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ABSTRACT. 

Thirteen sediment cores have been collected from a variety of sedimentary 

environments around the coast of Western Scotland ranging from terrestrially 

dominated fjords to more marine shelf areas. Eight of these cores have been 

examined in detail for the minor elements (Cu, Pb, Zn, Zr, Rb, Sc, Sr, Ba, Ni, Cr, 

Y), Rare Earth elements (La, Ce, Nd), organic components (C, N, S. I, Br,) and 

porewater components (S042 , alkalinity). In addition, some cores were 

analysed for 615N and also 137Cs (to estimate sediment accumulation rates). 

Study of the minor elements associated with the lithogenic fraction (Zr, Rb, 

Sc, Sr, Ba, Ni, Cr) has highlighted variations in sediment mineralogy and 

grain-size both spatially and temporally, showing that few of the sediments 

show steady state accumulation. Indeed, in one core an erosive event can be 

identified which has been calculated to have removed 18cm of sediment 

accumulation. In these sediments Ni and Cr have been shown to be associated 

with the detrital ferromagnesian fraction. Ni can therefore be used as an 

indicator of Iithogenic metal input. 

The distibution of the REE (La, Ce, Nd) show enrichments of La and Ce 

relative to V and mean shales in the more terrestrially dominated fjords 

suggesting a possible association with the iron oxide phase. 

Organic C, N, 5, pore water So  2' and alkalinity have been analysed to 

show the patterns of organic matter degradation in the sediments. C/N ratios 

have been used to characterise the nature of the organic matter. It is clear 

that 615N values in the sediments are influenced by other factors aside from 

organic matter provenance, possibly fractionation and biological productivity. 



S042  reduction is seen to be a major mechanism of organic degradation, both 

in the oxic/suboxic biomixed zone and in the anoxic sediment at depth. The 

incorporation of S042  reduction products at depth is suggested to be a 

function of the degree of biomixing associated with the flux and quality of the 

organic matter. 

I and Br are shown to be released from the organic matter at depth, but 

the I/Br ratio shows I to be more labile than Br. Iodine, known to be associated 

with marine organic matter can therefore be used both as an indicator of 

marine organic matter and organic diagenesis. 

Cu, Pb and Zn show surface enrichment patterns, but these are most 

marked for Pb and Zn. Ratioing total metals to Ni allows the excess Pb and Zn 

due to anthropogenic loading to be calculated. Both metals show marked 

associations with I which vary with depth. 

It is concluded that the patterns of heavy metals observed in the 

sediments are due to diagenetic processes associated with organic matter 

degradation in a similar manner to I. However, the varying associations of 

heavy metals to I show the mechanisms of bonding of the Pb and Zn to the 

organic matter must be different to that of I. 
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CHAPTER 1 

INTRODUCTION 



In recent years, the input of pollutant materials into the marine 

environment has been causing increasing concern (see Goldberg, 1976(a)). 

Many of these substances such as, halogenated hydrocarbons (including PCB, 

DOT and HCB) and certain radionuclides, are alien to the marine environment 

and enrichment in marine sediments can be attributed directly to a pollutant 

input (Horn at al, 1974; Eisenreich at a!, 1979; Livingstone and Bowen, 1979; 

Koide at al. 1980; Bopp at a!, 1981, 1982; Mackenzie, Scott and Williams, 1987). 

Other pollutant substances for example, heavy metals may show a significant 

partitioning between natural and anthropogenic phases, however, there is 

generally a temporal change in the input of pollutant elements that can be 

recognised. For instance, studies of the distribution of heavy metals, 

particularly Cu, Pb and Zn, as well as Cd and Hg in the coastal and shallow 

marine environment (eg Erlenkeuser at al, 1974; Bruland at al., 1974; Crecelius 

at a!, 1975; Goldberg at a!, 1977; Price at a/. 1978 and Farmer, 1983) have 

found them to be enriched in sediments close to the sediment/water interface 

relative to their concentrations at depth. Many of these studies have been 

made in areas close to direct pollutant inputs and the enrichment patterns 

observed in the sediments have therefore been attributed to an increasing 

anthropogenic loading. Indeed these enrichment patterns have been used by 

some workers to describe the pollutant history of a number of areas 

(Erlenkeuser at al. 1974; Bruland at al. 1974; Goldberg eta!, 1977, 1978, 1979). 

However, other studies (Krom, 1976; Price at a!, 1978; Galloway and Likens, 

1979; Hamilton-Taylor, 1979; Malcolm, 1981; Ridgeway, 1984) have found 

similar metal enrichments in areas more remote from direct industrial 

discharge. Such trace metals can be released into the atmosphere by the 

burning of fossil fuels (Bertine and Goldberg, 1971; Swaine, 1977) and other 

industrial processes (Goldberg, 1976(a); Franzin at a!,, 1979) and their fallout 
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has been measured over land, sea, and in areas remote from regions of 

discharge (Lazarus at a!, 1970; Ranticelli and Perkins, 1970; Nraigu, 1979; 

Shirahata at at,, 1980; Shaule and Patterson. 1981; Boutron and Patterson, 

1986). These measurements support the theory proposed by Galloway and 

Likens (1979) that the atmosphere is a major pathway along which heavy metal 

pollutants may travel to remote sedimentary environments. 

Little attention has been paid to the fate of these metals once incorporated 

into the sediment. A number of workers in remote environments (Elderfield 

and Hepworth, 1975; Galloway and Likens, 1979; Hamilton-Taylor, 1979; 

Malcolm, 1981; Ridgway and Price, 1987) have suggested that the patterns of 

anthropogenic metals in the sediments may be modified by diagenetic 

processes. In Western Scotland, the only serious studies that have attempted 

to address this problem (Malcolm, 1981; Ridgway, 1984) have been restricted 

to one fjord system, Loch Etive. 

The aim of this study is to investigate the relationships between heavy 

metals, sediment lithology (as depicted by trace element comparisons), and 

organic matter during burial diagenesis in sediments, to try to show that the 

patterns of anthropogenic metal loading can be diagenetically modified 

(Elderfield and Hepworth, 1975; Galloway and Likens, 1979; Malcolm, 1981; 

Ridgway and Price, 1987). To do this a number of sediment cores have been 

collected from the West Coast of Scotland, which provide a wide range of 

environments from restricted, terrestrially dominated fjordic systems to more 

marine dominated sediments of the shelf. To highlight possible spatial 

variations in the anthropogenic fluxes to the sediments, the sediments were 

collected over a broad geographical area covering the West coast of Scotland 

and the Outer Hebrides. 
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Fundamental to any study of the geochemistry of the sediments is the 

characterisation of the detrital input material, both spatially and temporally 

(Shimmield, 1984; Ridgway, 1984). Variations in the detrital input to a 

sediment can have a marked influence on the patterns of accumulation of 

heavy metals as well as some control on diagenetic modification. Many 

studies of sediment diagenesis have assumed that over the period considered, 

generally the last 100 years, sedimentation as total sediment accumulation has 

remained constant for a particular sediment and that diagenesis is principally 

controlled by diffusion within a uniform medium (eg Berner, 1974, 1978, 1980). 

Measurements of the variability of minor element contents in sediments can 

be used to identify often small temporal variations in the lithology of the 

sediments which are often not recognised in mineralogical/grain size analysis 

(Calvert, 1976; Ridgway, 1984). Such changes can profoundly influence the 

organic matter in sediments and hence the potential for diagenetic 

readjustment of authigenic phases (Calvert, 1976). The potential of a sediment 

for such diagenetic modification is not only influenced by organic content, but 

also by variations in organic quality, which can be expressed as the ease by 

which organic matter can be metabolised (Goidhaber and Kaplan, 1975; Berner, 

1978; Westrich and Berner 1984). Loosely, this can be regarded as being 

influenced by variations of terrigenous to marine organic matter as well as 

their structural changes on burial (Goidhaber and Kaplan, 1975; Lyons and 

Gaudette, 1979). The relative distribution of the marine and terrigenous 

organic fractions of sediments has never been satisfactorily identified using 

isolated geochemical parameters, similarly the propensity of organic matter for 

degradation by metabolising micro-organisms is difficult to quantify. In this 

study, the commonly used C/N ratio of organic matter (Bader, 1955; 

Pocklington and Leonard, 1979) is discussed and used as a basis on which to 
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compare isotopic variations in the nitrogen content of a sediment which has 

hitherto being considered a reliable indicator of organic matter provenance 

(Sweeny et a!, 1978). Additionally both these methods have been used in 

conjunction with the minor halides (I and Br) of sediments to obtain an 

understanding of organic matter degradation. 

It is only after appraisal of these factors coupled with sediment 

accumulation rates that a sensible discussion of the fate of anthropogenically 

introduced heavy metals can be made. 

5 



CHAPTER 2 

THE LOCATION, GEOLOGY AND ENVIRONMENTAL SETTING 

OF THE STUDY AREA 



2.1. Introduction 

The study area is located on the West coast of Scotland and extends from 

the Outer Isles in the North, to Oban in the South (see Figure 2.1). Sediment 

cores were taken from the localities noted in Figures 2.2 and 2.3. The cores 

were collected during 1984/1985 (Table 2.1) using a lightweight gravity corer, 

modified to minimise sediment disturbance (Kemp et a/, 1976). The sediment 

cores were processed according to the techniques given in Appendix I Section 

1. The major emphasis is placed on eight main cores; AB1, CM1, CR1, DN1, 

DU1, ET1, SH1 and SP1. A further three cores; HOl, NE1, SN1 were collected 

from the North of the region (see Table 2.1 and Figure 2.2). The data for these 

sediment cores is given in the appendices. However, this is not as extensive 

as the former sediments. 

2.2 Geology Of The Area. 

The rocks of the North-West coast of Scotland and the Hebrides cover a 

wide span of geological time, from the Archean to the Tertiary (see Figure 2.4). 

The Isle of Lewis is composed largely of grey tonalitic and granitic gneisses of 

Lewisian age 	have been dated at between 2.8 and 2.9 Ga (Francis et a 

1971; Moorbath et al. 1976). This is the major source of sediment entering 

Loch Shell. The rocks of the Loch Duich area are also Lewisian, comprising of 

hornblende and biotite gneiss, garnet and biotite amphibolite, eclogites and 

diopside-forsterite marble (Harker, 1941). Intercalated with the Lewisian are 

bands of Moinian psammitic schists. On the Southern shore of Loch Duich is 

the Glenelg-Ratagan igneous complex which is primarily dioritic in 

composition with minor granodiorite, syenite, adamellite and some ultrabasics 

(Nichols, 1950). The head of Loch Duich is bounded by the Strathcona4i fault 
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Location Water Core Name Oat. 

Depth (m) Collected 

Loch Etive: 

Ards Bay 42 ABi October 1984 

Inner Basin 135 ET1 October 1984 

Loch Cretan 18 CR1 November 1984 

Camas an Thais 30 CM1 November 1984 

Dunstatfnage Bay 35 DN1 November 1984 

Loch Spelve 32 SP1 December 1984 

Loch Duich 93 OW April 1985 

Loch Hourn 130 HOl April 198 

Loch Nevis 110 MEl April 1985 

Loch Shell 61 SH1 June 1985 

Loch Snizort 80 SN1 June 1985 

TABLE 2.1: Sediment core localities, core names and collection dates, 
and water depths. 

Loch Catchment Area 

Km2  

L Etive <1300 

L Creran 166 

L Duich 160 

L Shell 	. 87 

L Spelve 75 

TABLE 2.2: Catchment areas of the sea lochs sampled. 

Station Location 	Precipitation (mm yr 

L Etive 2197 

L Duich 2062 

L Spelve 1607 

L Creran 1698 

LErisort 1156 
(L Shell) 

TABLE 2.3: Mean annual rainfall over the study area as 30 yr moving 
average (Meteorological Office Statistics.). 



FIGURE 2.1: Location of the study area in Western Scotland. 
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which runs North-East South-West and forms the South-Eastern boundary of 

the Glenelg-Ratagan complex. At its Southern most end, the Strathconon 

fault crosses the mouth of Loch Hourn. Towards Loch Hourn and Loch Nevis, 

the rocks become dominantly Moinian comprising 	pelitic and psammitic 

schists (Johnson, 1983). 

In the South, the Dalradian rocks become important. These are mainly 

slates, phyllites, limestones, quartzites and grits, with hornblende and 

epidiorite schists common. West of Bonawe, the shores of Loch Etive are 

composed of Devonian andesitic and basaltic lavas and tuffs, forming low 

rolling hills which continue Northwards to Loch Creran. North-East of Bonawe, 

the surrounding mountains are composed of the Etive Granite, which is 

Caledonian in age. The Western edge of the Etive Granite is bounded by a 

fault which runs North-West South-East along the Pass of Brander and 

continues North-West along Gleann Salach to Loch Creran. 

The rocks bordering Loch Spelve on the Isle of Mull are mainly basaltic in 

nature with associated olivine dolerite, gabbros and agglomerates. These 

rocks form part of the Tertiary Volcanic Province and have been dated at 59 

my (Musset at al. 1973, 1980; Walsh at al. 1979). On the North-Eastern shore 

of Loch Spelve, small amounts of Triassic sandstones and grits occur, forming 

the country rocks through which the volcanics were erupted. 

2.3. Geomorphology. 

The study area forms the Western margin of the Scottish Highlands and 

has been greatly modified by the Pleistocene glaciations (Sissons, 1967). 

Evidence for glaciation in the area is extensive. Sissons (ibid) has associated 

Loch Spelve with a piedmont glacier flowing from the uplands of Mull into the 
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Firth of Lorne during the Loch Lomond Stadia[ c. 11 000 years BP (Peacock at 

a!, 1978). Both Loch Etive and Loch Creran are relict glacial valleys and 

contain extensive glacial outwash features (Sissons,ibid). In the North, the 

confluence of the Glen Lichd and Glen Sheil glaciers caused a considerable 

overdeepening of the valleys resulting in the fjord system of Loch Duich-Loch 

Aish (Krom, 1976). 

It has been suggested that the movement of the glaciers was controlled by 

pre-existing drainage patterns and that many of these pre-existing river 

valleys picked out lines of structural weakness (Peach and Home, 1930). It is 

difficult, however, to distinguish between true glacial erosive features and 

periglacial water erosive features. Nevertheless, there are a number of lochs 

and rivers within the area that appear fault controlled. For example in the 

Loch Etive catchment area, the River Awe, flowing. out of Loch Awe and down 

the Pass of Brander occupies a faulted U-shaped valley suggesting that the 

valley glacier was following the fault. At the head of Loch Duich, Strath Croe 

appears to be controlled by the Strathconon... fault. The two rivers that flow 

into the head of Loch Duich, the Sheil and Croe have had very little effect 

upon the geomorphology of their valleys (Krom, 1976). 

The Scottish Highlands were considered by Peach and Home (1930) to be a 

deeply dissected plateau with a uniform Eastwards slope. This results in the 

sea lochs of the area having relatively small catchment areas, see Table 2.2. 

Examples of this are; Loch Creran and Loch Duich which have catchment areas 

of 166 Km  and 160 Km  respectively. The exception is Loch Etive, which has 

the largest catchment area on the West Coast of Scotland and is in excess of 

1300 Km  (Malcolm 1981; Ridgway, 1984). The smallest catchment areas of 

the lochs sampled are Loch Spelve on the Isle of Mull and Loch Shell on the 
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Isle of Lewis (75 Km2. and 87 Km  respectively). This is by virtue of their 

island locations. The size of catchment area will tend to have an effect upon 

the amount of terrestrial material entering the lochs. As a result, Loch Etive 

would be expected to have the greatest terrestrial influence, Loch Duich and 

Loch Creran correspondingly less. This is reflected in the salinity/depth 

profiles for Loch Etive (Ridgway, 1984) and Loch Duich (Krom, 1976) seen in 

Figure 2.5. In Loch Etive, the fresh water entering the loch can be seen as a 

surface wedge with a maximum thickness of lOm in the inner basin, thinning 

towards the mouth of the loch. In contrast, the smaller catchment area of Loch 

Duich results in less fresh water run-off into the loch as shown by a reduced 

fresh water wedge. The catchment area of Loch Shell is likely to have little 

effect upon the sediment at core locality SH1 (see Figure 2.2) as this station 

was outside the loch. Similarly, the Camas an Thais and Dunstaffnage stations 

(CM1 and DN1) can be regarded as having no catchment areas. However, 

these sediments may be influenced by the outflow of material from Loch Etive 

over the Falls of Lora. 

2.4. Precipitation. 

The proximity of the Highlands to the East and the prevailing moist 

South-Westerly winds results in a very high annual rainfall. The precipitation 

pattern over the whole area is broadly similar. The wettest months tend to be 

September to January and the driest is May (see Figure 2.6). While the rainfall 

pattern is similar, the mean annual total varies. This is summarised in Table 

2.3. The lowest annual average is 1156mm yr 1  measured at Loch Erisort on 

the Isle of Lewis (see Figure 2.2). This is due to the shelter afforded by the 
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other islands to the South-West. Loch Etive has the highest precipitation, with 

an annual average of 2197mm yr 1  (Meteorological Office 30 year statistics). 

This variation in rainfall will also tend to have an effect upon the amount 

of terrestrial matter entering the lochs through run-off. From this, Loch Etive 

with the largest catchment area and highest rainfall would be expected to 

have the greatest terrestrial influence, and Loch Shell with a small catchment 

area and lowest rainfall the least. 

2.5. Population and Industry. 

The area as a whole is very sparsely populated, due to the topography and 

the remoteness. The major centreg of population are Oban and Fort William 

(population about 10,000 in each town). Discounting these centres, the 

population tend5to become sparser Northwards; Along the Southern shore of 

Loch Etive are the villages of Connel, Bonawe and Taynuilt (population 8500 in 

total), but in the lochs further North the population is restricted to isolated 

crofts. On the Outer Hebrides, the major centre is Stornoway on the Isle of 

Lewis (population c.8000). Around Loch Shell, there is very little settlement, 

again isolated crofts. 

Very little industry is carried out in this region. There is a pulp mill on the 

North shore of Loch Eu (see Figure 2.2) which is known to discharge cellulose 

into the loch. This has been examined by Malcolm et al. (1986) and the effect 

was found to be very local. The nearest major industrial centre is Glasgow and 

the Clyde valley over 100km to the South. 
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CHAPTER 3 

MINERALOGY AND TERRIGENOUS INORGANIC COMPONENTS 

OF THE SEDIMENTS 



3.1. Introduction. 

The sediments of the study area are composed of a varied mixture of 

components derived from different sources. The mineralogical component of 

the sediments is derived largely from the catchment area of the lochs. As 

such, the geology and geomorphology of the area may have an influence upon 

the sediment mineralogy and physical characteristics. It is worth noting that 

previous studies of the sediment accumulation rates in the region (Ridgway, 

1984; see Chapter 8) have shown them to be between 0.5cm yr 1  for 

sediments outside the fjords and up to about 1cm yr 1  in the restricted fjords. 

Thus, the sediment cores collected represent no more than fifty years 

sediment accumulation and in some instances much less. 

In this chapter the bulk mineralogy of the sediments will be discussed 

along with the porosity. The distribution of the lithogenic elements, Zr, Rb, Ni, 

Cr, Sc, Ba and Sr will also be considered. The rationale of choosing these 

elements is that some are unequally partitioned between the sand, clay and 

carbonate fractions of the sediments. As will be seen in later chapters, 

variations in the physical characteristics of the sediments can have important 

effects upon the patterns of diagenesis in the sediment. 

In addition, the distribution of Y and the Rare Earth Elements, La, Ce and 

Nd will be considered. However, these elements appear to bear no relation to 

the lithogenic input and their distribution is problematic. 
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3.2. Core Descriptions. 

The lithological characters of the cores are sketched in Figure 3.1. The 

sediments are generally muddy silts, brown, olive green-grey in colour. Most 

cores display a surface layer of brown flocculant material, but this is absent 

from DN1 and DU1. 

Cores ET1 and AB1 from Loch Etive and DN1 from Dunstaffnage Bay in the 

Firth of Lorne are relatively uniform with respect to colour changes at depth. 

Other cores show a more variable history. For example, CR1 from Loch Creran 

shows several bands rich in shell fragments throughout the core. In general 

these bands are about 2cm thick, but a thicker band between 5cm and 12cm is 

prominent. These are very coarse grained and often contain Turritellid 

gastropods. In Loch Duich (DUI), the grey/brown muddy silt of the upper 

10cm gives way to a paler grey silty sediment which continues to about 35cm 

where there is an irregular boundary to a very pale grey, denser, cohesive clay 

which occurs in the bottom 12cm of the core. 

Burrows were noted in all the cores but the depths to which these 

extended varied. In ET1 and CM) burrows were noted at a depth of 

25cm-30cm. In SH1, a colour change from grey/brown to homogenous grey at 

about 20cm was noted immediately below a worm burrow. No live macrofauna 

was seen in the sediments except for an unidentified worm at 18cm in SH1. 

However, Ridgway (1984) noted worms present in sediment from the inner 

basin of Loch Etive. These were identified as Nephys hombergi Capitella 

capitata and Spirochaetopterus typicus 

In AB1, ET1, and SP1 there was a distinct odour of H2S from the bottom 

sediments 
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Whilst some sediments appear to have a uniform lithology, suggesting 

relatively uniform accumulation, others display irregularities such as shelly 

horizons and marked colour changes often associated with lithological 

changes, suggesting that accumulation may not be constant. Such changes 

must be borne in mind when the diagenetic effects in the sediments are 

described in later chapters (Chapters 4, 6 and 7) 

3.3, Mineralogy. 

Sediment samples from the top of the cores collected and also at depth, 

were analysed mineralogically by X-Ray Diffractometry (XRD. See Appendix I, 

Section 2.1). The peaks were interpreted using tables prepared by Chao 

(1969). Quantitative analyses are difficult by XRD, but it was possible to make 

qualitative comparisons of mineralogy with depth and between cores. 

All the sediments analysed show quartz, a suite of feldspars (mostly albite, 

but containing potassic feldspar, possibly microcline), calcite, and a clay 

fraction (containing illite, muscovite and chlorite). All samples show a 

characteristic halite peak reflecting the influence of dried sea salt. Sediments 

composed of these minerals have been noted by Krom (1976), in Loch Duich 

and Malcolm (1981) in Loch Etive. These minerals are typical of mechanical 

weathering in a temperate climate (Biscaye, 1965). 

Whilst these minerals Occur in all the cores, the relative proportions vary. 

This can be seen in Figures 3.2-3.5 which shows the variation in peak heights 

of prominent reflections. This is clearly seen in the surface sediments of 

cores ET1 and CR1 (Figure 3.2). ET1 is composed mostly of clays with lower 

amounts of feldspars and quartz and little or no calcite when compared with 

CR1. The surface sediment from Airds Bay (AB1) is similar to ET1, but appears 
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to show a slightly higher quartz and feldspar content. In comparison with 

cores AB1 and ET1, the remaining cores appear to have higher calcite 

contents. Overall, there appear to be considerable differences in the relative 

proportions of quartz, feldspars and clay. For instance, Figure 3.3 shows a 

comparison between CM1 and DUI surface sediment. CM1 is composed 

mainly of quartz and albite feldspar, but a significant amount of potassic 

feldspar is present. DU1 in contrast contains less quartz and relatively more 

feldspar (dominated by albite) and clay minerals, 

At depth the mineralogy of cores ET1 and AB1, in the outer basin, is 

relatively constant suggesting no major changes in lithology or accumulation 

rate of the sediment. Other cores show marked changes in mineralogy with 

depth, possibly suggesting some discontinuity of accumulation or a gradual 

change over time. This is illustrated for cores CR1 and DU1. Figure 3.4 shows 

the variation between the sediments of the shell bands and non-shelly 

horizons in CR1 described above. The shell bands show a marked increase in 

calcite and quartz relative to the clay fraction and an increase in the relative 

importance of potassic feldspar over albite. The sediment in the non-shelly 

horizons is composed mostly of quartz, albite feldspar, and clay, with only 

minor calcite. In DU1 (see Figure 3.5), the surface sediment Contains quartz, 

feldspar and calcite. At 30-32cm, quartz appears to be more dominant and 

there is relatively less feldspar and calcite, suggesting a coarser sediment at 

depth. The light grey clay at the bottom of the core shows more of the 

feldspar and clay minerals, (chlorite and illite) relative to quartz. 

All of the sediments contain pyrite. The peak heights of the different 

sediments are broadly similar, except ET1 which suprisingly appears to have 

less pyrite. 
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3.4. Porosity. 

In a sediment of constant lithology, the porosity could 	be expected to 

decrease with depth due to the compaction of the 	sediment 	with 	burial. 

Pettijohn 	(1975) 	points 	Out 	that grain 	size 	can affect 	the porosity 	of 	a 

sediment; coarse sediment tends to have less porosity than finer 	material. 

Permeability, 	however, 	tends to 	behave 	in the 	opposite manner. 	The 

relationship of grain size and porosity will be considered in the sediments 

studied. 

The porosity of the sediments investigated was calculated from measured 

water contents using equation (3.1) (Berner, 1971). on the formula: 

Wds 

Wds + (1-W)dw 

(3.1) 

Where: 

= Porosity 

W 	= % Moisture Content x 10 2  

ds 	= Sediment Density (using a mean value of 2.65 gcn(3) 

dw 	= Pore Water Density (using a mean value of 1.04 gcm 3  

The data calculated are given in Appendix II, Table All.1 and are illustrated 

as depth profiles in Figure 3.6. The porosity of the surface sediments is high. 

This is summarised in Table 3.1 column (a). Core CM1 is unusual in that the 

surface sediment porosity is low at 0.59%. Table 3.1 column (b) summarises 
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the mean porosity in the sediments. The highest mean porosities can be 

found in AB1 (0.84%) and ET1 (0.86%). The lowest is in CM1 (0.62%). This is 

consistent with the mineralogical evidence that the latter sediments are 

coarser grained than those of A81 and ET1. 

In general the sediment cores show a decline in porosity with depth, (see 

Figure 3.6) indicating in some cores compaction of the sediment. Much of the 

reduction occurs within the uppermost 10cm of sediment. Lower down, the 

change in porosity with depth is barely discernable in some cores and is not 

seen in the cores with low mean porosities, for example CM1 and CR1. Both 

of these cores show slight increases in porosity with depth and the 

mineralogical data confirms the greater importance of clay minerals at depth. 

These trends agree with the findings of Fuchtbauer and Reineck (1963) that the 

clay content and associated organic matter content generally increases 

porosity. 

DU1 is unusual in that the sediments show a much greater decrease in 

porosity with depth than in the other cores. Moreover, there is some evidence 

of lithological discontinuities at depth as depicted by various breaks in the 

porosity profile. The porosity at the bottom of the core (37cm-45cm) is 0.60% 

and is low compared with 0.73% in 0N1 and 0.71% in CR1. The change in the 

porosity profile from one of decrease (0- 37cm) to a constant value (37-45cm) 

is consistent with the lithological changes described above; the low porosity 

values at the base of the core are due to the occurence of the cohesive 

clayey material noted in the core description. The cohesiveness and low 

porosity of this sediment suggests that this sediment is old and that there is a 

considerable hiatus in accumulation between this and the overlying sediment. 

The increase in porosity in the immediate overlying sediment may be partly 
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Core Porosity Mean 

(%) Porosity (%) 

A81 0.870 0.841 

CM1 0.587 0.615 

CR1 0.929 0.699 

ON1 0.814 0.762 

DUI 0.865 0.749 

ET1 0.923 0.869 

SH1 0.822 0.758 

SP1 0.816 0.760 

TABLE 3.1: Surface porosities (as a mean of the upper Scm of sediment) and 
mean porosities for each core. 

Core Zr (ppm) Rb (pp-) Zr/Rb Ni (ppm) Cr (ppm) Ni/Rb 

A81 226 103 2.18 49 97 0.51 

CM1 347 85 4.09 27 60 0.45 

CR1 277 107 2.59 35 . 74 0.47 

DN1 164 119 1.36 49 100 0.49 

DUI 134 118 1.13 53 107 0.50 

ET1 172 90 1.92 47 89 0.53 

SH1 144 105 1.38 48 96 0.50 

SP1 162 110 1.48 49 105 0.47 

TABLE 3.2: Surface values of Zr, Rb, Ni, Cr and elemental ratios. All are 
expressed as a mean value of the upper 5cm of sediment. 
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influenced by a sediment mixing (biomixing) of old sediment during recent 

sediment accumulation. This will be considered more fully in Chapters 4 and 

9. 

3.5. Elemental Chemistry. 

Some elements are known to be associated solely with the mineralic 

fraction of the sediment. It is well known that the arenaceous component of 

fine grained sediments tends to have very different levels of minor elements 

than the argillaceous fraction (Calvert, 1976). This is caused, in the former, by 

the dilution from quartz and in the distribution of feldspars between the 

coarse and fine grained components of a sediment. Thus the ratioing of 

element couples which can be empirically ascribed to a particular mineralogy 

has been useful in showing minor textural differences in a sediment.- Several 

elements when related to Rubidium (Rb) have been used to characterise the 

physical properties of the sediments (Calvert, 1976; Ridgway, 1984). Due to 

the closeness of ionic radii, Rubidium (1.49A) and Potassium (1.33A) are closely 

associated in most rocks. Rubidium tends to substitute for Potassium in 

feldspars, micas and clays (Heier and Billings, 1978). As such, Rubidium 

predominates in the finer sediment fraction (Calvert, 1976) and can be used in 

a similar manner to Al as an indicator of the alumina-silicate fraction of a 

sediment. Variations in the content of other elements expressed as 

element/Rb ratios can provide evidence of textural change in sediment cores 

and can express the nature of source rocks of specific areas of Western 

Scotland. 
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All of the elements described below were analysed by X-Ray Fluorescence 

Spectrometry (See Appendix I, Section 2.2). Element data is given in Appendix 

II, Tables All.2 and All.3; all the values are reported on a salt free basis. 

3.5.1. Zirconium and Rubidium. 

The behaviour of Zirconium (Zr) contrasts with that of Rb. Zr occurs in 

relatively few minerals and in sediments occurs mainly as detrital zircon 

(Erlank, 1978). Zircon is resistant to weathering and tends to occur in the 

coarse fractions of the sediment (Goldschmidt, 1954; Hill and Parker, 1970). 

The implication of this is that the Zr/Rb ratio is a potentially useful tool in 

indicating changes in sediment texture. 

Rb values range from less than 70 ppm in the shelly horizons in CR1 to 

over 140 ppm at the base of DU1. Mean Rb values for the upper 5cm of the 

cores examined are given in Table 3.2. Most of the sediments analysed show 

values of between 100 and 120 ppm. These values are consistent with 

previous studies from the area (Krom, 1976; Ridgway, 1984) and with mean 

values quoted for silty and argillaceous sediments (Heler and Billings, 1978). 

The comparatively low values of surface sediments in cores AB1 and ET1 

supports greater dilution from quartz compared with other sediments 

examined. Several cores show uniform Rb with depth, Figure 3.7, implying 

relatively uniform grain size sediment accumulation. Noticeable exceptions to 

this are seen in cores CM1, CR1 and DU1 and indicate finer sediment at depth. 

Zr values are 'generally between 140 and 200 ppm. Mean Zr values of the 

upper sediments (Table 3.2) show high values occur in CM1 surface sediments 

(350 ppm) and low values of <130 ppm are found in the surface sediments of 
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DU1. Again, these values are consistant with Ridgway (ibid.) and Krom (ibid.) 

and are similar to those found in shelf sediments by White (1970). At depth 

(Figure 3.8) the Zr distributions contrast to that of Rb in that there is an 

increase in Zr content in cores CM1 and CR1. The distribution of Zr in core 

DU1 is very complicated. However, Zr/Rb ratios are more significant than the 

elements themselves for understanding textural and grain size variations. 

The Zr/Rb ratios vary significantly from core to core. Figure 3.9. The mean 

values of the upper 5cm in the cores are summarised in Table 3.2. The 

surface values vary from 4.09 in CM1 to 1.13 in DU1. ET1, AB1 and CR1 have 

similar values between 1.92 and 2.59. Cores SH1, SP1 and DN1 have lower 

surface values of about 1.4. 

The patterns of Zr/Rb ratios at depth are very variable. Cores DN1, SH1, 

SP1, AB1 and ET1 show relatively constant values. However, even in these 

profiles, there are minor depth trends. For instance, SP1 shows a slight 

increase in the ratio from 1.47 to a maximum of 1.76, before falling to 1.57 at 

the base of the core. Core ET1 shows an even more irregular profile of Zr/Rb 

ratios, with changes of Zr/Rb or grain size occuring about 10cm down the 

core. A similar but less defined trend is also seen in AB1. These irregular 

ratios of Zr/Rb in ET1 and AB1 imply a number of changes in accumulation 

over time. 

The most defined change in Zr/Rb is observed in core CM1, where there is 

a greater than twofold decrease in the ratio with depth, implying a 

considerable change of sediment grain size, becoming finer grained at depth. 

Core CR1 shows a similar, but less accentuated pattern with notable coarse 

grained sediments occuring in the carbonate rich horizons, for example 

5-12cm. 
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In DU1 Zr/Rb ratios increase with depth from a mean of 1.13 in the upper 

6cm to a maximum value of 2.47 at 30cm. Below 30cm, there is an abrupt fall 

in the ratio to 1.54 at 34cm, remaining constant at a mean level of 1.53 to the 

base of the core. 

The wide variation in the Zr/Rb ratio both from core to core, and with 

depth in some sediments implies a wide variation in sediment type both 

across the study area and with time. Overall, sediments from the fjords tend 

to have higher Zr/Rb ratios than the coastal sediments. An exception to this 

is CM1 which shows a surface Zr/Rb ratio of 4.2. The lowest ratio is seen at 

the surface of DU1. These trends are supported by the mineralogy of the 

sediments. CM1 has significantly more quartz than DU1 which is relatively 

richer in feldspars (see Figure 3.3). An interesting point to note is that CM1 

has relatively more potassic feldspar than DU1. It is possible that without this 

addition, the Zr/Rb ratio would have been even higher. 

3.5.2. Nickel and Chromium. 

The patterns of Nickel (Ni) and Chromium (Cr) in the sediments (Figures 

3.10) and 3.11) tend to be similar implying that both elements occupy similar 

positions within the sediment. Cr is known to replace Al. Mg, Fe, and Ti 

especially in chlorites, amphiboles and in spinels and during weathering is 

concentrated into the clays (Matzat, 1978). This would suggest a similar fate 

for Ni (Turekian, 1978). Being derived largely from a detrital source (Ridgway, 

1984) it is useful to be able to compare their distribution in the sediments 

with metals such as Copper (Cu), Lead (Pb) and Zinc (Zn) thought to undergo 

diagenetic mobilisation. 
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The surface concentrations of Ni vary from 27ppm in CM1 to 53ppm in 

DU1. The remaining cores all fall between 35 and 50ppm (see Table 3.2). At 

depth (see Figure 3.10) concentrations remain relatively constant between 

40ppm and 50ppm. This is similar to the average Ni content of 40ppm for 

nearshore clays given by Potter at al. (1963). Similar concentrations of Ni have 

been noted in Chesapeake Bay by Goldberg at al. (1978), in Ranafjord by Skei 

and Paus (1979), and in the Archachon Basin (El Ohobary and Latouch, 1986). 

Ni in cores AB1, ET1, DN1, SH1 and SP1 show remarkable uniformity with 

depth and between cores. However, the Ni concentrations in CM1 increase 

gradually from 27ppm at the sediment surface to a maximum value of 45ppm 

at the base of the core indicating a higher clay content. In CR1 the 

concentration also shows evidence of increasing clay content at depth but the 

noticeable feature of the core is the marked decrease of Ni values within the 

shell bands. Core DU1 shows a fall in Ni values from 52ppm at the sediment 

surface to a low point of 34ppm at 22-24cm. Below 34cm, within the older 

consolidated clays, the values remain relatively constant about a mean of 

47ppm. 

Chromium (Cr) values show a similar pattern to Ni. The surface 0-5cm 

values range from 74ppm in CM1 to lO7ppm in DU1. These are summarised in 

Table 3.2. Crecelius at al. (1975) reported mean values of 90ppm from Puget 

Sound. Ridgway (1984) found similar values from Loch Etive. 

The profiles of Cr are shown in Figure 3.11. There is a striking 

resemblance in the distributions of Ni and Cr in cores ET1, CR1, DN1, DU1, SH1 

and SP1 suggesting that both elements are located in the same mineral 

fraction. However, the overall ratio of Ni/Cr (Figure 3.12) can vary from core 

to core. For instance, Ni/Cr in cores SP1, DN1, SH1 are very similar whereas, 
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cores from Loch Etive, ET1 and AB1, appear to have higher ratios. Two cores, 

CM1 and CR1 appear to be relatively impoverished in Ni relative to Cr. These 

cores have been noted from mineralogy and Zr/Rb ratios to be coarser grained 

than is normal suggesting that although much of the partitioning of Ni and Cr 

is related to ferromagnesian and alumino-silicates (particularly chlorite), in 

these sediments some Cr may exist in the resistate fraction, possibly as 

magnetite. The trends of Ni and Cr with depth in cores CM1, CR1 and AB1, 

show decreasing Ni/Cr ratios for AB1 and CR1 and an increase for CM1. 

Shiraki (1978) (quoting Shiraki. 1966) suggested that the ratio of mafic to 

granitic rocks within the catchment area was important in determining the 

amount of Cr in a sediment. Within the study area, there is a wide range of 

rock type from Lewisian granite gneiss to Tertiary flood basalts (See Chapter 

2). But, in these sediments, there appears to be little variation in Cr content as 

a result of the changing rock type. 

At depth the patterns of Cr and Ni follow closely that of Rb. This can be 

seen from Figures 3.13 and 3.14 which show little change in the Ni/Rb and 

Cr/Rb ratios with depth, although there is some overall variation betweeen 

cores, CM1 and CR1 having an overall lower ratio than is seen in the other 

cores. Ni and Cr can therefore be seen to be associated in the clay fraction 

similar to Rb. In some sediments. Ni and Cr have been shown to have 

elevated values in the surface sediments (for example, Bruland et al. 1974; 

Bertine and Mendeck, 1978; Bower et a!,, 1978). This has been attributed to 

anthropogenic input from pollutant sources. The similarities of patterns 

between Ni, Cr and Rb shows that, in these sediments, this is not the case and 

that the Ni and Cr are derived from terrestrial weathering sources. The 

distribution of Ni/Rb ratios will be readdressed when the distribution of Cu. Pb 

and Zn in the sediments is discussed (Chapter 7). 
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3.5.3. Scandium. 

Scandium (Sc) is known to be associated with Al in the clay minerals 

(Frondel, 1978). The concentrations of Sc in the sediments analysed varies 

from below the detection limit to 17ppm. These compare well to Frondel 

(1978) who quotes values of between 10 and 25ppm Sc in nearshore clays. 

Generally, the Sc values are relatively invariant with depth (see Figure 3.15). 

However, some sediment cores show rather irregular profiles, for example; 

core CR1. Here, the Sc values approach the analytical detection limits in the 

shell band between 5cm and 12cm. This is consistent with the fact that 

carbonates have been shown to contain very little Sc (<lppm; Frondel, 1978). 

Core CM1 also shows slightly lower Sc values compared with other cores 

confirming the contention that CM1 and CR1 contain less alumino-silicates. 

Comparison of Sc with Rb as Sc/Rb ratios (see Figure 3.16) shows very little 

change in the ratio from core to core and with depth. The exception to this is 

in the shell band between 5cm and 12cm in the CR1. The lack of variation 

between the cores is due to the overall association of Sc and Rb within the 

same sediment constituents. This association of Sc, Rb and Al, indicates that 

Rb can be sensibly used as an indicator of the alumino-silicate fraction of the 

sediments as discussed in section 3.5.1 

3.5.4. Barium. 

The occurence of Barium (Ba) in rocks and minerals has been reviewed by 

Puchelt (1978). Ba is generally associated with potassic feldspars and micas. 

Duchesne (1968) noted that some plagioclases can also contain Ba but, the 
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concentrations tend to be much lower than in the potassic feldspars. Puchelt 

(1967; quoted in Puchelt, 1978) noted that in coastal sediments, Ba tends to be 

higher in the clay fraction than in the sand and silt fraction. 

Considering the sediments sampled, the mean surface values (Table 3.3) 

vary from 304ppm in SH1 to 600 ppm in ET1. Both SH1 and SP1 show 

relatively low values with cores CMI, CR1 and DN1 having intermediate values 

between 400 and 450ppm. At depth (see Figure 3.17), the Ba values remain 

relatively invariant except in cores CR1 and DU1. Core CR1 shows a fall in Ba 

at the shell band between 5cm and 12cm and DU1 shows a very high Ba 

concentration in the pale grey clay near the base of the core. 

The high Ba values in the sediments may be attributed to higher amounts 

of feldspars (paticularly potassic) in the sediments. High values noted in core 

ET1 can be explained by the fact that the sediment in the inner basin of Loch 

Etive is derived from the granite catchment area. The Ba values in AB1 are 

lower due to the diluting effect sediment of lower Ba content derived from a 

non-granitic catchment area. The clay at the bottom of DU1 is relatively fine 

grained and has a higher proportion of clays and feldspars (see Figure 3.5), 

thus a higher Ba content would be expected. In CR1 the low Ba content of the 

shell bands can be accounted for by the coarser sediment as indicated by the 

Zr/Rb ratios and therefore lower feldspar - and clay contents and the diluting 

effect of the relatively high proportion of carbonate likely to be present (see 

below, subsection 3.5.5) 

3.55. Strontium. 

The Strontium (Sr) content of the sediments ranges between 209ppm and 

790ppm, with most values less than 479ppm. Profiles of Sr with depth are 
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Core Be (ppm) 

AB1. 537 

CM1. 441 

CR1. 451 

ON1. 404 

DU 1. 508 

ET1. 600 

SH1. 304 

api. 352 

TABLE 3.3: Mean Ba values 	Mean values of sediment above clay). 

Core V La Ce Nd La/y' Ce/V Nd/V 

ABi 27 52 114 42 1.93 4.22 1.55 

CM1 25 28 70 26 1.12 2.50 1.04 

CR1 25 33 82 29 1.30 3.28 1.16 

ON1 25 31 76 29 1.24 3.04 1.16 

DUI 29 48 115 45 2.04 4.78 1.70 

ET1 27 55 129 46 2.04 4.78 1.70 

SH1 22 28 64 25 1.27 2.90 1.14 

SP1 24 29 72 29 1.21 3.00 1.21 

N. Am 27 32 73 33 1.19 2.70 1.22 

Shales 

'Europe 32 41 86 42 1.20 2.70 1.31 

Shales 

TABLE 3.4: Mean REE concentrations and REEl! ratios in the sediment cores, 
together with mean concentrations and ratios in N. American and 
European shales (* Data after Raskin and Raskin (1966). 
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shown in Figure 3.18. The lowest Sr values (269ppm to 209ppm) are seen in 

AB 1. Core CR1 has very high Sr values, up to 790ppm. These are 

concentrated in the coarse shell bands. In core DU1 the Sr values increase 

from 336ppm to a maximum of 439ppm at 22-24cm, falling to 270ppm in the 

pale grey clay below 34cm. 

Sr in these sediments is almost entirely partitioned between the 

alumino-silicate and carbonate constituents of the sediments. Sr is known to 

be associated with various Na and K feldspars and clay minerals; for example 

illite (Calvert, 1976; Stueber, 1978). The high values seen in CR1 and SH1 are 

unlikely to be due solely to the alumino-silicate content of these sediments as 

carbonate free clays tend to show about 250ppm Sr. Much of the elevated Sr 

values is almost certainly caused by varying amounts of biogenic carbonate in 

these sediments. Certainly Figure 3.19 shows that there is a strong negative 

relationship between the Sr content and alumino-silicate (Rb) content of the 

sediment, implying mutual dilution of one element by the other; this is 

especially true in cores CR1 and DU1 which have been shown to have high 

calcite contents relative to the other constituents. The highest Sr values 

occur in core CR1 at the major shell band between 5cm and 12cm depth. 

Although there is no observable shell debris in DU1, appreciably high calcite 

contents occur in the upper parts of the core which may have different Sr/Ca 

ratios to that of CR1. 

Figure 3.20, shows the correlation between carbonate carbon (CO3) 

determined by combustion (see Appendix I, Sections 2.3 and 2.4) and Sr for 

three cores; CR1, SH1 and ET1. The Sr and C O3  plots confirm that carbonate 

free sediments tend to have low Sr contents; the regression line based 

primarily on cores CR1 and SH1 indicates a value of 150ppm Sr. Furthermore, 
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FIGURE 3.19: The relationship of Rb to Sr in cores CR1 and DU1. 
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the graph confirms the view of Malcolm (1981) that most sediments in Loch 

Etive contain relatively little carbonate but this will be readdressed in Chapter 

4 when organic carbon is considered. The higher Sr/CO3  of the latter 

sediments may be due to higher Sr in alumino-silicates. Figure 3.20 allows 

the percentage of C O3  present in carbonate rich sediment to be calculated for 

a given Sr content mathematically using the standard y = mx # c format and 

the values for m and c given in Figure 3.20. 

The shell band (5-12cm) in core CR1 therefore contains about 50% CaCO3. 

whilst the non-shelly horizons contain much less carbonate, between 10% and 

20% CaCO3. Similarly, the sediments from core SH1 contain about 20% 

CaCO3. Higher mean Ba values in cores ABi and ET1 relative to the remaining 

sediments (see Table 3.3) would tend to support this (Puchelt, 1978). 

The conclusion which may be drawn from this is that, where calcite is 

present, Sr is much more closely associated with this than the feldspars and 

as such can be used to indicate the presence of shell bands within a 

sediment. However, in sediments with low calcite values, the Sr is associated 

with the feldspar fraction. 

3.6. Rare Earth Elements. 

3.6.1. Results. 

Rare Earth data was obtained by X-Ray Fluoresence Spectrometry and is 

reported on a salt free basis. All the data is listed in Appendix II, Table All.4. 

Before the patterns can be discussed, the possibility of their being an artifact 

of analysis must be considered. The Compton Method of correcting the raw 

X-Ray Fluorescence response for variations in the absorption effects of 
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different matrices (see Appendix I, Section 2.2) is not strictly applicable due to 

the position of the "La" lines for La, Ce and Nd beyond the absorption edge of 

iron and therefore the Compton correction made may not necessarily be a true 

reflection of the matrix effect. In the analysis of Y, Ka line measurements 

were made. Hence, in this case, Compton Scatter absorption corrections are 

not subject to error. However, matrix variations are rarely more than 10% 

(Fitton, Pers. Comm.) and this cannot account for the Rare Earth Element (REE) 

variations seen in the sediments. Thus, whilst the contents described below 

are possibly uject to some error, they probably represent a true reflection of 

the element variation in the cores. 

The Yttrium (Y) patterns in the sediments are similar for all the cores (see 

Figure 3.21). Surface values are relatively invariant between 25 and 30ppm. In 

most cores, the values remain constant with depth, however in core CR1 the V 

values fall to about 15ppm in the shell band between 5cm and 12cm. These 

trends broadly follow the trends in alumino-silicates as depicted by Rb. For 

example, in DU1 the values increase to over 32ppm in the old clay in the 

bottom section of the core. 

Figure 3.22 shows the pattern of Lanthanum (La) in the sediments. In 

cores; CM1, CR1, DN1, SH1 and SP1, the surface values are relatively similar 

(between 25 and 35ppm). However, the cores from fjords, AB1, ET1 and DU1 

show an increased La content of Soppm. At depth, the patterns in all the 

cores remain invariant except for a fall in La concentration between 5cm and 

12cm in core CR1, paralleling the pattern of V. 

Similarly, the Cerium (Ce) patterns in the sediments (Figure 3.23) closely 

follow La in that the fjordic cores; A131, ET1, and DUI have much higher 
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contents (100-150ppm) than the other cores. The shell band between 5cm and 

12cm in core CR1 follows the pattern of V and La. 

The pattern of Neodymium (Nd) (Figure 3.24) in the main follows the 

pattern of the above elements (La and Ce) being relatively enriched in cores 

AB1, ET1 but, the increased content in the lower horizons of DU1 tends to 

follow the pattern of V. 

3.6.2. Discussion. 

The mean REE values noted in the sediments for cores CM1, CR1, DN1, SH1 

and SP1 compare well with values noted by Haskin and Haskin (1966) for 

N. American and European shales (see Table 3.4). 

The values for La, Ce and Nd noted in cores from Loch Etive and Loch 

Duich, in contrast to Y, are much higher than those noted from shales (Haskin 

and Haskin, ibid.) and other cores from West Scotland (this study). 

Comparison of the mean REE/Y ratios shows a similar pattern with Loch Etive 

and Loch Duich being enriched in REE relative to the remaining cores and 

mean shales (Table 3.4). The sediments from Loch Etive and Loch Duich 

contain the highest contents of organic matter and the distribution of REE is 

possibly associated with the distribution of organic matter in the sediments. 

Ridgway (1984) noted the possibility of the formation of apatite from 

phosphorous released during organic matter degradation in the sediments Of 

Loch Etive. REE are known to have an affinity for Phosphates (Arrhenius and 

Bonatti, 1965). Kochenov and Zinov'ev (1960; quoted Herrmann, 1978) found a 

direct relationship between the Lanthanides and P 2  0  5 in fish remains from the 

Maikop Beds of the Caucasus, particularly from sulphide bearing layers. 
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It is possible therefore that the anomalous REE patterns from Loch Etive 

and Loch Duich may be due to the uptake of these elements onto diagenetic 

apatite. However, V would also be expected to be enriched. Arrhenius and 

Bonatti (ibid.) noted preferential enrichment of V and Nd over La and Ce in 

recent pelagic fish bones. A further possibility is an association of REE with 

Fe(OH)3. All the sediments from the fjordic environments are subject to a 

large terrigenous input. This is known to contribute iron to the particulate 

matter and the sediments. The hydrography of the lochs is such that an 

appreciable amount of Fe is liable to flocculate and sediment out, especially in 

the inner basin of Loch Etive, which is dominated by terrestrial input. Ridgway 

(1984) noted an enrichment of Fe relative to Al in sediments from the inner 

basin of Loch Etive. The sediments from the inner basin (ET1) show the 

highest REE values relative to V in comparison to AB1 and DU1. It is possible 

that the flocculating iron oxides scavenge the REE and transport them to the 

sediment. The iron oxides, however, are diagenetically mobile in the 

sediments and are rapidly reduced in anoxic conditions, which would be 

expected to lead to the release of REE possibly' leading to an enrichment in 

the upper horizons of the sediments. This clearly does not occur as the REE 

patterns tend to remain relatively constant with depth suggesting that the REE 

are associated with a non-mobile phase. 
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CHAPTER 4 

ORGANIC COMPONENTS IN THE SEDIMENTS AND PORE WATERS 



4.1. Introduction. 

It has been seen from a number of studies (Malcolm, 1981; Hunt and 

Fitzgerald, 1983; Sigg at al., 1987) that suspended particulate organic matter 

plays a significant role in the control of trace metals in marine systems. 

Similar effects have been noted in sediments (for example, Baturin at al, 1967; 

Jones and Jordan, 1979; Willey and Fitzgerald, 1980; Ridgway, 1984). In order 

to assess the diagenetic effects of burial on the organic material of the study 

area, the organic components in the sediment (C, N. and associated S) and in 

the sediment pore waters (S042 , Titration alkalinity (AT))  were analysed. 

However, inference of diagenetic events as observed in patterns of change of 

these parameters is complicated by the fact that for many of the cores studied 

the source of organic matter may differ and may represent an admixture of 

terrestrial and marine organic matter. Variation in the distributions of C, N, S, 

SO 2., AT  may be due to changes in the relative importance of these differing 

sources and may have a profound influence on the composition of the 

sediment during burial diagenesis. In order to identify diagenetic effects of 

organic matter from the variations in organic matter source, it is necessary to 

attempt to characterise the source of organic matter in the sediments, 

particularly at the sediment surface. A number of chemical parameters have 

been employed in the past to distinguish between marine and terrestrial 

organic matter. These have included; C/N, C/H, Br/C org  (organic Carbon), 

(Bordovskiy, 1965; Pocklington and Leonard, 1975; Mayer at al. 1981) and 613C, 

&5N stable isotope ratios (Cline and Kaplan, 1975; Peters at a!, 1978; Sweeny 

at a!, 1978; Sweeny and Kaplan, 1980). 

In this chapter the behaviour of organic carbon (Corg) is described 

especially its role in reducing sulphate to sulphide in sediments. A study of 



C/N ratios has also been made in an attempt to identify and quantify the 

proportions of marine to terrigenous organic matter present in the sediments. 

The use of 615N will be discussed in Chapter 5. 

4.2. Results And Discussion. 

The sampling and analysis techniques used are described in Appendix I, 

Sections 2.3, 2.4 and Chapter 5. All of the solid phase data is presented on a 

salt free basis. The complete data can be found tabulated in Appendix II, 

Tables AlI.5 and All.6. Carbon, nitrogen and sulphur are expressed as weight 

%, while C/N is given as atomic ratios, 

4.2.1. Organic Carbon. 

	

The sediments can be divided into three distinct groups based on the 	- 

mean organic Carbon (Corg)  contents. This is summarised in Table 4.1. The 

lowest C 	content can be found in CM1 with a mean of 0.79% Cor  the org

highest values occur in ET1 (5.57%). DU1 has a very high surface value of 

4.62% Corg  The values given here are consistant with previously reported 

mean values of 6.4% from the inner basin of Loch Etive and 4.8% from Airds 

Bay in the outer basin (Ridgway and Price, 1987). The surface value in DU1 

agrees well with 5.1% C019  found by Krom (1976). 

Table 4:2 shows a comparison of CO3.9  values from this study and those 

from a number of environments worldwide. It can be seen that the values in 

the sediments studied compare favourably with Corg   values from coastal and 

estuarine sediments elsewhere and are significantly greater than those from 

deep sea sediments. 
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org-C (%) Nitrogen (%) 

Eli. 5.57 0.53 

A81. 4.69 -- 

DU1. 4.62 0.45 

DN1. 3.21 -- 

CR1. 2.11 0.27 

SH1. 1.98 0.28 

SPi. 1.93 0.28 

CM1. 0.79 0.11 

TABLE 4.1: Surface values Corg  and Nitrogen (mean of upper 5cm of 
sediment). 

Locality org-C (%) Nitrogen (°Io) 

Pacific 0.33-0.39 0.06-0.02 Muller (1977) 

Ocean 

Gulf of 4.5-1.1 0.50-0.09 Bader (1955) 

Maine 

Miramichi 8.00-<1 -- Willey & 

Estuary Fitzgerald (1980) 

Saanich 4.75-1.05 -- Brown at al. 

Inlet (1972) 

Long Island 0.21-0.06 -- 

Sound 

Bering Sea 1.62-0.93 0.20=0.09 Bordovskiy (1955) 

St Lawrence 16.45-4.9 1.92-0.62 Pocklington 

Estuary & Leonard (1979) 

TABLE 4.2: Summary of Corg  and Nitrogen values from other Localities. 
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Figure 4.1 shows profiles of Coro  with depth for eight of the west coast 

cores. In general the carbon contents are relatively constant with depth but, 

there are notable exceptions. Core ET1 displays a very irregular depth profile 

compared to the other cores. This appears to be a real phenomenon as the 

variations in CO3.9  from adjacent depths are well in excess of variations 

predicted from the error in the analysis method (see Appendix I, Section 2.4). 

Content and variation in the Coro   content in ET1 is greatest in the upper 15cm 

of the sediment. DU1 shows an 89% fall in Coro  from 4.67% at the surface to 

0.5% at 41cm. Low Corg  at depth correlates well with the fact that there is a 

lithological change at 40cm to a pale grey, consolidated clay. This was 

described in Chapter 3, Section 3.2. CR1 displays a slight fall in the upper 

8cm from 2.08% Coro  at the surface to 1.51% by 9cm. However, lower values 

of 1.2% C 	occur between 5cm and 7cm. BelOw 10cm, the C 	remains C
oro 	 C

oro 

relatively constant with a mean of 1.35%. 

4.22. Nitrogen. 

Nitrogen (N) in the sediments was determined using a Carlo-Erba 1600 

Nitrogen analyser attached to a VG-Micromass 620 mass-spectrometer. This 

system was also able to produce 615N values. For a detailed description of 

the apparatus and method of analysis see Chapter 5, Section 5.2. The N 

analyses were not as comprehensive as those of CO3.9  and mainly analysed at 

2cm or 4cm depth intervals in the sediments. 

The patterns of N in the sediments closely follow those of CO3.9. The 

sediments can be divided into similar groups as C0g  based on mean N values. 

This is summarised in Table 4.1. CM1 displays the lowest N values (<0.12%). 

The highest values can be found in ET1 (0.5%) and the upper sediments of 
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core DU1 (0.45%). As with Corg,  the N data agrees well with previously 

reported values from the area. Ridgway (1984) found N values of 0.48% in the 

inner basin of Loch Etive. Malcolm (1981) quotes values of 0.57% for a similar 

location in Loch Etive. In Loch Duich, Krom (1976) found values of between 

0.40% and 0.50% in sediments from the deeper parts of the loch. For 

comparison, the data is similar to Bader (1955), who quotes N values of 

between 0.04% and 0.50% for sediments from Puget Sound and the Gulf of 

Maine respectively. In contrast to and following closely the Corg  pattern, the 

data is much greater than the values of 0.03% to 0.08% given by Muller (1977) 

for deep sea Pacific sediments. 

All of the cores show a decline in N values with depth, which is greatest in 

the uppermost 10cm of the sediments (Figure 4.2). This may reflect the oxic 

breakdown and the preferential release of N from organic matter (Suess and 

Muller, 1980; Waples, 1985). 

In a similar manner to Corg  the sediments from Loch Duich show a very 

large decrease in N content with depth especially towards the bottom of the 

core. Here there is an 87% fall in N values from 0.45% at the surface to 

0.06% by 41cm, similar to that shown by C . The variation in N and C 
org 	 org 

between the high values at the sediment surface and the low values in the 

consolidated clay may imply a biomixing event between the two sediments 

during sedimentation. The clay appears to dilute the sediment immediately 

above, but the influence becomes less with increasing burial leading to 

gradually increasing N and Corg  values. CR1 displays a low N value (0.14%) at 

6-7cm depth coresponding to the low Cory  values seen at this position. 
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4.2.3. Solid Phase Sulphur. 

Sulphur profiles of the sediments are shown in Figure 4.3. The S contents 

range from 0% at the surface of DN1 to 1.1% at depth in Loch Etive. The 

values found are consistant with other studies of the same area and 

elsewhere. Ridgway (1984) found S concentrations in Loch Etive of between 

1.00% and 2.00% in the inner basin and 0.8% to 1.4% in Airds Bay. Kaplan et 

8/. (1963) quote values of 0.20% to 1.00% from sediments of Southern 

California. Berner (1970), working in Long Island Sound found S concentrations 

of between 0.30% and 2.20% and similar values were found for the same are 

by Berner and Westrich (1985). 

There is a large variation in the S profiles with depth but there are 

generally, two different patterns of S distribution at depth in the cores 

examined. For instance, cores AB1, CM1 and CR1 display similar patterns of S 

build up. In these sediments S content of the uppermost sediment is very low, 

the greatest increase with respect to depth is seen in the top 15cm, with the 

maximum content occuring between about 8cm and 15cm which is likely to be 

occuring below the zone of biomixing (see Section 4.2.4). In ABI the S tends 

with depth to continue to increase, but at a much reduced rate reaching a 

maximum concentration of 1.02% at 31cm depth. CR1 and CM1 however, 

display relatively constant values below 15cm. 

The S profiles from cores SH1, SP1 and DN1 differ from the above 

sediments in displaying a much more gradual increase in S. from very low 

values at the sediment surface and attaining a maximum concentration in the 

deeper horizons of the sediment. These cores tend to have much lower S 

contents than cores AB1, CM1 and CR1. The lowest values can be seen in 
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core DN1. There is no detectable S in the top 5cm of this sediment indicating 

a truly oxic surface. Below this there is a gradual increase to a maximum 

concentration of 0.12% at 49cm. SH1 and SP1 are similar to DN1 with gradual 

increases to maxima of 0.22% and 0.38% respectively at 45cm depth. 

The S concentration in DU1 after increasing from 0.09% at the sediment 

surface to 0.45% at 25cm falls rapidly to a mean concentration of 0.21% by 

35cm. These low values are coincident with this grey clay at the base of the 

core. The S distribution of core ET1 is exceptional in that very variable but 

occasionally very high S contents occur in the upper 10cm of the core and 

may be related to the overall reducing character of the sediments and the 

general lack of biomixing (Ridgway. 1984; see also Section 4.5). Below this 

zone, the S content increases to very high values (1.18%) and tends to follow 

the pattern seen in the outer parts of the loch (AB1). 

4.2.4. Pore Water Sulphate and Alkalinity. 

The distribution of S contents, see Figure 4.3 is almost certainly due to the 

presence of iron sulphide in the sediments. Certainly, pyrite has been 

identified in the sediments by X-Ray Diffraction and greigite has been noted in 

sediments from the outer basin of Loch Etive (Thompson, Pers. Comm.). The 

formation of these is invariably caused by the microbial reduction of sulphate 

to sulphide in an anoxic environment. For this reason, profiles of pore water 

So' 42  have been measured (see Appendix I, Sections 1 and 3.2 for the pore 

water extraction and analysis methods) to see if there is any relationship, 

direct or indirect between S042_  and the S (Sulphide) content of the 

sediments. 
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The surface values of S042  range from 16.6mM in ET1 to 30.6mM in CM1. 

This is due to the variation in So 	concentration in the overlying waters 

caused by variations in salinity. In the upper section of all the cores, the 

S042  values tend to remain relatively constant and close to the S042  content 

of the overlying water. This zone of constant So 	can be equated with the 

biomixed layer in the sediments. The biomixing allows the replenishment of 

S042  from the overlying water to replace that utilised. At depth, the SO42  

concentration tends to decrease. The extent varies from core to core (see 

Figure 4.4). The mean surface values and the percentage loss of So 	from 

the sediments are summarised in Table 4.3. The most noticeable decrease in 

S042  with depth is seen in Loch Etive, which has the highest C0,9  content. 

Ambient values approximately that of bottom water are seen in the upper 

10cm of cores EU and AB1, lower down there is a well defined decrease and 

at the bottom of Eli, S042  is almost exhausted. Similar values for Loch Etive 

have been noted by Malcolm (1981) and Ridgway (1984). Sediments from SP1 

which have intermediate values of C09  also show noticeable So 	depletion 

in the deeper portion of the core. DU1 is anomalous in this respect. Although 

the upper sediments are carbon rich, there is no defined S042  reduction. The 

lack of this trend may be influenced by the occurence of old, possibly abiotic 

clays near the base. The remaining cores shown in Figure 4.4 show only a 

limited decrease in pore water SO42  with depth. Overall, these trends can be 

compared with trends noted from similar sediments around the world (Berner, 

1964; Sholkovitz, 1973; Goldhaber at a/, 1977; Jorgensen, 1977; Martens et al., 

1978; Aller, 1980; Goldhaber and Kaplan, 1980; Klump and Martens, 1987), from 

pelagic sediments (Toth and Lerman, 1977) and from salt marshes (Lord and 

Church, 1983; King et a!, 1985). These are summarised in Table 4.3. 
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Core Surface %Fall Depth 

SO4  (MM) Interval (cm) 

ABi. 19.78 42.28 0-55 

CM1. 29.94 0 0-50 

CR1. 27.25 16.32 0-50 

ON 1. 30.93 22.19 0-60 

001. 27.09 9.85 0-36 

Eli. 19.20 88.38 0-65 

SH1. 26.43 58.15 0-55 

SP1. 28.18 45.64 0-65 

TABLE 4.3a: Surface 504  concentrations (mean of upper Scm) and the 
percentage fall of SO4 over the given depth interval. 

OW. 504 fall measured to too of clay. 

Location Surface % Fall Depth 

SO4  (MM) Interval (cm) 

LDuich 27.6 76.82 0-45 Krom (1976) 

LEtive 

(inner) 23.90 95.39 0-65 Malcolm (1981) 

(outer) 22.30 53.36 0-65 

LEtive 

(inn) 24.23 78.90 0-65 Ridgway (1984) 

(outer) 19.77 -- -- 

Long Island 19.5 68.6 0-70 Goldhaber 

FOAM Site at a/.(1977) 

LEII -20 50 0-60 Malcolm at al. 

(1986) 

Gulf of 27.00 40.7 0-50 Berner (1964) 

California 

Cape Lookout 25.00 96.00 0-15 Martens & Kiump 

(1984) 

TABLE 4.3b: Surface SO4 values and percent fall for studies in the same 
Locality and worldwide. 
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Core 	AT increase 

ET1. 	 70.77 

AB1. 	 21.99 

CR1. 	 16.99 

CM 1. 	 6.6 

DN1. 	 1.9 

TABLE 4.4 Titration alkalinity increase with depth (meq 1 1 ) .  
Increase taken from the mean value of the upper 5cm of 
the core to the value at the base of the core. 

Core C/N Ratio 

ET1. 11.64 

Dlii. 11.79 

CR1. 8.77 

CM1. 8.56 

SP1. 8.19 

SH1. 8.19 

TABLE 4.5: Surface C/N ratios (mean of upper 5cm of Sediment). 



The pattern of S042  change has often been associated with the change in 

alkalinity (AT).  This relationship will be discussed in Section 4.6. The method 

Of AT  measurement is described in Appendix I. Section 3.1. The data is given 

in Appendix II, Table AIL6 and Figure 4.5 

The titration alkalinity (A1.) concentration across the cores varies from less 

than 2 meq 11  in the biomixed zone of DN1 to greater than 70 meq I at 

depth in ET1. All the cores show similar surface concentrations of between 2 

meq 11  and 6 meq 1. With depth the cores fall into three distinct groups, 

based on AT  increase. These are summarised in Table 4.4. DN1 and CM1 

show the lowest increase in alkalinity concentration (1.90 meq ii  and 6.60 

meq 11  respectively); CR1 and A131 form a middle group with increases of 

16.99 meq 1-1  and 21.99 meq i'; the maximum AT  increase occurs in ET1 

(70.77 meq 11).  In this core there is a considerable increase in alkalinity 

towards the base of the core. These concentrations are consistent with those 

observed in sediments from similar environments (Berner at al. 1970; 

Manheim, 1976; Davies, 1977; Goldhaber and Kaplan, 1980). 

4.3. Organic Components and Lithology. 

Local grain size variations controlling organic content have been noted by 

Hunt (1981) in Long Island Sound. In general coarser sediment would be 

expected to have a lower organic matter content, either through less organic 

input or by winnowing of the organic containing fine material by erosive 

currents. This can be seen in CR1 (Figure 4.6). The fall in C org  content to 

1.2% between 6cm and 9cm corresponds with the coarse sediment of the shell 

band as identified by the Zr/Rb ratio. The N values show a similar fall at 

5-9cm. The S profile shows only a slight deflation in its increase with depth 
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at this band (4cm and 6cm). However, at the base of the shell band at 

10-12cm, the S becomes near constant with depth at 0.4%. Such a pattern 

possibly indicates some disconformity in sediment accumulation below and 

above this shell band. In core DU1 (Figure 4.7), the S profile shows low 

surface values of S and below a linear increase with depth to 25cm. Corg   in 

contrast, shows a well defined decrease over this interval and reaches 

constant values in the consolidated clay at its base. The pattern of Corg  for 

the upper 25cm of the sediment is probably controlled by lithology as seen by 

its decrease in the coarser grained component as illustrated by the Zr/Rb ratio. 

The linear decrease in S. Corg   and to a lesser extent Zr/Rb is probably 

indicative of biomixing of the old sediment between 25cm and 35cm. 

4.4. C/N As An Indicator Of Organic Matter Provenance. 

It has been noted that, in general, organic C/N values of marine organic 

material are lower than those of terrigenous organic matter (Redfield et a/. 

1963; Vaccaro, 1965; Bordovskiy, 1965; Muller, 1977). Thus, C/N ratios have 

commonly been used to characterise the nature of the organic matter in 

sediment (Bader, 1955; Bordovskiy, 1965; Pocklington and Leonard, 1979, 

Berner, 1979). 

Redfield et a/. (1963) summarised marine plankton as having a mean 

composition in the ratio of; C106  N15  P1. This gives a C/N ratio for marine 

plankton of 6.6 (atomic), which has been used in the past as an indicator of 

marine organic matter. Terrestrial organic matter tends to be enriched in C 

relative to N and therefore has a higher C/N ratio. This is often greater than 

12 (atomic), (Pocklington and Leonard, 1979). 
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Table 4.5 shows the C/N atomic ratios of the surface sediments in the cores 

studied. The lowest ratio is seen in SH1 (8.19). This implies that this 

sediment has the greatest relative marine influence. The C/N ratios of cores 

CM1, CR1 and SP1 are slightly higher (8.56, 8.77 and 8.19 respectively), 

indicating perhaps some influence of terrestrial organic matter. Nevertheless 

all these values are relatively low and tend to suggest a dominance of marine 

organic matter in these sediments. This is commensurate with the location of 

these cores. 

Considering the patterns of C/N ratios with depth in these sediments 

(Figure 4.8), the values tend to be slightly higher than at the surface and much 

higher than the predicted marine C/N value of 6.6. This suggests possibly a 

greater terrestrial conribution to the sediments in the past but will be 

discussed later. 

In the fjordic environments such as cores ET1, AB1 and DU1, the surface 

values are considerably greater than the sediments from the less restricted 

areas. This implies, a greater terrestrial influence in these sediments, which 

would be expected given the restricted fjordic location. At depth in core DU1, 

the C/N ratio falls to lower values closer to the cohesive clay in the lower 

section of the core. This may imply that the older clay is marine in origin. 

Using Craib cores (Craib, 1965) collected from Loch Etive (Ridgway. 1984) 

(see Figure 4.9), a C/N profile along the loch was constructed. This can be 

seen in Figure 4.10. The head of the Loch (Sta. 1) shows very high C/N values 

(22). This would be expected from the location as this is likely to receive the 

greatest influence of terrestrial organic matter. There is a decline in C/N 

values towards the mouth of the loch, with the outer basin showing values of 

<14. This is still appreciably higher than the suggested true marine end 



Co 

4c 

N 

0 	1 	2  
I 	I 	J 

R. Etive 

R. Noe 

R. Nant -( 	R. Awe 

Bo n awe 
. =Craib cores 

FIGURE 4.9: Craib core localities in Loch Etive. (After Ridgway, 1984). 



a. 	 0 Ridgway 1984 
This s 

o 18.00- 

ry 
14.00- 

L) 

Inner Basin 	 Outer Basin 
10.00 	I 	I 	I 	I 	I 	 I 	I 	 1 	(1 

1 	4 	6 	8 9 	11 	14 	16 	18 	20 	22 23 

Cnoib Cone Locahons 

FIGURE 4.10: Longitudinal profiles of the surface C/N values down Loch 

Etive, comparing data from this study to that of 

Ridgway (1984). 

FIE 



member value of 6.6, implying that terrestrial influence is still important in the 

outer basin of Loch Etive. The C/N value in the Firth of Lorne tends to show 

an increase suggesting a greater terrestrial influence than in the outer basin. 

A possible explanation for this maybe that the sediments at this locality 

contain a large amount of terrestrial detritus carried as suspended material 

from Loch Etive. 

However, using C/N ratios as an indicator of organic matter source has a 

number of drawbacks. Arrhenius (1952) suspected that clay minerals adsorbed 

a significant amount of NH4 . This has been suported by later studies such as 

Stevenson and Cheng (1972), Muller (1977) and Rosenfeld (1979(a)). 

Grundmanis and Murray (1982) showed that inorganic NH4  could account for 

between 12% and 64% total N and that the higher values tended to be in the 

more oxidising sediments. This led Ridgway (1984) to suggest that-the outer - 

basin sediments could have a higher inorganic NH4  content which could 

account for the lower C/N ratios. However, the clays in these sediments are 

relatively weathered and unreactive (Price, Pers. Comm.) and therefore there is 

unlikely to be any uptake of NH4 . 

Degens and Mopper (1976) noted that the carbohydrate composition of 

plankton is very variable and a range of C/N values from 5.9 to 9.1 is possible 

in marine plankton. Thus there may be considerable overlap in the C/N 

signatures of marine and terrestrial organic material. 

In the oceans much of the organic material produced never reaches the 

sediment as it is broken down in the water column (Ittekot, 1987). It is likely 

that any marine organic matter reaching the sediment surface will not have a 

marine C/N signature of 6.6, but will be slightly higher due to organic 

degradation and the preferential loss of N in the water column. This may 



explain why the surface C/N ratios in CM1, SP1 and SH1 which are thought to 

be dominantly marine in character have values which are greater than 6.6. 

With depth (see Figure 4.8) other problems occur. During organic breakdown, 

N is known to be more labile than C. (Rittenberg et al, 1955; Muller, 1977; 

Berner, 1979; Suess and Muller, 1980 ). This leads to a gradual increase in the 

C/N ratio with depth and is well illustrated by CR1 and CM1. Both cores show 

an increase in values in the top 10cm due to organic matter breakdown and 

the preferential release of N. 

To summarise, it is clear from the C/N profile down Loch Etive that C/N 

ratios are indicative of marine and terrestrial organic matter. However, in 

sediments with both terrestrial and marine input it is difficult to determine the 

relative importance of the two components due to the variablitiy of the 

planktonic ratios and the possibility of prior degradation of the organic matter. 

At depth in the sediments the increased lability of N over C makes C/N ratios 

invalid as an organic source indicator. 

4.5. Organic Matter Diagenesis. 

In organic rich sediments the breakdown of organic matter is brought 

about by bacterial action. Degradation occurs by way of a number of well 

documented reactions utilising a characteristic series of oxidants, i.e. 02.  MnO, 

NO3,, FeO, S042 , CO2  (Stumm and Morgan, 1970) from which bacteria can gain 

free energy. The oxidant producing the greatest free energy change (AGO) will 

dominate. The reactions are summarised in Table 4.6. In anoxic sediments, 

the low concentrations of the energetically more favoured electron acceptors 

results in the most dominant reaction being that of So 	reduction (Berner, 

1970; Davies, 1977). C 	is degraded by a number individual processes 



Aerobic Respiration 

(CB20)108(NH3)6(HPO4) 	138 02 	> 106 CO2 	16 BN03 + 1t3PO4 + 122 80 

-3190 KJ mole-  of glucose 

Manganese Reduction 

(CBZ0)10$(NH3)18(83PO4) * 236 *4n02 + 472 8' --> 

236 Mn2  • 106 CO2 	N2 	83204 	366 H20 

-3090 xJmo1e 	Birnessite 

-3050 (Jmole Nsuite 

-2920 KJmo1e 	Pyrolusite 

Den itr if icat ion 

(CH20)106(NH3)16(It3PO4) + 94.4 82403 --> 106 CO2 	55.2 N2 + 8 3 PO4  + 177.2 820 

(CH20)l0e(NH3)l6(H3?04) + 81403 --> 106 CO2 * 42.2 82 + 16 NH3 * 83PO4 + 148.4 H0 

AGO  = -3030 KJmole 1  

Iron Reduction 

(CB20)106(NH3)16(H3PO4) + 212 2e203(or 424 FeOCH) + 848 H' 	> 

4 24 Fe2  + 106 CO2 + 16 NH3 + H3PO4  + 530 820 (Or 7421420) 

AGO  = -1410 KJinole t  Heamatite 

-2750 KJmole 1  

-1330 XJrno1e tdmonitic Goethite 

Sulphate Reduction 

(CH20)1 (NB3)16(H3PO4) + 53 S042  --> 106 CO2 + 16 NH3 + 53 S2  + H3PO4  + 106 1120 

AGO = -380 KJmoLe 1  

Methanogenes is 

	

(CH2O)l06(NH3)16(143PO4) 	> 53CO2  • 53 CH 	16 NB3 	r13204  

AGO = -350 HJmoLe 
U 

TABLE 48 

Summary of the chemical reactions by which organic matter is broken down in sediments after 
Shimmield (1984) (adapted from Froelich of at, 1979). The Gibbs free energy changes are calculated at 
standard conditions and pH 7 and expressed in mM of glucose. The energy gained from the reactions 
becomes less in the order 02.  MnO, M03, FeO, s04: 
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involving the breakdown of biopolymeric organic matter into simple organic 

molecules by fermentative micro-organisms and the utilisation of these 

molecules by the S042  reducing bacteria (discussed by Jorgensen, 1982). The 

equation given in Table 4.6 can be summarised as: 

2CH20 + S0422  --> H2S + 2HCO3  

(4.1) 

2 moles + 1 moles --> 1 mole + 2 moles 

The H 2 is precipitated with iron as Fe-monosulphides, Fe-disulphides 

(pyrite) (Berner, 1970; Pyzic and Sommer, 1981; Berner, 1984; Morse at al. 

1987). 

In general, most sediments with overlying oxic waters have a zone of 

biomixing due to the action of macro infauna. This zone has been identified 

by constant S042  values with depth, the concentration being close to that of 

overlying bottom water. In most of the cores examined biomixing as seen 

from S042  and AT  values does not occur at depths greater than 10cm. In the 

past workers have assumed that all of the S042  reduction occured below the 

aerobic bioturbated zone (eg Berner, 1970; Nissenbaum at a/. 1972; Sholkovitz, 

1973; Sayles and Mannheim, 1975; Krom and Sholkovitz, 1977; Davies, 1977; 

Martens at al. 1978). However, the sediments in this study can show solid 

phase S precipitating and AT  increasing close to the surface in the biomixed 

zone, for example in DU1, AB1 and ET1. 
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Sulphur precipitation indicates S042  reduction must be occuring in these 

surface horizons although this is not usually indicated by a decrease in pore 

water S042 . In order to try to explain this, a number of hypothetical 

situations will be considered. 

Figure 4.11(a) illustrates a hypothetical anoxic sediment in which there is 

no bioturbation in the surface sediment. In this case the S would increase, 

with the rate of increase falling with depth as the amount of available SO42  

was used (in the absence of S042  diffusion from the overlying water). 

Comparison of the S042  values to those o&the S being produced would show 

a 1:1 stoichiometric relationship derived from equation 4.1. This situation 

clearly does not occur. In these sediments S042  vaFue.s are relatively 

constant in the uppermost 10cm of the sediment indicating a zone of 

biomixing. 

If no S042  reduction was occuring in the biomixed region the S profile 

would approximate to Figure 4.11(b), with no S042  reduction occuring in the 

biomixed zone and below a build up of S commensurate with the decline of 

pore water S042 . A third scenario is shown in Figure 4.11(c), which is more 

realistic and shows the pattern of S contents and SO42  depletion as seen in 

the sediments. Here it is envisaged that S042  reduction does occur in the 

biomixed zone indicated by S precipitation in the surficial layers. In contrast 

to Figure 4.11(b), however, SO 	profiles show bottom water values well 

below the zone of active biomixing, implying an addition of S042  to the 

deeper sediments from the overlying water. This can be achieved by 

biological irrigation (as opposed to mechanical bioturbation), ionic diffusion, or 

a combination of both. The importance of irrigation by burrows has been 

recognised by Goldhaber et al. (1977), Rosenfeld (1979(b)), Aller (1980) and 
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Sulphur / Sulphate 

FIGURE 4.11: Hypothetical sediments to illustrate the effect of biomixing 

on S and pore water SO4  patterns. 



Berner and Westrich (1985). Diffusion rates are difficult to measure in a 

sediment as the variables involved are hard to quantify. Krom and Berner 

(1980) from experimental work calculated a diffusion coefficient (D)  for S042  

as 5 x 106  cm2s 1. Applying this to Ficks First Law of diffusion (Berner, 1980), 

the diffusive flux of S042.  can be calculated from equation 4.2. 

J =-o.ac/ax 
S 	 S 

(4.2) 

Where: 

J s  = Diffusive Flux (m14(mg)cm 2) 

= Porosity 

EIC= Concentration change (mM or mg) 

3x = Depth increment (cm) 

The amount of S042  flux through a sediment over a given time can then 

be calculated from the sedimentation rate (w) (see Chapter 8). The S042  

diffusive fluxes for cores ET1, AB1, and DN1 are summarised in Table 4.7 along 

with the S inventories. It can be seen from the data that the calculated fluxes 

of S042  over a fixed 20yr period are sufficient to produce the amount of S in 

the sediments as seen in the inventories. However, there are a number of 

problems which must be considered. The assumptions made in the calculation 

are that; 

(a) All of the S042  is utilised in So 	reduction. 
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Core 	SO4  Flux mgcm'' 	S Inventory 

	

A81 	 44.30 	 32.32 

	

DN1 	 14.63 	 3.04 

	

ET1 	 16.89 	 9.06 

Table 4.7: Diffusive fluxes of SO4 and S inventories over a constant 20 yr period. 

1).The depth interval is variable, but equates to a constant time period of 20 vrs calculated using 

sedimentation rates from Chapter 8 and Ridgway (1984) 

2),Inventories were calculated from: 

I - (1-0)p.EM.z 

Where: 

= porosity 

p 	= Density (2.65 gcin 3  after Berner (1980)) 

z 	= depth (cm) 

= Element gain 
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S042  reduction proceeds at a Constant rate over the whole depth 

increment being measured. 

No S042  reduction occurs in the biomixed zone. 

Assumption (a) is reasonable given that S042  reduction is the dominant 

process in coastal sediments. But assumption (b) may not be true. If the rate 

of S042  reduction reaches a maximum at a certain depth in the sediment, 

then calculating the 	
4 
2- flux over the whole depth increment will lead to an 

overestimate of the diffusive flux. Furthermore, it is invalid to assume that 

reduction does not occur in the biomixed zone (assumption c). The 

locus of S042  reduction will be discussed later. 

The conclusion that can be drawn from this is that S042  is introduced to 

the sediment at depth by both ionic diffusion and irrigation. The contribution 

of ionic diffusion is difficult to assess, but it is likely that the more dominant 

mechanism is biological irrigation of the sediment. Goldhaber et al. (1977) 

suggests that vertical transport of pore water SO42  by irrigation can be five 

times greater than by ionic diffusion. 

The conditions described in Figure 4.11(b) and (c) can be applied to West 

Coast sediments. Cores representing Dunstaffnage (DN1) and possibly Camas 

an Thais (CM 1), closely follow the model described in Figure 4.11(b), where S 

in the surface 10cm is low or lacking, below there is a gradual but limited 

increase in S precipitation. In these sediments it is difficult to observe the 

position of S042  depletion due possibly to the irregularity of the SO42  

analyses. Cores SH1, SP1, ET1 and AB1 show the patterns of S and pore 

water S042  as seen in Figure 4.11(c). In these sediments, the S profiles show 

evidence of sulphide in the surface sediments which builds up at depth. S042  
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profiles tend to show bottom water concentrations to depths below that 

assumed for biomixing. For instance; SO42  remains at bottom water values to 

a depth of 20cm in SH1, 30cm in SP1 and 25cm in ET1 implying irrigation of 

the sediment to at least these depths. In the inner basin of Loch Etive, 

Ridgway (1984) noted worms down to a depth of 40cm. These were identified 

by Pearson (Pers. Comm. to Ridgway) as Spirochaetopterus typ/cus In the 

outer basin, Ridgway (ibid.) saw burrows down to over 40cm and worms of the 

species Cap/tel/a capitata and Nephys hombergi Burrows were noted in all of 

the sediments from this study, continuing to a depth of 30-40cm. In core 

SH1, an unidentified worm was observed at 20cm along with a colour change 

from grey-brown to grey. The importance of burrows in irrigation was 

discussed earlier and has been emphasised by Goldhaber et al. (1977); 

Rosenfeld (1979 (b)), Aller (1980) and Berner and Westrich (1985). 

The introduction of pore water S042  at depth in the sediment suggests 

that the pore water S042  profile does not reflect the true 	rate of SO42.  

reduction occuring in the sediments. Using an 35S radiotracer technique, 

Berner and Westrich (1985) and Parkes (Pers. Comm.) were able to measure 

the rate of SO42  reduction independent of pore water S042 . Both have found 

S042  reduction occuring in the biomixed zone (see Figure 4.12). Berner and 

Westrich (1985) and Parks (Pers. Comm.) disagree on the position of maximum 

S042  activity. Berner and Westrich (/bid) working at the FOAM' site in Long 

Island Sound (Goldhaber at al. 1977) found the maximum S042  activity to be 

at the base of the biomixed layer and declining slowly with depth, see Figure 

4.12(a). Parks suggests different patterns at different localities. He found very 

high levels of SO42  activity in the biomixed zone, below which the activity of 

SO 	reducers rapidly declines with depth, Figure 4.12(b). This is supported by 

Malcolm at al. (1986) with data from Loch Eil. The differences may be 
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Rate 	 Rate 

FIGURE 4.12: Representative SO4  reduction rate profiles as calculated 

from 35S. (a) Berner and Westrich (1985). 

(b) Parkes (Personal Communication.) 



explained as the result of variations in the degree of biomixing in the 

sediments, which is dependent to some degree on the quality of the organic C 

entering the sediments. This is best explained by envisaging two scenarios; 

(a) a sediment with an input of reactive marine carbon and (b) a sediment with 

an input dominated by relatively unreactive terrestrial material. 

In a sediment dominated by marine organic matter, the quality of the 

Corg will tend to lead to a high coefficient of bioturbation. Even though the 

biomixed zone is dominantly oxic, the activity of the S042  reducers is high 

and much of the organic matter will be consumed close to the surface, both 

by oxic breakdown and by S042  reduction. The overall oxic nature of the 

biomixed zone means that the products of S042  reduction (H2S and sulphides, 

see Table 4.6) are short lived and tend to be reoxidised, the monosulphides to 

Fe203  and the H 2  S partly to water and elemental S (S°) and partly back to 

SOT. Thus much of the S042  reduction products are not incorporated at 

depth in the sediment. Such a system can be likened to the model proposed 

by Parkes (Pers. Comm.) (see Figure 4.12(b)). 

In sediments dominated by a high input of terrestrial organic mater, the 

benthic fauna are less able to utilise the unreactive material and the 

coefficient of biomixing will tend to be low. Similarly, the rate of SO42  

reduction will be slower as the time taken to metabolise the unreactive 

material is longer. 5042_  reduction will still occur in the biomixed zone, but 

this is reduced relative to scenario (a). Consequently, the maximum activity of 

the S042  reducers occurs just below the biomixed zone and activity continues 

at depth. In this scenario, the products of SO42  reduction will have less of a 

tendancy to be reoxidised and will be incorporated at depth. 



This pattern of S042  reduction can be likened to the model proposed by 

Berner and Westrich (1985) (see Figure 4.12(a)). 

These models of SO 	reduction can possibly be applied to the West 

Coast sediments. The sediments from cores CM1, SH1 and SP1 have relatively 

low C/N ratios as compared to the sediments from core ET1 and possibly the 

upper sediment of DU1. Given the limitations of C/N, the indication of a 

greater marine influence would suggest a high degree of biomixing. The 

amount of S seen in these sediments is much lower and the pattern of S build 

up is different to that shown in cores ET1 and DU1. The S values remain low 

or near zero in the biomixed zone, increasing rapidly to a maximum at 14cm in 

CM1, 20cm in SH1 and 28cm in SP1. This suggests that these sediments 

conform to the model proposed by Parkes (Pers. Comm.). In these sediments 

it can be inferred that much of the SO4  reduction is not observed as the 

reduction products are lost. 

Conversely, in cores ET1 and possibly DU1 the C/N patterns suggest a 

greater terrestrial influence. In the inner basin of Loch Etive, the macrofauna 

is known to be restricted (Pearson, Pers. Comm.) and consequently biomixing 

will also be restricted. The patterns of S increase in ET1 show very high 

values at or close to the sediment surface increasing to high concentrations 

(1.18%) at depth. A similar pattern is seen in DU1, but the S content is not as 

great. Below the zone of biomixing the pattern of S build up may conform to 

the pattern of S042  reduction proposed by Berner and Westrich (1985). 

However, this does not explain the high values seen in the biomixed zone of 

core ET1. It is possible that the models proposed by Berner and Westrich 

(ibid) and Parkes (ibid) may be modified by sedimentation rate. In sediments 

with a low sedimentation rate any organic material will remain at or close to 
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the sediment surface over a period of time. Thus much of the degradation 

products will be lost. In sediments with a high rate of sedimentaion the 

organic matter will be rapidly buried allowing degradation to occur in the 

subsurface sediments of the biomixed zone. In Loch Etive the sedimentation 

rate has been suggested to be high relative to the sediments outside the loch 

(Chapter 8 and Ridgway, 1984). It is possible that the burial rate of organic 

matter may account for the degree of S production in the biomixed layer. 

4.6. The Relationship Of Pore Water Sulphate To Alkalinity. 

The pattern of S042  change in pore waters has been associated with the 

change in AT (Sholkovitz, 1973; Goldhaber and Kaplan, 1974). This can be 

summarised in equation 4.3. 

MT = 2AS042  + 	- 2Ca2  

(4.3) 

Given that in anoxic sediments, the most dominant process of organic 

breakdown is S042  reduction (Berner, 1970), then the greatest contribution to 

the right hand side of equation (4.3) is 2S042 . This gives a stoichiometric 

relationship between alkalinity and S042  as very nearly 1:2. Comparison of 

the West Coast cores to the AT : S04 2  model (Figure 4.13) shows that only 

AB1 conforms to the 1:2 stoichiometric relationship. Cores ON1, CM1 and CR1 

show a greater loss of S042  than AT  build up. Conversely, in core ET1 the 

sediments show a greater build up of AT  than loss of S042 . Below 40cm, this 

the ratio is in the region of 4:1. 
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FIGURE 4.13: Plots of 2,&SO4 against AAT for the sediment cores 

Solid line marks the 2:1 SO4  : AT  stoichiometric relationship. 
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These variations may be associated with biomixing and the formation of 

pyrite (Davies, 1977). Sholkovitz (1973) suggested that pyrite can be produced 

directly from S042  reduction by the reaction given in equation 4.4. 

6(CH20)(NH3)(H3PO4) + 3S042  + 2HFeO2  

--> 

(4.4) 

6HCO3  + 6NH3  + 6H3PO4  + FeS2  + 4H20 

This equation is essentially similar to that given in Table 4.6 but includes 

an iron component and no attempt is made to estimate the composition of 

organic matter. Precipitating pyrite by this reaction involves no changes in AT. 

Pyrite can also be formed via intermediate meta-stable iron sulphides (e.g. 

Greigite Fe3S4  and Macinawite FeS) in the presence of elemental S (S°) by the 

reactions; 

FeS + S°  --> FeS2  

(4.5) 

104 



Fe3S4  + S°  --> 3FeS2  

(4.6) 

Again, these reactions will not affect the AT  of the pore waters. However, 

Goldhaber (1974; cited Davies, 1977) suggests that pyrite can form in the 

presence of S°  from iron dissolved in pore waters. These reactions (4.7 and 

4.8) will decrease alkalinity. 

41Fe3++9CH20+2H20+4S042 +S0__ >FeS2+9HCO3  -+13H+  

1 unit SO 	consumed --> 1 unit of AT consumed 

1 unit S042 	consumed --> 1 unit of AT  consumed 

2Fe3 +2CH20+2H2S+SO42'+S°-- > 2FeS2+2HCO3 +H 

1 unit of S042 	consumed --> 4 units of AT  consumed 

(4.7) 

(4.8) 
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note that there is much more pyrite in sediments than monosulphides and 

therefore extra S°  is needed in order to convert the monosulphides to pyrite 

via equations 4.5 and 4.6. Much of this is formed close to the sediment 

surface from the oxidation of H 2 via reaction 4.9. 

2H 2S +  O2 > 21-120 +2S°  

(4.9) 

To some extent, the amount of S°  produced will be dependent upon 

bioturbation. Two models can be envisaged. Both models involve the 

precipitation of pyrite and monosulphides via S042  reduction in the biomixed 

layer, but address the effect of biomixing on the type of sulphide formed. 

These are summarised in Figure 4.14. 

In a sediment with a high coefficient of biomixing (Figure 4.14(a)), the 

overall oxic condition of the sediment allows any H 2  S formed, in the presence 

of excess 02  to oxidise to S042  and with more restricted 02  to S°  (see 

equation 4.9). The presence of S°  will transform any meta-stable iron 

sulphides to pyrite and will also allow the precipitation of pyrite from pore 

water iron via the reactions summarised in equations 4.7 and 4.8. This will 

have the effect of reducing the AT  relative to the S042  present (Davies, 1977). 

In a sediment with restricted biomixing H 2  S will not be as likely to be 

reoxidised (Figure 4.14(b)). Thus, H 2  S will react with any iron present to form 

monosulphides (Goidhaber and Kaplan. 1974), see equations 4.10 and 4.11. 
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FIGURE 4.14: Summary of the chemical pathways involved in pyrite formation. 

Major pathways shown in solid lines, minor pathways dotted. 

corresponds to a poorly biomixed sediment. 

corresponds to a sediment with a high degree of biomixing. 
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FeOOH + 3H 2  S aq  --.> FeS + FeS2  + 41-120 

(4.10) 

2FeOOH + 3HS --> 2FeS + S°  + 30W + H 2 0 

(4.11) 

Both pyrite and S°  will be formed, but the S°  is restricted relative to model 

(a). In the absence of excess S°, the monosulphides will persist and little 

pyrite will be produced close to the sediment surface. Similarly, the formation 

of pyrite from pore water iron will be restricted, therefore AT  will remain 

unchanged. The slower production of S°  will however allow pyrite formation 

at deeper levels in the sediment. 

Relating this hypothesis to the sediments studied, it was suggested in 

Section 4.5 that the sediments from SP1, DN1 and CM1 are likely to have a 

high degree biomixing. The sediments from these cores all show low Ar  

increases relative to the loss of S042_.  These cores conform to the proposed 

model (a). The lack of alkalinity can be explained by the precipitation of pyrite 

from pore water iron. Similar patterns over the same depth range were noted 

by Davies (1977). However, Davies notes an increase in alkalinity at low S042  

concentrations. He attributes this to exchange reactions with clays. It is 

difficult to see how this could occur as the clay fraction in these sediments is 

likely to be weathered and unreactive (Price, Pers. Comm.). This being the 

case, the reason for the alkalinity increase remains unknown. 
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Core AB1 conforms to the stoichiometric relationship between S042  and 

AT. While possessing macro-fauna, the rate of biomixing in the outer basin is 

unlikely to be as great as that in the sediments from the relatively unrestricted 

localities (CM1, SP1 and DN1). The implication is that sediments from the 

outer basin of Loch Etive can be compared to model (b). No loss of alkalinity 

is observed because very little pyrite is precipitated from pore water iron due 

to the lack of S°. The meta-stable sulphides produced remain to much deeper 

levels in the sediment. This is supported by magnetic susceptibility studies on 

Airds Bay sediment which would tend to indicate the presence of Greigite to a 

depth of 90cm (Edwards et al, 1987; Thompson, Pers. Comm.) 

The sediments from ET1 are unusual in that they show a greater increase 

in alkalinity than would be expected from the S042  loss. It is difficult to 

explain how this may occur. Patterns of Sr (Chapter 3) suggest very little 

carbonate is present, therefore the excess AT over that produced by S042  

reduction is unlikely to be due to carbonate dissolution. A possible 

explaination is irrigation of S042  at depth. If fresh S042  is introduced at 

depth to S042  depleted pore water, some AT  will be lost through flushing, but 

due to the 2:1 stoichiometric relationship more alkalinity will be produced by 

reduction of the introduced S042  than will be lost. Therefore the total amount 

of alkalinity will be increased. 
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CHAPTER 5 

ON IN THE SEDIMENTS 



5.1. Introduction. 

15N in the sediments was investigated in an attempt to use this as a 

means of identifying the relative proportions of marine and terrestrial organic 

matter. The values obtained are compared with C/N ratios, which have been 

proposed as indicators of provenance of organic matter. A number of 

differences are noted between the patterns shown by the different methods 

and these will be discussed. 

15N has long been used as a source indicator of organic material and a 

way of measuring N uptake by plants in agronomy and soil science, following 

the work of Keeny and Bremner (1976), Kohl at a/. (1971) and Shearer at al. 

(1973, 1979). In the marine environment much work has been done on the 

&5N patterns of particulate organic matter (Cline and Kaplan, 1975; Saino and 

Hattori, 1980; Altabet and Deuser, 1985; Altabet and McCarthy, 1985, 1986). 

Cline and Kaplan (1975) used &5N/NO3  distributions to determine rates of 

denitrification. However, very little work has been done on the behaviour of 

&5N in sediments (Peters at a!, 1978; Sweeny at aI,1978; Sweeny and Kaplan. 

1980). 

In air, the stable isotope 15N forms about 0.37% of the total atmospheric N 

value, the remainder being composed of-the common -14N isotope (Mariotti1  

1983). In the case of terrestrial soils the major source of nutrient N is from the 

atmosphere. In the marine environment the major source is inorganic nitrate, 

which is enriched in 15N relative to the atmosphere (Cline and Kaplan, 1975; 

Sweeny and Kaplan, 1980). This may provide a basis for discrimination 

between marine and terrestrial organic matter. Terrigenous organic material 

transported to the marine environment is reported to be relatively stable, 



implying a refractory nature (Peters, et al. 1978); hence little fractionation of 

terrigenous material in marine systems is likely. In marine organic matter 

fractionation is known to occur, especially during fallout to the sediment 

surface (Cline and Kaplan, 1975; Wada and Hattori, 1978; Saino and Hattori, 

1980) and this has led to the observations that 615N values of marine organic 

matter tend to be in the range +70! 00  to +130/00. Terrigenous organic material 

exhibits values close to the 615N of standard nitrogen of the atmosphere, i.e. 

between 00/00  and +2°! 00  (Cline and Kaplan, 1975; Peters of al., 1978; Wada 

and Hattori, 1978; Sweeny at a/, 1978; Saino and Hattori, 1980; Sweeny and 

Kaplan, 1980). 

5.2. Method Of Analysis. 

Total N values and the relative proportions of 14N to 15N were obtained 

using a standard Carlo-Erba 1400 Nitrogen analyser attached to a 

VG-Micromass 622 mass-spectrometer in the Department of Soil Science. An 

accurately known weight of sample of about 20mg (±10%) was injected into 

the N analyser and combusted at 1030°C. The amount of N2  gas derived is 

directly related to the amount of N in the sample. A constant proportion of the 

N2  derived was then fed into the mass-spectrometer and the isotopic 

composition determined by measurements of the ion currents corresponding 

to mass 28 (14N 14N) and mass 29 (15N 14N). The atom % 15N value determined 

can then be used to calculate a 615  value using the 15N content in the 

atmosphere (0.3663 at % 15N) as a standard, from equation (5.1). 
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OUTPUT 
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FIGURE 5.1: Flow diagram summarising the major operations of the Carlo-

Erba 1400 N analyser and the VG-Micromass 622 mass 

spectrometer. 
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615N = (at % 15N) - (at % 15N) 
aim 

 .1000 

(at % 15N) 
atm 

(5.1) 

The operations are summarised in Figure 5.1. Quality control of the data 

was ensured by analysing each sample in duplicate and running an 

atmospheric standard and acetanilide reference after every 20 runs (10 

samples). Any machine drift was then corrected before the calculation of the 

15N atom %. The variation calculated on 18 duplicate samples from Loch 

Spelve was 0.003 for total N and 2.6 x 10 for atom % 15N. This would give - 

an analytical precision in 615N of ±10/00. The total data are given in Appendix 

Il, Table A11.7. 

5.3. Results. 

The surface 615N values of the cores studied fall in the range +3 0/00  to 

+14 o/ 
00 

, with the majority of values falling between +3 o/ 
00 

and +10 0/.0  (see 

Table 5.1). These agree well with the values of between +2 0/00  
 and +10 

0/00 
 

reported by Sweeny et at (1978) and Sweeny and Kaplan (1980) for the Santa 

Barbara Basin. The lowest surface values can be seen in SH1 (Loch Shell) and 

the 	highest, +14 o/ 
00, 
 in CM1 (Camas an Thais). This last value falls outside 

the range proposed by Sweeny et at (1978) and Sweeny and Kaplan (1980). 

However, values of greater than +14 / have been noted from particulate 
00 

organic matter. Cline and Kaplan (1975) noted I515N values of +18.8 0 	in the 
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Surface Surface 

Core ON (°/,) C/N 

CM1 14.06 8.56 

CR1 7.24 8.77 

DU1 9.15 11.79 

ET1 6.55 11.64 

SH1 4.06 8.19 

SP1 9.01 8.19 

Table 5.1: Surface 61514 values with corresponding C/N ratios. Both 
sets of values are means of the upper 4cm of the sediment. 

Sta. 6 5N clot ,  C/N C/N 

1 0.318 6.279 5.8 0.380 21.27 22.26 

3 0.438 7.098 7.3 0.480 19.42 17.72 

5 0.411 6.825 6.5 0.50 18.47 15.16 

7 0.454 6.825 7.5 0.52 19.27 16.78 

8 0.206 7.644 3.0 0.22 16.97 15.91 

10 0.466 6.279 6.8 0.55 17.00 14.40 

13 0.503 7.098 5.5 0.48 12.11 13.35 

15 0.133 11.193 1.8 0.15 15.78 14.01 

17 0.495 7.644 5.8 0.55 13.68 12.29 

19 0.571 7.098 6.7 0.63 13.67 12.40 

22 0.309 8.190 4.0 0.40 15.07 11.64 

23 0.214 8.927 3.5 0.3 19.05 13.62 

Table 5.2: Total N, 6 15N and C/N values for core Stations 
in Loch Etive. 

Data from Ridgway (1984) 
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equatorial Pacific. More recently, in the Western Atlantic, Altabet and 

McCarthy (1985, 1986) have noted values of +14.4 0/00  from particulate matter 

in warm core rings associated with the Gulf Stream. 

With depth in the sediments, the 615N patterns vary. considerably from core 

to core. The patterns can be seen in Figure 5.2. Sediments from Loch Etive 

(ET1) remain relatively constant with depth, with 615N values of between +6 

0/ 
00 

and +7 
0/ 00 

. In Loch Spelve, station SP1 shows a gradual increase in 

615N with depth; within the uppermost 10 cm it increases from +8.8 0  

+11.99 
0/00, 
/00, but lower down remains relatively constant between +10 

0/ 00 
and 

+12 0/ 	Cores CM1 and SH1 show contrasting patterns. The. surface values 
00 

of CM1 are very high at +14 0/ 
00 

and there is an increase to over +16 
0/ 00 

in 

the top 8cm. However, below this depth the values show a fall to +5.6 
0/ 00 

(9-10cm) and then continue to decline slowly to almost 0 0 	at the base. 

Conversely, in SH1 the surface values are low and remain between +2 0/00  
 and 

+45 0/00  
 for the upper 15cm; below there is a rapid rise to +9.7 

0/00 
(17cm). 

The bottom section of the core exhibits a steady increase to +13.2 at the base 

of the core. DU1 (Loch Duich) displays anomalous values at depth. After a 

slight fall from +9.9 
0/00 

in the surface sediments, 615N values show an 

increase from +8.6 o/  at.5-6cm to +13.3 0/ at 25cm. There is then a rapid 
00 	 00 

increase to over +22 o/ 
00 

(37cm). The values then remain constant to the 

base of the core. In Loch Creran (CR1), the 615N values are similar to the 

pattern seen in cores ET1 and SP1. There is a slight fall in values from the 

surface (+7.9 0/)  to 4-5cm (+6.5 0/) Below which there is a gradual 
00 

increase to +10 0/ at the base of the core. 
00 

Sweeny and Kaplan (1980) have attempted to establish the 615  values for 

the two end members, marine and terrestrial organic matter, in Santa Barbara 
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Basin sediments. For this they used *515N values of the organic matter from 

sewerage outfall and from sediment pore water ammonium. They claim these 

values to be +2.5 0/00  for terrestrial material and +10 0 	for marine organic 

matter. These values were subsequently used to plot a mixing curve by which 

the relative proportions of marine to terrestrial organic matter could be 

derived for the sediments of the Santa Barbara Basin, assuming there to be no 

diagenetic fractionation. 

Applying the same assumptions and similar and members to the sediments 

from this study it should be possible to determine the relative influences of 

marine and terrestrial organic matter in the sediments. 

The surface 615N value of CM1 would suggest organic matter of entirely 

marine character. This is consistent with the position of Camas an Thais in 

the Firth of Lorne. However, below 8cm, the -fall in 615N -to near-.0 	at the 

base of the core suggests that the deeper sediment is more terrestrial in 

character. If these values are compared with the C/N data (see Figure 5.3) 

which, despite limitations (see Chapter 4) has been used in the past to 

differentiate marine and terrestrial organic matter, some similarities can be 

seen. There is a slight decrease in the C/N values in the top 8cm from 8.8 to 

7.6 suggesting possibly some marine influence. Below 8cm, the C/N values 

increase to a mean of 9.9 which, it could be argued is more terrestrial 

compared with the surface values. 

In SH1 the relatively low 615N values would suggest a sediment of a 

terrestrial character for the top 16cm, with higher values at depth suggesting a 

greater content of marine organic matter. Comparison of the 615N and C/N 

patterns at station SHI (Figure 5.3) shows a considerable inconsistency. 
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The upper 6cm shows C/N values of 7.1 to 8.1 which would suggest a marine 

influence; deeper down the mean C/N value of 8.2 shows little change from 

that above. 

The 	increasing 	615N 	values 	of core DU1 at depth would 	suggest 	an 

increasing marine influence. However, the base of the core shows very high 

615N values of over +22 0/00, well in excess of the marine organic matter as 

demonstrated by Sweeny and Kaplan (1980). These very high values are to be 

found in the pale grey consolidated clay sediment that occurs below 34cm and 

probably represents old sediment. The variation in values between +13.3 0/ 
00 

at 25cm and +22.3 / at 37cm is probably a result of biomixing of the clay 
00 

and the overlying sediment during accumulation. In contrast, the C/N ratio of 

this core (Figure 5.3) does not show such a dramatic change. However, at the 

sediment surface, the C/N value of 11.7 would imply a much greater terrestrial 

influence than the 615N value would suggest. 

In order to examine the sensitivity of 615N as an indicator of organic 

matter provenance, twelve surface sediment samples (0-1cm) collected by 

Craib corer (Craib, 1965) from Loch Etive by 'Ridgway,1984) were analysed for 

515N. The samples (see Chapter 4, Figure 4.9 for localities) were collected in 

summer 1981 and represent a transect down the loch from the head (sample 

ic) to the Firth of Lorne (sample 23c). A similar exercise carried out by 

Malcolm (1981) measuring C/N, found a dramatic difference between C/N 

values at the head of the loch (C/N 17.3) and at the mouth (C/N 5). This 

profile is discussed in more detail in Chapter 4. Despite the problems 

associated with using C/N as a source indicator for organic matter, such high 

values at the head of the loch will tend to suggest a terrestrial input of C0.9. 

The mouth of the loch appears to be influenced to a greater degree by marine 
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organic matter. C/N ratios calculated using the N data from this study and the 

Corg  for the same stations obtained by Ridgway (1984) (see Table 5.2) show a 

similar pattern to Malcolm (1981). There is a decline in values from 21.27 at 

the head of the loch to 13.67 in the outer basin, with a slight rise to 19.05 in 

the Firth of Lorne. This is illustrated in Figure 5.4(a). Figure 5.4(a) also shows 

the C/N pattern obtained by Ridgway (1984). The two profiles can be seen to 

compare well, reflecting the similarity of N values (Figure 5.4(b)). However, the 

C/N values obtained are much higher than those noted by Malcolm (1981). 

This can be explained by the fact that the C values reported by Ridgway (1984) 

are total C, uncorrected for carbonate. Ridgway assumed the influence of 

carbonate in the sediments'of Loch Etive to be very small. The variation 

between the C values obtained by Malcolm (1981) and Ridgway (1984) 

suggests this is not the case. 

Figure 5.4(c) shows the profile of 615N along the loch. There is a slight 

increase in values overall from the head of the loch (+6.3 0/ ) to the mouth 
00 

(+8.9 0/) but this is small compared with the variation of organic matter 

depicted by the trend in C/N ratios. There must, therefore, be other factors 

influencing the &15N values recorded in the sediment 

Two points are worthy of note regarding the 615N trend of Figure 5.4(c). 

Station llc shows a comparatively low 515N value. This station is located off 

the mouth of the River Kinglass and is likely to receive a sizeable amount of 

terrestrial organic material. Its value of +6.3 0/ 
00 

is similar to that found at 

the head of the loch an area of maximum terrestrial input. Sediment from Sta. 

16c, in the deepest part of the loch has a comparatively high 615N value (+11.2 

0/) and is clearly anomalous when compared with adjacent stations. A 

comparison of the 615N value from this station with that of total . N shows the 
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total N content to be anomalously low, 0.1%, suggesting there may be some 

dependence of 615  on total N contents. A similar pattern of &5N and N 

contents occurs in Dlii (Figure 5.5). This trend is not invariable however, as 

sediments from core CM1 show a wide range of &5N values but near constant 

values of total N. 

Interpretation of the data presented is very confusing. 615N at depth shows 

a wide range of values, which could be interpreted as being due to the relative 

influences of marine and terrestrial organic matter, but they are not always 

consistent with other indicators such as C/N, which often does not show such 

wide variation. There may also be some dependence between 615N and N 

content in these sediments. 

5.4. Discussion. 

The evidence suggests that while the origin of the organic matter in a 

sediment does play some role in determining the 615N values, other factors 

that have been ignored or dismissed in earlier work may have an important 

influence. These are now to be considered: 

Analytical errors. 

Productivity variations of &5N. 

Diagenesis of N during burial and influence of sediment 
lithology. 

Analytical error: All the samples were run in duplicate and the precision 

was very good. Machine drift was automatically corrected for when the 

standards were run. There is no dependence in the machine between the 

amount of total N detected and the 615N value. Figure 5.5 shows a plot of 
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615N against total N in which CM1 displays a wide range of 615N values but 

the total N values remain constant. Conversely, ET1 shows a range of N 

values and a small spread of 615N This evidence would discount any machine 

error. 

Productivity: It has been shown by Wada and Hattori (1978) that ON can 

vary in different species of marine diatom. Moreover, Minagawa and Wada 

(1984) have shown that there is a stepwise enrichment of 615N along the food 

chain. For instance phytoplankton are found to have ratios of between -2.5 

0/00  and +6 o/00,  
 while those of zooplankton are higher, varying between +6 

o/ 00 
 and +14 0/00. Thus, 615N in the surface sediments could be influenced by 

the type and relative abundances of phytoplankton and zooplankton in the 

overlying waters. 

The variations in 615N values of plankton noted by Minagawa and Wada 

(1984) illustrates a further point. Sweeny and Kaplan (1980) assume two 

discrete end members to produce their mixing curve. As with C/N ratios it is 

invalid to assume two discrete values for marine and terrestrial organic matter. 

Table 5.3 illustrates the range of 615N values for a number of natural 

substances both marine and terrestrial. The overlap of values is very marked. 

For example, in marine organic matter 615N varies between -2.5 00  and +14 

0/ 	while the values for soils can be seen to vary between -0.2 0/ 00 
 and 

+11.7 0/00. With such large variations it seems unlikely that 615N can be used 

as a universal indicator for the source(s) of organic matter in sediments. 

Nevertheless, at one particular site one would expect to have constant 615  

values for the different organic matter present 

Sediment lithology and diagenesis: Variations in the grain size of a 

sediment may be due to a variation in the sedimentary input or may be due to 
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ATMOSPHERIC 

NITROGEN 

SOILS 

LAND PLANTS 

LAND ANIMALS 

PHYTOPLANKTON 

ALGAE 

ZOOPLANKTON 

FISH 

MARINE 

SEDIMENT 

COASTAL 
SEDIMENT 

I 	 I 	 I 	 I 	 I 	 I 
-10 	-5 	0 	5 	10 	15 	20 

R15N (0/ 
ool 

TABLE 5.3: Variation in 615  values of natural substances. 

Modified after Wlotzka (1972); Kaplan (1975); Miyake and Wada 

(1967); Sweeny et 8/ (1978). 
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an erosive phase. Coarse bands in the sediments are often due to the 

winnowing of finer material by (eroding) currents. Such bands tend to have 

less organic matter and that remaining tends to be more refractory due to the 

fact that the more reactive material is associated with the transported finer 

fraction. This process would have the effect of decreasing the 615N values by 

increasing the relative terrestrial portion of the organic matter. Figure 5.6 

shows a comparison between the Zr/Rb ratios and 615N patterns in cores CM1, 

CR1 and SH1. The top 10cm of CM1 (Figure 5.6a) is relatively coarse as 

indicated by a Zr/Rb ratio of 3.9 to 4.2. The 615N values in this section of the 

core are also high (>120/). In CR1, (Figure 5.6b), the Zr/Rb ratio shows 

coarser sediment in the shell band between 5cm and 12cm. Comparison with 

the 615N pattern again shows the 615N values to be higher in the coarser 

sediments. 

Conversely, in Loch Shell (SH1; Figure 5.6c), the Zr/Rb pattern is 

comparatively invariant with depth (1.31 to 1.4) and suggests a finer grained 

sediment than those of cores CM1 and CR1. However, the &5N values show 

an increase from +4.5 0/00  to +9.7 0/0, 
 between 14cm and 18cm depth. In 

DU1 (Figure 5.6(d)), the decrease in Zr/Rb ratios at depth in the sediments 

above cohesive clay coincides with an increase in the 515N values. However, 

this can be attributed to biomixing of the clay and the overlying sediment. 

Hence, the evidence from CM1, CR1 and SH1 indicates that variations in 

lithology do not influence the pattern of &5N in the sediments. The 

possibility of diagenesis and isotope fractionation needs to be considered. 

Terrestrial organic matter is believed to be inert in the marine environment 

and therefore resistant to organic breakdown. With burial, as marine organic 

matter is degraded, the relative proportions of marine to terrestrial organic 
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matter will decrease. Such behaviour is known to have an effect on the C/N 

values in the sediments: they would be expected to increase. 615N would also 

be expected to increase as the more labile organic matter is utilised. 

However, while this may be the case in SH1, other cores (such as CM1) show 

an increase in 615N with depth. 

The possibility of isotope fractionation must also be considered. It is 

difficult to understand why N should not fractionate with burial diagenesis. 

This was assumed not to occur by Sweeny and Kaplan (1980) because the 

mean 6.15N values of pore water ammonium from Santa Barbara Basin 

sediments -derived from organic matter via SO4  reduction- were similar to 

those of plankton from the San Pedro shelf area (+8.6°/
0
. ). But, this does not 

take into account the possibility of isotope fractionation during 

remineralisation reactions. In the water column, denitrification is known to 

cause fractionation in NO3 . 615N values have been seen to reach +18.8 0/00  

in the active denitrification zone of the Eastern Tropical North Pacific (Cline 

and Kaplan, 1975). 

Fractionation of C isotopes is known to occur in sediment. It has been 

shown 	by McCorkle (1985) that sediment pore waters 	contain isotopically 

lighter C than sediments and the overlying bottom waters. 	This is a 	direct 

result of organic matter breakdown. Furthermore, the variation in 613C is 

greater; that is, the pore waters become enriched in isotopically lighter C with 

decreasing bottom water oxygen content and increasing reactive Corg  input to 

the sediments. In the sediments from this study, with high rates of organic 

input compared to deep sea sediments, there is likely to be a high degree of C 

fractionation. It is possible that N may behave in a similar manner 
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Sedimenting organic matter in the water column is subject to a 

considerable degree of alteration before reaching the sediment. Much of the 

labile organic matter is lost (Berner, 1982). N is known to be more labile than 

C during organic breakdown and would therefore be expected to be lost 

preferentially. Since the isotopically lighter 14N would be expected to be 

preferentially released relative to 15N, the remaining sedimenting organic 

matter would be isotopically heavier and therefore show an increase in the 

615N. The same process may also occur in the sediments. 

Such a hypothesis could be invoked to explain why sediments with very 

low values of total N appear to show anomalously high isotopic compositions, 

as seen in DU1. As diagenesis proceeds, 14N is released and 15N becomes 

increasingly enriched as the total amount of N is reduced. In sediments that 

have undergone a large amount of diagenesis there is little N remaining, but 

that which is left is highly enriched in 15N. 

A number of conclusions may be drawn from these points. Terrestrial and 

marine organic matter can display differing 615N values, but there may also be 

considerable overlap and this throws doubt on the use of 615N as an organic 

source indicator. Other factors such as diagenesis fractionation, and the 

influences of sediment accumulation, as depicted by lithological changes may 

be important controls on the 615N values at depth. Future work could 

consider: 

a)The 615N values of lake sediments to establish whether terrestrial 

organic material undiluted by marine matter has a recognisable 615  signature. 
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b)The pattern of change of N and C in the sediments and pore waters in 

terms of 513C and 615N, to investigate whether there is a relationship between 

615N and the rate of organic matter input. 
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CHAPTER 6 

HALOGEN INPUTS TO THE SEDIMENTS, IODINE AND BROMINE 



6.1. Introduction. 

In Chapter 3 it was shown that some elements are entirely associated with 

the terrigenous detrital input and, as such, correlate well with the 

mineralogical and grain size variation of the sediments. Other elements such 

as Iodine (I) and Bromine (Br) are derived from the marine environment, in 

particular sea water and are normally associated with the organic matter of 

marine, sediments. As such, these elements have no direct correlation with 

sediment mineralogy. However, as I and Br are related to organic matter 

contents in the sediments they are therefore subject to the processes of 

diagenetic alteration. In this chapter the patterns of I and Br and their 

relationship to the organic matter under burial diagenesis, will be discussed. 

6.2. Results. 

All of the analyses for I and Br were obtained using an X-Ray Fluorescence 

Spectrometer (See Appendix I, Section 2.2) and the data are expressed on a 

salt-free basis (Appendix II, Table AIL8). 

6.2.1. Iodine. 

The surface values of I in the sediments are tabulated in Table 6.1. The 

lowest surface I concentrations occur in core CM1 (Camas an Thais) (206ppm), 

with the highest values over (700ppm) being found in core DU1 (Loch Duich). 

From the surface values, the cores analysed can be divided into three groups 

(Table 6.1): the highest I concentrations are found in Loch Duich (DU1), Loch 

Etive (AB1, ET1) and Dunstaffnage (DN1) (435 to >700ppm); 
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Core I Br I/Br 

A81 540 454 1.32 

CM1 206 141 1.46 

CR1 342 221 1.55 

0N1 435 197 1.42 

GUi 579 464 1.25 

ET1 486 30 1.31 

SH1 376 241 1.56 

SP1 388 237 1.64 

TABLE 6.1: Surface values of I and Br (0-1cm). 

Location I Br I/Br Author.  

L Etive 

Inner Basin 356 360 0.99 Malcolm (1981) 

Outer Basin 491 6.44 0.75 

L Etive 

Inner Basin 386 237 1.63 Ridgway (1984) 

Outer Basin 290 256 1.13 

LOuich 498 -- -- Krom (1 976) 

Gulf of Maine 220 188 1.17 Harvey (1980) 

Panama Basin 70-400 30-150 2.3-2.6 Pederson & 

Price (1980) 

Gulf of Maine -- 93.5-150 -- Mayer or al. 

(1981) 

TABLE 6.2: Comparison of I and Br surface values from other locations. 
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Lochs Creran (CR1), Spelve (SP1) and Shell (SH1) form a middle group with I 

values between 342ppm and 388ppm; the lowest I surface concentration 

occurs in CMI. 

With depth all of the cores display concave downwards profiles (see Figure 

6.1), the I values falling to a near constant level at depth. The shape of the 

profiles varies, as does the I concentration at the base of the cores. For 

example, ET1 and AB1 a show similar pattern of gradual decline of I to a base 

level of between 222 and 216ppm at 50cm. Core ET1 shows a marked surficial 

layer (0-10cm depth) of very erratic values with little decline in I 

concentration. Below, I contents decrease in a regular manner. In contrast, 

cores DN1, CM1 and CR1 show the greatest decline in I concentration in the 

upper 10cm of the sediment, and lower down remain relatively constant with 

depth. The most conspicuous trend in I is seen in DU1. Surface contents are 

highest of the cores examined and at depth I is unusually low (50ppm). The 

pattern of decline appears linear within the interval 4-27cm, implying a 

sediment mixing between the older consolidated clays and recent surface 

sediments. The values of I noted in these sediments compare well with values 

noted from similar localities (Krom, 1976; Malcolm, 1981; Ridgway, 1984) and 

from similar sediments elsewhere (Pederson and Price, 1980; Harvey, 1980). 

These values are summarised in Table 6.2. 

61.2. Bromine. 

The patterns of Br in the sediments follow closely those of I. But, owing to 

the very high concentrations in sea salt, salt free Br contents described below 

are not as precise as the I analyses. The surface values vary from 141ppm to 

over 500ppm (see Table 6.1). On these values the cores can be grouped in a 
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similar manner to I. The highest surface concentrations occur in DU1, AB1 and 

ET1 (420ppm to 530ppm). Cores CR1, DN1, SH1 and SP1 form a middle group 

with the lowest concentration occuring in CM1. 

At depth there is a similar variation in the Br patterns (see Figure 6.2) as 

seen from the I data. Cores ET1 and AB1 show similar profiles declining to a 

background level (278ppm and 273ppm respectively) by 55cm. Surface values 

tend to be more irregular as seen with I. Conversely, CM1 shows a rapid fall in 

the 0-10cm interval of the sediment and very little decline in values below 

this. Core CR1 is unusual in that the greatest fall in Br concentration is in the 

upper 6cm with low values betweeen 5cm and 12cm depth, coincident with 

the main shell band in this core. Below this level, Br concentrations are 

slightly greater and remain relatively constant with depth, except for some 

decreases in the 36-44cm interval. Br distributions in DU1 follow those of 

I. Surface contents are the highest seen in these cores and the lowest values 

can be seen at depth (60ppm). A sediment mixing profile was noted in the I 

distribution and a very similar pattern is seen in Figure 3.7 for Rb. As with I, 

the Br values noted compare well with those reported from similar localities 

and similar sediments elsewhere, summarised in Table 6.2. 

6.2.3. I/Br Ratios. 

The sediment cores analysed show I/Br ratios of between 0.79 and 2.21 

(see Table 6.1). At depth, most cores show a decline in the I/Br ratios relative 

to the surface values (Figure 6.3). This tends to vary from core to core, but is 

generally between 0.53 and 0.66. Cores DU1 and SH1 however, show very 

little decline with depth, 0.20 and 0.11 respectively. In core CR1, within the 

overall decline in the I/Br ratio, the major shell band (5-12cm) shows increased 

138 



25 	50 

25 	50 

25 	50 

25 	50 

3.0 
2.5 
2.0 
1.5 
1.0 
0.5 
0.0 

0 
3.0 
2.5 
2.0 
1.5 
1.0 

o 0.5 
0.0 

0 
L 3.0 

2.5 
2.0 
1.5 
1.0 
0.5 
0.0 

0 
3.0 
2.5 
2.0 
1.5 
1.0 
0.5 
0.0 

0 

3.0 
2.5 
2.0 
1.5 
1.0 
0.5 
00 

75 	0 
3.0 
2.5 
2.0 
1.5 
1.0 
0.5 
0.0 

75 	0 
3.0 
2.5 
2.0 
1.5 
1.0 
0.5 
0..0 

75 	0 
3.0 
2.5 
2.0 
1.5 
hO 
0.5 
0.0 

75 	0 

Depth (cm) 

25 	50 .75 	U' 
I 

25 	50 

25 	50 

25 	50 	75 

139 



I/Br ratios and similar increases can be seen at deeper horizons where shell 

concentrations are also in evidence. The significance of these trends will be 

discussed after the associations of halogens and organic matter have been 

Considered. 

6.3, The Associations Of Halogens And Organic Matter. 

Many workers (Price and Calvert, 1977; Harvey, 1980; Elderfield at at, 1981; 

Mayer at at, 1981; Ullman and Aller, 1983,1985) have identified that I and Br 

are intimately associated with organic matter in marine sediments. Under 

normal marine conditions, the ratio of both I and Br to C assume fairly 

constant values. At depth however, both elements show a reduction with 

usually a first order rate decrease. Likewise, all of the sediments except those 

in Loch Creran show first order reaction rates (for both I and Br) of the form; 

R1  = R0  exp (-ax) 

(6.1) 

Where x = depth 

This type of decay is common in metabolic reactions associated with 

organic matter degradation (Ullman and Aller, 1983). The least squares 

residuals of I and Br, obtained by fitting the data to equation 6.1 are 

summarised in Table 6.3, together with the log/linear correlation coefficients. 

The implication here is that the decline in I and Br with depth is associated 

with organic matter degradation. Correlations between I and organic matter 

have been noted by Ullman and Aller (1980, 1983) and Elderfield at at (1981) in 

microbially mediated reactions following burial. Br diagenesis has been less 
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Core Iar 

RMS Residual r RMS Residual r 

AB1 0.322 -0.899 0.106 -0.804 

CM1 0.254 -0.895 0.219 -0.646 

CR1 1.017 -0.729 1.034 -0.163 

DM1 0.156 -0.899 0.043 -0.952 

DU1 0.880 -0.975 0.888 -0.971 

ET1 0.195 -0.964 0.104 -0.881 

SH1 0.298 -0.864 0.061 -0.888 

SP1 0.252 -0.922 0.112 -0.913 

TABLE 6.3: Root mean squared residuals and log normal correlation 
coefficients. 

Core I/C Br/C 6 15N C/N 

A81 113.11 85.67 -- -- 
CM1 254.35 174.09 14.06 8.56 

CR1 164.41 106.24 7.24 8.77 

DM1 103.60 61.35 -- -- 
001 123.91 99.30 9.15 11.79 

ElI 94.93 72.28 6.55 11.64 

SH1 185.18 118.70 4.06 8.19 

SP1 214.89 131.26 9.01 8.19 

TABLE 6.4: Surface values of I/C and Br/C compared with 6N 

and C/N. ( -- Not analysed.) 
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well documented but a similar association with organic matter appears to exist 

(Price and Calvert, 1977; Harvey, 1980; Mayer et a!, 1981). Core CR1 is 

exceptional in that it has very high least squares residual values for both I and 

Br (1.02 and 1.04 respectively) and correspondingly low correlation coefficients 

(-0.71 and -0.16). These indicate a very poor fit to the rate equation which is 

caused in the main, by abrupt changes in the I and Br patterns across the 

shell band between 5cm and 12cm depth. 

Some of the cores show highly variable I and Br values in the upper 10cm, 

as exemplified in core ET1. This probably reflects the presence of a zone of 

low biomixing and this is also manifested in pore water SO and alkalinity 

profiles (Chapter 4, Section 4.2). In many other cores, for example in the Firth 

of Lorne cores CM1 and DN1, the most greatest decline in I and Br occurs in 

the uppermost 10cm of the sediment, implying that the release of halogens is 

very pronounced within the overall oxic layer of sediments, and probably more 

intense than in the underlying anoxic sediment. It would seem that the first 

order loss of halogens from sediments alluded to above is to some extent 

controlled by oxic rather than anoxic diagenesis. Price and Calvert (1977) 

noted similar trends in sediment cores showing oxic tops from the Namibian 

Shelf. This also accounts for the trends noted in Long Island Sound and 

Winyah Bay sediments by Ullman and Aller (1983,1985). 

The I/Br ratios in the sediments (see Figure 6.3) show a decline at depth 

implying that I is more prone to diagenetic release than Br (Price and Calvert, 

1977). This suggests that while both I and Br are associated with the organic 

matter, the nature of the bond to the organic matter is different. Harvey 

(1980) showed that I appears to be associated with the nitrogenous 

components of the organic matter, i.e. the polypeptides and the chitin. This 
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material tends to be preferentially released during degradation (Gordon, 1971; 

Suess and Muller, 1980; Grundmanis and Murray, 1982). Br tends to form more 

compounds and is possibly associated with both the nitrogenous and the 

carbonate fractions. The fact that there appears to be a slightly increased I/Br 

gradient between anoxic sediment at depth and the uppermost 10cm -which is 

assumed to be predominantly oxic- indicates that I is preferentially lost from 

the sediment during biomixing activity. 

6.4. Halogen/Organic Carbon Ratios. 

It is known that I is associated with the marine organic fraction (Bowen, 

1966; Price and Calvert, 1977; Elderfield et a!, 1981) and that terrigenous 

organic matter supports little or no I even though I is present in brackish 

waters' such as at the head of Loch Etive (Ridgway, 1984). In contrast, 	-. 

appreciable amounts of Br (roughly 80ppm) are found in terrigenous dominated 

sediments. 

The surface values of Br/C range from 61 in DN1 to 174 in CM1 (Table 6.4). 

Except for SP1 and CM1, these values are similar to those found in Loch Etive 

by Ridgway (1984) and the Gulf of Maine (Mayer et al, 1981). CM1 and SP1 

have ratios which are much higher (174 and 131 respectively) than those 

noted by the above workers. 

In many of the sediments of the study area, particularly those associated 

with the fjord environments, the organic matter is derived from both terrestrial 

and marine sources. An attempt has been made to distinguish the relative 

influences of the two sources using C/N (Chapter 4) and 615N (Chapter 5). 
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The association of I with marine organic matter may possibly provide an 

additional tool for identifying the provenance of organic matter in coastal 

sediments. 

I/C ratios in surface sediments vary from 105 in core ET1 to 254 in CM1 

(Table 6.4). Price and Calvert (1977) suggested that an l/C01g  ratio of 250 was 

likely for oxic sediments dominated by marine organic matter. This being the 

case, then CM1, SP1 and SH1 can be seen to be much more marine in 

character than, for example AB1 and ET1. For comparison the C/N ratios of 

the sediments are given in Table 6.4. These values are compatible with the 

trends seen in I/C. Surface C/N ratios are lower in cores CM1, SP1 and SH1 

than at depth indicating possibly a greater marine influence at the surface. 

However, comparison of I/C and C/N ratios with the distribution of 615N (see 

Table 6.4) can show a number of unexplained inconsistencies. Cores CM1 and 

SP1 showing relatively high 615N values also show I/C and C/N values which 

are consistent with the concept of sediment dominated by marine organic 

matter. In contrast, ET1 shows 615N, C/N and I/C ratios that imply greater 

terrigenous contributions of organic matter. Core SH1 shows much lower 

positive 615N values which contrast with the more marine I/C and C/N 

patterns. This is likely to be due to external effects of productivity and 

diagenesis acting uponthe &5N as discussed in Chapter 5. 

At depth, the halogen/C patterns in most cores show a decline in values. 

The I/C profiles with depth are shown in Figure 6.4. Most of the cores show a 

concave downward pattern. This is compatible with the release of bound I at 

a greater rate in the oxic sediments (Price and Calvert, 1977). The decline with 

depth suggests that the I is mobilised at a greater rate than the bulk of the 

organic matter. 
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Figure 6.5 shows the patterns of Br/C with depth in the sediment cores. 

The decline is generally much less than that of I/C. The implication here is 

that Br is less labile than I with burial. This supports the patterns of I/Br in the 

sediments and is consistent with the findings of Price and Calvert (1977). 

Harvey (1980) and Ridgway (1984). 
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CHAPTER 7 

COPPER, LEAD AND ZINC IN THE SEDIMENTS 



7.1. Introduction. 

In this Chapter the Cu, Pb and Zn contents of the sediments will be 

considered. The relationships of the metals to the geochemistry of other 

phases, especially lithology, organic matter and halogens will then be 

discussed. 

It was seen in Chapter 6, that the elements such as I and Br were 

associated with the marine organic fraction of sediments and showed little 

association with the inorganic detritus. Cu, Pb and Zn however, can be 

partitioned between detrital and anthropogenic phases. For instance, many 

workers who have investigated these metals in coastal environments have 

emphasised the anthropogenic input (Bruland at a!, 1974; Erlenkeuser at al. 

1974; Goldberg at 8/, 1977, 1978; Lyons at a!, 1983). In areas more remote 

from pollutant input, other workers (Elderfield and Hepworth, 1975; Price, 1976; 

Krom, 1976; Price at a!, 1978; Galloway and Likens, 1979) have suggested that 

the patterns of Cu, Pb and Zn observed at depth in sediments are due more to 

burial diagenesis. 

Recently, Ridgway (1984) has observed a close association between Cu, Pb 

and Zn, the behaviour of S042  and the I/C ratio in sediments from Loch Etive. 

In the water column particulate heavy metals are also associated with the 

non-detrital component. However, Loch Etive is unusual on the West coast of 

Scotland in that its catchment area is by far the largest of any of the sea 

lochs. As such, there is much terrigenous input as shown by the nature of the 

organic matter and its association with halogens. It is possible that the 

unusual content of heavy metals observed by Ridgway (1984) and Malcolm 

(1981) may be associated with the relatively large fresh water input. For this 
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reason, this Study has examined sediments over a greater range of 

environments encompassing sediments from the Northwest coast of Scotland 

as well as from the Oban area. 

7.2.. Results. 

Heavy metals (Cu, Pb and Zn) were analysed by X-Ray Fluorescence 

Spectrometry (see Appendix I, Section 2.2). The data is presented in Appendix 

H, Table All.9. All of the data has been recalculated on a salt free basis. 

The surface values of Copper (Cu) in the sediments vary from 8ppm in 

CM1 to 31 ppm in ET1 (see Table 7.1). The values found for Loch Etive in this 

study (AB1 and ET1) are similar to those found by Ridgway (1984). He quotes 

surface values of 29ppm for the inner basin and 25ppm for the sediments of 

the outer basin. Table 7.2 shows surface metal contents from other coastal 

localities. The Cu concentrations seen in this study are similar to those found 

in; the Southern California coastal zone (Bruland et a!, 1974), Southern 

Chesapeake Bay (Goldberg et al, 1978), the Savannah River estuary (Goldberg 

at a!, 1979) and Ranafjord (Skel and Paus, 1979), but less than the 

concentrations found in Narragansett Bay (Goldberg et a!, 1977), the Baltic Sea 

(Erlenkeuser et al. 1974) and Foundry Cove (Bower et al. 1978). 

At depth Cu concentrations decrease in most cores (Figure 7.1). Those 

sediment cores showing higher Cu contents show more prominent decreases, 

whilst sediment cores with surface values of Cu of less than 20ppm, e.g. CM1 

show little change. Much of the change in Cu concentration in these cores 

occurs in sediments immediately below the surface, in or just below the 

biomixed layer. 
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Core Metals (ppm) 

Cu Pb Zn 

ABi 26 81 213 

CM1 3 31 75 

CR1 14 41 117 

0N1 21 57 154 

GUi 25 55 157 

Efl 31 86 243 

SHI 19 38 121 

SP1 19 49 146 

TABLE 7.1: Surface concentrations as a mean of the upper Scm of sediment. 

Location Metals (ppm) Author 

Cu Pb Zn 

Loch EtivO 

(Inner) 29 110 259 Ridgway 
(Outer) 23 81 192 (1984) 

Firth of 8 49 118 

Lorne 

Loch Etive 

(Inner) 28 103 265 Malcolm 
(Outer) 31 56 266 (1981) 

Savannah A. 50 44-53 90-100 Goldberg at a/. 
(1979) 

S. Chesapeake 22-41 33-61 118-250 Goldberg at 3/. 

Bay (1978) - 

Long Island 9 47 120 Grieg at al. 

Sound (1977) 

S. California 30-50 30-40 80-140 Bruland at al. 
(1974) 

Baltic Sea 63.6 64.6 316 Erlenkeuser 
at a 	(1974) 

Foundry Cove 81 186 300 Sower at al. 
(1978) 

Ranafjord 57 111 314 Skei & Paus 

(1979) 

Narragansett 202 134 249 
Bay Goldberg at at. 

(1977) 

Mean surface values. 

TABLE 7.2: Comparison of surface metal contents of sediments from other 
studies worldwide. 
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Lead (Pb) is present in much higher concentrations in the sediments when 

compared to Cu and often exceeds those found in other sediments quoted in 

Table 7.2. Pb contents are highly variable in the surface sediments. The 

highest concentrations occur in the sediments of Loch Etive (ET1 and A131) and 

appear to be lowest in the sediments from outside the fjords which have 

comparatively low organic contents. 

In all cores there is a marked decline in Pb concentration with depth 

(Figure 7.2), but the pattern of decline appears to be quite variable. 

Nevertheless, in most cores, the most marked change occurs in the sediments 

immediately below the biomixed zone. In the deeper parts of the cores, the 

Pb concentration becomes constant and tends to follow the alumina content 

trends as seen by Zr/Rb. The trends in the upper portions of cores CR1 and 

DU1 are consistent with the observations that CR1 has a sediment hiatus as 

marked by the shell band between 5cm and 12cm and DU  shows a mixing - 

pattern between the older clay and newer sediment above. However, the 

perturbations in the Pb patterns in these cores can be only partly explained by 

the lithological variations described in Chapter 3. There is obviously some 

other fundamental control affecting its distribution, especially its increase in 

concentration towards the sediment water interface. 

The surface values of Zinc (Zn) in the sediments are much higher than Cu 

or Pb ranging from 76ppm in CM1 to 227ppm in AB1 (Table 7.1). These values, 

like Pb, are considerably higher than those of average shale (Turekian and 

Wedepohl, 1961) but are very similar to those found by other authors (Table 

7.2) who have associated metal enrichment with anthropogenic inputs (eg 

Goldberg et al. 1978; Bruland et al. 1974; Greig et a!,, 1977). 
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At depth Zinc (Zn) shows a decline in concentration similar to Pb (Figure 

7.3). The concentrations at the base of cores ET1, AB1, and DN1 are much 

higher than in the other cores examined (iOppm) and tend to follow the 

trend in Pb contents which exceed 25ppm. These values exceed those of 

deeply burrowed sediments examined by Malcolm (1981) and Ridgway (1984). 

The upper section of the sediments show high Zn values which are mainly 

constant, much of the decrease in content occuring just below the biomixed 

zone. In DUI, the sediment mixing interval observed in the concentrations of 

Pb, organic N and other elements can also be seen in the Zn contents 

7.1 Metal/Rubidium Ratios. 

Heavy metals in these sediments are almost certainly partitioned between 

authigenic and lithogenic fractions of the sediment. Hence, some of the down-

core metal variations (Figures 7.1, 7.2 and 7.3) will be caused by lithologicat 

variation. In order to reduce the effect of this variability, the heavy metal 

contents have been normalised to Rb, an element that has often been used to 

express the aluminosilicate fraction of the sediments (see Chapter 3). Figures 

7.4, 7.5 and 7.6 show the metal/Rb patterns in the cores. These emphasise the 

surface enrichment patterns noted for the Pb and Zn profiles, but the decrease 

in Cu/Rb ratios is not so well defined. At the base of the cores the Zn/Rb 

ratios tend to be relatively uniform and except for A131, show constant ratios 

between cores. A similar pattern is seen for Pb/Rb ratios, but here there is a 

more pronounced difference in the ratio at the base of ET1 than in other 

cores. 

Table 7.3 shows factors of surface enrichment over the baseline values as 

calculated from the metal/Rb ratios. In all the cores Pb is enriched the most 
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Core Cu Pb Zn 

481 1.61 3.09 2.27 

CM1 1.09 2.15 1.42 

CR1 1.44 2.01 1.60 

DNI 1.56 2.12 1.76 

DU1 1.61 2.10 1.72 

Efl 1.62 2.17 2.62 

SH1 1.21 2.16 175 

SP1 1.27 2.16 1.75 

TABLE 7.3: Surface metal, enrichment values as calculated from metal/Rb 
ratios. 

Core Pb Zn Zn/Pb Corq  

481 47 95 2.02 4.67 

CM1 18 26 144 0.77 

CR1 21 42 2.00 1.68 

ON1 27 57 2.11 3.23 

DU1 26 50 1.92 4.61 

ET1 39 135 3.46 6.15 

SH1 27 57 2.11 1.86 

SP1 26 56 2.15 1.93 

0.798 

0.869 

TABLE 7.4: Excess metal (ppm), Zn,,/Pb,1  and Corg (%) concentrations 
in the biomixed zone of the cores examined with correlation 
coefficients of excess metal to C0 . 
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followed by Zn, with Cu being the least enriched. As well as varying between 

metals, the enrichment factors vary across the cores. ET1 and AB1 have the 

greatest metal enrichment, CM1, SH1 and CR1 the least. 

7.4. Origin Of The Metals And Their Behaviour During Burial. 

7.4.1. Introduction. 

Heavy metal enrichments of surficial sediments have been noted in 

numerous coastal environments (Chow at a/ 1973; Bruland at a!, 1974; 

Goldberg at a!, 1977, 1978, 1979; Skei and Paus, 1979). Most authorities have 

assumed that such enrichments above a baseline concentration represent an 

anthropogenic presence and furthermore, the patterns of metal enrichment 

have been used to describe the history of anthropogenic contamination of an 

environment (Erlenkeuser at al. 1974; Bruland etal. 1974; Goldberg etal. 1977, 

1978, 1979). But, Cu, Pb and Zn can be derived from both natural and 

anthropogenic sources. Much of the metals from the natural sources will 

enter the sediments associated with the terrestrial detrital material derived 

from weathering in the catchment area. The sources of anthropogenic metals, 

their introduction to the sediment and their behaviour during sediment burial 

are much more complex. They may be derived from direct input from local 

sources such as industrial and domestic waste. Indeed many previous studies 

of metals in the environment have concentrated on sediments close to a 

direct pollutant source (Galloway, 1979; Halcrow at a!,, 1973; Crecelius at a!, 

1975; Bower at a!, 1978). With sediments enriched in non-detrital heavy metals 

in areas remote from direct pollutant input, transport from a remote source by 

aeolian processes and fallout by precipitation is suggested (Bertine and 

Goldberg, 1971; Swaine, 1977; Goldberg, 1976(b); Franzin at a!, 1979). Such 
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fallout of trace metals over land, sea and in remote areas, has been measured 

(Lazarus at a!, 1970; Ranticelli and Perkins, 1970; Nraigu, 1979; Shirahata at al. 

1980; Saule and Patterson, 1981; Boutron and Patterson, 1986). These 

measurements clearly show that the atmosphere is a major pathway for 

pollutants to enter remote environments (Galloway and Likens, 1979). 

Nevertheless, trends in heavy metals, especially in regions removed from 

industrial sources may not always depict the history of pollution. Other 

workers studying metals in remote environments (Elderfield and Hepworth, 

1975; Price, 1976; Krom, 1976; Price at a!, 1978; Galloway and Likens, 1979; 

Ridgway and Price, 1987) have suggested that whilst anthropogenic input of 

metals to remote sediments occurs, the patterns of Cu, Pb and Zn observed in 

the sediments may be modified by burial diagenesis. In this study an 

examination of the heavy metal contents has been made with the intention of 

identifying their behaviour under óxic, süb-oxic and anoxic burial. Additionally, 

a close inspection of the patterns of accumulation of the metals in the 

sediments and their geochemical associations with the major sedimentary 

constituents, aluminosilicates, organic matter and sulphides may help in 

identifying the mechanism of accumulation of heavy metals in sediments. 

7.4.2. Excess Heavy Metal Contents And Their Incorporation Into The Sediment 

The metal values discussed in Section 7.2 represent either total contents 

and/or their relationship to the aluminosilicate fraction expressed as metal/Rb 

ratios. It is unlikely that lithogenic metals play a constituent part in the 

incorporation of pollutant metals in the sediments. It is therefore desirable to 

consider the content of the excess metals over and above the lithogenic input 

before a possible interpretation of their origins is made. In order to do this, 

the values of Pb and Zn were ratioed to Ni, which from Chapter 3 was seen to 
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be associated with the detrital fraction and invariant with depth. The 

association of Cu, Pb and Zn with Ni is probably a more satisfactory 

normalisation than to Rb as it is assumed that within the alumina related 

phase all four elements will be concentrated in ferromagnesian detritus rather 

then alum inosilicates as depicted by Rb. The excess metal (Max) at each depth 

in the cores was then calculated using equation 7.1. 

M = (M/Ni - MINI ) . Ni 
ox 	D 	B 	D 

(7.1) 

Where: M/Ni0 = Metal/Nickel ratio at depth (Dcm) 

M/NIB = Mean background ratio 

Ni0 	= Nickel concentration at depth (0cm) 

Excess metal values for all the cores are presented in Appendix II, Table 

All.10. Surface values of excess Pb and Zn are shown in Table 7.4 together 

with comparative C org  values and Zn ox  IPb ex  ratios. 

The trends in Cu, Pb and Zn, as expressed by the distribution of excess 

metal contents, show a different distribution from detrital metals (see Figures 

7.7 and 7.8). This comparison, however, does not express the differences in 

the metal contents at the bottom of the different cores, for instance, the 

higher metal contents at the base of core ET1. This will be considered later. 

Excess metal distribution clearly shows an increased loading of the sediment 

towards the sediment water interface and could imply increased anthropogenic 

metal loading of all the sediments. These metals have often been associated 
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with the organic matter in sediments (Calvert and Price, 1983). However, 

consideration of the distribution of organic Carbon (Figure 4.1) shows general 

uniformity with depth in each core and hence there is no obvious relationship 

between M0  contents and the total organic matter in the sediments. The lack 

of such correlation may be due to the origin of the organic matter, marine and 

terrigenous, but it is possibly more related to the quality of the organic matter 

i.e., the metabolisable content and the change of this down each core. In 

Chapter 6, the behaviour of I and Br in the sediments have been described and 

their relationships with C and N have been discussed with respect to organic 

matter sources and to behaviour with burial diagenesis. Given the observed 

trends of halogens, it is sensible to consider the patterns of heavy metals at 

depth in the sediments to be a consequence of diagenetic reactions as well as 

of anthropogenic loading. Therefore, the excess metal contents of Pb and Zn 

have been plotted against I as shown in Figures 7.9 and 7.10. These plots are 

analogous to plots of metal/Rb vs I/C used by Ridgway and Price (1987) but 

are possibly less sensitive to errors caused by detrital variations between 

different environments. The graphs show that there is a direct positive 

relationship between I and excess metal as expressed in Table 7.5. However, 

the relationship between metal and halogen is very different in the surface 

sediments than at depth. From pore water data, S and halogen patterns, a 

biomixed layer has been identified in all sediments corresponding to at least 

10cm of sediment accumulation. These horizons show a more gradual Zn/I 

decline than in the sediments below the biomixed zone. It appears that the 

uppermost sediments showing oxic/sub-oxic character can show appreciable 

loss of I relative to metal change. Lower down, in the anoxic sediments, the 

trend of I vs M is very much the same for most cores except DU1 where 

sediment mixing is prevalent. The mean Pb ex  Znex  and I contents for the 
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Core Pb Zn 

Blomixing At Depth Blombdng At Depth 

481 0.841 0.992 0.284 0.978 

CM1 -0.140 0.892 0.934 0.736 

CR1 0.953 0.856 0.980 0.770 

DN1 -0.120 0.878 0,833 0.844 

DU1 0.777 0.933 0.440 0.900 

ET1 0.248 0.963 0.001 0.963 

Sill 0.765 0.580 0.858 0.817 

SPI 0.107 0.915 0.307 0.803 

TABLE 7.5: Correlation coefficients of excess metals against Iodine for 
sediments both within the biomixed zone and at depth. 

INNER BASIN OUTER BASIN 

- 	: 	 Surface Baseline --Surface-----------BaseIIne 

Cu 	 0.199 0.081 0.177 0.116 

Pb 	 0.322 0.166 0.551 0.205 

Zn 	 0.935 0.400 1.435 0.723 

Fluxes calculated from: 

F • R (1-)Cø .10 

Where: Fj = Flux 	yr) 
C = Concentration of metal (ppm) 
R = Sedimentation rate (mm yr) 

= Porosity 
p = Sediment density (taken as 2.65 g cm-3 ) 

The sedimentation rates were taken as 1.37mm yr 1  for the inner basin and 

1.64mm yr 1  for the outer basin (see Ridgway, 1984). 

Cu 	 Pb 	 Zn 

Atmospheric 

	

Input (1971) 	0.032 	 0.055 	 0.12 

Wraymires 

Data of atmospheric fallout at Windermere, England (1971). (Pierson. 
1973. 

TABLE 7.6: Metal fluxes needed - to create the-  observed metal -levels, -both 
surface and baseline in Loch Etive. With atmospheric fallout 
data for Windermere for comparison. 
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biomixed zone have been calculated for each core and are plotted in Figure 

7.11. Additional material from Loch Etive (Ridgway, 1984) and Loch Duich 

(Krom, 1976) and additional cores from the North of the area (NE1, Loch Nevis, 

HO 1, Loch Hourn and SN1, Loch Snizort) are also shown. It is clear from these 

plots that the concentrations of Me  in cores from the North of the region are 

different to those from the South. In addition, M ax  from Loch Etiie have much 

higher concentrations than sediments collected from coastal regions with no 

direct input from run-off. These differences are accentuated if one allows for 

the anomalously high metal concentrations found at the base of cores AB1 

and ET1. The trends observed above have a number of implications for the 

behaviour of excess metals in sediments. 

1). 

There appears to be a geographical control over the distribution of the 

metals. SH1, DU1, SN1, NE1 and HOl in the North appear to receive fewer 

metals than the sediments further South. In DU1, the high level of I values 

suggest a high level of marine organic matter, on a par with ET1 or AB1. Data 

collected by Krom (1976) from Loch Duich and plotted in a similar manner, 

whilst showing lower I values than this study, still shows relatively lower Mex  

values, supporting a geographical variation in the trace metal input. This would 

be expected as the northern sediments are more remote from major industrial 

sources (the Clyde Valley and England) than are the more southerly cores and 

are thus less affected by atmospheric fallout. 
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.2). 

There is a variation in metal input with the size of catchment area. AB1 and 

ET1 have much higher metal inputs than the amount of marine organic matter 

as indicated by I. The catchment area of Loch Etive is the largest in Western 

Scotland and is an order of magnitude larger than the catchment areas of the 

other lochs, 1300 Km2  as opposed to 75 Km2  for SH1 and 166 Km2  for Loch 

Creran. If the atmosphere is a major pathway of metals (Galloway and Likens, 

1979), then a larger catchment area will allow a greater amount of metals to 

enter the loch from surface run-off. Table 7.6 shows the fluxes of 

anthropogenic metals calculated from the surface excess metal values. 

assuming all of the metals entered the sediments from the overlying water, 

there being no diagenetic enrichment. No data is available for atmospheric 

fall-out over the area,. but the table includes atmospheric fluxes for Lake 

Windermere (Pierson et al, 1973). These values would be insufficient to 

produce the amounts of metals seen in the sediments. So, while increased 

input via a large catchment area may occur, some other mechanism of metal 

enrichment must also occur. 

3). 

The ratios of Zfle,/Pbex  in the upper section of the cores are relatively constant 

at about 2 (Table 7.4). The high ratios at the surface of ET1 (3.46) are caused 

by neglecting the high baseline values of Pb in this core. If this is taken into 

account, diagenetic Pbex  will be increased by 20ppm for the whole core. This 

would reduce the Zflex/Pbex  ratio to about 2, in line with the other cores. The 

constancy of Zflex/Pbex  ratios for all the cores does not necessarily imply that 

the introduction of these metals to the sediment occurs in the same 

authigenic or organic phase. Ridgway (1984) showed that in the Loch Etive 
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particulate matter, the Pb and Zn tended to be preferentially bound to two 

different phases. While there was some overlap, the Zn appeared to be 

associated with the particulate organic matter and the Pb was primarily 

associated with the iron oxides. In the surface sediments this does not appear 

to be the case. Both Pb and Zn appear to be associated with the organic 

fraction. Nevertheless, the relationship of the metals to the organic material is 

obviously different. In Figure 7.11, the best fit line for Zn for the four cores 

CML SP1, CR1 and DN1 has an intercept very close to zero. This would be 

expected if it was assumed that all of the M ax  is associated with the marine 

organic matter. The best fit line for Pb has a positive intercept, implying that 

not all of the Pb is associated with the marine organic fraction. In oceanic 

sediments metals have been seen to be associated with Mn and Fe oxides 

(Calvert and Piper, 1984; Shimmield, 1984; Balistrieri and Murray, 1986) and 

these metals are thought to be released as their host phases are reduced. 

The sediments from this study do not have such high concentrations of Mn or 

Fe (Ridgway, 1984), nor do the sediments have such oxtc surface sediments as 

oceanic sediments. It is possible that in the sediments of the study area, the 

FeO is rapidly reduced very close to the sediment water interface allowing Pb 

to be released and adsorbed onto organic matter. 

4). 

In the lower sections of the cores the correlation between Zn, Pb and I is 

excellent with correlation coefficients ranging between 0.76 and 0.98. The 

slope showing the change of Ma  relative to us mostly uniform apart from the 

mixing profile observed in DU1. The diagenetic recycling of trace metals at 

depth in the sediment needs to be considered as a source of metal 

enrichments. The possible role of redox reactions associated with Mn and Fe 
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has already been considered, but it is not thought to play as important a role 

in these sediments as in deep sea sediments where these elements occur in 

greater concentrations. In coastal sediments the large concentrations of 

organic matter make this more important. In the next section, the role of the 

organic matter at depth within the sediment will be considered. 

7.4.3. Organic Carbon Diagenesis And Metal Enrichment. 

It seems then, that in both the biomixed and the underlying anoxic 

sediments the, trends in excess metals is associated with organic matter 

degradation depicted in the I profiles. The shallow gradient in the upper 

portion of the Figures 7.9 and 7.10 reflect organic breakdown in the biomixed 

zone. The gradients show that the I is released from the organic matter4a 

faster rate than the metals. At depth the gradients are steeper indicating that 

the metals are released preferentially to I. This implies that the metals and I 

are bound to differing organic fractions. From the gradients, it appears that I 

is more easily released, being preferentially removed in the oxic zone. This is 

consistent with the findings of Price and Calvert (1977) who suggest that I 

reacts more rapidly in the oxic environment. A comparison of the gradients 

for the biomixed region of the cores shows them to be very similar, 

suggesting that the reaction rates in the oxic zone are similar from core to 

core. With depth, the gradients of the best fit lines vary. For example, in 

CM1, there is less metal lost relative to I than in SP1. This may be related to 

accumulation rate. Where the accumulation rate is slow, for example in CM1, 

there is less input of organic and detrital material and therefore the reactive 

organic matter is exposed to rapid oxic breakdown for a longer period. Thus, 

there is less material incorporated at depth to be reduced anaerobically. 

Conversely, in ET1, the sedimentation rate is high and much more organic 
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matter becomes incorporated at depth. This would explain the existence of the 

higher baseline metal values in ET1 as compared to the lochs with lower 

sedimentation rates. 

CR1 and DU1 show unusual gradients in the best fit lines. In DU1, the 

shallow gradient suggests than I is being removed, relative to metals, in a 

similar manner to the reaction in the aerobic zone. This is opposite to that 

shown by the remaining cores and is interpreted as being due to the influence 

of the clay at the base of the DUI core. This clay was responsible for the fall 

-in halogen concentrations with depth (see Chapter 5). It was suggested that 

the clay, low in organics and halogens, was diluting the sediment above by 

mixing, possibly caused by bioturbation from deeper burrowing organisms and 

causing an artificial decline in element concentrations which is not seen in the 

excess metal values. CR1 is affected by the sediment division at the shell 

band. The newer sediment above the shell band is probably completely 

affected by bioturbation. 

Comparison of the metal/Rb depth profiles in the sediment with the 

profiles of solid phase S and pore water So 	shows a distinct pattern. The 

rapid increase in S correlates well with the zone of metal increase. This is 

illustrated in AB1, but the pattern can also be seen in CM1 and SP1 (see Figure 

7.12(a),(b) and (C)). It was discussed in Chapter 4 that the zone of maximum 

SOA  reduction was actually in or very close to the biomixed zone, but that 

some S042  reduction occured at depth. This is shown by the increase in S 

concentration with depth. The correlation of metal values with the SO 42-

reduction was noted in ET1 by both Malcolm (1981) and Ridgway (1984). The 

amount of S042  reduction occuring at depth in the sediments appears to be 

controlled by the degree of irrigation of the sediment by deeper burrowing 
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organisms. This in turn controls the anaerobic breakdown of organic matter 

which regulates the release of the trace metals. Malcolm (1981) suggests that 

these trace metals once released are free to enter the sediment pore waters 

causing an observed metal enrichment in the sediment pore waters at depth. 

This forms a concentration gradient thereby allowing metals to migrate 

towards the sediment surface where they can be lost to the overlying waters 

or recycled by adsorption onto organic matter leading to increased metal 

enrichment at the surface. 

177 



CHAPTER 8 

SEDIMENT ACCUMULATION RATES 



8.1. Introduction. 

A number of natural and artificial radio-isotopes have been used to 

measure accumulation rates in sediments. Koide etal. (1972, 1973) applied the 

decay of 210  Pb (a natural isotope) to coastal marine sediments following the 

work of Krishnaswami (1971) on lacustrine sediments. However, the 

development of nuclear reactors and the atmospheric testing of nuclear 

weapons has led to the introduction of a number of artificial radionuclides into 

the 	environment. For example, 137  Cs derived from atmospheric fall-out of 

nuclear weapons testing has been used by Ritchie at af (1973), Pennington at 

al. (1973) and Robbins and Edgington (1975) to date sediments. More recently 

other radio-isotopes such as 134Cs, 239'240Pu, derived from low-level waste 

output from nuclear power stations, have been used (Hetherington and Harvey, 

1978; Aston and Stanners, 1979; Stanners and Aston, 1981(a) and (b); Bopp at 

a!,, 1982). 

In Western Scotland the sediments are very much influenced by low level 

nuclear waste discharged from the nuclear fuel reprocessing plant operated by 

B.N.F.L (British Nuclear Fuels Ltd.) at Sellafield on the Cumbrian coast 

Livingstone and Bowen, 1979; MacKenzie and Scott. 1982; Swan at a!, 1982). 

This site is known to release a number of radionuclides into the environment 

including; 10611u, 90Sr, 144Ce, 95Zr, 95Nb and 137'134Cs. 

Cs exists in solution as a monovalent cation. Due to its low reactivitiv, it 

tends to have a long residence time in the ocean. However, interactions in the 

coastal environment with particulate, biological and fresh water fluxes results 

in the incorporation of significant amounts of Cs into the sediments, largely by 

ion exchange reactions onto clays (Swan at a!, 1982). In contrast, 210  Pb has a 
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high reactivity and tends to be scavenged by both organic and oxide 

particulate material (Schell, 1977). 

In this study 137  Cs has been measured in two cores, DN1 and CR1 and 

used to estimate the sediment accumulation rate. In addition, 137  Cs and 210  Pb 

data obtained from Loch Etive by Ridgway (1984) will be considered. The 

radionuclide analyses were kindly performed by Dr A.B Mackenzie and Miss T.S 

Williams at the Scottish Universities Research and Reactor Centre. 137  Cs was 

measured directly by y-ray counting on a 10cm lead shielded 130cm3  active 

volume Ge(Li) detector for 60 hours. The detector was connected to an EG & 

C Ortec 7032 analyser used for processing the data. The resolution of the 

detector was 2.1KeV with an absolute efficiency of 5% for counting. All data 

are given in Appendix II, Table All. 1 1. 

8.2. Calculation of sediment accumulation rates using 137Cs 

The majority of 137  Cs in the sediments in Western Scotland is derived from 

Sellafield (McKinley et al., 1981(a) and (b); McKay and Baxter, 1985). Only a 

minor proportion is derived from nuclear bomb fall-out (c. 1-3 pCi g-1, Aston 

and Stanners, 1979; Ritchie at al. 1973) and this will be constant over the 

whole area (Ritchie et al. 1973). Sellafield has been discharging radioactive 

waste since 1952 (Swan etaL 1982) and the amount has been increasing with 

time, although recent years have seen a decrease in discharge (see Table 8.1). 

As the sediments measured (DN1 and CR1) were collected in 1984, then the 

appearance of 137  Cs in the sediments represents a maximum of 32 years 

output (Swan at al., 1982), assuming there is no post depositional mobilisation 

of the Cs and little or no bioturbation. In reality this may represent slightly 

less than 32 years due to the lag time involved in the plume reaching the 
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Date 
	 171 

Activity (TBq ') 

1964 
	

104 

1965 
	

110 

1966 
	

181 

1967 
	

150 

1968 
	

371 

1969 
	

444 

1970 
	

1154 

1971 
	

1325 

1972 
	

1289 

1973 
	

768 

1974 
	

4061 

1975 
	

5231 

1976 
	

4294 

1977 
	

4483 	- 

1978 
	

4092 

1979 
	

2600 

1980 
	

3000 

1981 
	

2400- 

1982 
	

2000 

1983 
	

1200 

1984 
	

434 

1985 
	

325 

1986 
	

18 

TABLE 8.1: Liquid effluent discharges of 137Cs from Sellafield (1964-1986) 
(From T.S Williams, Pers Comm). 
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Caesium-137 (Bq Kg) 

P 
8 

8 

0 

8 

0 

D 8 

—r 

8 

C) 
3 

8 

Caesium-137 (Bc1 K9') 

0 
S 	S 

S 

0 

8 

8 
S 

8 

FIGURE 8.1: 137Cs concentrations from cores CR1 (Loch Creran) 

and DN1 (Dunstafifriage Bay). 

S 

FIGURE 8.2: 137Cs concentrations of two cores from Loch Etive. LES1 

(Outer Basin), LES2 (Inner Basin) after Ridgway (1982). 
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study area. However, McKay et at (1986) suggest that the time for the waste 

to reach N. Skye from the North Channel is only 4.5 months, thus the lag time 

may be relatively short. 

Figure 8.1 shows the pattern of 137Cs in the sediment cores from DN1 in 

the Firth of Lorne and CR1. The increasing values towards the sediment 

surface can be ascribed to increasing Cs discharge (Table 8.1) rather than 

radioactive decay. The peaks seen in the upper 5cm of the sediments may be 

ascribed to the 1976-1977 peak in 137  Cs discharge. The calculated sediment 

accumulation rates are given in Table 8.2 together with accumulation rates for 

Loch Etive measured by Ridgway (1984) using 137  Cs'  210  Pb and sediment trap 

methods. Taking the onset of Cs enrichment as 1952, accumulation rates for 

DN1 and CR1 were calculated at 0.78cm yr 1  and 0.68cm yr 1  respectively. 

This is consistent with sediment accumulation rates found by Swan et at 

(1982) for Care Loch in the Clyde Estuary (6mm yr _1)  However, the values 

are lower than those calculated by the 137Cs method for Loch Etive by 

Ridgway (1984) (see Table 8.2), but they are similar to rates obtained by 

Ridgway using 210  Pb and sediment traps (see Table 8.2). 

8.3. Discussion. 

The large variation in accumulation rates between DN1, CR1 and those of 

Loch Etive obtained from 137  Cs data by Ridgway (1984) is very interesting. 

There are two possible reasons why this may occur. Firstly, the accumulation 

rate in Loch Etive may be markedly higher than in the sediments outside the 

loch. This is possible given the large catchment area and the, corresponding 

input of detrital material to the sediments. (see Chapters 2 and 3). However, 

the accumulation rates indicated by the sediment trap data are very similar to 
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Core Sediment Trap 210 Pb 137Cs 

(a) (b) 	(a) (b) (a) (b) 

CR1 -- . 	-- 	-- - 0.66 5235 

ON1 -- -- 	-- -- 0.78 4907 

LES1 0.64 1361 	0.33 1311 1.21 4810 

4F 0.64 1361 	-- -- 1.64 6667 

8F -- -- -- 1.50 11035 

LES2 0.80 1061 	0.86 2929 1.07 3644 

ET1-A -- -- 	-- -- 1.07 5884 

5F -- -- 	-- -- 1.29 3480 

3F 0.80 1061 	-- -- 1.36 3474 

TABLE 8.2: Sediment accumulation rates in cm yr 1  and 9  m 2  for 
sediments from this Study and for Ridgway (1984) marked by (*)• 

Weight of sediment deposited calculated from the expression: 

z • 

Where: z = total weight of sediment deposited (g cm(2) 

D = depth (surface = 0) 

0 = mean porosity of the sediments 

p5  = density of the sediment (2.65 g 

Core Accumulation Rates 

1952 1963 	1977 

CR1 0.66 -- 	0.29 

DN1 0.78 -- 	0.43 

LES1 0.82 0.86 	 -- 

LES2 0.82 0.94 	-- 

TABLE 8.3: Sediment accumulation rates (cm ?r) as calculated from 
known 137Cs peaks observed in the sediments. 

( Corrected accumulation values based on the onset of 
Cs enrichment rather than on the first appearence of Cs.) 
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those of DN1 and CR1 from 137Cs. Secondly, there may be errors in the 

calculation of the accumulation rates in both sets of cores. Sediment cores 

LES1 and LES2 (Ridgway, 1984) (Figure 8.2.) when compared with CR1 and DN1 

(Figure 8.1) show similar patterns. The onset of 137  Cs enrichment in LES1 and 

LES2 is slightly higher in the sediment than in DN1. These sediments 

however, were collected in 1980 and the Cs values, therefore only represent a 

maximum of 28 years deposition. Recalculating the accumulation rate, 

assuming 1952 to be indicated by the onset of Cs enrichment, gives sediment 

accumulation rates of 0.82cm yr 1  for both cores. This is much nearer the 

rates calculated for CN1 and DN1 and closer to the 210  Pb and sediment trap 

data calculated by Ridgway (1984). This casts doubt on the validity of using 

the first appearance of Cs to calculate accumulation rates (Ridgway, 1984). 

A number of problems exist in using radionuclides to calculate sediment 

accumulation rates. One of the major assumptions is that there is no marked 

bioturbation in the sediments. This is not the case in these sediments. It was 

shown in Chapter 4 from SO 2  and alkalinity data and in Chapter 7 from the 

change in slope of the excess metal to Iodine plots, that there is an active 

zone of biomixing down to a depth of at least 10cm in the sediments. It is 

reasonable to assume that a biomixing zone of similar thickness has been 

present in the past. This may make using the first appearence of 137  Cs as a 

marker for 1952 (Ridgeway, 1984) a problem. Any 137  Cs incorporated into the 

sediment at that time would be subject to bioturbation and will tend to be 

dispersed to greater depths. In addition to biomixing diffusion of Cs must be 

considered. Beasley et at (1982), Santschi et at (1983) and Sholkovitz et at 

(1983) have noted the mobility of 137  Cs in sediments. Sholkovitz and Mann 

(1984) note enhanced pore water Cs values over those of the 
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overlying seawater in sediment pore waters from Buzzards Bay. Apparent 

diffusion rates for 137  Cs have been calculated as; 

1.1 x 10 8  CM-2 s (Duursma and Bosch, 1970) 

1.3 x 10 8  CM-2 s (Hess, Smith and Price, 1978) 

Applying these diffusion rates to the sediments examined here, diffusion 

could allow Cs to penetrate up to 13cm deeper in core DN1 and 11cm deeper 

in cores LES1 and LES2. This is far in excess of the 4.4cm calculated by 

Ridgway (1984), and coupled with biomixing probably accounts for the 

relatively constant values of Cs seen at depth in the sediments (Figures 8.1 

and 8.2). Calculation of sediment accumulation rate on the first occurence of 

Cs may, therefore lead to an over estimation. For this reason the 1952 marker 

in this study was taken to be the point of increasing 137Cs values and not the 

first occurence of Cs. 

Diffusion and bioturbation will have an effect over the whole sediment 

column. Using box models (Figure 8.3). MacKenzie and Scott (1982) modelled 

expected profiles of 137Cs in a sediment when acted upon by; 

Accumulation only. 

Mixing only. 

Both mixing and accumulation. 

The patterns noted in the sediments in this study tend to conform to 

either the accumulation only model (Figure 8.3(a)) or both mixing and 

accumulation (Figure 8.3(c)). The former is illustrated by core LES2 from the 
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FIGURE 8.3: Box models to show the effect of accumulation and mixing on 

the pattern of 137Cs in a sediment. 

Accumulation only 

Mixing only 

Mixing and accumulation 

(after MacKenzie and Scott, 1982) 
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inner basin of Loch Etive. The remaining cores tend to conform to the latter 

model. This would be expected given the low degree of benthic activity 

observed in the inner basin of Loch Etive compared to that from the outer 

basin and external to the loch (see Chapter 4). It was seen earlier that 

variations in the Cs profile in the sediments can be ascribed to specific events. 

For example; the peaks in the upper 5cm of cores CR1 and DN1 can be 

attributed to an increase in output of Cs from Sellafield in 1977. Similar peaks 

in the profiles of cores LES1 and LES2, at 14cm and 16cm depth respectively 

can 	possibly be ascribed to the 1962/1963 increase in 137  Cs fall-out due to 

atmospheric nuclear weapons testing. It is possible to use these dated events 

as a basis for dating sediments. The effects of diffusion and biomixing on the 

sediments can be seen by comparing the accumulation rates obtained by 

using the 1952 marker and those obtained by using 1963 and 1977 markers. 

These are summarised in Table 8.3. In cores LES1 and LES2 the accumulation 

rates calculated from the bomb peak of 1963 and from the onset of Cs 

enrichment in 1952 give very similar values. This is not the case in CR1 and 

DN1. The calculated accumulation rates from the 1977 output peak are much 

lower than those calculated from 1952. This may be due to a real fall in the 

rate of sedimentation, but the fact that the sediments from within Loch Etive 

tend to show little variation, whilst those outside show major variation, would 

imply that the greater degree of biomixing expected in the sediments from 

outside Loch Etive is responsible. 

It may be concluded then that biomixing can have an appreciable effect on 

the distribution of Cs in the sediments. This may, therefore, affect the 

calculation of sediment accumulation rates using the 137  Cs distribution. 



CHAPTER 9 

GEOCHEMISTRY AS A TOOL TO IDENTIFY SEDIMENT INHOMOGENEITY 

AND BIOMIXING 



9.1. Introduction. 

Previous chapters have described the geochemical nature of the sediments 

in terms of, the provenance of the organic matter, the behaviour of the 

halogens (I and Br) and heavy metals (Cu, Pb and Zn), and their relationship to 

the patterns of organic matter degradation in the sediments. It has been 

shown that the behaviour of the organic matter and subsequently that of the 

halogens and metals tends to be influenced, in part, by the variability of 

sedimentation. In Chapter 3 the Zr/Rb ratio was used to highlight subtle 

variations in sediment texture, both temporally and spatially and certain 

elements, for example Ba and Sr were used to highlight variations in 

mineralogy. The sediment cores from Loch Creran (CR1) and Loch Duich (DU1) 

show marked variations which can be seen visually. Other cores which appear 

to be visually homogenous with depth, for example ET1 and CM1 also show 

more subtle variation in composition and hence sedimentation. 

In the light of the patterns of organic matter and halogens recorded in the 

sediments, we can now discuss the role that the lithogeochemical trends have 

in interpreting sediment accumulation, concentrating on the lithological 

variations displayed by cores CR1 and DU1. 

9.2. Discussion. 

In core CR1, the shell band between 5cm and 12cm shows a marked 

increase in the Zr/Rb ratio indicating a coarser sediment. Comparison of the 

Zr/Rb pattern with those of C org, N, I, and the metals (Cu, Pb and Zn) show 

that these elements have relatively low concentrations in the shell band. 

However, the high carbonate content of this zone is indicated by enhanced Sr 
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values. These patterns are summarised in Figure 9.1. The presence of the 

shell bands appears to indicate a major hiatus in sedimentation, possibly 

caused by the winnowing of the finer material to produce a lag deposit of 

coarse, carbonate rich material, composed principally of residual shell debris of 

Turritellid gastropods. 

Support for an erosive mechanism can be found in the I/C pattern (Figure 

9.1). The I/C ratio is constant in the upper 5cm of the sediment, falling rapidly 

in the shell band and remaining comparatively constant below this. Given that 

the release of I from sediments is a first order reaction with respect to 

organic carbon (Chapter 6), the I/C ratios at depth suggest an older unreactive 

sediment, whilst the values in the upper 5cm of the core are markedly higher 

indicating the probability of a major hiatus in sedimentation. 

An estimate of the total sediment accumulation rate can be gained from 

the 137  Cs data (Chapter 8), basing the measurement on the 1977 output peak 

of 137 Cs (0.4cm yr 1). Assuming that there has been constant accumulation in 

the upper part of the core. The depth of maximum carbonate content can 

therefore be dated to 1968-1969, which would coincide with a major hurricane 

event in the January of 1969. 

It is possible to use the pattern of Sr content to quantitatively assess the 

amount of sediment removed by comparing the background Sr value with the 

enriched value of the shell band and calculating the amount of sediment 

removal necessary to cause the observed increase in Sr values. Using this 

method (summarised in Table 9.1) it is estimated that about 18cm of sediment 

must have been eroded during this event, this equates to about 7 years of 

accumulated sediment. However, it is stressed that this can only be 
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1. 	Sr = Sr0  0 - CaCO) 	 2. 	Si-c = Si-0' . CaCOj 

	

100 	 100 

	

3. 	Rb0' = 	Rb8 	 4 
	

CIaVSH = fisli 100 

	

(1 - CaCO3) 	
Rb 0' 

100 

5. Sr =Ciay 

100 

7 	C = 	_Sa 

CaCO3  

	

6. 	Srsc = Sr5 - Sr1  

	

8. 	S=C.d 

9. CaCO3 	100 

Sr0 * 

C 	Contentration of CaCO3  in the shell band over the background. 
(3.69) 

CaCO3 	= Mean carbonate of background sediment (from Fig 3.20) 
(300ppm). 

CaCO3si.4 = Mean carbonate content of the shell band (from Fig 3.20). 
(42%) 

ClaysH = Clay content of the shell band (58%). 
d5 	= Thickness of shell band (5cm). 
Rb0' 	= Rb content in carbonate free clay (123ppm). 
RbB 	=Mean Rb content of background sediment (lllppm). 
RbSH 	= Mean Rb content of the shell band (72ppm). 
SrB 	= Mean Sr content of background sediment (300ppm). 
Src5 	= Sr content of clay fraction in shell band (87ppm). 
Sr0 	= Sr content of carbonate free clay (from Fig 3.20) (lSOppm). 
Sr0' 	= Sr content 100% carbonate (from Fig 3.20) (1593ppm). 
Srsc 	= Sr content of carbonate fraction of shell band (613ppm). 
Sr5 	= Mean Sr of shell band (700ppm) 
S 	= Sediment loss (cm) 

TABLE 9.1: Summary of expressions for the calculating the amount of 
sediment eroded from CR1 from the Sr concentration. 
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a minimum value, as it is impossible to estimate how much carbonate may 

also have been removed along with the finer material. 

Biomixed layers extending to a depth of about 10cm, have been identified 

in most sediments, from porewater S042  and alkalinity measurements. All of 

the cores show an excess of sedimett S over that which can be 

accommodated by the observed S042  reduction in the pore water. It is 

suggested that excess S042  found in sediments must be introduced by 

biomixing and diffusion (Chapter 4). Sulphur is shown to occur in the 

biomixed zones of some cores, for example AB1, SP1, and CR1, implying 

Sulphur fixation in an overall oxic environment. It is likely that the amount of 

SO42  reduction in the biomixed zone is controlled in part by the degree of 

biomixing, which may in turn be influenced by the sediment accumulation rate 

and the quality of the organic matter entering the sediment. Thus biomixing 

appears to have a major control on the degree and position of organic 

breakdown in the sediments. Where there is a high degree of biomixing, there 

is a rapid degradation of organic matter and any reduced products are short 

lived and are likely to be reoxidised. In sediments with a lower degree of 

biomixing, the reduction products are less likely to be removed through 

oxidation. Many of the sediments studied do not show an expected 2:1 

stoichiometric relationship between AT  and S042 , possibly due to the 

formation of authigenic sulphides. It is known (Davies, 1977) that some 

mechanisms of pyrite formation from elemental S (S°) and pore water Fe can 

reduce AT  (see Chapter 4). The degree to which this occurs may also be a 

consequence of biomixing. Most of the S°  needed to convert relatively 

unstable iron monosulphides into pyrite is formed at or near the sediment 

water interface from the reoxidation of H 2  S (Goidhaber and Kaplan, 1974). 

Thus in sediments where the rate of biomixing is rapid, more elemental S will 
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be formed and less monosulphides are likely to be incorporated at depth, most 

being reduced to pyrite. The converse occurs in sediments with a low degree 

of biomixing. This is supported by the suggested presence of greigite in dark 

grey sediments collected from Airds Bay in Loch Etive (Thompson. pers. 

comm.), which would be expected to have a relatively restricted biomixing rate 

when compared to sediments outside the loch. 

However, the rate of biomixing in these sediments is unknown and would 

reguire extensive investigation using a family of radioisotopes with appropriate 

t1,2. Nevertheless, it is possible to express the rate of biomixing in one core, 

DU1 (Loch Duich). In this core, an older clay sediment low in organic matter 

underlies a more recent sediment which, at the surface has a much higher 

organic content. It was suggested in previous chapters that the well defined 

decrease in organic parameters and trace elements is a reflection of the extent 

of biomixing between these two sediment types. Using the pattern of CO3.9  it 

is possible to estimate the rate of biomixing occuring in this core. 

Figure 9.2 shows the pattern of CO3.9  with depth in DU1, which can be 

compared with the patterns of certain radioisotopes, for example 210  Pb (e.g. 

Koide et a/. 1973; Robbins and Edginton, 1975; Nittrouer et al. 197 , 1983; 

Carpenter et al. 1985). Using a box model approach, the relationship of 

biomixing, sediment accumulation and radioactive decay can be represented by 

equation 9.1, overleaf: 
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D.32c - waC - AC=O 

3z2 	az 

(9.1) 

Where: D = rate of biomixing (cm2  yr 1 ) 

w = sediment accumulation rate (cm yr 1) 

A = decay constant of radioisotope 

C = concentration of radioisotope 

z = depth (Cm) 

To enable the mixing coefficient to be calculated in sediments where the 

biomixing exceeds accumulation rate as is likely in these sediments, then 

equation 9.1 can be simplified equation 9.2 (Nittrouer et al., 1983), 

D=X(z 

In Co  

CZ)  

(9.2) 
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The similarity of the pattern of Corg  in DU1 to that of 210Pb in other cores 

enables CO3.9  to be used in equation 9.2 instead of a radioisotope. The rate of 

biomixing in DU1 calculated by this method is 134cm2  yr 1. This is towards 

the higher end of values for biomixing given by Carpenter et al. (1985) for 

Puget Sound (0.9 - >370cm2  yr 1) and is much greater than'that of 10-12 cm2  

yr 1  from continental shelf sediments (Carpenter et a/., 1982), and deep-sea 

sediments (DeMaster and Cochran, 1983). However, it must stressed that this 

can only be a rough figure as a number of assumptions must be made in the 

calculation: 

There is no compaction of the sediments with burial. 

The rate of biomixing has remained constant with time. 

The input of CO3.9  has been constant during sedimentation 
of the newer sediment at the level currently seen in the 
surface sediment. 

The quality of C019  has remained constant. 

The C019  is assumed not to decay, therefore X = 1. 

It is unlikely that the rate of biomixing has remained constant as biomixing 

has been shown in Chapter 4 to be dependent to some degree on the quality 

and amount of organic carbon in the sediment. Even if assumptions 3 and 4 

are correct, the clay substrate prior to the onset of modern sediment 

deposition would have been carbon poor and therefore would possibly have 

had a lower rate of biomixing. The decay constant (A) was assumed to be 1 

from consideration of the C019  contents of the other cores analysed which 

show little change of C with depth. The decay constant of Corg  cannot be 

measured without independent means, as the rate of decay of CO3.9  is itself 

dependent on biomixing (Chapter 4). 
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Nevertheless, the value of biomixing obtained compares well with quoted 

biomixing rates (ibid.) and illustrates the high degree of biomixing occuring in 

these sediments. 



CHAPTER 10 

GENERAL CONCLUSIONS AND DISCUSSION 



All of the sediments are composed of a similar suite of minerals consisting 

of; quartz, a suite of feldspars (mostly albite but containing potassic feldspar, 

possibly microcline), calcite, and a clay fraction (containing illite, muscovite 

and chlorite). The proportions of the minerals vary both tempora Ily within 

individual cores and spatially. It is possible to use geochemistry to identify 

these mineralogical changes and highlight variations in sediment grain size 

and therefore changes in the patterns of accumulation in a core. Analysis of 

the Zr/Rb ratios and Sr patterns in the sediments for example, has shown wide 

variations in the grain size and carbonate content of the sediments This 

indicates that most of the sediments show non-steady state accumulation. 

For instance examination of the break in sedimentation at the shell band 

between 5cm and 12cm in Loch Creran (CR1) has shown that about 18cm of 

sediment accumulation has been removed. 

Comparison of the Ni and Cr patterns with those of Rb shows both 

elements to be associated with the argillaceous fraction in a similar way to Rb. 

However, from the geochemistries of Ni and Cr (Shiraki, 1978; Tu'ekian. 1978) 

both elements tend to be concentrated in the ferromagnesian fraction, 

although some Cr may be associated with the resistate fraction possibly as 

magnetite. Nevertheless, the association of Ni to the ferromagnesian fraction 

makes it a useful normalising element when considering the behaviour of Cu, 

Pb and Zn in the sediments. 

The organic matter entering the sediments is known to be composed of 

varying proportions of marine and terrigenous matter (Pocklington and 

Leonard, 1979; Lyons and Gaudette, 1979). An attempt has been made to 

identify the relative proportions of these components in the sediments. The 

C/N ratio is known to have limitations due to the lability of N relative to C. 
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A profile of C/N ratios along Loch Etive, however, has shown there to be a 

general decrease in the C/N ratio towards the mouth of the loch suggesting 

that C/N values do reflect variations in the relative proportions of marine and 

terrigenous organic matter but, this can only be used on a qualitative basis. 

Considering the C/N ratios of the sediment cores, the surface sediments from 

the fjordic environments (ET1, DU1) tend to have higher C/N ratios than the 

shelf sediments (e.g. SP1, SH1) showing the greater terrestrial influence in the 

lochs. Sweeny et at (1978) suggest the use of 615N as an organic source 

indicator but the use of 615N in these sediment highlights a number of 

problems. Comparison of the 615N profile along Loch Etive with a similar 

profile for C/N does not show such a great increase in values as would be 

expected from the dramatic fall in C/N values towards the mouth of the loch. 

Comparing the patterns of 615  and C/N in the sediment cores shows that in 

some cores, 'for example DU1, the 615N pattern supports that of C/N but, 

others (e.g. CM1 and SH1) show opposing trends. This suggests that 615N 

may be controlled to some degree by organic matter source, but this may be 

obscured by overlaps in the isotopic composition of the organic matter types 

and variations in value due possibly to changes in biological productivity in 

the overlying waters, fractionation of N whilst still in the water column, and 

fractionation of N whilst undergoing organic degradation. 

In these sediments, the most dominant form of organic matter degradation 

is anoxic microbial SO 2-  reduction producing iron monosulphides and 

disulphides. All the sediment cores, however, show relatively constant SO42  

values in the upper 10cm of the sediment illustrating the presence of an 

oxic/suboxic biomixed layer. Comparison of the patterns of S and those of 

S042  in the sediment do not show an expected 1:1 stoichiornetric relationship 

as would be expected from the S042  reduction equation (see Table 4.6). 
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There is much more S present in the sediments than measured S042 . This 

implies that S042  is being introduced in the sediment by diffusion, irrigation 

and biomixing. The presence of S and increasing alkalinity values in the 

biomixed zone of some sediments (e.g. ET1 and DU1) implies that SO4 2-

reduction is occuring in the biomixed zone. The rate of SO42  reduction 

occuring in the sediments and the degree to which reduction products are 

retained is suggested to be a function of the rate of biomixing, which is in 

turn controlled by the quality of the organic carbon entering the sediment. 

The rate of biomixing occuring in the sediments of Loch Duich has been 

estimated at about 134cm2  y(1. The degree of biomixing may also influence 

the production of pyrite relative to monosulphides during S042  reduction. 

Sediments with a high degree of biomixing for example, cores CM1 and SH1 

will tend to produce greater amounts of pyrite relative to monosuiphides due 

to the production of elemental sulphur S°  from the reoxidation of H 2  S back to 

SO4 
 2- and S°  Conversely, the more restricted fjords such as Loch Etive will 

tend to produce greater amounts of monosuiphides due to the retention of 

H 2  S and lack of production of S°. 

Iodine is known to be associated with the marine organic fraction of the 

sediments (Price and Calvert, 1977; Elderfield et al, 1981; Harvey, 1980; Ullman 

and Aller, 1983, 1985) and can therefore be used in addition to C/N as an 

indicator of marine organic matter. At depth, both I and Br show a loss from 

the sediments. This has been shown to be first order with respect to depth, a 

pattern common to metabolic reactions involving organic degradation (Ullman 

and Aller, 1983). The patterns of halogen/C also show a fall at depth implying 

a loss of halogens relative to organic carbon. These patterns show that both 

and I and Br are subject to burial diagenesis. Furthermore, consideration of 

the I/Br ratios in the sediments shows a loss of I relative to Br. It may 
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therefore be concluded that while I and Br both show an association with 

organic matter. I is more weakly bonded than Br. This makes I an ideal 

indicator of organic matter diagenesis in the sediments. 

Cu, Pb and Zn in the sediments are derived from both natural and 

anthropogenic sources. All of the metals show surface enrichment patterns, 

Pb being the most enriched and Cu the least. By ratioing the metals to Ni, 

shown to be associated with the detrital ferromagnesian fraction, the excess 

metals over the detrital input can be calculated. This can be used as an 

indicator of the metal input to the sediments from pollution. 

From the surface values there appears to be a geographical control over 

the distribution of the excess metals. The more Northerly cores tend to show 

less excess metals than those from the South. This would be expected as the 

North of the region is much more removed from the major industrial pollutant 

sources, for example the Clyde Valley to the South. There is also a variation 

in metal input with catchment area size, the cores from Loch Etive (AB1 and 

ET1) having a greater amount of excess metals than the cores from areas of 

lower catchment size. 

Comparison of the metal enrichments with sediment accumulation rates as 

depicted by 137Cs shows that the onset of metal enrichment in the sediments 

generally corresponds to less than 50 years of sediment accumulation. As 

anthropogenic input of heavy metals to the environment has been occuring 

since the industrial revolution, the implication is that the metal patterns must 

be affected by other influences. Comparison of the organic carbon and excess 

metal contents of the sediments shows that the concentration of excess 

metals tends to increase with increasing carbon content, suggesting an 

association between the metals and organic carbon. However, there is a 
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higher degree of association between the excess metals and I in the 

sediments. This implies that the heavy metals are more associated with the 

marine organic fraction. However, the relationship of Pb and Zn to the marine 

organic matter in the biomixed zone of the sediments appears to be different. 

The best fit lines for Pb ex  and Zn ex  against I as calculated from the mean 

values in the biomixed zones of cores CML CR1, DN1 and SP1 are summarised 

in Figure 7.11. Zfle  can be seen to have an intercept close to zero, which 

would be expected if all the excess metal was associated with the marine 

organic fraction. Pb however, has a positive intercept implying that not all of 

the excess Pb in the surface sediments is associated with the marine organic 

matter. Nevertheless, the constancy of the Zn ex  /Pb ex  ratios in the biomixed 

zone (generally about 2) suggests a marked association between these metals. 

It is possible that the mechanism of introduction of these metals into the 

sediments varies. In particulate matter Ridgway (1984) found that Pb and Zn 

tend to have an association with the marine organic matter, but that Pb is also 

associated with the iron oxide phase. It appears, however, that once 

incorporated in the sediments, both metals are taken up by the same phase. 

At depth, the patterns of excess metals are similar to those of I, shown to 

be diagenetically mobile. This implies that the metals behave in a similar 

manner. When the excess metal and I values are plotted (Figures 7.9, 7.10) a 

different pattern emerges. A two slope system can be identified. In the upper 

sediments representing the biomixing interval, I is lost relative to the excess 

metals. At depth, the excess metals are lost at a greater rate than the I. The 

onset of I loss has been shown to be close to the sediment/water interface. 

Conversely, the patterns of excess metals show little loss in the biomixed 

zone, but a rapid loss in the anoxic sediments below. Comparison of the 

excess metal and metal/Rb ratios to the patterns of S in the sediments show 

LI 
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the greatest metal loss in the zone of maximum S increase, well illustrated in 

cores CM1, AB1 and SH1. This suggests that the release of heavy metals from 

organic matter is associated with the anoxic organic degradation under S042  

reduction and is therefore controlled to some degree by sediment 

accumulation and biomixing. Conversely, the loss of I from the organic matter 

appears to be more associated with the oxic/suboxic degradation close to the 

sediment surface. 

Comparisons of the halogens and heavy metals would therefore imply that 

heavy metals are predominantly linked to the marine fraction of the organic 

matter and are released when this organic matter is degraded. However, the 

pattern of excess metal to I and the differences in the location of apparent 

diagenetic release of both I and Br when compared to Pb and Zn would 

suggest that the metals are bound to different fractions within the marine 

organic matter and that the strength of these bonds varies, with I being the 

weakest followed by Br and heavy metals being the most strongly bound. 

To conclude, the above points have shown that whilst much of the heavy 

metal input to the sediments is due to anthropogenic loading, the patterns of 

metals observed are very much modified by diagenetic action associated with 

the breakdown of reactive organic carbon. It is therefore invalid to use the 

heavy metal patterns of a sediment to describe the pollutant history of an area 
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APPENDIX I 

SAMPLING AND ANALYTICAL METHODS 



1. Sample Collection. 

The sediment cores were collected using a modified gravity corer (Kemp at 

aj 1976). Disturbance of the highly fluid upper section of the sediment core 

during collection can be a problem. The gravity corer used in this study is 

designed to reduce the pressure wave in front of the coring device and 

therefore reduce sediment disturbance. The core barrel is an open perspex 

tube (l.D. 82mm) with no core catcher, the pressure wave is minimised by the 

corer allowing a throughflow of water. On removal from the sediment, the 

valve allowing throughflow is closed, the suction developed holding the 

collected sediment within the barrel. 

Sub-sampling of the cores was carried out in an inert atmosphere of 

oxygen-free nitrogen to prevent oxidation of the sediments. The core was 

extruded vertically from its barrel by the insertion of a plunger from below. 

The extruded sediment was then sub-sectioned with the aid of a perspex 

guillotine. Constancy of the sub-sections was achieved by the use of formers 

constructed of core barrel material cut to the required thickness. The upper 

10cm of each core was 'sectioned every cm, the next 40cm every 2cm and 

there after every 5cm to the base of the core. 

From each sub-section a 5ml aliquot of sediment was removed using a 

modified syringe. This was used to calculate sediment water contents and 

thus determine porosity (see Chapter 3, Section 3.4). 

The remaining sediment was transfered to centrifuge tubes and centrifuged 

at 3000rpm, in a Sorval GLC 4000 centrifuge, for 20 minutes in order to 

separate the sediment pore water. Once centrifuged the tubes were again 

placed under N and the pore water removed from the tubes using PTFE tubing 



attached to a 50m1 polythene syringe equiped with a PTFE plunger. Fine 

material suspended in the water was removed by filtering through a 25mm, 

0.4iim Sartorious membrane filter during the transfer of the water to acid 

cleaned glass vials. A 5m1 aliquot was removed for S042  analysis. Any 

sulphide present was stabilised by the adding 0.5ml of 10% Cadmium Acetate 

solution. 

The remaining solid fraction was stored in seal grip polythene bags for 

subsequent analysis. 

All the equipment used was cleaned in 50% HCI, washed four times in 

de-ionised water and oven dried at 700  C prior to use. 

2. Sediment Analysis. 

The sediment was oven dried at 70°  C for two days prior to grinding by an 

agate or tungsten carbide TEMA disc mill. The sediment powders were then 

analysed as described below. 

2.1. X-Ray Diffraction. 

A small amount of sediment powder was combined with acetone in a 

pestle and mortar and mixed to a slurry. This was spread on a glass slide and 

left to evaporate. The slides were then analysed for bulk mineralogy using a 

Phillips PW 1011/1050 X-Ray Diffractometer with Ni filtered Copper (CuKa) 

radiation. Each sample was scanned at a goniometer speed of 20  min 1  from 

50  (20) to 500  (20). The peaks obtained were then interpreted using the tables 

prepared by Chao (1969). 
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2.2. X-Ray Fluorescence. 

37mm and 46mm pressed powder pellets were analysed for minor 

elements, halogens and sulphur using a Phillips PW1450 Sequential Automatic 

X-Ray Spectrometer. The pellets were prepared using a method similar to 

that of Reynolds (1963). 3.5g or 7g (37mm or 46mm diameter pellets 

respectively) of ground sediment were pressed into a pellet backed by boric 

acid and consolidated under 10 tons pressure from a hydraulic press. To 

ensure integrity of the sample surface under the X-Ray beam, the pellets were 

pressed onto a polished tungsten carbide disc. No binder was added to the 

powder due to problems with migration of residual sea salt to the pellet 

surface in the X-Ray beam and the rehydration of clays leading to the 

destruction of the pellets. To minimise moisture intake, the samples were 

stored in a déssicator prior to analysis. 

All the elements were analysed using a Rh tube and the analytical 

conditions are given in Table AP1.1. Matrix absorbance coefficients (.t) were 

determined for all samples and standards by the method of Reynolds (1963) 

using the Rh K a Compton Scatter peak. Standardisation was achieved using 

international and "in house" rock standards prepared in the same way as the 

sediments. The calibrations were linear. No differences in final element 

concentrations were observed between the sample analysed using 37mm discs 

and those using 47mm, the Counts being proportional. The analytical precision 

of the XRF data is as given in Fitton and Dunlop (1985) (see Table AP1.2). 

I, Br, Cl and S analyses were made against a synthetic dilution series made 

by adding a known amount of K104, KBr, NaCl and Na2SO4  to a powdered 

siltstone obtained from a Southern Uplands turbidite sequence. Homogeneity 
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Ky mA Dot COMM 

60 45 F c 

60 45 F c 

60 45 F c 

60 45 F c 

60 45 F c 

60 45 F c 

60 45 F c 

60 45 F+S c 

60 45 F+S f 

60 45 F+S f 

60 45 F+S f 

60 45 F+S f 

60 45 F+S I 

60 45 F+S f 

60 45 F c 

60 45 F c 

60 45 F+S c 

Elem Line 	Xstal 28 

Ba L82 	LiF 0  115.18 

Sc Ku 	L1F200  9770 

La. Lai 	L1F200  82.91 

Nd La i 	LiF200  72.13 

Ce.. L91 	L1F200  71.62 

Cr Ku 	LiF200  6936 

Ni K 	LiF200  48.67 

Cu Ku 	LiF200  45.03 

Zn Ku 	LiF200  41.80 

Pb L62 	L1F200  28.24 

R  Ka 	LiF200  26.62 

Sr Ku 	LiF200  25.15 

V Ku 	hF200  23.80 

Zr Ku 	LiF200  22.55 

S (3 	Go 110.69 

Cl Ka 	Go 92.76 

I Ku 	LiF200  12.26 

Crystal: LF = Lithium Flouride 
Ge 	= Germainium 

Detector: F 	= Flow Counter 
S 	= Scintillation Counter 

Collimator: f 	= Fine 
C 	= Coarse 

TABLE AP]..l: Analytical conditions for X-Ray Flourescence Analysis. 
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REPRODUCIBILITY 	 'ACCURACY (r.m.s.d. from 

on sample S172 	 international standards). 

Ni 170.9 0.3 4.3 

Cr 380.5 2.9 11.0 

V 236.6 3.5. 11.5 

Sc 18.2 0.3 2.4 

Cu 48.4 0.4 5.3 

Zn 113.9 1.1 5.0 

Pb* -1.8 1.6 4.0 

Sr 1129.7 4.0 9.6 

Rb 46.7 0.5 3.5 

Zr 366.0 1.0 14.8 

Nb 92.2 0.5 2.4 

Ba 718.4 5.6 39.0 

Th 16.6 1.2 2.8 

La 78.9 0.8 5.6 

Ce 156.7 1.6 13.5 

Nd 56.2 0.6 3.6 

V 33.2 0.4 3.4 

* Below detection limit. 6 determinations of Pb in andesite 

MT45 gave a nean concentration of 9.6 p.p.m. with a 01 of 0.3 o.p.m. 

TABLE API.2: Analytical precision for X-Ray Flourescence data. 
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I 
I 

P01 cc. 

cone.PPM  
PPM cc. 

FIGURE AP1.1: X-Ray Flourescence calibration lines for Br, Cl, I and 
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of the standards was ensured by prolonged grinding in a TEMA disc mill. 

Individual members of the dilution series were created by diluting the original 

standard with unspiked siltstone. Homogeneity was again ensured by 

vigourous shaking for 30 minutes on a mechanical shaker. The final calibration 

lines achieved are summarised in Figure AP1.1. 

Iodine was originally analysed using the I La  peak however, a correlation 

was found between the I data and Sr. This was investigated as such a link 

has not been previously observed in other sediments. The I La  peak is known 

to be very close to Ca K8  (102.880  and 100.880  respectively). In samples with 

high Ca contents, two subsidiary peaks were noted on either side of the main 

Ca K8  peak, the high angle subsidiary interfering with the I K. This was 

eliminated by reanalysing I using the I Ka  line. However, a further problem 

was noted; because I has a high atomic weight (1269), the amount of sample 

necessary to obtain a critical depth in the sample disc and thus obtain 

maximum count response becomes relatively high. The amount of sediment 

required can be calculated using equation APIA (see over). 

215 



M a  4.6 7r2  sinB 

U 

(API. 1) 

Where: M = critical mass of sample required. 

r = radius of sample disc (1.85cm for 47mm discs). 

B = spectrometer take off angle (400). 

p = mass absorbance of sample. (In this case at the 

wavelength of I KQ). 

p can be calculated using: 

(API .2) 

Where: x = weight fraction of major element. 

U = measured absorbance of element. 

Calculating M' for I using a representative major element composition for 

the sediments derived from; Krom (1976). Malcolm (1981) and Ridgway (1984), 

and mass-absorbance coefficients from Jenkins and DeVries (1970), a critical 

mass of 16g of sample is required to produce maximum count response using 

47mm discs. This was investigated experimentally using 0.1% 1 spike in discs 
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Sample Weight (g) 

FIGURE AP1.2: Relationship of matrix corrected I counts to sample weight. 
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of varying weight composed of a matrix of Ordovician siltstone. The results 

are graphed in Figure AP1.2. The weight of sample used in the 47mm discs 

analysed was 7g. This does not satisfy the critical weight requirement for I 

but, as the weight for each sample is consistant, the data set for I is also 

consistant. Similarly, the sample weight for the 37mm discs is proportional to 

that in the 47mm discs and therefore these are also consistant. Ridgway 

(1984) used only 5g of sample per disc and this explains the discrepancy of 

results between that work and this study, noted in Chapters 5 and 7. 

2.3. Carbon and Nitrogen. 

Total carbon and nitrogen data was determined on a Perkin-Elmer 240 

Elemental Analyser. 10mg of sample was weighed into a platinum boat and 

combusted. Acetanilide was used as a working standard and conditions were 

set following the manufacturers recommendations. Precision of the analysis 

was calculated at ± 6.3% (lo, n=6) for C and ± 11% (la, n=6) for N using a 

replicate sample taken from depth 48-50cm in core SH1. 

2.4. Organic Carbon. 

Organic Carbon was measured on sediments from which the carbonate had 

been removed by acid treatment. 0.25g to ig of ground sediment, depending 

on the amount of organic carbon expected was weighed into a ceramic 

crucible and treated with 50% HCI added dropwise until two treatments after 

effervescence had ceased. The samples were placed on a hot plate at 150°  C 

and evaporated to dryness. A further treatment with acid followed to ensure 

total removal of the carbonate fraction. After evaporating to dryness once 

more, the samples were allowed to cool and then stored in a dessicator prior 

to analysis. 
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Organic Carbon wass determined by the ignition of the samples in CO2  

free 02  in a LECO 521-200 induction furnace. 	The volume of CO2  produced 

was measured using a LECO 572-100 gas burette after absorption by KOH. 

Standardisation was acheived against LECO high carbon steel rings. The 

precision of the analysis was found to be ± 3.05% (10, n=8) using a replicate 

unknown (SH1, 32-34cm). 

2.5. Correction For Residual, Sea Salt. 

The concentrations of elements in marine sediments have to be corrected 

for the effect of residual sea salt remaining in the sediments after drying. This 

salt acts as a dilutant and also a contributor of certain elements, the most 

important being Na, Mg, Ca, K, S. Br and Sr. The X-Ray Fluorescence data was 

corrected for this effect by assuming that the - Cl analysed is associated with 

the residual salt. The amount of residual sea salt in the sediments can 

therefore be calcula2ted using equation API.3. 

Salt = (Cl/10000) x 1.649 

(API.3) 

Individual element corrections for Br and S were then made using APIA 

and API5. 

ppm Br = ppm Br 
meas 

- Salt x 19 

(APIA) 
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ppm S = ppm Smeas - Salt x 260 

(APL5) 

Once the individual element corrections have been made a subsequent 

correction for dilution should be applied (API.6). 

Elemsait  free = Elemmeas. 	100 

00 - Salt) 

(API.6) 

3. Pore Water Analysis. 

3.1. Titration Alkalinity. 

Titration Alkalinity was determined by direct potentiometric titration based 

on the method detailed by Edmond (1970). The sample was titrated with 

standardised HCI to the second end point of the carbonic system (bicarbonate 

end point). The volume of acid required is determined from a "Gran Plot" 

(Gran function versus volume of acid added) (Gran, 1952) and the alkalinity is 

calculated from the following equation (see over). 

11 
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AT  (meq 1) = (V2) (N3). 1000 ml 11  

V 
0 

(API.7) 

Where: V2 = volume of acid needed to reach the bicarbonate endpoint 

V0  = original sample volume 

Na  = acid normality 

32. pore Water Sulphate. 

A modified gravimetric technique was used In order to prevent 

co-precipitation of carbonates and strontium salts (modified from Howarth, 

1978). The stabilised 5m1 aliquot of pore water (see Section 1.1) was filtered 

through a 37mm 0.4pm Nuclepore filter to remove the cadmium sulphide 

precipitate, and imI of the filtered water was pipetted into a 50m1 beaker, 3m1 

of 0.4 M HCI and 4ml of 0.1 M EDTA were added. Addition of excess EDTA 

removes the possibility of co-precipitation of Sr salts. The mixture was gently 

heated on a hot plate to speed chelation and acid complexing. Watch glasses 

were used to cover the beakers to reduce evaporation during warming. lOmI 

of 0.05M HCI was added and the beakers cooled before adding 5ml of 10% 

BaCl2. The covered beakers were left overnight to allow full preciptation of 

BaSO4. The samples were then filtered onto pre-weighed 37mm 0.4m 

Nuclepore membranes. The beakers were washed twice with deionised water 

to remove remaining precipitate before the addition of lOmI of 0.05M HCI to 

remove excess Ba and other soluble salts. The filter was finally washed with 
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20ml of deionised water, care being taken in these latter stages to prevent 

loss of BaSO4  due to creep" of the precipitant up the sides of the fitter 

towers. After removal from the filter apparatus, the filters were stored in 

clean Millipore petrie slides and dried in a dessicator for several days before 

re-weighing on a Perkin-Elmer AD-2 Electro-balance to determine the weight 

of BaSO4  and hence the weight of SO4. The method was standardised against 

a 	dilution series made from IAPSO seawater (chlorinity 19.3775 
0/ 00 

) and 

deionised water. The precision of the.analysis was ± 5.97% (10, n=6). 
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APPENDIX II 

TABULATED DATA 



TABLE AII.1 

Porosity Data. 

Data expressed as percent and calculated 

from the sediment moisture content using: 

= 	Wds 

Wds + (1 - W)dw 

Where: 

Porosity. 

W = % Moisture content (x 10-2).  

ds = Mean density of sediment particles (2.65 g cm-2) 

dw = Density of pore water (1.02 g cm 4). 

(Berner, 1971). 
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CORE ABI. 	 CORE CMI. 	 CORE CR1. 	
CORE DUI. 

Porosity data (%) 
	

Porosity data (%) 	 Porosity Data (%) 	
Porosity data (%) 

ABO-1 0.882 CMO-i 0.831 CR0-1 0.799 
DUO-1 0.899 

AB1-2 0.874 CMI-2 0.801 CR1-2 0.864 
DUI-2 0.885 

AB2-3 0.864 CM2-3 0.779 CR2-3 0.745 
DU2-3 0.860 

AB3-4 0.863 CM3-4 0.774 CR3-4 0.616 
D(J3-4 0.838 

AB4-5 0.866 CM4-5 0.776 CR4-5 0.693 
DU4-5 0.845 

AB5-6 0.865 CM5-6 0.773 CR5-6 0.703 
DU5-6 0.833 

AB6-7 0.860 CM6-7 0.794 CR6-70.698 
DU6-7 0.850 

AB7-8 0.866 CM7-8 0.767 CR7-8 0.665 
DU7-8 0.829 

 
ABS-9 0.867 CMB-9 0.766 CR8-9 0.703 

DU8-9 0.841 
 

AB9-10 0.857 CM9-10 0.988 CR9-1 0.713 
DU9-10 0.843 

 
ABI0-12 0.844 CM1O-12 0.744 CRIO-12 0.716 

DU1O-12 0.829 
 

AB12-14 0.861 CM12-14 0.730 CR12-14 0.694 
DU12-14 0.782 

 
AB14-16 0.819 CM14-16 0.712 CR14-16 0.712 

DU14-16 0.785 
 

AB16-18 0.856 CM16-18 0.706 CR16-18 0.687 
DU16-18 0.782 

 
AB18-20 0.860 CM18-20 0.724 CR18-20 0.657 

DU18-20 0.765 
 

AB20-22 0.859 CM20-22 0.726 CR20-22 0.648 
DU20-22 0.729 

 
AB22-24 0.848 CM22-24 0.745 CR22-24 0.659 

DU22-24 0.701  
AB24-26 0.851 CM24-26 0'. 735 CR24-26 0.658 

DU24-26 0.766  
A826-28 0.850 CM26-28 0.710 CR26-28 0.638 

DU26-28 0.727  
AB28-30 0.849 CM28-30 0.677 CR28-30 0.705 

DU28-30 0.695  
AB30-32 0.846 CM30-32 0.701 CR30-32 0.682 

DU30 32 0.663  
AB32-34 0.878 CM32-34 0.680 CR32-34 0.677 

DU32-34 0.654  
AB34-36' 0.836 CM34-36 0.733 CR34-36 0.676 

DU34-36 0.619  
AB36-38 0.836 CM36-38 0.700 CR36-38 0.697 

DU36-38 0.621  
AB38-40 0.838 CM38-40 0.742 CR38-40 0.6.  94 

DU38-40 0.609 

AB40-42 0.844 CM40-42 0.706 CR40-42 0.696 
DU40-42 0.613 

AB42-44 0.875 CM42-44 0.706 CR42-44 0.693 
DU42-44 0.618  

AB44-46 0.876 CM44-46 0.738 CR44-46 0.781 
DU44-46 0.633 

AB 46-48 0.838 CM46-48 0.757 CR46-48 0.699 
AB48-50 0.724 CM48-50 0.8[0 CR48-50 0.702 
AB50-55 0.825 CM50-55 0.648 

CM55-60 0.707 
CM60-65 0.706 



0' 

CORE DN1. 	 CORE ET1. 	 CORE SH1. 	 CORE SP1. 

Porosity data (%) 
	

Porosity data (%) 
	

Porosity data (%) 
	

Porosity data (%) 

DNO-1 0.859 ETO-1 0.916 SHQ-i 0.853 gpo-i 0.843 
DNI-2 0.828 ETI-2 0.926 SH12 0.847 SPI-2 0.836 
DN2-3 0.813 ET2-3 0.932 SH2-3 0.806 SP2-3 0.815 
DN3-4 0.794 ET3-4 0.925 SH34 0.815 SP3-4 0.812 
DN4-5 0.777 ET4-5 0.916 SH45 0.787 SP4-5 0.774 
DN5-6 0.780 ET5-6 0.911 SH5-6 0.765 SP5-6 0.768 
DN6-7 0.765 ET6-7 0.902 SH6-7 0.771 SP6-7 0.777 
DN7-8 0.770 ET7-8 0.900 S147-8 0.765 SP7-8 0.747 
DN8-9 0.749 ET8-9 0.904 SH8-9 0.759 SP8-9 0.781 
DN9-10 0.766 ET9-10 0.922 SH9-10 0.776 SP9-10 0.768 
DNI0-12 0.776 ET10-12 0.902 SHIO-12 0.752 SPIO-12 0.766 
DN12-14 0.745 ET12-14 0.895 SH12-14 0.754 SP12-14 0.769 
DN14-16 0.737 ET14-16 0.882 SH14-16 0.746 SP14-16 0.734 
Dt416-18 0.755 ET16-18 0.882 S.H16-18 0.748 SP16-18 0.755 
DN18-20 0.755 ET18-20 0.894 SH18-20 0.734 SP18-20 0.742 
DN20-22 0.751 ET20-22 0.892 SH20-22 0.749 sP20-22 0.754 
DN22-24 0.756 ET22-24 0.899 SH22724 0.751 SP22-24 0.761 
DN24-26 0.731 ET24-26 0.893 SH24-26 0.746 SP24-26 0.751 
DN26-28 0.761 ET26-28 0.887 SH26-28 0.744 SP26-28 0.751 
DN28-30 0.743 ET28-30 0.895 SH28-30 0.739 SP28-30 0.733 
DN30-32 0.747 ET30-32 0.893 SH30-32 0.735 SP30-32 0.713 
DN32-34 0.755 ET32-34 0.878 SH32-34 0.732 SP32-34 0.745 
DN34-36 0.763 ET34-36 0.886 SH34-36 0.738 SP34-36 0.759 
DN36-38 0.765 ET36-38 0.885 SH36-38 0.741 SP36-38 0.732 
DN38-40 0.740 ET38-40 0.888 SH38-40 0.733 SP38-40 0.728 
DN40-42 0.741 ET40-42 0.893 SH40-42 0.737 SP40-42 0.747 
DN42-44 0.803 ET42-44 0.883 SH42-44 0.721 SP42-44 0.817 
DN44-46 0.745 ET44-46 0.891 - 	SH4446 0.728 SP44-46 0.745 
DN46-48 0.744 ET46-48 0.890 SH46-48 0.720 SP46-48 0.733 
0N48-50 0.736 ET48-50 0.899 SH48-50 0.719 SP48-50 0.718 
DN50-55 0.732 ET50-55 0.892 SP50-55 0.718 

ET55-60 0.820 SP55-60 0.736 
ET60-65 0.885 SP60-65 0.711 

SP65-70 0.762 
SP70-75 0.728 



TABLE AII.2 

Lithogenic Minor Element Data. 

(Ba, Sc, Cr, Ni, Rb, Sr, Zr) 

All data expressed in ppm on a salt free basis. 
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CORE AB1. CORE CM1. 
Salt-corrected trace element data, ppm Salt-corrected trace element data, ppm 

Ba Sc Cr Ni Rb Sr Zr Ba Sc Cr Ni Rb Sr Zr 

ABO-1 574 14 96 47 101 264 220 CM0-1 419 4 58 26 79 450 311 
ABI-2 601 13 94 48 102 269 231 CM1-2 442 10 61 27 87 314 347 
AB2-3 N.A. N.A. N.A. N.A. N.A. N.A. N.A. CM2-3 452 10 61 27 86 319 357 
AB3-4 614 12 99 49 102 267 234 CM3-4 453 10 60 27 85 315 359 
AB4-5 571 14 98 50 105 247 219 CM4-5 463 9 61 27 86 316 359 
AB5-.6 571 12 99 50 106 253 225 CM5-6 463 9 58 26 86 326 362 
AB6-7 581 15 98 49 105 249 217 CM6-7 448 9 59 27 84 337 364 
AB7-8 545 13 99 49 106 252 219 CM7-8 461 8 59 28 85 321 357 
AB8-9 567 12 97 49 107 248 215 CM8-9 431 9 61 27 86 329 360 
AB9-10 593 16 99 49 104 246 214 CM9-10 N.A. N.A. N.A. N.A. N.A. N.A. N.A. 
AB10-12 606 12 98 50 104 240 211 CM1O-12 440 9 66 29 89 329 311 
AB12-14 545 16 92 48 101 252 	1  199 CM12-14 416 11 68 31 92 323 320 
AB14-16 551 12 94 46 100 266 196 CM14-16 441 9 66 30 88 352 307 
A316-18 539 14 94 46 100 246 192 CM16-18 416 9 69 30 89 371 299 
A818-20 506 14 94 46 101 238 188 CM18-20 390 8 70 30 89 385 300 
A820-22 548 15 97 46 102 227 202 CM20-22 450 11 71 32 94 317 318 
AB22-24 516 14 97 45 102 221 201 CM22-24 455 10 68 74 94 307 314 
AB24-26 521 13 98 46 101 222 201 CM24-26 453 10 71 31 93 350 303 
AB26-28 530 16 100 46 103 217 202 CM26-28 430 11 72 33 95 333 299 
AB28-30 494 12 96 45 101 219 192 CM28-30 439 12 76 34 97 311 303 
AB30-32 N.A. N.A. N.A. N.A. N.A. N.A. N.A. CM30-32 411 9 73 34 95 341 286 
AB32-34 513 17 99 47 103 254 197 CM32-34 438 10 75 34 97 338 274 
AB34-36 543 14 98 47 103 244 199 CM34-36 443 12 74 36 98 338 281 
AB36-38 512 13 99 47 106 220 209 CM36-38 423 11 78 35 100 333 267 
AB38-40 467 10 94 49 118 241 228 CM38-40 442 11 81 37 102 301 279 
AB40-42 476 13 102 49 107 215 209 CM40-42 460 13 83 39 108 310 253 
AB42-44 506 13 103 48 108 209 208 CM42-44 421 12 87 43 110 331 225 
AB44-46 508 17 97 46 107 213 224 CM44-46 459 11 88 41 111 295 243 
AB46-48 485 14 99 46 104 210 223 CM46-48 447 12 86 42 107 371 207 
AB48-50 499 14 97 47 106 213 221 CM48-50 442 11 89 42 114 301 223 
A850-55 478 14 96 45 103 224 226 CM50-55 438 11 87 43 113 295 227 

CM55-60 471 14 93 45 119 277 223 
CM60-65 431 12 92 42 115 287 220 

N.A. 	Not Analysed 



Salt-corrected trace element data, ppm 

Ba 	Sc 	Cr 	Ni 	Rb 	Sr 	Zr 

408 14 104 51 119 338 168 
413 14 101 49 119 333 168 
416 12 98 49 119 336 162 
378 14 98 48 119 333 160 
416 16 98 49 119 333 164 
382 14 101 50 121 331 166 
375 15 94 46 115 323 160 
416 12 100 49 120 329 162 
380 14 100 49 119 327 165 
392 14 98 48 119 341 164 

No Sample 
No Sample 

575 16 135 68 163 459 218 
300 7 76 42 113 311 156 
422 15 103 48 122 332 169 
415 15 97 47 117 331 156 
417 15 99 48 121 327 157 
426 16 101 50 122 330 160 
404 14 99 48 121 332 158 
426 14 98 48 121 331 163 
372 15 99 48 122 338 162 
404 11 99 47 118 360 160 
416 16 103 48 121 335 164 
392 15 102,  49 120 338 164 
398 16 100 48 120 337 168 
358 15 97 46 119 346 166 
392 14 100 48 118 342 166 
418 15 98 49 119 347 167 
422 15 100 47 120 347 163 
402 13 99 48 120 344 163 
379 16 97 45 118 350 172 

CORE CR1. CORE DM1. 
Salt-corrected trace element data, ppm 

Ba Sc Cr Ni Rb Sr Zr 

CR0-1 500 11 74 35 108 295 270 DNO-1 
CRI-2 493 12 74 35 108 307 264 DNI-2 
CR2-3 491 13 75 35 106 316 271 DN2-3 
CR3-4 508 13 74 34 108 261 290 DN3-4 
CR4-5 487 11 75 31 105 284 289 DM4-5 
CR5-6 345 1 51 26 72 655 205 DN5-6 
CR6-7 266 M.D. 44 23 61 790 163 DM6-7 
CR7-8 319 M.D. 48 24 68 751 170 DN7-8 
CR8-9 389 2 55 27 83 598 212 DN8-9 
CR9-1 358 M.D. 53 26 76 674 192 DM9-1 
CRIO-12 476 11 73 33 103 370 248 DN10-12 
CR12-14 495 12 77 35 108 303 268 DN12-14 
CR14-16 463 12 73 32 104 331 265 DN14-16 
CR16-18 427 7 66 30 95 408 252 DN16-18 
CR18-20 459 12 70 31 101 333 263 DN18-20 
CR20-22 393 9 65 31 93 443 246 DN20-22 
CR22-24 450 8 65 31 93 436 250 DN22-24 
CR24-26 448 8 71 32 102 335 257 DN24-26 
CR26-28 511 8 73 35 107 296 267 DN26-28 
CR28-30 458 4 78 35 107 298 260 DN28-30 
CR30-32 N.A. N.A. N.A. N.A. N.A. N.A. N.A. DN30-32 
CR32-34 448 10 78 37 110 303 247 DN32-34 
CR34-36 498 14 84 39 115 282 242 DN34-36 
CR36-38 450 8 76 37 107 353 233 DN36-38 
CR38-40 414 10 78 35 lOS 394 220 DN38-40 
CR40-42 446 11 82 37 113 337 220 DN40-42 
CR42-44 478 15 92 41 121 253 233 DN42-44 
CR44-46 506 13 90 42 122 238 237 DN44-46 
CR46-48 489 14 88 40 120 250 251 DN46-48 
CR48-50 482 13 84 38 115 288 245 DN48-50 
CR50-55 512 15 90 42 122 245 243 DN50-55 
CR55-60 469 12 88 40 118 295 221 

CR60-65 514 15 91 41 124 227 234 

M.D. 	- Not detectable 

N.A. 	Not Analysed 



CORE DUI. CORE ET1. 
Salt-corrected trace element data, ppm Salt-corrected trace element data, ppm 

Ba Sc Cr Ni Rb Sr Zr Ba Sc Cr Ni Rb Sr Zr 

DUO-1 455 16 104 52 112 336 133 ETO-1 593 13 89 46 89 309 197 
DUI-2 457 15 108 54 121 319 121 ETI-2 637 13 88 48 92 301 184 
DU2-3 485 14 108 54 120 310 132 ET2-3 608 13 89 47 90 313 156 
DrJ3-4 461 16 106 53 119 315 143 ET3-4 602 14 95 48 93 299 156 
DtJ4-5 N.A. N.A N.A N.A. N.A. N.A. N.A ET4-5 495 14 84 46 85 267 166 
DIJ5-6 500 16 107 56 119 298 140 ET5-6 581 12 91 47 92 284 180 
DU6-7 477 17 105 53 117 300 149 ET6-7 529 12 85 46 88 272 172 
DU7-8 478 15 106 52 116 314 156 ET7-8 551 11 85 45 89 349 166 
DU8-9 477 15 99 49 112 315 165 ET8-9 513 12 90 47 87 281 172 
DU9-10 N.A. N.A. N.A. N.A. N.A. N.A. N.A ET9-10 565 13 84 46 87 275 176 
DU1O-12 527 14 98 45 107 330 176 ET1O-12 552 14 88 46 92 269 183 
DU12-14 539 13 95 46 106 335 163 ET12-14 589 14 91 48 97 268 171 
DU14-16 568 11 82 39 101 360 180 ET14-16 622 15 90 48 97 273 178 
DU16-18 577 12 84 41 100 388 169 ET16-18 600 15 88 46 95 273 171 
DrJ18-20 549 12 88 41 99 361 185 ETI8-20 No Sample 

DU20-22 N.A. N.A. N.A. N.A. N.A. N.A. N.A. ET20-22 624 11 86 46 95 282 186 
DU22-24 580 13 74 34 90 439 191 ET22-24 No Sample 

DU24-26 561 14 85 39 102 354 188 ET24-26 607 15 88 46 96 287 181 
DrJ26-28 558 13 98 44 111 329 170 ET26-28 601 13 86 46 93 283 177 
DU28-30 642 12 82 37 .104 351 258 ET28-30 616 14 88 45 94 285 185 
DrJ30-32 695 16 88 42 125 313 218 ET30-32 577 14 87 46 94 300 196 
D1J32-34 731 16 95 47 140 274 216 ET32-34 644 14 85 45 92 303 204 
DU34-36 761 14 96 47 144 265 216 ET34-36 667 14 83 45 93 298 205 
DU36-38 723 17 95 46 143 267 217 ET36-38 604 15 81 45 91 294 179 

DU38-40 742 15 94 47 142 267 218 ET38-40 625 16 84 43 91 296 187 
DU40-42 770 14 94 46 144 266 213 ET40-42 630 12 82 43 91 297 188 
DU42-44 789 16 95 47 143 269 223 ET42-44 662 14 85 43 92 299 197 
DU44-46 779 15 96 47 143 270 223 ET44-46 646 12 84 41 91 300 189 

ET46-48 591 12 86 43 89 271 163 
ET48-50 611 13 87 42 93 273 175 

- ET50-55 631 14 84 42 91 288 177 
EP55-60 622 14 85 43 92 295 174 
ET60-65 603 12 78 41 88 301 184 

N.A. Not Analysed 



CORE SH1. 
Salt-corrected trace element data, ppm 

Ba Sc Cr Ni Rb Sr Zr 

SIlO-1 321 10 93 48 106 453 138 
SH1-2 297 10 95 48 105 445 148 
SH2-3 322 12 95 48 105 444 146 
SH3-4 331 12 100 48 105 443 144 
SH4-5 304 13 97 48 105 444 143 
SH5-6 314 11 99 48 106 444 145 
SH6-7 306 13 99 50 106 443 143 
SH7-8 312 12 95 50 107 447 144 
SH8-9 N.A. N.A. N.A. N.A. N.A. N.A. N.A 
SH9-10 292 12 97 48 106 445 144 
SH1O-12 293 14 98 48 106 445 142 
SH12-14 308 10 98 49 107 448 141 
SH14-16 305 12 96 48 107 445 143 
SH16-18 294 15 95 48 106 444 143 
SH18-20 280 12 99 49 106 449 141 
SH20-22 336 12 97 49 105 451 142 
SH22-24 284 13 97 49 106 452 145 
SH24-26 309 8 97 50 105 455 146 
SH26-28 323 13 95 49 106 .457 143 
SH28-30 305 11 98 50 104 451 142 
SH30-32 312 11 97 48 106 457 144 
SH32-34 322 9 100 48 106 462 147 
SH34-36 310 12 94 47 103 460 146 
SH36-38 284 12 97 49 104 465 147 
SH38-40 249 13 96 48 103 475 146 
SH40-42 270 11 95 48 103 465 147 
SH42-44 307 13 100 49 105 465 145 
SH44-46 293 14 100 48 104 467 149 
SH46-48 320 11 95 48 103 468 144 
S1148-50 318 11 99 49 104 464 149 

CORE SP1. 
Salt-corrected trace element data, ppm 

Ba Sc Cr Ni Rb Sr Zr 

SPO-i N.A. N.A. N.A. N.A. N.A. N.A. N.A. 
SPL-2 333 15 103 49 108 346 159 
SP2-3 	. 377 13 105 49 111 311 166 
SP3-4 370 15 104 48 Ill 308 162 
SP4-5 362 13 105 49 110 315 162 
SP5-6 382 16 106 49 111 312 165 
SP6-7 N.A. N.A. N.A. N.A. N.A. N.A. N.A. 
SP7-8 358 16 103 49 110 317 163 
SP8-9 358 14 105 49 109 329 168 
SP9-10 340 17 100 46 104 325 163 
SPIO-12 340 13 99 50 106 349 167 
SP12-14 369 17 106 49 110 320 165 
SP14-16 342 11 94 45 100 416 157 
SP16-18 358 15 101 47 103 369 165 
SPI8-20 337 12 99 47 103 359 169 
SP20-22 354 12 103 48 103 348 173 
SP22-24 350 15 102 47 103 343 180 
SP24-26 325 14 98 46 100 380 168 
SP26-28 344 13 96 44 98 355 164 
SP28-30 329 14 99 46 100 364 176 
SP30-32 403 15 106 48 114 288 164 
SP32-34 399 13 100 47 102 346 173 
SP-34-36 295 16 102 48 105 337 177 
SP36-38 375 15 101 47 106 342 174 
SP38-40 337 12 101 47 105 348 174 
SP40-42 341 11 102 47 107 338 172 
SP42-44 359 11 99 48 107 343 172 
SP44-46 340 14 103 47 105 344 171 
SP46-48 357 12 101 46 108 352 169 
SP48-50 N.A. N.A. N.A. N.A. N.A. N.A. N.A. 
SP50-55 365 12 101 46 106 353 169 
SP55-60 329 13 99 46 105 354 171 
SP60-65 346 14 99 46 109 343 168 
SP65-70 337 14 99 46 108 351 168 
SP70-75 365 13 99 46 107 359 168 



C.) 

CORE HOl. CORE NEI. 
Salt -corrected trace element data, ppm Salt -corrected trace element data, ppm 

Ba Sc Cr Ni Rb Sr Zr Ba Sc Cr Ni Rb Sr Zr 

MOO-i 401 18 106 49 118 287 160 NEO-1 393 17 116 67 124 353 131 
HOi-2 375 20 105 50 117 287 154 NE1-2 372 19 102 53 116 393 132 
H02-3 330 18 91 41 102 241 136 :NE2-3 398 20 106 55 123 345 133 
H03-4 411 18 113 58 115 354 153 NE34 383 20 103 51 123 350 134 
H04-5 417 22 116 56 113 348 165 NE4-5 404 20 102 53 123 349 134 
H05-6 406 19 116 57 117 348 155 NE5-6 376 21 102 53 124 352 138 
H06-7 418 17 116 56 113 348 160 NE6-7 418 19 104 53 123 353 134 
H07-8 413 18 118 57 111 354 162 NE7-8 395 20 104 52 123 348 136 
H08-9 429 17 119 58 106 358 152 NEB-9 413 20 99 52 124 355 134 
H09-10 453 17 119 59 108 358 153 NE9-10 386 22 102 52 123 355 136 
HO1O-12 449 17 121 57 109 361 162 NE10-12 423 21 102 51 123 354 135 
H012-14 445 16 126 63 97 406 148 NE12-14 399 19 102 52 124 359 133 
H014-16 454 14 129 67 91 390 143 NE14-16 388 19 102 53 123 350 135 
H016-18 430 15 124 66 93 415 146 NE16-18 392 21 105 52 123 364 133 
H018-20 430 17 125 61 104 372 152 NE18-20 383 20 104 52 124 361 134 
H020-22 443 17 123 58 99 389 151 NE20-22 410 18 100 52 123 361 132 
H022-24 437 12 141 65 76 414 154 NE22-24 385 21 99 49 120 355 129 
H024-26 504 12 155 63 70 427 172 NE24-26 377 21 102 52 123 361 133 
H026-28 561 12 114 48 82 382 187 NE26-28 415 20 100 51 124 360 133 
H028-30 447 16 146 66 98 374 159 NE28-30 376 21 102 52 122 366 132 
H030-32 N.A N.A. N.A. N.A. N.A. N.A. N.A. NE30-32 391 20 103 52 124 372 134 
H032-34 458 16 146 64 100 383 162 NE32-34 396 23 101 51 122 372 134 
H034-36 428 18 131 61 100 381 153 NE34-36 368 20 100 52 122 378 133 
H036-38 371 18 124 57 106 384 169 NE36-38 346 21 101 51 121 375 134 
H038-40 436 17 132 57 107 381 157 NE38-40 398 21 99 51 122 386 132 

N.A. Not Analysed 



CORE SNI. 
Salt-corrected trace element data, ppm 

Ba Sc Cr Ni Rb Sr Zr 

SNO-1 No Sample 
SN1-2 No Sample 
SN2-3 193 3 71 29 51 709 152 
SN3-4 202 N.D. 67 27 47 745 150 
SN4-5 193 3 74 29 51 700 153 
SN5-6 350 20 131 65 100 374 1.47 
SN6-7 323 18 132 65 101 376 145 
SN7-8 306 19 134 65 97 393 147 
SN8-9 321. 18 129 64 97 375 148 
SN9-10 337 18 127 64 98 375 147 
SN1O-12 322 18 125 63 98 376 145 
SN12-14 333 20 132 65 99 381 148 
SN14-16 286 19 128 64 97 381 145 
SN16-18 314 21 130 66 98 387 143 
SN18-20 304 18 129 66 97 391 145 
SN20-22 313 18 131 66 97 392 143 
SN22-24 310 19 134 65 97 391 143 
SN24-26 330 21 134 67 97 391 147 
SN26-28 313 20 131 66 97 395 146 
SN28-30 321 16 133 63 96 396 145 
SN30-32 316 21 133 64 93 396 149 
SN32-34 301 16 135 64 94 402 148 
SN34-36 327 17 127 61 97 409 146 
SN36-38 316 19 128 63 97 406 147 
SN38-40 326 19 127 62 96 407 146 
SN40-42 326 17 128 62 98 413 147 

N.D. - Not detectable 



TABLE AII.3 

Lithogenic Minor Element Ratios. 

(Zr/Rb, Ni/Cr, Ni/Rb, Cr/Rb, Sc/Rb) 
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CORE AB1. CORE CM1. 

Salt free minor element 	ratios Salt free minor element 	ratios 

Zr/Rb Ni/Cr Ni/Rb Cr/Rb Sc/Rb Zr/Rb Ni/Cr Ni/Rb Cr/Rb Sc/Rb 

ABO-1 2.17 0.49 0.47 0.95 0.14 CMO-1 3.93 0.45 0.33 0.73 0.05 
ABI-2 2.26 0.51 0.47 0.92 0.13 CM1-2 3.98 0.44 0.31 0.71 0.12 
AB2-3 N.A. N.A. N.A. N.A. N.A. CM2-3 4.17 0.44 0.31 0.71 0.12 
AB3-4 2.29 0.50 0.48 0.97 0.12 CM3-4 4.20 0.45 0.32 0.71 0.12 
AB4-5 2.08 0.51 0.48 0.93 0.14 CM4-5 4.16 0.44 0.31 0.71 0.11. 
AB5-6 . 	2.12 0.51 0.47 0.93 0.12 CM5-6 4.23 0.45 0.30 0.67 0.11 
AB6-7 2.07 0.50 0.47 0.93 0.15 cM6-7 4.35 0.46 0.32 0.70 0.11 
AB7-8 2.07 0.50 0.46 0.93 0.13 CM7-8 4.22 0.48 0.33 0.70 0.11 
AB8-9 2.02 0.51 0.48 0.92 0.12 CM8-9 4.20 0.44 0.31 0.71 0.11 
AB9-10 2.05 0.50 0.47 0.95 0.16 CM9-10 N.A. N.A. N.A. N.A. N.A. 
AB1O-12 2.02 0.51 0.48 0.94 0.12 CM1O-12 3.48 0.44 0.33 0.74 0.10 
AB12-14 1.97 0.52 0.48 0.91 0.16 CM12-14 3.48 0.46 0.34 0.74 0.12 
AB14-16 1.96 0.49 0.46 0.94 0.12 CM14-16 3.47 0.46 0.34 0.75 0.10 
AB16-18 1.91 0.49 0.46 0.94 0.14 CM16-18 3.34 0.44 0.34 0.78 0.10 
AB18-20 1.87 0.49 0.46 0.93 0.14 CM18-20 3.37 0.43 0.34 0.79 0.09 
AB20-22 1.99 0.47 0.45 0.95 0.16 CM20-22 3.38 0.45. 0.34 0.76 0.12 
AB22-24 1.97 	.0.46 0.44 0.95 0.14 CM22-24 3.33 0.43 0.34 0.79 0.11 
AB24-26 1.99 0.47 0.46 0.97 0.13 CM24-26 3.27 0.44 0.33 0.76 0.11 
AB26-28 1.97 0.46 0.45 0.97 0.17 CM26-28 3.14 0.46 0.35 0.76 0.12 
AB28-30 1.91 0.47 0.45 0.95 0.12 CM28-30 3.11 0.45 0.35 0.78 0.12 
AB30-32 N.A. N.A. N.A. N.A. N.A. CM30-32 3.02 0.47 0.36 0.77 0.10 
AB32-341  1.92 0.48 0.46 0.96 0.17 CM32-34 3.81 0.45 0.35 0.77 0.10 
AB34-36 1.93 0.48 0.46 0.95 0.14 CM34-36 2.86 0.49 0.37 0.76 0.12 
AB36-38 1.98 0.48 0.44 0.93 0.13 . 	CM36-38 2.67 0.45 0.35 0.78 0.10 
AB38-40 1.93 0.52 0.42 0.79 0.10 CM38-40 2.72 0.46 0.36 0.79 0.11 
AB40-42 1.95 0.49 0.46 0.95 0.12 CM40-42 2.34 0.47 0.36 0.77 0.12 
AB42-44 1.92 0.47 0.44 0.91 0.12 CM42-44 2.04 0.49 0.39 0.79 0.11 
AB44-46 2.09 0.47 0.43 0.95 0.16 CM44-46 2.18 0.47 0.37 0.79 0.10 
AB46-48 2.14 0.47 0.44 0.95 0.13 CM46-48 1.93 0.49 0.39 0.80 0.11 
AB48-50 2.08 0.49 0.44 0.92 0.14 CM48-50 1.96 0.47 0.37 0.78 0.10 
AB50-55 2.19 0.47 0.44 0.93 0.14 CM50-55 2.02 0.49 0.38 0.77 0.12 

CM55-60 1.88 0.48 0.38 0.78 0.12 
CM60-65 1.91 0.47 0.37 0.80 0.10 

N.A. Not Analysed 



CORE CR1. 	 CORE DM1. 

Salt free minor element ratios  

Zr/Rb Ni/Cr Mi/Rb Cr/Rb Sc/Rb 

CR0-i 2.51 0.47 0.32 0.69 0.10 
CRI-2 2.44 0.47 0.32 0.69 0.11 
CR2-3 2.55 0.47 0.33 0.71 0.12 
CR3-4 2.69 0.46 0.32 0.69 0.12 
CR4-5 2.75 0.45 0.32 0.71 0.11 
CR5-6 2.83 0.51 0.32 0.71 0.01 
CR6-7 2.66 0.52 0.38 0.72 M.D. 
CR7-8 2.50 0.50 0.35 0.71 M.D. 
CR8-9 2.56 0.49 0.33 0.66 0.02 
CR9-1 2.52 0.49 0.34 0.70 M.D. 
CRIO-12 2.41 0.45 0.32 0.71 0.11 
CR12-14 2.47 0.46 0.32 0.71 0.11 
CR14-16 2.54 0.44 0.31 0.70 0.12 
CR16-18 2.64 0.46 0.32 0.70 0.07 
CR18-20 2.59 0.43 0.31 0.69 0.12 
CR20-22 2.66 0.48 0.33 0.70 0.10 
CR22-24 2.69 0.48 0.33 0.70 0.08 
CR24-26 2.51 0.45 0.30 0.70 0.08 
CR26-28 2.49 0.48 0.33 0.68 0.08 
CR28-30 2.42 0.45 0.33 0.73 0.04 
CR30-32 N.A. N.A. N.A. M.A. N.A. 
CR32-34 2.24 0.47 0.34 0.71 0.09 
CR34-36 2.10 0.46 0.34 0.73 0.12 
CR36-38 2.18 0.49 0.35 0.71 0.08 
CR38-40 2.10 0.45 0.33 0.74 0.10 
CR40-42 1.95 0.45 0.33 0.73 0.10 
CR42-44 1.92 0.45 0.34 0.76 0.12 
CR44-46 1.94 0.47 0.34 0.74 0.11 
CR46-48 2.10 0.46 0.33 0.73 0.12 
CR48-50 2.14 0.45 0.33 0.73 0.12 
CR50-55 1.99 0.47 0.34 0.74 0.12 
CR45-60 1.88 0.46 0.34 0.75 0.10 
CR60-65 1.88 0.45 0.33 0.73 0.12 

Salt free minor element ratios 

Zr/Rb Ni/Cr Ni/Rb Cr/Rb Sc/RL 

DM0-1 1.42 0.49 0.43 0.87 0.12 
DN1-2 1.42 0.49 0.41 0.85 0.12 
DM2-3 1.36 0.50 0.41 0.82 0.10 
DN3-4 1.34 0.49 0.40 0.82 0.12 
DM4-5 1.38 0.50 0.41 0.82 0.13 
DN5-6 1.37 0.49 0.41 0.84 0.12 
DN6-7 1.39 0.49 0.40 0.82 0.13 
DN7-8 1.36 0.49 0.41 0.83 0.10 
DN8-9 1.38 0.48 0.41 0.84 0.12 
DM9-b 1.38 0.50 0.40 0.82 0.12 
DNIO-12 No Sample 
DNI2-14 No SampLe 
DN14-16 1.34 0.55 0.42 0.83 0.10 
DM16-18 1.38 0.47 0.37 0.68 0.16 
DN18-20 1.38 0.49 0.39 0.84 0.12 
DN20-22 1.33 0.49 0.40 0.83 0.13 
DN22-24 1.30 0.50 0.40 0.82 0.12 
DN24-26 1.31 0.49 0.41 0.83 0.13 
DN26-28 1.30 0.49 0.40 0.82 0.12 
DN28-30 1.35 0.49 0.40 0.81 0.12 
DN30-32 1.33 0.49 0.40 0.81 0.12 
DN32-34 1.36 0.48 0.40 0.84 0.09 
DN34-36 1.36 0.46 0.40 0.85 0.13 
DM36-38 1.36 0.48 0.41 0.85 0.13 
DN38-40 1.40 0.47 0.41 0.83 0.13 
DN40-42 1.39 0.47 0.40 0.82 0.13 
DN42-44 1.40 0.48 0.41 0.85 0.12 
DN44-46 1.40 0.50 0.41 0.82 0.13 
DN46-48 1.36 0.47 0.40 0.83 0.13 
DN48-50 1.36 0.45 0.40 0.83 0.11 
DN50-55 1.46 0.46 0.38 0.82 0.14 

N.A. Not Analysed 



N 

CORE Dul. 	 CORE ET1. 

Salt free minor element ratios 	 Salt free minor element ratios 

Zr/Rb Ni/Cr Ni/Rb Cr/Rb Sc/Rb 	 Zr/Rb Ni/Cr Ni/Rb Cr/Rb Sc/Rb 

DUO-1 1.19 0.50 0.46 0.93 0.14 ETO-1 2.21 0.52 0.52 1.00 0.15 DUI-2 1.00 0.50 0.45 0.89 0.12 ETI-2 2.00 0.55 0.52 0.96 0.14 DU2-3 1.10 0.50 0.45 0.90 0.12 ET2-3 1.74 0.53 0.52 0.99 0.14 DU3-4 1.20 0.50 0.45 0.89 0.13 ET3-4 1.68 0.55 0.52 1.02 0.15 DtJ4-5 N.A. N.A. N.A. N.A. N.A. ET4-5 1.96 0.52 0.54 0.99 0.17 DU5-6 1.18 0.52 0.47 0.90 0.13 ET5-6 1.95 0.54 0.51 0.99 0.13 DU6-7 1.27 0.51 0.45 0.90 0.15 ET6-7 1.95 0.53 0.52 0.97 0.14 DtJ7-8 1.35 0.49 0.45 0.91 0.13 ET7-8 1.87 0.52 0.51 0.96 0.12 DU8-9 1.47 0.50 0.44 0.88 0.13 ET8-9 1.98 0.55 0.54 1.03 0.14 D[J9-10 N.A. N.A. N.A. N.A. N.A. ET9-10 2.02 0.52 0.53 0.97 0.15 DU1O-12 1.64 0.46 0.42 0.92 0.13 ET1O-12 1.99 0.53 0.50 0.96 0.15 DU12-14 1.54 0.48 0.43 0.90 0.12 ET12-14 1.77 0.53 0.50 0.94 0.14 DU14-16 1.78 0.48 0.39 0.81 0.11 ET14-16 1.83 	- 0.52 0.50 0.93 0.16 DU16-18 1.69 0.49 0.41 0.84 0.12 ET16-18 1.80 0.54 0.48 0.93 0.16 DU18-20 1.86 0.47 0.41 0.89 0.12 ETI8-20 No Sample 
DU20-22 N.A. N.A. N.A. N.A. N.A. ET20-22 1.97 0.52 0.48 0.91 0.12 D1J22-24 2.13 0.46 0.38 0.82 0.14 ET22-24 No Sample 
D(J24-26 1.84 0.46 0.38 0.83 0.14 ET24-26 1.89 0.54 0.48 0.92 0.16 DrJ26-28 1.53 0.45 0.40 0.88 0.12 ET26-28 1.90 0.51 0.50 0.93 0.14 DU28-30 2.49 0.45 0.36 0.79 0.12 ET28-30 1.97 0.53 0.48 0.94 0.15 DU30 32 1.75 0.48 0.34 0.70 0.13 ET30-32 2.09 0.53 0.49 0.93 0.15 DU32-34 1.54 0.50 0.34 0.68 0.11 ET32-34 2.21 0.53 0.49 0.92 0.15 
DU34-36 1.50 0.49 0.33 0.67 0.10 ET34-36 2.21 0.54 0.48 0.89 0.15 DrJ36-38 1.51 0.48 0.32 0.66 0.12 ET36-38 1.97 0.56 0.49 0.89 0.17 DU38-40 1.53 0.50 0.33 0.66 0.11 ET38-40 2.05 0.51 0.47 0.92 0.18 D040-42 1.48 0.49 0.32 0.65 0.10 ET40-42 2.07 0.52 0.47 0.90 0.13 DU42-44 1.56 0.50 0.33 0.66 0.11 ET42-44 2.14 0.51 0.47 0.92 0.15 DU44-46 1.56 0.49 0.33 0.67 0.11 ET44-46 2.09 0.49 0.45 0.92 0.13 

ET46-48 1.83 0.50 0.48 0.97 0.14 
ET48-50 1.88 0.48 0.45 0.94 0.14 
ET50-55 1.95 0.51 0.46 0.92 0.15 
ET55-60 1.90 0.52 0.47 0.92 0.15 
ET60-65 2.09 0.53 0.47 0.89 0.14 

N.A. Not Analysed 



CORE SPI. 
CORE SRi. 

Salt free minor element ratios 

Zr/Rb Ni/Cr Ni/Rb Cr/Rb Sc/Rb 

SHO-1 1.56 0.52 0.46 0.88 0.09 
SH1-2 1.41 0.51 0.46 0.91 0.09 
SH2-3 1.40 0.51 0.46 0.91 0.11 
SH3-4 1.37 0.48 0.46 0.95 0.11 
SH4-5 1.36 0.50 0.46 0.92 0.12 
SH5-6 1.37 0.50 0.45 0.93 0.10 
SH6-7 1.35 0.51 0.47 0.93 0.12 
SH7-8 1.35 0.53 0.47 0.89 0.11 
SH8-9 N.A. N.A. N.A. N.A. N.A. 
SH9-10 1.36 0.50 0.45 0.92 0.11 
SH10-12 1.33 0.49 0.45 0.93 0.13 
SH12-14 1.31 0.50 0.46 0.92 0.09 
SH14-16 1.34 0.50 0.45 0.90 0.11 
SH16-18 1.35 0.51 0.45 0.90 0.14 
SH18-20 1.34 0.50 0.46 0.93 0.11 
SH20-22 1.35 0.51 0.47 0.92 0.11 
SH22-24 1.36 0.51 0.46 0.92 0.12 
SH24-26 1.40 0.52 0.48 0.92 0.08 
SH26-28 1.35 0.52 0.46 0.90 0.12 
SH28-30 1.36 0.51 0.48 0.94 0.11 
SH30-32 1.36 0.50 0.43 0.92 0.10 
SH32-34 1.39 0.48 0.43 0.95 0.09 
SH34-36 1.42 0.50 0.46 0.91 0.12 
SH36-38 1.42 0.51 0.47 0.93 0.12 
SH38-40 1.42 0.50 0.47 0.93 0.13 
SH40-42 1.42 0.51 0.47 0.92 0.11 
SH42-44 1.38 0.49 0.47 0.95 0.12 
SH44-46 1.44 0.48 0.46 0.96 0.14 
SH46-48 1.40 0.51 0.47 0.92 0.11 
Sf148-50 1.43 0.50 0.47 0.95 0.11 

N.D. - Not detectable 

N.A. 	Not analysed  

Salt free minor element ratios 

Zr/Rb Ni/Cr Ni/Rb Cr/Rb Sc/Rb 

SPO-1 No Sample 
SP1-2 1.47 0.46 0.45 0.95 0.14 
SP2-3 1.50 0.47 0.44 0.95 0.12 
SP3-4 1.46 0.46 0.43 0.94 0.14 
SP4-5 1.47 0.47 0.45 0.96 0.12 
SP5-6 1.49 0.46 0.44 0.96 0.14 
SP6-7 N.A. N.A. N.A. N.A. N.A. 
SP7-8 1.48 0.48 0.45 0.94 0.15 
SP8-9 1.54 

1
0.47 0.45 0.96 0.13 

SP9-10 1.57 0.47 0.44 0.96 0.16 
SPIO-12 1.58 0.51 0.47 0.93 0.12 
SP12-14 1.49 0.46 0.45 0.96 0.16 
SP14-16 1.56 0.48 0.45 0.94 0.11 
SP16-18 1.60 0.47 0.45 0.98 0.15 
SP18-20 1.64 0.48 0.45 0.96 0.13 
SP20-22 1.68 0.47 0.47 1.00 0.13 
SP22-24 1.75 0.46 0.46 0.99 0.15 
SP24-26 1.67 0.47 0.46 0.98 0.14 
5P26-28 1.68 0.46 0.45 0.97 0.13 
SP28-30 1.76 0.48 0.46 0.98 0.14 
SP30-32 1.43 0.45 0.42 0.93 0.13 
SP32-34 1.70 0.47 0.46 0.98 0.13 
SP34-36 1.69 0.47 0.46 0.97 0.15 
SP36-38 1.64 0.47 0.44 0.95 0.14 
SP38-40 1.65 0.47 0.45 0.96 0.11 
SP40-42 1.61 0.46 0.44 0.95 0.10 
SP42-44 1.60 0.49 0.45 0.93 0.10 
SP44-46 1.62 0.46 0.45 0.98 0.13 
SP46-48 1.57 0.46 0.43 0.94 0.11 
SP48-50 N.A. N.A. N.A. N.A. N.A. 
SP50-55 1.60 0.46 0.43 0.95 0.11 
SP55-60 1.63 0.46 0.44 0.94 0.12 
SP60-65 1.54 0.46 0.42 0.91 0.13 
SP65-70 1.56 0.46 0.43 0.92 0.13 
SP70-75 1.57 0.46 0.43 0.93 0.12 



Salt free minor element ratios 

Zr/Rb Ni/Cr Ni/Rb Cr/Rb Sc/Rb 

NEO-1 1.06 0.58 0.55 0.94 0.14 
NE1-2 1.14 0.52 0.46 0.87 0.17 
NE2-3 1.08 0.52 0.45 0.86 0.16 
NE3-4 1.09 0.50 0.41 0.84 0.16 
NE4-5 1.09 0.53 0.44 0.83 0.17 
NE5-6 1.12 0.53 0.43 0.83 0.17 
NE6-7 1.09 0.51 0.43 0.84 0.15 
NE7-8 1.10 0.50 0.42 0.84 0.17 
NE8-9 1.08 0.53 0.42 0.80 0.17 
NE9-10 1.11 0.51 0.43 0.83 018 
NEIO-12 1.09 0.50 0.41 0.83 0.17 
NE12-14 1.08 0.52 0.43 0.83 0.15 
NE14-16 1.10 0.52 0.43 0.83 0.19 
NE16-18 1.08 0.50 0.42 0.85 0.17 
NE18-20 1.08 0.50 0.42 0.84 0.16 
NE20-22 1.08 0.52 0.43 0.82 0.14 
NE22-24 1.08 0.50 0.41 0.83 0.18 
NE24-26 1.08 0.51 0.42 0.83 0.17 
NE26-28 1.07 0.51 0.41 0.81 0.16 
NE28-30 1.09 0.51 0.43 0.84 0.17 
NE30-32 1.08 0.51 0.42 0.84 0.17 
NE32-34 1.10 0.51 0.42 0.84 0.19 
NE34-36 1.09 0.52 0.43 0.82 0.16 
NE36-38 1.10 0.51 0.42 0.83 0.17 
NE38-40 1.08 0.52 0.42 0.82 0.18 

CORE MEl. 
CORE HOl. 

Salt free minor element ratios 

Zr/Rb Ni/Cr Mi/Rb Cr/Rb Sc/Rb 

1100-1 1.36 0.47 0.43 0.90 0.16 
H01-2 1.32 0.48 0.43 0.90 0.17 
1102-3 1.33 0.46 0.41 0.90 0.17 
1103-4 1.33 0.51 0.50 0.99 0.15 
1104-5 1.46 0.48 0.50 1.02 0.20 
1105-6 1.32 0.49 0.49 0.99 0.16 
H06-7 1.42 0.49 0.51 1.03 0.15 
1107-8 1.46 0.48 0.51 1.07 0.17 
1108-9 1.44 0.48 0.55 1.14 0.16 
1109-10 1.41 0.49 0.54 1.10 0.16 
11010-12 1.49 0.47 0.52 1.11 0.16 
11012-14 1.52 0.50 0.65 1.30 0.17 

10 	 H014-16 1.57 0.52 0.73 1.42 0.16 
H016-18 1.58 0.53 0.70 1.34 0.16 
11018-20 1.46 0.48 0.58 1.20 0.17 
11020-22 1.53 0.48 0.59 1.25 0.17 
11022-24 2.03 0.46 0.88 1.87 0.15 
11024-26 2.47 0.30 0.90 2.22 0.17 
11026-28 2.27 0.42 0.58 1.38 0.15 
11028-30 1.63 0.45 0.68 1.50 0.16 
11030-32 N.A N.A. N.A. N.A. N.A. 
11032-34 1.63 0.44 0.64 1.47 0.15 
11034-36 1.52 0.47 0.61 1.30 0.18 
11036-38. 1.59 0.46 0.53 1.16 0.17 
11038-40 1.47 0.44 0.54 1.24 0.16 
11040-42 1.49 0.44 0.54 1.22 0.17 



1-5 

CORE SN1. 

Salt free minor element ratios 

Zr/Rb Ni/Cr Ni/Rb Cr/Rb Sc/Rb 

SNO-1 No Sample 
SN1-2 No Sample 
SN2-3 2.99 0.41 0.57 1.39 0.06 
SN3-4 3.17 0.40 0.57 1.43 N.D. 
SN4-5 2.99 0.39 0.57 1.45 0.06 
SN5-6 1.47 0.49 0.65 1.31 0.20 
SN6-7 1.44 0.49 0.64 1.31 0.18 
SN7-8 1.51 0.49 0.67 1.38 0.20 
SN8-9 1.53 0.50 0.66 1.33 0.19 
5N9-10 1.50 0.50 0.65 1.30 0.18 
SN1O-12 1.48 0.50 0.64 1.28 0.18 
SN12-14 1.49 0.49 0.66 1.33 0.20 
SN14-16 1.49 0.50 0.66 1.32 0.20 
SN16-18 1.46 0.51 0.67 1.33 0.21 
SN18-20 1.50 0.51 0.68 1.33 0.19 
SN20-22 1.47 0.50 0.68 1.35 0.19 
SN22-24 1.48 0.49 0.67 1.38 0.20 
SN24-26 1.52 0.50 0.69 1.38 0.22 
SN26-28 1.51 0.50 0.68 1.35 0.21 
SN28-30 1.51 0.47 0.66 1.39 0.17 
SN30-32 1.60 0.48 0.69 1.43 0.23 
SN32-34 1.57 0.47 0.68 1.44 0.17 
SN34-36 1.51 0.48 0.63 1.31 0.18 
SN36-38 1.52 0.49 0.65 1.32 0.20 
SN38-40 1.52 0.49 0.65 1.32 0.20 
SN40-42 1.51 0.49 0.63 1.31 0.17 

N.D. 	Not Detectable 



TABLE AII.4 

Rare Earth Element Data. 

(Y, La, Ce, Nd) 

All values given as ppm on a salt free basis. 
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CURE Mu. 

Rare earth element data Rare earth element data Rare earth element data 

Y La Ce Nd Y La Ce Nd Y La Ce Nd 

AB0-1 27 52 118 43 CM01 24 22 59 24 CR0-1 28 38 84 34 
AB1-2 27 53 106 42 CM1-2 25 25 72 26 CRI-2 28 38 85 34 
AB2-3 N.A. N.A. N.A. N.A. CM2-3 25 27 67 24 CR2-3 27 36 85 37 
AB3-4 27 56 118 46 CM3-4 26 32 62 26 CR3-4 29 39 88 37 
AB4-5 29 50 126 44 CM4-5 25 24 66 26 CR4-5 29 36 92 36 
AB5-6 29 49 115 42 CM56 25 29 65 29 CR5-6 21 20 67 27 
A86-7 28 59 122 42 CM6-7 25 31 70 26 CR6-7 17 16 57 24 
AB7-8 28 51 117 46 CM7-8 26 27 66 26 CR7-8 19 19 60 27 
AB8-9 28 55 118 46 CM8-9 25 31 60 24 CR8-9 23 23 70 29 
AB9-10 29 57 122 45 CM910 N.A. N.A. N.A. N.A. CR9-1 21 24 68 26 
AB10-12 28 55 122 45 CM1O-12 25 30 71 28 CRIO-12 26 32 76 33 
AB12-14 27 50 115 39 CM12-14 25 28 69 30 CR12-14 27 40 81 33 
A814-16 27 53 120 42 CM14-16 .25 25 69 23 CR14-16 26 35 81 34 
AB16-18 26 47 115 42 CM16-18 24 28 65 30 CR16-18 25 29 78 31 
AB18-20 26 51 112 43 CM1820 24 25 68 28 CR18-20 28 33 80 30 
AB20-22 27 52 117 43 CM20-22 26 29 64 27 CR20-22 25 30 82 32 
AB22-24 27 52 109 42 CM22-24 26 27 68 28 CR22-24 26 35 73 33 
A824-26 27 52 117 42 CM24-26 25 30 71 27 cR24-26 27 31 79 32 
AB26-28 27 53 112 42 CM26-28 25 33 72 28 CR26-28 28 32 76 32 
AB28-30 27 52 109 44 CM28-30 26 32 73 31 CR28-30 27 39 86 34 
AB30-32 N.A. N.A. N.A. N.A. CM30-32 25 28 74 30 CR30-32 N.A. N.A. N.A. N.A. 
AB32-34 26 53 112 41 CM32-34 25 28 73 30 CR32-34 27 38 77 35 
AB34-36 27 51 109 41 CM34-36 26 28 68 31 CR34-36 27 39 87 36 
AB36-38 28 55 117 41 CM36-38 26 34 71 32 CR36-38 27 37 82 36 

AB38-40 26 40 84 42 CM38-40 26 29 71 28 CR38-40 25 32 80 33 
AB40-42 27 48 116 29 CM40-42 26 30 69 30 CR40-42 27 37 89 35 

AP42-44 27 47 113 41 CM42-44 26 34 68 29 CR42-44 29 36 96 36 

AB44-4.6 28 45 113 42 CM44-46 26 31 73 31 CR44-46 29 43 92 37 
AB46-48 26 46 108 42 CM46-48 24 28 71 31 CR46-48 29 36 92 37 
AB48-50 28 51 114 39 CM48-50 26 35 79 33 cR50-55 29 42 96 38 
AB50-55 27 49 119 42 CM50-55 27 32 77 29 CR55-60 28 36 89 35 

CM55-60 26 34 79 33 CR60-65 29 40 88 38 
CM60-65 26 40 81 32 

N.A. Not Analysed 



t.J 

LUt(f I)U,L. 

Rare Earth Element data Rare earth element data Rare earth element data 

Y La Ce Nd Y La. Ce Nd Y La Ce Nd 

DUO-i 24 47 110 39 DNO-i 24 36 64 29 ETO--1 26 52 120 44 
DtJ1-2 25 48 122 45 DNI-2 24 31 74 28 ETI-2 27 49 127 45 
DrJ2-3 27 52 117 40 2-3 24 30 74 31 ET2-3 27 52 126 46 
DrJ3-4 27 48 113 40 1'13-4 24 34 77 34 ET3-4 27 57 134 46 
DU4-5 N.A. N.A. N.A. N.A. DN4-5 23 34 80 29 ET4-5 26 58 120 45 

DU5-6 27 45 115 45 DN5-6 25 37 79 32 ET5-6 28 60 125 47 
DLJ6-7 27 44 120 44 DN6-7 24 34 78 29 ET6-7 27 56 125 48 
DU7-8 27 47 120 42 DN7-8 23 39 78 30 ET7-8 26 48 127 48 
DUB-9 27 47 120 42 DN8-9 25 35 82 34 ET8-9 28 54 125 46 
DLJ9-10 N.A. N.A. N.A. N.A. DN9-10 25 35 75 32 ET9-10 28 58 125 48 
DU10-12 27 46 126 42 DN1O-12 No Sample ET1OI2 28 55 132 49 
D(J12-14 27 50 122 43 DN12-14 No Sample ET1214 28 57 137 50 
DIJ14-16 26 45 111 44 DN14-16 34 51 109 48 ET14-16 28 55 133 47 
DU16-18 27 44 114 42 DN16-18 23 24 57 22 ET16-18 27 59 135 48 
DEJ18-20 28 46 125 42 DN18-20 25 32 75 33 ETI8-20 No Sample 

DEJ20-22 N.A. N.A. N.A. N.A. DN20-22 25 33 75 32 ET20-22 28 60 122 46 
DU22-24 25 42 lii 40 DN22-24 25 34 74 30 ET22-24 No Sample 

DU24-26 29 45 117 46 DN24-26 25 33 81 31 ET24-26 28 54 141 48 

DrJ26-28 29 51 129 51 DN2628 24 37 83 30 ET26-28 27 57 123 45 

DU28-30 29 50 115 47 DN28-30 25 34 78. 30 ET28-30 27 55 125 43 

DtJ30 	32 30 45 106 47 DN30-32 25 36 75 32 ET30-32 29 53 126 46 

DU32-34 32 57 103 50 DN32-34 25 30 72 30 ET32-34 28 52 127 45 

DU34-36 33 48 107 46 DN34-36 25 32 80 30 ET34-36 28 58 137 46 
DU36-38 32 50 115 49 DN36-38 25 30 73 31 ET36-38 27 55 127 44 

DU38-40 33 47 113 51 DN38-40 25 33 74 26 ET38-40 28 55 128 46 

DU40-42 32 55 104 50 DN40-42 25 32 75 32 ET40-42 27 58 131 47 

D1J42-44 32 56 109 50 DN42-44 25 36 75 33 ET42-44 27 55 129 45 

DU44-46 33 52 116 50 DN44-46 25 30 75 30 . 	ET44-46 27 55 134. 46 
DN46-48 24 30 73 32 ET46-48 26 56 134 44 
DN48-50 25 36 68 30 ET48-50 27 60 133 49 
DN50-55 25 29 77 30 ET50-55 27 54 125 45 

ET55-60 27 62 134 51 
ET60-65 27 51 129 47 

N.A. Not Analysed 



CORE SH1. 

Rare earth element data 

La 	Ce 	Nd  

SPO-1 No Sample 

SPI-2 23 33 69 29 

SP2-3 24 34 81 30 
SP3-4 24 37 75 30 

SP4-5 24 36 73 30 
SP5-6 25 32 81 32 
SP6-7 N.A. N.A. N.A. N.A. 
SP7-8 24 37 69 32 

SP8-9 24 31 75 32 

SP9-10 24 34 76 29 

SPI0-12 24 33 73 28 

SP12-14 25 37 83 29 

SP14-16 23 31 66 28 

SPI6-18 23 33 64 28 

SP18-20 24 30 73 27 

SP20-22 24 32 76 28 
SP22-24 25 33 75 30 

SP24-26 24 27 71 30 

SP26-28 22 35 69 28 

SP28-30 24 30 64 27 

SP30-32 25 37 75 33 

SP32-34 24 30 66 27 

SP34-36 24 32 68 30 

SP36-38 24 28 71 33 

SP38-40 25 31 57 27 

SP40-42 24 27 68 29 

SP42-44 24 33 67 29 

SP44-46 24 31 79 29 

SP46-48 25 36 74 29 

SP48-50 N.A. N.A. N.A. N.A. 
SP50-55 24 26 64 27 

SP55-60 24 31 75 27 

SP60-65 24 32 75 30 

SP65-70 24 31 67 31 

SP70-75 24 30 74 31 

Rare earth element data 

Y La Ce Nd 

SHO-1 23 25 63 26 
SH1-2 23 30 67 26 
SH2-3 24 34 64 27 
SH3-4 23 30 60 29 
SH4-5 23 26 68 27 
SH5-6 23 27 61 26 
SH6-7 23 26 72 27 
SH7-8 23 33 67 28 
S118-9 N.A. N.A. N.A. N.A. 
SH9-10 23 28 62 26 
SH10-12 23 29 62 29 
SHI2-14 23 25 59 24 
SH14-16 23 32 64 25 
SH16-18 22 28 63 25 
SH18-20 23 25 64 28 
SH20-22 23 26 61 28 
SH22-24 23 29 63 29 
SH24-26 23 30 69 27 
SH26-28 23 34 67 28 
SH28-30 23 29 64 27 
SH30-32 23 27 61 30 
SH32-34 23 27 68 28 
SH34-36 22 28 61 26 
SH36-38 24 27 64 32 
SH38-40 22 29 62 29 
SH40-42 23 27 63 29 
SH42-44 24 35 67 28 
SH44-46 23 28 59 27 
SH46-48 22 25 59 27 
SH48-50 23 27 60 28 

N.A. Not Analysed 



TABLE AII.5 

Organic Data. 

(S. C, N, C/N) 

All data expressed on a salt free basis. 

C and N given as % 

S given as ppm 

C/N given as atomic ratio 
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0' 

CORE AB1. CORE CM1. 

Salt free organic data Salt free organic data 

S C N C/N S C N. C/N 
(ppm) (%) (%) (atm) (ppm) (%) (%) (atm) 

ABO-1 961 4.63 N.A. N.A. CMO-1 N.D. 0.81 N.A. N.A. 
ABL-2 1672 4.33 M.A. N.A. CM1-2 N.D. 0.91 0.12 8.85 
AB2-3 N.A. N.A. N.A. N.A. CM2-3 N.D. 0.69 N.A. N.A. 
AB3-4 1232 4.53 N.A. N.A. CM3-4 N.D. 0.83 0.11 8.80 
AB4-5 1315 4.75 N.A. N.A. CM4-5 224 0.69 N.A N.A. 
AB5-6 1358 4.59 N.A. N.A. cM5-6 429 0.69 0.10 8.05 
AB6-7 2346 4.61 N.A. N.A. CM6-7 810 0.71 N.A. N.A. 
AB7-8 2490 4.54 N.A. N.A. CM7-8 745 0.59 0.10 7.65 
AB8-9 2175 4.70 N.A. N.A. CM8-9 913 0.58 N.A. N.A. 
AB9-10 2745 4.28 N.A. N.A. CM9-10 N.A. N.A. N.A. N.A. 
ABIO-12 4374 4.38 N.A. N.A. CM1O-12 2109 0.84 0.10 9.80 
AB12-14 7667 4.61 N.A. N.A. CM12-14 2385 0.83 N.A. N.A. 
AB14-16 7330 5.03 NA. N.A. CM14-16 2134 0.84 0.10 9.80 
ABI6-18 7586 4.29 N.A. N.A. CMI6-18 2139 0.84 N.A. N.A. 
AB18-20 9528 4.79 N.A. N.A. CM18-20 2221 0.78 0.09 10.11 
AB20-22 8547 4.75 N.A. N.A. CM20-22 1718 0.73 N.A. N.A. 
AB22-24 9820 5.02 N.A. N.A. CM22-24 1805 0.78 0.10 9.10 
AB24-26 9036 4.76 N.A. N.A. CM24-26 1833 0.62 N.A. N.A. 
AB26-28 8981 4.63 N.A. N.A. CM26-28 1505 0.81 0.09 10.50 
AB28-30 10052 4.64 N.A. N.A. CM28-30 1618 0.76 N.A. N.A. 
A830-32 N.A. N.A. N.A. N.A. CM30-32 1413 0.66 0.08 9.63 
AB32-34 10157 4.65 N.A. N.A. 	. CM32-34 1824 0.75 N.A. N.A. 
AB34-36 9132 4.33 N.A. N.A. CM34-36 1490 0.71 0.08 10.36 
AB36-38 9642 4.02 N.A. N.A. CM36-38 1306 0.77 N.A. N.A. 
AB38-40 6099 4.20 N.A., N.A. CM38-40 1322 0.76 0.08 11.09 
AB40-42 9781 4.22 N.A. . 	N.A. CM40-42 1440 0.78 N.A. N.A. 
A842-44 8824 4.17 N.A. N.A. CM42-44 1742 0.78 0.09 10.11 
AB44-46 9332 4.14 N.A. N.A. CM44-46 1891 0.78 N.A. N.A. 
AB46-48 8994 4.06 N.A. N.A. CM46-48 2071 0.72 0.09 9.33 
AB48-50 8447 4.30 N.A. N.A. CM48-50 1964 0.78 N.A. N.A. 
AB50-55 9262 4.08 N.A. N.A. CM50-55 2230 0.82 0.10 9.57 

CM55-60 2011 0.77 N.A. N.A. 
- CM60-65 2876 0.83 0.10 9.69 

N.A. Not Analysed. 



S C N 
(ppm) (%) (%) 

N. D. N.A. N.A. 
N. D. N.A. N.A. 
N. D. 3.15 N.A. 
N. D. 3.25 N.A. 
N. D. 3.24 N.A. 

4 3.25 N.A. 

26 3.27 N.A. 

91 3.79 N.A. 
141 2.88 N.A. 

459 3.40 N.A. 
No Sample 
No Sample 

N. D. 5.05 N.A. 
393 N.A. N.A. 
1224 4.04 N.A. 
51 3.75 N.A. 
504 3.23 N.A. 
394 3.70 N.A. 

688 3.48 N.A. 
534 3.48 N.A. 
567 3.96 N.A. 

577 3.37 N.A. 
544 3.52 N.A. 
626 3.26 N.A. 
571 3.44 N.A. 
1202 3.41 N.A. 
937 2.59 N.A. 
982 3.32 N.A. 

971 3.48 N.A. 
1224. 3.56 N.A. 
1113 3.44 N.A. 

C/N 
(atm) 

N.A. 
N.A. 
N.A. 
N.A. 
N.A. 
N.A. 
N.A. 
N.A. 
N.A. 
N.A. 

N.A. 
N.A. 
N.A. 
N.A. 
N.A. 
N.A. 
N.A. 
N.A. 
N.A. 
N.A. 
N.A. 
N.A. 
N.A. 
N.A. 
N.A. 
N.A. 
N.A. 
N.A. 
N.A. 

DNO -1 
DN1 -2 
DN2 -3 
DN3-4 
DN4-5 

DN5-6 
DN6-7 
DN7-8 
DN8-9 
DN9 -10 
DN1O-12 
DN 12-14 
DN1 4-16 
DN 16-18 
DN18-20 
DN2O-22 
DN22-24 
DN24-26 
DN26-28 
DN 28-30 
DN 30-32 
DN3 2-34 
DN3 4-36 
DN3 6-38 
DN3 8-40 
DN4O-42 
DN4 2-44 
DN4 4-46 
DN46-48 
DN4 8-50 
DN5 0-55 

CORE CR1. 	 CORE DNI. 

Salt free organic data 
	

Salt free organic data 

CR0-i 
CR 1-2 

3 
4 
5 

CR5-6 
7 
8 
9 
10 
12 

CR 12-14 
CR 14-16 
CR16 -18 
CRIB-20 
CR2 0-2 2 
CR2 2-2 4 
CR2 4-26 
CR2 6-2 8 
CR28-3D 
CR30-32 
CR32 -3 4 
CR34- 36 
CR36- 38 
CR38- 40 
CR4O-42 
CR42- 44 
CR44-46 
CR4 6-4 8 
CR48- 50 
CR50- 55 
CR55-60 
CR60 -6 5 

S C N C/N 
(ppm) (%) (%) (atm) 

644 2.08 0.28 8.67 
1077 2.14 N.A. N.A. 
1111 1.91 0.26 8.56 
1413 1.56 N.A. N.A. 

1710 1.79 0.23 9.08 

1696 1.19 N.A. N.A. 

1940 1.19 0.14 9.92 

2360 1.35 N.A. N.A. 

2783 1.51 0.16 11.01 

3016 1.45 N.A. N.A. 

4365 1.53 0.17 10.50 

4055 1.52 N.A. N.A. 
4085 1.40 0.17 9.61 

4077 1.42 N.A. N.A. 
4048 1.34 0.16 9.73 

3598 1.32 N.A. N.A. 

4183 1.45 0.15 11.28 
4228 1.53 N.A. N.A. 
4500 1.34 0.18 9.73 
4933 1.51 N.A. N.A. 

N.A. N.A. N.A. N.A. 
4252 1.62 N.A. N.A. 
4398 1.43 0.18 9.27 

3945 1.40 N.A. N.A. 

4063 1.48 0.16 10.74 

3778 1.57 N.A. N.A. 

3426 1.51 0.18 9.78 

3930 1.50 N.A. N.A. 

3915 1.39 0.17 9.54 

4060 1.56 N.A. N.A. 

4365 1.46 0.17 10.02 

4442 1.87 N.A. N.A. 

4463 1.58 0.18 11.47 

N.A. Not Analysed!  



CORE Dill. 
CORE ET1. 

Salt free organic data 
Salt free organic data 

S C N C/N 
(ppm) (%) (%) (atm) S C N C/N 

(ppm) (%) (%) (atm) 

DUO-1 903 4.67 N.A. N.A. 
DU1-2 1181 4.61 0.45 11.21 ETO-1 1188 5.12 0.50 11.49 
DrJ2-3 1127 4.80 N.A. N.A. ETI-2 1153 6.77 N.A. N.A. 

DU3-4 1589 4.39 0.44 11.02 ET2-3 801 5.53 0.54 11.32 
DU4-5 N.A N.A. N.A. N.A. ET3-4 736 4.89 N.A. N.A. 

DU5-6 2115 4.79 0.45 1.87. ET4-5 4971 8.33 0.56 16.47 
DU6-7 2325 4.81 N.A. N.A. ET5-6 1524 5.71 N.A. N.A. 

DU7-8 2064 4.37 0.42 11.07 ET6-7 588 6.95 1.49 16.22 
DU8-9 2169 4.45 N.A. N.A. ET7-8 1228 6.95 N.A. N.A. 

DU9-10 N.A. N.A. N.A. N.A. ET8-9 4291 7.89 0.58 15.09 
DU1O-12 2390 4.08 N.A. N.A. ET9-10 4588 7.18 N.A. N.A. 

DU12-14 2430 3.00 0.32 10.72 ET1O-12 2785 4.40 0.49 10.07 
DtJ14-16 2912 3.34 N.A. N.A. ET12-14 2306 5.78 N.A. N.A. 

DU16-18 2740 2.85 0.26 12.61 ET14-16 1910 5.86 0.46 14.55 
DU1B-20 3401 2.96 N.A. N.A. ETI6-18 2101 5.57 N.A. N.A. 

DU20-22 N.A. N.A. N.A. N.A. ETI8-20 No Sample 

DU22-24 4186 2.11 N.A. N.A. ET20-22 2527 5.14 0.45 13.03 
DU24-26 4494 2.06 0.22 9.12 ET22-24 No Sample 

DtJ26-28 4314 2.81 N.A. N.A. ET24-26 3093 5.53 0.46 13.44 
DU28-30 3827 1.57 0.16 11.30 ET26-28 4539 5.71 N.A. N.A. 

DU30 32 3173 1.45 N.A. N.A. ET28-30 4103 6.28 0.47 14.95 

DtJ32-34 2529 0.80 0.08 11.53 ET30-32 4245 5.60 N.A. N.A. 

DU34-36 1934 0.64 N.A. N.A. ET32-34 5116 5.82 0.46 14.14 

D1J36-38 2015 0.48 0.06 9.32 ET34-36 4935 6.29 N.A. N.A. 

DU38-40 2038 0.57 N.A. N.A. ET36-38 7393 5.13 0.46 15.71 
DU40-42 2086 0.50 0.66 9.71 ET38-40 7647 6.35 N.A. N.A. 

01.742-44 2370 0.51 N.A. N.A. ET40-42 7572 5.37 0.48 12.79 
0044-46 2257 0.54 N.A. N.A. ET42-44 6112 5.39 N.A. N.A. 

ET44-46 7504 6.04 0.48 14.38 
ET46-48 11775 7.05 N.A. N.A. 
ET48-50 6782 5.15 0.48 12.26 
ET50-55 7396 6.09 N.A. N.A. 
ET55-60 6363 4.82 0.48 11.48 
ET60-65 7808 5.11 N.A. N.A. 

N.A. Not Analysed. 



CORE SH1. 	 CORE SP1. 

Salt free organic data Salt free organic data 

S C N C/N s c N C/N (ppm) (%) (%) (atm) (ppm) (%) (%) (atm) 

SHOI 729 2.03 N.A. N.A. SPO-1 No Sample SH1-2 541 2.10 0.30 7.90 SP1-2 506 1.81 N.A. N.A. SH2-3 636 2.01 N.A. N.A. sP2-3 679 1.78 0.28 7.16 SH3-4 728 1.86 0.27 7.75 SP3-4 1195 1.98 N.A. N.A. SH4-5 921 1.90 0.27 7.92 SP4-5 1330 2.15 0.28 8.96 SH5-6 734 1.78 N.A. N.A. SP5-6 1485 1.98 N.A. N.A. SH6-7 829 1.98 0.25 9.24 SP6-7 N.A. N.A. N.A. N.A. SH7-8 916 1.83 N.A. N.A. SP7-8 1421 1.84 0.27 7.96 SH8-9 N.A. N.A. N.A. N.A. SP8-9 1775 1.95 0.26 8.96 SH9-10 1050 1.80 0.25 N.A. SP9-10 1476 1.71 0.24 8.31 SHIO-12 1201 1.86 N.A. 8.68 SPlO-12 1554 1.73 N.A. N.A. SH12-14 1234 1.84 N.A. N.A. SP12-14 2120 1.75 0.24 8.51 SH14-16 1226 1.75 0.25 8.17 SP14-16 2776 1.85 N.A. N.A. SH16-18 1469 1.75 N.A. N.A. SP16-18 2715 1.76 0.23 8.93 SH18-20 2170 1.81 N.A. N.A. SP18-20 2571 1.59 N.A. N.A. SH20-22 1678 1.68 0.24 8.17 SP20-22 2330 1.33 0.23 9.11 SH22-24 1437 1.53 N.A. N.A. SP22-24 2621 1.27 N.A. N.A. 
SH24-26 1839 1.64 0.24 7.97 SP24-26 3369 1.48 0.22 9.18 SH26-28 2276 1.75 N.A. N.A. SP26-28 3229 1.43 N.A. N.A. 
SH28-30 1933 1.58 0.24 7.68 SP28-30 3688 1.37 0.23 8.37 
SH30-32 2035 1.68 N.A. N.A. SP30-32 3565 1.26 N.A. N.A. 
SH32-34 2365 1.63 0.24 7.92 SP32-34 3677 1.49 0.22 7.78 SH34-36 2272 1.64 N.A. N.A. SP34-36 3217 1.29 N.A. N.A. 
SH36-38 2157 1.58 0.23 8.01 SP36-38 3607 1.39 0.21 8.56 
SH38-40 1914 1.60 N.A. N.A. SP38-40 3465 1.63 N.A. N.A. 
SH40-42 2342 1.57 0.23 7.96 SP40-42 3427 1.51 0.21 11.22 
SH42-44 2442 1.64 N.A. N.A. SP42-44 3804 1.39 N.A. N.A. 
SH44-46 2586 1.71 0.23 8.67 SP44-46 3823 1.31 0.21 7.06 SH46-48 1509 1.50 N.A. N.A. SP46-48 3433 1.38 N.A. N.A. 
Sf148-50 2524 1.58 N.A. 8.01 SP48-50 N.A. N.A. N.A. N.A. 

SP50-55 3795 1.47 N.A. 9.62 
SP55-60 3808 1.53 0.20 8.98 
SP60-65 3342 1.48 N.A. N.A. 
SP65-70 3244 1.48 0.20 8.28 
SP70-75 3793 1.48 N.A. N.A. 

N.A. Not Analysed. 



TABLE A116 

Pore Water Data. 

Sulphate values expressed as mM. 

Alkalinity values expressed as meq 1-1  
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CORE CML. CORE CR1. 

CORE AB1. 

Pore water data Pore water data 

Pore water data 
SO4 AT SO4 AT 

SO4 AT (MM) (meq/1) (MM) (meq/1) 
(MM) (meq/1) 

CM0-1 30.64 2.21 CR0-1 28.66 6.34 
ABO-1 16.65 2.62 CM1-2 28.58 2.07 CR1-2 27.61 7.51 
ABL-2 20.47 5.45 CM2-3 32.74 2.14 CR2-3 27.60 7.51 
AB2-3 N.A. N.A. CM3-4 28.28 2.15 CR3-4 N.A. N.A. 
AB3-4 21.53 3.90 CM4-5 29.53 2.36 CR4-5 26.61 7.98 
AB4-5 20.47 5.50 CM5-6 25.84 2.22 CR5-6 28.88 7.51 
AB5-6 16.48 6.22 CM6-7 31.69 2.45 CR6-7 28.34 7.50 
AB6-7 21.58 6.90 CM7-8 28.99 2.57 CR7-8 28.51 6.85 
AB7-8 19.59 6.85 CM8-9 27.94 2.77 CR8-9 26.46 8.59 
AB8-9 20.30 7.41 CM9-10 N.A. N.A. CR9-1 26.55 8.51 
AB9-10 18.47 8.36 CM10-12 28.74 2.91 CR10-12 29.99 8.66 
PtBIO-12 19.73 8.32 CM12-14 29.92 2.93 CR12-14 25.88 9.29 
AB12-14 17.96 9.58 CM14-16 29.58 3.02 CR14-16 24.68 10.52 
AB14-16 16.66 10.91 CM16-18 36.02 2.97 CR16-18 25.54 11.01 
AB16-18 18.72 11.85 CM18-20 33.05 3.20 CRIB-20 27.44 11.01 
AB18-20 17.12 11.25 CM20-22 30.76 3.32 CR20-22 24.00 11.34 
AB20-22 18.19 11.36 CM22-24 32.31 3.23 CR22-24 26.54 13.07 
AB22-24 14.30 14.88 CM24-26 31.04 3.31 CR24-26 24.07 11.31 
AB24-26 14.85 15.58 CM26-28 28.80 '3.28 CR26-28 25.56 13.46 
AB26-28 11.32 17.34 CM28-30 28.89 4.00 CR28-30 23.49 13.26 

AB28-30 14.57 19.93 CM28-30 27.65 3.43 CR30-32 22.82 13.38 

AB30-32 N.A. N.A. CM30-32 28.32 3.16 CR32-34 22.23 17.54 

AB32-34 16.09 21.36 CM32-34 27.42 3.88 CR34-36 23.09 19.35 

A834-36 14.88 31.98 CM34-36 27.80 3.90 CR36-38 24.83 14.93 

AB36-38 14.01 24.26 CM36-38 27.17 4.06 CR38-40 23.82 18.44 

AB38-40 16.39 25.35 CM38-40 27.85 3.96 CR40-42 24.75 18.34 

AB40-42 13.76 26.24 CM40-42 25.97 4.89 CR42-44 23.52 19.79 

AB42-44 112.66 26.93 CM42-44 26.59 4.38 CR44-46 24.30 20.76 

A844-46 9.90 27.68 CM44-46 27.06 4.73 CR46-48 N.A. N.A. 

AB46-48 13.07 28.55 CM46-48 27.94 4.13 CR48-50 22.80 21.58 

A848-50 11.73 29.25 CM48-50 29.29 5.33 

AB50-55 12.33 28.70 CM50-55 29.20 5.00 

N.A. Not Analysed 



CORE DN1. 

CORE DU1. CORE ET1. 
Pore water data 

Pore water data Pore water Data 
SO4 AT 

(MM) (meq/1) 	- SO4 AT SO4 AT 
(MM) (meqjl) (MM) (meq/l) 

DNO-1 29.84 2.51 
DN1-2 31.05 1.77 DUO-i 27.12 N.A. ETO-1 16.66 5.81 
DN2-3 32.65 2.65 DUI-2 27.50 N.A. ET1-2 19.87 5.64 
DN3-4 29.92 3.07 DU2-3 26.65 N.A. ET2-3 20.02 6.78 
DN4-5 32.21 3.12 D(J3-4 N.A. N.A. ET3-4 20.53 7.10 
DN5-6 30.79 2.57 DU4-5 N.A. N.A. ET4-5 18.88 7.45 
DN6-7 30.60 2.59 DU5-6 22.68 N.A. ET5-6 19.26 7.45 
DN7-8 29.77 3.72 DU6-7 26.98 N.A. ET6-7 20.08 7.40 
DN8-9 29.24 3.63 D!J7-8 27.97 N.A. ET7-8 20.23 7.42 
DN9-10 31.55 3.56 DU8-9 27.46 N.A. ET8-9 20.62 8.14 
DN1O-12 28.87 3.10 DU9-10 29.37 N.A. ET9-10 20.24 8.60 
DN12-14 No Sample DUIO-12 28.92 N.A. ETIO12 18.28 10.14 
DN14-16 No Sample DU12-14 28.12 N.A. ET1214 17.19 12.46 
DN16-18 26.25 3.10 DU14-16 28.71 N.A. ET14-16 17.38 14.66 
DN18-20 29.61 3.52 DU16-18 28.39 N.A. ET16-18 15.97 16.51 
DN20-22 26.91 4.17 DU18-20 29.59 N.A. ET18-20 16.47 18.07 
DN22-24 28.47 3.59 DU20-22 N.A. N.A. ET20-22 16.43 19.68 
DN24-26 28.40 3.70 DU22-24 28.62 N.A. ET22-24 16.69 21.62 
DN26-28 30.22 3.52 DU24-26 28.17 N.A. ET24-26 16.90 20.18 
DN28-30 28.57 3.87 DU26-28 29.44 N.A. ET26-28 16.21 20.82 
DN30-32 29.93 3.77 DU28-30 29.41 N.A. ET28-30 16.46 20.00 
DN32-34 29.38 4.04 DU30 32 27.37 N.A. ET30-32 16.13 22.70 
DN34-36 28.17 3.98 D(J32-34 27.90 N.A. ET32-34 15.53 22.79 
DN36-38 27.72 3.96 DU34-36 24.42 N.A. ET34-36 15.10 24.13 
DN38-40 28.63 4.27 DU36-38 27.33 N.A. ET36-38 13.93 25.14 
DN40-42 28.83 2.88 DU38-40 26.07 N.A. ET38-40 13.43 22.26 
DN42-44 28.75 4.37 DU40-42 26.95 N.A. ET40-42 12.14 23.87 
DN44-46 34.71 4.84 DU42-44 24.14 N.A. ET42-44 10.88 28.50 
DN46-48 26.74 339 ET4446 12.14 30.75 
DN48-50 28.15 4.41 N.A. Not Analysed ET4648 12.77 44.27 

ET48-50 10.49 43.96 
ET50-55 9.07 56.09 
ET55-60 5.62 59.36 



CORE SPI. 
CORE Sill. 

Pore water data 
Pore water data 

SO4 AT 
SO4 AT (MM) (meq/1) 

(MM) (meq/l) 
SPO-1 29.89 N.A. 

SHO-1 26.39 N.A. SP1-2 27.40 N.A. 
SH1-2 26.71 N.A. SP2-3 27.22 N.A. 
SH2-3 25.06 N.A. SP3-4 28.00 N.A. 
SH3-4 25.98 N.A. SP4-5 28.41 N.A. 
SH4-5 25.01 N.A. SP5-6 2.19 N.A. 
SH5-6 26.40 N.A. SP6-7 26.62 N.A. 
SH6-7 25.38 N.A. SP7-8 27.41 N.A. 
SH7-8 25.18 N.A. SP8-9 24.39 N.A. 
SH8-9 26.17 N.A. SP9-10 26.74 N.A. 
SH9-10 26.01 N.A. SPI0-12 26.89 N.A. 
SH1O-12 25.73 N.A. SP12-14 29.97 N.A. 

SPI4-16 30.75 N.A. 
SHI4-16 23.62 N.A. SPI6-18 29.19 N.A. 
SHI6-18 24.11 N.A. SP18-20 26.06 N.A. 
SH18-20 24.91 N.A. SP20-22 28.37 N.A. 
S1120-22 25.01 N.A. SP22-24 25.95 N.A. 
SH22-24 24.39 N.A. SP24-26 31.01 N.A. 
SH24-26 24.03 N.A. SP26-28 28.18 N.A. 
SH26-28 24.03 N.A. SP28-30 28.77 N.A. 
SH28-30 22.39 N.A. SP30-32 27.60 N.A. 
SH30-32 22.60 N.A. SP32-34 26.21 N.A. 
SH32-34 21.29 N.A. SP34-36 N.A. N.A. 
SH34-36 21.21 N.A. SP36-38 N.A. N.A 
SH36-38 19.09 N.A. SP38-40 26.09 N.A. 
SH38-40 14.97 N.A. SP40-42 25.84 N.A. 
SH40-42 N.A. N.A. SP42-44 24.20 N.A. 
SH42-44 17.46 N.A. SP44-46 N.A. N.A. 
SH44-46 15.76 N.A. SP46-48 27.52 N.A 
SH46-48 N.A. N.A. SP48-50 23.73 N.A. 
SH48-50 N.A. N.A. SP50-55 22.02 N.A. 
SH50-55 15.37 N.A. SP55-60 20.01 N.A. 

SP60-65 17.44 N.A. 

N.A. Not analysed 	SP6570 16.40 N.A. 
SP70-75 15.32 N.A. 



& 5N Data. 

All values calculated as 0/00  from: 

ON = (at% 15N) - (at% 15N)atm  1000 

(at% 15  N);,,,, 
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CORE CMI. 
	 CORE CR1. 	 CORE DUI. 	 CORE ET1. 	 CORE SH1. 	 CORE SP1. 

DN15 
	

DN15 	 DN15 
	

DN15 	 DN1 5 
	

DN15 

CMO-1 N.A. CR0-1 7.64 DUO-1 N.A. ETO-1 6.55 SHO-1 N.A. SPO-1 8.74 

CM1-2 13.92 CRI-2 N.A. DUI-2 9.56 ETI-2 N.A. SH1-2 3.45 SPI-2 N.A. 

CM2-3 M.A. CR2-3 6.83 DU2-3 N.A. ET2-3 6.55 SH2-3 N.A. SP2-3 9.28 

CM3-4 14.20 CR3-4 N.A. DU3-4 8.74 ET3-4 N.A. SH3-4 4.67 SP3-4 N.A. 

CM4-5 N.A. CR4-5 6.28 DU4-5 N.A. ET4-5 5.73 SH4-5 4.10 SP4-5 9.28 

CM5-6 14.74 CR5-6 N.A. DU5-6 8.46 ET5-6 N.A. SH5-6 N.A. SP5-6 N.A. 

CM6-7 N.A. CR6-7 9.01 DU6-7 N.A. ET6-7 7.10 SH6-7 3.28 SP6-7 9.56 

CM7-8 16.65 CR7-8 N.A. DU7-8 8.74 ET7-8 N.A. SH7-8 N.A. SP7-8 10.37 

CM8-9 N.A. CR8-9 8.19 DU8-9 N.A. ET8-9 6.01 SH8-9 3.28 SP8-9 N.A. 

CM9-I0 5.46 CR9-10 N.A. DU9-10 9.56 ET9-10 N.A. SH9-10 N.A. SP9-10 12.01 

CMIO-12 N.A. CRIO-12 8.19 DrJ10-12 N.A. ETLO-12 6.83 SHIO-12 1.91 SPIO-12 N.A. 

CM12-14 N.A. CR1214 N.A. DU12-14 10.10 ETI2-14 N.A. SH12-14 N.A. SP12-14 10.92 

CM14-16 3.82 CR14-16 8.74 DUI4-16 N.A. ET14-16 6.83 SH14-16 4.37 SPI4-16 N.A. 

CM16-18 N.A. CRI6-18 N.A. DU16-18 11.74 ETI6-18 N.A. SHI6-18 9.56 SP16-18 10.65 

CM18-20 5.73 CRI8-20 8.46 DUI8-20 N.A. ETI8-20 N.A. SH18-20 N.A. SP18-20 N.A. 

CM20-22 N.A. CR20-22 N.A. DU20-22 12.29 ET20-22 7.10 SH20-22 10.37 SP20-22 11.47 

CM22-24 3.55 CR22-24 9.56 DU22-24 N.A. ET22-24 

~ ET24-26 
N.A. SH22-24 N.A. SP22-24 N.A. 

CM24-26 N... CR24-26 N.A. DU24-26 13.10 6.55 SH24-26 10.92 SP24-26 11.19 

CM26-28 i64 CR26-28 9.56 DLJ26-28 N.A. ET26-28 N.A. SH26-28 N.A. SP26-28 N.A. 

CM28-30 N.A. CR28-30 N.A. D1128-30 16.38 ET28-30 6.83 SH28-30 12.29 SP28-30 10.37 

CM30-32 7.10 CR30-32 9.56 DU30 32 N.A. ET30-32 N.A. SH30-32 N.A. SP30-32 N.A. 

CM32-34 N.A. CR32-34 N.A. DU32-34 20.20 ET32-34 6.55 SH32-34 12.01 SP32-34 12.01 

CM34-36 1.91 CR34-36 9.01 DU34-36 N.A. ET34-36 N.A. SH34-36 N.A. SP34-36 N.A. 

CM36-38 N.A. CR36-38 N.A. DU36-38 22.11 ET36-38 6.83 SH36-38 13.65 SP34-36 9.28 

CM38-40 8.19 CR38-40 9.83 DU38-40 N.A. ET38-40 N.A. SH38-40 N.A. SP38-40 N.A. 

CM40-42 N.A. CR4042 N.A. DU40-42 21.84 ET40-42 6.28 SH40-42 12.29 SP40-42 10.10 

CM42-44 -12.83 CR42-44 7.10 DU42-44 N.A. ET42-44 N.A. SH42-44 N.A. SP42-44 N.A. 

CM44-46 N.A. CR44-46 N.A. ET44-46 6.55 SH44-46 13.10 SP44-46 10.37 

CM46-48 -8.19 CR46-48 9.83 ET46-48 N.A. SH46-48 N.A. SP46-48 N.A. 

CM48-50 N.A. CR48-50 N.A. ET48-50 7.92 SH48-50 N.A. SP48-50 10.37 

CM50-55 2.46 CR50-55 N.A. ET50-55 N.A. SP50-55 N.A. 

CM55-60 N.A. ETSS-60 5.46 SP55-60 10.92 

CM60-65 8.19 SP60-65 N.A. 
SP65-70 12.83 

N.A. 	Not Analysed SP70-75 N.A. 



TABLE AIL8 

Halogen Data. 

(Br, CI, I) 

All values expressed as ppm on a salt free basis. 
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CORE AB1. CORE CM1. 
CORE CR1. 

Salt-corrected halogen data, 	ppm Salt-corrected halogen data, 	ppm 
Salt-corrected halogen data, ppm 

I Br Cl I Br Cl 
I Br Cl 

ABO-1 540 409 18324 CM01 206 141 7423 
CRO-1 342 221 8791  

AB1-2 467 290 15546 CMI-2 186 129 5555 
CRI-2 329 232 11047  

AB2-3 N.A. N.A. N.A. CM2-3 166 120 5328 
CR2-3 298 201 7732  

AB3-4 443 349 15371 CM34 155 108 5171 
CR3-4 262 184 7452  

AB4-5 369 344 14930 CM45 147 104 4617 
CR4-5 241 172 7980  

AB5-6 414 359 15352 CM5-6 133 101 4083 
CR5-6 194 121 6934  

AB6-7 364 345 16764 CM6-7 124 96 5171 
CR6-7 177 107 6662  

AB7-8 421 358 18985 CM7-8 130 94 4141 
CR7-8 168 107 7336  

AB8-9 402 350 13330 CM8-9 122 96 4851 
CR8-9 158 114 8730  

AB9-10. 388 352 14015 CM910 N.A.. N.A. N.A. 
CR9-b 143 105 7874 

AB1O-12 363 352 13973 CM1O-12 121 108 6280 
CR1O-12 149 131 8030  

AB12-14 324 333 19097 CM12-14 123 101 5262 
CR12-14 157 128 6653  

AB14-16 316 321 14646 CM14-16 115 99 5553 
CR14-16 151 129 7805  

AB16-18 296 316 14926 CM16-18 109 90 5369 
CR16-18 136 114 8040  

AB18-20 283 321 19807 CM18-20 114 97 6061 
CR18-20 136 117 7286  

AB20-22 282 312 12855 CM20-22 118 94 2946 
CR20-22 136 105 5664  

AB22-24 271 306 13967 CM22-24 112 101 5719 
CR22-24 132 105 7028  

AB24-26 251 302 14759 CM24-26 113 99 6495 
CR24-26 126 116 6991  

AB26-28 244 299 12256 CM26-28 117 100 6345 
CR26-28 128 124 6551  

PB28-30 252 291 14062 CM28-30 104 104 8381 
CR28-30 130 128 7090  

AB30-32 N.A. N.A. N.A. CM30-32 104 92 4713 
CR30-32 N.A. N.A. N.A.  

AB32-34 241 297 14913 CM32-34 102 105 8202 
CR32-34 132 136 6732  

AB34-36 259 297 13580 CM34-36 104 94 5946 
CR34-36 135 148 9558  

AB36-38 252 291 12091 CM36-38 99 95 5745 
CR36-38 126 133 7306 

B38-40 295 290 11714 CM38-40 104 98 5785 
CR38-40 119 121 5185  

AB40-42 243 305 14345 CM40-42 97 91 4956 
CR40-42 122 131 5654  

AB42-44 243 297 10522 CM42-44 91 92 6332 
CR42-44 127 154 6367  

AB44-46 245 296 13432 CM44-46 97 99 7536 
CR44-46 127 147 7110 

AB46-48 233 280 15288 CM46-48 93 85 9210 
CR46-48 127 146 8368 

AB48-50 236 293 11977 CM48-50 95 96 7433 
CR48-50 124 136 7604 

ABSO-55 216 273 13489 CM50-55 92 98 7252 
CR50-55 128 136 7517 

CM55-60 89 85 4741 

CM60-65 84 104 8544 

N.A. Not Analysed. 



Salt-corrected halogen data, ppm 	Salt-corrected halogen data, ppm 

I 	Br 	Cl 
	

I 	Br 	Cl 

DUO-1 579 464 22423 ETO-1 486 370 24587 
DUI-2 718 535 24908 ET1-2 493 399 24857 
DU2-3 211 135, 14710 ET2-3 522 444 32142 
DtJ3-4 571 476 19142 ET3-4 517 410 24511 
DU4-5 N.A. N.A. N.A. ET4-5 467 406 24945 
DU5-6 573 472 13660 ET5-6 461 382 25110 
DU6-7 484 447 16459 ET6-7 473 265 12543 
DU7-8 539 444 14082 ET7-8 491 380 27194 
DUB-9 479 414 13570 ET8-9 475 412 27277 
DU9-10 N.A. N.A. N.A. ET9-10 503 387 24424 
DUIO-12 444 395 13342 	1 ET1O-12 355 332 19971 
DU12-14 364 315 11329 ET12-14 359 341 20712 
DU14-16 333 297 11558 ET14-16 347 324 19058 
DtJ16-18 274 243 9136 ET16-18 386 363 19022 
DU18-20 206 234 9590 ET18-20 No sample 
DU20-22 N.A. N.A. N.A. ET20-22 322 328 18130 
DU22-24 199 163 8109 ET22-24 No sample 
DU24-26 215 . 	190 11240 ET24-26 223 333 20354 
DU26-28 268 243 10464 ET26-28 311 348 21818 
DU28-30 160 127 7906 ET28-30 308 292 20517 
DtJ30-32 120 95 5853 ET30-32 309 257 25897 
DU32-34 74 64 4493 ET32-34 294 308 16228 
DU34-36 61 61 5341 ET34-36 288 308 14396 
DU36-38 65 56 4882 ET36-38 249 303. 19496 
DU38-40 59 61 5422 ET38-40 261 298 20714 
DU40-42 59 57 4547 ET40-42 245 299 1816& 
DU42-44 56 54 4486 ET42-44 240 293 18350 
DU44-46 61 58 4542 ET44-46 250 302 19838 

ET46-48 226 372 22669 

N.A. Not Analysed ET48-50 241 304 14504 
ET50-55 227 303 17842 

• ET55-60 219 278 17994 
ET60-65 222 	• 290 22767 

Salt-corrected halogen data, ppm 

I Br Cl 

DNO-1 435 197 9384 
DN1-2 358 180 7490 
DN2-3 326 193 11959 
DN3-4 325 193 10945 
DN4-5 302 191 10878 
DN5-6 302 179 10289 

DN6-7 317 182 12377 
DN7-8 297 190 10783 
DN8-9 289 178 9968 
DN9-10 286 168 11208 
DNI0-12 No Sample 
DNI2-14 No Sample 
DN14-16 356 178 8847 
DN16-18 247 147 6475 
DN18-20 244 165 13722 
DN20-22 242 178 6512 
DN22-24 239 160 10983 
DN24-26 245 154 7363 

DN26-28 241 158 11041 

DN28-30 229 147 7854 

DN30-32 245 152 9482 
DN32-34 252 154 10011 
DN34-36 243 150 8301 
DN36-38 231 146 7641 

DN38-40 220 144 7490 

DN40-42 221 141 9907 

DN42-44 222 141 11021 

DN44-46 216 140 9463 

DN46-48 218 139 8650 

DN50-55 203 131 8856 

CORE DNI. 
	 CORE DUI. 	 CORE ETI. 



CORE SPI. 

Salt-corrected halogen data, ppm 

CORE 5111. 

Salt-corrected halogens data, ppm 

CORE 1101. 

Salt-corrected halogen data, ppm 

I Br Cl 

5110-1 376 241 28235 
SH1-2 340 222 21558 
SH2-3 341 245 11879 
SH3-4 329 236 10905 
SH4-5 318 229 12247 
SH5-6 220 209 11272 
SH6-7 308 228 11340 
SH7-8 307 212 10380 
SH8-9 N.A. N.A. N.A. 
SH9-10 299 224 10332 
SHi0-12 287 216 11220 
SH12-14 299 232 11677 
SH14-16 281 230 11362 
SH16-18 281 221 9745 
SH18-20 249 209 7192 
SH20-22 296 198 9672 
SH22-24 271 202 9404 
SH24-26 258 185 8234 
SH28-30 257 191 10458 
SH28-30 271 210 10273 
SH30-32 273 204 11973 
SH32-34 247 297 11891 
SH34-36 241 170 10391 
SH36-38 246 184 8921 
SH38-40 234 190 7607 
S1140-42 242 191 9509 
SH42-44 234 178 8044 
S1144-46 233 179 8867 
SH46-48 248 237 8199 
SH48-50 250 172 7886 

I Br Cl 

SPO-1 N.A. N.A. N.A. 
SPI-2 388 237 11952 
SP2-3 314 241 .10771 
SP3-4 287 238 11253 
SP4-5 351 228 10287 
SP5-6 289 227 11456 
SP9-7 N.A. N.A. N.A. 
SP7-8 325 210 10897 
SP8-9 272 217 11783 
SP9-10 262 201 9181 
SP1012 N.A N.A. N.A. 
SP12-14 244 201 9872 
SP14-16 228 179 8554 
SP16-18 232 183 7715 
SP18-20 252 186 9631 
SP20-22 257 195 10843 
SP22-24 229 189 9502 
SP24-26 210 183 10504 
SP26-28 187 184 10445 
SP28-30 219 186 9859 
SP30-32 211 187 12115 
SP32-34 212 173 . 	8888 
SP34-36 212 170 9281 
SP36-38 186 163 9313 
SP38-40 182 155 8208 
SP40-42 188 154 12263 
SP42-44 188 165 9673 
SP44-46 182 161 7730 
SP46-48 169 148 12094 
SP40-50 N.A. N.A. N.A. 
SP50-55 169 155 10006 
SP55-60 166 152 :9318 
SP60-65 164 158 8508 
SP65-70 158 155 8591 
SP70-75 160 149 8143 

I Br Cl 

1100-1 455 277 15079 
1101-2 412 239 10691 
1102-3 420 253 11588 
1103-4 381 222 10202 
1104-5 374 223 11610 
1105-6 323 212 12617 
1106-7 334 216 10449 
1107-8 314 192 9322 
H08-9 252 164 8897 
1109-10 228 133 5425 
HOi0-12 233 152 9125 
H012-14 257 170 7913 
11014-16 243 159 8343 
11016-18 159 96 3652 
H018-20 123 73 4217 
11020-22 178 46 2024 
11022-24 215 143 6604 
11024-26 215 152 7508 
11026-28 226 154 9305 
11028-30 223 151 10043 
11030-32 N.A. N.A. N.A. 
H032-34 236 158 8601 
H034-36 239 156 8137 
H036-38 233 145 8890 
11038-40 226 152 9335 
11040-42 202 142 8382 

N.A. Not Analysed 



CORE NEI. 

Salt-corrected halogen data, ppm 

I Br Cl 

NEO-1 546 243 12158 
NEI-2 474 225 9984 
NE2-3 457 237 10513 
NE3-4 504 250 13251 
NE4-5 480 254 14103 
NE5-6 441 232 11677 
NE6-7 420 234 13242 
NE7-8 432 231 11776 
NE8-9 435 251 15035 
NE9-10 420 227 12698 
NEIO-12 402 229 11930 
NE12-14 389 233 15788 
NE14-16 362 224 11923 
NE16-18 367 208 8701 
NE18-20 362 210 9433 
NE20-22 361 237 13575 
NE22-24 350 249 12105 
NE24-26 360 214 11019 
NE26-28 363 215 12493 
NE28-30 335 206 12200 
NE30-32 361 211 11552 
NE32-34 356 202 11056 
NE34-36 353 206 11674 
NE36-38 341 208 10331 
NE38-40 364 225 12904 

Ili 
0' 
0 

CORE SN1. 

Salt-corrected halogen data, ppm 

I Br Cl 

.SNO-1 No Sample 
SN1-2 No. Sample 
SN2-3 336 205 11352 
SN3-4 353 204 10997 
SN4-5 242 161 11220 
SN5-6 296 183 9861 
SN6-7 297 178 8987 
SN7-8 306 178 12998 
SN8-9 289 181 8613 
SN9-10 290 173 10975 
SN10-12 268 174 10909 
SN12-14 262 145 10966 
SN14-16 268 168 10948 
SN16-18 253 167 9915 
SN18-20 256 160 9074 
SN20-22 245 155 9122 
SN22-24 260 156 10104 
SN24-26 253 156 10173 
SN26-28 239 148 10180 
SN28-30 229 155 11345 
SN30-32 233 155 10645 
SN32-34 217 141 9805 
SN34-36 230 159 9776 
SN36-38 217 137 8423 
SN38-40 209 133 8655 
SN40-42 197 136 9761 

N.A. Not Analysed. 



TABLE AII.9 

Total Metals And Metal/Rb Ratios. 

(Cu, Pb, Zn, Cu/Rb, Pb/Rb, Zn/Rb) 

All values expressed on a salt free basis. 

Metal values given as ppm. 
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CORE ABI. CORE CM1. 

Salt free metal data and 	ratios Salt free metal data and ratios 

Cu Pb Zn Cu/Rb Pb/Rb Zn/Rb Cu Pb Zn Cu/Rb Pb/Rb Zn/Rb 

ABO-1 26 89 226 0.26 0.88 2.24 CM0-1 9 31 76 0.11 0.39 0.96 
AB1-2 25 80 216 0.25 0.78 2.12 CM1-2 9 31 77 0.10 0.36 0.89 
A82-3 N.A. N.A. N.A. N.A. N.A. N.A. CM2-3 8 33 76 0.09 0.38 0.88 
AB3-4 26 78 207 0.26 0.77 2.03 CM3-4 8 31 74 0.09 0.37 0.87 
AB4-5 26 78 208 0.25 0.74 1.98 CM4-5 8 31 71 0.09 0.36 0.83 
AB5-6 25 79 209 0.25 0.75 1.97 CM5-6 7 28 67 0.08 0.33 0.78 
AB6-7 24 76 200 0.30 0.72 1.91 CM6-7 7 26 65 0.83 0.31 0.77 
AB7-8 24 74 194 0.23 0.70 1.83 CM7-8 8 26 62 0.09 0.31 0.73 
AB8-9 24 75 196 0.22 0.71 1.83 CM8-9 7 27 64 0.08 0.31 0.74 
AB9-10 25 72 194 0.24 0.62 1.87 CM9-10 N.A. 	N.A. N.A. N.A. N.A. N.A. 
ABIO-12 23 65 171 0.22 0.63 1.64 CM1O-12 7 23 64 0.08 0.26 0.72 
AB12-14 22. 55 146 0.22 0.55 145 CM12-14 9 22 63 0.10 0.24 0.69 
AB14-16 21 51 134 0.21 0.51 1.34 CM14-16 9 20 59 0.10 0.23 0.67 
AB16-18 19 42 116 0.19 0.42 1.16 CM16-18 9 21 60 0.10 0.24 0.67 
A818-20 18 41 114 0.18 0.41 1.29 CM18-20 8 20 58 0.09 0.23 0.65 
AB20-22 18 43 121 0.18 0.42 1.67 CM20-22 8 20 61 0.09 0.21 0.65 
AB22-24 17 34 104 0.17 0.33 1.02 CM22-24 9 22 63 0.10 0.23 0.67 
AB24-26 17 30 102 0.17 0.30 1.01 CM24-26 8 21 60 0.09 0.23 0.65 
AB26-28 17 31 103 0.18 0.30 1.00 CM26-28 10 21 61 0.10 0.22 0.64 
AB28-30 16 30 100 0.16 0.30 0.99 CM28-30 8 20 62 0.08 0.21 0.64 
AB30-32 N.A. N.A. N.A. N.A. N.A. N.A. CM3O-32 8 21 61 0.08 0.22 0.64 
AB32-34 18 30 103 0.18 0.29 1.00 CM3234 9 20 63 0.09 0.21 0.65 
AB34-36 17 30 102 0.17 0.29 0.99 CM34-36 9 21 65 0.09 0.21 0.66 
AB36-38 16 30 106 0.15 0.28 1.00 CM36-38 8 19 66 0.08 0.19 0.66 
A838-40 19 34 111 0.16 0.29 0.94 CM38-40 9 20 69 0.09 0.20 0.68 
A840-42 18 30 108 0.17 0.28 1.01 CM40-42 11 22 73 0.10 0.20 0.68 

AB42-44 16 29 106 0.15 0.27 0.98 CM42-44 12 22 76 0.11 0.20 0.69 

AB44-46 17 30 105 0.16 0.28 0.98 CM44-46 12 22 76 0.11 0.20 0.69 

AB46-48 15 30 102 0.14 0.29 0.98 CM46-48 12 21 76 0.11 0.20 0.71 

A848-50 17 28 104 0.16 0.26 0.98 CM48-50 13 23 78 0.11 0.20 0.68 

A850-55 16 27 102 0.16 0.26 0.99 CM50-55 11 22 77 0.10 0.20 0.68 
CM55-60 13 24 81 0.11 0.20 0.68 
CM60-65 12 21 78 0.10 0.18 0.68 N.A. Not Analysed 



156 	0.19 
153 	0.17 
155 	0.17 
153 	0.18 
154 	0.17 
154 	0.17 
149 	0.12 
152 	0.17 
151 	0.18 
150 	0.17 
No Sample 
No Sample 

200 	0.17 
126 	0.18 
141 	0.16 
133 	0.15 
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119 	0.15 
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CORE CR1. 	
CORE DN1. 

Salt free metal data and ratios 	
Salt free metal data and ratios. 

Cu Pb Zn Cu/Rb Pb/Rb Zn/Rb 	 Cu Pb Zn Cu/Rb Pb/Rb Zn/Rb 

CR0-i 
CR1 -2 
CR2-3 
CR 3-4 
CR 4-5 
CR5-6 
CR6-7 
CR7-8 
CR8- 9 
CR9 -10 
CR10- 12 
CR 12-14 
CR14 -16 
CR16 -18 
CR18 -2 0 
CR2O-22 
CR22 -2 4 
CR2 4-2 6 
CR2 6-28 
CR28- 30 
CR3 0-32 
CR32- 34• 
CR3 4-3 6 
CR36- 38 
CR38-40 
CR4Q-42 
cg i2-44 
CR4 4-4 6 
CR46-48 
CR48- 50 
CR50-S 5 
CR5 5-60 
CR6 0-6 5 

15 42 123 0.14 0.40 1.14 DNO-1 
14 43 123 0.13 0.40 1.14 DNI-2 
15 42 118 0.14 0.40 1.11 DN2-3 
13 39 114 0.12 0.36 1.06 DN3-4 
12 39 109 0.11 0.37 1.04 DN4-5 
13 30 83 0.18 0.42 1.15 DN5-6 
12 23 66 0.26 0.37 1.08 DN6-7 
13 23 64 0.19 0.34 0.94 

. 	 DN7-8 
ii 24 68 0.13 0.30 0.82 DN8-9 
11 19 60 0.15 0.25 0.79 DN9-10 
ii 21 72 0.17 0.20 0.70 DN1O-12 
11 24 74 0.10 0.22 0.69 DN12-14 
10 22 72 0.10 0.21 0.69 DN14-16 
10 20 65 0.11 0.21 0.68 DN16-18 
9 21 67 0.19 0.21 0.66 DN18-20 
9 19 63 0.10 0.20 0.68 DN20-22 
10 18 63 0.11 0.19 0.67 DN22-24 
10 21 69 0.10 0.21 0.68 

. 	DN24-26 
10 22 72 0.09 0.21 0.68 DN26-28 
10 22 73 0.09 0.21 0.68 DN28-30 
N.A. N.A. N.A. N.A. N.A. N.A. DN30-32 
ii 22 78 0.10 0.20 0.71 DN32-34 
12 22 79 0.10 0.19 0.69 DN34-36 
11 21 75 0.10 0.20 0.70 

. DN36-38 
12 19 74 0.11 0.18 0.71 DN38-40 
11 23 80 0.10 0.20 0.71 DN40-42 
ii 23 85 0.09 0.19 0.70 DN42-44 
11 23 85 0.09 0.19 0.70 DN44-46 
ii 23 83 0.92 0.19 0.69 DN46-48 
11 23 80 0.10 0.20 0.70 DN48-50 
11 23 85 0.09 .0.19 0.70 DN50-55 
11 22 83 0.09 0.19 0.70 
12 24 88 0.10 0.19 0.71 

N.A. Not Analysed 



CORE DUI. 	 CORE ET1. 

Salt free metal data and ratios 	 Salt free metal data and ratios 

Cu Pb Zn Cu/Rb Pb/Rb Zn/Rb 
	

Cu Pb Zn Cu/Rb Pb/Rb Zn/Rb 

DUO-1 24 55 150 0.21 0.49 
DU1-2 / 	26 56 159 0.22 0.46 
DU2-3 26 56 160 0.22 0.47 
DU3-4 25 52 157 0.21 0.44 
DtJ4-5 N.A. N.A. N.A. N.A. N.A. 
DU5-6 24 53 158 0.20 0.45 
DU6-7 25 52 154 0.21 0.44 
DLJ7-8 24 51 152 0.21 0.44 
DU8-9 22 48 146 0.20 0.43 
DU9-10 N.A. N.A N.A. N.A. N.A. 
DU1O-12 20 42 129 0.19 0.39 
DEJ12-14 19 36 118 0.18 0.34 
DU14-16 16 30 98 0.16 0.30 
DU16-18 15 30 93 0.15 0.30 
DU18-20 15 24 89 0.15 0.24 
DU20-22 N.A. N.A. N.A. N.A. N.A. 
DU22-24 12 21 70 0.13 0.23 
DU24-26 14 24 84 0.14 0.24 
DU26-28 16 26 92 0.14 0.23 
Du28-30 14 23 77 0.14 0.22 
DU30 32 16 24 86 0.13 0.19 
DU32-34 19 25 94 0.14 0.18 
DrJ34-36 19 24 94 0.13 0.70 
DU36-38 19 25 93 0.13 0.18 
DrJ38-40 20 25 91 0.14 0.18 
DU40-42 20 25 94 0.14 0.17 
DU42-44 20 24 93 0.14 0.17 
DU44-46 20 26 93 0.14 0.18 

1.34 ETO-! 
1.31 ETI-2 
1.33 ET2-3 
1.32 ET3-4 
N.A. ET4-5 
1.33 ET5-6 
1.32 ET6-7 
1.31 ET7-8 
1.30 ET8-9 
N.A. ET9-10 
1.21 ET1O-12 
1.11 ET12-14 
0.97 ETI4-16 
0.93 ET16-18 
0.90 ET18-20 
N.A. ET20-22 
0.79 ET22-24 
0.82 ET24-26 
0.83 ET26-28 
0.74 ET28-30 
0.69 ET30-32 
0.67 ET32-34 
0.65 ET34-36 
0.65 E36-38 
0.64 ET38-40 
0.65 ET40-42 
0.65 :ET42-44 
0.65 ET44-46 

ET46-48 
ET 48- 50 
ET5 0-55 
ET5 5-60 
ET6O-65 

30 79 227 0.34 0.88 2.55 
31 85 237 0.34 0.92 2.58 
31 90 245 0.34 1.00 2.72 
33 94 261 0.36 1.01 2.81 
29 83 244 0.34 0.98 2.87 
32 89 252 0.35 0.97 2.74 
32 85 244 0.36 0.92 2.77 
31 86 240 0.35 0.97 2.70 
31 83 251 0.60 0.95 2.89 
32 82 242 0.37 0.94 2.78 
28 83 227 0.30 0.90 2.46 
29 86 224 0.30 0.89 2.31 
27 86 217 0.28 0.89 2.24 
29 89 227 0.31 0.96 2.39 

N.A. N.A. N.A. N.A. N.A. N.A. 
27 80 204 0.28 0.84 2.15 

N.A. N.A. N.A. N.A. N.A. N.A. 
28 76 192 0.29 0.79 2.00 
26 74 186 0.28 0.80 2.00 
27 69 178 0.29 0.73 1.89 
24 64 159 0.26 0.68 1.69 
24 62 151 0.26 0.67 1.64' 
24 61 148 0.26 0.98 1.59 
23 56 139 0.25 0.62 1.53 
23 57 133 0.25 0.63 1.46 
22 51 124 0.24 0.56 1.36 
21 50 120 0.23 0.54 1.31- 
22 51 120 0.24 0.56 1.32 
23 46 Ill 0.26 0.52 1.25 
21 45 110 0.23 0.48 1.18 
20 43 105 0.22 0.47 1.15 
21 44 102 0.23 0.48 1.11 
20 41 97 0.23 0.47 1.10 

N.A. Not Analysed. 



0' 

CORE SH1. 
	 CORE SP1. 

Salt free metal data and ratios Salt free metal data and ratios 

Cu Pb Zn Cu/Rb Pb/Rb Zn/Rb 
Cu Pb Zn Cu/Rb Pb/Rb Zn/Rb 

SHO-1 20 38 124 0.19 0.36 1.17 
SPO1 No Sample 

SHI-2 19 38 121 0.18 0.36 1.15 
Spl-2 18 48 143 0.17 0.44 1.32 

SH2-3 18 38 120. 0.17 0.36 1.14 
sp2-3 19 50 147 0.17 0.45 1.32 

S113-4 18 36 120 0.17 0.34 1.14 
SP3-4 20 49 148 0.18 0.44 1.35 

SH4-5 18 38 120 0.17 0.36 1.14 
Sp4-5 18 48 147 0.16 0.44 1.34 

SH5-6 19 38 120 0.18 0.36 1.13 
SP5-6 19 50 144 0.17 0.45 1.30 

SH6-7 19 36 118 0.18 0.34 1.11 SP6-7 N.A. N.A. N.A. N.A. N.A. N.A. 

SH7-8 19 36 117 0.18 0.34 1.09 
SP7-8 20 49 143 0.18 0.44 1.30 

SH8-9 N.A. N.A. N.A. N.A. N.A. 	- N.A. 
SP8-9 20 46 140 0.18 0.42 1.28 

SH9-l0 19 36 117 0.18 0.34 1.04 
SP9-10 14 44 131 0.14 0.42 1.26 

SH10-12 19 35 116 0.18 0.33 1.09 
SPIO-12 19 46 134 0.18 0.43 1.26 

SH12-14 20 36 116 0.19 0.34 1.08 	
. SP12-14 19 46 136 0.17 0.42 1.24 

SH14-16 19 35 113 0.18 0.33 1.06 SP14-16 19 41 118 0.19 0.41 1.18 

SH16-18 19 33 112 0.18 0.31 1.06 
SP16-18 19 40 116 0.18 0.39 1.30 

SH18-20 20 34 109 0.19 0.32 1.03 SP18-20 18 40 116 0.18 0.39 1.30 

SH20-22 19 32 104 0.18 0.31 0.99 
SP20-22 18 41 115 0.18 0.40 1.12 

SH22-24 20 33 108 0.19 0.31 102 
SP22-24 18 37 107 0.18 0.36 1.04 

SH24-26 19 30 101 0.18 0.29 0.96 
SP24-26 17 33 95 0.17 0.33 0.95 

SH26-28 17 29 98 0.18 0.27 0.93 
SP26-28 15 32 91 0.15 0.33 0.93 

SH28-30 17 26 95 0.16 0.25 0.91 
SP28-30 16 31 87 0.16 0.31 0.87 

SH30-32 18 27 93 0.17 0.26 0.88 
SP30-32 19 38 116 0.17 0.33 1.02 

SH32-34 17 25 91 0.16 0.24 0.86 
5P32-34 15 28 84 0.18 0.28 0.82 

SH34-36 17 26 89 0.17 0.25 0.86 SP34-36 15 29 92 0.14 0.28 0.88 

SH36-38 17 25 88 0.16 0.24 0.85 SP36-38 15 26 84 0.14 0.25 0.99 

SH38-40 17 24 86 0.17 0.23 0.84 
SP38-40 14 25 82 0.13 0.24 0.78 

SH40-42 17 25 90 0.17 0.24 0.87 
SP40-42 15 28 86 0.14 0.26 0.80 

SH42-44 17 25 83 0.16 0.24 0.79 
SP42-44 15 29 91 0.14 0.27 0.85 

SH44-46 16 23 82 0.15 0.22 0.79 
SP44-46 14 25 84 0.13 0.24 0.80 
SP46-48 14 25 82 0.13 0.23 0.76 SH46-48 16 22 80 0.16 0.21 0.77 

SH48-50 16 24 81 0.15 0.23 0.78 
SP48-50 N.A. N.A. N.A. N.A. N.A. N.A. 
SP50-55 13 22 83 0.12 0.21 0.78 

N.A. Not Analysed SP55-60 13 21 80 0.12 0.20 0.76 
SP60-65 14 22 83 0.13 0.20 0.76 
SP65-70 12 23 82 0.11 0.21 0.76 
SP70-75 14 22 81 0.13 0.21 0.76 



ri 

0' 
0' 

CORE NE1. CORE 1101. 

Salt free metal data and ratios Salt free metal data and ratios 

Cu Pb Zn Cu/Rb Pb/Rb Zn/Rb Cu Pb Zn Cu/Rb Pb/Rb Zn/Rb 

iE0-1 20 44 140 0.17 0.36 1.16 HO0-1 14 28 89 0.12 0.24 0.77 
NE1-2 20 45 132 0.18 0.40 1.16 1101-2 13 28 89 0.11 0.24 0.77 
NE2-3 21 47 140 0.17 0.39 1.16 H02-3 6 27 79 0.01 0.27 0.79 
NE3-4 20 47 139 0.17 0.39 1.15 1103-4 20 45 130 0.18 0.40 1.15 
NE4-5 21 46 139 0.18 0.38 1.16 1104-5 20 44 124 0.18 0.40 1.12 
NE5-6 20 47 135 0.17 0.39 1.16 1105-6 21 47 132 0.18 0.41 1.15 
NE6-7 21 .46 131 0.17 0.38 l.l2 H06-7 19 45 125 0.17 0.41 1.13 
NE7-8 20 45 133 0.17 0.37 1.14 1107-8 18 44 122 0.17 0.40 1.12 
NE8-9 21 46 131 0.17 0.38 1.10 H08-9 18 40 111 0.17 0.39 1.07 
NE9-10 21 44 134 0.18 0.37 1.10 H09-10 19 41 115 0.18 0.38 1.08 
NE10-12 20 43 132 0.17 0.36 1.10 HO10-12 19 40 112 0.18 0.37 1.05 
NE12-14 20 42 129 0.17 0.35 1.06 11012-14 17 35 94 0.18 0.18 0.98 
NE14-16 19 43 132 0.17 0.36 1.08 11014-16 15 33 85 0.17 0.37 0.94 
NE16-18 20 42 131 0.17 0.35 1.00 11016-18 16 33 82 0.17 0.36 0.89 
NE18-20 20 39 132 0.16 0.32 0.97 11018-20 20 32 88 0.19 0.31 0.85 
NE20-22 19 38 129 0.16 0.32 0.95 11020-22 15 30 82 0.15 0.31 0.84 
NE22-24 19 38 129 0.16 0.32 0.94 11022-24 11 27 57 0.15 0.35 0.76 
NE24-26 19 37 131 0.16 0.31 0.93 11024-26 9 23 46 0.13 0.33 0.67 
NE26-28 19 37 130 0.16 0.31 0.93 11026-28 9 25 44 0.11 0.31 0.53 
NE28-30 18 36 130 0.15 0.30 0.94 11028-30 14 26 70 0.15 0.27 0.73 
NE30-32 17 36 131 0.14 0.30 0.89 11030-32 N.A N.A. N.A. N.A. N.A. N.A. 
NE32-34 18 34 131 0.15 0.29 0.89 H032-34 14 26 73 0.14 0.27 0.75 
NE34-36 17 34 130 0.14 0.28 0.85 H034-36 13 26 73 0.13 0.26 0.74 
NE36-38 . 18 34 132 0.14 0.29 0.84 11036-38 12 28 74 0.11 0.27 0.71 
NE38-40 18 33 	. 129 0.14 0.28 0.81 11038-40 15 26 79 0.14 0.25 0.75 

11040-42 14 26 77 0.14 0.25 0.74 

N.A. Not Analysed 



CORE SNI. 

Salt free metal data and ratios 

Cu Pb Zn Cu/Rb Pb/Rb Zn/Rb 

SNO-1 No Sample 
SNI-2 No Sample 
SN2-3 12 26 58 	0.24 0.51 1.14 
SN3-4 9 22 45 	0.19 0.47 0.96 
SN4-5 11 21 48 	0.22 0.41 0.64 
SN5-6 24 39 119 	0.24 0.39 1.19 
SN6-7 24 40 119 	0.24 0.40 1.18 
SN7-8 21 28 83 	0.22 0.29 0.86 
SN8-9 23 38 114 	0.24 0.39 1.18 
SN9-10 22 38 112 	0.22 0.39 1.14 

01 	 SN1O-12 21 38 110 	0.21 0.39 1.12 
SN12-14 24 37 112 	0.24 0.37 1.13 
SN14-16 21 34 102 	0.22 0.35 1.05 
SN16-18 22 32 98 	0.22 0.33 1.00 
SN18-20 21 31 92 	0.22 0.32 0.95 
SN20-22 21 31 91 	0.22 0.32 0.94 
SN22-24 20 30 92 	0.21 0.31 0.95 
SN24-26 22 29 90 	0.23 0.30 0.93 
SN26-28 21 28 85 	0.22 0.29 0.88 
SN28-30 21 28 86 	0.22 0.22 0.88 
SN30-32 22 29 90 	0.24 0.31 0.97 
SN32-34 19 28 85 	0.20 0.30 0.90 
SN34-36 19 26 80 	0.20 0.30 0.83 
SN36-38 18 25 80 	0.19 0.26 0.83 
SN38-40 17 24 80 	0.18 0.25 0.83 
SN40-42 18 27 81 	0.18 0.28 '0.83 



TABLE AILlO 

Excess Metal Data. 

(Pb/Ni, Zn/Ni, Pbex, Zn8 ) 

Values expressed on a salt free basis, calculated from: 

Mex  = (M/NiD M/Ni6) . NIE 

Where: 

M/NID = Metal/Nickel ratio at depth, Dcm. 

M/Ni8  = Mean background Metal/Nickel ratio. 

NiD  = Nickel concentration at depth, Dcm. 
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CORE AB1. 

Salt free excess metal, data 

Pb/Ni Zn/Ni Pbx Znx 

CORE CMI. 

Salt free excess metal data 

Pb/Ni Zn/Ni Pbx Znx 

L.Ut(1. Utti, 

Salt free excess metal data 

Pb/Ni Zn/Ni Pbx Znx 

ABO-1 1.89 4.81 58 93 

AB1-2 1.67 4.50 49 110 

AB2-3 N.A. N.A. N.A. N.A. 
AB3-4 1.59 4.22 46 99 

AB4-5 1.56 4.16 46 98 

AB5-6 1.58 4.18 47 99 

AB6-7 1.55 4.08 44 92 

AB7-8 1.51 3.96 42 86 

AB8-9 1.53 4.00 43 88 

AB9-10 1.45 3.96 39 86 

ABIO-12 1.30 3.42 33 61 

AB12-14 1.15 3.04 24 40 

AB14-16 1.11 2.91 21 33 

AB16-18 0.91 2.52 12 15 

AB18-20 0.89 2.48 11 13 

AB20-22 0.93 2.63 13 20 

AB22-24 0.76 2.31 5 5 

AB24-26 0.65 2.22 0 1 

AB26-28 0.67 2.24 1 2 

AB28--30 0.67 2.22 1 1 

AB30-32 N.A. N.A. N.A. N.A. 
AB32-34 0.64 2.19 0 0 

AB34-36 0.64 2.17 0 0 

AB36-38 0.64 2.26 0 3 

AB38-40 0.69 2.27 0 3 

AB40-42 0.61 2.20 0 0 

AB42-44 0.60 2.21 0 0 

A844-46 0.65 2.28 0 3 

A346-48 0.65 2.22 0 0 

AB48-50 0.60 2.21 0 0 

AB50-55 0.60 2.27 0 3 

CM0-1 1.19 2.92 18 29 C R0-1 1.20 49  3.51 23 

CMI-2 1.15 2.85 18 28 C R1-2 1.20 49  3.51 23 

CM2-3 1.22 2.81 19 27 'C R2-3 1.20 44  3.37 23 

CM3-4 1.15 2.74 18 25 C R3-4 1.10 42  3.35 19 

CM4-5 1.15 2.63 18 22 C R4-5 1.10 38  3.21 19 

CM5-6 1.08 2.58 15 20 C R5-6 1.20 28  3.19 17 

CM6-7 0.96 2.41 12 16 C R6-7 1.00 13  2.67 10 

CM7-8 0.93 2.21 12 11 C R7-8 0.96 14  2.67 11 

CM8-9 1.00 2.37 14 15 CR8-9 0.89 11  2.52 9 

CM9-10 N.A. N.A. N.A. N.A. CR9-1 0.73 6  2.31 6 

CMIO-12 0.79 2.21 8 12 CRI0-12 0.64 3  2.18 3 

CMI2-14 0.71 2.03 7 7 CRI2-14 0.69 2.11 5 0.3 

CM14-16 0.67 1.97 5 5 C R14-16 0.69 5  2.25 4 

CM16-18 0.70 2.00 6 6 C R16-18 0.67 2  2.17 4 

CM18-20 0.67 1.93 5 4 C R18-20 0.68 2  2.16 2 

CM20-22 0.63 1.91 4 4 C R20-22 0.61 0  2.03 2 

CM22-24 0.69 1.97 6 5 C R22-24 0.58 0  2.03 1 

CM24-26 0.68 1.94 6 4 C R24-26 0.66 2  2.16 4 

CM26-28 0.64 1.85 4 2 C R26-28 0.63 0  2.06 3 

CM28-30 0.59 1.82 3 1 C R28-30 0.63 0  2.09 3 

CM30-32 0.62 1.79 4 0 CR30-32 N.A. N.A. N.A. N.A. 

CM32-34 0.59 1.85 3 2 CR32-34 0.59 2.11 1 0.3 

CM34-36 0.58 1.81 3 0 C R34-36 0.56 0  2.03 0 

CM36-38 0.54 1.89 1 0 C R36-38 0.57 0  2.03 1 

CM38-40 0.54 1.86 1 0 CR38-40 0.54 2.11 0 0.3 

CM40-42 0.56 1.87 2 0 C R40-42 0.62 2  2.16 3 

CM42-44 0.51 1.77 0 0 C R42-44 0.56 0  2.07 0 

CM44-46 0.54 1.85 2 0 C R44-46 0.55 0  2.02 0 

CM46-48 0.50 1.81 0 0 C R46-48 0.58 0  2.08 1 

CM48-50 0.55 1.86 2 0 C R48-50 0.61 0  2.11 2 

CM50-55 0.51 1.79 0 0 C R50-55 0.55 0  2.02 0 

CM55-60 0.53 1.80 1 0 C R55-60 0.55 0  2.08 2 

CM60-65 0.50 1.86 0 0 C R60-65 0.59 0  2.15 0 

N.A. Not Analysed 



CORE DUl. 
CORE DN1. 	 CORE ET1. 

Salt free excess metal data 
Salt free excess metal data 	 Salt free excess metal data 

Pb/Ni Zn/Ni PbX Znx 
Pb/Rb Zn/Rb Pbx Znx 	 Pb/Ni Zn/Ni Pbx Znx 

DUO-1 1.06 2.88 29 47 
DUI-2 1.04 2.94 29 52 DNO -1  
DU2-3 1.04 2.96 29 53 DN 1-2  
DU3-4 0.98 2.96 25 52 DN2-3 

DU4-5 N.A. N.A. N.A. N.A. DN 3-4  
DU5-6 0.95 2.82 25 47 DN 4-5  
DU6-7 0.98 2.91 25 49 DN5-6  
DU7-8 0.98 2.92 24 49 DN6-7 

DU8-9 0.98 2.98 23 49 DN7-8  
DU9-10 N.A. N.A. N.A. N.A. DN8-9  
DU10-12 0.93 2.87 19 40 DN9-10 

DU12-14 0.78 2.57 12 27 DN 10-12  
DU14-16 0.77 2.51 10 21 DN12-14 

DrJ16-18 0.73 2.27 9 12 DN1416 

DU18-20 0.59 2.17 3 8 DN16-18 

DU20-22 N.A. N.A. N.A. N.A. DNI8-20  
DU22-24 0.62 2.06 4 7 DN20-22  
D024-26 0.62 2.15 5 5 DN22-24 

DU26-28 0.59 2.09 3 4 DN24-26  
DU28-30 0.62 2.08 5 3 DN26-28  
DU30 32 0.57 2.05 3 1 DN28-30  
DU32-34 0.53 2.00 1 1 DN 30-32  
DU34-36 0.51 2.00 0 2 DN32-34  
D1J36-38 0.54 2.02 1 0 DN34-36 

DU38-40 0.53 1.94 1 3 DN36-38  
DIJ40-42 0.54 2.04 1 0 DN38-40 

DU42-44 0.51 1.98 0 0 DN 40-42  
DU44-46 0.55 1.98 2 0 DN42-44  

DN44-46 
DN46-48 
DN48-50 
DN5O-55 

1.14 3.06 28 55 ETO-1 1.72 4.93 33 118 
1.16 3.12 27 56 ETI-2 1.77 4.94 37 123 
1.16 3.16 27 58 ET2-3 1.94 5.21 44 133 
1.17 3.19 27 58 ET3-4 1.96 5.44 46 147 
1.12 3.14.  25 57 ET4-5 1.80 5.30 37 135 
1.14 3.08 27 55 ET5-6 1.89 5.36 42 141 
1.20 3.24 28 58 ET6-7 1.85 5.30 39 135 
1.16 3.10 27 55 ET7-8 1.91 5.33 41 133 
1.08 3.08 24 54 ET8-9 1.77 5.34 36 140 
1.13 3.13 25 56 ET9-10 1.78 5.26 36 133 

No Sample ET1O-12 1.80 4.93 37 118 
No Sample ET12-14 1.79 4.67 38 110 

1.12 2.94 35 46 ET14-16 1.79 4.52 38 103 
1.24 3.00 27 43 ET16-18 1.93 4.93 43 118 
1.08 2.94 23 40 ETI8-20 No Sample 
1.04 2.83 21 41 ET20-22 1.74 4.43 34 95 
1.00 2.79 19 38 ET22-24 No Sample 
'0.96 2.60 18 30 ET24-26 1.65 4.17 30 83 
0.94 2.63 16 33 ET26-28 1.61 4.04 28 77 
0.88 2.52 13 26 ET28-30 1.53 3.96 24 .72 
0.85 2.48 12 24 ET30-32 1.39 3.46 18 50 
0.89 2.57 14 28 ET32-34 1.38 3.36 17 45 
0.96 2.60 17 29 ET34-36 1.36 3.29 16 41 
0.76 2.22 8 12 ET36-38 1.24 3.09 11 32 
0.71 2.13 5 7 ET38-40 1.33 3.09 14 31 
0.67 2.11 3 6 ET40-42 1.19 2.88 8 22 
0.63 2.02 1 2 ET42-44 1.16 2.79 7 18 
0.63 1.98 1 0 ET44-46 1.24 2.93 10 23 
0.62 1.98 1 0 ET46-48 1.07 2.58 3 9 
0.58 1.88 0 0 ET48-50 1.07 2.62 3 11 
0.60 1.96 0 0 ET50-55 1.02 2.50 1 5 

ET55-60 1.02 2.37 1 0 
ET60-65 1.00 2.37 0 0 

N.A. 	Not Analysed 



CORE NE1. 

Salt free excess metal data 

Pb/Ni Zn/Ni Pbx Znx 

NEO-1 0.67 2.12 5 41 
NE1-2 0.87 2.53 14 54 
NE2-3 0.87 2.60 15 61 
NE3-4 0.94 2.78 17 65 
NE4-5 0.89 2.68 15 62 
NE5-6 0.91 2.68 16 62 
NE6-7 0.89 2.60 15 59 
NE7-8 0.89 2.69 15 62 
NE8-9 0.90 2.64 16 59 
NE9-10 0.87 2.60 14 57 
NE10-12 0.86 2.63 13 57 
NEI2-14 0.83 2.50 12 52 
NE14-16 0.83 2.49 12 53 
NE16-18 0.81 2.37 11 45 
NEI8-20 0.75 2.31 8 42 
NE20-22 0.75 2.25 8 39 
NE22-24 0.78 2.30 9 40 
NE24-26 0.73 2.19 7 36 
NE26-28 0.75 2.24 7 38 
NE28-30 0.71 2.19 6 36 
NE30-32 0.71 2.14 6 33 
NE32-34 0.69 2.12 4 32 
NE34-36 0.65 2.00 2 26 
NE36-38 0.69 2.00 4 26 
NE38-40 0.65 1.92 2 22 

CORE SH1. CORE SPI. 

Salt 	free excess metal data Salt free excess metal data 

Pb/Ni Zn/Ni Pbx Znx Pb/Ni Zn/Ni Pbx Znx 

SHO-1 0.79 2.58 14 42 SPO-1 No Sample 

SH1-2 0.79 2.50 14 39 SP1-2 1.00 2.92 55 25 

SH2-3 0.79 2.50 14 38 SP2-3 1.02 3.00 59 25 

SH3-4 0.75 2.50 12 38 SP3-4 1.12 3.08 62 25 

S}14-5 0.79 2.50 14 38 SP4-5 1.00 3.00 59 25 

SH5-6 0.79 2.50 14 38 SP5-6 1.02 2.94 56 25 

SH6-7 0.70 2.50 10 33 SP6-7 N.A. N.A. N.A. N.A. 
SH7-8 0.70 2.36 10 32 SP7-8 1.00 2.92 55 25 

SH8-9 N.A. N.A. N.A. N.A. SP8-9 0.93 2.86 52 21 

SH9-10 0.75 2.34 13 36 SP9-10 0.96 2.85 49 21 

SHIO-12 0.73 2.44 11 35 SPIO-12 0.92 2.68 44 21 

SH12-14 0.73 2.42 11 33 SP12-14 0.94 2.78 49 22 

SH14-16 0.73 2.37 11 31 SP14-16 0.91 2.62 37 18 

SH16-18 0.70 2.35 10 30 SP16-18 0:85 2.47 32 16 

SH18-20 0.69 2.33 9 25 SP18-20 0.85 2.47 32 16 

SH20-22 0.65 2.22 7 21 5P20-22 0.85 2.40 29 17 

SH22-24 0.67 2.12 8 22 SP22-24 0.79 2.28 23 14 

SH24-26 0.60 2.20 5 16 SP24-26 0.72 2.07 13 10 

SH26-28 0.59 2.02 5 15 SP26-28 0.73 2.07 12 10 

SH28-30 0.50 2.00 0 10 SP28-30 0.67 1.89 5 8 

SH30-32 0.56 1.90 3 11 SP30-32 0.79 2.42 29 14 

SH32-34 0.52 1.93 1 9 SP32-34 0.60 1.79 6 5 

SH34-36 0.55 1.89 2 5 SP34-36 0.60 1.92 0 5 

SH36-38 0.51 1.80 0 4 SP36-38 0.55 1.79 0 2 

SH38-40 0.50 1.79 0 9 SP38-40 0.53 1.75 0 1 

SH40-42 0.52 1.88 0 0 SP40-42 0.60 1.83 0 5 

SH42-44 0.51 1.69 0 0 SP42-44 0.60 1.90 0 5 

SH44-46 0.48 1.71 0 0 SP44-46 0.53 1.79 0 1 

SH46-48 0.46 1.67 0 0 SP46-48 0.54 1.78 0 2 

SH48-50 0.49 1.65 0 0 SP48-50 N.A. N.A. N.A. N.A. 
SP50-55 0.48 1.80 0 0 
SP55-60 0.46 1.74 0 0 
SP60-65 0.48 1.80 0 0 

SP65-70 0.50 1.78 0 0 
SP70-75 0.48 1.76 0 0 

N.A. 	Not Analysed 



CORE 1101. CORE SN1. 

Salt free excess metal data Salt free excess metal data 

Pb/Ni Zn/Ni Pbx Znx Pb/Rb Zn/Rb Pbx Znx 

ff00-i 0.59 1.86 12 32 SNO-1 No Sample 
H012 0.58 1.82 12 31 SNI-2 No Sample 
1102-3 0.53 1.95 7 31 SN2-3 0.90 2.00 14 19 
1103-4 0.80 2.28 26 62 SN3-4 0.82 1.67 11 9 
1104-5 0.80 2.25 25 59 SN4-5 0.72 1.66 9 9 
1105-6 0.84 2.35 28 66 SN5-6 0.60 1.83 14 31 
1106-7 0.79 2.23 25 59 SN6-7 0.62 1.83 14 31 
1107-8 0.79 2.16 25 55 SN7-8 0.43 1.28 2 0 
1108-9 0.69 1.95 20 43 SN8-9 0.59 1.78 12 28 
1109-10 0.71 1.97 21 45 SN9-10 0.59 1.75 13 25 
11010-12 0.72 2.00 21 46 . 	SN10-12 0.60 1.75 11 26 
11012-14 0.56 1.51 13 19 SN12-14 0.57 1.72 11 24 
11014-16 0.51 1.28 11 6 SN14-16 0.53 1.59 8 16 
11016-18 0.50 1.24 10 3 SN16-18 0.49 1.48 5 9 
11018-20 0.53 1.46 11 16 SN18-20 0.47 1.39 4 3 
11020-22 0.52 1.41 10 15 SN20-22 0.47 1.38 2 2 
11022-24 0.40 0.88 3 0 SN22-24 0.46 .1.42 2 5 
11024-26 0.38 0.75 2 0 SN24-26 0.43 1.34 2 0 
11026-28 0.52 0.94 8 0 SN26-28 0.42 1.29 0 0 
11028-30 0.41 1.08 4 0 5N28-30 0.44 1.37 0 0 
11030-32 0.41 1.16 4 0 SN30-32 0.45 1.41 0 0 
11032-34 0.43 1.21 5 0 SN32-34 0.44 1.33 0 0 
11034-36 0.51 1.32 9 0 SN34-36 0.43 1.33 0 0 
11036-38 0.46 1.40 6 0 SN36-38 0.40 1.31 0 0 
H038-40 0.46 1.36 6 0 sN38-40 0.39 1.27 0 0 

SN40-42 0.44 1.29 0 0 

N.A. Not Analysed 



TABLE All. 11 

137 
7Cs Data. 

Including data from Ridgway, (1984). 

All values expressed in Becquerels Kg-1  

BDL Below detection limit. 
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CORE CR1. 	 CORE DN1. 	 137Cs Data (Bq/Kg) 
(After Ridgway, 1984) 

137Cs Data (Bq/Kg) 
	

137Cs Data (Bq/Kg) 

LES1 LES2 
CR0-1 228.4 DNO-i 291.1 
CR1-2 232.7 DN1-2 402.3 0-2 330 401 
CR2-3 267.6 DN2-3 361.8 2-4 292 377 
CR3-4 227.3 DN3-4 339.3 4-6 263 321 
CR4-5 148.5 DN4-5 296.8 - 	 6-8 255 244 
CR5-6 130.0 DN5-6 311.5 8-10 222 192 
CR6-7 N.A. DN6-7 284.5 10-12 177 117 
CR7-8 79.2 DN7-8 258.0 12-14 153 77 
CR8-9 94.0 DN8-9 214.6 14-16 153 53 
CR9-10 48.3 DN9-10 177.1 16-18 120 55 
CR1O-12 N.A. DNI0-12 N.A. 18-20 68 47 
CRI2-14 30.2 DN12-14 N.A. 20-22 30 37 
CRI4-16 N.A. DN14-16 90.7 22-24 10 17 
CRI6-18 N.A. DNI6-18 55.7 24-26 13 15 
CRI8-20 N.A. DNI8-20 37.6 26-28 17 23 
CR20-22 N.A. DN20-22 23.5 28-30 10 ND 
CR22-24 N.A. DN22-24 16.8 30-32 7 
CR24-26 N.A. DN24-26 7.3 32-34 5 
CR26-28 N.A. DN26-28 6.5 34-36 BDL 
CR28-30 N.A. DN28-30 5.4 
CR30-32 N.A. DN30-32 8.6 
CR32-34 N.A. DN32-34 6.1 
CR34-36 N.A. DN34-36 9.1 

N.A. Not Analysed 
CR36-38 N.A. DN36-38 N.A. 
CR38-40 N.A. DN38-40 N.A. 

N.D. Not Detectable CR40-42 N.A. DN40-42 N.A. 
CR42-44 N.A. DN42-44 N.A. 
CR44-46 N.A. DN44-46 N.A. 
CR46-48 N.A. DN46-48 N.A. 
CR48-50 N.A. DN48-50 N.A. 
CR50-55 N.A. 
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