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ABSTRACT 

Expanded CAG-CTG trinucleotide repeat tracts are associated with a number of 

hereditary neurodegenerative and neuromuscular diseases such as Huntington's 

disease, myotonic dystrophy and spinocerebellar ataxias. These diseases are 

characterized by the phenomenon of genetic anticipation, which is defined by a 

decrease in the age of onset and an increase in severity of the disease with successive 

generations. The mutational mechanism of repeat instability is still not fully 

understood. 

In order to identify the molecular basis of genetic instability, a polymerization-

independent strategy is developed to generate expanded repeat arrays. The repeat 

tracts are integrated in the 5'end of lacZ gene in the Escherichia co/i chromosome. 

Using this model system, instability is studied in wild type E. co/i and in strains 

deficient in cellular pathways such as DNA repair, replication and recombination. The 

work demonstrates that instability (expansion and contraction) in wild type cells is 

length and orientation dependent. Longer tracts are more unstable than shorter ones 

and the orientation where CAG repeats are on the leading strand template is more 

unstable than the opposite where CTG repeats are on the leading strand template. This 

orientation-dependence of CAG-CTG trinucleotide repeat instability is determined by 

the proofreading subunit of DNA polymerase III (DnaQ) in the presence of the 

hairpin nuclease SbcCD. The analysis of the sizes of deletions observed in wild type 

and mutant cells is consistent with the formation of secondary structures in vivo. 

The mismatch repair pathway does not affect the instability of CTG repeats in 

the E. co/i chromosome but influences the CAG orientation. It is suggested that MutS 

stabilizes CAG repeats by initiating a "repair" process and protecting hairpins from 



SbcCD, which can cleave hairpins in the presence of MutL and MutH. No effect of 

recombination genes is observed on repeat instability in the E. coli chromosome. 

No effect of transcription is observed in the wild type or mutant strains tested 

in this work. A mutation in mfd gene also does not affect instability. Furthermore, 

CAGCTG repeats influence the yield of f3-galactosidase in an orientation dependent 

manner. 

Finally, the roles of two helicases, Rep and UvrD are analyzed. A mutation in 

rep helicase strongly destabilizes CTG repeats with no effect on the CAG orientation. 

UvrD mutants show instability in both orientations. The increase in instability in the 

uvrD mutant depends on RecF in the CTG orientation. 
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Chapter 1: Introduction 

CHAPTER 1 

INTRODUCTION 

1.1 Tandem DNA Repeats 

Tandem DNA repeats, sequences of consecutive repeats, are present in the DNA of all 

organisms whose genomes have been sequenced. Tandemly repeated sequences are 

commonly known as "satellite DNA" and have been classified into three categories; 

satellite, minisatellite and microsatellite DNA. Satellite sequences are highly 

repetitive with length in the range of one to thousand base pairs. Minisatellites are 

repeated with sequence length of 6-100 bp but typically are 15 bp long. 

Microsatellites are repeated with lengths from 1-6 bp and are present in prokaryotic 

and eukaryotic genomes. These sequences are highly polymorphic between 

individuals and have been used as major tools for genetic mapping (Dib et al., 1996; 

Weissenbach et al., 1992), studies of human and animal diversity (Bowcock et al., 

1994; Bruford and Wayne, 1993) and for forensic investigations (Jeffreys et al., 

1992). Where this polymorphism has been used clinically, it has shown high mutation 

rates, both in eukaryotes and prokaryotes. The study of tandem repeat sequence 

instability has been driven by its association with human diseases where it is linked 

with more than 40 neurological, neuromuscular and neurodegenerative diseases 

(Cleary and Pearson, 2005). It is important to note that these hypermutable tandem 

repeat sequences are not limited to eukaryotic genomes, but are also found in 

prokaryotic genomes where they play an important role in bacterial adaptation (van 

Belkum et al., 1998). 

1 



Chapter 1: Introduction 

1.2 Simple Sequence Contingency Loci (SSCL) 

Many pathogens have evolved the ability to alter surface-exposed molecules, most 

often in response to selective pressures associated with the host immune system 

(Brunham et al., 1993). Pathogenic bacteria can use this adaptive strategy under 

circumstances, and a range of molecular mechanisms has evolved in these bacteria for 

generating genetic variation at individual loci termed "contingency loci" (Moxon et 

al., 1994). SSCL are characterized by tandem repeats located within a coding 

sequence or a promoter region and have been identified in a variety of pathogenic 

bacteria (Bayliss et al., 2004; Bayliss et al., 2001). Particularly, an abundance of such 

loci has been found in the genomes of Haemophilus infiuenzae and Neisseria 

meningitidis (Hood et al., 1996; Saunders et al., 2000). Altering the number of repeat 

units in these loci can bring changes in the level of promoter activity or switching in 

the reading frame of translation. Two distinct features of these loci make them 

different from other types of phase variations. First, the hypermutation of these loci is 

independent of classic recombination genes. Second, the hypermutation results from 

expansion or contraction of repeats by one or more units (Bayliss et al., 2001). 

1.3 Trinucleotide Repeats (TNRs) 

Trinucleotide repeats (TNRs) are a class of microsatellites that have gained attention 

since the early nineties because of their association with human diseases. These 

sequences consist of three nucleotides, repeated in tandem. In the genome, there can 

be 64 possible trinucleotide repeats, since DNA is composed of four different 

nucleotides (see Table 1.1). Out of these, only three combinations of trinucleotide 

2 



Chapter 1: Introduction 

repeats (CAG)(CTG), (CCG)(CGG) and (GAA)(TTC) have been associated with 

human diseases. 

These sequences stand out among their peers by exhibiting a unique behaviour 

termed "dynamic mutation" (Richards et al., 1992; Richards and Sutherland, 1992). 

This term was described to distinguish difference in the behaviour of repeated 

sequences from other types of mutations. Unlike classical mutations, where the 

mutations are retained in somatic tissue and mutant has the same rate of mutation as 

its predecessor, the repeat mutation process is "dynamic", where the rate of mutation 

is linked with the copy number of repeat sequences and the product continues to 

mutate within tissues and across generations, resulting in a product of a change with 

an altered mutation rate compared to that of its predecessor. 

G A T C 
GG GGG GGA GGT GGC 
AG AGG AGA AGT AGC 
TG TGG TGA TGT TGC 
CG CGG CGA CGT CGC 
GA GAG GAA GAT GAG 
AA AAG AAA AAT MC 
TA TAG TM TAT TAC 
CA CAG CM CAT CAC 
GT GTG GTA GTT GTC 
AT ATG ATA AU ATC 
U UG UA TTT TFC 
CT CTG CTA CU CTC 
GC GCG GCA GCT GCC 
AC ACG ACA ACT ACC 
TC TCG TCA TCT TCC 
CC CCG CCA CCT CCC 

Table 1.1: Formation of all possible trinucleotide repeats 
There can be 4=64 possible trinucleotide repeats, out of which four are 
mononucleotides (shown as bold italics). Among the rest of 60 combinations, there 
are 10 groups, which consist of 6 trinucleotides having the same double stranded 
repeat sequence. Of these ten groups, only three, GAA (in blue), CAG (in red) and 
CGG (in green) have been associated with disease process. 
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1.4 Trinucleotide Repeat Expansion Diseases (TREDs) 

Expanded trinucleotide repeat sequences are associated with a number of 

neurodegenerative and neuromuscular diseases. TREDs are distinguished by the 

phenomenon of "genetic anticipation" which is characterized by an increase in disease 

severity and a decrease in age-of-onset as the mutation is transmitted from one 

generation to the next caused by the dynamic nature of the mutation event (Cleary and 

Pearson, 2005). These diseases can be categorized into two subclasses depending 

upon the repeat expansion in coding or non-coding region. 

1.4.1 Non-Coding Trinucleotide Repeat Expansion Diseases 

The non-coding TREDs typically are characterized by large and variable repeat 

expansions resulting in multiple tissue dysfunction or degeneration (Cummings and 

Zoghbi, 2000). The individual diseases with pathophysiology are described in the 

following sections and are shown in Table 1.2. 

1.4.1.1 Fragile X Syndrome (FRAXA) 

Fragile X syndrome is characterized by mental retardation, dysmorphic features and 

hyperactivity. The disease is caused by an expansion of a (CGG) repeat in the 5'-

UTR of the fragile X mental retardation gene (FMR1) (Fu et al., 1991; Verkerk et al., 

1991). Expansion of CGG repeats beyond 230 results in hypermethylation of the 

gene, along with a CpG island within the FMR] promoter region, which recruits the 

transcription silencing machinery, and leads to reduced FMRJ transcription and loss 

of the gene product (FMRP) (Eberhart and Warren, 1996). 
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1.4.1.2 Fragile X Mental Retardation (FRAXE) 

This is caused by the expansion of (GCC) repeats in the promoter region of the 

FMR2 gene (Knight et al., 1993). As with FRAXA, the expanded repeats are 

hypermethylated, which results in transcriptional silencing and subsequent loss of 

gene product (FMR2). 

1.4.1.3 Friedreich Ataxia (FRDA) 

FRDA is an autosomal recessive condition and therefore the only triplet repeat 

disorder that does not exhibit genetic anticipation. This is caused by a large intronic 

expansion of GAA repeats in the frataxin (X25) gene, which results in reduced X25 

expression (Campuzano et al., 1996). Reduced X25 mRNA decreases frataxin level, 

which suggests that FRDA results from the a partial loss of frataxin function 

(Campuzano et al., 1997). 

1.4.1.4 Myotonic Dystrophy (DM) 

DM is the most common form of muscular dystrophy in adults and is characterized by 

variable phenotypes and anticipation. Two types of DM have been identified. DM1 is 

caused by an expanded CTG repeat in the 3'-UTR of the protein kinase gene, DMPK 

(Brook et al., 1992). The CTG repeat may alter the DMPK level by interfering with 

the transcription of DMPK or RNA processing or translation. DM2 is caused by a 

CCTG expansion (mean 5000 repeats) located in intron 1 of the zinc finger protein 

9 (ZNF9) gene (Liquori et al., 2001). 
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1.4.1.5 Spinocerebellar ataxia type 8 (SCA8) 

This is caused by an expanded CTG repeat in the 3'-terminal exon of SCA8 (Koob et 

al., 1999). Uniquely among the triplet repeat disorders, the SCA8 transcripts do not 

code for a protein and may be an endogenous antisense RNA that regulates the 

expression of another gene(s). 

1.4.1.6 Spinocerebellar ataxia type 12 (SCAI2) 

This is a rare disease caused by a non-coding expansion of CAG repeats in the 5'-

UTR of the PPP2R2B gene (Holmes et al., 1999), which encodes a regulatory subunit 

of protein phosphatase 2A (MA). 

Diseases Gene Protein TNR TNR size TNR size 

(Normal) (Disease) 

Fragile X FMR1 FMR-1 Protein CGG 6-35 >230 

Syndrome 

Fragile XE FMR2 FMR-2 protein CCC 6-35 >200 

Syndrome 

Friedreich ataxia X25 Frataxin GAA 7-34 >100 

Myotonic DMPK Myotonic Dystrophy protein CTG 5-37 >50 

Dystrophy kinase (DMPK) 

Spinocerebellar SCA8 None CTG 16-37 110-<250 

ataxia type 8 

Spinocerebellar SCAI2 PP2A-PR55 CAG 7-28 66-78 

ataxia type 12 

Table 1.2: Diseases caused by expansion of non-coding trinucleotide repeats 
(Cummings and Zoghbi, 2000) 
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I 4.2 Coding Trinucleotide Repeat Diseases 

This class of TREDs comprises disorders with repeat expansion in a coding region 

and the expanded repeat is a CAG tract which encodes for amino acid, glutamine. In 

contrast to non-coding diseases, these polyglutamine diseases have small expansions 

of variable sizes. Studies of animal models and tissue culture systems have 

demonstrated that these diseases are caused by a "gain-of-function" mechanism, 

which results in gene products with new and abnormal function and the expanded 

polyglutamine tracts are at the core of pathogenesis (Zoghbi and On, 1999). 

Disease Gene Protein TNR TNR Size TNR Size 

(Normal) (Disease) 

Spinobulbar muscular AR Androgen receptor (AR) CAG 9-36 38-62 

atrophy 

Huntington's disease HD Huntingtin CAG 6-35 36-121 

Dentatorubral- DRPLA Atrophin-1 CAG 6-35 49-88 

pallidoluysian atrophy 

Spinocerebellar ataxia SCAI Ataxin-1 CAG 6-44 39-82 

type 1 

Spinocerebellar ataxia SCA2 Ataxin-2 CAG 15-31 36-63 

type 2 

Spinocerebellar ataxia SCA3 Ataxin-3 CAG 12-40 55-84 

type 3 

Spinocerebellar ataxia SCA6 alA-voltage-dependent CAG 4-18 21-33 

type 6 calcium channel 

subunit 

Spinocerebellar ataxia SCA7 Ataxin-7 CAG 4-35 37-306 

type 7 

Table 1.3: Diseases caused by expanded glutamine tracts (Cummings and 
Zoghbi, 2000) 
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1.5 Cis-elements and TNRs Instability 

Cis acting factors associated with repeat instability can be both internal and external 

to the repeat tract. Internal factors can be repeat sequence, tract length and purity 

while the external factors may include CpG methylation, replication origins, flanking 

sequence elements and nucleosomes (Cleary and Pearson, 2003). 

Repeat length has intrinsic connections with instability as evident from the 

human disease pattern. Only the tracts in the pre-mutation range or longer are prone to 

instability and longer lengths have more potential to expand than shorter tracts 

(Pearson et al., 2005; Richards, 2001). 

Interruptions in repeat tracts can significantly alter the instability process. 

CAG tracts of 39 repeats with a single interruption of CAT repeats at the SCA1 locus 

are somatically stable, while the pure alleles of 40 repeats are unstable (Chong et al., 

1995). Similarly, the interruptions in CCGCGG tracts in the FRAXA locus suppress 

expansion potential and expansions are observed accompanied by the loss of 

interruptions (Kovtun et al., 2001). 

CpG methylation may stabilize the CGG repeat tracts of FRAXA. In bacteria 

and primate cells, it was shown that CpG methylation stabilized the sequences from 

contraction (Nichol Edamura et al., 2005; Nichol and Pearson, 2002). 

1.6 DNA Replication in E. coil 

The DNA replication in E. coli is semi-discontinuous, with the leading strand 

synthesized as uninterrupted chain and lagging strand as a series of short Okazaki 

fragments. Numerous proteins act to advance the DNA replication fork, which moves 

about 1 kb per second under normal circumstances (Langston and O'Donnell, 2006). 
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Parental duplex is unwound by DnaB helicase as it translocates along the lagging 

strand template in 3'-5' direction, ahead of the leading strand template. The helicase 

activity of DnaB is stimulated by interaction with t subunit of DNA plymerase III 

(Kim et al., 1996). Cellular DNA polymerases cannot initiate synthesis in the absence 

of a nucleic acid primer, so the first step is the formation of RNA primer by the RNA 

po!ymerases, primases. Leading strand synthesis requires only one priming event 

while continuous priming is required on the lagging strand. The distance of primers, 

approximately 1-2 kb apart on lagging strand is maintained by interaction of DnaB 

and DnaG primase (Tougu and Marians, 1996). 

Polymerase III, majorly involved in the chromosomal replication is a complex 

enzyme with multi subunits encoded by different genes (Kelman and O'Donnell, 

1995; Marians, 1992). The polymerase activity is provided by the cx subunit, encoded 

by dnaE. The proofreading c subunit, possessing exonuclease activity, is encoded by 

dnaQ. Both leading and lagging strands are co-ordinately synthesized by an 

asymmetric polymerase dimer. The t subunit, encoded by dnaX, facilitates the 

interaction between the two core polymearse molecules (Studwell-Vaughan and 

O'Donnell, 1991). 

Poll and II are involved in the repair pathways. Polymerasel is required for 

some plasmid replication initiation and may also play a role in the joining of Okazaki 

fragments. 

1.7 Proposed Molecular Mechanisms of Repeat Instability 

Since the discovery of dynamic mutation process in 1992, the molecular mechanisms 

causing repeat instability have been extensively studied and debated. Conflicting 

we 
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findings have come up in certain areas and main cellular processes replication, repair 

and recombination have been proposed as potential players. 

1.7.1 Secondary Structures Formed by Trinucleotide Repeats 

1.7.1.1 Hairpin Formation by CNG Repeats 

Trinucleotide repeats, when single-stranded, have been proposed to fold into hairpin 

structures. Evidence for these structures in vitro has been provided by using different 

strategies such as chemical modification, enzyme probing, gel mobility, UV 

absorbance and nuclear magnetic resonance (NIVIR) studies (Gacy et al., 1995; Mitas 

et al., 1995a; Mitas et al., 1995b; Petruska et al., 1996; Smith et al., 1995; Yu et al., 

1995a; Yu et al., 1995b; Zheng et al., 1996). 

The hairpins formed by single strands of trinucleotide repeats are less stable 

than the hairpins formed by palindromes as they have mismatches as compared to the 

perfect palindromic hairpins (Figure 1.1). The hairpins formed by CAG-CTG and 

CCGCGG repeats show differing degrees of stability in vitro. CTG hairpins are more 

stable than CAG hairpins and CGG hairpins are more stable than CGG hairpins (Gacy 

and McMurray, 1998; Mitas, 1997; Petruska et al., 1996). It was shown that a single 

strand of ten CTG repeats can form more stable hairpins than the complementary 

CAG strand (Petruska et al., 1996). This was attributed to the AA mispairs being 

bulkier so they cannot fit into the helix while the small thymidines in TT mispairs fit 

well into the stem of CTG hairpins. The TT mispairs in the stem of CTG and GTC 

hairpins are resistant to the action of KMn04, indicating that they are stable and well 

stacked into the helix (Mitas et al., 1995b; Yu et al., 1995b). AA mispairs are well 

stacked in GTC hairpins but less well in CTG hairpins as they are more prone to 

10 
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modification by di ethylpyro carbonate (DEPC) (Zheng et al., 1996). Moreover, it was 

shown that TT contains two hydrogen bonds (Mariappan et al., 1996) so is better 

stacked than an AA mispair that has only one hydrogen bond. 

1.7.1.2 Tetraplexes 

Tetraplexes (four stranded DNA) assemble at G-rich sequences forming G-quartets. 

This tetrad formation has been reported for single stranded G-rich telomeric 

sequences (Neidle and Parkinson, 2003) and can also be formed by base pairing 

between cytosines of one duplex with the cytosine residues of another duplex 

resulting in tetraplexes known as i-motif (Fojtik and Vorlickova, 2001). (CGGCCG) 

repeats have been suggested to form tetraplexes (Balakumaran et al., 2000; Fojtik and 

Vorlickova, 2001) along with hairpins. The hairpins formed have CC mismatched 

base pairs that have no hydrogen bonding (Mariappan et al., 1996). Though the long 

CGG repeats may form hairpins, the association of two hairpins may lead to tetraplex. 

When the length of CGG exceeds 13 repeats, the hairpin can fold over and form an 

intramolecular tetraplex (Usdin and Woodford, 1995). These are held together by two 

GGGG quartets and one CCCC quartet per trinucleotide. 

1.7.1.3 Triplexes 

Unlike CAG and CTG repeats that form hairpins, GAATTC repeats have been 

observed to adopt both an inter- and intramolecular triplex structures (Potaman et al., 

2004) consisting of a Watson-Crick paired GAATTC duplex and a third CTT strand, 

which is non-Watson-Crick paired with the duplex (Gacy et al., 1998). It was shown 

that GAA repeats can form intramolecular triplex structures by folding of a 

11 
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pyrimidine rich strand back to pair with the duplex, under the influence of low pH 

(Hanvey et al., 1988). A bi-triplex structure, sticky DNA, formed by the association of 

the two py.pu.pu triplexes in negatively supercoiled DNA (Sakamoto et al., 1999) has 

been shown to inhibit transcription (Sakamoto et al., 2001). 

1.7.1.4 Slipped Strand Structures 

Slipped strand structures can form within repeated sequences by an out-of-register 

alignment of complementary duplex strands. The first observation of slipped strand 

structures was made by Pearson and Sinden (1996). It was demonstrated that 

alternative structures are formed when DNA containing long tracts of CAGCTG and 

CGGCCG repeats were denatured and renatured (Pearson and Sinden, 1996). The 

structures had low electrophoretic mobility on polyacrylamide gels and were stable at 

physiological salt concentrations. The authors named the slipped strand structures 5-

DNA. The fraction of molecules forming S-DNA increased with increasing repeat 

length. Further to these observations, S-DNA structures were shown by electron 

microscopy and denaturing and renaturing (CTG)50(CAG)50, it was demonstrated that 

S-DNA could form with slipped out regions on both strands (Pearson et al., 1998). 

12 
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Figure 1.1: Secondary structures formed by triplet repeats (Sinden et al., 2002) 
(A) Hairpin structure formed by single strands of CAG, CTG, COG, CGG, GTC and 
GAC (B) Cruciform structures are formed by perfect palindromes (C) Tetraplex 
structure as suggested to be formed by CGG repeats (D) Triplex structure as formed 
by GAATTC repeats associated with Friedreich's ataxia (E) Slipped strand structures 
are formed in CAGCTG and CCGCGG repeat sequences. 
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1.7.2 Replication associated Instability 

Several studies have pointed out the importance of replication as a major source of 

instability of trinucleotide repeats. DNA synthesis can contribute to instability both in 

proliferative and non-proliferative cells, as DNA synthesis is also needed in repair 

processes. Using E. co/i and yeast model systems, instability has been observed as a 

function of orientation of repeats relative to the replication origin (Freudenreich et al., 

1997; Kang et al., 1995a; Maurer et al., 1996; Miret et al., 1998; Rosche et al., 1995), 

the growth phase of the host cell (Bowater et al., 1996) and the mode of replication of 

sequences in the plasmid (Schumacher et al., 1998). The observations of the 

involvement of direction of replication laid the foundation of lagging strand model to 

explain the expansion and deletion bias observed in E. co/i and yeast (Figure 1.2). 

According to this model, deletions are prominent when the more stable secondary 

structure forming CTG repeats are on the lagging strand template, while expansions 

are prominent when the stable structure forming repeats are on the Okazaki fragment. 

Such bias has been explained by the greater stability of secondary structures formed 

by CTG repeats than the complementary CAG repeats (Petruska et al., 1996; Yu et al., 

1995b) and the ease of formation of structures on the template for lagging strand that 

exhibit the single stranded region during replication (Trinh and Sinden, 1991). 

However, this replication orientation bias for instability is not always observed 

(Schumacher et al., 1998) and using an in vivo phagemid system, it was shown that 

deletion and expansion of triplet repeats may occur on the leading strand (Iyer and 

Wells, 1999). 

14 
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Figure 1.2: Traditional replication slippage model 
The model proposes that deletions are favoured more frequently when the more 
stable secondary structure forming CTG repeats are present on the lagging strand 
template (CAG orientation) while expansions are more likely to occur when the stable 
structure forming CTG repeat tract is on the daughter lagging strand (CTG 
orientation). 

1.7.3 Replication Origin or Replication Fork? 

In a recent review, the dynamics of replication fork in repeat instability have been 

pondered upon (Cleary and Pearson, 2005). The authors have discussed three possible 

scenarios supported by studies in E. coil, yeast and primate cells (Figure 1.3). 

According to the "origin-switch" model, the switch in the origin of replication 

changes the direction of replication. This changes the sequence for the lagging strand 

template and alters repeats instability, which depends on the repeat sequence on 

template and nascent strands (Cleary et al., 2002; Kang et al., 1995a; Maurer et al., 

1996). This model gets further support from observations that replication fork stalling 

at repeat tracts depends partly on the orientation of the repeats relative to the 
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replication origin (Pelletier et al., 2003; Samadashwily et al., 1997) and the altered 

instability of repeat tracts in yeast FEN1/rad27 mutants (Freudenreich et al., 1998; 

Schweitzer and Livingston, 1998). This model suggests that in humans, the affected 

chromosome may have the origin of replication on the opposite side of the repeat tract 

as compared to the non-affected chromosome. 

The "origin-shift" model gathers support from the observations made in 

primate cells where shifting the location of replication origin while maintaining the 

direction of replication, changed instability drastically (Cleary et al., 2002). A similar 

observation was reported recently for CGGCCG repeats (Nichol Edamura et al., 

2005). 

In the "fork-shift" model, it is proposed that cis-elements within the repeats or 

flanking the repeat sequences affect the dynamics of the advancing replication fork to 

generate repeat instability (Figure 1.3). The position of the repeat tract within the 

advancing fork determines the location of Okazaki initiation, termination and 

processing and so determines the chances of any mutagenic process. So, repeat 

instability is dependent on the repeat sequence, length and portion of the repeat within 

the Okazaki initiation zone (OIZ), which is the ss region in the lagging strand 

template after which the lagging strand synthesis starts. This model attempts to 

explain the pattern of instability between different disease loci and between tissues of 

the same patient. Since it does not depend on the origin or direction of replication, it is 

responsive to epigenetic surroundings and cellular processes. 
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Figure 1.3: Dynamics of replication origin and replication fork in repeat 
instability (Cleary and Pearson, 2005) 
(A) Origin-switch model: The direction of replication is determined by the origin of 
replication (pink diamond shape). A switch in the origin of replication will change the 
sequence for lagging strand template, which in turn may decide whether the 
instability will happen or not. (B) Origin-shift model: The location of origin of 
replication on one side affects the instability, because of the position of repeats within 
Okazaki initiation zone (OlZ). The unstable chromosome may have the origin of 
replication near to the repeats than on the stable chromosome, thus producing 
instability. (C) Fork-shift model: Any epigenetic event or cellular process (shown by 
X in green) that occurs in the path of replication fork can alter the dynamics of fork 
progression, which may shift the location of OIZ relative to the repeat tract. That may 
result in the formation of mutagenic DNA structure leading to instability. 
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1.7.4 Flap Endonuclease I (FEN 1) mediated instability 

Replication associated proteins have also been investigated for their participation in 

repeat instability. Particularly, the inability of flap endonuclease I (FEN1) to process 

replication-induced errors has been proposed to generate expansions. FEN1 is a 

structure specific exo/endonuclease involved in removal of RNA primers on Okazaki 

fragments. It has a preference for substrates with a 5' unannealed flap (Harrington and 

Lieber, 1994). In E. co/i, the homologue of FEN1 is the 5' to 3' exonucleolytic 

activity of DNA polymerase I and in yeast FEN1 shares homology with Rad27. The 

function of FEN1 is critical for maintaining genome stability. CAG and CCG 

sequences were shown to expand in rad27 mutants (Schweitzer and Livingston, 

1998). The effect of mutations in human FEN1 on sequence expansion was assayed in 

yeast and FEN1 was found to compete with ligase I for suppressing expansions (Liu 

and Bambara, 2003). A model was proposed to explain the role of FEN1 in preventing 

expansions of repeat tracts (Figure 1.4). According to this model, strand displacement 

during lagging strand synthesis produces a flap of triplet repeats which can fold onto 

itself because of its repetitive nature. Such a folded flap is not a substrate for FEN 1. 

Through subsequent slippage, an equilibrium is generated between a hairpin structure 

and an unstable large bubble. DNA ligase cannot act on a large bubble with a large 

unannealed region. However, the large unstable bubble can equiliberate to a small 

stable bubble with a long annealed region, which can be a good substrate for DNA 

ligasel, which seals the nick and generates an expanded product. Alternatively, if the 

unstable bubble forms a flap, FEN1 can remove it and DNA polymerase can 

synthesize through the gap leaving the nick to be sealed by DNA ligase. This results 

in an non-expanded product. 
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Figure 1.4: Proposed model of triplet repeat expansion involving FEW and 
DNA liagase I (Liu and Bambara, 2003) 
During lagging strand synthesis, the CTG flap is created which can fold back to form 
hairpin structure. This cannot be utilized as substrate for FEN1 or DNA ligase I. 
Subsequent DNA slippage and misalignment allows the equilibrium between the 
hairpin and an unstable large bubble. DNA ligase I cannot act on a large bubble with 
a large unannealed region. However, the unstable large bubble can equilibrate to 
small stable bubble with a long annealed region, which can be a good substrate for 
DNA ligase I that seals the nick leaving an expansion product. Alternatively, the 
bubble forms a flap substrate that can be removed by FEW endonuclease. DNA 
polymerase fills the gap and the nick is sealed by DNA ligase I resulting in a non-
expanded product. 

1.7.5 TNRs cause DNA polymerase pausing 

DNA containing TNRs is difficult for DNA polymerases to copy, which can be 

experienced in a standard PCR. Primer extension experiments in E. coli using DNA 

polymerase I, T7 polymerase have shown polymerase stalling in CTG and CCG 

repeats (Kang et al., 1995b). Using two dimensional gel electrophoresis, it has been 

shown that replication forks face hindrance while progressing through TNRs 

(Krasilnikova and Mirkin, 2004; Pelletier et al., 2003; Samadashwily et al., 1997). 
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The pausing was influenced by repeat length, purity and repeat orientation relative to 

replication origin. 

The rescue from a paused replication fork may involve slippage events, double 

strand breaks, repair or recombination processes that may result in further instability. 

The instability associated with these processes is discussed in the corresponding 

Chapters along with discussion of this work. 

1.8 Work in this thesis 

This thesis describes work carried out to investigate CAGCTG repeat instability in 

the E. coli chromosome. To study repeat instability in the E. coli chromosome was of 

interest for two main reasons. First, E. coli is a well-characterized organism with a 

fine understanding of its processes of DNA replication, repair, recombination and 

transcription, genetically and biochemically. Second, all studies of TNRs instability in 

E. coli have been carried out using plasmid substrates which have limitations of 

plasmid biology such as the copy number and the replicon size. In these systems, 

TNRs are localized on a plasmid, which may differ from chromosomal marker in 

terms of their repair and replication. Another disadvantage is that the plasmids 

bearing TNRs have to be introduced into the cells by a transformation step which has 

been shown to influence the frequency of instability of some inserts (Hashem et al., 

2002). Furthermore, two plasmid based systems have been used to study the effect of 

recombination on repeat instability but the reproducibility of results obtained by such 

systems is already being questioned and will be discussed in detail in Chapter 5. All 

these studies have brought forward conflicting reports and have significantly 

complicated progress in the field. So, it was important to utilize efficiently a well- 

20 



Chapter 1: Introduction 

studied model system, E. coli. Studying repeat instability in the E. coli chromosome is 

a novel investigation, which will aid in clarifying the ambiguities added by plasmid 

based studies. 

First, a polymerisation independent strategy was developed to generate long 

CAGCTG repeat arrays in plasmid pLacD2. Then the repeat sequences were 

integrated in the 5' end of the lacZ gene of E. coli. Instability was studied in wild type 

E. coli and strains deficient in cellular processes of DNA replication, repair and 

recombination. The role of transcription was analysed in parallel in wild type and 

mutant strains. 

In wild type cells, instability was investigated for various repeat lengths in 

both CAG and CTG repeat orientations (Chapter 3). Instability was found to be 

dependent on repeat length and orientation with respect to the direction of replication. 

Considering the observations of hairpin formation by repeat sequences in vitro, the 

role of hairpin nuclease SbcCD and the proofreading function of DNA polymerase III 

(DnaQ) was investigated. Orientation dependent instability observed in wild type cells 

was lost in a dnaQ mutant strain (Chapter 4). A model explaining the orientation 

dependent instability is proposed, based on the dynamics of secondary structure 

formation and processing. 

Chapter 5 describes the investigation of the role of recombination in 

CAGCTG repeat instability. The roles of homologous recombination genes recA, 

recB, recF, ruvAC and recG were investigated. Furthermore, dimer resolution was 

investigated with mutations in xer and dif. No effect of recombination was observed 

on instability. 

The work was further extended to study the role of DNA repair in instability. 

The genes encoding proteins involved in mismatch (niutH, mutL and mutH) and 
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nucleotide excision repair (uvrA, uvrB and uvrC) were analysed. No effect of 

mismatch and nucleotide excision repair on CTG repeat instability was observed. 

MutS was found to have a stabilizing role in CAG orientation. Additionally, the role 

of mismatch repair genes was questioned in conjunction with SbcCD. It was observed 

that SbcCD could cleave hairpin structures in the presence of MutL and MutH in the 

CAG orientation. The results and a hypothesis predicted for the involvement of 

SbcCD and MutS are discussed in Chapter 6. 

In Chapter 7, the role of transcription in repeat instability is discussed. Since, 

repeats were integrated in the lacZ gene, the phenotype of strains having lacZ with 

varying repeat length was characterized. Additionally, the size of J3-galactosidase with 

various repeat lengths was determined by Western blotting. 

Furthermore, the role of two DNA helicases; a repair helicase, UvrD and the 

replicative helicase, Rep was investigated (Chapter 8). 

This work is a novel investigation of CAGCTG repeat instability. Studying 

repeat instability in the E. co/i chromosome has revealed interesting findings, which 

are a significant contribution in our endeavours to understand the dynamics of 

instability caused by these dynamic sequences. 
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CHAPTER 2 

MATERIALS AND METHODS 

2.1 Materials 

2.1.1 General Reagents 

2.1.1.1 Chemicals 

All chemicals were purchased from the following suppliers: Sigma, Fisher Scientific, 

Invitrogen, Malford Labs and Calbiochem. 

2.1.1.2 Enzymes 

All restriction enzymes were purchased from New England Biolabs (NEB) and 

Roche. Taq DNA polymerase was purchased from Roche and PFU polymerase from 

Promega. 

2.1.1.3 Growth Reagents 

Reagents for growth media were purchased from the following suppliers: Difco 

Laboratories, Gibco BRL, Oxoid and Sigma. 
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2.1.2 Bacterial Growth Media 

2.1.2.1 Bacterial Media 

Table 2.1 Bacterial Media 

Media 	 Composition 
BBL Agar 	1% Trypticase, 0.5% NaCl, 1% Bacto-agar, pH adjusted to 7.2 with NaOH 

BBL Top Agar 	1% Trypticase, 0.5% NaCl, 0.65% Bacto-agar, pH adjusted to 7.2 with NaOH 

LB Agar 	1% Bacto-tryptone, 0.5% yeast extract, 1% NaCl, 1.5% Bacto-agar, pH adjusted to 7.2 
with NaOH 

Lc Agar 	1% Tryptone, 0.5% NaCl, 1% Difco-agar, pH adjusted to 7.2 with NaOH 

Lc Top Agar 	1% Tryptone, 0.5% NaCl, 0.7% Difco-agar, pH adjusted to 7.2 with NaOH 

L Broth 	1% Bacto-tryptone, 0.5% yeast extract, 1% NaCl, pH adjusted to 7.2 with NaOH 

2.1.2.2 Antibiotics 

Antibiotics were added to liquid media immediately before use. For the solid media, 

the antibiotics were added after autoclaving. Solid media was always provided 

autoclaved. It was melted using a microwave and stored at 55 °C if not to be used 

immediately. The antibiotics were added at media temperature 55 °C (when easily 

touchable by naked hand). All antibiotics were stored at —20 °C. The stock and final 

concentrations of antibiotics are shown in Table 2.2. 

Table 2.2 Antibiotics 

Stock Concentration Final Concentration 

Antibiotic Abbreviation Solvent 	(Mg/ml) 	 (pg/mi) 

Chioramphenicol Cm 100% Ethanol 50 50 

Ampicillin Amp Water 100 100 

Kanamycin Km Water 50 50 

Tetracyclin Tc 50% Ethanol 15 15 

Rifampicin Rif Methanol 50 50 
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2.1.3 Buffers and Solutions 

Table 2.3 Buffers 

Buffer 	 Components 	 - 
20X TAE 	0.8M Tris, 0.4M Sodium Acetate, 0.02M EDTA, pH 8.2 (for Agarose gel) 

Phage buffer 	7g Na2HPO4, 3g KH2PO4, 5g NaCl, lOmi MgSO4  (0.1M), lOml CaCl2  (0.0IM), 

lml Gelatin (1%) for a volume of 1 Litre 

1 O Transfer buffer 	30.25g Tris, 144g glycine for a volume of I Litre (filter the buffer) 

(for Western blotting) 

20x MOPS 	lOg SIDS, 104.6g MOPS, 60.6g Tris and 3g EDTA for a volume of 500ml 

(for Polyacrylamide gel) 

Sample lysis buffer 	Lysis buffer, inhibitor cocktail and pepstatin in a ratio of 100:10:0.1 v/v 

(for Western blotting samples) 

2.1.4 Plasmids 

Plasmids used in this work are listed below in Table 2.4. All plasmids were 

constructed in XL1-blue cells. 

Table 2.4 Plasmids 

Plasmid Characteristics Source 
DL 

No. 

pTOF24 repAts sacB Cmr ;used for Sall-PstI cloning Millicent Masters 1605 

pLacDl pTOF24 derivative; contains BbsI, MfeI & BsaI sites in John Blackwood 1823 

centre of two 400bp lac homology arms, L8 mutation 

pLacCl pLacDl derivative; no L8 mutation John Blackwood 1824 

pLacD2 pLacD 1 derivative; BbsI site in lacZ homology arm This work 2911 

removed 

pLacC2 pLacCl derivative; BbsI site in lacZ homology arm This work 3215 

removed 

pLacD2 (CAG)5  pLacD2 derivative; (CAG)5  in place of MfeI site This work 1816 

pLacD2 (CAG)8  pLacD2 derivative; (CAG)8  in place of MfeI site This work 1892 

pLacD2 (CTG)8  pLacD2 derivative; (CTG)8  in place of MfeI site This work 1893 
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pLacD2 (CAG)14  pLacD2 derivative; (CAG)14  in place of MfeI site This work 1899 

pLacD2 (CAG)26  pLacD2 derivative; (CAG)26  in place of MfeI site This work 1894 

pLacD2 (CTG)26  pLacD2 derivative; (CTG)26  in place of MfeI site This work 1895 

pLacD2 (CAG)28  pLacD2 derivative; (CAG)28  in place of MfeI site This work 1900 

pLacD2 (CTG)28  pLacD2 derivative; (CTG)28  in place of MfeI site This work 1901 

pLacD2 (CAG)50  pLacD2 derivative; (CAG)50 in place of MfeI site This work 1911 

pLacD2 (CTG)50  pLacD2 derivative; (CTG)50 in place of MfeI site This work 1912 

pLacD2 (CAG)98  pLacD2 derivative; (CAG)98  in place of MfeI site This work 2912 

pLacD2 (CTG)98  pLacD2 derivative; (CTG)98  in place of MfeI site This work 2913 

pLacD2 (CAG)194  pLacD2 derivative; (CAG)194  in place of MfeI site This work 2914 

pLacC2 (CGG)5  pLacC2 derivative; (CGG)5  in place of MfeI site This work 1993 

pLacC2 (CCG)5  pLacC2 derivative; (CCG)5  in place of MfeI site This work 2007 

pLacC2 (CGG)8  pLacC2 derivative; (CGG)8  in place of MfeI site This work 2368 

pLacC2 (CCG)8  pLacC2 derivative; (CCG)8  in place of MfeI site This work 2254 

pTOF24-rep pTOF24 derivative; to integrate rep deletion John Blackwood 2341 

pTOF24-uvrD pTOF24 derivative; to integrate uvrD deletion John Blackwood 2391 

pTOF24-mfd pTOF24 derivative; to integrate mfd deletion This work 2519 

pTOF24-uvrA pTOF24 derivative; to integrate uvrA deletion Ewa Okely 2699 

pTOF24-uvrB pTOF24 derivative; to integrate uvrB deletion Ewa Okely 2700 

pTOF24-uvrC pTOF24 derivative; to integrate uvrC deletion Ewa Okely 2701 

pTOF24-recA pTOF24 derivative; to integrate recA deletion Ewa Okely 2711 

pTOF24-mutH pTOF24 derivative; to integrate mutH deletion Ewa Okely 2714 

pTOF24-mutL pTOF24 derivative; to integrate mutL deletion Ewa Okely 2721 

2.1.5 E. co/i Strains 

E. coli strains used in this work are listed below in Table 2.5. 

Table 2.5 Strains 

Strain No. 	 Genotype 	 Source 

732 	F tin-I leuB6proA2 his4 thilargE3 lacY] galK2 rpsL supE44 	This Laboratory 

ara-14 xyl-15 ,nil-I, txs-33) sbcCD::Krn 

815 	 ara L(gpt-lac)5 rpsL rnutS::mini-TnlO 	 Cold Spring Harbour Lab 

(CSH1 15) 

962 
F araD 139 A(argF 1acIPOZYA)U169 	

Genevieve Maenhaut-Michel 
strA relAjia dnaQ::mini-TnlO 

(Geuskens et al., 199 1) 
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1675 M01655 Millicent Masters 

1786 MG1655 lacZX lad' ZeoRf John Eykelenboom 

1991 DL1786 lacZ::(CAG)28 L8 This work 

1994 DL1786 lacZ:: (CTG)48  No L8 This work 

1995 DL1786 lacZ::(CAG)75 No L8 This work 

2001 DL1675 lacZ::(CAG)50  This work 

2002 DL1675 lacZ::(CAG)28  This work 

2009 DL1786 lacZ::(CTG)95 No L8 This work 

2052 DL1786 lacZ::(CTG)28 L8 This work 

2079 DL2009 recA::Cm (DL654) John Blackwood 

2080 DL2009 recB::Km (DL 1792) John Blackwood 

2081 DL2009 recF400::Krn (DL1876) John Blackwood 

2099 DL2009 recG::Km (DL1077) John Blackwood 

2205 DL1786 lacZ::(CAG)14 L8 This work 

2104 DL2009 sbcCD::Km (DL732) John Blackwood 

2247 DL1786 lacZ::(CAG)8 No L8 This work 

2250 DL1786 lacZ::(CAG)45 L8 This work 

2266 DL1786 lacZ::pLacD2 L8 This work 

2278 DL2001 mutS::Tc sbcCD::Km This work 

2279 DL2300 sbcCD::Km (DL732) This work 

2280 DL1786 mutS::Tc sbcCD::Km This work 

2281 DL1994 ,nutS::Tc sbcCD::Km This work 

2300 DL2009 mutS::Tc (DL815) This work 

2301 DL1995 dnaQ::Tc (DL962) This work 

2302 DL1995 mutS::Tc (DL815) This work 

2303 DL1995 sbcCD::Km (DL732) This work 

2304 DL1995 recA::Cm(DL654) This work 

2305 DL2009 expansion to (CTG)140  This work 

2306 DL1786 lacZ::(CCG)8  This work 

2347 DL1786 lacZ:: (CTG) 14  L8 This work 

2384 DL2009 rep-  (using pDL2341) John Blackwood 

2436 DL1995 recF400::Km(DL1876) This work 

2437 DL1995 recB::Km (DL 1792) This work 

2438 DL2302 sbcCD::Km (DL732) This work 

2445 DL1786 lacZ::(CTG)75  dnaQ::Tc (131,962) This work 

2550 DL1786 lacZ::(CTG)87  df:Km (DL1385) John Blackwood 

2555 DL2009 ruvAC::Tc (DL 1076) John Blackwood 

2558 DL1995 xerC::rninicat (DL1065) This work 
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2559 DL2009 xerC::minicat (DL1065) This work 

2629 DL2009 uvrD (using pDL2391) John Blackwood 

2639 DL1786 lacZ::(CAG)84 No L8 This work 

2678 DL2384 sbcCD::Km (DL732) This work 

2709 DL2305 expansion to (CTG)163  John Blackwood 

2728 DL2709 expansion to (CTG)184  This work 

2729 DL2009 uvrff (using pDL2700) This work 

2730 DL2629 recF400::Km (DLI 876) This work 

2737 DL2550 recA (using pDL271 1) This work 

2744 DL2009 uvrC (using pDL2701) This work 

2751 DL2009 uvrA (using pDL2699) This work 

2781 DL2009 mutf-T (using pDL2714) This work 

2782 DL2009 mutE (using pDL2721) This work 

2783 DL 1995 mutff (using pDL2714) This work 

2784 DL1995 mutE (using pDL2721) This work 

2785 DL2 104 mutlf (using pDL2714) This work 

2786 DL2 104 mutE (using pDL2721) This work 

2787 DL2303 ,nutl-T (using pDL2714) This work 

2788 DL2639 rep::Km (DL2633) This work 

2789 DL2639 uvrD (using pDL2391) This work 

2831 DL1995mfd (using pDL2519) This work 

2915 DL2009mfd (using pDL2519) This work 

2976 DL2303 dnaQ::Tc (DL962) This work 

3046 DL2 104 dnaQ::Tc (DL962) This work 

3052 DL2303 mutL (using pDL2721) This work 

3138 DLI 786 lacZ: :(CAG)go  recF400::Km (DL! 876) This work 

2.1.6 Bacteriophage ? strains 

Table 2.6 Bacteriophage X Strains 

Strain 	 Genotype 	 Source 
XDRL 152 	 pa1571 Aspi6 c1857 x 	 This laboratory 

XDRL 154 	pa1571 Arpi6 c1857f 571 bp palindromic sequence 	This laboratory 
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2.1.7 Oligonucleotides 

All oligonucleotides were purchased from MWG apart from the fluorescent 

oligonucleotides, which were purchased from Metabion. A list of oligonucleotides 

used in this work is shown in Table 2.7 where restriction enzyme sites and any 

changes (in red) are underlined. 

Table 2.7 Oligonucleotides 

Name 	 Sequence (5 to 3) 

ExCAG-O 1 	CTATGACCATGGTCTCGCAGCAGCAGCAGCAGGTCTTCGTCGTTTTAC 

ExCTG-O I GTAAAACGACGAAGACCTGCTGCTGCTGCTGCGAGACCATGGTCATAG 

ExCAG-02 CTATGACCATGGTCTCGCTGCTGCTGCTGCTGGTCTTCGTCGUTTAC 

ExCTG-02 GTAAAACGACGAAGACCAGCAGCAGCAGCAGCGAGACCATGGTCATAG 

Ex-test-F TTATGCTTCCGGCTCGTATG 

Ex-test-R GGCGATTAAGTTGGGTAACG 

FAM-Ex-test-F Farn- TTATGCTI'CCGGCTCGTATG 

FAM-Ex-test-R Fam- GGCGATTAAGTTGGGTAACG 

MFD- 1 AAAAACTGCAGCACAGCGTGCATTCAG 

MFD-2 TGCGGCTGTT117GGAAGAGCCCAGTCC 

MFD-3 AAAAAGGTACCGCCACGTTGTGTCTCAAAATC 

MFD-4 AAAAAGTCGACAATYFGTYITCGCCAACCAG 

SDMBbsIF 	 GGGATACGACGATACCGAGGACAGCTCATG 

SDMBbsIR 	 CATCAGCTGTCCTCGGTATCGTCGTATCCC 

ExCCG-O 1 	CTATGACCATGGTCTCGCCGCCGCCGCCGCCGGTCTTCGTCGTTI1TAC 

ExCGQ-O 1 GTAAAACGACGAAGACCGGCGGCGGCGGCGGCGAGACCATGGTCATAG 

ExCCG-02 CTATGACCATGGTCTCGCGGCGGCGGCGGCGGGTCFCGTCGTITTAC 

ExCGG-02 GTAAAACGACGAAGACCCGCCGCCGCCGCCGCGAGACCATGGTCATAG 
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2.2 Microbiological Methods 

2.2.1 Growth of Bacteria 

E. coil strains were streaked out from the —70 °C glycerol stock onto LB agar plates 

or LB containing the appropriate antibiotic to obtain single colonies. A single colony 

was used to inoculate 5 ml of L Broth in a lOml bijoux bottle. The culture was grown 

at the appropriate temperature overnight - usually 30 or 37 °C. 

2.2.2 Preservation of Bacteria 

E. coii strains were stored for short time periods at 4 °C on solid medium plates 

inverted and wrapped in ParafilmTM.  Strains were stored permanently at —70 °C in 

40% (v/v) glycerol. Two glycerol stocks were created - one for 'A' stock and one for 

'B' stock. 700 il of cell culture was mixed with 700 tl of 80% sterile glycerol and 

mixed gently. The tubes were sealed with ParafilmTM  before storing at —70 °C. 

2.2.3 CaCl2  Transformation 

E. coil strain to be transformed was grown overnight at 37 °C. It was then diluted 1:50 

in LB and grown for 2 hours at 37 °C. lml of this culture was taken into 2m1 

Eppendorf tubes and spun down for 30 seconds. Supernatant was removed and pellet 

was resuspended into 500 Al of 0.1 M Cold CaC12  (freshly prepared). This was kept 

on ice for 30 minutes and then centrifuged for 30 seconds in cold room. The presence 

of a hole in cell pellet indicated that the cells were efficiently competent but its 
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absence does not mean that cells are not competent. Supernatant was discarded and 

pellet was resuspended in 100 jil of 0.1M CaCl2. Plasmid DNA or ligation mix was 

added to the cells and the mix was kept on ice for 30 minutes. The cells were 

subsequently heat-shocked for 5 minutes at 37 °C. Following, 400 ttl of LB was added 

to the cells that were kept for -'1 hour recovery at appropriate temperature. Finally 

100 il of cells were plated on selective media and incubated at appropriate 

temperature. 

2.2.4 Integration of pK024 derivative Plasmid 

The plasmid was transformed into recipient cells using chloramphenicol selection at 

30 °C. Single colony was streaked onto fresh chloramphenicol LB plate and grown 

overnight at 42 °C. This resulted in a mixture of very small colonies and larger 

healthier colonies. Cells in larger colonies would have integrated the plasmid into 

their genome. These integrants were purified onto new chloramphenicol LB plates 

and grown overnight at 42 °C. A large colony was picked and grown overnight in 5 

ml LB at 30 °C. This culture was diluted 10 in fresh LB and plated onto LB agar 

containing 5 % sucrose. This provided a selection for the excision of the plasmid from 

the chromosome. Sucrose resistant colonies were 'patch-tested' simultaneously onto 

LB containing 5 % sucrose and LB containing 5 % sucrose and chloramphenicol. 

Chloramphenicol sensitive colonies were tested for the required alteration via 

polymerase chain reaction (PCR) and sequencing. 
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2.2.5 P1 Transduction 

Upon infecting E. coli, phage P1 packages random fragments of bacterial 

chromosome (up to 2 minutes) into phage particles that can be injected into the 

recipient E. coli strains. So the transfer of a mutation of interest from one strain to 

another can be achieved by P1 transduction. For that purpose, a P1 lysate was grown 

on E. coli that carries the desired mutation and a cotransducible marker, generally an 

antibiotic resistance, which helps in the selection of transductants. The recipient E. 

coli is then transduced with P1 lysate. Transductants are identified by selection for 

linked antibiotic resistance and the presence of the mutation is confirmed by testing 

for the mutant phenotype or by PCR. 

2.2.5.1 P1 Plate Lysate Preparation 

An overnight culture was diluted 1/10 in 5m1 of LB containing 2.5mM CaC12  and 

grown for 2 hours at 37 °C while shaking. 200 il of the this culture was mixed with 

100 tl of diluted P1 lysate and incubated at 37 °C for 30 minutes to allow for phage 

adsorption. 2.5 ml of Lc top agar containing 5mM CaCl2  was added to the cells and 

poured onto fresh Lc plates containing 5mM CaC12. The plates were incubated upright 

at 37 °C. The recommended time for incubation was 6-8 hours but I always incubated 

overnight, doing it as the last thing on the day. Cells only control was included in each 

P1 lysate preparation. 

Next day, the P1 dilution giving confluent lysis was selected. 5 ml of phage 

buffer was poured onto the plate and the top agar was scraped off and pipetted into a 

bijoux bottle. Few drops of chloroform were added (done in fume hood). The mixture 
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was mixed gently and then left to stand for 30 minutes at 4 T. After centrifugation at 

full speed for 5 minutes in a bench-top centrifuge, the supernatant was poured into a 

sterile bijoux bottle. The P1 lysate was stored at 4 °C. 

Notes, 

The P1 lysate used to carry the new mutation of interest should not already harbour 

the same antibiotic resistance gene. 

Sterile bottles used for storing P1 lysates should not be washed in detergent. 

This increases the 'life' of the lysate. 

2.2.5.2 P1 Transduction 

The strain to be genetically altered was grown overnight in L-broth containing 2.5mM 

CaC12. 1 ml of overnight culture was taken in 1 .5m1 Eppendorf tube and spun at full 

speed for 1 minute. The cells pellet was resuspended in 100 jil of L-broth containing 

2.5mM CaCl2  and 100 itl P1 lysate was added. This mix was incubated at 37 °C under 

agitation for 20 minutes. 800 ILl  of L-broth containing 2mM Sodium Citrate was 

added to prevent further infection. This was again incubated at 37 °C shaking for 30-

60 minutes (expression time). 100 IL1  of the aliquot was plated on selective plates and 

incubated overnight at appropriate temperature. 

Cells only and P1 only controls were used for each P1 transduction 

experiment. 
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2.2.6 Mutations Phenotypic Tests 

2.2.6.1 UV Irradiation 

Ultra-violet (UV) radiation was used to phenotypically test mutations in genes 

involved in DNA recombination such as recA, recBCD and recFOR. 

The strain of interest was diluted to 10-6  and 1 0il of the dilutions were spotted 

onto LB plates in duplicate. One of the plates was irradiated for a period of time, 

typically 10 seconds to 1 mm, using UV lamp on 8th  Floor. Both plates were 

incubated overnight at 37 °C. The cultures showing no/poor growth after UV 

exposure were taken for further work. 

2.2.6.2 sbcCD Phenotypic Test 

An overnight culture of the strain to be tested for sbcCD mutation was diluted 1:250 

in 5rn1 L-broth containing 5mM MgSO4  and 0.2% maltose and grown for one and half 

hour at 37 °C. 250d of culture was added to 2m1 of top BBL and the mix was poured 

on BBL plates containing CaC12  (freshly prepared). Once settled, dilutions of phages 

DRL152 (-pal) and DRL154 (+pal) were spotted. Plates were incubated at 37 °C 

overnight. The cultures giving more plaques for DRL154 (+pal) indicated successful 

sbcCD mutation and were chosen for further analysis. 
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2.2.6.3 dnaQ and mutS Phenotypic Test 

dnaQ and mutS mutations are hypermutator phenotypes, which render cells resistant 

to antibiotic rifampicin. The strain to be tested was grown overnight in liquid culture 

and diluted to 102.  Then 10,al of undiluted culture and the dilutions (10-'and 102) 

were spotted on rifampicin plates. The culture showing higher resistance to rifampicin 

was selected for further work. 

2.3 DNA Methods 

2.3.1 Mini Preparation of Plasmid DNA by Spin Column 

Plasmid DNA was prepared using the QlAprep spin miniprep kit (Qiagen) following 

the manufacturer's instructions. DNA was routinely extracted from 5-7m1 of E. coli 

culture grown to stationary phase with appropriate antibiotic and eluted in 25 - 50 tl 

of TE and stored at —20 °C. 

2.3.2 E. coli Genomic DNA Preparation 

Genomic DNA was prepared using the Wizard Kit (Promega), following the 

manufacturer's instructions. DNA was extracted from 5 ml of E. coli culture grown to 

stationary phase and eluted in 50 p1 of TE and stored at - 20 °C. 
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2.3.3 Digestion of DNA 

DNA was digested with restriction endonucleases (New England Biolabs or Roche) 

typically in volumes of 15 - 150 l. Reactions contained the following: DNA, 

appropriate restriction digest buffer (XI) and 2 to 5 units of the required enzyme and 

BSA, where applicable. Digestions were incubated at the appropriate temperature 

between 2 to 5 hours. Digested DNA was analysed on 1% agarose gel electrophoresis. 

Where necessary, the DNA of required size was extracted from gel. 

2.3.4 Agarose gel electrophoresis 

DNA was analysed for size, quantity or quality on 1- 2% (w/v) agarose gels. Gels 

were prepared by melting agarose in lx TAE buffer using a microwave. The gel 

solution was kept at 55-60 °C for a period of 1 to 3 weeks without loss of band 

separation resolution. Usually 2 iil  of 60% glycerol was added to 5 tl of DNA to be 

analysed and loaded directly into the gel wells, immersed in 1X running TAE buffer. 

A potential difference was supplied across the gel so that the DNA fragments 

separated relative to their size (100 to 150 volts). The DNA was stained by 

immersing the gel in a solution of ethidium bromide (21tg/ml) for 10 minutes followed 

by rinsing in water to remove excess ethidium bromide. The DNA was then visualised 

using an LTV trans-illuminator. DNA markers were purchased from NEB, allowing the 

size and intensity of DNA bands to be determined. 
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2.3.5 Purification of DNA from Agarose Gels 

DNA fragments were purified from a population of differently sized DNA molecules 

by separating on agarose gel electrophoresis. The desired DNA band size was isolated 

from the agarose gel using the QlAquick gel extraction kit (Qiagen) according to the 

manufacturer's instructions. DNA was eluted in 30 - 50 tl of TE and stored at -20 °C. 

2.3.6 Ligation of DNA molecules 

Ligations were performed in a final volume of 10 tl, containing the following: -20 ng 

of vector DNA and 3 times the number of moles of insert DNA, XI ligation buffer 

and 200 units of T4 DNA ligase (NEB). For ligation of two fragments of pLacD2, 

equal volume of fragments was taken. Reactions were allowed to proceed at 16 °C 

overnight. 

2.3.7 E. coil boiled Cells 

Often boiling cells produced DNA of adequate quality for PCR and sequencing. A 

colony was picked up with a sterile yellow tip, suspended in 0.5 ml tube containing 

301d MilliQTM  and boiled in a PCR machine at 99.9 °C for 10 minutes. For a pool of 5 

colonies, 50l Mi111QTM was used. After centrifugation for 5-10 minutes, 2 p1 of 

supernatant was typically used for PCR. 

Note.' 

The use of wooden toothpicks for suspending cells is not recommended from the 

experience of other lab fellows. 
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2.3.8 Polymerase Chain Reaction 

Regions of DNA were specifically amplified using the polymerase chain reaction 

(PCR). A typical PCR reaction (50.tl volume) using plasmid or genomic DNA as 

template was as follows: 

Table 2.8 A typical PCR reaction (50pI volume) 

Ingredients 

Forward Primer 

Reverse Primer 

Polymerase buffer 

dNTPs 

Water (MQ) 

DNA polymerase 

Stock 
Concentration 

Spmol//L1 

5pmoI/il 

lOx 

2 mlvi 

5 units//d 

Final 
Concentration 
(per reaction) 

0. lpmol/pd 

0. lpmollpi 

Ix 

0.2mM 

1 unit/i1 

Volume per reaction 
(p1) 

5 

5 

35.8 

0.2 

DNA polyrnerases used were either Taq DNA polymerase (Roche) or Pfu DNA 

polymerase (Promega). PCR reactions were carried out in either a Hybaid PCR 

Express or an Applied Biosystems GeneAmp PCR System 2400. The reaction 

conditions used were as follows: 

95 °C for 5 minutes 

95°C for 30seconds7 
I 

X °C for l5seconds 	
30 cycles 

 

72°C for 15minutes  

72 °C for 10 minutes 

4 °C hold. 

X= Ta (i.e. Tm-5 °C) 
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2.3.9 Cross-over PCR 

Cross-over PCR is a useful technique for constructing homology arms for pKO 

integrative vector pTOF24. Often mutations can be introduced into DNA during 

construction preventing a round of site-directed mutagenesis after cloning. 

Briefly, two pairs of primers are designed with annealing sites within and the 

region flanking the gene of interest (see Figure 2.1). The two sets of primers have the 

following features: the first forward (Fl) and second reverse primer (R2) have 

restriction site added to 5' end followed by five A nucleotides allowing cloning into 

the plasmid. The first reverse (RI) and the second forward primer (F2) have 12 bp of 

homology to one another. The precaution is taken to keep the sequence of gene in 

frame after the deletion event. 

Fl 
	

F2 

R2 

Figure 2.1: The figure shows the positions of primers for cross-over PCR to create 

gene knock-outs in pTOF24 plasmid 

After the first round of PCR, the two PCR products are purified to remove any unused 

primers and mixed together in a new PCR reaction together with the first forward (F 1) 

and the second reverse (R2) primers. After initial denaturation, the two PCR products 

anneal at the 12 bp of homology. This fused piece of DNA is then amplified with the 

two flanking primers. 
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2.3.10 Purification of PCR products 

PCR generated DNA fragments were purified from primers, unincorporated 

nucleotides, polymerases and salts using the QlAquick PCR purification kit (Qiagen), 

following the manufacturer's instructions. Purified DNA was eluted in 20 - 50jil of 

TE and stored at —20 °C. 

2.3.11 DNA sequencing 

Sequencing reactions were performed using BigDye® terminator v3.1 cycle 

sequencing kit (Applied Biosystems). Plasmid DNA or PCR products to be sequenced 

were run on an agarose gel and bands intensity were compared with that of DNA 

marker for quantification. A typical DNA sequencing reaction mix was as follows: 

Template DNA 	Variable 

Terminator Mix 	2 1d 

Primer 	 0.5 pmol4il 

MilliQ water 	up to 10 Vtl 

Reaction DNA concentration was dependent on size and type of DNA being 

sequenced - manufacturer's guidelines were followed. The reaction conditions were 

as following: 

96 °C for 1 minute 

96°C for 10second 
I 

50°C for 5 seconds 	
25 cycles 

60°C for 4 minutesJ 

4°Chold. 
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10 il of MilliQ water was added to the reaction mix. Samples were run on an ABI 

PRISM 377 DNA sequencer and analysed using Sequence Navigator computer 

program. 

2.3.12 Site directed mutagenesis 

The site directed mutagenesis was done by following the instruction of Stratagene's 

QuickChange® Site-Directed Mutagenesis Kit. 

2.4 Repeat Instability Assay 

2.4.1 Assay 

Every strain to be tested was streaked from glycerol stock onto LB plate to get single 

colonies. 12 colonies were selected in each assay. Each colony was suspended in 

1001.d of LB and 50il of suspension was added to 5m1 of LB and LB with 2mM IPTG 

(to induce transcription). The cultures were grown overnight at 37 °C with shaking. 

Then they were diluted till 106  in LB and 100d was plated onto LB plates. The plates 

were incubated at 37 °C overnight. For each parental colony, 10 sibling colonies were 

selected for analysis from IPTG and no IPTG cultures. PCR was carried out to check 

the length of the repeat tract. The schematic representation of the assay is in the 

Figure 2.2. 
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12 parental 	 overnights 

. 	 ) colonies 	) +1- IPTG >  
,IPTG 	-IPTG 

PCR 
(10 sibling 
colonies) 

Figure 2.2: Schematic representation of Repeat Instability Assay 
12 parental colonies are grown overnight at 37 °C in the presence and absence of 
IPTG (2mM). The cultures are diluted to 106  and plated on L-agar plates. PCR is 
carried out on 10 sibling colonies each from + and - IPTG culture plates. 

2.4.2 GeneMapper® analysis of repeats 

An ABI 3730 genetic analyser (Applied Biosystems) was used to determine the length 

of repeat tracts. This automatically detects and determines the sizes of PCR products 

based on electrophoresis separation (in a capillary). A size standard is run in parallel 

allowing the sizing of PCR fragments, which is performed by a laser registering when 

fragments pass a certain point of the capillary. 

2.4.2.1 Samples Preparation 

For the PCR reaction, the set of primers consisted of one unmodified (Ex-test-R) and 

one fluorescent primer labelled with 5'FAM (FAM-Ex-test-F). The PCR products 

were diluted 1:100 in MilliQ water and 1 fil of this dilution was mixed with 9j.d of Hi-

DiTM Formamide containing the GeneScanTM500 LIZTM Size Standard. 1l of size 

standard was added to lml of HiDiTM  Formamide. The bar coded plates were always 

run either half (48 reactions) or full (96 reactions) as advised by the sequencing 

service. 
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2.4.2.2 Data Analysis 

The data collected from ABI 3730 Genetic Analyser were analysed using the 

GeneMapper® software version 4.0. The fragments are visualized as peaks on a 

graph. The abscissa is a time axis representing when fragments have passed the laser. 

However, after having run the size standard the time scale is converted to a size scale 

permitting the sizing of PCR fragments. Characteristic result outputs are shown in 

Figures 2.3 and 2.4. Here it can be seen that in addition to the main peaks 

characteristic of the repeat array lengths, several "stutter" peaks are observed. These 

represent deletions and expansions that have arisen during the PCR reaction and not 

2.5 Western Blotting 

Western blotting is the technique used to detect one protein in a mixture of proteins. 

The basic principle is to transfer the electrophoretically separated proteins on to a 

solid support and probe with antibody directed against a desired protein. 

2.5.1 Preparation of samples 

The cultures were grown overnight at 37 °C while agitating. 4 ml of culture was 

centrifuged and the pellet was dissolved in 1 5Obd of lysis buffer. The samples were 

kept on ice for 30 minutes and then centrifuged for 20 minutes in cold room. The 

supernatant was separated into new 2ml tubes and equal volume of SDS (2x)+DTT 

was added. The samples were boiled for 10 minutes and immediately put on ice. 
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2.5.2 Gel electrophoresis and transfer 

The samples were run on a pre-cast 4-12% NuPAGE Bis-Tris gel (Invitrogen) in lx 

MOPS buffer at 150 volts. The gel was transferred onto nitrocellulose membrane 

using wet-transfer method. Every step was carried out in the transfer buffer. The 

transfer apparatus was set up in the following manner: 

The black side of the cassette (the cathode side) was laid flat on the bench. A 

thick paper sheet (provided with the apparatus) pre-soaked in transfer buffer was 

placed on the black side. Then a layer of wet Whatmann paper was made. Then the 

gel, already immersed in transfer buffer was placed on it and was topped with the 

nitrocellulose membrane. Then another layer of Whattmann paper was placed and any 

air bubbles were squeezed out by gently rolling a glass pipette on it. Another thick 

paper sheet was placed on it. The cassette was closed and transfer was carried out in 

cold room at 80 volts for 2 hours. 

2.5.3 Blocking 

The membrane was blocked in 3% milk (made in PBS-Tween) and left overnight in 

the antibody, anti f3-galactosidase rabbit IgG antibody (2mg/mi) in cold room while 

agitating. Then it was washed in PBS-tween for one hour and second antibody was 

added with 1% milk and left for one hour. The membrane was again washed for one 

hour and treated with ECL western blotting substrate (PIERCE). It was then 

developed on X-ray film. 
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Figure 2.3: Example showing the data output of GeneMappei 
The arrow points to a 373bp peak, which corresponds to the repeat length of 75 (373 
bp=3x75 bp+148 bp) as the PCR product size without repeats is 148 bp. The insert 
(a small window) shows a magnification of the region around the 373 bp peak to 
illustrate the "stutter" peaks more clearly. Stutter peaks are the by-products of a PCR 
reaction and generally appear immediately before a real peak. 
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Figure 2.4: Examples showing the data output of GeneMappet 
The arrow points to a peak of 230 bp, which is a deletion of (CAG)75  to (CAG)27. 
An example of a mixed colony showing a parental length of (CAG)75  with a 373 

bp peak (thick arrow) along with a deletion peak of 205 bp (thin arrow) which 
corresponds to (CAG)19. 
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2.6 Statistical Analysis 

Logistic regression models were fitted to the CAG and CTG arrays separately, using 

Genstat 81h  edition, to compare the instability proportions in the different arrays. 

Approximate 95% confidence intervals were calculated for each estimated instability 

proportion as the mean ± 2 x standard error. 

The instability proportion represents the frequency of sibling colonies that had 

a repeat length changed (expanded or contracted) from the parental length. To avoid 

counting deletions or expansions that had arisen on the plates, mixed colonies 

(containing cells with parental and new lengths) were classified as parental in the 

instability proportion. However, all new lengths were included in the analysis of 

deletion length distributions. Rare sibling colonies, derived from one parental colony, 

containing the same length of deletion were only counted once on the assumption that 

they were sister clones. 
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CHAPTER -3 

CAG-CTG REPEAT INSTABILITY IN TERMS OF 

LENGTH AND ORIENTATION 

3.1 Introduction 

This chapter describes the instability (expansions and deletions) of CAG-CTG repeats 

in the E. co/i chromosome in terms of repeat length and orientation. In order to study 

repeats of various lengths, a strategy was developed to generate a library of 

uninterrupted repeat tracts of different lengths in both CAG-leading and CTG-leading 

orientations. CAG-leading is the orientation where the CAG repeat tract is on the 

leading strand template while CTG-leading is the orientation where the CTG repeat 

tract is on the leading strand template (see Figure 3.1 and table 3.1). For simplicity, 

CAG-leading and CTG-leading will be described as 'CAG' and 'CTG', respectively, 

from now onwards. 

Rep lic at IOU 

Transcription 	
3 

CAG 	
Leading strand zz 

3 	 GTC 	
cZ 	

Lagging strand 

5,  

Figure 3.1: Location of repeats integrated in the E. coil chromosome. 
Repeats were integrated in the 5' end of the IacZ gene. The construct shows the 
CAG-leading (CAG) orientation where CAG repeats are on the leading strand 
template and CTG repeats on the lagging strand template. 
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Table 3.1 

The CAG and CTG Repeat Orientations 

GAG-leading (GAG) 	 GTG-leading (CTG) 

CAG on leading strand template 	 CTG on leading strand template 

CTG on lagging strand template 	 CAG on lagging strand template 

CTG template for transcription 	 CAG template for transcription 

The instability assay described in Chapter 2 was done on CAG repeats of lengths 45, 

75 and 84 and CTG repeat lengths of 48, 95 and 140 in wild type E. coli cells 

(MG1655). Results of the instability assay show a dependence on repeat length and 

orientation with respect to the direction of replication. 

3.2 Generation of Long Repeat Arrays 

As discussed in Chapter 1, trinucleotide repeat instability associated with human 

diseases depends on length and purity of repeat tract. Repeats become unstable in 

humans when they cross a certain size threshold level and repeats with interruptions 

are more stable than pure tracts. Therefore, in order to study the molecular mechanism 

of instability, it was important to have uninterrupted repeat tracts of various lengths. 

Previously, CTG repeat tracts have been produced in vitro using thennal cycling 

protocols (Ordway and Detloff, 1996; Takahashi et al., 1999) and ligation strategies 

(Grabczyk and Usdin, 1999; Krasilnikova and Mirkin, 2004). Another method 

developed recently, uses a cloning vector, pACT, to generate repeat fragments 

containing a G/C overhang that can be ligated efficiently to produce repeats as long as 

800 bp (Kim et al., 2005). 
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3.2.1 Strategy developed in this work 

A simple polymerisation independent strategy was developed to generate a set of 

uninterrupted repeat tracts of various lengths in both CAG and CTG orientations in a 

plasmid, pLacD2, which was further used to integrate the repeats into the E. coli 

chromosome. 

3.2.1.1 pLacD2 Construction 

The plasmid pLacD2 was constructed using pLacDl (constructed by John 

Blackwood), a derivative of pTOF24 (Merlin et al., 2002) which has a temperature 

sensitive replication protein encoding gene (repAts), a chloramphenicol resistance 

gene (cat) and a sacB gene, encoding sensitivity to sucrose. Two lacZ homology arms 

of 400bp, lacl and 1ac2 were introduced into pTOF24 to enable the integration of the 

plasmid into the E. coli chromosome. The two arms were separated by a region of 

unique restriction sites for MfeI, BsaI and BbsI, resulting in plasmid pLacDl (see 

Figure 3.2). 

pLacD 1 had an extra restriction site for BbsI in one of the lacZ homology arms 

and that was knocked out by changing A to G using primers SDM_BbsI_F and 

SDM_BbsI_R by site directed mutagensis (SDM) technique, resulting in plasmid 

pLacD2. Both plasmid maps are shown in Figure 3.2 with the positions of restriction 

sites. 
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3.2.1.2 Construction of repeat tracts 

(CAG)5  and (CTG)5  repeats were introduced between BsaI and BbsI restriction 

sites of plasmid pLacD2 by SDM using primer pairs ExCAG-01, ExCTG-01 and 

ExCAG-02, ExCTG-02 respectively, removing the MfeI site. The partial sequence of 

the lacZ homology arms before and after the introduction of repeats is shown in 

Figure 3.3. 

Another unique restriction site, HindIII, in pLacD2 was used to perform the 

cloning of longer repeats. The pLacD2 plasmid containing the repeats was digested by 

BsaI and HindIII and BbsI and HindIII. Each digestion reaction gave two fragments of 

sizes 2.8 and 3.7 kb. In the case of the BsaI and Hindlil digest, the 2.8 kb fragment 

contained the repeats and in the case of BbsI and HindIII, repeats were with the 3.7 kb 

fragment (Figure 3.4). The fragments containing the repeats were extracted from a 1% 

agarose gel and ligated together to increase the repeat number. 

The recognition sites for BsaI and BbsI direct cleavage inside the repeat 

sequence (Figure 3.5) so in every round of restriction and ligation, there was a 

doubling of the repeat array length coupled to the loss of two repeats. This method 

follows the following formula: 

n = 	-2 

n = number of repeat units in the repeat tract 

x = round of restriction and ligation 

Using this method, repeat arrays of length 5, 8, 14, 26, 50 and 98 were 

generated for both CAG and CTG sequences. For CAG repeats, another length of 194 
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Chapter 3: CAGCTG Repeat Instability in terms of Length and Orientation 

was also constructed. For building repeats, the vector was propagated in XL1-blue 

cells but was also easily propagated in other backgrounds like JM83 and MG 1655. 

CmR 

sacB 

Figure 3.2: Plasmid maps of pLacDl and pLacD2 
The three restriction sites Bsal, Mfel and Bbsl are shown along with Hindlll. CmR 

represents chioramphenicol resistance gene (cat), lacl and !ac2 correspond to two 
IacZ homology arms, repA encodes for the temperature sensitive replication protein 
that is functional at 30 00  but not at 42 °C, sacB gene renders cells sensitive to 
sucrose. The Bbsl site in the lacl homology arm of pLacDl was removed by SDM 
resulting in pLacD2. 
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lacl BsalMfeI Bbsl lac2 

CT ATG ACC ATG GTC TCC \'V FIGE' GTC 'FTC GTC GTT TTA CAA CGF CGT 

lacl Bsal (CAG)5  BbsI lac2 

CT ATO ACC ATG GTC TCG CAG CAG CAG CAG CAG GTC 'FTC GTC GTT TTA C 

lacl BsaI(CTG)5  BbsJ lac2 

CT ATG ACC ATG GTC TCG CTG CTG CTG CTG CTG GTC TTC GTC GTT 'TT\ C 

Figure 3.3: (A) Plasmid sequence of /acZ homology arms (in green) showing 
restriction sites of Bsal (in blue), MfeI (in red) and Bbsl (in blue). (B) (CAG)5  
introduced between Bsal and Bbsl by SDM (C) (CTG)5  introduced between Bsal and 
Bbsl by SDM knocking out the MfeI site (in red). 

(CAG)5/(CTG)5  

B 	
BL 

Bsal 	 bsl  

3.7 
A2B 

Hindi II 

st + Hindi II 	Bsa 

- -. 
kb - - 

(CAG)8/(CTG)8  
I + Hindl II 	Bsal 	BbsI 

Ligation 

2.8 kb 

(A+B) 	pLacD2 

Hind] I 

Figure 3.4: Schematic representation of the strategy for building long repeat 
arrays. 
(CAG)5  and (CTG)5  were introduced between Bsal and Bbsl restriction sites by site 
directed mutagenesis. Double digests of plasmid DNA were carried out using 
BbsH-Hindlll or Bsal+Hindlll. Bands were separated on a 1% agarose gel. The 
fragments containing repeats (A and B) were extracted from gel and ligated to obtain 
a longer repeat tract length than in the original plasmid 
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(CAG)5  

5' CTATGACCATGGTCTCGCAGCAGCAGCAGCAGGTCTTCGTCGTTTTAC 3' 
3' GATACTGGTACCAGAGCGTCGTCGTCGTCGTCCAGA1GCAGCAAAPTG 5' 

Bsal 	 Bbsl 
5' CTATGACCATGGTCTCGCAGCAGCAG 	CAGCAGGTCTTCGTCGTTTTAC 3' 
3' GATACTGGTACCAGAGCGTCGTCGTCGTCG 	TCCAGAAGCAGCAAATG 5' 

5' CTATGACCATGGTCTCG 	CAGCAGCAGCAGCAGGTCTTCGTCGTTTTAC 3' 
3' 	TACTGGTJ\CCAGAGCGTCG 	TCGTCGTCGTCCAGGCAGCi7\5ATG 5' 

(CAG)8  

5' CTATGACCATGGTCTCGCAGCAGCAGCAGCAGCAGCAGCAGGTCTTCGTCGTTTTAC 3' 
3 P  GATACTGGTACCAGAGCGTCGTCGTCGTCGTCGTCGTCGTCCAGAGCAGCAAAATG 5' 

Figure 3.5: Restriction sites for Bsal and Bbsl direct cleavage inside the repeat 
sequence so every new repeat tract length will be twice the original tract length 
minus 2 repeats. As shown, (GAG)5, after cleavage by Bsal and Bbsl and ligation, 
gives rise to (CAG)8. 

3.2.1.3 Integration into the E. coil chromosome 

Repeats constructed in plasmid pLacD2 were integrated into the E. coli chromosome 

in the 5' end of the iacZ gene using the method described in Chapter 2 (Section 2.2.4). 

Though the repeat lengths generated in plasmid pLacD2 were 50 and 98 in both 

orientations, the lengths were reduced to 45 and 75 for CAG repeats and to 48 and 95 

for CTG repeats during integration into the chromosome. Another attempt of 

integrating (CAG)98  into the chromosome resulted in a length of (CAG)84. (CTG)140  is 

the length expanded from (CTG)95  in the chromosome. 
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3.3 Results 

3.3.1 Instability increases with increasing repeat length and depends on repeat 

orientation with respect to direction of replication 

Three different lengths of the two orientations of CAGCTG repeats were studied in 

wild type cells (MG1655). In both orientations, instability was found to be dependent 

on the repeat length as the proportion of instability increased with the length of the 

repeat tract. The instability proportion represents the frequency of sibling colonies 

that had a repeat length changed (expanded or contracted) from the parental length. 

To avoid counting deletions or expansions that had arisen on the plates, mixed 

colonies (containing cells with parental and new lengths) were classified as parental in 

the instability proportion. However, these new lengths were included in the analysis 

of deletion length distributions. Rare sibling colonies, derived from one parental 

colony, containing the same length of deletion were only counted once on the 

assumption that they were sister clones. 
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Figure 3.6: Instability proportion of different repeat lengths for GAG and CTG 
repeat orientations. 
The instability proportion is the frequency of sibling colonies that had a repeat length 
changed from the parental length. Each bar represents the pooled data of two 
independent assays and corresponds to the individual analysis of 480 clones. The 
error bars show 95% confidence intervals. 
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Instability proportions of all repeat lengths studied in wild type cells are 

shown in Figure 3.6. (CAG)84  is 31-fold more unstable than (CAG)45. Similarly, 

(CTG)140  is 28-fold more unstable than (CTG)48. Notably, the highest repeat length 

studied in the CAG orientation, (CAG)84  is 1.7-fold more unstable than the highest 

length of the CTG orientation, (CTG)140. With respect to DNA replication, the 

orientation where CAG repeats lie on the leading strand template is more unstable 

than the opposite orientation, where CTG repeats lie on the leading-strand template. 

3.3.2 Distribution of Deletion Sizes 

In order to see the sizes of deletions obtained in CAG-CTG repeats in wild type cells, 

all observed deletions were plotted as a function of percentage of deletion size against 

the number of times the deletions were observed. 

3.3.2.1 CTG Repeat Deletions 

Figure 3.7 (panels A and B) shows the distributions of repeat deletion sizes and 

number of deletion events in the CTG orientation. Deletion distributions have a 

median (midpoint of the distribution) at 58% for (CTG)95  and 61% for (CTG)140. 

(CTG)95  has not enough events to document its distribution pattern but (CTG)140  

shows clearly a negatively skewed distribution (long tail towards left), suggesting a 

preference for large deletions in this orientation. 

3.3.2.2 CAG Repeat Deletions 

Figure 3.7 (panels C and D) shows the distributions of sizes of deletions in the CAG 

orientation. Both lengths 75 and 84 display negatively skewed distributions as seen 
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from the long tails towards left with predominant larger deletions. The median 

(midpoint) for (CAG)75  comes at 65% and for (CAG)84  at 70%. 

3.3.3 Distribution of Expansion Sizes 

For both CAG and CTG repeat orientations, very few expansions were observed 

(Figure 3.8). Small expansions of up to 14% of the repeat array were observed for the 

CAG orientation with the exception of one expansion of 28%. (CTG)95  was found to 

have a rare potential to expand. (CTG)140  is an expanded version of (CTG)95. Both 

repeat lengths showed few expansions of up to 10% of the repeat length. (CTG)140  

gave a higher expansion to (CTG)163, which also further expanded to (CTG)184. 

However, these higher lengths could not be analysed because of the limitations of the 

assay. 

34 Discussion 

The results demonstrate that CAG-CTG repeat instability in the E. coli chromosome 

increases with increasing repeat length and depends on the orientation of repeat tract 

with respect to the direction of replication. The orientation where CAG repeats lie on 

the leading strand template is more unstable than the opposite orientation where CTG 

repeats are on the leading strand template. 
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Figure 3.7: Distribution of deletion sizes of CAGCTG repeats 
The deletions observed are plotted as percentage of the tract deleted against the 
number of times the particular deletions were observed in wild type cells. 

Figure 3.8: Distribution of expansion sizes of CAGCTG repeats 
The expansions observed are plotted as percentage of the tract expanded against 
the number of times the particular expansions were observed in wild type cells. 
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3.4.1 Length Dependent Instability 

As discussed in Chapter 1, length dependence of repeat array mutation contributes to 

the phenomenon of dynamic mutation where expanded repeat arrays have an 

increased probability of further expansion leading to anticipation in the inheritance of 

disease phenotypes in humans. Previous studies in E. coli using plasmid substrates, 

and in yeast have demonstrated that longer lengths of trinucleotide repeats are more 

unstable than smaller lengths (Freudenreich et al., 1998; Kang et al., 1995a; Richard 

et al., 2000; Rolfsmeier et al., 2001; Sarkar et al., 1998; Shimizu et al., 1996). The 

results in this chromosomal study also demonstrate the same observations that 

CAGCTG repeat instability is a length dependent phenomenon. Instability increases 

with increasing repeat length in both orientations. In vitro, long repeat tracts form 

hairpins with long lifetimes than shorter tracts (Gacy and McMurray, 1998). It has 

been shown that DNA polymerase pauses at specific loci in CTG and CGG sequences 

in vitro, depending upon the length of the repeat tract and temperature of the reaction 

(Kang et al., 1995b). The strength of the pausing increased as the CTG repeat length 

increased and pausings were stronger at lower temperature. As the longer repeats are 

more prone to form stable hairpins, the instability has also been suggested to be 

caused by reiterative synthesis on the secondary structures (Lenzmeier and 

Freudenreich, 2003). 

Although the lengths studied in this work are in the human disease causing 

range, they do not show the bias towards expansions seen in humans. Deletions 

account for most of the instability observed. The deletion distributions suggest a 

preference for large deletions indicating the formation of secondary structures 

encompassing large areas of repeat tract. 
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3.4.2 Orientation Dependent Instability 

Studies in E. co/i and yeast have suggested the importance of the direction of 

replication through CAGCTG tracts (Freudenreich et al., 1997; Kang et al., 1995a; 

Maurer et al., 1996; Miret et al., 1998) and have proposed a replication slippage 

model (discussed in Chapter 1) to explain this orientation dependent instability. The 

model uses lagging strand replication dynamics along with the differential stabilities 

of hairpin structures (Figure 1.2). According to this model, deletions are prominent 

when the more stable secondary structure forming CTG repeats are on the lagging 

strand template, while expansions are prominent when the stable structure forming 

repeats are on the Okazaki fragment. However, in both model systems, contractions 

have been found more frequently than expansions. 

In this study of CAGCTG repeat instability in the E. co/i chromosome, 

orientation dependence was observed with mostly deletions in both orientations. 

Furthermore, CAG orientation was found to give bigger expansions than CTG, so the 

traditional model is not the best explanation of this orientation dependent instability. 

This study suggests another explanation of orientation dependence of TNRs 

instability, which will be revealed in the next Chapter. 
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CHAPTER 4 

CAG.CTG REPEAT INSTABILITY: A CONSEQUENCE 

OF PROCESSING OF INTERMEDIATES DURING 

DNA REPLICATION 

4.1 Introduction 

This chapter describes the study carried out to address the link between CAGCTG 

repeat instability and processing of secondary structures formed by repeats during 

cellular processes, particularly during DNA replication. As discussed in Chapter 1, 

when single stranded, repeats can fold into hairpin structures of different stability 

depending upon the sequence and length. These structures can be a target of nucleases 

such as the SbcCD complex and other repair pathways proteins. Additionally, the 

proofreading activity of the DNA polymerase III, performed by the DnaQ protein, can 

also influence the processing of these structures or intermediates. 

The instability assay described in Chapter 2 was performed on CAG and CTG 

repeats in an sbcCD and dnaQ mutants. CAG repeat instability was decreased in an 

sbcCD mutant strain and both repeat orientations were destabilized in a dnaQ mutant. 

Based on these findings, a new model is proposed to explain the molecular basis of 

orientation dependent repeat instability. 
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4.1.1 SbcCD Complex 

The sbcC and sbcD genes of E. coli encode a nuclease complex called SbcCD. Based 

on its molecular organization, the SbcCD complex has been predicted to belong to the 

SMC (structural maintenance of chromosome) family (Sharples and Leach, 1995). 

Furthermore, it has been shown by electron microscopy that this complex forms a 

head-rod-tail structure, characteristic of an SMC protein (Connelly et al., 1998). SbcC 

belongs to a subclass of SMC proteins that also includes human and Saccharomyces 

cerevisiae Rad50 proteins (Sharples and Leach, 1995). Both human Rad50 (hRad50) 

and yeast Rad50 (scRad50) are involved in the double strand break repair pathway 

and interact with their respective Mrell proteins (Johzuka and Ogawa, 1995). Mrell 

shares sequence similarity with SbcD and both proteins belong to a family of 

phosphoesterases (Sharples and Leach, 1995). 

The 1.2 MDa SbcCD complex functions as an ATP-dependent dsDNA 

exonuclease and ATP-independent ssDNA endonuclease and acts on a variety of 

substrates including DNA hairpins (Connelly et al., 1999; Connelly et al., 1997; 

Connelly and Leach, 1996). 

4.1.2 SbcCD and Repeat Instability 

Trinucleotide repeats, when single-stranded, can fold into hairpins structures in vitro 

(Gacy et al., 1995), which can be attacked by the SbcCD complex (Connelly, de Leau 

et al. 1999). The observations that CAG and CTG repeats form hairpins (Gacy et al., 

1995; Mitas et al., 1995b; Petruska et al., 1996; Smith et al., 1995; Yu et al., 1995a) 

and slipped mis-pairing structures in vitro (Pearson et al., 1998; Sinden et al., 2002) 

led to the hypothesis that misfolded structures play a role in TNR instability. In E. 
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coli and yeast, several observations have implicated the role of SbcCD and Rad50-

Mrel 1 complexes in repeat instability. The first evidence of the involvement of 

SbcCD in repeat instability in E. coli came from the work of Sarkar et al. (1998) 

where using a plasmid based system, the bimodal pattern of CTG repeat amplification 

was reported. It describes incremental expansions for repeat length less than the size 

of an Okazaki fragment ((CTG)100200) and saltatory expansions for repeat length of 

more than 300 repeats when the experiment was carried out in the multiply mutant 

strain (SURE) at 25 °C in the absence of an active sbcC gene product (Sarkar et al., 

1998). In yeast, a reduction in CAG repeat expansions associated with double-strand 

break repair was suppressed by over-expressing the Rad50-Mrel 1 complex, 

suggesting that it may cleave hairpin structures (Richard et al., 2000). Furthermore, 

CTG repeat-induced spontaneous double-strand breaks were reduced in a rad5O 

mutant (Freudenreich et al., 1998). 

4.1.3 DnaQ and Repeat Instability 

In E. coli, the fidelity of DNA replication is 1010  errors per replicated base 

(Drake, 1991; Schaaper, 1993) and the contribution of the proofreading process to the 

overall fidelity is 10-2  (Schaaper, 1993). The proofreading function during replication 

is performed by the 3' to 5' exonucleolytic c-subunit of the DNA polymerase III, 

which is encoded by the dnaQ gene. DnaQ protein functions to prevent slipped-strand 

pairing events during replication that can lead to instability of repeated sequences. 

Mutations in the proofreading function of DNA Polymerase III (dnaQ49ts  and 

the mutD5) have been shown to be involved in the instability of TNRs and other 

tandemly repeated sequences in E. coli (Bzymek et al., 1999; Iyer et al., 2000; 

Saveson and Lovett, 1997). 
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4.2 Results 

4.2.1 CAG repeat instability is reduced in an sbcCD mutant 

The effect of sbcCD mutation was investigated for both CAG and CTG repeat 

orientations. Figure 4.1 shows the proportions of instability of CAG-CTG repeats as a 

function of the absence of SbcCD and DnaQ. The (CAG)75  repeat array was 

significantly stabilised 1.8-fold in an sbcCD mutant. The CTG orientation was too 

stable at the studied length, (CTG)95, to obtain sufficient data permitting a statistical 

distinction between the wild type and the sbcCD mutant. The results suggest that 

SbcCD is involved in the instability pathway in the CAG orientation but do not 

provide evidence for destabilisation of CTG orientation. 

4.2.2 CAG-CTG repeat arrays are destabilised in a dnaQ mutant and orientation 

dependence is lost 

In a Polill proofreading (dnaQ) mutant, the instability proportion increased for 

both repeat orientations, with a more pronounced effect in the CTG orientation 

(Figure 4.1). The instability proportion for (CTG)75  was increased 8-fold in a dnaQ 

mutant compared with that of (CTG)95  in wild type. It should be noted here that the 

CTG repeat length in dnaQ mutant was smaller than the wild type because the repeats 

were deleted down to 75 during the construction of the mutant strain. In the other 

orientation, (CAG)75  had an instability proportion only 1.6-fold higher than (CAG)75  

in wild type (p=0.008). It is notable that the level of instability is the same in both 

orientations in a dnaQ mutant (Figure 4.1), which indicates that orientation 
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dependence could be a direct consequence of different efficiencies of proofreading of 

CAG and CTG templates, with the CTG orientation being proofread more efficiently. 

4.2.3 A mutation in sbcCD in the dnaQ mutant reduces CTG repeat instability 

As mentioned in section 4.2.1, the CTG orientation was too stable at the length 

studied to obtain sufficient data permitting a statistical distinction between wild type 

and sbcCD mutant (Figure 4.1). However, an effect of the sbcCD mutation could be 

measured in an sbcCD dnaQ double mutant, where a significant decrease in the 

instability proportion was observed compared to that in dnaQ, even though the repeat 

length was shorter in the dnaQ mutant (75 instead of 95) (p=0.004.). In contrast to the 

dnaQ single mutant, orientation dependence of CAG-CTG repeats was retained in 

sbcCD dnaQ double mutant (p<0.001) (Figure 4.1). This suggests that intermediates 

in the CTG orientation pathway can escape deletion in the absence of SbcCD and 

proofread more easily than intermediates in the CAG orientation pathway. 

4.2.4 Large deletions predominate over small deletions in sbcCD and sbcCD 

dnaQ mutants in the CAG orientation and in a dnaQ mutant in both repeat 

orientations 

In order to investigate the sizes of deletions obtained in CAG-CTG repeats in 

sbcCD, dnaQ and sbcCD dnaQ mutant cells, all observed deletions were plotted as a 

function of percentage of deletion size against the number of events (Figure 4.2). All 

CAG mutants in this study, show repeat deletion distributions like wild type, 

negatively skewed as seen from the long tails towards left. This shows that the 

distributions of deletion lengths in CAG repeat tracts are not influenced substantially 



Chapter 4: CAG CTG Repeat Instability: A Consequence of Processing of Intermediates 
during Replication 

by mutations in dnaQ or sbcCD suggesting that these genes do not affect the nature of 

the primary intermediate in the pathway but the frequency of its processing to a 

product with a new repeat length. In the CTG repeat orientation, the dnaQ single 

mutant gives a negatively skewed distribution while no conclusion could be made 

about the distribution in the sbcCD mutant due to insufficient number of deletion 

events observed. But a comparison between the dnaQ and dnaQ sbcCD mutants in 

this orientation brings out an interesting conclusion. The negatively skewed 

distribution observed in the dnaQ single mutant (median 63%) disappears in the dnaQ 

sbcCD double mutant giving a flat distributon with a median of 51% (Figure 4.2). 

This suggests that, contrary to the CAG orientation, the presence of SbcCD (in the 

absence of proofreading) favours the formation of large deletions in the CTG 

orientation. 
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Figure 4.1: Instability proportions for sbcCD, dnaQ and sbcCD dnaQ mutants 
of CAG-CTG repeats 
CAG repeat length studied in wild type and all mutants was 75 and CTG repeat 
length was 95 except in the dnaQ mutant where it was 75. Each bar represents the 
proportion of instability (pooled data of two independent assays - 480 clones). The 
error bars show 95% confidence intervals. 
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The observed deletions are plotted as percentage of the tract deleted against the 
number of times the particular deletions were observed. 
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4.3 Discussion 

4.3.1 The proofreading subunit of DNA polymerase Ill (DnaQ) determines 

orientation dependence of replicative instability in cells with active SbcCD 

nuclease 

This work demonstrates that a mutation in dnaQ destabilizes CAG-CTG repeat arrays 

and that orientation dependence of instability in wild type cells is lost in this mutant. 

This is a specific effect of dnaQ mutation since a mutation in mutS does not have a 

corresponding effect (see Chapter 6) suggesting that the instability observed in the 

dnaQ mutant is likely to be attributable to its proofreading defect and not to a non-

specific effect of elevated mutagenesis. Previous studies in the literature suggested 

that the orientation dependence of CAG-CTG repeat instability is caused by the 

dynamics of lagging-strand DNA synthesis accompanied by the greater 

thermodynamic stability of CTG repeat hairpins compared to CAG repeat hairpins 

(Freudenreich et al., 1997; Maurer et al., 1996; Miret et al., 1998). However, it has 

not previously been shown how this process is mediated. The data in this study 

suggest that proofreading is inefficient on the CTG repeat template of the lagging 

strand (CAG orientation) leading to the orientation dependent instability. It is the 

more foldable CTG repeat strand that is more refractory to proofreading. 

In E. coli, two mutations in DnaQ (dnaQ49ts  and rnutD5) have been shown to 

destabilize and stabilize CAG-CTG repeats in plasmids (Iyer et al., 2000) but in yeast, 

it was demonstrated that proofreading mutants of DNA polymerases delta and epsilon 

do not destabilize these repeats (Schweitzer and Livingston, 1999). The yeast results 
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are interesting given that homo and dinucleotide repeats are destabilized in these 

mutants (Strand et al., 1993; Tran et al., 1997), suggesting some particular resistance 

to proofreading of CAG-CTG triplet repeats by polymerases delta and epsilon. 

Interestingly, DnaQ has been shown to share sequence homology with human DNA 

editing enzyme DNase III (Hoss et al., 1999). This enzyme is present in equal 

amounts in non-dividing and proliferating cells, which suggests that it is involved in 

repair processes as well as replication. It is therefore plausible that efficient 

proofreading during replication and repair in human cells may contribute to repeat 

stability. 

4.3.2 The SbcCD nuclease increases CAG repeat instability when proofreading 

is active and CTG repeat instability when proofreading is inactive 

This work demonstrates that CAGCTG repeat instability is reduced in an 

sbcCD mutant when the CTG containing strand is the template for the lagging-strand 

of the replication fork (CAG orientation). This stabilizing effect of an sbcCD 

mutation is lost in a dnaQ sbcCD double mutant. This result argues for an 

antagonistic action of SbcCD and the proofreading subunit of DNA polymerase III. It 

is consistent with the existence of an SbcCD-dependent pathway of deletion 

formation for the CAG orientation that is only significant in the presence of 

proofreading. This may be because the SbcCD-independent pathway of deletion is 

fully functional in the dnaQ mutant and swamps the SbcCD-dependent pathway. 

In the CTG orientation (CAG on the lagging-strand template), SbcCD plays an 

active role in stimulating deletions in the absence of proofreading. This is evidenced 
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by the small but significant decrease in instability in an sbcCD dnaQ strain compared 

to dnaQ mutant and the shift from a skewed distribution of deletion sizes in dnaQ to a 

flat distribution in sbcCD dnaQ for the CTG orientation. Furthermore, the observation 

of orientation dependence in sbcCD dnaQ but not in dnaQ implies a role of SbcCD in 

removing the orientation dependence in the absence of proofreading. These 

observations are consistent with SbcCD having access to an intermediate in the CTG 

deletion pathway (CAG on the lagging-strand template) in absence of DnaQ and 

stimulating its conversion to a deletion product rather than its return to a parental 

template. 

It has recently been shown that fluorescent tagged fusions of SbcC protein of 

Bacillus subtilis are localized with a similar pattern to that of the replication factory, 

consistent with action of SbcCD at the site of DNA replication (Meile et al., 2006). A 

similar co-localisation of fluorescent tagged SbcC with a replication factory protein 

has also been observed in E. coli (Darmon and Leach, personal communication) 

4.3.3 A model for orientation dependent replicative instability of CAG-CTG 

repeats 

Combining the results of sbcCD and dnaQ mutations, we propose a model to 

explain the orientation dependence of CAG-CTG repeat instability during replication 

(Figure 4.3). Orientation dependence is determined by proofreading of slippage 

intermediates formed during replication of the lagging-strand. We suggest that the 

CTG repeat template for the lagging-strand (CAG orientation) is partially refractory 

to proofreading because of the formation of stable structures, which can cause more 

slippage (Figure 4.3 (3 and 4)) leading to elevated frequencies of deletions in wild 

type cells. Intermediates in the slippage reaction in this orientation of the repeat array 

are more accessible to the SbcCD nuclease, which can increase instability by 
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digesting the strands that signal the presence of a substrate for proofreading. In the 

absence of proofreading, it would appear that SbcCD can no longer affect instability 

possibly because its main effect is to divert intermediates from effective proofreading 

or because cleavage is not possible in a proofreading mutant. The latter hypothesis is 

made less likely with the observation of an effect of SbcCD on instability in a dnaQ 

mutant when CAG repeats are the template for the lagging-strand (CTG orientation). 

In this orientation, we hypothesise that more unstable intermediates are formed and 

the effect of SbcCD is to divert them from a proofreading-independent pathway of 

return to parental length (Figure 4.3 (1)). 

4.3.4 Hairpin formation in vivo and SbcCD 

From these data, it is not possible to be certain whether hairpin structures have 

an effect on instability. However, several observations suggest them to be playing a 

role in vivo. First, in most situations, the distribution of sizes of deletion products is 

negatively skewed consistent with a preference for large deletions comprising enough 

repeats to form stable hairpins. Second, an effect of SbcCD is observed on instability 

in the orientation predicted to form the more stable CTG repeat hairpins (CAG 

orientation) consistent with the role of SbcCD being a hairpin nuclease that has been 

shown to cleave CTG repeat hairpins (Connelly et al., 1999). However, the effect of 

sbcCD is also observed in the opposite orientation in the absence of proofreading. 

Further, the role of SbcCD cannot be restricted to cleavage of hairpin structures. It has 

been shown that the sbcCD genotype can affect deletions between 101-bp direct 

repeats in a situation where no obvious hairpin is present which suggests that the 

SbcCD complex has a wider specificity of action (Bzymek and Lovett, 2001). 
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Figure 4.3: Model for orientation dependent replicative instability 
DNA synthesis arrests within a CAG or CTG repeat array (1) and strand-slippage 
occurs either accompanied (al) or not accompanied (a2) with stable secondary 
structure formation (b). A lagging strand template containing CAG repeats will form 
less stable secondary structures (2) and so primarily will adopt pathway A whereas a 
template with CTG repeats will form more stable secondary structures (3 and 4) and 
so primarily will adopt pathway B. Some interconversion between well-folded and 
less well-folded structures may also be possible (interchange C). The observation of 
the loss of orientation dependent repeat instability in a dnaQ mutant implies that the 
initiation of slippage is independent of whether the template contains CAG or CTG 
repeats. This has the further implication that initiation of slippage occurs 
independently of the potential of the strand to form stable secondary structures. The 
requirement for the presence of SbcCD for loss of orientation dependence in a dnaQ 
mutant implies that SbcCD ensures the efficient processing of slippage intermediates 
initiated on both CAG and CTG repeats. Orientation dependence is generated by 
poor proofreading of the CTG template strand. In this model, 3' to 5' exonucleolytic 
proofreading does not remove a secondary structure if it is present (compare e with 
d) so new synthesis has the potential to slip again on such a template (3 to 4). In the 
absence of proofreading, intermediates with stable structures are committed to 
deletion (whether or not SbcCD is present) while intermediates with less stable 
secondary structures can escape through an inefficient disassembly pathway (f) that 
is only significant in the absence of SbcCD and proofreading. 
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CHAPTER 5 

CAG.CTG REPEAT INSTABILITY AND 

RECOMBINATION 

5.1 Introduction 

This study was carried out to investigate the role of DNA recombination in CAGCTG 

repeat instability. Repeats can form secondary structures that can be cleaved by 

SbcCD, which might result in double strand breaks (DSBs) implicating the repair by 

RecA-mediated recombination. Further, replication paused at trinucleotide repeats 

might require recombination for its resumption, which might also lead to trinucleotide 

repeat instability. Previously, no chromosomal study has been carried out in E. co/i to 

investigate the role of recombination in repeat instability. Since the system developed 

in this work allowed the analysis of repeat instability in the E.coli chromosome so it 

was of interest to test recombination mutants. 

The instability of both repeat orientations, CAG and CTG on the leading 

strand templates, was analysed in recA, recB, recF and xerC mutant strains of E. co/i. 

(CTG)95  repeat instability was also assessed in recG and ruvAC mutants along with df 

and dfrecA mutants. 
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51.1 Homologous Recombination (HR) in E. coil 

Homologous recombination is the process by which DNA recombines with a 

homologous partner. This mechanism not only protects the cell from double and 

single strand breaks but also participates in the rescue of blocked replication forks 

(Michel, 2000). 

There are several proteins that can be involved in a recombination reaction 

depending upon the nature of the DNA substrates involved in this reaction. In general 

terms, HR involves three steps: initiation (pre-synapsis), homologous pairing and 

strand exchange (synapsis) and branch migration and resolution (post-synapsis). 

Repair of DSBs depends on RecBCD (exonuclease V) whose function is to 

provide a 3' overhang for RecA-mediated D-loop formation (Wang and Smith, 1989). 

Upon contacting a DSB, RecBCD simultaneously unwinds and degrades the 3'-strand 

until it reaches a chi sequence (5'-GCTGGTGG-3') (Anderson and Kowalczykowski, 

1997) which modifies its activity. The nuclease activity of the enzyme is altered so 

that degradation of the 3'-strand is down-regulated and the nuclease activity of 5'-

strand is up-regulated (Dixon and Kowalczykowski, 1993). This produces a 3'-

ssDNA where single strand binding (SSB) protein is removed and the strand exchange 

protein RecA is loaded (Anderson and Kowalczykowski, 1997), which forms a 

nucleoprotein filament with single stranded DNA that extends 5' to 3' (Register and 

Griffith, 1985). On finding a homologous sequence, the RecA-ssDNA nucleofilament 

invades the duplex DNA and extends into it. 

HR can also repair single stranded gaps which is mediated via the RecFOR 

pathway (Kowalczykowski, 2000). The RecFOR protein complex removes SSB and 

loads on RecA, promoting strand exchange. This results in setting up of a Holliday 
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junction, which is driven by RecG and RuvAB to the point where RuvC resolves it. 

Depending on the strands cleaved by RuvC, either crossover or non-crossover 

products are generated. 

5.1.2 RecG - a Branch-Specific Helicase 

RecG is a branch-specific 3'—* 5' helicase, which functions in branch migration and 

in the resolution of Holliday junctions. It was demonstrated that RecG could resolve 

Holliday junctions without cleavage by forcing branch migration in the reverse 

direction to Rec-A driven strand exchange (Whitby et al., 1993). It has also been 

proposed to promote RFR at replication forks blocked by UV lesions (McGlynn and 

Lloyd, 2000) but this reaction has been regarded as controversial in later studies 

(Donaldson et al., 2004; Wang, 2005). 

5.1.3 Xer site-specific Recombination 

Xer site-specific recombination functions in the Escherichia coli chromosome 

segregation and cell division apparently by resolving chromosome dimers, which 

arise through homologous recombination, to monomers. It was initially identified 

through its role in the resolution of ColE 1 plasmid multimers (Summers and Sherratt, 

1984). Two site-specific recombinases, XerC and XerD bind cooperatively to the 

recombination site df (deletion induced filamentation) in the chromosome replication 

terminus region and catalyse separate pairs of strand exchanges (Blakely et al., 1991; 

Kuempel et al., 1991). 
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5.2 Results 

5.2.1 CAGCTG repeat instability is unaffected in recA, recB and recF mutants 

Mutations in recombination genes, recA, recB and recF did not affect significantly the 

proportion of instabilities of (CAG)75  and (CTG)95  repeat tracts (Figure 5.1). This 

suggests that recombination does not contribute to instability of CAGCTG repeats in 

the E. coli chromosome at the lengths studied. 

5.2.2 Mutations in recG and ruvAC do not affect CTG repeat instability 

Figure 5.2 shows the proportions of instability observed for recG and ruvAC mutant 

strains containing (CTG)95  repeats on the leading strand template. The mutation in 

recG did not affect CTG repeat instability (p=0.108) and the same was observed for 

ruvAC mutation (p=0.239) when instability was compared with wild type levels. This 

suggests that these genes are not involved in the pathway(s) of instability of CTG 

repeats in the E. coli chromosome. 

5.2.3 CAGCTG repeat instability is unaffected in xerC mutants and mutations 

in dif and dif recA do not affect CTG repeat instability 

As shown in Figure 5.3, a mutation in xerC did not affect the proportion of instability 

in both repeat orientations, implicating no influence of chromosome dimer resolution 

in repeat instability. 

Further the effect of df mutation was investigated on CTG repeat instability. 

Figure 5.4 shows the proportions of instability observed for df and dfrecA mutants 
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containing CTG repeats which were not significantly different from that in the wild 

type strain. The repeat length in the df mutant was deleted down to 87 during 

construction of the mutant strain and the recA mutation was introduced in the same 

strain. Therefore, both d/ and d[ recA mutants had a repeat length smaller than the 

wild type. The results imply that the genes for chromosome dimer resolution do not 

influence CTG repeat instability in the E. coil chromosome. 
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Figure 5.1: Instability proportions of recA, recB and recF mutants containing 
CAG•CTG repeats 
The length studied for CTG repeats is 95 in wild type and mutants. For CAG repeats, 
it is 75 for all mutants except in recF, where it is 80. Each bar represents the 
instability proportion calculated from the data of two independent experiments (480 
clones). Error bars represent 95% confidence intervals. 
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Figure 5.2: Instability proportions for recG and ruvAC mutants containing 
(CTG)95  repeats on the leading strand template 
The bars represent the pooled data of two independent experiments (480 clones). 
The error bars represent 95% confidence intervals. 
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Figure 5.3: Instability proportions for xerC mutants containing CAG.CTG 
repeats 
The bars represent the pooled data of two independent experiments. The error bars 
represent 95% confidence intervals. 
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Figure 5.4: Instability proportions for dif and dif recA mutants containing CTG 
repeats 
The wild type and recA mutants had CTG repeats of length 95 while the length was 
deleted down to 87 in dif mutant, in which recA mutation was introduced. The bars 
represent the data from two independent experiments (480 clones). The error bars 
represent 95% confidence intervals. 

5.2.4 Distribution of Deletion Sizes in recombination mutants 

In order to analyse the sizes of deletions obtained in CAG-CTG repeats in 

recombination deficient mutant cells, all observed deletions were plotted as a function 

of percentage of deletion size against the number of times the deletions were 

observed. 

5.2.4.1 CAG repeat deletions 

CAG repeat deletions distributions in recA, recB and recF mutants are shown in 

Figure 5.5. All mutants show the negatively skewed distributions similar to that seen 

in wild type cells. This shows that large deletions are preferred in these mutants and 

the nature of intermediates involved in instability is the same as in wild type cells. 
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Figure 5.5: Distributions of deletion sizes in recA, recB and recF mutants 

containing CAGCTG repeats 
The deletions observed are plotted as percentage of the tract deleted against the 
number of times the particular deletions were observed. 
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5.2.4.2 CTG repeat deletions 

Figure 5.5 shows the sizes of deletions observed for the recombination mutants, recA, 

recB and recF containing CTG repeats. In all three mutants, the observed numbers of 

deletions are not sufficient to make any significant conclusion about the distribution 

pattern but the patterns display negatively skewed distributions like wild type cells. 

The pattern of deletion distributions in a recG mutant is positively skewed 

with a median of 41% (Figure 5.6) as compared to negatively skewed distribution 

observed in wild type and most of the mutants studied in this work. A flat distribution 

is observed in a ruvAC mutant with a median of 50%, though the numbers of observed 

deletions are not sufficient to reach a significant conclusion. These observations 

suggest the possibility that the mutations in recG and ruvAC influence the nature of 

primary intermediates in the instability pathway(s). 
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Figure 5.6: Distributions of deletion sizes in recG and ruvAC mutants 
containing CTG repeats 
The deletions observed are plotted as percentage of the tract deleted against the 
number of times the particular deletions were observed. 
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5.3 Discussion 

In the previous Chapters, it was demonstrated that in wild type cells, the 

orientation where CAG repeats lie on the leading strand template, is more unstable 

than when CTG repeats are on the leading strand template (Chapter 3). From further 

investigations, it was observed that an sbcCD mutation stabilizes repeats in the CAG 

orientation (Chapter 4), which suggested the formation of secondary structures that 

are cleaved by SbcCD. So, this study was carried out to test the hypothesis that if the 

cleavage of secondary structures by SbcCD leads to double strand breaks, their repair 

by recA-mediated homologous recombination might influence instability but no 

significant effect of recombination genes was observed. 

5.3.1 CAGCTG Repeat Instability is unaffected in recA, recB and recF mutants 

of E. coil 

The lack of effect of recA, recB and recF mutations on instability of both repeat 

orientations suggests that instability of CAGCTG repeats of the lengths studied does 

not involve homologous recombination. Furthermore, these mutations do not affect 

the distributions of deletion sizes. 

Previously, numerous studies have reported roles of recombination in repeat 

instability in E. coli using plasmid substrates (Jakupciak and Wells, 2000a; Jakupciak 

and Wells, 2000b; Napierala et al., 2002; Pluciennik et al., 2002). However, this has 

faced some ambiguities since both stabilizing and destabilizing effects have been 

reported. In favour of its stabilizing role, CAG repeats were shown to have increased 

contractions in a recA strain (Sopher et al., 2000) and similarly, RecA and RecB 
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dependent DSB repair, induced in a CAG sequence, was shown to protect the 

sequence from deletions (Hebert et al., 2004). In other reports, recombination 

proficiency was correlated with a high rate of instability. Using a plasmid system, a 

dramatic decrease in instability was observed in recA and recB deficient cells 

(Hashem et al., 2004). Moreover, other studies showed that recombination 

destabilizes CAGCTG repeats by promoting both expansions and deletions 

(Jakupciak and Wells, 1999; Jakupciak and Wells, 2000b; Napierala et al., 2002; 

Pluciennik et al., 2002). 

The work carried out in this study differs from previous works done by using 

plasmid systems. The plasmid-based systems have utilized two approaches to study 

recombination. The first is the use of a single multicopy plasmid carrying repeat 

sequences propagated in recombination deficient strains (Hashem et al., 2004; Sopher 

et al., 2000). The second strategy is to study recombination between two different 

compatible plasmids (Jakupciak and Wells, 2000a; Jakupciak and Wells, 2000b; 

Napierala et al., 2002; Pluciennik et al., 2002). A problem associated with these 

systems is the accurate measuring of the recombination frequencies, which are 

determined by the appearance of cells demonstrating a recombinant phenotype. To 

express the recombinant phenotype, a cell requires formation of a recombinant 

plasmid and its manifestation among non-recombinant parental plasmids. Such 

competition between the parental and recombinant plasmids has been documented to 

significantly bias the measured frequency of recombination (Bierne et al., 1995). 

Furthermore, in yeast and mouse, no change in repeat instability was observed 

when the recombination genes rad52, rad54 and non-homologous end joining DNA-

pkcs were knocked out (Miret et al., 1998; Savouret et al., 2003) 
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The lack of effect of the recF mutation on instability in both orientations 

suggests that the gap repair is not involved in the instability mechanism. However, 

RecF was found to have effect on CTG repeat deletions in a uvrD mutant (see Chapter 

8), which suggests that ReeF plays a role in instability but in the absence of UvrD 

helicase. The implications of this observation are discussed in Chapter 8. 

5.3.2 CTG repeat instability is not affected by mutations in recG and ruvAC 

The proportion of CTG repeat instability was unaffected by mutations in recG 

and ruvAC genes which suggests that these genes do not play a major role in CTG 

repeat instability. It was recently shown that mutations in recG and ruvAC decreased 

the deletion rates of CAG-CTG repeats in plasmids (Kim et al., 2006b) implicating the 

roles of these genes in a replication restart pathway influencing instability. The same 

group showed that a recG mutation affects CAG-CTG repeat instability in the E. coli 

chromosome in a length dependent manner (Kim et al., 2006a). They demonstrated a 

decrease in deletion rate in recG mutants for (CTG)43  and no change at (CTG)60  while 

in CAG orientation, recG mutation did not affect (CAG)43  but increased deletion rate 

of 	The authors suggest the involvement of RecG in replication restart of the 

fork blocked by structure on the leading strand. This is confusing because if this were 

the case, we would expect them to have detected higher instability in recG mutants 

for longer CTG repeats considering the differential stabilities of hairpins in a length 

dependent manner formed by CAG and CTG repeats (discussed in Chapter 1). 

The lack of effect of these mutations on instability proportions of CTG repeats 

in this work suggests that the events involved in chromosome are different from those 

in plasmids. Though the mutations do not affect the proportions of instability, recG 
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does appear to affect the distribution of deletions, which suggests that it may play a 

role in determining the primary intermediate in the instability pathway(s). This is 

interesting since a similar deletion pattern was observed in a rep helicase mutant 

(Chapter 8), which also possesses 3'-5' helicase activity like RecG. This may define a 

new class of instability events being generated on the leading strand. RecG might be 

acting on replication fork like Rep helicase, unwinding the nascent lagging strand. 

The dynamics of fork in the absence of such helicase activity are discussed in detail in 

Chapter 8. 

5.3.3 A mutation in xerC does not affect CAGCTG repeat instability and CTG 

repeat instability is unaffected in dif and difrecA mutants 

The gene involved in chromosome dimer resolution, xerC was found to have 

no effect on CAGCTG repeat instability. This suggests that the mechanism of 

instability does not generate crossover products. Furthermore, df and df recA 

mutants showed no difference in instability of CTG repeats, which is consistent with 

no role of recombination process in instability. These results are interesting in the 

context of the observation of crossing-over associated with tandem repeat instability. 

Using a 787 bp tandem repeat, it was observed that recA-independent deletions were 

often accompanied by plasmid dimerization, suggesting a crossing-over mechanism 

(Lovett et al., 1993). The model proposed by authors suggests that recA-independent 

crossovers between replicating sister strands can be associated with deletion or 

amplification of repeated sequence. An absence of effect of dimer resolution genes in 

this study suggests that deletion pathway(s) of CAGCTG repeat instability do not 

involve generation of crossover products and these events might be happening with 

long tandem repeat sequences. 
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CHAPTER 6 

CAGCTG REPEAT INSTABILITY AND DNA REPAIR 

6.1 Introduction 

DNA in all organisms is repeatedly submitted to chemical and physical assaults. The 

cell can face extracellular threats from the environment, such as radiation and 

mutagens, or intracellular threats, such as hydrolysis and oxidation. Unfaithful DNA 

replication can also be a threat, if mistakes created during replication are left 

unattended and passed to the next generation. Therefore, cells have developed a 

variety of DNA repair mechanisms to maintain genome integrity. In E. coli, the 

fidelity of DNA replication is 10 10  errors per replicated base (Drake, 1991; Schaaper, 

1993). This high fidelity is achieved in three steps, faithful synthesis in terms of base 

selection by DNA polymerase, 3'-5' exonuclease proofreading activity and post-

replicative mismatch repair (MMR). 

Small misalignments of 3 bp occasionally generated during replication of 

trinucleotide repeats can be recognized and corrected by the MMR system, preventing 

a single triplet insertion or deletion. Studies in E. coli regarding the role of MMR in 

repeat instability have come up with conflicting findings, suggesting both a stabilizing 

and destabilizing effect of MMR on plasmids-born trinucleotide repeats (Jaworski et 

al., 1995; Schmidt et al., 2000; Schumacher et al., 1998). This study was carried out to 

analyse the role of this faithful repair system on CAGCTG repeat instability in the E. 

coli chromosome. Three main genes of MMR, mutS, mutH and mutL were tested in 

both orientations of the repeat array. 
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TNRs can form hairpin structures, which contain a mismatch, every two base 

pairs. In mice, MMR has been documented to be a contributing factor in expansions. 

It has been suggested that the Msh2/Msh3 complex (MutS homologue) binds and 

stabilizes hairpin structures (Kovtun and McMurray, 2001; Sinden, 2001). As hairpins 

might be a substrate for the structure dependent nuclease SbcCD (Connelly et al., 

1999; Connelly and Leach, 1996), this work was further expanded to test the effect of 

SbcCD in MMR mutants to investigate whether a competition exists between SbcCD 

and MMR proteins for action on the hairpins. 

Whereas MMR recognizes mismatches as long as 3 bp, the nucleotide excision 

repair system (NER) recognizes bulky DNA adducts at damaged sites and can be 

involved in large loop processing. The deletion sizes observed in a wild type 

background suggested the formation of large loops as intermediates in CAGCTG 

instability (Chapter 3). Therefore, the role of NER proteins UvrA, UvrB and UvrC in 

CTG repeat instability was analysed. 

6.1.1 Mismatch Repair (MMR) in E. coil 

In E. co/i, MMR is the system that repairs mismatches in DNA after replication. The 

proteins involved in MMR are MutS, MutH, MutL, UvrD, SSB, Exol, RecJ, ExoVil, 

DNA polymerase III and DNA ligase. 

MutS, encoded by the mutS gene, recognizes and binds up to four mismatched 

base pairs. Then MutS goes through a conformational change and translocates the 

DNA flanking the mismatch, forming an alpha shaped heteroduplex loop (Allen et al., 

1997). MutL binds to the MutS-heteroduplex complex (Grilley et al., 1989). Then 

MutH, a methyl-directed and sequence specific endonuclease, is activated upon 

encountering the MutS-MutL complex at a hemimethylated 5 '-GATC-3' site and 
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incises the unmethylated DNA 5' to the G of the GATC site either 3' or 5' of the 

mismatch (Modrich, 1991). Next, DNA helicase II, encoded by the uvrD gene, 

unwinds the strands so that the error-containing strand can be degraded 

exonucleolytically. 

RecJ, Exol and ExoVII, three single-stranded exonucleases in E. co/i, have 

been shown to act during MMR, depending on the polarity of the exonucleolytic 

degradation. Exo VII or RecJ carries out the degradation if the nick is 5' of mismatch, 

and Exo I if the nick was made 3' of the mismatch. Finally, polymerase III 

holoenzyme fills in the gap and ligase repairs the nick. 

6.1.2 MMR and Repeat Instability 

The literature, including studies in model systems ranging from bacteria to human cell 

culture, reveals conflicting findings regarding the effect of MMR on repeat instability. 

In E. co/i, the frequency of long deletions of (CTG)180  repeats was reduced in 

mutS, mutL and mutH strains, when CTG repeats were on the leading strand template 

(Jaworski et al., 1995). This suggested that MMR functions to increase large deletions 

of long repeated sequences. Another report showed that a mutation in mutS led to 

instability of (CTG)64, independent of the orientation of the repeats (Schumacher et 

al., 1998). A study carried out in this lab using (CTG)43  confirmed these opposing 

findings arguing that MMR can have both stabilizing and destabilizing effect on 

repeat instability (Schmidt et al., 2000). The model proposed by Schmidt et al., 2000 

(shown in Figure 6.1) suggested that 3 bp misalignments occur on the lagging strand 

template and MMR can avoid single triplet expansion or contraction by repairing 

these 3 bp misalignments. In the presence of functional MMR, the single strand 
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generated during repair may fold up into a hairpin and lead to contraction during 

repair DNA synthesis. In another study, it was also suggested that MMR promoted 

large deletions when a CTG sequence of more than 100 repeats was located on the 

lagging strand template and cells were propagated for a large number of generations 

(Parniewski et al., 2000). 

Studies in yeast have demonstrated that MMR does not affect the frequency of 

large contractions (Miret et al., 1997; Schweitzer and Livingston, 1997) or large 

expansions (Miret et al., 1998; Ro!fsmeier et al., 2000; Schweitzer and Livingston, 

1997). It was also shown to block the expansions of interrupted repeat tracts 

(Rolfsrneier et al., 2000). 

In the mouse, MMR has been shown to contribute to TNR expansions. Using 

transgenic rnsh2 knockout mice, it was shown that both somatic and germline repeat 

expansions depend on Msh2 protein (Kovtun and McMurray, 2001; Manley et al., 

1999). The model for Msh2 dependent instability argues that the protein binds to and 

stabilizes hairpins, which allows the hairpin to persist and expand during subsequent 

DNA synthesis (Figure 6.2). The binding effect of Msh2 leading to expansions 

appears to be independent of the MMR pathway, as Msh2 seems to bind and stabilize 

hairpin during gap repair of single and double strand breaks (Kovtun and McMurray, 

2001). Different approaches suggested in literature for the involvement of MMR in 

repeat instability are shown in Figure 6.2. 
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Figure 6.1: Model for MMR-promoted contractions of short plasmid born 
repeats in E. coil (Schmidt et al., 2000) 
Mispairs of 3 bp preferentially happen during lagging strand synthesis and in the 
absence of MMR can lead to expansion (A) or contraction (B). In MMR+ cells, ss 
region is generated (C) and if the sequence folds into a hairpin structure (D), an 
MMR dependent contraction happens during repair (E). In the absence of secondary 
structure (F), functional MMR does not generate contraction. 
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Figure 62: Models proposed for the involvement of MMR in TNRs instability, 
based on studies in E. coil, yeast and mice, adapted from (Lahue and Slater, 
2003) 
(A) A hairpin is formed during DNA synthesis and the expansion/contraction occurs 
unaffected by MMR. (B) Msh2/Msh3 complex binds mismatches within hairpin and 
stabilizes them leading to expansions. (C) MMR recognizes the small loops formed 
by polymerase slippage (1). Following excision, hairpin can form within the single 
strand region (2) resulting in MMR induced contractions. (D) MMR recognizes 
mismatched bases near a hairpin. (1) MMR proteins start co-excision of mismatch 
and hairpin (2) so reducing the instability by removing instability intermediates. 
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6.1.3 Nucleotide Excision Repair (NER) in E. coil 

NER in E. coli removes bulky adduct DNA, acts on unnatural base modifications and 

excises damaged bases by an ATP dependent nuclease. The excision nuclease 

complex, Excinuclease (ABC) comprises UvrA, UvrB and UvrC proteins (Sancar and 

Rupp, 1983). UvrA is the specific DNA-damage binding protein, which makes a 

complex A2B1  with UvrB. Upon delivering UvrB to DNA, UvrA dissociates from the 

UvrB-DNA complex (Orren and Sancar, 1989). UvrC recognizes this complex, 

causing a conformational change in UvrB, which hydrolyses the fifth phospohodiester 

bond 3' of the lesion. The eighth phospohodiester bond 5' of the lesion is hydrolysed 

by UvrC. Then UvrD helicase displaces UvrC and the excised DNA. DNA 

polyrnerase I fills in the gap, displaces UvrB and the final nick is sealed by ligase (Lin 

et al., 1992; Orren et al., 1992). 

6.2 Results 

6.2.1 CAG repeat instability is unaffected in mutL and mutH mutants but 

increases in a mutS mutant 

Instability for CAG repeat orientation was analysed in mutS, mutL and mutH 

mutants using the instability assay described in Chapter 2. Figure 6.3 shows that as 

compared to wild type, no significant difference in the proportions of instability was 

observed in mutL and mutH mutants. An increase in proportion of instability was 

observed in a mutS mutant (p=0.050) suggesting a stabilizing role of MutS protein. 

Though the marginal p-value of 0.050 renders the result to be either statistically 
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significant or non-significant, it was considered significant, taking into account the 

observations of other mutants, which are discussed later in this Chapter. 

6.2.2 CTG repeat instability is unaffected in mutS, mutL, mutH, mutS sbcCD, 

mutL sbcCD and mutH sbcCD mutants 

As shown in Figure 6.3, all three mutants of MMR containing CTG repeats had no 

significant difference in the proportion of instability from that in wild type 

background cells. Similarly, no effect was observed when sbcCD mutation was 

introduced in these mutants implicating no influence of these proteins in CTG repeat 

instability. 

Very few deletion and expansion events were observed in the CTG 

orientation, which were not sufficient to make a comparison of the distributions 

observed in wild type. The actual percentages of deletions and expansion sizes are 

shown in Table 6.1. On the whole, deletions were distributed randomly in single and 

double mutants. A few expansions were observed too, in a range of 1-13% of the 

repeat sequence. 

6.2.3 The stabilizing effect of sbcCD mutation is lost in mutL and mutH mutants 

in the CAG orientation 

The increase in proportion of instability of CAG repeats in a mutS mutant was 

reduced less than two-fold in a mutS sbcCD mutant suggesting that SbcCD has a 

destabilizing effect in a mutS mutant similar to its effect in wild type background 

(Figure 6.3). 
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The levels of instability observed in mutL and mutH mutants were retained in 

mutL sbcCD and mutH sbcCD double mutants (Figure 6.3), which are higher than the 

level observed in a single sbcCD mutant. This suggests that these mutations have a 

destabilizing role in an sbcCD mutant. 

6.2.4 Few small and big expansions but large deletions are observed in mutS, 

mutL, mutH, mutS sbcCD, mutL sbcCD and mutH sbcCD mutants in the CAG 

orientation 

Figure 6.4 shows the expansion sizes of CAG repeats observed in mutS, mutL, mutH, 

mutS sbcCD, mutL sbcCD and mutH sbcCD mutants. The expansions in a mutS 

mutant fall in the range of 11-13% of the repeat tract with the exception of two 

expansions of 16 and 19%. In the mutH and mutL mutants, the expansions range from 

3-8% of the repeat area. The expansions in double mutants, mutS sbcCD, mutL sbcCD 

and mutl-I sbcCD are concentrated in the range of 3-6% apart from a rare expansion of 

46% of the repeat tract in the mutL sbcCD mutant. 

The distributions of the deletion sizes of CAG repeats observed in mutS, mutL, 

mutH, mutS sbcCD, mutL sbcCD and mutH sbcCD mutants are shown in Figure 6.5. 

All observed deletions were plotted as a function of percentage of deletion size 

against the number of events. The distributions obtained in all mutants share a 

negatively skewed pattern with wild type distributions (see Chapter 3), as seen from 

the long tail towards the left. The medians of distributions of both single and double 

mutants fall in a range of 58-71% (Figure 6.5), which are similar to the medians 

observed in wild type strains. This shows that the studied MMR proteins do not 

influence the nature of the primary intermediate(s) involved in instability pathway(s). 
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6.2.5 CTG repeat instability is unaffected in uvrA, uvrB and uvrC mutants 

Figure 6.6 shows that proportions of instability are unaffected by mutations in 

uvrA, uvrB and uvrC in the CTG orientation suggesting that these genes do not play a 

role in CTG repeat instability. 

Table 6. 1 

Deletions and expansions observed in MMR and sbcCD mutant cells 

containing CTG repeats 

Strains characteristics 	 Deletions (%) 	 Expansions (%) 

(CTG)95  mutS 	5, 7, 13, 21, 46, 47, 56, 58, 83, 84, 88 	3, 10 
(CTG)95  mutL 	 1, 4, 59 	 13 
(CTG)95  mutH 	 1, 36, 62, 64 	 7,13 

(CTG)95  rnutSsbcCD 	2, 17, 54, 60, 65, 67, 79 	 2, 2, 4, 9 
(CTG)95  niutL sbcCD 	 30, 31, 54, 54, 56 	 1 
(CTG)95 mutHsbcCD 2, 3, 19, 25, 39, 51, 57, 57, 63, 66, 79 	0  
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Figure 6.3: Instability Proportions for mutS, mutL, mutH, mutS sbcCD, mutL 

sbcCD and mutH sbcCD mutants containing CAGCTG repeats 
Each bar represents the pooled data of two independent experiments (480 clones). 
The error bars show 95% confidence intervals. 
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Figure 6.4: Distribution of expansion sizes in mutS, mutH, mutL, mutS sbcCD, 
mutH sbcCD and mutL sbcCD mutant cells containing CAG repeats 
The expansions observed are plotted as percentage of tract expanded against the 
number of times the particular expansions were observed. 
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Figure 6.6: Instability proportions for uvrA, uvrB and uvrC mutants containing 
(CTG)95  repeats 
The error bars show 95% confidence intervals. 

6.3 Discussion 

The role of MMR pathway was studied in CAGCTG repeat instability. The results 

demonstrate that MutS has a stabilizing role in CAG orientation and SbcCD can 

cleave hairpins in the presence of MutL and MutH. No effect of MMR proteins was 

found on CTG repeat instability. Furthermore, the NER pathway was also found to 

have no effect on the CTG repeat instability. 

6.3.1 Mutations in genes encoding mutL and mutH do not affect CAG-CTG 

repeat instability except mutS in the CAG orientation 

In this study, the effect of mutations in mutS, mutL and mutH on CAG-CTG repeat 

instability in the E. coli chromosome was investigated. In contrast to previous studies 

carried out in plasmids, no significant effect of MMR genes was observed on CTG 

repeat instability. Similarly, mutations in mutL and mutH did not affect CAG repeat 

instability in wild type cells while a small increase in instability was observed in a 

mutS mutant, suggesting that MutS has a stabilizing role in the CAG orientation. 
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E. co/i MMR can correct heteroduplex loops of up to 4 bp (Parker and 

Marinus, 1992). So, it can only recognize small misalignments of 3 bp generated 

during replication. The distributions of deletion sizes observed in all three mutants of 

MMR in CAG orientation are negatively skewed as seen in wild type cells, showing 

that slippage during replication of TNRs generates big loops which will not be 

recognized by MMR and deleted by other pathway(s), as discussed in Chapter 4. 

Interestingly, accumulation of small slippages of plasmid born repeats has been 

observed in MMR mutants (Schmidt et al., 2000). The absence of these small changes 

in repeats integrated in chromosome suggests that either these slippage events do not 

happen in the chromosome or they are corrected by another route such as 

proofreading, in the absence of MMR. 

6.3.2 Hairpins are inaccessible to SbcCD in the absence of MutL and MutH but 

not in the absence of MutS 

In this work, the sbcCD mutation was found to have a stabilizing effect when CAG 

repeats were on the leading strand template (Chapter 4). This effect, along with the 

distributions of the repeat deletion sizes, both in wild type and in the sbcCD mutant, 

suggested the formation of secondary structures such as hairpins in vivo. These 

hairpins are targets of the SbcCD nuclease (Connelly et al., 1999) and have been 

suggested as binding sites for MutS homologues, Msh2 and Msh3 (Kovtun and 

McMurray, 2001; Manley et al., 1999; Sinden, 2001). Therefore, the sbcCD mutation 

was introduced into MIMR deficient strains. The increase in the proportion of 

instability in a mutS single mutant was reduced to wild type level in a mutS sbcCD 

double mutant. This result suggests that MutS has a stabilizing role both in wild type 

cells and sbcCD mutant. Furthermore, the stabilizing effect of sbcCD mutation was 
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lost in mutL and mutH mutants, suggesting that these proteins have a stabilizing role 

in an sbcCD mutant and SbcCD cannot access hairpin structures in the absence of 

these proteins. 

These results shed more light on the processes involved in generating 

substrates available for the action of SbcCD and add into the observations in the 

model for orientation dependent replicative instability described in Chapter 4. The 

model proposed (Figure 6.7) suggests that CAG repeats will form more stable 

structures (CTG hairpins) on the lagging strand template. MutS can bind hairpins and 

initiate a "repair" process, which contributes towards repeat stability. It is proposed 

that binding of MutS will trigger a "MMR-like" pathway which would essentially be 

a mismatch repair process since it requires all genes of MMR but differs from 

classical MMR in respects that it directs the removal of the new strand even when 

MutS encircles a mismatch exclusively on the template strand (Figure 6.7). It is 

speculated that this "repair" might happen during replication as well as after 

replication just like the well-defined post-replication MMR. 

MutS binding will also protect the structures from being cleaved by SbcCD, 

which can have access to hairpins only if MutL and MutH induce MutS to cycle off 

the DNA (Figure 6.7). In the absence of MutS, the "repair" pathway would be 

blocked and SbcCD would have more access to its substrate hairpins (instability 

intermediates) resulting in an increase in instability. 

These observations give further insight into orientation dependent instability. 

CAG repeats are more unstable as they form stable structures on the lagging strand 

template, which can face multiple pathways of deletion. The deletion distributions in 

wild type and mutants have also suggested the importance of these hairpin structures 

as intenTnediates of instability. CTG repeats are relatively stable because the structures 
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formed on the lagging strand template are unstable and the strand is proofread 

efficiently (Chapter 4). 

6.3.3 NER is not involved in CTG repeat instability 

This study demonstrates that the nucleotide excision repair pathway does not affect 

repeat instability when the CTG tract is on the leading strand template. Studies in 

literature have suggested both stabilizing and destabilizing role of NER in repeat 

instability. Increased instability was observed in a uvrA mutant but not in a uvrB 

mutant when (CTG)175  repeats were studied but no effect of uvrA mutation was 

observed in a (CTG)50  repeats containing strain (Parniewski et al., 1999). This 

stabilizing role of UvrA was attributed to its binding to hairpins and a consequent 

block to mutagenic bypass of the DNA hairpins. In another study, a decreased rate of 

deletions was observed in uvrA mutants containing (CAG)(CTG)2579  repeats 

(Oussatcheva et al., 2001). This destabilizing effect was suggested to be caused by the 

ability of UvrABC complex to recognize and excise loops formed during DNA 

slippage. The absence of an effect of NER genes on CTG repeat instability in this 

chromosomal study suggests that either large loops are not formed in this orientation 

or that they are not processed by this repair pathway. Though this orientation is stable 

enough to not give sufficient observations of deletions/expansions to have a 

distribution trend in mutants, the wild type distributions indicate the formation of big 

loops in this orientation too (shown in Chapter 3). Therefore, this work shows that big 

loops are formed in the CTG orientation but are not processed by the NER pathway. 

Differences observed between this chromosomal study and plasmid-based studies 
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could be attributed to the drawbacks associated with plasmid-based systems (as 

discussed in the introduction of this work in Chapter 1). 
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Figure 6.7: Model for processing of intermediates of instability in an orientation 
dependent manner 
A lagging strand template containing CAG repeats will form less stable secondary 
structures (2) and so primarily will adopt pathway A whereas a template with CTG 
repeats (CAG orientation) will form more stable secondary structures (3 and 4) and 
so primarily will adopt pathway B. MutS can bind these stable structures (f) and direct 
to "MMR-like" repair (h). It is proposed in this model that MutS binding also protects 
the hairpins from being cleaved by SbcCD, which can have access to the structures 
only in the presence of MutL and MutH. These proteins can cycle MutS off the hairpin 
(g), giving SbcCD the freedom to cleave its substrates (i). 

102 



Chapter 7: CAGCTG Repeat Instability and Transcription 

CHAPTER 7 

CAG.CTG REPEAT INSTABILITY AND 

TRANSCRIPTION 

7.1 Introduction 

TNRs might form hairpin structures during cellular processes that involve 

opening of the DNA double helix, creating a single stranded region. These hairpin 

structures are hypothesized to be the intermediates of repeat instability as discussed in 

Chapters 4 and 6. Melting of duplex DNA during initiation of transcription and 

progression of RNA polymerase may favour the formation of these structures and 

could influence instability. Apart from the formation of secondary structures, 

transcription could also affect TNRs instability by destabilizing DNA polymerase 

during replication when a replication fork comes across a stalled transcription 

complex. 

Transcription coupled repair (TCR) was first discovered in eukaryotes in the 

mid-1980s and was thought to be a mechanism specific to higher organisms. 

However, a study in 1989 showed that prokaryotes also exhibit preferential repair of 

transcribed strands compared to the rest of the genome (Mellon and Hanawalt, 1989). 

This repair process is needed when RNA polymerase encounters a DNA lesion that 

prevents further transcription. The E. coli, Mfd protein was identified as a 

transcription-repair coupling factor as it ensures the repair of DNA damage in 

transcribed strands of active genes (Selby and Saricar, 1993). Mfd is able to bind 
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DNA, RNA polymerase and the UvrA protein. It removes RNA polymerase from the 

DNA and recruits the excision repair apparatus to the damaged site. It is also required 

in the removal of stalled transcription complexes (Park et al., 2002). 

In this study, CAGCTG repeats of different lengths were integrated in frame 

at the 5'end of the lacZ gene adding CAG or CTG codons to the gene. Transcription 

of lacZ was induced by growing cells in the presence of IPTG and the effect of this 

process on CAG•CTG repeat instability was investigated. Further, repeat instability 

was studied in mfd mutants in both orientations. 

7.1.1 lacZ gene 

lacZ encodes the f3-galactosidase enzyme, which cleaves lactose into glucose 

and galactose. Lactose is an inducer of the lac operon that binds the lacI repressor, 

preventing it from repressing lacZ expression. Studies on this operon have been 

facilitated by the use of an analogue of lactose, isopropyl beta-D-thiogalactoside 

(IPTG), and a non-inducing substrate, 5-bromo-4-chloro-3 -indolyl-3-D-galacto-

pyranoside (X-gal). f3-galactosidase hydrolyses X-gal giving a blue product. Under 

uninduced conditions (in the absence of the inducer IPTG), transcription from the 

lacZ promoter is repressed by the lacI repressor, while cells grown in the presence of 

IPTG remove lacI from the promoter and induce transcription. 

The L8 mutation in the lac promoter is a nucleotide exchange of GC for AT. 

This mutation is in the cAMP receptor protein (CRP) binding site of the lac promoter 

and reduces promoter activity by inhibiting CRP-cAMP binding, or by altering the 

conformation of CRP-DNA (Fried and Crothers, 1983). With this mutation, the rate of 
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synthesis of 3-galactosidase enzyme is only 2-6% of the fully induced wild type level 

(Yudkin, 1970). 

7.1.2 Transcription and Repeat Instability 

Trinucleotide repeats involved in diseases, such as myotonic dystrophy and 

spinal/bulbar muscular atrophy, show reduced transcription of the adjacent gene 

(Choong et al., 1996; Kiesert et al., 1997). Different studies have shown that 

transcription through the repeated sequences can modulate their instability. In E. coli, 

transcription has been shown to reduce the frequency of expansions (Schumacher et 

al., 2001) and increase the deletion events of long CAGCTG repeats (Bowater et al., 

1997; Mochmann and Wells, 2004; Schumacher et al., 2001). In human cells, 

transcription promotes CAG repeat contractions via a pathway that requires repair 

processes, MMR and NER but does not depend on DNA replication (Lin et al., 2006). 

It appears that structures formed by trinucleotide repeats are a key source of 

instability since no effect of transcription was found on the instability of dinucleotide 

repeats (Bichara et al., 2000). 

Many suggestions have been put forward by different studies regarding the 

link between transcription and repeat instability. It has been hypothesized that the 

DNA replication machinery can stall briefly on collision with RNA polymerase when 

both processes happen to meet (Cleary and Pearson, 2005) or the replication fork can 

collide with a repressor bound to an operator sequence (Schumacher et al., 2001). In 

E. coli, the rate of replication is faster than the rate of transcription, so the collisions 

are predestined. Head-on-collision of replication fork and RNA polymerase can lead 

to an increase in illegitimate recombination and deletions within plasmid vectors 

(Vilette et al., 1995; Vilette et al., 1996). Transcription can also influence the 
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formation of secondary structures such as S-DNA while opening of the DNA duplex 

by the transcription apparatus. 

7.2 Results 

7.2.1 Transcription does not influence CAG-CTG repeat instability 

To analyse the influence of transcription on the instability of CAG-CTG 

repeats, different repeat lengths were integrated in the 5'end of the lacZ gene in the 

strain DL1786 that also bears a lac]" mutation in the promoter of the repressor gene. 

Transcription was induced by growing cells in the presence of 2mM IPTG. In CTG 

orientation, the transcribed strand is the CTG strand, which is also the leading strand 

template, while in the CAG orientation; it is the CAG repeat containing strand that 

acts as leading strand template and transcribed strand. The repeat lengths studied in 

both orientations in wild type cells showed no significant difference in the proportion 

of instability in the presence or absence of IPTG (Figure 7.1). Similar results were 

observed in all mutants analysed in this work. Since, no difference was observed, the 

+1- IPTG data were pooled in subsequent analyses (so individual +1- IPTG data for 

mutants are not shown). 

7.2.2 A mutation in mfd does not affect CAG-CTG repeat instability 

As shown in Figure 7.2, mfd mutants did not show a difference in the proportion of 

instability compared to the wild type levels in either repeat orientation. This suggests 

that Mfd protein is not involved in CAGCTG repeat instability. 
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7.2.3 CAG-CTG repeats affect the LacZ phenotype in an orientation dependent 

manner 

With repeats integrated in the lacZ gene, their effect on J3-galactosidase 

activity was studied by plating cells on L-agar containing 2mM of IPTG and 40g/ml 

of X-gal. As shown in Figure 7.3, the wild type strain (DL1786) displayed a blue 

phenotype as expected. The strain containing the vector pLacD2 integrated in the 

chromosome, (CNG)0, demonstrated a faint blue phenotype. This strain also contains 

the L8 mutation, which explains the faint phenotype. As described in the strain 

characteristics in Chapter 2, most of the strains constructed carried the L8 mutation 

after the integration of repeats into the chromosome, except (CAG)8, 75, 84 and 

(CTG)48, S  lengths. Cells containing CAG repeats with no L8 mutation demonstrated 

a blue phenotype indicating a functional f3-galactosidase. On the other hand, cells 

containing CTG repeats showed a white phenotype irrespective of the presence or 

absence of the L8 mutation. Therefore, the CAG orientation of the repeats in lacZ 

gene did not affect the gene expression but the presence of CTG repeats produced a 

non-functional or non-existent 3-ga1actosidase. Repeat lengths were checked by PCR 

in white and blue colonies containing CTG or CAG repeats, respectively. Both 

orientations had the original repeat length, suggesting that the blue phenotype in CAG 

repeats was not due to a deleted repeat tract in lacZ and the white phenotype in CTG 

repeats was not due to a deleted lacZ gene. Colonies of cells containing CTG repeats 

could show some sectors of blue colour, so colonies were grown from a spot of 

culture of 1il for five days at 37 °C. Blue sectors were developed in the colonies by 

the cells that deleted repeat tracts (Figure 7.4). The repeat length of cells from these 

blue sectors was checked by PCR and it was deleted from the original parental length. 
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Taking into account the phenotypic difference of the cells containing the two 

repeat orientations, the size and quantity of the 13-galactosidase in strains containing 

repeats was determined by Western blotting. As shown in Figure 7.5, the protein 

expression observed in both repeat orientations was consistent with the phenotype of 

the strains. Strains containing CAG repeats but no L8 mutation showed 13-

galactosidase while no protein could be detected in strains with the L8 mutation. No 

protein was detected in strains containing CTG repeats irrespective of whether they 

contained the L8 mutation or not. Therefore, the quantity of 3-gaIactosidase was 

different in function of the orientation of the repeats in the gene. 

Additionally, the presence of CAG repeats in lacZ reduced the expression of 

the protein compared to the wild type level and according to the intensity of bands on 

the Western blot, this reduction seems to be dependent on the repeat length (Figure 

7.5). The quantity of protein in the strain containing (CAG)8  repeats was significantly 

less than in the wild type and it was further reduced with (CAG)75  and (CAG)84. The 

intensity of LacZ protein band appears the same in all three CAG repeat lengths 

(CAG)8, (CAG)75  and (CAG)84) but the amount of protein loaded in (CAG)8  was 

considerably less than in the wild type and higher repeat lengths of 75 and 84 as seen 

from more intense bands throughout in the lanes of wild type, (CAG)75  and (CAG)84  

as compared to (CAG)g. It was also confirmed by calculating the band intensity in 

these lanes using ImageJ software version 1.36b. Therefore, it is speculated that there 

would have been more 13-galactosidase in (CAG)8  than in higher repeat lengths, should 

there have been the same amount of protein loaded. 
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Figure 7.1: Proportions of instability for CAGCTG repeats in the presence or 
absence of IPTG 
The cells were grown overnight in the presence and absence of IPTG (2mM). X-axis 
shows the repeat lengths for CAG and CTG repeat orientations. The bars represent 
the data from two independent assays and correspond to the individual analysis of 
240 clones. The error bars represent 95% confidence limit. 
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Figure 7.2: Instability proportions of (CAG)75  and (CTG)95  repeats in mfd 
mutants 
Each bar represents the pooled data of two independent experiments (480 clones). 
The error bars show 95% confidence intervals. 
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Figure 7.3: -galactosidase phenotype of strains containing CAGCTG repeats 
in the IacZgene 
The strains were streaked on L-agar containing 2mM IPTG and 40pg/ml X-gal. Wild 
type cells displayed a blue colour, indicative of a functional 3-ga1actosidase. The 
introduction of the L8 mutation strongly reduces IacZ expression, as seen from the 
very faint blue colour of (CNG)0. In CAG repeats, the only repeat lengths that gave 
blue colour did not have the L8 mutation (i.e. (CAG)8, (CAG)75  and (CAG)) while all 
CTG repeat lengths gave a white phenotype, irrespective of the L8 mutation. (CTG)48  
and (CTG)95  had not the L8 but still displayed a white phenotype indicative of a non-
functional or non-existent f3-galactosidase in the presence of CTG codons. 

Figure 7.4: Blue sectors developed by deleted CTG tracts in IacZ 
A I p1 spot of culture was grown on L-agar containing 2mM IPTG and 40pg/ml X-gal. 
The spot grows developing blue sectors containing cells that deleted repeat tracts. 
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Figure 7.5: Western blots for f3-galactosidase in strains containing CAGCTG 
repeats 
Top: (CAG)8  displays 3-galactosidase of the similar size of wild type, 114kDa. 
(CAG)75  and (CAG)84  display 3-galactosidase of larger size than the wild type. The 
yield of protein in all three repeat lengths is significantly less than in the wild type. 
Bottom: No 3-galactosidase was detected in any of the strains containing CTG 
repeats 14, 28, 45, and 95. The strain containing pLacD2 integrated with (CNG)0  also 
showed no protein product since it contains L8 mutation. A strain with lacZ deletion 
was used as negative control. 
+ and - correspond to the presence and absence of 2mM IPTG, respectively. 
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7.3 Discussion 

In this study, no significant effect of transcription was observed on 

CAGCTG repeat instability in the E. coli chromosome. It was expected that 

instability would be affected by transcription since the repeats are located in the lacZ 

gene as shown in Figure 3.1 (Chapter 3) where replication and transcription work in 

opposite directions. In many experimental systems it has been suggested that 

problems arise when a replication fork meets a transcription complex on plasmid 

DNA (French, 1992; Vilette et al., 1995). Previous studies of repeat instability have 

suggested such collisions of replication fork and transcription complex to give rise to 

repeat instability in plasmids (Bowater et al., 1997; Schumacher et al., 2001). A lack 

of effect of transcription in wild type and the mutants studied in this work suggests 

that this process does not influence repeat instability in the E. colt chromosome. 

A mutation in the mfd gene did not change the proportion of instability in 

CAG and CTG repeat orientations, suggesting no role of the transcription repair 

coupling factor Mfd in repeat instability. This result indicates that transcription 

through CAGCTG repeats does not seem to cause any block to the RNA polymerase, 

hence does not require any repair coupled with transcription. 

Repeat sequences were built in plasmid pLacD2, which contains the L8 

mutation in the lacZ promoter region. While integrating repeats in the chromosome, 

the L8 mutation was transferred in many of the strains but the main lengths studied in 

all mutants (CAG)75  and (CTG)95  had no L8 mutation. This mutation decreases the 

synthesis of f3-galactosidase enzyme to only 2-6% of the fully induced wild type level 

(Yudkin, 1970) explaining the absence of protein in Western blots in all strains 

carrying the L8 mutation (Figure 7.5). However, there is a considerable difference 

between the two repeat orientations both in phenotype and f3-galactosidase level. lacZ 
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containing CAG repeats encodes a functional protein, as it can metabolise X-gal into 

a blue product in the presence of IPTG (Figure 7.3) but the lacZ containing CTG 

repeats encodes a non-functional or non-existent protein as it cannot metabolise X-gal 

and displays a white phenotype. This suggests that either the J3-galactosidase encoded 

by the gene containing CTG repeats is not being formed or it is produced but is non-

functional because of a poly-leucine stretch or it is being degraded. Since no protein 

with CTG repeats was detected on Western blot, the 3-galactosidase with the poly-

leucine stretch was either not formed or quickly degraded. 
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CHAPTER 8 

Rep AND UvrD HELICASES: IMPLICATIONS IN 

REPEAT INSTABILITY 

8.1 Introduction 

Replication fork progression can be impeded upon inactivation of essential 

components of the replisome, collision with the transcription apparatus, encountering 

DNA lesions and DNA bound proteins (Liu and Alberts, 1995; Vilette et al., 1992). 

Among choices for the cell to resume replication, one is to reverse the fork and 

transform it into a recombination substrate (Seigneur et al., 1998). Recent studies of 

replication restart using this fork reversal strategy have manifested the involvement of 

two helicases, Rep and UvrD, along with other players. Pausing of DNA synthesis has 

been found in vitro at specific loci in double stranded TNRs (Kang et al., 1995b). My 

study was carried out to address the questions: how do the cells maintain repeats when 

a fork is forced to progress slowly by introducing a rep mutation and how does the 

unwinding function of replicative and repair helicases, Rep and UvrD, respectively 

affect CAGCTG repeat instability? The work described in Chapters 5 and 7 shows 

that the genes involved in DNA recombination and transcription have no significant 

effect on repeat instability in the E. coli chromosome. These findings reinforce the 

major role of replication in repeat instability, as discussed in Chapter 4 

The instability assay described in Chapter 2 was used to study the effects of 

rep and uvrD genes on (CTG)95  and (CAG)84  repeats. These were then compared to 

the instabilities studied in wild type E. coli cells. Finally, the role of recF in a urvD 
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mutant was studied since RecF was shown to be involved in instability of tandem 

repeats in uvrD mutants (Bierne et al., 1997). The data reflect upon the role of Rep 

and UvrD helicases in repeat instability. 

8.1.1 DNA Helicases 

Helicases are the enzymes that act as molecular motors to unwind the duplex DNA 

using the energy released by the hydrolysis of nucleoside phosphates (van Brabant et 

al., 2000). E. coli has eleven distinct DNA helicases including replicative helicases, 

DnaB, PriA, Rep; recombination and repair helicases, UvrAB complex, helicase II, 

RecQ, RecG, RecBCD and RuvAB (Matson et al., 1994). Two helicases, Rep and 

UvrD, used in this study will be discussed in detail here. 

8.1.1.1 Rep Helicase 

The replicative helicase, Rep, belongs to helicase superfamily I. The exact role of Rep 

in cellular processes is not yet known but several observations suggest its function in 

DNA replication. The replication fork progresses two times slower in a rep mutant 

than in a rep+ strain (Lane and Denhardt, 1974; Lane and Denhardt, 1975). Rep is 

required for the replication of a number of ssDNA phages like X174 and M13 

(Takahashi et al., 1979). Cells lacking Rep are viable, suggesting that a second 

helicase may compensate for loss of Rep. This could be UvrD since rep uvrD double 

mutants are non-viable (Washburn and Kushner, 1991). Rep unwinds the nascent 

lagging strand in the presence of SSB on the leading strand template (Heller and 

Marians, 2005) and has been proposed to limit the loading of RecA on damaged forks 
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by facilitating the closure of any gaps on the leading strand (Mahdi et al., 2006). 

RecBC is essential for the viability of a rep mutant (Uzest et al., 1995; Washburn and 

Kushner, 1991). 

8.1.1.2 UvrD Helicase 

UvrD, also known as helicase II, is a dimeric protein that belongs to helicase 

superfamily I. It acts in a 3' to 5' direction. At low concentration, it can unwind only a 

partially single stranded substrate but at high concentration, it can start activity at a 

nick or a blunt end (Runyon et al., 1990). It has been documented to be involved in 

the last steps of DNA repair processes. During nucleotide excision repair, it removes 

the 12 nucleotide long DNA segment containing the lesion, after its incision by UvrA, 

UvrB and UvrC (Orren et al., 1992). During mismatch repair, it removes the DNA 

segment containing the mismatched DNA after its incision by MutS, MutL and MutH 

(Modrich, 1994). The enzyme is conserved in prokaryotes and shares a eukaryotic 

orthologue Srs2, known to be involved in replication and recombination in yeast. In 

addition to its helicase activity, it plays a role as protein remover in vivo since it can 

dislodge RecA filaments from single stranded DNA, suggested to be the reason of 

lethality of the rep uvrD mutant (Veaute et al., 2005). 

UvrD can play a role in DNA replication and this notion is supported by 

several observations. Several alleles of uvrD constitutively induce the SOS response 

(Ossanna and Mount, 1989). uvrD rep double mutants are non-viable (Washburn and 

Kushner, 1991). uvrD mutations have been found to increase the frequency of 

homologous recombination, either because of their replication defects or the anti-

recombinase activity of the helicase. 
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8.1.2 Replication Fork Reversal (RFR) Reaction 

Stalled replication forks can restart by reassembly of the replication machinery. 

Among several routes that a fork can take to restart replication, one is replication fork 

reversal where the nascent leading and lagging strands can anneal resulting in the 

formation of a four armed DNA structure (chicken foot) with a DNA double-strand 

end (Figure 8.1). The recombinase exonuclease RecBCD processes the DNA double 

strand end, unwinding and degrading the DNA until it reaches an octameric sequence, 

chi, where the activity of enzyme is modified and it loads RecA onto DNA. RecA 

catalyses strand-exchange resulting in the formation of a Holliday junction, which is 

resolved by RuvABC resolvase. 

The fork reversal model has been supported by genetic data and direct analysis 

of fork breakage. This was observed in several E. co/i mutants including three 

Polymerase III mutants, dnaEts, dnaNts and hOlDQOam  (Flores et al., 2001; Grompone 

et al., 2002) rep and dnaBts helicase mutants (Seigneur et al., 2000) and the priA 

mutant (Grompone et al., 2004). The DNA repair helicase UvrD was shown to be 

essential for RFR in dnaEts and dnaNts Polymerase III mutants (Flores et al., 2004) 

which was attributed to its role in removing RecA filaments from the fork (Flores et 

al., 2005). 
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Figure 8.1: Replication fork reversal model (Michel et al., 2004) 
In the first step (A), the replication fork is arrested, causing fork reversal, which forms 
a Holliday junction (HJ). In Rec+ cells (B and C), RecBCD (in pink) resolves this fork 
by initiating RecA-dependent homologous recombination (HR) at a chi site on the 
DNA double strand end. RuvC (green circle) resolves the two HJs, one formed by 
fork reversal and the other by HR. Alternatively, if RecBCD encounters the HJ before 
chi or in the absence of RecA, the double strand end is degraded up to the HJ and 
replication fork is restored. In the absence of RecBCD (E), RuvABC resolves the HJ 
resulting in chromosome linearization. 
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8.2 Results 

8.2.1 CTG repeat instability increases while CAG repeat instability is unaffected 

in a rep mutant strain 

Figure 8.2 shows the instability proportions for rep mutant strains containing (CTG)95  

and (CAG)84  repeats along with their corresponding wild type proportions. The bars 

represent the average of instability proportions analysed in two independent 

experiments. The proportion of instability was increased 4.8-fold for (CTG)95  in a rep 

mutant compared to wild type while a non-significant 1.2-fold increase was observed 

for (CAG)84. 
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Figure 8.2: Instability proportions for rep, rep sbcCD and uvrD mutants of 

CAG-CTG repeats compared with wild type cells 
Repeat length for CTG is 95 and for CAG is 84. Each bar represents the proportion 
of instability (pooled data of two independent assays - 480 clones). The error bars 
show 95% confidence intervals. 
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8.2.2 Large deletions are predominant in the CAG orientation while the CTG 

orientation shows both large and small deletions in a rep mutant 

In order to see the sizes of deletions obtained in the rep mutant, all observed deletions 

were plotted as a function of percentage of deletion sizes against the number of events 

(Figure 8.3). CAG repeats show a negatively skewed distribution (long tail towards 

left), with a median of 62% giving the same pattern seen in wild type cells. This 

suggests that the intermediates formed in a CAG rep mutant are of same nature as in 

wild type since it also does not affect the frequency of deletions in this orientation. 

The CTG deletion distribution shows few large deletions but predominantly an 

extreme positive skewness is observed with a median of 30% as compared to 58% in 

wild type (Figure 8.3). Since, large deletions are also observed in wild type cells, the 

intermediates generating these deletions may be the same as in wild type. The pattern 

of small deletions suggests the generation of a new class of intermediates with small 

loops during frequent slippage in a rep mutant. So Rep helicase participates in 

determining the nature of the primary intermediate in instability pathway(s) of CTG 

repeats. 

8.2.3 Small expansions of CAG-CTG repeats are observed in a rep mutant 

Both CAG and CTG repeats showed predominantly deletions as a result of instability 

in wild type with few expansions. But in a rep mutant, frequent small and few large 

expansions were observed in both orientations (Figure 8.3). Most expansions were up 

to 10-15% of the repeat tract in both orientations with few big expansions. 

Interestingly, the CAG orientation displays bigger expansions than the CTG 
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orientation. The biggest expansion observed in the CTG orientation was of 27% of the 

repeat sequence while in the CAG orientation, it was 37%. 

8.2.4 CTG repeat expansions in the rep mutant are independent of SbcCD 

nuclease 

The instability in the rep mutant was also found to be unaffected by an sbcCD 

mutation as seen from the same proportion of instability in both rep and rep sbcCD 

mutants (Figure 8.2). 

CTG repeat expansions observed in the rep mutant were found to be 

independent of the presence of SbcCD nuclease since the pattern of expansions 

observed in a rep sbcCD double mutant was the same as in a rep mutant (Figure 8.4). 

8.2.5 uvrD mutation enhances the CAGCTG repeat instability 

As shown in Figure 8.2, instability was increased for both repeat orientations in a 

uvrD mutant. The instability proportion for (CTG)95  was increased 2.8-fold in the 

uvrD mutant compared with that of wild type while (CAG)84  had an instability 

proportion only 1.9-fold higher than that in the wild type. 

8.2.6 RecF is required for CTG repeat deletions in a uvrD mutant 

Figure 8.5 shows that the increase in proportion of instability in a uvrD mutant was 

suppressed by introducing a recF mutation. The 2.8-fold increase of CTG repeat 

instability in the uvrD mutant went down to wild type level in a double recF uvrD 
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mutant, which implied that RecF was required for the deletion events of CTG repeats 

in the uvrD mutant. 
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Figure 8.3: Distributions of deletion sizes in rep and rep sbcCD mutant cells 

containing CAGCTG repeats. 
The deletions observed are plotted as percentage of the tract deleted against the 
number of times the particular deletions were observed. 
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Figure 8.4: Distributions of expansion sizes in a rep mutant containing 

CAGCTG repeats. 
The expansions observed are plotted as percentage of the tract expanded against 
the number of times the particular expansions were observed. 
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Figure 8.5: Instability Proportions for recF, uvrD and recF uvrD mutants 
containing (CTG)95  repeats 
Each bar represents the proportion of instability (pooled data of two independent 
assays - 480 clones). The error bars show 95% confidence intervals. 

8.2.7 Large deletions predominate over small deletions in a uvrD mutant in 

GAG orientation 

Figure 8.6 shows the distributions of repeat sizes deletions observed in both 

orientations of the repeat tracts. CAG orientation displays a pattern of large deletions 

with skewness in negative direction with a median of 60%. The CTG distribution 

shows a slight positive skewness with a median of 46% in contrast to negatively 

skewed distribution in wild type. This suggests that the absence of UvrD affects the 

nature of the precursor intermediates of instability in CTG orientation along with their 

processing to new products with altered repeat length. 
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8.3 Discussion 

The roles of Rep and UvrD helicases in CAGCTG repeat instability were studied. 

CTG repeats were destabilized in a rep mutant while a mutation in uvrD affects 

instability in both repeat orientations. 
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8.3.1 rep mutation destabilises CAG-CTG repeats when the CTG repeat tract is 

on the leading strand template 

The work demonstrates that a mutation in Rep helicase affects CAGCTG repeat 

instability depending upon the repeat orientation with respect to the direction of 

replication. The orientation, where CTG repeats were on the leading strand template, 

was significantly destabilised as compared to wild type while no significant difference 

in instability was observed when CAG repeats were on the leading strand template. 

In a rep mutant, the replication fork progresses two times slower than in wild 

type (Lane and Denhardt, 1975). It has been shown that (CTG)n  hairpins are more 

stable than (CAG) hairpins (Petruska et al., 1996). The data in this study suggest that 

in a rep mutant, pausing is more frequent when stable structure forming CTG repeats 

are on the leading strand template. Such frequent pausing gives rise to frequent 

slippage and more small deletions as evident from the CTG repeat deletion pattern. 

The rep mutation does not affect either the frequency of CAG repeat 

instability or the repeat deletion distribution, suggesting no contribution of Rep 

helicase to the deletion events involved in CAG repeat instability. Repeats are 

difficult sequences for DNA polymerase to copy as experienced from difficulties in 

amplification of longer sequences by PCR and in vitro studies have shown that 

CAG-CTG repeats cause length dependent pausing by bacterial and phage 

polymerases (Kang et al., 1995b; Ohshima and Wells, 1997). The model proposed in 

this study (Figure 8.7) suggests that in the absence of Rep helicase replication pausing 

causes the slow progression of the fork. The leading and lagging strand polymerases 

can become uncoupled while allowing the synthesis of lagging strand. This will 

generate gaps on the leading strand template. It has been shown that Rep helicase 
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unwinds the nascent lagging strand, to provide a "landing pad" for PriC to load DnaB 

to restart replication (Heller and Marians, 2005). Absence of Rep will permit the 

longer persistence of gaps on the leading strand template, which can fold and be 

deleted when CTG repeats are on the leading strand template (Figure 8.7). 

The absence of effect of the rep mutation on CAG repeats suggest that either 

frequent pausing does not happen with CAG repeats on the leading strand template or 

the gaps created do not fold into a stable structure since CAG repeats form less stable 

hairpins and replication continues as it would in a rep mutant irrespective of repeated 

sequence or not (Figure 8.6). 

8.3.2 rep mutation generates expansions in both orientations of CAG-CTG 

repeats 

Mutation of the rep helicase gives rise to an increase in the frequency of expansions 

in both orientations of repeat tract, which are supposed to arise from a structure 

formed on the nascent lagging strand. According to the traditional replication slippage 

model (discussed in Chapter 1), expansions are preferred when CTG repeats are on 

the nascent leading strand. Since, in this study, both orientations show expansions 

with CAG repeats giving larger expansions, the traditional model based on hairpin 

stabilities cannot be applied to explain this scenario. So the question was what would 

drive the formation of a hairpin on one of the nascent strands in both orientations? 

Previously, work done in this laboratory (Darlow and Leach, unpublished) 

suggested the phenomenon of micro-folding in dsDNA. A plaque area assay was 

carried out on (CAGCTG)13  cloned in the centre of a 462 bp palindrome in both 

orientations and no difference in the two orientations was observed (Darlow and 
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Leach, 1998). This finding of orientation-independent micro-folding led them to 

suggest that dsDNA can unfold and refold and micro-folding reactions are possible in 

vivo within double-stranded repeat sequences. Based on this work, they proposed a 

model for the growth of a quasi-hairpin arising from the small bulges arriving from 

one side of the double-strand (Figure 8.8). It has been shown that di- and trinucleotide 

repeated DNA could be synthesized starting from short complementary primers, 

based on polymerase slippage (Schlotterer and Tautz, 1992). It was concluded that 

after melting of 3'end from its template and reannealing, the little bulge behind could 

move along the nascent strand and come off at the other end. So, a hairpin might also 

grow in length by accumulating the ripples coming from one end (Harvey, 1997). 

The hairpin growth model suggested by Darlow and Leach (unpublished) 

provides an explanation for the expansions seen in CAG-CTG repeats in a rep mutant. 

Based on this model, Figure 8.9 shows that in a rep mutant, a small bulge arising from 

the end of a nascent lagging strand can move towards the end of the repeat tract, 

creating a hairpin. Such creation of a hairpin is independent of the sequence of the 

repeat tract, as the free end in both orientations would have equal chances to create a 

bulge, eventually ending up in a hairpin that will generate expansion of the tract. The 

observations of bigger expansions in the CAG orientation suggests that bulges 

generated in this orientation might be able to travel faster than the bulges in the CTG 

orientation. Another suggestion is that the CTG hairpin once created might hinder the 

further movement of bulges. But it seems unlikely considering the model (Figure 8.8), 

where a bulge becomes part of an existing hairpin. So, it is proposed that CAG repeats 

give bigger expansions because the bulges generated can move faster or they are 

created faster in this orientation. 
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Since, SbcCD can cleave the hairpin structures (Connelly et al., 1999), a 

double mutant rep sbcCD was tested in the CTG orientation with the hypothesis that 

expansions would increase, if SbcCD happens to cleave the hairpins started by small 

bulges. No increase in expansions was observed in the double mutant suggesting that 

SbcCD does not cleave these hairpins either because of their size or conformation. 

Furthermore, SbcCD was also shown to have no role in DSB formation in rep mutant 

(Michel et al., 1997). 

8.3.3 uvrD mutation destabilizes both CAG and CTG repeats 

Both CAG and CTG repeats were destabilised in a uvrD mutant, which 

suggested a role of UvrD helicase in repeat stability. UvrD helicase acts at gaps 

created by the action of mismatch and nucleotide excision repair processes and has 

also been shown to be essential for fork reversal in Pol III replication mutants (Flores 

et al., 2004). So, UvrD could stabilize repeats by its activity during repair processes or 

by reversing the fork. The work carried out in this laboratory by John Blackwood 

suggests that RFR occurs with CTG repeats on the leading strand template but not in 

the opposite orientation i.e. CAG on the leading strand template. In Chapter 6, it was 

demonstrated that an "MMR-like" process might have a stabilizing role in an sbcCD 

mutant in the CAG orientation. The destabilization of CAG repeats in uvrD mutant 

might also be the same effect as of mutS mutant. It is proposed that uvrD mutant 

being deficient in "MMR-like" repair process gives license to MutL and MutH for the 

removal of MutS and cleavage of hairpins by SbcCD, hence leading to instability in 

the CAG orientation. 

129 



Chapter 8: Rep and UvrD Helicases: Implications in Repeat Instability 

In this study, the increase in CTG repeat instability by uvrD mutation was 

found to be dependent on RecF (Figure 8.4). Michel and colleagues have shown that 

uvrD mutations enhance tandem repeat deletion via SOS induction of a RecF 

recombination pathway (Bierne et al., 1997) and RecF, RuvAB and RecQ are required 

for more than 90% of the deletion events. The authors propose that in uvrD mutants, 

the final gap fillings during mismatch and nucleotide excision repair pathways require 

an alternative helicase. They suggest that RecQ can functionally replace UvrD as the 

alternative helicase. SOS is induced in uvrD mutants, which would allow the 

production of an increased quantity of RecQ, which will initiate RecF mediated 

recombination. Whether the same events are involved in the CTG repeat instability 

was not tested in this study but this effect of reeF in a uvrD mutant favours a role of 

UvrD in RFR for CTG repeat stability. 

The observations of uvrD recF mutant are consistent with the proposal that 

CTG repeat instability is increased in a uvrD mutant because replication fork reversal 

cannot be carried out in this mutant. UvrD was shown to be essential for replication 

fork reversal in Polymerase III dnaEts and dnaNts mutants (Flores et al., 2004). It is 

speculated that in these mutants, when UvrD is not present, RecFOR can prevent the 

replication fork reversal by forming RecA filaments on the lagging strand template. 

UvrD can remove RecA from single-stranded DNA (Veaute et al., 2005) like its yeast 

orthologue Srs2 helicase (Krejci et al., 2003; Veaute et al., 2003). By removing the 

toxic RecA filaments form the fork, UvrD facilitates the fork reversal reaction (Flores 

et al., 2005). So, it is suggested here that in wild type cells, fork reversal may 

contribute to repeat stability. A mutation in recF allows the fork to be reversed, as 

there will be no blocking recA filaments loaded onto the lagging strand so fork could 
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be reversed without needing UvrD, giving a decrease in instability in the uvrD recF 

mutant. 

Though the previous work done in this laboratory seems to suggest that RFR 

does not contribute in CAG repeat stability, it cannot be fully ruled out. It is 

speculated that some fork reversal might be happening in this orientation too. That 

would be clear by some further work, which is discussed in Chapter 9. 

8.3.4 Interplay of Rep and UvrD helicases in CAGCTG repeat instability 

Both Rep and UvrD helicases share 40% amino acid homology but differ in their 

functions. Where much is known about UvrD, the role of Rep is still not well 

understood. The in vivo role of UvrD is to prevent homologous recombination as 

opposed to Rep helicase, which participates in replication (Veaute et al., 2005). 

Though our understanding about the role of these helicases is still lacking, their 

effects on repeat instability provide new understanding of mechanism of repeat 

instability. Where Rep utilizes its helicase function during replication, UvrD 

participates in both repair and replication to maintain the repeats stable. 
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- CAG 
- CTG 

Figure 8.7: Dynamics of replication fork pausing at CAG-CTG repeats in a rep 
mutant 
(A) Replication pauses at CTG repeats while lagging strand synthesis continues 
(1A). Absence of Rep helicase permits a leading strand gap to persist for longer, 
which can fold into a hairpin (2A) resulting in deletion event. (B) Replication may or 
may not pause at CAG repeats. If it pauses, the lack of Rep will create a leading 
strand gap (113). The gap does not fold and replication progresses slowly through 
(213). So the deletions happening in a CAG rep mutant are associated with structures 
being formed on lagging strand as in wild type. 

132 



Chapter 8: Rep and UvrD Helicases: Implications in Repeat Instability 

T 

T T 

C T G C T G C T G C T G 
I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 

G A C G A C G A C G A C 

ii 
T T 
C--C 
G- -C
T T 
C--C 
G- -C 
T T 

L-ICT_  
C T G C T G C T G C T G 
I 	I 	I 	I 	I 	I 	I 	I 	I 
G A C GACGACGAC 

7 JiH 
-Ix'---- 

C T G C T G C T G C T G 
I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 
G A C G A C G A C G A C 

IV 
T 
C - - 
G- - C 
T T 
C - -C 
G--C 
T TCT 

- C--G C 
C T G C T G C T G C T G 
I 	I 	I 	I 	I 	I 	I 	I 
G A C GACGACGAC 

V 

G--C T r 

T T  
C--G 
G--C :  
T T 

-C--G 
C T G C T G C T G C T G 

I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 
G A C G A C G A C G A C 

VI 

C C 
T 1 
C-_' -G 
G- - C 
T T 
C---G 
G--C 
T 'r 

- C--C 
C T G C T G C T G C T G 

==> I I I I 
G A C G A C G A C G A C 

Figure 8.8: Possible mechanism for the formation of a quasi-hairpin of TNRs by 
accumulation of bulges (Darlow and Leach, Unpublished) 
Local melting of a very short sequence within TNRs generates a small bulge (i), 
which travels on by breaking of one hydrogen bond behind and formation of next (ii-
v). The bulge becomes part of the hairpin (if already present as shown in (i)) when it 
reaches its tip (vi) or stays till the end of repeat tract and a new bulge can start from 
the free end again. This movement of bulges would be iso-energetic, since the same 
number of bases remains unpaired throughout migration. 
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- CAG 

- CTG 

Figure 8.9: Model for expansions of CAG-CTG repeats in a rep mutant 
A small bulge can arise at the free end the nascent lagging strand in both 
orientations - (A) CTG on the leading strand template, (B) CAG on the leading strand 
template (1). This bulge can travel along the tract until it reaches the end of the 
repeat tract, where it can end in a small hairpin structure (2). The continuous creation 
of bulges at the free end and travelling towards the end of repeat tract would give rise 
to a hairpin. In the figure, only CTG tract has been shown forming the hairpin. The 
dynamics would be the same for CAG repeat tract but it is suggested that the 
movement of bulges would be faster with CAG repeats. 
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CHAPTER 9 

CONCLUDING REMARKS 

9.1 Summary of work presented in this thesis 

This work presents a novel investigation of CAGCTG repeat instability in the E. coli 

chromosome. E. coli enjoys the reputation of a simple standard model because of the 

detailed understanding of its genetic and biochemical pathways. This study has 

revealed new paradigms of instability, which have previously been complicated by 

limitations of plasmid-based studies. 

First, a library of uninterrupted CAGCTG repeats was generated using a 

polymerisation independent strategy developed in this work. The repeat sequences of 

various lengths were integrated in the 5' end of the lacZ gene in the E. coli 

chromosome and instability was studied by measuring the lengths of repeat tracts 

using polyacrylamide electrophoresis based separation following PCR amplification. 

CAGCTG repeat instability increases with increasing repeat length and is 

orientation dependent with CAG repeats being more unstable when on the leading 

strand template. Further investigations suggest that the instability is mainly associated 

with replication and is provoked by the processing of slippage intermediates during 

replication. 

SbcCD nuclease processes hairpin structures on the lagging strand template in 

the CAG orientation and orientation dependent instability observed in wild type cells 

is lost in DNA polymerase III proofreading (dnaQ) mutants. This suggests that 
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efficient proofreading of the lagging strand template determines orientation 

dependence of CAG-CTG repeat instability in the presence of SbcCD nuclease. 

No significant role of recombination genes recA, recB, recF, ruvAC, recG and 

dimer resolution genes xer and dif is observed. The mismatch repair proteins play a 

role in the processing of intermediates during replication in the CAG orientation. It is 

suggested that MutS stabilizes CAG repeats by initiating a "repair" process and 

protecting the hairpins from cleavage by SbcCD. The presence of MutL and MutH 

cause MutS to cycle off the DNA, which allows SbcCD to access the hairpins. 

Furthermore, nucleotide excision repair process is not involved in CTG repeat 

instability as no effect of mutations in uvrA, uvrB and uvrC is observed. 

Transcription does not influence repeat instability in wild type cells or any 

mutant studied in this work. A mutation in the mfd gene also does not affect the 

instability. CAG-CTG repeats influence the yield of 3-galactosidase in an orientation 

dependent manner. f3-galactosidase is formed but at reduced level when containing a 

CAG tract (poly-glutamine stretch). The presence of CTG repeats (poly-leucine 

stretch) does not produce any detectable 3-galactosidase as observed by Western 

blotting. 

A mutation in the gene encoding replicative helicase, Rep, destabilizes CTG 

repeats and rep mutants generate small expansions in both repeat orientations. The 

repair helicase, UvrD, affects instability in both orientations and RecF is essential for 

CTG repeat instability in the uvrD mutant. The results suggest the involvement of 

replication fork reversal reaction in maintaining repeat stability. 
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9.2 Advances made in this work 

This study describes a novel system to study CAGCTG repeat instability in 

the E. coli chromosome, which is a clear system with no complications associated 

with plasmid systems. This has revealed new and profound findings giving new 

directions to our classical ways of thinking about instability events. 

The work demonstrates that the instability of these repeats is mainly 

associated with DNA synthesis, primarily caused by the processing of slippage 

intermediates. The absence of effects of transcription and recombination further 

favours the instability to be of replicative nature. 

Both in bacteria and yeast, the instability has been documented to be an 

orientation dependent phenomenon (Freudenreich et al., 1997; Kang et al., 1995a; 

Maurer et al., 1996; Miret et al., 1998) but the molecular mechanism of this 

dependence was never investigated. So far, the bulk of the literature had relied on the 

traditional replication slippage model (discussed in Chapter 1), which actually does 

not explain the instability bias observed in these model systems. This study, for the 

first time, has provided an understanding of the molecular mechanism of this 

orientation dependence, which is a significant contribution in our endeavours to 

understand the mechanism(s) of instability. The work demonstrates that this 

orientation dependent instability is a consequence of the processing of slippage 

intermediates during replication or repair associated DNA synthesis and is interplay 

of proofreading (DnaQ), hairpin nuclease (SbcCD), mismatch repair proteins and 

helicases. The CTG orientation is stable because it is efficiently proofread and the 

fork reversal reaction seems to operate in this orientation to maintain repeats stable. In 

contrast, proofreading is inefficient in the CAG orientation, which also faces another 
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route of deletion mediated by MutL and MutH proteins, involving SbcCD nuclease. 

Furthermore, replication fork reversal does not seem to happen in this orientation. 

This study also demonstrates that bigger expansions occur when CAG repeats 

are on the leading strand template that again brings the replication slippage model in 

question. According to the traditional model, expansions are likely to happen when 

CTG repeats are on the nascent lagging strand. The observations made in this work 

that expansions happen in both orientations and are bigger when CAG repeats are on 

the nascent lagging strand requires an alternative explanation. This study suggests a 

model for expansions, which is sequence independent and attempts to explain the 

events that might be generating expansions in both orientations. 

The deletion length distributions observed imply that secondary structures are 

intermediates in instability pathway(s) and their processing is influenced by their 

differential stabilities, which eventually determine the orientation dependence. The 

CAG orientation would have stable structures on the lagging strand template, which 

would persist for long as compared to unstable structures in the CTG orientation. 

This work also raises the possibility of a "mismatch repair" process, which 

differs from the classical one. This seems to be occurring during DNA synthesis and 

is being promoted by the binding of MutS to the hairpin structure. 

Furthermore, this work highlights the role of helicases influencing repeat 

instability. It suggests the existence of a new class of instability events that might be 

generated because of the action of helicases on the fork. This further brings 

replication into light and strengthens the stance that the CAG-CTG repeat instability 

in the E. coli chromosome revolves around replication. 
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9.2 Future directions 

This study of CAGCTG repeat instability in the E. coil chromosome has addressed 

many areas but still many aspects remain uncovered. The study leaves several 

questions that can be looked at in future. 

In this work a polymerisation independent strategy was developed to build 

long repeat sequences in a plasmid that can eventually be used to integrate sequences 

in the E. coli chromosome. The method was used mainly to build CAGCTG repeats, 

which were the focus of this study but the construction of other tn, tetra and 

pentanucleotide sequences was also initiated. A TNR sequence CCGCGG was built 

to a length of 8, a pentanucleotide, ATTCTAGAAT involved in SCA1O was 

successfully introduced in the plasmid while an attempt was also made for the 

tetranucleotide, CCTGCAGG involved in myotonic dystrophy type 2. So, this 

method can essentially be applied to build any repeat sequence. Various lengths of 

sequence of choice can be built and their behaviour can be studied in this 

chromosomal system. 

In this work, a CTG repeat containing strain was found to have the potential to 

expand and expanded lengths of up to 184 were collected, which could not be studied 

because of the detection limit of the size standard used in GeneMapper® analysis. A 

GeneScanTMRoxTM25OO Rox standard, advised by ABI customer support, was tried 

but was found to be incompatible with the settings of ABI genetic analyser. Designing 

a size standard with bigger fragments labelled with different dyes might be helpful in 

the analysis of these longer lengths. A study of these longer repeat lengths might give 

more expanded lengths and reveal alternative pathways, which may involve 

recombination responsible for instability at longer lengths. 
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In the past, small slippages of plasmid born TNRs have been observed in 

MMR mutants (Schmidt et al., 2000). In this work, most of the deletions observed are 

of large sizes. This raises the question whether small slippages happen in the 

chromosome and if they happen, is there any other route to correct them? One 

candidate is the proofreading function of the DNA polymerase. Investigating a double 

mutant of MMR and proofreading may provide an answer to this. 

In this study, the role of the NER pathway was analysed only in the CTG 

orientation so an analysis of this pathway in the CAG orientation would be helpful in 

understanding the role of this repair process in instability. It would be of interest since 

the CAG orientation shows a predominance of larger deletions, consistent with the 

formation of large loops and NER might be involved in processing of these large 

loops. Furthermore, a complete analysis of both orientations in a chromosomal 

system, free from the artefacts of plasmid systems, would clarify the conflicts in the 

literature. 

Two helicases, Rep and UvrD, significantly affected instability and RecF was 

found to be essential for instability in the uvrD mutant as shown previously for 

tandem repeats (Bierne et al., 1997). They attributed this effect of RecF to the 

overproduction of RecQ in uvrD mutants. Investigating this effect of RecF in a uvrD 

mutant containing CAG repeats would be interesting to compare both orientations and 

would also allow us to have a better understanding of whether RFR happens in this 

orientation or not. Furthermore, studying the role of RecQ helicase in instability 

would explore whether this third helicase is involved in CAGCTG repeat instability 

and whether the instability pathway(s) involve the same events observed by Bierne et 

al. (1997). 
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In this work, the role of recG was investigated only in the CTG orientation so 

investigating this helicase in the CAG orientation would be interesting, considering 

the involvement of helicases in repeat instability observed in this study. Similarly, 

studying the effect of ruvAC mutation in the CAG orientation would give us a clear 

understanding of the events involved in both repeat orientations. 

Furthermore, this study demonstrated that lacZ containing CTG repeats 

encodes a non-functional or non-existent 3-galactosidase as observed from the 

absence of protein on Western blot and a white phenotype on media containing X-gal 

and IPTG. So it would be interesting to investigate why is the protein not made or 

quickly degraded. 

9.3 Outlook on TNRs research 

Research in the field of TNRs over the past fifteen years has provided significant 

understanding of the molecular mechanisms involved in genetic instability but 

unravelling the mysteries of repeat instability has been complicated. Where many 

findings of the involvement of repair, replication, transcription and repair-mediated 

events have been reported, the inter-relationship of these processes is yet to be 

established. 

A wide range of model systems, with their strengths and limitations has been 

unable to recapitulate the instability seen in humans, which leave us with the question 

of whether there is a suitable model system for this repeat expansion phenomenon, 

predicting that this is a human specific process. Though E. coli is a well-defined 

model, its limitations are that its cellular processes have not evolved to manage long 

trinucleotide repeat sequences, which tend to delete in this organism. Despite its 
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shortcomings, it has been employed in studying trinucleotide repeat instability. But, 

previously this simple model was not used efficiently because of the lack of a 

controlled chromosomal system. The system developed in this work is better 

controlled and it is hoped that findings will be more easily correlated with systems in 

eukaryotes. 

This study raises a possibility that proofreading during DNA synthesis might 

contribute to repeat stability in humans. E. coli DnaQ shares sequence homology with 

the human DNA editing enzyme DNase Ill/TREX1 (Hoss et al., 1999). Mutations in 

the gene encoding TREX1 cause human Aicardi-Goutieres Syndrome, which is a 

genetically determined encephalopathy at the AGS] locus (Crow et al., 2006). The 

enzyme is present in equal amounts in proliferating and non-proliferating cells, 

suggesting that its editing function is involved in both replication and repair 

associated DNA synthesis. Therefore, it is plausible that efficient proofreading during 

replication and repair in human cells may contribute to repeat stability. Though 

Aicardi-Goutieres Syndrome is a recessive disorder and does not involve a repeat 

expansion process, it manifests brain atrophy and loss of white matter and it is 

plausible that repeat expansion disease process may involve the same defects of 

proofreading leading to neurodegeneration. 

Since the discovery of this dynamic mutation process, all investigators have 

agreed on the formation of non B-DNA structures in vitro and their involvement in 

instability has been seriously debated. This study advances the evidence for the 

formation of hairpins in vivo as evident from the deletion size distributions observed. 

This further opens ways into how these mutagenic intermediates might be formed 

(discussed in next paragraph). However, we still need to know about their formation 

in vivo in eukaryotic cells. 
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The complex pattern of repeat instability observed between different disease 

loci and between tissues of the same patient suggests that instability might not be 

determined by the location or direction of replication origin as per our conventional 

thoughts. A fork-shift model (discussed in Chapter 1) proposed by Cleary and 

Pearson, (2005) suggests that the cis-elements within or flanking the repeat tracts may 

alter the dynamics of the advancing replication fork to produce instability. Although 

this proposal is a good attempt to explain the numerous differences among different 

TREDs and different tissues, it takes into account only cis-elements, the sequence of 

the repeat tract or the portion of the sequence in the Okazaki initiation zone ignoring 

the possibility of trans-acting factors that might influence this fork shift model. This 

work possibly explains such dynamics of the fork bringing in cis- and trans-factors. 

Since the instability is replication oriented, it is suggested that most of the instability 

events would be happening at the fork. It takes into account the action of helicases, 

which might determine both the formation of a mutagenic intermediate and the 

portion of repeats going into the Okazaki initiation zone. The observations in this 

study favour these possibilities. The absence of Rep and UvrD helicase elevates CTG 

repeat instability suggesting that helicase activity is involved in maintaining stable 

repeats. RecG also changes the sizes of deletions suggesting its involvement in 

determining the formation of instability intermediates. The proposal is that the 

helicase action avoids the formation of mutagenic intermediates in this orientation. In 

yeast, Srs 2 helicase (orthologue of UvrD) has been shown to block expansions in 

vivo (Bhattacharyya and Lahue, 2004) and it also selectively unwinds triplet repeat 

DNA (Bhattacharyya and Lahue, 2005). So, integrating the role of helicases along 

with the Rad50/Mrel 1 complex might provide an answer to one of the outstanding 
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questions in TNRs research. How are the mutagenic intermediates formed and how 

are they subsequently handled in the light of fork dynamics during replication? 

A long-term goal in the field of repeat instability is to come up with clinical 

benefits but there are many steps to cross before reaching clinical targets. Aspects of 

mismatch repair appears to be required for expansions in mouse model systems 

(Manley et al., 1999; Savouret et al., 2003) SO determining their role in proliferative 

and non-proliferative tissues would be an interesting advance. Locus specific factors 

that influence instability need to be determined. The tissue specific and germline 

instability with the pattern and timing of instability remains to be known. Since, each 

repeat sequence and disease locus exhibits different patterns of instability in humans 

and in model system, it will take a significant amount of time and research to reveal 

the mechanism(s) responsible for instability. 

Despite our failings and limitations, the field is gaining interest due to its 

clinical implications and we should be optimistic for fruitful advances. 

144 



Bibliography 

BIBLIOGRAPHY 

Allen, D. J., Makhov, A., Grilley, M., Taylor, J., Thresher, R., Modrich, P. 

and Griffith, J. D. (1997). MutS mediates heteroduplex loop formation by a 

translocation mechanism. Embo J 16, 4467-76. 

Anderson, D. G. and Kowalczykowski, S. C. (1997). The translocating 

RecBCD enzyme stimulates recombination by directing RecA protein onto ssDNA in 

a chi-regulated manner. Cell 90, 77-86. 

Balakumaran, B. S., Freudenreich, C. H. and Zakian, V. A. (2000). 

CGG/CCG repeats exhibit orientation-dependent instability and orientation-

independent fragility in Saccharomyces cerevisiae. Hum Mol Genet 9, 93-100. 

Bayliss, C. D., Dixon, K. M. and Moxon, E. R. (2004). Simple sequence 

repeats (microsatellites): mutational mechanisms and contributions to bacterial 

pathogenesis. A meeting review. FEMS Immunol Med Microbiol 40, 11-9. 

Bayliss, C. D., Field, D. and Moxon, E. R. (2001). The simple sequence 

contingency loci of Haemophilus influenzae and Neisseria meningitidis. J Clin Invest 

107, 657-62. 

Bhattacharyya, S. and Lahue, R. S. (2004). Saccharomyces cerevisiae Srs2 

DNA helicase selectively blocks expansions of trinucleotide repeats. Mo! Cell Rio! 

24, 7324-30. 

Bhattacharyya, S. and Lahue, R. S. (2005). Srs2 helicase of Saccharomyces 

cerevisiae selectively unwinds triplet repeat DNA. JBiol Chem 280, 33311-7. 

Bichara, M., Pinet, I., Schumacher, S. and Fuchs, R. P. (2000). 

Mechanisms of dinucleotide repeat instability in Escherichia coli. Genetics 154, 533-

42 

145 



Bibliography 

Bierne, H., Ehrlich, S. D. and Michel, B. (1995). Competition between 

parental and recombinant plasmids affects the measure of recombination frequencies. 

Piasrnid33, 101-12. 

Bierne, H., Seigneur, M., Ehrlich, S. D. and Michel, B. (1997). uvrD 

mutations enhance tandem repeat deletion in the Escherichia coli chromosome via 

SOS induction of the RecF recombination pathway. MolMicrobiol 26, 557-67. 

Blakely, G., Colloms, S., May, G., Burke, M. and Sherratt, D. (1991). 

Escherichia coli XerC recombinase is required for chromosomal segregation at cell 

division. New Biol 3, 789-98. 

Bowater, R. P., Jaworski, A., Larson, J. E., Parniewski, P. and Wells, R. 

D. (1997). Transcription increases the deletion frequency of long CTG.CAG triplet 

repeats from plasmids in Escherichia coli. Nucleic Acids Res 25, 2861-8. 

Bowater, R. P., Rosche, W. A., Jaworski, A., Sinden, R. R. and Wells, R. 

D. (1996). Relationship between Escherichia coli growth and deletions of CTG.CAG 

triplet repeats in plasmids. JMol Biol 264, 82-96. 

Bowcock, A. M., Ruiz-Linares, A., Tomfohrde, J., Minch, E., Kidd, J. R. 

and Cavalli-Sforza, L. L. (1994). High resolution of human evolutionary trees with 

polymorphic micro satellites. Nature 368, 455-7. 

Brook, J. D., McCurrach, M. E., Harley, H. G., Buckler, A. J., Church, 

D., Aburatani, H., Hunter, K., Stanton, V. P., Thirion, J. P., Hudson, T. et al. 

(1992). Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) 

repeat at the 3' end of a transcript encoding a protein kinase family member. Cell 68, 

Bruford, M. W. and Wayne, R. K. (1993). Microsatellites and their 

application to population genetic studies. Curr Opin Genet Dev 3, 939-43. 

146 



Bibliography 

Brunham, R. C., Plummer, F. A. and Stephens, R. S. (1993). Bacterial 

antigenic variation, host immune response, and pathogen-host coevolution. Infect 

Immun 61, 2273-6. 

Bzymek, M. and Lovett, S. T. (2001). Evidence for two mechanisms of 

palindrome-stimulated deletion in Escherichia coli: single-strand annealing and 

replication slipped mispairing. Genetics 158, 527-40. 

Bzymek, M., Saveson, C. J., Feschenko, V. V. and Lovett, S. T. (1999). 

Slipped misalignment mechanisms of deletion formation: in vivo susceptibility to 

nucleases. JBacteriol 181, 477-82. 

Campuzano, V., Montermini, L., Lutz, Y., Cova, L., Hindelang, C., 

Jiralerspong, S., Trottier, Y., Kish, S. J., Faucheux, B., Trouillas, P. et al. (1997). 

Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial 

membranes. Hum Mol Genet 6, 1771-80. 

Campuzano, V., Montermini, L., Motto, M. D., Pianese, L., Cossee, M., 

Cavalcanti, F., Monros, E., Rodius, F., Ductos, F., Monticetti, A. et al. (1996). 

Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet 

repeat expansion. Science 271, 1423-7. 

Chong, S. S., McCall, A. E., Cota, J., Subramony, S. H., Orr, H. T., 

Hughes, M. R. and Zoghbi, H. Y. (1995). Gametic and somatic tissue-specific 

heterogeneity of the expanded SCA1 CAG repeat in spinocerebellar ataxia type 1. Nat 

Genet 10, 344-50. 

Choong, C. S., Kemppainen, J. A., Zhou, Z. X. and Wilson, E. M. (1996). 

Reduced androgen receptor gene expression with first exon CAG repeat expansion. 

Mo! Endocrinol 10, 1527-35. 

147 



Bibliography 

Cleary, J. D., Nichol, K., Wang, Y. H. and Pearson, C. E. (2002). Evidence 

of cis-acting factors in replication-mediated trinucleotide repeat instability in primate 

cells. Nat Genet 31, 37-46. 

Cleary, J. D. and Pearson, C. E. (2003). The contribution of cis-elements to 

disease-associated repeat instability: clinical and experimental evidence. Cytogenet 

Genome Res 100, 25-55. 

Cleary, J. D. and Pearson, C. E. (2005). Replication fork dynamics and 

dynamic mutations: the fork-shift model of repeat instability. Trends Genet 21, 272- 

Connelly, J. C., de Lean, E. S. and Leach, D. R. (1999). DNA cleavage and 

degradation by the SbcCD protein complex from Escherichia coli. Nucleic Acids Res 

27, 1039-46. 

Connelly, J. C., de Lean, E. S., Okely, E. A. and Leach, D. R. (1997). 

Overexpression, purification, and characterization of the SbcCD protein from 

Escherichia coli. JBiol Chem 272, 19819-26. 

Connelly, J. C., Kirkham, L. A. and Leach, D. R. (1998). The SbcCD 

nuclease of Escherichia coli is a structural maintenance of chromosomes (SMC) 

family protein that cleaves hairpin DNA. Proc Nat! Acad Sci US A 95, 7969-74. 

Connelly, J. C. and Leach, D. R. (1996). The sbcC and sbcD genes of 

Escherichia coli encode a nuclease involved in palindrome inviability and genetic 

recombination. Genes Cells 1, 285-91. 

Crow, Y. J., Hayward, B. E., Parmar, R., Robins, P., Leitch, A., Au, M., 

Black, D. N., van Bokhoven, H., Brunner, H. G., Hamel, B. C. et al. (2006). 

Mutations in the gene encoding the 3'-5 DNA exonuclease TREX1 cause Aicardi-

Goutieres syndrome at the AGS 1 locus. Nat Genet 38, 917-20. 



Bibliography 

Cummings, C. J. and Zoghbi, H. Y. (2000). Fourteen and counting: 

unraveling trinucleotide repeat diseases. Hum Mol Genet 9, 909-16. 

Darlow, J. M. and Leach, D. R. (1998). Evidence for two preferred hairpin 

folding patterns in d(CGG).d(CCG) repeat tracts in vivo. JMo1 Biol 275, 17-23. 

Dib, C., Faure, S., Fizames, C., Samson, D., Drouot, N., Vignal, A., 

Millasseau, P., Marc, S., Hazan, J., Seboun, E. et al. (1996). A comprehensive 

genetic map of the human genome based on 5,264 micro satellites. Nature 380, 152-4. 

Dixon, D. A. and Kowalczykowski, S. C. (1993). The recombination hotspot 

chi is a regulatory sequence that acts by attenuating the nuclease activity of the B. coli 

RecBCD enzyme. Cell 73, 87-96. 

Donaldson, J. R., Courcelle, C. T. and Courcelle, J. (2004). RuvAB and 

RecG are not essential for the recovery of DNA synthesis following UV-induced 

DNA damage in Escherichia coli. Genetics 166, 1631-40. 

Drake, J. W. (1991). A constant rate of spontaneous mutation in DNA-based 

microbes. Proc NatlAcad Sci USA 88, 7160-4. 

Eberhart, D. E. and Warren, S. T. (1996). Nuclease sensitivity of 

permeabilized cells confirms altered chromatin formation at the fragile X locus. 

Somat Cell Mol Genet 22, 435-41. 

Flores, M. J., Bidnenko, V. and Michel, B. (2004). The DNA repair helicase 

UvrD is essential for replication fork reversal in replication mutants. EMBO Rep 5, 

Flores, M. J., Bierne, H., Ehrlich, S. D. and Michel, B. (2001). Impairment 

of lagging strand synthesis triggers the formation of a RuvABC substrate at 

replication forks. Embo J20, 619-29. 

149 



Bibliography 

Flores, M. J., Sanchez, N. and Michel, B. (2005). A fork-clearing role for 

UvrD. Mo! Microbiol 57, 1664-75. 

Fojtik, P. and Vorlickova, M. (2001). The fragile X chromosome (GCC) 

repeat folds into a DNA tetraplex at neutral pH. Nucleic Acids Res 29, 4684-90. 

French, S. (1992). Consequences of replication fork movement through 

transcription units in vivo. Science 258, 1362-5. 

Freudenreich, C. H., Kantrow, S. M. and Zakian, V. A. (1998). Expansion 

and length-dependent fragility of CTG repeats in yeast. Science 279, 853-6. 

Freudenreich, C. H., Stavenhagen, J. B. and Zakian, V. A. (1997). Stability 

of a CTG/CAG trinucleotide repeat in yeast is dependent on its orientation in the 

genorne. Mo! Cell Rio! 17, 2090-8. 

Fried, M. G. and Crothers, D. M. (1983). CAP and RNA polymerase 

interactions with the lac promoter: binding stoichiometry and long range effects. 

Nucleic Acids Res 11, 141-58. 

Fu, Y. H., Kuhl, D. P., Pizzuti, A., Pieretti, M., Sutcliffe, J. S., Richards, 

S., Verkerk, A. J., Holden, J. J., Fenwick, R. G., Jr., Warren, S. T. et al. (1991). 

Variation of the CGG repeat at the fragile X site results in genetic instability: 

resolution of the Sherman paradox. Cell 67, 1047-58. 

Gacy, A. M., Goeliner, G., Juranic, N., Macura, S. and McMurray, C. T. 

(1995). Trinucleotide repeats that expand in human disease form hairpin structures in 

vitro. Cell 81, 533-40. 

Gacy, A. M., Goeliner, G. M., Spiro, C., Chen, X., Gupta, G., Bradbury, 

E. M., Dyer, R. B., Mikesell, M. J., Yao, J. Z., Johnson, A. J. et al. (1998). GAA 

instability in Friedreich's Ataxia shares a common, DNA-directed and intraallelic 

mechanism with other trinucleotide diseases. Mo! Cell 1, 583-93. 

150 



Bibliography 

Gacy, A. M. and McMurray, C. T. (1998). Influence of hairpins on template 

reannealing at trinucleotide repeat duplexes: a model for slipped DNA. Biochemistry 

37, 9426-34. 

Geuskens, V., Vogel, J. L., Grimaud, R., Desmet, L., Higgins, N. P. and 

Toussaint, A. (1991). Frameshift mutations in the bacteriophage Mu repressor gene 

can confer a trans-dominant virulent phenotype to the phage. JBacteriol 173, 6578- 

Grabczyk, E. and Usdin, K. (1999). Generation of microgram quantities of 

trinucleotide repeat tracts of defined length, interspersion pattern, and orientation. 

Anal Biochem 267, 241-3. 

Grilley, M., Welsh, K. M., Su, S. S. and Modrich, P. (1989). Isolation and 

characterization of the Escherichia coli mutL gene product. JBiol Chem 264, 1000-4. 

Grompone, G., Ehrlich, D. and Michel, B. (2004). Cells defective for 

replication restart undergo replication fork reversal. EMBO Rep 5, 607-12. 

Grompone, G., Seigneur, M., Ehrlich, S. D. and Michel, B. (2002). 

Replication fork reversal in DNA polymerase III mutants of Escherichia coli: a role 

for the beta clamp. Mol Microbiol 44, 1331-9. 

Hanvey, J. C., Shimizu, M. and Wells, R. D. (1988). Intramolecular DNA 

triplexes in supercoiled plasmids. Proc NatlAcad Sci USA 85, 6292-6. 

Harrington, J. J. and Lieber, M. R. (1994). The characterization of a 

mammalian DNA structure-specific endonuclease. Embo J 13, 1235-46. 

Harvey, S. C. (1997). Slipped structures in DNA triplet repeat sequences: 

entropic contributions to genetic instabilities. Biochemistry 36, 3047-9. 

151 



Bibliography 

Hashem, V. I., Klysik, K A., Rosche, W. A. and Sinden, R. R. (2002). 

Instability of repeated DNAs during transformation in Escherichia coli. Mutat Res 

502, 39-46. 

Hashem, V. I., Rosche, W. A. and Sinden, R. R. (2004). Genetic 

recombination destabilizes (CTG)n.(CAG)n repeats in E. coli. Mutat Res 554, 95-109. 

Hebert, M. L., Spitz, L. A. and Wells, R. D. (2004). DNA double-strand 

breaks induce deletion of CTG.CAG repeats in an orientation-dependent manner in 

Escherichia coli. JMo1 Biol 336, 655-72. 

Heller, R. C. and Marians, K. J. (2005). Unwinding of the nascent lagging 

strand by Rep and PriA enables the direct restart of stalled replication forks. JBiol 

Chem 280, 34143-5 1. 

Holmes, S. E., O'Hearn, E. E., McInnis, M. G., Gorelick-Feldman, D. A., 

Kleiderlein, J. J., Callahan, C., Kwak, N. G., Ingersoll-Ashworth, R. C., Sherr, 

M., Sumner, A. J. et al. (1999). Expansion of a novel CAG trinucleotide repeat in the 

5' region of PPP2R2B is associated with SCA12. Nat Genet 23, 391-2. 

Hood, D. W., Deadman, M. E., Jennings, M. P., Bisercic, M., 

Fleischmann, R. D., Venter, J. C. and Moxon, E. R. (1996). DNA repeats identify 

novel virulence genes in Haemophilus influenzae. Proc Nati Acad Sci US A 93, 

11121-5. 

loss, M., Robins, P., Naven, T. J., Pappin, D. J., Sgouros, J. and Lindahi, 

T. (1999). A human DNA editing enzyme homologous to the Escherichia coli 

DnaQ/MutD protein. EmboJl8, 3868-75. 

Iyer, R. R., Pluciennik, A., Rosche, W. A., Sinden, R. R. and Wells, R. D. 

(2000). DNA polymerase III proofreading mutants enhance the expansion and 

deletion of triplet repeat sequences in Escherichia coli. JBiol Chem 275, 2174-84. 

152 



Bibliography 

Iyer, R. R. and Wells, R. D. (1999). Expansion and deletion of triplet repeat 

sequences in Escherichia coli occur on the leading strand of DNA replication. JBiol 

Chem 274, 3865-77. 

Jakupciak, J. P. and Wells, R. D. (1999). Genetic instabilities in 

(CTG.CAG) repeats occur by recombination. JBiol Chem 274, 23468-79. 

Jakupciak, J. P. and Wells, R. D. (2000a). Gene conversion (recombination) 

mediates expansions of CTG[middle dot]CAG repeats. JBiol Chem 275, 40003-13. 

Jakupciak, J. P. and Wells, R. D. (2000b). Genetic instabilities of triplet 

repeat sequences by recombination. IUBMB Life 50, 355-9. 

Jaworski, A., Rosche, W. A., Gellibolian, R., Kang, S., Shimizu, M., 

Bowater, R. P., Sinden, R. R. and Wells, R. D. (1995). Mismatch repair in 

Escherichia coli enhances instability of (CTG)n triplet repeats from human hereditary 

diseases. Proc NatlAcad Sci USA 92, 11019-23. 

Jeffreys, A. J., Allen, M. J., Hagelberg, E. and Sonnberg, A. (1992). 

Identification of the skeletal remains of Josef Mengele by DNA analysis. Forensic Sci 

mt 56, 65-76. 

Johzuka, K. and Ogawa, H. (1995). Interaction of Mrel 1 and RadSO: two 

proteins required for DNA repair and meiosis-specific double-strand break formation 

in Saccharomyces cerevisiae. Genetics 139, 1521-32. 

Kang, S., Jaworski, A., Ohshima, K. and Wells, R. D. (1995a). Expansion 

and deletion of CTG repeats from human disease genes are determined by the 

direction of replication in E. coli. Nat Genet 10, 213-8. 

Kang, S., Ohshima, K., Shimizu, M., Amirhaeri, S. and Wells, R. D. 

(1995b). Pausing of DNA synthesis in vitro at specific loci in CTG and CGG triplet 

repeats from human hereditary disease genes. JBiol Chem 270, 27014-21. 

153 



Bibliography 

Kelman, Z. and O'Donnell, M. (1995). DNA polymerase III holoenzyme: 

structure and function of a chromosomal replicating machine. Annu Rev Biochem 64, 

171-200. 

Kim, S., Dallmann, H. G., McHenry, C. S. and Marians, K. J. (1996). 

Coupling of a replicative polymerase and helicase: a tau-DnaB interaction mediates 

rapid replication fork movement. Cell 84, 643-50. 

Kim, S. H., Cal, L., Pytlos, M. J., Edwards, S. F. and Sinden, R. R. (2005). 

Generation of long tracts of disease-associated DNA repeats. Biotechniques 38, 247-

53. 

Kim, S. H., Pytlos, M. J., Rosche, W. A. and Sinden, R. R. (2006a). 

(CAG)*(CTG) repeats associated with neurodegenerative diseases are stable in the 

Escherichia coli chromosome. JBiol Chem 281, 27950-5. 

Kim, S. H., Pytlos, M. J. and Sinden, R. R. (2006b). Replication restart: A 

pathway for (CTG).(CAG) repeat deletion in Escherichia coli. Mutat Res. 

Kiesert, T. R., Otten, A. D., Bird, T. D. and Tapscott, S. J. (1997). 

Trinucleotide repeat expansion at the myotonic dystrophy locus reduces expression of 

DMAHP. Nat Genet 16, 402-6. 

Knight, S. J., Flannery, A. V., Hirst, M. C., Campbell, L., Christodoulou, 

Z., Phelps, S. R., Pointon, J., Middleton-Price, H. R., Barnicoat, A., Pembrey, M. 

E. et al. (1993). Trinucleotide repeat amplification and hypermethylation of a CpG 

island in FRAXE mental retardation. Cell 74, 127-34. 

Koob, M. D., Moseley, M. L., Schut, L. J., Benzow, K. A., Bird, T. D., Day, 

J. W. and Ranum, L. P. (1999). An untranslated CTG expansion causes a novel form 

of spinocerebellar ataxia (SCA8). Nat Genet 21, 379-84. 

154 



Bibliography 

Kovtun, I. V., Goeliner, G. and McMurray, C. T. (2001). Structural 

features of trinucleotide repeats associated with DNA expansion. Biochem Cell Rio! 

79, 325-36. 

Kovtun, I. V. and McMurray, C. T. (2001). Trinucleotide expansion in 

haploid germ cells by gap repair. Nat Genet 27, 407-11. 

Kowalczykowski, S. C. (2000). Initiation of genetic recombination and 

recombination-dependent replication. Trends Biochem Sci 25, 156-65. 

Krasilnikova, M. M. and Mirkin, S. M. (2004). Replication stalling at 

Friedreichs ataxia (GAA)n repeats in vivo. Mol Cell Biol 24, 2286-95. 

Krejci, L., Van Komen, S., Li, Y., Villemain, J., Reddy, M. S., Klein, H., 

Ellenberger, T. and Sung, P. (2003). DNA helicase Srs2 disrupts the Rad5l 

presynaptic filament. Nature 423, 305-9. 

Kuempel, P. L., Henson, J. M., Dircks, L., Tecklenburg, M. and Lim, D. 

F. (1991). dif, a recA-independent recombination site in the terminus region of the 

chromosome of Escherichia coli. New Biol 3, 799-811. 

Lahue, R. S. and Slater, D. L. (2003). DNA repair and trinucleotide repeat 

instability. Front Biosci 8, s653-65. 

Lane, H. E. and Denhardt, D. T. (1974). The rep mutation. III. Altered 

structure of the replicating Escherichia coli chromosome. JBacteriol 120, 805-14. 

Lane, H. E. and Denhardt, D. T. (1975). The rep mutation. IV. Slower 

movement of replication forks in Escherichia coli rep strains. JMol Rio! 97, 99-112. 

Langston, L. D. and O'Donnell, M. (2006). DNA replication: keep moving 

and don't mind the gap. Mol Cell 23, 155-60. 

155 



Bibliography 

Lenzmeier, B. A. and Freudenreich, C. H. (2003). Trinucleotide repeat 

instability: a hairpin curve at the crossroads of replication, recombination, and repair. 

Cytogenet Genome Res 100, 7-24. 

Lin, J. J., Phillips, A. M., Hearst, J. E. and Sancar, A. (1992). Active site of 

(A)BC excinuclease. II. Binding, bending, and catalysis mutants of UvrB reveal a 

direct role in 3' and an indirect role in 5' incision. JBiol Chem 267, 17693-700. 

Lin, Y., Dion, V. and Wilson, J. H. (2006). Transcription promotes 

contraction of CAG repeat tracts in human cells. Nat Struct Mol Biol 13, 179-80. 

Liquori, C. L., Ricker, K., Moseley, M. L., Jacobsen, J. F., Kress, W., 

Naylor, S. L., Day, J. W. and Ranum, L. P. (2001). Myotonic dystrophy type 2 

caused by a CCTG expansion in intron 1 of ZNF9. Science 293, 864-7. 

Liu, B. and Alberts, B. M. (1995). Head-on collision between a DNA 

replication apparatus and RNA polynierase transcription complex. Science 267, 113 1-

7. 

Liu, Y. and Bambara, R. A. (2003). Analysis of human flap endonuclease 1 

mutants reveals a mechanism to prevent triplet repeat expansion. JBiol Chem 278, 

13728-39. 

Lovett, S. T., Drapkin, P. T., Sutera, V. A., Jr. and Gluckman-Peskind, T. 

J. (1993). A sister-strand exchange mechanism for recA-independent deletion of 

repeated DNA sequences in Escherichia coli. Genetics 135, 631-42. 

Mahdi, A. A., Buckman, C., Harris, L. and Lloyd, R. G. (2006). Rep and 

PriA helicase activities prevent RecA from provoking unnecessary recombination 

during replication fork repair. Genes Dev 20, 2135-47. 

156 



Bibliography 

Manley, K., Shirley, T. L., Flaherty, L. and Messer, A. (1999). Msh2 

deficiency prevents in vivo somatic instability of the CAG repeat in Huntington 

disease transgenic mice. Nat Genet 23, 471-3. 

Marians, K. J. (1992). Prokaryotic DNA replication. Annu Rev Biochem 61, 

673-719. 

Mariappan, S. V., Catasti, P., Chen, X., Ratliff, R., Moyzis, R. K., 

Bradbury, E. M. and Gupta, G. (1996). Solution structures of the individual single 

strands of the fragile X DNA triplets (GCC)n.(GGC)n. Nucleic Acids Res 24, 784-92. 

Matson, S. W., Bean, D. W. and George, J. W. (1994). DNA helicases: 

enzymes with essential roles in all aspects of DNA metabolism. Bioessays 16, 13-22. 

Maurer, D. J., O'Callaghan, B. L. and Livingston, D. M. (1996). 

Orientation dependence of trinucleotide CAG repeat instability in Saccharomyces 

cerevisiae. Mo! Cell Biol 16, 6617-22. 

McGlynn, P. and Lloyd, R. G. (2000). Modulation of RNA polymerase by 

(p)ppGpp reveals a RecG-dependent mechanism for replication fork progression. Cell 

101, 35-45. 

Meile, J. C., Wu, L. J., Ehrlich, S. D., Errington, J. and Noirot, P. (2006). 

Systematic localisation of proteins fused to the green fluorescent protein in Bacillus 

subtilis: identification of new proteins at the DNA replication factory. Proteomics 6, 

2135-46. 

Mellon, I. and Hanawalt, P. C. (1989). Induction of the Escherichia coli 

lactose operon selectively increases repair of its transcribed DNA strand. Nature 342, 

Merlin, C., McAteer, S. and Masters, M. (2002). Tools for characterization 

of Escherichia coli genes of unknown function. JBacteriol 184, 4573-81. 

157 



Bibliography 

Michel, B. (2000). Replication fork arrest and DNA recombination. Trends 

Biochem Sci 25, 173-8. 

Michel, B., Ehrlich, S. D. and Uzest, M. (1997). DNA double-strand breaks 

caused by replication arrest. Embo J16, 430-8. 

Michel, B., Grompone, G., Flores, M. J. and Bidnenko, V. (2004). Multiple 

pathways process stalled replication forks. Proc Nat! Acad Sci USA 101, 12783-8. 

Miret, J. J., Pessoa-Brandao, L. and Lahue, R. S. (1997). Instability of 

CAG and CTG trinucleotide repeats in Saccharomyces cerevisiae. Mo! Cell Biol 17, 

3382-7. 

Miret, J. J., Pessoa-Brandao, L. and Lahue, R. S. (1998). Orientation-

dependent and sequence-specific expansions of CTG/CAG trinucleotide repeats in 

Saccharomyces cerevisiae. Proc NatlAcadSci USA 95, 12438-43. 

Mitas, M. (1997). Trinucleotide repeats associated with human disease. 

Nucleic Acids Res 25, 2245-54. 

Mitas, M., Yu, A., Dill, J. and Haworth, I. S. (1995a). The trinucleotide 

repeat sequence d(CGG) 15 forms a heat-stable hairpin containing Gsyn.Ganti base 

pairs. Biochemistry 34, 12803-11. 

Mitas, M., Yu, A., Dill, J., Kamp, T. J., Chambers, E. J. and Haworth, I. 

S. (1995b). Hairpin properties of single-stranded DNA containing a GC-rich triplet 

repeat: (CTG)15. Nucleic Acids Res 23, 1050-9. 

Mochmann, L. H. and Wells, R. D. (2004). Transcription influences the 

types of deletion and expansion products in an orientation-dependent manner from 

GAC*GTC repeats. Nucleic Acids Res 32, 4469-79. 

Modrich, P. (1991). Mechanisms and biological effects of mismatch repair. 

Annu Rev Genet 25, 229-53. 

158 



Bibliography 

Modrich, P. (1994). Mismatch repair, genetic stability, and cancer. Science 

266, 1959-60. 

Moxon, E. R., Rainey, P. B., Nowak, M. A. and Lenski, R. E. (1994). 

Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr Biol 4, 24-33. 

Napierala, M., Parniewski, P., Pluciennik, A. and Wells, R. D. (2002). 

Long CTG.CAG repeat sequences markedly stimulate intramolecular recombination. 

JBiol Chem 277, 34087-100. 

Neidle, S. and Parkinson, G. N. (2003). The structure of telomeric DNA. 

Curr Opin Struct Biol 13, 275-83. 

Nichol Edamura, K., Leonard, M. R. and Pearson, C. E. (2005). Role of 

replication and CpG methylation in fragile X syndrome CGG deletions in primate 

cells. Am JHum Genet 76, 302-11. 

Nichol, K. and Pearson, C. E. (2002). CpG methylation modifies the genetic 

stability of cloned repeat sequences. Genome Res 12, 1246-56. 

Ohshima, K. and Wells, R. D. (1997). Hairpin formation during DNA 

synthesis primer realignment in vitro in triplet repeat sequences from human 

hereditary disease genes. JBiol Chem 272, 16798-806. 

Ordway, J. M. and Detloff, P. J. (1996). In vitro synthesis and cloning of 

long CAG repeats. Biotechniques 21, 609-10, 612. 

Orren, D. K. and Sancar, A. (1989). The (A)BC excinuclease of Escherichia 

coli has only the UvrB and UvrC subunits in the incision complex. Proc Nat! Acad Sci 

USA 86, 5237-41. 

Orren, D. K., Selby, C. P., Hearst, J. E. and Sancar, A. (1992). Post-

incision steps of nucleotide excision repair in Escherichia coli. Disassembly of the 

UvrBC-DNA complex by helicase II and DNA polymerase I. JBiol Chem 267, 780-8. 

159 



Bibliography 

Ossanna, N. and Mount, D. W. (1989). Mutations in uvrD induce the SOS 

response in Escherichia coli. JBacteriol 171, 303-7. 

Oussatcheva, E. A., Hashem, V. I., Zou, Y., Sinden, R. R. and Potaman, 

V. N. (2001). Involvement of the nucleotide excision repair protein UvrA in 

instability of CAG*CTG  repeat sequences in Escherichia coli. JBi01 Chem 276, 

HIT-009W.,  In 

Park, J. S., Marr, M. T. and Roberts, J. W. (2002). E. coli Transcription 

repair coupling factor (Mfd protein) rescues arrested complexes by promoting forward 

translocation. Cell 109, 757-67. 

Parker, B. 0. and Marinus, M. G. (1992). Repair of DNA heteroduplexes 

containing small heterologous sequences in Escherichia coli. Proc Nati Acad Sci US 

A 89, 1730-4. 

Parniewski, P., Bacolla, A., Jaworski, A. and Wells, R. D. (1999). 

Nucleotide excision repair affects the stability of long transcribed (CTG*CAG)  tracts 

in an orientation-dependent manner in Escherichia coli. Nucleic Acids Res 27, 616-23. 

Parniewski, P., Jaworski, A., Wells, R. D. and Bowater, R. P. (2000). 

Length of CTG.CAG repeats determines the influence of mismatch repair on genetic 

instability. JMo1 Biol 299, 865-74. 

Pearson, C. E., Nichol Edamura, K. and Cleary, J. D. (2005). Repeat 

instability: mechanisms of dynamic mutations. Nat Rev Genet 6, 729-42. 

Pearson, C. E. and Sinden, R. R. (1996). Alternative structures in duplex 

DNA formed within the trinucleotide repeats of the myotonic dystrophy and fragile X 

loci. Biochemistry 35, 5041-53. 

160 



Bibliography 

Pearson, C. E., Wang, Y. H., Griffith, J. D. and Sinden, R. R. (1998). 

Structural analysis of slipped-strand DNA (S-DNA) formed in (CTG)n. (CAG)n 

repeats from the myotonic dystrophy locus. Nucleic Acids Res 26, 816-23. 

Pelletier, R., Krasilnikova, M. M., Samadashwily, G. M., Lahue, R. and 

Mirkin, S. M. (2003). Replication and expansion of trinucleotide repeats in yeast. 

Mo! Cell Bio! 23, 1349-57. 

Petruska, J., Arnheim, N. and Goodman, M. F. (1996). Stability of 

intrastrand hairpin structures formed by the CAG/CTG class of DNA triplet repeats 

associated with neurological diseases. Nucleic Acids Res 24, 1992-8. 

Pluciennik, A., Iyer, R. R., Napierala, M., Larson, J. E., Filutowicz, M. 

and Wells, R. D. (2002). Long CTG.CAG repeats from myotonic dystrophy are 

preferred sites for intermolecular recombination. JBIo! Chem 277, 34074-86. 

Potaman, V. N., Oussatcheva, E. A., Lyubchenko, Y. L., Shlyakhtenko, L. 

S., Bidichandani, S. I., Ashizawa, T. and Sinden, R. R. (2004). Length-dependent 

structure formation in Friedreich ataxia (GAA)n*(TTC)n  repeats at neutral pH. 

Nucleic Acids Res 32, 1224-3 1. 

Register, J. C., 3rd and Griffith, J. (1985). The direction of RecA protein 

assembly onto single strand DNA is the same as the direction of strand assimilation 

during strand exchange. JBiol Chem 260, 12308-12. 

Richard, G. F., Goeliner, G. M., McMurray, C. T. and Haber, J. E. 

(2000). Recombination-induced CAG trinucleotide repeat expansions in yeast involve 

the MRE1 l-RAD5O-XRS2 complex. Embo J19, 2381-90. 

Richards, R. I. (2001). Dynamic mutations: a decade of unstable expanded 

repeats in human genetic disease. Hum Mo! Genet 10, 2187-94. 

161 



Bibliography 

Richards, R. I., Holman, K., Friend, K., Kremer, E., Hillen, D., Staples, 

A., Brown, W. T., Goonewardena, P., Tarleton, J., Schwartz, C. et al. (1992). 

Evidence of founder chromosomes in fragile X syndrome. Nat Genet 1, 257-60. 

Richards, R. I. and Sutherland, G. R. (1992). Dynamic mutations: a new 

class of mutations causing human disease. Cell 70, 709-12. 

Rolfsmeier, M. L., Dixon, M. J. and Lahue, R. S. (2000). Mismatch repair 

blocks expansions of interrupted trinucleotide repeats in yeast. Mol Cell 6, 1501-7. 

Rolfsmeier, M. L., Dixon, M. J., Pessoa-Brandao, L., Pelletier, R., Miret, 

J. J. and Lahue, R. S. (2001). Cis-elements governing trinucleotide repeat instability 

in Saccharomyces cerevisiae. Genetics 157, 1569-79. 

Rosche, W. A., Trinh, T. Q. and Sinden, R. R. (1995). Differential DNA 

secondary structure-mediated deletion mutation in the leading and lagging strands. J 

Bacteriol 177, 4385-91. 

Runyon, G. T., Bear, D. G. and Lohman, T. M. (1990). Escherichia coli 

helicase II (UvrD) protein initiates DNA unwinding at nicks and blunt ends. Proc Natl 

AcadSci USA 87, 6383-7. 

Sakamoto, N., Chastain, P. D., Parniewski, P., Ohshima, K., Pandolfo, M., 

Griffith, J. D. and Wells, R. D. (1999). Sticky DNA: self-association properties of 

long GAA.TTC repeats in R.R.Y triplex structures from Friedreich's ataxia. Mol Cell 

3, 465-75. 

Sakamoto, N., Ohshima, K., Montermini, L., Pandolfo, M. and Wells, R. 

D. (2001). Sticky DNA, a self-associated complex formed at long GAA*TTC  repeats 

in intron 1 of the frataxin gene, inhibits transcription. JBiol Chein 276, 27171-7. 

Samadashwily, G. M., Raca, G. and Mirkin, S. M. (1997). Trinucleotide 

repeats affect DNA replication in vivo. Nat Genet 17, 298-304. 

162 



Bibliography 

Sancar, A. and Rupp, W. D. (1983). A novel repair enzyme: UVRABC 

excision nuclease of Escherichia coli cuts a DNA strand on both sides of the damaged 

region. Cell 33, 249-60. 

Sarkar, P. S., Chang, H. C., Boudi, F. B. and Reddy, S. (1998). CTG 

repeats show bimodal amplification in E. coli. Cell 95, 531-40. 

Saunders, N. J., Jeffries, A. C., Peden, J. F., Hood, D. W., Tettelin, H., 

Rappuoli, R. and Moxon, E. R. (2000). Repeat-associated phase variable genes in 

the complete genome sequence of Neisseria meningitidis strain MC58. Mo! Microbiol 

37,207-15. 

Saveson, C. J. and Lovett, S. T. (1997). Enhanced deletion formation by 

aberrant DNA replication in Escherichia coli. Genetics 146, 457-70. 

Savouret, C., Brisson, E., Essers, J., Kanaar, R., Pastink, A., te Riele, H., 

Junien, C. and Gourdon, G. (2003). CTG repeat instability and size variation timing 

in DNA repair-deficient mice. Embo J22, 2264-73. 

Schaaper, R. M. (1993). Base selection, proofreading, and mismatch repair 

during DNA replication in Escherichia coli. iBiol Chem 268, 23762-5. 

Schiotterer, C. and Tautz, D. (1992). Slippage synthesis of simple sequence 

DNA. Nucleic Acids Res 20, 211-5. 

Schmidt, K. H., Abbott, C. M. and Leach, D. R. (2000). Two opposing 

effects of mismatch repair on CTG repeat instability in Escherichia coli. Mol 

Microbiol 35, 463-71. 

Schumacher, S., Fuchs, R. P. and Bichara, M. (1998). Expansion of CTG 

repeats from human disease genes is dependent upon replication mechanisms in 

Escherichia coli: the effect of long patch mismatch repair revisited. JM01 Biol 279, 

1101-10. 

163 



Bibliography 

Schumacher, S., Pinet, I. and Bichara, M. (2001). Modulation of 

transcription reveals a new mechanism of triplet repeat instability in Escherichia coli. 

JMoZ Biol 307, 39-49. 

Schweitzer, J. K. and Livingston, D. M. (1997). Destabilization of CAG 

trinucleotide repeat tracts by mismatch repair mutations in yeast. Hum Mol Genet 6, 

349-55. 

Schweitzer, J. K. and Livingston, D. M. (1998). Expansions of CAG repeat 

tracts are frequent in a yeast mutant defective in Okazaki fragment maturation. Hum 

Mol Genet 7, 69-74 

Schweitzer, J. K. and Livingston, D. M. (1999). The effect of DNA 

replication mutations on CAG tract stability in yeast. Genetics 152, 953-63. 

Seigneur, M., Bidnenko, V., Ehrlich, S. D. and Michel, B. (1998). RuvAB 

acts at arrested replication forks. Cell 95, 419-30. 

Seigneur, M., Ehrlich, S. D. and Michel, B. (2000). RuvABC-dependent 

double-strand breaks in dnaBts mutants require recA. Mol Microbiol 38, 565-74. 

Selby, C. P. and Sancar, A. (1993). Molecular mechanism of transcription-

repair coupling. Science 260, 53-8. 

Sharples, G. J. and Leach, D. R. (1995). Structural and functional 

similarities between the SbcCD proteins of Escherichia coli and the RAD50 and 

MRE11 (RAD32) recombination and repair proteins of yeast. Mol Microbiol 17, 

1215-7. 

Shimizu, M., Gellibolian, R., Oostra, B. A. and Wells, R. D. (1996). 

Cloning, characterization and properties of plasmids containing CGG triplet repeats 

from the FMR-1 gene. JMo1 Biol 258, 614-26. 

164 



Bibliography 

Sinden, R. R. (2001). Neurodegenerative diseases. Origins of instability. 

Nature 411, 757-8. 

Sinden, R. R., Potaman, V. N., Oussatcheva, E. A., Pearson, C. E., 

Lyubchenko, Y. L. and Shlyakhtenko, L. S. (2002). Triplet repeat DNA structures 

and human genetic disease: dynamic mutations from dynamic DNA. JBiosci 27, 53-

65. 

Smith, G. K., Jie, J., Fox, G. E. and Gao, X. (1995). DNA CTG triplet 

repeats involved in dynamic mutations of neurologically related gene sequences form 

stable duplexes. Nucleic Acids Res 23, 4303-11. 

Sopher, B. L., Myrick, S. B., Hong, J. Y., Smith, A. C. and La Spada, A. 

R. (2000). In vivo expansion of trinucleotide repeats yields plasmid and YAC 

constructs for targeting and transgenesis. Gene 261, 383-90. 

Strand, M., Prolla, T. A., Liskay, R. M. and Petes, T. D. (1993). 

Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting 

DNA mismatch repair. Nature 365, 274-6. 

Studwell-Vaughan, P. S. and O'Donnell, M. (1991). Constitution of the twin 

polymerase of DNA polymerase III holoenzyme. JBiol Chem 266, 19833-41. 

Summers, D. K. and Sherratt, D. J. (1984). Multimerization of high copy 

number plasmids causes instability: ColE 1 encodes a determinant essential for 

plasmid monomerization and stability. Cell 36, 1097-103. 

Takahashi, N., Sasagawa, N., Suzuki, K. and Ishiura, S. (1999). Synthesis 

of long trinucleotide repeats in vitro. Neurosci Lett 262, 45-8. 

Takahashi, S., Hours, C., Chu, A. and Denhardt, D. T. (1979). The rep 

mutation. VI. Purification and properties of the Escherichia coli rep protein, DNA 

helicase III. Can JBiochern 57, 855-66. 

165 



Bibliography 

Tougu, K. and Marians, K. J. (1996). The interaction between helicase and 

primase sets the replication fork clock. JBiol Chem 271, 21398-405. 

Tran, H. T., Keen, J. D., Kricker, M., Resnick, M. A. and Gordenin, D. A. 

(1997). Hypermutability of homonucleotide runs in mismatch repair and DNA 

polymerase proofreading yeast mutants. Mol Cell Biol 17, 2859-65. 

Trinh, T. Q. and Sinden, R. R. (1991). Preferential DNA secondary structure 

mutagenesis in the lagging strand of replication in E. coli. Nature 352, 544-7. 

Usdin, K. and Woodford, K. J. (1995). CGG repeats associated with DNA 

instability and chromosome fragility form structures that block DNA synthesis in 

vitro. Nucleic Acids Res 23, 4202-9. 

Uzest, M., Ehrlich, S. D. and Michel, B. (1995). Lethality of rep recB and 

rep recC double mutants of Escherichia coli. Mol Microbiol 17, 1177-88. 

van Belkum, A., Scherer, S., van Aiphen, L. and Verbrugh, H. (1998). 

Short-sequence DNA repeats in prokaryotic genomes. Microbiol Mol Biol Rev 62, 

275-93. 

van Brabant, A. J., Stan, R. and Ellis, N. A. (2000). DNA helicases, 

genomic instability, and human genetic disease. Annu Rev Genomics Hum Genet 1, 

409-59. 

Veaute, X., Delmas, S., Selva, M., Jeusset, J., Le Cam, E., Matic, I., Fabre, 

F. and Petit, M. A. (2005). UvrD helicase, unlike Rep helicase, dismantles RecA 

nucleoprotein filaments in Escherichia coli. Embo J24, 180-9. 

Veaute, X., Jeusset, J., Soustelle, C., Kowalczykowski, S. C., Le Cam, E. 

and Fabre, F. (2003). The Srs2 helicase prevents recombination by disrupting Rad5 1 

nucleoprotein filaments. Nature 423, 309-12. 

166 



Bibliography 

Verkerk, A. J., Pieretti, M., Sutcliffe, J. S., Fu, Y. H., Kuhl, D. P., Pizzuti, 

A., Reiner, 0., Richards, S., Victoria, M. F., Zhang, F. P. et al. (1991). 

Identification of a gene (FMR-1) containing a CGG repeat coincident with a 

breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65, 

905-14 

Vilette, D., Ehrlich, S. D. and Michel, B. (1995). Transcription-induced 

deletions in Escherichia coli plasmids. Mol Microbiol 17, 493-504. 

Vilette, D., Ehrlich, S. D. and Michel, B. (1996). Transcription-induced 

deletions in plasmid vectors: M13 DNA replication as a source of instability. Mol Gen 

Genet 252, 398-403. 

Vilette, D., Uzest, M., Ehrlich, S. D. and Michel, B. (1992). DNA 

transcription and repressor binding affect deletion formation in Escherichia coli 

plasmids. ErnboJll, 3629-34. 

Wang, T. C. (2005). Discontinuous or semi-discontinuous DNA replication in 

Escherichia coli? Bioessays 27, 633-6. 

Wang, T. C. and Smith, K. C. (1989). The roles of RecBCD, Ssb and RecA 

proteins in the formation of heteroduplexes from linear-duplex DNA in vitro. Mol 

Gen Genet 216, 315-20. 

Washburn, B. K. and Kushner, S. R. (1991). Construction and analysis of 

deletions in the structural gene (uvrD) for DNA helicase II of Escherichia coil. J 

Bacteriol 173, 2569-75. 

Weissenbach, J., Gyapay, G., Dib, C., Vignal, A., Morissette, J., 

Millasseau, P., Vaysseix, G. and Lathrop, M. (1992). A second-generation linkage 

map of the human genome. Nature 359, 794-801. 

167 



Bibliography 

Whitby, M. C., Ryder, L. and Lloyd, R. G. (1993). Reverse branch 

migration of Holliday junctions by RecG protein: a new mechanism for resolution of 

intermediates in recombination and DNA repair. Cell 75, 341-50. 

Yu, A., Dill, J. and Mitas, M. (1995a). The purine-rich trinucleotide repeat 

sequences d(CAG)15 and d(GAC)15 form hairpins. Nucleic Acids Res 23, 4055-7. 

Yu, A., Dill, J., Wirth, S. S., Huang, G., Lee, V. H., Haworth, I. S. and 

Mitas, M. (1995b). The trinucleotide repeat sequence d(GTC)15 adopts a hairpin 

conformation. Nucleic Acids Res 23, 2706-14. 

Yudkin, M. D. (1970). Catabolite repression of the lac operon. Effect of 

mutations in the lac promoter. Biochem J118, 741-6. 

Zheng, M., Huang, X., Smith, G. K., Yang, X. and Gao, X. (1996). 

Genetically unstable CXG repeats are structurally dynamic and have a high 

propensity for folding. An NMR and UV spectroscopic study. JMo1 Biol 264, 323-36. 

Zoghbi, H. Y. and Orr, H. T. (1999). Polyglutamine diseases: protein 

cleavage and aggregation. Curr Opin Neurobiol 9, 566-70. 




