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Introduction
The papers in this collection are concerned with problems of optimum design,

control and operation in chemical plants, The order of presentation is not
chronological; instead the papers are divided into four groups, each concerned
with a different aspect of the subject, as follows:-
Giroup A

Optimization problems in the automatic control of chemical plent.,
Gsroup B

The optimum design and operation of systems of interconnected units,
Sroup €

Variational optimization problems in chemical reastor design.

Eroup D
Optinun continuous distillation,

The majority of the publications report the independent work of the present
writer, However, publication C1 has a postgraduate student as co-author, while
publications A3, B2, B3, B4, C8 and D1 have more senior g@ollesagues as co-authors,
The relative contributions of the present writer and his-so-workers are deseribed
in the introductions to the separate groups of papers.

The publications of Group A deseribe work carried out while the writer was
employed by Imperial Chemical Industries Ltd, Publicetions G4, 05, 06 and C8
deseribe work carried out during the temure of a Visiting Professorship at Rice
University, Houston, Texas, in the academic year 196566, and 21l the remaining
publications describe work carried out at the University of Edinburgh.
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Group A

The publications of this group describe various general problems in the
theory of automatic control, which arose cut of specific problems encountered
in designing control systems for projected chemical plants.

*he quality of control which it is possible to attain in a given piece of
equipment depends partly on the sophistication of the controlling device used, but
is olso inherently limited by the dynamic properties of the piece of plant to
be controlled. Within a given class of controlling devices it should therefore
be possible to define in a quantitative manner the controllability of a certain
section of plant, representing the best control quality cbtainable with the given
pwt end controlling devices from the specified class, Fublication A1 is
concerned with the development of a quantitative definition of controllability
on these lines and with methods of calculating this quantity.

The actual devices with which control is implémented in chemical plants are
fregquently pneumatically operated and publication A2 presents an analysis of the
dyramic behaviour of the basic elements from which pneumatic control systems are
built ups It had frequently been assumed that the behaviour of these devices was
closely analogous to that of electrcnic emplifiers, so that their response could
be assumed to be approximately linear and methods of analysis such as frequency
response testing could be applied to thems In publiceation A2 it is shown that
this is nct the case, and that their behaviour is inherently non linear and
radically different from that of electronic amplifiers in unsteady states.

A failure to control certain variables in chemical plants within strictly
defined bounds is frequently disastrous, but the commoner methods of control
system design deal with quantities such as the time average of the square of
the deviation of a variable from its desired value, Needless to say, control
of/



of such a quantity to a specified value is no guarantee that the variable in
question may not take very large values for quite short periods of time, so
one is led to seek a method of establishing absolute bounds for the values of
the controlled variables in cases where the disturbances affecting the system
satisfy certain conditions limiting their size and rate of change. So far
as I am aware, publication A3 describes the first successful work on this
problem, and publication A4 goes on to apply the theory to the design of
systems for controlling the levels of liquids in vessels, This method was
adopted as a standard design procedure by Imperial Chemical Industries Ltd.
The theoretical development could perhaps be described as a family project
in which the writer colleborated with his brother in law, Dr, B. J. Birch,
whose contribution, as a mathematician was to the rigorous mathematical
formulation of the derivations.

Finally publication A5 arose from the developing interest of the
chemical industry in the use of intermittent analytical measurements, such as
those obtained from automatic chromatographs or mass spectrometers, for the
control rof continuously varying quantities. Use is made of the concept of
controllability, developed in publication A1, and Wiener's theoary of spectral
factorisation is applied to investigate the limitations in controllability due
to the loss of information inherent in using a sampled signal for control
purposes. This paper was awarded a premium by the Institution of Electrical

Engineers.



CALCULATION OF PROCESS

CONTROLLABILITY USING THE

ERROR-SQUARED CRITERION

CONTROL QUALITY AND
CONTROLLABILITY
IN a feedback control
system, the fluctuations of
an output variable pro-
duced by some disturb-
ance are reduced to an
acceptable size by using

SYNOPSIS

Using the integral or average of the square of the error as a
criterion of control quality, the controllability of a loop with a
given type of controller may be defined as the optimum quality
which can be obtained by adjusting the controller settings. The
dependence of the controllability on the parameters of the plant
is illustrated by considering a system of three exponential transfer
stages with a proportional-plus-integral controller of conventional
type. The results, which are displayed graphically in the form
of contour charts, are compared with those obtained from other
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plant which determine its
dynamic behaviour and
on the controller settings.
It is also generally true to
say that improvements in
control quality obtained
by adjusting the control-
ler will lead to greater

measurements of the out-
put variable itself to
control a correcting .
variable. As a quantitative measure of what is meant
by “ an acceptable size’, it is necessary to adopt some
criterion of control quality. The appropriate choice
will obviously depend on the process involved, but,
in the control of continuous processes, the following
two cases cover a large proportion of the possible
situations :- '

criteria.

() The output variable must on no account pass outside
certain limits. A good example of this type would be
a level-control system with a pumped outflow of liquid.
Too high a level would then lead to carry-over of
liquid into parts of the system which should contain
only gas, while too low a level would lead to loss of
suction on the pumps. The appropriate measure of
control quality in this case is the magnitude of the
maximum deviation of the output from.its desired
value. It should be noted that it is only possible to
specify this if bounds are given for the variation of the
disturbance. This case will not be considered further
in the present work

(ii) No absolute limitation on the tolerable magnitude of
the output disturbance is given, but it is desirable that
it should be as small as possible for as large a propor-
tion of the time as possible. This immediately suggests
the use of the time integral of some even function of the
deviation of the output from its desired value, the usual
choice being the integral of the square of this deviation,
since this is relatively easy to compute.1, 2, 8, 8

The components of the control loop can con-
veniently be divided into two groups, the plant and
the controller (corresponding to the physical division
provided by the controller box), since in process
control the usual practice is to use a standard type
of controller in all applications, relying on the adjust-
ments provided to match its transfer characteristics
to those of the remairder of the loop. The control
quality obtained with any given arrangement will
therefore depend both on those parameters of the
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63 demands on the range
and speed of action of
the correcting element.

Assuming, however, that it is possible to pro-

vide equipment capable of applying the correcting

signals called for by the controller, it is important to
know whether there is any limitation imposed on the

attainable control quality by the nature of the plant,’

or whether it is possible to improve the quality without’
bound by suitable adjustments of the controller.

The answer to this question depends on the degree
of flexibility permitted in the dynamic characteristics
of the controller, for it can be shown that if any com-
bination of proportional, repeated derivative, and
repeated integral terms may be used, it is possible to
obtain any control quality desired, whatever the
transfer function of the remainder of the loop, pro-
vided no true distance-velocity lag is present. How-
ever, apart from the fact that a control function of
this type is not physically realizable, one is in practice
limited to a commercially available type of controller
giving, at most, proportional, integral, and derivative
terms. Even with this restricted class of controllers,
it is possible to improve the control quality without
bound for certain simple forms of the plant transfer
function, the most obvious case being a single ex-
ponential transfer stage, with which a simple pro-
portional controller suffices to give any desired
quality. In general, however, the attainable quality
is' limited, and there exist certain controller adjust-
ments which, with the given plant, give better control
quality than any others. ' This best attainable quality,
which is a function of the plant parameters only (for

a given class of controllers), may be called the con- .

trollability of the plant. It is clearly important to
know how this quantity depends on the plant para-

Mr. Jackson is with the Billingham Division of Imperial
Chemical Industries Ltd. .
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Jackson: Calculation of Process Controllability ' 69

meters, since this indicates which features of the
design impose limitations on the attainable control
perforniance and allows one to evaluate modifications
intended to improve this performance.

By minimizing the integral of the square of the error
following a unit step disturbance, Hazebroek and
van der Waerden! determined ‘the optimum settings
for a proportional-plus-integral controller and several
types of plant transfer function, but the corresponding
minimum values of the integrals as functions of the
plant parameters are not quoted. It is felt that too
much emphasis can be placed on the theoretical pre-
diction of optimum controller settings, since their
practical determination hardly ever presents serious
difficulties, and the minima, as found for example by
the above authors, are often very flat. It is of much
greater interest to know how the minimum value
varies with the parameters of the plant, as this provides
the measure of controllability discussed above and
gives a basis for comparing the suitability of different
designs for automatic control.

In the present paper a simple example is taken to
illustrate the calculation of controllability and the
type of conclusions which can be drawn from such a
calculation. A plant transfer function corresponding
to three exponential transfer stages is considered, with
the integral of the square of the error (case (ii) above)
as the criterion of control quality. This transfer
function is sufficiently simple to be perfectly controli-
able if a three-term controller is considered, so
attention is limited to proportional-plus-integral con-
trollers. The commonly used unit step disturbance
is considered first, but the treatment can equally
easily be applied to a stationary time series used to
provide a more realistic representation of actual dis-
turbances. A simple class of stationary disturbances
is therefore dealt with to illustrate how the form of the
dependence of controllability on the plant parameters
alters as the spectrum of disturbance changes.

Although it is possible to evaluate explicitly all the
integrals arising in the simple examples discussed here,
it should be emphasized that the method is in no way
limited to the treatment of cases where this is possible.
The basic minimization involved in determining the
controllability is carried out on a digital computer, as
described in Appendix I, using a subsidiary routine to
evaluate the integral which is to be minimized. In
the present case this merely has to evaluate an explicit
form for the integral, but it could equally well be a
routine for evaluating the integral numerically in the
case of a more complicated transfer function.

INTEGRAL OF THE SQUARE OF THE ERROR
AFTER A UNIT STEP DISTURBANCE

In a simple control loop, d(f) is the disturbance,
which affects the output o(¢f) through a section of
plant with transfer function X(s), ¥(s) is the transfer
function of the part of the plant included in the control
loop, and C(s) is the transfer function of the controller.
All quantities are measured in terms of potential
changes in o, so that X(s), Y(s), > 1 as s > 0. When
d(t) is a unit step function at + = 0, it possesses a
Laplace transform d(s) = 1/s, and o(t) also possesses
a Laplace transform, related to d(s) by the well-known
equation :
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X(s)d(s)
I+ CE Y®

Now it can be shown?! that, if 7 is the integral of the
square of the output after a step disturbance

o(s) = = 2Z(s)d(s) (say) .cc..c......... )

[~ =] - ) .
1 [ lxgwl? " dw
= j od = w1+ CUa)YGa) | ®

4 0

which may be given a geometrical interpretation by
noting that C(jw) Y(jw), plotted in the complex plane
with w as a parameter, is the Nyquist locus of the
system, and p(w) = | 1 + C(jw) Y(jw) | is the distance
of the current point on this locus from (~=1, 0).
Equation (2) may therefore be written :

1 W W(w)dw
-], TR s, €)}

with W(w) = | X(jw) | ¥/w?. - This may be interpreted
as an integral along the Nyquist locus of a density
W(w) divided by the square of the distance of the
current point from (—I1, 0). It provides a basis for
the principle that a Nyquist locus corresponds to a
system with good performance provided it keeps well
away from the ‘ danger’ region near (—I1, 0), and is
useful in drawing qualitative conclusions for more
complicated systems.* An alternative representation,
very convenient for graphical evaluation of the integral
has been described by Rosenbrock.®

In the particular example considered here, the
disturbance affects the output through a single ex-
ponential transfer stage of time-constant 7, while the
output is fed back through the controller and two
additional time-constants, which may be written m~r
and nr, in series with . Thus :

1 =

1

. 1
XUo) =17+ YU =T Jar) 0 F Jamm) @ F oy @
and
Cljw) = p + ajo + Bljo i &)
for a conventional three-term controller. Substitut-

ing these expressions. into equation (2) gives the
integral of a rational function of w, which may be
evaluated by a well known method due to Phillips,?
giving, after some reduction

2l _A+By+(C— Dy)/n_

r - y(C— Dy) =U (say) ............... ©)
where :
A=(m'+n=)(m+n+mn)
B=m y=1+4nu
C=(1+m+n+s)(m+n+mn) € = afr (D
2= 7 = pr
1—'5'—("1-’f-n-i-mn)2

It is easy to show that U may be made as small as
we please with a three-term controller, as mentioned
in the introduction. Limiting attention, therefore,
to a proportional-plus-integral controller (¢ = 0),
it is obvious that / > o on_ L
y(C-Dy)

E

*This geometrical interpretation was first brought to the
author’s notice by Dr. P C. Price.
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-its complete functional form.

108 ances to which the system will be subjected. Know-

ledge of these disturbances must be based on observa-
tions of the past behaviour of the plant, or of similar
plants, which allow statistical predictions to be made
about the future behaviour of d(t), rather than giving
In this situation the
most appropriate representation of d(f) is a member
function of a stationary ergodic random process,
whose statistical properties are consistent with those
predictable from previous experience as described
above.* .

In the case of a stationary disturbance, the appro-
priate measure of control quality is the average of the
square of the error rather than its integral, which
clearly diverges. It is well known that the mean
square value of a stationary time series is completely
determined by its autocorrelation function, or alter-
natively by the power spectrum. o2 is, in fact, given
by :

=}

0 =

j- o df
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Fig. 1—Contours of Imin./7

which is simply the boundary of stability as given by
the Hurwitz criterion, and also on the line » = 0,
" when there is no integration in the loop. 7 must
therefore have at least one minimum in the region
enclosed between these curves, and this minimum

must be a stationary value with respect to y and 7, -

since I is well behaved. Consideration of the highest
degree term in the equation 7 = constant shows that /
cannot have more than one minimum in this region,
so a numerical search for a stationary value of / must
lead to the required /,;,.

A procedure for minimizing / with respect to y and
n was programmed for an Elliott 402 computer (see
Appendix 1), which printed out values of 7,;,. /= and
the corresponding gain and integral action time,
Bmin. A0 (71T in. [ = (4/M)min. . -The results are

shown in Figs. 1-3, with contours interpolated to show .
more clearly the form of the dependence on m and n.

The charts are symmetrical about the diagonal, so
that the contours are given only in the lower half, the
computed ‘ spot heights * being indicated in the upper
half.

A simple modification of the program makes it
possible to print values of I/r as a function of y and 5
for fixed values of m and n, so as to investigate the
behaviour of the system for controller settings other
than the optimum. The results for m = n =1 are
shown in Fig. 4, which closely resembles a diagram
given by Hazebroek and van der Waerden.!
seen that the minimum is very flat, so that the control
quality is not at all sensitive to the controller settings
in the neighbourhood of the minimum.

AVERAGE OF THE SQUARE OF THE ERROR
WITH A STATIONARY DISTURBANCE

While a step function disturbance provides quite a
severe test of the dynamical behaviour of a system,
it may bear little resemblance to the actual disturb-
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It is-

’where O(f)is the power spectrum of o(f), and f repre-

sents frequency. Further, O(f) is related to D(f), the
power spectrum of the disturbance, by :
OCf) = | ZRuj/I 2 DU oo, ©)

Equations (8) and (9) determine '0? in terms of Z
and D. . ,

The class of disturbance spectra considered here is
defined by :

D_O(w) =

* In this section various definitions and we!l known results
from the theory of stationary random processes are taken for
granted. A more complete discussion and proofs can be found
elsewhere.??
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where w = 2mf. These are monotonic spectra with
cut-off frequency w = 1/, so by varying [ it is possible
to study the effect of this frequency on the controlla-
" bility. D,(w) has a simple physical. interpretation
since it can be shown to be the power spectrum of a
disturbance d,(t), which alternates between constant

positive and negative values, the changeover points

. being placed at random on the time axis, with mean
spacing . The precise form of the distribution of
the amplitudes of the segments does not matter, pro-
vided it has zero mean, and mean square given by :

4/

Using the power spectrum of equation (10) is there-
fore equivalent to testing the system with a randomly
spaced -sequence of step disturbances rather than a
single step ; the effects of successive steps will not be
independent if their mean spacing is so close that the
transient following one has not died out before the
next arrives.

In the case of stationary disturbances, finite results
can be obtained with a proportional-only controller ;
in the interest of simplicity, therefore, this type is
considered, though this leads to rather anomalous
results for large values of / as shown below. Inserting
C(jw) = p, together with equations (1) and (10) for
Z and D, into equation (9) and combining this with
equation (8) gives an expression for 0? which contains
p as a factor, where p = //r, and tends to zero as
p—~>0. This simply means that the control quality
becomes very good for small p, which is to be ex-
pected because of the smoothing of the disturbance
by the time-constant r. However, the numerical
value of 02 is rather small for convenient use when
p—>0, so consider instead the ratio 0%/0,2, where 0,2 is
the value taken by 02 when the feedback loop is dis-
connected. This ratio, which will be denoted by ¢,

a =
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Fig. 3—Contours of (7;/7)min.
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Fig. 4—I/= as a function of y and nfor m = n = 1

is a measure of the improvement in behaviour pro-
duced by connecting the feedback loop It is easily
shown that :

so in ¢ .the factor p is replaced by p 4 1, and ¢
remains finite when p->0. ¢ is the integral of a
rational function of w of the same type as that dealt
with in the previous section, and can be evaluated
explicitly in the same way, giving :

1 4+ p A+ By + C?
¢ Y =B FF Gy oo (12)
where y = 1 + p and
A= (m+n+mn)[mn+p(m+n+mn)
+ pX(1 + m + n))
B = mn[m® 4+ n®+ mn(l + m+ n)] +
p(m 4+ n®) (m+ n+ mn) —p’mn
C=pmn¢ . 13)
D=4+ m+n(m+n+ mn
E = mn .
£= n;n_-’f—p(m+n+mn)+p’(l+m+n)
=p .

(The use of 4, B, C, D, and E here to represent
different quantities from those’in the previous section
will not lead to any ambiguity.) It is seen that
> oo through positive values as y->0 and as y> D/E
from the interior of the interval 0> D/E, so it passes
through at least one minimum between these points,
and since ¢ = constant gives a cubic equation in y,
it cannot pass through more than one. It can further
be proved that the minimum value occurs for some
y>1, thatis for some p >0, as would be intuitively

expected.

Transactions of The Society of Instrument Technology
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The dependence of ¢,ui,. on m, n, and p is best
indicated by plotting contours of y,,,. in the (m, n)-
plane for various values of p, but a considerable
amount of labour would be involved in plotting these
contours from a set of ‘ spot heights ’, as in the pre-
vious section, because of the number of diagrams
required. It was therefore thought worthwhile to
.use an automatic contour-plotting program on the
computer, making use of subsidiary routines to com-

pute and minimize . In this way contour diagrams -

were prepared for p =0, %, 4, 1, 8, 32, and 5000, the
cases p = 0, 32, and 5000 being reproduced here as
Figs. 5-7. For intermediate values of p, the charts
undergo a continuous transition between the forms
shown in Figs. 5 and 6.

To show the effect of the gain on y, the program
was slightly modified to plot contours of ¢ as a
function of p and m for fixed values of n and p. The
resulting charts show a prominent ‘valley’ whose
floor gives the relationship between x and m, which
minimizes ¢. The wall of the valley on the side
corresponding to large p rises steeply, so that the
height becomes infinite on the stability boundary.

DISCUSSION OF THE RESULTS

Step Disturbance

-1t is scen from Fig. 1 that 7, /= is a monotonic
increasing function of both m and »n in the region
investigated, and the slope along the diagonal m = n
increases monotonically with m and n (on the logarith-
mic scales used). This increase continues up to
m = n = 21, to which the computations were ex-
tended, so it is certainly safe to say that 1,,;,. /= shows
no sign of flattening out in any region of practical
interest. Another interesting feature of Fig. 1 is that,
for m>n, the line of steepest descent across the con-

tours makes a larger angle with the m-axis than with
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[ ot
i | ‘ I ..
1 . |

- I
the n-axis ; in other words a greater improvement in
controllability can be obtained by reducing the smaller
time-constant in a given ratio than by reducing the
larger in the same ratio.

Inin. 18, of course, a function of the three time-
constants 7, r,, and 75, which has been obtained in
the form :

Inin. = 1 f(m,n) = 7, f(v,/7,, 75/7))

Fig. 1 is a section on the plane =, = 1 through the
three-dimensional space (r,, 7,, 73), and other sections
parallel to this can be obtained merely by scaling the
variables. Using equation (14) with Fig. 1, it is also
possible to plot two-dimentional contour diagrams
for sections perpendicular to each of the other two
axes, though in fact, because of the symmetry in m and
n, it is only necessary to plot one such set. In this
way the function I, (7;, 75, 73) has been mapped
through the interior of the cube :

A < 7,70, 78 T4 i 15)

by drawing two-dimensional contour diagrams on
sections spaced at equal intervals perpendicular to the
7y and 75 axes. Although the sections perpendicular
to the =, axis are similar in appearance to Fig. 1, the
orthogonal set reveals the interesting fact that 7,;,. -
passes through a maximum value as =, is varied, =,
arid 7, being held constant, so that, for each 7,, =g,
there is a value of 7, which gives poorest controlla-
bility. It is easy to see qualitatively why this should
be so. When 7, is very small, the system approxi-
mates to a loop with two time-constants in which the
disturbance affects the measured value directly, giving
rise to a transient with quite large initial deviation but
heavy damping and fairly high frequency. On the
other hand, when =, is very large, the system approxi-
mates to a loop with one time-constant, through
which both disturbance and correction are applied,

p=12
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giving a transient of low frequency with very small
initial deviation and heavy damping. Both these
cases would be expected to be better, judged by the
present criterion, than a transient with fairly large
initial deviation and rather poor damping such as
would be obtained with an intermediate value of ;.

The limiting gain for stability with proportional
feedback w, has often been used as a criterion of
controllability,* and it is interesting to compare it
with the present one. u; depends only on the time-
constant ratios m and #n and can be plotted as a con-
tour diagram in the m,n-plane (Fig. 8), from which it
is seen that s is a minimum when all three time-
constants are equal. Considered as a function of
any one of 7, 7y, 73 for fixed values of the remaining
two, it passes through a minimum (corresponding to
poorest controliability) when the time-constant in
question is the geometric mean of the other two.
Using I, as a criterion, however, the controllability
varies montonically with =, and 75, and it is only when
considered as a function of r; that it exhibits a poorest
value for some finite =,, as discussed above. It is
curious that, over the limited range investigated in
equation (15), the value of ; which gives poorest con-
trollability is approximately proportional to the
geometric mean of 7, and ;. '

One well-known method for determining the
settings of a proportional-plus-integral controller®
is to adjust the gain and integralaction time to give
a transient with e : 1 subsidence ratio and integral
action time equal to the period. These settings,
denoted by p, and 7, can be calculated approximately
without great difficulty for a plant with three ex-
ponential transfer stages, and plotted as contour dia-
grams in the m,n-plane. The p, diagram obtained in
this way is similar in form to Fig. 2, which gives pyi.,
but the =,/ diagram bears very little resemblance to

~ Fig. 3, giving (7./7)min. The discrepancy is greatest in
the neighbourhood of m = 16, n= 1/16, where

p= 5000
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(71/Dmin. = 96 and 7,/r = 2-8! This is perhaps
hardly surprising as the choice of 7, equal to the
period of the transient is more or less arbitrary.
Further, the value of I/ corresponding to the settings
te, 7, is 0-27, compared with an optimum value
0-111 for Iuia/7. The relatively small difference
between these figures for such widely differing con-
troller settings is comforting confirmation of the
flatness of the minimum corresponding to optimum
control quality. An investigation of the actual form

.of the step responses shows that the ‘optimum’

settings, determined by the present method, give a
transient with smaller overshoot, slightly higher fre-
quency, and rather poorer damping than that given
by the settings u,, 7,.%7

The flatness of the minimum is shown clearly by
Fig. 4, from which it is seen that x and » can each be
changed by about 509, from their optimum values
without increasing I/= beyond 0-8, compared with its
minimum value of 0-602. This may be compared .
with a similar result quoted by Hazebroek and van
der Waerden.! Figure 4 is very similar to these
authors’ Fig. 3.

Stationary Time Series Disturbances

The most obvious difference between Fig. 1 and the
controllability charts for stationary disturbances
given in Figs. 5 and 6 (excluding for the moment the
case p = 5000 illustrated in Fig. 7) is that the value of
J does not continue to increase as m and n are in-
creased. Instead there is an escarpment separating
two plateaux, one in the region of small m and n,
corresponding to good controliability, and one in the
region of large m and n, corresponding to poor con-
trollability. For the larger p the contours are similar
in shape to those of Fig. 1, which is to be expected,
since the separate step changes of the stationary
disturbance are widely spaced, and the response after
each step corresponds more closely to that following a

Transactions of The Society of Instrument Technology

’



74 Jackson: Calculation of Process Controllability

single step disturbance, provided the time-constants
are not too long. For small values of p, however,
corresponding to disturbances with high cut-off fre-
quencies, the curvature of the contours reverses in
parts of the chart; in particular, for the limiting

case p = 0 (Fig. 5), it is easy to show that the contours"

are throughout concave towards the origin and are
asymptotic to lines parallel to the axes. The con-
tour ¢ = 0-5, for instance, is asymptotic to m = 1
and to n= 1. In regions where the curvature is
reversed in this way, it clearly pays to reduce the
larger of m and n in a given ratio rather than the
smaller, contrary to the conclusion reached above
when discussing Fig. 1.

The dependence of ¢ on the three time-constants
7y, Ty, and 7y can be obtained by a procedure similar
to that used in the case of /,;, above, and sections
through a three-dimensional region can be constructed
jin the same way. The quantity ,2,.., measuring the
actual optimum control quality rather than the im-
provement produced by the feedback loop, can be
obtained simply by multiplying ,,:,. by p————_‘?_ 7 -

It remains to discuss the chart for p = 5000 (Fig. 7)
which is rather different in appearance from Figs. 5
and 6. A closer inspection, however, reveals that it
has essentially the same form, the edge of the lower
plateau lying in the upper right-hand corner. The
vertical scale covered is much smaller than in the case
of the other charts, so the prominent hill near the
point (1, 1) is, in fact, merely a small bump which
projects from the escarpment into the lower plateau.
On this chart :

P> l,mn

so that it is possible to write p == 1/g in equations
© (12) and (13) and neglect terms of O(4?). This gives :

- 1 .
b J’[y+(1(l+m+n)]{ I+g+

q (m-+n—+mn-- m*)(m- n+:)ﬁ;1 + nzy)} ,

D—FEy

For small g this has a minimum value for y very
nearly equal to D/E and it is a good approximation
to take

. — ’ g = l
Ymin. = ¢ min. ‘ [y{y + gl 4+ m ")} ]i;

= D|E
= 0
‘Buty =1+ u,so D/JE = pu, 4 1 and
| .
min, = R IR reeesees e Aan

where p, is the limiting gain for stability, as above.
Thus the contours of ¢, approach the limiting
gain contours (Fig. 8) when p is sufficiently large
compared with /m and n.  The hill near (1, 1) in Fig. 7
therefore corresponds to the depression in Fig. 8 ;
it is seen that their heights are comparable, as ex-
pected. '

The physical interpretation of this behaviour of the
contours is extremely simple. For large p, the system
is effectively being tested with very widely spaced step
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disturbances, and so it spends the majority of the time
very near to a steady state with deviation 1/(1-+} p) from
the desired value, while the transient oscillations
following each step occupy only a very small fraction
of the total time. In averaging the square of the
deviation with respect to time, the steady state is
therefore weighted very heavily compared with the
transients, and the result is very nearly 1/(1 4 p)?
which is minimized by making u almost equal to ;.
However, if m and n are increased with a fixed value
of p, the duration of the transient after each step
increases until it is given weight comparable with the
final deviation. The chart then begins to resemble
those drawn for smaller values of p, as can be seen in
the top right-hand corner of Fig. 7. When p is as
large as 5000, for practical values of m and »n it is
clearly more realistic to regard the disturbance as a
sequence of independent steps rather than a stationary
time series, and to discuss the controllability in terms
of L./ as given in Fig. 1.

CONCLUSIONS

In cases where the integral or average of the square
of the error is an appropriate measure of control
quality, the method of ~estimating controllability
described here provides a useful means of assessing
the limitations imposed by the structure of the plant
on the control quality attainable with a given class of
controllers. In particular, it provides a method of
comparing the values of alternative designs aimed at
improving the controllability.

When the dynamical behaviour of the plant can be
specified in terms of two parameters, as in the simple
case treated here, a geometrical representation in the
form of contour charts is very useful in suggesting
those modifications to the parameters which would be
of greatest value ; if more than two parameters are
involved, a complete geometrical representation is no
longer possible but the method can still be used for
comparing a number of alternative designs.

As was emphasized at the beginning of the paper,
there is no fundamental limitation to cases in which
the integrals involved can be evaluated explicitly.
The time taken for a calculation compares very
favourably with the time for graphical methods® ;
in the present case, with a proportional-plus-
integral controller, /,,/r was calculated in about
14 min from given values of m and a. The pro-
grams were written in a slow interpretive code, and
this time could be reduced considerably by writing in
machine code for one of the faster machines.

An important feature of the method is that sta-
tionary time series disturbances can be handled as
easily as the usual test disturbances, which is likely
to prove valuable as more information about the
nature of disturbances affecting process plants be-
comes available.
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APPENDIX I

Computer

Considering first the case of step disturbances already
dealt with, the problem is to miminize the expression given
in equation (6), in the region of the (y, n)-plane enclosed
(C-Dy).

E

between the axis » == O and the parabola 5 =y
The program was written in two parts, a main routine to

perform the minimization and a subsidiary routine to ..

compute the expression on the right-hand side of equation
(6).
little interest and it will suffice to describe the minimiza-
tion procedure used.

With an expression for [ as simple as equation (6), the
stationary point with respect to 5 for a fixed value-of y

can be found explicitly. Equating % (2;{) to zero, and

iaking the root of the resulting quadratic in 5 lying in
>0, gives : )

.- (i%ﬁ) [{i+raim — 1] e®

Substituting for » from equation (18) into (6) gives a
function f(y) of a single variable y, and it is known that
the minimum lies in
0 y< CID

with the function unbounded at the end points of this
interval.

The following numerical procedure was used to locate
the minimum :

(i) The interval 0 << y <C/D isdivided into p equal parts

by points : .
-1l c  _2C _pl C
N = p'D"‘z—p'D""yP"—p'D

Then it is clear that,if f(yn) = f(¥n+,), the minimum
cannot liein y << y», while, if f(¥n) < f(yn+,), the mini-
mum cannot lie in y =>yu+,. If values of the function are
calculated at each yi successively and f(yi) — f(yi-1)
is found at each stage and tested for sign, then either
there exists some yq such that f(yg) < f(¥¢-) and

S(r9) < f(yq41), in which case :
Vg < ymin. < Vqi
or £ (¥p-)) < f(yp-s) in which case :
Yp-2 < ymin. < C/D
since f is unbounded when y-> C/D.

At each stage, therefore, it is necessary to test f (i)
against f( yioy) and to test vi against yp, and by this

process an interval of length + D is found which
contains ymin.

(ii) This interval is in turn divided into p parts and the

J_une, 1958

The subsidiary routine is straightforward and of -

Programs.
"brfoccss is repeated, finding an intervai of length
(—2)2 < which contains ymin.
P D .0 ains Ymin.

(iii) The intervals containing ymin. are repeatedly divided
into p equal parts until, after n repetitions, the in-

equality (;27)"< e is satisfied, where ¢ is a specified
small number. The position of ymix. is then determined

within an interval of length ¢ . == The mid-point of

D
this interval is then taken as ymin., and the correspond-
. ing value of I/r as Imin./7.

“The choice of p which locates the minimum to a given
accuracy in the smallest number of calculations depends,
of course, on the position of the minimum. If it is
assumed that the maximum number of calculations is
needed to locate v, at each reduction of the interval
length, it is easy to show that the best value is p = 4. If
the situation is less unfavourable than this, the best p is
larger, and it was thought reasonable to choose p = S.
Values of p and € can be set by the input tape, and with
p =15 and ¢ = 1/200 the time required for minimization
varied between 1 min 30 s and 1 min45s. On completing
the minimization for a given pair of values of m and n, the
values of Lyin/7, pumin. and (7¢/T)min. are printed on a new
line, and the machine is directed to read the next pair of
values of n and n (or a halt order) from the input tape.

With a more complicated transfer function it would
probably be best not to attempt to derive explicitly the
value of 5 which minimizes I, for each y, but instead to
carry out the type of search process just described in two
dimensions. Assuming p = 5 and ¢ = 1/200 to be used
for both dimensions, this would probably increase the
computation time by a factor of about 30 if the time for
computation of 7 with given % and y remained the same.
With a more complicated 7 it would be even longer, but
it must be remembered that the present programs were
written in a very slow interpretive code for convenience in
programming. By using the machine code a very sub-
stantial reduction in the times just quoted could be
obtained. In carrying out a two-dimensional search, it
would also probably be more efficient to use a * steepest
descent * type of process rather than the °rectangular
grid * procedure just described. .

The programs for the case of the stationary disturbance
treated earlier in the paper are straightforward. The
stationary value with respect to y was found by equating
the explicit expression for dyi/dy to zero and solving the re-
sulting equation numerically. The contour-plotting
routine was a recently developed library subroutine for
the computer used. It printed co-ordinates of points
spaced along a contour ¢ == constant at equal chord -
separations. The time taken to produce a complete chart,
of the type shown in Figs. 5-7, varied between +handlh.
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A NON-LINEAR THEORY

OF THE DYNAMICAL BEHAVIOUR

OF PNEUMATIC DEVICES

" INTRODUCTION

DyNAMICAL effects in pneumatic systems fall naturally
into two classes: (a) inherent dynamics of the system,
due to the modes of operation of flapper-nozzles and
relays and to the capacities of chambers, connections,
and bellows; and (b) imposed dynamics, due to the
introduction of adjustable restrictors (derivative and
integral valves) for the purpose of modifying the
dynamical behaviour to give desired control actions.
Imposed dynamical effects arise only in controllers,
of course; the dynamics of devices such as differential-
pressure transmitters are entirely inherent.
Theoretical treatments of the dynamics of pneu-
matic controllers have been given by a number of
authors? who were principally concerned with the
effect of the derivative and integral action times on
the response, and hence with the imposed dynamics

in the sense defined above. Linear theory and the

frequency-response approach were used throughout.
The frequency-response method was extended by
Gould and Smith,® and by Westcott,? to take account
of inherent dynamical effects arising from lags in the
forward loop of the controller. The flapper-nozzle
and relay were treated as linear amplifiers with associ-
ated time lags, and on this basis a method of estimating
the gains and the time constants in the forward loop
was devised.

The effect of non-linearity in the flapper-nozzle
characteristic on the static behaviour of the system
has been discussed by Kirk% who suggests design
modifications to improve the linearity and to make
it behave more closely as a perfect null-balance
detector, while a very thorough treatment of the
effect of certain non-linearities on the dynamical
behaviour has been given by Webb®. Ream, Tizard,

In addition to the references cited, the following may be
found a useful introduction to phase-plane analysis: G. D. S.
MACLELLAN, ‘ Phase-plane methods in process control system
design,’ Trans. Soc. Instr. Tech., 1957, vol. 9, pp. 62-71.

Mr Jackson is with the Engineering Research Department
at the Billingham Division of I1.C.I.

December, 1958

By R. JACKksON, B.A.

SYNOPSIS

Certain features of the response of pneumatic devices to large
and rapidly varying inputs are of a type that cannot be accounted
for by any linear theory. A non-linear theory which takes
account of saturation effects in pneumatic amplifiers has therefore
been developed and applied to some fairly simple systems, and
the results have been found to agree well with experiment. With
one extreme type of approximation the theory degenerates into
the usual linear theory, but the other extreme approximation,

which has been called the switching approximation, proves to be -

more suitable in some cases. The phase-plane representation,
well known in non-linear mechanics, provides a very useful
method of analysing and exhibiting the behaviour of the systems
investigated. 106

and Townend? have noted a practical case where
saturation effects in the relay of a controller had a
significant effect.

The present work arose from an investigation of
the speed of operation of diaphragm valve motors
in the course of which it became clear that many
effects observed when the controller input changed
rapidly could not be explained by any linear theory.
The well-known and often troublesome sustained
oscillation known as ‘ pumping’, which occurs in
certain pneumatic systems, was also found to exhibit
some of the characteristic features of non-linear
oscillations. To account for these observations and,
at the same time, for the success of linear theory
when applied to small or slow input variations, a
piecewise-linear theory has been developed which
takes account of the narrowness of the effectively
linear region of operation of pneumatic amplifiers.
In the present paper this is applied to the simple
case of a valve motor driven directly by a controller,
with a negligible length of intervening pneumatic
line. The predictions of the theory are shown to be
in good agreement with experimental step responses,
and to lead to a method of estimating the time con-
stants in the forward loop of the controller which
may be regarded as an alternative to that of Westcott,
Under certain conditions it is shown that a ‘ switching

_approximation ’, in which the amplifiers are regarded
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Fig, 1—Flapper-nozzle system

as pure switches with no zone of linear operation,
gives a good approximation to the behaviour. This
approximation and the usual linear theory may be
regarded as the two extreme cases of the complete
piecewise-linear theory.

The response of the system to sinusoidal inputs of
large amplitude and high frequency can be treated by
the switching approximation, which gives an almost
triangular output waveform in agreement with obser-
vations of the author and others.® Frequency res-
ponse curves can be predicted, but both phase lag
and attenuation depend on the amplitude of the input
as well as its frequency. The switching approxima-
tion is also used to predict the amplitude and frequency
of sustained oscillations in a more complicated
system, and is found to give excellent agreement with
the observed results.

PNEUMATIC AMPLIFIERS

In analysing the dynamical behaviour of pneumatic
systems, wide use has been made of the analogy
between pneumatic devices, such as flapper-nozzles,
and electronic amplifiers. In the simplest pneumatic
units an amplifying device feeds a volume load, and
it has been usual to represent this by a linear amplifier
feeding a single time-constant, giving a transfer
function of the form:

K
1+ s
where K is the gain of the amplifier and = the time
constant associated with the volume load.3

That the actual situation is more complicated than
this may be seen by considering in greater detail the
operation of a flapper-nozzle system feeding a volume
load. Figure 1 shows the essential features of such
a system. A pneumatic input p; is applied by means
of a bellows and opposed by a spring S, which
represents the collective stiffness of all bellows and
springs attached to the flapper in an actual controller.
It is convenient to measure pressures from the centre
of the working range as origin, so with standard
devices working in the range 3 to 15 lb/in? gauge
the origin will be chosen at 9 Ib/in? gauge.* With
this convention it is convenient to choose the origin

% To avoid confusion in the following, a pressure P measured
with respect to 9 1b/in® gauge as origin will be written simply as
¢ P 1bfin?°, while the same pressure measured with respect to
atmospheric pressure as origin will be written ‘ P Ib/in? gauge ’,
if it is desired to indicate the origin explicitly.
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in measuring the flapper displacement, d, at the
position where both input pressure and equilibrium
output pressure are 9 Ib/in? gauge. Then assuming
that the displacement of the input bellows is pro-
portional to p;, we have

where g is a constant depending on the stiffness of S,
and the effective area on which p; acts. If p, is the
supply pressure and p, the pressure on the downstream
side of the nozzle (often atmospheric pressure), the
mass flows through the fixed restrictor R and the
nozzle are given respectively by:

frR=Rf(ps,p), fnN=Nh(P,Po)eceivevrerrieriarrn.. ()
where the precise forms of the functions f and h
depend on the flow regimes, but in all cases they are
monotone increasing in the first variable and mono-
tone decreasing in the second. The constants R and
N depend on the restrictions to flow provided by the
fixed restrictor and the flapper-nozzle respectively.
N will clearly be a monotone increasing function of d,
and hence of p;:

N = N(@) = N(EDi) -eeeeraraiiiiaiiiiiiiiiaaiaianns 3)

Then if V is the load volume and R and T are the
gas constant per gram and the absolute temperature
respectively, the rate of change of load pressure is
given by:

R_';' %; = Rf(ps,p) —N@EPDh(p,Po)eeeeeeereneaaancn... 4)
Linearization of this equation in the usual way for
small variations of p; and p in the neighbourhood of
values P; and P, for which the system is in equilibrium,
leads to the usual representation as a linear amplifier
feeding a single time-constant.

On examining (4) it is seen that there are three
sources of non-linearity: ST

(i) The non-linear dependence of N(gp;) on p;

(ii) The non-linear form of the functions f(p, p’) and
h (p, p’) relating the flow of gas through the restrictions
to the upstream and downstream pressures

(iii) The appearance of a product of N(gp;) and h (p, po)

in the second term on the right-hand side.

The agreement with experiment obtained with the
theory to be developed shows that only (i) is sufficiently
important to affect the qualitative nature of the
transients, while (i) and (iii) may be regarded as
small corrections to their precise shape.

(o) Actual (b) |dealized

T —tm

X

Py —»=

Fig. 2—Gain characteristics of pneumatic amplifiers

December, 1958



Jackson: Dynamical behaviour of pneumatic devices

Dealing then with (i), it is known that with a
flapper-nozzle system of the usual design, quite a small
change in d, of the order of one or two thousandths
of an inch, is sufficient to cause the equilibrium value
of p to traverse the whole working range. Con-
sequently, unless the spring stiffness of the flapper
assembly is very large, the output pressure traverses
1ts complete range for quite a small change in input
pressure. For one widely used ‘floating disc’ type
of controller, for instance, the change in input pressure
required to change the nozzle pressure from 3 to
15 1b/in® gauge varies between $ and 1} 1b/in? depend-
ing on the proportional-band setting. Outside this
range the system rapidly saturates, giving a relation-
ship between p and p; of the form shown in Fig. 2 a.
For the purpose of analysis, it is proposed to represent
this by a piecewise-linear characteristic as shown in
Fig. 2 b, which reproduces the saturating features of
the true characteristic, and gives a zone of linear
operation of the correct width. Two extreme types
of approximation to a system of this type may be
recognized, first a linear approximation, in which the
saturation effects are neglected and the width of the
linear band is considered to be effectively infinite, and
second a switching approximation, in which the linear
band is neglected and the system is regarded as a
pure switch. The p-p; characteristic would then
be of the type shown in Fig. 2 b with a vertical central
segment. Although it is not always easy to form a
prior judgment as to which of these extremes would
best represent the behaviour in a given case, it is
fortunately possible to treat the intermediate case
(Fig. 2 b) for some simple systems, and so to investigate
the transition between the two extremes.

When the flapper is in the saturation region Z
(Fig. 2 b), very close to the nozzle, p aims at the
supply pressure p, in a manner determined by the
form of the functions f and h in equation (4). What-
ever the precise form of these functions, however, N
can be assumed to be almost zero since the nozzle is
sealed off by the flapper, and p will rise monotonically
towards p, at a speed determined by R, the fixed
restriction. If f(p,, p) were simply p,p, the rise
would be exponential and R would determine the
time constant. It is proposed here to assume that

Pi
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this is the case and to choose a time constant which
gives a reasonable fit to the true rising-pressure curve.
‘Thus the neglect of the detailed form of f (p,, p) will
affect only the precise shape of the response of p.
In a similar way, when the flapper is in the saturation
region X, p falls to some equilibrium pressure near to
Po-- In this case, however, the effective time constant
is determined by R and the open nozzle in parallel,
so it must be shorter than the time constant for
rising pressure. It follows, therefore, from the
nature of the flapper-nozzle arrangement, that two
time constants are nceded, strictly speaking, to
describe its saturated behaviour.

Figure 3 shows an arrangement which is typical
of a second class of pneumatic amplifiers, commonly
used as power relays. This is essentially the same as
the flapper-nozzle system, except that both restrictions
vary as p; varies. The restrictions in question are the
valves 1 and 2, which work in opposition. In the
saturation region with rising p, 1 is closed and 2 is
open, whereas with falling pressure 2 is closed and 1
is open. With suitably-matched valves there is no
reason, in this case, why the effective time constants
for rising and falling pressure should not be equal,
though in practice they seldom are.

There is a continuous bleed of air from the supply
in the balance condition, since the system balances with
both valves 1 and 2 partially open. Accordingly it
will be referred to as a continuous-bleed, high-gain
relay.

In the following sections both this type of amplifier
and the flapper-nozzle will be treated in the same
way; as an amplifier with gain-characteristic of the
type shown in Fig. 2 b feeding a single time-constant,
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Fig. 5—Block diagram for controller drivixﬁg simple load

the load. The difference between the time constants
for rising and falling pressures in the case of the
flapper-nozzle will often be neglected in the interest
of simplicity. It will be clear from the treatment
that there is no difficulty in taking account of this if
necessary.

A third common type of amplifier is the low-gain,
non-bleed relay. One common arrangement of this
type is illustrated in Fig. 4 a. The output pressure p
acts on the diaphragm in opposition to p;, so if
A; and A4, are the effective areas of the upper and lower
surfaces of the assembly, the balance condition is:

Ay pi = A, p
and the static gain is 4;/4,. In several cases 4; = A,,
giving unit gain, and the ratio seldom exceeds three
or four. It is important to notice that valve 2 can
open only after 1 has closed, for it is the pressure of
the diaphragm on 1 which causes 2 to cpen. Con-
versely, 1 can open only after 2 has closed, for it is

the seating of 2 that lifts 1 away from the diaphragm -

assembly. Neglecting the off-balance forces due to
the pressure differences at the plugs and the spring
S, the system would therefore be expected to act as a
perfect switch, connecting the load either to the
supply pressure through 2 or to atmosphere through
1. In practice, the off-balance forces referred to
above give rise to a finite dead band in the operation
of the switch, while imperfect seating of valves 1 and 2
gives rise to a small range of ‘continuous bleed’
operation. Although these features have been found
to produce quite marked dynamical effects in certain
cases,* it is possible to treat many phencmena using
the simple representation as a perfect switch, so the
representation shown in Fig. 4 b will be used in the
present paper.

APPLICATION TO CONTROLLERS DRIVING
SIMPLE LOADS

The simplest pneumatic systems of practical
interest are those in which a volume load is driven
directly by a proportional controller or transmitter.
The load volume may be fixed or, more commonly,
variable as in the case of a receiving bellows or
diaphragm motor. The variation of the load volume
with pressure will be a further cause of deviation in
detailed shape from simple exponential curves, but
in most cases where only the qualitative form of the
response is to be discussed it will be neglected. Tt is,
however, assumed that none of the connecting lines
is sufficiently long to have an appreciable effect on the
dynamical behaviour of the system.

¢ An anomaly in the waveform of the sine wave response of
a certain differential pressure transmitter, not attributable to
the saturation effects dealt with later, can be accounted for
in this way. The author is indebted to Mr D. M. Bishop for
drawing his attention to this case.
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Consider first a proportional-only controller of the
floating-disc type, with a continuous-bleed power
relay as shown in Fig. 3. The lines connecting the
relay output, the load, and the feedback bellows are
short and present no significant restriction to air
flow compared with the resistance of the relay ports,
so the load, feedback bellows, and connecting lines
may be regarded as a single volume, throughout
which the pressure is equal to the load pressure py.
There is, of course, no sense in which a signal is
‘sent out’ by the controller and ‘ received ’ by the
valve, and it is not permissible to divide the system
between these two and consider them as separate
units, as has been emphasized by Buckley.® Using
the approximations discussed in the previous section,
the block diagram of the system is as shown in Fig. 5,
where u is the proportional gain (i.e. 100/proportional
bandwidth), Ky and Ky the slopes of the linear seg-
ments of the flapper-nozzle and relay gain character-
istics respectively, 7y and =, the time constants asso-
ciated with the flapper-nozzle and with the relay and
load respectively, and p,, and p; the pressures repre-
senting the measured variable and the desired value.
The same time-constant (7 or 71)is used for bothrising
and falling pressures in the interests of simplicity.
Because of the geometry of the floating-disc arrange-
ment, Ky is a function of p rather than a constant, and
the expression

Kn(e) = 1<,\,(1).,’},L+'1 e ©®
is a good approximation for proportional bands wider
than about 29,. It is convenient to choose a supply
pressure of 18 1b/in? gauge, so that the centre of the
working range lies midway between atmospheric
pressure and the supply pressure.

The behaviour of the system can then be represented
by a modification of the usual phase-plane method of
non-linear mechanics’. py and pr, the two variables
determining the states of the non-linear elements,
are plotted against each other on rectangular axes,
with time as a parameter. With the above value
of the supply pressure, and origins for the pressures
chosen at 9 1b/in? gauge, the behavicur of the system
can then be represented within the square:

—9psi. Kpn L +9psi., —9psi. K pL < +9p.si...(6)
as shown in Fig. 6. There is a zone:
—ARp < pnN <<.Ar where AR = /KR ..ocovvviereianannnn.. (@)

in which the relay operates in its linear band, and a
zone:

—ANn < pr—p (pm—"Pd) < AN where dy = 9/KN
in which the flapper-nozzle cperates in its linear band.
The intersection of these gives a rectangle about the
equilibrium point, P, in which the behaviour is
completely linear. In each of the regions into which
the (pr, py)-plane is divided by these zone boundaries,
the system is described by a set of linear differential
equations, as discussed below, and the solutions can
be represented as trajectories in the (p., py)-plane with
time as a parameter. The differential equations will,
of course, be different in different regions, but it is
easy to show that the separate segments must join
up continuously, with continuous gradients across
all zone boundaries.
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Fig. 6—Phase trajectories for controller driving simple load

The equations will now be considered for each
region in turn.

Region of no saturation

d
- %N = KNUDI—PL PN eereeereeeeeeeeeeee e, ©

(writing p,—ps = p; for brevity). The differential

equation of the trajectories is thus:
dpL v, pPL— Krpy

dpn = 7L Kn(pL—wp) + PN
and it is seen that the equilibrium point, P, is at the

intersection of the lines:

PN = —KN(DPL—BDI) oo, (12)
and

prL = Krpn ..... J U 13
as indicated in Fig. 6. P is a focal point if

1 + 2KrKN—2 v {KrKN(1 + KRKN) }<?L" < 1+ 2KgKy +

2V {KRKN( + KRKN)} oo, (14)
and a nodal point otherwise. (For definitions of
focal and nodal points see reference 7). Now
Ky Ky is normally quite large (in one widely used
controller of this type, Kz .o 9 and Ky .~ 24 at 1009,
proportional band) so the above inequalities reduce
approximately to

1 ™

m < L < 4 KrKy :
When the controller is driving a large load such as
a valve motor it is usually found that 7y/r; < 1, but
when the load is a receiving bellows 7, is much smaller.
Whether or not (15) is satisfied, and hence whether the
response is oscillatory or over-damped, depends on
the load, the construction of the particular controller,
and the proportional-band setting at which it is
operating. To be definite it will be assumed that
P is a nodal point. The analysis for the case of a
focal point is very similar. When P is a nodal point,
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Fig. 7—Behaviour of the trajectories in the linear region

the two asymptotic trajectories are straight lines
through P with gradients

_(1_."&’
TL

and the behaviour of the trajectories in the neighbour-
hood of P is shown in Fig. 7. They can be sketched
by noting that they must be tangential to the line r,
at P and parallel to the line r, at infinity, and must
cross (13) horizontally and (12) vertically.

Ty ==

Regions of saturation of both flapper-nozzle and relay

Consider the region ' '

upi—dN > pL , PN > 4R
in the lower right-hand corner of Fig. 6 as typical.
The differential equations are

"L %’—‘ =9—p , TN‘LL,” = 9PN an
and the trajectories are given by

dpr _ N 9—pr

don 7L 9—pN
They can be plotted by the method of isoclines?
without much labour, since the isoclines are straight
lines through p; = py =9, as can be seen from (18).
The trajectories approach pL = py = 9 as t->o, and
coincide with the isoclines if =y = 7. For 7y <7r
they are convex in the direction of increasing py,
while for =y > 7. they are convex in the direction of
increasing py.

The differential equations in the remaining three
saturation regions can be obtained from (17) simply
by replacing 4+9 by —9 in one or both, so the trajec-
tories have the same form but aim at one of the remain-
ing three corners of the operating square. If the trajec-
tories for one region are plotted on tracing paper,
those for the remaining regions can be obtained
conveniently by appropriate rotations and reversals
of the tracing. '

Regions of saturation of flapper-nozzle or relay

The differential equations in each of these regions
can be written down in the same way, and the trajec-
tories plotted by isoclines. Their main features are
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Fig. 8—Step response from the switching approximation

determined by the requirements that they must be
horizontal when they cross (13) where the numerator
of (11) vanishes, and vertical when they cross (12)
where the denominator of (11) vanishes, and that they
must join up smoothly with the trajectories in adjacent
regions.

Having discussed the trajectories in the separate
regions, it is now possible to join them together and
deduce the complete transient response following
a step change in p;. Suppose that the system was in
equilibrium with some value p;, of p; for << 0, and
that p; is suddenly changed at # = 0. The transient
behaviour is then obtained by tracing out the trajectory
starting from the initial equilibrium point, as shown in
Fig. 6, where two trajectories corresponding to input
steps of different sizes are shown. Although the
time scale cannot immediately be deduced from the
diagram, the principal features of the transient, such
as the number and magnitude of overshoots before
the variables settle to their final values, can be seen
ata glance. For the larger step, p, has two overshoots
and py three overshoots before settling, while for the
smaller step pr has only one and py has two. It is
clear from the construction that the numbers of
overshoots will depend on the widths of the linear
bands, and will increase as these widths decrease.

This behaviour can now be compared with the
linear approximation, obtained by expanding the
rectangle of no saturation about P until it covers the
whole working region. In this case it is seen from
Fig. 7 that p, always tends monotonically to its final
value, while py can have, at the most, one overshoot.
The predictions of the two theories are therefore quite
different. For any given transient it would, of course,
be possible to choose the values of the gains Ky and
Kg and the time constants =y and 7. to give an oscil-
latory response in the linear approximation, with the
correct value of the initial overshoot for p; or py.
Although the transient obtained in this way would
have an infinite number of oscillations rather than
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the finite number predicted by the piecewise-linear
theory, it might be very difficult to distinguish between
the two experimentally if the damping were heavy.
However, it will be shown that there are important
discrepancies between the predictions of the linear
theory and the present theory which can be decisively
tested by experiment, and the results show that, during
the first part of the transient at least, the predictions
of linear theory bear no relation whatever to the
observed facts.

Inspection of Fig. 6 suggests that for step distur-
bances of magnitude considerably greater than the
width of the flapper-nozzle linear band, a good
approximation to the transient, at least as far as the
first overshoot, could be obtained by neglecting the
finite widths of the linear bands completely and
regarding the flapper-nozzle and relay as pure switches.
This will be referred to as the switching approximation.
It was noted above that K y -2 24 for one well-known
type of controller, so 4524 1b/in2 and the requirement
that the input step should be large compared with
dy is not a very serious restriction. Using the
switching approximation, it is easy to work directly
in the time domain, since at all times p, and py are
aiming exponentially at +9 Ib/in? with their respective
time-constants. The two basic exponential curves
can therefore be plotted, and the whole transient
obtained by tracing segments of them between the
switching points at p; = pp;and py = The method
of construction is shown in Fig. 8, in which (a) is the
first switching point with p;, = up; and (b) the first
switching point with py = 0.  All the rising segments
of the py curve represent the variation of pressure in
the inlet chamber of the relay when the nozzle is
completely sealed off by the flapper, while all the
falling segments represent the pressure variations
when the flapper is fully raised. Similarly, the rising
segments of the p; curve represent the variation of
pressure in the load when the relay plug is in its fully
raised position, while the falling segments represent
the load pressure variations when the plug is fully
lowered. The relay switches between its two states
when the pressure in its inlet chamber passes through
zero, and the flapper switches between its two states
when the load pressure passes through its equilibrium
value. Comparison of the two extreme approxima-
tions with the full piecewise-linear theory illustrated
in Fig. 6 suggests that the switching approximation
should give a good description of the first part of the
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Fig. 9—Sine wave response from the switching approximation
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transient following a large step disturbance, while the
linear approximation should be applicable to the last
part of the transient as the representative point
approaches P.

The switching approximation can also be used to
treat the response to a sinusoidal input of amplitude
much larger than the flapper-nozzle linear bandwidth
and frequency sufficiently high to call for rates of
change of p; significantly greater than those attainable
with the relay in saturation. The construction is
similar to that used for the step response, except that
p;, and hence the switching condition for the flapper,
now varies sinusoidally with time. Any initial
conditions may be chosen, since the initial transient
is soon damped out, and the system settles into a
periodic response with the same period as the input.
The construction, which is largely self-explanatory,
is shown in Fig. 9. The output waveform is almost
triangular, as was remarked in the introduction. By
repeating the construction for different input frequen-
cies the attenuation and phase lag (suitably defined, for
instance, in terms of the lag between corresponding
peaks or zeros of input and output) can be obtained
as functions of frequency, and both are found to
increase with increasing frequency. This would also
be the case with a linear theory of-course. However,
the construction can also be repeated with different
amplitudes of input, when it is found that the attenua-
tion and phase lag also increase with increasing
amplitude, a result which could not be obtained from
a linear theory.

All the constructions introduced in this section can
equally well be applied to the case of a controller
with a non-bleed relay of the type shown in Fig. 4 a.
The only difference is that the relay switching condi-
tion is represented by a line of slope 1/a passing
through the origin, rather than by the p, axis. The
existence of a finite -dead band can be taken into
account by drawing a strip about this switching line,
and requiring that the trajectories should be horizontal
straight lines inside it, since p; cannot change within
the dead band (assuming that both valves of the
relay seat perfectly). The procedure follows that
developed above so closely that it is not worth
developing it in detail here.

Valve pressure

\ “ \ Input 12
10 (N I

R C 13— = \ / 8
[ | 6
4 4
2— 2

Fig. 10—Experimental step responses for controller driving
simple load
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TABLE 1
First overshoot of p, for various step changes
Final Pre-
Initial Pres- Step Over- dicted
Pressure, sure, Ampli- shoot, Over-
Ib/in2 gauge 1b/in2 tude, 1b/in2 shoot,
gauge 1b/in2 1b/in2
54 9 +33% | 094 0-93*
N 018
kP 9 +5%8 | 1-03 0-99 7L
6% 9 +28 0-81 0-87
1238 9 —343 | 025 0-25*
~ IN _ 0-04
14% 9 —5% 0-25 0-25 o
145 9 —5% | 0-31 0-25

® Values used for fitting

COMPARISON WITH EXPERIMENT

Figure 10 is a photograph of responses to step
changes of various magnitudes applied to the
‘ measured value’ bellows of a floating-disc propor-
tional controller with a continuous-bleed high-gain
relay, feeding directly a load consisting of a No. 6*
diaphragm valve motor. The volume of the motor
varied between 25 in® and 55 in® as the pressure
varied between 3 and 15 Ib/in2 gauge, and the pressure
was recorded by connecting a bellows measuring-
element to the motor with a short (less than 3 ft)
length of % in. internal dia. P.V.C. tube. All other
connections were made with the same tubing and were
of similar length. The apparent time lag between the
input step and the response of the valve pressure is
due to a physical separation of the recorder pens.

The general form of the transients is as predicted
from Fig. 6, with three discernible overshoots for
rising pressure and possibly two for falling pressure.
Step responses were also obtained with very large
input steps, so that the valve travelled through its
whole range in both directions with the relay in a
saturated condition. Comparison of these with the
responses following smaller steps shows that the
initial pressure variations in the transients of Fig. 10
take place with the relay in a saturated state.

Further confirmation of this is obtained from
measurements of the first overshoot of p, for step
Some results are
given in Table I for both rising and falling pressures,
with a final pressure of 9 1b/in? gauge after each step
to facilitate comparison with the predictions of the
switching approximation. Pressures were estimated
to & 1b/in® from the records, so quantities quoted
as decimals are certainly not reliable to better than
about + 0-03 1b/in2.

Any linear theory will predict an overshoot propor-
tional to the amplitude of the step, but the observed
overshoots are seen to vary much more slowly than
this with step amplitude. The overshoot can easily
be predicted from the switching approximation as
illustrated in Fig. 8. On the first segment of the
transient (p.<0) the solutions for p; and py which
satisfy the appropriate initial conditions, py = 0 and

* The size number of a Foxboro-Yoxall motor.
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Fig. 11—Experimental sine wave response for controller driving
" simple load

pr = —P for a step of amplitude P, are clearly
Py = 9(1—<N), pp = 9@ + PeITL
and p;, = 0 when
t=r.In(l + P/9)
If p; is the corresponding value of py, then

pi=9 {10+ PO TENY e, (19
Taking initial conditions p, = 0, py= p, for the second
segment, up to py = 0, the appropriate solution is

PN = —9 + (9 + p)e TN, pr = 9(1 — ")
and py = 0 when
r=1ylnd + p,/9)
which gives a value pr = p;° for the overshoot, where

=9 {1—(U4pJ9 ™ML > i (20)
Elimination of p, between (19) and (20) relates
pr® to P as required.

To compare these predictions with the experimental
results given in the table, 7y/r, must be known.
7 can be estimated directly from the results of tests
in which the valve is run through its full range with
the relay saturated, but =y is not easy to measure
directly because of the small size of the volume
involved compared with the volume of any pressure-
measuring element which might be attached to it.
The procedure used, therefore, was to choose 7n/rr
to make the predicted and observed overshoots agree
for one particular step amplitude, .and to use the
value obtained in this way to predict the overshoots
for other amplitudes. Because of the inherent
asymmetry of the flapper-nozzle, discussed above, it
is necessary to take different values of =/, for rising
and falling pressures. The fitted values of ry/r. are
given to the right of the table and the experimental
results used for fitting are indicated by asterisks. It
is seen that the switching approximation is very
successful in accounting for the relative insensitivity
of the overshoot to the amplitude of the step change;
in fact it predicts even less variation in overshoot than
was observed. This might be expected, however,
since the finite widths of the linear bands of both
flapper-nozzle and relay have been neglected. When
these bands extend over the whole working region,
the system is linear and the overshoot is proportional
to the amplitude of the step, so a result intermediate
between the predictions of the linear approximation
and the switching approximation might be expected
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from the complete treatment. This is confirmed by
some graphical solutions.

Figure 11 is a photograph of the response to a
large-amplitude sinusoidal input of period 4 seconds,
from the same system as was used for Fig. 10. Com-
parison of the almost triangular waveform with the
maximum speed responses for rising and falling
pressures shows that the relay is saturated throughout
except for short intervals in the neighbourhood- of
the maxima and minima, so the switching approxima-
tion would- be appropriate for a theoretical treatment.
As noted above, the width of the flapper-nozzle linear
band in this case is about % 1b/in2, so a linear theory
of the type used by Westcott® would only be strictly
applicable for amplitudes less than 3} Ib/in? if the
frequency range of large phase lag is to be investigated.

_Unfortunately the phase-plane method illustrated in

Fig. 6 does not lend itself to a treatment of sinusoidal
inputs, so it has not proved possible to investigate
theoretically the interesting transition between the
regions of applicability of the two extreme approxi-
mations.

Provided sinusoidal inputs of sufficiently small
amplitude are used, Westcott’s procedure gives a
perfectly valid method of obtaining the controller
parameters which-is probably much more accurate
than the procedure described above, based on the
step response. The latter, however, has the advantage
of being very simple and quick to perform. However,
although the frequency-response technique can be
applied in the usual way for small amplitudes, where
the linear approximation is valid, care must be
exercised in using the results to predict the behaviour
with other inputs. The well-known methods of
deriving the step response from the frequency response,
for instance, will give results which bear no relation
whatever to the observed transients, except for the
smallest step changes, and this situation cannot be
improved by taking frequency-response measurements
with sine waves of larger amplitude. The importance
of the frequency response for a linear system is largely
due to the fact that it is closely related to the response
to any input of any magnitude, in fact the response
to any input can theoretically be obtained from the
frequency response. It therefore provides a conveni-
ent complete summary of the dynamical behaviour of
the system. In the case of dynamical effects due to
lags in the forward loop of a pneumatic controller,
however, this property is lost, as has been shown,
so the frequency response is of very limited value as
a description of the dynamical behaviour.

SUSTAINED OSCILLATIONS

The switching approximation can give a good
account of some features of the well known sustained
oscillation or ‘ pumping’ which occurs in certain
pneumatic systems. When a valve positioner feeds
a valve through a booster relay, for instance, the
system often oscillates with large amplitude unless
special steps are taken to prevent this. To avoid
possible complications due to friction in the gland of
the valve, and backlash in the mechanical feedback
linkage of a valve positioner, an equivalent system
with pneumatic feedback was investigated, consisting
of a controller with a high-gain continuous-bleed
relay feeding a motor-valve through a booster relay.
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The feedback to the controller was taken from the
valve rather than the controller output, giving the
arrangement shown in Fig. 12, which is essentially
equivalent to the valve positioner with booster. The
system oscillated with large amplitude and almost
triangular waveform, and by comparing the oscilla-
tions with the maximum-speed responses of the valve
driven by the booster, it can be seen that the booster
was saturated except for short intervals in the neigh-
bourhood of the maxima and minima.

The switching approximation should therefore be
appropriate, and it can be applied using a construction
method very similar to that used for Figs. 8 and 9,
except that three pressures, py, ps, and p;, are now
involved, so there are three fundamental response
curves and three different switching conditions. By
starting the construction with different initial condi-
tions it can be shown that the final steady oscillations
are independent of the initial conditions, as would be
expected. A knowledge of the three time constants
7w, T8, and 7 is necessary to carry out the construction,
though for quantitative predictions the observed full-
speed responses of the valve for rising and falling
pressures may be used instead of assuming exponential
responses with time constant .. For the controller
used 7 had already been estimated as described above,
but 75 was not known and could not, of course, be
measured directly because of the small volume
involved. The procedure used, therefore, was to
choose 75 so as to fit the predicted amplitude of
oscillation to the observed amplitude with a No. 6
motor. Comparison of the observed and predicted
periods then provided a test of the theory, but a
better test could be obtained by using 75 to predict
both amplitude and period for a diffe.ent size of
motor, and comparing the results with experiment.
This was done for a No. 8 motor and both experi-
mental and theoretical results for the two cases are
given in Table II." The agreement is excellent. The
observed amplitude was found to change very little
with the proportional band, as would be expected
since this only alters the width of the flapper-nozzle
linear band to some extent.

A more complete treatment accounts for the way in
which the stability of the system depends on 7y, 75,
and 7z, both for the present system and for the
corresponding system with a 1:1 non-bleed relay.
In the latter case it is also possible, by taking account
of the finite linear band of the flapper-nozzle, to
account for the fact that the oscillations are found to
be shock-excited rather than spontaneously excited.
This is, of course, a phenomenon found only in
non-linear systems.

TABLE I
Comparison of observed and predicted results
with No. 6 and No. 8 motors

Observed Predicted
Motor Amplitude Observed Amplitude Predicted
- (peak-to-peak) Period (peak-to-peak) Period
No. 6 | 4-01b/in? 0:63 s 4-1 Ib/in? 0:67s
No. 8 2-1 Ib/in? 1:0s 2-3 lb/in3 0-93s
™ = 1/5 s (mean for rising and falling steps)

7R = 1/5 s (chosen to fit observed amplitude with No. 6 motor)
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Fig. 12—Block diagram for oscillatory system

CONCLUSION

It has been shown that a piecewise-linear approxi-
mation, which takes account of the small width of the
linear band of pneumatic amplifiers but neglects
other sources of non-linearity, is capable of giving
a good account of many features of the behaviour
of simple pneumatic systems. The approximation in
which the saturation effects are neglected leads to the
usual linear theory, while the other extreme approxi-
mation, in which the linear band is neglected, is more
appropriate for tieating large and rapid changes in
input. The full treatment illustrates the transition
between these two extremes and indicates which is
the more appropriate in any given case.

The second, or switching, approximation has been
shown to give a good account of the main features
of the step response of a proportional controller
driving a valve motor and also of the sustained
oscillations which can occur in some more complicated
systems. )

It follows from this work that frequency response
curves for a pneumatic system, obtained by using
small-amplitude sine waves, do not give a complete
summary of the dynamical properties of the system
and can, indeed, lead to very misleading results if
used to predict the effect of the inherent dynamics of
the system on its behaviour.
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ABSTRACT

Linear filters with bounded inputs give outputs which are also bounded.
A method is described for obtaining the least upper bound of the output for
the case where bounds are specified both for the magnitude of the input and
its rate of change. The result, which is obtained in the form of a procedure
for constructing that input (satisfying the bounding conditions) which gives
rise to the largest output, has applications in the design of automatic control
systems.

§ 1. INTRODUCTION

THE purpose of the simplest type of automatic control system is to maintain
some measured quantity y(¢) close to a specified desired value Y, in spite of
the effect of a disturbance ¢(¢). At present, in process control applications,
it is extremely difficult to obtain any but the most elementary properties
of i(t) at the design stage, so it is not usually possible to design to a speci-
fication such as the mean square error criterion, for which a knowledge of
- the disturbance power spectrum is required. It should, however; be
possible to devise some design method in which the absence of desirable
information about i(¢) does not lead to complete impotence, but rather to
an overdesigned system in which the degree of overdesign (or ‘safety
factor’) is a measure of the designer’s ignorance of the detailed form of
(t).

The present work describes the mathematical basis of a method of this
type which uses only the elementary type of information about the disturb-
ance likely to be available at the design stage. The desired performance
is specified by giving a band Y +,, within which the measured variable
must remain. In order to design to this specification it is necessary that
the disturbance should be bounded, and if bounds I + 1,, for the variation
of #(¢) are known, the method produces the most economical design which is
safe in the sense that y(¢) will never pass outside the range ¥ +y, however
i(t) varies, provided i(¢) remains within the range I + 1,. If extra infor-
mation that the rate of change of i(¢) must lie within the range +1,’ is also

T Communicated by the Authors,
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available, it can be incorporated in the design procedure to give a more
economical system which is nevertheless still safe, in the sense that y(¢)
will never pass outside the range Y +y,, however () varies, provided it
remains within I +1,, and does not change at a rate greater than e - This
type of information about the disturbance (i.e. values of 7,, and ¢,,') can
often be estimated at the design stage from physical limitations in the
plant and control apparatus (available pressure drops, resistances of
pipes and fitments, speeds of valve motors, etc.).

The basic mathematical problem may be stated as follows: in a stable
linear automatic control system, y at time ¢ is related to values of i(f) at
all previous times by an equation of the form

y(t)=f Wayit—u)duw . . . . . . - (1)
0
where the weighting function W(u) characterizes the particular system

considered, and the stability condition demands thatJ | W (u)|dw should

0
exist. It is assumed that origins for y(t) and :(t) are chosen so that
I—= Y =0 and that the following limitations are imposed on the behaviour
of <(t):

[(2)] < % @une . . . . . . . (2

) =il o v gty .. . . . . (3)

=

and it is required to find the corresponding least bounds +y,, for the
variation of y(t). The result will be obtained in the form of a procedure
for constructing that i(t) which makes y, at some specified time, as large
as possible. The corresponding value of y(=y,) can then be obtained
from (1). ‘

m

§ 2. CONDITIONS FOR THE EXTREMAL t(t)
When there is no restriction on the permissible rate of change of i(t), a
possible input is
: i(t—u)= +1, when W(u)>0
= —1i, when W(u)<0
with which, from (1),

‘y=i,,,J:|W(u)|du. W

‘and the integral exists for a stable system, as already noted. But for any
i(¢) satisfying (2), it follows from (1) that :

y<in | IWEldu
0

so (4) gives the required ¥, The problem is therefore trivial unless the
additional constraint (3) is imposed. .

In dealing with the general problem the choice of the particular value of -
¢ at which y(¢) is considered is clearly arbitrary, and it is convenient to
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take =0, and to write J(u) for ¢(—u) and y for y(0). (1) then becomes

y=f:W(u)j(u)clu. B

Consider an arbitrary j(u) plotted as a function of w and let up(=0), 1y, Uy, ...
be the points at which W () changes sign, arranged in increasing order of
magnitude. From each j(u) satisfying (2) and (3) construct a new function
Jo(w) as follows :

(1) If w,—>wu,,, is an interval in which W(w)> 0, draw a line of slope
+1,  through [u,, j(u,)] and a line of slope —1,,’ through [, .1, j(%,41)].
If these intersect at some j <4,,, jo(%) consists of these two line segments
in w,—>uw,,,; if they intersect for j >4, complete jo(u) in this interval by
joining them with a line segment along j= +i,,. :

(i) If w,—>u,,, is an interval in which W(u)< 0 proceed in a similar
way but reverse the signs of the slopes of the two lines, and join along
J= —1, if they intersect for some j < —1,,.

Fig. 1

jo(u)
\

UOQUI

(=0) \

The complete jy(u) obtained in this way is a sequence of straight line
segments as shown in fig. 1, which illustrates the construction. Since it
will be necessary to refer fairly frequently to the salient features of functions
of this type, it will be convenient at this stage to give them short descriptive
names. Segments of slopes +7,," will be called ‘zigs’ and ‘zags’ respec-
tively, while horizontal segments at +1, will be called ‘plateaux’ and
‘valleys’. A zig may end at the start of a plateau or at the start of a zag,
the sharp point formed in the second case being known as a ‘ peak ’,while
the corresponding feature when a zag ends at the beginning of a zig will be
called a ‘ditch’. A sequence of zigs and zags without any intervening
plateaux or valleys will be called a ‘zigzag’. '

Clearly each jy(u) satisfies (2) and (3) and the set, {jo(«)} is a subset of the
set {j(x)} of all permissible inputs; the same j,(u) is obtained from all
Jj(w)’s which are equal at the points w=w,. Further, any zigzag Jlu)
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obtained by drawing straight line segments of alternate slopes +i,,’ and
=1y, and joining them by horizontal segments at j= +1,, if necessary, is
a jo(u) provided :

(@) j'(w,) = +1," if W(u,+ €)>0 for sufficiently small e> 0.

(0) 3’ (w,) = =1, if W(u,+ ) <0 for sufficiently small ¢> 0.

(c) Between successive points u, and %y, there is only one segment
with slope +:,’ and one with slope —4,’.. (In some cases the segment
of slope +1,," associated with some u, may appear to be missing ; however,
for formal reasons we regard it as present but of zero length. Figure 2
shows how this may ‘occur in constructing the j,(u) corresponding to a j(u)
which maintains a constant slope —1%,’ over two adjacent intervals
Up = U4y AN Uy = Uy )

~ Fig. 2

\ Jolw)
) Un Unet {Un42 Unt3 | .,
AN _
\ j(w)

A particular jo(«) is uniquely determined by (a), (b), (c) and the positions
of its sloping segments, specified for instance by giving their intercepts
(produced if necessary) with any line.

If jo(u) is constructed from j(u) as described it is seen that

Jo(w)=j(w) whenever W(u)>0
Jo(#) <j(w) whenever W(u)<0
s0 from (5) we have the result:
Theorem 1 ' .
If y is the output (at t=0) given by any input j(u) satisfying (2) and (3), '
and y, the output given by the corresponding jo(u), then y,=>y.

In seeking the greatest y we may therefore restrict attention to the
subset {y,} generated by the inputs {jo(x)}. It has already been noted that,

for “stability, f |W(u)|du exists, so there exists some U such that
. 0

fm |W(u)| du < ¢, with arbitrarily small e. The error produced in y by
v
truncating the integral (5) at w= U will certainly not exceed ei,, for any
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J(u) satisfying (2);. thus, the integral may be truncated after a finite-
interval, with arbitrarily small lossin accuracy. For convenience, we will
suppose from now’on that this has been done, and that W(u) has only
finitely many zeros in the range 0 <u < U, namely wuy, u,, ... uy.

A jo(w) is uniquely specified by the positions of all its zigs and zags; it
is convenient to define the position of the nth zig or zag (that is the one
corresponding to the zero u, of W ; as we remarked after (c), this may be
of zero length) by giving its intercept ,, with the line =0, measured from
%, as origin. Since ,, must lie on this sloping segment,

—¢<z,<¢ forn=1,2,...N . . . . . (6)
where ¢=1i,/i,.’. Since the sloping segments corresponding to u, and
U4 Must meet between u,, and u,,,,

Uy S5 (U +Up 1+ T+ T ) SUpige - - - o . (T)
Conversely, to any (z,, . . . . zy) satisfying (6) and (7) there corresponds a
Jo(u). Accordingly, jo(u) ma,y be represented by a point (z;, . . . \,) of an
N -dimensional cube of side 2¢, and indeed pomts correspondmg to jy’s fill
up a convex subset of this cube (that is, if (z;, . . . . Zy) and (yy, - - . . Yy)
both give j,’s, then all the points of the segment jo_ining them give jo’s). The
problem is therefore reduced to that of finding the greatest value of a
function of NV variables whose variation is restricted by (6) and (7).

It is certainly possible to find an extremal j,(u), giving a stationary value
of y in our truncated problem (indeed, it may be proved that an extremal
exists even if the integral (5)isleft untruncated). Asa first step, conditions
for an extremal j (%) will be found, and then later we will show that every
extremal must give the maximal value for y.

Theorem 2
Jo(u) is extremal if and only if

f: W(u)du=0

. whenever a and b are the values of u at the beginning and end of any zig or zag.

Proof

Figure 3 (1) shows an ad]acent zig and zag of some jy{u), meeting in a
peak. The end points of the sloping segments are @, b and ¢ as indicated.
Consider a small variation to give j,(%), in which the zig is displaced by.
8z to the right, and the zag by 8y, but j,(«) and j,(u) are otherwise identical.
Jo(u)is indicated in fig. 3 (1) by broken lines, and the difference j,(%) — jo(%) is.
plottedinfig. 3 (2). Thisissplitinto two componentsin figs. 3 (3)and 3 (4); -
it is obvious that the sum of these gives jo(v) —jo(%). When

f W (1) ) — () s

" is formed, the component in fig. 3(3) gives an expression of first order in
8z, oy :

—i, 8z f W(u)du+im'-8y f Wayde . . . (8)
a . . b
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while the component in fig. 3 (4) gives higher order contributions. Necessary
and sufficient conditions for an extremal jy(«) are that (8) should vanish
for arbitrary 8z and 8y, for all zigs and zags, proving the theorem.
Consideration of the higher order contributions of fig. 3(4) allows us to-
prove
Theorem 3
An extremal jo(u) gives a stationary value of y, which is a maximum ancl is
the greatest attainable value.

Fig. 3
NeT
7/ N
e \ S\\
Sx 7 N
s /) :
. (W
’
”
a b < .
()
indy
|m$X
(3)
insy
lIme g
‘ (4)
Yo {5x+5y)
i f(Sx+8y)

Indication of proof .
As in the proof of Theorem 2, consider fig. 3 (1). We already know that

the first-order contribution from the neighbourhood of the peak at b to

the variation of y, is given by (8); now we consider the second-order
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contribution. The corresponding component of jo(u) — jo(u) is sketched in
fig. 3(4) ; in the diagram, this component is non-zero in the following
intervals:

(i) (@, a+ 58z), where jy(u) —jo(u) >0 and W(w)<O0.
(ii) (b, b+ 48z + £8y), where jo(u) —jo(u) <0 and W(u)>0
(iii) (c, ¢+ $8y), where j,(u) —jo(u) > 0 and W(w)< 0.

Thus, the contribution to f W (u)[jo(u) —jo(u)]du is negative; other
0

particular cases should be examined, corresponding to ditches, valleys,
plateaux and zigs of zero length—but in all cases the second -order variations
of §, from y, turn out to be negative.

Now, suppose that j,(u) is an extremal, let 7,(u) be a,nyother Jolu), and let
(&, . . . Ty)s (&, . . . ) be the corresponding points of the cube (6). Join
these two points by a straight line /, and let s increase from 0 to 1 as we go
from (&,, . .. Zy) to (&, ...2Ty)alongl. Each point of I gives a jo(u), and so
to each s in 0 <s <1 there corresponds a value y,(s) of ,. By definition
Yo(0) =7, and yo(1)=7, Since j, is an extremal, dy,/ds=0 for s=0, and
by the preceding paragraph  d%y,/ds?< 0 for all s. Hence §, <7, which
proves the theorem. :

It follows similarly that if £ and &’ are two stationary points, they may be
joined by a line consisting entirely of stationary points, so that ¢ is constant.
This situation actually arises, so it is not correct to suppose that there is
always a unique extremal.

§ 3. PROCEDURE FOR CONSTRUCTING THE EXTREMAL j (%)

Having formally obtained the conditions for a stationary value in
Theorem 2 and ensured that this gives the greatest attainable value of ¥,
aprocedure for constructing the extremal input willnow be discussed. This
procedure is essentially rather s1mple but it is very tedious to describe.

First note that the step response is the integral of the weighting function,
so that Theorem 2 may be restated: a necessary and sufficient condition
for an extremal j,(%) is that the values of the step response at the beginning
and end of each zig or zag should be equal. It will be assumed that the
step response is initially positive for the physical systems of interest. It
may, in fact, happen that S(u) has a positive step discontinuity at the origin,
but this may be neglected for the purpose of the following argument, since
it may be replaced by a line of finite but sufficiently large gradient with
arbitrarily small error. In practice, either W(u) has only a finite number
of zeros, or it may be truncated after a finite number with arbitrarily small
error. Let the zerosofinterest beuy, u,, ... uy.

Choose an arbitrary » = U, between w =0 and the first maximum of S(w)
and let the roots of S(u)=_8(U,) be u=U,, U,, ... in increasing order of
magnitude. Denote by U, either the largest of these or the first which is
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greater than .y, whichever is smaller. Now construct a continuous j(u)as
follows :
j(w)=+1, for 0<u<U,, ' ] :
j)y= -1, for U,,_,<u<U,, (n=12,..), .. (9
)= +1," for U, <u<U,, ®m=1,2,...). j
This satisfies the stationary condition of Theorem 2 but does not necessarily
satisfy the basic constraint (2), nor does it necessarily define j(u) over the
whole region of interest 0 — u, since U, may be less than u,.
Starting at =0 and proceeding in the direction of increasing u, look for
the first point at which (9) ceases to be an acceptable input, wh.lch we shall
call the first ‘difficulty’. This may occur for one of three reasons:

(i) A peak projects above +1¢,,;
(ii) A ditch projects below —7,,;
(iii) Neither of these occurs, but U, <uy and ]( Up)# i,

so that the zigzag does not terminate in an acceptable manner. In case (i)
it is necessary to lower the peak until it touches +1,, in case (ii) to raise the
ditch until it touches —1,,, while in case (iii) it is necessary to adjust j(U ;)
until it lies on +1%,, if it is the end point of a zig or on — i,, if the end point of
azag. Inall casesthenecessary adjustmentsinvolve the raising orlowering
of the end points of zigs or zags, and these two processes can be quite
smnply carried out, as will now be shown.

It is easy to see that movmg U, to the rlght‘, lengthens all the zigs and
shortens all the zags, thus raising all the peaks and ditches, while moving
U, to the left lowers all peaks and ditches. By letting U, reach the
first maximum of S(u), the raising can be continued until the first zag
vanishes, but the lowering process can be continued beyond the point at
which U, =0 since the first zag need not start on +1,, if it starts at «=0.
Thus with U, =0 it is possible to lower the whole zigzag bodily simply by
lowering the start of the first zag. The peaks and ditches are located at the
roots of S(u) =0 throughout this operation.

Returning now to case (i), where a peak projects above +1i,, the
procedure is to lower the peak as just described. In this way it may be
possible to bring the peak down to +74,, without any new difficulties being
generated nearer to the origin than the one being removed, but in general
one of three things may happen during the lowering process.

(@) One or more zigs may contract to vanishing length and one or more
zags, originally of vanishing length, may expand to a finite length. This
_ arises because of the appearance or disappearance of roots of S(u)=S8(U,),
as U, varies, but it gives rise to no further difficulties and may be neglected,
apart from taking care that it does not lead to the careless placing of zigs
in intervals which should be occupied by zags and vice versa.

(b) More roots of S(u)=S(U,) may appear in u > U, so that the z1gzag
extends to some new U, >U,. This may remove a difficulty at the
original U ; and give rise to further difficulties in > U 5, but these should be
temporarily ignored, concentrating attention on the first difficulty.
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(c) One of the ditches in the region before the difficulty being removed
may reach —1,, when further lowering by the process described would give .
rise to a new difficulty, with a ditch projecting below —4,. The procedure
is then to move the zig at this ditch to the right, opening a valley where the
ditch touched —1i,,. All the peaks and ditches to the right of this valley
are now located by the condition S(u)=S(U,) where U, is the right-hand
end point of the valley which has been opened. Moving the zig to the right
to open the valley has the effect of shortening all subsequent zigs and
lengthening zags, and therefore continues the lowering process.

(1) When dealing with the first difficulty, there will not yet be any
plateaux.” However, in dealing with later difficulties, it may be necessary
to close a plateau or valley by a process similar to that of (c).

By continuing in this way, opening several valleys if necessary, and
possibly abolishing a few plateaux, the peak giving rise to the difficulty
may be lowered till it touches +7,,, thusremoving the difficulty. Attention
is then transferred to the next difficulty in order of increasing . Case (ii),
where the first difficulty was a ditch, need not be discussed separately, as
the above discussion is applicable with the words ‘peak’ and ‘lower’
replaced by ‘ditch’ and’“raise’. In case (iii) where the first difficulty is at
U ;. the same raising or lowering process is carried out in an attempt to bring
HUyp) to +1,,if it is the end point of a zig, or to —1,, if it is the end point of a
zag. Inthecourseofthisany of(a), (b) and (c) above may occur, and (b) now
has the effect of removing the difficulty at Uy, but in every case where a
discontinuous process of this type occurs, attention is transferred to the
new difficulty with the smallest value of , and the modification process is
continued until one of two things occurs. Either a zigzag input is obtained
with nodifficulties up to and including the first peak or ditch beyond u=1u,,
which provides a solution of the problem, or a zigzag terminating correctly
on *1, at some u<wu, is obtained. In the second case it is necessary to
choose a starting point U, for a new zigzag between the end point of the
‘original one and the next zero of W(u), locating the peaks and ditches at
the roots of S(u)=S8(U,). This zigzag may be raised or lowered to remove
difficulties as before, and the process can be continued until a completely
satisfactory j(u) extending beyond % =wuy is obtained.

- The procedure just described is formally a complete method for generating
an extremal j,(%) and it could be carried out graphically for any given W (u).
It is also possible, in principle, to programme the procedure for automatic
performance on a digital computer. In cases where W (u)is poorly damped
and a large number of zeros must be considered to achieve acceptable
~ accuracy, a very large amount of computation would be involved and a very
fast machine would be needed to obtainthe results in a reasonable time. In
the case of systems satisfying second order differential equations, however,
- W(u) is either overdamped, in which case it has only one zero, or it is oscil-
latory, in which case the zeros u,, u,, . . . . are equally spaced and W (u) differs
in the intervals «, —>w,_; and u,—>u,; only by a scale factor. For an
overdamped case it is clearly practicable to consider all the different cases
which may occur, since their number is not very large, and write a simple
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programme to identify the appropriate case and calculate the correct answer
from a predetermined formula. The same is true for the oscillatory case as
it is only necessary to consider separately the first interval and one other,
the positioning of zigs and zags being the same for all subsequent intervals
since W(u) changes only by a scale factor. The total contribution to ¥
from all intervals beyond the first then appears as the sum of a geometric
series, to which the contribution from the first interval must be added.
Programmes of this type have been written for an Elliott 402 computer,
which accepts specifications of the step response S(u) in the form :

S(u)=A + Bexp (—pu)+Cexp(—qu) fortheoverdamped case
=A + Bsinwv+ Bexp (—pu)sin (qu—mv) for the oscillatory case -

Fig. 4

1 Il I

0 A 2 3 "4 5
¢ —

together with a specification of ¢(=1,,/i,,'), and prints out the corresponding
value of y,/[i,,. Figure 4 shows a typical set of results for an oscillatory
step response of the above form, with 4 =064, B=1,p=0-2,¢g=1, v=1-8.
The ratio y,,/i,, is plotted as a function of.¢ from points computed along the
curve, and is seen to decrease monotonically as ¢ increases, which is what
would be expected of course. The programmes have been used in an
investigation of level control systems, the results of which it is hoped to
publish in a subsequent paper.
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The Design of Control Systems with Disturbances Satisfying
Certain Bounding Conditions, with Application to
Simple Level Control Systems .

R. JACKSON

ntroduction

"he purpose of the simplest type of automatic control system
s to maintain some measured quantity y(#) close to a constant
esired value Y, in spite of the effect of a disturbance i(¢).
\Ithough, in process control applications, it is extremely
ifficult to’ obtain any but the most elementary properties of
1) at the design stage, the present work arose from the con-
iction that, faced with this situation, it should be possible to
evise some design method in which the absence of desirable
formation about i(f) does not lead to complete impotence,
ut rather to an overdesigned system in which the degree of
verdesign (or ‘safety factor’) is a measure of the designer’s
norance of the detailed form of i(s).

The first three sections of this paper give an outline of some
asic mathematical results which have been discussed else-
here! in greater detail; the remainder of the paper then shows
ow these results can be used to give a design method of the
/pe described above, using as illustration the very simple case
f a level control system.

The basic mathematical problem may be stated as follows:
1 a stable linear filter the output y(t) at time ¢ is related to
alues of the input i(¢) at all previous times by an equation of
1e-form

) = wa(u)i(t — u)du )]
0

here the weighting function W(x) characterizes the particular
;stem considered and the stability condition demands that

fwl W ()| du
0

ould exist. It is assumed that i(¢) is uniformly bounded and
at the origin for i(r) is chosen so that

i < i, (21D @

/e shall also assume that the rate of change of i(¢) is uniformly
ounded or, slightly more generally, that

&Ilt)l_—__ft(:Tz)I <iw Gl 1) @

he problem is then to find the corresponding smallest bound
» such that [y(n)] < y., for all t. The result will finally be
btained in the form of a procedure for constructing that i(¢)
hich makes y, at some specified time, as large as possible.
he corresponding value of y(=y.,) can then be obtained from
juation 1.

The solution c. this problem can be used directly in the
sign of automatic control systems when the performance is

specified by giving limits +y,, between which the controlled
quantity must remain, and when the only information available
about the disturbance is of the simple type specified in equations
2 and 3 above. For each trial design y,, can be calculated in
terms of i,, and i,’, and a final design adopted which makes
Ym satisfactorily small. The reason for choosing this method,
rather than well known methods based, for example, on the
mean square error, is that the information about i(#) contained
in equations 2 and 3 can often be estimated at the design stage
from purely physical limitations in the plant and control
apparatus (available pressure drops, resistances of pipes and
fitments, speed of operation of valve motors, etc.), whereas
more sophisticated properties of the disturbance such as its
spectral density, which would be required for mean square
error calculations, are not usually available at the design stage.

In spite of its apparent simplicity, the case of level control
systems is important because of the high cost of vessels designed
for high-pressure work or constructed from expensive materials
such as stainless steel. Application of the present method
enables the minimum vessel size which is compatible with a
specified control performance to be determined very simply,
and leads to a vessel which is certainly safe in the sense that it is
large enough to achieve the specified performance with the
worst possible disturbance, subject to restrictions of the type
described above. In many practical applications the size
obtained in this way is much smaller than the minimum
necessary for the vessel to fulfil its primary purpose (e.g.
minimum size for adequate disentrainment in a catchpot), in
which case considerations of controllability are not a limiting
factor in the design.

Conditions for an Extremal i(t)

Let us consider first the basic mathematical problem stated
in the introduction in the particular case when there is no
limitation imposed on the rate of change of i(r) and equation 2
gives the only constraint on its behaviour. Then a possible
input is

it —u) = +iy when W(u) > 0
= —ip when W) <0 -

with which, from equation 1
<0
y = i,,,f |W@w)| du
0

and the integral exists for a stable system, as already noted.
But for any i(¢) satisfying equation 2, it follows from equation 1
that

C)

y < i,,,wa W(u)[ du
4]

6 : DL1



o equation 4 gives the required y,,. The problem is therefore
rivial when the additional cens oA 3 is not imposed.

In dealing with the general problem, the choice of the parti-
ular value of ¢ at which y(r) is considered is clearly arbitrary,
nd it is convenient to take ¢ = 0 and to write j(u) for i(—u)
nd y for y(0). Equation 1 then becomes

y =wa(uy(u) du )
0

onsider an arbitrary j(u) plotted as a function of « and let
o(=0), uy, uy . .. be the points at which W(u) changes sign,

DL

convenient at this stage to give them short descriptive names.
Segments of slopes +i,” will be called ‘zigs’ and ‘zags’ res-
pectively, while horizontal segments at +i,, will be called
‘plateaux’ and ‘valleys’. A zig may end at the start of a plateau
or at the start of a zag, the sharp point formed in the second
case being known as a ‘peak’, while the corresponding feature
when a zag ends at the beginning of a zig will be called a’
‘ditch’. A sequence of zigs and zags without any intervening
plateaux or valleys will be called a ‘zigzag’. ‘

Clearly each jy(u) satisfies equations 2 and 3 and the set °
{jo(w)} is a subset of the set {j(u)} of all permissible inputs;

jo(u)
+ip \
. Uo Y, u, /\U Uy Ug
(=0) \ 1 U
jon
- In

Figure 1. Construction of jy(u)

ranged in increasing order of magnitude. From each j(«)
tisfying equations 2 and 3 construct a new function j,(u) as
. lows:

(a) If u, — u,,, is an interval in which W(u) > 0, draw a

1e of slope +i,,” through [uy, j(u,)] and a line of slope —i,,’
rough [u,,;,j(t,,1)]. If these intersect at some j < iy, jo(u)
nsists of these two line segments in w, —u,,,; if they
tersect for j > i,,, complete jo(«) in this interval by joining
em with a line segment along j = +i,,.

the same j,(u) is obtained from all j(x)’s which are equal at
the points # = u,. Further, any zigzag j(u) obtained by
drawing straight line segments of alternate slopes +i,," and
—in’, and joining them by horizontal segments at j = iy, if
necessary, is a jy(«) provided: _
@) j'(un) =lin" if W(u, + €) > 0 for sufficiently small ¢ > 0
) j'(u,) =7\i,,,’ if W(u, + €) < Ofor sufficiently smalle > 0.
(c) Between successive points u, and uy,,; there is only one

N

n-i Un Yn +1

Up 42

JoluW)

Un+3 | .

N

jCu)

Figure 2. Occurrenée of a zig of vanishing length

(b) If u, — u,,, is an interval in which W(u) < 0 proceed
a similar way but reverse the signs of the slopes of the two
es, and join along j = —in, if they intersect for some j < —ip,.
1e complete j,(«) obtained in this way is a sequence of straight
le segments as shown in Figure 1, which illustrates the con-
uction. Since it will be necessary to refer fairly frequently

the salient features of functions of this type, it will be’
DL 2

segment with slope +i," and one with slope —i,’. (In some
cases the segment of slope +i,," associated with some u, may
appear to bz missing; however, for formal reasons we regard
it as present but of zero length. Figure 2 shows how this may
occur in constructing the jo(u) corresponding to a j(u) which
maintains a constant slope —i,,” over two adjacent intervals
Up = Upyy and Up gy = Upys.) : ‘
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A particular jo(#) is uniquely determined by (a), (b), (c) and
e positions of its sloping segments, specified for instance by
ving their intercepts (produced if necessary) with any line.
If jo(u) is constructed from j(u) as described it is seen that

Jow) > j(u) W) > 0,
Jolw) < jw) W) <0,

» from equation 5 we have the result:

whenever -

whenever

heorem 1

If y is the output (at t = 0) given by any input j(u) satisfying
yuations 2 and 3, and y, the output given by the corresponding
(w), then yo > y.

In seeking the greatest y we may therefore restrict attention
 the subset {y,} generated by the inputs {jo()}. It has already

o

een noted that, for stability, | |W(u)|du exists, so there
0

xists some U such thatﬁYW(u)] du < g, with arbitrarily
nall e. The error produced in y by truncating the integral (5)
t «u = U will certainly not exceed &ip, for any j(u) satisfying
uation 2; thus, the integral may be truncated after a finite
terval, with arbitrarily small loss in accuracy. For con-
enience, we shall suppose from now on that this has been
one, and that W(u) has only finitely many zeros in the range
< u < U, namely u; ... up.

A jo(u) is uniquely specified by the positions of all its zigs
nd zags; it is convenient to define the position of the nth
g or zag (that is, the one corresponding to the Zero u, of W,
s we remarked after (c), this may be of zero length) by giving

s intercept x,, with the line i = 0, measured from 4, as origin.
ince u,, must lie on this sloping segment,

—p<x,<¢ n=1,2..., N (6

here ¢ = in/i,,’. Since the sloping segments corresponding
> U, and u,,, must meet between u, and u,,,

for

Q)

onversely, to any (x,, ..., xy) satisfying equations 6 and 7
1ere corresponds a jo(u). Accordingly, Jo(u) may be represented
y a point (x, ..., xy) of an N-dimensional cube of side 2¢,
nd indeed points corresponding to jg’s fill up a convex subset
f this cube (that is, if (x; ..., xy) and (y; . .., yn) both give
’s, then all the points of the segment joining them give jy’s).
he problem is therefore reduced to that of finding the greatest
alue of a function of N variables whose variation is restricted
y equation 6 and 7.

It is certainly possible to find an extremal j,(v), giving a
ationary value of y in our truncated problem, and indeed it
1ay be proved that an extremal exists even if the integral (5)
, left untruncated. The conditions for an extremal j,(x) are
brmally very simple, as will now be seen.

Un < J2’(“n + a?H—l + Xn + xn+1) < "n+1

heorem 2

13
Jo(w) is extremal if and only lff W) du = 0 whenever a and

a
are the values of u at the beginning and end of any zig or zag.
Proof—Figure 3(f) shows an adjacent zig and zag of some
(«) meeting in a peak. The end points of the sloping segments
re a, b and c as indicated. -Consider a small variation to
ive jo(u), in which the zig is~displaced by dx to the right, gnd
e zag by dy, but jy(u) and j(u) are otherwise identical. jo(u)

is indicated in Figure 3(a) by broken lines, and the difference
Jolt) — jo(u) is plotted in Figure 3(b). This is split-into two

A
/) A Y
‘ h& 5\\ /
’ I’ > N,
4
e / (a)
’
Vs
I’
a b c
’ - (b)
im 8y
iméx
(c)
inSy
iméx
(d)
S x4 8y)
ifu(Sxo-S /

Figure 3. Variation of j,(u)
components in Figures 3(c) 'and 3(d); it is obvious that the

o]
sum of these gives jy(u) — jo(u). Whenf W(w)ljo(u) — jo(w)]du
0 .
is formed, the component in Figure 3(c) gives an expression of
first order in dx, dy:
b ¢ .
—iy Ox f W) du + iy’ Sy J W(u) du NON
a b
while the component in Figure 3(d) gives higher order con-
tributions. Necessary and sufficient condition for an extremal
Jolw) is that equation 8 should vanish for arbitrary dx and dy,
for all zigs and zags, proving the theorem.
By going on to consider the second-order variation in y,

corresponding to the component of jy(u) — jy(u) plotted in
Figure 3(d), it is possible! to show that the stationary value of
Yo corresponding to an extremal jo(u) is a maximum (rather
than a minimum), and further that y, cannot take any value
greater than this stationary value. Thus the stationary value
is the required value of y,,. It is interesting to note, however,
that it is false to assume that there is a unique extremal jy(«),
but when there is more than one, the values of y, corresponding
to the different extremal jy(«)’s are:all equal, and are greater
than any. other attainable value of y;.
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Procedure for Constructing the Extremal ()

Having formally obtained the conditions for a stationary
value in Theorem 2 and ensured that this gives the greatest
attainable value of y, a procedure for constructing the extremal
input will be briefly sketched. Although this is essentially
rather simple, it is very tedious to describe fully; a more
complete discussion has been given elsewherel,

First note that the step response is the integral of the weighting
function, so that Theorem 2 may be restated: a necessary and

DL

described may give rise to other difficulties due to peaks or
ditches in other parts of the zigzag moving outside the range
+in. This is discussed in the more complete trcatment given
in reference 1.

Although the procedure briefly outlined here is formally a
complete method of generating an extremal jy(u), and could
be carried out graphically or programmed for a digital com-
puter, the problem is greatly simplified in the particular case
of systems described by second-order differential equations.
For such a system the zeros of W(u) are either finite in number

Q

R

S = const:

|
N\~

+im I P
) | /
| |

t\\/
|

W

|
. |

=
|
|

Figure 4. Construction of an extremal j(u)

sufficient condition for an extremal jy(«) is that the values of
the step response at the beginning and end of each zig or zag
should be equal. Thus, if S(«)is the step response, the successive
peaks and ditches of any unbroken zigzag must occur at values
of u corresponding to the intersections of some horizontal
straight line § = constant with the graph of S(«). An arbitrary
line will, in fact, determine a zigzag with a number of peaks
and ditches depending on the number of its intersections with
the graph of S(u), as shown in Figure 4. If the zigzag constructed
in this way lies within the limits +i,, for all values of u up to
u = U, at which S(z) may be truncated, it is an extremal j(1)
up to the truncation point. In general, however, this will not
be the case for two reasons. Firstly, the zigzag may pass
outside the limits +i,, as in the interval between the points P
and R in the example drawn in Figure 4, and secondly it may
terminate at a point R, lying to the left of u = U. In the first
case the procedure is to vary the position of the line § = con-
stant until Q is lowered on to the line at +i,, thus giving a
complete zigzag satisfying the stationary condition and
terminating at Q, while in the second case the line § = constant
is again varied until the terminal point of the zigzag lies at
+i,, as appropriate. Having completed one zigzag in this way,
a second must be started to the right of its terminal point, and
so on until the last zigzag constructed extends beyond the
point # = U. The set of zigzags so obtained is then the
required extremal jy(u) for u < U, and therefore provides a
solution of the problem to the accuracy required; the corre-
sponding value of y,, can be obtained by using this jy(«) in
equation 5. An attempt to carry out the procedure just outlined
will quickly reveal that the process of modifying a zigzag as
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or spaced at equal intervals along the u axis. This makes it
possible to divide all possible cases which may occur into a
fairly small number of classes, for each of which an explicit
expression for the integral appearing in equation 5 may be
written down. A digital computer programme can then be
written which simply allocates each particular case it meets to
the appropriate class and calculates y,, from the explicit
expression corresponding to this class. '

A programme of this type has been written for an Elliott 402
computer, which accepts specifications of the step response
S(u) in the form

S(u) = A + Be™?% 4 Ce—¢ _
for overdamped systems

= A + Bsinmv + Be~?%sin (qu — mv)
for oscillatory systems

together with a specification of ¢(=i/i,,"), and prints out the
corresponding value of y,/i,,. This programme was used in
the investigation of level control systems described in the
following sections and has subsequently been used in a
corresponding investigation of pressure control systems.

No programme has yet been written for the general case of
systems not restricted to those satisfying second-order
differential equations.

The Design Problems for Level Control Systems

In this section the problems to be solved in designing simple
level control systems will be described. In order to establish
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clearly the meaning of various symbols, Figure 5 shows
kimple level control system. An unregulated flow of liquid
| enters a vessel in which the level is maintained at a desired
value /; by regulating the exit flow f,. Alternatively, the input
flow may be regulated and the output flow subject to demand
fluctuations, but in either case call the regulated flow f, and
the flow subject to disturbances f;. In order to avoid intro-

L

MEASURING ELEMENT

u <>

1 CONTROLLER

vaLvEe

fa2

Figure's. Simple level control system

ducing the cross-sectional area of the vessel, the performance
is described in terms-of deviations in volume in the vessel from
the desired volume, so that if / is the deviation in level from
its desired value, and A4 the cross-sectional area:

V=14

where V is the deviation in volume.

Level control systems fall naturally into three main classes
and the design problem is different for each case. These will
be described in turn.

(a) Flow smoothing system

In many systems the object is not to maintain strict control
of the liquid level, but rather to make use of the available free
space in the vessel to smooth out fluctuations in the flow f; so
that they are transmitted to f; only in an attenuated form.
The aim is to vary f, as slowly as possible, while still checking
the variations in level before they cause the vessel to overflow
or to empty. A good example of this is the level control on
the liquor in the base of a distillation column, where the
object is to vary the flow from the column base as slowly as
possible to avoid disturbing sections of the plant further
downstream, while at the same time preventing the level from
rising too high and causing contamination of the liquor on
the first plate by carryover, or from falling too low and exposing
part of the heater.

In this case the object of the design procedure is to predict:

(1) The minimum size of vessel which can be used if the
desired smoothness of the controlled flow is to be attained
without any possibility of the vessel overflowing or emptying.

(2) Size and speed requirements for the control valve
regulating the flow f;.

These quantities obviously depend on the violence of the
disturbances in f; among other things, so in order to get
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quantitative results it is necessary to give some method of
specifying both the disturbances and the desired ‘smoothness’
of the controlled flow. The definitions which will be given
here are one of many possibilities and are chosen to suit our
particular design method. In the author’s experience these
use about the greatest amount of information it is normally
possible to obtain at the design stage. The desired smoothness
of f, is specified by giving a limit f5,’ for its tolerable rate of
change, and the violence of the disturbances is similarly
specified by giving limits f & F between which the flow f; must
lie. It may also be possible to specify a limit F” for the rate of
change of the flow f;, which imposes a further restriction on
the violence of the disturbances, but it is considered unlikely
at present that any information about f;, other than values of
F and (possibly) F*, will be available at the design stage. By
the method described in the previous two sections it is then
possible to calculate V,,, the maximum deviation in volume
of liquid in the controlled vessel from its desired value, and
the vessel must be sufficiently large to accommodate fluctuations
of this size. The maximum variation of f,, +f,, about its
average value, can also be calculated and this may be used in
conjunction with the value of f’ (which was the original -
design specification) to obtain the maximum speed of movement
which will be demanded from the control valve motor. The
design is then complete.

(b) Level control systems

The second, and probably smaller class of systems can more
correctly be described as level control systems, since in these
the object is to control the level of liquor within specified limits
of the desired value. The vessel is assumed to be given and the
task of the designer is merely to specify a control valve of
adequate size and speed. Using the notation already discussed,
the desired performance is now specified by giving limits + ¥y,
about the desired value, within which variations of the volume
of liquid in the vessel are required to remain. (This is equivalent
to specifying limits =+/, for the level, where I, .= V,,/A.)
Using F, and also F” if available, it is then possible to calculate
the maximum correction required and the maximum speed
demanded from the control valve motor, so completing the
design.

~ (¢) Given valve motor

A third case often arises, where the only requirement is that
the vessel shall not fill or empty completely, but a restriction
is imposed on the rate of change of output by the speed of

-available valve motors rather than any smoothness condition.

An example would be a catchpot handling large flows. Provided

_that the level does not rise so high that there is appreciable

carryover of liquid into the gas stream, or fall so low that gas
can pass into the liquid stream, its position within the pot is
not important. However, a large control valve may require
a pneumatic motor with large diaphragm area to overcome
off-balance forces at the plug, so it will be fairly slow in action.
The limitation which this imposes on the correction rate

"determines a minimum size for the catchpot to ensure that it

will neither completely empty nor completely fill. The size
could, of course, be reduced by fitting a faster motor to the
valve and it would be necessary to balance the savings resulting
from a reduction in vessel size against the increased cost of a
faster motor. '

In practice, the majority of catchpots require a minimum
size for adequate disentrainment of liquid and vapour which
gives ample time even for a slow motor to apply the necessary
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rrection, and this type of system only presents a genuine
oblem of level control in exceptional cases.

alysis of the Simplified Linear Model

A simple model of the system, which neglects all departures
m ideal behaviour in the measurement and control equip-
nt, will be analysed in this section. The theoretical and
erimental justification for these approximations will be
cussed in a later section. '

[he system to be analysed is shown in Figure 6 from which

Figure 6. Block diagram of simplified model

s seen that the measuring system, controller and control
ve are assumed to be described by a simple transfer function
the form « + fs, corresponding to a perfect proportional
s integral controller. « is then the loop gain and B/« is
;» where 7, is the integral action time. Derivative action is
- considered, and although it is difficult to justify this
rously without a complete investigation of cases in which
s included, the following arguments are felt to provide
iciently good grounds for neglecting it.
“onsider a system in which the object is to control the level
a given vessel as closely as possible. With a transfer
ction of the above form, which neglects inherent lags in
pneumatic equipment, there is clearly no limit to the
itness of control attainable by increasing the gain, as the
em remains stable for all gains. Thus the addition of
ivative action would not improve the attainable quality of
] control, and would call for faster rates of correction.
the case of a system intended to act as a flow smoothing
ice, derivative action is completely unsuitable, since its
pose is to cause f; to respond rapidly to changes in f;.
‘rom Figure 6 it is easy to write down the transfer functions
ting V, f, and f,” to f;, and hence to deduce the corre-
nding step responses. Since the system is represented by a
ond-order differential equation, the step responses can be
tten in a form suitable for use with the general purpose
nputery described in an earlier section, and hence V,,, Sm
| fm’ (defined above) can be computed. The results are
nally expressed by giving values of V,,[F, f,./F and f,,/[F as
ctions of the three variables (=F/F’), o and B. A full
loration of the forms of three functions of three variables
uld be very tedious, but this can be avoided by a suitable
ice of time units, as will be shown.
n addition to the three functions just mentioned, it is
venient to consider T, defined by T, = 2f,/f,,’, which is
minimum time in which the control valve may be required
traverse its complete range and hence determines the
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necessary speed of the valve motor. It is also convenient to
choose ¢, o and ffa as the independent variables rather than
¢, o« and 3, since ]« is the reciprocal of the integral action time.
Now consider the effect on all these quantities of multiplying
the unit of measurement of time by a factor N. All the
quantitics depend dimensionally on time .only (except f,./F
which is dimensionless) and Table 1 shows the factors by which
they alter.

Table 1
Quantity Multiply by Quantity | Multiply by
ValF 1IN ¢ N
SalF 1 o N
fIF N 1 Iy N
Tm 1N

It is clear from this table that, by a suitable choice of the

unit of time measurement, it is possible to give any pre-assigned

numerical value to the design specifications, V,,/F for a level
control system, f,,’/F for a flow smoothing system and T,
when the motor is given. Alternatively it is possible to give ¢
any desired numerical value. For the purpose of this general
investigation the second alternative will be chosen, as it reduces
the number of independent variables to two, and the quantities
of interest can be exhibited graphically by plotting contour
charts in the plane («, 1/77). The results shown in Figures 7-10
with ¢ = 2 were obtained by automatically computing ‘spot
heights’ at the points of a rectangular grid, and interpolating
the contours. T

One feature of the function V,,/F which does not show up
in the contours of Figure 7 is a step discontinuity at 1/r; = 0.
Thus for o« =05, V,,/[F—>40 as 1/r; -0 through positive
values, but V,,,/F = 2:0 when 1/7; = 0. The contours of equal
V../F approach some value of « on the axis 1/r; =0 but
suddenly jump back to a point half-way between this value
and the origin when they actually reach the axis. The physical
reason for this behaviour is quite simple. For a very small -
amount of integral action, the dynamical behaviour of a pro-
portional controller and of a proportional plus integral con-
troller will be almost identical; in particular the maximum
change in the controlled quantity following a step change of
given magnitude in the input will be almost the same in both
cases. Now consider the situation in which f; has been at its
smallest permissible value f; — F for a very long time. If any
integral action is present, however little, ¥ will have balanced .
out at its desired value V, but if there is strictly zero integral
action it will settle at its smallest value ¥V — V,,. If /1 then
jumps suddenly to f1 + F, the maximum deviatjon of V from
its initial value will be positive and approximately the same in
both cases, but the maximum deviation from ¥V = ¥ will be
twice as great for the system with integral action, since the
starting value was ¥ rather than ¥ — V,,. In the present case,
where strict limits for the variation of f; are known, this feature
gives a great advantage to the proportional-only controller.

It is not easy to see the behaviour of the functions in the
neighbourhood of the origin from Figures 7-10, so enlargements
of small regions near the origins have been computed. It is
seen from Table 1 that an increase in the unit of time measure-
ment increases the numerical values of « and 1/7; and decreases
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Figure 9. f,/[F for ¢ = 2-0

the value of ¢ in the same ratio, so the enlargements of small
squares near the origin may be regarded, with equal validity,
as charts drawn over the original ranges of o and 1/77, but
corresponding to a smaller value of ¢. Figures 11-14 are
plotted from this second point of view with ¢ = 0-05, but if
b is increased to 2-0 the values-of « and 1/7; are everywhere
multiplied by 0-025, and the result is an enlargement of a
small square near the origins of the original charts.

Having established the form of the functions it is now
bossible to see what type of system is best suited to each of
he three problems discussed in the previous section.
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(a) Flow smoothing system

In this case f,,,/F is specified and can be expressed in units
chosen so that ¢ =20, when it determines a contour on
Figure 9 (it may be more convenient to make ¢ = 0-05 and
use Figure 13 if f.’[F is small). It is required to follow the
variation of V,/F, fu/F and T,, as the representative point
moves along this contour, and this can easily be done by
superimposing the chart for f,,’/F on each of the other charts
in turn.

For small values of f,,'/F when Figures 11-14 are appropriate,
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 is seen that, for finite integral action, V,,/F first decreases
hen increases as 1/7; is increased. However, even at its
ninimum it never becomes as small as the value taken when
/71 = 0, so from the point of view of vessel size a proportional
ontroller is best. This conclusion is unchanged for larger
alues of ¢, as can be seen from Figures 7 and 9. It should be
emembered in considering Figure 9 that the contours f.,'/F >
-5 are of no interest for flow smoothing systems, since ¢ = F/F”,
O fm'[F > 0-5 implies fw'IF > F'[F, i.e. the correcting flow
s less smooth than the disturbing flow. References to Figure 9
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in this section are therefore concerned only with the contours
fw'IF <05; it is clear in fact that the above description of
the behaviour of V,,/F on moving along a contour f,,'/F =
constant is not valid when f,,’/F > 0-5. Comparison of the
Sfw’[F charts with the f,./F charts shows that f,,/F increases
monotonically on moving along a contour f,,,’/F = constant
in the direction of increasing 1/77, so that more correction is
required when integral action is used. Since f,,’ is specified,
this implies that slower valve motors may be used, but flow
smoothing applications are not likely to be very demanding
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1 motor speed in any case. Thus there would appear to be
very advantage in using simple proportional control in flow
moothing applications, and it is possible to plot a simple
esign curve to give the necessary vessel size for any specified
moothing, as shown in a later section.

b) Level control system

Here V,,/F is specified and determines a contour on Figure 7
r Figure 11. The variation of T,, and f,,/F on moving along
his contour can be found, as before, by superimposing the
ppropriate pair of charts. For finite values of 1/71, T, first
ncreases then decreases when the V,,/F contour is described
n the direction of increasing 1/77, but there is a discontinuous
ump downwards when 1/7; begins to increase from zero.
¥hether or not the subsequent rise in 7, is greater than this
nitial fall depends on the relative values of ¢ and V,,/F.
Vhen V., /F = ¢ = 2-0, for instance, it is seen from Figures7
nd 10 that the rise is not large enough to recover the initial
iscontinuous fall, but when V,,,/F = 2-0and ¢ = 0-05, Figures
1 and 14 show that T, rises to about 2-15 when 1/7 1~ 07,
ompared with the value 2-0 at /71 =0.

In this case there is some advantage to be gained, from the
oint of view of valve motor speed, by using a finite amount
f integral action. However, the difference in speed is less
1an 10 per cent, which is about the order of accuracy to be
xpected when applying the predictions to a practical system,
s willlbe seen from the experimental work. This improvement
. not sufficient to justify the extra complication introduced
ito the design procedure, so by restricting attention to
roportional control it is again possible to obtain a simple
esign curve giving Tp,.

) Given valve motor

The case in which T,; is given is very similar to that just
iscussed. The specified value of T,, determines a contour on
jgure 10 or Figure 14 and the variations of V,/F and Sl F
n passing along this contour can again be found by super-
nposing charts. When 1/7; increases from zero there is an
itial discontinuous rise in V,,/F, and the subsequent fall and
seymay not lead to a minimum smaller than the initial value,
epending on the relative values of ¢ and T,,. However, the
est V,, is not more than 10 per cent better than the value
btainable without integral action, so again it is hardly worth-
hile designing for anything more complicated than a simple
roportional controller.

In all three cases it has been decided to design on the basis
fa proportional controller, as it has been shown that the intro-
action of integral action does not permit any significant
-onomies in the design. It should be noted that this does not
ecessarily mean that integral action is never useful in a level
ontrol application. It has been assumed that only a very
mited amount of information about the disturbance is
vailable, and that it is necessary to allow for the worst possible
ntingency consistent with this information when designing
e system. It may turn out when the plant is in operation
at the disturbance has special features which make integral
tion very useful (such as a high-frequency ripple super-
nposed on a much slower variation of large amplitude), but

is unlikely that this information would be available at the

esign stage.
esign Curves for Systems with Proportional Control

When £ = 0, corresponding to no integral action, it is seen
P g gr

from Figure 6 that the transfer functions relating ¥, frand fy’ to
f1 are:

Yo _ 1. e _ - L _ 52 (g
fil®) s+ fis) s+’ fil) ste

From which follow the weighting functions and step responses:

Wy = e %, Sv = é(l — e~ 10)

Wp=ae®,  S,=(1—e an

Wy = ald(t) —ae™t], Sy = ac™! (12)

where W,, etc, are weighting functions, S, etc. are step
responses, and 6(z) is the O-function.

The particular fi(s) in ¢ <0 which makes V(0), f,(0) or
f2'(0) as large as possible can be found by the method described
in earlier sections. For ¥ and f;, where equations 10 and 11
show that the step responses are monotone increasing, the

worst f(7) is: :

fi=+F forallt <O 13)
and the corresponding greatest values, V,, and f,,, are given by:
VulF =1[o,  folF =1 (14)
In the case of f,’ the worst f1(¢) is: .
fi(—u) =F — Fu for O<u <2¢. s
= —F for 24 <u.
where we have written ¥ = —t. The corresponding greatest

value f,,” follows as:

for = | Wiufi(~u) du = f afs(w) — ae=(F — Fu) du
0—

—J'wa[é(u) — e~ ] Fdu

. 2¢

or : (16)
fulF =5 (1 = &2

Finally T,, is defined as 2f,,,/f,,,’; so from equations 14 and 16:

2 an

T = 1 —e2d

Equations 14, 16 and 17 contain all the required results for a

proportional controller. -
Consider now the three basic design problems in turn.

(a) Flow smaa[lzing system

The performance specification is [fw'IF, with dimensions
1/time, so it is possible to choose the unit of time measurement
so that f,,"/F = 1. Using these units equation 16 gives:

(17’(1 —e2%) =]

so that
o = -1-10 1
Substituting this into equation 14 gives:
24
VulF =
/ (19)

{ 1
lOge (1—_—¢)

which determines the required vessel size. V../F is obtained
in the time units in which f,,"/F =1, of course, and it is
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necessary to convert back to conventional units. The function
defined by equation 19 may be plotted and is shown in Figure 15,

g -~

o L " A s L . 1 " L
o -3 o2 o3 Q4 o5 06 .07 o8 - 09 o

g —

Figure 1_5. Design curve for flow smoothing systems

which can be used directly for design work. Note that if
¢ > 1, V,, = 0. This is what would be expected, since in this
case F’ < f,," and no smoothing of the disturbance is required.

(b) Level control system

The performance specification is ¥,,,/F, which has dimensions
(time), so it is possible to choose the unit of time measurement
so that V,,/F = 1. From equation 14 it follows that @ = 1 in
these units, and substituting this into equation 17:

2 20)

T =1

which determines the required speed of the valve motor (in the
time units defined above), and can again be plotted to give a
design curve as shown in F:;gu(e 16.

(¢) Given valve motor

In this case T, is fixed by the available valve motor. If the
time unit is chosen so that 7,, = 2, equation 17 gives:

¢

! 1 — e

which is identical with equation 18, and therefore determines
the same value of V,,/F. The curve given in Figure 15 can
therefore be used to determine V,, in this problem with the
above choice of time unit.

In all three cases the value of ¢ to be used depends on the
given values of F and F’ of course, since ¢ = FJF’, and if no
information is available about the rate of change of the dis-

‘turbance, it must be assumed that F* = oo\or ¢ =0.

Approximations Involved in the Simplified Model

In setting up the simplified model on which the above
development was based, all departures from ideal behaviour

DL 10
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in the measurement and control system were neglected. With
displaccment type level measuring instruments the measurement
lag is very short, so provided transmission distances arc not
too long the major lag will almost certainly be associated with
the control valve motor driven by the controller relay. It should
be remembered, however, that this time constant is effectively
included in the internal feedback loop of the controller when
all connections are short, so its effective value in the main
control loop is equal to its actual value divided by 1 + K,
where K is the gain around the internal feedback loop of the
controller. In a typical practical example the time constant of
the valve in series with the controller output relay is about
I5 sec, while the gain round the controller feedback loop is
roughly 200, so the effective time constant for response to
changes in the input to the controller is 15/200 sec, which is
very small indeed.

" The second important feature of the pneumatic system which
has been neglected is the non-lincarity of the flapper-nozzle

T E . . .
P A S .
SO T8 LW RO SOZTES SIS

two amplifiers has been treated in detwil® for some purely
pneumatic systems, but the same type of phase-plane analysis
can be applied to the present system with a proportional
controller. In this way it can be shown that, when the valve
motor speed is determined by the method described in the
previous section, the system should always remain within its
region of linear operation, which is what would be expected
since the motor is chosen to be capable of the maximum speed
of movement called for by an ideal controller. The phase-
plane analysis can only be carried out for a proportional
controller as a three-dimensional phase space would be needed
to treat a system with a proportional plus integral controller.

As an experimental check of the validity of the simplifications
introduced, measurements were made on a small level control
installation. The vessel itself was a length of 6in. i.d. pipe

& A= e

P, P [
POt Do S N BN s WALTN WIS

o-4 |

° M " " " " i

o o2 o4 oé o8 to 1 -4 "e 13} 20

Figure 16. Design curve for level control systems

and the disturbances applied to the input flow were sufficiently
large to cause the level to change an inch or two per sec if no

865



DL

orrecting action was taken. A differential pressure cell with
L range of 12 in. of water was used for measurement, so the
peeds called for from the pneumatic system were fairly high.
[he changes occurring in the controlled level after step changes
n the input flow were of the order of 1/2 in., so for recording
Urposes it was necessary to use a measuring system of greater
ensitivity than the d.p. cell. For this purpose a pneumatic
ignal was provided by a motion-balance type transmitter
perated by a float, giving a sensitivity of 6 1b./in.? per inch
hange of level. Step changes in input flow were produced by
pening or closing a quick-acting Saunders valve in a by-pass
onnected in parallel with the inlet pipe. The size of the step
ould be altered by adjusting a second valve in this by-pass.

Measurements were made of the maximum changes, ¥ and
20, in the volume of liquid in the vessel and the correcting flow
espectively, following a single step change of magnitude F in
he input flow. This was done for various values of the pro-
yortional bandwidth and integral action time of the controller,
ind the results were comparcd with theoretical predictions from
he simple model by plotting them as functions of 1/r; for
arious fixed values of the proportional bandwidth. The
xperimental and theoretical values of VO F and f,%F are
ompared in Figures 17 and 18 respectively. The agreement
etween experiment and theory is very good indeed for VY/F,
vhile for f,°/F the greatest error occurs for the'largest values
f 1/77, and does not exceed about 5 per cent. It can be con-
luded that the simplified model is adequate, even when the
neumatic system is driven at an appreciable fraction of its
naximum speed.

Having checked the validity of the linear model it is desirable
Iso to check the predictions of V,,/F and f,,/F given in
igures 7,8, 11 and 12. These follow without any mathematical
pproximations from the linear model, and should therefore
e correct if the simple model is a good one. When there is
finite limit to the value of F', corresponding to a finite value
f ¢, it is not very easy to produce the worst disturbance

CURYVES _GIVE

THEORETICAL VALUES

-

CURVES GIVE
THMEORETICAL VALUES

1 - —
. Oin mins™' 3

Figure 11. Comparison of theoretical and experimental
values of V°[F

° 300208
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Figure 18. Comparison of theoretical and experimental
values of f,°|F
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experimentally, but when F’is unbounded the worst disturbance
is a sequence of step changes between the limits £ F, which
can be produced quite casily with thc arrangement alrcady
described. When the system responsc is overdamped the worst
disturbance is a single step change of input flow, and V,,/F
and f,,/F are cqual to V9 F and f;°/F, which have alrcady been
scen to be in good agreement with the theoretical values. For
an oscillatory response, however, the worst disturbance is a
sequence of equally spaced stcp changes, alternately positive
and negative, at the resonant frequency of the system. (This
is true only for a second-order system, of course, where the
weighting function is periodic; for more complicated systems
the worst input is not penodlc) In order to find this worst
disturbance the system was excited with a square wave periodic
variation in input flow, produced by switching the quick-
acting Saunders valve at equal time intervals. The amplitudes
of the resulting oscillations in ¥ and f, were then plotted as
functiens of the frequency of the disturbance, and each curve
exhibited a maximum which provided the required estimate of
Vo OT fr,. This was done for several values of the proportional
bandwidth and integral action time, and the results are compared
with the theoretical predictions in Table 2.

Table 2
Vm/F Vm/F fm/F _fm/F
& B (obs) (pred) || * B {Sbs) (pred)
0-3 0-12 54 43 03 | 016 | 20 2-1
06 0-24 28 22 |l 03 0072 | 17 16
03 0-031 | 46 47 0-15| 0082 28 2:7
06 | 0046 | 24 27 06 033 | 20 17

The agreement of theoretical and experimental results is
very good considering the rather crude experimental procedure.

It can be concluded from the expenments described that the
design method described in the prevnous section should give
predictions which can be relied on in practice to be in error by
not more than about 10 per cent, provided the control valve
motor is not pushed to the extreme limits of its speed of response.

Summary

Stable linear filters with bounded inputs give outputs which are also
bounded. In the first three sections of the paper a mathematical
method is outlined for obtaining the least upper bound of the output
in the case where bounds are specified both for the magnitude of the
input and its rate of change. The result has immediate applications
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Conclusions

Mathematical methods recently developed have been applied
to the simplest type of automatic control system and lead to a
design method with the two properties essential for day-to-day
application:

(a) It is sufficiently simple for routine use by personnel with
limited mathematical background and limited time available
for design work.

(b) It demands only the simplest information about the
disturbances affecting the system, and produces the most
economical conventional system which is sefe, in the sense
that the desired performance will be attained even with the
worst disturbance which can occur.

Although the original mathematical investigation was quite
extensive, it was found that no system was very much better
than' a simple proportional controller. Thus the final design
curves could be calculated very simply, though it would not
have been possible to establish these results without the initial
investigation, since it is by no means clear a priori that the
addition of integral action does not give any significant
advantage.

The same methods have also been applied to pressure
control systems and lead to simple formulae for calculating
the minimum sizes of pressure vessels compatible with given
control specifications.

The author wishes to thank Mr. E. N. Martin for frequent
useful discussions in the course of this work, and Mr. T. F. Farr,
who undertook the experlmemal work on the pilot system. The
work described is part of the research programme of Imperial
Chemical Industries Limited, Billingham Division.
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SUMMARY

A method of rendering feedback control systems amenable to
treatment by the Wiener theory is applied to the case in which the
controller operates on a sampled measurement. An explicit expres-
sion is obtained for the minimum attainable mean-square error for
certain classes of system transfer functions and disturbance power
spectra, and the form of the optimum controller is derived. The
results show the inherent limitations in controllability imposed by the
structure of the controlled system and by the sampling process.

(1) INTRODUCTION

The Wiener optimum filter theory? cannot be applied directly
to the problem of the optimum feedback regulator because of
difficulties in imposing the condition of physical realizability on
the control mechanism to be placed in the feedback loop. How-
ever, the closed-loop configuration- can always be formally
reduced to an equivalent open-loop configuration, and it was
recently shown by Price! that this can always be done in such
a way that the realizability condition takes a simple form in
the open-loop case.

Price used this method to investigate the inherent limitations
on the attainable control quality imposed by the structure of
the controlled system when the controller is allowed to be any
linear, continuous device, but a slight modification of the method
allows it to be applied to the case in which the controller operates
on samples of the measured variable taken at equal intervals of
time. In this way it is possible to calculate the best control
quality attainable with a linear sampled-data controller of given
sampling interval and to derive the form of the optimum
controller.

In this paper, the main interest is in the calculation of the best
attainable control quality (measured by the mean-square error)
and in comparing this with the best control quality obtainable
with a continuous controller. This gives a direct measure of
the reduction in controllability which must necessarily accom-
pany the loss of information involved in the sampling process.
The results have proved useful in estimating the frequency with
which automatic batch-analytical instruments on a chemical
plant must operate if their signals are to be useful for automatic
control.

The type of system to be treated is shown in Fig. 3. A dis-
turbance d(¢) causes the controlled quantity e(?) to deviate from
its desired value, which is taken as zero for convenience, and
the controller operates on samples of ¢(¢) taken at intervals T.
Given the fixed element P, the object is to find that physically
realizable, linear operation C on the samples e(r7') which will
minimize e2(f), averaged in the manner discussed below over a
statistical assembly of disturbances, and to calculate the mini-
mum value of this quantity.

(2) STOCHASTIC SIGNALS IN SAMPLED SYSTEMS

The Wiener theory, as developed by solution of the Wiener—
Hopf integral equation, leads to a solution of problems of the

Correspondence on Monographs is invited for consideration with a view to
publication.
Mr. Jackson is with Imperial Chemical Industries, Ltd., Billingham Division.

above type which minimizes the time average {eX(t)>. However,
in practice, the ability of the system to reduce this time average
for one particular disturbance is of less interest than its ability
to keep e%(¢) small, on the average, for all disturbances belonging
to some statistically defined assembly. With the usual assump-
tions that the assembly in question, {d(#)}, is stationary and
ergodic, it follows for continuous systems that the assembly
average e2(7) is independent of time ¢ and is equal to the time
average {¢2(#)) for any member function of the assembly (with
the possible exception of a subset of measure Zero).

These hypotheses of stationary and ergodic signals throughout
the system are not tenable in sampled-data systems, since the
result of sampling a stationary, ergodic signal is not stationary
and ergodic; in fact, its statistical properties vary periodically
with period equal to the sampling interval. There are two
different but closely related methods of dealing with this situa-
tion. In the first, which is adopted by Ragazzini and Franklin,?
the assembly considered is enlarged by considering an assembly
of systems (as well as disturbances) which are physically identical
but have their set of sampling instants displaced in a random
manner relative to each other. The complete assembly of out-
puts, generated by all the signals of the assembly of disturbances
applied to all these systems of identical structure, is stationary
and ergodic if the assembly of disturbances was stationary and
ergodic. Alternatively, it is not difficult to show that, if the
assembly of functions {y(#)} is generated from the stationary
ergodic assembly {x(1)} by any linear sampled-data filter, then

) +T/2
Gy =4 [Foa. o

—T2
Thus the Wiener theory, which minimizes {y*(#)), will lead to
a system which minimizes the assembly average 7@, further
averaged with respect to time over a sampling interval, and it is
in this sense that the control systems discussed here are optimum

systems.

(3) REPRESENTATION OF LINEAR SAMPLED-DATA
FILTERS
A linear sampled-data filter is a device which linearly relates
an output function of time, y(¢), to values of an input function,
x(9), at the sampling instants ¢t = rT. Thus

+o
yOy = X bt —rT)x(rT) . . . . (3}
re=— @

where A(x) is a function characterizing the particular filter con-
sidered. In a physically realizable system, h(u) = 0 for u < 0.
Filters of this type may be represented by shaded blocks
[Fig. 1(a)] to distinguish them from continuous filters, which
are normally represented by unshaded blocks. An alternative
representation may be obtained by considering a continuous
filter with weighting function k() = h(u) and input consisting

of the following sequences of delta functions:

x*(t)=+2®x(rT)8(t—rT) e (3).

r=—aao

(1]
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x(t)  x(t) ¥t
o K

x(t) [ yt)
H/
A

(a) (5)
Fig. 1.—Sampled-data filters.

Then

© + o @
@) = jok(u)x*(t —wdu = Y, x(rT) Jok(u)S(t —u — rTdu

r=—o

or ) = -Eo kKt —r)x(¢T) . . . . @

which is identical with eqn. (2) since k(t — rT) = h(t — ¢T).
This arrangement may be represented in a block diagram as
shown in Fig. 1(4). Tt is clear from this discussion that every
sampled-data filter may be represented in this form and it is
often convenient to do so; nevertheless some caution must be
used in discussing the behaviour of this representation. In
general, the division into a sampler and a continuous linear
filter does not correspond to any physical division in the actual
filter, and, in particular, no attempt must be made to discuss
the response of K to a continuous input at the point x*. Even
if the sampled-data filter may be physically divided into a
sampler and a subsequent filter, this filter need not be identical
with the continuous filter K.

As an example, consider a system with the structure shown in
Fig. 2(b). The relation between x(¢) and y() is clearly linear if

x(t) y(t)
el H o (a)
%
I'_———__-_I
x(t) Iy
—_——, x
S I :
l s2 | ()
| |
| Y '
| |
e ——d
x(1) y(t)
| ke (c)

Fig. 2.—Filters with equivalent input-output relations.

a(t)

e(t)

N —

Fig. 3.—Sampled-data controller.

the filters X and Y are linear, and the presence of the sampler
S, ensures that y(¢) can depend only on the values of x(f)
at the sampling instants. Thus the system is a linear sampled-
data filter according to the definition given at the beginning of
this Section and, as shown in eqn. (4), it is certainly possible to
find a system of the form shown in Fig. 2(c) which will give an
equivalent relation between x(¢) and y(r), where K is a suitably
chosen continuous linear filter. Although the relation between
x(#) and y(¢) is unaltered by replacing the contents of the dotted

boundary in Fig. 2(b) by the continuous filter K of Fig. 2(c),
this does not, of course, mean that K and the contents of
the dotted boundary have identical dynamical properties. They
are only known to have the same effect on the special class of
inputs which consist of a sequence of delta-function impulses
synchronized with the sampling instants of the samplers S,
and Sz.

(4) CORRELATION FUNCTIONS AND SPECTRA IN
SAMPLED-DATA SYSTEMS
Various auto- and cross-correlation functions and the corre-
sponding spectral densities will be required for the sampled-data
filter shown in Fig. 1(b). These are given by Ragazzini and
Franklin® and are listed below, with a complete derivation in
one case to illustrate the method.
The cross-correlation function, ®,,, of two functions a(s) and
b(r) will be defined by
1t
O,p() = lim o [ a(nbtt + wdt = bt + w> . ()
To—> 2To —Ty
and since the functions are assumed to be members of a stationary
ergodic random process, the time average could be replaced by
an assembly average if desired. When b(¢) = a(?), the function
®,.(v) is known as the auto-correlation function of a(s). The
cross spectral density, S,;(s), of a(r) and b(z) is defined as the
Fourier transform of ®,,(1), i.e.

+ o
Sap(s) = J D, (w)e—Ioudy for s = jw

. (6)

= analytic continuation for other values of s

and when b(#) = a(?), the corresponding function S,,(s) is called
the power spectrum of a(f). Corresponding to eqn. (6), of
course, is the inverse transform
1 +jeo
— sud
O, () Py jgé,(s)s s
The required relations for the system of Fig. 1(b) will now be
dealt with in turn; the complete derivation given of result (iv)
typifies the methods used in handling sampled time series.
(i) For the system in Fig. 1(),

w(t) = j—-lz?)x*(t —wdu [k(w)=0foru<0] . (D

x*¥() = +Z°°x(rT)8(t—rT) P )

r=—o

(ii) Since K is a continuous filter, the output spectral density
and the cross spectral density of input and output are given by
the well-known relations*

S,(5) = KOK(—9)Sxexe(s) . - . - (9
So,(5) = K(5)S,o,5(s) = Syee(—$) (10)

(iii) As shown by Ragazzini and Franklin,? the auto-correla-
tion function and corresponding spectral density of x*(f) are
given by

1t

Do) = = 2 @ ¢T)ou — rT) (11)
1 t= .
SXan(jw) = T Z q)xx(rT)e*erT (12)

r= - 00

(iv) Finally, the cross-correlation function and cross spectral
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density for x(¢) and y(¢) will be derived as an illustration of the
methods used.

From the definition given in eqn. (5), by splitting the range
of integration into segments of length 7, we obtain

1 4+N DT

q)xy(u) =Nlil>nw m nN (n{;?%’(t + ll)df
1 4N DT

= N BN DT p 2l PO

Substituting for y(r) from eqn. (2) gives

1
) = lim o
S = 10 OGN+ DT
+N DTt
X X x(t —wy 3 k(t — rT)x(rT)dt
n=—N"(n-H)T r=—o0
or
1
(] = lim ———
W = I GNF DT
+N DT 4
Py _[ > x(t — wx(rT + nT)k(t — rT — nT)dt
n=—N*n—HT r=—c0

Now put v = ¢t — nT, which reduces the above to

1

o) = i N+ OT
+N HT 4
x j S k@ — rT)x(T + nT)x(@ — u + nT)dv
n=-~NY—3T r=—o
] 4w HT
. k(v —rT
T,=Z_‘,o —31T )
lim 1 554
X N_)OO(ZN—_!_I)”:Z_NX("T + nT)x('U —u+ nT)]d’l)

and it may be proved that, when x(¢) is stationary and ergodic,
1 +N

Iyinoc (2N + 1) ,,=Z_ Nx(n T)x(nT + 1) = D, (1) (exactly)

Using this result, the expression for (ny(u) becomes
1t +iT

S, W)= X kv — rT)D, (v — u — rT)dv
T o v —4T

-+ o0
= lfj-_kogw)(l)xx(w — wydw (say)

Since ®,, is an even function of its argument, this reduces
finally to

1pte
D, () = ?J kWD, (u — w)dw (13)
and correspondingly,
1
Sxy(s) = ?K(s)sxx(s) = yx('_s) . (14)

This completes the set of spectrum relations which will be needed.
but before leaving this topic it is worth defining two operations
on spectra which will be required in the discussion of the Wiener
optimum controller.

A power spectrum, S, (s), is said to be Wiener-factorizable
if it is possible to write

Saa(s) = Sclm(S)SEa(S) . (15)

where Sl,(s) has all the zeros and singularities of S,,(s) in the
left half-plane and is free from zeros and singularities in the
right half-plane, while S2,(s) has all the zeros and singularities
of S,,(s) in the right half-plane and is free from them in the
left half-plane.

The decomposition of a function, F(s), of the complex variable
s given by

F(s) = [F&)]; + [FG$)]- - (16)
will also be important, where
e [t .
[FO]. = i;jJ;e""”l:J-_Igju)eJ"’du]dt for s = jw an

= analytic continuation for s # jw
[F(s)], is then analytic and bounded in the right half-plane, while
[F(s)]_ is analytic and bounded in the left half-plane.

(5) A REARRANGEMENT ANALOGOUS TO PRICE’S
METHOD FOR CONTINUOUS SYSTEMS

Returning now to the basic sampled-data regulator of Fig. 3,
the block diagrams shown in Fig. 4(e) represent systems which
give the same relation between e(r) and d(f). C, is physically
realizable because it is constructed by physical interconnection
of the two physically realizable blocks P and C, and so to every
system of type A [Fig. 4(a)] there corresponds a physically
realizable system of type B. The truth of the converse follows
in the same way from the second sequence of equivalent systems
given in Fig. 4(b), so arrangements A and B are completely
equivalent so far as the relation between e(#) and d(t) is concerned.

From Fig. 4(b) it might appear that even the best C; would
only correspond to the best C of a particular class of sampled-
data filters with a sampler in the feedback loop. However, in
view of the remarks in Section 3, this is not the case, and the
equivalent C gives the optimum controller for the conventional
arrangement represented by A in the class of all linear sampled-
data filters.

Having established the equivalence of arrangements A and B,
it is now possible to proceed to find the optimum linear C;
which minimizes <{e?>. This can quite easily be done after
re-drawing B in the equivalent form shown in Fig. 5. It is
permissible to invert the order of the blocks P and C;, as shown,
since each is a continuous linear filter.

(6) OPTIMUM C; AND MINIMUM MEAN-SQUARE ERROR

The C, which minimizes {e?) follows immediately from the
arrangement shown in Fig. 5 using the conventional Wiener

theory:
_ 1 sgd(s)}
o= s;g<s>[sgg<s> ;

where Ssl,g(s) and Sg,g(s) are the Wiener factors of S,,(s) (assuming
this is factorizable); the notation [F(s)],. has been explained in
Section 4.

The various terms in eqn. (18) will now be evaluated for the
system shown in Fig. 5. The following relations arise from the
results given in Section 4:

(18)

19)
(20)

S, = ZP(—9)3(0)
Sge(s) = P(s)P(—5)Sys4+(5) .
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d(t dt)
. o d(t) o o~ 3 e &~
e(t) e(t)
_ — . _
-C .—J — -P = -P
—_——— e ——— —— N
Pt
A et P P - ~
b - C c B
WHERE - -G "/’9"" -¢
P

(@)
d(t) d(t)
153 P L/ [ A
e(t) e(t)
—_———— = ~
N R I

-p -P : N\ -C
- -c, A

8

WHERE _.._/-—.— -C - ] -.-/:?L— -Cy

(3)

Fig. 4.—Block diagrams of equivalent arrangements.

(ag Relation of C) to C.
(b) Relation of C to C;.

Attention will be restricted to stable transfer functions P(s) of e
the form oty
P(s) = PePAs)e== . . . . . (2 - = -« e C—=
where P(s)es* is a rational function, and PI(s) and P%(s) have
the properties of Wiener factors. Then a(t)
d(t) 2(
S,a(s) = %Pl(——s)Pz(—s)a“de(s) L@ i gl I S UL il
Sie(s) = PUOPA—=9)Skeyels) . . . . (23) Fig. 5.—Open-loop configuration for control system.
S2 (5) = P/ —5)P2(5)S20 .o o ) .
2s(8) = PU—9)PHs)Sezo(s) . 249 desired solution of the problem. It will be convenient also to
Substituting these in eqn. (18) gives the optimum C,(s) in the have the result in the slightly rearranged form
f
o C = 1 X ! x SL.(s)
Cy(s) = 1 [8” T St ] (25) 1) = PIOPH—9SLE) ~ Shege®
1) = — .
P1(s)P%(—s)S} 2(5) SPe,e
OPH=SaeacOLT P Sar) 1+ [ & PA=9SO) 1 Su® ] @6)
All the quantities appearing in this are known, so it gives the SL(® P2(s) T SZeg(9)]+
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Notice that, when P(s) = 1, C,(s) becomes simply the optimum
filter for reconstructing d(t) from the sampled signal d*(?).
Denoting this by C;,(s), eqn. (25) gives

1 [ 1 Su(s) ]
Sb-d‘(s) T Sgad.(s) +
These results should be compared with Price’s optimum C,(s)
for the continuous case, which will be denoted by C;(s):

1 PZ(—S)de(S)e‘"]
P'(s)Pz(—s)S},d(s)\: P(s) + @9

Comparing egns. (27) and (28) with eqn. (26) it is seen that the
optimum C,(s) for the sampled-data case is Price’s optimum
continuous C;.(s) in series with the optimum data reconstruc-
tion filter if, and only if, . :

Cis) = 27

Cis) =

l: 1 PH—s)Sky(s)er _1_ de(s)]

Ska(s) P2(s) T SZeye(s) | 4+ )
_ 1 Pz(—s)S,',d(s)G“] ’ [1 s,,,,(s)] e
=50 " [ TPs) IT S, 29

One obvious case in which this factorization is valid arises when
P(s) is minimum phase, in which case 7 = 0, Pl(s) = P(s) and
P2(s) = 1; other cases will be discussed later.

Having obtained the optimum C,(s), it is of direct interest to
calculate the corresponding value of the mean-square error.
The power spectrum of e(?) is

8..(9) = 84/ — FPOCISu) — FP(—ICK—5)Sus)

» + C1(S)C1(~S)P(S)P(—S)Sd'd*(s) (30)
from which {e?> can be obtained using ‘
1 e
=g s0a. @31

Although the method used here gives the form of the optimum
filter C,(s) directly, the form of the optimum C(s) is of greater
interest for the purpose of synthesizing an approximate optimum
controller. From consideration of the block diagram in
Fig. 4(b) showing the relation between C and C,, it follows in

stralghtforward manner that

Cy(s)
. [ - PC](Z)]ZEF:Vr
where PC,(2) is the z-transform? corresponding to the Laplace

transform P(s)C,(s). The explicit form of C(s) for a particular
simple system is given in Section 9.

C( ) = (32)

(7) OPTINIUM CONTROLLER FOR A CLASS OF
) - . DISTURBANCE SPECTRA
" Cys) and <e2> will be evaluated for a particular but very
extensive class of disturbance spectra.

Laning and Battin* show that any bounded auto-correlation
function, the square of whose magnitude is integrable over the
infinite interval, can be approximated in the mean by a sequence
of terms -of the form A e—<*l with ¢, > 0. Thus any auto-
correlation function likely to be of interest can be approximated
arbitrarily closely, for the purpose of computing mean-square
errors, by a sum of the form

D) =

kZl_Ake—”kl'“ . (33)

OPTIMUM SAMPLED-DATA CONTROL 5

If Sys) is the power spectrum corresponding to @ ,,(x), and
Sa+a+(s) the spectral density of the corresponding sampled signal,
using eqgns. (6), (11) and (12) it is not difficult to show that

2A4,c

Su) = 5 225 34)
and that
n P —2CgT
Saeae(®) = 4 3 Al — e 7) | 35)

T 2 (1 — e~ aTe~sT)(1 — g~aleT)

‘Eqn. (25) for C,(s) will now be evaluated for spectra of this
particular form. Paying attention first to the square bracket on
the right-hand side of eqn. (25), and denoting its contents by
F(s), it follows from eqns. (16) and (17) that it is possible to
write ’

[F(s)]+ = J-oo}(t)s'-”dt with 5 = jw

. . +jo :
where £ - j F(s)estds

When Sg;(s) and Sgege(s) are given by eqns. (34) and (35),
inspection of the form taken by F(s) shows that, in evaluating
f(9), the integration contour may be closed by a large semicircle
in the left half-plane when ¢ > 0, so that

f(® = 3 res [F(s)e*] (for t > 0) . (36)

the sum of the residues being taken over all poles of F(s)e*
in the left half-plane. The factors P(s) and S3s;+(s) which
appear in the denominator of F(s) have, by definition, no zeros
in the left half-plane, while the possibility of P2(—s) having
singularities in the left half-plane is excluded by the fact that
attention is limited-to stable transfer functions P(s). -Thus, the
only singularities of F(s)e in the left half-plane are the simple
poles of Sy,(s) at s = — ck, and eqn (36) may be evaluated
immediately: -

e PG e
f(t) - Z T P2( ck) Szodc( Ck) S—> —Ck
Pz(Ck) L e
P —cp) Sgn,p(—-C)

im (s + ¢)Sa(9)]

A, (for t‘>A 0) -

1 & Py - Aggmor 1

[FOl =7 2 Fr—ep Gou(—ed 77 5,
and the optlmum C,(s) then follows from eqn. (25) as
Ci(s) = 1 1 7 Py = A= 1
1= pigyp(— =985 a® T 421 PA—c) Sppg(—cd 5+ &
1)

Since the following combination of factors will occur frequently
from now on, it will be convenient to define

. . _ 1 PZ(ck) '.Ake-cyr L
Qs ) = Ok = P—cp) SToge(—cp) (3%)

when eqn. (37-)- takes the form _
) = 1 @

PUPH(—5)She o(s) ¥=1 5 + ¢

The main difficulty in handling this when n > 1 is the cumber-
some algebraic form of the factors S}s;+(s) and S,’g'd.(s) when
written out explicitly.
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Before going on to deal with the mean-square error, however,
it is interesting to consider some special results which hold for
n = 1. In this particular case, eqn. (37) becomes

1 1 PYc) Ae= 1

Cil) = BIPA =58l T PA—0) Shoge(-0) s 7 ¢ O

(where ¢ = ¢;) while, from eqn. (27), the optimum data-
reconstruction filter is
1 1 A 1

= — —_— . 41
Stli‘d'(s) T Sg‘.d:(—-c) S +C ( )

Clr

Since Sy(s) = 24c/(c* — s?) in this case, the right-hand side of
eqn. (28) can easily be evaluated, and the optimum continuous
controller is

1 P _..

= PIG)PA(—s) PA—0)° “2)

Clc

Comparison of eqns. (41) and (42) with eqn. (40) shows imme-
diately that

Ci(9) = C1()C1(5)

so again we have the result that the optimum sampled-data C,
is equivalent to the optimum continuous C,, in series with the
optimum data reconstruction filter C;,. This may also be
proved by checking directly that the factorization condition,
eqn. (29), is satisfied. It should be noted that, although this
attractively simple result is valid for this very popular spectrum,
it does not appear to be generally true when n > 1.

(8) MINIMUM MEAN-SQUARE ERROR
Returning now to the general case, # > 1, the minimum
attainable value of {e?) is calculated by using eqns. (30) and
(31) with C,(s) given by eqn. (39). The terms in eqn. (30) can

be integrated separately, the first giving immediately

+joo n

1
] S04 = Z, 4 “

Considering the second term of eqn. (30), it is necessary to
evaluate the contribution to eqn. (31) from

1 1 PY)PXs)e—* - 9
7POCS2() = 7 PSP —5)Shege(s) = k&1 5 + &
n 1 1
Al ——
ngl 'c,+s+c,—) “4)
Now S)s ;0 has the form
N(s)

IT (1 — gaTg—sT)
k=1

where N(s) is a polynominal in £ ~*Tof degree not exceeding n — 1.
Thus 1/S}e4+(s) remains bounded when |s| — co provided that
J4(s) > 0, and it is seen that every term of eqn. (44) tends to
zero faster than 1/|s] when |s| o0 with Z(s) > 0. The
contour of integration in eqn. (31) may therefore be closed by
a large semicircle in the right half-plane; it is then necessary to
remember that the closed contour is described in a negative sense.
The only poles of the integrand in eqn. (44) in the right half-
plane are at s = ¢;, and they are simple, so the residues can
be obtained by multiplying through by s — ¢; and letting s — ¢;,
with the result

1 (Ha
——— | P()C(8)Sgu(s)ds
27jT J—jo
= l i Al P2(CI)_E-CIT 3 Qk
T I=1 S¢li'd°(cl) P2(—c,) k=1 Cx +.Cl

In a similar way, by closing the contour with a semicircle in
the left half-plane, it can be shown that the same contribution
is obtained from the third term of eqn. (30).

When written out fully the contribution from the last term of
eqn. (30) arises from the integrand

1 L O &

Skeas(5)Sheyo(—5) K= e +5 =1 ¢ —
Sd*dc(s) = S“i.d‘(s)S?,.d‘(s)
Whlle Sd‘d*(—s) = Sétdt(—s)s‘zitd.(-—s) = Sd.d.(s)

since S e;4(s) is even. Further, S} «(—s). has all its poles and
zeros in the right half-plane, while S3+4+(—s) has all its poles
and zeros in the left half-plane. S}s;+(—s) and SZ+;+(—5) can
therefore. differ only by constant factors from SZe;+(s) and
Sles(s) respectively, and the factorization can be carried out in
such a way that Sls;e(—s) = S2+,+(s). Introducing this into
integrand (46), the first and last factors cancel. The contribu-
tion to eqn. (31) may then be evaluated by closing the contour
with a semicircle in either half-plane. Choosing a semicircle
in the left half-plane, the contour is described in a positive sense
and it is only necessary to sum the residues at the poles at
§ = — ¢y, with the result

2 & QO
k=t1[=1C¢ + €

which is seen to be identical with eqn. (45), remembering that
SZs4s(—c;) = Sheg+(c;) with the present choice of factorization.
Collecting together the terms contributing to eqn. (31) gives

(e = kél A — }rn:‘ Zn: R]

K=1i=1 ¢+ ¢

C2))

. (46)

ssd =44(8)

Now

47

(48)

When the system is without control, {e?) = {e?)¢ = {d?) =

n
Y, A, so that the mimimum attainable value of (e[, is
k=1

given by
: <ez> 1 L AkAI
= 2L = - ___ TRCL
S T T g, 2P ShaeoSha
k=1
o P PAep | emlarer o
PA—c) PA(—c) et

where the explicit forms of Q, and Q, have been re-introduced,
and it is assumed that the factorization is carried out in such a
way that Sbada(s) = S?,@do('——s). .
As in the case of C;(s), the greatest difficulty in handling this
is the clumsy algebraic form of the factors S}oze(s) when # > 1.

(9) EVALUATION OF THE RESULTS FOR SIMPLE
EXAMPLES

A programme to evaluate the right-hand side of eqn. (49) has
been written for a digital computer. This deals with the case
where n = 2 [i.e. two terms in expression (35) for Sze42(s)] and
P2(s) is a polynomial of degree not greater than two. It was
used initially to calculate £ for the system shown in Fig. 6, for
which the continuous case has been treated by Price.!

The plant consists of a transfer lag with unit time-constant,
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d(t) e(t)

Fig. 6.—System used in illustrative examples.

together with a distance-velocity lag, =, while the disturbance,
with spectrum D(s) = 2¢/(c? — 5?), enters through the plant by
the same path as the correction. For the corresponding con-
tinuous system, Price obtains the result

E£=1—(Q1+27+2m %

2¢(1 + ©)
a—o?

when ¢ =1

=1 —"Z7—5[$2) — 2601 + ©) + $(20)] . (50)

when c¢#1

where ¢(x) = £77*[x.

Using the programme described above, corresponding calcula-
tions have been carried out for sampled systems with various
values of ¢. The results for ¢ = 0-05 and for ¢ = 100 are
recorded in Figs. 7 and 8. Note that:

(i) For fixed values of ¢ and 7, £ increases with 7. This increase
is much more rapid for large values of ¢ than for small values.

(ii) For fixed values of ¢ and T, £ increases with T and approaches
unity as T — cc.

These properties are all as expected intuitively. The curves
for T'= 0 are drawn using Price’s formulae above; the con-
vergence of the computed curves to these when 7 becomes small
provides a check on the theory and the programme for the
sampled case.

The form of C(s) will also be obtained and compared with
the optimum continuous controller for the system shown in
Fig. 6, but to avoid unnecessary algebraic complication the
disturbance with the spectrum considered above will be replaced
by white noise. This affects the measured variable only after
passing through the block representing the controlled plant, so

g st

2
— and P(s)— s

Saa(s) =

. i 1 2 N s .
o] 2 4 =) 8 10 12 14 16 18
T -

Fig. 7.—¢ as a function of t for ¢ = 0-05.

[s) A "

3t
N

110’:

o) " " N " M " i "

o 01 02 03 04 05 06 07 08 09 10

T —

Fig. 8.—¢ as a function of = for ¢ = 100.

and correspondingly,

Pl(s) = and P3(s) =1

The sampled spectrum Sys4+(s) corresponding to the above form
of S,4(s) is given by eqn. (35):

1 (1 — 27
T A — e Te—sT)(1 — ¢ TeT)

From eqn. (40) it now follows that

Sd ado(s) =

Cis) =e~*(1 — e~ Te—sT) |

(51
and hence that
e="(1 — e~ Teg=sT)g~sr

PECI() = o

(52)

If 7 is written in the form 7 = (p — A)7T, where p is an integer
and 0 < A < 1, the z-transform corresponding to eqn. (52) is

PCy(z) = e~ PTz—7 (53)

C(s) for the optimum controller may now be obtained by sub-
stituting from eqns. (51) and (53) into eqn. (32):
—1[1 — e (l+:)T]

peTEnyy (54

C(s) =

The transfer function of the optimum continuous controller

can be obtained by substituting the above form of P(s) in eqn. (42)

to give C;(s). Then if C(s) is the corresponding filter for use
in a simple feedback loop,

Clc(s)

Cl) = T —pC ) PHICLO) 5
which corresponds to eqn. (32) for the sampled case. In the
present example,

A + s)e~~
C) = =59 (56)

Difficulty is experienced in comparing C(s) with the limiting
behaviour of C(s) when T — 0, because C(s) is assumed to
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operate on a sequence of delta functions. This difficulty can

be avoided by representing C(s) as a zero-order hold, with

transfer function (1 — £~*T)/s, in series with a filter C'(s). We

must then have

8—1[1 — s—(l+s)T]
1 — g~ P +9T

’ sC(s) s
CO=r—a~ =7

. (57

The zero-order hold converts the sequence of delta functions
leaving the sampler into a ‘staircase’ function, which approxi-
mates to the continuous function at the sampler input more and
more closely as T—0. Correspondingly, C'(s) would be
expected to approximate in the limit to the transfer function
C(s) of the continuous controller.

In examining the behaviour of eqn. (57) for small values of 7,
it must be remembered that p — 00 as T— 0 in such a way
that pT—> 7; thus, e~ PU+9T ~ g=5(1+) when T->0. The
remaining exponentials in eqn. (57) may be expanded in their
exponents, neglecting powers beyond the first, when it follows
that C’(s) = C.(s) when T— 0 for each value of s. The con-
vergence of C'(s) to C(s) is not uniform in s, but we may say
that the behaviour of the optimum sampled-data controller
with very short sampling interval approximates to that of the
optimum continuous controller, except at very high frequencies.
The frequency range over which the approximation is good may

be extended as far as we please by taking a sufficiently short
sampling interval.
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-roup B

Chemical plants normally consist of a number of more or less distinguishable
units such as reactors, distillation columns, mixers and evaporators, between
which streams of material are transporteds The flow rates and compositions
of these streams depend on the design and operating conditions of the units,
so the complete plant consists of a number of interconnected and interacting
units, In the simplest case the connection may be a sequential one, in which
the product from one unit forms the feed for the next, but frequently this
pattern is complicated by the presence of bypasses, recycle loops or cross feeds
between two chains of sequentially connected units. The problem of determining
the most econcmic design and operating conditionsin these circumstances is a
problem associated with the plant ~s a whole, whose complex interconnected form
usually leads to an exceedingly cumbersome mathematical formulation. The
question thercfore arises whether it is possible to break down the connecting
structure to some extent and to define separate optimization problems for each
of the units from which the plant is composed, such that solutions of each of
tiiese separate, and simpler problems may be adjoined to synthesise a2 sclution
of the opilimization problem for the complete plant,

In the early 1960's it appeared that two mathematical techniques might be
adapted to accomplish this, namely the algcrithm of Dynamic Programming, and
the Maximum Principle of Pontryagin. In their original forms, neither of the
technicues was entirely suitable. Dynamic programming was indeed a method
of decomposing optimization problems ininterconnected structures but, as
originally developed, it required the connection to be sequential, The
Maximum Principle, on the other hand, did not deal with interconnected discrete
units at all, but was a result in the Calculus of Variations, However, an

analogous/



analogous statement could clearly be formulated for sequential structures
composed of discrete units, and it wes expected that this would be generalisable
to more complex structures.

The earliest attempts to generalise Dynamic Programming to structures
with recycle loops met with immediate success, but publication B1 showed, by _.
mesns of a simple counter example, that they led to results which were ma-rect;,
and traced the fallacy in the reasoning leading to the proposed generalisation
of’ the sequential algorithm. Since the date of this publication valid extensions
of the Dynamic Programming algorithm to complex structures have been developed
by Nemhauser, Wilde and others,

The second spproach, namely the development of a Discrete Maximum Principle
analogous to Pontryagin's Principle in the variational calculus, had reached a
much more advanced stage by 1964, at which time it formed the subject of a large
number of papers and a textbook. However, in aseminer at Imperial College,
London in 196)4., the present writer suggested that the basis of this work, namely
the Discrete Maximum Principle itseli’y, was fallacious and supported this contention
with the first exampls quoted in publication B2, The seminar was attended by
Dre. F, Horn who devised a much more conclusive counter example and joined with
the present writer in publication B2, in which a valid but weaker form of the
Discrete Maximum Principle was suggested, In publication B3 we went on to show
that this weak form is nothing more then a simple rearrangement of o formula
of elementary differential calculus,

Publication B4 explores the relation between the generally valid weakencd
form of the Maximum Principle and the original strong form, which is true only
in very special classes of problems, Some of these classes are identified
explicitly. Since the date of these publications the relation between the weak
and/



and strong Discrete Maximum Principles has been thoroughly investigated by
pure mathematicians, notebly Halkin at the University of California, who has
identified classes of problems for which the strong form is valid, other than
those erumerated in publication Bl.,

In purlications B5 and B6 the valid form of the Maximm Principle is
developed for interconnected structures of arbitrery complexity and it is
shown that it may be & useful tool for practical computations. Finally
publication B7 extends this work to situations in which the state of the plant

is time=-dependent,
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Comments on the paper
Optimum cross-current extraction with product recycle

D. F. Rupp and E. D. BLum

(Received 13 November 1962)

IN A recent paper! Rupp and BLUM have proposed a simple
extension of the method of dynamic programming to deal
with stagewise processes with product recycle. In view of the
widespread occurrence of these processes, such a generaliza-
tion is of great potential importance. However, it is the pur-
pose of the present note to show that the proposed method is
in fact fallacious, leading to the correct answer only in certain
very special cases.

We first recapitulate the method briefly using the notation
of Rupp and BLum’s paper. Referring to Fig. 1 of their

r=3/4

q:=1/4

ou

W

Fic. 1. Simple recycle system.

paper, the object is to choose the operating conditions
Wi, ... Wy so as to maximize an objective function Q of the
form

N
Q = RI(Ps — Px)g] — ) C(Wy) m
i1

where the given functions R and C represent the increase in
value of the process stream and the cost of applying the
operating policy respectively. The quality Po of the stream
entering the first stage is related to Py and Py by the mixing
condition

Po = (@Ps + rPW)(G + 1) @

P; may then be eliminated from equations (1) and (2), giving

. N
Q = R[(Po — PN)(g + ] — ) C(Wy) ©)]
t=1

Let W;m(Po) represent the set of operating conditions which
maximize Q for a given Po. They may be found by conven-
tional dynamic programming computations, and in turn they
determine a value of Pux.

Py = Pn[Wim(Po), Po] &)

The pair of equations (2) and (4) may then ke solved
simultaneously for Po and P, which suffice to determine the
optimum operating conditions and the maximum value of Q.

The right-hand side of equation (4) must, in general, be
computed numerically through the dynamic programming
tables, so equations (2) and (4) must be solved numerically,
and the authors propose a particular iterative method for
doing this. A given approximation to Po determines a value
of Py through equation (4), and this in turn is used in equa-
tion (2) to determine the next approximation to Po. The
value Po = Pis suggested as a suitable initial approximation.

The fallacy of the above procedure can best be exposed by
considering a simple example. Fig. 1 shows a single stage
process with recycle, in which Py, Po and P, each represent a
single quantity and there is one adjustable operating con-
dition W. Block A is such that P, is related to Po by

Py =2Py — W? (5)
while the mixing condition is
Py = }Pys + P21 (6)
and W is to be chosen to maximize )
Q=P1— Ps Y

for given Pys. This is a special case of the problem treated by
RupDp and Brum and is so simple that it can be solved
directly without resort to their procedure. The relation
between P; and Py for any value of W can be found by
eliminating Po between equations (5) and (6), giving

Py =2W?2— Py
whence
Q = Py — Py =2W?2— Py) (8)

and this takes its smallest value Q = —2Psat W = 0.
The procedure used by Rupp and Brum is as follows:
From equations (6) and (7)

Q = 4(P1 — Po) (&)

corresponding to equation (3) of the general case. _Using
equation (5) for Pi1, we see that Q has a unique stationary
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maximum at W = Wm = 0 for all values of Po, and with

this value of W
Py = P1[W™(Po), Po] = 2Po (10)

corresponding to equation (4) of the general case. Equations
(6) and (10) are then solved simultaneously, giving

Po= —3Prand Py = ~P;with W = Wm =0,

and correspondingly
Q= —2Ps

However, direct solution has already shown us that this is the
smallest value taken by Q for any choice of W!

This example is so simple that an iterative solution of
equations (6) and (10) is unnecessary, but if we ignored this
and applied the iterative procedure proposed by Rupp and
BLum we should find that the iterations diverged. We should
therefore be prevented from actually arriving at the false
conclusicn.

It is interesting to give a somewhat more general analysis
of the Rubpp and BLuM procedure. For simplicity attention
will be restricted to the single stage system shown in Fig. 1,
but we shall take a general functional relation

= f(Po, W) an
to represent block A, a mixing condition of the form
Po=aP;+BP1 (e+B=1) 12
and an objective function
Q =P1— P;s— C(W) (13)

Elimination of Py tetween equations (12) and (13) gives
Q = (P1— Po)ja — C(W) 14

and it will be assumed that the form of f (Po, W) is such that
Q has a single stationary maximum with respect to W at
constant Po. The procedure of Rupp and BLUM can now be
followed without difficulty. W corresponds to the stationary
value of Q at constant Po and therefore satisfies

.1_(1) E.. 0
«\ow/r, aw ~

This value of W is then substituted into equations (11) and
(12), which are solved for Po and P; and these in turn deter-
mine W through equation (15). In other words, the values of
W, Po and P taken to represent optimum operation satisfy
equations (11), (12) and (15).

The problem may also be approached directly by elimina-
ting Po from equations (11) and (12) to give an implicit
equation for P: in terms of Py and W. It is then
required to find the value of W which maximizes Q, as
given by equation (13) with this value for Pi. First consider
the condition for Q to take a stationary value with respect to
W at constant Pr. We have

oP;
(8 |14 ) Py

20 _

&),

while differentiation of equation (11) gives
of af

dP1 = (aTo) dPO + (a_VI_/)P dw

.. a(2f af (using equation (12)
o B(a_Po) df1 + (aW) dW ™ Jith constant Py)

as)

dc

aw (16)

It follows that
(a_Pl) ___(2f1aw)Po
\ow/e, 1 - B(3f]oPo)w

and substituting this into equation (16) we see that the con-
dition for Q to take a stationary value is

@fWre _ dC
1 — B(offoPo)w  dw

and the corresponding values of Po, P1, and W are obtained
by solution of equations (11), (12) and (17).

In general equations(15) and (17) are not identical, so Rubb
and BLuM’s solution does not even correspond to a stationary
value of Q with respect to W at constant Pys. Thus there are
values of W in the neighbourhood of the value they determine
which give larger values of Q.

However, in the particular case when C( W) = 0, equation
(15) reduces to

=0 an

;(af/aW)po =0 18)
and equation (17) to
(aﬂaW)Po _
1 — BfloPo)w e

Satisfaction of (18) is now sufficient to ensure that (19) is also
satisfied (unless 1 — B(8f/oPo)w = 0 ‘‘accidentally”), so
Rupbp and BLuM’s solution corresponds to a stationary value
of Q@ when C = 0. Nevertheless, as shown by our example,
it would be fallacious to assume that this stationary value is
necessarily a maximum.

To investigate its nature, we write down an expressmn for
the second derivative

220
(3_”72)’?
at a stationary point where (0Q/éW)P; = 0. When C =0
this is
2 2 2
(3 Q) _ (22f]oW2)p, (20)
ow?/p; 1 — B(8f]oPo)y

The solution of equations (11), (12) and (18) corresponds to
a stationary maximum value of f at constant Py, so
(2%f]eW?Py < 0, but (82Q/eW?2)Py may have either sign
depending on the sign of the denominator on the right-hand
side of equation (20). Thus the solution of Rupp and BLumM
may give either a maximum or 2 minimum value of Q with
respect to W at constant P;: in our exampleit gave a
minimum. '
It is not difficult to show that the necessary and sufficient
condition for convergence of RupD and BLuM’s iterative
method of solution of equations (11), (12) and (18) is

IB(aPo) \ <1

and this is also sufficient condition for the denominator of
the right-hand side of equation (20) to be positive. Thus,
when the iterative procedure proposed by Rupb and BLum
converges, the solution obtained corresponds to a stationary
maximum value of Q with respect to W at constant Pj.
(Provided C = 0, of course).

We may summarize the general results obtained for the
single stage process in which Q has a unique stationary
maximum with respect to variations in W at constant Po.

@n
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(i) In the general case with C(W) = 0, the solution of
Rupp and BLum does not correspond to a stationary
value of Q, so there are values of W in the neigh-
bourhood of theirsolution which givelarger values of Q.

(ii) When C(W) =0, a solution of their equations by
some suitably convergent iterative method always
corresponds to a stationary value of Q, which may
be either a maximum or a minimum.

(iti) When C(W) =0 and the particular iterative pro-
cedure proposed by Rupp and BLUM is used to solve
the equations, the solution corresponds to a stationary
maximum value of Q whenever the iterations con-
verge. .

Case (ii) has already been illustrated by the example
worked above. If the objective function in this example is
modified to include a term C(W), taking

Q=P1— Pr— (W — 2)? 22)
in place of equation (7), the procedure of Rupp and BLum
leads to the value W = Wm = 2/5. But with this value of W
(@Q/oW)rs = 48, showing that the solution does not
represent a stationary value of Q and illustrating case (i).
In case (iii) it might be thought that Rupp and BLum’s
procedure would lead to the correct answer, but a simple
counterexample shows that this is erroneous. We consider
a single stage system of the type shown in Fig. 1 with

Pi1 = P2 — (W — Po)? 23)
a mixing condition
Py = }P; + }P: 29
and an objective function
Q =P — Py 235)

In this case W™ = Py and equations (23) and (24) give
Py = Po?and Py = 4P, (26)

where we have confined attention to finding the solution for
Py = 0 to simplify the algebra. Equations (26) can be solved
either directly or by the iterative method of Rupp and BLuM,
which converges in one step to the solution

Py = Py =0 with Wm = Py =0 @7
These values might therefore be expected to correspond to
the largest value of Q for Py = 0. However, direct solution
of equations (23), (24) and (25) for Q as a function of W

shows that
2

w
e= w—1 ]
which has the form sketched in Fig. 2. The solution (27)
corresponds to a stationary maximum of Q, as expected, but
all values of W > 1 give larger values of Q, and indeed the
largest value is obtained by allowing W to approach unity
from above.

It must be concluded that the procedure proposed by Rupp
and BLUM can in no circumstances be counted upon to lead
to the best operating policy, though it is doubtless possible
to invent special examples in which it is successful.t (In par-

when Py =0 (28)

t The présent discussion has been limited to the simplest
case in which the P’s are single numbers, i.e. one dimensional
vectors. It has been pointed out to the writer by Dr. F. HOrRN
that Rupp and BLum’s procedure does not lead to a stationary
value of the objective function, even when C = O, if the
P vectors have more than one component.
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FiGg. 2. Objective function for final counter example.

ticular the authors’ worked example of cross current extrac-
tion with recycle has an objective function with finite terms
C(W), so it is unlikely that the result they give represents the
true solution.) However, the principal purpose of this note
is to draw attention to the fact that the method is based on a
fallacious principle, namely the assumption that the process
of determining optimum conditicns in the recycle system is
mathematically equivalent to sub-optimizing in the forward
loop and balancing conditions at the recycle point. These
two processes are not the same, and the assumption that they
are can lead to completely misleading results even in cases
which are completely “well behaved” mathematically.

R. JAcksoN
University of Edinburgh
and Heriot-Watt College

NoOTATION

C Cost of applying an operating policy.
Quality of product stream after N stages.
P; Quality of feed stream.
Po Quality of stream obtained by mixing feed and
recycle streams.
q Flow of feed and product streams.
@ Objective function.
r  Flow of recycle stream.
R Inciease in value of process stream.
W  Operating condition in a single stage process.

W: ... Wy Operating conditions in a multi-stage process.
« Equal to g/(qg + r).
B Equalto r/(g + r).
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F. G. HELFFERICH, Ion Exchange. McGraw-Hill, New York
1962. 624 pp. $16.00.
A RECENT addition to the McGraw-Hill series in Advanced
Chemistry, “Ion Exchange” by Dr. FrieDricH G. HELF-
FERICH belongs without doubt in the library of every serious
student of this most interesting subject. Dr. HELFFERICH has
written a comprehensive and penetrating treatise in which
the emphasis has been placed on the fundamental physical
chemical aspects of the subject. He has dealt essentially
with the nature of ion exchangers and their behaviour and
only incidentally with the techniques of their application.
Thus, while this book may not necessarily answer the
questions of those concerned with operating apparatus or
processes, it does probe the underlying frame work on which
such practical considerations ultimately rest. Working from
a background of extensive research experience, Dr. HELF-
FERICH has written a book with a point of view. He has
critically surveyed the rather staggering literature in this
area and has not hesitated to point out those approaches
which he considers most fruitful in explaining the nature of
ion exchangers. The main empbhasis in the text is on models
which explain and account for the observed characteristics
of ion exchange resins. Old and new approaches are con-
sidered and considerable qualitative discussion is presented,
along with sufficient mathematical development to enable
interested readers to follow the more detailed structure and
consequences of such models. In addition to these theoretical
considerations, the text also contains a brief but useful
summary of the main methods used in experimental investi-
gations of ion exchange and related phenomena.

The book is divided into twelve chapters each of which
contains a generous number of references and a complete
summary of the chapter contents. After a brief introduction

there is a discussion of the structure and properties of ion
exchangers, which is in turn followed by a consideration of
the chemistry of their preparation. This largely qualitative
section is followed in the succeeding chapters by extensive
descriptive and quantitative discussion of the properties and
behaviour of ion exchange materials. Chapters are devoted
to exchanger capacity, equilibrium in ion exchange reactions,
solvent sorption and resin swelling, kinetics of exchange and
sorption, electrochemical properties of exchangers, and the
theory and properties of exchanger membranes. In parti-
cular, the chapters on equilibria and membrane processes
are quite comprehensive, and that on kinetics is perhaps the
most complete and rigorous discussion of this subject
available at present. There is a chapter devoted to ion ex-
change column behaviour which contains the usual quanti-
tative relations as well as some illuminating general dis-
cussion. In addition, there are also interesting chapters
devoted to the subject of ion exchange in non-aqueous and
mixed solvents, catalysis by exchange resins and electron
and redox exchangers and their properties. The text con-
cludes with a useful appendix which contains a detailed
table of nomenclature, a listing of all the commercial
available ion exchangers and several tables of mathematical
functions pertinent to solutions presented in the theoretical
developments.

In the opinion of the reviewer, this volume will be of value
to anyone interested in a fundamental understanding of the
properties and behaviour of ion exchange materials. It will
certainly serve as a most useful reference to the expert in
this field, while selected readings from the various chapters
will give the more general reader an excellent picture of ion
exchange and its many ramifications.

J. S. DRANOFF
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CORRESPONDENCE >

—

DISCRETE MAXIMUM PRINCIPLE

Sir: The maximum principle of Pontryagin (77) is now a
well known method of dealing with a wide class of extremal
problems associated with the solution of ordinary differential
equations with given initial conditions. In a particularly

lucid exposition of this principle, Rozonoer (72) has pointed -

out that, although one might hypothesize a discrete analog of
the maximum principle for difference equations rather than
differential equations, such a result is invalid except in certain
very special conditions which render it almost trivial. Never-
theless, in three recent papers (8,-70), Katz has presented a
proof of a discrete maximum principle- around which a sig-
nificant amount of work—some already published (7,~3,
73, 74) and some still in press—is beginning to build up.
However, the purpose of this note is to reaffirm, largely by means
of simple counterexamples, Rozonoer’s original statement that
the discrete maximum principle is invalid, and to show that
the “proof” given of it is fallacious. X

Firstly, we will briefly recapitulate Katz’s results. He con-
siders a system of difference equations of the form

X = P, 05 6= 1,2 .8 =12 ..M (1)

with given initial conditions

X‘o = a4, (l = 1, 2, .. S) (2)

It is customary and convenient to regard each Eguation 1
as describing the relation between outputs and inputs for some

" physical unit, so that the complete set of equations describes

the behavior of a sequential chain of units as shown in Figure 1.
It is then required to find those values of the variables 6!, 67,

- ..6" which minimize (maximize) the value of xa”.

The proposed solution makes use of the solutions z" of a set
of difference equations adjoined to Equations 1—namely

S dF, . ‘ '
W= D W (=128 6= 12 W)
3
xy ) x} 2 | eaa ] i__-_ N _."—.-
o o’ o o

. Figure 1. Sequential chain
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with the terminal conditions

2 1; fori =1 @)
= 0 otherwise '
It is then asserted that cach 8" should be chosen to minimize

(maximize) the corresponding quantity
s

H" = Z Z]’!I“l" (5)
j=1

with the z," regarded as constants from the point of view of the

minimization (maximization) process.

1o Katz's formutation of the problem, the functions 77" are
assumed 1o be the same for cach value of a and are written /4.
However, this restriction is not vital to the argumncent, and Fan
and Wang (2, 3) dcerive the same result without any such
assumption. Indced it has no Bearing on the validity or
otherwise of the result, as we shall show.

Some doubt may be thrown on the correctness of the above
algorithm by the very simple example shown in Figure 2,
where the objective is to maximize x*. Direct climination of x!
shows that

=4 — (04 M- ()
with a stationary maximum value at ' = —x, 6* = 0, which
also gives the largest value for any choice of §' and 6%

However, F! is linear in the adjustable variable 6!, so it is not
possible to determine a valuc for 6! by the condition that

H' = const. x!

should be maximized with respect to 8!, as would be required -

by the computational procedure suggested by Katz 8.
Although this may cast some doubt on the result, it is easy to
see that 22 = O for the optimal policy, so that H!' is actually

independent of 8 and is, in a sense, maximized for any value °

of 8. To obtain a completely unambiguous counterexample,
therefore, one must take § = 2, corresponding to a two-dimen-
sional system. Consider, for example, the system shown in
Figure 3, where the problem is to minimize x,? with respect to
¢ and 62. By direct elimination of xi! and xy!, itis easily shown
that ‘

xd = 241200 + @ ©)
with a unique stationary minimum at §' = 6* = 0, which also
gives the smallest value of x;3. This is, therefore, the solution
of the problem. We now pursue Katz’s proposed procedure,
. solving the adjoined equations backward along the chain,
. starting from the boundary conditions. ‘

z2=1,22=0

According to Equation 3, we ;hen have

OF OF?
Loy — , z,8 — .zt =1
“ bn‘ ! bx.‘ -
and

OF 3 OF,? . ' '

=3 ) ongt z3 2x4

x* . raxde' 2 xa- (!')'-?’)'
o' o’

Figure 2. One-dimensional exomplé

H' can then be written down by substituting into Equation 5,
giving ’

H = z.‘[‘l - 20 — % (oi)*] + (1 + o)

where )
o OM!
5“]7 = (z' — 2zy") — 2,'¢" and W‘ = —z' = —~1

using the value of z,' found above. It is scen that QUINJO(0M)? -
is negative for all values of ', so it foliows that /1! can never be
minimized with respect to 0', as would be required by Katz's
principle cxpressed in Equation 5. Indeed the valucs 0 =
6 = 0 and the corresponding solutions xi' = xo' = 1, 3! = 1,
22 = 2, which have been shown by dircct calculation (Equa-
tion 6) to minimize x,?, actually maximize H' in dircct contra-
diction of Katz’s algorithm.

In this simple counterexample the functions Fy" are different
for different values of n. It remains to demonstrate the truth .
of the assertion made above that Katz’s result remains invalid
even if all the functions F," are the same, as in his original
derivation. We shall do this by showing that, from any §
dimensional counterexample, it is possible to generate an (§ 4-
1) dimensional counterexample in which all the functions F"
are the same.

Consider then an example in § dimensions with state vari-
ables

x* (=12 .38; (=12 ...N)

and recurrence relations x& = F¢*(x;"~, "), with boundary
conditions x¢ given, and suppose that this contradicts Katz's-
result in the same way as the example just quoted, and is
therefore a counterexample. Let us call it Example 1.

Now introduce a second example (Example II) with § 4 1
dimensions and recurrence relations

x" = G(xi" 1, 67) 0

with the functiéns G, independent of n. The functions G
of any § + 1 variables, &, &, . .£s41 are defined by the follow-
ing relations: )

N .
© Gty . Es4) = ;, Om(Est)F(M(&1y .. 85, 0); (1 =71...5)

Gsyilhr. .bs41) = bsa + 1 ‘
' (8)

where the functions ¢y, have the following pt:opcrties
i om(x) =1 (x= integer = m)
(ii) ¢m(x) =0 . (x = integer # mand1 £ x < N)
(iii) ‘¢m(x) arbitrary for other values of x.
‘ ‘ ©)

There are many such sets of functions—for example,

=1 K= K- 29-}60" K- 4 0"
1 2 )
L] Xexgs o x;
o' : Y- Y

Figure 3. Two-dimensional example
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dmlx) =
(x = 1) {x = 2) L lx=mm DN ~—m—1)...(x = N)
(m — 1)(m —2).... (m—m+ 1)m~-m—=1)...(m — N)

The boundary conditions for the recurrcnce relations (Equa-
tion 7) are x% thc samc as those given for Example I

G =1,2, S)}

-and Xs+lo =1

(10)

Putting &,. . .£s41 cqual tox,® 7Y, .. .x541" ! in Equations 8 and
substituting into Equation 7, it follows on taking account of
Equation 9 that only one term in the sum over m retains a
nonzero value—namcly, the term m = n—so we have

x* = Frx L% (=1, 2, ....S’)} (1)
Xg41” = x34" P+ 1
Thus the variables x*(i = 1, ...S) take the same values in

Example II as in Example I. It follows that identical values

of 8!, 6%, ...6" in the two examples give identical values of x,¥, '

so the same set of values of the 6’s minimizes (maximizes)
x1” in both cases.  Similarly it can be shown that the adjoined

variables z* (i = 1,2, ...§) are identical in Examples I and

I1, so the function

S41 K}
HII” = Z] Z/"GI = Z] ZI"FIH + z“_"'Gs“
]= Jr .

for Example II differs from the function
S
H]n = Z Z;"F;”
j=1

for Example I only by the term zg,1*Gg41, which is independent
of the adjustable variablcs 6!, 6%, . .6". . Thus, if a set of values
“of 6!, ...6" which minimizes x,¥ alsé maximizes some H"
in Example I, thus contradicting Katz’s result, the same will be
truec in Example II. Example II is therefore a counter-

. example if Example I is, and furthermore Example II has the -
same recurrence relations at all stages, thus proving our .

. assertion.

Though Katz’s discrete maximum principle is false, as has
now becen demonstrated, what hc refers to as his ‘“weaker
algorithm” is true. This states merely that %V takes a sta-
" tionary value with respect to variations in 6!, &, ... .6V if and
- only if cach of the functions H" takes a stationary value, and
* makes no comment on the relation between the natures of
- these stationary values. This result was earlier derived and
used by the first of the present writers (4).. The extension of
Katz’s results by Fan and Wang (2, 3) to systems topologically
more complex than a simple sequential chain is also false, but
once again a weaker algorithm relating stationary values is
true, and was published by the second of the present writers
6, 7).

The fallacy in the proofs given by Katz and by Fan and Wang
lies in the attempt to deduce the natures of stationary values
from a consideration of first-order variations only, and the
. results obtained are simply consequences of a confusion in
. orders of magnitude of small quantities. The natures of

tH
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stationary valucs of the objective function and of the functions
H" are determined, of course, by Hessian matrices of sccond
derivatives with respect to the variables 01, 82, .. .0%.  Indeed,
there is no difficulty in writing down the Hessian for variations
of x;¥ and hence deducing correctly the nature of a stationary
valuc of x,;", as is shown in morc dctail in another publication
(5), in which wc also investigate certain ‘special circumstances
in which a stronger result is true. Very bricfly, we may
enumeratc these cases here. .

In order that x,Y should take a stationary minimum (maxi-
mum) value with respect to variations in 8%, .. .07, it is ncces-
sary and sufficicnt that each function H" should take a sta-
tionary minimum (maximum) value with respect to the same
variables in the following circumstances.

A. When the functions F*(x," ™, 8") take the special form

Fi(a", 0" = ;au"xk"-' + /(6™

where the ay™ arc constants. This is thc casc quoted by
Rozonocer (72).

B. When § = 1,.in other words when there is only onc x-
variable at each stage [though there arc cxceptions in this
casc, as is discussed clsewhere (5)]. The condition is also
nccessary, but not sufficient, if the functions F* arc lincar in
the variables x,"~!, but the cocflicicnts may depend on the
0’s. .
These results refer to rclations between local minima
(maxima) of x;" and local minima (maxima) of the functions

_H™ Pontryagin’s principle is a more powecrful result relating

the absolute minimum (maximum) of x,¥ with absolutc
minima (maxima) of the A", and this is valid only in the case
A above, as was asserted by Rozonoer.
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DISCRETE MAXIMUM PRINCIPLE

SiIR: We are grateful to Denn (2) for drawing attention to
ome other papers which may mislead and feel that his remarks
n the Lagrange multiplier method are timely, since he draws
ittention to a simple error which is frequently seen in print.

It seems likely, as Denn suggests, that Rozonoer’s remark
1as been widely misinterpreted by practitioners of engineering
nathematics in both the Soviet and western literature. - Never-
heless, we would find it difficult to believe that the mathe-

natical originators of the maximum principle were not fully

ware of the true situation. In this connection it is interesting
o speculate why mathematicians have written so little about
he discrete case, while the continuous maximum principle has
eceived so much attention.

The reason, we think, is simple. The continuous maximum
yrinciple is a result of considerable intrinsic importance, relating

bsolute rather than local maxima in a way which goes beyond-

he earlier theorems of the calculus of variations; the discrete
ririciple on the other hand, though useful, is a result of no
nathematical interest whatever.

The essentially trivial nature of the discrete case tends to be
iidden by some of the methods which have been used to treat
t. Thus, Katz and others (4, 6, 7) have started from first
rinciples and used a method analogous to that employed in
reating the continuous case, while Denn himself (3) has pre-
ented an elegant method based on Green’s identity. In fact,
owever, the discrete result is no more than a trivial rewriting
f a well known formula of elementary differential calculus,
s we will show briefly. ’

Given a set of sequential functional relations

(= FME, 6 ((=1,2,...8),0=1,2, ..

he problem is to choose the variables 8, 5o that an objective
unction : '

RN

B3

P = 6‘¢X‘N

is maximized, with given values of the variables x!. (In the
above expression summation is implied over the repcated -
suffix, and this convention will be adhered to throughout.)
Expressions for the partial derivatives 0P/00,* can then be
written down immediately using the chain rule of differentia-
tion, which can be found in any textbook of elementary -
calculus (7). )

OP/26," = cdx /00, =

OFN OFN—1 JF 1\ DF,"
bx ¥19x,N2""" dxm™ / 06,

)

If we now define

. DEN OFN dFSH
L = |\ ¢ X bx,"‘l X bx,,,”" e bn*" (4)

, then clearly -

OF"
dx

2l =

X 7" with z¥ = ¢, (5)

Equation 3 can then be written
dP/O8," = z DF,"/06," ©)

© and the condition that P should be stationary with rcspect to

the 6," is

" 0F/08," = 0 (alln,r) _ @)

We now see that the variables z,* are just the adjoini vari-
ables introduced in the ‘“‘discrete maximum principle” and
Equations 5 are the corresponding adjoint equations and
boundary conditions, while Equation 7 is the condition that



the functions P* = z,"F," should be stationary if P is to be sta-
tionary. The change from the elementary formula (Equation
3) to the “discrete maximum principle” embodied in Equa-
tions 5 and 7 is purcly notational and introduces nothing new.

Even the algorithm for sequential computation of the deriva-

tives suggested by Equation 6 is equally clearly indicated by
the original formula (4).

A derivation similar to the above, and revealing the ele-
mentary nature of the result in the same way, has been given

for systems of arbitrarily complex topology by one of the

present writers (5).
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ABSTRACT

A discrete form of Pontryagin’s Maximum Principle recently proposed
by a number of authors is shown to be fallacious and a corresponding correct
but weaker result is derived. Certain classes of problem are identified for
which the original stronger result is valid.

I the last year or two a number of papers have appeared (Fan and Wang
1964 a,b, Katz 1962a,b, 1964) in which discrete analogues of Pontryagin’s
Maximum Principle, applicable to difference equations rather than
differential equations, have been derived. Briefly, the result obtained
may be described as follows. Given a set of difference equations of the
form

ap=Fra1,00 (i=1,2,...8); (n=1,2,...N) (1)

with initial conditions z,° = a;, it is required to find the values of 1,62,...60N
which minimize #,¥. To solve this problem one introduces a set of
difference equations adjoint to (1) in the new variables z™:

z"‘1=25;j—z-" (:=12,...8); (n=1,2,...N) (2)

and imposes the terminal conditions:

zN=1fori=1
=0 otherwise.

(3)

The solution is then said to be obtained by choosing each 6™ to minimize
the corresponding quantity :

S
j=1

1 Communicated by the Authors.
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with the z; regarded as constants in the minimization process. Equations
(1) may conveniently be regarded as describing the behaviour of a
sequential chain of physical units such as that shown in fig. 1, and
corresponding results have also been given for systems of more complex
topology (Fan and Wang 1964 a, b).

Fig. 1
0 ! el n N
_f‘_ i Xe 2 ->__..).<>‘_ n -5-‘_—-—»- N L Xe

e. 9: en 9 N
Sequential chain. .

Now the present writers have shown elsewhere (Horn and Jackson 1965)
by means of counter-examples that, except in certain very special cases,
the above result is fallacious. A weaker result is true (Horn 1961, Jackson
1964 a, b), namely that 2,V has a stationary value with respect to variations
in the #’s if and only if each function H" is stationary with respect to
variations in the corresponding 6, but in general the natures of the
stationary values of ;% and the H™ are unrelated; in other words it is
not generally true that H™ must be minimized in order to minimize x,N.

The fallacy in the proof referred to above is of a curiously elementary
nature and arises from a confusion in orders of magnitude of small quantities,
which apparently permits conclusions to be drawn about the nature of
stationary values without considering terms beyond the first order in
small variations. The nature of a stationary value is, of course, dependent
on second-order terms and is determined by the Hessian matrix of second
derivatives. This same fallacious proof has now been published at least
four times (Fan and Wang 1964 a,b, Katz 1962 a, b) in different journals
to the present writers’ knowledge, so it is felt desirable to give a discussion
of the problem properly based on second-order variations. Accordingly
we will show that there is no difficulty in writing down the Hessian of
x,N with respect to variations in the §’s and, at the same time, demonstrate
that the solution of the adjoint difference eqns. (2) has a simple mathe-
matical significance and can be written down as easily as the equations
themselves.

Suppose 61,62, ...6" are changed by increments d6',d62,...d0N. Then
the corresponding variation da;¥ may be expanded as a Taylor series in
these increments. In general, each 6* may represent a vector of adjustable
parameters, and if we introduce suffixes r, s to distinguish components
of these vectors, we may write :

N
de,N=3 R 0 +33 S P, a0 dosm }
n=1 . n m

+terms of the third order, (5)
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where, for brevity, the summation convention is assumed to apply to all
repeated suffixes », s, and P,,»»=P ™ The numbers P,™ are the
elements of the Hessian matrix which determines the nature of a stationary
value of z,V, while the numbers R, are the components of the gradient
of 2,V in the space of the variables 6,

Considering each eqn. (1) separately it is similarly possible to write
down the following Taylor series expansions :

dxl-N =(FN )ji dxjN—l +(F M), 6o,
+ % [(Fx:cN)jki dxjN—l dka_l + 2(F9:0N)rji dng dxjN_l
+ (Fog™),s 46,N dO N1+ terms of third order,

(6
dxiN——l - (FmN_l)ji dw’_N—Z + (FBN— l)ri dgTN—l ( )
+ %[(szN_l)jki dxjN_z dka—z =+ 2(F9zN_1)rji derN_l dxjN—z

+ (F N Y),  d0N"1 d N-1]+ terms of third order,
where

. oFp  AFp 2Fn ]

nyi— ! . ni— __t - (F n) i— :

(Fa: )] axjn_l ’ (Fe )r aarn ’ ( Tx )]l.c axjn_l axkn_la (
7)

. o2F . o:FM

ny — ! c(F. 1) P !

(Fox )r} agr,n axjn_l 3 ( 8o )rs agrn aesn

and the summation convention is implied with respect to repeated suffixes
4, k, r and s.

By successive elimination of da™-1, dzN=2, ... from eqns. (6) it is a
straightforward matter to express da,¥ in terms of the variations d6 only.
Comparison of terms of the first and second orders in the df’s obtained
in this way with the corresponding terms in eqn. (5) then gives expressions
for the components of the gradient and the Hessian, namely :

R"= (FmN)jl(FwN——l)kj s (Fwn+1)ml(F0n)rm (8)

and

P, (FMAF N o (B ), (F o),
FFME (B ) (F ), 0(F )
F(F YL (B 2O ) ) (B ), 5(F ) o
X (B34 oo+ (B dE N0 L (F ), 8(F ),
X (B N1 (F 24 5(F )8 (9)
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while
P”mn= (FzN)jl s (Fzm+1)ik(F0xm)rhl(Fzm_l)ah s

(n>m)
X (B M) (F ™) o+ (F N . (F etk
X (F g (Fg™), U F ™)t . . . (F 7 H1) 4 F ),
F(F ) (B ) ME 2 (B 1) 8
X (Fgm), (F g™ )s0 o (Fm42) ,9(F gm)
+ ...+
(B M) E N1, (B ) 0(F gm) S(F 5 1)
x (B )o(F ) 2. | (10)

In the right-hand sides of these equations, as before, summation is implied
over all repeated suffixes except n.

Now eqn. (8) describes the propagation of first derivatives through
the sequential chain of units, while from eqns. (2) and (3) it is not difficult
to see that

zin — (Fa:N)al(FacN—l)ba .. (an+1)ik7 (1 1)
so0 comparing eqns. (8) and (11):
an = zin(FBn)ri’ (1 2)

where suffix ¢ is summed over, according to our convention. If z,V is
to be stationary, each of the first derivatives R,» must vanish, so from
(12):

W OF _ :

Zizi W_O (n=1,2,...N) (13)
where we have re-introduced the summation sign explicitly to facilitate
comparison with eqn. (4). Now (13) is simply the condition that each of
the functions H™ introduced in eqn. (4) should be stationary with
respect to 6", so we have proved the weaker result relating only to
stationary values which was stated above. The adjoint variables 2™
are seen to be very simply related to the first derivatives of the quantity
to be maximized with respect to the adjustable variables.

The nature of a stationary value of z,V is determined by the matrix
P,/ of second derivatives given by eqns. (9) and (10) and it is not, in
general, related to the natures of the stationary values of the functions
H™, which are determined by matrices:

Qrsn= szn(Feen)rsj' (14’)
M
Using eqn. (11), the matrices (14) may alternatively be written :
rsn = (FzN)jl(FzN—l)kj e (an+1)ml(F08n)rsm (15)

where the summation convention is once again introduced for repeated
suffixes.
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It is now possible to discern the circumstances under which the ‘strong’
result of Katz will be true, since the first term on the right of eqn. (9) is
identical with the right-hand side of eqn. (15). Thus, if all other
terms on the right-hand sides of eqns. (9) and (10) vanished, the matrix
P, would reduce to the block diagonal form indicated in fig. 2 with the
matrices Q,," arranged along its principal diagonal and all other elements
vanishing. In these circumstances the conditions on P,™* if ;¥ is to
be a minimum are satisfied if and only if each of the matrices @,," satisfies
the corresponding conditions for H” to be a minimum. Thus z," is mini-
mized if and only if each function H™ is minimized with respect to the 6s.

Fig. 2

v

Q.

////

Block diagonal form of P,,m™.

N\

N

AN

We have therefore simply to identify any general situations in which
P, reduces to the block diagonal form of fig. 2, and these will be the
situations in which Katz’s strong result is true.

Two important cases can easily be recognized. Firstly, there is the
situation correctly identified by Rozonoer in which the recurrence relations
take the form:

&= Doy, +f2(0"), (16)
3

where the «;™ are constants. All second derivatives with respect to
x-variables or an z-variable and a §-variable then vanish and it is
immediately seen from eqns. (9) and (10) that the Hessian reducesidentically
to the desired form.

Secondly, the strong result is true, with certain exceptions, when
S=1 and only a single x-variable is associated with each unit in fig. 1.
Each quantity F,» appearing on the right-hand side of eqn. (8) is then
a single number rather than a matrix and, provided none of these numbers
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vanishes, R," will vanish if and only if each derivative F,» vanishes. Thus
all derivatives F,* vanish at a stationary value of z,V, and since the
first term on the right-hand side of eqn. (9) is the only term in P, /»» which
does not contain one of these derivatives as a factor, it is the only
surviving non-zero term, and the matrix reduces to the form shown in
fig. 2. In this case, however, the matrix reduces to this form only at
stationary points and not identically as in Rozonoer’s example.

Exceptions may arise in this one dimensional case, since one of the
derivatives R,” may vanish as a result of a factor #,™ on the right-hand
side of eqn. (8) vanishing. It then no longer follows that F,» must vanish
and consequently the Hessian need no longer reduce to the form shown in
fig. 2. An example with this property has been given elsewhere (Horn
and Jackson 1965).

In each of the two situations just described, minimization of each H”
is both necessary and sufficient condition for x,¥ to be a minimum, but
we should finally mention a case in which the condition is necessary but
not sufficient. If the quantities ;™ appearing on the right-hand side of
eqn. (16) are functions of §* rather than constants, the second derivatives
with respect to xz-variables still vanish, but the mixed derivatives with
respect to an z-variable and a §-variable do not. The elements P, " are
then seen from eqn. (9) to reduce to the form (15), but the elements P, »»
(m#m) no longer vanish. Miminization of the functions H" is then
necessary if P,/ is to satisfy the appropriate conditions for =, to be a
minimum but a simple example, such as that given in fig. 3, suffices to
show that this condition is no longer sufficient. In this example H! and H?
both have minima at §'=62=0, but x,2 has a saddle point.

Fig. 3

x°=| x = e° x5 x?=e® x'+ (1-6) x!

-6 x; arbitrary
o' e

Example in which Katz’s conditions are necessary but not efficient.

2

Although the introduction of the adjoint variables and the functions
H™ gives an elegant formulation of the solution and a useful iterative
algorithm for computations, the treatment above shows that one has
actually accomplished no more than can be obtained using elementary
calculus and straightforward elimination of unwanted variables. Thus
eqn. (8) contains the same information as the adjoint equations, and
indeed gives their solution. Using the elementary approach of elimination
of variables we have extended the discussion to second derivatives, and
it is interesting to see that these could also be developed through the
adjoint equations.



Discrete Analogues of Pontryagin’s Maximum Principle 395

We have shown (eqn. (12)) that
ox,N  OF™
=505 = B

with summation implied over the lower suffixes. Since this equation is
true for any values of the 6’s, we may differentiate both sides with respect
to 8,2, If m<n, F;* depends on §™ through its dependence on z;~!
but if m >n we may write :

PuN g S 2
= . +z n .
36706m 99 00 ' 7 26,%00,"

The second term is, of course, zero if m # n, while the first term is neglected
in Katz’s treatment. In order to calculate these derivatives, we need
to be able to compute derivatives such as dz;%/9,™ which appear on the
right-hand sides of eqns. (18). A recurrence relation for these derivatives
can be obtained by differentiating the adjoint equation:

oF}

2
1%
0,

R (17)

(18)

-1
2i 1=

with respect to 8,™, giving :
T =TT <5xi’—1axk’—1 oo T Bxi’—1608m> Z- (19)

The derivatives dx,/~1/df ™ appearing on the right-hand side of (19) may
be obtained from equations analogous to (17), and (19) then permits the
derivatives to be computed successively for decreasing values of 1.
Equations (17), (18) and (19) lead to the results given earlier in eqns. (9)
and (10).
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Abstract—The determination of ‘optimum conditions in a chemical plant comprising a number of
interconncected units often presents considerable computational difficultics because of the large number
of parameters which must be simultancously varied. The method of dynamic programming permits
the problem to be decomposed into a sct of sub-problems of jower dimensionality, but is limited in
application to systems consisting of simplc scquential chains of units. The present work describes a
classical variational approach which permits a similar dimensional decomposition to be effected in
plants of arbitrarily complex structure. A number of systems which cxemplify the main features of
the method without undue algebraic complexity are -discussed in detail. ’

INTRODUCTION

THE problem of choosing the available design and
opcrating variables of a chemical plant in such a
way as to optimize some spccified performance
criterion presents considerable computational diffi-
culties. One rcason for this is that the .number
of available variables is frequently large and cor-
respondingly onc is sccking a maximum (or mini-
mum) value of a function in a space with a large
number of dimensions. In cases where the plant
has the very simple configuration of a sct of units
connccted head to tail in a sequence, mcthods are
available for deccomposing the problem into a set
of sub-problems with the dimensionalities appro-
priate. to the separate units. These methods fall
into two main classes, the first based on the algor-

ithm of dynamic programming and the second based

on classical variational calculus. The method of
dynamic programming was developed and is fully
described by BtiLMAN [1]. It has subscquently
been developed and applied to a very large number
of problems by BELLMAN, his co-workers and others
and is admirably translated into chemical engineer-
ing terms in the work of Aris [2]. The variational
mecthods have had a more conventional scientific

and co-workers at the University of Moscow [3] '
and by SWINNERTON-DYER [4] in England, both
arriving at the same method, which is now usually
referred to as the Maximum Principle of Pontrya-
gin. More recently HorN [5] has given a classical
trcatment of a discrete sequential problem based on
Lagrangian multipliers which is the analogue, for
the discrete case, of the Pontryagin Principle.

" The work so far described is limited in scope to
the treatment of simple sequences of units, while
most chemical plants of realistic complexity are in
the nature of interconnected 6ctworks of units
involving by-pass streams, recycle streams, etc.
The author is aware of only two attempts to
generalize the dynamic programming procedure to
handle these more complex cases [6, 7], both
fallacious for reasons which have been stated else-
where [8] and will be discussed further below. The
purpose of the present paper is to provide a means
of treating cases of arbitrarily complex topology or,
to be more precise, a method of decomposing the
over-all optimization problem into sub-problems
with the dimensionalities of the individual units.
The approach is a classical variational one and is
therefore properly regarded as an extension of the

-methods of PONTRYAGIN, SWINNERTON-DYER and

history, having been developed more or less in-,

dependently by a number of different workers. The
continuous case, which arises, for example, in
considering optimum temperature gradients in
reactors, was treated independently by PONTRYAGIN

!

19

HorN to non-sequential problems rather than a
generalization of the method of dynamic program-
ming. It is felt worthwhile to describe the method
in reasonable generality, so the present paper is
necessarily rather abstract. However, it is hoped
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to illustrate it in more concrete form by working
particular chemical engineering problems in sub-
sequent publications.

THE ALGEBRAIC STRUCTURE OF OPTIMIZATION
PROBLEMS

In general a chemical plant consists of a number of
units, each with a set of inputs and outputs and a
number of adjustable parameters. The inputs are
process streams flowing into the unit, the outputs

—Vector of dimension E'™

y{n) y(n)

(n)

=

(n) (n}
X, \ X i

wit)———

Vector of dimenslon D","

FiG. 1. Plant unit,

similar streams flowing out of it, while the adjust-
able parameters are variables which characterize
its design and conditions of operation.” Each unit
will be identified by a number (1), and its inputs,
outputs and adjustable parameters will be denoted
by yi, x{ and w respectively. Each of these is

only lines carrying process streams. Thus a uni
in the sense we employ the term, may have a

. internal structure and contain within itself a num
<" ber of identifiable sub-units,

Each output is uniquely determined by the value
of the inputs and adjustable parameters of thi
unit, and accordingly we shall write

x(n) _ F(n)[y(n) w('-)] (1

to mdncate the functional relation between x{’
and these variables. Of course, the symbol F{"

-represents a set of D{™ functions, one for eacl

to be regarded as a set of several quantities forming

a vector and it must be emphasized that the suffixes
i and j serve to distinguish between separate process
streams for units with multiple inputs and outputs;
they do not indicate components of a vector and
any explicit reference to these would require a
further suffix. When a unit has but a single input
and output the suffixes i and j will normally be
omitted. The numbers of components of vectors
¥/, x{™ and w™ are not necessarily the same
and they will be denoted by E"", D™ and W™
respectively.

The definitions given above are illustrated in
Fig. 1, which represents a single unit of the plant.
‘Evidently a unit need not correspond to a particular
physically distinct piece of equipment, but may
comprise the contents of any control surface
drawn within the plant in such a way as to intersect

component of x{", so the total number of equation:
of the form (1) associated with the plant is

=YD

The complete plant is formed by joining the output:
of one unit to the inputs of others to form a con
nected structure as typified by the example shown ir
Fig. 2. However, some of the inputs are left free
of connexion to other units. These represent feed:

)

@

-,

Feeds

. Outputs
FIO 2 Complete plant.

to the plant and the corresponding vectors yj"’
take specified values. Similarly there are a number
of free outputs, not connected to the inputs of
other units, and these represent products of the

‘plant. The complete topological structure can be

specified by listing the variables with which each

.input. is connected, thus obtaining a set of equa-

20

tions
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3
v =y (C))

vhere (3) refer to inputs conncected to the outputs
f other units while (4) refer to plant feeds, the ¥
cing specified vectors. The total number of equa-
ions (3) and (4) is

2 ; ES, divided into

vz=2":zj:E$")—

yy = x{™

&)

function of the variables w("’ “The number of .

these variables is

=T we ®)
so this involves the simuitaneous variation of v,
variables in secking the maximum; and this is a
problem of daunting proportions if v, is at all
large. The approach used here will be the classical
one of seeking a stationary value of P with
respect to small independent variations in the com-
ponents of the vectors w™), making the assump-

~ tion that the maximum value of P can be identified

quations of the form (3) and

vy=G (6)

f the form (4), where G is the number of external
>ed stream variables.

The unit equations (1), together with the topo-
ygical equations (3) and (4), provide a formaily
omplete mathematical description of the system.

The problem to be considered is that of finding
alues for the adjustable parameters of the units
‘hich maximize (or minimize) a function of the
rm

P=cx{ =Y G"[w"] @)
n
here ¢ is a constant row vector of D{! compo-
ents and the G™ are given scalar functions of the
ector arguments w™. Typically the first term
presents an income from sale of a product while
le remaining terms represent the capital and run-
ing charges associated with the.chosen values of
e adjustable parameters. The form of P given
equation (7) can be generalized to include com-
onents of feeds and of outputs other than x{!? in
e first term, and linear combinations such as cx(,"
ay be replaced by scalar functions of a general
iture. However, the complications introduced are
irely notational and contribute no genuine gain
generality, so the simple form (7) will be retained
re. . ' )
The most direct approach to the problem is to
Ive equations(1),(3) and (4) for x{"? interms of the
") and the specified feeds y” (it is easily checked
at (1), (3) and (4) provide sufficient equations for
is purpose), substitute this value of x{' in .
uation (7), and seek the maximum of the resuiting
[

) . .21

with such a  stationary value. There are’ two
difficulties associated with this approach: firstly P
may take its greatest value at the boundary of the

‘permitted region rather than a stationary point if the

parameters w(™ are constrained, and secondly P
may have a number of stationary points of various
types, only one of which corresponds to the greatest
value of P. The first of these is a difficulty of
practice rather than principle, since in principle’
constraints can always be ‘“smoothed off”’ so that
the maximum value of P is actually a stationary
point. The second is a genuine difficulty of principle
and can only be circumvented by examining each
stationary value, when there is more -than one,

‘and finding which is largest.

According to equation (7) the small variation in
P accompanying variations in the adjustable para-
meters is given by

dP = cdx{V — ¥ g™dw®

©

where g™ is the row vector of W™ components .

" obtained by differentiating G™ with respect to the

components of w™), Similarly differentiation of
equations (1), (3) and (4) gives

dx{” = MPdy" + N{"dw® (10)
dy = dx™ A

and '
dy® = (12)

where M{P and N{ are the following matrlces of
partial denvatlves
) 0 (n)
{M?')[y(") w(n)]}‘m: [Fl ]p

a[yyl)]q (13)
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oLF],
o[w™],

with suffixes p, q and r referring to separate com-
ponents of the vectors F{”, y{” and w respec-
tively. Thus M{? is a matrix of D{™ rows and E{”
columns, while N{ is a matrix of D{™ rows and
W™ columns, each element of both matrices being
a function of the variables (y{”, w™) as indicated.

{N{Ly, w1}, = (14)

Equations (10), (11) and (12) are a set of (v, + .

v, + v3) simultaneous linear equations in the
(vy + v + v3) variables (dx{”, dy{™) and may be
solved for any one of these variables in terms of
the dw™, In particular, we may write

dx{V = Z Y L{PONMdw™ (15)
i
where L‘l)‘") isa matrix of D{"’rows and D{" columns
which is a rational function of the matrices M{}
of a form determined by the topological structure
of the plant. Equation (15) is simply the result of
eliminating all the variables dx{™ and dy{™ except
dx{" from equations (10), (11) and (12). The value
of dx{" given by équation (15) may now be sub-
stituted into equation (9), which becomes :

dP = Z {Z CL(II‘)(")NS") - g""}dw("’
on

‘The necessary and sufficient conditions_for a sta-

tionary value of P are therefore

Y {cL{PONM — g™} =0 (n=1,2,...) (16)
i

The direct approach to finding this stationary value
is now to solve equations (1), (3) and (4) for the
x{™ and y{™ in terms of the adjustable parameters
w‘"’ use these to express the matrices M{} and N{"
and hence the matrices L{®™, as funcuons of the
parameters w(", then solve equations (16) as a set
of v, simultancous cquations in the v, components
of the vectors w™. This is the precise analogue of
the direct approach to maximization described
earlier, and once again involves the simultaneous
variation of v, variables, in this case to satisfy
equations (16).’

In dealing with sequential optimization prob-
lems, the method of dynamic programming
permits the problem to be split into a number of
separate problems of smaller dimensionality, which

\
greatly facilitates the computation involved in the
solution. In particular, if the plant units are

* connected in a simple sequence, the problem of

para-
meters can be reduced to a maximization in the
W) parameters associated with the first unit,
together with a maximization in the W) para-
meters associated with the second unit, and so on.
This simplification is not obtained without cost,
since a particular problem of interest can be solved
only by imbedding it in a larger set of problems
which must be solved at the same time. Attempts
[6, 7] have been made to extend the method of
dynamic programming to deal with structures more
complicated than sequential chains but, as has been
discussed elsewhere [8], these rest on a mathematical
misconception and their results are not usually
related in any way to the true solution. It will now
be shown how the stationary value problem already
set out can be split up into a set of problems of
lower dimensionality by adopting an approach
less direct than that employed hitherto.

In equations (16) it will be recalled that the
matrices L{}’™ are functions of the variables y{™
and w assocnated with all the units of the plant.
This arises from the functional dependence of the
L{P™ on the matrices M{P. However, the matrix
N{™ is a function only of the variables y{” and
w™ associated with the nth unit. Suppose now
that we arbitrarily assume values for the compo-
nents of all the vectors cL{}™ and y{” associated
with the plant, excepting those y’s where values

{ are externally specified through equation (4). The
: total number of variables whose values are assumed

l
,,is
ZRDP+ LY E -

) .. . (
simultaneous maximization in the Z we
n

or (v, +v,). Using these assumed values, the left-
hand side of the nth equation (16) depends dnly
on the vector w with the same value of n, so
equations (16) decompose into W'’ equations for-
the components of the vector w''), /) equations
for the components of the vector w'?), and so on..
Once these equations have been solved, the values
of the vectors w) so determined can be used in
equations (1), (3) and (4), which can then be solved
for all the variables x{™ and y{™. These in turn
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_l dctermine the matrices M{, and hence the vectors
. cL§P™. Thus we have arrived at calculated values

T pin Y L
of the Z )5 Di”vectorseL{}™ andthe 2 Ej: EfM—-G
' m

i unspccnﬁcd vectors y§™, and these can be compared
. with the valucs originally assumed for these quanti-
‘ncs We are therefore finally faced with the itera-
‘tive problem of successively adjusting the initially
assumed valucs until they agree with the finally
- calculated values. This itcration is the price which
“has been paid for decomposing the problem into a
: sct of scparate problems of lower dimensionality,
"and at first sight it is a heavy onc since the number
- of variables involved in the itcration is large for a-
' plant of any complexity. At this point, however,
| it’is possible to introduce the fact that a chemical
, plant is seldom a completely undirected pattern of
| interconnccted units but, of its naturc, is a largely
E scqucntial structure with a rclatively small number
. of connexions which cannot be fitted into a sequen-
- tial pattern. It will now be shown how this can be
used to reducethe burden of iterationto manageable
proportions.

UNITS WITH SEQUENTIAL STRUCTURE

A unit with sequential structure will be defined
as a unit with a single input and a single output
strcam, which is built up by sequential connexion
of sub-units also of this type, as shown in Fig. 3.
A plant with a large number of physically scparate
units can often be reduced to a relatively small
‘number of units of this type by grouping together

“all sets of physical units connected sequentially.
In this case we shall show that the number of vectors
cL{P™ and y{™ involved in the iterative process
described above corresponds, not to the number of
physical units in the plant, but rather to the number
of compound units of sequential structure into
which they can be grouped.

Consider.one such compound unit, numbered R
in Fig. 3 and comprising the sub-units 1, 2, ..., N
connected sequentially. The equation (16) corres-
ponding to this compound unit is

s:le)(R)N(R) _ g(R) =0 17

where the suffixes i and j have been dropped, since
the unit (and each sub-unit) has only one input and

!

Eliminating the variables dx®), dx®’ ..,

one output. The matrix N® has D® rows and
W® columns, where D®) is the number of com-
ponents of x®®) and

e + W,

WR) = )y Wm
LR L
[————f ===
| N
| N L Ll
i i
: [
| .
: N-I —.—}—w(u )}
. |
Compound : ' |
unit R\l : |
! I
| ! |
| 3
l P
l o
: f e f—wit}
L __r___J

xRI=

FiG. 3. Cbmpound unit with sequential structure

The vector of adjustable parameters w®) for the
compositc unit is the totality of the vectors w(!),
w?  w®™ for the sub-units and consequently
hasdimension W ® equalto the sumof their dimen-
sions, as indicated above. Now N®) js defined by
the relation .

dx® = N®gw® (with y® constant) (18)

But we can also write the following differential rela-
tions for the sub-units:-

dx™ = MMdx® 4 NOGwD
dx® = M@dx® 4 NOgw®
dx(") = M"dy® + NMgw™

= N® gw® (with y® constant)

dx™ from
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these equations, we obtain
T dx™® = NOOGw 4 MOING gy 4
+ MOMOING gw® 4 | 4
+ MIOMP) [ MWV -DUN®gw®™  (19)

The matrix N® can be obtained in terms of
matrices associated with the sub-units by compar-
ing equations (18) and (19), and using this form
for N'®) in equations (17), they are seen to break
down into sets of equations of smaller dimension-
ality, as follows:

cL{DB®NW g =0 (WM equations)

CL{DOMING _ o) — ¢ .
(W® equations) | (30

CL(ll)(R)M(”M(Z)... M(N—I)N(N) . g(N) =0
(W™ equations)

Because of their structure, we shall sce that these
equations can be solved without having to assume
values for variables such as ¢L{"™ and y™ corres-
ponding to the separate sub-units of the compound
unit. In other words, it is necessary to assume
only the input y®) and the vector cL{"™® for each
compound element of sequential structure in the
_plant and it is then possible to decompose the
equations for the adjustable parameters into sub-
sets of dimensionality corresponding to the sepa-
rate sub-units, without introducing any iteration
beyond that implied by the assumed values of
cL{V™® and y® for each compound unit. To show
this let us first take the case in which the compound
unit R has no external connexions, in other words
its input is the output of some other unit and its
output is the input of some other unit, According

the variables y), w() and y™™ is not known, it is
necessary first to express y*? in terms of x!*’, one
of the variables whose values have been assumed,
by solution of the unit equations of the form (1).
Thus we may write

Yy = FO(x(D) (1))

21

and using this the left-hand side of the first équa-
tion (20) can be expressed as a function of wt!?
and the specified vector x*) only. Accordingly
it can be solved for w''?, and the value so obtained
determines y‘!? through equation (21), and hence

in turn the matrix M*),

One may now proceed to deal with the second of
equations (20) in the same way. Having solved the

first, the vector cL{M®M™ is known, and using

the equation '
YD = FO(xD) y(2))

the-vector N®), and consequently the left-hand side
of the second equation (20), can be expressed as a
function of w® and the vector x®, which is
known since it is equal to the vector y*) already
calculated. Thus the second equation (20) can be
solved for w®), which in turn determines y'*’ and
M@, enabling the process to be continued to the
third equation (20), and so on sequentially through-
out the complete set. Thus all the equations of
type (20) associated with the compound unit R

.can be solved without assuming values of any

to the procedure described at the end of the last

section, one starts the problem by assuming

values for the inputs to all the units (treating the |

compound unit as one unit) and this gives assumed
values for both y*® and x‘®, The calculation can
then be continued in one of two alternative ways.

In the first of these one assumes values for all
the vectors cL{)®™ as already described, and
amongst these is cL{V®, Using this assumed
value of ¢L{!"’® one can then procced to solve the
first of equations (20). Since N is a function of

“equation can- then be solved for w

variables other than cL{P® and x®), ‘

This method of solution has led us through the
equations (20) in reverse order of the sub-units.
It is equally possible to carry out the solution in the
opposite sequence, - starting with the equation .
corresponding to sub-unit N and working forwards
to the one corresponding to sub-unit 1. In this
case, instead of starting with assumed values for
the D®) components of the vector ¢L{V® | we
assume values for the D'®) components of the
vector cL{V®OMMMP) MW~ - Using these,
the left-hand side of the last of equations (20)
is a function of y®™) = y® and w'* only. Since
y® is a unit input and has an assumed value, this
™ which -
in turn determines x") and consequently y®W =1,
Now the penultimate equation (20) may be written
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'cL‘.' MRIZL(D M(N-I)JM—I(N—l)N(N—l) _

~g" =0 (22

vhere M™'W=1 is the inverse of the (square)
natrix M ~1, and is consequently a function of
AN-1 and w1, However, y¥ 1) is known
rom the calculations on stage N, so the left-hand
ide of equation (22) is a known function of w¥ =1
ynly, and the equation can be solved for this vari--
\ble. This in turn determines xW~1) = y(N=2) -
ind permits the process to be continued to the
quation corresponding to the next block, and so
hrough the sequence.

Thus we may solve equatlons (20) sequentially
n either order, starting with assumed or known
ralues cither of the vectors cL{M®), x®) associated
vith the last unit, or of the vectors cL{V®M!D, .,
M(¥ -1 yR associated with the first unit, and no
'urther assumptions need be made. It follows that_
he optimization problem for the complete plant
-an be decomposed into problems of dimensionali-
ies associated with the separate units, at the expense
»f introducing an iterative procedure which in-
volves no more than two vectors for each of the.
-ompound units of sequential structure into which.
he separatc plant units may be grouped. This
epresents a very great reduction in the burden of
-alculation for plants which are largely sequential
n structure with a relatively small number of cross-
‘onnexions but, as we shall see, it is often possible
o make use of particular properties of the struc-
ure of a given plant to reduce the amount of
teration required even further.

It should be noted that the vectors cL{®M
M(® .. introduced here are precisely analogous to
he Lagrangian multipliers used by HorN [5]
n his trcatment of the sequence of stirred tank
eactors from the classical variational point of
siew. They are also the analogues for the discrete
ase of the auxiliary functions introduced in Pontrya-
in’s method of dealing with the continuous
equential problem (e.g. the problem of optimum.
emperature gradients in reactors).

4

SIMPLE SEQUENTIAL PLANT

The analysis given above is perhaps best ‘devel-
yped by applying it to a number of examples of

!
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Fic. 4. Simple sequential plant.

increasing complexity, which will be done in this
and the following sections.

The simplest case to consider is a plant consisting
of a single sequence of units as shown in Fig. 3.

In this case, however, y™’ represents a given feed

stream, x‘!? represents the output stream and is
the vector which appears in the profit function P,
and there are no other parts of the plant. It is
then appropriate to drop the letter R and number
the units as shown in Fig. 4. It is also convenient
to incorporate the topological equations (3) im-
plicitly by using a single symbol for a connected
input and output, so that the vector x‘*) represents
the output of the ith unit or the input of the (i-1)th.
The specified properties of the feed stream are
denoted by X. In this case equations (20) reduce
to the form .

N _ g Z 9
M“’N"’ - g(z) =0 (W(z) equatlons)

(WM equations)

(23)
M(I)M(z) M(n I)N(n) — g(n) =0
(W"equatxons)

No matrix L{{® appears, since the output of the
sequence is itself the plant output. Since the value
of X(= x"*1) is given, the equations could be
solved sequentially, starting at unit n, if the vector
cMOM?) | . M~1) were known. Alternatively,
since no unknown matrix of the L-type appears, the
equations could be solved sequentially starting at
unit 1 if the vector x!? were known.  The available
information, namely the value of X, does not
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permit the calculation to be started from either
end without further assumptions, and this situa-
tion is quite typical, as we shall see. One may start
instead by assuming a value for x{!? and then solve
cquations (23) successively in the order 1, 2, 3 ...
as described in the previous section, at each stage
making use of the inverse unit equations,

xP+tD) — F(p)[x(p)’ w(P)]

The calculated value of w( then determines a
value for x"*!) and in general this will not agree
with the given value X, so the initially assumed value
of x''? must be adjusted iteratively, repeating the
calculations at each stage, until agreement is
obtained. -

Alternatively one may start by assuming a
value M for-the vector eMM® | M®~1) and
solve equations (23) in the order n, n—1, n—2, ...
as previously described, successively generating the
matrices M~ 1~ M~1¢1=2)  needed to continue
- the calculation to the next stage. Finally a cal-

culated value of the vector ¢ may be deduced from
" the assumed vector M by the relation

(Qeare =M . M1~ M~I0=D M-

and this may be compared with the specified value , .

ol ¢. The initially assumed vector M must then be
adjusted iteratively until the two agree.

We may summarize this by saying that the first
procedure optimizes the given profit function P
for an input which is not necessarily the one speci-
fied, while the second starts from the specified
input and optimizes a profit function which is
not necessarily the one specified. These two
procedures are identical with those introduced by
HornN [5] in discussing a sequence of reactors, but
HorN arrived at the result by using Lagrangian
multipliers.

It should be noted that either of these methods,
with any reasonably intelligent method of iterative
adjustment, is much more economical in computa-
tion than the method of dynamic programming,
and furthermore involves none of the intermediate
" tabulation at each stage which makes dynamic
programming so demanding of storage space. It
has often been claimed that the method of dyna-
" mic programming applied to a sequential prob-

lem greatiy reduces the amount of calculation

required compared with‘th‘e classical method of
seeking a stationary value, and furthermore that
the dynamic programming procedure is ideally
suited to automatic computation, It is felt, however,
that both these claims are mistaken. It has been
shown here that the classical equations fora station-"
ary value themsclves decompose into sets of cqua-
tions of lower dimensionality, thus reducing the
problem in precisely the same way as dynamic
programming sets out to do, but introducing an
iterative process which is computationally much
more economical than the intermediate tabulation
involved in dynamic programming. The extent of
the intermediate tabulation required in any problem
of more than one dimension surely makes dynamic
programming a method singularly ill-suited to
automatic computation. It is, of course, perfectly
true that it produces simultaneously the solution
of a complete class.of problems, but one would
seldom be interested in a complete exploration of
so much territory. The fact that one cannot solve
a specified problem without such an exploration
nevertheless reveals the staggering redundancy of
the procedure. In the author’s opinion the true
virtue of dynamic programming—one which is
seldom stressed—is the fact that it inevitably leads
to the greatest (or least) value of the function to be
optimized, irrespective of the possible existence
of multiple stationary values. For this reason it
would be of great interest to extend it to handle
the non-sequential type of problems which are
discussed (from the classical variational viewpoint)
in the present paper. '

A MORE COMPLICATED SEQUENTIAL PLANT

Fig. 5 shows a somewhat more complicated
plant than was considered in the last section. Its

X7 X,

xalz lb.

~ Fia. 5. More complicated sequential plant.
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tructure is still scquential, as there are no paths
orming closed loops, but it now has a branching
orm. There arc two feeds with specificd properties
L, and Xy as indicated, and oncc again the topo-
ogical cquations are taken into account by using
the same - symbol for a connected input and output.
Where a unit has more than one input ‘or output,
both inputs and outputs are numbered so that the
suffix notation introduced earlier can be used.
We then have T

dxV = NVdw) +
+ MNP AW + MO[NPdw]} +
+ MO{NOdw® + MO[NOdw ]}

and correspondingly equations (16) take the form

(i) eND—gh=0 (W) equations)
i) cM{YN® —g? =0 ‘
, . (W equations)
Gii) eMIYMANG — g™ =0 R
- (W equations) (24
(iv) cM{yN® — g =0 '
' : (W equations)
v) cM{PMON® —g® =0
: (W'® equations)
‘In order to solve equation (24)(i) for w") it is
necessary to express N in terms of w(!) and
-quantitics known or assumed. However, since unit

1 has two inputs and N depends, in general, on
both of them,
ing valucs for x1? and one of the inputs. Suppose
we assume a value for x(2’. Then the unit equa-
tion for unit 1 can be solved to give x3) in terms
of xV, w*? and the assumed value of x). Using
this in N, the left-hand side of equation (24)(1)
is expressed in terms of w1 and the two vectors
x1 and x?) whose values have been assumed.
The equation may then be solved for w'"), which
in turn determines x3), Now the second equation
(24) can be solved for w®), which in turn deter-
- mines x{® and permits the third equation to be
solved for w®). Similarly the calculated value of
x(® permits the fifth and sixth equations to be
solved for w*? and w®). Finally one can calculate
values for x!"? and x“", which may be compared

this cannot be done without assum--

of optimization problems in complex chemical plants

witlt the specified feed vectors %, and X,. In order
to obtain.agrcement between the calculated and -
specified values, the assumed values of x!? and
x®) are available. The consistency of the unit
equations will ensure that the total number of
assumed quantitics available to be varicd is equal
to the total number of components of the specified
feed vectors, so that iterative adjustment is possible.

PLANT WITH A BY-PASS STREAM

This is again a system of sequential type, but a

branch from the main sequence rejoins it at a later

" stage as shown in Fig. 6. The suffix notatiom is

used when necessary to distinguish separate inputs '

and outputs of the same unit, as in the previous
case, and we have ‘

dx{V = N{Odw® + M{P{N@dw? +
+ MO[NOdw® + MONPdw)]} + -
+ MEPN©dw® + MONOdw? +
+ MONEdw)]}

The corresponding equations of type (16) take thé

~form:

@
(i)
(iii)
(i)
)
(vi)

eN( _ g =0

. cM(lll)N(Z) — g(z) =0
c1\/1(111)1\/[(2)1\](3) _ g(3) =0
M{YN® — g© =0
cM(llz)M(G)NU) - g(7) =0

MHMOMONE +
+ cM{YM©OMONE — g =0

25)

y be solved for w), as in the
previous example, after assuming values for x{"
and one of the inputs to Unit 1. We may, for
example, assume values for the components of -
x®). Together with the assumed value of x{!’ and
the value of w("? obtained by solution of equation
(25)(i), this then determines the vector x®.

The calculations may then be continued sequen-
tially up each branch in the way already described,
determining W', W), w®, w”) and ‘the vectors
x{® and x§V.

Equation (25)(i) ma

.27
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FIG. 6. Plant with bypass stream.

Now associated with unit 4 there will be two
unit equations:

x{ = F{O[x), w*)] 26).
and xg‘s) — th)[x(s)’ W(QJ (27)

We may solve either of these for x>’ as a function’

of w®), for example the former, giving
X® = FO[(, wit)] 28)

and this function for x> may then be used to.
express N{* and N¢* as functions of w(*) only,
'since x{* is already determined. Equation (25)(vi)
may then be solved for w'*? and insertion of the
result in equation (27) determines, in turn, the
components of the vector x{*. In general these
will not agree with the values obtained already
- by the sequential solution of the equations associ-
ated with units 6 and 7. Furthermore, w®
determines x‘*? through equation (28) and the
components so determined will not, in general,
agree with the specified feed vector %. :

We see, therefore, that there are two mis-matches;
one between the specified and calculated values of
the vector associated with the feed and one beth;n
the values of the vector x$* calculated in two
different ways. Correspondmgly there are two
vectors, x{" and x‘®), whose values have been
assumed and may be adjusted iteratively to elimi-
nate the mis-matches.

|

It will be recalled that in Section 2 it was shown

in a general way that the stationary value problem
for the plant as a whole could be decomposed into
sub-problems with the dimensionalities of the
separate units by introducing an iterative process
involving vectors cL{{’™ and y{™ associated with
each unit, while in Section 3 it was shown that the
iterative work could be considerably reduced since
it is necessary to introduce only one set of these
variables for.each compound unit of simple sequen-

. tial structure. Now in fact, in the examples worked

so far, the number of variables involved in the
iteration has been smaller even than this. Indeed
it has not been necessary to assume values for any
vectors of the type cL{}™. By starting from the
output appearing in the profit function and working
backwards " towards the feeds, it has proved
possible to solve the problem in its dimensionally °
decomposed form with iterative adjustment only
of vectors associated with plant streams. The
reason for this is that the expressions for the
matrices L{{’™ in terms of the matrices M{® are
sequential in nature, permitting one matrix to be

-} obtained from the previous one as the calculation

proceeds through the plant. It is not difficult to
see that this is a general property of structures of
the type we have considered so far which do not
contain any closed loop configurations. To be
more precise we shall say that a structure contains
closed loop configurations if variation of an output
of a unit causes a consequential variation in one of

| its inputs, and we shall show that the power of the

general method developed in Sections 2 and 3 is
only fully revealed when dealing with such con-
figurations.

A SIMPLE FeepBack Loop

Flg 7 shows a sxmple structure with a single
closed loop configuration, using the same type of
notation- as in previous examples. As indicated,
the units 2 and 6 may themselves consist of simple
sequential chains of sub-units, but we shall first
solve the problem treating them as single units.
We then have : :

dx{? = N{Daw") + M{Y dx

(29
AX® = NOw® 4 MAOIND dw + ‘
+ MEPNOdw® + MBdx®) (30)

28
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and
‘dx“" = NO(w® 4 MO[NY ddw ") +

+ MPdxP]  (31)

t xiMe §
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]
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Fic. 7. Plant with simple feedback top.

The variables dx’ and dx‘® may be eliminated
from these to give the required equation for dx{,
which is
dx§) = [N(Y+MVH™ ' MPMIMEONY Jdw') +
C ¢ MVH™INOdwW® +

+ M‘l'l’H"M(z)N(|3)d\v(3) +

+ M(lll)H— 'M(Z)M(lsl_)N(.d)dw(‘) +

+ M‘,‘,’H"M"’M‘,’}N“’dw“’ (32)
where the matrix H is given by 4
H= |- MOMEMOME ()

and H ! isits inverse. We may now write down the
equations for the vectors w™ in their standard
form (16): ' _

(i) cL{YMND + CL{DIONE — g =0

: (ii) cL‘,‘)(z)N(z) — g(2) =0 )
(i) CL{YONE? — g =0 (34)
(iv) cL{MOIN@W —g® =0 ‘
(v) cL{MEON® — g =0

|

The matrices L{{™ being given in terms of the
M-matrices by comparing equation (32) with its
alternative form

dx) =Y T L{PONDdw (15)
n |

It is no longer possible to solve equations (34)

sequentially without assuming values for the L{y™,

as it was in the previous cases, since each such

_ matrix, except L{Y"? depends on variables associ-

ated with all the units in the closed loop. Thus
we now have a case in which there is no means of
side-tracking the procedure described in Section 2.
It is first necessary to assume values for the com-
ponents’ of the vector cL{y" (cL{YM is already
known) and for the components of ‘the output
vector x{!. x‘®) can then be expressed in terms of
x{¥ and w? using the unit equations of unit 1,
and hence the left-hand side of equation (34)(i)
can be expressed as a function of w). The
equation can then be solved and this determines
x®, It is not necessary to assume values for the

. components of the vector ¢L{"®, since it can be

seen to be given by the following linear combina-
tion of cL{¥® and cL{Y":

L@ = cLPOMY + LFOME (39

. Equation (34)(ii) can then be solved for wi),

which in turn determines x‘®). It is then seen from .
equation (32) that cL{}® can be obtained from
cL{"? according to

cL{PP = LM (36)

since M®?'is known from the solution for unit 2.
However, in order to solve equation (34)(iii) for
w® it is necessary to express N{ in terms of
w® and quantities already known, and since
N{¥ is in general a function of both inputs to unit 3,
this cannot be done without assuming values for
some of the components of the associated vectors.

"For example, if X®), x* and x® have the same

dimensionality, it will suffice to assume values for’
the components of one of the two vectors x®),
x©). Let us assume a value for x*). Then the
unit equation for unit 3 can be solved to give

x® in terms of x©®), w®) and .the assumed value
‘of x®), Using this in N{, the left-hand side of
equation (34)(iii) is expressed in terms of w®

2
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and known (or assumed) quantities. It may there-
fore be solved for w, which in turn determines
x(6). We next deal with equation (34)(v), which
‘may be solved without assuming anything further,
since cL{"(® is determined from cL{})® according
to

€]

and the matrix MY is known from the solution
for unit 3. The left-hand side of equation (34)(v)
can therefore be expressed as a function of w)
and the equation can be solved, hence determining
x{. However, x4 could also be calculated from
the values of x(®) and w'!? already determined, and
in general there will be a mis-match between the
vectors calculated in these two differént ways.

Finally we deal with equation (34)(iv). There is
no need to assume a value for cL{V® since it is
determined from c¢L{})®® according to

eLP® =L DEME)

cL® = LMY

(38)

and the matrix M{2 is known from the solution for
unit 3. A value of x* has been assumed earlier,
so equation (34)(iv) may be solved for w'®, which
in turn determines a value of x(5), and this will
" not, in general, match the specified feed vector X.

Having completed a solution,we are in a posi-
tion to calculate all the matrices M7, and hence

the matrix H™!, so using the expression for the:

vector cLM® in terms of these matrices, we may
calculate the components of this vector. In general
the value so obtained will not agree with that
originally assumed in obtaining the solution. We
are therefore in the position of having assumed
values for three vectors, namely x{, x® and
cL{"?®, in order to obtain a solution, and hence
having arrived at a solution with three mis-matches.
The assumed values must then be adjusted until
‘the mis-matches are eliminated. The consistency
of the unit equations will ensure that sufficient
variables are available for this iteration. -

Once again it has proved unnecessary t@ assume
values for all the vectors ¢L{® and y{™ in order
to obtain a solution, and this is because the feed-
back loop is itself a sequential structure, compli-
cated only by the fact that its head is joined to its
tail.

the amount of iteration required compared with

Thus the presence of a closed loop increases’

|

the branching structure considered earlier (in
particular vectors cL{{™ are drawn into the
iterative process), but an intelligent use of the
largely sequential nature of the structure reduces
the number of variables involved in the iteration far
below what might be expected from the general
treatment of Section 2. Indeed it would be difficult
to..devise a structure so entangled that the full
nuinber of variables must be used in the iterative
process. A
If each of the units 2 and 6 is, in fact, a compound
unit of sequenffal structure with many sub-units
as indicated in Fig. 7, this does not incrcase the
number of variables in the iteration. The matrices
N® and N merely decompose into a set of
matrices associated with each individual sub-unit,
as indicated in equations (18) and (19), and these
can be calculated sequentially. ’ h

CONCLUSIONS

The method developed in this paper permits the
problem of finding a stationary value of a specified
objective function in a complex chemical plant to
be decomposed into a set of sub-problems of lower
dimensionality. To this extent it serves the same
purpose as the dynamic programming algorithm
but, unlike dynamic programming, its application is’
not restricted to simple sequential structures. Like
all other classical variational calculations, the
present method only ensures that the objective
function will take a stationary value, and this is
not necessarily its greatest value. It would there-
fore be very valuable to develop the method of
dynamic programming itself in such a way that
it could be applied to complex non-sequential
structures, since dynamic programming always
leads to the greatest valuc of the objective func-
tion. Attempts [6, 7] to do this known to the author
fail, because they do not correctly consider inde-
pendent variations in the adjustable parameters,
as has been discussed elsewhere (8]. In particular,
when a closed loop is present in the system, an)
variation in an adjustable parameter of a giver
unit leads to changes which are propagated rounc
the loop and cause a change in one of the inputs o
the unit. At no stage, therefore, is it permissibls
to consider variation of thc parameters of a uni
with fixed values of its inputs.
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The examples which have been used to illustrate
he procedure have deliberately been chosen to be
simple, but the single fecdback loop illustrates all
he features of more complicated problems with
multiple recycles. In particular, the reader will be

Ly

G
g(l“)

Gn)
H

v

Number of specified fecds

Vector obtained by diffcrentiating  G™!
respect to components of win)

Scalar function of the vector argument win)

with

Matrix defined by equation (33)

Matrix defined by equation (15)

The vector eMIM(2) . Min=1)

“Matrix dcfined by equation (13), characteristic
of unit n

Matrix M) when unit has only one input and
onc output . .

Matrix defined by equation (14), characteristic
of unit n

Matrix N¢(®) when unit has only one input and one
output )

Scalar objective function

Vector of adjustable parameters for unit n
Dimensionality of vector win)

Vector associated with ith output of unit 7

Vector associated with jth input of unit m

Vector associated with a specified feed

Number z Z Dim
n |

Number Z Z ‘E;("')—G, ‘
m J
Number G

Number Z win)
n.

York, 1961.

1ble to convince himself that the method experiences  Mgtm
no difficulty in dealing with structures such as -
. N n
interlaced fecdback loops and even more compli- M
cated configurations. Netn)
. PR ) . N(n)
Note added in proof: It is implicd in the above
paper that the optimization proccdure proposcd by P
Mitten and Nemhauser is fallacious. It is now rea- v‘:,‘(::
lized that thisview resulted froma misunderstanding g
of these authors’ proposals. 1 am grateful to yytm)
Dr. R. Aris for pointing out my error. Futt
NOTATION v
¢ Row vector used to form scalar objective function

Dyt Dimensionality of vector x;{®) ve

E;'™ Dimensionality of vector y;(™! :

Fi¢'»  Function relating x{*) to variables yx (") and w(n) . vs
Finr  F,(n) when unit has only onc input and one output '
F"™)  Function relating y(*) to variables x{n) and w(n), va

Obtainable from F»}
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Résumé—La détérmination des conditions optimal
certain nombre d’unités en liaison entre clles présen
a cause du grand nombre de paramétres dont la variation

La méthode de programmation dynamique permet de

es dans une usine chimique qui comprend un
te souvent des difficultés de calcul considérables
doit étre considérée simuitanément.

décomposer le probléme en une série de

problémes sccondaires, mais son application reste limitée aux systemes formés de chaines d'unités

simples ct droites.

L’autcur décrit ici une approche classique par variations,
cas d'unités aussi compliexes

dimensionnelle analogue dans le

qui permet de réaliser une décomposition
que I'on veut. D’autre part, il étudie

en détail quelques systémes qui illustrent sans complexité algébrique excessive les caractéristiques

principales de la méthode.
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Abstract—A. method of decomposing optinization problems in topologically complex plants, des-
cribed in a previous paper, is extended to deal with objective functions of a much more general type

and to include units with a continuous infinity of adjustable parameters, such as tubular reactors. .
An alternative derivation of the formalism based on Lagrangian multipliers is also given.

INTRODUCTION -

IN A previous paper [1] a method was described for
dccomposing optimization problems in topologi-
cally complex plants into sub-problems with the
dimensionalities associated with the separate units.
The method was developed by a classical variational
argument of a very straightforward type and, for
simplicity, an objective function formed by linear

 combination of the clements of a single output
vector was considered. The discussion was also
limited to units with a finite number of adjustable
paramcters, and therefore excluded cases such as
tubular reactors with an adjustable temperature
gradient. _

In the present paper it will be shown how this
work can be gencralized to deal with objective
‘functions of a much more general type and to
include units with a continuous infinity of adjust-
able parameters, such as tubular reactors with ad-
justable temperature gradients. At the same time
an alternative derivation of the results based on

"~ the use of Lagrangian multipliers will be given.
This is more concise and elegant than the deri-
vation given in the earlier paper, but it provides
a less appropriate introduction to the subject, since
it is not so easily interpreted physicaily.

STATEMENT OF THE PROBLEM

As before [1] we shall consider a plant consisting
of a set of interconnected units, each with a set of
inputs and outputs and a number of adjustable
parameters. A number n will-be assigned to each

unit, and its input and output streams’ will also
be numbered. The properties of each stream are
characterised by a sct of physical quantities which
may be regarded as the components of a vector,
and similarly the adjustable operating and design

* variables for a given unit may be regarded as the

components of a second vector. The vector asso-
ciated with the i-th output stream of the n-th uhit
will be denoted by x} and the vector of adjustable
parameters for this unit by w”. It should be noted
that the suffix i serves to identify the output stream
and does.not refer to individual components of
the vector x;. The numbers n and i may be called
the identifying indices of a stream. )
In the previous paper [1] symbols y; were intro-
duced for the vectors associated with unit input
streams, but here we: shall introduce a different
notation. Unit inputs are connected to outputs,
of other units (except those which form feeds to
the plant as a whole) so, strictly speaking, the out-
put vectors x7 suffice to describe all process streams
in the plant, and it is only necessary to identify

‘those inputs and outputs. which are connected to

each other. This can be done by listing the output
stream connected to each input, and we shall use
the notation (#, j) to indicate the identifying indices ,-
of the output stream which is connected to the j-th

input of the n-th unit. The vector describing the

physical properties of this stream is correspondingly
denoted by x%. Alternatively we could list the input
stream connected to each output, using the notation’
(A, 7) for the identifying indices of the input stream
connected to the i-th output of the n-th unit. The
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corresponding vector is then denoted by xX. This
notation is illustrated in Fig. 1. There will, of
course, be no values of /i and 7 corresponding to
outputs (n, i) which form plant products, and these
will be referred to as free outputs.

! |

’4.———— l‘ or l-:-"

]
T

! | .
Fic. 1. Ilustration of notation.

The relations between outputs, inputs and ad-
justable parameters for a given unit take the form
of a set of equations

x{ = Fi(x3, w")

which we shall refer to as the unit equations of the

. n-th unit. In general the functions F! depend on"

the vectors x? associated with all the inputs of the
n-th unit. There is no need to write separate equa-
tions identifying the vectors associated with streams
which are connected, as in the previous work [1],
since the topological structure of the plant is deter-
mined by the listed correspondence between (n, 5
and (4, j) or between (u, i) and (A,7).

We shall consider the problem of finding values

for the adjustabic parameters of the units which -

maximise an objective function P of the form
P=H() =T G'(w) @

where H is a specified scalar function which may
depend on all the output vectors x of the plant

units, while the G" are specified scalar functions

: [
254 !-."1.':...-( :c\(‘n: J (IA-I : L

.

of the vector arguments w”. We shall not restrict
ourselves to cases in which w”" has a finite number’
of dimensions, but shall include units such as
tubular reactors with adjustable temperature gra-
dients, for which w” has a continuous infinity of com-

. ponents. In such cases the G* are more properl
properly

regarded as functionals.
In the earlier paper [1] a simpler objective func-
tion of the form

P=cx! - 2 G"(w") (3)
was considered, but the generahzanon represented
by equation (2) is desirable for two reasons. In the
first place, the operating returns from the process
may depend on more than one _product stream;
for example there may be more than one salable

-product, or one of the outputs may be an effluent
which it is costly to disperse. Secondly, in-addition
" to imposing constraints on the values taken by the

adjustable parameters w”, it is often desirable to
constrain the values of certain quantities associated
with the process streams themselves. For example,
the properties of available materials of construction
frequently impose upper limits on the permissible
temperatures of certain streams. Such constraints
can be imposed by including in P a term which takes
very large negative values when the variables in
question pass outside their permitted ranges, and
the general form of the function A in equation (2)
permits terms of this type to be included.

CONDITIONS FOR A STATIONARY VALUE OF P

Differentiation of equation (2) gives the first

- order variation in the objective function in the

form

~a’f'.dp=zgjh~,dx;'—

Y oG* )

where h} is the row vector of partial derivatives
fi p

oH \\ L.
X1,

The suffix p mdncatmg the p-th component of
a vector. The notation 0G" is introduced to indicate | -
the first order variation in G" produced by a small
variation in the adjustable parameters w* of unit n.

1 \

Ch ;],, (5)



A generalized variational treatment of optimization proble

The variations dx} appearing on the right hand
side of cquation (4) arc not independent since the
unit cquations (1) must be satisficd. Differentiating
these gives the following set of equations relating
small variations in ‘the vectors associated with
process streams s,

o dx) =Y M} dxj + 0x]
J

e,
A AN
2

To e deaondild

. where M}, is the following matrix of partial deri-
- vatives _
o[F7]

IMidpe = So M

SERPUA B J p'f_ olx%], I
The notation dx] is analogous to the notation 4G"
introduced above and denotes the first order varia-
tion in x} produced by a small variation in the

adjustable parameters w" with the inputs to unit n -

held constant. i ' - €7, NS
Our problem is now to find the conditions that
dP as given by equation (4), should vanish identi-
cally, when the dx] are constrained to satisfy
“equations (6). The constraints may be introduced
by the use of Lagrangian multipliers [2], which we
shall denote by 47.{ The muitiplier 4] is associated
with the equation (6) for dx], and correspondingly
it is a row vector of the same dimensionality as
the column vector x]. Combining equations (4)
and (6) by means of the Lagrangian multipliers,

the condition for a stationary value becomes

T hpdxi-F 06"~

-2 A;{dxi o LM dx? — ax;} =0. (8

In this equation the dxj may be regarded as inde-
_ pendent variations, while the dx; and dG" are inde-

pendent for different values of n, since they then
represent the effects of varying the adjustable
parameters of different units. ! Collecting the terms
in dx} and the remaining terms separately, equa-
tion (8) may be written -

!

Lyfa-sepivijate
+ Z{}; AL 6:,c:"'— ac"} =0. (9

This must be satisfied for arbitrary and independent
values of the dx], so the coefficient of each dx] in

1
i

A

)“\:‘l' et

.], )Y i ,,.) ' P PP P
X PR ., : :

ms in complex chemical plants

the first double sum must vanish separately. In
the sccond summation, each value of n gives the
contribution arising from the variation of the
adjustable parameters of a different unit, so again
each term must vanish separately. Thus we have
the following equations -

=0+ 2": AM:- " (10)

and .
Y Az oxp — 0G" =Q. 09))
k
When x} is a free output, there is no unit 7ii con-
nected to it. Thus the sccond term on the right
hand side of equations (10) is absent for values of n
and { corresponding to a free output. Instead of
modifying the form of the corresponding equations
(10), however, we can achieve the desired end simply
by introducing the formal definition Mjr= 0 in
cases where x] is a free output. :
The stationary value problem is therefore solved

. by choosing values of the vectors 7, x7 and w"°

to satisfy equations (10) and (11), together with
the unit equations (1). Those vectors x] associated -
with plant feed streams are given, and form
boundary. conditions for equations (1). Again, the

. vectors A7 corresponding to plant product streams

are given by A7 = A7, since the Mj; vanish for free
outputs, and these form boundary conditions for
equatjons (10). It is characteristic of this type of
problem- that the boundary conditions for the A}
and the x] are given on different streams, and this
makes an iterative solution procedure necessary
even in the case of a plant with simple sequential
structure. : :
Each formal equation (11) represents a set of
equations involving the components of a single
vector w" associated with the n-th unit, and contains
no adjustable parameters associated with other
units. Thus, assuming it is possible to satisfy each
separate equation ‘ ‘

Y oxy—aG"=0 -
k

with a suitable choice of real values for the compo-
nents of w", the problem has been decomposed
into a set of sub-problems with the dimensionalities
of the separate vectors w", and this has been paid

- o """‘>255 - v
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for by mtroducmg the extra variables )." and equa-
tions (10).

Remembering the significance of dx] and BG"
it is seen that equations (11), regarded as equations
for the components of the vectors w”, simply state
that the adjustable parameters of the n-th unit
must be chosen so that

P"=3 Axp—G" (12)
. k|

takes a stationary value, with constant values of

all inputs to the unit. Then the solution to the

problem as a whole may be stated in the pleasingly

elegant form that each vector w" must be chosen

so that the sub-objective function

=Y Axp— G
k

for the corresponding unit takes a stationary value,
the vectors A? and.x} being determined by equa-
tions (10) and (1) respectively, with the boundary
conditions stated above. In this formulation it has
nowhere been assumed that the dimensionality of
the vectors w” is finite, so the method can handle
units with continuous ranges of adjustable para-
meters such as a tubular reactor.with an adjustable
temperature gradient. The stationary value sub-
problem for such a unit would, of course, be solved
by the method of PONTRYAGIN [4] or SWINNERTON-
DyEer [5). Indeed, if one considers the special case
of a simple sequential chain of units and passes
formally to the limit of an infinite number of units
each gencrating an infinitesimal change in the
stream vector, the present equations reduce to
differential equations and the method becomes
identical with that of PONTRYAGIN and SWINNER-
TON-DYER. To this extent, the Maximum Principle
of PONTRYAGIN may be regarded as a special case
of the relations given above, but of course the
formal passage to the limit is permissible only if
the limit exists, and SWINNERTON-DYER [5] has
given a counter-example to show that this is not
necessarily the case even in apparently innocuous
situations.

The above description of the process corresponds
to that given in the previous paper (1] and to a
recent variational treatment of the simple sequential
system by KAtz [6]. However, both in this des-

cription and in KATz's paper, it is implicitly assum
ed that it is possible to find real values of the com
ponents of w” to make P" stationary for each value
of n, and this is by no means always the case
For example, the sub-objective function P" may
be monotonic in certain components of w* even
when the objective function P has a perfectly
satisfactory stationary value, and in this case it i
not possible to adjust the components of w" tc
make P" stationary, so the procedure just described
breaks down. This possibility will be clarified lates
by means of a simple example, but meanwhile the
nature of the iterative process involved in the solu-
tion will be illustrated by an example for which if
will be assumed that each P” has a stationary value

Finally, it should be remarked that the use of
Lagrangian multipliers to take account of the re:
strictions imposed on the dx} by the unit equations
and the plant structure was introduced by HORN [3]
in discussing a simple sequence of stirred tank reac-
tors. The present derivation may therefore be
regarded as the extension of HORN's method to
systems of arbitrarily complex non-sequential
structure.

APPLICATION TO A SYSTEM WITH RECYCLE

The method developed above will be illustrated
by describing its application to a system which
was also discussed in the carlier paper {1], namely
a simple recycle configuration. The system is
shown in Fig. 2, which also serves to define thg
notation. The objective funcuon will be taken T
be

P=cx}{+ex®—=3 G (13)
n
which depends on the components of two different
stream vectors. ‘
The calculation may conveniently be started at
the free output x}. The sub- problem associated
with unit 1 has the objective function

= Alx! + Alx} - G

according to equation (12). The row vector Al
is simply equal to ¢, as can be seen from equation
(10) for the frec output x!, but a value for.A} must
be assumed to start the calculation. If we also

.

256



A generalized variational treatment of optimi

23

x2

-

——— x
2
::l ’

Fig. 2. Simple recycle syétem.

assumc a value for the vector x}, we must then
choose w! so that P! takes a stationary value for
fixed x?, subsequently adjusting the value of x?
until x} agrees with its assumed value. Thus the
solution of the sub-porblem for unit 1 yields values
of x? and W', together with the partial derivative
matrices M}, and M}, and the vector xj, from
assumed values of A} and xi.
According to equation (10) we have

2= MM+ MY,

since h? vanishes as x? does not appear in the
objective function P. We may therefore proceed
to choose values of x> and w? which make

P? — i%x? — G*

stationary and give a value of x? equal to that pre-
viously ‘calculated. This in turn determines the
matrix M? and permits A% to be calculated through
equations (10) giving

AS —= XZMZ

’ 3
Mlz-

zation problems in complex chemical plants

Values of x* x® and w® must now ‘be chosen

which make
PJ — ,13x3 - GS

stationary and give a value of x? equal to that found
in the calculation for unit 2. This can clearly be
done in an infinite number of different ways, since
the total number of components of x* and x®
available for adjustment will be greater than the
number of components of x*. Thus it is necessary
to fix arbitrarily the values of some of the compo-
nents of x* or x6. If x*, x% and x® all have the
same dimensionality, for example, we could specify
a value of x* and choose x° and w® to make P°
stationary and x° equal to its previously calculated
value. This, in turn, would determine the matrix

Equations (10) now permit 2 to be calculated,
remembering that h® = e since x® appears in P.
Thus :
. ) A«G. =e+ A.SM:i‘z. .

Values for x} and w® must then be chosen to make

H P6 ='16x6 — G6

stationary and x% e ual to its previously determined
ry q p

value. These in turn determine th_e matrix MS,
which may be used in equations (10) to give AL

, AL = ASMS. _
Finally the sub-problem for unit 4 is solved.
A* is given by L .
A.d = ASM::’_

n

and x5 and w* are chosen to make
P4 _ A4x4 __ G4‘

stationary and x* equal to the value already
assumed. :
Inspection of the course of calculation just des-
cribed shows that three mis-matches have arisen.
First, values of x} have been obtained by solution
of the sub-problems for both units 1 and 6, and
these values will not, in general, agree. Secondly, -
a value of Al is obtained from A% and M® after

- solution of the sub-problem for unit 6, and this

will not, in general, agree with the value for A}
assumed at the beginning of the calculation.
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Thirdly, .a 'value for x* is determined by solution
of the sub-problem for unit 4 and this will not,
in general, agree with the specified feed vector.
Corresponding to these three mis-matches we have
assumed values for three vectors, namely x}, 1}
and x*, and these must be adjusted until the mis-
matches are eliminated.

It is not difficult to check that the above calcul-
ation is identical with that described previously [1]
for this system, except for a small added complica-
tion in the present case due to the presence of an
extra term ex® in the objective function. The row
vectors A} introduced here correspond to the row
vectors cL}? which appeared in the previous
work.

The iterative solution of the problem can, of

course, be started in many different ways, of which

the above is but a single example. In practice one’s
choice would need to be guided by consideration
of the convergence of the numerical process of
iterative adjustment.

CASES IN WHICH THE ABOVE PROCEDURE MAY FAIL

It was remarked earlier that the process as des- .

! ‘cribed so far will fail if any sub-objective function
.{ " P" is monotonic in one or more of the components

of w". This is by no mieans impossible, even when P
itself has a stationary value [7], as may be shown
by a simple example.

Consider the sequence of two unitsshownin Fig. 3, -
the unit equation for each unit being inscribed
in the corresponding block of the block diagram,

. which also serves to define the notation. All vectors

in this case have just one component. With the
objective function P = x,, direct calculation gives

P=A=(x3+ wy)? — wi

and this has the s;atio;xary maximum value A whe:
w; =0, w,; = — x3. Now let us attempt to finc
this stationary value by following the procedur:
described earlier in this paper. For unit 1 we hav

‘ ox :

Ay 0x, = (a_w:) dw, = —2w, dw, =0

: when w; =
and with this value of w, _
x;=/(A—x,) and M, = (éﬂ) T = —2X,
ax: wy
= —2\/(A bl x‘).
—_—
We then have A, = 4, M; = — 2,/(4 — x,);~an!

the equation of type (11) for unit 2 is
5x2) :
Az axZ = lz(awz . = Az

which cannot be satisfied by choice of w,, since w
does not appear on the left hand side. The. cor
responding sub-objective for unit 2 is

P2 = lzxz = —2\/(14 - x‘)(xs + \Vz) -

—2/(4 - x,) -0 .

" which is monotonic in w,, and has no stationar
‘value. Thus the simple procedure breaks down 2

this stage. .
However, the value of x, is still available, an
we can satisfy the equation 1, dx, = 0 by takin
x; = A, when the left hand side vanishes for a
values of w,. w, then becomes an available variabl
in place of x;, and it must be chosen so that th
boundary conditions at inlet are satisfied. Sinc
x, = A implies that x, = 0, we must take w; =

© =3X,, where x; is the specified value of %3, and w

have then found the same solution as was originall
obtained by inspection of the form of P.

The description of the general procedure can b
extended to embrace cases such as this. For sim
plicity consider a simple sequence of units as show

X% Xyt W, -

-

1

N’A”‘: ':Wz e r——

FiG. 3. A case in which the simple procedure fails..

258



A generalized variational treatment of optimization problems in complex chemical plants
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s e e ]
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Fic. 4. Simple scquence.

in Fig. 4, which serves to define the notation.
Let D be the dimensionality of the x-vectors and
Jet each vector w" have finite dimensionality W".
Then at unit 1 we have D + W! variables (i.e. wl
and x! or w! and x?) with which to satisfy the w!
equations.

Atox! —0G' =0 (14)
Thus D variables remain available and, in principle,

it does not matter which D we choose to regard as-.

available and which we regard as “used” in satisfy-
ing cquations (14). (More generally, equations (14)
confine x! and w! to a D-dimensional subspace of
the D + W' dimensional product space.) Let us
denote by y' a sct of D variables regarded as still
available after satisfying equations (14). Then x?
and A2 can be expressed as functions of ', and the
stationary equations for unit 2, namely

A29x? —9G*=0 (15)

have left hand sides which are functions of the

D + W? variables w?, y'. They may be satisficd '

by any W? of these variables, the remainder being
regarded as still available, and the particular W?
variables chosen may or may not be the compo-
nents of w2 ‘
—1In-some cases, as in the example just worked,
w? (or some of its components) does not appear
“in the left hand sides of equations (15), in which
case it is necessary to incorporate some components
of y! in order to have enough variables to satisfy
the equations. Even when all the components of
-w? appear on the left hand sides of equations (15),
itis possible that these equations cannot be satisfied
for real w2, in which case adjustment of y! may
modify the coefficients in such a way that a real
solution exists.

After the stationary value equations (15) for
unit 2 have been satisfied, there still remain D
variables undetermined, which we shall denote
by y2. If components of w? only were used in

solving equations (15), y* will be identical with y',
but if some components of y' were used in the
solution these components will be absent from y? -
and will be replaced by the components of w? not
used in solving equations (15). '

In this way we can proceed to unit 3, and so on
throughout the chain to unit N. After satisfying
the stationary equations (11) for unit N, there will
remain a D-dimensional vector " of undertermined

“variables, and adjustment of these will permit the

boundary conditions at entry to be satisfied. In
gencral y¥ will comprise components of y! together
with certain components of the w-vectors along the
chain.

It is clear that the alternatives available at each
stage may permit several different solutions to be
obtained, in which case each will correspond to a
different stationary value of P. When P has a
unique stationary value, however, only one of the
alternatives will permit the solution to be continued
throughout the chain. '

The situation described in the present section
does not exhaust the possible difficuitics which may
arise in attempting to carry through a solution,
but in many cases the simplest procedure described,
using only w-vectors to satisfy the stationary value
equations (11), is successful. The basic equations
(1), (10) and (11) are universally applicable, and
one is attempting to find a procedure which enables
them to be satisfied with a minimum amount of
iterative calculation. :

Finally, although the method described here can
be applied to a very large class of optimisation
problems, it does not necessarily follow that it is
always the most effective way of solving them.
It is frequently possible to take advantage of
certain features of the equations defining a parti-
cular problem to reduce the. amount of iterative
calculation far below what would be required in
a blind application of the method.
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CONCLUSIONS

The present formalism extends that described in
an earlier paper [1] so that it can be applied to
very general objective functions in plants of arbi-
trarily complex topological strucutre. It is also
able to handle units with continuous ranges of
adjustable parameters, either alone or connected
to other units with discrete.sets of parameters.
Thus methods of reducing: the dimensionality of
optimization problems, which have previously been
useful only in sequential structures, have been
extended so as to be applicable to systems of any
structure.

Acknowledgement—The author would like to thank Mr.
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. of the paper in draft form. :
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Abstract—Variational methods described in previous papers for dealing with optimization problems
in complex chemical plants operating under steady conditions are developed so that they may be ap-
plied to unsteady state problems of a very general nature. Previous results are shown to be special
cases of the new equations, and the relation of the method to the well known method of gradients is dis-

cussed.

INTRODUCTION

IN PREVIOUS papers [1,2] a variational method of
determining optimum conditions for the steady
state operation of a complex plant has been develop-
ed. The method is analogous to, but weaker than,
Pontryagin’s Maximum Principle, and permits
the over-all optimization problem to be decomposed
into sub-problems, one associated with each of the
units which are interconnected to form the plant.
Similar results have since been re-derived by DENN
and ARIS [3]. Stronger results, more strictly similar
to the maximum principle, were derived by FAN and
WANG [4], but it has since been shown by HORN
~and the present writer [5,6] that their derivation is
erroneous, and their results are correspondingly
untrue. DENN and ARis [7] have also demonstrated
the error of the stronger result by a method which
does not differ essentially from that of HorN and
JACKSON [6].

All the papers referred to above deal with the
optimization of steady state operation. In the pre-
sent paper it will be shown how analogous results
may be obtained for time varying conditions.
Results obtained earlier [1,2] will be shown to be
special cases of the more general results now pre-
sented. The close relation between the weak
maximum principle and the well known method of
gradients will also be demonstrated.

THE DYNAMIC PROBLEM

As in earlier work [1,2] we shall consider a plant
consisting of a set of units which are interconnected

by process streams flowing from one to another.
No réstriction is placed on the nature of the network
of connexions, which may be as complicated as we
please, including multiple and interlocking recycle
loops, cross feeds, bypass streams etc. Each unit
will be assigned an identifying number n and its
input and output streams will also be numbered.
Thus the pair of indices (n,i) will identify the ith
process stream associated with the nth unit. The
physical and chemical properties characterizing
each process stream may be regarded as the com-
ponents of a vector x%}, where the suffixes n and i
identify a particular unit and a particular stream.
Neither is used to distinguish components of the
vector, which would require a further index. In the
same way, the adjustable design and operating
variables for a unit may be regarded as the com-
ponents of a second vector w". We shall further
assume that the performance of a unit depends on
the values of certain other parameters, for example
heat transfer coefficients and catalyst activities,
whose values are not freely available to the designer
or operator but may change with time in a manner
depending on the mode of operation of the unit.
Their values at any particular time may be regarded
as the components of a vector ¢"(r). Finally, each
unit may be subject to disturbances quite outside
the control of the operator, for example, the temp-
erature of cooling water may change with changes
in ambient temperature, and these disturbances
may be regarded as the components of a time-
dependent vector d"(¢).

The interconnexions of the units will be specified
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by means of a notation introduced in an earlier
paper [2], namely by listing the identifying indices
of each pair of process streams which are connected
together to form a link. We shall use the notation
(7,j) to indicate the identifying indices of the output
stream which is connected to the jth input of the
nth unit. A similar notation (#,7) will be used for
the identifying indices of the input stream connected
to the ith output of the nth unit. The structure of
interconnexions can then be specified completely
by listing corresponding values of (n,i) and (7,j), or
alternatively corresponding values of (n,j) and
(#,7). Thus a list of the form

2,1D=0,2)
G, H=30,1)

would indicate that output stream number 2 of
unit number 3 is connected to input stream number
1 of unit number 2; output stream number 1 of
unit number 1 is connected to input stream number
4 of unit number 5, and so on. It could be written

2 or x’T“

Fic. 1. Illustration of Notation

in the alternative form
2, 1=@3,2)
G.9=0,1)

and either of these lists would provide a complete
topological specification of the plant. The notation
is illustrated by Fig. 1.

The behaviour of each unit within the plant will
be completely described by differential equations of
the form
éd% =F,"(x£, x:" ¢"s d, W")
where F" is a vector function of all the components
of input stream vectors xf and output stream
vectors x? associated with this unit, as well as the
parameters ¢", the disturbances d" and the design
and operating variables w". Any set of ordinary
differential equations of any order can be reduced
to a set of simultaneous first-order equations of
the form (1) by introducing suitably defined
auxiliary variables, so the first-order form of equa-
tion (1) does not imply that the physical differential
equations governing the behaviour of the unit are
necessarily of the first order in their most compact
form.

ey

The parameters ¢" are also time dependent, and
we shall assume that they change at a rate which
depends on current conditions in the corresponding
plant unit. Thus

do"
dt

= E"(x}, ¢", d", w") )
It is not difficult to see what conditions must be
specified in order to determine a solution of equa-
tions (1) and (2). Clearly the initial values x7}(0)
and ¢"(0) of all plant stream variables and unit
parameters must be specified, while the distur-
bances d"(t) and operating parameters w"(f) must
be specified as functions of time throughout the
interval 0 — T of interest. Certain streams enter
the plant as external feeds and do not form links
between pairs of units, and the corresponding
stream vectors x'(f) must also be specified as func-
tions of time. With these specifications equations
(1) and (2), together with the list of interconnexions
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described above, suffice to determine the complete
behaviour of the plant in the time interval 0 — T.

Now the components of the vectors w"(¢) are
assumed to be to some extent available. For cer-
tain of these parameters, for example, those repre-
senting design variables, it may only be possible to
fix a value which is subsequently retained at all
times. In other cases, for example operating
variables, the parameter may be freely available for
adjustment as a function of time. In either case we
shall be interested in exercizing the available
freedom of choice to maximize some criterion of
performance defined over the time interval 0 — T.
More specifically, we shall consider the problem
of choosing the w" so as to maximize an objective
function of the form

(€)

Where H'; is a specified scalar function of the
variables associated with the ith output of the nth
unit, and G"(w") represents the cost of a particular
design and operating policy for the nth unit.

This general formulation clearly enables us to
deal with practical problems of determining op-
timum start-up procedures, of investigating opti-
mum operating policies for chemical reactors with
decaying catalysts, of controlling the operation of
a plant against variations in feed or externally
imposed disturbances, and so on; in fact a very
wide range of dynamic optimization problems.

P= f :znj(lzm(x",.) - G"(w")) dt

ADJOINT EQUATIONS

In this section some simple algebraic manipula-
tions of general sets of linear algebraic equations
will be set out for subsequent use in solving the
optimization problem.

Suppose a set of N variables ¢; is related to a
set of N variables 8; by linear algebraic equations of
the form

N N
.Zl a,’jé’,:ei (i=1, 2, oo N) (4)
j=
Consider the problem of expressing a certain linear
combination of the &’s

P= 3 a& ®)

as a linear combination of the ’s in the form

N
P= 3 {6, (6)
k=1
If equations (4) are multiplied from the left by a
matrix # which is the inverse of «, we obtain

N N N
ﬁkiaijé = > Bub:
=1j=1 i=1

J

but since
N
Z:l ﬁkiaij = 5kj;
where J,; is the Kronecker delta, this becomes
N
S = ;1 Bib; (7)

If equations (4) were differential equations rather
than algebraic equations and i were a continuous
variable such as time, B,; would be a Greens
function, so the inverse matrix of coefficients in
these algebraic equations is the analogue of the
Greens function for differential equations.
From equations (5) and (7)
N N
P=% (Z Ckﬁki)gi

i=1

and comparing this with equation (6), it is seen that
N
=2 abu
k=1

Multiplying from the right by the matrix a, this
then gives

M=

iy = ¢ )
i=1

We shall call the {; the adjoints of the variables
¢; and equations (8) are said to be adjoint to equa-
tions (4). The desired form (6) for P is therefore
obtained by solving the adjoint equations and using
the adjoint variables in equation (6).

These elementary general results, applicable to
any set of linear algebraic equations, will be used
in the next sections to develop a solution of the
dynamic optimization problem.

EXPRESSION OF THE VARIATION IN P IN TERMS OF
VARIATIONS IN THE ADJUSTABLE PARAMETERS

Consider the effect of a small change in the
adjustable parameters of the units from w"(f) to
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w"(f) + ow"(t). This induces corresponding incre-
ments 6x7 and d¢" in the vectors x7} and ¢", where
the increments, if small, are related by the incre-
mental forms of equations (1) and (2), namely

d

aéxQ’:Z 5x,,-|—ZF"6x + K'Sop™ + f1ow" (9)
k

and

dit 5" = 3 ESx +J"5¢" + "W (10)
J

where &4, Fi;, K5,

ij>

% Ej, J"and e

are matrices of partial derivatives with the following
elements

gy = D, a(F?),
F =56, T~ 36, -
m _ OFDp o _ OFD,
(Ki)pb - a(d)n) ’(f )Pi‘ a( ")r
and
n _ OED, g G(E")a n AE™), (12)
(E )aq a( J)q ( )ab 6((]5") ( )ar «(wn)r

(The extra suffixes p, g, @, b and r in these expressions
serve to distinguish components.)

The increment in the objective functlon P is seen
from equation (3) to be

oP = f s (z Hioxt — g"5w") a  (13)

0O n J

where /7 and g” are row vectors with components

W 0H?} ; 0G"

=5 @4 @h=gem 09
Though there are certainly more elegant methods
of dealing with these equations, perhaps the most
straightforward procedure at this point is to take
finite differences with respect to time, thus reducing
equations (9) and (10) to a set of simultaneous
algebraic equations involving the variations 6x7
and 5¢" at different instants of time. The expression
(13) for 6P then reduces to a sum and we can use
the general formulae of Section 3 to express this
sum in terms of the independent variations Sw".
Writing ¢ = s6¢, where ¢ is a small increment in
time which we shall later allow to tend to zero,

and taking the simplest finite difference approxima-
tions to differential and integral operators, equa-
tions (9), (10) and (13) become

Oxf? = 6x]* 1 — 51 T FRSN — 01 X Fox —

— SIKT5™ = StfTsw™  (15)
5¢ns . 5¢n,s—1 — 5tJn55¢ns — 5t ZE;'S(Sx';!s
j
= §te™ow™  (16)
and
s
> (z hEoxe —g"saw“)at )
s=1 n i
where T = Séz.

Equations (15) and (16) are a set of simultaneous
linear algebraic equations in the variables Jx}°
and §¢™ precisely analogous to equations (4) in the
variables &;. Again, the first term on the right-hand
side of equation (17), namely

5Py = 3 5T Sthiex

s=1n i

(18)

is a linear combination of variables precisely analog-
ous to the right-hand side of equation (5)." Thus,
writing down adjoint equations for the present case
corresponding to equations (8) of the general case,
we can determine the coefficients in an expression
of 8P, as a linear combination of the variables
dw™ by comparison with equation (6).

We shall introduce variables A7 and p™ adjoint
to 6x* and J8¢™ respectively. To write down
adjoint equations corresponding to equations (8)
we then have to pick out the coefficients correspond-
ing to the o;; of equations (4). Now for a given
value of j, the a;; are the coefficients of all the terms
in &; which appear on the left-hand sides of equa-
tions (4). Similarly, to write an equation adjoint to
one of equations (15) or (16), we must pick out all
the terms in which a given variable ox7 or 6¢™
respectively appears on the left-hand sides of these
equations. The sum of the coefficients of these
terms multiplied by the corresponding adjoint
variables then forms the left-hand side of the cor-
responding adjoint equation, as in (8).

Let us consider first a variable dx7, picking out
those terms on the left-hand sides of equations (15)
and (16) in which it appears. If we also write down
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the right-hand sides of the corresponding equations
so as to identify these equations, we obtain the
following terms, provided (n,i) are not the identify-

ing indices of a “free ”output stream unconnectm‘

to any other unit, and provided also that s ;é KN

(i) A term (1 — 6t F[©)ox
in an equation with r.h.s oz f Pow™
(ii) Terms — StF30x7, (k # i)
in equations with r.h.s.’
(iii) Terms — 8tFiox7, (j = 1,2,...)
in equations w1th r.h.s.’s 81f ow™
(iv) A term — &E"‘éx"s
in an equation with r.h.s. 5ze™éw™
(v) A term — ox7
in an equation with r.h.s. §¢f st 1ownst!

- St ISw™

When (n,i) is a ““free” output not connected to
any other unit, only the terms (i), (ii) and (v) appear,

and when s = S there is no term of the form (v).

In a similar manner we can pick out those terms
on the left-hand sides of equations (15) and (16) in
which a particular variable 8¢"™ appears, again
identifying the corresponding equations by noting
their right-hand sides. Provided s # S this gives
the following terms

(1) Terms — 0tK¥Fo¢™, (i = 1,2,...)
in equations with r.h.s.’s ot/ °*ow™
(11) A term (1 — 8tJ™)o¢™
in an equation with r.h.s. 6ze™ow™
(iii)) A term — 6¢™
in an equation with r.k.s. 5te™* ¥ 1ow™s*1

However, when s = S there i no term of the form
(). L

Having picked out ythe/se terms, and remembering
that equations (1®y correspond to the general
equations (5), the adjoint equations can now be
written down directly by analogy with equations
(8). They are

B — StFY) — Ot X I — At —
k#i
— ot 2 APSFS — SUUE = Sth® 19)

when (n,i) is not a free output and s # S.

(1L — ST — 5t Y ST — At

k#i

— St (20)

when (n,i) is a free output and s # S

WA -0FD -0t X FLH — 6t2/1"'SF"f-S—
k#i ns (21)
— oty "‘E"s oth;
when (n,i) is not a free output and s = §
A — StFY) =0t Y M F i = oth® (22)
k+i
when (n,i) is a a free output and s = S
Together with
[L"S(l _ 5tJnS) _ #n,s+1 St Z ;tnsKns 0 (23)
when s # S, and
(1 = 8tJ™) — 0t 3 APKE = 0 (249)

‘whens = S

We also have, by comparison with equation (6)
S -
oP, = Yot (Z ABfE + p"‘e"s)éw"s (25)
s=1 n i

The required results can finally be obtained by
passing to the limit 6z > 0, when equations (19)
to (24) reduce to

d;::

Z 97,'&+Z)»"F"+u"E"——h" (26)

valid when (n,i) is not a free output, together with

dl” @7

+Z hF = —hi

valid when (n,i) is a free output, with the boundary
conditions

4(T) = [all (n, D] (28)
and
AW TS KE =0 (29)
dt . ;
with boundary condition
w(T) = (all n) (30)

In equations (26) to (30), the suffix s has been
dropped, since all quantities are understood to
depend on the continuous variable z. The boundary
conditions (28) are obtained from equations (21)
and (22) on passing to the limit 6z — 0, and the
conditions (30) follow in a similar way from
equation (24).

On passing to the limit in equation (25) and
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incorporating, once more, the second term on the
right hand side of equation (13), the variation in P
is seen to be given by

5P=fT§nj (u"e" + ;zm—gn)w dt (31)

which expresses 6P, as required, in terms of the
variations Ow"(f) in the available adjustable
parameters.

SOLUTION OF THE OPTIMIZATION PROBLEM

If each of the functions w"(¢) is freely available
for variation, necessary condition for P to take a
stationary maximum value is that 5P should vanish
for all variations éw"(¢); in other words that

W'+ 1 S
(nh=0,1,2..

—g"=0

J@lost<T) (32

which represents a set of equations to determine
the components of w”. Remembering the defini-
tions of f7, e" and g” given in equations (11), (12)
and (14), the condition (32) may be expressed in
the following alternative form.

“P will take a stationary value if and only if each
of the quantities

Pty=uwE"+ X A}F—~ G 33
is stationary with respect to variations in w"(¢) at
each value of 7, the variables A7 and u" and all other
variables on which E” and F} depend, other than
w", being regarded as constants.”

It should be noted that although a stationary
value of P results when each P" is stationary for all
t, there is no relation, in general, between the
natures of these stationary values. What we have
found is therefore a “weak” maximum principle
analogous to that developed earlier (1),(2) for the
case of steady state operation. As in the steady
state a “‘strong” maximum principle is not generally
true [5,6].

An alternative and possibly more practical way
of making use of equation (31) to solve the dynamic
optimization problem is to regard it as giving the
gradient of the objective function P in the function
space of the set of functions w"(f). As the idea of a
gradient in function space is not yet very familiar

to chemical engineers, it is probably worthwhile
digressing briefly to say a little about it. The
concept appears to have been first introduced into
chemical engineering by HorN [8], but it has also
been used by KELLEY, BRYSON and other workers
in the field of flight path control [9,10]. However,
the use of the gradient in function space in handling
variational problems was described a good deal
earlier in the well known textbook of COURANT (11).

The idea may be introduced by comparing a
function of many variables

PI = F(xl, x2, aee Xn) (34)

with an integral whose integrand depends on a
function of the variable of integration.
T
P, =f G[t, x(8)] dt (35)
0

P, is a function of the finite set of variables x,,
X,, ... X,, While P, may be regarded as a function
of an infinite set of variables, namely the values of
x(?) at each value of r. The discrete valued para-
meter { which distinguishes different variables x;
of the finite set then corresponds to the continuous
valued parameter ¢ which distinguishes different
variables x(#) of the infinite set. In the finite cace
one often uses geometrical language, saying that P
is a function of position in the space of the Varlabl\
Xy, Xa, ... X,, and by analogy we can say that 1'\
is a function of position in the “function space” of
x(#). This will be a “space” with an infinite number
of dimensions, each point of which corresponds to
a particular function x(¢) definedin 0 < ¢ < T.

Now consider small variations dx; in the variables
x; of equation (34) and 6x(¢) in the function x(¢) of
equation (35).

We can then write

OP; = fi6x, + f1,0x, + ... + f,0x, (36)

where the numbers (f}, f5, ... f,) are the components
of the gradient of P, in the space of the variables

Xy, X3, ... X,. They have the property that, for all
displacements of equal magnitude (i.e.(6x;)?
+ (6x3)* + ... + (6x,)® = const.), that for which

each Jx; is proportional to the corresponding f;
gives the largest increase in P;; in other words
displacements dx, = kf;, 6x, = kf, ... 6x, = kf,
lie along the line of steepest ascent of P,. Just as
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(36) gives an incremental form of equation (34), it
may be possible to express 6P,, corresponding to
the variation 0x(¢), in the form

0P, = f OT glt, x()]ox(¢) dt

Comparing equations (36) and (37), and regarding
integration in (37) as analogous to summation in
(36), it is seen that the function g[r, x(¢)] could
appropriately be called the gradient of P, in the
function space of x(¢f). It is not difficult to show
that, if we regard as of equal magnitude all varia-
tions 8x(f) for which {J[6x(7)]? dt is the same, then
the largest increase in P, results from that variation
in which 8x(¢) is proportional to g[t, x(¢)] at each
value of ¢. In other words, if we use the above
quadratic measure of the “length” of a displace-
ment in the function space, then displacements

Sx(t) = kglt, x(1)]

lie in the direction of steepest ascent of P,.

Now we are interested in the variational problem
of finding a function x(¢#) which maximizes P,, and
the above suggests that this might be attacked by
improving an initial guess xy(#) according to a
steepest ascent procedure, replacing x4(¢) by

x1(8) = xo(1) + kg[t, x(8)]

and recalculating the gradient g after proceeding
some distance along this line. Such a procedure is
strictly analogous to the well known method of
steepest ascents for maximizing a function of a
finite number of variables. ’

Returning now to equation (31), we see that it is
essentially of the same form as equation (37) except
that many functions of time, namely all the compo-
nents of the vectors w"(t), are involved rather than
the single function x(¢). However, it is still true to
say that the functions

P = Wet + X ST~ g"

(37

(3%

represent the gradient of P, in the sense just des-
cribed, in the space of the functions w"(#). One could
therefore start from a guess wj(f) at the adjustable
parameters and obtain the greatest increase in P
for a small modification of the guess by taking

w(t) = w(1) + k[#"e" + 247 —g"] (39

As k is increased, one moves up the line of steepest
ascent at the point corresponding to the initial
guess wi(?), and at any stage the functions wi(?),
given by equations (39) with k = k, may serve as a
basis for a new estimate of the gradients (38). One
may then proceed up the new steepest ascent line,
continuing the process of alternate climbing and
recalculation of the gradient, until P is no longer
significantly increased.

It remains to indicate how the plant equations and
adjoint equations may be solved in order to compute
the gradient (38) corresponding to any particular
set of values of the functions w"(r). With the
postulated form of the functions w"(¢), the given
initial conditions x}(0) and ¢"(0) and the boundary
conditions specified for those x} which correspond
to external feeds to the plant, the plant equations
(1) and (2) may be integrated forwards in
time to determine all the variables x} and ¢”
throughout the interval 0 < ¢ <.7. The adjoint
equations (26), (27) and (29) may then be integrated
backwards in time from the terminal conditions
(28) and (30). This is possible since the coefficients
in these equations are determined once the variables
x7 and ¢" have been found. The adjoint variables
A7 and " are then known for all ¢, and the solution
of the plant equations determines the quantities
e" and [ for all ¢, so the required gradient can be
calculated from equation (38) at each value of ¢.

Earlier, in describing the problem, it was recog-
nized that certain of the components of the vectors
w"(¢) might not be independently adjustable at all
values of ¢t. For example, if a particular vector w"
consists entirely of design variables for the nth
unit, the values of these variables must be chosen
once for all, and cannot be made to depend on time.
In this case dw" in equation (31) is independent of
time and can be taken outside the integral so that
the corresponding contribution to 6P is

T
Sw" f (;t"e" + 3 A —g") dt

0 i

-and the components of the gradient corresponding

to the components of w" are simply

T .
J (wer+ s inr1-0") as

o

(39)
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which can be computed when the plant equations
and adjoint equations have been solved. In the
optimizing adjustments the changes dw" are then
made proportional to the quantities (39), and are
independent of time.

THE STEADY STATE PROBLEM

Finally we shall show how the equations derived
in the present paper degenerate into those previ-
ously obtained [1,2] when conditions in the plant
do not vary with time. In the case of steady state
operation, the process stream vectors are related
by algebraic equations of the form

xi = Ri(x], w") (40)
corresponding to equations (1) in the earlier treat-
ment of the steady state [2], with a slight change in
notation to-avoid confusion. The problem is then
to choose (constant) values for the vectors w"
which will maximize an objective function. of the
form

P=TE(SHGD-GW) @)
where the constant factor T has been introduced to
make P, formally identical with P of the present
paper.

The simplest way to derive the solution of this
problem as a special case of the general dynamical
problem is to replace equations (40) formally by
dynamic equations of the form

dx?
dt

= R{(x7, w") — x} 42)
The steady state solution of these equations, obtain-
ed by setting dx}/dt = 0, clearly satisfies equations
(40). There are no variables of the type ¢" in this
case so the adjoint equations, whose general form
is given by (26), reduce to

A7 P
- — P+ My = —h} 43)
dt ;
where
d(RY)
M), = —2F
M1 = 5

The variation in the objective function is given
by equation (31), which simplifies to

T
oP = f > (z AINT — g")aw" dt  (44)
0O n i
where
m_ O(R)),
N0 =36,

Now if there is no time variation, we can set
dxi/dt = dA}/dt = 0 in equations (42) and (43), and
the integrand of equation (44) is independent of
time. Thus these equations reduce to

xi = Ri(Gx, w") (40)
=0+ 3 M

T (45)

P=TY (z NG — g") ow" (46)

Equations (40) are the steady state plant equations,
equations (45) are indentical with the adjoint
equations for the steady state problem previously
derived [2], and equation (46) yields the following
condition for a stationary value of P

Z AN —g"=0

(n=1,2,..) 47
which is the same as that found in the earlier work
[1,2]. Thus we have demonstrated that the formal-
ism of the present paper includes the steady state
formalism presented in previous papers as a special
case.

CONCLUSION

The methods developed in the present paper are
applicable to a very wide range of practical dynami-

*cal optimization problems. In particular one might

mention the determination of optimum start-up
conditions, the optimum operation of catalytic
reactors with decaying catalysts, the optimum
adjustment of operating conditions to compensate
for variations in feedstock and the control of plants
against time dependent external disturbances. Some
of these particular problems will be examined in
more detail in subsequent publications.
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In many optimization problems of practical interest the® is a finite and
often small number of variables whose values are available to be adjusted.
However, this is not always the case, and sometimes the available quantity may
be a function of one or more independent variables, For example, in time-dependent
optimization problems the form of certain variables as functions of time may
be available to be adjusted. Agein,'” tubular chemical reactors it may, in
principle, be possible to adjust the iemperature as a function of positien
along the tube. Mathematically such problems belong tc the Calculus cf
Varistions, and in chemical engineering systems they most frequently ariss in
a form conveniently attacked by the Maximum Principle of Pontryagin, which is a
result in the Calculus of Variations. The publications of this group are
concerned with such problems,

The solution of a variational problem by means of the Maxim:a Principle is
by no means s straightforward procedure as this principle gives only @ necessary
condition for optimality. Thus mathematical structures which satisfy the Principle
are not necessarily sclutions of the problem, and cne scmetimes finds that the
Meximum Principle may be satisfied in more than one way, even though the problem
itself has a uniquo""solution. Such difficulties are frequently regarded as mere
mathematical curiosities by engineers, but in publication C1 it is shown that
they arise in acute form in a very well known and aoparently simple problem in
chemical r&mticm engineering, Indeed when this problem wazs first analysed in
1956, the solution given wrns incorrect in certsin cases for this very resson.

Publication C2 deals witbh the problem of choosing the control vecriables in
a chemical resctar, as functions of time, to bring the system into its final
operating state in the most economic possible way. The system treated is an
exothermic reaction operated autothermically with recycle of heat to the feed
stream/



stream, This has an interesting ignition phenomenon with effects which are
reflected in the optimum startup procedure, and is also of practical interest
since it represents a simple mathematical model of a Haber aimonis synthesis
reactors

Publications C3 and C) are concerned with a problem in which the adjustable
variable, the local temperature in a tubular reactor, is a functicn of two
indepcndent variables, namely time and position in the reactors In catelytic
reactors the activity of the catalyst packing frequently decays in use and the
rate of decay depends, among other things, on the temperature,s Thus the choice
of temperature profile in the reactor must at all times be a compromise
between securing the highest instantaneous yield of the desired product and
preserving the activity of the catalyst. The problem is therefcre to select
the optimum tempersture, as a function of position and time throughout the
length of the reactor and the life of the catalyst, to secure the largest
total yield of the desired products The principal difficulty here is to
develop a practical computaticnal procedure to approximate the solution of an
apparently very complex probleme The basic theory of such a procedure and
early attempts to implement it are described in publicetion C3, while
publication C4 reports the finally successful computational method and its
resultse

In the course of this work it became apparent that variational problems
in two independent variables,with hyperbolic partial diffeerentizl equations
as side conditions, raise some interesting mathematical gquestions. These ere
taken up in publications C5 and C6 which develop a first order vari®tional
theory and a maximum principle respectively for prcoblems of this clasge The
principal new result of intsrest erises when the boundary of the domaim of
interest in the plane of the independent variables includes finite segments

parallel/



parallel to the characteristics of the hyperbolic equations, These generate
interesting and unexpected singularities in the solution within the domsain,

When two successive chemical resctions are required tc convert a feedstock
into & final product, and when each reaction is catalysed by a different
catalyst, it is common industrial practice to carry out the reaction in two
separate stages in physically distinet resctorss The first is used %o convert
the feedstock to the intermediste product and the sccond to convert the inter-
mediate tc the final product, and ecach contains its respective catalyst, In
1565 Cunn and Thomas suggested that it may be better to blend the two catalysts
in & single resctor, and investigated the cptimum blend, In publication C7
a generalisation of Cunn and Thomas's problem is investigated., The proportions
of the two catalysts present in the blend is now permitted to vary from point
to peoint along the reascter in any way, and the problem is toc find the optimum
catalyst blend profile as a function of position in the reactor, For the simplest
class of two successive re-chicns it turns ocut that this problem can be solved
explicitly without recourse to numerical computation and the result is rather
simple. The optimum policy is tc use a resctor of a certain length containing
only the first catalyst, focllowed by & second section of determined length
containing a uniform blend of the two catalysts in determined propertions, and
e terminal section contsining only t;he second catalyst,

Finally, in publication C8, the present writer and a number of other workers
draw together their joint .r. ceperate invesiigations of & system which has now
been very thoroughly explored, namely the single exothermic reversible reacticn,
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Abstract—By considering the well known problem of determining optimum temperature profiles for

the successive first order reactions

1 2
A—>B—>C

carried out in a tubular reactor it is shown that the application of Pontryagin’s Maximum Principle
is not straightforward, even in a case as simple as this. In particular, it is stressed that the Maximum
Principle provides necessary but not sufficient conditions for optimum operation, and that the dis-

tinction is of more than academic importance.

INTRODUCTION

As a result of current interest in optimisation
problems the Maximum Principle of Pontryagin has
recently received a great deal of attention. Experi-
ence [1] has shown that there may be computational
difficulties in obtaining a solution to a given problem
which satisfies Pontryagin’s condition, but quite
apart from these there are mathematical difficulties
of a more fundamental type. It is well known [4]
that Pontryagin’s principle provides only a necessary
condition for the maximisation or minimisation of
the quantity of interest, so there exists the possibility
of finding solutions which satisfy Pontryagin’s con-
dition but do not maximise or minimise this
quantity. It isthe purpose of this paper to illustrate
by means of a well known example the sort of diffi-
culties which can arise.

‘We shall consider the system of two successive
first order reactions

A—— B—2sC

originally studied by BiLous and AMUNDSON [2].
This example is sufficiently simple for the structure
of the possible solutions to be deducible largely by
general reasoning without resort to detailed nu-
merical work, and it will be seen that attempts at a

direct numerical solution by the usual methods -

would be unlikely to succeed in the absence of the
information obtainable by general reasoning.
There is no reason to suppose that the difficulties

revealed in this example are not present in more
complicated problems, where they can no longer be
elucidated by the type of general reasoning applied
here. Consequently the success of a blind numerical
attack, the only method available in such cases, is
doubtful even if it runs into no} purely numerical
difficulties of the type discussed by ROSENBROCK
and STOREY [1].

In their study of the reactions 4 - B — C,
BiLous and AMUNDSON [2] sought temperature pro-
files which would maximise the yield of substance B
in a tubular reactor of given length.

Rather surprisingly the optimum temperature
profile was found to be independent of the relative
activation energies E; and E, of the two reactions,
and to decrease monotonically from inlet to outlet,
both for E; < E, and E, > E,. This is physically
reasonable when E;, < E, but less reasonable when
E, > E,, and the authors expressed some reserva-
tions about the validity of their result in the latter
case. This point was later examined, using the
method of dynamic programming, by Aris [3], who
showed that their doubts were well founded since the
profile derived was not optimal when E; > E,. In
this paper we shall use the Maximum Principle to
re-examine the problem of maximising the exit con-
centration of B, and we shall also consider the con-
ditions necessary to minimise this quantity. Apart
from its value in illustrating the difficulties of the
Maximum Principle in a simple way, this second
problem is of some physical interest in the case

911



1. Cowarp and R. Jackson

where the object of the reaction is to produce pure
C, and any unreacted A may be separated and
recycled.

PONTRYAGIN’S MAXIMUM PRINCIPLE [4]

For the sake of continuity we shall use the notation
of HorN [5]. Pontryagin’s Maximum Principle
solves the following problem: given the set of
simultaneous differential equations

dx;
—)&=v,-(x1,x2...x,,, T) i=1,2,..n (1)
dt
with specified initial conditions
x0) = a; i=1,2,...n 2

choose 7(¢) in the interval 0 < ¢t < 6 so that

n
P=Y cx(0) (3)
i=1
is maximised (minimised), where the ¢; are given
constants.
The solution requires that we solve simul-
taneously the set of # differential equations

dx;

— = vi(xl, x2 e

, T
a X T)

i=1,2...n

together with their adjoints

‘L"t ‘ia_ i=1,2..n (4

with the boundary conditions
x{0) = q; i=1,2..n )]
A0) =c¢; i=1,2...n o)

If P is to be maximised (minimised) it is then
necessary that 7(z) should be so chosen that, for
each ¢, the Hamiltonian H is maximised (minimised)
where

AV;
X

r

H= 6)

J

It is apparent that our problem—the maximisa-
tion (minimisation) of the exit concentration of B
with a given reaction time 8—is of this form. The
components of the vector x are given in this case by
x, = a, x, = b, where a and b are the concentra-

tions of A and B respectively, and the differential
equations governing them are

da
Fri v(a, b, T)= —k,a (7a)
db
a = Uz(a, b, T) = kla - kzb (7b)
with the boundary conditions at inlet
a(0) = a, (8a)
b(0)=1b (8b)

The reaction velocity constants are assumed to be
given by the Arrhenius expression
—Ei/RT

k; = pe

= b€

(i = 1, 2) and ¢ represents residence time from
the instant of entry to the reactor.

The differential equations governing the adjoint
variables are

—ei/T

di , Oy v, .
d—t‘ = —J a—xl — Ay ox, = kil — kidy,  (9a)
dlz . 0y v,
dt = —A {sz A a X, = kz/l.z (9b)
with boundary conditions at outlet
A0 =1 (10b)

since b is the quantity to be maximised or minimised
at exit.

The temperature at every point in the reactor is to
be chosen so as to maximise (minimise) the Hamil-
tonian H where

H = Ay + A0, = A4,(—kya) + A,(kja — k,b)
=kia(d; — A1) — kybi, 1y
and A,, 4,, a and b are to be regarded as constants
in the maximisation (minimisation). This will be
referred to as Pontryagin’s maximising (minimising)
condition. Pontryagin’s condition is sometimes

replaced by the weaker condition that the tempera-
ture be chosen everywhere so that

OH _ 1 vy ov,
aT ~ "tor T "*oT
k k
= ‘i‘ a(ly — 4;) — 2"2 2222 42,=0 (12)
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where it is understood that, if the temperature
required to satisfy this equation lies outside the per-
missible range T, < T < T#, then the temperature
at this point is either 7, or 7% depending on which
inequality is violated. It is important to realise that
equation (12) may give any type of stationary value
of the Hamiltonian and that consequently care is
needed if the weaker condition is used.

Horn [6] has pointed out that, when only two
independent reactions are involved, as here, 4, and
A, can be eliminated between equations (7), (9) and
(12) to give an explicit expression for d7/d¢ in
terms of x;, x, and 7. However, since this result
derives from the weak condition (12) it should be
used with caution. The result of following this pro-
cedure in our problem is

dT

k,T? a
e .= 1
ds e; b (13)

A precisely equivalent result is given by BiLous and
AMUNDSON in their equation (15) and it is this dif-
ferential equation which gives the falling tempera-
ture profile irrespective of the relative activation
energies. The results of integrating equations (7),
(8) and (13) numerically will be referred to later.

SoME PROPERTIES OF EQUATIONS (7)-(11)

For convenience in the future discussion we shall
establish at this point those properties of our equa-
tions which will be used later.

LEMMA 1. A, is positive throughout the interval
0<r<. '
Proof. 1t is apparent from equation (9b) that
dA,/dr and 4, have the same sign and therefore that
A, is either positive and monotonic increasing with
increasing time or negative and monotonic decreas-
ing. Since A, = 1att = 0 theresult follows. . |
LemMA 2. If we define o(t) = a(A, — A;) and
Pp(t) = bA, then both a and B increase monotonically
as we go forwards along the reactor no matter how the
temperature varies.

Proof. From equations (7) and (9)

do

d
-d_t {a(A, — A1)} = ak, (DA, = a (14

dg

d ;
g (b} = @Dz = (15)

LeEMMA 3. If a temperature profile satisfies the
Pontryagin maximising (minimising) condition
throughout the reactor the value of the Hamiltonian
along the profile is constant.

This is actually a general result [4] not restricted
to our particular system.
LEMMA 4. The only possible stationary values of the
Hamiltonian are as follows:

(@) If E, < E, a single maximum at a finite value
of the temperature.

(b) If E, > E, a single minimum at a finite value
of the temperature.

Proof. 1t has already been established (LEMMA 1)
that § is positive (or zero if b = 0) and that both
a and f increase with time (LEMMA 2). It is apparent
that the Hamiltonian H(T) = k;(T) o — ko(T) B is
zero when 7 = 0 and also that, assuming § > 0, it
is negative and monotone decreasing with increasing
temperature for a < 0; for a > 0 we must investi-
gate the two cases E, < E, and E, > E), separately.
Case 1: E, < E,

_ k(D)
H) = k(D= 8 23]
OH ky(T)e,
S v

In this case k,/k, increases with increasing tempera-
ture, so if the sign of the Hamiltonian or its deriva- .
tive changes with increasing temperature it will do so
from positive to negative. The frequency factors
P, and p, in the two rate constants may be such that
there is no stationary value and the Hamiltonian is
monotonic increasing with increasing temperature ;
if this is not so there is a stationary maximum.
These two alternatives are shown in Fig. 1 and it is
clear that there is no possibility of a stationary
minimum.

H(T)

T \*—

F1G. 1. E: < Es. The Hamiltonian as a function of
temperature takes one of two possible forms (« > 0)
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"/

H(T)

FIG. 2. Ei1 > E:. The Hamiltonian as a function of
temperature takes one of two possible forms (o > 0)
Case 2: E;, > E,

In a precisely similar way it can be shown that, in
this case, there are the alternatives shown in Fig. 2,
and it is clear that there is no possibility of a
stationary maximum.

LEMMA 5. When the Hamiltonian-as a function of
temperature has a stationary value the value of the
temperature corresponding to this stationary value
decreases with increasing time.

Proof. In general

oH\  k(TDe, .
(_T)‘ .

ky(T")e,
(T

B(®)

and from equations (14) and (15)

d (aH\)
ot \oT ) r_r

_ ky(T")ey

_ (T/)z ko(T")e, ak

ak,(T,)A, — _(T’)_r (T)A,

where T, is the temperature which gives the Hamil-
tonian at time ¢ a stationary value.
In particular, taking 7’ = T,, we have

12(5) = ek~ &) (9
ot\oT /) r=r,,

Now if e, > e, we have shown in LEMMA 4 that the
Hamiltonian may have a stationary minimum, in
which case (0H/0T) r=r,, = 0. Equation (16) then
shows that the time rate of change of 6H/0T at a
constant temperature equal to the minimising tem-
perature is positive, since a, ky, k,, 4, are all posi-
tive, and hence the minimising value of the tem-
perature must decrease with increasing time. If
e, < e,, on the other hand, the Hamiltonian may
have a stationary maximum and the right hand side
of equation (16) is negative. It then follows in the

same way that the maximising value of the tempera-
ture must decrease with increasing time.

APPLICATION OF PONTRYAGIN’S CONDITION TO THE
DETERMINATION OF TEMPERATURE PROFILES

We shall now consider the problem of maximising
or minimising the exit concentration of B in a
tubular reactor of given length forthe kinetic scheme
given in the introduction.

Example 1. E, < E,. Minimise the exit concentra-

tion of B.

When E, < E, we have seen in LEMMA 4 that the
Hamiltonian cannot have a stationary minimum, so
it follows that the Hamiltonian is minimised when
the temperature takes one or other of the values
bounding the range of interest, which we shall take
to be 0 < T < T*. Consequently any temperature
profile satisfying Pontryagin’s minimising condi-
tion must consist entirely of segments on which the
temperature is either zero or 7*, and we can confine
our attention to such profiles.

The argument is most easily followed by consider-
ing the course of the reaction in an isothermal
reactor at T* and plotting trajectories of g against
b with time as a parameter, as shown in Fig. 3. We
are interested only in the region a + b < 1 within
the triangle OAB and we shall assume further that
substance C is not present in the feed at # = 0, so
that all initial conditions (a,, b,) lie on the line AB.

A
D
¢ ki{TH e;a=ka(THe,b , t =1,
1
|
|
a i k.(T"')C|=k2(T*")b,t=1,,l
N
E | J
G
I
H |
L 1(t=tg) B
b —&

FiG. 3. Ej; < Es. The course of the reaction A — B
—> C in an isothermal reactor at T* for various initial
conditions.
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The course of the reaction is then represented by a
trajectory starting from initial conditions on AB.
When  k(T*)ay > k,(T*)by, corresponding to
initial conditions on the line AJ, it is not difficult
to show that b passes through a maximum at a
certain time ¢ = #,, which depends on the inlet con-
centrations of A and B, then decreases to zero
as the time tends to infinity. When k,(T%)a,
< ky(T*)b, on the other hand, both @ and b
decrease monotonically with increasing time and
approach zero as the time tends to infinity. Hence
the form of the trajectories is as indicated in Fig. 3.
" In a numerical search for a solution satisfying
Pontryagin’s minimising condition one could
proceed by guessing the values of a and b at the
reactor exit ¢z = 6 and integrating equations (7) and
(9) backwards along the reactor, choosing the tem-
perature at each point to minimise the Hamiltonian.
On reaching the reactor inlet ¢ = O the values of a
and b would then give the inlet conditions corres-
ponding to the solution obtained. These would not,
in general, agree with the given inlet boundary con-
ditions (8) and iteration would be necessary to
solve this problem. The same procedure will be
followed here, but the simplicity of the system is
such that the results we require can be obtained with
the aid of Fig. 3 without detailed calculation.

First consider terminal conditions [a(8), 5(6)]lying
in the triangle OAJ, so that k,(T*)a(0) > k,(T*)b(0).
Then

H(T*, 0) = k,(T*)a(0) — k,(T*)b(6) > 0

and it follows that H(T, 6) is minimised by taking
T' = 0. If we integrate backwards at T = 0, q, b,
A, and A, all remain unchanged on moving into
t < 0; consequently the Hamiltonian as a function
of temperature remains identical with H(T, ) and
is always minimised by 7 = 0. Thus we obtain
the isothermal temperature profile 7 = 0 and the
corresponding inlet concentrations a(0) = a(f) and
b(0) = b(6). Since we are interested only in
initial conditions on the diagonal 4B in Fig. 3 the
only relevant terminal conditions in the triangle
OAJ lie on the line AJ. Thus, for any initial condi-
ions on the line 4J one possible Pontryagin mini-
mising profile is 7 = 0 everywhere, corresponding
0 no reaction.

When the terminal conditions lie in the triangle
OJB we have k,(T*)a(0) < k,(T*)b(6), and cor-
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respondingly H(T*,60) < 0. Thus H(T, ) is mini-
mised by taking T =T*, and if we integrate
backwards in time with this value of T the value of
H(T*,t) remains constant and equal to H(T*, 6)
(LEMMA 3). Thus H(T, t) continues to be minimised
by T = T*forall ¢ and Pontryagin’s minimising con-
dition is satisfied by the isothermal temperature
profile T = T* when the terminal conditions lie in
OJB. The corresponding reaction trajectories are
shown in the diagram and may be traced back until
they meet the diagonal 4B to give the initial condi-
tions [a(0), 5(0)] corresponding to any terminal con-
ditions [a(6), b(6)).

It is seen that [a(6), 5(0)] may be chosen to cor-
respond to any initial point on the line JB for any
reactor length 6, so for such initial conditions the
isothermal temperature profile 7 = T* always
satisfies Pontryagin’s minimising condition. A ter-
minal condition [a(6), ()] in OJB can be found to
correspond to an initial condition on AJ such as
point F only if the reactor is sufficiently long.
Clearly # must be greater than ¢, if the isothermal
reaction trajectory for T = T* starting at point F
is to terminate within OJB, but provided that this is
the case, the profile T = T* satisfies the Pontryagin
minimising condition. Thus, for initial conditions
on the line AJ and reactor length 6 > ¢,, we have
shown that both the isothermal profile 7 = 0 and
the isothermal profile T = T* satisfy Pontryagin’s
minimising condition. In fact both give local
minima of b(f) in the function space of 7(¢), and
which gives the absolute minimum depends on the
length of the reactor. In Fig. 3 it is seen that, on
the isothermal trajectory 7 = T* through F, b
returns to its initial value at time ¢ = ¢, corres-
ponding to point H. If 6 > ¢,, b(6) is reduced
below b, and the isothermal profile T = T* yields
the smallest value of b(f). If 6 < ¢, on the other
hand, the isothermal profile T’ = 0 yields b(8) = by,
and this is the smallest obtainable value of b(6).

This situation is further complicated if we con-
sider terminal conditions lying on the line 0J, so
that  k(T*)a(0) = k,(T*)b(0) and H(T*0) =
H(0, 6) = 0. H(T, 0) is then minimised by choosing
either T = O or T = T*. With either choice H(T*, 1)
retains the value zero on passing back along the
reactor from ¢ = 6, so the alternatives 7 = 0 or
T = T* still minimise H(T, t) and the Hamiltonian
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is minimised at all times by any temperature profile
composed entirely of segments at 7= 0 and at
T = T*. 1In order that the trajectory in the (a, b)
plane representing the course of the reaction should
terminate at initial conditions on the line AB it is
clearly necessary that the total length of the seg-
ments on which T" = T* should be ¢, and this is

T
T

{a)

T (b)

—1——’1‘

(c)

- ——
»

(d)

o '___>8

Fig. 4. Temperature profiles satisfying Pontryagin’s
condition to minimise 5(f) when E1 < E2

@) ki(T#ao < k2(T*)bo (all §) Nonstationary absolute

minimum

(b) ky(T*)ao > koT*)bo (all 6) Nonstationary local
minimum. Absolute minimum if 8 < to

©) *1(T*)ao > kx(T%)bo (6 > tn) Nonstationary local
minimum. Absolute minimum if § > #o

(@) ku(T%ao > kx(T%)bo (0 = tm) Total length of seg-
ments at 7% is tm. Not even a local minimum.

possible only if > ¢,. Thus; when § > ¢, we have
a third possibility which also satisfies Pontryagin’s
minimising conditions for feeds along AJ, namely
an infinite set of discontinuous profiles consisting
of segments at T = T* and segments at T = 0, the
segments at T* having total length z,,. However, the
corresponding value of b(f) is not even a local
minimum in the space of 7(¢); indeed it is obviously
a local maximum for those particular variations
consisting of changes in the total length of the seg-
ments at T*.

This situation is summarised in Fig. 4. Of course
the cases in which the whole reactor is at the absolute
zero are of no practical interest, and it is quite easy
to pick out those results which are of physical value.
Nevertheless, this example serves to emphasise in a
simple way that Pontryagin’s condition is only
necessary, and not sufficient, so that it is quite pos-
sible to find temperature profiles which satisfy the
condition but are not the required solution of the
problem. Later we shall meet a case where it is less
obvious on physical grounds which results should be
rejected.

Example 2. E, > E,. Maximise the exit concentra-
tion of B.

When E, > E, we have seen in LEMMA 4 that the
Hamiltonian cannot have a stationary maximum, so
it follows once again that the Hamiltonian is maxi-
mised when the temperature takes one or other of

A

k(T*1a=k{TH D% t =t

d K (T* e, =ka( T¥)e,b; =1,

0
b —_—
FIG. 5. Ei1> Ea2. The course of the reaction 4 — B
_» Cin an isothermal reactor at T* for various initial
conditions.
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the boundary values zero or T*. The argument here
follows closely that already developed in Example 1
and will not be given in detail. The conclusions are
quoted below and reference should be made to
Fig. 5.

For initial conditions on 4J (Fig. 5) the only
Pontryagin maximising profile when 6 < ¢, is the
isothermal profile T = T*, while when 0 > ¢, we
have an infinite set of discontinuous profiles con-
sisting of segments at 7= T* and segments at
T = 0, the segments at T* having total length z,,.
For initial conditions on JB the Pontryagin maxi-
mising condition is satisfied only by the isothermal
profile T = 0, corresponding to no reaction. The
possibilities are summarised in Fig. 6.

T 1(b)

(c)

o y —= 8

F1G 6. Temperature profiles satisfying Pontryagin’s
condition to maximise 5(f) when E; > Es.
@) ku(T*) ao > ko(T*)bo (@ < tn) Nonstationary ab-
solute maximum
(®) k(T*)ao > ko(T*)bo (6 > tm) Total length of seg-
ments at T* is rn». Nonstationary absolute maximum.
(©) ki(T*)ao < k2(T*)bo (all §) Nonstationary absolute
maximum

Example 3. E, > E,. Minimise the exit concentra-
tion of B.

When E; > E, we have seen in LEMMA 4 that the
Hamiltonian may have a stationary minimum value
in the temperature interval of interest and accord-
ingly there may be Pontryagin minimising tempera-
ture profiles for which the Hamiltonian takes a
stationary minimum value at some, or all, times.

A consideration of the Hamiltonian at ¢ = 4
shows that it is monotonic decreasing with increas-
ing temperature in the range 0 < T < T* when the
exit concentrations [a(6), 5(0)] are such that

ki(T*)eya(0) < k,(T*)e,b(6).

Following the argument given in LEMMA 5 we can
then say that the Hamiltonian at any previous time
is also monotone decreasing with increasing tem-
perature in the range of interest when the exit con-
centrations satisfy this inequality. Thus, for terminal
conditions in the triangle OIB of Fig. 5 the Pontry-
agin minimising condition is satisfied by the
isothermal profile T'= T™* and the course of the
reaction is then given by the trajectories on the dia-
gram. For feeds represented by points along the
line AI it is seen from Fig. 5 that isothermal reac-
tions at T* will give exit concentrations within the
triangle OIB only if § > ¢,. Thus, for feeds along
Al one Pontryagin minimising possibility is the
isothermal profile T = T* when 6 > ¢,: this pos-
sibility does not exist when 8 < ¢,. For feeds along
IB isothermal reaction at 7* will always give ter-
minal conditions in this area no matter what the
value of 6.

We now turn to the question of the existence of
temperature profiles for which the Hamiltonian has
a stationary minimum at some, or all, times. It is
apparent that the Hamiltonian at # = 0 can have a
stationary minimum in the range 0 < T < T* only
if .

ky(T*)e a(0) > kx(T*)e,b(6) (17)

in other words, only if the terminal conditions lie in
the triangle OAI Thus for feeds along Al we now
have the possibility of a Pontryagin minimising
temperature profile which gives the Hamiltonian a
stationary minimum value at some, or all, times,
whatever the value of 8, so long as the exit concen-
trations lie within the triangle OAI This possibility
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(a)

(b)

(c)

(d)

(e)

(f)

Fic. 7. Temperature profiles satisfying Pontryagin’s
condition to minimise 5(f) when E1 > Ea.

@) ki(THeiao < ko(T*)ezbo (all §) Nonstationary ab-
solute minimum

b) ky(T*erao > ka(T*)ezbo (@ > 1) Nonstationary
local minimum

©) kiy(T*)erao > ka(T*)ezbo (6 > t1) Saddle point

(d) ki(T*)erao > ka(T*)ezbo (6 > t1) Stationary local

minimum
(&) kx(T*)erao > ka(T*)ezbo (6 < t1) Saddle point
(f) ki(T*erao > ko(T*)e2bo (0 < t1) Stationary absolu-

lute minimum
T+
T
(a)
o ' - 8
T*
T
(b)
o § —— 8
T!
T (c)
° . p —= 8

F1G. 8. Temperature profiles satisfying Pontryagin’s
condition to maximise 5(d) when E; < Ez.
@) ki(T*eiao > ko(T*)e2bo (0 < t1) Nonstationary
maximum

(b) ki(THerao < kao(THezbo (all 8) or ki(THeiao >
k2(T*)ez2bo (0 sufficiently large) Stationary maximum

©) ki(THerao < ko(T*)exbo (all 8) or ki(T*)erao >

k2 (T*)e2bo (0 sufficiently large) Nonstationary maximum.

for feeds along A7 represents a second minimising
alternative when 6 > t; and the only possibility
when 0 < ¢,.

The most convenient method of finding such

solutions involves the use of equation (13). The
procedure is as follows:
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(i) The inlet temperature 7(0) is guessed and
equations (7) and (13) are integrated forwards from
the initial conditions ay, by, T(0).

(ii) The final values a(f), b(#), T(6) obtained in
this way must correspond to a stationary value of
H(T, 6), so we must have

ki[T(0)]e1a(0) = k,[T(0)]e.b(0).  (18)

In general this relation will not be satisfied and we
must adjust the initial guess 7(0) until it is. Note
that it will not be possible to find an admissible tem-
perature satisfying equation (18) unless the inequa-
lity (17) is satisfied.

To clarify the situation we shall quote the results
of some numerical calculations on a particular
example. If we assume the existence of a tempera-
ture profile which gives a stationary minimum of
the Hamiltonian throughout the reactor it can be
calculated numerically by the procedure outlined
above. This was done for the example given by
BiLous and AMUNDSON [2] for the case E; > E,. In
this case 6 > ¢, (with T* = 400°K) and two falling
temperature profiles were found which satisfied the
condition for a stationary minimum everywhere.
The first of these was indentical with that given by
BiLous and AMUNDSON for maximising the exit con-
centration of B,but theresults obtained on perturb-
ing this profile indicate that it is actually a saddle-
point. The second, which corresponded to a low
value of the inlet temperature 7(0) and fell so slowly
as to be virtually isothermal, was found to give a
local minimum. Thus, for feeds along A7 it would
appear from this example that when 6 > ¢, we may
have no less than three possible Pontryagin mini-
mising profiles, namely the isothermal profile
T = T* and two falling profiles, both of which give
a stationary minimum value of the Hamiltonian
throughout. Of these three possibilities, the inter-
mediate temperature falling profile identical with
BiLous and AMUNDSON’s result is a saddle point and
therefore cannot give an absolute minimum, while
the other two are both local minima and either one
may give the absolute minimum. In this particular
example the absolute minimum is given by the
isothermal profile 7' = T*. _

For feeds along AI when 6 < ¢, the isothermal
profile T' = T* has already been shown to be inad-
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missible and we may tentatively conclude that there
will again be two falling temperature profiles of
which the lower gives the absolute minimum. This
situation is summarised in Fig. 7.

Example 4. -E, < E,. Maximise the exit concentra-

tion of B.

When E; < E, we have seen in LEMMA 4 that the
Hamiltonian may have a stationary maximum value
in the temperature interval of interest and accord-
ingly there may be Pontryagin maximising tempera-
ture profiles for which the Hamiltonian takes a
stationary maximum value at some, or all, times.
The argument here follows closely that already
developed in considering Example 3 and will not
be given in detail. The conclusions are quoted below
and reference should be made to Fig. 3.

It is easily demonstrated that the Hamiltonian is
monotone increasing with temperature within thé
interval 0 < T < T'* throughout the reactor for any
reaction trajectory which terminates within the
triangle OAI For initial conditions on AJ, there-
fore, the Pontryagin maximising profile when
0 < ¢, is the isothermal profile 7' = T*. For reac-
tion trajectories terminating within the triangle OBI,
corresponding to initial conditions on IB or initial
conditions on A7 when 0 is sufficiently large, it is
possible to find an admissible exit temperature satis-
fying equation (18) and we must seek solutions for
which the Hamiltonian takes a stationary maximum
at some, or all, times. The procedure outlined in
Example 3 was applied to the example given by
BiLous and AMUNDsSON with E; < E, and a result
identical with theirs was obtained.

The situation is summarised in Fig. 8. Which of
the cases 8(b) and 8(c) is found in any given example
depends on the value specified for 7*.

CONCLUSIONS

It is felt that the examples considered here are
sufficient to dispel any illusion that the search for
optimum conditions using Pontryagin’s Maximum
Principle is simply a matter of following through a
prescribed procedure, with the possible impediment
of computational difficuities. Although the problem
considered is a very simple one, of its type, we have
found cases in which there are several profiles, all
satisfying Pontryagin’s conditions, only one of which
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is the required solution (in particular Example 3),
cases in which there are an infinite number of pro-
files, none of which is the solution, in addition to the
one which is (Example 1), and cases in which there
are an infinite number of profiles, all satisfying
Pontryagin’s condition and all providing valid solu-
tions of the problem (Example 2). Some of these
cases arise from the constraints imposed onthe tem-
perature profile, but in Example 3 we met a case
in which there were two profiles, each satisfying
Pontryagin’s condition and each lying entirely
between the permitted bounds of variation of 7. ‘

Of course the physical meaning of some of the
extraneous solutions is quite easy to see in the pre-
sent case; for example the infinite set of discontinu-
ous temperature profiles found in Example 2 are
simply a result of making the reactor too long.
However, examples of similar situations in a rather
less elementary problem can also be found in the
recent work of SIEBENTHAL and ARris [7].

NOTATION

a,b Concentrations of 4 and B
ao, bo The given initial concentrations of 4 and B
a(0), h(0) Initial concentrations of 4 and B correspond-
. ing to guessed values of the exit concentrations
of A and B; not necessarily equal to ao, bo

a(0), b(0) Exit concentrations of 4 and B
E1, Ez  Activation energies for reactions 1 and 2
e1, ez Ei/R and E3/R respectively
H The Hamiltonian, defined by equation (11)
H(T) The Hamiltonian at any given point in the
reactor regarded as a function of temperature
only )
H(T,t) The Hamiltonian regarded as a function of both
temperature and time along the reactor
ki1, k2 Velocity constants for reactions 1 and 2
ki(T), ko(T) Velocity constants for reactions 1 and 2 as
’ functions of temperature
¢t Time along the reactor measured from ¢ = 0 at
inlet
tm Time at which the concentration of B is a
maximum in an isothermal reactor at 7* with
feed concentrations ao, bo
t1 Time at which concentrations of 4 and B are
such that kieia = ksesb in an isothermal reac-
tor at T* with feed concentrations ao, bo
to Time at which the concentration of B is again
equal to bo in an isothermal reactor at T*
T Temperature
Tm Temperature which maximises (minimises)
the Hamiltonian at time ¢
T* Upper temperature limit
a, 8 Numerical quantities in the expression for
H(T)
a(?), B(#) The same quantities regarded as functions of
time along the reactor in expressions for
H(T, t); defined in LEMMA 3
A1, Az Variables adjoint to a, b; defined by equations
(9)and (10)
@ The given reaction time
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Abstract—Certain exothermic reactions of considerable commercial importance make use of regenera-
tive heat exchange between reactant and product streams in such a way that they are thermally self-
sustaining, or autothermic, when operating steadily. Nevertheless they cannot be started up without
supplying heat to the reactants from an external source, though the external heating may be withdrawn
once ‘“‘ignition” has been achieved. This feature makes the determination of the correct startup

procedure a problem of some interest.

In this paper it is shown how the idea of optimum startup can be given a precise quantitative formula-
tion, and Pontryagin’s maximum principle is used to determine the optimum startup procedure.

INTRODUCTION

THE AMMONIA synthesis reaction
N, + 3H, =2NH,

provides an example of a commercially important
reaction which is carried out in such a way that
it is thermally self-sustaining, or autothermic. At
atmospheric temperature the rate of reaction is
quite negligible and a temperature of several
hundred degrees centigrade is necessary if it is to
proceed at a useful speed. However, since it is
strongly exothermic, the heat of reaction may be
used to preheat the reactant mixture to a tempera-
ture sufficiently high to maintain the required reac-
tion rate. This is accomplished by means of a heat
exchanger in which the incoming reactants are
contacted with the hot gases leaving the reactor.

Systems of this type are well known to exhibit an
ignition phenomenon, rather like flames. If cold
reactants are fed to the reactor there is a neglibible
amount of reaction and insufficient heat is generated
to raise the temperature of the reactants signifi-
cantly. However, if the reactants are sufficiently
preheated the reaction is much more vigorous and
the heat generated suffices to maintain the neces-
sary temperature at inlet without any further need
for external heating. Thus, although the heater
plays no part in the steady operation of the system,
its presence is essential for startup. A good account
of ignition phenomena of the type just described
has been given by VAN HEERDEN [1].

In the simplest type of autothermic system the
reactor is adiabatic and its operation and startup
are controlled by regulating the external heat
supply to the reactant preheater and the fraction of
the hot gas leaving the reactor which passes through
the regenerative heat exchanger. The startup pro-
cedure adopted is often influenced by special
features of the particular reaction considered; for
example, in the case of ammonia synthesis, startup
with a new charge of catalyst must commence with
a period of catalyst reduction. Nevertheless the
mathematical techniques now available to handle
problems of this sort can be illustrated by consider-
ing a system where optimum startup is a simple
compromise between the desirability of reaching
steady operating conditions quickly and the cost of
the external heating required to do this. This
includes, of course, as a limiting case, the very
common situation in which heating costs are of
little account and it is vital to bring the system to
its steady operating conditions as quickly as pos-
sible.

Startup problems in chemical engineering closely
resemble the problem of guiding a missile to a
specified target, and perhaps the most successful
technique developed to deal with this type of prob-
lem is the maximum principle of Pontryagin, of
which a good elementary account can be found in
the papers of ROZONOER [2]. In the present paper it
will be shown that the maximum principle leads to a
complete solution of the optimal startup problem if
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one assumes that conditions in the reactor approxi-
mate to perfect mixing. At the other extreme, the
approximation of no axial mixing raises some inter-
esting mathematical problems which will be dis-
cussed elsewhere.

" Recently SIEBENTHAL and ARIs [3] have used the
maximum principle to discuss the optimal control of
some simple reaction systems, and the reader might
find it useful as a preliminary to read the first of
their papers in order to familiarize himself with the
method, as illustrated by examples rather simpler
than the one considered here.

THE MATHEMATICAL MODEL

We shall consider the system shown schematically
in Fig. 1. For simplicity the first order exother-
mic reversible reaction 4 =B will be treated,
though extension to more complicated cases pre-
sents no difficulty. The reaction is carried out in a
reactor which is assumed to approximate to an
adiabatically isolated, perfectly mixed vessel which
can hold ¥ moles of the reaction mixture. The in-
coming reactants may be heated both by heat
exchange with the product stream and by heat sup-
plied externally to a heater. The molar flow rate of
the reaction mixture is F and it enters the cold side
of the heat exchanger at a temperature T,. The
temperature is raised to 7 in the exchanger, then
further to 7 in the heater, and finally to a value T
at the reactor exit. The stream leaving the reactor,
containing a mole fraction y of the product, is then
split so that part of it, represented by the flow f,
passes through the hot side of the exchanger to pre-
heat the incoming reactants.

In considering the startup procedure we shall be

interested in time-varying conditions, so we must
write down the differential equations representing
unsteady state mass and heat balances for the
system, namely

dy
&y _ Ty —
ar r(y, T) — y/t ¢y
and
ar
L + T =Ti+ AT 4tr(y, T) 2

Here r(y, T) denotes the reaction rate, which de-
pends on the composition and temperature of the
reaction mixture, as indicated, and T denotes the
ratio V:F, the mean residence time in the reactor.
If AH is the heat of reaction (negative for an exo-
thermic reaction) and C the molar specific heat of
the reaction mixture, the symbol AT, is introduced
to represent the ratio (—AH/C,): physically AT 4
is the temperature rise accompanying complete
reaction under adiabatic conditions. The thermal
capacity of the reactor contents would be VC, if
they consisted solely of the reaction mixture, but
very often the reactor is packed with catalyst so that
its thermal capacity takes a different value VC. The
ratio C:C, is then denoted by y. The dependence
of AH and C, on the temperature and composition
of the mixture is neglected. Finally, note that ¢’
is used to indicate time, the symbol ¢ being reserved
for a dimensionless measure of time introduced
later.

Equations (1) and (2) do not provide a complete
description of the system since they contain the
temperature T, which is determined by conditions
in the heater and exchanger. Strictly speaking,

q
heat exchanger reactor
4
F, To T T T
heater
4
af
F-1
Fic. 1. Thermally regenerative reaction system.
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dynamic equations analogous to (2) should be
written for the exchanger and heater, but very
often the reactor has a much larger thermal capa-
city than these units, and consequently its speed of
response to changing conditions is much slower.
The states of the heater and exchanger then approx-
imate closely to instantaneous steady states at all
times, and if the exchanger is assumed to be purely
countercurrent in operation the temperatures T,
T and T are related by a well known equation,
which may be written in the form

Ty =uTe+ (1 —uw)T 3)

where
Y 1 —fJF
"1 —f/F exp[—a(F/f —1)]

The constant « is characteristic of the exchanger and
the heated gas stream and is given by a = hA|C,F,
where £ is the mean overall heat transfer coefficient
and A4 the area of heat transfer surface available.
The reactor inlet temperature T is then related to
T, by

4

/=T, +q (5)

where g has the dimensions of temperature and is
proportional to the heat supplied to the reaction
mixture in the heater.

Using Egs. (3) and (5), T'| can now be eliminated
from equation (2). At the same time it is convenient
to introduce a dimensionless measure of time
t = t'/t, and a dimensionless reaction rate R =1r.
Equations (1) and (2), then reduce to

dy
5 =R D) —y (6)
and

15 =a—uT ~T) + AR T) (1)
which provide our mathematical model for the
dynamical behaviour of the system.

The reaction is controlled by varying the heat
supply g and the flow f through the hot side of
the exchanger. However, it can be seen from Eq.
(4) that u is a monotone decreasing function of
f/F, decreasing from u = 1 when f/F=0tou =
1/(1 + «) when f/F = 1. Thus there is a one-to-one
correspondence between values of # and f/F and it

is convenient to regard u as the control variable
rather than f/F, since it enters very simply into
Eq. (7). Variations of u and g are bounded both
above and below. We have already seen that

Unin SUST with up,=1/1+a) (8)

and, for a given design of heater, ¢ will be bounded
above by some value g,y,,, so that

0<¢q <G )

Given any initial state (y(0), T(0)), together with a
specification of the two control variables g and u
as functions of time, Egs. (6) and (7) can be in-
tegrated to give the behaviour of the system in
t > 0. We shall be concerned, in particular, with
the behaviour in response to manipulations of g and
u subject to the constraints (8) and (9).

STEADY STATE OPERATION
Necessary conditions for steady operation are

d dar
obtained by equating —]}—i and 7 to zero in Egs. (6)

d
and (7), giving the following two equations
R(y, T)—y=0 (10)
and
q—u(T —To) + AT4R(y, T) =0 (1)

which may be solved for the two unknowns y and T
once the form of the function R is known. For the
first order reversible reaction 4 = B, we have

R(y, T) =K(T)1 - y) - K,(T)y (12)
where
K(T) =tky, e~ T
Ko(T) = thog e‘”/T} (13)

assuming the usual Arrhenius form of temperature
dependence for the velocity constants. Since the
reaction is exothermic, e, > e¢,. With R given by
Eq. (12), Eq. (10) may be solved for y, giving

K
y=—-_1 (14)
1 + Kl + K2
and using this to eliminate y from Eq. (11)
K,
- -g=ATy|—— 1
UT =T - g =ATo( g ) 09
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Fic. 2. Possible steady states.

It is not difficult to sketch the right hand side of
Eq. (15) as a function of 7 making use of Egs. (13),
and the result is shown as the curve in Fig. 2. The
left-hand side of Eq. (15) is a straight line of slope
u which intersects the vertical line T = T, a distance
g below the axis 7 = 0. An intersection of this
straight line and the curve gives a value of T cor-
responding to a possible steady state and it is seen
from Fig. 2 that there may be one or three such
points, depending on the values of # and g. When
T, and g are small and u is large, corresponding to
the line 4B, there is a single steady state s, at a low
temperature very near to T,. Correspondingly, the
extent of reaction is very small. If g is increased and
u decreased a line such as CD is obtained, inter-
secting the curve at the three points s7, 57 and s3.
s once again corresponds to a low temperature and
very little reaction, but at s3 the temperature is
high and the extent of reaction large. We shall see
later that s, represents an unstable condition
which can only formally be regarded as a steady

state at all. When q is increased and u decreased
still further, a line such as EF is eventually obtained,
intersecting the curve at a single point s73 corre-
sponding to a high temperature and large extent of
reaction.

This behaviour corresponds to the well known
“ignition”> phenomenon in reactors of this type
which was discussed by van HEerRDEN [1]. A
rigorous account of this must be deferred until we
consider the dynamical equations in more detail,
but an intelligent guess at what happens can be
based on the steady state equations, as illustrated
by Fig. 3. Suppose the system starts in the low
temperature steady state s; withg = O and u = u,
If uis decreased, corresponding to an increase in the
flow of hot gas through the exchanger, s; moves a:
indicated by the arrow to higher values of T as the
straight line pivots on the point. P. When u reache:
the value u,, the steady state has progressed to s,
and with any further decrease in u two of the stead
states are lost, leaving only the high temperature
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steady state s3. We may therefore surmise that, at
this point, the system suddenly “ignites” and
settles in state s5.

If the flow of hot gas to the exchanger is then
decreased, causing u to increase once more, s,
moves continuously to lower values of T, as indi-
cated by the arrow, until it reaches the position s,,
corresponding to ¥ = u,. With any further increase
in u two of the steady states are lost, leaving only
the low temperature state s;, so we may surmise
- that the system returns to this state and the reaction
is effectively extinguished. At no stage in the cycle
has the system settled at the central intersection of
the line and the curve, and this is a consequence of
the instability of the corresponding state noted
above.

The ease with which autothermic operation can
be attained depends on the kinetics and thermody-
numics of the reaction, the size of the heat exchanger
and rteactor, and the inlet temperature T,. If T, is
high, clearly a high conversion can be obtained with
very litile heating or heat exchange, and when To
is sufficiently high the straight line and the curve in
Figs. 2 and 3 never intersect more than once. If
T, is low, on the other hand, and the heat exchanger
is small, the slope u, in Fig. 3, which is necessary to
cause ignition, may be smaller than the smallest
value attainable, u = 1/(1 + «), even with all the

hot gas passing through the exchanger. It is then
necessary that g should have a finite value to achieve
autothermic operation. If AT,, and 7 are larger the
ordinates of the curve in Fig. 3 are large, and it is
even possible for the line and curve to intersect
three times when # = 1 and ¢ = 0, corresponding
to no heating, either externally or by exchange.
Thus a well mixed adiabatic reactor may operate
steadily in an autothermic state without any heat
exchange if the heat of reaction and capacity of the
reactor are sufficiently large.

In practical systems of the present type such as
ammonia synthesis converters, autothermic opera-
tion without heat exchange is not usually possible,
but the size of the heat exchanger is such that
U = Uy;, = 1/(1 + a) corresponds to a line like CD
in Fig. 2, intersecting the curve in three points,
Steady autothermic operation in a state such as 53
is then possible, but heat must be supplied externally
to initiate the ignition which leads to the auto-
thermic state. This is precisely analogous to the
situation encountered in the combustion of fuels,
where the fuel must first be heated to initiate the
reaction, which is subsequently maintained by its
own heat output.

It is clear that the state corresponding to the
highest point of the curve in Figs. 2 and 3 gives
maximum conversion of reactants to products and,

slope u,

PT:To

FiG. 3.

T—>

Hlustration of the ignition phenomenon.
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provided this is a possible autothermic state, it will
represent the optimum operating conditions.

THE OPTIMUM STARTUP PROBLEM AND THE
MAXIMUM PRINCIPLE

If reactant gas is circulated through the system
without any external heat supply or heat exchange,
so that u = 1, g = 0, the steady state achieved is
represented by s, in Fig. 2, and the conversion
achieved is negligible. However, it is required to
operate the reactor in an autothermic state such as
sy, with y and T taking given steady values y, and
T, respectively. The problem, then, is to manipulate
the variables « and ¢q in such a way that the system
is transferred from its initial state (y,, Tp) to the
final autothermic state (y, T,) in the best possible
way. To formulate this problem precisely we must
define what is meant by the “best possible way’” and
express this mathematically in terms of an objective
function which it is desired to maximise or mini-
mise.

Let us suppose that the startup procedure com-
mences at ¢ = O and that the reactor attains its
final steady state at time ¢ = 0. Let u, and g, be the
values of u and g for steady operation in the final
state (g, will normally be zero). Then if p, is the
selling price per mole of product and p, the cost
per unit of external heating, the net profit during
the startup period is

_ 0 o
Pa=p1FJydt—pzfth
0 0

If the system had operated in its final steady state
throughout this period, the profit would have been

Py, =p,Fy6 — pq.0
so the loss of profit due to startup is
e
P,=Pb_Pa=p1FJ (ys—y)dt
0
]
— D2 fo(qs —q)dt

and the plant is started up as economically as pos-
sible if this quantity is minimised. Since py, p, and
F are constants the algebra can be simplified
slightly by seeking to minimise the alternative

objective function

]
P=[to-n-ca-a1a (19
with ‘¢ = p,/p,F. This differs from P’ only by a
constant factor. Mathematically, then, our object
is to choose u(t) and ¢(¢) in the time interval
0 < t < 6, with 8 unspecified, subject to the con-
straints u,;, < u < 1, 0 € ¢ < Gpay in such a way
as to transfer the system from the state (y,, 7o) to
(y, T,) with a minimum value for P. The variation -.
of y and T is constrained by the boundary condi-
tions and the differential Eqs. (6) and (7) which
they satisfy.

The maximum principle of Pontryagin provides a
technique which is well adapted to the solution of
problems of this type, and before proceeding any
further we will briefly summarise this result. A
fuller account may be found in the papers of
ROZONOER [2].

Consider a set of simultaneous differential equa-
tions

dx; .
_E=fi(xj’ Wp) (i=1,2,...n) a7n
with the following boundary conditions
x(0) = x,; (i=1,2,...n)
and x{(0) = xg; (iel) } (18)

where I is a subset of the numbers 1, 2,n... It 1s
required to choose the functions w,(£)in0 < £ < 0,
possibly subject to constraints of the form a, < w,
< A, in such a way as to minimise a specified
linear combination

P= % o x(60) 19
of those variables x;(f) whose values are not fixed
by the boundary conditions (18). To solve this
problem one introduces a set of variables 4,
adjoint to the x; and defined by the differential
equations they satisfy, namely

di; no o Of;
iy i
dt jgl 4 6xi (20)
together with the boundary conditions
40 = —o (iel) 21)
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Using these variables we may define a Hamiltonian
function

n
H =3 2ifixy w,) (22)
in terms of which it is possible to give necessary
conditions for the minimisation of P. The form of
these conditions depends on whether 0 is specified
or is itself available to be varied in minimising P.
If 0 is specified, the variables w, must be chosen so
that H is maximised at each ¢, the values of the A;
and x; being regarded as constant in this maximisa-
tion. This condition is also necessary if 6 is not
specified, but then it is additionally necessary that
the maximum value of H should vanish at all times.

max H(4;, x;, w,) =0 (all ?) (23)

Wp

At first sight our problem does not take the form
used in stating the maximum principle, since our
objective function (16) is an integral over the time
interval of interest, while the objective function (19)
involves only the values of variables at the terminal
time. However, it is easily reduced to the desired
form by introducing a new variable z defined by the
differential equation

dz__

— =y —y— - 24
=Yy e -9 24

together with the boundary condition
z(0) =0 (25)

Our objective function (16) is then simply P = z(6),
which is of the desired form (19). Equation (24),
together with the mass and heat balance equations

dy_
T R(y, T) -y (6)

and

Yol =g~ u(T — T + ARG, T) ()
then corresponds to the differential Eqs. (17)
introduced in stating the maximum principle. The
boundary conditions corresponding to (18) are
the specified values of (yo, Tp) and (¥, Ty), together
with condition (25) on z. Introducing variables
A4, A, and A3 adjoint to z, y and T respectively,
adjoint equations analogous to (20) can be written

down, namely,

di,
% =0 (26)
di
s = 1Ry~ 1) = LATGRy (2T
and
dis
E = - lsz - As(AT’adRZ - u)/'}’ (28)

where R, = 0R/dyand R, = OR/0T
These are subject to the single boundary condition

41(0) = -1 (29)

corresponding to (21) in the general case. Finally,
the Hamiltonian is given by

H=2[y;—y—clg;— @] + 2[Ry, T) — y]
+ A3lg — u(T — Tp) + AT,4R(y, T)1/y (30)

Thus the problem is reduced completely to a form in
which the maximum principle may be applied.

SOME GENERAL FEATURES OF THE SOLUTION

A good deal can be learned about the optimum’
startup procedure simply by inspection of the
Hamiltonian (30). From Egs. (26) and (29) it is
clear that 4, = — 1 for all ¢, so the Hamiltonian
may be written

H =(A3/y = 0)q — A3(T — Ty)uly + (y — ys + cq,)
+ L[R(y, T) — y] + ;AT,4R(y, T)ly (31)

showing that it varies monotonically with each of the
control variables # and ¢. Since these variables are
to be chosen to maximise H their values will depend
on the signs of the factors by which they are multi-
plied, so in the case of ¢ we must take g = q,,,, if
A3 > ycand g = 0if A; <yc. Sinceweareinterested
principally in temperatures higher than T, the
value of u depends on the sign of 1, with u = 1 if
A3 < O0and u = u,;, if 13 > 0. These results can
be summarised as follows: ’

When A; > yc then q = q,,,, and u = u,;,
When yc > 13 >0theng =0and u =u,,;,; (32)
When 0> A5 theng=0and u =1 4
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F1G. 4. Solution trajectories for u = 1'0,q9 = 0.

g and u may take values in the interior of their per-
missible ranges, while satisfying the maximum
principle, only if 43 = yc or 1; = O respectively and
we shall investigate these possibilities further in a
later section.

The situation in which the control variables must
take one or other of their limiting values in order to
satisfy the maximum principle is very familiar in the
theory of optimum control, and is said to corre-
spond to “bang-bang” operation. The name
refers to the fact that the optimum control policy
may be divided into a sequence of time intervals in
each of which the control variables are constant at
one or other of their extreme values, with sudden
changes from one set of extreme conditions to an-
other at the end points of the intervals.

Neglecting, for the moment, the possibility of ¢
or u taking values in the interior of their permitted
ranges, it is seen that the physical behaviour of the
system during optimum startup will be represented
by segments of three sets of solutions of differential
Egs. (6) and (7), corresponding to the three pairs of
values of ¢ and u given by conditions (32). These
segments must be joined together in such a way that

the switches from one to another occur when 4,
passes through the values O and yc, where 1, is
obtained by solving the adjoint Egs. (27) and (28).
The solutions of the physical Egs. (6) and (7) may
be plotted parametrically in the (¥, T)-plane with
time as a parameter as shown in Figs. 4, 5 and 6,
which represent solutions for the three pairs of
values of g and u determined by conditions (32).
Specifically, these diagrams represent solutions of
Eqgs. (6) and (7) with the rate equations given by
Egs. (12) and (13) and the following numerical
values of the kinetic constants.

tho, = 2417, thy, = 2-683 x 10°,

e; = 5000°K, e, = 10,000°K

It was also assumed that AT,; = 500°K, T, =
300°K, y = 1, uy;, = 0'5 and ¢,., = 100°K. The
trajectories shown are based on numerical solutions
of the differential equations with a little interpola-
tion, but actually it is quite easy to see their general
features without any detailed calculation, using the
method of isoclines [4].

Reference to Fig. 5 clears up a point raised earlier
in the discussion. On this diagram there are seen to
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be three steady states, labelled s}, s and s3 to
correspond to the notation of Fig. 2, and it is clear
from the form of the trajectories that s, represents
an unstable steady state, since all trajectories in its
neighbourhood lead away from it. sj and sy on
the other hand, represent the two stable steady
states at low and high temperature respectively.
The broken curve A s B represents a separatrix
dividing the (y, T)-plane into two parts containing
trajectories which converge to different steady
states. Starting from any initial conditions to the
left of this curve the system eventually settles in the
state s, while from initial conditions to the right of
the curve it converges to the autothermic state s3.

Figure 4 represents the solutions when there is
no external heat supply and no regenerative heating,
and it is seen that there is a single steady state s
with negligible reaction. This is the initial state to be
considered in the startup problem. Figure 6 shows
the solutions for conditions of maximum external
and regenerative heating and once again there is a
single steady state, in this case the autothermic
state s. Thelabelling of the steady states in Figs. 4
and 6 is chosen, once again, to correspond to the
nomenclature of Fig. 2.

On all three diagrams the region of physical
interest is bounded above by the broken curve E,
on which the condition of chemical equilibrium
R(y,T) = 0is satisfied. Also of interest is the chain
dotted curve R(y,T) =y, which represents the
locus of points for which dy/dt = 0. All steady
states, whatever the values of u and g, must lie on
this curve, and it is clear from its shape that the
steady state conversion passes through a maximum
value y = 0-7, so it follows that these conditions
also maximise the steady state objective function

Ps=ys-CQS (33)

and therefore represent the optimum conditions for
steady operation.

We can now describe, in principle, the procedure
to be followed in computing a solution to the
optimum startup problem. It is convenient to start
with the system in its final steady state (y, T) at
¢t = 0, and work backwards in time to the initial
state (o, To) corresponding to point s, in Fig. 4.
In the final state y and T take specified values y; and
T,but 1,and A are not determined by any boundary

conditions. Nevertheless they are not free to be
chosen arbitrarily and independently, since accord-
ing to Eq. (23) the maximised value of the Hamil-
tonian must vanish at all times, including ¢ = 6.
Thus only one variable, say 4,, may have its value
arbitrarily fixed. Having chosen a value for 1,
Egs. (6), (7), (27) and (28) are integrated backwards
in time, with ¢ and u determined throughout by the
value of A through conditions (32). These ensure
that the values of the control variables will change
whenever 1, passes through one or other of the
switching values 0 and yc which appear inconditions
(32). In general the solution generated will not pass
through the specified initial point (yo, T,), and it is
necessary to adjust the value assumed for 4, at
¢ = 0 until a solution is obtained which does match
the initial conditions.

The solution obtained in this way satisfies the
necessary condition provided by the maximum
principle for the minimisation of the objective
function P. If it proves to be the only solution with
this property it can be demonstrated that the condi-
tion is sufficient as well as necessary, so it provides
the result we seek.

OPTIMUM STARTUP TO THE OPTIMUM
STEADY STATE

We have already seen that the optimum steady
state is given by y, = 0-7, T, = 800°K, and the cor
responding values of the control variables are

= 07,9 = 0. We now consider the optimum
startup procedure, starting from the initial state s
of Fig. 4 and terminating in this optimum state.

Following the procedure just outlined, we attemp
to trace the optimum trajectory in the (y, T)-plan
backwards in time from the final state (y, T;). W
also require that the trajectory should consis
entirely of segments of the curves shown in Figs. 4-¢
and this immediately gives rise to difficulty, since i
each of these diagrams the trajectory passing throug
the optimum state (y; T;) leads upwards across th
equilibrium curve E into the region of no physic:
interest when it is followed backwards in tim
Thus there is no possibility of joining the final sta
to the specified initial state by a trajectory compose
entirely of segments from these three diagrams.

The resolution of this difficulty follows from tl
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fact we have already noted, that conditions (32) are
not completely exhaustive. It is possible that the
maximum principle can be satisfied with % in the
interior of its permitted interval if 2, = 0, for then
the Hamiltonian (31) is independent of «. In the
same way g may take a value within its permitted
interval if 2; = yc. The second of these possibilities
does not appear to have any bearing on the problem
of optimum startup but, as we shall show, the first is
of vital importance.

Let us, then, consider the possible existence of a
finite time interval during which u lies between its
specified limits. Then 1; must vanish throughout
this interval if the maximum principle is to be
satisfied, and it follows that di;/d? must also vanish.
Consequently Egs. (27) and (28) reduce to

A,

7 = 1= AR -1 (34

and

AR, =0 (35)
Furthermore, the Hamiltonian must be maximised
with respect to g, and when 1, = 0 this implies that
g must vanish. Then according to equation (23)
the corresponding maximum value of the Hamil-
tonian must also vanish, so we have

Y=Y+ 4(R—y)=0 (36)

Equations (34), (35) and (36) must be satisfied
throughout the interval for which u takes interior
values. Considering first Eq. (35), this cannot be
satisfied by taking A, = 0 throughout the interval,
for this would imply that dA,/df = 0 and Eq. (34)
would reduce to a contradiction. Thus it is neces-
sary that R,(»,T) =0, and this determines a
trajectory in the (y, T)-plane which must represent
the required solution of Egs. (6) and (7). It is
indicated in Fig. 4, from which it is seen to pass
through the specified final state at the highest point
of the curve R(y, T) = y.

Not all parts of the curve R, = 0 can represent a
solution of Egs. (6) and (7) with g = 0 and « con-
strained to lie within its permitted interval; indeed
this is only possible if there exists an interior value of
u which makes the ratio of the right-hand sides of
Egs. (6) agg) equal to the slope of R, = 0, so that

- R—y
dT ~ AT,R — u(T — Tp)

(37

251

Equation (37) has a simple geometrical interpreta-
tion. It is satisfied whenever the direction of the
curve R, = 0 lies between the directions of the
trajectories of Figs. 4 and 5 respectively, which is
seen to be the case on a short segment PQ below the
final state P, as indicated in Fig. 4. This segment
may therefore form part of an optimal trajectory,
and on it u takes the values determined by Eq. 37).
Actually the value of A, is also determined at all
points of this segment by Eq. (40), so there is no
freedom of choice in the values of 1, or As.

The segment PQ provides the desired means of
escape from the point P in a manner which permits
the state s; to be reached by trajectories which
everywhere satisfy the maximum principle. Moving
backwards in time from P along this segment
towards Q, A; vanishes at all points, so according
to conditions (32) it is possible to switch to a
trajectory from Fig. 4 or Fig. 5 at any point of PQ.
Once this switch has been made the remainder of
the startup procedure is determined by the “bang-
bang” conditions (32) and can be generated in the
manner described at the end of the previous section.
The value of A, at the start of the “bang-bang”
segments is no longer available, since we have seen
that Eq. (36) determines 4, at each point of PQ, but
we have instead the freedom to leave PQ at any
point and can choose our point of departure to
ensure that the trajectory eventually passes through
the specified initial state s, .

Scrutiny of Figs. 4-6 reveals that we cannot leave
PQona trajectory drawn from Fig. 5 if we are ever
to reach sy, so at the point of departure we must
take u =10, ¢ =0 and proceed backwards in
time along a trajectory from Fig. 4. It is then found
that 4, falls below zero, passes through a minimum,
then rises to change sign. At this point, according
to conditions (32), we must change the control
variables to u = 0-5, ¢ = 0 and proceed down a
trajectory drawn from Fig. 5. 1, meanwhile con-
tinues to increase monotonically, and when it
reaches the value yc we must switch the values of the
control variables to u = 05, ¢ = q,,., and continue
along a trajectory from Fig. 6. No further switching
conditions are encountered, so if it is to complete
the solution this trajectory must pass through s;. In
general, of course, it does not, and in order to
obtain the desired solution for given values of ¢ and
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Fig. 7. Chart to determine optimum startup to the optimum steady state.

Gmax it Would be necessary to repeat the whole
procedure from a different starting point on PQ
until a trajectory was found which did pass through
S1.

In practice this iterative adjustment can be
avoided if we seek solutions, not just for a single
specified pair of values of ¢ and g, but for a range
of values of each parameter. Suppose we ran a
solution backwards in time from a point on PQ, as
described above, as far as the segment with u = 0-5,
g =0. We also run a trajectory with u = 0-5,
g = Gumax forwards in time until it interesects this
segment. Then the value reached by 4; in the back-
wards integration at the intersection point gives yc,
for the complete solution obtained by joining these
trajectories. By running solutions backwards from
various points of PQ and forwards from s, with
various values of gn.., We can therefore generate
complete solutions for various values of g, and
¢, as required.

The results of numerical integrations to determine
the trajectories are plotted in this way in Fig. 7,
where the continuous curves represent solution
trajectories. The broken curves joint points on these
trajectories with equal values of 1; and the numerical
value of 1, corresponding to each curve is indicated.
In particular the curve i; = O gives the locus of
switching points between conditions u = 1-0,g = O
and u = 05, ¢ = 0. If we require the complete
trajectory representing the optimum startup pro-
cedure for given values of g,, and ¢, we start af
state s, and follow the appropriate trajectory
# = 05,9 = Gmax forwards in time until it intersects
the curve 1; = yc, with the specified value of c. We
then follow the trajectory with u = 05, g = (
from this point to the curve 1, = 0, the consequent
trajectory u = 1-0, ¢ = O to the segment PQ, anc
the segment PQ to the final steady state P.

Ifyc is large the solution trajectory passes close tc
the unstable steady state s5, and in the limit a:
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yc = oo it actually passes through this state. This is
physically reasonable since a large value of yc cor-
responds to a high cost of external heating, and the
solution passing close to s5 cuts the external heating
to the minimum necessary to initiate ignition to the
autothermic state. When yc is small, on the other
hand, the external heat supply is retained almost to
the point where the trajectory ¢ = gmax, # = 05
crosses the curve 1; = 0, and correspondingly the
segment with ¢ = 0, u = 0-5 becomes very short.
Once again this is reasonable. When external
heating is cheap it is used to the fullest extent to
promote rapid startup.

Instead of plotting the behaviour during startup
parametrically in the (y, T)-plane, as in Fig. 7, the
values of y, T and the control variables « and g can
be plotted separately as functions of time. Fig. 8
shows the optimum startup procedure for gma, =
200°C, ¢ = 0-0081, plotted in this way. The values
of u and ¢ are determined by conditions (32) every-
where except on the final segment PQ, where u is
computed from Eq. (37). Itis seen that the systemis
brought on line in its final steady state in a time a
little greater than three times the mean residence
time in the reactor.

o9
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~—>

O4f-

Oo3r

o2+

o1

1 1

It is interesting, and perhaps a little unexpected,
to see that the optimum startup procedures include
a short interval during which all heating, both
external and regenerative, is cut off. During this
interval y increases without very much increase in
temperature as a result of cooling by the cold
reactant stream entering the reactor. It seems prob-
able that this feature of the optimum startup policy
would be absent if the approximation of perfect
mixing in the reactor were replaced by the other
extreme assumption of no axial mixing.

OPTIMUM STARTUP TO A NON-OPTIMAL
STEADY STATE

We have now seen how best to bring the system to
its economic optimum state of steady operation,
and it is not immediately obvious why one should
be interested in any other steady state. The principal
reason for operating in a non-optimal steady state is
illustrated by Fig.9, which showstrajectories describ-
ing the dynamical behaviour of the system in the
(y, T)-plane foru = 07, = 0. These are the values
of u and g required for steady operation in the
optimum state P, so the trajectories illustrate what

1
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FiG. 9. Region of stability in relation to steady operating states.
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will happen if the system is displaced from P by
some disturbance and no correcting action is taken.
For sufficiently small disturbances it is seen that the
system will return to state P, but if the disturbance is
large enough to carry the representative point
across the separatrix 4B the system will settle in the
low temperature state s, and the reaction will be
extinguished. Furthermore, 4B passes fairly close
to point P, and with different values for the con-
stants in Eqgs. (6) and (7) than those used here, it
may pass even closer. Thus there is a certain danger
that accidental disturbances affecting the system
will cause the reaction to be extinguished if prompt
corrective action is not taken. Of course the proper
way of dealing with this difficulty, in principle, is to
devise a control system which is capable of supplying
the required prompt corrections, but in practice the
margin of stability available can be increased sub-
stantially simply by operating at rather lower con-
versions in steady states represented by points to the
right of P. The steady state can be moved to the
right by reducing the value of u, eventually reaching
the position P’ when u reaches its minimum value,
0-5, but to go further than this a finite value of ¢
would be needed, and this would be expensive. Thus
the only steady states likely to be of interest, other
than P, are those lying between P and P’, and we
shall illustrate the optimum startup procedure in
such cases by considering the particular state P”
with y, = 0-674 and T, = 870°K, corresponding to
u, = 0-591, 9, = 0.

The state P"" does not lie on the segment PQ of
Fig. 4, on which u may take interior values, so in
this case we would expect the startup procedure to
terminate in the “bang-bang” mode, in contrast to
the case already discussed. Following the procedure
outlined earlier, we attempt to trace the optimal
trajectory in the (y, T)-plane backwards in time
from P”, so we must first decide which of the three
types of trajectory distinguished by conditions (32)
is to be used in leaving P".

A glance at Fig. 4 reveals that the trajectory with
u = 1-0, g = 0 passing through P’ leads backwards
across the equilibrium curve E into the region of no
physical interest, and can therefore be eliminated
from further consideration. If ¢ = g.,, u = u;,
on leaving P”, corresponding to the trajectories of
Fig. 6, the Hamiltonian (30) reduces to

- umin(T; - TO)
+ AT 4Ry, Ty

H= — Cq max + zJ[qmax
at point P”, where R(y,T) = y and y = y,. Since
the Hamiltonian must vanish, it then follows that

Y€ max
- umin(j-s - TO) + ATaladR(ys’Ts)

l3=

q max

However, since P” is a steady state with u = u,,
g = 0, it follows from Eq. (7) that AT,4 R(y,, T}) =
u(T, — T,) and the above reduces to

yec
1+ (’Ts - TO)(us - umin)

qmax

Ay = <7yc

But according to conditions (32), the values
9 = Gumax» 4 = u, for the control variables only
maximise the Hamiltonian when 2; > ye, so it
follows that H is not maximised and the maximum
principle is not satisfied on the trajectory consi-
dered.

We are left, therefore, with a single acceptable
possibility for leaving P”, namely the trajectory
with u = 0-5, g = 0. The value ¢ = 0 is identical
with the value g, required for steady state operation
at P’, so the Hamiltonian (30) now reduces to

H = 13[-0-5(T; — To) + AT,4R(ysT))]

at point P". As we have already seen, AT,; R(y,,
Ty = ulT, — Ty) = 0-591(T, — T,), so it follows
that the content of the square bracket above is non-
vanishing, and the condition that H should vanish
implies that A; = 0. The value of A, at P” remains
available to be varied so as to ensure that the
trajectory passes through the specified initial state
represented by point s, of Fig. 4. According to
conditions (32), if the values u = 05, ¢ = 0 are to
satisfy the maximum principle immediately after
leaving P”, 1; must become positive. Thus dA,/dt
must be positive at the initial point P”, and since
A3 = 0it follows from Eq. (32) that the value chosen
for A, must be negative.

On integrating Egs. (6), (7), (27) and (28) with
u = 0'5,9 = 0, backwards in time from P”, starting
with a negative value for 4, and 1; = 0, it is found
that A; first increases to a maximum, then decreases
to a minimum and finally increases monotonically.
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If the initial value of A, is sufficiently large and
negative, A, remains positive throughout these
variations, and the conditions # = 0-5, ¢ = 0 con-
tinue to satisfy the maximum principle until 4;
reaches the value yc, when a switch must be madeto
a trajectory with u = 0'5, ¢ = Gpa,- If this fails to
pass through the specified initial state s,, the value of
1, used to start the integration is available to be
adjusted. Thus the optimum startup trajectory
consists simply of two segments joining s; and P”.
When the value of 1, used to start the integration is
smaller in magnitude, however, the situation is
more complicated, since the minimum value through
which 1; passes becomes negative. Thus 13 passes
through a maximum after leaving P”, then falls to
zero, at which point it is necessary to switch to a
trajectory with # = 1-0, ¢ = 0. Pursuing this back-
wards in time 1, decreases, passes through a mini-
mum, then increases once again and changes sign.
At this second change of sign we must revert to a

.01
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os8r

o7r

23130.0

trajectory with u = 0-5, ¢ = 0, and this is followed
until 1, reaches the value yc, when a final switchis
made to a trajectory with u = 0-5, ¢ = g, Once
again the value of 1, used to start the integration is
available for adjustment to ensure that the trajec-
tory finally passes through state s;. The complete
optimal trajectory joining s; and P” now consists of
four separate segments.

As discussed earlier, the iterative adjustments of
A, can be avoided if we generate, not one solution,
but solutions for a range of values of ¢, and c.
The method is the same as thatdescribed previously.
Optimal trajectories are run backwards in time
from P” to meet trajectories with # = 05, § = Gnax
run forwards in time from s;. The value of 4;
obtained by backwardsintegration at the intersection
of any such pair of trajectories gives the value of yc
corresponding to the complete optimal startup
procedure represented by the trajectories taken
together. Thus the complete optimal startup pro-
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Fi6. 10. Chart to determine optimum startup to a non-optimum steady state.

256



Optimum startup procedures for an autothermic reaction system

cedure for any pair of values of ¢,,,, and yc can be
picked out if we superimpose on the trajectory
map in the (y,T)-plane a set of curves joining
points on different trajectories with equal values
of 1;. The results are presented in this way in
Fig. 10. Here P" AB is the trajectory with u = 0-5,
g = 0 passing through P”".

For sufficiently small negative values of 1,(P"),
the optimal paths leave this trajectory, as indicated
between P” and A4, along segments with u = 1-0,
q = 0, and these in turn are relinquished for other
trajectories with u =05, ¢ =0, as discussed
above. The broken curves join points on the dif-
ferent trajectories with common values of A5, and
the value of 1, corresponding to each curve is
indicated.

The trajectory P” AB differs from the others in
that 4, is not uniquely defined along it. This arises
from the fact, noted above, that decreasing 1,(P")
below a certain value has no effect on the optimal
trajectory, which coincides with P” 4B, but it does
change the values of A5 at points along this trajec-
tory. Effectively, we may take it that all the curves
A3 = const. change direction where they meet
P” 4B, and follow this trajectory upwards towards
P’. Thus they become superimposed.

To pick out the trajectory representing the com-
plete optimum startup procedure for given values of
Gmax and ¢, the procedure is similar to that described
earlier. The trajectory g = g, is followed for-
wards in time from the specified initial states s,
until it meets the curve A; = yc which may occur
either on the part of this curve indicated by a
broken line, or on the part lying along P” AB. If
the intersection occurs on the part of ; = ycwhich
is superimposed on P” 4B, the optimal trajectory is
completed by following P” AB upwards to the final
state P”, and correspondingly the control variables
are switched to u = 0-5, ¢ = 0, which values they
retain up to P”. If the intersection occurs on the
part of A; = yc indicated by a broken curve, on the
other hand, the trajectory springing from this inter-
section point is followed through two further
switching points to P”.

For given values of g,,,, and ¢ the results may
alternatively be plotted as graphs of y, T, u and ¢
against time, and Fig. 11 presents them in this way
for ., = 200°C, ¢ = 0-0018. It should be com-

pared with Fig. 8, which gives the same information
for startup to the optimum steady state.

The optimum startup procedure to the optimum
steady state always includes an interval during
which all heating, both external and regenerative, is
withdrawn, as can be seen from Fig. 7. In the
present case, however, such an interval occurs only
if ¢ is sufficiently small. With larger values of ¢
there is only one switching point in the optimum
trajectory, and regenerative heating is always
employed to the full. This is physically reasonable,
since it serves to economise in the use of external
heating at the expense of a rather slower startup
when external heat is expensive.

It should not be assumed that the form of the
optimum trajectories is as indicated by Fig. 10 for
all positions of the final steady state P”. When P”
lies sufficiently close to the optimum steady state P,
the optimum startup procedure makes use of part of
the segment PQ in Fig. 4 on which ¥ may take
interior values, so the trajectory may not represent
exclusively “bang-bang” operation. The form of
the optimum startup procedure in such cases can be
obtained by reasoning entirely analogous to that
already presented here.

CONCLUSION

It has now been shown how the optimal startup
procedure can be found for a specified final state of
steady operation, and the result is quite complex,
involving a number of changes of conditions, all of
which must be correctly timed. It is therefore of
interest to consider a very simple startup procedure
and see how far it falls short of the optimal per-
formance. The system can be brought to its final
steady state very simply by first settingg = g,,,, and
U = u;,, thereby providing the maximum possible
heating effect, then switching to the values g = g,
u = u, required for steady operation in the specified
final state. Provided the heating phase is of suffi-
ciently long duration, the system will then settle
eventually to the required steady state (y,, T.). (If
heating is not continued long enough to induce
“ignition” of course, it will revert to a state with
negligible reaction.) The value of the objective
function P can be computed as a function of the
duration of the first (heating) phase, ¢,, and one
would expect it to be minimised for some value of
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FiG. 11. Optimum startup procedure to the non-optimum steady state u, = 0674, g, = 0 when #min= 05, gmax=200°C
and ¢ = 0°0018.
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Table 1 H
AH
dmax c Py ] - ko, ko
100 0-0992 47-5 50-0 ki, kee
200 0-0081 4-33 4-45
600 0-600195 0-616 0-653
P, p2
ty, which would then determine the optimum startup 15
procedure within this limited class of possibilities. P,
The value of the objective function P for startup ﬁ v
to the optimum steady state (y, = 0-7, T, = 800°K) ;
has been computed for various values of the para- gs
meters g,,,., and ¢, and the results are given in Table (qm%x)
1. P, is the value of P corresponding to the optimum ,;(ﬁ’ 7
startup procedure deduced from the maximum Ry
principle as described earlier in this paper, while P, }fz
is the lowest value of P obtainable by adjusting the R
value of ¢, in a simple startup procedure of the type t
just described. r
P, is necessarily smaller than P,, but in no case is 7{’
the difference very large. Of course these results T:
refer only to specific cases, and it would be unwise Y
to generalise on this basis, but they at least suggest AT{:
that it is worthwhile, in specific problems, to examine u
the quality of a simple startup procedure in compari-
son with the absolute optimum. If the difference is um‘:
small, as it is in the examples just considered, an \Y
almost optimum startup can be achieved with a Wp
single change of conditions, and the optimum time x
to for this change could be found by experimental
trial. Xoi
Xfi
y
NOTATION
Vs
A Heat transfer surface area in exchanger z
¢ Ratio p2/p1F o
C Thermal capacity of reactor per unit molar capacity ag
C, Molar specific heat of reaction mixture
e1, ez Activation energies of forward and reverse reac- Y
tions, divided by the universal gas constant [7}
f Molar flow rate through hot side of exchanger AL
/i Right-hand sides of differential equations in the Az
general statement of the maximum principle A;
F Molar flow rate through reactor Ai
h Mean overall heat transfer coefficient in exchanger T
REFERENCES
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Pontryagin’s Hamiltonian

Heat of reaction

Frequency factors in velocity constants of forward
and reverse reactions

Quantities 7ko1exp(—e1/T) and Tkozexp(—e2/T)
respectively. Proportional to velocity constants of
forward and reverse reactions

Costs for product and externally supplied heat
respectively

Objective function to be minimised

Loss of profit due to startup

Net profit during startup period

Net profit for steady operation during startup
Value of P in steady state

Temperature rise in heater

Value of g in steady state

Upper bound for g

Reaction rate

Scaled reaction rate, equal to 7r(»,T)

Partial derivative 2R/9y

Partial derivative 8R/oT

Second derivative 82R/dyeT

Second derivative 92R/8T?

Dimensionless time. ¢ = t’/r

Time

Temperature at reactor exit

Temperature at entry to cold side of exchanger
Temperature at exit from cold side of exchanger
Temperature at entry to reactor

Value of Tin steady state

Adiabatic temperature rise for reaction

Control variable for exchanger. Related to f by
Eq. (4)

Value of « in steady state

Lower bound for «

Molar capacity of reactor

Control variables in general statement of maximum
principle

Dependent variables in general statement of maxi-
mum principle

Initial values of the x;

Terminal values of the x;

Mole fraction of product in mixture leaving re-
actor.

Steady state value of y

Auxiliary variable, defined by Eqgs. (24) and (25)
Constant characteristic of exchanger. o« =hA/C,F
Constants defining objective function in general
statement of maximum principle

Ratio C/C,

Value of ¢ at which the steady state is attained
Variable adjoint to z

Variable adjoint to y

Variable adjoint to T

Variables adjoint to the x;

Mean residence time in reactor.
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Résumé—Certaines réactions exothermiques d’une grande importance commerciale, utilisent un
échange thermique régénérateur entre les courants de réactant et de produit, de telle sorte que
lorsqu’on atteint le régime d’équilibre, la chaleur fournie par la réaction compense les besoins ther-
miques du procédé. Cependant leurs démarrages exigent un apport de chaleur aux réactants par
une source extérieure, bien que celle-ci puisse étre éloignée dés que I’ “‘ignition” est terminée.

Ce fait donne de I’'importance au probléme de la détermination d’un régime correct de démarrage.

Dans cet article 'auteur montre comment on peut donner une formule quantitative précise de
I'idée d’un régime transitoire optimum, et utilise le principe du maximum de Pontryagin pour
déterminer ce régime optimum.

Zusammenfassung—Bei einigen technisch interessierenden exothermen Reaktionen wird ein regenera-
tiver Wirmeaustausch zwischen den Reaktanden und den Produkten so durchgefiihrt, daB3 der Prozef3
im stationdren Zustand thermisch stabil ist. Jedoch benétigt ein solcher ProzeB im Anfahrzustand
eine duBere Wirmezufuhr, die erst spiiter abgeschaltet werden kann. Hier soll nun gezeigt werden,
daB man die optimalen Anfahrbedingungen mit Hilfe des Pontryaginschen Maximum-Prinzips
quantitativ formulieren kann.
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OPTIMUM TEMPERATURE GRADIENTS IN TUBULAR
REACTORS WITH DECAYING CATALYST

By R. JACKSON, M.A *

SYNOPSIS

The problem of determining the variation of temperature along the length of a tubular reactor so as to maximise
the yield of a specified product is well known and complete solutions have been obtained in a number of cases.
In practice, however, tubular reactors often contain a catalyst which decays with time. Since the decay is
a result of a side reaction involving the catalyst, it does not occur at the same speed everywhere in the reactor
and, in particular, the pattern of decay is dependent on the temperature policy adopted.

The present paper considers the problem of determining the optimum temperature policy, as a function of
both time and position in the reactor, to maximise the total yield of a specified product in a given time interval.
An optimising algorithm is derived, based on the concept of the ‘‘ gradient in function space *°, and the results

of some preliminary computations are reported.

Introduction N

There has recently been considerable interest in variational
methods of solving optimisation problems in chemical plants.
A variational treatment of plants consisting of sequences of
discrete units was first given by Horn® and was later extended
by the present writer?3 to deal with non-sequential systems
involving recycle loops and other complex configurations.
Horn* has also treated the continuous problem of determining
optimum temperature gradients in tubular reactors, intro-
ducing the concept of the gradient in function space.

The work so far cited has all been concerned with optimi-
sation problems in the steady state. Recently the present
writer® has shown how variational methods can also be used
to optimise the behaviour in time-varying situations such as
those encountered at start up or in the presence of time-
dependent perturbations. The method was developed
specifically for the case in which the parameters available
for adjustment are associated with separately distinguishable
plant units, but there are also systems of interest in which the
adjustable parameters are functions of a continuous position
variable. In this paper we shall be concerned with one such
problem, namely the determination of the best way to vary
the temperature profile as a function of time in a tubular
reactor with a decaying catalyst.

In general catalyst decay results from some side reaction
involving the catalyst and consequently the instantaneous
rate of decay depends on the temperature and composition
of the reaction mixture and is not the same at all points in
the reactor. It follows that the instantaneous rate of decay
will depend on the choice of reactor temperature at each
point, and the pattern of decay of the catalyst at any time
will depend on the complete previous history of the tem-
perature profile of the reactor. This leads to an interesting
optimisation problem in which the current temperature pro-
file influences the whole future course of the reaction by
leaving its imprint on the pattern of catalyst decay. Mathe-
matically, we are faced with the problem of optimisation
with respect to a function of two continuous variables,
namely the reactor temperature as a function of time and
position. The object of the present work is to develop a
variational method of attacking this problem.

* University of Edinburgh and Heriot-Watt College Chemical
Engineering Laboratories, Chambers Street, Edinburgh 1.

The General Problem

We shall consider a catalyst-packed tubular reactor in
which R independent chemical reactions take place. If we
neglect axial diffusion, the composition of the reaction mixture
at any point is determined by its composition on entering the
reactor and the stoichiometric extents of reaction {(r=1,
2, ..., R).t The rate of each reaction at any point is a
function of the local values of the composition and tem-
perature of the reaction mixture and of the catalyst activity.
We shall assume that the rate of decay of the catalyst is slow
compared with the time required by the reactor to respond
to changes in conditions so that the state of the reactor
differs only very slightly from a steady state at all times. We
shall also assume that we can neglect dynamical effects in the
response of the reactor to the catalyst changes. The usual
mass balance equations for the reactor then take the form:

oL,

E—=fr(cs, 0,¢) (r=1,2,..,R) . (1)

where x is the distance along the reactor from the entry, 0 is
the temperature, ¢ is the catalyst activity, and the form of the
functions f, is determined by the kinetic scheme of the
reactions.

The catalyst acivity at any point decays at a rate determined
by the local values of the temperature, the composition of the
reaction mixture, and the catalyst activity itself: thus we
can write: .

0
R NS

giving the rate of the side reaction responsible for the catalyst
decay.

When the temperature 8(x, ¢) is specified in the domain of
interest 0< x< X, 0<¢< T, equations (1) and (2) can be solved
subject to the boundary conditions:

£, =0 when x =0 all 0K/<T) (r = 1, 2,..,0) 3
and: ¢ = ¢, when ¢ =0 (all 0K x< X) @

where ¢>‘0 is the uniform initial catalyst activity, X is the total
length of the reactor and 0 — T is the time interval of interest.

t Symbols have the meanings given them on page 4 : 38.
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The behaviour of the reactor is thus completely determined.
We now consider the problem of choosing 8(x, t) so as to
maximise the total yield of a specified product during the
time interval 0—T. The concentration of any substance in
the mixture leaving the reactor may be expressed as a linear
combination of the extents of the separate reactions, so the
objective function to be maximised takes the form:

T R .
P=| T« l(X, 1)dr. . (%)
0 r=1

where the a are given constants.

The first step of any variational method is to express a small
change 8P in the dependent variable P in terms of the corres-
ponding small change 30(x, t) in the independently adjustable
variable. A change in temperature from 8 to 6486 induces
consequent changes 8, in the extents of reaction and 8¢ in
the catalyst activity, and these are related to first order by
the incremental forms of equations (1) and (2), namely:

2 of, of, of,
5;(8€1)=§ —a—CSSCs-I--azS(#‘*‘FB-sB . (6)
and:
) oo x 08 op 1 28
5;(3¢)_5$3¢+zs 5T 8L+=580 . (1)

with the boundary conditions:
8, =0 when x =0 @l 0<t<T) r =1,2,.., R . (8

and:
8¢ =0 when =0 (all 0<x<X) . 9

We now introduce a new set of variables A, adjoint to the
8¢, and . adjoint to 8¢. These are defined by the differential
equations they satisfy and the associated boundary conditions,
namely:

N of og
=Y LA - = . . (10
ax % acr )‘s aCr ,'l’ ( )
and: a[L ag afs

. . (11)

with boundary conditions: _
A, = o, when x = X (all 0<t< (r=12,..., R (12)

and:
pw =0 when t=T (all 0<x<X) . Q3

Now consider:

° 0 oA,

2 (EML) =N g BTG - (19)
Substituting from the incremental equations (6) and the

adjoint equations (10) into the right hand side of equation (14)
gives, after simplification:

0 of, og of,
5;@)\,&,) =5 57 $-Zk 5 B, + X 55 86
(15)

Consider also:

7} 0
2 wsp=ng Gh+S. . (16)

JACKSON. OPTIMUM TEMPERATURE GRADIENTS IN TUBULAR REACTORS

Substituting from the incremental equation (7) and the
afljoint equation (11) into the right hand side of equation (16)
gives:

9 N of, og g
5 (HO) = —Zr:&ﬁ % )\r+2;al/« 5T 8L, +pu—>580 . (17)
Adding equations (15) and }(17) and simplifying then gives:
0 J g of,
o+ (u89) +5=(SN8L,) =p3580+ TA 55 80 . (19)

We now integrate both sides of equation (18) over the
rectangular domain 0<x<X, 0<s<7. Considering the
two terms on the left hand side separately, the first gives:

X (T 9 X
[F[7 % wotaxac= [ luoglf ax=0 . (19)

making use of the boundary conditions (9) and (13) on o
and p, while the second term gives:

[ 2(gni0) =,

_ fT‘ZoCTBC,(X,t)dI (20)
0 r

dr

XA, 8¢,

X
r 0

making use of the boundary conditions (8) and (12) on 8¢,
and A,. The result of integrating equation (18) is therefore:

T X (T
f 3o, 8¢,(X, t)dt———f f {u?—g+2>\, af’}sedxdt.
o r 0 0o\ 80 r a

But reference to equation (5) shows that the left hand side
of this is simply the variation 8P in the objective function,
SO we may write:

X (T( Og of,
SP—J‘O fo {}La—g'*‘ZA, —a—g-}Sdedt

(21)
r
and we have achieved our objective of expressing 6P in terms
of the small variation 86(x, ) in the temperature policy.
Probably the best way of using this result is to regard:

2 af,
Py=pgo+ I 57 (22)

as the gradient of P in the function space of the function
0(x,t). The idea of a gradient in function space was
originally suggested by Courant® and was introduced into
chemical engineering by Horn.® Let f(x, ) be an initial
guess at the temperature policy. We consider small variations
86(x, t) from @, such that the integral:

J:Y fOT (66)2 dx dt

takes the same value in all cases. Then, by an obvious
analogy with spaces of finite dimensionality, we say that all
these variations are of the same magnitude. It can then be
shown, (Leitman,? Chapter 6), that the largest increase in P
results from the member of this set of variations whose value
is proportional to P, for all x and #; in other words:

o,

9
50(x, t)=1{p,a—§+§A, ae} . (23)

where /is a constant and may be regarded as a displacement of
6 along the direction of steepest ascent through the point 0,in
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the f-space, and correspondingly P, may be referred to as
the gradient of P in the function space of 0.

Equation (23) provides the basis of a computational pro-
cedure to maximise P. Starting with an initial guess Bo(x, t)
at the temperature policy, the direction of steepest ascent in
the function space of # may be determined from equation
(22). 00 may then be modified by increments given by equa-
tion (23) with successively increasing values of /, thus moving
up the steepest ascent line through 90 and computing the
value of P at each stage. At some suitably determined point
on this line the direction of steepest ascent can be redeter-
mined from equation (22) and the ascent continued along the
new steepest ascent line, continuing this procedure until P
no longer changes significantly. In spaces of finite dimen-
sionality many ways of using the gradient more efficiently
than the simple steepest ascent procedure have been de-
scribed” 89 and there is no difficulty in principle in generali-
sing these to apply to the function spaces encountered in the
present type of problem. The most effective procedure will
clearly have to be found by trial in each particular case.

A First-order, Reversible, Exothermic Reaction with
Temperature-dependent Catalyst Decay

As an example with which to develop a practical compu-
tational procedure we shall consider a single, first-order,
reversible, exothermic reaction. If y, is the mole fraction of
the reaction product in the feed and { is the stoichiometric
extent of reaction, the single equation corresponding to
equations (1) of the general case is:

d .
%: b .Thkoy exp (—A5/0)

x [(1—=yo—{) Ko exp (Q/6)— (yo+0)=1((, 0, 4)
(24)

Here K, exp (Q/6) is the equilibrium constant, with Q equal
to the ratio of the heat of reaction and. the gas constant,
A, is the ratio of the activation encrgy of the reverse reaction
to the gas constant, k,, is the frequency factor for the velocity
constant of the reverse reaction, and 7 is the total residence
time in the reactor. The independent variable x represents
distance along the reactor expressed as a fraction of the total
length X, and this choice of variable reduces the whole
equation to a conveniently dimensionless form, since the
group Tk, is dimensionless. The decay of the catalyst
activity ¢ will be assumed to be influenced only by the
temperature, and will be described by an equation of the
form:

o 0
5 =% . . (29)

The time ¢ is conveniently expressed in dimensionless form
as a fraction of the interval T of interest, and it then follows
that the constant 8, has the dimensions of temperature. It
may be regarded as a characteristic temperature which
determines the extent of decay in the time interval considered.

Some simplification can be obtained by a change of variable
in equation (25). If ¢ is replaced by ¢ = loge ¢, equation (25)
becomes:

o

0

and the boundary condition qS =1 at t = 0 is replaced by
iy =0 at + = 0. With the catalyst decay equation in the

form (26) its right hand side is independent of i and the
general adjoint equation (11) reduces to:

=2 ) . (27)

(There is only one variable A corresponding to the single
reaction variable , so the suffix , used to distinguish reactions
in the general case can be omitted.) Taking account of the
boundary condition (13) on w, equation (27) integrates to

give:
of (u
,L(t)=fl1 gfll))\(u)du

where the upper limit is unity in view of the way ¢ is defined.

Using this result the general expression (22) for the gradient

in function space reduces to:

of 4 dg 1 0f(w)

207 d6), "oy
This expresses P, in terms of the solution A of a single

adjoint equation, namely:

Py=A A(u)du . (28)

dA of
— = =A== . . . (29
Ox 24 (29)
with the boundary condition:
A=1 when x =1 (all 0<<L1) 30)

Equations (29) and (30) are the appropriate special forms
of the general equations (10) and (12).

Having established the form of the relevant equations, the
problem of maximising P resolves itself into two parts: firstly
we must obtain a numerical method of computing the
gradient Py, and secondly we must devise a numerical scheme
which makes use of the computed values of the gradient to

- maximise P. These will be discussed in turn.

Given an estimate 00(x, t) of the temperature policy, the
following four steps are involved in the computation of the
corresponding gradient Py, .

(i) With the assumed value 6, for 6, equation (26) is
integrated forward in time at each value of x from the
initial condition ¢y =0 at ¢ =20, thus generating the
function i (x, t).

(ii) Making use of the above result to determine ¢,
equation (24) is integrated forward in x at each value of ¢
from the initial condition { = 0 at x = 0, thus generating
the function { (x, ).

(iii) Knowing ¢ and {, 0f/0( can be evaluated at any
point and the adjoint equation (29) can be integrated
backwards in x at each value of ¢ from the terminal con-
dition A =1 at x =1, thus generating the function
Alx, t).

(iv) Differentiation of the function f gives explicit
expressions for 0f/06 and 9f/ 0y and these can be evaluated
at any point using the values of , { and A found in steps
(@), (i) and (iii) above. The integral on the right hand side
of equation (28) may then be evaluated numerically, and
hence P, may be computed for all x and ¢.

The integration of differential equations required by steps
(i), (i), and (iii) and the evaluation of the definite integrals
in step (iv) all have to be carried out by finite difference
methods.

The demands on storage and computing time of a digital
computer will depend on the number of steps into which the
basic intervals in the x and ¢ directions are divided, but
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Fig. |.—Optimum temperature profile in the absence of catalyst decay

clearly these demands will both be heavy if reasonable
accuracy is to be attained. The exploratory calculations
described in this paper used an Atlas digital computer, which
is both very large and very fast. Nevertheless it would have
been inappropriate to make excessive demands in computing
P, until an efficient procedure for using P, in the maximisation
of P had been evolved. In the absence of any catalyst decay
the optimum temperature profile in the reactor can be
obtained by well-known methods and is known to be a curve
which decreases with increasing x and is concave upwards.
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This suggests that the finite difference intervals should be
short at small values of x but may be longer further along
the reactor. 1In the light of this consideration it was decided
to divide the interval 0< x<0-1 into 20 equal sub-intervals,
and the interval 0-1<x<1.0 into 18 equal sub-intervals. In
the ¢-direction, on the other hand, the interval 0<z<1-0 was
divided into 25 equal sub-intervals. In all, therefore, each
function of two variables such as {(x, ¢) had to be computed
and stored at 1014 points. The numerical integrations made
use of a process of iterative adjustment at each step of the

1000 T T T ] T T T T T
900+ —
800 |- ]
700 - —
< s
e 10 =
= 600 Ho-40
x w
g 500 0323z
| J7°° 2
i 024 2
s 016 é
R 008 &
@ L
300 — 0
200 - |
100 - —
| | R | { | | | |
0 01 02 03 0-4 05 0-6 07 08 0-9 1-0

x — DIMENSIONLESS DISTANCE ALONG REACTOR
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forward integration so that the slope of a chord joining the
values of the solution at the ends of one sub-interval was
equal to the gradient, as calculated from the right hand side
of the differential equation, at the mid point of the sub-
interval.

The computed values of P, can be used in schemes of
varying sophistication to maximise P. In this initial explora-
tion it was decided to adopt a simple stepwise steepest-ascent
procedure in #-space, and to examine the results at the end
of each successive ascent. From an initial estimate Bo(x, t)
of the temperature policy, a sequence of improved policies
8(x, t) were obtained from the formula:

O(x, 1) = By(x, )+ Py(x, t)

using successively increasing values of /. For each value
of 1 the corresponding value of the objective function P was
computed and the value / =/, which maximised P was
located approximately by interpolation. The new temperature
policy, 6 = 0,+1, Py, was then taken as the starting point
of another similar ascent, and so on for successive ascents.
It is known that this is not a very efficient maximisation
method; in particular, in spaces of finite dimensionality,
progress becomes very slow once the current point has
ascended to the neighbourhood of a ridge. However, it is
a perfectly adequate method to use until it is certain that the
computation of P, itself is in order, and it has the advantage
that progress is divided into more or less separate and inde-
pendent stages, namely the successive ascents. Thus it is
possible to print out the temperature policy for inspection at
the end of each ascent before reading it back into the computer
as the starting point of the next ascent, and no other informa-
tion need be carried forward from ascent to ascent.

Results and Discussion

For the preliminary calculations, the following values were
taken for the constants appearing in equations (24) and (25):

Thoy = 3 %107
¥o = 0-06
A, = 10 000°K
K, = 0-000 23
Q = 5000°K
8, = 250°K

and, as an initial guess at the temperature policy, 8 was
assumed to take the value 600°K for all x and ¢. Fig. 1 shows
the optimum temperature profile in the absence of any catalyst
decay. This is obtained, as is well known, by choosing 8 to
maximise the rate of reaction at each point, and with the
above values of the constants this problem can actually
be solved in closed form.

The stepwise steepest-ascent procedure described in the
previous section was then pursued through three successive
ascents from the initial temperature profile. The variation
of P with displacement, /, along the steepest ascent lines is
shown in Fig. 2, and the behaviour is seen to be as expected.
P increases with / initially, then passes through a maximum
whose location determines the starting point of the next
ascent. Figs 3, 4, and 5 show the temperature policies at the
end of the first, second, and third ascents respectively, plotting
0 against x at various values of #. The complexity of the prob-
lem is such that it is very difficult to make an advance guess at
the form of the solution on physical grounds, but the general

JACKSON. OPTIMUM TEMPERATURE GRADIENTS IN TUBULAR REACTORS

features of Figs 3, 4, and 5 are not unreasonable. At small
values of ¢, the improved profiles of 8§ against x are character-
ised by an initial fairly-rapid fall in temperature, followed
by a section in which the temperature falls relatively slowly,
and terminated by a second region of rapidly falling tem-
perature. Such a profile has the effect of preserving the
catalyst near the end of the reactor in a state of high activity.
At later times, the temperature is increased generally and the
profile flattens out markedly thus raising the temperature
near the end of the reactor substantially and making use of
the relatively fresh catalyst there. More difficult to explain
are the curious waves appearing in the profiles of 8 against x
shown in Fig. 5 at small values of ¢. It seems unlikely that
these are genuine features of the optimum policy and it is not
yet known whether they arise from truncation errors in
integrating the differential equations or whether they are an
inherent feature of the stepwise steepest-ascent procedure in
function space.

It seems clear from the results given that the method of
determining P, is sound in principle, though some improve-
ment in the finite difference approximations will probably be
necessary to reduce truncation errors. It also seems likely
that the simple stepwise steepest ascent procedure is not a
very suitable method for determining the optimum policy
accurately, since the first three ascents show no very clear
evidence of convergence. Further work will be directed to
developing an improved numerical procedure to evaluate Py
and to replacing the stepwise steepest-ascent procedure by
one of the more sophisticated methods of using the informa-
tion contained in P;.8-2

Finally, it must be pointed out that the procedure described
in this paper tackles only one aspect of the problem of ‘a
decaying catalyst. It has been assumed throughout that the
total time, 7, is given, and the method permits the total yield
of a given product or, more generally, the total operating
profits, to be maximised. In practice one is also faced with
the problem of determining the value of T at which the
catalyst should be replaced in order to give maximum profit
over a long period, taking account of the cost of catalyst
replacement. It is possible to give a variational equation to
determine the optimum value of 7, but in practice this turns
out to have no advantage over the straightforward procedure
of solving the problem stated in the present paper for various
values of 7 and determining the value which maximises the
difference between the operating profits and the costs of
catalyst replacement.

Symbols Used

A, = ratio of the activation energy of the reverse reaction to
the universal gas constant.

f, = functions on the right hand sides of equation .
g = function on the right hand side of equation ).
K, = temperature independent factor in the equilibrium

constant.
k,o = frequency factor in the velocity constant of the reverse
reaction.
1 = displacement along a steepest ascent line.
! = value of [/ which maximises P.

m
P = objective function to be maximised.

P, = gradient of P in the space of the function O(x, t).
Q = ratio of the heat of reaction to the gas constant.
R = total number of independent reactions.

T = length of the time interval of interest.
t = dimensionless measure of time.
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X = total length of the reactor.
x = dimensionless measure of distance along the reactor.

¥¢ = mole fraction of reaction product present in the feed
mixture.

a, = constants defining the objective function.
{ = stoichiometric extent of reaction for single reversible

reaction.

{, = stoichiometric extents of reaction for independent
reactions.

{, = steady-state value of .

6 = absolute temperature.

6. = characteristic temperature determining the rate of

catalyst decay.
6, = initial approximate temperature policy.
A = variable adjoint to {.
A, = variables adjoint to the {,.
p = variable adjoint to ¢.
7 = total residence time in the reactor.
¢ = catalyst activity.

¢, = initial catalyst activity.
s = related by change of variable to the catalyst activity.

The above quantities may be expressed in any set of con-
sistent units in which force and mass are not defined inde-
pendently.
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DISCUSSION OF PAPERS PRESENTED AT THE
FIRST SESSION

Prof. DoNaLD L. KATZ said that during some thirty-five
years in the general field of chemical engineering he had seen
a gradual transition from the physical system to mathematical
models. It was indeed wonderful that there had been such a
transition to the field of mathematics, and that a great deal
was being learned. However, it might be as well as the dis-
cussions proceeded on the topics to relate what was currently
being done back to the physical situation which was being
described.

Prof. A. B. METZNER said that Bird had produced an excel-
lent survey of his own activities and those of his students, but
attention should also be drawn to the analyses of engineering
problems of several of Bird’s contemporaries, particularly
Drs. Pearson and Walters in the United Kingdom, Dr.
Giesekus in Germany, Dr. Astarita in Italy, and of several
currently active Americans. Together they appeared to give
a rather clear insight into the kinds of mathematical models
which must be used on various occasions. Some lead to con-
siderations as complex as those which Bird had discussed, but
others were very simple and, as they might suffice for the
analysis of certain classes of problems, could not be neglected.
The recent extensive studies of the Coleman-Noll theory of
“ Simple Fluids > fell into the latter category.

With regard to the flow patterns in non-Newtonian fluids,
perhaps the most graphical illustration was the work of
Walters and Giesekus, who have pointed out that visco-
elastic fluids could be mixed by pumping material through an
open pipe of non-circular cross-section, or, equivalently,
through a helical coil of round tube. The secondary flows
which arose as a consequence of visco-elastic properties
caused intense cellular mixing patterns to develop in both
cases.

Prof. BIRD said that the principal new feature of the work
presented in the present paper was the use of the Rouse
molecular theory to reduce drastically the number of constants
in a rheological model and thereby obtain a model containing
a small number of constants. Such a procedure was believed
to be new and had not been used by the researchers cited by
Prof. Metzner.

The works of Coleman and Noll have been appropriately
cited in Refs 36-38 of the paper. One comment needs to be
made relative to their ° Second order fluid ”’, however, which
was inadequate for describing experimental results. In
Fig. 5 of the paper the Coleman—Noll second-order fluid
described only the region less than Aw or Ay about 0-1 (i.e.,
where 7 and { were both constants) and failed to describe the
“ power law region > above Aw or Ay about 1, which was
generally the region of engineering interest.

Prof. Bird also emphasised the importance of comparing
the time-constant of the fluid with a time-constant for the
flow system, and reference was made to seven experiments
which had been performed at the University of Wisconsin.
That comparison of time-constants often provided a simple
means for determining when viscoelastic effects were import-
ant (see Ref. 46 of the paper).

[Note Added 4 November 1965: At the time of preparing
the manuscript for this paper, the author was unaware of an
interesting model proposed by White and Metzner.? This
model is a non-linear Maxwell model containing one adjust-
able function (the non-Newtonian viscosity) and one constant.
This model may prove particularly useful for those engineer-
ing problems in which it is important to describe non-
Newtonian viscosity accurately, but unimportant to have an
accurate portrayal of oscillatory response, stress relaxation,
and secondary normal stress.]

Dr. J. WEel referred to the paper by Kelsall and Reid and
said that it was gratifying to learn that a subject as difficult as
grinding was amenable to exact analysis. The problem was
very similar to that in the analysis of a complex system of first-
order chemical reactions: one would thus expect that the
techniques developed in one field might be beneficial to the
other. '

Because the effect of residence time distribution was absent,
a batch (rather than a continuous) experiment might be of
value to the investigation of Kelsall and Reid. For example,
the drop in breakage rate at particle size 2362 microns was
probably an effect of residence time, and not a true effect.

Mr. P. J. HoFryzER said that during the symposium it
appeared that the use of mathematical models in chemical
engineering had already developed into a number of special-
ised fields. They corresponded to a number of different
purposes, for which a mathematical model was constructed,
for instance:

(1) fundamental process studies,
(2) design of apparatus,

(3) process control, and

(4) plant optimisation.

The complexity of the mathematical model for a given
process decreased markedly in the above-mentioned order.
At the same time, an increasing number of other factors had
to be incorporated into the calculating programme in which
the model was used.

The first four papers of the session of the symposium were
examples of the use of a mathematical model for the first-
mentioned purpose. They dealt with quite different fields of
chemical engineering—rheology, comminution, packed col-
umns, thermodynamics. But all of them resulted from
physical-chemical process studies, and contained a number of
constants, to be determined experimentally as a function of
several process parameters. Yet in the derivation of the
models a number of simplifying assumptions had been made.

So mathematical models of that type showed a tendency
towards increasing complexity. The possibilities of calcula-
tions with complicated models had grown considerably by
the development of rapid computers. It should be stressed,
however, that those possibilities were certainly not unlimited.
That would probably often result in a limit for the complexity
of the model beyond which it becomes inefficient.
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AN APPROACH TO THE NUMERICAL SOLUTION
OF TIME-DEPENDENT OPTIMISATION PROBLEMS
IN TWO-PHASE CONTACTING DEVICES

By R. JACKSON, M.A. (ASSOCIATE MEMBER)*

SYNOPSIS

In distillation, gas absorption, and liquid extraction applications, and in tubular catalytic reactors, two phases
in relative motion interact with each other by the transfer of matter and heat. In the approximation of no
axial diffusion within each phase, the time-dependent behaviour of all these systems is governed by similar sets
of first-order partial differential equations which provide constraining conditions for problems of optimum
start-up and control. This paper gives a common mathematical formulation of all such optimisation problems
and examines the practicability of solving them numerically with reference to a particular problem, namely that
of the optimum temperature policy in a tubular reactor with decaying catalyst.

Introduction

Many chemical engineering operations involve thermal
interaction, transfer of materials, and other mutual influences
of two (or more) flowing streams of fluid. One might instance
gas absorption apparatus which makes use of mass transfer
between liquid and gas streams (often flowing in opposite
directions), packed distillation columns in which mass transfer
is accompanied by a substantial heat transfer, and latent heat
effects are involved, and to introduce a further complication
chemical reactors in which reaction on a stationary catalyst
phase is accompanied by mass and heat transfer between the
catalyst and a flowing reactant stream. Within each stream
mixing in the direction of flow always takes place to a greater
or less extent but it is frequently a reasonable approximation
to neglect this altogether and to make the assumption of
ideal plug flow in each separate stream. In this approximation
all the above .types of system may be represented mathe-
matically by equations of similar form, namely :1

du du

‘ys; + aa - f(ll, v, 9) . . (1)
oV v .

eb—t—l-ﬁg;c =g(u,v,0) . . )

where ¢ represents time, x distance along the common axis
of flow, u and v are sets of variables, or state column vectors,
representing physical quantities such as the composition of
the two streams, and 0 represents a column vector of functions
of x whose form is available to be varied; for example the
ternperature or rate of heat removal from the system.

The detailed forms of the vector functions f and g depend
on the particular process considered and may be influenced
by mass transfer coefficients, the detailed kinetics of chemical
reactions, and similar physical considerations. The co-
efficient ratios o/y and /e on the left hand sides of the equa-
tions are velocities of the flowing streams relative to the
stationary apparatus; they will have the same sign in systems
with co-current flow and opposite signs in the case of counter-
current flow, and we shall assume that the coefficients «, S,
y, and e are independent of x and z. Boundary conditions for
equations (1) and (2) comprise initial conditions, namely the

* The University of Edinburgh and Heriot-Watt University,
Chambers Street, Edinburgh 1.
T Symbols have the meanings given them on p. T169.
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values of u (x) and v (x) at ¢ = 0, together with entry condi-
tions for the separate streams, both specified at the same end
of the -apparatus (say x = 0) in the case of co-current flow,
or at opposite ends of the apparatus (say x =0 and x = x,)
in the case of countercurrent tlow. Thus u (¥) at x = 0 and
v (1) at x = x; would complete the set of boundary condi-
tions for a counter-current apparatus, where u (¢, 0) and
v (¢, x;) may either be given functions of time or may contain
components which are under the control of the operator
and may, therefore, like 8 (x, 1), be regarded as available to
regulate the operation of the system.

In particular cases where the coefficient of the x or ¢
derivative in equations (1) or (2) vanishes, rather less complete
boundary conditions may be specified. For example, if
a« = 0 only initial conditions u (x, 0) are specified, while if
y = 0 only boundary conditions u (0, 1) or u (x;, #) may be
specified. Similar considerations apply to v and a case of
this type will be the subject of numerical study later in the
paper.

If the operating period extends from ¢t = 0 to t = T, one
is then interested in the solution of equations (1) and (2) in
the rectangular domain:

0 x<C x0T . . 3)

and, in particular, along the edges of this rectangle where
boundary conditions are not specified, since these correspond
to the process streams leaving the apparatus, and the state
of the contents at the final time z = T.

Mathematically equations (1) and (2) are hyperbolic first-
order partial differential equations. By a linear transformation
of independent variables of the form:

X=at+bx; Y=ct+dx

it is always possible to reduce them to the canonical form:

;—;=f(u, Y, @) . . . @
d
F=e@wn® . . . O

at the cost of distorting the rectangular domain of interest
(3) into a parallelogram with one corner at the origin.
Attention may therefore be limited to equations of the form
(4) and (5) without any real loss in generality.
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Optimisation Problems

Let I' denote the boundary of the domain of interest, namely the rectangle in the original problem, or, more generally, the
parallelogram in the problem transformed into canonical form. Let I',, I', denote those parts of I on which u, v respectively are
either specified or available as a control variable, and let I' — I, and I' — I, denote the remaining parts of the boundary.
Then optimisation problems of interest can frequently be formulated in terms of an objective function of the form:

P=J'I.uds+ m.vds . . . . . . . . (6)
=1y 1'—T,

where 1 and m are specified vector functions of position on the segments of I" indicated and s denotes distance along I'. Very
often, for example, one is concerned with the problem of maximising or minimising the time integral of some property of one or
both exit streams from the unit (the total yield of a desired product in the time interval 0 — T is of this type), in which case
finite contributions to P arise only from the two sides x = 0, x = x; (0 < 1 << T) of the boundary. The side r = T(0 < x < xy)
gives a finite contribution only if the final hold-up of the apparatus is economically significant.

The starting point for many optimising computations is a first-order relationship between small changes in the adjustable
variables and the consequent small change 8P in P, and there is no difficulty in deriving such a relation for problems of the
present class. Indeed, this has already been done in particular cases by Volin and Ostrovskii,!» 2 Denn, Gray, and Ferron,3
and the present writer.* For small variations the linearised form of equations (4) and (5), correct to first order in small quantities,

1S:

9 of of of
0 _dg dg og
D—Y-Bv—b—u-SU—{—ﬁ.Sv—}-%-Se. . . . . . . (8)

where 0f/0u, 0g/dv etc. represent matrices of partial derivatives* and the terms on the right hand sides are products of these

matrices with the column vectors &u, dv, 86.
Introducing row vectors ¢ and X adjoint to u and v and satisfying the differential equations:

oY of dg
DX__q_..b_u__x.b_u . . . . . . . ©)
X of og

__¢._av_x.b_v ‘(10)

it follows that:

0 0 of dg
b")‘((ql.Su)-i—S?(X.Sv)=(q).%+x.b_e).39

Integrating both sides of this over the interior of the parallelogram and applying Gauss’ theorem gives:

[ _ of dg
j;(rz¢-8u—71X-8v)m—JJE(¢ ‘59 T X -E).SOdXdY

where X denotes the interior of the parallelogram with boundary I" and T, and T, are components of the unit tangent to .
Now if boundary conditions for ¢ and X are chosen such that:

=1 onI'—-T, . . . . . . . an

—7X=m onI'—T, . . . . . . . (12)
the above may be written:

I.Suds—%—.[m.Svds:JJ- (qa-g—z+X-g—g).80dXdY—J-724o.3uds+j*rlx.8vds
= T

I'—Ty T'—Ty Cu Ty

3P=JJ(q,.g_f+x.?§).SedXdY—J72¢.Suds+_[71x.8vds R ¢ )
- 6 ) N r

Equation (13) relates a small variation in the objective function P to small variations in the adjustable variables, namely 0
within X, uon I' ), and von I',. Ifu on I, and v on T', are specified inlet conditions rather than adjustable variables, Su and &v
vanish on these segments and only the first term remains on the right hand side of equation (13).

* E) i oy

w/; T dwy \3e/y 26,
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Equation (13) can be used as the basis of a number of computational schemes for maximisation or minimisation of P and one
of the principal interests in studies of this type is the development of effective algorithms for numerical computation of optimum
conditions. Confining attention, for the moment, to the problem with given values of u and v on T', and I', respectively, it is
seen from equation (13) that a necessary condition for a stationary value of P is that:

of dg
¢-56+X-be—0 . . . . . . . . (14
throughout =. This provides a set of algebraic equations for the determination of 6 in terms of u, v, ¢, and X, and Volin and
Ostrovskii! suggest that these should be used to eliminate 8 from the partial differential equations (4), (5), (9), and (10), which
can then be integrated with the given boundary conditions. The solutions then determine 6 through equations (14). However,
these authors do not report any numerical work based on this algorithm, and the present writer believes that it would be almost
impracticably cumbersome, except in unrealistically simple cases where equations (14) could be solved to give 6 in closed form
as a function of the physical and adjoint variables. A more promising approach is to use equation (13) to suggest means of
improving an initial guess 6, at the optimum policy. For problems in which the second and third terms on the right hand side

are absent, equation (13) reduces to:
of dg
= .-2] .86
6P “;(q» be—i—X ae) 86 dx dY

(w.].a g{; + % :—5) . 80 > 0 throughout X . . . . . . 15)

and any choice of 30 such that:

will lead to an increase in the value of P, so that 6, - 86 will be an improvement on the control policy 8,. One particular varia-
tion satisfying equation (15) is given by:
Ay ag)T
00 00

5 = 81 (4: (16)

where 8/ is a small positive constant and the superscript T indicates the transpose. The change 66 is then said to be in the
direction of the gradient of P in the function space 8 (X, Y), and it is not difficult to show? that, among all variations satisfying:

J J- (86)2 dXx dY = const
=

(16) gives the largest increase in P. Successive modification of @ by increments of the form (16) was first used to solve a chemical
engineering problem by Horn and Troltenier,® though it has also been used in work on aerospace problems.> However, the
work mentioned is all concerned with cases in which 0 is a function of one independent variable. To the present writer’s knowledge
there are, at present, no reports of the feasibility of using this technique in cases where 0 is a function of two independent
variables, as in the present class of problems,.though Volin and Ostrovskii? suggested that a.gradient technique might prove
useful without, however, carrying out any calculation or even formulating a specific computational algorithm. The principle
object of the present paper, therefore, is to carry out a numerical exploration of the technique for a particular problem of this
type, namely the optimum operation of a tubular catalytic reactor whose catalyst activity decays at a rate which varies from
point to point depending on local conditions. A preliminary report of this work was presented? at the A.I.Ch.E.—I. Chem.E.
Joint Meeting in London, 1965, and the remainder of the present paper reports the completion of this work and the resolution
of many uncertainties remaining at the time of the preliminary report. '

Before leaving the general problem, however, attention should be drawn to a particular situation in which difficulties arise.
The validity of equation (13) depends on the choice of boundary conditions (11) and (12) for ¢ and X, and this choice is always
acceptable unless the arc I' — I, contains one or more finite segments on which 7, = 0 and 1% 0 or the arc I'— I', contains
one or more finite segments on which 7, = 0 and m % 0. Difficulties therefore arise if there are finite contributions of the
form 1. u to P from horizontal segments of I' — I, or finite contributions of the form m . v from vertical segments of I'-T,.
Mathematically this is a result of the fact that these segments are parallel to characteristics of the hyperbolic differential
equations (4) and (5) and in such a case 8P can no longer be represented in the simple form of equation (13). This situation is
discussed fully elsewhere’ but does not arise in the numerical problem treated here.

A first-order Reversible, Exothermic Reaction with Temperature-dependent Catalyst Decay

As in the earlier report,* we shall consider a catalyst-packed tubular reactor with a single first-order reversible reaction whose
effective velocity constants are proportional to a variable ¢ measuring the catalyst activity. It is assumed that the catalyst decays
sufficiently slowly that conditions in the reactor approximate closely to a steady state throughout. If yo is the mole
fraction of reaction product in the feed and { represents the stoichiometric extent of reaction, a function of distance x along the
reactor, we then have:

b
% = ¢f (L, 0) = drhkypexp (—A/O[(1 — yo — DKy exp (Q/) — (o + )]
= ¢[U@®) — V(0). (] (say) . . . . . . . . . an

Here K, exp (Q/6) is the equilibrium constant, with Q equal to the ratio of the heat of reaction and the gas constant, 4, is the
ratio of the activation energy of the reverse reaction to the gas constant, k,q is the frequency factor for the velocity constant of
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the reverse reaction, and 7 is the total residence time in the reactor. The symbol x represents the fractional distance along the
reactor, 8 the temperature, and ¢ the catalyst activity, which is assumed to decay with increasing time according to the law;

% 0 -
>-"gb - - - T

where 0, is a constant with the dimensions of temperature which determines the rate of decay and time ¢ is expressed in dimen-
sionless form as a fraction of the total interval of operation before catalyst renewal. The work can be simplified slightly by a
change of variables from ¢ to A = log, ¢, when equation (18) is replaced by:

dA .
= 816, = g (6) (say) . . . . . . . 19)
The boundary conditions for equations (17) and (18) are then:
{=0atx=0q@Io< tr<Cl) . . . . . . . 20)
and: A=0at¢t=0@I0<<x<<l) . . . . . . . @n
The total production during the catalyst life is proportional to:
1
p=[1a,nar N .75,
()

and it is required to choose the temperature policy 8 (x, f) to maximise this quantity. The numerical values of the constants
are the same as those taken previously,* namely:

/ Thyy =3 x 107
Yo = 0-06
’ Ay =10 000° K
K, = 0-00023
Q = 5000° K
8, = 250° K

In the present problem it is seen that equations (17) and (19) are already in the canonical form referred to earlier so no change
of independent variables is required and the adjoint equations corresponding to equations (9) and (10) in the general case are:

bz/;_ df

a_—ekb—-c-gb . . . . . . . . (23)
and:

_-g—):=——e7‘f¢. e 23}

with boundary conditions:
Yp=1latx =1 (all0 << 1) . . . . . . 25)
<1

<
=0atr=1@IO0O x ) . . . . . . (26)
respectively.
In the preliminary report* of this work equations (17) and (19) and their adjoints (23) and (24) were integrated numerically by
a “‘marching” type finite difference method, and it was suspected that certain curious features of the final results might be attrib-
utable to a numerical instability in the integration procedure. In the present work this uncertainty has been eliminated by
reducing the problem of solving the differential equations to one of evaluating definite integrals. The reduction to quadratures,
or definite integration, is accomplished as follows: firstly equation (19) with boundary condition (21) can be integrated
immediately to give:
1

/\(x,z)=—67j'0(x,t')dt' ... e
(-]

Equation (17) is a linear, first order, inhomogeneous equation in { with variable coefficients, so it may be integrated by the

well known elementary device of multiplying by an integrating factor of the form exp (f ¢ ¥ dx), after which use of the boundary
condition (20) leads to the result:

{x, 1) = r exp [A(x', DU, ) W (x, x', 1) dx’ S 1)}
with: ° '

W (x, x’, 1) = exp {—- ngp [Ax”, DIV (=7, D dx”} : .. . . . (29)

so two definite integrals must be evaluated to give { for any particular x and .
The adjoint equation (23) may be integrated directly after dividing through by gll, giving:

N It . :
" log, (x,1) = — f exp [Mx', N] V (', 1) dx’ 1)
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and finally equation (24) may be integrated to give:
1

X(x, t)———_[exp [Xx, O U (x, ) — V (6,00, )}d(x, ) de’ .. . . 3

By performing the integrations in the orders (27), (29), (28), (30), (31), quantities required in the later stages are always eval-
uated earlier. The method of integration adopted was the trapezium rule with step lengths 8x = 8¢ = 0-04, giving 25 integration
steps in each variable and a total of 676 values of each function to be stored to provide tabulation at all points of the x — ¢ grid.
To check the importance of truncation errors, a number of calculations were also carried out with 8x reduced to 0-02, and in no
case did this change the resulting temperature policy 8 (x, /) by more than 0-2 degK in temperatures of the order 600° K. Once
the integration was complete and the variables stored, the gradient of P in the function space 8 (x, 1) could be calculated at each
grid point from the form of equation (13) appropriate to this problem, namely:

1 1
sp =f j Pylx, 080G, Ddxdr . . . . . ... (32
0 "0
with
X d AV
P(_,:_g_;_(pexp()\)(s—gq—lw) N € 5

The values of P, were used in a simple stepwise steepest ascent procedure in f-space. From an initial estimate 0, (x, £) of the
temperature policy, a corresponding function Pg (x, #) was computed in the manner just described, and a sequence of improved
policies 8 (x, r) was obtained from the formula: ’

O(x, £) = Oy(x, £) + IPy(x, D . . . . . . . 34

using successively increasing values of /. For each value of / the corresponding value of the objecﬁve function was computed
from equation (22) after using equations (27) and (28) to determine {. The sequence of values of P thus obtained was printed out,

and the value [ = /,, which maximised P was located. The new temperature policy:

61 '——-: 90 + lmPQ . . . . . . . . (35)

then replaced 8, as the starting policy for a further iteration of the process.
In spaces of finite dimensionality this simple stepwise steepest ascent procedure is known to converge very poorly in many
cases, so its use initially in the present work was purely exploratory, and it was expected that replacement by some more sophis-

ticated technique might be necessary to obtain useful resuits.

Results of Numerical Work

The first set of computations started from a uniform and
constant temperature policy 8 (x, ) = 600° K, which is not
very far from the optimum policy of this very restricted class.
Figs 1a to 1G show this policy and the policies at the end of
successive ascents in the function space of 8 (x, 1), performed
as described in the last section, plotted as functions of x
for t = 0 and for ¢ = 1. The corresponding curves for other
values of ¢ are intermediate in nature between those plotted,
and are omitted in the interest of clarity. Fig. 14 shows the
corresponding sequence of values of the objective function
and this appears to be converging in a satisfactory maner by
the end of the sixth ascent. The temperature policy at the end
of the third ascent (Fig. 1D) shows oscillations which were
previously noted in the preliminary report of this work,*
but if these are disregarded they become damped out in the
. succeeding ascents until the temperature policy at the end
of the sixth ascent retains only a trace of oscillation in the
neighbourhood of its large change of slope.

There is no guarantee, of course, that the temperature
policy given in Fig. 1G approximates to the true optimum
rather than a secondary maximum of P, but one’s confidence
would be increased by a second calculation starting from
completely different initial conditions. Accordingly such a
calculation was carried out starting from the policy shown in
Fig. 2a, chosen to differ markedly from both Fig. 1A and
Fig. 1G. The resulting policies at the ends of the second, fourth,
sixth, eight, tenth, and twelfth ascents are shown in Figs 28
to 2G and the corresponding sequence of values of P is given
in Fig. 24. To avoid numerical difficulty in evaluating the
velocity constants accurately a lower bound of 500° K was
placed on the temperature throughout. If the steepest ascent
procedure prescribed a temperature below 500°K at any
stage of the calculations, this value was simply replaced by

the lower bound. The final result of Fig. 2G is a policy with
temperatures everywhere above 500° K, so the imposed
lower bound is of no importance ultimately; indeed it could
probably have been taken lower without difficulty, since the
calculations of Figs 1a to 1 make use of temperatures well
below this level.

The most striking feature of these results is the very large
oscillation which develops in the temperature policy, so that
after the eighth ascent there seems to be very little prospect of
convergence to a reasonable final result. Nevertheless, four
further ascents prove sufficient to smooth out this oscillation
almost completely, and after the twelfth ascent the value of
the objective function is converging well and indeed is a
little higher than the final value in the previous calculation.
Although the final values of the objective function in the
two calculations agree quite closely, the sharp drops near
x = 0 and x = 1 in the initial profile of Fig. 1G are absent
from Fig. 2¢. Thus the policies giving rise to near optimal
values of P differ quite significantly from each other. In other
words, the maximum of P in the function space is very flat,
and one might expect to find a variety of functional forms for
0 (x, ©) giving performances very near to the optimum. This is
not very surprising, and is in any case valuable information,
since it may be possible to find quite simple policies which are
almost optimal. With this in view a third set of calculations
was carried out, limiting the search to the class of policies

0(x,t) = A+ Bx + Ct . . (36)

The search method employed was that of Powell,® which
does not make use of gradients. In this case 6 (x, ) was
simply regarded as a function of the three variables A4, B,
and C on which a search was initiated from two different
starting points. The initial values of A4, B, C, and P and their
values at the end of each successive iteration of Powell’s
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basic procedure, are given in Table I from which it is seen
that P converges to 0-307646 to six decimal places after only
four iterations from either starting point. This value differs

TasLe L.—Values of Parameters Before and After Iterations -
according to Powell’s Basic Procedure

A = 400 A = 600
Starting B=0 B=0
Conditions cC=0 C=0
P = 0-011950 P = 0-271967
4',4 = 595-75 A = 605-104
o B=—1502 B = — 20-017
1st iteration C = 50-688 C = 67-557
P = 0-290900 P = 0-289899
g = 583;-59? , A= 606-03939
N — — 4881 B = — 85-995
2nd iteration C = 120-622 C = 118-662
P = 0-302245 P = 0-306588
A = 615-554 A = 607-980
o B=—10297 B— — 87-237
3rd iteration C=111-898 C = 111-611
P = 0-307084 P = 0-306739
A = 623-285 A = 623-319
o B = — 106376 B— — 106-706
4th iteration C = 107-528 ..C = 107-634
P = 0-307646 P — 0-307646
A = 623-319 A = 623-318
N B = — 106-344 B — — 106-464
Sth iteration C = 107-392 C = 107-391
P = 0-307646 P = 0-307646
(A = 623-334 A = 623-318
L B = — 106369 B — — 106-343
6th iteration { C = 107-386 C =107-392
P = 0-307646 P = 0-307646

from the highest value given in Figs 1H or 2H only in the
third significant figure, so it is possible, as suspected, to
obtain almost optimal results within a class of policies as
limited as (36) above. It should-be noted, however, that
the economy in computation obtainable by restricting atten-
tion to a class of policies such as (36) is not as large as
might be imagined. In spite of the curious oscillations
apparent in the intermediate stages of Figs 1 and 2, con-
vergence to a near optimal value of P is remarkably rapid;
indeed it is much better than could be expected in view of the
usually poor performance of a simple stepwise steepest ascent
procedure in a space of finite dimensionality. Thus, contrary
to expectation, the results indicate that hill climbing in a
function space—even a function of two independent variables
—is quite a practical proposition provided that one is
interested primarily in the value of the objective function
rather than the form of the optimising policy. Although
experience of actual computations by this method is still
quite limited, this conclusion has also been reached by other
workers® 2 on the basis of a limited number of computations.

The source of the “self-healing’ oscillations, which appear
only in the earlier stages of the steepest ascent procedure, is
still obscure. They must be clearly distinguished from the
well-known oscillations in the values of the independent
variables after successive ascents, which almost invariably
accompany this type of hill-climbing procedure when used in
spaces of finite dimensionality. The present oscillations are
exhibited when @ is plotted as a function of the dimension
index x which, in this case, is a continuous variable. In
spaces of finite dimensionality N the dimension index takes
only integer values 1 — N, so when N is small, as in most
published applications of hill climbing, such a plot consists
of just a small number of isolated points and there 1s no
discernible corresponding phenomenon.
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Finally, it should be noted that Chou, Ray, and Aris!?
have very recently obtained some results in closed form for a
catalyst decay problem which is a simplified version of the
onec discussed here. By considering an irreversible reaction,
whose rate depends on the value of only one velocity constant,
they are able to show that the optimal operating policy must
be such that the overall conversion remains constant through-
out the catalyst life.
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Symbols Used

A = constant used in defining a simple temperature
policy through equation (36).
A, = ratio of the activation energy of the reverse reaction
to the universal gas constant.
a = coefficient in the transformation from (¢, x) to
X, Y).
B = constant used in defining a simple temperature
policy through equation (36).
b = coefficient in the transformation from (¢, x) to
X, Y).
C = constant used in defining a simple temperature
policy through equation (36).
¢ = coefficient in the transformation from (¢, x) to
X, Y).
d = coefficient in the transformation from (¢, x) to
X, Y).
f = vector function of u, v, 8 in equation (1).
g = vector function of u, v, 8 in equation (2).
g(0) = Function —0/6,.
K, = temperature independent factor in the equilibrium
constant.
kyo = pre-exponential factor in the velocity constant of
the reverse reaction.
| = displacement along the steepest ascent line.
1 = vector given on [' and defining the objective
function through equation (6).

l,, = value of / which maximises P.

m = vector given on I' and defining the objective
function through equation (6).

P = objective function to be maximised.

Py = gradient of P in #-space.
Q = ratio of the heat of reaction to the universal gas
constant.
s = distance, measured along I'.
= length of time interval of interest.
t = time.
t’ = variable of integration in equation (31).
function of 6 defined by equation (17).
u = column vector of physical variables associated with
the first phase.
V = function of 6 defined by equation (17).
v = column vector of physical variables associated with
the second phase.
X = variable related to ¢ and x by the transformation
X = at + bx.
= distance measured in the direction of flow.
= total length of the apparatus.
x’ = variable of integration in equations (29) and (30).
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Y = variable related to ¢ and x by the transformation X = variable adjoint to ¢.
Y = ct + dx. = row vector of variables adjoint to v.
yo = mole fraction of the reaction product in the feed

ixture The above quantities may be expressed in any set of
consistent units in which force and mass are not defined

a = proportional to velocity of the first phase. v
B = proportional to velocity of the second phase. independently.
I = boundary of the region of interest.
I', = part of I' on which u is specified or available for References
control. 1 Vom}’g g’4u.215v1.i4alr‘11d Ostrovskii, G. M. Avtomatika Telemekh.,
Ly = part of 1" on which v is specified or available fOr 3 yojin, Y0 M., and Ostrovskii, G. M. Avtomatika Telemekh.,

. . . 1965, 26, 1197.

{ = stoichiometric extent of reaction. Denn, M. M., Gray, R. D., and Ferron, J. R. Ind. Engng
@ = absolute temperature. Chem., Fundamentals, 1966, 5, 59.

6 = column vector of variables available for control. Jackson, R., in Pirie, J. M. (Ed.). “‘The Application of Mathe-

w

-

matical Models in Chemical Engineering Research, Design

0, = characteristic temperature determining the rate of and Production”, 1965, p. 33. (London: The Institution of
catalyst decay. o ) Chemical Engineers).
0, = value of 8 (x, ) at the beginning of an ascent in 5 Leitman, G. (Ed.). “Optimisation Techniques”, 1962, Chapter

0-space. 6. (New York: Academic Press Inc.).
A = defined by A = Iogezﬁ. Hor%,ng., and Troltenier, U. Chemie-Ingr-Tech., 1960, 32,

¥ = region contained within I'.
T = residence time in the reactor.

74, T, = components of the unit tangent vector to I.
¢ = catalyst activity.
i = variable adjoint to {. :
¢ = row vector of variables adjoint to u. The manuscript of this paper was received on 28 November, 1966.

-}
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PRODUCTIVITY IN RESEARCH

This symposium is concerned with the selection and organisation
of research from the point of view of those who direct it rather
than with the use of research results in industry. The emphasis at
the meeting was therefore on discussion and in consequence

a substantial part of this volume is devoted to reporting the points
raised by the speakers, and the authors’ answers to them.

The distinguished authors included a Nobel Laureate and leading
figures in the industrial and academic world.
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ABSTRACT

Distributed systems such as chemical reactors, absorption columns and
other similar apparatus used in the chemical industry have time-varying
behaviour approximately describable by hyperbolic partial differential
equations. Questions of optimum start-up and control therefore find
mathematical expression as variational problems in two independent
variables with these differential equations as side conditions. Such
problems have interesting mathematical features when the integral to be
extremized is taken round a closed curve in the plane of the independent
variables, and this curve includes finite straight segments parallel to the
characteristics of the differential equations.

§ 1. INTRODUCTION

A wide class of optimization and optimum control problems in chemical
engineering can be formulated mathematically as variational problems
with sets of first-order hyperbolic partial differential equations as side
wu.....tions. Ithasbeennoted elsewhere (Jackson 1966) that such problems
have interesting mathematical features when the boundary of the domain
of interest includes finite segments parallel to characteristics -of the
constraining differential equations. It is the purpose of the present paper
to pursue this point for a class of problems which is a slight generalization
of those encountered in chemical engineering systems.

Consider functions « and v satisfying differential equations of the form :

0
a_z =f(“,v’ 0)’ (1)
b}
?: =9‘(u, v, 0)’ (2)

where f and g are given functions and 8(z, y) is available to be varied.
The domain of interest, >, in the z, y plane is bounded by a closed curve T'

1 Communicated by Dr. A. T. Fuller.
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which may include finite straight segments parallel to the coordinate
axes, asin fig. 1, where the segments parallel to the x-axis are denoted by a,
b, ¢, d, and those parallel to the y-axisby «, 8,v,6,. . . . Ingeneral, of course,
there may be any number of such csegments of each kind. However, it
will be assumed that no two segments parallel to the x-axis have the same
_ordinate and no two segments parallel to the y-axis have the same abscissa.
C and A are the points of I' with largest and smallest abscissa respectively,
while D and B are the points with largest and smallest ordinate.

Fig. 1

Boundary conditions for « are specified by giving its value at all points
of the arc DAB not lying on horizontal segments, and also at the left-hand
end points of these segments. The set of points so defined will be denoted
by T,, so u is specified on the sub-set I', of I'. Similarly boundary
conditions for v are specified by giving its value at all points of the arc
ABC not lying on vertical segments, and also at the lower end points of
these segments. The set of points so defined will be denoted by I',.
These boundary conditions, together with eqns. (1) and (2) are sufficient
to determine % and » throughout > and, in particular, at all points of I'.
It is then required to find that function 6(z,y), in Y, which maximizes an
integral of the form:

I= § (lu + mw) ds, _ (3)
r

where ds is the magnitude of a small displacement along I', and ! and m
are specified functions of position on I.
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The problem, as just stated, differs from problems of importance in
chemical engineering in two respects ; firstly eqns. (1) and (2) are normally
replaced by the more general forms:

ou du ,
a_ +B@' =f(u,v, 0)1 (1 )
a'v a'U ’
Y 3 +85?;=g(u,v,0), (2"

in practical problems, and secondly the boundary I' is most frequently a
simple rectangle. The first difference is unimportant, since a linear
transformation of the independent variables can always be used to
transform (1’), (2) into (1), (2). This transformation will distort the
rectangular region of interest into a parallelogram, so the introduction of
the more general boundary I" genuinely widens the class of problems treated.

Certain variational problems with hyperbolic partial differential
equations as side conditions have been considered by Egorov (1964), but
the interesting features of the present class of problems do not appear in
Egorov’s work.

§ 2. Tue ErFECT OF THE CHARACTERISTIC SEGMENTS

Variational problems are usually dealt with by expressing a small
variation 81 to first order as an integral over the region of interest of the
corresponding small variation 86 in the available variable. The resulting
expression can either be employed as it stands in one of the direct methods
of the calculus of variations (Leitmann 1962), or used to provide necessary
conditions for a stationary value of I in the form of Euler-Lagrange
equations. Thus the central mathematical problem is the expansion of
81 to first order in 80, and in order to accomplish this in the present case
consider the linearized form of eqns. (1) and (2) relating small variations
in %, » and 6, namely

0 F s f of
% (du)= 30 8 v+ 8680 (4)
and
: dg dg
—(8) 8 +88+5589 (5)

Introduce variables and X ad]01nt to % and v respectively and satisfying
the differential equations:

o of _ 9
% i P X3u (6)

and

ox ., of 9
3y Sbé?—) X7, (7)
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Then

0 0 _(,0f o

5 (30) + o (o) = (‘/’379 + X%> 56.
Integrating over > and using Gauss’s theorem, this gives:

ﬁ (roghdu — 7y x0) ds = f f i (""% + ng) 50 dy, (8)

where (r,,7,) are the components of the unit tangent to I' in the direction

of integration.
Now du=0 on I', and Sv=0on I',, so if we could choose

Top=1 atallpointsof I' — T", 9

and

—7x=m  atallpointsof I'—T,, (10)
the left-hand side of (8) would be equal to 61 and the desired expansion
would be accomplished.

However, (9) cannot be satisfied on the horizontal segments of I'— I",
(unless I = 0 there), since 7, = 0 at all points of these segments, and similarly
(10) cannot be satisfied on the vertical segments of I'-T', (unless m =0
there), since ,=0 at all points of these segments. Thus (8) cannot be
reduced to an expansion of 81 by choice of the boundary conditions for the
adjoint variables when I' contains finite horizontal and vertical segments
which make contributions to both terms in the integrand of I. The
remainder of the paper will show how this difficulty can be overcome.

§ 3. THE FIRST VARIATION

Referring to fig. 1, produce into the interior of 3> all horizontal segments
of the are BCD and all vertical segments of the arc CDA, thus obtaining fig. 2.

Fig. 2

~—>
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If b is a typical horizontal segment, denote its end points by b, and b,,
as indicated, and the point where its projection meets I' again by b,. For
horizontal segments of the arc DAB, b, may be regarded as coincident
with b,. The corresponding points of a typical vertical segment B8 are
denoted by B,, B; and B,, and if the segment belongs to the arc ABC, 8,
may be regarded as coincident with §;.

Now introduce a set of functions A (z), defined on the lines b,, b,, b,, where
they satisfy the differential equations:

ar, f

a
az = _’\b% —ly(%), (11)

with
Ap(bs) =0, (12)
and
Iy(x)=Il(z) on b,—>b,
=0 on by—b;. (13)
Then from (4) and (11):

d o of
d_x (Abau) 4+ leu = Ab —a-a 89 + Ab a—v S’U

on b,—>b,, and integrating both sides of this between b, and b, gives:

lb‘udx_f ’\”a 86dx+f A,,a Svda,

b,

since Ay=0 at b, and Su=0 at b,. This may alternatively be written:

f (lSu Abava)dx—f o 80d +f M, fSde (14)
by

A set of functions uy(y) may similarly be introduced on the vertical
segments where they satisfy the differential equations:

dpg 99
d—y = _‘U’BB_Q) mg(y) (15)
with
.“'s(ﬁz) =0 (16)
and

mg(y) =m(y) on B, B,

=0 on B,—B;.
Then similar reasoning to the above shows that

B 9g B g
* msv— ,Lﬁ  su)dy= f 1p 2 50.dy + f we D sudy.  (18)
B g 00 g, = OU
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The lines obtained by producing horizontal and vertical segments of I
divide } into a number of sub-regions. Denote by I the closed boundary
of the ith sub-region 3, and in each region introduce two functions
and y satisfying the differential eqns. (6) and (7). Then, applying Gauss’s
theorem to the sub-region Y, it follows, in the same way as (8) was obtained
from (6) and (7), that

ag
ff; (oSt — 7, x80) ds = ff ( = +Xao)80dxdy (19)

Provided the mtegrals on the left-hand s1de are all takenround the bounding
curves in the same sense (say, anti-clockwise), they may be added to give
an integral round I' together with contributions from each of the lines
obtained above by producing horizontal and vertical segments into 3.
Thus, on adding eqns. (19) for all %:

by
§ (ropdu— Ty x8v)ds + > f (x;— x.)0vdx
r )

+§f: ~ i) Sudy = ff(ao-l-xgg)%dxdy, (20)

where x; denotes the value taken by x on approaching the projection of a
horizontal segment from below and y, the value taken on approaching this
line from above, and similarly ¢, and ¢, denote the values taken by  on
approaching the projection of a vertical segment from the left and right

respectively. _
Now denote by I' that part of I" which belongs neither to horizontal nor
vertical segments, so that the left-hand side of eqn. (20) may be written :

f (g8t — 7, xO0) d = f (rapdu—1yx0)ds + 3 f (= 7,xS0) ds
T T b Jb

+ Zf (Topdu) ds. (21)
g Je
Here
f (—7yx0v)ds
b

denotes the integral along the horizontal boundary segment b in the
sense of traversal of I', and will therefore be

bs
f (— x8v) dx
b

in some cases and

fbl(—XSv)dw

by
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in others. Using the same notation, the left-hand sides of eqns. (14)
and (18) may be written as:

f <l8u Ap —Z 81)) ds and f (mSv—pb 6_ 8u> ds
b 0v 8 ou

respectively.
By adding all eqns. (14) and (18) to eqn. (20), using the form (21) for
the left-hand side of (20), we may obtain:

f rgbu—rdv s+ 3 f [lSu— (Ab% +Tlx> 3«:] ds

+ Zf [mSv— <p,ﬁ 72¢> Su:l ds+ EJ < — Xu— af> Svdx

+zfﬂo(¢, gy — ;LBa)Sudy zf A,,-a—Sde+ zf pBaBSde

f f (¢ 2 )80dxdy (22)

Now 8u is finite on I'—T",, where « is not specified as a boundary
condition. Let us therefore choose i so that

T2¢=l: (23)

at points common to I' and I'—T',. Referring to fig. 1, this specifies a
boundary condition for ¢ at points of the arc BCD not lying on horizontal
or vertical segments. Similarly, since 8v is finite on I'—T',, we may
choose

—TiIX= m, (24)

at’points common to I'and I' - I',, and this specifies a boundary condition
for x at points of the arc CDA not lying on horizontal.or vertical segments.
Then from eqns. (23) and (24):

f~ (rspdu — 7, x8v) ds = J: (I8 + mdv) ds. ~(25)
i

r

On horizontal segments belonging to the-arc ABC where v is specified,
Sv=0 and

f [zSu—<,\,,Z_J;+TIX> 80] ds= f 15w ds = fb(l8u+m87))ds. (26)
b b

On horizontal segments belonging to the arc CDA, however, v #0, but we
mmay choose x:so-that
-of

-"'1X+Ab5‘ = '-—‘m, :(27)
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thus ensuring that eqn. (26) is satisfied for these segments also. Equations
(24) and (27) together determine x at all points of the arc CDA not belonging
to vertical segments and therefore provide appropriate boundary conditions
on I' for eqn. (7).

On vertical segments belonging to the arc DAB where u is specified,
du=0and

f I:m&) - (,u,ﬁ % —1'2(/1) Su] ds= f mdv ds = f (6w +mdv) ds. (28)
8 B B

On vertical segments belonging to the arc BCD, however, §u # 0, but we
may choose s so that

0
R )

when eqn. (28) is also satisfied for these segments. Equations (23) and
(29) together determine ¢ at all points of the arc BCD not belonging to
horizontal segments, and therefore provide appropriate boundary
conditions on I' for eqn. (6).

Finally, choose the discontinuities of s and x on the projections of
vertical and horizontal segments respectively as follows :

5 .
=1, +p, 55,' on By (30)
and
P
X’=X"+’\"a—£ on  by—b,, (31)

so that the last two terms on the left-hand side of eqn. (22) vanish.
Using eqns. (25) to (31), eqn. (22) may now be reduced to:

f (ISu+mdv)ds+ f (5w +msv)ds+ 3 f (1% +mdv) ds

- zf )\baesﬁdx+ zf 2 50dy + ff (‘/’ae +xaa> 80 dz dy.
But the left-hand side of this is simply :

1

§ (Su+mdv)yds or 8,
r .

SO
99
$I— zf /\baOSde+ zf pﬁaosedwjf (t/lao+xao>80dxdy, (32)

which is the required expansion of 8I to first order in 8. Note that
eqns. (23), (24), (27), (29), (30) and (31) provide just the boundary conditions
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required to determine a solution of eqns. (6) and (7) in each of the sub-
regions 3; into which Y is divided by the projections of horizontal and
vertical segments.

§ 4. DiscussIioN

Comparing eqn. (32) with the form it assumes in the absence of finite
horizontal and vertical boundary segments, namely

ST= ”E (¢-gig+xg_g)sodxdy. (33)

It is seen to contain additional contributions in the form of line integrals
along the singular segments of the boundary, and along the projection of
some of these segments into the interior of >. This means that a per-
turbation of 8 confined to a small horizontal line element, such as PQ or
P'Q’ in fig. 2, will make a first-order contribution to 8I if the element
lies on the projection of a horizontal segment of T, as in the position PQ,
but will contribute only to higher order if the element does not lie on
such a projection, asin the position P’'Q’. This is perhaps hardly surprising
since disturbances propagate along the characteristics of eqns. (1) and (2). -
The lines of discontinuity of ¢ and x in the interior of Y are also a result
of the presence of the singular segments in I'.

Any perturbation 86(x,y) which has the same sign as A,0f/00 at all
points on by—>b, (all b), the same sign as 109/00 at all points on By —>B,
(all B), and the same sign as (0f/28) + x(9g/00) at all other points, will
increase the value of I, so eqn. (32) provides a means of selecting small
changes in § which will increase the value of the objective function I
and permit a hill climbing’ procedure to be devised for its maximization.
The functions 8(z,y) generated in this way need not, of course, be
continuous, and may in general have discontinuities wherever ¢r or x is
discontinuous.

Alternatively eqn. (32) yields necessary conditions for a stationary
value of I in the form:

)\bg—g =0 on by—>b, (all b), (34)
a9
hazg =0 on Bo-fs (all B (35)
and
1/1-2'5 + Xg% =0 (all other points of Y). (36)

Once again, asolution of these equations will, in general, have discontinuities
wherever ¢ and x are discontinuous.
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ABSTRACT

Questions of optimum start-up and control of certain types of chemical
plant find mathematical expression as variational problems in two indepen-
dent variables with hyperbolic partial differential equations as side-conditions.
It was shown in Part I of this work that such problems have interesting
features when the integral to be extremized is taken round a closed curve in
the plane of the independent variables, and this curve includes finite straight
segments parallel to the characteristics of the differential equations.

In the present paper the first-order variational theory described in Part I
will be extended to obtain a result analogous to Pontryagin’s maximum
principle.

§ 1. BRIEF STATEMENT OF PROBLEM
THE problem has been formulated in Part I of this work (Jackson 1966),
and the formulation will be reiterated briefly here for convenience.
We are interested in two functions % and v of two independent variables
x and y, which satisfy the differential requations:

ou

o =f(u,'v,0), . (1)
0
—aiy’ = g(u,v,0), 2)

in the region X enclosed by the curve I', which may include finite straight
segments parallel to the coordinate axes as indicated in fig. 1, where
segments parallel to the z-axis are denoted by a,b,c,... and segments
parallel to the y-axis by «,B,y,.... No two vertical segments have the
same abscissa and no two horizontal segments have the same ordinate.
The points of I' with largest and smallest abscissa are denoted by C and A,
and the points with largest and smallest ordinate by D and B respectively.

u is specified at all points of the arc DAB not on horizontal segments,
and at the left-hand end-points of these segments, while v is specified at
all points of the arc ABC not on vertical segments, and at the lower end
points of these segments. Denote the sub-sets of I' on which » and v are
specified by T', and T, respectively. These boundary conditions, together

+ Communicated by Dr. A. T. Fuller.
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with eqns. (1) and (2), determine « and » at all points of £ and I" when the
function 6(z,y) is given. The problem is then to find necessary conditions
for the function f(x,y) to maximize. an integral of the form:

'1=3§ (lw+mv)ds, , (3)
ot

where ds is the magnitude of a small displacement along I' and I and m are
given functions of position on T

Fig. 1

€ —

Xt

The problem will be approached by considering perturbations of
0(z,y) which have a small effect on I, not because they are small in
magnitude, but because they are localized in a small region of the (x,y)-
plane. The course of the argument is influenced by the location of the
region in which 6 is perturbed in relation to the horizontal and vertical
segments of I’ and their projections into X, and three types of location
are dealt with separately in the three succeeding sections.

§ 2. A NECESSARY CONDITION AT A GENERAL PoINT oF T

We shall consider a perturbation of 6 which is not necessarily small in
magnitude, but is localized in a small neighbourhood of a point P(x,, ¥,)
of Z. The course of the derivation depends to some extent on the location
of P, as previously noted, and we first consider the case in which P does
not lie on any horizontal or vertical segment of I, on the projection of any
horizontal segment of the arc BCD into X, or on the projection of any
vertical segment of the arc CDA into £. Such a point will be referred to
as a ‘general’ point of Z.

Specifically, let § be changed to 6+ A6 in the small square region
Zy—O& =y, Yy— 8 —>y,, as shown in fig. 2. This induces small but finite
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changes du and &v in « and » within a region occupying the first quadrant
of a pair of horizontal and vertical axes with the point (z,— 8¢,y,— 8§) as
origin. u and v are unchanged elsewhere, so attention can be confined to
the part of T lying in this quadrant, as indicated in fig. 2. The horizontal
and vertical lines through (x,,7,) meet the bounding curve I'" at Q and R
respectively, while the corresponding lines through (z,— 3¢, y,— 8¢) meet
T"at Q and R'.

Fig. 2

A i

{
I
]
! c
P(xo Yo) P3l
7 Q

(Xo-5E.yo ~6E)

X =

The segment Q>R of ' will be denoted by ¢ and will, in general,
include a number of finite horizontal and vertical segments. Figure 2
shows just one of each type for simplicity in drawing. Those horizontal
segments of € which also belong to the arc BCD of T' are produced back
to meet either T or the line PR at a point which will be denoted by b; in
the case of the horizontal segment b. As in Part I of this work, the end-
points of the horizontal segment b will be denoted by b, and b,, and this
notation is illustrated in fig. 2. (If the produced segment meets I’ rather
than PR, b, is, of course, identical with the point b, introduced in Part 1.)
Similarly the vertical segments lying in % and the arc CDA of T are pro-
duced back to meet either I" or PQ in points such as ;. Those parts of the
arc € which belong neither to horizontal nor vertical segments will be
denoted by €, and the region enclosed by € and the straight lines PQ and
PR will be denoted by &. :

When @ is perturbed as described the integrand of (3) is changed only
on the arc € and the small arcs QQ’ and RR’, so:

81 = 8L, +81,+ 8L, 4)



588 R. Jackson on

where
SI, — L (15w +mdv) ds, (5)
8L, = fQ (lou + mdv) ds - (6)
and ¢ )
oI = f:: (18w +mdv) ds. (7)

81 will be evaluated in three stages; firstly, 81, will be related to changes
in % and v along the lines PQ and PR ; secondly, the contributions from
PQ and PR will be related to variations in » and v at point P; and,
thirdly, the variations in % and » at P will be related to A8 and the
contributions 87, and 8I; will be added.

Stage 1

As in Part I of this work, variables ), and t4 are introduced, associated
with the horizontal and vertical segments respectively and satisfying :

dr, of
dx - —)‘b%_ ly(x) (8)
with
)‘b(bz) =0 (9)
and
lyx) =lxz) on b;—>b,
=0 on by—>b (10)
together with
dug _ 99
W_"‘V'ﬂ%—mﬂ(y) (11)
with
tg(Ba) = 0 (12)
and ,
mp(y) = m(y) on B;—B,
=0 on By->B,. (13)

We also consider the linearized form of eqns. (1) and (2) relating small
changes in % and v, namely:

o . . of. of
and
0 _og og

Terms in 86 do not appear in these equations, since § remains unchanged
throughout the region considered.
From (8) and (14):

d of
p (ApSu) +1,8u = A, s ov,
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and integrating between the limits b, and b,
b b
|)\b8u|,’§=+f ouds = | 2 L svdz.
3 by bs v

Since A,(b,) =0 and I, =0 on ba—>b1, this gives:

b 3f
. Budx = 3 Svdx + (A, Su)y,. (16)
Similarly, for a vertical segment B :
p ]
2mS’udy = f ,uﬂa Budy-i—(,uﬂSv)ﬂa (17)
A

Now & is divided into sub-regions %, by the projections of horizontal
and vertical segments of €. As in Part I, introduce variables ¢ and x in
each sub-region, satisfying the differential equations:

o o 39
ox l‘bau Xou’ (18)
X~y -xp. 19)

Then if %), is the (closed) boundary of the sub-region %, it follows from
Gauss’s theorem, using eqns. (14), (15), (18) and (19) that

(Topdu — 7, x8v)ds = 0,
Cr

where ¥ = (74,7,) is the unit tangent vector to %,. (The argument is the
same as that leading to eqn. (8) in Part I.) Adding these equations for all
sub-regions then gives:

(J: + L} + J:) (Todu — 7y xOv) ds + %J:(Xl — xu) Svdx

A
L f (h—yo)Sudy =0,  (20)

where y, and x, are the values of x on approaching the projection of b
from below and above respectively, while ¢, and ¢, are the values of ¢
on approaching the projection of B from the left and right respectively.
Now in general 7, ds = d and 7,ds = dy, while on PQ 7; = 1 and 7, =0,
and on RP 7, = 0 and 7, = — 1. Thus (20) may alternatively be written:

b A1
f (radu—ry xS0)ds + % f <xl—xu)8vdx+zf () Sudy
¢ bJbs B JBs

Q R
=f XSvdx+f Jsudy. 21)
P P .
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Equations (16) and (17) may be re-arranged in the form:

f (lSu Ay va)d:c—-f Ab 8vdx+()\ Su)y,s (16")
by
and
P2 ag _ b1 ag ,
fﬂl (mSv—p.ﬂ%Su)dy = fﬂspﬂ%Sudy+(yﬂ80)ﬂ3. 17")

Adding these for all values of b and 8 to eqn. (21) and separating the first
integral on the left-hand side of (21) into contributions from the horizontal
and vertical segments and from %, we obtain:

f (ropdu — 1y xOv) ds + Z [lSu - ()\b a%{-}— A X) 81}] dx
b
9
+ Z /h [mb‘v - (,u.ﬂ% — T ¢:) Su] dy

of
A
+3 [ (=g 52) budy

- f ® dvda+ f “USudy + 3 (N Sk, + 3 (115 50) (22)
P . P b B

Now let ¢ and x be required to satisfy the boundary conditions derived
in Part I of this work, namely:

at points common to I' and I' - T, where T' is that part of I which belongs
neither to horizontal nor vertical segments:

—TiX=Mm (24)
at points common to I and I'-T',:
' 0
72‘/’_/"ﬁ5§=l (25)

on vertical segments belonging to the arc BCD, and

9
Xt h = —m - (26)

on horizontal segments belong to the arc CDA.
The discontinuities of 4 and x on the projections of vertical and hori-
zontal segments are also chosen so that

)
= ¢r+.“pggl’ (27)

and
2
xXi = Xu+)‘ba_{)“ (28)
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Conditions (23) to (28), together with eqns. (18) and (19), suffice to
determine ¢ and y at all points of Z and T when 6(z,y) is given.
Using these conditions eqn. (22) is considerably simplified to:

Q R
f (Idu +mdv)ds = 81, = f xdvdx + J JSudy + 3 (A Su)p, + X (12530) 4,
4 . P P b B
(29)

This relates 8/, to changes in % and v on the lines PQ and PR and
therefore completes Stage 1 of the argument.

Stage 2
Tt is now required to find v on PQ and 8« on PR for use in eqn. (29).
In view of the localized nature of the perturbation in 6:

Sv(x,y,—0£) =0 for x>z, (30)

so a Taylor expansion gives:

dv(z,y,) = [E)a—y (Sv)] SE+0(883). (31)

T,Yo—08§

From eqns. (15) and (30)

0 Jg dg P
— Sv] = [—Su] = [—Bu] +0(3
[ay ( ) x,Yo—0% ow z,Yyo—-0& ou Z,Y0 ( g?

and using this in the right-hand side of eqn. (31) gives:

dv(x,y,) = 8¢ [S—Z Su] +0(5€2). (32)

Y0

With this value of 8v(x,y,) we then have:

Q Q g9 4
f xdvdr = 8§f x5 dudx+ O(8€2). (33)
P p’ou
At all points of PQ, other than the points o, 8,73, ---, v, Where it is
intersected by the projections of vertical segments of T', i satisfies
eqn. (18). Thus, from eqns. (14) and (18):

9 (o of of . o9\ o dg

ax(l,l:Su) = ¢(%8u+51—)8v) —8u(¢a—u+x5&) = c//%Sv—xé—z—LSu. (34)

But from (32):
8v = 8u0(8¢) + 0(8£2)

‘at all points of PQ, so the first term on the right-hand side of (34) is an
order smaller than the second, and we may write:

2
o (du) = — X%Su +0(8¢), (3%)

which is valid at all points of PQ except og, B3, ¥3, -5 V3
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The value of x(dg/0u)du given by eqn. (35) may not be substituted
directly in the integrand of the right-hand side ‘of eqn. (33), since 4 is
discontinuous at the points ay, 85,3, ...,v; and the left-hand side of (35)
does not take a finite value. However, we may write:

Q 39 _ o B3 73 Q 3g
fpxﬁ&udx = (JP +L3 +J3 +...+L)X%8udx.

Equation (35) may then be used in each separate integral so that eqn. (33)
becomes:

Q a Ji23 Y3 Q ag
fx&)dx=—8§(f +f +f +...+f )x——8udx+0(8§2)
P P o3 3 V3 ou

= — 8&[(h 8u) o, — (Pdu)p + (¢ 0u) g, — (hp 8U)y, + ...
+ (du)q — (4, 6u),,] + O(3€?)
or
Q
fp xdvdz = 35{(¢3u)p — (pdu)q —- %‘4 [ — i) 8'“],93} +0(3¢€%),  (36)
and by similar reasoning, using an equation analogous to (32), namely:

du(x,y,y) = 8¢ [g&)] +0(3¢?), o (37)

it can be shown that

R
fp youdy = af{<x8v>P ~ (00— Sl —x) Sv],,a} +O@BE).  (38)

Equations (36) and (38) may now be used to determine the integrals
on the right-hand side of eqn. (29), and the values of S and 8v in the sums
on the right-hand side of this equation may be obtained from eqns. (32)
and (37), with the result: '

51, = ag{wau)P— ($ou)a =3 [(%—%—#ﬂ%) 5“] N

+ e == (u=xa—h ) 30] | +0008)

Conditions (27) and (28) then show that each term in the sums over b and
B vanishes separately, so this reduces to:

81, = SE[(Pdu)p — (Po)g + (xB0)p — (xO0)m] + O(3E3), (39)

and this completes Stage 2 of the argument. From now on we shall drop
the terms of O(8¢2) for simplicity in writing.

Stage 3

Finally, it is necessary to add 81, and 81, to 81, and to express Sup and
dvp in terms of Af.
From boundary conditions (23) and (24), ¢ = I/, at Q and x = —m|r,
at R, so:
SE[(Ydu)q + (xdv)r] = [(I18u) 8¢[7,]q — [(mv) 8¢/7]R. (40)
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Now if 8sq is the length of the small displacement Q'Q and by dyq its
vertical component, we have:

ByQ = T SSQ.

But §yg = 8¢ since I' is traversed in the direction of increasing y at Q,
so this becomes:
3¢[Ty = 8. (41)

Similarly, if 8sg is the length of the small displacement RR’ and dzy its
horizontal component, we have:

SxR = v‘rl SSR.

But dzz = — 8¢, since I' is traversed in the direction of decreasing x
at R, so this becomes:
—86/71 = SSR. (42)
Using (41) and (42) eqn. (40) becomes:
SE[(Ydu)g + (xBv)r] = (I6uds)q + (mdvds)y (43)
and using this, eqn. (39) becomes:
8L, + (I8uBs)q + (mdvds)g = [(Ydu)p + (x3v)p] 8¢, (44)

omitting terms of O(8£%) on the right-hand side.
Since Q'Q is small, we may write:

. .
8L, = f (18w +mdv) ds = (Idu +mdv)yds + O(8£2).
o

But according to eqn. (32):
v = 8uO(8€) + O(8€%) on PQ,

so the above becomes:

31, = (Iduds)q + O(8£?). (45)
Similarly, using eqn. (37), it follows that
31, = (mdvds) +0(8€?), (46)
and using (45) and (46) in eqn. (44): _
81 = 81, + 81, + 381, = 8&(hdu + xdv)p, (47)

omitting terms of O(8£2).

From differential eqns. (1) and (2) for » and v, the changes dup and
8vp resulting from the perturbation Af can be found. It follows from
eqn. (1) that

Su(Zg, Yo) = du(xy —8E,y,) + 8ELf (u, v, 0+ A8) — f(u,v,0)],, ,,+ O(8£%),
and since % is unchanged at (x,— 8¢,,), the first term on the right-hand
side of this vanishes and we may write: '

8u(y, Yo) = SE(AS) 1o, + O(3€7), * (48)



594 R. Jackson on

where
(Af):co,yo = [f(u7 v, 0+ Ao) _f(u’ v, 0)]:1:0,110' (49)
Similarly, using eqn. (2), it can be shown that
8v(%y, Yo) = 8E(AG) e + O(8E2), (50)
where
(Ag)xo,yo = [g(ua v, 0+ Ae) - g(u, v, 0)]10,1/0' (5 1)

Using (48) and (50) in eqn. (47) then gives:
81 = SE2[YASf + xAG)roe
ol = sz[A(‘/‘f+ Xg)]xo,uo’

omitting terms of higher order in 8¢.
If I is to be maximized by the function 6(z,y), it is necessary that
81 <0 for all Af and hence, from eqn. (52), it is necessary that

Alff+xg)<0 (83)

for all Af at any ‘general’ point (z,¥,). Note that Af is not necessarily
small, so that 8’ = 8+ A6 may be any other permissible control function.
It therefore follows that (z,y) must be chosen at each point so that

H(O) = Jf +x9 (54)

takes its largest possible value, regarded as a function of 8, for fixed values
of , x, w and ». This is a result analogous to Pontryagin’s maximum
principle for extremal problems with ordinary differential equations as
side-conditions, and provides a necessary condition for the maximization
of I stronger than that obtained from the theory of the first variation in
Part I of this work.

or (52)

§ 3. A NecessarRY CONDITION AT A PoOINT LYING ON THE
PROJECTION OF A HORIZONTAL OR VERTICAL SEGMENT OF I’

Figure 3 illustrates the case in which P lies on the projection of a
horizontal segment B,B, of I'. In the notation previously used, P then
coincides with B,.

In place of the square used in the previous discussion, the perturbation
of # is now confined to a line segment (2, — 8¢, ¥o) = (%o, ¥,), as indicated in
fig. 3. The result will be a perturbation of the integrand of I confined to
the arc B,B, 8,8,0:.0; RR’ of T, as drawn in fig. 3. Only one vertical and
one horizontal segment are indicated between B, and R but in general, of
course, there may be a number of segments of each type. As before, the
arc B,—~R will be denoted by % and the sub-set of points on this arc
belonging neither to horizontal nor vertical segments will be denoted by é.

Stage 1 of the argument for a general point P may be taken over
unchanged in the present case and leads to an equation analogous to (22),
except that Q is replaced by B, and it is important to remember that the
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value y,, must be taken for x on PB,, since th1s is a line of dlscontmulty of
x- Thus eqn. (22) becomes:

by of
f (Topdu — 7, x6v) ds + Zf [lau — ()\b % +7 x) 8?)] dx
P v
+2, [mSv—(pﬂ§—72¢) Su]dy
z;l of
+ %fba (Xl_Xu_Ab '3—5) Svdx
A ag
B, R
= f Xu OV dx + f Joudy + X (A %), + X (1 00)5,.  (55)
2 P b 8 :

Fig. 3

68} P(Xo,Yo) p3;

) Bg . 81 B\

X ——

Now add to eqn. (55) the equation of type (16’) associated with the
horizontal segment B, namely:

Bs B1
f (lSu —Ag afSU) dx = aaf Svdx + (Ag du)g,
B,

and, at the same time, use the boundary conditions (23) to.(28). The
result is:

by
ﬁ(lSu +mdv)ds + Zf (I6u + m8v) dx
@
+ Zf l8u+m8v) dy+f (lSu A va) dx
B,

B,
= L (Xu +Ag é) Svdx + fP Youdy + % (Ap Su)p, +4§ (15 Sv)& + ()\B'Sza;g-
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Now since the perturbation in 6 is confined to a line element collinear with
B;B,B,, v = 0 at all points of B;B,B,, and

B, of B, B,
f (lSu— )\B——Sv) dx = budx = f (6w +mév)de.
B, v B, B,
Thus the left-hand side of (56) is simply 81, the contributions to 81 from
the arc B,—~R of I', and the first and last terms on the right-hand side
vanish, giving:

R
SI, = f | $Budy -+ 3 (3 Suly,+ (A S0 (57)

This completes the analogue of stage 1 in the previous discussion.
Stage 2 of the previous discussion may also be used virtually unchanged
to show that

R
f ysudy + X (N, Bu)y, = SE(x0)p — (x30)r] + O(3£2),

P b

so eqn. (57) becomes:
O8Iy + 3¢ (xdv)r = 3€(xBv)p + (A Su)p + O(8£%). (58)

The first term on the right-hand side of this vanishes, since 6» = 0 at P.
Furthermore, the reasoning which led to eqns. (43) and (46) remains
valid, and in the present case shows that:

- 0&(xdv)p = (mdvds)g = 8L;+O(8¢£?),
so (58) becomes:
' 8l = 81+ 81, = (A5 du)p,

neglecting terms of higher order in 8¢.
But Sup is given by eqns. (48) and (49) as before, so

8l = 8£(AB Af)zo,yo = Sf[A(ABf)]xo,yo’ (59)

neglecting terms of higher order in §¢.
If I is to be maximized by the function 6(z,y), it is necessary that
81 < 0 for all A8 and hence, from eqn. (59), it is necessary that

AAsf)<0

for all Af. Since Af is not necessarily small it follows that 6(x,y) must
be chosen at each point on B;B, so that

Hy(0) = Apf (60)

takes its largest possible value, regarded as a function of 6, for fixed values
of A, » and v. Once again this is a result analogous to Pontryagin’s
maximum principle, but the Hamiltonian Hy to be maximized along the
projection of a horizontal segment differs from the Hamiltonian H defined
by eqn. (54), which is to be maximized at points of £ not lying on pro-
jections of horizontal or vertical segments of T'.
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Applying the same reasoning to points lying on the projections of
vertical segments, it is found that 6 must be chosen at such points to
maximize the Hamiltonian:

Hp(o) = K1g9- (61)

§ 4. A NECESSARY CONDITION AT A PointT LyING ON A
HORIZONTAL OR VERTICAL SEGMENT OF I

Finally, it is necessary to consider the case in which P actually lies on
one of the horizontal or vertical segments of I', as indicated in fig. 4 for
the case of a horizontal segment. Then a perturbation of 8 in the small
interval (zy—8&,¥,)— (o, ¥,) only affects the contribution to I from the
segment PB, of I

Fig. 4

[ JP(ch Yo) B,
S
By (Xo-5&Yo)

X —t

On PB,, du satisfies:
d of
In (Su) = 7-8u

ou
since v = 0, and using this and eqn. (8), it follows that
d
Tz (Agdu) = —16u,

whence, integrating between P and B,:
By
(Agdu)p = f Budx = 481.
P
Sup is still given by eqn. (48), so it follows that
81 = 3£ Af )y gy, + O(8€2)

81 = S¢[AMBS)zoe (62)

neglecting terms of higher order in 8¢.
28

or
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This is identical with eqn. (59), and it follows in the same way as before
that 8 must be chosen so that
Hg = Apf

is maximized. Similarly Hj, given by eqn. (61), must be maximized at all
points of vertical segments of I.

§ 5. CONCLUSIONS

It has been shown that a necessary condition for 8 to maximize I can be
framed as the requirement that 6 should be chosen at each point to
maximize a certain function of 8, which may be constructed by integrating
the given differential equations and other differential equations adjoint to
them. To this extent the result resembles Pontryagin’s maximum
principle, valid for maximization problems with ordinary differential
equations as side-conditions.

However, the Hamiltonian function to be maximized must be con-
structed in different ways, depending on whether or not the point con-
sidered lies on a horizontal or vertical segment of the bounding curve or
the projection of such a segment into the interior of the region of interest.
The adjoint variables must also have discontinuities of specified magnitude
on crossing such lines. '
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The optimal use of mixed catalysts for two successive

ohnica.l reactions

R. Jackson
(University of Edinburgh)

When the conversion of a feedstock to a product takes place
in two chemically distinct steps, each of which is promoted by a
different catalyst, Gunn and Thomas recently showed that there are
advantages to be gained by mixing the catalysts in a single reactor
rather than carrying out the two reaction steps separately, In this
paper the Maximum Principle is applied to the problem of determining
the optimal variation in catalyst blend along the reactor, and for a
simple first order kinetic scheme it is shown to lead to a complete

solution in closed form.



Introduction.

Chemical reactions of economic importance often take place in
several steps through a number of intermediate products, and each stage may
be catalysed by a different oataly*‘c:lo substance, The simplest example of
this is the pair of successive reactions

} 3
A= B (1)

which it is common practice to carry out in two physically sparate reactors,
the first to convert A to B and the second to convert B to the final product
C. If both reactions are catalytic, the first reactor will then contain only
the catalyst for reaction 1, while the second will contain the catalyst for
reaction 2,

However, Gunn and Thonaa(1) have pointed out that, in certain
circumstances, there are advantages in mixing the two catalysts in a single
reaction vessel., They quote the example of the reaction scheme

A?—Biéc (11)

which differs from the previous one only in that the first reaction is
reversible. Then if the reactions are carried out in the conventional way,
in two s eparately catelysed reactors, the yleld of C is limited by the amount
of B which can be produced in the first reactor, which is in turn limited by
the equilibrium condition for the reversible reaction. If the two catalysts
are mixed in a single vescel, however, B is removed by conversion to C and the

equilibrium restriction is removed, permitting substantially higher yields %o
be achieved.

Gunn/
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Gunn and Thomas limited their investigation to the use of a
uniform catalyst mixture in a single isothermal tubularmactor, and were
able to show that there is an optimum catalyst blend which gives the
highest yield of C for a given length of reactor., They also remarked
that it is clear on physical grounds that further improvements could be
obtained by varying the catalyst blend along the reactor, but did not
pursue this point further,

It is the purpose of the present paper to determine the
optimum catalyst blend as a function of position in the reactor. A
complete solution of this problem in explicit terms can be found using
Pontryagin's Maximum Prineiple(2), and has the interesting property of
using only a finite number of segments in the reactor, esch containing
uniformly blended catalyst. Thus the solution is of a pure "switching"
type, but it is not a "bang~bang" solution making use only of the two
pure catalysts,

Mathematical statement of the problem
Referring to reaction scheme (ii) we shall use x and y to

denote the mole fractions of substances A and B in the mixture and will
assume that all the reactions are of the first order and are carried out
in an isothermal tubular reactor. The differential equations describing
the variation of composi tion with distance along the reactor are then

ox 2 Ewk
At o) (1)

dy

o T Hlbx-koy) (1-8) kyy (2)

where/
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where t denotes residence time from the instant of entry to the reactor.
k, and k,_ are the velocity constants of reactions 1 and 2 respectively
in a reactor where the catalyst consists entirely of the substance which
catalyses the reactions AT B while K 3 is the velocity constant of
reaction J in a reactor where the catalyst consists entirely of the

-

substance which catalyses the reaction B>C. > which

we shall refer to as the catalyst blend, denotes the fraction of the
catalyst formed by the substance which catalyses the reactions ASTDB
and this fraction can be varied as required along the reactor by
suitable mixing of the two catalysts. Where the blend has the value f
the effective velooity constants are %/ ks oy U-¥ >k-5
as indicated in equations (1) and (2).

The feed will be assumed to consist of pure substance A, B0

the initial conditions are

w{g)y=14 o TR (3)

and we shall consider the problem of determining I(t) sibject to
the physically necessary constraints

O “&-if 5] )

80 as to maximise the mole fraction of substance C present in the mixture
at the reactor exit 1T = o Thus the objective function to be
maximised is

§ /‘X(T)-J(T) (5)

The/
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The problem as stated is clearly of a form to which the
Maximum Primiple(z) is applicable. The adjoint equations corresponding
to (1) and (2) are

N - ¥k ()\ -\ 6
- | 2 t) (6)
and
ow‘:_
;1--- = §k1 (x),‘);) ‘f("f) ks x2.. (7)

and the appropriate boundary conditions corresponding to the objective
function (5) are

MW= (T) =~ ¢ e=0) (8)
Then a necessary condition for optimality of I (f) is that the Hamiltonian

"’l {[(X.’l‘)‘I)(klx '/rl:J) "“/\: "rs:j] ex xl 115 J

"

~ { I — /\1 "?',J Y (:UJ \ (9)

should take its greatest value (regarded as a function of ¥ ) for each *.
since H 1s linear in F , this implies that F= O o f=/
depending on the sign of J at the point in question. ¥ may teke a
value between these bounds only if J venishes, and if this is the case

over a finite interval of t s the corresponding part of the solution

will be referred to as a singular segment.

aa t=T » taking account of equation (8), the Hamiltonian
is/



is seen to be

/—/: "C{"\’l\\j "'Cl{s\\/

and since €~ © , this is maximised by taking ¥ = O, Thus the
optimal catalyst blend starts back from £= |  with ¥ =0 , end
will retain this wvalue until J changes sign. At this point the

optimal blend may switch to ¥ = | or, in certain circumstances, to an
intermediate value of ¥ corresponding to a singular segment. In fact,
this second possibility is important in the present problem, so before
proceeding further we will investigate in more detail the possible form
of a singular segment,

Conditions for a singular segment .
If o is to take values between its bounds for the finite time

interval t,<t < t, it 14 clearly necessery that

J=CaNks-by)s\hky =0 (E<t<ts) (10)

which, in turn, implies that AV/M = O g ey #,<t <4,
Using the differential equations (1) and (2) and the adjoint equations
(6) and (7), this condition can be reduced to the form

S

ﬁ: = ks(xlk;X‘>‘,k_‘J) =) (L',<f< LJ.) (11)

Solving equation (11) for A, , and substituting into equation
(10) we then obtain the following necessary condition for a singular
segment/



segment

N 5 T ¢ ey R e

g (12)
whence
M= O (13a)
or
bigy® = (kx=hy ) (13v)

But from equation (11) it follows that (13a) would dmply N = O , and
nence 1= O at all points of the singular segment. However,

the torn ot Hod =T tas slveity been founl and been seen 5 be
maximised by ¥ = O , The carresponding maximm value of H is

"’MM(T) = Cksy > O

Thus & singular segment on wiich H= O cannot belong to the optimal
solution, since it is known from the Maximum Principle that ﬂm‘ mist
remain constant throughout the entire solution. The possibility (13a)
can therefore be discounted and we are left with (13b), which reduces to

K s lr,:} (lz/Tk’a_) (%)

Then from equation (11) the corresponding relation between the adjoint
variables is
S
22 A (15)
Equation/
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Equation (14) gives an algebraic equation for the singular
segment in the ¥~ plane and shows that it may be one of two straight
lines through the origin. It must also, of course, be 2 solution of
differential equations (1) and (2) for a suitable choice of F s and
to determine the necessary form of'}(t) we may compare the differential
equation

du k'

" [ k
Ay ks (lt F:.)
obtained from equation (14), with the corresponding differential equation
obtained by dividing (1) and (2), namely

(16)

(/ld :F(k‘x_‘(“\‘/)- ("’}) I\’Q_

(17
% ":F (’f,x-kx:/)

Evaluating the ratio J/* in equation (17) from equation (14), it is
found that (17) reduces to (16) if and only if

k _ ke - 0-6)(k/k)
k, ﬂt/ ;"':_> + £ ke i

This may be simplified by writing

k‘/fq‘—‘-ﬁ PR LA = (19)

and solving for 3 « Taking the upper signs in equation (18), we
then obtain

oL (14s)
G+ (+<)* (20)
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and correspondingly, from equations (14) and (15)

A=

i

| +
(212)

2= y/x = [&,(In() (211)

where we have introduced the abbreviations ) and Z for the ratios N, /),
and d/ X respectively. Similarly, taking the lower signs in equetion
(18) gives

5— = = ’<(I'°‘ )
p+ (=)™ .
together with
e (238)

z

R/U-2) (23v)

Now 1£ 4 < | equation (22) gives a negative value for f g
which is physically unacceptable, while if % > equation (23b ) gives a
negative value for % , which is also physically unscceptable. Thus
equations (20) and (21) describe the properties of the only acceptable
singular segment for this problem. From eqation (20) it is easy to see
that </ fora11 «,8> O, 5o this value of F 11es in the permitted
interval whatever the reaction kinetics,

‘The singular segment just found has the interesting and unusual
property that the control variable takes a constant value along it.
Thus an optimal solution of the complete problem retains its "switching"
character even when it includes a singular segment., It differs from a
"bang=-bang"/
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"bang=bang" solution only by the introduction of a third switching
level (given by equation (20)) between the upper and lower bounds of
the control variable,
The singular segment (21b) is indicated on the x-3y plane in

Fig. 1

Form of the lete solution
We have already seen that the optimal solution starts back

v ST $20 . hinltren aeechiin (1), e/l = O
and th; corresponding trajectory in the *~J plane is a line segment
parallel to the y axis, as indicated in Fig. 1. The blend ¥=0O is
retained until J reaches the value zero as © decreases, then it is
necessary to switoh to 3 = | , as at point © in Fig. 1. However, if

the/
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the vertical segment meets the singular segment at the point where J=0
there is the alternative possibility of switching to the value of & given
by equation (20) and following the singular segment for a time before
switching to £ = | . This possibility is illustrsted by the vertical
segment CD in Fig. 1.

Having switched to ¥=!, it cen be shown that the condition
J= O 1is not satisfied again, so a segment - R s corresponding
to a line of slope = 1 in the ¥~y plane, must be followed back to the
initial conditions represented by the point A (1, 0). Thus the two
possible ways of satisfying the Maximum Prineciple and the initial
conditions are typified by the trajectories ABCD, making use of the
slngular upﬁt, and AEF, which is a pure bang-bamg trejectory. If
the reactor is sufficiently short, correspondinz to a small value of T,
the switching must occur at a point on the segment = lying between
A and B, and there is no solution using the singular segment., For small
values of T, therefore, we expect to find only one blending policy which
satisfies the Maximum Principle, namely an interval with t= l followed
by en intervel with ¥ = O, For larger values of T, on the other hand,
there will be two alternative policies, one the bang=-bang policy Jjust
described, and the second making use of an intermediate switeh to a blend
lying between the two limits, Vhich of these policies gives the larger
value of the objective funection can be found only by direct comparison of
results, since both satisfy the Maximum Principle.

We shall now develop each of these solutions in greater detail,
determining the switehing points and the relation between the final vilue
of the objective function P and the totalresidence time T. The time
optimal solution will then be the one which gives the largest value of P
at a given T, and this may be found by plotting the curve of P against T
for/
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for each ecase.

The bangebang solution

Let t_ be the velue of t at which the switeh from ¥ =/ 4o
§f =0 ismede. Then J(£:)=0, and from equation (10) this implies
that

) ) [ + "(Qz',__

o (21)

at t=t, ., From equations (6) and (7) it is easy to obtain a
differential equation for >\ s Damely

Z't_é = — $0-N)(k +\k) - (1-6) Mg (25)
and on the segment $+=0 this reduces to

B Lk (26)

The segment § =Ohas the values €= Cc ama £=T o5 145 termini,
and we know from equation (8) that MNT)= | « Thus, integrating
equation (26)

>\(f,) o /f_;(T"ts)

and using this in equation (24) permits Tt to be expressed in
terms of Z_, the value of Z at the switehing point

e il f S
"% (Tra) ( B - 2s ) (27)



A second expression relating ts and %s oan be obtained directly by

=0
integrating the differential equation for -~ forwards from € .

From equations (1) and (2)

E e R A B G R Y
22 = £(1+2)(k-kz) - (-¢)

amlonthosopcntfz, this reduces to

;(% = (I-f?_) (k‘—lr,z)

But 2=C o4 £ T O 40 integrating between the 1inits €=0 ,q
t=t5 glves
e R+2z)
ko ts ‘j'@—’e" R-z, ] (28)

Adding equatioms (27) and (28) then permits T to be expressed in terms of -
kT =L 0 [Mizd | | £, (1+ %22 > (29)
H‘(ﬂ L-2s B-2s

Finally we wish to calculate x(T) > J (T) and hence P as functions
of Zs . a t =5

fls/‘xs = 2g and Jst X = ’
whence
Wl il & el o) 2
Az % I+ 24 (50)

On the terminal segment §=O' y: does not change, so
(T = % = V/(1+z)

while/

(31)



.
waile Y (T)  nmay be related to Js by integrating equation (2) after
setting ¥ = O, with the rem1lt

JEyry, e~h(Tt)
Using equations (27) and (30), this reaces to
|
y(-r) e 'jszs }: | + a&™2¢ (32)
g %3
Thus
Pt Iy ) = o A [ | ]
/ Tam 11+ &>2¢ (33)
t2g [+2 *m

BEquations (29) and (33) movide the relation between P and T
in parametric form, with %5 as a parameter., Similarly ecuations (28)
and (29) provide a parametric relation between s st 4 « Note
that | > O 88 Zs>Oanda T > 45 Z=>
so the complete range of bangebang solutions is obtained as Zs
traverses the finite interval O —> F

The solution making use of the singular segment

The path ABCD in Fig. 1 represents 2 solution which makes use of

the singular segment. Clearly this is possible only if | ~ T , Where

tc is the value of t at which the singular segment is reached along a
trajectory T =|  starting from the initial conditions. But if Cs
and Zs are replaced by t and Z in equation (28), we have a general
relation holding st any point of the segment 7 - | issuing from the initial
conditions. If, in particular, we set Z = I%/(H’") in this, we obtain
the value t = £, immediately
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I+ f

Suppose we leave the singular segment (point C in Fig. 1) at
t= tz. when y = Toe

ok, =l b [t °<+E> (34)
X

On the singular segment equation (2) reduces to

Lidy o =R
ky ot p+ (+a)*
and this may be integrated to obtain the following relation:
,gh' .‘:/L = ﬁ /\’ (f‘\'t,)
(vm) i) >

where y, =¥ (t‘), the value of y at the intersection of the singular
segment and the line x + y = 1. Clearly
& e £

' I+ o+ 8

so equation (35) reduces to

2
‘S(“:z-tl) - £+Q*°‘) 'e‘/v : ]
2 Yo (1+a+ )

on the singular aegmntwelmowthathzh"‘( s While at
t=T, Ml Thus, integrating equetion (26) between these limits
along the final segment with £ = 0 (CD in Pig. 1):

(36)

K(T-t,) = & () (37)

Then adding equations (34), (36) and (37) gives the value of T
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KT = Gnlivd) + 22 L, (1448 ) | pe(rd)a, "(é"'] (38)
I+ f ol R S (14 6)

We then wish to express P in terms of y, 80 as to obtain a
parametric rclation between P and T, with Y, @s a parameter, From the
equation of the singular segment

x(Thmnles) = lt)(1d) =" '3 ’%‘ (39)

while by integrating equation (2) along the final segment £ = 0

12 '%(T’ tg)

ST) = e = ¥, J(1#) (10)

where we have made use of equation (37)« Pinally, from equations (39)
and (40)

P=i-x@)-y(M) = I-y ,;’:* %’i (11)

Equations (38) and (41) then provide the desired parametric relation
between P and T, while equations (34) and (37) give the two switching
times which determine the optimum blending policy.

The solution is 2 valid alternative to the pure bangebang
solution only when t,>t, s of course; in other words, when

A & (42)
I+ £+ %

Numerical results
To/
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To illustrate the nature of the solution consider the values
of the kinetic constants taken by Gunn and Thomas''), nemely

k =k = | 4 k, = 10
‘A curve giving P as a function of kﬁTcanbeomtedfaﬂu
bang-bang solution from the parametric equations (29) and (35), and a
corresponding curve for the = lution making use of the singular segment can
be eomputed from equations (38) and (41). These curves are presented in
Fige 2, from which it is seen that the solution making use of the singular
segment gives the larger velue of P over the whole range ksT 7 o"*—’_’;
and therefore represents the optimum blend policy over this range of T.
when T<O'41l , on the other hand, inequality (42) is violated, so
the bang=-bang solution is the only solution satisfying the maximum
principle and therefore represents the optimum blend poliey,
k—,T= Q41| corresponds to point A in Fig, 2,
Since P represents the mole fraction of the desired product C
in the mixture leaving the reactor, it is clear from Fig. 2 that the
optimum blend policy makes use of the singulsr sezment for all reactors
which are capable of giving & reasonable yield of C,. Only for very
short reactors giving an unacceptably small yield would the bange=bang
solution be optimel. Using equations (34) and (37) it is found that the
optimal blend policy takes £ = 1 for an interval of length,

E, =080 3

at the entry to the reactor, and takes £ = 0 for an interval of length

K, (T_‘tz) = 02747

before the reactor exit. Throughout the remainder of the reacter length,
whatever/



whatever it may be (provided T > O k() of course), the blend
takes the intermediate value

+ = 02272

computed from equation (20). This is illustrated in Fig, 3, which shows
the optimum blend poliecy for T =[O .

Physically the above choice of reaction veloecity constants
corresponds to a system in which the conversion is strongly limited by
the reversibility of the reaction A = B « Thus a large
proportion of the total reactor volume available is taken up by mixed
catalyst which enables the reactions to circumvent thiz limitation.

If a smaller value is teken for K, , thus reducing the importance

of the reverse reaction, the interval occupied by mixed catalyst is
decreased and the initial and terminal regions occupied by pure
catalysts become more important. Indeed it is not difficult to see
that £, > ® when k,—= O s 50 in the limit where the first
reaction is irreversible, the bangebang solution is optimal in all cases
and the catalyst should never be mixed,

Flge 2 shows that the optimal solution using a mixed catalyst
may give spectaculsr increasesin yield compared with the conventional
arrangemont of two reactors in series, in which the reactions A TR
and B=C sre separately catalysed.
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1. Gunn, D.J. and Thomas, W.J. Chem. Eng, Sei, 20, 89 (1965).

2. Pontryagin, L.S. et al. "The Mathematical Theory of Optimel
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Captions for diagrams

Fig. 1: Solution trajectories in the x-y plane

Fig, 2: Optimum yield as a function of reactor length for the two
solutions satisfying the Maximum Principle.

k1 = k) =1, kz = 10
(1) Solution using singular segmert, (ii) Bang-bang solution.

Fig, 3: Optimal blend policy when kj‘l' = 1,0

K o=kg =1, k, = 10
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A REACTOR OPTIMIZATION PROBLEMS FOR
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vﬂfj :“ e REVERSIBLE EXOTHERMIC REACTIONS
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ABSTRACT 2
- Optimization of tubular reactors for exothermic reversible reactions is
Lconsidered. For the cases where there are no side reactions and there is
" no decay of catalyst various types of temperature control are investigated.
"The remaining cases considered are a) stable catalyst, irreversible decay
of pro@uct and b) decaying catalyst, stable product., In each of these cases
e perfect indirect temperature control is treated. Particular attention is given
' ;QAdeviging numerical mgtﬁods which take advantage of the'structure‘of the.
"fjhproblég.in quéstionfénﬂxﬁéiéonvenient representation of data.




"t . INTRODUCTION -
Some oOf the‘earliest appligations of physico-chemical
:;principlés to the design and ope?ation of gfficient industrial
iﬁchemical‘reéctors wére made for processes involving a single.
'?ireversible:reaction such as ammonia synthesis (N2 + 3H2 = 2NH3),
;ithe'Watef.gas shifﬁ reaction (CO + HZO = Céz + Hz) and the oxi--
g?rdatién 6f suiphur'dioxidé (ZSO2 + O2 = 2SO3). | -
  ?ﬁe objective of this paper is to discuss some typidal re;
{'féctor'ogtimizationAproblems ariéing With'such reactions. Impor-.

" tance will be given to the mathematical formulation of the

~different problems and to the convenient representation of
“"results. Only the general ideas behind the methods of solution
S owill be discussed. For mathematical details we shall refer to

‘"other papers.  The reactions under consideration are exothermic -

'fifWhich'means‘that the equilibrium conversion decreases with in-
‘lzﬂﬁcreasing temperature; on the other hand, the rate of the forward
143reaction increases with inéreasing temperature, and in fact, it
?A‘was early recognized tbat in the interests of catalyst economy
’1thé temperature should be high in the first part of the réactor
h#(where the:revérse reaction is slow because of lack of produéts)
(-and low in:the'last pa:ﬁ.‘ In order to achieve thig, two metnods
of coo;ing arehemployed in practice:5~ |

1) ‘indirect cooling by means of heat exchangens;_and"




2) " direct cooling by adding cold gas to the mixture.

o - B

Often in ptactice.the reactot consists of a set of stages
N‘ffffin:each.df wbich the reaction takes plaée adiabaticly while

| ”‘ibétweén;thé étages the cooling is achieved either by method 1)
??ifi{orbz);f:This'type of reactor will be called an adiabatic castade.
E?;lnhgeneral, the méximum conversion obtaipable'for given total j‘.

"amount OL catalyst, total mass flow, and inlet composition in-

creases as tne number of stages increases. It is of practical
¢+, interest to know the limit of the performance of a multistage

fﬁhreactor as the number of stages approaches infinity. This 1is

equlvalent to consmderlng a reactor in which the temperature
can be controlled by elther method 1) or 2) at any point along
fhﬂlthe,reactlon‘tube.: This type of control will be called "perfect".

{,Perfe¢t control can be approximated either by using many adia-

..« batic stages (the cross-sectionn of which can be arbitrarily

“large) or by remcving heat from or adding cold gas to the re-
TLfaction zone. In the latter case the problem of transport of

. heat and mass perpendicular to the main direction of flow

'FarxsesoﬁﬂEXamplesl_nlthls class are the U-tube and the push-pull

. reactor which will be treated later.

5 sy ase s s - e~ Qe
LB OO 20000 K0ele CLACTATIG Lo cdl 228 moneleny ) sololiyile sonetorg e L

reactions under investigation can be well approximeted by the ideal tubuilar

reactor



In other cases, for oxample indirectly cooled reactors, this plug flow
zofcl is an importent limiting case, the properties of which are of practical

in{oregt becauso thej ﬁomlly set an upper limit for the performance of

voolizeble reactors.

2 &



modei for which it is assumed that the fluid velocity, composi-
ﬁion; temperature and pressure are constant across any plane of

‘section and that there is no mixing (by any mechanism, e.g. ‘;,g«“'
' o o ‘ TVAY=X & }
"diffusion or convection) in the direction of main flow.{ The
- {' pressure.will‘be assumed to be constant along the reactor as

' 'the\influence of the pressure drop on the kinetics is negligible i

¢ fxin’ the.industrial' cases mentioned here.’

‘

, ;AAmonia synthesis,ASater gas shift regction;'and the oxi-
Q‘daﬁion%of‘gulphur dioxide can be described by a single stoichio=
’“?:metfiéfréaction. AlSo,ip these cases.the catalyst used ‘is
faifly;stable so that cétalyst deterioration shouid not be

taken into account in'ﬁhe mathematical model. Thé éeacfér

material balance. is then described by a single ordinary

'differentiallequation; In Section II of this paper we will deal

4‘7V:with this situation. In Section III a short account will be

‘given of problems arising when the reaction kinetics is more
I

.- comzlex, for one of the following reasons:

/ |
§ 1) ' the number of stoichiometricallv inde-
’2ffyﬁf' B pendent reaction§ is greater than one.
f";}f‘ ' 2) . catalyst deterioration has to be

"taken into account.
_.'".In the first case the reactor material balance is described by

7*'_ﬂ~more,than one ordinary differential equation. In the latter
‘. . L ) Lt .{. ::' ;x‘,'v-‘ ‘ "»4, . R . . L. ) )

t



" case partial differential equations are needed since there are
- two independent variables; that is distance and time. Only
~ perfect indirect temperature control will be considered in the.

last part of the paper.

iS%II;:}OPTIMUM PROELEMS WITH A SINGLE STOICHIOMETRICALLY ZINDEPENDENT

REACTJOW AND WITH STAEZLE CATALYST

A. Perfect Indireci Control

The concept of the ideal tubular reactor with perfect
. indirecc temperature control was introduced early and the problem

'5;jf"of finding the relationship between temperature and position in
"’ this reactor such that the volume required for a given duty is

EE - o 1 2-13 _, .

¢ minirum was soived by Leitenberger™ and others: the optimum

policy may be obtained by maximizing the reaction rate with

respect to temperature at each point in the reactor.

If t is the minimum reactor volume required to change the

h ®

;fractional conversion y of some reference reactant (not present
in stoichicmetric excess) which flows through the reactor in a
steady stream at a given totali mass flowrate, from O at the inlet
f”:to Y at the outlet, then it can be.shown ;hat for a large class
:;'of reacnio. rate expressions if the tf{ yf.;elat;op is plotted

2,jW1th SCaleS proportlonal to log tf and log (yf/(l-yc)) respect‘vely,

.he curve appcoaches a stralght llne as yf —» 1. These scale




.t

" transformations have been found useful for the representation

of the miniﬁum volume, yf relations for a wide class of reactors
over a consiéerable:range of yf (see Figures 4 and 5).

The curve C* divides the Yeo tf plane.(Figure 1) into two
regions, such that only points on c* and in the shaded region
belqw C* are attainable by tubular reactors with any tempera;ure

. . %
control. The boundary points of the region (the curve C ) repre-~

" sent reactors which are optimal with respect to various objective

- functions of practical sigrificance (see also Section III.A).

The boundary curve is easily obtained numericallyv from the
rate expression. Sometimes it can be expressed in terms of
. 11 . , _
known functions. In order to compare various reactor types
numerically calculations have been carried out for an example.

In this example the reaction rate expression was chosen as

. : _ _Al .
vy = Ho-pe - Hye T

the sets of parameters used are-given-in-Tablé.l and the results

of the calculations are plotted'in Figures‘3 and 5.

B. 'Perfect Direct Control

In this section we consider a reactor which has a main

feed Fo (see Figure llYiand a supplementary feed Fm.{ We shall

"For the definitiqns'of.theisymbqls see Appendix
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" treat only reactors where the compositions of F_ and F_ are zhe

‘'same.

In 'he appendix the conversion y, the variable (J (which

" is proportional to the total mass flow), the volume variables

‘m and t, and the reaction rate v(y,T) are defined.

'No special form is assumed for the function v(y,T) but the

‘thermochemistry is assumed to be such that the adiabatic tempera-

» minimum voiume m

*

. ture rise coefficient is constant. (See -Table 1.)

The minimum volume problem which we will now discuss £for

. this reactor is as follows.

For given reaction rate function and thermochemistry, feed

;conversion Yoo supplementary feed temperature Tﬁ, exit conversion
[}

z Tyf, and for W = 1 at the exit from the reactor determine the

. where the temperature T _ of the main feed
£ nin o

LN

v g

'Tzis freely adjustable and the feed distrubution W (m) is also
.freely adjustable (except that (J is,of course, to be a non-de-
‘creasing function of m, i.e. material may leave the reactor only

at the right hand end in Figure 10).

Consider the contours of the'reaction‘rate v in the plare
of y and 7. -For non-autocatalytic single reversible exothermic
reactions the rate contours for expressions proposed in the

‘literature have the shape showa in Figure 2. L

___In Reference 14 the corresponding discussion cover. . . case
of an arbitrary thermochemistry- - - R T I I
ooa - Celn - fo s

&8 B, Bt I e et < ] g
LY in orme ecaverdent to (woot i cguivalont pocblom vikre tho vardodic ©

e T mier Beeyaler ~Adradamda O A wfee) (0Commdrn T
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The subsidiary feed condition is represented by the point

0. The lines of constaht enthalpy (adiabatic trajector;es for
'i‘a tubula?;reaétor)are straight lines with the direction DE.

jCOnsider-a'po;nt in the reacnof corresponding to D. If no cold

:Vgas is added the state of the mixture will change such that fhe

;!1£-5 pbint'repfesen'ihg'it moves in the direction DE as m increases.

A
Vo

If cold gas is added at a very high rate so that the change

P

' 0f the state of the mixture by reaction is negligible in compari-

o

.. son to the change of the state due to mixing, the point represent-

; ing the state of the mixture will move in the direction DF as m

‘Tﬂinc:easeso,'All directions pointing into the shaded region bounded

.ﬂby the two directions just mentioned can be obtained by choosing

.ﬁthe‘rate of addition of cold gas appropriately. A point or the

‘:line OB however, can move only in the direction of this linre (up-
“wards. or downwards). Points to the left of this line can not be
. reached from a starting point to the right of this line.

Indirect cooling can be considered as a limiting case of

fﬁdirect_cooiing. If Tﬁvis given the value}h'OQ ( a purely mathe-
J.matical device, of cou:se) then direct coqling becomes eqﬁivalen'
Jﬁf;-to indirect cooling because by adding an infiniﬁesimally small
| amount of subsidiary feed one/can produce any'given drop in the
- .temperature without changing the composition. In this case the

R di:ection'corpequnding to DO begomes-the,directiogipa;allel to

s



n7_is not so in general. That this policy is not optimal for Y. =

the T axis. The locus of points where the rate is maximum with

- respect to displacements in this direction (i.e. with respect to

temperature variations) corresponds to optimal perfect indirect
coatrol. The curve L is the locus of points at which the rate

is maximal with respect to displacements in the direction DO.

To follow this locus is to maximize the reaction rate at each

' point in the reactor with respect to the available control. As

 pointed out such a policy is known to be optimal for perfect in-

direct control. One might be tempted to surmise that the optimal

".-control would trace out this curve L in Figure 2; however, this

u__'yf in Figure 2 is clear, and it has, in fact, been established

e -

~0f C such that the initial temperature and composition are

1

':that it is not, in general, optimai for Yo =Yg in rigure 2

2

either.

The optimal trajectory may be found by methods which have

already been éstablished.l4>3°

Except in certain special cases (which arise when Tm is
unreasonably hot with respect to Ye and will not be discussed
here) the optimal control may be described as follows.

Consider a given flowrate Yo and the corresponding value

i .

repfesented'by the point A in Figure 2. Now let w be increased

in sucH a way that the curve L in Figure 2 is traced out until
w R GPRP:- DN TR TP o . . o : A Yy
= 0 edal DY Gn Llc, 8): Uen Wi cofrdntasd crued 01 wndfd abtaling 44a

o e Tyt e Teem, LAV « - .
proesrlbell voins ye \woint 39 dn Pire )



Then for some value of C

Sy

 this'is“the-optimal policy. (Note that both vy and the break-

* .point B' are completely determined by C.) There is no simple

way to determine the optimum value of C for a given y_.. How=-
ever, by choosing several values of C one can determine the

. . . . ) ) R
corresponding y., m_. relations and the optimum relation. will o€

<.
e

‘thelir- ("savelope. (See Figure 3. for the results

corresponding to,:ﬁh =AO.Q1,fE$ = 300o and‘the first sgt of parameters in- Table I,

Thz. corrﬁsponding

~4f—f—-~-resu&tmver—perfecfwtndxfect—eenEre%~1sw&lse—e%etted~+-

©: One can shorten the numerical work by making use of the fact

-

_.“'that only one integration along the curve L (up to the furthest
' .breakpoint) is required. The contribution to ©  ~ to inte=-

gration along'L:ﬁp to other breakpoints is then easily deter-

”mlned 14 30

To compute the curves shown in Figure 3 with a relative

5aprec1510n ketter than 0.0001 in Me. not more than 4 seconds

"ffﬁl'are reguired on an ICT Atlas computer.

These optimal controls have a ‘limit as C —> 0 which may be

f~‘thought of as the entire portion AB of curve L in Figure 2 mapped

onto the entrance of the reactor (m=0) at which place w = 0, and
w(m) so adjusted to Xeep v and T in the reactor constant at values
.corresponding to B in Figure 2 until w = 1, at whig¢h stage w is
made & 1. Such alpolicy is, of course, identical to the tank-
L. l4 . :
tube policy, and it is, in fact optimal in some cases. Point

B in Figure 4 corresponds to such a control.

/
/

bi
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If yﬁ = 0, then for many reaction ratelexpressions (such
as Equation (1)), the point on the L locus corresponding to A
in Figure 2 has a Goordinaté T =00 and the above theory breaks
down..‘In such cases the optimum relation méy be Qstimatéd pre-—

ciSely_by using a slight modification of the above procedure.

C¢. Indirect Cor:trol of an Adiabatic Cascade

It has already been noted that by making T = = 0
ﬁj[y}pTdirect control becomes equivalent to indirect. The ecuations
.~ mentioned. in the following subsection can be easily sgecialized

*

. .. for this case and the equations thus obtained are well known .

#..In Figure 5 results are given for N = 1,2,3, O stages for the

. [first set of parameters in Table 1.

D. Direct Control of an Adiabatic Cascade

In this case, for given J, Y, and ‘1‘m and kinetics we

Ly wish to adjust the N-1 ratios of catalyst masses and the N-1 by-

. "pass ratios and the main feed temperature in such a way as to

3=};{'-end up with w = 1, and a given-conversion'ye and a minimum total
SENLIT . ' N
",: mass of catalyst. (See Figure 9.)
There have been many ways proposed for treating this
' - 17—2-1- : - .. . ) .
proclem. The most efficient by far makes use of the equa-
tions found by taking the derivatives of the total mass of
For a survey see page 23 of Reference 14.

1
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© --catalysts:

‘3.

‘z,‘=1

L % (%T) (2)
"with respect to a suitably chosen set of 2N-1 free variables
" taking into account the restraint relations (heat and mass

balances for the subsidiary feed addition):

= W Y. =12 .. N-I 3
ZeJ ‘ JH )}”" Jtl /"’JH » 4T D% (3)
T = W .. Lel2 e
' e. - JH ) Jr % g=he N2y
J : .
. ¢ 14;17 :
.. If this is done one obtains a set of equations first derived

. « . . K ‘ * .
‘. by K. Konoki which can, in general , be solved by treating a

', ’
'

"ser*es cf easy one-dimensional problems if T, is guessed. For

-~ *_.H-_,c.-___..-__.._._*. ——— 1
UEULANIOUERR

S U —— ‘ )
?ﬂﬁrm- eacr\waq one obtains a reator which is ‘optimal for some y_ -

)

S N
By vesying Ta, . UK>th bl Jey ﬂk'relatlon is obtained. A pro-

)
_cedure described in Reference l4 based‘on Konoki's eqguations

N /"‘*:._ e i - e s

“l . was found to be over lOO times as fast as a dynamic programming

In Figure 4 results calculated for N = 1,2,3, and CO "are
. given for the first set of reaction rate function parameters in
' ‘ " o | .
Table 1, and fory =0, T = 600K, Now T, varies along each

' 1

The discussion of these equatlons is compllcated14 and will"
not be glven here."gi_ZMHA x
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~of the curves for N = 1,2, and 3, being high for low Yo and
| : N

decreasing as Yo increases. At the ends of the curves N = 3

~and N = OO  close to B’k B o Tal =T_- The point

. . A represents the case where T_ is relatively too hot to be any

‘

. use in the case of a two stage reactor. It also represents the

.2e degenerate point for 3, 4, 5....00 staged reactors (the missing

‘v portions of the curves for the 3 and CO staged reactors were

‘not computed kut can be expected to follow the N = 2 curve

,f;velose;y and meet at the point A).

AE. U-Tube Reactors: Empty—-Full and Push-Pull Reactors

Consider the reactor shown in Figure 6 in which heat

(but not mass) may be transferred across the dividing wall. Two-

“ cases are important.

:'i,where the right hand tube is packed with catalyst but the leit

l) No reaction takes place in the left hand tube; e.g.

= d

‘“hand tukte is not. This we will call the empty-full reactor
which has found practical application‘in ammonia synthesis and
80, oxidation. | '

2) Both tubes are identical and reaction takes place in
each tube. Two such reactors are shown in Figure 8. By a
tsymmetry argument it has been shown that these two are equi-
valent* to the ceuntefcurrent scheme in Figure 7. Reactors
plug flow with no axial dispersion of mass or heat assumed, and
heat transfer orthogonal to flow with all resistance lumped into

the boundary. A constant. overalx neat transfer coef;xc;ent was
used as in Reference 22. Co :
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‘-of theée types are called pﬁsh-pull reactors because they are
'”'also eqﬁivalent, (see footnote, page 12), to the limiting
" operation of a.pebble heat.exchahge reactor (Figure 1l1l) with
flow in the.direction of the arrowé for one half cycle and in
ﬁhe opéosite direction for the other provided that the cycling
1_jis neither so slow that the pebkble temperatures vary apprégiably
" with time nor so fast that baék-mixing becomes serious.
-The problém of minimizing the volume (for w = 1) for zero
5”?{'inlet conversion, parametricly in the exit conversion (with in-

#. let temperature and heat transfer coefficient as the two free

i variables) was solved by using a perturbation technigue for the

-AM': - . : . . . 23,24
=t derivatives and a modified:iterative gradient method. =

*V]fff In the case of the emptv-full reactor only the voliume oI

i'::"-.the right hand tube (Figure 6) was considered as the reactor

volume but for the push-pull reactor both sides were taken.*

The results are shown in Figure 5 for the first set of

rate parameters in Table 1. For the push-pull reactor (P-P)
{_the broken line indicates that the minimum was not determined
with great precision for the corresponding range of values ©Of

Y- The empty-full reactor (E-F) results fell almost exactly on

the line for the optimum two stage adiabatic reactor with indirect

* .‘ . M Lo .
We have in mind a solid catalyzed fluid reaction where only
the volume which is packed with catalyst is important.

3
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o ;." w*

intercooling, and so are not shown.
The push-pull reactor has internal heat exchange (pebbles)
'which~may;in some cases be provided more cheaply than interstage

i_cooling. The'mathemétically equivalent full-full reactor re-

'

"' quires more volume than the empty-full reactor but never twice

“as much .so that one might expect that in cases where volume
i ls expensive, per se (as in high pressure processes) and not on

o+ :account of the catalyst required to pack it, one could improve

‘ : .~
i i
L ]

i on a given empty-full reactor (such as a Haber Bosch ammonia

Lili . converter) by using fewer tubes, each of a larger diameter, Dbut
-+ . packed with catalyst.

.c‘_‘_’.::,:, ) } -

v i F. .Single Stirred Tank

Also shown in Figure 5 is the corresponding resulic
- for a single (adiabatic) C.S.T.R. captioned (M). It is of
" - interest to compare it with the one stage adiabatic tubular
reactor (captioned N = 1) and to notice that at high conversions
fﬁfjf its performance is superior. Such is rnot the case for the second
14 L o
. ~set of parameters for which the tube is always better especially

at high conversioas. -

- :
For cther reaction rate function parameters which we have
studied the E-F reactor was found to require from 1l0% less to
10% more volume than the corresponding two stage reactor.

s -
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An explanation for the supériority of the tank at high
" ‘conversions in Figure 5 is to be found in the exceptionally high

‘activation energies used in the kinetic€s Under these conditions

. - the heat feed-back in the tark more than compensates for the mass

~action loss due to the mixing.

.- Note: the inlet temperature to the adiabatic tanx (M) was

~.. . freely adjustazble as was the inlet temperature to the tube

:KN:=fL} and that these were not forced to be the same as has
‘beer done in other studies, e.g. Reference 26.

RNV

[y

J;Note also that the tank plot (M} is .an exact straicht line

~ on our transformed coordinates. -

TIMUM PROBLEMS INVOLVING MORE THAN ONE STOICHIOMETRICALL

'

“¥4l0.. " INDEPENDENT REACTION OR CATALYST DETERIORATION

A. A Réaction in which the Desired Product Decays
pénsider a reaction system in which the desired product
is Fformed by,ap éxothermic reversible .reaction and decays by an
irreversible .feaction° The&simplest case of such a system is
represented by.' AR | |
- A=B— C .
where A is-ﬁhe raw maéerial,'B is the désired product and C is a

- waste material. The fact that there are now two stoichiometrically -

K}
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independent réactions instead of one causes some difficulties
in the proper formulation of the optimum problem as well as in

'its solution. In -the followin g a geome;r&cal interpretation
will be utilized to overcome these difficulties. o A -

¥  ratic of the molar flowrates of B and C
Suppose vy, and Y, are the

-

c respectively to the molar feed flowrate of A.
SEPIE 5 For given pressure and initial ccmposition
. the reactlorn rates then become functions of yl, y2, and T. The

' change of composition along a tubular reaction therefore can be

- described by the two differential equations

f:.;’.;:' f_ . . 067‘: a/ y 72) /—>

"where t is an appropriately chosen measure for the distance in

herT cfihe

"+ the reactor. For instance, t may be the volume of the \Feacuob
' the secClion ’ v
inlet to the po==f under consideration divided by ,
N . .

B the flowrate of A at the inlet.

F=x from,

We shall consider in this section perfect temperature
control only, that is, any function T(t) which is piecewise
- continuous and sukject to
wilil be considered as a possible temperature policy. The
introduction of temperata*e ;1m1ts is in general necessary

(quite apart from other physical reasons) in order to prevent
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" the temperature from becoming negative or infinite in the optimum
case.’ -
''If there is ng B and C present at'the inlet the boundary

conditions which have to be considered togéther with Equations

'(S)Eénd?(6fﬁare:

B o S o '13—1':_- z £ 7L:=. O

O ' o ) ! R '. : — O - (7)
A f?if' ) .

" For any given temperature policy T(t) the solution of Equations

" (5) and -(6) will trace out a path in the space spanned by Yqs

\-Viiyz, and t° Consider the set of all admissible policies‘{T(tg-.
ﬁpr'this'set there corresponds a set of reaction paths which form
{a”region called the attainable region,15 in the above mentioned
' 'space { see Figure 12,); AEach point belonging to this region is
ﬁ:attainable‘by at least éne admissible policy, that is, there
ltfexists an admissible T(t) such that conversions Yys Yo
,'gﬁi”(corresponding'tO-the'fifst coordinates of the point) can be
obtained in:thé‘iime t.(corresponding to the third coordinate
‘of the point);: The'attainable region thus defined wilil, of
course, lie within the stoichiometrically attainable rxegion

which is defined by:

~  %_{_?2§1 ) %)72_ z0

We shall_discuss at first how the attainable region can be

(8)

used in order to solve special optimization problems and then we



shall discuss meﬁhods to calculate: the attainable region.
The attainable region depends only on the initial condi-
t“"_.‘.:.ic:»ns for the givenr system, once‘the various parameter values’
' have been fixed. The region may be gsed in conjunction w}th
any okjective function depending on Yy Yoo and t. We will
1llustrate this by means of an example.
Consider the recycle system shown iﬁ Figure 13, with re-
action described by Equations'(s) and (6) carried out in a
“z tubular reactor, A fixed amount of A enters this reactor and
.”gﬁ-préduct 3 is desired. Pure A enters the system and separation
?  'may'be considered complete, so that only A is present in the |

: recycle. A mass balance over the system will yield the flows

...+ shown, assuming unit flow of A into the reactor.

In this example let us assume that the profit P per mol

; of A entering the reactor has to be maximized and that this

-;proflt is given by the following simple relation:

P=%G- () U--2)- ¢

c_ = cost of raw material/mol. feed
: cr = cost of recycling/moiq recycle
C, = cost of féactor/unit yolume
; 'cb = value of pfoduct/mol. 3 formed

t = volume/mol..of A entering



Only under very epecial circumstances will such an objective
function be of any praciical significahce. However, the essen-
tiai poihts of‘the following diseussion‘aﬁply to any objective
: funct;on,~however‘complicated, as long as the arguments of this
‘functien are yl; yé, end t only. From Equation (9) ic follows

'that:V

<C -C.- C5>? C.- .r,/dz'f'Ct- CAHP=0 (0

Thls eguation represents a plane ia the (yl,yz,t) space.

©+' Note that c_ > ¢, for recycle to be economical and C, y C_ Zor
E , o
- system to ke profitable. The coefficients of Y, and t are thus

ﬂpositiye and that of‘yl is negative, while (Cr + P) is positive

.Planes of constant P are thus parallel planes and a

. typical such plane is represented in Figure 12. The attainable

. '*eglon nust now ke considered together with these planes to

, The _
. solve Avptlmum problem. Since P increases in the direction in-
D . the -

.. . dicated by the arxow)\profit will be maximum on that plane which
- e . N y ! N . . .
.+ Just touches the surface of the attainable region. The point of

- tangency will then provide the solution.

It follows that the border of the attainable region will be

- of special‘interest to the solution of optimum problems. The

'border can be found by means of Pontryagln s Maximum Principle.
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If Eguations (5) and (6) are integrated together with

: \ :
Al _ _ W N — ¥ )
o+ = ! —_—
E 2 SR /) W S | (11)
= ! ~— .
oL E ’a'g(,z a‘to,;_‘_.

and the temperature is chosen such that the expression

/\’/’Ul;(qj'u’?z) T> + /\)?.'?/_: (,%’}4/2 )'T) (+2)

- assumes a maximum with respect to T at any time t then the
" 'soluticn will trace out a path at the border of the region.

!By integrating the equations for various initial values of

-

j;ifg; )\l: A 5 and by miaimizing rnstead  of maximizing the expression

"l de

" "given above a set of paths-at the border can be calculated and

“..the border can thus be determined.
Once the korder of the attainable region is known optimum
‘reactors can easily be calculated for any objective functicn.
" .The calculation of the border. itself does not regquire any
quentitative knowledge of the economics of the process. What
. (:L)' R
has to be known is the set of economiqgii; important variables

~which in our example are Yyr Yy and t and the kinetics of the

reaction.

!



21

Calculations have been carried out for first order kinetics
H
© - .with Arrhenius rate constants. In this case the functions v, and

v .,in'Equatiéns '(5) and (6) are given by:

AP —E/RT | '”/,0-5:5/1/?" L T E2/RT
= He (my-g)-y (e T o
vy = Np € Y | - (13)

. It is convenient to introduce a dimensionless time t' and a

- 'dimensionless control variable, z, which will replace the

. temperature T as follows:

=,
!y [ f\gEg" S .
C :LI’:g&H/' (14) -
13 .
oy
§ } =T e (15)
\Hi/ 4
With these ﬁransformations Equations (5)and (6) become:
ol — — Pl -— A< - 5 T Il N
s jl (d\ ' 3’ i 7 3—0’ 7
(o oy (16)
: &
e
oLt !
6? , & ., and a are given by:
_ ﬁ—-é\

| —7 /- o . ria _]_Jil e~
\o:—.— i’-.'/[: &= E, £, 9Q~'=_H = (17)



“'fijdjoiht equations are obtained if t is replaced in Equation (11)

R by t* and‘vi.and v, are replaced by vl' and v_.', i.e. the functions

2 2

;_of yl,Iyzkfand z on'the right hand sides of Equation (16).

' .Similérly,.along a border path the -expression{:

) /
Ayl = Ay (18)

;7 must be maximum with respect to =z at any" t'. If temperature

“limits are to be taken into account and zy and z, are the values

""" of 'z corresponding to the lower temperature limit T, and upper

UL limdt Tu the expression (18) must assume its maximum within the

.- interval:

Z, & Z <2y | (19)
Vf Numeri;al integrétions have been carried out for the values:
: | s
.(3 %: > @2% > ""“-"L’;-') Ze%a>~zw: ' (20)
;'?The:results‘are shown in isometric representation in Figure | }‘7,
%The coordinate{; is defined as:
A , "C/ S _
t = T - G

- By this *“ansformatlon the infinite time lnterval :
! . P ._,i_l/
) is represented by the finitg\interval:
&l o~
oTI|

, . Do /&A l4 A7
The lines a, b, ...., hAare border trajectorles obtained by
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"integratingv(l6) togefher with its adjoint equations and under
- consideration of the optimum condition. Each such' line corre-
sponds to a ratio‘.A]f‘Az chosen at t' = 0. All trajectories
start at the point 0 and all trajectories shown in the diagram
. end at the point E. The lines intersecting the trajectories repre-
N
: : ! - . <
sent intersections of the border with planes of constant ¢ . IE

" ‘the cost of reaction volume is insignificant (cc = 0 in Eguation

”“(9)) then only the border of the projection of the attainable region

.. _onto the Y{~Y, plane is of importance. This border of the projection

N\
,~‘;~ . .. ) . . . . . ‘:‘; . . ) .
- 1s identical with the intersection at ¢ = 1. Frurthermore, this

‘line is identical to the projection of the trajectory a onto the Yi~Y,
”,3plane.' In the -example in qguestion the yl—'y2 projection of the at-

‘jjtainable region does not f£ill out the stoichiometrically attainable

... regicn. The maximal obtainable conversion to A, is about 43%. If

2

' however, @}l and 53>l (the latter is necessary for an exothermic

‘reaction) the projected region would completely £ill the stoichio-

“1,-§metrically attainable region (in the limit of very large Zkb ) and

the maximal obtainable conversion to A2

would be 100%. If£ only the
quonversion to A2 and the reactor size matters while the conversion
l:to A3 is not important (ho utilization of A3 or unconverted Al in

. the rfictor effiuent is possible) the projectiop of the region onto
" the ﬁ?%y;plaﬁe has‘to_be cqnsidefed. It can be seen that the border

of this projection is not generated by a trajectory in contrast to

‘the previously discussed case. = ..



. composition of the reaction mixture, and since these are not

i
59
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B. Exothermic Reaction with a Decaying Catalyst

Very often an exothermic reaction carried out in a

"tubular reactor is catalyzed by a solid catalyst, present in
' the form of a pacxlng, and the activity of the catalyst decays
. with increasing time. In general, the rate of decay of the

‘catalyst will depend on temperature, and possibly alsc on the

lf'the same ét all points of the reactor an uneven decay occurs.
'iIn particular, the instantaneous rate of aecay will depend on:
. ;ithevreéétor temperature at each point, so the pattern of
'7 tcata1yst decay at any time'will depend on the complete previous.
.at{history;of the temperature profile in the reactor. This leads

. to an interesting type of optimization problem, in which the

current temperature profile influences the whole future course

.~ of the reaction by leaving its imprint on the pattern of

-catalyst decay.

If the changes in catalyst activity are slow compared with

‘the speed of response of the reactor to changes in imposed con-
~ditions, the departure from an instantaneous steady state is

 _always smali, and the course of the reaction is determined by-

an equation of the form:

= f(>,4.T | - (13)
Bt ( 7)
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“where t.is the distance along the reactor (Ogiugte), y is the

" conversion, T is the temperature, and x is a variable measuring

i the catalyst activity.

e 8 rypieally, for a reversikle reaction, with first order

“'kineticl behavior in both directions, £ would take the form:
:;"'.\'F"( | T') . x[(l-’“) -,,\2,/(7—\ Y 7%/(7‘}7 (14)
R B SR 4 /g = ‘

" The rate of decay of the catalyst activity at any point will
certainly cdepend on the temperature, and may also depend on the
. " composition of the reaction mixture and the activity itself, so

. that: -
EARI 2= g,y T) | w0
| 5 2(«-) 7> A | :
\qﬁﬁ]where’zfis trhe time.

When the temperature T(t, & ) is specified in the domain:

of interest ' E /
 os t& T

o

'* .. where 7fe is the total time between catalyst changes, §quations

e (13 and {15) can be solved subject to boundary conditions
| - = = ol 0 T § )
and 7 '_ ' S o — xab' Wfp@vv ’z/:-_—. O (agg O.\< t\< ﬁé) (16)



'u.wherevxo is the uniform initial activity of the catalyst. The
' problem is then to choose T(t,¥ ) so as to maximize the total

Nt

' yield of product in: the time interval (0, ¥ ), in other words

©. £o max ximize an obﬂectlve function:

{

=g (fu( ) LT (17)

O
A solution will be sought using a direct method of the

.+ calculus of variations and for this purpose it is necessary
to consider .a small change in temperature policy from T(t,7T)
'S

‘5T4ﬂto:T(ﬁfZ ) + & (£,%C) and to relate thé conseguent change & P

r"to,S.T} This can easily be done by introducing two new variables

“Qifﬁiz,vaﬁd /U& defired by the differential equations:

‘i

2N _ /1__

; L —
Eﬁé& P — E:ﬁ N — ?232 v
| 27T - 9% S5 1
”f‘together with the boundary conditions: o
ot t=te (ol o<TL )
//L'—'-O when T=To (%0$f$fe) (19)

Cte s . ‘ 29 :
it is en easy to show that: -

p_ §§[ 2o - AJJSW?“ "

t—ofo



The gradient of P in the function space T(t,7%/) isdefined as:
—_— 2 e I
R=p5E +ASE (2

Equation (20) provides the basis for a very simple computa-

tional procedure ia which the rth approximation Tr(t,?f) to the

' optimum poliicy is replaced by T(t,?”) where:

T ) = | (-— — EF
[(Ex)= I-(6T) + ¢ P/:r' (22)
with P_ computed from the temperature policy Tr(t,if),
S . |
Using the temperature policy T(t,? ), a value of P can then

i

be computed, and f?‘is varied to maximize this value of P. I
13

'l is the corresponding value of é? , the (r + 1l)th approximation

.- to the optimum policy is taken to be:

(4 ad

T = . : o 23
T

- and the process is repeated.

This procedure corresponds to the gradient method widely
used in the problem of maximizing a function with a finite
; L 28 |
nurker of variables.
This procedure was tested for an example in which the

reaction rate was taken to ke 'of the f@rm (l4))with k and X°

. depending on temperature according. to:
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L ReBempl-afr)  Bl= Bleop-a/T)
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 ”¥f-whiie'thefrate of catalyst decay was given by:

. —
3?.5’-_—_—-——1—-1‘.
2r Te

where TC is a constant. The values taken for the various

“‘constants weres:

0.06 (extent of reaction at inlet)

”|~<;' _‘
il

A C
. T = 250°K
R C
% =t
k =. 6900
o .
' o= 3 x 107 .
o]
= °
e,  6000°K
B . : = - 1 o
L e, = To=

SR e e

: 7 :(Note that thelabove values of te and Q:e result from the use
cf dimensionless scaled values of distance and time, and this
‘scaling alsq mgkes ko and ké dimgnSionless, as indicated.)
-Fiéures 14, 15, and 16 show TZ' T4,'éndvT6, the temperature
policies after twq; four, and six ascents respectively; plotted
as functions>of t for ?f = 0 ard for T = ?fe. " The temperature'

profiles for intermediate values of T , not shown on the diagrams,
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’

'

‘are, aé'oﬁe Qould expect,lintermediate.in'nature relative to
'thgse two.

The corresponding values of the objective function P are
also indicéﬁed on these diagrams. The search was started from
'an'i;iﬁigl.ﬁemperature policy_(To) = 600°K (all t and 7 ),
"givinng'¥.b;272O and after six ascents P .is increasing only
z:fsiowly{_ijt

P

<0

o
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APPENDIX
Stoichiometric Parameters, Conversion, Reaction Rate Functi..
Suppose that the reaction taking place in the reactor is
represented by:
. 4 ="
1My =20 - (1)
2= :
"Awhere;Mi is the chemical formula of the ith species zand ﬁ)i is
". .the stoichiometric coefficient if Mi is a product, minus the

.. .'stoichiometric coefficient if M, is a reactant, and zero if M

% 1s inert, and n is the total number of species present. M, is

“7fa reactant not present in stoichiometric excess which we will

. call the reference substance.

SEEORENE Consider a sample of the feed F_ and suppose it to be re-

i actedicompletely in reverse direction, (i.e. until at least one

b N

roduczt diséppears). Suppose that in this (reacted) sample there

are present“AOCi moles of Mi and that the sample is of such size

B ot o ‘/“‘i“_-—f*l. " Thé set Of parameters 7‘("5&2')““@«21‘1’“’5‘3 termed the

.+ ‘pasic composition of the feed F_-

:L : ! A LG R IS - - S - » . N . .
B Let y be the fractional conversion of ¥, at scme pint in

; ' | = 4 o ,

- the mooctar, i 3m,$rx%hm madn foed My andl - dn ke susclddosy Lesd E; -
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It.is convenient to introduce the quaﬁtity'CU' as the flow
rate the reference substance would have if the material in the
;stream were instantly convertgd’to completion in the reverse'
‘directidn.3
Tt is clear that the compcsition of a stream is completeiy

determined by the variable y and the parameters O{:, so that

i
B

with a given pressure and a given set ( Oéi) in mind the re-—-
action rate v, i.e., the number of moles of reference substance
converted per unit time unit volume by a homogeneous reaction,
may be written as a function of y and the temperature T:
V=V T (#2)
Tijli?)/>

In the case of a solid catalyzed fluid reaction taking
place in a tube padked with fixed granular caﬁalyst we can still -
‘use the form'(Aé) if we make y and T f£luid phaée variables
. (assumed copstant in the fluid part of a cross section) and
“consider the mass flowrate per unit sectional area (which to-
gether with y'apd T and the catalyst characteristics will
determine:the-rate) to:be either constant or else without
influence. |

For the solid catalyzed £luid reaction v is based on the
mass of catalyst rather than the reactor volume.

Let m be the volume of the reactor (or mass of catalyst

in the case of,the”solid catalyzed reactor) between the main
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feed inlet and some plane of reference A in Figure 17. The Zfeed
" 7. addition policy may be specified by assigning a relation between

w and m: w(m) . .

Mass Ealance, Enthalpy Function. Heat Balance

It is convenient to introduce a new variable, x:

b = wWiy-"g

SR A (23)

' -in terms of which we may write a differential mass balance for
+. the reactor: (
A Q}I(IUT'#_ Fmn ) / (ad)

PFor a tubular reactdr w 1s constant, and if we put t = m/w,

(25;, in Eguation (A4) we cbtain:

, .
o
ZLE = ’V‘( 7‘) : (as)
A &

In general, T will not be explicitly specified but must be
determined from an enthalpy balance, so the relation between

enthalpy composition and temperature will be recquired.
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We will assume (as is commonly done) that the enthalpy of

'} ' ‘the reaction mixture is linear in y and T. It follows that for

";an:qdiabétic:feed bypass reactor we may write the enthalpy
balance:f JE'

o . C
o l - JU—%—' I‘(\n-—_—:) W\‘ ?

_— 5 (A7)
< '—'L?ny _
The T*umer:.cal calculations were all made for J = 138.5°K and

for the,reaction rate expression: - -

/ -
o — !
Uty T)= Hi-y)e T —Hye )
IR a
'withvthe two separate sets of parameters shown in Table 1.
These sets of parameters'have the following properties.
1) The differences A'-A are constant, corresponding to
"~ the heat of reaction for SO, oxidation.
2) The ratios A'/A are respectively 1.5 and 2. For these
. . * - . . . B
simple ratios the t_, Ye relation for perfect indirect control
e -
. . . - 11
can be obtained in closed form.
3) The ratios H'/H are constant.
It follows that the equilibrium relation between y and T

is the same for each set.

‘The second set of parameters corresponds to the experimental

A typical figure for a lean Pyrites roast gas.
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data of Schytil and Schwalb for the oxidation of a lean SO,

gas at 440°C,.

Notelunits.for H and H' are not important because the
. 4
quantities of interest in this study are the ratios of reactor

volumes required in different cases and these ratios are, cf

-n:‘.}\

~Aleourse7~invariant-againstumultiplication.of,HMandﬂqLuby.the

same positive constant.
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. . NOMENCLATURE
» . (Defining Equations in Brackets)

‘_a: : ' See (17).

£ *L" Reaction rate, (14).
g . . Catalyst activation functioﬂ; (15)
‘jlf”.' f'. See‘(22) and following text.
‘ m; . '?' See text between (A2) and (A3).
_ t ‘Alff:.'Measure of distance from entrace of reactor. See (AS5), (5), and

and adjacent texts.

e See (14).

v £ See (21).
v ‘ Reaction rate. See a2), (1), (5), and (6).

Reference flow. See text between (Al) and (A2).

X Catalyst activity, (15), (16) and text below (23).
:{y‘A :T Fractional conversion of reference reactént. See Appendix.
“;fyl:YZEZ See text above (5). |
‘.z E See (15).
C fv éee (A7).
: Ca’cb;?tc' See Text below (9).
E f. Activation energy.
" H,H' Parameters in (1). See Table 1 and last paragraph of'Appendix.
'Hl,Hi,gtc. Parameters in (13).
"J ';, Adiabatic temperature rise coefficient, (A7).
N. 4: Number of stages.
P - Profit, (9); (17).
' 'PT {P_,-' Gradient of P in function space, (21).
‘Rt Gas constant.
Tt‘,::'., Temperature , degrees Kelvin

(13)
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Adjoint variable, (18).

" Adjoint variables, (11).

Adjoinﬁ Qariable, (18).

See (17).

See (17)

Time, see

Referring
. Réferring
" Referring
' Réferring

‘Referring

text below (15).

Subscripts(apply to Section II only)

to entrance to stage j.

to exit of stage j.

to exit of reactor.

to subsidiary feed: See Fig. 10.

to the main entrance to the reactor.
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Figure

Figure,

"Figurei

'jFigure

o

Figure

" Figure

‘Figure.
g‘.Figure,
' Figure

Figuré

Titles for Figures

l".

1:%.° . Attainable region for a single reaction with stable catalyst.

Reaction rate contours and optimal trajectories for perfect
control in the y, T plane.

33; fC;'Perf§c§3control trajecféries in the m, y plane.

4;f x~. Comparison gf N-stage dire;tly controlled adiabatic stage reactors.

S{f o Compariso%iindirectly controlled reactors.

6;‘4; U-Tube reactor.

7;7, Counter Current heat exchange reactor.

'8: Modified counter current heat exchange reactor.

9: N-stage directly controlléd adiabatic stage reactor.

10: Distributed feed reactor.

11: Push-pull reactor in push mode.

12. Attainable region (hill) and plane of constant objective function
(triangle). Arrow indicates direction of gradient of objective
function.

13: Reactor-separator ‘system.

14 Temperature profile for timg T =0 and T = Ta after 2nd ascent.
15: Temperature profile for time T =0 and T =7 after 4th ascent.
16: Temperature profile for time T =0 and T = Te after 6th éscent.
17: Attainable region in Yi» Yoo t space. Lines a - h are optimal

trajectories.



TABLE 9

Reaction rate and thermochemical parameters for

oquation (1)

18t set

2nd set

8.7678 x 0%

L 1,222 % 1090

1,7536 x 107

v s vm

2.4835 x 102 |

2,278 x 10h

1137 x 1GL

3.5122 x 10°

2.27,8 x 10"

15805

158.5
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Group D
A celebrated theorem of chemical thermodynamics determines the minimum

energy required to separate a given mixture of substances into a number of
other mixtures. The case of greatest practical interest is that in which the
final mixtures approximate to the pure compcnents themselves, in which case
the problem may be described as the determination of the minimum energy of
separation. The minimum is attained only when the separation is reversible,
of cocurse, snd can therefore only be approximated by any real separation
device, Publication D1 shows how 2 binary distillation column can, in principle,
be opersted reversibly in such a way as to attain the thermodynamic minimum
separation energy, and some practical schemes for improving the energy economy
are based on this analysis. These schemes form the bssis of a patent granted in
the names of the suthors of the publicatiorn.

hen the mixture distilled ccatains more than two components it is not
possible, even in prineiple, to attain the thermodynamic minimum energy of
separation in a distillation column, Nevertheless there isrstill a lower
bound on the energy of separation by distillation, even though this is higher
than the thermodynamic bound. The problem of determining this bound for the
distillation of multicompoment mixtures still remains unsolved, to the writer's

knowledges



ENERGY REQUIREMENTS IN THE SEPARATION
OF MIXTURES BY DISTILLATION

By J. R. FLOWER, Ph.D.,* and R. JACKSON, M.A.{

SYNOPSIS

The reversible operation of a continuous distillation column is briefly described and it is shown how closely this
can be approximated in principle, both using heat pumps with an independent heat-transfer medium and using
direct compression of the overhead vapour. The corresponding systems are impractical idealisations but have
obvious practicable analogues which are discussed in more detail; quantitative illustrations are given. In
particular, it is shown that systems may be designed, making direct use of compressed overhead vapour, which

are economically attractive in certain cases.

Introduction

1t has long been recognised that the process of continuous
distillation, as normally carried out in an adiabatic column,
is highly irreversible and consequently the energy requirement
greatly exceeds the theoretical minimum demanded by the
thermodynamic properties of the feed and product streams.
When the energy is provided in the form of mechanical work,
as in low-temperature gas separations, there is a thermo-
dynamically determined minimum amount of work required
to accomplish the separation. As early as 1923, van Nuys!~?
gave a very thorough discussion of this point and a few years
later Dodge and Housum® analysed in detail a number of
systems for separating the main components of air. Subse-
quently Hausen’ proposed a model for an ideal distillation
system which would, in principle, achieve the limiting per-
formance thermodynamically permissible for a binary separa-
tion. In later years a large number of papers and patents
relating to low-temperature gas separation have appeared,
and it will suffice to mention papers by Haselden®-? and the
book by Ruhemann!® which give many references.

In conventional distillation systems operating above
ambient temperature, where energy is supplied in the form of
heat rather than mechanical work, the approach has, on the
whole, been less systematic than in the field of gas separation,
though many methods of reducing heat consumption have
been described and patented.!!

It is the purpose of the present paper to describe an ideal
distillation system somewhat different in structure from that
of Hausen,” to discuss the energy losses which necessarily
accompany various approximate physical realisations of this
system, and hence to arrive at practically realisable systems
which secure a significant proportion of the energy economies
associated with the ideal system at reasonable capital cost.

Reversible Distillation

In its most general form a distillation column separates a
feed stream into a number of product streams, in the course
of which heat is exchanged with a number of reservoirs at
different temperatures and mechanical work is performed on
the system. If Q; is the heat absorbed from a resevoir at
temperature 7; (( = 1, 2..N) and W is the mechanical work
performed on the system during the distillation of a quantity F
of the feed, it is easy to show from the second law of thermo-
dynamics that:

N P
2 OIT: < ZlG,,s,, —FSp=AS. . (@
i=1 p=

* Department of Chemical Engineering, Houldsworth School of
. Applied Science, University of Leeds.

t Chemical Engineering Laboratories, University of Edinburgh
and Heriot-Watt College, Chambers Street, Edinburgh 5.
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where G, is the quantity of the pth product corresponding to
a quantity F of feed, S, is the unit entropy of this product and
Sr is that of the feed.

A straightforward enthalpy balance also gives:

i=1

N P
_E 0+ W= ZleHp — FH. = AH . 2
o

where H, and Hy are the unit enthalpies of products and feed
respectively.

With a heat pump or vapour compression system, heat is
exchanged with only a single reservoir (at temperature 7, say)
and work is done on the system by a compressor. Equa-
tions (1) and (2) then degenerate into the familiar expression
giving the minimum work of separation, namely:

W>AH—-TAS . . . @

In conventional distillation, on the other hand, no mechani-
cal work is performed on the system and equations (1) and (2)
yield rather less familiar lower limits for the heat absorbed at
the reboiler, Qp, and the heat rejected at the condenser, O,
namely:

Qp> (AH — THAS)/(1 — Tp/Tp) . “
and: 0,> (AH — TBAS)/(E;B _ ) )
D

where Tz and T, are the temperatures in the boiler and
condenser respectively.

The limits imposed on the performance by equations (1)
to (5) are attainable only by strictly reversible systems, but a
conventional adiabatic distillation is far from reversible since
on each plate heat and mass transfer occurs between a liquid
and a vapour with which it is not in equilibrium.

In the case of a binary distillation it was shown by
van Nuys,!-5 and by Dodge and Housum,® that it is possible
to arrange that the liquid and vapour are everywhere in
equilibrium by varying the reflux flow along the length of the
column in such a way that it operates everywhere in a
“pinched” condition. This can be accomplished by supplying
or removing heat in the necessary amounts and leads, of
course, to a column of infinite capital cost, with an infinite
number of theoretical stages. It has frequently been assumed®
that the same is true for separations involving more than two
components but, as has been pointed out by Timmers and
by Beek,'213 variation of the heat exchange between the
column and its surroundings does not provide sufficient
disposable parameters to ensure equilibrium with respect to
all components in the liquid and the vapour at all points of
the column, so multicomponent distillations cannot be
rendered reversible in this way.

T249
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For a binary mixture the necessary distribution of heat
exchange along the column can be calculated very simply if
an enthalpy-composition diagram is available. This is illus-
trated by Fig. 1, in which f, d, and b represent the feed,
distillate, and bottom product respectively, all three being
liquids at their bubble points in this case. The distance dd’
gives Qpo/D, where Qpp is the heat to be removed in the

y

Fig. 1.—H-x diagram, illustrating the construction of the Q-curve

condenser to condense the flow D of distillate. If 1 and m
represent liquid and vapour in equilibrium at some point
above the feed and n is the point in which Im produced meets
the vertical through d, the distance nd’ gives AQ’/D, where
AQ' is the additional amount of heat, over and above Q 0,
which must be removed between the top of the column and
the point where the liquid has the composition represented
by point 1. By choosing various positions for 1 between
d and f, it is therefore possible to plot the heat to be removed
above any point as a function of the liquid composition (or
equivalently the temperature) at that point. Similarly, if t
represents the liquid at a point below the feed, the distance yv
gives the heat to be supplied to the column between the feed
and this point, per unit of bottom product, and again this
quantity can be plotted as a function of liquid composition
(or equivalently temperature) in the part of the column
below the feed.

The two curves obtained as just described can be combined
into a single curve showing the net amount of heat to be
supplied to the column (including the condenser) above any
point as a function of the temperature at the point in question.
This will be denoted by Q(T) and the resulting curve, which
will be called the Q-curve, will prove very useful in dealing
with thermal effects accompanying the distillation. Fig. 2
shows a Q-curve, constructed in this way, for the separation
of a methanol-water mixture at its boiling point, containing
909, by weight of methanol, into a distillate containing
99-959% methanol and a bottom product containing 1%
methanol. It is based on the enthalpy-composition diagram
and equilibrium data of Plewes, Jardine, and Butler!4 for a
pressure of one atmosphere and is typical of the simplest
form which these curves can take.

Enthalpy-composition diagrams are, of course, seldom
available in practice, and one must then derive the form of
the Q-curve from the same approximate assumptions as lead
to the McCabe-Thiele construction with straight operating
lines. With these assumptions, and a suitable choice of the
units used in expressing the composition, it is possible to

FLOWER AND JACKSON. ENERGY REQUIREMENTS IN THE SEPARATION OF MIXTURES

arrange that the latent heat of vaporisation per unit of liquid
takes a constant value L, independent of composition, and

b 7 — TEMPERATURE (°C) f
0 & 90 80 70 ¢y d 60

' T

-«

-100 |-

Heat extracted

p————————to condense

top product

-200 |-

Q(Tr) (ib cal/1001b distillate) (1107)

- 300

1

- 400 -

Fig. 2.—Q-curve for the methanol-water system described

the thermal quantities which determine the form of the
Q-curve can be obtained from the following equations:

_ AQILD
W= T ¥ AQJLD ©)
1 AQ/LB
and: 5y = —% @)

where s, is the slope of a line joining the point (x, y) (above
the feed) on the equilibrium curve in the x-y plane to the
point (xp, xp) representing the composition of the distillate,
and s, is the slope of a corresponding line joining a point
(x, ») on the equilibrium curve below the feed to the point
(xg, xp) representing the bottom product. AQ’ is the heat to
be removed from the column between the top and the point
above the feed where the liquid composition is x, and AQ
the total amount of heat to be supplied to the system (including
the boiler) below the point between the feed and the bottom
of the column where the liquid composition is x. B and D
are the flows of bottom product and distillate respectively.
The construction is illustrated in Fig. 3.

Stope
AQ7LD

APy 2¥:)

Slope
1+AQ/LB

aQ/Ls

|

I

|

|

|

|
| |
| |
| |
l |
] 1

Xg

)

F
X —

Fig. 3.—Construction of the Q-curve from a McCabe-Thiele diagram
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Examination of Fig. 2 shows that reversible operation does
not, in itself, reduce the total amount of heat to be supplied
to the column, which is equal to the difference in ordinates
of the Q-curve, Q(Tg) — Q(TF), whether it is all supplied at
the boiler, as in an adiabatic column, or is distributed to
make the system reversible. Reversible operation therefore
permits part of the heat supplied to be of lower grade than
that required in the boiler, but when the only available source
of heat is a medium hotter than the boiler temperature, there
is no advantage in distributing the heat supply. However,
since the majority of the heat supplied in the lower part of
the column is subsequently rejected to a cooling medium in
the upper part or the condenser, there may be a considerable
economic advantage in operating some form of heat-pumping
system. Such a system was described by Hausen,” who used
a compressor to deliver a hot heat-transfer medium to the
boiler. The medium was then reduced in pressure through a
sequence of expansion engines, passing through exchangers
on the plates of the column between successive expansions,
and finally returning to the suction of the compressor after
serving to condense the distillate at the top of the column.
By suitable adjustment of the expansion ratios it was possible
to distribute the heat supply to plates below the feed and the
heat removal from plates above the feed in such a way as to
make the column reversible. At the same time, of course, the
number of plates, and correspondingly the number of expan-
sion engines, became infinite. Hausen’s arrangement is of
course impracticable for the reason common to all reversible
devices, the necessity for an infinite amount of equipment (in
this case distillation plates and expansion engines), but it
suffers from the further disadvantage that even finite approxi-
mations to it are hardly practicable, as expansion engines
working through the small pressure drops involved are not a
practicable means of recovering energy to offset the work
performed in the main compressor. In fact, Hausen’s arrange-
ment is an unnecessarily complicated way of using mechanical
work to realise a reversible system, and we shall describe a
simpler arrangement using no expansion engines which has
the further advantage that its finite approximations are
practically realisable systems.

Conventional heat-pumping systems for distillation columns
operate between the condenser as source and the reboiler as
sink, either directly by compression of the overhead vapour
or indirectly using a secondary heat-transfer medium, and
systems of both types have been extensively described!! and
have formed the basis of many patents. However, inspection
of the Q-curve in Fig. 2 immediately suggests that this type
of system can be greatly improved, since the major part of
the thermal requirements of the system can be met by opera-
ting heat pumps through quite small temperature differences
between sources above the feed point and sinks below it,
corresponding to the steep sides of the deep, narrow valley in
the O-curve. Only a very small proportion of the heat to be
supplied to the lower part of the column need be pumped
through temperature differences approaching (T — Tp), and
correspondingly the work consumption of the heat pumps
using the distributed sources and sinks required for reversible
operation is much smaller than that of a single pump opera-
ting between the condenser and reboiler. Furthermore, the
reversible mode of operation crowds the heat supply to the
column and the heat removal from the column as closely as
possible below and above the feed point respectively; any
attempt to supply or remove more heat than the quantity
corresponding to reversible operation in a given interval
adjacent to the feed would lead to a “pinch”, and would
prevent the specified product compositions being obtained.
A heat-pumping system using a minimum amount of work is
therefore obtained by linking infinitesimal sources and sinks
above and below the feed by an infinite array of heat pumps,
each driven by a compressor. The individual sources and
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sinks can be linked in pairs in an infinite number of different
ways; for example sources and sinks at successively increasing
temperatures may be linked together or, as indicated in
Fig. 4, the coolest source may be linked to the hottest sink
and all the other sources and sinks connected in reverse
sequence. However, the particular pattern of connection is of
no importance since it can easily be shown that the total
work of heat pumping is the same for all patterns.

Any system of this type therefore operates, in principle,
with the minimum work for separation as given by the
inequality (3) and, unlike Hausen’s arrangement, requires no
expansion engines.

Let dQ be the amount of heat to be supplied to a small
element of the column about the temperature 7 and assume
that it is made available by a heat pump which extracts an
amount of heat dQ’ from an element of the column about
the temperature 7'. Then, assuming the heat pump is
reversible, we have:

, T
d'=-do. . . . ®
and: dW = T;,T,dQ . ) ()

where dW is the work done in the heat pump. Equations (8)
and (9) are differential equations for 77 and W as functions
of T, since Q' is given in terms of 7" and Q in terms of T by
the ordinates of the two branches of the Q-curve, one on each
side of the feed point. W is the total amount of work per-
formed in the heat pumps supplying heat to the temperature
interval Tr— T in the column. The equations may be inte-
grated outwards in the directions of increasing 7 and
decreasing T’ from the feed point, starting with W = 0 and
T’ = Tr when T = Tp. This actually corresponds to the
pattern of connection of sources and sinks indicated in Fig. 4.

/E ]
Feed

————— —

Heat
pumps

=]

i

Fig. 4.—Optimum heat-pumping system

The integration may terminate either when Q reaches the
value Q(Tp), leaving a finite residue of heat to be removed at
the condenser, or when Q' reaches the value zero, leaving a
finite residue of heat to be supplied to the boiler. Which of
these occurs in any given case is determined by the sign of the
entropy change for the overall separation process.

In certain circumstances it may be economic to terminate
the sequence of heat pumps at some temperature T lower
than Ty even if Q' has not reached the value zero. The cost
per unit of mechanical work is greater than that of heat, and
if the cost of dW units of work exceeds that of dQ units of
heat, where dW and dQ are related by equation (9), it is
clearly uneconomic to go further with the heat-pumping
sequence. Since the ratio dW/dQ increases with 7, there will
then be some temperature at which the heat-pumping sequence
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should be terminated to give minimum total energy costs,
namely the temperature at which the costs of dW and dQ are
equal. In most cases the temperature difference between
condenser and reboiler is not large enough to satisfy this
condition and heat pumping should therefore be employed
to the fullest possible extent.

Another interesting approach to the problem of energy
economy is to replace heat pumps using mechanical work by
pumps which consume heat from a reservoir at the boiler
temperature Tg; for example, absorption refrigerators. In
this arrangement the system consumes heat from a single
reservoir at temperature Tz however complicated a system of
heat pumps is used, and a rational comparison of energy
economies can be made without raising the question of the
relative costs of heat and mechanical work. If the thermal
heat pumps are reversible, and if dg is the heat absorbed
from the reservoir at Ty by the heat pump operating between
a source in the neighbourhood of temperature 7* and a sink
in the neighbourhood of temperature 7, the equations corre-
sponding to (8) and (9) are:

, T (Tg—T
dQ' = T (TB——T—') do . . (10)
and: dg = 171,’ (%,) dQ . . an

These may be integrated outwards from the feed in the
same way as equations (8) and (9), and the integration termi-
nates either when Q reaches the value Q(7p) or when Q'
reaches the value zero. The corresponding value of g is then
the total amount of heat absorbed from the reservoir at
temperature 7.

It can be seen from the above descriptions that the form of
the Q-curve gives a very good qualitative idea of the econo-
mies likely to be obtainable by the use of heat pumps. The
total amount of heat to be supplied to the boiler of a con-
ventional adiabatic column is given by Q(Tg) — Q(T¥), and
therefore corresponds to the vertical span of the Q-curve.
On the other hand the energy (heat or work) required by the
heat pumps is determined by the width of the valley about
the feed point. Thus, if the Q-curve is more or less flat except
for a deep, narrow valley at the feed point, the total heat
required for adiabatic distillation is large, but the minimum
energy requirement is small if heat pumps are correctly
deployed. Such a system therefore offers considerable scope
for energy economies. If the valley about the feed point is
broad and flat, on the other hand, there is relatively little to
be gained by heat pumping.

Quantitative Results for Particular Systems

In this section some numerical results will be quoted which
have been obtained by applying the theory of the foregoing
section to specific examples, and the effects of various
departures from the ideal reversible system will be compared.

Two examples will be considered. The first is the methanol-
water system whose Q-curve is given in Fig. 2, and the second
a mixture of acetic acid and water, containing 28 %, by weight
acid and at its boiling-point, which is separated at atmospheric
pressure into a bottom product containing 99-07; acid and a
top product containing 98-5% water. The Q-curve for the
second example can be constructed from the enthalpy-
composition chart and equilibrium data of Lemlich, Gottslich,
and Hoke,!’ and in both examples energy consumptions
were calculated by integration of equations (8) and (9) or
equations (10) and (11) in the manner already described,
making use of the Q-curves. Costs quoted are based on
1d/kWh for electric power, and 10 shil and £1 per ton, which
are thought to span a reasonable range of costs for industrial
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heating steam. The results are given in Table I in which Qpg
is the boiler heat required for conventional adiabatic distilla-
tion at minimum reflux, Q; is the total heat required from a
source at temperature 7 with the optimum heat-pumping

TABLE I.—Energy Costs in Distillation

Methanol-water Acetic acid-water

(Basis 100 1b (Basis 100 1b
distillate) bottom product)
Qpo (Ib cal) 45 730 452000
O (Ib cal) 9375 62807
W (Ib cal) 850 2500
C; (pence) 4-57/9-14 "45-2/90-4
C; (pence) 0-45 1-32

system using pumps which consume heat rather than work,
W is the work consumption of the optimum heat-pumping:
system using heat pumps which consume electric power, C,; -
is the energy cost for adiabatic distillation at minimum reflux,
and C, is the cost of electric power in the optimum heat-
pumping system. The two values given for C; refer to steam
costs of 10 shil and £1 per ton respectively. The basis of the
calculations is 1001b of distillate in the methanol-water
system and 100 1b of bottom product in the acetic acid—water
system. The reduction in heat consumption or cost is very
striking in both cases.

The results of Table I refer to idealised systems which
represent the limits of sequences of real systems of increasing
cost and complexity. If we disregard for the moment any
mechanical inefficiencies of the heat pumps, there are three
major reasons why practical systems will fall short of this
performance. Firstly, heat must be transferred to and from
the column across heat-transfer surfaces of finite area with
which there will be associated finite temperature droys,
secondly, the infinite set of heat pumps providing a con-
tinuous distribution of heat transfer along the column must
be replaced by a finite number of pumps supplying and
removing heat at a finite number of points, and thirdly, the
column may contain only a finite number of plates of finite
area while the ideal systems operate the column in a
“pinched” condition at all points and therefore require an
infinite number of theoretical plates. Since the pressure drop
over a plate is zero in the ideal system, the plates are assumed
to have zero hold up and infinite area.

Tt is interesting to see the relative effect on the cost of
distillation of relaxing each of the first two idealisations.

To calculate the cost of power for a heat-pumping system
which is ideal in every respect save the presence of a finite
temperature difference AT associated with each heat-transfer
surface, equations (8) and (9) are simply modified by replacing
Tby T+ AT and T’ by T’ — AT, and integrated as before.
For the methanol-water system, with AT = AT’ = 10°C,
this increases the power cost from the value 0-45d/100 b
distillate, given in Table I, to 1-80d/100 1b distillate.

To investigate the effect of departure from the ideal heat
distribution, we consider a very simple system comprising a
single heat pump operating between a source in the upper
part of the column and a sink in the lower part, and supplying
enough heat to create a local pinch at the sink. The economics
of such a system clearly depend on the position chosen for
the sink, but by carrying out calculations with various sink
temperatures it is possible to find the system with lowest
total energy costs. If steam is charged at £1/ton and electrical
energy at 1d/kWh, this is found to be a system delivering heat
to a sink at 82° C and gives a total energy cost of 1-72d/100 1b
distillate.

It is seen that even this gross simplification of the optimum
heat distribution has a smaller economic effect than the
presence of 10° C temperature drop across each of the heat-
transfer surfaces, and it must be concluded that the reduction
of these temperature drops is of prime importance. The
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simplest way of accomplishing this is to eliminate one of the
two temperature drops completely by directly compressing
vapour drawn from the top of the column and supplying heat
.by condensing it at a point or points in the lower part rather
than by using an external heat-transfer medium separated
from the contents of the column by heat-transfer surfaces at
both source and sink. What can be achieved in principle with
systems of this type will be discussed in the next section.

Optimum Direct Compression Systems

The systems described above are idealised systems and
their performance is the limit of what can be achieved by
realisable heat-pumping systems of increasing complexity.
Although they are not themselves of any practical significance,
their study is valuable in that it sets a limit to the attainable
performance of real systems in the same way as the Carnot
engine sets a limit to the attainable efficiency of real heat
engines. We now turn our attention to systems which supply
heat in the lower part of the column by compression of the
overhead vapour of the column its-If, and enquire, once
again, what is the best performance attainable in principle
by such a system.

To supply heat at any point in the 1wer part of the column
the overhead vapour must be compre:sed to such a pressure
that its saturation temperature excveds the temperature
within the column at the point in questic n. Heat can therefore
be supplied at a number of points by compressing parts of
the overhead vapour stream to appiopriate pressures,
then condensing the compressed vapour 1n thermal contact
with the contents of the column. The condensate formed at
higher pressures could in principle be let down through

' expansion engines to heaters at lower pressure thus recovering
some mechanical work and giving up more heat to the column
at each stage, but for reasons discussed earlier we exclude the
possibility of expansion engines. We must then be content
with flashing the condensate formed at higher pressures down
through valves to heaters at lower pressures, thus recovering
some extra heat from it but forgoing the benefit of recovering
work at the same time. A system of this type with three
heating stages is illustrated in Fig. 5 in which E,, E,, and E,

A
Coolant G

3 B \ 4

T
| lop
] product

Feed —>-
—

A Cs

Heating
mediu R

Bottom product

Fig. 5.—Three-stage direct-compression system
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are the three heat exchangers, C;, C,, and C; are the three
compressors handling overhead vapour, and V|, V,, and V;
are the three valves through which high-pressure condensate
from one stage is flashed to the exchanger at the next highest
pressure. The condensate from the final exchanger is flashed
to the reflux drum, B, which provides the top product and
the reflux in the usual way. Any vapour not used in the
compression system may be condensed in the externally-
cooled condenser, A, which also deals with vapour produced
by flashing condensate through V,. The balance of the
column heat requirements not satisfied by the exchangers
E;, E,;, and E; must be supplied in an externally-heated
reboiler, R.

The work required to compress the overhead vapour is
smallest when the vapour is condensed at as low a tempera-
ture as possible, so the aim should be to transfer heat from
the condensing vapour to the column contents as far up the
column as possible. The limit to which this distribution may
be pushed is set by the Q-curve, and the minimum work of
compression is expended when the heat supply to the lower
section of the column from condensing overhead vapour is
distributed as specified by the lower branch of the Q-curve.
This, of course, entails the provision of an infinite number of
plates and associated heat exchangers in the lower part of
the column and makes use of an infinite sequence of
infinitesimal compression stages as indicated schematically
in Fig. 6. The system shown in Fig. 6 may be regarded as the

P
Feed ha(7)
> e (1)
2
- <]
a Heat Vapour
< o _—— e T — -
a do -df
A 2 dr —dr
@ E ar W
s (] —_——T -
@ < to from
5 column |f(T+dT) compress=
£ - ha(TedT) ors
I:I
‘ <5
gl
ai Heat balance on section
of exchangers

Bottom product

Fig. 6.—The optimum direct-compression system

limit of a sequence of practicable systems of the type shown
in Fig. S, with increasing complexity, and correspondingly
its performance provides a limit which may be approached
but not bettered by a practical system.

In order to calculate the total work of compression in a
system of this type it is necessary to know the distribution of
flow of compressed overhead vapour as a function of the
temperature at the point in the column to which heat is
supplied. If fis the total flow of condensate down the tempera-
ture gradient in the heaters at a level in the column where the
temperature is 7, then the flow of compressed vapour
condensed in the temperature interval T to T + dT is
(—df/ldT)dT and an enthalpy balance on an elementary
section of the column and heaters in Fig. 6 between tempera-
tures T and (T + dT) gives the following differential equation
for f:

dQ
daT

d B dH,
"d‘i-[(Hd —h))f] = — +f‘d—T . (12)

T253 -
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where H) is the unit enthalpy of compressed (superheated)
vapour which delivers its heat by condensing at tempera-
ture T, hy is the unit enthalpy of the corresponding
condensed liquid, and Q is the ordinate of the Q-curve at
temperature 7. The method of integrating equation (12)
depends on whether or not the amount of overhead vapour
available is sufficient, after compression, to supply all the
heat requirements of the column without any additional
external heat supply. If it is, equation (12) may be integrated
upwards from the base of the column, starting from the
initial condition f = 0 at T = Tp. If it is not, on the other
hand, and the total flow of overhead vapour available for
compression is f, the integration must proceed downwards
from the feed point, starting with the initial condition f= f
at T = T. The value of fis easily seen to be given by:

H; —h
=R+ 1DD| 0|, .
f=@®+D [Hdo = hd(Tp)] a
where R is the reflux ratio at the top of the column, D is the
flow of top product, H,, and h, are the enthalpies of overhead
vapour and its equilibrium liquid at the top of the column,
and h,(Tp) is the enthalpy of liquid top product at the feed
temperature Tr. The two cases are probably best distinguished
in practice by starting the integration from T = Tz and
proceeding up the column. If f reaches the value f before T
reaches the feed temperature T}, this must be abandoned and
the integration must be re-started from the feed. In either
case the integration must be carried out numerically, using
values of Q from the Q-curve and values of Hy and h, from
suitable thermodynamic approximations; for example:

Hy(T) = Hy, +w(T) . . . (14)
hy(T) = hgo + (T — Tp) . . (15)

where c is the specific heat of the liquid top product and
w(T) is the work required to compress unit quantity of the
vapour from the top of the column to a pressure such that its
saturation temperature is 7. It is assumed that the top
product is sufficiently pure to be treated as a single substance
in these calculations.

Having obtained f by integration of equation (12), we
obtain the total work of compression of overhead vapour
from:

W — J' wdf
- JTF(T)g—f—dT 16
= T;w ar . . . 16)

where T, is the highest temperature to which heat is supplied
by compressed vapour. The value of T, will be identical with
that of T if sufficient vapour is available.

These calculations were carried through for the methanol-
water separation already discussed. In this case there is
sufficient vapour to supply all the heat requirements of the
column when compressed, and the energy cost is simply the
cost of electrical energy to drive the compressors. With a unit
energy cost of 1d/kWh, this was found to be 0-46d/100 1b
distillate. This should be compared with the value 0-45d
given in Table I for the ideal reversible system, and it is seen
that the irreversibilities associated with the present system
have an almost negligible effect on the energy costs. The
calculations were also repeated evaluating H, and h; in
equation (12), not at temperature 7, but at T + AT, with
AT = 10° C. Physically this corresponds to a 10° C tempera-
ture drop allowed across the heat-transfer surfaces. The
energy cost is then found to be 1-23d/100 Ib distillate,
compared with a value 1-80d found above for the optimum
system with an external heat-transfer medium when 10° Ctem-
perature drop is allowed at each heat-transfer surface. Thus
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the departure from ideal heat distribution in the system of
Fig. 6 compared with the system of Fig. 4 is more than repaid
by the elimination of one of the two heat-transfer surfaces.
Although this conclusion has been reached for one particular
system, there is good reason to suppose it is true in the
majority of cases where heat pumping is likely to be an
attractive proposition, for these are systems in which a
substantial part of the energy needs to be pumped through
only small temperature differences, and the heat-transfer
temperature drop will then be correspondingly important. It
is probably true, therefore, that a system employing direct
compression of the overhead vapour is preferable to one
using a separate heat-transfer medium, and should normally
be used unless there are mechanical or chemical factors which
make it impracticable or expensive to handle the overhead

vapour in compressors.

Practical Direct Compression Systems

Practical approximations to the ideal direct compression
system of Fig. 6 are based on a system with a finite number
of compression stages like the one shown in Fig. 5. In practice,
the reflux ratio at the top of the column must be sufficiently
high to avoid a pinch above the feed and give a reasonable
number of plates in the upper part of the column. The
quantities of heat supplied in the exchangers E;, E;, and E;
must also be less than the limiting quantities deducible from
the Q-curve so that pinches are not generated at these
positions. The temperature at any point in the column
depends on pressure as well as composition, so in order to
keep the pressure of the condensing compressed vapour as
low as possible, and hence to reduce the work of compression
as far as possible, it is important to choose low pressure drop
plates or packing and not to load the column too heavily.

To keep the temperature drop across the heat-transfer
surfaces in exchangers E;, E,, and E; as small as possible a
large heat-transfer-surface area must be provided, and this
would be difficult to accommodate within the column as
indicated in Fig. 5, since the tubes would need to be sub-
merged in the liquid hold-up on a plate. It is possible to
arrange internal heat exchangers of a completely different
design from an ordinary distillation plate, but probably the
most practical method of dealing with this problem is to
draw off liquid at the point to be heated and carry out the
heating in an external tube and shell exchanger, thus obtaining
a system of the type illustrated in Fig. 7. Strictly, the combina-
tion of a plate within the column and a separate vaporiser,
as shown in Fig. 7, is not equivalent to a perfectly-mixed
plate with submerged heating tubes on which the theoretical
calculations have been based. It is possible, though rather
complicated, to modify the thermodynamic calculations to
apply rigorously to a system of the type shown in Fig. 7, but
in practice this is hardly justifiable. The difference between
the two calculations is not very large, and actually the
arrangement of an ideal plate and separate external vaporiser
gives slightly greater enrichment than one theoretical plate
with built-in heating. Thus calculations based on the system
of Fig. 5§ will, in principle, give slightly pessimistic results
when applied to the system of Fig. 7.

The simplest practical compression system is one in which
part of the overhead vapour is compressed and condensed in
a single heat exchanger, supplying heat to just one point in
the column between the feed and the reboiler. The balance
of the heat requirements of the column are then supplied by
an external heating medium in a reboiler at the base of the
column. In such a system the position of the intermediate
exchanger has an important effect on the overall economics
of the process. In conventional vapour recompression
schemes, the reboiler itself is the exchanger in which com-
pressed overhead vapour is condensed, but there will be few
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cases in which this is the best arrangement. As the position
of the intermediate exchanger moves up the column from the
reboiler, the amount of expensive external heat required at
the boiler increases, but the amount of compressed vapour
to be condensed in the intermediate exchanger decreases, and

-
|

>_

Feed
—

Top
product

R,

S I

Bottom product

Fig. 7.—Practical three-stage direct-compression system with external
heat exchangers

so does the work of compression per unit of this vapour.
When the exchanger is near the bottom of the column the
decrease in work of compression on displacing it upward
usually more than pays for the extra heat required at the
boiler: so the total energy cost decreases. Near the feed, on
the other hand, the total energy cost usually increases when
the intermediate exchanger is displaced upward and it follows
that there is frequently some position of the intermediate
exchanger, between the feed point and the base of the column,
which gives minimum total energy cost.

When considering a compression system with any number
of stages it is clearly important to find the best positions
in the column for the intermediate heat exchangers in which
compressed vapour is to be condensed, and in the Appendix
an approximate method of locating these positions is
described.

Of course, when assessing the relative economics of different
arrangements, one must take the capital cost of the system
into account as well as the energy costs. The capital cost of
the compressors and exchangers decreases as the positions of
the exchangers move up the column towards the feed, with
the result that the most economic system, taking account of
both energy and capital costs, has its exchangers rather nearer
to the feed than the positions which minimise the energy
costs alone. This will be illustrated by the figures given below
for specific systems.

Calculations to determine the optimum single-stage com-
pression systems have been carried out for several separa-
tions'6 and we shall quote detailed results for the methanol—
water and acetic acid-water separations described earlier in
the paper. In the methanol-water example the reflux ratio is
taken to be 1 :1, the isentropic compressor efficiency is
assumed to be 709, and a temperature drop of 10° C is
allowed across the heat-transfer surface. The total energy
costs were calculated for conventional adiabatic distillation,
for a conventional vapour-recompression system with con-
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densation of the compressed vapour in the reboiler, and for
single-stage compression systems of the type described here
with heat supply to liquids of various compositions by
condensation of compressed vapour.

The number of theoretical plates varied only between
17 and 20 for all the systems considered, so it was not worth
while adjusting the reflux ratio to maintain the number of
plates strictly constant. The results are given in Table 114, in

TABLE IIA.—Costs of Separation: Methanol-Water System

Total energy cost per

System 100 Ib distillate
(pence)
Vapour recompression to E—
reboiler 5-25 5-25
Compression to heat liquid
with x =02 3-8 4-05
x =04 3-1 3-5
x=0-5 2-9 3-5
x =06 2-75 3-6
x=07 2-8 4-1
x=0-8 3-1 5-2
Conventional adiabatic column 5-15 10-3

which x is the weight fraction of methanol in the liquid on
the heated plate, and the two cost figures quoted correspond
to unit costs of 10 shil/ton and £1/ton for heating steam. In
both cases it is seen that the total energy cost passes through
a minimum which is substantially smaller than the costs for
either adiabatic distillation or conventional vapour recom-
pression. The optimum liquid composition x depends, of
course, on the unit cost of the heating steam.

In the separation of acetic acid and water the reflux ratio
is taken to be 5 : 1, the compressor efficiency is assumed to
be 709 and a temperature drop of 10° C is allowed across
the heat-transfer surface, as before. A set of calculations
corresponding to those for the methanol-water system were
carried out and it was found that the number of theoretical
plates in the column varied between 23 and 30 in different
cases. The calculations were based on a McCabe-Thiele
diagram with a fictitious molar weight of 100 for acetic acid
to give a constant pseudo-molar latent heat of vaporisation.

TABLE IIB.—Costs of Separation: Acetic Acid-Water System
Total emergy cost per

System 100 1b bottom product
(pence)
Vapour recompression to boiler 47-5 47-5
Compression to heat liquid
with x=10-2 39-0 42-0
x =04 31-5 34-0
x=0-5 29-5 32-5
x =06 27-7 32-0
x=0-7 27-5 35-0
x=0-8 32-0 48-0
Conventional adiabatic column 82-0 163-0

The results are presented in Table IIB, where x denotes the
pseudo-mole fraction of water in the liquid on the heated
plate and, as before, the cost figures quoted refer to unit costs
of 10 shil/ton and £1/ton for heating steam. Once again there
is a value of x for which the total energy cost is a minimum.

The costs in Tables IIa and IIs should be compared with
those given in Table I for ideal reversible heat-pumping
systems. Although the single-stage systems of Tables II come
nowhere near the minimum energy cost attainable in principle,
they still show a very substantial saving over conventional
distillation.

The above results give no indication of the effect of capital
costs on the economics of the process, so further calculations
were carried out to give estimates of capital costs and equip-
ment specifications for plants of specified annual output. In
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the methanol-water example the basis was taken to be a plant
producing 22 000 tons per annum of the 99-95%; by weight
methanol top product, and in the acetic acid-water example
a plant producing 5000 tons per annum of the 907, by weight
concentrated acid. The installed capital costs of compressors
were estimated from a chart given by Vilbrandt and Dryden!?
(converting costs to sterling at the rate £1 = §3). The capital
cost of extra heat-transfer equipment (over and above that
required for conventional adiabatic distillation), extra plates,
valves, and piping was estimated using approximate methods
such as those described by Sawistowski and Smith.!8

The results are set out in Tables IIIA for the methanol-water
system and IIIB for the acetic acid-water system, and show
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the separation are then reduced to 27d/1001b acid, inde-
pendent of the cost of heating steam, and this should be
compared with the best costs of 27-5d/1001b acid and
32-0d/100 Ib acid given in Table IIs for a single-stage system,
with steam costs of 10shil and £1/ton respectively. Clearly
there is no justification for the second stage when the steam
cost is 10 shil/ton, but the extra capital cost may be worth
while when the steam cost is £1/ton.

During start-up, the reboiler would be heated by an
independent heat supply until a sufficient overhead vapour
rate had been established to enable the compressors to
operate satisfactorily. Since the heat load at the reboiler and
condenser will frequently be determined by these start-up

TABLE ITIA.—Plant to Produce 22 000 ton/a of Methanol

Total
Energy Energy Intake Installed installed
cost cost volume cost of cost of
(steam at (steam at Motor of Pressure  compressor heat-pumping
System 10 shil/ton) £1/ton) power compressor rise and motor equipment
(£/a) (£/a) (hp) (ft3/min) (Ib/in2) ®) ®
Vapour recompression to boiler 10770 10 770 425 2567 56-1 18 000 35400
Compression to heat liquid containing
50 % wt methanol 5960 7210 186 2386 17-7 7000 22200
Compression to heat liquid containing
609, wt methanol 5690 7430 156 2269 14-9 6000 20 400
Compression to heat liquid containing
70% wt methanol 5750 8420 122 2042 12-5 4500 17 700
Conventional adiabatic column 10 500 21 000 — —_ — — —
TabLE IIIB.—Plant to Produce 5000 ton/a Acetic Acid
Total
Energy Energy Intake Installed installed
cost cost volume cost of cost of
(steam at (steam at Motor of Pressure compressor heat-pumping
System 10 shil/ton) £1/ton) power  compressor rise and motor equipment
(£/a) (£/a) (hp) (ft3/min) (Ib/in2) ®) ®
Vapour recompression to boiler 22300 22 300 835 8900 23 36 000 83 000
Compression to heat liquid containing
219 wt water 13 500 15 300 430 8400 10 17 000 67 500
Compression to heat liquid containing
309, wt water 12 800 16 300 352 8200 8-8 15 000 64 000
Compression to heat liquid containing
429 wt water 15000 22 400 287 7300 7-2 12 000 54 300
Conventional adiabatic column 38 200 76 400 — — —_ — —

the power of the motor required to drive the compressors,
the intake volume of the compressor and the pressure rise, in
addition to capital and energy costs.

For acetic acid, due allowance is made for construction in
stainless steel because of the corrosive nature of the substance
handled.

When heating steam costs £1/ton it is seen that the reduction
in energy costs, compared with those of a conventional
adiabatic column, pays off the extra capital investment in
between one and two years. This is a very satisfactory return
on capital, and even with the lower steam cost the return on
capital is still quite good.

Clearly in more detailed design studies it would be necessary
to consider various reflux ratios and the effect of changing
the temperature drop allowed across the heat-transfer surface.
1t would also be important to consider the possible advantages
of using two or more stages of compression and condensation,
as indicated in Fig. 7. In the acetic acid-water separation, a
two-stage system can be obtained by compressing overhead
vapour to 10 Ib/in2 gauge and condensing most of it at this
pressure. The remainder, quite small in quantity, can then be
further compressed in a second compressor to 23 Ib/in? gauge,
after which it can be condensed in the reboiler to supply the
remainder of the column heat load and eliminate the need
for heating steam. The pressure ratio of the second com-
pressor remains reasonably small and the intake volume is
only 1680 ft3/100 Ib acid product. The total energy costs of

conditions rather than by the steady-state conditions, the
savings in energy costs obtained by using compressed over-
head vapour in the reboiler must be balanced against the
small saving in capital cost of the reboiler and condenser
surface and a possible loss in flexibility of the column.

Finally, it must not be inferred from the examples worked
here that the application of the direct compression system is
confined to binary mixtures of only moderate non-ideality.
The methanol-water and acetic acid-water systems were
chosen only because of the availability of accurate thermo-
dynamic data. Indeed it is doubtful whether distillation is the
best method of effecting the latter separation.

Discussion

In a McCabe-Thiele diagram, the heat to be supplied to
the reboiler of a distillation column is determined by the
slope of the operating line at the base of the column, decreasing
as this slope increases. The principle of the present method
is to increase this slope by condensing compressed overhead
vapour and hence supplying heat to the column at some
point or points between the feed plate and the reboiler.

Freshwater!® has proposed an alternative method of
increasing the slope of the lower operating line which is
applicable when the form of the equilibrium relations is such
that there is a pinch above the feed plate. In an adiabatic
column, the reflux ratio must be sufficiently large to avoid
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this pinch, and this has the effect of unduly reducing the slope
of the lower operating line. It is therefore suggested that high
reflux should be generated locally in the region of the pinch
by using a heat pump over quite a small temperature interval.
The reflux ratio at the top of the column can then be reduced
without meeting difficulty at the pinch, and correspondingly
the slope of the lower operating line is increased and the heat
consumption at the boiler reduced. However, the economy
in heat consumption obtainable in this type of system is still
limited by the creation of a pinch at the feed point, whereas
the systems described here permit considerably greater
economies. This is borne out by the relatively modest
reduction in energy consumption (about 20%,) quoted by
Freshwater for a worked example.

Actually the effect on the operating lines of heat transfer
to and from the column is erroneously represented in the
diagrams of Freshwater’s paper, but it is not known whether
the numerical calculations quoted are subject to a corre-
sponding error.

It is hoped that this paper has shown that vapour recom-
pression, often regarded as impracticable in most distillation
columns because of the large temperature difference between
condenser and reboiler, may be an attractive proposition if
the compressed vapour is condensed at some point, or points,
in the column more appropriate than the reboiler.
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APPENDIX

Approximate Method of Locating Best Positions for
Intermediate Heat Exchangers

Consider the system of Fig. 5 with a reboiler, R, and
N exchangers, Ey, ..., E,, ..., Ey, at positions where the
temperatures of the contents of the column are T, . . .,
T,, » T, numbered in order of increasing temperature.
If the heat liberated by the flashing condensate entering
exchanger E, is small compared with the total heat supply,
q*(T,), at exchanger E,, the associated work of compression,
w(T,), is:

WHT,) = g%(T;) - TP

[Hd( Tn) - hd ( Tn)]

The total cost of supplying the energy requirements of the
column is:

N
T.EC. = C3{QB + 213 q%(T,)-

an

w(T,).C
[HAT,) — hd(m]} (8)

where Cj is the unit cost of heat supplied to the reboiler and C
is the ratio of the unit cost of power supplied to the com-
pressors to that of heat supplied to the reboiler. If the reboiler
is heated by condensing compressed overhead vapour:

Hy(Tg) — hy(Tp)

ez, vy . . 19
WTp) {19

From the point of view of energy costs, the optimum

system is that set of values of 7, which minimises equation
(18) subject to:

C =

12 (T < ATY) — AT . . N ¢.1)]
. Hdo - hdo
and: AT) < + RD [Hdo——mf)] .Q
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These relations ensure that the column is free from pinched
conditions and that sufficient overhead vapour is available
for compression.

From equation (20):

N
Qp = QTp) — OTF) — ? q*(Tp,

s0: TEC.— q{gcm — oy

_ C.w.(T)
HAT) = hdm)J} 22

In a given problem, a diagram such as that shown in
Fig. 8 can be constructed. The energy cost is proportional to

N
- Zl‘. (T, [l

Q(T)-a(T)

a(r)-a(r,)

____Cw(n)
HalT)-ha(T)

Fig. 8.—Approximate determination of the optimum posmons for the
heat exchangers in the system of Fig. 5

the area of the hatched region. The area of the nest of
rectangles shown by broken lines represents the savings in
energy costs achieved when the system of Fig. 5 is used
instead of the conventional systems where all the heat is
supplied to the reboiler. The inequality (20) is represented by
the vertical distance between the value of Q(T) and the upper
boundary of the nest of rectangles. Therefore the height of
the steps can be chosen to provide a suitable compromise
between energy savings and an excessively large number of
plates. Negative values of the abscissa clearly represent the
range of values of 7, where heat supply by condensing
compressed overhead vapour is uneconomic. The diagram
also shows the advantages obtained when the Q-curve has a
shape similar to that shown in Fig. 2.

If N is small, as seems likely in most practical cases,
estimates of the optimum values of 7, corresponding to the
maximum area of the nest of rectangles, can be found very
easily by visual inspection of the diagram shown in Fig. 8.
The condition imposed by inequality (21) can then be checked.
The further saving obtained by using N + 1 exchangers can
also be estimated very quickly. These estimates of the
optimum values of 7, would then form the starting point of
a further set of calculations which include the effect of the
flashing condensate on the heat supply at each exchanger and
introduce assigned capital costs for the extra equipment,

Symbols Used

B = flow of bottom product.
C = ratio of unit costs of energy as power and heat to
reboiler.
¢ = specific heat of condensed overhead vapour.
C| = energy cost for conventional distillation with
adiabatic column.
C, = cost of electrical energy in heat-pumping system.
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C; = unit cost of heat supplied to the reboiler of the
system in Fig. 5.
D = flow of distillate.
f = flow of condensate in optimum direct-compression
system.
f=total flow of overhead vapour available for
compression.
F = flow of feed.
G, = flow of pth product stream.
hy(T) = unit enthalpy of compressed vapour after con-
densation.
h,, = unit enthalpy of condensed overhead vapour.
H,4(T) = unit enthalpy of compressed vapour which delivers
heat by condensation at temperature 7.
H,, = unit enthalpy of overhead vapour.
Hp = unit enthalpy of feed stream.
H, = unit enthalpy of pth product stream.
AH = enthalpy change accompanying the separation.
L = latent heat of vaporisation.
N = total number of exchangers in the system of Fig. 5.
g = heat required to operate heat pumps.
Q(T) = ordinate of Q-curve at temperature 7.
Q*(T,) = heat supply to the exchanger where the tempera-
ture of the column is T},
Q; = heat absorbed from reservoir at temperature 7;.
Qg = heat supplied to boiler.
Qp = heat removed at condenser.
Q7 = total heat taken from source at temperature Tp.
AQ = total amount of heat to be supplied below specified
point in column if system is to be reversible.
AQ’ = heat to be removed between specified point above
feed and top of column if system is to be
reversible.
R = reflux ratio at top of column.
Sr = unit entropy of feed.
S, = unit entropy of pth product stream.
sy = slope of upper operating line.
s, = slope of lower operating line.
AS = entropy change accompanying the separation.
T = Absolute temperature.
Ty = Temperature in reboiler.

I

18 Sawistowski, H.,

Tp = Temperature in condenser.
Ty = Temperature at feed plate.
T; = temperature of ith heat reservoir.
T, = temperature of contents of column at exchanger
E,.
T, = highest temperature in column to which heat is
supplied by compressed vapour.
T.E.C. = total cost of energy.
Temperature drop across heat-transfer surface.
= incremental work in direct compression systems.
W = total mechanical work performed on system.

AT
w

W*(T,) = work of compression associated with the heat

supply at exchanger E,.
The above quantities may be expressed in any set of

consistent units in which force and mass are not defined
independently.
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