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Abstract

Natural variability between individuals results in a fixed dose of drug having
different effects in different people. In the case of anticancer agents either an
underdose or overdose of drug can be life threatening. Hence, understanding the
mechanisms or causes of this variability is essential to optimise therapy, especially

for cancer patients.

Since drug induced effects (pharmacodynamics (PD)) can often be linked to the post
administration drug concentration (pharmacokinetics, PK), one method of
investigating the variability in effect, using a ‘population pharmacokinetic study’, is
to describe causes of variability in drug concentration in terms of demographic or
pathological factors. The resultant statistical model may then be used for dose
adjustment, and this may have particular importance in specific 'at risk' patient

groups, e.g., the elderly, neonates or those with renal or hepatic dysfunction.

The population approach allows the analysis of sparse data sets, in which each
individual contributes only a small number of samples, but a large number of
subjects is required. The accuracy of the population parameter estimates of the PK
model is dependent on various factors of the design of the study. In particular,
interest has concentrated on comparing model parameter estimates obtained from
designs with different sampling times to study whether there is a set of times which

might be regarded as “optimal”.

“Optimal sampling strategies” are based upon the concept of ‘information-rich’ times

within a concentration-time profile.

In this thesis, the selection of optimal sampling times was based on sensitivity
analysis and applied to the one and two-compartment PK models. Simulation studies
were used to show that parameter estimates obtained using an optimal design method

with a reduced number of samples were as good as, if not better than, those obtained

XXVil



from PK studies in which the sampling times were selected empirically. In addition,
the effect of adding sampling windows around the “optimal” times offered improved
estimation of the inter-subject variability parameters, when compared to designs with
fixed sampling times. This result has particular relevance in a clinical setting where
a sample may not be collected at the stipulated time, but is still useful in the analysis

if the “actual” sampling time is recorded accurately.

Further simulations were based on published sampling designs for the anticancer
drug carboplatin, and these were used for comparison with the results when an

“optimal design” was used.

Finally, a population analysis was carried out on data from a phase I clinical trial of
the broad-spectrum neuropeptide antagonist, Antagonist G. The parameter values
were used to design an “optimal” sampling strategy. As the sample times of the
optimal strategy were different to those used in the clinical study, further simulations

were used to compare the designs.

Using sensitivity analysis to design sampling strategies for population PK studies
allowed the selection of a minimum number of sampling times, but still resulted in
accurate estimation of the parameters of the one and two-compartment PK models.
These sampling times provide a basis for PK study design, around which further
samples could be added to improve the identification of the model and also the

estimation of parameters and their inter and intra-subject variability.
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1 Optimisation of Study Design in the Pharmacokinetics of

Anticancer Drugs.

1.1 Introduction

The treatment of patients with cytotoxic chemotherapy for cancer is becoming
increasingly common. Cancer statistics show that two people in five will be
diagnosed with some form of the disease at some time in their lives and that cancer is
responsible for a quarter of all deaths in the UK. As a result, many organisations are
currently investigating new ways of preventing and treating the many types of cancer

(CRC 1999; CRC 2000).

In addition to surgery and radiotherapy, a common mode of treatment is with
anticancer drugs. The term chemotherapy encompasses several types of drugs with
different mechanisms of action. However the common aim of the use of these drugs
is to maximise tumour response to the drugs with minimal toxic side effects to the
patient. When any drug is administered to a patient, natural variability between
individuals means that the same dose can have different effects in different people.
The implications specific to anticancer agents are that both an underdose and an
overdose of drug can be life threatening (Evans et al. 1989). Hence, understanding
the mechanisms or causes of this variability is essential for optimising therapy for

cancer patients.

The study of the absorption, distribution and metabolism of a drug after
administration is termed pharmacokinetics (PK) and the effect that a drug has on the
body is termed the pharmacodynamics (PD). Collection and analysis of
pharmacodynamic information allows the interactions between the drug and the
target to be quantified in such a way as to describe the full range of action
(Gabrielsson et al. 1997). Responses to drugs can be measured in two ways:
continuously like blood pressure or heart-rate; or dichotomously, where there is
either a response or not, e.g., an epileptic seizure, cancer or death. The response to

the drug can be linked to the drug concentration and relationships between
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dose/concentration and therapeutic/toxic effects can be established (Gambus 1996;
Troconiz 1996). In oncology this has been applied to carboplatin therapy where the
AUC, as a measure of exposure to the drug is related to the degree of
leucocytopoenia observed (Kobayashi et al. 1993; Desoize et al. 1994b; Masson et al.
1997; van Warmerdam 1997). However, pharmacodynamic relationships may not be
found for all drugs and all cancers (van Warmerdam et al. 1995). One reason for this
is that in many cases more than one drug is administered simultaneously (phase III or
later) and therefore it is difficult to assign toxicity/response to a particular agent
(Evans et al. 1989). Correlations made between drug concentration and effect are
especially useful in pre-clinical situations where information from animal studies is
extrapolated (o humans. Often concentrations achieved are similar, but the doses

administered vary hugely (Evans et al. 1989; Danhof 1996).

The investigation into the variability in PK parameters across patients is termed
‘population pharmacokinetics (PK)’ (Whiting et al. 1986; Aarons 1991) and the aim
is to describe the variability in PK parameters in terms of biological factors. A
desired outcome is to use these biological factors to modify dosages, particularly in
specific 'at risk' patient groups, e.g., the elderly, neonates or those with renal or
hepatic dysfunction (Whiting et al. 1986). The regulatory agency in the U.S., the
Food and Drug Administration, has encouraged the routine incorporation of
population PK studies into the early phases of drug development (Peck et al. 1992,
Sun et al. 1999).

The aim of the studies described in this thesis is to investigate the efficiency of
different study designs in the estimation of population PK parameters. This is of
particular importance in oncology where patients may have a short life expectancy

and should not be subjected to lengthy conventional PK studies.
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1.2 Pharmacokinetics and Pharmacokinetic Modelling.

Pharmacokinetics

Pharmacokinetics (PK) is the study of drug absorption, distribution, metabolism and
elimination. Post-administration, the drug concentration-time profile can be used to
develop mathematical models relating the dose administered to the concentrations
observed in biological fluids, e.g., blood or urine. Information gained from
understanding these relationships can be used in three different ways: description,
prediction or explanation (Gabrielsson et al. 1997). The description of the data
allows definition of the model parameters. This in turn leads to the predictive use of
the model in new situations, e.g., expected concentrations when a new patient
receives the drug, given certain biological parameters. Pharmacokinetic modelling
can also be used to explain unexpected observations, e.g., when sub-populations that
handle the drug differently exist within a population of patients, for instance, patients

with hepatic or renal dysfunction (Whiting et al. 1986; Sun et al. 1999).

Pharmacokinetic Models

The most commonly used PK models involve compartmental methods of analysis in
which the body can be considered as a series of compartments or spaces into which
drugs are administered or distribute. Regression models and curve-fitting techniques
are then used to estimate the model parameters and to define the concentration-time
profile and the drug transfer between compartments (Gabrielsson et al. 1997). While
the compartments are often not identifiable in terms of specific organs of the body,
they nevertheless provide a useful tool to suggest information about physiological
processes after drug administration (Rescigno 1999). Both Rescigno (1999) and
Williams (1990) provide detailed derivation of the parameters used in compartmental

analyses.
The common assumption of such models is that first-order processes govern drug

transfer, i.e., the rate of change of the amount of drug within the compartment is

proportional to the amount present. Clearance (C/) and volume of distribution (V)
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are the pharmacokinetic model parameters used to describe the time-course of drug

concentration.

Clearance 1s a measure of drug elimination and is measured as the volume of fluid
cleared per unit time. Total measured clearance is the sum of all modes of
climination of the drug, e.g. hepatic metabolism, renal filtration. In this thesis

clearance is measured in litres per hour (1/h).

Volume of distribution relates the amount of drug in the body to the measured
concentration. It is a theoretical volume of fluid that the drug would have to
equilibrate in to achieve the observed concentration. This is affected by binding to
plasma proteins as only the drug in the plasma is measured and not that which
distributes into tissues. If a drug is highly protein bound, then most of it will remain
in the plasma (giving a high concentration) and it will have a low volume of
distribution. Conversely, if a drug is highly tissue bound, then little will remain in
plasma, giving low concentrations and a high volume of distribution. In this thesis

volume of distribution is measured in litres (1).

The simplest PK model is the one-compartment model, in which the drug is
considered to distribute throughout a single compartment after the administration of
an IV bolus dose (D) (figure 1.1). In this case, clearance and volume of distribution
lead to the definition of another important PK parameter, the elimination rate
constant, k., which is measured in units of ‘per time’, e.g., per hour (h") which is

used in this thesis, and

Fe=— Equation 1.1
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IV
Dose (D)

Figure 1.1 One-compartment pharmacokinetic model with IV bolus dose (D),
volume of distribution (¥) and first-order elimination (k.). C represents the
concentration of drug attained in the body following administration of the dose.
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Another useful concept is that of half-life (z,,), i.e., the time taken for the

concentration to decrease by 50% of it's previous value and

. _0.693
nook

€

Equation 1.2

This is measured in units of time, i.e., hours (h) in this thesis. The parameters C/ and
V govern the time-course of drug concentration post-administration and these may be
altered in disease states. Indeed, even normal healthy subjects will show variability
in these parameters and it is the identification of this variability that is the subject of

the study designs investigated in this thesis.

In a one-compartment PK model, the drug concentration in plasma (or compartment)

is described by

Cpz—g™ Equation 1.3

The one-compartment model makes the assumption that the administered drug
equilibrates instantaneously between plasma and tissue, but often this is not the case
and the distribution into tissue is slower. Additional compartments may be added to
the model in order to describe the distribution of drug into peripheral tissues and
organs, resulting in the addition of exponential terms to equation 1.3. A two-
compartment model consists of a 'central' compartment, into which the drug is
administered and a peripheral compartment into which it distributes (figure 1.2). The
central compartment may be considered to include blood and all tissues in rapid
equilibrium with the blood, and the peripheral compartment the rest of the body.
Following drug administration into a two-compartment system, first-order processes

may again be used to describe drug transfer between compartments.

Each compartment is associated with a volume of distribution, ¥; and ¥, for the
central and peripheral compartments, respectively. Two clearance terms are required
for a two-compartment model - the elimination clearance and the inter-
compartmental clearance, O, which describes the transport of drug between the

compartments. Elimination from the body is assumed to occur from the central
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compartment and the rate constant for this clearance term is represented in figure 1.2
by k;o. The inter-compartmental rate constants k;, and k;; represent the transport
from the central to the peripheral compartment and vice versa and are related are to

O as follows.

0
ki =“I;‘ Equation 1.4
1

Q
kai :V_ Equation 1.5
2

Following IV administration, the concentration profile is described by a bi-

exponential equation, i.e.,
C,=4e™ +Be™? Equation 1.6

where 4, a, B and f are the model parameters. The macroscopic rate constants «
and S depend on the microscopic rate constants, k;», k»; and k;9. These relationships

and those involving CI, ¥, V; and Q are defined in Appendix 1.

In this thesis, this model will be parameterised using C/, ¥, V> and Q.
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Figure 1.2 Two-compartment pharmacokinetic model with IV bolus dose (D), inter-
compartmental transfer (k;, & k3;), volume of distribution of the central (¥;) and
peripheral (¥) compartments and first-order elimination (k;9). C; and C, represent
the concentration of drug attained in the central and peripheral compartments,
respectively, following administration of the dose.
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Physiologically-Based Pharmacokinetic Models

More complicated multi-compartment PK models involve considering specific
organs or tissues connected by the arterial and venous blood flow network, e.g., liver,
brain, muscle and fat. These are known as physiologically-based PK (PBPK) models
and use physiological values of blood flow rates and tissue weights coupled with
blood and tissue/gas partition coefficients to describe the pharmacokinetics of
compounds - often in a toxicological setting (Clewell et al. 1994; Spear et al. 1994;
Nestorov et al. 1997). This allows the description of the PK of a compound within

different species, by altering the values of the physico-chemical constants.

Classical Pharmacokinetic Studies

During Phase I of drug development the aim is generally to investigate the
tolerability of new drugs administered within a controlled environment. These
studies are generally carried out using healthy volunteers and involve the collection
of 10-15 blood samples from a small number of subjects after administration of the
drug. This allows the PK parameters for each individual to be estimated with
reasonable accuracy, using regression methods and is sometimes termed the
'individual approach' (Bellissant et al. 1998). As each individual is inherently
different, the pharmacokinetic parameter values will vary within the group.
Therefore, in order to describe the population, estimates of the variability within the

population are required in addition to estimates of mean PK parameter values.

The ‘standard 2-stage’ method is often used to analyse data from classical PK
studies, where firstly each individual's PK parameters are estimated by regression
methods. The second stage involves calculating the mean values of the parameters
within the population and also estimates of their variability (Sheiner 1984). This
method may result in different subjects being described by different PK models (one
or two-compartment) due to limits of quantification in the chemical analysis of the
data (Vozeh et al. 1996). Another limitation of this type of study is the assumption

that the parameter estimates for each individual are the true values for that subject,
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and this leads to overestimation of the variability within the population. In addition,

effects of covariates cannot be included in the model.

The field of oncology is quite different from other areas of developmental
therapeutics in that anticancer drugs cannot be administered to healthy volunteers
and Phase I studies rely upon patients who have exhausted all conventional treatment
for their disease. In some ways this could be considered an advantage in that the data
is collected from the 'target population' who would receive the drug from the start,
rather than waiting until a Phase II clinical trial for the first administration to

patients.

Population Pharmacokinetic Studies

The population approach to pharmacokinetic studies considers the whole population
as the unit of analysis and not each individual subject (Whiting et al. 1986; Aarons
1991; Sun et al. 1999). This method utilises information from previous PK studies
and the analysis of sparse data sets, in which each individual contributes only a small
number of samples. In this situation it would be difficult to identify the PK model
accurately using the individual approach, but in the population setting each
individual is treated as a random sample from a larger population. Hence, large
numbers of subjects are required and the accuracy of the population estimates
obtained has a greater dependency on the number of subjects than the number of
samples per subject (Vozeh et al. 1996; Samara et al. 1997). Another difference
between population and classical PK studies is that all data is analysed
simultaneously, using the same PK model (Vozeh et al. 1996; Bellissant et al. 1998).
‘Rich’ data sets from classical PK studies can also be analysed using population

methods, to ensure that all individuals are described by the same PK model.

The program most commonly used for population PK data analysis is NONMEM
which employs the statistical method of non-linear mixed effect regression modelling
(Boeckman et al. 1992; Kobayashi et al. 1993; Samara et al. 1997; Beal et al. 1998).

The mixed effect model allows estimation of both fixed effects (e.g., the model
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parameters like C/ and V) and random effects (e.g., the variability between subjects)
simultaneously. The equations of the statistical models are intractable and must be
solved using iterative methods based on the maximum likelihood principle for the
parameter estimates. A Bayesian estimation algorithm may also be combined with
the maximum likelihood estimation methods within NONMEM in order to calculate
individual pharmacokinetic parameters for each subject. The NONMEM algorithms

used in this thesis are described in section 2.3.1.

The population approach to PK estimation can be used at all stages in drug
development, although in Phase I studies the classical approach is generally used.
These represent the first administration of new drugs to humans (Vozeh et al. 1996;
Samara et al. 1997). Certain situations exist in which population studies may be
implemented at the Phase I stage e.g., the study of anti-cancer drugs, although even
in this case a certain number of patients will require full PK profiles to be collected.
In particular, special Phase I studies may be carried out in the elderly and ‘at risk’
groups with impaired physiological function, where supporting data exist from

previous classical PK studies (Samara et al. 1997).

Phases II and III of drug development tend to recruit large numbers of patients in
order to confirm therapeutic efficacy of the new drug or to compare it to a similar
marketed competitor, not to explore pharmacokinetic details (Aarons et al. 1996).
However, if PK samples can be incorporated in an existing protocol, there may be a
significant amount of information to be gained in this clinical setting. Other factors
(covariates, e.g., demographics, physiological factors) which affect the
pharmacokinetic behaviour of the drug can be investigated and these may aid in
explaining the variability in the PK parameters (Levy 1998). This may identify
patient subgroups who may require specific dose adjustment (Samara et al 1997) and
also whether therapeutic drug monitoring (TDM) may be required for the drug.
Clinically, not all drugs or all anti-cancer drugs require pharmacokinetic monitoring,
but those which have been identified from initial PK experiments as having steep

concentration-effect curves or a large degree of PK variability will benefit (Vozeh et
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al. 1996). This will apply particularly when risk factors requiring dose modification
are difficult to identify.
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1.3 Population PK Study Design

A major 1ssue in the design of population PK studies is the selection of the sampling
times. The number of samples per subject is often sparse and times may exist which
result in more accurate estimates of the PK parameters than others (D'Argenio et al.
1983). In addition, accurate dosing and sampling histories must be obtained as
inaccurate recording leads to unreliable parameter estimates (Sheiner 1984; Sun et al.
1996). Jia et al (1996) showed in a limited population study using simulated data in
which the times were subject to error, that if the population model assumed no error,
then there was little effect on the estimates of the fixed effects. However, the
estimation of the random effects was erratic, i.e. biased and imprecise. If the time
error was included in the analysis the estimates of the error in sample timing were

poor.

Equally important for the performance of population PK studies is the handling of
the samples once they are acquired. Hence, the necessity to incorporate the PK
protocols conveniently into the existing clinical trial protocols, in terms of the
clinical and nursing staff taking the samples and taking into account that the principal

objective of the study is not the PK analysis (Aarons et al. 1996; Hon et al. 1998).

Several methods exist with which to select the sampling times for population PK

studies.

Limited Sampling Strategies

The term ‘limited sampling strategies’ has been used to refer to methods in which PK
parameters are estimated from a reduced number of samples compared to classical
PK studies. The reduced number of samples per subject may allow large-scale
population PK studies to be undertaken, where cost of the analysis of samples has
been an issue. Other study ‘costs’ that may be reduced are out-of-hours staffing to

collect samples and overnight stays in hospitals.
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The most common method used to develop a limited sampling strategy is that of
forward stepwise multiple regression. This enables the estimation of a single PK
parameter from only 2-3 samples. In order to validate the limited sampling strategy
designed with the regression approach, the total number of concentration-time
profiles are split into two data sets - the training and validation sets. The training set

is used to develop the model, which is then tested using the validation data set.

The collection of full concentration-time profiles in a number of patients is initially
required, in order to determine parameter estimates for comparison with those
estimated with the limited sampling strategy (van Warmerdam et al. 1994b). A
regression analysis is then carried out using all of the concentrations obtained from
the initial study, and the time point giving the highest correlation with the
pharmacokinetic parameter of interest, e.g., AUC, is identified. Thus a linear

relationship of the form:
AUC =k - Cppqy +b Equation 1.7

1s obtained, where k and b are constants representing the slope of the linear
regression and intercept, respectively. Cipesy 1s the concentration measured at the

time with the highest correlation for estimating AUC.

For a three-sample strategy, the next two best time points will be entered in a
stepwise manner to improve the performance of the model. However, it has been
shown that the single time-point which best predicts the pharmacokinetic parameter
does not necessarily produce the best limited sampling model when included in a
three-point model (Jodrell et al. 1996). For this reason, all subsets regression seems
more appropriate, where the limited sampling model will include the group of three
times that best predict the parameter. Sallas (1995) used this method to examine
limited sampling strategies of 1-3 samples for data collected in a 4-way crossover
trial of two formulations of cylcosporin G. In order to resemble an outpatient setting,
the effect of limiting the samples to fall within 4 hours postdose was examined (the
half-life of the drug was 5 hr). When time constraints were introduced the tendency

was for imprecision and bias to increase, although not to unacceptable levels. The
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sampling schedules with three samples offered improved parameter estimation over

the schedules with one or two samples.

Limited sampling models designed using regression analysis can only be used for
dose regimens which are an exact copy of the original (van Warmerdam et al.
1994b). Errors in the timing of the samples will give different concentrations to
those the limited sampling strategy was developed from and hence, errors in the
estimated parameter. However, the relevance of sampling time errors, will also
depend upon which part of the concentration-time curve the sample occurs, i.e., a
dependency on distribution or elimination half-life. If an early sample, which should
be taken during a short half-life distribution phase, is taken wrongly, then this may
cause greater estimation error in the parameter than a sample taken at a slightly
different time during the longer half-life elimination phase (van Warmerdam et al.
1994b). Patients with variable pharmacokinetics require the limited sampling

strategy to be validated in their population.

Most limited sampling strategies developed using anticancer drugs use the method of
forward stepwise regression (table 1.1). This is most common as it is a quick and
easy method which does not require that the PK model is defined with initial

estimates of parameter variance (van Warmerdam 1997).
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Table 1.1 Limited sampling strategies for anticancer drugs, designed using the

regression approach.

Anticancer Drug

Reference

5-Fluorouracil
Amonafide
Busulphan
Carboplatin

Cladribine
Cyclophosphamide
Docetaxel
Doxorubicin

Etoposide

Irinotecan and it’s active
metabolite SN38

Paclitaxel
Topotecan

Vinblastine

(Moore et al. 1993)
(Ratain et al. 1987; Ratain et al. 1988)
(Hassan et al. 1996).

(van Warmerdam et al. 1994a; Ghazal-Aswad et al.
1996; van Warmerdam et al. 1996b)

(Liliemark et al. 1996)
(Egorin et al. 1989)
(Lustig et al. 1997)
(Ratain et al. 1991)

(Gentili et al. 1993; Holz et al. 1995; Sessa et al.
1995; Lum et al. 1997)

(Chabot 1995; Mick et al. 1996; Mathijssen et al.
1999)

(Huizing et al. 1995)
(Minami et al. 1996, van Warmerdam et al. 1996a)
(Ratain et al. 1987)
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A second method of selecting sampling times for a limited sampling strategy is to
use the trapezoidal method for calculation of AUC (Sallas 1995; Duffull et al. 1999).
The trapezoidal rule is a method of calculating the AUC by summing the areas of the

trapezoids between each of the sampling times (figure 1.3) (Gabrielsson et al. 1997).

Limited sampling strategies were chosen by empirically selecting a predefined
number of sampling times which give a calculated AUC close to that provided from
the full data set, when the trapezoidal rule is used. Sallas (1995) combined the linear
with the log-linear method and showed that this gave results with comparable
accuracy to those obtained when a regression-type limited sampling strategy was
used on the cyclosporin G data described previously. Again, the time constraint of
sampling within 4 hours was used in this study and did not result in differences in

imprecision and bias of the PK estimates.

Duffull et al (1999) used a method where the AUC was split into a predefined
number of equally sized trapezoids and the sampling times selected accordingly.
Various numbers of replicate samples were investigated and a combination of four
samples with three replicates was shown have similar accuracy to the conventional
sampling schedule of twelve samples. This method would also provide flexibility in
a clinical setting in that patients would have a larger volume of blood taken, but at
fewer times than during a classical sampling schedule. The blood sample would be
split into the required number of replicates and reduce errors induced by assay

variability.

However, the use of the trapezoidal rule to define sampling times resulted in designs
that had fixed sampling times for all patients, similar to the regression-type designs
and again, only one PK parameter was being estimated. Similarly, these designs
cannot be extrapolated to drugs with pharmacokinetic models or administration

schedules different to that which was used to develop the model.
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AUC) = S hac Ty

Concentration

Time

Figure 1.3 Representation of the linear trapezoidal rule. AUC:” is the area
between #; and ;. C; and C;:; are the corresponding concentration measurements
and 4, is the time interval (Gabrielsson et al. 1997).
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Due to the restriction of sampling all subjects at the same fixed times when limited
sampling strategies are designed using the previous approach, other authors have
investigated limited sampling strategies where the sampling times varied for different
individuals. In these simulation studies the data were analysed using the population
approaches within the NONMEM program, allowing estimates of all PK parameters
to be obtained simultaneously. The sampling times were selected either 'empirically’'
across the minimum and maximum times that the study would be carried out (Al-
Banna et al. 1990), or within time windows, that mimicked outpatient clinic times
(Jonsson et al. 1996). In addition, both of these studies investigated the number of

samples required to give the most precise parameter estimates.

Al Banna et al (1990) used simulated data and initially considered that if a minimum
of two samples were to be taken that one sample should be as early as possible and
the other should be as late as possible, i.e., at the times of maximal and minimal
response respectively. First, the early sample was fixed and the late sample varied at
two-hour intervals. Secondly, the effect of adding a third sample to the existing two
was examined where the early and late times were fixed and the third point was
inserted between them. The results showed that fixed effects were accurately
estimated with 2-3 points, but random effects were poorly estimated with two points
and adding the third improved precision and bias. Varying the sampling times in the
two-sample model showed benefits for different parameter estimates at different
times. However, the addition of the third sample improved all parameter estimates,

regardless of the timing.

The effect of fixing the number of samples within a study, to mimic a cost constraint,
was also evaluated by varying the number of samples per patient. Studies using
different number of patients were compared using:

50 patients x 2 points = 100 samples

33 patients x 3 points = 99 samples
Reducing the number of samples per patient, but increasing the number of patients

was shown to reduce bias and imprecision of parameters.
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In addition to specifying the time window in which samples could randomly be
taken, Jonsson et al (1996) also compared the numbers of samples required to
identify a pharmacokinetic model, by the use of both simulated and clinical data.

The simulated data examined the effect of drug half-life (¢,;) on the precision of the
parameter estimates, by the use of both a short (6 hr) and a long (12 hr) ¢,,. The times
of the samples were restricted to the times of outpatient clinics which meant that
sampling could only take place between 10am-12pm and 2-4pm. Some patients had
only one sample taken either in the morning or afternoon. Others had two samples
taken on two separate occasions in the combinations of morning-morning, afternoon-
afternoon, morning-afternoon or afternoon-morning. This showed that two samples
were better than one for identifying the PK model and estimating the parameters. In
addition, of the patients who had two samples taken, having one early and one late
improved the estimates of the variability of the parameters compared to having two
early or two late. Improved precision was noted for the estimation of the volume of
distribution parameter when the ¢, was shorter as more information was gained about

the fall in concentration within the restricted sampling window.

These examples showed that increasing the amount of data per subject improved
parameter estimates, i.e., two samples were better than one sample (Jonsson et al.
1996) and three samples were better than two samples (Al-Banna et al. 1990). When
the number of samples was 2-3, and a restriction was placed on the total number of
samples which could be taken, then increasing the number of subjects (and reducing
the number of samples per subject) was more efficient than increasing the number of
samples per subject. However, if the number of samples was 1-2, then it was more
beneficial to increase the number of samples to two in some subjects and reduce the

number of patients.

It was also shown that using population methods to analyse sparse data instead of
mathematical equations allowed flexibility in sampling within a clinical setting, so
fulfilling the aspect of incorporating population PK studies conveniently within other

clinical visits.
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Optimal Sampling Strategies

The collection of sparse data in population PK studies has raised questions as to the
reliability of model parameter estimates obtained from various sampling schedules.
‘Optimal’ sampling strategies are based upon the concept of ‘information-rich’ times
within a concentration-time profile which may offer improved parameter estimates
over other sampling times. In order to construct an optimal sampling schedule the
pharmacokinetic model must be known, along with the ‘true’ values of the
parameters and information about the residual error models (van Warmerdam et al.

1994b; Jacquez 1998).

The most frequently used design criterion for selecting optimal sampling times is D-
optimality (Box et al. 1959). D-optimality uses the population mean values of the
parameters to minimise the determinant of the inverse of Fisher Information Matrix,
which effectively selects sampling times when concentration variance is maximal
with respect to the PK parameters. The D-optimality design criterion does not
incorporate information about the PK parameter variance. Although design criteria
that incorporate prior parameter uncertainty into their sampling designs would be
expected to provide more robust parameter estimates, it has been shown that designs
based on D-optimality perform equally well in terms of bias and precision. The
designs incorporating information about parameter uncertainty tend to be similar to
the D-optimal designs, but that may be a factor of the population sizes and amount of
variability in the parameters in studies so far (Hashimoto et al. 1991; Mentré et al.
1995a; Tod et al. 1998). Tod et al (Tod et al. 1998) demonstrated that the EID
criterion gave similar sampling times to those defined with D-optimality when the
variability on the parameters was low, but when it was higher the sampling times
shifted to a later time. The EID criterion minimises the Expectation of the Inverse of
the Determinant of the Fisher information matrix over an accepted range of

parameters.
Another question raised within the limited-sampling scenario is whether sampling

times should be fixed for all individuals. Random sampling around the optimal

sampling times defined by D-optimality was shown to improve the precision and
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accuracy of the parameter estimates in two simulation studies. However, sampling
around non-optimal times gave inferior parameter estimates (Hashimoto et al. 1991;

Mentré et al. 1995a).

For a one-compartment PK model, a two sample design derived from D-optimality
would give the first sampling time to be the earliest possible and the second as the
first time plus 1.44%*z,, for an additive intra-subject random-error model. For a
proportional intra-subject random-error model the second time would be the latest
time possible (Endrenyi 1981). Within a Bayesian context, the variance on the
parameters has also been shown to affect the optimal times within a population, with
high variances giving times that were different to those obtained at lower variance

and lower variances giving the expected D-optimal times (Merlé et al. 1995).

Optimal sampling strategies are often coupled to either Bayesian or
sequential/adaptive techniques to improve their robustness to errors in parameter
estimates and actual timing of samples. A Bayesian design involves the sequential
updating of the population parameters with each new patient’s data until the
estimates are stable (Thomson et al. 1992; van Warmerdam et al. 1994b).
Sequential/adaptive study designs use the previous patients’ data to update the
population parameter estimates and derive the optimal times to sample the next
patient (D'Argenio 1981; Drusano et al. 1988). These times have been shown to
settle into stable sampling schedules with both simulated (D'Argenio 1981) and
clinical (Drusano et al. 1988) data. However, initially each patient may have

different sampling times.

The examples in the studies by D'Argenio and Drusano show that using optimal
sampling times to estimate pharmacokinetic parameters produced parameter
estimates that were as accurate, if not better than those produced using full,

conventional sampling protocols.

An important property of optimal sampling is that replicate times are often

suggested, e.g., four optimal sampling times might result in two samples taken at two
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different times (D'Argenio et al. 1997). This arises due to the assumption that the
only experimental error is due to assay error, which of course is unrealistic in

biological systems where inter-patient variability is also a factor (D'Argenio 1981).

The major restriction in the implementation of optimal sampling versus the limited
sampling strategies described previously is that the pharmacokinetic model requires
to be defined before selection of sampling times can occur (Drusano et al. 1988; van
Warmerdam et al. 1994b; Sallas 1995). Errors in the definition of the model will
lead to sub-optimal times being selected and inferior parameter estimates. However,
sampling strategies designed around ‘optimal’ times are more robust than those
based on empirical or regression methods. In addition, extrapolation to other dosing
schedules is possible as it is the PK model which is important in the selection of the

times.

Optimal sampling theory has been applied to a lesser extent than the regression
methods, in the development of limited sampling strategies in oncology. The drugs
analysed in this way include carboplatin (Peng et al. 1995), cisplatin (Desoize et al.
1994a), docetaxel (Baille et al. 1997) irinotecan (Nakashima et al. 1995) and EO9
(McLeod et al. 1996). The sampling times from these experiments are also coupled
to Bayesian techniques to provide robust sampling strategies. This in turn permits
sampling at sub-optimal times to give accurate parameter estimates, i.e., allowing for

errors in the timing of samples that may occur in a clinical setting.
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1.4 Dose Adaptation for Anticancer Chemotherapy Using
Pharmacokinetics

Currently, doses of anticancer drugs are individualised for each patient on the basis
of body surface area (BSA). This method was adopted after it was shown that the
use of BSA was a simple method of scaling doses between neonates and adults and
also between different animal species (Rosenthal 1988; Desoize et al. 1994b). In
general, this method assumes that the efficiency of the organs of elimination (e.g.,
liver, kidney) is correlated better with BSA than body weight, i.e., larger people
require larger doses to produce the same effect. However, total body clearance has
only been partially correlated to BSA (van Warmerdam 1997) and hence other
methods of dose-individualisation for oncology patients are required. There are
various possibilities for adapting doses of anticancer drug for individual patients in

order to optimise treatment (Desoize et al. 1994b).

e Adaptation depending on physiological functions.

Hepatic and renal function can easily be tested from standard blood tests. As one or
the other of these routes primarily eliminates most drugs, this will aid in preventing
the induction of toxicity by accumulation of drug. In addition, the doses of pro-drugs
and liver enzyme inducing drugs can be modified according to the patient’s ability to
metabolise, e.g., cyclophosphamide and epirubicin. The dose of carboplatin is

routinely modified based on renal function and is described later.

e Adaptation depending on intratumoural drug concentration.

The testing of intratumoural drug concentrations is difficult for both ethical and
practical reasons, as tumours are rarely readily accessible. In addition, the blood
flow into tumours is usually poor compared to areas like the bone marrow where
most toxicity occurs. Therefore even if it were simple to check, drug levels in the
tumour it would not necessarily be appropriate for measuring toxicity. However,
recent advances have allowed non-invasive monitoring of tumour uptake of certain
drugs, using the technique of magnetic resonance spectroscopy (MRS) and the

closely related technique of magnetic resonance imaging (MRI) (Griffiths et al.
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2000). Chemicals present within the body can be detected, identified and quantified
by the inclusion of certain isotopes or radiolabelled isotopes in the drug molecule.
Both 5-fluorouracil and ifosfamide have been monitored at clinical concentrations in

both animals and humans using this method.

e Adaptation depending on toxicity.

Since the philosophy in chemotherapy is to administer the highest dose tolerable to
the patient, consideration also has to be given to methods of maximising the dose
given to an individual. The experience of mild toxicity is used as a marker of the
dose (Evans et al. 1989). If a patient experiences no toxicity, then the dose may also
not be adequate for a clinical effect on the tumour and may be increased (Newell

1994).

The reduction in blood cell counts is the pharmacodynamic effect of anticancer
therapy most often correlated to a PK parameter. This can take the form of
monitoring the absolute granulocyte or platelet nadir or monitoring the percentage
reduction from baseline. Reduced clearance of carboplatin has been associated with
a higher degree of thrombocytopoenia and mathematical equations have been derived
to calculate an individualised dose to give a desired platelet nadir (Egorin et al.

1985).

e Adaptation depending on plasma drug concentration.

Evaluating the plasma levels of a drug is the simplest method as plasma is a readily
accessible fluid. When accompanied by hepatic and renal function tests, information
on elimination is gained for incorporation into a pharmacokinetic model for specific

patient sub-groups.

Four requisites must be fulfilled in order to make pharmacokinetic monitoring
appropriate in clinical practice (Masson et al. 1997):
e narrow therapeutic index

e alarge degree of inter-patient variability
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e difficult monitoring of therapeutic/toxic effects, otherwise dose could
easily be adjusted on the basis of pharmacological effect, e.g., blood
pressure

e existence of a relationship between the pharmacokinetics and the
pharmacodynamics.

Thus, it is clear from these definitions that identification of PK parameters and
definition of pre-determined target concentrations for anticancer drugs could improve
the use of both new and existing chemotherapeutic agents (van Warmerdam 1997).
However, routine PK monitoring in oncology is limited to only one drug —

methotrexate due to the lack of evidence of improved outcomes (Moore et al. 1987).

Methotrexate is active against a variety of tumour types and is routinely used in
combination chemotherapy regimens. Relationships have been established between
increased methotrexate clearance and relapse of leukaemic children. In addition it
has also been shown that remission rates were higher in children who had a steady-
state plasma concentration greater than 16puM (Newell 1989). These observations
have lead to the use of very high doses in the treatment of childhood acute
lymphoblastic leukaemia (increases from 25mg/m” to 33g/m”) which have improved
the treatment outcome of this disease (Masson et al. 1997). The gastrointestinal
mucosa are particularly sensitive to methotrexate and mucositis is one of the main
side effects of methotrexate therapy, in addition to myelosupression. Regimens that
produce mucositis do not always cause myelosupression and a link to prolonged low

levels of drug has also been recognised (Dollery 1999).

The availability of an antidote to methotrexate toxicity (folinic acid/leucovorin) has
aided the introduction of high-dose regimens and the plasma drug levels of
methotrexate are monitored to predict toxicity. The dose of folinic acid rescue
therapy is then adjusted accordingly, rather than the dose of methotrexate (Newell
1989). When methotrexate is being administered, consideration should also be given
to drug interactions that can increase plasma levels of methotrexate, e.g., NSAIDS

and other drugs that inhibit the renal excretion (Loadman et al. 1994).
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Although pharmacokinetic monitoring is not routine in oncology, several alternative
methods of achieving optimal doses of anticancer drugs have been investigated

(Newell 1994; van Warmerdam et al. 1995; Masson et al. 1997; Canal et al. 1998).

A priori dose adjustment.

Pre-treatment patient characteristics are useful for making dose adjustments for drugs
for which relationships have been established between the pharmacokinetics or
pharmacodynamics and a physiological function (Canal et al. 1998). Commonly this
refers to liver and renal function, but disease states and demographic variables can
also be involved. Dose reductions based on hepatic data are generally empirical as
serum levels of hepatic enzymes and bilirubin are not good indicators of the actual

metabolic capacity (Koren et al. 1992; Donelli et al. 1998).

Dose modifications of anti-cancer drugs based on renal function are well-
documented (Kintzel et al. 1995). The most common example of an anticancer drug
which is dose-adjusted on the basis of renal function is carboplatin where large inter-
patient variability in toxicity arises due to variations in individuals’ renal function.
Both toxicity and response to carboplatin have been correlated with the
pharmacokinetics, and dose modifications have been made to attain a desired level of
thrombocytopoenia or drug exposure as measured by AUC (Egorin et al. 1985;
Jodrell et al. 1992).

Calvert et al (1989) demonstrated that carboplatin AUC could be determined by the
pre-treatment renal function, and optimisation of the target AUC has reduced the
incidence of life-threatening thrombocytopoenia. Carboplatin is now routinely
administered using a dosing formula to attain a desired AUC based on renal function
(GFR) rather than on a mg/m” basis (Calvert 1989). The formula for calculating the
dose was originally based on a formal creatinine clearance being measured using
SICr-EDTA, but in clinical practice the Cockroft and Gault formula is often used to
calculate it from serum creatinine levels (Cockroft et al. 1976). This routinely leads

to potential under estimation of the GFR and hence the carboplatin dose. A second
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formula is becoming more regularly used in which the actual carboplatin clearance
(Cl c4yp ) 1s calculated (Chatelut et al. 1995) based on the serum creatinine

measurement, removing the need for formal dynamic measurement of renal function.

e C(Calvert Formula (Calvert et al. 1989).
Dose(mg )= AUC*(GFR + 25)
where GFR is measured by >'Cr-EDTA.

e Chatelut Formula (Chatelut et al. 1995).
Cl ey (Ml / min) =
218* wit(kg)*(1—-0.00457 * age( years))* (1 —-(0.314*C)
Cr(uM )

where C=1 for females and 0 for males. The dose is then calculated from:

Dose(mg) = AUC*Cl,,, -

0.134* wt(kg )+

A posteriori dose adjustment.

Dose adjustment based on individual PK assessment after repeated or continuous
dosing is a method of achieving a desired AUC for subsequent cycles of treatment or

steady state concentration (Css) during continuous infusion (Canal et al. 1998).

The technique of adaptive control with feedback utilises patient characteristics and
information from population pharmacokinetic studies to determine an initial ‘test’
dose. Blood samples are taken during treatment and the patient-specific PK
characteristics are determined. Comparison of these to the population estimates used
to determine the initial dose allows dose modifications to be calculated to attain
predefined targets. This method was examined for the drug suramin, which was
associated with neurotoxicity at plasma concentrations greater than 300-350 pg/ml

(Scher et al. 1992; Jodrell et al. 1994; Eisenberger et al. 1995).
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1.5 Aims of Thesis.

There is extensive literature on the pharmacokinetics and pharmacodynamics of both
new and existing anticancer drugs. It is also clear that the use of such drugs may be
improved by pharmacokinetic monitoring, given their narrow therapeutic indices and
the serious consequences of both toxicity and therapeutic failure. However, before
adaptive dosing techniques become routine in oncology, significant advantages will
have to be demonstrated in terms of cost-benefit and therapeutic outcomes. This will
require the collection of prospective data using pharmacokinetic-pharmacodynamic

monitoring approaches.

The aim of the work described in this thesis was to investigate several aspects of PK
study design which might be important in the field of oncology. Specifically, the
techniques used to generate and analyse data and also to judge model performance
are described in chapter 2. Ultimately, this work was carried with a view to the
development of a tool which may be useful clinically, i.e., the selection of a limited
number of PK samples per patient may allow adaptive dosing techniques to be

undertaken more frequently.

In chapter 3, the concept of optimal sampling times is developed for both a one and

two-compartment system.

Chapter 4 reports on a comparison of an ‘optimal’ design with an alternative design
in the one-compartment case. In addition, two of the NONMEM algorithms were
compared as to which would provide the least biased and imprecise parameter

estimates for sparse data analysis.

The effect of using sampling windows based around ‘optimal’ sampling times is
investigated in chapter 5 and the results when additional samples are added to the
minimum number specified for a one-compartment PK model are also presented.
These effects are examined for the two-compartment case in chapter 6, where an

‘optimal’ sampling strategy is compared to an empirical design.
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In chapter 7, published data on carboplatin and data obtained from a phase I clinical
trial of the novel anticancer drug, Antagonist G (a broad spectrum neuropeptide
antagonist), are used as examples for the design strategies developed in the previous

chapters.

Finally chapter 8 summarises the work undertaken and places it in perspective for

application in oncology.
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2 Methods

2.1 Introduction

Pharmacokinetic data analysis allows the definition of models and estimation of
parameters which relate administered drug dose to the concentrations achieved.
These models can then be used to make predictions for new subjects (Gabrielsson et

al. 1997).

Examination of concentration-time data from a small group of healthy volunteers
would not give PK parameter estimates representative of the large group of patients
likely to receive the drug and hence the population approach to pharmacokinetics
was developed (Whiting et al. 1986; Aarons 1991). This sampling approach involves
large numbers of individuals, each of whom donate a small number of samples.

Usually these individuals are patients rather than healthy volunteers.

As estimates of the variability of the PK parameters within the population are also
required in order to describe the population the use of large numbers of subjects in
the population approach allows more accurate characterisation of the population than
the small number of subjects used in classical PK studies. Definition of (and
assumptions about) the distribution of the PK parameters within the population of
subjects is important in both the analysis of the data and also in the use of any results
for making predictions about new subjects. Several computer programs used to
analyse PK data make the assumption that the PK parameter has a Normal or
Lognormal distribution within the population (Samara et al. 1997, Bellissant et al.

1998). In this thesis all parameter distributions were assumed to be Normal.

In order to obtain the best possible estimates of the parameters from the sparse data
obtained using the population PK approach, the dosing history and sampling times
have to be accurately recorded. In addition, the sparse nature of the data means that
some thought should be given to the design of the study before it takes place. For
example, how many samples to take per subject and more specifically when to take

them. Times may exist where information about parameters is maximal, leading to a
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so-called 'optimal' design. Optimal sampling techniques of selecting sampling times

have been described in Chapter 1.

This thesis examines the effects of different study designs in which the sampling
times were selected according to maxima in the expected concentration variance in
the population (see chapter 3). Several study designs were investigated involving
different sampling schedules and the ability to estimate the mean population PK

parameter distributions was examined (Chapters 4,5, 6, and 7).

The methods used to simulate the populations, estimate the PK parameters and

summarise the results are described in this chapter.
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2.2 Data Simulation

Concentration-time data were simulated by
(a) Generating individual PK parameters (C/, V, etc) using a random number
generator.
(b) Calculating the expected concentration at each time point based on the
above parameters for the individual.
(c) Calculating an observed concentration by the addition of random error to
the expected concentration at each observation time.

(d) Repeating steps (a) to (¢) for each subject sampled from the population.

The number of individuals, PK models and the sampling schedules are described

later in this thesis (chapters 4, 5, 6 and 7).

2.2.1 Parameter Distributions
In this thesis, each PK parameter was sampled from a Normally distributed

population, with a mean value of @ and standard deviation of Wg .

Thus, an individual PK parameter could be written as:
O,=0+n° Equation 2.1
where 7° was the random individual deviation of @, from the population mean

value @ for the ith individual. These individual deviations, 7}}9 , were Normally

distributed with mean of zero and standard deviation equal to @, .

If a negative PK parameter resulted from the simulation then the simulation was
repeated until a positive value was obtained. This procedure did not significantly
skew the distributions even where the variability in the parameter was high. This can
be attributed to the fact that the only parameter examined with a variability of greater

than 10% CV was clearance and the mean value was generally 10 1/h. Hence, in a
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Normal distribution the 95% prediction interval was 0.2 to 19.8 I/h for 50%

variability and less than 2.5% of the data would be expected to be negative.
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2.2.2 Pharmacokinetic Models

2.2.2.1 One-Compartment Model

For the one-compartment IV bolus PK model the individual pharmacokinetic

parameters clearance (C/;) and volume of distribution (¥;) were sampled from

Normally distributed populations with population mean values of C/ and ¥,

respectively. The standard deviations of clearance and volume of distribution were

@y and o, , respectively and it was assumed that there was no covariance between

Cland V.

Concentration-time profiles for a one-compartment model were calculated from:
Ci==e " Equation 2.2

where C ; was the expected drug concentration for the ith individual measured at the

Jjth time, #;;, following a single IV bolus dose, D.

2.2.2.2 Two-Compartment Model

The two-compartment model was parameterised in terms of clearance (C/), volume
of distribution of the central compartment (7;), volume of distribution of the
peripheral compartment (¥3) and the inter-compartmental clearance (Q). The
relationships between these parameters and those used to simulate the concentration-
time profiles are given in Appendix 1. The data for a two-compartment IV bolus PK

model were calculated from:

C;=Ae ™ + Bie”ﬂ""’ Equation 2.3

ij
where C u was the expected drug concentration for the i/th individual measured at the

Jjth time following a single IV bolus dose. 4; and B; were constants, ¢;, and f; were
the macro rate constants of the ith individual ,and #; was the corresponding sample

time.
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The equation for simulating the concentration-time profiles for a two-compartment

IV infusion model was:
G = A,.(ea"r"' -1 )e"“"’"" +B, (e‘g L I)e_p"f"" Equation 2.4

T}; was equal to #; until the end of infusion, after which it was equal to the infusion

time.

For individual subjects Cl;, V};, V2 and Q; were sampled from Normally distributed
populations with means CI 7,, V_z, O and standard deviations WDy Wy, 5 Wy, 5 Dy s

respectively. Again, it was assumed that there was no covariance between CI, V;, V;
and Q.
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2.2.3 Random Error on Concentration

In reality all measured concentrations incorporate a small random error and to mimic

this, each simulated concentration was subject to the addition of a random error.
Thus, if C ; is the expected concentration simulated according to Equations 2.2 — 2.4,

then the observed concentration Cj; is obtained from:
C,;=C; +¢; Equation 2.5

where ¢; represents the random concentration error. This section summarises the

error models used in this thesis.

In the simplest case no error is added to the simulated concentrations, i.e.,

C, = C; Equation 2.6

-

;» 18 subject to the addition of a

In the next case the expected concentration, C
random proportional error component (&,;), i.€.,

C; =C;+e,; (Cﬁ ) Equation 2.7
A third error model adds a random additive component (&, ) to the expected
concentration:

C,=C; +&y Equation 2.8

In the final case the observed concentration is obtained by the addition of both a

proportional and an additive error component, i.e.,
Cy= CU +&yy (C; )+ &5 Equation 2.9

&,; and &, were sampled from &, ~ N(0,0}) and €, ~ N(0,53).
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2.3 Parameter Estimation

2.3.1 NONMEM

The use of the NONMEM (Non-Linear Mixed Effects Modelling) computer
program allows the definition of the distributions of the PK parameters across the
population of patients (estimation of means and variances), along with similar
distributions for intra-subject variability terms. Models including covariate fixed
effects such as demographical or clinical data, which affect specific PK parameters,

may also be developed (Boeckman et al. 1992).

Several estimation algorithms are implemented in NONMEM, each making different

assumptions or mathematical simplifications.

The data from each individual within a population must be considered initially: each
individual, 7, has several concentration measurements, y;;, obtained at times #;, so that
y; 1s the vector of all concentrations measured from individual /. The data for each
individual is considered to be a function of two statistical sub-models. The first is
known as the inter-individual model, which governs the distribution of the PK
parameters within the population as a whole. The PK parameters (clearance, volume
of distribution etc.) for individual i differ from the population mean values, @, by 7;
(the inter-individual error) and the 7's within the population are assumed to be
Normally distributed with a mean of zero and variance-covariance described by a
matrix, £2. The second sub-model is the intra-individual model, which has also been
referred to as the random errors on concentration. This accounts for deviations in
observed concentrations from that calculated from the individual's PK parameters.
These random errors (&) are also assumed to be Normally distributed with means of
zero and variance-covariance described by a matrix, 2. In general yis defined as a
vector, which combines information from both of these sub-models along with other
information that affects the values of y;, i.e., the population average values of the PK
parameters () and the dosing history. The general equation for an individual's

observations is:
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Vi :f(XU,@,}?“gg) Equation 2.10

where Xj; represents the independent variables that affect y;;, e.g., dose and time.

For each individual NONMEM calculates the Likelihood (Z; (;£2)) of the

measurements y; occurring within the population using equation 2.11:
Ly ,R2)= _[l‘_(ry, w).h(n, Q2)dn Equation 2.11

where the probability that any individual’s #7; are sampled from a Normal distribution
with a mean of 0 and a variance-covariance matrix of £2is given by A(7; £2) and the

likelihood that an individual deviates from the mean parameters, y, by 7; is given by

l."(??r W)

The Likelihood of making all of the observations for all of the individuals within the

population is then given by:

Ly,R)= H L(y,R) Equation 2.12

Ideally, NONMEM would estimate the fixed and random effects parameters
simultaneously such that L(y;£2) in equation 2.12 is maximised. In fact, -2/ogL is
minimised with respect to y and £2to give a value that is known as the Objective
Function and this value is useful for model comparison. However, the integration to
evaluate L;(y,£2) in equation 2.11 is intractable and numerical approximations must

be used. Each estimation method in NONMEM makes a different approximation to

Two of the estimation methods included in the NONMEM (version V) package are
used in this thesis: the First-Order (FO), and the First-Order Conditional Estimation
(FOCE) methods.

The FO method was the original NONMEM population estimation method. The
integration of Equation 2.11 for calculation of the Objective function leads to terms
that require calculation of the variance-covariance matrix of the individual's

observations and also the expected values of y;. An exact solution can only be
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obtained when the functions governing the random errors in equation 2.10 (7; and &)
are linear. However, linear approximation of these functions can be attained by the
use of a first-order Taylor Series expansion. This is an approximation for
complicated functions in mathematics and consists of a series of terms involving

differentiation of the original function.

The linearisation uses a first-order Taylor series expansion of the random errors
about their expected values, i.e., zero for both 7; and &. A simple description of the
FO method is that 7; for each individual is set to zero, and the model parameters ()
and the variance-covariance matrix (£2) are estimated. During estimation with the
FO method, the objective function L(y; £2) from equation 2.12 is maximised once for
the population. Thus, the FO method produces estimates of the population fixed and
random effects, but not of the individual’s random effects (Beal et al. 1998). These
can be obtained after the estimation of the fixed effects using a Bayesian estimation

method to produce the ‘posthoc’ individual parameter estimates.

The FOCE method is an extension of the FO method where the 7; for each
individual, the model parameters (y) and the variance-covariance matrix (£2) are
estimated simultaneously. This is based on a method originally proposed by
Lindstrom and Bates (1990). The 7 are therefore conditional upon the values of
and £2. This involves maximising the objective function L(y;, £2) from equation 2.11
each time different values of y, £2and 7 are tried for each individual. This leads to

the FOCE method being computationally more intensive than the FO method.

The choice of intra-individual error model also influences the way that the random
errors are estimated with the FOCE method. If the intra-individual error model has a
proportional component, then the variability of the observations, yj;, (&%) is dependent
on the mean values, which in turn are dependent on the 7,. This dependence does not
occur where only an additive random error component is used. NONMEM includes
two versions of the FOCE method - one that ignores this interaction between the

random inter- and intra-individual errors (the default method) and one that accounts
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for it. In this thesis the FOCE with interaction method is used when intra-individual
error models include proportional components.

The conditional method (FOCE) is recommended when the functions governing the
random errors are non-linear, e.g., this can occur with a multiple dosing history; or
the FO method has given unsatisfactory results, e.g., bias in plots of observed versus
population predicted values of data. However, it is also recommended that
satisfactory results obtained using the FO method are checked with a conditional
method to determine if any improvement in the fit of the model can be made.
Detailed explanation of the estimation algorithms used in NONMEM can be found
within the NONMEM Users Guide Part VII, (Beal et al. 1998).

The NONMEM results obtained with the simulated data in this thesis were judged
for satisfactory estimation by a combination of the following criteria:

(a) Examination of Goodness of fit plots:

e simulated concentration values vs the population concentration values
predicted from NONMEM.

e simulated concentration values vs the individual concentration values
predicted from NONMEM.

e individual simulated parameter values vs individual parameter values
obtained from NONMEM.

e simulated values of 77 vs the individual estimates obtained from
NONMEM.

(b) Examination of residual plots which are the plots of the differences
between the individual subject's NONMEM estimates and the mean
values within the population:

e residuals vs the NONMEM predicted values of the concentrations
e residuals vs the NONMEM individual predicted values of the
concentrations.

(c) Examination of weighted residual plots which are the plots of the
differences between the NONMEM estimates and the mean values within
the population, weighted by the variability of the data within the

population:
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e weighted residuals vs the NONMEM predicted values of the

concentrations
e weighted residuals vs the NONMEM individual predicted values of
the concentrations.

This allowed more weight to be placed on data about which there was

more confidence (less variability).

Results were considered satisfactory when there was no evidence of patterns within
the residual plots and the residual values were small. In addition, the goodness of fit

plots were required to be close to the line of unity.
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2.3.2 Summary Statistics

In general, for each PK study design in this thesis, concentration-time data for ten sets
of 500 subjects were simulated and analysed with NONMEM, leading to ten
NONMEM population estimates of the PK parameters for each design. The results
for each design were summarised by determination of the bias and imprecision of the

ten population parameter estimates.

Bias is a measure of the difference between the estimated population parameter mean

and the simulated value and was calculated using Equation 2.13 (Sheiner et al. 1981).

Bias = w x 100% Equation 2.13
where NM is the population parameter estimated by NONMEM and 7 is the true value

of the parameter from the simulated data.

The bias results are presented as a mean ( Bias ) and 95% confidence interval obtained

from the number of NONMEM runs (n), i.e.,

Equation 2.14

—_ ias
Bias =
n

and the 95% confidence interval was calculated from:

Bias + t‘/ SEM Equation 2.15
2

where ¢ b is the Student's t-statistic corresponding to the two-tailed 95% confidence
2

level for n-1 degrees of freedom and SEM is the standard error of the mean bias. The
use of confidence intervals to compare different study designs was possible as n was

constant at 10.

The imprecision is a measure of the spread of the parameter estimates around the
average value of the parameter. This was calculated for each set of NONMEM runs
(n) using the standard deviation of the NONMEM population estimates, expressed as
a percentage of the mean of the simulated values and is described in Equation 2.16

(Barford 1967).
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Imprecison = il x 100% Equation 2.16
where

— > NM ,

NM = Equation 2.17

n

and

cox T :

o — Equation 2.18

n

For example, for 10 sets of 500 individuals, n = 10 and there would be 10 sets of

NONMEM population parameter estimates (NM) from which the average could be

calculated ( NM ). There would also be 10 true values from which the mean true

value could be calculated, T Jfor the corresponding data sets.

To illustrate these concepts, examples of bias and imprecision within populations of
results are shown in Figure 2.1. The four distributions show results that are

(a) unbiased and precise

(b) biased, but precise

(c) unbiased, but imprecise

(d) biased and imprecise
The ideal results would have zero bias and imprecision, as described in (a) above,

although less than 15% is acceptable, by convention.
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Figure 2.1 Examples of bias and imprecision within populations of results.
Distributions of results are shown that are (a) unbiased and precise, (b) biased, but
precise, (¢) unbiased, but imprecise and (d) biased and imprecise.
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3 Use of Sensitivity Analysis to Define 'Optimal' Sampling
Strategies

3.1 Introduction

Sensitivity analysis is often carried out in the area of risk assessment and can
incorporate physiologically based pharmacokinetic (PBPK) models used to
determine the effects of toxic chemicals and drugs on different organs and tissues of
the body (Clewell et al. 1994; Spear et al. 1994; Nestorov et al. 1997). The effects of
the variability in the model input parameters (e.g., dose, blood flow rates into
specific organs, organ/tissue weights) on the model output parameter (e.g.,
concentration in a specific organ/tissue) can be examined over time (Hetrick et al.
1991). Sensitivity analysis involves defining the times at which the model output is
most sensitive to changes in each model parameter. This is achieved by examining
the partial derivatives of the output with respect to each of the input parameters
(Gabrielsson et al. 1997). The total variability in the output parameter can be related

to factors from each of the input parameters.

This technique has also been applied within the context of therapeutic drug
monitoring of gentamicin and theophylline. These drugs have narrow therapeutic
indices and are routinely monitored pharmacokinetically to reduce toxicity by the
individualisation of dosing. Sensitivity analysis was used to determine at which
times blood samples should be taken to minimise errors in the calculation of the
elimination rate constant k. and hence the dose required to achieve a specified

concentration (Berg et al. 1983).

The aim of this chapter is to use sensitivity analysis as the basis for defining
sampling times for limited sampling pharmacokinetic studies in the population
setting. In this case the output parameter is the concentration (C;) following an IV
bolus dose of drug, and the input parameters of the model are clearance (C/) and
volume of distribution (V) for a one-compartment PK model. In the case of a two-
compartment PK model the input parameters are total clearance (C/), volume of

distribution of the central compartment (¥;), volume of distribution of the peripheral
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compartment (¥3) and the inter-compartmental clearance (Q). These are related to
the macro constants 4, @, B & f, and the micro constants &, k2; & k;o as described

in Appendix 1.

The drug concentration at any time (¢) is a function of the pharmacokinetic

parameters, ¢, and the dose administered (D), i.e.,
C = f(g;" D,f) Equation 3.1

The variance in C,, a)f: , can then be expressed as:

2
0k = Z[%J or Equation 3.2

where coé{_ represents a measure of the variability in the parameters, 6, assuming no

covariance between the parameters. Thus, the overall variance in the observed
concentration can be related to the variance component associated with each

parameter.

In theory, taking concentration measurements at the time(s) at which the variance in
concentration is greatest within a population will give the maximum information
about the PK parameters (Gabrielsson et al. 1997). Hence, deriving the times of
maximum concentration variance should reveal specific sampling times, which may
be, in some sense, 'optimal’. This demands, however, that approximate parameter

values be known.
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3.2 Mathematical Proofs

3.2.1 One-Compartment IV Bolus

If we assume that a dose distributes instantaneously into one compartment following
an IV bolus administration, the concentration will be given by (Gabrielsson et al.

1997):

_C‘!.f

C, = ¥

' e

ce Equation 3.3
14

where C; = Concentration, D = Dose, V= Volume of Distribution, C/ = Clearance
and 7 = time after injection.

Assuming no covariance between C/ and V, then equation 3.2 gives:
2 2
ol = [ﬁ} -wf + (%J -0} Equation 3.4

In this case C/ and ¥ are the mean population parameter values and @2, and ®; are

the respective variances in the population. (oé is the expected variance in

concentration due to the variability in the parameters across the population.

Taking the first derivatives of concentration with respect to each of the parameters

allows calculation of 'sensitivity' to change in the parameters. Thus (Appendix 1):

a t .

e C Equation 3.5
and

ocC 1

e (Cl:t=P)~C Equation 3.6
so that

.C* .0} Equation 3.7
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Therefore, the time-points which should be most informative for the estimation of
each parameter can be determined. For example, setting @; to zero allows the

component of variation in C due to variation in C/ to be studied, i.e.,
wl=——o} Equation 3.8

: . 0 : .
@ is maximal when a—a)é =0 and Appendix 1 shows that this occurs when:

s

=1.44-t, Equation 3.9
/2

where k. is the elimination rate constant and ¢ v is the half-life of the drug.
2

An example of the curve represented by Equation 3.8 is shown in Figure 3.1.

Similarly, setting a)ﬁ, to zero allows the concentration variance component due to
the variation in ¥ to be examined:

(Cl-t-v)

= % vl Equation 3.10

2 _
Dc- =

: y T 0 .
Turning points again arise when a ol =0 i.e., when
t

p= 2, Equation 3.11
ke
and = % = k& Equation 3.12

In this case ¢ = k_ corresponds to a minimum, i.e., giving least information about ¥,

e

whereas ¢ = % is a maximum associated with a peak in the concentration variance.

e
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Also, t = 0 corresponds to a peak in @ , although it is not a turning point and at this

2
c?.%r.

time, o = ey
vV

Equation 3.10 is illustrated in Figure 3.2 and it can be seen that the variability at =0

. 2
1s much greater than that at ¢ = =

e

Chapter 3 3.6



_16

12

1/k. =10hr

o o=
© = N h

Concentration Variance ((
o o
2 O

o
X

o

2 3 4 S
Time (hr)

o

Figure 3.1 Change in concentration variance ((mg/1)*) over time when C/ =10 I/h,
V=101, wc; =3 l/h, @y=01and dose = 100mg.
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Figure 3.2 Change in concentration variance ((mg/I)*) over time when C/ = 10 I/,
V=101, wc;= 0 l/h, @y=31and dose = 100mg.
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If, in addition, the observed concentration, C,, is associated with random error, this

will add to the overall concentration variability:
C,=C, +¢ Equation 3.13

* . . . . . .
where C, is the expected concentration. Therefore the variance in concentration is

dependent on both the expected concentration variance and that of the error

component(s), (a) ﬁ) as shown below for equation 3.14.
(a)é; )= (co = )+ (co . ) Equation 3.14

The mathematical proofs of the effects of random error on the concentration variance

are shown in Appendix 1.
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3.2.2 Two-Compartment IV Bolus

Similarly, if we assume that the dose distributes into a two-compartment system

following an IV bolus, the concentration will be given by (Gabrielsson et al. 1997):
C,=Ae™ + Be™” Equation 3.15

where C; = Concentration; 4, B = model constants; ¢, £ = the model macro rate

constants and ¢ = time after injection.

The two-compartment PK model is parameterised in this thesis using: the total
clearance (CI), the volume of distribution of the central compartment (V;), the
volume of distribution of the peripheral compartment (73) and the inter-
compartmental clearance (Q). These are related to the constants (4, B), the macro
rate constants (@, f) and the micro rate constants (k;g, k72 & k»;) as described in

Appendix 1.

Again, assuming no covariance between any of the parameters, the variance in

concentration can be expressed as:

" [ ac]‘? , (Y , (acY , (ecY ,
a)C =| — -aJC; =+ | —— 'a)y +|| —r -GOV? | — 'a)Q
aCl ov, oy, > |20

Equation 3.16

where 0l,, @ ﬁf , @}, and a)é are population variances associated with the

population mean values for C/, V;, V> and Q, respectively, and foé is the variance of
C in the population. As before, the total variance in concentration can be attributed
to the sum of the components due to each parameter (Equation 3.16) and these are

defined in Appendix 1.
The expressions for the variance components were intractable, and so the times

giving rise to maxima in the concentration variance were determined graphically in

Figures 3.18 to 3.21.
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3.3 Comparison of Derived 'Optimal' Sampling Times with Those

Obtained in Simulated Populations

3.3.1 Introduction

Before utilising the sampling times obtained from the sensitivity analysis described
in section 3.2, it was necessary to evaluate how well those equations predicted
concentration variability. This was achieved by comparing the concentration
variance predicted from the equations to that which was observed in simulated
populations of 5000 subjects. The concentration variability obtained by each method

was examined for both the magnitude of variability and times of peak variability.

It was shown that at CV of less than 30% on the parameter C/, both 'concentration
variance-time' curves could be superimposed from each method. However when
variability in the parameters was higher the times of peak concentration variance
shifted slightly to later times in the simulated populations, for the one-compartment
model. Divergence of the curves was also noted with the higher CV in CI. The shift
in peak time was not noted with the two-compartment model, although the
divergence was, but to a lesser extent than that seen with the one-compartment

model.

It was concluded that the equations derived in section 3.2 predicted concentration
variability reliably at lower levels of variability in the parameters, but that
examination of simulated populations was required in situations of higher variability

in the population PK parameters.

3.3.2 Methods

Concentration-time data were simulated for populations of 5000 subjects, following
an I'V bolus dose of 100mg as described in section 2.2. Ten groups of populations
were simulated for each of the one- and two-compartment PK models. Five groups
represented the situation with no random intra-subject error on concentration and five

represented the situation with the inclusion of random intra-subject error on
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concentration. Within each group there were ten sets of 5000 subjects and each of
the five groups represented a different value for the SD of clearance. See the

organisation chart in figure 3.3.

One-Compartment PK Model

In the case of the one-compartment PK model, the population mean values were set

to 10 I/h and 10 1 for clearance and volume, respectively, giving an average value for

half-life (#,,) = 0.693 hr. The population standard deviation for clearance, @, , was

varied (1, 2, ..., 5 I/hr), but the standard deviation for volume, @, , was fixed at 1 1.
For the sets with random error added to concentration a combination error model was
used as described in section 2.2.3, with the proportional error component, oy, set to

0.05, (i.e., 5%) and the additive error component, o3, set to 0.25 mg/I.

The concentration variance was calculated at each time point, using the standard
equation for variance (equation 3.17 below), for each simulated population of 5000
subjects and plotted up to 5 hours post-dose and the results compared to those

predicted from equation 3.7.

—\2
Variance = (SD)2 ;8D = lx—]x_)_ Equation 3.17
7 —

Two-Compartment PK Model

For the two-compartment model, the mean population parameter values were set at
10 1/h and 15 I/h for the total clearance (CI) and the inter-compartmental clearance
(), respectively, and 10 I and 20 1 for the volumes of the central (¥;) and peripheral
(V) compartments, respectively, giving a value for the terminal half-life (¢4) = 2.8
hr. As the equations for the two-compartment model were intractable, initially, each
parameter was examined for effects on concentration variability by setting the

variability on all other parameters to zero. No random error was added to
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concentration at this time, and the standard deviation of the parameter being
examined was varied from 10 to 50%, in steps of 10%.

Following the initial studies, the simulated populations were further examined for
peaks in total concentration variance. The concentration variance was calculated for
each population of 5000 subjects and again plotted up to 5 hours post-dose. The

observed concentration variance was compared to that predicted by Equation 3.16.

Again for the sets with random error added to concentration the combination error
model described in section 2.2.3 was used. The proportional error component, o,

was set to 0.05, (i.e., 5%) and the additive error component, o>, to 0.35 mg/l.
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PK Model

One-Compartment Model Two-Compartment Model
| : ] | :
5 x 10 x 5000 subjects 5 x10 x 5000 subjects 5 x 10 x 5000 subjects 5 x 10 x 5000 subjects
with No Intra-subject Error| | with Intra-subject Error | |with No Intra-subject Emor| | with Intra-subject Error
| 10x5000 | 10x5000 | 10x5000 | 10x5000
with C/= 1 with &Cl=1 with &Cl=1 with «Cl= 1
| 10x5000 | 10x5000 | 10x5000 | 10x5000
with «Cl= 2 with &Cl =2 with aCl=2 with &Cl=2
_| 10x5000 | 10x5000 | 10x5000 | 10x5000
with oCl=3 : {with oCl=3 with &Cl=3 with &Cl=3
| 10x5000 | 10%5000 | 10%5000 | 10x5000
with aC/= 4 with &Cl =4 with oCl =4 with oCl= 4
| 10%5000 | 10x5000 | 10x5000 | 10x5000
with &Cl= 5 with &Cl =5 with &Cl=5 with 01 =5

Figure 3.3 Organisation of simulated populations for calculation of observed
concentration variance for comparison with that predicted from the equations derived

in section 3.2.
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3.3.3 Results
3.3.3.1 One-Compartment |V Bolus PK Model

Reproducibility of Simulation Results

To assess the reproducibility of the results of the simulation, ten simulations were

carried out for each set of parameter values.

Figure 3.4 shows the concentration variance ((mgfl)z) over time for the ten
simulations when @ = 30%, in the absence of a random intra-individual error. The
theoretically derived concentration variance curve (Equation 3.7)is also shown.
From the figure it can be seen that the curves for each of the ten simulations are
superimposed, but that all diverged from the theoretically derived curve from 0.6h

onwards. The results when random error was introduced (Figure 3.5) were similar.

Due to the reproducibility being accurate, the results are presented with only one
simulated population being compared to the concentration variance predicted from

the equations.

Effect of Increasing Variability of Clearance

Figures 3.6 to 3.10 show the expected variance in concentration in the absence of
random intra-individual error on concentration. Each plot shows the variance
components due to each parameter: clearance (Var (Cl)), volume of distribution (Var
(V)), proportional random error (Var (prop)) and additive random error (Var (add)).
The total concentration variance (Var Total) is also plotted along with the observed
variance obtained from a simulated population (Var Sim) of 5000 subjects. The SD
of clearance (@c;) increases from 1 to 5 I/h in Figures 3.5 to 3.9, respectively and
Var(add) and Var(prop) are zero in these plots as there was no random error added.
The distributions of the parameters C/ and ¥ within the populations are shown as

histograms on each plot.
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Each plot shows a peak in both the calculated and simulated total concentration
variances at time = 0 hr due to the component from volume of distribution. There

was a further peak at 2.0 hr due to volume, corresponding to ¢ = -ki , but this was not

e

obvious in the total concentration variance profile due to the size of the other peaks.

A maximum in the total concentration variance occurred at 1.0 hr due to the variance
component from clearance and was shown to increase in magnitude as @y increased
from 1 to 5 I/h. Although, the calculated time of this peak was constant, in the
simulated sets it shifted to later times as the variance in clearance increased so that
when @¢; = 5, the concentration variance peak occurred at 1.2 hours (Figure 3.10).
When w¢; was 1-2 1/h for clearance (figures 3.6 and 3.7) the calculated and simulated
variance curves were superimposed. Differences between the calculated and
simulated curves were obvious when the CV for clearance increased above 30%

(Figures 3.8 - 3.10) when the simulations gave rise to higher concentration variance.
Similar results were obtained when a random error was included in the model

(Figures 3.11-3.15). The times at which the peaks in variance occurred were

unaffected.
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Figure 3.4 Plot of concentration variance over time for ten simulations of 5000
subjects and the derived concentration variance when @c; = 3 I/h (no random error).
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Figure 3.5 Plot of concentration variance over time for ten simulations of 5000
subjects and the derived concentration variance when @w¢; = 3 I/h (random error).
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Figure 3.6 Concentration variance across time for ;= 1 I/h (no random error).
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Figure 3.7 Concentration variance across time for @w¢; = 2 l/h (no random error).
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Figure 3.8 Concentration variance across time for @wc; = 3 I/h (no random error).
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Figure 3.9 Concentration variance across time for wc; = 4 I/h (no random error).
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Figure 3.10 Concentration variance across time for wc; = 5 I/h (no random error).

- e
- N s

Concentration Variance ((mg/l)?)
o o © o
N A O O

o

3 - 5
Time (hr)

o
-l
%]

Var (cl)
Var (add)

Var (vol) Var(prop)
Var Total

Var Sim

Figure 3.11 Concentration variance across time for w¢; = 1 I/h (random error).
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Figure 3.12 Concentration variance across time for @¢; = 2 I/h (random error).

Bl
| T A
1.5 4 S : ;

= 3

o
wn

Concentration Variance ((mafl)’)

D E'I e L] L} T
0 1 2 3 4 S
Time (hr)
Var (cl) Var (vol) Var(prop)
Var (add) Var.Total Var Sim

Figure 3.13 Concentration variance across time for @wc; =3 I/h (random error).
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Figure 3.14 Concentration variance across time for wc; = 4 I/h (random error).

s
l

Froquency

- @ 8

S 35 -
£
e 37
g
E 25 il
S
B gs
E :
E 11
@
g 05 -
3 L
@ 0 -F T
0 1 2 = 4 5
Time (hr)
Var (cl) Var (vol) Var(prop) .
Var (add) Var.Total Var Sim

Figure 3.15 Concentration variance across time for @wc; = 5 I/h (random error).
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Effect of High Concentrations on Total Concentration Variance Within a
Population

Figure 3.16 shows frequency histograms of the concentrations at 1.0 hr and 5.0 hr,
for the populations with @ = 3 and Figure 3.17 showed the same for o= 5. As
@cy increased from 3 to 5, the distributions became skew and this was more apparent

at the later times.

The effect of the high concentrations observed in simulated populations on the
standard deviations is shown in Table 3.1. The variance in the simulated population
was artificially inflated at 5.0 hr by a small number of concentrations that were
greater than 0.5 mg/l. Concentrations greater than 2.0mg/I increased the standard
deviation of the population when random error was added to concentration. Removal
of these concentrations from the distribution reduced the standard deviation of the
remaining population to a value that was similar to the value predicted for the

equations.

As the ¢ increased to 5 1/h (Table 3.2), a greater number of concentration
measurements had to be removed in order to decrease the standard deviation of the
remaining population to a value similar to that predicted. However, in the absence of
random error on concentration, the higher variability in clearance allowed a higher
range on concentrations to be accepted (0.8 mg/l compared to 0.5 mg/1), whereas in

the presence of random error the range was reduced from 2 mg/1 to 1.6 mg/1.

This indicated that at times where the concentrations were generally small in relation
to the dose, and at higher levels of variation in the parameters, the mean and standard
deviation were not appropriate to describe the distribution of concentration. Hence,
divergence of the observed concentration variance from the predicted values was

noted.
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Figure 3.16 Histograms of concentration at 1.0 hr and 5.0 hr when @¢; = 3, with the
one-compartment model (n=5000).
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one-compartment model (n=5000).
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3.3.3.2 Two-Compartment IV Bolus

Results From Sensitivity Analysis for the Two-Compartment PK Model

As the equations from section 3.22 were intractable, the contribution of each of the
parameters C/, V;, V> and Q to the total concentration variance was examined
graphically, by the substitution of different values in Equation 3.16. The variability
in each parameter was examined as it was increased from 10 to 50% in steps of 10%.
Figures 3.18 to 3.21 show how increasing variability in each of the population mean
parameters CI, V;, V> and Q, respectively, affected concentration variance, using

simulated populations of 5000 subjects.

Figure 3.17 shows one peak in concentration due to the variance in clearance. The
peak shifted slightly from 0.5 hr to 0.6 hr as CV increased from 10 to 50% (or as ¢y
increased from 1 to 5 I/h).

Variability in the volume of the central compartment (¥;) caused a high peak
immediately after administration of the drug (Figure 3.19) and a small second peak at
0.8 hr when @y =11and 0.5 hr when wy was 3 1. This peak was not observed when

the CV was greater than 30% due to the contribution from the early peak.

A maximum occurred at 1.1 hr due to the variation in volume of distribution of the
peripheral compartment (¥,) when CV was 10%. This peak moved gradually to
earlier times and occurred at 0.8 hr when CV was 50% (Figure 3.20).

The variability in the inter-compartmental clearance, Q, gave rise to two maxima in
concentration variance: one at 0.3-0.4 hr which remained relatively fixed in time and
one which shifted from 2.1 hr to 2.7 hr as CV increased from 10 to 50%. See Figure
3.21.

Table 3.3 shows how the peak times shifted for each parameter as the CV of each

parameter increased from 10 to 50%.
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Figure 3.18 Plot of concentration variance over time showing the effect of
increasing variance in clearance (C/) from 10 to 50%, with the two-compartment PK
model.
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Figure 3.19 Plot of concentration variance over time showing the effect of increasing
variance in volume of the central compartment (V) from 10 to 50%, with the two-
compartment PK model.
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Figure 3.20 Plot of concentration variance over time showing the effect of
increasing variance in volume of the peripheral compartment (775) from 10 to 50%,
with the two-compartment PK model.
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Figure 3.21 Plot of concentration variance over time showing the effect of increasing
variance in inter-compartmental clearance (Q) from 10 to 50%, with the two-
compartment PK model.
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Table 3.3 Times of peak concentration variance due to each parameter (from Figures

3.18-3.21).

Parameter Time of Time of Time of Time of Time of

(Peak No.) Peaks Peaks Peaks Peaks Peaks
10% CV 20% CV 30% CV 40% CV 50% CV

Cl 0.5 hr 0.5 hr 0.5 hr 0.6 hr 0.6 hr
Vi) Early as Early as Early as Early as Early as
Possible Possible Possible Possible Possible

Vi (2) 0.8 hr 0.7 hr 0.5 hr None None

V, 1.1 hr 1.1 hr 0.9 hr 0.8 hr 0.8 hr

o@) 0.3 hr 0.3 hr 0.3 hr 0.3 hr 0.4 hr

02 2.1 hr 2.2 hr 2.4 hr 2.5 hr 2.7 hr
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Reproducibility of Simulation Results

As in the one-compartment situation, Figures 3.22 and 3.23 show examples of the
reproducibility of the concentration variability within ten simulated populations of
5000 subjects when w¢; = 3 1/h, in the absence and presence of random error on
concentration, respectively. In Figure 3.22 the simulated curves were all
superimposed and when compared to the predicted concentration variance, there was
a slight divergence of the curves at all times. However, this was less apparent than
with the one-compartment model (see Figures 3.6-3.15). The addition of random

error did not affect these results (Figure 3.23).

Similar to the one-compartment results, the remaining results in this section only
show concentration variance of one simulated population along with the predicted

concentration variance curve.

Effect of Increasing Variability of Clearance

Figures 3.24 to 3.28 show the concentration variance components from each
parameter as shown in Equation 3.16 (Cl comp, V; comp, V, comp and Q comp on
figures), for different values of @w¢. The total observed variance in simulated
populations of 5000 subjects when no random error was added to concentration
(Total) is also shown along with the concentration variance predicted from the
equations (Sim Var). Histograms of the distributions of the parameters are also
included in the plots, confirming them all to be Normally distributed. Variability in
clearance increased from a CV of 10 up to 50% in plots 3.24 to 3.28, respectively.

In each plot (Figures 3.24-3.28), the only visible peaks in total concentration
variance (simulated and calculated) occurred at 7 = 0 hr and at around 0.5 hr due to
variability in V; and CI, respectively. The peak at 0.5 hr shifted to progressively later
times as the variability in C/ increased from 10 to 50%. When the CV of clearance
was 10% (Figure 3.24) the simulated and calculated total concentration variance
curves were superimposed. The two curves diverged after the peak in total

concentration variance seen at 0.5 hr when CV on clearance was greater than 20%.
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However, the time of the peak variability in both the simulated and calculated curves

remained the same (Figures 3.26 to 3.28).

Figures 3.29 to 3.33 show how increasing the CV on clearance from 10 to 50%
affected concentration variance when a combined random error model was added to
concentration (proportional component = 5% and additive component = 0.35 mg/l).
Adding intra-individual random error to concentration caused the simulated and
calculated total curves to diverge slightly at times later than 3.5 hr, when CV on
clearance was 10-30%. When @w¢; = 4-5 I/h the lines were slightly separated at all
times, with the greatest separation being when w¢; = 5 1/h. However, the peak in
concentration variance which occurred at approximately 0.5 hr was observed at the

same time in both the simulated and predicted curves.
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Figure 3.22 Plot of concentration variance over time for ten simulations of 5000
subjects and the derived concentration variance when @c; = 3 I/h (no random error).
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Figure 3.23 Plot of concentration variance over time for ten simulations of 5000
subjects and the derived concentration variance when @c; = 3 I/h (random error).

Chapter 3 3.32



2
!

» »
=

Concentration Variance

0 1 3 4 5
Time (hr)
Cl comp —V1 comp V2 comp
——Q comp Total —— Sim Var

Figure 3.24 Concentration variance across time for wc = 1 I/h (no random error).
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Figure 3.25 Concentration variance across time for @c; = 2 I/h (no random error).
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Figure 3.26 Concentration variance across time for @c; = 3 I/h (no random error).
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Figure 3.27 Concentration variance across time for wc; = 4 1/h (no random error).
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Figure 3.28 Concentration variance across time for @ = 5 I/h (no random error).
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Figure 3.29 Concentration variance across time for @c; = 1 I/h (random error).
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Figure 3.30 Concentration variance across time for @¢; = 2 I/h (random error).
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Figure 3.31 Concentration variance across time for @c; = 3 I/h (random error).
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Figure 3.32 Concentration variance across time for wc; = 4 I/h (random error).

16 i nh
2
1.4 b e T
@
£ 42
's < 4
> - 1 i--
55 ;
08 .
EE
'§' ~ 06
s 04
(5]
02
0 L} L} T T
0 1 2 o 4 5
Time (hr)
——Cl comp —— V1 comp V2 comp
——Q comp — Total ~——8im Var

Figure 3.33 Concentration variance across time for wc; = 5 1/h (random error).
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Effect of High Concentrations on Total Concentration Variance Within a
Population

Figures 3.34 and 3.35 show frequency histograms of the concentration distributions
at 0.5 hr and 5.0 hr when w¢; = 3 and 5 I/hr, respectively. The distribution at 0.5 hr is
that obtained when concentration variance was maximal, and that at 5.0 hr

corresponds to the last sampling time.

When w¢; = 3 (Figure 3.34), the concentrations were Normally distributed at
t = 0.5 hr, regardless of whether random error was added. As @y increased to 5 the

concentration distribution remained Normal (Figure 3.35).

The concentration distribution at 5.0 hr was skew regardless of the amount of
variability in clearance or whether random error had been added, again suggesting
that at later times when concentrations are small in relation to the dose, the mean and

standard deviation are not appropriate for describing the distribution.
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Figure 3.34 Histograms of Concentration at 0.5 hr and 5.0 hr when @¢ = 3, with the
Two-Compartment Model.
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Figure 3.35 Histograms of Concentration at 0.5 hr and 5.0 hr when @¢; = 5, with the

Two-Compartment Model.
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3.3.4 Discussion

3.3.4.1 One-Compartment Model

Sensitivity analysis predicted that peaks in concentration variance would occur at the

) 1 ] i 2
times k— , due to the component from the variance in clearance and at 0 hr and —k—,
e e

; ; i e s : 1
due to the component from the variance in volume of distribution. The time of -

e

has also been identified as that which would produce estimates of clearance with a

minimum variance (Dgssing et al. 1983).

Using a simulated population of 5000 subjects showed that the peaks at 1 = 0 hr and

-;— were clearly visible, although the predicted one at ;2- was not, due to the
e e

magnitude of the other peaks.

When the variability for clearance was less than 20%, curves showing the simulated
total concentration variance and the total calculated from the equations were
superimposed. However, when the variability of clearance was greater than 30% the
two curves diverged and the simulated concentration variance was greater than that

calculated from the equations. The peak which occurred at exactly ki (1.0 hr) in the

calculated variance curve moved slightly in the curve from the simulated population,
to 1.1 hr, when the variability of clearance was 30% and to 1.2 hr when CV was 40-
50%.

The mathematical proofs in Appendix 1 predicted that when random error was added
to concentration, the times of maximal concentration variance became more
dependent on the amount of variance for the clearance and volume parameters.
However, as the divergence was noted regardless of whether random error was

added, this result could not be attributed to it's inclusion.
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Examination of the concentration distributions at 1.0 hr and 5.0 hr showed that as the
variability in clearance increased, the concentration distributions at 1.0 hr became
skewed and at 5.0 hr they were highly skewed. This implied that at later times and
higher parameter variability the SD, and hence the variance, was greater than
expected due to a small number of high concentrations within the population. This
accounted for the divergence between the simulated and predicted concentration

variance curves at the later times.

When CV of clearance was 50% the separation of the curves began at around 1.0 hr
(1.4 half lives). Sensitivity analysis in this study suggested that there was no

advantage in sampling after 1.4 half-lives (peak in concentration variance at ;f— =
e

1.4 half lives) and in theory this effect could be ignored if the last sampling time
occurred at 1.4 half lives. However, most PK studies will sample to around 3-5 half-
lives to verify that the PK model is appropriate. Hence, the occurrence of curve
divergence and shifts in peak time in the one-compartment model could not be
excluded on the basis of half-life. These results indicated that at high variability

population simulations should be carried out in order to define the sampling times.

The effect was possibly due to the magnitude of the concentrations at later times in
relation to the dose administered rather than number of half-lives that had passed. In
particular the small number of high concentrations that artificially inflated the
variance across the population. In addition another measure of the spread of
concentrations rather than mean and standard deviation requires investigation. For
example, the upper 95% limit of the distributions may provide values within the

simulated populations that are the same as those predicted.

3.3.4.2 Two-Compartment Model

Initially, concentration variance was plotted over time, for simulated populations of
5000 subjects to define the times of peaks in concentration variance due to variability

in each of the PK parameters CI, V;, V, and Q. The effect on the times of peak
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concentration variance in response to increasing variability of the parameters was
also examined. This showed that any observed peaks tended to move slightly as the
CV of each parameter was increased from 10-50%. For the parameter values used,
the component due to variability in clearance gave rise to one peak in concentration
variance at 0.5 hr. The component due to variability in V; gave rise to one at =0 hr
and a second at 0.7 hr when CV of clearance was 10-30%; ¥, gave rise to one at 1.0
hr and Q gave rise to one at 0.3 hr and a second between 2.1 and 2.7 hr, depending
on the variability of Q.

Populations of 5000 subjects were then simulated for the same parameter values,
with and without random error on concentration. The concentration variance from
these populations was compared to the total concentration variance predicted using
Equation 3.16. In this set of simulations, the CV was fixed at 10% on all parameters

except clearance, where it was varied from 10 to 50%.

The simulated and calculated concentration variance profiles for a two-compartment
IV bolus PK model show that Equation 3.16 predicted peaks in concentration
variance in close agreement to those seen in simulated populations of 5000 subjects,
regardless of whether or not random error was added. The only peaks seen in the
total variance curves were due to V; at t =0 hr and C/ at 0.5 hr. This was because the
contribution from these components was much larger than the contribution from the

other components at the levels of variability examined.

Some divergence between the simulated and predicted curves was noted, but there
were no shifts in the times at which the peaks in concentration variance were
observed when the variability in clearance was 30-50%, unlike the one-compartment

case.

Again, the concentration distributions were examined at the time of the maximum
concentration variance in the simulated populations and at the last sampling time.
These showed that the distribution of concentration at the peak in variance (0.5 hr)

was Normal, regardless of the variance of clearance and whether random error was

Chapter 3 3.43



added. The distributions at 5.0 hr were all skew, but not to the same degree as for the
one-compartment model. However, the lack of divergence of the predicted and
calculated concentration variance curves in the two-compartment model can be
attributed to the fact that 5.0 hr is only 1.8*z,5. At this time the concentrations were
not as small as they were at the same time in the one-compartment model and the
distributions were less skew and less sensitive to a small number of large
concentrations. Hence, later sampling times in this model may show the same effect

as with the one-compartment model.
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3.4 Conclusion

In the field of risk assessment sensitivity analysis has often been used to define
physiologically based pharmacokinetic (PBPK) models which allow the
determination of the effects of toxic chemicals and drugs on different organs and
tissues of the body over time. The times at which the model output (concentration in
an organ or tissue) is most sensitive to changes in each model input parameter (dose,
blood flow rates into specific organs, organ/tissue weights) can be defined. The
method involves examination of the partial derivatives of the output with respect to
each of the input parameters and the total variability in the output parameter can be

related to factors from each of the input parameters.

Sensitivity analysis of concentration variance with respect to each of the PK
parameters included in the one-compartment I'V bolus PK model showed that two
peaks in concentration variance in addition to an initial peak at ¢ = 0 hr should be
present. In general, the predicted times corresponding to the peaks were in close
agreement with those seen in simulated populations of 5000 subjects. However, the
predictions of concentration variance from the derived equations were less accurate
at high levels of variability on clearance when compared to the simulated
concentration variance. This was shown to be due to the concentration distribution
in the simulated populations becoming more skew at later times, as the variability on
clearance increased. Hence, the calculation of concentration variance in the
simulated populations was higher than that predicted from the equations derived
from the sensitivity analysis. The use of simulated populations in conjunction with
sensitivity analysis would overcome this discrepancy as the divergence of the two

curves began as early as 1.4 half lives.

The two-compartment model proved to be more stable than the one-compartment
model, in that there was greater agreement between the predicted and simulated
concentration variance, even at high levels of variability in clearance. The
concentration distributions were less skew at the later times used in these

simulations, than the one-compartment model. Hence, the divergence observed with
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the one-compartment model was not seen with the two-compartment model.
However, the last sampling time of 5.0 hr in the two-compartment model
corresponded to only 1.8*7,,4 whereas 5.0 hr in the one-compartment model
corresponded to 7.2*¢,, and the divergence of the curves may perhaps be more
apparent at this time on the two-compartment model. The divergence effect relates
to the magnitude of the concentrations at the later times and would also depend on
the dose given and the amount of random error present. The addition of random
error reduced the divergence slightly, in that a smaller number of concentrations had
to be removed in order to reduce the standard deviation of the remaining population

to a value that was similar to that predicted.

In conclusion, in this chapter it has been shown that the times of peak concentration
variance observed in simulated populations generally corresponded to the times of
peak concentration variance obtained from sensitivity analysis. Hence, sensitivity
analysis proved a useful tool for use in the design of limited sampling strategies for
PK studies in conjunction with simulated populations where the parameter variability
may be greater than 30% CV. The sampling times would correspond to the times of
peak concentration variance and an ‘optimal’ sampling design may exist. These
times should offer the most information about the parameters in question, in terms of
accurate estimation, and designs based on these times are investigated in later

chapters of this thesis.
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4 Limited Sampling in a One-Compartment IV Bolus
Pharmacokinetic Model (Two Sampling Times)

4.1 Introduction

In chapter 3 sensitivity analysis of a one-compartment PK model suggested two
sampling times that may offer improved parameter estimates over other sampling
times, in a limited-sampling strategy. These were a sample taken as early as possible
in order to estimate volume of distribution and a sample taken at 1.44*¢,, to estimate
clearance. For the parameter values investigated in this section the sampling times
corresponded to 0.1 hr and 1.0 hr, respectively. The concept of using sensitivity
analysis to define sampling times is investigated in this chapter by the use of a

simulation study.

Two study designs were compared: one based on the times defined by the sensitivity
analysis and a second which used the same first time and a second chosen from a
different point on the concentration variance curve. The comparisons related to the
accuracy with which each of the PK parameters were estimated with each design and
also to examine whether there were any benefits to using sensitivity analysis to

define sampling times, over the use of other times.

Before continuing the investigation into study designs, two of the NONMEM
estimation methods (first-order (FO) and first-order conditional (FOCE)) were
examined as to which would provide the least biased and imprecise PK parameter
estimates. The reason being that although the FOCE method is not the first choice
for analysis of sparse data sets, some authors have suggested that estimation bias
may be reduced with it's use (Al-Banna et al. 1990; Vozeh et al. 1990; White et al.
1991; Jonsson et al. 1996). Although this has been suggested in these studies, few
studies have been published with comparison of the same data sets, using both
methods of analysis. During simulations carried out in this chapter, it was noted that

estimation bias increased as the variability in clearance increased and hence a direct
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comparison of the NONMEM FO and FOCE methods in the analysis of sparse data

was carried out.

Finally, the estimates of bias and imprecision obtained from ten sets of 500 subjects
were compared to those obtained from 100 sets of 500 subjects, in order to define if
the ten sets were a representative sample of the population. Generally only ten
results would be considered a small number to make statistical comparisons from
(the results are presented as the mean bias + 95% confidence interval from ten
NONMEM estimates). However, in the simulations used in this thesis these ten
results represent 10*500 = 5000 subject’s data. The distribution of the ten results
were compared to the distribution of 100 similar results to define whether only using

10*500 subjects was adequate for comparing different study designs.
In summary, this chapter examines three aspects designing PK studies: when to take

samples, which method of analysis is best and how many sets of data require to be

analysed.
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4.2 Comparison of Two Sampling Designs based on Sensitivity

Analysis
4.2.1 Methods

4.2.1.1 Data Simulation

Concentration-time data were simulated according to a one-compartment model,

following a single I'V bolus dose of 100mg of drug, as described in Chapter 2.

The values of the parameters used to simulate data for comparison of the two study
designs are summarised in table 4.1. One hundred sets of 500 patients were
simulated using an additive inter-individual error model on the PK parameters and a

proportional intra-individual residual error model.

4.2.1.2 Sampling Designs

Sampling design 1 was based upon the times where maximum concentration variance
occurred (chapter 3) and design 2 used one of these peaks combined with a second
time which corresponded to the intersect of the concentration variance curves that
were due to volume of distribution and clearance. This time was chosen to examine
the effects of using a time where the both clearance and volume of distribution
contributed the same to the total concentration variance.
Design 1.  Two fixed sampling times corresponding to the two peaks in
concentration variance (0.1 and 1.0 hr).
Design 2.  Two fixed sampling times using the early peak and the time where
the concentration variance curves due to each of the parameters

intersected (0.1 and 0.5 hr).

The concentration variance curve is shown in Figure 4.1 and the sampling designs

are summarised in Table 4.2.
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4.2.1.3 Data Analysis

In the comparison of the two study designs, the parameters Cl . 1% , D¢y, @y and o,
were estimated using NONMEM First Order (FO) estimation with the posthoc option
for calculating individual values of the 7;. The successful termination of the
NONMEM runs was defined as completion of both the estimation and covariance

steps along with accurate parameter estimates.

Calculation of the percentage bias and imprecision of the NONMEM population

estimates, as described in Chapter 2, was used to compare the designs.
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Table 4.1 Mean pharmacokinetic parameter values used to simulate data for
comparison of Designs 1 and 2 (table 4.2) *

Parameter Value

Cl 10.0 I/h
% 10.01
. 1.0 V/h
w, 1.01
oy} 0.1

“It was assumed that there was no covariance between C/ and V.
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Figure 4.1 Sampling times for Designs 1 and 2 shown on the concentration variance
curve. The curves show the contribution of each parameter (Var (C/) and Var (7)) to
the total concentration variance curve (Var Total).

Table 4.2 Sampling designs for a one-compartment IV bolus PK model using two
fixed sampling times.

Design Description Time t; Time t;
_No. (h) (h)

1 Two Peaks 0.1 1.0

2 Early Peak, Intersect 0.1 0:5
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4.2.2 Results

During estimation of the PK parameters for comparison of designs 1 and 2, all data
sets minimised successfully. Hence for each design and each PK parameter, there

were 100 estimates available for analysis.

Figures 4.2, 4.4 and 4.6 to 4.8 show the percentage bias and precision for each

parameter ( Cl ,F , W¢, @y and o) as estimated by NONMEM. Figures 4.3 and

4.5 show the comparison between the mean simulated values of clearance and
volume of distribution and the mean NONMEM posthoc estimates of clearance and
volume. These mean values were calculated for the 500 subjects in each of the 100

data sets for both sampling designs.

The average bias and imprecision for the population estimates of clearance are
shown in figure 4.2. The values for design 1 were -0.87% and 0.52%, respectively,
and 0.5% and 1.14%, respectively, for design 2. Figure 4.3 shows that design 1
consistently underestimated clearance, but that the estimates were close to the line of
identity, when compared to the simulated value. Design 2 tended to overestimate
clearance, but had a greater spread of results across the line of identity. Although
generally, the best design would be the one with the least imprecision and bias, in
this case no distinction could be made between designs 1 and 2 on this basis as the

amount was so small.

Figure 4.4 shows the average bias and imprecision of the population estimates of
volume of distribution, using both sampling designs. The mean values for design 1
were -0.78% and 0.75%, respectively and -0.94% and 0.83%, respectively, for design
2. Figure 4.5 shows that there was little difference between the designs in the
posthoc estimation of volume of distribution and both designs 1 and 2 consistently

underestimated the mean value of ¥ within the populations.

The results for the estimation of the bias and imprecision of the standard deviation of

clearance (@, ) are shown in figure 4.6. @, was estimated accurately using design

Chapter 4 4.8



1 with a mean bias and imprecision of -1.37% and 4.64%, respectively. However,
design 2 was more inaccurate in estimating @,, shown by a wider 95% confidence

interval for the bias (mean = -3.81%) and an unacceptable value of 28.8% for the

imprecision.

The estimation of the standard deviation of volume of distribution (@, ) was

improved when design 2 was used, compared to design 1, as shown in figure 4.7.
The values of mean bias and imprecision were -2.37% & 9.09% and -0.25% &

7.26% for designs 1 and 2, respectively. In addition, the 95% confidence interval for
design 2 covered zero, suggesting that there may be no bias in estimating @, with

this design.

Figure 4.8 illustrates the bias and imprecision for the estimation of the proportional
random error on concentration (oy) and design 2 was more precise than design 1,
although the mean bias was larger. The values of the mean bias and imprecision

were -0.28 & 7.84% for design 1 and -1.62% & 5.0% for design 2.

Table 4.3 summarises the bias and precision estimates for designs 1 and 2 for all

NONMEM population estimates of the PK parameters.
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Figure 4.2 Bias (£95% CI) and imprecision of the NONMEM population estimates

of clearance (C/ ), using Designs 1 and 2.
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Figure 4.3 Comparison of mean individual simulated values of clearance with the
mean NONMEM posthoc values
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Figure 4.4 Bias (£95% CI) and imprecision of the NONMEM population estimates
of volume of distribution (7" ), using Designs 1 and 2
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Figure 4.5 Comparison of mean individual simulated values of volume of
distribution with the mean NONMEM posthoc values
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Figure 4.6 Bias (£95% CI) and imprecision of the NONMEM population estimates
of standard deviation in clearance (@, ), using Designs 1 and 2.
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Figure 4.7 Bias (+95% CI) and imprecision of the NONMEM population estimates
of standard deviation in volume of distribution (@, ), using Designs 1 and 2.

Chapter 4 4.12



10

Percent (%)

o
—%—

—ae— %Bias Design 1
¢ %Imprecision Design 1

—&— %Bias Design 2
A %Imprecision Design 2

Figure 4.8 Bias (195% CI) and imprecision of the NONMEM population estimates
of proportional intra-subject random error in concentration ( o, ), using Designs 1 and

2!

Table 4.3 Summary of bias and imprecision results using Designs 1 and 2 with

NONMEM for estimation of PK parameters.

Mean Bias (SE) (%)

Sl 4 Mean Imprecision (%)
L d ¥ @ @y o,
Design 1 -0.87 (0.05) -0.78(0.07) -1.37(0.46) -2.37(0.9) -0.28(0.79)

0.52 0.75 4.64 9.09 7.84
Design 2 0.5(0.11) -0.94(0.08) -3.81(2.77) -0.25(0.72) 1.62(0.49)

1.14 0.83 28.8 7.26 5.0
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4.2.3 Discussion

Designs 1 and 2 showed little difference in the estimation of clearance (C/), volume
of distribution (¥), standard deviation of volume (@y) and the proportional random
error on concentration (oy). For these parameters the mean bias was less than 3%
and the imprecision was within an acceptable limit of 10%. However, although
standard deviation of clearance (@c;), was estimated accurately with both designs in
terms of having acceptable values of bias (less than 4%), design 2 was very

imprecise with a value of 28.8%.

Examination of the posthoc estimates of C/ showed that there was a difference in the
estimation of the clearance parameter, when compared to the true, simulated value.
Design 1 underestimated clearance, but the estimates were closer to the true values
than the estimates produced using design 2. This was also evident in the larger value
for standard deviation of clearance using design 2. The poorer performance of
design 2 in the estimation of clearance was as expected as the sampling time that had
corresponded to the peak in concentration variance due to clearance was not
included. Design 1 had sampled at the times that corresponded to the peaks in
concentration variance that were due to both clearance and volume, whereas design 2
only included the peak due to volume. The times of peak concentration variance
were those which were expected to contain the most information about the
parameters that were attributed to them, from the results of the sensitivity analysis.
Hence, it was expected that design 1 would estimate both clearance and volume
accurately and that design 2 would only estimate volume accurately and this was

evident in the results.

Overall, design 1 was the better of the two designs as it estimated all of the
parameters with acceptable levels of imprecision and bias, whereas design 2 had a
very imprecise estimate of ¢ at almost 30%. The large variability in estimation of
this parameter made design 2 inappropriate for further investigation. The ultimate
consideration of these designs is their usefulness in a clinical situation and an

imprecision in estimation of 30% may translate into a higher imprecision when used
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for prediction. Design 1 was the sampling design that was used for comparison with

some empirical sampling designs in subsequent experiments.
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4.3 Comparison of NONMEM FO and FOCE Methods
4.3.1 Methods

4.3.1.1 Data Simulation

Again, concentration-time data for this chapter were simulated according to a one-
compartment PK model, following a single IV bolus dose of 100mg of drug, as
described in Chapter 2.

The NONMEM FO and FOCE methods were compared using design 1, as described
in table 4.2 with a population mean clearance (E ) of 10 I/h and the standard
deviation of clearance (@, ) was varied in different simulations from 1, 2,..., 5 l/h,
i.e., 10%, 20%,..., 50% of the population mean. The population mean volume (17)

was fixed at 10 | with a standard deviation (@, ) of 1 1.

The random intra-individual error model was changed to the combined one as
described in Chapter 2, where ¢,; and ¢,; were sampled from &, ~ N (0, o’f) and

£, ~ N(O, cr_f ) oy and o, were set to 0.05 and 0.25 mg/l, respectively. This

represented a more realistic error model when compared to those used for analysis of
real clinical data. The mean PK parameters used in the simulations to compare the
NONMEM FO and FOCE methods are summarised in table 4.4. Ten sets of 500

subjects were simulated for each level of variability of clearance.

4.3.1.2 Data Analysis

In order to compare the FO and the FOCE methods directly, the parameters cl, v,
w},, @) o} and o were estimated by NONMEM, firstly using the FO method and

secondly using FOCE with interaction. These methods are described in more detail
in Chapter 2 and calculation of the percentage bias and imprecision of the

NONMEM population estimates, was used to compare the designs.
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Table 4.4 Mean pharmacokinetic parameter values used to simulate data for
comparison of NONMEM FO and FOCE methods “

Parameter Value

Cl 10.0 V/h

1% 10.01

g Varied from
1.0,20,...501h

o, 1.01

o; 0.05

o3 0.25 mg/1

“It was assumed that there was no covariance between Cl and V.
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4.3.2 Results

Several runs failed to terminate successfully due either to NONMEM not completing
the covariance step of the estimation following a successful minimisation of the
objective function, or to NONMEM rejecting the data from one or more individuals.
When the standard deviation for clearance (@¢;) was 4 and 5 1/h (i.e. 40 and 50%),
NONMEM failed to terminate successfully at all using both FO and FOCE methods,
apparently due to several individuals with particularly low clearance values.
Removal of these individuals reduced the overall variance of the sample, but the data
sets would still not terminate successfully. Hence the results with ¢ equal to 4 and
5 I/h were excluded from the analysis for both methods. In two out of the ten runs,
with g =1 1/h, NONMEM was unable to complete the covariance estimation step
using the FO method, and these sets were removed from the results presented.

Hence for these sets the mean and 95% confidence interval calculations were based

on eight runs.

Estimation of Clearance

Figure 4.9 summarises the results for the estimates of the population average
clearance. Using the FO method, there was no significant bias when the population
wc;=11/h (10%). However, as @w¢; increased to 3 1/h (30%) a negative bias of —3.7%
was introduced. The estimates of imprecision were small when @ = 1 I/h, but
became gradually more imprecise (ranging from 0.74% to 1.6%) as @¢; increased to

3 l/h.

FOCE resulted in a small bias (0.42%) in the average estimate of population mean
clearance, but this was approximately constant for all values of ¢ up to 30% CV.
The estimates became gradually more imprecise (ranging from 0.76% to 1.5%) as

wcy increased, similar to the FO method.
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Estimation of Volume of Distribution

Using FO, the estimation bias for the volume of distribution (Figure 4.10) decreased
in absolute magnitude from —0.96% to —0.53% as @c; increased from 1 to 3 I/h. The
degree of imprecision remained relatively constant at approximately 0.5%. The bias

and the precision across all models for w¢; remained constant using FOCE.

Estimation of Standard Deviation of Clearance (o¢)

Figure 4.11 shows the results for the estimation of @¢y, the standard deviation of the
population clearance distribution. Using FO, when w¢; = 1 I/h, the estimated bias
was —26.5% and this decreased in magnitude to —6.5% for wn =2 I/h and -1.1% for
@c = 3 1/h. Similarly, the imprecision improved as @¢; increased from 1 to 3 1/h
(18.7% improving to 5.4%). In this case FOCE resulted in a decrease in estimation
bias from —11.7% for wg; =1 I/h to -3.6% when @¢; = 3 I/h with a similar

improvement in precision (11.6% to 4.4%).

Estimation of Standard Deviation of Volume of Distribution (w))

No obvious pattern in bias and imprecision was determined in the estimation of @y,
the standard deviation of the population distribution for volume of distribution, using
the FO method (Figure 4.12). However, using FOCE, the confidence intervals for wy
were reduced compared to those obtained when using the FO method, for all values
of @¢; and the negative bias changed from —4.7% to —7.2% as @ increased from 1 to
3 I/h. The estimates became slightly less precise, when FOCE was used, as @¢;

increased (5.3% to 7.0%).

Estimation of Intra-Subject Error (o; & o3)

The results for the intra-subject variability components are shown in figures 4.13 and
4.14. The confidence intervals for the bias estimates for both the proportional
component, o (figure 4.13) and the additive component, o (figure 4.14) were

greatly reduced using the FOCE method. Figure 4.13 shows that the proportional
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component was estimated with a positive bias, with the FOCE method, which
remained relatively constant (8-9.5%). Figure 4.14 shows that, using FOCE, the bias
in the additive component increased from 13.5% to 26.5% as @y increased.
Imprecise average estimates for both the proportional component and the additive

component resulting from the FO method improved with FOCE

Summary

In summary, in the estimation of the fixed effect parameters, clearance and volume,
the FOCE method removed patterns in bias introduced as @¢; increased. In the cases
of the random effects, inter and intra-individual error, the mean bias was reduced and
the precision improved. In general, the results were more stable using the FOCE

method.
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Figure 4.10 Bias (mean and 95% CI) and imprecision results for the estimates of
population mean volume of distribution.
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Figure 4.11 Bias (mean and 95% CI) and imprecision results for the estimates of the
standard deviation of the population clearance distribution (@c;).
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Figure 4.12 Bias (mean and 95% CI) and imprecision results for the estimates of the
standard deviation of the distribution of the population volume of distribution (@y).
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Figure 4.13 Bias (mean and 95% CI) and imprecision results for the estimates of the
proportional error component (o7).
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Figure 4.14 Bias (mean and 95% CI) and imprecision results for the estimates of the
additive error component (02).
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4.3.3 Discussion

The First-Order (FO) and the First-Order Conditional Estimation (FOCE) methods
implemented in NONMEM were investigated in this simulation study, in which the
effect of altering the standard deviation (@¢;) of the population distribution for

clearance was examined while all other factors remained constant.

The negative bias in the population estimates of clearance as @w¢; increased confirmed
the results reported by Al-Banna et al (1990) using FO. There was also a small
negative bias in the estimation of volume of distribution. However, both of these

effects were virtually eliminated using FOCE.

There was no difference between FO and FOCE in the degree of precision with

which the mean values for clearance and volume were estimated.

The bias and precision for volume remained relatively constant across the range of
clearance variability investigated. This was probably due to the population
variability in volume being fixed at only 10% and also to the first sampling time

being shortly after administration.

Other authors have noted similar results. White et al (1991 )reported increasing bias
in the estimates of clearance, and @y as the variability in the clearance and volume of
distribution or random intra-subject error increased . The bias in clearance was
negative, similar to the current study, but the absolute values cannot be compared as
the variability in the population parameter distributions was different. Vozeh et al
(1990) showed that although the bias in parameter estimates was significant, it was
also relatively small . However, using the anaesthetic agent alfentanil as an example,
they also showed that small biases could translate into prediction intervals with
clinically significant implications. In another simulation study comparing some
practical sampling designs with sparse data, Jonsson et al (1996) noted that the
FOCE method reduced the bias and improved the precision with which clearance and

wc; were estimated.
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Satisfactory parameter estimation has been defined as estimates of fixed effects

having little (less than 15%) or no bias and imprecision of less than 25% (Ette et al.
1998). Using these criteria the fixed effect parameters, clearance and volume, were
satisfactorily estimated using the FO method. However, when examined closely, a

negative bias was introduced as the standard deviation (@¢;) on clearance increased.

Both FO and FOCE produced biased estimates for the population parameters, @¢
and wy. In the case of w¢;, bias was approximately —30% when the true standard
deviation was 1 I/h (10% CV) and decreased as the true variability increased. The
precision also improved as the variability increased. Although the FOCE method did
not remove the bias, it was considerably reduced. The degree of precision was
similar using both estimation methods. Thus, it appeared that the parameter
estimates were less biased when there was greater inter patient variability in

clearance.

The results for wy were less consistent, but for all values of @y, the bias for wy was

less and the results more precise using FOCE.

FOCE also produced more accurate and precise estimates for the intra-individual
error components than FO, but these still showed a significant positive bias of 10-

30%, presumably reflecting the sparse nature of the data.

Comparisons of NONMEM in the scientific literature are often with the ‘standard
two-stage’ method of analysis which relies on linear regression techniques for
estimation of PK parameters. NONMEM has been shown to result in similar
estimates of fixed effects even when the number of samples included in the
NONMEM analysis was reduced to three from the twelve used in the standard two-
stage analysis (Grasela et al. 1986). In addition, the use of NONMEM resulted in
reduced estimates of the inter-subject variability by the inclusion or exclusion of
covariates and the partitioning of errors into that due to inter and intra-subject error

(Yu et al. 1994, Vadiei et al. 1997).
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NONMEM has been compared to other population pharmacokinetic analysis
computer programs and the NONMEM FO method was shown to give similar
parameter estimates to other first-order estimation programs (Roe 1997). In addition,
the FOCE method has resulted in parameter estimates that were similar to other
conditional and Bayesian estimation methods using both simulated (Roe 1997) and
clinical (Racine-Poon et al. 1998) data. The FO method has also been shown to give
improved parameter estimates over a computer program which incorporates a two-
stage type of algorithm, but inferior estimates to the Bayesian algorithm (Bennett et
al. 1996).

There is a lack of published direct comparisons of the FO and FOCE methods on the
same data set. However, in a comparison with a Bayesian two-step algorithm from
another computer program, P-PHARM, the FOCE method was noted to result in
similar parameter estimates, using a three-sample, one-compartment PK model, for
simulation (Mentré et al. 1995b). This study also included a comparison to the FO
method which resulted in greater bias and imprecision than either of the other two

methods of analysis.

In the particularly sparse design examined in this section, FOCE largely removed the
bias in the population estimates noted using the FO method. CPU time was not an
issue with these data sets, although it may become one with larger, more complex
data sets or when using more complex models, perhaps including covariates.
However, this study has demonstrated the importance of using the FOCE method
either throughout an analysis, or at least as a check of the final results, as
recommended in the NONMEM manuals (Beal et al. 1998).
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4.4 Comparison of Results from 10 Sets of 500 subjects with
those from 100 sets of 500 Subjects

4.4.1 Methods

4.4.1.1 Data Simulation

Similar to the other sections in this chapter, the concentration-time data were
simulated according to a one-compartment model, following a single IV bolus dose

of 100mg of drug, as described in chapter 2.

Data for one hundred sets of 500 subjects were simulated using design 1 from table
4.2 and the parameter values described in table 4.4. The PK parameters were
estimated using the NONMEM FOCE method and the bias of the 100 parameter
estimates was calculated as described in chapter 2. The distributions of the 100
parameter estimates obtained in this section were compared to the distributions of the
ten parameter estimates obtained in section 4.3, to establish if the initial ten sets of

500 were representative of the population.

4.4.1.2 Data Analysis

The distributions of the parameter estimates from 100 runs were compared to those
obtained from 10 runs by the use of box and whisker plots. The bottom line of the
box in each figure represents the first quartile (Q1) and the top line the third quartile
(Q3). The median value of the data is represented by a line across the middle of the
box. The whiskers are the lines that extend from the top and bottom of the box and
define the upper and lower limits [Q3 + 1.5 (Q3 - Q1)] and [Q1 - 1.5 (Q3 - Q1)],
respectively. Outliers are defined as data points which lie outwith the limits and are

plotted with asterisks (*).
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4.4.2 Results
All data in this section were analysed using the NONMEM FOCE method and the

distribution of parameter estimates across 100 sets of 500 subjects was compared to

those obtained from 10 sets of 500 subjects. Figures 4.15 to 4.20 show the
comparisons of the spread of estimates of the PK parameters Cl ; % , Dy, Oy, O

and o,, respectively.

In all figures the median value of bias was greater when only ten runs were used
instead of 100. The distributions of ten runs overlap those of 100 runs in the
estimation of all parameters. No line is evident for the median of 100 runs for the
estimation of volume of distribution as the upper quartile (Q3) value was equal to the
median value of 0%. In the estimation of the fixed effect parameters, C/ and V, the
difference in the median bias was less than 0.4% and this increased to 7% for the
inter-subject variability parameters @, and @, . The average difference for the bias
in the estimation of the proportional error component was 9% in absolute terms,
although this was in the opposite direction, i.e., positive bias for the ten runs and
negative bias for the 100 runs. However, the difference in median bias was greatest
for the estimation of the additive random error component where the difference

between 100 and 10 runs was approximately 30%.
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Figure 4.15 Comparison of average bias and imprecision in the estimation of
clearance (), using either 100 or 10 sets of 500 subjects.
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Figure 4.16 Comparison of average bias and imprecision in the estimation of
volume of distribution (}), using either 100 or 10 sets of 500 subjects.
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Figure 4.17 Comparison of average bias and imprecision in the estimation of
standard deviation of clearance (@c;), using either 100 or 10 sets of 500 subjects.
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Figure 4.18 Comparison of average bias and imprecision in the estimation of
standard deviation of volume of distribution (wy), using either 100 or 10 sets of 500
subjects.
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Figure 4.19 Comparison of average bias and imprecision in the estimation of the

proportional random error component (o7), using either 100 or 10 sets of 500
subjects.
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Figure 4.20 Comparison of average bias and imprecision in the estimation of the
additive random error component (oz), using either 100 or 10 sets of 500 subjects.
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4.4.3 Discussion

The third section of this chapter examined the effect of the number of NONMEM
runs on the estimates of bias. This was carried out to examine whether ten
population estimates of the PK parameters was representative of the whole
population. In general, an n of 10 would be considered small, but overall these
estimates were from 10*500 = 5000 subject, which is a large sample size. However,
a comparison was made with 100 population estimates of PK parameters which
represented 100*500 = 50,000 subject’s data.

The results were satisfactory for the fixed effects (C/ and V), the random inter-
subject effects (@ and @y) and the random proportional component of intra-subject
error (o7) in that although the median bias over 100 runs was slightly different to that
obtained with ten runs, the distributions of results overlapped. The median bias
results for the estimation of the additive component of the random intra-subject error
(o,) showed greater deviation, but the distributions for both sets of results remained
overlapped due to the large variability in the estimation of this parameter. The poor
estimation of this parameter can be attributed to the sampling design. Additive
random errors are best estimated with later sampling times when an additive

component affects low concentrations to a greater extent.

Hence, it was considered that the 10 sets of 500 subjects was representative of the
results that would be obtained from 100 sets of 500 subjects. For this reason 10*500
subject’s data were simulated and analysed in the remaining PK designs in this
thesis. The main reason being that although the time factor was not an issue in using
FOCE method of analysis for ten sets of data, it would become one for the analysis

of 100 sets of data for each design.
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4.5 Conclusion

Sensitivity analysis carried out in chapter 3 suggested two sampling times that would
offer accurate parameter estimation of the parameters C/ and V for a one-
compartment PK model. These were a sample taken as early as possible to estimate
volume of distribution and a sample taken at 1.44*¢/; to estimate clearance.
Sampling design 1 utilised both of these times and was compared to design 2 which
used the first of these times and a second time chosen from the concentration
variance curve where the curves due to each parameter intersected. Comparison of
these designs showed that sampling at the times suggested by sensitivity analysis
gave more precise parameter estimates for all of the parameters, rather than only a
few of them, when the samples were taken at times that hold less information about
the parameters. The main drawback of design 2 was that it had an unacceptably high
level of imprecision in the estimation of @¢;, which in a clinical situation may lead to
errors in predicting doses for individuals. This preliminary experiment showed that
sensitivity analysis was a useful tool for defining sampling times and further
comparisons with ‘empirically’ chosen designs were carried out later in this thesis to

investigate this.

Before further experiments were carried out, two intermediate simulations were
undertaken: comparison of the NONMEM FO and FOCE estimation methods and

comparison of the estimation results from two different sample sizes.

It was shown in this chapter that the FOCE method removed bias introduced by the
FO method, even though the data in these simulations were sparse. These results
were consistent with similar results in the scientific literature. In the past the major
drawback to using the FOCE method of analysis was the increase in computer time
required to undertake the analysis. However, this is less of a problem with higher
performance computers that are available. Time to analyse the data sets was not an
issue in this study and hence due to the results in section 4.3, the FOCE method was

used to analyse the data in all other chapters of this thesis.
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While comparing the FO and FOCE methods data from only ten sets of 500 subjects
were analysed for each PK study design where previously in section 4.2 100 sets of
500 subject’s data had been analysed. If 100*500 subjects data had to be analysed
for each design, then time for analysis would have become a drawback. Hence the
distributions of the results from ten sets of 500 subject’s data were compared to those
from 100 sets of 500 subjects. It was shown that the distributions overlapped and
that ten sets of 500 subjects was a large enough sample size to be representative of

the whole population.

In conclusion, this chapter set out the following details for the remainder of this
thesis: design 1 (based on sensitivity analysis) should be compared to other study
designs by simulation of 10* 500 subject’s data for each design and analysed using
the NONMEM FOCE method.
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5 Limited Sampling in a One-Compartment IV Bolus
Pharmacokinetic Model

5.1 Introduction

An important aspect in the design of population PK studies is the timing of the
samples as only sparse data are collected for each subject within the study. Optimal
design strategies exist where sampling times are selected on the basis of design
criteria that identify which times should offer the most information about the
parameters of the PK model. The most frequently used design criterion for selecting
optimal sampling times is D-optimality (Box et al. 1959). D-optimality uses the
population mean values of the parameters to minimise the determinant of the inverse
of Fisher Information Matrix, which effectively selects sampling times that are
equivalent to the times where concentration variance would be maximal with respect
to the PK parameters (Silvey 1980). This is similar to the sensitivity analysis carried
out in chapter 3. However, the D-optimality design criterion does not incorporate
information about the PK parameter variance, but the use of sensitivity analysis

allowed investigation of the effects of increasing variability in the parameters.

Results presented in chapter 3 showed that when variability in clearance increased,
the ‘optimal’ sampling time from the simulated population moved to a higher time
point, similar to that demonstrated by Tod et al (Tod et al. 1998). Within a Bayesian
context increased variance on the parameters has also been shown to result in D-
optimal times that were different to those obtained at lower variance, with lower

variability giving the expected D-optimal times (Merlé et al. 1995).

Another important issue regarding the sparse nature of the data collected for
population PK analyses is the minimum number of samples to collect. At least two
sampling times are required in order to be able to estimate the fixed effect parameters
clearance (C/) and volume of distribution (¥) for a one-compartment PK model
(Sheiner et al. 1983). A two-sample design derived from D-optimality would give

the first sampling time to be the earliest possible and the second as the first time plus
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1.44%*t,, for an additive random-error model. For a proportional random-error model
the second time would be the latest time possible (Endrenyi 1981). The sampling
design based on sensitivity analysis in chapter 3 identified two sampling times that
were similar to those from D-optimality for the additive intra-individual error model
(as early as possible and 1.44*t,)). However, when the proportional intra-individual
error model was used, the sampling times were also as early as possible and 1.44%¢,,

and hence these times were used in the study.

Increasing the number of samples from two to three has been shown to improve the
estimation of variance in parameters, regardless of where it was inserted when the
two other times were as early and as late as possible (Al-Banna et al. 1990). Another
study, which allowed the collection of only one sample in some individuals
demonstrated that the addition of a second sample to some subjects improved the
parameter estimates, also regardless of where the second time occurred within a

specified time window (Jonsson et al. 1996).

The use of sampling windows is a another aspect of population study design that is
investigated in this chapter. Jonsson et al (1996) investigated a clinical situation
involving two morning and afternoon out-patient clinics, each lasting two hours. If
all individuals attending the clinic could only have one sample taken per visit, within
either the morning or afternoon sampling window, then it was beneficial to obtain
both a morning and an afternoon sample on different occasions rather than both
within one sampling window. Two simulation studies have also demonstrated that
the use of random sampling at a range of times around optimal sampling times
defined by D-optimality improved the precision and accuracy of the parameter
estimates. However, sampling around non-optimal times gave inferior parameter

estimates (Hashimoto et al. 1991; Mentré et al. 1995a).

This chapter further investigates some aspects raised in the literature, regarding
designing PK studies. Limited sampling designs based on the one-compartment PK
model were used to examine the issues relating to the use of sampling windows and

the effect of adding a third sample to the minimum number of two already defined.
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The designs examined in this chapter were based around the design derived from
sensitivity analysis in chapter 3 (design 1 in this thesis). The first set of simulations
involved examining the effect of adding sampling windows of varying size to the
second time point used in design 1, to mimic variability in sampling that can occur in
a clinical situation. The second set of simulations examined the effect of adding a
third sampling time to the two already defined, at different times, and also included

the use of sampling windows.

Firstly this chapter aimed to investigate whether strict guidelines on when blood
samples should be taken during clinically-based PK studies could be relaxed by the
use of sampling windows. The second objective was that if the 'optimal' times of
sampling have been defined as only two, using sensitivity analysis, would the
addition of a third sample improve parameter estimation, and if so, should it be taken

at a particular time.
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5.2 Methods

5.2.1 Data Simulation

Concentration-time data for this chapter were simulated according to a one-
compartment PK model, following a single IV bolus dose of 100mg of drug, as
described in Chapter 2.

The values of the parameters used were the same as those used in chapter 4 for the
comparison of the FO and FOCE methods and table 4.2 is reproduced as table 5.1.
Each population sample consisted of 500 subjects (2 observations/subject) and each

design was repeated 10 times.

5.2.2 Two-Sample Designs

The sampling times were defined from design 1, described in chapter 4, and the
initial investigations in this chapter examined the effect of adding a sampling
window to the second sampling time. The size of the sampling window varied from
10% to 50% of the half-life of the drug (¢, = 0.69 hr) and the samples were
uniformly distributed within the window. These designs were compared to the fixed
sampling times used in design 1 (reproduced as design 3 in this chapter). The second
sampling time in design 1 was 1.44%*z,, for the population average parameter values.
The six designs described above were also compared to a further design in which the
second sample was taken at 1.44*z,, where the 7, was calculated for each individual.
In this design each individual had the same first sampling time, but a different second

sampling time dependent on the value of their own parameters.

Hence, the three different sampling designs described above resulted in seven
different sampling schedules being evaluated.
Design 3. t; =0.1hr, t; = 1.0 hr, where 1hr was 1.44*t,, for the population
average parameter values.
Design 4.  t;=0.1hr, £, = randomly sampled from a window equal to 1hr + 10%

of the drug t». i.e., 1.0hr + 0.07hr.
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Design 5. ¢; =0.1hr, 7, = randomly sampled from a window equal to 1hr + 20%
of the drug ¢, i.e., 1.0hr £ 0.14hr.

Design 6. ¢; =0.1hr, ¢, = randomly sampled from a window equal to 1hr + 30%
of the drug #. i.e., 1.0hr + 0.21hr.

Design 7. t; = 0.1hr, #, = randomly sampled from a window equal to 1hr + 40%
of the drug #. i.e., 1.0hr + 0.28hr.

Design 8.  t; =0.1hr, £, = randomly sampled from a window equal to 1hr £+ 50%
of the drug ¢, i.e., 1.0hr £ 0.35hr.

Design 9. ¢, =0.1hr, ¢, = 1.44%*¢,, for each individual.

These designs are also summarised in table 5.2. Designs 3-8 are shown in figure 5.1.
which shows the concentration variance curves derived from sensitivity analysis in

chapter 3.

5.2.3 Three-Sample Designs

The second investigation in this chapter considered the effect of adding a third
sample to the two fixed samples defined from sensitivity analysis in chapter 3 and
used in design 1. The third time was either added in between the two original times
or after them at two different times, one close to the last sample time and one later at
3*t,,. The first sampling time was fixed at 0.1hr but the second and third times
incorporated sampling windows. Three different schedules were simulated:
Design 10. Third sample between the two already defined, i.e., at the time
where the curves of concentration variance due to the clearance and
volume parameters intersected (0.5 hr, see chapters 3 and 4).
Design 11. The third sample after the two already defined, at the same time
interval as the ‘intersect’ time was from the second peak at 1.0hr
(i.e., 1.5 hr).
Design 12. The third sample at 3*7, (2.0 hr).
Each schedule was simulated with sampling windows on the second and third times.
The windows were set as 10% and 50% of the half-life, respectively, and again, the

samples were uniformly distributed within the window. The sampling times were
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restricted to be at least 5 minutes apart, as the windows overlapped in some cases,
see figure 5.2. Six simulations were carried out in total. The sampling schedules are

summarised in table 5.3 and figure 5.2.

5.2.4 Data Analysis

The parameters CI, V , @}, @}, o} and o were estimated by NONMEM, version
V, using FOCE with interaction, which accounts for interactions between the 7 and

the & due to the proportional intra-individual error model.

Calculation of the percentage bias and imprecision of the NONMEM population

estimates for each data set, as described in chapter 2, was used for all comparisons.
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Table 5.1 Mean pharmacokinetic parameter values used to simulate data“.

Parameter Value

Cl 10.0 /h

% 10.01

@ Varied from
1.0,2.0,3.0 /h

w, 1.01

oy 0.05

le5) 0.25 mg/l

“It was assumed that there was no covariance between C/ and V.

Table 5.2 Sampling designs for evaluation of sampling windows with two sampling
times.

Design First Sampling Time Second Sampling Time

Number  (#;) (hr) (t2) (hr)

3 0.1 1.0

4 0.1 1.0 £0.07

5 0.1 1.0+0.14

6 0.1 1.0£0.21

7 0.1 1.0£0.28

8 0.1 1.0+ 0.35

9 0.1 1.44*individual 7/,
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Figure 5.1 Sampling times for designs 3 to 8 shown on the concentration variance
curve. The boxes represent the distribution of the sampling window around the 1.0hr
sample.
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Table 5.3 Sampling schedules for three sampling times on a one-compartment IV
bolus PK model (7. = 0.69 hr).

Design  Sampling First Second Third
Number Window Sampling Time Sampling Time Sampling Time
(t;) (hr) (22) (hr) (5) (hr)
10a 10% * ¢, 0.1 0.5+0.07 1.0+0.07
10b 50% *1; 0.1 0.540.35 . Lura3s
l1a 10% * 1, 0.1 1.0+0.07 1.54£0.07
My TS0% AN GE 0 10403 | 15035
12a 10% * £, 0.1 1.040.07 2.0+0.07
12b 50% * 1. 0.1 1.0+0.35 2.0+0.35
18

3 16 _DI.1hr Q.S hr 1._0 hr

.E 1.4 {o[ B -JBI--J-----=--- - == Design 10

g 120 : 4 15hr

TS I ﬂ!@. “““““““ Design 11

"E 058 |'§] 2.Etljhr

€ 06 {4\ [ B} {--BF-- Br=ras Design 12

S 04 : }_—' § :

S8 02 ‘ : :

]
¢ : ? Time (hr) ° ¢ 3
‘ —Var(cl) —Var(vol) ~——Var.Total

Figure 5.2 Concentration variance components and the sampling times for designs
10 to 12 shown on the concentration variance curve. The boxes represent the
distribution of the sampling window around the second and third samples. The black
boxes represent the 10%*7,. sampling window and the blue and green boxes
represent the 50%%*7,, sampling windows on the second and third time, respectively.
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5.3 Results

5.3.1 Two-Sample Designs

The simulations in this section were performed using the sampling times derived
from sensitivity analysis in chapter 3, for the one-compartment IV bolus model (i.e.,
0.1 and 1.0 hr). The first design (3) was design 1 in chapter 4 and further designs (4-
8) had sampling windows of varying size arranged around the 1.0 hr time-point.
These six designs were also compared to the situation where each individual had a
second sampling time of 1.44%*t,,, which varied dependent on the individual’s
parameter values. The rcsults for each design are shown as @¢; increased from 1 to

3, i.e., from left to right for each design within the plots.

Estimation of Population Mean Clearance (Cl).

Figures 5.3 and 5.4 show the bias and imprecision, respectively for the estimation of

population average clearance, from all of the two-sample designs.

The design containing fixed samples based on each individual (design 9) had a
similar mean bias to the design with fixed samples based on the population parameter
values (design 3), and the sampling window designs (4-8). However, design 9
underestimated C/ , whereas designs 3-8 overestimated it, and also had the narrowest
95% confidence intervals. There were no major differences in the bias estimates, for
any of the designs, as @¢; increased from 1 to 3, although there was a trend for the
results to be more imprecise as @¢; increased from 1 to 3 (figure 5.4). The
individual-based design was the most precise and design 8 with the sampling
window equal to 50% of ¢, performed better than the population design with the

fixed times and the rest of the sampling window designs.
Overall, the population average Clearance was estimated accurately with all designs,

with bias less than 1% and imprecision less than 1.5% and no distinction could be

made between the designs on this basis as the values were so small.
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Estimation of Population Mean Volume of Distribution (V).

The results for the estimation of the population average volume of distribution are
shown in figures 5.5 and 5.6. Similar to CI, ¥ was estimated accurately across all

designs, with bias less than 1.0% and imprecision less than 0.6%.

The bias was shown in figure 5.5 and this shows that the results from design 8, with a
sampling window equal to 50% of #;; were similar to the results observed with the
individual-based design 9. However, the population-based fixed-sample (design 3)
and the designs with sampling windows equal to 10% - 40% of ¢,, (designs 4-7) had
the smallest means and narrowest confidence intervals. Designs 8 and 9 were also
slightly more imprecise than the other designs (figure 5.6), although similar to C/, the
values were so small that no difference could be established between the designs in
the estimation of V. There were also no patterns in bias or imprecision as ¢

increased from 1 to 3.

Estimation of Standard Deviation of Population Mean Clearance (@¢).

Figures 5.7 and 5.8 summarise the results for the estimation of @¢;, the standard

deviation of the population clearance distribution.

The pattern of results was broadly similar across all designs, apart, perhaps for

design 9.

When w¢ = 1 (10%) the average bias for o was between -5% to -12% for designs
3-8 with wide confidence intervals. However, when the value of @ was increased
to 20 and 30%, the mean bias reduced to —1.3 to -6%, with much narrower

confidence intervals. The imprecision also decreased substantially as @¢; increased

from 1 to3 (figure 5.8).
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The pattern for bias was slightly different for design 9 in that the mean bias was
positive for this design (3.6% when w¢; = 1 decreasing to 0.84% when w¢; = 2-3) and
negative for all of the others. However, the pattern for imprecision was similar to

that obtained for designs 3-8.

Estimation of Standard Deviation of Population Mean Volume of
Distribution (wy).

Figures 5.9 and 5.10 show the bias and imprecision, respectively, for the estimation
of @y, the standard deviation of the population distribution for volume of

distribution.

The population-based fixed-sample design (3) and all of the sampling window
designs (4-8) were less biased than the individual-based design (9) in the estimation
of wy (figure 5.9). Design 9 had the largest mean bias (9%) and the widest 95%
confidence intervals and there was a progressive increase in bias as @¢; increased
from 1 to 3 for designs 3-7 by 2.5 - 4.2%). Design 8 with a sampling window equal
to 50% of ¢, and design 9 had a slight increase and then a decrease in bias as @y

increased from 1 to 3. Designs 3-8 all had bias within 9%.

The most precise design was design 7 with the sampling window equal to 40% of #,;.
However, all designs were precise in the estimation of @y, with imprecision of less
than 14% (figure 5.10), although all designs became more imprecise as @¢; increased

from 1 to 3.

Estimation of the Proportional Intra-Individual Random Error
Component (o).

The results for the estimation of the proportional error component of intra-subject
variability, oy, are shown in figure 5.11. Designs 3-8 produced less biased results
than design 9, which had the largest mean bias (-57.5%) and the widest 95%

confidence intervals. There were slight patterns in the bias as @ increased from 1 to

Chapter 5 213



3 for designs 4-8. The pattern was the same for each design in that as w¢; increased,
the mean absolute value of bias increased by 4-20%. In designs 4-6 this represented
an increase in bias and in design 8 a decrease, but neither in the case of design 7 as
the direction of the bias changed from negative to positive. However, as the
confidence intervals for the different values of w¢; overlapped within each design this

observation may be irrelevant.

Imprecision decreased from 16% to 12% as @¢; increased from 10 to 30% for designs
3-7 (figure 5.12). Design 8 had imprecision in excess of 15% at @ =1-3, and the
imprecision for design 9 was the poorest of all designs with the value increasing

from 40 to 50% as wc; increased from 10 to 30%.

Estimation of the Additive Intra-Individual Random Error Component
(02).

Figure 5.13 shows that in the estimation of o3, the additive component of intra-
subject variability, designs 3-7 performed equally well. The mean bias increased
from 15% to 24.6% as @¢ increased from 1 to 3 and the confidence intervals also got
progressively wider for these designs. The bias for design 8 decreased as aw¢;
increased from 1 to 3 and design 9 gave the most biased estimates, which increased
as @y increased. Again, similar to the observation made for the estimation of oy,
these patterns may not be important as the confidence intervals for the different

values of w¢; overlap within each design.

The imprecision for designs 3-8 increased from 12-22% to 26-30% as @y increased
from 1 to 3. However, the increase for design 9, the most inaccurate design in the

estimation of o3, was greater - from 32% to 60% (figure 6.14).

Summary of Results for Two-Sample Designs.

Overall the designs including sampling windows (designs 4-8) estimated as well as,

if not better than the population-based fixed-sample design (3).
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Design 8 with the sampling window equal to 50% of 7, was slightly different from
designs 4-7 with the sampling window equal to 10%-40% of z,,. The mean bias
values were more similar to the values obtained from design 9, the individually-
based fixed-sample design, although the 95% confidence intervals could be quite

different.

The fixed effects, clearance and volume of distribution, were estimated accurately
with all designs. The random inter-individual effects were estimated with acceptable
accuracy by both the population-based fixed-sample design and the designs with
sampling windows, but less so by the individually-based fixed-sample design. The
intra-individual effects were estimated inaccurately by all designs, but the

individually-based design performed worst.
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Figure 5.3 Bias (mean + 95% CI) results for the estimates of population mean
clearance. The results for designs 3-9 are shown as the simulated @¢; increased from
1 to 3, from left to right.
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Figure 5.4 Imprecision results for the estimates of population mean clearance. The
results for designs 3-9 are shown as the simulated w; increased from 1 to 3, from left
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Figure 5.5 Bias (mean + 95% CI) results for the estimates of population mean
volume of distribution. The results for designs 3-9 are shown as the simulated @,
increased from 1 to 3, from left to right.
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distribution. The results for designs 3-9 are shown as the simulated wc; increased
from 1 to 3, from left to right.
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Figure 5.7 Bias (mean + 95% CI) results for the estimates of standard deviation of
the population clearance distribution (@c;). The results for designs 3-9 are shown as
the simulated @y increased from 1 to 3, from left to right.
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Figure 5.8 Imprecision results for the estimates of the standard deviation of the
population clearance distribution (@c;). The results for designs 3-9 are shown as the
simulated wc; increased from 1 to 3, from left to right.

Chapter 5 5.18




20.0 -
15.0 -
10.0 -
5.0

0.0

Bias (%)

«T T b

-10.0 -

-15.0
Design 3 4 5 6

Figure 5.9 Bias (mean + 95% CI) results for the estimates of standard deviation of
the population volume distribution (@y). The results for designs 3-9 are shown as the

simulated wc; increased from 1 to 3, from left to right.
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Figure 5.10 Imprecision results for the estimates of the standard deviation of the
population volume distribution (@y). The results for designs 3-9 are shown as the

simulated @c; increased from 1 to 3, from left to right.
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Figure 5.11 Bias (mean + 95% CI) results for the estimates of the proportional error
component (o7). The results for designs 3-9 are shown as the simulated w¢;
increased from 1 to 3, from left to right.
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Figure 5.12 Imprecision results for the estimates of the proportional error

component (o7). The results for designs 3-9 are shown as the simulated w(;
increased from 1 to 3, from left to right.
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Figure 5.13 Bias (mean + 95% CI) results for the estimates of the additive error
component (o02). The results for designs 3-9 are shown as the simulated oy
increased from 1 to 3, from left to right.
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Figure 5.14 Imprecision results for the estimates of the additive error component

(02). The results for designs 3-9 are shown as the simulated @¢; increased from 1 to
3, from left to right.
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5.3.2 Three-Sample Designs

Design 1, with sampling times at 0.1 and 1.0 hr was augmented to include a third

sample time. A sampling window was also included around the 1.0hr sampling time.

In designs 10a and 10b, the additional sample was taken between the other samples
from a window centred around 0.5 hr and with windows of 10% and 50% of ¢,
respectively. For designs 11a and b, the third sample was taken within a sampling
window centred around 1.5hr and for 12a and b the third point was sampled around
2.0 hr. Again the windows were 10% and 50% of ¢, i.e., 0.07hr and 0.35 hr,
respectively. Samples were uniformly distributed in the sampling window, but were

constrained to be at least 5 minutes apart.

Estimation of Population Mean Clearance (CI).

The bias and imprecision for the estimation of the population mean clearance using
10%%*t,, and 50%*t,, sampling windows are shown in figures 5.15 and 5.16,
respectively. Within each design the population standard deviation for clearance

(w¢y) increases from 10 - 30% from left to right.

Increasing the size of the sampling windows from 10 to 50%%*¢,, caused a slight
increase in mean bias (0.1% to 0.3%) and imprecision (0.5% to 0.6%) for design 10.
With design 11, the use of a 50% window eliminated the pattern in the bias seen with
the 10% window, where it decreased as @y increased from 1 to 3 (0.22% to -0.03%).
The imprecision of the estimation of clearance was also slightly improved when
design 11 used the 50% windows (0.4% compared with 0.3%). Design 12 also had a
slight improvement in the imprecision when the sampling windows were increased
from 10% to 50% (0.44% compared with 0.39%), but a pattern in the mean bias

emerged where the mean bias increased as w¢; increased from 1 to 3 (0% to —0.3%).
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Overall, clearance was estimated accurately with each of the three 3-sample
schedules, regardless of the size of the sampling window. The bias and the

imprecision levels for all schedules were within 0.8%.

Estimation of Population Mean Volume of Distribution (V).

The mean bias for designs 10a, 11a and 12a was almost zero (0.01, —0.01 and 0.09%,
respectively). However, the designs using sampling windows equal to 50%%*¢,, were
more imprecise (+0.2-0.3%) and although the mean bias was also increased
compared to the 10% windows, it was still very small (-0.1%, 0.2%, 0.1% for
designs 10b, 11b and 12b, respectively).

Similar to clearance, volume of distribution was also estimated accurately with all of
the three-sample designs (see figures 5.17 and 5.18). The 95% confidence interval
for the mean bias and the imprecision levels were within 0.6%, for both sizes of

sampling window. No patterns in the mean bias were observed with increasing @¢;.

Estimation of Standard Deviation of Population Mean Clearance (@¢).

Figure 5.19 shows the results for the 10%%*z,, sampling windows, for each of the
three-sample designs. The mean biases were less than 2% and design 12 had the
largest mean biases of the three designs. The imprecision improved when @¢;

increased from 1 to 3 for designs 10a, 11a and 12a.

Using the 50% windows reduced the imprecision for designs 10 (4.6% to 2.8%) and
12 (3.4% to 2%) when wq=1. When @w¢ = 2-3 the imprecision was slightly poorer
using the 50% windows compared to the 10% windows for all designs (increased by
0.1 to 0.5%). However, the imprecision for design 11 was slightly increased when

the 50% windows were used (increased by 0.3-1.0%). See figure 5.20.

Overall, the 95% confidence intervals for the bias and the imprecision for all designs

were less than 5%, which was an acceptable level for estimation.
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Estimation of Standard Deviation of Population Mean Volume (wy).

Of the designs incorporating the 10%%*/ sampling windows, design 10a had the
least imprecision and the narrowest 95% confidence intervals (Figure 5.21). Design
11a had the largest mean bias and imprecision and design 12a had a pattern in mean

bias in that it decreased as w(; increased from 1 to 3 (from —2.7% to 1.1%).

Figure 5.22 shows the results from estimating @y using the 50% sampling windows.
All designs had similar mean biases and imprecision and there were no significant

differences between the designs.

The estimates of wy were within 7% bias and imprecision for all sampling designs,
although the designs with the 50%*t/: windows were improved over the 10%*t%

windows in all designs.

Estimation of the Proportional Intra-Individual Random Error
Component (o7).

When using designs 10a, 11a and 12a, the bias and imprecision of the estimates of o;
were within 22%, i.e., an unacceptably high value (see figure 6.23). The mean
values of bias ranged from 1% to £6%, but the 95% confidence intervals were wide,
extending to 22% for design 12 when wg = 2. The imprecision varied from 13% to

22% across all designs.

The results obtained when designs 10b, 11b and 12b were used improved the
estimation of oy (figure 5.24). All bias and imprecision estimates were within +11%.
The mean biases were generally improved (range +0.4% to £3.5%) except for design
12 when @ = 3. Design 11 had the smallest mean bias, while design 10 had the

smallest imprecision.
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Estimation of Random Additive Error on Concentration (o).

Figure 5.25 shows the bias and imprecision estimates for o, when using the 10%
windows (designs 10a, 11a and 12a). Design 12a had the most accurate estimates,
with the mean bias close to zero and the imprecision less than 7%. Design 11a
performed similarly to 12a with imprecision of 7-10% and mean estimates of bias of
less than 2%. Although design 10a also had mean biases of less than 3%, the 95%

confidence interval was +16% and the imprecision was almost 19%, giving the

poorest estimates of o in this instance.

Using the 50% sampling windows (figure 5.26) the imprecision of the estimates of
o improved with all of the sampling designs and also made the mean bias closer to
zero. Design 12b still performed best (imprecision 5.5%) and design 10b poorest
(imprecision 8%) of the three, but all of these designs produced acceptable estimates

of oo.
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Figure 5.15 %Bias and %Imprecision of the estimation of clearance ( C/ ) with
windows of 10% of the half life around the second two sampling times.
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Figure 5.16 %Bias and %Imprecision of the estimation of clearance (E ) with
windows of 50% of the half life around the second two sampling times.
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Figure 5.17 %Bias and %Imprecision of the estimation of volume (?) with
windows of 10% of the half life around the second two sampling times.
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Figure 5.18 %Bias and %Imprecision of the estimation of volume (¥ ) with
windows of 50% of the half life around the second two sampling times.
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Figure 5.19 %Bias and %Imprecision of the estimation of standard deviation of
clearance (@cy) with windows of 10% of the half life around the second two sampling
times.
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Figure 5.20 %Bias and %Imprecision of the estimation of standard deviation of
clearance (@c;) with windows of 50% of the half life around the second two sampling
times.
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Figure 5.21 %Bias and %Imprecision of the estimation of standard deviation of

volume (@y) with windows of 10% of the half life around the second two sampling
times.
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Figure 5.22 %Bias and %Imprecision of the estimation of standard deviation of

volume (wy) with windows of 50% of the half life around the second two sampling
times.
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Figure 5.23 %Bias and %Imprecision of the estimation of random proportional error
on concentration (o) with windows of 10% of the half life around the second two
sampling times.
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Figure 5.24 %Bias and %Imprecision of the estimation of random proportional error
on concentration (o;) with windows of 50% of the half life around the second two
sampling times.
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Figure 5.25 %Bias and %Imprecision of the estimation of additive random error on
concentration (o) with windows of 10% of the half life around the second two
sampling times.
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Figure 5.26 %Bias and %Imprecision of the estimation of additive random error on
concentration (o3) with windows of 50% of the half life around the second two
sampling times.
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Comparison of Three-Sample Designs to a Two-Sample Design

Table 5.4 compares the three-sample designs (10b, 11b and 12b) to design 8, the

two-sample design using a 50%%*¢,, sampling window, for @ = 3.

Although the mean biases of the three-sample designs were not always better than
those observed in the two-sample design, the imprecision for all parameter estimates
was reduced when three samples were used. Each of designs 10, 11 and 12 estimated
some parameters better than the designs, but overall there was no distinction to be
made between the three-sample designs. The timing of the third sample was not as

important as it's inclusion.
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5.4 Discussion

The aim of this chapter was to examine two aspects of limited sampling strategies
with a one-compartment PK model. These were (i) the use of sampling windows
rather than fixed sampling times and (ii) when to add additional samples to improve

parameter estimation.

Two-Sample Designs

In the first section, seven two-sample designs were compared. The first utilised fixed
sampling times, as defined by sensitivity analysis in chapter 3 which identified two
possible sampling times to be ‘as early as possible’ and 1.44*z,,. The fixed-sample
design (3) was based on the population average PK parameter values. Five other
designs (4-8) utilised a sampling window of varying size around the second time
defined from sensitivity analysis. The last design (9) also created a spread of second
sampling times by basing the second sampling time on each individual’s parameter

values.

Estimation of Population Mean Clearance (Cl) and Volume of
Distribution (V).

The results from the two-sample designs showed that the fixed effect parameters,
clearance and volume of distribution had the smallest mean bias when the designs
with sampling windows equal to 40%%*t,, or 50%*t,, (designs 7-8) were used. In the
case of clearance this may be due to these designs allowing later samples to be
collected which also aid in the estimation of this parameter when coupled to early
sampling times. This is derived from early regression approaches to estimating PK
parameters (Endrenyi 1981). Volume of distribution may have also been estimated
accurately with these designs as there was a second peak in concentration variance,

shown in chapter 3, that occurred at ki (2.0hr) and the designs with the larger

e

sampling windows would have allowed more samples to be taken close to this time.
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The most precise estimates for clearance were obtained with the individual-based
design (design 9), which is what would be expected if each individual was sampled
at their own 'optimal' time of 1.44*z,,, defined by the sensitivity analysis. The most
precise estimates of volume were obtained with designs 3-7, mainly due to all having
a fixed early sample, but the designs with sampling windows may also have had

samples taken close to the 2.0 hr time-point as described previously.

However, overall the bias and imprecision in the estimation of the fixed effects was
less than 1.6% and so in practice, there was little difference between the designs.
Using design 3, based on the average population PK parameter values, or a random
sampling window (designs 4-8) provided results that were equally as good as design
9 which could be considered the theoretical best if, in reality, each individual could

be sampled optimally.

Estimation of Inter-Individual Variability (oq and @y).

Increasing the spread of times around those in design 3 (designs 4-8) resulted in
comparable estimates of inter-subject variability in clearance (w¢;) to those obtained
when the fixed-sample design (3) was used. The results from design 9, where a
spread of times was obtained by sampling each individual at their own 'optimal' time
of 1.44*t,, were also similar. The results for all designs would be considered
acceptable in terms of the mean bias and imprecision being less than 15%, however,
the 95% confidence intervals for the bias were as much as +20% for some sets when
@c; = 1 and this would be unacceptable. However, this may be a factor of presenting

these data as percentages.

Inter-subject variability in volume of distribution (@y) was best estimated by designs
in which there was a sampling window of 40-50% of the drug half-life on the second
sample (designs 7 and 8). Again, allowing more samples to be closer to the later

time of 2.0 hr may have improved estimation of @y with these designs.
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In the estimation of @w¢; and wy there was little difference between designs 3-8, but
the most biased and imprecise estimates were obtained with design 9, the individual-

based design.

Estimation of Intra-Individual Variability (o; and o).

The intra-individual variability was estimated poorest using design 9, perhaps
because the second times were fixed at the time of 1.44*¢,,, when the concentrations
were not the lowest observed and hence this result for the additive error component
is not unexpected. In general, lower concentrations are more susceptible to additive
error and hence hold more information about the parameter. Likewise, that the
higher concentrations are more affected by the proportional component, but in this
design the timing of the samples was not adequate for defining the residual error

model.

The most accurate results for both the proportional and additive components were
obtained with designs 3-8 and there was little benefit in using fixed samples based on
the population mean parameters or using a spread of times around the optimal time.
Although design 3 had fixed sampling times, the results were not as poor as with
design 9, presumably because the times were based on the population average PK
parameters and not their individual parameters. Hence, at the fixed times, there
would have been both high and low concentration measurements and information

about the residual error model.

The estimates of intra-subject variability were poorest of the all of the parameters in
terms of having the largest mean bias and imprecision. The imprecision across
designs 3-8 varied from 15-30% and up to 60% with design 9. This increase in
imprecision was most likely a factor of the two-sample designs. However, the

designs with sampling windows again performed as well as the fixed-sample design.
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Summary of Two-Sample Designs

The use of random sampling within a window around an 'optimal' sampling time
gave parameter estimates that were comparable to, if not better than those obtained
using either fixed population optimal sampling times or each individual’s optimal
sampling time. The designs with the larger sampling windows - designs 7 and 8 in
which the sampling window was 40 and 50%%*¢,; respectively, showed consistently
accurate estimates. This confirms the data presented by Hashimoto et al (1991) and
Jonsson et al (1996) who both showed that more information is gained about the PK
model and the parameters when the sampling window is longer in comparison to the
half-life of the drug. This allows more information to be gained about the drop in

concentration over time and hence more accurate parameter estimates.

Although the individual-based design (design 9) also resulted in a spread of times,
the same information would not be gained in the population sense as the designs
above, as each individual is effectively being sampled at the same point in the
sampling window (1.44*¢,). Sampling around the ‘optimal’ sampling times has been
shown to protect against model misspecification with simulated data (Hashimoto et
al. 1991) and allow a reduction in the number of sampling times with clinical data
(Baille et al. 1997). Baille at al allowed random sampling to occur around D-optimal
sampling times specified for a 1 hr docetaxel infusion with minimal loss in bias and
imprecision in the estimation of the clearance. Thus, perhaps the poor performance

of design 9 is not surprising.
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Three-Sample Designs.

The second part of this chapter examined the effect of adding a third sample to the
two defined from sensitivity analysis. The third sample was placed at different
points in relation to the two already defined and three different designs were
investigated. Sampling windows were also incorporated for the second and third

samples.

The results showed that in general, all pharmacokinetic parameters were well
estimated with all of the three-sample designs. The exception to this was the intra-
subject variability when estimated using 10%*¢,, windows around the second two

sampling times. However, this improved when the 50%%*t,, windows were used.

Estimation of Eopulation Mean Clearance (C!) and Volume of
Distribution (V).

Clearance and volume of distribution were accurately estimated with all designs and
the bias and imprecision were less than 1% on average. This was the case for both
the 10% and 50% windows. There was little difference in the estimation of clearance
using any of the designs with the 10%%*¢,, windows. However, designs 11 and 12,
where the third time was added after the two existing times, estimated clearance
better than design 10 when the sampling windows were 50%%*¢,,. This was as
expected as later times give better estimates of clearance than earlier ones, as
mentioned previously (Endrenyi 1981). Design 10 may not have estimated clearance
as well with the 50% window as more of the sampling times may have tended
towards earlier times, rather than later, so giving less information about the
parameter. Design 11 would have had more sampling times around the ‘optimal
time’ for estimating clearance, of 1.0hr (according to sensitivity analysis), from the
window at 1.5hr and design 12 would have had more later times from the window at

2.0 hr giving more information about clearance, as mentioned previously.

Volume of distribution tended to be better estimated when the sampling windows

were 10%*1,, rather than 50%. This may be a factor of the wider sampling times
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allowing more times to be later and hence further away from the ‘optimal’ time for

volume of ‘as early as possible’.

There was no difference between any of the designs in terms of the imprecision and

bias for the fixed effect as all were less than 1%.

Estimation of Inter-Individual Variability (o and wy).

The inter-individual error on clearance, @y, was estimated similarly with all

sampling designs and with both sampling window sizes. The inter-individual error
of volume of distribution, @y, was better estimated when the sampling window was
50%%*t,, rather than 10%. No design offered an overall advantage over the others in

the estimation of these parameters.

Estimation of Intra-Individual Variability (o; and o).

The random errors on concentration benefited most from the increase in sampling
window size from 10% to 50%*z,,. The estimation of the proportional error
component (o;) improved from +22% to £10% and the estimation of the additional
error component (o3) improved from £19% to £8%. Of the three designs, design 10
had the least biased estimates of the proportional error and design 12 performed most
accurately in estimating the additive error. In design 10 the three early sampling
times give rise to higher concentrations, which will be more affected by the
proportional error component than by the small, additive part. The sampling times in
design 12 were later and hence resulted in lower concentrations which were more
affected by an additive error component. Thus these results are what would be

expected.
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Summary of Three-Sample Designs

When the three-sample designs were compared to a similar two-sample design, it
was obvious that the mean bias may not always be less with three samples over two,
but the imprecision was less. These improvements were observed regardless of
where the third sample was placed, similar to the results observed by Al Banna et al
(1990). The finding of improved parameter estimates with the increased number of
samples per subject is not surprising, but it is interesting that the timing of the sample

is not important, once the ‘optimal’ sampling times have been defined.
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5.5 Conclusion

In conclusion, the first section of this chapter demonstrated that the use of random
sampling within a window around an 'optimal' sampling time gave parameter
estimates that were comparable to, if not better than those obtained using either fixed
population optimal sampling times or each individual’s optimal sampling time. The
inter and intra-subject variability showed greatest benefit from the designs using
sampling windows and this would allow the use of less stringent sampling schedules

when carrying out PK studies in a clinical situation.

The second section of this chapter showed that the addition of a third sample and a
larger sampling window offered the advantage of more accurate estimation of
random intra-subject errors on concentration over the smaller sampling windows,
while no real advantages or disadvantages were seen for the other PK parameters. It
was also shown that the timing of the third sample was not as important as it's

inclusion.

The results presented in this chapter show that sensitivity analysis is a useful tool for
defining the initial times for designing a pharmacokinetic study. Using these to build
on by the use of sampling windows and additional sampling times should provide

flexibility in clinical situations, but also accurate population parameter estimates.
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6 Limited Sampling in a Two-Compartment IV Bolus

Pharmacokinetic Model

6.1 Introduction

In this chapter, study designs based on sensitivity analysis were compared to some
empirical designs in the estimation of the parameters of a two-compartment PK

model following IV bolus administration.

The first set of designs, based on sensitivity analysis, were considered to offer the
most information about each of the parameters. The magnitude and also the amount
of variability in each parameter affected the time at which peaks in concentration
variance occurred. The parameters clearance (C/), volume of distribution of the
central compartment (7;), volume of distribution of the peripheral compartment (V)
and the inter-compartmental clearance (Q) were examined for their contributions to
peaks in concentration variance. The parameters used in this simulation resulted in a
design consisting of five samples - one for each peak in concentration variance due
to Cl and V3, two due to Q and a fifth corresponding to the peak in concentration
variance attributable to ¥; at Oh. This last sampling time was set to be as 'early as
possible'. The sampling times were 0.1, 0.3, 0.5, 1.0 and 2.5 hours after

administration of an IV bolus dose (see section 3.3.3.2).

Three further designs were based on modifications to the above schedule. The inter-
compartmental clearance, Q, resulted in two peaks in concentration variance, namely
at 0.3 hr and 2.5 hr. The magnitude of the 2.5 hr peak was small in comparison to all
other peaks, and it was unclear how much information about the parameters would
be gained by including a sample at this time. In order to investigate this aspect, a
four sample schedule was also included with the sampling times fixed at 0.1, 0.3, 0.5

and 1.0 hours.

The influence of variability in sampling times was investigated by the addition of

sampling windows. A four-sample schedule with a fixed point at 0.1 hr and three
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sampling windows at 0.4, 1.0 and 2.5 hr was examined. The sampling window
around 0.4 hr was included to capture information about the points at 0.3 and 0.5 hr,
present in the other designs. The inclusion of sampling windows around sampling

times mimics variability in sampling times in a real clinical situation.

The fourth design included five samples with sampling windows added only to the
1.0 and 2.5 hr samples. It was considered that in a clinical situation patients could
easily be monitored during the period of 0.1, 0.3 and 0.5 hr after administration, so

three fixed samples in this period was not unreasonable.

The previous designs were compared to designs in which the sampling times were
selected empirically. Conventionally, it might be considered that the minimum
number of samples required to define a biexponetial curve would be four with two
points situated on each component of the curve. Thus designs incorporating
sampling times at 0.25, 0.5, 1.25 and 2.5 hours were investigated. In the first design
the sampling times were fixed. Two further designs examined the effect of including
sampling windows. One consisted of a fixed time at 0.25 hr, and three sampling
windows based at 0.5, 1.25 and 2.5 hr. In the other schedule, sampling windows
were only included around the times of 1.0 and 2.5 hr. Note that the point at 0.1 hr
was deliberately omitted in this set of designs, in order to examine the effect of

excluding a very early sample time.

The efficiency of parameter estimation resulting from these designs was examined

using the methodology discussed previously (Chapter 2).
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6.2 Methods

6.2.1 Data Simulation

Concentration-time data were simulated according to a two-compartment model
following a single IV bolus dose of a drug. The methods used were as discussed for
the one-compartment case except that the parameters were clearance (C/), volume of
distribution of the central compartment (7)), volume of distribution of the peripheral
compartment (¥>) and the inter-compartmental clearance (Q), with the expected

concentration being calculated from:

C[;, = Afe_a" iy Bie_'B iy Equation 6.1

Appendix 1 details the relationships between 4, , B, fand CI, V;, V>, Q.

The single IV bolus dose was 100mg and all parameters were assumed to be
Normally distributed. The population distribution for C/ had a mean value of 10 I/h
and the SD was set at 1, 2 and 3 1/h. The population distributions for the other
parameters were mean values of 10 1, 20 1 and 15 V/h for V;, V> and Q, respectively,

with standard deviations of 1 1, 2 1, and 1.5 I/h respectively. (Table 6.1).

As in the previous experiments, concentration-time data were simulated for ten sets

of 500 individuals using each sampling design.

Each expected concentration, C ; , was subject to error by the addition of a random

proportional and additive error component as previously described, i.e.,
Cy= C;. (I+&)+&y Equation 6.2

where ¢,; and &,;were sampled from & ~N(0,07) and &5 ~N(0,03).

(Table 6.1).
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Table 6.1 Pharmacokinetic parameter values for designs 13 to 19? (Table 6.2)

Parameter Value

Cl 10 Vh

171 101

v, 201

é 15 /h

g 1.0,2.0,3.0 V/h
oy, 1.01

@y, 201

o 1.5Vh

oy 0.05

o3 0.35 mg/1

“It was assumed that there was no covariance between CI, ¥}, V5, and Q.
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6.2.2 Sampling Schedules
As indicated in Chapter 3 (section 3.3.3.2 and table 3.3), the peak times shifted as the

variability of each parameter increased from 10% to 50%. The times marked in
Figure 6.1 are the means of those obtained in the earlier study and indicate the
sampling times used in the initial designs described in this chapter. The components
of the total concentration variance due to variability in each parameter are shown in

Figure 6.1 for @c = 10%.

The designs were as follows:

Design 13. Five sampling times, fixed at the peaks in concentration variance
(0.1, 0.3, 0.5, 1.0 and 2.5 hr).

Design 14. Four fixed samples at the times of the peaks in concentration
variance, i.e., as (i), but excluding the time of the second peak due to
O (2.5 hr) as this was small in comparison to the other peaks.

Design 15. Four samples where the first time was fixed (0.1 hr) and the other
three had sampling windows (0.4, 1.0 and 2.5 hr).

Design 16. Five samples where the first three times were fixed (0.1, 0.3, 0.5 hr)
and the other two included sampling windows, (1.0 and 2.5 hr).

The additional three designs selected empirically were:
Design 17. Four fixed samples (0.25, 0.5, 1.25, 2.5 hr).
Design 18. Four samples where the first time was fixed (0.25 hr) and three
included sampling windows (0.5, 1.25, 2.5 hr).
Design 19. Four samples where the first two times were fixed (0.25 & 0.5 hr)
and the other two incorporated sampling windows (1.25 & 2.5 hr).

Table 6.2 summarises the sampling schedules. The sampling windows were based
on the terminal half-life of the hypothetical drug (#;p), i.¢., 2.8 hours, and were 10%,
30% or 50% of the ¢4, with the larger sampling windows being used for the later
time points. Samples were uniformly distributed within each window and figure 6.2

shows the sampling times on a log concentration-time profile.
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Figure 6.1 Sampling times based on sensitivity analysis for the two-compartment IV

bolus PK model.
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Figure 6.2 Plot of log concentration against time, using the population average
parameter values from table 6.1, showing the sampling times according to peaks in

concentration variance from each parameter (X ) and the empirical sampling times
(O).
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6.3 Results

Figures 6.3 to 6.13 summarise the average bias and imprecision for the estimates of
5, V—}, Z, @, a)é, an,; 3 a)ﬁ_, , wé, 0',2 and 0'22. Each plot consists of seven sets
of results, one for each design, i.e., designs 13 to 19, showing the effect of increasing

the population standard deviation for clearance, (@, ), from 10% to 30%.

Estimation of Population Mean Clearance ( 6)

Figure 6.3 shows the results for clearance. No pattern in either bias or imprecision
was evident for any design as @, increased from 1 I/h (10%) to 3 1/h (30%).
However, design 13 appeared to perform best of all the designs studied with the
average bias being -1% and ranging from -8.4% to 6.0% over all levels of w,.
Design 14, four points with the 2.5 hr sample omitted, performed worst and the
comparison between designs 13 and 14 indicated the importance of the additional
sample at 2.5 hr. Comparing design 14 with designs 15-19 suggests that the
importance of the 2.5 hr sample is in the timing rather than the increase in the

number of samples from four to five.

The other designs, 15-19, performed similarly, with average bias being less than 6%.
Average imprecision was also less than 6% for these designs. The empirical designs
17-19, which included a sample at 2.5 hr, performed almost as well as design 13 in

the estimation of clearance.

The inclusion of variability in sampling times in some of the designs had no
significant effect, although the standard error of the mean was reduced and hence
designs 15, 16, 18 and 19 had improved precision over designs that had fixed

sampling times.
Direct comparison of designs 13 & 17 and 15 & 18 showed that there was little

difference between schedules based on the peaks in concentration variance or the

empirical designs. All results for bias and imprecision for these designs were within
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6% for estimating clearance. This was as expected, as all of these designs included

data at or around 0.5 hr, which corresponded to the most sensitive time for CI.

Estimation of Population Mean Volume of Distribution of the Central

Compartment (17,, )
The volume of distribution of the central compartment (V) was estimated accurately

for all designs (Figure 6.4) with all estimates of imprecision and bias being within
2.5%. However, design 14 performed worst of the group 13-16, but all designs
which included the 0.1 hr point performed better than the empirical designs 17-19
where the first sample was at 0.25 hr.

Designs 15 and 16, which incorporated sampling windows, performed as well as the

five-point design with fixed times (design 13).

Estimation of Population Mean Volume of Distribution of the Peripheral

Compartment (!7‘2 )
The mean bias for the estimation of ¥, for each design, apart from 14, was less than

15%. Design 13 (bias 1-2%, imprecision 8-11%) was comparable to design 17 (bias
2-4%, imprecision 8-12%) indicating that the 0.1 hr time-point contained little
information about V. However, designs 15, 16, 18 & 19 which incorporated
windows appeared to perform slightly better than the fixed-point designs (13 & 17).
Design 14 again performed very poorly in comparison to all of the designs

investigated.

Estimation of Population Mean Inter-Compartmental Clearance (é )
Similarly, the poorest results for estimating Q were obtained using design 14 (Figure

6.6), with the 95% confidence intervals for the mean bias extending to £17%. The
three remaining schedules derived from sensitivity analysis (13, 15 and 16) had
similar results with mean biases less than 4%. The imprecision was reduced by using
sampling windows rather than fixed times. Design 17 had the smallest mean bias of
the empirical schedules, but the largest 95% confidence interval. Again, the
imprecision was reduced by the use of sampling windows in the case of designs 18

and 19 compared to 17.
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Designs Based on Peaks in Conc Var Empirical Designs
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Figure 6.3 Bias (%B) and imprecision (%]) in the estimation of clearance (C'/) using
designs 13 to 19. The set of three results for each design represents increasing

variability in clearance, i.e., from left to right represents @c; increasing from 1 I/h to
3 I/h.
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Figure 6.4 Bias (%B) and imprecision (%]) in the estimation of the volume of
distribution of the central compartment (};) using designs 13 to 19. The set of three
results for each design represents increasing variability in clearance, i.e., from left to
right represents @c; increasing from 1 I/h to 3 I/h.
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Designs Based on Peaks in Conc Var Empirical Designs
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Figure 6.5 Bias (%B) and imprecision (%l) in the estimation of the volume of
distribution of the peripheral compartment (/) using designs 13 to 19. The set of
three results for each design represents increasing variability in clearance, i.e., from
left to right represents @c; increasing from 1 I/h to 3 I/h.
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Figure 6.6 Bias (%B) and imprecision (%l) in the estimation of the inter-
compartmental clearance (Q) using designs 13 to 19. The set of three results for each
design represents increasing variability in clearance, i.e., from left to right represents
@c; increasing from 1 I/h to 3 l/h.
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Estimation of Population Standard Deviation of Clearance (o)
Figure 6.7 shows the bias and imprecision for the estimation of population standard

deviation in clearance (@, ). The poorest estimation of @, was when the true value
was 1 I/h (10%), regardless of the design, and a consistent improvement was evident

as @, increased to 20% and 30%. The ten individual estimates of bias are shown in
Figure 6.8, where it was clear that the results for @, 10% were due to a greater

spread in the estimates than when @, was 20-30%. As o, increased to greater

than 20%, all designs performed similarly with mean biases less than 11% and

imprecision between 4 and 17%.

Smaller mean biases were found with the fixed sampling designs 13 and 17 when w¢
was 20-30%, but the smallest imprecision was seen with the designs which

incorporated sampling windows (15, 16, 18 & 19).

There was little difference between the schedules based on sensitivity analysis and

the empirical designs.

Estimation of Population Standard Deviation of the Volume of Distribution of
the Central Compartment (@, )
The results for estimating the population standard deviation in the volume of the

central compartment (@), ) are presented in Figure 6.9. Design 15, which did not

include a sample at 0.5 hr, did not perform as well as 13, 14 and 16, for which the

bias and imprecision were less than 3% and 11%, respectively. However, the
estimation of @y, was not influenced by the value of @¢ in designs 13-16 and these

designs performed better than all of the empirical designs, 17-19, which omitted the
sample at 0.1 hr. For the latter designs, the mean biases were in excess of 20% and

imprecision ranged from 16 to 38%.
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Estimation of Population Standard Deviation of the Volume of Distribution of
the Peripheral Compartment ()
The variability of V, was estimated poorest of all the fixed and random effect

parameters, with the imprecision ranging from 51 to 160% for all designs. The mean

biases ranged from -4% to 107%, and most were greater than 15%.

Estimation of Population Standard Deviation of the Inter-Compartmental
Clearance (@, )
The variability of Q was also poorly estimated. The mean biases were less than 19%,

but the confidence intervals extended to 37 - 45% in the case of designs 14 and 15.

The imprecision ranged from 18% to 50% across all schedules.

There was little difference between the sampling designs in the estimation of @,

and @, .

Estimation of the Proportional Component of Random Intra-Subject Error

(o;)

Figure 6.12 summarise the results for the estimation of the proportional random error
parameter, o;. This was estimated fairly consistently within each design, irrespective
of the value of w¢. Design 15 performed worse than designs 13, 14 and 16, with a
mean bias of 18%, but this varied from 0.5 - 60%. The mean imprecision was also
18% with this design. For designs 13, 14 and 16 the mean bias was consistently
approximately 5% with imprecision varying between 10 and 15%. The empirical
designs, 17 - 19, performed similarly to design 15 and no design performed

consistently well within this group.

Estimation of the Additive Component of Random Intra-Subject Error (o)
In the case of the additive random error, oy (Figure 6.13) all estimates of bias and

imprecision were less than 7%. However, design 14 which omitted the 2.5 hr
sample, apparently performed poorest of all the designs in terms of imprecision.
There were no significant differences between the sampling schedules in terms of

magnitude of the bias and imprecision.
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Designs Based on Peaks in Conc Var

Empirical Designs
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Figure 6.7 Bias (%B) and imprecision (%I) in the estimation of the standard
deviation of clearance (wc;) using designs 13 to 19. The set of three results for each
design represents increasing variability in clearance, i.e., from left to right represents
@cy increasing from 1 I/h to 3 /h.
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Figure 6.8 Spread of the bias estimates for the standard deviation of clearance (@c;)
using designs 13 to 19. (—) is the mean of the ten bias values. The set of three results
for each design represents increasing variability in clearance, i.e., from left to right
represents @y increasing from 1 I/h to 3 I/h.
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Designs Based on Peaks in Conc Var Empirical Designs
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Figure 6.9 Bias (%B) and imprecision (%]) in the estimation of the standard
deviation of the volume of the central compartment (@, ) using designs 13 to 19.

The set of three results for each design represents increasing variability in clearance,
i.e., from left to right represents ¢, increasing from 1 I/h to 3 I/h.
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Figure 6.10 Bias (%B) and imprecision (%]) in the estimation of the standard
deviation of the volume of the peripheral compartment (@, ) using designs 13 to 19.

The set of three results for each design represents increasing variability in clearance,
i.e., from left to right represents @c; increasing from 1 l/h to 3 I/h.
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Designs Based on Peaks in Conc Var Empirical Designs
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Figure 6.11 Bias (%B) and imprecision (%]) in the estimation of the standard
deviation of the inter-compartmental clearance (@p) using designs 13 to 19. The set
of three results for each design represents increasing variability in clearance, i.e.,
from left to right represents @c; increasing from 1 I/h to 3 I/h.
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Figure 6.12 Bias (%B) and imprecision (%]) in the estimation of proportional
random error on concentration (o;) using designs 13 to 19. The set of three results
for each design represents increasing variability in clearance, i.e., from left to right
represents @c; increasing from 1 I/h to 3 I/h.
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Figure 6.13 Bias (%B) and imprecision (%l) in the estimation of additive random
error on concentration (o3) using designs 13 to 19. The set of three results for each
design represents increasing variability in clearance, i.e., from left to right represents
wcy increasing from 1 I/h to 3 I/h.
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6.4 Discussion

The efficiency with which population PK parameters were estimated when the study
design was based on sensitivity analysis was compared to that resulting from

empirical design.

The initial design consisted of five sampling times at 0.1, 0.3, 0.5, 1.0 and 2.5 hours
post dose (design 13). This design was unusual for two reasons: the minimum
number of samples for identification of a two-compartment model is considered to be
four and also the last sample was taken before one terminal half life (7,4) had elapsed

(t4p=2.8 hr).

Three other designs were based on modifications to schedule 13: a four fixed point
design (design 14) consisted of sampling at 0.1, 0.3, 0.5 and 1.0 hours; a four-sample
schedule with a fixed 0.1 hr sample and three sampling windows centred at 0.4, 1.0
and 2.5 hr (design 15) and a five-sample schedule, incorporating sampling windows

at the 1.0 and 2.5 hr samples (design 16).

The initial empirical designs consisted of a four sample design with samples at 0.25,
0.5, 1.25 and 2.5 hours (design 17). Two further designs were based on this design:
four samples with three sampling windows (design 18) and four samples with two

sampling windows (design 19).

Overall, each of the fixed effect parameters CI, V;, ¥, and Q were estimated with
reasonable accuracy (bias and imprecision within 15%), with all of the designs
except design 14. The estimates of V/; and Q were particularly good with bias and

imprecision of less than 5%.

The results show that incorporating sampling windows in the design may not
improve parameter estimation in terms of mean bias, but in general imprecision was
reduced. This was consistent for all parameters and all designs investigated. It was

shown that design 15 (four sampling times with three windows, based on sensitivity
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analysis) often performed as well as, if not better than design 13 (five fixed samples),
1.e., the 0.4 hr sample with a sampling window was as informative as two fixed

samples at 0.3 hr and 0.5 hr, respectively.

Of the designs based on sensitivity analysis, design 14 (four fixed times) performed
poorest for the estimation of the fixed effect parameters CI, V;, V> and Q, although
the bias for ¥; was only 2%. Designs 13 and 14 differed in that the 2.5 hr time point
corresponding to the second peak in concentration variability due to Q was removed
in design 14. Thus, the result that design 14 estimated Q less accurately was not
unexpected. However, the similar effect for C/, V;, and ¥, was not expected. In the
case of clearance it is likely that although the ‘optimal’ time of 0.5 hr was included,
later samples also improve estimation of clearance (Endrenyi 1981). Also, figure 6.1
shows that at 2.5 hr the concentration variance due to clearance is still approximately
half the value at the peak. Hence, there is still information about clearance to be
gained using this sampling time. This is also true for /, where the concentration
variance at 2.5 hr is approximately a third of the value at the peak. Although no
covariance between the parameters was simulated, the estimation process may
introduce correlations (see equations in Appendix 1). Hence inter-relationships with
O may also cause V; to be inaccurately estimated when Q is poorly estimated. This
could explain the fact that V; was poorest estimated with this design, although the
bias was less than 2% and unlikely to be clinically relevant. Comparison of designs
14 and 15 showed that the timing of the 2.5 hr sample was more important than the

increase in the number of samples from four to five.

Schedule 17, four fixed samples chosen empirically, produced the most biased and
imprecise estimates of C/, V> and Q of the empirical designs. However, since all
imprecision results were less than 15%, this would be unlikely to have clinical
relevance. There was little difference between designs 17 to 19 in the estimation of

V; and all estimates were less than 2.5%.

The sample at 0.5 hr was included in all designs except 15, in which the window

around 0.4 hr incorporated similar information. This time should be important for
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the estimation of clearance. In general, there was no difference between designs 13,
15,16, 17, 18 and 19 in the estimation of clearance and all results were within 10%.
The results for design 14 implied that the 2.5 hr sample was also important in

improving the estimates of clearance as discussed previously.

The volume of distribution of the central compartment (7;) was estimated well using
all designs, and all estimates of bias and imprecision were less than 2.5%. The peak
in concentration variance due to ¥; occurred at # = 0 hr and the sampling time
defined as 'as early as possible', i.e., 0.1 hr, and was included in designs 13 - 16. The
empirical designs also included an early sampling time, but this was deliberately
selected to be later than 0.1 hr, and the fixed sampling time at 0.25 hr was used in
designs 17 - 19. No differences were found within each design. However, it was
clear that, although all designs estimated /; with minimum bias and imprecision, the
designs which included 0.1 hr performed better than those in which the first sample
was 0.25 hr.

Of the fixed effect parameters, ¥, was the poorest estimated, although all designs
except 14 had bias and imprecision less than 15%. The inclusion of sampling
windows increased the mean bias, but reduced the imprecision. Examination of
designs 17 to 19 showed that the sampling window at 1.25 hr (designs 18 and 19)
improved the estimation of ¥, compared to the fixed sampling time design (17). This
may have been due to more samples being closer to 1.0 hr, the time suggested by
sensitivity analysis for ;. Apart from design 14, there was little difference between

the other designs in terms of bias and imprecision in the estimation of V..

Similarly, the inter-compartmental clearance, O, was estimated accurately, regardless
of the design, except for design 14. All parameter estimates from designs 13 and 15
to 19 were within 5% of the true value. Sensitivity analysis suggested two design
points with respect to Q, i.e., at 0.3 hr and 2.5 hr. The 2.5 hr sample was removed in
design 14 and was shown to be important in the estimation of all of the fixed effect

parameters. Although the empirical designs did not include the 0.3 hr sample, the
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sample at 0.25 hr may have been close enough to 0.3 hr to allow accurate estimation

of Q.

Regardless of the design, the random effect parameters were less accurately

estimated than the fixed effect parameters.

The estimation of w¢; depended on the true value, and for all designs performance
improved as w¢; increased from 10% to 30%. When @¢; =1 I/h the estimation was
highly variable within each design and up to three outliers were present in some sets
of results, causing high values of imprecision. However, when w¢; =2-3 1/h, there
was little difference between the designs in terms of either bias or imprecision. The
four-sample designs incorporating windows (15, 18 and 19) performed as well as the
five-sample designs (13 and 16), and indicated that these designs might require fewer

samples for similar performance.

In estimating the variability of ¥}, (@, ), design 15 performed poorest of the designs

based on the sensitivity analysis, probably due to having only two early times
compared to the three early times in designs 13, 14 and 16. The sampling window at
0.4 hr also allowed more of the second samples to be taken later, i.e., instead of two
early samples at 0.1 and 0.3 hr, the second time could be at 0.9 hr. The concentration
variance due to V; falls rapidly, suggesting that at 0.3 hr there would be much more

information than at 0.9 hr.

Designs 17 - 19 showed similar results for the estimation of @y, as for V,, i.e., there

was little difference between the designs as all had the early time at 0.25 hr.
However, all empirical designs performed poorer than those which included the 0.1
hr point. Imprecision was poor, up to 51% with designs 18 and 19, and the mean

bias varied from 20-36%. This showed that while the 0.25 hr sample was adequate

for estimating the fixed effect, V;, @y, Was better estimated using the earlier

sampling time.
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Similar to the fixed effect parameter V>, the variability @, was the poorest

estimated of the random effect parameters, regardless of the sampling design.
Overall, the empirical designs had slightly better results than the other designs.
Table 3.3 showed that as the variability in V5 increased from 10 to 30%, the peak in
concentration variance moved from 1.1 to 0.9 hr. Over all designs, those

incorporating three windows (15 and 18) had the lowest imprecision showing that
increasing the variability in sampling times improved estimation of @y, . In

particular the windows on the 0.4 and 0.5 hr sampling times appeared to improve
estimation of @, . This could be due to more samples being closer to the peak in

concentration variance.

In estimating the variability in Q (@, ), including sampling windows did not improve
the bias or imprecision compared to fixed sampling time designs. Similar to @, _,

the empirical designs showed slightly better results for @, than the designs based on

the sensitivity analysis, although three sampling window designs offered no
improvement over those with two sampling windows. However, using sampling

windows would be more convenient in clinical practice.

The proportional random error component, o, , was estimated less accurately than
the additive component, o ,, regardless of the design. In particular, design 15
estimated o, less accurately than the other three designs based on the sensitivity

analysis, probably due to designs 13, 14 and 16 having three early samples compared

to two in design 15. Higher concentrations at earlier times are more susceptible to
proportional error and hence have most information about o,. The results obtained
using the other designs (17 to 19) were similar to those from design 15 in terms of

bias and imprecision, also indicating that early sampling times appear to hold more

information about o .

Later concentrations, being lower, were more affected by additive error, and all

results for o were accurate. The most notable result from this aspect was that design
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14, which did not include the late 2.5 hr sample, had the highest imprecision.
Designs 15, 16, 18 and 19, including sampling windows, showed greater precision,
possibly by allowing samples to be taken even later than 2.5 hr. However, overall

there was little difference between the designs.

In conclusion, these results showed that while incorporating sampling windows may
not have improved the mean bias, the imprecision was generally reduced for all
designs. Sampling windows, mimicking variability in sampling in a clinical
situation, performed no worse than the fixed times, although in a real clinical
situation, the sampling times would have to be recorded accurately to make the data
reliable. The inclusion of sampling windows may also allow a reduction in the
number of samples from five to four, without an increase in bias and imprecision.
This is similar to results presented by Baille at al (Baille et al. 1997) where random
sampling occurred around D-optimal sampling times specified for a 1 hr docetaxel
infusion. This resulted in a six-sample model as the pharmacokinetics of docetaxel
are described by a three-compartment model. D-optimality does not allow less
samples than there are parameters to be estimated (Silvey 1980). When coupled to a
Bayesian estimation algorithm this allowed a reduction from six samples to four with
minimal loss in bias and imprecision. In addition a two fixed-sample design was

selected as being acceptable for use in an outpatient setting.

The most obvious result of using the designs based on sensitivity analysis in these
simulations was that while the estimates of the fixed effects were similar to those
obtained with empirical designs, the estimates of the random effects were generally
improved. This would confirm the suggestion from chapter 3 that basing sampling
schedules on sensitivity analysis is worthwhile and that the use of these times allows
accurate estimation of the both the fixed and random effect PK parameters. In
addition, these sampling times provide an initial design that extra samples could be
added to when there are doubts about the identification of the PK model and the true

population parameter values.
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7 Application of Limited Sampling Design to Two Anticancer

Drugs
7.1 One-Compartment PK Model - Carboplatin (Simulated Data)

7.1.1 Introduction

In chapter 3 a sensitivity analysis was described in which the analysis was used to
define the times at which the model output was most sensitive to changes in each
model parameter. In that chapter arbitrary values of the parameters were chosen and

the variability in each was small.

In this section of chapter 7 the one-compartment PK model described in chapter three
was re-examined, using PK parameter values for an existing anticancer drug,
carboplatin. As carboplatin pharmacokinetics are best described by a two-
compartment model, it was necessary to modify the parameter values. Carboplatin
was chosen as the pharmacokinetics are wefl established (van der Vijgh 1991;
Duffull et al. 1997). The two-compartment data from several studies was modified
by averaging the values published for the parameters volume at steady state (¥ss) and
total clearance (CL). These were then treated as the parameters for the one-
compartment model (¥ and C/) with the variability in ¥ 26% and C/ 30% (van der
Vijgh 1991).

The sampling schedules derived from sensitivity analysis were compared to sampling
designs derived from two published carboplatin limited sampling strategies from the
Biomed?2 project (Personal Communication, D.I. Jodrell, L.S. Murray). The
Biomed2 project compared two therapeutic protocols for ovarian cancer:

e Carboplatin given as a single agent by 30 minute IV infusion.

e Carboplatin given as a 1 hour IV infusion following a 3 hour IV infusion of taxol.

Nine sampling designs in total were examined for their accuracy in estimating the PK

parameters and the random variability associated with them.
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7.1.2 Methods

7.1.2.1 Data Simulation

Concentration-time data for this section were simulated according to a one-
compartment PK model, following a single I'V bolus dose of 400mg of carboplatin

and were derived as described previously in Chapter 2.

The population mean values of the parameters used in the simulations are
summarised in table 7.1, along with the standard deviations. The values used in this
thesis were taken from the publication by van der Vijgh (van der Vijgh 1991) where
the population parameter estimates of carboplatin in plasma from several PK studies
were listed. The values for the total clearance (CL (ml/min/m?)) and the volume of
distribution at steady state (Vss (Umz)) of the six studies listed were averaged to give
values of 4.6 I/h/m” and 15.4 1/m?, respectively. These average values were rounded
to give the values of 5.0 I/h and 15.0 1, which were used in the simulations, along
with an IV bolus dose of 400mg. The dose was obtained from a regimen of
400mgfm2, which was used prior to the dosing of carboplatin being based on AUC
values. A combination error model was used and the values used are also listed in

table 7.1.

7.1.2.2 Sampling Schedules

The sampling schedules based upon the sensitivity analysis described in chapter 3
were defined for the carboplatin parameter values listed in table 7.1. As in section
3.3, the concentration variance was examined using simulated populations of 5000
subjects and compared to that calculated from the equations derived in chapter 3.
This was to ensure that predicted peaks in concentration variance were similar to
those observed in simulated populations, in order to select the sampling times. Both
the total calculated and simulated concentration variances over time are shown in
figure 7.1, along with the separate, calculated, components due to clearance and
volume of distribution. The choice of sampling times is also shown in relation to the

peaks in concentration variance.
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Table 7.1 Mean pharmacokinetic parameter values for Carboplatin simulations®.

Parameter Value
- 5
72 151
[0y 1.5 Vh
W, 41
oy 0.05
(o7) 0.67 mg/l

“It was assumed that there was no covariance between C/ and 1.

20

t=0hr

Intersect at
40 t=1.5hr
30
20 -

10 -

Peak att =3.0hr=144xt,,

l (t1 = 2.08 hr)

Concentration Variance ((mgll) 2}

Time (hr)

10

Sim Var (5000 subjects)
Vardue to V
Var due to Add Error

Var due to CI
Var due to Prop Error
Total Var from Equn

12

Figure 7.1 Sensitivity analysis of concentration variance using carboplatin
parameter values. The variance in concentration from a simulated population of
5000 subjects was compared to that predicted. Two sampling times were based on
the peaks in concentration variance due to the components clearance and volume of
distribution. A third sampling time was selected from the intersect of the variance

curves due to these components.

Chapter 7 74




Figure 7.1 shows that the derived equations produced two peaks in concentration
variance - one at £ = 0 hr due to the volume of distribution component and one at
3.0hrs due to the clearance component. As in chapter 4, these two sampling times
were examined along with the time at which the two curves intersected - 1.5hr. The
first sample time was set to 0.1hr, rather than Ohr. The total variability in
concentration within the simulated population was slightly higher than the total

predicted from the equations, although the two peaks occurred at the same times.

Three different designs based on the sensitivity analysis using carboplatin parameter
values were investigated:

Design 20. Two fixed sampling times using the early peak and the time of the
intersection of the curves due to the clearance and volume
components (0.1 & 1.5 hr).

Design 21. Two fixed sampling times at the times of the two peaks in
concentration variance (0.1 & 3.0 hr).

Design 22. Three fixed sampling times at each of the above times (0.1, 1.5 &
3.0 hr).

The above sampling schedules were also compared to two further designs, with
sampling times from the Biomed2 project. Only the sampling times were taken from
these schedules and the simulation was carried out using an IV bolus and one-
compartment PK model as previously described.

Design 23. Based on the Biomed2 schedule (where carboplatin was given as a
single agent by a 30 minute IV infusion). Sampling was taken 1, 4
and 6 hours after the end of the infusion.

Design 24. Based on the Biomed2 schedule (where carboplatin was given as a 1
hour IV infusion in combination with a 3 hour IV infusion of taxol).
Taxol was given first and the sampling times were at 0, 1, 3, 4, 6, 8
and 12 hours after starting taxol. For the purpose of this simulation
the sampling times of interest were those following administration of
carboplatin, i.e., 4, 6, 8 and 12 hours which correspond to 1, 3, 5 and

9 hours after starting the carboplatin infusion.
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A further four three-sample designs were simulated based on design 24 above. All
combinations of three sampling times out of the four were examined.

Design 25. 1.0, 3.0 & 5.0 hr from the start of the 1 hr infusion.

Design 26. 1.0, 5.0 & 9.0 hr from the start of the 1 hr infusion.

Design 27. 1.0, 3.0 & 9.0 hr from the start of the 1 hr infusion.

Design 28. 3.0, 5.0 & 9.0 hr from the start of the 1 hr infusion.

Thus nine designs were investigated in total with ten data sets of 500 subjects
simulated for each design. The sampling schedules for carboplatin are summarised
in table 7.2 and illustrated on a mean concentration-time curve in figure 7.2. Figure

7.3 shows how the sampling designs relate to the concentration variance-time curves.

7.1.2.3 Data Analysis

The parameters clL,v, wl, ®,, o and o; were estimated by NONMEM, version
V, using FOCE with interaction, and calculation of the percentage bias and
imprecision of the NONMEM population estimates for each data set were as

described in chapter 2.

NONMEM estimates were compared to the true (simulated) value by subtracting the
simulated value from the NONMEM value and plotting this difference, ideally zero.
The magnitude of the deviations from zero were used to compare the different

designs.
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Figure 7.2 Plot of concentration vs time for the mean values of clearance and

volume, with the sampling times.
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7.1.3 Results

Estimation of Population Mean Clearance.

Figure 7.4 shows the bias and imprecision results for the estimation of carboplatin
clearance using the nine sampling schedules. All designs except design 28 had bias

and imprecision of less than 1%. The results for design 28 were less than 3.5%.

Design 24 had the smallest degree of imprecision and the narrowest confidence
interval for the bias. This was to be expected as it also had the most sampling times
(four). Five of the three-sample schedules (designs 22, 23, 25, 26 and 27) had
similar values for bias and imprecision and performed as well as design 24. Of the
two-sample schedules, design 21 performed better than design 20, with a narrower
95% confidence interval and smaller amount of imprecision. Design 21 also
performed comparably with the following three-sample schedules: designs 22, 23,
25, 26 and 27.

Figure 7.5 shows how each of the ten NONMEM estimates of clearance within each
sampling schedule compared to the simulated mean value, by subtracting the
simulated value from the NONMEM estimate. Design 28 showed the greatest
deviation from zero and all values were positive, showing that NONMEM
consistently over-estimated clearance with design 28. All other sampling designs
had distributions which included zero. However, as stated previously, all designs

had bias and imprecision within 3.5%, showing no difference between the designs.

Estimation of Population Mean Volume of Distribution.

Bias and imprecision in the estimation of volume of distribution is shown in figure
7.6. The results were similar to those for clearance in that all sets except design 28

had results for bias and imprecision of less than 1%.

Design 24, with four sampling times had the narrowest 95% confidence interval, but

not the smallest mean bias or imprecision of the designs. Both of the two-sample
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schedules (designs 20 & 21) performed equally with similar values of bias and
imprecision. In fact, the two-sample schedules performed best in terms of the
smallest mean bias and imprecision. Designs 22 and 25 with three samples had

similar values for bias and imprecision as designs 20 and 21.

The ten NONMEM estimates of volume of distribution are compared to the
simulated values in figure 7.7. As in the estimation of clearance, design 28 was most
biased and the distribution of estimates for all other sampling schedules included
zero, with small differences between the simulated and estimated population values

for volume of distribution.

Estimation of Standard Deviation of Clearance (w¢)

In the estimation of @¢y, all sets had mean bias and imprecision of less than 8% and
all sets except design 26 and design 28 had mean bias of less than 1% (figure 7.8).
Design 24 with four sampling times had the narrowest confidence interval for bias,
but was comparable to that of designs 22, 26 and 27 with three sampling times. The
two-sample designs 20 and 21 had the widest confidence intervals, but the value of
mean bias is comparable to the other schedules. Of the three-sample schedules,

design 28 had the widest confidence interval.

The schedule which proved most precise in the estimation of w¢; was design 24, with
four sampling times. However, designs 22 and 27, with three sampling times had
comparable precision. The imprecision for all sampling schedules was less than 7%,

with the two-sample schedule, design 20, performing poorest.

Figure 7.9 shows how the ten NONMEM population estimates of @w¢ compared to
the simulated values, for each sampling design. When the simulated population
values were subtracted from the NONMEM estimates of w¢; design 28 again had
values that were generally positive, indicating that NONMEM consistently
overestimated @w¢; with this sampling design. However, the furthest point from zero

was one of the estimates from design 20. This corresponded to one data set that had
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—~14% bias. The estimates from design 20 and design 21 tended to be slightly further

from zero than all other sampling schedules, but included zero in the distribution.

Estimation of Standard Deviation of Volume (wy)

Figure 7.10 shows the bias and imprecision in the estimation of wy. All sampling
schedules except designs 26 and 28 had mean bias of less than 2%. Design 22 had
the smallest degree of imprecision in the estimation of @y and the imprecision was

less than 2.7% for all sets except designs 26 and 28.

The two-sample schedules (designs 20 and 21) estimated @y as well as the three and

four-sample schedules (designs 22-25 and 27).

Figure 7.11 compares the NONMEM estimates of @y for each sampling schedule to
the original simulated values. The distribution of differences from all sampling
schedules, except designs 26 and 28, included zero, after subtraction of the simulated

value from the NONMEM estimate.

Estimation of Proportional Random Error on Concentration (o)

The concentration random error terms were poorest estimated of all parameters,

probably due the limited number of sampling times.

The bias and imprecision calculated during the estimation of the proportional random
error (o7) is shown in figure 7.12. The two-sample schedules, designs 20 and 21, had
the largest mean bias (-30% and -60%, respectively) and also the widest confidence
intervals, although the confidence interval for design 25 was similar to design 21.
Designs 22 and 23 (three-sample designs) and 24 (four-sample design) all had
similar confidence intervals, with design 22 having the lowest mean bias of the nine

sets (5%).
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Design 21 was the most imprecise (75%) and design 22 was the least imprecise
(12%). In addition to performing better than any of the other three-sample designs,
design 22 performed better than design 24 (15% imprecision), which had four
sampling times. Although design 20 with two sampling times had poor precision it
performed better than design 28 with three sampling times in terms of the precision
(42% and 55%, respectively). Design 21 did not estimate a value for oy in three out
of ten of the runs and design 25 did not estimate a value for one of the runs. Hence
the poor performances in terms of bias and imprecision across ten runs for these

sampling schedules.

Figure 7.13 shows how the NONMEM estimated values compared with the
simulated values. The spread of bias and imprecision results for designs 21 and 25
was a large compared to the other designs. Designs 22, 23 and 24 were closest to

zero and designs 21 and 28 were furthest from zero.

Estimation of Additive Random Error on Concentration (o3)

The bias and imprecision in the estimation of the random additive error (o3) is shown
in figure 7.14. Again, the two-sample sets (designs 20 and 21) and design 25, with
three early samples, had the widest confidence intervals. Design 21 had the largest
mean bias of -35%. The other three-sample schedules had acceptable results for bias,
ranging from -4.6% to -11.4%. Design 22 with three sampling times had a mean bias
of -6.2%, compared to design 24, which had four sampling times and a mean bias of

-4.6%.

The two-sample schedules also performed poorest in terms of imprecision with
values in excess of 35%. Design 25 was the poorest of the three-sample schedules
(28%), and design 23 (three samples) estimated o better than design 24 (four

samples with values of 5% and 6% for imprecision, respectively.

The simulated values were subtracted from the NONMEM estimates in figure 7.15.

The bias and imprecision results from all designs except 20, 21 and 25 were clustered
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close to zero. Design 21 did not estimate a value of o, for three out of the ten runs
again, which explained the poor performance in terms of bias and imprecision when

calculated across the ten runs.
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Figure 7.4 Mean percentage bias (%B) + 95% confidence interval and imprecision
(%) for the estimation of carboplatin clearance, using designs 20-28.
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Figure 7.5 Comparison of mean simulated values with NONMEM population
estimates of carboplatin clearance.
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Figure 7.6 Mean percentage bias (%B) + 95% confidence interval and imprecision
(%l) for the estimation of carboplatin volume of distribution, using designs 20-28.
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Figure 7.7 Comparison of mean simulated values with NONMEM population
estimates of carboplatin volume of distribution.
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Figure 7.8 Mean percentage bias (%B) + 95% confidence interval and imprecision
(%lI) for the estimation of the standard deviation of carboplatin clearance, using
designs 20-28.
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Figure 7.9 Comparison of mean simulated values with NONMEM population
estimates of standard deviation of carboplatin clearance.
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Figure 7.10 Mean percentage bias (%B) + 95% confidence interval and imprecision
(%I) for the estimation of the standard deviation of carboplatin volume of
distribution, using designs 20-28.
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Figure 7.11 Comparison of mean simulated values with NONMEM population
estimates of standard deviation of carboplatin volume of distribution.
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Figure 7.12 Mean percentage bias (%B) + 95% confidence interval and imprecision
(%I) for the estimation of the proportional random error of carboplatin concentration,
using designs 20-28.
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Figure 7.13 Comparison of mean simulated values with NONMEM population
estimates of proportional error of carboplatin concentration.
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Figure 7.14 Mean percentage bias (%B) + 95% confidence interval and imprecision
(%l) for the estimation of the additive random error of carboplatin concentration,
using designs 20-28.
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Figure 7.15 Comparison of mean simulated values with NONMEM population
estimates of additive error of carboplatin concentration.
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7.1.4 Discussion

This simulation was an exercise in testing how the equations for a one-compartment
PK model, derived in chapter 3, would perform when applied to ‘real’ values of PK
parameters instead of test ones. Carboplatin was the drug of choice as publications
exist detailing population values for the PK parameter values (van der Vijgh 1991;
Duffull et al. 1997). The values used in this thesis were taken from a review which
listed the population parameter estimates of carboplatin in plasma from several PK
studies (van der Vijgh 1991). The values for the total clearance (CL (ml/min/m?))
and the volume of distribution at steady state (Vss (I/m?)) of the six studies listed
were averaged to give values of 4.6 I/h/m” and 15.4 I/m’, respectively. These
average values were rounded to give the values of 5.0 I/h and 15.0 1, which were used

in the simulations, along with an IV bolus dose of 400mg.

Simulation of concentration-time data for a population of 5000 subjects using the
carboplatin PK values described above with variance of 30% on clearance and 26%
on volume showed where peaks in concentration variance arose. These were
comparable to those predicted from the equations in chapter 3 and showed that the
derived equations were ‘scalable’ to other drugs. However, as described previously,
care would have to be exercised when extrapolating to actual populations in which
parameter variance could be in excess of 30%. In such a case, the peaks in
concentration variance observed in the simulated populations shifted slightly when

compared to those predicted (chapter 3).

The two-sample schedules derived from concentration variance (designs 20 and 21)
performed well compared to the designs based on sampling times taken from two
published carboplatin sampling schedules, designs 23(three samples) and 24 (four
samples), except in the estimation of the random errors in concentration.

Of the two-sample schedules, design 21 estimated clearance and w¢; best, which was
due to the inclusion of the sampling time at 3.0 hr, which corresponded to the peak in
concentration variance due to clearance. Designs 20 and 21 performed equally in the

estimation of volume of distribution as both designs included the early 0.1 hr sample
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corresponding to the peak in concentration variance due to volume. Also, design 20
estimated wy, o7 and o7 better than design 21. These results were as expected for wy
and oy as design 20 included two earlier sampling times than design 21. The earlier
times were most informative for estimating @y as the peak in concentration variance
is higher at the 1.5 hr time point than at the 3.0hr time point of design 21 (see figure
7.3). The proportional random error component was best estimated when earlier
sampling times were included as earlier concentrations were more susceptible to oy
than the later ones. Design 21 would have been expected to estimate o3 since the
lower concentrations at the later time of 3.0 hr are more affected by the additive error
component than the proportional error component. However, design 21 did not
estimate the intra-subject random errors in three out of ten simulations and this may
account for poorer performance in terms of the higher mean values of bias and the

wider confidence intervals.

The three-sample schedules (designs 22, 23, 25-27) performed comparably. Design
28, which had three late sampling times, estimated all PK parameters, excluding the
additive intra-subject error (oz), poorest of all the schedules. This confirmed that an

carly sample is essential in IV PK studies.

The four-sample schedule, design 24, estimated clearance, @¢; and o (the random
additive error) best out of all of the schedules. However, the results from the four
‘empirically-chosen’ times were often comparable to those obtained with the three-

sample design based on the sensitivity analysis (design 22).

In the estimation of clearance, all sampling schedules performed reasonably well
with bias and precision within 3.5%. In the estimation of clearance design 21 was
better than design 20 (both two-sample schedules) and was comparable to designs
22,23, 25, 26 and 27 (three-sample schedules). These schedules included a sampling
time either close to or at the 3.0 hr time-point, which corresponded to the peak in
concentration variance due to clearance from sensitivity analysis. The four-sample

design 24 performed best of the nine designs.
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Volume of distribution was estimated well with all designs, with imprecision and
bias less than 3.5%. It was best estimated by the two-sample schedules (designs 20
and 21) and the three-sample design 22, which had the earliest sampling time of
0.1hour. This corresponded to the peak in concentration variance due to volume of
distribution. Design 24 with four samples had the narrowest 95% confidence
interval, but had slightly more imprecision that design 25 with three samples. These
two designs had the same three early sampling times, showing that the addition of the
fourth sample at 9 hours in design 24 did not add further information for the
estimation of volume of distribution. Designs 26 and 27 had similar results and only
had the 1.0hr time in common. The poorer performance of design 28 was due to the
lack of the early sampling time where the information about volume of distribution

was greatest.

The two-sample schedules performed poorest in estimating the inter-individual
variance of clearance (@) and had the widest 95% confidence intervals, although
design 28 (3 samples) had the largest mean bias. However, all bias and imprecision
results were less than 8%. Design 22 estimated w¢; best with designs 24, 25 and 27
being comparable. Similar to clearance, the best results in estimating w¢; were
obtained when there was a sample close to or at 3 hours, which corresponded to the
time of peak concentration variance due to clearance. However, design 28 again
showed the poorest result, even though the schedule included the 3.0hr sampling
time. Again, this may be due to the late sampling times in design 28. Designs 23
and 26 had sampling times at 4 and 5 hr, respectively, showing that samples which
were not at the exact peak in concentration variance, but close to it also resulted in

accurate estimation of @c;.

The inter-individual variability in volume (wy) was estimated well with all designs
except designs 26 and 28. It was best estimated by the two-sample schedules
(designs 20 and 21) and the three-sample design 22, which had the earliest sample at
0.1 hour. This corresponded to the peak in concentration variance due to volume of
distribution. Design 24 which had the same three early sampling times as design 25

performed similarly to it, showing that the addition of the fourth sample at 9 hours
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did not add further information for the estimation of the variance of volume of
distribution. Designs 23 and 27 also had similar results to designs 24 and 25. The
poorer performance of designs 26 and 28 is explained in figure 7.3 where the
variance in concentration due to the volume component is illustrated. Both of these
designs had later samples at times where the curve due to volume was almost zero
and hence there was little information about volume of distribution present at these
times. Design 26 showed improved results over design 28 due to the early sample at
1.0 hr where the information about volume was greater. This confirms previous
results which showed that early sampling times are important for estimating volume
of distribution. At least one early sample gave an accurate estimate with less than

10% imprecision and bias. More than one improved it to less than 5%.

The random intra-individual errors on concentration were estimated least well. The
random proportional error (o7) was best estimated by design 22. Designs 22, 23 and
24 had precision of less than 20%, showing that schedules with earlier sampling
times estimated oy better. This was expected as higher concentrations at earlier times
were more affected by the proportional random error than later, smaller

concentrations.

The random additive error, (o3) was best estimated by sampling schedules with later
sampling times. Designs 20, 21 and 25 with only early sampling times performed
poorest in the estimation of this parameter. The most noticeable result in this section
was that design 28, with only late samples, estimated only this parameter accurately.
Random additive errors affect lower, later concentrations more than higher ones,

hence, these results were also as expected.

As both toxicity and response to carboplatin have been correlated with the
pharmacokinetics, dose modifications are generally made to attain a desired drug
exposure as measured by AUC (Calvert et al. 1989; Jodrell et al. 1992) and most
limited and optimal sampling strategies for carboplatin relate to the estimation of this
parameter and not those of clearance or volume of distribution (van Warmerdam et

al. 1994a; Ghazal-Aswad et al. 1996; van Warmerdam et al. 1996b; Chatelut et al.

Chapter 7 72



2000). Hence, in addition to the modification to the structural PK model, the
simulations carried out in this section cannot be directly compared to published

sampling strategies for carboplatin.

In conclusion, this section showed that the equations derived in chapter 3 were
scaleable to ‘real’ values of PK parameters and that sampling schedules derived from
the times of peak concentration variance performed as well as published sampling
schedules. The two-sample schedules based on the sensitivity analysis performed as
well as some of the three-sample schedules and the three-sample schedule from the
sensitivity analysis often performed as well as the four-sample schedule derived from

the Biomed2 project.

This simulation also showed that although using sampling times from the sensitivity
analysis gave accurate estimates of the relevant parameters related to the peaks in
concentration variance, sampling schedules with times close to these 'optimal’ times
also performed well. This was particularly true if these samples were taken at times
where the amount of information about the parameter remained high in relation to the

total height of the peak.
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7.2 Two-Compartment PK Model - Antagonist G 6 hour IV

Infusion (Clinical Data).

7.2.1 Introduction

Antagonist G is one of a novel class of compounds being investigated for activity
against small cell lung cancer (SCLC). SCLC cells are known to secrete a variety of
neuropeptides on which they are dependent to sustain growth. Antagonist G is a
broad-spectrum neuropeptide antagonist based on the structure of Substance P and
consists of six peptides (H-Arg-D-Trp-NmePhe-D-Trp-Leu-Met-NH,). The exact
mechanism of action is not known, but these compounds are believed to act via
competitive inhibition of cell surface receptors to prevent the mitogenic effects of the
neuropeptides. Both preclinical and in vitro studies have shown Antagonist G to
inhibit the proliferation of SCLC cells and a Phase I clinical trial has recently been
completed (Jones et al. 1997).

Phase I clinical trials aim to determine the safety and tolerability of a new drug in
humans. A secondary aim is to gain information about the drug absorption,
distribution and elimination, by the use of pharmacokinetic studies. With non-
chemotherapeutic drugs, phase I studies are often carried out on healthy volunteers
first and later on patients. In the case of anticancer drugs, patients are used in phase I

and hence the drug is being tested in the target population.

This chapter describes the analysis of the pharmacokinetic data collected during the
Phase I trial of Antagonist G. Initially, each subject's data were analysed
individually and subsequently all data were analysed simultaneously to develop a
population PK model for Antagonist G. Using the parameter estimates from the
population PK model, the 'optimal' sampling times for Antagonist G were determined
using the methods described previously, i.e., examining where times of maximum

concentration variance occur.

A simulation study was then carried out to investigate if the 'optimal' sampling times

offered any improvement in the population PK parameter estimates compared to
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those obtained with the conventional sampling schedule used in the phase I study.
Three sampling schedules were examined during the simulation (time zero was not
simulated):
i. The six defined 'optimal' sampling times.
ii. A modified 'optimal' sampling schedule which was reduced to five samples
by the use of a sampling window.

iii. A simulation using the original sampling times (14 samples).
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7.3 Phase | Study
7.3.1 Methods

Antagonist G Administration & PK Sampling Schedule

Antagonist G was administered to patients with cancer for whom no conventional
therapy was available. The drug was given in 500ml of 5% dextrose, as a 6 hour IV
infusion via a central line every three weeks for up to 12 cycles of treatment. The
study had received the approval of the relevant ethical committees in the institution

in which it was carried out.

The aim of the first stage of the study was to reach an Antagonist G plasma
concentration of 10uM at the end of infusion. This concentration was associated
with anti-tumour activity pre-clinically. In this part of the study a rapid dose-
escalation strategy was employed in the absence of significant toxicity, where the
dose was doubled after each patient. The dose escalated from 2 to 300mg/m” in 15

patients (12M: 3F, age 36-65 (median59)), using twelve dose levels.

In the second stage of the study, the dose intensity was increased to a weekly
infusion. Further dose escalation was guided by the end of infusion concentration
and also a pharmacodynamic end-point, forearm bloodflow changes as measured by
venous occlusion plethysmography. Nine patients (SM: 4F, age 34-75 (median54))
were entered at three dose levels: 300, 350 and 400mg/m’.

Full pharmacokinetic data (15 samples) were collected during the first cycle of
treatment from each of these 24 patients. Limited pharmacokinetic data were
collected from the second (5-10 samples) and subsequent cycles (start and end of
infusion samples). Data from the first and second cycles were included in this
analysis. For the full profiles plasma samples were collected at the following times,
from the start of the infusion: 0, 60, 300, 360, 365, 370, 380, 390, 405, 420, 450, 480,
540, 720, 1440 minutes. For the second cycle data the sampling times were

generally selected from 0, 60, 300, 360, 375, 390, 405, 420, 480 minutes from the
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start of the infusion, although some earlier samples from 113-224 minutes were

occasionally used instead, due to sampling restrictions in the clinic.

Individual PK Analyses

The data from each patient were analysed individually using NONMEM (Version V)
and the FO method of analysis described in chapter 2. Previous work had suggested
that a two-compartment PK model was the most appropriate for this data (Personal
Communication, S. Clive) and the ADVAN 3 and TRANS 4 subroutines were used.
As with previous sections in this thesis the parameters C/, V;, V> and Q were
estimated. The residual error on concentration was described by either an additive or

a combination intra-subject error model.

Population PK Analysis

The results from the individual analyses showed that the estimates of clearance were
more variable at lower doses, than at higher doses. Hence only the data from patients
13 to 24 was modelled simultaneously in the population PK analysis using
NONMEM (Version V). Both the FO and the FOCE with interaction methods of

analysis were examined. A two-compartment PK model was used and the

parameters Cl ; V; ; V_z and é were estimated along with estimates of the residual
error on concentration. Two models were examined for residual error: an

exponential model and a combination model, described below.

Cy =0, xe™ Equation 7.1

C,= C;. xe™ +&, Equation 7.2

Different population PK models were compared for:
i.  Successful minimisation.

ii. Estimation of standard errors of parameters.
iii.  Objective function value.

iv. Examination of residual plots.
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7.3.2 Results

Individual PK Analyses

Concentration data were available from 24 patients (17 male) and 40 cycles of
treatment (8 patients had one cycle available only). The doses for each cycle, the
total number of concentration measurements available and the parameter estimates
from each individual are shown in table 7.3. Figure 7.16 shows the individual
concentration-time data along with the NONMEM data predicted from the individual
parameter estimates. The higher concentrations are not predicted as well as the

lower concentrations, but overall the individual fits were adequate.

The variability in the individual estimates across the population was large, with CV
ranging from 58% for clearance to 226% for ¥; and as much as 255% for the
additive error on concentration. The high CV for the estimation of ¥, was due to
patient 2 being an outlier with a value of 1191. The CV was 45.6% for V> with
patient 2 removed. The results were not Normally distributed, as shown the box and
whisker plots in figure 7.17. Hence median values may be more relevant than mean

values to describe the data.
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Figure 7.16 Individual Antagonist G profiles of measured and predicted
concentrations versus time.
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Figure 7.16 Continued
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Figure 7.16 Continued
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Figure 7.17 Box and whisker plots of individual parameter estimates for
Antagonist G. (V> is shown without subject 2, value = 1191)
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Population PK Analysis

Data from patients 13 to 24 were used to develop the population PK model for
Antagonist G as the clearance estimates in patients with doses less than 400mg was

variable compared to those obtained at higher doses (see figure 7.18).

The model development for the population model is described in table 7.4 and the

parameter estimates obtained from these runs are shown in table 7.5.

Patients 13 to 24 gave rise to two hundred and thirty seven Antagonist G
concentration measurements. The model giving the best fit was with the exponential
residual error model, combined with a two-compartment PK model. Extending the
residual error model by the use of a second, additive, component offered no
improvement in the model fit, as shown by no difference in the objective function,
standard error estimates or CV. This was the case regardless of whether the FO or

FOCE method of estimation was used (see comparison of runs 1 & 2 and 3 & 4).

The FOCE method reduced the variability in the estimation of ¥, to a CV of 18%,
from a CV of 63% with the FO method. Although increases in CV were seen for the
other parameters (1.5%, 0.6% and 12% respectively for CI, V; and Q), the large
reduction (45%) in the estimation of V3 justifies the choice of the parameter estimates
from the FOCE method of estimation for the population model for Antagonist G
(Run 3).

Figure 7.19 shows the measured concentration data (DV) for each individual together
with the population predicted concentration (PRED) and the individual's predicted
concentrations (IPRED) from Run 3. Overall, the individual predicted
concentrations were close to the measured concentrations, although the population
predicted concentrations were more variable. This is confirmed in figure 7.20 where
the population and individual predicted concentrations are plotted against the
measured concentrations for patients 13 to 24. It was clear that the individual

predictions of concentration were closer to the line of identity than the population
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predictions, although the higher concentrations were predicted less accurately than

the lower ones.

The final parameter estimates for the population model of Antagonist G were CI/
0.082 I/min (4.92 1/h), ¥; 6.9 1, ¥, 6.7 1 and Q 0.012 I/min (0.72 I/h). These were
used to define sampling times for Antagonist G which may offer improved parameter

estimation, using sensitivity analysis.
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Figure 7.18 Plots of individual parameter estimates for Antagonist G against dose.
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Figure 7.19 Individual Antagonist G profiles of measured, population predicted and
individual predicted concentrations versus time.
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Figure 7.19 Continued
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Figure 7.20 Population and individual predicted concentrations versus measured
concentrations for patients 13 to 24, with the line of identity shown.
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7.4 Optimal Design for Antagonist G
7.4.1 Methods

7.4.1.1 Data Simulation

Sensitivity analysis was carried out to define times of maximum concentration
variance attributable to each of the parameters CI, V;, V> and Q. The times defined
from this may offer improved estimation of the parameters, with fewer sampling
times than were used in the phase I study. The 'optimal' sampling times for
Antagonist G were defined graphically using the population parameter estimates
from Run 3, described previously. The parameters used are summarised below in
table 7.6 and the mean dose from the patients who were used to develop the

population PK model (patients 13-24) was used (622mg).

Table 7.6 Pharmacokinetic parameter values for optimal sampling design for
Antagonist G.

Parameter Value
Cl 4.92 1/h
"V_I 6.861
V—z 6.71
0 0.72 /h
g 31.5% CV
@y, 8.1% CV
oy, 18.1% CV
o 71.8% CV

Changes in the concentration variance were examined with respect to each of the
parameters C/, V;, V> and Q. This was achieved by setting the variance on all
parameters to zero, except the one being examined and the times at which peaks in

concentration variance occurred were determined graphically.
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7.4.2 Results

Figure 7.21 and table 7.7 detail where the peaks in concentration variance arose for
each parameter using the Antagonist G population PK parameter values.
Examination of the range of values of concentration variance for each of the
parameters shows that clearance had the largest effect. This was also apparent in the
plot of the total concentration variance, which was essentially the same as that for

clearance.

Figure 7.22 shows the concentration-time curve for the population average
Antagonist G parameters, following a six-hour infusion of 622mg. The sampling
times used in the phase I study are plotted along with the optimal sampling times
defined in table 7.7. The ‘optimal’ times were similar to some of those used in the

phase I study, although there was no sample in the clinical study at 3.6 hr.
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Figure 7.21 Sampling times based on sensitivity analysis for the two-compartment
IV infusion of Antagonist G.
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Table 7.7 “‘Optimal’ sampling times for Antagonist G.

Parameter Time

Ci 372 min (6.2 h)

V; First Peak 72 min (1.2 h)
V; Second Peak 436 min (7.27 h)
Vs 440 min (7.33 h)

O First Peak 216 min (3.6 h)
O Second Peak 624 min (10.4 h)
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Figure 7.22 ‘Optimal” sampling times from NONMEM population analysis Run 3
and dose of 622mg. Comparison with sampling times used in phase I study.
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7.5 Antagonist G Simulations

7.5.1 Methods

7.5.1.1 Data Simulation

Concentration-time data for Antagonist G were simulated according to a two-

compartment PK model following a 6-hour IV infusion of 622mg. The population

mean values of the parameters used in the simulations were those obtained from the

population analysis of the phase I clinical trial data (table 7.6). The coefficient of

variation for Q was reduced to 30% to enable estimation of this parameter. A

proportional intra-subject error model was used in which o; was set to 10% (0.1).

7.5.1.2 Sampling Schedules

The original sampling design used in the phase I clinical trial was compared to two

designs for which the sampling times were based upon sensitivity analysis. Ten sets

of 500 subjects were simulated for each of three designs.

Design 29.

Design 30.

Design 31.

Chapter 7

Fourteen fixed sampling times at the times used in the phase I
clinical trial of Antagonist G (1.0, 5.0, 6.0, 6.08 6.17, 6.33, 6.5, 6.75,
7.0, 7.5, 8.0, 9.0, 12.0 & 24.0 hr).

Six fixed sampling times selected using sensitivity analysis (1.2, 3.6,
6.2,7.27,7.33 & 10.4 hr).

Five fixed sampling times, with windows around each time except
the first. (1.2, 3.6+ 15,62 %15, 73+ 1.5 & 1044+:2.25h). The
samples at 7.27 hr and 7.33 hr were reduced to one sample at 7.3 hr
to reduce the number of sample to five. The size of the sampling
window corresponded to 20% and 30% of the elimination half-life

(t4p), which was 7.5hr (1.5 and 2.25 hr, respectively).
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7.5.1.3 Data Analysis

The parameters CI, V,, V,, O, o, a)ﬁ; , O, a)é and o were estimated by

NONMEM, version V, using FO with posthoc estimation of each individual’s
parameters. Calculation of the percentage bias and imprecision of the NONMEM

population estimates for each data set were as described in chapter 2.

NONMEM estimates were compared to the true (simulated) value by subtracting the
simulated value from the NONMEM value and plotting this difference. Ideally the
values would be zero and the magnitude of the deviations from zero were used to

compare the different designs.
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7.5.2 Results

Figures 7.23 to 7.40 summarise the results for estimating C/, Vi Vs 0: 04, @y,

@y, , @y and o, . Plots of the bias and imprecision are shown along with graphical

comparisons of the differences between the NONMEM population estimates values
and the simulated mean population. Each plot consists of three sets of results, one

for each design.

Estimation of Population Mean Clearance (/)

The bias and imprecision of the estimated population mean clearance is shown in

figure 7.23. All designs had estimates with greater than 30% bias, but were precise.

Figure 7.24 shows how the estimates of clearance compared to the simulated values.
Each set of ten results for each design was grouped closely, showing that the error in

estimation was constant.

Estimation of Population Mean Volume of Distribution of the Central
Compartment (V,)
Figure 7.25 shows that the estimates of the volume of distribution of the central

compartment were less biased than those of clearance, but were greater than 27%.
The imprecision was again low (less than 5%) and figure 7.26 confirms that the
estimation error was constant across the ten sets of data for each design. Design 29
had two results which were more imprecise that the others in the set, resulting in the

widest 95% confidence intervals of the three designs.

Estimation of Population Mean Volume of Distribution of the Peripheral

Compartment (V)
The estimates of the volume of distribution of the peripheral compartment were

particularly poor with the mean bias greater than 77% for designs 29 and 31. Design

30, with six sampling times selected using sensitivity analysis performed reasonably
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with mean bias of 10.3%, although the 95% confidence intervals extended to greater
than 20%. Design 30 was also the most imprecise of the three designs with a value
of 28% compared to less than 7% for designs 29 and 31. This is confirmed in figure

7.28 where the spread of the ten estimates for each design is shown.

Estimation of Population Mean Inter-Compartmental Clearance (0)

The estimation of the inter-compartmental clearance followed a similar pattern to
that of V5, in that design 30 had the smallest mean bias. However, all designs had
bias in excess of 30%, although all were again precise (less than 11% imprecision).

(Figures 7.29 and 7.30).
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Figure 7.23 Mean percentage bias (%B) + 95% confidence interval and imprecision
(%I) for the estimation of the clearance ( (7 ) of Antagonist G, using designs 29-31.
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Figure 7.24 Comparison of mean simulated values with NONMEM population
estimates of Antagonist G clearance.
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Figure 7.25 Mean percentage bias (%B) + 95% confidence interval and imprecision
(%lI) for the estimation of the volume of distribution of the central compartment (¥, )
of Antagonist G, using designs 29-31.
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Figure 7.26 Comparison of mean simulated values with NONMEM population
estimates of Antagonist G volume of the central compartment (V, .)
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Figure 7.27 Mean percentage bias (%B) + 95% confidence interval and imprecision
(%) for the estimation of the volume of distribution of the peripheral compartment

(¥, ) of Antagonist G, using designs 29-31.

T T T T

800 -6.00 400 -2.00 0.00 2.00 4.00 6.00 8.00
NM Estimate - Simulated Value

O Design 29 J Design 30 A Design 31

Figure 7.28 Comparison of mean simulated values with NONMEM population
estimates of Antagonist G volume of the peripheral compartment (7, .)
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Figure 7.29 Mean percentage bias (%B) + 95% confidence interval and imprecision
(%lI) for the estimation of the inter-compartmental clearance (0 ) of Antagonist G,
using designs 29-31.
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Figure 7.30 Comparison of mean simulated values with NONMEM population
estimates of Antagonist G inter-compartmental clearance (0 .)
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Estimation of Population Standard Deviation of Clearance (o)

The variability in clearance (@) was estimated poorly with all three designs (mean
bias of -100% (figure 7.31)). Similar to the patterns of estimation seen for the fixed
effects, the imprecision was low at less than 2%. All designs performed equally and

the spread of results is shown in figure 7.32.

Estimation of Population Standard Deviation of the Volume of
Distribution of the Central Compartment (o, )

The estimation of the variability of the volume of distribution of the central

compartment (@), ) was improved compared to @c;, but remained poor with a mean

bias of -44% for all designs. Similar to the estimation of w¢; the imprecision was

low at less than 5% (figures 7.33 and 7.34).

Estimation of Population Standard Deviation of the Volume of
Distribution of the Peripheral Compartment (o, )

Design 31 had the lowest mean bias of -41% for the estimation of the variability in
the peripheral compartment (@, ) and the imprecision was 33% (figures 7.35 and
7.36). Design 29 with 14 samples and design 30 with six samples performed poorest
with mean bias of 100% and imprecision of 47% and almost 0%, respectively.

However, no design offered a reasonable overall estimate of @, .

Estimation of Population Standard Deviation of the Inter-Compartmental
Clearance (@)

The bias in the estimation of the bias variability in the inter-compartmental clearance
(wg) was the poorest of all the parameters, ranging from 245% to 1530%. The
imprecision was equally poor ranging from 36% to 700%. As shown in figures 7.37

and 7.38, design 29 was poorest with mean bias of 1530% and imprecision of 700%.
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Estimation of the Proportional Component of Random Intra-Subject
Error (o;)
Of all of the fixed and random effects, the proportional intra-subject random error

component was the only parameter estimated with any accuracy. All estimates of
bias were within 7% and design 30, using the times selected from the sensitivity
analysis was best with less than 2% bias. The imprecision for all designs was less

than 3%. (Figures 7.39 and 7.40).
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Figure 7.31 Mean percentage bias (%B) + 95% confidence interval and imprecision
(%l) for the estimation of the standard deviation of clearance of Antagonist G (@, ),

using designs 29-31.
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Figure 7.32 Comparison of mean simulated values with NONMEM population
estimates of standard deviation of Antagonist G clearance (@, .)
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Figure 7.33 Mean percentage bias (%B) + 95% confidence interval and imprecision
(%l) for the estimation of the standard deviation of the volume of distribution of the

central compartment of Antagonist G (@, ), using designs 29-31.
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Figure 7.34 Comparison of mean simulated values with NONMEM population
estimates of standard deviation of Antagonist G volume of the central compartment
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Figure 7.35 Mean percentage bias (%B) + 95% confidence interval and imprecision
(%l) for the estimation of the standard deviation of the volume of distribution of the

peripheral compartment of Antagonist G (@y, ), using designs 29-31.
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Figure 7.36 Comparison of mean simulated values with NONMEM population
estimates of standard deviation of Antagonist G volume of the peripheral
compartment ((o,,: )
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Figure 7.37 Mean percentage bias (%B) + 95% confidence interval and imprecision
(%l) for the estimation of the standard deviation of the inter-compartmental
clearance of Antagonist G (@, ), using designs 29-31.
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Figure 7.38 Comparison of mean simulated values with NONMEM population
estimates of standard deviation of Antagonist G inter-compartmental clearance (@, .)
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Figure 7.39 Mean percentage bias (%B) + 95% confidence interval and imprecision
(%lI) for the estimation of the proportional intra-subject error in Antagonist G
concentration (o, ), using designs 29-31.
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Figure 7.40 Comparison of mean simulated values with NONMEM population
estimates of standard deviation of the proportional intra-subject error in Antagonist G
concentration (o, .)
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7.5.3 Discussion

The results for the Antagonist G simulations were disappointing when compared to
the simulations of a two-compartment model in chapter 6. All results except the
estimation of the residual error model were biased, although precise, suggesting that

there was a problem of model identifiability. The most probable cause was that the

population average values "V-; and V_2 , and hence the rate constants k;; and k;;, were
almost equal. Using the FO method in NONMEM, all individuals are ascribed the
same parameter values i.e. the population averages, and this could lead to the model
not being sustainable. The FOCE method should have alleviated this problem by
allowing each individual to have his own set of parameter values, but NONMEM

would not terminate using this method.

As the results were so poor no conclusions could be drawn regarding the use of the
‘optimal’ designs over the original full sampling design. However, it should be
noted that the designs with five and six samples based on sensitivity analysis gave

results that were similar to those obtained with the fourteen-sample design.

In the designs with five and six samples, the last sample collection was at 10.4 hours.
This would mean one day spent at hospital for this study, e.g., from 0800 to 1900 hr,
allowing for starting the infusion. The original sampling schedule required a 12 and
24 hr sample, which required a stay up to 2000 hr, or later depending on delays, for
both patient and staff. In addition, the collection of the 24 hr sample required
attendance by the patient the following morning. The reduced sampling designs
removed eight samples from the period 6 to 24 hr of the original design, which in
addition to the reduced time attending the hospital would be more convenient for the

patient.

Examination of the NONMEM output showed high correlations between the
estimated parameters, when none were present in the simulated data. An example of
the parameter estimates obtained using design 29 is shown in figure 7.41. The plots

for designs 30 and 31 were similar, showing that the posthoc estimates were not
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accurate when compared to the simulated values. However, the high correlations
between the parameters allowed the concentrations to be well fitted by the model
(figure 7.42).

In order for the parameters of a model to be identifiable, they have to exert an
influence on the outcome variable (Williams 1990; Gabrielsson et al. 1997). In this
case the outcome variable is concentration and, as the sensitivity analysis showed,
clearance was the parameter with greatest influence. Hence, perhaps it is not
surprising that the parameter estimates were so poor. However, clearance, which did

influence the outcome, was not estimated accurately either.

The population model for Antagonist G was only developed from patients 13-24 in
the phase I study and perhaps further work, refining the model with the use of
covariates would have allowed all data to be included. There is a suggestion in
figure 7.18 of a dose dependent reduction in clearance which was not explored fully
at this stage. A more accurate population model may have selected times that would
be different to those used and hence, perhaps in the situation described in this thesis
the ‘optimal’ design for a population PK study of Antagonist G has not been
identified.
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Figure 7.41 Comparison of a set of 500 simulated parameter estimates with
NONMEM posthoc parameter estimates, using 14 fixed sampling times (Design 29).
The line of identity is shown in pink.
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Figure 7.42 Comparison of the simulated concentrations for 500 subjects with the
NONMEM population predicted concentrations (PRED) and the NONMEM posthoc
predicted concentrations for each individual (IPRED), using 14 fixed sampling times
(Design 29). The line of identity is shown in red and the linear regression lines (and
corresponding equations) for the PRED and IPRED concentrations are shown in blue
and purple, respectively.
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7.6 Conclusion

The first part of this chapter has shown that for a one-compartment PK model the
equations derived in chapter 3 were scaleable to ‘real’ values of PK parameters,
when applied to a modified carboplatin model. The sampling schedules derived from
the times of peak concentration variance performed as well as published sampling
schedules, but allowed a reduction in the number of samples that were required for
accurate parameter estimation. In addition, selecting sampling times close to the
‘optimal’ times based on sensitivity analysis also gave accurate parameter estimates.
This was particularly true if these samples were taken at times where the amount of
information about the parameter remained high in relation to the total height of the
peak. This result indicates that designing population PK studies based on optimal
design strategy allows a degree of flexibility in when the sample is taken, but only in
the situation in which the time is recorded accurately, similar to those designs

incorporating sampling windows.

The results from the second part of the chapter were disappointing when the optimal
design strategy was applied to clinical data from the phase I trial of the broad-
spectrum neuropeptide antagonist, Antagonist G. Model identifiability problems
with NONMEM resulted in biased parameter estimates that were highly correlated.
As such no conclusions could be drawn about the ‘optimal’ designs investigated,
other than the fact that the reduced designs of five and six samples resulted in

parameter estimates with similar bias to the fourteen-sample design.

As the population model for Antagonist G was not explored fully in terms of
covariate effects, investigation of this in the future may result in an improved
sampling design. The results from this section emphasise the reliance that optimal
design strategies have on the a priori identification of the correct PK model (Silvey

1980; Jacquez 1998).

In conclusion, this chapter has shown that the use of an ‘optimal’ sampling strategy

allows population PK studies to be designed around times that will allow accurate
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parameter estimation, perhaps from a reduced number of samples. Specifically, if
the design does not call for a minimum number of samples, then these sampling
times should be utilised as the starting point for the addition of further samples and
should be included.
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8 Conclusions and Further Investigations

The aim of the studies described in this thesis was to investigate the efficiency of
different study designs in the estimation of population PK parameters. Designs were
simulated with sparse data for each subject included in the populations as this is the
nature of the population approach to pharmacokinetics. In general, this type of
analysis is carried out in a clinical setting where the primary goal may not be to
investigate pharmacokinetics, but to investigate therapeutic efficacy and tolerability.
Hence, often only a small amount of PK data is collected per individual, which if

considered alone would not give accurate estimates of their PK parameters.

The strength of the population approach to PK analysis is that mixed effect
modelling techniques allow analysis of the population as a whole. In this situation
each individual ‘borrows strength’ from the others in the population, and the
distribution of the PK parameters can be obtained. The advantage of this technique
over other techniques, e.g., the standard two-stage method, is that the inclusion of
covariate data may allow the model to be refined and the residual random error

partitioned into that due to inter and intra-individual error.

Selection of Sampling Times

An important aspect of the design of population PK studies is the number and timing
of the samples. The timing of the samples was investigated in this thesis using
sensitivity analysis (chapter 3), which allowed the definition of a minimum number
of samples to be collected. The sampling times were selected by relating the
variability in the outcome parameter of the PK model (concentration) to the
variability in the input parameters (e.g., clearance and volume of distribution), and
the ‘optimal” sampling times corresponded to peaks in concentration variance. This
method was similar to the most commonly used design criterion, D-optimality, and
allowed investigation of the effect of increasing the variability in the parameters. D-
optimality only considers the mean PK parameter values. One result was that the
sampling time related to clearance was shown to move slightly to later times when

the variability in the parameters was greater.
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Selection of sampling times using sensitivity analysis resulted in the definition of an
optimal sampling strategy consisting of two sampling times for the one-compartment
PK model - as early as possible for the estimation of volume of distribution and
1.44%*t,, for estimating clearance. Designs for a two-compartment model were
defined graphically, as the equations were intractable, and resulted in a five or six-

sample strategy dependent on the values of the parameters.

Comparison of ‘Optimal’ Sampling Schedules with Empirical Designs

Comparison of the sampling designs from sensitivity analysis with empirically
selected designs and published sampling strategies showed that the use of optimal
sampling techniques allowed a reduction in the number of samples while resulting in
equally accurate parameter estimation (chapters 4 & 6). In addition it was shown
that the use of a sampling window around the optimal time had no detrimental effect
on the bias and precision of the estimates and, in fact, the estimation of random
effects was improved (chapter 5 & 6). This was most apparent when the size of the
window was relatively large in relation the to the half-life of the drug. The addition
of further samples to the minimum number defined by sensitivity analysis, improved
the estimation of the random error terms, but the times of the extra samples was not

as important as their inclusion (chapter 5).

Application of Sensitivity Analysis to Carboplatin and Antagonist G

The approach to sampling design described in this thesis was applied to two drugs -
one in routine clinical use, carboplatin, and a novel anticancer agent in early clinical
development, Antagonist G (chapter 7). When simulations were used to compare the
designs described in this thesis to published sampling strategies for carboplatin, the
two-sample designs based on sensitivity analysis performed as well as a published
four-sample design. However, when the designs were applied to a two-compartment
population model described for Antagonist G the results were disappointing. This

was probably due to the poor design of the original study which gave rise to
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identifiability problems with the PK model and resulted in the average values of the

rate constants k;; and k;; being approximately equal.

Investigation of covariate information for the population model should improve the
population PK model for Antagonist G and hence solve these problems. However, it
was noted that the five and six-sample designs had similar parameter estimates to
those obtained with the original fourteen-sample design used in the phase I clinical

trial.

The results from the Antagonist G data serve to stress the key aspect in the use of
optimal sampling techniques - that the PK model must be defined a priori, along

with estimates of the parameter values.

Conclusions

Overall, this thesis has shown the development of a technique which may be used for
population PK study design and which allows accurate parameter estimation from a

reduced number of samples.

As stated previously, optimal sampling strategies rely on the definition of the PK
model a priori, and hence will require that classical PK studies are carried out
initially using a full sampling strategy. Specifically, the sampling times defined in
this thesis could be incorporated into the classical design by utilising them as the
starting point. Further samples could be added around them and sampling windows
defined to allow identification of the appropriate PK model. Once the PK model has
been defined and is stable, sampling may be reduced to the minimum number
defined for the model. The use of sampling windows would allow flexibility in
sampling in a clinical situation with the restriction that the times of the samples must
be recorded accurately. In addition, the collection of a reduced number of samples
could allow data to be collected during routine outpatient clinic visits, leading to an

increased number of subjects in the population study. This in turn may result in
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identification of covariate effects and an improved description of the PK model for

the drug.

Further Investigations

Investigations which may follow from the studies described in this thesis are:

e full development of the PK model for Antagonist G, with investigation of
covariate affects, to allow examination of an optimal sampling strategy
for this compound.

e investigation of the optimal sampling times for other routes of
administration, e.g., infusion regimes.

e investigation of the optimal sampling times for other PK models, e.g.,
nonlinear models.

e investigation of sampling designs when the times are recorded
inaccurately.

e simulations examining when to switch from full to limited sampling, in

terms of numbers of subjects required.
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Mathematical Proofs

Introduction

Chapter 3 describes the use of sensitivity analysis to define sampling times for
pharmacokinetic studies. This involved defining the times at which the model output
(concentration) was most sensitive to changes in each model parameter (e.g.,
clearance and volume of distribution) by examining the partial derivatives of the
output parameter with respect to each of the input parameters. The total variability in
the output parameter was expressed in terms of factors relating to each of the input

parameters. This appendix expands the equations used in chapter 3.

One Compartment IV Bolus

Assuming that any given dose distributed instantaneously into a one compartment
PK system following an IV bolus (see figure A.1), the concentration was calculated

from the following equation:

_Clt

e ¥ Equation A.1

o B
?

where C, = Concentration, D = Dose, V' = Volume of Distribution, C/ = Clearance

and ¢ = time after injection.

If it was assumed that there was no covariance between C/ and V, then the following

equation was derived:

2 2
%= [%J ol + [%J oy Equation A.2

where @2, and @} were variance in C! and ¥, respectively and w/. was the variance

inC.

Equation A.2 showed that the total variance in concentration was dependent on a

factor from the variance in each of the parameters, clearance and volume of
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distribution. Analysis of the partial derivatives of concentration with respect to C/

and V gave the following equation:

& t

T = C Equation A.3
and
% = ?IZ_(CJ S V)- C Equation A.4

and hence rewriting equation A.2 gave:

et o " (ct-t-vy

ot = = g 7 C? .0} Equation A.5

Component of concentration variance due to clearance.

As described in chapter 3, setting @/ to zero allowed the component of variation in

C due to CI to be studied:

4= i - @}, Equation A.6

wc - V-
Therefore,
ol wt?C? Equation A.7

as Vand wé, were constant.

5 q ; s o
Times of maximum concentration variance arose when E(oé = 0 and therefore

when:

=144t Y, Equation A.8

A,
Cl k, /2

where k., was the elimination rate constant and #,, was the half-life of the drug.
S 2
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Component of concentration variance due to volume of distribution.

Similarly, when @, was zero, the concentration variance due entirely to the volume

component was examined.

Cl-t-VF .
C{Jé’- = (Vi") . Cz . 0);2/ Equatlon A9
Therefore,
_ch-f
ol <(Cl-t-V)Y .- C*c(Cl-t-V) e 7 Equation A.10

as Vand @} were constant.

: : — 0 :
Turning points again arise when — coé =0 i.e., when

i L Equation A.11
ke
and = & = 2 Equation A.12
Cl k,

In this case ¢ = = corresponds to a minimum, i.e., giving least information about V,
e

whereas ¢ = z is a maximum associated with a peak in the concentration variance.
€

Also, ¢ = 0 corresponds to a peak in a)é , although it is not a turning point and at this

y

time, o& =C? - =
' V
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v
Dose (D)

Figure A. 1 One-compartment pharmacokinetic model with IV bolus dose (D),
volume of distribution (¥) and first-order elimination (k).
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Effects of random error in concentration on total concentration variance.

If the observed concentration, C, was associated with random error (intra-subject

error), &, then for the simplest case of an additive random error,

C=C"+¢ Equation A.13

In the case of a proportional random error:

c=C’ +£(C') Equation A.14
The combination random error model gave:

C'=C"+.Js‘i,(C*)+.s‘2 Equation A.15

where C’in all cases was the expected concentration before the addition of random

CITor.

Therefore the variance in concentration was dependent on both the expected

concentration variance and the variance of the error component(s), @ .92

For the simple additive error model,
2 2 .
w. =b Equation A.16
and

w0} = (a)é* )+ b’ Equation A.17

If the error was proportional then

ol =a’C" Equation A.18
and

wi = (a)é‘ )+ a’c”? Equation A.19

Hence, if the error was a combination of both a proportional and an additive

component then
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Equation A.20

and
wZ = (a;g’. )+a"C"’ +b* Equation A.21

Therefore, for a combination error model the total concentration variance was equal

to:

5 Per

T 2
oy V_) w€_1+_(_w.c

= .ol +a’C"” +b®> Equation A.22

Again, times of maximum concentration variance, when a combination error model
@
was used, arose when ga’c =0

i.e., at

, Vg2
e, + )2 (e -v,Y —4a’(Cl, +7,) Equation A.23
2k,(CL, +V,)

2 2
w5 oy . . =
where CI, = €L and V, =—% | i.e., (the coefficient of varlatlon)2 of each of C/ and

) ¥ 2

V, respectively. This showed that when a combination random error model was
used, the definition of sampling times using sensitivity analysis was more complex
than the case of no error. This also represented the case for the proportional error

model as b =0 in equation A.22 giving the same derivation as A.23.

In the simplest case of the additive error model, a = 0 and for £, < 1:

1, =— Equation A.24

- Equation A.25

SR P B
N YA

where 7; and 7. represent the maximum and minimum concentration variance.

Whenk.> 1, 1. =—-—2V’7 and 7_ =—1-, and when CI =V ,thent, =t =
k,(ClL+V) k

r r e

L
k,
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In summary, these mathematical proofs showed that when there was no random error

on concentration maximum concentration variance for a one-compartment PK model

. 1 2
arose at the times k_ and —, due to the clearance and volume components,

e €

respectively. If random error was added to concentration the times of maximum
variance in concentration were more complex to define and included factors which
were dependent on how much variance was present in the clearance and volume

parameters.
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Two Compartment IV Bolus

Similar to a one-compartment PK model, assuming that any given dose distributed

instantaneously into a two-compartment system following an IV bolus, the

concentration was calculated from the following equation:

C, =Ae™ +Be™”

f

Equation A.26

where C; = Concentration, 4 and B = constants, & and = the model macro rate

constants, and ¢ = time after injection.

The two-compartment model parameters for estimation in this thesis were Cl, V, V>

and Q. These were related to the constants 4 and B, and the macro and micro rate

constants (k;g, k;> & k»;) as described below (see figure A.2):

Cl
km=V_!
0
k., ==
12 v,
kﬂ_V—Qz
A=D(a_sz)
V,(a—ﬁ)
_D(ky, - B)
V.’(a_ﬁ)
_B-a+4-p
7 (4+B)
_ap
km—kﬂ

kiy=a+pf—ky —ky
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Equation A.27

Equation A.28

Equation A.29

Equation A.30

Equation A.31

Equation A.32

Equation A.33

Equation A.34



a:%[(km +kpy +ky)+ \/(kfo +hpy+ky) —4-ky, 'k}g:l Equation A.35

ﬁ=%|:(km +kj +k2;)—\/(km + k) +k2;)2 ~4-ky 'km] Equation A.36

The sum of the micro rate constants, s;, was

Gl
s =kyg + Ky +k21)=_+2+2

Equation A.37
oy ¥

The following expression, X, was a simplification for purposes of the mathematical

proofs:
X=5,"~4ky Ky Equation A.38

The relationships sx and X lead to the following definitions of ¢, fand a-f:

az%[(k.*z +kyy k) + \/(k,:z tky +hy ¥ =4 ky ‘km]

2%[51& +\/Sk2 —4-ky 'k;o]

I
- fz[sk 4 X/Z] Equation A.39

)5=%[(k.'2 +ky "‘km)_\/(k.fz +hyy k) =4k 'kw]

I
=i [Sk —X/-’) Equation A.40

=X72 Equation A.41
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Dose (D)
ki
Ci —————» C;
4—
v, k2; v,
kio

v

Figure A. 2 Two-compartment pharmacokinetic model with IV bolus dose (D),
inter-compartmental transfer (k;; & k»;), volume of distribution of the central (¥))
and peripheral (72) compartments and first-order elimination (k).
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Assuming no covariance between any of the parameters, then the variance in

concentration was defined as:

wzz[a_c]“’_a,z 26 0z 4[2C) 0z L[2) 0
< \ect) @ \ov,) " \ov, w\ap) ¢
Equation A.42

where wé, wﬁf 3 a)f, and coé were variance in C/, V;, V> and Q, respectively and

w( was the variance in C. Equation A.42 showed that the variance in concentration
was dependent on a factor from the variance in each of the parameters. In order to
define times of maximum concentration variance that arose with respect to each
parameter it was necessary to differentiate equation A.26 with respect to each

parameter, CI, V;, V> and Q. (Equations A.43-A.46).

iza_A.g_a" +a(e*af).A+ oB 'e—ﬁr +dejf_)3

ocl aCl oCl oCl oCl
o O e — At G OB R B &P Equation A .43
oCl oCl ocCl oCl

—al - pi
oC o4 e_,,,+a(e )_A+aB_e_ﬁ,+ae "

v, or, ov, ov, ov,
_o4 e ~4:t.e™ oz + 68, o wBotae® 2 Equation A.44

oC _oA _u Oe™) B _u o),

S R R - A+
ov, ov, ov, v, o7,
zﬁ'ewar —A-t.e™ Oo OB _p B & Equation A.45
ov, ov, oV, ov,

0C 04 _, oOle™ B 4 Ol
—=—re  + cA+—-e" +
80 80 o0 o0 00
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4 _ o B .
2 “‘—A-t—e'“’a—a+a—3-e Bt_B.t-e nP Equation A.46

“20 ¢ 20" 80 20

Equations A.43 — A.46 could not be solved without the derivative of each of 4, a, B
and S with respect to each of the parameters C/, V;, ¥, and Q. Since a and S were
defined with the use of s; and X above, these also had to be differentiated with

respect to each of the parameters C/, ¥, V> and Q.

The derivatives of s with respect to each parameter were as follows:

SCI+Q+Q-
s, Vi Vi V¥, I

- = Equation A.47
oCl ocCl Vv,
. 524
e hr Ya ¥l o O Equation A 48
v, ov, vyt
2-2-4]
Osy _ ! g gl B Equation A .49
6V2 aVZ sz
4 6[ gl + VQ + VQ]
. 1 by Wl & ¥ L Equation A.50
o0 oQ Vi V;

The derivatives of X with respect to each parameter are as follows:

0.0
oxX Vi V; _> 4 40

B YTy,
! f'Vz

Equation A.51
oCl oCl

6{55—4--1/ V} I
X _ i "2 :g.sk.[_g_gJ+4-£-—C— Equation A.52
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= oSyt — = Equation A.53
v, ov, ol vV, v} A
2 cl O
s~y i d cl
oX r "2 =28 | —+—|-4- Equation A.54
o0 oQ v, ¥, V,-V,

Redefining 4 in terms of s and X gave:

A=2 (a ké’] ZDV [sk—%Q-+X}/2]-X_% Equation A.55
V, a ] 2

Therefore, the derivatives of 4 with respect to each parameter are as follows:

o4 _ D 0 [ask Y x /20X |_ A4 -1 OX
- ‘ :

Equation A.56
ocl 2.V, oCl oCl ) oCl

; / \
; as_k.;%.x'.‘}z ox ) 4 o P Equation A.57
ov,) 2 ov, V,

L . -X_yz-[ask 2?+/2 X-/ aX]—é-X" | Equation A.58
v, 2

av, ov,

o4 _ D X'yz. é&_i+/ g é-X"’-éX— Equation A.59
0 27, 2 ) 2 o0

The derivatives of & with respect to each parameter were as follows:

oa Os -7 oX .

o O Wit SN 0 d "o R Equation A.60
aCl 2[6(32 /2 ach E

oa Os -1 0X ;
22 k 2 Equation A.61
ov, [ /2 5V;} !
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da /[ Os; /2 i

—— E t

aVz - (ay / quation A.62
0 X

ga _ /[ S A‘ -1, @ ] Equation A.63

The differentiations of £ with respect to each parameter were as follows:

12 O _ 1/ vt ox Equation A.64
acz oct /2 oCl

Os -, 0X ;
e A[ L ~/ % e ] Equation A.65
I
s / (63,( / _/ 8XJ Equation A.66

—_— /(ask —/ _/ 6X} Equation A.67

oQ

Redefining B in terms of s and X gave:

B=£- kar _ﬁ -/ -8, + X/ Equation A.68

Therefore, the derivatives of B with respect to each parameter were as follows:

LN _aS_ker yOX) B o X
% 2 acl

Equation A.69
ocl 2.V, oCl

5 Bx A Equation A.70

ﬁ:L.X'/z. _gﬁ__kf .X'f/éa_X_ _B . oxX
| 2 ov, |

= _b
o8 __D X7, _2Q_ % +y-X ok —E-X"’—ai Equation A.71
. 2 v, ov

2 2
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o o o
6_8: D X 72, i_i_k%.)( /2% —E-X"-% Equation A.72
0 2.V, vV, 0Q Q) 2 o0

In summary the mathematical proofs for a two-compartment IV bolus model showed
that it was not possible to define times of maximum concentration variance by

equation alone as there were too many contributing factors from each parameter.

The equations were put into a computer program so that each parameter value could
be input and plotted over time, in order to define sampling times for a two-
compartment IV bolus model (see chapter 3). This allowed the variance for all
parameters except one to be set to zero and peaks or troughs in concentration
variance attributed to a single parameter. The program also allowed the plotting of
the total concentration variance profile where it became clear the magnitude of each
parameter’s peak in relation to the others and therefore, which peaks were more

relevant in relation to sampling times.
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Simulation Programs

Input File for One-Compartment IV Bolus Simulations
The example shown is the input file for the simulation of design 1.

dose clpop sdcl vpop sdv
100 10.0 1.0 10.0 1.0
sdconcadd sdconcprop

0.0 0.1

nsubjects points niterations
500 2 100

nran xlimit

250 3.0

output file (no extension)
Designl

t sdt

0.1 0

1.0 0

Appendix 2 A2.2



Simulation Program for a One-Compartment IV Bolus PK Model
Program CGEN was used for designs 1-8 and designs 20-28.

REM CGEN.BAS

REM

REM 1 comp model

REM Generates Concentration data for

REM NSUBS, NPOINTS and creates NSET of NONMEM input files.

OPTION BASE 1
DEFINT I-N

DIM t(100), =dt(100)
izero = 0

ione = 1

zero = 0!

INFUT YInput f£ile nameé.. cus s cemes o s ", filein$
INPUT "Random no. seed (-32676- 32676) "; Xr

RANDOMIZE (xr)

GOSUB design:
fout$ = RTRIMS (fouts)

FOR iset = 1 TO nsets

app$ = STRS (iset)

app$ = RTRIMS (app$)

app$ = LTRIMS (app$)

fileout$s = fout$ + app$ + ".var"
parout$ = fout$ + app$ + ".par"
parout2$ = fout$ + app$ + "B" + ".par"

OPEN fileout$ FOR OUTPUT AS #1
CLOSE #1

OPEN parout$ FOR OUTPUT AS #2
CLOSE #2

OPEN parout2$ FOR OUTPUT AS #3
CLOSE #3

OPEN fileout$ FOR APPEND AS #1
OPEN parout2$ FOR APPEND AS #3
PRINT #3, " i time Cexp Err_Add Err_prp Prop_ Er Conc"

FOR i = 1 TO nsubjects
GOSUB parameters:
PRINT #1, USING "##### # # H##. ### H##. $#4 #4444
#i# . ##4 H#H##.##H#"; 1; lone; ione; dose; zero; ZzZero; ZEro; 2zZero
c0 = dose / vol
GOSUB conc
NEXT i

CLOSE #1
CLOSE #3

NEXT iset
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END

parameters:

i3 T
GOSUB rannum:
Cl = clpop + rn * sdcl
IF Cl <= .2 THEN GOTO Cl1

vol:
GOSUB rannum
vol = volpop + rn * sdvol
IF vol <= .2 THEN GOTO vol
xke = Cl / vol
IF xke > 20 THEN GOTO Cl
OPEN parout$ FOR APPEND AS #2
PRINT #2, USING "##### #it#. HH## ###. ###"; 1; Cl; vol
CLOSE #2
RETURN
conc:
FOR j = 1 TO npoints
newtime:
£t = E£4{7)
GOSUB rannum:
tt = tt + rn * sdt(j)
IF tt <= 0 THEN GOTO newtime
ttest = t(1)
IF (j > 1 and tt <= ttest) THEN GOTO newtime
conc?2:

concl = c0 * EXP(-xke * tt)

GOSUB rannum:

erradd = rn * sdconcadd

GOSUB rannum:

errprop = sdconcpro * rn * concl

conc = concl + erradd + errprop

IF conc <= 0! THEN GOTO conc2

PRINT #1, USING "##### # # ###.### Hi##. ### ##3#. #4844
Hit# . HHEH HHH.HHH"; 1; izero; izero; zero; tt; conc; Cl; vol

PRINT #3, USING "##### ###. ### #H##. S48 H## . #4464 #84. #4#
Hi# . HH## ### . ###"; 1; tt; concl; erradd; errprop; errprop / concl;
conc

PRINT "get="; iset; " sub="; i; " cl="; Cl; " v="; vol; " t="; tt; "
al"; I3 "i="; coné
NEXT
RETURN
rannum:
nextrand:
sum = 0

FOR kk = 1 TO nran
sum = sum + RND

NEXT kk
rn = (sum - xnranl) / SQR(nran / 12)
IF ABS(rn) > xlimit THEN GOTO nextrand
RETURN
design:

OPEN filein$ FOR INPUT AS #1
LINE INPUT #1, xin$
INPUT #1, dose, clpop, sdcl, volpop, sdvol

Appendix 2 A2.4



LINE INPUT #1, xin$
INPUT #1, sdconcadd, sdconcpro
LINE INPUT #1, xin$
INPUT #1, nsubjects, npoints, nsets
LINE INPUT #1, xin$
INPUT #1, nran, xlimit
LINE INPUT #1, xin$
INPUT #1, fout$
LINE INPUT #1, xin$
FOR i = 1 TO npoints
INPUT #1, t(i), sdt(i)

NEXT i

CLOSE #1

xnranl = nran / 2

RETURN
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Simulation Program for a One-Compartment IV Bolus PK Model
with Fixed Sampling Times (Selects Optimal Sampling Times for
each Individual)

Program CGEN2 was used for design 9.

REM CGENZ2.BAS

REM

REM 1 comp model

REM Generates Concentration data for

REM NSUBS, NPOINTS and creates NSET of NONMEM input files.
REM uses one early time point and the "best" second time for
REM EACH individual

OPTION BASE 1
DEFINT I-N

DIM t(100), sdt(100)
izero = 0

ione = 1

zero = 0!

INPUT "Input file name................ ", filein$
INPUT "Random no. seed (-32676- 32676) "; Xr

RANDOMIZE (xr)

GOSUB design:
fout$ = RTRIMS (fouts)

FOR iset = 1 TO nsets

app$ = STRS (iset)

app$ = RTRIMS (app$)

app$ = LTRIMS (app$)

fileout$ = fout$ + app$ + ".var"
parout$ = fout$ + app$ + ".par"
parout2$ = fout$ + app$ + "B" + ".par"

OPEN fileout$ FOR OUTPUT AS #1
CLOSE #1

OPEN parout$ FOR OUTPUT AS #2
CLOSE #2

OPEN parout2$ FOR OUTPUT AS #3
CLOSE #3

OPEN fileout$ FOR APPEND AS #1
OPEN parout2$ FOR APPEND AS #3
PRINT #3, " i time Cexp Exrr_Add Err_prp Prop_Er Conc"

FOR i = 1 TO nsubjects
GOSUB parameters:
PRINT #1, USING "##### # # ###. 8$#3# #84 H#4 ##4 . 448
#i4 . ##d H###.#4H#"; 1; lone; ione; dose; zero; zero; zero; 2zero
c0 = dose / vol
xke = cl / vol
GOSUB conc
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NEXT i

CLOSE #1
CLOSE #3

NEXT iset
END

parameters:

cli
GOSUB rannum:
cl = clpop + rn * sdcl
IF ¢l <= 0! THEN GOTO cl

vol:
GOSUB rannum
vol = volpop + rn * sdvol
IF vol <= 0! THEN GOTO wvol
OPEN parout$ FOR APPEND AS #2
PRINT #2, USING "##### H##. ### H##. 44",
CLOSE #2
RETURN
conc:
FOR j = 1 TO npoints
newtime:
IF j = 1 THEN
tt = €£(3)
GOSUB rannum:
tt = tt + rn * sdt(j)
IF tt <= 0 THEN GOTO newtime
END IF
IF j = 2 THEN
IF xke <= 1 THEN
tt = 1 / xke
ELSE
tt = 2 * xke / (1 + xke * xke)
END IF
END IF
conc?:

concl = c0 * EXP(-xke * tt)
GOSUB rannum:

erradd = rn * sdconcadd
GOSUB rannum:

errprop = sdconcpro * rn * concl

conc = concl + erradd + errprop
IF conc <= 0! THEN GOTO conc2

i; el; vol

PRINT #1, USING "##### # # ###. #8# #8888 . w84

HHH . HEH HEH#.H##H#"; i; izero; izero; zero; tt;

cl; wvol

PRINT #3, USING "##### ###. ### #it#. ##4 Hi#. 48 ##44. $##
H#4# . ### H###.##H#"; 1; tt; concl; erradd; errprop; errprop / concl;

conc
NEXT
RETURN

rannums:
nextrand:
sum = 0
FOR kk = 1 TO nran
sum = sum + RND
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NEXT kk

rn = (sum - xnranl) / SQR(nran / 12)

IF ABS(rn) > xlimit THEN GOTO nextrand
RETURN

design:
OPEN filein$ FOR INPUT AS #1
LINE INPUT #1, xin$
INPUT #1, dose, clpop, sdcl, volpop, sdvol
LINE INPUT #1, xin$
INPUT #1, sdconcadd, sdconcpro
LINE INPUT #1, xin$
INPUT #1, nsubjects, npoints, nsets
LINE INPUT #1, xin$
INPUT #1, nran, xlimit
LINE INPUT #1, xin$
INPUT #1, fout$
LINE INPUT #1, xin$
FOR i = 1 TO npoints
INPUT #1, t(i), sdt(i)
NEXT i
CLOSE #1
xnranl = nran / 2
RETURN
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Simulation Programs for a One-Compartment IV Bolus PK Model
with Three Sampling Times

Program CGEN3A was used for designs 10a and 10b, where the third sample was
added between the two optimal sampling times.

REM CGEN3A.BAS

REM

REM 1 comp model

REM Generates Concentration data for

REM NSUBS, NPOINTS and creates NSET of NONMEM input files.

OPTION BASE 1
DEFINT I-N

DIM tmean(100), t(100), sdt(100)

izero = 0

1one = 1

zero = 0!

INPUT "Input file mame................ n; filein$
INPUT "Random no. seed (-32676- 32676) "; Xr

RANDOMIZE (xr)

GOSUB design:
fout$ = RTRIMS (fout$)

FOR iset = 1 TO nsets

app$ = STRS (iset)

app$ = RTRIMS (app$)

app$ = LTRIMS (app$)

fileout$ = fout$ + app$ + ".var"
parout$ = fout$ + app$ + ".par"
parout2$ = fout$ + app$ + "B" + ".par"

OPEN fileout$ FOR OUTPUT AS #1
CLOSE #1

OPEN parout$ FOR OUTPUT AS #2
CLOSE #2

OPEN parout2$ FOR OUTPUT AS #3
CLOSE #3

OPEN fileout$ FOR APPEND AS #1
OPEN parout2$ FOR APPEND AS #3

PRINT #3, " i time Cexp Err Add Err_prp Prop Er Conc"

FOR i = 1 TO nsubjects
GOSUB parameters:
PRINT #1, USING "####i# # # H##. ### H##. #$4# ##4 . #44
H#it# . H#t4 ###.###"; i; lone; ione; dose; zero; zero; zero; zero
c0 = dose / vol
GOSUB times
GOSUB conc
NEXT i
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CLOSE #1
CLOSE #3

NEXT iset
END

parameters:

2 G
GOSUB rannum:
Cl = clpop + rn * sdcl
IF Cl <= .2 THEN GOTO C1

vol:
GOSUB rannum
vol = volpop + rn * sdvol
IF vol <= .2 THEN GOTO vol
xke = Cl1 / vol
IF xke > 20 THEN GOTO C1l
OPEN parout$ FOR APPEND AS #2
PRINT #2, USING "##### H#i##.#H## ##4. ###"; 1i; Cl;
CLOSE #2
RETURN
times:
newtimel:
tt = tmean(1)
GOSUB rannum:
tt = tt + rnm * sdt (1)
IF tt <= 0 THEN GOTO newtimel
t(l) = tt
newtime3:
tt = tmean(3)
GOSUB rannum:
tt = tt + rn * sdt(3)
IF tt <= t(1) + 1 / 6 THEN GOTO newtime3
ti(32) = Et
newtime2:
tt = tmean(2)
GOSUB rannum:
tt = tt + rn * sdt(2)
IF tt <= t(1) + 1 / 12 THEN GOTO newtime2
IF tt >= t£(3) - 1 / 12 THEN GOTO newtime2
EA2) = BE
RETURN
conc:
FOR j = 1 TO npoints
tt = t(3)
conc2:

concl = c0 * EXP(-xke * tt)

GOSUB rannum:

erradd = rn * sdconcadd

GOSUB rannum:

errprop = sdconcpro * rn * concl

conc = concl + erradd + errprop

IF conc <= 0! THEN GOTO conc2

PRINT #1, USING "##### # # ###.#4# H44.H#4 H## . 444
Hi#. ## ###.###"; i; izero; izero; zero; tt; conc; Cl; vol
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PRINT #3, USING "##### ### ##4 ### $H4 H## . $H# ###. ##4
Hi4 . ##H HH#4.###"; 1; tt; concl; erradd; errprop; errprop / concl;
conc

PRINT "set="; iset; " sub="; i; " cl="; Cl; " V="; vol; " t="; tt; *
ey 3¢ ™= Gong
NEXT
RETURN
rannum:
nextrand:
sum = 0

FOR kk = 1 TO nran
sum = sum + RND

NEXT kk
rn = (sum - xnranl) / SQR(nran / 12)
IF ABS (rn) > xlimit THEN GOTO nextrand
RETURN
design:

OPEN filein$ FOR INPUT AS #1
LINE INPUT #1, xin$
INPUT #1, dose, clpop, sdcl, volpop, sdvol
LINE INPUT #1, xin$
INPUT #1, sdconcadd, sdconcpro
LINE INPUT #1, xin$
INPUT #1, nsubjects, npoints, nsets
LINE INPUT #1, xin$
INPUT #1, nran, xlimit
LINE INPUT #1, xin$
INPUT #1, fouts$
LINE INPUT #1, xin$
FOR i = 1 TO npoints

INPUT #1, tmean (i), sdt (i)

NEXT i

CLOSE #1

xnranl = nran / 2

RETURN

Program CGEN3B was used for designs 11 and 12, where the third sample was
added after the two optimal sampling times.

REM CGEN3B.BAS

REM

REM 1 comp model

REM Generates Concentration data for

REM NSUBS, NPOINTS and creates NSET of NONMEM input files.

OPTION BASE 1
DEFINT I-N

DIM tmean(100), t(100), sdt(100)
izero = 0

ione = 1

zero = 0!

INPUT "Input file name........coveoeee "; fileins
INPUT "Random no. seed (-32676- 32676) "; Xr
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RANDOMIZE (xr)

GOSUB design:
fout$ = RTRIMS (fout$)

FOR iset = 1 TO nsets

app$ = STRS (iset)

app$ = RTRIMS (app$)

app$ = LTRIMS (app$)

fileout$ = fout$ + app$ + ".var"
parout$ = fout$ + app$ + ".par"
parout2$ = fouts$ + app$ + "B" + ".par"

I

1

OPEN fileout$ FOR OUTPUT AS #1
CLOSE #1

OPEN parout$ FOR OUTPUT AS #2
CLOSE #2

OPEN parout2$ FOR OUTPUT AS #3
CLOSE #3

OPEN fileout$ FOR APPEND AS #1
OPEN parout2$ FOR APPEND AS #3
PRINT #3, " i time Cexp Err_Add Err_prp Prop_Er Conc"
FOR i = 1 TO nsubjects
GOSUB parameters:
PRINT #1, USING "##### # # ###.### #H##. $4# ###. $##
Hi# . HE# H## . H#H#H"; 1; ione; ione; dose; zero; zero; zero; zero
c0 = dose / vol
GOSUB times
GOSUB conc

NEXT i
CLOSE #1
CLOSE #3
NEXT iset
END
parameters:
el
GOSUB rannum:
Cl = clpop + rn * sdcl
IF Cl <= .2 THEN GOTO Cl
vol:
GOSUB rannum
vol = volpop + rm * sdvol
IF vol <= .2 THEN GOTO vol
xke = Cl / vol
IF xke > 20 THEN GOTO Cl
OPEN parout$ FOR APPEND AS #2
PRINT #2, USING "##### ###.### ###.###"; 1; Cl; vol
CLOSE #2
RETURN
times:
newtimel:

tt = tmean(1)
GOSUB rannum:
tt = tt + rn * sdt(1)
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IF tt <= 0 THEN GOTO newtimel

t(1) = tt
newtime2:
tt = tmean(2)
GOSUB rannum:
tt = tt + rm * sdt(2)
IF tt <= t(1) + 1 / 6 THEN GOTO newtime2
tl2) = EE
newtime3:
tt = tmean(3)
GOSUB rannum:
tt = tt + rm * sdt(3)
IF tt <= £(2) + 1 / 12 THEN GOTO newtime3’
£t(3) = tt
RETURN
conc:

FOR j = 1 TO npoints

EE = tAg]}
conc2:

concl = c0 * EXP(-xke * tt)

GOSUB rannum:

erradd = rn * sdconcadd

GOSUB rannum:

errprop = sdconcpro * rn * concl

conc = concl + erradd + errprop

IF conc <= 0! THEN GOTO conc2

PRINT #1, USING "#H#### # # #HH##. 844 #H#4. 488 ###. 44
H## . HHE HH#H.#H#H"; 1, izero; izero; zero; tt; conc; Cl; vol

PRINT #3, USING "#i#### ###. ### ##4. ##¢ ### . 48 #44. #4144
HiH . ##4 H#H#.#H##"; 1; tt; concl; erradd; errprop; errprop / concl;
conc

PRINT "sget="; iget; " sub="; i; " ¢l="; Cl; " V="; vol; " t="; tt; "
c("; j; ")="; conc
NEXT
RETURN
rannum:
nextrand:
sum = 0

FOR kk = 1 TO nran
sum = sum + RND

NEXT kk
rn = (sum - xnranl) / SQR(nran / 12)
IF ABS(rn) > xlimit THEN GOTO nextrand
RETURN
design:

OPEN filein$ FOR INPUT AS #1
LINE INPUT #1, xin$
INPUT #1, dose, clpop, sdcl, volpop, sdvol
LINE INPUT #1, xin$
INPUT #1, sdconcadd, sdconcpro
LINE INPUT #1, xin$
INPUT #1, nsubjects, npoints, nsets
LINE INPUT #1, xin$
INPUT #1, nran, xlimit
LINE INPUT #1, xin$
INPUT #1, fout$
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LINE INPUT #1, xin$
FOR 1 = 1 TO npoints
INPUT #1, tmean(i), sdt (i)
NEXT i
CLOSE #1
xnranl = nran / 2
RETURN
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Input File for Two-Compartment IV Bolus Simulations
The example shown is the input file for the simulation of design 15.

dose clpop sdcl vlpop sdvl v2pop sdv2 gpop sdg
100 10 1.0 10 1.0 20 2.0 15 1.5
sdconcadd sdconcprop

0.35 0.05

nsubjects points niterations
500 4 10

nran xlimit

250 3.0

output file (no extension)
Designl5

sdt

(=]
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Simulation Program for a Two-Compartment IV Bolus PK Model
Program CGENWINI was used for designs 13-19.

REM CGENWIN1 .BAS

REM

REM 2 comp model

REM Generates Concentration data for

REM NSUBS, NPOINTS and creates NSET of NONMEM input files.
REM puts sampling window on times

OPTION BASE 1
DEFINT I-J, L-N

DIM tmean(100), t(100), sdt(100)

izero = 0

ione = 1

zero = 0!

INPUT "Imput file Dame: ¢ vwaes of owis as ", filein$
INPUT "Random no. seed (-32676- 32676) "; Xr

RANDOMIZE (xr)

GOSUB design:
fout$ = RTRIMS (fout$)

FOR iset = 1 TO nsets
app$ = STRS (iset)
app$ RTRIMS (app$)
app$ = LTRIMS (app$)
fileout$ = fout$ + app$ + ".var"
parout$ = fout$ + app$ + ".par"
parout2$ = fout$ + app$ + "B" + ".par"

]

OPEN fileout$ FOR OUTPUT AS #1
CLOSE #1

OPEN parout$ FOR OUTPUT AS #2

PRINT #2, " a al b be cl vl v2
q k10 k12 k21"

CLOSE #2

OPEN parout2$ FOR OUTPUT AS #3

PRINT #3, " i time Cexp Err Add Err_prp Prop Er
Conc"

CLOSE #3

OPEN fileout$ FOR APPEND AS #1
OPEN parout2$ FOR APPEND AS #3

FOR i = 1 TO nsubjects
GOSUB parameters:
PRINT #1, USING "##### # # ###.#88 H##. #84 H#4. #3844
i HHE BEE BRSO HEE . AHH BEH.#H#"; 1; ione; ione; dose; zero; zero;
Zero; Zzero; Zero; Zzero
GOSUB times
GOSUB conc
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NEXT i

CLOSE #1
CLOSE #3
NEXT iset
END
parameters:
¢l
GOSUB rannum:
cl = clpop + rn * sdcl
IF cl <= .2 THEN GOTO cl
voll:
GOSUB rannum
vl = vlipop + rn * sdvoll
IF vl <= .2 THEN GOTO voll
vol2:
GOSUB rannum
v2 = v2pop + rn * sdvol2
IF v2 <= .2 THEN GOTO vol2
q:

GOSUB rannum
g = gpop + rn * sdq
IF g <= .02 THEN GOTO gq

k1o = ¢l / vl
k12 = g / vl
k21 = q / v2

ksum = k10 + k12 + k21
ksumsg = ksum * ksum - 4 * k21 * k10
IF ksumsg < 0 THEN GOTO parameters

sq SQR (ksumsq)

al (ksum + sq) / 2

be = (ksum - sq) / 2

a dose * (al - k21) / (vl * (al - be))
b = dose * (k21 - be) / (vl * (al - be))

I

OPEN parout$ FOR APPEND AS #2

PRINT #2, USING "##.### ##. #H3# ##. $44 #3484 #4448 #4 . ###
BE#CERE HHE . HHE B HEE H8 H#H #H O HH8"; a; al; b; be; cl; vl; v2; q;
k10; k12; k21

CLOSE #2

RETURN

times:

newtimel:
tt = tmean(1l)
GOSUB rannum:
tt = tt + rn * sdt (1)
IF tt <= 0 THEN GOTO newtimel
(1) = EE
FOR jj = 2 TO npoints

newtime?2:

tt = tmean(jj)
GOSUB rannum:
tt = tt + rn * sdt(jj)
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IF tt <= t(jj - 1) + 1 / 6 THEN GOTO newtime2

i) = et
NEXT
RETURN
conc:
FOR j = 1 TO npoints
EE & £l
conc?2:
concl = a * EXP(-al * tt) + b * EXP(-be * tt)
GOSUB rannum:
erradd = rn * sdconcadd
GOSUB rannum:
errprop = sdconcpro * rn * concl
conc = concl + erradd + errprop
IF conc <= 0! THEN GOTO conc2
PRINT #1, USING "##H## # # ###.4## ###. H#$# F4#. 444
Hitd . ##4 HEH4. $HE HEH. $H4H ### . #H##"; 1; izero; izero; zero; tt; conc;
cl; vi, v2, g
PRINT #3, USING "##### ###.$H48 ##4. ### 44 H#4 434 ###
HH4 . #48 ##4 ###"; 1i; tt; concl; erradd; errprop; errprop / concl;
conc
NEXT
RETURN
rannum:
nextrand:
sum = 0
FOR kk = 1 TO nran
sum = sum + RND
NEXT kk
rn = (sum - xnranl) / SQR(nran / 12)
IF ABS(rn) > xlimit THEN GOTO nextrand
RETURN
design:

OPEN filein$ FOR INPUT AS #1

sdvol2,

CLOSE

xnranl

RETURN
RETURN

Appendix 2

gpop;,

LINE INPUT #1,

INPUT #1, dose,

sdqg

LINE INPUT #1, xin$

INPUT #1, sdconcadd,

LINE INPUT #1, xin$

INPUT #1, nsubjects, npoints,

LINE INPUT #1, xin$

INPUT #1, nran, xlimit

LINE INPUT #1, xin$

INPUT #1, fout$

LINE INPUT #1, xin$

FOR i 1 TO npoints
INPUT #1, tmean(i),

NEXT i

#1

xin$

clpop, sdcl, wvlipop, sdvoll, v2pop,

sdconcpro

nsets

sdt (i)

nran / 2
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Input File for Two-Compartment IV Infusion Simulations
The example shown is the input file for the Antagonist G simulation of design 29.

dose tinf clpop sdcl vlpop sdvl v2pop sdv2 gpop sdg
622 6.0 4.92 1.54 6.86 0.56 6.7 1.21 0.72 0.23
sdconcadd sdconcprop

0.0 0.1

nsubjects points niterations

500 14 10

nran xlimit

250 3.0

output file (no extension)

Design29

t sdt

1.0 0

.00

.00

.08 0

NP YWOIIOON0N0O0OW!m
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Simulation Program for a Two-Compartment IV Infusion PK Model
Program COMP2INF was used for designs 29-31.

REM COMP2INF

REM

REM 2 comp model - INFUSION

REM Generates Concentration data for

REM NSUBS, NPOINTS and creates NSET of NONMEM input files.

OPTION BASE 1
DEFINT I-J, L-N

DIM tmean(100), t(100), sdt(100)

izero = 0

ione = 1

zero = 0!

INPUT "Input file mame................ "; filein$
INPUT "Random no. seed (-32676- 32676) "; Xr

RANDOMIZE (xr)

GOSUB design:
fout$ = RTRIMS (fout$)

FOR iset = 1 TO nsets

app$ = STR$ (iset)

app$ = RTRIMS (app$)

app$ = LTRIMS$ (app$)

fileout$ = fout$ + app$ + ".var"
parout$ = fout$ + app$ + ".par"
parout2$ = fout$ + app$ + "B" + ".par"
errout$ = fout$ + app$ + ".err"

OPEN fileout$ FOR OUTPUT AS #1
CLOSE #1

OPEN parout$ FOR OUTPUT AS #2

PRINT #2, " A alpha B beta Ccl Vi V2 Q
k10 k12 kz1n

CLOSE #2

OPEN parout2$ FOR OUTPUT AS #3
CLOSE #3

OPEN errout$ FOR OUTPUT AS #4

PRINT #4, " A alpha B beta Ccl V1 V2 Q
k10 k12 k2

CLOSE #4

OPEN fileout$ FOR APPEND AS #1
OPEN parout2$ FOR APPEND AS #3
PRINT #3, " i time Cexp Err Add Err_prp Prop_Er Conc"
FOR i = 1 TO nsubjects

GOSUB parameters:

PRINT #1, USING "##### # # H##. #8# H##. #3438 H#4 . #3#4#
BEH . HEH HEH.HHEH4 HE4.###7; i; lone; ione; dose; rate; zero; zero;
Zero; zero
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GOSUB times

GOSUB conc
NEXT i
CLOSE #1
CLOSE #3
NEXT iset
END
parameters:
el
GOSUB rannum:
cl = clpop + rn * sdcl
IF cl <= .2 THEN GOTO cl
vl
GOSUB rannum
vl = vlipop + rn * sdvoll
IF vl <= .2 THEN GOTO vl
V2:
GOSUB rannum
V2 = v2pop + rn * sdvol2
IF V2 <= .2 THEN GOTO V2
Q:

GOSUB rannum
Q = gpop + rn * sdqg
IF Q <= 0.1 THEN GOTO Q

k10 cl / vi
k12 0 / vl
k21 = Q / V2
ksum = k10 + k12 + k21
ksumsg = ksum * ksum - 4 * k21 * k10
IF ksumsq < 0 THEN
OPEN errout$ FOR APPEND AS #4
PRINT #4, USING "##.### H#.#44# ##. #3484 #4. 444 ##. ##4
H# . HEE HEH . EEH HHHOEER HE . HH8 HH . HEE ##.###"; a; al; b; be; cl; vil;
V2; Q; kl1o0; k12; k21

CLOSE #4
GOTO cl
END IF
sq = SOQR (ksumsq)
al = (ksum + sq) / 2
be = (ksum - sq) / 2
a = rate * (al - k21) / (vl * (al - be))
b = rate * (k21 - be) / (vl * (al - be))

OPEN parout$ FOR APPEND AS #2

PRINT #2, USING "##.### ##. ### HH. 4# #3884 H8. #8844 488
HHE G B BE L HEE #E L HHE #H . 88", a; al; b; be; cl; vl; V2; Q;
k10; k12; k21

CLOSE #2
RETURN

times:

ttest 0

FOR j = 1 TO npoints
newtime:

tt = tmean(j)
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GOSUB rannum:
tt = tt + rn * sdt(j)
IF tt <= ttest THEN GOTO newtime

t(j) = tt
ttest = tt
NEXT
RETURN
conc:
FOR j = 1 TO npoints
tt = £(5)
El = Et
IF t1 > tinf THEN t1 = tinf
conc2:
concl = a * (EXP(al * tl) - 1) * EXP(-al * tt)
concl = concl + b * (EXP(be * tl1l) - 1) * EXP(-be * tt)

GOSUB rannum:

erradd = rn * sdconcadd

GOSUB rannum:

errprop = sdconcpro * rn * concl

conc = concl + erradd + errprop

IF conc <= 0! THEN GOTO conc2

PRINT #1, USING "H#### # # ###.#48 ##4. 484 #4444
HiH.H8E HEE . HHEE #HH.###v; 1; izero; izero; zero; zero; tt; conc; cl;
vl

PRINT #3, USING "H#### ###.### ###. ### H4#. #44 ##4. ##4
H#it4 . ##d ###.###"; 1i; tt; concl; erradd; errprop; errprop / concl;
conc

NEXT

RETURN

rannum:
nextrand:
sum = 0
FOR ii = 1 TO nran
sum = sum + RND

NEXT 1ii
rn = (sum - xXnranl) / SQR(nran / 12)
IF ABS(rn) > xlimit THEN GOTO nextrand
RETURN
design:

OPEN filein$ FOR INPUT AS #1
LINE INPUT #1, xin$
INPUT #1, dose, tinf, clpop, sdcl, vlpop, sdvoll, v2pop,
sdvol2, gpop, sdg
LINE INPUT #1, xin$
INPUT #1, sdconcadd, sdconcpro
LINE INPUT #1, xin$
INPUT #1, nsubjects, npoints, nsets
LINE INPUT #1, xin$
INPUT #1, nran, xlimit
LINE INPUT #1, xin$
INPUT #1, fouts
LINE INPUT #1, xin$
FOR i = 1 TO npoints
INPUT #1, tmean(i), sdt (i)
NEXT 1
CLOSE #1
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rate = dose / tinf
xnranl = nran / 2
RETURN
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