
 
Scanned as part of the PhD Thesis Digitisation project 
http://libraryblogs.is.ed.ac.uk/phddigitisation 

 

 

 

 

Title Derivation and characterisation of a conditionally immortal mouse mammary 
epithelial cell line using a transgenic approach 

Author Gordon, Katrina Ellen. 

Qualification PhD 

 

Year 1997 

 

 

Thesis scanned from best copy available: may 

contain faint or blurred text, and/or cropped or 

missing pages. 

 

 
Digitisation Notes: 
 

• Page 66 missing from original  

• Page 76 missing from original  

• Page 153 missing from original  
 

 

http://libraryblogs.is.ed.ac.uk/phddigitisation


THE DERIVATION AND CHARACTERISATION OF A 
CONDITIONALLY IMMORTAL MOUSE MAMMARY 
EPITHELIAL CELL LINE USING A TRANSGENIC

APPROACH

KATRINA ELLEN GORDON

PhD
University of Dundee 

1 9 9 7





umii------------ _  CONTENTS

A cknow ledgem ents ..................................................................................................................VII

D eclaration ............................................................................................................................... VIH

Abstract........................................................................................................................   IX

List o f  diagram s ................................   X

List o f  tables.........................................................   XI

List o f  graphs ..............................................................................................................................X3I

List o f  fig u res ............................................................................................................................XHI

Abbreviations ............................................................................................................................ XVI

CHAPTER 1 - INTRODUCTION

1.1 M A M M A R Y  G L A N D  D E V E L O P M E N T

1.1.1 Embryonic development 2

1.1.2 Postnatal development of the mammary ductal system 3

1.1.3 Structural and functional changes during pregnancy 4

1.1.4 Milk protein gene expression during pregnancy and lactation 6

1.1.4.1 C ase in s  6

1 .1 .4 .2  Whey proteins 8

1.1.4.3 Expression profile of milk protein genes during 9 
pregnancy and lactation

1.1.5 Remodelling and regression of the gland after weaning 11

1.1.6 Mammary stem cells and lineage-specific markers 11

1.2 IN VITRO M A M M A R Y  M O D E L  S Y S T E M S

1.2.1 Whole organ and explant cultures 14

1.2.2 Co-cultures of mammary epithelial cells with stromal cells 15

1.2.3 M am m ary epithelial cell-enriched primary cultures 17



1.2.3.1 The role of epithelia-substrata interactions in 18
determining the extent of epithelial 
differentiation

1.2.4 Spontaneously immortalised mouse mammary epithelial cell 23 
lines

1.3 IN VIVO MAMMARY MODEL SYSTEMS

1.3.1 Transgenic mice 26

1.3.2 Cleared fat pad 31

1.4 THE DEVELOPMENT OF CONDITIONALLY IMMORTAL 
MOUSE MAMMARY MODEL SYSTEMS

1.4.1 Structure and function of wild type SV40 T-antigen and a 37
thermolabile mutant tsA58

1.4.2 Introducing immortalising genes into mammary cells 41

1.4.2.1 Nonviral-mediated transfection methods 41

1 .4 .2 .2  Viral-mediated gene transfer 42

1.4.3 Transgenesis 43

1.5 AIMS OF THE PROJECT 44

CHAPTER 2 - MATERIALS AND METHODS

2.1 D N A  M ANIPULATION

2.1.1 Restriction digestion of plasmid DNA 46

2.1.2 Isolation of DNA fragments from agarose gels 46

2.1.3 Filling in reaction 47

2.1.4 Ligation reactions 47

2.1.5 Transformation of competent cells with plasmid DNA 48

2.1.6 Preparation of agar plates

2.1 .6 .1  Antibiotic plates 48

2 .1 .6 .2  Blue/white colour selection 48

2.1.7 Small-scale preparation of plasmid DNA 49

2.1.8 Large-scale preparation of plasmid DNA 49



2.9.3 Freezing and resuscitation of KIM-2 cells 64

2.9.4 Induction of differentiation in KIM-2 cells 64

2.9.5 Transfection of KIM-2 cells

2 .9 .5 .1  Lipofectamine 65

2.9.5.2 T fx -5 0  66

2 .9 .5 .3  Calcium phosphate 66

2 .9 .5 .4  Strontifect 67

2.10 p-G A LA C TO SID A SE STAINING OF TRANSFECTED KIM -2 67  
CELLS

2.11 PROTEIN ISOLATIO N A N D  ANALYSIS

2.11.1 Extraction of protein from tissue culture cells ■ 68

2.11.2 Preparation of nuclear protein extracts from tissue and 68 
cultured cells

2.11.3 Estimation of protein concentration 70

2.11.4 Western blotting 71

2.11.5 Electrophoretic mobility shift assays (EMSA) 71

2.12 IM M UNOHISTOCHEM ISTRY

2.12.1 Preparation of mammary tissue for paraffin sectioning 72

2.12.2 Histological staining of mammary sections 72

2.12.3 Immunohistochemical staining of mammary sections 72

2.12.4 Immunofluorescent staining of KIM-2 cells 73

2.12.5 Normal/ultraviolet microscopy 73

CHAPTER 3 - TRANSGENIC MICE CARRYING A 
THERMOLABILE T-ANTIGEN DRIVEN BY THE (3- 
LACTOGLOBULIN PROMOTER: GENERATION AND
ANALYSIS

3.1 INTRODUCTION

3.2 R ESU LTS

3.2.1 Construction of BLG-tsA58 transgene

76

78



3.2.2 Analysis of founders and the establishment of transgenic 84 
lines of mice

3.2.3 Ectopic expression of the transgene in the founder mice 84

3.2.4 Analysis of the transgene in the surviving lines of mice 86

3 .2 .4 .1  Transgene copy number 86

3 .2 .4 .2  Ectopic expression 89

3 .2 .4 .3  Transgene expression in the mammary gland 93

3.3 DISCUSSIO N 96

CHAPTER 4 - THE ISOLATION OF MOUSE  
MAMMARY EPITHELIAL CELL ENRICHED  
C U LTU R ES D ER IV E D  FROM  E X PL A N T  
OUTGROWTHS

4.1 INTRODUCTION 100

4.2 RESULTS

4.2.1 Establishment and growth of explant cultures 101

4.2.2 Morphological differences in primary cultures derived from the 103 
different transgenic lines

4.3 DISCUSSIO N 110

CHAPTER 5-CH ARACTERISATION OF A M OUSE  
MAMMARY CELL LINE (KIM-2) ISOLATED AT 37°C

5.1 INTRODUCTION 113

5.2 RESULTS

5.2.1 Expression of specific cell type markersin KIM-2 cells 114

5.2.2 Mesenchymal-epithelial cell transition triggered by a 114
temperature switch: Immunohistochemical analysis

5.2.3 Expression of differentiation markers in KIM-2 cells 117

5.2.3.1 Comparison of expression levels of |3-casein protein 121
in cultures grown on plastic and typel collagen

5.2.3.2 Comparison of the levels of (J—casein expression 121 
in KIM-2 cells and the HC11 clonal cell line

5 .2 .3 .3  Phenotypic stability of the differentiation 121 
phenotype in KIM-2 cultures



vn
"ACK NO W LEDG EM ENTS

I would like to thank Dr. Christine Watson for her guidance, encouragement and 

friendship throughout this project.

I am indebted to Dr. Bert Binas for sharing his expertise in explant culturing with me, 

which was instrumental to the success of this project.

I thank Dr. Tom Burdon for his advice on those days when nothing seemed to be going 

right and for bravely proof reading this.

I thank Roberta Wallace for microinjection. Carrie Batty and Frances Thomson for the 

care and attention they gave my lines of mice.

I am grateful to the molecular biology department at Roslin in particular:

Dr. Bruce Whitelaw and John Webster for supplying me with the initial BLG construct. 

Ray Ansell for her helpful advice when I was still learning tissue culture techniques.

Janie Fenty for her encouragement and her endless supply of clean glassware.

The photographic services, Norrie Russell, Elliot Armstrong and Roddy Field were 

greatly appreciated.

I thank my university supervisor Prof. Birgitte Lane and the CRC labs for making my 

time there very enjoyable. Special thanks go to Declan Lunny for his guidance on 

immunostaining and histology, Carrie Shemanako, Frances Smith and Sarah Burl for 

showing me the night-life of Dundee.

I am also grateful to the Dr. Alan Clarke, Dr William Wallace and Dr. David Harrison in 

the Pathology Department at the University of Edinburgh for tumour analysis and Robin 

Ali for the optic analysis.

I thank Dr Matthew Smalley at the Institute of Cancer Research for carrying out the 

initial immunohistochemical analysis of the KIM-2 cells.

I thank PPL Therapeutics for funding me towards the end of the project and subsequent 

support of my work.

Finally I thank my family and friends for keeping me sane, I think. Special thanks go to 

David Brown for being there in my hours of need and I can only hope that I can be half as 

supportive during his last month of writing.



VIII

DECLARATION

I hereby declare that the work presented in this thesis is the product of my own efforts, 

and has not been submitted in any previous application for another degree. The work on 

which it is based is my own except where stated in the text or in the acknowledgements.

Katrina Ellen Gordon



IX

ABSTRACT

The induction of proliferation and differentiation in mammary epithelium during 

pregnancy is quite remarkable and results in the synthesis of copious amounts of milk at 

parturition to feed the offspring. Understanding the key factors involved in the tissue- 

specific activation of the milk protein genes and their relationship to tissue organisation 

have been important areas of mammary gland research. Epithelial cell lines can provide in 

vitro model systems in which both the growth and differentiation of the epithelium can be 

investigated under defined conditions. This thesis describes the isolation and 

characterisation of a conditionally immortalised mouse mammary epithelial cell line.

The approach adopted utilised transgenic mice harbouring an enhancerless thermolabile 

mutant of SV40 T-antigen (tsA58) construct driven by the ovine (3-lactoglobulin (BLG) 

milk protein gene promoter as a source of mammary cells. It was envisaged that the 

expression of T-antigen would be limited to the secretory epithelium of the mammary 

gland and its immortalising properties active only at the permissive temperature of 33°C. 

However several of the founder mice developed tumours at ectopic sites due to leaky 

expression of T-antigen from the BLG promoter.

Mammary tissue from the five surviving transgenic lines of mice were used to generate 

mammary cultures. A novel isolation procedure, exploiting the ability of explant cultures 

to generate epithelial outgrowths, was used. One cell line, designated KIM-2, isolated 

from the lowest copy transgenic line at a semi-permissive temperature of 37°C was 

characterised further. These cultures, established from midpregnant glands, are highly 

enriched with luminal cells as assessed by their strong positive staining with secretory 

epithelial markers (keratins 18 and 19) and have retained a stable phenotype for over 60 

passages. Investigation into the functional differentiation of KIM-2 cells has shown that 

the induction of (3-casein is similar to existing mammary cell models. However the KIM-2 

cell line has retained the ability to express a late differentiation marker, whey acidic 

protein (WAP) on plastic unlike other cell lines which require quite complex culture 

conditions to induce further differentiation. Initial transfection studies in this cell line with 

foreign DNA constructs has also proven to be successful. Therefore, the KIM-2 cell line 

has the potential to provide a good in vitro model to study factors involved in mammary 

epithelium development.
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INTRODUCTION

CHAPTER ONE

The female mammary gland provides a unique experimental system which has 

proved a challenge to scientists for over a century. It has attracted the attention of 

physiologists studying milk protein composition and its secretion, developmental 

biologists investigating organ development and cell commitment, endocrinologists 

investigating hormones and their actions and molecular biologists trying to gain a 

better understanding of tissue-specific gene expression and its regulation. In addition, 

biotechnologists are exploiting the mammary gland as an in vivo bioreactor to 

produce therapeutically valuable proteins. Aberrant development of the gland is of 

interest to the cancer research field since it may aid in the understanding of the initial 

stages and progression of tumourogenesis.

It is the unique developmental pattern and function of the mammary gland which 

has drawn such interest. Most developmental changes occur in the gland postnatally 

with full maturation occurring after the onset of pregnancy, resulting in drastic 

remodelling of the tissue. The structural and functional changes which occur result in 

the synthesis and secretion of copious amounts of milk which are essential for the 

nourishment of the neonate. After weaning milk protein production is down- 

regulated and the entire alveolar epithelium is lost by a process of programmed cell 

death termed apoptosis. The regressed gland remains in a resting state similar to that 

observed in cycling virgins until the next pregnancy.

The study of the cyclical changes in growth, differentiation and regression both 

during normal and aberrant development of the gland have been active areas of 

research for a number of years. This work has lead to the identification of important 

regulatory signals which are required for normal development and has provided clues 

to key cellu lar targets which are altered during aberrant developm ent and 

carcinogenesis. The challenge ahead is to build on this basic signalling framework by 

establishing which signalling pathways are crucial, the interconnections between 

them and how these signals become integrated to alter gene expression in the nucleus 

and remodel the gland. An in vitro system which could be manipulated, under



defined conditions, to mimic the mammary gland would provide a useful tool to try 

to address some of these fundamental questions.

This chapter describes the morphological and functional changes which occur 

during various stages of rodent mammary gland development and the key roles 

played by circulating hormones, locally acting growth factors, cell-cell and cell-ECM 

(extracelullar matrix) interactions. The contributions made by in vitro approaches, 

using different mammary culture systems, and in vivo approaches, exploiting 

transgenic technology to identify key regulators involved in mammary-specific gene 

expression and differentiation is assessed. Finally, the establishment of conditionally 

immortal mammary epithelial cell lines and their potential value as a more accurate 

in vitro model of mammary development is discussed.

1.1 M A M M A R Y  GLAND DEVELOPMENT

M amm ary gland developm ent can be divided into four main stages: foetal, 

postnatal, postpubertal and adult. The gland grows slowly during embryonic and 

neonatal life and only m atures fully during pregnancy and lactation. The 

morphological changes which take place during these developmental periods, from 

the early em bryo to the fully functional gland at lactation and the subsequent 

regression of the gland after weaning, have been well defined histologically.

1.1.1 Embryonic development

The appearance of the mammary streak at day 10-11 of embryonic life is the first 

signs of mammary development in the mouse (Turner and Gomez, 1933) and has 

been described also in rats and humans (Myers, 1917; Raynaud, 1961). The 

migration of epidermal cells results in 5 discreet pairs of lens shaped glands located 

between posterior and anterior limbs on both sides of the embryo (Propper, 1978).

Histologically, the two distinct mesenchymal components are apparent at day 14 of 

embryogenesis. One is the dense mammary mesenchyme consisting of 2-3 layers of 

fibroblasts which surrounds the epithelium. These cells contain testosterone and 

oestrogen receptors (W asner, 1983) which are induced by interactions with the
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epithelium (Heuberger, 1982). The other is the fat pad precursor, consisting of 

preadipocytes located under the mammary rudiments. This condensed tissue is 

visible at day 14 of gestation and gives rise to the future fat pad. At this stage the 

mammary anlage becomes bulb-shaped and the sex is determined.

The work of Kratochwil and his colleagues elegantly dem onstrated that the 

mammary mesenchyme was the target tissue for the action of testosterone. At day 12 

of embryogenesis in males, unknown signals from the epithelium trigger synthesis of 

androgen receptors in fibroblasts (Kratochwil, 1986). The testosterone-sensitive 

fibroblastic m esenchym e condenses around the mammary stalk, severing its 

connection with the nipple and preventing further developm ent of the gland. 

Therefore, hormone responsiveness is in part modulated by epithelial-mesenchymal 

interactions during embryogenesis.

In females, the gland enters a resting phase (day 11) where very little or no growth 

occurs for about 5 days. By day 16 the bud begins to rapidly proliferate forming a 

mammary sprout which infiltrates the mammary fat pad precursor tissue. The 

mammary sprout branches and goes on to form the mammary ductal tree system. The 

number of primary branches extending from the nipple is species-dependant, with 

rodents and ruminants having only one per nipple, dogs ten and humans up to twenty 

(reviewed by Medina, 1996). At birth the virgin gland consists of a mammary tree 

with approximately 15-20 branchings composed of a lumina surrounded by a single 

or multiple layers of epithelial cells with a basal layer of myoepithelial cells. The 

epithelial and mesenchymal components are separated by a basem ent membrane 

which contains components synthesised by both the fibroblastic dense mesenchyme 

(fibronectin and tenascin) and the fat pad precursor cells which make the basement 

membrane components (laminin and proteoheparin sulphate).

1.1.2 Postnatal development of the mammary ductal system

The extent of mammary tree growth between birth and puberty is again species 

dependant, with ductal elongation and branching occuring at a slow rate until the 

ovarian hormones induce growth during puberty. During this phase, proliferation and

3



elongation occur in the terminal end buds giving rise to lateral buds which are evenly 

spaced along the ducts. Growth is halted when the confinements of the fat pad are 

reached. At this stage the terminal end buds regress to blunt-ended club-shaped 

structures which have a slow proliferation rate (Imagawa et al., 1994; Williams and 

Daniel, 1983) (Diagram 1.1). During oestrus the lateral buds divide and differentiate 

resulting in small alveolar structures which fill the mammary fat pad (Daniel and 

Silberstein, 1987; Russo et al., 1989). However in some strains of mice (e.g 

BALB/c) which lack a luteal phase there is no alveolar development and the gland 

consists entirely of ducts at this stage.

1.1.3 Structural and functional changes during pregnancy and 

lactation

The most dramatic changes take place in the gland after the onset of pregnancy. 

Proliferation index studies have shown that there is a peak of proliferation at day 4 

and again at day 12 of pregnancy which co-incides with an expansion and increase in 

the number of alveoli to form lobuloalveolar structures (Traurig, 1967).

Several steroid and peptide horm ones are associated with the ductal and 

lobuloalveolar growth observed during pregnancy. The exact role of the individual 

horm ones is still unclear how ever the ovarian horm ones (oestrogen and 

progesterone) are required  for ductal growth (Korach, 1994) and alveolar 

proliferation (Lydon et al., 1995) respectively. A lveolar proliferation and the 

induction of terminal differentiation requires the presence of the pituitary hormone, 

prolactin (Topper and Freem an, 1980, Vonderhaar, 1987., Pittius et al., 1988; 

Imagawa et al., 1990; Burdon et al., 1991).

The lobuloalveolar structures consist of a single layer of epithelial cells surrounded 

by myoepithelial cells and become the sites of milk protein synthesis. The main 

lactogenic hormones are prolactin and the adrenal steroids (glucocorticoids). The 

basement membrane, rich in laminin and type IV collagen, is deposited between the 

two cell layers and is thought to play a modulatory role in the morphological and 

functional changes which lead to a fully differentiated secretory phenotype capable
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Diagram 1.1 A whole mount showing the end buds from a 4 week virgin 
mammary gland and an illustration of the end bud structure

(A) The large end buds (arrows), are located at the tips of the growing ducts. Note 
also the lateral branching (kindly provided by Dr. C. Watson).

(B) An illustration of the end bud showing the position of the cap cells in relation to 
the luminal and myoepithelial cells. A basal lamina surrounds the end bud with the 
cellular stroma comprised of fibroblasts and adipocytes.
[Adapted from Williams and Daniel (1983)].



of synthesising milk proteins in a specific temporal expression programme (reviewed 

by Rosen, 1987; Robinson et al., 1995).

During lactation, in response to oxytocin release, the basket-like network of 

myoepithelial cells surrounding the alveoli contract resulting in the expulsion of milk 

into the small and large ducts. The contraction of the surrounding myoepithelial 

sheath is again the driving force to finally release the milk at the teat in response to 

suckling (Diagram 1.2).

1.1.4 Milk protein gene expression during pregnacy and lactation

The underlying function of the mammary gland, in all species, is to supply 

sufficient amounts of milk containing all the essential nutrients to support the growth 

of their young during the preweaning period. The major constituents of milk 

include:- water, lipids, carbohydrates, minerals and proteins with the relative 

amounts varying between species depending on the needs of the neonate.

The protein content of milk is approximately 30mg/ml (Schmitt-Ney et al., 1992) 

and consists mainly of two groups of proteins; those which are precipitated under 

acidic conditions (pH 4.5-pH 4.6 for bovine milk) and the whey proteins which 

remain in the milk serum at low pH (see Table 1.1).

1.1.4.1 Caseins

The caseins are the most abundant milk proteins which together constitute 80% of 

total milk protein. This family of phosphoproteins, a s l, as2-, (3-, and K-casein (bovine 

casein nomenclature in Bonsing and Mackinlay, 1987) has been shown in some quite 

closely related species to display considerable divergence at the nucleic acid level, 

for exam ple rat (B lackburn et al., 1982; Hobbs and Rosen, 1982), mouse 

(Hennighausen and Sippel, 1982) and guinea pig (Hall et al., 1984). They do 

however retain 3 conserved domains, namely the 5 ’noncoding region, the signal 

peptide and the casein kinase phophorylation sequence. The a- and ¡3-caseins are 

serine phosphorylated on a cluster of residues permitting interactions with calcium 

phosphate resulting in the formation of micelles. K-casein is insensitive to calcium
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Diagram 1.2 Stucture of mammary alvelolus
(A) Illustration of a mammary alveolus
(B) Alveolus cross-section
Notice the single layer of mammary epithelial cells surrounding an enclosed lumen 
and the apical secretion of the milk proteins into the lumen and from there into the ducts. 
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and has a role in stabilizing the growing micelle by limiting its size (Schmidt, 1982). 

These micelle structures transport calcium, inorganic phosphate and trace amounts of 

citrate and magnesium from the mother to the neonate. Interestingly “knockout 

mice” which lack [3-casein in their milk form smaller micelles but retain the ability to 

feed their offspring, although the preweaned pups are slightly growth retarded. This 

suggests that the expression of [3-casein in rodent milk is not essential for mammary 

development or for the survival of the neonate (Kumar et al., 1994).

1.1.4.2 Whey proteins

a-Lactalbum in (a-Lac) is the major whey protein found in the milk of many 

species (Brew and Hill, 1975) and is involved in the synthesis of lactose from 

glucose and galactose. a-Lac associates with galactosyl transferase increasing its 

affinity for glucose and the resulting complex, lactose synthetase, catalyses the 

production of lactose.

In ruminants, [3-lactoglobulin (BLG) is the most abundant whey protein but its 

function is still unclear. The crystal structure of bovine BLG is known and shows a 

resemblance to plasma retinol-binding protein suggesting a possible role for BLG in 

vitamin A transport (Papiz et al., 1986). BLG is not expressed in rodent milk but 

when expressed in transgenic mice it has been shown to be expressed in a tissue- 

specific, hormone-dependant manner (Simons et al., 1982).

In rodents the most abundant whey protein is the cysteine-rich whey acidic protein 

(WAP). W AP has also been identified in rabbits, however the sequence homology 

between rat and rabbit at the nucleic acid level is only 28%, and 15% at the protein 

level suggesting very little conservation between species. Overexpression of murine 

W AP in transgenic mice results in altered mammary development and a m ilchlos  

phenotype (Burdon et al., 1991). These lines of mice were unable to nurse their 

litters and showed impaired alveolar development and premature expression of both 

W AP and a-Lac (day 10 compared to day 16 and 21 respectively in nontransgenic 

mice) (Robinson et al., 1995). The premature overexpression of WAP in these mice 

therefore resulted in an alteration in both the differentiation programm e and 

structural development of the gland.
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Table 1.1 Milk protein composition of milks from various species
9

(modified from Lathe et a i ,  1986 and Kumar, 1993).

MILK PROTEIN CONCENTRATION IN MILK (g/1)

Mouse Sheep Human

caseins

a sl-casein 28.0 12.0 0.4
a s2-casein NDA 3.8 NDA
(3-casein 21.0 16.0 3.0
K-casetn 2.4 4.6 1.0

whey proteins

a-lactalbumin trace 0.8 1.6
P-lactoglobulin none 2.8 none
W h e y  a c id ic 2.0 none none
protein
Serum albumin NDA NDA 0.4
Lysozyme NDA NDA 0.4
Lactoferrin NDA NDA 1.4
Immunoglobulins NDA NDA 1.4

NDA: No data available

1.1 .4 .3  Expression profile of milk protein genes during 
pregnancy and lactation

The expression of milk protein genes in the developing gland follows a specifically 

timed activation programme (Graph 1). Using in situ hybridisation, Robinson and co­

workers (1995) demonstrated low expression levels of milk protein genes in cycling 

virgins during oestrus within a few alveolar cells. With the onset of pregnancy the 

levels increase dramatically in a mosaic asynchronous manner (Rosen, 1987). In 

early pregnancy (day 10), (3-casein and the recently identified WDMN1 (Morrison 

and Leder, 1994) are expressed sporadically throughout the gland within pockets of 

alveolar cells. As the lobuloalveolar structures develop and expand, the expression of 

these early differentiation markers becomes more uniform and the expression of late 

differentiation markers, WAP and a-Lac are activated in a similar mosiac fashion.
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1.1.5 Remodelling and regression of the gland after weaning

After the pups are weaned the gland undergoes a massive round of epithelial cell 

death and tissue remodelling (Ossowki et al., 1979; Pitelka, 1988). The first 

histological and ultrastructural signs of involution are the breakdown of tight 

junctions, the disruption of lobuloalveolar structures by the shedding of epithelial 

cells into their collapsing lumen and the breakdow n of basem ent membrane 

(W ellings and DeOme, 1963; M artinez-Hernandez et al., 1976; W arburton et al. , 

1982). Ultrastructural studies indicate that the regression and remodelling of the 

gland shows features consistent with apoptotic cell death e.g nuclear compaction, 

cytoplasmic condensation and autolysis of epithelial cells (Strange et al., 1992).

1.1.6 Mammary stem cells and lineage specific markers

Based on morphology and immunohistochemical staining patterns there appears to 

be considerable heterogeneity in the luminal cell population in the virgin glands of 

mice and rats. At least 10 different cell types (including the myoepithelial cells) have 

been identified, using a diverse range of antibody markers along the ductal structures 

and end buds of the gland. The keratin intermediate filaments are commonly used to 

determine the different cell types present in vivo in the developing mammary gland 

(see Table 1.2) and to cell-type mammary culture systems.

In addition, various other markers have been described. R udland’s group for 

example, has described three lectins, pokeweed mitogen and Griffonia simplicifolia-1 

(GS-1) which are markers for myoepithelial cells (Rudland and Hughes, 1991) and 

peanut lectin (Rudland, 1992) which is a m arker for epithelial cells in the rat. 

G usterson’s laboratory has described two antibodies raised against the cell surface 

antigens, epithelial membrane antigen (EMA) (Gusterson et al., 1985) and common 

acute lymphoblastic leukemia antigen (CALLA) (Gusterson et al., 1986) which have 

been used to distinguish and separate populations of human and rat epithelial and 

myoepithelial cells respectively (O’Hare et al., 1991; Gomm et al., 1995; Dundas et 

al., 1991). As well as antibody markers, antisense oligonucleotides (oligos) to WAP, 

WDNM1 and p-casein, have been generated and used as probes for in situ 

hybridisation (Robinson et al., 1995).

11



Table 1.2 Cytokeratin antibody markers of the different mammary cell types in 
the developing adult rodent gland

(modified from Talyor-Papadimitriou and Lane, 1987)

12

ANTIBODY ANTIGEN SPECIFICITY REFERENCE

Guinea pig polyclonal Human skin 
keratins

Preferentially stains 
myoepithelial cells 
in mouse

Asch et al., 1981

mAb LP34 Human psoriatic 
skin

Stains only 
myoepithelial cells 
in mouse and rat

Talyor-
Papadimitriou et al., 
1983

m A blA lO Bovine muzzle 
keratin

Stains only 
myoepithelial cells 
in rat

Allen et al., 1984

mAb 24B42 Bovine muzzle 
keratin

Stains luminal cells 
throughout rat 
development

Allen et al., 1984

mAb L E 61 PtK l cell detergent 
insoluble extract

Stains luminal cells 
in mouse and rat

Lane, 1982

There is at present considerable debate as to the location, and indeed the existence, 

of a stem cell population which could give rise to all the different cell types found in 

the mammary gland. This controversy is in part due to the lack of intermediate 

lineage-specific markers and stem cell markers. A candidate stem cell population has 

been proposed by W illiams and Daniels (1983) as being the cap cells which are 

undifferentiated cells which lie on the outer layers of the growing end buds (see 

Diagram 1.1). A similar population of cells has been reported in rats (and may have 

been cloned by Rudland et al., 1986). However these cells at the terminal end buds 

cannot be the only source of stem cells since it is possible to transplant any part of 

the mammary tree into the cleared fat pad of syngeneic mice and regenerate a fully 

functional mammary gland. The regenerated gland can differentiate normally during 

pregnancy but since the nipple is removed, the mice cannot feed their offspring.

A second candidate was proposed by Smith and his colleagues (1988 & 1990) who 

described a pale staining, keratin 6-positive cell found in the cap cells and throughout 

the mammary tree. They showed that this cell was found as early as day 16 of



embryonic life and throughout development of the mammary gland. It may be that 

keratin 6 is a mammary stem cell marker, however more conclusive proof could be 

achieved by looking at proliferation rate and keratin 6 expression simultaneously in 

the developing mammary gland. The identification of a stem cell marker would be 

useful in determining the fate of these cells during pregnancy and involution. The 

ultimate proof of stem cells in the gland would require successful cloning of a cell 

population and reinjection of these cells into a cleared fat pad to regenerate a 

functional mammary gland.

1.2 IN  VITRO  M AM M ARY MODEL SYSTEM S

Although the structural development of the mammary gland is well defined in the 

rodent system, the actual molecular details of the signals and signalling pathways 

involved in altering both form and function are still largely unknown. Systemic 

hormones and locally-acting growth factors have been known to play a primary role 

in mammary development for many years. However there is now mounting evidence 

which has highlighted the importance of both cell-cell and cell-substrata interactions 

as important modulators of proliferation and differentiation in the mammary gland 

and in other tissues (reviewed by Roskelley et a l., 1995). The combination of both in 

vivo and in v itro  approaches has been invaluable in im proving our basic 

understanding of some of the events which lead to tissue-specific gene expression 

and the mechanisms involved in its regulation.

Early evidence for the involvement of the endocrine system  in mammary 

development was obtained by assessing the effects of removing endocrine glands, 

adm inistering hormones to intact animals or by hormone replacement therapy in 

endocrinectomised animals (summarised by Topper and Freeman, 1980). Although 

these test systems were rather crude they did indicate central roles played by 

hormones released by the ovaries, pituitary and adrenal cortex in mammary growth 

and morphogenesis in rodents.

C learly, further progress in identifying and understanding the regulatory 

mechanisms involved in mammary proliferation and differentiation required the
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development of a simpler in vitro system. Researchers began to focus on developing 

in vitro  systems in which mammary function could be maintained under defined 

culture conditions and the effect of individual hormones assessed.

1.2.1 Whole organ and explant cultures

The first in vitro systems developed were whole organ or explant cultures using 

tissue initially from m idpregnant mice (Elias, 1957 & 1959) and postpubertal rats 

(Trowell, 1959). These culture systems verified some of the in vivo  data and 

extended our knowledge of the local growth factor requirements for proliferation and 

differentiation under conditions where the normal architecture of the gland is 

maintained. It became clear that the mammary gland responds to a multitude of cues 

which often act in a synergistic manner. In addition, different parts of the mammary 

tree have different hormonal and growth factor requirements for proliferation and 

differentiation depending on strain (Singh et al., 1970) and age (Prop, 1966). Ductal 

elongation and branching, for example, is primarily regulated by oestrogen and 

growth hormone (GH) whereas the minimum growth requirement for lobuloalveolar 

development in mice (3-5 weeks old) requires initial priming in vivo with oestrogen 

and progesterone before the growth of lobule structures can be induced with a 

combination of insulin, prolactin and glucocorticoid (Banerjee, 1976; Imagawa et al., 

1990 & 1994). A second round of development was achieved in whole organ cultures 

by Tonelli and Sorof (1980) by removing prolactin and glucocorticoid and allowing 

the mammary tree to regress in the presence of insulin before inducing a second 

round of developm ent with the same cocktail of hormones supplem ented with 

epidermal growth factor (EGF).

The extensive work carried out in the laboratories of Nandi and Banerjee resulted 

in organ culture systems, isolated from different developmental stages, which could 

undergo functional and developmental changes similar to those observed in vivo such 

as morphogenesis, lactogenesis and involution under defined culture conditions. 

These early in vitro systems were crucial in verifying directly the involvement of 

hormones and identifying locally acting growth factors in m am m ary gland
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developm ent. However the limitation of these systems became clear when the 

painstaking research was begun to decipher the m olecular and cellular targets 

involved in proliferation and functional differentiation of the mammary epithelia. In 

these systems only the overall growth of the mammary tree could be determined and 

not the actions or targets of particular hormones or growth factors. It was impossible 

to determine if these factors acted directly on the epithelial cells or indirectly via an 

interaction with stromal components.

1.2.2 Co-cultures of mammary epithelial cells with stromal cells 

D uring  em bryogenesis and thoughout postnatal m am m ary developm ent 

m esenchymal-epithelial interactions are crucial. In the developing female embryo, 

the fibroblastic mesenchyme induces growth of the epithelial bud and the fatty 

stroma plays a role in branching morphogenesis during puberty (Kratochwil et al., 

1987; Sakakura et al., 1991). A clue to the inductive capacity of the mesenchymal 

com ponent in determining morphological and functional changes originated from 

early developm ental studies. Transplantation o f em bryonic adipose precursor 

mesenchyme into adult virgin glands resulted in typical ductal branching whereas 

transplantion of fibroblastic mesenchyme resulted in nodular hyperplasia. Conversely 

transplantation of embryonic epithelium into adult mesenchyme produced normal 

a lveo lar developm ent and normal d ifferentiation during pregnancy. These 

transplantation experiments elegantly demonstrated that both adult mesenchyme and 

epithelium  retain their inductive capacity. In addition to influencing normal 

development, alterations in stromal-epithelial interactions could potentially lead to 

the progression and/or development of cancer. Further credence for a role in 

carcinogenesis includes (i) suppression of a tumour phenotype achieved in rat 

prim ary Dimethylbenz[a]anthracene (DMBA) tumours when transplanted into a 

normal gland or under the fat pad (Rivera et a i ,  1982; Ethier et al., 1987; Welsch et 

al., 1987) (ii) Cocultures of mammary tumour cells with em bryonic mammary 

mesenchyme decreased proliferation and increased differentiation (DeCosse et al.,
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1975) (iii) there is increased evidence that stromal cells are altered in breast cancer 

(Cullen et al., 1991).

Coculture systems were developed to complement in vivo transplantation studies 

to try to assess directly the role of stromal and epithelial cell interactions in directing 

normal mammary differentiation and aberrant development. These coculture models 

usually consisted of stromal fibroblast or adipocycte monolayers with mammary 

cells seeded on top. These systems could be easily manipulated depending on the 

question being addressed. The feeder layers could be left untreated or irradiated to 

prevent proliferation so that the requirement for reciprocal interactions between the 

strom a and the epithelium could be examined. Alternatively, the epithelial cell 

cultures could be incubated with conditioned media from growing fibroblasts or 

adipocytes to test for the presence of soluble factors released by the stroma which 

affect the epithelial phenotype. Essentially these systems established that both 

substrate and soluble growth factors, supplied by the fibroblasts and fat cells, 

stimulated mammary epithelial cell proliferation, morphogenesis and expression of 

milk proteins. For example growth of mouse mammary epithelium was promoted 

when cultured on irradiated preadipocytes (3T3-L1) or on differentiated adipocytes 

(Wiens et al., 1987). Modifications to these coculture systems include the use of 

permeable membrane (polyethyleneterephthalate-PET) inserts which permitted the 

investigation of possible paracrine interactions between the two cell types without 

cell-cell contact. Typically, the stromal cells are cultured on the bottom of the dish 

and the mammary cells seeded on top of the insert directly, or on inserts which have 

first been coated with matrigel or another substratum (Ip and Darcy, 1996). This 

system perm its the investigation of the influences of stromal cells on epithelial 

proliferation, morphogenesis and differentiation.

The m ajor advantage of coculture systems over others is the possibility of 

estab lish ing  and characterising the role of strom al cells (from  different 

developm ental stages) and epithelial cells (either norm al, preneoplastic or 

transformed) in inducing reciprocal functional and morphological changes. Already, 

several possible mechanisms have been hypothesised for the interaction of stromal
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and epithelial cells. These include secretion of diffusable growth m odulators, 

modification of ECM and direct communication through gap junctions. Both growth 

stimulatory and growth inhibitory factors are expressed and/or secreted by stromal 

cells including insulin like growth factor-1 and 2 (IGF-1, IGF-2), platelet derived 

growth factor-A (PDGF-A ), basic fibroblastic factor, (bFGF), fibroblastic growth 

factor-5 (FGF-5), transforming growth factor-(31 (TGFP-1), transforming growth 

factor-a (T G F -a) and hepatocyte growth factor (HGF) which can m odulate 

mammary epithelial cell proliferation (Cullen and Lippman, 1991; Imagawa et al., 

1994). Additionally, stromal cells can modulate ECM either directly or via epithelial 

cells by synthesising and secreting matrix proteins. Alternatively they can regulate 

basement membrane turnover by modulating the secretion of metalloproteinases and 

their inhibitors, tissue inhibitors of metalloproteinases (TIMPS).

The major disadvantage to the currently used coculture systems is the serum 

requirement. Stromal cells grow much better in serum and consequently undefined 

factors present in the serum may be problematic when investigating effects of 

strom al-epithelial interactions. The serum could interact with diffusible factors 

released by the stromal cells directly or in conditioned media. This problem could be 

overcome by using defined media which supports the growth of stromal cells.

1.2.3 Mammary epithelial cell enriched primary cultures 

W ithout the development of in vitro systems whereby the epithelial and stromal 

components could be separated, further progress at the molecular and cellular level 

would be impossible. To this end investigators concentrated on trying to separate and 

culture the epithelial component.

The ground work in determ ining the minimal requirem ents for growth and 

m aintainance of mammary cells in vitro had already been established from the 

experiments with organ systems. The ability to separate the mammary epithelium 

from the fat pad by collagenase digestion of minced mammary gland had been 

described by Fasfargues (1957a/b). However, it was the development of purification 

techniques such as differential centrifugation, separation through percoll/ficoll
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gradients and/or fluorescent-activated cell sorting (Barcellos-Hoff and Bissell, 1989; 

Kidwell et al., 1984; Darcy et al., 1991) which allowed the isolation of enriched 

populations of epithelial cells. The ability to maintain these cultures relatively free of 

fibroblasts provided the first tools which could be used to identify factors involved in 

proliferation and functional differentiation of the mammary epithelium.

1 .2 .3 .1  The role of epithelial-substrata interactions in 
determining the extent of epithelial differentiation

Primary cultures have been the system of choice for a number o f years since these 

systems are thought to most closely mimic epithelial cells in vivo. The first primary 

culture models developed used routine culturing on tissue culture plastic which 

m eant that the cells often lost their differentiation potential and showed abnormal 

chromosome numbers. This setback was overcome by Emerman and Pitelka in the 

late 1970s when they discovered that primary epithelial cell cultures had the potential 

to undergo morphological and functional changes when cultured on typel collagen 

gels and that hormone-dependant casein expression could be induced by floating the 

gels (Emerman and Pitelka, 1977; Emerman et al., 1977 & 1979). These findings 

were reinforced by Shannon and Pitelka (1981) and Lee et al., (1984) and extended 

by N andi’s group in 1990. Although fixed collagen gels supported proliferation there 

was limited differentiation. The other extreme was achieved by floating the gels i.e 

differentiation at the expense of proliferation. Both proliferation and formation of 3- 

d im ensional ductal structures in mammary epithelial cu ltures (MEC) was 

accomplished from virgin and midpregnant mice by culturing the cells within typel 

collagen gels. A m odification of this procedure perm itted proliferation and 

differentiation to be studied independantly within the same system under serum free 

conditions (Flynn et al., 1982). This two-step approach involved the induction of 

proliferation by the addition of EGF and insulin to MEC plated on attached collagen 

gels. Functional differentiation could then be induced in the second step by switching 

to differentiation media containing prolactin, glucocorticoid and insulin and releasing 

the gels to float. These systems were used to optimise serum -free conditions for 

growth of MEC derived from different stages of development of rodents and other
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species (reviewed by Imagawa et al., 1990 & 1994). However, even under optimal 

conditions these cultures could only be induced to undergo ductal development and 

limited differentiation, with only (3-casein being expressed at significant levels.

The realisation that the basement membrane played an active role in determining 

the differentiation phenotype of cultured mammary cells was an important discovery. 

Circumstantial evidence for the involvement of basement membrane in mammary 

differentiation originated from studies which showed that the composition of the 

extracellular matrix (ECM) changes during different developmental stages and 

inhibition of ECM synthesis caused mammary differentiation to be halted (reviewed 

by Barcellos-Hoff and Bissell, 1989). The first direct evidence was obtained by 

W icha's group who cultured M EC on a reconstituted basement membrane derived 

from the mammary glands of midpregnant rats. They demonstrated that a greater 

degree of functional differentiation could be achieved in these MEC when cultured 

on basement membrane. These cultures expressed higher levels of (3-casein when 

induced with lactogenic hormones compared to cultures induced on floating collagen 

gels (Wicha et al., 1982). This finding resulted in researchers trying to determine the 

im portance of basem ent m em brane in directing the degree of functional 

differentiation of the mammary epithelium in vitro and its relevance to mammary 

development in the whole animal. To this end, the work of Bissell’s group and others 

has produced unequivocal evidence of the active role of ECM in phenotypic 

differentiation in culture systems. These in vitro studies revealed that MEC derived 

from midpregnant mice cultured on basement membrane derived from Engelbreth- 

Holm-Swarm (EHS) tumour (Kleinman et al., 1986) or the commercially available 

Matrigel could undergo a limited degree of proliferation but crucially this substratum 

could support alveolar development (Blum et al., 1987; Barcellos-Hoff et al., 1989; 

Neville et al., 1991). Culturing MEC on EHS caused morphological changes which 

resulted in the formation of cell clusters surrounded by EHS and within 4-6 days 

these "mammosphere" structures showed rem arkable resemblance to alveolar 

structures seen in the pregnant and lactating gland in vivo (Aggeler at al., 1991). This 

in vitro system demonstrated the potential of primary cultures, given the correct
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hormonal and ECM cues, to mimic mammary differentiation in vivo and express both 

early differentiation markers such as [3-casein and late differentiation markers such as 

W AP which had previously not been observed in culture systems (Chen et al., 1989).

An in vivo  role for ECM was investigated by generating transgenic mice which 

inappropriately expressed an ECM-degrading enzyme stromelysin-1 in the mammary 

gland. Stromelysin-1 appears to be involved in rem odelling of the gland during 

involution (Talhouk et al., 1991; Strange et al., 1992) and slow releasing implants 

containing tissue inhibitors of metalloproteinases (TIM P-1) delays involution 

(Talhouk et al., 1992). Expression was directed to the secretory epithelium of the 

mammary gland using both the rat WAP promoter (Sympson et al., 1994) and mouse 

mammary tum our virus promoter (MMTV) (Witty et al., 1995). The WAP promoter 

is active midway through pregnancy and increases during lactation (Andres et al., 

1987; Schonenberger et al., 1988) whereas the steroid sensitive MMTV is active 

throughout mammary gland development (Pattengale et al., 1989). It was anticipated 

that the m ammary glands in these mice would be either nonfunctional since ECM 

signalling would be disrupted or that the gland may be partially functional but there 

would be premature involution due to overexpression of stromelysin-1. However the 

transgenic lines generated displayed an unexpected mam m ary phenotype. The 

W A P-strom elysin  mice exhibited premature m aturation, w ith virgin glands 

resembling midpregnant gland. The virgin glands showed alveolar development and 

expressed similar levels of (3-casein mRNA as midpregnant normal glands. However 

during pregnancy and lactation the basement membrane disintegrated and |3-casein 

and W AP mRNA levels decreased significantly.

The M M TV transgenic mice showed a similar premature development of virgin 

glands how ever these animals could still lactate and feed their offspring. Although 

the phenotypes of these mice was unexpected, it does demonstrate that alteration in 

ECM does have a profound effect on mammary development both structurally and 

functionally in vivo. Clearly the full development of the mammary gland requires a 

multitude of cues to act at specified developmental stages.
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The endeavours by many laboratories has lead to the development of complex 

primary culture systems which have proven to be effective tools in building up a 

general picture of the d iverse signals required to achieve full mammary 

differentiation. The time consuming work involved in modifying this system has 

been rew arded by providing an in vitro  tool which more closely mimics 

morphologically and functionally the developmental changes observed in vivo 

during pregnancy. Bissell’s group have hypothesised a hierarchy of ECM-mediated 

control of differentiation based on results from their in vitro model systems (Diagram 

1.3). The first level of control is structural, resulting in changes in cell shape which 

permit lactoferrin expression. The second level of control is mediated by the ECM 

component laminin, and results in the activation of an ECM -responsive element 

(BCE1) and the induction of p-casein expression. The third level of control involves 

basem ent membrane mediated “m am m osphere” formation which resembles the 

alveolus in vivo (see Diagram 1.3) and permits the synthesis of WAP. The fourth 

level of control results in the degradation o f basem ent m em brane by 

metalloproteinases and results in the loss of differentiated function.

Primary culture systems are, for many, the systems of choice to look at normal 

mammary gland developm ent in vitro. H owever these systems have several 

limitations. A major disadvantage is the inability to maintain and passage the cells in 

an undifferentiated state. Normal mammalian cells will only undergo a limited 

number of doublings before entering a state of senescence (Hayflick and Moorhead, 

1961; Martin, 1977; Hayflick, 1980) thus imposing a time limitation on experiments. 

Another disadvantage of prim ary culture systems is the inability to efficiently 

transfect the cells. Transient transfections into primary cultures has been attempted, 

however the recovery of the cells is poor and the levels of DNA uptake are highly 

variable (Yoshimura and Oka, 1990). This problem limits the usefulness of primary 

cultures in the identification and m anipulation of signal transduction pathways 

activated by developmental and enviromental cues. For example, this system cannot 

be used directly to establish which transcription factor bindings sites within milk 

protein promoters are important in the activation of gene expression at
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functional differentiation.
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morphogenesis resulting in mammosphere formation leading to WAP expression. Level 4: 
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particular stages in development. In addition, it is not feasible to manipulate 

upstream signalling events in this system, such as altering the expression of 

components of the prolactin signalling pathway. Consequently, at present most of 

these experiments are done in transgenic animals which is both expensive and time 

consuming. Ideally an in vitro assay system in which the perform ance of the 

transgene constructs could be assessed in culture to optimise expression levels, 

would prove less costly than directly generating transgenic colonies of mice.

Matrigel itself can pose a problem when using defined culture conditions since it 

can act as a ‘growth factor sink’ for transforming growth factor-P (TGF-P) and basic 

fibroblastic growth factor (bFGF) which cannot be removed by conventional 

methods of dialysis or ammonium sulphate treatment. There are also problems with 

the possible presence of metalloproteinase activity and components of the ECM 

interfering with biological assays.

1.2.4 Spontaneously immortalised mouse m amm ary epithelial cell 
lines

Improvements in establishing and maintaining enriched cultures of epithelial cells 

resulted in primary cultures which could be maintained in vitro for defined periods 

of time. On rare occasions investigators found that after an initial crisis some cultures 

became spontaneously immortalised and could be cultured indefinitely. One of the 

first cell lines to be generated in this way was the COM M A-ID  line which was 

established from midpregnant BALB/c mice under conditions of prolonged culture in 

low serum (Danielson et a l, 1984). This parental cell line has been a useful source of 

clonal cell lines such as HC11 (Ball et al., 1988) and CID9 (Schmidhauser et a l, 

1990).

The HC11 cell line has proven to be a valuable in vitro  system to study the 

regulation of P-casein expression. Treatment of confluent HC11 cells, grown on 

plastic, with lactogenic hormones, results in the rapid induction of endogenous p- 

casein expression (Ball et a l, 1988). Synergistic interaction between prolactin and 

glucocorticoids was found to be necessary for high level p-casein expression since 

individually the hormones had only a weak effect on expression. This inductive
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property, along with the ability to easily transfect foreign DNA constructs into H C 11 

cells has been exploited to define cis-acting DNA sequences within the promoters of 

both the rat (3-casein gene (Doppler et al., 1989) and the ovine BLG gene (Burdon et 

al., 1994a) which are required for expression. The introduction of prom oter- 

chloram phenicol acetyltransferase (CAT) reporter constructs dem onstrated that 

338bp 5’ of the (3-casein transcriptional start site or 408bp of the BLG promoter was 

sufficient to confer hormonal responsiveness. Using nuclear extracts prepared from 

hormonally induced and uninduced cells, a number of common transcription factor 

binding motifs have been identified which have both positive and negative effects on 

transcription (Altiok and Groner, 1993; Li and Rosen, 1994; M eier and Groner, 

1994).

The putative mammary-specific transcription factor mammary gland factor (MGF) 

or milk protein binding factor (MPBF) was identified independantly through its 

interaction with the (3-casein and BLG promoters respectively (Schmitt-Ney et al., 

1991; Watson et al., 1991). In vitro mutational analysis of MGF sites in the (3-casein 

promoter revealed that the MGF site at -90bp was essential for hormone dependant 

induction of transcription (Schmitt-Ney et al., 1991). In the BLG promoter, mutation 

of the two proximal M PBF sites had a similar effect, abolishing hormonally induced 

transcription (Burdon et al., 1994b). In vivo analysis of the same M PBF sites in 

transgenic mice showed that mutations did not abolish transcription but did result in 

considerable reduction of expression of the transgene when all 3 M PBF sites were 

mutated (Burdon et al., 1994a). This transgenic data indicated that M PBF binding 

was not essential for mammary expression but was necessary for maximal 

transcription of the BLG gene in vivo. It also illustrated the importance of validating 

in vitro data in the context of the whole animal.

The cloning and sequencing of sheep MGF by Groner’s group (Wakao et al., 1994) 

identified MGF/MPBF as the fifth member of the signal transducers and activators of 

transcription (STAT) farmiy (Darnell et al., 1994). Despite the fact that H C 11 cells 

express only low levels of the prolactin receptor and attempts to isolate clones which 

express higher levels of the recepter have failed (Gouilleux et al., 1994) they have
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still proved informative in examining prolactin signalling (Welte et al., 1994). HC1 1 

cells have provided a model system best adapted for the study of regulation of [3- 

casein as well as some (3-casein driven hybrid genes.

However, the m ajor lim itation of this cell line is its inability to undergo full 

differentiation and express milk proteins which are induced late in pregnancy, for 

example WAP and a-Lac. The identification of cis-acting regulatory sequences in the 

promoters of these genes has mainly been achieved using trangenic animals. In 

addition it has recently been shown that H C11 cells lack functional p53 (Merlo et al., 

1994). The main consequence of this is that these cells are prone to mutations. Since 

p53 acts as ‘the guardian of the genome’ (Lane, 1992), in its absence any mutations 

which occur in the DNA remain uncorrected and can be replicated and passed on to 

daughter cells after mitosis thereby increasing the genetic instability of these cells. It 

may well be that this absence of p53 is responsible for the increased oncogenic 

potential observed in Com m a-ID  at later passage (Medina et al., 1986).

The CID9 cell line was derived from the Comma-ID cell line to provide an in vitro 

model system which could be easily transfected but still required exogenously added 

basement membrane to induce differentiation. This cell line has proved useful in 

defining the m olecular mechnisms involved in ECM -dependant differentiation. 

Using this model system a matrix dependant transcriptional enhancer, BCE1, was 

identified 1.8kb upstream  of the bovine (3-casein transcrip tional start site 

(Schmidhauser et al., 1990). CID9 cells and its derivatives (SpC2) have provided a 

useful tool to start to decipher the molecular details of ECM signalling and how these 

signals result in changes in gene expresion in the nucleus.

Another cell line IM -2 isolated by Reichmann et al., (1989), is responsive to 

lactogenic hormones on plastic and expresses [3-casein but when clonal epithelial (Cl 

31 E) or fibroblatic (Cl 31 F) cell lines were isolated this differentiation capacity was 

lost in monocultures. The induction of differentiation could only be achieved in the 

epithelial clonal cell line if it was cocultured with either a fibroblastic cell line (Cl 31 

F or NIH 3T3) or with typel collagen. Using this system Reichmann et al., (1989) 

demonstrated that epithelial-fibroblastic cell contact led to the deposition of laminin
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regardless of hormonal induction and that substitution of the fibroblasts with typel 

collagen had the same effect. This system provides an in vitro tool to investigate the 

role played by epithelial-fibroblastic interactions in mammary differentiation.

Spontaneously im m ortalised cell lines have overcome some of the problems 

encountered with primary cultures. These culture systems can be maintained in an 

undifferentiated state for prolonged periods of time, stored, resuscitated and still 

retain some differentiation characteristics of primary cultures. In addition, the ability 

to transfect these cell lines allows questions to be addressed about im portant 

regulatory elements required for expression of a certain gene construct.

Taken together the properties within the cell lines presently available do mimic 

mam m ary developm ent but taken individually none show both full functional 

differentiation and amenability to genetic manipulation. Additionally, an important 

caveat with spontaneously immortalised cell lines is that the normal proliferation and 

differentiation pathways may themselves be altered due to the immortalisation event 

itself. Since the nature of this immortalisation event is often unknown it may be 

difficult to predict the pathways involved.

1.3 IN  VIVO  M A M M A R Y  M O D EL SY STEM S

1.3.1 Transgenic mice 

The lim ited usefulness of the available in vitro systems to answer questions 

pertaining to normal and aberrant growth of the mammary gland has led to the 

development and utilisation of transgenic approaches. The ability to specifically 

target expression to the mammary gland using tissue-specific promoters and the 

development of transgenic technology has allowed significant progress to be made. 

Resection analysis of the promoter regions of the milk protein genes, (3-casein, WAP 

and BLG has identified minimal promoter regions which are required for high-level 

tissue-specific expression in the mammary glands of transgenic mice. Using nuclear 

extracts prepared from both mammary tissue at different stages in development and 

H C 11 cells induced with lactogenic hormones, a number of common transcription
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factor binding motifs have been identified within the different milk protein 

promoters.

Nuclear factor I (NF-I) and glucocorticoid receptor have been shown to be bind to 

milk protein gene promoters (Watson et al., 1991; Li and Rosen, 1995) but their 

fucntion is still unclear. On the other hand, ST AT5 recognition sites have been 

identified in the promoter region of the caseins, WAP, BLG and a-lac genes, 

suggesting STAT5 is an important regulator of milk protein gene expression. The 

mutational analysis of STAT5 binding sites in [3-casein, BLG and WAP promoters 

demonstrated the importance of STAT5 in prolactin signalling and its requirement 

for maximal transcription activation (see section 1.2.4). This work has been extended 

using in vitro approaches to determine the signal transduction pathway activated by 

prolactin (reviewed by Groner and Gouilleux, 1995; Watson and Burdon, 1996). 

Essentially, binding of prolactin to its receptor induces receptor homodimerization 

and the activation of the kinase JAK2 which tyrosine phosphorylates the receptor. 

The latent form of STAT5 is transiently associated with the active receptor complex 

through its SH2 domain (Src-homology-2) and becomes activated through tyrosine 

phosphorylation by JAK2. The active STAT5 can then dissociate from the receptor 

complex, dimerize and translocate into the nucleus. Once in the nucleus it can bind to 

its recognition site in gene promoters and activate transcription (Diagram 1.3). Since 

the milk protein genes are expressed at different stages of developm ent it is 

envisaged that other transcription factors e.g. NFI and glucocortiod receptor also play 

a part in transcriptional regulation at the appropriate point in development.

Two murine STAT5 homologues have recently been identified STAT5a and 

STAT5b (Lui et al., 1995). These closely related genes show 96% identity at the 

amino acid level but have different C-termini. Heterogeneity is increased further by 

alternative splicing to create at least two polypeptides from each gene (Azam et al., 

1995 & Lui et al., 1995).

Genetic disruption of the prolactin signalling pathway has recently been achieved 

in mice by inactivation of the genes encoding the prolactin receptor [PRLR] 

(Ormandy et al., 1997), STAT5a (Liu et al., 1997) and STAT5b (Davey et al., 1997).
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Since the PRLR is expressed in many tissues during embryogenesis and STAT5 is a 

com ponent of the cytokine signal transduction pathway in many cell types it was 

predicted these knockouts would result in an embryonic lethal phenotype. However 

mice deficient in PRLR or STAT5a or STAT5b survived to adulthood with defects in 

specific tissues.

Females with one intact PRLR allele failed to lactate during the first lactation due 

to reduced m am m ary development. However mammary developm ent after the 

second pregnancy was sufficient for normal lactation, suggesting that functional 

developm ent does eventually  occur with continued horm onal stim ulation. 

H om ozygous fem ales were infertile with multiple reproductive abnorm alities. 

Similarly 50% of the homozyous males displayed fertility problems suggesting a 

key role for PRLR in mammalian reproduction.

STAT5a-deficient mice develop normally but fail to lactate after parturition due to 

lack of terminal differentiation. Although STAT5b has a 96% similarity and shows a 

sim ilar expression pattern to STAT5a during mammary developm ent it cannot 

substitute for the absence of STAT5a. The different C-termini o f the two STAT5 

homologous obviously have unique non-overlapping activities. This is supported by 

the different phenotype observed in the STAT5b knockouts which exhibit reduced 

growth of males and severe fertility problems in the females. The reproductive 

problem s in the STAT5b deficient mice and the PRLR deficient mice are similar 

suggesting that prolactin  signalling through STAT5b is a key regulator of 

mammalian reproduction.

Transgenic technology has also proven to be useful in the cancer research field and 

has lead to an increased understanding of both the development and progression of 

neoplasia. In particular, the ability to direct overexpression of candidate oncogenes 

in a particu la r tissue and to inactive gene function through hom ologous 

recombination has proven to be a very powerful tool.

Over the past decade, the transgenic mouse model system has been extensively 

used to investigate the actions of nuclear oncoproteins (e.g Fos, Jun, Myb and Myc 

families), nuclear tumour suppressor proteins (e.g p53, pRb and Wilms tumour [WT-
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1]) and growth factors (e.g EGF, TGF-J3 and TGF-a). A number of these transgenic 

lines develop tumours with remarkable similarities to human cancers. In many cases 

the expression of oncogenes in transgenic mice has lead to hyperplastic lesions but 

not a fully transformed phenotype (neoplasia). It is now clear that many oncogenes 

require the cooperation of additional genes to make the transition to a full neoplastic 

phenotype (Kudson, 1985). One approach which has been used to identify 

cooperative effects between genes is to cross transgenic mouse lines which 

overexpress two different genes of interest in the same target cell, resulting in 

increased incidence of tumours and/or a more aggressive tumour phenotype. In the 

mammary gland this approach has been effective in determining key genes involved 

in mammary tumourogenesis. For example co-expression of H -ras and c-myc, (Sinn 

et al., 1987) or int- 1 plus int-2 (Kwan et al., 1992 ) in mammary epithelial cells by 

generating double transgenic lines of mice results in an earlier appearance and a 

higher frequency of solid tumours as compared to expression of either of the 

transgenes alone.

The identification of key genes which are aberrantly expressed during the different 

stages of cancer has given researchers a starting point to try to establish the 

signalling mechanisms involved during its progression. Again the transgenic mouse 

model provides a system to determine and dissect the cellular pathways which are 

controlled, for example by tumour suppressor genes or those which are altered by 

oncogenes. However careful analysis of multiple founder mice and families are 

required to obtain reliable data which again is time consuming and expensive. A cell 

culture model system which could be manipulated in vitro to mimic some of the in 

vivo events would be beneficial in both defining the molecular mechanisms by which 

these pathways function and a useful complementary approach which could be 

utilised to guide whole animal experiments. Therefore using a combined transgenic 

and in vitro approach as opposed to a transgenic approach alone would provide a 

more efficient strategy to answer questions pertaining to the mechanisms involved in 

cancer progression. A more in depth review describing the contribution made by
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transgenic mice to cancer research can be tound in Transgenic M ice in Cancer 

Research ; Seminars in Cancer Biology; Ed by G. Merlino (1994).

The pharm aceutical industry has also exploited these advances in transgenic 

technology and gene targeting. In particular the production of human recombinant 

proteins in transgenic livestock has been used as an alternative to large scale 

mammalian cell culture production. By using the mammary gland as a bioreactor 

several human proteins with therapeutic potential have been produced in the milk of 

transgenic mice (Gordon et al., 1987; Yu et al., 1989; Archibald et al., 1990; Meade 

e ta l ,  1990), rabbits (Buhler et al., 1990) and sheep (Clark et al., 1989). However the 

success of this work has been tempered by the reports of low frequency and/or low 

levels of transgene expression. Poor performance of transgenes is one of the major 

drawbacks faced by pharmaceutical companies utilising transgenesis. Since large 

scale production of proteins requires large transgenic livestock to be used e.g. sheep, 

goats or cattle, the problem of poor performance must be overcome to make this 

approach more cost effective.

Research into the regulatory elements required for high level expression of 

heterologous proteins in the mammary gland is presently being pursued using 

transgenic mice. In general, genomic constructs work better than cDNAs however 

the perform ance of cDNA constructs can be improved using intronic sequences 

(Brinster et al., 1988; Palmiter et al., 1991). A cell line which could be used as a 

reliable test system to screen the expression performance of constructs would be a 

valuable assest to optimise expression levels of transgenes before going to the 

expense of generating transgenic animals.

1.3.2 Cleared fat pad

A less expensive route towards introducing transgenes in vivo is to use the cleared 

fat pad technique (reviewed by Edwards et al., 1996). This approach requires the 

manipulation of mammary epithelial cells in culture before transplantation into the 

cleared fat pad of syngeneic mice. It relies on the unique postnatal development of 

the mammary gland and the ability of any piece of mammary tissue to repopulate the 

gland. The mammary fat pad is cleared by removing the nipple of 3 week old female
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mice which prevents any epithelial development. Regeneration of the mammary tree 

can then be achieved by injecting primary epithelial cells into the cleared fat pad. 

The mammary tree which is produced from these reconstitution techniques responds 

in the same manner as normal mammary tissue up to the time of parturition. 

However, these females cannot feed their offspring because the nipple connection is 

severed during the procedure. Genetic manipulation of the epithelium is done in vitro 

by infecting donor cells with nonreplicating viruses carrying the gene of choice and 

then these cells can be injected into a cleared fat pad of a recipient mouse. After 

approximately 10 weeks the fully grown reconsistuted gland is removed along with 

its non-manipulated partner which has its nipple intact and is an inbuild control for 

the procedure. The entire epithelium is normally analysed using whole mounts.

The transplantation approach provides a model system to study the early stages of 

tum our development. Unlike germline transgenesis where every cell contains the 

transgene, the reconstitution model offers a system to investigate clonal expansion of 

a population of cells and the interactions and/or competition between abnormal cells 

and normal cells during the early stages of tumourigenesis. Several oncogenes have 

now been expressed in reconstituted mammary epithelium. In general, expression of 

oncogenes in the mammary gland results in aberrant growth of the epithelium. This 

alteration in growth can be quite subtle with only minor changes to the pattern of 

grow th or can result in gross morphological changes and complete hyperplasia. 

Edwards and his colleagues have successfully used this technique to try to model the 

development of neoplasia and in particular the preneoplastic changes which occur in 

human breast tissue.

ErbB2, a growth factor receptor which belongs to the ErbB/type I family of 

receptor tyrosine kinases (Ullrich and Schlessinger, 1990) is known to be activated in 

many breast tumours (King et al., 1985; Slamon et al., 1987; van der Vijver et al., 

1987; Slamon et al., 1989; Gullick, 1990). Around 20-30% of breast carcinomas 

express elevated levels of ErbB2 which is usually associated with amplification of 

the gene (Berger et al., 1988). Gusterson et al., (1988) found that some ductal
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carcinom as in situ overexpress ErbB2 suggesting that they could be precursors of 

tumours which overexpress the protein.

T ransgenic mice have been generated using the M M TV prom oter to drive 

expression of c-erb-B2  (neu) the rat equivalent neu  protooncogene and neu 

oncogene. Activated neu  was originally identified as a transform ing gene in 

chem ically induced rat neuroectodermal tumours (Shih et al., 1981). Oncogenic 

activation can occur through a point mutation in the transm em brane domain 

(Bargm ann et al., 1986), deletion of the extracellular dom ain (Bargmann and 

W einberg, 1988) or overexpression of the protein (Di Fiore et al., 1987; Hudziak et 

a l., 1987; D iM arco et al., 1990) which is thought to result in constitutive 

dimerization and activation of the receptor (Gullick et al., 1992). Amplification and 

overexpression of the human homologue of neu (c-erb-B2) has been observed in a 

large percentage of primary breast cancers. However no equivalent point mutation (at 

position 664-valine to glutamic acid substitution) in the the human homologue or 

anywhere else in the transmembrane domain of the human gene has been discovered 

yet in human cancers (Slamon et al., 1989; Lemione et al., 1990). It has been shown 

however that genetic introduction of this point mutation at the homologous position 

in the human gene in vitro causes oncogenic activation of human c-erb-B2  (Hynes et 

al., 1990).

Transgenic lines of mice carrying activated neu driven by the MMTV promoter 

initially appear normal but at approximately 3 months of age every transgenic mouse 

exam ined developed multi-focal mammary adenocarcinoma. These tumours arose 

synchronously and affected the entire epithelia suggesting that expression of 

activated neu  requires few if any additional genetic events to lead to a transformed 

phenotype (M uller et al., 1988). Overexpression of the proto-oncogene using the 

same prom oter resulted in focal mammary tumours with longer latency than the 

activated neu  transgenics (5-10 months compared to 3 months) with 72% showing 

metastatic tumours in the lungs at 8 months (Guy et al., 1992). No point mutations 

were found in the transmembrane domain of tumours expressing neu, however small 

in-fram e deletions were detected in the region coding for the extracellular
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jux tam em brane dom ain of the receptor (Siegel et al., 1994). Screening for 

com parable m utations in the extracellular domain in human tum ours is now 

underway.

Expression o f neu  in the mammary gland using the cleared fat pad technique 

resulted in a similar phenotype. However, under closer examination, focal clusters of 

alveoli sim ilar to those normally found during pregnancy were seen in the virgin 

gland. Such subtle changes in mammary growth were not observed in the germline 

derived transgenic equivalents. Edwards et a l ,  suggests that c-erb-Bl/neu, which is 

normally expressed in pregnancy and lactation, (Dati et al, 1990), has a role to play 

in the development or maintenance of alveoli for these transplant experiments.

One of the major drawbacks of the reconstitution approach is the possiblity of an 

im m unological response to the introduced gene product. For example two viral 

proteins M C29 gag-m yc  fusion protein (Edwards et al., 1988) and SV40 large T- 

antigen when introduced into the cleared fat pad resulted in lymphocyte infiltration 

around the epithelium. This problem could be overcome by using nude mice or by 

inducing tolerance to the introduced protein in mice before trying to repopulate the 

gland. A lso the identification of cells which express the introduced gene is 

problem atic. U sually only a small number of cells in the transplant express the 

introduced gene since retroviruses will only integrate into dividing cells and primary 

cultures only divide slowly. The levels of expression within these cells is often rather 

low and the available antibodies are not of sufficient quality to be used on sections 

for detection. In situ  hybridisation may be the answer but the mammary gland tends 

to give high background when looking at rare transcripts, and the retrovirus 

transcripts may be below the level of detection using current protocols (Matsui et a l ,  

1990; W eber-Hall et al., 1994). An alternative solution to this problem would be to 

use p-galactosidase to “tag” the transfected cells. Edwards et al., (1996) has already 

constructed an expression vector for this purpose. The construct has been designed so 

that two genes can be transcribed from the same transcript using the internal 

ribosom e entry site (IRES) from encephalom yocarditis virus (EM CV). The 

coexpression of genes with P-galactosidase should aid in the interpretation of results.
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In particular, in experiments where transplants do not result in an obvious phenotype, 

it will be possible to rule out whether cells which were m anipulated in culture 

contributed to the transplant or not. To date only overexpression of genes has been 

achieved using this technique. Clearly it would be advantageous to be able to inhibit 

gene expression or knockout a gene. It would be particularly useful in cases where a 

germ line knockout mouse dies in late gestation or perinatally, since embryonic 

mammary epithelium could be transplanted into a normal host and the development 

of the mammary gland assessed.

The development of several in vitro and in vivo systems has been an integral part in 

improving our understanding of how the mammary gland functions and some of the 

key genes which are involved in both normal and aberrant development of the gland. 

The em erging picture from these studies is one where mammary differentiation 

occurs through the activation of specific genes and is controlled on several levels by 

peptide and steroid hormones in conjunction with cell-cell and cell-m atrix 

interactions. This hierarchy of control leads to a fully functional gland at lactation 

and orchestrates the changes which takes place as the gland regresses via an 

apoptotic route during involution.

1.4 THE DEVELOPM ENT OF NEW  CONDITIONALLY IM M ORTAL  
M O USE M AM M ARY CELL LINES

Cellular proliferation is normally under tight regulatory control with cellular 

division dependant on progression through a series of steps termed the “cell cycle” . 

These steps involve a period of DNA synthesis (S-phase), a period of mitosis (M- 

phase), with gaps in between these two phases termed G1 and G2 (Diagram 1.4). 

A lthough some cells remain in the cell cycle the m ajority of cells remain for 

prolonged periods of time in a resting or nonproliferative/senescent state termed GO. 

A number of checkpoints which reside in G1 have been identified which regulate the 

entry, from GO, and allow the progression of cells through the cell cycle (reviewed 

by Sherr, 1994). However, it is possible to interfere with this process to produce 

cultures with an infinite lifespan. Spontaneous immortalisation can occasionally 

occur in rodent cells, for example the loss of p53, a checkpoint control in G 1, in
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Diagram 1.4 Interactions of T-antigen with the cell cycle regulators pRb 
and p53

Actively cycling cells contain predominately phosphorylated pRb, whereas 
non-cycling (GO) cells contain the active supressor. T-antigen complexes with 
this unphosphorylated form of pRb and with p53, effectively removing these 
"brakes" normally imposed on the cell cycle resulting in cells which constantly 
proliferate. [Adapted from Sherr, C. J. (1994))



H C 11 cells. However, immortalisation is more efficiently achieved by introducing a 

known immortalisation agent such as the nuclear oncogene myc, the GTP binding 

protein ras, or DNA tumour virus immortalising genes. The immortalisation ability 

of the viral genes are discussed in more depth with particular reference to T-antigen.

Viruses are very effective at exploiting their host cells’ DNA replication machinery 

and have evolved mechanisms to stimulate the growth of quiescent cells. Depending 

on the requirements for viral production, the cells can be maintained in a constantly 

proliferative phase or can lead to a transformed state. The DNA tumour virus genes, 

human papillom avirus typel6E6/E7, adenovirus-5 E1A/E1B and Simian virus 40 

(SV40) T-antigen have proven to be particularly effective at disrupting normal cell 

growth. Recent studies on host-protein interactions has revealed that these viral 

proteins interact with the same subset of cellular proteins. The identification of two 

tumour suppressor proteins, p53 and retinoblastoma gene product (pRB), involved in 

cell cycle contol (Levine, 1990; Nevins, 1992; Moran, 1993) are targets for these 

viral proteins. This has lead to the hypothesis that these proteins interfere with the 

regulatory pathways involved in normal cell growth by targeting genes which control 

the cell cycle by inhibiting cell growth. Unfortunately these viral proteins also have 

transform ing abilities both in culture and in transgenic animals. For example 

expression o f wild type SV40 T-antigen results in tum our form ation and a 

dedifferentiated phenotype in transgenic animals (Choi et al., 1988). However the 

prospect of exploiting the immortalising property of these genes has been reassessed 

since the isolation of temperature senstive mutants of T-antigen. Clearly it would be 

advantageous to have an in vitro system in which cells could be switched from a 

constantly proliferating state (immortalised) to one in which they could, given the 

correct stimuli, fully differentiate. Conditionally immortal mammary cell lines may 

provide a model system which can express the full repertoire of milk proteins.

1.4.1 Structure and function of wild type SV40 T-antigen and a 
thermolabile mutant tsA58.

SV40 is a small circular DNA virus (5243bp) whose natural host is primates but it 

can also infect a variety of mammalian cell types w ithout m ultiplying. The
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transform ing ability of SV40 is attributed to the early gene products which are 

transcribed soon after infection. The two early gene products, small and large tumour 

antigen (T-antigen) are transcribed from the same transcriptional unit but are 

differentially spliced. Small t-antigen has only a small intronic sequence removed but 

retains a translation stop codon which results in a small 20kD protein. Large T- 

antigen, on the other hand, has more intronic sequences removed including the 

translation stop codon resulting in a larger protein of 94kD. Consequently both 

proteins share 80 amino acids at the amino-terminus but have completely different 

carboxyl termini (Diagram 1.5).

The actual role of small t-antigen is still unclear but it appears to regulate protein 

phosphatase 2a (Pallas et al., 1990; W alter et al., 1990; Yang et al., 1990; 

Scheidtmann et al., 1991). In culture it is not necessary for viral replication but it 

does appear to aid in the transformation of specific nonpermissive cell types e.g. 

murine ductal epithelial cells in liver and kidney (Choi et al., 1988).

Large T-antigen is responsible for the control of viral infection and the necessary 

alteration in cellular processes for viral replication. Its ability to disrupt normal cell 

growth has been well documented in rodent cultures (Tegtmeyer, 1975; Tooze, 1980) 

and in over 20 distinct cell types in transgenic mice (Hanahan 1988 &1989; Adams 

and Cory 1991). Its expression in vivo is generally associated with tumourigenesis 

however this response appears to be cell type specific. For example the MMTV 

promoter was used by Choi et al., (1988) to direct expression of T-antigen (and small 

t-antigen) to a variety of epithelial cells in transgenic mice but did not result in 

tumour formation in all the tissues which expressed the protein. In particular the 

mammary gland appeared to be relatively resistant to T-antigen transformation since 

even during lactation when the MMTV promoter is most active no neoplasia was 

observed in these mice.

The molecular mechanisms employed by T-antigen to alter normal cellular growth 

have recently become clearer. As mentioned before, the stimulation of host cell 

replication depends on the ability of T-antigen to interact with a subset of cellular 

proteins which are involved in negatively regulating entry into S-phase of the cell

38



39

Zn Finger

po la Rb

LS

DNA binding
Pola, p53

A T P a s e

1 82 102 115 131
259 H e l ic a se  418

517 627 708

C -> T (438 )

Diagram l.5 Functional domains of SV40 T-antigen and the site of mutation in the tsA58 mutant
The minimal regions of the protein which retain binding to DNA polymerasea-primase 
(pola), ATPase and Helicase. The retinoblastoma (pRb) and p53 tumour suppressor 
proteins binding sites are also indicated and the single point mutation found in tsA58.



cycle. The binding of T-antigen to these proteins removes these cellular “brakes” on 

the cell cycle resulting in the stimulation of DNA synthesis and cell growth. Its 

transform ing ability is thought to be mediated by its interaction with the tumour 

suppressor proteins p53 and pRb (Schreier et al., 1990). A third protein p i 07 which 

is a member of the pRb family also interacts with T-antigen in the same domain as 

pRb. The binding of these proteins to T-antigen is illustrated in Diagram 1.5. The 

function of p i 07 is still unclear but p53 and pRb have been extensively studied. Both 

these proteins are involved in cell cycle control (Bookstein and Lee 1991; Lane 

1992; Levine et al., 1991; Marshall 1991; W einberg 1991; Hamel et al., 1992; 

Hollingsworth et al., 1993) and mutations in these genes are associated with cancer. 

Both genes have been knocked out in mice and display a phenotype. The p53 null 

mice develop normally, however 90% develop tumours between 3-6 months of age 

(Donehower et al., 1992; Harvey et al., 1993; Jacks et al., 1994). Mice homozygous 

for a pRb mutation die in utero between 13.5-15.5 days and display neurogenic and 

haem atopoietic defects (Clarke et al., 1992; Jacks et al., 1992; Lee eta l., 1992). It 

has been postulated that T-antigen in effect acts as a double “knockout” complexing 

with p53 and pRb preventing the brakes on the cell cycle which is normally imposed 

by these proteins resulting in cells which are allowed to progress unchecked through 

the cell cycle (Diagram 1.4). This implies that any errors in DNA replication or 

segregation during mitosis will not be corrected and will result in increased genetic 

instability and possible tumour formation.

Tem perature-sensitive mutants of T-antigen have been isolated which have the 

same properties as wild type T-antigen at a permissive temperature (33 °C) but at the 

restrictive temperature (39°C) T-antigen is inactive. One of these mutants is tsA58 

which has a cytosine changed to thymidine resulting in the substitution of an alanine 

residue for valine at position 438 within the ATPase binding domain (Diagram 1.5). 

At the restrictive temperature of 39°C there is some controversy as to whether there 

is a conformational change in this thermolabile T-antigen mutant (Deppert et al., 

1991) which renders it inactive or whether the mRNA is rapidly degraded 

(Tegtm eyer, 1975). Clearly this thermolabile mutant could be used to generate
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constant proliferating cell lines at 33°C but by moving the cells to 39°C the cells lose 

this immortalisation. In many cell types constant proliferation is incompatible with 

differentiation. This is observed in a number of im m ortalised cell lines which 

dedifferentiate and can no longer undergo functional differentiation. Consequently 

establishing conditionally immortalised cell lines potentially provides a culture 

system in which the cells can be switched from a proliferative state to a fully 

differentiated state given the correct differentiation stimuli.

1.4.2 Introduction of immortalising genes into mammary cells 

To exploit the properties of SV40 T-antigen and its therm olabile mutants to 

generate mammary cell lines requires stable integration of the DNA into the genome. 

This can be done in vitro using DNA mediated gene transfer or retroviral gene 

insertion. The efficiencies obtained using each method is highly dependant on the 

cell type used. Alternatively the generation of transgenic animals which express T- 

antigen in the mammary gland using tissue-specific prom oters could be used to 

stably integrate T-antigen into the genome.

1.4.2.1 Non-viral mediated transfection methods 

There are now a variety of different gene transfer methods which can be used to 

introduce DNA into mammalian cells. The nonviral methods include; calcium 

phosphate precipitation, DEAE-dextran, electroporation and several lipid based 

transfection systems which are commercially available e.g. Lipofectamine, Dotap. 

The most commonly used method is still calcium phosphate co-precipitation of the 

DNA construct and addition of the precipitate to the cells. Using this technique DNA 

entering the cell is taken up into phagocytic vesicles (Graham and van der Eb, 1973) 

but sufficient DNA enters the nucleus and is integrated into the genome to allow 

expression of the gene construct. Using a variety o f cell types, transfection 

efficiencies of up to 10'3 have been obtained and calcium phosphate transfection 

methods are still routinely used to generate stably expressing mammary cell lines. A 

number of modifications to the original procedure have been made over the years 

which have been reviewed by Gorman (1985).
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DEAE dextran is more often used when transient transfections of mammalian cells 

in culture are required. It is useful when large numbers of transfected constructs are 

required to be analysed since the DEAE dextran mix is prepared and the DNA 

construct added, overlaid onto the cells and assayed for expression 24-48 hrs later.

The chemical mechanism of cellular uptake is unclear (as is the case for calcium 

phosphate) but transfection efficiencies of this method can be improved by adding 

chloroquine. It is thought that the chloroquine neutralises the pH of the cells’ 

lysosom es thus inhibiting the degradation of the DNA on its way to the nucleus. 

However DNA introduced into cells using this method are reported to undergo a high 

rate o f mutagenesis when compared to calcium phoshate transfections (Calos et al., 

1983; Razzaque et al., 1983; Ashman and Davison, 1985).

Recently lipid based transfection methods have been successfully used to transfect 

mammalian cell lines. However there has been no reports of this method being used 

to transfect mammary cell lines.

E lectroporation is another method which has been devised to introduce foreign 

DNA into mammalian cells. This procedure involves mixing a cell suspension with 

the DNA construct and exposing the cell/DNA mixture to a high voltage electric 

field. This creates pores within the cell membrane which allows the DNA into the 

cytoplasm  where some of the DNA reaches the nucleus and becomes stably 

integrated into the host cells’ genome. The resealing of the membrane occurs in a 

time and temperature(low)-dependant manner therefore incubating the cells at 0°C 

for a period will increase cell survival. Again the efficiency of transfection is 

dependant on the correct parameters being set and is different for different cell types.

1.4.2.2 Viral-mediated gene transfer

Viral mediated gene transfer exploits several characteristics of retroviruses which 

are suitable for gene transfer including:- efficient transmission to recipient cells, 

integration into host chromosomal DNA, plasticity of the genome which allows the 

insertion of foreign DNA. The gene construct is introduced into a nonreplicating 

retrovirus. The virus infects cells by attaching to cell surface receptors before 

becoming internalised and uncoated. The RNA can then be reverse transcribed by the
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viral reverse transcriptase and the DNA is transported into the nucleus where it 

integrates into the host genome through two viral long terminal repeats (LTR). 

However this method requires cells to be proliferating and growing to achieve 

transfection efficiencies of 1%.

All the transfection methods described above require a large number of cells to be 

transfected and grown under selective pressure to obtain sufficient cells for 

experimentation. Optimising one of these transfection methods could be used to 

generate conditionally immortal primary mammary epithelial cultures by stable 

integration of the thermolabile T-antigen mutant (tsA58) under the control of a 

suitable promoter. In addition to the usual difficulties of working with primary 

cultures (see section 1.2.2) there are additional problems with efficiencies of 

transfections. Primary cultures do not readily integrate foreign DNA, probably due to 

their low growth potential in culture, therefore large numbers of primary cultures 

would have to be generated to establish some clones which have stably integrated 

and express T-antigen. Additionally within the same pool of cells there can be a 

number of different sites of integration which could affect expression levels of T- 

antigen. Despite these problems, tsA58 has been successful introduced into bovine 

primary cultures by transfection and a cell line designated MAC-T established which 

can differentiate and express casein proteins (Huynh et a i,  1991). Human luminal 

epithelial cells have also successfully been cultured from milk using wild type T- 

antigen (Bartek et al., 1991) and retroviral mediated gene transfer.

1.4.3 Transgenesis

Another option is to exploit transgenic technology and direct expression of the T- 

antigen mutant to the mammary glands of transgenic mice using a mammary specific 

promoter (see section 1.3.1). Generating transgenic mice using either a milk protein 

promoter or the MMTV promoter should direct expression of the SV40 T-antigen to 

the secretory epithelium. This would allow a single integration site to be looked at in 

a given line of mice. The temperature-sensitive mutant should not be active in the 

animals thus overcom ing the transforming properties which were previously
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encountered when wild type T-antigen was targeted to the mammary gland using the 

WAP promoter (Tzeng et al., 1993).

Jat et al, (1991) used this approach to generate the “immortomouse” which carries 

the tem perature-sensitive T-antigen mutant tsA58 under the control of a 

housekeeping gene promoter H-2Kb. This promoter directs expression to a wide 

range of tissues and can be induced in vitro using y-interferon. Although the 

im m ortom ouse shows thym ic hyperplasia these m ice do undergo normal 

development and have successfully been used to establish a number of conditionally 

im m ortal cell lines. Cell lines, to date which have been established from this 

transgenic line of mice include thymocytes (Jat et el., 1991), crypts from the colon 

and small intestinal epithelial cells (Whitehead et al., 1993), osteoclast precursor 

cells and bone marrow stromal cells (Chambers et al., 1993), astrocyte lines which 

express in vitro many of the cell properties of glial scar tissue clonal cultures 

(Groves et al., 1993) and myogenic cell lines which can be genetically modified in 

vitro and transplated into a suitable donor to study mutant phenotypes of clinical 

im portance (Morgan et al., 1994). However no mammary cell lines have been 

generated from “im mortom ouse”. The lack of success could be attributed to 

insufficient expression of the transgene in the secretory epithelium in vitro. Using a 

mammary specific promoter which expresses highly in the secretory epithelium at 

specific stages of development should allow the derivation of conditionally immortal 

cell lines.

1.5 AIM S OF PROJECT

The aim of this project was to use a transgenic approach to derive a conditionally 

im m ortal mouse mammary epithelial cell line by directing expression of the 

temperature-sensitive T-antigen, tsA58 to the secretory epithelial cells using a milk 

protein promoter BLG. It was envisaged that conditional immortalised cell lines 

would provide an elegant in vitro system whereby the immortalisation gene could be 

switched off by raising the temperature and the cultures, given the correct stimuli, 

induced to differentiate. It was anticipated that such a system would overcome some
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of the problem s presently encountered with the available cell lines and provide a 

more accurate model of mammary gland developm ent during pregnancy and 

lactation. Characterisation of the cell types present in the generated cultures and 

assessing functional differentiation in response to lactogenic hormones should 

determine their usefulness as a differentiation model system. An in vitro tool which 

could express the full repertoire of milk proteins in culture would provide a valuable 

research tool to define the molecular pathways activated during the differentiation 

process. It would also be a useful assay system to test out expression constructs prior 

to generating transgenic animals.
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CHAPTER TWO

MATERIALS AND METHODS

2.1 D N A  M AN IPULA TIO N

2.1.1 Restriction digestion of plasmid DNA

Plasmid DNA was digested in the appropriate enzyme buffers suggested by the 

m anufacturers (B oehringer M annheim , New England B iolabs) at 37°C for 

approxim ately 2 hours using 3-5 fold excess of the recommended amounts of 

enzyme. Double digests were carried out together unless the salt concentrations were 

incompatible, in which case the lower salt concentration digest was carried out first 

and then the salt concentration increased for the second digest.

2.1.2 Isolation of DNA fragments from agarose gels

Plasmid DNA fragments were isolated on low melting point agarose gels and 

recovered using Agarase (New England Biolabs) as indicated by the manufacturers. 

Typically, 2-5fig plasmid DNA was digested with the appropriate restriction enzyme 

and electrophoresed in low melting point agarose gels (see section 2.3). The DNA 

was visualised using long-wave UV light and the appropriate fragment excised from 

the gel into an eppendorf tube and incubated for Ihr at 42°C with 1/10 vol of enzyme 

buffer and 5 units of Agarase. Once the agarose was completely digested the DNA 

was either used directly in a ligation or alternatively the DNA was concentrated by 

precipitation with 2.5 volumes of isopropanol and 0.1 volumes of 3M sodium acetate 

at -20°C for 1 hr. The DNA was pelleted by centrifugation (14 000g for 15 minutes) 

then washed with 70% ethanol to remove the sodium acetate and resuspended in TE 

buffer (lOmM Tris-HCl, pH 8.0, ImM EDTA) or ddH20. Typically 50-60% of the 

original DNA fragment was recovered using this method.



2.1.3 Filling in reaction

The filling in of a 5’ DNA overhang to create a blunt-ended DNA fragment was 

carried out as follows:-

0.5pg DNA fragment (in 10|il TE buffer)

2|il lOx T4 DNA polymerase buffer 

1 jllI 2mmol dNTPs 

l(ll T4 DNA polymerase 

7 |il ddH20  

Total 20|il

The reaction was incubated at 37°C for 5 minutes and then stopped by adding l|i l 

of 0.5M EDTA. A phenol/chloroform extraction was perform ed to remove the 

protein and the DNA precipitated with 2 volumes of 100% ethanol and 0.1 volumes 

of 3M sodium acetate at -20°C for lh. The DNA was pelleted by centrifugation at 

14 000g for 20 minutes, washed with 70% ethanol, air dried and resuspended in 20pl 

TE buffer.

2.1.4 Ligation reactions

“Ready-To Go” T4 DNA Ligase (Pharmacia) was used as follows:- In a cohesive 

end ligation 50-100ng of vector and insert DNA (molar ratio 1:3) in 20|ll of TE 

buffer were added to a tube of “Ready-To-Go” T4 DNA Ligase which contained a 

minimum of 6 units of FPLC pure T4 DNA Ligase, 66mM Tris-HCl pH 7.6, 6.6mM 

MgCL, 0.1 mM ATP, 0.1 mM spermidine, lOmM DTT, and stabilisers stored 

lyophilized. The ligation was incubated at room temperature for 5 minutes and mixed 

by pipetting several times and the contents collected by a brief centrifugation. The 

lisation reaction was carried out at 16°C for 30 minutes and then 2|il used to 

transform E.coli D H 5a competent cells (see section 2.1.5). In blunt-end ligations 

~300n» o f DNA was used and incubation time extended to 45 minutes. The
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incubation time could be extented to overnight if the ligation had not gone to 

completion.

2.1.5 Transformation of competent cells with plasmid DNA

E.coli D H 5a (competent cells (Genotype:F\ endAl. hsdR17frk.~ mk+], supE44. thi- 

1, X, recA l, gyrA96, re lA l, AfargF-lacZYAlU169. (])80dlacZAfM 15A] purchased 

from Life Technologies, Inc.) were stored at -70°C. The <j>80dlacZA[M15A] marker 

provides a-com plem entation o f the (3-glacatosidase gene perm itting blue/white 

colour selection of recom binant/nonrecom binant plasmids (see section 2.1.6.2). 

Transformations were performed as described by the manufacturers. Typically, 50|il 

of com petent cells were transformed with lng of purified plamid D NA or 2pl of 

ligation reaction mixture.

2.1.6 Preparation of agar plates

2.1.6.1 Antibiotic plates

LB bottom (1% w/v, 0.5% w/v yeast extract, 1.5% w/v agar, 0.1M  NaCl) was 

melted and cooled to 37°C before adding (lOOpg/ml) ampicillin. Agar plates were 

poured using aseptic technique and allowed to set. Unused plates could be stored for 

approximately 2 weeks at 4°C.

2.1.6.2 Blue/white colour selection

Blue/white colour selection exploits a phenomenon called a-complementation 

(Jacobs and Monod, 1967) and is used to select recombinant plasmids. For example 

the pUC and Bluescript series of vectors encodes the a-fragm ent of the lacZ gene 

with a polylinker inserted. The nonrecombinant plasmids produce a functional a- 

fragment (N-terminus) and when the host cell encodes (¡acZ[AM15], an CO fragment 

(C-terminus) then a functional (3-galactosidase is produced. When colonies are grown 

on medium containing IPTG, which inactivates the lac repressor, and Xgal, which
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acts as a substrate for [3-galactosidase, the colonies are blue. However, when, DNA is 

inserted into the polylinker of the plasmid, the a-fragm ent is disrupted and 

a-complementation does not occur and recombinant colonies are white.

2.1.7 Small-scale preparation of plasmid DNA

The alkali lysis method as described by Sambrook et al., (1989) was used. 2mls LB 

medium (Sambrook et al., 1989), containing 50|lg/m l ampicillin (Sigma) in 15ml 

sterilin tubes were inoculated with single bacterial colonies and incubated overnight 

at 37°C in a shaking incubator (Gallenkamp, 200rpm). 1.5mls of each culture were 

decanted into eppendorf tubes and centrifuged at 14 OOOg for 10 seconds to pellet the 

cells. After removal of the supernatant the pellets were resuspended in lOOp.1 of ice- 

cold TGE solution (50mM glucose, 25mM Tris-HCl pH 8.0, lOmM EDTA pH 8.0). 

200jil of 0.2N NaOH/1% (w/v) SDS was added to lyse the cells and denature the 

DNA. The tubes were inverted several times and stored on ice. 150(J.l of ice-cold 

potassium acetate/glacial acetic acid solution (3M and 2M, respectively) were added, 

mixed, incubated on ice for 5-10 minutes and then centrifuged at 14 OOOg for 5 

minutes. The supernatants were decanted into fresh tubes and the DNA precipitated 

with 2 volumes of ethanol at room temperature. The DNA was pelleted by 

centrifugation for 10 minutes and then washed twice with 70% (v/v) ethanol. The 

pellets were air dried and dissolved in TE buffer supplemented with DNase-free 

pancreatic RNase (20pg/ml).

2.1.8 Large-scale preparation of plasmid DNA

Plasmid DNA was prepared from large scale bacterial cultures by the method of 

Birnboim and Doly, (1979) and followed by either caesium chloride gradient 

centrifugation or purification through ion-exchange plasmid purification columns 

supplied by Promega.
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0.5mls of a bacterial culture (grown overnight) was inoculated into a 2 litre flask 

containing 500mls of LB medium supplemented with 50|ig/ml ampicillin and shaken 

overnight at 37°C. The bacteria were pelleted by centrifugation at 6 OOOrpm at 4°C 

for 10 minutes in a Sorvall GS3 rotor. The cells were resuspended in 50mls of ice- 

cold TGE buffer and lysed by adding 120mls of 0.2N NaOH/1% (w/v) SDS. The 

viscous solution was mixed thoroughly and left on ice for 10 minutes to complete the 

lysis and allow the DNA to denature. Chromosomal DNA and proteins were 

precipitated by adding 60mls of ice-cold potassium acetate/glacial acetic acid 

solution (3M  and 2M respectively), incubated on ice for 10 m inutes and 

centrifugated for 10 minutes as above. The plasmid DNA containing supernatant was 

filtered through 4 layers of nylon gauze and precipitated with 0.6 volum es of 

isopropanol for 10 minutes at room temperature. The plasmid DNA was pelleted by 

centifugation at 8 OOOrpm for 15 minutes and the pellet washed twice with 70% (v/v) 

ethanol, air dried and resuspended in ~2mls of TE buffer.

Purification of plasmid DNA through Caesium Chloride/Ethidium Bromide Density 

Gradients

9.5 g of caesium  chloride (CsCl) was added to DNA/TE (from 500ml starting 

culture) and volum e made up to lOmls with TE buffer. The caesium chloride was 

dissolved and 500 |ll of lOmg/ml ethidium bromide added and mixed carefully. The 

solution was transferred to Beckman quickseal tubes and centrifuged at 50 OOOrpm 

for 16-18 hours at 20°C. Three distinct bands could be seen after centrifugation. The 

lower band which contained closed circular and supercoiled DNA was removed into 

tubes using a needle and syringe making sure that the upper chromosomal and open 

circular DNA was left. The ethidium bromide was removed from the CsCl/DNA mix 

by increasing the volume to 5 mis with ddH20 and extracting with an equal volume 

of bu tan-l-o l. The upper aqueous layer containing the DNA was removed into a 

fresh sterilin tube and the pink organic phase discarded. The extraction was repeated
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until the upper layer was clear (usually four times). The DNA was precipitated by 

adding 2.5 volumes of 70% (v/v) ethanol, 0.1 volumes of 3M sodium acetate and 

incubating at -70 C for 30 minutes. The DNA was pelleted by centrifugation at 

8 OOOrpm for 10 minutes at 4°C in a HB4 rotor. The pellet was air dried and 

resuspended in 500|il of TE buffer. In general caesium chloride plasmid preparations 

were used when good quality highly pure DNA was required, for example, 

transfections into cultured cells or isolation of fragments for microinjection.

“Magic” Maxipreps DNA purification (Promeqa) 

lOmls of purification resin was added to the DNA solution and mixed by swirling. 

The mixture was added to a magic maxicolumn and a vacuum applied to draw the 

DNA/resin mixture into the column. The DNA bound to the ion-exchange column 

was washed with 25mls of column wash solution (200mM NaCl, 20mM Tris-HCl, 

pH 7.5, 5mM EDTA, diluted 1:1 with 95% (v/v) ethanol). 5mls of 80% (v/v) ethanol 

was applied to the column to wash the DNA. The resin/DNA was dried by drawing a 

vacuum for an additional 10 minutes. 1.5mls of preheated (70°C) TE buffer was 

applied to the column, left for 1 minute and the DNA eluted by centrifugation at 

2 500rpm for 5 minutes in a swing-out bucket rotor.

The DNA concentration and purity was estimated by measuring absorbance ratio at 

260nm/280nm. In general highly pure DNA has a 260nm/280nm ratio of >1.8, while 

protein contamination lowers this ratio. The quality of the DNA was checked by 

running a mini-ethidium bromide agarose gel (see section 2.3). Typically a 5|ul 

aliquot of the plasmid and 5fll loading dye (40mM EDTA, 0.1%SDS (w/v), 30% 

(w/v) ficoll and 1.2mg/ml bromophenol blue) was loaded and run on the gel.

2.1.9 Purification of transgene fragment for microinjection

The transgene construct (pBS-4.2BLG-tsA58) was purified free from plasmid 

sequences as described in section 2.1.2. Approximately 100jig of DNA was used in
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the digestion. The transgene was resuspended in a Low salt buffer (0.2M NaCl, 

20mM Tris-HCl pH 7.4, ImM  EDTA) and purified using an Elutip-d column 

(Schleicher & Schuell) as described by the manufacturers. Briefly the column was 

prewashed with 5mls of a High salt solution (1M NaCl, 20mM Tris-HCl pH 7.4, 1M 

EDTA). The column was then equilibrated with 5mls of Low salt buffer before the 

DNA fragment was filtered through a O.45|0.m cellulose acetate filter (Schleicher & 

Schuell) attatched to the column. This removes any particulates from the sample e.g 

residual gel fragments. The filter was disconnected from the column and 5mls of 

Low salt loaded onto the column. The DNA was eluted by loading 5mls of High salt 

onto the column and collecting the eluant in a 1.5ml eppendorf tube. The DNA was 

precipitated using 2 volumes of isopropanol at 4°C for 15 minutes and pelleted by 

centrifugation (14 OOOg for 15 minutes). The DNA fragment was resuspend in TE 

buffer at a final concentration of 50ng/|ll.

2.2 Nucleic A cid Isolation

2.2.1 Isolation of mouse tail genomic DNA

Five week old mice were anaesthetised (Flecknell, 1983) and l-2cm tail biopsies 

taken for preparation of genomic DNA. The biopsies were incubated in 0.75 mis 

digestion buffer (lOmM Tris-HCl pH 7.9, ImM EDTA pH 8.0, 0.3M sodium acetate, 

1% SDS and 200jJ.g/ml proteinase K) overnight in a shaking incubator at 37°C. Tail 

residues were centrifuged for 5 minutes at 14 OOOg in a microfuge at 4°C and the 

supernatant decanted into 1 ml of ethanol, inverted several times until threads of 

DNA were visible. The DNA was pelleted by centrifugation at the same speed and 

temperature as above for 15 minutes. The ethanol was removed and the pellets 

washed with 70% ethanol and air dried. The DNA was resuspended in 500|ll of TE 

buffer, incubated at 65°C for 10 minutes and tubes flicked to disperse the DNA. The 

DNA was then stored at -20°C and used for PCR and/or Southern blotting.
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2.2.2 Isolation of liver genomic DNA

A pproxim ately 0.5g of tissue was homogenised in 1ml of solution D (4M 

guanidinium thiocyanate, 25mM sodium citrate pH 7.0, 0.5% [v/v] sarcosyl, 0.1M 

[v/v] 2-m ercaptoethanol) Chomcyzynski and Saachi (1987). The sam ples were 

incubated for 1 hour at 50°C with 100|ll of proteinase K (200|lg/m l) and 20pl of 

RNase (50pg/m l) added to digest protein and RNA respectively. 1ml o f 100% 

ethanol was added and mixed carefully by inverting a few times. The DNA was 

"spooled " out on glass pasteur pipettes and washed with 70% (v/v) ethanol, air dried 

and dissolved in 500(1,1 of TE buffer. 20|ll of proteinase K was added and incubated 

overnight at 50°C to ensure that the DNA was completely dissolved and proteins 

com pletely digested. The samples were phenol/chloroform extracted to remove any 

protein and then stored at -20°C.

2.2.3 Isolation of total RNA from mouse tissue.

All plastics used for RNA analysis were double autoclaved.

Fem ale mice were sacrificed by cervical dislocation. Approximately 0.5g of tissue 

was homogenised in 2mls of RNazol (Biogenesis). 0.1 volumes of chloroform  was 

added to the homogenate, mixed well and incubated on ice for 15 minutes. Protein 

was removed from the samples by centrifugation (14 000g for 15 m inutes at 4°C). 

The upper aqueous layer containing the RNA was carefully removed avoiding the 

protein contained at the white interphase and inorganic bottom layer. The RNA was 

precipitated with 1 volume of isopropanol at 4°C for 15 minutes. The RNA was 

pelleted by centrifugation (14 000g for 15 minutes at 4°C), washed with 70% (v/v) 

ethanol, dissolved in deionised formamide (Chomczynski 1992) and stored at 

-20°C.

2.2.4 Isolation of total RNA from cultured cells.

Confluent flasks of cells (normally T 80cnr flasks with approxim ately 1 x 1 0 ^  

cells) were washed once in lx PBS and cells harvested by trypsinization (see section
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2.8.2). The cells were pelleted by centrifugation at lOOOrpm in a bench top centrifuge 

for 5 minutes and the supernatant removed. The cells were lysed by resuspending in 

2mls of RNA-zol. The RNA was extracted as above and dissolved in deionised 

formamide and stored at -20°C.

The concentation and purity of the RNA was estimated by measuring the O.D. ratio 

at wavelength 260nm/280nm. Approximately lOOpg of RNA was normally obtained 

from this method and the ratio of isolated RNA >1.8.

2.3 ELE C TR O P H O R ETIC  TECHNIQUES

2.3.1 Agarose gel electrophoresis of genomic DNA

0.8g of agarose was dissolved in lx  TAE buffer (40mM Tris-acetate, 2.5mM  

EDTA pH 7.7), allowed to cool to 45-50°C and ethidium bromide added to a final 

concentration of 1 jig/ml. The gel was poured and allowed to set before submerging 

in lx  TAE running buffer. 0.1 volum es of loading dye was added to 10p.g 

equivalents of genomic DNA and samples either electrophoresed overnight at 1-2 

volts/cm or at 4 volts/cm for 3-5 hours. The DNA was visualised under long-wave 

UV light and photoghraphed.

2.3.2 Formaldehyde gel electrophoresis of total RNA

Total RNA samples were electrophoresed on a 1% (w/v) agarose gel prepared with 

MOPS buffer (0.02M 3-N-fmorpholinol] propanesulfonic acid, 5mM sodium acetate 

containing 6.8% (v/v) form aldehyde essentially as described by Sambrook et al., 

(1989). The solution was swirled to mix and the gel poured in a fume hood and 

allowed to set. 19|il of Northern loading buffer (10(il ddH20, 3.5|il formaldehyde, 

2pl lOxMOPS, 4)l l 1 of loading dye and 0.25pl of lOmg/ml ethidium bromide) was 

added to lOpg equivalents of RNA, denatured at 65°C for 5 minutes, to remove 

secondary structures and im m ediately loaded on to the gel. The samples were
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electrophoresed in lxM OPS, overnight at l-2volts/cm, visualised by long-wave UV 

light and photographed.

2.3.3 Native polyacrylamide gel electrophoresis

Native 6% polyacrylamide gels and nuclear extracts were prepared as described by 

Watson et al., 1991 with some modifications (see section 2.9.2). Loading dye (25mM 

HEPES pH 7.5) was added to the DNA/protein complex and the gel electrophoresed 

at 4volts/cm  for 3hrs in lxTA E buffer (6mM Tris, Im M  EDTA, 7.5mM  sodium 

acetate pH 7.5). The buffer was recirculated using a peristaltic pum p and water 

cooled to prevent dissociation of protein/DNA complexes. The gels were fixed in 

10% (v/v) acetic acid and dried by vacuum pump before being exposed to 

phosphorimager screens or X-ray film (AGFA:CUPRIX RP1).

2.3.4 Denaturing (SDS/PAGE) polyacrylamide gel electrophoresis

One dimensional SDS/PAGE gel electrophoresis was perform ed as described by

Laemmli, (1970). Using a premixed polyacrylam ide solution (30% ) supplied by 

Scotlabs, a 15% running gel with a 3% stacking gel was cast. Protein samples in 

electrophoresis sample buffer (see section 2.9.1) were boiled for 3 minutes to ensure 

com plete denaturation of the proteins before loading on the gel. Gels were 

electrophoresed at a constant current of 30mA for about lh r  and then at 48mA for 

5hrs.

2.3.5 Sequencing gels

6% (w/v) polyacrylamide gels with 7M urea was used for DNA sequencing. The 

samples were denatured at 65°C for 5 minutes before loading on to the gel. The 

samples were electrophoresed at constant power (60 watts) in lx  TBE (0.13M Tris, 

4mM boric acid, 0.25mM EDTA) and fixed in 10% acetic acid then dried by vacuum 

pump before being exposed to X-ray film (AGFA:CUPRIX RP1).
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2.4 NUCLEIC ACID TRANSFER

2.4.1 Transfer of DNA from agarose gels to nylon membrane.

The DNA was transferred  from  the agarose gel onto Hybond-N  m em brane 

(Amersham) using the blotting method described by Southern (1975). The DNA was 

firstly depurinated by gently shaking in two changes of 0.2N HC1 for 15 minutes 

(required when fragments >8kb are to be transferred). Then the DNA was denatured 

in two changes of denaturing solution (1.5M NaCl, 0.5M NaOH) for 15 minutes 

each, to hydrolyse the phosphodiester backbone at the site of depurination and rinsed 

in distilled water before being neutralised (ceases hydrolysis), in two changes of 

neutralising solution (1.5M NaCl, 0.5 M Tris-Cl pH 7.5, ImM EDTA).

The gel was placed on a wick consisting of two sheets of Whatman 3mm paper on 

a glass plate and soaked in 20x SSC (3M NaCl, 0.3M sodium citrate). A piece of 

Hybond-N membrane cut to the size of the gel was prewetted in 2x SSC and placed 

on to of the gel. This was followed by 2 pieces of Whatman 3mm cut to the same 

size and prewetted in 2x SSC. Air bubbles were removed using a sterile glass pipette. 

Paper towels were placed on top of the 3mm paper followed by a glass plate and 

finally a weight (approx. 0.5kg) and the DNA allowed to transfer to the membrane 

by capillary action as the SSC is drawn through the paper towels. After 3hrs the wet 

paper towels nearest the gel were replaced by dry towels and the transfer allowed to 

proceed for approximately 20 hrs in total. The membrane was removed, rinsed in 3x 

SSC and the DNA cross-linked onto the membrane using an automatic UV-linker 

(Stratagene).

2.4.2 Transfer of RNA from formaldehyde gels to nylon membranes

A similar procedure as above was used but the depurination, denaturation and 

neutralisation steps were omitted. The transfer of the RNA was done with lOx SSC, 

membrane and W hatman paper prewetted with sterile water as this gave the most 

efficient transfer of RNA from the gel.
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2.5 RADIOLABELLING TECHNIQUES

2.5.1 Random priming

Essentially this procedure exploits the exonuclease activity o f DNA polymerase I. 

The C-terminal, Klenow fragment retains 3 ’->5’ exonuclease activity but lacks 

5 ’->3’ exonuclease activity and can therefore incorporate nucleotides which are 

complementary to 5 ’ overhangs. Radiolabelled DNA probes were prepared by the 

methods described by Feinberg and Vogelstein (1983 & 1984).

25-50ng linearised double stranded DNA in 23pi o f ddH20  was added to an 

eppendorf tube and 10pi o f random primers from a Prime-it II kit (Stratagene) added 

and boiled for 2 minutes. The following components from the kit were added:

lOpl 5x dCTP primer buffer

lp l Klenow fragment of DNA polymerase I (5 units/pl)
32

5pl P labelled a - dCTP (Amersham: Specific Activity 3000Ci/mM).

The tube was incubated at room temperature for 30 minutes and incorporation of 

radioactivity measured by TCA precipitation as described by Sambrook et al 

(1982).

The unincorporated label was removed by applying the probe (made up to lOOpl 

with ddH20 )  to a G50 Sephadex column (5 Prime->3 Prime Inc) as described by the 

manufacturers. Briefly the column was inverted several times and the column buffer 

removed by centrifuging the column at lOOOrpm in a swing out rotor bench top 

centrifuge for 2 minutes. The probe was applied to the column and centrifuged again 

for 2 minutes at lOOOrpm. The unincorporated nucleotides remained trapped in the 

column and the labelled fragment eluted. The probe was denatured by adding 1/4 of a 

volume of 2M NaOH and leaving for 5 minutes before adding to the hybridisation 

solution.
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2.5.2 End labelling

D ouble stranded oligonucleotides, synthesised by Oswel DNA systems, K ing’s 

Buildings, Edinburgh, were radiolabelled by phosphorylating the 5 ’ end using
32

P o ly n u c leo tid e  k in ase  (B oehringer M annheim ) and P labelled yATP 

(Am ersham :Specific A ctivity >5000 Ci/mM). The following com ponents were 

added, in order, to a microfuge tube:-

2(tl (50ng) double stranded oligonucleotide 

lpt1 lOx kinase buffer 

4(0.1 ddH20

2|ll 32P y-ATP (10 units/ftl) 

lfil Polynucleotide kinase

The labelling reaction was incubated at 37°C for 30 minutes and unincorporated 

nucleotides removed by applying the probe (made up to 100|tl) to a Sephadex G50 or 

G25 column depending on the size of the oligonucleotide (5 Prime->3 Prime Inc) as

described above.

2.6 HYBRIDISATION OF DNA AND RNA PROBES TO NYLON 
MEMBRANES

The hybridisation conditions described by Church and Gilbert (1984) were used 

with some minor modifications.

M em branes were prehybridised for 30 minutes with lOmls o f hybridisation 

solution (0.5M phosphate buffer pH 7.2, 7% SDS, ImM  EDTA) in a roller oven 

(Techne) at 65°C before adding the probe (see section 2.5). H ybridisation was 

carried out overnight at 65°C and the excess probe removed by washing with 

different stringency washes. A high stringency wash was perform ed using two 

washes with 0.2x SSC/1%SDS for 15 minutes. This was followed by a 15 minute 

wash in O.lx SSC/0.1%  SDS if background was high. A low stringency wash
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consisted of 2 washes at 65°C with 2x SSC/1% SDS for 15 minutes each, followed 

by 1 wash with lx  SSC/0.1% SDS. Membranes were wrapped in Saran W rap and 

either exposed to phosphorimager screen or to X-ray film (AGFA:CURIX RP1) at - 

70°C with intensifying screens.

To strip the membrane for reprobing, it was placed in a boiling solution of 0.1% 

(w/v) SDS and the solution allowed to cool to room temperature. The membrane was 

re-exposed to X-ray film or phosphoimager screens to check the blot was stripped of 

signal.

Double stranded DNA sequencing was performed as described by manufacturers 

using a T7 Sequencing kit (Promega). Briefly 1.5pg of template DNA in 8pl of TE 

buffer was denatured with 2pl of 2M NaOH for 10 minutes. 3pl of 3M sodium 

acetate pH 4.8 and 7jll of ddH z0 was added and the DNA precipitated with 3 

volumes of 100% ethanol at -20°C for 15 minutes. The DNA was pelleted by 

centrifugation at 14 OOOg for 10 minutes and washed once with ice-cold 70% 

ethanol. The pellet was dried for 10 minutes under vacuum and redissolved in lOpl 

ddH^O. The prim er and DNA template were annealed by adding 2pl (0.8pM ) of 

primer and 2pl of annealing buffer to the DNA template at 37°C for 20 minutes. The 

annealed prim er and DNA were left for a further 10 minutes at room temperature 

before proceeding to the sequencing reactions. 2.5pl of A, T, C and G mix-short 

were dispensed into labelled tubes and an enzyme premix made up in another tube. 

The enzyme premix contained:-

2.7 DNA SEQUENCING

ddH90 n pi

Labelling M ix-dATP 3n pi

2n pi (1.5 units/pl) 

n pi (lOpCi)

7n pi n=number of DNA templates

Diluted T7 DNA polymerase 

[a-35S]dCTP

Total volume



The components were mixed gently by pipetting and the contents collected by a brief 

centrifugation. 6pl o f the premix was added to each tube containing the annealed 

template and primer, m ixed and left at room temperature for 5 minutes to complete 

the labelling reaction.

The nucleotide m ixes were prewarmed at 37°C and 4.5pl of the labelling reaction 

transferred into another tube before heating to 75-80°C for 2 minutes. 3pl of each 

reaction was loaded on to a 6% (v/v) polyacrylamide gel and run at 60 watts for 1.5 

hrs before loading a second set and leaving for another 1.5-2hrs. Typically between 

200-300bp could be read from two loadings on the same sequencing gel.

2.8 GENOTYPING OF TRANSGENIC MICE B Y  TAIL D N A  PCR  

Using filtered tips throughout to avoid contamination a master mix was made up 

containing:-

x l MIX

5pi 10X PCR buffer (Boerhinger)

0.5pl lOmM dNTP mix(dCTP, dATP, dGTP and dTTP, Pharmacia) 

lp l 20pM  *BLG primers (transgene specific) 

lp l 20pM  §WAP primers (endogenous control)

0.5pl Taq polymerase (Boerhinger)

42pl ddH^O

*BLG primer set:- 5 ’-TCGTGCTTCTGAGCTCTGCAG-3’

5 ’-GCTTCTGGGGTCTACCAGGAA-3 ’

WAP primer set:- 5 ’-CCTCCTCAGCATAGACA-3’

5 ’ -GGT G ATC AGT C ACTTGCCT G A-3 ’

50pl of the master mix were dispensed into each tube and overlaid with 50pl of 

mineral oil to avoid evaporation, lpl of crude tail DNA was added to each tube and a 

known positive and negative tail sample set up alongside to act as controls for the

60



reaction. The samples were placed in a PCR machine and the following program 

executedi-

Denature 5 mins at 95°C (1 cycle)

Denature lm in at 95°C 

Anneal lm in at 42°C 30 cycles

Extention 2 minutes at 72°C __

Extention for 5 minutes at 72°C (1 cycle)

20|ll of the am plified DNA samples were electrophoresed in a 2.5% (w/v) lx  TBE 

agarose gel until the BLG specific band (246bp) and the W AP (207bp) specific band 

could be distinguished under U.V light.

2.9 CULTURING OF MOUSE M A M M AR Y  CELLS

2.9.1 Culturing mammary explants and establishing outgrowths

Two pairs of dissection scissors and forceps (per mouse) were sterilised in a 180°C 

glass beaker for 6hrs, the day prior to removing the mammary glands. M edia and 

collagen coated flasks were also prepared as followsi- 

Dissection Medium:

M l99 (Gibco/BRL: Cat.No. 22340-012)

2x antibiotic/antimycotic (Gibco/BRL:Cat.No. 15240-039) 

50pg/ml gentamycin (SigmaiCat.No. G-1397)

Explant growth medium

(1:1) DMEM/F12 (Gibco/BRL:Cat.Nos. 4196-039/21765-029) 

5(ig/ml bovine insulin (Gibco/BRL:Cat.No. 13007-018)

5p.g/ml ovine prolactin (Sigma:Cat.No. L-6520)

5p.g/ml hydrocortisol (SigmaiCat.No. H-0888)

5ng/ml estradiol (SigmaiCat.No. E-2758) 

lOng/ml EGF (SigmaiCat.No. E4127)

50pg/ml gentamycin



T25cm2 flasks were coated with 0.1% (v/v) typel collagen (Sigma:Cat.No. C8919)

diluted in 0.1N acetic acid and left overnight at 4°C.

Mammary glands were asceptically removed from midpregnant mice (13.5-14 days

of pregnancy) either transgenic mice (4.2BLG-tsA58 and H2Kb/SV40 tsA58 [kindly

provide by D. K iouiss]) or nontransgenic control mice. One set o f forceps and

dissection scissors w ere used to cut and pin back the skin to expose the mammary

tissue. The glands were removed using the other set of forceps and scissors, avoiding

the muscle which lies across the second thoracic glands. The glands were washed

several times in D issection medium and transferred to a glass petri dish. The tissue

was cut using scalpels until pieces were approximately 1mm in size. Dissection

media was changed several times during the course of cutting the explants to prevent

the explants from sticking together. The collagen coated flasks were washed several

2+ 2+times with IX PBS (Ca and Mg free tablets supplied by Oxiod, dissolved in 

AnalaR water [BDH] and autoclaved) to neutralise the collagen prior to the addition 

of the explants. Typically 300 explants could be obtained from one midpregnant 

mouse. Approximately 30 explants were seeded into each T25cm 2 flask and cultured 

in a 5% C 0 2 incubator for two weeks at either the fully perm issive tem perature 

(33°C) or at a semi-permissive temperature (37°C) with daily medium changes using 

Explant growth medium. In general the Explant growth medium did not contain 

serum but where indicated 10% (v/v) serum was used. Explants were removed after 

two weeks and the outgrowths cultured in Complete medium.

Complete m edium :

(1:1) DMEM/F12 

10% (v/v) FCS 

5jlg/ml bovine insulin 

lOng/ml EGF 

5|ig/ml Linoleic acid 

50flg/m] gentamycin.
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These primary cultures were maintained for several weeks and passaged when the 

size of the islands stopped increasing or the flask became almost confluent.

2.9.2 Passaging and maintenance of K3M-2 cultures

To passage the cells, the medium was aspirated and the cells washed with IX PBS. 

Cells were passaged as clumps of 5-10 cells by a gentle trypsinization using TEG:- 

TEG (Trvpsin EGTA1:

lOOmls 2.5% (v/v)Trypsin (Flow Laboratories)

0.5g EGTA (Sigma)

150mg PVA (Sigma)

7.5g NaCl 

0.12g NajHPC^

0.37g KC1 

l.Og D-Glucose 

3.0g Tris

1 .Omis 1 % (v/v) Phenol Red 

Cells were incubated with TEG for 1 minute before Complete medium was added 

to the flask to deactivate the trypsin. The cells were harvested using a cell scraper 

and broken into clumps of 5-10 cells by pipetting up and down in a 10 mis glass 

pipette 3 times. The clumps of cells appeared to survive better than a single cell 

suspension. The cells were pelleted by centrifugation at 1 OOOrpm for 5 minutes, the 

supernatant aspirated and resuspended in an appropriate amount of Complete media. 

Cells were split 1:2 for 3 passages on to collagen coated flasks until the cells became 

used to the culture conditions. Cells are now routinely passaged as clumps of 5-10 

cells and split 1:4 every 3-4 days on to plastic coated flasks and incubated at 37°C 

with medium changed every 2 days.



2.9.3 Freezing and resuscitation of KIM-2 cells
2

Cells were harvested from a T25cm flask as described above and resuspended in 

0.75m ls o f Complete medium and placed on ice. An equal volume o f ice-cold 

Freezing mix was added dropwise with continual mixing of the contents of the tube.

Freezing m ix:-

60% (v/v) Complete medium 

20% (v/v) FCS

20% (v/v) dimethyl sulfoxide (Sigma:Cat.No. D-2650)

The m ixture was dispensed into 3x 0.5ml aliquots into prechilled screw cap tubes 

(Sarstedt), placed in a polystyrene box and incubated at -70°C overnight before 

transferring to liquid nitrogen for long term storage.

To resuscitate the cells, the vial was transferred from the liquid nitrogen to a beaker 

of water preheated to 37°C and agitated until the mixture had thawed. The contents 

of the tube were added to lOmls of Complete medium and the tube rinsed with lm ls 

of medium. The cells were pelleted by centrifugation at 1 000 rpm for 5 minutes, the

supernatant removed. The pellet was resuspended in 5mls of Complete medium,
2

transferred to a T25 cm flask and placed in a C 0 2 incubator at 37°C. The cells 

adhere to the plastic or collagen after approximately 3-4 hrs.

2.9.4 Induction of differentiation in KIM-2 cells

Cells were grown on collagen or plastic in Complete medium until confluent and 

rinsed with PBS. The medium was changed to Complete medium without EGF for 2 

hrs and then changed to Induction medium for the times indicated. Differentiation of 

KIM-2 cells on Matrigel was achieved by seeding the cells at 4 x l0 4 cells/cm2 onto 

precoated 6-well dishes (Becton and Dickinson) in Complete medium until 

“mammospheres” formed then differentiating with serum-free Induction medium.
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Induction medium:-

(1:1) DMEM/F12 

10% (v/v) FCS 

5p,g/ml bovine insulin 

5|ig/m l Linoleic acid 

50|lg/ml gentamycin

5jig/ml ovine prolactin (Sigma:Cat.No. L-6520) 

lpM  dexamethasone (Gibco/BRL:Cat.No. D-4902)

2.9.5 Transfection of KIM-2 cells

KIM-2 cells were transfected using a variety of transfection methods as described by 

manufacturers or standard protocols. The conditions for each transfection method 

was optimised by transient transfection with either pC H llO  (Pharmacia) or |3geo 

(kindly provided by Dr. W. Skames) reporter LacZ constructs. The optimal amount 

of transient transfectants was assayed by counting the number o f positive LacZ 

staining cells (see section 2.10)

2.9.5.1 Lipofectamine

KIM-cells were transfected using the liposome based deliver of plasmid DNA into 

the cells as outlined in the manufacturers guidelines (Gibco/BRL). The optimal 

conditions for transient transfection of KIM-2 cells were as follows:-
5

Cells were plated at a density of 2x 10 cells per well of a 6-well plate the day before 

the transfection. For each well to be transfected 15pl of Lipofectamine was added to 

lOOpl of Optimem (basal media recommended by Gibco/BRL) in an Eppendorf tube 

and 2pg of circularized plasmid DNA added to lOOji.1 of Optimem in another tube. 

The tubes were mixed and incubated at room temperature for 45 m inutes with 

occassional mixing by flicking the tube. The cells were washed with Complete 

medium without serum. 0.8 mis of serum free medium was added to the tube



before assaying for (3-gal expression. Typical transfection efficiencies using calcium 

phosphate ranged from 0.09%-0.29%.

For stable transfections a similar procedure was followed but on a larger scale. A 

confluent T80cm2 flask of KIM-2 (1.7x 107 cells) was split 1:3 the day prior to 

transfection and incubated overnight in Complete medium.. Approximately 5 .6 x l0 6 

cells per T80cm2 flask were cotransfected with 0.6flg pSV2neo and 15|lg of the test 

construct as described by Gorman (1985). The calcium phosphate precipitate was 

washed off the cells 5-6hr after the start of the transfection and the media changed to 

complete medium but without any antibiotics and allowed to recover for 24hrs-48hrs 

before selection with growth medium supplemented with 200p,g/ml G418 

(Sigma:Cat.No G5013). After 14 days of selection discreet G418 resistant colonies 

could be observed. Pools of cells were harvested by trypsinization and expanded 

before being used in induction experiments and frozen stocks made.

2.9.5.4 Strontifect

Strontifect phosphate (Biovation) mediated transient transfection procedure was 

sim ilar to the calcium  phosphate method except strontium  phopshate was used 

instead of calcium phopshate. The precipitate was left on the cells either for 5hrs or 

overnight since the strontium phosphate is less toxic to the cells than calcium 

phosphate. The transfections which were carried out overnight were done in the 

Complete medium without antibiotics since this method is reported to function in the 

presence of serum. Typical transfection efficiencies ranged from 0.001-0.02%.

2.10 (3 -G A L A C T O S ID A S E  STA IN IN G  O F T R A N SFE C T E D  K IM -2 
CELLS

Transiently transfected cells were washed with lx  PBS and incubated with fixative 

(2% formaldehyde, 0.2% glutaraldehyde in PBS) for 10 minutes at 4°C. The cells 

were washed 3 times with lx  PBS to remove residual fixative which may inhibit (3- 

galactosidase activity. The fixed cells were incubated overnight in staining solution 

(2mM M gCl2, 5mM K4Fe(CN)6 3H20, 5mM K3Fe(CN)6, 1 mg/ml X-Gal). The
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staining solution was removed and the cells overlayed with lxPB S . The cells were 

viewed using a phase-contrast microsope and blue cells counted.
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2.11 PROTEIN EXTRACTION A N D  ANA LYSIS

2.11.1 Extraction of protein from tissue culture cells

Cells were harvested as described above and total protein cell extracts made by 

directly lysing the cells in 0.5mls of protein lysis sample buffer (0.125M  Tris-HCl 

pH 6.8, 2% (w/v) SDS, 2% (v/v) 2-m ecaptoethanol, 10% (v/v) glycerol). The 

samples were boiled for 10 minutes and stored at -20°C.

2.11.2 Preparation of nuclear protein extracts from tissue and cultured

Nuclear extracts were prepared from tissues and cultured cells as described by 

Dignam et al., (1983) with minor modifications described by W atson et a l ., (1991). 

Briefly mouse mammary tissue was flash frozen in liquid nitrogen and approximately 

7g used to prepare the extracts. The following buffers were prepared prior to making 

the nuclear extracts.

Buffer A: O.lmM Sodium orthovanadate 2m M EG TA

cells

0.5mM PMSF 2mM DTT

0.6M Sucrose 0.2% (v/v) TritonX-100

0.3mM Spermine

120mM KC1

15mM NaCl

lOmM HEPES pH 7.5

2mM Spermidine

28mM (v/v) 2-mercaptoethanol

4mM EDTA

Buffer NT Buffer L:

15mM NaCl lOmM NaCl

lOmM HEPES pH 7.5 0.1% (v/v) NP 40

lOmM HEPES pH 7.5
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Buffer NR: Dialysis buffer:-

400mM NaCl 20mM HEPES pH 7.5 

lOOmM KC1lOmM HEPES pH 7.5

1.5mM M gCl2

O .lm M ED TA

O.lmM EDTA

O.lmM EGTA

O.lm M EGTA 0.5mM DTT

0.5mM DTT 20% (v/v) Gycerol 

0.5mM PMSF10% (v/v) Glycerol

0.5mM PMSF 0.1 mM Sodium orthovanadate

0.1 mM Sodium orthovanadate

The frozen tissue was ground to a fine powder and resuspended in lOmls of 

A/NT/L buffers in a ratio of 2:3:5 respectively and kept on ice to prevent degradation 

of the proteins by cellular proteases. The dispersed cells were homogenised using a 

Dounce hom ogeniser (10 strokes at speed 7) and filter through two layers of 

micracloth (Cambridge Bioscience). The nuclei were pelleted by centrifugation at 

2 500rpm for 10 minutes (4°C) in a swing out Sorvall rotor. The supernatant was 

discarded and the pellet resuspended in 10ml of A/NT buffers and pelleted again at 

2 500rpm for 10 m inutes (4°C). The supernatant was removed and the pellet 

resuspended in lOmls of NR buffer and left in ice on a shaking platform ice, shaking 

gently for 30 m inutes to lyse the nuclei. The nuclear debris was pelleted by 

centrifugation at

35 OOOrpm for 30 minutes in a swing out SW50.1 rotor at 4°C. The supernatant was 

removed and dialysed against 2 litres of dialysis buffer for 4 hrs at 4°C. The nuclear 

extracts were dispensed into 1ml aliquots and flash frozen in liquid nitrogen before 

storing at -80°C. Extracts were stable for at least 1 year using this method.

Cell nuclear extracts were prepared by harvesting the cells from a confluent 

T80cm2 flask as described in section 2.8.3 and washing the pellet with lxPBS. The



pellets were placed on ice and resuspended in 3mls of A/NT/L as above but cells 

were dispersed using Eppendorf homogeniser sticks, supplied by Anachem. The 

nuclei were pelleted by centrifugation for 5 minutes at 12 OOOg in a microfuge at 

4°C. The pellets were resuspended in 3mls of A/NT and nuclei collected again and 

resuspended in 0.5mls NR buffer. The extracts were shaken on ice at 4°C for 30 

minutes and spun for 15 minutes in a microfuge at 12 OOOg. The supemantant was 

removed and dialysed for 3-4 hrs in dialysis buffer, flash frozen and stored at -80°C.

2.11.3 Estimation of protein concentration

Protein concentration was measured using the PIERCE detection system and the

Standard Protocol. Protein standards w ere prepared in the range 200|J.g/ml- 

1200pg/ml by diluting the bovine serum albumin stock (2mg/ml) provided by the

manufactures and a blank prepared with no protein. 10|il of the nuclear extracts were

diluted 10 fold with ddH20. 0.1ml of each of the standards and the nuclear extracts 

were pippetted into fresh tubes and 2.0 mis of the W orking Reagent added to each 

tube, mixed and incubated at 37°C for 30 minutes. During this incubation time there 

is a colour change from pale green to purple due to the reaction of protein with Cu2+ 

in an alkaline medium to yield C u1+ which when complexed with bicinchoninic acid 

(BCA) gives a purple reaction product which exhibits strong absorbance at 

wavelength 562nm.

The absorbances at wavelength 562nm of the standard (blank corrected) were 

plotted against protein concentration. Using this standard curve the protein 

concentrations of the nuclear extracts was determined.
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2.11.4 Western blotting

To detect |3-casein, one dimensional SDS-PAGE was performed (see section 2.3.5). 

Proteins were transferred to nitrocellulose (Schleicher & Schuell) at 0.8mA/cm2 for 

1 hr using a semi-dry electroblotter (Khyse-Andersen, 1984). A fter blocking non­

specific binding w ith 1% (w/v) BSA in PBS/Tween (0.01% v/v) for lh r  the 

nitrocellulose was exposed to a polyclonal anti-rabbit (3-casein antibody diluted 

1:10 000 in blocking solution for lh r (kindly provided by Dr. B. B inas). The 

membrane was washed twice with PBS/Tween at 15 minute intervals. The primary 

antibody was visualized using peroxidase-conjugated anti-IgG secondary antibody 

and ECL detection reagents (Amersham).

To detect T-antigen protein the same procedure was performed but 5% Marvel was 

used to block non-specific binding instead of BSA. The large T-antigen specific 

antibody Pab 416 (Calbiochem: Cat.No. DP-02) and Pab 108 (Santa Cruz: Cat.No. 

sc -148) which reacts with both large T and small t antigen were used at 1:500 

dilution.

2.11.5 Electrophoretic mobility shift assays (EMSA)

0.5ng of end labelled double stranded DNA probe (see section 2.5) containing 

10000-50000cpm was incubated with 2jig of nuclear extracts for 20 minutes in a 

buffer containing 20m M  Hepes pH 7.5, ImM EDTA, Im M  DTT, 10% (v/v) 

glycerol, lOOmM NaCl, 0.05% (v/v) NP40 and lp g  poly dl-dC carrier (Boehringer

Mannheim) in a 20pl reaction. The DNA-protein complexes were resolved on native

6% (v/v) polyacrylamide gels as described in section 2.3.3 

Supershifts were perform ed by adding the antibody to the nuclear extract and 

buffer mix and incubating for lh r on ice before addition of the probe as described 

above.
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2.12 IMMUNOHISTOCHEMISTRY

2.12.1 Preparation of paraffin tissue sections for staining

The right and left inguinal (number 4) mammary glands were removed from

normal and transgenic C57BL6 x CBA mice at various stages of development. The

glands were fixed in formalin (10% (v/v) formaldeyde in PBS pH 7.6) for at least 24

hours before embedding in paraffin using standard procedures. 5p.m sections were

cut from blocks using a Leica microtome. The sections were floated in a 50°C water

bath and collected on glass slides.
The sections were dew axed and rehydrated in Coplin ja rs  using standard

procedures. Briefly, sections were dewaxed in two changes of xylene and rehydrated

through graded alcohol -100%/70%/50% Ethanol/ddH20 (v/v). The sections were

washed in running tap water before staining procedures were carried out.

2.12.2 Histologically staining of mammary sections

M ayer’s haematoxylin-eosin staining of the first and last tissue sections cut were 

routinely performed to examine the morphology of the glands. The sections were 

placed in M ayer’s haem atoxylin solution (BDH) for 5 m inutes and washed in 

running water for 3 minutes or until blue stain is visible. The sections were then 

counterstained for 30-60 seconds with eosin (BDH), rinsed in running tap water for 

30 seconds and dehydrated through graded alcohols, cleared in xylene and mounted 

in DPX mounting medium.

2.12.3 Immunohistochemical staining of mammary sections

For immunohistology, optimal concentrations of the monoclonal antibodies were 

determined. Generally tissue culture supernatants were used neat and ascites diluted 

1:50-1:500. Rehydrated mammary sections were placed in a humidifier and blocked 

with 5% (v/v) normal goat serum in TBS (Tris-HCl buffered saline) for 10 minutes. 

The excess serum was wiped from each section and the section covered with the
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appropriate concentration of monoclonal antibody (diluted in the block) and 

incubated overnight in the humidifier box at 4°C. The excess solution was tipped off 

the slides and the sections briefly washed in running tap water and 2 washes in TBS. 

The secondary antibody, either biotinylated rabbit anti mouse (DAKO), diluted 1:400 

in block or FITC rabbit anti mouse (DAKO) diluted 1:50 in block were added as 

above and incubated for 30 minutes. The sections were washed again in running tap 

water. The FITC stains were done in the dark and were mounted directly in DABCO 

or Mowiol mounting medium which helps prevent fading of the fluorescence.

The ABC system  (DAKO)-avidin/biotinylated enzyme com plex was used to 

visualise staining o f section which had been incubated with the biotinylated 

secondary antibody as per manufactures instructions. One drop of avidin and 

biotinylated enzym e was added to 5 ml of buffer (50mM Tris-HCl) 30 minutes 

before use. A BCom plex was added to the sections and incubated for 30 minutes 

before washing in tap water. Fresh diaminobenzidine (DAB) was prepared and used 

as substrate. Sections were incubated with DAB (Sigma) for 20 minutes in the dark, 

then washed in running tap water. Sections were counterstained in haematoxylin and 

dehydrated, cleared and mounted as described in section 2.12.2

2.12.4 Immunofluorescent staining of KIM-2 cells

KIM-2 cultures were fixed with acetone:methanol (1:1) at 4°C for 10 minutes. The 

fix was rem oved and the cells washed with TBS. The staining procedure was 

basically the same as that described for FITC staining of tissue sections. Table 2.1 

shows the monoclonal antibodies used to stain KIM-2 cells. The cells were mounted 

in DABCO or Mowiol and left to dry in the dark.

2.12.5 Normal/Ultraviolet Microscopy

Sections or cells were examined using a Leitz Ortholux II m icroscope equipped 

with both normal and UV light sources, FITC and TRITC filters, and a W ild
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photoautomat automatic exposure photographic unit. Sections were photographed 

using 64T ASA film (Kodak) for normal light and 1600 ASA film for fluorescence 

photography.

Table 2.1. Monoclonal antibodies used for immunohistochemical staining of tissue 
culture cells
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Monoclonal
(Isotype)

Specificity Cell type Concentration Reference

LE 61 (IgG l) keratin 18 luminal epithelial Neat Lane, 1982

LP2K (IgG2b) keratin 19 luminal epithelial Neat Stasiak, 1989

Vim 13.2 Vimentin m yoepithelial and 

stromal

Neat Sigma Cat.No. 

V5255

IMMH-2 ■^-Smooth m uscle 

actin
m yoepithelial and 

fibroblasts

1:1000 Sigma Cat.No. 

A-2547

laminin-1 laminin basement

membrane

component

1:1000 Streuli, 1995

Pab 419 T-antigen 1:500 Harlow, 1982



CHAPTER THREE

TRANSGENIC MICE HARBOURING A THERMOLABILE 
T-ANTIGEN GENE DRIVEN BY THE (3-LACTOGLOBULIN 

PROMOTER: GENERATION AND ANALYSIS.

3.1 INTRODUCTION

Remarkable progress has been made in genetic manipulation in the last 10 years. Using 

transgenic technology it is posssible to alter the mouse genome by stably introducing 

foreign DNA into the mouse germ line. This is achieved by microinjection of multiple 

copies of the transgene into the pronucleus of a fertilised one-cell embryo. The transgene 

randomly integrates into the genome (usually at a single site) and the cleaved embryos 

(two cell stage) are transferred to pseudopregnant females (females which have been 

mated with vasectomised males). The livebirths can then be screened at around 7 weeks 

of age for the presence of the transgene by PCR and Southern blot analysis of DNA from 

tail biopsies. Transgenic lines carrying exactly the same transgene insertion can be 

generated by mating each o f the founders with FI nontransgenic mice (C57BL/6xCBA) 

hybrid strain were used in this study).

The mechanisms involved in the integration event are largely unknown but result in the 

insertion of different copy numbers of the transgene, usually in direct orientation (Bishop 

and Smith, 1989), at different integration sites in each different line of mice. In the 

majority of cases the transgene is susceptible to “position effects,” (Al-Shawi et al., 

1990) resulting in aberrant or different expression levels in lines carrying the same 

construct (Spradling and Rubin, 1983; Palmiter and Brinster, 1986). The “position 

effects” can result from the transgene integrating into a number of different sites in 

different lines which either enhance or repress expression. For example the transgene 

could integrate into an endogeneous gene, close to an enhancer or repressor, near a CpG 

island (Bird, 1986), into a region which is imprinted (Surani et al., 1988), close to or in a 

locus control region (LCR) or heterochromatin. However, a number of transgenes have 

now been described which display position-independant expression i.e. they express 

regardless of their integration site (Grosveld et al., 1987). Presumably these constructs 

contain strong regulatory elements which overcome any influence the site of integration



may have on expression of the transgene. These elements may act in a dominant manner 

to direct expression (Grosveld et al., 1987). Alternatively they could target the integration 

of the transgene into matrix- or scaffold-attachment regions MARS or SARs 

(respectively). This region contains • (A+T)-rich repetitive DNA elements, which are 

thought to establish chromatin loop structures, often found close to “open chromatin” and 

active genes (Blasquez et al., 1989; Bonifer et al., 1990). For example, coinjection of a 

WAP transgene with MARs from the chicken lysozyme locus resulted in all 11 lines 

expressing WAP compared to only 50% in its absence (McKnight et al., 1992).

In this project a transgenic approach was utilised to target expression of a thermolabile 

mutant of SV40 T-antigen to the secretory cells of the mammary gland. This mutant 

should not be active in vivo and therefore not detrimental to the health of the animals but 

once the mammary glands are removed and cultured at the permissive temperature of 

33°C, the T-antigen should become active and can be used to immortalise the secretory 

cells. Since the level of T-antigen required to immortalise mammary epithelial cells is 

unknown it would be an advantage to generate transgenic lines of mice with variable 

levels of expression of the transgene.

Several promoters have been described which have been used to direct expression of 

transgenes to the mammary epithelium. For example, the MMTV long terminal repeat 

(LTR) is regulated by steroid hormones and is expressed throughout mammary gland 

development with activity peaking during lactation (Varmus et al., 1973, Marcus et al., 

1981; Hu et al., 1984). However the expression of this promoter is not confined to the 

mammary glands of transgenic mice. Mice carrying a MMTV LTR promoter driving 

expression of wild type SV40 T-antigen expressed the transgene in a number of different 

organs which contain cells of an epithelial origin such as lungs, kidneys, prostate, 

salivary and mammary gland as well as cells of non-epithelial origin e.g Leydig and 

lymphoid cells (Choi et al., 1987).

In comparison, both WAP and BLG promoters are both hormonally and 

developmentally regulated and have been used successfully to direct expression of 

heterologous proteins to the mammary glands of transgenic mice (Gordon et al., 1987; 

Yu et al., 1989; Archibald et al., 1990; Meade et al., 1990; Whitelaw et al., 1991). The
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BLG promoter was used for this project since its regulatory regions have been 

extensively studied in this laboratory. Additionally, BLG transgenes are less dependant 

on the genomic integration site for expression than WAP (Whitelaw et al., 1992) and 

despite the fact that rodents do not have endogenous BLG it is expressed in transgenic 

mice throughout mammary development with a similar expression profile to (3-casein. The 

expression of BLG is therefore compatible with dividing cells at an early stage in the 

differentiation pathway, which is critical for the establishment of cultures from early 

stages of mammary gland development.

In some transgenic lines of mice ectopic expression of BLG driven transgenes had been 

observed in the salivary gland (Dr. B. Whitelaw, pers. comm.) however, since this 

temperature-sensitive mutant of SV40 T-antigen has been reported to be active only at 

33°C this drawback was considered to be negligible.

This chapter describes the construction of the BLG-tsA58 transgene, the establishment 

of the transgenic lines of mice and the analysis of transgene expression.

3.2 RESULTS

3.2.1 Construction of BLG-tsA58 transgene 

Diagram 3.1 summarises the cloning steps used to construct the BLG driven 

temperature sensitive T-antigen construct. 4.2kb of the upstream sequences of the BLG 

promoter, which have previously been used to direct expression of al-anti-trypsin in 

transgenic mice (Archibald et al., 1990) was excised from plasmid pBJ39 (kindly 

provided by Dr. B. Whitelaw) by digesting with Sail and EcoRV (Figure 3.1 A). 

Bluescript/KS (Stratagene) was also digested with Sail and EcoRV (Figure 3.1 A). The 

4.2kb and the linearised plasmid fragments were excised from the LMA gel and the 

agarose digested with Agarase (see section 2.3). The 4.2kb BLG fragment was directly 

subcloned into the cut polylinker of the Bluescript/KS vector recreating both the Sail and 

EcoRV sites. This intermediate, designated pBS-4.2BLG provided a more versatile 

polylinker which facilitated subsequent cloning steps.

pUC-tsA58 (kindly provided by Dr. P. Jat) was digested with Bgll yielding 3 

fragments (Figure 3 .IB). The 3.9kb fragment does not contain the upstream enhancer
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X bal

B gll

X bal
pBJ39 was digested with 
Sail and EcoRV. The 4.2kb 
fragment was gel purified 
and ligated into the
corresponding sites in
pBluescript/KS

S a il

BamHI

pUC-tsA58 was digested 
with Bgll and the 3.9kb 
fragment containing the 
Xbal site was gel purified. 
The Blgl sites were blunt- 
ended and the 
digested with Xbal 
2.7kb 
purified.

Step 3 
S a il

fragment 
The

fragment was gel

pBS-4.2 BLG vector was digested with 
EcoRV and Xbal and gel purified. The 
2.7kb fragment prepared in Step 2 was 
ligated into the cut vector resulting in the 
destruction of the EcoRV site but 
recreating the Xbal site.

Diagram  3.1 C loning strategy used to construct pBS-4.2BLG -tsA58 construct.
pBJ 39 plasmid was kindly provided by Dr. B. Whitelaw and J. Webster 
pUC-tsA58 was kindly provide by Dr. P. Jat.
pBluescript/KS was purchased from Stratagene. (plasmids not drawn to scale)



Figure 3.1 Restriction digests o f plasm ids used to construct pBS4.2BLG -
tsA 58

(A) Step 1: Subcloning of 4.2kb of the BLG promoter from pBJ 39 into the Bluescript 

KS vector (BS/KS). Lanes 1 and 8 are molecular size markers, Lanes 2, 4 and 6 are 

uncut pBJ 39, BS/KS and pBS-4.2BLG respectively, Lanes 3, 5 and 7 are Sall/EcoRV 

double digests of pBJ 39, BS/KS and pBS-4.2BLG respectively. The 4.2kb fragment 

indicated in Lane 3 * and the cut vector, Lane 5 * were gel purified and ligated to produce 

the intermediate pBS-4.2BLG plasmid. pBS-4.2BLG was digested with Sail and EcorRV 

to confirm that the correct size fragments (4.2kb insert+3kb plasmid band) were present 

in the construct (*).

(B) Step 2: Isolation of SV40 T-antigen mutant sequences without upstream enhancer 

elements. Lanes 1 and 7 are molecular size markers, Lane 2 is uncut, pUC-tsA58 

plasmid, Lanes 3 and 4 are Bgll digests of pUC-tsA58 (3.9kb+l.lkb+0.4kb) and pUC 

19 (l.lkb+1.8kb). The Bgll digest of pUC-tsA58 was “filled in” using T4 DNA 

polymerase. The 3.9kb fragment (*) was gel purified (Lane 5) and digested with Xbal 

(2.7kb+1.2kb, Lane 6). The 2.7kb band (*) containing T-antigen sequence free of 

upstream enhancer elements was gel purified.

(C) Step 3: Ligation of SV40 T-antigen downstream of the BLG promoter.

Lane 1 molecular size markers, Lanes 2 and 3 are the pBS-4.2kb BLG vector digested 

with EcoRV/Xbal and the 2.7kb SV40 Bgll (filled-in)/XbaI insert respectively. Both 

vector and insert were gel purified before the ligation.

All digests were run on a 1% agarose gel.
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sequences of SV40, which have been shown to direct expression to the choriod plexus in 

the brain (Palmiter e t al., 1985). This fragment was gel purified, Agarase treated, “filled 

in” using T4 DNA polymerase (see section 2.1.3) and then cut with X bal to remove 

1.2kb of plasmid sequences (Figure 3. IB). The 2.7kb fragment was gel purified, excised 

from the gel and Agarase treated.

The final cloning step involved digesting pBS-4.2BLG with EcoRV and X bal, gel 

purifying and Agarase treating the linearised plasmid before ligating with the 2.7kb SV40 

Bgll (filled-in)/XbaI fragm ent (Figure 3.1C and Step 4 in Diagram 3.1).

The final construct, designated pBS4.2BLG-tsA58 was cut with a panel of 10 

restriction enzymes to check that no rearrangements occurred during the building of the 

construct. Figure 3 .ID  illustrates some of the diagnostic digests which were carried out 

to check that the components of the construct and the final construct gave the expected 

banding pattern (Diagram 3.2). For example the Ndel digest of pBS4.2BLG-tsA58 yields 

3 fragments (lane 14) of which two bands (3.7kb+lkb) correspond to internal sites 

within T-antigen sequences. This was confirmed by digesting the parental plasmid pUC- 

tsA58 with the same enzyme which produce the same size of fragments (lane 12).

Sequencing of the 5 ’ junction between exonl (noncoding exon) and the start of SV40 

T-antigen was carried out to verify the fidelity of the ligations. The EcoRV site and the 

filled in Bgll site were as expected. The 3 ’ end of the transgene was also partially 

sequenced (Figure 3.2B). Once the expected sequence had been confirmed, 

approximately lOOpg of pBS4.2BLG-tsA58 was digested with Sail and Xbal and the 

transgene purified free of any plasmid sequences which are thought to interfere with the 

stable integration of transgenes. The transgene DNA was concentrated using Elutip

columns (see section 2.1.8) and a 50ng/(il stock prepared in TE-buffer. The DNA was

microinjected at a concentration of 1.5ng/ml into pronuclear stage eggs from 

superovulated (C57BL/6 x CBA F I) females by Roberta Wallace.
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Figure 3 .ID Restriction digests o f plasmid DNA from the com ponents 
and final pBS-4.2kb BLG-tsA58 construct.

Lane 1 is molecular size markers, Lanes 2, 4, 8, 10 and 13 are uncut BS/KS, pBS- 

4.2BLG, pUC19, pUC-tsA58 and pBS-4.2BLG-tsA58 respectively. Lanes 3, 5, 9 and 

11 are Bgll digests of BS/KS, BS-4.2BLG, pUC19 and pUC-tsA58 respectively. Lane 

6 is a StuI digest of pBS-4.2BLG. Lanes 7 and 15 are BamH I digests of pBS4.2BLG 

and pBS4.2BLG-tsA58 with common bands indicated (*). Lanes 12 and 14 are Ndel 

digests of pUC-tsA58 and pBS4.2BLG-tsA58 with common bands indicated (*). The 

lower band in the Ndel pUC-tsA58 is a double (lkb+0.9kb) and could not be resolved 

on a 1% gel, however it was on a 2% gel (data not shown).

Diagram 3.2. Restriction digest map of pBS4.2BLG-tsA58 construct and 
its components

The structure of pBS-4.2BLG-tsA58 construct and its components with the predicted 
fragment sizes indicated.

(A) Map of pBS4.2BLG

(B ) Map of pUC-tsA58

(C) Map of pBS4.2BLG-tsA58
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Figure 3.2 Partial sequence of pBS4.2BLG-tsA58 construct
Panel A shows the sequence of the 5' end of the construct reading through the Sail cloning 
site and the junction between the BLG promoter and the T-antigen tsA58 5' sequence.
The junction between EcoRV and the filled in Bgll site are shown.
Panel B shows the sequence of the 3' end of the construct reading through the BamHI site 
into the 3' end of T-antigen tsA58 sequence.



3.2.2 Analysis of founders and the establishment of transgenic lines of 
mice

Transgenic founders were identified by PCR and Southern analysis of mouse tail DNA. 

PCR analysis was done using two primer sets. The BLG primer mix was designed to 

amplify a 246bp internal fragment which was specific to the transgene. The other set of 

primers used in the reaction were WAP specific primers which amplified a 207bp 

fragment of the endogenous WAP gene and acted as an internal control for the PCR 

reaction. Figure 3.3 illustrates a typical set of PCR reactions with the positive and 

negative mice clearly shown. In theory the PCR reaction should result in the amplification 

of the endogenous W AP PCR product in the nontransgenic animals and both WAP and 

BLG products in the transgenic animals. However only one band was usually observed 

in the PCR reactions, either the endogeneous WAP band or the transgene-specific BLG 

band. One possible explanation for this is the BLG primers may compete more efficiently 

for the nucleotides in the PCR reaction than the WAP primers.

Southern blot analysis was routinely used to confirm the results of the PCR reactions 

(see section 2.3.1). Out of 54 live births, 12 mice were positive by both PCR and 

Southern blotting, an efficiency of 22%. Figure 3.4 is a Southern blot of all the founder 

mice obtained and Diagram 3.2 shows the genomic digest carried out and the probe used. 

The different intensities of the band indicates the variation in copy numbers of the 

transgene in the different founders. SV40-2 was under loaded and could be seen on a 

longer exposure (data not shown).

3.2.3 Ectopic expression of the transgene in the founder mice

It was originally envisaged that expression of the thermolabile mutant of T-antigen 

would not be observed in transgenic mice since it has been reported to be active in vitro at 

33°C (Tegtmeyer, 1975; Zaret et al., 1988, Jat and Sharp, 1989; Petit et al., 1989; Randa 

et al., 1989) below the body temperature of mice. However the generation of the 

“immortomouse” demonstrated that in vivo this mutant is at least partially active since 

these animals developed thymic hyperplasia, even in the lowest copy line (Jat et al.,

1991). Therefore using the BLG promoter to drive expression of the thermolabile mutant
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Figure 3.3 Screening of genomic mouse tail DNA for transgenic 
mice carrying the 4.2-BLG-tsA58 transgene
Positive and negative control DNA samples are loaded either side 
of genomic DNA prepared from a set of pups from one of the 
SV40 transgenic lines of mice
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Figure 3.4 Southern blot of genomic tail DNA from transgenic founders 
carrying the 4.2BLG-tsA58 transgene
10pg genomic DNA was digested with BamHI and the Southern blot hybridised 
with probe I (see diagram 3.3).
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Diagram 3.3 A map of the 4.2BLG-tsA58 transgene
Probes 1 and 2 are indicated and S=SalI, B=BamHI, St=StuI, E=EcoRI and 
N=NdeI.



of T-antigen it was anticipated that there may well be expression of T-antigen in the 

mammary glands in vivo  particularly during pregnancy and lactation when BLG is most 

active. Unexpectedly, however the mice did not develop mammary tumours but tumours 

at ectopic sites. These ectopic tumours were quite aggressive in some of the founders. 

Figure 3.5 shows a particularly large tumour on the leg of one of the founders which did 

not appear to have invaded the muscle tissue. Histological examination of the tumour 

confirmed it was a smooth muscle sarcoma (inset).

RNA dot blot analysis confirmed this tumour expressed high levels of T-antigen 

(Figure 3.6, sample lt47) and was used to rapidly screen other tumours for expression of

T-antigen. Duplicate samples (2pg of total RNA) were loaded on the same blot and

hybridised with a T-antigen probe (probe 2, Diagram 3.2) and then reprobed with a 28S 

ribosomal probe as a loading control. Figure 3.6 shows high levels of T-antigen 

expression in the tumours removed from some of the founders and in the spleen which 

was often enlarged. No T-antigen was detected in tissue which appeared normal, for 

example the liver sample. Unfortunately from the original 12 founders only 5 transgenic 

lines could be established since the other founders died before they were able to be mated.

3.2.4 Analysis of the transgene in the surviving lines of mice

3.2.4.1 Transgene copy number 

The copy number of the transgene in each of the surviving lines of mice were estimated 

by Southern blot analysis (Figure 3.7). Genomic DNA was prepared from liver tissue 

from 3 transgenic mice per surviving line and from a non transgenic littermate as a 

negative control. Sheep genomic DNA was prepared to use as a copy control (2 copies of 

BLG in the genome). The DNA was digested with EcoRI which cuts twice in the 

construct and the Southern blot hybridised with a 1.0 kb StuI fragment probe (probe 1) 

which detects the 4.4 kb internal fragment (see Diagram 3.2) in a head to tail array. The 

other bands are presumably due to differences in the structure of the array, for example 

head to head or tail to tail arrays. DNA loading was corrected by reprobing the blot with 

the WAP probe (a single copy rodent gene; Gupta et a i ,  1982). Table 3.1 summarises the 

copy numbers in the surviving lines of mice.
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Figure 3.5 Ectopic expression of T-antigen in one of the founders carrying 
the 4.2BLG-tsA58 transgene
A smooth muscle sarcoma developed on the left forelimb of the female founder 
SV40-47 at 8 weeks of age. Inset histological section of tumour.
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Figure 3.6 Ectopic expression of T-antigen in founder mice carrying the 4.2BLG- 
tsA58 transgene
Dot blot of total RNA prepared from various tissues and tumours from the transgenic 
founders and hybridised with a T-antigen DNA fragment (probe2:Diagram 3.2). It47 is 
RNA prepared from the leg tumour seen in Figure 3.5 above.
pt6=preputial gland tumour from SV40-6, tat6=testes associated tumour from SV40-6



SV40-2 SV40-8 SV40-6 SV40-9 SV40-13 . . . . . . .
I----------------1 I----------------II------------------ II----------------- II---------------- l sheeP

Figure 3.7 Transgene copy number in surviving SV40 lines of mice
Southern blot with lOpg of EcoRI digested genomic liver DNA from 5 independent 
transgenic lines of mice carrying the 4.2BLG~tsA58 transgene (3 sisters from each 
line) were analysed and a sheep genomic liver sample loaded as a single copy control. 
The blot was hybridised with probe 1 (Diagram 3.3) then stripped and rehybridised 
with a WAP probe as a loading control.



3.2.4.2 Ectopic expression

The ectopic expression in the five surviving lines of mice have been analysed by dot 

blot and the results summarised in Table 3.1. Three of the lines displayed ectopic 

expression (SV40-6,-9,-13) which was maintained through subsequent generations. The 

severity of the tumour phenotype appeared to be copy number related with the highest 

copy line (SV40-13) displaying a high degree of ectopic expression and shortest life 

span.

In SV40-6 the mice developed smooth muscle sarcomas usually attached to the leg 

muscle, abdominal swelling resulting from enlarged preputial glands and testes-associated 

tumours in males which occurred between 5-10 weeks of age. In both sexes between 15- 

25 weeks the animals developed breathing difficulties and rapidly lost weight. Post 

mortem examination revealed abnormally large hearts in these mice and possibly 

abnormalities in the lungs.

In the SV40-9 mice subcutaneous tumours were visible all over their bodies at 5-10 

weeks of age and the skull appeared mis-shapen. Post-mortem examination of the skull 

showed these mice developed tumours where the two bones in the skull fuse 

(fontanelles). In addition these mice had enlarged or necrosed spleens and solid tumours 

along the intestinal tract.

SV40-13 mice displayed a similiar ectopic expression pattern as that observed in the 

other two ectopic expressing lines. Athough the onset of the tumour phenotype was 

similar the health of these mice rapidly deteriorated with very few mice surviving beyond 

18 weeks of age. This line of mice also displayed an unusual eye phenotype which 

correlated 100% with the presence of the transgene. The eyes were bright red at 3-4 

weeks of age due to retinal bleeding and by 6-7 weeks of age a cloudy film similar to a 

cataract appeared on the eye ball (Figure 3.8).

The eye phenotype was investigated further by examining its structure by routine 

histological sectioning. Figure 3.9 shows the phenotype of two transgenic mice from this 

line. Figure 3.9A is an eye section from a 11 week old female with intense tumour 

growth within the vitreous layer and retinal detachment. Figure 3.9B is an eye section
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Figure 3.8 Characteristic eye phenotype in the highest copy 
surviving transgenic line
SV40-13 offspring displaying the eye phenotype which is 
characteristic of all the transgenic animals in this line. Notice also 
the raised forehead and body tumour which was observed in this 
line and in SV40-9 line.
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Figure 3.9 H istological sections through the eye of SV40-13 transgenic anim als 
showing abnormal development and tumour formation
(A) Shows an aggressive tumour growth in the vitreous layer, retinal detachment with 
subretinal bleeding and infiltration of the intraocular structures by the tumour. This 
sample was taken from a l l  week old female.
(B) Shows a tumour in the ganglion cell layer, beginning to infiltrate the vitreous layer. 
This sample was taken from a 8 week old male.



from a 8 week old male with a tumour in the ganglion layer beginning to infiltrate the 

vitreous layer.

Table 3.1 Summary of the abnormalities in surviving SV40 lines of transgenic mice
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Transgenic
lines

Copy
number

Mammary
expression

Life span 
(weeks)

Anatomic site of 
abnormalities

SV40-2 1-2 Yes normal none

SV40-6 <5 No 15-20
testes
preputial gland 
lungs 
heart 
muscle

SV40-8 1-2 No normal none

SV40-9 <5 No 15-20
subcutaneous
spleen
thymus
gut

SV40-13 <50 Yes 10-12
subcutaneous
spleen
thymus
gut
retina

Ectopic expression of transgenes containing genomic BLG sequences has been 

observed in approximately 40% of the lines generated (Farini and W hitelaw, 1995). 

However in this study the ectopic expression in transgenic lines o f mice carrying 4.2kb of 

5 ’BLG sequences was not examined. Therefore it was not clear whether the high 

incidence of ectopic expression (10/12) observed in the SV40 lines was due to expression 

from the BLG promoter or whether sequences within the thermolabile T-antigen were 

directing expression. Alternatively it could be a combination of both with the ectopic 

expression being a consequence of the unique combination of sequences present in this 

hybrid construct.

To assess the extent of ectopic expression from the 4.2kb BLG promoter, RNA was 

prepared from several tissues from transgenic line 45. This line carries approximately 17 

copies (Whitelaw et al., 1992) of a 3’ truncated transgene and secretes approximately 

23.7mg/ml of BLG into the milk. It carries the same BLG promoter as used in the 

generation of the SV40 mice but drives genomic BLG expression instead o f T-antigen.



Figure 3.10 is a mixed tissue Northern blot with RNA prepared from line 45 virgin mice 

probed with aB L G  cDNA probe (kindly provide by Dr. B. Whitelaw). As expected the 

mammary gland expresses high levels of the BLG mRNA however ectopic expression is 

also observed in several tissues where tumours have been detected in the SV40 mice. In 

particular the highest levels of ectopic expression were detected in the lungs, spleen and 

lymph nodes. Lower levels of expression were observed in the heart, liver, ovaries, 

thymus, thyroid, salivary gland and gut. In addition to the correct size transcript (~800bp) 

there were higher molecular weight transcripts observed in some tissues. In the salivary 

gland this larger RNA transcript was the predominant species.

Although the ectopic expression pattern of line 45 correlates with the site of tumours or 

abnormalities in the S V40 lines, direct comparison cannot be made since they are different 

transgenes with their own unique integration sites and transgene arrays. However it can 

be concluded that integration of this promoter into an “appropriate” site for expression can 

lead to constitutive ectopic expression. The sites of ectopic BLG expression in transgenic 

mice using 4.2kb of the BLG promoter is consistent with tumour sites observed in the 

SV40 transgenic lines generated in this study.

3 .2 .4 .3  Transgene expression in the mammary gland

Initially mRNA levels of T-antigen in the mammary gland were examined by Northern 

blot analysis. However, despite several attempts, little or no T-antigen mRNA was 

detected from RNA isolated from mammary glands at the peak of lactation (11 days) from 

any of the lines. Therefore levels of the protein were also examined in the surviving lines. 

Protein extracts were prepared from mammary tissue at the peak of lactation (day 11), run 

on a 10% SDS-PAGE gel and transferred to nitrocellulose. The Western blot was probed 

with a monoclonal T-antigen antibody DP-02 (Sigma) which specifically reacts with large 

T-antigen. Figure 3.11 clearly shows expression of T-antigen in 3 sisters from both 

SV40-2 and SV40-13 lines. The expression level in one of the SV40-2 sisters appears to 

be lower than in the other two. A duplicated gel run simultaneously and stained with 

Coomassie blue revealed less total protein in this track than the others and could account

93



9 4

Figure 3.10 Ectopic expression of BLG mRNA in a high expressing BLG line 
of mice
Northern analysis of BLG expression in line 45 (the highest expressing BLG line 
produced to date). This line carries the same 4.2kb promoter used to generated 
the SV40 lines of mice. The blot was hybridised with a BLG cDNA in the 
upper panel and the blot stripped and hybridised with a ribosomal probe as a 
loading control (lower panel).
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SV40-2 SV40-6 SV40-8 SV40-13

Figure 3.11 T-antigen protein expression in lactating mammary extracts 
from SV40 transgenic lines
Protein extracts (20 pg) from dayl 1 lactation mammary tissue were prepared 
from 4 of the SV40 lines of mice (3 sisters in each line). The expression levels of 
T-antigen protein was assessed by Western analysis. The blot was incubated with 
a T-antigen specific antibody, D P-02 (Pab 416) diluted 1:500 (Calbiochem). A 
nontransgenic (NT) 11 day lactation sample was loaded as a negative control.

-T-antigen



for this discrepancy. T-antigen expression could not be detected in the mammary glands 

of the other 3 surviving lines of mice (SV40-6, -8, -9) by Western blotting. This antibody 

also detected a non-specific 60-70kD protein which was present in both transgenic and 

control wild type mouse mammary tissue.

Immunohistochemical staining of dewaxed paraffin embedded sections from 

midpregnant and 11 day lactation tissue with this antibody and with the antibody Pab 108 

were unsuccessful.

3.3 DISCUSSION

Micro-injection of the 4.2BLG-tsA58 transgene into single cell mouse embryos resulted 

in the generation of 12 transgenic founder mice from a total of 54 analysed, all with 

varying copy numbers of the transgene. However one of the founders was mosaic and 

did not pass the transgene on to her offspring and 6 of the founders died before lines 

could be generated due to ectopic expression of the transgene. Transgenic lines of mice 

were successfully generated from the remaining 5 founders. SV40-2 which has 1-2 

copies of the transgene was the only line which displayed detectable expression in the 

mammary gland and had no visible ectopic expression. Expression of T-antigen did not 

alter mammary development and this line can successfully feed their litters, unlike the 

transgenic mice which express wild type T-antigen from the WAP promoter (Tzeng et al., 

1993; Li et al., 1996). SV40-8 which also has 1-2 copies of the transgene did not display 

any ectopic expression but mammary expression was undetectable by Western or 

Northern blotting. Presumably this transgene has integrated into a site in the genome 

where the influence of the neighbouring chromatin silences the transgene (Kellum and 

Schedl, 1991; McKnight et al., 1992). In SV40-6 and SV40-9 again no mammary 

expression was detected but ectopic expression in other tissues lead to tumour formation 

and in SV40-13 both mammary and ectopic expression was observed. The onset of the 

tumour phenotype in each line was retained through subsequent generations and was 

characteristic of the line.

Ectopic expression in a highly expressing BLG line of mice (line 45) which carries the 

same promoter as the SV40 lines shows, high levels of ectopic expression. The sites of
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expression are consistent with some of the sites where tumours or abnormalities were 

observed in the SV40 lines, most notably the spleen, ovary, salivary gland, gut and lung. 

In addition, genomic constructs containing BLG promoter sequences have displayed 

ectopic expression in 40% of the lines (Farini and Whitelaw, 1995). The frequency of 

this ectopic expression in the SV40 lines is higher with 10/12 lines (83%) displaying 

ectopic expression. It may well be that the apparent high incidence of ectopic expression 

is due to the sensitivity of detection of the transgene i.e. tumour formation in tissues 

susceptible to T-antigen transformation.

The ability of T-antigen to direct ectopic expression must also be considered. In the 

majority of cases, using a tissue specific promoter to drive expression of wild-type T- 

antigen resulted in expression in the appropriate organ. For example the insulin gene 

enhancer resulted in T-antigen expressing Langerhans islet B-cell tumours (Hanahan, 

1985; Efrat et al., 1988) and pancreatic acinar cell tumours were induced by expression 

from the elastase promoter (Omitz et al., 1985). However there are several cases in the 

literature where the expected tissue-specific expression of T-antigen was not observed. 

For example, when the (3-globin LCR was fused to SV40 T-antigen early regions, the 

transgenic mice generated did not express T-antigen in erythrocytes (Teitz et al., 1993). 

Instead the phenotype of the transgenic mice was dependant on the copy number of the 

transgenes. Mice with 1-2 copies of the transgene developed normally but mice with 3-7 

copies developed rhabdomyosarcomas in a number of anatomical sites and mice with 

more than 10 copies were growth retarded and died after only a few weeks. Clearly some 

tissue-specific genes do direct T-antigen to the appropriate cell type however there are 

cases where this does not occur.

Another complicating factor is that the cell type and state of differentiation may 

contribute to the ectopic tumour expression pattern observed in the SV40 transgenic lines 

of mice. Low levels of T-antigen expression are sufficient to transform particular cell 

types and not others. The SV40 T-antigen mutant used in this study encodes a 

thermolabile mutant of large T-antigen as well as encoding small t-antigen. However it 

does not contain any upstream enhancer sequences which have previously been shown to 

direct expression to the choroid plexus in the brain (Palmiter et al., 1985). Although two
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of the SV40 transgenic lines (SV40-9 and SV40-13) displayed a ‘bulge’ on their heads 

the tumours which are present are attached to the skull and do not appear to have invaded 

any brain tissue. The lack of choroid plexus tumours is consistent with the upstream 

enhancers directing expression to the brain. Using the MMTV LTR Choi et al., (1988) 

targeted expression of large T-antigen alone or with small t-antigen to the ductal epithelial 

and lymphoid cells of transgenic mice. Mice expressing either construct developed similar 

malignant lymphomas. Lymphoma cells were seen in the lymph nodes, thymus, lung, 

liver, Peyer’s patch, kidney, spleen, salivary gland and skeletal muscle. However, only 

the transgenic lines expressing both large and small T /  t-antigen developed lung and 

kidney adenocarcinomas. Despite the highest level of expression of both transgenes in the 

mammary gland it was relatively resistant to SV40 tumourigenesis in vivo. The reason for 

this is unknown but it could be that there is a high level of p53 in the mammary gland 

which complexes T-antigen and prevents it leading to transformation. It appears that the 

lymphoid tissues are particularly susceptible to T-antigen transformation whereas the 

mammary gland is not. SV40 small t-antigen may have a role in tumour formation in 

slowly dividing cells e.g kidney and lung. Abnormalities in the spleen and the thymus 

were apparent in the ectopic expressing SV40 transgenic lines. In SV40-9 there were also 

abnormalities in lung tissue.

The molecular mechanism of the transformation induced by T-antigen is becoming 

clearer. Its transforming ability has been attributed to its ability to bind to and inactivate 

cellular genes such as p53 and pRb family members. Presumably, the expression of the 

“appropriate” levels of T-antigen could result in the inactivation of p53 and/or pRb 

function in certain tissues. Comparision of the phenotype of the p53 null mice 

(Donehower et al., 1992) with the SV40 lines generated here shows some similarities. In 

particular the rapid onset of tumours occurs around the same time period (15-25 weeks). 

The sites and types of tumours or abnormalities which develop are similar. In particular 

both are prone to sarcomas and lymphomas (Dr. W. Wallace & Dr.D. Harrison pers. 

comm.) and the organs involved include the thymus, h e a r t, lung, spleen, and kidney.

Mice homozygous for an Rb mutation die in utero between 13.5-15.5 days and display 

defects in neurogenesis and haematopoiesis (Clarke et al., 1992; Jacks, 1992; Lee et al.,
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retinoblastoma or secondary tumours, such as osteosarcomas or soft-tissue sarcomas 

which are characteristic of the human hereditary form of the disease (Weinberg et al.,

1992). However brain and pituitary tumours have been detected in mice at around 8-10 

months of age (Jacks, 1992). Since the SV40 ectopic expressing lines are routinely 

sacrificed at between 6-7 months of age or earlier due to their tumour burden, it is not 

possible to comment on the ability of the SV40 lines to develop pituitary or brain 

tumours.

Interestingly, double-mutant mice generated by interbreeding the p53 homozygotes with 

the pRb heterozygotes gave similiar retinal defects to those seen in SV40-13. These mice 

displayed retinal dyplasia (abnormal architecture) as opposed to hyperplasia. Since these 

mice, like the double-mutants rarely survive beyond 4-5 months of age it is not possible 

to determine whether these lesions would develop into time retinoblastomas. However 

this may well be the case since targeting wild-type SV40 T-antigen to the retina does 

result in retinoblastomas (Windle et al., 1990; al-Ubaidi et al., 1992).

Although the high level ectopic expression of the BLG-tsA58 transgene was not 

anticipated, the sites of tumour formation which were observed in the surviving lines of 

mice are consistent with the ectopic expression observed in a transgenic line carrying the 

same promoter but driving BLG expression. In addition the onset of tumour development 

and the tumour types are comparable with those observed in the p53 null mice and in 

double mutants (pRb-/+; p53-/-).
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CHAPTER FOUR

THE ISOLATION OF MOUSE MAMMARY EPITHELIAL CELL- 
ENRICHED CULTURES DERIVED FROM EXPLANT OUTGROWTHS

4.1 INTRO DUCTIO N

M am m ary g land developm ent and m orphogenesis has been w ell defined  

histologically. However little is known about the specific cell lineages involved in 

normal development o f the gland and the changes that occur during neoplasia. In part 

this is due to the lack of cell-specific markers to study the developmental fate of the 

different cell types found in the mammary gland during its development and partly due 

to the lack of suitable cell lines.

There are several antibodies which are specific for cellular components, in particular 

the keratin intermediate filaments, which can differentiate between the mesenchymal 

and epithelial cell lineages. However there are a lack of markers which can differentiate 

between the different cell types within lineages, for example, epithelial cells of ducts, 

terminal end buds and alveolar buds. The mammary cell lines which are presently 

available have either undergone spontaneous or induced im m ortalisation (either 

chemically or by transfection of known immortalising agents) leading to constantly 

proliferating cultures. The effects this has on the normal cellular processes is unclear 

and therefore it is difficult to investigate aberrant growth in these cell lines. This 

problem can in theory be overcome by using conditionally immortalising genes.

The “im m ortom ouse” was the first transgenic line of mice generated as a potential 

source of conditionally immortal cell lines. Jat et al., (1991) targeted expression of a 

temperature-sensitive mutant of SV40 T-antigen to a wide range of tissues using an 

inducible housekeeping gene promoter H-2Kb. In theory, isolating cells from any organ 

and culturing these cells at the permissive temperature of 33°C should result in the 

expression of active T-antigen and produce constantly proliferating cell lines. However, 

by shifting the temperature to 39°C the immortalisation properties of T-antigen are 

abrogated and the cells can undergo differentiation, assuming the appropriate stimuli 

are present. Indeed several conditionally immortal cell lines have been produced using 

the “ im mortom ouse” (see section 1.4.3). However no mammary cell lines have been



the “ immortomouse” (see section 1.4.3). However no mammary cell lines have been 

isolated either by myself or others using this transgenic line (Streuli, C.H. pers. comm.).

The transgenic mice generated during this project, w hich express the same 

temperature sensitive T-antigen under the control of the BLG promoter did prove more 

fruitful. This chapter describes a novel procedure used for the isolation o f highly 

enriched mammary epithelial primary cultures from both transgenic and nontransgenic 

mice.

4.2 RESULTS

4.2.1 Establishment and growth of explant cultures

Sim ilar procedures have generally been used to isolate epithelial enriched cultures. 

M inced mammary glands are digested with collagenase to dissociated the cells and 

separate the mammary tissue from the fat pad (Lasfargues, 1957). The epithelial 

com ponent can then be purified using percoll/ficoll gradients (Kidwell et al., 1984), 

differential centrifugation (Barcellos-Hoff and Bissell, 1989) or fluorescent-activated 

cell sorting (Darcy et al., 1991). However this procedure often requires a large amount 

of starting tissue (12-14 midpregnant mice) to obtain the high density of epithelial cells 

required for the primary cultures to survive. Instead of using this standard procedure, a 

less orthodox approach was utilised to isolate epithelial-enriched cultures. This 

approach involved culturing mammary explants on typel collagen under growth 

prom oting conditions which resulted in epithelial outgrow ths from the explant 

(summarised in Diagram 4.1). In general sufficient outgrowths could be obtained from 

a single mouse to attempt to generate cell lines.

To optimise the possibility of this procedure working it was important to isolate cells 

which were still proliferating and not terminally differentiated. In addition it was 

necessary for the BLG promoter to be transcriptionally active to ensure sufficient levels 

o f T-antigen is expressed at the permissive tem perature to immortalise the cells. 

M amm ary tissue was initially removed from midpregnant (12.5-13 days) mice. This 

time-point was chosen as the most suitable starting point based on the following
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mammary expiant 
cultures

2 weeks

primary cultures

passaging

established cultures

several passages

characterisation of 
cell lines

Diagram 4.1 Flow chart sum m arising the steps involved in the 
generation of the cell lines
Mammary tissue was removed from day 12.5-13 pregnant mice and explant 
outgrowths established on typel collagen in Explant growth medium. The 
explants were removed and the primary cultures grown for approximately 5- 
6 weeks in Complete medium before passaging.



criteria:- Firstly, the BLG promoter is active by this stage; secondly this time-point 

coincides with a peak of epithelial proliferation (Traurig, 1967); and thirdly the 

mammary gland is in the early stages of differentiation with [3-casein being the only 

differentiation marker expressed.

The expression level of T-antigen required to immortalise without transforming the 

cells was not known, so mammary explant cultures were made from the five surviving 

SV40 transgenic lines and “im mortomouse” with nontransgenic littermates used as 

controls. Since the BLG-tsA58 transgene showed ectopic expression in the transgenic 

lines in vivo and resulted in hyperplasia or tumours which expressed T-antigen it was 

assumed that the tsA58, in this construct at least, was partially active at the body 

temperature of the mice. In light of this observation it was decided to culture half of the 

flasks at the fully permissive temperature o f 33°C and the rest at 37°C, a serni- 

permissive temperature. Figure 4.1 (A-D) illustrated the typical outgrowths which were 

observed after culturing the outgrowths without serum for two weeks on collagen typel 

coated flasks. All the outgrowths looked the same at this stage regardless of the 

presence or absence of the transgene or whether the cultures were maintained at 33°C 

or 37°C. In cultures which were supplemented with serum, the growth of the explants 

was slightly enhanced at this stage but upon removal of the explants these cultures 

became very heavily overgrown with fibroblasts (data not shown).

4.2.2 Morphological differences in primary cultures derived from the 
different transgenic lines.

The cultures were monitored daily by phase contrast light microscopy under xlO 

magnification. Morphological differences in the cultures became apparent only a few 

days after explant removal. The primary cultures which were established from the 

nontransgenic control tisssue did not proliferate well and after 4 weeks in culture the 

remaining islands of cells contained a highly heterogeneous cell population which only 

survived 2-3 passages (Figure 4.2).

Similarly the primary cultures which were established from the “immortomouse”and 

the line SV40-8 (no ectopic expression or mammary expression could be detected in 

this line) did not proliferate well but after 5 weeks in culture at 33°C the cultures
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E X PL A N T  CU LTURES

B

D

SV40-2 at 
33°C

SV40-13 at
33°C

SV40-9 at 
37°C

Nontransgenic 
at 37°C

Figure 4.1 T ypical outgrow ths obtained from  m idpregnant m am m ary  
glands grown for 2 weeks on typel collagen coated flasks

(A-C) are explants established from transgenic lines carrying different copy numbers 
of the BLG-tsA58 transgene. (D) is an explant established from a nontransgenic 
littermate.
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NO NTRA N SG EN IC  CONTROL PRIM ARY CULTURES  
GROW N AT 37 °C

Figure 4.2 L ight m icroscopy o f prim ary cultures established from a 
nontransgenic control m idpregnant mouse
Note the heterogeneity of the cultures. These cultures did not survive passaging 
(magnification xlO).



consisted of a heterogeneous population of cells consisting mainly of large striated cells 

(Figure 4.3).

M ammary cultures established from  the SV40 lines which displayed ectopic 

expression of T-antigen resulting in tumours (BLG/SV40-6, 9, 13), all showed a similar 

phenotype when cultured at 33°C or 37°C. The cultures initially retained the 

“cobblestone” morphology characteristic of epithelial cells (Figure 4.4A) but within 14 

days of explant removal a second cell type was apparent. These cells were elongated, 

were peripheral to the epithelial island and highly refractive to light. (Figure 4.4B). 

This rapidly proliferating second cell type predominated at the permissive and semi- 

perm issive tem peratures resulting in the loss o f the epithelial cells. At the 

nonpermissive temperature, when the thermolabile mutant should be inactive, a few 

“dome” structures form ed in high density cultures (Figure 4.4C). These “dom e” 

structures have been described as indicative of secretory epithelia (Danielson et al., 

1984).

The rem aining SV40-2 transgenic line displayed a sim ilar heterogeneous cell 

phenotype (Figure 4.5A) when cultured at 33°C with the elongated cells becoming 

more abundant as the cultures continued to be grown at 33°C (Figure 4.5B). However 

explant cultures which had been grown at 37°C without serum retained a uniform 

cobblestone morphology and all the primary cultures formed “dome” structures at high 

density after 3-4 weeks in culture (Figure 4.5C). This cobblestone morphology was 

retained after passaging as clumps of 5-10 cells onto flasks coated with typel collagen. 

These cultures designated KIM-2 cells, were expanded and stocks cryopreserved before 

the cultures were characterised further.

The cultures which did become established from the other SV40 transgenic lines were 

frozen down and not analysed further since the epithelial cell morphology was lost 

even at the semi-permissive temperature of 37°C. Table 3.1 summaries the culture 

history of the different primary cultures which were generated from the different 

transgenic lines of mice.

106



107

M IDPREGNANT IM M ORTOM OUSE PRIM ARY CULTURE
GROW N AT 33°C

Figure 4.3 L ight m icroscopy o f prim ary cultures established from  a 
m idpregnant gland o f im m ortom ouse
Note the heterogeneity and sparseness of the cultures. These cultures did not 
survive passaging.
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PRIM ARY CULTURES

SY 40-6 at 37°C  for  
14 days after explant 
rem oval

SV 40-6 at 37°C  for  
17 days after explant 
rem oval

S Y 40-6  sh ifte d  to  
39°C  for  17 days  

a  after explant removal

F igure 4.4 T ypical m orphological changes which occurred in the 
SV40 transgenic lines displaying ectopic expression of the transgene.

(A) illustrates the initial cobblestone morphology which was observed in primary 
culture established at 33°C or 37°C.
(B) shows the same cultures losing contact growth inhibition after removal of 
explant for 17 days.
(C) shows cultures obtained from the same transgenic line of mice with explant 
outgrowths established at 37°C and cultures moved to 39°C once the explants were 
removed. Note the dome forming.
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SV40-2

PRIM ARY CULTURES

at 33 C

B

¡SV40-2 at 33°C

at 37°C

F igure 4.5 Prim ary cultures established  from  SY40-2 transgenic line  
cultured at 33°C or at 37°C

(A) illustrates the heterogeneity of cultures grown at 33°C after 21-28 days.
(B) illustrates a culture at an early stage of fibroblastic overgrowth after 21-28 days in 
culture at 33°C.
(C) illustrates a typical primary culture forming “domes” obtained from this transgenic 
line of mice after culturing for 21-28 days at 37°C.

SV40-2



Table 4.1 Sum mary o f the culture history and m orphology of the different 
primary cultures generated from transgenic and nontransgenic mice
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Lines
T-antigen e) 

in vh 
mammary

(pression
>o

ectopic
Morphology of prir

33°C
nary cultures 

37°C

Successful
passaging

SV40-2 yes no
heterogeneous 
with spindle-like 
and epithelial 
cells

mainly epithelial 
cells yes

SV40-6 no yes

heterogeneous 
with loss of 
contact inhibited 
growth

heterogeneous 
with spindle-like 
and epithelial 
cells

yes

SV40-8 no no

heterogeneous 
with mainly large 
striated cells

heterogeneous 
with mainly large 
striated cells no

SV40-9 no yes

heterogeneous 
with loss of 
contact inhibited 
growth

heterogeneous 
with spindle-like 
and epithelial 
cells

yes

SV40-13 yes yes

heterogeneous 
with loss of 
contact inhibited 
growth

heterogeneous 
with loss of 
contact inhibited 
growth

yes

H-2Kb yes yes

heterogeneous 
with mainly large 
striated cells NDA no

nontransgenic no no
heterogeneous
population

heterogenous
population no

NDA: No data available

4.3 DISCUSSION

The outgrowths obtained from midpregnant mammary explant cultures has provided 

an efficient source of highly enriched populations of primary epithelial cells. The 

outgrowths established from the transgenic lines of mice and from nontransgenic 

control mice were m orphologically identical as assessed by phase-contrast light 

microscopy.

It is not suprising that the nontransgenic control primary cultures did not survive 

through continual passages, since it has been well documented that primary cultures 

lose both their proliferation and differentiation potential in culture unless spontaneous 

inmortalisation occurs.



The primary mammary cultures which were established from the “immortomouse” 

did not proliferate well and the epithelial component was lost after only a few passages. 

It could be that there is insufficient expression of T-antigen from the H2Kb promoter in 

the mammary gland to immortalise the cells. Alternatively, the expression of T-antigen 

in the mammary gland could be higher in the other mammary cell types, such as the 

fibroblastic cells which grow much better in culture than the epithelial component thus 

adding to their growth advantage.

The morphological phenotypes observed in the SV40 transgenic derived primary 

cultures are curious and not easily explained. W hen primary mammary cultures isolated 

from the two transgenic lines of mice, which displayed ectopic expression of T-antigen 

but no detectable mammary expression in vivo (SV40-6 and SV40-9), were incubated at 

33°or 37° the cell type which predominated upon removal of the explants was a thin 

elongated cell type. Although expression levels of T-antigen was not examined in these 

in vitro  cultures this observation is consistent with the expression of T-antigen 

observed by Rudland and Barraclough (1990). Using SV40-transformed human breast 

cell lines they dem onstrated the ability of these cells to differentiate to a ‘more 

elongated myopepithelial-like’ cell type which correlates with increased expression of 

T-antigen. Although morphologically the elongated cell type described here and by 

Rudland and Barraclough shows similarities, there are differences which need to be 

resolved. In particular, similar cultures containing these elongated cells described here 

stain strongly for vimentin, a mesenchymal marker (see Chapter 5) whereas Rudland 

and Barraclough describe a myoepithelial staining population. Regardless of the origin 

of this cell type it would be interesting to examine this differentiation pathway in the 

SV40 cultures and the expression of T-antigen in explant and primary cultures from the 

nonexpressing transgenic lines of mice.

The primary cultures which were derived at 33°C from the lowest copy transgenic 

line (SV40-2) also displayed an elongated phenotype. However cultures which were 

established and maintained at 37°C maintain a uniform “cobblestone” morphology 

which was maintained after passaging. Presumably, this cell line synthesises sufficient 

levels of T-antigen at a semi-permissive temperature (37°C) to produce constantly
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proliferating cultures without resulting in overgrowth of the ‘elongated’ cell type. This 

cell line, designated KIM-2, has been maintained without any obvious morphological 

alterations for 18 months. The cultures are split (1:3) as clumps of 5-10 cells every 3-4 

days and are routinely maintained at 37°C in Growth media (section 2.8.1 and 2.8.2).

The major advantage of this isolation procedure was that cultures were relatively free 

of fibroblasts at the onset therefore problems with fibroblastic overgrowth was not 

encountered. The overgrowth of fibroblasts in relatively pure primary epithelial cultures 

has proven to be a problem in the past with cultures eventually losing their epithelial 

population. Passaging the cells onto typel collagen for the first 5 passages during 

expansion prior to cryopreservation is novel to this isolation procedure. In vivo, 

following the onset of pregnancy (day 4) collagen typel is synthesised by fibrobastic 

cells found immediately adjacent to the developing epithelium (Keely et al., 1995). 

Levels then decrease and collagen typelV and laminin increase in the latter stages of 

pregnancy. Culturing the epithelial cells on typel collagen in the absence of lactogenic 

hormones may provide an envirom ent closer to that found in vivo  with the cells 

retaining epithelial characteristics which might otherwise be lost on plastic substrata.
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CHAPTER FIVE

THE CHARACTERISATION OF A MOUSE MAMMARY CELL LINE 
(KIM-2) ISOLATED AT 37°C

5.1 INTRODUCTION

In vitro  cell culture systems have provided tools in w hich the growth and 

differentiation of mammary epithelial cells can be studied at the molecular and cellular 

levels. For example, the HC11 cell line has provided a useful model to study the 

activation of (3-casein gene expression. Unfortunately it has proven to be more difficult 

to express late differentiation markers such as W A P and a-lactalbum in in vitro. In 

addition, the mammary cell lines which have be isolated are irreversibly immortalised 

and it is unclear whether this event leads to alterations in the proliferation and 

differentiation pathways being examined. To attempt to overcom e the latter problem a 

mammary cell line was generated carrying a therm olabile T-antigen mutant to act as an 

im mortalisation switch. This chapter describes the characterisation of this cell culture 

system, designated KIM-2. Initial studies involved cell typing o f the cultures at the 

semi-permissive temperature (37°C) and at the fully perm issive temperature (33°C) by 

immunohistochemical staining with cell-type specific markers. Subsequent studies were 

carried out to assess the ability of the cultures to undergo functional differentiation in 

response to lactogenic hormones. The expression of the differentiation markers (3-casein 

(early) and W AP (late) were examined in both early and late passage cells to determine 

(i) the degree of functional differentiation and (ii) the ability of the cultures to undergo 

differentiation after prolonged periods in culture.



5.2 RESULTS

5.2.1 Expression ofcell-type specific markers in KIM-2 cells

KIM-2 cultures isolated at 37°C maintained the typical epithelial cobblestone 

morphology throughout passaging. Cell typing was carried out by examining the 

expression of lineage-specific markers using immunohistochemical staining. The 

cultures were approximately 95% epithelial in origin as assessed by their positive 

staining with keratin 18 [LE61] (Figure 5 .IB) and keratin 19 monoclonal antibodies 

(not shown). In some cultures there were a few cells which showed positive staining for 

smooth muscle actin, a myoepithelial marker (Figure 5.1C) and vimentin, a fibroblastic 

and stromal cell marker (Figure 5 .ID). However KIM-2 cultures at 37°C were 

predominantly epithelial in origin and the epithelial phenotype was retained after 

prolonged culturing (up to 60 passages).

These cultures also showed strong nuclear staining with a T-antigen specific antibody 

in the majority of cells at the semi-permissive temperature of 37°C (Figure 5.2).

5.2.2 Mesenchymal-epithelial cell transition triggered by a temperature 
switch: Immunohistochemical analysis

KIM-2 cultures isolated and grown at the permissive temperature of 33°C are 

morphologically different from cultures established and maintained at the semi- 

permissive temperature of 37°C. Cells isolated and grown at 33°C show a high 

percentage of elongated spindle-like cells (Figure 5.3A), whereas cultures which were 

isolated and grown at 37°C retained a cobblestone morphology typical of cuboidal 

epithelial cells (Figure 5.3G). These morphological differences were investigated 

further using immunohistochemical markers to identify the cell-types present in the 

cultures at the different temperatures. The cultures were fixed and immunostained with 

monoclonal antibodies specific for epithelial and mesenchymal cell lineages.

Cultures maintained at the permissive temperature (33°), where T-antigen is fully 

functional stained strongly with a vimentin specific antibody (Vim 13.2), a 

mesenchymal marker (Figure 5.3B). Only a few patches of epithelial cells remained in 

these cultures as can be seen morphologically (Figure 5.3A) and by the expression
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Figure 5.1 Identification of cell types present in KIM -2 cultures u sin g  
mammary cell type specific m arkers.

(A) phase contrast

(B) same field showing positive staining with keratin 18 monoclonal antibody (LE61).

(C) weak positive staining with a smooth muscle actin monoclonal antibody (Sigma)

(D) weak positive staining with vimentin monoclonal antibody (Vim-13.2; Sigma) 
(magnification xlO)

Vimentin staining was carried out by Dr. M. Smalley

Cytokeratin antibodies were kindly provided by Prof. E.B. Lane
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T-ANTIGEN EXPRESSION IN KIM-2 CULTURES 
GROWN AT 37°C

Figure 5.2 Im m unohistochem ical staining o f KIM -2 cells grown at 
37°C  with a T-antigen specific antibody.
(A) phase contrast
(B) same field showing nuclear staining with a monclonal antibody specific for 
T-antigen, Pab419, (magnification xlO).
(Staining carried out by Dr. M. Smalley)



pattern of keratin 18 (LE61), a luminal cell marker (Figure 5.3C). In contrast, cultures 

which had been maintained at 37°C displayed the opposite staining pattern. These 

cultures exhibited strong staining with the keratin 18 antibody, indicating a 

predominately epithelial population, and were almost devoid of vimentin expressing 

cells (Figure 5.3G-I). Cultures which had been isolated at the fully-perm issive 

temperature and then switched to the semi-permissive temperature, contained a more 

mixed population of epithelial and mesenchymal cells with both markers being 

expressed (Figure 5.3D-F). In these cultures the epithelial islands of keratin 18 positive 

cells were more abundant and larger than those observed in cultures established and 

maintained at 33°C.

It is possible that at 33°C, when this thermolabile mutant of T-antigen is fully active 

there is preferential proliferation of a vimentin positive population of cells as opposed 

to the keratin 18 positive cells. However, closer inspection of the staining patterns of 

the two antibodies at the fully permissive temperature and in some of the switches to 

the lower temperature (not shown here) revealed that there were a small proportion of 

the cells which expressed both markers suggesting that these cells could be 

intermediates in a mesenchymal-epithelial conversion. At present it is unclear whether 

this conversion between epithelial and mesenchymal lineages is fully reversible or 

whether cultures devoid of keratin 18 expression remain so and cannot be rescued by 

raising the temperature.

5.2.3 Expression of differentiation markers in KIM-2 cells.

Milk proteins synthesis in vivo takes place within lobuloalveolar structures in the 

developing mammary gland during pregnancy and lactation. The timing of expression 

of the different milk protein genes is strictly controlled by lactogenic hormones and 

interaction of the different cell types with each other and with components of the ECM. 

The primary culture systems and the mammary cell lines which are presently available 

as in vitro mammary models can undergo a degree of differentiation resulting in the 

transcriptional activation of some milk protein genes. The extent of this functional 

differentiation appears to be dependant on the substratum upon which the cells are
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Figure 5.3 The expression  o f  ep ith elia l and m esenchym al lineage  
specific markers in KIM -2 cultures grown at different tem peratures.

(A -C ) KIM-2 cells were established and grown at 33°C. The same field was 
photographed in the order phase->vimentin->keratinl8 (magnification xlO). Note 
the patch of epithelial keratin 18 positive cells in the middle of the field (C) but the 
majority of the cells are mesenchymal (fibroblasts or stromal cells) since the cultures 
stain strongly for vimentin (B) There is also some cells which express both markers 
(arrows).
(D-F) KIM-2 cells were established at 33°C and switched to 37°C for 4 days. Note 
the higher proportion of epithelial to mesenchymal cells in these cultures.
(G-I) KIM-2 cells were established and maintained at 37°C. The predominant cell 
type in these cultures is epithelial (I) with only a few mesenchymal cells present 
(H). (Staining carried out by Dr. M. Smalley)
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cultured. (3-casein is an early differentiation marker and can, for example, be induced 

by culturing cells on plastic with the addition of lactogenic hormones. Although the 

levels of (3-casein can be increased by culturing cells on floating collagen gels and EHS 

the m inim ium  requirem ent for its expression in vitro  is the addition of lactogenic 

hormones to confluent cultures. However the expression of late differentiation markers 

such as W AP requires more complex cultures condition to induce expression in vitro. 

W AP appears to require cells to be grown on EHS to allow mammosphere formation 

before it is expressed (Chen et al., 1989, Lin et a i ,  1993). The ability of KIM-2 cells to 

undergo functional differentiation was therefore investigated.

The cells were routinely differentiated using the following conditions. Cultures were 

grown to confluency at 37°C in Growth media (see section 2.9.1) and EGF removed for 

4 hours. The cells were washed washed 3 times with lxPBS and incubated in Induction 

m edia (see section 2.9.4) containing the lactogenic horm ones, prolactin and 

dexamethasone for the period and at the temperature indicated in each experiment.

In Figure 5.4 the cultures grown on typel collagen were incubated at 37°C, where T- 

antigen is partially active, and at 39°C, were T-antigen is inactive, for 4 days and levels 

of (3-casein protein analysed by W estern blotting. (3-casein was expressed in cultures 

grown at both tem peratures suggesting that expression of wild type T-antigen is 

com patible with the expression of this early differentiation marker. Intracellular 

P-casein is detected as a doublet at approximately 29kDa. Secreted P-casein in defatted 

milk, on the other hand, contains a 32kDa protein. This discrepancy in size between the 

intracellular and secreted protein is probably due to differences in phosphorylation 

states and has previously been described by Durban et al., 1985. In addition, the 

polyclonal P-casein antibody used did give quite high levels of nonspecific binding 

with the cell extracts and cross-reacted with a-casein in the milk. However it did show 

a dramatic induction of P-casein in the induced compared to the uninduced cells.
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HORMONAL INDUCTION OF ß-CASEIN PROTEIN IN KIM-2 
CULTURES AT 37°C AND 39°C

37°C 39°C

29kDa

Figure 5.4 W estern blot of KIM-2 cells induced with lactogenic hormones at a 
semi-permissive and non-permissive temperature
Total protein cell extracts (20pg) were prepared from early passage (P6) confluent 
K IM -2 cu ltu res induced w ith the lactogenic horm ones, pro lactin  and 
dexamethasone, for 4 days or uninduced (insulin) at the temperatures indicated. A 
defatted milk sample (20pg total protein) was used as a positive control for the 
antibody. The blot was probed with a murine (3-casein polyclonal antibody : 
dilution: 1:10,000 (kindly provided by Dr B. Binas).



5 .2 .3 .1  Com parison o f expression  lev e ls  o f  P -casein  protein in 
cultures grown on plastic and typel collagen

KIM -2 cells which were derived and grown on typel collagen coated flasks were 

passaged onto tissue culture plastic for 4-5 passages before determ ining whether the 

cells’ capacity to synthesise P-casein was reduced or lost on tissue culture plastic. 

Figure 5.5 shows a time-course of induction of P-casein expression in KIM-2 cells 

grown on both substrata. Similar increasing levels of P-casein were observed over a 

period of 10 days induction on both substrata. This finding is consistent with the work 

o f Emerman and co-workers who showed that increased levels o f P-casein expression 

were observed in prim ary cultures only when they were cultured on floating typel 

collagen gels (Emerman and Pitelka, 1977; Emerman et al., 1979). However they did 

not observe high levels of P-casein expression on plastic.

5.2.3.2 Comparison of the levels of P-casein expression in
KIM-2 cells and the HC11 clonal cell line

The level o f expression of P-casein in KIM-2 cells was com pared with an already 

established clonal mammary cell line HC11. This cell line, which was selected for its 

ability  to express high levels o f P-casein on plastic was used to assess the 

differentiation capacity of KIM-2 cells in response to lactogenic hormones. Higher 

levels of p-casein were expressed in confluent KIM-2 cultures after induction than in 

confluent H C 11 cultures over the same time period (Figure 5.6).

5 .2 .3 .3  Phenotypic stability of the differentiated phenotype in 
KIM-2 cultures

One of the drawbacks of mammary epithelial cell lines presently available is that they 

lose their differentiation capacity at later passages. This property was investigated in 

late passage (P31) KIM-2. Figure 5.7 shows the expression levels of P-casein protein 

obtained in KIM -2 cells after prolonged culture (3 m onths=P31). KIM-2 cultures 

therefore retain the ability to undergo functional differentiation after prolonged periods 

in culture as assessed by the expression of the early differentiation marker P-casein.
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HORM ONAL INDUCTION O f [3- CASEIN EXPRESSION ON 
PLASTIC AND TYPEI COLLAGEN

Figure 5.5 Comparison of (3-casein protein induction in KIM -2 cultures grown on 
plastic and typel collagen
Total protein extracts (20pg loaded) were prepared from KIM-2 cultures grown to 
confluency at 37°C on either tissue culture plastic or typel collagen. The cultures were 
induced with lactogenic hormones, prolactin and dexam ethasone for the time period 
indicated or uninduced (insulin). A defatted milk sample (20pg total protein) was used as a 
positive control for the antibody. The blot was probed with a murine (3-casein polyclonal 
antibody:dilution 1:10,000.
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COM PARISON OF (3-CASEIN EXPRESSION IN KIM-2 AND HC11 
CULTURES

KIM-2 HC11

(3-casein

Figure 5.6 W estern blot analysis of (3-casein expression levels in KIM-2 cultures 
compared with the HC11 cell line
Total cell extracts were prepared from confluent KIM-2 cultures and HC11 cells (20pg 
total protein) which were induced with lactogenic hormones or uninduced. Defatted milk 
(20pg) was used as a positive control for the murine (3-casein antibody: dilution 1:10,000.
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HORM ONAL INDUCTION OF (3-CASEIN EXPRESSION IN  
LATE PASSAGE (P31) KIM -2 CULTURES AT 37°C AND 39°C

Figure 5.7 W estern blot of the time course of (3-casein protein induction in late passage 
cells
Total cell extracts (20pg loaded) were prepared from KIM-2 cultures grown to confluency at 
37°C and induced with lactogenic hormones at 37°C and 39°C for the time periods indicated. A 
defatted mouse milk sample was used as a positive control for the murine (3-casein polyclonal 
antibody: dilution 1:10,000.



5.2.3.4 Expression of WAP, a late differentiation marker WAP in
KIM-2 cultures plated on plastic

W AP mRNA transcripts could be detected in KIM-2 cells grown on plastic and 

induced with lactogenic hormones. This was unexpected since primary cultures and cell 

lines which have previously been isolated require quite complex culture conditions 

before W AP expression is observed (see section 1.2.2).

Unlike (3-casein RNA expression which was always detected after 2 days induction, 

increasing to a maximal level by 12 days, WAP expression was less predictable. In 

some cultures very low levels of expression could be observed 4 days after exposure to 

lactogenic hormones, in other cultures the onset of expression was delayed and was 

detectable after 8-10 days induction. Figure 5.8 shows the expression profile of [3- 

casein and W AP mRNA in KIM-2 cells over a period of 12 days induction in one 

experiment.

Unfortunately it was not possible to examine the levels of WAP protein synthesised 

by KIM -2 cells using the WAP antibodies which were available at the time (kindly 

provided by Dr. L. Hennighausen and Dr. F. Schanbacher). These antibodies did detect 

W AP expression in dewaxed paraffin embedded tissue sections from lactating mice but 

did not detect WAP on a Western blot with 20pg samples of defatted milk (data not 

shown).

5.2.4 “Mammosphere” formation and p-casein expression in KIM-2 cells 
plated on reconstituted basement membrane (Matrigel)

M am m ary epithelial cells appear to undergo a g reater degree o f functional 

d ifferentiation when plated on reconstituted basem ent m em brane (com m ercially 

available as M atrigel; Becton and Dickinson). B issell’s group and others (section 

1.2.3.1) have shown that culturing MEC on reconstituted basement membrane causes 

morphological changes resulting in the formation of “mammospheres” which resemble 

alveolar structures in pregnant and lactating glands (Aggeler et al., 1991). The addition 

of lactogenic hormones to these cultures results in the synthesis of higher levels of (3- 

casein when compared to other substrata (Wicha et al., 1982).
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TIM E COURSE OF mRNA EXPRESSION OF 
DIFFERENTIATION MARKERS IN KIM-2 CULTURES

Figure 5.8 Tim e course o f (3-casein and W AP mRNA induction in 
KIM-2 cultures grown on tissue culture plastic.
KIM-2 cultures were grown to confluency at 37°C and induced for the 
period of tim e indicated with lactogenic horm ones (prolactin  and 
dexamethasone) or uninduced (insulin). 20pg of total RNA was loaded on a 
formaldeyde gel. The blot was hybridised with a WAP probe, then stripped 
before hybridising with a |3-casein probe. The blot was stripped again before 
finally hybridising with a ribosomal probe as a loading control.



In addition B isse ll’s group claim s that the formation of “m am m ospheres” is a 

prerequisite for W AP expression (Chen et a l., 1989).

KIM-2 cells were plated at high density (4 x l0 5 cells/cm2) onto Matrigel in Complete 

medium (see section 2.9.4) to determine whether similar morphological changes could 

be seen. Figure 5.9 shows the morphology of KIM-2 cells when plated on Matrigel. The 

cells appeared to m igrate towards each other forming a lattice-like network 7 hrs after 

plating (Figure 5.9A). After 24 hrs “mammosphere” were beginning to form, some with 

processes to adjacent structures (Figure 5.9B). After 48 hrs these structures appeared to 

be fully formed (Figure 5.9C).

Functional differentiation was induced by incubating the cultures in Induction media 

(omitting the serum) for 2 days. The cultures were fixed, cryosectioned and stained 

with an anti-P-casein antibody and counterstained with 4, 6-diamidino-2-phenyl-indole 

[DAPI] (carried out by Dr. N. Bailey; see Streuli et al., 1991). Figure 5.10 shows 

im m unofluorescent staining of a “mammosphere” with the p-casein antibody and 

counterstaining of the nuclei in the same field with DAPI. Unfortunately it was not 

possible to exam ine the levels of W AP protein synthesised by KIM-2 cells using the 

WAP antibodies which were available (see above). The expression of W AP mRNA has 

not been exam ined in the “mammosphere” cultures yet but it will be interesting to 

compare the levels observed in these cultures with the levels on plastic.

5.3 DISCUSSION

The KIM-2 cultures grown at the semi-permissive temperature of 37°C were highly 

enriched with luminal epithelial cells as assessed by their positive staining with keratin 

18 and keratin 19 monoclonal antibodies. Under these conditions the cells were also 

relatively free of mesenchymal cells (vimentin) and myoepithelial cells (smooth muscle 

actin). This phenotype was retained for 60 passages without any obvious morphological 

changes.

C ultures w hich have been isolated and m aintained at 33°C stain with the 

mesenchymal specific antibody, vimentin and retain only residual epithelial-specific
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"M A M M O SPH E R E " FO R M A TIO N  IN K IM -2 CELLS PLA TED
ON M A T R IG E L

B

24 hours

c

48 hours

Figure 5.9 Formation of "mammospheres" in KIM-2 cells plated on Matrigel
KIM-2 cells were seeded onto dishes precoated with M atrigel and incubated in Complete 
medium at 37°C for 48hrs. (A) The cells migrated to form a lattice-like network within 7hrs 
of plating. (B) "Mammospheres" started to form after 24hrs. (C) "Mammospheres" were fully 
formed after 48hrs of plating and the Matrigel started to be pulled around these structures.



129

Figure 5.10 Immunofluorescent staining of a "mammosphere" cross-section with a (3-casein 
antibody and nuclei counterstained with DAPI
(A) (3-casein expression in a frozen section from a KIM-2 "mammosphere"
(B) Nuclear staining of the same cross-section with DAPI 
(Kindly carried out by Dr. N. Bailey and Dr. C . Watson)



keratin 18 expression. However shifting the cultures to 37°C resulted in an increase in 

the number of keratin 18 positive cells. The reason for this change in the cell population 

at the different temperatures is unclear at present.

A similar mesenchymal to epithelial cell conversion has been reported to occur in 

NIH3T3 fibroblasts which have been engineered to overexpress either the murine or 

human Met proto-oncogene (Tsarfaty et al., 1994). Transplantion of these cells into 

nude mice resulted in formation of tumours. Examination of these tumours by laser 

scanning confocal microscopy revealed that a high proportion of the tumours contained 

luminal structures. The authors proposed that the ‘activation of Met in mesenchymal 

cells at the site of wounds may play a role in converting these cells to epithelial cells’. 

Furtherm ore inappropriate expression of M et in mesenchymal cells could lead to 

certain carcinomas which express both mesenchymal and epithelial markers. This type 

of carcinoma has been observed in lung (Chejfec et al., 1991), kidney (Ward et al., 

1992) as well as ductal and muscinous adenocarcinomas (Gould et al., 1990).

Rudland and Barraclough (1990) have reported the conversion of SV40-transformed 

human breast cell lines to a ‘myoepithelial-like cell type’ as expression of T-antigen is 

increased. Since the proportion of cells which express myoepithelial cell markers, such 

as smooth muscle actin was not examined in the KIM-2 cultures grown at 33°C or in 

the switch 33°C->37°C it is not it is not possible to exclude the presence of this cell 

type.

It would be worthwhile exam ining this mesenchymal-epithelial conversion more 

throughly. Firstly, it could be established whether the alterations in cell types correlates 

with increased expression of active T-antigen. Secondly, a time-course of switches 

from 33°C->37°C and from 37°C->33°C would determine: (i) which cell types are 

present at interm ediates stages (using epithelial, m yoepithelial and mesenchymal 

markers) (ii) whether the conversion can occur in either direction i.e from mesenchymal 

to epithelial and vice versa (iii) when or if the cells become irreversably commited to a 

specific lineage (iv) whether this conversion correlates with the activation of specific 

signalling pathways which have been shown to be activated during tumourigenesis. 

This system may provide an easily manipulated model to study cell commitment.
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KIM-2 cells can undergo functional differentiation and express higher (approximately 

5 fold) levels of (3-casein than the clonal epithelial cell line, H C 11. The requirements 

for expression of (3-casein are similar to other mammary epithelial cell lines requiring 

the addition of lactogenic hormones to confluent cultures. The secretory pathway in 

these cultures has not be analysed yet. However, if the correct post-translational 

modifications can occur in this system it may be useful in studying milk secretion. In 

addition KIM-2 cells can be induced to differentiate after several months in culture 

suggesting that this differentiation property is relatively stable.

Endogeneous W AP expression has not been observed in any previously isolated 

mammary epithelial cell line. Therefore the expression of W AP mRNA in KIM-2 cells 

grown on tissue culture plastic is a novel characteristic of this cell line. This 

observation requires further investigation, initially to determine the full extent of 

differentiation in these cultures (i.e can a-lactalbum in be expressed) and secondly to 

examine whether, during a time course of lactogenic hormone induction, the pattern 

and timing of milk protein expression mimics the pregnant mammary gland.

The expression of W AP mRNA on plastic conflicts with the model proposed by 

Roskelley et al., (1996). In their model it is proposed that a prerequisite to WAP 

expression is the requirement for basement membrane components and the formation of 

‘m am m osphere’ structures. C learly in the K IM -2 cultures the form ation of 

‘mammopsheres’ is not necessary for the expression of WAP mRNA. KIM-2 cells will 

however form “m am m opsheres” on M atrigel (com m ercially available basement 

membrane) and synthesise (3-casein. There is not an obvious explanation for these 

differences. The cell lines and primary cultures used by Bissell and others have been 

isolated from the same developmental stage i.e. m idpregnant glands, as the KIM-2 

cultures. However the KIM-2 culture were derived differently and initially grown on 

typel collagen whereas the primary cultures and cell lines examine by others were 

isolated and maintained on tissue culture plastic. It may well be that this isolation step 

is the key to this novel characteristic in KIM-2 cells. Isolating and growing cells on 

tissue culture plastic may result in the selection of a particular population of cells which 

is different from those obtained using typel collagen.
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Typel collagen has been shown to be expressed in the early stages of pregnancy (day 

4) before decreasing as typelV  collagen and laminin increases in the latter stages 

(Keely et al., 1995) as the epithelium undergoes differentiation. It is plausible that by 

initially maintaining KIM-2 cells on typel collagen there is a population of these cells 

which are similar to cells found during the early stages of pregnancy.

In conclusion KIM-2 cultures do mimic the differentiating m ammary epithelium 

during pregnancy. In particular, they respond to lactogenic horm ones by inducing 

endogenous milk protein genes. The degree of functional differentiation observed in 

KIM-2 exceeds that observed in other isolated mouse mammary epithelial cell lines. 

Expression of both (3-casein and WAP on plastic substrata is unique to this culture 

system. Further differentiation of these cultures to express a-lactalbum in has not been 

assessed.

At present it is only possible to speculate on the value of a culture system which can 

maintain its full differentiation potential. However it is envisaged that such a tool could 

be utilised by both cell and molecular biologists to com plem ent in vivo  data from 

animal experiments. Additionally it is a potentially useful tool for the cancer research 

field to study the early stages of mammary tumour developm ent since the cells are 

conditionally immortalised.
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CHAPTER SIX

KIM-2 CELL LINE: AN IN VITRO MODEL OF THE MAMMARY 

GLAND?

6.1 INTRODUCTION

Cell proliferation and differentiation of the mammary epithelium is precisely controlled 

during the development and maturation of the gland in vivo. The molecular analysis of the 

events which govern the transcriptional activation of milk protein genes and the synthesis 

of milk during lactation has been actively pursued for many years. Using both in vivo and 

in vitro models it has been established that a complex interplay of steroid and peptide 

hormones, complemented by cell-cell and cell matrix interactions are required. The action 

of these regulators at a molecular level is becoming more clear with the aid of cell lines 

such as HC11 and CID9. However both these cell lines have advantages and 

disadvantages which have been discussed previously (see Chapter 1).

The KIM-2 culture system isolated and characterised here could potentially provide a 

more accurate model of mammary development. Functionally the cells respond to 

lactogenic hormones and induce milk protein gene expression. The level of differentiation 

observed in KIM-2 cultures exceeds that observed in other isolated cell lines with both an 

early (P-casein) and a late differentiation marker (WAP) being expressed on tissue culture 

plastic. This property could be used to decipher the intracellular signalling mechanisms 

involved in the specific activation of both early and late milk protein genes. Mechanistic 

questions concerning how epithelial cells respond to the multitude of diverse cell surface 

signalling molecules, e.g growth factors and hormones, and how these signals are 

relayed to the nucleus and ultimately lead to the co-ordinated activation of milk protein 

genes could be addressed.

The lactogenic hormone prolactin is known to be one of the principle players (along 

with insulin and glucocrticoid) in the differentiation of mammary epithelial cells. It 

promotes milk protein gene expression by regulating the transcription and stability of 

mRNA (Vonderhaar and Ziska, 1989). It exerts its function by binding to the prolactin 

receptor (PRFR), which is a member of the cytokine/haematopoietic growth factor



receptor family. However it is only in the past 4 years that the intracellular signalling 

pathway, activated by the binding of prolactin to its receptor, has been elucidated. The 

key intracellular components of this pathway in the mammary gland are the protein 

tyrosine kinase JAK2 and the transcription factor STAT5 (section 1.3.1 and Diagram 

1.3). The activation of this pathway by prolactin stimulation was investigated in KIM-2 

cells to asssess their value as an in vitro tool to study this signalling pathway.

The ability to genetically manipulate KIM-2 cells (via transfection) would also provide 

an opportunity to:- (i) interfere with signalling pathways activated during differentiation 

(ii) identify other important regulatory elements within the milk protein promoters which 

are necessary for expression (iii) provide an in vitro assay system to evaluate gene 

constructs at the level, and fidelity, of RNA and protein expressed and thereby screen 

potential transgene constructs prior to generating transgenic mice. The transient 

transfection of a reporter (3-galactosidase construct was used to optimise transfection 

conditions for KIM-2 cells before examining the expression of a series of milk protein 

promoter based constructs.

6.2 RESULTS

6.2.1 Rapid activation of STAT5 after prolactin stimulation

The time course of STAT5 activation in KIM-2 cells in response to prolactin stimulation 

was assayed by EMSA (electophoretic mobility shift assay) analysis. Nuclear extracts 

were prepared from confluent KIM-2 cultures which had been grown to confluency in 

Complete medium and EGF removed for 24 hrs before the cultures were induced with 

prolactin for the time periods indicated (Figure 6 .1 A). EGF was not added to the culture 

media once the cells were confluent since there is evidence that activation of the EGF 

receptor prevents lactogenic hormone induction in HC11 cells (Hynes et al., 1990). The 

nuclear extracts were incubated with a radioactive DNA oligonucleotide probe which 

corresponded to the highest affinity STAT5 binding site within the BEG promoter 

(Watson et al. 1991). The activation of endogenous STAT5 induced in KIM-2 cells was 

rapid. Activated STAT5 was observed within 5 minutes of prolactin stimulation (Figure 

6.1, Lane 4) and peaked between 30-60 minutes (Figure 6.1, Lanes 6 and 7)
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before declining. The DNA-complex observed in stimulated cells was a similar size 

compared to lactating mouse mammary gland and the level of binding was estimated to be 

approximately 50 fold lower in KIM-2 cells. (Figure 6.1, Lane 7 compared with Lane 

13).

To confirm this complex was STAT5 a competition EMSA was performed using 

nuclear extract prepared from KIM-2 cells which were either unstimulated (no EGF) or 

stimulated with prolactin for 5-45 minutes (Figure 6.2). 50ng of non-radioactive 

competitor oligonucleotide was added to the time-points when peak activation of STAT5 

had been detected (Lanes 6 and 8). The STAT5 binding activity could be competed by the 

unlabelled STM binding site but not by an unrelated oligonucleotide (not shown) 

indicating that the binding detected was specific. The level of binding in KIM-2 cells was 

estimated to be 150 fold lower in KIM-2 cells compared to sheep lacating mammary gland 

(Figure 6.2, Lane 7 compared with Lane 9). To determine whether the STAT5a or 

STAT5b form is activated in prolactin-stimulated KIM-2 cells a supershift experiment 

was performed using STAT5a and STAT5b specific antibodies (Santa Cruz). This was 

carried out by incubating the nuclear extracts with the antibody for lhr on ice before 

carrying out a conventional EMSA. Figure 6.3 shows that the STAT5a or the STAT5b 

specific antibody supershifts approximately 50% of the activated complex (Lanes 2 and 3 

respectively). However, when both antibodies are used together the activated complex is 

almost completely supershifted (Lane 4) demonstrating that both forms are activated in 

KIM-2 cells.

6.2.2 Genetic manipulation of KIM-2 cells 

It was important to demonstrate that KIM-2 cells could be transfected with foreign DNA 

constructs since this would facilitate genetic manipulation of the culture system.

6 .2 .2 .1  Transient transfections 

Transient transfections have been carried out . in KIM-2 cells using four different 

transfection methods: calcium phopshate, Strontifect (Biovation), Lipofectamine 

(Gibco/BRL) and Tfx-50 (Promega). A plasmid containing (3-galactosidase driven by a (3- 

actin promoter (pgeo-kindly provided by Dr. W. Skames) was used as a reporter.
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STAT5 ACTIVATION IN PROLACTIN STIM ULATED KIM-2 CELLS

Figure 6.1 Time course of STAT5 activation in KIM -2 cells stimulated with 
prolactin

KIM-2 cultures were grown to confluency and stimulated with prolactin for the time 
period indicated in the absence of EGF. Unstimulated control cultures were grown in 
the presence of insulin and EGF (maint) or in the presence of insulin and the absence 
of EGF (-EGF). Nuclear extracts were prepared and STAT5 activity assayed by 
EM SA analysis. The protein-D N A  com plexes were resolved on a native 6% 
polyacrylamide gel.
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COM PETITION OF STAT5 BINDING IN NUCLEAR  
EXTRACTS FROM  KIM -2 CELLS

+* = 50ng of cold competitor added

Figure 6.2 Competition of STAT5 binding in prolactin stimulated KIM-2 cultures

KIM-2 cultures were grown to confluency and stimulated with prolactin for the time period 
indicated in the absence of EGF. Unstimulated control cultures were grown in the presence 
of insulin and the absence of EGF (-EGF). Nuclear extracts were prepared and STAT5 
activity assayed by bandshift analysis. 50ng of nonradioactive 'cold' STM oligonucleotide 
competitor (GGGATTTGGCCAACCGC) was added to extracts in lanes 6, 8 and 10. The 
protein-DNA complexes were resolved on a native 6% polyacrylamide gel.
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STAT5a AND STAT5b FORMS ARE ACTIVATED IN 
PROLACTIN STIM ULATED KIM -2 CELLS

Vt/J3O
E

Lanes 1 2 3 4

Figure 6.3 STAT5a and STAT5b forms are activated in prolactin 
induced KIM-2 cultures
KIM-2 cells were grown to confluency and stimulated with prolactin for 1 
hr and nuclear extracts prepared. 2pg of the nuclear extract was incubated 
with lpl of STAT5a (Lane 2), STAT5b (Lane 3) or both antibodies (Lane 
3) for lhr on ice before adding the radiolabelled STM oligonucleotide. The 
complexes were resolved on a 6% polyacrylamide gel.



The transfections were carried out as described in materials and methods (section 2.9.5) 

and stained for LacZ (section 2.10). Figure 6.4 shows transfected cells stained blue in the 

presence of X-gal.

The calcium phosphate transfection method gave the highest transfection efficiency 

however it was also the most variable ranging from 0.09%-0.29%. The lipid-based 

transfection methods were less variable ranging from 0.07% -0.1% for Lipofectamine and 

0.02-0.04% for Tfx-50 but the transfection efficiencies were considerably less than that 

obtained with calcium phopshate. Strontifect, which is apparently less toxic to cells than 

calcium phosphate gave the poorest transfection efficiencies ranging from 0.001%- 

0.02%. Figure 6.5 summarises the transfection efficiencies obtained using the different 

transfection methods.

6 .2 .2 .2  Stable transfections

To determine whether KIM-2 cells may provide an in vitro assay system to evaluate 

gene constructs for expression levels and RNA fidelity a series of (3-lactoglobulin Protein 

C constructs (pC orpl, 6, 7 and 8, kindly provided by PPL Therapeutics) were stably 

transfected into KIM-2 cells. These constructs show varying levels of expression in 

different transgenic lines of mice. Figure 6.6 shows Protein C RNA expression in pools 

of uninduced or induced cells (inducedMactogenic hormones for 4 days). It is anticipated 

that a comparison of transgene expression in the KIM-2 culture system with data 

generated from the lactating mammary gland of transgenic mice should give an indication 

of the suitability of this system for transgene expression studies (data unavailable due to 

its commercial value).

The expression of these constructs and others in both primary mouse and ovine culture 

systems have failed (PPL Therapeutics pers. comm.). Clearly from this preliminary 

experiment KIM-2 cells can support the expression of these transgene constructs, 

however the basal levels of transcription in the uninduced cultures with pCorp6 and 

pCorp7 are high (aproximately 5 and 20 fold higher respectively compared to pCorpl and 

pCorp8 uninduced). In addition pCorp6 and pCorpl appear to have two different sizes of 

transcripts. At present it is unclear whether this is an artifact of the culture system or 

whether the temporal expression of these constructs are altered in vivo. However a high
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TRANSIENT TRANSFECTION OF KIM -2 CULTURES USING CaPO 4

Figure 6.4 LacZ staining of KIM -2 cells transient transfected with a (3- 
galactosidase expression construct ((3-geo).
KIM-2 cells were transfected with the (3-geo reporter construct fixed and stained 
72hrs later for (3-galactosidase activity



TRA NSIENT TRA NSFEC TIO NS IN K IM -2 CELLS
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CaP04 Strontifect Lipofectamine Tfx-50

METHODS

Figure 6.5 Com parison of transfection efficiencies obtained in KIM-2 
cells with a variety of transfection methods

Each bar represents the average number of blue cells per well of a six-well dish obtained 
from 4 independent experiments.
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RNA EXPRESSION OF A PROTEIN C TRANSGENE IN KIM-2 CELLS
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Figure 6.6 Northern blot showing Protein C transgene expression in 
KIM-2 cells A series of BLG-Protein C expression constructs were 
transfected into KIM-2 cultures and stable pools expanded. The cultures 
were either induced with lactogenic hormones (prolactin and 
dexamethasone) or uninduced (insulin) for 4 days. 20pg of total RNA was 
loaded on a formaldeyde gel. The Northern was hybridised with a Protein 
C cDNA probe.



basal level of expression of the BLG promoter was observed in H C 11 cells (Burdon et 

a l ,  1994b)

6.3 DISCUSSION

The time course of activation of STAT5 in prolactin stimulated KIM-2 cells is similar to 

that observed by Welte et al., (1994) in HC11 cells. However, HC11 cells only express 

low levels of the prolactin receptor and STAT5 making expression studies difficult. 

Attempts to establish clones which express higher levels of the receptor and STAT5, 

through gene transfer procedures have been unsuccessful (Gouilleux et al., 1994). The 

STAT5 binding activity of KIM-2 cells was approximately 50 fold lower than lactating 

mouse mammary gland. This is 10 fold higher binding activity compared to that observed 

for H C11 cells (Dr. C. Watson pers. comm.). The competition experiment confirms that 

the binding activity observed is specific and antibodies which recognise either STAT5a or 

STAT5b supershift the complex suggesting both forms are active in differentiated KIM-2 

cells. This mimics the activation of both forms of STAT5 in the developing gland during 

pregnancy as the epithelium differentiates (Lui et al., 1996; Philp et al., 1996). Therefore 

KIM-2 cells could be valuable in the in vitro analysis of prolactin signalling.

The recently published distinct phenotypes of the STAT5a and STAT5b-deficient mice 

makes this prospect even more attractive. The STAT5a “knockout” mice (Lui et al., 

1997b) displayed impaired alveolar development and failed to lactate during their first 

pregnancy. Although both [3-casein and WAP genes contain STAT5 binding sites only 

WAP expression was reduced in these mice. This suggests that STAT5a is not the 

primary transcription factor involved in the control of (3-casein expression. Since KIM-2 

cells can be induced to express both (3-casein and WAP genes this observation can be 

investigated further in this culture system. STAT5a binding could be “knockout” in vitro 

using a specific STAT5a neutralising antibody or dominant negative construct and 

induced KIM-2 cells examined for the expression of both milk genes. The absence of 

WAP expression and the presence of (3-casein expression would reinforce the in vivo 

data. If this observation is confirmed then KIM-2 cells may also prove useful in
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unravelling which transcription factor(s) are primarily important in the activation of 13- 

casein and WAP expression.

STAT5b “knockout “ mice (Davey et al., 1997) display growth retardation in the males 

and abnormality in the reproductive organs of both sexes which resulted in fertility 

problems. Despite the similarity (96%) between STAT5a and 5b (Liu et al., 1995) and the 

superimposable expression pattern during mammary development, STAT5b does not 

compensate for the absence of STAT5a or vice versa in these animals. It has been 

suggested that the unique C-termini of both forms of STAT5 may be responsible for the 

non-overlapping activities (Liu et al., 1995) observed. Again this could be examined in 

vitro by transfecting hybrid constructs composed of the STAT5b gene with the C-terminal 

domain of STAT5a and vice versa into KIM-2 cells. Alternatively it may be that 

STAT5a/b heterodimers are important. This could be investigated in vitro by swapping 

the dimerization domains.

Genetic manipulation of KIM-2 cells can be achieved through transfection. Calcium 

phopshate was determined to be the most efficient and most variable (ranging from 

0.09%-0.29%) transfection method as assessed by transient transfections of a LacZ 

reporter construct. Although this level of efficiency may be too low for transient 

expression studies it is sufficient when selectable systems are used.

The expression data generated from the stable transfection of 4 BLG-Protein C hybrid 

constructs (kindly provided by PPL Therapeutics) into KIM-2 cells demonstrates that this 

culture system can support the expression of milk protein promoter driven transgenes. 

The variation in expression levels of the different constructs is consistent with the 

expression levels observed in transgenic lines of mice carrying these constructs (PPL 

Therapeutics pers. comm.). However, the high level of basal expression in pCorp6 and 

pCorp7 and was unexpected. At present it is unclear whether this is an artifact of the 

system or whether it is an inherent property of these particular constructs. This particular 

question is being investigated by PPL Therapeutics with this series and other transgene 

expression constructs. Once sufficient data is available, in vitro expression results can be 

compared with in vivo data from transgenic mice and the predictive value of KIM-2 cells 

assessed.
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The experiments described here suggest that KIM-2 cells are good model system to 

study prolactin signalling in vitro and preliminary evidence indicates they may provide an 

assay system to evaluate the suitablity of expression constructs before generating 

transgenic animals.



CHAPTER SEVEN

OVERVIEW

7.1 INTRODUCTION

The challenge driving this project was the desire to develop a mammary epithelial cell culture 

system that could more accurately mimic mammary development in vivo.

The mammary gland is one of the few tissues that develops fully only in the adult. During 

pregnancy, the epithelial ductal network that fills the fat pad in a virgin mouse undergoes rapid 

proliferation with the development of branching structures which differentiate to form 

lobuloalveolar structures. After birth of the young, the gland enters a secretory phase, 

producing copious amounts of milk. Following the cessation of lactation, involution of the 

lobuloalveolar structures occurs and these secretory epithelial cells die by apoptosis. This 

results in the remodelling of the gland to a structure very similar to that in the virgin animal.

The mammary gland therefore provides a very interesting experimental system in which 

proliferation, differentiation and apoptosis can all be studied. In addition, the interactions 

between stromal components and epithelial cells can be investigated. For example, the role of 

extracellular matrix and the inductive interaction of mesenchyme on epithelial cell development 

are interesting questions which can be addressed in the mammary gland.

As a result of these complex interactions and developmental processes, it has, to date, 

proven difficult to mimic even some of these processes in mammary epithelial cell culture. A 

model of the entire spectrum of mammary development is not available. The goal of this 

project, to develop such a cell culture model, was a daunting prospect. However, a novel 

approach to generating immortal cell lines provided the impetus to undertake this challenge.

The immortomouse was developed by Jat et al., in 1991. This line of transgenic mice 

globally express a SV40 T-antigen mutant under the control of the H 2K b gene promoter. The 

novel aspect of these mice is that the T-antigen mutant is temperature sensitive. Thus, at the 

permissive temperature of 33°C, the T-antigen is fully functional and will immortalise any cells 

in which it is expressed. However, at 39°C this T-antigen mutant is unable to oind p53 and 

pRb, the cells are 'normal' and can therefore presumably proliferate and differentiate in 

response to their usual signals.



Since expression of the temperature-sensitive T-antigen occurs in a wide range of cells and 

tissues of the immortomouse, this approach was modified by restricting expression of the T- 

antigen mutant to the secretory epithelial cells of the mammary gland. The choice of promoter 

for this purpose was straightforward. Since milk protein genes are expressed exclusively in the 

secretory epithelial cells of the mammary gland from mid-pregnancy onwards, a milk protein 

gene promoter was the ideal choice. The ovine (3-lactoglobulin promoter (BLG) has been 

extensively used in this laboratory for directing expression to the mammary glands of 

transgenic mice. The promoter region required for tissue-specific expression is thus clearly 

defined and was used in this project to create a hybrid transgene with the SV40 tsA58 mutant 

of T-antigen.

7.2 EXPRESSION OF THE TRANSGENE

The high degree of ectopic expression observed in the transgenic lines of mice carrying the 

BLG-tsA58 construct was not anticipated. However, the onset of tumour development and the 

types of tumour observed are similar to those found in the p53 null mice and in p53-/-; pRb-/+ 

double mutants. These lines of mice could potentially be valuable in investigating tumour 

progression and interactions of p53 and pRb in vivo. In particular the eye phenotype observed 

in the SV40-13 line would be worth investigating further as a potential animal model for 

retinoblastoma. The tumours observed in both males and females developed beween 4-6 

weeks of age and grew from retinal tissue or the unpigmented epithelium of the ciliary body 

and progressed to the lens and vitreous layer. The tumours appeared to be undifferentiated and 

resembled retinoblastomas or primitive neuroectodermal tumours (PNET). Developmental 

studies are being carried out by Dr. R. Ali (Dept, of Molecular Genetics, University College 

London) to further investigate this phenotype.

Although the degree of ectopic expression observed in the transgenic lines of mice correlated 

with the copy number of the transgene mammary specific expression did not. The lowest copy 

line (SV40-2) which did not display ectopic expression of the trangene, showed higher levels 

of T-antigen protein in the mammary gland than the highest copy line which displayed a high 

degree of ectopic expression (SV40-13).
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A common problem with transgenesis is variegated expression of the transgene. This 

phenomenon results in patchy expression, frequently observed as clusters of expressing cells 

next to clusters of non-expressing cells. The reason for this is not clear but it has been 

suggested that the chromosomal site of transgene integration is responsible. Integration close 

to the centromere may cause random inactivation of the transgene (Dobie et al., 1996). This 

has been observed with many transgenes and it would appear that the mammary gland is 

particularly prone to variegated expression. For example, the same transgene exhibits 

variegated expression in the mammary gland whilst in the salivary gland, almost uniform 

expression is observed (Ewald et al., 1996)). Pehaps this reflects expression of endogenous 

genes in vivo. WAP is expressed in a patchy manner during late gestation (Robinson et al.,

1995).

In this study only primary cultures isolated from SV40-2 grown at the semi-permissive 

temperature (37°C) retained a cobblestone morphology. This cannot easily be explained in 

terms of expression levels of T-antigen in vivo. However, future studies examining the level 

of wild-type T-antigen compared to the mutant in vivo  and in vitro from the different 

transgenic lines of mice and subsequent cell lines may provide a clearer picture.

7.3 POTENTIAL USES OF KIM-2 CELLS

The KIM-2 cell line generated and characterised in this study could potentially be a valuable 

in vitro culture system in many areas of mammary gland research.

Functionally the cells respond to lactogenic hormones and induce milk protein gene 

expression. The level of differentiation observed in KIM-2 cultures exceeds that observed in 

other isolated cell lines with both an early (P-casein) and a late differentiation marker (WAP) 

being expressed on tissue culture plastic. This functional property could be exploited and used 

to decipher the intracellular signalling mechanisms involved in the specific activation of both 

early and late milk protein genes. The functional significance of different transcription factor 

binding sites in the WAP promoter has been addressed previously using transgenic mice ( 

Rosen. MCB or Mol endo). It should now be possible to carry out such analysis in KIM-2 

cells. This is currently being tested in collaboration with Dr Jeff Rosen, Baylor, Texas who 

has provided us with his WAP promoter constructs.
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Mechanistic questions concerning the key intracellular components which are activated in 

response to regulatory signals at the epithelial cell surface epithelial cells could be addressed. 

For example, prolactin signalling in vitro has been examined in HC11 and Nb-2 pre-T 

lymphoma cells (prolactin dependant for growth). The HC11 cells have mainly been used in 

studies on transcriptional regulation exerted by prolactin and Nb-2 cells have been used to 

examine prolactin receptor-associated kinases (Rui et al., 1992). However both cell lines are 

limited in their usefulness. HC11 cells only express low levels of prolactin receptor and 

STAT5 making such studies difficult and attempts to isolate clones which express higher levels 

of the receptor have failed (Gouilleux et al., 1994). The level of STAT5 activation in KIM-2 

cells in response to prolactin shown here suggested that these cells could provide an alternative 

model mammary culture system to study the prolactin signalling pathway.

In this thesis the cell surface receptors expressed by KIM-2 cells has not been examined 

however this could provide some useful information. The prolactin receptor, for example, 

exists in 3 forms. The long (90kDa) and short form (40kDa) which are generated by 

differential splicing of the same gene (Arden et al., 1990; Shirota et al., 1990) and differ only 

in their cytoplasmic domains (Boutin et al., 1988, Boutin et al., 1989; Davis and Linzer 1989). 

The intermediate form of the receptor is a deletion mutant of the long form and lacks 198 

amino acids in its cytoplasmic region. Both the long and intermediate forms of the receptor 

have been shown to induce (3-casein expression (Lesueur et al., 1991) however the short form 

does not (Gouilleux et al., 1994). Although the different forms of the receptor bind prolactin 

they appear to have different functions. By examining the prolactin receptor status of KIM-2 

cells it may be possible to assign a role to the short form of the prolactin receptor and 

determine whether the different forms have overlapping or distinct functions.

The KIM-2 cells may also provide a useful in vitro tool to examine other signalling pathways 

which are thought to be activated by prolactin such as the mitogen-activated protein (MAP) 

kinase cascades.

The morphological differences observed in KIM-2 cells cultured at the fully permissive 

(33°C) and semi-permissive temperatures (37°C) are also potentially intriguing. Both 

morphologically and immunohistochemically the cultures established and maintained under 

these conditions are quite strikingly different. This transdifferentiation has been observed in a
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number of tissues in vivo. It is of developmental importance in the lung and the eye where 

mesenchymal/epithelial conversions occur (Danto et al., 1995; Kodama et al., 1994). An 

understanding of this process at the molecular level is therefore of clinical importance. It is 

possible that KIM-2 cells will transdifferentiate to provide the correct cellular environment for 

survival and that these cells constitute the small proportion (around 5%) of the non-epithelial 

cells in the KIM-2 cultures. Further characterisation of this phenomenon may provide a useful 

insight into cell commitment. In particular establishing whether this conversion is reversible 

(epithelial to mesenchymal as well as mesenchymal to epithelial) and if there becomes a stage 

when the cells are commited to a particular lineage could be addressed. At the molecular level 

examination of growth factors and their receptors which have been implicated in 

transdifferentiation could be carried out. For example, TGF(3 alters the phenotype of the 

mammary epithelial cell line NMuMG causing a reversible epithelial to mesenchynal 

conversion. However in genetically engineered NMuMG cells which overexpress a truncated 

type I TGF(3 receptor (Tsk7L) the transfected cells no longer underwent this converison 

(Miettinen et al., 1994). Over expression of the Met proto-oncogene in NIH3T3 fibroblasts, 

on the other hand, resulted in a mesenchymal to epithelial cell conversion (Tsarfaty et al., 

1994).

During involution of the mammary gland, the secretory epithelial cells are removed by 

apoptosis. The signals which induce apoptosis in these cells are not known but a reduction in 

the levels of prolactin and the breakdown of the extracellular matrix are required for involution 

to occur. It is not surprising therefore that it has been observed that levels of activated STAT5 

drop drammatically after the initiation of involution following forced weaning (Philp et al.,

1996). Previously, it has been shown that apoptosis can be induced in the mammary epithelial 

CID-9 cell line only when these cells have become fully differentiated by plating on 

exogenously added extracellular matrix (Boudreau et al., 1996). However, KIM-2 cultures 

which contain 3-dimensional dome structures will undergo apoptosis upon lactogenic hormone 

withdrawal (Dr R. Chapman pers comm.) with up to 30% of the cells undergoing apoptosis 

within 24 hours. The induction of apoptosis via a number of pathways can therefore be 

investigated with differentiated KIM-2 cultures.

150



The ability to genetically manipulate KIM-2 cells by transfection of foreign DNA constructs 

may also provide an in vitro system in which the expression level and fidelity of milk protein 

promoter driven constructs can be assessed. This could prove to be particularly valuable to 

pharmaceutical companies which express therapeutic proteins in the milk of transgenic 

animals. It is envisaged that a variety of constructs could be screened in vitro to determine 

which constructs gave the highest expression of the foreign protein either at the RNA or 

protein level. It is anticipated that the success of this screening method would drastically 

reduce the number of transgenic mice presently used for screening purposes. This would be 

cost effective and valuable under the present ethical climate towards animal experimentation.

The ability to generate stably transfected KIM-2 cells will also be of value in studies of 

signalling pathways. Transdominant negative mutants of signalling molecules and transcription 

factors can be stably expressed in KIM-2 cells following transfection and the isolation of pools 

of stably transfected cells. Recently developed binary systems such as the tetracycline 

inducible system (Grossen and Bujard) will add an extra dimension of control, allowing 

expression of the mutant proteins to be induced at specific developmental points. For example, 

the role of a particular factor in apoptosis can be determined by inducing expression of this 

factor only after the cells have become fully differentiated.

The focus of this project has been the derivation and functional characterisation of the KIM-2 

cell line. The full potential of KIM-2 cells as an in vitro model of the mammary gland is still to 

be determined. A collaboration has been initiated with Dr Jesus Soriano in Basel to assess the 

performance of KIM-2 cells embedded within 3-dimensional collagen gels. However, work 

carried out to date clearly demonstrates that this culture system is superior to others currently 

available in its morphology, uniformity, capacity to differentiate, and ability to undergo 

apoptosis.

The principal caveat of this cell culture system is that these cells express an oncogene. Whilst 

this is inactive at 39°C, there are a number of consequences including an abnormal and 

unstable karyotype and unknown effects from T-antigen complexing with other cellular 

proteins such as protein tyrosine phosphatases. However, culture models of the mammary 

gland are an essential complement to studies in vivo using genetically modified mice and the 

KIM-2 cell line described in this thesis is a promising addition to those cell lines currently in
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