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Abstract 

DNA in the eukaryotic cell is organised into a complex called chromatin, which protects the 

DNA from damage and allows the careful regulation of the genome.  Precisely how the 

genome is used by the cell is dependent on the structure and regulation of this complex, and 

discovering how this is organised is therefore one of the principle challenges of modern 

biology. 

DNA is wrapped around histone octamers to form arrays of nucleosomes, which are 

subsequently folded into a higher-order structure, speculated to be a 30-nm fibre.  In vitro 

studies of higher-order chromatin fibre structure have provided valuable information about 

this structure, but it is not well understood how changes to the DNA sequence might affect 

the structure and dynamics of the complex.  DNA sequence is known to affect nucleosome 

binding strength and positioning within an array, and I therefore hypothesised that DNA 

sequence changes are likely to impact higher-order chromatin fibre structure.  Using an in 

vitro model of chromatin fibre structure, reconstituting purified DNA with purified core 

histones by salt dialysis, allowed me to isolate the effects of DNA sequence in the absence of 

confounding factors such as transcription factor binding. 

I compared the higher-order chromatin structure and dynamics of the well-studied “601” 

DNA repeat sequence with two novel reconstitution templates which contain biologically-

derived nucleosome positioning sequences.  Sucrose gradient sedimentation of folded 

chromatin fibres suggested that non-601 fibres may be as compacted as 601 fibres, but have 

more heterogeneous structures.  However, non-601 fibres were more easily perturbed under 

tension than 601 fibres, suggesting that such sequences might promote a more accessible 

chromatin environment.  While repetitive 601 fibres were found to have a regular 

nucleosome repeat length by DFF digestion, non-repetitive, biologically-derived sequences 

had a more heterogeneous nucleosome repeat length, which I suggest is responsible for their 

increased accessibility. 

I also found that the compacted higher-order structure of the 601 fibre is disrupted by the 

introduction of a single sequence with low affinity for the histone octamer.  These structures 

can be separated by sucrose gradient sedimentation, and I suggest that this could be a useful 

method to examine the individual effects of a wider range of DNA sequences on higher-

order chromatin fibre structure in vitro. 
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Lay Summary of Thesis 

The genetic code required for life is contained within strands of DNA.  In animal, plant and 

yeast cells, DNA is compacted into the complex of chromatin within the cell nucleus.  The 

structure of this complex is of vital importance, as its compaction at different regions of 

DNA determines how accessible each part of the DNA is, and therefore how easily a cell can 

read the genetic code found in that region.  Reading different parts of the genetic code allows 

cells with the same genome to form drastically different cell types.  For example a muscle 

cell and a liver cell contain the same underlying genetic instructions, but different regions of 

DNA are accessible in each cell type due to the structure of the chromatin complex. 

The precise structure of the complex, and how it is regulated has been well studied over 

recent years.  There are many factors that play a role in compacting or decompacting 

chromatin structure, changing DNA accessibility.  I have been researching the effects of the 

underlying DNA sequence on the structure of the folded chromatin fibre.  In order to do this, 

I have used an in vitro system, creating chromatin from its purified components (DNA and 

histone proteins) outside of the cell.  This has allowed me to assess the chromatin structures 

formed by different DNA sequences, in the absence of any other factors found in vivo that 

might confound my results. 

I have found that non-repetitive DNA sequences derived from the sheep genome form a 

structure with a similar degree of compaction as the the artificial, repetitive DNA sequences 

that have been previously used to study chromatin fibre structure in vitro.  However, when I 

pulled on individual chromatin fibres using magnetic tweezers I found that these 

biologically-derived sequences unfold more easily than the canonical artificial DNA 

sequence.  These results suggest that chromatin in cells is likely to be more accessible than 

previous in vitro studies may have predicted. 
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Chapter 1. Introduction 

Understanding how the genome is regulated and how this contributes to cell function in 

health and disease is one of the major challenges facing modern biology.  While the primary 

sequence of DNA directly impacts the composition of the proteins created within a cell, the 

packaging of this sequence into a three-dimensional structure contributes to a complex 

system regulating the transcription, replication and repair of the genome. 

The impact of the packaging and structure of the genome into chromatin on gene activity 

have become increasingly apparent.  This packaging is dependent on many different factors 

that have been well documented by chromatin biologists including protein binding, protein 

modification and DNA modification.  However, the intrinsic properties of the DNA 

sequence itself and how these impact its own regulation are challenging to study in vivo, due 

to the wide-ranging effects of changing the primary DNA sequence. 

In vitro, DNA sequence has been found to play an important role in the structure of the 10-

nm chromatin fibre by determining the positioning and binding strength of nucleosomes, and 

this positioning has been found to be strongly associated with that seen in vivo (Gencheva et 

al., 2006; Segal et al., 2006).  However, the extent to which changes in the underlying DNA 

sequence impact the compaction and stability of the higher-order chromatin fibre have not 

been well studied. 

1.1 Chromatin Structure and Function 

Within a eukaryotic cell nucleus, DNA is packaged into the highly organised nucleoprotein 

complex of chromatin.  The folding and compaction required to form this complex allows 

the 6 billion base pairs of DNA that form the human genome, a length of 2 m, together with 

approximately an equal mass of protein, to occupy a cell nucleus that is 20-50 μm in 

diameter (Radman-Livaja and Rando, 2010).  The compaction of DNA into chromatin is a 

major regulator of DNA accessibility, and therefore of all DNA-dependent processes, 

crucially: gene transcription, DNA repair and genome replication.  The understanding of 

these structures and their components, and the interplay between structure and function is 

therefore vital in understanding how the genome is regulated in development and disease. 

Several factors influence the positioning of nucleosomes on any strand of DNA, including 

transcription and replication machinery, chromatin remodelling proteins, and histone variants 

and modifications.  This thesis explores the influence of DNA sequence on nucleosome 

positioning, and crucially, how this affects the 30-nm chromatin structure.  While a 

considerable amount is known about the sequence determinants of nucleosome positioning 
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and occupancy, less is known about how this impacts the structure of the higher-order 

chromatin fibre. 

1.1.1 Components of Chromatin 

Chromatin consists of DNA wrapped around histone proteins to create a chain of “beads on a 

string”.  Additional proteins then interact with this fibre to fold it into higher-order 

structures.  Each of these components: DNA, histone proteins and additional proteins may be 

individually altered by various different mechanisms which allow tight but incredibly 

complex regulation of the genome. 

 

Figure 1.1. Chromatin Structure Within the Eukaryotic Cell Nucleus.  

A) DNA. B) Core histones. C) Histone tails. D) Nucleosomes. E) The 10-nm fibre, or “beads 
on a string”. F) Llinker histones. G) Chromatosomes. H) Higher-order chromatin fibre. 
Adapted from Fyodorov et al. (2018). 

1.1.1.1 DNA  

Deoxyribonucleic acid (DNA) consists of two polynucleotide molecules twisted around one 

another to form a double helix structure (Figure 1.1A).  The sequence of nucleotide bases 

contained in each of these polymeric chains contains the genetic information required for a 

cell to manufacture the proteins which are necessary for life. 

Nucleotide bases consist of a deoxyribose sugar molecule, containing five carbon atoms, 

with a phosphate group attached to the fifth carbon atom and a nitrogenous base attached to 



19 

 

the first carbon atom.  These polymerise when phosphodiester bonds form between the 

phosphate group attached to the fifth carbon atom and the hydroxyl group attached to the 

third carbon atom of a neighbouring nucleotide.  Therefore, one strand of DNA consists of a 

sugar-phosphate backbone, with varying nitrogenous bases attached to each sugar residue.  

The ionised phosphate groups within the DNA backbone cause the molecule to have a 

negative charge. 

The two polynucleotide strands in the double helix are held together by hydrogen bonds 

between opposite nitrogenous bases.  These bonds occur between the 4 different nitrogenous 

bases found in DNA: adenine (A); cytosine (C); guanine (G) and thymine (T).  A always 

bonds with T in the opposite polynucleotide chain, C always pairs with G.  Therefore, while 

the sequence of nitrogenous bases is different between the two polynucleotides, the two 

strands correspond with one another.  It is this sequence of nitrogenous bases that encodes 

the information necessary to manufacture proteins and therefore controls the characteristics 

of an organism. 

In addition to carrying the code needed to form proteins, the varying characteristics of each 

of the nucleotide base can allow genetic regulation through varying DNA structures other 

than the canonical double helix, varying flexibility of the double helix, and varying affinity 

for DNA-binding factors.  Furthermore, proteins may bind to specific DNA sequences, 

influencing genetic regulation and genome architecture. 

Modification of these nucleotides may change their properties.  The best studied example of 

this is the methylation of the cytosine residue, which alters the mechanical properties of 

DNA reducing its flexibility (Ngo et al., 2016) and which promotes the binding of 5-

methylcytosine specific proteins to DNA, which can further alter gene expression (Tate and 

Bird, 1993).  Methylated DNA is associated with more compacted chromatin, and the 

methylation of CpG island promoters has been associated with the silencing of tumour 

suppressor genes in cancer (Feinberg and Tycko, 2004). 

In addition, DNA may be supercoiled, where the double helix is either over or underwound, 

with effects on chromatin structure.  Underwound DNA has been found to be associated with 

transcriptionally active regions of the genome, and is thought to promote a more disrupted, 

and therefore transcriptionally permissive chromatin structure (Naughton et al., 2013). 

1.1.1.2 Core Histones  

The components of the histone octamer are the proteins H2A, H2B, H3 and H4 (Figure 

1.1B).  Each histone protein contains a globular domain, which interacts with the other 

histones to form the core octamer structure, and a protruding N-terminal tail.  The globular 
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domains of each core histone protein possess a histone-fold domain, consisting of three α 

helices linked by two loops, which interact to allow histones to dimerise.  The octamer 

consists of one H3/H4 tetramer and two H2A/H2B dimers.  These proteins have a positive 

charge due to the high content of basic amino acids lysine and arginine, in contrast to the 

negative charge found in DNA. 

The histone-fold domains of the proteins interact with DNA in the nucleosome by several 

mechanisms (section 1.1.2.1).  Each histone-fold pair is directly associated with 27-28 bp of 

DNA, with about 4 bp linking each of these sections (Luger et al., 1997).  The wrapping of 

DNA around histones requires the DNA to bend sharply, and its ability to do this securely is 

dependent on the flexibility of the DNA nucleotide sequence. 

Histone variants including H2A.Z and H3.3 may replace canonical histones, but have a 

different amino acid sequence which impacts the binding of histones to DNA and the 

properties of chromatin.  For example, H2A.Z has an extended acidic patch promoting 

chromatin compaction (Fan et al., 2004), and is thought to stabilise the interaction between 

the H2A/H2B dimer and H3/H4 tetramer within the nucleosome (Kim et al., 2016).  

However, where H2A.Z is found in combination with the histone variant H3.3, nucleosomes 

have been found to be less stable and are associated with active promoter regions (Jin et al., 

2009). 

Post-translational modifications, primarily to the N-terminal tails of H3 and H4 (Figure 

1.1C), also alter the structure and function of histones with the same underlying amino acid 

sequence.  For example, histone acetylation is associated with chromatin decompaction.  

Acetyl groups remove a positive charge from the protein which may weaken the interactions 

between positively charged histones and negatively charged DNA (Hong et al., 1993), and 

are associated with more “open” and active chromatin.  Acetylation of H4K16, within the N-

terminal tail of the histone, inhibits the higher-order folding of chromatin in vitro (Robinson 

et al., 2008; Shogren-Knaak et al., 2006), whereas H3K56ac (which is closer to the globular 

core of the histone protein) has been found not to have an effect on chromatin folding, but 

increases DNA “breathing” within the nucleosome – suggesting a weaker interaction 

between the DNA and the histone octamer (Neumann et al., 2009).  It is uncertain how 

important any direct effect of histone acetylation plays in chromatin structure in vivo, or 

whether any changes to chromatin structure are primarily dependent on the recruitment of 

effector proteins.  Acetylated lysine residues are bound by bromodomains, often found in 

chromatin remodelling complexes such as SWI/SNF (Hassan et al., 2002). 
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In contrast to acetylation, lysine residues which are modified by methylation retain their 

positive charge and influence chromatin structure by the recruitment of effector proteins.  

For example, H3K9me3 binds heterochromatin protein 1 (HP1) (Bannister et al., 2001), 

which recruits histone deacetylases, promoting chromatin compaction, and may play a role 

in chromatin architecture by phase separation, causing heterochromatin to be sequestered 

within droplets of HP1 (Larson et al., 2017; Strom et al., 2017).  Numerous other histone 

modifications including phosphorylation, ubiquitination and citrullination affect chromatin 

dynamics in various different ways, and may be combined within the same nucleosome in 

multiple different configurations, creating a complex regulation system. 

1.1.1.3 Linker Histones 

Linker histones do not form part of the core histone octamer but bind to DNA that is 

wrapped around the octamer at the dyad, the point of symmetry in the nucleosome where 

DNA enters and exits the complex, occupying an additional 10 bp of DNA at each end of the 

nucleosome and forming the chromatosome (Figure 1.1G, (Zhou et al., 2015)).  The linker 

histone shows some sequence specificity for A/T rich regions of DNA.  Linker histones 

consist of a globular domain, which binds to the dyad through its winged-helix domain, and 

an extended C-terminal tail which is positively charged and intrinsically disordered.  The C-

terminal tail binds to linker DNA between nucleosomes and plays an important role in 

stabilising the higher-order folding of the chromatin fibre (Allan et al., 1986).  The linker 

histone is therefore a key regulator of transcription and other DNA-dependent processes.  

While the location of core histones upon the DNA is relatively stable, linker histones have 

been seen by FRAP to bind far more dynamically to chromatin, with H1 molecules being 

constantly exchanged between chromatin regions (Misteli et al., 2000).  

In vitro, the compacting effect of linker histones on chromatin has been found to 

significantly reduce the transcription of a chromatinised DNA template (Laybourn and 

Kadonaga, 1991).  In addition, linker histones have been found to interact with the H3K9 

methyltransferase SUV39 in vitro, recruiting it to repetitive sites in Drosophila causing 

further compaction and gene repression by recruitment of HP1.  H1 is itself associated with 

sites enriched for particular repressive core histone modifications, notably methylated H3K9 

and H3K27 (Fyodorov et al., 2018).  Furthermore, linker histone H1 is depleted in active 

promoter regions that are enriched for active histone marks such as H3K4me3 (Fyodorov et 

al., 2018). 

Like core histones, there are several linker histone variants, with different underlying amino 

acid sequences; H1 is the canonical linker histone, H5 is found alongside H1 in avian 
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erythrocytes and is associated with highly condensed chromatin that is characteristic of these 

terminally differentiated and transcriptionally inactive cells.  In addition, linker histones can 

be modified by phosphorylation, methylation and acetylation, though the effects of these 

modifications in linker histones are not so well-understood as they are for core histones 

(Fyodorov et al., 2018).  H1 phosphorylation levels change throughout the cell cycle, 

becoming superphosphorylated during mitosis, when chromosomes are most condensed 

(Gurley et al., 1978).  However, Turner et al. (2018) recently reported that phosphorylation 

of the H1 c-terminal tails reduces the affinity of the tail for the linker DNA, and suggest that 

this reduces chromatin condensation by reducing separation of the CTD/DNA complex into 

phase separated droplets, or “complex coacervates” where H1 acts as a liquid-like glue in 

vitro. 

1.1.1.4 Other Factors 

Multiple other proteins interact with the chromatin fibre and are required to maintain its 

structure. In addition to linker histones, CTCF, HP1 and transcription factors all play a role 

in stabilising and regulating chromatin compaction.  High mobility group (HMG) proteins 

are important architectural factors in chromatin structure, with various roles regulating cell 

function.  While these proteins may be considered integral components of the chromatin 

complex, throughout this thesis they will be referred to as additional or externally acting 

proteins. 

RNA has also been suggested to form an integral part of the chromatin complex.  Treatment 

with RNase A has been found to cause decompaction of chromatin (Rodríguez-Campos and 

Azorín, 2007).  RNAs that are associated with chromatin may have multiple roles, notably 

the Xist RNA plays a crucial role in the silencing of the inactive X chromosome through the 

recruitment of epigenetic factors (Chow and Heard, 2009).  However, Nozawa et al. (2017) 

have found that chromatin-associated RNAs interact with SAF-A, allowing this protein to 

oligomerise in the presence of ATP, forming a transcriptionally responsive mesh that 

maintains an open large-scale chromatin structure at gene rich regions.  These chromatin-

associated RNAs, thought to play a substantial role in maintaining chromatin structure, have 

recently been mapped in different cell types using next generation sequencing technology 

(Bell et al., 2018; Sridhar et al., 2017; Zhou et al., 2019a) 

1.1.2 Organisation of Chromatin 

A hierarchy of folding compacts the DNA with other chromatin components from a long 

strand into the cell nucleus.  While there are several distinct levels of folding organisation, 

the degree of compaction within each will both have an effect on the ability of higher levels 
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of folding to effectively condense and will affect the accessibility of smaller scale structures.  

Each level of folding within this hierarchy is therefore interdependent. 

1.1.2.1 The Nucleosome and the 10-nm Fibre  

In forming chromatin, 146 base pairs of DNA wraps approximately 1.7 times around an 

octamer of histone proteins to form the nucleosome core particle (Figure 1.1E) (Luger et al., 

1997), the fundamental unit of chromatin.  The presence of core particles over DNA 

occludes access to the DNA by other proteins, inhibiting DNA-dependent processes such as 

transcription and DNA replication.  Interactions between histone octamers and DNA are 

promoted by the opposing charges; DNA having a negative charge and histones having a 

positive charge.  Using X-ray crystallography, Luger et al. (1997) identified the key 

interactions between DNA and histones in the core particle. (Table 1) 

Interaction Description 

The α helices of the histone-fold domains generate dipoles due to the positioning of the 

carbonyl groups within the peptide chain, generating a positive charge at the N-terminus 

which interacts with negatively charged phosphate groups in the DNA backbone, fixing 

them in position. 

Hydrogen bonds form between the phosphate backbone of the DNA and amide groups 

within the protein chain. 

Arginine side chains enter the minor groove of the DNA as it faces the octamer. 

The peptides form non-polar interactions with the deoxyribose sugar in the DNA 

backbone. 

Hydrogen bonds and salt bridges may form between phosphate groups and basic or 

hydroxyl-containing amino acid side chains. 

Table 1. Description of Histone-DNA Interactions within the Nucleosome. Described by 
Luger et al. (1997). 

The structure, stability and dynamics of each individual nucleosome is dependent on the 

underlying DNA sequence and modifications, histone variants and post-translational histone 

modifications, as well as external factors.  Nucleosomes have been found to dynamically 

partially unwrap in vitro, with FRET experiments revealing that the DNA in a single “601” 

nucleosome may by partially unwrapped from the complex 2-10% of the time (Li and 

Widom, 2004; Zhou et al., 2019b), although it is possible that these dynamics will be 

different within the context of a compacted chromatin fibre.  Furthermore, this unwrapping 
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may be promoted/inhibited by the presence of histone modifications or changes to the DNA 

sequence, altering protein access to nucleosomal DNA (North et al., 2012). 

The formation of nucleosomes, repeated down the length of a DNA strand, can form a 

structure in low salt concentrations (eg. 10 mM NaCl) referred to as “beads on a string” 

(Figure 1.1F).  The nucleosomes, 10 nm in diameter, form the beads, and are connected by 

linker DNA, represented by the string.  These structures, known as 10-nm fibres, were first 

visualised in vivo by Olins and Olins (1974).  The presence of monovalent or divalent 

cations will promote interaction between nucleosomes and lead to higher-order folding. 

Linker histones bind to DNA at the point of exit/entry to the nucleosome, forming the 

chromatosome (Figure 1.1G).  The presence of a linker histone may stabilise the 

nucleosome, restraining the movement of the core histones along the DNA (Pennings et al., 

1994) and promotes further compaction of the nucleosome array in appropriate salt 

conditions (Robinson and Rhodes, 2006a; Thoma et al., 1979), although it may not be 

required to form 30-nm fibres from arrays with short NRLs in vitro (Dorigo et al., 2004; 

Robinson and Rhodes, 2006a).  The binding of H1 is very dynamic compared to core 

histones, with linker histones continuously moving between different chromatin regions 

(Misteli et al., 2000). 

The histone octamer protects the 147 base pairs of DNA from digestion by enzymes such as 

micrococcal nuclease.  When a linker histone is present, an additional 20 bp are protected 

from digestion.  Enzyme digestion can therefore be a useful indicator of primary chromatin 

structure, allowing the ubiquity of linker histones and the nucleosome repeat length (NRL) to 

be determined.  The NRL may be as short as 154 base pairs in yeast (Szerlong and Hansen, 

2011) and as long as 237 base pairs in sea urchin cells (Spadafora et al., 1976).  Van Holde’s 

metadata set of nucleosome repeat length analyses (1989) suggest that the repeat length of 

most vertebrate cells is between 177 and 207 bp, while that of cultured HeLa cells is 187-197 

bp (Compton et al., 1976; Tate and Philipson, 1979).  The 10-bp phasing seen in the 

nucleosome repeat lengths of different species (167, 177, 187 etc.) suggests that the linker 

length between nucleosomes, which occupy 147 bp of DNA is commonly a multiple of 10 

bp, a complete turn of the DNA helix.  In vivo, the nucleosome repeat length is influenced by 

DNA sequence, chromatin remodelling and protein binding, and long range cis interactions.  

Blank and Becker (1995) have found that electrostatic interactions within chromatin play a 

role in the nucleosome repeat length.  The NRL has consequences for the structure and 

conformation of the higher-order chromatin fibre in vitro (Kruithof et al., 2009; Routh et al., 

2008), and in vivo (Williams and Langmore, 1991). 
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Nucleosomes have been thought to generally repress transcription of chromatin templates, as 

DNA is occluded within the structure and is less accessible to transcription machinery 

(Laybourn and Kadonaga, 1991).  However, the presence of a nucleosome array over the 

PHO5 gene was recently found to increase RNA transcription in vitro (Nagai et al., 2017), in 

the presence of particular protein factors, highlighting the importance of the chromatin 

complex for effective transcription in eukaryotes. 

1.1.2.2 Higher-order Chromatin Folding: A 30-nm Fibre? 

In the presence of linker histones at physiological salt conditions, nucleosomes interact with 

one another, causing 10-nm arrays to fold further to produce a higher-order fibre (Figure 

1.1H).  The interaction between neighbouring nucleosomes occurs between an acidic patch 

of 7 amino acids within H2A and the N-terminal tail of H4 (Zhou et al., 2007).  It has been 

shown by analytical ultracentrifugation that removal of the N-terminal tail of H4 prevents the 

formation of a higher-order chromatin fibre, displaying the important role that this 

interaction plays in the compaction of chromatin (Dorigo et al., 2003).  In addition, mutating 

the H2A acidic patch and H4 tail (H2A E64C and H4 V21C) to include cysteine residues 

enables the creation of a disulphide bond which is able to stabilise chromatin compaction in 

vitro (Dorigo et al., 2004).  As several chromatin-interacting factors, such as regulator of 

chromatin condensation 1 (RCC1) interact with the acidic patch on H2A (Makde et al., 

2010), compaction of chromatin means that these proteins are unable to bind, as they must 

compete with the binding of the H4 tail. 

Linker histones promote further compaction of a nucleosome array.  The globular domain of 

the linker histone stabilises the nucleosome, sitting at the dyad between the entering and 

exiting strand of DNA, protecting approximately an additional 20 base pairs of DNA from 

digestion by micrococcal nuclease (Noll and Kornberg, 1977), and forming the 

chromatosome (Allan et al., 1980a).  The C-terminal tail interacts with the linker DNA, 

aiding the compaction of the chromatin fibre by neutralising the charge of the DNA.  Linker 

histones stabilise the intrinsic salt-dependent compaction of the nucleosome array 

(Carruthers et al., 1998) and allows increased compaction of the folded fibre in vitro 

(Robinson and Rhodes, 2006a; Routh et al., 2008), although this may not be required with 

fibres of a shorter nucleosome repeat length (Dorigo et al., 2004; Robinson and Rhodes, 

2006a).  In vivo, H1 has been found to be essential for mammalian development (Fan et al., 

2003) and depleting H1 in mESCs has been found to have profound effects on chromatin 

structure, including reduction of the nucleosome repeat length, changes in histone 

modifications, and changes in higher-order chromatin structure resulting in less compact and 

more heterogeneous fibre conformations (Fan et al., 2005). 
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Compaction of a nucleosome array into a higher-order structure has been found to reduce the 

accessibility of nucleosomal DNA to restriction enzymes by 3-8 fold, and the accessibility of 

the linker DNA between nucleosomes by as much as 50 fold (Poirier et al., 2008).  It is not 

well understood how various factors that impact the stability of the nucleosome may act 

differently on a compacted chromatin structure (Zhou et al., 2019b). 

These inter-nucleosome interactions result in a fibre structure with a diameter of 

approximately 30 nm in vitro.  As discussed below, the precise diameter, structure and 

ubiquity of this structure in vivo is questioned, and I will therefore refer to this level of 

organisation as the “higher-order fibre” rather than the “30-nm fibre” throughout this thesis.  

The canonical 30-nm fibre, was first identified by Finch and Klug (1976), who visualised 

folded fibres with a diameter of 30 nm and a pitch of 11 nm using electron microscopy.  

Assuming that this structure is a one-start solenoid (Figure 1.2A), where nucleosomes form a 

“stack” which twists to form a single helix, this 30-nm fibre contains 6 nucleosomes within 

each turn of the helix, allowing chromatin to be compacted with a nucleosome line density of 

1.5-2.1nm/nucleosome (Robinson and Rhodes, 2006a).  This would allow a 10-nm fibre with 

50 bp linker DNA (a 197 bp repeat) become 12-18 times shorter upon compaction (Kruithof 

et al., 2009). 

Several alternative models to the one-start solenoid have been suggested (Figure 1.2).  

Woodcock et al. (1984) first suggested the possibility of a two-start solenoid, where histones 

alternate between two “stacks”, which then twist around in a helical ribbon (Figure 1.2 B). A 

second two-start twisted helical model with linker DNA localised in the centre of the fibre 

crossing between opposite nucleosome stacks (Figure 1.2C) has been suggested and 

visualised by in vitro studies.  Utilising reconstituted nucleosome arrays, it has been 

suggested that fibres with a shorter nucleosome repeat length form a two-start helical 

structure, whereas those with a longer nucleosome repeat length form a one-start solenoid 

(Kruithof et al., 2009; Routh et al., 2008), however even these controlled studies have not 

reached a unanimous conclusion on the structure of the higher order fibre, as Robinson et al. 

(2006b) suggest based on EM measurements that fibres with a nucleosome repeat length 

between 177 bp and 237 bp form a one-start solenoid, whereas Song et al. (2014) find by 

cryo-electron microscopy that fibres with a repeat length of 177 or 187 bp form a two-start 

helix. 
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Figure 1.2. Various structures suggested for the higher-order “30-nm” chromatin fibre.  
A) One-start solenoid. B) Two-start helix. C) Two-start helix with crossed linker DNA. 
Modified from Dorigo et al. (2004). 

Robinson et al. (2006b) suggest that nucleosome repeat length influences the diameter of the 

higher-order chromatin fibre in vitro, with two distinct structural classes with different 

diameters being formed by different repeat lengths (all repeat lengths of 10n bp).  Langmore 

and colleagues (Athey et al., 1990; Williams and Langmore, 1991) found by SAXS and 

cryo-EM that different cell types of different nucleosome repeat length had wider higher-

order fibres as NRL increased.  However, Woodcock et al. (1984) state that there should be 

no variation in the higher-order fibre diameter of compacted chromatin with different 

nucleosome repeat lengths in a two-start solenoid configuration. 

There is speculation around the exact structure and ubiquity of the 30-nm fibre within the 

eukaryotic cell nucleus.  Nishino et al. (2012) and Joti et al. (2012) have not found 30-nm 

structures in HeLa cells by cryo-EM or small-angle x-ray scattering, during neither 

interphase nor metaphase.  While 30 nm structures were evident by small-angle x-ray 
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scattering, this was lost upon removal of contaminating ribosomes.   However, Langmore 

and colleagues (Langmore and Paulson, 1983; Langmore and Schutt, 1980) and Woodcock 

(1994) have measured 30-nm structures in chicken erythrocyte nuclei lacking ribosomes 

using these methods.  The transcriptional inactivity of erythrocytes is likely to contribute to 

this structure and may allow it to achieve a greater compaction than transcriptionally active 

cells.  Langmore and Paulson accounted for the confounding presence of ribosomes which 

might contribute to a 30 nm peak by subtracting the scattering of the cytoplasm alone, and 

moreover, found that treatment with DNase1 caused the loss of the 30 nm scattering peak. 

Further attempts to understand localised chromatin structure in situ by Micro-C (Hsieh et al., 

2015), RICC-seq (Risca et al., 2017), and Hi-CO (Ohno et al., 2019) have been thus far 

limited.  Micro-C involves the crosslinking of neighbouring nucleosomes by formaldehyde, 

followed by micrococcal nuclease digestion of the genome.  Fragments are then religated to 

those sequences in close spatial proximity to which they have been crosslinked and these 

fragments are then analysed by paired-end deep sequencing.  In Hi-CO, chromatin is 

crosslinked similarly to in Micro-C, but the addition of a small adapter DNA sequence prior 

to the relegation of DNA allows nucleosome orientation as well as nucleosome positioning 

to be considered during analysis.  However, it is possible that assays relying on 

formaldehyde fixation may be affected by artefacts caused by the crosslinking of sites that 

are not spatially correlated, but joined by a “bridge” of other cellular components.  RICC-seq 

utilises ionising radiation to induce cleavage of spatially correlated DNA sites (within a 3.5 

nm radius).  These breaks are then repaired and religated to bring together sequences in close 

spatial proximity to create fragments that can be analysed by gel electrophoresis or high-

throughput sequencing. Thus far, these methods have only succeded in analysing local 

chromatin structure on the tetra-nucleosome scale. 

Other analyses have suggested that chromatin lacks a 30-nm higher-order structure in vivo.  

Several different alternative models to the 30-nm fibre have been suggested, including a 

packaged polymer-melt (Hansen et al., 2017; Shimamoto et al., 2017), nucleosome 

“clutches” (Ricci et al., 2015), or a disorganised chain with variable diameter (Ou et al., 

2017).  Ou et al. (2017) used DRAQ5 to visualise chromatin structure in vivo by 

ChromEMT.  This suggested that in human osteosarcoma cell cultures, chromatin fibres 

form a disordered chain with a diameter between 5 and 24nm, and which pack together at 

different densities within the interphase nucleus.  However, as this agent is a DNA 

intercalator, which will associate preferentially with negatively supercoiled regions of the 

genome, there is speculation that this method may be selective for more open and active 

regions of the genome which are associated with underwound DNA (Naughton et al., 2013). 
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It is known that there are variations in the structure of the higher-order fibre throughout the 

genome, where the structure is more “open” or “disrupted” around gene-rich regions, 

promoting transcription, and more compacted in gene poor-regions (Gilbert et al., 2004).  

Furthermore, the nucleosome repeat length varies throughout the genome, and reconstitution 

analysis by Routh et al. (2008) and single molecule force spectroscopy results from Kruithof 

et al. (2009) suggest that this may impact the configuration of the fibre.  It is therefore 

credible that the conformation of the fibre might vary throughout the genome, and that 

depending on factors including DNA sequence, histone modifications and the action of 

external proteins, the chromatin fibre may form both a one-start and a two-start structure or 

various other structures in different genomic contexts.  Wu et al. (2019; 2016) have 

suggested that chromatin may transition from  a two-start to a one-start structure with longer 

linker lengths. 

1.1.2.3 Large Scale Structure  

Chromatin structures larger than the 30 nm scale are less well defined and appear to vary 

throughout the cell cycle.  Belmont and Bruce (1994) visualised “chromonema” fibres with a 

diameter of 100-130 nm, which decondense into structures with a 60-80 nm diameter as cells 

enter S phase.  During mitosis, when chromosome become most compact, fibres of 200-400 

nm diameter have been visualised (Bak et al., 1977; Taniguchi and Takayama, 1986). 

Chromatin fibres are structured within large scale loops and domains that contribute to the 

regulation of gene transcription.  Within the eukaryotic cell nucleus, each chromosome 

occupies a distinct territory (Cremer et al., 1993; Lichter et al., 1988; Stevens et al., 2017).  

Within this, chromosomes are organised into evolutionarily conserved topologically-

associated domains (TADs), which can contain hundreds of kilobases of DNA.  TADs have 

been found to be associated with regulation of replication timing (Pope et al., 2014) and in 

gene expression.  Nora et al. (2012) report co-expression of genes within TADs on the 

inactive X chromosome during mESC differentiation.  The boundaries between these TADs 

are enriched for CTCF, which might enable chromatin loop formation and insulates 

chromatin domains. 

Long-range interactions are thought to play an important role in gene regulation, in particular 

interactions between enhancers and promoters.  Fluorescence in situ hybridisation (FISH) 

can analyse the colocalisation of specific DNA loci to analyse long range chromatin 

interactions, for example between the sonic hedgehog gene and the ZRS enhancer 

approximately 1 Mb away (Williamson et al., 2016).  Chromatin conformation capture (3C) 

techniques use crosslinking to measure the spatial proximity of sequences across the genome 
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(Dekker et al., 2002).  FISH and 3C have allowed the identification of TADs and chromatin 

loops, however in many cases these two techniques are not in agreement with one another 

(Williamson et al., 2014), possibly as a result of comparing the average interactions across a 

large number of cells captured by 3C techniques with those seen in a single cell using FISH, 

or due to extensive crosslinking of large complexes during 3C causing sequences that are 

spatially distant to appear close together. 

The location of chromatin within the cell nucleus is also related to its transcription state, 

whereby the chromatin at the nuclear periphery may be transcriptionally repressed relative to 

the chromatin at the centre of the nucleus, at least in part due to the deacetylation of histones 

at the periphery of the nucleus (Finlan et al., 2008).  Therizols et al. (2014) reported that the 

transcriptional activation of DNA located at the nuclear periphery caused it to be relocated to 

the centre of the nucleus. 

1.1.3 Functions of Chromatin 

Folding and compaction of DNA serves several purposes. In human cells, it enables the 2 

meters of DNA found in a diploid human cell to fit into the cell nucleus, which measures 

approximately 20-50 μm in diameter (Radman-Livaja and Rando, 2010).  This organisation 

of the genome also affects DNA accessibility, and therefore allows the regulation of gene 

transcription and DNA replication.  This control of gene transcription enables cells with 

identical genomes to form different cell types, determined by varying gene expression 

patterns.  Compacted "heterochromatin" is repressive to transcription, as it precludes 

necessary proteins, such as transcription factors and polymerases, from accessing the DNA, 

whereas less compacted "euchromatin" is permissible to transcription.  Changes to chromatin 

structure, through histone and DNA modification, additional protein binding, and the 

introduction of supercoils, is therefore pertinent to such processes as transcription, DNA 

damage and DNA replication, which has implications for development and cancer 

progression. 

There are multiple different methods of controlling the manufacture of proteins apart from 

the primary DNA sequence, which allows different cell types from the same organism to 

have very different characteristics despite having the same underlying DNA sequence.  DNA 

may form alternative structures, be modified by methylation or contain positive or negative 

supercoils, histone octamers may contain variant histones or have post-translationally 

modified residues that affect folding, and external proteins may act by binding to specific 

chromatin structures, PTMs or DNA sequences to cause the change of any of these factors.  

The genome is therefore highly dynamic. 
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During important cellular processes, such as replication, transcription and repair, the two 

strands of DNA must temporarily separate.  Chromatin obstructs this, and therefore 30-nm 

fibre structures must be disrupted and histone proteins removed for other proteins to access 

DNA.  Chromatin may be made more accessible by this mechanism through two main 

pathways.  Firstly, enzymatic modifications of histones including acetylation, methylation 

and phosphorylation of amino acid residues, particularly those within the tails protruding 

from the central core of the nucleosome, affect chromatin structure by changing the 

interactions between the histone octamer and DNA, and affecting the recruitment of 

additional proteins.  Secondly, ATP-dependent chromatin remodelling complexes can 

displace histones, revealing the underlying DNA sequence to other proteins. 

Compacting DNA into heterochromatin serves several purposes: recombination of repeat-

rich sequences is supressed, unnecessary or cell-type inappropriate gene transcription is 

supressed and cell identity becomes fixed during development (Becker et al., 2017).  

Compaction into chromatin also protects DNA from physical damage, for example by 

radiation (Takata et al., 2013). 

1.2 Chromatin Disruptions and Transcriptional Regulation  

1.2.1 Chromatin Disruptions 

Packing DNA into chromatin causes access to DNA sequence motifs by other proteins to be 

obstructed, therefore repressing DNA-dependent cellular processes including transcription.  

The location of a site within the nucleosome structure or within the 30-nm fibre may render a 

site inaccessible to transcription factors and refractory to transcription.  Furthermore, the two 

nucleotide strands of DNA are unable to be separated while constricted within the structure 

of the nucleosome.  A compacted chromatin fibre structure must therefore be disrupted in 

order to allow access to transcriptional machinery. 

The presence of a nucleosome over promoter regions has been found to inhibit gene 

transcription in vitro (Lorch et al., 1987) and in vivo (Han and Grunstein, 1988).  The 

removal of a nucleosome from the DNA sequence creates an accessible region, typically of 

around 200 bp, disrupting the chromatin structure and allowing the binding of nuclear 

proteins.  These accessible regions of chromatin are associated with regulatory regions of 

DNA and are known as DNase1 hypersensitive sites as they are more prone to damage by 

nuclease digestion (McGhee et al., 1981; Weintraub and Groudine, 1976) as well as physical 

damage by techniques such as sonication (Auerbach et al., 2009) compared to bulk 

chromatin.  The differences in chromatin structure between a compacted higher-order fibre 

and a chromatin region containing a hypersensitive site affects the buoyancy of such 
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samples, allowing them to be separated and analysed by sucrose gradient sedimentation 

(Caplan et al., 1987).  Hypersensitive sites have been extensively mapped in particular cell 

types, identifying genome regulatory elements (Boyle et al., 2008; Thurman et al., 2012) and 

exploited in the analysis of regulatory DNA regions and of chromatin structures including 

the 30-nm fibre (Staynov, 2000) and large scale chromatin organisation in the nucleus (Ma et 

al., 2015).  DNase-seq has been an important technique in analysing hypersensitive sites, but 

more recently ATAC-seq has been used to analyse accessible chromatin regions.  Such 

regions are accessible to transposase enzymes including Tn5, as well as nucleases, allowing 

amplifiable tags for sequencing to be preferentially inserted into open chromatin regions.  

While there are likely to be some differences in the accessibility of different regions to 

different enzymes, ATAC-seq has some advantages over DNase-seq as there are fewer 

experimental steps and therefore far fewer cells are needed for analysis. 

The occurrence of hypersensitive sites is correlated strongly with gene promoters, 

transcription factor binding sites and enhancers (Thurman et al., 2012) as the binding of 

proteins to these regulatory regions requires an accessible template.  Hypersensitive sites 

over regulatory regions may be constitutive, promoting constitutive gene activation, or may 

be transiently generated in response to transcription factor binding.  Proteins associated with 

transcription such as topoisomerases and polymerases have also been found to be associated 

with a subset of accessible sites (Gross and Garrard, 1988).  DNA polymorphisms associated 

with disease tend to be concentrated at these accessible sites (Maurano et al., 2012), 

emphasising the fundamental importance of these regions in regulating proper cell function. 

DNA sequence has been suggested to play a role in maintaining hypersensitive sites.  Field 

et al. (2008) suggest that sequences rich in dA and dT create histone-depleted regions that 

may increase the accessibility of adjacent DNA to regulatory factors.  These poly(dA:dT) 

elements are typically associated with maintaining stretches of DNA depleted of 

nucleosomes, for constitutive gene activation, as seen during the transcription of his3 and 

pet56 in yeast (Struhl, 1985).  In mammalian cells, CpG islands over promoters are 

associated with nucleosome depletion and constitutive gene activation (Fenouil et al., 2012; 

Ramirez-Carrozzi et al., 2009).  DNA supercoiling also appears to play a role in the 

generation of hypersensitive sites, which may be lost upon the removal of torsional stress 

(Villeponteau and Martinson, 1987; Villeponteau et al., 1984). 

While the higher-order structure of chromatin will be markedly disrupted by the presence of 

a hypersensitive site caused by the loss of a nucleosome as described by Caplan et al. (1987) 

, a more subtle disruption may occur in the higher-order structure of chromatin, without the 
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loss of a nucleosome but allowing proteins increased access to linker DNA and to the surface 

of adjacent nucleosomes.  Such a disruption in the higher-order structure may occur as a 

consequence of linker histone depletion or unstable underlying nucleosomes. 

1.2.2 Transcription Factors and Transcription Initiation 

Transcription initiation in eukaryotes by RNA PolII requires the binding of the large pre-

initiation complex (PIC), which in yeast contains 58 protein subunits, to the promoter region 

of DNA (Kornberg, 2007).  General transcription factors allow the binding of RNA PolII, 

mediator and other proteins to the promoter sequence and unwind the DNA helix allowing 

RNA PolII access to the sequence template.  The binding of the large transcription initiation 

complex to DNA requires the absence of a nucleosome over the promoter region (Boeger et 

al., 2003; Lorch et al., 1987). 

Transcription factors may be divided into two groups: “settler” transcription factors which 

can bind to pre-formed open chromatin architecture such as a hypersensitive site and recruit 

transcription machinery, and “pioneer” transcription factors, which can bind to nucleosomal 

DNA, destabilising and displacing nucleosomes from DNA, creating a hypersensitive site 

and allowing settler factors and other proteins to access their binding motifs.  Whereas some 

hypersensitive sites are constitutive in a given cell type, allowing constitutive gene 

activation, pioneer factors are able to transiently induce gene activity in response to external 

factors (Choi and Kim, 2008; Tirosh and Barkai, 2008).  Local chromatin environment and 

the stability of the chromatin fibre in the vicinity of pioneer transcription factor binding sites 

is likely to influence their binding and their ability to disrupt chromatin structure.  Multiple 

complex factors including histone modifications, histone variants such as H3.3 and H2A.Z 

(Jin and Felsenfeld, 2007) and DNA sequence are likely to determine whether a chromatin 

region can be easily disrupted or if it is refractory to transcription. 

FoxAI, the canonical pioneer transcription factor, binds to nucleosomal DNA at the 

nucleosome dyad in a similar manner to the linker histone via a winged-helix binding 

domain.  By displacing linker histones it causes the decompaction of the higher-order 

chromatin fibre (Cirillo et al., 1998), providing access to additional proteins that promote 

decompaction and chromatin disruption.  It also interacts with the H3/H4 tetramer, 

promoting nucleosome depletion (Cirillo et al., 2002).  The removal of nucleosomes by 

pioneer transcription factors may involve the recruitment of further chromatin remodelling 

complexes such as SWI/SNF (Kadam et al., 2000), which reduce the interactions between 

DNA and histone proteins, promoting the formation of accessible nuclease sensitive sites 

(Bouazoune et al., 2009).  In association with transcription factor binding, Owen-Hughes et 
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al. (1996) found that SWI/SNF causes the disruption of nucleosomes and creates 

hypersensitive sites allowing transcription to occur.  Other pioneer factors are able to 

influence local chromatin architecture by binding to the linker DNA flanking the 

nucleosomes.  Pho5 in yeast is upregulated in response to phosphate starvation, and involves 

the binding of the transcription factor Pho4 to the 70 base pair linker between nucleosomes 

and displacing surrounding histone octamers, exposing additional Pho4 binding sites and 

subsequently the TATA box (Reinke and Hörz, 2004). This process has been found to 

involve the recruitment of several different chromatin remodellers (Musladin et al., 2014). 

1.2.3 Elongation Factors  

Once RNA Polymerase has bound to the promoter, it moves along the gene reading the DNA 

code. This requires the destabilisation of nucleosomes from the DNA to allow the reading of 

the DNA code by Pol II, which is enabled by elongation factors such as FACT and the 

chromatin remodelling enzyme Chd1.  Recently, cryo-EM has been used to visualise the 

movement of RNA PolII through the nucleosome structure (Kujirai et al., 2018).  Histone-

DNA contacts around the surface of the nucleosome appear to cause the pausing of RNA 

PolII as it transcribes through the nucleosome.  Nucleosome remodellers such as the 

SWI/SNF complex promote the movement of RNA PolII through a nucleosomal template 

(Brown et al., 1996).  Belotserkovskaya et al. (2003) suggest that the FACT complex appears 

to cause the transient destabilisation of a nucleosome by the temporary removal of one 

H2A/H2B dimer from DNA, whereas Schwabish and Struhl (2004) found that transcriptional 

elongation in the presence of FACT causes the eviction of core histones from the S. 

cerevisiae GAL10 coding region, and that new core histones are recruited over the 

transcribed region within 1 min of the passage of PolII.  Strong nucleosome positioning 

sequences are able to form a stable nucleosome through which Pol II may not transcribe in 

vitro (Bondarenko et al., 2006).  However, such nucleosome positioning sequences have 

been found not to cause transcriptional pausing in vivo (Perales et al., 2011), demonstrating 

that factors other than DNA sequence have a profound effect on this property of the DNA 

sequence. 

As Pol II transcribes through DNA, positive supercoils (overwound DNA) are generated 

ahead of Pol II while negative supercoils (underwound DNA) appear behind the transcription 

machinery. These supercoils are likely to have an effect on chromatin structure around sites 

of transcription, but may be relieved by topoisomerases (Kouzine et al., 2013).  Naughton et 

al. (2013) used biotinylated-trimethylpsoralen to probe DNA structure as this is 

preferentially intercalated into underwound DNA.  They found that domains of negative 
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supercoiling have a more disrupted chromatin structure, being enriched in hypersensitive 

sites and less compacted higher-order chromatin fibres,  that may facilitate gene activation in 

these transcriptionally active regions.  Kaczmarczyk (2019) found that higher-order 

chromatin fibres can accommodate a degree of positive supercoiling and that positive twist 

may stabilise chromatin fibres. 

1.3 Effects of DNA Sequence on Chromatin Structure  

The differing affinities of DNA sequences for the histone octamer impacts chromatin 

structure by influencing the positioning and binding strength of nucleosomes.  In vitro 

studies show that chromatin assembles far more easily and regularly on particular sequences, 

such as the 5S RNA gene and the “601” nucleosome positioning sequence, than others 

((Lowary and Widom, 1998), section 1.4).  This variability in affinity for the histone octamer 

is based, at least in part, on the anisotropic flexibility of the DNA sequence, which allows 

nucleosomal DNA to wrap 1.7 times around the core octamer; a degree of flexibility that 

could not be achieved by free DNA without the presence of the positively charged protein 

complex. 

The histone octamer is thought to have at least a 5000-fold difference in affinities between 

different DNA sequences (Gencheva et al., 2006).  While there are several factors known to 

increase or decrease DNA sequence affinity for the histone octamer, the full range of factors 

affecting this variability is not completely understood.  Histones interact with DNA at 14 

crucial points around the nucleosome (approximately every 10 bp), where positive charges 

within the protein interact with phosphates within the DNA backbone.  High-affinity DNA 

sequences are thought to be primarily recognised by the H3/H4 tetramer (Dong and van 

Holde, 1991). 

Flexible dinucleotides influence DNA bending.  Drew and Travers (1985) found that 

stretches of A/T nucleotides prefer to bend so that the minor groove of the DNA double helix 

forms the inside of a curve, whereas stretches of G/C nucleotides prefer to curve with the 

minor groove facing out.  A periodicity of AA or TA dinucleotides occurring every 10 bp, 

where the minor groove of the DNA faces the histone octamer, has been shown to increase 

the affinity of the DNA sequence for the histone octamer (van der Heijden et al., 2012; Segal 

et al., 2006; Widom, 2001) as these sequences facilitate DNA bending.  GC and CG 

dinucleotides are also found with a 10 bp periodicity, offset by 5 bp from AA or AT 

dinucleotides, where the minor groove faces away from the octamer (Figure 1.3).  Pich et al. 

(2018) hypothesised that nucleosome locations define minor groove orientations, which has 

an effect on DNA damage/repair.  This in turn reinforces the nucleosome-favouring 10-bp 
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periodicity, which may explain why the DNA of eukaryotes such as yeast has a higher 

affinity for nucleosomes than that of prokaryotes, which does not form chromatin.  It has 

been suggested that the eukaryotic genome has evolved to accommodate the bending 

required to wrap around the histone octamer (Zhang et al., 2009). 

 

Figure 1.3. DNA Sequence and Nucleosome Positioning. 
Poly(dA:dT) tracts are poor substrates for nucleosome binding, whereas sequences with a 
10 bp periodicity of AA/AT dinucleotides, phased with GC dinucleotides have a high affinity 
for the histone octamer (Struhl and Segal, 2006). 

In contrast, poly(dA:dT) tracts (more than 3 A/T nucleotides in succession) are unlikely to 

form nucleosomes.  These have a stiff structure which is refractory to nucleosome 

positioning due to its sequence properties, and not to the binding of an external factors (Suter 

et al., 2000).  These sequences and surrounding regions are significantly depleted on 

nucleosomes in vivo (Field et al., 2008; Yuan et al., 2005), and are unlikely to position 

nucleosomes in vitro (Anderson and Widom, 2001).  Nucleosomes formed over these DNA 

sequences in vitro have a distorted structure which is less stable than a canonical nucleosome 

(Bao et al., 2006).  As mentioned in section 1.2.1, these “anti-positioning” sequences may be 

exploited by certain classes of promoters, particularly prevalent in yeast genomes, creating 

nucleosome-free regions which are more accessible to transcription factors (Field et al., 

2008; Struhl, 1985).  The strong anti-positioning properties of these sequences are likely to 
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strengthen the positioning of nucleosomes on either side, which may form a barrier against 

which further nucleosomes may be packed.   

This intrinsic positioning code has been reported to account for approximately 50% of 

nucleosome positioning in vivo (Segal et al., 2006), though this is disputed by the barrier 

model which suggests that only the +1 and  -1 nucleosomes are specified by the DNA 

sequence and that these form a barrier against which further nucleosomes are packed 

(Mavrich et al., 2008).  This has been tested by comparing the nucleosome occupancy of 

genomic DNA in vivo with that following reconstitution on DNA in vitro by salt dialysis.  

Kaplan et al. (2009) and Fraser et al. (2009) both find that nucleosomes reconstituted in vitro 

are correlated with those found in both yeast and mammalian DNA respectively.  This 

method of reconstitution by salt dialysis relies on intrinsic histone-DNA interactions which 

are dependent on DNA sequence, whereas reconstitution using histone chaperones causes 

weaker nucleosome positioning (Zhang et al., 2009), suggesting that the effects of DNA 

sequence will be less dominant in vivo.  Reconstituting genomic DNA with histones from 

foreign organisms indicates that DNA sequence plays a greater role in defining primary 

chromatin structure than histone amino acid sequence (Kaplan et al., 2009; Segal and 

Widom, 2009a; Truong and Boeke, 2017). 

However, there are some significant features of chromatin structure in vivo that are not 

captured by histone-DNA interactions in vitro.  Nucleosome positioning data (from MNase-

seq or cuprous phenanthroline cleavage of chromatin followed by sequencing) show that the 

+1 nucleosome is often strongly positioned in vivo (Gencheva et al., 2006; Kaplan et al., 

2009; Mavrich et al., 2008; Segal et al., 2006), and it may be that this feature requires 

transcriptional initiation by RNA pol I (Zhang et al., 2009).  Elsewhere in the genome, 

chromatin structure is dependent on the binding of transcription factors that may compete 

with the histone octamer for various DNA sequences. 

1.4 Chromatin Structure in vitro 

Studying the structure of the higher-order chromatin fibre in vivo is challenging due to the 

occluded nature of chromatin within cells.  The nucleus is impermeable to many chromatin-

probes, and chromatin in the nucleus cannot be visualised by methods such as conventional 

microscopy.  Releasing chromatin from the cell in order to study its conformation is likely to 

change its structure.  Cryo-electron microscopy and small-angle x-ray scattering results have 

suggested that the higher-order structure of chromatin in situ, during both mitosis and 

interphase, is not the canonical 30-nm chromatin fibre, but forms an irregular structure (Joti 

et al., 2012; Nishino et al., 2012), however, these methods can only be used to visualise 
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general chromatin structure, and not to investigate specific loci, for example in active or 

heterochromatic regions.  New sequencing-based techniques to probe localised chromatin 

structure in situ, as described in section 1.1.2.2, have thus far only identified structures on 

the tetra-nucleosome scale (Hsieh et al., 2015; Ohno et al., 2019; Risca et al., 2017).   

In addition, the incredibly complex regulation of chromatin structure makes it difficult to 

measure the contribution of any one aspect of this regulation in the absence of confounding 

factors.  In vivo there are multiple determinants of nucleosome positioning: chromatin 

remodelling enzymes, non-histone protein-DNA interactions and transcription of DNA.  To 

analyse for example the contribution of DNA sequence to the structure of the complex, it 

would be difficult to determine what direct role the sequence plays, as changing the DNA 

sequence would possibly cause indirect effects, for example by recruiting transcription 

factors or histone modifiers. 

To carefully study the structure (10-30 nm) of the chromatin fibre, in vitro models of 

chromatin structure have been developed, forming chromatin from its purified component 

outside of a cellular environment.  To avoid confusion, throughout this thesis I will use the 

term in vitro to refer to chromatin explicitly in this form, when it is reconstituted from the 

purified components.  I will not use the term in vitro to refer to chromatin inside cells or 

isolated nuclei, whether these are in situ, in tissue culture or otherwise isolated. 

Previously, xenopus egg extracts, which contain a large excess of core histones have been 

used to reconstitute chromatin in vitro.  These extracts also contain molecular chaperones 

that space nucleosomes in arrays (Almouzni and Wolffe, 1993).  More recently, nucleosome 

arrays have been reconstituted from their purified components (DNA and core histones) in 

vitro.  Mixing DNA and core histones together at high (2 M) salt concentrations overcomes 

the electrostatic interactions between the negatively charged DNA and the positively charged 

histones.  Slowly reducing the salt concentration by gradient dialysis allows DNA to bind 

and wrap around histones without promoting precipitation.  Wolffe (1998) states that 

reconstituting chromatin by salt dialysis causes nucleosomes to pack together on DNA rather 

than regularly spacing themselves, with one nucleosome found every 150-160 bp.  Simpson 

et al. (1985) overcame this problem by reconstituting chromatin onto regularly spaced 

nucleosome positioning sequences (the 5S RNA gene) which have a high affinity for the 

histone octamer. 

Nucleosome arrays can be compacted into folded and higher-order structures by varying the 

concentration of monovalent and divalent cations (Thoma et al., 1979).  Schwarz and Hansen 

(1994) showed that chromatin in vitro can be compacted to the same degree that is achieved 



39 

 

in vivo, indicating that chromatin compaction is constrained by the charge of the DNA 

phosphodiester backbone, which can be shielded by these cations (Wolffe, 1998). 

The artificial “601” sequence of DNA was identified by Lowary and Widom who used 

SELEX experiments to identify 147 bp DNA sequences with a high affinity for the histone 

octamer (1998).  Arrays formed of repeats of this positioning site form regular spaced arrays 

and well-compacted chromatin fibres in vitro.  “601” fibres have since been incorporated into 

constructs containing varying numbers of repeats, and with linker DNA of varying different 

lengths.  Most studies done to date have used a repeat length of 147+10n bp (as this 

maintains multiple full twists of the DNA helix between nucleosomes).  A DNA sequence 

containing regular repeats of the “601” positioning site can be reconstituted into a very 

regular higher-order chromatin fibre, which has been used to assess the structure of this 30-

nm fibre (Robinson and Rhodes, 2006a; Robinson et al., 2006b; Routh et al., 2008; Schalch 

et al., 2005; Song et al., 2014).  This template has been extremely useful for structural 

analysis of chromatin in vitro, particularly as the extreme regularity of the structure makes it 

possible to form crystals for x-ray analysis (Schalch et al., 2005).  However, the repetitive 

nature of these arrays also limits the experimental possibilities as it is impossible to sequence 

the arrays and map fragments to a single location.  Furthermore, the abnormal stability and 

regularity of these fibres makes them questionable models to represent the irregular structure 

that the human genome probably adopts. 

Using a 601 repeat sequence, with repeat lengths between 177 bp and 237 bp, Robinson et al. 

(2006b) reconstituted chromatin fibres in the presence of linker histones to fold the arrays 

into higher-order structures and studied them by electron microscopy.  They reported that the 

fibres folded into a one-start solenoid structure, and that the measurements of the compacted 

chromatin fibres were not compatible with the measurements of a two-start helix.  Schalch et 

al. (2005) performed x-ray crystallography on tetranucleosomes with a 167 bp repeat, 

compacted in the presence of 20-60mM Mg2+.  They found that under these conditions, the 

chromatin fibre forms a two-start helical structure, with two stacks of two histones beginning 

to twist round one another.  It is likely that arrays containing short nucleosome repeat lengths 

(167 bp) are constrained to form a two-start helix, but that those with a longer 197 bp repeat 

are able to form a one-start solenoid which is dependent on the linker histone for compaction 

(Routh et al., 2008).  However, Song et al. (2014) used arrays of 12 nucleosomes with a 

177bp or a 187bp repeat length and reported a similar two-start structure to Schalch et al. 

with these longer arrays, in disagreement with the results of Robinson et al. (2006b), 

showing that it is difficult to form a consensus on the higher-order structure of these fibres 

even under these controlled conditions. 



40 

 

Most studies in vitro have used a nucleosome repeat length satisfying the equation “147 + 

10n bp”, which allows a number of full turns of the DNA helix between adjacent 

nucleosomes.  Brouwer et al. (in preparation) have found by single-molecule force 

spectroscopy that varying the linker length +/- 5 bp causes changes to the higher-order 

structure which impacts the unfolding dynamics of the complex. 

1.5 Thesis Aims 

The impact of DNA sequence on nucleosome positioning is well studied.  It is likely that this 

has a significant impact on the structure and compaction of the higher-order chromatin fibre, 

but this is not so well understood.  I set out to analyse the contribution of the underlying 

nucleotide sequence on the structure and dynamics of the higher-order chromatin fibre.  I 

hypothesised that sequences with a lower affinity for the histone octamer or weaker 

nucleosome positioning properties than the well-studied “601” sequence might be expected 

to form less compacted higher-order structures which are more easily disrupted. 

I first aimed to characterise in vitro reconstituted nucleosome arrays based on defined DNA 

sequences.  Non-repetitive DNA templates containing biologically derived nucleosome 

positioning sites were expected to form heterogeneous nucleosome arrays that might be a 

more accurate representation of bulk chromatin structure in vivo than the “601”.  I aimed to 

examine the reconstitution efficiency of these sequences as well as the nucleosome 

positioning and the heterogeneity within each of these fibre populations. 

I next examined the higher-order structure and dynamics of chromatin fibres based on these 

defined DNA sequences.  Studies of bulk chromatin samples were first used to compare the 

structures and shapes of populations of chromatin fibres, however, population analyses were 

found to be limited due to the increased heterogeneity of non-601 chromatin fibres.  I 

therefore used a single-molecule assay to probe the structure and dynamics of these different 

chromatin structures. 

Finally, I aimed to uncover the impact of a single nucleosome disruption within a compacted 

higher-order chromatin structure.  A single nucleosome positioning site can have profound 

effects upon higher-order chromatin structure, and this may be an important mechanism for 

gene transcription (Caplan et al., 1987). 
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Chapter 2. Materials and Methods 

All chemicals were purchased from Sigma Aldrich and all restriction enzymes were 

purchased from New England Biolabs, unless stated otherwise. 

2.1 Plasmid Cloning and Purification 

2.1.1 Cloning of Plasmid Sequences 

Standard molecular biology techniques were performed as described in Sambrook et al., 

(2001).  A plasmid containing 26 repeats of a 197 bp “601” sequence in a pUC18 vector was 

provided by John van Noort.  The repetitive nature of this plasmid meant that the number of 

repeats is inherently unstable; individual clones grown at 37°C following transfection into 

DH5α cells contained between 19 and 26 repeats of the “601” sequence, however, no 

plasmids containing 25 repeats were identified.  It is possible that a single copy of the 197 bp 

repeat is never deleted due to constraints in the bending of the DNA required to achieve this.  

A plasmid containing 25 copies of the 601 sequence (601) and one with 24 copies of the 

“601” sequence and a central low affinity nucleosome (601+LA) were constructed as 

follows: A plasmid containing 24 repeats of the 197 bp “601” site was partially digested with 

AvaI, which cuts between each of the “601” nucleosome positioning sites (Figure 2.1A).  

Linearised sequences containing 24 “601” sites were isolated by gel extraction from NuSieve 

GTG Agarose (Lonza) with an E.N.Z.A. gel extraction kit (Omega), and the 5' base was 

dephosphorylated by Antarctic Phosphatase (New England Biolabs).  3’ phosphorylated 

DNA primers were designed to be annealed into a 26 bp dsDNA insert (Figure 2.1B, 

described in appendix 1) with AvaI overhang sites and containing BsgI restriction sites that  

would cut outwith the insert once it was ligated to the linearised plasmids and used to 

recircularise the DNA.  These Plasmids, which contained insertion sequences at any of the 

AvaI sites between each 601 sequence were, transformed into Stbl2 competent cells (Thermo 

Fisher), clones were grown on agar plates and miniprepped (Quiagen).  EcoRV and BsgI 

digestion were used to identify clones where the insert appeared in the centre of the template, 

with 12 “601” sequences on each side (Figure 2.1C).  These plasmids were cut with BsgI, 

and linear dsDNA (GeneArt Strings by Thermo Fisher, see appendix 1) containing either 

“601” or a low affinity positioning sequence were cloned into the plasmid, such that the 197 

base pair repeat was maintained, BsgI restriction sites were lost, AvaI restriction sites 

between nucleosome positioning sites were reformed, and the inserted “601” sequence was 

indistinguishable from the other repeats (Figure 2.1D). 
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Figure 2.1. Cloning a 25 x 601 DNA template and a 601 template incorporating a low 
affinity nucleosome positioning site. 

A) A 24 × 601 bp template within a pUC18 vector was partially digested with AvaI and the 5’ 
base was dephosphorylated. B) A 26 bp sequence (formed from annealed primers, each 
with a phosphorylated 3’ base) containing two BsgI restriction sites which cut outwith the 
insert. C) A 26 bp insert cloned into the centre of a 24 × 601 template within a pUC18 
plasmid, with 12 “601” repeats appearing either side of the insert. A clone with correct 
placement of the insert was identified by restriction digestion and gel electrophoresis. D) A 
plasmid containing a 25 × 601 template (601). The central “601” or “Low Affinity” sequence 
(found in appendix 1) was cloned into the plasmid following digestion with BsgI, located in 
the centre of the template with 12 “601” repeats flanking the inserted site. 

BLG and 601/BLG sequences were designed by Nick Gilbert and Jim Allan and synthesised 

by GenScript (China) in a pUC57 based-vector.  Maps of all vectors are found in Appendix 

1. 

2.1.2 Plasmid Preparation 

To maintain repeat stability (Figure 2.2) “601” plasmids were grown at 30°C in LB 

supplemented with 100 μg/ml ampicillin.  Plasmids were isolated from E. coli using the 
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Invitrogen PureLink HiPure Plasmid Maxiprep Kit according to the manufacturer’s 

instructions, or by alkaline lysis followed by plasmid purification by caesium chloride 

sedimentation.  3 ml starter cultures were grown using 50 µl of glycerol stock or by picking 

single colonies from an agar plate, overnight at 30°C then were diluted 1/100 into fresh LB 

and grown for a further 16 hours at 30°C.  200 ml bacterial culture were pelleted by 

centrifugation at 5,000 rpm in an SLA-1500 rotor (Sorvall) for 10 min and resuspended in 10 

ml 50 mM Tris-HCl (pH 8) and 10 mM EDTA supplemented with 10 μg/ml RNaseA 

(Invitrogen).  An equal volume of 200 mM NaOH and 1% SDS were added, and cells were 

lysed at room temperature for 10 min.  An equal volume of 3 M Potassium Acetate (pH 5.5) 

was added to precipitate genomic DNA.  The precipitate was removed by centrifugation, and 

plasmid DNA was precipitated from the remaining solution using isopropanol.  DNA was 

resuspended in TE buffer (10 mM Tris-HCl (pH 8) and 1 mM EDTA), CsCl was added to 

give a density of 1.6 g/ml and ethidium bromide was added to a final concentration of 1.2 

mg/ml.  Samples were centrifuged at 80,000 rpm overnight in a Ti100.3 rotor (Beckman), 

separating protein, RNA and DNA based on their different densities.  Ethidium bromide 

bands containing plasmid DNA were extracted and EtBr was removed by washing with 

water saturated butan-1-ol.  Plasmid DNA was precipitated using ethanol and resuspended in 

TE. 

 

Figure 2.2. Repeat Instability of Repetitive Plasmid DNA Sequences. 

Plasmid DNA (undigested, linearised by ZraI, or with the 26 x 601 template excised from the 
plasmid by EcoRV) analysed by agarose gel electrophoresis.  Multiples of 197 bp repeats 
were deleted in a minority of plasmids, creating a ladder, most clearly seen when the DNA 
template was excised from the plasmid. 
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2.2 Chromatin Reconstitution 

2.2.1 Materials  

2.2.1.1 Template DNA 

DNA templates (see Appendix 1) for chromatin reconstitution were excised from the 

plasmid by EcoRV (for the 601 and 601+LA sequences) or XhoI (BLG and 601/BLG 

sequences) restriction digestion to give an approximately 5 kbp fragment.  The vector 

backbone (approximately 2.5 kbp), was digested into fragments smaller than 500 bp using 

ApaLI, BspHI and EciI. 

Digested plasmid was fractionated by gel filtration chromatography as described by Rogge et 

al. (2013).  A column (65 cm height and 1.6 cm diameter) packed with sephacryl S 1000 (GE 

Healthcare) in a buffer containing 10 mM Tris-HCl (pH 7.5), 1 mM EDTA and 50 mM 

NaCl, was used with a flow rate of 0.6 ml/min.  Digested plasmid DNA was loaded on to the 

column, and fractions were collected every 2.5 mins.  Fractions containing template DNA 

were identified by agarose gel electrophoresis in 1 × TBE buffer. 

Small amounts of DNA templates for single-molecule force spectroscopy were instead 

isolated by agarose gel extraction from SeaPlaque agarose (Lonza) using β-Agarase I (New 

England Biolabs). 

2.2.1.2 Competitor DNA  

Two different types of DNA competitor were used in the study, in order to prevent the 

oversaturation of template DNA by core histones.  Firstly, a 147 bp fragment as described by 

Huynh et al. (2005) was included.  This fragment was derived from a section of the vector 

backbone of the 601-containing (pUC18) plasmid and was isolated by PCR amplification 

and gel extraction of the 147 bp fragment by Jim Allan.  I performed subsequent PCR 

amplification of the competitor directly from the isolated 147 bp fragment, eliminating the 

need for gel extraction.  Following PCR, excess primers and nucleotides were removed using 

a S-300 microspin column (GE Healthcare) according to the manufacturer’s instructions. 

Due to difficulties in purifying large quantities of template and 147 bp competitor DNA for 

large-scale studies, I also used a second strategy employing the vector backbone DNA 

following plasmid digestion as described in section 2.2.1.1.  This fragment of DNA, 

approximately 2.5 kbp in length was sometimes included as a whole fragment, and was 

sometimes digested into fragments smaller than 500 bp using ApaLI, BspHI and EciI 

restriction enzymes. 
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2.2.1.3 Histones  

Recombinant Xenopus core histone octamers were kindly provided by Ramasubramanian 

Sundaramoorthy (Tom Owen-Hughes group, Dundee), having been prepared essentially 

according to Luger et al. (1999). 

Chicken erythrocyte core histones were purified from chicken blood as described by 

Peterson and Hansen (2008) with minor modifications.  Chicken erythrocyte chromatin is 

predominantly transcriptionally inactive and the cells are non-replicating so histones have 

relatively few post-translational modifications that might subsequently affect the structure of 

reconstituted nucleosome arrays (Peterson and Hansen, 2008).  Erythrocyte nuclei were 

prepared from chicken blood by Jim Allan, and stored at –80°C.  Core histones were isolated 

from nuclei as follows: nuclei were partially digested by micrococcal nuclease (New 

England Biolabs or Worthington Biochemical Corporation) and the soluble fraction of 

chromatin was isolated (Figure 2.3A).  Linker histones H1 and H5 were removed from oligo-

nucleosomes by Sepharose CL-4B (Amersham Biosciences) chromatography in 650 mM 

NaCl.  The column was 35 cm in height and 2.6 cm in diameter with a flow rate of 2 ml/min. 

 

Figure 2.3. Isolation of Core Histones from Chicken Erythrocyte Nuclei.  
A) Digestion of chicken erythrocyte chromatin by micrococcal nuclease over 30 min and 
release of soluble chromatin.  Soluble fractions S1 and S2 were used to make core histones, 
insoluble fraction P was discarded.  B) Fractions from Sepharose CL-4B chromatography to 
separate core and linker histones.  Core histones were eluted from fraction 10, linker 
histones began to be eluted from fraction 18.  Small amounts of H3 dimers are seen in 
fractions 10 and 12.  Fractions 9-16 were pooled for HAP chromatography.  C) Fractions 
from HAP chromatography to remove core histones from DNA.  Only small amounts of 
protein were loaded on the gel so not all histone types could be observed.  Fractions 25-41 
were pooled based on A280. Following concentration, all histone types could be visualised 
after polyacrylamide gel electrophoresis and staining (See Figure 3.3). Samples were 
fractionated on 12% polyacrylamide gels alongside SeeBlue Plus2 protein standards. 
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Fractions were collected every 2.5 minutes and examined on a polyacrylamide gel to identify 

fractions containing core and linker histones (Figure 2.3B).  Core histones were removed 

from DNA by hydroxyapatite chromatography.  Hydroxyapatite was prepared according to 

the protocol described by Miyazawa and Thomas (1965).  Oligo-nucleosomes were bound to 

HAP in a  column 35 cm in height and 2.6 cm in diameter.  Core histones were eluted using 

2 M NaCl at a flow rate of 2 ml/min and fractions were collected every 2.5 minutes.  

Fractions containing core histones were identified by polyacrylamide gel electrophoresis 

(Figure 2.3C).  Histone octamers were concentrated using Amicon Ultra Centrifugal Filters 

with 10 kDa molecular weight cut off (Millipore) and stored at -20°C. 

Linker histone H5 was isolated from chicken erythrocyte chromatin by Jim Allan by 

hydroxyapetite chromatography of native chromatin to isolate linker histones, followed by 

amberlite chromatography to separate linker histones H1 and H5, according to Allan et al. 

(1980b). 

2.2.1.4 BSA  

Bovine serum albumin (New England Biolabs) was included in chromatin reconstitutions to 

prevent chromatin from adhering to membranes and storage tubes.  This was not included in 

samples for small-angle X-ray scattering analysis. 

2.2.2 Reconstitution by Salt Dialysis 

Template DNA and histones were combined in the presence or absence of competitor DNA 

in 2 M NaCl, with 10 mM Tris-HCl (pH 7.5), 0.2 mM EDTA, with 1 mg/ml BSA. 

 

Figure 2.4. Chromatin Reconstitution by Salt Dialysis.  

A) Linear gradient maker used to dialyse chromatin from 2 M to 400 mM NaCl.  B) Rate of 
dialysis for three different methods of reconstitution. 
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Reconstitutions were routinely dialysed from high salt to low salt by two-step gradient 

dialysis in Slide-A-Lyzer Mini Dialysis Units with 10 kDa molecular weight cut off (Thermo 

Scientific).  Dialysis caps were placed in a linear gradient maker (Figure 2.4A) at 4°C for 

approximately 6 hours, over which time the NaCl concentration decreased from 2 M to 400 

mM.  Dialysis units were removed from the gradient maker and dialysed directly into low 

salt buffer (2.5, 10 or 80 mM NaCl) overnight. 

For single-molecule force spectroscopy experiments, chromatin was prepared as described 

by Kaczmarczyk et al. (2017).  Chromatin was dialysed in mini dialysis units in a linear 

gradient from 2 M to approximately 10 mM NaCl over 19 hours (one-step gradient dialysis). 

For some initial SAXS experiments, step-wise salt dialysis was performed as described by 

Rogge et al. (2013), where chromatin is dialysed from 2 M to 1 M NaCl over 5-6 hours, 1 M 

to 750 mM NaCl overnight, then to 2.5 mM NaCl over 5-6 hours in dialysis tubing.  The rate 

of change of NaCl concentration for of each of these three dialysis methods are shown in 

Figure 2.4B. 

Chromatin reconstituted using any of these techniques was not torsionally constrained, and 

therefore no positive or negative supercoils would be expected to form during the assembly 

of the chromatin. 

2.2.3 ATP-dependent Chromatin Assembly by NAP-1 and ACF  

Assembly of chromatin in vitro using the purified histone chaperone NAP1 and chromatin 

assembly and remodelling factor ACF is described by Fyodorov and Kadonaga (2003).  

Chromatin assembly was achieved using a Chromatin Assembly Kit (Diagenode), which 

included recombinant human core histones, NAP1 and ACF.  In brief, core histones were 

combined with NAP1 in a chromatin assembly buffer.  DNA, ATP and ACF are 

subsequently added, and chromatin was assembled over 3 hours with incubation at 30°C. 

Due to the large amounts of chaperone protein required to assemble small amounts of 

chromatin, this method was not suitable for structural analyses such as SAXS, therefore salt 

dialysis was primarily used to prepare chromatin. 

2.3 Gel Electrophoresis  

2.3.1 Agarose Gel Electrophoresis 

Unless otherwise stated electrophoresis was performed in 1% agarose (Biogene) gels in 0.5 × 

TBE (44 mM Tris base, 44 mM Borate, 2 mM EDTA) in the presence of 500 ng/ml ethidium 
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bromide.  Gels were imaged using a geldoc (Syngene) or scanned with a laser scanner (Fuji 

FLA-5100) and lanes were analysed using Aida Image Analyser. 

Unless stated otherwise, NEB 2-Log DNA Ladders were used. 

2.3.2 Electrophoretic Mobility Shift Assay  

EMSA was used to measure a band shift in chromatin compared to DNA, as reconstituted 

chromatin runs more slowly on an agarose gel than unreconstituted DNA or partially 

reconstituted nucleosome arrays.  As described by Huynh et al. (2005), chromatin was 

fractionated on 0.7% agarose gels in 0.25 × TBE (22 mM Tris base, 22 mM Borate, 1 mM 

EDTA) in the absence of ethidium bromide, for 3 hours at 100 V.  Gels were subsequently 

stained in 500 ng/ml ethidium bromide and scanned using a laser scanner (Fuji FLA-5100). 

Unless stated otherwise, NEB 2-Log DNA Ladders were used. 

2.3.3 Polyacrylamide Gel Electrophoresis 

Protein samples were fractionated in NuPage LDS sample buffer (Invitrogen).  Samples were 

heated to 95°C for 5 min with 50 mM DTT to denature proteins and break disulphide bonds.  

NuPage 12% bis-tris gels or 4-12% bis-tris gradient gels (Invitrogen) were ran at 100 V in 

MOPS running buffer (Invitrogen).  Gels were subsequently stained with coomassie (50% 

Methanol, 10% Glacial Acetic Acid, 0.25% Brilliant Blue R250) shaking at room 

temperature for 1 hour.  Gels were destained (50% Methanol, 10% Glacial Acetic Acid) and 

photographed. 

Unless stated otherwise, Thermo Fisher SeeBlue Plus2 protein standards were used. 

2.4 Electron Microscopy  

2.4.1 Preparation of Samples 

Samples for electron microscopy were prepared by dialysing chromatin into 10 mM 

triethanolamine-HCl (pH 7.5), 0.2 mM EDTA and sodium chloride (2.5, 10 or 80 mM 

NaCl).  If required, magnesium chloride was added following dialysis.  Chromatin samples 

taken from a sucrose gradient (approximately 5 ng/μl) or chromatin taken directly from 

reconstitution (25 ng/μl) were fixed with 0.1% glutaraldehyde at 4°C for approximately 18 

hours. 

Chromatin was adhered to 3.05 mm copper grids with a 200 mesh formvar/carbon support 

film (TAAB).  Chromatin was coated in benzalkonium chloride (BAC) by incubating in 2 × 

10-4 % BAC for 1 hour at room temperature and was applied to grids for 5 mins.  Grids were 
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washed twice with deionised water, dehydrated with 90% ethanol and blotted dry before 

shadowing. 

2.4.2 Platinum Shadowing 

For contrast enhancement, grids were rotary shadowed with 3 nm platinum at an angle of 7° 

using a Leica ACE600 vacuum evaporator with a Pt-loaded electron gun. Jim Allan 

optimised the techniques to prepare these slides and Alex Makarov and Charles Dixon 

assisted me in the use of this equipment. 

2.4.3 Imaging 

Samples were examined in a JEOL JEM-1400Plus Transmission Electron Microscope at 80 

kV at a magnification of ×20,000-30,000.  Alex Makarov and Stephen Mitchell assisted me 

in the use of this microscope at the Centre Optical Instrumentation Laboratory, King’s 

Buildings, Edinburgh. 

2.4.4 Image Analysis 

ImageJ scripts for counting nucleosomes in unfolded chromatin and the area measurement of 

folded chromatin fibres were written by Davide Michieletto.  Images were cropped to isolate 

individual chromatin fibres, then blurred to obscure the background.  Nucleosomes were 

identified using a Phansalkar thresholding approach as this copes well with low contrast and 

non-uniform images (Phansalkar et al., 2011).  Initially, overlapping nucleosomes were 

counted as single objects and then a watershed segmentation was used to separate individual 

nucleosomes (See Figure 3.6).  ImageJ’s built-in watershed segmentation calculates the 

Euclidian distance map of the foreground areas found by thresholding (measuring the 

distance from the centre to the edge of each object), then dilates each of the ultimate eroded 

points in the map to form a “dam” separating overlapping objects. 

2.5 Digestion of Chromatin 

2.5.1 Restriction Digestion 

Chromatin was digested with the restriction enzymes AvaI, PsiI and Pfl23II (Thermo Fisher 

Scientific) in  RB50 buffer (10 mM HEPES–KOH, pH 7.6, 50 mM KCl, 1.5 mM MgCl2, 0.5 

mM EGTA) as described by Maier et al. (2008). 

100 ng of chromatin was digested with 5 units of AvaI or PsiI or 3 units of Pfl23II overnight 

at 4°C.  PsiI and Pfl23II digests were added to genomic lysis buffer and proteinase K to 

dissociate and degrade proteins, DNA was then purified by phenol/chloroform extraction and 

precipitated with ethanol.  AvaI digests were analysed as native chromatin (to see the fraction 
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of mono-nucleosomes vs unreconstituted “601” sites) on a 1.1% agarose gel, as described by 

Huynh et al. (2005). 

2.5.2 Micrococcal Nuclease Digestion 

Digestion by micrococcal nuclease (New England Biolabs) was performed in the presence of 

10 mM Tris-HCl (pH 7.5), 10 mM NaCl, 0.2 mM EDTA, 2 mM CaCl2 with 0.1 mg/ml BSA.  

0.75 units of MNase was used to digest 2 μg of chromatin in 150 μl buffer at 37°C.  

Fractions were removed at different time points up to 30 mins and added to an equal volume 

of 2 × genomic lysis buffer (300 mM NaCl, 20 mM EDTA, 1% SDS) to stop digestion.  

Proteinase K was added, and samples were incubated at 55°C for 15 mins.  DNA was then 

purified by phenol/chloroform extraction, precipitated with ethanol and analysed by 

electrophoresing in a 1% agarose gel in TBE buffer. 

2.5.3 Preparation of DFF/CAD Nuclease 

Constructs for the expression of recombinant DFF/CAD nuclease, engineered to replace the 

site of caspase-3 cleavage with a TEV protease cleavage site, were provided to the Gilbert 

laboratory by William Garrard and Fei Xiao.  These were produced in E. coli and purified 

essentially as described by Xiao et al. (2007). 

Both the human and the mouse isoforms of the nuclease have previously been cloned into a 

pRSF-Duet1 (Novagen) expression construct.  These were transformed into BL21 (DE3) E. 

coli (Novagen) and colonies were picked from agar plates.  3 ml starter cultures were grown 

from individual colonies overnight, then 1 ml was diluted into 100 ml fresh LB and grown at 

30°C in the presence of 25 μg/ml chloramphenicol and 50 μg/ml kanamycin until it had 

reached an A600 of 2.  IPTG was added to 1 mM to induce expression of DFF, and the 

culture was then grown at 16°C overnight. 

Bacteria were collected by centrifugation, washed in PBS, and resuspended in binding buffer 

(300 mM sodium chloride, 15 mM imidazole, 50 mM Tris-HCl (pH8), 10% glycerol, 10 mM 

2-merceptoethanol, PMSF and ETDA).  The cell slurry was incubated on dry ice for 30 min, 

thawed and lysozyme was added to a final concentration of 1 mg/ml.  The culture was then 

incubated on ice for a further hour.  Samples were sonicated for 15 min and triton-X 100 was 

added to 0.1%.  The cell debris was removed by centrifugation at 16,000 g.  The soluble 

fraction was added to nickel-agarose beads and incubated at 4°C overnight. 

Beads were washed 3 times in wash buffer (300 mM NaCl, 20 mM imidazole, 50 mM Tris-

HCl (pH8), 10% glycerol, 10 mM 2-mercaptoethanol, PMSF) then transferred to a column 

and washed again with 2 volumes of wash buffer.  Protein was eluted with 10 ml elution 
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buffer (identical composition to wash buffer but containing 250 mM imidazole) and 0.4 ml 

fractions were collected.  Fractions containing DFF were identified by polyacrylamide gel 

electrophoresis (Figure 2.5A and B) and pooled.  These were buffer exchanged into 2 × 

storage buffer (100 mM KCl, 20 mM Tris-HCl (pH8), 0.2 mM EDTA, 2 mM DTT, 10% 

glycerol) using a G-25 sephadex column.  BSA was added to 200 μg/ml and glycerol was 

added to 50%.  Proteins were stored at -20°C. 

 

Figure 2.5. Preparation of Recombinant DFF/CAD.  
Stages of purification of human (A) and mouse (B) DFF.  Whole cell extracts with and 
without induction of DFF by IPTG, soluble protein, fractions not bound to Ni-Ag beads, 
fractions eluted from Ni-Ag beads.  Human DFF was found in fractions 3-6, mouse DFF was 
found in fractions 3-5.  C) Activation of human and mouse DFF by cleavage of the 45 kDa 
inhibitory subunit by TEV protease for 30 mins at 37°C. Protein was fractionated on a 4-12% 
polyacrylamide gel. 

2.5.4 Digestion of Chromatin by DFF/CAD Nuclease 

DFF/CAD nuclease was activated by TEV protease (Invitrogen), which cleaves the DFF-45 

inhibitory subunit in the manner of caspase-3, releasing the DFF-40 active subunit.  DFF was 

diluted 1:1 with deionised water, then 1 μl TEV protease was added for each 20 μl of diluted 

DFF and incubated at 37°C for 30 mins.  Cleavage was confirmed by polyacrylamide gel 

electrophoresis (Figure 2.5C). 
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Activated DFF was added to chromatin in 10 mM Tris-HCl (pH 7.5), 10 mM NaCl, 0.2 mM 

EDTA and 3 mM MgCl2, and digested at 4°C or 37°C.  Fractions of the sample were 

removed at various time points and added to 2 × genomic lysis buffer (300 mM NaCl, 20 

mM EDTA, 1% SDS) to stop digestion.  Proteinase K was added and samples were 

incubated at 55°C for 15 min.  DNA was purified by phenol/chloroform extraction, 

precipitated with ethanol and analysed on a 1% agarose gel in TBE buffer. 

2.6 Sucrose Gradient Sedimentation 

Chromatin was fractionated on 6-40% isokinetic sucrose gradients (Noll and Noll, 1989), 

which were prepared in 12 ml ultraclear centrifuge tubes (Beckman) using an isokinetic 

gradient maker.  Up to 200 μl of chromatin (typically 10-20 µg) was layered on top of the 

gradient using a P1000 Gilson pipette.  Gradients were centrifuged in a swing-out SW41 

rotor (Beckman) at 41,000 rpm at 4°C for 5 hours.  Gradients were fractionated by upward 

displacement at 1 ml/ml through a UV monitor and logged using an analogue recorder 

(Anachem).  Fractions were collected every 30 sec. 

2.7 Caesium Chloride Gradient Sedimentation 

Chromatin density was measured by caesium chloride isopycnic gradient sedimentation 

according to Gilbert and Allan (2001).  Chromatin fractions were taken from a sucrose 

gradient and were dialysed into 10 mM TEA-HCl buffer (pH 7.5) containing 80 mM NaCl 

and fixed using 0.1% formaldehyde overnight at 4°C.  Caesium chloride (Boehringer 

Mannheim) was added to 48.5% w/w, to a density of 1.55 g/ml.  Samples were spun at 20°C 

in a vertical TV865 rotor (Sorvall) at 50,000 rpm for approximately 50 hours.  Gradients 

were fractionated from bottom to top using a pump speed of approximately 1 ml/min, 

collecting fractions every 15 sec.  The refractive index of each fraction was measured using 

an Abbe refractometer (Bellingham and Stanley) to determine the CsCl concentration and 

calculate the density of each fraction. 

2.8 Small-angle X-ray Scattering 

Small-angle X-ray scattering was performed at Diamond Light Source B21, Harwell Science 

and Innovation Campus, Didcot, with assistance from Nathan Cowieson, Nikul Khunti and 

Rob Rambo.  Nikul Khunti performed some experiments when prepared samples were 

mailed directly to the facility.  B21 operates in a fixed camera length configuration (4.014 

m), suitable for particles with a radius of gyration under 200 Å, at 12.4 keV.  B21 can 

measure a resolution range from 0.0031 to 0.38 Å-1 using a flux of ~1012 photons per second 

and is optimized for solution state SAXS experiments (Diamond Light Source, 2018).  
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Chromatin was prepared by salt dialysis either using a gradient maker as described in section 

2.2.2, or using a step-gradient as described by Rogge et al. (2013), where chromatin was 

dialysed from 2 M to 1 M NaCl over 5-6 hours, 1 M to 750 mM NaCl overnight, then to 2.5 

mM NaCl over 5-6 hours in dialysis tubing.  Linker histones or magnesium were added after 

reconstitution to fold nucleosome arrays.  Samples were analysed by SEC-SAXS using a 

Shodex KW405-4F column in 10 mM Tris-HCl (pH 7.3), 2.5 mM NaCl and 0.2 mM EDTA 

pumped at 0.25 ml/min, or by direct injection onto the SAXS beam.  For direct injection, 

samples were loaded into a temperature-controlled quartz capillary cell and exposed for 3 

min.  Data was corrected using a matched buffer and analysed using Scatter (BIOISIS) and 

Sasview (NSFDANSE) software. 

2.9 Single-molecule Force Spectroscopy using Magnetic Tweezers 

Single-molecule force spectroscopy was performed according to Kruithof et al. (2009) at the 

Leiden Institute of Physics, with assistance from Artur Kaczmarczyk and John van Noort. 

2.9.1 DNA Preparation 

DNA labelled with biotin and digoxigenin was prepared by digesting plasmid DNA with 

NdeI and PciI, generating a fragment containing 25 nucleosome positioning sites plus a total 

of around 600 bp of additional DNA at the ends of the 5 kbp template.  The NdeI restriction 

site was filled in with dATP and labelled with biotin-dUTP (Roche) using DNA Polymerase 

I Large (Klenow) Fragment.  Excess nucleotides were removed by spinning DNA through 

G-50 microspin columns (GE Healthcare).  The PciI restriction site was then filled in with 

dATP, dCTP and dGTP and labelled with dig-dUTP (Roche) using Klenow.  Labelled 

template DNA was separated from the vector backbone and excess nucleotides by gel 

extraction from SeaPlaque Agarose (Lonza) using β-Agarase I (New England Biolabs). 

Biotin and digoxigenin labelling of DNA was confirmed by dot blot.  Protran BA85/20 

nitrocellulose membranes were prepared by washing in deionised water for 5 mins followed 

by 20 min in 20 × SSC, and dried on blotting paper.  Samples were spotted onto the 

membrane with 500-50 femtomol/μl dilutions of a standard primer.  DNA was air-dried and 

membranes were crosslinked by UV.  Membranes were then blocked by 30 mg/ml BSA in 

100 mM Tris-HCl (pH 7.5) and 150 mM NaCl.  Anti-digoxigenin-AP or Streptavidin-AP 

(Roche) were then added at 0.75 U/ml in 100 mM Tris-HCl (pH 7.5) and 150 mM NaCl and 

incubated with shaking for 1 h at room temperature.  Membranes were washed twice with 

100 mM Tris-HCl (pH 7.5) and 150 mM NaCl for 15 min, and a final rinse with 100 mM 

Tris-HCl (pH 9.5) for 5 mins.  Membranes in 5 ml 100 mM Tris-HCl (pH 9.5) were 
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developed using BCIP/NBP Alkaline Phosphate Substrate Kit (Vector Laboratories) and 

photographed. 

2.9.2 Chromatin Preparation 

Chromatin was prepared by salt dialysis as described in section 2.2.2, or by one-step gradient 

dialysis described by Kaczmarczyk et al. (2017), where chromatin is dialysed from 2 M to 10 

mM NaCl over approximately 19 hours.  Chromatin was reconstituted using recombinant 

xenopus core histones in the presence of a 147 bp monomer competitor DNA fragment.  

Chromatin was then diluted to approximately 20 ng/ml in ESB (+) buffer (10 mM HEPES 

(pH 7.6), 100 mM NaCl, 2 mM magnesium acetate, 10 mM sodium azide, 0.1% (v/v) 

Tween-20 and 0.02% (w/v) BSA) before injection into the flow cell. 

2.9.3 Flow Cell Preparation 

Flow cells were prepared according to Kaczmarczyk et al. (2017).  A coverslip was coated 

with 0.1% nitrocellulose in amylacetate, dried, then mounted onto a flow cell containing a 

flow channel of approximately 10 × 40 × 0.4 mm.  Anti-digoxigenin (Roche) was diluted to 

3 μg/ml in deionised water, injected into the flow cell and incubated at 4°C for at least 2 h.  

The flow cell was then incubated overnight at 4°C with 4% (w/v) BSA and 0.1% Tween-20. 

Flow cells were washed with ESB (+) buffer before chromatin was injected at a 

concentration of approximately 20 ng/ml.  Flow cells were incubated with chromatin at 4°C 

for at least 10 min, then ESB (+) buffer containing 2.8 μm-diameter streptavidin-coated 

M270 magnetic beads (Invitrogen) were injected into the flow cell.  Beads were incubated 

for a further 10 min at 4°C before untethered beads were washed out with ESB (+) buffer. 

2.9.4 Single-molecule Force Spectroscopy 

The van Noort laboratory’s home-built multiplexed magnetic tweezer set up was used to 

measure the extension of chromatin fibres under force (Brouwer et al., in preparation; 

Kaczmarczyk et al., 2017).  A continuously increasing force is applied by moving the 

magnet towards the flow cell.  Subsequently, the magnet trajectory is reversed to decrease 

force.  The force exerted was calculated using a double exponential function calibrated prior 

to the experiment.  The change in height of the magnetic beads (and therefore extension of 

chromatin molecules) was measured in real time at a frame rate of 30 Hz with a digital 

camera (CMOS Vision Condor). 

2.9.5 Data Analysis 

Data analysis and curve-fitting was performed using custom software written in Labview by 

the van Noort laboratory.  The force-extension curve for each individual chromatin fibre was 
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fitted to the van Noort laboratory model of chromatin unfolding by first offsetting the curve 

so that the extension at high force (above 60 pN, after the final rupture event) to a worm-like 

chain of a known contour length (5542 bp for 601, 5595 bp for BLG and 601/BLG) with a 

persistence length of 50 nm and a stretch modulus of 1200 pN, in order to correct for off-

centre attachment of the chromatin fibre to the magnetic bead.  Rupture events at high force 

(6-60 pN) were identified with a t-test step-finding algorithm with a 5-point window.  At 

forces below the first nucleosome-rupture event, force extension curves were manually fitted 

to the statistical mechanical model described by Meng et al. (2015) by specifying the 

nucleosome repeat length (197 bp), the number of nucleosomes (variable), the length of 

folded nucleosomes (1.5 nm), the stiffness of a folded fibre (variable), the number of 

unfolded nucleosomes, the length of DNA unwrapping from nucleosomes at low force (56 

bp), the ΔG of three force transitions (variable) and the degeneracy (degeneracy of 1 was 

used, indicating a one-start model of chromatin structure consistent with a 197 bp repeat 

(Meng et al., 2015)). 

Artur Kaczmarczyk performed analysis of high force rupture probability and provided 

MATLAB scripts to display force-extension curves of chromatin unfolding. 
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Chapter 3. Characterisation of Chromatin Arrays 

3.1 Introduction 

DNA sequence is known to play a role in nucleosome positioning due to differences in the 

bendability of different DNA sequences (Struhl and Segal, 2013), as described in section 1.3.  

Stiff poly(dA:dT) tracts have a low capacity to position nucleosomes (Field et al., 2008; 

Segal and Widom, 2009b), whereas sequences with a helical periodicity of flexible 

dinucleotides (AT, TA), occurring approximately every 10 base pairs, have a high affinity 

for the histone octamer (Lowary and Widom, 1998). 

Nuclease digestion of chromatin is an important tool in the study of chromatin structure, 

particularly in the analysis of nucleosome positioning.  Most nucleases are unable to access 

DNA wrapped around the histone octamer; instead they attack the accessible DNA between 

nucleosomes, leaving a footprint of DNA sequences bound to the histones which can be used 

to analyse nucleosome positions or to identify nucleosome-free regions.  DNaseI has been 

used to identify regulatory regions which are depleted of histone proteins, identifying 

DNaseI hyper sensitive sites (Boyle et al., 2008; McGhee et al., 1981; Weintraub and 

Groudine, 1976).  Micrococcal nuclease is used preferentially to map nucleosome positions 

by isolating and sequencing individual mono-nucleosome sequences both in vitro and in vivo 

(Fraser et al., 2009; Kaplan et al., 2009).  These enzymes are suited to these different tasks as 

DNaseI can be thought of as a sharp cutter and is more penetrative than the “blunt-nosed” 

MNase. 

In vivo, multiple factors play a role in nucleosome positioning, including the underlying 

DNA sequence, chromatin remodelling enzymes, and gene transcription.  Sequences at some 

gene promoters have been found to maintain DNA accessibility by disfavouring nucleosome 

formation (Field et al., 2008; Sekinger et al., 2005).  When in vivo nucleosome occupancy 

data derived from MNase digestion of the genome has been compared with in silico 

predictions of high nucleosome occupancy, it appears that approximately 50% of 

nucleosome positioning in vivo can be attributed to the intrinsic properties of the underlying 

DNA sequence (Segal et al., 2006). 

When chromatin is reconstituted onto genomic DNA in vitro by salt gradient dialysis, the 

nucleosome positioning is well correlated to the native nucleosome position in vivo.  This 

has been shown by comparing micrococcal nuclease digestion and sequencing of yeast 

mono-nucleosomes derived from cells and following in vitro reconstitution of the yeast 

genome (Kaplan et al., 2009) and of the ovine β-lactoglobulin gene region (Gencheva et al., 
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2006).  In addition, promoter sequences that enhance DNA accessibility in vivo have been 

found to poorly bind to nucleosomes in vitro (Kaplan et al., 2009; Segal and Widom, 2009b; 

Sekinger et al., 2005). 

The “601” sequence is a chemically synthetic DNA sequence selected from a random pool of 

sequences by SELEX experiments (Lowary and Widom, 1998).  It is known to position 

nucleosomes strongly following reconstitution in vitro and repeats comprised of this 

sequence form regular nucleosome arrays where nucleosomes are precisely spaced.  

Reconstituted fibres can be folded into higher-order structures; depending on the repeat 

length they have been observed to have a diameter of 30-nm in vitro, which have been 

analysed by electron microscopy (Robinson et al., 2006b), X-ray crystallography (Schalch et 

al., 2005) and cryo-electron microscopy (Song et al., 2014).  While the conformation of the 

fibres may vary depending on the nucleosome repeat length of arrays, Robinson et al. found 

that fibres with a nucleosome repeat length between 177 bp and 237 bp form a one-start 

helical structure, while Schalch et al. and Song et al. find that fibres with a nucleosome 

repeat length between 167 bp and 187 bp form a two-start helix with a tetranucleosomal 

substructure.  While arrays of the “601” sequence have been extremely important as a model 

system, their repetitive nature and strong affinity for the histone octamer make them a 

questionable model for the chromatin structure of the majority of the human genome.  

Thåström et el (1999) found that artificial nucleosome positioning sequences including the 

“601” have approximately a six-fold higher affinity for the histone octamer than the 

strongest biological nucleosome positioning sequences examined, and suggest that the 

eukaryotic genome has not evolved to position nucleosomes so precisely as the “601” is able 

to. 

To investigate the role of DNA sequence on chromatin structure, the Gilbert laboratory has 

designed novel DNA sequence templates using strong biologically-derived nucleosome 

positioning sequences within a non-repetitive template.  In this chapter I have optimised the 

reconstitution of these DNA templates into nucleosome arrays and analysed the nucleosome 

positioning of each of these fibres by nuclease digestion.  Ensuring that chromatin fibres are 

correctly saturated  and understanding this primary level of chromatin structure will be 

essential to study the higher-order structures and dynamics of these different sequences. 

3.2 Design and Construction of DNA Templates for Reconstitution 

The laboratory of Jim Allan (Fraser et al., 2009) mapped sites of high nucleosome affinity in 

vitro across the ovine β-lactoglobulin gene.  Essentially, linearised plasmid DNA encoding 

the ovine β-lactoglobulin DNA sequence (approximately 11 kbp) was reconstituted by salt 
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gradient dialysis, using a low histone:DNA ratio of approximately one nucleosome per DNA 

molecule so there is no nucleosome-nucleosome competition.  The resulting chromatin was 

digested to mono-nucleosomes by MNase, leaving DNA sequences that are protected by the 

presence of a histone octamer.  Protected fragments were purified by gel electrophoresis, 

sequenced, and mapped to the DNA sequence to determine nucleosome coverage (Figure 

3.1A).  This indicated where nucleosomes are most likely to form and protect DNA regions 

from nuclease digestion.  Jim Allan analysed this data to generate dyad maps (Fraser et al., 

2009) assuming that the particle size was 149 base pairs (Figure 3.1B), although it is possible 

that particles of different sizes (159 or 169 base pairs) could exist, which would affect the 

identification of the dyads.  Using these dyad positions, 25 nucleosome positioning sites with 

high nucleosome occupancy were selected to develop a template for chromatin 

reconstitutions (Figure 3.1, grey). 

In addition to experimental methods, algorithms have been developed to predict 

nucleosomes postions (Field et al., 2008; Kaplan et al., 2009; Segal et al., 2006).  To 

compare experimentally determined nucleosome coverage maps generated using Xenopus 

laevis core histone octamers (Fraser et al., 2009) with predicted nucleosome positions the 

algorithm developed by van der Heijden et al. (2012) was used 

(http://bio.physics.leidenuniv.nl/~noort/cgi-bin/nup3_st.py).  This algorithm uses the 

periodicity of various different flexible dinucleotides; the position of TA, TT, AA and GC 

dinucleotides is calculated, with other dinucleotides weighted in order to normalise the 

probability of nucleosome occupancy.  The algorithm is parameterised by three parameters: 

The probability amplitude which captures the sequence specificity for nucleosome binding 

by specific dinucleotides, the periodicity of dinucleoide distributions within the nucleosome, 

and the window of DNA that defines the binding of histones during the reconstitution.  The 

chemical potential is also specified, defining the average affinity of the histone octamers for 

DNA, which is dependent on their relative concentration and allows the possibility that 

bound histones will block occupied binding sites or statistically position nucleosomes 

alongside themselves to be captured by the model.  Using an amplitude of 0.2, a periodicity 

of 10.1 bp, a window of 147 bp and a potential of -1.0 kT, the probability of nucleosome 

occupancy across the ovine β-lactoglobulin gene was measured (Figure 3.1C, yellow).  

While van der Heijden et al. state that a window of 74 bp best captures the strong 

nucleosome positioning properties of the “601” sequence, a 147 bp window was used here as 

this was found to best capture the nucleosome occupancy of the yeast genome reconstituted 

by salt gradient dialysis in vitro by Kaplan et al. (2009). 

http://bio.physics.leidenuniv.nl/~noort/cgi-bin/nup3_st.py
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Variability in the strength of the nucleosome positioning sites between experimental (using 

xenopuscore histones) and theoretical data was observed (Figure 3.1C).  The algorithm 

shows generally less variation between points of high positioning probability and low 

probability and seems to show more peaks suggesting that there are more sites that are 

statistically likely to position a nucleosome, based on their sequences, than are captured in  

 

Figure 3.1. Nucleosome Positioning Maps of the Ovine β-lactoglobulin Gene.  
A) Nucleosome coverage maps for the ovine β-lactoglobulin gene reconstituted using 
chicken erythrocyte (orange) or recombinant Xenopus (blue) core histones. Sequencing 
data from Fraser et al. (2009) replotted.  B) Dyads calculated from coverage maps based on 
a 149 bp window by Jim Allan.  C) Nucleosome coverage map (blue – using xenopus 
histones as in part A) compared with in silico nucleosome positioning analysis (yellow – 
right axis) (van der Heijden et al., 2012).  Grey plateaus indicate 25 selected 197 bp binding 
sites with increased affinity for the histone octamer. 
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the experimental data.  The algorithm also suggests that nucleosomes would expect to be 

positioned over regions of DNA (such as the region around 0-1300 bp) where no 

nucleosomes were found experimentally.  However, there appears to be a degree of 

correlation within the datasets.  For example, at approximately 5300 bp is a region where 

very few nucleosomes were experimentally identified, and the algorithm also suggests is 

very unlikely to position a nucleosome.  The predicted histone occupancy in silico was 

compared with the positioning of the 25 selected nucleosome positioning sites that have the 

high affinity for the histone octamer in vitro (grey).  A peak in the probability of histone 

occupancy in the in silico data was identified within every one of the 197 bp sites derived 

from the in vitro data, with the average distance between the peak maximum and the dyad of 

the selected positioning site being 29.84 bp.  In 2 of these 25 positioning sites, the peak of 

predicted histone occupancy in silico aligned precisely with the dyad calculated from the 

experimental data.  This suggests that there are DNA sequences whose histone occupancy 

seems to be well captured by algorithms to predict nucleosome positioning, but that there is 

much still unknown about the affinity of the histone octamer for different DNA sequences 

that means that histone occupancy in vitro still cannot be perfectly be captured. 

3.3 Novel Templates for Chromatin Reconstitution 

To investigate the relationship between underlying DNA sequence and the structure and 

dynamics of the higher-order chromatin fibre two new DNA templates with different 

properties were developed. 

A non-repetitive and a partially repetitive sequence for the reconstitution of chromatin in 

vitro were created from high affinity nucleosome positioning sites identified in the ovine β-

lactoglobulin gene.  The 25 highest affinity octamer positioning sequences were selected 

(section 3.2) with the central base pair assumed to be the dyad (Figure 3.1B).  197 bp 

sequences centred on each dyad position were synthesised together (in the order that they 

appear within the β-lactoglobulin gene) to create a 4925 base pair DNA sequence, termed 

BLG.  A second DNA sequence was synthesised where every other BLG nucleosome 

positioning sequence was replaced with a canonical 197 bp “601” repeat.  This DNA 

template was denoted 601/BLG (Figure 3.2A). 

These novel DNA templates were compared to a “601” sequence containing 25 repeats of a 

197 bp sequence comprised of the 147 bp “601” core and a 50 bp linker sequence.  In this 

thesis, where 601 is referred to in italics, I refer to this specific DNA template containing 25 

repeats of the 197 bp “601” monomer. 
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Figure 3.2. DNA Templates for Chromatin Reconstitution.  
A) Schematic of three DNA templates: the repetitive 601, BLG containing 25 unique 
nucleosome positioning sites from the β-lactoglobulin gene, 601/BLG containing alternating 
“601” and unique nucleosome positioning sites.  Each nucleosome positioning site consists 
of 197 bp DNA.  B) In silico nucleosome positioning analysis (van der Heijden et al., 2012) of 
three reconstitution templates. P = predicted occupancy. 

Each of the sequences differs slightly in their G/C content.  BLG has the highest G/C content 

at 60.6%, 601 has 57.3% G/C, and 601/BLG, being a mixture of the other sequences has a 

G/C content between these two, of 57.7%.  G/C rich regions of the genome, such as those 
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found within gene bodies are associated with higher levels of nucleosome occupancy in vitro 

(Valouev et al., 2011). 

The three different DNA templates each contain 25 × 197 base pair nucleosome positioning 

sites but as the DNA sequences are different, the affinity of the histone octamer for each site 

is likely to vary.  The algorithm described by van der Heijden et al. (2012) was used to 

determine the nucleosome positioning properties of the 601, BLG, and 601/BLG (Figure 

3.2B). 

The algorithm predicts strong, regular positioning of nucleosomes by the 601 sequence.  In 

contrast, the BLG sequence contains some sites which appear to have a greater affinity for 

the histone octamer than the “601”, but also contains regions which do not appear to position 

nucleosomes well.  In the 601/BLG sequence, the presence of the “601” repeats may force 

nucleosomes to be positioned less variably upon the “BLG” sites in between them. 

As each of the non-“601” nucleosome positioning sites have been experimentally mapped 

following reconstitution by salt gradient dialysis, it is expected that these templates should 

form nucleosome arrays containing 25 histone octamers when reconstituted.  However, the 

positioning of these nucleosomes may vary from the very regular 601, where nucleosomes 

are known to position strongly over the 147 bp core of each repeat.  These differences in the 

position and strength of nucleosome positioning would then be expected to have an impact 

on the structure of the folded chromatin fibre. 

3.4 Reconstitution of Chromatin by Salt Dialysis 

To form nucleosome arrays from DNA templates and core histone octamers in vitro, 

chromatin was reconstituted by salt dialysis.  DNA and core histone octamers were 

combined in high salt (which inhibits interactions between the negatively charged DNA and 

positively charged histones), and slowly dialysed to low salt, allowing histone octamers to 

bind to preferential sequences within the DNA and subsequently fold into nucleosome 

arrays.  To form folded higher-order chromatin fibres from nucleosome arrays, linker 

histones and/or magnesium ions were added after salt dialysis (see section 4). 

Throughout I used a linear gradient maker to dilute 2 M sodium chloride to 400 mM over a 

6-hour period (section 2.2.2).  Upon reaching 400 mM sodium chloride histone octamers will 

be bound to and positioned on the preferred DNA sequences.  Nucleosome arrays in 400 mM 

sodium chloride were then dialysed into low salt (2.5, 10 or 80mM NaCl) overnight; at 80 

mM salt they represent chromatin found in the nucleus, but in lower salt they are likely to be 

an unfolded state and suitable for analysis of nucleosome arrays. 
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Competitor DNA sequences can be added to reconstitutions to minimise oversaturation of 

template DNA sequences by histone octamers, as excess histone octamers will bind to the 

competitor.  “601” sequences have such a high affinity for the histone octamer that they 

become saturated with nucleosomes before any protein binds to the competitor, excess 

histones will bind to the competitor rather than oversaturate the “601”.  Previously, a 147 bp 

competitor DNA has been used to prevent the oversaturation of “601” nucleosome arrays 

(Huynh et al., 2005), whilst reconstitution of 601 in the absence of a competitor requires 

careful titration of histone octamers to ensure that nucleosome arrays do not become 

oversaturated.   

 

Figure 3.3. Components of Chromatin Reconstitution.  
A) DNA templates for chromatin reconstitution.  B) Chicken erythrocyte and recombinant 
Xenopus histone octamers fractionated alongside individual purified recombinant human 
histones (New England Biolabs).  Samples were analysed on a 12% polyacrylamide gel. 

Two different types of competitor were used during my studies (Figure 3.3A).  Firstly, the 

147 bp mono-nucleosomal competitor sequence derived from the pUC18 vector backbone, 

was used in reconstitutions as described by Huynh et al (2005).  This was used for small 

scale experiments including single-molecule force spectroscopy (section 4.7), however, it 

was difficult to purify sufficient competitor and template DNA for large scale experiments.  

As an alternative, for some experiments including sucrose gradient sedimentation (section 
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4.4), the 601, BLG, and 601/BLG templates were excised from the plasmid vector backbone, 

the backbone was digested to fragments of approximately 500 bp or smaller, and these 

fragments were used as competitor DNAs.  For experiments including SAXS where 

competitor DNA would affect the results, purified template was reconstituted in the absence 

of any competitor, as described by Rogge et al. (2013). 

Core histone octamers were purified from chicken erythrocytes (see section 2.2.1.3).  For 

defined small scale experiments, such as single-molecule force spectroscopy, recombinant 

Xenopus core histones were provided by Tom Owen-Hughes and Ramasubramanian 

Sundaramoorthy (Figure 3.3B). 

3.5 Heterogenous DNA templates require additional histones for 

saturation 

To determine the histone:DNA ratio to correctly saturate DNA templates with 25 

nucleosomes in the presence and absence of a competitor, DNA was titrated with histone 

octamers and the nucleosome arrays were analysed by an electrophoretic mobility shift assay 

(EMSA). Reconstituted chromatin migrates more slowly through an agarose gel than 

unreconstituted DNA as a result of the decreased overall charge and increased mass of the 

reconstituted chromatin.  Furthermore, the topology of the molecule is likely to impact its 

migration speed, in a similar manner to a supercoiled plasmid migrating more quickly than 

linear DNA. 

Previously, Huynh et al. (2005) suggested that “601” fibres reach a maximum mobility shift 

when they become saturated with histone octamers (in this case, 25 octamers bound to each 

DNA fibre). 

Chromatin fibres in the presence and absence of competitor DNAs were reconstituted at 

different histone:DNA ratios at 40 ng/µl (template DNA concentration) and analysed on 

0.7% agarose gels in 0.25 × TBE, in the absence of ethidium bromide.  Figure 3.4 shows the 

three chromatin templates, titrated with varying amounts of core histones in the absence of a 

competitor (A), or the presence of an undigested plasmid backbone as competitor (B) (the 

size of the competitor fragment when undigested is approximately 2.5 kbp).  The chromatin 

fibres migrate at different rates relative to the DNA markers (Figure 3.4C).  However, as 

chromatin runs differently to DNA depending on gel conditions (specifically agarose 

concentration, see Figure 4.2), the maximum shift cannot be compared between each of the 

different templates which are ran on different gels (see below), but for each individual fibre, 
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this enables the point where each template reaches a plateau indicating fibre saturation to be 

determined. 

In the absence of competitor, 601 appears to be fully saturated at a histone:DNA ratio of 

1.4:1 (Figure 3.4A – indicated by *).  In contrast, the non-601 templates require a slightly 

higher amount of histones to achieve full saturation in the absence of a competitor, 

corresponding to a 1.6-1.8:1 histone:DNA ratio for the BLG and 601/BLG respectively.  This 

is consistent with the lower affinity of the non-“601” sequences for the histone octamer. 

 

Figure 3.4. Electrophoretic Mobility Shift Assay of DNA Templates Reconstituted with 
Varying Amounts of Core Histone Octamer. 

(Full legend found on following page) 
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A) Titration of purified template DNA with chicken erythrocyte core histones.  Green 
asterisk indicates the histone:DNA ratio at which the shift in gel migration plateaus, 
calculated from the nominal fragment size.  B) Titration of templates with Xenopus core 
histones, using the undigested plasmid backbone as a competitor.  Note that following 
remeasurement of the 601 DNA sample concentration, histone:DNA ratios used were found 
to be higher than those in the corresponding 601/BLG and BLG titrations.  See panel C.  C) 
Shift measured by calculating the fragment size relative to the DNA ladders.  Chromatin 
runs differently on different percentage gels relative to DNA, and therefore the maximum 
shifts between gels cannot be compared, but these can be used to visualise the plateau at 
which chromatin fibres are thought to become fully saturated in each case.  True fragment 
size is not calculated, but used as a marker for mobility shift.  For the template 
reconstituted in the absence of competitor, these results are the product of two technical 
replicates (samples ran on two separate gels), in the presence of the vector competitor, but 
data from only one gel is shown.  T (solid line) = template reconstituted in the absence of 
competitor (A), VD (dotted line) includes a competitor of the digested vector backbone.  D) 
Fully saturated samples (601 at 1.7:1, BLG and 601/BLG at 2:1) including a vector backbone 
competitor are compared on the same gel and the relative positions of migration were 
measured as 11388bp, 11377bp and 11058bp respectively. 

In the presence of competitor, the 601 template appears to achieve full saturation at a very 

similar histone:DNA ratio (1.4:1) as without competitor, and there is very little concomitant 

mobility shift in the vector backbone (Figure 3.4B).  The large difference in affinity between 

the template and the competitor appears to allow the 601 to be reconstituted as if the 

competitor was not present up to a histone:DNA ratio of 1.4:1.  At histone:DNA ratios 

higher than this, once the template becomes fully saturated with 25 histone octamers, 

additional histones bind to the competitor as described by Huynh et al (2005), preventing 

oversaturation of the template.  At ratios higher than 1.4:1, there is a mobility shift in the 

competitor DNA, showing more histones binding at increasing histone:DNA ratios (Figure 

3.4B). 

For both the BLG and 601/BLG samples, more histones are required to saturate the templates 

in the presence of a competitor, as histones bind to the competitor at sub-saturating ratios of 

histone:DNA.  This confirms that these templates do not have such a high affinity for the 

octamer as the 601.  To achieve saturation, approximately a 1.8-2:1 histone:DNA ratio is 

required for the BLG and 601/BLG respectively.  Intriguingly, in both the absence and 

presence of competitor, the 601/BLG appears to require slightly more histones than the BLG, 

although this would be expected to have an overall higher affinity for the histone octamer 

due to the presence of the “601” repeats.  It is possible that for the 601/BLG template the 

histones bind to the “601” repeats earlier during the reconstitution, and that this makes it 

more difficult for nucleosomes to subsequently assemble on the “BLG” sites between them. 
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The fact that a plateau is reached in the shift of the fibres, even in the absence of a 

competitor DNA (where excess histones might be expected to bind to the template), suggests 

that excess histones are either not bound to the template, or that a gel mobility-based assay 

cannot discriminate well between a saturated and an oversaturated chromatin fibre.  

However, where 601 has been over-titrated in the presence of a competitor, the template 

appears to run faster as the histone:DNA ratio is increased above 1.6:1.  This might indicate 

a structural change at this level of saturation that causes the chromatin to run faster than a 

fibre with 25 nucleosomes, however if this were the case, it would also be expected to occur 

in the absence of a competitor, when the template would become oversaturated more easily, 

indicating there might be limitations to the assay. 

Although recombinant Xenopus core histones were used to titrate the DNA in the presence of 

a competitor (Figure 3.4B), many other experiments used chicken erythrocyte core histones 

for reconstitutions.  A comparison between the reconstitution efficiency of chicken and 

xenopus core histone octamers of a 601 template can be found in Appendix 3. 

As chromatin migrates slightly differently depending on agarose gel concentration it is most 

informative to run all samples on the same gel.  To confirm the optimal reconstitution 

conditions the three DNA templates (601 at 1.7:1, BLG and 601/BLG both at 2:1), were 

reconstituted under optimal conditions in the presence of a vector backbone competitor and 

analysed together to reveal a similar degree of mobility shift (Figure 3.4D). 

3.6 Electron Microscopy 

To assess the extent of the nucleosome array saturation and to examine fibre structure, 

chromatin was reconstituted using chicken erythrocyte core histones in the absence of 

competitor DNA and viewed by electron microscopy.  As described in section 2.4, chromatin 

samples were fixed using formaldehyde, attached to carbon grids, platinum shadowed, and 

imaged at 20-30,000 × magnification using a JEOL JEM-1400Plus Transmission Electron 

Microscope.  A 601 sample reconstituted at a 1.6:1 histone:DNA ratio (Figure 3.5A) at low 

resolution showed variation in the structures across the population of molecules.  At high 

resolution, individual fibres from the different templates are easily discernible (Figure 3.5B).  

At a histone:DNA ratio of 1.2:1 the samples appear slightly undersaturated, but at 1.6:1 

fibres look well saturated. At a ratio of 2:1, some fibres appeared very folded so that 

individual nucleosomes were not easily discernible, indicating oversaturation.  In some 

views condensed particles were visible (Figure 3.5C); it is not clear what these correspond to 

and so were excluded from the analysis. 
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Figure 3.5. Electron Microscopy of Nucleosome Arrays.  
A) Image field from an electron micrograph of 601 chromatin fibres reconstituted at 1.6:1 
(histone:DNA). Sample is magnified 20,000× and scale bar is 500 nm.  B) Typical fibres 
observed for each DNA sequence template reconstituted at different histone:DNA ratios.  
C) Example of a condensed particle which appears at similar amounts in each sample and 
was excluded from further analysis. 
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To count the number of nucleosomes and to measure the area occupied by each nucleosome 

array within an EM image, ImageJ scripts were written by Davide Michieletto (see section 

2.4.4).  Images of individual chromatin fibres were blurred to obscure background and 

nucleosomes were identified using a Phansalkar thresholding approach.  A watershed 

segmentation was added to separate overlapping nucleosomes which would otherwise be 

counted as single objects on a more saturated chromatin fibre (Figure 3.6A). 

 

Figure 3.6. Counting Nucleosomes in Electron Microscopy Images.  
A) Automatic counting of nucleosomes with and without watershed separation of 
nucleosomes.  A 601 fibre reconstituted at 1.6:1 has 18 nucleosomes counted without 
watershed separation, and 25 nucleosomes with watershed separation.  B) Number of 
nucleosomes and area of chromatin fibres measured by automated nucleosome counting 
algorithms, +/- SEM. 

For each sample, nucleosomes on 20 fibres were manually counted, and the radii used to blur 

and threshold the images were optimised for each individual sample.  These scripts were 

then applied to a wider selection of chromatin fibres to count the number of nucleosomes and 
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measure the area covered by each fibre (Fibre 3.6B).  It was not possible to manually count 

individual nucleosomes on fibres reconstituted at a 2:1 histone:DNA ratio, but the area was 

measured by the algorithms optimised for fibres reconstituted at 1.6:1. 

At a 1.2:1 histone:DNA ratio, an average of 19.7 nucleosomes were counted on 601 fibres 

(N=102), 20.0 nucleosomes were counted on BLG fibres (N=43), and 18.1 nucleosomes 

were counted on 601/BLG fibres (N=78).  At 1.6:1, an average of 23.1 nucleosomes were 

counted on each 601 chromatin fibre (N=82), 21.1 nucleosomes were counted on each BLG 

chromatin fibre (N=85) and 23.9 nucleosomes were counted on each 601/BLG chromatin 

fibre (N=70).  At a histone:DNA ratio of 1.6:1, a 601 fibre might be expected to be slightly 

oversaturated, a BLG fibre correctly saturated, and a 601/BLG fibre slightly undersaturated, 

based on the results of the EMSA (Figure 3.4A).  While the chromatin fibres reconstituted 

under each of these conditions all appear to be undersaturated it is surprising that 601 and 

601/BLG, which are expected to be respectively oversaturated and undersaturated from the 

band shifts (Figure 3.4A), they have a similar number of nucleosomes while the BLG, 

expected to be correctly saturated, has fewer.  It is possible that nucleosomes are less evenly 

spaced within the BLG templates, causing more cases of nucleosome overlapping which can 

not always be separated by manual counting or the watershed segmentation.  Similarly, when 

601 became oversaturated with histone octamers,  increased nucleosome overlapping may 

restrict nucleosomes being counted.  When reconstituted at a 2:1 ratio, this algorithm was 

typically only able to identify 15-17 nucleosomes on each chromatin fibre due to this 

overlapping.  This might suggest that nucleosomes cannot be counted to accurately 

determine fibre saturation following EM, but this might still be a useful method to compare 

fibre saturation between different samples. 

The area occupied by the chromatin fibre also decreases as fibres become saturated, possibly 

as a consequence of increased folding and nucleosome overlapping.  The area of 601 fibres, 

expected to become fully saturated at a histone:DNA ratio of 1.4:1, drops steeply between 

histone:DNA ratios of 1.2:1 and 1.6:1, but only moderately between 1.6:1 and 2:1. 

Conversely, the area of 601/BLG fibres, which are expected to become saturated at 1.8:1, 

drops moderately between 1.2:1 and 1.6:1, then steeply between 1.6:1 and 2:1.  This suggests 

that the area of reconstituted fibres drops considerably at the point when fibres become 

oversaturated, possibly as a result of increased fibre folding in these conditions.  BLG fibre 

area was maximal at a ratio of 1.6:1, at which point they should be correctly saturated, but 

dropped steeply as the histone:DNA ratios was increased to 2:1. 
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Unfortunately, electron microscopy could not be used to study saturation levels of chromatin 

reconstituted in the presence of a competitor without first removing the competitor DNA 

from the sample (see section 4.4). 

3.7 Density Gradient to Measure Reconstitution Efficiency 

 

Figure 3.7. Density Gradient of 601 chromatin.  
A) Calculated density of a 25 x 197 bp DNA template onto which a given number of 
nucleosomes have been reconstituted.  25 nucleosomes will have a density of 1.55 g/ml.  B) 
Density of fractions of a CsCl gradient, calculated from the refractive index and 
corresponding CsCl concentration.  C) CsCl fractions (fractionated from bottom to top) 
analysed on 1% agarose gel.  Template DNA appears in fraction 15 of the gradient. 

To quantitatively analyse the number of nucleosomes bound to different DNA templates, the 

density of the chromatin fibres was measured using caesium chloride isopycnic gradients.  

Chromatin was reconstituted in the presence of a competitor (the vector backbone), and 

therefore required the separation of competitor and template chromatin fragments by sucrose 

gradient sedimentation.  601 reconstituted at 1.7:1 and BLG and 601/BLG reconstituted at 

2:1 histone:DNA ratios (Figure 3.4D) were centrifuged on a 6-40% isokinetic sucrose 
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gradient for 5 hours to isolate reconstituted chromatin (Figure 4.3), which was then 

extensively fixed with formaldehyde.  Cross-linked chromatin was centrifuged on a CsCl 

gradient with a density of 1.55 g/ml.  As DNA has a density of 1.72 g/ml and protein has a 

density of 1.35 g/ml, this is the calculated density of a chromatin fibre with one histone 

octamer bound per 197 bp DNA (Figure 3.7A). 

601 chromatin sedimented in fraction 15 of the gradient (Figure 3.7C) consistent with the 

density of a saturated nucleosome arrays of 1.55 g/ml (Figure 3.7B).  In contrast, the sucrose 

gradient sedimentation profiles showed BLG and 601/BLG appeared to be more 

heterogeneous in either reconstitution efficiency (with different numbers of nucleosomes 

reconstituted on each fibre) or in fibre structure (see Figure 4.3B).  As a result, these samples 

were more diluted when removed from the sucrose gradient, and therefore could not be seen 

on a gel following caesium chloride sedimentation and fractionation, removal of crosslinks 

and isolation of DNA. 

When crosslinking and subsequent caesium chloride sedimentation were attempted without 

first separating the template by sucrose gradient sedimentation, template DNA appeared 

throughout the entire gradient, suggesting that the fibre could be quite heterogeneous.  It is 

also possible that the chromatin fibre density could also be affected by template chromatin 

being crosslinked to undersaturated competitor fragments. 

3.8 Restriction Digestion to Assess Chromatin Reconstitution 

Efficiency and Nucleosome Positioning 

To assess chromatin reconstitution efficiency and the positioning of underlying nucleosomes, 

chromatin was digested with restriction enzymes. Restriction enzyme recongnition 

sequences within the core of each nucleosome positioning site would be expected to be 

occluded if a nucleosome was positioned there, while motifs within the linker regions would 

be expected to be accessible to endonucleases, enabling digestion of chromatin arrays into 

mono-nucleosomes. 

Chromatin was digested overnight at 4°C by AvaI, PsiI or Pfl23II, in the presence of 1.5 mM 

magnesium chloride (Figure 3.8-3.10).  DNA from Pfl23II and PsiI digests was isolated and 

analysed by electrophoresis, whereas AvaI digests were analysed as native chromatin on a 

1.1% gel to see the fraction of reconstituted monomers, as described by Huynh et al. (2005). 
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3.8.1 601 Reconstitution Efficiency is Determined by Inaccessibility to 

Nucleosomal DNA by Restriction Enzymes 

 

Figure 3.8. Restriction Enzyme Digestion of Chromatin by Pfl23II.  
A) Map of restriction enzyme sites within reconstitution templates.  601 fibres contain 
Pfl23II sites within the nucleosome core and AvaI sites within linker regions.  BLG and 
601/BLG contain PsiI sites within linker regions.  B) Digestion of 601 nucleosome arrays by 
Pfl23II, reconstituted at different histone:DNA ratios without (left) and with (right) a 
competitor DNA.  C) Quantification of material digested by Pfl23II. Nucleosome arrays 
reconstituted at ratios of 1.4:1 and higher have minimal amounts of digestion, suggesting 
complete saturation. 
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Within the 147 base pair core of the “601” repeat there are several restriction sites, which 

can be utilised to assess reconstitution efficiency.  When nucleosomes position over the 

restriction site, endonucleases are unable to recognise and cleave the sequence motif.  As a 

result, properly reconstituted 601 chromatin will not be digested by enzymes such as Pfl23II 

(Figure 3.8A). 

To assess chromatin reconstitution efficiency, 601 template was reconstituted at a 

concentration of 20 ng/μl with CE core histones in the presence and absence of competitor 

DNA (using digested vector backbone competitor fragments) at histone:DNA ratios of 1.0-

2.0:1, and then digested with enzyme (see section 2.5.1). Unreconstituted 601 DNA was 

almost completely digested by the enzyme under these conditions (Figure 3.8B) whereas 

partial digestion was seen for chromatin reconstituted at lower histone:DNA ratios.  DNA 

template that remained undigested was expected to be saturated with histones.  The 

percentage of material that remained undigested plateaued at around 85% at ratios higher 

than 1.4:1 in the absence of competitor (Figure 3.8C).  While 15% of the material was 

digested, it does not follow that 15% of the nucleosome positioning sites are unreconstituted, 

but that in 15% of the fibres, at least one of the 25 positioning sites is not occupied by a 

histone octamer.  It is possible that there may be some enzyme activity that can move 

nucleosomes to access the restriction sites that causes 15% to be partially digested, or that 

these 15% of sites are unoccupied. 

When reconstituted in the presence of a competitor, the competitor DNA (digested plasmid 

backbone) accounts for 33% of the total DNA, which is discounted from the analysis.  

Around 80% of the template DNA remained undigested in these samples, though at a 

histone:DNA ratio of 1.4:1 the proportion of undigested template was slightly lower than 

this, suggesting that slightly more histones may be required to achieve the maximum level of 

saturation. 

3.8.2 601 Reconstitution Efficiency is Analysed by Digestion to Mono-

nucleosomal Material 

AvaI sites are located between each “601” repeat of the 601 sequence and are within the 

linker region of these chromatin fibres.  In the BLG and 601/BLG sequences, this is replaced 

by the PsiI restriction site.  In a regularly reconstituted chromatin fibre, where nucleosomes 

are positioned over their cognate binding sites and not over the linker regions, these positions 

should be accessible to endonucleases (Figure 3.8A). 

To assess chromatin reconstitution efficiency, 601 chromatin fibres were reconstituted in the 

presence and absence of competitor as described above and digested with AvaI.  As the 
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“601” sequence has strong nucleosome positioning properties, the restriction sites would be 

expected to be accessible in each nucleosome array, whilst if the fibre was oversaturated 

digestion would not be complete.  Nucleosomal fragments can then be analysed by native 

agarose gel electrophoresis (Figure 3.9A). 

 

Figure 3.9. Restriction Digestion of Chromatin by AvaI.  

A) Digestion of 601 nucleosome arrays by AvaI, reconstituted at different histone:DNA 
ratios without (left) and with (right) a competitor DNA.  B) Quantification of 
mononucleosomal material compared to monomer DNA. Nucleosome arrays reconstituted 
at ratios of 1.4:1 and higher have almost 100% of nucleosomes reconstituted.  In the 
absence of a competitor DNA, digestion is limited at ratios above 1.6:1, suggesting that 
chromatin becomes oversaturated. 

The proportion of mono-nucleosomal material (which runs close to the 400 bp DNA marker) 

compared to monomer DNA (197 bp) was measured.  Based on the results of Paoletti et al. 

(1977), the intensity of the nucleosomal material was adjusted to account for the fact that 

chromatin only intercalates 60% as much of the ethidium bromide dye as naked DNA.  

Without competitor, this was found to plateau at ratios higher than 1.4:1 where around 94% 

of material appears mono-nucleosomal and 6% remained as unreconstituted.  When a 
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competitor was included, a 1.6:1 ratio was required to achieve this level of saturation, with 

only 82% of sites being reconstituted at 1.4:1. 

In the absence of competitor, undigested species can be seen at ratios higher than 1.6:1, 

suggesting these samples were oversaturated.  This does not appear to be an issue in the 

sample where a competitor DNA was used, demonstrating that the addition of this molecule 

seems to effectively prevent oversaturation.  Based on one experiment, it is difficult to 

comment whether the protective effect the competitor has over the reconstitution is 

statistically significant at histone:DNA ratios of 1.6:1 or 1.8:1.  Furthermore, undigested 

material will affect the measurement of the proportion of reconstituted nucleosomes, as an 

unreconstituted dimer migrates at a similar speed to a mono-nucleosome, but this would only 

be expected to cause a minor effect. 

The results from each of these restriction digestions (both using Pfl23II and AvaI) suggest 

that the 601 template, when reconstituted without competitor, becomes saturated at 

histone:DNA ratios of 1.4:1, in agreement with the electrophoretic mobility shift assay 

(Figure 3.4).  When a competitor DNA is used, it appears that slightly more histones may be 

required to saturate, due to a small fraction binding to the competitor DNA, but at 

histone:DNA ratios higher than 1.6:1 the reconstitution efficiency of the template appears to 

remain constant to ratios of at least 2:1, confirming that at 1.7:1 the nucleosome array 

remains correctly saturated, in agreement with the caesium chloride density gradient (Figure 

3.7). 

3.8.3 BLG and 601/BLG Arrays have Heterogeneous Nucleosome 

Positioning, Limiting the Analysis of Reconstitution Efficiency by 

Restriction Digestion 

In BLG and 601/BLG DNA sequence templates, a PsiI restriction site is located in between 

nucleosome positioning sequences, in an analogous position to AvaI (Figure 3.8A).  

Templates were digested with this enzyme and DNA was extracted from the chromatin 

before separation by electrophoresis (Figure 3.10A), in contrast to Figure 3.9 where native 

nucleosomes are ran on the gel.  Digestion of the non-repetitive templates with PsiI gave a 

partial digestion, even when chromatin was reconstituted at relatively low histone:DNA 

ratios, suggesting that histone octamers are blocking these sites and protecting them from 

digestion, and that nucleosomes are not forming centrally over the nucleosome positioning 

sites.  This is unsurprising, considering the in silico predictions of nucleosome positioning 

shown in section 3.3, as the probability of nucleosome positioning over the centre of the 

positioning site is not always significantly higher than that over the surrounding linker 
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regions.  This lack of complete digestion means that the analysis of reconstituted vs. 

unreconstituted sites as described in section 3.8.2 cannot be performed on these templates. 

 

Figure 3.10. Restriction Digestion of Chromatin by PsiI. 
A) Digestion of BLG (left) and 601/BLG (right) nucleosome arrays by PsiI, reconstituted at 
different histone:DNA ratios in the absence of a competitor DNA, and extracted from 
chromatin prior to agarose gel separation.  B) Quantification of monomer DNA compared to 
DNA that has not been completely digested.  Both remain incompletely digested, even at 
low histone:DNA ratios which would not be expected to saturate templates, suggesting that 
histones are positioned over linker regions. 

Nevertheless, when 601/BLG or BLG DNA was reconstituted, digested with PsiI and the 

DNA analysed, the resulting DNA ladders can provide information about the nucleosome 

positioning capacity of these fibres (Figure 3.10A).  To compare the nucleosome positioning 

properties of these templates, the efficiency of digestion to monomer DNA by PsiI was 

measured.  At histone:DNA ratios of 1.0:1 to 1.6:1, 601/BLG is digested more efficiently, 

having a higher proportion of completely digested material, than the corresponding BLG 

fibres. 
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EMSA suggests that BLG becomes saturated in the absence of competitor at a histone:DNA 

ratio of 1.6:1, whereas 601/BLG becomes saturated at 1.8:1 (section 3.5).  At these ratios, 

BLG surprisingly appears to position nucleosomes slightly better than 601/BLG.  This is 

unexpected, as the “601” sites within the 601/BLG are more likely to be occupied across the 

positioning sequence, and it was expected that this might force nucleosomes to be positioned 

more accurately across the interspersing “BLG” sites. 

It should be noted that chromatin digestion enzymes (restriction enzymes, micrococcal 

nuclease or DFF) require divalent cations to function (either Mg2+ or Ca2+).  Restriction 

digestions were therefore performed in 1.5 mM magnesium chloride, which will induce 

folding of nucleosome arrays.  It is possible that this folding may restrict enzyme access to 

some AvaI or PsiI restriction sites even where a nucleosome is not positioned directly over 

the site, but the site is nonetheless occluded within the folded structure.  Poirier et al. (2008) 

found that folding nucleosome arrays in vitro using 5-10 mM MgCl2 reduced the 

accessibility of linker DNA by as much as 50-fold compared to bare DNA.  This may affect 

the efficiency of the enzymes, accounting for some degree of sample indigestion, and may 

cause a perfectly saturated nucleosome array to be slightly underdigested compared to a 

DNA control.  Furthermore, if different reconstitution templates achieve different levels of 

chromatin compaction, or form different higher-order structures under these conditions, this 

could differentially impact each of the nucleosome arrays.  If 601/BLG forms a more 

compacted higher-order structure under these conditions than BLG, this might cause the 

lower level of digestion at saturating histone:DNA ratios despite more accurate nucleosome 

positioning over the 25 sites. 

3.9 Micrococcal Nuclease Digestion of Chromatin is Affected by the 

Underlying DNA Sequence 

In chromatin, micrococcal nuclease cleaves linker DNA leaving nucleosomal DNA intact.  It 

is an important tool for studying primary chromatin structure, and recently has been paired 

with next-generation sequencing to map nucleosome positions.  Complete digestion of 

cellular chromatin yields mono-nucleosomes and can be used to study nucleosome positions, 

while partial digestion will produce oligo-nucleosomes, and has been used to identify open 

regions of chromatin (Zhuo et al., 2017) – though DNaseI-seq and ATAC-seq are more 

widely used for this purpose.  Micrococcal nuclease exhibits some sequence specificity 

towards A/T rich regions of chromatin (Dingwall et al., 1981) but this has not been found to 

substantially bias digestion of reconstituted chromatin on a typical genomic template (Allan 

et al., 2012). 
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Figure 3.11. Digestion of DNA and Chromatin by Micrococcal Nuclease.  

601 DNA and reconstituted chromatin digested by micrococcal nuclease.  A nucleosomal 
ladder indicated chromatin reconstitution, but this ladder is also seen, albeit less clearly, 
upon digestion of the DNA sample, suggesting that the sequence bias of micrococcal 
nuclease contributes to this digestion pattern. 

To analyse the primary structure of reconstituted fibres, ie. the nucleosome positioning and 

nucleosome repeat length, assessing the heterogeneity of these within each template, arrays 

were digested with MNase.  A fibre with nucleosomes regularly spaced every 197 bp would 

be expected to reveal a 197 bp ladder on an agarose gel following digestion and DNA 

purification.  A differently spaced ladder would suggest a different repeat length, whilst a 

sharply defined DNA ladder would indicate more regularly spaced and homogeneous 

population of fibres.  Despite MNase not having sequence specificity on other DNA 

templates (Allan et al., 2012) it appears to be affected by the DNA sequences found in the 

“601” repeats.  Micrococcal nuclease exhibits some specificity for A/T rich regions of DNA, 
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and is therefore more likely to cleave within the 50 base pair linker regions of this sequence, 

even in the absence of histones.  When naked 601 DNA was digested by MNase, there was 

evidence of a 200 bp ladder, similar but less clear than the ladder seen following the 

digestion of 601 chromatin (Figure 3.11).  For my purposes MNase was therefore not 

suitable to analyse nucleosome positions on the 601 template. 

3.10 Digestion by DFF/CAD Nuclease Reveals Differences in 

Primary Chromatin Structure 

3.10.1 DFF/CAD Nuclease 

As micrococcal nuclease showed a high degree of sequence specificity when cleaving 601 

DNA (Figure 3.11) I decided to use another enzyme called DFF/CAD (DNA Fragmentation 

Factor/Caspase Activated DNAse).  It its inactive form, DFF/CAD is a heterodimer 

composed of a 40 kDa endonuclease subunit and a 45 kDa inhibitor subunit.  Caspase 

cleavage during apoptosis cuts the inhibitory subunit, releasing the active endonuclease, 

which is able to cleave chromatin between nucleosomes in a similar manner to micrococcal 

nuclease.  Structurally, DFF/CAD looks like a pair of "molecular scissors" as shown in 

Figure 3.12A (Allan et al., 2012; Samejima and Earnshaw, 2005).  This structure likely 

contributes to its reduced sequence specificity in comparison to micrococcal nuclease, which 

binds within the minor groove of the DNA helix (Figure 3.12B).  DFF also lacks 

exonuclease activity and it cuts within nucleosomes far less than MNase (Widlak and 

Garrard, 2006). 

 

Figure 3.12. Structure of micrococcal nuclease and DNA fragmentation factor.  
A) Comparison of the binding of micrococcal nuclease (left) and DFF (right) to DNA.  
Micrococcal nuclease binds to the minor groove, preferentially selecting for sites with 
higher A/T content, whereas DFF acts like a pair of “molecular scissors” with less sequence 
specificity and is unable to cut DNA within the nucleosome structure (Allan et al., 2012).  B) 
DFF structure: A pair of molecular scissors (Samejima and Earnshaw, 2005). 
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As the enzyme is not commercially available I prepared the recombinant enzyme (section 

2.5.3).  While native DFF nuclease is activated through cleavage by caspase-3 or caspase-7 

during apoptosis, a recombinant protein where the caspase cleavage site is replaced by a 

TEV protease cleavage site is described by Xiao et al. (2007).  I purified this protein 

essentially as described by Xiao et al. in order to digest chromatin in a less sequence specific 

manner.  Activation by TEV was always performed immediately prior to the experiment, as 

it is unknown how long the protein may remain active once cleaved in vitro. 

3.10.2 DFF is Less Sequence Specific than MNase 

 

Figure 3.13. Digestion of 601 DNA and chromatin by DFF.  

Gel showing 601 DNA and Chromatin reconstituted at 1:1 or 1.5:1 and digested by DFF for 
0, 2, 4, 8, 16 or 32 minutes.  A nucleosomal ladder is seen in reconstituted chromatin 
samples (1:1 and 1.5:1), but is not apparent when DNA alone is digested. 

To confirm that DFF/CAD lacks sequence specificity compared to MNase, 601 DNA and 

601 reconstituted chromatin were digested by the enzyme at 37°C.  When unreconstituted 

DNA is digested and analysed by agarose gel electrophoresis, it lacks the characteristic 

digestion pattern of chromatin (Figure 3.13).  Comparing the digestion of DNA by 

DFF/CAD in Figure 3.13 and by micrococcal nuclease in Figure 3.11, there is a pronounced  
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Figure 3.14. Digestion of Nucleosome Arrays by DFF/CAD at 37°C. 
(Full legend found on following page) 
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A) Agarose gel showing protected DNA fragments after digestion of 601, BLG, and 601/BLG 
arrays reconstituted at 1.7:1, 2:1 and 2:1 respectively in the presence of a monomer DNA 
competitor.  Nucleosomal ladders after 0, 2, 5, 10, 20 or 30 minutes digestion.  B) 
Densitometry along the gel lane digested for 2 mins for the 601, 601/BLG and BLG 
templates (highlighted by the green arrow on gel).  C) Densitometry along the gel lane 
digested for 2 mins for the 601 and BLG templates, zoomed in to show the faint ladder 
within the BLG corresponding with the ladder produced by the 601. 

difference with DFF/CAD not showing a nucleosomal ladder.  In contrast chromatin is 

digested to leave a clear 200 bp ladder.  There are several bands visible every 200 bp which 

appear to be approximately 157 bp, 177 bp and 197 bp as a monomer and approximately 360 

bp, 380 bp and 400 bp as a dimer.  This suggests that there might be three different sites 

within the “601” linker region where the enzyme preferentially digests, creating fragments of 

slightly different lengths, though it is surprising that there are no fragments larger than 200 

or 400 bp observed. 

3.10.3 Non-“601” Nucleosome Arrays are Less Stable at 37°C 

To assess the differences in primary chromatin structure between the three nucleosome 

arrays, 601 was reconstituted at a histone:DNA ratio of 1.7:1 and BLG and 601/BLG were 

reconstituted at 2:1 with a 147 bp monomer competitor.  Chromatin was digested with 

DFF/CAD over 30 mins at 37°C, then DNA was extracted and fractionated on a 1% gel 

(Figure 3.14A).  While a strong nucleosomal ladder is apparent for the 601 template and an 

intermediate ladder seen in the 601/BLG, there is no clear ladder seen following digestion of 

the BLG for 2 mins (Figure 3.14B).  There is also no evidence of a mono-nucleosomal 

fragment, suggesting that histone octamers are not protecting nucleosomal DNA from 

digestion by DFF/CAD.  At later time points (20-30 min) a faint band appears suggesting 

digestion to a 286 bp fragment, however closer analysis of gel lane following 2 mins 

digestion reveals a faint nucloesomal ladder in the BLG that corresponds with the 

nucleosomal ladder seen following digestion of the 601 (Figure 3.14C).  Surprisingly, the 

ladder produced by all three templates following 2 minutes digestion for fragment sizes 

above 3 kbp is approximately 240 bp, which might reflect the preferential cutting of DFF at 

different points within the linker.  For 601 and 601/BLG the ladder observed below 3 kbp has 

a clear 200 bp periodicity, but at this time point it is unfortunately not possible to see smaller 

fragments in the BLG to calculate whether this follows the same pattern as the 601 and 

601/BLG or if the ladder in fact reflects the 286 bp band which is seen in later time points.  It 

is possible that BLG chromatin is less stable than the other chromatin samples at these 

temperatures and that nucleosomes are either removed or are easily able to slide along the 

DNA, allowing digestion of previously protected DNA regions resulting in this 286 bp band. 
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Figure 3.15. Digestion of Nucleosome Arrays by DFF/CAD at 4°C.  
A) Digestion of 601, BLG, and 601/BLG arrays, reconstituted as described in section 4.5, in 
the absence of competitor.  Samples digested with 1 or 4 units of enzyme for 40 min.  B) 
Densitometry for samples digested with 4 units of enzyme, corrects for variations in sample 
migration across the gel. 

Interestingly, there appears to be a bimodal digestion ladder seen in the 601/BLG, with a 

clearer band appearing at every other “rung” of the ladder, suggesting that the enzyme is 
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more likely to cut at one end of the “601” repeat.  The DFF has some sequence specificity 

based on purine and pyrimidine bases, particularly for sequences RRNYRNYY (5’-purine-

purine-any-pyrimidine-purine-any-pyrimidine-pyrimidine-3’) as described by Widlak et al. 

(2000).  Two such sites are present within the “601” repeat which might contribute to this 

bimodal digestion. 

3.10.4 Digestion by DFF at 4°C Yields a Mono-nucleosomal Ladder 

To investigate whether temperature affected nucleosome mobility in these different DNA 

templates the samples were digested with DFF at 4°C.  Chromatin was reconstituted in the 

absence of a competitor as described in section 4.5 and was digested for 40 min with 1 or 4 

units of DFF.  DNA was isolated by phenol/chloroform and analysed on a 1% agarose gel 

(Figure 3.15A) and quantified by densitometry (Figure 3.15B).  Under these conditions, a 

mononucleosome approximately 200 bp in size is observed following digestion of the BLG 

fibre, though the ladder is not as sharp as either the 601 or the 601/BLG, indicating either 

that BLG is still unstable at 4°C, or that BLG chromatin has a more heterogeneous structure 

than the 601 and 601/BLG templates. 

The digestion pattern of the BLG array, with a weak nucleosomal ladder, suggests that 

nucleosomes are often irregularly positioned over the 197 bp repeats and not centred on the 

dyad.  This variability may be due to heterogeneous positioning of nucleosomes along 

individual chromatin fibres, or due to heterogeneous array structures throughout the 

population of fibres (or both).  Sequencing of the monomers (and possibly the dimers in the 

case of the 601/BLG) would distinguish between these possibilities and enable me to see 

whether there is variability between individual chromatin fibres, or if variability of the 

nucleosome repeat length occurs exclusively within individual chromatin fibres.  However, it 

was not possible to isolate sufficient monomeric and dimeric material to perform this 

experiment. 

3.11 Reconstitution by Salt Dialysis is more Efficient than ATP-

dependent Chromatin Assembly 

There are several methods of reconstituting chromatin onto DNA in vitro.  ATP-dependent 

chromatin assembly using the core histone chaperone NAP-1 and the chromatin remodeller 

ACF as described by Fyodorov and Kadonaga (2003) may exhibit different sequence 

specificities to salt dialysis and may be a more effective method of reconstitution.  As this 

partially mimics chromatin formation in vivo, it is possible that this approach might yield 

more biologically relevant nucleosome arrays. 
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Figure 3.16. Analysis of Chromatin Reconstituted by ATP-Dependent Chromatin 
Assembly. 

(Full legend found on following page) 
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A) Mechanism of chromatin assembly from DNA and recombinant histones using NAP-1 
histone chaperone and ACF chromatin remodeller (Diagenode, 2015).  B) Electrophoretic 
mobility shifts of samples reconstituted using a chromatin assembly kit compared to those 
reconstituted by salt dialysis.  C) DFF/CAD digestion at 4°C of nucleosome arrays 
reconstituted using a chromatin assembly kit compared to those reconstituted by salt 
dialysis.  D) AvaI digestion of 601 arrays reconstituted using a chromatin assembly kit or by 
salt dialysis to compare the amount of mononucleosomal and monomer DNA material.  E) 
Restriction digestion of chromatin samples, with purified DNA separated by 
electrophoresis.  601 digestion by AvaI (top left), 601 digestion by Pfl23II (bottom left), BLG 
digestion by PsiI (top right), 601/BLG digestion by PsiI (bottom right).  F) Quantification of 
chromatin digested to monomers by AvaI or PsiI. 

To compare reconstitution by salt dialysis with an ATP-dependent chromatin assembly, 

DNA templates were reconstituted using a Diagenode Chromatin Assembly kit according to 

the manufacturer’s instructions, but using 1 µg of linear DNA and varying the amount of 

recombinant histone added.  This was compared to chromatin reconstituted by salt dialysis 

using the recombinant histones included in the kit.  Circular DNA, provided with the kit, was 

also reconstituted as a control.  ATP-dependent chromatin assembly had the benefits of not 

losing material during dialysis (when chromatin presumably sticks to the dialysis membrane 

and around 20% of material may be lost) and of the sample volume not increasing during 

dialysis. 

The chromatin prepared was analysed by a mobility shift assay and by digestion with 

restriction endonucleases and DFF/CAD.  The mobility shift assay (Figure 3.16B) showed 

that when 601, BLG and 601/BLG were reconstituted using the assembly kit at histone:DNA 

ratios of 1:1 to 1.6:1, the resulting nucleosome arrays appeared to be more heterogeneous 

than those reconstituted by salt dialysis, with the bands appearing less sharply on a 0.7% 

agarose gel.  These samples also precipitatedmore easily, as there was a considerable amount 

of material remaining in the well, even when reconstituted at a low histone:DNA ratio.  At a 

1.6:1 ratio, samples created by salt dialysis were also beginning to precipitate, which did not 

occur with chicken erythrocyte core histones (Figure 3.4A). 

Chromatin was also digested with DFF (Figure 3.16C).  This revealed some evidence of 

mono-nucleosomes, but very little evidence of a nucleosomal ladder when chromatin was 

assembled using a kit, suggesting that nucleosomes are not regularly spaced along these 

fibres, despite the presence of the chromatin remodeller ACF.  When reconstituted by salt 

dialysis, mono-nucleosomes are seen at a 1:1 histone:DNA ratio, where the samples have 

been almost completely digested, and a nucleosomal ladder is seen at ratios of 1.3:1, though 

this is less clear for the BLG as the 601/BLG (unfortunately, there was insufficient material 

for 601 reconstituted at 1.3:1 to be included in this analysis).  At 1.6:1, there was no 
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digestion of 601 or BLG, suggesting that these are becoming oversaturated, but there is some 

digestion of the 601/BLG, confirming that this template was less readily saturated with core 

histones. 

When digested with AvaI and directly analysed by electrophoresis (Figure 3.16D), monomer 

DNA and mono-nucleosomal material are visible in the sample reconstituted using the kit 

with a 1:1 histone:DNA ratio.  However, undigested chromatin and precipitated material are 

also visible in each lane.  Chromatin does not appear to be well digested, suggesting 

oversaturation or incorrect placement of histones, at ratios of 1.3:1 and above.  When the 

sample is reconstituted by dialysis at a ratio of 1:1, appears partially reconstituted, consisting 

of 61% monomeric material and 39% DNA (comparable to data following reconstitution 

with chichen erythrocyte core histones in figure 3.9).  At a ratio of 1:1 the sample 

reconstituted by the kit appears to contain 56% monomeric material and 44% DNA.  

Unfortunately, not enough material reconstituted at 1.3:1 was recovered to perform this 

experiment.  Furthermore, the DNA sample does not appear to have been completely 

digested by the enzyme, and the presence of dimer material in the chromatin samples will 

confound the results.  The sample reconstituted at 1.6:1 is completely undigested, but 

appears to have come out of solution in the presence of 1.5 mM MgCl2 (though this did not 

appear to occur when chromatin was reconstituted with CE core histones (Figure 3.9A), 

where chromatin appeared to be digested to fragments appearing as tetra-nucleosomes or 

smaller). 

Chromatin samples were also digested by restriction enzymes AvaI and Pfl23II (601) and 

PsiI (BLG and 601/BLG) and the digested DNA was purified and analysed by 

electrophoresis (Figure 3.16E). Digestion by AvaI reveals incomplete digestion of all three 

samples reconstituted by the kit, suggesting that even at low histone:DNA ratios, histones are 

occupying AvaI restriction sites in the linker regions, and not positioning over the “601” sites 

as they would following salt dialysis (Figure 3.16F).  At a 1:1 histone:DNA ratio 17% of the 

material reconstituted using the kit was digested to monomers, compared with 63% of the 

material reconstituted by salt dialysis (Unfortunately, not enough chromatin reconstituted at 

1.3:1 by salt dialysis was recovered to be able to perform this analysis on chromatin 

expected to be saturated).  This suggests that chromatin assembly using ACF and NAP1 has 

little sequence specificity or a different specificity to that seen following salt dialysis. 

Similar results were observed when BLG and 601/BLG samples were digested with PsiI.  

Following reconstiton of BLG and 601/BLG with the kit at 1:1 ratios and digestion by PsiI 

43% and 70% of the material was found to be digested to monomers respectively (Figure 
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3.16F).  Following reconstitution by ATP-dependent chromatin assembly, 29% of the BLG 

material and 18% of the 601/BLG material had been digested to monomers, suggesting that 

salt dialysis positions nucleosomes more accurately over the designed nucleosome 

positioning sites than ATP-dependent chromatin assembly. 

When digested by Pfl23II, which cuts within the “601” 147 bp core, 601 chromatin 

reconstituted by salt dialysis appeared to be digested when reconstituted at a 1:1 ratio, but is 

undigested at 1.3:1 and 1.6:1 ratios, suggesting that all the nucleosome positioning sites are 

occupied by nucleosomes at these ratios (with chicken erythrocyte core histones this was 

found to occur at a ratio above 1.4:1).  When reconstituted using a chromatin assembly kit, 

there is still digestion when a 1.3:1 histone:DNA ratio is used, suggesting that the template is 

not fully saturated at this point, or that the nucleosome positioning is such that the Pfl23II 

site in the centre of the “601” core are not blocked by their occupancy.  At 1.6:1, almost all 

of the Pfl23II sites appear to be occluded. 

Salt dialysis seemed to produce more efficiently saturated and homogeneous chromatin 

samples where nucleosomes were relatively well positioned over the 25 nucleosome 

positioning sequences within each template.  Therefore, all experiments in this thesis were 

conducted using chromatin reconstituted using salt dialysis.  In addition, reconstitution using 

a chromatin assembly kit may not be easily scaled up to reconstitute chromatin at a high 

concentration, and the presence of additional proteins NAP1 and ACF may interfere with 

downstream analyses such as small angle X-ray scattering (section 4.5).  The Diagenode 

Chromatin Assembly kit indicates that 5 µg of NAP1 (48kDa) should be used to reconstitute 

1 µg of DNA; these proteins are likely to dominate structural analyses unless they are 

removed.  It is possible that home-made enzymes may reconstitute chromatin more 

efficiently than those supplied within this kit. 

3.12 Summary 

In summary, three different DNA sequences with varying affinities for the histone octamer 

(Figure 3.2A) have been reconstituted to form nucleosome arrays.  Different reconstitution 

methods have been trialled and salt dialysis was found to efficiently saturate DNA templates 

and create relatively homogeneous fibre populations (Figure 3.16).  Several experiments 

have been conducted to confirm the reconstitution efficiency of each template and to identify 

the correct histone:DNA ratio to use to generate properly saturated nucleosome arrays for 

each, resulting in 25 nucleosomes formed on each template. 

The 601 template appeared to require approximately a 1.4:1 histone:DNA ratio to be 

reconstituted in the absence of a competitor DNA, as measured by mobility shift assays 
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(Figure 3.4A) and digestion assays by Pfl23II and AvaI (Figures 3.8 and 3.9, respectively).  

In the presence of a competitor DNA, mobility shift assays indicate that the template still 

becomes saturated at a similar ratio (Figure 3.4B), although AvaI and Pfl23II digestion 

suggest that slightly more histones might be required to saturate all nucleosome positioning 

sites, as a small proportion of histones will bind to the competitor DNA (Figures 3.8 and 

3.9).  When additional histones are added, they appear to bind to the competitor;  caesium 

chloride density gradients (Figure 3.7), and restriction digestion (Figure 3.9) show that 

template chromatin reconstituted in the presence of a vector backbone competitor at ratios as 

high as 1.7:1 are not oversaturated. 

It is more difficult to assess the reconstitution efficiency of the novel BLG and 601/BLG due 

to increased heterogeneity of the fibre population and the lack of restriction sites within the 

nucleosome binding sequences.  Pfl23II and AvaI digestion, which are useful methods for 

determining the reconstitution efficiency of 601 arrays cannot be used on these templates.  

PsiI digestion reveals a reduced regularity in the nucleosome positioning properties of these 

sequences compared to the 601 (Figure 3.10).  Nuclease digestion by DFF also suggested a 

population of chromatin fibres with more heterogeneously positioned nucleosomes (Figure 

3.15).  Caesium chloride gradients on these templates were not successful, likely as a result 

of their heterogeneity and therefore the reduced concentration that could be added to CsCl 

gradients.  Electrophoretic mobility shift assays suggested that in the absence of a competitor 

these templates would require slightly higher histone:DNA ratios to achieve full saturation; 

BLG should be saturated at 1.6:1 and 601/BLG should be saturated at 1.8:1 in the absence of 

a competitor.  Band shifts also suggest that in the presence of a competitor extra histones are 

required compared to 601 due to the reduced affinity of these sequences for the histone 

octamer, approximately a 2:1 ratio. 

Achieving full saturation for each of these templates is crucial as any variation in the level of 

saturation is likely to affect the folding of the arrays, and therefore without being confident 

that arrays are identically saturated, it is impossible to say that differences in the folding are 

purely a consequence of variations in the DNA sequence.  It would be ideal if a more 

quantifiable measurement of the saturation of each fibre were possible, especially for the 

non-601 fibres.  Analytical ultracentrifigation or multi-angle light scattering could be used to 

calculate the saturation of each of these fibres from the sedimentation velocity and the 

molecular weight respectively, but it was not possible to create sufficient material to perform 

these analyses on a range of samples with different histone:DNA ratios. 
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The fact that it is impossible to internally control for chromatin saturation between different 

templates is the main challenge for studying each of these novel templates. However, I am 

confident that the 601 is becoming correctly saturated under the conditions described, based 

on its density and on restriction digestion, and that BLG and 601/BLG are becoming 

similarly saturated based on their mobility shift. 
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Chapter 4. The Effect of DNA Sequence on Higher-Order 

Chromatin Fibre Structure 

4.1 Introduction 

The conformation of the higher-order chromatin fibre, often referred to as the “30-nm” fibre, 

is not well understood in vivo (section 1.1.2.2).  The existence of the “30-nm fibre” seen in 

x-ray scattering experiments (Langmore and Paulson, 1983) and visualised by electron 

microscopy following the release of chromatin from nuclei (Thoma et al., 1979) has recently 

been disputed by Joti et al. (2012).  Joti et al. state that while 30 nm structures may exist in 

transcriptionally inactive cells such as chicken erythrocytes, they did not find evidence of 

such a structure in the interphase nuclei of HeLa cells by SAXS, and that previous data was 

confounded by the presence of ribosomes in nuclei samples.  It is known that the structure of 

the chromatin complex changes throughout the genome, with fibres of a more “open” higher-

order structure being enriched in gene-rich domains whereas closed, compacted higher-order 

fibres are found in both heterochromatin and euchromatin (Gilbert et al., 2004).  Ou et al. 

(2017) have recently described chromatin fibres with a variable fibre diameter between 5 and 

24 nm, though it is possible that ChromEMT selects for negatively supercoiled regions of the 

genome which have a more open chromatin structure (Naughton et al., 2013) and can more 

readily bind the DRAQ5 drug. 

In vitro, chromatin fibres have been visualised with a diameter between 25 and 45 nm, 

though the exact conformation of this fibre at varying repeat lengths is unclear.  Robinson et 

al. (2006b) found by electron microscopy that “601” fibres form a one-start helical structure 

which has a diameter of approximately 35 nm when the nucleosome repeat length is between 

177 and 207 bp, but increases to approximately 45 nm when the nucleosome repeat length is 

between 217 and 237 bp.  Using a “601” fibre with a 167 bp repeat, Schalch et al. (2005) 

found by X-ray crystallography that the chromatin fibre formed a two-start helical structure 

with a diameter of 24-25 nm, which they expected could increase in diameter to 

accommodate a longer stretch of linker DNA.  “601” arrays with a repeat length of 177 or 

187 bp were found by Song et al. (2014) using cryo-electron microscopy to form a two-start 

helix with a diameter of 27.2 nm when the repeat length was 177 bp, increasing to 29.9 nm 

when the repeat length was increased to 187 bp.  This is closely consistent with calculations 

by Athey et al. (1990) that fibre diameter might be expected to increase by 0.23 nm per base 

pair increase in the linker length.  While it is difficult to reconcile results described by 

Robinson et al. (2006b) with those by Song et al. (2014), it is clear that fibre diameter and 

possibly conformation is dependent on the repeat length of the nucleosome array in vitro.  
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Kruithof et al. (2009) using single molecule force spectroscopy suggest that a “601” fibre 

with a 167 bp repeat has a two-start helical structure, while a 197 bp repeat has a one-start 

helical structure.  Routh et al. (2008) suggest that the shorter DNA linker length of 167 bp 

repeat arrays forces nucleosomes to stack in a zig-zig arrangement, and therefore form a two-

start helix upon compaction, whereas for 197 bp repeat arrays, the nucleosome arrangement 

within the higher-order structure is determined by the linker histone.  Although experiments 

have been performed on fibres in vitro with varying nucleosome repeat lengths, these repeat 

lengths have been consistent within the individual fibres and no model has examined the 

effects of varying the nucleosome repeat length within a single chromatin fibre.  Varying the 

DNA sequence of a chromatin fibre, rather than using repeating sites with strong nucleosome 

positioning properties is likely to affect the nucleosome spacing within individual fibres 

(section 3.10.4), which may have an effect on the regularity of such fibres. Athey et al. 

(1990) discuss the potential effects of heterogeneous nucleosome spacing within chromatin 

fibres, and suggest that local heterogeneity may give rise to local disorder, causing potential 

artefacts in studies of bulk chromatin populations.  Furthermore, Ricci et al. (2015) suggest 

that variable nucleosome length might contribute to a “nucleosome clutch” structure in vivo, 

rather than a canonical 30-nm fibre.  Since the discovery of the “601” nucleosome 

positioning sequence, studies of chromatin structure have become more focused on 

homogeneous populations of chromatin fibres while the effects of DNA sequence and 

variation in the length of the nucleosome linker within individual fibres upon the higher-

order structure have not been well studied. 

When studying the effects of DNA sequence on the structure of the folded chromatin fibre, it 

is likely that differences will arise primarily as a consequence of differential nucleosome 

positioning and heterogeneous nucleosome spacing, though the stability of individual 

nucleosome structures may also play a role.  It is hypothesised that fibres with variable DNA 

sequences, including biological positioning sequences which do not have such a high affinity 

for the histone octamer or such strong positioning properties as the “601”, will have a 

disrupted fibre structure.  To assess the structure and dynamics of folded chromatin fibres, 

nucleosome arrays described in section 3.3 have been reconstituted and folded into higher-

order fibres using divalent cations and linker histones.  The structures were analysed by 

sucrose gradient sedimentation and small-angle x-ray scattering, while the dynamics of 

individual chromatin fibres with known saturation have been analysed by single-molecule 

force spectroscopy. 
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4.2 Folding Nucleosome Arrays with Linker Histones Does Not 

Affect Gel Mobility 

When comparing the structure of folded chromatin fibres, it is first necessary to determine 

the amount of linker histone required to fold 10-nm nucleosome arrays into compacted 

structures.  Linker histones bind to the nucleosome dyad and neutralise the charge of linker 

DNA to stabilise the salt-dependent folding of nucleosome arrays.  Chromatin under-titrated 

with linker histones will not be fully compacted, but chromatin over-titrated with linker 

histones will become insoluble.  The amount of linker histone within nuclei varies between 

cell types, with chicken erythrocytes containing 1.4 molecules of H5 per nucleosome 

(Kowalski and Pałyga, 2011) while other somatic cells contain between 0.4 and 0.8 

molecules of H1 per nucleosome (Woodcock et al., 2006).  The lower ratio of linker 

histones:nucleosomes in transcriptionally active cells is consistent with a role for linker 

histones in gene repression. 

 

Figure 4.1. Electrophoretic Mobility Shift Assay of Nucleosome Arrays titrated with 
Linker Histone H5.  
Two technical replicates of 601 chromatin titrated with linker histones. Chromatin was 
reconstituted in the presence of a vector backbone competitor at 1.7:1 core histones:DNA. 
Linker histone was added at ratios of 1 or 2 linker histone molecules per nucleosome. 
Nominal molecular weights of the template were calculated at 31.0 kbp, 32.0 kbp and 32.5 
kbp (right gel) respectively, and 20.2 kbp, 19.6 kbp and 19.6 kbp (left gel). Upon adding 
more than 1:1 linker histone ratio, the difference in mobility appears to be primarily in the 
competitor DNA. 

Huynh et al. (2005) describe a gel mobility-based assay to assess the binding of linker 

histones to nucleosome arrays in vitro.  In 0.2 × TBE running buffer on 1.4% agarose gels, 

nucleosome arrays migrated faster after the addition of linker histones, possibly as a result of 

the structural changes induced.  After “601” arrays became fully titrated, as confirmed by a 
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plateauing of the speed of migration, it was assumed that excess linker histones bound to 

competitor DNA fragments. 

In order to assess the binding of linker histones to 601 arrays, chromatin was reconstituted in 

the presence of a vector backbone competitor at a core histone:DNA ratio of 1.7:1.  Fibres 

were dialysed into 80 mM NaCl, a salt concentration at which nucleosome arrays would be 

expected to form folded structures, with interactions between individual nucleosomes, but 

not a true higher-order structure in the absence of linker histones.  Following reconstitution, 

DNA concentration was measured by UV spectrophotometry, linker histone H5 was added at 

1 or 2 molecules per 197 bp of template DNA and chromatin was analysed on 1.4% agarose 

gels (Figure 4.1). 

Insignificant changes to the mobility of chromatin in the gel were measured following the 

addition of linker histones to 601 chromatin.  A very small difference was seen between 

unfolded chromatin and chromatin with a 1:1 ratio of linker histones:nucleosome repeats.  

There was no difference between fibres titrated with a 1:1 and a 2:1 ratio of linker histone, 

but there was a difference in shift between the competitor fragments in these samples.  In 

some cases, chromatin migrated slightly faster after the addition of linker histones (right gel), 

as described by Huynh et al. but in other experiments chromatin migrated slightly slower 

following compaction (left gel), likely due to very small differences in the agarose gel 

concentration of each replicate experiment.  It was therefore concluded that this was not a 

sufficiently discriminative assay to measure linker histone titration. 

4.3 Solubility of Nucleosome Arrays in the Presence of Linker 

Histones 

The solubility of chromatin fibres after the addition of linker histones was measured to 

identify an appropriate ratio of linker histones:nucleosomal DNA, without causing the 

chromatin fibres to become insoluble. 

Three DNA sequence templates were reconstituted in the presence of a vector backbone 

competitor.  601 was reconstituted at 1.7:1, BLG and 601/BLG were reconstituted at a 2:1 

ratio.  Chromatin was titrated with linker histone H5 up to a 3:1 molar ratio of 

linker:nucleosomes in the presence of 80 mM NaCl.  Chromatin was briefly centrifuged, and 

the supernatant was analysed on a 0.7% agarose gel, with (left) or without (right) purification 

of DNA (Figure 4.2A).  The proportion of template DNA remaining in solution compared to 

a sample with no linker histones added was quantified from the DNA lanes (Figure 4.2B).  

601 appears to remain most soluble in the presence of linker histones, with 84.4% remaining 
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soluble at a 1:1 ratio of linker histones:nucleosomes.  This drops to 59.1% and 48.4% in 

601/BLG and BLG respectively.  Assuming that these samples are equally saturated, 

surprisingly this suggests that fibres with a more heterogeneous structure do not retain 

solubility upon folding as well as regularly spaced nucleosome arrays. 

 

Figure 4.2.  Titration of Nucleosome Arrays with Linker Histone.  
A) Agarose gel analysis of DNA extracted from precipitated chromatin (left) or chromatin 
(right) following titration, incubation and centrifugation in the presence of linker histone H5 
up to a H5:nucleosome ratio of 3:1. B) Quantification of template DNA that remained in 
solution after titration with linker histone. 
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It is difficult to control for the presence and nature of the competitor during this experiment.  

As the competitor is more reconstituted in both the BLG and 601/BLG this may affect the 

affinity of linker histones for the competitor, which may affect the amount of linker histone 

binding to the template chromatin fibres.  If linker histones were to bind more easily to the 

chromatinised competitor, less would bind to the template, causing it to appear 

comparatively more soluble.  However, as the competitor DNA appears to precipitate at 

similar levels to the template in each case, this seems unlikely to be having a significant 

impact on the results. 

4.4 Folded Fibres have a Similar Sedimentation Rate but Non-601 

fibres have a more Heterogeneous Structure 

Sucrose gradient sedimentation separates macromolecules based both on their mass and their 

hydrodynamic shape.  A heavier particle (for example, a chromatin fibre that is more 

saturated with core histones) will sediment faster than a less massive particle.  Assuming that 

two particles have the same mass (such as two chromatin arrays of equal size and saturation), 

a more compacted particle will sediment more quickly than an unfolded molecule (Figure 

4.3A).  Heterochromatin that has a more compact structure has been shown to sediment more 

quickly than bulk chromatin of a similar fragment size (Gilbert and Allan, 2001), whereas 

chromatin that contains discontinuities to its higher-order structure will sediment more 

slowly (Caplan et al., 1987; Naughton et al., 2010).  This method is therefore an informative 

measure of chromatin fibre compaction following the addition of linker histones to 

nucleosome arrays. 

To measure the compaction of chromatin fibres following the addition of linker histones, 601 

chromatin was reconstituted at a 1.5:1 histone:DNA ratio, BLG chromatin was reconstituted 

at a 2:1 ratio, and 601/BLG chromatin was reconstituted at a 2:1 or a 1.8:1 ratio in the 

presence of a vector backbone competitor which had been digested into small fragments.  

Electron microscopy was performed on each of these samples, which appeared well-

saturated, but unfortunately the average number of nucleosomes could not be counted due to 

the concentration of chromatin and the presence of salt or sucrose in the samples following 

sedimentation (See Figure 4.4).  Linker histones were added at ratios of 1:1, 1.4:1 or 1.8:1 in 

80 mM NaCl and sedimented on isokinetic 6-40% sucrose gradients.  In an unfolded state, 

fibres might be expected to sediment at a similar rate, but upon folding differences in the 

compaction of chromatin fibres with different underlying DNA sequences might be revealed 

by a difference in the sedimentation rate of each fibre. 
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Figure 4.3. Sucrose Gradient Sedimentation of Fibres Titrated with Linker Histone.  
(Full legend found on following page) 
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A) Sucrose gradient sedimentation separates chromatin based on both size and structure. A 
“compacted” chromatin fibre will sediment faster than “open” or “disrupted” chromatin 
fibres of equal mass (Gilbert et al., 2004).  B) Sedimentation profiles of 601, BLG, and 
601/BLG reconstituted at 1.5:1 (601) or 2:1 (BLG and 601/BLG) histone:DNA ratios, 
sedimented in the absence of linker histones and titrated with linker histones at ratios of 
1:1 to 1.8:1. C) Quantification of chromatin sedimentation (measured as a proportion of the 
length of the gradient profile) for three chromatin fibres. 601/BLG was also reconstituted at 
1.8:1 histones:DNA as a large amount of material became insoluble following reconstitution 
at 2:1. 

The sedimentation profiles of each fibre show significant variation in the sedimentation 

velocity of the unfolded chromatin fibres (Figure 4.3B, C).  Surprisingly, 601/BLG and BLG 

both sediment faster than 601 arrays in 80 mM NaCl in the absence of linker histones.  If 

these are assumed to be saturated with core histone octamers to a similar degree, this 

suggests that the heterogeneity in the nucleosome positioning of these arrays is having a 

demonstrable impact on their structure.  It is possible that non-601 fibres are more flexible 

and allow more nucleosome-nucleosome interaction than 601 fibres in 80 mM NaCl, causing 

them to have a more compacted structure, or that nucleosomes are able to be more closely 

spaced within regions of the non-601 fibres, affecting their overall shape and mobility.  The 

BLG and 601/BLG arrays also display much broader peaks in their sedimentation profiles, as 

a result of their heterogeneity either in the number of nucleosomes bound to each chromatin 

fibre or in the folded structures that these arrays form in 80 mM NaCl. 

Upon the addition of linker histones, fibre sedimentation velocity increases as a result of 

increased mass and compaction of their structures (Figure 4.3B).  There is a considerable 

increase in the sedimentation rate of the 601 fibres, which sediment approximately 52% of 

the distance of the gradient profile in the absence of linker histones and 68% of the distance 

of the gradient with a 1.8:1 ratio of linker histones added (Figure 4.3C).  The difference in 

the sedimentation of the non-601 fibres after the addition of linker histones is considerably 

smaller.  BLG and 601/BLG fibres reconstituted at 2:1 core histones:DNA migrated 

approximately 59 and 63% of the sucrose gradient respectively.  Upon the addition of linker 

histones to a 1.8:1 ratio, the sedimentation increases to approximately 68% of the distance of 

the gradient, a similar extent of sedimentation to that achieved by 601 fibres.  If there are 

disruptions in the structure of the non-601 fibres, ie. regions of naked DNA that cannot be 

compacted by linker histones, this might limit the folding of the fibre upon the addition of 

linker histone, while having a comparatively small effect on the dynamics of the fibre in 80 

mM NaCl. 
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Width ½ height 601 BLG 601/BLG 

No H5 3mm 10mm 9mm 

1:1 6.5mm 9mm 6.8mm 

1.4:1 11mm 7mm 5.5mm 

1.8:1 9.5mm 6mm 4.8mm 

2.2:1 7mm   

Table 2. Width at ½ Height of Chromatin Sedimentation Peaks.   
Where peaks are divided into two distinct peaks, the larger peak is measured. 

Interestingly, when linker histones were added to 601 chromatin, two clear species of fibres 

structures were seen by sucrose gradient sedimentation.  These two species were also 

visualised by Huynh et al. (2005) in electrophoretic mobility shift assays, and may indicate 

that linker histones bind cooperatively to defined chromatin fibres.  Linker histones bind 

cooperatively to naked DNA (Clark and Thomas, 1986; Thomas et al., 1992), and 

comparable interactions have been thought to exist in chromatin (Wolffe, 1998).    The two 

species are likely to have different sedimentation velocities as a fibre with more linker 

histone bound will have a greater mass and be more compacted.  It is possible that 

differences in core histone saturation in the population of arrays might cause differences in 

structure that can only be observed upon folding, however this is unlikely as the distribution 

of the two peaks changes depending on the amount of linker histone added.  While a similar 

phenomenon may occur in the BLG and 601/BLG fibres, the intrinsic heterogeneity of these 

fibres may mean that separate species cannot be resolved by sucrose gradient sedimentation.  

When two peaks were seen in sedimentation profiles, the sedimentation distance of the major 

peak was measured for analysis in Figure 4.3C and Table 2.  As these peaks overlap, it was 

not possible to image them separately by electron microscopy to visually determine 

differences in structure. 

Electron microscopy was performed following the sedimentation of chromatin (section 2.4).  

Prior to fixation, chromatin was dialysed into 80 mM NaCl buffer, removing the sucrose 

from samples, using mini dialysis units.  While insufficient numbers of individual fibre 

images could be isolated for a complete analysis, images of typical chromatin fibres within 

each sample are shown in Figure 4.4.  Unfortunately, no fibre images could be isolated of 

601/BLG titrated with a 1.8:1 ratio of linker histones.  In the absence of linker histones, 

individual nucleosomes can be seen within 601 fibres, and these fibres appear to be less 

compacted than BLG and 601/BLG fibres, consistent with them having a lower 

sedimentation rate.  Upon the addition of 1.8:1 linker histones, 601 fibres appear far more 
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compacted, though there is still considerable variation in the lengths of the compacted fibres.  

The BLG fibres appear less rod-like and more disorganised at this histone:DNA ratio. 

 

Figure 4.4. Electron Microscopy of Sucrose Gradient Samples.  
601 reconstituted at 1.5:1 and 601/BLG and BLG reconstituted at 2:1 in the presence of a 
competitor DNA, titrated with up to 1.8:1 ratios of linker histone H5 and separated by 
sucrose gradient sedimentation. Peak fractions were dialysed into 80 mM NaCl then fixed 
and imaged as described in section 2.4. 

4.5 Small-angle X-ray Scattering Reveals Differences in the Folded 

Shape and Volume of Chromatin Molecules 

Small-angle X-ray Scattering (SAXS) detects small differences in the electronic density of 

macromolecules, allowing their size and shape to be measured in solution.  Analysing the 

structures of these fibres in solution, rather than by electron microscopy, does not rely on a 

fixative, which might change the structure of a molecule during the period of fixation. 

X-ray scattering has revealed 30-nm structures in samples of “601” nucleosome arrays 

folded by divalent cations and linker histone H1 (Maeshima et al., 2016), though it is argued 

by this group that chromatin in solutions of high Mg2+ concentration better reflect chromatin 

structure in situ, forming globular structures that lack a 30-nm fibre.  30-nm structures have 

also been detected in samples of cellular chromatin (Langmore and Paulson, 1983).  It has 

been suggested that these results were confounded by the presence of ribosomes in the 

samples (Joti et al., 2012; Nishino et al., 2012), however treatment of chromatin by DNase1 
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caused the loss of the 30-nm peak, suggesting that it is indeed chromatin that contributes to 

this structure. 

 

Figure 4.5. Small-angle X-ray Scattering to Analyse Fibre Structure in Solution.  
A) Small angle x-ray scattering. An x-ray beam is directed through a solution containing the 
chromatin sample and the scattered radiation is registered by a detector.  A scattering 
curve comparing intensity with scattering angle provides information about the size and 
shape of macromolecules.  (BIOSAXS, 2018). B) Kratky analysis, comparing scattering angle 
with the square of the scattering angle × scattering intensity, reveals features in the shapes 
of the molecules in the sample.  I = scattering intensity, q = scattering angle. (SSRL SLAC, 
2017). 

In order to analyse structural differences between chromatin arrays containing different DNA 

sequences in solution, SAXS was performed at Diamond Light Source B21 with assistance 

from Nikul Khunti, Nathan Cowieson and Rob Rambo.  Samples were irradiated and the 

scattering intensity at various angles was measured (Figure 4.5A). 
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The scattering intensity at different angles (scattering vector = q) provides information about 

the size (low q), shape (intermediate q) and internal structure/volume (high q).  The molecule 

shape is most easily assessed using a Kratky plot (Figure 4.4B) which divides out the decay 

of the scattering at larger angles, enhancing features of the scattering pattern to better analyse 

shape. 

As SAXS takes an average measurement across all macromolecules in a sample, 

reconstituted chromatin must be isolated from the competitor so that this does not impact the 

assessment of the fibre structure.  SAXS can be coupled with size-exclusion chromatography 

to separate different species within a sample and allow SAXS measurement of each 

individual peak eluted from a column.  Initially, chromatin was reconstituted in the presence 

of competitor (vector backbone digested with ApaLI, BspHI and EciI to fragments less than 

500 bp) and SEC-SAXS was used to separate the template chromatin from the competitor 

fragments (Figure 4.6).  A Shodex KW405-4F column was able to separate reconstituted 

chromatin from competitor fragments, with the template being eluted after 8.2 minutes and 

the largest competitor fragment being eluted after 10.2 minutes, running at 0.25 ml/min.  

However, separation diluted the chromatin extensively, with chromatin injected at a 

concentration of 0.36 mg/ml being diluted to 0.03 mg/ml upon elution.  This concentration is 

far too low for accurate SAXS analysis, Grishaev (2012) suggests that concentrations of at 

least 0.1 mg/ml are required for analysis of protein complexes (concentrations as high as 10 

mg/ml of macromolecules may be measured, depending on the nature of the sample).  

Whether the column eluate was directly analysed by SAXS or whether fractions were 

collected for direct injection onto the SAXS beam no significant scattering patterns were 

detected. 

 

Figure 4.6. SEC-SAXS to Separate Competitor from Template Arrays. 

UV trace of 601 chromatin separated from competitor fragments using a Shodex KW405-4F 
column. Template was eluted after 8.2 min and completely separated from digested vector 
competitor, first eluted after 10.1 min, but final concentration of chromatin, as measured 
by UV absorbance was approximately 0.03 mg/ml (diluted from 0.36 mg/ml), much lower 
than required for SAXS analysis. 
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Figure 4.7. Log Intensity Curves of Scattering Data Derived from Fibres Titrated with 
Magnesium and Linker Histones.  
Experiment 1 - left: 601 reconstituted at 1.2:1 and BLG and 601/BLG reconstituted at 1.4:1 
titrated with 0.5 or 1 mM MgCl2. Unfortunately no data was collected for 601 at 0.5 mM 
MgCl2. Experiment 2 – right: 601 reconstituted at 1.12:1 and BLG and 601/BLG 
reconstituted at 1.3:1 titrated with 1 mM MgCl2, 1:1 ratio of linker histones or both MgCl2 
and linker histones. 

Chromatin was therefore reconstituted in the absence of competitor.  While the histone:DNA 

ratios necessary to reconstitute chromatin in these conditions at low concentrations were 

determined in section 3.5, much higher concentrations of chromatin (approximately 0.2 

mg/ml) were required for SAXS analysis.  Chromatin reconstituted at the ratios described in 

section 3.5 (601 at 1.4:1, BLG at 1.6:1 and 601/BLG at 1.8:1) became insoluble and 

“clumpy” during dialysis, indicating that the histone:DNA ratio was too high.  DNA was 
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therefore titrated with core histones and the highest ratio at which chromatin was found to 

remain in solution during dialysis at high concentrations was used for SAXS analysis. 

For SAXS analysis, 601 chromatin was reconstituted at 1.2:1 (Experiment 1) or 1.12:1 

(Experiment 2), BLG and 601/BLG were reconstituted at 1.4:1 (Experiment 1) or 1.3:1 

(Experiment 2).  These samples were analysed by electron microscopy to confirm fibre 

saturation (see section 4.6).  For Experiment 1, the average number of nucleosomes/fibre 

was found to be 23.18, 23.28 and 23.97 for 601, BLG and 601/BLG arrays respectively.  For 

Experiment 2, the average number of nucleosomes/fibre was counted at 26.08 (n=37), 25.61 

(n=36) and 25.16 (n=38) for 601, BLG and 601/BLG arrays respectively.  In order to keep 

salt concentrations low to achieve the best SAXS results, chromatin was folded with a low 

concentration of magnesium ions, rather than 80mM NaCl.  Chromatin in 2.5 mM NaCl was 

titrated with 0.5 mM or 1 mM MgCl2 and/or a 1:1 ratio of linker histone H5.  Dorigo et al. 

(2003) showed that “601” chromatin fibres achieved maximal compaction at 1 mM Mg2+, 

and this remains unchanged up to Mg2+ concentrations of 100 mM.  The scattering intensity 

(I) was measured at different scattering vectors (q) and the scattering of a matched buffer 

was subtracted to produce scattering intensity plots (Figure 4.7).  Multiplying the intensity 

by q2 to create a Kratky plot corrects for the random orientation of chromatin fibres relative 

to the x-ray beam that results in increased forward scattering (Langmore and Paulson, 1983). 

In a Kratky plot (Figure 4.8), the scattering decay is multiplied out and peaks indicating 

structural features become more apparent.  The shape of the scattering curve seems to 

indicate a multi-domain protein with a flexible linker in the absence of any folding agents 

(Figure 4.5B), shifting to a more globular structure upon the addition of magnesium or linker 

histones.  Peaks in the data reflect periodicities within the shape of molecules in the sample.  

As described by Langmore and Paulson (1983), a periodicity of D Å in a sample is 

calculated by 2𝜋/𝑞.  A peak at 0.035 q would therefore indicate a periodicity (D) of 18 nm. 

In analysing the scattering produced by unfolded chromatin fibres in experiment 1 (blue), a 

peak in seen in the 601 data that indicates a periodicity of 18 nm (q=0.035).  This shifts 

slightly to 16-17 nm for the BLG and 601/BLG (though the peak is not very clear in the 

BLG).  I suggest that this peak is the result of the 50 bp linker DNA between the 

nucleosomes, which would be expected to measure approximately 17 nm.  An 18 nm 

scattering peak is seen by Langmore and Paulson (1983) in nucleated erythrocytes, but not in 

other cell types.  My data also show a relatively small peak indicating a distance of 57 nm 

(q=0.011) in the unfolded 601 data.  In the BLG and 601/BLG data a peak instead appears 

indicating a distance of 39-42 nm (q=0.015-0.016) and is relatively much larger than the 57 
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nm peak seen in the 601 data.  Maeshima et al. (2016) also see a small shoulder in scattering 

intensity at approximately 40 nm, which becomes a true peak when chromatin is folded in 1 

or 2.5 mM magnesium.  This likely reflects a disordered but self-interacting structure in the 

presence of 2.5 mM NaCl, with more compacted folded forming in non-601 fibres in the 

absence of linker histones or magnesium, which is consistent with these fibres having an 

increased sedimentation velocity relative to unfolded 601 fibres in 80 mM NaCl (section 

4.4). 

 

Figure 4.8. Kratky Plots of Scattering Data Derived from Three Fibres Titrated with 
Magnesium and Linker Histones.  
Experiment 1 - left: 601 reconstituted at 1.2:1 and BLG and 601/BLG reconstituted at 1.5:1, 
titrated with 0.5 or 1 mM MgCl2. Unfortunately no data was collected for 601 at 0.5 mM 
MgCl2.  Experiment 2 - right: 601 reconstituted at 1.12:1 and BLG and 601/BLG 
reconstituted at 1.3:1 titrated with 1 mM MgCl2, 1:1 ratio of linker histones or both MgCl2 

and linker histones. 
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Upon folding with divalent magnesium cations (0.5 mM – orange, 1 mM – grey), there is a 

relative reduction in the 16-18 nm peak.  If this indeed reflects the distance between 

nucleosomes in an unfolded fibre, this would be consistent with the compaction of the array.  

The samples compact into a more globular structure with only one dominant peak at 1 mM 

MgCl2.  In 601, this peak represents a periodicity of 57 nm (q=0.011), in BLG this represents 

a periodicity of 45 nm (q=0.014), and in 601/BLG this reflects a periodicity of 48 nm 

(q=0.013).  Assuming, based on the sedimentation velocity of folded 601 fibres relative to 

BLG and 601/BLG, that 601 fibres are becoming similarly compacted in the presence of 

linker histones to the BLG or 601/BLG it is possible that these distances indicate differences 

in fibre shape, as more compacted fibres with longer linker lengths have been found to have 

larger diameters but shorter lengths in vitro (Robinson et al., 2006b).  However, the folding 

conditions are different between the SAXS and sedimentation experiments described here, 

which may impact the structure of the different fibres. 

While linker histones and magnesium ions have both been used to fold nucleosome arrays 

into higher-order fibres, there may be differences in the structures when different folding 

agents are used.  Routh et al. (2008) find that the linker histone is essential for achieving 

complete compaction of “601” arrays with a 197 bp repeat.  The 40 nm scattering peak seen 

by Maeshima et al. (2016) became more prominent upon addition of linker histone H1, but 

did not seem to shift in periodicity.  To discover if this was true for our arrays, including 

those with varying underlying DNA sequences, chromatin was reconstituted at 1.12:1 (601) 

of 1.3:1 (BLG and 601/BLG).  While fibres in experiment 1 appear to be well saturated, 

SAXS analysis indicated that fibres became aggregated at 1 mM Mg2+ (Table 3), therefore 

slightly lower histone:DNA ratios were used in the repeat experiment.  In experiment 2, 

there is much less evidence of nucleosome spacing before the addition of linker histones or 

magnesium.  It is possible that these fibres are slightly undersaturated compared to 

experiment 1 and that there therefore is no discrete peak.  The peak at q=0.015, thought to 

indicate a feature of nucleosome-nucleosome interaction in 2.5 mM NaCl, dominates and it 

is therefore not possible to analyse nucleosome spacing using the pearl necklace model in 

SasView.  There is a peak in periodicity in all samples at approximately 42 nm, which was 

also seen in undersaturated fibres during trial experiments.  It is not clear what this 

corresponds to.  A “shoulder” to the right of the peak, particularly visible in the 601/BLG 

sample, suggests a second periodicity comparable to that seen in unfolded fibres from 

experiment 1, but this was not prominent enough to be accurately measured.  This shoulder 

was lost upon the addition of magnesium and linker histones. 
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Peaks at q=0.05 and q=0.1 would reflect a periodicity of 11 nm and 6 nm, which would 

reflect the dimensions of the diameter and height of the nucleosome respectively.  These 

were seen by Maeshima et al. (2016) but are not apparent in my data. 

Further analysis of SAXS experiments on folded chromatin fibres is limited, as the data in 

the Guernier region (low q), relating to the average size of particles in the sample, of 

intensity plots is of poor quality due to the attractive interactions between neighbouring 

chromatin molecules and possible aggregation within the sample.  This prevents analysis of 

the precise average shape of molecules, for example calculating the radius of gyration and 

the maximum dimension of particles.  Valuable information can still be gained from the high 

q region of the data, such as the Porod invariant which is dependent on particle volume (but 

not on its form, which the Rg is). 

Sample Rg 
Porod 

Volume 
Porod Exponent 

601 

No Magnesium 80.6 1481839 2.6 

0.5mM Mg2+ - - - 

1mM Mg2+ 89.1 3662629 2.2 

BLG 

No Magnesium 61.3 904794 3.1 

0.5mM Mg2+ 45.5 449614 2.9 

1mM Mg2+ 242.3 17255855 2.5 

601/BLG 

No Magnesium 74 1235185 2.9 

0.5mM Mg2+ 47.7 513031 2.8 

1mM Mg2+ 221.0 19055389 2.1 

Table 3. Porod Analysis of 601, BLG and 601/BLG fibres at Varying Mg2+ 
Concentrations.  
Radius of gyration (nm) (automatically estimated by Scatter software) Porod Volume (Å3) 
and Porod exponent of each sample in experiment 1. 

The Porod exponent, which is related to the average particle flexibility and compaction and 

average particle volume are displayed in table 3.  A higher Porod exponent indicates a more 

compacted particle.  In the absence of magnesium ions, the 601 fibres appear to occupy the 

largest volume and are the most flexible.  This is consistent with the observation that they 

have the lowest sedimentation velocity, as they are the least compact of the three fibres.  In 

contrast, the BLG is the most compact and least flexible by SAXS measurement, although 

601/BLG was found to have the highest sedimentation velocity in an unfolded state (Figure 

4.3), although the fibres examined by sucrose gradient sedimentation are in a higher 

monovalent salt concentration. 
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Upon the addition of 0.5 mM magnesium chloride to induce the folding of arrays into 

higher-order structures, the estimated radius of gyration of the BLG is reduced by 26% and 

that of the 601/BLG is reduced by 35.5%.  The average volume of the BLG particles 

concurrently reduces by 50.3% while that of the 601/BLG molecules reduces by 58.5%.  

However, in 0.5 mM Mg2+, BLG fibres maintain a smaller volume and Rg than 601/BLG 

fibres.  Unfortunately, the quality of the data for 601 fibres in 0.5 mM MgCl2 was 

insufficient for analysis.  At 1 mM MgCl, all three fibres seem to greatly increase in volume 

and Rg.  This suggests that the samples are biased by large aggregates forming in the 

presence of this level of Mg2+.  This is more prominent for the BLG and 601/BLG fibres than 

for the 601, consistent with data shown in Figure 4.2, that these heterogeneous fibres become 

insoluble in Mg2+ more easily than the relatively homogeneous 601. 

4.6 Electron Microscopy of Chromatin Fibres 

In order to analyse the level of nucleosome saturation and to get a clearer idea of the 

structure of folded higher-order fibres, electron microscopy was performed on these samples 

before and after the folding of the arrays. 

The number of nucleosomes reconstituted onto arrays was measured by fixing chromatin in 

10 mM NaCl and counting nucleosomes (section 3.6).  Typical images of chromatin fibres 

reconstituted in the absence of competitor as described in section 4.6 and used for SAXS 

analysis are shown in Figure 4.9A.  Unfortunately the density of fibres seen during imaging 

was relatively low, and more fibres would be required for  a more thorough analysis.  The 

average number of nucleosomes counted on each fibre in experiment 1 was 23.18±1.02 

(n=31) for 601, 23.28±0.77 (n=38) for BLG and 23.97±0.72 (n=38) for 601/BLG. In 

experiment 2, the average number of nucleosomes counted within each sample was 

26.08±0.58 (n=37) for 601, 25.61±0.71 (n=36) for BLG, and 25.16±0.94 (n=38) for 601/BLG 

(Figure 4.9A and 4.9C).  As discussed in section 3.6, while a similar number of nucleosomes 

counted might indicate a similar degree of saturation for each of the different templates 

within each sample, there may in fact be more nucleosomes per fibre within sample 1, as 

fewer nucleosomes might be counted on fully saturated fibres due to the effects of 

nucleosome overlapping in electron micrographs on the qualification of nucleosomes within 

these images. 

These samples were fixed in the presence (1 mM, 0.5 mM) or absence of magnesium 

chloride, or 1 mM magnesium chloride with a 1:1 ratio of linker histone H5 to induce 

varying degrees of folding of the chromatin fibres as described (section 4.5).  Samples were 

fixed at low chromatin concentrations (25 ng/µl) in contrast to SAXS experiments which are  
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Figure 4.9. Electron Microscopy of Fibres Titrated with Linker Histones and 
Magnesium Ions. 
(Full legend found on following page) 
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A) Experiment 1 in the absence of magnesium. 601 reconstituted at 1.2:1, 23.18 
nucleosomes/fibre (N=31). BLG reconstituted at 1.5:1, 23.28 nucleosomes/fibre (N=38). 
601/BLG reconstituted at 1.5:1, 23.97 nucleosomes/fibre (N=38).  B) Experiment 1 arrays in 
the presence of 1 mM MgCl2. C) Experiment 2 in the absence of magnesium and linker 
histones. 601 reconstituted at 1.12:1, 26.08 nucleosomes/fibre (N=37). BLG reconstituted 
at 1.3:1, 25.61 nucleosomes/fibre (N=36). 601/BLG reconstituted at 1.3:1, 25.16 
nucleosomes/fibre (N=38). D) Experiment 2 folded in the presence of 1 mM MgCl2 with a 
1:1 ratio of linker histones. E) Measurement of fibre area from EM images 

performed at very high chromatin concentrations, which may impact fibre structure.  The 

area occupied by individual chromatin fibres in EM images at 20,000 × magnification was 

measured using an algorithm written by Davide Michieletto (Figure 4.9E).  In the absence of 

magnesium, the area was measured was 4102 pixels for 601 fibres, 4591 for BLG fibres and 

3287 for 601/BLG fibres.  The area occupied by the fibres in EM images might be expected 

to correlate with fibre volume, so it is surprising that the area occupied by BLG fibres is 

greater than that occupied by 601 or 601/BLG fibres, as the BLG fibres appeared to have the 

smallest volume measured by SAXS (Table 3).  Upon addition of magnesium to 0.5 mM, the 

area occupied by 601 fibres decreases by 53.6%, that of BLG fibres decreases by 48.4% and 

that of 601/BLG fibres decreases by 33%.  Upon addition of 1 mM MgCl2, the area decreases 

compared to the no-magnesium control by 66.2% in the 601 sample, 52.8% in the BLG 

sample and by 35.7% in the 601/BLG sample.  The lower concentration of chromatin fibres 

in this experiment likely prevented the aggregation of fibres at 1 mM magnesium chloride 

that was observed during SAXS experiments.  While the 601 fibres seem to compact 

significantly further between 0.5 mM and 1 mM MgCl2 (p < 5 × 10-7), this difference is less 

significant in the BLG and 601/BLG samples (p < 7 × 10-3 and p < 6 ×10-2 respectively).  

While the variation in the areas of the population of fibres is reduced at 1 mM Mg2+, the 

average value reduces by only a small amount, which might suggest that the ability of these 

fibres to further compact is limited compared to the 601 (though they are more likely to 

become insoluble as described in section 4.3). 

4.7 Chromatin Unfolding Dynamics by Single-molecule Force 

Spectroscopy 

Experimental methods such as sucrose gradient sedimentation and small angle x-ray 

scattering provide valuable information about the average properties of a population of 

chromatin fibres.  The heterogeneity in the number of nucleosomes within each chromatin 

sample however, including the 601 samples makes it difficult to analyse chromatin structure 

using population-wide approach.  For example, when two peaks are observed in SAXS 

analysis, it is unknown whether each fibre contains structures that cause the two periodicities 
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measured, or whether there is a population of fibres (for example, undersaturated fibres) 

causing one peak, and another population (for example, properly saturated fibres) causing 

another. 

 

Figure 4.10. Magnetic Tweezers for Single Molecule Force Spectroscopy.  
A) Schematic of magnetic bead pulling on individual chromatin fibre (Kruithof et al. 2009).  
B) Low force and high force regions of “601” fibre unwrapping under force.  At low forces 
(left) the 30-nm fibres come apart and one turn of DNA (56 bp) unwraps from each 
nucleosome under approximately 3.5 pN of tension.  At high forces (right), the second turn 
of DNA unwraps stochastically from each nucleosome, causing “steps” of extension to 
appear in the force-extension curve (Kruithof et al. 2009).  C) Suggested unwrapping path of 
the 30-nm chromatin fibre.  Thermal fluctuations at low forces lead to the unwrapping of 
the solenoid at forces lower than 3.5 pN, though nucleosomes are still interacting at this 
stage (Meng et al., 2015).  D) The unwrapping process between a higher-order fibre (or a 
single nucleosome) and a chain of nucleosomes with a single DNA wrap (low force 
transition) is reversible.  The high force transition (DNA completely unwrapping from the 
octamer) is irreversible (Meng et al., 2015). 

Single molecule studies have allowed the study of defined particles, where the characteristics 

of one molecule can be examined without bias or interference from the surrounding 

population.  Single molecule methods are particularly useful in studying populations of 

heterogeneous samples where one parameter, in this case the number of nucleosomes per 

chromatin fibre, is likely to affect the average patterns when examining an entire sample.  
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While electron microscopy can be used to study the shape of individual chromatin fibres, it 

is not possible to analyse both the folded structure and the degree of saturation for one single 

chromatin molecule, as the samples are fixed. 

Single-molecule force spectroscopy, using either magnetic or optical tweezers, has allowed 

the analysis of the dynamics of individual chromatin fibres under tension (Chien and van 

Noort, 2009).  To assess chromatin structure using magnetic tweezers, a magnetic bead is 

attached to one end of a DNA molecule, which is secured to an immobile surface at its other 

end (Figure 4.10A).  By measuring the change in height of the bead as force is applied to 

pull the bead upwards, it is possible to determine the unfolding dynamics of single 

nucleosome arrays.  Under such tension, it is possible to identify fibres upon which are 

reconstituted the correct number of nucleosomes, and to limit the analysis of chromatin 

structure and dynamics to these fibres.  The variable number of nucleosomes per fibre is 

therefore controlled between the three DNA sequences in this experiment. 

Kruithof et al. (2009) described the dynamics of the unfolding and unwrapping of individual 

chromatin fibres under tension using magnetic tweezers.  The first level of unwrapping (at 

3.5 pN) is in equilibrium and is reversible (Figure 4.10B, left).  This extension reflects the 

unwrapping of the higher-order chromatin fibre structure (Figure 4.10C) and the unwrapping 

of one turn of DNA (56 bp) from each nucleosome within the chromatin fibre.  If chromatin 

is not pulled at forces higher than ~6 pN (ie. if no histones octamers are removed) then the 

fibre will refold by following the same force-extension path as the force is removed.  If 

pulled again, it will produce the same force-extension dynamics.  Following this, there is a 

small intermediate unwrapping phase causing an extension of approximately 5 nm per 

nucleosome, which possibly reflects the dissociation of H2A/H2B dimers from the H3/H4 

tetramer.  At forces above 6 pN (Figure 4.10B, right) step-like rupture events occur as 

individual nucleosomes become completely unwrapped and histones become dissociated 

from DNA.  The removal of histones octamers at forces above ~6 pN is stochastic and 

irreversible, and once histones have been removed the chromatin fibre will not refold.  

However, these rupture events and the length of fibre extension at forces above ~6 pN allow 

the measurement of fibre saturation for individual chromatin fibres.  Upon release of the 

chromatin fibre, the force-extension curve returns to 0 nm extension by following the path of 

a worm-like chain, in the manner of a bare DNA molecule. 

The forces used in this experiment to unfold chromatin fibres are highly physiologically and 

relevant to nuclear function.  RNA Polymerase has been shown using optical traps to exert a 
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force of 14-25 pN on DNA (Wang et al., 1998; Yin et al., 1995) while other proteins likely 

exert a smaller force. 

4.7.1 Sample Preparation 

 

Figure 4.11. Sample Preparation for Single-molecule Force Spectroscopy.  

A) Dot blot showing the labelling of DNA templates with biotin and digoxigenin, compared 
to standards. B) EMSA confirming reconstitution of DNA templates with recombinant 
Xenopus core histones and 147 bp monomer competitor. 601 reconstituted at 1.3:1, 1.5:1 
and 1.7:1, appears to be reconstituted by 1.5:1. BLG and 601/BLG reconstituted at 1.8:1, 
2.0:1 and 2.2:1. 601/BLG appears to be reconstituted by 2.0:1, BLG does not reach a 
plateau in its shift. 

Plasmid DNA containing 601, BLG or 601/BLG templates (see appendix 1 for vector maps) 

was digested by PciI and NdeI, rather than EcoRV or XhoI, creating template DNA 

fragments that have ~600 bp of additional DNA “handles” on the ends of each of the 5 kbp 

templates allowing the chromatin fibres to attach to the glass slide and the magnetic bead.  In 

the manner of competitor DNA, on a 601 template these “handles” might be expected to 

remain unreconstituted when a nucleosome array is formed.  However, due to the larger 

amount of histone octamers required to saturate BLG and 601/BLG templates in the presence 

of competitor DNA (section 3.5), these “handles” might form nucleosomes on these 

templates.  PciI and NdeI restriction sites were used to label each DNA template with biotin-

dUTP at one end and digoxigenin-dUTP at the other in order to attach the chromatin fibre to 

the microscope slide and to the magnetic bead.  Biotin and digoxigenin labelling was 

confirmed by dot blot (Figure 4.11A). 115 ng of DNA was spotted on the membrane, this 
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corresponds to approximately 30 fmols of each template. Densitometry suggests that on the 

biotin dot blot, the intensity of the dot is approximately the same as the 50 fmol standards, 

but for the digoxigenin, each sample appears to be between 250 and 500 fmol, approximately 

10 times higher than the amount of DNA on the dot blot. It is possible that these standards 

have not worked well (especially the digoxigenin, which has very low intensity dots until 

500 fmol), but it appears that the templates are well-labelled with both biotin and 

digoxigenin. 

Template DNA was separated from the vector backbone and equal mass of a 147 bp DNA 

molecule was instead used as competitor.  Chromatin was reconstituted at 1.3:1, 1.5:1 and 

1.7:1 (601) or 1.8:1, 2:1 or 2.2:1 (BLG and 601/BLG) histone:DNA ratios using a one-step 

salt gradient dialysis (section 2.2.2).  Chromatin samples were analysed by EMSA (Figure 

4.11B), which suggested that 601 chromatin reached a plateau in its migration, indicating 

complete saturation, at a ratio of 1.5:1, 601/BLG appears to plateau at a 2:1 ratio, but BLG 

chromatin samples do not appear to plateau. 

Following reconstitution, chromatin was diluted into ESB(+) buffer, containing 100 mM 

NaCl and 2 mM MgCl2. Kaczmarczyk et al. (2017) showed that the H4 tails and H2A acidic 

patches of neighbouring nucleosomes in 601 fibres under these conditions are interacting, 

indicating that the nucleosome arrays are forming higher-order folded structures. 

4.7.2 Chromatin Unfolding Dynamics vary between Different DNA 

Sequences 

 

Figure 4.12. Number of Nucleosomes Counted on each Chromatin Fibre.  
Graph showing the number of nucleosomes, counted by measuring the fibre extension at 
forces between 6 and 50 pN. +/- SEM. 
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Figure 4.13. Force-extension Curves Showing Fibre Unwrapping of 601, BLG and 
601/BLG Arrays.  
Shown at a range of forces up to 50 pN (left) and zoom in to show low force region (right).  
10 individual fibres are shown in each graph. 

Chromatin is added to flow cells covered by a glass slide coated in anti-digoxigenin.  The 

digoxigenin-labelled end of the chromatin fibre binds to the base of the flow cell, and 

streptavidin-coated magnetic beads are added and bind to the biotin label at the opposite end 

of the chromatin fibre.  Magnetic tweezers pull on the magnetic bead and the change in bead 

height is measured as the force changes, allowing the unfolding of a chromatin fibre to be 

examined (Figure 4.10A).  Multiplexed tweezers were able to measure the pulling of 

hundreds of beads at one time, increasing the throughput of the technique. 

Firstly, the high-force regions of individual force-extension curves (Figure 4.13, left) were 

examined to calculate the number of nucleosomes within each fibre.  The extension and the 

number of “steps” counted between ~6 and ~50 pN were analysed to determine the number 

of individual nucleosomes unwrapping (Figure 4.12).  At a 1.3:1 ratio, the average number 

of nucleosomes loaded on a 601 fibre was slightly below 25 (n=92), whereas at 1.5:1 

(n=126), there were slightly more than 25 nucleosomes per fibre, confirming that a 1.4:1 

ratio is the correct saturating ratio for fibres reconstituted at these concentrations (20 ng/µl).  

The BLG and 601/BLG appear to be slightly undersaturated, with an average of 23-24 
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nucleosomes at a 2.2:1 ratio (n=179 and n=158 respectively).  It is unsurprising that slightly 

more histones might be required to fully saturate the fibre in the presence of a monomer 

competitor, as the amount of competitor DNA is higher than when the vector backbone was 

used.  Sufficient fibres with 25 nucleosomes were identified for subsequent analysis. 

 

Figure 4.14. Analysis of Force-Extension Curves.  
Fitting to the model described by Kruithof et al. (2009) allows various parameters to be 
calculated. The stiffness of each fibre (k) and ΔG of the first force transition are shown on 
the left and right axis, respectively. All fibres analysed have 24-27 nucleosomes. +/-SEM. 48 
601 fibres were analysed, 44 BLG fibres were analysed and 24 601/BLG fibres were 
analysed. 

The unfolding patterns of 10 fibres containing 25 or 26 nucleosomes are shown in Figure 

4.13.  Fibres containing 26 nucleosomes are expected to have formed a nucleosome over one 

of the DNA handles that allow the labelling of the template by biotin or digoxigenein, and 

are therefore not oversaturated.  The entire force-extension curve, including the high force 

region which is used to count the number of nucleosomes is shown on the left, then this is 

zoomed in to examine the low force regime, the unfolding of the higher order fibre and first 

turn of DNA from each nucleosome, more clearly on the right.  There are clear differences in 

the unfolding dynamics at low forces between the 601 and the other two fibres.  The 601, as 

has been previously described, undergoes an initial extension at very low forces (<0.5 pN) as 

the DNA handles at the ends of the template become extended.  At approximately 3-4 pN, a 

plateau of extension occurs, indicating the unfolding of the higher-order fibre and the first 

turn of DNA beginning to unwrap from each of the individual nucleosomes.  In BLG and 

601/BLG fibres, there is very little evidence of an extension plateau at 3.5 pN, but there 

appears to be much more of a gradual extension in the length of the fibre between 0.4 and 

1.0 µm at forces between 1 and 4 pN.  Some fibres in the 601/BLG sample have a short 

plateau, but others lack this.  These differences can be described by fitting the force-

extension curves to the force-extension model developed by the van Noort laboratory and 
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described by Meng et al. (2015).  This allows us to fit various parameters of the DNA and 

chromatin fibres (section 2.9.5 and Meng et al. (2015)).  The stiffness (k), number of fully 

folded nucleosomes, and three force transitions of the fibre (kT) were manually fitted to this 

model for fibres containing 24-27 nucleosomes.  The primary difference between the three 

samples was found to be in the stiffness of each fibre, which measures the rate at which the 

fibre is pulled apart, breaking the interactions between nucleosomes and unwrapping the 

DNA from the octamer, in pN/nm. 

The 601 sample has an average stiffness of 0.232±0.035 pN/nm (n=48), which is comparable 

to what has been previously published by Meng et al. (2015).  As no sequence apart from the 

601 has been examined using this apparatus before, it is unknown what differences might be 

expected of other DNA sequences.  The BLG was found to have an average stiffness of 

0.185±0.048 pN/nm (n=44), and that of the 601/BLG was slightly higher at 0.193±0.043 

pN/nm (n=24) (Figure 4.14, left axis).  The ΔG of the first force transition (the force at 

which the unfolding of the higher-order fibre and unwrapping of the first turn of DNA 

occurs) was found to be very similar between the three fibres (Figure 4.14, right axis), but 

the differences between the samples were found to be entirely captured by the stiffness.  The 

number of unfolded nucleosomes in each sample was also found to be the same on average 

between the three samples.  These unfolded nucleosomes have been suggested to be 

tetrasomes, or nucleosomes with dissociated dimers.  The van Noort group has found that 

these almost always need to be accounted for when analysing data from 197 bp repeat 

sequences, but not with 167 bp sequences. 

This assay has limitations; I cannot be sure whether the lower force required to extend non-

601 chromatin fibres is a result of weaker or absent interactions between nucleosomes within 

a higher-order chromatin fibre structure, or because the first turn of DNA becomes more 

easily unwrapped from the histone octamer.  Experiments were attempted in the absence of 

magnesium, in order to compare the dynamics of an unfolded nucleosome array with a 

compacted fibre.  However, this experiment did not seem to be possible under these 

conditions, as long, unfolded nucleosome arrays appear to “stick” to the surface of the slide 

and unstick several nucleosomes at a time, causing jumps in the force/extension curve.  This 

means that a smooth unfolding trace cannot be seen in these curves as it can in the presence 

of magnesium, so it was not possible to dissect these two aspects of the chromatin fibre 

structure. 
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4.7.3 Individual Nucleosome Stability is Influenced by DNA Sequence 

The step-size reflecting the unwrapping of a second turn of DNA from each individual 

nucleosome at forces between 6 and 40 pN was approximately 79 bp for 601 and 601/BLG, 

consistent with results previously reported for the 601 (Kaczmarczyk et al., 2017), but 

increased to 84 bp for BLG indicating that more DNA may remain interacting with the 

H3/H4 tetramer following the unwrap of one turn of DNA from these fibres (however, the 

accuracy of the measurement is smaller than this distance, so it is not possible to draw any 

strong conclusions).  The height that these steps occur, i.e. the force at which the DNA 

becomes fully dissociated from the histone octamer, varies between the samples.  Artur 

Kazmarckyk analysed the forces at which these steps occur in saturated chromatin fibres and 

found that the cumulative probability of rupture was lowest for the 601 and highest for the 

BLG at any given force between ~6 and ~40 pN (Figure 4.15).  This indicates that DNA 

unwraps slightly more easily from the sequences within the BLG fibre.  If this phenomenon 

also applies to the unwrapping of the first turn of DNA at forces below 4 pN, this might 

contribute to the reduced stiffness of the non-601 chromatin fibres described above. 

 

Figure 4.15. Step Distribution Analysis at High Forces.  
The probability of individual nucleosome rupture was calculated from a selection of well-
saturated fibres.  BLG nucleosomes were more likely to rupture at lower forces than 601 
nucleosomes. 
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4.7.4 Chromatin Unfolding, but not Folding, is Affected by Neighbouring 

Chromatin Fibres. 

Labelled chromatin fibres must be diluted to extremely low concentrations (0.04 ng/µl) to 

perform single molecule force spectroscopy, as a high concentration of labelled fibres will 

enable too many magnetic beads to bind and cause “double tethers”, where two or more 

chromatin fibres bind to the same streptavidin-coated magnetic bead, affecting the force-

extension dynamics of the whole complex.  However, chromatin concentration is known to 

affect fibre stability; it is possible that chromatin fibres might fall apart more easily at low 

concentrations. 

 

Figure 4.16. Refolding Chromatin at Different Concentrations.  

A) Unfolding (red) and refolding (green) of a 601 fibre analysed at low chromatin 
concentrations. B) Unfolding (red and blue) and refolding (green and orange) of a 601 
nucleosome array pulled twice at high concentration. 

To test this additional unlabelled 601 chromatin fibres were included in the buffer during 

pulling, increasing the total chromatin concentration to 4 ng/µl (100 fold higher than 

previously described).  Chromatin fibres were pulled at low force, which at low chromatin 

concentrations allow the fibre to completely refold, following the same force-extension path 

as its unfolding (Figure 4.16A).  When additional, unlabelled chromatin was added to the 

flow cell, there was not a quantifiable difference in unfolding dynamics (though high force 
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pulls could not be used to confirm complete saturation), but the refolding pathway was 

altered in several cases, with chromatin not refolding until lower forces, around 2.5 pN had 

been reached.  The chromatin fibre analysed in Figure 4.16B requires a force of 

approximately 3.5 pN to unfold (red), but as the tension is decreased it does not refold until 

the force decreases to approximately 2.5 pN (green).  When this force is reapplied to this 

fibre it follows the same unfolding pathway (blue), suggesting that the structure of the fibre 

has not changed, but again does not refold until the force is decreased.  These experiments 

were performed before multiplexed tweezer setups were available, and therefore it was not 

possible to confirm saturation of these fibres by high-force measurements or to measure a 

significant number of fibres for a complete analysis.  While it was not possible to pull these 

fibres at high force to count the number of nucleosomes, the low force region of the curves 

shown for this fibre fits with a model that may have 24-27 nucleosomes.  Curves that 

appeared to be undersaturated with nucleosomes (indicated by a shorted plateau at 3.5 pN) 

appeared to have a smaller difference between the unfolding and refolding pathways. 

McDowall et al. (1986) suggested that adjacent chromatin fibres in the nucleus (where 

concentration is extremely high) are interdigitated with one another. Maeshima et al. (2016) 

have more recently suggested a polymer-melt structure, lacking a 30-nm fibre, where 

chromatin interacts with neighbouring fibres in the nucleus.  This interaction would be 

highly likely to influence folding dynamics of chromatin. 

4.8 Summary 

Surprisingly my results suggest that although BLG and 601/BLG arrays in 80 mM NaCl are 

more heterogenous they have a more compacted structure than 601 fibres.  Under these ionic 

conditions, nucleosomes might be expected to be interacting within arrays, but not to form a 

30-nm structure in the absence of linker histones.  The heterogeneity of nucleosome 

positioning on the BLG and 601/BLG templates may cause different types of folding, eg. 

between very closely positioned nucleosomes, or within longer nucleosome-free regions of 

DNA, allowing nucleosomes to interact more easily than within a 601 fibre, leading to a 

more compact structure as seen in their higher sedimentation velocity (Figure 4.3) and their 

smaller volume as indicated by SAXS analysis (Table 3).  However, when analysed by 

electron microscopy, BLG arrays were found to occupy a larger area, suggesting a larger 

volume, than 601 fibres.  This might indicate that BLG fibres are more likely to become 

decompacted at low concentrations than 601 or 601/BLG fibres. 

Upon the addition of linker histones or Mg2+ ions to induce folding of nucleosome arrays 

into higher-order fibres, 601 fibres appear to become more compact as evidenced by their 
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increased sedimentation velocity in the presence of linker histones (Figure 4.3) and their 

reduced fibre area measured by electron microscopy in the presence of Mg2+ (Figure 4.9).  

While non-601 arrays become more compacted in low levels of magnesium, they appear to 

become insoluble more easily in the presence of magnesium or linker histones (Figure 4.2, 

Table 3), preventing them from compacting more extensively.  This may be due to irregular 

spacing of nucleosomes; possibly there are sections of the template where nucleosomes 

space very close together with short linkers between, and these could promote array 

aggregation. 

As it is impossible to control for fibre saturation during reconstitution of the three samples, 

there are likely to be small variances in array saturation that impact fibre folding.  In 

addition, it is difficult to dissect the structural features of an average population of fibres, 

which may contain different folded structures. 

Single-molecule force spectroscopy allows the folding dynamics of individual chromatin 

fibres of known saturation to be studied.  601 fibres were found to have very similar 

unfolding dynamics to those previously described (Figure 4.13, 4.14) with interactions 

breaking between nucleosomes and the first of turn of DNA becoming disassociated with the 

histone octamer at approximately 3.5 pN.  BLG and 601/BLG fibres were found to unfold 

more gradually, which might reflect the heterogeneity of the nucleosomes within the 

structures and their reduced stability.  The second turn of DNA unwrapping occurred at 

lower forces in the BLG compared to the 601, further evidencing the reduced stability of 

these nucleosomes under tension (Figure 4.15). 

The main difficulties found with these experiments were in confirming nucleosome array 

saturation prior to folding.  Without being sure that arrays are equally saturated, it is 

impossible to be confident that all differences are a product of the underlying DNA 

sequence, as missing or additional histone octamers are likely to cause changes in the folding 

of the fibre.  While single-molecule experiments have successfully allowed us to study the 

dynamics of fibres which have a known number of nucleosomes, a method to study DNA 

sequence effects on the average fibre structure where the nucleosome array saturation could 

be internally controlled is necessary. 
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Chapter 5. Introducing Sequence Disruptions into 

Saturated Fibres 

5.1 Introduction 

While comparing the properties of 601, BLG and 601/BLG, the variable affinities of the 25 

unique nucleosome positioning cause a variable and heterogeneous fibre (Chapter 4) that 

makes it difficult to attribute changes in fibre folding to a specific DNA sequence, as the 

surrounding chromatin landscape is likely to be different in each fibre within a sample. 

A different approach is therefore required to study the properties of any particular DNA 

sequence.  To address this and to study the impacts of different DNA sequences within a 

controlled chromatin landscape, novel templates were devised in which a single nucleosome 

positioning site varies within a stable, homogeneous “601” template. 

Varying the DNA sequence of a single nucleosome positioning site might cause a point of 

disruption within an otherwise compacted chromatin fibre.  Chromatin from the active β-

globin locus of the chicken erythrocyte genome sediments more slowly through a sucrose 

gradient than bulk chromatin, due to a single nucleosome disruption (Caplan et al., 1987; 

Fisher and Felsenfeld, 1986; Kimura et al., 1983).  Caplan et al. (1987) showed that a 6.2 

kbp fragment (containing 29.2 nucleosomes on average) of the β-globin locus sedimented at 

approximately the same rate following the removal of linker histones.  However, following 

the refolding of the fibres with linker histones this difference again became apparent, 

suggesting that the difference in the sedimentation velocity of the fibres is due to a single 

unoccupied nucleosome site which cannot be accommodated within the higher-order fibre 

structure, causing a disruption.  It was reasoned that a nucleosome positioning site with a low 

affinity for the histone octamer, cloned into the centre of a reconstitution template would 

cause a similar disruption in vitro that could be identified by sucrose gradient sedimentation. 

 

Figure 5.1. Sequence-dependent Nucleosome Disruptions in Chromatin Structure.  
Two possible fibre conformations adopted by fibres with differing central nucleosome 
positioning sites (Caplan et al., 1987). 

A 197 bp sequence with a low affinity for the histone octamer within a regular nucleosome 

array may form a structure where the 30-nm chromatin fibre is interrupted by a 

“hypersensitive site” (Figure 5.1), or it may be that the strong positioning of the “601” 

nucleosomes forces a nucleosome to fill the gap between them, depending on the DNA 
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sequence. In this case, a “disruption” in the chromatin fibre may be formed where there is a 

difference in the higher-order structure that might cause the DNA to be more accessible. 

Kubik et al. (2017) suggest that “fragile” nucleosomes may exist in vivo, across promoters 

which are more accessible to transcription factor binding.  Furthermore, a nucleosome-free 

region is often found upstream of active transcription start sites, generated by transcription 

factor binding.  Some of these sequences have been found to have reduced affinity for the 

core histone octamer, including poly(dA:dT) tracts (Field et al., 2008).  The lack of a 

nucleosome and disruption of the condensation of the higher-order chromatin structure may 

enhance the chromatin accessibility of this region to transcription machinery or other cellular 

factors. 

5.2 Design of Template DNA Sequences 

To study the effects of the sequence of a single nucleosome positioning site on chromatin 

structure, DNA constructs were designed containing 25 nucleosome positioning sites 

(section 2.1.1).  A single 197 bp DNA sequence with a low affinity for the histone octamer 

was cloned into the centre of the template, with 12 × “601” sequences positioned on either 

side and compared with a template containing 25 canonical 197 bp “601” sites (601).  It was 

reasoned that a sequence with a high affinity for the histone octamer would allow a regular 

nucleosome array to form, which could fold into a compacted chromatin fibre, while a 

sequence with a low affinity for the histone octamer would either not form a nucleosome 

(causing a hypersensitive site) or form a nucleosome which is less stable than the 

surrounding array.  This unstable nucleosome might form a single “disruption” in the higher-

order chromatin structure when folded. 

A 197 bp nucleosome positioning site with low affinity for the histone octamer was 

identified from the sequencing of nucleosomes reconstituted onto the ovine β-lactoglobulin 

gene in vitro (Fraser et al., 2009) by Jim Allan.  The low abundancy of this site suggests that 

nucleosomes rarely form over this sequence in vitro and is easily digested by micrococcal 

nuclease following reconstitution (Figure 5.2A, approx. 5400 bp).  This site was cloned into 

the centre of a “601” DNA template with surrounding high-affinity nucleosome positioning 

sequences and the predicted nucleosome positioning properties of the sequence were 

compared with the 25×601 sequence (601) using the algorithm described by van der Heijden 

et al. (2012) and in section 3.3 (Figure 5.2B).  There is a clear difference between the 

predicted nucleosome occupancy of the central low-affinity sequence and the surrounding 

“601” sites, with the low-affinity sequence having almost no measurable affinity for the 
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histone octamer.  The presence of the low-affinity site does not seem to affect the positioning 

of nucleosomes over the adjacent “601” nucleosome positioning sites. 

 

Figure 5.2. A Site with Low Affinity for the Histone Octamer.  
A) Nucleosome occupancy maps of the β-lactoglobulin gene, highlighting a site with low 
affinity for the histone octamer. B) Comparison of predicted nucleosome occupancy of 601 
and 601+LA according to van der Heijden et al. (2012). 

It should be easier to control the saturation level of these templates, as unlike 601, BLG and 

601/BLG they were expected to achieve a similar level of saturation when reconstituted at 

similar histone:DNA ratios.  This method also allows a competitor to be easily used (except 

in the case of analyses such as SAXS) as the competitor would also be reconstituted to the 

same degree in each sample.  As more histones were required to saturate the BLG and 

601/BLG templates and this caused the competitor to be more chromatinised, there was the 



126 

 

possibility that when linker histones were added these might bind differently to the template 

and the competitor fibres in each case.  This would not be expected to be an issue between 

two fibres which vary in only one nucleosome positioning site. 

 

Figure 5.3. Electrophoretic Mobility Shift Assay of 601 and 601/LA.   
0.7% gel showing shift of purified DNA reconstituted at histone:DNA ratios of 1.12:1.  
Nominal fragment sizes: 601 = 13657 bp, 601+LA = 13848 bp. 

Furthermore, studying the dynamics of BLG and 601/BLG fibres only, allows us to study the 

average dynamics of each of the templates, rather than the composite effect of each 

nucleosome positioning sequence within it.  For example, if the positioning of one 

nucleosome affects the properties of a neighbouring nucleosome, it is difficult to distinguish 

these.  Using an approach where only one nucleosome positioning site is varied in each 

template removes the effects of differential nucleosome positioning, as surrounding “601” 

sites are likely to force a nucleosome, if one forms, into the designated site, rather than 

allowing it to sit over the linker regions, as commonly occurs within the BLG and 601/BLG 
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(section 3.8.3).  This removes the effect of the surrounding DNA sequence and enabled me 

to examine the properties of the one DNA sequence placed in the centre of the fibre. 

The “601” template with a low-affinity central nucleosome positioning site derived from the 

β-lactoglobulin gene was termed 601+LA.  The 601 and 601+LA sequences were 

reconstituted by salt dialysis (section 2.2.2).  While histone octamers are likely to bind to the 

“601” sites first, it is possible that nucleosomes will form over the central nucleosome 

positioning sequences before octamers bind to the competitor DNA, even if sections of the 

competitor might have a higher affinity for the histone octamer, due to the cooperative 

binding mechanism of histones to DNA (Rubin and Moudrianakis, 1972).  In the absence of 

a competitor, 601 and 601+LA achieved a similar degree of saturation as measured by an 

electrophoretic mobility shift assay when reconstituted at a histone:DNA ratio of 1.12:1 in 

the absence of competitor (Figure 5.3). 

5.3 A Low Affinity Nucleosome Binding Site is Sensitive to Nuclease 

Digestion 

To analyse the sensitivity of each chromatinised template to nuclease, templates were 

reconstituted at histone:DNA ratios of 1.12:1 (see section 5.4) in the absence of competitor, 

and digested with DFF nuclease (section 3.10.4).  A difference in the sensitivity of the 

central nucleosome site to DFF nuclease would indicate differential positioning of 

nucleosomes in these fibres, or the absence of a nucleosome positioned over the central low-

affinity site in the 601+LA template. 

Following digestion for 40 min with 1 or 4 units of DFF nuclease at 4°C, chromatin was 

incubated in genomic lysis buffer with proteinase K, DNA was purified by 

phenol/chloroform extraction, precipitated and analysed by electrophoresis on a 1% agarose 

gel (Figure 5.4A).  While the 601 showed a regular 200 bp nucleosomal ladder indicating 

that nucleosomes are well positioned over each 197 bp repeat, there was a region of 

increased digestion observed between the 12th and 13th bands of the 601+LA template, which 

corresponds to the location of the low-affinity nucleosome positioning site.  When the 

profiles of these lanes (after digestion with 4 units of enzyme) were compared (Figure 5.4B), 

it was observed that while there is increased digestion across this central nucleosome site in 

the 601+LA, there is comparatively less material digested to 12mers or 13mers, likely as a 

consequence of increased digestion over the low-affinity nucleosome positioning site 

inhibiting the enzyme from cutting at the linker regions either side.  Interestingly, there is 

also an increased frequency of digestion over the 11th and 14th linker regions, which are 

positioned one “601” nucleosome away from the low-affinity sequence.  It is difficult to 
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analyse the quantity of digestion within the low-affinity nucleosome positioning site 

compared with the linker regions either side, as some digestion in the linker regions will be 

the result of the template being digested into more than two fragments. 

 

Figure 5.4. Digestion of 601 and 601+LA by DFF.  
A) Digestion of 601 and 601+LA reconstituted at 1.12:1 digested by 0, 1 or 4 units of DFF 
nuclease to nucleosomal ladders. B) Quantification of DNA following digestion with 4 units 
of DFF nuclease. See “spike” at 11n and 14n nucleosomes in 601+LA and “blur” between 12 
and 13n. Adjusted to account for gel curvature. 

This data suggests a nucleosome can form over the LA site, but that DNA is more accessible 

or the histone octamer is more easily removed by the nuclease. Alternatively, increased 

nuclease sensitivity of this region might suggest a nucleosome may not be positioned over 

this low-affinity site in every fibre in the population of reconstituted arrays. 
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5.4 Small-angle X-ray Scattering 

To analyse the shapes of 601 and 601+LA chromatin fibres folded by linker histones and 

magnesium ions, I attempted to analyse the scattering properties of fibres by SAXS (section 

4.5).  Template DNA was reconstituted in the absence of a competitor at  a ratio of 1.12:1 

(see section 4.5). 

 

Figure 5.5. Scattering Intensity and Kratky Plots of 601 and 601+LA.  
Plots show scattering patterns of 601 and 601+LA reconstituted at 1.12:1, and titrated with 
1 mM magnesium chloride and/or a 1:1 ratio of linker histone H5. 

Intensity and Kratky plots (Figure 5.5) from the SAXS lack a prominent peak at 17-18 nm 

(0.035q) periodicity, as seen in Figure 4.8 thought to indicate the distance between 

individual nucleosomes, in the absence of linker histones or divalent cations.  This may 

indicate the samples are undersaturated, similar to experiment 2 described in section 4.5.  A 

prominent peak, however, is seen at 0.13-0.14 q suggesting a repeating distance of 45-48 nm.  

As linker histones and magnesium ions were added, a shoulder which might reflect a 

periodicity of 17-18 nm is lost but there is no change to the 45-48 nm peak.  A reduction in 

the peak at 45-48 nm in the 601+LA samples after the addition of linker histones might 

reflect a structural change or might suggest that a small amount of these arrays become 

insoluble under these conditions. 



130 

 

 

Figure 5.6. Electron Microscopy of 601 and 601/LA titrated with Linker Histones and 
Magnesium Ions.  
A) 601 and 601+LA reconstituted at 1.12:1 in the absence of competitor, titrated with linker 
histone H5 and/or 1 mM magnesium chloride. B) Area of individual fibres measured 
following electron microscopy. 

Electron microscopy analysis suggested that these fibres were differently saturated, with 601 

fibres having 26.08±0.57 nucleosomes/fibre (N=37) and 601+LA having 21.68±0.63 

nucleosomes/fibre (N=54).  This demonstrates that even when two templates should have 

very similar affinities for histone octamers and become saturated at similar ratios, it is 
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difficult to control for reconstitution efficiency, likely due to small differences in DNA 

concentration prior to reconstitution. 

The area of the 601 fibres is significantly higher than that of the 601+LA fibres in the 

absence of magnesium or linker histones, but this is likely accounted for by the difference in 

fibre saturation (Figure 5.6B).  Despite these differences, both fibres seem to compact well in 

the presence of magnesium ions, 601 compacted to a smaller volume despite initially having 

a higher volume.  Surprisingly, the presence of linker histones in the absence of any 

magnesium had very little effect on the compaction of the fibres, and in the presence of 

magnesium caused only a modest reduction to fibre area. 

Considering the difference in saturation, it is surprising that the samples both compact 

efficiently and that there is so little difference in the scattering profiles revealed by small-

angle X-ray scattering. 

5.5 Impact of Chromatin Disruption on Sucrose Gradient 

Sedimentation 

A disruption in higher-order chromatin structure is expected to have a significant impact on 

the sedimentation velocity of the chromatin.  To analyse the effect of a single DNA sequence 

disruption within the “601” templates on the sedimentation velocity of the chromatin arrays, 

601 and 601+LA were reconstituted in the presence of a vector backbone competitor at a 

histone:DNA ratio of 1.5:1 or 1.6:1 and dialysed into 80 mM NaCl.  Using competitor DNA 

should allow us to more easily reconstitute two equally saturated samples, and any small 

differences might be expected to be seen only in the saturation of the competitor molecule.  

Linker histone H5 was added following the reconstitution up to a ratio of 2.2:1 and 

chromatin was centrifuged through 6-40% isokinetic sucrose gradients (section 4.4). 

The sedimentation profiles of 601 and 601+LA chromatin reconstituted at 1.5:1 or 1.6:1 

histones:DNA (Figure 5.7A) show that 601+LA fibres sediment slightly faster that 601 fibres 

in the absence of linker histones, but not as quickly as the BLG and 601/BLG fibres.  This is 

consistent with a hypothesis that fibres with less regular and precise nucleosome positioning 

are able to adopt more compacted structures in 80 mM salt in the absence of linker histones.  

Adding linker histone H5 to a linker:nucleosome ratio of 1.4:1 causes a considerable shift in 

the sedimentation velocity of the 601 and a comparatively smaller shift in the sedimentation 

velocity of the 601+LA, so that the major peak of the 601 fibres spin faster than 601+LA.  At 

H5:nucleosome ratios higher than 1.4:1, 601 chromatin travels further through the gradient  
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Figure 5.7. Sucrose Gradient Sedimentation of 601 and 601+LA Titrated with Linker  

Histones.  (Full legend found on following page) 
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A) Sedimentation profiles of 601 and 601+LA chromatin reconstituted at 1.5:1 core 
histones:DNA and titrated with up to 1.8:1 H5 molecules per nucleosome. B) Distance 
sedimented by each sample relative to the length of the gradient. 

than 601+LA, suggesting that it adopts a more compact structure.  As described in section 

4.4, the profile of the 601 sedimentation shows two peaks suggesting the cooperative binding 

of linker histones.  While this is less clear for the 601+LA fibres, there is evidence of a 

“shoulder”, especially at a 1.8:1 linker histone ratio.  This suggests that the 601+LA fibres 

are less heterogeneous than the BLG and 601/BLG fibres, and therefore distinct species are 

visible.  The height to peak width ratios are shown in Table 4. 

Width ½ height 601 627 

No H5 3mm 4mm 

1:1 6.5mm 5.8mm 

1.4:1 11mm 8mm 

1.8:1 9.5mm 8mm 

2.2:1 7mm 9mm 

Table 4. Width at ½ Height of Chromatin Sedimentation Peaks.   
Where peaks are divided into two distinct peaks, the larger peak is measured. 

Following sucrose gradient sedimentation, fibres were imaged by electron microscopy.  

While insufficient individual fibre images could be isolated for a comprehensive analysis, 

typical fibres are shown in Figure 5.8.  Fibres seem to adopt a fairly similar structure in the 

absence of linker histones, and became more compacted as linker histones were added.  In a 

number of compacted 601+LA fibres, it was possible to see two distinct sections to the 

compacted fibre, connected by a short length of DNA.  This might indicate a disruption in 

the centre of the fibre which prevents it from folding into a continuous structure.  As a 200 

bp nucleosome-free region is expected to be approximately 66 nm in length, which is much 

longer than these disruptions appear to be, they may indicate a discontinuity caused by a 

weakly positioned nucleosome, or it may be that a longer stretch of DNA is occluded by the 

surrounding chromatin fibre in these images.  These discontinuities only appear in a subset 

of fibres, suggesting that the low-affinity DNA sequence often positions a nucleosome which 

can be folded into a higher-order structure which cannot be easily distinguished from 601 

fibres. 
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Figure 5.8. Electron Microscopy of 601 and 601+LA titrated with Linker Histones.  

Typical images of each fibre at different linker histone ratios, reconstituted at 1.5:1 and 
titrated up to 2.2:1 H5 molecules per nucleosome. 

5.6 Summary 

To study the contributions of individual nucleosome positioning sequences in regulating the 

structure of higher order chromatin fibres, a template containing a single low-affinity 

nucleosome positioning sequence in the centre of a repeating “601” array was made (Figure 

5.2).  Electrophoretic mobility shift assay indicated that these fibres have a similar mobility 

when reconstituted at the same histone:DNA ratio in the absence of a competitor (Figure 

5.3).  Due to the similar overall affinity of each template for the histone octamer, these 

templates would also be expected to reach saturation at a similar histone:DNA ratio in the 

presence of a competitor, unlike the BLG and 601/BLG. 
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When digested by DFF nuclease, there appeared to be increased digestion across the central 

nucleosome positioning site (Figure 5.4), suggesting that this site is either lacking a 

nucleosome in some or all of the fibre population, or that a nucleosome is positioned across 

this site, but is more “fragile” and allows the nuclease greater access to the underlying DNA. 

Analysis of the scattering properties of these fibres provided limited information about their 

different structures when folded by linker histones or divalent cations, due to differences in 

the saturation of these samples (Figure 5.6). 

Sucrose gradient sedimentation of arrays in 80 mM salt in the absence of linker histones 

revealed that arrays containing a low-affinity nucleosome positioning site have a slightly 

higher sedimentation rate than regular 601 fibres (Figure 5.7).  This is consistent with my 

previous observation (section 4.4) that arrays with less regular nucleosome positioning are 

more compacted in the absence of linker histones.  Upon the addition of linker histones, 601 

fibres become more compacted than those containing a low-affinity positioning site, at linker 

histone:nucleosome ratios above 1.4:1.  These differences in compaction may be due to a 

disruption in the higher-order structure of the 601+LA fibres, caused by a missing or fragile 

nucleosome over the central low-affinity site.  While insufficient fibres could be isolated by 

EM images for a complete analysis (less than 10 of each sample), such a “disruption” could 

be seen in a number of 601+LA fibres, while 601 fibres generally adopted a more continuous 

structure (Figure 5.8).  This model might be a useful method of studying the influence of a 

variety of DNA sequences on the higher-order chromatin fibre structure. 
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Chapter 6. Discussion 

The higher-order structure and dynamics of the chromatin fibre are thought to play an 

important role in the regulation of the eukaryotic genome, but much remains unknown about 

the structure of this complex and how it is regulated.  In vitro studies based on repeating 

units of strong nucleosome positioning sequences have provided insight into how 

nucleosomes within an array are compacted into a 30-nm fibre, with sequences containing a 

long nucleosome repeat (197 bp) forming a one-start solenoid and those with a short repeat 

length (167 bp) forming a two-start helical structure (Kruithof et al., 2009; Routh et al., 

2008).  The unfolding dynamics of these structures have been studied by single-molecule 

force spectroscopy, confirming that longer DNA lengths appear to form a one-start structure 

which unfolds at similar forces but is less stiff than a two start structure (Meng et al., 2015).  

However, as a limited number of DNA sequences, in particular the 601 sequence, have 

dominated these studies, it is not well understood what role the DNA sequence plays in 

defining this structure and the dynamics of chromatin unfolding. 

I set out to investigate the structure and dynamics of chromatin fibres with different 

underlying DNA sequences.  I hypothesised that non-repetitive DNA sequences containing 

strong, biologically-derived nucleosome positioning sequences might not form such a 

compacted higher-order chromatin structure as a repetitive “601” DNA sequence, which has 

a far higher affinity for the histone octamer than any biological nucleosome positioning 

sequence in vitro (Thåström et al., 1999), and that these structures might be more easily 

disrupted than 601 fibres.  A fibre containing a combination of “601” and biologically-

derived nucleosome positioning sequences was hypothesised to form a less compacted 

structure that is more easily perturbed than 601 fibres, but a more compacted structure than a 

non-repetitive sequence.  I also investigated the properties of a higher-order fibre based on a 

“601” repeat with a single biologically-derived DNA sequence site with a low affinity for the 

histone octamer in the centre.  I hypothesised that this sequence might create a disruption in 

the higher-order structure of the chromatin fibre, either by not binding a histone octamer or 

by weakly positioning a nucleosome. 

6.1 The Impact of Nucleosome Positioning on Higher-order Folding 

My results of DFF digestions show that biologically-derived non-repetitive DNA sequences 

containing strong nucleosome positioning sites form nucleosome arrays with a more 

heterogeneous nucleosome repeat length than 601 fibres (Figure 3.15).  I hypothesised that 

this would impede their ability to fold into compacted higher-order structures to the same 

degree as the 601 fibre.  However, I found by sucrose gradient sedimentation of chromatin 
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fibres folded by linker histones in 80 mM NaCl that biologically-derived chromatin fibres 

with strong nucleosome positioning properties are able to achieve a similar degree of 

compaction as 601 fibres, though they appear to form more heterogeneous structures than the 

601 (Figure 4.3).  Counterintuitively, in the absence of linker histones, these fibres were 

achieved a more compacted structure than 601 fibres. 

I suggest the heterogeneous nucleosome positioning within these fibres creates a more 

flexible population of fibres which can achieve greater compaction in the absence of linker 

histones, however in the presence of linker histones they are still able to create a compacted 

higher-order structure.  Fraser et al. (2006) hypothesised that the translational and rotational 

positioning of nucleosomes within an array would affect the capacity of nucleosomes to form 

the interaction between the acidic patch of the H2A globular domain and the H4 tail which is 

intrinsic to the compaction of the chromatin fibre (Dorigo et al., 2003).  However, as the 

DNA sequences do not position nucleosomes as strongly as the “601”, it is possible that 

nucleosomes slide along the DNA strand in order to accommodate a more energetically 

favourable higher-order structure. 

Reconstituting a “601” fibre containing variable nucleosome repeat lengths could provide 

information about whether a nucleosome array with an irregular repeat can form a 

compacted higher-order chromatin structure, or whether nucleosome sliding might be 

required to achieve this, as nucleosomes would be unlikely to slide from the strongly 

positioning 147 bp “601” core sequence.  Differences in the repeat length of the higher-order 

fibre are known to have an impact on structure, with long nucleosome repeat lengths having 

a wider diameter fibre and shorter nucleosome repeat lengths adopting a two-start helical 

structure rather than a one start solenoid (Routh et al., 2008).  The majority of research into 

the structure of “601” arrays also use linker lengths increasing by 10 bp (167 bp, 187 bp, 197 

bp etc.) which is consistent with the pitch of the helical turn of DNA, but very little research 

has been performed using nucleosome repeat lengths between these, where there may be 

different rotational positioning of nucleosomes. Brouwer, T., Kaczmarczyk, A., and van 

Noort, J. (personal communication) have found by performing single-molecule force 

spectroscopy on “601” chromatin with linker lengths varying by 5 bp that this positioning 

affects the higher-order structure of the chromatin fibres, as nucleosome phasing is out of 

synchrony with DNA helical rotation.   

6.2 Relationship Between Structure and Function 

The strength and regularity of nucleosome positioning are at least partially encoded in the 

DNA sequence, and it is possible that this has an impact on genome structure and function as 
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a result of the effects on the dynamics of the higher-order chromatin fibre.  I have found by 

single-molecule force spectroscopy that biologically-derived non-601 fibres which have a 

heterogeneous nucleosome repeat length are more easily perturbed under tension than 

regular 601 chromatin (Figure 4.12).  RNA polymerase has been found to be capable of 

generating 14-25 pN of force on DNA, which is sufficient to disrupt its chromatin structure 

under these conditions.   

Nucleosome repeat length has been found to be more irregular downstream of active 

promoters than of silent promoters (Baldi et al., 2018), but it is not known if this might be 

the consequence of RNA polymerase activity, or if this creates a permissive chromatin 

environment that favours gene transcription, where chromatin can be more easily perturbed.  

When the chromatin remodelling enzyme ACF is mutated in Drosophila embryo extracts, a 

less regular nucleosome repeat is observed downstream of promoters with low expression 

levels, which are subsequently upregulated (Scacchetti et al., 2018).  This suggests that a 

regular nucleosome repeat length might contribute to a repressive chromatin state. 

My results suggest that a fibre that has heterogeneous nucleosome positioning as a result of 

its DNA sequence, and which have a lower affinity for the histone octamer than the “601” 

sequence, are more easily disrupted than “601” repeat sequences.  Strong nucleosome 

positioning sequences however, may still be considered markers of permissive environments 

for chromatin activation as strong nucleosome positioning sites may flank a nucleosome-free 

region that is important for transcriptional activation (Mavrich et al., 2008).  Strong 

nucleosome positioning sequences in a regular repetitive pattern could form a repressive 

environment for transcription, while weaker nucleosome positioning sequences that are 

easily perturbed or strong positioning sequences that establish a nucleosome free region 

could form a permissive environment for transcription. 

6.3 A Single Nucleosome Positioning Site can Cause a Disruption in 

Higher Order Chromatin Structure 

I have also shown that a single sequence with low affinity for the histone octamer in the 

centre of a compacted fibre can cause a disruption in the chromatin fibre structure that 

affects its sedimentation rate.  A significant difference is seen in the sedimentation profiles 

of 601and 601+LA chromatin in the presence of linker histones (Figure 5.7).  This may be 

caused by a missing nucleosome or by differences in the flexibility of the higher-order 

structure caused by the different central nucleosome positioning sequence. 
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This may prove a useful model to analyse the contribution of nucleosome positioning 

sequences to the higher-order chromatin structure in a controlled manner.  By cloning a 

library of nucleosome occupancy sites derived from micrococcal nuclease or DFF nuclease 

digestion of the genome into the centre of a “601” fibre, the higher-order structures formed 

by each different central sequence could be determined by sucrose gradient sedimentation.  

Sequences that position a nucleosome and fold into a compacted higher-order chromatin 

structure would be expected to sediment faster, and structures that do not position a 

nucleosome, or that cause a disruption to the higher-order chromatin fibre structure should 

sediment more slowly.  These library-containing templates could be reconstituted as one 

sample and separated by sedimentation, and so the histone:DNA ratio and reconstitution 

efficiency could be controlled more accurately than has been possible in this study.  Analysis 

of these sequences may allow the identification of sequences and features which promote or 

inhibit the complete folding of the higher-order chromatin fibre.  Comparing these results 

with the higher-order chromatin structure in vivo, for example as determined by Micro-C or 

RICC-seq may allow the identification of loci where the DNA sequence plays an important 

role in higher-order chromatin structure and loci where other factors have a dominant role in 

determining chromatin structure. 

The amount of linker histone added to 601 fibres may need to be further optimised to create 

a homogeneous population of fibre structures, as there are two distinct species of 601 fibres 

seen within the sucrose gradient.  If the same phenomenon occurs using other DNA 

templates, and the peaks seen following sucrose gradient sedimentation are insufficiently 

homogeneous to be separated, this could also confound this analysis.  At a linker 

histone:nucleosome ratio of 1.8:1, the two peaks seem to be close to converging and 

becoming one species, but this is at a surprisingly high ratio of linker histones to 

nucleosomes. 

A nucleosomal library of mononucleosomes was generated by MNase digestion of RPE1 

cells at various time points.  The average size of these mononucleosomes was 177 bp, and 

these could be cloned into the centre of a “601” template alongside a 20 bp linker sequence 

(the repeat length of RPE1 cells is 197 bp, however, suggesting that the exonuclease activity 

of the MNase has trimmed the mononucleosomes down to this length).  While the size of the 

nucleosomal library is sufficienttly complex to provide ample coverage of the genome, it 

would need to be cloned into a “601” sequence with maximum efficiency.  Therefore, this 

has not yet been trialled. 
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6.4 Is the “601” a Suitable Model to Elucidate the Structure of 

Chromatin Within Cells? 

The strongest biological nucleosome positioning sequences examined have been found to 

have at least a six-fold lower affinity for the histone octamer than artificial nucleosome 

positioning sequences including the “601” (Thåström et al., 1999).  It has been suggested 

that the genome has not evolved to highly position nucleosomes over precise sites, as the 

“601” sequence does in vitro, but allows for flexibility in nucleosome positioning to enable 

DNA sequence to act in equilibrium with other cellular factors to contributes to gene 

regulation. 

The “601” sequence may be a useful model for investigating the structure of repetitive 

regions of the genome such as centromeres and telomeres that contain satellite repeats.  

Indeed, prior to the discovery of the “601” by Lowary and Widom (1998), Luger et al. 

(1997) used α-satellite DNA sequences to reconstitute regular nucleosomes in vitro, though 

the DNA sequence was made palindromic to accommodate the symmetry of the nucleosome.  

DNA templates such as the BLG may provide a better dynamic model for euchromatin, as 

these have a variable sequence, with different repeat lengths coded into the histone affinity 

of their DNA sequence, creating a fibre which is more easily perturbed and will allow access 

to chromatin remodellers, histone modifiers and other proteins. 

6.5 Limitations 

An advantage of the “601” chromatin fibre model is that it is relatively easy to optimise 

reconstitution by salt dialysis in vitro with the use of a competitor DNA molecule.  However, 

I have found that the comparatively low affinity of biologically-derived DNA sequences for 

the histone octamer means a competitor DNA molecule will bind histone octamers at a 

similar rate to the template sequences.  A constant challenge throughout the experiments 

described in this thesis has been to identify a suitable histone:DNA ratio to use in each type 

of reconstitution. It is difficult to compare the higher-order folding of the three different 

fibres, when there is no internal control for fibre saturation. The different ratios and the 

different reconstitution strategies employed (in the presence vs. absence of competitor) also 

mean that it is difficult to directly compare different samples used between experiments in 

this thesis.  Batch-to-batch variation was also seen, even when using the same samples of 

DNA and core histones to prepare chromatin within a short space of time, for example, in 

magnetic tweezer experiments, where two different samples prepared at the same ratio 

appear to have different average numbers of nucleosomes per fibre (Figure 4.12). 
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Some variation in the histone:DNA ratio is unlikely to affect the reconstitution of the 601 

sequence in the presence of competitor, as the competitor will sequester any excess histones 

histones (Huynh et al., 2005).  In this thesis, the 601 sequence has been reconstituted in the 

presence of competitor DNA at ratios between 1.3:1 and 1.7:1, with little variation in the 

number of nucleosomes per fibre according to various assays.  However, for the BLG and the 

601/BLG and for the 601 in the absence of a competitor, further assays may be required to 

ensure that fibres are correctly saturated.  I have altered the histone:DNA ratio throughout 

my PhD (eg between SAXS experiment 1 and experiment 2, section 4.5) based on new 

results, but as the saturation may even vary slightly between batches reconstituted at the 

same histone:DNA ratio, fibre saturation may need to be confirmed on each individual 

sample.  Analytical ultracentrifugation is a technique which may provide a convincing 

measurement of the average number of nucleosomes found on each chromatin fibre that 

could be undertaken in future.  When performing experiments such as SAXS this should 

ieally be performed on the same batch of chromatin to ensure that the differences in higher-

order folding and dynamics of chromatin fibres can be attributed solely to differences in 

higher-order folding, and are not the result of over or undersaturation of chromatin fibres.   

The results of single-molecule force spectroscopy, presented in section 4.7, show that there 

is a clear difference in the unfolding dynamics of chromatin fibres based on different DNA 

sequences where the number of nucleosomes formed on each fibre can be confirmed based 

on the fibre extension at high forces (6-50pN). 

6.6 Does DNA Sequence Impact Chromatin Structure in vivo? 

Multiple studies have found a high degree of similarity between histone occupancy in vivo 

and reconstituted nucleosome arrays, however, DNA sequence is only one of many factors 

that affects nucleosome positioning in vivo and histone variants and modifications, DNA 

modification, and other proteins such as chromatin remodellers or transcription machinery 

have also been found to influence nucleosome positioning.  The role that other factors play 

in the formation of a higher-order chromatin structure is likely even more dominant, though 

the influence of the DNA sequence compared to other factors is likely to vary throughout the 

genome. 

Where the “601” sequence has been cloned into cellular DNA and its structure analysed, its 

nucleosome positioning properties have varied between studies.  When the “601” was cloned 

into the mouse c-myc gene and transfected into a human cell line, the “601” sequence (when 

placed in a forward orientation) was found to increase transcriptional pausing compared to 

other sequences at the +1 nucleosome position (Jimeno-González et al., 2015).  However, 
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when the “601” sequence was cloned into the yeast genome, it was not found to strongly 

position nucleosomes and its histone occupancy was depleted relative to the surrounding 

regions when placed in an ORF.  This suggests that nucleosome positioning is highly 

dependent on the context of the sequence and that different factors may govern histone 

occupancy and nucleosome positioning in vivo compared to in vitro. 

In vivo, the wide-ranging mechanisms for regulating gene expression likely allow chromatin 

fibres to form that are more heterogeneous than in this controlled study.  On a single DNA 

sequence, Hermans et al. (2017) found significant differences in the structure of native yeast 

chromatin using single-molecule force spectroscopy, though it is not known whether the 

higher-order structure is preserved well during the pull-down procedure. 

6.7 Advantages of Sequencable Templates for in vitro Reconstitution 

The “601” template cannot be sequenced due to its repetitive nature, which limits the types 

of analyses that can be used to study chromatin structure.  While for physical structural 

assays, such as x-ray crystallography, the regularity of the “601” is advantageous, the fact 

that it cannot be sequenced makes it impossible to use many molecular biology techniques.  

For example, Micro-C (Hsieh et al., 2015) and RICC-seq (Risca et al., 2017) may be useful 

assays to study the conformation of higher-chromatin fibres, and whether they adopt a one or 

two-start helical structure, but both depend on a sequencable DNA template.  To date, these 

assays have only been used to study higher-order nucleosome interactions in vivo on the 

tetra-nucleosome scale. 

It may be possible to generate a sequencable “601” construct, which uses different sequences 

of linker DNA (of the same or different lengths).  However, this would still not be 

sequencable in assays where the DNA is digested completely to the 147 base pair core 

particle, for example by micrococcal nuclease, necessary for Micro-C, as these particles 

would still have identical DNA sequences.  Sequence mutations within the 147 bp “601” 

core may solve this, but also may alter the strong nucleosome positioning properties of the 

“601” site. 

6.8 Conclusion 

I have shown in this thesis that while DNA sequences containing strong nucleosome 

positioning sites fold into higher-order chromatin as compact as the “601” repeat sequence, 

these fibres have a more heterogeneous structure and are more easily perturbed under 

tension.  Sequences containing a weak nucleosome positioning site however, have a 

disrupted higher-order chromatin structure which can be distinguished from a compacted 
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structure by sucrose gradient sedimentation.  I suggest that thes fibres may be an appropriate 

model to test the ability of different DNA sequences to fold into a compacted higher-order 

chromatin fibre and hope that the results presented here will provide a useful foundation for 

such further work. 
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Appendix 1 

Vector Maps of all DNA Sequence Template Constructs 

 

Figure S1. Vector maps of plasmid constructs containing 601, BLG and 601/BLG 
templates.  
Sequence inserts are highlighted in blue. A) 601 in a pUC18 vector. B) BLG in a pUC57 
vector. C) 601/BLG in a pUC57 vector. 

The vector maps of each of the DNA sequence template constructs, with restriction enzyme 

sites pertinent to this thesis, are shown in Figure S1.  The template sequences are highlighted 

in blue.  The 601/LA construct is identical to the 601, with only the central nucleosome 

positioning site altered.  The 25 nucleosome positioning sites within each fibre are located 

between each of the AvaI or PsiI restriction sites.  The sequences of eah of these sites are 

shown in Table S1.  In the 601/BLG construct, alternating BLG nucleosome positioning 

sequences (BLG1, BLG3, BLG5 etc.) are replaced with the 601 sequence, as described in 

Figure 3.1A. 
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601 GAGAAGGTCGCTGTTCAATACATGCACAGGATGTATATATCTGACA

CGTGCCTGGAGACTAGGGAGTAATCCCCTTGGCGGTTAAAACGCGG

GGGACAGCGCGTACGTGCGTTTAAGCGGTGCTAGAGCTTGCTACGA

CCAATTGAGCGGCCTCGGCACCGGGATTCTCCAGGGCGGCCGCGTA

TAGGGTCCATCCC 

BLG1 GATCCCTGGTCAGGGAACCATTAATAAGATCCCACATGCTGCAGGG

CAACAAGCCCCCAAGCTGCAACCACTGAGCTGCAACCGCTGCAGTG

CCCACAGGCCACGACCAGAGAAAGCCCACATACAGCAGGGAAGAC

CCAGCACAACCGGAAAAAGGAGTTTGGTGGAATACAGCTGTGAAG

CCGTCTGGTCCTGGA 

BLG2 TTTCTATTTCTTCCGGGTTCAGTCTTGGGAGATTGTACATGCCTAGG

AATGTGTCCGTTTCTTCTAGGTTGTCCATTTTATTGGACATGCATGG

GAGCACACAGCACCGACCAGCGAGACTCATGCTGGCTTCCTGGGGC

CAGGGCTGGGGCCCCAAGCAGCATGGCATCCTAGAGTGTGTGAAA

GCCCACTGACCC 

BLG3 GATTGGTGGCACCCAGATTTCCTAAGCTCGCTGGGGAACAGGGCGC

TTGTTTCTCCCTGGCTGACCTCCCTCCTCCCTGCATCACCCAGTTCTG

AAAGCAGAGCGGTGCTGGGGTCACAGCCTCTCGCATCTAACGCCGG

TGTCCAAACCACCCGTGCTGGTGTTCGGGGGGCTACCTATGGGGAA

GGGCTTCTCAC 

BLG4 CCTCCAGAGGCTCCAGGGAGGGATCCTTGCCCCCCCGCTGCTGCCT

CCAGCTCCTGGTGCCGCACCCTTGAGCCTGATCTTGTAGACGCCTCA

GTCTAGTCTCTGCCTCCGTGTTCACACGCCTTCTCCCCATGTCCCCT

CCGTGTCCCCGTTTTCTCTCACAAGGACACCGGACATTAGATTAGCC

CCTGTTCCAG 

BLG5 CTGCTACAGTCACCAACAGTCTCTCTGGGAAGGAAACCAGAGGCCA

GAGAGCAAGCCGGAGCTAGTTTAGGAGACCCCTGAACCTCCACCCA

AGATGCTGACCAGGCCAGCGGGCCCCCTGGAAAGACCCTACAGTTC

AGGGGGGAAGAGGGGCTGACCCGCCAGGTCCCTGCTATCAGGAGA

CATCCCCGCTATCA 

BLG6 AGGCACAAGGCACCCACAGCCTGCTGGGTACCGACGCCCATGTGG

ATTCAGCCAGGAGGCCTGTCCTGCACCCTCCCTGCTCGGGCCCCCTC

TGTGCTCAGCAACACACCCAGCACCAGCATTCCCGCTGCTCCTGAG
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GTCTGCAGGCAGCTCGCTGTAGCCTGAGCGGTGTGGAGGGAAGTGT

CCTGGGAGATTTA 

BLG7 CGTCCTGGGGTTATTATGACTCTTGTCATTGCCATTGCCATTTTTGCT

ACCCTAACTGGGCAGCAGGTGCTTGCAGAGCCCTCGATACCGACCA

GGTCCTCCCTCGGAGCTCGACCTGAACCCCATGTCACCCTTGCCCCA

GCCTGCAGAGGGTGGGTGACTGCAGAGATCCCTTCACCCAAGGCCA

CGGTCACATG 

BLG8 GGCTCTGACCTGTCCTTGTCTAAGAGGCTGACCCCGGAAGTGTTCCT

GGCACTGGCAGCCAGCCTGGACCCAGAGTCCAGACACCCACCTGTG

CCCCCGCTTCTGGGGTCTACCAGGAACCGTCTAGGCCCAGAGGGGG

ACTTCCTGCTTGGCCTTGGATGGAAGAAGGCCTCCTATTGTCCTCGT

AGAGGAAGCCA 

BLG9 GCCTGAGGATGAGCCAAGTGGGATTCCGGGAACCGCGTGGCTGGG

GGCCCAGCCCGGGCTGGCTGGCCTGCATGCCTCCTGTATAAGGCCC

CAAGCCTGCTGTCTCAGCCCTCCACTCCCTGCAGAGCTCAGAAGCA

CGACCCCAGCTGCAGCCATGAAGTGCCTCCTGCTTGCCCTGGGCCT

GGCCCTCGCCTGTG 

BLG10 GCCTGGCCCTCGCCTGTGGCGTCCAGGCCATCATCGTCACCCAGAC

CATGAAAGGCCTGGACATCCAGAAGGTTCGAGGGTGGCCGGGTGG

GTGGTGAGTTGCAGGGCGGGCAGGGGAGCTGGGCCTCAGAGACCA

AGAGAGGCTGTGACGTTGGGTTCCCATCAGTCAGCTAGGGCCACCT

GACAAATCCCCCGCT 

BLG11 GCATTCTGGAGGCTGGAAGCCCAAGATCCAGGTGTTGGCAGGGCTG

GCTTCTCCTGCGGCCGCTCTCTGGGGAGCAGACGGCCGTCTTCTCCA

TGTCCTCTGCGCGCCCTGATTTCCTCTTCCTGTGAGGCCACCAGGCC

TGCTGGAAACACGCCTGCCTGCGCAGCTTCACACGACCTTTGTCAT

CTCTTTAAAGG 

BLG12 GGATGCCCAGAGTGCCCCCCTGAGAGTGTACGTGGAGGAGCTGAA

GCCCACCCCCGAGGGCAACCTGGAGATCCTGCTGCAGAAATGGTGG

GCGTCTCTCCCCAACATGGAACCCCCACTCCCCAGGGCTGTGGACC

CCCCGGGGGGTGGGGTGCAGGAGGGACCAGGGCCCCAGGGCTGGG

GAAGAGGGCTCAGAG 
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BLG13 TGGAAACGAAGCAGTGTGGGGATAGGCCCGTGTGAAGGCTGCTGG

GAGGCAGCAGACCTGGGTCTTCGGGGCTCAAGCAGTTCCCGCTACC

AGCCCTGTCCACCCTCAGACGGGGGTCAGGGTGCAGGAGAGAGCT

GGATGGGTGTGGGGGCAGAGATGGGGACCTGAACCCCAGGGCTGC

CTTTTGGGGGTGCCTG 

BLG14 GATCGATGGTGAGTGCCGGGTCCCTGGGGGACACCCACCACCCCCG

CCCCCGGGGACTGTGGACAGGTTCAGGGGGCTGGCGTCGGGCCCTG

GGATGCTAAGGGACTGGTGGTGATGAAGACACTGCCTTGACACCTG

CTTCACTTGCCTCCCTGCCACCTGCCCGGGGCCTTGGGGCCGGTGGC

CATGGGCAGGTC 

BLG15 CGGCTGGGCGGGGCTAACCCACCAGGGTGACACCCGAGCTCTCTTT

GCTGGGGGGCGGGCGGTGCTCTGGGCCCTCAGGCTGAGCTCAGGA

GGTACCTGTGCCCTCCCAGGGGTAACCGAGAGCCGTTGCCCACTCC

AGGGGCCCAGGTGCCCCACGACCCCAGCCCGCTCCACAGCTCCTTC

ATCTCCTGGAGACA 

BLG16 CTGACTGGAGGCCCTGCACTGACTGACGCCAGGGTGCCCAGCCCAG

GGTCTCTGGCGCCATCCAGCTGCACTGGGTTTGGGTGCTGGTCCTGC

CCCCAAGCTGCCCGGACACCACAGGGCAGCCGGGGCTGCCCACTG

GCCTCGGTCAGGGTGAGCCCCAGCTGCCCCCGCTCAGGGCTTGCCC

CCGACAATGACCC 

BLG17 TCCAGAGTTGACAGTGAGGGCTTCCTGGGCCCCATGCGCCTGGCAG

TGGCAGCAGGGAAGAGGAAGCACCATTTCAGGGGTGGGGGATGCC

AGAGGCGCTCCCCACCCCGTCTTCGCCGGGTGGTGACCCCGGGGGA

GCCCCGCTGGTCGTGGAGGGTGCTGGGGGCTGACTAGCAACCCCTC

CCCCCCCGTTGGAA 

BLG18 CGCGTCCAGCCTTGAATGAGAACAAAGTCCTTGTGCTGGACACCGA

CTACAAAAAGTACCTGCTCTTCTGCATGGAAAACAGTGCTGAGCCC

GAGCAAAGCCTGGCCTGCCAGTGCCTGGGTGGGTGCCAACCCTGGC

TGCCCAGGGAGACCAGCTGCGTGGTCCTTGCTGCAACAGGGGGTGG

GGGGTGGGAGCTT 

BLG19 GTCCCTGAGTCCCGCCAGGAGAGAGTGGTCGCATACCGGGAGCCA

GTCTGCTGTGGGCCTGTGGGTGGCTGGGGACGGGGGCCAGACACAC

AGGCCGGGAGACGGGTGGGCTGCAGAACTGTGACTGGTGTGACCG
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TCGCGATGGGGCCGGTGGTCACTGAATCTAACAGCCTTTGTTACCG

GGGAGTTTCAATTAT 

BLG20 CCCAAAATAAGAACTCAGGTACAAAGCCATCTTTCAACTATCACAT

CCTGAAAACAAATGGCAGGTGACATTTTCTGTGCCGTAGCAGTCCC

ACTGGGCATTTTCAGGGCCCCTGTGCCAGGGGGGCGCGGGCATCGG

CGAGTGGAGGCTCCTGGCTGTGTCAGCCGGCCCAGGGGGAGGAAG

GGACCCGGACAGCC 

BLG21 ACCTGCAGACCCACTGCACTGCCCTGGGAGGAAGGGAGGGGAACT

AGGCCAAGGGGGAAGGGCAGGTGCTCTGGAGGGCAAGGGCAGACC

TGCAGACCACCCTGGGGAGCAGGGACTGACCCCCGTCCCTGCCCCA

TAGTCAGGACCCCGGAGGTGGACAACGAGGCCCTGGAGAAATTCG

ACAAAGCCCTCAAGGC 

BLG22 ACGTCCTGGGCACACACATGGGGTAGGGGGTCTTGGTGGGGCCTGG

GACCCCACATCAGGCCCTGGGGTCCCCCCTGTGAGAATGGCTGGAA

GCTGGGGTCCCTCCTGGCGACTGCAGAGCTGGCTGGCCGCGTGCCC

ACTCTTGTGGGGTGACCTGTGTCCTGGCCTCACACACTGACCTCCTC

CAGCTCCTTCCA 

BLG23 TCTCCTTCACCAATAAAGGCATAAACCTGTGCTCTCCCTTCTGAGTC

TTTGCTGGACGACGGGCAGGGGGTGGAGAAGTGGTGGGGAGGGAG

TCTGGCTCAGAGGATGACAGCGGGGCTGGGATCCAGGGCGTCTGCA

TCACAGTCTTGTGACAACTGGGGGCCCACACACATCACTGCGGCTC

TTTGAAACTTTCA 

BLG24 GAGAAGGGGACGACAGAGGATGAGATGGTTGGATGGCATCACCAA

CACAATGGACATGGGTTTGGGTGGACTCCAGGAGTTGGTGATGGAC

AGGGAGGCCTGGCGTGCTGCGGTTTATGGGGTCACAAAGACTGAGT

GACTGAACTGAGCTGAACTGAATGGAAATGAGGTATACAGCAAAG

TGGGGATTTTTTAGA 

BLG25 CACTTAATTACCAAAGCTGCTCCAAGAAAAAGCCCCTGTGCCTCTG

AGCTTCCCGGCCTGCAGAGGGTGGTGGGGGTAGACTGTGACCTGGG

AACACCCTCCCGCTTCAGGACTCCCGGGCCACGTGACCCACAGTCC

TGCAGACAGCCGGGTAGCTCTGCTCTTCAAGGCTCATTATCTTTAAA

AAAAACTGAGGT 
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LA GATGCTTCAGAACATCATCAAACAAATGAACATAAAACATCATTTT

TGTTTACTTGGAAGGGGAGATAAAATCCACTGAAGTGGAAATGCAT

AGCAAAGATACATACAATGAGGCAGGTATTCTGAATTCCCTGTTAG

TCTGAGGATTACAAGTGTATTTGAGCAACAGAGAGACATTTTCATC

ATTTCTAGTCTGA 

Table S1.  
DNA sequences of the 197 bp 601 repeat, each 197 bp site derived from the β-lactoglobulin 
gene used within the BLG template, and the 197 bp low affinity nucleosome positioning site 
derived from the β-lactoglobulin gene. 
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Appendix 2 

Methods of Reconstitution by Salt Dialysis 

 

Figure S2. 3D Modelled Dialysis Reconstitution Unit.  

During the two-step reconstitution dialysis used throughout this thesis (and the one-step 

reconstitution dialysis used to prepare chromatin for single-molecule force spectroscopy), 

chromatin was placed within a Slide-A-Lyzer MINI Dialysis Device with 10,000 MWCO 

(Thermo Fisher).  These caps hold up to 100µl.  Larger devices are available, but fit into 15 

or 50 ml tubes and are therefore unsuitable for gradient dialysis. 

To dialyse volumes greater that 100µl, a dialysis reconstitution unit (Figure S2) was 3D 

printed.  A dialysis membrane with 10,000 MWCO was placed between the upper and lower 

units which were then clamped together, creating 8 adjoining chambers in the lower unit and 

8 reservoirs in the upper unit.  Chromatin samples were placed in the reservoirs in the upper 

units and a salt gradient solution was pumper through the lower unit.  Chambers of different 

diameters hold 100µl or 200µl of chromatin.  This unit was printed in VeroClear (Stratasys) 

which is inert and transparent, allowing the user to see if bubbles were accumulating inside 

the chambers in the lower unit. 

While this effectively dialysed chromatin, the rate of salt dialysis was found to be slower 

than when using the Slide-A-Lyzer devices, most likely due to differences in the type of 
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membrane used.  For consistency, larger amounts of chromatin were therefore reconstituted 

in multiple Slide-A-Lyzer dialysis devices and combined following dialysis. 
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Appendix 3 

Comparison of Chicken and Xenopus Core Histone Titrations 

 

Figure S3. Titrations of Xenopus and Chicken Core Histone Octamers.  

Gel showing shift of 601 template reconstituted with chicken octamers at ratios of 1, 1.2, 
1.4, 1.6, 1.8 and 2:1 in the presence of a digested vector backbone or Xenopus octamers 
reconstituted at 0, 1.20, 1.40, 1.65, 1.90, 2.10 and 2.35:1 ratios in the presence of the 
undigested vector backbone. 

In this thesis, both recombinant Xenopus and purified chicken erythrocyte core histones were 

used to reconstitute chromatin for different experiments.  As described in section 3.5, a 1.4:1 

ratio of Xenous octamers:DNA was found to be required to saturate the 601 template in the 

presence of a competitor, and a similar ratio was found to be required to saturate a purified 

template with chicken histones.  Here, both chicken and Xenopus core histones are used to 

reconstitute the 601 template in the presence of a competitor (vector backbone competitor 

has been digested to smaller fragments when reconstituted with chicken histones, which 

would not be expected to impact these results).  As indicated by the asterisk, both of these 

templates appear to saturate at a 1.4:1 ratio, showing that there is no difference in the ability 

of each type of histone to reconstitute these templates. 
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