited. Order in terms of boundary element

methods, refers to the geometrical approximation to the surfaces bounding the volume

of interest and the approximation of the field values on those surfaces, i.e. the velocity

potential and it’s normal derivative. It is then clear that a piecewise constant method

(the most common order for panel methods) is not a satisfactory approximation; the

surface will have gaps and the potential will have discontinuities between elements.

A higher order boundary element method is one which has linear order or higher.

Beyond linear methods the advantages of higher order are accuracy and efficiency.
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Less computational nodes are required, as order increases, to achieve the same level of

accuracy, although methods beyond quadratic order are extremely rare.

As alluded to in the previous section, the reasons for striving for higher order

methods are well documented, particularly in the development of boundary element

methods for free surface flows. Xü (1992) carried out a detailed study into the feasibility

of different element types, and concluded that a bi-quadratic element was required for

sufficient accuracy for the free surface solver developed. Grilli et al. (2001) found

that even higher order approximations were necessary to ensure stable simulations for

extremely non-linear three dimensional water waves. Thus, the case for high order

methods in free surface flows is clear.

The advantages of higher order discretisations for lifting flows have also been recog-

nised previously. Pyo and Kinnas (1997) stated that,

“It is a known fact that the use of a high-order panel method is more accurate
than the low-order panel method or the discrete vortex method in computing
the velocity field, since it precludes the appearance of instabilities in the
vortex sheet due to the spurious numerical effects introduced by a too-crude
representation.”

Indeed, even as early as 1975, Hess (1975) realised that the use of high order approx-

imations could improve the results for lifting flows. However, in the use of high order

discretisations for lifting flows, comes a new difficulty, arising from the need to calculate

the velocity on the wake surface. For free surface problems, this is not a difficulty as

the potential on the free surface can be numerically differentiated to give the velocity.

A vortex wake is different because only the difference in potential across the wake

is known which does not provide the velocity when differentiated. The only way to

calculate velocity is to calculate the direct gradient of the governing boundary integral

equations. This leads to a set of equations known as the hypersingular boundary

integral equations. Hypersingular refers to the order of singularity in these equations,

being O(r−3) as r → ∞, with r representing distance. This is one order higher than

standard boundary integral equations which are strongly singular, i.e. O(r−2). The

difficulty with hypersingular boundary integral equations is that their solution at the

edges of discrete elements is difficult to obtain accurately. This did not hinder the

use of constant panel methods as the collocation (computational) nodes are located at

the centre of panels; however, high order methods are collocated at the panel edges
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and corners. Thus, as in Pyo and Kinnas (1997), previous high order methods have

calculated the hypersingular boundary integral equation internal to the element and

then interpolated back to the collocation points in order to circumvent this problem.

In the mid 1990s, Guiggiani and colleagues developed a method for solving the

hypersingular boundary integral equations at the edges of panels subject to certain

conditions. The method described in Guiggiani (1998), is reliant on the ability to

perform a Taylor expansion at the panel edge, and thus a continuity requirement must

be enforced between panels. This continuity requirement excluded the use of many

common discrete elements, requiring elements based on B-spline approximations (e.g

see Kim and Shin (2003)) which, as Xü (1992) states, has a very high computational

burden (although the use of B-spline based elements has become much more common

recently). In Gray et al. (2004b) a method was presented for which the solution to the

hypersingular boundary integral equation could be found at panel edges of elements

that did not conform to the strict requirements of the Guiggiani method; the method

is known as a Galerkin boundary element method. The procedure developed by Gray

et al. can be used to modify existing high order boundary element methods to include

direct calculation of the velocity at vortex wake panel edges. This amalgamation is one

which has not been attempted before.

Thus, the theoretical development of an improved high order method for lifting

flows and free surfaces applying the work of Gray et al. (2004b) to a vortex wake was

chosen as an obtainable outcome for the present thesis. Furthermore, such a method

can be verified and validated by pre-existing analytical solutions, numerical predictions

and experimental data for, say, solitary waves, aerofoils and hydrofoils. This takes a

significant and original step along the road to developing a full tidal turbine and free

surface simulation, while avoiding a number of pitfalls relating to the full problem.

These issues stem mainly from a lack of validation data, a consequence of physical

testing for tidal turbines being extremely new and also beset with uncertainty about the

validity of experimental scaling. There is also a lack of high resolution data for the near

wake of a tidal turbine and thus to properly validate this case, physical experiments

would have to be undertaken in addition to the development of the model, which

would be extremely time consuming. Therefore, expansion of the theoretical basis of

an applicable model, such as a boundary element method, was regarded as preferable

to attempting both a complicated numerical and experimental modelling process.
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In closing this section, the author would like to introduce a quick caveat regarding

the use of boundary element methods. Even though the strive for a robust high order

method has been justified, the quantitative value of this type of numerical method must

be addressed. A distinct difficulty with the validation of a boundary element method

(particularly for lifting flows) is that beyond certain parameters (such as the angle of

attack which induces stall in an aerofoil) experimental and numerical data can fail to

match. A particular difficulty is that the strong assumptions of potential flow (see

section 2.2) are often exceeded in real world conditions. This does not, in the author’s

opinion, reduce the value of boundary element methods, particularly for a problem like

tidal turbines where little is previously understood. As Hess (1990) puts it,

“Even when [the results] fail to give the proper experimental values, they are
frequently useful in predicting the increment of effect of a proposed design
change or in ordering various designs in terms of effectiveness.”

In addition, Sarpkaya (1989), although sceptical about the quantitative abilities of

vortex methods, stated that,

“These pessimistic remarks are tempered by the fact that the most signifi-
cant results are often qualitative judgements which provide insights into the
real physics of the phenomenon.”

The high order method proposed here can improve the accuracy of the potential flow

based models. Nevertheless, it can not overcome the flaws inherent in the modelling

assumptions themselves. Yet, for ‘insight’ into the effect of the free surface on the

turbine and its wake, the model is expected to be extremely valuable. A true test of

the model’s validity to quantitative results for the full turbine problem may still be

some time in coming. This will remain the case for all formulations of numerical model

until high quality validation data becomes available.

1.3.3 Hypersingular Boundary Integral Equations

The hypersingular boundary integral equations (HBIEs) are the equations required to

directly solve for the velocity field in a boundary element method. They are known

as hypersingular as they contain an O(r−3) type singularity as r → 0. The earliest

technique for dealing with hypersingular boundary integral equations appeared in early

commercial work with panel methods for the aeronautics industry. Famously, Hess
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(1972) derived a velocity equation for a vortex sheet represented by dipoles by using

Stokes’ theorem to relate the surface integrals of dipoles to the Biot Savart Law (this

regularisation is discussed as a special case in Gharakhani (1999)). Note that this form

of regularisation is singular at panel edges. The most commonly used technique is to

‘desingularise’ the equations at panel edges by moving the collocation point slightly

away from the edge. This technique is described by Epton (1992) who details a similar

Stokes based regularisation. Only very recently have new methods been used to improve

the accuracy and order of techniques in potential flow lifting solutions.

The Stokes regularisation technique has continued to be refined and streamlined

in particular by the work of Sladek and Sladek (1992a,b), Balǎs et al. (1989) and

Gharakhani and Ghoniem (1997). These studies demonstrate a neat technique in

exchanging an order of the singularity for a calculation of the local derivatives of

the shape functions in the element of interest. An interesting point to note is that

although Gharakhani and Ghoniem (1997) use the method for open surfaces, the

regularisation technique described in Balǎs et al. (1989) requires a closed surface and

this necessity is repeated by Bonnet (1999). Gharakhani and Ghoniem (1997) also

draw upon and expand the original work of Medina and Liggett (1988), which is a

very readable application of a boundary element method to fracture mechanics and

has closed form solutions to the singular integrals, negating the need for numerical

quadrature. Gharakhani and Ghoniem (1997) evolve the technique for the higher order

singularities. Unfortunately, although these techniques have proved extremely accurate

for solving the HBIE on the surface within the panel it seems the technique does not

extend to panel corners or edges. Bonnet (1999) showed that C1,α continuity3 for the

potential is necessary to apply the above techniques and this condition is violated at

the edges and corners of ‘standard’ elements. Bonnet (1999, chap. 5) gives an excellent

review of identity based regularisation techniques.

Given the accuracy and maturity of these techniques for solving HBIEs away from

element corners and edges, a wake evolution problem could be attempted by calculating

the velocity at a point nearby to the collocation point and then relocating the collocation

point there. This would provide an accurate solution for the velocity and thus the future

position of the point, however, it would be necessary to interpolate the potential values

3Ck,α refers to the Hölder space for the k-th derivative of an arbitrary function. Hölder continuity
is a stronger condition than regular continuity, yet does not imply differentiability.
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to the evolved point, generating an error dependant on the order of the discretisation.

This poses a dilemma in balancing how close the nearby point should be in order to get

an accurate velocity without compromising the value of the potential. Other problems

are also foreseeable, such as which panel to move the collocation point into when there

are a number of panels meeting at a node and so on. Thus, without an extensive

analysis, this technique is far from robust and in order to reduce errors an alternative

approach must be sought.

An alternative method for regularising the HBIE was developed throughout the

90s by Guiggiani et al. (1992); Guiggiani (1995, 1998). Given the assumption of

C0,α continuity for potential and C1,α continuity for it’s normal derivative, Guiggiani

was able to expand the field variables about the collocation point allowing a neat

regularisation of the HBIEs. One important omission in the early work was a second

free term that appears in the regularised HBIE formulae when curved elements are used.

It was not until the publication of Guiggiani (1995) that this was reported, some five

years after the initial publications. This issue was also highlighted by Mantič and Paŕıs

(1995). Guiggiani’s work has been advanced by Karami and Derakhshan (1999) for

higher order singularities. In conclusion, although this is a neat and accurate solution

scheme, it does not overcome the problems of the continuity requirements at panel

intersections.

A body of research has been undertaken to meet the continuity conditions with

advanced elements, a particularly difficult challenge in three dimensions. The use of

continuous elements has been successfully applied by Young (1996) and Wilde and

Aliabadi (1998, 1999). Higher order B-spline elements have been used in free surface

and lifting body simulations by Kim and Shin (2003) and Bernasconi and Richelsen

(2008).

The regularisation of HBIEs without the need for complicated elements is obviously

a highly desirable goal due to the ease of application to established ‘standard’ element

routines, especially those of higher order. A ‘smoothing’ scheme was developed by

Mantič et al. (1999); Graciani et al. (2000). This method negates the C1,α continuity

condition using linear elements. Sadly, the method has yet to be extended to three

dimensions. The introduction to Mantič et al. (1999) provides an excellent review of

HBIE solution techniques.

The publication of Gray et al. (2004a,b) finally provided a method which was
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theoretically capable of solving the HBIEs on three dimensional ‘standard’ boundary

elements at corners and edges. In Gray (1995) the symmetric Galerkin approach to

solving the HBIEs was applied to fracture analysis problems in 2D. Gray advanced

the method to general derivatives for 2D linear elements in Gray et al. (1998). Gray

and Kaplan (2001) presented the first results for using the Galerkin method in 3D,

although this was lacking generality until the release of Gray et al. (2004a,b), when

both normal and tangential derivatives for 3D hypersingular Galerkin methods with

linear panels were presented. Gray et al. (2006) added to the analysis of Gray et al.

(2004a) by deriving techniques for further simplifying the integrations involved. Gray’s

techniques have been applied by Sutradhar et al. (2005) for solving the problem of heat

conduction in graded materials. Garzon et al. (2005) used Gray’s method with a coupled

level set/boundary integral wave simulation in order to time-step the free surface. Gray

et al. (2004b) additionally showed the applicability of the Galerkin method to solving

the problem of pressurised cracks. Given the similarity of cracks in fracture analysis to

vortex sheets in fluid mechanics, it is hypothesised that the solution of the velocity on

vortex wakes is a natural application of the Galerkin method. The available literature

would also appear to indicate that this method has yet to be applied to quasi-potential

lifting flows.

Early studies of the motion of vortex sheets using numerical methods are reported

in work such as Baker et al. (1982) and Baker (1983) where a system of dipoles was

used to represent a free surface as a vortex sheet. The study of vortex sheets has

continued into the present century although most research concerns closed surfaces and

are based on regularisations of HBIEs that necessitate the C1,α continuity conditions.

Pozrikidis (2000) used a Stokes regularisation that requires a closed surface to solve

the potential gradients for three dimensional vortex sheets in the time domain. Grilli

and Hu (1998) used a Taylor series expansion technique to regularise the vortex sheet.

Brady et al. (1998) used Bézier interpolants to maintain C1,α continuity. None of the

above papers consider an open vortex sheet similar to that generated at the trailing

edge of a lifting body. Bernasconi and Richelsen (2008) produced a grid free B-spline

method to maintain the continuity required in order to use Guiggiani’s method for

finding the velocity at any point on an open vortex wake sheet.

In the current work, the vortex sheet generated at the trailing edge of the lifting

body will be discretised using linear panels. Although this is one order of accuracy
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lower than the body and free surface panels it still represents an improvement over the

traditional constant strength wake panels. The use of the Galerkin method to solve

the velocity directly at collocation points may also prove advantageous when compared

to higher order schemes which interpolate solutions to collocation points from panel

centres. Using the gradient methods described for ‘cracks’ in Gray et al. (2004b) this

study shall investigate the validity of reapplying the technique to calculate the velocity

at collocation points for piecewise linear panels on a vortex wake sheet.

1.4 Extended Outline of Thesis

This section will summarise and outline the present thesis and its structure. Through-

out this summary, pertinent literature relating to each part will be introduced along

with consideration of alternative approaches. The thesis, in total, relies heavily on

the work of Xü (1992) and Gray et al. (2004b). Xü’s high order boundary element

method was, in turn, based upon the seminal paper by Longuet-Higgins and Cokelet

(1976) which dissects the problem of a time stepping, boundary element based, free

surface method into an Eulerian stage and a Lagrangian stage. This algorithm is

known as a mixed Eulerian Lagrangian method (MEL). The Eulerian stage implements

the boundary element method in order to calculate the instantaneous solution at

each time step. The Lagrangian stage involves time stepping of the geometry and

field variable(s), subject to boundary conditions, which implicitly requires calculation

of surface velocities. Due to the added complication in this process caused by the

utilisation of the Galerkin method to calculate gradients, chapter 3 and chapter 4 are

split into the Eulerian and the Lagrangian stage. Chapter 2 introduces the fundamental

mathematics for which the numerical method will solve whilst chapter 5 and chapter 6

detail results for the non-lifting and lifting cases respectively.

1.4.1 Chapter 2: Mathematical Formulations

Chapter 2 begins with a discussion about the formulation of potential flow by reducing

the full viscous fluid equations using scaling arguments as described in Katz and Plotkin

(2001, chapter 1). The impacts of the chosen assumptions of inviscid and irrotational

flow on the modelling is discussed alongside the alterations required to include lifting

flows within a potential based model. This section concludes with a short discussion of
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the challenges of scale modelling of lifting bodies in the presence of a free surface.

Subsequently, it is shown that, under the assumptions of potential flow, the fluid

is governed by the Laplace equation. The non-linear free surface boundary conditions

(see Stoker, 1957) are defined in terms of the velocity potential, as are the boundary

conditions on the channel walls, inlets and surfaces of interior bodies. The surfaces and

boundary conditions that govern the wake of lifting bodies are also discussed. Finally,

the fluid domain boundaries are divided into two subsets; on Dirichlet boundaries the

normal derivative of the potential is unknown, on Neumann boundaries the potential

itself is unknown.

From here, boundary element equations can be defined for the region of interest

(a lifting body in a channel with a free surface) by following the derivation described

by Katz and Plotkin (2001, chap. 1). However, here preference is given to coining

the equations in terms of the potential and its derivative by taking the limit from the

interior only, rather than in terms of sources and dipoles, where limits from both interior

and exterior are taken. Uniqueness of the solution to the boundary integral equations

is discussed and, in turn, the requirement for a condition at the trailing edge of a lifting

body, known as the Kutta condition is defined and its evolution in time derived. For

simplicity, the most basic Kutta condition is applied here (see Morino and Kuo, 1974),

although more complicated alternatives have been presented in Morino and Bernardini

(2001). Initial conditions are then given for the time dependant simulation.

The, now complete, governing equations are then presented in both full and per-

turbation potential form. The perturbation potential allows the far field velocity to

be subtracted from the surface potential resulting in more accurate derivatives being

calculated. These derivatives can either be calculated using numerical differentiation

(see Xü, 1992) or, in the case of the wake, they must be calculated using the direct

derivative of the boundary integral equation which produces the aforementioned hyper-

singular boundary integral equation.

Finally, the method of weighted residuals is utilised to describe how the boundaries

of the domain may be discretised. This leads to many alternative discretisation meth-

ods, two of which are used in the present method. The first, the collocation method,

is used for the standard boundary element method as in Xü (1992). The second, a

Galerkin method is required for the solution to the hypersingular boundary integral

equations derived by Gray et al. (2004b).
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1.4.2 Chapter 3: Eulerian Stage Implementation

Chapter 3 introduces the numerical method instigated to solve the Eulerian, or in-

stantaneous, stage of the mixed Eulerian Lagrangian method. This method provides

the numerical solution to the boundary integral equations derived in chapter 2. The

choice of order for the discretisation has already been discussed, however, there are

also a number of alternative methods for solving the boundary integral equations.

The key challenge to efficiency in a boundary element method is the formation and

inversion of a full n by n matrix made up of the influences of each panel on each

node. The computational burden of forming the matrix can be reduced by applying

a technique known as the fast multipole method, developed by Rokhlin (1983). By

grouping far field influences together the method can reduce computational burden

from being proportional to n2 to being proportional to n, a significant saving. Xü

(1992) considered implementing such a method within his model, however concerns

over accuracy led him to form the influence matrices by the traditional manner. In

fact the first three dimensional wave solver that applies the multipole method was not

developed until the work of Fochesato and Dias (2006). They applied the method to

the free surface solver of Grilli et al. (2001) in order to improve its performance. The

potential to solve boundary elements even faster by fast Fourier transforms (see Fata,

2008) means one of the key burdens of potential methods may soon be overcome. For

the present method, however, the method of Xü (1992) is preferred.

Chapter 3 continues by defining the isoparametric, biquadratic influence functions

required for the high order method. The far field influences are defined and discussed

along with the adaptive algorithm proposed by Xü (1992) for which some minor adjust-

ments are made. Subsequently, the singular integrals are reduced to a form that can be

numerically integrated and the adaptive control for these integrals is also investigated.

Once the influence functions for the nine node elements are defined, the same process is

carried out for linear three node elements. These elements are required as the Galerkin

boundary element method of Gray et al. (2004b) is derived in terms of these elements.

Testing the hypothesis that the Galerkin method can calculate the wake velocity at

collocation points does not require that the wake panels be biquadratic, just higher

than constant order. The method can potentially be extended to biquadratic elements

should it prove successful for the linear elements.
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Once the influence functions are defined, the linear systems are derived for both

non-lifting and lifting flows. Finally, some modifications of the linear systems, in order

to model surface intersections and represent boundaries by reflection, are discussed.

Note, once this stage is reached, the influence matrix is prepared for inversion. No

particular solver is specified for the linear system as the ability of general algorithms

(especially when operating in parallel) was seen to be sufficient. Indeed, it was found

that more computational burden was imposed in forming the influence matrix than

from inverting it.

1.4.3 Chapter 4: Lagrangian Stage Implementation

Once all the boundary data is known for a particular time-step, the mixed Eulerian

Lagrangian algorithm moves onto the Lagrangian stage. The goal of this stage is to

calculate the velocities on the dynamic surfaces and then time-step the geometry and

field values dependant on the boundary conditions. This is a well established process for

high order free surface solvers, utilising numerical differentiation. Often large sliding

elements are used to calculate the surface derivatives, allowing central differencing

schemes to be used in the majority of cases. Obviously, a skewed scheme must still be

implemented at or near channel walls. Grilli et al. (2001) use a fourth order 25 node

sliding panel to implement their numerical differentiation and a similar level of accuracy

is used for the free surface derivatives within the present method and is described at

the start of chapter 4. The accuracy of the evolution of the free surface is of particular

interest in the results of chapter 5.

Calculating the velocity on the vortex wake emanating from the trailing edge of

a lifting body is more complicated as was discussed earlier in the introduction. Even

before calculating the velocity, some thought must be given to the orientation of the

vortex wake as it leaves the lifting body. This process is another element of the Kutta

condition that is used to provide the strength of the vortex wake, but also sets the

requirement for the direction of the wake. This ‘spatial Kutta condition’ was best

described by Mangler and Smith (1970). They discovered that the vortex wake can

take different positions dependant on the spanwise vorticity along the trailing edge.

The wake can leave tangentially to either side of the lifting body at the trailing edge

or at trailing edge bisecting angle. In fact, only under very specific conditions is the

third case true. Although the formulation of Mangler and Smith (1970) was for two
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dimensional steady flows, the work of Morino and Kaprielian (1985) extended the results

to three dimensional unsteady flows with similar results. In the present method, for

simplicity, the wake leaves the trailing edge at the bisecting angle of the lifting body.

It was felt that the more complicated approach of Mangler and Smith (1970) was not

necessary for the purposes of this thesis and could be applied as additional work.

Chapter 4 continues by describing the solution to the hypersingular boundary

integral equation in order to find the velocity at computational nodes on the vortex

wake. The applicability of the Galerkin method described in Gray et al. (2004b) to

a vortex wake is demonstrated, with particular attention being given to the analogy

of the crack problem in fracture mechanics (see Bonnet, 1999). Various formulae that

were not formally published in Gray et al. (2004b), yet are necessary for the solution

of the method, are derived and a discussion of the range of applicability of the method

is conducted. The Galerkin method can not be applied at the wake edges and thus

an alternative method for calculating the velocity must be used there and then fed to

the Galerkin method. In fact, although the related collocation version of the method

can be applied at the edges, the real solution at the wake edges is infinite (in the same

sense as the velocity at the sharp trailing edge is infinite) and so an alternative solution

must be derived for the edges. Due to time constraints, a basic average of off-surface

velocities was applied as a ‘first attempt’ in order to feed the necessary information to

the Galerkin method. An alternative approach may be to replace the edge of the vortex

sheet with a vortex core, such as detailed in Lee and Kinnas (2005a), or vortex blobs as

detailed in Hou et al. (2006). These extensions would add significant complications and

thus are reserved for further work. Nevertheless, a more accurate solution to the velocity

at the wake edges would be desirable in an otherwise robust modelling approach.

Once the algorithm has reached this point, the velocities on the dynamic surfaces

are known. The final step, in order to complete the Lagrangian stage, is to move the

geometry and field values forward in time. In boundary element methods there are two

main alternatives for applying time-stepping; the first is an implicit scheme and the

second an explicit scheme. An example of an explicit scheme was designed by Dold

and Peregrine (see e.g. Dold (1992)), where they made use of the fact that partial

time derivatives of the velocity potential also satisfy Laplace’s equation. This allows

higher-order material time derivatives of the free-surface position and velocity potential,

φ, to be calculated, which in turn allows the use of higher-order truncated Taylor
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series for the time-stepping. This technique benefits from the fact that the solutions of

Laplace’s equation for φt, φtt, . . . are extremely low cost because the influence functions

have already been calculated for the solution of ∇φ = 0. This process, although

conceptually simple and efficient, is difficult to implement in practise for the reasons

given in Forehand (1998, pg. 25), which include problems of deriving the boundary

conditions for Laplace’s equation applied to higher-order partial time derivatives of

φ. The key advantages of Dold’s time-stepping method is the reduced computational

burden and the ease of implementation of a dynamic time-step.

Implicit time-stepping schemes, as used in the well known method of Longuet-

Higgins and Cokelet (1976), are analytically simpler to implement but are more com-

putationally demanding. This is because numerical integrators such as the Runge-

Kutta fourth order scheme (RK4) and the Adams-Bashforth fourth order scheme (AB4)

require intermediate time-steps. In the case of RK4, three additional Eulerian stage

implementations are required (without the ability to reuse the influence matrix), and

for AB4 one additional Eulerian stage is required. Dynamic time-stepping is also

more computationally expensive as, when the time-step is changed, the AB4 integrator

cannot be used as it requires information from three previous time-steps. Thus, when

the time-step changes the RK4 method must be run at least 4 more times. Even with

this deficit, however, the ease of implementation made it the reasonable choice for the

present method and it is described at the end of chapter 4 along with a discussion of

the required metrics for implementing dynamic time-stepping.

After time-stepping, the MEL method is complete and any post-processing (for

internal velocities, pressures, energies, errors etc.) can be undertaken. The process

is then repeated until a set time has been reached or some error metric is beyond

tolerance.

1.4.4 Chapter 5 and Chapter 6: Results

With the mathematical and numerical foundations prepared for the numerical model, its

implementation must be tested, a process known as verification. This was undertaken in

two stages; the first stage examines whether the high order boundary element method,

based on that of Xü (1992), would produce the expected order of convergence for steady

problems and numerical stability for unsteady problems, with neither case including

lifting bodies. To examine the quality of the present method a hierarchy of tests were
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performed which would examine various aspects of the code. These include the flow

over a sphere in an infinite fluid domain and the steady flow through a rectangular

channel with one Dirichlet boundary. These tests, in particular, allow the order of

convergence of the method to be examined and compared to that of Xü.

With the order of convergence established, the time-stepping nature of the code

can then be tested. An ideal test case for this problem is the evolution of solitary

waves. This will evaluate the accuracy of the numerical differentiation routines and the

numerical integration of the free surface boundary conditions. Solitary waves have an

analytical solution within potential based methods and their celerity and form remains

unchanged over time. This provides an excellent assessment of the dynamic time-

stepping metrics and whether common ‘saw-tooth’ instabilities are a problem for the

present method. In addition, the more challenging problem of counterpropagating

solitary waves provides further evidence for the successful implementation of the code.

Phenomena that can only be observed when using non-linear free surface boundary

conditions are the correct quantity of wave run-up on impact of counterpropagating

solitary waves and the formation of a wave residual after the two solitary waves detach

again. These quantities can be compared to the results of other numerical studies such

as Craig et al. (2006).

Once the implementation of the quadratic high order boundary element method has

been examined, the application of the Galerkin gradient method to the wake can be

attempted. Due to the challenges associated with the wake edges, a carefully designed

algorithm must be followed in order to avoid the method exhibiting singular behaviour.

Additionally, care must be taken during the time-stepping of the method to ensure that

the spatial Kutta condition is enforced. Preliminary results for the development of the

wake behind a lifting body in an infinite domain are examined. Unfortunately, there

is little comparison data available to test the quality of the output. Comparisons can

be made to the previous work of Pyo and Kinnas (1997), and simulations utilising the

more complicated Galerkin method can be compared to simulations where the basic

‘averaging’ method, which is used to calculate the velocity at the wake edges, is applied

over the entire wake sheet. Finally, the quality and stability of the evolution of the

sheet using the Galerkin method is discussed and possible directions of work, in order

to improve the results, are outlined.



Chapter 2

Mathematical Formulations

2.1 Introduction

The challenge of numerically modelling a lifting body in the presence of a free surface is

extremely great. The complete physics that such a simulation should capture includes

free-stream turbulence, cavitation, bottom friction and much else besides. Although

much of the theory exists to tackle these problems, a simulation that included them all

would be unfeasibly computationally expensive and extremely challenging to validate.

Given these challenges, it is appropriate to seek an approximation to the real physics,

where the computational expense is tractable and validation is practicable.

Thus the purpose of this chapter is to introduce the chosen assumptions and the

models based upon them. This includes equations and boundary conditions for the

simulation of a non-linear gravity driven free surface, and also those required for lifting

bodies. The initial-boundary value problem is formulated for free surface flows over a

finite domain, with and without submerged lifting and non-lifting bodies. Formulations

are also derived for lifting and non-lifting bodies in an infinite domain.

Once the initial-boundary value problem has been derived, the solution procedure,

known as a mixed Eulerian-Lagrangian method, is introduced. Within the Eulerian

stage a boundary integral equation is formed in order to provide the unknown boundary

data at each time step. Two formulations of the boundary integral equations are

presented (full and perturbation) and compared, and the uniqueness of solutions is

proved for both. For the Lagrangian stage, velocities must be calculated on the domain

surfaces, which leads to a hypersingular boundary integral equation and the solution

to this equation is discussed.

24
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Finally, two alternative discretisation schemes for the developed equations are in-

troduced. The first, a collocation method, is used for solving the boundary integral

equation at the Eulerian stage. The second, the Galerkin method, is critical to the

solution of the hypersingular boundary integral equations. Both are related to, and

discussed in the context of, the weighted residual method.

2.2 The Assumptions of Potential Flow

A potential flow based model is an ideal choice for approaching the problem of a lifting

body in the presence of a free surface. To support this statement, it is important to

address the assumptions that are made in order to reduce the equations of motion to a

state where a velocity potential can be defined and Laplace’s equation applied. The two

main assumptions are that the flow should be free from viscosity, referred to as inviscid,

and that small fluid elements within the flow have zero spin, or vorticity, hence the

fluid is described as irrotational. The next few paragraphs attempt to demonstrate the

applicability of using these strong assumptions for this complicated physical problem.

The process begins by choosing an orthogonal reference frame, fixed on the earth

with its origin at the undisturbed water level. x and y represent the two horizontal

directions and z represents the vertical direction, positive pointing up. The vector x

with coordinates (x, y, z) is defined to be the spatial position vector of a point in this

frame. Within this frame of reference, consider the continuity equation and Navier-

Stokes equation for a Newtonian fluid with a constant viscosity coefficient, µ, and

constant density, ρ, given by

∇ · q = 0, (2.1)

ρ

(
∂q
∂t

+ q · ∇q
)

= ρf −∇p+ µ∇2q (2.2)

where q = (u, v, w) is the velocity vector of the flow, t is time, f is the body force vector

and p is the pressure.

In order to better understand the relative magnitudes of the individual terms of the

governing equations a dimensional analysis is performed following Katz and Plotkin
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(2001). To begin, some characteristic quantities are defined as

L − reference length,

V − reference speed,

T − characteristic time,

p0 − reference pressure,

f0 − body force.

and then, using the above, some non-dimensional variables can be defined, thus:

x∗ =
x
L
,

q∗ =
q
V
,

t∗ =
t

T
,

p∗ =
p

p0
,

f∗ =
f
f0
.

(2.3)

The governing equations, given by equations (2.1) and (2.2), are now rewritten in terms

of the non-dimensional quantities. Thus the continuity equation remains unchanged,

∇∗ · q∗ = 0, (2.4)

and the momentum equation becomes(
L

TV

)
∂q∗

∂t∗
+ q∗ · ∇∗q∗ =

(
Lf0

V 2

)
f∗ −

(
p0

ρV 2

)
∇∗p∗ +

(
µ

ρV L

)
(∇∗)2 q∗. (2.5)

All terms with asterisks in equations (2.4) and (2.5) are now of order one and thus their

importance is determined by the values in the parentheses. For convenience, from now

on, drop the asterisks from the non-dimensional variables. As can be seen, the non-

dimensional momentum equation, given by equation (2.5), has four coefficients which

govern the relative importance of certain terms in the equation. The most notable of

these is on the far right of equation (2.5). The value in the parentheses represents the
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ratio of inertial to viscous forces and its inverse is known as the Reynolds number,

Re =
V L

υ
, (2.6)

where υ is the kinematic viscosity defined as

υ =
µ

ρ
. (2.7)

The final term in the momentum equation being multiplied by Re−1 implies that if Re

is high then this viscous term of the momentum equation becomes negligible. It should

be noted that high Reynolds number does not guarantee viscosity can be neglected

throughout the flow field. In fact this is only the case where the ∇2q term of equation

(2.5) is approximately order 1. This is true of the outer flow field; however, close to

solid boundaries, where ∇2q � 1 the viscous term can no longer be discounted. Indeed,

in these regions a boundary layer solution should be sought such that in the x direction,

ρ

(
u
∂x

∂x
+ w

∂u

∂z

)
= −∂p

∂x
+ µ

∂2u

∂z2
(2.8)

and in the normal z direction,
∂p

∂z
= 0. (2.9)

The implication is that there are two distinct regions in the flow. The first is within

the outer flow field where viscosity can be neglected and the Euler equations can be used

to find the solution. In the second region the effects of viscosity can not be discounted

and this occurs near boundaries within a certain boundary layer, of length δ. For large

Reynolds number the proportion of boundary layer thickness, δ, to characteristic length

can be derived from Schlichting (1960, pg. 130) as

δ ≈ 5

√
υL

U

⇒ δ

L
≈ 5
L

√
υL

U
= 5

√
1
L2

υL

U
= 5Re−1/2.

(2.10)

Using this calculation, the boundary layer thickness for a typical hydrofoil will be

in the order of 2mm, thus the extent of this region is very small compared to that of the

outer flow region. However, equation (2.10) can only be used as an estimate of the size
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of the viscous boundary layer on the hydrofoil. For the tidal channel itself the turbulent

boundary layer can occupy large proportions of the depth of the channel. The extent

to which this boundary layer encroaches on the free surface (see Myers and Bahaj,

2008; Lueck and Lu, 1997) is still disputed, however this boundary layer is critical to

the creation of the familiar log velocity profile seen in tidal channels. Possibly the

biggest disadvantage of a potential based method is not capturing this log profile or the

turbulence contained within the turbulent boundary layer. Even so, because the main

interest of the present simulation is the effect of the free surface on the hydrofoil and

its wake, it is considered an unfortunate but reasonable admission.

It is now prudent to discuss the second assumption, that of irrotational motion. In

order for the flow to be considered irrotational, it must have no vorticity. Under what

circumstances can this be the case? In particular, how can this be true given that it is

useful to model some vorticity in order to better describe the physical problem?

Within boundary layers on solid surfaces the no-slip condition will naturally gener-

ate vorticity. The solid boundaries are not the only region that will generate vorticity

however, especially when considering a free surface. Waves on a free surface have been

shown to generate vorticity on both the solid bottom surface and at the free surface

itself. Wave motion has two significant effects. The first and most commonly known is

the generation of a boundary layer on the bottom boundary as described in Svendsen

and Jonsson (1980). This boundary layer dissipates and reforms regularly for short

waves and is confined to a very small distance from the bottom.

Longuet-Higgins (1992) has shown that at any free surface at which the tangential

stress, τns, vanishes there must be a surface vorticity ω = −2κq where κ is the curvature

and q is the tangential velocity. Therefore, there exists an additional boundary layer of

length δ beneath the free surface where vorticity generation occurs. Longuet-Higgins

observed that, at the second order of the wave steepness parameter, ak, this vorticity

can escape through the Stokes boundary layer. Longuet-Higgins uses this phenomenon

as a mechanism to describe the formation of capillary waves and bores on gravity waves,

even in the absence of wind.

Dealing with this vorticity raises some important issues. Kelvin’s circulation theo-

rem (see Acheson, 1990, pg. 157) implies that if vorticity is present in an inviscid flow

it can not be created or destroyed. Thus it is important to consider how to deal with

the vorticity generated near the boundaries. Formally, the dominance of viscous forces
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near the boundaries will deal with much of this vorticity, dissipating it rapidly as it

moves away from the boundary. This is also the case for the viscosity generated at the

free surface when the waves are not too steep. We can therefore assume the vorticity is

maintained in the small boundary layers near to the surfaces. However, as mentioned

previously, it can prove very useful to model the time evolution of the vorticity generated

on a lifting body surface when modelling the lifting flow of an aerofoil or hydrofoil.

It is a commonly known fact that fluid circulation around a body is the main

cause of lift for wings (and even swerve on footballs!). Therefore, without a circulation

around the aero/hydrofoil it would not lift. On the other hand, generating circulation

here would be contradictory to Kelvin’s circulation theorem and the flow could not

be irrotational. The solution is to explicitly model the vorticity generated at the foil

shedding into the trailing wake. This vortex wake has an equal and opposite circulation

to that around the foil, allowing it to generate lift while allowing the flow to remain

irrotational. The wake itself is obviously not irrotational and must be isolated from the

irrotational domain. It is considered to be an infinitely thin vortex sheet, where there

is a discontinuity of the tangential velocity on either side.

Vortex sheet modelling is one of the ‘black arts’ of potential flow based methods.

Consider the assumption that the vortex sheet will emanate from the trailing edge of

the foil. This is indeed the case for ‘normal operation’ of the foil where the angle

of attack is not too steep. However, a potential model will not accurately model the

characteristics of the foil with high angle of attack, or in ‘stall’, as the vorticity may not

leave the foil at the trailing edge. In addition, the edges that bound the wake sheet pose

a particular problem, in that the velocity here will be divergent (see Johnson (1994, pg.

546) regarding this behaviour for vortex sheets and Williams (1952) for the equivalent

solution in fracture elastostatics) and this must be dealt with along with the impact

this has on the rest of the sheet.

Choosing to discount generated vorticity at the other surfaces and within the

turbulent boundary layer may cause some important physical effects to be missed.

In this case, there is a need for more detailed viscous modelling at these boundaries.

One method may be to predict the generation of additional vortex sheets, which can

then be modelled using potential flow.

To summarise from the above discussion, it is clear that the inviscid, irrotational

assumption is valid in the outer regions of the flow away from the boundaries and foil
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wake. On the boundaries themselves, vorticity is important and the flow is rotational.

On the surface of the hydrofoil (provided it is not in stall) this vorticity is maintained

within the viscous boundary layer described above. At the trailing edge of the aerofoil

this vorticity is shed into the flow as a vortex sheet, a discontinuity in the speed of

the fluid on either side of the boundary. This is known as the wake of the aerofoil and

should be modelled to provide a unique solution to the problem. On the bottom and

free surface, vorticity is generated and can separate. Provided the vorticity generated

is not very strong then it can be assumed that this will be dissipated quickly by the

viscous forces in the flow and therefore can be neglected. If the vorticity generated

is large then there is a possibility that neglecting this physical effect may cause some

errors in the results.

2.2.1 The Effects of Scaling

Before closing the discussion on potential flow, it is interesting to consider some typical

characteristic values for the problem and the impact of recreating full scale physics at

smaller scale. Obviously, for the Euler equations to hold, a large Reynolds number (see

equation (2.6)) is required within the flow, so the first step is to check this. Consider

a channel of 30m depth having a velocity of 5ms−1. Within the channel is a hydrofoil

of approximately 1m chord length. The Reynolds number for the hydrofoil (taking the

kinematic viscosity of water to be 1×10−6m2s−1) is ReB = 5×106 and for the channel

it is ReC = 1.5 × 109. Thus, the potential flow approximation is valid in this case.

Another quantity of interest is the Froude number. The Froude number is a non-

dimensional quantity that defines the relative importance of inertial and gravitational

forces and it is given by

Fr =
V√
Lg

. (2.11)

The inverse square of this term appears in the first term on the right hand side of

equation (2.5) where f0 is chosen to be gravitational acceleration, g.

Given that the premise of the model developed herein is to analyse free surface

effects, it is important not to have a low Froude number for the channel - if it were very

low then the dominance of gravity would suggest the free surface could be modelled as a

rigid lid. For the channel described above, the value is FrC = 0.29 which is acceptable.

With these base figures established, consider the problem of scaling the channel
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whilst maintaining similar physical effects. In experimental modelling including a free

surface, it is common to fix the value of the Froude number. With this restriction, the

hydrofoil’s Reynolds number can now be related to depth of the channel. To show this,

consider a fixed Froude number for a channel of given depth, say LC . Then the velocity

needed to achieve the Froude number is given by

V =
√
LCgFrC . (2.12)

By substituting equation (2.12) into the expression for the Reynolds number of the

hydrofoil, observe that

ReB =
FrC

√
LCgLB

υ
(2.13)

where LB is the chord length of the hydrofoil. By estimating that the chord length

will be one twentieth of the channel depth (i.e. LB = 0.05LC) the relationship of the

Reynolds number of the hydrofoil to the channel depth is given by

ReB =
0.05FrC

√
LCgLC

υ

=
(

0.05FrC
√
g

υ

)
L

3/2
C

⇒ ReB ∝ L
3/2
C .

(2.14)

Thus modelling the channel at tenth scale, whilst keeping the Froude number constant,

would produce a Reynolds number of just three percent of the original value. Even then,

this is still a Reynolds number in the turbulent regime. Despite this, it has been shown

(see Bourgoyne et al., 2003) that small variations in Reynolds number can impact on

the characteristics of hydrofoils.

One potential solution to the scaling problem is apparent by observing that the

Froude number is independent of the viscosity of the fluid being modelled. This offers

the opportunity to produce exact full scale physics by using alternative fluids at smaller

scales. For instance, for the characteristic quantities described above, petroleum could

be used at half scale. At quarter scale, mercury would provide a near correct Reynolds

number for the hydrofoil. Although this is an interesting observation, it is highly

unlikely that scale experiments will be carried out in this manner as the aforementioned

fluids are highly dangerous to work with.
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2.3 Physical Model

Now that the assumptions of a potential flow solution have been described, the physical

model using these assumptions, known as potential flow, can be introduced. The

purpose of this section is to describe potential flow and introduce the domain to which

this model will be applied.

2.3.1 Potential Flow

As detailed in the previous section, the assumption of high Reynolds number, within

a well mixed fluid, allows the flow about a hydrofoil to be modelled as incompressible,

inviscid and irrotational. For the flow to remain irrotational, irrespective of time, it

must be governed by the principals of Kelvin’s theorem (see Acheson, 1990, chapter. 5).

Thus, all forces must be conservative, the total system energy should be unchanging,

and the total circulation in the system must also be unchanging with time. With

these constraints, for time dependent motion, the flow can be described using a scalar

function φ(x, t) in a three-dimensional Cartesian system, such that the fluid velocity q

is given by

q = ∇φ. (2.15)

φ is known as the velocity potential. Substituting equation (2.15) into the continuity

equation (given by equation (2.1)), yields

∇ · q = ∇ · ∇φ = ∇2φ = 0. (2.16)

This equation is known as Laplace’s equation and is the governing equation of the flow.

Given the three-dimensional nature of the problem, the fluid domain, D ⊂ R3, is

assumed to be simply-connected, but not necessarily bounded. In addition, for equation

(2.16) to hold, φ must have a continuous second derivative within D, i.e. φ ∈ C2(D).

For the purposes of the model herein, S ⊂ R2, the boundary of D, is assumed to be

an R–L surface as defined by Lynn and Timlake (1968). This type of surface provides

a sufficiently smooth Lyapunov surface within discrete elements, whilst assuming that

the surface as a whole is Kellogg regular. This facilitates the use of piecewise continuous

elements whilst allowing for sharp corners between them, a requirement borne out by

the discretisation of the equations discussed in section 2.7. Subsequently, it is well
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Figure 2.1: The fluid domain under consideration.

known that φ can be found anywhere interior to the domain D once suitable boundary

values are known on S.

2.3.2 Computational Domain

The requirement is to solve the governing equation (equation (2.16)) for the domain

described by figure 2.1. The fluid volume D has within it a lifting body, bounded by

SB, with a connected wake surface, SW . Completing the boundary of D are the free

surface, SF , the inlet and outlet boundaries, SI and SO, and the bottom boundary,

SD. There are also the left and right vertical channel side wall boundaries, SL and

SR. In the case where one or all of these surrounding boundaries are not present then

a boundary at infinity, S∞ must be included. Specific boundary conditions must be

applied to the different boundaries, depending on whether the boundary is solid or free.

In traditional free surface potential problems, the boundary is subdivided into two

subsets dependant on the known values on these subsets,

S = SD ∪ SN , (2.17)

where SD describes a boundary for which φ is known, also known as a Dirichlet

boundary, and SN describes a boundary on which φn, the normal derivative of φ,

is known, referred to as a Neumann boundary. Hereafter, the subscript n shall denote
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the normal derivative in the direction out of the fluid domain, unless otherwise stated.

The free surface, SF , is a member of the Dirichlet subset and the other surfaces,

apart from the wake surface, SW , are Neumann surfaces. It turns out that the wake

surface can be classified as neither, as it shall be shown that the quantity on the

wake which describes its motion is known for all positions and times apart from at the

intersection with the trailing edge of the lifting surface. Thus, when lifting bodies are

included the total surface must have three subsets denoted

S = SD ∪ SN ∪ SW . (2.18)

2.4 Full Potential Formulation of Governing Equations

Now that the potential flow model and the domain to which it is applied have been

formulated, the mathematical equations which describe the boundary conditions are

required. In addition, a method for isolating the unknowns on the boundaries, known

as the boundary integral equation method will be introduced in this section. With this

method and these equations resolved, the theoretical framework is in place to produce

a time domain simulation of the potential flow within the chosen domain.

2.4.1 Boundary Conditions

The required boundary conditions to simulate the physics within the domain illustrated

in figure 2.1 are developed in this subsection. The far field velocity U(x, y, z), is intro-

duced into the domain by boundary condition set on the inlet and outlet boundaries,

SI and SO respectively. To conform with the irrotational assumption, U is chosen to be

steady and uniform, having magnitude U in the direction of x . As such, the boundary

conditions for SI and SO are

φn(P ) = −U P ∈ SI (2.19)

φn(P ) = U P ∈ SO (2.20)

where the unit normals on each surface, n, are pointing out of the domain (for example,

in figure 2.1, the normal would be (−1, 0, 0) for SI and (1, 0, 0) for SO). The remaining
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Neumann boundaries, such as the submersed body, SB, and bottom, have no crossing

boundary conditions given by

φn(P ) = 0 P ∈ SN − (SI ∪ SO). (2.21)

Note, that if the submerged body were translating, such as a turbine blade might, then

the above equation would no longer hold. In the case where a Neumann boundary is

the surface of a moving submersed body, the above condition generalises to

φn(P ) = u(P ) · n (2.22)

where u(P ) is the velocity of the body at point P and n is the unit normal, also at P .

The free surface boundary, SF , (the only Dirichlet boundary in the problem) has

some important physical considerations that must be adhered to. The first of these

conditions is that a particle on the free surface must remain on the free surface. This

is known as the kinematic boundary condition and is written,

Dx
Dt

= ∇φ x ∈ SF . (2.23)

The second condition arises from the Bernoulli equation for unsteady irrotational flow.

Neglecting the effects of surface tension, the pressure felt at the free surface will be equal

to that exerted by the external atmospheric pressure, pF . Given this, the Bernoulli

equation states that

∂φ

∂t
= −1

2

((
∂φ

∂x

)2

+
(
∂φ

∂y

)2
)

− gz − pF

ρ
+ c(t) x ∈ SF (2.24)

where c(t) is some function of time and g is the acceleration due to gravity. Adding

a function of time alone to φ makes no difference to the flow velocity, given by equa-

tion (2.15), and so, if pF is a constant, the last two terms in equation (2.24) can be

absorbed into φt to give

∂φ

∂t
= −1

2

((
∂φ

∂x

)2

+
(
∂φ

∂y

)2
)

− gz x ∈ SF . (2.25)
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Additionally, by noting that the material derivative of φ is

Dφ

Dt
=
∂φ

∂t
+ ∇φ · ∇φ (2.26)

the Lagrangian form of equation (2.25) is written

Dφ

Dt
=

1
2
|∇φ|2 − gz x ∈ SF . (2.27)

Equations (2.25) and (2.27) are known as the dynamic boundary condition on the free

surface.

As mentioned previously, there is a fundamental quantity on the wake which is

known everywhere apart from at the trailing edge. To provide a value for this quantity

at the trailing edge, a further boundary condition must be applied there. This boundary

condition is a consequence of the Kutta-Joukowski hypothesis which postulates that the

correct amount of circulation is achieved when the flow leaves the trailing edge of an

aerofoil smoothly and with finite velocity. The subsequent and well known Kutta-

Joukowski theorem (see Acheson, 1990, pg. 21) goes on to establish the relationship

between circulation and lift. The concept is neatly illustrated in figure 2.2. Part (a)

shows the irrotational flow with no circulation. Observe that the stagnation point is on

the top side of the aerofoil and that the fluid velocity must be infinite at the trailing

edge (as it must turn the sharp corner). In part (b) enough circulation is applied so

that the velocity at the trailing edge is finite. This finite velocity condition on the flow

at the trailing edge of the aerofoil is the required extra boundary condition.

(a) (b)

Figure 2.2: The effect of circulation on the flow about an aerofoil. Recreated from Acheson
(1990).

The numerical implementation of the finite velocity trailing edge condition is known

as the Kutta condition. The implementation of this condition has a significant impact

on the design of the present method. As such, this is readdressed in section 2.4.3 and

section 2.4.4, along with a brief introduction to the Kutta-Joukowski hypothesis and
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D

Figure 2.3: The fluid domain under consideration (2D-slice).

theorem.

2.4.2 Boundary Integral Equations

In order to find the unknown values on the Neumann and Dirichlet boundaries, a set of

integral equations are derived which can then be solved simultaneously. These equations

are known as boundary integral equations. They shall be derived from first principles

by employing an application of Green’s second identity (see Kellogg, 1929, pg. 215) in

a similar manner to the derivation demonstrated in Katz and Plotkin (2001).

A two-dimensional slice of the three-dimensional computational domain is illus-

trated in figure 2.3. The requirement is to solve equation (2.16) for the 3D domain.

Note that the left and right side vertical channel boundaries, SL and SR cannot be

marked in figure 2.3. Also, recall that in the case where one or all of the surfaces

bounding D are not present then a boundary at infinity, S∞, must be included.

Following Katz and Plotkin, the divergence theorem is applied to a set of two scalar
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functions φ1(x, y, z; t) and φ2(x, y, z; t), resulting in

∫
S

(φ1∇φ2 − φ2∇φ1) · n dS =
∫

D

(
φ1∇2φ2 − φ2∇2φ1

)
dD. (2.28)

Equation (2.28) is known as Green’s second identity. Here, the total surface, S, is the

union of all the surfaces delineating D, i.e.

S = SB ∪ SW ∪ SF ∪ SI ∪ SO ∪ SD ∪ SL ∪ SR.

In the next step, φ1 and φ2 are chosen such that

φ1 =
1
r

and φ2 = φ,

where

R = Q− P and r = ‖R‖.

P = (xp, yp, zp) is an arbitrary point within R3 (known as the field or collocation point)

and R is the vector from P to Q = (xq, yq, zq), the integration point (or source point).

Subsequently, equation (2.28) becomes

∫
S

(
1
r
∇φ− φ∇1

r

)
· n dS =

∫
D

(
1
r
∇2φ− φ∇2 1

r

)
dD. (2.29)

Several limiting behaviours for equation (2.29) can now be demonstrated. First,

consider a point, P = P0, that lies external to the fluid domain. In this case r can not

be zero for any point Q ∈ D and thus both ∇2(1/r) and ∇2φ are always zero. Hence,

equation (2.29) assumes the form

∫
S

(
1
r
∇φ− φ∇1

r

)
· n dS = 0. (2.30)

In the case of an internal point, such as P = P1, r approaches zero as Q approaches

P1. To evaluate equation (2.29) for this case the singular point, P1, must be isolated

from the domain by surrounding it with a sphere of radius ε. As r is not zero–valued

outside of the sphere surrounding P1, equation (2.29) can now be written as

∫
S+sphere ε

(
1
r
∇φ− φ∇1

r

)
· n dS = 0. (2.31)
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To integrate over the sphere surrounding P1 a polar coordinate transformation is

applied. The coordinate system for the sphere is transformed into a (r, θ, ψ) basis.

Recasting equation (2.31) gives:

∫
sphere ε

(
1
r
∇φ− φ∇1

r

)
· n dS +

∫
S

(
1
r
∇φ− φ∇1

r

)
· n dS = 0. (2.32)

As a result of the spherical coordinate system, on the sphere n = −er and thus n ·∇φ =

−∂φ/∂r. Furthermore,

∇1
r

= −
(

1
r2

)
er. (2.33)

The integral over the sphere is now

−
∫ 2π

0

∫ π

0

(
1
r

∂φ

∂r
+
φ

r2

)
r2 sin(θ) dθ dψ

∣∣∣∣
r=ε

=
(
−r
∫ 2π

0

∫ π

0

∂φ

∂r
sin(θ) dθ dψ −

∫ 2π

0

∫ π

0
φ sin(θ) dθ dψ

)∣∣∣∣
r=ε

.

(2.34)

Assuming φ and ∇φ are well behaved at P = P1, in the limit as ε→ 0 the first integral

in the above expression vanishes and the second gives

lim
ε→0

∫
sphere ε

dS = −4πφ(P1). (2.35)

Substituting equation (2.35) into equation (2.32) reveals that for the internal point

φ(P1) =
1
4π

∫
S

(
1
r
∇φ− φ∇1

r

)
· n dS. (2.36)

A point is now chosen that lies on a smooth part of the boundary S of the volume

D. Accordingly, the singular point can be isolated by a hemisphere. Thus, with similar

working to that above, the result for point P2, as seen in figure 2.3 part (b), is

φ(P2) =
1
2π

∫
S

(
1
r
∇φ− φ∇1

r

)
· n dS. (2.37)

Should the point now lie on a sharp corner of S, such as the point P = P3 (see

figure 2.3, part (b)), the integral equation for that point is determined by the angle

subtended by the portion of the sphere centred at P3 which is internal to the fluid

domain. This angle is known as the solid angle, α. Consequently, the integral equation
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for P3 is given as

α(P3)φ(P3) =
∫

S

(
1
r
∇φ− φ∇1

r

)
· n dS. (2.38)

In order to determine α, the technique described by Xü (1992) is employed. Consider

equation (2.38) applied to a constant potential φ = c. Given φ will be unchanging in

D the normal derivative of φ, ∇φ · n, will be zero. Hence, equation (2.38) becomes

α(P ) c = c

∫
S

(
−∇1

r
· n
)
dS

⇒ α(P ) = −
∫

S
∇1
r
· n dS.

(2.39)

The r−1 kernel in equations (2.36), (2.37) and (2.38) is known as a Green’s function,

G(P,Q). Using this notation, equation (2.38) can be rewritten for a generic point P as

α(P )φ(P ) +
∫

S
φ(Q)Gn(P,Q) − φn(Q)G(P,Q) dS(Q) = 0, (2.40)

where the normal derivative of G is

Gn = ∇
(

1
r

)
· n = −n · R

r3
. (2.41)

When considering lifting surfaces in potential flow the circulation around the sur-

face, inherent with the generation of lift, must be accounted for. For the flow to remain

irrotational this circulation must be met with an equal and opposite circulation within

the fluid domain so that the total circulation is unchanging. To achieve this a vortex

sheet (surface SW in figure 2.3) must be modelled downstream of the lifting surface.

A potential flow solution including a vortex sheet is sometimes referred to as a quasi-

potential boundary element method (Morino and Bernardini, 2001) as the irrotational

vortex sheet must be excluded from the domain by assuming it is infinitesimally thin.

In a similar approach to that used by Katz and Plotkin (2001, chapter 3), consider

the wake surface, SW , as two separate surfaces, SW+ and SW− (see figure 2.3 part (c)).

For this geometry, equation (2.38) is rewritten

α(P )φ(P ) =
∫

S−SW

(
1
r
∇φ− φ∇1

r

)
· n dS+∫

SW+

(
1
r
∇φ− φ∇1

r

)
· n+ dS +

∫
SW−

(
1
r
∇φ− φ∇1

r

)
· n− dS. (2.42)
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As the top and bottom wake surfaces must not move apart from each other, the

normal derivative of φ must be continuous across them. As the normals on SW+ and

SW− are equal and opposite, i.e. n+ = −n−, when a unified normal is chosen, say

n = n−, the gradients of φ on either surface are also equal and opposite, i.e.

∇φ · n+ = −∇φ · n−. (2.43)

Subsequently, equation (2.42) reduces to

α(P )φ(P ) =
∫

S−SW

(
1
r
∇φ− φ∇1

r

)
· n dS

+
∫

SW+

(
φ∇1

r

)
· n dS −

∫
SW−

(
φ∇1

r

)
· n dS. (2.44)

By now considering the wake as one unified surface and by defining the doublet

strength as µ = φ+−φ− (where + and − indicate values on SW+ and SW− respectively),

the final governing equation for a lifting surface in potential flow is

α(P )φ(P ) =
∫

S−SW

(
1
r
∇φ− φ∇1

r

)
· n dS +

∫
SW

µ

(
∇1
r

)
· n dS. (2.45)

In addition to developing the lifting formulation of the governing equations, atten-

tion must be given to the correct calculation of the solid angle. Applying the same

technique used for equation (2.39), consider a constant potential c applied throughout

the domain of equation (2.44). This gives,

α(P )c = c

∫
S−SW

−
(
∇1
r

)
· n dS − c

∫
SW+

(
∇1
r

)
· n dS + c

∫
SW−

(
∇1
r

)
· n dS.

(2.46)

Bringing the two sides of the wake together results in cancellation and equation (2.46)

becomes

α(P ) = −
∫

S−SW

∇1
r
· n dS. (2.47)

Although equation (2.47) is similar to equation (2.39) note that the surface of integra-

tion of the above equation is restricted to those panels not on the wake. Thus panels

on the wake do not contribute to the solid angle.

Now that the governing boundary integral equations for lifting and non-lifting flows
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have been formed, it is useful to consider them in terms of the unknown quantities on

the Neumann and Dirichlet boundaries in a similar style to Xü (1992, section 2.2). That

is, the equations are rearranged so that the known quantities appear on the right hand

side and the unknown quantities appear of the left hand side. Beginning by considering

geometries without the inclusion of a wake, equation (2.40) for a point P ∈ SD can be

written as

∫∫
SN

φ(Q)Gn(P,Q) dS(Q) −
∫∫

SD

φn(Q)G(P,Q) dS(Q) =

− α(P )φ(P ) −
∫∫

SD

φ(Q)Gn(P,Q) dS(Q) +
∫∫

SN

φn(Q)G(P,Q) dS(Q), (2.48)

and for a point P ∈ SN ,

α(P )φ(P ) +
∫∫

SN

φ(Q)Gn(P,Q) dS(Q) −
∫∫

SD

φn(Q)G(P,Q) dS(Q) =

−
∫∫

SD

φ(Q)Gn(P,Q) dS(Q) +
∫∫

SN

φn(Q)G(P,Q) dS(Q) . (2.49)

For geometries including a wake surface, similar expressions can be written using

equation (2.45). Thus, for P ∈ SD the equation becomes

∫∫
SN

φ(Q)Gn(P,Q) dS(Q) −
∫∫

SD

φn(Q)G(P,Q) dS(Q) =

− α(P )φ(P ) −
∫∫

SD

φ(Q)Gn(P,Q) dS(Q) +
∫∫

SN

φn(Q)G(P,Q) dS(Q)

+
∫∫

SW

µ(Q)Gn(P,Q) dS(Q), (2.50)

and for P ∈ SN ,

α(P )φ(P ) +
∫∫

SN

φ(Q)Gn(P,Q) dS(Q) −
∫∫

SD

φn(Q)G(P,Q) dS(Q) =

−
∫∫

SD

φ(Q)Gn(P,Q) dS(Q) +
∫∫

SN

φn(Q)G(P,Q) dS(Q)

+
∫∫

SW

µ(Q)Gn(P,Q) dS(Q) . (2.51)

Equations (2.48) and (2.50) are Fredholm integral equations of the first kind and

equations (2.49) and (2.51) are Fredholm integral equations of the second kind. The
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order of the kernels are weakly singular for G, i.e. O(r−1), and strongly singular

for Gn, i.e. O(r−2) (see Guiggiani, 1998). Xü (1992, appendix. A) proves that, for

a smooth C∞-continuous surface, the strong singularity can be reduced to that of a

weak singularity via means of a Taylor expansion, although this is not applicable at all

points within a piecewise continuous surface. This difficulty is of particular interest to

the present analysis.

2.4.3 Uniqueness of Solution and the Wake Strength

The uniqueness of solutions to lifting problems in potential flow is, in part, dependent

on the connectivity of the domain to be evaluated. In two-dimensional lifting cases,

domains of interest are always multiply connected and in such cases the uniqueness

of the solution is dependent on a physical representation of the circulation generated

about a wing (see Katz and Plotkin, 2001, page 32). In the case of simple bodies in

a three-dimensional domain, the domain will be simply connected (a doughnut shaped

body in three dimensions would result in a multiply connected flow domain) and thus

it is easily shown (see Katz and Plotkin, 2001, page 30) that the solution is unique

to within a constant and as the gradient of φ is the only quantity of interest, this is

sufficient. However, as Katz and Plotkin point out, greater care must be taken when a

wake is present in a three-dimensional potential flow field.

Morino and Bernardini (2001) point out the obvious lack of uniqueness in a lifting

solution that would arise from not determining the doublet strength, µ, on the wake

surface. The boundary integral formulation described by equations (2.50) and (2.51),

is formulated in such a way as the wake strength, µ is almost an arbitrary value.

Therefore, some physical considerations are required to set the wake strength.

The aim of Morino and Bernardini’s 2001 paper was to determine the necessary

conditions for a unique solution when formulating the doublet strength on the trailing

edge. The three properties that they investigated were the Kutta-Joukowski theorem,

the numerical Kutta condition, and the spatial Kutta condition (all introduced with

the boundary conditions in section 2.4.1).

The Kutta-Joukowski theorem is interpreted in numerous ways by various authors.

Morino and Bernardini (2001) choose to interpret it as two separate conditions whilst

maintaining that they remain related to each other. Morino describes the Joukowski

conjecture as the necessity of smooth, non-infinite, flow at the sharp trailing edge of an
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aerofoil, while the Kutta-condition is a numerical ‘no pressure difference’ condition, or

[p] = 0, (2.52)

where ‘[ ]’ denotes the difference between the top and bottom of the wake and p is the

pressure.

Combining equation (2.52) with the Bernoulli equation provides an extremely useful

result. In a similar manner to the result proved by Morino and Bernardini (2001) and

Politis (2004), consider the unsteady Bernoulli equation at the trailing edge, given by

∂φ+

∂t
+

1
2
‖v+‖2 +

p+

ρ
=
∂φ−

∂t
+

1
2
‖v−‖2 +

p−

ρ
. (2.53)

Rearranging, it can be seen that

∂φ+

∂t
− ∂φ−

∂t
+

1
2
(
‖v+‖2 − ‖v−‖2

)
+
p+

ρ
− p−

ρ
= 0 . (2.54)

Utilising equation (2.52) and by observing that

(
‖v+‖2 − ‖v−‖2

)
=
(
v+ + v−) . (v+ − v−) ,

equation (2.54) becomes

∂φ+

∂t
− ∂φ−

∂t
+

1
2
(
v+ + v−) . (v+ − v−) = 0 . (2.55)

Now define the wake material derivative, DW /Dt to be a material derivative with the

velocity chosen to be the average of the velocity of the top and bottom of the wake,

i.e.,

DW

Dt
=

∂

∂t
+ vW · ∇ where (2.56)

vW =
1
2
(
v+ + v−) . (2.57)

Rewriting equation (2.55) in terms of DW /Dt then reveals

DW

Dt

(
[φ]
)

=
DW

Dt

(
µ
)

= 0. (2.58)
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The significance of equation (2.58) is that µ is a material property of the wake. That

is, once a value of µ is known at a point on the wake surface, that value is transported

along the wake with the wake velocity (i.e. the average fluid velocity on the top and

bottom of the wake surface).

All that remains in order to guarantee uniqueness is the value of µ at the trailing

edge, where the shed vorticity is generated, and the orientation of the vortex sheet as

it separates from the aerofoil. In a time variant problem, this short section of the wake

is known as the Kutta strip.

2.4.4 The Numerical and Spatial Kutta Condition

The Kutta condition describes the numerical implementation of the Kutta-Joukowski

theorem. As Katz and Plotkin (2001) argued, unless the circulation about the wing

is physically determined, the solution will not be unique. In order to maintain the

irrotational assumption in the potential formulation, the circulation about the wing

is balanced by an equal and opposite circulation in the wake. The circulation in the

wake is manifest through the doublet strength and this quantity is transported with

the wake as a material property. Thus, the doublet strength need only be calculated

at the trailing edge of the aerofoil which, in turn, discerns the circulation about the

aerofoil. To achieve this the Kutta-Joukowski theorem is applied.

Although equation (2.52) is relatively simple, its numerical application in potential

flow is certainly not. A number of formulations and equations have been developed since

Morino and Kuo (1974) first presented their well known formulation. They postulated

that the no pressure difference condition could be implemented by relating the wake

strength at the trailing edge to the difference in φ between the top and bottom surfaces

of the aerofoil at the trailing edge, i.e

[φ]TE = φupper − φlower (2.59)

where [φ]TE is the value of [φ] on the wake at the trailing edge and φupper and φlower

are the values of φ on the upper and lowers surfaces of the aerofoil at the trailing

edge. Obviously, [φ] in equation (2.59) is identical to the doublet strength on the wake,

µ. Thus, equation (2.59) provides both uniqueness and a means for calculating the

strength of the wake sheet at the trailing edge. This Morino type Kutta condition is
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not the only available formulation and, indeed, may not provide an entirely accurate

implementation of equation (2.52). This fact is illustrated by Kinnas and Hsin (1992),

who chose to implement a more accurate scheme. However, from a practical point of

view, the Morino type condition is much easier to implement than an iterative scheme

or a scheme which explicitly limits velocity. Thus the Morino type Kutta condition is

chosen for the present simulation. For the interested reader, a historical review of the

Kutta condition and some of the alternative methods are presented in appendix A.

Prudence is still advisable when implementing equation (2.59). Unlike the constant

panel methods used by Morino and Kuo when they formulated their Kutta condition,

modern high order panel methods will collocate at the panel edges and, as such, allow

the possibility for two coincident nodes to be placed at the trailing edge. It could be

theorised that these nodes would then (without explicit continuity of φ) provide the

best numerical representation of equation (2.59).

To disprove this theory, consider the well known fact that there exists a singularity

in the solution at sharp corners (beyond a reflex dihedral angle of α > π) and, in fact,

from a mathematical perspective, it is this singularity that the Kutta condition seeks

to cancel (this type of singularity is sometimes attributed to Kondrat’ev and Oleinik

(1983)). The issue with attempting to resolve the strength of this singularity coincident

to the trailing edge is that, as Bassanini et al. (1996) point out, the singularity exists

only in the limit to the trailing edge. Therefore, an attempt to extract the solution

from coincident nodes at the trailing edge is fruitless.

Ardito Marretta et al. (1999) have solved this problem for higher order schemes

by using a similar approach to constant panel formulations. They applied the Kutta

condition to the computational nodes immediately adjacent to the trailing edge rather

than those on it. This approach would indicate that there is little to gain from using

coincident trailing edge nodes to implement the Morino type Kutta condition.

In the theoretical implementation of the Morino Kutta condition, equation (2.50)

and equation (2.51) would remain unchanged and the additional equation (2.59) solved

latterly. In practical terms, however, due to the spatial discretisation, not all of SW can

remain of the left hand side of the equations and thus a strip of the wake, known as the

Kutta strip, SK , must be determined as part of the linear system using equation (2.59)

directly. This approach is covered in greater detail within chapter 3.

Supplying the wake strength at the trailing edge is still not sufficient to render the
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(a) Tangent to aerofoil top. (b) Tangent to aerofoil bottom.

α

(c) Tangent to bisecting angle.

Figure 2.4: Alternative orientations of the wake vortex sheet as it separates from the
trailing edge of the aerofoil.

Kutta condition completely satisfied. Equally important is the direction at which the

wake sheet leaves the aerofoil (in particular, this removes the Kondratev and Oleinik

singularity). Often, when thick lifting bodies are simulated with boundary element

methods, the wake sheet is chosen to leave at the bisecting angle of the trailing edge.

However, Mangler and Smith (1970), Bassanini et al. (1999) and Morino and Bernardini

(2001) all suggest that this approach does not fully represent the physics. They point

out that when fully removing the singularity from the trailing edge, the wake sheet

is rarely positioned at the trailing edge angle bisector. Indeed, it is more likely to be

tangent to one of the aerofoil surfaces. The alternative orientations for the wake sheet

leaving the aerofoil trailing edge are shown in figure 2.4.

Mangler and Smith (1970) deduced that the wake will be tangent to either the

top or bottom lifting surface dependent on the planform of the wing and the velocity

tangential to trailing edge in the spanwise direction. Although Mangler and Smith’s

formulation was intended for steady flows, Bassanini et al. (1999) showed that similar

conditions hold for lifting surfaces in unsteady flows. Thus, the wake sheet shedding

at the bisecting angle, beyond very special cases, turns out to be non-physical. Still,

the ease of implementing separation at the bisecting angle is highly attractive and

thus it was decided that the added complication of implementing the Mangler and

Smith’s approach would not be beneficial to this study. The spatial Kutta condition is

considered in further detail in appendix A.

2.4.5 Initial Conditions for Mixed Eulerian-Lagrangian Time-Stepping

The initial conditions for the formulation described in the previous section, excluding

the wake surface are described in Xü (1992) by

φ(x, 0) = f0(x), x ∈ SD, f0 ∈ C0(SD), (2.60)

φn(x, 0) = g0(x), x ∈ SN , g0 ∈ C0(SN ), (2.61)
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where f0 and g0 are given. Additionally, the free surface geometry is chosen, nominally

at rest. Also, any submerged bodies must be positioned within the fluid domain.

For lifting simulations at t = 0, a lifting surface with an attached starting wake

is included where the starting wake leaves the trailing edge aligned with the bisecting

angle. Equation (2.61) also holds for the lifting body and the initial condition on its

wake is given by

µ(x, 0) = 0, x ∈ SW . (2.62)

This condition ensures that, for higher order, the edges of the wake do not have a non-

physical jump in potential. It also provides additional advantages for the calculation of

the self-induced velocity on the wake as shall be discussed in chapter 4. Note that this

condition does not apply to the Kutta nodes (those nodes on the wake at the trailing

edge) as the values there shall be calculated as part of the solution.

With the boundary and initial conditions given, a mixed Eulerian-Lagrangian ap-

proach (Xü, 1992; Longuet-Higgins and Cokelet, 1976) is used to update the free surface

and wake positions. As Xü (1992) described, once all of the velocity components on

the free surface are calculated, equation (2.23) can be integrated to find the free surface

position at time t+∇t. To find the the new potential value for φ(x, t+∇t) on SF (t+∇t)

equation (2.27) is integrated. Similarly the wake geometry is updated by integrating

equation (2.57) to give the new geometry at time t + ∇t. Due to equation (2.58) the

value of µ(x, t) on SW (t) is transported to the new position on SW (t+ ∇t) unaltered.

The entire process is repeated for each time step.

Xü enforced that the key issues for implementing this process are the accurate cal-

culation of φ and µ and, subsequently, the accurate calculation of the surface velocities.

Of particular interest to this study is the calculation of the self induced wake velocity

when using a high order piecewise discretisation.
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2.5 Perturbation Potential Formulation of the Governing

Equations

An alternative approach to formulating the governing integral equations is known as the

perturbation potential formulation. This formulation is particularly useful for bodies

submerged in a fluid of infinite domain as this approach assumes there is a constant free

stream velocity which is applied at an imaginary surface at infinity, S∞. This removes

the need to discretise the boundaries in order to generate fluid flow.

The premise is to separate the whole potential into the separate contributions

from the flow at infinity and the perturbation to that flow caused by the modelled

surfaces within the computational domain. To demonstrate this, redefine the full

potential as φ∗ and recall that this full potential satisfies the boundary conditions

given by equations (2.23) and (2.27) on the free surface, equations (2.21) and (2.22)

for submersed bodies and equations (2.57) and (2.58) on the wake. In addition, the

perturbation potential, φ, is related to the full potential by

φ∗ = φ+ φ∞ (2.63)

where φ∞ is the potential at infinity.

Assuming a constant flow at infinity having magnitude U in the x direction, such

that U = (U, 0, 0), the potential at infinity is given by

φ∞ = Ux. (2.64)

Substituting equation (2.64) into equation (2.63) gives

φ∗ = φ+ Ux. (2.65)

As the flow at infinity is now superimposed throughout the domain, the Neumann

no-crossing boundary condition on a stationary body is altered to

φn = −U · n. (2.66)

In addition, for the channel illustrated in figure 2.1, surfaces SI and SO no longer form
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part of the solution. Indeed, perturbation potential simulations can be performed with

just the SB and S∞ boundaries with the addition of SW for a lifting problem. Such a

geometry would describe a traditional Neumann problem and is useful for verification

tests as well as testing the wake model in the absence of the free surface (see chapter 6).

For simulating a channel using perturbation potential, the surfaces SF , SD, SL and SR

must also be included.

The free surface boundary conditions are also altered in perturbation potential as

a consequence of equation (2.65). The kinematic boundary condition, given in full

potential by equation (2.23), becomes

Dx
Dt

= ∇ (φ+ Ux) = ∇φ+ U x ∈ SF . (2.67)

Now consider the effect of substituting equation (2.65) into the dynamic boundary

condition given by equation (2.27). Maintaining the frame of reference, the material

derivative is given by
D

Dt
=

∂

∂t
+ ∇φ∗ · ∇. (2.68)

Expanding equation (2.27) in terms of perturbation potential, the left hand side be-

comes
Dφ∗

Dt
=
∂φ∗

∂t
+ ∇φ∗ · ∇φ∗

=
∂φ+ Ux

∂t
+ ∇φ∗ · (φ+ Ux)

=
∂φ

∂t
+ ∇φ∗ · φ+ U

∂φ

∂x
+ U2

=
Dφ

Dt
+ U

∂φ

∂x
+ U2.

(2.69)

Subsequently, the right hand side is given by

1
2
|∇φ∗|2 − gz =

1
2

((
∂(φ+ Ux)

∂x

)2

+
(
∂φ

∂y

)2

+
(
∂φ

∂z

)2
)

− gz

=
1
2

((
∂φ

∂x

)2

+
(
∂φ

∂y

)2

+
(
∂φ

∂z

)2

+ 2U
∂φ

∂x
+ U2

)
− gz

=
1
2
|∇φ|2 + U

∂φ

∂x
+

1
2
U2 − gz.

(2.70)

Bringing the left and right hand sides together and noting that because U2 is invariant in

time it will not influence ∇φ∗, the perturbation potential dynamic boundary condition
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is given by
Dφ

Dt
=

1
2
|∇φ|2 − gz x ∈ SF . (2.71)

For the wake boundary conditions, equation (2.57) is altered slightly to include the

free stream velocity. The perturbation potential form of the boundary condition is

vW =
1
2
(
v+ + v−)+ U. (2.72)

Equation (2.58) is unaltered; the same quantity added to φ on the top and bottom of

the wake will not alter [φ] = µ.

The use of perturbation potential provides an additional advantage over the full

potential formulation because the altered free surface boundary conditions provide

additional numerical accuracy. This is a consequence of the full potential incorpo-

rating the, potentially large, potential at infinity. This may then be susceptible to

truncation error, eliminating small variations of φ∗ on the free surface. In contrast, the

perturbation potential will only give the variation of the free surface potential from the

potential at infinity and thus small variations will not be disguised. Even with this

caveat, it should be noted that the full potential solution provides a useful check on

the results of the perturbation potential formulation.

Equations (2.50) and (2.51) or (2.48) and (2.49) will continue to provide the gov-

erning equations for the perturbation potential with the full potential exchanged with

the perturbation potential. Similarly, the initial conditions take a similar form to that

of the full potential formulation.

An additional consideration for the perturbation potential is the value of the solid

angle with the use of the boundary at infinity. For simulations using S∞, the solid

angle contribution from this surface is simply 4π, thus the total solid angle is given by

α(P ) = −
∫

SB

∇1
r
· n dS + 4π, (2.73)

recalling that the wake (should it be present) continues not to contribute.

For perturbation potential within a channel SI and SO do not contribute to the

solution. However, they must still be included within the integration domain of equa-

tion (2.39). For a simple geometry, such as a rectangular inlet/outlet, this can be

achieved analytically, provided the free surface potential is zero. Otherwise an analytical



2.6. The Hypersingular Boundary Integral Equation 52

solution to a strong singularity is required, which is far from trivial. In addition, for

a variable geometry, say, if the free surface were to be allowed to deform there, the

analytical result would be again more complicated. Thus, in general the inlet and

outlet boundaries are discretised even in the perturbation potential case.

2.6 The Hypersingular Boundary Integral Equation

In order to advance time dependent boundary conditions and to examine quantities of

interest within the flow field, it is important to be able to determine the velocity both

within the volume and on the surfaces bounding the domain. Within the volume, away

from surfaces, equation (2.36) can be analytically differentiated to provide a formula

for the result. The gradient of equation (2.36) in the principal directions (x, y, z) is

sought. Following the notation of Gray et al. (2004a), these derivatives are represented

by d/dEk, where Ek, for k = 1, 2 and 3, is the unit vector in the x, y and z directions,

respectively. Differentiating equation (2.36) produces

∂φ(P )
∂Ek

=
1
4π

∫
S
∇
[(

1
r

)
φn − φ

(
n · R
r3

)]
· Ek dS

=
1
4π

∫
S

−Ek · R
r3

φn − φ

(
n · Ek

r3
− 3

(n · R) (Ek · R)
r5

)
dS.

(2.74)

Equation (2.74) is valid for all points P ∈ D\S and is non singular. Hence, no analytical

manipulation of the equation is required and the accuracy of points nearby to S can be

maintained via adaptive numerical schemes.

Three alternative approaches are available for calculating the gradient of φ at points

P ∈ S. The first is numerical differentiation; numerical differentiation schemes use

backwards, forwards or central differences to calculate the gradients on surfaces. On

surfaces such as the free surface, numerical differentiation is perfectly adequate and is

discussed in chapter 4. Difficulties with implementing numerical differentiation arise

when there are either too few points available or when a gradient is required at the very

edge of a surface (as skewed differencing schemes are less accurate). Unfortunately,

when wakes are considered and just the doublet strength, µ, is known, numerically

differentiation will not suffice. This results in the gradient of the difference in φ between

the top and bottom wake surface being found, rather than the average of the gradients

of φ on the top and bottom surfaces as required by equation (2.58).
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An alternative approach for determining velocities on a surface is to directly differ-

entiate equation (2.38) applied to a general point, P ∈ S. This results in

α(P )
∂φ(P )
∂Ek

=
∫

S

−Ek · R
r3

φn − φ

(
n · Ek

r3
− 3

(n · R) (Ek · R)
r5

)
dS. (2.75)

The difficulties with evaluating equation (2.75) stem from the O(r−3) (denoting

order) terms multiplying φ. In this form, a direct solution to the equation requires that

the surface be smooth everywhere (see Guiggiani, 1998).

The third method, and that chosen herein, is an alternative limiting procedure

favoured by Gray et al. (2004a,b). Their approach was to use the ‘off-surface’ integral

equation, given by equation (2.36), and take the limiting value as the point approaches

the surface. Returning to G-notation, this modifies equation (2.38) so that

φ(P ) = lim
PI→P

1
4π

∫
S
Gφn − φGn dS, (2.76)

where PI is a point interior to the domain and P is a point on a S. Subsequently,

taking the gradient of equation (2.76) produces

∂φ(P )
∂Ek

= lim
PI→P

1
4π

∫
S

∂G

∂Ek
φn − φ

∂2G

∂Ek∂n
dS. (2.77)

Notice the lack of solid angle in equations (2.76) and (2.77) as the 4π persists in the

limit as PI approaches P .

The r−3 type singularity in equations (2.75) and (2.77) is known as hypersingular

and, as such, the equations are known as hypersingular boundary integral equations. It

is now possible to demonstrate how this limiting approach can be applied to the wake

vortex sheet.

To begin, assume that the velocity on all surfaces bounding D excluding SW is

known. The velocity on the wake surface, SW , is sought, given by equation (2.57).

Essentially, the average of the velocity in the limit to the top and bottom of the wake

surface is required. The equation to provide this velocity shall be developed in a similar

manner to equation (2.45).

Consider the wake as two separate surfaces as seen in figure 2.5. In this situa-

tion there are a number of different approaches to taking the limits to the wake and

subsequently unifying surfaces S+
W and S−

W . One approach is to examine the limiting
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Figure 2.5: Limits on Wake

behaviour of each side independently and then bring the two sides together. This

process is demonstrated in greater detail hereafter.

For the limit to the upper surface S+
W , define an internal and an external point,

P+
I and P+

E , respectively. Given that P+
I is internal to the flow the equation for the

velocity as P+
I → P+ is identical to equation (2.77), and therefore

∂φ(P+)
∂Ek

+ lim
P+

I →P+

1
4π

∫
S
φ(Q)

∂2G

∂Ek∂n
(P+

I , Q) − ∂G

∂Ek
(P+

I , Q)φn(Q) dQ = 0. (2.78)

The limit to P+ from the exterior point, P+
E , is found by differentiating equa-

tion (2.30). Applying the limit gives

lim
P+

E →P+

∫
S
φ(Q)

∂2G

∂Ek∂n
(P+

E , Q) − ∂G

∂Ek
(P+

E , Q)φn(Q) dQ = 0. (2.79)

With the interior and exterior limits established, Gray et al. (2004b) employ an

innovative technique to reduce the integration to a few panels local to the point of

interest. The first step of the technique is to subtract the external limit, equation (2.79),

from the internal limit, equation (2.78), to give

∂φ(P )
∂Ek

=
{

lim
PI→P

− lim
PE→P

}
1
4π

∫
S

∂G

∂Ek
φn(Q) − φ(Q)

∂2G

∂Ek∂n
dQ (2.80)

where the ‘+’ superscript has been dropped for convenience. This process reduces the

integration to include only singular parts, thus reducing the computational effort.

In an identical manner, a second equation can be formed for the other side of the

wake. Using these two equations the average velocity velocity can be found, provided

a suitable limiting technique is used to unify S+
W and S−

W . This is an integral process
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to the regularisation of these equations.

Regularisation is required as equation (2.80) does not reduce the order of the

hypersingular integral enough for it to be solved numerically. For this, a Galerkin

boundary element formulation must be used. The full derivation of these equations

forms part of chapter 4. In order to apply this technique, the formulation of both

collocation and Galerkin discretisation of the boundary integral equations is reviewed.

2.7 The Method of Weighted Residuals

With the fundamental mathematics defined, the question of discretisation of the equa-

tions must be addressed. A number of common methods for discretising boundary

integral equations exist, and, as Brebbia (1978) showed, they can be related and

categorised by considering the method of weighted residuals. To describe this method,

consider an integral equation given by

LΥ(x) − f(x) = 0 (2.81)

where L is an integral operator and Υ(x) is the exact solution to the function f(x).

This solution may be approximated by a combining a complete series chosen from a set

of linearly independent functions (called basis, shape or interpolation functions) given

by ψj(x). This approximation is written as

Υ ≈ υ(x) =
n∑

j=1

βjψj . (2.82)

where β are unknown coefficients which must be determined. Subsequently, substitution

of equation (2.82) into equation (2.81) will result in an error or residual, R(x), of the

form

R(x) = L

 n∑
j=1

βjψj

− f(x) 6= 0. (2.83)

The principle behind the weighted residual method is to force R to zero by means of a

weighted average over the domain. This can be written as

∫∫
S
Rwj dS =

∫∫
S

[Lυ − f ]wj dS = 0 (2.84)
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where wj are a set of weighting functions. Equation (2.84) provides n algebraic equa-

tions for the unknown constants, βj , and thus provides Υ.

Brebbia showed that the method of weighted residuals could be applied directly

to the Laplace equation in order to form the boundary integral equations, utilising

the Green’s function as the weighting. However, the primary interest here is how the

weighted residual method may be used to describe the discretisation of the boundary

integral equations.

The method of weighted residuals has five common sub-methods, dependent on

which weightings are chosen. These are known as collocation, sub-domain, least-

squares, Galerkin and the method of moments. The methods applicable to the present

study are the collocation method (for the φ boundary integral) and the Galerkin method

(for the hypersingular velocity equation). These are now discussed in turn.

2.7.1 The Collocation Method

For the collocation method the weighting function, wj , is chosen to be the Dirac delta

function given by

δ(x − xj) =

 1 x = xj ,

0 otherwise.
(2.85)

This weighting provides the most common boundary element discretisation and is

equivalent to solving equations (2.50) and (2.51) using interpolation or shape functions.

If ψj(x) are globally defined functions over S then the method is known as a global

method ; if ψj(x) are defined over piecewise smooth subregions of S then the method is

known as a local method. In a similar approach to Xü (1992), the standard boundary

integral equations are solved using local piecewise smooth approximating functions,

allowing greater flexibility in the geometry and the boundary conditions.

Following Xü (1992, section 2.3), divide SD, SN and SW into piecewise smooth
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elements defined by

SD =
MD∪
m=1

Σm, (2.86)

SN =
MN∪
m=1

Σm, (2.87)

SW =
MW∪
m=1

Σm, (2.88)

where the total number of elements is M = MD + MN + MW and Σm is a generic

element. The discretised versions of equations (2.48) and (2.49) are

MN∑
m=1

Id −
MD∑
m=1

Is = −α(P )φ(P ) −
MD∑
m=1

Id +
MN∑
m=1

Is P ∈ SD (2.89)

and

α(P )φ(P ) +
MN∑
m=1

Id −
MD∑
m=1

Is = −
MD∑
m=1

Id +
MN∑
m=1

Is P ∈ SN . (2.90)

In addition, equations (2.50) and (2.51) can now be written as

MN∑
m=1

Id −
MD∑
m=1

Is = −α(P )φ(P ) −
MD∑
m=1

Id +
MN∑
m=1

Is +
MW∑
m=1

Iw P ∈ SD (2.91)

and

α(P )φ(P ) +
MN∑
m=1

Id −
MD∑
m=1

Is = −
MD∑
m=1

Id +
MN∑
m=1

Is +
MW∑
m=1

Iw P ∈ SN . (2.92)

The terms appearing in equations (2.89)–(2.92) are defined by

Is =
∫∫

Σm

φn(Q)G(P,Q) dS(Q), (2.93)

Id =
∫∫

Σm

φ(Q)Gn(P,Q) dS(Q), (2.94)

Iw =
∫∫

Σm

µ(Q)Gn(P,Q) dS(Q), (2.95)

and Xü refers to these as the elemental integrals. The finite part of the singular integral

is taken if P ∈ Σm.
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As Xü (1992) expressed, at this point an approximation to the piecewise generic

elements has yet to be described. Given this, all of the SW elements remain on the

right hand side of equations (2.91) and (2.92) while equation (2.59) does not, as yet,

form part of the solution procedure.

2.7.2 The Galerkin Method

The Galerkin method is applied by Gray et al. (2004b) to desingularise the hypersingular

boundary integral equation and thus facilitate direct calculation of velocity on the wake.

The method uses the local element’s shape functions as its weighting functions, i.e.

wm = ψm.

In a similar way to the collocation method, the Galerkin method facilitates the use

of piecewise smooth elements to approximate the surface, S. However, an additional

surface integration is required which re-poses the hypersingular boundary integral

equation as

∫
S
ψ̂j(P )

∂φ(P )
∂Ek

dP =
1
4π

∫
S
ψ̂j(P )

∫
S

∂G

∂Ek
φn(Q) − φ(Q)

∂2G

∂Ek∂n
dQ dP. (2.96)

This formulation requires that the left hand side of the equation be integrated over

the panels which ‘support’ the point P (the non-zero shape functions local to P are

denoted ψ̂). Additionally, there is a further surface integration to be carried out on the

right hand side. This allows the difficult singularities to be analytically reduced to a

greater extent than is feasible for a collocation method. This advantage is exploited by

Gray et al. and the application of this technique to the wake is shown in chapter 4.



Chapter 3

Eulerian Stage Implementation

3.1 Introduction

The difficulties of developing an accurate, unified, potential flow method for solving

the governing equations developed in chapter 2 are extensive. A dynamic free surface

in close proximity to submerged lifting bodies belies the use of simplistic constant and

linear approximations. It is well known that accurate free surface simulations using

boundary integral formulations require higher order elements. Indeed, it is generally

accepted that higher order elements are both desirable and more efficient in boundary

element methods than those of zeroth and first order.

Although higher order solutions are prominent in free surface wave simulations using

boundary integrals, their presence in lifting solutions (particularly dynamic simulations)

is much more sparse. However, the advantages of a higher order approach have been

recognised in the existing literature (see Pyo and Kinnas, 1997).

One inherent difficulty, which may explain the lack of high order methods applied

to this problem, is the accurate calculation of the hypersingular boundary integral

equation, necessary to determine the self induced velocity on surfaces such as vortex

wakes. For the free surface this problem has been circumvented using numerical

differentiation, rather than solving the equations directly. Repeating this approach

on a vortex wake is not possible as the conserved quantity on the wake, µ, does not

provide the average velocity when differentiated.

Solving the hypersingular boundary integral equation at the edges of higher order

elements is the goal of this thesis and is discussed in detail in chapter 4. The present

chapter is concerned with developing a high-order boundary element method to which

59
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the new solution technique can be applied. The application of a high accuracy differen-

tiating scheme requires a reliable, transparent and well respected high order boundary

element method to produce accurate solutions to the general boundary problem de-

scribed in chapter 2. The method chosen is the non-linear free surface solver of Xü

(1992).

The method of Xü may not be the most modern (with regards to its speed of

computation), however it is accurate and relatively simple to reproduce. In Xü (1992,

chap. 3) there are a number of numerical experiments which compare various super-

and iso-parametric elements. It was shown that the constant panel method did not

have a desirable level of accuracy for a mixed Neumann-Dirichlet problem, and also

that linear iso-parametric elements did not yield accurate enough velocities on the

free surface. Although B-spline approximations provided the most accurate solutions,

they were found to be too computationally costly. Thus, a biquadratic iso-parametric

element was chosen by Xü and the method is faithfully recreated herein with some

alterations to the published adaptive integration scheme (see section 3.3).

In addition to reproducing the scheme for the biquadratic elements, it was necessary

to produce a similar scheme for the linear elements that would be used on the wake.

The solution to the hypersingular boundary integral equation on the wake requires

linear triangular elements (other elements are possible but not developed here), and,

thus, similar elements would be used to calculate the influences from the wake. Thus, an

adaptive integration scheme for these elements is developed and discussed in section 3.4.

With the algorithm required to calculate the elemental integrals developed, the

linear system to be solved must be described for domains with and without wakes.

When wakes are present, the Kutta condition must be applied and the impact of this

on this linear system is illustrated. Additional equations appended to the linear system

provide the wake strength at the trailing edge for each time step. The linear systems

with and without wakes are described in section 3.5. Additional adjustments must

be made to account for the presence of the channel boundaries. In particular, should

a reflective boundary be chosen for the bottom or side walls, the Green’s function

must be altered to account for this. Also, where a reflective boundary is not used, a

double or triple node representation is used to ensure continuity of φ at the intersection

between boundaries. For the free surface/channel wall boundary, additional equations

can be written to correct the free surface potential ensuring that the free surface does



3.2. Biquadratic Elements and Influence Functions 61

not disconnect from, or pass through, the channel wall. The equations to undertake

this correction are detailed in appendix D, whilst a more basic approach was deemed

satisfactory for the simulations presented within the thesis.

3.2 Biquadratic Elements and Influence Functions

This section and section 3.3 strongly follow the work of Xü (1992, sections 4.3 and 4.5)

in order to present a complete methodology for the numerical model developed herein.

As the model is an amalgamation of multiple theories, the opportunity is taken to unify

the symbols and terminology of the standard boundary element method with those of

the Galerkin boundary element method presented in chapter 4. Some alterations and

additional theory are also provided, which are distinct from Xü (1992), and these will

be highlighted as and when required.

In developing the panels or elements for their boundary element method, Xü wished

to design a formal admissible grid test into the code, based upon the Taylor expansion

of φ within a parametric element. For the polynomial expansion to be useful, it was

necessary to enforce geometric isotropy, which would leave the polynomial approxi-

mation invariant after the transformation of coordinates. To facilitate the quadratic

approximation and satisfy the above restrictions, a nine node Lagrangian element was

chosen.

The generic element, Σm, defined in chapter 2, is now chosen to have nine nodes and

shall be described using curvilinear coordinates. The orthogonal parametric coordinates

(s, t) are used to map the domain of Σm to a square in (s, t) space with limits s ∈ [−1, 1],

t ∈ [−1, 1] as depicted in figure 3.1. All variables of interest, (x, y, z, φ, φn), are defined

on the nine nodes of the panel (note, µ is not included here as nine node panels are

not used on the wake). The values within the panel can be determined from the nine

nodal values and the shape or interpolation functions. For a general field function, Φ,

the interpolated value in (s, t) is given by

Φ(s, t) =
9∑

j=1

ψj(s, t)Φj (3.1)
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where Φj is the nodal value at the j-th node. Xü gave the nine shape functions as
ψj(s, t) =

1
4
s(s+ sj)t(t+ tj) j = 1, 3, 5, 7,

ψj(s, t) =
1
2
(1 − t2js

2 − s2j t
2) [tjt(1 + tjt) + sjs(1 + sjs)] j = 2, 4, 6, 8,

ψ9(s, t) = (1 − s2)(1 − t2).

(3.2)

1

2

3

4

5

6

7

8

9

1 2 3

4

567

8 9

s
t

s

t

x

z

y

Figure 3.1: Nine node biquadratic panel and its image in parametric space. Adapted from
Xü (1992, figure 4-1).

The vector from a general point, P , to the integration point Q, on S, is given as

R = Q− P

= (xq − xp, yq − yp, zq − zp).
(3.3)

The position of Q on the panel Σm is estimated by being parameterised into (s, t) space

using equation (3.1). Therefore,

(xq, yq, zq) = Q(s, t) =

 9∑
j=1

ψjxj ,

9∑
j=1

ψjyj ,

9∑
j=1

ψjzj

 (3.4)

where xj , yj and zj correspond to the Cartesian coordinates of the nodes on Σm.

Subsequently,

R =

 9∑
j=1

ψjxj − xp,

9∑
j=1

ψjyj − yp,

9∑
j=1

ψjzj − zp

 , (3.5)

and the length of R is given by r = |R|.

The derivatives of the shape functions are also necessary for the calculation of the
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elementary integrals and influence functions. These are not provided within Xü (1992),

but are listed here in appendix B. The derivatives are denoted by Qs and Qt, where

the subscripts indicate the s and t partial derivatives respectively.

For a parameterised surface, the normal can be estimated using cross product of Qs

and Qt. Thus, the unit normal is given by

n =
Qs ×Qt

|Qs ×Qt|
. (3.6)

The components of Qs ×Qt = (j1, j2, j3) are


j1 =

∂yq

∂s

∂zq
∂t

− ∂yq

∂t

∂zq
∂s

,

j2 =
∂zq
∂s

∂xq

∂t
− ∂zq

∂t

∂xq

∂s
,

j3 =
∂xq

∂s

∂yq

∂t
− ∂xq

∂t

∂yq

∂s
.

(3.7)

Note that the direction of the normal is governed by the ordering of the nine nodes

in a generic panel. As can be seen in figure 3.2, the sense of the normal is given by the

right hand rule relative to the node numbering. This is, if the fingers in your clenched

right hand point in the direction of increasing perimeter node number then the sense

of the normal is given by the direction in which your thumb is pointing.
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Figure 3.2: Normal vectors for identical panels with oppositely ordered perimeter node
numberings.

The differential surface area for the parameterised element, Σm, is given by

dA = J(s, t)ds dt (3.8)

where

J(s, t) = |Qs ×Qt| (3.9)
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is known as the Jacobian. This represents the local change in area between the

parameter and physical space.

By comparing equations (3.7) and (3.9), observe that the Jacobian can be calculated

using

J(s, t) =
√
j21 + j22 + j23 . (3.10)

Further to Xü (1992), the normal and the Jacobian can be related by

n =
1

J(s, t)
(j1, j2, j3) . (3.11)

which will prove to be a useful result for simplifying later expressions.

The approximation to the elemental integrals defined by equations (2.93) and (2.94)

is given by

Is,i =
9∑

j=1

φn,jS
(m)
j (Pi), (3.12)

Id,i =
9∑

j=1

φjD
(m)
j (Pi). (3.13)

where i is the global index for the collocation point. φn,j and φj are the field function

values for a particular local node, j, on an element, Σm, and Xü defines S(m)
j and D(m)

j

as the influence functions associated with those nodes. In particular, the influence

functions are given in Xü (1992) by

S
(m)
j =

∫∫
Σm(s,t)

ψj(s, t)J(s, t)
r(s, t)

ds dt, (3.14)

D
(m)
j =

∫∫
Σm(s,t)

− n · R
r3(s, t)

ψj(s, t)J(s, t) ds dt. (3.15)

The domain of integration for Σm(s, t) is s ∈ [−1, 1], t ∈ [−1, 1].

Note that the form of equation (3.15), appearing in Xü (1992), can be simplified

with the use of equation (3.11). Observe that

n · R =
1

J(s, t)
((j1, j2, j3) · (r1, r2, r3))

=
1

J(s, t)
(j1r1 + j2r2 + j3r3)

(3.16)
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and thus equation (3.15) becomes

D
(m)
j =

∫∫
Σm(s,t)

−(j1r1 + j2r2 + j3r3)
r3(s, t)

ψj(s, t) ds dt. (3.17)

The discretised form of the solid angle, as described by equation (2.47), is required.

Presented here is an alternative to that given by Xü (1992), formulated as

α(Pi) = −
MS∑
m=1

9∑
j=1

D
(m)
j . (3.18)

MS is the total number of panels in the surface subset, ΣS , where ΣS corresponds to

all of the nine node panels, i.e. those panels that are not on the wake.

Note that as
9∑

j=1

ψj = 1, (3.19)

equation (3.18) can be written as

α(Pi) =
Ms∑

m=1

∫∫
Σm(s,t)

(j1r1 + j2r2 + j3r3)
r3(s, t)

ds dt. (3.20)

3.3 Adaptive Numerical Integrations

The purpose of this section is to develop an algorithm for evaluating the influence

functions given by equations (3.14) and (3.15) in the singular, near-singular and far

field cases. The adaptive method of Xü (1992) is recreated here and any alterations or

modifications to the method are clearly highlighted throughout the section.

The essence of the adaptive quadrature scheme is to deliver a fixed level of accuracy

for each element by subdividing elements and using increasing order of Gauss-Legendre

quadrature. The adaptive scheme is controlled via a number of non-dimensional metrics

which examine the distance between point and panel, perspective angle from point to

panel and panel aspect ratio. For the near field, the target values of these metrics

are not clearly described within Xü (1992). With this in mind, and a target level of

accuracy sought (a local relative error of 10−4), a bespoke scheme was developed using

similar non-dimensional metrics.
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To regularise the weakly singular integrals, Xü employs a degenerate triangle map-

ping. This technique maps a triangular domain to a square one, ‘stretching out’ the

singular point into a line. This is an alternative method to the polar transforma-

tion technique used extensively later in this document to regularise the hypersingular

boundary integral equation. The triangle mapping is used by Xü to employ element

subdivision in the singular cases, which benefits the adaptive control of accuracy.

3.3.1 Evaluation of Far and Near Field Influences

When the field point, P , lies away from the surface, S, the boundary integral equations,

given by equations (3.14) and (3.15), are continuous and non-singular. Xü (1992) used

Gauss-Legendre quadrature to numerically integrate the influence functions. Accuracy

in the simulation was maintained by a two stage process. As the field point approaches

the surface, the order of quadrature is gradually increased to a certain level. Beyond

that, the panels are subdivided, dependant on the location of the collocation point

relative to the local integration panel, and then quadrature applied over the subdivided

panels.

For the far and near field influences the panels are subdivided in the s and t

parametric directions. The number of subdivisions in the s and t directions are given

by m1 and m2 respectively. Xü approximated the influence functions using the formula

∫∫
Σm(s,t)

F(s, t) ds dt =
1

m1m2

m1∑
k=1

m2∑
l=1

ν(k,l)∑
p=1

ν(k,l)∑
q=1

w(ν)
p w(ν)

q F(s(ν)
p , t(ν)

q ) (3.21)

where wp and wq are the Gaussian weights for s and t, ν is the given order of quadrature

and F is the function to be integrated. An equal number of quadrature points are used

in the s and t directions, however the number can vary across subelements.

Within Xü (1992) there are three parameters for determining the order of Gauss-

Legendre quadrature and number of subdivisions for a particular node-panel pairing.

They are:

1. %1 = r2min: rmin is the minimum distance from the field point to one of the nodes

of the integration element as seen in figure 3.3.

2. %2: the cosine of the greatest perspective angle viewed from the field point towards
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Figure 3.3: Side lengths and minimum distance to field point for nine node panel.
Recreated from Xü (1992, figure 4-2).

the element. This is given by

%2 = cos(θ) =
a2 + b2 − c2

2ab
(3.22)

where the perspective angle, θ and a, b and c are illustrated in figure 3.4.

3. %3: an estimated “aspect ratio” of the element, defined by

%3 =

√
l21 + l23
l22 + l24

(3.23)

where li, i = 1, 2, 3, 4, are the distances between the four vertices as illustrated in

figure 3.3.

Ideally, %1 would be a non-dimensional, normalised quantity (otherwise there is

potential for the same level of quadrature to be applied to panels with equal rmin but

with much different surface area). Thus, the original definition of %1 given by Xü (1992)

is inadequate in its given form. An alternative definition for %1 developed as part of

the present method is:

%1 should be normalised by either the average of the lengths, li, i.e.

%1 =

 rmin

1
4

(l1 + l2 + l3 + l4)


2

= 16
(

rmin

l1 + l2 + l3 + l4

)2

(3.24)
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Figure 3.4: Orientation for greatest perspective angle for field points closest, (a) to a panel
edge node and, (b), closest to a corner node. Recreated from Xü (1992, figure 4-3).

or should be normalised by the root mean square of the lengths given by

%1 =

 rmin√
l21 + l22 + l23 + l24

4


2

=
4r2min

l21 + l22 + l23 + l24
. (3.25)

Additionally, the definition of %2 given by Xü (1992) exhibits some ambiguity. The

problem lies with the determination of the length c. The original technique is described,

“Since θ ∈ [0, π], %2 ∈ [−1, 1], we first determine the local node number
which is closest to the field point... then the maximum dimension c of the
element viewed at Pi is defined as the maximum distance between any two
nodes observed at Pi.”.

The confusion is illustrated well by figure 3.4. Parts (a) and (b) show the greatest

perspective angle for alternative closest nodes, however, using the definition given

above, the length of c in (b) would be used for both the field points in (a) and (b) and

this seems incorrect. Thus, a better approach was developed herein which explicitly

locates the greatest angle, θ, rather than the greatest length, c.

To correctly evaluate %2, take c to be each of the four sides of the panel (those with

lengths, li) in turn as well as the two diagonals of the panel. Subsequently, calculate

the resulting six cosines (or values of %2). Of the six cosines, the lowest will provide

the greatest perspective angle as %2 ∈ [−1, 1].

During the Eulerian stage of the mixed Eulerian-Lagrangian approach the grid

is fixed while the boundary integral equations are evaluated. Thus the quantities

l1, l2, l3, l4 and %3 do not vary and may be calculated just once per time step.

The key parameter for controlling the order of quadrature is %1. Although levels
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of quadrature for particular bounds of %1 are given in Xü (1992), little information is

provided as to how those bounds were calculated. Thus, a number of numerical tests

were carried out as part of the development of the present method which evaluated

the numerical error of a field point as it approached a discretised panel. As a result of

these tests, it was found that the order of quadrature for the far field integrals can be

determined by

ν =



2, if %1 > 196,

3, if 49 < %1 ≤ 196,

4, if 16 < %1 ≤ 49,

5, if 9 < %1 ≤ 16,

(3.26)

in order to achieve a local target accuracy of 1 × 10−4. For these values of %1 no

subdivision is required.

For the near-singular integrals, when %1 ≤ 9, %2 is used to determine whether

further subdivision is necessary. It was found that further subdivision was required

when %2 < 2−1/2. If %2 is within this range then the panels are subdivided in the

manner of Xü (1992) with the parametric directions being determined by the aspect

ratio, %3. The resulting formulae are


m1 = int [2%3] , m2 = 2, if %3 > 1

m1 = 2, m2 = int
[

2
%3

]
, if %3 < 1

(3.27)

where ‘int[ ]’ represents the integer part. The order of quadrature within the subelement

is variable depending on its location relative to the collocation point. Following the

notation of Xü (1992), subelements are denoted by Σ(k,l)
m while Σc

m represents the set

of subelements containing pc, the closest node to the collocation point. Xü considered

ν =

 5, if Σ(k,l)
m ∈ Σc

m,

4, otherwise,
(3.28)

to be an effective level of quadrature for the subdivided elements. An example of such

a subdivision is illustrated in figure 3.5. Here the closest node is pc = 2 and the shaded

panels represent Σc
m.

If %2 > 2−1/2 then no subdivision is required. Rather than using the values proposed
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Figure 3.5: Panel subdivision for near-singular point, P . The shaded panels contain pc,
the nearest integration point to P . Adapted from Xü (1992, figure 4-4).

in Xü (1992), the bounds on the quadrature are once again developed through numerical

experiment. An appropriate set of limits is

ν =


6, if 4 < %1 ≤ 9,

7, if 2 < %1 ≤ 4,

8, if 0 < %1 ≤ 2.

(3.29)

The remaining case is when %1 = 0. In this case the collocation point is coincident

with one of the points on the panel being integrated and thus the boundary integral

equation is singular.

3.3.2 Evaluation of Self-Influences

Over the course of the integration of equations (2.89)–(2.92) the collocation point, P ,

will at some point require the influence from a panel within which it is contained. This

is described by Xü as a self-influence calculation.

The boundary integral equation contains two types of singularity that must be

regularised. The first, part of the source influence function, is known as a weakly

singular integral and is O(r−1). The second, part of the doublet influence function, is

known as a strongly singular integral and is O(r−2).

Evaluating the singular kernels increases in difficulty when panels with a higher

order discretisation than constant are used. For constant panels, the collocation point

is in the centre of the panel and a number of analytical regularisation schemes can be

applied. It is often reported that constant panel methods lacked the accuracy required

and thus came a move to linear panels. Here, the collocation points are at the edges
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of flat panels and thus, a discontinuity in φn is present there. Methods for dealing

with the difficulties of regularising linear panels were developed by Swedlow and Cruse

(1971) and others.

In order to further increase accuracy, quadratic and higher order panels were used.

Subsequently, three alternative approaches were developed to regularise these higher

order panels. The first, and least common, was a special quadrature with singular

weightings. The second, and probably most common approach, is a polar coordinate

transformation of the singular panel as described in Liu and Lu (1988). The final

approach, and that chosen by Xü, employs the degenerate triangle mapping presented

by Li et al. (1985). As Xü points out, the final quadrature for the polar transformation

and the triangle mapping differ in only one parametric direction. Xü elects to implement

the triangle mapping method due to the ease of panel subdivision it offers and, thus,

the method is readdressed herein.

The degenerate triangle mapping is developed following Xü (1992, section 4.5.2).

Xü began by defining a plane triangular domain, T , in three dimensions, that had three

vertices located at V1(x1), V2(x2) and V3(x3). Then, for an integrand, F , with a weak

singularity at V1, the degenerate triangle mapping was defined as

x = (1 − ρ1)x1 + ρ1(1 − ρ2)x2 + ρ1ρ2x3 (3.30)

where ρ1 and ρ2 are triangle polar coordinates. Xü denoted the image of the triangle

domain in (ρ1, ρ2) space as T ′, having bounds ρ1 ∈ [0, 1], ρ2 ∈ [0, 1]. The images of the

vertices of T , Vi, are denoted by V ′
i respectively. The key to the analysis is that the

singular point, V1, now corresponds to the line V ′′
1 V

′
1 , as can be seen in figure 3.6.

z

y

x

V1

V3

V2

V1 V2

V3V1

T
T

(1,1)

ρ

ρ1

2

Figure 3.6: The degenerate triangle mapping from Cartesian to parametric (ρ1, ρ2) space.
Recreated from Xü (1992, figure 4-5).

In order to apply the above mapping to the biquadratic iso-parametric element, ΣQ,
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the element must be divided into triangles such that every triangle has one and only one

vertex which coincides with the singular point. Such a triangularisation is illustrated

in figure 3.7. Following the triangularisation, each triangle in (s, t) parameter space is

mapped to the square in the second parameter space (ρ1, ρ2). The weak singularity is

then analytically removed and the strong singularity is shown to cancel with the solid

angle contribution of the panel.

1

2

1

2

3 1

2

3

4

(a) (b) (c)

Figure 3.7: Triangularisations for nine-node element when the singular point is a) at a
corner, b) at an edge and c) at the centre of the element. Recreated from Xü (1992,
figure 4-6).

When singular, the collocation point, Pi, will be coincident with the integration

panel at a node k = 1, 2, . . . , 9. Xü (1992) was able to show that the shape functions,

given by equations (3.2), were related to the (ρ1, ρ2) parameter space by

ψj(s, t) =

 1 + ρ1ϕj(ρ1, ρ2) if j = k

ρ1ϕj(ρ1, ρ2) if j 6= k
(3.31)

where j = 1, 2, . . . , 9 and functions ϕj are non-zero at ρ1 = 0. Although the form of ϕj

is quite complicated and dependant on how the biquadratic element is triangularised,

the functions ϕj do not need to be explicitly calculated. To avoid the direct calculation

of the functions developed in Xü (1992), simply rearrange equation (3.31), such that

the functions ϕj are given by

ϕj =


ψj − 1
ρ1

if j = k

ψj

ρ1
if j 6= k.

(3.32)

Using the result given in equation (3.31), the vector, R given by equation (3.3),
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now becomes

R = Q− P = (xq − xk, yq − yk, zq − zk)

=

 9∑
j=1

ψjxj − xk,

9∑
j=1

ψjyj − yk,

9∑
j=1

ψjzj − zk


=

ρ1

9∑
j=1

ϕjxj , ρ1

9∑
j=1

ϕjyj , ρ1

9∑
j=1

ϕjzj


= ρ1 (X(ρ1, ρ2), Y (ρ1, ρ2), Z(ρ1, ρ2)) .

(3.33)

Thus, the length of R is now given by

r = ρ1R(ρ1, ρ2) (3.34)

where

R(ρ1, ρ2) =
√
X2(ρ1, ρ2) + Y 2(ρ1, ρ2) + Z2(ρ1, ρ2). (3.35)

The Jacobian of the transformed triangle must also be evaluated. The components

defined by equation (3.7) are transformed such that

ji = ji(s(ρ1, ρ2), t(ρ1, ρ2)), i = 1, 2, 3. (3.36)

The alteration to the differential area resulting from the transformation is given by

dS = J(s, t) ds dt

= J(s(ρ1, ρ2), t(ρ1, ρ2)) ds(ρ1, ρ2) dt(ρ1, ρ2)

= J(ρ1, ρ2)Jµ(ρ1, ρ2) dρ1 dρ2

(3.37)

where

Jµ = 2ρ1Aµ. (3.38)

J is given by equation (3.10) and Aµ is the area of the µ-th triangle in (s, t) space.

This result is reported in both Xü (1992) and Liu and Lu (1988), however not explicitly

proved. The proof of equation (3.38) is given in appendix C.

Equations (3.34) to (3.38) can now be substituted into the influence functions. For
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the source influence, observe that

S
(m)
j = 2

κ∑
µ=1

∫ 1

0

∫ 1

0

ψj(ρ1, ρ2)J(ρ1, ρ2)Aµ

R(ρ1, ρ2)
dρ1 dρ2 (3.39)

where j = 1, 2, . . . , 9 and the number of triangles κ ∈ [2, 3, 4] correspond to the singular

point being at a corner node, a side node, or the centre node, respectively.

For the doublet influence there are two cases. For the case were j 6= k, equa-

tion (3.15) is rewritten as

D
(m)
j = −2

κ∑
µ=1

∫ 1

0

∫ 1

0

K(ρ1, ρ2)
R3(ρ1, ρ2)

ϕj(ρ1, ρ2)Aµ dρ1 dρ2 (3.40)

noting that

n · R =
ρ1 (j1X(ρ1, ρ2) + j2Y (ρ1, ρ2) + j3Z(ρ1, ρ2))

J(ρ1, ρ2)

=
ρ1K(ρ1, ρ2)
J(ρ1, ρ2)

.

(3.41)

When j = k the doublet influence is

D
(m)
j = −2

κ∑
µ=1

∫ 1

0

∫ 1

0

K(ρ1, ρ2)
ρ1R3(ρ1, ρ2)

[1 + ρ1ϕj(ρ1, ρ2)]Aµ dρ1 dρ2. (3.42)

The first term of the integrand of equation (3.42) is singular as ρ1 → 0. Fortunately,

the very same term can be shown to cancel with the solid angle contribution of the

panel.

To demonstrate this, in a more verbose manner than that given in Xü (1992),

consider calculating the solid angle contribution at a point Pi from a panel, ΣQ, where Pi

is coincident to one of the nodes on ΣQ. The solid angle for Pi is given by equation (3.20)

and for the panel ΣQ the contribution is given by

α(Pi) = −
∫∫

ΣQ

−(j1r1 + j2r2 + j3r3)
r3(s, t)

ds dt. (3.43)

Note that equation (3.43) is singular at Pi. To deal with this singularity the degenerate

triangle mapping is applied to the right hand side of equation (3.43), the result of which

is

2
κ∑

µ=1

∫ 1

0

∫ 1

0

K(ρ1, ρ2)
ρ1R3(ρ1, ρ2)

Aµ dρ1 dρ2. (3.44)
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Comparing equation (3.44) with equation (3.42) it can be seen that the solid angle

contribution from the singular panel will completely cancel the first term of the singular

doublet influence when the integration point and the collocation point are the same

node, i.e. j = k.

The implication of this cancellation is that only equation (3.40) is used to calculate

the singular doublet influences of those panels containing the collocation point. The

solid angle contribution for the entire singular panel is also cancelled and thus does not

contribute to the solid angle, α(Pi). Equation (3.20) becomes, in effect,

α(Pi) =
Ms∑

m=1
m/∈Qc

∫∫
Σm(s,t)

(j1r1 + j2r2 + j3r3)
r3(s, t)

ds dt (3.45)

where Qc is the set indices of panels containing Pi.

In order to apply Gauss-Legendre quadrature to the singular panels the quadrature

points must be transformed from ρi ∈ [0, 1], to τi ∈ [−1, 1] (i = 1, 2). The mapping

ρi = (τi + 1)/2, i = 1, 2, (3.46)

is used. Once this mapping is applied, equations (3.39) and (3.40) become

S
(m)
j =

1
2

κ∑
µ=1

∫ 1

−1

∫ 1

−1

ψj(τ1, τ2)J(τ1, τ2)Aµ

R(τ1, τ2)
dτ1 dτ2, (3.47)

D
(m)
j = −1

2

κ∑
µ=1

∫ 1

−1

∫ 1

−1

K(τ1, τ2)
R3(τ1, τ2)

ϕj(τ1, τ2)Aµ dτ1 dτ2. (3.48)

As stated in Xü (1992), the singular D(m)
j contains a more severe singularity than

S
(m)
j . Thus to maintain the same level of accuracy, a higher order of quadrature is

required for D(m)
j over S(m)

j . In order to remove the necessity for very high orders of

quadrature, Xü chose to subdivide the triangles prior to performing the degenerate

triangle mapping on the resulting sub-triangles. The subdivision is illustrated in

figure 3.8 parts (a) and (b) by the dotted lines. Let the included angle at the singular

point of the triangular domain in physical (Cartesian) space be θ. This angle is

estimated in a similar manner to the angle evaluated for %2, using equation (3.22)

with a, b and c defined as in figure 3.8, and is used to set a new parameter %4.

If %4 < 0.15 then subdivision is required. Two alternative parameters for control-



3.3. Adaptive Numerical Integrations 76

1

2

3

4

5

6
7

8

9

1
2

3

4

5

6
7

8
9

a

b

a

b

c

θ

(a) (b)

c

θ

Figure 3.8: Subdivision of panels into triangles where the singular node lies a) on an edge
or b) on a corner. The lengths a, b, c and the angle θ required for %4 is illustrated. Adapted
from Xü (1992, figure 4-7).

ling the subdivision are investigated. First, consider using the parameter defined by

equation (3.23), %3, in the formula

m3 = int[2%3] (3.49)

where m3 are the required number of subdivisions. This approach to calculatingm3 was

used in Xü (1992). Although the approach may seem plausible, consider the case where

the panel is thin in the s parametric direction and fat in the t parametric direction as

can be seen in figure 3.9. In this situation %3 will be very small and thus equation (3.49)

may not produce any subdivision at all. Thus, it was decided that, because of the issues

highlighted above, an alternative methodology for evaluating m3 should be developed.

A more feasible control based on %3 may be


m3 = int [2%3] , if %3 > 1

m3 = int
[

2
%3

]
, if %3 < 1.

(3.50)

An alternative control strategy can be derived using just the parameter, %4. An

initial starting point may be to set

m3 = int
[

2
%4

]
. (3.51)

An issue occurs with equation (3.51), however, when θ = π/2 as %4 will be zero. To

counteract this problem a constant can be added to the denominator of equation (3.51)
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Figure 3.9: Included angle for a panel with large aspect ratio.

resulting in

m3 = int
[

2
%4 + 1

]
. (3.52)

Equation (3.52) removes the singularity at θ = π/2, however for the range 0 ≤ %4 ≤

0.15, this equation would result in m3 being equal to one. To improve equation (3.52)

so that m3 is always greater than two consider choosing

m3 = int
[

2.3
%4 + 1

]
. (3.53)

Equation (3.53) provides m3 > 2,∀%4 ∈ [0, 0.15]. However, m3 gets very large as θ → π

and %4 → −1. Thus the finalised formula is given by

m3 = int
[

2.3 + 2x
%4 + 1 + x

]
, (3.54)

where x is some quantity decided upon experimentally. A suitable choice is x = 0.15.

Within the subdivided panels, fourth order Gauss-Legendre quadrature is found to

provide the desired level of accuracy.

When %4 > 0.15 the formula

ν = int [−4.5%4 + 9.6] (3.55)

is used to simplify the more complicated expression used in Xü (1992, equation (4.77)).
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3.4 Linear Triangular Elements

Ideally, the biquadratic elements developed in the last section could also be extended

to the wake, however there are some practical difficulties and theoretical restrictions

that currently make this undesirable. In particular, the wake can only spawn one line

of nodes per time-step. This precludes the use of a biquadratic panel in the early

time-steps although as the wake grows, panels could be converted from three to nine

node. The additional incentive for using three node panels on the wake is that the

solution scheme for the hypersingular integral equation (see chapter 2) is currently

only developed for use with linear elements.

There was no requirement for a linear element in Xü (1992) and, thus, the standard

boundary element for a linear triangular element must be developed here from scratch.

In principle, however, the approach is extremely similar to the formulation for bi-

quadratic elements. In order to proceed, the linear element and appropriate weightings

must be defined. The element, described by Gray et al. (2004a), is a three nodal linear

triangular element with shape functions defined by

ψ̃1(s, t) =
√

3 (1 − s) − t

2
√

3
,

ψ̃2(s, t) =
√

3 (1 + s) − t

2
√

3
,

ψ̃3(s, t) =
t√
3
,

(3.56)

within the equilateral parameter space, −1 ≤ s ≤ 1, 0 ≤ t ≤
√

3(1 − |s|). ψ̃ is used to

differentiate from the nine node shape functions denoted by ψ. The element is shown

in figure 3.10. The points P and Q, the vector R and length r are calculated in similar

manner to the nine node panels. Equation (3.3) is unchanged, although, Q is now given

by

(xq, yq, zq) = Q(s, t) =

 3∑
j=1

ψ̃jxj ,
3∑

j=1

ψ̃jyj ,
3∑

j=1

ψ̃jzj

 . (3.57)

The s and t derivatives of the linear shape functions are available in appendix B.

The definitions for the normal and Jacobian are given by equations (3.6) to (3.11) and

note that these quantities are constant across each linear triangular panel.

Given that the three node linear panels are only applied to the wake, only the wake
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Figure 3.10: Linear triangular element.

elemental integral is required. This is approximated by

Iw =
3∑

j=1

µjW
(m)
j (Pi) (3.58)

where

W
(m)
j =

∫∫
Σm(s,t)

− n · R
r3(s, t)

ψ̃j(s, t)J(s, t) ds dt. (3.59)

and Σm is a generic three node linear panel on the wake. As a consequence of equa-

tion (3.16), equation (3.59) can be re-coined as

W
(m)
j =

∫∫
Σm(s,t)

−(j1r1 + j2r2 + j3r3)
r3(s, t)

ψ̃j(s, t) ds dt. (3.60)

3.4.1 Adaptive Numerical Integration

Unlike the case for adaptive numerical integration for the nine node panels on SD and

SN , the field point, P , will never be on the wake surface, SW , as all (with the exception

of the Kutta strip) values of µ are known at this stage of the calculation. Given the

requirement to include a reasonably large far field velocity, it is expected that the

closest that a field point will get to the wake points, without singular integration, is

%1/2 where %1 is defined by either equation (3.24) or (3.25). Some limits on the size of

the panels nearest the trailing may be appropriate in this case. In addition, the method

of quadrature must change for the panels on SW as the integration domain is now over

a triangle rather than a square and this is addressed in the section below.
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Near and Far Field Influences

A triangle quadrature scheme must be applied in order to calculate the influence W (m)
j .

These schemes are normally defined in terms of barycentric (also know as area, or areal)

coordinates on the triangle (see Coxeter, 1989). Defined on the natural or equilateral

triangle, the barycentric coordinates are given as (α, β, γ), as illustrated in figure 3.11.

The origin is at the centre of mass of the triangle with the three coordinates defined in

the directions of the vertices. At each vertex, one coordinate is equal to one and the

others are zero.

(0,0,1)

(0,1,0)

(1,0,0)α β

γ

Figure 3.11: Barycentric coordinates for an equilateral triangle.

Most quadrature tables for triangular domains are presented using barycentric

coordinates and in order to make use of them, without rewriting the shape functions,

the quadrature points must be converted into the (s, t) parametric space. If a generic

triangle in (s, t) space has vertices (p1, p2, p3) then the barycentric expansion for that

triangle is given by

s = αp1(s) + β p2(s) + γ p3(s),

t = αp1(t) + β p2(t) + γ p3(t).
(3.61)

Thus, using the parametric domain illustrated in figure 3.10, the conversion is given by

s = −α+ β,

t =
√

3γ.
(3.62)

The quadrature formula over the triangular domain for near and far field influences
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is given by

∫∫
Σm(s,t)

F(s, t) ds dt = A

ν∑
p=1

w(ν)
p F(s(α(ν)

p , β(ν)
p , γ(ν)

p ), t(α(ν)
p , β(ν)

p , γ(ν)
p )) (3.63)

where ν is the order of quadrature, wp are the weightings, and the area of the generic

triangular panel is A =
√

3. Tables containing points and weightings for integration

over triangular domains can be found in Dunavant (1985).

Numerical experiments were undertaken for isolated panels, as part of the present

work, in order to develop a basic adaptive scheme which could control the order of

quadrature used to evaluate the integrals on the wake panels. The results of these

experiments suggested a scheme such as

ν =


1, if %1 > 3000,

3, if 16 < %1 ≤ 3000,

12, if %1 ≤ 16.

(3.64)

Here %1 is evaluated in a similar manner to equation (3.24) or (3.25) using just three

side lengths rather than four. One caveat to this is that for %1 ≤ 0.5 the order of

quadrature does not produce the desired level of accuracy. In fact, it was found that

higher orders of quadrature were still inadequate. Thus, at this stage it is most likely

that some subdivision would be needed. However, for the reasons stated above, the

need for this is perceived to be unlikely and so no subdivisions are used in the present

scheme, noting that this could be conceivable as further work.

Singular Integrations

The singular integrations for the linear triangular panels are, in essence, dealt with in

a very similar fashion to the nine node panels. One considerable advantage of the ‘flat’

geometry of a linear triangular panel is that n · R = 0 for singular nodes. Given that

only the strong integral is required on the wake, when the field point is singular at the

trailing edge, the influence from the wake panel is conveniently zero.

It should be noted that using triangular elements may be useful on other surfaces.

For instance, the problem of capping a solid body, like a wing, is much more straight-

forward using triangles. Indeed, the linear triangular elements have been used in this
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study to demonstrate the accuracy and speed advantages of using quadratic panels (see

chapter 5). In this case, the singular source integral will be required for a triangular

panel. Fortunately, this is identical to the integral of a single triangle for the nine node

panels given by equation (3.39) without the summation over the other triangles (i.e

κ = 1).

Beyond these comparison tests, the linear triangular panels are not used for the

non-wake surfaces in the later simulations. The reasoning behind this decision is the

inherent accuracy problems and an undesirable development cost in developing the

adaptive scheme to deal with them.

3.5 Linear System of Equations

With the numerical methods in place to calculate the fundamental integrals defined by

equations (2.93)–(2.95), the linear system established to solve the discretised integral

equations is now described. To achieve this, the governing equations can be written

using a ‘per node’ representation. Two systems are presented: first is the system of

equations without the inclusion of a wake. This will just contain the Dirichlet and

Neumann boundaries. The second system will include the wake surface and address

the required adjustment to implement the Kutta condition at the trailing edge of the

lifting surface.

Begin by defining the total number of nodes on S as N and the total number of

elements as M . There are three types of unknowns on the nodes, (φ, φn or µ). The

complete surface, S, is partitioned into separate surfaces, S = SD ∪ SN ∪ SK ∪ SW

where SD, SN and SW are the Dirichlet, Neumann and wake surfaces respectively. As

linear panels are to be used on the wake, the Kutta strip, SK , reduces from a surface to

a line (the line along the trailing edge of the lifting surface). On SD, φ is known and φn

is sought. On SN , φn is known, and φ is sought. On SK , no information is known and

µ is sought while on SW , µ is known and no other information is required. Thus, no

equations are written for nodes on SW and the values there only contribute to the right

hand side of the linear system. Also, µ on SK is found via an auxiliary equation known

as the Kutta condition and is written separately to the boundary integral equations.

Thus the total number of collocation points in the boundary integral shall be known as

Nc and Nc equations are written to determine the unknowns on SD and SW with Nk
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additional equations for the number of nodes on SK .

3.5.1 Wake-Free System

The formation of the linear system for the domain containing no wake is demon-

strated. The governing equations are given by equations (2.89) and (2.90). Using

equations (3.12) and (3.13), the full discrete equations can be derived.

For Pi ∈ SD the integral equation is written as

MN∑
m=1

9∑
j=1

φjD
(m)
j −

MD∑
m=1

9∑
j=1

φn,jS
(m)
j =

− αiφi −
MD∑
m=1

9∑
j=1

φjD
(m)
j +

MN∑
m=1

9∑
j=1

φn,jS
(m)
j , (3.65)

and subsequently for Pi ∈ SN the equation is

αiφi +
MN∑
m=1

9∑
j=1

φjD
(m)
j −

MD∑
m=1

9∑
j=1

φn,jS
(m)
j =

−
MD∑
m=1

9∑
j=1

φjD
(m)
j +

MN∑
m=1

9∑
j=1

φn,jS
(m)
j . (3.66)

The difficulty with interpreting the above equations is that should a node lie within

more than one panel (such as the corner of four adjoining panels) then it will appear

in the above equations more than once. To reduce the level of complication, let

∑
m

denote the summation over the number of panels containing the global integration

point, defined by k, then define two global quantities

Di,k =
∑
m

D
(m)
k , (3.67)

Si,k =
∑
m

S
(m)
k . (3.68)

Using, equations (3.67) and (3.68) (following Otta et al., 1992), the discretised

equations for each field node in the system, i, form an Nc × Nc system together
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with the global integration nodes, k. Hence, the governing integral equation (given

by equation (2.40)) can be written as

αiφi +Di,kφk − Si,kφn,k = 0 i = k = 1, 2, . . . , Nc. (3.69)

The next task is to demonstrate how equation (3.69) can be used to form a linear

system of the form

AF = B. (3.70)

Define the number of nodes on the Neumann surfaces to be NN and the number of

nodes on the Dirichlet surfaces to be ND. The global integration point, k, can then be

split into two groups dependant on which boundary it lies. Subsequently, in a similar

manner to Otta et al. (1992), the coefficient matrix is described by

Aik =

 (Di,k + δi,kαi) k = 1, 2, . . . , NN ,

Si,k k = NN + 1, NN + 2, . . . , NN +ND,
(3.71)

where δ is the Kronecker delta. The right hand side of the linear system is given by

Bi =
NN∑
k=1

Si,kφn,k +
NN+ND∑
k=NN+1

(Di,k + δi,kαi)φk. (3.72)

Thus, the linear system will have the form

Aik



φ1

φ2

...

φNN

φn,NN+1

φn,NN+2

...

φn,NN+ND



= Bi (3.73)
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by choosing Fi to be ordered such that

Fi =

φi i = 1, 2, . . . , NN ,

φn,i i = NN + 1, NN + 2, . . . , NN +ND.
(3.74)

The linear system given by equation (3.73) can be inverted to give F and, thus, the

unknown values of φ and φn.

3.5.2 System of Equations for Lifting Surfaces and the Kutta Condition

Implementation of the Kutta condition, described in section 2.4.4, is critical to the

modelling of lifting flows using boundary element methods. This section describes

the numerical implementation of the Morino type Kutta condition described by equa-

tion (2.59). Additionally, the linear system used to solve the boundary element problem

given by equation (3.73) must be adjusted as a consequence of the Kutta condition

whilst also including the influence of the wake surface.

Equations (2.91) and (2.92), which are the governing equations including the wake,

can now be expressed making use of the elemental integrals given by equations (3.12),

(3.13) and (3.58). Observe that for Pi ∈ SD the integral equation is written as

MN∑
m=1

9∑
j=1

φjD
(m)
j −

MD∑
m=1

9∑
j=1

φn,jS
(m)
j =

− αiφi −
MD∑
m=1

9∑
j=1

φjD
(m)
j +

MN∑
m=1

9∑
j=1

φn,jS
(m)
j +

MW∑
m=1

3∑
j=1

µW
(m)
j , (3.75)

and subsequently for Pi ∈ SN the equation is

αiφi +
MN∑
m=1

9∑
j=1

φjD
(m)
j −

MD∑
m=1

9∑
j=1

φn,jS
(m)
j =

−
MD∑
m=1

9∑
j=1

φjD
(m)
j +

MN∑
m=1

9∑
j=1

φn,jS
(m)
j +

MW∑
m=1

3∑
j=1

µW
(m)
j . (3.76)

In light of the numerical Kutta condition, equations (3.75) and (3.76) do not provide

the complete linear system for lifting surfaces. These equations assume that µ is known

at every node on the wake, however, this is not the case as the Kutta nodes coincident

to the trailing edge are considered unknowns at this stage of the calculation and must
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be determined by values from the lifting surface. In order to express these unknown

values recall that the number of Kutta nodes is NK and the number of nodes on the

wake surface (including the Kutta nodes) is NW . Expressing the governing equations

in terms of the global integration index, k, the general equation is given by

αiφi +Di,kφk − Si,kφn,k −Wi,kµk = 0

 i = 1, 2, . . . , NN +ND,

k = 1, 2, . . . , NN +ND +NW .
(3.77)

In light of equation (3.77), the various components of the linear system must be

redefined with the Kutta condition included. Thus the coefficient matrix, A, is now

determined by

Aik =



(Di,k + δi,kαi) k = 1, 2, . . . , NN ,

Si,k k = NN + 1, NN + 2, . . . , NN +ND,

Wi,k

k = NN +ND + 1, NN +ND + 2, . . . ,

NN +ND +NK ,

(3.78)

and for the right hand side,

Bi =
NN∑
k=1

Si,kφn,k +
NN+ND∑
k=NN+1

(Di,k + δi,kαi)φk +
NN+ND+NW∑

k=NN+ND+NK+1

Wi,kµk, (3.79)

for i = 1, . . . , (NN +ND). This will produce a linear system of the form

Aik



φ1

...

φNN

φn,NN+1

...

φn,NN+ND

µNN+ND+1

...

µNN+ND+NK



= Bi (3.80)
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where Fi has been ordered such that

Fi =



φi i = 1, 2, . . . , NN ,

φn,i i = NN + 1, NN + 2, . . . , NN +ND

µi

i = NN +ND + 1, NN +ND + 2, . . . ,

NN +ND +NK .

(3.81)

The apparent difficulty with this linear system is that there are NN +ND equations

for NN + ND + NK unknowns. Thus an auxiliary equation is required for each NK

Kutta nodes. This is conveniently provided by the numerical Kutta condition. By

labelling the node on the upper surface of the wing adjacent to the trailing edge to be

KT and the similar node for the lower side to be KB, the value of µK for a node on

the Kutta strip is given by

µK = φKT − φKB. (3.82)

Thus the additional equations in the linear system are defined by

Ai,KT (i) = −1

Ai,KB(i) = 1

Ai,i = 1

Bi = 0

i = NN +ND + 1, . . . , NN +ND +NK . (3.83)

The linear system now has NN +ND +NK equations for NN +ND +NK unknowns.

3.6 Special Treatment of Boundaries

For the domain illustrated in figure 2.1, the formulation of the boundary element

method would require that the input, output, left, right, and bottom boundaries should

be discretised in a manner similar to solid bodies within the domain, using panels having

a Neumann boundary condition. For the input and output boundaries the value of φn

is set equal to the free stream velocity, Ux, and for the side and bottom boundaries a

no crossing condition is set requiring, φn = 0.

The disadvantage of such an approach to discretising the channel boundaries is

that more panels must be used, and thus computational time must be expended,
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Figure 3.12: Images of the original channel as a result of reflective boundaries for the
bottom, left and right channel walls.

recalling that for N nodes the influence matrix will be full and of order N2. Thus

it is advantageous to reduce the number of extraneous panels to a minimum.

The input and output boundaries can be discounted by using the perturbation

potential formulation rather than the full potential formulation. The perturbation

potential formulation is discussed in section 2.5, noting that care must be taken to

correctly calculate the solid angle when the inlet and outlet boundaries do not form

part of the solution. For the left, right and bottom boundaries the ideal approach

is to use reflective boundaries for each. This approach is certainly feasible for the

bottom boundary, and for one side boundary, however, when attempting to apply both

side boundaries, the level of difficulty increases substantially, as discussed in the next

section.

3.6.1 Reflective Boundaries

Using reflective boundaries on both the left and right sides of the channel results in

infinite images of the channel extending in both the positive and negative y-directions,

as can be seen in figure 3.12. Within the figure, the no-crossing boundaries of the

original domain are shaded.

The problem of infinite repetition for wave problems is not novel. In a similar

manner, when periodic boundaries are required on both the left and right hand sides
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of the domain, an infinite number of ‘copies’ of the domain are produced. To apply the

periodic boundaries to the original domain, the influences of all of these copies must be

included into the Greens functions of the boundary integral equations.

A great deal of research was undertaken in the 1990s in order to solve these problems.

Works by Breit (1991), Newman (1992) and Xü (1992) devised Greens functions that

satisfied periodic boundary conditions in either one (singly) or two (doubly) periodic

directions. The work of Newman concentrated on increasing the rate of convergence of

the resulting infinite series of images.

A periodic representation may be ideal for wave simulations using boundary ele-

ments, however, as the primary interest in the current simulation is flow in a channel

with solid planar bottom and side boundaries, reflective rather than periodic conditions

must be imposed. The resulting series is not dissimilar to that of the periodic problem,

nonetheless, the focus of this project did not allow time for the solution to be derived.

Thus, a method was sought were some discretisation could be reduced while avoiding

the need to solve an infinite series of Greens functions. The result is the computational

domain illustrated in figure 3.13. The influences from the point Q and the image points,

Q′, Q′′, and Q′′′ can all be integrated into the Greens function without the need to solve

any infinite series. Note that one side wall must still be discretised (the non-shaded,

y = 0, side wall).

To derive the Greens function for the domain illustrated in figure 3.13 enforce no-

crossing boundaries at y = yr and z = −d (note from figure 3.13 that yr < 0). Three

image domains are created which are positioned as in figure 3.13. Now consider the

influence from a particular point, Q, in the original domain, in addition to the influence

from the images, Q′, Q′′, and Q′′′. The distances from each of these points are given

by R, R′, R′′ and R′′′ and the associated Greens function are G, G′, G′′, and G′′′. The

values of φ and φn are identical at each point. Thus, writing the contribution to the

integral equation from these points gives

φnG− φGn + φnG
′ − φG′

n + φnG
′′ − φG′′

n + φnG
′′′ − φG′′′

n

= φn

(
G+G′ +G′′ +G′′′)− φ

(
Gn +G′

n +G′′
n +G′′′

n

)
.

(3.84)

Provided the field point, P , does not lie on the reflective boundary, equation (3.84)

demonstrates that the reflection can be represented by incorporating the influence of
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Figure 3.13: Domain and integration points for images generated by reflection in the
bottom and right channel wall boundaries.

the images into the Greens function (the cases where P lies on one or both reflective

boundaries is dealt with later). Thus, a combined Greens function is sought, such that,

GC = G+G′ +G′′ +G′′′

=
1
R

+
1
R′ +

1
R′′ +

1
R′′′

=
1

P −Q
+

1
P −Q′ +

1
P −Q′′ +

1
P −Q′′′ .

(3.85)

Figure 3.14 shows the image points in the (z, y) plane and the associated distances

to the image points. The positions of the image points are given by Q = (xq, yq, zq),

Q′ = (xq, y
′
q, zq), Q

′′ = (xq, yq, z
′
q) and Q′′′ = (xq, y

′
q, z

′
q). Thus y′q and z′q must be

determined subject to the position of the right channel wall, yr and the depth of the

channel, d.

The resulting formula are

y′q = 2yr − yq (3.86)

z′q = −2d− zq (3.87)
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yr
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yq

y'q
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zq

z'q

Q'''

z

y

Figure 3.14: Distances to the integration point and its images for the channel in the (y, z)
plane.

assuming that the depth, d > 0. To illustrate the effect in (s, t) space consider

y′q(s, t) =
9∑

j=1

ψj (2yr − yj)

= 2yr

9∑
j=1

ψj −
9∑

j=1

ψjyj

= 2yr −
9∑

j=1

ψjyj

(3.88)

and thus R′ is given by 9∑
j=1

ψjxj − xp, 2yr −
9∑

j=1

ψjyj − yp,

9∑
j=1

ψjzj − zp

 (3.89)

with corresponding length, r′.

R′′ and R′′′ are defined similarly and the combined source influence is given by

S
(m)
j =

∫∫
Σm(s,t)

ψj(s, t)J(s, t)
(

1
r(s, t)

+
1

r′(s, t)
+

1
r′′(s, t)

+
1

r′′′(s, t)

)
ds dt. (3.90)
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Similarly, the doublet influence is given by

D
(m)
j = −

∫∫
Σm(s,t)

ψj(s, t)J(s, t)×(
n · R
r3(s, t)

+
n · R′

(r′)3(s, t)
+

n · R′′

(r′′)3(s, t)
+

n · R′′′

(r′′′)3(s, t)

)
ds dt.

(3.91)

The self influence case is straightforward to handle. The self influences are calculated

using equations (3.47) or (3.48) and then the non-singular influences from the image

points added to give the total influence.

Slightly more complicated is the case where the integration point, Q, lies on one or

both of the reflective boundaries. In this case, certain images no longer contribute. For

example, should Q lie on the right wall then the influence from Q′ and Q′′′ is removed.

If it lies on the bottom then the influence from Q′′ and Q′′′ is ignored and, finally, if Q

lies on the intersection of the the two boundaries then only the non-reflected influence

is required. This holds true for the non-singular influences and the singular source

influence. However, the case is different for the singular doublet influence due to the

solid angle calculation.

In a similar fashion to the source and doublet influence, the calculation for the solid

angle using reflective boundaries must also include the influences from the images. The

solid angle for the domain given in figure 3.14 is

α(Pi) =
Ms∑

m=1

∫∫
Σm(s,t)

(j1r1 + j2r2 + j3r3)
r3(s, t)

+
(j1r′1 + j2r

′
2 + j3r

′
3)

(r′)3(s, t)
+

(j1r′′1 + j2r
′′
2 + j3r

′′
3)

(r′′)3(s, t)
+

(j1r′′′1 + j2r
′′′
2 + j3r

′′′
3 )

(r′′′)3(s, t)
ds dt (3.92)

when Pi is not on the reflective boundaries. If Pi is on the right side wall then the r′

and r′′′ terms are dropped and if it lies on the bottom then the r′′ and r′′′ terms are

dropped. If Pi lies on the intersection between the two reflective surfaces then just the

original r term remains.

In the case of the singular doublet influence, the first term in the solid angle,

equation (3.92), will cancel with the matching term from equation (3.42) with only

the contributions from the reflective images remaining. Thus, the singular doublet
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influence for the reflective kernel is given by

D
(m)
j = −2

κ∑
µ=1

∫ 1

0

∫ 1

0

ϕj(ρ1, ρ2)K(ρ1, ρ2)Aµ

R3(ρ1, ρ2)
dρ1 dρ2

−
∫∫

Σm(s,t)
ψj(s, t)J(s, t)

(
n · R′

(r′)3(s, t)
+

n · R′′

(r′′)3(s, t)
+

n · R′′′

(r′′′)3(s, t)

)
ds dt (3.93)

with the image kernels being removed depending on the position of Pi in a similar

fashion as previously.

3.6.2 Double Nodes

The “L-shaped” boundary solution described in the previous section is a useful method

for reducing the amount of discretisation required for modelling the channel. However,

for the remaining channel wall (and when reflective boundaries are not used) there

are difficulties when modelling the intersection of surfaces with differing or similar

boundary conditions. This problem is particularly prevalent where the free surface

boundary, having a Dirichlet boundary condition, meets a side wall or inlet boundary,

which have Neumann boundary conditions. In this case enforcing the condition that

the free surface must remain attached to the wall also adds increased difficulty.

An excellent review of these corner problems is available in Forehand (1998, section

2.3.2). The focus of his review is predominantly two-dimensional methods, however,

three-dimensional techniques for dealing with these issues are also covered. In particular

the papers of Grilli et al. (1989) and Grilli and Svendsen (1990) are outlined in Forehand

(1998) and similar techniques are applied to the present method.

At a moving boundary, the discontinuity between φn on the free surface and φn on

the boundary can lead to a singularity in the solution. Although there are no moving

boundaries other than the free surface in the current method, it is clear that similar

methods used to correct the singularity identified at a moving boundary can be used

to correct the problems at a boundary side wall. Due to implementation problems,

formal results from the channel side wall correction do not form part of this thesis.

The theoretical background is available in appendix D, nonetheless. For the problems

investigated in this thesis, which do not exhibit a significant cross-flow component, the

free-surface nodes nearest a channel wall are simply translated back to that wall at each

time-step. Clearly, this approximation has significant room for improvement in future
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work.

Also described by Grilli and Svendsen (1990) is the concept of double nodes. Double

nodes imply that at a meeting of two discretised surfaces, instead of the elements on

either surface sharing nodes at the intersection, both surfaces have their own coincident

overlapping nodes. For a three dimensional domain (with all the channel boundaries

discretised) there exists the possibility of having triple nodes. Double and triple nodes

are illustrated in figure 3.15.

Figure 3.15: Double and triple nodes at the meeting of surfaces with differing normals.

The double (or triple) node representation encompasses the different normal vectors

within the elements on the intersecting surfaces (i.e. ni, i = 1, 2, 3 in figure 3.15). Each

double or triple node has the same spatial position as its coincident nodes and each

node has its own equation. The form of these equations depend on which conditions

the intersecting boundaries have. True of all double nodes is that their φn values will

differ and that each pair or triplet of nodes must have equal or continuous φ explicitly

imposed. The two cases which occur for double nodes within the present simulation

are now described.

Dirichlet-Neumann Intersections

This case occurs when the free surface boundary intersects a channel side wall or the

discretised inlet/outlet boundaries. On the free surface the potential at the node I1,

φI1, is known along with the normal derivative, (φI2)n, at the corresponding double

node on the Neumann boundary, which is denoted I2. By enforcing continuity at the

double nodes, the unknown φI2 is set equal to φI1. Although this implies that the
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equation for the point I2 is unnecessary, it is advisable to maintain a row in the linear

system by rewriting the equation for I2 to explicitly enforce the continuity of φ, whilst

setting the coefficients of I2 to zero in the other equations.

As I1 and I2 are coincident (albeit belonging to different surfaces) it follows that

S
(m)
I1,k = S

(m)
I2,k D

(m)
I1,k = D

(m)
I2,k αI1 = αI2. (3.94)

Thus, the modifications to equation (3.69) for a Dirichlet-Neumann intersection using

double nodes I1 on the Dirichlet boundary and I2 on the Neumann boundary is enforced

by the requirement for the continuity of φ. The equation which replaces the equation

for the I2 node is

MφI2 = MφI1, (3.95)

where

M = max(Kii), (3.96)

and Kii is the value of the leading diagonal of the matrix for point i.

Neumann-Neumann Intersections

This case occurs when Neumann boundaries (such as the side walls, bottom, inlet or

outlet) intersect. Using I1 and I2 to represent the double nodes on either side of

the boundary, the boundary integral equation for these points will be identical as the

unknown φI1 = φI2 is sought for both points. In this case, the linear system will be

singular, similar to the Dirichlet-Neumann case, and so the solution at just one of the

nodes, say I1, is calculated using the boundary integral equation and continuity of φ is

used to replace the equation for the other node. As φ appears on the left hand side of

the linear system for a Neumann boundary, the equation for I2 is rewritten as

MφI2 −MφI1 = 0. (3.97)
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Triple Nodes

There are two possible boundary condition combinations of triple nodes where three sur-

faces with distinct normals meet for this simulation. These are a Neumann-Neumann-

Dirichlet intersection or a Neumann-Neumann-Neumann intersection. The methods for

dealing with these nodes are identical to the double node cases except that continuity

of φ must additionally be enforced for the extra node, I3. Thus the boundary integral

equation for I3 should be replaced with

MφI3 = MφI1 (3.98)

for the Neumann-Neumann-Dirichlet case (assuming I1 is the Dirichlet node). For the

Neumann-Neumann-Neumann case the equation should be

MφI3 −MφI1 = 0, (3.99)

assuming I1 is the node for which the boundary integral equation is implemented. Note

that continuity between I3 and I2 could also be enforced and the author believes this

to be equivalent to implementing equations (3.98) and (3.99).



Chapter 4

Lagrangian Stage Implementation

4.1 Introduction

This chapter describes the Lagrangian stage of the mixed Eulerian-Lagrangian approach

used for the time-stepping boundary element method. By this stage, the Eulerian sys-

tem has been solved and all field values are known at all points. With this information

the velocities can then be calculated on the dynamic surfaces which can then be time-

stepped using the chosen boundary conditions and an appropriate integration scheme.

This process is well understood for free surface simulations which employ boundary

element methods. Therefore, the bulk of this chapter is concerned with the problem

of advancing the position of the wake in time. This is the most challenging part of

lifting solutions using boundary element methods and a problem not normally tackled

with higher order elements. If they are used then the interpolation of the calculated

velocities from the element centres to the edge nodes (Pyo and Kinnas, 1997) is the

typical compromise. This approximation is enforced due to the need to regularise the

hypersingular boundary element equation for velocity (equation (2.74)) at panel edges.

Since the publication of Guiggiani et al. (1992) a method for directly evaluating

the hypersingular boundary integral equation at panel edges has been available. The

method developed by Guiggiani et al. relies upon using a Taylor series expansion

to reduce the order of the singularity at the point of interest. Such an expansion is

only applicable subject to having C2 continuity at the point. Thus, the traditional

piecewise elements of many boundary element formulations are not applicable to this

method at edges and corners. C2 continuity can be guaranteed by utilising B-spline

approximations and the work of Guiggiani et al. has been applied to lifting surfaces by

97
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Bernasconi and Richelsen (2008). However, B-spline approximations to the boundary

integral equations provide a greater challenge to producing a consistent level of accuracy

over more simple interpolants due to the difficult design of adaptive integration schemes

(see Xü, 1992).

The recent work of Gray et al. (2004b) was the first to provide a method for the

direct evaluation of the hypersingular boundary integral equation at the edges and

corners of high order continuous three-dimensions elements which lack C2 continuity at

the intersections. His regularisation using the Galerkin boundary element method has

been successfully applied to problems of fracture mechanics (Paulino and Sutradhar,

2006) and has a general formulation that is transferable to any model utilising a bound-

ary integral formulation. In particular, the method has been shown to be applicable

to cracks. A crack is modelled as a discontinuity in displacement, φ, identical to the

discontinuity of velocity potential, φ, used to model a vortex sheet. To the author’s

knowledge, this is the first application of the method of Gray et al. to potential flow

and in particular to the direct evaluation of the velocity on vortex wakes. The Galerkin

method is derived in section 4.3 and its applicability to vortex sheets is also validated

there.

Prior to the description of the Galerkin method, the calculation of velocity on the

free surface using numerical differentiation is described. Once all of the velocities on

the surfaces have been calculated then these surfaces can be advanced in time subject

to their boundary conditions. The final section of this chapter considers the integration

schemes commonly used to carry out the time-stepping and introduces a number of

metrics which can be used to dynamically control the time-step.

4.2 Numerical Differentiation

The most common method of calculating a gradient (such as velocity) on a surface

within the domain of a boundary element method is numerical differentiation. In

particular, once the values of φn on the free surface have been calculated, numerical

differentiation can be applied to the values of φ to calculate the complete velocity field

upon the surface. This information is then available for time-stepping or for inspec-

tion. The general process for extracting the velocity components from the parametric

derivatives of φ is described by Xü (1992). The method for calculating the gradient in
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the parametric directions is described by Forehand (1998, appendix D).

Following Xü (1992, sec. 4.8), a general smooth surface F : F (x, y, z) ∈ R3 is

described by an array of collocation points at

xuv, for u = 0, 1, 2, . . . , U and v = 0, 1, 2, . . . , V,

where U and V are integers. The curvilinear coordinate system, parameterised by u

and v, allows any point, x = x(u, v), on F to remain uniquely defined should the surface

become multivalued as occurs during wave breaking. On this surface, the normal vector

is defined in a similar manner to equation (3.6), with xu and xv replacing Qs and Qt.

The components of these derivatives and the normal can be written

xu = (xu, yu, zu) ,

xv = (xv, yv, zv) ,

n = (nx, ny, nz)

(4.1)

where the subscripts x, y and z denote components and the subscripts u and v denote

partial derivatives.

As x(u, v) is a global parametric representation of F , the field variables on F can

be represented similarly and thus the chain rule provides the following relations for the

derivatives of φ:

φu = φxxu + φyxu + φzzu,

φv = φxxv + φyyv + φzzv,

φn = φxnx + φyny + φznz.

(4.2)

The linear system described by the equations given in (4.2) can be written as
φx

φy

φz



xu yu zu

xv yv zv

nx ny nz

 =


φu

φv

φn

 . (4.3)

In order to solve equation (4.3), xu and xv must be calculated for all the collocation

points. Xü discusses in detail the method for calculating these parametric gradients

and found that a 7 point finite difference formula was comparable in accuracy to a

bi-cubic spline fit with much reduced computational effort. There is also reference to
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the inherent drop in accuracy at edges and corners where skewed rather than central

differencing schemes must be used. To compensate, more points can be used to increase

the accuracy although this may not always be practical or beneficial dependant on the

topology of F .

In general a 5 point differentiation scheme should suffice with the possibility of

increasing to 7 points at edges and corners as described in Forehand (1998, appendix

D). The coefficients used for this differencing scheme are also used for the coefficients

in the boundary correction scheme discussed in appendix D, and equation (D.15).

An alternative method for evaluating the free surface velocities is to implement the

Galerkin boundary integral approximation to the hypersingular velocity equation. The

implementation of this equation should improve the accuracy over numerical differen-

tiation, particularly in the corners, but due to time restraints the more basic numerical

integration is used on the free surface. Numerical differentiation is inapplicable to

vortex sheets (due to the reasons discussed in section 2.6) so the Galerkin method

provides a necessary tool for evaluating the velocity on the wake.

4.3 Galerkin Gradient Method

A Galerkin boundary element method, as developed by Gray (1995); Gray et al. (1998,

2004a,b), can be applied to solve for the velocity on the wake vortex sheet by regularising

equation (2.77). The Galerkin equation differs from an ordinary boundary element

equation (in the form of equation (2.40)) by integrating over the surface a second time

using the interpolation (or shape) functions as the weightings for the discretisation,

as discussed in section 2.7. Thus, as in Gray et al. (2004b), the Galerkin form of

equation (2.80) is

∫
S
ψ̂i(P )

∂φ(P )
∂Ek

dP ={
lim

PI→P
− lim

PE→P

}∫
S
ψ̂i(P )

1
4π

∫
S

∂G

∂Ek
φn(Q) − φ(Q)

∂2G

∂Ek∂n
dQ dP, (4.4)

where ψ̂i are the non-zero shape functions at a particular node, Pi.

The additional surface integration on the right hand side of equation (4.4) is key

to the success of this technique. As there are now four, rather than the normal two,

integrations to be carried out, additional analytical manipulations can be made to
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the equations. Through these manipulations the divergent terms in the hypersingular

kernel can be explicitly identified. Then, by taking the difference in the inner and

outer limits the divergent terms are cancelled analytically. The remaining non-singular

integrals can be solved numerically. Unfortunately, the additional surface integration

on the left hand side of the equation forms a linear system which must be solved in

order to recover the gradient at the collocation points.

The above technique, which was developed for three dimensional domains in Gray

et al. (2004a,b), is currently only applicable to linear triangular elements. Given

that the present simulation uses biquadratic panels on the lifting bodies, it would

be preferable if these could also be used for their wakes. Professor Gray has indicated

that the technique is applicable to higher order elements, yet, the time required to

develop a Galerkin method for such elements was beyond the scope of this project. In

addition, as this is the first time that this method has been applied to vortex wake

sheets, evaluation of the method using linear elements will provide an indication as to

the value of developing the method for higher order elements. Thus, in the manner of

Gray et al. (2004a,b), the three nodal linear triangular element with shape functions

defined by equation (3.56) is used to discretise equation (4.4). The element is shown in

figure 3.10. For ease of reading the tildes have been dropped from the ‘ψ’s representing

the shape functions for the element.

The potential φ(Q) is interpolated by

φ(s∗, t∗) =
3∑

j=1

φ(Qj)ψj(s∗, t∗), (4.5)

where s∗ and t∗ represents the parameter space for the Q integration. ‘s’ and ‘t’ now

describe the parameter space for the P integration.

It is clear that, in a similar manner to equation (2.45), the φn integrals in equa-

tion (4.4) will cancel when the two sides of the wake are brought together. Thus, the

task here is to establish the effect of the Galerkin limiting process on the hypersingular

part. The problem, using a particular pair of elements, ΣP and ΣQ, is to regularise

{
lim

PI→P
− lim

PE→P

}
φ(Q)

∫
ΣP

ψl(P )
∫

ΣQ

ψ(Q)
∂2G

∂Ek∂n
dQ dP (4.6)
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where
∂2G

∂Ek∂n
(P,Q) =

1
4π

(
n · Ek

r3
− 3

(n · R) (Ek · R)
r5

)
(4.7)

and ψl is the local weighting for P within the element ΣP .

To simplify the notation, the difference in the internal and external limits of equa-

tion (4.6) shall be assumed until explicitly calculated within the analysis. Facilitating

the opposing limits for equation (4.6) is the definition of the distance vector, R. To

distinguish between the internal and external limits let

R± = Q− (P ± εN), (4.8)

where N is the normal to element ΣP and is equivalent to n+ as defined in figure 2.5.

The ‘±’ in equation (4.8) allows P to approach the boundary from the external and

internal domains, respectively, as ε → 0. A few important relations are resultant from

these definitions. Notably that

N · R± = ∓ε; (4.9)

Ek · R = Rk, (4.10)

being careful to remember that the subscript k corresponds to the particular directional

component sought.

What follows is a detailed account demonstrating the analysis by which equa-

tion (4.6) is reduced to the calculation of two singular quantities. The first is known

as the coincident integral and describes the integration of a panel that contains P

being coincident to the integration panel. The second is known as the edge adjacent

integral and refers to the integration of a panel containing P that shares an edge with

the integration panel. The vertex adjacent integrals and the non-singular integrals are

completely cancelled. A vertex adjacent integral is when a panel containing P shares a

common vertex with the integration panel. These concepts are depicted in figure 4.1.

These cancellations are another major advantage of this approach; the vast majority of

the integrals (i.e. the non-singular and vertex adjacent integrals) have zero contribution

and, therefore, only the small number of local edge-adjacent and coincident integrals

contribute to the right hand side of equation (4.4).

The coincident and edge adjacent integrals are developed in full in the following two
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Figure 4.1: Galerkin integral types.

sections. The most singular part of the coincident integral was derived in Gray et al.

(2004b), with reference to the similar derivation presented in Gray et al. (2004a). For

completeness, the derivation is presented in section 4.3.1 in full, following the method of

Gray et al. (2004b). All of the integrals omitted from Gray et al. (2004b) are included

utilising techniques from Gray et al. (2004a) to regularise them. Additional detail

relating to the derivation of all of the integrations are available in the appendices. Also,

the method to further reduce the dimension of the remaining numerical integrations,

that was presented in Gray et al. (2006), is applied here to the coincident integrals

for the gradient for the first time. Section 4.3.2 demonstrates the regularisation of the

edge adjacent integral. This is not explicitly demonstrated in Gray et al. (2004b) and

is presented here using the techniques presented to solve the related integral in Gray

et al. (2004a). Throughout both sections, symbolic computing was utilised to aid in

the production of the expressions. As both derivations are quite involved, a summary

of the techniques used in the regularisation of each type of integral is presented below.

Following the development of the expressions for calculating the gradient of φ, the

novel approach to apply these results to a vortex sheet is presented in section 4.3.3. The

key to demonstrating the applicability is establishing a suitable limiting procedure for

the two ‘sides’ of the open wake as it is closed together. By linking the Galerkin limit to
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the top and bottom of the wake with the limit closing the top and bottom of the wake,

it can be shown that φ can be replaced by the difference in φ between the two surfaces,

or µ = [φ], the known quantity on the wake. Thus, just the application of a constant

coefficient to the expressions developed in section 4.3.1 and section 4.3.2 is required

to calculate the gradient on the wake. Section 4.3.4 goes on to establish the validity

of the Galerkin method at the wake edges where the ‘closing’ of the wake is less well

defined. By examining the form of the integrals as the open wake edge is approached,

the importance of the wake edges having zero [φ] is highlighted. In addition, despite

the fact that zero [φ] allows the Galerkin method to be applied directly to the wake

edges, the reasons why this is not in practice possible are discussed at the end of the

section.

Coincident Integration

A coincident integration occurs when the field and integration panels are the same. The

strategy for identifying and cancelling the divergent terms in this situation requires

that two polar transformations are made. The first polar transform is centred on

the parameter space of the integration panel, (s, t). Immediately after the polar

transformation, the external limit is subtracted from the internal limit, although at this

stage the limit to the surface, ε → 0, can not be taken. The integral’s two innermost

integrations are now in terms of the polar coordinates ρ and θ and there remains two

integrals to be solved, one of order ρ−3 and the other of order ρ−2. The impact of

the first polar transformation is that the domain must be split into three subtriangles,

and each subtriangle solved separately. Fortunately, the result from one subtriangle is

applicable to the other two, by rotating the element.

The next stage is to evaluate the ρ integral. The process is different for the integrals

of different orders of ρ. For the order ρ−2 integral, ε may be set to zero immediately

after the initial integration has been carried out. The remaining θ integration is

directly integrable, noting that singularities are present at s = ±1; as these are at the

extreme bounds of the integration, they are of no concern. In contrast, the result, when

evaluated directly, is unwieldy and, so, a substitution and second polar transformation is

carried out to reduce the integral to two dimensions. This, once again, splits the integral

into a further three parts. Although numerical quadrature can be applied to the two

dimensional integral resulting from the regularisation, it was chosen instead to apply
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the technique developed in Gray et al. (2006) (which demonstrates how the coincident

integrals in Gray et al. (2004a) can be further reduced) to reduce the integrals to one

dimension by analytical means. This is achieved by reordering the integral so that the

more tractable s-integral is innermost, then evaluating the integral over each triangular

domain in turn. The resulting one dimensional integrals are detailed in section F.1.

In a similar fashion to the order ρ−2 integral, a substitution and second polar

transform must also be carried out for the order ρ−3 integral. This step is much

more important in this case, as ε may not be set to zero prior to the transformations.

In fact, as was shown in Gray et al. (2004b), the additional step of subtracting a

zero valued integral of θ, containing ε−1, from the integral must be taken before the

second transformation. Once the substitution and polar transform have been carried

out, further manipulation is required before ε may be set to zero. An application of

the binomial theorem to the resulting expression, and by discarding the resulting ε4

term, finally produces an expression for which the limit to the surface may be taken.

Once again, the results of reducing the remaining two dimensional integrals to a single

dimension are detailed in section F.2.

Edge Adjacent Integration

An edge adjacent integral occurs when the field and integration panels share an edge.

The regularisation of the edge adjacent integral follows a similar process to that of the

coincident integral, in that two polar transformations are required. The two elements

share the t = t∗ = 0 edge and, thus, the first polar transform is centred at s = s∗, t = 0.

This results in the integral being split into two domains. In contrast to the coincident

integral, the difference between the internal and external limits are not taken at this

point. This is due to the forms of the distance vector R which differs for each limit; at

this stage, each limit is advanced separately.

Prior to any of the integrals being evaluated, the second polar transform is applied

to the integrals, after the t-integral is swapped with the θ-integral to become the second

innermost. This is possible, in part, because the limits of the θ-integral are independent

of t. The next polar transform is then undertaken, which splits the domain into two

more parts. Once this stage is reached, it is critical to take the difference in the interior

and exterior limits. If this is not done, then divergent log(ε) terms will persist. Now

the innermost integral may be evaluated and following that the limit as ε→ 0 may be
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taken. This deals with the divergent terms in the integral. The remaining integral may

be further simplified by observing that the s-integral is independent of the other two

integrals and, as such, may be evaluated first. In addition, the separate domains of the

two polar transformations may be reunified, leaving a single two dimensional integral

to be solved numerically over a simple domain.

4.3.1 Coincident Integration

The first case of singular integration to be tackled is when both ΣP and ΣQ are the

same and this is known as the coincident integral. The derivation of the most singular

integral in this section can be found in Gray et al. (2004b). The development of the

integral is presented here in detail along with the less singular integral, making reference

to the techniques in Gray et al. (2004a) where necessary. Symbolic computing was used

to ensure the accuracy of the resulting expressions.

To begin, following Gray et al. (2004b), transform equation (4.6) to the parameter

space, which gives

3∑
j=1

φ(Qj)
∫ 1

−1

∫ √
3(1−|s|)

0
ψl(s, t) ×

∫ 1

−1

∫ √
3(1−|s∗|)

0
ψj(s∗, t∗)J2

P

∂2G

∂Ek∂n
dt∗ ds∗ dt ds. (4.11)

The Jacobian of the transformations, JP , is the difference in area between the physical

and parameter space triangles and is constant. The J2
P term arises as the Jacobians for

ΣP and ΣQ are the same for the coincident integral, i.e. JQ = JP .

The regularising of equation (4.11) involves two polar transformations, the first of

which transforms the (s∗, t∗) parameter space into (s, t). In particular (s∗, t∗) is replaced

by a polar coordinate system centred at (s, t) defined by

s∗ − s = ρ cos(θ), (4.12)

t∗ − t = ρ sin(θ). (4.13)

The resulting polar coordinates are illustrated in figure 4.2. The effect of this transfor-
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mation on R is demonstrated in section E.1, the result of which is

R± =


a1ρ∓ εN1

a2ρ∓ εN2

a3ρ∓ εN3

 . (4.14)

The coefficients, a1, a2 and a3, are also defined in section E.1. As N · R = 0, r2 =

(a2ρ2 + ε2) where a2 = a2
1 + a2

2 + a2
3. Also note that the coefficients of ρ in R, a1, a2

and a3, are now simply functions of θ and the nodal coordinates of element ΣP .

It is desirable to recast the governing integral equation, equation (4.11), in terms of

the new coordinate system. First examine the effect on the hypersingular kernel, given

by

J2
P

∂2G

∂Ek∂n
=
J2

P

4π

(
Nk

r3
− 3

(∓ε)
(
R±

k

)
r5

)
. (4.15)

Subtracting the external from the internal limit, equation (4.15) becomes

J2
P

4π

[(
Nk

r3
− 3

(+ε)
(
R−

k

)
r5

)
−

(
Nk

r3
− 3

(−ε)
(
R+

k

)
r5

)]
= −3

J2
P ε

4πr5
(
R−

k +R+
k

)
= −6

J2
P εakρ

4πr5
.

(4.16)

The form of the shape function ψj(s∗, t∗) under the transformation defined by

equations (4.12) and (4.13) is

ψj(s, t, ρ) = cj,0(s, t) + cj,1(θ)ρ (4.17)

where the coefficients are defined in equation (E.14).

Subsequently, the transformation of the internal most integral of equation (4.11)

reveals
J2

P

4π

∫ θ2

θ1

∫ ρL

0
[cj,0(s, t) + cj,1(θ)ρ]

(
−6

akρε

(a2ρ2 + ε2)5/2

)
ρ dρ dθ. (4.18)

As a result of the transformation, the integral must be divided into three separate
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regions. The lower subtriangle, as seen in figure 4.2, has limits given by

ρL = − t

sin(θ)
,

θ1 = −π
2
− tan−1

(
1 + s

t

)
,

θ2 = −π
2

+ tan−1

(
1 − s

t

)
.

(4.19)

θ2

p
1

p
2

p
3

Figure 4.2: Polar coordinate transformation centred at (s,t). Adapted from Gray et al.
(2004a), figure 1.

Eventually, all three subtriangles must be evaluated, nonetheless, only the lower

subtriangle need be evaluated as the other two can use the same analysis by simply

rotating the element. By inspecting equation (4.18), it can be seen that there are two

integrals which must be calculated,

J2
P cj,0
4π

∫ θ2

θ1

∫ ρL

0

(
−6

akρ
2ε

(a2ρ2 + ε2)5/2

)
dρ dθ (4.20)

and
J2

P

4π

∫ θ2

θ1

cj,1(θ)
∫ ρL

0

(
−6

akρ
3ε

(a2ρ2 + ε2)5/2

)
dρ dθ. (4.21)

The final goal is to remove the singularities from the above integrals and to reduce

the number of integrations required to as few as possible, including the s and t integrals

which encompass the above expressions. Equation (4.21) shall be evaluated first, noting

that this integral was omitted from the derivation in Gray et al. (2004b). However, the

process of evaluating this integral is relatively simple, utilising the techniques presented
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in Gray et al. (2004a,b).

To begin, the innermost integral of equation (4.21) is evaluated first:

J2
P

4π

∫ θ2

θ1

cj,1(θ)
∫ ρL

0

(
−6

ρ3ε

(a2ρ2 + ε2)5/2

)
dρ dθ

=
J2

P

4π

∫ θ2

θ1

cj,1(θ)ak(θ)

[
2ε
(
2ε2 + 3a2ρ2

)
a4 (a2ρ2 + ε2)3/2

]ρL

0

dθ

=
J2

P

4π

∫ θ2

θ1

cj,1(θ)ak(θ)

(
2ε
(
2ε2 + 3a2ρ2

L

)
a4
(
a2ρ2

L + ε2
)3/2

− 4
a4

)
dθ.

(4.22)

It is now possible to safely set ε to zero in equation (4.22). What remains is the θ

integral, given by
J2

P

4π

∫ θ2

θ1

−4
cj,1ak

a4
dθ. (4.23)

At this stage, the divergent quantity in this integral has been removed and equa-

tion (4.23) may be integrated directly to reduce the integral to two dimensions. There

are potential problems at s = ±1, but as these point lie at the extremes of the domain

they are of no concern. Of greater concern is the unwieldy nature of the expression

which results from directly evaluating equation (4.23), and, therefore, to make the result

more manageable, the substitution and second polar transformation demonstrated in

Gray et al. (2004a,b) is applied. The substitution is given by

θ = −π
2

+ tan−1

(
τ − s

t

)
, (4.24)

where −1 ≤ τ ≤ 1, and the second polar transformation is defined by

τ = Λcos(Ψ) + s,

t = Λsin(Ψ).
(4.25)

The domain of integration for the second polar coordinate transformation is illus-

trated in figure 4.3. The integral must be, once again, split into three separate domains.

The impact of these transformations on the variables, shape functions and the limits

of integration is detailed in section E.2. The form of the ψl shape functions after the

transformations are

ψl(s,Λ) = kl,0 + kl,1Λ (4.26)
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where the coefficients are given in equation (E.19). Section E.2 also shows that

dt dθ = sin (Ψ) dΨ dΛ. (4.27)

Figure 4.3: Polar coordinate transformation centred at τ = s, t = 0. Adapted from Gray
et al. (2004a), figure 2.

Transforming equation (4.23) and re-introducing the outer variables of integration

produces an integral of the form

−
J2

P

π

∫ 1

−1
ds

∫ Ψ cj,1ak

a4
sin(Ψ) dΨ

∫ ΛL

0
kl,0 + kl,1Λ dΛ. (4.28)

Observing figure 4.3, the limits of integration for Ψ over the three domains are defined

by 0 ≤ Ψ ≤ Ψ1(s), Ψ1(s) ≤ Ψ ≤ π − Ψ2(s) and π − Ψ2(s) ≤ Ψ ≤ π where

Ψ1(s) = tan−1

(√
3 (1 − |s|)
1 − s

)
,

Ψ2(s) = tan−1

(√
3 (1 − |s|)
1 + s

)
.

(4.29)

The corresponding limits for Λ, given by ΛL(Ψ), for the three triangles are

Λ1(Ψ) =
1 − s

cosΨ
,

Λ2(Ψ) =
√

3 (1 − |s|)
sinΨ

,

Λ3(Ψ) = − 1 + s

cosΨ
.

(4.30)
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Hence, the inner integral of equation (4.28) is evaluated revealing

∫ ΛL

0
kl,0 + kl,1Λ dΛ. =

[
kl,0Λ +

kl,1Λ2

2

]ΛL

0

= ΛL

(
kl,0 +

kl,1ΛL

2

)
.

(4.31)

The remaining integral to be evaluated is

−
J2

P

π

∫ 1

−1
ds

∫ Ψ cj,1ak

a4
sin(Ψ)ΛL

(
kl,0 +

kl,1ΛL

2

)
dΨ. (4.32)

The integrand of the Ψ integral with all of the coefficients replaced is examined with

j = 1 and l = 1 which results in

(
−1

2 cos(Ψ) + 1
6

√
3 sin(Ψ)

)
(A1 cos(Ψ) −B1 sin(Ψ))

(χ)2
×

1
2

tan(Ψ) (1 − s)2
(

1 − 1
6

√
3 tan(Ψ)

)
(4.33)

where

χ = (A1 cos(Ψ) −B1 sin(Ψ))2 + (A2 cos(Ψ) −B2 sin(Ψ))2 +

(A3 cos(Ψ) −B3 sin(Ψ))2 . (4.34)

Clearly, equation (4.33) is too complicated to evaluate analytically. However, the

integral in equation (4.32) can still be reduced to a single numerical integration by

utilising the method presented in Gray et al. (2006). In Gray et al. (2006) the method

was used to reduce the coincident integrals produced in Gray et al. (2004a) to one

dimension. To the best of the author’s knowledge, this is the first time this technique

has been used for the coincident integrals of the gradient calculation. The method

works by exchanging the order of integration of the s and Ψ integrals, allowing the

simpler s integrand to be evaluated first. This gives the coincident integral the form

−
J2

P

π

∫
cj,1ak

a4
sin(Ψ) dΨ

∫
ΛL

(
kl,0 +

kl,1ΛL

2

)
ds. (4.35)

Although there are no obvious singularities for the range of s in expression (4.35) it

is still convenient to deal with this third analytical integration in two separate regions.
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These regions are −1 < s < 0 and 0 < s < 1.

The various domains of the integrals can be seen in figure 4.4. Each triangle in

figure 4.3 is marked by a different pattern and the domains for s < 0 and s > 0 are

illustrated in a) and b) respectively. The function Ψ(s), which is transformed to α(Ψ),

is marked in both the a) and b) diagrams. This function is a legacy from splitting the

domain into positive and negative s and this causes the second triangle to be split into

two separate integrals in both the case of s < 0 and s > 0. The function α is derived

by rearranging Ψ for s. To demonstrate, when s < 0,

Ψ = tan−1

(√
3(1 + s)
1 − s

)
⇒ −1 − s

−1 + s
=

1
3

√
3 tan(Ψ)

⇒ s =
−3 +

√
3 tan(Ψ)

3 +
√

3 tan(Ψ)

∴ α =
β − 1
β + 1

,

(4.36)

where β =
1√
3

tan(Ψ). When s > 0, α must be redefined as

α = −
(
β + 1
β − 1

)
. (4.37)

Note that, in an effort to avoid redefining β, a slightly different α is used for s > 0 than

is seen in Gray et al. (2006).

The resulting one-dimensional integrals, derived from equation (4.21), can be found

in section F.1. Along with deriving the integrals, the integral kernels of the resulting

numerical integration are checked to ensure they are non-singular over the domain of

integration.

The second integral to be evaluated, equation (4.20), requires additional steps to

successfully reduce it to a 1D numerical integration. This is the subject of Gray et al.

(2004b, section 3) and is reproduced here for completeness, before taking the extra step

of reducing the integral to one dimension. The process is begun by evaluated the inner
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Figure 4.4: Integration domain for second polar transformation split between s < 0 and
s > 0 and over the three triangles. Adapted from Gray et al. (2006).

integral equation,

J2
P cj,0
4π

∫ θ2

θ1

∫ ρL

0

(
−6

akρ
2ε

(a2ρ2 + ε2)5/2

)
dρ dθ.

=
J2

P cj,0
2π

∫ θ2

θ1

[
−1
ε

ak(θ)ρ3

(ε2 + a2ρ2)3/2

]ρL

0

dθ

=
J2

P cj,0
2π

∫ θ2

θ1

−1
ε

ak(θ)ρL
3

(ε2 + a2ρL
2)3/2

dθ.

(4.38)

Unlike equation (4.22) it is not possible to set ε to zero in equation (4.38) due to

the presence of the ε−1 term. Gray et al. deals with this problem by considering the

limiting form of equation (4.22), obtained by replacing
(
ε2 + a2ρL

2
)−3/2 with a−3ρ−3

L .

In this situation the integral reduces to

J2
P cj,0
2π

∫ 2π

0
−1
ε

ak(θ)
a3

dθ = −
J2

P cj,0
2πε

∫ 2π

0

ak(θ)
a3

dθ = 0. (4.39)

The result of equation (4.39) relies upon being able to integrate over the range

0 ≤ θ ≤ 2π. There are, however, difficulties achieving this if the point P (s, t) should

be at a corner or on an edge. However, a well know fact dictates that the edges and

corners have zero volume and thus do not contribute to the integral. This, combined

with a successful outcome of the analytic integration scheme, indicate that these special



4.3. Galerkin Gradient Method 114

cases are not of significance to this integral.

With the applicability of equation (4.39) assured, the integrand of the limiting case

can be subtracted from the integrand of equation (4.22) for all the subtriangles. This

results in the new kernel,

− 1
ε

akρL
3

(ε2 + a2ρL
2)3/2

−
(
−1
ε

ak

a3

)
= −1

ε

ak

(
a3ρ3

L −
(
ε2 + a2ρ2

L

)3/2
)

a3
(
ε2 + a2ρ2

L

)3/2
. (4.40)

The form of equation (4.40) still prevents the safe setting of ε to zero for the reasons

detailed in Gray et al. (2004b, pg. 300). In order to finally deal with this singular term

the transformations described in equations (4.24) and (4.25) must be applied to the

integral.

It is useful at this point to restate the entire integral to be evaluated. The remaining

integral is

J2
P

2π

3∑
j=1

φ(Qj)
∫ 1

−1
ds

∫ √
3(1−|s|)

0
ψl(s, t)cj,0(s, t) dt ×

∫ θ2

θ1

−1
ε

ak

(
a3ρ3

L −
(
ε2 + a2ρ2

L

)3/2
)

a3
(
ε2 + a2ρ2

L

)3/2
dθ. (4.41)

The effect of transformations (4.24) and (4.25) on ψl has already been derived. The

impact on cj,0 is given by equation (E.23) and can be seen to have identical form to

that of ψl (see equation (4.26)). The inner-most integrand of equation (4.41) must also

be transformed resulting in

1
ε

(
ak

a3
− akΛ3

(ε2 + a2Λ2)3/2

)
. (4.42)

Thus, the full integral in (s,Ψ,Λ) space is

J2
P

2π

∫ 1

−1
ds

∫ Ψ

sin(Ψ) dΨ ×∫ ΛL

0

1
ε

(kl,0 + kl,1Λ)2
(
ak

a3
− akΛ3

(ε2 + a2Λ2)3/2

)
dΛ. (4.43)

Now consider the inner-most integral in equation (4.43) and the contribution to it



4.3. Galerkin Gradient Method 115

from the lowest order term in Λ in (kl,0 + kl,1Λ)2, i.e. the k2
l,0 term. That is, consider

IΛ0 =
∫ ΛL

0

1
ε
k2

l,0

(
ak

a3
− akΛ3

(ε2 + a2Λ2)3/2

)
dΛ

=

−akk
2
l,0

(
a2Λ2 + 2 ε2 − Λ a

√
ε2 + a2Λ2

)
a4ε

√
ε2 + a2Λ2

ΛL

0

= −
akk

2
l,0

(
a2ΛL

2 + 2 ε2 − ΛLa
√
ε2 + a2ΛL

2 − 2 ε
√
ε2 + a2ΛL

2
)

a4ε
√
ε2 + a2ΛL

2
.

(4.44)

Unfortunately, the result of equation (4.44) will still not permit the setting of ε to zero.

However an application of the binomial theorem to the ΛLa
√
ε2 + a2ΛL

2 term reveals

that

ΛLa

√
ε2 + a2ΛL

2 = Λ2
La

2

(
1 +

ε2

Λ2
La

2

)1/2

= Λ2
La

2

(
1 +

1
2

ε2

Λ2
La

2
+ O(ε4)

)
.

(4.45)

Given that the O(ε4) terms and above in equation (4.44) are sufficiently small, it is

reasonable to ignore them and thus

ΛLa

√
ε2 + a2ΛL

2 ≈ Λ2
La

2 +
1
2
ε2. (4.46)

With the substitution of equation (4.46) into the result of equation (4.44) the limit may

be taken, revealing

lim
ε→0

−1
2

akk
2
l,0

(
3 ε− 4

√
ε2 + a2ΛL

2
)

a4
√
ε2 + a2ΛL

2

 =
2akk

2
l,0

a4
. (4.47)

Through similar processes, the Λ and Λ2 integrals (from the 2kl,0kl,1Λ and k2
l,1Λ

2

terms in (kl,0 + kl,1Λ)2) are found to be zero in the limit as ε→ 0. Thus, the remaining

integral to be evaluated is

J2
P

π

∫ 1

−1
k2

l,0 ds

∫ Ψ ak sin(Ψ)
a4

dΨ. (4.48)

This integral is now reduced to one numerical integration by exchanging the order of
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Figure 4.5: Edge-adjacent integral and polar transformation. Adapted from Sutradhar
et al. (2005).

integration in a similar manner to the method used to reduce equation (4.32). The

resulting integrals are listed in section F.2.

4.3.2 Edge Adjacent Integration

The next stage in the analysis is the evaluation of the edge adjacent integral. This type

of integral was not explicitly derived for the gradient method in Gray et al. (2004b). The

method used for the edge adjacent integrals in the accompanying Gray et al. (2004a)

paper can be applied to the gradient, and this is demonstrated herein. The orientation

of elements which require such an integration is illustrated in figure 4.5(a) with suitable

choice of s, t, s∗ and t∗ axes. The elements containing the points P and Q share the

vertices p1 and p2 and the edge at t = t∗ = 0. Also note that along the shared edge

s = −s∗.

The distance vector, R, under these conditions is derived in section G.1. In addition,

the Q vector must be transformed into the (s, t) parameter space. To achieve this Gray

et al. (2004a) employed a polar transformation centred about s∗ = −s and t∗ = 0 which

is described by

s∗ = ρ cos(θ) − s,

t∗ = ρ sin(θ).
(4.49)
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The transformation splits the integration into two domains (0 < θ < Θ1, Θ1 < θ < π),

as can be seen in figure 4.5(b). Consequently, R is now a function of (ρ, θ, t).

As is seen in appendix G, the form of r2 is different dependent on whether the

internal or external limit is taken. For the R− vector (see equation (4.8)) the result is

r2− = ε2 + 2
(
N · R0

)
ε+ b01(θ)ρ2 + b11(θ)ρt+ b10t

2 (4.50)

where

N · R0 = b20(θ)ρ+ b02t (4.51)

and R0 = Q − P or, otherwise, R± with ε set to zero. The coefficients are defined

within equation (G.7). The result for the R+ vector is

r2+ = ε2 − 2
(
N · R0

)
ε+ b01(θ)ρ2 + b11(θ)ρt+ b10t

2. (4.52)

The difficulty that arises from having two different r2 terms is that the denominators

of the internal and external integrands will not be equal. Hence, cancellation of singular

quantities at an early stage is not forthcoming. It is chosen, instead, to advance both

the internal and external limits to the point of the first analytical integration. The

difference is then taken and, finally, integrated.

The form of the integral to be solved is

3∑
j=1

φ(Qj)
∫ 1

−1
ds

∫ √
3(1−|s|)

0
ψl(s, t)dt ×[∫ Θ1(s)

0
dθ

∫ L1

0
Fρ dρ+

∫ π

Θ1(s)
dθ

∫ L2

0
Fρ dρ

]
(4.53)

where

F = ψj(s, θ, ρ)JPJQ
∂2G

∂Ek∂n
. (4.54)

From figure 4.5, the limits of the inner integrals are

Θ1(s) =
π

2
− tan−1

(
s√
3

)
(4.55)
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and

L1 =
√

3 (1 + s)
sin(θ) +

√
3 cos(θ)

, L2 =
√

3 (1 − s)
sin(θ) −

√
3 cos(θ)

. (4.56)

Given that Θ1 is solely a function of s it is possible to reorder the θ and t integrals.

The result is that the complete integral now has the form

∫ 1

−1
ds

∫ Θ1(s)

0
dθ

∫ √
3(1−|s|)

0
ψl(s, t)dt

∫ L1

0
Fρ dρ +∫ 1

−1
ds

∫ π

Θ1(s)
dθ

∫ √
3(1−|s|)

0
ψl(s, t)dt

∫ L2

0
Fρ dρ. (4.57)

Due to the singularity at t = ρ = 0, it is prudent to make one further polar

transformation centred about this point. This transformation is given by

ρ = Λ cos(Ψ),

t = Λ sin(Ψ).
(4.58)

Figure 4.6: Edge-adjacent integral, second polar transformation. Adapted from Sutradhar
et al. (2005).

As can be seen from figure 4.6, the domain of integration must, once again, be split

in two. As was shown in Sutradhar et al. (2005), this results in the following four
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integrals:

∫ Ψ1

0
dΨ
∫ L11

0
F cos(Ψ)Λ2 dΛ +

∫ Ψ1

0
dΨ
∫ L12

0
F cos(Ψ)Λ2 dΛ +∫ Ψ2

0
dΨ
∫ L11

0
F cos(Ψ)Λ2 dΛ +

∫ Ψ2

0
dΨ
∫ L12

0
F cos(Ψ)Λ2 dΛ . (4.59)

From figure 4.6 the Λ limits are

Ln1 =
Ln(θ)
cos(Ψ)

, Ln2 =
Ln(θ)
sin(Ψ)

. (4.60)

It is not necessary to list the values of the Ψ1 and Ψ2 limits, as later it will be shown

that the Ψ integration domains can be unified following the Λ integration.

Subsequently, the forms of r2+ and r2− under the transformation are:

r2− = b2Λ2 + b1εΛ + ε2,

r2+ = b2Λ2 − b1εΛ + ε2,
(4.61)

where

b2 = b11 cos (Ψ) sin (Ψ) + b10 sin2 (Ψ) + b01 cos2 (Ψ) ,

b1 = b20 sin (Ψ) + b02 cos (Ψ) .
(4.62)

The shape functions, ψj and ψl have the form

ψj(s, θ, ψ,Λ) = cj,0(s) + cj,1(θ, ψ)Λ,

ψl(s, ψ,Λ) = kl,0(s) + kl,1(ψ)Λ,

where the coefficients are defined by equations (G.10) and (G.12). The distance vector,

R, under the second polar transformation is presented in section G.2 and the form of

the n · R term becomes

JQ

(
n · R±) = j1qΛ ∓ JQ (n · N) ε, (4.63)

where j1q = JQ (d1n1 + d2n2 + d3n3) with the dk terms defined in equation (G.13).
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Ek · R remains denoted as Rk and the product with JP has the form

JPR
±
k = j1pΛ ∓ JP ε (4.64)

where j1p = JPdk.

The integral for the exterior limit, for one of the triangles, is given by

∫ Ψ

cos(Ψ) dΨ
∫ L

(cj,0(s) + cj,1(θ,Ψ)Λ) (kl,0(s) + kl,1(Ψ)Λ) ×(
JPJQnk

r3+
− 3

(j1qΛ − JQ (n · N) ε) (j1pΛ − JP ε)
r5+

)
Λ2 dΛ. (4.65)

It is critical at this point to subtract the external limit from the internal limit. If

they are integrated separately they will have divergent log(ε) terms. Collecting together

the shape functions, the powers of Λ are combined such that

(cj,0(s) + cj,1(θ, ψ)Λ) (kl,0(s) + kl,1(ψ)Λ)

= cj,0kl,0 + (cj,0kl,1 + cj,1kl,0) Λ + cj,1kl,1Λ2

= a1(s) + a2(s, θ,Ψ)Λ + a3(Ψ)Λ2.
(4.66)

For the hypersingular part, the result of the Λ integration, once the interior and

exterior integrands have been subtracted and the limit as ε→ 0 has been taken is a1f

where

f =
1
f1

(
f2 ln

(
−b1 + 2

√
b2

b1 − 2
√
b2

)
+ f3

)
(4.67)

and

f1 = b
5/2
2

(
16b22 − 8b2b21 + b41

)
,

f2 = 3jpjq
(
16b22 − 8b2b21 + b41

)
,

f3 = 4
√
b2
[
(−16 jqJP + 8 JQ(N · n) JP b1 − 16 jpJQ(N · n)) b22+

20 jqjpb1b2 − 3 jqjpb13
]
.

(4.68)

Likewise, the result for the strongly singular part is a1g where

g =
g1
g2

(
g2 ln

(
−b1 + 2

√
b2

b1 − 2
√
b2

)
+ g3

)
(4.69)
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and

g1 =
JPJQnk

b
3/2
2

,

g2 =
(
4b2 − b21

)
,

g3 = 4
√
b2b1.

(4.70)

Note that only the lowest power of Λ in equation (4.66) contributes to the result of

the integration as the result of the higher powers is zero. Thus, the coefficient a1 appears

in the result of both the hypersingular and strongly singular parts of the integral. By

observing that equations (4.67) and (4.69) are independent of L and that a1 depends

only on s, the θ and Ψ integral domains can now be re-unified, given the new ranges,

0 ≤ θ ≤ π and 0 ≤ Ψ ≤ π/2. In addition, as the s integration is independent from

the others it is possible to reorder the integral such that equation (4.65) can now be

written ∫ π

0
dθ

∫ π/2

0
cos(Ψ)(f + g) dΨ

∫ 1

−1
a1 ds. (4.71)

The result of evaluating the inner most integral is

∫ 1

−1
a1ds =

∫ 1

−1

(
1
2

+
1
2
s

)2

ds =
1
4

[
s+ s2 +

s3

3

]1

−1

=
2
3
. (4.72)

Hence, the remaining integral, to be solved numerically, is:

1
6π

∫ π

0
dθ

∫ π/2

0
cos(Ψ)(f + g) dΨ. (4.73)

The above is too complicated to be reduced any further analytically, however the

numerical integration is over a simple domain, that of 0 ≤ θ ≤ π, 0 ≤ Ψ ≤ π/2.

Equation (4.73) is the final expression for the edge adjacent integral and Galerkin

gradient method. It can be shown that the vertex-adjacent and non-singular integrals

cancel in the limiting process and thus make no contribution to the final result. Also

note that there is no dependence on the edge-adjacent integral to ‘cancel’ any non-

bounded expressions resulting from the coincident integral, as is the case in Gray et al.

(2004a). The independence of the coincident and edge-adjacent integrals from each

other is important in applying the Galerkin gradient method over a non-closed surface.
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4.3.3 Application to a Vortex Sheet

It is proposed that the analysis in the last two sections can be applied to a vortex sheet

(see Gray et al. (2004b, sec. 6) for the equivalent crack problem in fracture mechanics).

To demonstrate this, an alternative limiting scheme is considered. Observing the right

hand part of figure 2.5, the Galerkin derivative scheme can be applied to the wake top

and bottom individually and then summed (see Gray et al., 2004b, sec. 6). Although

that analysis is plausible, it is perhaps not robust enough to be unequivocal.
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Figure 4.7: Wake limiting scheme with shared external point.

Figure 4.7 illustrates another possible scheme which is described herein. This scheme

aims to unify both the Galerkin limit to the top and bottom surfaces and the limit

closing the two surfaces. This is achieved through a shared exterior point, PE . By

writing out the equations for each side in full (with a unified normal), when the limit

ε → 0 is taken, the full expression for the velocity on the wake should remain. The

desired outcome is that the expressions will be functions of [φ] = φ+−φ−. The process

is begun by restating the equation for the velocity of the wake, i.e.

v =
1
2

(
∂φ+

∂Ek
+
∂φ−

∂Ek

)
. (4.74)

The result of writing out the Galerkin form of the right hand side of equation (4.74) in

full is

1
2

{ lim
P+

I →P+
− lim

PE→P+

}
3∑

j=1

φ+(Qj)
∫

ΣP

ψl(P+)
∫

ΣQ

ψj
∂2G

∂Ek∂n+
dQ dP +

{
lim

P−
I →P−

− lim
PE→P−

}
3∑

j=1

φ−(Qj)
∫

ΣP

ψl(P−)
∫

ΣQ

ψj
∂2G

∂Ek∂n− dQ dP

 . (4.75)
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A shared normal is required and if n− is chosen then the φ− limit is identical to the

analysis already carried out. The effect of exchanging the n+ normal for the φ+ limit

is now investigated. Most notably, the internal and external limits are reversed. The

external limit is now

R+ = Q− (P − εN), (4.76)

while the internal limit is

R− = Q− (P + εN). (4.77)

Note, for the coincident integral, that N = n−. Also note that equation (4.10) still

holds, however, equation (4.9) has been altered to

N · R± = ±ε . (4.78)

Consequently, comparing the result for the φ− limit of the coincident integral (given

by equation (4.16)) to the difference in limits for φ+ it can be seen that

J2
P

4π

[(
Nk

r3
− 3

(−ε)
(
R−

k

)
r5

)
−

(
Nk

r3
− 3

(+ε)
(
R+

k

)
r5

)]
= 3

J2
P ε

4πr5
(
R−

k +R+
k

)
= 6

J2
P εakρ

4πr5
.

(4.79)

The coincident integral for the velocity equation becomes

1
2

 3∑
j=1

φ+(Qj)
∫

ΣP

ψl(P+)
∫

ΣQ

ψj(Q)
6J2

P εakρ

4πr5
dQ dP

−

 3∑
j=1

φ−(Qj)
∫

ΣP

ψl(P−)
∫

ΣQ

ψj(Q)
6J2

P εakρ

4πr5
dQ dP

 . (4.80)

Fortuitously, now that the limit as ε→ 0 has been taken, P+ and P− are coincident.

Hence, choosing φ+ − φ− = [φ], expression (4.80) becomes

1
2

 3∑
j=1

[φ] (Qj)
∫

ΣP

ψl(P )
∫

ΣQ

ψj(Q)
6J2

P εakρ

4πr5
dQ dP

 . (4.81)

Thus, the results of the coincident integral for φ− also hold for [φ], noting that a factor

of ‘−1/2’ must be applied.
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Accordingly, the edge adjacent integral for the φ+ limit must now be evaluated.

Again, a unified normal, n−, is used in the analysis. Most of the initial analysis for

the edge adjacent integral is unaltered. The main impact is on R, being defined

by equations (4.76) and (4.77). Therefore the form of r2+ and r2−, once the two

polar transformations described in section 4.3.2 have been carried out, is altered from

equation (4.61) to

r2− = b2Λ2 − b1εΛ + ε2,

r2+ = b2Λ2 + b1εΛ + ε2,
(4.82)

with coefficients defined by equation (4.62). Equation (4.63) is also altered to

JQ

(
n · R±) = j1qΛ ± JQ (n · N) ε (4.83)

and equation (4.64) becomes

JPR
±
k = j1pΛ ± JP ε. (4.84)

Subsequently, the innermost integral, applying the difference between the internal

and external limits, is

∫ L

(cj,0(s) + cj,1(θ,Ψ)Λ) (kl,0(s) + kl,1(Ψ)Λ) ×[(
JPJQnk

r3−
− 3

(j1qΛ − JQ (n · N) ε) (j1pΛ − JP ε)
r5−

)
−(

JPJQnk

r3+
− 3

(j1qΛ + JQ (n · N) ε) (j1pΛ + JP ε)
r5+

)]
Λ2 dΛ. (4.85)

Thus, the result of the hypersingular, Λ integral is

a1f =
a1

f1

(
f2 ln

(
−b1 + 2

√
b2

b1 − 2
√
b2

)
+ f3

)
, (4.86)

and the strongly singular part is

a1g =
a1g1
g2

(
g2 ln

(
−b1 + 2

√
b2

b1 − 2
√
b2

)
+ g3

)
. (4.87)

The fi and gi coefficients are given in equations (4.68) and (4.70).



4.3. Galerkin Gradient Method 125

The limits of integration are now unified and the s-integral evaluated in the manner

of equation (4.71). Finally, combining the results for the φ+ and φ− limits produces

1
2

 1
6π

3∑
j=1

φ+

∫ π

0
dθ

∫ π/2

0
cos(Ψ)(f + g) dΨ +

−1
6π

3∑
j=1

φ−
∫ π

0
dθ

∫ π/2

0
cos(Ψ)(f + g) dΨ

 (4.88)

and once again noting that in the limit as ε → 0, P+ and P− are unified and [φ] =

φ+ − φ−. Therefore, equation (4.88) becomes

1
2

 1
6π

3∑
j=1

[φ]
∫ π

0
dθ

∫ π/2

0
cos(Ψ)(f + g) dΨ

 . (4.89)

Equations (4.81) and (4.89) demonstrate that the analysis for the φ− side of the

wake is identical to that for the collapsed wake sheet with φ− replaced by [φ] and a

factor of −1/2 applied.

4.3.4 Validity at Sheet Edges

Although the result of the previous section is highly convenient, the validity of the

closing of the wake sheet is still yet to be determined. The above analysis requires two

distinct sides, where equations for φ+ and φ− are defined. Crucially, when closing the

two sides it is vital that the equations do not require information from the opposite

side or it will not be possible to use the unified field value [φ].

To visualise the problem, consider the wake mapped to the surface of the sphere.

The equator of the sphere represents the wake edge, formed once the wake sides are

brought together. This geometry, showing two opposite points which will be unified,

can be seen in figure 4.8.

Such a geometry is required to facilitate cancellation between the internal and

external domain. The challenge, when bringing the two surfaces together, is to separate

the two sides, S+ and S−, so that equations of either side, at a point P+ or P−, have

no dependency on each other. Figure 4.9 illustrates the panels supporting the point of

interest (i.e. those panels with non-zero shape functions at Pi) and the edge adjacent

panels that must be included in the right hand side of the Galerkin integration.
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Figure 4.8: Opposite wake surfaces and points mapped onto a sphere.

The discretisation of the left and right hand side of the governing equations offers

insight into the execution of the Galerkin method. The governing integral equation for

the wake velocity is written

∫
Σi

ψ̂i(P )
(
∂φ+(P )
∂Ek

+
∂φ−(P )
∂Ek

)
dP ={

lim
PI→P

− lim
PE→P

}∫
Σi

ψ̂i(P )
∫

ΣNZ

[φ(Q)]
∂2G

∂Ek∂n
dQ dP. (4.90)

Here, Σi represents the set of panels which have non-zero shape functions, ψ̂i, at point

Pi on ΣP . ΣNZ are the set of panels containing Q which are coincident or edge adjacent

to the panels contained in Σi.

When considering the role of the left hand side of equation (4.90), it is useful first

to consider a single panel from the set Σi. This panel is referred to as Σi,m. Within

Σi,m, the shape function at Pi, ψ̂i, is, once again, redefined as ψl for some l ∈ [1, 2, 3].

The sum of the gradients can then be written in terms of the nodal values of Σi,m such

that (
∂φ+(P )
∂Ek

+
∂φ−(P )
∂Ek

)
(s, t) =

3∑
j=1

2vav(pj)ψj(s, t), (4.91)

where j = 1, 2, 3 and vav is the average velocity. Thus the left hand side of equa-

tion (4.90) becomes

2
3∑

j=1

vav(pj)
∫ 1

−1

∫ √
3(1−|s|)

0
ψl(s, t)ψj(s, t)JP dt ds. (4.92)
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Figure 4.9: Contributing panels for a point on one side of the wake. Σi are the red panels
and ΣNZ are both the red and striped panels.

Equation (4.92) illustrates that the Galerkin method requires the average velocity

at the six nodes surrounding Pi (for the geometry depicted in figure 4.9).

Now considering the right hand side of equation (4.90), [φ] is estimated for a panel

ΣQ by the values at the panel’s nodes. Thus, for a particular panel, Σn that belongs

to the set ΣNZ,

∫
Σn

[φ(Q)]
∂2G

∂Ek∂n
dQ =

3∑
j=1

[φ(qj)]
∫ 1

−1

∫ √
3(1−|s|)

0
ψj(s, t)JQ

∂2G

∂Ek∂n
dt ds. (4.93)

Note that the domain of ΣNZ will extend beyond the set of panels contained in Σi.

To stop the left and right hand side of equation (4.90) from depending on points on the

opposite side of the wake from Pi, the ability to truncate the equations at the edges is

critical.

Figure 4.10 illustrates how the support required for the left hand side of equa-

tion (4.90) could extend beyond the wake edges. Starting at (i), the velocity at the

circular point is desired. The left hand side of equation (4.90) requires the average

velocities at the six points surrounding the circle, one of which is the square point.

Moving onto (ii), the support for the square point is shown. Again the left hand side
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Wake Edge

Figure 4.10: Supporting panels approach the wake edge.

demands one of these points is the triangular point which lies on the wake edge. If

the Galerkin method is to be used to determine the velocity at the triangle, then the

support shown in (iii) is required. The required support of this point would appear to

invalidate the use of the Galerkin method as points on the opposite side of the wake

are required. However, it can be demonstrated that in the special case of [φ] being zero

at the wake edge, the equations do, in fact, truncate.

Wake Edge

Σ1

Σ2

p
1

p
2

p
4

p
5

p
3

(1) (2)

(1) (2)

(3)

(3)

Figure 4.11: Simplistic illustrative geometry at the wake edge.

As an illustration, consider the special case where just two panels are in support of a

point at the wake edge (such a situation may arise at the corner of the wake). Depicted

in figure 4.11, the numbers in parentheses represent the local node numbering and the

opposite ordering of local numbering ensures a combined normal once the panels are

brought together.
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Considering the point p3, supported by panels Σ1 and Σ2, the left hand side of the

discretised equation reads
2∑

i=1

∫
Σi

ψ̂i
∂φ

∂Ek
dP. (4.94)

Now estimate the gradient so that

∂φ

∂Ek
=

3∑
j=1

ψj
∂φj

∂Ek
. (4.95)

Thus, equation (4.94) becomes

2∑
i=1

3∑
j=1

∂φj

∂Ek

∫
Σi

ψjψ̂i dP =

∂φ1

∂Ek

∫
ψ1ψ3 dP +

∂φ2

∂Ek

∫
ψ2ψ3 dP +

∂φ3

∂Ek

∫
ψ3ψ3 dP +

∂φ4

∂Ek

∫
ψ1ψ3 dP +

∂φ5

∂Ek

∫
ψ2ψ3 dP +

∂φ3

∂Ek

∫
ψ3ψ3 dP. (4.96)

Grouping the relevant terms observe that the right hand side of equation (4.96) becomes

(
∂φ1

∂Ek
+
∂φ4

∂Ek

)∫
ψ1ψ3 dP +(

∂φ2

∂Ek
+
∂φ5

∂Ek

)∫
ψ2ψ3 dP + 2

∂φ3

∂Ek

∫
ψ3ψ3 dP. (4.97)

Closing the two sides of the wake, the points p1 and p2 are now coincident with points

p4 and p5, respectively. Equation (4.97) may now be written

2vav1

∫
ψ1ψ3 dP + 2vav2

∫
ψ2ψ3 dP + v3

∫
ψ3ψ3 dP, (4.98)

where vav1 and vav2 are the average velocities across the closed wake sheet at nodes 1

and 2, as required. The velocity at the wake edge, v3, is also present, assuming that

the velocity at the top and bottom of the wake is identical here. For this to be true,

it is critical that there is only one value of φ at p3. Therefore it can be seen that the

value of [φ] at p3 is

[φ] = φ+(p3) − φ−(p3) = φ(p3) − φ(p3) = 0. (4.99)
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Thus, [φ] must be zero at the wake edge.

The above result confirms that the Galerkin equations for the wake will truncate

at the wake edge if and only if the value of [φ] is zero. If this is not the case (such as

on the trailing edge) then the velocity at the edges must be supplied to the Galerkin

method in order to truncate the equations.

The requirements of the domain of the right hand side of equation (4.90) remains to

be determined. The difficulties concerning the right hand side of the Galerkin method

are demonstrated in figure 4.12. On the left of the diagram the trailing edge has non-

zero [φ] and the Galerkin equation for a point one line of panels from the edge will

require an edge adjacent integral from a panel on the opposite side of the wake. This

will invalidate the method for such points. This complicates the use of the Galerkin

method at the trailing edge, as the velocity can only be sought two points away from

the edge. Consequently, the velocity must also be known a priori one point away from

the trailing edge and [φ] must be known on the trailing edge. This information can

be provided if the velocity of a point at the trailing edge, determined by the Kutta

condition, is carried for an extra time-step.

Figure 4.12: The impact of [φ] on the edge-adjacent integral for points close to edges.

The need for an edge-adjacent integral from the opposite side does not arise for

points that lie one panel away from a wake edge (where [φ] = 0) as shown on the right

of figure 4.12. As this integral only depends on nodes lying on the edge, having zero

value there will nullify this integral and thus the Galerkin method can be used for such

points. All that remains is to show that the right hand side of equation (4.90) can be

used on the wake edge itself when [φ] is zero.
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Returning to the domain illustrated by figure 4.11, the right hand side of the

Galerkin equation is given by{
lim

PI→P
− lim

PE→P

}∫
Σi

ψ̂i(P )
∫

ΣNZ

φ(Q)
∂2G

∂Ek∂n
dQ dP. (4.100)

Assuming that φ can be estimated by the values at the nodes of the triangles by

φ =
3∑

j=1

ψjφj , (4.101)

then equation (4.100) is discretised as

2∑
i=1

3∑
j=1

φj

{
lim

PI→P
− lim

PE→P

}∫
Σi

∫
ΣNZ

ψ̂iψj
∂2G

∂Ek∂n
dQ dP. (4.102)

Assuming the difference in limits, and restricting the domain to panels Σ1 and Σ2,

expanding equation (4.102) reveals

φ1

∫
Σ1

∫
Σ1

ψ3ψ1
∂2G

∂Ek∂n+
dQ dP + φ2

∫
Σ1

∫
Σ1

ψ3ψ2
∂2G

∂Ek∂n+
dQ dP +

φ3

∫
Σ1

∫
Σ1

ψ3ψ3
∂2G

∂Ek∂n+
dQ dP + φ4

∫
Σ2

∫
Σ1

ψ3ψ1
∂2G

∂Ek∂n− dQ dP +

φ5

∫
Σ2

∫
Σ1

ψ3ψ2
∂2G

∂Ek∂n− dQ dP + φ3

∫
Σ2

∫
Σ1

ψ3ψ3
∂2G

∂Ek∂n− dQ dP.

(4.103)

By enforcing a shared normal observe that

∂2G

∂Ek∂n− = − ∂2G

∂Ek∂n+
. (4.104)

Thus bringing the wake sides together, equation (4.103) reduces to

(φ1 − φ4)
∫

Σ1

∫
Σ1

ψ3ψ1
∂2G

∂Ek∂n+
dQ dP +

(φ2 − φ5)
∫

Σ1

∫
Σ1

ψ3ψ2
∂2G

∂Ek∂n+
dQ dP +

(φ3 − φ3)
∫

Σ1

∫
Σ1

ψ3ψ3
∂2G

∂Ek∂n+
dQ dP. (4.105)

By setting (φ1 − φ4) = [φ]1 and (φ2 − φ5) = [φ]2 and recognising that at the wake edge
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point [φ] = 0 = φ3 − φ3, the result is

[φ]1

∫
Σ1

∫
Σ1

ψ3ψ1
∂2G

∂Ek∂n+
dQ dP + [φ]2

∫
Σ1

∫
Σ1

ψ3ψ2
∂2G

∂Ek∂n+
dQ dP (4.106)

as required.

With the other panels in ΣNZ following similarly, this proves that both the left and

right hand sides of the Galerkin equation are applicable to a wake edge where [φ] is

zero. In spite of this, it was found in numerical experiments that the Galerkin method

was unstable on an open surface, even when the edges are set to zero. In discussions

with the creator of the method, Professor Gray described that the solution to crack

problems is unbounded at the edges even with zero [φ] (see Williams, 1952). In fact,

this result is expected for wakes edges, also; it makes sense that the wake edge should

have infinite velocity here, as the flow will be “turning the corner” between the top and

bottom of the vortex sheet. Enforced by Johnson (1994, pg. 546), the velocity here

will naturally be divergent. Since the solution is sought exactly at the wake edge, the

singularity which is cancelled at the trailing edge by the Kutta condition has now simply

been transformed to the wake edges. This was not an issue with previous methods that

sought the velocity at the centre of discretised panels.

An alternative method must be used to calculate the velocity at the wake edges.

As the Galerkin method is stable for a closed surface, truncating it by supplying values

at the wake edge will ‘trick’ the method into operating as if the surface were closed

and the velocity at the wake edges bounded. The kinematics of [φ], described by

equation (2.58), make it convenient to use [φ] = 0 at the wake edges. This allows

the potential use of an alternative, collocation type method at the wake edges (see

appendix H). The zero value of [φ] cancels the worst singularities resulting from the

collocation method, however, it was surmised that the singular behaviour at the edges

would continue to be reproduced and thus this method was abandoned. Finally, in the

absence of time to develop a more advanced alternative, a basic off surface averaging

technique was chosen to supply the wake edge values to the Galerkin gradient method.

The implementation of this method is described in section 6.3.2.
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4.4 Time-Stepping

With initial conditions supplied, the methods described above can be used to generate

the velocity field on any surface within domain D. The kinematic and dynamic bound-

ary condition on the free surface, given by equations (2.23) and (2.27), in conjunction

with wake evolution equation (see equation (2.57)) and the Kutta condition, can be

used to update the free surface and wake geometry for each subsequent time-step. This

sections examines the schemes used to integrate the boundary conditions in time.

Both implicit and explicit schemes can be used, each having significant advantages

and disadvantages. The development of the explicit scheme is accredited to Dold and

Peregrine (1986); Dold (1992). They found that all the derivatives of the Laplace

equation with respect to time also satisfy the Laplace equation, i.e,

∇2φ = ∇2φt = ∇2φtt = . . . = ∇2φnt = 0. (4.107)

As a consequence of equation (4.107), a truncated Taylor series can be used to

time-step forward the position and velocity potential of the dynamic surfaces. Given

that the majority of computational effort in boundary elements comes from forming

the influence matrices, these can be reused when calculating the later time derivatives

of φ. This is highly advantageous over implicit schemes that require the results from

varying geometries and thus differing influence matrices. Additionally, as an explicit

scheme has no requirement on previous or intermediate solutions, the time-step can

be varied without expense. For an implicit scheme, a change of time-step will involve

additional expense as previous time-steps may no longer be used.

The challenge with explicit schemes is the necessity to calculate high order deriva-

tives in order to satisfy the boundary conditions. The formulae describing the boundary

conditions not only become more complicated, but when using numerical differentia-

tion to calculate the derivatives, the accuracy of the higher derivatives reduces (thus

requiring more points in the differencing formulae). Nevertheless, these difficulties were

overcome for 2D simulations by Dold and Peregrine (1986) and for 3D simulation by

Grilli et al. (2001).

Although an explicit scheme would be preferential to an implicit scheme for the rea-

sons given above, in the present simulations an implicit scheme was chosen. Primarily,
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this decision was made to avoid additional difficulty where it was unnecessary, however

there were additional considerations taken into account. Unlike the work of Grilli

et al. and Dold and Peregrine, the current simulation contains a lifting surface and the

lifting surface has a dynamic wake. As was established earlier, the velocity of the wake

cannot be determined using numerical differentiation. Thus, a direct solution to the

hypersingular boundary element equation is required to give the spatial derivatives on

the wake. As such, the next higher order spatial derivative on the wake would require

a supersingular integral to be solved at the collocation points. For a piecewise linear

discretisation, this is yet to be achieved. However, the explicit time-stepping approach

could still be feasible for B-spline discretisations.

The application of a mixed Eulerian-Lagrangian time-stepping scheme to free sur-

faces is attributed to Longuet-Higgins and Cokelet (1976). They used a fourth order

Adams-Bashforth-Moutlon (ABM4) predictor-corrector scheme for their time integra-

tions. As this method requires knowledge of three previous time-steps, a fourth order

Runge-Kutta (RK4) multi-stage scheme is used to provide the initial steps. The ABM4

scheme requires one additional predictor step to be calculated before it can time-step

and the RK4 requires three simulations of mini-steps prior to completing the time-step.

Dynamic choice of the time-step, ∆t, is not desirable using an ABM4/RK4 scheme as

the more expensive RK4 algorithm must be employed each time ∆t changes. However,

in order to maintain stability in the solution, it is necessary to change the time-step as

the simulation progresses based on a number of metrics.

Dommermuth et al. (1988) carried out a stability analysis of the linearised free

surface problem for the ABM4 and RK4 schemes. They found that ABM4 was weakly

unstable and that RK4 was stable on condition that

∆t2 ≤ 8∆x
πg

(4.108)

where ∆x is the spatial reference length.

Xü (1992) extended this condition by additionally requiring compliance with the

Courant-Friedrichs-Lewy condition based on the wave speed, c, given by

∆t = Cn∆x c (4.109)
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for 0 < Cn < 1, where Cn is the Courant-Friedrichs-Lewy (CFL) number. If the

simulation has no wave speed, such as for pumped flow, then c can be substituted with

the free stream velocity, U .

Using the same process as Xü (1992), a fixed value of Cn is chosen for each

simulation. The spatial reference, ∆x, is found by calculating the minimum node

spacing on the grid prior to each time step. Once ∆x has been found, a value of ∆t is

then given by equation (4.109). Finally, the values of ∆t and ∆x are substituted into

equation (4.108) to check for compliance and failing that ∆t is further reduced until

equation (4.108) is satisfied. The process is then repeated for each time step. To avoid

unnecessary use of the RK4 scheme, the time step is only changed if the new ∆t is

smaller and, if so, the new time step is then reduced further such that ∆tnew = α∆t

where, for the present study, α = 0.9. This avoids the time step converging with

increasingly small changes. The entire procedure is known throughout the rest of the

thesis as the dynamic time stepping procedure.

The impact of implementing these various stability conditions on the free surface

calculations is illustrated in chapter 5. Should a lifting surface be included in the flow a

wake surface will also need to be evolved over time. Although the author is unaware of

any stability analysis for unsteady wakes in panel methods, the time-step may require

further restriction in order to allow roll-up where curvature of the wake surface becomes

great. If the velocities on the wake are also large then a reduced time-step may become

necessary to avoid the wake crossing itself. In fact, the spatial Kutta condition used to

generate the wake from the aerofoil trailing edge fixes the CFL number for the wake as

is seen in section 6.4.



Chapter 5

Results: Non-Lifting

5.1 Introduction

This chapter is dedicated to establishing the accuracy and applicability of the boundary

element solver, developed in the previous chapters, to free surface and non-lifting body

problems. To gain confidence in the ability of the method, a number of verification

stages are required. These stages include checks on the convergence of the method,

and the accuracy of the integration, by comparison with analytical solutions such as

that for potential flow about a sphere. Previously, a number of local, single panel tests

were completed in order to develop the adaptive numerical scheme in chapter 3. The

tests in this chapter will provide an estimate for the global accuracy of the method at

a particular grid resolution.

Given that the flow about a sphere is a Neumann problem, a test that involves

the solution of a Dirichlet surface is also desirable. For this, a channel with a free

surface and constant uniform velocity applied was studied. This problem not only

facilitates a check for a simple mixed Neumann/Dirichlet problem, it will also test the

implementation of the channel boundaries. These can either be discretised fully or

part discretised using reflective surfaces. Time-stepping is used for the first time here

(allowing an examination of the stability of the solution); the intersection of the free

surface and the channel wall is also of great interest. In addition, checks on mass and

energy conservation will provide further evidence towards the quality of the simulations.

With a basic test of the mixed Neumann/Dirichlet problem complete, a compre-

hensive test of the free surface boundary conditions is required. A good option for such

a test is to generate a solitary wave and track its progress over time. Theoretically,

136
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for an infinite domain, this wave, known as a soliton, should be invariant in form as it

travels. For the channels developed in this method, the domains are not infinite, and,

thus, the soliton will be impeded by the channel ends at some point. However, if the

channel is long enough, a period of time is expected where the form of the soliton will

be nearly invariant. Additional numerical procedures can also be tested at this stage

such as smoothing of instabilities and adaptive time-stepping.

5.2 Convergence Study of Steady Flow Past a Unit Sphere

Within this section the numerical results for the steady potential flow past a sphere are

analysed. The analytical solution is well known and provides a good test of the accuracy

of the numerical method at a particular grid resolution. With this information an

estimated order of convergence can be calculated and Richardson extrapolation carried

out to provide a prediction of the numerical solution at infinite grid resolution.

One important barrier to carrying out the sphere test is forming the geometry

using nine node bi-quadratic panels. Unlike triangular panels, surfaces mapped with

rectangular panels are difficult to ‘cap’ or, in other words, finish a surface at a point.

This process is not only important for meshing the sphere but also for capping the

ends of lifting surfaces. Thus a method for providing surface closure without the use

of degenerate triangles is presented.

5.2.1 Generation of a Hemisphere

To produce a grid for the simulation of the flow past a sphere, two hemispheres must

be panelled using nine node bi-quadratic panels and then joined. Along the equator of

each hemisphere the panels must be aligned regularly in order to easily join the surfaces.

The sphere may be discretised in a variety of ways. One way is to create rings of panels,

placed one above the other, until the top is reached. The advantages of this approach are

that the sphere may be easily built from sections, or two-dimensional slices, reducing in

radius as the pole is approached. In addition, any shape can be built this way, including

caps of aerofoil sections. The disadvantages are twofold: first, maintaining the number

of panels used on the ring at the equator as the pole is approached will produce very

distorted panels on the later rings. Secondly, there is no obvious way to finish the last

ring without using degenerate panels to form a point. These problems are evident in
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Figure 5.1: Exploded hemisphere discretised by ‘rings’ of quadrilateral panels.

figure 5.1.

An alternative solution is to discretise the hemisphere in quadrants, rather than as

a whole surface. For instance consider the hemisphere made up of four quarters as seen

in figure 5.2a. These patches still finish at a point, so in order to place a non-degenerate

panel here, one of the nine node panels must be rotated by forty five degrees. This

diamond panel provides a useful means to discretise the tip of the quadrant and also to

reduce the number of panels in each ring as the pole is approached from the equator.

Figure 5.2b illustrates how the process works. A column of diamond panels climbs

above the equatorial row of panels to the tip of the quadrant. Approaching the tip,

one panel is removed from the first ring and two from each subsequent ring. In general

this surface can still be produced from nodes on circular sections. All the nodes lie

on a section, apart from the edge (non-corner or centre) nodes of the diamond panels.

The position of these nodes must be estimated. Because of this, the diamond panel

approach can still be used for other surfaces, such as aerofoils. A sphere discretised

using the diamond panel technique can be seen in figure 5.3.

A serious disadvantage of the diamond panel approach is a loss of accuracy of the

numerical derivatives caused by nodes being far from collinear. Because the node

numbering is irregular at these panels and the change of direction so severe, the

numerical differentiation scheme is reduced in accuracy and is more complicated to

implement.

In an effort to analyse the impact of using the diamond panel approach on a

hemisphere, an alternative approach was required for comparison. The second approach

moves away from building a hemisphere in strips by choosing to split the hemisphere
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(a) (b)

Figure 5.2: Splitting the hemisphere into quadrants (a) and panelling each quadrant using
rotated ‘diamond’ panels (b).

into twelve equal patches. The reference patch is enclosed by four planes through the

origin. These planes are:

1. The x–z plane,

2. The y–z plane,

3. The plane with normal (0,−1/
√

2, 1/
√

2),

4. The plane with normal (−1/
√

2, 0, 1/
√

2).

These planes and the resulting patch are illustrated in figure 5.4a. The patch is a

spherical polygon, bounded by the arcs of four great circles. These arcs can be divided

into a number of sub-arcs along the edges of the patch with evenly spaced nodes. By

passing planes through these nodes and the origin, and then calculating the intersection

of these planes and a unit sphere, a set of nodes, and hence panels, for the patch can

be formed. The result of this process is illustrated in figure 5.4b.

(a) Single diamond panel. (b) Diamond panels meeting at the pole.

Figure 5.3: Diamond panel discretisation on the unit sphere.
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(a) Patch enclosed by four planes. (b) Panels generated within the patch.

(c) Join between patches.

Figure 5.4: Patch representation of the hemisphere.

Over an entire sphere or hemisphere, the patch meshing scheme generates a more

regular grid than the diamond scheme. However, this meshing scheme suffers some

similar difficulties to the diamond panel scheme. Figure 5.4c shows one of eight regions

on a sphere where panels meet at a 120◦ angle to each other. At these points numer-

ical differentiation is less accurate, as well as being more challenging to implement.

Nonetheless, in comparison to the diamond panel scheme, these problematic nodes are

significantly less in number. An additional drawback of the patch meshing scheme is

that in order to discretise shapes other than a sphere, the sphere or hemisphere must

be discretised first and then transformed to the chosen shape. For more challenging

shapes (such as aerofoil caps) these transformations are not easy to calculate and it is

also difficult to control the spacing between nodes.
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5.2.2 Numerical Results

The purpose of this section is to verify the Eulerian stage of the boundary element

method using a Neumann boundary problem. This is achieved by employing a grid

convergence study similar to those developed for computational fluid dynamics methods

(see Roache, 1998). By systematically refining the grid resolution and comparing the

error at each stage, an estimate of the error at infinite grid refinement can be found. In

addition, the order of grid convergence can be established. Given that the discretisation

of the panels is quadratic, second order convergence is a desirable result although

this may be slightly impeded by the adaptive numerical quadrature capping the local

integrals to an error of 1×10−4. This process will also provide a comparison of the two

gridding methods developed in the previous section, the premise being that the patch

type gridding scheme will be more accurate than the diamond type scheme, particularly

for a maximum local error.

The analytical solution for the flow past a uniform sphere must be formulated in

terms of the perturbation potential, as no discretised boundaries exist to enforce a fluid

velocity external to the sphere. The analytical results for this case (as formulated in

Katz and Plotkin (2001)) is given by

φ =
1
2
Ux, φn = −n · U (5.1)

where U = (U, 0, 0) is the far field velocity and n is the outward normal on the surface

of the sphere. As part of the test, φn is specified on the sphere and the value of φ

is sought. As relative errors are examined, the analytical and numerical values are

normalised by the absolute maximum of the solution (in this case φ = 1/2) to avoid the

zero in the analytical result. This particular test was also carried out by Xü (1992) for

his QBEM (Quadratic Boundary Element Method) scheme and a comparison at this

point is prudent.

The results of the convergence study are graphed in figure 5.5 with the distribution

of error on the sphere for each panelling scheme illustrated in figure 5.6. Note that

three node linear triangles were also tested for comparison.

The approximate order of convergence for each panelling scheme is given in table 5.1.

As expected the triangular panelling scheme has the lowest order of convergence, with

the patch panelling being the highest. The apparent deficit of the nine-node diamond
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Figure 5.5: Error in velocity potential for flow past a unit sphere for the present method
using alternative panelling schemes and QBEM developed in Xü (1992).
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(a) Triangular panelling looking down x-axis. (b) Triangular panelling looking down y-axis.

(c) Nine-node diamond panelling looking down y-
axis.

(d) Nine-node diamond panelling looking down z-
axis.

(e) Nine-node patch panelling looking down x-axis. (f) Nine-node patch panelling looking down y-axis.

Figure 5.6: Patterns of relative error for the three different panelling schemes.
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panelling scheme is illuminated by figure 5.6c and figure 5.6d. Here, large relative

errors in comparison to the rest of the sphere can be seen in the vicinity of the diamond

panels. It is surmised that it is these exaggerated errors that are responsible for the

drop in the convergence rate. For the triangular panel case, figure 5.6a and figure 5.6b

show a pattern of error that varies reasonably in line with the magnitude of the input

φn. It is anticipated that these errors could be reduced with a more complicated

adaptive scheme, particularly for the self-influences. However, as the occurrence of

self-influences will be low (just at the trailing edge of the foil), the deficit in the global

accuracy caused by using the panels to discretise the wake is manageable. In contrast

to the diamond panelling scheme, the error for the patch panelling scheme is much more

evenly distributed, as can be seen in figure 5.6e and figure 5.6f. Note that the error

values are much less than the other two panelling schemes, indicated by the greatly

reduced maximum and minimum on the scales of figure 5.6e and figure 5.6f.

Panelling Scheme Order of Convergence

Triangular 1
Nine-node diamond 1.3
Nine-node patch 1.5
QBEM 1.9

Table 5.1: Order of convergence of the present method for flow past a unit sphere with
various panelling schemes and also QBEM developed in Xü (1992).

One surprising aspect of this convergence study was the deficit in performance in

comparison to QBEM of even the best panelling scheme for the present method. The

patch panelling scheme achieved an approximate order of convergence of 1.5 whereas

QBEM was reported to have an order of convergence of 1.9. The reasons for this

deficiency are not entirely clear. Given that the approximations to the panels are

quadratic, an order of convergence close to 2 would seem a reasonable requirement.

There are, however, a number of differences between the method developed in this

thesis and QBEM. Firstly, the matrix inversion methods differ. Where QBEM used a

preconditioned GMRES algorithm to invert the influence matrix, the current method

relies on the Intel Math Kernel libraries. Also, whereas QBEM is solved in a vectorised

manner it was found that loops proved to be more efficient for the current method,

particularly when parallelised. Of most concern is the self-doublet influence (given by

equations (3.40) and (3.42)) where no simple analytical test was found to evaluate the
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accuracy for an isolated panel or test the coding in isolation. This meant relying solely

on the adaptive parameters of QBEM for the control of these integrals.

Even with these difficulties, it can be seen from figure 5.5 that the present method

matches the accuracy of QBEM using the patch panelling scheme and exceeds it when

analytical values are used to generate φn, i.e. the exact normals are used rather than

the numerically computed normals. Due to the reduced order of convergence of the

current scheme in comparison to QBEM, the accuracy of QBEM will outstrip the

current method as more unknowns are used. However, it is unknown if QBEM could

maintain this order of convergence once the target accuracy for the integral equations

was surpassed, as results beyond a few thousand unknowns were not published in Xü

(1992).

5.3 Convergence Study of Steady Flow Within a Cube

The previous study of flow past a unit sphere provided an excellent verification for a

Neumann problem using the current method. Now a test involving Dirichlet boundaries

is required, in which a test of the full potential, and the use of both reflective and non-

reflective kernels, would be highly desirable. Such a test is available by examining

the flow within a cube, where one or more boundaries are Dirichlet. To avoid the

analytical solution for the potential being identically zero on the Dirichlet boundaries,

the full potential method must be used, with the input and output Neumann boundaries

enforcing the magnitude and direction of the flow throughout the cube. The other

Neumann boundaries of the fluid domain are set with a no-crossing boundary condition

and, if desired, two such boundaries can be removed with the use of a reflective Green’s

function.

The geometry for the reflected and non-reflected cases are illustrated in figure 5.7a

and figure 5.7b respectively. For the non-reflected case the faces of the cube are divided

such that there are five Neumann boundaries, two of which are an inlet and outlet

where the boundary conditions φn = ±U , respectively, are set (the inlet is seen as

blue in figure 5.7a). The other Neumann boundaries are no-crossing boundaries. The

top face is a Dirichlet boundary, with boundary condition φ = Ux. The reflected

geometry is similar apart from two of the no-crossing boundaries are not discretised,

being replaced by reflections. With the geometry and boundary conditions established,
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(a) Geometry for the non-reflected case show-
ing φn prior to calculation.

(b) Geometry for the reflected case showing φ
prior to calculation.

(c) Resulting relative error in φn for non-
reflected case.

(d) Resulting relative error in φn for reflected
case.

Figure 5.7: Verification test for flow through a cube with one Dirichlet surface.

the Neumann boundaries are solved for φ and the Dirichlet boundary is solved for φn.

Post calculation, figure 5.8 shows the results for increasing numbers of unknowns.

The order of convergence for both the reflective and non-reflective cases is approxi-

mately 0.4. This could be interpreted as a disappointing result, apart from the fact that

the method was beyond the target accuracy, even using the coarsest grid resolution.

The importance of the target accuracy can be seen in the maximum relative errors.

These are maintained below 10−5 by the adaptive numerical method, but, as expected,

do not fall with increasing resolution. As can be seen in figure 5.7c and figure 5.7d, these

errors occur along the edges of the faces, where the proximity to other faces has the
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Figure 5.8: Average and maximum relative errors for steady flow through a channel
containing a Dirichlet surface.
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most impact. With increasing unknowns, there are additional panels in close proximity

to other faces, thus increasing the number of nodes having the maximum allowed local

error defined by the adaptive quadrature scheme (see section 3.3). Additionally, the flat

surfaces do not make full advantage of the quadratic geometric approximation within

the panels.

An interesting observation for this case is highlighted by the differences between

figure 5.7c and figure 5.7d. The errors resulting from the proximity to nearby faces can

be seen at the edges of the uppermost surface. By comparing the two figures, it can

be seen that these errors interact (or superimpose themselves) to form errors of greater

magnitude in the corners, indicated by the increased brightness of the colours there

(also observe the destructive interference that occurs). Thus, there are less of these

‘peak’ errors in the reflected case as there is no surface at the reflective boundary and

thus no induced errors there. This would imply, as expected, that the less boundaries

used in the simulation, the more accurate it will be. This may seem to be contradictory

to the results of figure 5.8 which shows the average relative errors of the reflected and

non-reflected case for a particular number of nodes. Under scrutiny, this is not a fair

comparison, as the number of nodes for the reflected case in this test was significantly

less than for the non-reflected case. Thus, it is true to say that the reflected case

will be more accurate than the non-reflected when using a similar grid resolution. In

conclusion, for a channel simulation, the best results should be expected from the

reflected channel geometry using the perturbation potential. Ideally, the other channel

wall would be reflective too, but this results in a much more complicated Green’s

function and is left as further work.

5.4 Evolution of Single and Counterpropagating

Solitary Waves

Testing of the time dependant free surface boundary conditions constitutes the next

verification of the numerical model. This involves the quantitative examination of

the implementation of the free surface boundary conditions. There are two parts to

this implementation; the numerical differentiation applied to obtain velocities on the

free surface and the numerical integration used to propagate the position of the free

surface, and the value of φ upon it. The evolution in time of a solitary wave, or soliton,
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is an excellent test case for the free surface boundary conditions (and hence the related

theory). The existence of solitary waves was first noticed by John Scott Russell in

1834 whilst observing canal boats on the Union canal at Hermiston, near Edinburgh.

Naming the waves ‘waves of translation’, he famously recorded how the wave on the

Union canal

“continued its course along the channel apparently without change of form
or diminution of speed.”

Later to become known as solitary waves, they exhibit a finely balanced equilibrium

between dispersive effects and the non-linearity of the governing equations. Their

properties include the ability to travel in time without losing shape, amplitude or speed

and the ability to interact with other solitary waves and remain (nearly) unaltered by

the collisions. Indeed, in an inviscid fluid, a solitary wave should propagate, unchanging,

for indefinite time.

The properties of solitary waves provide an excellent test for the present numerical

method. Once a solitary wave has been generated, its form, celerity and energy can

be monitored over time to give insight into the abilities of the model. By reversing,

in space, the initial conditions of the solitary wave a second counterpropagating wave

can be made to collide and then pass through the original solitary wave. As reported

in Craig et al. (2006), the emerging waves should be nearly identical to their state

before the collision; however, Craig et al. also show that a small reduction in celerity

and amplitude should be expected for both waves, this energy loss being transferred to

small residual waves.

Solitary waves have been used for verification of numerical codes developed by the

likes of Grilli et al. (2001), Garzon et al. (2005), etc.; the generation, breaking and

interactions of solitons remain a popular field of research. The only drawback of using

solitons for verification of the present method is the lack of current flow in the exact

solutions. As no far field current is present in the simulations, the full and perturbation

boundary conditions are equal and thus both modes of the model are equivalent. To

establish the accuracy and ability of the numerical model for free surface flows with

waves and current in full and perturbation potential, a further test case would have to

be devised.
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5.4.1 Accuracy Checks

The performance of the numerical model can be evaluated by examining the total energy

of the system. It is therefore necessary to calculate kinetic and potential energy within

the numerical method. In addition, the ability to monitor the global mass/volume flux

during simulations will provide a test for mass/volume conservation. In particular, the

total volume flux across S should be zero:

∫∫
S
φn(x, t) dS = 0. (5.2)

The volume error is the deviation of the left hand side of equation (5.2) from zero. In

addition, a tolerance can be placed on this value to act as an emergency abort for the

simulation, should the solution begin to diverge.

The kinetic energy is derived by integrating ρv2/2 across the volume of the domain.

This leads to

Ek =
ρ

2

∫∫∫
D

(∇φ)2 dV. (5.3)

By noting that

(∇φ)2 = ∇ · (φ∇φ), (5.4)

equation (5.3) can be transformed into a surface integral by applying Gauss’ theorem.

Equation (5.3) therefore becomes

ρ

2

∫∫∫
D

(∇φ)2 dV =
ρ

2

∫∫∫
D
∇ · (φ∇φ) dV

=
ρ

2

∫∫
S
(φ∇φ) · n dS

⇒ Ek =
ρ

2

∫∫
S
φφn dS.

(5.5)

To derive the potential energy ρgz is integrated across the computational domain,

resulting in

Ep = ρg

∫∫∫
D
z dV. (5.6)

To transform equation (5.6) into a form which is suitable for the application of Gauss’

theorem, a vector field is sought such that

∇ · F =
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z
= z. (5.7)
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The above is true if F1 = F2 = 0 and F3 = z2/2. Thus, equation (5.6) can now be

written as
ρg

∫∫∫
D
z dV = ρg

∫∫∫
D
∇ · F dV

=
ρg

2

∫∫
S
z2n3 dS.

(5.8)

As the contribution from the bottom surface is constant it can be treated as a datum.

Thus, the potential energy can be defined solely in terms of the free surface such that

Ep =
ρg

2

∫∫
SF

η2n3 dS (5.9)

where η is the free surface elevation. Finally, the total energy is simply given by

Et = Ek + Ep. (5.10)

The numerically computed energy values are calculated and compared to the analytical

solution at each time-step.

5.4.2 Evolution of a Single Soliton

This test case examines the time dependant propagation of a single solitary wave

travelling in the positive x-direction. An exact solution for a solitary wave is provided

by the method of Tanaka (1986) which is based on Cauchy’s integral theorem using

the complex velocity potential. Originally, the solitary waves generated by Tanaka’s

method were parametrised by the dimensionless crest velocity; however, the method was

modified by Cooker (1990) to allow the non-dimensional wave height to be used instead.

Grilli and Subramanya (1993) developed a code for computing this analytical solitary

wave employing these techniques. The waves generated by Tanaka’s method provide

the initial geometry and potential distribution for the numerical method at a given

resolution. The method also provides details of the wave energy and celerity, which

will be used to compare with results from the simulated waves. Note that the output

from Tanaka’s method is two-dimensional and thus a ‘per unit width’ comparison must

be made to the present three-dimension simulations.

The numerical simulations within this chapter are carried out in non-dimensional

form. Choosing scales so that both the channel depth and the acceleration due to
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gravity are unity gives the following non-dimensional variables,

x′ =
x
h0
, t′ = t

√
g

h0
, c′ =

c√
gh0

(5.11)

where h0 is the channel depth and c is the wave celerity. The waves generated by

Tanaka’s method are laterally truncated at 0.1% of the wave height and then used as

initial conditions for the simulated waves. The length of the channel is set such that

the wave will not encounter the end of the domain by the final time-step. The width

of the channel is arbitrary, but is nominally set to unity although the node spacing is

forced to be the same in the x and y direction, thus the width may vary slightly.

The single soliton test provides useful insight into the dynamic time-stepping (see

section 4.4) within the present code and, in particular, the impact of the CFL number

on the stability of the results. Three different non-dimensional initial wave heights were

investigated, H ′
0 = 0.1, 0.15 and 0.2. For each wave height, three grid discretisations

were tested, ∆x′ = 1, 0.5 and 0.25 and each discretisation was time-stepped dynami-

cally with CFL numbers 0.8, 0.6 and 0.4. Each simulation was stepped to a maximum

time of t′ = 30. Figure 5.9, figure 5.10 and figure 5.11 show wave profiles for a slice in

the x-direction at approximate times t ∼ 5, 15 and 25. The times are approximate as

the dynamic time-stepping will decide and alter the length of steps dependant on the

given CFL number. An analytical profile is provided for each time that is shifted to

coincide with the simulated profile using a CFL number of 0.4. η′ is the non-dimensional

free surface height.

Each of the figures show that there is a sensitivity to the CFL number regardless

of wave height and discretisation. Only the simulations run with the CFL number of

0.4 consistently reached t′ = 30. In addition, the stability of the higher CFL number

simulations increased along with the wave height. This may seem counter intuitive given

that the number of nodes per wavelength reduces as the waves gain in amplitude due to

the fixed node spacing in x′. The effect appears to arise as an artifact of the dynamic

time-stepping which reduces the time-step as the waves increase in amplitude. This

is most likely due to the increased curvature at the wave crests causing the minimum

node spacing to reduce in comparison to lower wave heights.

Figure 5.12 and figure 5.13 show the effect of increased discretisation at each

wave height for simulations with 0.4 CFL number. Improvement in accuracy can be
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Figure 5.9: Wave profiles for soliton with wave height, H ′ = 0.1.
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Figure 5.10: Wave profiles for soliton with wave height, H ′ = 0.15.
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Figure 5.11: Wave profiles for soliton with wave height, H ′ = 0.2.
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observed between each wave height when the discretisation is increased from ∆x′ = 1

to ∆x′ = 0.5. In contrast, the difference for ∆x′ = 0.25 is only significant at the highest

wave amplitude. The results indicate that there is consistent stability over the whole

simulation and potentially over greater time periods. A noteworthy observation is the

non-existence of the apparently inherent saw-tooth instability (see Tsai and Yue, 1996).

This corroborates the opinions of Broeze et al. (1993) and Grilli et al. (1989) who stated

that the onset of these instabilities are a numerical accuracy problem rather than the

onset of physical phenomenon.

To summarise, the progression of solitary waves of varying non-dimensional wave

height were simulated with differing node discretisation and CFL number. It was found

that the simulations were stable up to t′ = 30 for CFL number < 0.5, and that the

duration of stability for higher CFL numbers increased with wave amplitude. This

phenomena may be due to the higher curvature (and therefore concentration of nodes)

at the wave crests of the high amplitude waves. All simulations at 0.4 CFL number

improved in accuracy as the discretisation was increased from ∆x′ = 1 to ∆x′ = 0.5.

Only for wave height H ′ = 0.2 did the ∆x′ = 0.25 discretisation further improve the

accuracy of the results. The saw-tooth Helmholtz instability was not encountered in

any of the 0.4 CFL number simulations.

5.4.3 Counterpropagating Solitons

The counterpropagating soliton case consists of two solitons, of equal size or otherwise,

travelling in opposing directions, which interact and then separate from each other.

The extraordinary property of solitons that undergo such interactions is that their

form, amplitude and celerity are substantially unchanged from their initial state prior

to the collision. Contrary to the results derived from the Korteweg-de Vries (KdV)

equation (see Acheson, 1990, page 108), the colliding solitons are not totally unaffected

by the interaction. As detailed in Craig et al. (2006), interaction between solitons

governed by the Euler equations (and, thus, potential flow) cause the post collision

waves to exhibit a small loss in amplitude and celerity. The total energy of the two

waves must be conserved, however, and this is transferred to small residual waves,

trailing the resulting solitons and which in time will separate from them. Craig et al.

successfully quantified the interactions of counterpropagating solitons in terms of their

amplitudes after collision, phase lag, run-up and wall residence time. These last two
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Figure 5.12: Volume conservation errors for solitons at 0.4 CFL number.
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Figure 5.13: Total energy errors for solitons at 0.4 CFL number.
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quantities will be defined later.

For the case of two identical counterpropagating solitary waves, the wave crests

have displacements given by

x = c1t+ a1, x = c2t+ a2, (5.12)

prior to the collision where the solution is asymptotic as t→ −∞. Some time after the

collision, the waves will once again exhibit an asymptotic solution as t→ ∞ where the

progress of the crests is given by

x = c+1 t+ a+
1 , x = c+2 t+ a+

2 . (5.13)

To define the point of intersection of the two waves, it is important to avoid the

ambiguity arising from altered celerities before and after the collision. Craig et al.

(2006) chose the midpoint of the wave intersection in time as the correct moment to

measure the phase shift. If this time is given by τ then the phase shift is defined as

(a+
j − aj) + τ(c+j − cj) j = 1, 2. (5.14)

The time τ is simple to define for colliding counterpropagating solitons with equal wave

heights, yet is less obvious when the waves are of different heights. Equation (2.1) from

Craig et al. (2006) can be applied to determine τ in such cases; for simplicity, only

waves of equal height are attempted here.

The run-up of colliding solitary waves is defined as the maximum amplitude of the

superimposed wave. This is expected to extend beyond twice the amplitude of the

separated waves. Also, the wall residence time is simply the period of time for which

the two soliton crests are indistinct during the collision.

All of these quantities are compared, using the present numerical method, to two

similar tests carried out in Craig et al. (2006) for solitons of height H ′ = 0.1 and

H ′ = 0.4. Craig et al. went on to formally quantify the residual waves from these

collisions but this effort is omitted here. One concern is that the resolution of the

present simulation would not be sufficient to accurately recreate the residual waves,

which are much smaller in amplitude and wavelength. This is also a concern in tracking

the wave crests, as a computational node may not occupy the exact crest position for
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each time-step. Finally, the duration of the present experiments are significantly shorter

than those in Craig et al. (2006) due to time constraints. Each wave is allowed to travel

for a period and a half before the simulation is terminated. As a consequence of the

single soliton test cases, the simulations were run in dynamic mode with a CFL number

of 0.4 and the node spacing was set to ∆x′ = 0.25.

Results for the collision between counterpropagating solitons of wave height H ′ =

0.1 are given in figure 5.14. Figure 5.14a depicts the evolution in time of a 2D slice in

the x-direction. The interaction and subsequent resultant waves can clearly be seen,

although at this wave height, the residual waves were not apparent. Figure 5.14b shows

the trajectories of the two wave crests before and after the intersection. Also drawn

on this figure are the asymptotes that describe the long term evolution of the post and

pre collision solitons. These were estimated by a least squares fit of a straight line to

the extreme data points. From this graph the wall residence time can be seen to be

t′ = 4.8 which is comparable to figures 2(b) and 6 in Craig et al. (2006). The time at the

midpoint of the intersection is τ ′ = 23 and, using the values of cj , c+j , aj , a
+
j determined

by the least squares fits, the non-dimensional phase shift was found to be 0.2873 for the

first wave and 0.1227 for the second wave. The result for the second wave is nearby to

the result of 0.1370 reported in Craig et al. (2006) figure 2, whilst the result for the first

wave is significantly different. This is probably due to the least squares approximation

of the asymptotes and the difficulties in tracking the wave crests. The maximum run-

up was 0.2055. In general, because of the small size of this wave, the numerical model

struggled to capture some of the small scale features, in particular the residual waves.

Increased node resolution would improve this but at obvious computational costs.

Figure 5.15 shows the time evolution plot and crest trajectories for the H ′ = 0.4

counterpropagating soliton collision. In figure 5.15a the residual waves can clearly

be made out towards the end of the simulation (t′ > 20). The crest trajectories in

figure 5.15b include asymptotes estimated in a similar fashion to the H ′ = 0.1 waves.

From this diagram the wall residence time was found to be t′ = 2.89. The mid point of

the intersection is τ ′ = 11.9. The phase shift of the first wave was found to be 0.68035

and for the second it was 0.60165. This is considerably higher than the result in Craig

et al. (2006) figure 3 that quotes a value of 0.3257. The maximum run-up was 9.25,

which compares well with the results in Craig et al. (2006) figure 5.

Regarding the error in the phase shift, the same reasons given for the H ′ = 0.1 case
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Figure 5.14: Collision of two counterpropagating solitons with height H ′ = 0.1.
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are still valid for this test case, but additional factors must be taken into consideration.

Figure 5.16 shows the amplitude of the first wave before, during and after the collision.

The figure is comparable to figure 4 in Craig et al. (2006) and shows very similar

attachment and detachment times for the wave crests. The important point to note is

that in figure 4 of Craig et al. (2006) the resulting wave takes an additional 60 units

of time to recover its final wave height. As can be seen from figure 5.16, the present

simulation stops just ten units of time after the intersection of the waves. The wave

height deficit at this time is very similar to that of figure 4 of Craig et al. (2006) and

thus implies that the wave crest has yet to reach its asymptotic trajectory. This could

be a key factor in the high error in the phase shifts found for this case. As can be

seen in figure 5.17, the residual waves are still attached to the resulting solitary waves.

It is anticipated that until these waves detach, the solitary wave will not recover its

asymptotic form. Further work could investigate whether the present model exhibits

the same behaviour as the waves modelled by Craig et al. for the extended period

beyond the wave intersection.
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Figure 5.17: 3D representation of the final time-step for counterpropagating solitons with
height H ′ = 0.4. The z-coordinate scale is multiplied by a factor of 10. The red plain
marks the intersection point of the two waves.



Chapter 6

Results: Lifting

6.1 Introduction

The purpose of the following chapter is to illustrate the application of the Galerkin

gradient method to a lifting body. As the focus of the chapter is evaluating the

performance of the Galerkin gradient method, the simulation of a hydrofoil in an infinite

fluid is isolated from the overarching goal of simulating a hydrofoil under a free surface;

without establishing the effectiveness of the Galerkin gradient method, there is no value

in attempting to simulate a hydrofoil under a free surface. Note that, a hydrofoil in an

infinite fluid, when simulated using the present method is, for all intents and purposes,

equivalent to simulating an aerofoil in an infinite fluid. Thus, given its classic nature,

this chapter simulates an aerofoil, rather than a hydrofoil.

The aerofoil simulation requires a number of stages in order to create a compu-

tational environment which will be compatible with the Galerkin method. Initially

it involves the discretisation of a aerofoil profile and the construction of a basic wing

with or without end caps. Due to the high curvature at the leading edge of an aerofoil

section, a uniform node spacing would not provide a good representation of the shape

of aerofoil, thus a curvature dependant panelling scheme based on the work of Forehand

(1998) is implemented.

Once the wing geometry is established, and the wing is set at an appropriate angle of

attack to oncoming flow, the initial state of the wake vortex sheet must be defined. The

spatial Kutta condition is used for this purpose and is an essential part of potential flow

models which incorporate lift. The spatial Kutta condition defines a direction which

the wake must take as it detaches from the trailing edge of the aerofoil and ensures

165
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that the flow leaves the aerofoil smoothly. At time t = 0, the wake exists, but its

free edge (the bounding line of the wake surface excluding the intersection with the

aerofoil trailing edge) is assumed to have zero [φ]. This achieves two goals, the first

being a more accurate physical representation of the sheet strength reducing to zero

at the transition to open space and, secondly, to allow the Galerkin gradient method

to operate on nodes internal to the wake edge from the second time step onwards. On

the wake edges [φ] must be zero for the Galerkin gradient method to be applicable (see

section 4.3.4) and, thus, a zero valued wake must exist at t = 0.

Finally, a clear algorithm for the time-stepping of the wake must be established.

This is a challenging task as the Galerkin method cannot be applied to the nodes on

the free edge or to the row of nodes adjacent to the aerofoil trailing edge. In addition,

the velocities at those nodes that cannot be solved using the Galerkin method must

be estimated using alternative means. This process is made more challenging by the

true solution to the hypersingular boundary integral equation at the sheet edge being

singular, even with zero µ applied there.

To provide an initial estimate of velocities at the wake edges, a basic off-surface

average of the velocity induced by the wake is calculated. For each node, these velocities

are taken at points above and below the wake at a specified distance in the normal

direction. The quality of this estimate is discussed as part of the results. This method

may also be applied to solving the velocity for the majority of the wake sheet. The

trailing edge nodes must have the spatial Kutta condition applied there at the beginning

of each time-step. During the intermediate stages of a time-step, the spatial Kutta

condition is also applied to the nodes adjacent to the trailing edge (mainly to ensure

the spatial Kutta condition is enforced throughout the time-stepping process). The

velocity for the wake nodes adjacent to the trailing edge, at the beginning of each time

step, must be found using the off-surface estimate as the Galerkin gradient method is

not applicable here. For the second time-step and beyond, the Galerkin gradient method

can be applied to valid nodes using the calculated edge and Kutta strip velocities as a

‘seed’ for the method, or the off-surface method can be used throughout.

To the best of the author’s knowledge, this is the first attempt to apply the Galerkin

gradient method of Gray et al. (2004b) to a vortex sheet in a quasi-potential flow. The

validity of the method is discussed in response to the preliminary results obtained here.

The stability of the wake sheet and the interaction of the internal nodes with those
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at the sheet edges is also discussed along with recommendations for improving this

interaction.

6.2 Aerofoil Discretisation

To begin the process of verifying the application of the Galerkin gradient method to a

wake vortex sheet, an aerofoil must be discretised and placed at an angle of attack to

the flow direction within the fluid. The discretisation of that aerofoil is now discussed.

The National Advisory Committee for Aeronautics (NACA) aerofoil profiles describe

a wide range of commonly used aerofoil shapes. The primary reference for details of

the NACA aerofoil profiles, along with extensive tables of lift and drag coefficients for

various angles of attack, can be found in Abbott and von Doenhoff (1959).

Particular classes of NACA profile can be reconstructed by formula and a number of

computer codes have been developed to provide ordinates for such profiles (see Ladson

et al., 1996). A particular program for providing the ordinates for NACA 4 and 5 digit

profiles was developed by Mason (2007) and the code is available on-line. Mason’s code

is applied here to generate a large set of guide points which are used to position the final,

more sparse, mesh points. The particular profile chosen for this simulation is a NACA

23015, which is used for a high tip speed ratio wind turbine design in Le Gourieres

(1982), although it is applied to a straight wing section here. Obviously, any NACA

4 or 5 digit profile aerofoil can be described by this method and many others can be

specified with other publicly available software.

With a complete set of ordinates to describe the wing, the number of nodes required

for a chosen number of panels must be distributed about the profile. Due to the strong

contrast in curvature between the mid-section and the leading edge of the aerofoil, a

regular node spacing would not describe the surface well. Thus, a method which could

place more nodes at areas of high curvature would be highly desirable. Such a method

was used by (Forehand, 1998, pg. 74) as part of his free surface regridding routines and

was based on an earlier method described in Tsai and Yue (1993). The same principles

can be applied to the discretisation of the aerofoil.

The main premise of Forehand’s method is to evenly distribute the integral of the
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curvature along the surface. This integral is given by

I(s) =
∫ s

s1=0
κ(t) dt (6.1)

where s is the arc length, κ is the curvature and t a dummy variable of integration.

The total sum over the entire surface of the wing cross-section, I(sn) (where n is the

number of guide points), can then be split into m equal steps, denoted by Istep. The arc

length and curvature along the surface at the guide points must be estimated in order

to calculate I(sn) and this can be achieved through various means. The approach taken

for this project was to apply the method of Lewiner et al. (2004) to estimate both arc

length and curvature at the guide points.

During the calculation of I(sn), an array containing each I(si) for the points in the

guide surface can be populated. Once I(sn) has been calculated and the desired Istep

found by dividing I(sn) with the desired number of nodes, the guide node with the

nearest I(s) for each Istep is chosen to be the computational node. In fact, although an

interpolation scheme would provide a better match to the values of Istep, by allowing

the choice of points which lie between the existing guide points, this was unnecessary

as the number of guide points used was very high in comparison to the number of

computational nodes.

It was found that the method above worked well, however, it was also found to

favour the areas of high curvature too much. In order to apply more nodes to areas of

low curvature I(s) was modified so that

I(s)new =
(
I(s)
I(sn)

)α

(6.2)

and now Istep is given by

Istep =
I(s)new

m
. (6.3)

The value of α is arbitrary although, to increase the number of nodes in the low

curvature regions, it should be chosen such that α < 1. A value of α = 0.5 was

found to produce an adequate spacing and an example of a wing section discretised

using this method can be seen in figure 6.1. Note the small chordwise node spacing at

the leading edge.

The wing section seen in figure 6.1 is open at both ends and although this is
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Figure 6.1: Curvature based node spacing for an aerofoil section.

Figure 6.2: Wing section with cap produced with the diamond panel discretisation scheme.
A single nine node panel on the cap is highlighted.
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reasonable for verification of the numerical model, in reality the wing would be closed.

The discretisation schemes developed in chapter 5 have the capability to cap the aerofoil

section, specifically by applying the diamond capping scheme that was developed in

section 5.2.1 to discretise the sphere. Instead of building the cap sections using circles,

the aerofoil profile at the end of the wing is gradually reduced in size to converge on

a point directly above the centre of mass of the aerofoil section. The radius of each

section is chosen to be the minimum distance from the centre of the aerofoil section to

its sides. This radius can then be reduced in an elliptical arc towards the final point at

the tip of the wing, where the minor radius is chosen to be the radius of the original

section and the major radius is some multiple of that value.

The results of this process are shown in figure 6.2. One of the nine node panels

is highlighted in red. The number of panels on the end cap is determined by the

discretisation of the straight aerofoil section. The number of panels on the aerofoil

section must, in turn, be divisible by eight and greater than or equal to sixteen. This

restriction means that the end caps are neglected in the low-discretisation test cases

presented later in this chapter.

Note that the wing geometry used to gather the results of this chapter is ‘doubly

connected’. As such, the geometry by itself is not sufficient to guarantee a unique

solution to the Laplace equation within a constant; as Katz and Plotkin put it, the

solution can not be found “on purely mathematical grounds” and must be “determined

on the basis of physical assertions”. This problem has been previously discussed in

relation to the uniqueness of lifting flows in section 2.4.3. There, it was proposed

that the Kutta condition provides the physical relation required to make the solution

unique. As the Kutta condition is applied for each time step of the simulations in this

chapter, and as the results seem ‘reasonable’, it is concluded that the Kutta condition

alleviates the uniqueness issue of the open ended geometry seen in this chapter, in a

similar manner to those of a two dimensional aerofoil. Obviously, an open ended wing

is not realistic, but its purpose here is to provide values to test the effectiveness of the

Galerkin gradient method on the wake, not as a validation experiment. For evaluating

the Galerkin gradient method, the open-ended geometry performs admirably.
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6.3 Wake Generation Algorithm

This section describes the algorithm for generating and advancing the wake in time.

This is a multi-stage process beginning at the trailing edge of the simulated aerofoil.

These stages shall now be briefly summarised before being discussed in detail in the

subsequent subsections.

Stage One: Spatial Kutta Condition

The first task is to calculate the initial state of the wake sheet; the strength of this

sheet is governed by the numerical Kutta condition as described in section 3.5.2. The

direction at which the Kutta strip leaves the trailing edge is also critical to enforcing

the Kutta condition and this is determined analytically. The velocity vector at the

trailing edge of the aerofoil can then be established by calculating the average velocity

at the trailing edge and taking its component in the desired direction. This velocity,

multiplied by the time-step provides the first line of panels known as the Kutta strip.

Stage Two: Off Wake Averaging

The position of the first line of panels leaving the trailing edge is determined without

reference to the wake itself. Beyond the Kutta strip, the velocity of all the wake nodes

not coincident to the aerofoil trailing edge must be determined by other means. Two

processes are used to achieve this in the present method. The first of these processes

is always applied at the edges of the wake sheet. This is because the Galerkin gradient

method introduced in chapter 4 will not produce a sensible answer here. To overcome

this a simple off-surface averaging of velocities is used to estimate the velocity of the

wake sheet at the edges. In addition, as the value of µ on the trailing edge is not zero

this method must also always be applied at the line of nodes adjacent to the trailing

edge. Therefore, it is necessary to apply this process independently for all the nodes

not on the trailing edge during the first two time-steps.
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Stage Three: Galerkin Gradient Method

Once the third time-step is reached, the Galerkin gradient method developed in chap-

ter 4 can be applied to the nodes between the edges of the wake and the line of nodes

adjacent to the trailing edge. The method is supplied with the velocity calculated at

the edge nodes by the averaging algorithm in order to seed the Galerkin algorithm.

6.3.1 Spatial Kutta Condition

Although the present method is essentially a free wake method (i.e. one that allows

the wake to move under its own influence with no pre-assumed structure), during its

generation, where the wake leaves the trailing edge, the time dependant evolution is

restricted to a particular motion. This restriction is part of the Kutta condition as

introduced in section 2.4.4. The aim of this section is to describe how the spatial Kutta

condition is implemented in the present method.

As stated in section 2.4.4, for ease of implementation, the first group of panels

leaving the trailing edge (known as the Kutta strip) leaves at the bisecting angle, α. A

unit vector is defined that leaves the trailing edge at this angle and is perpendicular to

the local wing section as seen in figure 6.3a. This vector is denoted aα and once it is

determined, it can be used to calculate the direction and extent of the Kutta strip as

illustrated in figure 6.3b. Note that, the following implementation still holds should the

Kutta strip be orientated tangent to either the top or bottom surface of the aerofoil.

α

aα

(a) Direction vector leaving the trailing edge at the
bisecting angle.

(b) The Kutta strip formed along the
trailing edge vector.

Figure 6.3: Direction and length of the Kutta strip.

Initially, at t = 0, a ‘starting wake’ is appended to the lifting body. The direction

of this starting wake is determined by aα; all that remains is to calculate its length. As

the velocities on the lifting body are not known at this stage, the far field velocity, U,
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is used. By projecting the velocity onto the vector aα, the direction and length of the

Kutta strip is given by

((U · aα)∆t)aα. (6.4)

For time t > 0, the Kutta strip length must be determined using the flow velocity

at the trailing edge. In order to calculate this, a non-central difference numerical

differentiation scheme can be used to differentiate φ on the top and bottom surfaces

which gives velocities at the trailing edge, denoted by vtop and vbottom. These are then

averaged to give the velocity at the trailing edge,

vTE =
1
2
(vtop + vbottom). (6.5)

This average velocity is then projected onto aα, which gives the length and direction

of the Kutta strip for t > 0 as

((vTE · aα)∆t)aα. (6.6)

6.3.2 Off Wake Averaging

With the spatial Kutta condition defined, the t = 0 position of the wake (see figure 6.4a)

is known and subsequent positions of the Kutta strip easily calculated. The next stage

is to determine the wake velocities for the nodes not coincident to the trailing edge for

t > 0. Unlike the nodes at the trailing edge, the velocity of the remaining nodes must

be determined using the influences from all the surfaces in the domain, including the

wake itself, determined by equation (2.74). At this stage the Galerkin gradient method

is not available as the true solution at the wake edges is in fact singular (see section 4.3).

Because of this, an alternative method must be used to calculate the velocity at the

wake edges. These nodes are marked by red circles in figure 6.4a.

Due to time constraints, a simple and easily implemented method to calculate the

edge velocities was desired and, thus, a simple off-surface average was chosen. Figure 6.5

demonstrates how this method is applied. Using a multiplier, ε, to the unit normal

vector, n, the points P+ and P− are positioned above and below the wake surface node

P such that

P± = P ± εn. (6.7)
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(a) t = 0. (b) 1st and 2nd intermediate steps (t =
1/2∆t).

(c) 3rd intermediate step (t = ∆t). (d) t = ∆t.

Figure 6.4: Advancing the wake geometry for the first time step from t = 0 to t = ∆t.
Nodes with blue squares use the spatial Kutta condition to calculate velocity and those with
red circles use off-surface averaging.

Equation (2.74) is applied at P± to gives the velocities at the top and bottom of

the sheet, v+ and v− respectively. These velocities can either be derived using just

the velocity induced by the wake or from all of the computational surfaces and the free

stream velocity. In the first case the total velocity is given by

vav =
1
2
(
v+ + v−) (6.8)

and in the second case

vtotal = vav + vadd (6.9)

where vadd is the velocity induced by the wing and the free stream. The average velocity

isolated to the influence of the wake shall be referred to as vav.

With the velocity at the wake edges defined, the time-stepping process can begin.
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Figure 6.5: Position of points for the off-surface velocity averaging scheme applied at the
wake edges.

In contrast to the free surface simulations, the wake can only be solved using the RK4

time-stepping scheme (see section 4.4). The difficulty with applying the alternative AB4

scheme is that new panels in the wake are generated for each time-step. As AB4 requires

information about the prior state of the system for three previous time-steps, when new

panels are spawned from the trailing edge, this information is not available for all the

nodes on those panels. Hence, RK4, which does not require previous information about

the wake is applicable here. Nonetheless, the RK4 time-stepping scheme must also be

applied carefully in order to preserve the direction of the Kutta strip. Figure 6.4 shows

the stages of RK4 for the first time-step. The blue squares show the nodes at which

the Kutta strip velocity is applied and the red circles show where the wake averaging

described in this section must be applied. During the intermediate stages of the RK4

method a new line of nodes is generated at the trailing edge. It is important that the

previous trailing edge nodes (now adjacent to the trailing edge) continue to have the

velocity set by the Kutta condition, or the Kutta strip will not be correctly oriented at

the end of the step. This is the case for all intermediate stages.

Once the end of the time-step is reached, note that the line of nodes adjacent to the

trailing edge, in figure 6.4d, are labelled as edge nodes. This is because the Galerkin

gradient method is also incapable of solving for velocity here as the doublet strength

of the trailing edge nodes is not zero. Hence, the average velocity method is applied to

these nodes also. Once the second time-step is reached, the Galerkin method can be

employed.
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6.3.3 Galerkin Gradient Method

Beyond the t = ∆t time-step, the Galerkin gradient method can be utilised. Once again,

great care is required to apply the Galerkin gradient method correctly. In particular,

there is a need to truncate the domain of the Galerkin equations by feeding the a priori

values of velocity at the wake edges. As discussed in chapter 4, the Galerkin gradient

method cannot be used at the edges as the solution there is infinite. Thus, the velocity

at the wake edges must be provided by other means and, for the wing, the velocities

for the nodes adjacent to the trailing edge must also be computed separately.

The process for taking the second time-step is illustrated in figure 6.6. The initial

stage (figure 6.6a) is identical to the last stage of the first time step. During the first

and second intermediate RK4 steps the line of nodes marked by green diamonds in

figure 6.6b can be solved using the Galerkin gradient method. The method is only used

to solve for the self-induced velocity from the wake. At the edge nodes, the average

velocity of just the wake, given by vav, is fed to the Galerkin method. The velocity

supplied by the Kutta nodes is more complicated. Because the Kutta nodes implicitly

carry the total trailing edge velocity, the velocity from the free stream and the wing

must be removed. The seed velocity from the Kutta nodes is given by

vTE seed = vTE − vadd, (6.10)

where, as before, vadd is the velocity induced by the wing and the free-stream.

The velocities used to seed the Galerkin gradient method must be doubled as the

method returns twice the average velocity as the result. Additionally, all values of µ on

the wake are supplied to the Galerkin gradient method and, importantly, as stated in

section 4.3.3, the method acts on values of −µ, rather than µ. Also, the values of µ at the

wake edges, other than the trailing edge, must be zero. With this complete information

the Galerkin method will return twice the self-induced velocity at the internal nodes.

Post calculation, this velocity is halved and the induced velocity from the wing plus the

free stream can be added. This will provide the complete wake velocity at the internal

nodes.

The process at the trailing edge nodes for the intermediate steps is similar to those

for the first time-step. Care must be taken to preserve the Kutta node velocity during

the intermediate stages. From the first intermediate stage of the second time-step, and
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(a) t = ∆t. (b) 1st and 2nd intermediate steps (t =
3/2∆t).

(c) 3rd intermediate step (t = 2∆t). (d) t = 2∆t.

Figure 6.6: Advancing the wake geometry for the second time step from t = ∆t to
t = 2∆t. Nodes with green diamonds use the Galerkin gradient method to calculate the
surface velocity.

for all remaining time-steps, the Galerkin gradient method can be applied to all wake

nodes that do not lie on the wake edge or are coincident with or adjacent to the trailing

edge.

6.4 The CFL Condition for the Wake

Prior to beginning the examination of the behaviour of the wake, it is prudent to

consider its stability under time-stepping. In order to define a CFL condition for the

wake, it is necessary to start by rewriting the CFL condition given by equation (4.109)

in terms of the free stream velocity, U. This gives

∆t = Cn∆s |U| = Cn∆s U. (6.11)
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The length ∆s of the wake at the first time-step is governed by equation (6.4), i.e.

∆s = (U · aα)∆t. (6.12)

Substituting equation (6.12) into equation (6.11) gives

∆t = Cn (U · aα)∆t U

⇒ ∆t (1 − Cn (U · aα)U) = 0.
(6.13)

Not wishing ∆t to be zero, equation (6.13) implies that

1 − Cn (U · aα)U = 0

and thus

Cn =
1

U (U · aα)
=

1
U (U(aα)x)

(6.14)

where (aα)x is the x-component of the Kutta vector; the free-stream velocity being

directed in the positive x-direction. Evidently, the CFL number is controlled only by

the speed of the oncoming flow and is proportional to U−2. This result will only alter

slightly for t > 0 where equation (6.6) is applied at the Kutta strip, resulting in a similar

conclusion based on the velocity about the wing. Thus, this form of CFL condition is

not applicable to dynamic time-stepping since Cn is fixed. Some alternative metric is

required and the most compelling possibility may be to define a condition based on the

geometry at the the wake edges where roll-up deforms the surface greatly. However, as

yet, the form of such a condition is not clear. The impact of variation of the time-step

for the forthcoming numerical experiments will provide an interesting insight.
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6.5 Wake Generation Without the Galerkin Gradient Method

This section will explore wake generation without the use of the Galerkin gradient

method. Instead, the velocity averaging algorithm, described in section 6.3.2, will be

applied to both the edge and internal nodes of the wake. The primary purpose of

undertaking this test is to evaluate the effect of varying ε in equation (6.7). This is an

important factor in the entire wake generation algorithm as the averaging algorithm

provides the wake velocity at the edges and for the nodes adjacent to the trailing edge

as a requirement to the Galerkin gradient method.

There exists a conflict in the choice of ε between taking the average too far from

the surface, avoiding the true surface velocity, and approaching too near to the surface,

where the solution to equation (2.74) is singular. Time constraints during the project

undermined the design of an adaptive scheme for this near-singular problem and thus

the averaging is likely to be extremely sensitive here.

This test will provide some insight into the effectiveness and implementation of the

numerical Kutta condition developed in section 3.5.2. The angle of attack can also be

varied to examine the influence on the resulting form of the wake sheet. Note that,

as the main purpose of this section is to investigate wake generation, no integrated

properties such as surface pressures are calculated at this stage. It was felt that, until

the wake can be shown to be stable for a reasonable period, these values would not be

comparable to existing results in the literature, that are generally recorded for steady

state.

For qualitative comparison of the wake evolution, figure 7 of Pyo and Kinnas (1997)

is reproduced here as figure 6.7. The figure shows the wake behind a lifting line with

elliptic loading. Note the wake roll-up located at both the streamwise edges of the sheet

and also note that the centre of the wake ‘sags’. The solution Pyo and Kinnas (1997)

used to calculate the wake velocity is also higher order, however, it was implemented in

a different manner to the method presented here. Firstly, Pyo and Kinnas used a wake

relaxation scheme rather than the time-stepping scheme used in the present method.

This means that the wake in figure 6.7 was ’relaxed’ to its final position from a pre-

existing flat wake. In general this approach is more stable than time stepping the wake

into position, but if the expected position of the wake is not well known, as is the case

for tidal turbines, and if an unsteady free surface is also present, the wake relaxation



6.5. Wake Generation Without the Galerkin Gradient Method 180

method is not valid. Secondly, the Pyo and Kinnas approach calculated the velocities

at panel centres and interpolated to the collocation points rather than calculating the

value at the collocation points directly, as attempted within this thesis. Regardless of

these differences, figure 6.7 provides an excellent guide for qualitative verification of the

present method.

Figure 6.7: Wake roll-up behind a lifting line. Source: Pyo and Kinnas (1997, figure 7).

The foil to be tested has span = 2 and chord = 1. The wing is subject to an

oncoming flow of speed 2. Varying time-steps can be used but unless otherwise stated,

∆t = 0.1. The complete flow velocity for the wake is the combination of its self-induced

velocity, the far field velocity and the velocity induced by the wing. In order to check

if the velocity induced by the wing is feasible, the wake is initially stepped forward

in time without including its self-induced velocity. As the initial velocity perturbation

generated by the wing on the free stream is quite small, a time-step of ∆t = 0.02 is

required. The initial conditions for this simulation can be seen in figure 6.8. Figure 6.9

shows the results of the simulation after a couple of time-steps. The wake can be seen to

gently return to the far field flow direction as it gets further from the wing, as expected.

The self-induced velocity of the wake can now be introduced into the simulations.
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Figure 6.8: Initial φn, geometry and Kutta strip. α = 5◦, t = 0 & ∆t = 0.02.

Figure 6.9: Velocity induced without wake influence. α = 5◦, t = 0.06 & ∆t = 0.02.
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Three main parameters of interest will be varied in order to gauge their importance.

These are:

1. the discretisation of the wake, governed by the number of panels in the spanwise

direction of the wing,

2. the choice of ε for the wake average velocity algorithm,

3. the angle of attack, α, of the wing.

Regarding the choice of ε, it was decided to set a global value which would be used

over the entire wake. Similar to the adaptive quadrature metrics defined in chapter 3,

ε must be normalised by some value. This value is chosen to be the largest edge length

in the wake panels modified by a multiplier such that

ε = Cεlmax (6.15)

where lmax is the longest edge length in the wake and Cε is a user defined constant.

To begin, the effect of discretisation, for a wing with α = 5◦, Cε = 0.5, was examined

using three simulations with varying numbers of spanwise panels. Figure 6.10 shows the

wake after t = 1.1 for 5 spanwise panels. Figure 6.11 shows the result for 10 spanwise

panels and figure 6.12 shows the results for 20 spanwise panels. Each figure shows

the wake profile in full and a section through the centre of the wake and aerofoil. A

comparison of slices through the wakes taken in the x and y directions is shown in

figure 6.13. In figure 6.13, and for all the other comparisons, the dashed black line

shown with the x-slices plot indicates the x-coordinate of the y-slices below.

It can be seen from the comparison that the slices in the y-direction clearly shows

the initial stages of roll-up of the side edges, as expected. It also reveals that the impact

of increased discretisation is quite interesting. A trend can be seen for the wake to rise

as the discretisation increases. With increased discretisation, the ‘bowing’ of the centre

of the wake in the y-direction is less apparent. This may be due to the impact reduced

discretisation has on ε. In fact, because the time-step is unchanging, and ε is set using

the longest panel edge length in the wake, the value of ε will be unchanging across

the three discretisations. Hence, the relative distance of the averaging points from the

panel is increasing with increased discretisation; this may reduce the likelihood that
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the true velocity is being calculated. It is therefore prudent to examine the effect of

varying Cε.

Figure 6.14 and figure 6.15 show the wing at 5◦ angle of attack and 20 spanwise

panels. The simulation seen in figure 6.14 has Cε = 0.2, whilst Cε = 0.1 was used for the

simulation in figure 6.15. Figure 6.16 shows the comparison of the slices in the x and y

directions along with the final slices from figure 6.12. In terms of the wake’s deviation

in the z-direction, the impact of reducing Cε has the opposite effect to increasing the

discretisation, in that the wake, initially anyway, descends with reducing Cε. However,

the trend for the wake to ‘flatten’ is maintained - as can be seen in the y-direction

slice. This may indicate a trend that the wake should, in fact, be more flat than the

example seen in figure 6.7. This may be because the loading is more regular than on

the elliptically loaded example presented by Pyo and Kinnas.

The final parameter of interest is the angle of attack. Figure 6.17 and figure 6.18

show wings with angle of attack α = 10◦ and α = 20◦ respectively. Both simulations

were run with Cε = 0.5 and 20 spanwise panels. Figure 6.19 compares the slices of

these two simulations with the final slices from figure 6.12. The difference between

these simulations is quite significant. As the angle of attack increases, the depth of the

wake increases - as would be expected. The amount of roll-up also appears to increase.

A noteworthy aspect of the results, concerning these simulations and all the previous

simulations, is the lack of movement of the wake edges themselves. Because of this, a

further investigation into the behaviour of the wake edges was carried out.

As the wake edges appeared to be so inert in comparison to the rest of the sheet,

it was decided to decouple the values of Cε for the edges from the rest of the sheet.

Maintaining the previously defined values of Cε for the internal nodes, the value of Cε at

the edges was set to zero. Figure 6.20 demonstrates the outcome of this simulation for a

5◦ angle of attack and 10 spanwise panels. A clear difference with the wake edges can be

seen here with a much greater amount of roll-up compared to the previous simulations.

The fact that Cε can be chosen to be zero at all raises a number of serious issues. As

discussed in chapter 4, the velocity at the wake edges should be infinite. The result

seen in figure 6.20 may be a consequence of the numerical scheme allowing the value

to be finite at the edges. The combination of the zero value of µ at the edges and the

quadrature schemes which never give a zero value of r may be combining to produce

this result. It is therefore possible that this is still not the true result at the edges of
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Figure 6.10: Wake profile at t = 1.1 for α = 5◦, Cε = 0.5 and 5 spanwise panels.

Figure 6.11: Wake profile at t = 1.1 for α = 5◦, Cε = 0.5 and 10 spanwise panels.
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Figure 6.12: Wake profile at t = 1.1 for α = 5◦, Cε = 0.5 and 20 spanwise panels.

Figure 6.13: Comparison of wakes at varying discretisation for slices in the x and y
directions. The blue line shows 5 spanwise panels, the red line 10 and green line shows the
results for 20 spanwise panels.
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Figure 6.14: Wake profile at t = 1.1 for α = 5◦, Cε = 0.2 and 20 spanwise panels.

Figure 6.15: Wake profile at t = 1.1 for α = 5◦, Cε = 0.1 and 20 spanwise panels.
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Figure 6.16: Comparison of wakes at varying Cε for slices in the x and y directions. The
blue line shows results for Cε = 0.5, the red line Cε = 0.2 and the green line shows results
for Cε = 0.1.

Figure 6.17: Wake profile at t = 1.1 for α = 10◦, Cε = 0.5 and 20 spanwise panels.
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Figure 6.18: Wake profile at t = 1.1 for α = 20◦, Cε = 0.5 and 20 spanwise panels.

Figure 6.19: Comparison of wakes at varying α for slices in the x and y directions. The
blue line shows the results for α = 5◦, the red line α = 10◦ and the green line shows results
for α = 20◦.
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Figure 6.20: Wake profile at t = 1.1 for α = 5◦, Cε = 0.5, 10 spanwise panels and zero ε
at the free edges.

the wake and merely a numerical artifact. In fact, the uncertainty of the results at the

wake edges will have significant consequences on the next section where the Galerkin

gradient method is applied.

6.6 Wake Generation With the Galerkin Gradient Method

Using the parameters established for the wake averaging algorithm, the Galerkin gradi-

ent method can now be applied to the wake. The key factors to examine with this series

of tests are the stability of the algorithm and the qualitative alignment with expected

results, such as those from the wake averaging algorithm and the Pyo and Kinnas

example shown in figure 6.7. Although the theoretical grounding for the algorithm

used here was established in chapter 4, there was insufficient time to program and test

the algorithm before its application to this problem. The author is greatly indebted to

Professor Leonard Gray of Oak Ridge National Laboratory for supplying the core of

the code which was used in the following calculations. The only adjustments made to

Professor Gray’s code was the introduction of the velocity at the edges of the wake in

order to circumvent the singularity there and truncate the linear system.

Similarly to the non-Galerkin wake generation, the value of Cε at the edges and for
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the nodes adjacent to the trailing edge can be varied along with the discretisation, the

angle of attack, etc. The initial set of tests investigate the effect of varying Cε for a

wing with α = 5◦ and 10 spanwise panels using a time-step of ∆t = 0.1. Figure 6.21

compares the results for Cε = 0.5, 0.2, 0.1 and the zero ε edge case (with Cε = 0.5 for

nodes adjacent to the trailing edge) from a top down view at t = 0.3. The interesting

point to observe here is that the wake profile is stable, but it appears to be completely

unvarying between the different simulations. Figure 6.22 shows slices taken in the x

and y directions respectively. From the x-slices, note that for the Cε = 0.5, 0.2, 0.1

cases the Galerkin algorithm does not alter the position of the wake. Nonetheless, for

the zero edge case the wake does translate slightly in the z-direction. This is a useful

result as it indicates that the Galerkin algorithm does respond to the translation at the

edges, which is not apparent from figure 6.21.

The slices taken in the y-direction, as seen in figure 6.22, are also very interesting.

In particular, the shape which the wake takes in the y-direction is different to that seen

when using the averaging routine. The wake appears to form an unlikely ‘W’ shape

rather than the bow shape seen previously. However, this is only the case for the zero

ε edge case and, in fact the shape is much flatter when the edge movement is not so

extreme.

A serious issue, which is yet to be discussed, is that all of the simulations so far

have been illustrated at t = 0.3. In fact, beyond this time the simulations fail. This

event is illustrated in figure 6.23. In general, the interaction between the edge nodes

and the nodes adjacent to the edges is quite unstable and is restricting the amount of

time-steps that can be taken. This is a serious flaw with the method and is discussed

in greater detail later. Prior to the introduction of methods which can be attempted

to circumvent these problems, the response of the method to another angle of attack

should be studied. Therefore, an identical study to the one above using α = 10◦ was

undertaken. The x and y-direction slices of the results can be seen in figure 6.24. Once

again a lack of stability meant that the results could only be compared at t = 0.3. The

orange line shows the results from a test using just the wake averaging with Cε = 0.2.

The wakes tends to be very flat, in comparison to the wake averaging case, although

the zero edge case (the purple line) shows some roll-up. This case also bows slightly in

the y-direction, but in the opposite direction to the wake averaging case. However, due

to the lack of stability it is very hard to make any definitive statements.
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Figure 6.21: Comparison of wake profiles at varying Cε for α = 5◦, viewed from positive
z. Top left is Cε = 0.5, bottom left is Cε = 0.2, top right is Cε = 0.1, bottom right is zero
ε edge case.

Figure 6.22: Comparison of wakes at varying Cε at α = 5◦ for slices in the x and y
directions at t = 0.3. The blue line is Cε = 0.5, red line is Cε = 0.2, the green line is
Cε = 0.1 and the purple line is the zero ε edge case.
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Figure 6.23: Failure of wake at t = 0.4 for α = 5◦, Cε = 0.5 and 10 spanwise panels.

Figure 6.24: Comparison of wakes for varying Cε at α = 10◦ for slices in the x and
y-directions at t = 0.3. The blue line show the results for Cε = 0.5, the red line Cε = 0.2
and the green line shows results for Cε = 0.1. The purple line shows the zero ε edge case
and the orange line is the wake averaging case.
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As discussed in chapter 4, the solution at the wake edges is singular. It is for this

reason that the Galerkin gradient method cannot be applied at the wake edges. In fact,

it turns out that this singular behaviour causes an inaccuracy in the results near to

the edges also (see Gray et al., 2004b, figure 9). It is possible that this inaccuracy is

being encountered in the wake simulations as well. In order to attempt to overcome

this issue, a second line of nodes at the wake edges can be solved with the averaging

algorithm rather than the Galerkin method. An initial application of this algorithm is

seen in figure 6.25 for a wing with α = 5◦. The wake remains more stable using this

approach and does not fail until t = 0.9. A comparison between these results and a

similar simulation using just the averaging algorithm with Cε = 0.2 together with zero

edge ε is shown in figure 6.26. Here the marked contrast in the downwash between the

averaging and the Galerkin algorithms can be seen along with the lack of a bow shape.

Unfortunately using the above double edge node algorithm does not improve the

result for α = 10◦ as illustrated in figure 6.27. The averaging algorithm itself is not

particularly stable in this case so it is not surprising that this induces further instability

in the Galerkin algorithm. A possible solution to overcoming this instability is to damp

the value of µ on the line of nodes adjacent to the line of nodes furthest from the trailing

edge of the wing (i.e those nodes that are generated at t = ∆t). The effect of this for

α = 10◦ is seen in figure 6.28. Although this approach has a positive outcome for the

averaging algorithm used at the nodes adjacent to the leading edge, the instabilities

at the streamwise edges once again cause the algorithm to break down. It may be

feasible to attempt to damp these edges also, but whereas damping the nodes adjacent

to the leading edge could be seen as circumventing the unnatural impulsive start of the

simulation, for the edge nodes there is no physical reason to do this. It would be a

purely artificial means to ensure stability for a longer period of time.

In conclusion, the results seen in this section raise serious questions about the

applicability of the Galerkin gradient method for the time-stepping of wakes. As can

be seen, the algorithm is least stable at the edges where most of the physics, embodied

by the wake roll-up, is occurring. Perhaps then the search for improved accuracy of the

wake evolution is less important than assuring stability in the regions of high roll-up,

particularly in a time-stepping simulation? It also remains unclear as to whether the

Galerkin algorithm is reproducing the correct physics for the wake sheet. As three-

dimensional open vortex sheets are less studied than closed and periodic vortex sheets
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Figure 6.25: Wake profile of the double edge node algorithm at t = 0.8 for α = 5◦,
Cε = 0.5 and 10 spanwise panels.

Figure 6.26: Comparison of wakes slices in the x and y directions with double edge node
algorithm and the wake averaging algorithm at t = 0.8. The blue line is the wake averaging
algorithm with Cε = 0.2, and the red line is double edge node Galerkin case.
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it is relatively difficult to make comparisons with them in anything but a qualitative

manner and due to the stability issues, comparing integrated properties for the wing is

also very difficult. For more definitive proof that the Galerkin method is applicable to

wake sheets, the stability issues must be addressed. Firstly, the author was unable to

verify the code supplied to him by Professor Gray; it was applied to the wake problem

as a ’black box’ and such simulations lack a basic analytical solution with which the

code can be verified. Nonetheless, it has been successfully applied to other, related,

problems. More examination of the code, in addition to applying it to other fluids

problems, such as closed and periodic vortex sheets, would be beneficial. Furthermore,

if the theoretical analogy to the crack problem is sound, the introduction of crack

tip or quarter point elements (see Bonnet, 1999, pg. 313) may prove beneficial to

the stability of the sheet. A final key component to ensuring stability of the wake is

the accurate calculation of the velocity at the edges. This has not been sufficiently

investigated in this study and almost certainly improvements can be made over the

averaging algorithm demonstrated here. One possibility may be to integrate vortex

cores at the sheet edges into the model, although care must be taken not to invalidate

the irrotational assumptions of potential flow.

Only if these issues can be addressed, and the Galerkin algorithm can be shown to

produce the expected physical results for phenomena such as wake roll-up, will there

be justification for the greater computational effort required to apply the Galerkin

algorithm. It may well be that in order to ensure greater stability and improved

computational time, alternative methods, such as vortex particles, may be more ap-

propriate for the submerged lifting body problem than the use of vortex wake sheets.

Yet, the Galerkin gradient method may well still prove useful in other roles, such

as improving the calculation of the free surface velocity near to channel walls where

differencing schemes are less accurate. The possibility of solving the entire problem

using a symmetric Galerkin boundary element method (see Sutradhar et al., 2008)

may also prove attractive as using this approach to calculate the values of potential

and normal derivative may reduce the additional computational effort required to then

calculate the other gradients.



6.6. Wake Generation With the Galerkin Gradient Method 196

Figure 6.27: Wake profile of the double edge node algorithm at t = 0.4 for α = 10◦,
Cε = 0.5 and 10 spanwise panels.

Figure 6.28: Wake profile of the double edge node algorithm at t = 0.6 for α = 10◦,
Cε = 0.5 and 10 spanwise panels. The nodes adjacent to the line of wake nodes furthest
from the trailing edge are damped.



Chapter 7

Conclusions and Further Work

The interaction of a free surface with the wake and blades of a tidal current turbine is

an important and as yet unquantified phenomenon. The presence of a free surface is one

of the main aspects which differentiates the tidal turbine from the similar technology

of wind turbines.

In summary of this project, its main aim was to attempt to develop a numerical

method for simulating the flow past a tidal turbine in an open channel. In addition, the

developed model would also be designed to model accurately the free-surface and the

turbine wake, as well as the interaction between them, the turbine and the boundaries of

the channel. This was an ambitious goal, requiring the combination and development

of various complex methods which had not been previously brought together. After

extensive review of all the available literature relating to the topic, the author decided

upon developing a panel method to model the quasi-potential flow within the channel;

the flow is assumed to be irrotational everywhere except for the wakes of the turbine

blades, which are approximated by vortex sheets. As a base method, the high-order

panel method of Xü (1992) was adopted. This method was originally developed to

model 3D free-surface flows. Many of the aspects of this model have been enhanced

and developed here, partly due to the lack of some details in Xü (1992). To this method

the perturbation potential formulation was added, which enabled reduced discretisation

for pumped flow problems.

The order of lifting surface solutions using boundary element methods is often lower

than those used for free surface solutions, such as in Xü (1992). This is due, in part,

to the requirement to solve the hypersingular boundary integral equation on the vortex

sheet representing the wake. A new method, originally developed for the field of fracture

197
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mechanics to find the gradient of the potential jump across cracks, was identified as

capable of solving the hypersingular boundary integral equation for velocity at the edge

and corner points of boundary elements without the requirement for C2 continuity at

their interfaces. This method, known as the Galerkin boundary element method, was

developed by Gray et al. (2004b) and for the first time it was applied here to the

evolution of wakes. The Galerkin method is currently only applicable to linear panels

and, therefore, three node triangular panels were added to the base method for use on

the turbine wakes. The power of the Galerkin method is that most of the steps are

carried out analytically and, therefore, exactly; only the final stages require numerical

approximation.

In the following text, the chapters of this thesis are summarised in more detail and

the important issues are highlighted. After this summary, conclusions are drawn and

further work is suggested.

At the start of chapter 2, the boundary conditions for the simulation, including the

free surface, were established using two different schemes. The first scheme, known

as the full potential method, requires all domain boundaries to be discretised and the

far field flow is enforced by Neumann boundary conditions on the inlet and outlet

boundaries. In the second scheme, called the perturbation potential formulation, the

far field velocity is implicit in the solution and, as a result, it is no longer necessary

to discretise the inlet and outlet boundaries. In section 2.4.3 and section 2.4.4, the

boundary condition for the strength and evolution of the wake, known as the Kutta

condition, was derived. Prior to considering full lifting solutions, the boundary integral

equations required for the solution of the Laplace equation were determined for a simple

channel with a free surface and a uniform, steady flow. In section 2.6, the hypersingular

boundary integral equation for the calculation of velocity on a domain boundary was

introduced. Finally, in chapter 2, alternative schemes for the discretisation and solution

of the integral equations, known as the collocation and Galerkin methods, were intro-

duced prior to their application to the standard boundary integral and hypersingular

boundary integral equations problems.

To provide a basis for the present method, a high order boundary element method

was sought that was shown to solve three-dimensional free surface problems accu-

rately. The method developed by Xü (1992) has been shown to produce excellent

results for wave motions up to the point of breaking. The concepts underpinning Xü’s



7. Conclusions and Further Work 199

method, which uses iso-parametric quadratic boundary elements, have been applied to

the present method, as detailed in chapter 3. Alterations to Xü’s original adaptive

scheme, where parameters were not clearly defined, have been made in section 3.3.

The original parameters for the adaptive control of the self doublet influence, given

by equation (3.48), were retained as no analytical result for an isolated panel could

be evaluated to compare against. This fact may have an impact on the results of the

method and is discussed further later.

The method was extended in section 3.4 to include linear triangular elements for

use on the wake sheets of any lifting bodies submerged in the flow. The full discretised

linear system of equations was illustrated in section 3.5, first for non-lifting flows and

then including the numerical Kutta condition for defining wake strengths. Section 3.6

introduced the use of reflective kernels to reduce the required amount of discretisation

of the flow channel, and the application of double nodes at surface intersections to

ensure continuity of φ.

The order of convergence for this method was examined in chapter 5. In section 5.2,

the order of convergence was shown to be similar to that of Xü’s method (QBEM) for

the Neumann problem of flow passed a sphere. The present method did not achieve

the exact order of convergence of QBEM as can be seen in table 5.1. This may be due

to the difficulties in producing a test for the self doublet influence of an isolated panel.

The accuracy of the routines to calculate this influence could only be tested for a global

problem, and thus the verification of this part of the program was not as rigorous as

for the other influences. Also, instead of using an iterative solver for the linear system,

as in Xü (1992), a commercial matrix inverting routine was employed here. Finally, as

the discretisation of the sphere itself was not discussed in great detail in Xü (1992),

it is possible that the discretisation schemes for the sphere, developed in section 5.2.1,

were not as uniform as those used by Xü. This possibility is supported by figure 5.5

which shows that the type of discretisation used on the sphere (and the accuracy of the

initial conditions) has a significant impact on the accuracy and order of convergence of

the method.

In section 5.3, additional convergence studies were carried out for steady uniform

flow through a simple channel with a free surface. These tests were performed in order

to evaluate the accuracy of the method once a Dirichlet surface has been introduced.

The tests also facilitated a comparison between the performance of the standard Green’s
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function and the Green’s function including the reflective bottom and right hand side

channel wall boundaries. The results presented in figure 5.8 initially seem to be very

poor; on closer inspection however, the low order of convergence is actually a result

of the method exceeding its target accuracy, even at the lowest level of discretisation.

Despite this fact, figure 5.8 clearly indicates that the adaptive numerical differentiation

is working as the maximum relative error never exceeds 1 × 10−5.

The patterns of errors illustrated in figure 5.7c and figure 5.7d are also highly

revealing. Here, when comparing the reflective Green’s function solution to that of

the non-reflective, the impact of the channel wall boundaries on the errors becomes

clear. Although the error caused by the proximity of one surface to another surface

is consistent, where three or more surfaces meet, these errors combine (as is expected

for a linear problem) in both destructive and constructive manners. Thus, to reduce

the maximum errors seen in these regions, reducing the number of discretised surfaces

is highly beneficial. An alternative approach may be to further enhance the adaptive

numerical scheme to better cope with the proximity of nearby surfaces.

In chapter 4, a numerical differentiation scheme was developed for the free surface

boundary in order to evaluate the surface velocities, which can then be used for time-

stepping. In chapter 5, the examples of single and counterpropagating solitary waves

(see Craig et al., 2006) were used to evaluate this numerical differentiation method and

to assess the accuracy and stability of the time integration and dynamic time-stepping

schemes developed in section 4.4. The results of section 5.4.2, for the single soliton,

indicate that if the chosen CFL number for the dynamic stepping was low enough, the

simulations were stable without the need for smoothing. In these cases, the often wit-

nessed sawtooth instability on the free surface did not appear. The counterpropagating

soliton study, undertaken in section 5.4.3, showed reasonable agreement with the recent

study of Craig et al. (2006) in some of the cases, although for the larger wave height the

simulation was not evolved long enough for the residual waves to separate entirely from

the solitons, post collision. As is shown in figure 5.16, a similar simulation of greater

length would be a useful addition, providing more accurate asymptotes to the motion of

the resulting solitons than those extrapolated from figure 5.14b. For all the examples,

an improved method to track the peaks of the waves would be beneficial, as they do

not always coincide with a computational node. This may improve the agreement to

the results of Craig et al. for the counterpropagating case. In general, the soliton
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tests illustrate that the numerical differentiation, time integration and dynamic time-

stepping schemes have been successfully implemented.

Within section 4.3, the Galerkin gradient method of Gray et al. (2004b) was derived

in full and the analogy of finding the velocity on the wake of an aerofoil to that of

calculating the gradient of the potential difference across a crack in fracture mechanics

was established. Many of the details of the Galerkin gradient method which were

omitted from Gray et al. (2004b) for space reasons have been re-derived and presented

here for completeness. In section 4.3.4, it was stressed that care must be taken at the

wake edges and that an alternative solution scheme must be applied at these locations,

otherwise the Galerkin method will return the singularities known to be present there.

It was shown that the Galerkin method could, instead, be truncated using an alternative

solution scheme to find the velocity at the wake edges and that the Galerkin method

could only be applied at nodes directly adjacent to the edges if the strength, µ, on the

wake edges was zero. If this was not the case, such as at the trailing edge of the aerofoil,

then the Galerkin algorithm can only be applied at the second line of nodes adjacent

to the edge.

An alternative method for calculating the velocity at the wake edges, and for the

nodes adjacent to the trailing edge, was derived in section 6.3.2. This algorithm takes

an average of velocities above and below the wake sheet at a predefined distance, ε. The

velocity of the nodes at the trailing edge is provided by the spatial Kutta condition,

which fixes the direction of the first line of panels leaving the wake, as illustrated in

figure 6.3. Care must be taken to preserve this direction during the first time-step

and the required algorithm (represented by figure 6.4) was carefully described. In

section 6.4, it was found that the CFL condition for the wake is determined by the

speed of the oncoming flow, as a consequence of the spatial Kutta condition. This

removed the ability to apply the same dynamic time-stepping schemes used for the free

surface problems to those involving the wakes. It was postulated that an alternative

scheme could be formulated, based on the roll-up of the wake edges, although this has

been reserved for further work.

To evaluate the effectiveness of the wake averaging velocity algorithm, the wake

simulation was initially run without the use of the Galerkin method. Initially, a

simulation with no self-induced velocity from the wake was undertaken to examine the

influence of the wing on the wake sheet. As can be seen from figure 6.9, the influence is
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very small but a slight ‘bowing’ can be detected. The remainder of section 6.5 examined

the impact of choosing various values of ε for the averaging scheme applied to every node

on the wake sheet, apart from those at the trailing edge. The results are qualitatively

compared to those of Pyo and Kinnas (1997) for an elliptically loaded lifting line, as

can be seen in figure 6.7, paying particular attention to the bowing of the wake and

‘roll-up’ of the wake edges. It was found that the bowing of the wake reduces with

increased discretisation on the wake when using a fixed ε. This is because the relative

length of ε to the panel size is increasing as the panel sizes are reduced. When the

discretisation is fixed and ε is reduced the bowing is seen to increase. Furthermore, it

was found that the ‘downwash’ of the wakes increased as the angle of attack increased.

Some roll-up was witnessed at the wake edges although this was very little at first. The

amount of roll-up was increased when the value of ε at the wake edge was reduced to

zero. Although the true solution is singular for zero ε at the wake edge, the algorithm

necessarily produces a finite result which appears credible. This is likely to be due to

the application of numerical quadrature combined with the zero value of µ at the wake

edges producing a pseudo near-singular problem. In this case the wake edges exhibit

significantly more roll-up than previously seen, although it is still unclear as to whether

this is the correct solution and further investigation into how to properly deal with the

wake edges is an important part of any further work, with or without the application

of the Galerkin method. Some alternative solutions may be present in the work of Pyo

(1995). Potentially a vortex core model, similar to a ‘Rankine vortex’ (see Acheson,

1990, page 16), could be applied to the wake edges, although this would invalidate the

irrotational flow assumption.

The final stage of this work concerned the application of the Galerkin gradient

method to the wake sheet. Again, care was required in the time-stepping of the

method, and the method cannot be applied until the second time-step. The same

conditions for maintaining the direction of the Kutta strip must also be observed.

These issues are illustrated in figure 6.6. The truncation of the Galerkin algorithm

at the wake edges was provided by the wake averaging scheme. Initially, for the

simulations undertaken in section 6.6, it was found that the Galerkin method calculated

internal nodes correctly for the first time-step with which it was applied. Beyond that,

unfortunately, instabilities began to occur at the wake edges. Attempts were made

to reduce these instabilities by using the averaging algorithm for an additional line of
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nodes adjacent to the edges. Figure 6.27 shows that this improved the stability of the

method. However, the interaction between the edges and the internal nodes of the wake,

once again, produced a catastrophic instability before the simulation was completed in

all cases. Indeed, the problems grew more severe as the angle of attack was increased.

For the limited time that the wake was stable, the shape of the wake calculated by the

Galerkin method could be examined. It did not exhibit the bowing that was expected

from previous examples and, in fact, its motion in the vertical direction was very slight,

if at all noticeable. It is not clear if this is the correct behaviour.

It was also difficult to determine whether the wake edge roll-up was being simulated

correctly due to the lack of stability. This is a severe difficulty with testing the

applicability of the Galerkin method to vortex wakes and a better solution at the

wake edges must be found. A similar instability is witnessed in the crack problem

for fracture mechanics and is improved with the use of quarter point elements at the

edges. Further investigation into whether this approach is applicable to vortex wakes

may prove fruitful.

Unfortunately, there is not currently enough information to determine whether the

Galerkin gradient method correctly models the physics it has been applied to within this

thesis. As further work, alternative methods of wake generation and velocity calculation

schemes should be investigated. This will give a clearer picture as to the accuracy of

both the wake averaging method and the Galerkin gradient method for calculating the

wake velocity. Using alternative, and possibly less complicated, methods to generate

wakes will also allow the global method to be validated against real world solutions,

which will provide a better baseline for the accuracy of more advanced methods, such

as the Galerkin gradient method. The conclusion of such a study may be that the

increased accuracy offered by the Galerkin algorithm for solving at the collocation

points is outweighed by the additional instability inherent to the method. Along with

the additional computation cost of inverting the Galerkin matrix, if the stability issues

can not be solved then the Galerkin method may offer little benefit to lifting flow

applications. Indeed, in the case of tidal turbines, where so little is known about

the wake structure, it may be that modelling the wake as a vortex sheet is not a

robust enough approach and, perhaps, a discrete vortex method or similar may be

more durable, if not as accurate. Nonetheless, the Galerkin method may still prove

useful for accurate calculation of the velocity on the free surface, particularly in the
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regions where walls are present and skewed differencing schemes must be used. This

represents another viable, and achievable, course for further work.

In closing, although the wake velocity evaluation methods failed to produce stable,

and thus comparable, results, the method as a whole, developed throughout this thesis,

has been implemented with a reasonable amount of success. In particular, as the

results in chapter 5 attest, the free surface solver of the method is accurate and stable.

Therefore, there are many extensions for this method that go beyond tidal turbines and

for which it could benefit the marine energy community. In particular, in combination

with work such as Forehand (1998), boundary element methods have excellent potential

to be used as numerical wave tanks, including the generation of waves by paddles and

the interaction with fixed and floating structures. Where experimental facilities exist,

there is the opportunity to undertake excellent validation studies of simulations which

mimic those facilities. This method has also demonstrated that current can be applied

in a boundary element method, and this may also be of benefit to the wave energy

community – the impact of wave and current interactions on wave energy converters

is, as yet, poorly understood. At the very least, the present method may provide the

basis for a model of greater complexity, as it is made available to the marine energy

research community as a whole.



Appendix A

Review of the Kutta Condition

A.1 Kutta-Joukowski Hypothesis

In the early twentieth century the development of flight lit the imaginations of politi-

cians, entrepreneurs and academics alike. Joukowski (or Zhukovski or Zhukovsky), the

renowned Russian mathematician, provided groundbreaking techniques for applying

complex number theory to the modelling of the flow around an aerofoil. The Joukowski

transformation could be used to transform a circle into an aerofoil shape that had both

a sharp trailing edge and a blunt nose. These transformations are known as Joukowski

aerofoils (see Milne-Thomson, 1968). The techniques, although useful, have less bearing

given today’s computational power, where three-dimensional simulations are becoming

compulsory and analytical results may not be available for complex geometries. The

theoretical observations that Joukowski made, however, have had enduring importance

to aeronautical modelling.

The Kutta-Joukowski hypothesis is best described by figure 2.2. The flow about

an aerofoil, when considered to be irrotational and have no circulation, must ‘turn the

corner’ around the aerofoil trailing edge causing a singularity to be formed there. This

would violate the irrotational assumption as well as be unphysical for a aerofoil that was

working normally. Joukowski hypothesised that the correct amount of circulation in the

flow would move the stagnation point (seen on the top surface of the foil in figure 2.2(a))

to the trailing edge which would produce a finite velocity there. The hypothesis was

originally attributed to Joukowski from his papers published in 1906. However, the

German mathematician Martin Wilhelm Kutta had made similar observations in his

1902 thesis. Thus history has credited both men with the work.

205
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A.2 The Kutta-Joukowski Theorem

The main outcome of the Kutta-Joukowski hypothesis was the connection of the circu-

lation about an aerofoil to the generation of lift. Both Kutta and Joukowski were able

to prove a proportional relationship between the circulation around the aerofoil and the

lifting force (and direction) generated. A proof, using complex velocities, is given in

Milne-Thomson (1968). An important distinction to make about the Kutta-Joukowski

theorem is that it is derived for steady state motion. As described earlier, the starting

of circulation about the aerofoil would violate Kelvin’s circulation theorem (see Katz

and Plotkin, 2001) making the flow irrotational. Kutta and Joukowski circumvented

this problem by concentrating on the steady state problem where the circulation had

already been set up. Physically, in order for the circulation to start about the aerofoil,

a vortex sheet must be shed into the wake behind the aerofoil that has a circulation

which is equal and opposite to that about the aerofoil. It is the generation of the said

wake sheet that is of great interest to aerodynamicists.

A.3 The Kutta Condition

The Kutta condition is merely the mathematical interpretation of the Kutta-Joukowski

hypothesis, effectively providing a condition at the sharp trailing edge of an aerofoil.

Although the Kutta condition seems to be derived directly from the Kutta-Joukowski

hypothesis, Joukowski’s name appears to have been lost from this often used expression.

From a numerical modelling perspective, the Kutta condition is invaluable, in that it

provides a means of calculating the vorticity shed into the wake of a aerofoil and it

converts a multivalued problem into a unique one.

Katz and Plotkin (2001) provide a good argument for the uniqueness of potential

theory based lifting solutions where the domain is no longer simply connected. It is

shown that if the circulation is not explicitly known then the potential is not unique.

Thus the Kutta condition provides a physical relationship that is vital to the application

of boundary element modelling. However, the correct implementation of the Kutta

condition, particularly for unsteady and three dimensional flows, remains a topic of

great interest.

During the late 1960s and early 1970s the use of boundary element methods to
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numerically calculate potential flows were becoming more popular, with advances in

computing power especially available to industries like aviation. Early work on lifting

potential flow solutions (such as the work of Hess (1972)) pioneered the ideas and

mathematics that would go on to become commonly known as panel methods. Hess

(1972) provides a good description of the types of numerical Kutta condition and cites

some of the early references. Hess, however, did not formulate his panel method

with the now commonly used Green’s identity; instead, he chose to use the more

physical, induced velocities of constant strength panels. As a consequence, Hess failed

to explicitly define the Kutta condition as many numerical analysts know it today.

The most cited work regarding the Kutta condition is that of Morino and Kuo

(1974). Morino and Kuo were the first to formulate the singularities of the panel

method using Green’s identity. In the same paper they introduced the numerical

Kutta condition for Green’s identity based panel methods. Morino and Kuo chose

to interpret the Kutta condition as a ‘no pressure difference’ condition at the trailing

edge and, in order to enforce this, set the potential difference in the trailing edge panel

(commonly referred to as the Kutta strip) to the difference of the potentials on the

upper and lower panels connected to the trailing edge. Equation (2.59) describes this

process mathematically. As mentioned earlier, this elegant relationship provides both

uniqueness and a means of calculating the wake strength. It also has the numerical

advantage of easy integration into non-lifting boundary element codes. In recent times

the issue has arisen as to whether the Morino type Kutta condition actually describes

the physics it was intended to. Also, there continues to be debate as to the extension

of the condition to both unsteady and three dimensional simulations.

It has often been noted that the Morino type Kutta condition does not give the

most accurate representation of the Joukowski-Kutta hypothesis. Hess (1990) noted

that physically specifying equality of pressure, in terms of velocity at the trailing edge,

worked more effectively than the relationship given by equation (2.59). The reasons for

this discrepancy and the methods for dealing with it are quite varied. Hess points out

that pressure is quadratic when written in terms of velocity yet the Morino formulation

is only linear. He also states that accurate evaluation of the Kutta condition in a steady

simulation is critical to the accuracy of the result. It is unclear at the moment if an

unsteady simulation is as sensitive.

Kinnas and Hsin (1992) were aware of the problems associated with the Morino
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formulation. They attempted to improve the accuracy of the dipole strength on the

wake panels of their simulation by observing that although the Kutta condition is

derived from the mid-points of constant panels, its application to the wake actually

occurs at the trailing edge. Thus, they derived a linear method with the strengths of

the panels determined at the panel edges rather than at the centroids. Still, as is the

case for the Morino type condition, Kinnas and Hsin used the centroids of the upper

and lower trailing edge panels to calculate the dipole strength.

Kinnas and Hsin found that even with the improved representation of the wake,

the pressure distribution, particularly at the trailing edge where the pressure should be

equal, was not accurate and thus a further iterative scheme was developed by Kinnas

and Hsin (1992) to adjust the potentials on the aerofoil surface in order to enforce the

no pressure difference condition on the trailing edge. This raises interesting questions

as to whether the basic Morino type Kutta condition is sufficient. Should the present

method be developed for application to turbine design, the correct implementation of

the Kutta-Joukowski hypothesis may be key to ensuring rigorous validation.

To address the question of why the Morino formulation does not work as well

as expected, Morino reexamined the assumptions he made 26 years earlier. Morino

and Bernardini (2001) focused their attention on the physics of the Kutta-Joukowski

hypothesis and in particular on the calculation of the velocity at the trailing edge

when using a Green’s function based panel method. In order to examine this, Morino

and Bernardini call upon the work of Epton (1992) which examines the hypersingular

boundary integral equation (HBIE). The HBIE is formulated by taking the derivative

of the boundary integral equation for potential, which results in equation (2.74).

Epton applies a Stokes’ theorem based transformation of the HBIE to isolate two

singular line integrals. The first is the common ‘ln r’ term that produces singular

behaviour in the ordinary boundary integral equation. The second line integral contains

the hypersingular part. Epton (and Morino and Bernardini) refer to these line integrals

as the “edge-jet” and “line-vortex” terms, respectively. Morino and Bernardini attempt

to relate this representation of velocity to the Kutta condition. Interestingly, the

Kutta condition as Morino and Kuo first formulated it takes care of the more difficult

hypersingular term. However, the edge-jet term remains. Thus, Morino and Bernardini

formulated new equations to enforce a Kutta Condition on the trailing edge that would

remove both singularities. These equations were implemented in Bernardini’s thesis
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using a double node at the trailing edge.

Alternative literature suggests that in order to properly enforce the Kutta Condi-

tion, potential based solutions must be turned away from completely. Bassanini et al.

(1999) reject the potential approach in favour of a velocity formulation based on the

Poincaré identity. Bassanini et al. list the difficulties of properly formulating the Kutta

condition in potential theory and also some of the difficulties encountered with using

the HBIE for finding velocities as good reasons for exploring this alternative approach.

Overcoming some of the difficulties associated with the HBIE are explored in the current

work.

Despite all of the criticism of the Morino and Kuo (1974) formulation of the Kutta

condition it remains heavily used in potential based lifting solutions. Katz and Plotkin

(2001), Politis (2004) and Zhu et al. (2006) have all used the Morino Kutta condition

in 3D unsteady simulations. Even though he has criticised it’s accuracy, Kinnas has

also continued to apply the technique to his work such as in Kinnas and Fine (1993)

and Lee and Kinnas (2005a). In the present study the ease of use of Morino Kutta

condition is hard to ignore and, as a ‘first attempt’, will be sufficient to produce

a unique and physical solution. In the interest of further accuracy, the application

of Bernardini’s modification described in Morino and Bernardini (2001) would be an

appealing extension.

A.4 The Wake Shape and the Kutta Condition

The successful design of a quasi-potential boundary element method (i.e. one containing

a wake modelled as a vortex sheet) requires that the vortex sheet leave the trailing

edge with the correct orientation. There is some debate as to how important the

orientation is to the successful implementation of the Kutta-Joukowski hypothesis but

sheet orientation is often described as the Kutta condition and Hess (1972) lists it as

an alternative to the no pressure difference or finite velocity condition. As an example,

consider the flow leaving the trailing edge of a flat plate. It would seem intuitive that

any discontinuity of velocity on the plate should leave parallel to the surface. Indeed,

this observation is described as the Kutta condition in the work by Tsai and Yue (1993).

Unfortunately, the correct orientation for a sheet leaving the trailing edge of a thick

wing is less intuitive.
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For the thick wing case, Katz and Plotkin (2001) simply choose the bisecting angle of

the trailing edge to orientate the first panel of the vortex sheet as it separates. It is the

author’s opinion that, although it is often not explicitly stated, many other simulations

follow the same principle. Mangler and Smith (1970), Morino and Bernardini (2001)

and indeed, Bassanini et al. (1999) suggest that this does not correctly represent the

physics.

Mangler and Smith (1970) were interested in the extension of boundary element

methods to lifting flows and the incorporation of vortex sheets. They set out to prove

how such a vortex sheet should be oriented downstream of the trailing edge. They

examined the five possible cases for the orientation of the vortex sheet listed as

1. the wake passes above the upper tangent of the trailing edge,

2. the wake is tangent to the upper tangent of the trailing edge,

3. the wake passes between the upper and lower tangents of the trailing edge,

4. the wake is tangent to the lower tangent of the trailing edge,

5. the wake passes below the lower tangent of the trailing edge.

Mangler and Smith deduced that cases 1 and 5 are unphysical as they would

immediately violate the Kutta condition of finite velocity at the trailing edge. Morino

and Bernardini (2001) state that such an orientation would also generate a Kondrat’ev

and Oleinik singularity and must be avoided.

With cases 2 to 4 remaining, the surprising result is that case 3 is the exception.

Mangler and Smith found that, dependant on the velocity tangential to the spanwise

direction of the trailing edge, the wake would either resemble cases 2 or 4. They found

that case 3 only occurred in limited scenarios, such as at the centre of a symmetric wing,

and they showed that the sweep of the wing had an important role in determining the

orientation of the wake.

Morino and Bernardini (2001) confirmed the result of the Mangler and Smith

analysis, but both papers concentrated only on the steady state solution. Bassanini

et al. (1999) were able to apply their formulation of the spatial Kutta condition to the

same problem but this time considering unsteady flows. In examining unswept wings

they found that, once again, the bisecting angle (intermediate) case was the exception
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and that the wake should align with either the upper or lower tangent to the trailing

edge. The bisecting case was shown only to occur when there is no oncoming flow or

at the centre of a symmetric wing. Bassanini et al. found that the extension of their

analysis to swept wings agreed with that of Mangler and Smith when the limit was

taken as t→ ∞.

The pertinent literature demonstrates that the basic trailing edge bisecting angle

vortex wake orientation of Katz and Plotkin (2001) may not properly describe either the

Kutta condition or the flow of interest. Mangler and Smith (1970) and later Bassanini

et al. (1999) found that the bisecting case is in fact the exception rather than the

rule and showed that the wake tends to align to either the upper or lower tangent

of the trailing edge. In the present work, the wake leaves the trailing edge at the

bisecting angle. For further work, provided a stable wake can be achieved, dynamic

wake orientation could potentially provide more accurate results.
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Derivatives of Shape Functions

For the nine node quadratic elements the s and t derivatives of Q are
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The differentiated interpolation functions are given by
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For the three node triangular linear elements, the s derivatives of Q is
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with the t derivative following similarly. The s and t derivatives of of ψ̃ are given by
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Appendix C

Derivation of Equation (3.38)

Equation (3.38) can be proved by demonstrating equality of the left hand and right

hand sides. To begin consider the triangle in figure C.1 with vertices p1, p2, p3 and the

relationships

a = p2 − p1

b = p3 − p1.
(C.1)

a

b

p = (s , t )
1 1 1

p = (s , t )
2 2 2

p = (s , t )
3 3 3

Figure C.1: Triangle.

The area of the triangle is given by
1
2
|a × b| where

a × b =

∣∣∣∣∣∣∣∣∣
i j k

s2 − s1 t2 − t1 0

s3 − s1 t3 − t1 0

∣∣∣∣∣∣∣∣∣ ,
= k ((s2 − s1)(t3 − t1) − (s3 − s1)(t2 − t1)) ,

= k (s2t3 − s1t3 − s2t1 − s3t2 + s1t2 + s3t1) .

(C.2)
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Hence, the right hand side of equation (3.38) can be written as

2ρ1Aµ = ρ1 |s2t3 − s1t3 − s2t1 − s3t2 + s1t2 + s3t1| . (C.3)

Now, s and t can be represented in (ρ1, ρ2) parameter space by using equation (3.30)

and the three vertices in figure C.1. This results in

s = (1 − ρ1)s1 + ρ1(1 − ρ2)s2 + ρ1ρ2s3,

t = (1 − ρ1)t1 + ρ1(1 − ρ2)t2 + ρ1ρ2t3,
(C.4)

and the partial derivatives given by

∂s

∂ρ1
= −s1 + (1 − ρ2)s2 + ρ2s3,

∂s

∂ρ2
= −ρ1s2 + ρ1s3,

∂t

∂ρ1
= −t1 + (1 − ρ2)t2 + ρ2t3,

∂t

∂ρ2
= −ρ1t2 + ρ1t3.

(C.5)

The Jacobian, Jµ, can be calculated using equation (3.9) such that

Jµ(ρ1, ρ2) =
∣∣∣∣ ∂s∂ρ1

∂t

∂ρ2
− ∂s

∂ρ2

∂t

∂ρ1

∣∣∣∣ . (C.6)

By substituting the results of equations (C.5) into equation (C.6) observe that

Jµ(ρ1, ρ2) = ρ1 |(−s1 + (1 − ρ2)s2 + ρ2s3)(t3 − t2) −

(−t1 + (1 − ρ2)t2 + ρ2t3)(s3 − s2)|

= ρ1 |s2t3 − s1t3 − s2t1 − s3t2 + s1t2 + s3t1| .

(C.7)

The above result is the same as equation (C.3) and hence the left and right hand sides

of equation (3.38) are equal.



Appendix D

Wall Boundary Correction

Forehand (1998) and Grilli et al. (1989) point out the possible existence of singularities

in the solution in the case of an accelerating Neumann boundary intersecting a Dirichlet

boundary. Although the case of a fixed boundary is not so severe (nor does a singularity

present itself in simulations) it is still useful for the free surface to “track” the side

walls. This is in preference to interpolating the nodes back to the side walls or simply

translating them in the y-direction. To implement such a condition correctly extra

conditions must be enforced within the linear system.

A new boundary condition must be implemented for the free surface at the nodes

which intersect the side walls. For the left channel wall, the desired behaviour is enforced

by setting

vf · nl = 0 (D.1)

where vf is the velocity of the free surface at the left channel wall and nl is the normal to

the wall (pointing out of the domain). nl always points in the positive y direction, and

so the challenge is to represent vf . To achieve this, consider the parametric directions

on the free surface. xt represents the t parametric direction tangent to the free surface

at x and xs represents the s parametric direction. These are illustrated in figure D.1.

Now consider the case when the free surface is still and level. Here, xt and xs will be

perpendicular to each other and to nf and thus the velocity at x has the equation

vf = φtxt + φsxs + φnnf (D.2)

where φs and φt are the derivatives of φ in the s and t parametric directions.

Equation (D.2) is perfectly adequate while the free surface remains flat and the
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PROJECTION
(1)

PROJECTION
(2)

SL

xt

xs

∇ϕ

PROJECTION (1) xt

∇ϕ

xs

PROJECTION (2) xt

xs

∇ϕ

nl

nl

Figure D.1: Velocity vectors tangent to the free surface in the parametric directions.
Projections are shown which are (1) tangent to the channel wall in positive x and (2)
tangent to the positive normal to the wall.

vectors xt, xs and nf form an orthogonal system. However, once the surface begins to

deform these vectors are no longer orthogonal and thus equation (D.2) is invalid. To

compensate, a new orthogonal set of principle vectors e1, e2, e3 must be defined using

the Gram-Schmidt process which will generate a velocity vector on the free surface of

the form

vf = ae1 + be2 + ce3. (D.3)

For convenience, e3 can be chosen to be nl. The plane formed by xt and xs is (by

definition) orthogonal to nl, but the vectors are not orthogonal to each other. The next

stage is to choose one of these two vectors for e1, say xt. It then remains to find the

remaining vector e2 using Gram-Schmidt. Begin by choosing

u1 = xt, v1 = xt, v2 = xs. (D.4)

Then define
u2 = xs − proju1

xs

= xs −
[
xt · xs

xt · xt

]
.

(D.5)

Finally,

e2 =
u2

|u2|
. (D.6)
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Thus, the velocity at the free surface can now be written as

vf = φtxt + be2 + φnnf . (D.7)

As can be seen from equation (D.7) in order to fully calculate the velocity the

coefficient b must be evaluated. A related piece of information is the projection of vf

onto xs. This must give

vf · xs = φs. (D.8)

Now, substituting equation (D.7) into equation (D.8) gives

vf · xs = (φtxt + be2 + φnnf ) · xs

⇒ φs = (φtxt + be2 + φnnf ) · xs

= φt (xt · xs) + b (e2 · xs) + φn (nf · xs)

= φt (xt · xs) + b (e2 · xs)

(D.9)

as (nf · xs) = 0. Thus,

b =
φs − φt (xt · xs)

(e2 · xs)
. (D.10)

Hence, all of the components of vf are given by equation (D.7) and equation (D.10).

What remains is to apply the boundary condition described by equation (D.1). As the

channel walls are vertical nl = (0, 1, 0) and thus the y component of equation (D.7)

must be set to zero. Thus

(vf )y = (φt(xt)y + b(e2)y + φn(nf )y) = 0 (D.11)

⇒ b(e2)y + φn(nf )y = 0 (D.12)

where ( )y implies the y component of the vector. In order to include equation (D.11)

within the linear system it must be discretised. For this, define a 5 node differencing

scheme such as in figure D.2. Node 1 is the node at which vf is to be evaluated. A

central differencing scheme is applied in the xt direction, but because the node lies at

the surface edge an ‘unbalanced’ differencing scheme must be used in the xs direction.

In figure D.2 nodes 6,7,1,8 and 9 are used in the xt direction and nodes 1,2,3,4 and

5 are used in the xs direction. Thus, the differencing schemes the derivations of φ are
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xt

xs1

2

3

4

5

6

7

8

9

SF

Figure D.2: Five node differentiation scheme for a free surface point coincident to the
channel wall in the s and t parametric directions.

written as

φs|1 =≈ c1φ1 + c2φ2 + c3φ3 + c4φ4 + c5φ5, (D.13)

φt|1 =≈ d6φ6 + d7φ7 + d1φ1 + c8φ8 + c9φ9, (D.14)

where c and d are known coefficients (see Forehand, 1998, appendix D) as are all

the values of φ in equation (D.13) apart from φ1. All of the values of φ on the free

surface/wall boundary are to be corrected and are thus unknowns. Finally, substituting

equations (D.10), (D.13) and (D.14) into equation (D.11) produces

(c1 − (xt · xs) d1)φ1 − (xt · xs) (d6φ6 + d7φ7 + d8φ8 + d9φ9)

+
(nf )y (e2 · xs)

(e2)y
φn,1 = − (c2φ2 + c3φ3 + c4φ4 + c5φ5) . (D.15)

To implement equation (D.15) the explicit enforcement of continuity of φ on the

side wall double node, I2, is relaxed and the equation for this node is replaced by

equation (D.15). The continuity of φ is then re-enforced once the solution is computed.



Appendix E

Transformations of the Coincident

Galerkin Integral

E.1 Application of the First Polar Transformation to the Dis-

tance Vector

The first section of this appendix demonstrates the effect of the polar transformation de-

fined by equations (4.12) and (4.13) on the distance vector R, defined by equation (4.8).

Begin by considering the triangle shape functions, ψl and ψj , as two vectors such that

ψl =



−1
2
s− 1

6
√

3t+
1
2

1
2
s− 1

6
√

3t+
1
2

1
3
√

3t


(E.1)

and

ψj =



−1
2
s∗ − 1

6
√

3t∗ +
1
2

1
2
s∗ − 1

6
√

3t∗ +
1
2

1
3
√

3t∗


. (E.2)
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Now define the three corner points of the triangular element p1,2,3 as

p1 =


x1

y1

z1

 , p2 =


x2

y2

z2

 p3 =


x3

y3

z3

 . (E.3)

The point P lying on element ΣP is given by
∑3

l=1 plψl such that

P (s, t) = 

(
−1

2
s− 1

6
√

3t+
1
2

)
x1 +

(
1
2
s− 1

6
√

3t+
1
2

)
x2 +

(
1
3
√

3t
)
x3(

−1
2
s− 1

6
√

3t+
1
2

)
y1 +

(
1
2
s− 1

6
√

3t+
1
2

)
y2 +

(
1
3
√

3t
)
y3(

−1
2
s− 1

6
√

3t+
1
2

)
z1 +

(
1
2
s− 1

6
√

3t+
1
2

)
z2 +

(
1
3
√

3t
)
z3

 . (E.4)

Also, P + εN becomes

(
−1

2
s− 1

6
√

3t+
1
2

)
x1 +

(
1
2
s− 1

6
√

3t+
1
2

)
x2 +

(
1
3
√

3t
)
x3 + εN1

(
−1

2
s− 1

6
√

3t+
1
2

)
y1 +

(
1
2
s− 1

6
√

3t+
1
2

)
y2 +

(
1
3
√

3t
)
y3 + εN2

(
−1

2
s− 1

6
√

3t+
1
2

)
z1 +

(
1
2
s− 1

6
√

3t+
1
2

)
z2 +

(
1
3
√

3t
)
z3 + εN3


. (E.5)

Similarly, for the point Q,

Q(s∗, t∗) =

(
−1

2
s∗ − 1

6
√

3t∗ +
1
2

)
x1 +

(
1
2
s∗ − 1

6
√

3t∗ +
1
2

)
x2 +

(
1
3
√

3t∗
)
x3(

−1
2
s∗ − 1

6
√

3t∗ +
1
2

)
y1 +

(
1
2
s∗ − 1

6
√

3t∗ +
1
2

)
y2 +

(
1
3
√

3t∗
)
y3(

−1
2
s∗ − 1

6
√

3t∗ +
1
2

)
z1 +

(
1
2
s∗ − 1

6
√

3t∗ +
1
2

)
z2 +

(
1
3
√

3t∗
)
z3

 . (E.6)
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Applying the transformation defined by equations (4.12) and (4.13) to equation (E.6)

and then subtracting equation (E.5), R+ is now given by

R+ = Q− (P + εN) =



(A1 cos(θ) +B1 sin(θ)) ρ− εN1

(A2 cos(θ) +B2 sin(θ)) ρ− εN2

(A3 cos(θ) +B3 sin(θ)) ρ− εN3


(E.7)

where, for convenience, the following quantities are defined as

A1 =
(
−1

2
x1 +

1
2
x2

)
, (E.8)

B1 =
(
−1

6

√
3x1 −

1
6

√
3x2 +

1
3

√
3x3

)
, (E.9)

with A2, A3, B2 and B3 having identical form baring the ‘x’s being exchanged for ‘y’s

and ‘z’s respectively. Equation (E.7) can now be written

R+ =



(A1 cos(θ) +B1 sin(θ)) ρ− εN1

(A2 cos(θ) +B2 sin(θ)) ρ− εN2

(A3 cos(θ) +B3 sin(θ)) ρ− εN3


. (E.10)

Similarly, the alternative limit defined by R− = Q− (P − εN) is given by

R− =



(A1 cos(θ) +B1 sin(θ)) ρ+ εN1

(A2 cos(θ) +B2 sin(θ)) ρ+ εN2

(A3 cos(θ) +B3 sin(θ)) ρ+ εN3


. (E.11)
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This can be further simplified giving

R± =



a1ρ∓ εN1

a2ρ∓ εN2

a3ρ∓ εN3


. (E.12)

The shape function ψj(s∗, t∗) must also be transformed. Applying the transforma-

tion defined by equations (4.12) and (4.13) to equation (E.2), the coefficients take the

form

ψj(s, t, ρ) =



c1,0(s, t) + c1,1(θ)ρ

c2,0(s, t) + c2,1(θ)ρ

c3,0(s, t) + c3,1(θ)ρ


(E.13)

where
c1,0 = −1

2
s− 1

6

√
3t+

1
2
, c1,1 = −1

2
cos(θ) − 1

6

√
3 sin(θ),

c2,0 =
1
2
s− 1

6

√
3t+

1
2
, c2,1 =

1
2

cos(θ) − 1
6

√
3 sin(θ),

c3,0 =
1
3

√
3t, c3,1 =

1
3

√
3 sin(θ).

(E.14)

E.2 Variable Substitution and Second Polar Transformation

This section demonstrates various impacts from the substitution and second polar

transformation demonstrated in Gray et al. (2004a,b). These techniques are initially

demonstrated using the coefficients cj,1 and ak. Restating cj,1, it’s form after the first
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polar transform is

cj,1(θ) =



−1
2 cos(θ) − 1

6

√
3 sin(θ)

1
2 cos(θ) − 1

6

√
3 sin(θ)

1
3

√
3 sin(θ)


. (E.15)

Subsequently, the substitution given by equation (4.24) is performed followed by the po-

lar transformation defined by equation (4.25). The effect of equations (4.24) and (4.25)

on sin(θ) is shown to be

sin(θ) = sin
(
−π

2
+ tan−1

(
τ − s

t

))

= −

(
1 +

(τ − s)2

t2

)− 1
2

= −

(
1 +

((Λ cos(Ψ) + s) − s)2

(Λ sin(Ψ))2

)− 1
2

= −
(

1 +
cos2(Ψ)
sin2(Ψ)

)− 1
2

= − sin(Ψ).

(E.16)

Similarly cos(θ) = cos(Ψ). Thus, equation (E.15) is transformed such that

cj,1(Ψ) =



−1
2 cos(Ψ) + 1

6

√
3 sin(Ψ)

1
2 cos(Ψ) + 1

6

√
3 sin(Ψ)

−1
3

√
3 sin(Ψ)


, (E.17)

and the effect on ak is

ak(θ) = ak(Ψ) = Ak cos(Ψ) −Bk sin(Ψ). (E.18)

maintaining the values of the coefficients defined in section E.1.
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The transformation given by equation (4.25) will impact upon the shape functions

of the P element, ψl. Rewriting equation (E.1) in terms of the new coordinate system

produces

ψl(s,Λ) =


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2
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1
2
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6
√

3Λ sin(Ψ)

1
2
s+

1
2
− 1

6
√
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3Λ sin(Ψ)
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=



k1,0 + k1,1Λ

k2,0 + k2,1Λ

k3,0 + k3,1Λ


. (E.19)

Finally, to demonstrate the effect of the change of variables followed by the trans-

formation on the variables of integration, observe that

d θ
dτ

=
t

t2 + τ2 − 2 τ s+ s2
. (E.20)

Applying the transformation given by equation (4.25) the left hand side will become

Λ sin (Ψ)
Λ2 (sin (Ψ))2 + Λ2 (cos (Ψ))2

=
sin (Ψ)

Λ
. (E.21)

Therefore,

dt dθ =
sin (Ψ)

Λ
dt dτ = sin (Ψ) dΨ dΛ. (E.22)

To allow the limit of ε → 0 in equation (4.41) the substitution and transformation

described by equations (4.24) and (4.25) must be applied once more. The result for cj,0

is as follows:

cj,0(s,Λ) =



−1
2
s+

1
2
− 1

6
√

3Λsin (Ψ)

1
2
s+

1
2
− 1

6
√

3Λsin (Ψ)

1
3

Λsin (Ψ)
√

3
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≡ ψl(s,Λ). (E.23)



Appendix F

Reduction of Coincident Integrals to

One Dimension

This appendix describes the reduction of equations (4.20) and (4.21) and their addi-

tional outer integrals to one dimensional integrals which can be solved numerically.

This is achieved using the technique presented by Gray et al. (2006) which swaps the

last two variables of integration in order a provide an innermost integral which can be

solved analytically.

F.1 Integrals for Equation (4.21)

Equation (4.35) represents the result of equation (4.21), in addition to its outer s and t

integrals, reduced to two integrals and then having the s integration variable swapped

to become innermost. Before beginning to evaluate equation (4.35) the the effect on the

limits of Ψ on splitting to integration domain at s = 0 must be considered. In addition,

the domain of integration (derived in appendix E) must be transformed. Thus, when

s > 0 observe that

Ψ1 = tan−1

(√
3 (1 − |s|)
1 − s

)
= tan−1

(√
3 (1 − s)
1 − s

)
= tan−1

(√
3
)

=
π

3
.

(F.1)

Similarly when s < 0,

Ψ2 =
2π
3
. (F.2)
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Thus, with s > 0 the domain of integration is

0 < Ψ < π/3; ΛL = (1 − s)/ cos(Ψ),

π/3 < Ψ < Ψs; ΛL =
√

3(1 − s)/ sin(Ψ),

Ψs < Ψ < π; ΛL = −(1 + s)/ cos(Ψ),

(F.3)

where

Ψs = π − tan−1

(√
3 (1 − s)
1 + s

)
. (F.4)

When s < 0 the domain of integration is

0 < Ψ < Ψs; ΛL = (1 − s)/ cos(Ψ),

Ψs < Ψ < 2π/3; ΛL =
√

3(1 − s)/ sin(Ψ),

2π/3 < Ψ < π; ΛL = −(1 + s)/ cos(Ψ),

(F.5)

where

Ψs = tan−1

(√
3 (1 + s)
1 − s

)
. (F.6)

Considering each triangle in turn, the effect of the resulting integration on each

coefficient is analysed. Thus, for the triangle defined by 0 < Ψ < Ψ1 when s < 0 it

follows that ∫ 0

−1
ds

∫
0
Ψ1dΨ =

∫ π/3

0
dΨ
∫ 0

α
ds, (F.7)

where α is defined by equation (4.36).

Starting with the coefficient k1,0, applying the new limits of integration to each

kernel produces

∫ 0

α
Λ1k1,0 ds =

∫ 0

α

(
1 − s

cos(Ψ)

)(
−1

2
s+

1
2

)
ds

=
∫ 0

α

1
2

(s− 1)2

cos (Ψ)
ds

=

[
1
6

(s− 1)3

cos (Ψ)

]0

α

= −1
6
β3 + 3β2 + 3β − 7

(β + 1)3 cos (Ψ)
.

(F.8)
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Similarly, the result for k2,0 is

∫ 0

α
Λ1k2,0 ds =

∫ 0

α

(
1 − s

cos(Ψ)

)(
1
2
s+

1
2

)
ds

=
∫ 0

α
−1

2
−1 + s2

cos (Ψ)
ds

=

[
1
6
− 1

6
s
(
−3 + s2

)
cos (Ψ)

]0

α

= −1
3

(β − 1)
(
β2 + 4β + 1

)
(β + 1)3 cos (ψ)

.

(F.9)

To illustrate that the results of equation (F.8) and equation (F.9) are non-singular

over the domain of the first triangle, the function f(Ψ) = (1 + β)3 cos (Ψ) is plotted

over the range of the first triangle (0 < Ψ < π/3) in figure F.1. It can be seen that the

equations will have no singularities over the given range of Ψ.

Figure F.1: f(Ψ) = cos(Ψ)
(
1 + 3−1/2 tan Ψ

)3 ∀ 0 < Ψ < π/3.
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Moving on, k3,0 is zero so now consider k1,1, the result being

∫ 0

α
Λ2

1k1,1 ds =
∫ 0

α

(
1 − s

cos(Ψ)

)2(
−1

6

√
3 sin(Ψ)

)
ds

=
∫ 0

α
−1

6
(−1 + η)2

√
3 sin (Ψ)

(cos (Ψ))2
ds

=

[
− 1

18
(−1 + η)3

√
3 sin (Ψ)

(cos (Ψ))2

]0

α

=
1
18

√
3 sin (Ψ)

(
β3 + 3β2 + 3β − 7

)
(β + 1)3 (cos (Ψ))2

.

(F.10)

The above result is identical for k2,1.

The outcome for k3,1 is

∫ 0

α
Λ2

1k3,1 ds =
∫ 0

α

(
1 − s

cos(Ψ)

)2(1
3

√
3 sin(Ψ)

)
ds

=
∫ 0

α

1
3

(−1 + η)2
√

3 sin (Ψ)
(cos (Ψ))2

ds

=

[
1
9

(−1 + η)3
√

3 sin (Ψ)
(cos (Ψ))2

]0

α

= −1
9

√
3 sin (Ψ)

(
β3 + 3β2 + 3β − 7

)
(β + 1)3 (cos (Ψ))2

.

(F.11)

As can be seen from figure F.2 the denominators of the result of equations (F.10)

and (F.11) will not be singular over the range of the first triangle. Thus, the integration

over first triangle for s < 0 is now reduced to a single integral in Ψ. Now consider the

domain of the first triangle with s > 0.

As can be seen from figure 4.4(b) the reordering of integration is

∫ 1

0
ds

∫ π/3

0
dΨ =

∫ π/3

0
dΨ
∫ 1

0
ds. (F.12)

Similar calculations to those for s < 0 must now be completed for s > 0. The results

of k1,0 and k2,0 integrations are

∫ 1

0
Λ1k1,0 ds =

∫ 1

0

1
2

(s− 1)2

cos (Ψ)
ds

=
1

6 cos(Ψ)
,

(F.13)



F.1. Integrals for Equation (4.21) 230

Figure F.2: f(Ψ) = cos2(Ψ)
(
1 + 3−1/2 tanΨ

)3 ∀ 0 < Ψ < π/3.

∫ 1

0
Λ1k2,0 ds =

∫ 1

0
−1

2
−1 + s2

cos (Ψ)
ds

=
1

3 cos(Ψ)
.

(F.14)

As cos(Ψ) is positive over 0 < Ψ < π/3 equations (F.13) and (F.14) exhibit no

singularities.

Moving on to the k1,1 and k3,1 terms (recalling that k3,0 is zero and that k2,1 is

identical to k1,1) the results are

∫ 1

0
Λ2

1k1,1 ds =
∫ 1

0
−1

6
(−1 + η)2

√
3 sin (Ψ)

(cos (Ψ))2
ds

= − 1
18

√
3 sin (Ψ)

(cos (Ψ))2
,

(F.15)

∫ 1

0
Λ2

1k3,1 ds =
∫ 1

0

1
3

(−1 + η)2
√

3 sin (Ψ)
(cos (Ψ))2

ds

=
1
9

√
3 sin (Ψ)

(cos (Ψ))2
.

(F.16)

Once more, the denominators of the results of equations (F.15) and (F.16) are non zero

over the range 0 < Ψ < π/3.

The integral over the domain of the second triangle can now be analysed. Note

that from figure 4.4(b) both s < 0 and s > 0 require that the domain be split into two.
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Starting with the s < 0 case, the reordering of integration produces

∫ 0

−1
ds

∫ 2π/3

Ψ1

dΨ =
∫ π/3

0
dΨ
∫ α

−1
ds+

∫ 2π/3

π/3
dΨ
∫ 0

−1
ds. (F.17)

Beginning with the first part, examine the results for each coefficient. Looking at

k1,0 and k2,0, the results are:

∫ α

−1
Λ2k1,0 ds =

∫ α

−1
−1

2

√
3
(
−1 + s2

)
sin (Ψ)

ds

=
2
3

√
3β2 (β + 3)

(β + 1)3 sin (Ψ)
,

(F.18)

∫ α

−1
Λ2k2,0 ds =

∫ α

−1

1
2

√
3 (1 + s)2

sin (Ψ)
ds

=
4
3

√
3β3

(β + 1)3 sin (Ψ)
.

(F.19)

Now examining the k1,1 and k3,1 terms observe that

∫ α

−1
Λ2

2k1,1 ds =
∫ α

−1
−1

2
(1 + s)2

√
3

sin (Ψ)
ds

= −4
3

β3
√

3
(β + 1)3 sin (Ψ)

,

(F.20)

∫ α

−1
Λ2

2k3,1 ds =
∫ α

−1

(1 + s)2
√

3
sin (Ψ)

ds

=
8
3

β3
√

3
(β + 1)3 sin (Ψ)

.

(F.21)

The sin(Ψ) in the denominators of equations (F.18), (F.19), (F.20) and (F.21) can be

cancelled by the loose sin(Ψ) in the outer integrand of equation (4.35). The remaining

denominator is plotted in figure F.3, over the range 0 < Ψ < π/3, and it can be seen

that the resulting integrals will not produce singularities in the remaining Ψ integration.

The second part of the integration for triangle two is over the range −1 < s < 0.

The results for k1,0 and k2,0 are

∫ 0

−1
Λ2k1,0 ds =

∫ 0

−1
−1

2

√
3
(
−1 + s2

)
sin (Ψ)

ds

=
1
3

√
3

sin (Ψ)
,

(F.22)



F.1. Integrals for Equation (4.21) 232

Figure F.3: f(Ψ) =
(
1 + 3−1/2 tan (Ψ)

)3 ∀ 0 < Ψ < π/3.

∫ 0

−1
Λ2k2,0 ds =

∫ 0

−1

1
2

√
3 (1 + s)2

sin (Ψ)
ds

=
1
6

√
3

sin (Ψ)
.

(F.23)

Now examining the k1,1 and k3,1 terms observe that

∫ 0

−1
Λ2

2k1,1 ds =
∫ 0

−1
−1

2
(1 + s)2

√
3

sin (Ψ)
ds

= −1
6

√
3

sin (Ψ)
,

(F.24)

∫ 0

−1
Λ2

2k3,1 ds =
∫ 0

−1

(1 + s)2
√

3
sin (Ψ)

ds

=
1
3

√
3

sin (Ψ)
.

(F.25)

For equations (F.22)–(F.25) the sin(Ψ) in the denominator will simply cancel with

the loose sin(Ψ) indicating that there will be no singularities from these equations.

Moving onto the s > 0 part of the second triangle the reordering of the integration

produces ∫ 1

0
ds

∫ 2π/3

Ψ1

dΨ =
∫ 2π/3

π/3
dΨ
∫ 1

0
ds+

∫ π

2π/3
dΨ
∫ 1

α
ds. (F.26)
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The results of the k1,0 and k2,0 integrations for 0 < s < 1 are

∫ 1

0
Λ2k1,0 ds =

∫ 1

0

1
2

√
3 (−1 + s)2

sin (Ψ)
ds

=
1
3

√
3

sin (Ψ)
,

(F.27)

∫ 1

0
Λ2k2,0 ds =

∫ 1

0
−1

2

√
3
(
−1 + s2

)
sin (Ψ)

ds

=
1
3

√
3

sin (Ψ)
.

(F.28)

Moving on to the k1,1 and k3,1 terms (recalling that k3,0 is zero and that k2,1 is

identical to k1,1) the results are

∫ 1

0
Λ2

2k1,1 ds =
∫ 1

0
−1

2
(−1 + s)2

√
3

sin (Ψ)
ds

= −1
6

√
3

sin (Ψ)
,

(F.29)

∫ 1

0
Λ2

2k3,1 ds =
∫ 1

0

(−1 + s)2
√

3
sin (Ψ)

ds

=
1
3

√
3

sin (Ψ)
.

(F.30)

Similarly, the sin(Ψ) in the denominators of equations (F.27)–(F.34) will cause no

difficulties.

Thus, it remains to show the results for the integrals over the range, α ≤ s < 1.

Note that for s > 0, α is now provided by equation (4.37). Subsequently, the results

for k1,0 and k2,0 are

∫ 1

α
Λ2k1,0 ds =

∫ 1

α

1
2

√
3 (−1 + s)2

sin (Ψ)
ds

=
4
3

√
3β3

(β − 1)3 sin (Ψ)
,

(F.31)

∫ 1

α
Λ2k2,0 ds =

∫ 1

α
−1

2

√
3
(
−1 + s2

)
sin (Ψ)

ds

=
2
3

√
3β2 (β − 3)

(β − 1)3 sin (Ψ)
.

(F.32)
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Executing the analytical integration for the k1,1 and k3,1 terms then produces

∫ 1

α
Λ2

2k1,1 ds =
∫ 1

α
−1

2
(−1 + s)2

√
3

sin (Ψ)
ds

= −4
3

β3
√

3
(β − 1)3 sin (Ψ)

,

(F.33)

∫ 1

α
Λ2

2k3,1 ds =
∫ 1

α

(−1 + s)2
√

3
sin (Ψ)

ds

=
8
3

β3
√

3
(β − 1)3 sin (Ψ)

.

(F.34)

Once again the sin(Ψ) in the denominator of equations (F.31)–(F.34) can be can-

celled. Figure F.4 shows the graph of the remaining denominator plotted over the range

2π/3 < Ψ < π. It can be seen to be non-zero over this range and therefore causes no

difficulties in the subsequent Ψ integration.

Figure F.4: f(Ψ) =
(
3−1/2 tan (Ψ) − 1

)3 ∀ 2π/3 < Ψ < π.

For the third and final triangle the required reordering for s < 0 is

∫ 0

−1
ds

∫ π

2π/3
dΨ =

∫ π

2π/3
dΨ
∫ 0

−1
ds. (F.35)

Executing the integration for triangle three, over the range −1 < s < 0, the results
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for k1,0 and k2,0 are

∫ 0

−1
Λ3k1,0 ds =

∫ 0

−1

1
2
−1 + s2

cos (Ψ)
ds

= −1
3

(cos (Ψ))−1 ,

(F.36)

∫ 0

−1
Λ3k2,0 ds =

∫ 0

−1
−1

2
(1 + s)2

cos (Ψ)
ds

= −1
6

(cos (Ψ))−1 .

(F.37)

Now examining the k1,1 and k3,1 terms observe that

∫ 0

−1
Λ2

3k1,1 ds =
∫ 0

−1
−1

6
(1 + s)2

√
3 sin (Ψ)

(cos (Ψ))2
ds

= − 1
18

√
3 sin (Ψ)

(cos (Ψ))2
,

(F.38)

∫ 0

−1
Λ2

3k3,1 ds =
∫ 0

−1

1
3

(1 + s)2
√

3 sin (Ψ)
(cos (Ψ))2

ds

=
1
9

√
3 sin (Ψ)

(cos (Ψ))2
.

(F.39)

As cos(Ψ) is never zero over 2π/3 < Ψ < π the above results cause no problems in the

subsequent numerical integration.

For the s > 0 part of the third triangle the reordering is given by

∫ 1

0
ds

∫ π

π−Ψ2
dΨ =

∫ π

2π/3
dΨ
∫ α

0
ds. (F.40)

The integrations over the range 0 < s ≤ α are now calculated. For k1,0 and k2,0,∫ α

0
Λ3k1,0 ds =

∫ α

0

1
2
−1 + s2

cos (Ψ)
ds

=
1
3

(β + 1)
(
β2 − 4β + 1

)
(β − 1)3 cos (Ψ)

,

(F.41)

∫ α

0
Λ3k2,0 ds =

∫ α

0
−1

2
(1 + s)2

cos (Ψ)
ds

=
1
6

7 + β3 − 3β2 + 3β
(β − 1)3 cos (Ψ)

.

(F.42)
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For the k1,1 and k3,1 terms,

∫ 1

α
Λ2

3k1,1 ds =
∫ 1

α
−1

6
(1 + s)2

√
3 sin (Ψ)

(cos (Ψ))2
ds

=
1
18

√
3 sin (Ψ)

(
7 + β3 − 3β2 + 3β

)
(β − 1)3 (cos (Ψ))2

,

(F.43)

∫ 1

α
Λ2

3k3,1 ds =
∫ 1

α

1
3

(1 + s)2
√

3 sin (Ψ)
(cos (Ψ))2

ds

= −1
9

√
3 sin (Ψ)

(
7 + β3 − 3β2 + 3β

)
(β − 1)3 (cos (Ψ))2

.

(F.44)

The graph of the denominator of equations (F.41) and (F.42) over the range 2π/3 <

Ψ < π is illustrated in figure F.5. For equations (F.43) and (F.44) the graph of the

denominator is illustrated in figure F.6. From both graphs it can be seen that the

results from the above equations do not generate new singularities within the numerical

integration.

Figure F.5: f(Ψ) =
(
3−1/2 tan (Ψ) − 1

)3 ∀ 2π/3 < Ψ < π.
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Figure F.6: f(Ψ) =
(
3−1/2 tan (Ψ) − 1

)3 ∀ 2π/3 < Ψ < π.

F.2 Integrals for Equation (4.20)

Equation (4.48) is the result of the analytical integration of equation (4.20). To reduce

the integral to one dimensional integrals which can be numerically integrated, the

reordering of integration variables and final analytical integration is carried out in a

similar manner to the previous section. The reordering is started, once again, with the

first triangle of the three formed by the second polar transformation for which Ψ has

the range 0 < Ψ < Ψ1. It is necessary to split the integral into s < 0 and s > 0 parts,

respectively. Thus for s < 0 the reordering is described by equation (F.7). To examine

the effect of this reordering on k2
k,0 observe that just two terms need be considered:

K1 = k2
1,0 =

1
4

(1 − s)2 ,

K2 = k2
2,0 =

1
4

(1 + s)2 .
(F.45)

Consequently, the evaluated integrals are

∫ 0

α
K1 ds =

∫ 0

α

1
4

(1 − s)2 ds

=
[
− 1

12
(1 − s)3

]0

α

= − 1
12

−7 + 3β + 3β2 + β3

(1 + β)3
,

(F.46)
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and ∫ 0

α
K2 ds =

∫ 0

α

1
4

(1 + s)2 ds

=
[

1
12

(1 + s)3
]0

α

= − 1
12

−1 − 3β − 3β2 + 7β3

(1 + β)3
.

(F.47)

For the first triangle with s > 0 the reordering is given by equation (F.12). The results

for this reordering are

∫ 1

0
K1 ds =

[
− 1

12
(1 − s)3

]1

0

=
1
12

, (F.48)∫ 1

0
K2 ds =

[
1
12

(1 + s)3
]1

0

=
7
12

. (F.49)

The reordering for the second triangle with s < 0 is given by equation (F.17). The

results for the first −1 < s ≤ α part are∫ α

−1
K1 ds =

[
− 1

12
(1 − s)3

]α

−1

=
2
3
β
(
3 + 3β + β2

)
(1 + β)3

,

(F.50)

and ∫ α

−1
K2 ds =

[
1
12

(1 + s)3
]α

−1

=
2
3

β3

(1 + β)3
.

(F.51)

The results for the second part are

∫ 0

−1
K1 ds =

[
− 1

12
(1 − s)3

]0

−1

=
7
12

, (F.52)∫ 0

−1
K2 ds =

[
1
12

(1 + s)3
]0

−1

=
1
12

. (F.53)

With s > 0 for the second triangle, the required reordering is given by equa-

tion (F.26), being careful to note that α must be redefined at this stage. The 0 <

s < 1 integrals have already been evaluated. The results for the first part of this
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rearrangement are

∫ 1

α
K1 ds =

[
− 1

12
(1 − s)3

]1

α

=
2
3

β3

(β − 1)3
,

(F.54)

and ∫ 1

α
K2 ds =

[
1
12

(1 + s)3
]1

α

=
2
3
β
(
β2 − 3β + 3

)
(β − 1)3

.

(F.55)

Finally, for the third triangle when s < 0 the reordering is given by equation (F.35)

and for s > 0, it is given by equation (F.40). The integrals for −1 < s < 0 are already

known so all that remains is to evaluate the integrals for 0 < s ≤ α. The results are∫ α

0
K1 ds =

[
− 1

12
(1 − s)3

]α

0

= − 1
12

7β3 + 3β2 − 3β + 1
(β − 1)3

,

(F.56)

and ∫ α

0
K2 ds =

[
1
12

(1 + s)3
]α

0

= − 1
12

7 + β3 − 3β2 + 3β
(β − 1)3

.

(F.57)

The preceding equations, along with those listed in section F.1 complete the coin-

cident integration. All remaining integrals are one dimensional and calculated numeri-

cally.



Appendix G

Transformations for the Edge

Adjacent Galerkin Integral

G.1 Application of the First Polar Transform to the Distance

Vector

The domain for the first polar transformation of the edge adjacent integral is illustrated

in figure 4.5; the vector Q remains unchanged from equation (E.6), however, the P

vector is now rewritten as

P (s, t) = 

(
−1

2
s− 1

6
√

3t+
1
2

)
x2 +

(
1
2
s− 1

6
√

3t+
1
2

)
x1 +

(
1
3
√

3t
)
x4(

−1
2
s− 1

6
√

3t+
1
2

)
y2 +

(
1
2
s− 1

6
√

3t+
1
2

)
y1 +

(
1
3
√

3t
)
y4(

−1
2
s− 1

6
√

3t+
1
2

)
z2 +

(
1
2
s− 1

6
√

3t+
1
2

)
z1 +

(
1
3
√

3t
)
z4

 . (G.1)

The Q vector must now be transformed into the (s, t) parameter space. To achieve

this, the polar transformation described by equation (4.49) is applied. Some manipu-

240
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lation shows that

R± =



(C1 cos(θ) +D1 sin(θ)) ρ+ E1t∓ εN1

(C2 cos(θ) +D2 sin(θ)) ρ+ E2t∓ εN2

(C3 cos(θ) +D3 sin(θ)) ρ+ E3t∓ εN3


, (G.2)

where

C1 =
1
2

(x2 − x1) , D1 =
1
6

√
3 (−x1 − x2 + 2x3) , (G.3)

and

E1 =
1
6

√
3 (x2 − 2x4 + x1) . (G.4)

Similar results hold for C2, D2, E2, C3, D3 and E3, by replacing the ‘x’s with ‘y’s and

‘z’s respectively.

It follows from equation (G.2) that the form of r2 is different dependent on whether

the internal or external limit is taken. For R− the result is

r2− = ε2 + 2
(
N · R0

)
ε+ b01(θ)ρ2 + b11(θ)ρt+ b10t

2 (G.5)

where

N · R0 = b20(θ)ρ+ b02t. (G.6)

and R0 = Q− P or, otherwise, R± with ε set to zero. The coefficients are

b01 =
(
C2

1 + C2
2 + C2

3

)
cos2(θ) + 2 (C1D1 + C2D2 + C3D3) cos(θ) sin(θ)+(

D2
1 +D2

2 +D2
3

)
sin2(θ),

b11 = 2 [(C1E1 + C2E2 + C3E3) cos(θ) + (D1E1 +D2E2 +D3E3) sin(θ)] ,

b10 = E2
1 + E2

2 + E2
3 ,

b20 = (N1C1 +N2C2 +N3C3) cos(θ) + (N1D1 +N2D2 +N3D3) sin(θ),

b02 =N1E1 +N2E2 +N3E3.

(G.7)
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Similarly, the result for r2+ is

r2+ = ε2 − 2
(
N · R0

)
ε+ b01(θ)ρ2 + b11(θ)ρt+ b10t

2. (G.8)

G.2 Application of the Second Polar Transform to the

Shape Functions and Distance Vector

The influence of the two transformations on the shape functions is as follows. For ψj

the result is

ψj(s, θ, ψ,Λ) =



c1,0(s) + c1,1(θ, ψ)Λ

c2,0(s) + c2,1(θ, ψ)Λ

c3,0(s) + c3,1(θ, ψ)Λ


, (G.9)

where

c1,0 =
1
2

+
1
2
s, c1,1 = −1

2
cos(Ψ) cos(θ) − 1

6

√
3 cos(Ψ) sin(θ),

c2,0 =
1
2
− 1

2
s, c2,1 =

1
2

cos(Ψ) cos(θ) − 1
6

√
3 cos(Ψ) sin(θ),

c3,0 = 0, c3,1 =
1
3

√
3 cos(Ψ) sin(θ),

(G.10)

and for ψl,

ψl(s, ψ,Λ) =



k1,0(s) + k1,1(ψ)Λ

k2,0(s) + k2,1(ψ)Λ

k3,0(s) + k3,1(ψ)Λ


, (G.11)

where
k1,0 =

1
2

+
1
2
s, k1,1 = −1

6

√
3 sin(Ψ),

k2,0 =
1
2
− 1

2
s, k2,1 = −1

6

√
3 sin(Ψ),

k3,0 = 0, k3,1 =
1
3

√
3 sin(Ψ).

(G.12)
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Subject to the second polar transformation, R± now has the form

R± =



((C1 cos (θ) +D1 sin (θ)) cos (Ψ) + E1 sin (Ψ)) Λ ∓ εN1

((C2 cos (θ) +D2 sin (θ)) cos (Ψ) + E2 sin (Ψ)) Λ ∓ εN2

((C3 cos (θ) +D3 sin (θ)) cos (Ψ) + E3 sin (Ψ)) Λ ∓ εN3



=



d1(θ,Ψ)Λ ∓ εN1

d2(θ,Ψ)Λ ∓ εN2

d3(θ,Ψ)Λ ∓ εN3


.

(G.13)



Appendix H

Collocation Method at the

Wake Edges

A collocation based gradient method is formulated in Gray et al. (2004b, sec. 5).

In that paper it is proved that the method, although applicable to a general Laplace

problem, is not applicable to the crack problem. The difficulty arises from an additional

constant in the shape functions for the most singular point. However, the zero value of

[φ] here will be shown to render this problem void. This method was also considered for

use in order to truncate the Galerkin method, however after discussions with Professor

Gray, it was theorised that it would still produce a singular result at the wake edges.

Nevertheless, the derivation of the equations for the crack with zero [φ] at the edges is

presented here.

The development of the collocation method is very similar to that of the edge

adjacent integral, expect that only one polar transformation is available. To begin,

consider the domain in figure H.1. Note that the normal, n, to the element ΣQ,

containing Q, is pointing into the external domain and that the calculated normal

at point P , denoted as L, may not be that same as n. In the parameter space, the

same triangular linear element in used, with shape functions defined by equation (3.56).

The point P is positioned at s∗ = −1, t∗ = 0 denoted p1.

Using the collocation method, a direct solution to equation (2.74) is sought. Addi-

tionally, the degree of singularity can be reduced if the difference between the internal

and external limits are taken as illustrated by equation (2.80). The effect of differencing

the limits is that only the singular panels contribute to solution. To apply this analysis

to the wake, φ and φn can be exchanged with [φ] and [φn]. Once applied to the wake
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Figure H.1: Domain for collocation method in Cartesian and parameterised space.

problem, the [φn] term will vanish. Thus, for the domain in figure H.1 the solution for

hypersingular integral of φ for the highlighted singular panel is demonstrated.

In the parameterised space, the governing equation to be solved is

∂φ(P )
∂Ek

∣∣∣∣
ΣQ

= − 1
4π

3∑
j=1

φ(Qj)
∫ 1

−1

∫ √
3(1−|s∗|)

0
ψj(s∗, t∗)JQ

∂2G

∂Ek∂n
dt∗ ds∗. (H.1)

The parameterised vector for the point Q is identical to equation (E.6). (s∗, t∗) is

transformed with a polar transformation centred about (−1, 0), defined by

s∗ = ρ cos(θ) − 1,

t∗ = ρ sin(θ),
(H.2)

where 0 ≤ ρ ≤ QR, 0 ≤ θ ≤ π/3. The resulting polar scheme is illustrated in figure H.1

Following the transformation, the distance vector R± = Q− (P ± εL) is

(A1 cos(θ) +B1 sin(θ)) ρ∓ εL1

(A2 cos(θ) +B2 sin(θ)) ρ∓ εL2

(A3 cos(θ) +B3 sin(θ)) ρ∓ εL3


=



a1ρ∓ εL1

a2ρ∓ εL2

a3ρ∓ εL3


, (H.3)

where Ak, Bk (k = 1, 2, 3) are defined using equations (E.8) and (E.9). Subsequently,

r2± = a2ρ2 ∓ b1ρε+ ε2, (H.4)
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where a2 = a2
1 + a2

2 + a2
3 and b1 = 2

∑3
n=1 Lnan.

Under the transformation defined in equation (H.2) the shape functions become

ψj(ρ, θ) =



1 − 1
2
√

3
ρ
(√

3 cos(θ) + sin(θ)
)

1
2
√

3
ρ
(√

3 cos(θ) − sin(θ)
)

ρ
sin(θ)√

3


=



1 + c1ρ

c2ρ

c3ρ


. (H.5)

Subsequently, there are two types of integral to be solved. These have the form

−
JQ

4π

∫ π/3

0

∫ QR

0
ρα ∂2G

∂Ek∂n
(P,Q) dρ dθ, (H.6)

where α = 1 for the first term of ψ1 and α = 2 for the second term of ψ1 together with

ψ2 and ψ3.

Equation (4.7) describes the kernel of equation (H.6). For this particular case,

n · Ek = nk and
n · R± = ∓(n · L)ε,

Ek · R± = akρ∓ Lkε.
(H.7)

For α = 2 the internal limit is

−
JQcj
4π

∫ π/3

0

∫ QR

0
ρ2

(
nk

r3−
− 3

(n · L)ε (akρ+ Lkε)
r5−

)
dρ dθ (H.8)

and for the external limit,

−
JQcj
4π

∫ π/3

0

∫ QR

0
ρ2

(
nk

r3+
+ 3

(n · L)ε (akρ− Lkε)
r5+

)
dρ dθ. (H.9)

The difference in external and internal limits is now taken between equations (H.8)

and (H.9) and then integrated. This results in

− Jqcj
4πa2

(
32a2(n · L)(Lkb1 − 2ak)(

4a2 − b21
)2 − 4nkb1(

4a2 − b21
) +

nk

a
ln
(
−b1 + 2a
b1 + 2a

))
. (H.10)

Subsequently, the outer integral for equation (H.10) can be numerically integrated
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to give the result for j = 2, 3. For the value at j = 1, the α = 1 case for equation (H.6)

must be evaluated. As stated in Gray et al. (2004b, pg. 306), the result in this case is

not forthcoming. Fortunately, as mentioned previously, the j = 1 case also corresponds

to a wake edge node where, once calculating for [φ], the value will be zero. Hence, this

case is of no consequence.
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