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ABSTRACT

The carbapenems belong to the P-lactam antibiotics and are known to have an

unrivalled antibacterial spectrum. An expanding number of different carbapenem-

hydrolysing P-lactamases is increasingly being identified, especially in geographical

areas where the carbapenems have been employed widely. These carbapenemases

can be divided into two groups according to whether they are metallo-P-lactamases

or serine P-lactamases.

Recently, there have been several reports from Japan of carbapenem-resistant isolates

that produce a transferable metallo-P-lactamase designated IMP-!. In this thesis

sixty-one clinical Pseudomonas aeruginosa isolates were acquired from hospitals

within Japan and fifty-one of these strains were resistant to imipenem and/or

meropenem (MIC >4mg/l). Neither IMP-1 nor a novel carbapenemase could be

detected in any of these strains; instead synergism between a cephalosporinase and

lowered outer membrane permeability was found to be the most prevalent

mechanism of imipenem resistance.

The carbapenem-hydrolysing metallo-P-lactamases produced by members of the

genus Aeromonas have in the past few years demanded attention from a clinical and

enzymological point of view. Two imipenem-resistant Aeromonas veronii biovar

sobria strains 13 and 99 were isolated from a water source in South India. An

imipenem-based detection method applied after isoelectric focusing revealed that a



P-lactamase with a pi of 5.84 was responsible for carbapenem hydrolysis in strains

13 and 99 and unlike previously reported Aeromonas metallo-P-lactamases this

enzyme could be detected with nitrocephin. Purification of this novel enzyme,

nominated AVS-1, further demonstrated the unusual properties of this

carbapenemase, most notably its insensitivity to EDTA. A metallo-P-lactamase gene

was amplified from/4, veronii bv. sobria strains 13 and 99 by PGR. Sequencing of

the PGR product revealed that these two strains possess a metallo-p-lactamase gene

that is closely related to the metallo-P-lactamase gene imiS previously identified in

an isolate of A. veronii bv. sobria. Therefore, minor amino acid substitutions may

account for the extended substrate specificity and unusual inhibitor profile of AVS-1.

Two non-carbapenem-hydrolysing P-lactamases were also cloned from A. veronii bv.

sobria strain 13. One of these P-lactamases a clavulanic acid sensitive P-lactamase

was found to be an ampS-like penicillinase. The other cloned p-lactamase could

unfortunately not be sequenced.

Biochemical studies have previously shown that the metailo-P-lactamases produced

by Stenotrophomonas maltophilia are a heterogeneous group of enzymes. In this

thesis heterogeneity was investigated at the molecular level by PCR. Seven S.

maltophilia strains that produce biochemically different metallo-P-lactamases, were

subjected to PCR with intragenic primers designed from the known nucleotide

sequences of the S. maltophilia metallo-P-lactamase genes blau and b/aS. A 561

base pair nucleotide sequence was determined from each of the PCR products

amplified from the seven strains tested. The 187 amino acid residues deduced from

the nucleotide sequence demonstrated that the metallo-P-lactamases from seven



different strains share >88.2 % homology with one another and >88.3 % homology

with the metallo-(3-lactamases encoded by blciu and b/aS. Therefore, the metallo-P-

lactamases of S. maltophilia are a family of related enzymes differing by a few

amino acids.
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1: INTRODUCTION

1.1 Introduction to antibiotic resistance

The discovery of antibiotics in the earlier half of this century could be cited as one of

the great landmarks in the history of medicine and the fight against infectious

disease. However, seventy years after Alexander Fleming observed the antibacterial

properties of penicillin (Fleming, 1929) we are now moving towards a situation

where some bacteria are resistant to all commonly employed antibiotics (Spratt and

Duerden, 1997).

Bacteria have been subjected to intense selection pressures through the widespread

use of antibiotics in medicine and farming, and as a consequence bacterial resistance

mechanisms can now be identified against every clinically available agent.

Advances in medical technology, the use and misuse of antibiotics and poor hospital

infection control procedures are all factors contributing to the problem of antibiotic

resistance which is currently most acute in hospital intensive care units (Amyes and

Thomson, 1995).

1.2 P-Lactam antibiotics

The P-lactam family is the largest of all the antibiotic groups. P-Lactams have

dominated the antibiotic arena since the general introduction of antibiotics into

clinical use in the mid 1940s. The successful nature of the P-lactam antibiotics is
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reflected by their selective toxicity, strong bactericidal activity and the ability to

modify and improve their activity by chemically altering the P-lactam (Livermore,

1996). The four membered P-lactam ring is the structural feature that all P-lactams

share in common and is also the point of attack for the P-lactamases (Figure 1.1). P-

Lactamases hydrolyse the amide bond of the P-lactam ring to produce an

antibacterially inactive acidic product (Figure 1.1).

Figure 1.1 P-Lactamase hydrolysis of a carbapenem

1.3 Mode of P-lactam action

The mechanism of P-lactam action is known to involve the inhibition of

peptidoglycan biosynthesis and the activation of endogenous autolytic enzymes

leading to cell death (Tomasz, 1979). Both Gram-positive and Gram-negative

bacteria possess a lattice of peptidoglycan in their cell envelope that maintains the

cell shape and protects against osmotic forces (Figure 1.2).
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Figure 1.2 Simplified eross-seetion of Gram-positive and Gram-

negative cell envelopes
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The peptidoglycan molecule consists of long polysaccharide chains made of

alternating N-acetylmuramic acid (NAM) and N-acetylglucosamine (NAG) residues

(Figure 1.3). Pentapeptide chains are attached to the NAM groups and it is through

the covalent cross-linking of pentapeptides that adjacent polysaccharide chains are

connected to form the peptidoglycan matrix (Barnikel et al., 1983). In

Enterobacteriaceae the pentapeptide initially consists of L-alanine, D-glutamic acid,

diaminopimelic acid (DAP) and two terminal D-alanine residues. During the cross-



linking reaction (transpeptidation) the D-alanyl-D-alanine bond is cleaved, providing

energy for coupling of the carboxyl group of the penultimate D-alanine to the free

amino group of DAP in the pentapeptide of an adjacent strand (Barnikel el a/., 1983).

In actively dividing bacteria P-lactams primarily inhibit the enzymes that catalyse

transpeptidation reaction (D-alanyl-D-alanine transpeptidases). The amide group

(0=C-N) in the p-lactam ring (Figure 1.1) is conformationally similar to the peptide

link of the two terminal D-alanyl-D-alanine residues of the peptidoglycan

pentapeptides, thereby, causing the transpeptidases to mistake the drug for their

natural substrates (Tipper and Strominger, 1965; VVaxman et a/., 1980). The

enzymes lose their catalytic activity once the P-lactam has bound.

The p-lactam target enzymes occur on the cytoplasmic membrane and are

collectively known as the penicillin binding proteins (PBPs). There are several

distinct PBPs that demonstrate functional roles other than involvement in

transpeptidation (Livermore and Williams, 1996). The ability to penetrate the cell

wall and the degree of affinity to these PBPs determines the activity of the P-lactam

on the bacterium. Although PBPs have been best studied in Escherichia coli,

virtually all Gram-negative rods give identical patterns of seven PBPs, these are

numbered la, lb, 2, 3, 4, 5, and 6 in order of descending molecular weights

(Georgopapadakou and Liu, 1980; Noguchi et a/., 1979). Some P-lactams bind

almost exclusively to PBPs 2 or 3, although most bind to PBPs 1-3. PBPs 1-3 of

Gram-negative bacteria are essential for peptidoglycan manufacture and inhibition of

these components by P-lactams is lethal (Spratt, 1977).
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Figure 1.3 Structure of the repeating unit of peptidoglycan in E. coli

(Taussig, 1984)
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1.4 Mechanisms of resistance to the (3-lactams

Bacterial P-lactam resistance is often a multi-factorial event and thus can arise by

one or more of the following mechanisms:

1.4.1 Modification of the penicillin binding protein targets

Modification of PBPs as a mechanism of P-lactam resistance is most important in

Gram-positive cocci and the fastidious Gram-negatives Haemophilus influenzae,

Neisseria gonorrhoeae and Neisseria meningitidis (Spratt, 1994). In other Gram-

negative pathogens, PBP-mediated resistance is not such an important mechanism,

although, it has been reported for example in Pseudomonas aeruginosa (Malouin and

Bryan, 1986).

1.4.2 Impermeability

Impermeability of a p-lactam is a resistance mechanism associated with Gram-

negative bacteria only, because Gram-negative bacteria, unlike Gram-positives,

possess an outer membrane external to the cell wall that protects the PBPs (Figure

1.2). Certain hydrophilic semi-synthetic P-lactams can cross the outer membrane by

passive diffusion through pores composed of porin proteins. The properties and

numbers of the porins and the characteristics of the P-lactam (charge, size and

hydrophobicity) determine the rate of uptake (Livermore, 1991). Reduced porin

6



expression has been associated with insusceptibility especially when the organism

possesses a (3-lactamase (see Section 1.10.1)

1.4.3 Efflux

There is increasing evidence that active efflux (active pumping out of an antibiotic

entering the cell) plays a significant role in P-lactam resistance (Nikaido, 1994). In

P. aeruginosa, for example, the over expression of an operon (mexAmexBoprM) that

encodes an efflux system confers cross resistance to P-lactams, quinolones,

tetracycline and chloramphenicol (see Section 1.10.1.1).

1.4.4 Production of a P-lactamase

The production of P-lactam inactivating enzymes is the most prevalent mechanism of

resistance to the P-lactams amongst clinical bacteria (Medeiros, 1997). Gram-

positive organisms release P-lactamases into the environment, whereas, the P-

iactamases produced by Gram-negative bacteria are secreted into the periplasmic

space between the cytoplasmic and outer membrane. The list of P-lactamases that

have so far been identified from bacterial isolates is extensive and the number of

uniquely described P-lactamases now exceeds more than 250 (Karen Bush - personal

communication). The various P-lactamases will be discussed in more detail in

Section 1.6.
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1.5 Classification of the (3-lactams

The confusingly large group of P-lactam antibiotics is often divided into four

different classes: the penicillins, cephalosporins, monobactams and carbapenems.

Changing patterns of infection and resistance have driven the development of

successive P-lactam generations.

Figure 1 4 shows the chemical structures of the four |3-lactam classes. The P-lactam

ring of the penicillins and carbapenems is fused to a five-membered (thiazolidine)

ring, whereas, the cephalosporins possess a P-lactam/six membered (dihydrothiazine)

ring structure. The monobactams are monocyclic compounds, a feature that

distinguishes them from the other P-lactams. With all of these compounds the P-

lactam ring is essential for antimicrobial activity and it is the R-side chains that

determine the spectrum of antibacterial activity and also the pharmacokinetic

properties of the P-lactam

A fifth group of important p-lactam agents are the P-lactamase inhibitors, which

unlike the other four classes generally demonstrate little or no antibacterial activity.

These P-lactamase inhibitors are able to bind to P-lactam hvdrolysing enzymes and

thus render them inactive. P-lactamase inhibitors are employed in a dual agent

approach (Section 1,5.5).
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Figure1.4Basicchemicalstructuresoffour(3-lactamclasses
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1.5.1 Penicillins

The penicillin class covers a wide spectrum of antibacterial activity and can be

divided into five groups according to a structure-activity relationship (adapted from

Wright and Wilkowske, 1991). The five different penicillin subclasses are listed in

Table 1.1 along with representatives from each subclass. Examples of some of the

K\ penicillin side chains are shown in Figure 1.5.

Table 1.1 Classification of the penicillins

Natural narrow-

spectrum penicillins
Narrow-spectrum

penicillins
resistant to

staphylococcal
penicillinase

Broad-

spectrum
penicillins

Penicillins
active against
P. aeruginosa

p-lactamase-
resistant

penicillins

Benzvlpenicillin

Pheno.w methv lpenicillin

Methicillin

Oxacillin

Dicloxacillin

Flucloxacillin

Ampicillin

Amoxycillin

Carbenicillin

Ticarcillin

Azlocillin

Mezlocillin

Piperacillin

Temocillin

Natural narrow spectrum penicillins were the first (3-lactams to be made clinically

available. Benzylpenieillin, isolated as a product of Penicillium notatum (Fleming,

1929), was initially manufactured by adding maize extract rich in phenylacetic acid

to the fermentation process (Raper et al1944; Mover and Coghill, 1946). In a

similar fashion phenoxyacetic acid could be added to the procedure to yield

phenoxymethylpenicillin. The main difference between these two penicillins resides

in their stability to gastric acid. Phenoxymethylpenicillin is acid stable, unlike
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benzylpenicillin and can therefore can be administered orally (Wright and

Wilkowske, 1991).

In 1959 it was found that benzylpenicillin could be treated with an acylase to yield 6-

aminopenicillanic acid (6-APA), this was an important discovery because 6-APA

could then be substituted with various side chains to produce derivatives with

improved oral absorption and a broader spectrum of activity (Rolinson, 1988). A

further aim at this time was to develop penicillins active against penicillinase

producing Staphylococcus aureus, which had emerged as a serious clinical problem

(Barber and Whitehead, 1949). Methicillin was the first penicillin stable to the

staphylococcal penicillinase and was followed by the appearance of the isoxazolyl

penicillins (oxacillin, cloxacillin, dicloxaciilin and flucloxacillin). These penicillins

were stable to the staphylococcal penicillinase because they carry a bulky R] side

chain which sterically inhibits the enzyme action (Figure 1.5) (Doyle et al., 1961;

Knudsen et at., 1962; Sutherland et al., 1970).

Ampicillin was the first penicillin to be active against many common Gram-positive

and Gram-negative pathogens and involved adding an amino group as a side chain to

the basic benzylpenicillin molecule (Figure 1.5). Amoxycillin is closely related to

ampicillin in structure and function but demonstrates improved oral absorption.

Carbenicillin was the first penicillin to show significant activity against P.

aeruginosa. Replacing the amino side chain group of ampicillin with a carboxyl

group (Figure 1.5) produced Carbenicillin Carbenicillin and ticarcillin are both

11



examples of carboxypenicillins. The ureidopenicillins (azlocillin, mezlocillin and

piperacillin) are P. aeruginosa active ampicillin derivatives and have somewhat

better activity than the carboxypenicillins against P. aeruginosa (Nathwani and

Wood, 1993). Both the carboxypenicillins and ureidopenicillins can only be

administered parenterally.

Temocillin is a derivative of ticarcillin and is the only penicillin to show general P-

lactamase stability (Slocombe et al., 1981). It is a 6-a-methoxy (OCH3) group of

Temocillin that makes it resistant to bacterial P-lactamases. The disadvantage of

temocillin is its narrow-spectrum of activity, which is restricted to the

Enterobacteriaceae (Wright and Wilkowske, 1991).
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Figure 1.5 Examples of Ri penicillin side chains
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1.5.2 Cephalosporins

The successful discovery of penicillin promoted the search for other antibiotic-

producing microorganisms. The fungus Cephalosporium cicrentomum was found to

produce an antibacterial substance Cephalosporin C (Abraham and Newton, 1961).

7-Aminocephalosporanic acid (7-ACA) can be derived from cephalosporin C by

chemical means and it is from this molecule that the various cephalosporins originate

(Morin et a/., 1962).

Unlike the 6-APA core of penicillins the 7-ACA nucleus of cephalosporins can be

modified with two different side chains R-i and R2 (Figure 1.4). As with the

penicillins modification of the basic structure has produced a variety of compounds

with differences in spectrum of activity and pharmacokinetics. The cephamycins

such as cefoxitin, which was initially derived from Streptomyces lactcimdurams, are

also generally considered along with the 'true' cephalosporins (Oniski et al., 1974).

Cephamycins are similar in structure to the cephalosporins except they are

substituted at C-7 with a 7-a-methoxy group, which enhances P-lactamase stability.

Figure 1.6 gives examples of the structural formulas of the R-, and R? cephalosporin

side chains. The substituent at the Ri position generally affects antibacterial activity

and P-lactamase stability whereas, position R2 affects pharmacokinetic behaviour

and metabolic stability.

Cephalosporins are traditionally classified according to generations that are based on

the date they were introduced clinically and on their antibacterial properties. The
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first generation agents have a narrower spectrum and are more active against Gram-

positive bacteria than subsequent cephalosporin generations. The second-generation

cephalosporins demonstrate an improved anti-Gram-negative spectrum of activity,

which in some cases includes activity against anaerobes (for example the

cephamycins cefoxitin, cefotetan and moxalactam). The greatest anti-Gram-negative

activity has, however, been achieved with the third and newly described fourth

generation agents. Representatives of the cephalosporin generations along with

routes of administration are listed in Table 1.2.

The oxyaminothiazolyl group, that can be present at the Ri position, enhances Gram-

negative activity it is incorporated into most third and fourth generation

cephalosporins (see R] side chain of ceftazidime - Figure 1.6). The

oxyaminothiazolyl group blocks the access of (3-lactamases to the (3-lactam ring.

Attaching an acidic moiety on the Ri side chain (as in ceftazidime and moxalactam)

increases cephalosporin activity against P. aeruginosa (O'Callaghan, 1979). The

presence of a bulky side chain at the R: position markedly impairs oral absorption;

orally administered cephalosporins (such as cephalexin) generally have a simple

methyl group at this position (Figure 1.6).
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Figure1.6ExamplesofRiandR2cephalosporinsidechains
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Table 1.2 Classification of the cephalosporins

First generation Second generation Third generation Fourth generation

Cephalothin (P) Cefamandole (P) Cefopcrazone (P) Cefepimc (P)

Cepluiloridine (P) Cefotctan (P) Cefotaxime (P) Cefpirome (P)

Cefazolin (P) Cefoxitin (P) Ceftazidime (P)

Cephalexin (O) Ceftriaxone (P)

Cefaclor (O) Moxalaclam (P)

O - oral administration, P - parenteral administration.

1.5.3 Monobactams

Monobactams were discovered as naturally occurring compounds in Gram-negative

soil bacteria (Sykes and Bonner, 1985) The weak antibacterial activity of these

natural single-ringed substances led to the development of synthetic monobactams.

Aztreonam was subsequently made available for clinical use in the 1980s (Figure

1.7). Aztreonam has no affinity for the PBPs of Gram-positive bacteria or anaerobic

organisms and is considered a narrow-spectrum antibiotic, with its activity confined

to Gram-negative bacteria including P. aeruginosa (Brewer and Hellinger, 1991).

Aztreonam has the oxyaminothiazolyl side chain (at Ri) which is present in many

third and fourth generation cephalosporins Aztreonam is administered parenterally,

oral absorption being poor (Brewer and Hellinger, 1991).
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Figure 1.7 Structure of aztreonam
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1.5.4 Carbapenems

The carbapenems have the broadest antibacterial spectrum of any currently available

P-lactam and are active against Gram-positive and Gram-negative pathogens,

aerobes and anaerobes. Thienamycin, produced by Streptomyces cattleya, was the

first natural carbapenem to be discovered in the mid 1970s, however, it was found to

be chemically unstable (Figure 1.8) (Barza, 1985; Moellering et a!., 1989).

Imipenem (N-formimidoyl-thienamycin) is a semi-synthetic derivative of

thienamycin and was introduced into the clinical setting in the 1980s (Figure 1.8).

Finding new carbapenems has been relatively difficult because of their metabolic and

chemical instability, together with poor semi-synthetic yields (Barza, 1985). The

carbapenem choice has been extended by the addition of meropenem (Figure 18),

and panipenem, the latter is available only in Japan (Edwards, 1995). These agents

are all parenterally administered.
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The carbapenems have high affinity for PBPs in the majority of bacteria the

exceptions are methicillin-resistant S. aureus (MRSA) and Enterococcus faecium.

PBP2 is the primary target of both meropenem and imipenem. Binding of the

carbapenems to PBP2 is an advantage because there are relatively fewer molecules

of PBP2 compared with other essential PBPs; therefore, inhibition of PBP2 can be

achieved at lower antibiotic concentration (Williams et a/., 1986). Although both

imipenem and meropenem bind to PBP2, there are some differences between

imipenem and meropenem with regard to the additional PBPs that they can bind to;

for example, meropenem is thought to have greater potency against P. aeruginosa

because unlike imipenem it has affinity for both PBP2 and PBP3 (Edwards and

Turner 1995).

Both imipenem and meropenem have low molecular weights, are zwitterions, and

have a hydrophilic structure; these properties account for their ability to penetrate

bacteria readily (Moellering et at., 1989). At position C-6 the carbapenems have a

side chain in the trans conformation, this conformation is different from all other (3-

lactams, which have a substituent at the C-6 or C-7 that is in the cis position (Figure

1.8). The conformation of this side chain is associated with the stability of the

carbapenems to many of the clinically relevant (3-lactamases (Livermore and

Williams, 1996).

The major differences between imipenem and meropenem are pharmacological

rather than microbiological. Imipenem (and panipenem) unlike meropenem is

destroyed by a renal enzyme dehydropeptidase I (DHP-I) to an inactive but

19



nephrotoxic metabolite. Imipenem is administered with cilastatin which inhibits

DHP-1, preserving imipenem and preventing renal toxicity (Moellering et a/., 1989).

The imipenem C-2 side chain is responsible for susceptibility to hydrolysis by DHP-

1, and a methyl group at C-l has been associated with the enhanced resistance of

meropenem to DHP-1 (Moellering et a/., 1989). Imipenem has the potential for CNS

disturbances, meropenem appears not to cause seizures and is suitable for the

treatment ofmeningitis (Wiseman et al1995).

Although, the first carbapenem was clinically introduced at a similar time to the

3GCs and aztreonam, carbapenem resistance has been developing much more slowly

compared with these agents. Carbapenem-resistant bacteria are however beginning

to be described with increasing frequency, especially in geographical areas where

carbapenems have been widely employed. Moreover, an expanding number of

different carbapenem hydrolysing P-lactamases can be identified from these

carbapenem resistant isolates (discussed in Sections 1.11 - 1.12), especially in

geographical areas were carbapenems have been employed widely. Therefore, as

with all other P-iactam classes, the P-lactamases look set to seriously damage the

therapeutic reliability of these agents.
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Figure 1.8 Chemical structure of thienamycin, imipenem and
meropenem
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1.5.5 ^-Lactamase inhibitors

Two strategies have been adopted in the battle to overcome P-lactamase-mediated

resistance: (i) development of P-lactam antibiotics stable to P-lactamase hydrolysis;

(ii) combining a broad-spectrum P-lactamase labile P-lactam with a protective P-

lactamase inhibitor. Clavulanic acid (produced by Streptomyces clavuligerus) was

the first P-lactamase inhibitor to be described in the literature and to be applied
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clinically (Brown el a/., 1976). The discovery of clavulanic acid stimulated further

work on p-lactamase inhibitors and led to the clinical introduction of sulbactam and

tazobactam which are penicillanic acid sulphones (English et al1978; Arnoff et al.,

1984) (see Figure 1.9 for chemical structures). All three compounds generally have

weak antibacterial activity and their advantage resides in their ability to inhibit

certain (3-lactamases (see Section 1.6).

The three clinically available P-lactamase inhibitors are all classed as irreversible

■"'suicide" inhibitors, that is they are molecules that bind initially at the P-lactamase

active site where they are then, through the catalytic action of the P-lactamase itself,

converted into an activator that renders the p-lactamase inactive (Bush, 1988).

Amoxyciliin/clavulanate, ticarciilin/clavuianate, ampicillin/sulbactam and

piperacillin/ tazobactam are examples of the commercially available P-lactam/p-

lactamase inhibitor preparations.

The main limit to the p-lactam/inhibitor combinations is that they are only effective

against certain P-lactamases, namely molecular class A and some molecular class D

P-lactamases that are described below (Livermore, 1993a).



Figure 1.9 Structure of two suicide (3-Iactamase inhibitors
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1.6 Classification of the [^-lactamases

1.6.1 The Ambler classification scheme

There are two commonly cited P-lactamase classification systems. The classification

scheme initiated by Ambler (1980) is based on the amino acid sequence around the

P-lactamase active site and now consists of four classes A, B, C and D (Jaurin and

Grundstrom, 1991; Huovinen el cil„ 1988). Ambler classes A, C, D are the serine p-

lactamases whereas class B enzymes are metallo-p-lactamases. The primary

structure and catalytic mechanisms of metallo-P-lactamases and serine P-lactamases

are completely different and are discussed below (Section 1.7 - 1.8). A fifth

molecular class (E) has been proposed for the metallo-P-lactamases from

Stenotrophomonas maltophilia (Bicknall el a/., 1985), however, these enzymes are

generally referred to as class B P-lactamases.
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1.6.2 The Bush classification scheme

The Bush classification scheme is the most complete system so far to be devised for

(3-lactamases and correlates substrate and inhibitor profiles with molecular class

(Bush et a/., 1995). This classification system does not use the location of the gene

encoding the (3-lactamase as a classification factor, and this reflects the appreciation

of the mobility of P-lactamase genes, with chromosomal genes finding their way to

plasmids and vice-versa. This classification scheme has divided P-lactamases into

four main functional groups (Table 1.3).

Table 1.3. The four main functional groups of Bush's classification

scheme (adapted from Bush et aL, 1995)

Group Enzyme type Molecular
class

Inhibition by
clavulanic

acid

Inhibition

by EDTA
Examples

1 Cephalosporinase C No No AmpC. MIR-1
2a Penicillinase A Yes No S. aureus PCI. LEN-1
2b Broad-spectrum A Yes No TEM-1. TEM-2. SHV-1
2be Extended-spectrum A Yes No TEM-3. SHV-2
2br Inhibitor resistant A Diminished No TEM-30. TRC-1
2c Carbenicillinase A Yes No PSE-1. CARB-3. BRO-1
2d Cloxacillinase D or A Yes No OXA-1
2e Cephalosporinase A Yes No L2. B. fragilis CepA
2f Carbapenemase A Yes No Sme-1. Nmc-A. IMI-1
3* Metalloenzvmc B No Yes LI. IMP-1. CphA
4 Penicillinase No No B. cepacia LCR-1
* Rasmussen and Bush (1997) have proposed a subgroup of group 3 metallo-P-
lactamases based on functional characteristics (Section 1.11)
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1.6.2.1 Bush group 1

The majority of Gram-negatives produce chromosomally encoded group 1

cephalosporin-hydrolysing p-lactamases, including most enterobacteria, P.

aeruginosa, Acinetobacter spp. and Aeromonas spp. (Bush el ai., 1995). Group 1

enzymes from different species resemble one another and they are often referred to

as AmpC-type P-lactamases, however, the expression of these enzyme is known to

vary between species (Livermore, 1987). Clavulanic acid, tazobactam and sulbactam

do not demonstrate good activity against this group of enzymes and therefore, they

cannot be employed clinically to overcome this class of P-lactamases (Zhou el ai.,

1993). In vitro, a compound known as BRL.42715 has been shown to be a much

more effective inhibitor of the Bush group 1, molecular class C cephalosporinases

when compared to clavulanic acid, tazobactam and sulbactam; it additionally has the

ability to inhibit molecular class A and class D P-lactamases (Coleman et a/., 1989).

1.6.2.2 Bush group 2

Members of the group 2 P-lactamases have a diverse substrate profile and fall into

six subgroups based on their preferential hydrolysis of penicillins, cephalosporins,

oxyamino-cephalosporins, cloxacillin, carbenicillin or carbapenems. With the

exception of the 2br subgroup these enzymes are sensitive to clavulanic acid,

sulbactam and tazobactam. This group contains some of the most common P-

lactamases including the staphylococcal penicillinase, TEM-1 and SHV-1 and as

with many of the group 2 P-lactamases these are found on plasmids. The group 2f
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carbapenemases (Section 1.12.1) and group 2br TEM-derived (3-lactamases with

diminished sensitivity to clavulanate are the most recent subgroups.

1.6.2.3 Bush group 3

This functional group contains the zinc requiring metallo-|3-lactamases; in vitro these

enzymes are inhibited by metal-ion chelating agents such as EDTA and also the

amino acid modifier /;-chloromercuribenzoate (pC'vlB), but not by serine-directed

inhibitors. Payne el at., (1997) have recently reported the inhibition of some

metallo-P-lactamases by mercaptoacetic acid thiol ester derivatives. The metallo-P-

lactamases hydrolyse a broad-spectrum of substrates, most notably the carbapenems.

This group of enzymes will be discussed later in detail (Section 1.11).

1.6.2.4 Bush group 4

This group consists of a small number of penicillinases not well inhibited by

clavulanic acid. (Bush et a! , 1995).
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1.7 Mechanisms of (3-lactam hydrolysis by serine (3-lactamases

Most (3-lactamases are serine-based and belong to a superfamily of serine-proteases,

that includes the PBPs. The reaction catalysed by (3-lactamases and PBPs is

essentially the same:

1 2 3

E + So ES -> E-S -> E+P

E represents the enzyme (either (3-lactamase or PBP), S represents the (3-lactam

substrate, ES is a non-covalent intermediate and E-S represents the formation of a

covalent acyl-enzyme intermediate. The main difference between the reaction

catalysed by (3-lactamases and the reaction catalysed by PBPs is the rate of the

deacylation step (reaction 3). The deacylation step proceeds rapidly with (3-

lactamases but with PBPs this reaction is very slow or does not happen at all. (3-

Lactamases, therefore, can hydrolyse the (3-lactam to form an inactive antibacterial

product whereas the PBPs are inactivated by the (3-lactam as result of the long-lived

acyl-enzyme intermediate (Sanders and Sanders, 1992).

The serine [3-lactamases (Ambler classes- A, C, and D) possess at least three highly

conserved functional and structural elements at their active site, that supply most of

the groups involved in catalysis. These elements are commonly referred to as the

serine-X-X-lysine (SXXK -X is any amino acid), serine-aspartic acid-asparagine

(SDN) and lysine-threonine-glycine (KTG) motifs (Bush, 1997). The serine residue
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of the SXXK element is responsible for the attack on the carbonyl C of the (3-lactam

ring and for class A (and class D) enzymes this residue is designated serine-70, this

is based on a standard numbering scheme proposed by Ambler et a/., (1991). In

class C P-lactamases the active site serine is at position 64 (Medeiros, 1997).

The SXXK, SDN and KTG motifs are also also conserved in PBPs (Table 1.4), thus

the serine p-lactamases and PBPs are thought to share a common evolutionary

ancestor (Frere, 1995). Additionally, x-ray crystallography has shown that the class

A and class C P-lactamases closely resemble the R61 D,D-peptidase from a

Streptomyces species (Frere, 1995).

Table 1.4 Conserved elements of serine P-lactamases involved in

catalysis (adapted from Bush, 1997).

(Tlactam-interactive Element 1 Element 2 Element 3

protein
Class A |3-lactamase 70a 130 234

S-X-X-Kb S-D-N K-T-G
S-D-S K-S-G

R-S-G
R-T-G

Class C p-lactamase 64 150 314
S-X-X-K Y-A-N K-T-G

Class D p-lactamase 70 144 214
S-X-X-K Y-G-N K-T-G

R61 D.D-peptidasec 62 159 298
S-X-X-K Y-S-N H-T-G

d Amino acid numbering according to Ambler el al., (1991).
b
X - any amino acid

L PBP ofStreptomyces species R.61 (Kelly and Kuzin, 1995)
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In the class A (3-lactamase mechanism of action lysine (K) 73 (Table 1.4) acts as a

general base and deprotonates the hydroxyl group of serine (S) 70 (Table 1.4). This

proton is then donated to serine 130 (Table 14) which in turn donates the proton to

the nitrogen atom of the (3-lactam amide bond (Stryndka et al., 1992), this results in

the fission of the amide bond (Figure 1.10). Class C P-lactamases have a tyrosine

residue at position 150 which corresponds to serine 130 in class A P-lactamases and

has been shown to be important for the hydrolysis of substrates but is not essential

for the activity of the enzyme (Dubus et al., 1994). The acyl-enzymes complex is

bulky and only a small molecule such as water can gain access to the carbon atom to

release the enzyme (Figure 1.10). In class A P-lactamases a glutamate residue at

position 166 has been proposed as a possible residue to act as a general base and

deprotonate the water molecule and donate the proton to the oxygen atom causing the

bond between the enzyme and inactive P-lactam to break (Figure 1.10).
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Figure 1.10 Action of a serine p-Iactamase

°CX
1^

HN
I

C—CH.OH

OCc\
HN
/
c—ch2 ,

\

*0.

HO

-C N

8
Covalent acyl ester

OC
\

HN
/
c—ch7oh

H(f I
C N

0

30



1.8 Mechanism of (3-lactam hydrolysis by metallo-P-lactamases

The mechanism of (3-lactam hydrolysis by class B metallo-p-lactamases is

completely different from that of the serine (3-lactamases and is known to involve a

nucleophilic attack on the carbonyl carbon of the (3-lactam ring by a water molecule

polarized by a zinc ion. Conserved catalytic structural motifs are also shared

amongst the small number of metallo-P-lactamases, although there is considerable

sequence divergence among different members (Figure 1.11).

The crystal structures of three metallo-P-lactamases have been resolved these are P-

lactamase II from Bacillus cereus 569/H, CcrA3 from Bacteroides fragilis QMCN3

and LI from S. maltophilia 11D12 75 (Carfi et a/., 1995; Concha el a/., 1996; Carfi et

a!., 1998a, Carfi et a/., 1998/?; Ullah et a/., 1998). These enzymes all exhibit an

ap/p« fold that is unique to the metallo-P-lactamases (Ullah et al, 1998). The

metallo-P-lactamase polypeptide chain is divided into two domains with the central

P-sheets obeying an approximate two-fold symmetry relationship. The metalio-p-

lactamase site is located in a groove between the two P-sheets which is associated

with a number of loops which bear the residues linked with zinc binding (Ullah et a/.,

1998). All protein zinc ligands are strictly conserved in all class B enzymes with the

exceptions of two mutations -a histidine to asparagine change in the Aeromonas

metallo-P-lactamases and a cysteine to aspartate change in the S. maltophilia

metallo-P-lactamase (Ullah et al., 1998)
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Figure 1.11 Sequence alignment for some molecular class B metallo-

P-Iactamases (adapted from Carfi et al., 1998a)

CcrA3 1 AQKSVKISD—DISITQLSDKVYTYVSLAEIEGWGMVPSNGMIVINNHQA 48
Bill 1 SQKVEKTVIK-NETGTISISQLNKNVWVHTELGSFNGEA-VPSNGLVLNTSKGL 52
IMP-1 1 AESLPDLKIEKLDEGVYVHTSFEEVNGWGWPKHGLWLVNAEA 44

CphA 1 AAGMSLTQVSGPVYWEDNYY-VQENSMVYFGAKGV 35
LI 1 VDASWLQPMAPLQIADHTWQIGT-EDLTALLVQTPDGA 37

CcrA3 49 ALLDTPINDAQTEMLVNWVTDSLHA-KVTTFIPNHw|GDCIGGLGYLQRK-GVQ 100
Bin 53 vlvdsswddkltkeliemvekkfqk-rvtdviitHAIIaSriggiktlker-gik 104
IMP-1 45 YLIDTPFTAKDTEKLVTWFVERGY—KIKGSISSjFjslsTGGIEWLNSR-SIP 95
CphA 36 TWGATWTPDTARELHKLIKRVSRK-PVLEVINTNYHTDRAGGNAYWKSI-GAK 87
LI 38 VLLDGGMPQMASHLLDNMKARGVTPRDLRLILLSHAHADHAGPVAELKRRTGAK 91

CcrA3 101 SYANQMTIDLAKEK GLPVPEHGFTDSLTVSLDGMPLQC 138
Bill 105 AHSTALTAELAKKN GYEEPLGDLQTVTNLKFGNMKVET 142
IMP-1 96 TYASELTNELLKKD GKVQATNSFS-GVNYWLVKNKIEV 132
CphA 88 WSTRQTRDLMKSDWAEIVAFTRKGLPEYPDLPLVLPNWHDGDFTLQEGKVRA 141
LI 92 VAANAESAVLLARG GSDDLHFGDGITYPPANADRIVMDGEVITVGGIVFT 141

CcrA3 139 YYLGGGffATDNIWWLPTE NILFGGCMLKDNQATSIGNIS D-ADVTAW 185
Bill 143 FYPGKGHTEDNIWWLPQY NILVGGCLVKSTSAKDLGNVAD-AYVNEW 189
IMP-1 133 FYPGPGHTPDNVWWLPER KILFGGGFIKP YGLGNLGD-ANIEAW 176

CphA 142 FYAGPAHTPDGIFVYFPDE QVLYGNCILK EKLGNLSF-ADVKAY 184
LI 142 AHFMAGHTPGSTAWTWTDTRNGKPV-RIAYADSLSAPGYQLQGNPRYPHLIEDY 194

CcrA3 185 PKTLDKVKAKFPSARYWPG1GD-YGGTELIEHTKQIVNQYIESTSKP 232
Bill 190 STSIENVLKRYRNINAWPGlGE-VGDKGLLLHTLDLLK 227
IMP-1 177 PKSAKLLKSKYGKAKLWPSHSE-VGDASLLKLTLEQAVKGLNESKKPSKPSN 228
CphA 185 PQTLERLKAMKLPIKTVIGGHDSPLHGPELIDHYEALIKAAPQS 228
LI 195 RRSFATVRAL—PCDVLLTPHPG-ASNWDYAAGARAGAKALTCKAYADAAEQKF 246

CcrA3

Bill

IMP-1

CphA
LI 247 dgqlaketagar 257

CcrA3 - B. fragilis metallo-p-lactamase, Bill - P-lactamase II from B. cereus, IMP-1
found in S. marcescens, CphA - Aeromonas hydrophila metallo-P-lactamase, LI - S.
maltophilia metallo-P-lactamase.

Amino acids in red type indicate zinc-binding ligands.

Amino acids in blue type indicate zinc-binding ligand mutations in the A. hydrophila
CphA metallo-P-lactamase and the S. maltophilia LI metallo-P-lactamase.
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Two zinc binding sites are identified in the metallo-(3-lactamases although their

requirement for zinc has been shown to differ from enzyme to enzyme For example

the CphA metallo-P-lactamase from A. hydrophilci AE036 is known to function

optimally in a mono zinc form, when a second zinc site is occupied enzyme activity

was found to be inhibited (Valladares et al., 1997). Conversely, the metallo-P-

lactamases from B. fragilis and S. maltophilia require two Zrf+ ions for optimal

activity. The P-lactamase 11 enzyme from B. cereus was thought to be active in a

mono zinc form (Carfi et a!., 1995), however, more recently it has been found bind a

second zinc (highly pH dependent) which increases its activity (Carfi et a/., 1998/?).

In the B. fragilis CcrA3 model (proposed by Concha et a!., 1996) a zinc ion (Znl) is

coordinated by three histidines (FI82, H84 and H145 - CcrA3 numbering, Figure

1.11 and 1.12) and to a hydroxide that is also shared by the second zinc ion (Zn2).

The second zinc (Zn2) is coordinated in a trigonal bipyramidal geometry to an

aspartate, cysteine, histidine triad (D86, CI64 and H205), the shared hydroxide and

to an apical water molecule. Substrate binding involves the interaction of the (3-

lactam carbonyl oxygen with Znl and the P-iactam carboxyiate group with a lysine

residue (K. 167). The shared hydroxide makes a nucleophilic attack on the carbonyl

carbon to form a tetrahedral intermediate. The apical water is then thought to

transfer a proton to the nitrogen of the cleaved P-lactam (Concha et a/., 1996; 1997).

A mechanism of action has been proposed for the single zinc form of the B. cereus p~

lactamase 11 enzyme (described by Carti et a!., 1995), however, as mentioned above,

this enzyme is now known to function optimally when a second zinc is bound (Carfi



et cil., 1998b). The first zinc (Znl) is bound in a similar fashion to the CcrA3

enzyme by the equivalent three histidines (H86, H88, HI49 - P-lactamase II

numbering, Figure 1.11) and one water molecule, however, the second zinc is

coordinated by one histidine, one cysteine, one aspartate (H210, CI68, D90) and one

unknown molecule (possibly a carbonate ion).

In the S. maltophilia L1 metallo-P-lactamase model there are also some differences

in the residues involved in catalysis compared with the CcrA3 mechanism (Ullah et

a/., 1998). Znl is coordinated by the conserved histidine triad at positions 72, 74 and

148 (LI numbering Figure 1.11) and a shared hydroxide. The pentavalent Zn2 is

ligated to an aspartate, histidine, histidine triad (D76, H77 and H213, LI numbering-

Figure 1.11) instead of the aspartate, cysteine, histidine triad in CcrA3 (the cysteine

residue is absent in the LI sequence), the shared hydroxide and apical water are,

however, equivalent to those found in CcrA3. As in the B. fragilis model the shared

hydroxide functions as a nucleophile. The carboxylate moiety of the P-lactam is

however hydrogen-bonded to a serine residue (S175) as opposed to the lysine (KI67,

CcrA3 numbering) residue of CcrA3, it should be noted that lysine is conserved in

this position in all metallo-P-lactamases except for LI (Ullah et a/., 1998).

34



Figure 1.12 Proposed catalytic mechanism of the CcrA3 metallo-P-

lactamase (Concha et al., 1996)
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1.9 The regulation of P-lactamase expression

The expression of a P-lactamase is either inducible or constitutive. Induction can be

defined as the transient switching-on of P-lactamase synthesis and occurs when

bacterial cells are exposed to certain (3-lactams, otherwise known as inducing agents.

Conversely, constitutive P-lactam production is independent of an inducer being

present and is the mode of expression of many of the Gram-negative plasmid-

mediated P-lactamases. Changes in the level of P-lactamase expression can arise

from an increase in the number of gene copies encoding p-lactamase, alteration in

the promoter or attenuator regions affecting gene transcription, or from changes in

the regulation of inducible P-lactamase expression (Sanders and Sanders, 1992).

1.9.1 Model for the regulation of AmpC P-lactamases in Citrobacter freundii and

Enterobacter cloacae

Various models have been proposed to explain how the presence of a P-lactam

antibiotic may lead to increased transcription of genes encoding p-lactamases. One

widely accepted model of P-lactamase induction is based on the regulation of AmpC

P-lactamases in E. cloacae and C. freundii and appears to be interlinked with the

process of bacterial cell wall assembly and disassembly (Jacobs et a/., 1994).

In the proposed model cell wall fragments are released as a result of peptidoglycan

breakdown triggered by P-lactam inhibition of PBP activities A protein known as

36



AmpG serves as a permease and transports a large cell wall muropeptide into the

cytoplasm and this contains anhvdro muramic acid (Normark et a/., 1990). An

AmpD protein (a muramyl-peptide amidase) specifically recognises substrates that

contain anhvdro muramic acid and can cleave the large muropeptide for the recycling

of the cell wall (Hdlt je et a/., 1994). The increased breakdown of peptidoglycan that

occurs as a result of P-lactam action leads to the AmpD enzyme becoming

overloaded and thus large muropeptides are able to escape the action of AmpD and

instead activate AmpR. AmpR is a DNA binding regulatory protein that can bind to

ampC and increase its transcription and results in P-lactamase synthesis. Mutation of

AmpD can lead to the modification of the muramyl-peptide amidase or to its

complete inactivation. Complete loss of AmpD results in constant hyperproduction

of P-lactamase and strains that have lost AmpD function are known as stably

derepressed mutants. Derepressed mutants occur naturally in inducible populations

usually at a frequency of 10~7 (Weidmann, 1986).

1.10 Mechanisms of carbapenem resistance

Soon after the introduction of the first carbapenem, imipenem, it became apparent

that resistance could develop to this P-lactam As with all other P-lactam classes

carbapenem resistance can result from one or a combination of mechanisms

including the association of outer membrane impermeability with a slow carbapenem

hydrolysing P-lactamase, a PBP alteration, or the production of an efficient

carbapenem-hydrolysing P-lactamase.
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1.10.1 Association of outer membrane impermeability and the production of a

P-lactamase

1.10.1.1 Association of outer membrane permeability change and a Bush group

1 cephalosporinase in P. aeruginosa

P. aeruginosa strains were amongst the earliest imipenem-resistant bacteria to be

isolated, often from patients suffering from either cystic fibrosis or nosocomial

respiratory tract infections (Acar, 1985; Pedersen et a/., 1985). In the 1970s P.

aeruginosa infections were identified as a serious problem resulting from the

microorganisms high intrinsic resistance to a number of antibiotics and the

production of antibiotic modifying enzymes (Bryan, 1979). It has been assumed that

poor antibiotic permeability across the outer membrane is attributable to a limited

number of small-sized diffusion pores that exclude many antibiotics; imipenem

overcame this difficulty by penetrating through the D2 porin (Yoshihara and Nakae,

1989). However, imipenem resistance was subsequently found to be associated with

the loss of this outer membrane protein (OMP) D2 (Buscher et a/., 1987; Lynch et

a/., 1987) D2 is a trimer that forms a selective channel for low molecular weight

zwitterionic compounds such as imipenem (Yoshihara et a/., 1991; Gotoh and

Nishino, 1990).

Although impermeability has a major role to play in imipenem resistance in P.

aeruginosa it has been recognised that it is the combination of the P. aeruginosa

chromosomal cephalosporinase and a change in permeability that results in a

38



resistant phenotype (Livermore, 1992a). Imipenem hydrolysis has been detected

with several Bush group 1 cephalosporinases, however, imipenem hydrolysis occurs

at a very slow rate (Livermore and Yang, 1987). The importance of these enzymes

in mediating resistance to the carbapenems is only apparent in a less permeable

background. The slowed rate of entry of imipenem through the outer membrane,

permits the large amount of slow acting p-lactamase in the periplasmic space to

inactivate imipenem before it reaches its target site on the cytoplasmic membrane

(Lindberg et al., 1987). Laboratory mutants of P. aeruginosa that lack D2 and P-

lactamase expression have been shown to be almost as susceptible to imipenem as

mutants which expressed their full complement of D2 but no p-lactamase and this

indicates the need for both enzyme and permeability to produce resistance

(Livermore, 1992a). High level production of the eephalosporinase is not an

essential requirement and it has been shown that the cephalosporinase of P.

aeruginosa is part of the imipenem resistance mechanism whether it is inducible or

derepressed (Zhou el a/., 1993).

Meropenem resistance appears to be little affected by the type of P-lactamase

expression in P. aeruginosa mutants with or without D2 (Livermore, 1992a) and is

instead associated with a MexA-MexB-OprM mediated efflux system (Masuda and

Ohya, 1992, Chen et a/., 1995). This efflux system confers broad-spectrum cross-

resistance to P-lactams, quinolones, tetracyclines and chloramphenicol in P.

aeruginosa when it is over expressed, conversely inactivation of the efflux pump

results in a hypersensitive phenotype (Li et a/., 1995). Imipenem is not affected by

the MexA-MexB-OprM efflux mechanism and it has been suggested that a possible
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reason for this is that either the efflux pump does not recognise imipenem, or

imipenem enters the cell so rapidly that the pump is overwhelmed (Livermore,

1996).

1.10.1.2 Association of an outer membrane permeability change and a Bush

group 1 cephalosporinase in enterobacteria

To date, carbapenem resistance has been rarely described in members of the family

Enterobacteriaceae. One mechanism of carbapenem resistance that is described in

enterobacteria is the production of a plasmid or chromosomally encoded (5-lactamase

that efficiently hydrolyses the carbapenems (see Section 1.11). Another mechanism

of carbapenem resistance in the Enterobcicteriaceae is a reduction in outer membrane

permeability that is generally coupled with high-level cephalosporinase production.

This has been reported in Enterobacter aerogenes (Chow and Shlaes, 1991, De

Champs el a/., 1993; Erhard et al., 1993, Hopkins and Towner, 1990; Tzouvelekis et

at., 1992), E. cloacae (Bush et al., 1985; Lee et a!., 1991; Raimondi et al., 1991),

Providencia (Proteus) rettgerii (Raimondi et al., 1991), Proteus mirabiUs (Mentar et

ci/., 1991), C. freundii (Marinardi et al., 1991) and Klebsiella pneumoniae (Bradford

et al., 1997) MacKenzie et a! (1997) recently described a carbapenem resistant K.

pneumoniae isolate, identified during an outbreak in Scotland, however, the

resistance mechanism was different from the one described by Bradford et al. (1997)

and involved the loss of an OMP and increased production of an SHV-type extended

spectrum P-lactamase (MacKenzie et al., 1997).
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The emergence of carbapenem resistant species that belong to the

Enterobacteriacecie is disturbing as these organisms are commonly encountered

hospital pathogens, particularly in intensive care units, and the carbapenems are one

of the few antibiotic-options left available for their treatment (Bradford et ci/., 1997;

de Gheldre el a/., 1997). It has been suggested that the selection of cephalosporinase

overproducing strains by broad-spectrum cephalosporins might subsequently

facilitate the selection of carbapenem resistant strains. Fortunately, however, at

present carbapenem resistant Enterobacteriaceae, with decreased permeability and

hyperproduction of the chromosomal cephalosporinase remain rare, and it is

interesting that, in the absence of imipenem porin deficient mutants are rapidly

overgrown by revertants that have normal amounts of porin (Raimondi et a!., 1991).

Therefore, in the absence of imipenem, porin deficient mutants appear to be at a

disadvantage, which may be due to the inability to accumulate certain nutrients

(Livermore, 1991)

i.10.2 Carbapenem-resistance and PBP modification

Alterations in PBPs leading to carbapenem resistance appear to be of little

importance in Gram-negative bacteria. There are, however, examples of where PBP

modification has been associated with resistance, such as in imipenem-resistant

Acinetobacter baumanii and P. aeruginosa (Gehrlein et a/., 1991; Bellido et al.,

1990). PBP modification and carbapenem resistance is much more important in

Gram-positive species. MRSA, E. faecium and Listeria monocytogenes are three
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examples of Gram-positive organisms with PBP alterations leading to imipenem

resistance (Livermore. 1996, Pierre et a/., 1990).

1.10.3 Carbapenem hydrolysing (3-lactamases

Carbapenem hydrolysing enzymes include some of the most recently described (3-

lactamases. The molecular class C, Bush group 1 cephalosporinases could also be

included in this group. However, the carbapenerns do not represent a major substrate

in their hydrolytic profile and their carbapenemase activity is only of significance

when coupled with impermeability. In contrast, several other (3-lactamases

efficiently hydrolyse the carbapenems and can be the primary cause of resistance.

The carbapenem-hydrolysing (3-lactamases are often referred to as 'carbapenemases',

although it should be stressed that they do not exclusively hydrolyse carbapenems

nor do they confer resistance to only imipenem and or meropenem. Carbapenemases

can confer resistance to other (3-lactams and may hydrolyse penicillins or

cephalosporins more efficiently than the carbapenems. Carbapenemases can be

divided into two groups according to whether they are metallo-(3~lactamases or serine

(3-lactamases.

1.11 Carbapenem-hydrolysing metallo-P-Iactamases

The chromosomal Iv encoded B. cereus II enzyme was the first metallo-(3-lactamase

to be described back in 1966. It was shown that the cephalosporinase activity of the

metallo(3-lactamase II enzyme could be inhibited by EDTA, and for many years the
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B. cereus metallo-P-lactamases were considered to be biochemical curiosities

(Sabath and Abraham, 1966). Following the identification of the B. cereus II |3-

lactamase, further metallo-P-lactamases were reported in S. maltophiUci, Myroides

odoratus (formerly Flcivobacterium odoratum) and Legionella gormami. The clinical

significance of these enzymes was debatable because these organisms were

considered to be rare pathogens (Saino et a/., 1982; Sato et al., 1986; Fujii et aI.,

1986). Although the clinical importance of some these enzymes was under question

it was, however, speculated that carbapenemases belonging to the metallo-(3-

lactamase category would become the major threat to the reliability of the

carbapenems (Livermore, 1993b; Payne, 1993). Indeed, in the past five or six years

the clinical importance of metallo-P-lactamases has begun to be realised, as an

increasing number of established pathogens have been reported to produce metallo-

P-lactamases that are encoded by transferable plasmids (specifically the IMP-1 and

CcrA enzymes - see Sections 1.11.1.3 and 1.11.1.5) (Bandoh et al., 1992; Ito el a/..

1995; Minami el a!., 1996).

Rasmussen and Bush (1997) recently proposed a new classification of the Bush

group 3 metallo-P-lactamases and on the basis of functional characteristics placed

these enzymes into three subgroups (Table 1.5).
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Tablel.5 Functional classification of metallo-P-lactamases

Subgroup Enzyme Host organism
3a P-lactamase II Bacillus cereus

3a BlaB Chryseobacterium meningosepticum

3 a CcrA Bacteroidesfragilis
3 a LI Stenotrophomonas maltophilia
3a IMP-1 Serralia marcescens*

3b CphA Aeromonas hydrophila
3b PCM-1 Burkholderia cepacia

3b NN Myroides odoratus
3 c NN Legionella gormanii

NN-not named

* 1MP-1 first reported in S. marcescens

1.11.1 Bacteria that produce subgroup 3a nietallo-P-Iactamases

Subgroup 3a includes the metallo-P-lactamases produced by B. cereus,

Chryseobcicterium meningosepticam, B. fragilis, S. maltophilia and the IMP-1

metallo-P-lactamase identified in a variety of Gram-negative bacteria (Rasmussen

and Bush, 1997). These metallo-p-lactamases recognise a wide range of substrates

and hydrolyse penicillins at a rate comparable to or better than of imipenem,

although they usually hydrolyse cephalosporins more slowly than imipenem. The

broad spectrum activity of the subgroup 3a metallo-P-lactamases is thought to be

related to the direct interaction of P-lactams with the two zinc centres of these

enzymes (Ullah et al., 1998).
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1.11.1.1 Bacillus cereus (3-lactamase II metallo-p-laetamase

The zinc dependent B. cereus II enzyme is chromosomally encoded and inducibly

expressed (Rasmussen and Bush, 1997). The sequences of three P-lactamase II

enzymes have been determined, two from B. cereus isolates and one from an

alkalophilic Bacillus spp. and these sequences are very similar to one another

(Ambler et a!., 1985; Hussain et al., 1985, Kato et a!., 1985, Lime/ a!., 1988).

1.11.1.2 Metallo-P-lactamases produced by former Flavobacterium spp.

Bacterial species that were formerly found in the genus Flavobacterium are known to

produce carbapenemases. Blahova et al. (1994) initially described a carbapenemase

in Chryseobacterium (formerly Flavobacterium) meningosepticum and more recently

a metallo-p-lactamase known as BlaB that is produced by C. meningosepticum has

been characterised in detail BlaB has a broad substrate profile and therefore fits into

Bush subgroup 3a, this enzyme appears to be universally produced by this species

(Rossolini et al., 1998).

Sato et al. (1986) have also detected a carbapenemase in M. odoratus (formerly F.

odoratum) isolates, although this carbapenemase has been placed in subgroup 3b by

Rasmussen and Bush (1997).
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1.11.1.3 Metallo-(3-lactamases produced by Bacteroidesfragilis

Between 1-3% of B. fragilis isolates are known to produce a metallo-(3-lactamase

that has been named CcrA and CfiA (Bandoh el a/., 1993; Rasmussen et a/., 1994b;

Rasmussen el a/., 1997). Sequence analysis has revealed that CcrA and CfiA are

essentially the same enzymes and will be collectively referred to here as CcrA

(Rasmussen et a/., 1990; Thompson and Malamy, 1990). On a single occasion the

CcrA enzyme has been found on a small self-transmissible 13.6 kb plasmid (Bandoh

et a/., 1992), The sequence of this plasmid-encoded (3-lactamase is identical to the

chromosomal CcrA (3-lactamase (Rasmussen and Bush, 1997).

The majority of B. fragilis isolates that harbour Ccr.A express this enzyme at low

levels which does not confer clinical resistance (Rasmussen and Bush, 1997). The

expression ofCcrA is non-inducible, although increased expression ofCcrA, leading

to high level resistance, can occur and this most commonly involves insertion

sequence (IS) element insertions within the promoter region upstream of the Shine

Dalgarno box (Podglajen el ai., 1992; Podglajen et a/., 1994; Rasmussen and

Kovacs, 1991). The ccrA genes are transcribed from transcriptional initiation signals

provided by an IS element integrated within the promoter rather than from their

normal promoters (Podglajen et a/., 1994; Rasmussen and Kovacs, 1991). It is

interesting that IS elements are rare among B. fragilis isolates that do not harbour the

metallo-(3-lactamase gene (Podglajen et a/., 1995). Therefore, metallo-(3-lactamase

positive imipenem susceptible isolates can easily convert to being imipenem resistant
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in a single step by the insertion of an IS element into the promoter (Podglajen et al.,

1992; Podglajen et al., 1994).

Other than B. fragilis the only other Bacteroides spp. known to produce a

carbapenemase is B. distosonis and this enzyme appears to be distinct from CcrA

(Hurlburt et al., 1990).

1.11.1.4 MetaHo-(3-Iactamases produced by Stenotrophomonas maltophilia

High-level carbapenem resistance in S. maltophilia was first shown to be attributed

to a metallo-P-lactamase, named LI, by Saino et al.. (1982). The S. maltophilia

metallo-p-lactamases are inducible, chromosomally encoded enzymes that are found

universally within the species and can hydrolyse a range of clinically important P-

lactams (Akova et al., 1991; Felici and Amicosante, 1995), The broad-spectrum LI

enzyme, initially studied in S. maltophilia strain GN12873, was found to function as

a tetramer composed of four equal subunits and have an isoelectric point (pi) of 6.9

(Saino et al., 1982). Subsequent reports have shown that S. maltophilia isolates

produce metallo-P-lactamases with pi values different from that of the original LI

enzyme (Cullman and Dick, 1990; Payne et al., 1994a; Paton et al., 1994). Thus LI

from S. maltophilia GN 12873 is not solely representative of the metallo-P-

lactamases produced by this species.

An investigation by Payne et a!., (1994a) showed that 16 clinical isolates produced

seven different metallo-P-lactamases (m-P-ls) all differentiated by pi and designated
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m-P-1 types 1-7. Biochemical characterisation of m-P-1 types 1-6 further illustrated

subtle differences within this group of enzymes (Payne et a/., 1994b). The

differences in substrate profiles between this group of enzymes was most evident

with the chromogenic cephalosporin nitrocephin where hydrolysis rates ranged from

12-87% relative to imipenem (Payne et aI., 1994b).

To date, the metallo-P-lactamases from only two S. maltophilia strains (11D1275 and

GN12873) have been investigated and compared at the molecular level (Walsh et al.,

1994; Sanschagrin et al., 1998). These enzymes are known to share 88.6% amino

acid identity with one another, which further suggests that within the LI type

metallo-P-lactamase family there is a degree of heterogeneity (Sanschagrin et al.,

1998). Heterogeneity of these metallo-P-lactamases has important implications

particularly in terms of future drug design.

1.11.1.5 Producers of the IMP-1 meiallo-P-Iactamase

The molecular characterisation of a metallo-P-lactamase designated IMP-1 was first

described by Osano el al. (1994). IMP-1 was identified in a clinical strain of

Serratia marcescens and was isolated in Japan, the metallo-P-lactamase was

chromosomally encoded and it conferred resistance to imipenem and broad-spectrum

P-lactams (Osano et al., 1994). Prior to Osano's report, two other papers from Japan,

one written by Watanabe et al. (1991) and the other by Minami et al. (1993),

described unnamed plasmid mediated metallo-P-lactamase in P. aeruginosa and it is
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now known that Watanabe's metallo-p-lactamase is identical in sequence to IMP-1

(Iyobeetal., 1996).

Since these discoveries it is now recognised that the b/cti\u> gene has been dispersing

widely among Gram-negative bacteria in hospitals throughout Japan. However, as

yet there have been no published reports of the IMP-1 enzyme outside Japan. IMP-1

has been identified in P. aeruginosa, Pseudomonas putida, Pseudomonas

fltiorescens, S. marcescens, Alcaligenes xylosoxidans, K. pneumoniae, Acinetobacter

spp., P. rettgeri (Ito el a/., 1995; Senda el a/., 1996a; Senda et al1996b; Ito et al.,

1997). The />/c?imp cassette is found on a novel integron-like element where blaww is

located between the integrase gene (int/3) and the aminoglycoside acetyltransferase

gene (acc(6')-lb) and it is transposed into plasmids or the chromosomes of Gram-

negative bacteria by this integron element (Arakawa et al., 1995). Dispersion of

IMP-1 amongst Gram-negative bacteria is mediated by large transferable plasmids

with wide host ranges (Ito et a/., 1995) It has speculated that because of the

transferable nature of this P-lactamase, carbapenem resistant Gram-negative

organisms which produce IMP-1 may be prevalent in the near future (Senda et al.,

1996b).

It is interesting that the levels of carbapenem resistance found in IMP-1-positive

strains are diverse, although resistance to other P-lactams such as ceftazidime is

consistent (Senda et a/., 1996b). It is known that the acquisition of the IMP-1 gene

alone does not necessarily confer high-level carbapenem resistance (Senda et al.,

1996a). In P. aeruginosa high levels of carbapenem resistance have been shown to
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be associated with the diminished production of OMP D2 and the production of a

metallo-P-lactamase with similar properties to IMP-1 (Minami et al., 1993; Minami

et al., 1996). The combination of IMP-1 and decreased outer membrane

permeability has also been shown to be major factors in high-level carbapenem

resistance in S. marcescens (Maaimo el aI.. 1996). It has also been suggested that

additional factors such as secondary changes in regulatory systems of metallo-p-

lactamase gene expression, efflux system, and/or multiplication of the structural gene

may be implicated in conveying high level carbapenem resistance (Senda et al.,

1996a). The involvement of these factors, unlike impermeability, is however, less

likely because strains carrying IMP-1 are consistently highly resistant to other P~

lactams.

In Japan the carbapenems are the market leaders among parenteral P-lactams,

whereas in many other areas of the world their use is much more restricted

(Rasmussen and Bush, 1997). The widespread use of the carbapenems, imipenem

and also panipenem, has been suggested as a reason why IMP-1 has emerged in

Japan (Livermore, 1997). The heavy prescription of 1-oxa-cephamycins moxalactam

(latamoxef) and flomoxef has also been implicated in the selection of these IMP-1

producing strains (Livermore, 1997).

In recent reports from Japan great emphasis is often placed on the identification of

IMP-1 producing bacteria However, some of these papers have identified additional

non-IMP-1 carbapenem resistant isolates but these have been somewhat ignored. For

example one report identified twenty carbapenem-resistant S. marcescens strains and
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only four of these isolates tested positive for IMP-1, therefore the mechanism of

resistance in the remaining sixteen isolates remained undetermined (Ito el a/., 1995).

In a further report one hundred and thirty two carbapenem resistant P. aeruginosa

strains were probed for IMP-1 and fifteen strains were found to carry the />/«imp gene

and again the resistance mechanisms in the majority of the strains were not studied

(Senda el a/., 1996a). These points suggest that more thorough investigations are

required to assess the true importance of different carbapenem resistance

mechanisms.

1.11.2 Bacteria that produce subgroup 3b nietalIo-(3-lactamases

Subgroup 3b is composed of enzymes that have a strong preference for the

hydrolysis of carbapenems. The metallo-j3-lactamases from Aeromonas species, B.

cepacia and M. odoratus have been placed in this subgroup.

1.11.2.1 i\letaIlo-(3-lactaniases produced by Aeromonas spp.

Individual Aeromonas isolates have been found to produce up to three different

chromosomally encoded (3-lactamases, including a molecular class C Bush group 1

cephalosporinase, a molecular class A or D Bush group 2d penicillinase, and a

molecular class B Bush group 3b metallo-(3-lactamase (Hayes el a!., 1994; Walsh el

a/., 1995a; Hayes el a!., 1996). The Aeromonas metallo-(3-lactamases have a narrow

substrate profile-they display high catalytic efficiencies for imipenem, but poor

hydrolysis of either benzylpenicillin or cephaloridine (Rasmussen and Bush, 1997).

b
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It has been suggested that the narrow spectrum of activity of the Aeromonas metallo-

P-lactamases may be a consequence of their mono-zinc nature which results in

replacing direct metal substrate contacts with specific protein: substrate interactions

leading to the preservation of catalytic efficiency at the expense of a greatly reduced

spectrum of activity (Ullah et a/., 1998).

The narrow substrate spectrum of the Aeromonas metallo-P-lactamases has also been

a stumbling block in their identification as they poorly hydrolyse nitrocephin, the

standard substrate used for (3-lactamase detection (Segatore et a/., 1993). This is

illustrated by the work of Iaconis and Sanders (1990) who initially reported the

identification of two P-lactamases in a strain of A. jandaei AER14 (formerly A.

sobria), one of which was responsible for imipenem hydrolysis. Later, a Bush group

1, molecular class C cephalosporinase (AsbAl), and a Bush group 2d cloxacillin-

hydrolysing p-lactamase (AsbBl) were characterised genetically and biochemically

by Rasmussen et a/. (1994a). These two P-lactamases corresponded to the P-

lactamases from A. jandaei AER14 that were visualised on an IEF gel, however,

neither of these p-lactamases hydrolysed imipenem. More recently it has been

established that A. jandaei AER14 produces a third metallo-P-lactamase (AsbMl)

not detectable with nitrocephin and this had been co-purified with the AsbBl P-

lactamase in the original report by Iaconis and Sanders (1990). Felici et a/., (1993),

Hayes et at. (1994) and Walsh et al. (1995a) have also demonstrated that Aeromonas

metallo-P-lactamases display a very low activity against nitrocephin. The

Aeromonas metallo-P-lactamases are inhibited by EDTA and the addition of zinc has

been shown to restore activity after EDTA inhibition (Rasmussen and Bush, 1997).
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The sequences of three Aeromonas metallocarbapenemases have been previously

determined; these include two A. hydrophila genes, cphA and cphA2, and the A.

veronii bv. sobrici (formerly A. sobria) imiS gene (Massidda et al., 1991; Rasmussen

and Bush, 1997; Walsh et al., 1998). The amino acid sequences of CphA, CphA2

and ImiS share a high level of identity with one another (>96%). The production of a

metallo-P-lactamase related to CphA from A. hydrophila has been shown to be a

common feature amongst several different Aeromonas species including A. veronii

bv. sobria (Rossolini ei al., 1996). The N-terminus of an A. jandaei AsbM 1 metallo-

P-lactamase has also been sequenced but was shown to be only 26% similar to both

CphA and ImiS over the first 27 amino acids (Yang and Bush, 1996; Walsh ei al.,

1998). It has been speculated that if this low level of identity is maintained

throughout the protein it would indicate a major divergence of the metallo-p-

lactamases found in Aeromonas species (Walsh ei al., 1998).

Production of a metallo-P-lactamase is normally regulated in Aeromonas strains.

The enzyme is produced at negligible levels in the absence of an inducer, while its

production increases several hundred-fold in the presence of an inducer. Induction

leads to the expression of all three P-lactamases that have been shown to be present

in individual Aeromonas strains. Derepressed mutants that constitutively produce all

three P-lactamases can also be obtained and it appears that these enzymes are all

controlled by a common regulatory system (Walsh et al., 1995a). Recent studies

have shown that the expression of inducible chromosomally encoded P-lactamases in

Aeromonas species is controlled by a two component system that differs radically
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from the C. freundii paradigm for inducible P-lactamases (Alksne and Rasmussen,

1997; Niumsup eta/., 1997).

1.11.2.2 Burkholderia cepacia metallo-P-lactamase

A metallo-P-lactamase named PCM-1 that is produced by B. cepacia has also been

assigned to subgroup 3b (Rasmussen and Bush, 1997). PCM-1 has an unusual

inhibition profile in that it is inhibited by both metal-ion chelators and the inhibitors

clavulanate and tazobactam (Baxter and Lambert, 1994). PCM-1 is inducibly

expressed and appears to be ubiquitous amongst B. cepacia (Baxter and Lambert,

1994; Simpson et a/., 1993). No sequence is yet available for PCM-1.

1.11.3 Bacteria that produce subgroup 3c metalio-P-Jactamases

Subgroup 3c consists of the metallo-P-lactamase from Legionella gormanii, which is

distinguishable from the other metallo-P-lactamases because of its strong hydrolysis

of cephalosporins, including expanded-spectrum cephalosporins (Fujii et a/., 1986;

Rasmussen and Bush, 1997). The L. gormanii enzyme has not been studied in detail.
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1.12 Serine-based carbapenemases

1.12.1 Molecular class A Bush group 2f carbapenemases

Three molecular class A Bush group 2f carbapenemases have been characterised in

detail, these related enzymes have been designated IMI-1, NMC-A and Sme-1. IMI-

1 was identified from two E. cloacae strains in California in 1984, NMC-A was

found to be produced by a single E. cloacae strain isolated in Paris in 1990 and Sme-

1 was reported from two S. marcescens strains isolated in London back in 1982

(Nordmann et al., 1993; Rasmussen el al., 1996; Yang eta/., 1990). Recently, there

have been further reports of carbapenem resistant S. marcescens isolates producing a

non-metallo imipenem-hydrolyzing -(3-lactamase and it is presumed that these are

Sme-1 homologues (Quinn et a/., 1997; Carmeli et al., 1997).

The E. cloacae IMI-1 and NMC-A enzymes are highly homologous and share 95%

amino acid identity, whereas Sme-1 shares about 70% amino acid identity with these

two enzymes (Livermore, 1997). Although these enzymes have been found to be

chromosomally encoded, they have been referred to as 'acquired carbapenemases',

because they are supplementary to the normal chromosomal AmpC-type

cephalosporinase of E. cloacae and S. marcescens (Livermore, 1997). IMI-1, NMC-

A and Sme-1 are inducible (3-lactamases that are under the control of a LysR-like

regulator protein analogous to the AmpR regulator of Amp-C (Rasmussen et al.,

1996; Naas and Nordmann, 1994; Naas el al., 1995). Some of the features that

separate these serine carbapenemases from the metallo-p-lactamases include: greater
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resistance to imipenem than meropenem, with meropenem MICs often below the

breakpoints for susceptibility; hydrolysis of aztreonam (none of the metallo-P-

lactamases so far described can hydrolyse this substrate) and inhibition by clavulanic

acid (Livermore, 1997).

1.12.2 Acinetobacter carbapenemases

Carbapenem resistance is increasingly being reported in Acinetobacter spp. from

different geographical locations (Livermore, 1997). AR1-1 was the first reported

Acinetobacter carbapenem-hydrolysing J3-lactamase, and was produced by a strain of

A. baumanii that was originally isolated in Scotland in 1985 (Paton et a/., 1993).

ARI-1 was subsequently found to be encoded by a 45kb plasmid-mediated (Scaife et

a/., 1995).

More recently imipenem-hydrolysing p-lactamases have been identified in

carbapenem resistant strains isolated from South America, Europe, South East Asia

and the Middle East (Brown et a/,, 1998; Hornstein et a/., 1997; Weinbren et al.,

1998; Afzal-Shah and Livermore, 1998). Hornstein et al. (1997) detected an

oxacillin-hydrolysing P-lactamase that appears to be involved in the imipenem

resistance mechanism of a single Acinetobacter isolate and Brown et at. (1998) have

demonstrated the involvement of a plasmid-mediated molecular class A

carbapenemase. AR1-2, in clinical isolates from S. America, Europe and S. E. Asia.
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It should also be noted that a metallo-(3-lactamase has also been identified in an

Acimtobacter spp. although, there has been no molecular characterisation of this

enzyme (Perez et a/., 1996).

1.13 Clinical significance of carbapenemase-producing bacteria

Several different bacterial species have been found to produce carbapenemases.

Many of these organisms have in the past not been considered as classical hospital

pathogens, but have emerged as important causes of nosocomial infections in recent

years.

1.13.1. Acinetobacter spp.

For many years Acinetobacter spp. were not considered as clinically important

pathogens, however, they now account for 10% of nosocomial infections in intensive

care units in Europe alone (Brown et a/., 1998). Moreover, the nosocomial

Acinetobacter isolates are increasingly multi-drug resistant with the carbapenems

often being the treatment of choice (Amyes and Thomson, 1995; Hornstein et a/.,

1997). Therefore, the recent reports of carbapenem resistance in Acinetobacter are

of serious concern to the medical community. The ARI-2 plasmid-encoded

carbapenemase appears to be strongly associated with carbapenem resistance as it

has been demonstrated that a strain cured of an AR.I-2 bearing plasmid is susceptible

to the carbapenems, unlike the parent strain (Brown et al., 1998).
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1.13.2 Aeromonas spp.

Species of the genus Aeromonas are widely dispersed in aquatic environments and

are increasingly found to be causative agents in clinical infections. There are

currently fourteen species in the genus that have been defined using biochemical

typing methods, DNA-DNA hybridisation and 16S rRNA sequence data (Martinez-

Murcia and Esteve, 1992; Jones and Wilcox, 1995). The major pathogenic species

are A. veronii bv. sobria, A. hydrophila and A. caviae (Janda el al., 1995).

Gastroenteritis is one of the frequent Aeromonas associated infections and appears to

be common in countries with warmer climates. In some geographical regions

isolation rates of up to 50% have been recorded for symptomatic patients (usually

children under 5), although antibiotic treatment is usually unnecessary due to the

self-limiting nature (San Joaquin and Pickett, 1988; Thornley el al., 1997).

Aeromonads additionally cause skin and soft tissue infections, although these occur

more frequently in immunocompromised patients (Gold and Salit, 1992).

Aeromonas bacteraemia is most commonly seen in individuals with haematological

malignancies, solid tumours and hepatobiliary diseases, it is rare in

immunocompetent patients (Janda and Duffy, 1988, Golik el al., 1990). Additionally

reported Aeromonas infections include meningitis, endocarditis, ocular infections

and osteomyelitits (Frejj, 1984, Janda and Duffey, 1988).

Although most Aeromonas spp. produce an inducible carbapenemase, paradoxically,

when standard in vitro susceptibility is performed these bacteria remain sensitive to
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the carbapenems. Only a handful of naturally occurring carbapenem resistant

Aeromonas isolates have been recorded when testing with a conventional inoculum

size, these strains were derepressed for (3-lactamase production (Morita el al., 1994).

It is however, known that the carbapenem minimum inhibitory concentrations

(MICs) for Aeromonas strains that produce a carbapenemase are subject to an

inoculum effect. Employing a large inoculum of 10s colony forming units (cfu)

results in the carbapenem MICs becoming higher than the breakpoint for

susceptibility (Rossolini el al., 1996). However, it is highly improbable that the

bacterial population would be this large in vivo. Therefore, in its induced state the

metailo-P-lactamase is probably not of clinical importance.

1.13.3 BurkhoUleria cepacia

B. cepacia is traditionally thought of as a pathogen of onions (Burkholder, 1950),

however, more recently this organism has been recognised as an opportunistic

pathogen in humans, particularly cystic fibrosis (CF) patients where it is associated

with a rapidly fatal pneumonia and septicaemia (Pitt et al., 1996). Acquisition of B.

cepacia by CF patients is a problem because this organism is resistant to most

antibiotics, including carbapenems (Simpson et al., 1993). Carbapenem resistance in

B. cepacia has been linked to the production of the PCM-1 carbapenemase (Baxter

and Lambert, 1994).
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1.13.4 Bacillus spp.

Bacillus spp. are aerobic Gram-positive bacilli that are usually found in soil, water,

air and on vegetation. B. cereus is primarily associated with toxin-mediated food

poisoning, and it is B. anthracis that is principal Bacillus spp. pathogen. Isolates of

Bacillus spp. from clinical specimens are generally dismissed as contaminants,

although non-anthrax Bacillus spp are occasionally reported to cause infections in

immunocompromised patients. These infections in immunocompromised individuals

remain extremely rare (Blue et al., 1995; Strittmatter et al., 1996; Berner et aI.,

1997). The prevalence of metallo-P-lactamase II in Bacillus spp. has not been

studied in any detail, it is thought, however, that this enzyme is universal in B. cereus

(Livermore, 1992).

1.13.5 Bacteroiiles spp.

Bacteroides spp. are among the most clinically important anaerobic bacteria for two

reasons. Firstly, they are the bacteria most often isolated from patients with post

surgery anaerobic infections, and secondly they are resistant to a broad range of

antimicrobials. (3-Lactams are one of the agents most widely used to treat anaerobic

infections (Rasmussen et a/., 1997). Cefoxitin, an agent formerly highly active

against anaerobes now displays decreased potency and imipenem is often the main

hope in terms of P-lactam therapy in conquering anaerobic infections. The

identification of the CcrA carbapenemase in B. fragihs jeopardises the effectiveness

of imipenem (Rasmussen et al., 1997), however it should remembered that ccrA-like
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gene is carried by only 1-3% and only a fraction of these strains are carbapenem

resistant.

1.13.6 Enterobacter cloacae

E. cloacae is the species of the genus Enterobacter that is most commonly isolated

from nosocomial infections (de Gheldre et a/., 1997). E. cloacae is the cause of

bacteraemia, respiratory and urinary tract infections (Pitout et a/., 1997).

Carbapenemase-producing strains appear at present to be extremely rare, whereas,

carbapenem resistance involving the overproduction of a cephalosporinase and the

loss of an OMP have been reported on a few occasions (Sections 1.10.2, 1.10.5.1).

Multidrug resistant E. cloacae (including imipenem resistance) are a particular threat

because there is virtually no therapeutic options left for such strains (de Gheldre et

a/., 1997).

1.1.3.7 Former Flavobacterium spp.

The natural habitats of the ex-flavobacterial spp. are soil and aquatic environments.

Both M. odoratum and (meningosepticum can cause nosocomial infections. C.

meningosepticum, as the name suggests is associated with meningitis in neonates and

is considered to be the ex-flavobacterial spp of greatest clinical significance (von

Graevenitz, 1995). The ex-flavobacterial spp. have wide patterns of resistance to

antibiotics, including the carbapenems.
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1.13.8 Serratia marcescens

S. marcescens in common with E. cloacae is a common cause of hospital acquired

infections in immunocompromised patients. S. marcescens is responsible for urinary

tract, respiratory tract and wound infections, septicaemia and endocarditis.

Carbapenems are considered as one of the normal treatment options for an infection

caused by S. marcescens and therefore, descriptions of carbapenemases leading to

treatment failure is a serious problem

1.13.9 Stenotrophomonas maltophilia

S. maltophilia has risen to prominence over the last decade as an important

nosocomial pathogen because of the increasing frequency of its isolation and its

broad spectrum of antimicrobial resistance, affecting patients with lowered defence

mechanisms. S. maltophilia is associated with a variety of clinical syndromes

including: bacteriaemia, endocarditis and respiratory tract infections (Denton and

Kerr, 1998). S. maltophilia is, however, often isolated from mixed infection in

which its pathogenic role is debatable. The emergence of the organism as a pathogen

has been attributed to selective pressure by the use of broad-spectrum antibiotics. S.

maltophilia is resistant to many currently available broad-spectrum antibiotics and

therefore, infections caused by S. maltophilia are particularly difficult to treat

(Denton and Kerr, 1998). The production of the LI metallo-P-lactamase is known to

confer P-lactam resistance and clinical resistance to imipenem is virtually universal
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in all strains (Payne et al., 1994a). It is thought that poor diffusion of P-lactams

across the cell membrane may contribute to resistance (Cullman, 1991).

1.13.10 Clinical significance of other bacteria that produce IMP-1

A. xylosoxidans, P. fluorescens, P. putida, and P. rettgeri are all responsible for

hospital acquired infections. P. aeruginosa is the Pseudomonas spp. most commonly

associated with human disease and is a common hospital pathogen. It produces

infection of burns and wounds, urinary tract and septicaemia. The lungs of CF

patients are particularly susceptible to infection with P. aeruginosa. Reports of K.

pneumoniae strains producing IMP-1 is of particular concern, as this organism is an

important hospital pathogen and also a notorious vector of resistance. K.

pneumoniae causes bacterial pneumonia, urinary tract infections and bacteraemia and

has been responsible for large hospital epidemics (Hobson et al., 1996).

63



1.14 Aims of this thesis

1. To carry out a survey on carbapenem resistant clinical isolates from Japan and

determine the resistance mechanisms involved, concentrating on the role of (3-

lactamases.

2. Develop an imipenem substrate based modification to the standard isoelectric

focusing technique for the rapid identification of carbapenem-hydrolysing (3-

lactamases

3. Investigate the resistance mechanism involved in conferring carbapenem

resistance in two A. veronii bv. sobria strains isolated in Vellore, South India.

4. Assess the heterogeneity of metallo-(3-lactamases produced by S. maltophilia at

the molecular level.
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2: MATERIALS AND METHODS

2.1 Bacterial strains and plasmids

The strains and plasmids employed in this study are listed in Tables 2.1 and 2.2. P.

aeruginosa strains and Aeromonas species were both identified using API 20 NE

strips (Bio Merieux, France).

2.2 Storage of bacterial cultures

Bacteria were grown overnight at 37°C in cryovials (Alpha Laboratories, Eastleigh,

Hampshire) containing 900pl of nutrient broth. After overnight incubation, lOOp! of

50% glycerol was added to the vial and mixed, to give a final concentration of 5%

glycerol. The cultures were then stored at -70°C.

2.3 Reagents

All chemicals were purchased from Sigma Chemicals (Poole, Dorset), unless

otherwise stated. All solutions were prepared with either distilled or pyrogen-free

water (MilliQPF, Millipore,Watford, Herts).
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Table2.1Bacterialstrainsusedinthisstudy Bacterialstrain

Characteristics

Sourceorreference

/<;.coliNCTC10418 S.aureusNCTC6571 P. aeruginosaNCTC10662
S.marcescensNCTC1377

Laboratorystandard Laboratorystandard Laboratorystandard Laboratorystandard

-\

[NationalCollectionofTvpcCultures. [London

/<;.coli7181

ProducesOXA-7(/-lactamase

Medeiroselal..1985

S.marcescensS6 cloacaeNOR-1

ProducesSnic-1(/-lactamase ProducesNmc-A(/-lactamase
Yangc/r;/..1990 Nordmannelal..199.3

/'.aeruginosa101/1477 /'.aeruginosaM18 S.marcescensTN9106 S.marcescensAK9374 S.marcescensFHSM4055

ProducesIMP-1(/-lactamase Produces1MP-1(/-lactamase Produces1MP-1(/-lactamase Produces1MP-1(/-lactamase Produces1MP-1(/-lactamase

Dr.D.J.Payne(SmithKlincBeccham) Dr.Y.Arakawa Osanoelal..1994
Itoetal..1995 Marumoelal..1996

P. aeruginosastrains2.3.4.5.6.8.13.14.16.22,23.24.25.26. 30..34.35.36.37.38.39.41.43.44.45.46.48.50.52.54.55.56. 60.62.63.64.65.66.67.68.69.71.73.74.75.79.80.8.3.84.86. 87.90.93.94.96.97.98.100.101.102.103.
61clinicalstrainsisolatedinJapanin1994
Dr.K.Sato.DaiicliiPharmaceuticalsCo..Ltd.. Tokyo.Japan



Table2.1Bacterialstrainsusedinthisstudy(continued) Bacterialstrain

Characteristics

Sourceorreference

P. aeruginosastrainsM1405|3-conD2.M2297(1-conD2"
AmpCdcrcprcsscd.D2" porinmutants
Livcrmorc.1992

P. aeruginosastrainsMI405(1-dcfD2.M2297[1-defD2~ P. aeruginosa2297

AmpCbasal.D2" porinmutants Wild-typestrain

Livcrmorc.1992 Liverntorc,1992

S.matlophilia511.

Mctallo-|1-lactamascproducers
Felicietat,1993

S.mallophiliastrainsGEL.0062.U152,J2323.37.ED136,A37454
J

Payneelat..1994a

P.cohK12J5.3-2(R6K)

ProducesTEM-1(1-laclamasc

S.G.B.Amycs

A.hvdrophilaT429125M

Cefotaxime-rcsistantmutantdercprcsscdfor (1-lactamascproduction

Walshelal..1997

.1.veroniiby.sobria16.3a

ProducesAmpS.CcpSandIrniS
Walshelal.,1995a

.1.veroniib\sobriastrains13.27.36.47.51.52.99.110.i15
EnvironmentalisolatesfromVellore.S.India
IsolatedbyA.K.B.Amyes.July1996

coliDH5a

HostforconstructionofDNAlibrary
Hanahan.1983



Table 2.2 Plasmids used in this study

Plasmid Characteristics Source or reference

pK.18 Kanamycin-resistant. lacZ'. pl5 origin Pridmore. 1987

p(JB8902 Recombinant plasmid encoding metallo-
P-lactamase blau gene of S. maltophilia
IID 1275

Walsh et ai. 1994

No designated identification Recombinant plasmid encoding metallo-
f-lactamase gene imiS from,!, veronii bv.
sobria 163 a

Walsh et al.. 1998

2.4 Culture media

Media constituents were obtained from either Oxoid (Basingstoke, Hants) or Difco

Laboratories (Detroit, MI, USA). All media was made up according to the

manufacturer's instructions. Sterilisation ofmedia, to destroy all vegetative cells and

bacterial endospores, was achieved by autoclaving at 121°C and 15 pounds of

pressure for 15 minutes.

Mac Conkey Agar (Oxoid), Nutrient Agar (Oxoid) and Nutrient Broth No. 2 (Oxoid)

were employed for the growth of all bacteria included in this study. Iso-Sensitest

Agar (Oxoid), a semi-defined media, was used for antibiotic susceptibility testing.

Luria-Bertani (LB) broth was prepared by adding lOg of Bacto-tryptone (Difco), 5g

Bacto-veast extract and !0g of NaCl to 800mL of distilled water. The pH was then

adjusted to 7.0 with 1M NaOH before finally making up the volume to Uitre. LB

agar was prepared by adding 1.5% Bacteriological Agar No. 1 (Oxoid) to LB broth.
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2.5 Antibacterial compounds

Table 2.3 lists the antibiotics used, information on their solubility and the suppliers

of these compounds. Stock solutions of chloramphenicol, kanamycin, BRL42715

and kanamycin were protected from light and stored at -20°C; all other compounds

were prepared on the day of use.

Fable 2.3 Antibacterial compounds

Antimicrobial Diluent Supplier

Ciprofloxacin water Bayer (Newbury. Berkshire)
Tazobactam water Lcdcrlc Laboratories (Cvanamid of

Great Britain Ltd.. Hants)

Ceftazidime saturated NaHCO.d and water Glaxo-Wellcome (Uxbridge.
Middlesex)

Cefotaxime water Hoechsl-Roussel Pharmaceuticals

(Uxbridge. Middlesex)

Imipenem water Merck Sharp & Dohmc (Hoddesdon.
Herts)

Sulbactam water Pfizer Central Research (Kent)

Ampicillin water Sigma Chemicals (Poole. Dorset)
Cefoxitin water Sigma Chemicals

Cephalondine water Sigma Chemicals

Chloramphenicol 70% ethanol Sigma Chemicals

Kanamycin water Sigma Chemicals
Oxacillin water Sigma Chemicals
BRL427I5 water SmithKline Beecham Pharmaceuticals

(Surrey)
Carbcnicillin water SmithKline Bcecham Pharmaceuticals

Nitrocephin DMSO'1 and 50mM sodium phosphate
buffer. pH 7.0 or w ater

SmithKline Beccham Pharmaceuticals

Meropencm water Zeneca Pharmaceuticals (Macclesfield.
Cheshire)

Cefepime water Eli Lilly
'Enough to dissolve antimicrobial powder
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2.6 Antibiotic susceptibility testing

The minimum inhibitory concentrations (MICs) of antibiotics were determined by

the agar dilution method (Working Party of the British Society of Antimicrobial

Chemotherapy, 1991). Bacterial strains were grown overnight at 37°C in Nutrient

Broth No.2, with shaking. Following incubation cell cultures were diluted to 10'

colony forming units (cfu)/ml and 1 pi of the diluted cell suspension was inoculated

using a multipoint inoculator (Denley, Surrey) onto agar plates containing two-fold

serially diluted antibiotics. E. coli NCTC 10418, P. aeruginosa NCTC 10662 and S.

aureus NCTC 6571 were used as control strains, with known MIC values for the

antibiotics tested.

2.7 Preparation of ^-lactamases

2.7.1 Small-scale preparation of P-laetamases

Bacterial strains were grown overnight on 10ml nutrient agar slopes at 37°C.

Following overnight incubation, the bacterial cells were washed off the surface of the

slope with 1ml of 50mM sodium phosphate buffer, pH 7.0. The sample was then

transferred to a bijoux bottle and placed in an ice/water bath. The cells were burst by

ultrasonication for 2x15 seconds at an amplitude of 8pm, with a 30 second cooling

period (MSE Soniprep 150, MSE Instruments, Crawley). Cell debris was removed

from the lysate by centrifugation (MSE Microcentaur Centrifuge) at high speed for

10 minutes at 4°C. P-Lactamase extracts were stored at -20°C until required.
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2.7.2 Large-scale preparation of (3-lactamases

Large-scale ^-lactamase extracts were prepared from 100ml cultures according to the

method described by Payne and Farmer (1998). A flask containing 100ml of nutrient

broth was inoculated with 1ml of an overnight broth culture. The cultures were then

grown at 37°C, with shaking, to an optical density of approximately 0.7 at 500nm

and at this stage, if appropriate, imipenem was added as a P-lactamase inducer, at a

final concentration of 'A the strains imipenem MIC. After a further 2 hours of

continuous shaking at 37°C the cells were harvested by centrifugation (GS3 rotor,

Sorvall® R.C-5B, Du Pont) at 6000 rpm for 15 minutes and at 4°C. The pellet was

resuspended and washed in 10ml of 50mM sodium phosphate buffer, pH 7.0,

followed by centrifugation as previously described. The washed cells were

resuspended in 1ml of 50mM sodium phosphate buffer, pH 7.0 and placed in an

ice/water bath. The cells were burst by ultrasonication for a minimum of 2 x 30

seconds at an amplitude of 8pm with a 1 minute cooling period between each burst.

The lysate was cleared of all cell debris by centrifugation (MSE Microcentaur

Centrifuge) at high speed for 30 minutes and 4°C. P-Lactamase extracts could then

be stored at -20°C.
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2.8 Analytical isoelectric focusing (IEF)

P-lactamase preparations were examined by IEF based on the method first described

by Matthews et a/. (1975).

2.8.1 Casting an 1EF gel

P-Lactamases were focused on a horizontal thin layer polyacryiamide gel containing

carrier ampholines (pH 3.5-10). The composition of the IEF gel is given in Table

2.4, tetramethylethylenediamine (TEMED) and riboflavin were the last components

to be added. The polyacryiamide gel was poured between two clean glass plates,

separated by rubber tubing, and approximately 2mm apart. One glass plate was

coated with a solution containing 0.5% (w/v) gelatine (ca.225 bloom from calf skin)

and 0.05% (w/v) chromium potassium sulphate dodecahydrate, this enabled the gel

to stick to one of the glass plates. The other glass plate was siliconised to allow easy

separation of the two plates once the gel had polymerised. The gel was left to

polymerise for 4-5 hours.
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Fable 2.4 Composition of a polyacrvlamide IEF gel

Material

40% (w/v) ampholines

lOOg acrylamide and 2.7g bisacn laniide
in 300ml ofwater

Distilled water

5% (v/v) TEMED

Riboflavin (20mg/l)

Volume employed (ml)
2.0

9.0

25.0

0.2

4.0

Final concentration

2% (w/v)

Acn lamide 75g/l.
bisacrylamide 2g/l

0.005% (v/v)

2mg/l

2.8.2 Pre-cast IEF gels

(3-Lactamase extracts were also subjected to IEF on pre-cast polyacrylamide gels

(Ampholine4 PAGplate) containing 2% (v/v) ampholines of pEI range 3.5-9.5

(Pharmacia Biotech, St. Albans, Herts). The pre-cast gel was placed on the cooling

plate of a Multiphor II Electrophoresis Unit (Pharmacia Biotech). Paper electrode

contacts moistened with 1M H4PO4 (anode) and 1M NaOH (cathode) were placed on

the surface of the gel according to the manufacturer's instructions.

2.8.3 Agarose IEF gel

(^-Lactamases were focused on a horizontal agarose IEF gel containing carrier

ampholines (pH 3 .5-10). The composition of the agarose IEF gel is listed in Table

2.5. IEF grade agarose was dissolved in distilled water by heating in a microwave

oven, followed by cooling to 60°C in a waterbath. The D-sorbitol and ampholines

were added to the melted agarose and pipetted, to a depth of approximately 2mm,

onto the hydrophobic surface of a Gelbond sheet (250 x 125 x 0.8mm), placed on the
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surface of a Multiphor II Electrophoresis Unit (Pharmacia Biotech). The gel was

cooled for a minimum of 30 minutes to ensure gel consistency and strength. Excess

moisture was removed from the gel using filter paper. Electrode wicks were soaked

in 1M H3PO4 (anode) and 1M NaOH (cathode) and placed on to the corresponding

poles.

Table 2.5 Composition of an agarose IEF

Material Volume or mass employed Final concentration

40% (w/v) ampholines 1.5ml 2% (w/v)

Agarose IEF VIII (Sigma) 240mg 0.8% (w/v)

Distilled water 15.0ml -

D-sorbitol 20% (w/v) 13.5ml 9% (w/v)

2.8.4 Nitroeephin spot testing and sample loading

The quantity of each p-lactamase preparation to be loaded on the gel was determined

by nitrocephin spot testing. The amount of sample loaded on to the gel (pi) was

equal to the time taken (seconds) for a mixture of 33pl of P-lactamase and lOOpl of

nitrocephin (50pg/ml), in a microtitre plate, to change from yellow to red. Twelve

samples could be loaded on to the self-cast IEF gel and 24 samples could be loaded

on to the pre-cast gel. Isoelectric focusing was performed overnight at 4°C at 1W

(constant), 500V (limiting) and 20mA (limiting).
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2.8.5 Detection of P-Iactamase activities after 1EF

After IEF the polyacrylamide gel was stained by overlaying the gel with a sheet of

Whatman No.54 paper (Whatman. Maidstone, Kent) soaked in nitrocephin solution

(500|ig/ml). The focused (3-lactamases appeared as red bands on a yellow

background. The P-lactamase isoelectric point (pi) values were determined from a

graph of pi against distance migrated for coloured pi markers (pi Calibration Kit

Electran®, range 4.7-10.6, BDH Laboratory Supplies, Poole, Dorset). The stained

gel was photographed with a Polaroid camera (setting B4, F8), fitted with a Tiffen

green filter.

2.8.6 Inhibitor studies after IEF

For inhibitor studies, Whatman No. 54 filter paper, soaked with the desired inhibitor

was placed on the surface of the focused gel. After 10 minutes the inhibitor soaked

paper was removed and a nitrocephin overlay was applied as described above.
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2.9 (3-Lactamase assays

2.9.1 Substrate profiling of P-lactamases

P-Lactamase activity was determined by monitoring the hydrolysis of a range of p-

lactam agents with a X2 double beam UV/Vis spectrophotometer, fitted with a

temperature controlled cuvette holder (Perkin Elmer). Assays were carried out in

lcm path length quartz cuvettes (working volume -3ml) for 2 minutes at wavelength

optimal for each P-lactam (Table 2.6). Assays were performed in either 50mM

sodium phosphate buffer, pH 7.0 or 25mM piperazine-A,Ap-bis(2-ethanesulphonic

acid) (PIPES) buffer, pH 7.0 at 37°C. For substrate profiling each P-lactam was

assayed at a final concentration of lOOpM, except for ampicillin which was assayed

at 500pM.
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P-Lactamase activity was calculated as the amount of substrate (pmoles/nmoles)

hydrolysed/minute/ml of enzyme sample using the formula described by Payne and

Farmer (1998):

AAbsorbance/minute x Vr/1000 x 1/Ve
AE x 10 6

AAbsorbance/minute - rate of absorbance change.

AE - molar extinction coefficient of hydrolysis (AE was determined by measuring

the absorbance of a P-lactam solution of known concentration at the optimal

wavelength for the compound The AE was then determined by inserting the

absorbance and concentration of the solution into Beer Lambert's equation, A = eel,

A = absorbance, e = molar extinction coefficient, c = concentration of P-lactam

solution and I = cuvette path length).

V'r - volume of reaction (ml).

1/Ve - volume of enzyme (ml) added and factor needed for the conversion of sample

volume to 1ml

2.9.2 P-Lactamase specific activity

The protein concentration of p-lactamase preparations were determined by the

method of Waddell (1956). P-Lactamase specific activity could then be calculated as

pinoles or nanomoles of P-lactam hydrolysed/minute/mg of protein.
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Table 2.6 Optimal wavelengths for the measurement of (3-lactamase

hydrolysis

P-Lactam Wavelength
(nm)

Ampicillin 238

Cephaloridine 255

Imipenem 299

Nitrocephin 384

2.9.3 Determination of maximal hydrolysis rates (Vmax) and the Michaelis

constant (Km)

P-Lactamases were assayed with decreasing substrate concentrations and decreasing

rates of hydrolysis. The reciprocal of the substrate concentration was plotted against

the reciprocal of the rate of hydrolysis, according to the method of Lineweaver and

Burk (1934), to determine the Vmax and Km. The efficiency of hydrolysis was

calculated by dividing Vmax by Km values.

2.9.4 Inhibition studies

Determination of the inhibitor concentrations required to inhibit 50% of j3-lactamase

activity (lD?o) were performed spectrophotometrically (Hayes, 1995). A range of (3-

lactamase inhibitor concentrations were incubated with P-lactamase preparations for

10 minutes at 37°C before the addition of the reporter substrate (lOOpM imipenem or
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lOOpM nitrocephin). The ID50 value could be determined from plotting a graph of

percentage inhibition against inhibitor concentration.

2.10 (3-Lactamase purification

Whatman DE52 and QA52 pre-swollen anion exchange celluloses were employed

for (3-iactamase purification. DE52 cellulose is substituted with a diethylaminoethyl

(DEAE) group, QA52 has a quaternary amine group, and these groups define the

matrices as positively charge anion exchangers. DE52 and QA52 are designated

weak and strong anion exchangers, respectively, and this refers to the pH range over

which the exchanger is ionised.

2.10.1 Extraction of periplasmic proteins

An overnight culture was used to inoculate 1 litre of Nutrient Broth. The culture was

incubated at 37°C with shaking for 18 hours. The culture was harvested (GS3 rotor,

Sorvall® RC-5B. Du Pont) at 6000 rpm for 15 minutes and at 4°C. The cells were

resuspended in 25ml of sodium phosphate buffer, pH 7 0. The bacterial suspension

was then mixed with 4.5ml of lOOmM EDTA, pH 8.0 (this permeabilises the outer

membranes) and 0.5ml of lysozyme (10mg/l) (this digests the cell wall). The mixture

was then left to stand at room temperature for 5 minutes. The spheroplasts were

stabilised by CaCl2 (final concentration lOmM) and removed by centrifugation (GS3

rotor) at 6,000rpm for 30 minutes at 4°C. The supernatant containing periplasmic
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proteins was collected ready for dialysis or for ammonium sulphate precipitation

(Section 2. 10.4).

2.10.2 Matrix preparation and column packing

The pre-swollen anion exchangers were pre-equilibrated with a concentrated solution

(0.5M) of buffer (either sodium phosphate buffer or Tris-Cl, adjusted to the required

pH)„ by stirring the matrix with 6ml of buffer/g of wet ion-exchanger. The slurry-

was allowed to settle and the supernatant containing any broken down matrix

("fines") was decanted. Removal of fines is important as they can lead to uneven

column packing. The above process was repeated several times until the buffer/ion-

exchanger slurry was at the desired pH.

When preparing the column care was taken to remove all air bubbles to minimise any

problems with column flow rates, by allowing a small amount of buffer to flow

through the column outlet. At this stage, the flow rate of the column could be

calibrated. The matrix was also degassed, by applying a vacuum to the matrix

solution for 10 minutes Twenty ml of thick slurry (the matrix comprised of 75% of

the slurry volume) was poured down a glass rod into a column (dimensions: 1.6cm

diameter x 15cm) and the matrix was packed to a height of 10cm. The use of a glass

rod prevents the trapping of air bubbles in the matrix as it settles. The column was

then attached to a buffer reservoir and the packed column was equilibrated with

several column volumes of lower ionic strength starter buffer (either 10-20mM

sodium phosphate buffer or Tris-Cl buffer at the desired pH). The pH and
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conductivity of the buffer was checked before application and after column elution to

make sure that they remained the same.

2.10.3 Sample application

P-lactamase preparations were placed in dialysis tubing and dialysed against 2 x

Uitre starter buffer, with a change of buffer after 4 hours before being applied to the

equilibrated column. After the sample was loaded onto the column, the ion exchange

matrix was washed with starter buffer to remove any unbound material (3-10 column

volumes). The optical density of the eluent at A280 was monitored until the flow-

through contained negligible contaminants. P-Lactamase was eluted by a linear

NaCl gradient, with a steady increase in the ionic strength from 0-1M NaCI prepared

in starter buffer. An LKB-BROMMA 2070 fraction collector (Pharmacia Biotech, St

Albans, Herts) collected the gradient-eluted samples in 3ml aliquots. Samples were

assayed by spectrophotometry and 1EF. Following sample elution, the column

matrix was regenerated to remove any remaining contaminants according to the

manufacturer's instructions.

2.10.4 Concentration of protein samples by ammonium sulphate precipitation

Ammonium sulphate precipitation was performed at 4°C with all solutions pre-

cooled to this temperature. Ammonium sulphate was added in increments with

constant stirring to a final concentration of 80%. Each addition of ammonium

sulphate was made only after the previously added amount had completely dissolved.
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When all the salt had been added the mixture was stirred for a further 30 minutes to

allow equilibration of the solvent and protein. The mixture was then centrifuged

(GS3 rotor, Sorvall® RC-5B, Du Pont) at 8000 rpm for 30 minutes at 4°C. The

supernatant was decanted off and discarded. The wet precipitate was then ready in a

minimum volume of appropriate buffer. The P-lactamase activity of the resuspended

pellet and discarded supernatant was assayed by nitrocephin spot testing to check

that the P-lactamase had been precipitated. Concentrated protein samples were

dialysed against the appropriate buffer to remove all ammonium sulphate before

further manipulations.

2.10.5 Gel filtration employing the Fast Protein Liquid Chromatography System

(FPLC)

A Superose 12 HR 10/30 column (Pharmacia Biotech, St Albans, Herts), mounted on

a Pharmacia FPLC system, was used for molecular mass estimations and P-lactamase

purification. All solutions used for gel filtration were degassed and filtered through a

0.22pM filter (Millipore, Watford, Herts). The Superose 12 column was stored in

20% ethanol and was washed with pyrogen free water (MilliQPF, Millipore) to

remove the ethanol. This wash was followed by equilibration of the column with 2 x

25ml column volumes of column buffer (20mM sodium phosphate buffer, pH 7.0,

containing 50mM NaCl).

The sample was centrifuged before application to the column. A maximum of 200pl

in volume, containing no more than 5-10mg of protein (or 30mg of protein/ml) was

82



loaded onto the column. The column was run at a flow rate of 0 4ml/minute. After

sample loading the proteins were eluted with the column buffer and collected in

0.5ml fractions. Fractions were assayed by spectrophotometry and IEF.

The column was calibrated by running lmg of four different proteins (bovine serum

albumin, ovalbumin, carbonic anhydrase and cytochrome C), of known molecular

mass, through the column. The separation of these proteins, as they passed through

the column, could be detected by measuring the A28o on a UV wavelength monitor

attached to the column outlet. A plot ofmolecular mass against elution volume could

be generated, forming a standard graph from which the molecular mass of a (3-

lactamase could be determined.

2.11 Preparation of outer membrane proteins (OMPs)

OMPs were prepared from a 250ml nutrient broth culture grown with shaking
■» ®

overnight at 37°C. Cells were harvested by centrifugation (GS3 rotor, Sorvall R.C-

5B, Du Pont) at 8000 rpm for 15 minutes and at 4°C. The cell pellet was washed

twice in phosphate-buffered saline (PBS) and centrifuged as above. The washed

cells were resuspended in 2.5ml of pyrogen-free water (MilliQPF, Millipore,

Watford, Herts) and placed in an ice/water bath before bursting the cells by

ultrasonication (MSE Soniprep 150) at 8um for 8 x 30 seconds with 1 minute cooling

intervals. Sarkosyl was added to a final concentration of 0.7% to solubilise the

cytoplasmic membrane. The lysate was then centrifuged (H1000B rotor, Sorvall®

RT 600D) at 3000 rpm for 15 minutes at 4°C to remove any unbroken cells and
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debris. The sarkosyl insoluble OMPs were harvested by centrifugation (SM-24 rotor,

SorvallA RC-5B) at 20,000 rpm for 1 hour at 4°C. The OMPs were washed with

pyrogen-free water and centrifuged as above. The pellet was finally resuspended in

lml of pyrogen-free water and stored at -20°C.

2.12 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis

(SDS-PAGE)

Sodium dodecyl sulphate polyacrylamide gels, with 12% acrylamide in the

separating gel, were prepared according a standard protocol (Maniatis el «/., 1982)

using a minigel apparatus (Proteinll, Bio-Rad). Prior to electrophoresis, samples

were mixed with an equal volume of SDS loading buffer (50mM Tris-Cl buffer

adjusted to pH 6.8, containing 10% (v/'v) glycerol, 2% (w/v) sodium dodecyl

sulphate, 0.1% (w/v) bromophenol blue and lOOmM dithiothreitol). The samples

were boiled for 5 minutes at 100°C and a maximum of 25pl of each sample could be

loaded into each gel well. The gel was run at 25mA for approximately 1 hour until

the dye front had nearly reached the bottom of the gel.
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2.13 Preparation of DNA

2.13.1 Small-scale preparation of chromosomal DNA

Small-scale quantities of chromosomal DNA were prepared according to the method

described in Unit 2.4A of Current Protocols in Molecular Biology (Wilson, 1994),

which includes a hexadecyltrimethvl ammonium bromide (CTAB) extraction for the

removal of polysaccharides and proteins. The DNA pellet was redissolved overnight

at 4°C in lOOpl TE buffer (lOmM Tris, ImM EDTA, pH 8.0) containing

ribonuclease A (50pg/ml).

For convenience, chromosomal DNA was also prepared with the Genie genomic

DNA extraction kit (Helena Biosciences, Sunderland, Tyne and Wear).

2.13.2 Large-scale preparation of chromosomal DNA

Large-scale quantities of chromosomal DNA were prepared according to the method

described in Unit 2.4A of Current Protocols in Molecular Biology (Wilson, 1994).

Additional purification on a caesium chloride gradient was however, omitted from

the protocol, which was essentially a scale up of the genomic DNA miniprep. This

procedure was employed to obtain large amounts of genomic DNA for the

construction of a genomic DNA library from A. veronii bv. sobria strain 13.
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2.13.3 Small-scale piasniid preparation

Small-scale quantities of plasmid DNA were prepared by means of a Hybaid

Recovery™ plasmid miniprep kit (Teddington, Middlesex).

2.13.4 Large scale plasmid preparation

Large-scale quantities of plasmid DNA was prepared by means of either a QIAGEN

midi or QIAGEN maxi plasmid purification kit (QIAGEN Ltd., Crawley, W.

Sussex). Purification of high copy number plasmids using the QIAGEN midi kit

routinely yielded 75-lOOp.g of DNA, whereas, the maxi kit yielded 300-500pg of

DNA

2.14 Agarose gel electrophoresis

Standard agarose gel electrophoresis was applied for both analytical and preparative

separation of DNA fragments Agarose gels were prepared with 1 x Tris/acetate

(TAE) buffer diluted from a 10 x TAE stock solution (1 litre volume containing

400mM Tris-acetic acid, 20mM disodium EDTA, pH 8.0). The appropriate

concentration (typically 1-2%) of electrophoresis grade agarose (Gibco BRL, Life

Technologies, Paisley, Glasgow) was added to the electrophoresis buffer and melted

in a microwave oven, with intermittent swirling to ensure even mixing. The melted

agarose was cooled to 55°C before pouring into a sealed gel casting platform, fitted

with a gel comb. After approximately 30 minutes, the gel was placed in an
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electrophoresis tank and 1 x TAE buffer was placed in the tank to cover the gel to the

depth of about 1mm. DNA samples containing 1 x tracking buffer were loaded onto

the gel (10 x tracking buffer: 0.25% (w/v) bromophenol blue, 0.25% (w/v) xylene

cyanol, 30% (w/v) sucrose). A standard molecular weight marker was among the

samples loaded onto the gel (X DNA cut with HitidUl or lOObp ladder) and these

were obtained from Gibco BRL, Life Technologies. Electrophoresis was carried out

between 50-100V and the progress of the separation was monitored by the migration

of the dyes in the tracking buffer (bromophenol blue migrates with DNA molecules

around 0.5 kb and xylene cyanol with DNA fragments of around 5kb).

Ethidium bromide (0.5 pg/ml) was incorporated into the gel and electrophoresis tank

buffer for direct visualisation of DNA with a UV transilluminator (UV Products,

Cambridge), following electrophoresis. Alternatively, gels that were run in the

absence of ethidium bromide were stained by covering the gel in a solution of

ethidium bromide (0.5 pg/ml in water) for 30 minutes. The gels were photographed

with a Polaroid camera fitted with a Tiffen orange filter (setting B, F8).

2.15 Enzymic manipulation of DNA

2.15.1 Digestion of DNA with restriction endonucleases

Complete restriction endonuclease cleavage of DNA was commonly carried out in

20(.il reaction volumes containing 0. l-4pg of DNA, 1 x appropriate restriction buffer

(Helena Biosciences, Sunderland, Tyne and Wear) and 1-5 units of restriction
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enzyme/pg of DNA. The amount of DNA to be cleaved and/or the reaction volume

was increased or decreased if necessary, keeping the proportions of the reaction

components constant The reaction mixture was incubated at the recommended

temperature (in general 37°C) for 2 hours. If the products were to be analysed by

agarose gel electrophoresis the reaction was stopped by adding 5pl (20% of reaction

volume) of 10 x tracking buffer. Otherwise the reaction was terminated by either

extracting the DNA with phenol and precipitation in ethanol according to the method

described in Current Protocols in Molecular Biology Unit 2.1 (Moore, 1994), or, if

appropriate, the restriction enzyme was heat inactivated.

2.15.2 Preventing self-Iigation of vector termini

Self-annealing of linearised vector during ligation reactions was prevented by pre-

treatment with calf intestine alkaline phosphatase (CIP) (Boehringer Mannheim,

Lewes, E. Sussex). CIP catalyses the hydrolysis of 5'-phosphate residues from DNA,

leaving dephosphorylated products that possess 5'hydroxyl termini. One pg of

vector DNA was first restricted with the appropriate restriction enzyme in a total

reaction volume of 50f.il. One pi ofCIP was added to the reaction and incubation was

continued for 1 hour at 37°C. The reaction was terminated by extracting the DNA

with phenol and precipitation in ethanol according to the method described in

Current Protocols in Molecular Biology Unit 2,1 (Moore, 1994).
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2.15.3 DNA Ligation

Ligation of DNA was performed using T4 DNA ligase (Boehringer Mannheim,

Lewes, E. Sussex) with lx ligation buffer. The total reaction volume was lOpl

containing a 3:1 molar ratio of insert DNA to vector. Ligation reactions were

incubated overnight at 16°C.

2.16 Electrotransformation

2.16.1 Preparation of competent cells

I ml of an overnight culture was added to a 200ml prewarmed broth and the culture

was incubated with shaking 4 hours until the mid-logarithmic phase had been

reached. Cells were harvested by centrifugation (GS3 rotor, Sorvall® R.C-5B) at

6000 rpm for 15 minutes and at 4°C and resuspended in 10ml of ice cold sterile

distilled water The suspension was then diluted to 200ml with ice cold water and

the cells pelleted as described previously. Cells were washed twice more as

described above. The thoroughly washed pellet was resuspended in an ice-cold

solution of 30% (v/v) glycerol, where it was further washed before finally being

suspended in 500p.l of ice-cold 10% (v/v) glycerol. Cells were distributed into 50pl

aliquots and stored at -70°C.
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2.16.2 Transformation

Before transformation, ligated DNA samples were dialysed with a "drop dialysis

technique" (Marusyk and Sergeant, 1980). A 0.025pm pore size diameter, Millipore

"V" series membrane was floated (shiny side uppermost) in a petri-dish that was

filled with 15ml of distilled water. The DNA sample was carefully placed onto the

membrane and dialysed for at least 30 minutes at room temperature. The desalted

sample was then recovered with a micropipet.

Competent cells and l-2pl of dialysed DNA were added to a chilled, disposable

electroporation cuvette and mixed thoroughly. The outside of the cuvette was wiped

dry and the cuvette lightly tapped to remove all air bubbles and ensure that the

sample was distributed evenly in the bottom of the cuvette. One pulse was applied

(Bio-Rad, 2.5kV, 25pFD, 2000hm) and immediately 1 ml of pre-warmed nutrient

broth medium was added. Electroporated cells were then transferred to a 1.5ml

microcentrifuge tube and incubated for 2 hours at 37°C. Alter incubation 50-200pl

aliquots were spread on to selective agar.

2.17 Polymerase Chain Reaction (PCR)

2.17.1 Design of oligonucleotide primers

Primers were designed with Primer 3 Software (http://www.genome.wi.mit.edu/cgi-

bin/primer/primer3.cgi) and by reference to previously published data. The primers
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were synthesised by Oswell (Southampton University, Southampton), the details of

primers are referred to in the relevant chapters

2.17.2 PGR procedure

PGR amplification was performed in a 1 OOpil volume with the Techne PHC-2 Dri-

Block Cycler (Cambridge Bioscience, Cambridge). Reaction mixtures contained 1 x

MgCf-free PCR buffer (Promega, Southampton), 0.5p.M of each primer,

approximately 25ng of template DNA, 2.5 units of Taq DNA polymerase (Promega),

200pM (each) deoxynucleoside triphosphate (Boehringer Mannheim, Lewes, E.

Sussex), l-3mM MgCh (Promega). A negative control consisting of the reaction

mixture minus template DNA was included for each experiment an assay for overt

contamination. The contents of each PCR tube were mixed and overlaid with 50p!

of mineral oil to prevent evaporation of the PCR reaction mixture. PCR cycling

parameters are listed with primers in the relevant chapters. PCR products were run

on a 1% agarose gel (Gibco BRL, Life Technologies, Paisley), stained with ethidium

bromide and visualised under UV light.
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2.18 DNA hybridisation techniques

2.18.1 Labelling of DNA probes

DNA fragments to be used as probes were labelled with fluorescein-11-dUTP (Fl-

dUTP) by means of the ECL™ random prime labelling and detection system

(Amersham, Life Science, Buckinghamshire) according to the manufacturer's

instructions.

2.18.2 Dot blotting

A positively charged nylon membrane (Hybond™-N+, Amersham Life Science,

Buckinghamshire) was lightly marked with a grid to guide the application of target

DNA samples, allowing 1 cm2/2p.l sample. DNA samples were diluted with an equal

volume of 2x SSC containing carrier DNA (GeneBloc, Flelena Biosciences,

Sunderland, Tyne and Wear) at a final concentration of 2ng/pl DNA samples were

then denatured by boiling for 5 minutes followed by immediate chilling on ice. Two

p.1 samples of denatured DNA were applied to the membrane, the filter was left to

dry and baked for two hours at 80°C in a Bio-Rad slab drier (Hemel Hempstead,

Herts).
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2.18.3 Southern blotting

DNA fragments were separated by agarose gel electrophoresis and Southern blotted

on to a positively-charged nylon membrane (Hybond™-N+, Amersham Life Science,

Buckinghamshire), according to the method described in Unit 2.9A of Current

Protocols in Molecular Biology (Brown, 1993)

2.18.4 Hybridisation

Hybridisations with heat-denatured fluorescein-labelled DNA probes were carried

out in either heat sealable bags or plastic boxes. Positive hybridisation results were

detected by the ECL™ Random prime system (Amersham Life Science,

Buckinghamshire). The blots were hybridised overnight at 60°C according to the

manufacturer's instructions and sheared denatured heterologous DNA (GeneBloc,

Helena BioScienc.es, Sunderland, Tyne and Wear) was added to the hybridisation

buffer to decrease non-specific hybridisation. The following stringency washes were

carried out: 2x15 minute washes with 1 x SSC and 0.1% (w/v) SDS, followed by 2

x 15 minute washes with 0.05 x SSC and 0.1% (w/v) SDS at 60°C. The hybridisation

signals were recorded by placing a blot with a sheet of blue light sensitive

autoradiography film (Hyperfilm™-ECL, Amersham Life Science) in a film cassette

and exposing the film for 30 minutes.
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2.19 Elimination of plasmids by ethidium bromide curing

Ethidium bromide has been shown to be efficient in eliminating plasmids that carry

drug resistance determinants (Bouanchaud et al1969) and was employed to test

whether an imipenem-hydrolysing (3-lactamase was encoded by an

extrachromosomal element.

Curing was performed with a series of tubes containing Nutrient Broth No.2 and

ethidium bromide at concentrations ranging from 0.06-64mg/l. The tubes were

inoculated with approximately 10" organisms/ml and incubated overnight at 37°C,

with shaking. The culture tube that contained the highest concentration of ethidium

bromide and still allowed visible growth was plated on to Nutrient Agar and

incubated overnight at 37°C. Between 40 and 50 individual colonies were inoculated

from the Nutrient Agar plate into individual tubes containing 4.5ml of sterile saline

(0.85% (w/v) NaCl). Cured strains were then identified by inoculating lOpl of each

inoculated saline onto plates containing sub-inhibitory concentrations of imipenem

(1/2 imipenern MIC). Ten pi of each inoculated saline was also inoculated on to

plates with no imipenem. Following overnight incubation at 37°C plates were

examined for colonies that did not grow on the antibiotic plate. (3-Lactamase extracts

were prepared from subcultures of the colonies that failed to grow at sub-inhibitory

concentrations of imipenem. (3-Lactamases were detected as described in Section 2.7

to see if there was a loss of a particular (3-lactamase band.
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3: RESULTS

A study of the mechanisms involved in carbapenem resistance in

Pseudomonas aeruginosa isolates from Japan

3.1 Introduction

Recently, there have been increasing reports from Japan of carbapenem-resistant

clinical isolates, belonging to both the Enterobocteriaceae and Pseudomonciceae

families, some of which produce a metallo-j3-lactamase designated IMP-1 (Section

1.! 1 1.5). Therefore, the following study was undertaken to evaluate the role of P-

lactamases in conferring carbapenem resistance in clinical isolates from Japan. The

contribution of the IMP-1 P-lactamase, chromosomal cephalosporinases and novel

carbapenemases were all examined

3.2 Background to bacterial strains

Sixty-one P. aeruginosa clinical isolates were received from Japan. These strains

were isolated from patients with respiratory and urinary tract infections from 21

different hospital centres (designated A-U in Table 3.1) in Japan, in 1994.
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3.3 Susceptibility testing

Fiftv-two of the 61 Japanese P. aeruginosa strains were originally reported as being

imipenem-resistant, having an MIC of >4mg/l (Dr K. Sato - personal

communication). On receipt of the strains, their susceptibility to imipenem was re¬

determined and in addition, the MICs of three other (3-lactams, meropenem,

carbenicillin and ceftazidime, and the quinolone ciprofloxacin, were also tested.

The susceptibility testing results are shown in Table 3.1; 47 of the isolates were

resistant to imipenem (MIC >4mg/l), 25 of these strains were also resistant to

meropenem (MIC >4mg/l). Four strains were resistant to meropenem (MIC >4mg/l),

but not imipenem. Twenty-two strains were resistant to carbenicillin (MIC

>128mg/l), 25 were resistant to ceftazidime (MIC >2mg/l) and 23 isolates were

resistant to ciprofloxacin (MIC >4mg/l).

3.4 Isoelectric focusing of (3-lactamases from P. aeruginosa isolates

Isoelectric focusing was performed on small-scale crude cell extracts prepared from

the 61 P. aeruginosa strains. After staining the IEF gel with nitrocephin, 74% of the

P. aeruginosa strains were found to possess one or more (3-lactamase (Table 3.1).

The most prevalent (J-lactamase had a pi value of 9.2 was found in 41% of isolates

(Table 3.1). Metallo-(3-lactamases in P. aeruginosa have been reported to have pis

of 9.0 and 9.5 (Watanabe et al1991; Minami et a/., 1996). The chromosomal

cephalosporinases of P. aeruginosa also have high pi values (Bush et al., 1995).
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Table 3.1 Antibiotic susceptibility of 61 clinical P. aeruginosa isolates

and their ^-lactamase profiles

Hospital MIC (mg/L)a
Strain Unit (A-U) IMP MPM CARB CTAZ CIPRO pl(s)

10662* - 1 0.25 32 1 0.12 8.7

2 A 8 8 256 16 4 9.2

3 A 16 8 64 2 0.12 9.3

8 A 8 8 128 2 2 ND

4 B 8 32 >256 4 >8 5.4, 8.7

5 B 2 8 256 2 0.25 8.2

6 B 8 2 32 1 0.5 ND

13 B 8 32 >256 4 >8 5.3

14 B 8 32 >256 16 >8 5.4

16 B 2 2 128 2 0.25 ND

24 B 8 1 32 1 0.5 ND

22 C 8 2 64 2 0.12 ND

41 C 8 1 16 0.25 0.064 9.2

23 D 8 4 128 32 0.064 9.2

25 E 16 8 256 32 >8 9.2

26 E 8 4 32 1 0.25 9.2

79 E 16 8 128 2 0.25 5.3, 9.2

101 E 4 1 >256 32 >8 9.2

30 F 16 8 128 32 >8 9.2

38 F 8 2 32 1 >8 9.2

39 F 8 16 256 4 8 9.2

34 G 4 8 256 32 >8 8.95

35 G 8 8 256 4 0.25 9.2

36 G 8 0.25 64 2 8 ND

37 G 16 32 256 16 >8 9.2

a
- Blue numbers represent a resistant MIC, black numbers equal sensitive MIC.
10662* - P. aeruginosa NCTC 10662 = sensitive laboratory control strain.
IMP, imipenem; MPM, meropenem; CARB, carbenicillin; CTAZ, ceftazidime;
CIPRO, ciprofloxacin; ND, not detected.
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Table 3.1 Antibiotic susceptibility of 61 clinical P. aeruginosa isolates

and their (3-lactamase profiles (continued)

Hospital MIC (mg/l)a
Strain Unit (A-U) IMP MPM CARB CTAZ CIPRO pl(s)
43 H 8 8 256 4 >8 9.2

44 H 16 8 64 4 0.25 9.2

50 H 16 8 128 2 >8 9.3

52 H 16 4 128 2 0.064 9.2

45 I 8 8 256 4 >8 8.7

46 I 8 2 32 1 1 9.2

93 I 4 8 128 4 >8 8.5, 9.2

48 J 8 8 64 4 0.12 8.95

60 J 64 32 >256 32 >8 8.95

54 K 8 4 128 2 0.12 ND

55 K 16 16 256 16 8 9.2

64 K 2 4 128 4 >8 ND

86 K 1 0.25 128 2 0.25 8.3, 8.6

65 K 1 0.032 32 1 0.25 ND

56 L 8 2 64 2 0.25 8.4, 8.95

83 L 8 2 64 1 0.064 8.9

67 M 8 8 64 2 0.12 9.2

68 M 16 4 32 2 0.25 9.2

69 M 16 8 64 2 0.25 ND

84 M 2 0.25 32 1 0.5 ND

71 N 8 2 32 1 0.12 8.5, 9.2

73 N 4 8 128 2 0.25 ND

74 N 8 1 16 0.5 0.064 ND

80 O 8 16 >256 2 >8 9.3

98 O 2 1 >256 2 >8 8.4, 9.2

100 o 8 2 32 1 0.25 8.95

a
- Blue numbers represent a resistant MIC, black numbers equal sensitive MIC.
IMP, imipenem; MPM, meropenem; CARB, carbenicillin;
CTAZ, ceftazidime; CIPRO, ciprofloxacin; ND, not detected.
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Table 3.1 Antibiotic susceptibility of 61 clinical P. aeruginosa isolates

and their P-lactamase profiles (continued)

Hospital MIC (mg/l)a
Strain Unit (A-U) IPM MPM CARB CTAZ CIPRO pl(s)

87 P 2 2 256 4 0.5 9.2

94 P 8 8 >256 2 >8 5.4

102 P 4 2 32 1 0.12 8.8

90 Q 16 4 64 2 0.12 ND

96 R 8 2 64 2 0.12 ND

97 R 8 4 64 1 0.12 ND

103 R 16 2 32 1 0.12 8.8

62 S 16 64 >256 16 >8 8.3, 9.2

63 T 4 2 256 8 >8 9.3

66 U 16 8 256 4 0.5 ND

75 U 8 4 32 4 0.25 5.3, 9.2
a
- Blue numbers represent a resistant MIC, black numbers equal sensitive MIC.
IMP, imipenem; MPM, meropenem; CARB, carbenicillin;
CTAZ, ceftazidime; CIPRO, ciprofloxacin; ND, not detected.

3.5 PCR detection of the metallo-P-lactamase gene blamp

It has been shown by Senda etal., (1996b) that PCR can be successfully applied to

rapidly detect an intragenic 587 bp fragment of the gene in clinically isolated

Gram-negative rods. Therefore, PCR with bla\up specific primers was used to

determine whether any of the 61 Japanese Paeruginosa isolates possessed this gene.

Five IMP-1 producing strains (S. marcescensTN9106, S. marcescens AK9374, S.

marcescens FHSM4055, P. aeruginosa M18 and P. aeruginosa 101/1477) were

employed as positive PCR controls and three standard laboratory strains (E. coli
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NCTC 10418, P. aeruginosa NCTC 10662 and S. marcescens NCTC 1377) were

employed as negative controls.

The PCR primer sequences are shown in Figure 3.1 (Senda et al., 1996b). The PCR

procedure was performed, as described in Section 2.17.2, with 1.5mM MgCh. The

PCR cycling parameters are shown in Table 3.2, however, the annealing temperature

was increased from the published 55°C (Senda et al., 1996b) to 60°C because non¬

specific DNA fragments were amplified for P. aeruginosa NCTC 10662 and S.

marcescens NCTC 1377 when annealing was performed at 55°C.

Figure 3.1 PCR primers for bla\mm

Sequence Position"

5' CTA CCG CAG CAG AGT CTT TG 3' 1241

5' AAC CAG TTT TGC CTT ACC AT 3' 1808

"

Numbering is according to Arakawa et al., (1995).

Table 3.2 PCR cycling parameters for the amplification of blamp

Segment Temperature (°C) Time (minutes) Function No. of cycles
1 94 2 Denaturation 1

9 94 1 Denaturation

60 1 Annealing >" x30

72 1.5 Extension -

->
J 72 10 Final extension 1
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3.6 PCR detection ofM«imp in the 61 P. aeruginosa strains from

Japan

All of the 61 P. aeruginosa strains were subjected to PCR analyses to detect the

blam? gene, however, all these strains were found to be blamp negative. A 587 bp

DNA fragment could be amplified from the five IMP-1 positive control strains

(Figure 3.2). Template DNA was prepared from the bacteria strains by using the

Genie genomic DNA extraction kit, although boiling a single colony suspended in

25pi of pyrogen-free water for 10 minutes was an equably suitable method and

furthermore, it was more convenient.

Figure 3.2 Amplification of a 587bp intragenic />/«imp PCR product

from an IMP-1 producing strain

1 2

Lanes: 1, lOObp DNA ladder; 2, 587bp PCR product from blamp positive control

strain.
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3.7 DNA hybridisation with an intragenic bla\Mp gene probe

Total genomic DNA samples from the 61 P. aeruginosa strains were dot blotted and

hybridised with an intragenic blamp gene probe. The probe consisted of the 587bp

DNA fragment generated by PCR from S. marcescens TN9106. Gene probing was

performed because it is less specific than PCR; however, this method also confirmed

these 61 Japanese P. aeruginosa strains to be negative for an IMP-1-like gene. Figure

3.3 shows a dot blot of the five IMP-1 positive strains hybridised with the blamp

probe.

Figure 3.3 Dot blot of DNA from five IMP-1 positive strains

hybridised with bla\Mp

S. marcescens TN9106

Of S. marcescens AIC9374

P. aeruginosa M18

m P. aeruginosa 101/1477

as s. marcescens FHSM4055
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3.8 Imipenem hydrolysis assays using small-scale ^-lactamase

extracts

Hydrolysis of imipenem was assayed for spectrophotometrically, using small-scale

(3-lactamase preparations. Efficient hydrolysis of imipenem could be easily detected

using small scale (3-lactamase extracts (prepared in 50mM sodium phosphate buffer,

pH 7.0) from IMP-1 positive control strains. However, no imipenem hydrolysis was

detected in any of the 61 Japanese P. aeruginosa strains by this method.

3.9 The role of chromosomal cephalosporinases in imipenem

resistance

It is well documented that imipenem resistance in P. aeruginosa is often caused by

decreased expression of the outer membrane protein D2 (Section 1.10.1.1). In

addition to the loss of D2, imipenem resistance in P. aeruginosa is also known to

require the activity of the derepressed AmpC chromosomal molecular class C

cephalosporinase (Section 1.10.1.1). A simple method described by Zhou et al.,

(1993) was applied to determine whether the chromosomal cephalosporinase was

involved in the imipenem/meropenem resistance mechanism in any of the 61

Japanese P. aeruginosa isolates and also IMP-1 positive controls. MICs of

imipenem and meropenem were determined either alone or in the presence of a fixed

concentration (4mg/l) of the serine (3-lactamase inhibitor BRL42715. The MIC of

BRL42715 alone was also determined to demonstrate that it is the P-lactamase
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inhibitor role of BRL42715 that results in any decrease in the carbapenem MICs and

not its antibiotic effect.

Two P. aeruginosa mutant strains, M1405p-con D2" and M2297(3-con D2", that have

derepressed AmpC p-lactamase expression and lack D2 were employed as positive

controls. Negative controls included M1405p-def D2", M2297p-def D2", that are

non-inducible P-lactamase basal mutants that lack the D2 porin and, therefore,

should show no decrease in imipenem MIC in the presence of BRL42715. The

effects of BRL42715 on the imipenem and meropenem MICs of the control strains

are shown in Table 3.3.

The MIC for BRL42715 alone was >128mg/L for both control strains and test strains

and, therefore, any decrease in MIC was the result of P-lactamase inhibition by

BRL42715 and not its antibiotic effect.

In the presence of BRL42715 a four- to 16-fold decrease in the imipenem MIC is

indicative of the involvement of a cephalosporinase in the mechanism of imipenem

resistance (Zhou et al., 1993) and can be seen in Table 3.3 for the two positive

control strains (M1405P-con D2" and M2297P-con D2"). The meropenem MICs of

these control strains are little affected by BRL42715, regardless of the levels of p-

lactamase expressed. When this method was carried out on the 61 P. aeruginosa

strains from Japan, between a four- to 16-fold decrease in imipenem MIC was shown

for 57 of the 61 strains examined and only two strains showed a four-fold decrease in

their meropenem MIC, the rest beihg unaffected. By adding BRL42715 in

104



combination with imipenem the imipenem MICs for the Japanese P. aeruginosa

strains were all less than the breakpoint for resistance (4mg/L).

The imipenem and meropenem MICs of five IMP-1 positive strains were also tested

in the presence and absence ofBRL42715 but neither the imipenem nor, meropenem

MICs were affected by BRL42715.

Table 3.3 The effect of the serine (3-lactamase inhibitor BRL42715

on imipenem and meropenem MICs of four P. aeruginosa mutant

control strains

Strain

MIC (mg/L)
IMP IMP + MPM MPM +

BRL42715 BRL42715

M1405p-con D2"

M2297p-con D2"

M1405p-defD2"

M2297p-defD2"

8 1 4 2

8 1 2 1

0.5 0.5 2 2

0.5 0.5 1 1

J MP, imipenem; MPM, meropenem.
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3.10 Determining whether imipenem-resistant P. aeruginosa strains

are (3-lactamase derepressed

Eight of the imipenem-resistant Japanese P. aeruginosa strains were chosen for

nitrocephin hydrolysis assays. These assays were performed to determine whether (3-

lactamase derepression is a requirement for imipenem resistance. The eight selected

strains included: four strains that showed a four- to 16-fold decrease in their

imipenem MICs in the presence of BRL42715 (strains 3, 30, 60, 66), and four strains

(2, 4, 39, 43) that showed no decrease in their imipenem MIC in the presence of

BRL42715 Nitrocephin hydrolysis assays were performed with imipenem induced

and non-induced large-scale (3-lactamase extracts prepared in 25mM PIPES buffer,

pH 7.0.

Strains 3, 30, 60 and 66 decreased their imipenem MICs in the presence of

BRL42715 (Table 3.4); however this was not necessarily associated with derepressed

(3-lactamase activity, as three out of the four strains (3, 60, 66) showed a >25-fold

increase in (3-lactamase activity following induction with imipenem. The four strains

(2, 4, 39, 43) that are resistant to imipenem but unaffected by BRL42715 also had

variable levels of (3-lactamase activity.
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Table 3.4 The specific activities of crude [3-lactamase extracts from

four P. aeruginosa strains that show between a four- to 16-fold

decrease in their imipenem MIC in the presence of BRL42715 and

from four strains that show no decrease in their imipenem MIC in

the presence of BRL42715 (measured against nitrocephin)

Specific activity (sp act)* Induction ratio

Strain Noninduced Induced (induced/non-induced sp act)
10662" 1 479 479

M18b 460 2433 5

->c
J 2 72 36

30 3649 3706 1

60 32 844 26

66 -v

J 844 281

2d 17 2021 118

4 462 594 I

39 115 5160 45

43 63 2220 35
* Nanomoles of nitrocephin hydrolysed/minute/mg of protein.

aP. aeruginosa NCTC 10662 sensitive laboratory control.

b P. aeruginosa M18 = IMP-1 positive strain.

4

Four P. aeruginosa strains that show a four- to 16-fold decrease in their imipenem

MIC in the presence of BRL42715.

''
Four P. aeruginosa strains that show no decrease in their imipenem MIC in the

presence of BRL42715.
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3.11 Imipenem hydrolysis assays using large-scale ^-lactamase

extracts

P. aeruginosa strains 3, 30, 60, 66, 2, 4, 39 and 43 were chosen for further

biochemical study. P-Lactamase extracts were prepared on a large scale in the

presence and absence of imipenem as an inducer. 50mM sodium phosphate buffer,

pH7.0 was replaced with 25mM PIPES buffer, pH 7.0 because some metallo-P-

lactamases have been reported to be unstable in 50mM sodium phosphate buffer, pH

7.0 (Watanabe el a/., 1991) and 25mM PIPES, pH 7.0 has been recommended for

metallo-P-lactamase assays (Payne and Farmer, 1998). Both induced and non-

induced crude P-!actamase extracts were also prepared in the presence and absence

of both 1 pM and lOOpM ZnSCE to ensure that any potential metallo-P-lactamases

were clearly identified.

Hydrolysis of imipenem could not, however, be detected with any of the P-lactamase

extracts prepared from these eight P. aeruginosa strains, under each condition used.
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3.12 IEF and P-lactamase typing

Isoelectric focusing was repeated using the large-scale induced p-lactamase

preparations from the eight P. aeruginosa representative strains (3, 30, 60, 66, 2, 4,

39, 43). Focusing of the P-lactamases was followed by overlaying the gels with

BRL42715 (lOOpM), cloxacillin (lOOpM) and clavulanic acid (ImM) before staining

with nitrocephin. The purpose of these inhibitor overlays was to provide further

evidence that it is a molecular class C, Bush group 1 cephalosporinase that is

involved in the imipenem resistance mechanism in the Japanese P. aeruginosa

strains BRL42715 inhibits serine P-lactamases, although it cannot be used to

distinguish between the different classes of serine P-lactamases. Cloxacillin,

however, is recognised as a good inhibitor of the molecular class C, Bush group 1

cephalosporinases, and clavulanic acid is a good inhibitor of molecular class A P-

lactamases, but not class C cephalosporinases (Bush el a/., 1995). The TEM-1 P-

lactamase was employed as a positive molecular class A p-lactamase control. The P-

lactamase extract from P. aeruginosa NCTC 10662 was employed as a positive class

C cephalosporinase control. The effect of these inhibitors on the P-lactamases from

the eight P. aeruginosa strains are summarised in Table 3.5, where it can be seen that

the high pi P-lactamases from the P. aeruginosa strains are inhibited by BRL42715

and cloxacillin, but not clavulanic acid. This suggests that all the P-lactamases are of

molecular class C.
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Table 3.5 Effects of BRL42715, cloxacillin and clavulanic acid on (3-

lactamases from eight P. aeruginosa strains

Strain

[^-lactamase

pl(s)

Bands seen after treatment with:

BRL42715 Cloxaeillin Clasodanic acid

(100pm) (100pm) (lrnM)
TEM-1 5.4 ND 5.4 ND

10662 8.7 ND ND 8.7

*)
J 9.3 ND ND 9.3

30 9.2 ND ND 9.2

60 8.95 ND ND 8.95

66 8.95 ND ND 8.95

2 5.4. 8.7 ND 5.4 8.7

4 9.2 ND ND 9.2

39 9.2 ND ND 9.2

43 9.2 ND ND 9.2

ND. not detected.

3.13 Analysis of outer membrane proteins

Outer membrane proteins were prepared from the eight selected P. aeruginosa

strains (3, 30, 60, 66, 2, 4, 39, 43). The outer membrane proteins from these strains

were examined to determine whether these isolates lacked the D2 outer membrane

protein. Unfortunately, a comparison between the outer membrane proteins from the

imipenem-resistant Japanese P. aeruginosa strains and their isogenic impenem-

susceptible parents could not be made because the parent strains were not available

Instead the outer membrane profiles from these strains were compared with P.
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aeruginosa M2297(3-con and P. aeruginosa M2297(3-con D2\ these are control

strains that produce and are deficient in the D2 porin respectively.

Figure 3.4 shows the outer membrane proteins profiles from four randomly selected

P. aeruginosa strains (3, 30, 60, 66) that show a four- to 16-fold decrease in their

imipenem MICs in the presence of BRL42715. These strains appear to have

diminished production of the D2 porin when the SDS polyacrylamide gel was stained

with Coomassie blue. Figure 3.5 shows that the four P. aeruginosa strains (2, 4, 39,

43), showing no decrease in imipenem MIC in the presence of BRL42715 are also

deficient in the D2 porin.
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Figure 3.4 Outer membrane protein profiles of four P. aeruginosa

strains that show a four- to -16-fold decrease in their imipenem

MIC in the presence of BRL42715

96.5 kD

66.0 kD

45.0 kD

31.0 kD

24.5 kD mk*
^ —

Red arrowhead indicates D2 porin

Lanes: 1, molecular weight markers (molecular weights listed to the left); 2,

M2297(3-con; 3, M2297J3-con D2"; 4, strain 3; 5, strain 30; 6, strain 60; 7, strain 66.
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Figure 3.5 Outer membrane protein profiles of four P. aeruginosa

strains that show no decrease in their imipenem MIC in the presence

of BRL427I5

96.5 kD

66.0 kD

45.0 kD

31.0 kD

24.5 kD

- "■ '• - ■ ■—

Red arrowhead indicates D2 porin

Lanes: 1, molecular weight markers (molecular weights listed to the left); 2,

M2297P-con; 3, M2297P-con D2"; 4, strain 2; 5, strain 4; 6, strain 39; 7, strain 43.
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3.14 Discussion

When the 61 clinical P. aeruginosa isolates, included in this study were subjected to

PCR with bkiiwp primers they were all found to be negative for this apparently highly

conserved gene. Furthermore, DNA hybridisation with an intragenic 6/«imp gene

probe also confirmed these strains to be negative for an IMP-1-like enzyme. These

results are in agreement with previous studies (Senda et al., 1996b) where all strains

that have so far been found to harbour the bhi\\\? gene are highly resistant to almost

every cephem, in particular ceftazidime (MIC >128mg/l). From Table 3.1 it can be

seen that for the P. aeruginosa strains in this study, the highest recorded ceftazidime

resistance was 64mg/l and therefore, none of these isolates fit the profile of

previously reported 1MP-1 producing strains.

Chromosomal cephalosporinases are ubiquitous amongst P. aeruginosa. By

determining the MIC of imipenem alone and in the presence of a fixed concentration

of the serine (3-lactamase BRL42715, it was possible to show that the chromosomal

cephalosporinase contributed significantly to imipenem resistance in the majority of

the 61 strains included in this survey. A greater than two-fold decrease in the

imipenem MIC was demonstrated in al! but four of the 61 strains, which showed only

a two-fold decrease. In contrast, inhibition of the chromosomal cephalosporinase by

BRL42715 has little effect on the meropenem MICs and, therefore, the .P. aeruginosa

cephalosporinase is not a major contributor to meropenem resistance. This

phenomenon is thought to be related to the greater stability of meropenem to the P.
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aeruginosa chromosomal cephalosporinase when compared with imipenem

(Livermore, 1992a).

The imipenem MIC of the five IMP-1 producing strains were not affected by

BRL42715 and therefore the chromosomal cephalosporinase does not appear to be a

contributing factor to imipenem resistance in these isolates.

Isoelectric focusing of (3-lactamases from selected strains, followed by overlays with

the inhibitors BRL42715, cloxacillin and clavulanic acid provided further evidence

that the Japanese P. aeruginosa strains possess a class C cephalosporinase that is

involved in the imipenem resistance mechanism. The results of Table 3.4

additionally show that derepression and thus high level production of the

cephalosporinase is not necessarily a requirement for imipenem resistance because

the strains in this study were either constitutive or inducible producers of (3-

lactamase. These results are in agreement with the findings of Zhou et a!., (1993).

Analysis of the outer membranes of selected P. aeruginosa strains, however, did

confirm that these strains are deficient in the carbapenem specific porin channel D2

(Figures 3.4 and 3.5)

Efficient hydrolysis of imipenem could not be detected from small-scale (3-lactamase

extracts prepared from the P. aeruginosa strains. Additionally, no efficient

hydrolysis of imipenem could be detected from large-scale extracts, prepared under

different conditions, from four strains that were unaffected by BRL42715, or from

four randomly selected strains that displayed a significant decrease in their imipenem
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MIC in the presence of BRL42715. Therefore, these results ruled out the

involvement of a novel carbapenemase in the imipenem resistance mechanism.

Active efflux systems (Nikaido, 1994) or other porin species (Livingstone et a!.,

1995) may be contributing factors in imipenem resistance in the four strains that are

unaffected by BRL42715.

Determining the mechanism of bacterial resistance to carbapenenis in P. aeruginosa

is a complex process. Synergism between a cephalosporinase and lowered outer

membrane permeability is by far the most prevalent mechanism of imipenem

resistance in the strains studied in this survey, which also highlights that the IMP-1-

mediated mechanism of resistance is currently a much rarer event in P. aeruginosa. It

remains to be seen whether the IMP-1 resistance mechanism becomes as widespread

in P. aeruginosa as the one that involves the combination of a class C

cephalosporinase and impermeability.
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4: RESULTS

A rapid substrate-based technique for the detection of

carbapenemases after isoelectric focusing

4.1 Introduction

Matthews first described the application of analytical IEF for the characterisation of

3-lactamases in 1975. IEF is a very useful technique to employ initially when

comparing the 3-lactamases produced by different bacteria. In the past IEF has been

described as 'one of the most critical assays used to verify the identity of 3"

lactamases' (Bush et a!., 1988). The vast array of 3-lactamases identified over the

last 20 years (see Section 1.4.4) has meant that pi values are no longer sufficient to

classify a 3-lactarnase and that additional biochemical and molecular data are now an

essential requirement. Furthermore, it is now known that the carbapenem-

hydrolysing metallo-3-lactamases of the genus Aeromonas poorly hydrolyse

nitrocephin, the substrate conventionally used for the detection of 3-lactamases after

1EF and, therefore, go undetected in IEF gels (Hayes et ci/., 1994; Walsh et cil

1995a).
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For the above reasons several modifications to IEF have been described to enhance

the utility of this procedure including the identification of Aeromonas metallo-P-

lactamases (Massida et a/., 1991, Payne el a/., \994a; Walsh et a/., 1995a).

This section now describes the development of a modified substrate-based technique

for the identification of carbapenemases after IEF. The principle behind the

technique is that P-lactamases are allowed to focus on an IEF gel and this is then

overlaid with agar containing imipenem (0.5mg/l) and an indicator organism (E. coli

NCTC 10418) that is susceptible to imipenem (imipenem MIC - 0.12mg/l). After

overnight incubation at 37°C, no growth of the indicator organism should be seen,

except above the position where P-lactamases have focused and hydrolysed the

imipenem.
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4.2 Assessing the ability of a carbapenemase to hydrolyse imipenem

in an agar overlay

A microbiological screening method was designed to assess whether the

carbapenem-hydrolysing P-lactamase (NMC-A) from Enterobacter cloacae strain

NOR-1 (Nordmann et a/., 1993) was able to hydrolyse imipenem in an agar overlay,

allowing the E. coli NCTC 10418 indicator organism to grow. This involved pouring

a layer of electrophoresis grade agarose into a petri dish and spotting different

volumes (pi) of a large scale imipenem-induced (1/4 MIC) P-lactamase extract

prepared from E. cloacae NOR-1 on top of the set agarose. The layer of agarose was

covered with lso-Sensitest (1ST) agar containing 0 5mg/l imipenem and IOOpl of a

1/100 dilution of an overnight E. coli NCTC 10418 broth culture. The volume of

1ST agar poured over the agarose surface was varied to determine the depth of agar

that would give optimum results.

Figure 4.1 shows the results of this microbiological screening assay. The zone of A.

coli NCTC 10418 growth was dependent on the amount of P-lactamase extract

spotted onto the agarose and on the depth of agar poured over the surface of the

agarose. This experiment demonstrated that it was important to apply only a thin

layer of agar and a depth of approximately 2.5mm was considered to give optimum

results. This method was also successfully repeated with imipenem-induced (1/4

MIC) P-lactamase extracts from carbapenemase-producing Aeromonas hydrophila

strain T429125 (Walsh et a/., 1997) and Serratia marcescens S6 that produces the

carbapenemase Sme-1 (Yang et a!., 1990).
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Figure 4.1 Microbiological screening assay

1ST agar

0.5mg/l
imipenem

NOR-la

Zones of E. coli NCTC 10418 growth

a

P-Lactamase extract from E. cloacae strain NOR-1

b Volume (pi) of p-lactamase extract spotted onto the layer of agarose

4.3 Imipenem/agar overlay modification with a polyacrylamide IFF

gel

Once it had been established that carbapenemases could hydrolyse imipenem in an

agar overlay, allowing E. coli NCTC 10418 to grow, this method could be applied

after IEF. p-Lactamase extracts prepared from E. cloacae NOR-1, S. marcescens S6

and A. hydrophila T429125 were focused on a self-cast polyacrylamide gel.

Repeated attempts were made to detect the carbapenemases by the imipenem/agar
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overlay and an ampicillin/agar overlay. None of the carbapenenrases could be

detected with either of these [3-lactams.

4.4 Imipenem/agar overlay modification with an agarose IEF gel

Two possible reasons why the carbapenemases could not be detected with the

imipenem/agar overlay modification to a self-cast polyacrylamide 1EF gel were (i)

the pH gradient of the IEF gel was interfering with the growth of the E.coli NCTC

10418; or (ii) the polyacrylamide in the IEF gel, particularly unpolymerised

acrylamide monomers, may have an adverse effect on the growth of E.coli NCTC

10418.

E. coll has a growth optimum between pH 6.0 and 7.0, although it will grow in pH

conditions as low as 4.4 and as high as 9.0. Therefore, although the pH gradient may

affect the growth of E.coli NCTC 10418 it would be expected that a {3-lactamase

with a pi value between 6.0 and 7.0 such as NMC-A (pi 6.9) would be detectable.

The effect of polyacrylamide was investigated by substituting a self-cast

poiyacrylamide IEF gel with an agarose IEF gel (Section 2.8.3). Replacing

polyacrylamide gels with agarose gels confirmed that polyacrylamide gels were not

suitable for the modified IEF technique, because carbapenemases that had previously

gone undetected could now be identified. Figure 4.2 shows an agarose IEF gel that

has been stained with (a) nitrocephin, compared with an agarose IEF gel that has

been (b) overlaid with 1ST agar containing imipenem and E. coli NCTC 10418. In
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Figure 4.2 two areas of growth can be seen in lanes 1 and 4. Lane 1 corresponds to

A. hydrophila T429125 -the area of growth does not line up with either of the two 3-

lactamase bands that are visualised by nitrocephin overlay. This observation is in

agreement with what is known about the metallo-P-lactamases ofAeromonas, that is

they are not detectable with nitrocephin (Hayes et al., 1994; Walsh et a/., 1995a).

Lane 4 corresponds to E. cloacae NOR.-1 and growth can be seen where NMC-A has

focused (pi 6.9). Lane 3 contains the P-lactamase extract from S. marcescens S6,

however the carbapenemase Sme -1 (pi 9.7) could not be detected. The P-lactamase

OXA-7 (Medeiros et a/., 1985) was included on the gel as negative control (Lane 2).
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Figure4.2AnagaroseIEFgeloverlaidwith(a)nitrocephinand(b)1STagarcontainingimipenem(0.5mg/l)and E.coliNCTC10418 Lanes:1,A.hydrophilaT419125(pisbetween6.9-8.0);2,OXA-7(pi7.65);3,S.marcescensS6(pis8.2,9.7);4,E.cloacaeNOR-1(pis 6.9,9.3).



4.5 Employing a pH tolerant indicator for the detection of high pi

carbapenemases

A pH tolerant E. coli NCTC 10418M mutant was selected by growing the organism

on nutrient agar plates made up with Tris-Cl buffer, pH 10.0. E. coli NCTC 10418M

was then employed as the indicator organism in the imipenem/agar overlay to

determine whether the pH gradient of the IEF gel was affecting the growth of the E.

coli NCTC 10418 parent strain above the Sme-1 carbapenemase, which has a much

more basic pi value (pi 9.7) compared with the carbapenemases from A. hydrophila

T429125 and E. cloacae NOR.-1 Figure 4.3 shows that when the IEF gel was

overlaid with agar containing imipenem and the pH tolerant mutant the Sme-1

carbapenemase from S. marcescens could be detected and, therefore, the pH of the

IEF gel does affect the growth of the indicator organism.
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Figure4.3AnagaroseIEFgeloverlaidwith(a)nitrocephinand(b)1STagarcontainingimipenem(0.5mg/l)and E.coliNCTC10418M
(a)Nitrocephin

(b)Imipenem/agaroverlay ■'

Pi 9.7 7.65 6.9

Lanes:1,A.hydrophilaT419125(pisbetween6.9-8.0));2,OXA-7(pi7.65);3,S.mcircescensS6(pis8.2,9.7);4,E.cloacaeNOR-1(pis 6.9,9.3).



4.6 Imipenem agar modification with a pre-cast IEF gel

During the development of this substrate-based technique for the detection of

carbapenemases after IEF a paper was published by Yang and Bush (1996) on the

biochemical characterisation of a carbapenem-hydrolysing AsbM 1 P-lactamase from

A. jandaei AER14M (formerly identified as A. sobria AER14M). The study by

Yang and Bush (1996) included the application of an imipenem/agar overlay

following IEF to show the presence of AsbMl (pi 9.1). The method described by

Yang and Bush (1996) involved using commercially prepared pre-cast

polyacrylamide gels and the spreading of the indicator organism (E.coli ACTC

25922) over the surface of the agar overlay, as opposed to mixing the diluted

indicator organism w ith molten agar and pouring this over the surface of the IEF gel.

Only polyacrylamide gels prepared in the laboratory had been tested in this current

study, therefore the IEF/overlay technique was repeated this time employing pre-cast

IEF gels and swabbing the diluted E. coli NCTC 0418 over the solidified agar

surface and it became apparent that this technique could be successfully performed

with commercially prepared polyacrylamide gels. Figure 4.4 shows the detection of

a carbapenemase (pi 6.4) produced by Stenotrophomoncis maltophilia strain 511

(Felici et a/., 1993; Payne et a/., 1994a) and the ImiS metallo-P-lactamase (pi 9.3)

produced by A. veronii bv. sobria 163a (Walsh et a!., 1995a), following the

procedure of Yang and Bush (1996).
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Carbapenemases could additionally be detected when the procedure described by

Yang and Bush (1996) was repeated using a self-cast polyacrylamide, the only

difference between this method and the one employed in Section 4.3 being the

streaking of the indicator organism over the agar surface.

Figure 4.4 A polyacrylamide IEF gel overlaid with (a) 1ST agar

containing imipenem (0.5mg/l), with E. coli NCTC 10418 streaked

over the agar surface and (b) nitrocephin

(a) (b)

12 12

Lanes: 1, A. veronii bv. sobria 163a (pis 7.4, 7.9); 2, S. maltophilia 511 (pi 6.4, 9.7).
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4.7 Discussion

Substrate-based overlay studies after IEF provide a simple approach for the

characterisation of (3-lactamases. This methodology offers the advantage that

enzyme activities can be detected without firstly having to perform P-lactamase

purification and is particularly beneficial when bacteria produce more than one |3-

lactamase.

This section has described the development of a technique that specifically enables

carbapenemases to be detected, including the metallo-(3-lactamases of two

Aeromoncis species (Figures 4.2 - 4.4). Both an iodometric method (Massida el al.,

1991) and a bromothymol blue/imipenem IEF overlay method (Walsh et a!., 1995a)

have previously been employed to detect the Aeromonas carbapenemases. Elowever,

Ftayes (1995) could not detect the Aeromonas carbapenemases by either of these

methods which implies that they are both problematic. In contrast the imipenem/agar

overlay has been successful in detecting the metalio-P-lactamases from two

Aeromonas species in this study, and Yang and Bush (1996) have also reported the

identification of carbapenemases from another Aeromonas species by an

imipenem/agar overlay method published recently.

From this study, it has been revealed, however, that an important factor in

determining the success of this technique is whether the indicator organism is

inoculated over the surface of the imipenem/agar layer. When a broth culture of E.

co/i NCTC 10418 was mixed with molten agar carbapenemases could only be
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detected when focused on agarose IEF gels and Sme-1 with a pi of 9.7 could only be

identified with a pH tolerant mutant. However, when the E. co/i NCTC 10418 was

streaked over the surface of the agar carbapenemases could be detected when

focused on self-cast and pre-cast polyacrylamide gels in addition to agarose IEF gels.

Aeromoncis carbapenemases with reported pis of > 9.0 could also be revealed (Figure

4.4). The reason for the importance of this step may possibly be that by swabbing E.

co/i NCTC 10418 on the agar surface the organism is not in direct contact with the

polyacrylamide or subject to the influence of the IEF gel pH gradient.
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5: RESULTS

The isolation of imipenem-resistant,4m>m0/i0s veronii biovar (bv.)

sobria, that possess a novel carbapenemase from a water source in

India

5.1 Introduction

Aeromonas veronii bv. sobria (formerly A. sobria) is a major pathogenic species of

the genus Aeromonas. In common with most Aeromonas species, it has the ability to

express up to three different chromosomally encoded, inducible (J-lactamases a

molecular class C cephalosporinase, a molecular class A or class D penicillinase and

a molecular class B metallo-carbapenemase (Section 1.11.2.1).

This section reports the identification of two imipenem-resistant A. veronii bv. sobria

strains isolated from a water source in Vellore, South India; and the preliminary

evidence for the production of a novel Aeromonas carbapenemase in these two

isolates.

5.2 Background to bacterial strains

During July 1996, a study was undertaken by Amyes to examine antibiotic resistance

in environmental bacteria from water sources in the town of Vellore, South India.
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Aeromonas species were found to be particularly abundant in the water sources

sampled and more significantly seven Aeromonas strains were recorded as being

resistant to imipenem (MIC >4mg/l), with six of these strains additionally resistant to

meropenem (MIC >4mg/l) (Amyes, 1996). Therefore, ten Aeromonas isolates from

the survey by Amyes (1996), including the strains identified as being carbapenem-

resistant, were obtained for further investigations outlined in this chapter.

5.3 Species identification and ^-lactam sensitivities of ten Aeromonas

isolates

The speciation of the ten Aeromonas isolates was determined with API 20NE strips

(Table 5.1). The sensitivities of these ten strains to various (3-lactams (including the

carbapenems) were determined by the agar dilution method (Table 5.1). In Table 5.1

it can be seen that only two A. veronii bv. sobria isolates, strains 13 and 99, were

found to be resistant to imipenem (MIC >4mg/l) by the agar dilution method, the

meropenem MIC of these two strains was at the breakpoint for resistance (4 mg/1).

Previously it had been shown by the Etest method that seven of the ten strains were

resistant to imipenem and five of these strains also resistant to meropenem (Amyes,

1996). These conflicting results can however be explained by an inoculum effect

(see Section 5.4). When preparing a bacterial culture for the Etest method it is

recommended that the density of culture should be adjusted to equal that of a 0.5

McFarland turbidity standard, this contains approximately 10x cfu/ml, whereas an

inoculum of 104 cfu is recommended for the agar dilution method (see below -

Section 5.4).
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All of the A. veronii bv. sobria strains were highly resistant to both ampicillin and

oxacillin (MIC >512 mg/1), whereas A. hydrophila strain 98 was more susceptible to

ampicillin (Table 5.1). A. veronii bv. sobria strains 13 and 99 were additionally

highly resistant to cephaloridine and showed reduced susceptibility to cefoxitin,

although these two strains remain sensitive to both the third and fourth generation

cephalosporins (Table 5.1).
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Table5.1SpeciesidentificationandP-lactamsensitivitiesoftenAeromonasisolates API20NE

MIC(mg/l)

Strain

identification
IMP

MERO

AMP

OXA

CEPH

CFOX

CTAZ

CTAX

CPIME

13

A.veroniibv.sobria
8

4

>1024

>512

>256

4

0.25

0.12

0.12

27

A.veroniibv.sobria
2

0.12

>1024

>512

8

1

0.25

0.032

0.064

36

A.veroniibv.sobria
1

0.12

>1024

512

8

1

0.25

0.032

0.064

47

A.veroniibv.sobria
1

0.064

>1024

512

4

2

0.5

1

1

51

A.veroniibv.sobria
0.25

0.064

1024

512

8

1

0.12

0.016

0.064

52

A.veroniibv.sobria
1

0.064

1024

512

4

1

0.12

0.032

0.064

98

A.hydrophila

0.25

0.016

128

256

2

0.25

0.12

0.016

0.064

99

A.veroniibv.sobria
8

4

>1024

>512

>256

4

0.25

0.25

0.12

110

A.veroniibv.sobria
1

0.12

>1024

>512

8

1

0.25

0.032

0.064

115

A.veroniibv.sobria
0.5

0.12

>1024

>512

8

1

0.12

0.016

0.064

IMP,imipenem;MERO,meropenem;AMP,ampicillin,OXA,oxacillin;CEPH,cephaloridine; CFOX,cefoxitin;CTAZ,ceftazidime,CTAX,cefotaxime;CPIME,cefepime.



5.4 Inoculum size

An experiment was carried out to analyse the inoculum effect on the imipenem MIC

of the ten Aeromonas strains. The imipenem MIC was determined by the agar

dilution method and inoculum sizes of 104, 105, 106, 107 and 108 cfu were tested. A.

veronii bv. sobria strains 13 and 99 were the only isolates resistant to imipenem

when inocula of 104or 105 cfu were tested (Table 5.2). With an inoculum of 106 cfu,

six of the nine A. veronii bv. sobria strains were resistant to imipenem (MIC

>8mg/l). All of the A. veronii bv. sobria strains were resistant to imipenem with an

inoculum of 107 cfu. A. hydrophila strain 98 remains sensitive to imipenem even

with an inoculum of 108 cfu.

Table 5.2 The effect of bacterial inoculum size on imipenem

sensitivity

Strain 104
Imipenem MIC (mg/1) with 10" cfu
10s 106 107 108

13 8 8 64 >256 >256

27 2 4 32 >256 >256

36 1 2 16 >256 >256

47 0.5 2 8 128 128

51 0.25 1 2 32 32

52 1 2 4 256 >256

98 0.12 0.25 0.25 0.25 0.25

99 8 16 16 32 >256

110 2 2 16 32 >256

115 0.5 0.5 0.5 256 >256
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5.5 P-Lactamase assays

Small-scale P-lactamase extracts were prepared in 50mM sodium phosphate buffer,

pH 7.0 from the ten Aeromonas strains and assayed spectrophotometrically against

100pM imipenem. Efficient hydrolysis of imipenem could only be detected with P-

lactamase extracts from imipenem-resistant strains 13 and 99.

Hydrolysis assays were also performed with induced (imipenem !4 MIC) and non-

induced large-scale P-lactamase extracts prepared from A. veronii bv. sobria strains

13, 27, 99, and 110 to analyse further the P-lactamase activities in carbapenem-

sensitive and -resistant strains. Enzyme activity was assayed against ampicillin

(500pM), cephaloridine (100pM) and imipenem (lOOpM). Imipenem was

additionally recorded after pre-incubation at 37°C for 10 minutes with lOmM EDTA

(Table 5.3).

Table 5.3 shows that P-lactamase extracts from the two carbapenem-resistant strains

13 and 99 can hydrolyse all three P-lactams tested in the absence of a P-lactamase

inducer, and in the presence of the imipenem inducer there is a less two-fold increase

in enzyme activity. In contrast, with the two sensitive A. veronii bv. sobria strains,

27 and 110, P-lactam-hydrolysis is only evident in extracts prepared from induced

cultures, where a dramatic increase in P-lactamase activity against imipenem and

ampicillin can be noted. No hydrolysis of cephaloridine was detectable in induced P-

lactamase preparations from strain 27 and 110. A marked difference is also seen in
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the effects of imipenem hydrolysis in the presence of the metallo-(3-lactamase

inhibitor EDTA. Pre-incubation of the metallo-(3-lactamase extracts from strains 27

and 110 results in >95% inhibition of imipenem hydrolysis, whereas, only partial (<

33%) inhibition of imipenem hydrolysis is achieved when P-lactamase extracts from

imipenem-resistant strains 13 and 99 were pre-incubated with EDTA.

5.6 IEF of induced and non-induced P-Iactamase preparations from

ten Aeromonas isolates

IEF was performed on induced (imipenem lA MIC) and non-induced large-scale P-

lactamase extracts prepared from the ten Aeromonas strains. Induced and non-

induced P-lactamase preparations from A. veronii bv. sobria 163a, a strain which

expresses three different p-lactamases characterised in detail by Walsh et al., (1995a)

was also included on the IEF gel. Figure 5.1 shows that the P-lactamase banding

patterns were essentially the same for both non-induced and imipenem induced cells,

although the P-lactamase bands were more intense when the strains are induced.

Exceptions to this were the extracts from induced strain 163a and induced strain 36

where additional bands can be seen, compared with the non-induced extracts. In the

induced extract from 163a two P-lactamases bands are detectable with nitrocephin as

reported previously (Walsh et al., 1995a), these correspond to the penicillinase

AmpS (pi 7.9) and the cephalosporinase CepS (pi 7.4); however, only one band is

detectable in the non-induced 163a strain. The most notable feature of Figure 5.1 is,

however, the distinctive P-lactamase banding patterns of the two imipenem-resistant
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strains 13 and 99, which in addition to a basic (3-lactamase of pi 8.3 also includes an

intense band with an acidic pi value (5.84). Less intense bands are also seen above

and below the pi 5.84 band of strain 13 and 99 and are possibly 'satellite bands', that

is different forms of the main pi 5.84 3-lactamase band (Payne and Farmer, 1998).

The pi values written in parenthesis in Figure 5.1 were all determined with the aid of

commercial pi markers as described in Section 2.8.4.

137



Table5.3AnassessmentofthehydrolyticactivitiesofP-lactamaseextractsfromfourA.veroniibv.sobria strains
Strain

IMP

HydrolysisofAMP

HydrolysisofCEPH

%inhibitionofIMP

(specificactivity)*

relativetoIMP(%)
relativetoIMP(%)

hydrolysisbyEDTA

13non-induced

487

44

17

33

13induced

903

23

17

33

27non-induced

ND

ND

ND

NT

27induced

316

12

ND

96

99non-induced

385

63

65

9

99induced

511

54

61

10

110non-induced

ND

ND

ND

NT

110induced

798

7

ND

99
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Figure5.1Isoelectricfocusingofinduced(I)andnon-induced(3-lactamasepreparationsfromAeromonas 1234567891011121314151617181920212223
Lanes:1,strain1151(pi7.9);2,strain115(pi7.9);3,strain1101(pi7.9);4,strain110(pi7.9);5,strain991(pis5.84,8.3);6,strain99(pis5.84,8.3);7,strain981(pi 8.1);8,strain98(pi8.1);9,strain521(pi8.2);10,52(pi8.2);11,strain511(pi8.1);12,strain51(pi8.1);13,pimarkers;14,strain471(pi8.1);15,strain47(pi8.1); 16,strain361(pis8.3,7.9,7.4);17,strain36(pi8.3);18,strain271(pi8.2);19,strain27(pi8.2);20,strain131(pis5.84,8.3);21,strain13(pis5.84,8.3);22,strain 163al(pis7.9,7.4);22,strain163a(pi7.9).



5.7 Identification of imipenem-hydrolysing (3-lactamases after IEF

The imipenem/agar overlay of Yang and Bush (1996), and modified as previously

described in Section 4.6 was applied to determine the pi of the imipenem-

hydrolysing enzyme produced by the two imipenem-resistant A. veronii bv. sobrici

strains 13 and 99. This method was performed on non-induced and imipenem-

induced 3-lactamase preparations from strains 13 and 99. A cell extract from S.

maltophilia that produces two P-lactamases (LI-type carbapenem-hydrolysing

metallo-P-lactamase - pi 6.4 and an L2 cephalosporinase - pi 9.7) was employed as

both a positive and negative control. Figure 5.2 shows the IEF gel overlaid with (a)

nitrocephin and (b) agar containing 0.5mg/l imipenem with a diluted overnight E.coli

NCTC 10418 broth culture streaked over the surface of the agar. A single zone of E.

coli NCTC 10418 growth can be seen in the lanes (3-6) corresponding to induced

and non-induced P-lactamase extracts from A. veronii bv. sobria strains 13 and 99

(Figure 5.2b). This zone of E. coli NCTC 10418 growth indicates the presence of a

carbapenemase that focuses at pi 5.84, which is also detectable with nitrocephin. A

zone of growth is also seen in lane 2 of Figure 5.2b and this corresponds to the S.

maltophilia LI carbapenem-hydrolysing metallo-P-lactamase (pi 6.4).
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Figure5.2^-Lactamasefromtwoimipenem-resistantA.veroniibv.sobriastrains(13and99),(a)detectedwith nitrocephinand(b)detectedwithanimipenem/agaroverlay (a)Nitrocephinoverlay(b)Imipenem/agaroverlay 12345623456
Lanes:1,pimarkers;2,S.maltophiliastrain511(pis6.4,9.7);3,A.veroniibv.sobriastrain991(5.84,9.3);4,A.veroniibv.sobriastrain

99(pis5.84,8.3);5,A.veroniibv.sobriastrain131(pis5.84,8.3);6,A.veroniibv.sobriastrain13(pis5.84,8.3).



5.8 IEF with EDTA and BRL42715 inhibitor overlays

IEF followed by overlays with metallo-P-lactamase inhibitor EDTA (lOOmM) and

the serine P-lactamase inhibitor BRL42715 (lOOpM) prior to nitrocephin staining has

previously been shown to rapidly distinguish metallo-P-lactamases from serine P-

lactamases (Payne et a/., 1994a). Therefore, this method was applied to further

characterise the pi 5 .84 and pi 8.3 P-lactamase bands ofA veronii bv. sobria strains

13 and 99. P-Lactamases from three additional A. veronii bv. sobria strains (27, 110

and 163a) were also focused on the gel. A TEM-1 (serine-based) P-lactamase and a

cell extract from S. maltophilia 511 (described in Section 5.7) were included as

controls.

It can be seen from Figure 5.3a that the S. maltophilia LI metallo-P-lactamase (lane

6, pi 6.4) was the only P-lactamase band to be affected by the metallo-P-lactamase

inhibitor EDTA. When the gel was overlaid with the serine P-lactamase inhibitor

BRL42715 (Figure 5.3c) the only bands that are not inhibited were the two pi 5.84 P-

lactamase bands belonging to A. veronii bv. sobria strains 13 and 99 and the LI

metallo-P-lactamase of S. maltophilia 511. The results from Figure 5.3, therefore,

show that the pi 8.3 P-lactamase of strains 13 and 99 were serine-based P-

lactamases, as were the nitrocephin detectable p-lactamases of the three other A.

veronii bv. sobria strains (27, 110 and 163a) included on the gel. However, the pi

5.84 P-lactamase band of strains 13 and 99 was not inhibited by either EDTA or
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BRL42715. It should be noted, however, that the satellite bands above and below the

pi 5.84 band do appear to be inhibited by BRL42715.
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Figure5.3EffectofEDTA(lOOmM)andBRL42715(IOOjiM)onthe(3-lactamasebandsfromA.veroniibv. sobriaisolates

(c)BRL42715

(a)EDTA

(b)Noinhibitor

Pi 6.4 5.84

12345678123456781234567
Lanes:1,strain163a(pis7.4,7.9);2,strain110(pi7.9);3,strain99(pis5.84,8.3);4,strain27(pi8.2);5,strain13(pis5.84,8.3);6,S. maltophilia511(pis6.4,9.7);7,TEM-1(pi5.4);8,pimarkers



5.9 IEF with aztreonam, cloxacillin and clavulanic acid inhibitor

overlays

Additional aztreonam, cloxacillin and clavulanic acid inhibitor overlays were

performed on the focused (3-lactamases of A. veronii bv. sobria strains 13 and 99.

Figure 5.4 shows that two different concentrations (0.1 and ImM) of the molecular

class C cephalosporinase inhibitors aztreonam and cloxacillin have no significant

effect on either the pi 5.84 or the pi 8.3 P-lactamase bands of strains 13 and 99, or on

the molecular class A P-lactamase TEM-1. In contrast the AmpC-type class C

cephalosporinase of P. aeruginosa strain 2297 (included on the gel as a positive

control) is completely inhibited by 0.1 and ImM concentrations of both aztreonam

and cloxacillin.

Figure 5.5 shows that the molecular class A P-lactamase inhibitor clavulanic acid

(ImM) completely inhibited the pi 8.3 P-lactamase band of strains 13 and 99 and the

TEM-1 p-lactamase. There also appeared to be some partial inhibition by clavulanic

acid of the pi 5.84 P-lactamase band from strains 13 and 99. The class C

cephalosporinase ofP. aeruginosa strain 2297 was not affected by clavulanic acid.
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Figure5.4Effectofaztreonam(0.1andImM)andcloxacillin(0.1andlmM)onthe(3-lactamasebandsfromA. veroniibv.sobriastrains13and99 ImMaztreonamO.lmMaztreonamImMcloxacillinO.lmMcloxacillinNoinhibitor 12341234123412341234
Lanes:1,TEM-1(pi5.4);2,P.aeruginosa2297(pi8.3);3,strain13(pi5.84,8.3);4,strain99(pi5.84,8.3).



Figure 5.5 Effect of clavulanic acid (ImM) on the (3-lactamase bands

from A. veronii bv. sobria strains 13 and 99

No clavulanic acid ImM clavulanic acid

1 2 3 4 1 2 3 4

Lanes: 1, P. aeruginosa 2297 (pi 8.3); 2, TEM-1 (pi 5.4); 3, strain 13 (pis 5.84, 8.3);

4, strain 99 (pis 5.84, 8.3).
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5.10 IEF followed by a zinc sulphate gel overlay

It has previously been demonstrated that the application of a zinc sulphate overlay to

an IEF gel before nitrocephin staining can enhance the identification of zinc-

dependent metallo-P-lactamases (Payne el al., 1994a). Therefore, an experiment was

performed to establish whether the pi 5.84 P-lactamase band common to both A.

veronii bv. sobria strains 13 and 99 was affected by increasing concentrations of

ZnSO.4. The P-lactamases from A. veronii bv. sobria strain 13, S. maltophilia 511

and the TEM-1 P-lactamase were focused on an IEF gel and overlaid with 0.01, 0.1,

1.0 and lOmM zinc sulphate concentrations. In Figure 5.6 the LI metallo-P-

lactamase band (pi 6.4) was visibly enhanced by overlaying with increasing

concentrations of ZnSO/j. None of the other P-lactamase bands were affected by

ZnSC>4, including the pi 5.84 band ofA. veronii bv. sobria strain 13.
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Figure5.6Effectofzincsulphate(0.01-lOmM)onthe(3-lactamasebandsfromA.veroniibv.sobriastrain13
pi 8.3 6.4 5.84

Lanes:1,strain13(pi5.84);2,S.maltophilia511(pis6.4,9.7);3,TEM-1(pi5.4)



5.11 Discussion

This section has reported the identification of two imipenem-resistant A. veronii bv.

sobria (strains 13 and 99), isolated from a water source in South India. Strains 13

and 99 were found to have an imipenem MIC of 8mg/l by the agar dilution method,

employing a conventional inoculum of 104 cfu (Table 5.1). To date, only a handful

of naturally occurring carbapenem-resistant Aeromonas isolates have been recorded

when testing with a conventional inoculum size, these being usually derepressed

mutants for carbapenemase production (Rossolini et ah, 1996).

It is well known that the carbapenem MICs of Aeromonas strains are subject to an

inoculum effect (Rossolini el a/., 1996). Carbapenem-resistance is normally only

detectable when a large inoculum of a carbapenemase-producing strain (108 cfu) is

used in susceptibility testing (Rossolini et al., 1996). Carbapenemase-negative

Aeromonas strains remain always below the breakpoint for susceptibility irrespective

of the inoculum size (Rossolini et a/., 1996). The results of Table 5.2 illustrate the

effect of the inoculum size on imipenem MICs. Nine of the ten Aeromonas strains

tested were found to be imipenem-resistant with an inoculum of 107 cfu. It is

interesting that A. hydrophila strain 98 remains sensitive to imipenem even with an

inoculum of 108 cfu and, therefore, this strain may not possess carbapenemase

activity.

P-Lactamase extracts from A. veronii bv. sobria strains 13 and 99 were found to

possess penicillinase, cephalosporinase and carbapenemase activity (Table 5.3).
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Following P-lactam induction, there was a less than two-fold increase in p-lactamase

activity was detected (Table 5.3) and, therefore, these two strains appear to be

constitutive P-lactamase producers.

The carbapenemase activity of strains 13 and 99 could only be partially inhibited

(<33%) by lOmM EDTA (Table 5.3). The carbapenemase activity of Aeromonas

strains of several different species is usually found to be completely inhibited by

lOmM EDTA and thus demonstrates their metallo-enzyme nature (Rossolini et al.,

1995, Walsh et a/., 1997). Partial inhibition with lOmM EDTA has only previously

been reported for a single isolate, A. hydrophila T429125, where activity against

imipenem decreased by only 55% in the presence of the EDTA chelating agent

(Walsh et a/., 1997). More recent data, however, suggest that A. hydrophila

T429125 produces a metallo-P-lactamase that requires a greater concentration of

EDTA (55mM) to achieve complete inhibition of the carbapenemase activity (T.

Walsh - personal communication). Therefore, the carbapenemase produced by A.

veronii bv. sobria strain 13 and 99 may also be less sensitive to EDTA compared

with the metallo-p-lactamases produced by other Aeromonas isolates.

IEF has shown that both strains 13 and 99 produce two p-lactamases with pi values

of 5.84 and 8.3 (Figure 5.1). The application of an imipenem overlay modification to

IEF demonstrated the presence of a single imipenem-hydrolysing enzyme of pi 5.84

in both strains 13 and 99 (Figure 5.2). These results suggest, therefore, that either the

carbapenemase in these two strains is unlike all other previously described

Aeromonas carbapenemases and can be identified with nitrocephin, or alternatively,
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the carbapenemase is co-focusing with a separate nitrocephin hydrolysing enzyme

(see below). Nevertheless, the pi value (5.84) is considerably different from the

Aeromonas carbapenemases that have been reported previously, which are typically

pi 8.0 or greater (Rossolini et a/., 1996).

IEF/inhibitor overlays facilitated further characterisation of the pi 5.84 and 8.3 P-

lactamases of strains 13 and 99 (Figure 5.3). The pi 8.3 P-lactamase of both strains

13 and 99 were found to be serine-based because they were inhibited by BRL42715,

but not EDTA. The pi 8.3 P-lactamase band was also sensitive to ImM clavulanic

acid and this suggests that it is either a molecular class A or D P-lactamase (Figure

5.5). Insensitivity of the pi 8.3 P-lactamase band to cloxacillin (Figure 5.4) would

imply that, in addition to being not of class C origin, this P-lactamase is also not a

class D enzyme; however, the cloned class D AmpS penicillinase of A. veronii bv.

sobria 163a also does not hydrolyse cloxacillin, although it can readily hydrolyse

oxacillin (Walsh et al., 1995b).

IEF followed by inhibitor overlays further highlighted the unusual nature of the pi

5.84 carbapenem-hydrolysing P-lactamase from strains 13 and 99 (Figure 5.3). The

pi 5.84 p-lactamase band could not be inhibited by either EDTA (lOOmM) or

BRL42715 (lOOpM) and therefore cannot be classified as either a metallo- or serine

p-lactamase. Aeromonas strains are known to produce a penicillinase and

cephalosporinase readily identifiable by nitrocephin staining after IEF, in addition to

a carbapenemase that is not detectable with nitrocephin. Both the penicillinase and

cephalosporinase P-lactamase bands have previously been shown to be inhibited by
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lOOpM BRL42715 (Walsh et a/., 1995a). It was suggested above that strains 13 and

99 could produce two P-lactamases that co-focus at pi 5.84 - one P-lactamase a

carbapenemase, not detectable with nitrocephin and the other a P-lactamase

detectable with nitrocephin. In the knowledge that the pi 8.3 P-lactamase from these

two strains is most likely the clavulanic acid sensitive penicillinase it could be

speculated that the nitrocephin detectable enzyme of pi 5.84 is a cephalosporinase.

However, if this were true BRL42715 would be expected to inhibit the

cephalosporinase. Furthermore, the class C inhibitors aztreonam and cloxacillin also

failed to inhibit the pi 5.84 P-lactamase band, providing further evidence that

cephalosporinase is not co-focusing at pi 5.84.

The observation of inhibition with BRL42715 of the 'satellite bands' above and

below the pi 5.84 P-lactamase band (Figure 5.3c) could imply that either these are

additional P-lactamases or that they are different forms of the pi 5.84 enzyme display

variation in their inhibitor binding affinities. Cloxacillin and aztreonam have no

affect on these 'satellite bands', although there is some partial inhibition with

clavulanic acid (Figures 5.4, 5.5).

Zinc has been shown to serve as a metallo-P-lactamase activator (Sabath and

Abraham, 1966; Bicknell et a/., 1985; Payne et a/., 1994a) and metallo-P-lactamase

inhibitor in the case of the AsbMl carbapenemase from A. veronii bv. sobria

AER14M (Yang and Bush, 1996). In this study, zinc sulphate overlays prior to

nitrocephin staining of an IEF gel failed to have any effect on the pi 5.84

carbapenem-hydrolysing P-lactamase band (Figure 5.6) from strains 13 and 99 and,
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therefore, this enzyme appears to be insensitive to zinc, in addition to a lack of

sensitivity to EDTA.

The above results all indicate the presence of a completely novel carbapenemase in

A. veronii bv. sobria strains 13 and 99. The hyper-production of this carbapenemase

can also be clearly correlated with an increase in carbapenem resistance. The pi 5.84

P-lactamase is designated AVS-1 and the pi 8.3 P-lactamase AVS-2.
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6: RESULTS

Purification of a novel carbapenemase (AVS-1)

from A. veronii bv. sobria strain 13

6.1 Introduction

Section 5 has described the identification of two A. veronii bv. sobria strains 13 and

99 that possess both a novel carbapenemase named AVS-1 with a pi value of 5.84

and a [3-lactamase with a pi of 8.3. This section describes the partial purification of

AVS-1 from strain 13, followed by kinetic analysis of this enzyme.

6.2 Separation of AVS-1 by DE52 anion exchange chromatography

Periplasmic proteins were extracted from A. veronii bv. sobria strain 13 (Section

2.10.1), dialysed against 20mM sodium phosphate buffer, pH 7.0 and loaded onto a

DE52 anion exchange column also equilibrated with 20mM sodium phosphate

buffer, pH 7.0. At pH 7.0 the AVS-1 (3-lactamase should be negatively charged and,

therefore, have affinity for the DE52 anion exchanger; however, under the conditions

described above the enzyme failed to bind to the column.

It has been recommended that the pH of the anion exchange column should be at

least one pH unit above the pi of the protein of interest to allow it to reversibly bind
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to the anion exchange column. Therefore, the DE52 column was re-equilibrated with

20mM sodium phosphate buffer at pH 7.5. This pH was chosen to ensure that it was

far enough away from the AVS-1 pi to achieve binding. Sample dialysed in 20mM

sodium phosphate buffer pH 7.5 was applied to the column, but again the pi 5.84 (3-

lactamase failed to bind.

Another reason as to why the protein elutes in the wash step, before the application

of a salt gradient, can be that the ionic strength of the buffer is too high. The sample

application step was thus repeated with 10mM sodium phosphate buffer, pH 7.0

instead of 20mM; however, once again the pi 5.84 protein failed to bind.

Finally, the sample was applied to a column equilibrated with lOmM Tris-Cl buffer

pH 8.5 and under these conditions the pi 5.84 P-lactamase did bind to the column

and could be subsequently eluted with 30mM NaCl. Despite this, the DE52 may not

be the most suitable anion exchange matrix for purifying this protein, because it

shows weak affinity for the column under conditions that should be extremely

favourable for its binding, that is very low ionic strength and a pH >2.5 units away

from its pi.
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6.3 Separation of AVS-1 by a QA52 anion exchange matrix

An experiment was carried out to determine whether AVS-1 demonstrated greater

binding affinity for QA52 anion exchange matrix compared with DE52. A series of

five test tubes each containing 1,5ml ofQA52 matrix were set up, and each tube was

then equilibrated to a different pH (pH 6.5, 7.0, 7.5, 8.0, 8.5) with either 20mM

sodium phosphate or 20mM Tris-Cl buffer. A known, constant amount of sample

was added to each tube and mixed with the gel matrix. After the matrix had settled,

the supernatant was assayed for carbapenemase activity; if no activity was found in

the supernatant this indicated binding of the AVS-1 P-lactamase to the matrix. No

carbapenemase activity was detected in the supernatant from the tube equilibrated

with Tris-Cl buffer, pH 7.5 and, therefore, AVS-1 appears to show greater affinity

for the QA52 matrix compared with DE52.

A QA52 chromatography column was then prepared and equilibrated with 20mM

Tris-Cl, pH 8 .0, to ensure adequate binding of the AVS-1 enzyme to the column. The

AVS-1 P-lactamase (pi 5.84) was subsequently eluted with 90mM NaCl. Figure 6.1

shows the P-lactamase activity of fractions eluted after the application of the salt

gradient. Figure 6.2 shows that a single P-lactamase band (pi 5.84) was present in the

fractions that demonstrated carbapenemase activity. The pi 8.3 P-lactamase from

strain 13 could bind to the column under the conditions employed; therefore, this

step separated these two P-lactamases from each another.
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Figure 6.2 IEF gel of fractions eluted from the QA52 anion exchange

column

6.4 SDS-PAGE analysis of fractions eluted from the QA52 column

The purity of the pi 5.84 AVS-1 P-lactamase after the anion exchange step was

assessed by SDS-PAGE analysis. Figure 6.3 shows that fractions 55-60 which

demonstrate good P-lactamase activity contain several proteins other than just P-

lactamase. Peak P-lactamase activity was recorded with fractions 56-58, although it

was not possible to determine the molecular weight of the P-lactamase from the

SDS-PAGE gel because no one protein band was significantly prominent in these

fractions.

Pi

54 55 56 57 58 59 60 61 62 63 64

Fraction number
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Figure 6.3 SDS-PAGE of carbapenem-hydrolysing fractions eluted from a

QA52 column

96.5 kD

66.0 kD

45.0 kD

31.0 kD

24.5kD

Lanes: M, molecular weight markers; S, crude sample applied to the QA52 column;

55-56, column fractions.

MS 55 56 57 58 59 60
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6.5 Gel filtration chromatography

Gel filtration chromatography was employed as a further purification step after ion

exchange chromatography, this time separating proteins by size exclusion rather than

charge. Carbapenemase active QA52 fractions were pooled, concentrated by 80%

ammonium sulphate precipitation and dialysed in sodium phosphate buffer before

loading on to a Superose 12 HR 10/30 column. The proteins emerging from the

column were collected in fractions and tested for P-lactamase activity as before. The

P-lactamase active fractions were analysed by SDS-PAGE; however 5 or 6 other

proteins of similar size and charge were always found in those fractions that

displayed carbapenemase activity. Therefore, purification of the AVS-1 protein to

homogeneity was a difficult process and furthermore, it was still not possible to

determine the size of the P-lactamase by SDS-PAGE with coomassie blue staining.

6.6 Determining the size of AVS-1 P-lactamase by gel filtration

Although the molecular mass of the AVS-1 could not be established by SDS-PAGE,

the molecular mass could be estimated from a standard graph obtained after

calibration of the gel filtration column with standard proteins of known size. The

size ofAVS-1 was estimated to be 26kDa.
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6.7 Enzyme kinetics ofAVS-1 P-lactamase

Fractions demonstrating carbapenemase activity and a single (3-lactamase band (pi

5.84) were pooled after QA52 anion exchange chromatography for further

biochemical examination. The Michaelis constant (Km) and the maximum rate of

hydrolysis (Vmax) of AVS-1 are shown in Table 6.1. Partially purified AVS-1

demonstrated hydrolysis of imipenem, nitrocephin, cephaloridine and ampicillin,

although nitrocephin and imipenem were hydrolysed with the greatest efficiency.

Table 6.1 Hydrolysis of (3-lactam antibiotics by AVS-1

Substrate Cmax (pM/min/ml) Km (pM) V IKr max'nm

Imipenem 0.869 172 0.005

Nitrocephin 0.625 69 0.009

Cephaloridine 1.0 800 0.00125

Ampicillin 1.1 1100 0.001

6.8 Inhibitor studies

Purified AVS-1 was pre-incubated for 10 minutes at 37°C with the (3-lactamase

inhibitors listed in Table 6.2. Enzyme inhibition (ID50) was recorded with both

imipenem and nitrocephin as the reporter substrates. EDTA (lOOmM) had no effect

on AVS-1 activity against imipenem or nitrocephin; instead, the hydrolytic activity

of AVS-1 was sensitive to the presence of the serine (3-lactamase inhibitors

clavulanic acid, tazobactam, sulbactam and BRL42715. These results are in marked
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contrast to those obtained by Yang and Bush (1996) for the A. jandaei AER 14M

(formerly/!, sobria) metallo-carbapenemase AsbMl (Figure 6.2).

Table 6.2 A comparison of the inhibitor profile of AVS-1 with that of

another Aeromonas carbapenemase AsbMlb

Inhibitor ID50 (nM) AVS-la ID50 (nM) AsbMlb
EDTA >100000 18

/?-Chloro-
-mercuribenzoate 120 2

Clavulanic acid 9 >1000

Tazobactam 2 250

Sulbactam 20 >1000

BRL42715 4 NT

a

nitrocephin and imipenem were both used as the reporter substrate and the ID50
values listed here were the same for both of these substrates.
b AsbMl metallo-(3-lactamase purified from an A. jandaei isolate, with imipenem as
the reporter substrate only - data taken from Yang and Bush, 1996.

6.9 Discussion

Ion exchange chromatography has been applied to purify the unusual A. veronii bv.

sobria carbapenemase (AVS-1) that has been identified in two strains, 13 and 99.

The carbapenemase was partially purified from strain 13 on a QA52 cellulose matrix.

Attempts were made to purify AVS-1 to homogeneity by employing gel filtration

chromotography; however, this proved to be difficult because the periplasmic protein

solution extracted from strain 13 appears to contain several proteins of similar pi and

size.
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Enzyme kinetics were determined with partially purified AVS-1 P-lactamase. AVS-

1 was found to efficiently hydrolyse nitrocephin in addition to imipenem, a property

not normally associated with the Aeromonas carbapenemases. Ampicillin and

cephaloridine hydrolysis was also detected, although the Kms for these substrates are

much higher compared with imipenem and nitrocephin and, therefore, AVS-1 has a

lower affinity for these P-lactams. The Km of AVS-1 for imipenem is similar to that

of the metallo-P-lactamase ImiS from A. veronii bv. sobria (formerly A. sobria) 163a

(Walsh et a/., 1996).

Inhibition assays were determined with both imipenem and nitrocephin as the

reporter substrates and ID50 values were found to be the same, regardless of the

reporter substrate used, these results are consistent with the pooled fractions

containing a single P-lactamase. The AVS-1 inhibitor profile was found to differ

radically from previously purified Aeromonas metallo-carbapenemases. The AVS-1

EDTA IDso value measured >100mM, whereas other Aeromonas carbapenemases are

generally highly sensitive to EDTA. One exception to this statement is an EDTA-

resistant strain ofA. hydrophila, alluded to in section 5.11.

In addition to EDTA resistance, AVS-1 was found to be sensitive to the serine P-

lactamase inhibitors clavulanic acid, tazobactam, sulbactam and BRL42715, with

tazobactam showing the greatest inhibitory effect. These results suggest that either

AVS-1 is a serine-based carbapenemase or alternatively these serine P-lactamase

inhibitors are actually behaving as competitive substrates; that is they are competing

with either imipenem or nitrocephin for the AVS-1 active site and this manifests
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itself as inhibition spectrophotometrically. It is already known that molecular class B

metallo-P-lactamases (including Aeromonas metallocarbapenemases) can hydrolyse

BRL42715 (Matagne et al., 1995) and tazobactam is a substrate for the

Stenotrophomonas maltophilia and B. cereus metallo-P-lactamases (Felici and

Amicosante, 1995). It is however puzzling as to why these inhibitors should appear

so effective when assayed spectrophotometrically, yet when BRL42715 and

clavulanic acid are used as IEF inhibitor overlays they have little effect on the AVS-

1 P-lactamase band (Section 5.8 and 5.9). Again, the explanation for these

inconsistencies may arise from the fact that these inhibitors could be substrates for

this enzyme. Once the AVS-1 P-lactamase has hydrolysed the serine P-lactamase

inhibitor in the IEF overlay, it is then able to hydrolyse nitrocephin, as normal and

therefore, the inhibitors show no effect on an IEF gel.

Finally, the size of AVS-1 could only be determined by gel fdtration chromatography

and was found to be 26kDa, however, it should be noted that gel filtration can

underestimate the molecular weights of P-lactamases (Bush, 1989). The cloned and

sequenced Aeromonas metallo-carbapenemases genes encoding CphA and ImiS have

been reported to have a molecular mass of 28kDa (Massida el al., 1991; Walsh el al.,

1996).
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7: RESULTS

PCR amplification of a metallo-P-lactamase gene from A. veronii bv.

sobria strains 13 and 99

7.1 Introduction

The sequences of three Aeromonas metallo-carbapenemases (cphA, cphA2 and imiS)

have been previously determined and share greater than 95% sequence identity to

one another (Section 1.11.2.1). The following section describes the identification of

a metallo-P-lactamase gene sequence highly homologous to cphA, cphA2 and imiS in

A. veronii bv. sobria strains 13 and 99.

7.2 Initial primer design

An experiment was devised to determine whether A. veronii bv. sobria 13 and 99

harboured an imiS-hke metallo-P-lactamase gene, previously identified in A. veronii

bv. sobria 163a (Walsh el a/., 1998). The strategy was to generate an intragenic imiS

gene probe by PCR, using a recombinant plasmid that carries imiS, as the template

DNA. Intragenic primers (1 and 2) were designed from the nucleotide sequence of

imiS (Walsh el al., 1998). with the aid of Primer 3 software (Section 2.17.1). The

imiS primers shown in Figure 7.1 are also completely conserved within the cphA

metallo-P-lactamase sequence from A. hydrophila AE036 (Massidda et al., 1991).

A single nucleotide in each primer (highlighted in red in Figure 7.1) was not
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conserved in the metallo-(]-lactamase gene cphA2 from A. hydrophila AER19

(Genbank, accession number U60294). The PCR reaction was performed as

described in Section 2.17.2, with 3mM MgCl?, using the amplification parameters

listed in Table 7.1. Under these conditions a 516bp DNA fragment was amplified

from the recombinant plasmid harbouring imiS. The identity of this fragment DNA

fragment could be confirmed by digesting the 516bp PCR product with the

restriction enzyme Sail, which cuts once within the PCR product to yield two

fragments that are 384 and 132bp in length.

Before labelling the intragenic imiS PCR product ready for DNA hybridisation, the

PCR reaction was repeated but this time with the extracted DNA from A. veronii bv.

sobria strains 13 and 99. A PCR product of the correct size (516bp) was also

amplified from strains 13 and 99 and this PCR product could also be cut with Sail

These results strongly suggested that A. veronii bv. sobria 13 and 99 possess an imiS-

like metallo-P-lactamase. Therefore, rather than performing DNA hybridisation it

was decided that the PCR reaction should be repeated with new primers that would

amplify up the entire metallo-p-lactamase gene from strains 13 and 99. which could

then be sequenced.
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Figure 7.1 Intragenic PCR primers homologous to the imiS metallo-

(3-Iactamase gene that yield a 516bp product

Sequence Position"

(1) 5' ACA AGC TGA TCA AAC GGG TC 3' 358

(2) 5' TGA TCA GCG CTT CGT AGT GA 3' 873

"

Numbering is according to Walsh et al., 1998. Guanine (G) is replaced by adenine
(A) and thymine (T) is replaced by cytosine (C) in the cphA2 metallo-p-lactamase
gene (Genbank, accession number U60294).

Table 7.1 PCR cycling parameters for the amplification of imiS

Segment Temperature (°C) Time (minutes) Function No. of cycles

1 94 5 Denaturation 1

2 94 1 Denaturation 1
50 1 Annealing

Ux30

72 1.5 Extension
J

-5
J) 72 10 Final extension 1

7.3 The selection of new primers

A second set of primers was designed by looking for regions of homology that exist

between the DNA that is upstream and downstream of the start and stop codons of

imiS and cphA. Only nucleotide sequence data on the open reading frame (ORF) of

cphA2 were available (Genbank, accession number U60294), therefore, nucleotides
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upstream and downstream of cphA2 could not be compared with those from imiS and

cphA. The nucleotides upstream of the imiS ORF show a high sequence identity with

the nucleotides that precede the start codon of cphA. Unfortunately the same cannot

be said of the sequences immediately downstream of imiS and cphA where there is

no sequence homology (Massidda et a/., 1991; Walsh et ai, 1998). Figure 7.2 shows

the primers (3 and 4) chosen to amplify the entire imiS open reading frame as

featured in the imiS sequence (Walsh et a/., 1998). A single nucleotide in the left

hand primer (3) is not conserved in the sequence of cphA. In the sequence of the

right hand primer (4), there are several mismatches between the sequence of imiS and

cphA, which are unavoidable because of the lack of homology that occurs between

these genes downstream. A section of the right hand primer sequence also falls

within the imiS ORF (highlighted in bold type). The primers illustrated in Figure 7.2

produced a DNA fragment, that was 870bp in length, with the positive control

recombinant plasmid encoding imiS, using 1.5mM MgC12 and the cycling

parameters in Table 7.1. No PGR product was obtained with DNA from A. veronii

bv. sohria strains 13 and 99, even when the cycling conditions were varied.
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Figure 7.2 PCR primers that yield an 870bp DNA fragment

Sequence Position

(3) 5' TTC CCC TCA CAA ATC CC ATT 3' 28

(4) 5' CGG CAG CTT ATG ATT GTG AA 3' 900

a

a

Numbering is according to Walsh et al., 1998. In the left hand primer (3) cytosine
(C) is replaced by thymine (T) in the cphA metallo-P-lactamase gene (Massidda et
al., 1991). In the right hand primer (4) cytosine (C) is replaced by guanine (G),
guanine (G) is replaced by adenine (A), adenine (A) is replaced by guanine (G),
thymine (T) is replaced by cytosine (C), thymine (T) replaced by guanine (G),
adenine (A) is replaced by guanine (G) and adenine (A) is replaced by thymine (T) in
the cphA metallo-P-lactamase gene sequence (Massidda et al., 1991).
Bold type in right hand primer (4) indicates sequence that falls within the imiS ORF.

7.4 PCR reaction with primers 2 and 3

It was decided that the PCR reaction should be repeated this time employing primers

2 and 3, which have a similar melting temperature and therefore, form a suitable

primer pair. A combination of primers 2 and 3 amplifies an 843bp DNA fragment

from the positive control recombinant plasmid DNA harbouring imiS. This 843bp

fragment includes 745 nucleotides of the imiS ORF, which is only 20 bases short of

the entire imiS gene (from start to stop codon). The PCR protocol was followed

according to Section 2.17.2 using 3mM MgCh. The PCR cycles described in Table

7.1 were employed except that an annealing temperature of 52°C was required to

prevent amplification of non-specific DNA fragments. A positive PCR reaction was

then achieved with extracted DNA from strains 13 and 99.
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7.5 Sequence analysis of the 843bp PCR products amplified from

strains 13 and 99

The nucleotide sequences of the PCR products amplified from A. veronii bv. sobria

strains 13 and 99 were sequenced automatically on an ABI PRISM™ 377 DNA

Sequencer (SmithKline Beecham Pharmaceuticals). The 786bp determined from the

PCR products were identical for both strains 13 and 99 and are shown in Figure 7.3

along with the deduced amino acid sequences of the truncated metalio-P-lactamase

gene.

The metallo-|3-lactamase amino acid sequence encoded by this 843bp PCR product

from strain 13 and 99 was compared with the amino acid sequences of CphA, CphA2

and ImiS. The differences in the amino acid sequences of these enzymes are shown

in Figure 7.4 Figure 7.4 and Table 7.2 show that the amino acid sequence encoded

by metallo-p-lactamase gene detected by PCR in strains 13 and 99 is very closely

related to the protein sequences of the metallo-P-lactamases CphA, CphA2 and ImiS

(>95% homology).

Five residues were identified that were conserved in the amino acid sequences of

CphA, CphA2 and ImiS, but not in the amino acid sequence deduced from the PCR

products of strains 13 and 99 (highlighted in bold green type in Figure 7.3). The

significance of these five amino acid changes were assessed by aligning the metallo-

P-lactamase amino acid sequence from strains 13 and 99 with the sequences of the

metallo-P-lactamases CcrA3 (from Bacteroides fragilis) and P-lactamase II (from
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Bacillus cereus). The position of the five amino acids that are different with respect

to the other three Aeromonas metallo-P-lactamases were then identified on the

crystal structures of CcrA3 and P-lactamase II. The position of these five amino

acids could not be identified on a crystal structure of an Aeromonas metallo-P-

lactamase because there are no resolved structures available at present. Only two

residues were found anywhere near the substrate binding site, these were lysine (K)

at position 49 and asparagine (N) at 206. Lysine 49 is in the CcrA3/p-lactamase II

flexible loop region and was identified as possibly an important residue, asparagine

206 on the other hand does not appear to affect anything in the CcrA3/p-lactamase II

model (Brian Clarke, SmithKline Beecham Pharmaceuticals - personal

communication) There are also no significant differences in the locations of lysine

49 and asparagine 206 in the CcrA3 and P-lactamase II crystal structures. Figure 7.5

shows a three dimensional side by side stereo image of the CcrA3 metallo-P-

lactamase with the locations of lysine 49 and asparagine 206 highlighted. The

location of threonine 175 is also indicated in Figure 7.5, however, this should be

ignored as this is not a residue conserved throughout the sequences from CphA,

CphA2 and ImiS - Figure 7.4.
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Figure 7.3 DNA and deduced amino acid sequence of the PCR

products from A.veroniibv. sobria strains 13 and 99

CCGGCTTGCCACAGGGGTGGCGAGGGGGTGGTTGGTTCGAGGGAGCAAG ATG ATG AAA 58

M M K

GGT TGG ATG AAG TGC GGG TTG GCC GGA GCC GTG GTG CTG ATG GCG AGT 106
GWMKCGLAGAVVLMAS

TTC TGG GGG GGC AGC GTG CGG GCG GCG GGG ATC TCC CTT AAG CAG GTG 154

FWGGSVRAAGI SLKQV

AGC GGC CCT GTC TAT GTG GTA GAG GAC AAC TAC TAC GTC AAA GAG AAC 202

SGPVYVVEDNYYVKEN

TCC ATG GTC TAT TTC GGG GCC AAG GGG GTG ACG GTG GTG GGG GCG ACC 250
SMVYFGAKGVTVVGAT

TGG ACG CCG GAT ACC GCC CGC GAG CTG CAC AAG CTC ATT AAA CGG GTC 298

WTPDTARELHKLIKRV

AGC AGC AAG CCG GTG CTG GAG GTG ATC AAC ACC AAC TAC CAC ACC GAT 346

SSKPVLEVINTNYHTD

CGG GCG GGC GGT AAC GCC TAC TGG AAG TCC ATC GGG GCC AAG GTG GTC 394

RAGGNAYWKS I GAKVV

TCG ACC CGC CAG ACC CGG GAT CTG ATG AAG AGC GAC TGG GCC GAG ATT 442

STRQTRDLMKSDWAEI

GTC GCC TTT ACC CGC AAG GGG CTG CCA GAG TAT CCG GAT CTG CCG CTG 490
VAFTRKGLPEYPDLPL

GTG CTG CCC AAC GTG GTG CAC GAT GGC GAC TTC ACC CTG CAA GAG GGC 538

VLPNVVHDGDFTLQEG

AAG GTG CGT GCC TTC TAT GCG GGC CCG GCC CAC ACG CCG GAC GGC ATC 586

KVRAFYAGPAHTPDGI

TTT GTC TAC TTC CCC GAT GAG CAG GTG CTC TAT GGC AAC TGC ATC CTC 634

FVYFPDEQVL YGNCIL

AAG GAG AAG CTG GGC AAC CTG AGC TTT GCC AAT GTG AAG GCC TAT CCG 682
KEKLGNLS FANVKAYP

CAG ACC ATC GAG CGG CTG AAA GCG ATG AAG CTG CCG ATC AAG ACG GGT 730

QT I ERLKAMKLP I KTV

ATT GGC GGT CAC GAC TCG CCG CTG CAC GGC CCC GAG CTG ATT GAT CAC 778
IGGHDSPLHGPELIDH

TAC GAA GC * 786
Y E

* 28 nucleotides short of entire gene.
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Figure 7.4 A comparison between the amino acid sequence encoded

by the metallo-P-Iactamase gene amplified by PCR from A. veronii

bv. sobria strains 13 and 99 with the amino acid sequences of three

other Aeromonasmetallo-P-lactamases (CphA, CphA2 and ImiS).

49

13/99 MMKGWMKCGLAGAWLMASFWGGSVRAAGISLKQVSGPVYWEDNYYVKENSMVYFGA 58
CphA MMKGWMKCGLAGAWLMASFWGGSVRAAGMSLTQVSGPVYWEDNYYVQENSMVYFGA
CphA2 MMKGWMKCGLAGAWLMAS FWGGSVRAAGMS LTQVSGPVYWEDNYYVQENSMVYFGA
ImiS MMKGWIKCGLAGAWLMASFWGGSVRAAGMSLTQVSGPVYWEDNYYVQENSMVYFGA

13/99 KGVTWGATWTPDTARELHKLIKRVSSKPVLEVINTNYHTDRAGGNAYWKSIGAKWS 116
CphA KGVTWGATWTPDTARELHKLIKRVSRKPVLEVINTNYHTDRAGGNAYWKSIGAKWS
CphA2 KGVTWGATWTPDTARELHKLIKRVSRQPVLEVINTNYHTDRAGGNAYWKSIGAKWS
ImiS KGVTWGATWTPDTARELHKLIKRVSRKPVLEVINTNYHTDRAGGNAYWKSIGAKVIS

13/99 TRQTRDLMKSDWAEIVAFTRKGLPEYPDLPLVLPNWHDGDFTLQEGKVRAFYAGPAH 174
CphA TRQTRDLMKSDWAEIVAFTRKGLPEYPDLPLVLPNWHDGDFTLQEGKVRAFYAGPAH
CphA2 TRQTRDLMKSDWAEIVAFTRKGLPEYPDLPLVLPNWHEGDFTLQEGKLRAFYAGPAH
ImiS TRQTRDLMKSDWAEIVAFTRKGLPEYPDLPLVLPNWHEGDFTLQEGKLRAFYLGPAH

206

13/99 TPDGIFVYFPDEQVLYGNGILKEKLGNLSFANVKAYPQTIERLKAMKLPIKTVIGGHD 232
CphA TPDGIFVYFPDEQVLYGNCILKEKLGNLSFADVKAYPQTIERLKAMKLPIKTVIGGHD
CphA2 TPDGIFVYFPDQQVLYGNCILKEKLGNLSFADVKAYPRTIERLKAMKLPIKTWGGHD
ImiS SPDGIFVYFPDQQVLYGNCILKEKLGNLSFADVKAYPQTIERLKAMKLPIKTWGGHD

13/99 SPLHGPELIDHYE* 254
CphA SPLHGPELIDHYEALIKAAPQS
CphA2 SPLHGPELIDHYEALIKAAPQS
ImiS SPLHGPELIDHYEALIKAASQS

* The sequence is nine amino acids short of the entire unmodified protein.
Shaded amino acids indicate ligands involved in zinc binding in the B. and B.
cereus metallo-P-lactamase crystal structures (Concha 1997; Carfi
\99U).

174



Table 7.2 Amino acid identity between the 246 amino acid residues

of a metallo-P-lactamase from A. veronii bv. sobria strains 13 and 99

and the Aeromonas metallo-P-lactamases CphA, CphA2 and ImiS

Identity values are expressed as a percentage calculated from an amino acid sequence

that is 246 residues in length.

13/99 CphA CphA2 ImiS

13/99

CphA

CphA2
ImiS

95.5

95

98

98

97 98
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Figure7.5Thelocationofaminoacidsubstitutionsinthemetallo-P-lactamasesfromA.veroniibv.sobriastrains
13and99identifiedonthex-raycrystalstructureoftheB.fragilisCcrA3metallo-P-lactamase

-4

On

Sidebysidestereopairs
RibbondisplayofCcrA3colourcodedinredtoindicateresiduedifferencesbetweenthemetallo- P-lactamaseaminoacidsequencefromA.veroniibv.sobriastrains13and99andCphA/CphA2 andImiS(sourceofFigure7.5-BrianClarkeSmithKlineBeecham).



7.6 Discussion

PCR with /m/A-specific primers has identified a metallo-|3-lactamase gene in A.

veronii bv. sobria strains 13 and 99. Although a metallo-P-lactamase gene has been

detected in strains 13 and 99, it cannot be conclusively stated that this sequence

encodes the pi 5.84 AVS-1 carbapenemase, only cloning or N-terminal sequencing

can provide this answer. However, if the metallo-P-lactamase gene possessed by

strains 13 and 99 does not code for the AVS-1 carbapenemase, this implies that not

only must there be another carbapenemase gene encoded by these two strains but

also the metallo-P-lactamase or other genes involved in its regulation must have

undergone silencing mutational events.

The amino acid sequence encoded by the metallo-P-lactamase gene in strains 13 and

99 was found to be very similar to ImiS, CphA and CphA2 and possess the putative

active site sequence, asparagine-Xi-histidine-X2-aspartate (residues 95-99 of Figure

7.4), that is unique to the Aeromonas metallo-P-lactamases (Rasmussen and Bush,

1997). Additional zinc binding ligands (histidine -position 174, cysteine -position

193 and histidine -position 243) identified from the crystal structures of the B.

fragilis and B. cereus enzymes were found to be conserved in the metallo-P-

lactamase sequence from strains 13 and 99, as they are in the other sequenced

Aeromonas metallo-P-lactamases.

Only five amino acid residues were found to be among the amino acids conserved in

the sequences of CphA, CphA2 and ImiS but not in the 246 amino acids deduced
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from the metallo-(3-lactamase from strains 13 and 99. There may, however, be

further amino acid substitutions amongst the nine amino acid residues at the C-

terminus of the metallo-(3-lactamase from 13 and 99 not determined in this study. If

however, AVS-1 is a metallo-(3-lactamase then one or more of these five amino acid

differences (or any further substitutions at the metallo-3-lactamase C-terminus) must

be responsible for the differences in AVS-1 substrate and inhibitor profiles compared

with other Aeromonas metallo-|3-lactamases. Two possible candidates for the

differences in hydrolytic activity are lysine at position 49 and asparagine at 206

because they are located near the P-lactam binding site. The importance of these

residues and any additional residues could only be determined by site directed

mutagenesis experiments.

178



8: RESULTS

The cloning of two (3-Iactamase genes blaA\s-2 and blaA\s-3 from

A. veronii bv. sobria 13

8.1 Introduction

Chapter 6 has described the purification the AVS-1 carbapenemase, which exhibits

an extended substrate profile, including the hydrolysis of ampicillin and

cephaloridine. Additionally, a metallocarbapenemase sequence has been identified in

both A. veronii bv. sobria 13 and 99 that is closely related in sequence to previously

identified Aeromonas carbapenemases, although it could not be concluded whether

the metallocarbapenemase sequence encodes the AVS-1 carbapenemase. The

following chapter describes the application of different cloning strategies aimed at

cloning b/aAyS-i, to determine its sequence. However, the protocols employed result

in the isolation of two chromosomal genes encoding the pi 8.3 P-lactamase -AVS-2

and an additional P-lactamase designated AVS-3.

8.2 Determining the genetic location of AVS-1

Ethidium bromide has been shown to be efficient in eliminating plasmids that carry

drug resistance determinants (Bouanchaud el a/., 1969). Ethidium bromide curing

was employed to determine whether the AVS-1 carbapenemase was encoded on a
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plasmid (Section 2.19). The curing experiment, however, could not demonstrate loss

of resistance to imipenem. Furthermore, no plasmid could be isolated from strain 13.

Therefore, these results suggest that blaAvs-i is located on the bacterial chromosome.

8.3 Creation of a gene bank from A. veronii bv. sobria 13

A. veronii bv. sobria 13 chromosomal DNA was isolated (Section 2.13.2) and

digested to completion with BamHl. Size fractionated DNA fragments of between 3

and 8kb, obtained following separation in a 0.7% agarose gel and extraction from the

agarose with Geneclean II, were ligated into a cloning vector (Section 2.15.3). The

chosen cloning vector was pK18 which is a 2.7kb pUC-derived plasmid that has a

high copy number, a versatile multiple cloning site and carries a kanamycin

resistance marker. The pK18 cloning vector was also digested with BamYll and

treated with calf intestine alkaline phosphatase to prevent re-annealing (Section

2.15.2). Recombinant DNA was introduced into competent E. coli DH5a cells by

electrotransformation (Section 2.16.1 -2.16.2).

Transformants resistant to (3-lactams were selected on two types of media, the first

containing kanamycin (30mg/l) and ampicillin (20mg/l) and the other containing

kanamycin (30mg/l) and cephaloridine (20mg/l). Ampicillin and cephaloridine were

chosen for the selection of the carbapenemase because purified AVS-1 had

demonstrated hydrolysis of these substrates. Imipenem was not employed for the

selection of the AVS-1 carbapenemase because it is probable that the enzyme will

180



not confer imipenem resistance in the E. coli cloning vector host, as this organism is

likely to be more permeable to imipenem than A. veronii bv. sobria.

Four resistant transformants, numbered clones 1-4, were recovered on agar

containing kanamycin and ampicillin but not kanamycin and cephaloridine.

Recombinant plasmids were extracted with the Hybaid Recovery™ plasmid miniprep

kit, three of the ampicillin resistant transformants possessed a recombinant plasmid

with an insert of 5.3kb (clones 2-4) and one recombinant plasmid (clone 1) had an

insert of 3.8kb (Figure 8.1).

(3-Lactamase extracts were prepared from clones 1-4 by inoculating single colonies

into 10ml nutrient broths containing kanamycin (30mg/l) and ampicillin (20mg/l).

after six hours of growth at 37°C the cultures were centrifuged, washed in 50mM

sodium phosphate buffer and subjected to ultra-sonication. The crude cell extracts

were assayed against imipenem; however, no imipenem hydrolysis was detected.
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Figure 8.1 Extracted recombinant plasmids from clones 1-4,

digested with BamHl

1 2 3 4 5

Lanes: 1, Xcut with Clal;2, clone 1 (insert - 3.8kb); 3, clone 2 (insert 5.3kb); 4,

clone 3 (insert 5.3kb); 5, clone 4 (insert 5.3kb).

8.4 Directional cloning in pK18

Cloning of blaAws-i was attempted again, this time digesting the A. veronii bv. sobria

13 chromosomal DNA with two restriction enzymes. This process is known as

directional cloning because foreign DNA is inserted in only one orientation within

the recombinant plasmid. Three different combinations of restriction enzymes were

used to cut the pK18 vector and the chromosomal DNA of strain 13. These

combinations were EcoRl and Sail, £coRl and BamHl and BamHl plus Sail.

Transformants resistant to P-lactams were again selected for on media containing
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kanamycin (30mg/l) plus ampicillin (20mg/l) and kanamycin (30mg/l) plus

cephaloridine (20mg/l).

One ampicillin resistant clone (clone 5) was recovered from the gene bank created by

digesting the chromosomal and vector DNA with ZfcoRI and SalI. Two cephaloridine

resistant clones (clones 6 and7) and five ampicillin resistant clones (clones 8-12)

were recovered from the gene bank created by digesting chromosomal and vector

DNA with AcoRI and BamYH. No (3-lactam resistant clones were obtained from the

gene bank that involved the BamYQJSah digest. The insert of the recombinant

plasmid extracted from clone 5 measured 1.2kb in length (Figure 8.2). The

recombinant plasmids extracted from clones 8-12 had an insert of 4.3kb (Figure 8.3).

An additional DNA fragment was also observed next to the pK18 vector of clones 9-

12. This might, however, be a DNA artefact (Figure 8.3). The plasmids extracted

from the cephaloridine resistant clones 6 and 7 were found to contain no insert

(Figure 8.3).
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Figure 8.2 Extracted recombinant plasmid from clone 5

digested with EcoRl/Sal\

4.3

2.3

I J

pK18
(2.7kb)

-

wmsmi

Lanes: 1, X cut with Hindll!; 2, clone 5 (insert 1.2kb).
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Figure 8.3 Extracted recombinant plasmids from clones 6-12,

digested with EcoRl/BamHl

pK18
(2.7kb)

Lanes: 1, Xcut with Clal,2, clone 6 (no insert); 3, clone 7 (no insert); 4, clone 8

(4.3kb); 5, clone 9 (insert 4.3kb); 6, clone 10 (insert 4.3kb); 7, clone 11 (insert

4.3kb); 8, clone 12 (insert 4.3kb).

8.5 IEF of p-lactamase active clones

Crude cell extracts prepared from E. coli clones 1-12 were tested by nitrocephin spot

testing for P-lactamase activity. p-Lactamase activity was detected in clones 1, 2, 3,

4, 5, 8, 9, 10, 11 and 12; however, the cephaloridine-resistant clones 6 and 7 that did

not contain a DNA insert failed to produce a colour change with the spot testing

reaction. P-Lactamase preparations from clones 1, 2, 3, 4, 5, 8, 9, 10, 11 and 12 were
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focused on an IEF gel. IEF assays showed that clones 2, 3, 4, 8, 9, 10, 11 and 12

encoded the AVS-2 enzyme that focused at pi 8.3 (Figure 8.4). Clones 1 and 5 were

found to encode a different P-lactamase, named AVS-3, that had a pi value of 4.75

(Figure 8.4), this P-lactamase band was previously thought to be a satellite band of

the pi 5.84 AVS-1 P-lactamase.

Figure 8.4 IEF of P-lactamase extracts from clones 1, 2, 3, 4, 5, 8, 9,

10, II and 12

Lanes: I, A. veronii bv. sobria 13; 2, clone 1 (pi 4.75); 3, clone 2 (pi 8.3); 4, clone 3

(pi 8.3); 5, clone 4 (pi 8.3); 6, clone 5 (pi 4.75); 7, clone 8 (pi 8.3); 8, clone 9 (pi

8.3); 9, clone 10 (pi 8.3); 10, clone 11 (pi 8.3); 11, clone 12 (pi 8.3).
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8.6 p-Lactam MICs and P-lactam hydrolysis by E. coli DH5a clones

P-Lactam susceptibility testing was performed on clones numbered 1-5 and 8-12.

All ten clones were found to be resistant to ampicillin, clones 1 and 5 additionally

demonstrated a reduced susceptibility to cephaloridine, none of the clones however,

showed resistance to imipenem (Table 8.1).

Cell extracts prepared from six representative E.coli DH5a clones (1, 2, 5, 8, 9 and

11) were assayed against ampicillin, cephaloridine and imipenem. Extracts from

clones 1 and 5 that carry a recombinant plasmid encoding a pi 4.75 P-lactamase from

A. veronii bv. sobria 13 showed strong hydrolytic activity against ampicillin, but

much weaker cephaloridine hydrolysis. P-Lactamase preparations from clones 2 ,8, 9

and 11 showed good hydrolytic activity against ampicillin, but only poor

cephaloridine activity. None of these clones demonstrated any hydrolysis of

imipenem.
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Table 8.1 (3-Lactam susceptibility of ten E. coli DH5a clones

Clone AMP CEPH IMP

E.coli DH5a* 4 <8 0.25

1 >256 64 0.25

2 >256 <8 0.25

3 >256 <8 0.25

4 >256 <8 0.25

5 >256 32 0.25

8 >256 <8 0.25

9 >256 <8 0.25

10 >256 <8 0.25

11 >256 <8 0.25

12 >256 <8 0.25

AMP, ampicillin; CEPH, cephaloridine; IMP, imipenem.

* E. coli DH5a host containing no recombinant vector.

Table 8.2 P-Lactam hydrolysis of cell extracts of E. coli DH5a

carryingA veronii bv. sobria 13 P-lactamase genes

Clone

AMP

Hydrolytic activity*
CEPH IMP

1 149 7 ND

2 19.6 0.08 ND

5 49.64 2.6 ND

8 6.1 0.035 ND

9 12.74 0.023 ND

11 22.83 0.046 ND

* pinoles of substrate hydrolysed per minute per ml of enzyme preparation.
AMP, ampicillin; CEPH, cephaloridine, IMP, imipenem.
ND - not detected.
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8.7 Back probing recombinant plasmid inserts to the chromosomal

DNA from A. veronii bv. sobria strain 13

It was decided that the recombinant plasmids from clones 5, and 8 should be

extracted and the DNA of the inserts, encoding the AVS-3 and AVS-2 P-lactamase

genes, should be automatically sequenced. Before sending the plasmids away for

automatic DNA sequencing (SmithKline Beecham Pharmaceuticals, Collegeville,

P.A.), back probing of these plasmid inserts to the chromosomal DNA from A.

veronii bv. sobria 13 was performed to confirm their origin.

The purified recombinant plasmids from clones 5, and 8 were digested with the

appropriate restriction enzymes (EcoRHSaE and EcoRA/BamHl, respectively) to

release the inserts. The two different inserts could then be purified from the vector

DNA by running the digested plasmids on an agarose gel, slicing the insert from the

gel and extracting the DNA fragment from the agarose. The inserts were then

labelled with Fl-dUTP (Section 2.18.1), ready for hybridisation. Chromosomal

DNA from A. veronii bv. sobria 13 was cut with Bam\A\ and blotted onto a nylon

membrane along with the digested recombinant plasmids from clones 1, 5 and 8,

after agarose gel electrophoresis (Section 2.18.3).

Figure 8.5 shows the labelled 4.3kb insert of clone 8 back probing to the

chromosomal DNA from A. veronii bv. sobria 13, confirming its origin. The 4.3kb

insert from clone 8 does not hybridise with the insert from either clone 1 or clone 5.
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Figure 8.6 shows the hybridisation of the labelled 1 2kb insert from clone 5 to the A.

veronii bv. sobrla 13 chromosomal DNA and to the insert from clone 1 (3.8kb).

Unfortunately the labelled insert from clone 5 was contaminated with vector DNA,

even though repeated attempts were made to completely purify the insert away from

the pK18 vector DNA. Vector DNA in clones 1, 5 and 8 was also detected. Figure

8.6 does, however, show that the labelled insert from clone 5 does not hybridise to

the insert from clone 8.
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Figure 8.5 Hybridisation of the insert from clone 8 to A. veronii bv.

sobria 13 chromosomal DNA

12345 12345

(A) Separated fragments in a 0.7% agarose gel.

(B) Hybridisation of the 4.3kb insert of clone 8 to the DNA fragments on the blotted

gel.

Lanes: 1, X cut with Hindlll, 2, A. veronii bv. sobria 13 chromosomal DNA cut with

ftawHI; 3, recombinant plasmid from clone 1 cut with BamHl, 4, recombinant

plasmid from clone 5 cut with EcoRHSall; 5, recombinant plasmid from clone 8 cut

with EcoBUBamHl
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Figure 8.6 Hybridisation of the insert from clone 5 to A. veronii bv.

sobria 13 chromosomal DNA

(A) (B)

12345 12345

(A) Separated fragments in a 0.7% agarose gel.

(B) Hybridisation of the 1.2kb insert of clone 5 to the DNA fragments on the blotted

gel.

Lanes: 1, X cut with Hindlll; 2, A. veronii bv. sobria 13 chromosomal DNA cut with

BamWL, 3, recombinant plasmid from clone 1 cut with Bam\A\\ 4, recombinant

plasmid from clone 5 cut with EcoRI/Sall; 5, recombinant plasmid from clone 8 cut

with EcoRl/BamHl.
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8.8 Sequence analysis of clones 1, 5 and 8

DNA sequencing of the inserts from clones 5 and 8 was performed on an ABI

PRISM™ 377 DNA Sequencer with the universal primers M13F (forward) and

M13R (reverse), using a primer walking strategy. Unfortunately, it was only

possible to sequence the pi 8.3 P-lactamase gene blaA\s-2 harboured on the clone 8

recombinant plasmid. The pi 4.75 P-lactamase gene blaA\s-3, encoded on the

recombinant plasmid of clone 5 and clone 1, could not be sequenced. Clone 5 was

sequenced using M13F and M13R, however, the sequencing reaction was only

successful in one direction (L. Katz, SmithKline Beecham - personal

communication). When the sequencing information from clone 5 was entered into

NCBI BLAST the sequence was found to be part of the pK18 vector. The primers

were checked for correct labelling, however, it appears that clone 5 had lost its insert

and this explains why only one of the universal primers was successful data (L. Katz

- SmithKline Beecham, personal communication). Clone 1 was reported to give high

background peaks, which is indicative of two clones being present and therefore, also

could not be sequenced (L. Katz - personal communication).

Sequencing the insert of clone 8 was carried out until an open reading frame of

potential interest was located. Figure 8.7 shows the DNA sequence and deduced

amino acid sequence of the blaA\s-2 gene. The AVS-2 p-lactamase was found to be

closely related to the molecular class D penicillinases AsbBl from A. jandaei AER

14M (formerly A. sobria) and AmpS from A. veronii bv. sobria 163a (formerly A.

sobria) (Rasmussen, et a/., 1994a; Walsh et a/., 1995b). The blaAws-2 gene has an
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open reading frame of 795 nucleotides which encodes a protein of 264 amino acids.

A comparison between the amino acid sequences of AVS-2, AsbBl and AmpS is

shown in Figure 8.8. The amino acid identity between these three enzymes was

found to be >95.5% (Table 8.3).
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Figure 8.7 DNA and deduced amino acid sequence of the A. veronii

bv. sobria 13 bla^s-iP-Iactamase gene

ATG TCC CGC CTG CTT CTC TCC AGC CTG CTG GCT GCC GGT CTG CTC GCA 48

MSRLLLSSLLAAGLLA

GCC CTG CCT GCC TCC GCC GCC AGC GGC TGC TTT CTC TAT GCT GAC GGC 96

ALPASAASGCFLYADG

AAC GGC CAG ACC CTC TCC AGC GAA GGG GAC TGC TCC AGC CAG CTG CCA 144

NGQTLSSEGDCSSQLP

CCC GCG TCC ACC TTC AAG ATC CCG CTC GCG CTG ATG GGT TAC GAC AGC 192
PASTFKI PLALMGYDS

GGC TAT CTG GTG GAT GAA GAG CAT CCG GCA CTG CCT TAC AAA CCG AGC 240

GYLVDEEHPALPYKPS

TAT GAC GGC TGG CTG CCC GCC TGG CGT GAA ACC ACC ACC CCG CGC CGC 288
YDGWLPAWRETTTPRR

TGG GAA ACC TAC TCG GTG GTC TGG TTC TCC CAG CAG ATC ACC GAA TGG 336

WETYSVVWFSQQITEW

CTG GGG ATG GAG CGC TTC CAG CAA TAC GTC GAC CGC TTC GAC TAC GGC 384

LGMERFQQYVDRFDYG

AAC CGG GAT CTC TCC GGC AAT CCG GGC AAA CAT GAC GGC CTG ACC CAG 432

NRDLSGNPGKHDGLTQ

GCC TGG CTC AGC TCC AGC CTC GCC ATC AGT CCG GAG GAG CAG GCT CGC 480

AWLSSSLAISPEEQAR

TTC CTC GGC AAG ATG CTG AGC GGC AAG CTG CCG GTC TCG GCG CAG ACC 528

FLGKMLSGKLPVSAQT

CTG CAG TAC ACC GCC AAT ATC CTC AAG GTG AGC GAG ATC GAC GGC TGG 576

LQYTANILKVSEIDGW

CAG ATC CAC GGC AAA ACC GGC ATG GGC TAC CCG AAG AAG CTG GAT GGC 624

QIHGKTGMGYPKKLDG

AGC CTC AAC CGC GCT CAG CAG ATT GGC TGG TTC GTC GGC TGG GCC AGC 672

SLNRAQQI GWFVGWAS

AAA CCG GGC AAA CAG CTG ATC TTC GTC CAT ACC GTG GTG CAA AAG CCC 720

KPGKQLI FVHTVVQKP

GGC AAG CAG TTC GCC TCC CTC AAG GCG AAA GAA GAG GTG CTG GCT GCC 768

GKQFASLKAKEEVLAA

CTG CCT GCA CAA CTT AAA AAG CAG TGA 795

LPAQLKKQ*
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Figure 8.8 Comparison of the amino acid sequences of AVS-2 with

the molecular class D enzymes AsbBl and AmpS from A. jandaei

AER14M and A. veronii bv. sobria 163aa

AVS-2 MSRLLLSSLLAAGLLAALPASAASGCFLYADGNGQTLSSEGDCSSQLPPA
AsbBl MSRLLLSGLLATGLLCAVPASAASGCFLYADGNGQTLSSEGDCSSQLPPA
AmpS MSRLLLSSLLAAGLLAALPASAASGCFLYADGNGQTLSSEGDCSSQLPPA

AVS-2 STFKIPLALMGYDSGYLVDEEHPALPYKPSYDGWLPAWRETTTPRRWETY

AsbBl STFKIPLALMGYDSGFLVDEEHPALPYKPSYDGWLPAWRETTTPRRWETY

AmpS STFKIPLALMGYDSGFLVDEEHPALPFKPGYDDWLPAWRETTTPRRWETY

AVS-2 SWWFSQQITEWLGMERFQQYVDRFDYGNRDLSGNPGKHDGLTQAWLSSS
AsbBl SWWFSQQITEWLGMERFQQYVDRFDYGNRDLSGNPGKHDGLTQAWLSSS
AmpS SWWFSQQITEWLGMERFQQYVDRFDYGNRDLSGNPGKHDGLTQAWLSSS

AVS-2 LAISPEEQARFLGKMLSGKLPVSAQTLQYTANILKVSEIDGWQIHGKTGM
AsbBl LAISPEEQARFLGKMVSGKLPVSAQTLQYTANILKVSEVEGWQIHGKTGM
AmpS LAISPEEQARFLGKMVSGKLPVSAQTLQYTANILKVSEIDGWQIHGKTGM

AVS-2 GYPKKLDGSLNRAQQIGWFVGWASKPGKQLIFVHTWQKPGKQFASLKAK
AsbBl GYPKKLDGSLNRDQQIGWFVGWASKPGKQLIFVHTWQKPGKQFASIKAK
AmpS GYPKKLDGSLNRDQQIGWFVGWASKPGKQLIFVHTWQKPGKQFASLKAK

AVS-2 EEVLAALPAQLKKQ
AsbBl EEVLAALPAQLKKL
AmpS EEVLAALPAQLKTQ

a Amino acid residues conserved in all three proteins are represented in black,
whereas, red lettering indicates residues which differ amongst the three proteins

Table 8.3 Amino acid identity between AVS-2, AsbBl and AmpS

Identity values are expressed as a percentage of the 264 amino acid sequence

Enzyme AVS-2 AsbBl AmpS

AVS-2 - - -

AsbBl 95.8 - -

AmpS 97.3 95.5 -
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8.9 Discussion

This chapter has described the protocols employed in an attempt to clone the

carbapenemase AVS-1. The cloning of Aeromonas carbapenemases is known to be

problematic and stems from the fact that these enzymes normally display a very

narrow substrate profile which limits the choice of (3-lactams that can used in the

cloning selection procedure. Furthermore, the Aeromonas carbapenemases do not

confer carbapenem resistance in an E. coli background (Hayes, 1995, Rossolini et a/.,

1995; Walsh - personal communication). Purification of the AVS-1 carbapenemase

from A. veronii bv. sobria revealed that this enzyme hydrolysed not only imipenem

but also nitrocephin, ampicillin and cephaloridine, thus, cloning strategies were

employed that involved the selection of clones with ampicillin and cephaloridine

containing media.

Although several clones were selected on media containing ampicillin, none of these

clones could hydrolyse imipenem. Further analysis of these ampicillin resistant

clones did, however, reveal important information concerning the P-lactamase

complement ofA. veronii bv. sobria strain 13. It was initially thought that this strain

(along with strain 99) possessed two (3-lactamases, an unusual Aeromonas

carbapenemase designated AVS-1 with a pi of 5.84 and a second clavulanic acid

sensitive high pi (8.3) P-lactamase, however, this was found not to be the case.

Isoelectric focusing of ten ampicillin resistant clones identified two different P-

lactamases, neither of them AVS-1. Eight of these clones (2, 3, 4, 8, 9, 10, 11, 12)

harboured the pi 8.3 P-lactamase which could efficiently hydrolyse ampicillin. The
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other two clones (1 and 5) produced a p-lactamase with a pi of 4.75, previously

thought to be a satellite band of the AVS-1 carbapenemase. This enzyme was named

AVS-3 and could hydrolyse both ampicillin and cephaloridine.

Clones containing both AVS-2 and AVS-3 were sent away for DNA sequencing,

although only the sequence of AVS-2 could be determined. Sequence analysis of the

AVS-2 P-lactamase revealed that this enzyme was closely related to the molecular

class D penicillinases AsbBl and AmpS, identified previously in a strain of A.

jandaei and A. veronii bv. sobria, respectively (Rasmussen et al., 1994a; Walsh et

al., 1995b).

Previously, up to three different inducible P-lactamases have been described in

individual Aeromonas isolates including a metallocarbapenemase, a class D

penicillinase and a class C cephalosporinase (Walsh et al., 1995a; Rasmussen et al.,

1994a; Yang and Bush 1996). Three different P-lactamases have now been identified

in A. veronii bv. sobria 13 that include a pi 5.84 carbapenemase (AVS-1), a pi 8.3

class D penicillinase (AVS-2) and a third unidentified P-lactamase AVS-3. It is

possible that this AVS-3 is related to the cephalosporinases such as AsbAl and CepS

previously identified in other Aeromonas isolates (Rasmussen et al., 1994a; Walsh et

al., 1995b). However, the ability of AVS-3 to hydrolyse ampicillin with greater

effiiency than cephaloridine is not a property normally associated with Aeromonas

cephalosporinases (Rasmussen et al., 1994a; Walsh et al., 1995b). Only future

sequencing data on AVS-2 can resolve the classification of this enzyme. Although

the cloning strategies described in this chapter have been successful in recovering
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two P-lactamases from strain 13 the gene encoding the AVS-1 carbapenemase has

not been isolated. Other methods (described in Section 10) are therefore, required to

recover Z>/aAvs-i •
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9:RESULTS

An assessment of the heterogeneity of the metallo-P-Iactamases from

clinical Stenotrophomonas maltophilia isolates

9.1 Introduction

The following section describes the application of PCR in the detection of S.

maltophilia metallo-j3-lactamases, followed by DNA sequencing of the PCR

products to ascertain the relationship between S. maltophilia m-(3-l types 1-7

described by Payne et al., (1994a; 1994b). This study also includes the metallo-|3-

lactamase of S. maltophilia 511 characterised biochemically by Felici el a/., (1993)

that has the same pi (6.8) as the m-(3-l type 5 (Payne et al., 1994a). An additional

comparison is also made between the m-(3-l types 1-7 and the amino acid sequences

of the metallo-j3~lactamases from strains GN12873 and IID1275 to determine their

relatedness.

9.2 Bacterial strains

The initial aim was to analyse the m-|3-l types 1-7 from seven S. maltophilia strains

originally isolated from hospitalised patients in the United Kingdom (Payne et al.,

1994a). Unfortunately, strain 136 that harbours m-|3-l type 6 could not be recovered
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and therefore this study concentrates on m-(3-l types 1-5 and 7 (Table 9.1).

Table 9.1 S. maltopliilia strains that produce

m-(3-l types 1, 2, 3, 4, 5 and 7

Strain number m-f-l type pi value

GEL 1 4.8

0062 2 5.5

U152 3 5.7

J2323 4 6.0

37 5 6.4

A3 7454 7 6.8

9.3 Intragenic PCR primer design and cycling parameters

The nucleotide sequences of the metallo-P-lactamase genes blaL] and blaS from S.

maltophilia IID1275 (Walsh et al., 1994) and S. maltophilia GN12873 (Sanschagrin

et al., 1998) respectively, were aligned using the Genbank Basic Local Alignment

Search Tool (BLAST) program (http://www.ncbi.nlm.nih.gov/cgi-bin/BLAST/nph-

newblast). Intragenic stretches of homology between these sequences were

identified and primers were designed within these regions of homology with the aid

of Primer 3 software (Section 2.17.1). The chosen primer sequences as featured in

blciu from strain 1ID1275 (Walsh et al., 1994) are shown in Figure 9.1. A single

nucleotide in each primer (highlighted in red) was not conserved in the sequence of

blaS from strain GN12873 (Sanschagrin et al., 1998). These primers yield a 671 bp

PCR product.
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The PCR procedure was performed as described in Section 2.17.2, with ImM MgC^.

A recombinant plasmid (pUB8902), encoding the the metallo-(3-lactamase b/au from

S. maltophilia IID1275 (Walsh et al., 1994), was extracted and employed as a

positive PCR control. Template DNA from test S. maltophilia strains was prepared

using the Genie genomic DNA extraction. Standard laboratory strains E. coli NCTC

10418 and P. aeruginosa NCTC 10662 were used as negative PCR controls. PCR

amplification conditions are shown in Table 9.2.

Figure 9.1 Intragenic PCR primers homologous to the known blau

sequence of S. maltophilia IID1275

Sequence Position"'

5' GTT CTA CCC TGC TCG CCT TC 3' 5

5' CTC GAT CAG CTG CGG ATA AC 3' 687

a

Numbering is according to Walsh et al., (1994).

Cytosine (C) is replaced by thymine, and thymine (T) is replaced by adenine

in the sequence ofGN12873 (Sanschagrin et al., 1998).
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Table 9.2 PCR cycling parameters for the amplification of

S. maltophilia metallo-(3-lactamases

Segment Temperature (°C) Time (minutes) Function No. of cycles
1 94 5 Denaturation 1

2 94 1 Denaturation

60 1 Annealing
Ux30

72 1.5 Extension

3 72 10 Final extension 1

9.4 Detection of S. maltophilia metallo-fClactamases by PCR

A single PCR product of 671 bp in size was amplified from the seven S. maltophilia

test strains and from the positive control pUB8902 plasmid DNA. No PCR product

was obtained from the negative control strains.

9.5 Restriction of the PCR products

The 671 bp nucleotide sequence of hla\\ (Walsh et a/., 1994), that could be amplified

by PCR, was entered into the WebCutter 2.0 restriction site analysis program

(http:www.firstmarket.com/cutter/cut2.html) to identify a suitable restriction enzyme

that would cleave once within this fragment of DNA. The restriction endonuclease

Hit7fl cuts once within this sequence to give two fragments that were 381 and 290 bp

in size. Restriction digests with Hinfl were set up with the PCR products amplified

from the seven S. maltophilia strains. The results of the restriction enzyme analysis
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are shown in Figure 9.2. The restriction site is conserved in five of the seven strains,

PCR products from strains 511 and 37 were not digested by Hinfl.

Figure 9.2 S. maltophilia PCR products restricted with Hinfl

600bp——_

M 1A iB 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B 7A 7B 8A 8B

A- uncut PCR product, B- restricted PCR product, M-lOObp ladder, 1- GEL

type 1), 2- 0062 (m-(3-l type 2), 3- U152 (m-p-1 type 3), 4-511, 5- 37 (m-P-1 type5),

6- J2323 (m-p-1 type 4), 7- A37454 (m-P-1 type 7), 8- pUB8902 (LI clone).

9.6 Intergenic PCR primers

PCR primers were designed from upstream and downstream of the blaL\ gene open

reading frame of S. maltophilia IID1275 (Walsh et al1994) in an attempt to extend

the PCR product size to produce a DNA fragment that would contain the entire blau

gene (Figure 9.3). Amplification conditions were applied as in Section 9.3, but with

varying annealing temperatures and MgCb concentrations. A single fragment of

DNA of the appropriate size (944 bp) could be amplified from the positive control

plasmid DNA (pUB8902) employing an annealing temperature of 58°C and ImM
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MgCh. However, when the reaction was repeated with DNA from the seven test S.

maltophilia strains (GEL, 0062, U152, J2323, 37, 511 and A37454), no product was

obtained. Therefore, under these optimised conditions, this primer set appears to

specific for only the metallo-(3-lactamase from S. maltophilia strain II1275D and the

PGR product lengths from the seven test strains could not be extended.

Figure 9.3 Intragenic PCR primers homologous to the known bla^i

sequence of S. maltophilia IID1275

Sequence Position"

5' AAG GAG GCC CAT GCT AGT TT 3' 464

5' CTG CTC TGC TGG ACT CAA CA 3' 1407

a

Numbering is according EMBL Data Bank, accession number X7504.

Guanine (G) is replaced by cytosine, thymine (T) by guanine and adenine (A)

by thymine in the sequence ofGN12873 (Sanschagrin etal., 1998).

9.7 Sequence analysis of intragenic PCR products

DNA sequencing of the 671 bp intragenic PCR products from the seven S.

maltophilia strains (GEL, 0062, U152, J2323, 511,37 and AK37454) was performed

on an Applied Biosystems automated sequencer (Haematology Dept., Edinburgh

University). Sequences were determined on both DNA strands, to check sequence

accuracy. A sequence of 561 bp in length could be determined from each of the PCR

products. The resulting DNA sequences were entered into the BLAST database and
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aligned against the blctli and blaS nucleotide sequences from S. maltophiUa strain

1ID1275 and strain GN12873, respectively.

The nucleotide and deduced amino acid sequences of the PGR products from the

seven S. mciltophilia strains are shown in Figures 9.4 - 9.9. The Hinfl target site

(GxlANTC) is highlighted by a grey box in the sequences from strains GEL, 0062,

U152, J2323 and AK37454 (Figures 9.4, 9.5, 9.6, 9.7, 9.9). In the sequences from

strains 37 and 511 (Figure 9.7), thymine at position 391 (numbering according to

Walsh et a/., 1994) was replaced by adenine, Hinfl does not recognise this sequence

(GANAC) and therefore, the DNA was not cleaved at this point (Figure 9.2). The

DNA fragments from strains 37 and 513 differ by only four nucleotide substitutions

(Figure 9.8). These nucleotide differences all occured in the third position of a codon

and represent the same amino acid in each sequence. Thus the deduced amino acid

sequences from 511 and 37 are identical.

A comparison between the amino acid sequences derived from the 561 bp DNA

fragment sequenced from the seven S. maltophilia strains and the known amino acid

sequences of the metallo-p-lactamases from 11D1275 and GN12873 (Walsh et a/.,

1994; Sanschagrin et a/., 1998) are shown in Figure 9.10. Amino acid residues

identified from the crystal structure of the metallo-P-lactamase from S. maltophila

IID1275 (Ullah et a!., 1998) as being involved in zinc ion ligation or P-lactam

substrate binding are also highlighted in Figure 9.10. Table 9.3 lists the percentage

amino acid identity between the 187 amino acid section of the LI-type metallo-P-

lactamases sequenced from nine S. maltophilia strains.
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Figure 9.4 Nucleotide and deduced amino acid sequence of a 561 bp

intragenic DNA fragment amplified by PCR from S. maltophilia

GEL (m-|3-l type 1) with bla^i specific primers

68*

GAA GTA CCA CTG CCG CAG CTG CGG GCC TAC ACC GTG GAC GCC TCG TGG CTG

EVPLPQLRAYTVDASWL
120

CAG CCG ATG GCA CCG GTG CAG ATC GCC GAC CAC ACC TGG CAG ATC GGC ACC

QPMAPLQIADHTWQI GT
171

GAG GAC CTG ACC GCG CTG CTT GTG CAG ACC CCC GAC GGC GCG GTG CTG CTC

EDLTALLVQT PDGAVLL
222

GAC GGC GGC ATG CCG CAG ATG GCC AGC CAC CTG CTG GAC AAC ATG AAG GCG

DGGMPQMASHLLDNMKL
273

CGT GGC GTG ACA CCT CGG GAT CTG CGG CTG ATC CTG CTC AGC CAC GCA CAC

RGVT PRDLRLI LLSHAH
324

GCC GAC CAT GCC GGA CCG GTG GCG GAG CTG AAG CGC CGT ACG GGC GCC AAA

ADHAGPVAELKRRTGAK
375

GTG GCG GCC AAC GCC GAA TCG GCG GTG CTG CTG GCG CGT GGC GGC AGC GAT

V A A N A 'E"'^S AVLLARGGSD
426

GAC CTG CAC TTT GGC GAT GGC ATC ACC TAC CCG CCT CCG AAT GCA GAC CGC

DLHFGDGITYPPPNADR

477

ATC ATC ATG GAT GGT GAA GTG ATC ACG GTG GGC GGC ATC GTG TTC ACC GCG
I IMDGEVITVGGIVFTA

528

CAC TTC ATG GCG GGG CAC ACA CAG GGC AGC ACC GCG TGG ACC TGG ACC GAT

HFMAGHTQGSTAWTWTD
579

ACC CGC ATT GGC AAG CCG GTG CGC ATC GCC TAC GCC GGC AGC CTG AGT GCA

TRI GKPVRIAYAGSLSA

* Numbering of nucleotides is in accordance with Walsh et aL, (1994).
Grey boxed nucleotides indicate Hinfl restriction site.
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Figure 9.5 Nucleotide and deduced amino acid sequence of a 561 bp

intragenic DNA fragment amplified by PCR from S. maltophilia

0062 (m-J3-l type 2) with bla\A specific primers

68*

GAA GTA CCA CTG CCG CAG CTG CGG GCC TAC ACC GTG GAC GCC TCG TGG CTG

EVPLPQLRAYTVDASWW
120

CAG CCG ATG GCA CCG CTG CAG ATC GCC GAC CAC ACC TGG CAG ATC GGC ACC

QPMAPLQIADHTWQIGT
171

GAG GAC CTG ACC GCG CTG CTT GTG CAG ACC CCC GAC GGC GCG GTG CTG CTC

EDLTALLVQT PDGAVLL
222

GAC GGC GGC ATG CCG CAG ATG GCC AGC CAC CTG CTG GAC AAC ATG AAG GCG
D G G M P QMASHLLDNMKA

273

CGT GGC GTG ACG CCT CGG GAT CTG CGG CTG ATC CTG CTC AGC CAC GCA CAC

RGVTPRDLRLI LLSHAH
324

GCC GAC CAT GCC GGA CCG GTG GCG GAG CTG AAG CGC CGT ACG GGC GCC AAA

ADHAGPVAELKRRTGAK
375

GTG GCG GCC AAC GCC GAA TCG GCG GTG CTG CTG GCG CGT GGC GGC AGC GAT
V A A N A ~E SAVLLARGGS D
426

GAC CTG CAC TTC GGC GAT GGC ATC ACC TAC CCG CCT GCC AAT GCA GAC CGC

DLHFGDGITFPPANADR
477

ATC GTC ATG GAT GGT GAA GTG ATC ACG GTG GGC GGT ATC GTG TTC ACC GTG

IVMDGEVI TVGGIVFTV
528

CAC TTC ATG GCG GGG CAC ACC CCG GGC AGC ACC GTC TGG ACC TGG ACC GAT

HFMAGHT PGSTVWTWTD
579

ACC CGC AAT GGC AAG CCC GTT CGC ATC GCC TAC GCC GAC AGC CTG AGT GCA

TRNGKPVRIAYADSLSA

* Numbering of nucleotides is in accordance with Walsh et al.7 (1994).
Grey boxed nucleotides indicate HinSL restriction site.
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Figure 9.6 Nucleotide and deduced amino acid sequence of a 561 bp

intragenic DNA fragment amplified by PCR from S. maltophilia

U152 (m-J3-l type 3) with bla^i specific primers

68*

GAA GTA CCA CTG CCG CAG CTG CGG GCC TAC ACC GTG GAC GCC TCG TGG CTG

EVPLPQLRAYTVDASWL
120

CAG CCG ATG GCA CCG CTG CAG ATC GCC GAC CAC ACC TGG CAG ATC GGC ACC

QPMAPLQIADHTWQIGT
171

GAG GAC CTG ACC GCG CTG CTT GTG CAG ACC CCC GAC GGC GCG GTG CTG CTC

EDLTALLVQT PDGAVLL
222

GAC GGC GGC ATG CCG CAG ATG GCC AGC CAC CTG CTG GAC AAC ATG AAG GCG

DGGMPQMASHLLDNMKA
273

CGT GGC GTG ACG CCT CGG GAT CTG CGG CTG ATC CTG CTC AGC CAC GCA CAC

RGVTPRDLRLI LLSHAH

324

GCC GAC CAT GCC GGA CCG GTG GCG GAG CTG AAG CGC CGT ACG GGC GCC AAA

ADHAGPVAELKRRTGAK
375

GTG GCG GCC AAC GCC GAA TCG GCG GTG CTG CTG GCG CGT GGC GGC AGC GAT

V A A N A EI S AVVLARGGS D

426

GAC CTG CAC TTC GGC GAT GGC ATC ACC TAC CCG CCT GCC AAT GCA GAC CGC

DLHFGDGITYPPANADR

477

ATC GTC ATG GAT GGT GAA GTG ATC ACG GTG GGC GGC ATC GTG TTC ACC GTT

IVMDGEVITVGGIVFTV

528

CAC TTC ATG GCG GGG CAC ACC CCG GGC AGC ACC GCG TGG ACC TGG ACC GAT

HFMAGHTPGST IWTWTD
579

ACC CGC AAT GGC AAG CCG GTG CGC ATC GCC TAC GCC GAC AGC CTG AGT GCA

TRNGKPVRIAYADSLSA

* Numbering of nucleotides is in accordance with Walsh et al., (1994).
Grey boxed nucleotides indicate HinR restriction site.
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Figure 9.7 Nucleotide and deduced amino acid sequence of a 561 bp

intragenic DNA fragment amplified by PCR from S. maltophilia

J2323 (m-J3-l type 4) with bla^i specific primers

68*

GAA GTA CCA CTG CCG CAG CTG CGG GCC TAC ACC GTG GAC GCC TCG TGG CTG

EVPLPQLRAYTVDASWL
120

CAG CCG ATG GCA CCG CTG CAG ATC GCC GAC CAC ACC TGG CAG ATC GGC ACC

QPMAPLQIADHTWQIGT
171

GAG GAC CTG ACC GCG CTG CTT GTG CAG ACC CCC GAC GGC GCG GTG CTG CTC

EDLTALLVQT PDGAVLL
222

GAC GGC GGC ATG CCG CAG ATG GCC AGC CAC CTG CTG GAC AAC ATG AAG GCG

DGGMPQMASHLLDNMKA
273

CGT GGC GTG ACG CCT CGG GAT CTG CGG CTG ATC CTG CTC AGC CAC GCA CAC

RGVTPRDLRLI LLSHAH
324

GCC GAC CAT GCC GGA CCG GTG GCG GAG CTG AAG CGC CGT ACG GGC GCC AAA

ADHAGPVAELKRRTGAK
375

GTG GCG GCC AAC GCC GAA TCG GCG GTG CTG CTG GCG CGT GGC GGC AGC GAT
V A A N A E AVLLARGGSD

426

GAC CTG CAC TTC GGC GAT GGC ATC ACC TAC CCG CCT GCC AAT GCA GAC CGC

DLHFGDGITYPPANADR
477

ATC GTC ATG GAT GGT GAA GTG ATC ACG GTG GGC GGC ATC TTG TTC ACC GTG

IVMDGEVITVGGILFTV

528

CAC TTC ATG GCG GGG CAC ACC CCG GGC AGC AAC GCA TGG ACC TGG ACC GAT

HFMAGHTPGSTAWTWTD
579

ACC CGC AAT GGC AAG CCG GTG CGC ATC GCC TAC GCC GGC AGC CTG AGT GCA
TRNGKPVRIAYADSLSA

* Numbering of nucleotides is in accordance with Walsh et al(1994).
Grey boxed nucleotides indicate HirAI restriction site.
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Figure 9.8 Nucleotide and deduced amino acid sequence of a 561 bp

intragenic DNA fragment amplified by PCR from S. maltophilia

strains 37 (m-P-1 type 5) and 511 with bla^i specific primers

68*

GAG GCA CCG CTG CCA CAA CTG CGG GCC

EAPLPQLRA
120

CAG CCG ATG GCG CCG CTG CAG GTT GCC

QPMAPLQVA
171

GAG GAC CTG ACC GCG CTG CTG GTG CAG

EDLTALLVQ
222

GAT GGC GCA ATG CCA CAG ATG GCC GGT

DGAMPQMAG
273

CGC GGC GTG GCC CCG CAG GAC CTG CGA

RGVAPQDLR
324

GCC GAC CAC GCC GGC CCG GTC GCC GAG

ADHAG PVAE
375

GTG GCG GCC AAT GCA GAA ACG GCG GTG

VAANAETAV
426

GAC CTG CAC TTT GGC GAC GGC ATC ACC

DLHFGDGIT

477 C

ATC ATC ATG GAT GGT GAA GTG GTC ACG

I IMDGEVVT
528

CAC TTC ATG CCG GGG CAC ACC CCG GGC

HFMPGHTPG

579

ACC CGC GAT GGG AAG CCG GTG CGC ATC

TRDGKPVRI

TAT ACC GTG GAT GCG TCC TGG CTG

YTVDASWL

GAC CAC ACC TGG CAG ATC GGC ACC

DHTWQIGT

ACC GCC GAG GGC GCA GTA CTG CTG

TAEGAVLL
G

CAC CTG CTG GAC AAC ATG AAA CTG

HLLDNMKL

C

TTG ATC CTG CTT AGC CAT GCG CAT

LILLSHAH

CTC AAG CGT CGC ACC GGC GCG CAT

LKRRTGAH

CTG CTG GCG CGC GGC GGC AGC AAC

LLARGGSN

T

TAT CCG CCG GCC AGC GCC GAC CGC

YPPASADR

GTG GGC GGC ATC GCA TTC ACC GCG

VGGIAFTA

AGC ACC GCC TGG ACC TGG ACC GAC

STAWTWTD

GCC TAC GCC GAC AGC CTG AGT GCA

AYADSLSA

* Numbering of nucleotides is in accordance with Walsh et al.7 (1994).
A - Thymine (T) at position 391 is replaced by adenine (A), therefore, HinfI cannot
cleave the DNA at this site.
-Nucleotides in black type represent the sequence from 37, whereas green letters
indicate the nucleotide differences that occur in the sequence from strain 511
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Figure 9.9 Nucleotide and deduced amino acid sequence of a 561 bp

intragenic DNA fragment amplified by PCR from S. maltophilia

AK37454 (m-(3-l type 7) with bla^\ specific primers

68*

GAG GCA CCG CTG CCA CAG CTG CGG GCC TAC ACC GTG GAT GCC TCC TGG CTG

EAPLPQLRAYTVDASWL
120

CAG CCG ATG GCG CCG CTG CAG ATT GCC GAC CAC ACC TGG CAG ATC GGC ACC

QPMAPLQIADHTWQI GT
171

GAG GAC CTG ACT GCG CTG CTG GTG CAG ACC GCC GAG GGC GCA GTA CTG CTG

EDLTALLVQTAEGAVLL
222

GAT GGC GGC ATG CCG CAG ATG GCC AGC CAC CTC ATC AGC AAC ATG AAG GTG

DGGMPQMAGHLI SNMKV
273

CGC GGC GTG GCC CCG CAG GAC CTG CGA TTG ATC CTG CTC AGC CAT GCG CAT

RGVAPQDLRLI LLSHAH
324

GCC GAC CAC GCC GGC CCG GTC GCC GAG CTC AAG CGT CGA ACC GGC GCG CAT

ADHAGPVAELKRRTGAH
375

GTG GCG GCC AAT GCC GAA TCG GCG GTG CTG CTG GCG CGC GGC GGT AGC AAC

V A A N A E S AVLLARGGSN
426

GAC CTG CAC TTT GCC GAC GGC ATA ACG TAT CCG CCG GCC AGC GCC GAC CGG

DLHFADGITYPPASADR
477

ATC ATC ATG GAT GGT GAA GCG GTC ACG GTG GGC GGC ATC ACA TTC ACC GCG

I IMDGEAVTGGGITFTA
528

CAC TTC ATG CCA GGG CAT ACC CCG GGC AGC ACC GCC TGA ACC TGG ACC GAC
HFMPGHTPGSTAWTWTD
579

ACC CGC GAT GGC AAG CCG GTG CGC ATC GCC TAC GCC GAC AGC CTG AGC GCA

TRDGKPVRIAYADS LSA

* Numbering of nucleotides is in accordance with Walsh et al., (1994).
Grey boxed nucleotides indicate Hinfl restriction site.
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Figure 9.10 A comparison between the amino acid sequences

deduced from a 561 bp DNA fragment sequenced from seven

different S.maltophilia strains and the known amino acid sequences

from S.maltophilia strains 11D1275 and GN128733

★ * * *

IID1275 EVPLPQLRAYTVDASWLQPMAPLQIADHTWQIGTEDLTALLVQTPDGAVLLDGGMPQMASHLLDNM

GN1287 3 EAPLPQLRAYTVDASWLQPMAPLQVADHTWQIGTEDLTALLVQTAEGAVLLDGGMPQMAGHLLDNM

GEL EVPLPQLRAYTVDASWLQPMAPLQIADHTWQIGTEDLTALLVQTPDGAVLLDGGMPQMA5HLLDNM

0062 EVPLPQLRAYTVDASWLQPMAPLQIADHTWQIGTEDLTALLVQTPDGAVLLDGGMPQMASHLLDNM

U152 EVPLPQLRAYTVDASWLQPMAPLQ IADHTWQIGTEDLTALLVQTPDGAVLLDGGMPQMASHLLDNM

J2323 EVPLPQLRAYTVDASWLQPMAPLQ IADHTWQIGTEDLTALLVQTPDGAVLLDGGMPQMASHLLDNM

511/37 EAPLPQLRAYTVDASWLQPMAPLQVADHTWQIGTEDLTALLVQTAEGAVLLDGAMPQMAGHLLDNM

AK37454 EAPLPQLRAYTVDASWLQPMAPLQIADHTWQIGTEDLTALLVQTAEGAVLLDGGMPQMAGHLISNM

* * ** * * *

IID1275 KARGVTPRDLRLILLSHAHADHAGPVAELKRRTGAKVAANAESAVLLARGGSDDLHFGDGITYPPA

GN12873 KLRGVAPQDLRLILLSHAHADHAGPVAELKRRTGAHVAANAETAVLLARGGSNDLHFGDGITYPPA

GEL KLRGVTPRDLRLILLSHAHADHAGPVAELKRRTGAKVAANAESAVLLARGGSDDLHFGDGITYPPP

0062 KARGVTPRDLRLILLSHAHADHAGPVAELKRRTGAKVAANAESAVLLARGGSDDLHFGDGITFPPA

U152 KARGVTPRDLRLILLSHAHADHAGPVAELKRRTGAKVAANAESAWLARGGSDDLHFGDGITYPPA

J2323 KARGVTPRDLRLILLSHAHADHAGPVAELKRRTGAKVAANAE SAVLLARGGSDDLHFGDGITYPPA

511/37 KLRGVAPQDLRLILLSHAHADHAGPVAELKRRTGAHVAANAETAVLLARGGSNDLHFGDGITYPPA

AK37454 KVRGVAPQDLRLILLSHAHADHAGPVAELKRRTGAHVAANAE SAVLLARGGSNDLHFADGITYPPA

* ** *

IID1275 NADRIVMDGEVITVGGIVFTAHFMAGHTPGSTAWTWTDTRNGKPVRIAYADSLSA

GN12873 SADRIIMDGEWTVGGIAFTAHFMPGHTPGSTAWTWTDTRDGKPVRIAYADSLSA

GEL NADRIIMDGEVITVGGIVFTAHFMAGHTQGSTAWTWTDTRIGKPVRIAYAGSLSA

0062 NADRIVMDGEVITVGGIVFTVHFMAGHTPGSTVWTWTDTRNGKPVRIAYADSLSA

U152 NADRIVMDGEVITVGGIVFTVHFMAGHTPGSTIWTWTDTRNGKPVRIAYADSLSA

J2323 NADRIVMDGEVITVGGILFTVHFMAGHTPGSTAWTWTDTRNGKPVRIAYADSLSA

511/37 SADRIIMDGEWTVGGIAFTAHFMPGHTPGSTAWTWTDTRDGKPVRIAYADSLSA

AK37454 SADRIIMDGEAVTVGGITFTAHFMPGHTPGSTAWTWTDTRDGKPVRIAYADSLSA

8 Amino acid residues conserved in all of the nine sequences are represented in black,
whereas red lettering indicates residues which differ from sequence to sequence.
* Indicates residues identified as being involved in the coordination of zinc ions or
substrate binding from the crystal structure of the metallo-(3-lactamase from S.
maltophilia IID1275 (Ullah et a/., 1998).
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fable9.3AminoacididentitybetweenLl-typep-lactamasessequencedfromnineA.maltophiliastrains Identityvaluesareexpressedasapercentagecalculatedfromanaminoacidsequencethatis187residuesinlength Strain

IID1275

GN12873

GEL(1)

0062(2)

11152(3)

J2323(4)
37(5)

511A37454(7)

IID1275

-

-

-

-

-

-

-

-

GN12873

91.4

-

-

-

-

-

-

-

GEL(1)"

96.8

91.4

-

-

-

-

-

-

1)062(2)

98.4

89.3

95.2

-

-

-

-

-

U152(3)

98.9

88.8

95.2

98.4

-

-

-

-

J2323(4)

98.9

90.4

95.7

98.4

98.9

-

-

-

37(5)

90.4

99.5

89.8

88.8

88.8

89.8

-

-

511

90.4

99.5

89.8

88.8

88.8

89.8

100

-

A37454(7)

89.8

95.7

88.8

88.2

88.2

89.3

95.2

95.2

aS.maltophiliametallo-|3-lactamasetypesarcnumberedinparenthesis



9.8 Discussion

PCR with the intragenic primer set described (Section 9.3) has proved to be an

excellent technique for rapidly identifying the presence of metallo-P-lactamase genes

in S. maltophilia isolates, and for investigating the variation within the LI family of

enzymes at the molecular level.

It has been shown that the deduced 187 amino acid residues from m-P-types 1-5 and

7 share > 88.2% homology with one another and > 88.3% homology with the

metallo-P-lactamases sequenced from strains IID1275 and GN12873 (Table 9.3).

Therefore, the S. maltophilia metallo-P-lactamases are a family of related enzymes

differing by a few amino acids and these differences account for their diversity in pi

and subtle variations in substrate profiles. Figure 9.9 shows that the residues

proposed to be involved in the co-ordination of the two zinc ions bound at the active

site or substrate binding (Ullah ei at., 1998) are conserved within the amino acid

sequences of the different m-P-1 types, m-P-1 type 1 is the only exception to this. In

the sequence from S. maltophilia GEL (m-P-1 type 1) the aspartate (D) 184 residue

(numbering according to Ullah et a!1998) identified as a zinc ligand orientating

group (Ullah et a!, 1998) is replaced by glycine (G). The importance of this amino

acid substitution in terms of structure and function could only be determined in the

future by constructing a mutant m-P-1 type 1 with a single aspartate substitution in

place of glycine and then evaluating the kinetics of the mutant enzyme

It is interesting that the m-P-1 type 5 from strain 37 shares 100% identity with the
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187 amino acids deduced from metallo-(3-lactamase produced by strain 511 (Table

9.3). The metallo-(3-lactamases from these two strains have previously been shown

to have a similar substrate profile and pi value (6.8) and it has been speculated that

these could indeed be the same enzyme. Discrepancies have, however, been found

between the inhibitor profiles of these enzymes, for example 2mM nitroacetic acid

inhibits the metallo-|3-lactamase of strain 511, but does not inhibit m-(3-l type 5

(Payne et a/., 1994b). It is therefore, still possible that there are amino acid

differences between these two metallo-p-lactamases within the remaining residues

which make up the complete protein and have not been determined here, and these

differences may only be reflected in inhibitor profiles. Only further sequence

analysis would determine whether this is, in fact, the case. If, however, m-[3-l type 5

from strain 37, (originally identified in the UK (Payne et a/., 1994a)) and strain 511

(an Italian isolate (Felici el a/., 1993)) do encode metallo-P-lactamases identical in

amino acid sequence this leads on to the question - are some S. maltophilia metallo-

(3-lactamase types more prevalent than others9 A future study determining the

relative abundance of m-[3-i types amongst clinically isolated S. maltophilia from

different geographical areas would offer the answer to this question.

The genes blau and h/aS from S. maltophilia 1ID1275 and GN12873, respectively,

are known to translate to an unmodified protein that is 290 amino acids in length

(Walsh et a/., 1994; Sanschargrin et al., 1998). In this study, an intragenic stretch of

187 amino acids has been deduced by sequencing the PGR products from seven S.

maltophilia strains, however, for completeness it would be interesting to determine

the level of relatedness that exists between the remaining 103 residues. Section 9.6
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describes the design of primers outside the metallo-P-lactamase open reading frame,

but unfortunately, a PCR product could only be amplified from the positive control

(pUB8902). PCR with these intergenic primers appears to be more sensitive to the

amplification conditions. Three nucleotide differences also occur between the b/ciu

and blaS right hand intergenic primer sequences (Figure 9.3, start position 1407) and

therefore, to achieve success different PCR primers may be required. Nevertheless,

in the knowledge that the metallo-P-lactamases encoded by b/aL\ and b/aS share

91.4% homology over this 187 amino acid section of the protein and 88. 6%

homology over the entire protein (Sanschargrin et a/., 1998), it is highly probable

that the m-P-1 types 1-5 and 7 exhibit a similar degree of heterogeneity throughout

the complete protein as they do in the deduced 187 amino acid sequence.

From Table 9.3, the metallo-P-lactamases from nine S. maltophilia strains can be

divided into two groups The first group comprises the m-P-1 types from strains

GN12873, 37, 511 and A37454 which all share >95.2% homology with one another

but <91.4% homology with the second group made up of the enzymes from strains

IID1275, GEL, 0062, U152 and J2323. The 187 amino acid sequence determined

from the m-P-1 types from 11D1275, GEL, 0062, U152 and J2323 also share >95.2%

homology with one another (Table 9.3). Once again, only further sequence analysis

would establish if these two groupings were true. It would be interesting to study the

relatedness of these nine strains over the rest of the genome and determine whether

strains that have more closely related metallo-P-lactamases are also more closely

associated throughout the entire genome. S. maltophilia is at present the sole

member of the genus Sienoirophomotias and as molecular-based typing techniques
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become more routinely employed it is possible that speciation within the genus

Stenotrophomonas will undergo changes.

The heterogeneity exhibited by the S. maltophilia metallo-P-lactamases is by no

means a unique phenomenon. Considerable sequence variation is also known to

exist within other P-lactamase types such as at the ampC locus within the species C.

diversus and also C. jreundii (Jones et a/., 1994). Additionally, the chromosomal

molecular class A cephalosporinases (L2) that are coordinately expressed with the S.

maltophilia metallo-P-lactamases also appear to be a heterogeneous group of

enzymes (Payne et ah, 1994a; Pradhananga et a/., 1996). The heterogeneity of the

L2 enzymes have not vet been studied at the molecular level
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10: GENERAL DISCUSSION

10.1 Introduction

The main aims of this thesis have been to examine the role of (3-lactamases in

carbapenem-resistant strains from Japan and carbapenem-resistant A. veronii bv.

sobria isolated from Vellore, South India. In addition, the molecular heterogeneity

of the S. maltophilia metallo-(3-lactamases has been analysed.

10.2 The relevance of serine-based carbapenem-hydrolysing P-

lactamases

Assessing the problem of P-lactamases in carbapenem resistance is vitally important

for the implementation of therapeutic strategies. In the early 1990s, potent

carbapenemase activity had not been associated with a serine P-lactamase and it was

thought that metallo-P-lactamases would become the major resistance mechanism to

the carbapenems (Livermore, 1993b; Payne, 1993). In this thesis, a survey on

carbapenem-resistance mechanisms in 61 Japanese P. aeruginosa clinical isolates

has demonstrated that an association between a serine-based chromosomal

cephalosporinase and an alteration in outer membrane permeability was the most

prevalent mechanism of resistance amongst the strains studied (Section 3). Recently

the metallo-P-lactamase IMP-1 has been disseminating amongst clinically isolated P.

aeruginosa in Japan. However, in this study no IMP-1 metallo-P-lactamase was

219



detected (Section 3.6 - 3.7) which implies that the occurrence of this enzyme is still

relatively rare in P. aeruginosa. Further studies on P. aeruginosa isolates from

Kuwait and Turkey have also demonstrated the widespread nature of a carbapenem

resistance mechanism which is a combination of a chromosomal class C (3-lactamase

and the loss of an imipenem-specific porin channel (R. Walker - unpublished data).

In recent papers from Japan emphasis is generally placed on the detection of IMP-1

in carbapenem-resistant isolates, and on occasion these reports have ignored or failed

to detail the carbapenem resistance mechanisms of non-IMP-1 isolates. In the

original Japanese report (Senda et a/., 1996a), 132 carbapenem resistant P.

aeruginosa strains were examined and 13% were found to carry the b/am? gene. The

carbapenem resistance mechanism in the remaining 87% was not determined and it is

highly probable that the resistance mechanism in many of these strains that were not

further investigated involved a cephalosporinase and a reduction in outer membrane

permeability.

Although it was initially thought that the metallo-(3-lactamases would be the most

common cause of carbapenem resistance, it is becoming increasingly evident that the

rise in the number of serine-based carbapenemases in clinical bacteria is an important

issue that must be addressed. The importance of the molecular class C (3-lactamase

in conferring carbapenem resistance as part of a two-component mechanism has been

emphasised in this thesis. The involvement of a class C cephalosporinase in

carbapenem resistance has also been identified in E. cloacae, C.freundii, P. retigerii,

P. mirabilis and recently K. pneumoniae (Section 1.10.1.2). In addition, serine-based

220



molecular class A and D imipenem-hydrolysing enzymes in Acinelobacter species

are attracting much attention (Section 1.12.1). Furthermore, it has also been revealed

recently that the production of a molecular class A Sme-1 like carbapenemase in S.

marcescens is not such a rare event as originally thought (Section 1.12.1).

It is important to remember that most common P-lactamases have a serine-based

catalytic mechanism and it seems reasonable to assume that some of these enzymes

will adapt themselves to include the carbapenems in their substrate profile. This

scenario has most recently been illustrated in a report by Dorai-John et al., (1998) on

the identification of a novel putative molecular class C enzyme that efficiently

hydrolyses imipenem. This is unlike previously reported class C cephalosporinases

that can only feebly hydrolyse imipenem, although this is sufficient to confer

carbapenem resistance in a less permeable background.

In Section 3.9 it was shown that the imipenem MICs in carbapenem resistant P.

aeruginosa from Japan were all less than the breakpoint for resistance when

imipenem MICs were determined in the presence of BRL42715. BRL42715 is a

good inhibitor of molecular class A, C and D P-lactamases in vitro, and it is

unfortunate that this compound cannot be applied clinically. A general serine P-

lactamase inhibitor in combination with a P-lactam could possibly be important in

overcoming the problem of serine based carbapenemases. Currently many molecular

class A and D p-lactamases can be targeted using clavulanic acid, sulbactam or

tazobactam, there are, however, no molecular class C P-lactamase inhibitors.
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10.3 The significance of metallo-P-lactamases

Although the importance of serine P-lactamses in carbapenem resistance is beginning

to be realised, the metallo-P-lactamases do still present a threat to the efficacy of the

carbapenems as postulated by Payne (1993) and Livermore (1993b). The emergence

in Japan of the broad-spectrum plasmid mediated P-lactamase IMP-1 in a variety of

clinically important bacteria, including K. pneumoniae is probably one of the most

significant events in terms of metallo-p-lactamase mediated resistance. Recent

findings indicate that the isolation of b/amp containing strains is still increasing (Ito

el al., 1997), however, one consolation is that, as yet, this enzyme has still not been

reported outside of Japan. Although IMP-1 has been described in common bacterial

pathogens, as already illustrated in the introduction of this thesis (1.11.1.5), many of

the metallo-P-lactamases that have been identified, to date, are often found in

bacteria of considerably less clinical importance.

10.4 The significance ofAeromonas carbapenemases

Aeromonas species, some of which produce metallo-P-lactamases, are considered to

be infrequent pathogens although their ability to cause infection has been reported

increasingly in the past few years (Wilcox and Jones 1995). The role of metallo-

carbapenemases in conferring resistance has been rather unclear, as most species that

produce a carbapenem-hydrolysing metallo-P-lactamase remain susceptible to the

carbapenems under standard sensitivity testing conditions (104cfu). This thesis has
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reported the identification of two carbapenem resistant A. veronii bv. sobria strains

tested with a conventional inoculum (104cfu), that were subsequently found to have

derepressed expression of a novel carbapenemase (Table 5.1 and Section 5.5). In

Table 5.2 it was shown that unless there are at least 106cfu of bacteria present the

inducible carbapenemase does not afford A. veronii bv. sobria with protection

against imipenem, thus the number of bacteria present and the amount of metallo-p-

lactamase produced is crucial to the manifestation of carbapenem resistance. It has

been suggested that at the site of infection bacterial concentrations are likely to be

larger than that used in conventional susceptibility testing, although this is perhaps

debatable (Rossolini el al., 1995). Currently carbapenem resistant A. veronii bv.

sobria are not a problem clinically, however, if they do pose a problem in the future,

possibly as a consequence of greater reliance on the carbapenems, it is most likely

that it will be caused by the selection of derepressed mutants. Therefore, care should

be taken in the choice of agents, particularly for invasive Aeromonas infections

because of the potential to select for derepressed mutants that are generally not only

hyper-producers of a carbapenemase but also of a penicillinase and cephalosporinase.

Agents such as gentamicin, or the fluoroquinolone ciprofloxacin have been

previously recommended for the treatment of serious Aeromonas infection (Bakken

el al., 1988).
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10.5 The P-lactamases of carbapenem-resistant A. veronii bv. sobria

strain 13

In this thesis, the P-lactamases ofA. veronii bv. sobria strain 13 have been examined

in detail by applying several different techniques such as ion exchange

chromatography, PCR and gene cloning. It appears that like many Aeromonas

species A. veronii bv. sobria 13 produces three chromosomally encoded P~

lactamases. These P-lactamases include a novel carbapenemase AVS-1, a

penicillinase named AVS-2 and a third P-lactamase AVS-3 that is possibly related to

previously reported Aeromonas cephalosporinases. The gene cloning and sequence

analysis of the AVS-2 penicillinase demonstrated that this enzyme is closely related

(>95.8% amino acid homology) to the molecular class D penicillinases AsbBl and

AmpS identified in a strain of A. jandaei and A. veronii bv. sobria, respectively

(Table 8.3) (Rasmussen et al., 1994a; Walsh et ah, 1995b). Class D penicillinases

appear to be ubiquitous throughout the Aeromonas genus and have been shown to be

linked to a two component cre-like operon that is involved in the regulation of

Aeromonas P-lactamases (Alksne and Rasmussen, 1997; Niumsup et al., 1997).

10.6 The novel AVS-1 carbapenemase

The novel carbapenemase AVS-1 was found to possess several unusual properties

including an atypical pi value and substrate and inhibitor profiles, when compared

with previously reported Aeromonas carbapenemases (Sections 5 and 6). The

224



employment of an imipenem substrate based modification after IEF (Section 5.7)

proved invaluable in initially identifying the ability of the AVS-1 P-lactamase to

hydrolyse nitrocephin efficiently in addition to imipenem, an attribute not previously

described for the Aeromonas carbapenemases. Purification of the AVS-1 P-

lactamase (Section 6) further demonstrated the unusual properties of this enzyme,

including its ability to hydrolyse ampicillin and cephaloridine, its resistance to the

metallo-P-lactamase inhibitor EDTA (lOOmM) and its insensitivity to variations in

zinc sulphate concentrations. The Aeromonas metallo-P-lactamases CphA and ImiS

exhibit a very narrow substrate profile, with a marked preference for carbapenems

and are inhibited by EDTA (Rossolini el a/., 1996). The P-lactamase AVS-1 was

also found to be sensitive to the serine P-lactamase inhibitors clavulanic acid,

tazobactam and sulbactam, although it has already been speculated that these

inhibitors could be acting as competitive substrates (Section 6.9), because these

compounds are known to be hydrolysed by some metallo-P-lactamases. Both ImiS

and CphA are known to hydrolyse BRL42715, however, hydrolysis of these other

serine P-lactamase inhibitors has not been reported (Matagne et al., 1995, Walsh et

al., 1996).

The arguments for the AVS-1 carbapenemase being encoded by a metallo-P-

lactamase gene identified in both strain 13 and 99 have been put forward in Section

7.6. The metallo-P-lactamase gene, although not sequenced in its entirety (27

nucleotides could not be determined at the 5' end of the gene), was found to be

closely related (>95% amino acid homology) to the previously identified Aeromonas

metallo-P-lactamases CphA, CphA2 and ImiS (Table 7.2). These results suggested
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that if the metallo-|3-lactamase gene does encode the AVS-1 enzyme then there are

only a few amino acids that could possibly account for the extended substrate

spectrum and the unusual inhibitor profile of this AVS-1 carbapenemase.

Only two amino acids (lysine 49 and asparagine 206) were identified from the

sequence of the metallo-P-lactamase gene from A. veronii bv. sobria 13 and 99 as

being possibly close to the enzyme active site (Section 7.5) and therefore, these may

be the important amino acid substitutions. It should also be pointed out that these

residues were identified by aligning the metallo-P-lactamase sequence identified in

both strain 13 and 99 with the sequences of the metallo-P-lactamases from B. fragilis

(CcrA3) and B. cereus (P-lactamase II) which function optimally with two zincs,

unlike the Aeromonas metallo-P-lactamases which are known to function at their

maximum with only one zinc. The difference in the requirement for zinc between

these enzymes suggests that Aeromonas enzymes are radically different from CcrA3

and P-lactamase II, thus residues important in catalysis in CcrA3 and P-lactamase II

are not necessarily the same in Aeromonas metallo-P-lactamases. The importance of

individual residues in the Aeromonas metallo-P-lactamase will only be made clearer

when the crystal structure of an Aeromonas metallo-P-lactamase has been resolved

and from site-directed mutagenesis studies.

Although arguments for the probable metallo-P-lactamase origin of the AVS-1 P-

lactamase have been reasoned in Section 7, the cloning of this carbapenemase is

ultimately required to confirm whether it is truly related to previously identified

Aeromonas metallo-P-lactamase. The strategies employed in this study in an attempt
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to clone AVS-1 have been unsuccessful (Section 8). A possible alternative cloning

strategy could involve preparing a genomic DNA library from A. veronii bv. sobria

13, preparing colony blots of the library and hybridising these blots with a probe

consisting of the metallo-P-lactamase encoding PCR product amplified from strain

13. (3-Lactamase extracts prepared from any hybridisation positive clones could be

analysed by IEF to determine whether they encode a metallo-P-lactamase with the

same pi as AVS-1 (that is 5.84).

10.7 Stenotrophomonas maltophilici metallo-P-lactamases

Although the relevance of Aeromonas metallo-P-lactamases in conferring

carbapenem resistance has been uncertain, in contrast the S. maltophilici metallo-p-

lactamases are known undoubtedly to cause imipenem and meropenem resistance.

Permeability is thought to play a part in S. maltophilia carbapenem resistance,

however, the production of the metallo-P-lactamase, whether inducible or

derepressed, is known to account for high level resistance (Akova et a/., 1991). S.

maltophilia isolates are known to produce a variety of LI-type metallo-P-lactamases

that can be differentiated from one another biochemically. In this study, 561 bp

intragenic DNA sequences of metallo-P-lactamases from six S. maltophilia strains

have been determined from PCR products (Section 9). A comparison of the 187

deduced amino acid sequences of the six metallo-P-lactamases with one another and

with the same region encoded by the blciu and blas metallo-P-lactamase genes from

S. maltophilia IID1275 and GN12873 has revealed that these enzymes are all closely
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related to one another (>88.8% homology - Table 9.3). These enzymes all differ

from one another at a few amino acid positions that have generally not been reported

as residues known to be important in enzyme catalysis and these changes account for

the differences in pi and substrate and inhibitor profiles (Section 9.7). Metallo-(3-

lactamase heterogeneity is a feature not only between bacteria of different genera but

also between strains of the same species and this is exemplified by S. maltophilia

metallo-(3-lactamases. Work in this thesis also suggests that biochemical

heterogeneity can be a feature of the Aeromonas metallo-(3-lactamases, but at the

molecular level, this is probably caused by minor amino acid substitutions.

Investigating metallo-(3-lactamase heterogeneity is important clinically for future

drug development. The S. maltophilia metallo-P-lactamase heterogeneity study

described here, is helpful in identifying whether recognised active site residues are

conserved, which is essential when designing new antibiotics or inhibitors. Gene

sequence data also reveal residues that may be responsible for substrate profile

differences and may result in clinical failure in a strain that possesses one type of

enzyme but not another.

10.8 Overcoming metallo-P-lactamase mediated carbapenem

resistance

Although the role of metallo-P-lactamases in conferring resistance, particularly in

Aeromonas has not always been clear cut, metallo-enzymes such as IMP-1 can pose
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a clinical problem and there is a need for new drug strategies against these enzymes.

The monobactam aztreonam is unlike most other P-lactams in that it remains stable

in the presence of zinc carbapenemases. There are, however, draw backs to using

such an agent, specifically the fact that several of the metallo-P-lactamase producing

bacteria can additionally produce chromosomal cephalosporinases which, when

hyperproduced, can destroy aztreonam.

Designing new agents to overcome metallo-P-lactamase mediated resistance may

involve devising more stable carbapenems by altering their side chain substituents.

An alternative approach would be to discover or design effective inhibitors against

metallo-p-lactamases that can be administered in combination with a P-lactam. The

latter, however, may prove to be difficult to achieve because of the heterogeneous

nature of the metallo-P-lactamase group as a whole. This potential problem has

recently been illustrated by Payne el al., (1997), where a series of mercaptoacetic

acid thiol esters were found to be good inhibitors of some metallo-P-lactamases but

completely ineffective against others. A continued effort to understand the catalytic

mechanisms and substrate binding of metallo-P-lactamases is thus important in the

rational design of effective inhibitors. In the mean time until new compounds

become available it is imperative that carbapenems, as with all antibiotics, should be

employed with extreme caution to keep the selection of carbapenemases at bay,

whether they be serine or metallo-based.
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