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Abstract

Speech recognition has been a very active area of research over the past twenty years.

Despite an evident progress, it is generally agreed by the practitioners of the field that

performance of the current speech recognition systems is rather suboptimal and new ap-

proaches are needed. The motivation behind the undertaken research is an observation

that the notion of representation of objects and concepts that once was considered to be

central in the early days of pattern recognition, has been largely marginalised by the ad-

vent of statistical approaches. As a consequence of a predominantly statistical approach

to speech recognition problem, due to the numeric, feature vector-based, nature of rep-

resentation, the classes inductively discovered from real data using decision-theoretic

techniques have little meaning outside the statistical framework. This is because deci-

sion surfaces or probability distributions are difficult to analyse linguistically. Because

of the later limitation it is doubtful that the gap between speech recognition and lin-

guistic research can be bridged by the numeric representations. This thesis investigates

an alternative, structural, approach to spoken language representation and categorisa-

tion. The approach pursued in this thesis is based on a consistent program, known as

the Evolving Transformation System (ETS), motivated by the development and clari-

fication of the concept of structural representation in pattern recognition and artificial

intelligence from both theoretical and applied points of view.

This thesis consists of two parts. In the first part of this thesis, a similarity-based

approach to structural representation of speech is presented. First, a linguistically

well-motivated structural representation of phones based on distinctive phonological

features recovered from speech is proposed. The representation consists of string tem-

plates representing phones together with a similarity measure. The set of phonological

templates together with a similarity measure defines a symbolic metric space. Repre-

sentation and ETS-inspired categorisation in the symbolic metric spaces corresponding

to the phonological structural representation are then investigated by constructing ap-

propriate symbolic space classifiers and evaluating them on a standard corpus of read

speech. In addition, similarity-based isometric transition from phonological symbolic

metric spaces to the corresponding non-Euclidean vector spaces is investigated.

Second part of this thesis deals with the formal approach to structural representation

of spoken language. Unlike the approach adopted in the first part of this thesis, the

representation developed in the second part is based on the mathematical language

of the ETS formalism. This formalism has been specifically developed for structural

modelling of dynamic processes. In particular, it allows the representation of both

objects and classes in a uniform event-based hierarchical framework. In this thesis, the

latter property of the formalism allows the adoption of a more physiologically-concrete
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approach to structural representation. The proposed representation is based on gestural

structures and encapsulates speech processes at the articulatory level. Algorithms for

deriving the articulatory structures from the data are presented and evaluated.
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Chapter 1

Introduction

The last two decades have seen significant advances in human-machine interfaces. Speech

and language technology (speech recognition, in particular) is among several areas which

have benefited enormously from these advances (Young, 2001). Numerous prototype

systems developed within the research community are now extensively used both in

commercial environments and are available to end-users (Greenberg, 2001). Among

many reasons given for these advances (like technological improvements in hardware

which led to the increase in the computational resources available for modelling), one of

the most crucial factors to us seems to be the following: these impressive advances were

made possible by the introduction of formally rigorous modelling framework (based on

the advances in mathematical statistics, as we shall see in Section 1.2). This frame-

work, on the one hand, is flexible enough to accommodate the variety of research models

(incorporating recent results from the field of machine learning) and, on the other, ro-

bust and computationally efficient enough to allow for extensive experimentation and

development of practical systems for commercial use.

Despite the evident progress in speech recognition, many researchers have argued

that the performance of the state-of-the-art models, which emerged in the last two

decades of the twentieth century, have reached a “local optimum” (the original goal was

the “global optimum” defined as machine performance indistinguishable from human

performance on natural speech) (Bourlard et al., 1996; Deng, 1998; Deng et al., 1997;

Ostendorf, 1999; Young, 2001). It was argued that in order to rectify this situation, the

current approaches to speech recognition need tighter integration with the methods and

theories elaborated over the years by the linguistic community. Sadly enough, these re-

sults were often neglected. In recent years, alternative approaches to speech recognition,

which are the result of a more careful development, have been gradually crystallising

(e.g. Bilmes, 2003; Deng, 1998; Glass, 2003; King et al., 2000; Livescu et al., 2003) and

are very promising. Together with the researchers who work on alternative approaches

1



Chapter 1. Introduction 2

to speech modelling and recognition, the author believes that new approaches are defi-

nitely desirable. The approach pursued in this thesis is the result of a consistent program

aimed at research into formal approaches to structural representation of speech.

Although the traditional means of studying speech phenomena in linguistics have

been symbolic (structural), the approaches to pattern representation in speech recog-

nition are predominantly numeric. The alternative, structural, means of pattern repre-

sentation have, however, received little attention. In our view, one of the main reasons

for this situation is the apparent lack of suitable structural frameworks possessing the

necessary formal power to accommodate the class representation of complex linguis-

tic phenomena (e.g. phonemes and syllables). Sadly enough, this state of affairs also

appears to apply to many other areas of pattern recognition (Pavlidis, 2003). It is

hypothesised that the appearance of such a systematic analytical framework and the

development of appropriate representations within it could potentially help in bridg-

ing the gap between, in particular, speech recognition and linguistic research. What is

the basis for such a hypothesis? The concept of class is absolutely pervasive in many

areas of science, including linguistics. Hence, it is reasonable to assume that spoken

language modelling and recognition can benefit from models that allow the derivation

of linguistically sound class representations from the data.

Before proceeding with the exposition into the proposed approach, in Section 1.1 we

open with the brief description of a more general research area — pattern recognition.

The reason for doing this is simple. On the one hand, modern speech recognition (among

with other specialised fields, like optical character recognition) is partially subsumed by

the field of pattern recognition. On the other hand, some of the fundamental theoretical

ideas that appeared in the general pattern recognition literature have added to the

motivation of research presented in this thesis. In Section 1.2, we overview several

approaches to speech modelling practiced in modern day speech recognition. A special

emphasis is placed on numeric and structural approaches to representation in speech

recognition, since these approaches generally reflect the current situation in pattern

recognition. Motivations behind the research undertaken in this thesis are described in

Section 1.3. The major research objectives are set in Section 1.4. This chapter concludes

with a description of the thesis structure (Section 1.5) and a list of current publications

which have resulted from work on this thesis (Section 1.6).

1.1 Pattern Recognition: A Brief Overview

Pattern recognition refers to the ability of humans to perceive regularities in the obser-

vations in some environment. A pattern is generally viewed as an object which belongs
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to some class. A class, in turn, is seen as a concept of a collection of objects. Accord-

ing to Watanabe (1985), the latter definition is, generally, in agreement with Platonic

philosophy, where all similar objects are but the imperfect material realisations of an

“ideal” object (concept), which exists in some alternative reality and cannot be directly

comprehended by our senses. In reality, the humans do not need an “ideal” object to

form an idea about classes. In order to form an idea about some class in a human

mind, it actually suffices to be presented with a limited set of related objects which

represent that class (this is in line with Aristotelian philosophy according to Watanabe,

1985, Section 4.4). In general, pattern recognition refers to the latter process: having

been shown a few positive samples (objects “belonging” to a class), and perhaps a few

negative ones (objects from a different class), one is able to tell if a new object (whose

exact classification is unknown) belongs to this class. In this sense, pattern recognition

forms the foundation of categorisation in humans (where the latter is understood as for-

mation of the categorised knowledge). Moreover, it has been argued by some scientists

that the mechanisms of perception (especially inductive inference, which is inferring a

generality from a few concrete classes) and pattern recognition are, in fact, identical

(e.g. Goertzel, 1993, Chapter 9). The latter view was succinctly summarised in 1956 by

Schrödinger (2003, p. 96):

“A single experience that is never to repeat itself is biologically irrelevant.
Biological value lies only in learning the suitable reaction to a situation that
offers itself again and again, in many cases periodically, and always requires
the same response...”

1.1.1 The Fundamental Tasks of Pattern Recognition

The fundamental tasks encompassed by any pattern recognition system are the follow-

ing (Duin and Pȩkalska, 2005; Duin et al., 2004; Goldfarb, 2004):

Representation The first issue which needs to be addressed when modelling some

real world phenomena (objects, processes and so on) is the issue of representation.

The framework used for representation imposes certain (formal) restrictions on the

form of the objects being modelled, hence representations in pattern recognition

are only a simplified approximation of the corresponding phenomena. The degree

of “faithfulness” of the representation depends, to a large extent, on the modelling

power of the corresponding formal framework. An additional consideration is

the incorporation of a priori domain-specific knowledge into the representation.

Fundamental issues involved in the representation are treated in more detail in

Section 1.1.2. Once the representation of the objects is obtained, the next step is

generalisation.
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Generalisation Traditionally, generalisation received the most attention in pattern

recognition research. This is entirely justified by the absolutely crucial role played

by this step in human perception. Generalisation encompasses two fundamentally

related tasks: learning and recognition. Learning is commonly understood as an

inductive process of constructing a representation of a set of classes based on a

limited training set of objects representing these classes. Recognition, on the other

hand, is, in theory1, a deductive process in which the previously unseen objects

are related to the representation of the concepts of the classes derived during the

learning stage, rather than to the representation of the objects in the training set.

Hence, it is important to make a distinction between the representation of objects

and representation of classes. Several important points on the relation between

the generalisation and the classes are presented in Section 1.1.3 (for statistical

pattern recognition) and Section 1.1.4 (for structural pattern recognition).

1.1.2 Representations in Pattern Recognition

As mentioned earlier, the representation of some phenomenon is inextricably linked

to the formal properties of the corresponding modelling framework (space). In modern

pattern recognition, one usually distinguishes between the two approaches to modelling:

numeric and symbolic2. The latter two types of representation delineate the two rather

broad, and historically not very related, approaches to pattern recognition.

1.1.2.1 Numeric Representations

Numeric representations lie at the foundation of statistical pattern recognition (Duda

et al., 2001; Mitchel, 1997). The adjective “statistical” refers to the fact that this area

of pattern recognition was motivated by (and, in fact, was derived from) mathematical

statistics. In statistical pattern recognition, the representational spaces correspond to

vector spaces. Historically, the overwhelming majority of the state-of-the-art approaches

to statistical pattern recognition employ Euclidean vector spaces for modelling. A

numeric representation of an object in a statistical pattern recognition framework is

essentially an embedding of the data into a Euclidean space. In other words, the object

is represented (encoded) as a feature vector. This process is sometimes called feature

selection.
1In practice, it is sometimes possible to directly relate the previously unseen objects to the classes

based on the training set objects.
2From this point onwards we will often refer to symbolic pattern recognition as structural pattern

recognition. This is not to be confused with the structural models often employed in statistical (i.e.
numeric) pattern recognition, such as graphical models (Zweig et al., 2002).
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It is generally agreed in statistical pattern recognition that the choice of features is a

highly non-trivial task and no universally accepted procedures for feature selection ex-

ist. One of the main reasons for this is because the encoding of the objects into vectors

requires domain-specific knowledge. In some areas of pattern recognition, the nature of

the “object” is static, in others dynamic. In the latter case, the object refers to some dy-

namic process. Dynamic processes can only be approximated by sampling, which allows

representation of the process by the sequence of feature vectors, each corresponding to

an instantaneous (snapshot) representation of a process. In online handwriting recog-

nition, for instance, one often encodes both the spatial (local geometry) and temporal

(movement of a hand) information contained in strokes (Lui et al., 2003). The letters

and words are then encoded as sequences of the above vectors.

1.1.2.2 Structural Representations

The non-numeric, structural, representations are the subject of study within the area of

structural pattern recognition (Bunke and Sanfeliu, 1990; Fu, 1982). Structural repre-

sentations are more advanced than their numeric counterparts in terms of the modelling

spaces they offer. Unlike numeric representations, which are limited to vector spaces,

structural representations can be based on a wide variety of discrete algebraic structures

— strings, trees, graphs and so on. They are better suited to model the morphological

makeup of the corresponding objects and events. A very informal, but intuitive, ob-

servation will perhaps help to clarify this point: structural pattern recognition replaces

a rigid encoding in terms of vector (or sequence thereof) with a discrete structure of

an arbitrarily chosen complexity that preserves the “original” part/whole relationship

describing the inter-dependencies between atomic constituents of an object.

It is not surprising that structural representations in pattern recognition predate the

numeric ones because from the early days of pattern recognition it was assumed that

there is more to the objects and events than just numeric features. In his book, Watan-

abe (1985) mentions the earliest (and surprisingly elegant) structural approaches: the

cursive handwriting representation by Eden (1962) and the chromosome representation

by Ledley et al. (1966). Among the most popular modern structural representations

are string-based representations of molecular sequences in computational biology (Gus-

field, 1997). We conclude by noting that the structural representations require an even

greater domain-specific knowledge to properly encode the structural richness of the

corresponding phenomenon.
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1.1.3 Numeric Class Representation and Generalisation

Statistical approaches to pattern recognition use decision-theoretic methods in a feature

vector space. Decision-theoretic methods were extensively studied in the early days of

cybernetics, pattern recognition and mathematical statistics. The numerous theoretical

and practical advances in these fields led to the emergence of several overlapping fields

of activity — computational learning theory (Devroye et al., 1996; Vapnik, 1998), ma-

chine learning (Mitchel, 1997) and neural networks (Bishop, 1995) among the others.

See Kulkarni and Lugosi (1998) for a rather involved, but excellent, overview presented

from the point of view of computational learning theory.

In statistical approaches, the objects and events in the environment are usually

encoded as real-valued feature vectors. Let d be the dimension of the feature vector

x ∈ Rd. In this case, the representation of a real world object engendered by x is a

point in a d-dimensional vector space. Informally, each such vector can be seen as a

result of d instantaneous observations of the corresponding object in the environment.

When defining generalisation, we mentioned that it is essentially a two stage procedure

consisting of learning and recognition steps. The goal of the learning (or training)

stage is to infer a representation of classes. In statistical language, this is equivalent to

determining the probability distribution of points x of each class in the representation

space Rd. Hence, the representation of a class is given by some probability distribution

in a vector space. The goal of the recognition (or classification) stage is to determine

to which of its distributions the new vector should belong.

Adopting statistical notation, let random vector X denote the feature vectors which

are “observables” of the process. The outcome of X is a concrete object representa-

tion x, mentioned above. Similarly, let Y be a random variable engendering some class

representation y. The goal of the training step is to determine the class-conditional

probability P (X = x|Y = y), which, geometrically, is a probability density for points

from class y being at position x. Conversely, the classification step is guided by the

inverse conditional probability P (Y = y|X = x) which can be interpreted as probability

of the position x in the vector representation space Rd belonging to class y. In what

follows, we briefly discuss the training and classification stages of the statistical pattern

recognition framework. We show that class representation in this framework has two

related interpretations: probabilistic and geometrical. In the first case, the class repre-

sentation can be seen as a statistical distribution of points in Rd representing the class.

In the second case, the class representation is a decision surface in Rd separating the re-

gion corresponding to the points representing a given class from the points representing

all other classes.
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1.1.3.1 Deriving Class Representation in a Vector Space

The usual dichotomy in pattern recognition consists of supervised and unsupervised

modes of learning. Here we discuss the supervised mode, where the class membership

of object in the training set is known. Unsupervised learning, such as clustering, is

outside the scope of this discussion (the interested reader is referred to an overview

by Jain et al., 1999).

Let n be the number of classes in the environment. In other words, the outcome

y of a random variable Y is a member of a set of n elements. Assume that y is fixed.

To discuss the probability distribution of the points representing y, one must assume

the existence of an infinite number of such points. In reality, to each class y there

corresponds only a finite number of object representations from a training set. To

simplify the discussion, we assume that the class-conditional probability only depends

on the object representations belonging to y. This assumption allows the estimation of

class-conditional distributions separately for each class. Hence, for the training stage,

we fix X to denote the random vector representing a finite number m of training samples

for y. Since y is fixed, we will refer to the class-conditional probability as simply P (X|y).

In general, there are two approaches to estimation of the class-conditional distribution

— parametric and nonparametric (Devroye et al., 1996; Watanabe, 1985).

In parametric approach, one usually assumes that the functional form f of the

distribution P (X|y) is known and the only unknown element in the specification of

distribution is the parameter set θ. In other words, the probability of obtaining m

feature vectors X assuming the probability density P (X|θ), given by configuration

f(X; θ), is

P (X|y) = P (X|θ) = f(X; θ) .

Hence, the goal in parametric estimation is the search for parameters θ given the data

X. The latter goal can be stated using the Bayes theorem as

P (θ|X) =
P (X|θ)P (θ)

P (X)
,

where P (θ) is a prior probability of the parameter set and P (X) is simply a normali-

sation term. The optimal parameter set θ̂ is then given by the following maximisation

θ̂ = arg max
θ

P (θ|X) = arg max
θ

P (X|θ)P (θ) . (1.1)

The last term in the equation above is known as the Bayes estimate (sometimes also

called maximum a posteriori estimate), which is logically the best estimate of the pa-

rameters one can hope to obtain (Devroye et al., 1996; Kulkarni and Lugosi, 1998). An

important property of the Bayes estimate is that it makes it absolutely explicit that in
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order to obtain an analytically best estimate of the parametric configuration, one needs

an additional a priori knowledge expressed by P (θ). Moreover, this prior knowledge

is logically independent of the empirical evidence, expressed by the training data X.

Thus, the sole assumption of the functional form f of the distribution is not enough.

In practice, one can only make assumptions about P (θ) and hope that the estimation

process using the resulting approximation will attain a set of parameters “close” enough

to the ideal Bayes estimate.

Comprehensive review of various parametric estimation strategies is outside the

scope of this thesis. In the remaining discussion we will only mention what is perhaps

(historically) one of the most widely used estimates — the maximum likelihood esti-

mate (Aldrich, 1997). One of the possible ways of obtaining a maximum likelihood

estimate is to assume a uniform prior on the distribution P (θ). In other words, one

fixes the latter term to some constant so that it becomes independent of θ and can

be dropped from the estimation process in equation (1.1). This leads to the following

optimal (in terms of maximum likelihood) parameter set

θ̂ML = arg max
θ

P (X|θ) . (1.2)

Having fixed a functional form of P (X|θ), estimation of the parameters now becomes

possible, as demonstrated by the following example:

Example 1.1 (Maximum Likelihood Estimation). One of the most popular distribu-

tions for representing continuous data is the Gaussian multivariate distribution. In what

follows, we give a very brief and informal example of estimating this distribution using

a maximum likelihood approach.

Assume that the occurrences of the feature vectors in the training set, engendered by

the random vector X, are independent and identically distributed. In addition, assume

that the vectors are drawn from the multivariate Gaussian distribution given by (Deller

et al., 1993)

P (X|θ) = f(X |µ, Σ) =
1√

(2π)m|Σ|
exp
(
−1

2
(x− µ)T Σ−1(x− µ)

)
. (1.3)

Without going into much detail (for details on this method see Aldrich, 1997), the

optimal set of parameters θ̂, corresponding to the maximisation of equation (1.3), is

obtained as follows. First, a log-likelihood function

L(µ, Σ) = log f
(
X; µ, Σ

)
is defined. Then, one takes partial derivatives of L with respect to µ and Σ and equates

them to zero. Solving the latter system of two equations yields the optimal (in terms
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of maximum likelihood principle) parameter configuration, given by

θ̂ =
(
µ̂, Σ̂

)
=
(
(1/N)

m∑
i=1

xi , (1/N)
m∑

i=1

(xi − µ)(xi − µ)T
)
,

where the µ̂ corresponds to the mean feature vector of the training set and Σ̂ to its

covariance matrix. B

Finally, we very briefly mention an alternative area of activity within statistical

pattern recognition — nonparametric estimation. Unlike parametric estimation tech-

niques, nonparametric estimation techniques make no assumptions about the type of

class-conditional distribution P (X|y). The nonparametric estimation is essentially con-

cerned with construction of the probability distribution which fits the training data.

This has been a vast and fascinating area of statistical pattern recognition since the

earliest days. Perhaps the first and the most popular nonparametric estimators were

the histograms and decision trees. The interested reader is referred to work by Kulkarni

and Lugosi (1998) for an overview of nonparametric methods.

1.1.3.2 Classification in Vector Space

Assume the modelling environment consists of n classes. In other words, the class

random variable Y has n outcomes, denoted yi, 1 ≤ i ≤ n. One is also given a set D

of k previously labelled observations, represented by feature vectors xj , 1 ≤ j ≤ k. In

what follows, the counter i ranges over a set of classes
{
yi

}
, whereas the counter j over

the training set objects
{
xj

}
. The goal of the classification process is the construction

of a decision function (or classifier)

DD(x) = yl . (1.4)

The above equation indicates that a new object representation x should be assigned to

a class yl on the basis of a training set D, where the optimal selection is the class with

a maximum a posteriori probability

P (yl|x) = max
i

P (yi|x) . (1.5)

The above equation can be specified in slightly more detail. Given class-conditional

probability P (x|yi) one can obtain the above a posteriori probability

P (yi|x) =
P (x|yi)P (yi)

P (x)

using Bayes theorem. The only additional information which is required is the normal-

isation factor P (x), such that
∑

i P (yi|x) = 1, and the prior probability of the class

P (yi). Substituting the above equation in (1.5) we obtain

P (yl|x) = max
i

P (x|yi)P (yi) . (1.6)
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The above equation, known as Bayes decision rule, similar to the Bayesian estimate from

the previous section, is the best decision that can be taken given that class-conditional

and a priori distributions are completely specified.

In reality, one encounters problems with the accurate specification of the prior class

probabilities and the nature of the statistical distributions of the training data D. The

most likely cause for this is the sparsity of the training sample and insufficient prior

information about the classes at hand. Hence, one hopes to construct classifiers which

somehow mimic the optimal behaviour of the probabilistic Bayesian decision rule.

In the previous section, a statistical estimation approach was adopted for estimating

the per-class conditional probabilities P (x|yi). If class-conditional density estimate and

the estimate about the prior are given, the estimate of P (yl|x) can be obtained using

the equation (1.6). This is demonstrated by the following simplified example:

Example 1.2 (Maximum Likelihood Gaussian Classifier). Assume a uniform prior

on all the classes. In other words, for each of the m classes yi in the environment,

P (yi) = 1
m . Given this assumption, the term representing the prior vanishes from

maximisation in equation (1.6). Also assume that the functional form of the distribution

P (x|yi) is a multivariate normal density. In this case, the maximum likelihood estimate

of P (x|yi) is given by

P (x|yi) = P (x|θ̂i) = N (x; µ̂i, Σ̂i) ,

where the per-class optimal parameter set θ̂i was derived in Example 1.1. Substituting

the above equation in equation (1.6) we obtain the following classifier:

P (yl|x) = max
i
N (x; µ̂i, Σ̂i) ,

where the chosen class yl corresponds to the parameter set θ̂l = (µ̂l, Σ̂l). B

When discussing nonparametric estimation methods in the last section, we men-

tioned the methods which attempt to construct a probability distribution whose type

and parameters are induced by the training data (e.g. histograms). Overall, these ap-

proaches fall, to a certain extent, within the Bayesian framework because they involve

estimation of probability distributions and their consequent use in the classifiers.

The parametric and nonparametric approaches, which attempt to model the den-

sities directly, are often criticised for making quite unrealistic assumptions about the

distributions (Watanabe, 1985, Section 9.1). In particular, it has been argued that for

several tasks where the training sets are quite limited, the distributions are, in fact,

not an appropriate way of modelling, since they assume existence of an infinite train-

ing sample for each of the classes. An alternative to density-based modelling is what

is sometimes called a geometric, or curve fitting, approach (Jain et al., 1999). In the
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geometric approach, decision surfaces that separate the class distributions of points in

Rd are constructed directly from the training data. These decision surfaces characterise

the decision function DD(x) from equation (1.4) on p. 9. The parameters of the decision

surfaces are estimated during the supervised learning stage by optimising a certain error

criterion over a training set. There are various optimisation criteria available (such as

mean squared error between the current classifier output and the training target value),

usually adopted from the area of nonlinear functional optimisation. Perhaps the most

widely known are the two-class classifiers, such as Fisher’s discriminant, single-layer per-

ceptron, support vector classifiers, and others (Jain et al., 1999; Kulkarni and Lugosi,

1998).

We conclude the discussion with one important observation. Statistical approaches

employing the construction of decision surfaces are related to the density-estimation

approaches for the following reason: a good fit for a decision function for some class

y amounts to geometrically “encoding” the region of the maximum a posteriori class-

conditional probability P (x|y)P (y). In particular, it has been shown that Bayes clas-

sifiers (equation (1.6)) can in theory be approximated arbitrarily well by multi-layered

perceptrons (cf. Kulkarni and Lugosi, 1998, Section VI).

1.1.4 Structural Class Representation and Generalisation

Structural approaches to generalisation can be divided into two groups: syntactic and

metric (or topological) approaches.

1.1.4.1 Syntactic Approach

In syntactic approaches (Fu, 1982), one assumes the existence of a finite set of basic

structures, called atoms, which can combine together using the composition rules spec-

ifying a priori domain-specific interrelationships between these atoms. The choice of

atoms is important because on the one hand, they must possess the structure that can

realistically be derived from the data and on the other, be rich enough to allow for

encoding of complex objects and events using the composition rules.

When specifying syntactic representation and generalisation procedures, one usu-

ally draws an analogy between the structure to be represented and the theory of formal

languages. In syntactic pattern recognition one assumes that any collection of observed

object representations for a given class constitutes a realisation, or language, generated

from some finite class description. One of the forms of class description is called gram-

mar. A grammar is a rewriting system consisting of a finite set of atoms together with

a finite set of composition rules. The syntactic approach is very appealing because of

the following generative property: using a set of composition rules one can, in theory,
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generate representations of an infinite number of objects belonging to a class.

In the early days of structural pattern recognition, it was believed that the notion of

grammaticality holds the key to understanding the mechanisms of structural generalisa-

tion (see Tanaka, 1995). The notion of grammaticality originally appeared in linguistics

due to Chomsky (1957) who introduced syntactic grammars as a compact mechanism

for describing and generating grammatically correct sentences of natural language. This

result has spawned the syntactic field of pattern recognition, where the notion of gram-

maticality can informally be stated as follows: given a grammar Gi describing a certain

class, an object is said to belong to this class if it can be generated (or parsed) by

that grammar. Objects belonging to other classes will not be parsed by Gi because

they are “ungrammatical”, i.e. outside the scope of a class description specified by a

grammar. The task of generalisation within a syntactic pattern recognition approach

is therefore an inference of a compact class description for a language which represents

the training set. This task is often referred to as grammatical inference, where the goal

if to infer a grammar. Alternative means of descriptions are possible if there a priori

assumptions about the type of the language are made. For instance, if one is dealing

with strings as object representation and the language L is assumed to be regular, the

goal of generalisation is to infer a finite state automaton that represents L during the

learning stage and then use this automaton to decide whether unknown strings belong

to L during the classification stage. ,

The in-depth exploration of syntactic techniques is beyond the scope of this thesis.

The interested reader may want to consult several chapters dealing with the syntactic

approach in Bunke and Sanfeliu (1990). The study of grammars and automata for

various classes of languages forms a vast field within the field of symbolic computation.

Depending on the structure of the object representation, there are various theoretical

results and techniques at one’s disposal. Historically, the most studied structures are

strings. For this type of structure, a vast array of formal results and tools, dealing

with the representation and generalisation of the string languages, emerged over the

years (e.g. Denecke and Wismath, 2002; Parkes, 2002; Sudkamp, 1997). The formal

results (and as a consequence, applications) for other types of more complex structures

(trees and graphs) are in a less mature state. For the current state-of-the-art in tree

languages and automata (for which an excellent textbook by Gécseg and Steinby, 1984

is available), see work by Droste et al. (2005); Engelfriet et al. (2002); Fülöp and Vögler

(1998, 2004). Similarly, the theory of graph grammars, languages and automata is still

very much in development (some of the important results can be found in Ehrig et al.,

1999 and overview of recent state-of-the-art in Brandenburg and Skodinis, 2005).

To close this section, above we showed that the result of syntactic generalisation is
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class representation which is essentially a grammar (or equivalent form of description,

like finite state automaton). The type and formal properties of this class description

are heavily dependent on the underlying symbolic modelling space, which is induced by

the type of the object representation (strings, trees, graphs, etc.).

1.1.4.2 Topological Approach

In the general discussion concerning the concept of class it was mentioned that a class

can be viewed as a collection (set) of object representations which are somehow related

to each other. In topological approaches, this relation is more often than not expressed

via the numeric measure of similarity. The latter notion appears so fundamental in

pattern recognition that many researchers consider it to be the only scientific reality.

The rather philosophically involved, and general in nature, arguments for primacy of a

notion of similarity over that of classes and objects, definitely lie outside the scope of

this discussion. The interested reader may want to consult work by proponents of this

view, e.g. Edelman (1998; 1999). There is no doubt as to the fundamental role of the

notion of similarity and nowhere is this role more evident than in the topological (i.e.

similarity-based) approach to structural pattern recognition. The two mutually related

and inseparable cornerstones of the latter approach are the object representation and

the representation-specific similarity measure.

Let O be the set of object representations. One can define a special function fO

(whose properties are not discussed at this point), which given any two objects in O

generates some numeric indication of how morphologically similar these objects are. In

the topological approach, one usually assumes that the modelling environment is given

by a pair M , informally called a modelling space, consisting of the above set of objects O

together with a similarity measure fO. The notion of a modelling space is conceptually

related to the notion of a metric space which is absolutely pervasive in mathematics.

Similar to the syntactic approach, one assumes the existence (in the representation)

of a set of basic and yet distinctive morphological structures (atoms) which describe

the structural inter-dependencies in the representation of different objects. The main

difference between the two approaches, however, lies in the requirement that the choice

of structural inter-dependencies in the data O induce the similarity measure fO. In

other words, instead of treating the objects O in the representation as productions of

some grammar, as it is done in purely syntactic approaches, in topological approach the

objects are treated as “points” in some abstract symbolic space the properties of which

are described by the similarity measure. Given the latter observation, one can hope

to treat the problem of generalisation in a symbolic space similarly to the vector-space

scenarios. This expectation turned out to be näive, as we shall see below.
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It should not come as a surprise that generalisation in abstract symbolic spaces is

a very non-trivial task. The difficulties arise from the inherent structural complexity of

the representation. In theory, one can hope to derive the “symbolic” analogues of the

well-established analytical notions available in vector spaces. For instance, given some

symbolic space (O, fO), one can attempt to define the mean of set O, which is an object,

not belonging to O but of a similar structure, with the same distance (or similarity) to

all elements in O. This is a complex task, obviously dependent on the complexity of

representation O, because it involves construction of a new object (e.g. string, graph,

tree). In order to appreciate the dimensions of the difficulty (both analytical and com-

putational) the reader is referred to some works dealing with the generalised notion of a

mean for the case of strings (Nicolas and Rivals, 2003) and graphs (Jiang et al., 2000),

which are NP-hard problems for which various approximations were proposed recently.

Despite the obvious difficulties, the topological approach to structural pattern recog-

nition is very popular, especially in those applications where modelling the structure

of the domain is of paramount importance (e.g. bioinformatics Gusfield, 1997; Sankoff

and Kruskal, 1983 and vision Edelman, 1999). The most fundamental question in these

approaches is the choice of a similarity measure, which is heavily dependent on the

structure of object representation. The structure of strings, being by far the most pop-

ular structural representation in pattern recognition, allows for several efficient ways

of introducing the similarity, the most popular of which is the edit-distance proposed

by Levenshtein (1966). Recently there has been a resurgence of interest in similar-

ity measures defined on more complex structures, like graphs (Bunke and Jiang, 2000;

Bunke and Shearer, 1998). The next fundamental issue is the issue of generalisation

in the symbolic space M , mentioned above. In the topological approach, the class is

usually represented as a small collection of prototype objects. During the classification

stage, new objects are compared (by matching) to the prototype objects by using a pre-

defined similarity measure. The classifier then assigns an unknown object to the class

which contains the highest number of nearest (in terms of similarity) prototypes. The

above classification rule, known as k Nearest Neighbours, is perhaps the most popular

in structural pattern recognition. Its popularity stems from the fact that it is indepen-

dent of object representation and, given a reasonable similarity measure, performs well

in many different structural domains.

The above approach to representing classes as the prototypes is rather simplistic.

Unfortunately, there is no general consensus in the pattern recognition community about

the alternative ways of generalisation in the structural domain, which avoid the short-

comings of the syntactic approach (summarised by Tanaka, 1995), and yet utilise some

of its most attractive features and realistic assumptions (e.g. see comments in Aiserman,
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1969; Bunke et al., 2001; Duin and Pȩkalska, 2005; Duin et al., 2004; Goldfarb, 1990,

1992). We will return to the latter point in Section 1.3.

1.2 Representations in Speech Modelling and Recognition

At the beginning of this chapter, we mentioned that most of the advances in speech

recognition research during the last two decades are often attributed to a flexible for-

mulation of the speech recognition problem within a statistical pattern recognition set-

ting (Jelinek, 1997; Young, 2001). In Section 1.2.1 we give a brief overview of statistical

framework within which most of modern speech recognition research is conducted.

Similar to the analysis of the representations in a more general pattern recognition

setting, described earlier in Section 1.1.2, in this section we introduce representations

which are specifically used in speech recognition and modelling. As before, we consider

two types of modelling spaces — numeric (Section 1.2.2) and structural (Section 1.2.3).

The latter choice was motivated by the desire to compare and contrast the current

speech recognition models with the models and formalisms we covered during the more

general discussion in the previous section.

1.2.1 Speech Recognition Problem: An Overview

Speech recognition problem can be elegantly expressed within the statistical framework.

Let O = oT
1 be a sequence of acoustic observations. Without going into much detail

about particulars of extracting these observations from the speech signal, at this point it

suffices to mention that the above observations numerically encode in various ways the

corresponding portion of the speech signal. The task of a obtaining observations from

the speech signal is performed by a speech signal processing front-end of a recogniser,

which, generally speaking, is not part of the statistical framework. In addition to the

acoustic (physical) information described by O, let W ′ = wN
1 be the sequence of words

communicated by the speaker. The utterance W ′ corresponds to the acoustic record O.

The goal of a speech recogniser is the find the most likely word sequence Ŵ given the

acoustic data O. If the recogniser does not make a mistake, Ŵ will coincide with the

word communicated sequence W ′.

Within the probabilistic framework, which we briefly discussed in Section 1.1.3, we

can formulate the latter statement as follows: Let
{
W
}

be a finite set of allowable hy-

potheses produced by the recogniser. The probability of each hypothesis W given the

data can be expressed as posterior probability P (W |O). Within the Bayesian frame-

work, the most likely hypothesis

Ŵ = arg max
W

P (W |O) = arg max
W

P (O|W )P (W )
P (O)

= arg max
W

P (O|W )P (W ) (1.7)
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is then chosen on the basis of maximum posterior probability. The above equation is

sometimes referred to as the fundamental equation of speech recognition (Deng, 1998).

The terms P (O|W ) and P (W ) in the last term of the above equation give rise to two

major components in the statistical speech recognition framework.

1.2.1.1 Acoustic Modelling

The first major component of a speech recognition system is responsible for produc-

ing accurate estimates for P (O|W ), which is a probability of a certain word sequence

generating a sequence of acoustic observations. These estimates are supplied by an

acoustic modelling component. The acoustic model is an absolutely crucial component

of any speech recogniser in that it tries to probabilistically bridge the gap between a

sequence of linguistic signs, represented by W and the corresponding acoustic surface

realisations O. This is usually accomplished by assuming the existence of an interme-

diate discrete-valued sequence of linguistic sub-word (or sub-lexical) models (or units)

M , using which, the acoustic probability P (O|W ) can be factored as

P (O|W ) =
∑
M

P (O|M)P (M |W ) , (1.8)

where the probability is taken over all the sequences of sub-word models M . First, these

models specify, according to probability P (M |W ), how words and words sequences can

be expressed in terms of a particular linguistic organisation of a sub-word sequence

M . Second, these models also provide information, in terms of probability P (O|M),

about how likely a particular sequence M is to produce surface acoustic observations O.

The latter term P (O|M) in the above equation (1.8) is often referred to as an interface

model, where M provides the missing acoustic-linguistic link (e.g. see Deng et al., 1997).

One of the simplest approaches to acoustic modelling is often referred to as beads-on-

a-string (Ostendorf, 1999; Young, 2001). In this approach, a sequence M of K models

corresponding to W is organised by linearly concatenating all the constituent sub-lexical

acoustic models. The sub-lexical models can take many possible forms (phones, context-

dependent phones, syllables and so on). The sequence (or more typically — sequences,

in case a word has multiple pronunciations) of models for each particular word w is

guided by the pronunciation lexicon.

The most widely used acoustic models are the Hidden Markov Models (HMMs).

HMMs are essentially characterised by two random variables. The discrete sequence

of K sub-word models needed to obtain W is modelled by an unobserved, and thus

“hidden”, discrete random variable S. This variable is called a state variable, whose

outcome (state) st at each time instance t uniquely identifies the model mi in a sequence.
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The identification can be accomplished by assigning a label to each state, designating

a model this state belongs to. Moreover, the state variable is assumed to possess the

following property (called Markov property of order 1 ) (Bourlard and Bengio, 2002):

All the information about the past of the system is summarised by the previous state

only. In other words, the state transition probability can be written as

P (st|st−1
1 ) = P (st|st−1) ,

Let S = sT
1 denote a particular state path through a sequence of M sub-word models.

Using the above property P (M,S|W ) can be expressed as

P (M,S|W ) = P (s1)
T−1∏
t=1

P (st+1|st) . (1.9)

An additional random variable, called the observation variable, corresponds to the ob-

servation sequence O and is dependent on the state variable S. However, because of

the above Markov property of order 1, dependence of the acoustic observations on the

state sequence S can be expressed as

P (ot|st
1, o

t−1
1 ) = P (ot|st) . (1.10)

The above assumption is often referred to as the conditional independence property:

the observation is only dependent on the current value of the discrete state variable.

Hence, the probability of a model M generating a sequence of acoustic observations O

by following the state sequence S can be estimated as

P (O,S|M) =
T∏

t=1

P (ot|st) ,

where P (ot|st) is called an emission probability.

Example 1.3 (Hidden Markov Model). In speech recognition literature, by structure of

an HMM-based model one usually understands a sequence of the values of the state vari-

able S linked by nonzero transition probabilities. An overall structure is thus referred

to as topology of a model.

Topology of a typical single phone (monophone) HMM is shown in Figure 1.1. A

phone is a smallest perceptible discrete sound segment in a speech stream. The state

sequence for this model is organised in left-to-right and self transition arrangement.

The actual acoustic model consists of three emitting states s2, s3 and s4. The auxiliary

non-emitting states s1 and s5 are needed for connecting this model to other models.

Transition probabilities P (si|sj) are denoted aj,i and the emission probabilities P (oj |si)

by bi(oj). Six observations are “emitted” by three states in this example.
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s2s1 s4 s5s3

o3 o5 o6o1 o2 o4

a3,3

a3,4

b3(o4) b3(o5)

Figure 1.1: A typical single phone (monophone) HMM (after Young, 2001), where the state

sequence is organised in left-to-right and self transition arrangement. The actual acoustic

model consists of three emitting states s2, s3 and s4. The auxiliary non-emitting states s1

and s5 are needed for connecting this model to other models.

m1 m3

m2

m4

m5

m6

Figure 1.2: Simple word-level HMM model formed from constituent sub-word HMM models

according to pronunciation dictionary.

The single phone (or other sub-lexical) models are concatenated together according

to pronunciation dictionary to form a compound HMM model for some word w, as

shown in Figure 1.2. According to the model shown in the figure, the structure of

word w represents various (ordered) sequences of three models
{
m1,mi,mj

}
, where

mi ∈
{
m2,m3,m4

}
and mj ∈

{
m5,m6

}
. Note that the structure of the sub-word

models is not necessarily fixed (model m6 has a structure different from the rest of the

models). B

In light of the above, within the sub-lexical HMM framework, the overall acoustic

estimate P (O|W ) is not only dependent on all possible sequences M of the sub-word

models, but also on all the possible state transition sequences S within these models.

In other words, equation (1.8) can be rewritten as

P (O|W ) =
∑
M

∑
S

P (O,S|M)P (M,S|W )

=
∑
M

∑
S

P (s1)
T−1∏
t=1

P (st+1|st)
T∏

t=1

P (ot|st) ,

where the sum is taken over all the pronunciation sequences M and over all the possible
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(non-zero) state paths S in each of the pronunciation sequences.

There is a strong correlation between pronunciation variation for each word w in a

sequence W and the type of the sub-lexical units (called baseforms) which represent the

structure of w. Usually, the more sophisticated the baseform is, the bigger the number

of possible paths through the word model. The latter point is demonstrated by the

following discussion where we compare and contrast two different types of sub-lexical

models. For HMMs representing single phones (Example 1.3), since there are around

45 distinct phonemes in English (Young, 2001), pronunciation variation is usually con-

strained by a small number of possibilities for each word. The more accurate sub-word

models take into account the contextual influence of the previous and following number

of phones on the realisation of a given phone. The most common type of such context-

dependent models is a triphone, where one previous and one next phones are taken into

account. Thus it is possible to better model the pronunciation variation, e.g. [s-t-oh]

in “stop” versus [ae-t-sil] in “that”, where the latter realisation of [t] sound is usually

unaspirated at the end of the word in American English (Jelinek, 1997). Compared to

monophones, the number of possible context-dependent units grows exponentially with

the size of the context. For example, there are 453 triphone models corresponding to

45 single phone models. Obviously, large proportion of triphones is ruled out by phono-

logical rules (e.g. clusters like [zh-z-zh] are clearly not encountered in English). There

is still, however, a significant number of legal combinations that are either not observed

in the data or appear rarely. In order to deal with this problem, often referred to as

data sparsity, efficient techniques were developed to automatically reduce the number of

model parameters by the use of various clustering techniques (perhaps the most popular

is the state-tying strategy, overviewed by Young (2001)).

We will return to acoustic models in Section 1.2.1.3, where they will be considered

in the context of generalisation.

1.2.1.2 Language Modelling

The prior probability P (W ) in the “fundamental” equation (1.7), specifies how probable

a word sequence W is, based on some a priori , supra-lexical, information that is inde-

pendent of acoustic observations. This estimate is produced by a language modelling

component. Informally, the task of a language model is to indicate which hypothesised

word sequences are likely to be encountered in the natural language based on some syn-

tactic and semantic information. Consequently, the estimate produced by a language

model for a given hypothesis W will weight down the overall estimate of P (W |O) if

the hypothesis W is not very likely to be grammatical. Alternatively, it will boost the

confidence of the estimate if the hypothesis is likely to be legal. Initially, statistical
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language modelling was considered to be solely within the domain of speech recognition

research and statistics. For some early applications of language modelling to speech

recognition see the works of Bahl and Jelinek (1989; 1990; 1985). The earliest, the

simplest and also historically the most widely used supra-lexical model is the stochastic

n-gram language model which specifies the probability of the next word given its n− 1

contexts. The size of the context is intentionally limited (usually to be not larger than

3) in order to make estimation of the individual probabilities from the data tractable.

Using an n-gram model, the probability of a word sequence W = wN
1 can be expressed

using as

P (W ) =
N∏

i=1

P (wi|wi−1
1 ) =

N∏
i=1

P (wi|wi−1
i−n+1) .

The above language model is perhaps the simplest of all possible because it relies solely

on the word distributions and ignores the long-range word dependencies and any explicit

a priori syntactic and semantic knowledge. Nevertheless, it proved to be surprisingly re-

liable and still forms the language modelling backbone of many state-of-the-art modern

commercial and research speech recognition systems.

In HMM-based speech recognition framework, language models allow to link the

word-level HMM models by transition probabilities which represent the language model

estimates. The simplest structure may correspond to the case when the language model

is memoryless, i.e. the probability of any given word is independent of the history.

In this case one can simply combine all the models of words from some lexicon in a

parallel loop. In practice, in order to obtain reasonable estimates, at least a trigram

(n is 2) model should be used. This complicates the decoding process since the overall

network has to maintain all the possible word histories of length n− 1. In general, the

longer the list of word dependencies of a language model, the more complicated is the

overall network (the number of states in the overall framework is proportional to V n−1,

where V is the size of vocabulary). Partial transition structure for recognition network

employing trigram language model is shown in Figure 1.3.

During the last decade, due to the success of the statistical language modelling tech-

niques they also formed a vast research area within the field of computational linguistics

(see an overview by Manning and Schütze, 1999). Language modelling has also influ-

enced the development of statistical approaches in other areas of pattern recognition,

such as handwriting recognition (Lui et al., 2003). Although language models per se

are outside the scope of this thesis, we will nevertheless return to them later on in

this section and consider them in slightly more detail in the context of decision making

within probabilistic speech recognition framework.
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P (w1)

P (w2)

P (w1|w1)

P (w2|w1)

P (w1|w2)

P (w2|w2)

P (w2|w2, w2)

P (w1|w1, w1)

P (w1|w2, w2)

P (w2|w1, w2)

P (w2|w1, w1)

P (w1|w1, w2)

P (w1|w2, w1)

P (w2|w2, w1)

Figure 1.3: Partial transition structure of an HMM-based speech recognition network based

on a trigram language model. The vocabulary consists of two words w1 and w2. The boxes

represent HMM-based word models, like those shown in Figure 1.2 (after Jelinek, 1997,

Figure 5.3).
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PSi

wl

wk
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m2

m4

m5
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Sub-lexical Level

Lexical Level (words)

Syntactic Level (utterances)

PSj

m(PSi)

m(wl)

Figure 1.4: A simplified illustration of hierarchical organisation of speech knowledge within

a hypothetical HMM-based recognition network. The dashed arrows indicate internal organ-

isation of a unit in question. The thick line divides the organisation of sub- and supra-lexical

levels. The syntactic layer units (PSi, etc.) indicate parts of speech and are shown for

illustrative purposes only.

1.2.1.3 Categorisation in Statistical Speech Recognition

We open this section by briefly discussing the recognition stage of the generalisation

process. One of the most attractive features of speech recognition models (such as

HMMs) that are based on the discrete state random variable is the fact that these

models can be seamlessly combined together to obtain complex compound state-space

structures, which are amenable to the same analysis as the constituent models. In the

previous section we already mentioned the integration of various sub-lexical (acoustic)

and supra-lexical (language) knowledge sources into one compound HMM model (Fig-

ure 1.3). In general, in order to represent various knowledge sources associated with a

particular speech recognition domain, one usually compiles a large recognition network,

prior to recognition stage. Schematic representation of hierarchical knowledge within

an overall HMM-based recognition network is shown in Figure 1.4.

During the discussion of HMMs, we mentioned that to each state in a model there

corresponds a classification label which uniquely identifies a unit (e.g. phone) it belongs

to. Hence, in an HMM-based recognition framework, to each state sequence corre-

sponds a sequence of classification labels. The latter fact allows the clarification of

objectives for the recognition stage (often referred to as decoding): Given an acoustic

stream O = oT
1 , obtaining an optimal word hypothesis Ŵ = ŵN

1 amounts to finding a

state sequence Ŝ = ŝT
1 maximising posterior probability given the observations. The
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search is conducted in a recognition network (mentioned above) that represents all the

relevant linguistic knowledge in one compound HMM. In general, the decoding problem

is hard because of the inherent complexity of hypothesis space and the “straightforward”

dynamic programming approaches are often computationally intractable. The standard

state-of-the-art schemes use multiple passes over the recognition network. At each pass,

rather than producing the most optimal sequence, the decoder outputs a lattice of word

sequence hypotheses. A lattice essentially indicates which words were likely to be ut-

tered at which time intervals. Thus one can constrain the search space for the next

pass. Interested reader is referred to reviews of decoding state-of-the-art in (Aubert,

2000; Jelinek, 1997; Young, 2001).

The computational (in terms space and time) cost of the recognition step can be

greatly reduced by using an alternative approach employing finite state transducers.

Finite state transducers can efficiently and unambiguously represent the recognition

network in an elegant mathematical framework without the loss of original information.

In his paper, Mohri (1997) mentioned that for a 10-word sentence from an ARPA ATIS

task, the recognition network consisted of nearly 83 million paths. When encoded as a

finite state transducer and optimised, the resulting lattice consisted of 18 paths. Thus,

conducting the search on the optimised lattice greatly improved the performance. For

more information on finite state technologies in speech recognition the reader is referred

to recent reviews and applications in (Hazen et al., 2005; Mohri et al., 2002). We will

briefly return to the discussion of finite state devices later on in Section 1.2.3.2, where

we consider them in a structural pattern recognition setting.

We next consider another stage of generalisation in speech recognition that deals

with learning. Nearly all of the approaches to statistical speech recognition employ

parametric estimation techniques. These techniques were considered in a more general

pattern recognition setting in Section 1.1.3. In speech recognition, the most commonly

encountered learning target is the maximisation of P (O|W, θ), where

• The training data O consists of a set of acoustic observations
{
Oi

}
corresponding

to a set W of utterances
{
Wi

}
;

• The model parameter set is given by θ.

The traditional approach to training is to consider each model (e.g. word-level model)

independently and to estimate the distribution parameters of subsequences of acoustic

observations which correspond to that model. In HMMs, for instance, when training

with a particular word, the path through the compound HMM representing the training

set utterance is constrained so that it can pass only through that word’s model. After

the several complete passes through the training data, the parameters of the overall
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network representing the training set are updated with an optimal parameter set θ̂.

As mentioned in Section 1.2.1.1, the parameter set of the HMMs consists of the

transition probabilities and emission distributions. Since the state transitions are the

outcomes of a single discrete random variable S, they can be simply represented by

a transition probability matrix Ai,j = P (st+1 = j|st = i). Emission probabilities are

usually modelled by a Gaussian mixture

P (ot|st = i) =
∑

k

ci,kN (ot; µk; Σk) ,

where ci,k is the k-th mixture non-negative weight (constrained so that the weights of all

mixtures sum to unity), and N (ot µk; Σk) is a k-th Gaussian distribution (parametrised

by a mean vector µk and the covariance matrix Σk) specifying a probability of observing

vector ot. Modelling the observation vector with the mixture of Gaussians attempts to

model correlation structure in the observation vector ot. Thus, the parameter set θ

for HMMs, can be represented as a three-tuple consisting of transition matrix, a set of

mean vectors and a set of covariance matrices.

In statistical speech recognition, there are various parametric parametric approaches

to learning which usually mirror state-of-the-art in machine learning and pattern recog-

nition. Traditional parametric learning approaches employ maximum likelihood cri-

terion for estimation of the parameter set θ (this criterion was briefly described in

Section 1.1.3). In maximum likelihood approach to speech recognition, one chooses

the parameter set θx which maximises the product of the class-conditional likelihoods

P (Ox|Wx, θx) over the training sequences representing some class x (this could be al-

most any non-trivial speech unit). In other words,

θ̂x = arg max
θx

L(θx) = arg max
θx

P (Ox|Wx, θx) = arg max
θx

∏
i

P (Ox
i |W x

i , θx) .

The above optimisation can be efficiently implemented by several standard algorithms,

the most popular of which is known as expectation-maximisation (EM) algorithm. The

details of this algorithm can be found in any standard textbook on speech recognition,

such as (Jelinek, 1997) and (Deller et al., 1993).

The above parametric approach is often called non-discriminant because it deals

with an estimation of the acoustic distributions corresponding to a particular speech

unit (e.g. word) rather than attempting to estimate the acoustic differences between

various classes of speech units. This observation led to the emergence of various dis-

criminant criteria for the training phase of speech recognisers. These criteria include

the maximum a posteriori (MAP) optimisation of P (O|W, θ) and the estimation based

on the maximum mutual information (MMI) optimisation of log P (Ox|Wx)
P (O) . Optimising

the MMI criterion essentially amounts to simultaneously increasing the likelihood of
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the constrained model P (Ox|Wx) while decreasing the likelihood of the unconstrained

model that represents all the word sequences. The estimation algorithms for implement-

ing the above criteria are generally more complicated than the ones used for maximum

likelihood estimation. These algorithms use gradient descent approaches adopted from

non-linear functional optimisation (see Bourlard and Bengio, 2002 for an overview).

1.2.2 Numeric Representations

In the previous section we reviewed some of the fundamental components of mainstream

speech recognition systems. As mentioned earlier, the factor that contributed most

to the advances in performance of such systems is a statistically sound formulation

of speech recognition problem. In this section we briefly outline some current and

existing research aimed at improving the modelling and recognition process. Precise

classification of the following approaches and research directions is difficult because there

is a significant overlap and mutual influence between them. The need for alternative

approaches is clearly manifest in the considerable amount of literature describing new

models (e.g. see an editorial by Russell and Bilmes, 2003 and upcoming special issue on

non-conventional techniques in Faundez-Zanuy et al., 2004).

The majority of mainstream speech recognition systems are based on the HMMs,

which we briefly described in the previous section. The key feature of HMMs that was

criticised by many researchers (e.g. Young, 2001) is the frame independence assumption,

whereby each successive speech feature vector is assumed to be conditionally indepen-

dent given the HMM state (equation (1.10) on p. 17). Deng et al. (1997) argued that

such assumptions are too severe and discard many of the key temporal correlation prop-

erties in the speech signal, which result from relatively smooth movement of articulatory

structures during the act of speech production. Moreover, it was observed that these

correlation properties are not frame-specific but rather depend on segments. A segment

is some variable-length linguistic unit, usually a phone. While the acoustic correlation

within the same segment is usually high, cross-segmental correlations are lower (Glass,

2003).

A desire to weaken the above assumption motivated the development of segment

models (Ostendorf et al., 1996). In segment-based modelling, it is convenient to think

of a model as generating segments ol
1 of random length l, rather than individual feature

vectors, which are still used for representing the speech signal. In probabilistic terms,

a segment of random length l representing some phone m is given by

P (ol
1, l|m) = P (ol

1|l, m)P (l|m) ,

where P (ol
1|l,m) is the observation distribution provided by acoustic model and P (l|m)
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is the estimate provided by the duration model. Several approaches have been proposed

for modelling the observation distribution characterising a segment. Some use functional

parametrisation using trajectory functions (Holmes and Russell, 1998; Young, 2001).

The other approaches describe the above observations via linear dynamical systems

where the trajectory over the segment is described by a continuous-state variable from

which the observations are derived (see an overview by Frankel, 2003). In yet another

approach, used in the SUMMIT speech recognition system, the variable-length segments

are not based on speech frames but rather on acoustic landmarks, which are various

asynchronous acoustic events detected in the signal (see the work of Glass, 2003 and

his group).

Another frequently criticised property of the HMM-based systems is the beads-on-

a-string assumption (Ostendorf, 1999), described in Section 1.2.1. It was argued that,

as far as everyday spontaneous speech is concerned, this configuration fails to model

significant phonological variations which are otherwise easily accounted for by modern

phonological theories. In phonology, the phonological processes responsible for this

variation are modelled by parallel feature streams (or tiers). A certain variation in the

realisation of some phoneme is not modelled by the substitution of one segment (phone)

for another, as it is done in beads-on-a-string approach, but rather by difference in

timing of asynchronous feature changes in some of the feature streams. The adjective

“asynchronous” above corresponds to the observation that features rarely change at the

phone boundaries. Hence, the streams cannot be “lined up” (Livescu et al., 2003) to

form phonetic segments (phones). The above observations motivated various studies

which, on the one hand, focus on modelling “hidden” multiple parallel asynchronous

processes (e.g. factorial HMMs used by Nock, 2001, Dynamic Bayesian Networks used

by Livescu et al., 2003, nonlinear dynamic models used by Deng, 2000) and on the other

focus on the automatic mapping between the acoustics and phonological feature space

in which acoustic modelling can be conducted (e.g. work by King and Taylor, 2000; King

et al., 2000). Another area of research is the incorporation of a full nonlinear dynamic

speech production model motivated by the theory of articulatory phonology (this work

was primarily conducted by Deng, 1998 and his group).

Another open research direction is the issue of learning the appropriate topologies of

the acoustic models which may better suit the speech data. In traditional approaches,

topology (or structure) is usually understood as representation of transitions of a hidden

state variable. Such representation is crucial because it captures temporal dependencies

of the process being modelled. In most of the conventional approaches a significant

amount of a priori knowledge influences the choice of model structure before considering

the actual learning process. Some promising results in the area of statistical inference
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of acoustic model structure were recently reported by Zweig et al. (2002) in the context

of graphical models. Graphical models are powerful statistical graph-based abstractions

flexible enough to encompass nearly all the statistical models proposed to date (see an

excellent overview in Bilmes, 2003).

1.2.3 Structural Representations

In this section we briefly review some common structural models which are used in

speech modelling and recognition.

1.2.3.1 Annotation Graphs

Various graph-based paradigms used for annotating speech corpora are collectively re-

ferred to as annotation graphs. The emergence of general-purpose frameworks for anno-

tating speech was motivated by the apparent lack of standards, the need for which was

acutely felt within the speech community (Bird and Liberman, 2001). The proponents

of the above standardisation hope that the adoption of a unifying formal approach to

representing speech corpora will greatly facilitate research within the field.

Annotation graphs cover any descriptive or analytic notation applied to raw speech

data. The notations might come from a wide spectrum of sources ranging from phono-

logical features to discourse structures, morphological and syntactic analyses, word

senses, semantic relations and so on. Several speech annotation frameworks have been

suggested up to date, among which we would like to single out the most flexible ones: an-

notation graphs (AG) by Bird and Liberman (2001), and heterogeneous relation graphs

(HRG) by Taylor et al. (2001). HRGs have seen extensive use in speech synthesis ap-

plications as representational devices (e.g. see Taylor and Black, 1999), while AGs so

far have only seen use in annotation.

Among the multitude of available multilayer graph-based formalisms, we can discern

the single common most important feature: the ability to associate a label or an ordered

set of labels with a stretch of time in the recorded speech (Bird and Liberman, 2001).

An additional important advantage offered by these formalisms is that each utterance is

represented by a single multilayer graph structure, in which various knowledge sources

are unified. This graph structure is obviously fully amenable to linguistic analysis

because it is created either by a human expert or constructed automatically (as it is

the case with the text-to-speech synthesis systems) from various previously annotated

sources3.
3The research work on this thesis initially started from an attempt to model HRG structures in a

graph transduction framework, which, in theory, would have allowed efficient (time and space-wise)
encoding of the various knowledge sources used in text-to-speech engines (the idea due to Paul Taylor).



Chapter 1. Introduction 28

Although annotation graphs are very attractive in terms of their capacity of rep-

resenting the variety of linguistic information associated with the speech waveforms,

these frameworks are unfortunately not suitable as pattern recognition models. This

inadequacy is currently due to the following factor: from the formal point of view, since

the graph structures used in annotation frameworks incorporate heterogeneous infor-

mation, it is not clear how to treat them as object representations. In the discussion of

structural pattern recognition in Section 1.1.4, we mentioned that in order to conduct

any kind of structural generalisation using annotation graphs, one essentially needs to

introduce either:

• a graph grammar for annotation graphs, which, in theory, will allow the applica-

tion of syntactic pattern recognition techniques, or

• a similarity measure defined on a set of annotation graphs, which will allow the

introduction of a notion of symbolic space and application of structural pattern

recognition techniques (e.g. nearest neighbour analysis).

The first option is hard due to the high inherent complexity of graph representations

(we briefly mentioned this issue in Section 1.1.4.1). In addition, since representation

has multiple semantically distinct layers, it is not clear how to combine this information

in a single grammar. The latter is also the reason for the impracticality of the second,

similarity-based, option. It is not clear whether definition of a real-valued similarity

mapping on annotation graphs is linguistically meaningful.

1.2.3.2 Finite State Transducers

In this section we briefly review the use of finite state transducers in speech recognition

(which we already mentioned in the context of decoding in Section 1.2.1.3). In general, a

finite state transducer (FST) is a finite state machine whose state transitions are labelled

with a pair consisting of input and output symbols from some finite alphabets (Parkes,

2002; Sudkamp, 1997). Any path through a finite state state transducer algebraically

encodes the mapping from a sequence of input symbols to a sequence of output symbols.

An important modification of the FST architecture is obtained if the output of each

transition is also allowed to have some numeric value associated with it. The resulting

configuration is called a weighted finite state transducer (WFST). A WFST, in addition

to encoding the symbolic transduction also allows computation of an overall cost of the

corresponding path through the model. A WFST whose transitions are weighted but

contain no output symbols, is called a weighted finite state acceptor (WFSA).

As mentioned earlier during the discussion of decoding techniques, in speech recog-

nition, finite state machines (mostly WFSTs and WFSAs) have become very popular for
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representing various knowledge sources (language models, pronunciation models, acous-

tic models and so on), in a single formally homogeneous recognition network, which in

itself is a finite state machine. This popularity is due to the fact that the mathematical

(algebraic) theory of the finite state machines is very powerful (at least for the case of

string transduction) and, in particular, provides efficient means for drastically reducing

the size of the original FST representing the recognition network (this is called minimi-

sation) and also removing structural ambiguities (resulting in exactly one transduction

path per input sequence) in the original FST (determinisation) (Mohri, 1997; Mohri

et al., 2002). The performance of the various approximating search algorithms used

by the decoders is often dramatically improved if, instead of an unoptimised network,

the search is conducted in a recognition network optimised using the above techniques.

This is caused by a large decrease in the complexity of a search space (during the

FST optimisation, all the redundant transition paths are removed and many paths are

shortened).

Recently, parametric optimisation techniques were extended to weighted finite state

transducers. Among these is an expectation-minimisation (EM) algorithm for WF-

STs (Eisner, 2002). Given the fixed WFSTs configuration and a training set of in-

put/output symbolic sequences, EM algorithm infers a set of optimal transduction

weights associated with the training sequences. Trainable WFSTs are becoming more

popular in pronunciation modelling. One interesting application of WFSTs to pronun-

ciation modelling is the incorporation of the likelihoods of alternative pronunciations

of various words in a lexicon (traditional lexical FST-based models assume that all the

pronunciations are equally probable). While some of the alternative pronunciations

are more likely to be encountered in practice, the others are highly improbable. In-

corporation of a likelihood model ensures that the recogniser picks the more probable

hypothesis. Inference of likelihoods of alternative pronunciations by training the pro-

nunciation WFSTs was recently demonstrated by researchers working on the SUMMIT

speech recognition system (Hazen et al., 2005; Shu and Hetherington, 2002).

To summarise this section, in speech recognition finite state transducers of various

types (FSTs, WFSTs and so on) are used primarily as efficient knowledge representation

devices which combine various knowledge sources. These knowledge sources, in turn,

can be seen as finite state devices themselves, because they are often based on similar

Markovian assumptions (HMMs in acoustic modelling, n-grams in language modelling

are typical examples of such models). If we compare this aspect of transducers to the

models used in structural pattern recognition, FSTs bear certain similarity to syntactic

approaches because historically, finite state machines appeared as “automated” means of

computing various formal languages (Sudkamp, 1997). Similar to grammatical inference
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(Section 1.1.4.1), structural inference of automata and transducers from the data is a

hard problem, the complexity of which grows with the complexity of the structural

object representation. Within the statistical framework of speech recognition, since the

representation space is a vector space, structural inference of transducers is simply not

possible. Instead, the task of interfacing with the object representations (expressed as

feature vectors) is delegated to acoustic models of inherently numeric nature. Hence, in

the context of speech representation and generalisation, the role of transducers can be

considered to be secondary.

1.3 Research Motivations

1.3.1 Current Situation with Representations

As was shown in Section 1.1, the concept of representation is absolutely crucial in pat-

tern recognition. The representation of real world objects or events is supposed to

encode them in some mathematical framework that has the capacity of relating these

encodings to one another. Furthermore, as a consequence, generalisation is achieved

by deriving some compact discriminating descriptions of classes represented by the re-

lated encodings. Despite the critical role the notion of representation is supposed to

play, traditionally it has been frequently neglected. As was aptly observed by Duin

and Pȩkalska (2005), many relatively recent books on pattern recognition and machine

learning disregard the issue of representation altogether by assuming that the repre-

sentation is somehow provided by some outside expert knowledge (e.g. Bishop, 1995;

Ripley, 1996). However, there is a certain danger in placing the notion of representation

outside the scope of the overall generalisation framework, because representation and

generalisation are not independent. The choice of the representation essentially induces

the modelling framework in which the generalisation can be approached. Moreover, the

process of generalisation itself involves representation of the classes.

Earlier in this chapter, an overview of current approaches, both structural and nu-

meric, to representation in pattern and speech recognition was provided. The ongoing

debate in artificial intelligence on which one of the approaches is better suited for mod-

elling human intelligence, is definitely outside the scope of this thesis. The philosophical

arguments put forward by proponents of either approach are certainly within the do-

main of cognitive science, psychology and philosophy (for example, see Stender and

Addis, 1990). These arguments are not very productive from the applied point of view

because the value of the theory is usually in its utility. In contrast to the field of arti-

ficial intelligence, in pattern recognition it is generally agreed (see remarks by Kanal,

1993, Pavlidis, 2003 and Goldfarb and Nigam, 1994, for instance) that there is no single
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best approach and any complex domain often requires a combination of both. In what

follows, we briefly summarise our observations with regard to the two approaches to rep-

resentation in pattern recognition (and speech recognition in particular) and attempt

to outline some of the open issues. When talking about representations, we consider

both the representations of objects and the representations of classes.

1.3.1.1 Open Issues in Numeric Modelling

In the previous sections of this chapter we mentioned that numeric representation is

essentially an embedding of the data into some d-dimensional vector space, whereby

each object is represented as a point in Rd. Categorisation is then performed using

mathematical decision-theoretic tools available in vector spaces, such as estimation of

density functions underlying the clusters of points (Section 1.1.3). Once the represen-

tation is fixed, there is a multitude of analytical tools available in vector spaces that

can be used for constructing models for generalisation. In the context of speech recog-

nition, the representations correspond to sequences of acoustic feature vectors, while

the generalisation mechanism is provided by the statistical learning and recognition

framework (Section 1.2), where the interface between the representation and generali-

sation is provided by the acoustic models. In the context of study of representations,

we briefly outline some of the open issues with the feature vector-centered approach.

More often than not, some of the issues mentioned below are dictated by the nature of

the modelling space Rd rather than by ill-formed assumptions:

First, the most often heard criticism of the feature vector representation is that it

is too restrictive. Any spatial, temporal and other relations between the “parts” of the

original object or event are usually not preserved by the reduction of an object to a vec-

tor. This criticism is especially relevant when it is generally agreed that the domain in

question contains some well-identifiable structure (e.g. genomes in bioinformatics, char-

acters in optical character recognition). Certain original relations are usually partly

recovered statistically during the generalisation, however these relations are not present

in the representation itself. As a result, the feature vectors are often not interpretable

without the generalisation framework. Reduction of the original complexity of the do-

main to feature vectors, shifts the emphasis to introducing some of the lost structural

relations into the generalisation framework. It is interesting to note that some simpler

models in speech recognition, such as HMMs, are often criticised for not possessing

enough structure (Deng, 1998, 2000), where the structure is often interpreted in statis-

tical terms. In the words of (Jelinek, 1997, p. 10), such models “... have no more than a

mathematical reality. No claims whatever can conceivably be made about their relation

to human’s actual speech production or recognition”.
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Second, the elements of a feature vector are often mutually incommensurable. This

is problematic because the entire generalisation framework in vector space rests on the

Euclidean assumption that all the dimensions in the representation have equal weight.

In physics, for example, the problems with the above assumption led to emergence of

special (Minkowski) vector spaces in which the incommensurable dimensions are “decor-

related” in order to accommodate for space-time vectors (Pyenson, 1977). One of the

popular representations in speech recognition is based on the mel-cepstrum, which is

well-motivated by studies of human auditory perception (Deller et al., 1993). Without

going into much detail about derivation of this representation, it suffices to note that

more often than not, the vector representation of mel-cepstrum, called the mel-cepstral

coefficients (MFCCs) often includes delta and delta-delta mel-cepstral information, be-

cause this information was observed in practice to improve the recognition performance.

In terms of a Euclidean modelling space, however, this inclusion can hardly be justified

on mathematical grounds.

Before formulating the third objection to feature vectors as the basis of represen-

tation, a following observation is in place: once fixed, the mathematical properties of

object representation essentially dictate the ways in which the next generalisation stage

(involving learning and recognition) can proceed. In other words, one of the results of

the generalisation stage is the representation of the classes in question, which in turn

is heavily influenced the original representation of the objects. The generalisation pro-

cesses in vector spaces have been extensively studied over the years and a multitude of

diverse techniques were developed (Jain et al., 2000; Kulkarni and Lugosi, 1998). What

is a class representation in vector space? As was shown in the previous sections, class

representations in vector spaces are essentially defined by the parametric distributions

describing clusters of points, decision surfaces which separate these clusters or surfaces

produced by parametric curve fitting. To what degree such a representation of classes is

informative or adequate (in terms of interpretation) is a matter of dispute. The author

believes that in linguistic and artificial intelligence terms such class representations are

suboptimal. Some highly nonlinear separating hypersurface in d-dimensional space does

not tell one much about the morphological makeup of the original classes in question

and it is not difficult to find a linguist who might object to such a notion of a class

(in other areas, similar concerns were voiced by Abela, 2001; Davis and Shrobe, 1993;

Goldfarb, 2004, and others).

1.3.1.2 Open Issues in Structural Modelling

Structural approaches to representation and generalisation were described in Section 1.1.4

(for general pattern recognition) and in Section 1.2.3 (for speech recognition). As was
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mentioned in the discussion of structural approaches, their main benefit is that (well-

formed) structural encoding of objects retains the original relations between various

constituent parts of an object. This is because the structural modelling space induced

by the representation is structurally more expressive than a regular vector space. More-

over, in theory, in a structural modelling space the introduction of a non-trivial class

representation should be possible. The above benefits, however, come at the following

costs:

It is not clear on which foundation such structural representation should be based.

Unlike vector space approaches, there is no fixed modelling space induced by the chosen

representation. This issue is definitely not trivial. On the one hand, the choice of a

more complex representation would allow the encoding of more complex relations within

an object. On the other hand, since the representation is based on real data, the more

complex the representation, the more difficult it is to derive it from the data. Hence,

the open issue is how to balance the complexity of representation and the complexity

of the algorithms needed for its automatic derivation.

Earlier in this chapter, we mentioned that there are essentially two approaches

to structural representation: syntactic and topological. Purely syntactic approaches

to pattern recognition have been repeatedly criticised (e.g. Tanaka, 1995 and Watan-

abe, 1985) for making unrealistic “grammaticallity” assumptions about the data (Sec-

tion 1.1.4). Just as there is no such notion as grammaticality for images, it is difficult to

conceive (by looking at the real data) some notion of grammaticality for the spectrum of

an acoustic waveform or the recording of articulator movements. Hence, modern struc-

tural approaches usually adopt a topological, similarity-based, approach to modelling.

The adoption of a topological approach leads to the two issues we discuss next. The

first issue is how to introduce a good metric on a set of objects. Unlike regular vector

spaces, there are infinitely many similarity measures which can operate on the symbolic

object representations. Adoption of each of these measures results in a symbolic mod-

elling space with unique properties4. The second big issue is what and how to learn in

such a space during the generalisation stage. The difficulties arise because the theory

of symbolic spaces is in a much less analytically developed stage than the vector space

theories. Thus, on the one hand symbolic spaces seem to offer a bigger modelling free-

dom than the vector spaces, but on the other, severely restrict the amount of available

analytical tools5.
4 As was mentioned earlier in Section 1.1.4.2, where the topological approach was introduced, the

symbolic space is defined as a set of objects together with the numeric similarity measure defined on
this set. Hence, the main difficulty is not with the similarity measure, but rather with the structure
of the objects (which is now richer than the structure of the numeric feature vectors) which induces
different similarity measures.

5This does not necessarily mean that new tools cannot and should not be developed.
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1.3.2 Unification of Structural and Numeric Approaches

Given structural and numeric approaches to pattern recognition, one of the interesting

questions is how to combine them within a single framework. Compared to other press-

ing issues in pattern recognition which are investigated within computational learning

theory and machine learning (quality of the classifiers, model selection and combination

and so on), this issue has received relatively little attention. Similar to the explanation

given in the previous section, we believe this to be due to the limited attention that the

notion of object and class representations received over the years. It is interesting to

note that the issue of potential unification of the two approaches was raised quite early

on, at the onset of the field (e.g. Aiserman, 1969). Why is such a unification desirable?

As we saw from the previous discussion, each approach possesses interesting features

lacking in the other. The structural approach provides an expressive modelling space for

representations, while the numeric approach provides a powerful analytic environment

for decision making.

In general, there are two different approaches to unification. It is interesting to note

that both approaches are primarily motivated by the idea that adequate representation

leads to adequate generalisation. In this respect, these approaches are representation-

centric and are of primary interest to the author in the scope of this thesis. These

approaches roughly correspond to two possible (and related) interpretations of the def-

inition of what pattern recognition is. In Section 1.1, pattern recognition was (very

informally) defined as the ability to perceive regularities in patterns of classes and re-

late them. The natural question that arises next is how to interpret the regularity?

The proponents of the similarity-based approach believe in the primacy of the similar-

ity measure on which the representations should be based. The proponents of what

one can call a class-centric approach (this group of researchers includes the author of

this thesis) believe the notion of a class is a central one. The theoretical argument in

favour of this or the other approach is outside the scope of this thesis. The difficulty

arises because either approach is believed to be subsumed by the other. Sometimes in

practical applications, as will be shown later on in this work, frameworks motivated

by both of the above considerations can be employed. Below we briefly overview the

main tenets of these two approaches to representation. Before proceeding it should be

noted that each of the approaches leads to entirely (mathematically) different modelling

frameworks, despite the fact that, theoretically at least, the two approaches seem to be

related.

Some of the initial ideas of the similarity-based approach appeared in Lev Goldfarb’s

thesis at the end of the 70’s (Goldfarb, 1979), consequently extended and formalised

by him five years later (Goldfarb, 1984, 1985). One of the main contributions of that
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work at the time was that it laid the formal foundations of the study of similarity-

based pattern recognition. The main tenet of similarity-based pattern recognition is

that the object representation cannot be taken out of the context of similarity. It

is the similarity measure which induces the modelling space, rather than the objects

themselves. From a conceptual point of view, the use of dissimilarities between objects

instead of objects themselves allows the formation of a bridge between numeric and

symbolic approaches. This is because the notion of similarity is universal, capturing

both structural and numeric features of the original objects. Hence, for instance, instead

of using a feature vector or a string for representing a certain real-world object, in

the similarity-based approach this object is represented by the vector consisting of

similarities between this object and rest of the objects in the training set. Hence, the

similarity-based representation is essentially numeric. The properties of these modelling

spaces and the classifiers in these spaces are the main subject of study in this area. In

the last decade, the similarity-based approach (which is sometimes called the featureless

approach) started receiving renewed interest in the pattern recognition and machine

learning community. For a recent treatment of this subject, the interested reader is

referred to Bunke et al. (2001); Duin et al. (2004); Edelman (1998); Graepel et al.

(1999); Mottl et al. (2002); Pȩkalska et al. (2004), and others. An excellent study of the

field is provided by Pȩkalska’s recent thesis (Pȩkalska, 2005)6.

Class-centric approaches assert the primacy of structural class representation over

similarity-based representation. There are several reasons for this. One of the rea-

sons is that similarity-based vector space representations, however well mathematically

grounded, still suffer from rigid mathematical structure imposed by the underlying

vector space. Hence, it is argued that the similarity-based approach cannot produce

class representations which are sophisticated enough to approximate the inherent, es-

sentially morphological, complexity of the real-world classes. As a result, by adopting

a class-centric approach to modelling, one starts with a structural, usually topological

(Section 1.1.4.1), representation. The essential difference between this approach and

the conventional topological approaches to structural representation is that the class-

centric framework has to have certain analytic means of deriving non-trivial structural

class representations during the process of generalisation. Furthermore, the similarity

is induced by the class structure (in comparison with the similarity-based approach,

where the similarity measure is seen as something external to the framework). The

latter assumption is motivated by experimental evidence from cognitive science. It has
6Although from a technical point of view there is a difference between the notions of similarity

(proximity) and dissimilarity, in this thesis we use these notions interchangeably. In general, we assume
that the various metrics define similarity measures, i.e. the more similar the objects being compared,
the smaller the measure.
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been observed that humans are not only able to identify a concept to which a certain

perceived object belongs, but are also able to justify the latter decision by describing

the concept (class) in terms of its attributes (Abela, 2001).

The approach we undertook in this thesis for structural representation of speech is

class-centric. The following sections are devoted to introduction of the main ideas of

this approach.

1.3.3 Topological Class-Centric Approach to Speech Representation

In this section we describe the motivation behind the development of a class-centric

approach to representation based on topological principles. The adjective “topological”

refers to the fact the modelling is (mostly) structural, but it is guided by a similarity

measure. This approach incorporates several techniques described below.

Any attempt at modelling must start somewhere. An obvious point of departure

for any structural representation is the choice of the objects being modelled. As was

mentioned in Section 1.1.4.1, the essence of the structural topological approach is the

choice of the set of objects, together with some similarity measure defined on those

objects. The similarity measure is defined in a way that reflects the morphological

makeup of the objects. When modelling speech, it is clear that the structure of the

objects has to be somehow detected in the data. Without going into detail (a concrete

topological representation of speech “objects” is described in Chapter 2), convenient

units that can be extracted from speech (e.g., as shown by King and Taylor, 2000)

correspond to the atomic units of linguistic analysis — phonological distinctive features.

Hence, instead of feature vectors, a frame-based topological representation can be based

on the symbolic bundles of phonological distinctive features. Any linguistic object (e.g.

phone, syllable) can then be explicitly represented in terms of this structure. Next,

a similarity measure is defined on the set of objects. Structural similarity measures

usually take into account the internal atomic structure of the objects being compared.

For instance, conventional transformation distances calculate the number of atomic

operations needed for the objects to become identical.

How does the above object representation relate to a concept of class? An elegant

extension of the above, called the Evolving Transformation System (ETS), was proposed

by Goldfarb in his early papers (Goldfarb, 1990, 1992). The central idea of the proposed

approach (which we denote ETS0) is the notion of transformation. In its simplest form,

a transformation corresponds to the basic operation employed by the transformation

distances mentioned above. One can think about representation of a certain class of

objects as a set of transformations. Initially, class representation consists of the basic

operations only. Since the basic operations are common to all classes in the training set,
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such a class representation is not interesting. This “rigid” representation corresponds to

the conventional topological object representation described above. What makes a given

class different from the other classes is the existence (among the objects representing

that class) of common structurally non-trivial attributes, or non-trivial transformations,

of discriminating nature. These (weighted) transformations induce a class-specific sim-

ilarity measure which better separates members of this class from all other objects. In

ETS0, given the objects belonging to a class, the goal of the learning phase of gener-

alisation process is to discover an optimal set of non-trivial weighted transformations

using some discriminating technique. At each stage of the learning, an augmented set of

transformations, discovered using the search guided by the “current” similarity measure,

induces a new class-specific similarity measure. Hence, the learning stage can be seen as

a sequence of “evolving” topological spaces, where evolving class representations induce

an evolving similarity measure. From the speech modelling point of view, this allows

description of linguistic classes in terms of their non-trivial structure. This approach is

pursued in Chapter 4.

Above we introduced a “rigid” topological approach to structural modelling of ob-

jects, which can be analytically augmented (ETS0) to allow for structural class represen-

tation. From the point of view of similarity measures, the “rigid” approach corresponds

to a global similarity measure for all objects in the training set. The ETS0 approach

results in similarity measures which are class-specific. With either approach, since the

particular structural representation is completely transparent for the similarity mea-

sures, it is possible to embed the symbolic representation into the corresponding vector

space by using the similarity-based techniques mentioned in Section 1.3.2. This is often

desirable because the symbolic spaces are not suited for visualisation and lack advanced

decision-theoretic techniques available in vector spaces. The embedding techniques,

resulting in a similarity-based representation, are treated in Chapter 3.

1.3.4 Formal Approach to Speech Representation

It must be emphasised that ETS0 is not a learning algorithm but rather a model.

Modelling structural class description via transformations that clarify the nature of

a similarity measure is a general idea that does not force any assumptions upon the

symbolic objects. For instance, one can introduce ETS0 ideas into the setting based on

strings (Abela, 2001) or trees (Kamat, 1995). From an early stage in the development

of the model, it became clear (Goldfarb, 1992) that the ideas embodied by ETS0 need

to be formalised within a single unifying framework for pattern representation and

recognition. In what follows we give several reasons, “technical” and otherwise, for

mathematical formalisation of the above ideas (more detailed arguments, most of which
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are presently outside the scope of this work, are advanced by Goldfarb, 2004 in a recent

paper).

The first argument in favour of a formal approach to structural class and object rep-

resentation is a general one. It goes without saying that human perception mechanisms

operate in a rather dynamic environment. The “objects” being perceived in a certain

environment are not static. In many areas of pattern recognition, especially the ones

where modelling of vision and speech is concerned, it is generally agreed that “static”

structural representations do not constitute an accurate reflection of the reality. In

speech modelling, in particular, the above understanding led to the modelling of speech

as a stochastic process (Deller et al., 1993). In this respect, it is interesting to analyse

the notion of a “static” representation without recourse to mathematical statistics. Our

current intuitive understanding is that static representations are memory-less. Thus the

static view of various perceptual processes (such as speech, vision and so on) is problem-

atic because it contradicts the very nature of basic mechanisms of mental representation

within humans. This also explains why statistical approaches have been successful. The

mental representations of a real-word object must somehow encode the “evolutionary”

or “developmental” history of that object. The author thinks of two alternative and very

informal ways to express the latter point: from a perceptual point of view, an object is

essentially a constantly evolving mental process; from an “observation” point of view,

the objects under investigation appear to be constantly changing (“evolving”). Hence,

one of the major motivations behind the formalisation was a desire to introduce some

formal machinery which would allow to integrate a concept of an “object” and a con-

cept of its formative history in a single mathematical structure. The classical discrete

structures were not developed for the above purposes, hence a new approach is needed.

How can one define a formative history of an object? Starting from the earliest

work on structural representation (ETS0), Goldfarb suggested that the formative history

should be seen seen as a sequence of transformations. Moreover, from a generative point

of view, any object can be represented as a sequence (or collection of various sequences)

of constructive transformations. Schematic illustration of the latter idea is shown in

Figure 1.5, where an “object” is shown observed over several time instances. The object

can be though as being formed by a various possible sequences of transformations
{
τ
}
.

Representation of a class of objects can thus be thought of as a collection of class-

specific transformations together with some generative mechanism for applying them.

The fundamental technical difficulty in accommodating the above ideas within a formal

model can be explained by the fact that conventional symbolic representations based on

discrete data structures such as strings, trees, graphs and so on, cannot be used for the
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Figure 1.5: Illustration of the concept of formative history. A certain “object” is being

observed with the measurements taken at times ti and tj . The object is shown as hav-

ing several possible formative histories consisting of various transformations
{
τ
}
, whose

structure is ignored for now.

purposes of evolutionary object representation via formative histories. This is partly

because when one examines a certain object, represented by a graph for instance, it is

very difficult to reconstruct a sequence of transformations which constructed it. In other

words, from the grammar point of view, given any object there is an exponential number

of productions which can be used to generate it. In contrast with the later conventional

mechanisms of structural object representation, within a formal “evolutionary” model,

the representation of an object is its formative history. Initial formalisation of the

above ideas was attempted by Goldfarb and his colleagues five years ago in (Goldfarb

and Golubitsky, 2001; Goldfarb et al., 2000), which resulted in a first formal version of

ETS model we denote ETS1.

Another important “technical” motivation for the introducing a formal framework

for object and class representation can be presented as follows: given a certain object

representation employing conventional structures, in order to implement ETS0 ideas in

this framework one has to employ representation-specific techniques. In theory, such

approaches are rather brittle because by changing certain assumptions about the rep-

resentation it is often the case that the entire suite of algorithms developed to support

ETS0 in that framework has to be completely changed. As an example, in this the-

sis the first chapters rely on a certain arrangement of phonological tiers of distinctive

features employing strings as the basic sub-structures. Changing the representation to

employ another variety of distinctive feature theory, which is based on more complex

data structures, like graphs, will involve completely scrapping the algorithms developed
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for string-based representation and developing new ones to support graphs. Hence,

rather than focusing on the representational issues, more often than not, most of the

modelling effort is spent on the issues that are not relevant to representation. Ideally,

introduction of a representational formalism allows the researcher to focus on the mod-

elling issues: derivation of atomic units of representation from the data, specification of

their particular interaction, study of the class representation, and so on. The formalism,

in turn, supplies formal analytic machinery for achieving the above goals, including the

framework for generalisation. Over the last five years, the development of the ETS

formalism has gradually been moving towards this goal, especially with the appearance

of the most recent versions of the formalism (Goldfarb et al., 2005a, 2004), denoted

ETS2 and ETS4. In this thesis, for example, we describe two representations of speech

developed from entirely different perspectives (production and perception-based), yet

employing the same formal mathematical language. Furthermore, experiences with de-

veloping specific applications within ETS have also been instrumental in driving the

development of the formal language itself.

Finally, another important motivation which drove the development of a formal

approach was the desire to model the multi-levelled nature of mental representations.

In very informal terms, any (non-trivial) transformation observed at the sensory level,

becomes a primitive building block of object representation on the next level of rep-

resentation. The new level of representation appears with the detection of the first

transformation at a current level. Representation of a class, at any given level, is es-

sentially a collection of transformations. Hence, class representation is also hierarchical

since any primitive transformation at any given level can be “opened up” to some non-

trivial structure at the previous level. A simplified two-level representation hierarchy is

shown in Figure 1.6. When thinking about speech communication, our very informal

intuition about this process is based on the multi-level representation hierarchy: the

sender of the intended linguistic message has some mental multi-level representation

which is “collapsed” and encoded as an acoustic waveform (or some other represen-

tation) and transmitted to the receiver of the message, who tries to “reassemble” the

mental representation by growing it from the encoded message. More precisely, the tem-

poral process of decoding the message involves dynamically “updating” the multi-level

representation of the receiver, “growing” it only when necessary.

1.3.5 Brief ETS Literature Overview

In Section 1.3.3 it was mentioned that the origins of ETS are in the topological class-

centric approach. This approach evolved from pure numeric similarity-based object

representations in pattern recognition (Section 1.3.2). As mentioned above, the initial



Chapter 1. Introduction 41

Figure 1.6: Simplified illustration of a two-level ETS4 representation. The heavy dashed

line identifies the first level transformation, consisting of atomic (primitive) transformations.

On the next level, this transformation corresponds to a next-level primitive transformation

(reproduced with permission from Goldfarb et al., 2005a).
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version of ETS, which we refer to as ETS0, was originally proposed by Goldfarb in

the early nineties (Goldfarb, 1990, 1992). Transformation-based class and object rep-

resentation was developed in a string (Goldfarb and Nigam, 1994) and tree-based (Ka-

mat, 1995) pattern recognition setting. Several position papers, clarifying some of the

main assumptions of the model, appeared later on (Goldfarb et al., 1995; Goldfarb and

Deshpande, 1997). The most comprehensive experimental study of ETS0 was recently

completed by Abela (2001), who used this version of ETS to develop a grammatical

inference system based on the ideas in (Goldfarb and Nigam, 1994). Several inter-

esting ideas about the possible application of the model to computer vision appeared

in (Goldfarb et al., 1996).

After several years of gestation, the initial version of formal language, denoted ETS1,

appeared five years ago. Among the features of the ETS1 formalism was the introduc-

tion of a unifying set-theoretic object representation with a support for formative his-

tories and initial support for multi-level representation (Goldfarb and Golubitsky, 2001;

Goldfarb et al., 2000). The generative mechanism employed by the model makes use of

stochastic Markov processes by attaching numeric weights to transformations. Recently,

Korkin (2003) completed ETS1 work on molecular representations in chemioinformatics.

Golubitsky (2004a) explored the formal algebraic properties of the model, comparing it

to “classical” discrete representations used in computer science (strings, graphs, etc.).

He also provided proof of the Turing-completeness property of the model for the case

when the real world environment is restricted to strings (Golubitsky, 2004b).

The initial ETS1 version was then significantly modified to better suit the evolu-

tionary or “dynamic” nature of the representation. A particular emphasis was put on

improving the support for multi-level representation of information processes. This ver-

sion of the formalism is denoted ETS2 (Goldfarb et al., 2004). It is used in thesis for

articulatory representation of speech (Chapter 5). Finally, the experience with devel-

opment of several (pilot) representations (including the work conducted by the author)

motivated the introduction of several modification to ETS2. This (current) revision

of the formalism is known as ETS4 (Goldfarb et al., 2005a). The appearance of three

revisions of the formalism in five years (ETS1, ETS2 and ETS4) can be explained by

the novelty of the adopted approach and general lack of research in formal methods

for modelling natural processes in pattern recognition. Other currently ongoing work

in ETS4, which is relevant to this thesis, includes the development of structural repre-

sentations for vision (Gay, 2005). The recent position statement arguing in favour of

development of formal approaches appeared in (Goldfarb, 2004).
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1.4 Research Objectives

Based on the above motivations, the main objectives of this thesis can be spelled out

as follows:

Develop a linguistically-well motivated framework for structural class and object

representation of speech based on topological modelling tools and investigate the

feasibility of such a framework.

Using the topological approach to class and object representation, it is desirable to

design a speech representation framework based on several principles described next.

First, it should be possible to select a certain type of linguistic units (which in thesis are

phonemes) and postulate their structure in terms of more primitive units (distinctive

features) which can be realistically derived from speech. Next, it is desirable to introduce

a similarity measure on object representations. Therefore, one can test the adequacy

of the representation by using symbolic template matching techniques, generalised to

operate on speech objects. In addition, it is useful to demonstrate the techniques for

similarity-based transition from the symbolic modelling spaces to the corresponding vec-

tor spaces, where generalisation can be conducted more efficiently. Finally, it is desirable

(with the help of ETS0) to introduce generalisation procedures into the symbolic object

representation for deriving structural class descriptions for various classes of linguistic

units being modelled. The availability of a standard corpus of read speech (Garofolo,

1988; Garofolo et al., 1993) makes it possible to compare, contrast and experimentally

evaluate the above three techniques.

Design and explore formal articulatory representation of speech.

Investigate the feasibility of constructing a formal representation of speech based on ar-

ticulatory (production-based) principles. Based on some theoretical premises of the the-

ory of articulatory phonology that hypothesises the combinatorial structure of speech,

investigate whether this combinatorial structure of physiological nature can be expressed

within a formal ETS2 framework by mapping the theoretical combinatorial units of anal-

ysis to the atomic units of the formal framework. Design techniques for deriving these

atomic units directly (i.e. without recourse to non-linear mappings) from the speech

recordings. Provide analysis of class representation within this framework, postulate

the formal class description of various phonemes and experimentally evaluate the ad-

equacy of the class structures on a corpus of articulatory recordings (Wrench, 2000;

Wrench and Hardcastle, 2000).
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1.5 Thesis Organisation

The contents of this thesis are organised into two parts. Research presented in Chap-

ter 2, Chapter 3 and Chapter 4 resulted from the topological approach to speech repre-

sentation, motivated in Section 1.3.3. The adjective “topological” refers to the fact that

all of the approaches presented in these chapters involve structural modelling guided by

a similarity measure. To be more precise, these modelling spaces should more appropri-

ately be called metric spaces because the modelling involves structures together with

similarity measures defined on them. The second part of this thesis consists of Chap-

ter 5, where speech representations are defined within a formal mathematical framework

which is specifically being developed for the purposes of representing the natural pro-

cesses (Section 1.3.4). The conclusions are summarised in Chapter 6 and the future

directions of research are presented. The more detailed outline of each chapter is given

below. It is important to note that the logical sequence of the chapters corresponds to

the evolution of author’s ideas about the structural modelling of speech.

Chapter 2. Phonological Symbolic Metric Spaces:

This chapter introduces linguistically motivated structural object representation to-

gether with the similarity measure defined on objects. We refer to this structural

modelling framework, which corresponds to topological approach of Section 1.1.4, as

phonological metric space. To a certain extent, this representation corresponds to a

symbolic version of the segment-based approach to speech recognition (Section 1.2.2),

with the main difference that the segments are interpretable. The objects under inves-

tigation correspond to phones (without the loss of modelling power the objects can be

extended to syllables or other larger speech units). We then explore the possible ways of

introducing generalisation into this modelling framework and experimentally evaluate

the discriminatory capabilities of this representation on a standard corpus of continuous

speech.

Chapter 3. Pseudo-Euclidean Embedding of Phonological Metric Spaces:

As a next step further, in this chapter we investigate the similarity-based transition from

the phonological metric space to an equivalent (generally non-Euclidean) vector space.

The equivalency is defined solely on the basis on the structural similarity measure.

This transition results in a similarity-based vector space representation (Section 1.3.2),

where efficient analytical tools are available for learning and classification. The rationale

behind this transition is simple. We investigate whether it is feasible to focus on the

object representation in a structural modelling space and then transfer the modelling
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problem into an equivalent vector space domain where the generalisation can be more

efficiently approached. The properties of the resulting representation are then described,

followed by an experimental evaluation.

Chapter 4. Inductive Learning with ETS0:

In this chapter we return to the phonological metric spaces first introduced in Chap-

ter 2 and augment the original modelling framework so that it can also discover class

representation. In essence, this chapter introduces the first (in this thesis) class-centric

structural approach to speech representation (Section 1.3.2). The original phonological

metric space is modified so that the similarity measure defined on the objects is now not

rigid, but dynamic (evolving) and is structurally induced by the class representations

of the speech units (phones) in question. These modelling ideas correspond to the main

tenets of the ETS0 framework. Categorisation mechanisms in the resulting modelling

space are then discussed, followed by experimental evaluation. The ETS0 approach is

compared to related similarity-based approach presented in Chapter 3.

Chapter 5. Formal Articulatory Representation of Speech with ETS2:

This chapter presents a production-oriented approach to structural speech represen-

tation within the ETS2 formalism (Section 1.3.4). We present the ETS2 model and

introduce an articulatory ETS2 representation, motivated by the theory of articula-

tory phonology. On a technical side, we show how to derive this representation from

continuous articulatory recordings and present several application-specific simplifying

assumptions. The representation of several classes of phones is then experimentally

evaluated on a corpus of articulatory recordings.

Chapter 6. Conclusion and Future Research:

In this chapter we outline findings and experiences with the various approaches to speech

representation explored in this thesis, summarise the contributions, and present future

research directions.

Reading Suggestion

Each chapter of this thesis is reasonably self-contained. The care was taken to ensure

that all the necessary background material for each chapter is provided in the corre-

sponding preliminary section, following the introduction. The author felt that such a

layout is better suited for presenting the unrelated background theory of various mod-

elling spaces considered in this thesis.
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1.6 Publications and Declaration

Some of the material contained in this thesis appeared in reviewed conference and work-

shop proceedings during the work on this thesis. More specifically, the latter include

the following: Gutkin and King (2004b) (Chapter 2), Gutkin and King (2004a) (Chap-

ter 3), Gutkin and King (2005b) (Chapter 4), Gutkin et al. (2004), Gutkin and Gay

(2005b), Gutkin and Gay (2005c), Gutkin and King (2005a) (Chapter 5). Author has

been involved in the development of ETS4 formalism as a member of Inductive Infor-

matics Group run by Lev Goldfarb. His contribution to ETS4 is indicated in (Goldfarb

et al., 2005a,b, Section 1.5). One paper was accepted for publication, but withdrawn

by the author (Gutkin and Gay, 2005a), hence not appearing in press.

Apart from where stated otherwise (by acknowledging the work of others at the

appropriate points in the text), none of the material contained in this thesis is the result

of collaborative work. The length of this thesis, including footnotes and excluding the

bibliography and the index, is 64,413 words.



Part I

Topological Approaches to

Structural Representation

47



Chapter 2

Phonological Symbolic Metric

Spaces

2.1 Introduction

Current automatic speech recognition (ASR) systems are usually based on Hidden

Markov models (HMMs) of phonemes; speech is modelled as a linear sequence of these

phonemes, like “beads on a string” (Ostendorf, 1999). Phonemes have no explicit inter-

nal structure in these systems beyond the topology of the HMMs used to model them

(usually three emitting states in a simple left-to-right arrangement) (Young, 2001).

The accuracy of such systems appears to have reached a plateau, motivating many

researchers to look for alternative approaches. In this chapter, a novel representation

and classification framework based on symbolic structural principles is presented. The

exposition is based on our initial report in (Gutkin and King, 2004b). The method

we propose is motivated by the fact that a symbolic space is well-suited for capturing

and exploiting structural properties of speech which HMMs (and other models based

on similar principles) fail to capitalise on.

Since speech waveforms are not symbolic, we must make a transformation into a

symbolic representation. At a very low level, frame-based vector quantisation will do

this, but we reject this approach since the symbol set is chosen purely on acoustic

grounds. Other techniques, such as generalised feature extraction based on structure

detectors (Olszewski, 2002) have been proposed recently. Structural detectors extract

some very general (non-linguistic) symbolic information directly from the signal and pro-

vide it as an input to syntactic pattern recognition frameworks operating on time series

data. Such approaches might potentially offer a natural way of extracting symbolic

features and further research is needed to establish whether they are suitable for Au-

tomatic Speech Recognition (ASR) tasks. We have chosen to make the transition from

48
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vector-space to symbolic representation at a linguistically well-motivated level: phono-

logical features. Phonological features are a representation of speech which has several

attractive properties and are better modelling units than conventional phonemes. Fur-

thermore, it has been shown in (Frankel and King, 2005; King and Taylor, 2000) that

recurrent neural networks can be successfully used to perform accurate phonological

feature detection from speech signals.

Once the fundamental symbolic units of representation are obtained from the speech

signal, the next issue which needs to be addressed is how to model the objects. It ap-

pears that modelling in a symbolic space is inextricably linked with the fundamental

notion of a metric space. Briefly, a metric space is defined as a collection of objects in

some environment together with a dissimilarity measure defined on these objects. The

dissimilarity measure can take several names depending on the mathematical proper-

ties of this function, like metric, pseudo-metric and others (see Section 2.2). In this

chapter, we introduce a mathematical structure for modelling which we call a phonolog-

ical metric space. The objects of this space (phonological templates) are the structural

models of the phonemes of speech built using symbolic phonological distinctive features.

We also define several dissimilarity measures (phonological metrics) which operate on

these objects. In particular, during the formalisation of this new modelling space, we

extend several concepts and algorithms from conventional, string-based, structural pat-

tern recognition to phonological metric spaces.

Finally, we describe experiments on a standard ASR speech classification task and

compare the results with conventional numeric models. The goal of the experiments was

to verify the adequacy of the proposed metric space (object representation and the met-

rics). In addition, we studied the behaviour of the symbolic metric-based classification

and clustering algorithms, when confronted with a large symbolic dataset.

Overview of the chapter

This chapter is organised as follows. In Section 2.3 we introduce the structural object

representation based on phonological feature structure. We complete the proposal of

the phonological metric space in Section 2.4 by introducing the symbolic dissimilarity

measures operating on the phonological objects. Various clustering and classification

algorithms for the new metric space are described in Section 2.5. Section 2.6 describes

the experimental setup along with the discussion of the results. We summarise the chap-

ter in Section 2.7 and present some future directions of research which will potentially

improve our metric space-based model.
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2.2 Preliminaries: Metric Spaces

In this section, we briefly introduce the concept of a metric space, which will be ex-

tensively used in the subsequent developments. The exposition is rather informal and

is based on several sources from general topology (Engelking, 1989; Khamsi and Kirk,

2001).

A metric space is an axiomatisation of the notion of closeness of points: in a metric

space, to every pair of points corresponds a real number, which we treat as the distance

between them. The fundamental properties of the notion of a distance are described by

a following set of axioms.

Definition 2.1 (Metric Space). A metric space is a pair (M,d) where M is a set and

d : M ×M → R+

is a mapping of the Cartesian product M×M into the set of non-negative real numbers

R+ satisfying the following axioms:

(M1) d(x, y) = 0⇔ x = y.

(M2) d(x, y) = d(y, x), ∀x, y ∈M .

(M3) d(x, y) + d(y, z) ≥ d(x, z), ∀x, y, z ∈M .

The set M is called a space, the elements of M are called points, the function d is called

a metric on the set M and the number d(x, y) is called the distance between x and y.

Condition (M1) asserts that the distance between two distinct points is positive and

every point has distance zero from itself. Condition (M2) asserts that the distance is

a symmetric function, not dependent on the order of points x and y. Condition (M3),

called triangle inequality states that the sum of two sides of a triangle, formed by the

three points, is not smaller than the third side.

The concept of a metric space derives from a more general concept of a semimetric

(sometimes also called pre-metric) space, defined below:

Definition 2.2 (Semimetric Space). A pair (M,d) only satisfying the two axioms (M1)

and (M2) is called a semimetric space. Thus, a semimetric space is a metric space if it

satisfies the triangle inequality (M3).

An even more general metric space is defined below:

Definition 2.3 (Pseudo-Metric Space). A function d defined on the set M×M , assum-

ing non-negative real values, satisfying the condition (M2) and the following condition
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(M1’) d(x, x) = 0, ∀x ∈ X

is called a pseudo-metric on the set X.

As we can see, the pseudo-metric space is a space satisfying the symmetry condition

(M2). In addition, it relaxes the requirement that the distance between two different

objects has to be non-zero. Condition (M1’) only requires the distance from any object

to itself to be zero.

2.3 Phonological Object Representation

Having briefly introduced the concept of a metric space in the previous section, we are

ready to consider the first core notion which was used in the that definition, namely

the concept of an object. As was mentioned at the beginning of this chapter, we chose

to represent speech on the phonological level in terms of phonemes. The phonemes,

therefore have to be treated as the structured objects of the representation and our goal

in this section is to provide the structural means of description for the phonemes.

In Section 2.3.1, we briefly describe the atomic structural units used for the construc-

tion of the representation. These units correspond to phonological distinctive features.

Detection of the phonological distinctive features in continuous speech is introduced in

Section 2.3.2. Since the outputs of feature detector are not symbolic, we must make

a transition to a symbolic representation. This vector space to symbolic space map-

ping, provided by the means of quantisation, is described in Section 2.3.3. Finally,

in Section 2.3.4 we introduce the symbolic objects obtained by the above steps — the

phonological feature templates.

2.3.1 Atomic Representational Units: Phonological Features

What are the atomic units of speech representation ? For numeric models, these units

are provided by the real numbers which form the foundation of vector spaces. Structural

approaches, on the other hand, allow more freedom of choice when it comes to the

atomic units of representation. This freedom allows one to choose units which are more

abstract, and thus more expressive, than the numeric ones.

The atomic units of representation we chose consist of a set phonological distinctive

features. Distinctive features are seen in various phonological theories as the atomic

units fully and economically describing the phonemic inventory of any given language.

In turn, a phonemic inventory (usually consisting of a few dozen categories) is used to

describe the possibly unlimited range of sounds (phones or segments) encountered in

spoken language. Any phoneme is a minimal contrastive sound unit of a language (two
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phones are different phonemes if they produce phonological contrast). It is represented

as a bundle of simultaneous atomic units, whose combination of properties makes a

phoneme. Moreover, since the distinctive features possess well defined semantics, they

are considered by many to be the basic units of linguistic analysis (Jakobson, 1978).

The ideas which led to the establishment of a Distinctive Feature Theory first ap-

peared in the work of Trubetskoy (1958), Jakobson et al. (1963) and Jakobson and

Halle (1971). The appearance of Transformational Generative Grammar (Chomsky,

1957), made it possible to formalise the earlier observations within the theory of Gener-

ative Phonology. In addition to providing a compact means of representing phonemes,

distinctive features were shown by Chomsky and Halle (1968) to be an efficient tool for

concisely representing the complex phonological processes, such as assimilation (for ex-

ample, the [n] sound in “in” becomes [m] when followed by [b] in the word “in-between”).

The assimilation process which transforms [n] into [m] is concisely explained by the

spreading of one feature — place of articulation — from the [b] backwards into the

[n] (King and Taylor, 2000).

There is no consensus among the abundant phonological feature theories as to what

constitutes the “right” set of distinctive features. Among various feature systems one can

find the binary feature system of Chomsky and Halle (1968), the Government Phonology

primes of Harris (1994), Feature Geometry of Clements and Hume (1995) and many

others.

Despite the differences between various feature systems, there are three common

principles to which they adhere:

• The feature set should be able to characterise all the contrasting segments in hu-

man languages, preferably by use of independent and non-redundant fundamental

units. In particular, this means that the feature set should be universal, not

dependent on a phonemic inventory of a particular language.

• The feature set should be able to concisely and clearly describe the natural classes.

The “naturalness” alludes to the fact that there must be some universal pat-

terns of phonological processing among humans which are “natural” and language-

independent.

• Transparency with regard to phonetic correlates. This allows the establishment of

phonetic similarity by grouping the sounds by common distinctive features. Hence

one can relate the behaviour of phonological processes to their corresponding

phonetic (surface) realisations.

We use one of the most popular feature systems motivated by the work of Ladefoged

(2001): multivalued features. Each of these features takes one of several possible values
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Feature Possible Values

centrality central full nil

continuant continuant noncontinuant

frontback back front

manner vowel fricative approximant

nasal occlusive

phonation voiced unvoiced

place low mid high

labial coronal palatal

corono-dental labio-dental

velar glottal

roundness round non-round

tenseness lax tense

Table 2.1: The multivalued feature system. All features can additionally take the value

’silence’.

— for example, manner of articulation is one of: approximant, fricative, nasal, stop,

vowel and silence. The multivalued feature system is shown in Table 2.1.

For our experiments, described at the end of this chapter, we used a smaller subset of

the multivalued feature system: front-back, place of articulation, manner of articulation,

roundness and voicing. The motivation for this particular choice of features is provided

in (King and Taylor, 2000).

2.3.2 Detecting Distinctive Features in Continuous Speech

In this section we briefly outline the mechanism for an automatic detection of phonolog-

ical distinctive features in continuous speech. Such a mechanism is necessary because

it facilitates the automatic construction of the final representation. At this point in the

chapter we would like to note that this step during the construction of the representation

is a classifier in itself.

The automatic detection of phonological distinctive features has received significant

attention in the ASR community. This interest is primarily fuelled by the apparent lim-

itations of the traditional acoustic approaches to ASR, such as Hidden Markov Models

(HMMs). In the traditional approach to ASR (see Young, 2001 and Jelinek, 1997 for

an overview), speech is usually represented by a linear sequence of acoustic models,

arranged like “beads on a string” (Ostendorf, 1999). Each model represents a phoneme
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or short context-dependent sequence of phonemes (this arrangement is due to the fact

that words in the lexicon can easily be re-written as sequences of phonemes). For a cri-

tique of this approach to modelling, see Ostendorf (1999) and King and Taylor (2000).

Among the problematic issues are the following:

• The models have to take the highly context-dependent nature of phonemes into ac-

count. This is, however, computationally intractable since inclusion of the context

(previous phone, for instance) leads to an exponential explosion in the number of

model parameters to estimate during the learning stage.

• It is assumed that the sequence of acoustic observations, which are highly dynamic

and nonlinear, can be synchronised with a linear sequence of phonemes (models).

In order to address these concerns, some researchers have argued for the use of

alternative units for ASR (Ostendorf, 1999). Among the candidates for the proposed

alternative units are distinctive phonological features (King and Taylor, 2000; King

et al., 2000). In particular, King and Taylor have shown in (King and Taylor, 2000)

that recurrent neural networks can be successfully used to perform accurate phonologi-

cal feature detection from speech signals (the details on the performance of the detector

are given later on in this chapter, in Section 2.6.2). This detection can be viewed as a

nonlinear mapping from the acoustic to the phonological space. We used their method-

ology in our work and the details of the experimental setup for detection of multivalued

features (Gutkin and King, 2004b) are the same as those described by Wester (2003).

Let
{
f1, . . . , fNf

}
denote the set of Nf multivalued features. In Section 2.3.1 we

mentioned that each multivalued feature fj , 1 ≤ fj ≤ Nf , is not binary, but can take

multiple values (the number of which will be denoted by Mfj
). The neural networks

that recover multivalued features (one neural network for each of the Nf features) from

speech use a 1-of-Mfj
encoding on their output units. Hence there are Mfj

real-valued

outputs (ranging from 0 to 1) for each feature fj . The total number of such values

produced by the neural network for each speech frame is

N =
Nf∑
j=1

Mfj
. (2.1)

Since the training data (TIMIT corpus of read speech described by Garofolo et al., 1993)

is fully labelled and segmented (by human experts), it is possible to label each frame

in the data with the corresponding phonological feature values. Network training is

achieved by specifying canonical targets (0 or 1) for each labelled frame, but at runtime

the output activation values take continuous values between 0 and 1, and the features

change value asynchronously (see Figure 2.1).
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vowel
fricative
approximant
nasal
occlusive
silence

iy kcl k ix n aa m ix kcl k ah pcl b ae kcl k s pau
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Figure 2.1: Example network output for the words “...economic cutbacks” for the manner

feature of the multivalued feature system. The top plot shows the target values as derived

from the canonical phoneme representation. The bottom plot shows the output of the neural

net. Reproduced with permission from King and Taylor (2000).

Example 2.1. Figure 2.2 shows the phonemes and the syllables (the first two graphs

on the top of the figure) of an utterance “the cat’s meow” expressed by multivalued

distinctive features (the three bottom graphs) automatically recovered from the TIMIT

corpus of read speech by Wester (2003). Manner, voicing and place of articulation

features are shown. The symbols [kcl] and [tcl] are closures corresponding to stops [k]

and [t] while [h#] is a silence marker. As can be seen from Figure 2.2, the nonlinear

mapping from acoustic to phonological space exhibits asynchrony, with each individual

features usually not changing value directly at the phoneme or syllable boundaries. For

example, the devoicing at the onset of “cat’s” occurs after the left phoneme boundary

of [k] (the labels are placed at the start of segments). B

2.3.3 Transition to Symbolic Space

During run time, the outputs of the feature detecting neural networks are not binary but

continuous (ranging from zero to one) and can be interpreted as probabilities of certain

features being present in the sound corresponding to the current frame. Since each

probability measurement recovered in this way has a direct linguistic interpretation,

we assume that this numeric measurement corresponds to a certain linguistic fact (e.g.

degree of voicing) and can thus be represented symbolically, turning the neural networks

into an effective structural detector.

For each of the Nf multivalued features it is therefore possible to map the Mfj
con-

tinuous activation values of the corresponding neural network into the symbols using

simple quantisation over some finite alphabet Σ, effectively obtaining Mfj
independent
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Figure 2.2: Phonemes and syllables of an utterance “the cat’s meow” expressed by multival-

ued distinctive features. Manner, voicing and place of articulation features are shown. The

symbols [kcl] and [tcl] are closures corresponding to stops [k] and [t] while [h#] is a silence

marker. This figure has been produced by the software developed by Wester (2003) for her

research.
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Figure 2.3: Example of a quantisation of one output activation value of a neural network

over a three symbol alphabet. The resulting stream consists of 10 symbols.

time series, which we call string streams. The overall number of distinct streams ob-

tained using this procedure is N , where N is given by equation (2.1). Note that each

vector of N symbols thus obtained corresponds to one speech frame.

Example 2.2. Figure 2.3 shows a simple quantisation process of some continuously val-

ued output into the string over some three symbol quantisation alphabet. The resulting

symbolic stream consists of 10 symbols.

It is important to note that the names of the symbols (high, mid and low) in Fig-

ure 2.3 (and in Figure 2.5 on p. 58) denote the ranges of the quantised probability values

rather than the values of the distinctive phonological feature place of articulation from

Table 2.1 (p. 53). B

2.3.4 Phonological Templates

The speech has now been transformed into a sequence of vectors of symbols (N symbols

for each frame). Given the phonemic boundaries, the speech can now be seen as a linear

sequence of symbolic matrices, each identifying a phoneme in terms of its distinctive

phonological features. We are now ready to introduce the most fundamental element of

the representation — the objects. In what follows, we shall explain how these objects

can be defined via the symbolic matrices and also discuss the structure of these objects

in more detail.

Our phoneme representation system is based on the objects which we call phono-

logical templates (or simply templates). Each phoneme class P is a set
{
p
}

of one or

more templates. Each template p is a realisation of class P , encountered in the data.

It is convenient to represent a template as a matrix of symbols. A template p of class

P , p ∈ P , is shown in a matrix format in Figure 2.4, where tp is the start time, kp
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is the duration of p in frames and N is the fixed number of distinctive phonological

feature-values given by equation (2.1).

f
tp
1 f

tp+1
1 · · · f

tp+kp−1
1

f
tp
2 f

tp+1
2 · · · f

tp+kp−1
2

· · · · · · · · · · · ·
f

tp
N f

tp+1
N · · · f

tp+kp−1
N

→t

Figure 2.4: Matrix representation of a phonological template p from class P . Duration of

phoneme p is given by the number of frames kp.

Example 2.3. Figure 2.5 shows a simple representation for the two-class problem

consisting of [p] and [b] stop consonants (two instances of each), for each of which two

realisations are available. In other words, a class P/p/ of unvoiced bilabial stops [p] is

represented by two templates p1
/p/ and p2

/p/. A class P/b/ of voiced bilabial stops [b] is

represented by another two templates p1
/b/ and p2

/b/.

For the ease of visualisation only, we have chosen the SPE distinctive feature system,

first introduced by Chomsky and Halle (1968). The reason for doing this is because the

example above is easier to visualise with the SPE feature set. It is important to note

that the template-based representation, which we introduced above, can represent SPE

streams as well as multi-valued feature streams.

Each template consists of three independent distinctive feature streams (over a three-

symbol alphabet) from the SPE features system ([tense], [consonantal] and [sonorant])

defined in (Chomsky and Halle, 1968). The three symbols can be interpreted as feature

being absent from the makeup of the phoneme (low), feature undergoing a transition

(mid) and feature being present (high). B

p1
/p/ p2

/p/

high

mid

low

p2
/b/p1

/b/

Tense

Consonant.

Sonorant

Figure 2.5: Simple three stream template representation of phonemes [p] and [b] (two

instances of each) over a three symbol alphabet. The features [tense], [consonantal] and

[sonorant] belong to the SPE (Chomsky and Halle, 1968) feature set.

This representation has a number of attractive features. For example, it accounts

for duration. Since the durations of templates vary, even within the set representing a

class (phoneme), templates of various durations can be used for a given class. Aspects
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of co-articulation (such as assimilation, described above) can be accounted for, since the

features are represented explicitly and independently. They can change value anywhere

within a given template. Finally, this representation is amenable to human examination

since its components have explicit linguistic interpretation. One of the shortcomings

of this representation is, that at present, we have no way of modelling the feature

spreading from one template on to the next one. This is because each template only

has the knowledge of its own speech frames.

2.4 Phonological Metrics and Metric Space

Having introduced the phonemic templates, which are the structural objects in our

representation, in this section we introduce the second fundamental component of the

representation, without which the representation is not complete — the metric. The

metric defined on the phonological templates allows us to introduce the complete rep-

resentation — the metric space.

In Section 2.4.1, we define (in general terms) the metric on a set of phonological

templates from the previous section. This allows us to complete the definition of the

phonological metric space for our approach. We conclude the exposition in Section 2.4.2,

where we give a more detailed account of the metric we use in our approach.

2.4.1 Phonological Metric Space

Once the structural representation is obtained by means of quantisation of neural net-

work outputs, the next step is to introduce a similarity measure, defined on phonological

templates.

When defining the phonological templates in Section 2.3.4 we mentioned that each

template p from some class P consists of N strings of the same length kp over a finite

alphabet Σ. We called these strings streams.

In Section 2.2, the concept of a metric was defined to be a real-valued mapping on a

set of all objects in the domain under investigation. For our phonological representation,

the set of all objects is given by the set of all phonological templates which we denote

by P. The real-valued mapping on the set P will be denoted by dP. We proceed by

defining a metric space corresponding to our structural representation:

Definition 2.4 (Phonological Metric Space). A phonological metric space is a pair

(P, dP), where P is a set of all possible templates having N streams and

dP : P× P→ R+
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is a mapping of the Cartesian product P× P onto the set of non-negative real numbers

R+, such that

dP =
N∑

i=1

di , (2.2)

where di can be any chosen string similarity measure, satisfying the metric axioms from

Definition 2.1.

Remark 2.1 (Naming Convention). Note that the resulting properties of the metric

space are essentially dictated by the per-stream distance functions di. The necessary

conditions for the satisfaction of metric axioms by the template metric dP can be violated

if di are not metric functions. In such a case, the resulting space is not a metric space.

For the sake of brevity, in this chapter we will continue to refer to such spaces as metric

spaces.

The following are the important assumptions we make:

• Since it is not clear whether the use of several different metrics di for defining

the template metric dP in equation (2.2) can be justified on linguistic grounds, we

prefer to keep the modelling simple and use the same type of metric for all the

streams of any given template, i.e.

∀i ∈ [1, N ] : di = d . (2.3)

Thus, given any two templates, p and q, the distance between them is defined by

dP(p, q) =
N∑

i=1

d(sp
i , s

q
i ) ,

where sp
i and sq

i are the two strings representing stream i of p and q.

• Since the metric d, defined in equation (2.3), is common to all the string streams

si in the template p, all the streams have to be defined over a common alphabet

Σ.

2.4.2 String Metrics

In the previous section, we have defined the metric dP operating on the set of phono-

logical templates P in terms of the constituent metric d. Since each stream is a string,

metric d has to be a string metric. In this section we introduce the metrics we use in

our work.

In general, string metrics are usually defined in terms of edit costs. A string edit dis-

tance, introduces a set of edit operations with costs associated with each edit operation
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and defines the distance between the two given strings as a minimum (possibly weighted)

cost sequence of edit operations needed to transfer one string into another. Algorithms

developed for this formalism use either character-based or block-based operations. In

our work we use the more popular character edit distance algorithms. Several principles

underlying the operation of string edit distances are introduced in Section 2.4.2.1, along

with some important definitions.

The first, and by far the most popular, character edit distance algorithm was pro-

posed by Levenshtein (Levenshtein, 1966; Sankoff and Kruskal, 1983) and improved by

Wagner and Fisher who, in their classical paper (Wagner and Fisher, 1974), suggested an

algorithm based on dynamic programming which achieves a time complexity of O(n·m),

where n and m are lengths of the two strings to be compared. This algorithm has been

used for decades in many applications. For example, in bioinformatics this algorithm

was used for measuring the similarity of DNA and protein sequences (Needleman and

Wunsch, 1970; Smith and Waterman, 1981). We briefly introduce this algorithm in

Section 2.4.2.2.

An alternative metric, called the normalised edit distance, has been proposed by Marzal

and Vidal (1993). They argued that the normalised edit distance is better suited for

pattern recognition tasks than the classical edit distance. Based on their findings we

decided to use this metric in our work as well. We describe this algorithm in Sec-

tion 2.4.2.3.

2.4.2.1 Preliminaries

Given the two strings

A = a1, a2, . . . , an and B = b1, b2, . . . , bm

over some finite alphabet Σ, the aim is to compute the edit distance between A and B.

An additional symbol, not belonging to an alphabet Σ, is an empty symbol (or empty

string) denoted by ε.

Definition 2.5 (Edit Operation). An edit operation is an ordered pair (ci, cj) 6= (ε, ε),

where ci, cj ∈ Σ ∪
{
ε
}
. String B results from string A via (ci, cj) if

A = S1ciS2 and B = S1cjS2

for some strings S1 and S2 over Σ. The pair (ci, cj) is called a replacement if ci 6= ε, cj 6=
ε, a deletion if cj = ε and an insertion if ci = ε.

Definition 2.6 (Edit Sequence). A sequence E of edit operations is called an edit

sequence. Let

E = e1, e2, . . . , ek
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be an edit sequence. B is said to be derivable from A if there exists a sequence of strings

S0, S1, . . . , Sk such that A = S0, B = Sk and for 1 ≤ i ≤ k, Si results from Si−1 via ei.

In the worst case scenario, B is always derivable from A via a sequence consisting of n

deletions and m insertions.

Definition 2.7 (Edit Cost Function). A cost function δ is a binary mapping assigning

a non-negative real number to each edit operation (ci, cj). Thus, the cost of a sequence

E of length k is given by

δ(E) =
k∑

i=1

δ(ei) .

2.4.2.2 Wagner-Fisher Algorithm

Based on the definitions from the previous section, we can now define the weighted edit

distance between the strings A and B:

Definition 2.8. The edit distance δ between the strings A and B is given by

δ(A,B) = min
{

δ(E) | B derives from A via E
}

.

An efficient algorithm proposed by Wagner and Fisher for calculating the above

weighted edit distance proceeds as follows: Let

A(i, j) = ai, ai+1, . . . , aj and B(i, j) = bi, bi+1, . . . , bj

denote the two substrings of A and B. Also let

Ai = a1, a2, . . . , ai , Bj = b1, b2, . . . , bj , δi,j = δ(Ai, Bj) .

Construct a (n + 1)× (m + 1) matrix

D = (di,j) i ∈ [0, n], j ∈ [0,m] .

The first row and the first column of the matrix D are given by

d0,0 = 0 , d0,j = δ(ε, Bj) =
j∑

k=1

δ(ε, bk) , di,0 = δ(Ai, ε) =
i∑

k=1

δ(ak, ε)

and all the other elements of the matrix D are given by

di,j = δi,j .

Wagner and Fisher (1974) proved the following recursive relation:
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Theorem 2.1 (Recursive Relation). At each iteration of the computation,

δi,j = min
(
di−1,j−1 + δ(ai, bj) ,

di−1,j + δ(ai, ε) ,

di,j−1 + δ(ε, bj)
)
,

where i ∈ [1, n], j ∈ [1,m].

Proof. See (Wagner and Fisher, 1974).

At the last iteration of the algorithm, the edit distance between the two strings is

given by δ(A,B) = dn,m. The algorithm uses O(n ·m) elementary steps and O(n ·m)

space.

An open area of research deals with attempts to lower the worst case quadratic

bound of this algorithm. The algorithm by Masek and Patterson (1980; 1983) achieves

the best known bound of O(m · n/ log n). Additional improvements in time complexity

have been obtained by Cole and Hariharan (1998); Landau and Vishkin (1986); Myers

(1986). However, Masek and Patterson’s worst case bound has not been surpassed.

2.4.2.3 Normalised Edit Distance

An alternative metric we use is the normalised edit distance proposed by Marzal and

Vidal (1993). The normalised edit distance between the two strings A and B is defined

as the minimum quotient between the sum of weights of all the edit operations required

to transform A into B and the length of the editing sequence corresponding to these

operations. Stated as an optimisation problem (Vidal et al., 1995), the computation of

the normalised edit distance is defined as

δ(A,B) = min
E∈E

δ(E)
|E|

,

where δ(E) is the cost of the editing sequence E from Definition 2.7, |E| is the length

of the editing sequence and E is the set of all possible edit sequences between A and B.

A straightforward procedure for computing δ(A,B) would require expanding all the

possible editing sequences between A and B and computing the corresponding nor-

malised weights. This approach would require an exponential computing time. Instead,

Marzal and Vidal (1993) proposed the following efficient procedure employing the con-

struction of the following (n + 1)× (m + 1)× (n + m + 1) matrix D. Let

D = (di,j,k) i ∈ [0, n], j ∈ [0,m], k ∈ [0, n + m] .
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Theorem 2.2 (Recursive Relation). Let n and m be the lengths of the strings A and

B to be compared. Then

∀i, j, k 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ n + m :

1. If max(i, j) ≤ k ≤ i + j then

di,j,k = min
(
di−1,j,k−1 + δ(ai, ε) ,

di,j−1,k−1 + δ(ε, bj) ,

di−1,j−1,k−1 + δ(ai, bj)
)

;

2. Otherwise, if k < max(i, j) or k > i + j then di,j,k =∞.

Proof. See (Marzal and Vidal, 1993, Theorem 4.2).

The other values are calculated as follows:

Theorem 2.3. The following equalities are satisfied for the rest of the entries of matrix

D:

1. ∀i, 1 ≤ i ≤ n :

di,0,i =
i∑

l=1

δ(al, ε) and ∀k 6= i : di,0,k =∞ ;

2. ∀j, 1 ≤ j ≤ m :

d0,j,j =
j∑

l=1

δ(ε, bl) and ∀k 6= j : d0,j,k =∞ .

Proof. See (Marzal and Vidal, 1993, Theorem 4.3).

Having recursively populated the matrix D using the relations from Theorems 2.2

and 2.3, the normalised edit distance is given by the following equation (Marzal and

Vidal, 1993, Theorem 4.1):

δ(A,B) = min
max(n,m)≤k≤n+m

dn,m,k

k
.

The algorithm described above has a time complexity of O(m · n · (n + m)). The

pseudocode for this algorithm is shown in Figure 2.6.

A faster version of this algorithm was proposed by the same authors in (Vidal et al.,

1995) and further improved by Arslan and Egeciognu (2000) for the cases when the cost

function is uniform (i.e. when the costs are associated with the type of the operation

and do not depend on a particular symbol). The normalised edit distance was shown to

outperform its un-normalised counterpart (regular string edit distance from the previous

section) on several small pattern recognition tasks, including hand-written digit (Marzal

and Vidal, 1993) and chromosome (Mart́inez-Hinarejos et al., 2003) recognition.
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Normalised Edit Distance(A,B)

1 N← |A|; M← |B|
2 D is an array of dimension (N + 1,M + 1,N + M + 1).

3 D[0, 0, 0]← 0; D[0, 0, 1]←∞;

4 for j ← 1 to M do

5 D[0, j, j − 1]←∞; D[0, j, j + 1]←∞
6 D[0, j, j]← D[0, j − 1, j − 1] + δ(ε, B[j])

7 for i← 1 to N do

8 D[i, 0, i− 1]←∞; D[i, 0, i + 1]←∞
9 D[i, 0, i]← D[i− 1, 0, i− 1] + δ(A[i], ε)

10 for j ← 1 to M do

11 D[i, j, max(i, j)− 1]←∞
12 for k ← max(i, j) to i + j do

13 D[i, j, k]← min
(

D[i− 1, j, k − 1] + δ(A[i], ε),

D[i, j − 1, j − 1] + δ(ε, B[j]),

D[i− 1, j − 1, k − 1] + δ(A[i], B[j])
)

14 D[i, j, i + j + 1]←∞
15 d←∞
16 for k ← N to N + M do

17 d← min
(
d, D[N,M,k]

k

)
18 return d

Figure 2.6: Pseudocode for computing the Normalised Edit Distance (Marzal and Vidal,

1993) between the two strings A and B.

2.5 Prototype Selection and Classification

Since the phonological metric space (P, dP) under investigation possesses a specific

template-based structure, in this section we generalise several techniques to operate

in the phonological metric space and address the two issues: the efficient selection of

templates by clustering and classification.

For each phoneme (class) in the training and test sets, the set of phonological tem-

plates derived from the speech signal is usually large. Since the symbolic metrics oper-

ating on the objects in question are much slower than their numeric counterparts, it is

therefore desirable to have a clustering procedure for selecting a small set of the most

typical (representative) members of any given class. In order to introduce the clustering

procedure, we need to properly define the concept of a mean of a set of phonological

templates. In Section 2.5.1 we introduce this notion via the generalisation of the con-
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cept of a mean for the set of strings and provide two different algorithms for computing

the most typical phonological template with respect to a given set. The clustering

procedure is then introduced in Sections 2.5.2 and 2.5.3.

In Section 2.5.4, we address the issue of supervised classification in the phonological

metric space and briefly introduce the generalisation of the efficient symbolic version of

the popular k Nearest Neighbour classification rule.

2.5.1 Template Means and Medians

In what follows, we distinguish between the notions of a mean and a median. The

median is an object which belongs to a supplied set. The mean is an object produced

by a non-trivial construction procedure and does not necessarily belong to a set. The

mean can be thought of as a generalisation of a median. This distinction is necessary

to avoid the confusion between these two notions in the symbolic setting.

2.5.1.1 From String to Template Medians

Given the set of strings and a distance defined on this set, the most obvious choice for

the most typical element is a median string, which is defined as an element of a set with

a minimal sum of (possibly squared) distances to all other elements. Consequently, we

define a median for the set of phonological templates by a trivial generalisation of a

notion of median string as follows:

Definition 2.9 (Median Phonological Template). Given a metric space (P, dP) and a

set P , P ⊂ P, the median phonological template ps is the member of the set P that is

defined as

p = arg min
p∈P

∑
q∈P

dP(p, q) ,

where dP is the template distance from Definition 2.4.

The time complexity of this algorithm is O(N · |P |2 · L2) where

L = max
p∈P
|p|

is the maximum length (duration) found among all the templates in a set P , |P | is its

cardinality and N is a fixed number of streams in any given template p.

Note, that the notion of a median string breaks down for very small sets. For

example, given a set consisting of only two strings, it is not possible to decide which one

of the two strings is more representative of the set (Mart́inez-Hinarejos et al., 2003).
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2.5.1.2 From String to Template Means

An alternative to string median is the string mean (Kohonen, 1985). The mean string

is a string minimising the sum of distances to each string of the set, but that does not

necessarily itself belong to the set.

Definition 2.10 (Mean String). Given a set of strings S over a finite alphabet Σ and

some string metric d defined on this set, the mean (or generalised median) string of a

set S is defined as

s = arg min
x∈Σ∗

∑
y∈S

d(x, y) .

The search for the mean string is NP-hard and in the worst case scenario, no efficient

algorithm can be devised (de la Higuera and Casacuberta, 2000; Mart́inez-Hinarejos

et al., 2003; Nicolas and Rivals, 2003). However, efficient techniques for computing an

approximation exist (Fischer and Zell, 2000; Kohonen, 1985). We adopted a greedy

algorithm proposed by Casacuberta and de Antonio (1997). This algorithm is shown in

Figure 2.7 (p. 77). The algorithm constructs the mean string symbol by symbol, making

use of the dynamic programming approach for computing the Levenshtein distance. The

time complexity of this algorithm is O(K2 · |Σ| · |S|), where K is the length of the biggest

string in S. This algorithm has recently been further improved by Mart́inez-Hinarejos

et al. (2003).

We treat the streams independently. Hence, given a set of templates P , we can find

N string means independently, one for each of the N sets of streams comprising the set

P . We then define a mean phonological template for a set P by constructing a template

which consists of the discovered N string means.

2.5.2 Clustering Algorithms

Given a phonological metric space (P, dP), a finite set of templates P ⊂ P and a positive

integer k, the goal is to organise (cluster) the templates (in some optimal or suboptimal

way) into a set Q of k clusters based on their dissimilarity dP. This is often referred to

as partitional clustering (Jain et al., 1999), as opposed to hierarchical clustering that

produces a nested series of partitions based on some dissimilarity-based criterion for

merging or splitting clusters.

Perhaps the most widely used partitional clustering algorithm is k-means (also

known as the basic ISODATA algorithm) (Duda et al., 2001; Jain and Dubes, 1988).

In a vector space (numeric) setting, the basic structure of the k-means algorithm is as

follows:

1. Initialisation: The traditional approach is to randomly generate k clusters and

determine the cluster centres (centroids) or directly generate k seed points as
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cluster centres. The centroid is the point generated by computing the arithmetic

mean for each dimension separately for all the points in the cluster.

2. Assign each point to the nearest cluster centre.

3. Recompute the new cluster centres.

4. Repeat until some convergence criterion is met (usually, the algorithm is con-

sidered to have converged if the cluster assignments have not changed from the

previous iteration).

Despite maximising inter-cluster (or minimising intra-cluster) variance, the algorithm is

suboptimal because it can converge on a local minima of variance. The main advantages

of this algorithm (despite its sub-optimality) are its simplicity and speed, which allows

it to run on large datasets. A special issue, addressed in the next section, is the issue

of the initial cluster assignment. Changing the initialisation strategy usually affects the

final partition.

The algorithm can be generalised to operate in the symbolic space (P, dP) if instead

of the familiar numeric means (vectors), any symbolic equivalents of means are used.

In particular, in our work we used the mean and median templates from Section 2.5.1

to represent the cluster centroids. In what follows, we refer to this generalised version

of the algorithm as k-medians.

It is important to note that by generalising the problem to symbolic spaces, one is

faced with the apparent increase in the computational complexity of the problem due

to the inherent complexity of the modelling space (for example, see NP-completeness

issues with regard to computing the mean template, Section 2.5.1). As we have seen,

however, several computable approximations exist.

2.5.3 Clustering Initialisation Criteria

One of the peculiarities of the k-medians algorithm is that it is sensitive to the initial

assignment of the clusters. Various assignment strategies result in different final cluster

partitions. In this section we describe the two initialisation techniques we used in our

work. The first is the generalisation of the well-known symbolic version of the MaxMin

algorithm. The second is the initialisation technique we think is more suitable for

modelling the phonological templates - the Duration-based algorithm.

2.5.3.1 MaxMin Initialisation

In a comprehensive study, Juan and Vidal (2000a) compared four different initialisa-

tion techniques for the k-medians algorithm for strings and favoured the generalised
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symbolic version of an efficient initialisation technique called MaxMin (Tou and Gon-

zalez, 1974). This initialisation algorithm iteratively selects one cluster centroid at a

time. At each iteration i, 1 < i ≤ k, the set Q consisting of i − 1 previously chosen

centroids is augmented with the centroid whose distance to its closest representative is

maximum (Juan and Vidal, 2000a), i.e.

Qi =

rand(P ) if i = 1 ,

Qi−1 ∪
{
qi

}
if i > 1

where the operator rand(P ) selects an arbitrary element of a set P and

qi = arg max
p∈P\Qi−1

min
q∈Qi−1

dP(p, q) .

This algorithm performs approximately n(n − k) distance computations. The pseu-

docode for this algorithm is shown in Figure 2.8 (p. 78).

2.5.3.2 Duration-based Initialisation

An alternative initialisation technique we investigated uses the duration of the training

templates. Given the training set of size M , the templates are first sorted by duration

and the data is then divided into k subsets, each containing M/k training templates

with the centroids of these k subsets chosen as initial centroids.

This initialisation technique tries to account for the (possibly) high variance in the

durations of the templates belonging to a set P to be clustered. Hence, the clusters are

initially grouped according to their duration.

2.5.4 Classification

Perhaps the most popular classification technique is the k Nearest Neighbour (k-NN)

classification rule (Duda et al., 2001). In general, the k-NN classifiers label an unknown

sample with the label of the majority of the nearest (with a smallest distance) neigh-

bours. One of the most attractive properties of this algorithm to us seems to be its

generality. The k-NN classification rule is entirely independent of objects in the sym-

bolic space. Classification of the unknown objects is based solely on the basis of the

symbolic space dissimilarity measure.

Given a phonological metric space (P, dP), a finite set of templates P ⊂ P, a test

template x ∈ P and a positive integer k, the goal is to compute an ordered list of

k-nearest templates P ∗ ∈ P k (and the corresponding distances D∗ ∈ Rk) to the test

template x.

Similar to clustering in symbolic spaces, a crucial issue which needs to be taken

into account is the issue of the computational complexity of the k-NN algorithm in the
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symbolic space. For large training and test sets, calculation of dissimilarity metrics

may become computationally prohibitive due to the high complexity of the symbolic

metric at hand. Perhaps the fastest k-NN search algorithm designed to cope with this

problem is the k-Approximating and Eliminating Search Algorithm, proposed by Juan

et al. (1998). Experiments conducted by the them on a chromosome recognition task

showed that the number of distances computed during the search phase was very small

and tended to be independent of the number of objects in the training set.

The pseudocode for the k-Approximating and Eliminating Search Algorithm (k-

AESA) operating in a phonological metric space (P, dP) is shown in Figure 2.9 (p. 79).

Briefly, the templates in the training set are divided into three sets (Juan and Vidal,

2000a): selected (S), active (A) and eliminated (E), though only the set A is maintained

by the algorithm. Prototypes in S are those which have already been selected to compute

their distances to the test template and build the current solution. The rest of the

templates are assigned to A or E in accordance to the following lower bound function

for the distance from a candidate (unselected) template p to the test template:

gS(p) = max
p∈S
|dP(p, p)− dP(p, x)| .

Candidate templates whose associated lower bounds are smaller than the current k

smallest distance are assigned to A, while the others are eliminated from the search (by

including them into E).

2.6 Experiments and Discussion

2.6.1 The Database

Our experiments used the TIMIT database (Garofolo, 1988; Garofolo et al., 1993). The

TIMIT corpus of read speech is designed to provide speech data for acoustic-phonetic

studies and for the development and evaluation of automatic speech recognition systems.

TIMIT contains broadband recordings of 630 speakers grouped into 8 major dialects

of American English, each reading 10 phonetically rich sentences. The TIMIT corpus

includes time-aligned orthographic, phonetic and word transcriptions as well as a 16-bit,

16 kHz speech waveform file for each utterance. The entire corpus is reliably transcribed

at the word and surface phonetic levels. Test and training subsets, balanced for phonetic

and dialectal coverage, are specified.

The standard training/test data partition is kept, with only the sx and si sentences

being used, resulting in 3,696 training utterances from 462 different speakers, out of

which 100 sentences were held out for cross-validation training of neural networks. The

entire test set of 1,344 utterances from 168 speakers was used for the classification
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Feature % Frames Correct Kh Ko

manner 87.0 200 6

phonation 92.9 100 3

place 78.3 300 10

roundness 90.6 100 3

frontback 86.4 100 3

Table 2.2: Neural network architectures (given by number of hidden units Kh and output

units Ko) used by Wester and frame-wise classification results for multivalued features she

reported (Wester, 2003).

experiment. None of the test speakers are in the training set, and hence all the ex-

periments are open and speaker independent. The phoneme set has been reduced to

39 phonemes as in (Lee and Hon, 1989; Wester, 2003). There are 46,869 phone labels

in the test set and 129,162 phonemic labels in the training set, 176,031 labels overall.

This experimental setup is similar to the ones in (King and Taylor, 2000) and (Wester,

2003).

2.6.2 Multivalued Feature Detection

The output of the feature detecting neural networks, which we use in the experiments

described in the next sections of this chapter, was provided by Wester (2003). In this

section we briefly mention some of the details of the feature detecting system she used.

Wester (2003) used five multivalued feature groups (manner, phonation, place,

roundness and frontback) out of eight shown in Table 2.1. The architecture of the fea-

ture detecting networks used by Wester is essentially similar to the one used in (King

and Taylor, 2000; King et al., 2000), with the exception of the number of hidden (Kh)

and output units (Ko) for each feature (see Table 2.2).

Frame duration of 25 ms was used, with a frame shift of 10ms. For each 25 ms

frame, the feature vector consisted of 12 Mel frequency cepstral coefficients (MFCC)

plus energy. Additional components of the feature vector included delta and acceleration

(delta-delta) coefficients, forming a feature vector with an overall dimension of 39.

These feature vectors served as input (together with the context frames) to the neural

networks. Overall multivalued feature classification results, reported by Wester (2003),

calculated in terms of the number of correctly classified frames are shown in the second

column of Table 2.2. For more information on the architecture of the neural networks,

the learning control parameters and the validation strategy, refer to (Wester, 2003).
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2.6.3 Derivation of Phonological Templates

In order to derive symbolic phonological templates, we quantised the neural network

output activations using several different quantisation levels, each inducing a new al-

phabet Σ. For each quantisation level, the redundant templates were removed from the

resulting symbolic training and test sets. By redundant templates we mean identical

templates which appear in the training and test sets as an artifact of quantisation.

Table 2.3 shows the training and test set sizes obtained for several quantisation levels

Σ and the corresponding percentage of the overall number of redundant templates re-

moved from the training and test sets (with respect to the original 176,031 templates

in the training and test set).

Quantisation Level Training Set Test Set Redundancy (%)

3 107,284 42,061 15.1

5 117,968 42,198 9.0

7 118,433 42,214 8.7

10 124,962 42,540 4.8

15 125,151 42,554 4.7

Table 2.3: Number of templates in the training and test sets for each of the quantisation

levels |Σ| (alphabet sizes).

It can be seen from Table 2.3 that the increase in quantisation level leads to an

increase in the number of unique templates in both training and test sets. As the size of

the alphabet increases, the sizes of the symbolic training and test sets are expected to

asymptotically reach the original value of 176,031 templates, with the measure of redun-

dancy tending towards zero. The larger the size of the alphabet, however, the larger the

“symbolic variance”. As a result, symbolic modelling in the metric spaces constructed

over large alphabets becomes computationally more expensive. For the experiments

described below, we decided to fix the cardinality of the quantisation alphabet to 10.

We assume that all the constituent streams of each phonological template are inde-

pendent, hence we are weighting them all equally. Overall, each template has N = 25

streams corresponding to five multivalued features (see Table 2.2) associated with it.

The next issue we need to mention is the weight scheme of the edit costs we use when

computing the weighted Levenshtein (given in Section 2.4.2.2) and normalised (given

in Section 2.4.2.3) edit distances. In general, given the metric space (P, dP), where the

phonological templates are constructed over some finite alphabet Σ, we use a uniform

weight scheme, whereby ∀x, y ∈ Σ each insertion cost δ(ε, x) and each deletion cost
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δ(x, ε) is assigned the weight 1/|Σ| and each substitution operation δ(x, y) is assigned

the weight 2/|Σ|. The weights are independent of the respective alphabet symbols.

2.6.4 Training Set Pruning

In order to reduce the number of templates in the training sets P for each class of

phonemes, we clustered these sets using the k-median clustering algorithm described in

Section 2.5. In order to apply clustering and classification algorithms in the metric space

(P, dP), we needed to generalise the corresponding crucial concepts, such as the nature

of a concept of a mean in this metric space. Table 2.4 shows the concepts and algorithms

involved in the clustering in metric space (P, dP), along with the corresponding notation.

Algorithm Type Available Algorithms Notation

Similarity Weighted Levenshtein Edit Distance DL
P

Normalised Edit Distances DN
P

Mean Median Template MS
P

Mean Template MG
P

Clustering k-medians with Duration-based initialisation KD
P

k-medians with MaxMin initialisation KM
P

Table 2.4: The concepts and algorithms involved in the clustering in metric space (P, dP),

along with the corresponding notation. The third column (notation) contains the brief names

which we use to refer to the corresponding algorithms.

In order to reduce the size of the data and obtain k templates per each training set P

representing the classes in question, we used two different clustering schemes: k-medians

with Duration-based initialisation (KD
P ) and k-medians with MaxMin initialisation

(KM
P ). The k-median procedure makes use of the concept of mean, therefore, for each

of the clustering strategies we used two different algorithms for calculating the mean of

the set of templates: the median template (MS
P ) and the mean template MG

P . Moreover,

for all of the above algorithms, we made use of two different similarity measures defined

on templates: the weighted Levenshtein (DL
P ) and normalised (DN

P ) edit distances.

Using the above algorithms, we reduced the size of the training set corresponding to

the quantisation alphabet with cardinality of 10, which we fixed in the previous section.

This training set consists of 124,962 templates (see Table 2.3). We chose the training

sets for each class to be represented by the following number of templates: 5, 10, 15,
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30, 50 and 100. In what follows, the number of templates per class will be denoted |P |.

2.6.5 Classification

During the recognition stage, an efficient k-NN AESA search technique (see Section 2.5.4)

was used throughout and simple nearest neighbour (NN) search based on the score of

the top candidate (in terms of the smallest distance to the test template) in the k-best

list outperformed the majority voting schemes.

Classification accuracy for the data obtained using a quantisation level of 10 is shown

in Table 2.5 for various values of |P | (5, 10, 15, 30, 50 and 100), which is the number

of centroids per class. As can be seen from Table 2.5, the schemes using weighted

Levenshtein distance outperform those using normalised edit distance. The schemes

using duration-based initialisation outperform those using MaxMin. These two findings

indicate that accounting for duration is important. Also, the schemes using median

outperform the one using generalised median (mean), suggesting that the construction

of the mean of a set of templates (as opposed to selecting an existing member of the

set) is problematic.

|P | 5 10 15 30 50 100

MS
P /DL

P /KD
P 54.73 58.41 58.84 59.01 59.61 60.26

MS
P /DN

P /KD
P 47.12 54.07 55.42 56.48 56.92 58.21

MS
P /DL

P /KM
P 49.89 50.62 50.03 50.59 50.74 54.12

MG
P /DL

P /KM
P 45.71 49.72 49.08 49.66 49.84 49.48

Table 2.5: Phoneme classification accuracy (%) for the TIMIT database.

The best result of 60.3% obtained in our experiments is lower than the state-of-the-

art phoneme classification results on the TIMIT database (39 class task, core test set)

reported in the literature:

• Zahorian et al. (1997) experimented with binary-pair partitioned (BPP) neural

network classifiers. They reported 77.0% phone classification accuracy.

• Halberstadt and Glass (1997) reported the best phone classification accuracy of

79.0% obtained using the hierarchical techniques for combining mixture diagonal

Gaussian classifiers.

• Clarkson and Moreno (1999) reported the results of several experiments with

Support Vector Machines (SVM). The best classification accuracy of 77.6% was

obtained with the SVM employing fifth degree polynomial kernel.



Chapter 2. Phonological Symbolic Metric Spaces 75

• Choueiter and Glass (2005) employ a novel wavelet and filter bank framework

specifically designed for phonetic classification. They report the best accuracy of

77.1%.

2.7 Summary and Potential Improvements

In this chapter we have introduced a linguistically motivated structural approach to

continuous speech recognition based on symbolic representation of distinctive phonolog-

ical features. The structures employing phonological distinctive features are based on

templates of strings. We have shown how existing notions and algorithms over strings

can be adapted to our representation by extending them to operate in a specific metric

space corresponding to our problem. We have also presented the results of phoneme

classification experiments.

Whilst the accuracy of the system is currently lower than those reported for state-

of-the-art numeric approaches, like Support Vector Machines (Salomon et al., 2002) and

context-dependent Hidden Markov Models (Young, 1992), we are reasonably optimistic

since:

• the structural framework we have used is both intuitive and interpretable;

• the results were obtained using standard algorithms widely used in the structural

pattern recognition community, especially bioinformatics;

• experiments were conducted on a task which is considered to be hard in the

structural pattern recognition community. Most of the algorithms we employ

have previously only been tested on small symbolic datasets;

• the system is currently very simple and there is considerable scope for improve-

ment.

Potential Improvements

Following is a list of several issues which need to be improved on, but otherwise are

outside the scope of this thesis:

Better modelling of temporal processes:

By this we mean improving the modelling power of the framework with respect to the

inherent asynchrony of the phonological features, as exhibited by assimilation and co-

articulation processes which operate across the phonemic boundaries. To this end, we
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note that the phonological structural representation presented in this chapter can (with-

out loss of generality) be extended to operate over larger syllabic, rather than phonemic,

templates. As observed by Wester (2003) and Greenberg et al. (2002), syllables are bet-

ter suited as units of linguistic analysis for modelling the asynchrony. This extension

can be achieved by syllabifying the lexicon and using the syllabic boundaries during the

derivation of the phonological templates.

Such an extension will increase the sizes of the phonological templates, with each

template now corresponding to a syllable. The computational burden on the framework

will therefore increase. In order to address this concern, we note that the efficiency of

the algorithms presented above can be improved by several means. In particular, in

order to handle larger templates, the constituent streams can be compressed using the

technique of run-length coding. Moreover, efficient similarity algorithms operating on

the run-length coded structures which were developed for the case of strings (Apostolico

et al., 1998; Bunke and Csirik, 1995; Mäkinen et al., 2003), can be extended to operate

over the templates. Such an extension will include, in particular, the development of

the concept of mean for the set of run-length coded templates.

Better weight schemes:

One of the assumptions we made was that the streams comprising each phonological

template are independent of each other, hence having an equal weight in the metric space

dissimilarity measure which was defined as a sum of individual per-stream dissimilarities.

This assumption is too restrictive. While the streams may be logically independent,

they are of differing importance. For example, place of articulation feature in some

circumstances might be more important than roundness feature. Hence, in order for

representation to improve, the weights need to be introduced which better account for

linguistic importance of this or the other feature. This could potentially be done along

the lines of research suggested by Kondrak (2000). In addition, the optimal weights

for the edit operations could be discovered from the training data at hand, perhaps by

attempting to parametrise the edit distance algorithms to use fewer parameters (edit

costs), along the lines of research suggested by Oommen and Loke (1999).
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Approximate Mean String(S)

1 Input: A finite set S of strings over Σ∗.

2 Output: A string over Σ∗.

3 Auxiliary:

4 ∀x ∈ S : Rx[0 . . |x|, 0 . . 1] � score (integer array)

5 ∀x ∈ S : Tx[0 . . |x|, |Σ| � temporary (integer array)

6 E[0 . . Mmax] � (integer array of prefix lengths)

7 M ← ε

8 for x ∈ S do � initialisation

9 Rx[0, 0]← 0

10 for i← 1 to |x| do

11 Rx[i, 0]← i

12 for j ← minx∈S(|x|) to maxx∈S(|x|) do

13 k ← j mod 2; l← (j − 1) mod 2; msym←∞
14 for a ∈ Σ do

15 add← 0

16 for x ∈ S do

17 Tx[0, a]← j; min←∞
18 for i← 1 to |x| do

19 Tx[i, a]← min
(

� string editing

Rx[i, l] + 1,

Tx[i− 1, a] + 1,

Rx[i− 1, l] + δ(x[i], a)
)

20 if min < Tx[i, a] then

21 min← Tx[i, a]

22 add← add + min

23 if msym < add then

24 msym← add; sym← a

25 M ← append(sym,M)

26 E[j]←
∑

x∈S Tx[|x|, sym]

27 for x ∈ S do

28 for i← 1 to |x| do

29 Rx[i, k]← Tx[i, sym]

30

31 return prefix of M of length arg min
1≤j≤Mmax

(E[j])

Figure 2.7: Pseudocode for computing an Approximate Mean String (Casacuberta and

de Antonio, 1997) for a set of strings S.
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MaxMin(P, k)

1 Output: Q ⊂ P (Q ∈ P k)

2 Let: n← |P |
3 Auxiliary: D ∈ Rn

4 Q← ∅; D ←∞; q ← rand(P )

5 for i← 1 to k do

6 Q← Q ∪
{
q
}
; m← 0;

7 for p ∈ P \Q do

8 dpq ← dP(p, q)

9 if dpq < Dp then

10 Dp ← dpq

11 if Dp > m then

12 q ← p; m← Dp

13 return Q

Figure 2.8: Pseudocode for the MaxMin initialisation of k-medians clustering algo-

rithm (Juan and Vidal, 2000a) in a phonological metric space (P, dP). The algorithm

performs n(n− k) distance computations.



Chapter 2. Phonological Symbolic Metric Spaces 79

k-AESA(P, x, k)

1 Output: P ∗ ∈ P k; D∗ ∈ Rk

2 Let: n← |P |
3 Preprocessing: Compute matrix of inter-template distances Dn×n ∈ Rn×n

4 Auxiliary: A ⊂ P; G ⊂ Rn

5 A← P ; D∗ ←∞; G← 0; p′ ← rand(A)

6 while |A| > 0 do

7 p← p′; dpx ← dP(p, x); A← A \
{
p
}

8 if dpx < D∗
k then

9 P ∗
k ← p; D∗

k ← dpx; Update P ∗ and D∗

10 g∗ ←∞
11 for a ∈ A do

12 Ga ← max(Ga, |Da,p − dpx|)
13 if Ga ≥ D∗

k then

14 A← A \
{
a
}

15 elseif Ga < g∗ then

16 p′ ← a; g∗ ← Ga

17 return P ∗ and D∗

Figure 2.9: Pseudocode for the k-Approximating and Eliminating Search Algorithm (k-

AESA) (Juan and Vidal, 2000b) operating in a phonological metric space (P, dP).



Chapter 3

Pseudo-Euclidean Embedding of

Phonological Metric Spaces

3.1 Introduction

In the previous chapter, we described a classification framework based on a structural

representation of speech. In that structural framework, which we called phonological

metric space, phonemes are modelled as string templates at a linguistically-well moti-

vated level, making use of the underlying phonological feature structure.

Structural representations like this, while offering a greater representational freedom

than conventional vector-space approaches, have their shortcomings. The chief being

the fact that the ability to apply a wide range of analytical machinery, which is available

to us in vector spaces, is lost. In some cases there exist symbolic space counterparts

of well-known techniques, such as k-nearest neighbours (discussed in Section 2.5), but

their computational complexity is increased by the absence of the vector space proper-

ties. For example, one of the clustering techniques from the previous chapter uses the

concept of a mean, which, while trivial to compute in vector spaces, is considered to

be an NP-hard problem when dealing with the set of strings over a finite alphabet. It

is thus not surprising that for problems such as this, we can only expect rather com-

plex solutions which, from a computational point of view, are unlikely to match their

vector-space counterparts. Such analytical limitations of the framework motivated us

to consider a theory which unifies the structural and vector-space approaches for the

representation of complex spoken language data (or other tasks), on one hand providing

the representational convenience of symbolic spaces and on the other allowing us to use

vector space decision-theoretical tools. It is such a theory, originally proposed by Gold-

farb (1979; 1984; 1985) and studied over the years by Duin et al. (2004); Graepel et al.

(1999); Pȩkalska (2005); Pȩkalska et al. (2004) and Haasdonk (2003), that we consider

80
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in this chapter. This chapter is partially based on our previous work (Gutkin and King,

2004a).

It is the dissimilarity measure which plays a central role in the considered approach

since it has been shown that, given a pseudo-metric space, it is always possible to

construct an isometric mapping onto the corresponding pseudo-Euclidean vector space.

This space is a member of a class of spaces in which the inner products between vectors

are not restricted to be positive. Moreover, in many cases such a construction cannot

be accomplished in a classical Euclidean space (Goldfarb, 1985). A brief exposition into

the theory of pseudo-Euclidean spaces is given in Section 3.2.

In general, representation of patterns via their dissimilarity is an alternative to direct

feature-based representation and by constructing an isometric (i.e. distance-preserving)

embedding of the original pseudo-metric space all the information contained in the

training sample is preserved in the vector representation (see Hjaltason and Samet,

2003 for an overview). The issues involved in construction of the isometric embedding

of the original training set, as well as dimensionality reduction of the resulting pseudo-

Euclidean vector representation, are discussed in Section 3.3.

Once the vector representation of the original phonological metric space is con-

structed in some pseudo-Euclidean space, previously unseen objects from the test set

can be represented in that pseudo-Euclidean space too. This is done by calculating

the metric projection of a new object onto the vector space. Different techniques for

achieving this are described in Section 3.4.

Next, we describe the phoneme classification experiments conducted in pseudo-

Euclidean spaces. The pseudo-Euclidean spaces are constructed from the original struc-

tural corpus with the help of the techniques mentioned above. We perform experiments

in dimensionality reduction and evaluate the performance of several classifiers on small

(three phonemes) and full (39 phonemes) classification tasks. The experiments are dis-

cussed in Section 3.5. We conclude the chapter in Section 3.6 and present some of the

directions for future research.

3.2 Preliminaries: Pseudo-Euclidean Vector Spaces

This section provides a brief introduction to the theory of pseudo-Euclidean vector

spaces, which are the generalisation of the Euclidean spaces. This generalisation is

manifest in the fact that the distance between the vectors in pseudo-Euclidean space is

not necessarily measured by the Pythagorean formula.

The most convenient way to arrive at a concept of generalised distance is by using

the concept of a symmetric bilinear form, introduced in Section 3.2.1. Briefly, symmetric
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bilinear form Φ defined on some vector space V , allows one to calculate the generalised

inner product between any two vectors in V . By fixing the symmetric bilinear form Φ of

the space V , a pair (V, Φ) completely describes the dissimilarity properties of the vectors

in V . Note the intimate relation of this approach to topology (Engelking, 1989; Khamsi

and Kirk, 2001). Various properties of vector spaces equipped with symmetric bilinear

forms have been studied in the mathematical literature (Dieudonné, 1960; Gantmacher,

1959; Greub, 1967).

Section 3.2.2 presents a brief overview of the theory of the pseudo-Euclidean spaces.

The pseudo-Euclidean space is a real vector space in which the matrix of inner products

corresponding to the symmetric bilinear form is no longer constrained to be positive

definite, i.e. the squared norm (defined as an inner product between the vector and

itself) is not constrained to be positive. The theory of pseudo-Euclidean spaces is

reasonably well understood (Greub, 1967, Chapter IX). We base the following exposition

on an excellent self-contained overview provided by (Goldfarb, 1985, Chapter 3), which

contains a detailed treatment of this topic.

3.2.1 Symmetric Bilinear Forms

Let V be a vector space over the field of real numbers R (in what follows, we will simply

refer to V as a real vector space). One of the fundamental mathematical notions which

allows one to define metrics on the vector spaces (in other words, to “metrise” the vector

spaces) is the notion of a symmetric bilinear form (Gantmacher, 1959), defined below.

Definition 3.1 (Symmetric Bilinear Form). A symmetric bilinear form on V is a map-

ping

Φ: V × V → R

that ∀x1, x2, y ∈ V and ∀c ∈ R satisfies the following axioms:

Φ(x1 + x2, y) = Φ(x1, y) + Φ(x2, y) (3.1a)

Φ(cx, y) = cΦ(x, y) (3.1b)

Φ(x, y) = Φ(y, x) (3.1c)

From the above, we can derive the following property

Φ(y, x1 + x2)
(3.1c)

= Φ(x1 + x2, y)
(3.1a)

= Φ(x1, y) + Φ(x2, y) , (3.2)

which will be useful in subsequent developments.

Symmetric bilinear form of the two vectors x, y ∈ V can be seen as a generalised

inner product. For instance, as a consequence of the above definition, the Euclidean
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scalar product is defined as a specialised symmetric bilinear form which in addition

to satisfying the above axioms also possesses the following property: for all non-zero

vectors x in V Φ(x, x) > 0.

Perhaps a more intuitive interpretation of symmetric bilinear forms is given by the

notion of the squared distance, given in the following definition.

Definition 3.2 (Squared Distance). Let V be a real vector space with a corresponding

symmetric bilinear form Φ defined on it. The square of the distance between vectors x

and y of V with respect to Φ is given by

‖x− y‖2 = Φ(x− y, x− y) .

In addition, a squared norm of vector x of V is defined as

‖x‖2 = Φ(x, x) .

Let integer n be the dimension of the vector space V . Also let x and y be any two

vectors in V n. If one chooses any basis (ai)1≤i≤n of space V , the vectors x and y can

be expressed via this basis as follows:

x =
n∑

i=1

xiai and y =
n∑

i=1

yiai .

Consequently, it follows from axiom (3.1b) of Definition 3.1, that the symmetric bilinear

form Φ(x, y) can be evaluated as

Φ(x, y) =
n∑

i=1

n∑
j=1

xiyjΦ(ai, aj) . (3.3)

In particular, it follows from equation (3.3) that under the fixed basis (ai)1≤i≤n, the

symmetric bilinear form is completely determined by the numbers Φ(ai, aj), called the

coefficients of the symmetric bilinear form Φ with respect to the given basis. This leads

to the following definition:

Definition 3.3 (Matrix of Symmetric Bilinear Form, Gram Matrix). The square matrix

M(Φ) =
(
Φ(ai, aj)

)
1 ≤ i, j ≤ n

is called the matrix of symmetric bilinear form Φ with respect to the basis (ai)1≤i≤n.

Furthermore, from axiom (3.1b) of Definition 3.1 it follows that the matrix M(Φ) is

symmetric. It can also be seen, that the symmetric bilinear form Φ on the two vectors

x and y could be expressed as

Φ(x, y) = yT M(Φ)x .
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The matrix of symmetric bilinear form M(Φ) with respect to the basis (ai)1≤i≤n

is often referred to as the Gram matrix (Gantmacher, 1959; Greub, 1967). In general,

matrix M(Φ) completely defines the metric information for the corresponding vector

space V .

Definition 3.4 (Taxonomy of Bilinear Forms). A symmetric bilinear form Φ on a vector

space V n is said to be non-degenerate, if the rank of its matrix with respect to some

basis of V is equal to n, and degenerate otherwise. In addition, Φ is called:

positive if it is non-degenerate and ∀x ∈ V Φ(x, x) ≥ 0 ;

negative if it is non-degenerate and ∀x ∈ V Φ(x, x) ≤ 0 ;

indefinite if ∃x, y ∈ V such that Φ(x, x) < 0 and Φ(y, y) > 0 .

The positive symmetric bilinear forms are usually called inner (scalar) products, and

the vector spaces with inner products are widely known.

Example 3.1 (Lorentz Form). Perhaps the most well known indefinite symmetric bilin-

ear form is the Lorentz form (Greub, 1967) on R4 from the theory of relativity (Callahan,

2000). It is defined as

ΦL(x, y) = x1y1 + x2y2 + x3y3 − cx4y4 , (3.4)

where c is the speed of light. B

We will also need the notion of orthogonality in the vector space V , expressed via

the symmetric bilinear forms:

Definition 3.5 (Orthogonality). Vectors x and y of a vector space V with a symmetric

bilinear form Φ on it are orthogonal to each other with respect to Φ, if Φ(x, y) = 0.

Finally, we present the following important property of the symmetric bilinear forms:

Proposition 3.1 (Relation of Symmetric Bilinear to Quadratic Form). The symmetric

bilinear form can alternatively be expressed via squared distances in a vector space V

(this relates the symmetric bilinear form to a notion of quadratic form (Gantmacher,

1959; Greub, 1967)):

Φ(x, y) = 1
2

(
Φ(x, x) + Φ(y, y)− Φ(x− y, x− y)

)
. (3.5)
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Proof. The proof uses the axioms of Definition 3.1 and the corollary (3.2).

Φ(x− y, x− y)
(3.1a)

= Φ(x, x− y) + Φ(−y, x− y)
(3.1b)

= Φ(x, x− y)− Φ(y, x− y)
(3.2)
= Φ(x, x) + Φ(x,−y)− Φ(y, x)− Φ(y,−y)

(3.1b)
= Φ(x, x)− Φ(x, y)− Φ(y, x) + Φ(y, y)

(3.1c)
= Φ(x, x) + Φ(y, y)− 2Φ(x, y) .

3.2.2 Pseudo-Euclidean Space

Definition 3.6 (Pseudo-Euclidean Space). Let Φ be the non-degenerate symmetric

bilinear form on a real vector space V of dimension n. A basis (ei)1≤i≤n of V is called

orthonormal with respect to Φ if the matrix of Φ with respect to it has the following

canonical form

M(Φ) =

(
In+×n+ 0

0 −In−×n−

)
, (3.6)

where In+×n+ and In−×n− denote the identity matrices of dimensions n+ and n− respec-

tively. The ordered pair of integers (n+, n−), where n+ +n− = n, is called the signature

of the form Φ. The vector space V together with the form Φ is called a pseudo-Euclidean

(or Minkowski) vector space of signature (n+, n−) and is denoted by R(n+,n−).

Given an orthonormal (w.r.t Φ) basis (ei)1≤i≤n of V , the inner product between the

two vectors x, y ∈ V is measured as

〈x, y〉 = Φ(x, y) =
n+∑
i=1

xiyi −
n∑

j=n++1

xjyj , where x =
n∑

i=1

xiei , y =
n∑

i=1

yiei .

The square of the distance between the two vectors in pseudo-Euclidean space is defined

as

‖x− y‖2 = Φ(x− y, x− y) = (x− y)T M(Φ)(x− y) ,

where M(Φ) is the canonical matrix of the symmetric bilinear form given in equa-

tion (3.6).

The pseudo-Euclidean vector space R(n+,n−) can be viewed as consisting of two

non-commensurable Euclidean subspaces Rn+ and Rn− of dimensions n+ and n−, re-

spectively. If n− = 0, the pseudo-Euclidean space is Euclidean.

Example 3.2 (Minkowski Spacetime). The Lorentz form ΦL is given by equation (3.4)

in Example 3.1. A pseudo-Euclidean space R(3,1) corresponding to a pair (R4, ΦL) is

called Minkowski spacetime in special relativity theory (Pyenson, 1977; Rowe, 2001;

Sexl and Urbantke, 2001). This Minkowski space consists of two non-commensurable

subspaces R3 (space vectors) and R1 (time vectors). B
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x3

x2

x1 Φ(x, x) < 0

Φ(x, x) > 0 Φ(x, x) = 0

x1

x2

Φ(x, x) < 0

Φ(x, x) > 0

Φ(x, x) = 0

R(2,1)R(1,1)

(1) (2)

Figure 3.1: A visualisation of pseudo-Euclidean spaces R(1,1) and R(2,1) partitioned by the

isotropic cones (Goldfarb, 1985).

Note that the square distances in pseudo-Euclidean space can be negative and, in

particular, for a class of indefinite symmetric bilinear forms (such as the Lorentz form)

there exist vectors x and y in V such that Φ(x, x) < 0 and Φ(y, y) > 0. The crucial

difference between the Euclidean and pseudo-Euclidean vector spaces, however, is the

existence in the latter of non-zero vectors x, called isotropic, which are orthogonal to

themselves, i.e. such that Φ(x, x) = 0. The set of all such isotropic vectors in V is called

the isotropic cone of Φ and is amenable to geometrical interpretation. The inside of a

cone consists of all vectors whose squared lengths are negative and the outside consists

of the vectors with positive squared lengths, with the surface of the cone consisting of

vectors of squared length zero (Goldfarb, 1985; Greub, 1967).

Example 3.3. Figure 3.1 shows the isotropic cones that partition pseudo-Euclidean

spaces of signatures (1, 1) and (2, 1). A isotropic cone for a pseudo-Euclidean space of

signature (2, 1) is shown on the right-hand side of Figure 3.1. The symmetric bilinear

form corresponding to this space takes the form

Φ(x, y) = x1y1 + x2y2 − x3y3

and the equation for the partition surface of an isotropic cone consisting of isotropic

vectors is given by

‖x‖2 = (x1)2 + (x2)2 − (x3)2 = 0 . B

In the terminology of Greub (1967) adopted from special relativity theory, the

isotropic vectors and isotropic cone correspond to light vectors and light cone, respec-

tively. In special relativity the isotropic lines describe the trajectories of the photons in

Minkowski spacetime (Callahan, 2000; Rowe, 2001).
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Finally, it is desirable to have a method for relating the signature (n+, n−) of any

(not necessarily non-degenerate) symmetric bilinear form Φ to the properties of the

matrix M(Φ). According to the result proved by (Goldfarb, 1985, Theorem 3.12), for

every vector space (V, Φ) of dimension n, there exists a basis of V with respect to which

the matrix of Φ is

M(Φ) =


In+×n+ 0 0

0 −In−×n− 0

0 0 0


n×n

,

where the rank of M(Φ), called the rank of Φ, is n+ + n−, where n ≥ n+ + n−.

Consequently, the following properties of Φ can be established via its signature:

Φ is positive if and only if n+ = n

Φ is negative if and only if n− = n

Φ is indefinite if and only if n+ ≥ 1 and n− ≥ 1

3.3 From Metric to Pseudo-Euclidean Space: Isometric Em-

beddings

In the previous chapter, the phonological metric space was defined (Definition 2.4 on

p. 59) as the set of objects together with the corresponding metric (or other) measure.

With regard to speech, we defined the set of objects to be the set of structured objects

that correspond to phonological templates P. In addition, we provided several possible

metrics dP operating on that set.

Remark 3.1 (Naming Convention). In the previous chapter we referred to the pair

(P, dP) as the metric space, while noting (see Remark 2.1) that the similarity measure dP

does not have to be a metric. In the following discussion, we will rectify this notational

inconvenience by referring to the pair (P, dP) as a pseudo-metric space. A pseudo-metric

is a more general concept than a metric or semimetric, since on the one hand it is not

constrained to obey the triangle inequality axiom and on the other allows zero distances

between distinct objects (see Definition 2.3 in Section 2.2).

Furthermore, let P , where |P | = k, be a subset of a universe of all the phonological

objects P. Therefore, without loss of generality, when representing the pseudo-metric

space, the similarity measure dP can be replaced by the corresponding symmetric k× k

matrix DP of pair-wise proximities between the elements of a set P . In other words,

the (phonological) pseudo-metric space is given by a pair (P,DP ).

The natural question which arises next is how to make the transition to a vector

space representation and what criteria should guide such a transition. In this section we
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provide an answer to these questions. In general, given a pseudo-metric space (P,DP ),

the goal is to reduce each of the original structural objects in P to a point in some

abstract vector space where the decisions are to be made based on the metric informa-

tion only. It is this information provided by the symmetric dissimilarity matrix between

the objects of the set P which needs to be preserved by the embedding into the vector

representation space. Hence, the embedding needs to be distance-preserving or isomet-

ric. An alternative, which we do not consider in this chapter, is to construct a vector

space (not necessarily isometry-preserving) based on dissimilarities, where each origi-

nal object in pseudo-metric space is represented in a new space by a |P |-dimensional

dissimilarity-based feature vector, the elements of which specify the distances from the

original object to the rest of the objects in the training set (Duin et al., 2004; Pȩkalska,

2005; Pȩkalska et al., 2004).

Most of the conventional approaches to dissimilarity-based multidimensional scaling

for pattern representation and recognition (Borg and Groenen, 1997; Hérault et al.,

2002; Roth et al., 2003) provide techniques for embedding the original metric spaces

into the classical Euclidean vector space. It appears, however, that in many cases Eu-

clidean space is not flexible enough to accommodate for an isometric embedding of the

original problem and the “minimal” vector space in which such an isometry is always

guaranteed to exist is pseudo-Euclidean (Goldfarb, 1985, Chapter 4). Because we are

primarily interested in isometric transition from the proposed phonological metric space

from the previous chapter to the vector space, in this chapter we consider a pseudo-

Euclidean embedding, which is an efficient procedure for such a transition (Duin et al.,

2004; Goldfarb, 1984, 1985; Laub and Müller, 2004; Pȩkalska et al., 2004). In Sec-

tion 3.3.1 we describe one of the possible algorithms for an isometric pseudo-Euclidean

space embedding, which we used in our work. In addition, we discuss dimensionality

reduction which allows us, given the isometric embedding, to construct reduced vector

representation of lower dimension by retaining the principal uncorrelated axes of the

original sample. We provide a small, yet informative, example running throughout this

section (Goldfarb, 1985, Example 4.1).

Example 3.4 (Impossibility of Euclidean Embedding). Let the pseudo-metric space

(P,DP ) be given by a set P of four objects
{
p1, . . . , p4

}
and the following dissimilarity

matrix DP

DP =


0 1 2 1

1 0 1 1

2 1 0 1

1 1 1 0


4×4

. (3.7)

Note that DP has been generated by a metric because the triangle inequality is satisfied
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2 2

p1 p3

p1 p3

1

(P,D) (P,D)

Figure 3.2: A diagrammatic representation of a four-dimensional metric space from Ex-

ample 3.4 showing two possible configurations, both of which are impossible in Euclidean

geometry.

for all pairs of points. This metric space is constructed by taking the first three points

p1, p2 and p3 on a straight line and then adding the point p4 in such a way that it is of

the equal distance to each of the first three points.

The diagrammatic representation of this metric space (having two potential con-

figurations) is shown in Figure 3.2. It can be readily verified that the metric space

represented by the dissimilarity matrix of equation (3.7) cannot be isometrically repre-

sented in a Euclidean space. We consider two possible configurations:

1. On one hand, p4 must lie on the intersection of the two spheres of radius 1 with

centers at p1 and p3 respectively and the point p2 is the only point where these

two spheres meet. On the other hand, p4 must be at distance 1 from p2.

2. Here the spheres of the radii 1 with centers at p1 and p3 do not intersect at any

points, despite the fact that they should at both p2 and p4.

Alternatively, one can note that the theorem of Pythagoras is clearly violated by both

configurations (see shaded triangles). The distance between p1 and p4 should be
√

2 for

the first configuration and
√

5
2 for the second. B

3.3.1 Linear Embedding

Perhaps the most important result of (Goldfarb, 1985, Chapter 4) which we need is the

existence of an isometric embedding in a pseudo-Euclidean space, stated in a following

definition:

Definition 3.7 (Existence of Isometric Embedding). Given a finite pseudo-metric space

(P,DP ), P =
{
pi

}k

i=1
, there exists an isometric embedding

α : (P,DP )→ R(n+,n−) ,
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pi

vi

vjpj

α

α

α

α

R(n+,n−)(P,DP )

Figure 3.3: An isometric embedding α : (P,DP )→ R(n+,n−).

which is called a vector representation of (P,DP ), such that for any other embedding of

the same pseudo-metric space into a different space R(n′+,n′−), the following condition

n′+ ≥ n+ and n′− ≥ n−

is true. In other words, the above property implies that vector representation α is the

minimal mapping preserving isometry.

More formally, the notion of isometry can be introduced as follows: Let vi = α(pi),

1 ≤ i ≤ k. Then for all objects pi and pj in a set P

D2
P (pi, pj) = ‖vi − vj‖2 = Φ(vi− vj , vi− vj) =

n+∑
l=1

(
vl
i − vl

j

)2− n∑
l=n++1

(
vl
i − vl

j

)2
, (3.8)

where Φ is the symmetric bilinear form of signature (n+, n−) corresponding to R(n+,n−)

(see Figure 3.3).

3.3.1.1 Setting the Scene: Mean and Covariance in Pseudo-Euclidean Space

In order to introduce the notions of mean and covariance in pseudo-Euclidean space,

we need to consider some system of vectors in that space. In line with Definition 3.7,

assume that there exists an isometric embedding α′ of the pseudo-metric space (P,DP )

of k objects onto the pseudo-Euclidean space (V ′, Φ). Let some pl ∈ P , 1 ≤ l ≤ k map

to the origin of the representation, i.e. α′(pl) = 0. Then, using equation (3.5), the inner

product between any two vectors xi and xj in V ′ is given by

Φ(xi, xj)
(3.5)
= 1

2

(
Φ(xi − 0, xi − 0) + Φ(xj − 0, xj − 0) + Φ(xi − xj , xi − xj)

)
=

1
2

(
DP (pi, pl)2 + DP (pj , pl)2 −DP (pi, pj)2

)
. (3.9)

The above coefficients of the symmetric bilinear form correspond to the matrix M ′(Φ) =

Φ(x, y) of the symmetric bilinear form expressed solely on the basis of dissimilarities in
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the original pseudo-metric space. This construction forms the basis of the initial isomet-

ric embedding algorithm (not treated here) proposed by (Goldfarb, 1985, Chapter 4).

In particular, it is not difficult to see that the representation vectors xi forming the

basis of the space V ′ satisfy the isometric property (3.8) from Definition 3.7. Indeed,

by using the result of Proposition 3.1, for all xi and xj in V ′

‖xi − xj‖2 = Φ(xi, xi) + Φ(xj , xj)− 2Φ(xi, xj)

= 1
2

(
DP (pi, pl)2 + DP (pi, pl)2 −DP (pi, pi)2

)
+ 1

2

(
DP (pj , pl)2 + DP (pj , pl)2 −DP (pj , pj)2

)
−
(
DP (pi, pl)2 + DP (pj , pl)2 −DP (pi, pj)2

)
= DP (pi, pj)2 .

The mean vector for the vector representation xi = α(pi) is defined as

x =
1
k

k∑
i=1

xi .

Note that the mean vector x of vector representation V may not necessarily have any

direct physical interpretation in the original pseudo-metric space (P,DP ). In other

words, it is not the case that there exists an object p in P such that α(p) is x. Hence,

during the derivation of the following identities, it is important to make sure that we

do not rely on the existence of such an object in the original pseudo-metric space.

Using the axioms (3.1a), (3.1b) and the corollary (3.2) from the definition of sym-

metric bilinear form Φ, the norm of the mean with respect to Φ can be computed

as

Φ(x, x) = Φ
(

1
k (x1 + x2 + . . . + xk), 1

k (x1 + x2 + . . . + xk)
)

=
1
k2

k∑
i=1

k∑
j=1

Φ(xi, xj)

=
1

2k2

k∑
i=1

k∑
j=1

(
DP (pi, pl)2 + DP (pj , pl)2 −DP (pi, pj)2

)
.

Then, by using the above identity, the squared distance between a mean vector x and
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any vector xi in V ′ can be expressed as follows

‖xi − x‖2 = Φ(xi − x, xi − x) = Φ(xi, xi) + Φ(x, x)− 2Φ(xi, x)

= DP (pi, pl)2 +
1
k2

k∑
i′=1

k∑
j=1

Φ(xi′ , xj)−
2
k

k∑
j=1

Φ(xi, xj)

= DP (pi, pl)2 +
1

2k2

k∑
i′=1

k∑
j=1

(
DP (pi′ , pl)2 + DP (pj , pl)2 −DP (pi′ , pj)2

)
− 1

k

k∑
j=1

(
DP (pi, pl)2 + DP (pj , pl)2 −DP (pi, pj)2

)
=

1
k

k∑
j=1

DP (pi, pj)2 −
1

2k2

k∑
i′=1

k∑
j=1

DP (pi′ , pj)2 .

(3.10)

An important consequence of the above equation (3.10) is that the calculation of the

squared distance from any vector in the representation to the mean vector is independent

of the chosen origin pl.

Finally, we are ready to introduce the notion of the covariance in pseudo-Euclidean

space.

Definition 3.8 (Covariance Matrix). Let R(n+,n−) be some pseudo-Euclidean space,

the vectors of which are generated by the corresponding symmetric bilinear form Φ of

signature (n+, n−) and let
{
α(pi)

}
be the set of k vectors of dimension n representing

some pseudo-metric space (P,DP ). Also, let vector v represent the mean vector of the

vector representation α.

The set of all k vectors translated by the mean vector can be represented by the

n× k matrix A whose ith column is vi − v. Then, the (generalised) covariance matrix

of the pseudo-metric space (P,DP ) with respect to vector representation α is defined as

the following n× n matrix

SP (α) = AAT J =
( k∑

i=1

(vi − v)(vi − v)T
)( In+×n+ 0

0 −In−×n−

)
,

where J is the canonical matrix of symmetric bilinear form Φ in R(n+,n−) from Defini-

tion 3.6.

The above covariance matrix is more general than its Euclidean counterpart, be-

cause it consists of both negative and positive values. This fact is related to the non-

commensurable properties of the two constituent subspaces of R(n+,n−). Moreover, it

has been shown (Goldfarb, 1985, Theorem 5.3) that all the characteristic values of SP (α)

are real numbers. This leads to the embedding algorithm, which is presented next.
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3.3.1.2 Embedding Algorithm

In order to present the final result, we consider the original embedding α (see Defini-

tion 3.7). Unlike the embedding α′, the assumption that representation V corresponding

to α contains vectors which coincide with the origin is relaxed. Instead, we assume that

the origin of the space V coincides with the mean vector v, where the mean vector is

not part of the representation set. Hence, given the pseudo-metric space (P,DP ), the

coefficients mi,j of the matrix M(Φ) of the symmetric bilinear form are given by

mi,j = Φ(vi, vj)
(3.5)
= 1

2

(
Φ(vi − v, vi − v) + Φ(vj − v, vj − v)− Φ(vi − vj , vi − vj)

)
(3.10)

=
(1
k

k∑
j′=1

DP (pi, pj′)2 −
1

2k2

k∑
i′=1

k∑
j′=1

DP (pi′ , pj′)2
)

+
(1
k

k∑
i′=1

DP (pi′ , pj)2 −
1

2k2

k∑
i′=1

k∑
j′=1

DP (pi′ , pj′)2
)
−DP (pi, pj)2 .

By simplifying the above equation we obtain the following identity

mi,j =
1
2

[
1
k

( k∑
i′=1

DP (pi′ , pj)2 +
k∑

j′=1

DP (pi, pj′)2
)
−

1
k2

( k∑
i′=1

k∑
j′=1

DP (pi′ , pj′)2
)
−DP (pi, pj)2

]
.

(3.11)

The above construction, based on the assumption that the origin of the resulting space

coincides with the mean, has one important implication. In this case, it can be shown

that the non-zero characteristic values of the k × k matrix M(Φ) = (mi,j) (where mi,j

is given by equation (3.11)) of the symmetric bilinear form Φ of (P,DP ) coincide with

those of the covariance matrix SP (α) (see Definition 3.8) of (P,DP ) (Goldfarb, 1985,

Theorem 6.3). Because the covariance matrix represents a reliable means of analysing

the intrinsic dimensionality of the data, we adopt the following procedure, known as the

(main) embedding algorithm (Goldfarb, 1984, 1985, 1986). It can be seen as a generalised

version of conventional Principal Component Analysis (PCA), described by Duda et al.

(2001).

Let (P,DP ) be the pseudo-metric space, where the set P consists of k objects.

We want to construct an isometric vector representation of (P,DP ) in some pseudo-

Euclidean space, the dimensions of which, at this point, are not known. Construction

by the embedding α of a vector representation of (P,DP ) in a finite dimensional pseudo-

Euclidean vector space is achieved by following the steps given below:

1. Compute the k×k matrix M(Φ) given by equation (3.11). By performing an eigen-

decomposition of M(Φ), obtain the k × k matrix of the eigenvectors E and the
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k×k diagonal matrix of the eigenvalues F , hence M(Φ) = EFET . Several robust

eigen-decomposition techniques exist. In this work, we use the QR technique,

described in (Golub and Loan, 1983).

The eigenvalues in F correspond to the eigenvalues of the generalised covariance

matrix. Therefore, the number of positive and negative eigenvalues in F , denoted

by n+ and n− respectively, determine the dimension of the pseudo-Euclidean

space for our isometric mapping. Hence, the dimension of this space is (n+, n−),

where n = n+ +n−. The number of negligible eigenvalues (corresponding to noisy

dimensions) of F is usually small, hence n is usually close to k.

2. Reorganise F into another k × k diagonal matrix C, which contains first the

positive eigenvalues of M(Φ) in decreasing order, then the magnitudes of the

negative eigenvalues in decreasing order, followed by zeros (if any are to be found

among the eigenvalues of F ). From E, construct the k × k matrix H of the

eigenvectors of M(Φ) corresponding to the eigenvalues of M(Φ) in C. The matrix

M(Φ) is now given by

M(Φ) = HCHT = HC
1
2
(

J
0

)
C

1
2 HT = U

(
J

0

)
UT ,

where Jn×n is a canonical matrix of Φ from (3.6).

3. Compute k×k matrix U = HC
1
2 . The first n+ +n− elements of the i-th row of U

define the coordinates of α(pi), of a vector representation α : (P,DP )→ R(n+,n−)

with respect to an orthonormal basis of R(n+,n−).

An important consequence of the above algorithm is that any pseudo-metric space

(P,DP ) can be isometrically represented in a classical Euclidean vector space only if

all the numerically significant characteristic values of the corresponding generalised

covariance matrix (or matrix of symmetric bilinear form) are positive.

Example 3.5 (Isometric Embedding). The metric space, mentioned in Example 3.4,

was defined on the four objects with the dissimilarity matrix DP given by equation (3.7).

We also mentioned that the isometric embedding could not be accommodated by Eu-

clidean space. However, an isometric embedding into a pseudo-Euclidean space is pos-

sible and in this example we show how to construct such an embedding using the

embedding algorithm described above.

The matrix of the symmetric bilinear form M(Φ)4×4, calculated using equation (3.11)
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is

M(Φ) =


0.94 0.06 −1.06 0.06

0.06 0.19 0.06 −0.31

−1.06 0.06 0.94 0.06

0.06 −0.31 0.06 0.19

 .

The corresponding 4× 4 matrices F and E of eigenvalues and eigenvectors of M(Φ) are

F =


−0.25 0 0 0

0 10−7 0 0

0 0 0.5 0

0 0 0 2

 , E =


0.5 0.5 10−7 0.70

−0.5 0.5 0.70 10−7

0.5 0.5 10−8 −0.70

−0.5 0.5 −0.70 10−8

 .

Since there are two non-negligible positive eigenvalues and one negative one, n+ = 2

and n− = 1. Hence, the metric space can be isometrically represented in R(2,1). By

computing the matrix U (not shown here) and discarding one noisy dimension, the 4×3

matrix V corresponding to the vector representation of (P,DP ) is given by

V =


v1

v2

v3

v4

 =


α(p1)

α(p2)

α(p3)

α(p4)

 =


1 10−7 0.25

10−7 0.5 −0.25

−1 10−8 0.25

10−8 −0.5 −0.25

 .

The mean vector v of the representation is equal to (10−7, 10−8, 10−7) and, as expected,

is very close to the origin. In addition, the matrix DV (vi, vj) of squared inter-distances

between the vectors α(pi) is given by

D2
V =


0 1 4 1

1 0 0.999999 1

4 0.999999 0 1

1 1 1 0


and hence, the isometry is preserved. The visualisation of V in R(2,1) is shown in

Figure 3.4. B

3.3.2 Dimensionality Reduction

Since the eigenvalues of M(Φ) correspond to the characteristic values of the generalised

covariance matrix of the set {α(pi)}, the reduced vector representation (Goldfarb, 1985)

β : (P,DP )→ R(m+,m−) , m = m+ + m− < n

can be constructed from α by performing the following mapping

γ : R(n+,n−) → R(m+,m−) , (3.12)
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Figure 3.4: Minimal isometric embedding β of a metric space from Example 3.4 into a

pseudo-Euclidean space R(2,1). Vector v′0 (not part of the representation) corresponds to

the origin.

which is an orthogonal projection of the exact representation α on the subspace spanned

by the corresponding principal axes of the covariance matrix.

This is accomplished by removing the axes corresponding to small magnitudes of

the eigenvalues |ci| of C and retaining the eigenvalues corresponding to principal uncor-

related axes. If the removed eigenvalues are small, the resulting configuration β = γ ◦α
possesses the same isometric properties as α since the orthogonal projection γ in-

troduces only an insignificant perturbation to the original k × k dissimilarity matrix

(DP (pi, pj))i,j . Pictorial representation of the above mappings β and γ is shown in

Figure 3.5.

The vector representation constructed above by means of linear embedding α ap-

proximates the original inter distances between the objects exactly (Goldfarb, 1984,

1985). The intrinsic dimensionality of the data, however, might be much smaller and in

practice, construction of the reduced vector representation using mapping β often re-

moves the redundant and noisy dimensions from the original data. With the covariance

matrix one has complete control over the dimensionality of the vector representation.

Given a small positive threshold ε, one can remove all the axes whose respective eigen-

values c in the covariance matrix C are smaller (in magnitude) than ε.

The approach usually taken for dimensionality reduction is iterative, where one

starts with the original dimension (n+, n−) of the embedding α and iteratively removes

the dimensions corresponding to ci which are considered to be correlated according to

the criterion |ci| < ε, until no such dimensions are left (Goldfarb, 1985, 1986; Pȩkalska

and Duin, 2002).
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Figure 3.5: Reduced vector representation β = α ◦ γ obtained by performing an orthogonal

projection γ of the embedding α.

Given the reduced vector representation consisting of k vectors vi = β(pi) in R(m+,m−),

the degree of how well the resulting configuration preserves the isometry can be ex-

pressed by a sum of squares error function (Goldfarb, 1986; Pȩkalska et al., 2002):

ED
β = (

∑
i<j

Φβ(vi, vj)2)−1
∑
i<j

(DP (pi, pj)2 − Φβ(vi, vj))2 , (3.13)

where Φβ is the symmetric bilinear form of the resulting pseudo-Euclidean space R(m+,m−).

We refer to this measure as a representation error. An additional measure, which is

useful when the iterative mode of dimensionality reduction is adopted, is the magnitude

EM
β of the eigenvalue removed at each step during the construction of the reduced rep-

resentation. Obviously these two error measures are related: the bigger the magnitude

of the removed eigenvalue, the bigger the increase in the representation error ED
β , given

by equation (3.13).

Example 3.6 (Metric “Line” in Pseudo-Euclidean Space). This example (Goldfarb,

1985, Example 4.2) shows the construction of the reduced vector representation for an

isometric embedding of a pseudo-metric space shown on the left-hand side of Figure 3.6,

where a set P consists of eight objects and the dissimilarity matrix DP is given by

DP =



0 1 2 1 4 5 6 3

1 0 1 1 3 4 5 2

2 1 0 1 2 3 4 1

1 1 1 0 1 1 1 1

4 3 2 1 0 1 2 1

5 4 3 1 1 0 1 2

6 5 4 1 2 1 0 3

3 2 1 1 1 2 3 0


8×8

. (3.14)
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Figure 3.6: Reduced representation β of a metric space from Example 3.6 in a pseudo-

Euclidean space R(2,1). Vector v′4 (part of the vector representation) corresponds to the

origin.

The projection β is shown on the right-hand side of the figure (the representation

was translated by the vector β(p4). Hence, v′4 corresponds to the origin). It was

obtained by first computing the isometric embedding α into an 8-dimensional pseudo-

Euclidean space R(5,3). The representation error ED
β between (P,DP ) and α is close to

10−13. Next, by setting the eigenvalue threshold ε to 10−6, we obtained the projection

β into a 3-dimensional pseudo-Euclidean space R(2,1) with the representation error of

10−12. An attempt to reduce this space by one dimension (by removing the eigenvalue

ED
β = 1.78 bigger than ε) results in the two-dimensional pseudo-Euclidean space R(1,1)

with a huge increase in the vector representation error (representation error in R(1,1) is

0.013). Hence, we conclude that the intrinsic dimensionality of the pseudo-metric space

(P,DP ) in question is 3.

The projection in Figure 3.6 has one interesting property: all points lie on a curve

which could be called a “metric line” (Goldfarb, 1985). For every three consecutive

points v′i, v′j and v′k which belong to it,

‖v′i − v′j‖+ ‖v′j − v′k‖ = ‖v′i − v′k‖ ,

a property which in Euclidean space is only satisfied if the points belong to the same

line. B

3.4 Projection of Unseen Objects

Let q be an object which did not participate in the construction of the reduced vector

representation β(pi) ∈ R(m+,m−) of the training set P =
{
pi

}
1≤i<k

. In other words, q

is in some set Q such that P ∩Q = ∅. The question that needs to be addressed next is
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how to represent this new object in the constructed pseudo-Euclidean space R(m+,m−).

A procedure whereby q is added to the set P and the new configuration is obtained by

re-embedding anew for each q ∈ Q is obviously unacceptable for computational reasons.

A more feasible technique, which alleviates the above shortcoming, is to use the

method of orthogonal projection. Expressed informally, this idea is as follows (Gold-

farb, 1984, 1985): we assume that an isometric embedding α maps an object q onto

some point α(q) in R(n+,n−). Obviously, α(q) is not among the k points α(pi) of a set

comprising vector representation of a training set (P,DP ). Given this “phantom” α(q)

in R(n+,n−), it is possible to obtain its projection onto the reduced vector representation

space R(m+,m−) (a subspace of R(n+,n−)) by using only m + 1 distance computations in

(P,DP ).

In Section 3.3.1.1 it was mentioned that if we are given a set of k vectors vi in a

pseudo-metric space V corresponding to (P,DP ) and among these vectors there exists

a vector p0 such that its corresponding vector representation v0 is zero, then the inner

product between any two vectors vi and vj is given by equation (3.9) as:

Φ(vi, vj) = 1
2

(
DP (pi, p0)2 + DP (pj , p0)2 −DP (pi, pj)2

)
.

Based on the above observation, the basic idea is to somehow find the projection of q by

computing the distance DP (q, p0) between q and the object representing the origin, and

m distances DP (q, pi) between q and the m objects representing the basis of the reduced

space R(m+,m−). In Sections 3.4.1–3.4.2 we introduce two techniques for achieving this.

The search for the m basis vectors of the reduced space R(m+,m−), chosen among k

vectors representing (P,DP ), is a non-trivial task described in Section 3.4.3.

3.4.1 Basic Metric Projection

We assume that the training procedure resulted in the construction of both complete

and reduced representations α and β of the k vectors from the training set P in R(n+,n−)

and R(m+,m−), respectively. Basic metric projection

δ : (P,DP )→ R(m+,m−)

of a new object q onto R(m+,m−) proceeds as follows:

1. Among k vectors vi = β(pi), choose a vector v0 = β(p0) which would represent

the origin. In this work, p0 is chosen from P as the object whose average distance

to the rest of the objects in the training set is minimal.

2. Perform a parallel translation

τ : R(m+,m−) → R(m+,m−) , τ(vi) = vi − v0
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Figure 3.7: Basic metric projection δ of an unseen object q onto the reduced vector repre-

sentation space R(m+,m−). The chosen basis vectors are represented by the hollow circles.

of the k vectors vi by v0, hence τ(v0) = 0.

3. Among k − 1 vectors τ(vi) (the origin excluded) choose the basis

uj = τ(vj)1≤j≤m

of R(m+,m−) (see Section 3.4.3). In Definition 3.3 we mentioned that m vectors

uj of the basis completely define R(m+,m−) via the corresponding m ×m Gram

matrix

G =
(
Φβ(ui, uj)

)
0 ≤ i, j ≤ m , (3.15)

where Φβ is a symmetric bilinear form of R(m+,m−).

4. Orthogonal projection δ(q) of a new object q is defined by m + 1 distances

DP (q, p0), DP (q, pi)1≤i≤m as

δ(q) = Um×mG−1
m×mbm×1 ,

where columns of U are the coordinate columns of m vectors ui and b is a vector

whose ith coordinate is given by

bi =
1
2
[
DP (q, p0)2 + DP (pi, p0)2 −DP (q, pi)2

]
1≤i≤m

. (3.16)

Details of the derivation of the formulae in this step, closely related to the clas-

sical Gram orthogonal projection (Gantmacher, 1959, pp. 227–229), are given

in (Goldfarb, 1985, Sections 3.3 and 7.2). Diagrammatic representation of the

above algorithm is shown in Figure 3.7.
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Since B = UG−1 can be precomputed during the training stage, the only online

computations involved are those of b and the product Bb in step (4). The rest of the

computations in steps (1)-(3) are performed offline.

The Gram matrix G might be ill-conditioned, especially for large dimensions. There-

fore, in this work we avoid calculating the direct inverse using the LU decomposition,

but rather employ the Moore-Penrose pseudoinverse obtained using the Single Value

Decomposition (SVD) technique (Albert, 1972; Laub, 2004).

3.4.2 Corrected Metric Projection

The reduced vector representation β gives an approximation of the original pseudo-

metric space (P,DP ). Hence, the Gram matrix G for δ(pi) in R(m+,m−) in equa-

tion (3.15) differs from the exact Gram matrix for the α(pi) in R(n+,n−), while the

calculations in (3.16) are based on the precise distances. In other words, the basic

metric projection technique wrongly assumes that R(m+,m−), given by the Gram matrix

expressed via the symmetric bilinear form Φβ , fully preserves the isometry.

In order to avoid the perturbation above, an alternative construction called corrected

metric projection, referred to as δC ,

δC : (P,DP )→ R(m+,m−)

is suggested in (Goldfarb, 1986). Informally, instead of choosing the m basis vectors of

dimension m out of k translated vectors β(pi) in R(m+,m−), a better idea is to choose

the m basis vectors of dimension n out of k translated vectors α(pi) in R(n+,n−). Since α

is an isometric mapping, the m×m Gram matrix for the newly chosen basis of R(n+,n−)

will employ the symmetric bilinear form Φα that preserves the original inter-object

distances exactly.

More formally, this procedure is expressed as follows:

1. Choose an origin v0 among the k vectors vi = α(pi) spanning R(n+,n−).

2. Perform a parallel translation

τ : R(n+,n−) → R(n+,n−) , τ(vi) = vi − v0

of the k vectors vi by v0, hence τ(v0) = 0.

3. Among the k translated vectors choose m n-dimensional vectors

uj = τ(vj)1≤j≤m

in such a way that the signature of the m × m corresponding Gram matrix is

(m+,m−).
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Figure 3.8: Corrected metric projection δC of an unseen object q onto the reduced vector

representation space R(m+,m−). The chosen basis vectors in R(n+,n−) are represented by

the hollow circles.

Here we would like to draw attention to the fact that unlike the corresponding

step (2) of basic metric projection, m vectors uj are not chosen to be the basis of

R(n+,n−) simply because m < n.

Furthermore, unlike the basic metric projection, the coefficients of the m × m

Gram matrix G′ are given here by the inner product Φα in R(n+,n−).

4. Perform an orthogonal projection δ′(q) of a new object q onto R(n+,n−) (note

the difference with the corresponding step in the construction of basic metric

projection) as

δ′(q) = Un×mG−1
m×mbm×1 ,

where columns of U are the coordinate columns of m vectors ui and b is given by

equation 3.16.

5. Finally, a corrected metric projection δC(q) of an object q is computed by applying

the orthogonal projection

γ : R(n+,n−) → R(m+,m−) (3.17)

(defined in Section 3.3.2) to δ′(q) from the previous step. The above corrected

metric projection procedure is depicted in Figure 3.8.

An additional important step, performed offline, is called the correction of the vector

representation in R(m+,m−). This step is not present in the construction of the basic

metric projection. The idea is to apply the above steps (3) and (4) to all the vectors in

the training set P . In other words, we apply the corrected metric projection δC to all

of the k objects pi ∈ P . This is essentially an orthogonal projection of all the k vectors

τ(α(pi)) onto the subspace of R(n+,n−) spanned by m basis vectors uj and therefore

isomorphic to R(m+,m−).
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The following remark highlights a very important property of all the constructions

(embedding, reduced representation and two metric projections) presented up to this

point. This property affects the construction of decision surfaces (sometimes known

as separating hyperplanes (Greub, 1967)) in pseudo-Euclidean spaces (Goldfarb, 1985,

Section 7.3):

Remark 3.2 (Decision Surfaces). Let R(m+,m−) be the the pseudo-Euclidean vector

space in which the problem is represented by the vectors v1, . . . , vm. Select any pair of

vectors vi and vj . Let U denote the hyperplane in R(m+,m−) which is orthogonal to the

segment si,j connecting vi and vj . Also let v̂ be the the vector in R(m+,m−) normal to

the plane U . Since the normal vector v̂ is parallel to si,j , ‖v̂‖ ≥ 0.

In particular, a positive norm implies that the squared distances (w.r.t. correspond-

ing symmetric bilinear form) between all the vectors representing the training data, as

well as the projections of unseen objects, are positive. Furthermore, in most of the cases,

classical decision surface algorithms for Euclidean spaces can safely be used. In some

cases, however, the decision algorithms make implicit assumptions about the geome-

try of the underlying space. Linear support vector classifiers, for instance, require the

form of the dissimilarity matrix between the objects to be positive definite (Schölkopf

and Smola, 2001). In such cases the algorithms have to be generalised to operate in

pseudo-Euclidean spaces.

An alternative is to treat the resulting pseudo-Euclidean space as a regular Euclidean

vector space with a positive definite matrix of symmetric bilinear form. If such a

simplifying assumption is made any Euclidean-space classifier can be used (we treat

this case in more detail in Section 3.5.1.3).

3.4.3 Selecting the Basis for Metric Projections

For both metric projection methods, δ and δC , the m basis vectors spanning R(m+,m−)

are chosen in such a way as to minimise the average projection error between the

projection of the entire training set (obtained with δ or δC) and the original vector

representation of a pseudo-metric space (P,DP ) obtained by the mappings α or β.

Definition 3.9 (Projection Error). Let v̂ ∈ R(m+,m−) be the projection of a vector

v ∈ R(n+,n−) onto the subspace R(m+,m−) of R(n+,n−). The projection error between

two vectors v and v̂ is defined as the squared distance between them (Goldfarb, 1985), i.e.

as

Φ(v − v̂, v − v̂) = ‖v − v̂‖2 = DP (p, p0)2 − bG−1bT , (3.18)

where p0 is the selected origin, b is defined in (3.16) and G is the Gram matrix w.r.t

the basis.
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In what follows, we assume that the vector representation in R(m+,m−) is given by

the k × m matrix U , whose rows are the vectors representing the objects from the

original pseudometric space. We next introduce two approaches to the selection of the

optimal basis. The first approach to basis selection, which we refer to as regular, was

suggested in (Goldfarb, 1986; Pȩkalska, 2005; Pȩkalska et al., 2002). We also present an

alternative construction, called class-based selection, designed by us to address some of

the potential problems with the first approach.

3.4.3.1 Regular Basis Selection

The search for the optimal subset Ur of m basis vectors among k vectors comprising

the representation U is an iterative process. Assume the algorithm is currently at step

l. At the previous step, l − 1 objects have been selected as the basis U l−1
r forming a

subspace of R(m+,m−). The next candidate to be added to the basis is chosen from the

set U \ U l−1
r as the one minimising the average error between the resulting projection

of all the vectors in U onto R(l+,l−) (given by equation (3.18) where both G and b are

calculated w.r.t candidate set U l
r) and the original vector representation.

3.4.3.2 Class-based Basis Selection

Note that in the regular approach, described above, at each step the class label of

the candidate vector is ignored. This often results in uneven representation of classes

within the basis of the reduced space. In order to verify how taking into account the

class labels affects the classification performance, we implemented a novel alternative

basis selection approach. This approach selects the basis of the reduced space in such a

way that the projection error is kept to minimum, while making sure that the vectors

comprising the basis are well-balanced in terms of class representation.

Informally, this method operates as follows: Assume that the set U is subdivided

into N classes, i.e. U = C1 ∪ C2 . . . ∪ CN . The algorithm proceeds in exactly the same

fashion as its regular version but with one important distinction. At iteration l, in

addition to keeping track of the number of vectors l− 1 currently selected as the basis,

we also keep the identity i−1 of the class Ci−1 to which the last selected vector belongs.

The next lst vector is chosen not from the entire set U \U l−1
r , but rather from the next

class Ci \ C l−1
i , where C l−1

i is the set of vectors from class Ci which already reside in

the basis at iteration l.
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3.5 Experiments and Discussion

In this section we present the experimental results of a phone classification task on the

data represented in the pseudo-Euclidean domain. The original symbolic data consists of

phonological feature templates derived from the TIMIT database of read speech (Garo-

folo, 1988; Garofolo et al., 1993). Phonological feature templates, which make up a

phonological metric space, were described in detail in Chapter 2. The details of the

TIMIT corpus, as well as the procedures for deriving the phonological templates from

speech are given in Section 2.6.

Briefly, our phonological metric space consists of two sets — one for training and

one for testing, with 176,031 phone tokens from 39 classes. In Section 2.6, we de-

scribed the classification results obtained on this task in the symbolic metric space,

which was defined over a set of phonological templates. In that chapter, various sym-

bolic metric algorithms were evaluated on several quantised datasets (corresponding to

several pseudo-metric spaces, one for each quantisation level) obtained from TIMIT.

The pseudo-metric space (P,DP ) we have chosen in this chapter as the basis for our

experiments, corresponds to the phonological metric space of Section 2.6 for which the

best classification results were obtained. The details of (P,DP ) are as follows:

• The set P corresponds to the set of phonological templates derived from the

TIMIT data using a symbolic quantisation level of 10. The symbolic corpus cor-

responding to this quantisation level consists of 124,962 templates in the training

set and 42,540 templates in the test set.

• The similarity function DP , operating on the phonological templates from the set

P , is the weighted Levenshtein distance.

• The clustering technique is k-medians, employing phonological set median (rather

than generalised median) and duration-based initialisation.

Since the above dataset is large, for the experiments described below we have

adopted the following strategy: in order to get a better idea of the performance of

the classification algorithms in the pseudo-Euclidean space constructed from (P,DP ),

we first focus on a smaller 3-class task. The classes used in this task belong to three

different phonological categories and are a priori known to be reasonably well separa-

ble, according to the linguistic evidence (Ladefoged, 2001). This allowed us to test a

wider range of the classifiers, the results of which are otherwise difficult to interpret on

a larger 39-class task. Experiments on a 3-class problem are described in Section 3.5.1.

In order to compare the performance of the classifiers in the original symbolic space
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(Section 2.6) and the pseudo-Euclidean space, in Section 3.5.2 we describe the results

of the experiments on a full 39-class task.

3.5.1 Three-class Problem

The first set of experiments focuses on classification of three classes of phonemes from

three different phonological categories. The three classes under investigation consist of

one vowel [aw] (low back round) and two consonants [b] (voiced bilabial stop) and [z]

(voiced alveolar fricative). The original training set for these three classes consists of

6,629 unique symbolic phonological templates. The entire test set for the three classes of

phones, consisting of 2,423 unique phonological templates, was used in this experiment.

Since the matrix (DP ) of pseudo-metric space interdistances for such a set is rather

large and can cause numerical stability problems for matrix decomposition algorithms,

we reduced the dimensionality of the training set to 100 phonological templates per class,

using the clustering procedure in the original symbolic space (P,DP ). The algorithmic

setup for the symbolic clustering is described above.

3.5.1.1 Visualisation

In order to obtain the visualisation of the three-class problem, we first constructed an

isometric embedding α (see Section 3.3.1) for the pseudo-metric space (P,DP ) consisting

of 300 objects. The resulting isometric pseudo-Euclidean space is

R(143,156) , where n = 299 . (3.19)

Obviously, this space is highly pseudo-Euclidean, which means that the three-class

problem can not be isometrically represented by any conventional Euclidean vector

space. Next, we constructed a corrected metric projection δC (see Section 3.4.2) of the

entire training (300 vectors) and test sets (2,423 vectors) onto a pseudo-Euclidean space

of the same dimension. This step performs the calibration of the training and test sets.

The resulting projections, visualised by the three principal axes, are shown in Figure 3.9

(p. 107).

The visualisation of the three principal axes of the corrected metric projection ap-

pears to confirm the initial hypothesis that the chosen metric is adequate for discrimi-

nating between the classes in question and that some reasonably simple linear decision

surfaces can be constructed in the resulting vector representation space.

3.5.1.2 Dimensionality Reduction

The vector representation constructed above by means of linear embedding α approxi-

mates the original interdistances between the patterns exactly (Goldfarb, 1985). Recall
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Figure 3.9: Corrected metric projection δC of the training (3.9a) and test (3.9b) sets for the

three-class problem.

from the discussion in Section 3.3.2, that the intrinsic dimensionality of the data might

be much smaller and in practice, construction of the reduced vector representation us-

ing mapping β often removes the redundant and noisy dimensions from the original

representation (Goldfarb, 1985, 1986; Pȩkalska et al., 2002).

Let m be the dimension of the reduced vector representation β. The degree of

how well the resulting configuration preserves the isometry can be expressed by three

different measures:

• The sum of squares error function ED
β between the original isometric representa-

tion and the reduced one, which is given by equation (3.13) from Section 3.3.2.

• The magnitude of the eigenvalue EM
β removed at each step of the construction of

the reduced representation, described in Section 3.3.2.

• The average class separability measure Dβ , which is calculated as follows: Let P

be the training set divided into N classes Pl, P = P1 ∪ P2 . . . ∪ PN . The squared
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average within-class distance for a class Pl is given by

DW (Pl)2 =
2

|Pl|(|Pl| − 1)

|Pl|∑
i=1

|Pl|∑
j=i+1

‖β(pli)− β(plj )‖2 .

The squared average between-class distance for a pair of classes Pk and Pl is given

by

DB(Pk, Pl)2 =
1

|Pk||Pl|

|Pk|∑
i=1

|Pl|∑
j=1

‖β(pki
)− β(plj )‖2 .

The average class separability is then defined as

Dβ =
1

(N − 1)(N − 2)

N∑
i=1

N∑
j=i+1

√
|DB(Pi, Pj)2|√

|DW (Pi)2|+
√
|DW (Pj)2|

.

Given the original isometric representation α of 300 training objects, we conducted

dimensionality reduction experiments in order to study the behaviour of pseudo-Euclidean

spaces of smaller dimensionality. The representation error measures ED
β , EM

β and Dβ

(the first two measures are plotted using log scale) are shown in Figure 3.10 (p. 109)

against the dimension m of the corresponding reduced pseudo-Euclidean space. The

upper bound on the reduced dimension was chosen to be 150.

We also performed an analysis of the eigenvalues removed during the reduction of

dimensionality and established that for all dimensions m bigger than 9, the reduced

space is strictly pseudo-Euclidean.

3.5.1.3 Classification

In order to evaluate the performance of various classifiers constructed in pseudo-Euclidean

space, we conducted several classification experiments on a three-class task described

above. The baseline setup was chosen to correspond to the symbolic methods which

perform the best on the three-class problem in the original phonological metric space

(P,DP ). The best performing symbolic classifier (which performs the best on both the

small and full class problems) is the k-NN AESA search (see Section 2.6) based on the

score of the top candidate (in terms of the smallest distance to the test token) in the

k-best list, i.e. k = 1. This was found to outperform all the majority voting schemes.

The classification error obtained with 1-NN AESA (for the setup described above, with

the training set of 300 templates and full test set of 2,423 templates) is 0.9%.

In Remark 3.2 in Section 3.4.2, an important property of the pseudo-Euclidean

vector space representation was stated. According to this property, the squared lengths

of the segments connecting all the vectors representing the training and test objects

are non-negative. This allows one to use extensions of classical decision algorithms
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Figure 3.10: Dimensionality reduction for the three class problem: Error measures as func-

tions of the reduced dimension m of R(m+,m−).
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available in Euclidean spaces. In addition, some of the classification rules, like k-NN,

are universal and apply to symbolic spaces too. Following are the classifiers we used in

the experiments:

kNN Perhaps the simplest classifier one can use in the pseudo-Euclidean space is based

on the k Nearest Neighbour (k-NN). Goldfarb (1985) showed that the k Nearest

Neighbour rule is suitable for any vector space (including the pseudo-Euclidean)

provided that the similarity between the vectors is expressed with the help of

the inner product (symmetric bilinear form) corresponding to that space. We

extended the efficient k-Approximating and Eliminating Search Algorithm (k-

NN AESA), described in Section 2.5.4, to operate in pseudo-Euclidean spaces by

changing the specification of the algorithm to operate on squared distances in

pseudo-Euclidean space, rather than on Euclidean distances. The k-NN AESA

search in pseudo-Euclidean spaces is hereafter referred to as kNN .

LDS Given the reduced vector representation and noticing that the metric is nearly lin-

early separating the classes in question, we proceed by constructing a simple linear

decision surface by using a feed-forward neural network without any hidden units,

hereafter referred to as a LDS . The feed-forward neural network has a simple

architecture. It performs 1-of-3 classification. The number of input (activation)

units is equal to the dimension m of the feature vectors in R(m+,m−). There are 3

output (target) units. Each input unit is mapped to all three output units. The

NICO artificial neural network toolkit was used as implementation (Ström, 1996).

SVM An additional classifier we use is the Support Vector Machine (Cortes and Vapnik,

1995; Schölkopf and Smola, 2001; Vapnik, 1998). The basic training principle be-

hind the SVM is finding the optimal linear hyperplane such that the expected clas-

sification error for unseen test samples is minimised. According to the structural

risk minimisation inductive principle (Burges, 1998; Vapnik, 1998), a function that

classifies the training data accurately and which belongs to a set of functions with

the lowest VC dimension (Burges, 1998; Cortes and Vapnik, 1995) will generalise

best regardless of the dimensionality of the input space. Based on this principle,

a linear SVM uses a systematic approach to find a linear function with the lowest

VC dimension. For linearly non-separable data, SVMs can (nonlinearly) map the

input to a high dimensional feature space where a linear hyperplane can be found.

Given a labelled set of N training samples (xi, yi), where each vector xi is assigned

a class membership criteria yi ∈
{

+1,−1
}
, the SVM classifier finds the optimal
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hyperplane that correctly separates (classifies) the largest fraction of vectors while

maximising the distance of either class from the hyperplane (the margin). Max-

imising the margin distance is equivalent to minimising the VC dimension in

constructing an optimal hyperplane. Computing the best hyperplane is posed

as a constrained optimisation problem and solved using quadratic programming

techniques. The discriminant hyperplane is defined by the level set of

f(x) =
N∑

i=1

yiαik(x, xi) + b ,

where k(·, ·) is a kernel function and the sign of f(x) determines the membership

of x. Constructing an optimal hyperplane is equivalent to finding all the nonzero

αi. Any vector xi that corresponds to a nonzero αi is a support vector (SV) of

the optimal hyperplane.

In his work, Graepel (1999) made the first attempt to use support vector clas-

sifiers on a non-Euclidean data1. He found out that when the vector space in

question is pseudo-Euclidean, the constrained optimisation can not be performed

meaningfully if the N ×N matrix of the kernel values

K =
(
k(xi, xj)

)
, 1 ≤ i, j ≤ N

corresponding to the training data is not positive definite. In the simplest sce-

nario, this can be demonstrated on a linear SVM classifier. In this case, the kernel

function is specified by the squared pseudo-Euclidean distances between the points

in the training set, giving rise to K which corresponds to the pseudo-Euclidean

dissimilarity matrix which is often not positive definite (in our task, since the mod-

elling space has a very strong negative component according to equation (3.19),

this matrix is indefinite). As the result, the optimisation problem is ill posed: it

is still quadratic, but not convex.

Two workarounds have been proposed by Graepel et al. (1999) and Pekalska

et al. (2005; 2002). Both of these methods essentially disregard the geometry

of pseudo-Euclidean space and either perform classification in R(m+,m−) assuming

it is a Euclidean space Rm++m− or perform all the projections on the real part

Rm+ of the space only. In other words, all the inner product computations per-

formed by the kernel functions are computed in a Euclidean space. This technique

performed well in the reported experiments.

In our experiments, we follow the approach taken by Pȩkalska et al. (2002) and per-

form all the computations in R(m+,m−) using the Euclidean, rather than pseudo-
1The data for which symmetric bilinear form is not positive definite (Section 3.2.1).
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Euclidean, inner products. We used the SVMtorch toolkit as the implementa-

tion (Collobert and Bengio, 2000, 2001). Hereafter, we refer to this classifier as

SVM .

First, we constructed isometric embedding α (Section 3.3.1) of a full training set

of 300 patterns. Next we constructed reduced representations of α with the dimension

of the biggest reduced representation corresponding to 150. The motivation behind

chosing the latter value is to use less than 50% of the original training data.

Next, four classification experiments were conducted with each of the classifiers de-

scribed above and the results were compared to the best classification error of 0.9%

obtained in the pseudo-metric space with 1-NN AESA. For each of the classifiers and

each of 150 dimensions m, characterising the reduced pseudo-Euclidean space, we per-

formed the experiments with the following four possible configurations:

• Two different reduced vector representations are constructed using regular (or

basic) δ (denoted by subscript R) and corrected δC (denoted by subscript C)

metric projections (Section 3.4).

• During the construction of each of the reduced vector representations, two differ-

ent approaches to the basis selection of the reduced vector space R(m+,m−) were

employed: regular (denoted by superscript R) and novel class-based (denoted by

superscript C) basis selection techniques (Section 3.4.3).

Best classification results (chosen from reduced dimensions of m ≤ 150) for each of

the resulting configurations, along with the corresponding dimension m for which the

results were obtained, are shown in Table 3.1.

For kNN classifiers, simple nearest neighbour 1-NN search based on the score of the

top candidate (in terms of the smallest distance to the test pattern) in the k-best list

outperformed the majority voting schemes. Interestingly enough, the same situation

was encountered for the symbolic version of k-NN AESA.

We first compare the performance of the neural networks to the performance of 1-NN

search. As can be seen from Table 3.1, feed-forward neural networks (LDS ) consistently

outperform k-NN search in both pseudo-metric and pseudo-Euclidean spaces. In ad-

dition, the use of class labels for the construction of the reduced vector representation

during the training stage, improves the performance of all the LDS and kNN models

used in this experiment. The 1-NN classifier in the reduced pseudo-Euclidean space does

not seem to handle perturbations introduced by the dimensionality reduction as well as

the neural networks. Its error rate, however, comes close to its symbolic counterpart by

only using around 17% (50 out of 300 patterns) of the original training data. The best
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Classifier Projection Basis Selection Notation Dimension Error (%)

kNN AESA Regular Regular kNN R
R 85 2.8

Corrected Regular kNN R
C 73 2.4

Regular Class-based kNN C
R 63 1.1

Corrected Class-based kNN C
C 50 1.0

LDS Regular Regular LDSR
R 39 0.7

Corrected Regular LDSR
C 144 0.6

Regular Class-based LDSC
R 33 0.6

Corrected Class-based LDSC
C 130 0.5

SVM Regular Regular SVM R
R 48 0.3

Corrected Regular SVM R
C 54 0.5

Regular Class-based SVM C
R 92 0.4

Corrected Class-based SVM C
C 87 0.5

Table 3.1: Various types of classifiers used in the experiments on different types of pseudo-

Euclidean representations and the corresponding best error rates.
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performing neural network model achieved 0.5% error, which is an improvement over

the best pseudo-Euclidean 1-NN result of 1.0% and symbolic 1-NN result of 0.9%.

We next turn to analysing the performance of the linear support vector classifiers

(SVM ), noticing that they too consistently outperform 1-NN search in both pseudo-

Euclidean and original pseudometric spaces. These findings are in line with the previ-

ously reported observations by Graepel et al. (1999); Pȩkalska and Duin (2002); Pȩkalska

et al. (2002). As can be seen from Table 3.1, all the four configurations of the linear

support classifiers perform as well or better than their corresponding neural network

counterparts, with the best LDS errors corresponding to the worst SVM ones. Inter-

estingly enough, with the linear support classifiers, regular basis selection algorithm

performs better than its class-based counterpart, on both spaces obtained by basic and

corrected metric projections. This could be explained by the fact that the ratio between

the number of objects per class and the overall number of classes for this task is reason-

ably high. Hence, the classes are represented reasonably fairly in the chosen basis. Fair

representation of classes becomes more of an issue when the task is sparse, i.e. when

there are too many classes and too few objects to represent them. Therefore, we expect

the class-based technique for basis selection to perform better in sparse environments.

The overall best error of 0.3% was obtained by the linear support classifier in the

reduced pseudo-Euclidean space of dimension 48, which was constructed using basic

metric projection and the basis of the reduced space was selected using the regular

technique.

3.5.2 Full Problem

At the beginning of the experimental section it was mentioned that the symbolic dataset

P we operate on corresponds to the set of phonological templates derived from the

TIMIT data using a symbolic quantisation level of 10. The symbolic corpus corre-

sponding to this quantisation level consists of 124,962 templates in the training set and

42,540 templates in the test set. The full-class task consists of evaluating the perfor-

mance of vector space representation of 39 phonetic classes.

Obviously, the training set is too big to allow for the construction of a vector rep-

resentation. Hence, in our experiments we make use of smaller datasets which were

obtained by the symbolic clustering of the original training set. Each reduced training

set has a different number of prototypes per class, from 5 up to 100 (see Section 2.6

for details). The specific symbolic algorithms we used for computations in pseudomet-

ric space (P,DP ) are the same as the ones used in a three-class problem described in

Section 3.5.1. Experiments were then conducted for each of the datasets separately.

Unlike the experiments described for the three-class task, the aim of the experiments
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Figure 3.11: Dimensionality reduction for the full problem: Error measures as functions of

the reduced dimension m of R(m+,m−). The set consists of 190 objects, 5 objects per class.

we conducted on the full class task was different. The primary goal was to test how

well the pseudo-Euclidean counterpart of the symbolic k-NN AESA performs in the

vector space constructed by an isometric (or close to isometric) embedding. This is

different from the experiments in the previous section, where we tested the performance

in significantly reduced vector spaces.

Clearly, an analysis similar to that performed for the small problem is still possible.

For instance, Figure 3.11 (p. 115) shows the representation error measures ED
β and EM

β

(plotted using log scale) against the dimension m of the corresponding reduced pseudo-

Euclidean space. The original space corresponds to the training set of 190 objects,

with 5 prototypes per class. For dimensions m higher than 10, the spaces are strictly

pseudo-Euclidean.

For each of the training sets Pi with numbers of prototypes per class equal to 5, 10,

15, 20, 25, 30, 40, 45, 50, 60, 70, 80, 90 and 100, we performed the following processing

steps given the corresponding pseudo-metric space (Pi, DP ):
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• Determine the dimension n of the corresponding pseudo-Euclidean space corre-

sponding to the generalised covariance matrix where all the relatively small eigen-

values (less than 10−4 in magnitude) are removed. For all cases, the number of

removed eigenvalues corresponded to three to five eigenvalues. The resulting space

R(n+,n−) is nearly isometric, with the representation error being small.

• Given R(n+,n−), construct two reduced vector representations in R(m+,m−) (using

basic δ and corrected δC projections of the training and test sets) without drasti-

cally reducing the space, i.e. m is close to n. In our experiments, m = n− 1. We

employed the class-based basis selection technique for both projections.

In order to assess the performance of the vector-space version of k-NN AESA search

and compare it to the symbolic counterpart, classification experiments were conducted

against the full test set of 42,540 pseudo-Euclidean space vectors. In the original ex-

periments conducted in pseudometric space (Section 2.6.5 on p. 74), the simple nearest

neighbour (NN) search based on the score of the top candidate (in terms of the small-

est distance to the test template) in the k-best list outperformed the majority voting

schemes (i.e. optimal k was found to be 1). Therefore we decided to use the same value

of the search parameter k for k-NN AESA search in pseudo-Euclidean vector spaces.

Figure 3.12 (p. 117) shows the performance of 1-NN AESA with vector represen-

tations of training and test sets constructed using basic δ and corrected δC metric

projections. An additional curve shows the performance of the corresponding 1-NN

AESA search in the symbolic pseudometric space. The accuracy curves are shown with

respect to the number of prototypes per class in the respective training sets. If, for

example, the number of prototypes per class is 50, then the vector space representation

of the training set (obtained with either corrected or basic projection) consists of 1950

vectors.

For both basic δ and corrected δC constructions, the results of k-NN AESA in

pseudo-Euclidean space appear to consistently outperform the pseudo-metric counter-

part for all the dimensions corresponding to number of prototypes per class of up to 50.

This is an indication that vector representations seem to be more robust in the sparse

environment. Performance of k-NN AESA in a regular space deteriorates slightly from

there on, while the k-NN AESA in a corrected vector space constructed by δC contin-

ues to outperform both the pseudo-metric symbolic variant and the basic vector space

version constructed by δ.

The best results were obtained for 100 prototypes per class: 60.26% accuracy for

1-NN AESA on regular metric projection and 60.31% accuracy for 1-NN AESA on the

corrected one. This is similar to the best result of 60.26% obtained in the pseudo-metric

space.
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Figure 3.12: Classification accuracy (%) for the full-class problem. Performance of 1-

NN AESA with vector representations constructed using basic δ and corrected δC metric

projections is shown together with the performance of the corresponding 1-NN AESA search

in the symbolic pseudometric space. The accuracy curves are shown with respect to the

number of prototypes in each class.

3.6 Summary and Potential Improvements

In this chapter we examined construction of pseudo-Euclidean embeddings of finite

pseudo-metric spaces representing speech. Having introduced a specific structural rep-

resentation, described in Chapter 2, we performed a dissimilarity-based transition to a

more analytically developed vector space representation, which for our particular task

is pseudo-Euclidean. This pseudo-Euclidean vector space preserves the isometric prop-

erties of the original symbolic phonological metric space. We used the resulting space to

experiment with the more efficient vector-space counterparts of the symbolic classifiers,

perform data analysis and construct linear decision surfaces (which are otherwise un-

available to us in symbolic spaces) for multi-class problems. On the theoretical side, we

explored several metric projection and basis selection algorithms. In particular, in Sec-

tion 3.4.2 we focused on the corrected metric projection technique proposed by Goldfarb

(1986), which otherwise is not treated in his earlier monograph (Goldfarb, 1985). We

also suggest a new algorithm for optimal basis selection of the reduced pseudo-Euclidean

spaces which, in some cases, outperforms the classical approach.

When the original (pseudo) metric separates the classes reasonably well (as is the

case with a three-class TIMIT problem, which was examined first), a wide array of linear

(and otherwise) hyperspace classifiers consistently outperform both the symbolic algo-

rithms and the numeric counterparts of the symbolic algorithms based on the Nearest

Neighbour rule. These findings agree with the results of the other dissimilarity-based

vector space representation experiments previously reported in the theoretical pattern
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recognition literature (Duin et al., 2004; Graepel et al., 1999; Pȩkalska, 2005; Pȩkalska

and Duin, 2002; Pȩkalska et al., 2002).

We also conducted full classification experiments on the 39-class TIMIT task in order

to verify the hypothesis that better results can be obtained with the generalised version

of the k Nearest Neighbour AESA search in the constructed isometric pseudo-Euclidean

spaces. We confirmed this hypothesis, obtaining a small improvement in 1-NN AESA

search (in a space constructed using the corrected metric projection) over its symbolic

counterpart. Overall, the results of the experiments on a full task are very close (and

in most cases superior, especially when the corrected metric projection technique was

used) to the results in the original pseudo-metric space.

Potential Improvements

Since the future directions of our research will include more structurally complex and

hence less computationally efficient representations of spoken language, such as graphs (Bird

and Liberman, 2001), reliable construction of robust pseudo-Euclidean space representa-

tions of the pseudo-metric spaces in question seems to us to be of paramount importance.

The theory of dissimilarity representations, pioneered by Goldfarb (1979; 1984; 1985), is

becoming more popular (Bicego et al., 2004; Duin and Pȩkalska, 2005; Duin et al., 2004;

Pȩkalska, 2005). Several important open problems, however, remain unresolved. Here,

we briefly enumerate some of the more important ones, which are of direct relevance to

us:

Clustering in pseudo-Euclidean vector space:

In our experiments, we used the phonological template datasets which were pre-clustered

in the original pseudo-metric space (P,DP ) using symbolic techniques. We believe that

this is definitely suboptimal since better clustering algorithms are available in numeric

vector spaces. For instance, the concept of a mean of a set is naturally supported by

the underlying vector space and can be computed in a negligible amount of time. The

same applies to other analytical machinery, like multivariate analysis which is simply

missing in the symbolic spaces.

The reason why no clustering was attempted directly in pseudo-Euclidean space is

connected with the complexity of the overall task. Recall that the structural training

set of phonological templates corresponding to TIMIT has 124,962 objects. In order to

perform reasonable analysis of the covariance of this training data, the naive approach is

to embed the entire training dataset into the pseudo-Euclidean space, which of course is

not computationally tractable. Note that most of the datasets reported in the literature

are numeric and therefore can be efficiently pre-clustered. In addition, these datasets
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have a significantly lower complexity than TIMIT (in terms of the number classes under

investigation and their separability), hence the issue of handling large datasets may have

not been crucial.

Briefly, in order to better tackle the issue of more efficient reduction of the training

data, we will need to devise hybrid techniques which somehow operate in both pseudo-

metric space (defined by dissimilarities only) and pseudo-Euclidean (numeric) space by

assembling the candidate clusters iteratively and assessing the measure of their goodness

in pseudo-Euclidean spaces. One of the concepts which may potentially help us to gain

more insights into this process is the concept of pseudo-metric decision trees suggested

by Goldfarb (1986). Although this concept might not be directly useful, the idea that

the dissimilarity-space can be hierarchically split into several subspaces, each of which is

optimised separately, can guide the development of new clustering algorithms for large

dissimilarity-based datasets.

Mathematically justified classifiers:

Despite the fact that linear support vector classifiers performed well on a reasonably

separable three-class task, there seems to be a problem with the approach we followed.

The experiments on the three-class task were based on discarding (or distorting) the

geometry of the pseudo-Euclidean space, essentially turning it into Euclidean, similar to

the assumptions described by Graepel et al. (1999) and Pȩkalska et al. (2002). In other

words, in latter works the authors constructed the classifiers based on the Euclidean as-

sumptions (the positive definite form of the space’s matrix of symmetric bilinear form),

treating the original pseudo-Euclidean space R(n+,n−) as a regular euclidean space Rn,

where where n = n+ + n−. Recently Haasdonk (2003) and Haasdonk and Bahlmann

(2004) attempted to arrive at a different formulation of the learning problem where the

classifier is generalised to operate in a pseudo-Euclidean setting. In particular, Haas-

donk (2003) offers a theoretical analysis of the performance of support vector machines

in terms of convex hulls in pseudo-Euclidean space and proposes a new algorithm for

discovering the optimal hyperplane with support vector classifiers in that space. Un-

fortunately, at present we are not aware of any reports of experimentation with this

variety of support vector classifiers.



Chapter 4

Inductive Learning with ETS0

4.1 Introduction

So far we have discussed two techniques for modelling speech. In Chapter 2 and in

(Gutkin and King, 2004b) we presented a symbolic template-based representation of

speech based on phonological distinctive features. As we saw, the chief benefit of that

representation is that it is amenable to linguistic analysis. Furthermore, we showed how

to derive it from real speech data and conduct classification. One of the main drawbacks

of the approach presented is that the set of analytical tools available for modelling in

symbolic spaces (in our case corresponding to the phonological pseudo-metric space)

is quite restricted when compared to the wide array of techniques that conventional

vector spaces offer. In addition, we did not discuss the possible ways of learning in the

phonological pseudo-metric spaces, apart from mentioning (very briefly) in Section 2.7

the possibility of optimising the numeric weights on the similarity measures defined in

those spaces.

In Chapter 3, which followed, and in (Gutkin and King, 2004a), we discussed the

numeric framework based on dissimilarities, which allows for flexible integration of the

above symbolic representation with vector spaces. We also mentioned that the main mo-

tivation for this integration was a need to find a class of vector spaces (which turned out

to be pseudo-Euclidean) which optimally represented the phonological pseudo-metric

space at hand. The optimality criterion for the transition from the symbolic to vector

space was naturally defined to preserve the dissimilarities between the objects in the

original symbolic and target vector spaces. Once this transition was accomplished, the

chief benefit of the vector spaces — availability in these spaces of several efficient learn-

ing and classification techniques (like neural networks and support vector machines) —

could be utilised. Two problems can easily be identified with this approach, however.

First of all, once the representation is transferred to (any) vector space, the linguistically

120
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expressive power of the original symbolic representation is lost, since the new represen-

tation is numeric. In addition, since the transition is purely dissimilarity-based, there

is not enough information to perform an inverse mapping back to the symbolic space1.

Unfortunately, this one-way transition is a limitation of all multi-dimensional scaling

and embedding approaches. Thus, it appears that the original hopes for impending

unification of the symbolic and numeric approaches to pattern recognition (Goldfarb,

1984), following the introduction of the theory of the isometric pseudo-Euclidean space

embeddings, were rather premature.

Coming back to the discussion of symbolic spaces and phonological pseudo-metric

space in particular, we are now in a position to consider the issue of learning in the

symbolic environment which has been tacitly omitted from the exposition up until now.

Earlier in this thesis we mentioned that the main analytical tool of the symbolic space,

namely the dissimilarity measure, possesses a numeric component which is expressed in

terms of weights defined on the associated edit operations (see Section 2.4). We also

mentioned that one could attempt to define learning in the phonological pseudo-metric

space in terms of the optimisation of the numeric weights of the corresponding dissim-

ilarity measure. Such an optimisation, however, is not attractive. On the one hand it

does not provide us with any means of discovering interesting symbolic information. On

the other, it forces one to remain in the symbolic modelling space, preventing access to

the sophisticated vector space machinery, which otherwise is available if one decides to

do all the optimisation in the corresponding vector space. Hence, we believe that if the

aim of the learning is pure weight optimisation, it is more advantageous to transfer the

problem to a pseudo-Euclidean domain using the techniques covered in Chapter 3 (or

employ any other alternative dissimilarity-based transition, along the lines suggested

by Pȩkalska, 2005) and use more powerful tools for learning and classification in these

spaces. This was our main consideration for omission of the learning process in the

symbolic spaces from the discussion.

In this chapter, we address the issue of learning in the phonological pseudo-metric

spaces. The particular approach we pursue and some of the experimental results were

previously reported by us in (Gutkin and King, 2005b). Informally, we can approach

the learning problem by spelling out the following requirements, which are the main

objectives of the work we describe in this chapter:

• The phonological representation defined in Chapter 2 does not provide us with

any means of class description. In the rest of this chapter, we will refer to such

representations as “rigid”. Normalised edit distance between the phonological tem-
1 Having learnt a class representation in a dissimilarity space, one may, perhaps näively, hope to

somehow perform an inverse mapping back to the symbolic space, where this class information can be
interpreted better.
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plates, for instance, does not furnish us with any understanding of the structural

makeup of the particular class of phones in question. Therefore, we would like

the phonological representation to provide us with the means of encoding the

compositional makeup of the phonological classes being modelled.

• Moreover, even if we learn the optimal weights for the dissimilarity measures

from the training data (thus achieving better separation between the classes), we

would still not be able to learn anything about what makes the phones structurally

different. Hence, we would also like to have the means of learning the structural

class descriptions from the data.

Since we are dealing with real speech classes, which do not have any closed form de-

scription (expressed in terms of some syntactic grammar, for instance), out of necessity

learning model has to combine in itself both structural and numeric components. The

numeric component is needed to ensure that some optimisation objectives are met.

In fact, syntactic (i.e. grammar-based) approaches to pattern recognition have been

repeatedly criticised precisely because most real world learning problems cannot be

described by a purely syntactic grammatical approach (see, for example, remarks by

Watanabe (1985), Tanaka (1995) and Pavlidis (2003)). Although the model we con-

sider in this chapter is different from the syntactic grammar-based approaches (as will

be shown below), we nevertheless take these remarks into account.

The above requirements can be more formally cast as the following Inductive Learn-

ing problem (Abela, 2001; Goldfarb and Nigam, 1994):

Definition 4.1 (Inductive Learning Problem). Given a finite set C+ of positive training

objects that belong to a (possibly infinite) set C (concept) to be learnt and a finite set

C− of negative training objects that do not belong to the concept C, automatically

construct a class representation for C based on negative and positive training objects

and, as a consequence, to recognise if a new element belongs to C.

The structure of a class is taken to be:

1. The symbolic features2 that make the objects of the same class similar to each

other and/or different from other objects outside the class.

2. The emergent combinatorial interrelationships among these features.

The inductive learning process would then involve the discovery and encoding of the

structure of the class allowing one to abstract (generalise) and associate meaning with

the set of objects. In the subsequent recognition stage, the induced dissimilarity measure

is used to compare a new object to some fixed and reduced set of objects from C+.
2We refer to this notion in pattern recognition terms. It is not to be confused with distinctive

phonological features from Chapter 2.
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The Evolving Transformation System (ETS0) formalism has been initially developed

by Goldfarb (1990; 1992) to address the above requirements3. In particular, ETS0 has

been successfully used by Abela (2001) in a grammatical inference setting and was the

basis for the inductive mathematical model of human vision proposed by Goldfarb et al.

(1996). It should be noted that ETS0 is not an algorithm, but rather a model, providing

formal guidelines which specify how to address the inductive learning problem posed

above given any symbolic pseudo-metric domain. For our task, where the objects we

model are the phonological feature templates, we augment (using the ETS0 model) the

existing phonological pseudo-metric space representation (specified in Chapter 2) in

such a way as to meet the objectives of the inductive learning problem.

One of the central ideas of the ETS0 formalism is that the similarity measure plays

the critical role in the definition of a class (Goldfarb, 1992) via capturing the compo-

sitional makeup of objects. Learning in ETS0 essentially reduces to finding a distance

function (defined in terms of a set of weighted transformations) that achieves some de-

gree of class separation by minimising the distance between the objects in the positive

training set C+ while at the same time making sure that the distance between the ob-

jects in C+ and the objects in the negative training set C− is always greater than some

non-zero positive threshold. An ETS0 learning algorithm achieves this by iteratively

modifying the distance function in order to achieve the above objectives, hence we can

call this distance function an evolving dissimilarity measure. Representation of a class

C in ETS0 is thus defined in terms of a set of some prototype objects belonging to C+

and the non-empty set of non-trivial structural transformations. These transformations,

discovered during learning, play the role of the structural features providing the makeup

of the class C. The classification procedures, described in Chapter 2, that employ the

evolving dissimilarity measures can be used as usual. The only difference is that the

dissimilarity measure is now conceptually more interesting.

In this chapter, we describe the learning algorithms defined in the phonological

pseudo-metric space we use, along with several optimisation criteria. The learning pro-

cedure allows one to discover linguistically meaningful compositional makeup of various

classes of the phonemes under investigation. In addition, we describe experiments which

were conducted to verify the hypothesis that the phonological representation which is

designed according to the principles outlined in Definition 4.1 results in the improved

phoneme classification performance.
3The subscript 0 refers to the initial version of the formalism, which has undergone significant

development since its inception. The newer versions of the formalism, however, are not suited to the
phonological pseudo-metric space modelling we consider here. They are described in the following
chapters.
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Overview of the chapter

The necessary background material which can be helpful to better understand the basic

motivation behind the development of the ETS0 model (Goldfarb, 1990), as well as

generalisations of some important notions from Chapter 2, is presented in Section 4.2.

Next, we introduce the ETS0 model in a general setting in Section 4.3. This section

continues to provide a running example of a toy phonological representation that was

first introduced in Example 2.3. Section 4.4 describes the experimental setup (com-

patible with the setup of the experiments reported in Chapters 2 and 3) along with

the discussion of the results, which are compared against the results reported in the

previous chapters. We summarise the chapter in Section 4.5 and present some future

directions of research which will potentially improve the learning algorithms presented

in this chapter.

4.2 Preliminaries: Objects, Transformations and Metrics

This section is setting the scene (rather informally) for subsequent developments. Let

S represent the set of homogeneously structured objects. For example, S may be a

collection of rooted binary trees or strings. In his paper, Goldfarb (1990) suggested

to represent the objects in S by graphs. He showed how using graphs allows one to

treat various types of objects using a single underlying formal structure without loss

of generality. Given any object s in S, its structural representation as a graph can

be considered as whole, while any fragment (sub-graph) of this representation can be

seen as part. Next, Goldfarb (1990) showed how the concept of structural dependencies

between the objects in S can be elaborated by introducing transformations on the

objects. Informally, the transformation operation allows to modify the structure of an

object s in S by replacing, deleting or substituting any of its parts, obtaining a new

object s′.

The concept of transformation allows to introduce the notion of similarity on homo-

geneously structured objects. The notion of similarity, in turn, allows the definition of

non-parametric and parametric distances between the structural objects. These issues

are treated in Section 4.2.1, where the exposition is based on (Goldfarb, 1990, 1992).

In Section 4.2.2 we describe the weighted string edit distance algorithm which em-

ploys arbitrary string transformations (not confined to trivial single-character opera-

tions). This algorithm has been developed by the author and is extensively used in our

representation, which, being a generalisation of the framework described in Chapter 2,

is based on string templates.
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4.2.1 Structural Dissimilarity Measures

Given the two objects s1 and s2 belonging to some set S, it is reasonable to assume that

either s1 can be transformed into s2 or vice versa. In particular, given the above notion

of the structural transformation, it is possible to introduce the notion of similarity

between the two structural objects via the transformation concept (Goldfarb, 1990):

Definition 4.2 (Similarity). Let O denote the universe of possible transformation

operations defined on structural objects in S. Object s1 ∈ S is similar to object

s2 ∈ S if there exists a finite sequence (chain) of m transformation operations O′ ={
o1, o2, . . . , om

}
⊆ O such that when applied to s1 it results in s2.

Goldfarb (1990) showed that any sequence of operations that transforms one object

into another is reversible, which means that this sequence can be reversed by reversing

each of the constituent transformation operations. In addition, he introduced the notion

of completeness for a set of transformations O defined on a set of objects S. A set O of

transformations is complete for the set S, if any pair of objects s1, s2 ∈ S are similar.

For most of the classes of structures (vectors, strings, trees, etc.) one can always

choose the set of appropriate “insertion-deletion” operations which make the set of

operations complete. Perhaps the most obvious example are the strings over some finite

alphabet. Any string can be obtained from another by applying a sequence of insertion

and deletion single-character transformations. If, on the other hand, one restricts the

set of transformations to only include the insertion operations, then the completeness

criterion is violated.

Given the notion of similarity between the two objects, there is a natural way of

introducing a metric on the set of objects S. The metric measure is defined via the set

of the transformations O, turning the pair (S, O) into a metric space (Goldfarb, 1990):

Definition 4.3 (Intrinsic Distance). Let O denote the set of transformations which are

complete over the set of objects S. The (structural) intrinsic distance between any two

similar objects s1, s2 ∈ S in (S, O) is the function ∆O defined on S as

∆O : S × S → N, N =
{

0, 1, 2, . . .
}

,

where ∆O is the minimum number of transformation operations necessary to transform

s1 into s2.

The adjective “intrinsic” in the above definition, coined by Goldfarb (1990), refers

to the fact that the distance function ∆ does not reflect any empirical (statistical)

knowledge about the transformation operations. Such knowledge can only be acquired

within the learning framework, which is introduced later on in this chapter. A possible
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intrinsic distance function for the class of strings over a finite alphabet (which, as we have

seen above, is complete under insertion and deletion single-character transformations)

is a Levenshtein edit distance (Levenshtein, 1966; Sankoff and Kruskal, 1983).

The flexibility of the intrinsic distance function can be improved by allowing differ-

ent transformation operations to have different weights associated with them. These

weights, for instance, may express some a priori domain-specific knowledge about the

transformations involved. For example, we can consider some of the transformations

to be more important than others by assigning to them larger weights. This particu-

lar distance function is called the parametric distance, defined below (Goldfarb, 1990,

1992):

Definition 4.4 (Parametric Distance). Let S be the set of structural objects and O

the set of m transformation operations defined on the objects in S. Parametric distance

function

∆ω : S × S → R+

defined for the pair (S, O) is obtained from the intrinsic distance function ∆ as follows:

• Each of the m transformation operations oi in O is assigned a corresponding

weight ωi, which is a non-negative real number.

• For any pair of objects s1 and s2 in S let

g =
{

(og
1, ω

g
1), (og

2, ω
g
2), . . . , (og

k, ω
g
k)
}

denote a sequence of k operations together with their corresponding weights re-

quired to transform s1 into s2. Also, let G denote the set of all such transformation

sequences between s1 and s2.

• The distance between any pair of objects s1 and s2 in S is defined as

∆ω(s1, s2) = min
g∈G

|g|∑
i=1

ωg
i , (4.1)

where the minimum is taken over the set of all possible sequences of operations G

transforming s1 into s2.

The above definition can be seen as a generalisation of the weighted edit distance

for strings, which we discussed in Section 2.4.2 of Chapter 2. As noted by Abela (2001),

the above definition of the parametric distance can be made even more general by

allowing the individual structural transformations to be assigned real multi-dimensional

vectors of weights, rather than single weights. This is potentially useful if one wants

to use semantically different numeric parameters (such as similarity cost, penalty and
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deletion cost) for each individual transformation. In addition, instead of computing the

parametric distance as an optimal cost sequence using the sum in equation (4.1), some

other criterion φ can be potentially chosen. In other words, one can perform a different

optimisation

∆ω(s1, s2) = min
g∈G

φ(ωg) ,

where ωg is the weight vector corresponding to the transformation sequence g. The two

modifications discussed above are outside the scope of this chapter, however.

Given the above notions of a structural object representation, transformations and

the similarity measures, the Evolving Transformation System model is finally introduced

in Section 4.3. As we shall see, the ETS0 representation we consider is a generalisation

of the phonological metric spaces which were discussed in Chapter 2. In the discussion

above we mentioned that the set of operations needed for transforming the structural

objects into each other is not confined to trivial operations only. Thus the notion of

intrinsic distance from Definition 4.3 is not as simple as it may seem.

Before proceeding with the exposition of ETS0, in the next section we introduce

the intrinsic distance function which has been developed by us for distinctive feature

streams (modelled as strings) from the phonological representation in Chapter 2.

4.2.2 Block Edit Distances on Strings

Block edit distances are recent alternatives to character edit distances. Such distances

introduce block-based edit operations in addition to the character-based ones and can

be described in terms of the minimum number of single character and block edit opera-

tions required to transform one string into another. In this work, we developed a block

edit distance algorithm which can be seen as a generalisation of a classical (weighted)

Levenshtein edit distance. This distance function is useful to us because it allows com-

putation of dissimilarities on strings that use an arbitrary set of string transformations.

As we shall see in Section 4.3, the non-trivial blocks play the role of the features (in a

sense of Definition 4.1) that are discovered during the learning in phonological ETS0

representation.

The conventional counterparts of the block distances were discussed in Section 2.4.2,

which also introduced the necessary notation which is followed in the exposition below.

4.2.2.1 Generalised String Edit Problem

Similar to the single-character based metrics of Section 2.4.2.1, given the two strings

A = a1, a2, . . . , an and B = b1, b2, . . . , bm
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over some finite alphabet Σ, the aim is to compute the edit distance between A and B.

An additional symbol, not belonging to an alphabet Σ, is an empty string denoted by ε.

By a block we mean a (possibly empty) string over Σ. We next generalise the concept

of an edit operation, originally given in Definition 2.5.

Definition 4.5 (Block Edit Operation). An edit operation e is an ordered non-empty

pair (Fi, Fj), where Fi and Fj are the blocks over Σ. Note that the pair is non-empty,

hence at least one block in the pair has to differ from ε.

String B results from string A via (Fi, Fj) if

A = S1FiS2 and B = S1FjS2

for some strings S1 and S2 over Σ. The pair (Fi, Fj) is called a replacement if Fi 6= ε

and Fj 6= ε, a deletion if Fj = ε and an insertion if Fi = ε.

Let

I =
{

(Fi, Fj)
}

, |Fi| > 1 and/or |Fj | > 1

denote the set of non-trivial blocks, which in practice is supplied as an input to the

algorithm. Let F denote the set of block operations. Hence, the set of all trivial

operations is given by F \ I. In the case when the set I is empty, the problem reduces

to the conventional string edit distance considered in Section 2.4.2. Next, the notions of

an edit sequence (Definition 2.6) and a cost function (Definition 2.7) can be generalised

to the block edit problem:

Definition 4.6 (Block Edit Sequence). A sequence E of block edit operations is called

a block edit sequence. Let

E = e1, e2, . . . , ek

be an edit sequence. B is said to be derivable from A if there exists a sequence of strings

S0, S1, . . . , Sk such that A = S0, B = Sk and for 1 ≤ i ≤ k, Si results from Si−1 via

ei. B is always derivable from A via a sequence consisting of n trivial deletion and m

trivial insertion operations.

Definition 4.7 (Block Edit Cost Function). A cost function δ is a binary mapping

assigning a non-negative real number to each block edit operation (Fi, Fj). Thus, the

cost of a sequence E of length k is given by

δ(E) =
k∑

i=1

δ(ei) .
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4.2.2.2 Generalised Wagner-Fisher Algorithm

In order to compute a classical weighted Levenshtein distance between the two strings

one can use an efficient Wagner-Fisher algorithm (Section 2.4.2.2). We modified this

algorithm in a reasonably straightforward way to address the generalised weighted Lev-

enshtein case. This novel algorithm, which we call the Generalised Wagner-Fisher Algo-

rithm, employs a simple dynamic programming approach based on its classical version

and is described below.

Let

Ai,j = ai, ai+1, . . . , aj and Bi,j = bi, bi+1, . . . , bj .

denote two substrings of A and B, respectively. Also let

Ai = a1, a2, . . . , ai , Bj = b1, b2, . . . , bj , δi,j = δ(Ai, Bj) .

Construct a (n + 1)× (m + 1) matrix

D = (di,j) i ∈ [0, n], j ∈ [0,m] .

Initially d0,0 = 0, the first column is given by

di,0 = δ(Ai, ε) = min
e∈F

{
di−k,0 + δ(e) | e = (Ai−k,i, ε), 1 ≤ k ≤ i

}
and the first row by

d0,j = δ(ε, Bj) = min
e∈F

{
d0,j−k + δ(e) | e = (ε, Bj−k,j), 1 ≤ k ≤ j

}
.

For the rest of the elements,

di,j = δi,j ,

where δi,j is calculated using the following recursive relation that can be seen as the

generalisation of Wagner and Fisher’s result (Wagner and Fisher, 1974):

di,j = min
e∈F


{ di−k,j + δ(e) | e = (Ai−k,i, ε) , 1 ≤ k ≤ i } ,

{ di,j−k + δ(e) | e = (ε, Bj−k,j) , 1 ≤ k ≤ j } ,

{ di−p,j−q + δ(e) | e = (Ai−p,i, Bj−q,j) , 1 ≤ p ≤ i , 1 ≤ q ≤ j }

for i ∈ [1, n] and j ∈ [1,m]. The resulting block edit distance δ(A,B) is stored in dn,m.

The algorithm is slower than its basic single-character based version because of the

additional iteration over the set of operations and extensive string matching. It uses

O(n ·m · l) elementary steps, where l = |F | is the cardinality of the set of block and

character operations.

One can improve the string matching performance by the use of suffix trees (Gus-

field, 1997). The overall time complexity of the algorithm could be further reduced
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by applying the t-blocks method as used by Masek and Peterson (1980; 1983) in their

research aimed at speeding up the classical weighted Levenshtein distance. The t-blocks

is a speedup technique for dynamic programming (known as the Four-Russians Method)

first suggested by Arlazarov et al. (1970). It uses t-blocks (t by t squares in the dy-

namic programming table) rather than single cells at each step of the Wagner-Fisher

algorithm.

4.3 Evolving Transformation Systems (ETS0) Model

In this section we introduce the core components of the Evolving Transformation System

(ETS0) model. The basic structure of the model is provided by the transformation

system, described in Section 4.3.1, which can be seen as a certain generalisation of the

notion of the pseudo-metric space in which there is more emphasis on the structure of the

objects in the domain. Next, we outline (rather informally) the learning process which

in ETS0 is seen as sequential optimisation of the transformation system structures.

This is covered in Sections 4.3.2–4.3.3. Finally, the goal of the learning process is the

discovery of inductive class structure, described in Section 4.3.4.

It is important to note that the algorithmic parts of this section are primarily based

on previously reported ETS0 findings, which have been described with varying degree

of detail by Goldfarb (1990, 1992); Goldfarb et al. (1995); Goldfarb and Deshpande

(1997); Goldfarb et al. (1996); Goldfarb and Nigam (1994), Kamat (1995) and Abela

(2001).

4.3.1 Transformation System

Given the notion from the previous section, the concept of transformation system can

be introduced in a straightforward manner (Abela, 2001; Goldfarb, 1990, 1992; Goldfarb

et al., 1996):

Definition 4.8 (Transformation System). A transformation system (TS) is a 3-tuple

T = (S, O, D), where

• S is a set of structural objects of the representation;

• O is a finite set of m substitution operations for transforming the objects in S

satisfying the following two trivial properties: all the operations in O are reversible

and O is complete (Section 4.2.1);

• The set D =
{

∆ω

}
is a family of parametric distance functions defined on (S, O)

(parametric distance functions are given in Definition 4.4).
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The number of possible parametric distance functions in D is essentially dictated by

the weighting scheme Ω, which is a set of all the possible weight vectors ω of dimension

m (corresponding to m transformations in O) which possess the following property:

∀ω ∈ Ω:
m∑

i=1

ωi = 1 .

We can refer to D as a family of competing distance functions. The set of trans-

formations O is complete, therefore for any pair of objects s1 and s2 there exists at

least one sequence of transformations which will transform s1 into s2. In practice, one

usually finds such a sequence together with the appropriate weight vector ω in Ω which

minimises ∆ω(s1, s2). Hence the use of the adjective “competing” above.

In Section 2.4 we defined the phonological metric space — the distinctive feature-

based speech representation. The phonological metric space is defined as the set of all

phonological templates in the domain, denoted P, together with a real-valued mapping

dP defined on this set P (Definition 2.4). As we saw in Chapters 2 and 3, this real-valued

mapping can be metric, semimetric or pseudo-metric. Below, we propose to interpret

this phonological representation as a transformation system:

Definition 4.9 (Phonological Transformation System). A phonological transformation

system is a 3-tuple TP = (P, OP, DP), where P is the set of all phonological templates

from Definition 2.4, OP is the set of all possible distinct transformations which transform

any pair of templates from P into each other and DP is a family of distance functions

on the set of phonological templates from Definition 4.8, which is defined via OP.

Note that this extension is straightforward, since all dissimilarity measures on phono-

logical templates we considered in the phonological metric space (see Section 2.4) possess

one important property which eases the transition: all the metrics we considered are

defined in terms of transformations. The only conceptual differences are the following:

• The set of transformations OP is not restricted to the single-character operations.

Hence, the phonological metrics dP can be defined in structurally more interesting

ways.

• The introduction of a general requirement on the weighting scheme of the distance

functions dP which belong to the parametric family DP.

More importantly, instead of one phonological metric space, we now have a collection

of phonological metric spaces. In other words, phonological transformation system TP

can be represented as a following set

TP =
{
P, OP, ∆ω

P
}

, ω ∈ Ω
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where different metrics ∆ω
P correspond to different weighting schemes in Ω.

The similarity measure dP between any two phonological templates p1 and p2 (each

consisting of N distinctive feature streams) is expressed in terms of a linear combination

of N per-stream similarity measures di, 1 ≤ i ≤ N . Since the streams (modelled as

strings) are independent of each other, so are the sequences of transformations which

transform them. Hence, one can define the weighting scheme on these transformations

to be stream-specific. The phonological transformation system TP can therefore be seen

as a set of N independent distinctive feature transformation systems T i, 1 ≤ i ≤ N ,

one for each stream.

Example 4.1. Figure 4.1 (p. 133) shows the three stream-specific phonological transfor-

mation systems corresponding to a toy phonological template representation of the two

phonemes [p] and [b] from Example 2.3 (Figure 2.5). Two instances of each phoneme are

shown in the figure. The first transformation system (T 1) corresponds to the [consonan-

tal] stream, the second (T 2) to the [sonorant] and the third (T 3) to the [tense] stream.

The transformation system-specific weights are not shown. Each transformation sys-

tem is a string transformation system employing its own objects, transformations and

parametric distance functions.

The set of objects S1 in T 1 transformation system, for example, consists of four

instances of [consonantal] stream encountered in the four templates shown on top of the

figure. The set of transformations O1 in T 1 consists of three single character operations.

The weighting scheme Ω1 corresponding to O1 may assign an equal normalised weight
1
3 to each of the transformations. B

4.3.1.1 Learning in the Transformation System

The inductive learning problem was postulated in Definition 4.1. Suppose that during

the learning stage the amount of information available to the system is restricted to a

finite set of labelled phonological templates from each of the M disjoint classes given

by

C =
{
C1, C2, . . . , CM

}
= C+ ∪ C− ,

where

Ci =
{
pi
1, p

i
2, . . . , p

i
ki

}
is a set of ki training templates representing some class. We refer to the set C as the

global training set. Suppose that a class to be learnt is Ci, i.e. it is a class of positive

objects C+. Then the set of negative training objects C− is given by C \ C+.

Let C+ and C− be the sets of positive and negative training templates from some

finite labelled set. In Definition 4.8 it was mentioned that the set of transformations O
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Tense

Consonant.

p1
/p/ p2

/p/ p2
/b/p1

/b/

Sonorant

Consonant. Sonorant Tense

T 2T 1 T 3

mid

low

high

mid

low

high

mid

low

high

mid

low

Figure 4.1: Stream-specific phonological transformation systems T 1, T 2 and T 3 correspond-

ing to the phonological SPE template representation from Example 2.3 shown in Figure 2.5.

For each transformation system, the corresponding sets of objects and single-character trans-

formations are shown. The weighting scheme is not shown.
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corresponding to T is fixed. Therefore the only possible way of learning in transforma-

tion systems is numeric. The learning is performed by finding some optimal weighting

scheme ω̂ corresponding to the transformations O. This is achieved by optimising the

weight function f(ω) of the following form:

f : Rm → R ,

where m is the number of operations in O. In all the studies which address the issue of

learning in transformation systems (Abela, 2001; Goldfarb, 1990; Goldfarb et al., 1995;

Goldfarb and Nigam, 1994), the following generic (numeric) optimisation criterion is

used:

max
ω∈Ω

f(ω) = max
ω∈Ω

β(ω)
ε + α(ω)

. (4.2)

In the equation above, β(ω) is the degree of separation between the positive and negative

training sets C+ and C−, α(ω) is the degree of separation between the positive training

objects in C+ and ε is a small positive constant to prevent the overflow condition

when the values of α(ω) approach zero. Both α(ω) and β(ω) are defined in terms of

parametric distance function ∆ω. The optimisation function f(ω) combines in itself

both the measure of compactness of C+, as well as the measure of separation of C+

from C−, following from the simultaneous minimisation of function α and maximisation

of function β.

Hence, the learning in a transformation system reduces to finding a distance func-

tion ∆ω̂ (parametrised by the weight scheme ω̂) that achieves some satisfactory class

separation. In other words, a measure such that at the end of the learning process there

is a high degree of proximity between the objects in C+ (the distance between the ob-

jects is close to zero), while the distance between the objects in C+ and C− is non-zero.

Thus, at each iteration of the learning algorithm, the candidate weight scheme brings

the objects in C+ closer to each other, while maintaining some reasonable distance be-

tween them and the objects in C−. The learning stops when all the members of C+

are in some small neighbourhood δ. This process in depicted in Figure 4.2. Once the

learning is complete, the set of all templates P that belong to a concept C represented

by C+ can be defined to be {
p ∈ P |∆ω̂(p, p̂) < δ

}
,

where p̂ ∈ P is an object in the δ-neighbourhood chosen as a centroid (or attractor,

according to Abela, 2001).

The result of the optimisation process is the set of optimal vector weights

ω̂ = arg max
ω∈Ω

f(ω)



Chapter 4. Inductive Learning with ETS0 135

Figure 4.2: Depiction of the learning process within ETS0. The domain is represented by

the positive C+ (black circles) and negative C− (black squares) training sets, shown on the

left-hand side of the figure. During learning, the members of C+ move closer to each other

(shown in the middle of the figure), until they all end up in a small neighbourhood (shown

shaded on the right-hand side of the figure). In order to define this neighbourhood, one

selects any member of a positive training set as a centroid (shown as a white circle). For a

transformation system the learning is numeric while for the evolving transformation system

the learning process combines both structural and numeric components.

ω3

ω2 ω1

(1, 0, 0)

(0, 0, 1)

(0, 1, 0)

Figure 4.3: A two-dimensional unit simplex in the three dimensional parametric space Ω.

that generates the most distinctive metric configuration for the class within the global

training set. The space of all the possible parameter sets Ω can be described by the

(m−1)-dimensional unit simplex in Rm, given by (Abela, 2001; Goldfarb, 1990; Goldfarb

et al., 1996)

Ω =
{

ω =
(
ω1, ω2, . . . , ωm

)
|ωi ≥ 0,

m∑
i=1

ωi = 1
}

.

Figure 4.3 shows a two dimensional unit simplex in the three dimensional parametric

space Ω. In order the search for an optimal solution in the parameter space Ω, one can

use the two nonlinear function optimisation techniques briefly outlined in Section 4.3.1.2.

The exhaustive search for the optimal parameter set on the entire simplex is usually

computationally very expensive. Therefore, in practice (as we shall see in Section 4.3.2),

it is often sufficient to evaluate f at the m vertices of the simplex (and possibly the m
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corresponding midpoints on the edges connecting the vertices).

4.3.1.2 Simplex Method for Functional Optimisation

While there are many techniques for optimising nonlinear functions (Jacoby et al.,

1972), the most common strategy used for unconstrained optimisation and the quickest

to converge is the simplex method.4. Simplex search, formulated by Nelder and Mead

(1965), is a direct search method in that search is guided by evaluating the target

function with various combinations of values of the free parameters Ω in the function.

The derivative information is not used. The Nelder-Mead simplex method moves a

geometric shape, called a simplex, through the search space using a set of well-defined

transformation operations called reflection, expansion and contraction (Walters et al.,

1991). Each operation moves one or more of the vertices of the simplex so as to relocate

the volume of the simplex closer to the optimal value of the target optimum. No

general convergence properties of the simplex search strategy have been proved, but

some limited proofs of convergence are known (Lagarias et al., 1998; McKinnon, 1998).

Some remedies for detection of non-optimality were proposed by Kelley (Kelley, 1999).

An alternative to the Nelder-Mead method is to use the generally slower, but more

robust, Powell method. The Powell technique is a direction set method which employs

Brent one-dimensional search in each direction (Press et al., 1986). Similar to the Nelder

and Mead approach, choice of successive directions by the Powell technique does not

require the calculation of a gradient.

All of the above mentioned numeric optimisation techniques have been previously

explored by the author in his master’s thesis in the context of statistical language

modelling (Gutkin, 2000).

4.3.2 Evolving Transformation System

Goldfarb (1990) observed that when the set O of transformations is not sufficient to

achieve a complete separation of C+ and C−, the structure of the model could be

altered to allow for the modification of the set O. This is achieved by adding some new

transformation operations. Each new transformation represents a composition of several

initial operations. Modification of the transformation set leads to a new transformation

system. Addition of the operations has the effect of changing the geometry of the

distributions of object classes in the corresponding environment: new shorter transition
4 The simplex method for functional optimisation and the Dantzig simplex method for linear pro-

gramming (Lange, 1968, Chapter 10) both use the geometrical concept of a simplex. The two algo-
rithms are unrelated, however. The comparison of simplex direct search method to the various gradient
descent-based methods used in neural networks (such as back-propagation algorithm) is outside the
scope of this thesis.
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paths are generated between some pairs of objects in the structural object set S.

This leads to the central concept of the ETS0 model — the mathematical structure

called the evolving transformation system, which is constructed as a sequence of trans-

formation systems (Goldfarb, 1990, 1992; Goldfarb et al., 1996; Goldfarb and Nigam,

1994):

Definition 4.10 (Evolving Transformation System). An Evolving Transformation Sys-

tem (ETS) is a sequence of transformation systems (given in Definition 4.8) that share

a set S of structural objects. Each transformation system is given by

Ti =
(
S, Oi, Di

)
,

where each set of operations Oi, except O0, is obtained from Oi−1 by adding to it one of

several operations that are constructed from the operations in Oi−1 with the help of a

small fixed set R of composition rules. Each rule r ∈ R specifies how to (systematically)

construct the corresponding new operation from its operands.

From the above definition it follows that at the stage t of the structural component

of the learning process

O0 ⊆ O1 ⊆ . . . ⊆ Ot .

Furthermore, for all steps 0 ≤ i ≤ t− 1

∀s1, s2 ∈ S, ∀∆ω1 ∈ Di ∃∆ω2 ∈ Di+1 : ∆ω1(s1, s2) ≤ ∆ω2(s1, s2) ,

where ω1 ∈ Ωi, ω2 ∈ Ωi+1. The dimensions of the simplex Ωi are smaller than the

dimensions of simplex Ωi+1, in other words

Ω0 ⊂ Ω1 ⊂ . . . ⊂ Ωt .

Each stage i, therefore induces a new topology represented by Ωi (addition of a new

transformation resulting in the growth of the simplex is depicted in Figure 4.4).

In other words, the numeric optimisation process described in the previous section

by equation (4.2), becomes an inner loop within the general inductive learning process

(outlined next in Section 4.3.3) that proceeds by constructing a sequence of transfor-

mations
{
Oi

}
in such a way that, for each sequentially obtained transformation system

Ti = (S, Oi, Di), the inter-distances in C+ expressed by αDi shrink to zero while the

corresponding distance βDi between C+ and C− remains non-zero. At each step, a

more optimal family of distances is induced (both numerically and structurally) by a

modified set of transformations. Pictorially, this process can be represented in exactly

the same way as for the pure numeric optimisation, shown in Figure 4.2.
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ω3

ω2 ω1

(0, 0, 1)

(1, 0, 0)(0, 1, 0)

ω4

Figure 4.4: A two-dimensional unit simplex in the three dimensional parametric space Ωi

(from Figure 4.3) is grown by one dimension, turning it into a three dimensional simplex in

a four dimensional parametric space Ωi+1.

4.3.3 Learning in Evolving Transformation System

In general, the learning algorithm is supplied three sets. The first two are the set S

of structural objects and the set of trivial structural transformations O0 which operate

on these objects. By trivial structural transformations we essentially mean the trans-

formations expressing some a priori knowledge of the structural objects in the domain

S. For the class of strings over a finite alphabet, the set of trivial structural transfor-

mations O0 may consist of single-character edit operations (Section 4.2.1). In addition,

we are given some default numeric weight vector ω0 (which, together with O0 induces

the parametric family of distance functions D0 over a unit simplex) whose components

correspond to the transformation operations in O0. These three parameters define the

initial transformation system T0.

In the previous section we mentioned that the learning process within ETS0 essen-

tially employs two sub-processes — the optimisation sub-process and the transformation

construction sub-process. The transformation construction sub-process, which can be

seen as the structural component, is nested within the optimisation sub-process, which

is seen as the numeric component. Both the sub-processes can be implemented as loops.

At each iteration i through the optimisation loop, the goal of the learning is to find a

new transformation system Ti, which is more optimal (in terms of the optimisation of

f from equation (4.2) over the unit simplex) than the current one.

At the beginning of each iteration, the optimisation loop attempts to locate an

optimal weighting scheme ωi for the current set of transformations. The transformation

construction sub-process is invoked next. It iteratively constructs new candidate sets of

transformations Oj
i out of the current ones Oi−1 using the the composition rules R (see

Definition 4.10). Out of these new sets of transformations, the most optimal one (in
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terms of f) is chosen as the current set Oi. The algorithm then continues to the next

iteration. The learning stops when the overall optimisation criterion is satisfied, i.e.

when f exceeds some supplied threshold τ . At the end of the learning, the resulting

transformation system T̂ represents the most optimal configuration (the interpretation

of the end-result of the learning is given in Section 4.3.4). The above basic architecture

is schematically represented in Figure 4.5.

Learn(S, O0, D0, τ)

1 T0 ← (S, O0, D0)

2 Choose a default weight scheme ω0 ∈ D0.

3 i← 0

4 while f(ωi) < τ do

5 Optimise f(ωi) over unit simplex Ωi obtaining ωi+1.

6 Di+1 ←
{
ωi+1

}
.

7 for all possible rules r ∈ R do

8 Construct candidate sets.

9 Find the most optimal (in terms of f(ωi+1)) set Ôr
i .

10 Oi+1 ← Ôr
i

11 Ti+1 ← (S, Oi+1, Di+1)

12 i← i + 1

13 T̂ ← Ti

14 return T̂

Figure 4.5: The general architecture for learning within ETS0 (Goldfarb and Nigam, 1994).

In the discussion in Section 4.3.1.1, the objective of optimisation has been specified

as the maximisation, given by equation (4.2), of the following function:

f(ω) =
β(ω)

ε + α(ω)
, (4.3)

where β(ω) and α(ω) are the measures of within-class proximity of C+ and inter-class

separation between C+ and C−, respectively. These measures can be defined in sev-

eral possible ways. In this work, we essentially follow the recommendations of Gold-

farb (1990; 1992) and Abela (2001) and use the following measures:

Let C+ be the set of n positive instances and C− be the set of m negative instances

of a concept C to be learnt. The set of structural objects S is thus represented as

C+ ∪ C−. The measure of within-class proximity α(ω) for C+ is given by the average

within-class distance computed over all possible pairs (si, sj) in C+ as (Abela, 2001;
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Goldfarb, 1990):

α(ω) =
2

n(n− 1)

n∑
i=1

n∑
j=i+1

∆ω(si, sj) , where (si, sj) ∈ C+ . (4.4)

The measure of separability β(ω) between the two classes C+ and C− is computed

as average interclass distance over all pairs of objects (si, sj) as (Abela, 2001; Goldfarb,

1990):

β(ω) =
1

nm

n∑
i=1

m∑
j=1

∆ω(si, sj) , where (si, sj) : si ∈ C+ , sj ∈ C− . (4.5)

Alternatively, the separability measure can be computed as the minimum distance taken

over all the pairs of objects in the two sets (Abela, 2001; Goldfarb, 1990):

β(ω) = min
{

∆ω(si, sj) | si ∈ C+, sj ∈ C−} . (4.6)

In his grammatical inference application called Valetta, Abela (2001) proposed a varia-

tion of the above scheme that makes use of a smaller subset Ĉ− of the objects in C−

instead of C− in the equations above. Abela (2001) argues that this is done in order

to reduce the amount of noise in the negative training set. The subset Ĉ− consists of

10% of the closest objects in C−, which helps to remove noisy outliers, which otherwise

may corrupt the quality of the measure given in equation (4.6). It should be noted

that for pattern recognition applications, like our phonological representation, train-

ing set pruning is usually accomplished with the help of the clustering pre-processing

step (see Chapter 2). Therefore we assume that the set C− has already been reduced

appropriately.

Both measures α(ω) and β(ω) require a polynomial number of distance computa-

tions. More precisely, to compute α(ω) one needs n(n−1) distance computations, where

n is the size of C+. The calculation of β(ω) takes nm computations, where m is the

size of C+.

In Section 4.3.1 we mentioned that the phonological transformation system (con-

structed from the distinctive feature-based phonological representation) consists of N

stream-specific transformation systems, where N is the number of streams (strings over

some finite quantisation alphabet), as shown in example Figure 4.1. We mentioned that

the numeric (weight) optimisation process in the phonological transformation system re-

duces to N independent optimisations (the stream independence assumption discussed

in Section 2.4.1). For the inductive discovery of the optimal phonological transformation

system, the above numeric optimisation can be extended to also handle the transfor-

mation construction sub-process. We conduct the learning process in the phonological
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evolving transformation system by performing by N separate optimisations, one per-

stream. This raises the following two important points regarding the learning process:

• The learning is conducted on the set of phonological templates P, which can

be decomposed into N sets of distinctive feature streams Si, 0 ≤ i ≤ N . The

goal of each of the N sub-optimisations is to obtain an optimal stream-specific

transformation system T̂ S
i , where the optimisation criterion is template, rather

than stream, specific. In other words, within the basic architecture of the learning

algorithm from Figure 4.5, f is calculated on the candidate sets of templates,

rather than streams. This ensures the learning satisfies the optimisation criteria

in the global space P, while making use of the independence assumption to simplify

learning in the structural sub-process.

• Since from a structural point of view, learning within the phonological template

space reduces to learning within the stream-specific (i.e. string) space, we need to

explicitly specify the learning algorithm operating on the String Transformation

Systems.

Below, we next address the above issues by describing both the numeric and the struc-

tural learning components in more detail.

4.3.3.1 Inductive Learning in String Transformation System

In this section a learning algorithm for a string transformation system is presented. The

algorithm is a realisation of the formal discussion of learning in ETS0 presented above.

It is a modification of the grammatical inference algorithm initially proposed for ETS0

by Goldfarb, Santoso and Nigam (1996; 1994).

Let C+ and C− be the respective positive and negative training sets consisting of

strings over some finite alphabet Σ. In our representation, these sets represent distinc-

tive feature streams. From Example 4.1, for instance, the set C+ may represent all the

examples of [sonorant] stream in all the instances of the phonemic class [p], while the

negative samples C− represent all the instances of [sonorant] stream in the phonemic

class [b].

4.3.3.1.1 (1) Initialisation:

• We are given the set of complete transformation operations O0 over Σ, which

consists of single character edit operations. Let m0 (m0 = |Σ|) be the number of

transformations in O0.
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• We are given the set of composition rules R, consisting of m0 single character

rules. This set allows, at any given step t of an algorithm, to construct new trans-

formations from the existing transformations by concatenating a single character

r from R to the left and right-hand sides of the transformations in Ot.

• We are also given the weight vector ω0 ∈ Ω0 corresponding to the set O0. This

vector is normalised, i.e. ω0 =
{

1/m0, 1/m0, . . . , 1/m0

}
.

• The algorithm used throughout the learning for computing the distances between

the various instances of the streams is the Generalised Wagner-Fisher technique

described in Section 4.2.2.2.

The algorithm consists of two parts, the outer and inner loops (as shown in Fig-

ure 4.5). In general, at each step of an outer loop, an inner loop yielding a new trans-

formation system is executed. The structure of outer loop, corresponding to step (4) of

an algorithm in Figure 4.5, is described below:

4.3.3.1.2 (2) Outer Loop (Simplex Optimisation): At step t, the current configu-

ration is represented by the transformation system Tt = (S, Ot, Ωt). The optimisation

criterion at this step is represented by the function

ft(ω) =
β∆t(ω)

ε + α∆t(ω)
,

where ∆t(ω) is induced by the current set Ot of transformations.

(2.1) Compute the value of ft for the “centre” of the simplex Ωt defined by

ωt =
{

1/m, 1/m, . . . , 1/m, 0, 0, . . . , 0
}

.

The first m0 values of the weight vector correspond to trivial single symbol trans-

formations and are equal to 1/m. The last mt −m0 values correspond to newly

discovered transformations and are set to 0 5.

(2.2) If the value of ft reached the maximum τ or if it cannot be increased further (com-

pared to the previous value of ft−1), stop and return Tt as the result. Otherwise,

proceed to the next step.

(2.3) Perform structural optimisation in an inner loop, which is specified in step (3).

This step is called the optimal transformation construction. Optimal transforma-

tion construction results in a new transformation system Tt+1 which has mt+1−mt

new transformation operations. These new transformations are supposed to im-

prove ft. Finally, update t to t + 1 and return to the step (2.1).
5Hence, the point ωt does not quite correspond to the centre of the simplex.
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It is an inner loop, discussed next, which ensures that the new pseudo-metric space

learnt at stage t and the corresponding transformation system improve the current

value of ft:

4.3.3.1.3 (3) Optimal Transformation Construction: The current iteration is given

by t and the current set of transformations is Ot.

(3.1) Compute the values of ft at those vertices of weight simplex Ωt that correspond

to the m0 trivial one symbol transformations. In other words, the set of vertices,

for which the values of ft are computed, consists of the following m0 vectors ωi of

dimension mt

ωi = (ω1
i , ω

2
i , . . . , ω

m0
i , 0, 0, . . . , 0) , 1 ≤ i ≤ m0 ,

where ωk
i = 1 for k = i and ωk

i = 0 for k 6= i. Obviously, each vector ωi

corresponds to a trivial transformation o0
i in the initial transformation set O0.

(3.2) Promote to the next stage the set O∗
0 ∈ O0 of all transformations for which the

value of ft(ωi) is maximal (the construction of weight vectors ωi is given above).

(3.3) Form the set U2 of all possible two-symbol candidate transformations from the one-

symbol transformations o0
i ∈ O∗

0 promoted in the previous step. This is achieved

by employing left and right concatenation of the single character rules r from the

set R.

This step spawns the search for candidate expanded operations, which starts in

the next step. Initialise the current iteration counter l to l = 2 and let Ul be the

initial set of non-trivial candidate transformations of length 2, constructed above.

For each candidate ui
l ∈ Ul, an ancestor anc(ui

l) is defined as the corresponding

candidate uj
l−1 of length l − 1 out of which ui

l was constructed.

(3.4) For each of the candidate transformations ui
l in Fl, each of length l, check whether

this transformation is present as a substring in C+. If it is present, add it to the

set U ′
l of candidate transformations which passed the matching test and proceed

to the next step. Otherwise, if l > 2, add the ancestor anc(ui
l) of ui

l to the

set of current operations Ot and finish the stage (3) (Optimal Transformation

Construction).

(3.5) Let K be the number of the transformations promoted in the previous step. Add

each of the K promoted transformations ui
l in U ′

l (K = |U ′
l |), one at a time, to

the current set of transformations Ot, obtaining K augmented sets Oi
t. All these

sets are of the size mt + 1. For each of the K sets Oi
t, compute the value of ft+1
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at the “centre” ωi
t+1 of the corresponding candidate simplex Ωi

t+1, which is given

by the (mt + 1)-dimensional vector whose first m0 values are equal to 1/m0, and

the rest are zero.

(3.6) Promote all the transformations ui
l for which the corresponding values of ft+1(ωi

t+1),

computed above, are minimum.

(3.7) On the basis of the l-symbol transformations promoted in the previous step, form

the set Ul+1 of candidate l+1-symbol transformations, employing the composition

rules from R (left and right concatenation). Set l to l +1 and return to step (3.4).

4.3.4 Inductive Class Representation

In view of the above, the goal of the inductive learning problem stated in Definition 4.1

has been specified more concretely in (Goldfarb, 1990, 1992; Goldfarb and Nigam, 1994):

Definition 4.11 (Inductive Class Representation). The inductive class representation

or inductive generalisation is defined as a 3-tuple

Π =
(
Ĉ+, Ô, Ω̂

)
, (4.7)

where Ĉ+ is a subset of C+, Ô is the final set of transformations at the end of the

learning process, and Ω̂ ⊆ Ω is a set of optimal weight vectors {ω̂} corresponding to the

final transformation system.

The elements of Ĉ+ act as reference patterns for defining the class. Consequently, a

new input pattern is always compared with these reference patterns using the parametric

family of distance functions {∆ω̂} induced by Ω̂. The set Ô is necessary since the concept

of a distance can be defined properly only in terms of these operations.

Example 4.2. Figure 4.6 shows the non-trivial stream-specific transformations discov-

ered during the learning process for the two-class phone problem, treated in Exam-

ples 2.3 (Figure 2.5) and 4.1 (Figure 4.1).

These operations (the corresponding optimal sets of weights Ω̂/p/ and Ω̂/b/ are not

shown) together with the trivial one-symbol transformations form the optimal set of

transformations for each class. Together with the corresponding sets of reference objects

Ĉ+
/p/ and Ĉ+

/b/, the three-tuples

Π/p/ =
(

Ĉ+
/p/, Ô/p/, Ω̂/p/

)
and Π/b/ =

(
Ĉ+

/b/, Ô/b/, Ω̂/b/

)
provide inductive class representations for the two classes in question.

It is important to mention that each set of reference objects (Ĉ+
/p/ and Ĉ+

/b/) con-

sists of one template only. This template is arbitrarily chosen from the corresponding



Chapter 4. Inductive Learning with ETS0 145

Consonant.

Sonorant

Tense

Tense

Consonant.

Sonorant

Π/p/ Π/b/

high

mid

low

Ĉ+
/b/

= {p1
/b/}

Ô/p/ Ô/b/

Ĉ+
/p/

= {p1
/p/}

Figure 4.6: Discovered per-stream feature transformations (Ô/p/ and Ô/b/) (corresponding

to the representation in Figure 2.5 on p. 58 and Figure 4.1 on p. 133) and the resulting class

representations Π/p/ and Π/b/.

set. This is because, in this particular example, the discovered transformations induce

perfect separation between the two classes. The within-class distance for C+
/p/ (which

contains two templates) induced by Ô/p/ is zero (while the corresponding distance to

C+
/b/ is non-zero). Hence, we can choose a single object as a compact representation of

C+
/p/, without loss of generality. The situation is analogous with C+

/b/.

Hence, not all the transformations found in the optimal transformation set Ô are

necessarily found in the corresponding set of reference patterns. For instance, the

first three-character transformation for the [tense] stream, shown in Figure 4.6, which

corresponds to Ô/p/, is not found in the corresponding reference set Ĉ+
/p/ containing

the pattern p1
/p/. It is, however, part of the training data and is found in pattern p2

/p/

(Figure 4.1 on p. 133). Therefore, we conclude this example by the following important

observation: transformations comprising an optimal transformation set are fragments of

training examples which are always found in the original training set. They, however,

are not always found in the set of reference objects chosen as class representation,

because the size of this set is usually significantly smaller. B

The inductive representation considered above is meaningful, in the sense that it is

able to capture certain consonantal properties of the phonemes [p] and [b]. For exam-

ple, from this toy representation we can learn the main difference (within the postulated

three-stream representation) between the two classes, namely different behaviour of the

[tense] feature. In general, tense sounds are produced with a deliberate, accurate, max-

imally distinct gesture that involves considerable muscular effort; non-tense sounds are

produced rapidly and somewhat indistinctly (Giegerich, 1992). In Figure 4.6, transfor-

mations corresponding to the [tense] stream capture the fact that within the available
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examples of [p], this feature is either high or in the process of gradually changing

(fluctuating) around the high values, whereas for the examples of [b], the process is

opposite. This coincides with the assumption of phonological contrast between [p] and

[b] phones within the SPE feature system (Chomsky and Halle, 1968). In addition, the

transformations capture certain asynchronies in the process of sound changes. The first

transformation corresponding to the [consonantal] stream for the class [p] indicates the

change from low to high which most probably means that one (or both) of the examples

were derived from the context in which they were preceded by a vowel or consonantal

sounds from [w] or [j] classes.

In Chapter 2 we mentioned that each phonological template p belonging to the

pseudo-metric space P consists of N distinctive feature streams. In our representation,

we use N equal to 25 for representing five multivalued feature streams (Section 2.4.1).

In the discussion of the learning algorithm for ETS0 we also mentioned that for each

of the classes of the phonemes, the learning reduces to N independent optimisations

of the per-stream transformation systems. Each particular stream pj
i (1 ≤ i ≤ N)

from a class Cj is optimised against the streams of the same type pk
i belonging to all

other classes (k 6= j). Thus, for each of the classes Cj in the domain, the end result of

the learning process essentially consists of N per-stream inductive class representations

Πj
i (1 ≤ i ≤ N), which are the structures from Definition 4.11. Each stream-specific

inductive class structure Πj
i induces its own metric ∆

Πj
i
. Hence, we can define the

phonological inductive class structure Πj for a class Cj as the collection of N stream-

specific structures

Πj =
{

Πj
1, Πj

2, . . . , Πj
N

}
.

For the symbolic space of phonological templates, the distance between any prototype

template pj in Πj , which defines the class Cj , and an unknown template p is given as

a linear combination of the individual metrics induced by different constituent streams.

In other words,

∆j(pj , p) =
N∑

i=1

∆j
i (p

j
i , pi) .

4.4 Experiments and Discussion

In this section we present the experimental results of a phoneme classification task

on the structural data corresponding to the phonological templates, derived from the

TIMIT database of read speech. The experimental setup mirrors the one described

in detail in Section 2.6 of Chapter 2, where we also mention the construction of the

phonemic templates from real speech and reduction of the size of the training set.
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Similar to the strategy adopted for the experiments in pseudo-Euclidean spaces

(Chapter 3), we split the experiments into two parts. In order to get a better idea

of the performance of the learning and classification within ETS0, we first focus on a

smaller 3-class task, where the classes are a priori reasonably separable. Since this

task is small, it allows us to analyse the performance of the learning algorithm in more

detail. Experiments on a 3-class problem are described in Section 4.4.1. In order to

compare the performance of the classifiers in the original symbolic space (Section 2.6)

and the new pseudo-metric spaces induced by ETS0 on a standard full-class TIMIT

task, in Section 4.4.2 we describe the results of experiments involving 39 classes of

phonemes. We also compare the performance of the system constructed using ETS0

with the performance of the baseline symbolic algorithms from Chapter 2 and the vector

space algorithms from Chapter 3, obtained on both tasks.

For both the three class and the full tasks, the learning essentially consists of one-

against-all optimisation of each of the classes in the training set against all others. The

structure of the resulting class-specific metrics, obtained in ETS0 space, is given in

Section 4.3.4. During the classification stage, we use the extension of the k-NN AESA

search (described in Chapter 2) that makes use of the metrics obtained at the end of

the learning in ETS0. The baseline corresponds to the performance of the k-NN AESA

search in a “rigid” pseudo-metric space described in Chapter 2. The best results (on the

full 39-class task) were obtained in the following optimal settings:

• The set P corresponds to the set of phonological templates derived from the

TIMIT data using a symbolic quantisation level of 10. The symbolic corpus cor-

responding to this quantisation level consists of 124,962 templates in the training

set and 42,540 templates in the test set.

• The similarity function DP , operating on the phonological templates from the set

P , corresponds to the weighted Levenshtein distance.

• The clustering technique is the k-medians, employing phonological set median

(rather than generalised median) and duration-based initialisation.

This is the same baseline used by the experiments in pseudo-Euclidean vector spaces

described in Section 3.5. The stopping criterion τ employed by the ETS0 learning

algorithms (Figure 4.5) was chosen to be 10−8 throughout the experiments described

below.

4.4.1 Three-class Problem

Similar to the experimental setup described in Section 3.5.1, the first set of experiments

focuses on classification of three classes of phonemes from three different phonological



Chapter 4. Inductive Learning with ETS0 148

categories which are a priori known to be reasonably separable (Ladefoged, 2001). The

three classes under investigation consist of one vowel [aw] (low back round) and two

consonants [b] (voiced bilabial stop) and [z] (voiced alveolar fricative). The original

training set for these three classes consists of 6,629 unique symbolic phonological tem-

plates. The entire test set for the three classes of phones, consisting of 2,423 unique

phonological templates, was used in this experiment.

First, the baseline for the three-class problem was created by breaking down the

training set into a smaller subset using the best performing dimensionality reduction

technique. This corresponds to k-medians, employing phonological set median and

duration-based initialisation. Six training datasets were created, for which the number

of examples per class |P | is 5, 10, 15, 30, 50 and 100 (shown in the first column of Ta-

ble 4.1). In order to obtain the baseline classification results, we conducted classification

experiments on the full test set of 2,423 templates, using each of the training datasets

above. The classification rule we used corresponds to the best performing classification

technique from Chapter 2: the k-NN AESA search (employing weighted Levenshtein

distance with normalised weights) with the size of the k-best list of 1. The performance

of the baseline models (in terms of classification error) is shown in the second column

of Table 4.1.

In order to compare the performance of the baseline algorithms with the perfor-

mance of the learning algorithms we use in ETS0 framework (Section 4.3.3), additional

experiments were conducted for each of the six datasets. In Section 4.3.1.1 we men-

tioned that the objective of the learning is specified as the maximisation (equation (4.2))

of the function f given in equation (4.3). Function f is defined as the ratio between

the inter-class separation measure β and the the within-class proximity measure α plus

some small constant ε to prevent the overflow. We also mentioned two potential ways

of computing the separability measure β: as an average inter-class distance (given in

equation (4.5)) or as the minimum inter-class distance (given in equation (4.6)). Hence,

it is possible to choose among the two functions to optimise: f r (where the superscript

r stands for regular) and fm (where m stands for minimum), corresponding to the

average and minimum inter-class distances respectively.

The results (in terms of classification error) for the models trained using these criteria

are shown in columns three and four of Table 4.1. The algorithms are denoted Lr
ETS0

and Lm
ETS0

, respectively.

Performance of the k-NN AESA search in the symbolic space constructed using the

learning algorithm Lr
ETS0

, employing the optimisation criterion f r given by

f r(ω) =
βr(ω)

ε + α(ω)
,
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|P | k-NN AESA Lr
ETS0

Lm
ETS0

5 1.5 1.0 2.1

10 1.4 1.6 2.0

15 1.3 1.7 1.9

30 1.0 1.0 1.3

50 1.0 0.8 1.8

100 0.9 0.9 1.4

Table 4.1: Three-class task: Performance of the k-NN AESA symbolic search in the spaces

constructed by ETS0 learning algorithms (Lr
ETS0

and Lm
ETS0

) and the “rigid” metric space

baseline from Chapter 2. Best classification errors (%) are shown in bold.

is analysed first. It performs the same or better than the baseline on four out of six

datasets from Table 4.1. In particular, using this learning strategy we obtained the best

result of 0.8% classification error among all the experiments conducted with symbolic

models on the three class task. When compared to the best results obtained on the same

task in the pseudo-Euclidean vector space, the k-NN AESA search in the symbolic space

obtained with Lr
ETS0

outperforms its numeric counterpart in all the pseudo-Euclidean

spaces shown in Table 3.1. In the experiments described in Section 3.5.1, the best k-

NN AESA classification error of 1% was obtained for the space constructed using the

class-based corrected metric projection. Comparing this result to the other numeric

models in pseudo-Euclidean vector space (neural networks and support vectors shown

in Table 3.1), the performance of the search in the symbolic space constructed by Lr
ETS0

is consistently worse.

The k-NN AESA search in the symbolic space constructed using the learning algo-

rithm Lm
ETS0

, employing the optimisation criterion fm given by

fm(ω) =
βm(ω)

ε + α(ω)
,

appears to perform worse than both the baseline model and the model employing the

Lr
ETS0

learning criterion. With the Lm
ETS0

model, the best obtained classification error

is 1.3%. The model outperforms the k-NN AESA search in the pseudo-Euclidean spaces

constructed using the regular basis selection technique (denoted kNNR
R and kNNR

C in

Table 3.1). Overall, however, the performance of this model is not satisfactory because

it performs consistently worse than other symbolic models.

The reason why Lr
ETS0

learning, based on the average inter-class distance, outper-

forms the Lm
ETS0

, based on the minimum distance, becomes clearer if we investigate

the values of the corresponding functions f r and fm during the optimisation process.
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Figure 4.7: The measures of the average within-class distance, the average inter-class dis-

tance and their ratio, shown during the Lr
ETS0

learning in one of the streams of phoneme

[aw] (f∆i = f r
∆i

).

For Lr
ETS0

, the measures of the average within-class distance, the average inter-class

distance and the inverse of the corresponding f r are shown in Figure 4.7. These curves

correspond to the learning process in one of the streams of [aw]. As can be seen from Fig-

ure 4.7, the learning converges in 49 steps, obtaining α = 0, which is the most optimal

within-class configuration. In this particular case, all the streams of this type belong-

ing to [aw] can be generated from any other stream using the discovered non-trivial

transformations (with zero weights) only. This is because single character transforma-

tions, whose weights are non-zero, do not contribute to the overall within-class distance

measure since non-trivial transformations are preferred6. The average inter-class dis-

tance β decays more slowly and stays non-zero when the learning process completes.

This is an indication that the original expectations of simultaneous minimisation of

within-class and maximisation of between-class distances were rather premature. The

discovered transformations do not increase the separation between the classes. We do

not think that this issue is very problematic because our minimal expectation that the

between-class distance should be non-zero is fulfilled.

For Lm
ETS0

, the measures of the average within-class distance, the minimum inter-

class distance and the inverse of the corresponding fm are shown in the two subfigures

of Figure 4.8. Two different scenarios encountered during the learning of two distinct

streams of [b] are shown in Figures 4.8a an 4.8b. The first scenario from Figure 4.8a

corresponds to the expected functioning of the learning process that converges in 10

steps. The overall behaviour of the system is similar to that corresponding to the
6An interesting interpretation of this fact (due to Abela, 2001) is that the single character transfor-

mations represent uncertainty (or “noise”). By bringing the within-class distance to zero, we essentially
remove the noise from the class.
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case of Lr
ETS0

, with both the average within-class distance α and f−1 decaying until

the convergence criterion is met. The curve corresponding to the minimal inter-class

distance β reaches a steady state before the system converges.

The second scenario (shown in Figure 4.8b) corresponds to the problematic case

when there exists some overlap between the positive and negative datasets. Despite

the fact that the classes of phonemes are reasonably separable, the classes of streams

need not be. In such a case, the minimal inter-class distance remains 0 throughout

the learning, which affects the overall optimisation criterion fm (the inverse of fm is

shown in Figure 4.8b as a 1
8 fraction of the decimal log scale). Despite the fact the

learning process converges in 13 steps, obtaining an optimal within-class configuration,

it does not achieve an adequate separation between the given class and the rest simply

because of the presence of overlapping outliers which are shared between the two classes

and “corrupt” the between-class separability measure β. Essentially, this case can be

seen as a one-class learning scenario, where the set of negative samples is empty. We

hypothesise that such cases cause the overall quality of the Lm
ETS0

learning to deteriorate

and are the cause of the inferior performance.

The average number of transformations (excluding the ones of length one) per class

(NETS0) and the average transformation length (FETS0) discovered by the Lr
ETS0

and

Lm
ETS0

learning algorithms are shown in Table 4.2. Both learning strategies prefer shorter

transformations (given by F
r
ETS0

and F
m
ETS0

). This is because of the nature of the

composition rules which construct candidate operations by left and right concatenation

of single symbols. It also appears that on average, the Lm
ETS0

strategy discovers more

transformations per class, which are also slightly more compact than the transformations

discovered by Lr
ETS0

. Both the N
r
ETS0

and N
m
ETS0

refer to the average number of

transformations per class of templates. They have to be divided by the number of

streams (25) to obtain the average number of transformations discovered per-stream for

each class (Sr
ETS0

and S
m
ETS0

).

4.4.2 Full Problem

The symbolic database consists of 124,962 templates in the training set and 42,540

templates in the test set. The full-class task consists of evaluating the performance of

ETS0 models of 39 phonetic classes against 42,540 phonological templates representing

the test objects. Similar to the clustering setup described in the previous section and

Section 2.6, the training dataset is divided into the smaller sets of 5, 10, 15, 30, 50 and

100 objects per class.

Phoneme classification experiments were conducted on the full 39-class task using

the ETS0 models constructed by the Lr
ETS0

and Lm
ETS0

learning algorithms. The results,
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Figure 4.8: The measures of the average within-class distance, the minimum inter-class

distance and their ratio, shown during the Lm
ETS0

learning in two different streams of phoneme

[b]. Normal (Figure 4.8a) and problematic (Figure 4.8b) situations are shown. In Figure 4.8b,

f−1 is shown on a log scale (f∆i = fm
∆i

).
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|P | N
r
ETS0

F
r
ETS0

S
r
ETS0

N
m
ETS0

F
m
ETS0

S
m
ETS0

5 99 3 4 87 3 3

10 152 3 6 139 3 5

15 230 3 9 199 3 8

30 382 4 15 310 3 12

50 523 5 21 498 4 20

100 684 5 27 643 4 26

Table 4.2: Three-class task: Average number of transformations (excluding transformations

of length one) per class (NETS0), the average transformation length (FETS0) and average

number of transformations per stream (SETS0) discovered by the Lr
ETS0

and Lm
ETS0

learning

algorithms. These values are training dataset-specific.

shown in Table 4.3, are then compared to the results of the symbolic baseline algorithms

(Table 2.5) which we evaluated in Chapter 2.

|P | Lr
ETS0

Lm
ETS0

5 50.6 48.2

10 52.8 49.9

15 53.1 52.3

30 54.2 52.1

50 52.7 52.3

100 51.9 51.4

Table 4.3: Full task: Performance of the k-NN AESA symbolic search in the spaces con-

structed by ETS0 learning algorithms (Lr
ETS0

and Lm
ETS0

) and the “rigid” metric space base-

line from Chapter 2. Best classification accuracies (%) are shown in bold.

Similar to the three-class experiments described in the previous section, the k-NN

AESA search in the symbolic space constructed using the learning algorithm Lr
ETS0

,

which employs the average inter-class distance criterion, appears to outperform the

search in the symbolic space constructed with Lm
ETS0

. The best result obtained with the

Lr
ETS0

model is 54.2% accuracy, compared to the 52.3% accuracy obtained with Lm
ETS0

.

From this result and the result obtained for the smaller task, we can conclude that

the optimisation criterion employing the average inter-distance rather than minimum

inter-distance, is preferable for learning within the phonological ETS0 representation
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under investigation.

Both models appear to consistently outperform only one of the baseline models

shown in Table 2.5, which corresponds to the setup employing the combination of

weighted Levenshtein metric, mean templates and MaxMin clustering initialisation

(MG
P /DL

P /KM
P ). Furthermore, the best result of 54.2% obtained with Lr

ETS0
is bet-

ter than the result of 54.12% obtained with the baseline model corresponding to the

combination of weighted Levenshtein metric, median templates and MaxMin clustering

initialisation (MS
P /DL

P /KM
P ).

The other two baseline models considered in Chapter 2, consistently outperform

both the Lr
ETS0

and the Lm
ETS0

models. In particular, we were unable to surpass (on

any of the datasets considered above) the best performing (60.3%) symbolic baseline

model which corresponds to the combination of weighted Levenshtein metric, median

templates and duration-based clustering initialisation criterion. We hypothesise that

the reason for this unsatisfactory performance of the Lr
ETS0

and Lm
ETS0

models on the

full-class task has to do with the properties of the resulting distance function induced

during the learning. In order to ascertain this, we conducted the following experiment:

Given the test set of 42,540 phonological templates, we performed 4,836,564 tests of

the triangle inequality. The metric we evaluated was induced by the Lr
ETS0

algorithm

on the dataset corresponding to 15 templates per class. The percentage of violations

of the triangle inequality in this experiment was 0.03%, which corresponds to 1,196

failed tests. Though this number is small, it nevertheless shows the semimetric nature

of the resulting distance function. This semimetric property, in turn, influences the

quality of the k-NN AESA search, which is based on the distance computations only.

An additional problem which may arise is the discovery of the “wrong” transformations

during the learning. This is because the same semimetric distance functions are used

during the learning for the computation of class separability and proximity measures.

4.5 Summary and Potential Improvements

In this chapter we showed how to inductively approach the issue of structural learning

within the symbolic phonological metric spaces. By the adjective “inductive” we mean

the formulation of the learning problem in such a way that the goal of the learning is

the discovery of the non-trivial structural transformations which make the instances of

the phonemes in each of the classes similar to each other. We approached this prob-

lem using ideas from ETS0 framework, which was specifically developed to address

these needs. The central idea of this approach is the discovery (during the learning)

of the optimal structural transformations which induce a new and more optimal metric
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space, where (at least in theory) the classification should be easier since the discovered

structural transformations, participating in this new metric, lead to the better class

separation. The main attraction of this approach, however, is in the representational

power it affords: discovering the structural (and hence fully interpretable) transforma-

tions that make the phonemes different and/or similar is linguistically more meaningful

than performing a purely numeric optimisation. We believe that the emphasis on the

structural class representation of linguistic phenomena will facilitate the development

of the speech recognition field, since the recognition problem cannot be adequately

approached without a meaningful representation.

We believe that ours is the first attempt in pattern recognition to address the issue

of ETS0 structural learning on a large (for structural models) real-world database. Pre-

vious research (Goldfarb, 1990; Goldfarb and Deshpande, 1997; Goldfarb et al., 1996;

Goldfarb and Nigam, 1994) was theory oriented and focused on small-scale pattern clas-

sification experiments. The only (major) previous practical application of the framework

is in the field of grammatical inference (Abela, 2001), which is obviously very different

from the phonological representation and classification problem we are addressing.

Therefore, the linguistic attractiveness of the ETS0 framework we considered in this

chapter comes at a cost. Despite the fact that we were able to show improvements in

phoneme classification on a small task, the performance of the system on a full task does

not match the original expectations. This can be explained by the fact that, compared

to the structurally “rigid” approaches we discussed in Chapter 2, there are many more

factors in play when one considers structural learning and optimisation. Below, we

discuss several areas of research we expect would lead to significant improvements in

the modelling power and classification of the framework considered in this chapter.

Potential Improvements

There are several ways of improving the algorithms of the ETS0 framework described

in this chapter:

• In the discussion in Section 4.4, we mentioned that the optimisation criteria (es-

pecially the ones incorporating the minimum inter-class distance measure) are not

very robust in the presence of the noise. The learning algorithm was primarily de-

veloped for the grammatical inference problem, where the classes are some formal

languages generated by distinct grammars. These problems are usually much less

“noisy” than the pattern recognition ones. Hence, we may need to look for bet-

ter proximity and class-separability measures α and β to use in the optimisation

function f (given by equation (4.3)).
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• Although the learning algorithm already incorporates some of the changes we

intended to make (such as more robust stopping criteria than those specified

in Abela, 2001; Goldfarb and Nigam, 1994), more work is needed in order to

investigate the behaviour of the simplex optimisation. In particular, we observed

several cases of convergence of f to non-stationary points (see Section 4.3.1.2).

There are several possible remedies to rectify this situation (though they will make

the learning process slower):

– Evaluate the simplex at additional points (not only at the vertices). This

will allow us to tune the weights better.

– The Powell method of non-linear optimisation is more robust than the sim-

plex method of Nelder and Mead. Hence, better estimates can be obtained

with it.

– Using either Nelder & Mead or Powell techniques, it is possible to conduct an

exhaustive search for the optimal transformation weights. This might give

an optimal solution, though computationally it is totally intractable.

• Better dimensionality reduction techniques will be considered. The clustering

setup resulted in the number of overlaps between several classes under investiga-

tion. This is because the clustering algorithms, described in Chapter 2, did not

take into the account the need for class separation.

• In the previous section we mentioned that the semimetric properties of the distance

functions employing the non-trivial transformations may corrupt the quality of the

learning and classification procedures. This was first observed by Abela (2001),

who suggested the use of normal forms as a remedy. Briefly, given a string and

a set of transformations, a normal form of a string is another string with all

the occurrences of the supplied transformations removed from it. This can be

extended to normal forms of phonological templates in a straightforward way.

The calculation of a normal form, however, is a non-trivial procedure. In general,

given a string and a set of transformations, there would be several normal forms

corresponding to a string (one for each distinct sequence of the removed substrings)

and the algorithm will have to choose the most optimal one.

During the learning and classification processes, once the training and test sets

are reduced to their normal forms using the currently discovered transformations,

the induced metric is not needed anymore and one can use the regular weighted

Levenshtein distance which possesses the desired metric properties. This is be-

cause the non-trivial transformations are not present in the sets of positive and

negative samples.
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Incorporation of this procedure into the learning algorithm described in Sec-

tion 4.3.3.1 is a non-trivial task. Ideally, one would need to reduce the sets of

positive and negative objects every time the new candidate transformations are

found. To every candidate transformation found, there would correspond its own

copy of the training and test sets. Though the actual computation of the dis-

tances between any two objects will become much faster, the overall computation

complexity may increase because of the additional requirements of the reduction

process.
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Chapter 5

Formal Articulatory

Representation of Speech with

ETS2

5.1 Introduction

In the first part of this thesis we described the structural representation of speech built

around the concept of distinctive phonological features. We introduced the represen-

tation in Chapter 2. In the same chapter, as well as in Chapter 3 and Chapter 4, we

focused on the classification and learning techniques in various symbolic and numeric

spaces corresponding to this representation. The main theoretical difficulty which we

encountered is the fact that distinctive phonological features are difficult to extract

directly from speech without resorting to the use of numeric models (such as neural

networks) which are able to perform the non-linear mapping between the acoustics and

distinctive feature “space”. While such a mapping is definitely desirable for the numeric

approaches to speech modelling, it is nevertheless quite problematic from the point of

view of structural modelling. This is because the main attraction of the symbolic ap-

proaches is their ability to represent (and discover) the structure of the process being

modelled. As an example, consider the multivalued feature describing the manner of ar-

ticulation. We can recover its values, e.g. fricative, from the acoustic stream using some

numeric model. In the process, however, we loose all the original information (present

in the data) which might have given us structural clues as to what is a fricative. We

partially addressed this issue in Chapter 4, were the ETS0 approach was presented. The

adverb “partially” refers to the fact that while we focused on the discovery of structural

features, the data on which we operated was in the distinctive phonological feature

space, rather than original space.

159
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Given the above observations, the question we address in this chapter is the follow-

ing: Is there a conceptually simple way of constructing a richer structural representation

directly from the data?

First of all, we observe that basing a structural representation on distinctive phono-

logical features may not be the best of options, since these units are too abstract and

thus are difficult to extract from the real data directly. There is a better alterna-

tive to distinctive phonological features. This alternative is offered by the theory of

articulatory phonology (Browman and Goldstein, 1992). In articulatory phonology, vo-

cal tract action during speech production is decomposed into discrete, re-combinable

atomic units (Browman and Goldstein, 1989). The central idea is that, while the ob-

served products of articulation (articulatory and/or acoustic measurements) are contin-

uous and context-dependent, the physiological actions which regulate the motion of the

articulators are discrete and context-independent. These atomic actions, known as ges-

tures, are hypothesised to combine in different ways to form the vast array of words that

constitute the vocabularies of human languages (Stevens, 1989; Studdert-Kennedy and

Goldstein, 2003). This combinatorial outlook on speech places it in the same context as

other natural systems (for instance, combinations of gestures are similar to molecular

compounds in chemistry). Compared to traditional approaches — such as distinctive

phonological features — the gestural approach is more physiologically concrete and of-

fers a compact means of representing the truly asynchronous nature of speech, allowing

for better interpretations of all-pervasive complex phonological phenomena (such as

assimilation).

Second, we propose a richer structural representation of speech built around the

above articulatory gestures. The representation is based on the Evolving Transforma-

tion System (ETS2) formalism, outlined by Goldfarb et al. (2004). Taking into account

the limitations of the original version (ETS0), ETS2 has been specifically proposed as a

radically new formal framework for the structural representation of “natural” processes.

As observed by Abler (1989), these processes, which are studied in natural sciences

(such as evolutionary biology, organic chemistry and physiology) share some important

combinatorial properties. In the articulatory representation we propose in this chapter,

the natural process we model is the physiological process of articulation, which is cap-

tured by the fundamental concepts of the ETS2 formalism. In particular, the discrete

articulatory gestures are represented by the atomic units of the ETS2 formalism, while

non-trivial combintations of these gestures are represented as formal structures encoding

the “formative history” of the corresponding objects. As will become evident from the

discussion in this chapter, the articulatory representation is richer, both semantically

and syntactically, than its distinctive feature-based counterpart.
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Third, we note that the articulatory gestures can be extracted from the data. Since

our aim is to work directly with the data, the (unstructured numeric) measurements

need to be articulatory. In practice, some of the gestures can be detected from mul-

tiple measurement sources. For example, vibration of the vocal folds can be detected

from both the laryngeal pressure waveform and the corresponding acoustic recording.

The purely quantitative approach to automatic derivation of gestural structures from

articulatory speech data has been studied in detail by Jung (1993; 1996), who proposed

using a derived numeric representation of the gestural structure both as alternative

units for continuous speech recognition and as a compact representation of the acoustic

waveforms. An alternative (qualitative) approach, advocating the use of automatically

derived gestures as the generic qualitative units for any structural (e.g. hypergraph-

based) representation of continuous speech, has been proposed by us in (Gutkin and

King, 2005a). In this chapter, the latter approach was used for detection of the ar-

ticulatory gestures in the continuous speech data and automatic derivation of gestural

structures for ETS2 representation. We previously reported various features of ETS2

articulatory representation in (Gutkin et al., 2004; Gutkin and Gay, 2005b,c).

Finally, it is important to note that in this chapter we focus on representation.

The issue of learning within ETS2 is omitted from the discussion because the learning

algorithm (described in Goldfarb et al., 2004, Part III) needs more work to be usable in

practical pattern recognition applications (please refer to the end of this chapter, where

on p. 206 more information is provided). Therefore, in this chapter we deal with the

classification of the class structures which are a priori postulated based on the linguistic

evidence. The implementation of ETS2 algorithm is available and was used by us to

perform some learning experiments, which largely confirmed our hypotheses with regard

to phonemic class structures. However, several problematic issues with the algorithm

have prevented us from presenting the algorithm and describing those experiments here

or in a separate chapter.

Overview of the chapter

The core elements of the ETS2 formalism are introduced in Section 5.2. The ETS2

articulatory representation is then described in Section 5.3, where we present some

basic modelling ideas and describe the algorithms for automatically deriving the rep-

resentation from the articulatory data. Experiments aimed at verifying the adequacy

of the proposed representation are described in Section 5.4, which also discusses the

results. We summarise the chapter in Section 5.5, describing the potential benefits of

this approach and presenting some directions of future research aimed at improving the

articulatory representation.
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5.2 Preliminaries: The ETS2 Representation Formalism

In this section we introduce the core elements of the ETS2 model. In what follows, we

essentially follow the white paper (Goldfarb et al., 2004). However, bearing in mind

the subsequent developments (Gutkin et al., 2004; Gutkin and Gay, 2005b,c), which are

described in the rest of this chapter, we took the decision not to go into unnecessary (for

our representation) detail. The representation-specific interpretation of the concepts we

introduce in this section will be given further on in Section 5.3.

5.2.1 Primitive Transformations

In this section we introduce the basic representational units of the formalism — the

primitive transformations and sites, as defined in (Goldfarb et al., 2004, Section 3).

Informally, an ETS2 primitive transformation is a unit of temporal structure (primitive

event) of some natural process. This event operates on ETS2 sites, which are the smallest

unstructured representational units within a process. The primitive transformation can

be seen to transform its set of “initial” sites into its set of “terminal” sites.

Notation 5.1. For a linearly ordered set A = 〈A,<〉, the set obtained by discarding

the linear order in A will be denoted

]A[ def= A .

Definition 5.1 (Original Primitive, Site Type and Site Label). Let

Π̂ =
{
π̂1, π̂2, . . . , π̂n

}
be a small finite set of names of primitives. Also let SL be a finite set of site labels (or

simply sites) and ST a finite set of site types. Moreover, ∀ π̂i ∈ Π̂, we are given a

triple

π̊i = 〈π̂i, INITi, TERMi〉

called an original primitive transformation, or simply original primitive, where INITi

and TERMi are (small) finite, possibly empty, linearly ordered sets of site labels, of

cardinalities k and l, respectively. For these two sets the following is true:

k + l 6= 0 , ]INITi[ ⊆ SL and ]TERMi[ ⊆ SL .

We denote by Π̊ the finite set comprised of π̊i, 1 ≤ i ≤ n, and call it the set of

original primitives. Finally, we are also given a site type mapping

TYPE : SL→ ST ,

which assigns a site type to each site label.



Chapter 5. Formal Articulatory Representation of Speech with ETS2 163

A site type encapsulates the inherent structural or qualitative character of a site,

while site labels are merely temporary, interchangeable names. A site type specifies

the kinds of allowable “interactions” of this site with the sites of other primitives. In

Section 5.2.2, this point will be explained more formally and the relation between the

sites and site types will become clearer.

Notation 5.2. For an original primitive π̊i, the following concepts and notations will

be useful:

Init (̊πi)
def= ]INITi[ is the set of initial sites of π̊i

Term (̊πi)
def= ]TERMi[ is the set of terminal sites of π̊i

Sites (̊πi)
def= ]INITi[ ∪ ]TERMi[ is the set of all sites of π̊i

π̊i(k) is the k-th initial site of π̊i

π̊i(l) is the l-th terminal site of π̊i .

Pictorially, it is convenient to represent an original primitive

π̊i = 〈π̂i, INITi, TERMi〉

as a convex shape. The initial sites are marked as points on its top, and the terminal

sites are marked on its bottom. We will use numbers as labels for the sites, with the

left-to-right ordering of the sites on the top and bottom corresponding to the linear

orderings in INITi and TERMi, respectively.

Example 5.1 (Original Primitives). Four original primitives

π̊1 =
〈
π̂1, 〈1〉, 〈1, 2〉

〉
, π̊2 =

〈
π̂2, 〈1, 2〉, 〈2, 3〉

〉
,

π̊3 =
〈
π̂2, 〈1, 2〉, 〈2〉

〉
and π̊2 =

〈
π̂2, ∅, 〈1, 2, 3〉

〉
are shown in Figure 5.1. The natural numbers are used as labels incidentally, and only

for convenience. Also note that the ̂ symbols are dropped in this and all subsequent

figures, and site types are not indicated.

In addition, alternative notation will be used in the concrete examples. Instead

of
〈
π̂i, 〈. . .〉, 〈. . .〉

〉
, the following short notation π̂i[ . . . | . . . ] will be used (as in Exam-

ple 5.2). B

Definition 5.2 (Site Relabelling). A site relabelling F is an injective mapping

F : L→ SL , where L ⊂ SL ,

which preserves site types. In other words,

∀l ∈ L TYPE (l) = TYPE (F (l)) .
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Figure 5.1: Pictorial illustration of four original primitives (reproduced with permission

from Goldfarb et al., 2004). Identical initial and terminal label may identify the same object

on which this primitive transformation operates. Alternatively, this may be interpreted as a

certain event (represented by a primitive) which occurred in a certain object’s (represented

by a fixed label) history.

The notion of site relabelling is crucial for introducing the concept of primitive

transformations, which follows.

Definition 5.3 (Primitive). For an original primitive π̊i = 〈π̂i, INITi, TERMi〉, and a

site relabelling of an original primitive

f : Sites (̊πi)→ SL ,

primitive transformation, or simply primitive, is defined as

π̊i{f } = 〈π̂i, f(INITi), f(TERMi)〉 ,

where the linear orders on f(INITi) and f(TERMi) are induced by those in INITi and

TERMi, respectively. Correspondingly, the set of structurally identical primitives is

defined as

Πi
def=
{
π̊i{f } | f is an original primitive site relabelling

}
and the set of all primitives is given by

Π def=
n⋃

i=1

Πi .

Primitives πi, πj ∈ Π are structurally identical if there exists a primitive site rela-

belling

f : Sites (πi)→ SL such that πj = πi{f } .

The corresponding equivalence class Πj will be called class primitive and denoted [πj ].

Example 5.2 (Primitives and Class Primitives). Figure 5.2 shows primitives

π̂1[ 5 | 5, 3 ] , π̂2[ 3, 4 | 4, 6 ] , π̂2[ 1, 2 | 2, 3 ] and π̂2[ 4, 3 | 3, 5 ] .
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Figure 5.2: Pictorial illustration of four primitives (reproduced with permission from Goldfarb

et al., 2004).

Figure 5.3: Pictorial illustration of two class primitives (reproduced with permission

from Goldfarb et al., 2004).

Note that the last three primitives are instances of the same class primitive [π2]. The

notion of site labels allows one to differentiate between various instances of the same

class primitive. By introducing the notion of site relabelling these instances can be

related to the same class of primitives if they are structurally identical under the given

relabelling (Definition 5.2).

The two class primitives (unrelated to the primitives in Figure 5.2) are shown in

Figure 5.3. The circle and the square denote two distinct site types. This implies that

letters
{
a, b
}

and
{
x, y
}

are the names of the variables that are allowed to vary over

non-overlapping sets of numeric labels. B

Remark 5.1 (Note on relabellings). From this point onwards, we omit the notion of

the relabelling from the discussion for the sake of brevity. In general, all the structural

concepts introduced in the next sections formally allow for relabellings introduced on

their constituent sets of sites. Since in our representation (which will be discussed

further on in Section 5.3) the interactions between the sites are formally quite simple

and can be expressed by the identity mapping, we decided not to over-burden the

exposition here.

5.2.2 Instances of Structural History

An ETS2 struct is a temporally-ordered sequence of connected primitives capturing an

instance of a “structural history” of the corresponding process or object. The structs

were defined in (Goldfarb et al., 2004, Section 4). The definition of a struct can be
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seen as a structural generalisation of the inductive process of construction of natural

numbers, proposed by Giuseppe Peano (Landau, 1951).

Definition 5.4 (Struct). The set Σ of instances of structural history, or simply structs,

is defined inductively follows: For each σ ∈ Σ, three sets — Init (σ), Term (σ), and

Sites (σ) of initial sites, terminal sites, and all sites of the struct σ — are inductively

constructed:

• θ is the null struct whose sets of sites are

Init (θ) = Term (θ) = Sites (θ) def= ∅

• Assuming that σ ∈ Σ has been constructed, and given π ∈ Π satisfying

Sites (σ) ∩ Sites (π) = Term (σ) ∩ Init (π) , (5.1)

the expression

σ a π

signifies the new struct σπ, called the continuation of struct σ by primitive π. The

sets of sites of σπ are constructed as follows:

Init (σπ) def= Init (σ) ∪ [Init (π) \ Term (σ)] (5.2)

Term (σπ) def= Term (π) ∪ [Term (σ) \ Init (π)] (5.3)

Sites (σπ) def= Sites (σ) ∪ Sites (π) . (5.4)

The operation a is called the continue operation. The struct σ is specified by the

following expression encapsulating its construction process

σ = [π1 a π2 a · · · a πt] .

The order relationship between the indices in the above expression corresponds to the

constructive order of the relevant continue operations. It is assumed that this expression

is valid for t = 0 and, in this case, denotes θ.

For the above construction of σ a π, the continuation operation a can be depicted

and thought of as an attachment of the identical sites in Term (σ) and Init (π). In

particular, primitive π is attached to primitive πi if, when actually constructing σ a π,

at least one initial site of π was attached to one terminal site of πi.

Example 5.3 (Struct). Two structs, where the set of original primitives includes

π̊1, π̊2, π̊3, π̊4, π̊5 are shown in Figure 5.4. The vertical order of primitives corresponds

to the constructive (temporal) order of the relevant continue operations. B
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Figure 5.4: Two instances of structural history (structs) (reproduced with permission

from Goldfarb et al., 2004). Structs can be informally interpreted as evolving sequences of

events (primitive transformations) sharing some attributes (sites). The application-specific

interpretation of structural histories is provided later on in this chapter in Section 5.3.

The following definition introduces the formal procedure for composing several in-

stances of structural histories:

Definition 5.5 (Struct Composition). Let α and β be structs such that

Init (β) ⊆ Term (α) .

If the following inductive construction procedure, denoted by / , can be completed

for β = θ : α / θ
def= α ;

for β = γ a π : α / (γ a π) def= (α / γ) a π

then the resulting struct

α / β

is called the composition of α and β and we say that β is composable with α.

Lemma 5.1. The sets of sites for the composition of two structs α and β are given by

Init (α / β) = Init (α) ∪
[
Init (β) \ Term (α)

]
Term (α / β) =

[
Term (α) \ Init (β)

]
∪ Term (β)

Sites (α / β) = Sites (α) ∪ Sites (β) .

Note that not every two structs satisfying Init (β) ⊆ Term (α) are composable, as

demonstrated by the following example.

Example 5.4 (Struct Composition). Two structs (α and β) and their composition

(α / β) are shown in Figure 5.5. Note that β / α is not a legal composition. B
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Figure 5.5: Two structs (α and β) and their composition α / β (reproduced with permission

from Goldfarb et al., 2004).

5.2.3 Extructs

Before describing the central concepts of the model in the next section, in this section

we introduce an important auxiliary notion of an extruct, as defined in (Goldfarb et al.,

2004, Section 5). Given a certain instance of structural history of some process under

investigation, it is often desirable to be able to examine some recent fragment of this

structure. This is especially useful if one is expecting a certain (non-trivial) event to

appear in the structure. The expected appearance of this event is signalled by the

presence in the struct of some structure (context) which is described by an extruct (this

will become clearer in Section 5.2.4).

Definition 5.6 (Attachment Graph). The attachment graph for struct

σ = [π1 a π2 a · · · a πt]

is defined as the following directed graph:

Gσ = 〈Vσ, Eσ〉 ,

where

Vσ =
{
v1, v2, · · · , vt

}
, vi corresponds to πi

and 〈vi, vj〉 ∈ Eσ if in the inductive construction of σ, πj was attached to πi.

The concept of attachment graph is a simplified partial encapsulation of the notion

of a struct. Multiple attachments between any pair of primitives are recorded as a

single edge, as demonstrated in Figure 5.6. Next, we define a concept of an interfaced

struct. Informally, an interfaced struct is pair consisting of a struct and some subset of

its terminal sites.
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Figure 5.6: A simple struct (left) and the corresponding attachment graph (right) (repro-

duced with permission from Goldfarb et al., 2004).

Definition 5.7 (Interfaced Struct). An interfaced struct is a pair 〈σ, Iface 〉, where σ

is a struct

σ = [π1 a π2 a · · · a πt]

and Iface is a subset of Term (σ) called the set of interface sites. For each primitive πi

in the above σ, 1 ≤ i ≤ t, a constituent of 〈σ, Iface 〉 is the following 4-tuple

ei
σ

def= 〈πi, DISi, DTSi, ISi〉 ,

where

• DISi is the set of detached initial sites, DISi ⊆ Init (πi), consisting of those initial

sites that are not attached to any other primitive;

• DTSi is the set of detached terminal sites, DTSi ⊆ Term (πi) \ Iface , consisting of

those terminal sites that are not attached to any other primitive;

• ISi is the set of interfaced sites, ISi ⊆ Term (πi)∩Iface , consisting of those terminal

sites that are not attached to any other primitive.

Definition 5.8 (Extruct (Informal Definition)). Informally, an extruct is a 3-tuple

εσ
def= 〈σ, Iface ,E〉 ,

where σ and Iface form an interface struct (Definition 5.7) and the set E consists of

those constituents ei
σ of 〈σ, Iface 〉 whose sites attach (directly or indirectly) to primitives

with the interface sites.
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Figure 5.7: Some of the possible extructs corresponding to the struct shown in Figure 5.6

(reproduced with permission from Goldfarb et al., 2004).

For more details on construction procedure for the set E above, refer to (Goldfarb

et al., 2004, Section 5). In general, each interface struct has multiple corresponding

extructs, the incremental construction of which involves bottom-up traversal of the

struct and the corresponding attachment graph.

Example 5.5 (Extruct). Figure 5.7 shows some of the possible extructs for an inter-

faced struct 〈σ, Iface 〉 corresponding to an actual struct σ shown in Figure 5.6. Heavy

lines identify interface sites, crosses identify detached initial and terminal sites. B

5.2.4 Transformations and Supertransformations

In this section we introduce the central structural units of the model: the transform and

the supertransform (Goldfarb et al., 2004, Section 6). Informally, it is useful to think

of every struct (Section 5.2.2) as being formed (generated) by a series of non-trivial

structural units — transformations.

Definition 5.9 (Transform). A transformation, or simply transform, is a pair

τ = 〈ε, β〉 ,

where extruct ε = 〈Iface ,E〉 and struct β satisfy

Iface = Init (β) = Sites (ε) ∩ Sites (β) .

We call ε the context of transform τ , denoted cntx(τ), and β the body of transform τ ,

denoted body(τ). The set of all sites of transform τ is defined as

Sites (τ) def= Sites (ε) ∪ Sites (β) .
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Figure 5.8: An example of a transform whose context corresponds to one of the extructs

shown in Figure 5.7. The right hand side depicts the “assembled” transform correspond-

ing to a more appropriate interpretation/understanding of the transform (reproduced with

permission from Goldfarb et al., 2004).

Example 5.6 (Transform). Figure 5.8 shows a simple transformation whose context

corresponds to one of the extructs shown in Figure 5.7. B

Since every struct can be seen as representing some non-trivial object or event in

the application domain, it clearly belongs to some class of objects or events. Hence, in

theory one can describe the class structure by enumerating all the structs (samples of

that class) in the domain. There is a better option, however. Rather than using structs

in the class description, it is more economical to use the transforms which generate

these structs. This observation leads to the notion of supertransform, which can be seen

as a generalisation of a transformation concept.

Definition 5.10 (Supertransform). A supertransformation, or simply supertransform,

is a pair

τ
def= 〈E,B〉 ,

where

E =
{
ε1, ε2, · · · , εp

}
εi = 〈Iface i,Ei〉, B =

{
β1, β2, · · · , βq

}
,

if the following conditions hold

∀ i, j, k
Init (βi) = Init (βj) = Iface k = Sites (εk) ∩ Sites (βi)

Term (βi) = Term (βj) .

The constituent transform set for a supertransform τ is defined as the set of all

transforms specified by the elements of the Cartesian product E × B. It is convenient
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Figure 5.9: Visualisation of a supertransform. Note that all contexts have the same interface

sites and all bodies have the same initial and terminal sites (reproduced with permission

from Goldfarb et al., 2004).

to blur the distinction between the pair 〈E,B〉 and the product E × B, and to refer

to both of them as the supertransform τ . Thus the following notation will be used:

τ = 〈ε, β〉, τ ∈ τ .

Example 5.7 (Supertransform). A simple supertransform consisting of six constituent

transformations is shown in Figure 5.9 as a rectilinear table. All contexts have the same

interface sites and all bodies have the same initial and terminal sites. B

If there are multiple site relabellings used in the representation, one can generalise

the notion of a supertransform τ to that of a class supertransform, denoted [τ ], which

is defined as an equivalence class on the set of all supertransforms which are equivalent

under the relabelling. In the representation dealt with in this chapter, we can treat the

notions of class supertransform and supertransform as equivalent (see Remark 5.1).

The concept of a supertransform is central in ETS2 formalism, because it encapsu-

lates the structural means of class description. Given a supertransform, one can generate
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(or recognise) an infinite number of objects (structs) of that class. This is because the

structs are generated by the constituent transforms of a supertransform.

5.2.5 Level Ascension Postulate

Perhaps the most powerful feature of the ETS2 formalism is its ability to model the

environment at multiple levels. Within the ETS2 model, the transition to a new level

of representation consists of construction of a new next-level set of primitives, which

can then be used constructively in the usual manner (as described in the previous

sections) to construct the set of next-level structs, extructs, transforms and so on. The

corresponding formal machinery was defined in (Goldfarb et al., 2004, Section 8).

Proposition 5.1 (Level Ascension Postulate). The class of (context-sensitive) macro-

events corresponding to a class supertransform may be adequately represented at the next

level by a new (original) primitive obtained by completely shrinking that supertransform’s

contexts and by dropping the internal structure of the supertransform’s bodies in the

manner described in Definition 5.11.

The following definition is a direct consequence of the above postulate and Defini-

tion 5.1 (including the notation in the definition).

Definition 5.11 (Next-Level Correspondence). Assume that we have fixed a set TS of

class supertransforms,

TS =
{

[τ 1], [τ 2], · · · , [τm]
}

,

called a transformation system. Define three sets

Π̂′ def=
{

[̂τ 1], [̂τ 2], · · · , ̂[τm]
}

of next-level primitive names ,

SL′
def= SL of next-level site labels ,

ST ′ def= ST of next-level site types .

We now introduce a set of next-level original primitives Π̊′ for which each of its elements

π̊′i is constructed as follows:

π̊′i
def=

〈
[̂τ i], INITi, TERMi

〉
where, for

τ i = 〈Ei, Bi〉 with Bi =
{
βi1 , βi2 , . . . , βiqi

}
,

]INITi[
def= Init

(
βi1

)
,

]TERMi[
def= Term

(
βi1

)
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Figure 5.10: Some supertransform τ̊ ′ and the corresponding next-level original primitive

(reproduced with permission from Goldfarb et al., 2004). The symbol ̂ in the depiction of

the next-level original primitive is dropped.

and the corresponding linear orders are induced based on both the constructive order

of the primitives in the first body of τ i as well as on the orders of the sites in each of

those primitives (see Figure 5.10). In addition, we define a next-level site type mapping

TYPE ′ : SL′ → ST ′

to be the same as mapping TYPE in Definition 5.1.

The next-level original primitive name

[̂τ i] , 1 ≤ i ≤ m

in the above definition could be thought of as denoting the “name” given to a class

supertransform [τ i], which is inherited by the next-level original primitive. The next-

level counterparts of the notions described in the previous sections (primitives, structs,

transforms and supertransforms) are described in exactly the same manner as before

using the next-level original primitives.

5.2.6 Inductive Structure

Finally, we can encapsulate the entire developed mathematical structure as a single

entity in the following definition (Goldfarb et al., 2004, Section 8):
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Definition 5.12 (Inductive Structure). A (single-level) inductive structure is a pair

〈Π̊, TS〉 ,

where Π̊ is a set of original primitives and TS is a transformation system. The latter

pair also signifies all relevant concepts, such as structs, extructs, and so on.

A multi-level inductive structure (with l levels) MIS is an l-tuple

MIS def=
〈
〈Π̊, TS〉, 〈Π̊′, TS′〉, · · · , 〈Π̊(l−1), TS(l−1)〉

〉
where TS(l−1) = ∅, TS(k) is the transformation system for the set of original primitives

Π̊(k), and every consecutive pair of inductive structures satisfies the level ascension

postulate from the previous section (see Figure 5.11 and Figure 5.12).

Every k-th level inductive structure
〈
Π̊(k), TS(k)

〉
in MIS is denoted

MIS(k) def= 〈Π̊(k), TS(k)〉 k = 0, 1, . . . , l − 1 .

In addition,

τ (k) → π(k+1) k = 0, 1, . . . , l − 2

denotes the transition from some supertransform τ (k) at level k to a corresponding

primitive π(k+1) at level k + 1.

Learning in ETS2 formalism reduces to the discovery of the inductive class struc-

ture outlined above. The learning algorithm is presented in Part III of the white pa-

per (Goldfarb et al., 2004) and is not, strictly speaking, part of the formalism. Because

the algorithm is rather involved, for the sake of brevity we decided not to present it in

this thesis, although it has been successfully implemented and tested on the articulatory

structures (Section 5.3) derived from the real data. Briefly, the algorithm attempts to

optimally capture the class representation of the environment by expanding and refin-

ing its multi-level inductive structure MIS, including the number of its levels. This is

accomplished by the creation and modification (but never deletion) of relevant class su-

pertransforms at the appropriate levels. This is mainly achieved by the introduction of

the numeric components associated with the main structural concepts presented above.

Weights are added to the following structural associations:

• Connections between primitives;

• Connections between bodies and contexts of the transforms;

• Connections between primitives and structs;

• Constituent transforms of the supertransforms.
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Figure 5.11: Schematic representation of a multi-level inductive structure with l levels (re-

produced with permission from Goldfarb et al., 2004).
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Figure 5.12: Pyramid view (partial) of a k-th level class supertransform: the pyramid should

be thought of as being formed by the subordinate class supertransforms (reproduced with

permission from Goldfarb et al., 2004).
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These weights are related to the statistical observations of the above associations in the

structs derived by the pre-processor from the data. Numeric association schemes allow

to establish that some structures are more likely to be observed than others. Once the

weights are updated, the hybrid numeric-structural algorithm updates (or creates) the

relevant structures (extructs, transforms and supertransforms), spawning new levels if

necessary. In general, the learning proceeds on all the current levels of the hierarchy.

5.3 Articulatory Representation

In Section 5.3.1, we explain the basic tenets of the articulatory representation and set the

scene for subsequent developments. The section also presents an answer to a question

of how to formally approach the modelling of articulatory structures within ETS2.

We also present some representation-specific assumptions which make the modelling

conceptually simpler.

Before proceeding with the representation, in Section 5.3.2 we introduce the articu-

latory speech corpus used in this study. Our main reason for introducing it here, rather

than in the experimental section, is simple. Our goal is: on the one hand to present a

formal articulatory representation, and on the other, to show how this formal model is

related to real measurements. Moreover, in later sections of this chapter we show how

to automatically derive this model from the data.

Having introduced the corpus, in Section 5.3.3 we present the atomic units of the

representation — the primitive gestures, which are formally treated as ETS2 primi-

tives. Next, in Section 5.3.4 we present a conceptually simple procedure (first suggested

in Gutkin and King, 2005a) for derivation of the primitive gestures directly from the

articulatory corpus at hand.

We next address the issue of class representation of consonantal phonemes of English

within the ETS2 formalism. In Section 5.2 we mentioned that this can be achieved by

designing an articulatory representation via the ETS2 transforms and supertransforms.

In particular, the transform allows us to describe a particular pattern of constriction

and release of the consonantal sound, while the supertransform encapsulates the family

of these semantically and structurally related patterns (transforms). These non-trivial

structural units of representation are described in Section 5.3.6 and Section 5.3.7. The

latter sections are based on the early ideas on the representation which we reported

in (Gutkin et al., 2004) and extended in (Gutkin and Gay, 2005c).

In Section 5.3.8, we describe a structural search procedure for locating the con-

stituent transforms of a given supertransform in any given struct generated from the

real data. The section is based on our recent work, reported in (Gutkin and Gay,
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2005a,b).

In this chapter, we focus on an initial (also called sensory) level of representation.

This level is called sensory because it directly interacts with the data. The mechanism

for extending the representation to higher levels is briefly outlined in Section 5.3.9.

5.3.1 Primitive Articulatory Gesture

In line with the process, event-based, philosophy of the ETS2 formalism presented in

Section 5.2, we base our analysis on the various articulatory processes (gestural events

and combinations thereof), which operate and cause changes in the states of the artic-

ulatory organs. Various dynamic interactions1 between the articulatory organs during

the articulation process are represented as ETS2 primitive transformations, which we

introduced in Section 5.2.1.

The choice of initial level ETS2 primitives therefore amounts to the human expert

performing the following tasks:

1. Identifying the articulators participating in speech production based on physio-

logical (Kaplan, 1971; Zemlin, 1968) and phonetic (Ladefoged, 2001) evidence.

These articulators are chosen to correspond to the site types of the primitives.

2. Selecting the most distinct gestures involving the articulators specified above.

These gestures are chosen to be the names of the ETS2 primitives. Hence, gestures

can be seen as transformations of the articulators.

The theoretical motivation for this more general outlook on the articulators and the

interactions between them is supported by linguistic theory, which states that an artic-

ulatory analysis on a physiologically lower, motor level introduces too much anatomical

detail that is linguistically irrelevant for the discrimination between various sound pat-

terns (Ladefoged, 2001).

The following important domain-specific observations lead to a certain simplification

of the formal structure of primitive transformations within our representation:

1. Although the articulators share some mechanical degrees of freedom, they are

commonly assumed to be anatomically distinct and independent. In other words,

any constriction formed by one of the organs does not necessarily produce a con-

striction in any other (Goldstein and Fowler, 2003). In our representation, this

is reflected in the choice of the sites of the primitives. Any primitive in the rep-

resentation possesses one specific property: it does not have multiple sites of the

same type.
1Which phoneticians also call processes, e.g. a nasal sound is a result of an “oro-nasal process”.
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Figure 5.13: Pictorial view of an abstract gestural structure.

2. We also observe that the number and type of the articulatory organs involved in

the production of any given gesture do not change with time. This leads to an

important simplifying assumption that the sets specifying the initial and terminal

sites of each primitive are identical.

The above linguistically-valid assumptions simplify various technical issues involved

in the ETS2 representation. In particular, for the site type mapping TYPE (Defini-

tion 5.1), which, given a site label, assigns to it a corresponding type, one can now use

a simple one-to-one mapping. Without a loss of generality, this allows us to use site

types instead of site labels in all the figures which follow.

Example 5.8 (Abstract Articulation). Figure 5.13 shows an abstract articulation in-

volving articulatory organs A1, A2, A3 and three gestures G1, G2 and G3 making use

of these organs. The vertical positioning of the gestures corresponds to the actual flow

in time of the pre-processing algorithm which detects them. The gesture G1 operates

on one articulator A1 only, whereas gesture G2 involves all of the depicted articulators

and follows G1. Gesture G1 might mean “raise A1”, gesture G2 might mean “move A1

to A2 while A3 vibrates”, while gesture G3 could mean “lower A1”.

Within the ETS2 formalism, this pictorial representation corresponds to the tem-

poral sequence of three primitives G1[A1|A1], G2[A1, A2, A3|A1, A2, A3] and G3[A1|A1]

which form a struct Gσ = [G1 a G2 a G3] representing some non-trivial gesture. The

structs were introduced in Section 5.2.2. B

It is not difficult to see that each gesture, represented by an ETS2 primitive, en-

capsulates both syntactic and semantic information. The syntactic information, allows

for structural processing by the appropriate training and recognition algorithms defined

within the ETS2 framework (Goldfarb, 2004; Goldfarb et al., 2004), while the semantic

information makes the representation meaningful and fully interpretable.
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5.3.2 The Articulatory Corpus

Speech corpora containing articulatory measurements are becoming quite popular with

the automatic speech recognition community as more researchers become interested

in using articulatory parameters either as a supplement to or substitute for spectrally

based input parameters, or as an internal representation for the model2. The discussion

of various articulatory approaches to statistical ASR is outside the scope of this thesis

and we refer the interested reader to an overview by Richmond (2001).

The articulatory corpus we are using is the MOCHA corpus (Wrench, 2000; Wrench

and Hardcastle, 2000). The MOCHA corpus consists of articulatory and acoustic record-

ings of 460 phonetically-rich sentences designed to provide good phonetic coverage of

English. At the moment, the database contains the finalised recordings for one male

and one female speaker, each consisting of approximately 31 minutes of speech. The

particular datasets we used came from the recording of a female (acronym fsew) and

male (acronym msak) speaker of British English.

The articulatory channels include Electromagnetic Articulograph (EMA) sensors

directly attached to the upper and lower lips, lower incisor (jaw), tongue tip (5-10 mm

from the tip), tongue blade (approximately 2-3 cm posterior to the tongue tip sensor),

tongue back (dorsum) (approximately 2-3 cm posterior to the tongue blade sensor) and

soft palate (velum). The EMA data has been recorded at 500 Hz. Coils attached to the

bridge of the nose and the upper incisor provided the frame of reference.

Laryngograph/EGG measures changes in the contact area of the vocal folds, pro-

viding the recording of the laryngeal waveform. Pitch and voicing information can be

derived from the laryngeal waveform exactly in the same fashion as from the acous-

tic waveform, which is also provided by the corpus. Both the laryngeal and acoustic

waveforms were recorded at 16 kHz.

Electropalatograph (EPG) measurements provide tongue-palate contact data at 62

normalised positions across the hard palate (Wrench, 2000). EPG information is very

useful because it augments some of the information missing from the EMA data. The

EPG measurements are produced by the subject wearing an artificial palate specially

moulded to fit their hard palate with the 62 electrodes mounted on the surface to detect

lingual contact. Each EPG frame (the EPG.3 version of the device was used), sampled

at 200 Hz, consists of 64 bits, two bits of which are unused. Each bit from the 62 bit

mask is on if the contact was detected, off otherwise.

The articulatory data was post-processed to synchronise the channels and correct

for the EMA head movement and discrepancies in coil placements during the recording.
2Traditionally, articulatory research received more attention from the linguistic community (Byrd,

2003; Perkell, 1969).
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Organ Semantics Measurement Type

UL upper lip EMA

LL lower lip EMA

UI upper incisor EMA

TD tongue back (dorsum) EMA, EPG

TT tongue tip EMA, EPG

VL soft palate (velum) EMA, EPG

HP hard palate EPG

AR alveolar ridge EPG

VF vocal folds laryngeal, acoustic

Table 5.1: Articulators involved in the production of primitive gestures and the types of

available measurements.

The resulting coordinate system of EMA trajectories consisting of (x, y) coordinates

has its origin at the bridge of the nose, with positive x direction being towards the back

of the vocal tract, away from the teeth, and positive y direction being upwards towards

the roof of the mouth. The post-processing step details can be found in (Richmond,

2001).

The corpus was automatically labelled using forced alignment of the acoustic signal

with phone sequences generated from a phonemic dictionary, thus phonetic labels are

available (see Wrench, 2000; Wrench and Hardcastle, 2000 for more information). The

autolabelling errors were hand-corrected.

5.3.3 Primitive Gestures and Their Groups

Table 5.1 lists all of the ETS2 site types (articulatory organs) used in our representation.

Along with each site type we show the corresponding interpretation and the source of

measurements offered by MOCHA. As can be see from Table 5.1, for some articulators

(like tongue tip), several sources of measurement are available.

In Section 5.3.1 we mentioned that due to the assumption that the articulators are

physically independent, they all can be modelled by different ETS2 site types. We also

mentioned that this allows us to introduce a simplified site mapping (Definition 5.1)

and site relabelling (Definition 5.2) schemes. Let Ta denote the set of the ETS2 site

types corresponding to the articulators shown in Table 5.1. The site type mapping

TYPE a : SLa → Ta
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Group Organs Group Size Measurement Type

bilabial closure UL, LL 6 EMA

tongue dorsum height TD 4 EMA

tongue tip height TT 4 EMA

labiodental contact UI, LL 4 EMA

velic aperture VL 4 EMA

velar contact TD, VL 2 EPG

alveolar contact TT, AR 2 EPG

palatal contact TT, HP 2 EPG

voicing VF 2 laryngeal

Table 5.2: Various groups of primitive gestures shown along with the crucial articulators

(Table 5.1) participating in their formation, group sizes and the sources of available mea-

surements.

corresponding to our representation is defined as a one-to-one (identity) mapping

TYPE a : Ta → N , where ∀ti ∈ Ta TYPE a(ti) = i , 1 ≤ i ≤ |Ta| .

Since there is a one-to-one correspondency between the site types and the site labels in

our representation, any site relabelling also has to satisfy this property. In this study,

we are not using any site relabellings since our sites are fixed.

Table 5.2 shows the groups of primitive gestures used in this study. For each group,

the relevant sites (articulators), the number of distinct constituent gestures (primi-

tives) and the sources of available measurements are shown. As was mentioned above,

primitives, sites and primitive groups have been specified using the expert knowledge.

Informally, a group consists of closely semantically and syntactically related primitive

gestures involving similar articulators.

Example 5.9 (Articulatory Group of Gestures). The group specifying the velic aper-

ture consists of four gestures which correspond to the EMA trajectory of the velum,

which is the only site these four primitives have. On the other hand, the velic closure

group consists of syntactically different primitives which are derived from the EPG data

and involve two articulators which correspond to the velum and the tongue back. As

we shall see in the later sections of this chapter, the concept of an articulatory group

allows us to introduce some domain-specific knowledge into the ETS2 framework. B

Some of the groups of the ETS2 primitives are presented in Figure 5.14. The four

groups shown are:



Chapter 5. Formal Articulatory Representation of Speech with ETS2 184

LL

LL UL

UL LL

LL UL

UL

DrawCloseTouch
LipsLips

LL

LL UL

UL LL

LL UL

UL

Lips Lips

LL

LL UL

UL LL

LL UL

UL

PartWide
Lips Lips

BringMidSlightPart

Bilabial Closure

Tongue Dorsum Movement

TD

TD TD

TD

RaiseMid

TD

TD

TD

TD

LowerMid LowerMaxRaiseMax

VF

VF

Vibration of the Vocal Folds

TD

TD VL

VL

VC-Part

Velar Closure

VF

VF

TD

TD VL

VL

VC-TouchVFV-Start VFV-Stop

TD TD TD TD

PartMid

Figure 5.14: Some of the groups of primitive gestures from Table 5.2.

• Vibration of the vocal folds: This group consists of two primitives which describe

the vibration of the vocal folds, in a binary fashion (on/off).

• Velic aperture: Similar to the above, this group also consists of two primitives

which specify whether the velic closure has been detected.

• Bilabial closure: This group consists of six gestures which describe the movement

of the upper and lower lips. Note that the these gestures model the trajectory and

also distinguish between two different directions of movement (lips getting closer

and lips parting).

• Tongue dorsum height: This group describes the vertical trajectory of the back

of the tongue (its height) by four gestures. Similar to the gestures describing the

bilabial states, these gestures also distinguish between two possible directions of

the movement.

5.3.4 Automatic Detection of Primitive Gestures

Given an articulator (or group of articulators) of interest and the various corresponding

streams of measurements, various groups of gestures can be detected. Below, we describe

a simple pre-processor front-end for automatic detection of the primitive gestures in the

data.

Vibration of the vocal folds (VF) that uniquely defines voiced and unvoiced sound

patterns is represented by the two primitives standing for the beginning (VFV-Start)
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Figure 5.15: Three EPG regions and depiction of typical stable phases of the four consonants

[d], [g], [sh] and [n] (after Figure 1 in Carreira-Perpiñán and Renals, 1998).

and end (VFV-Stop) of vibration respectively. The pitch detection algorithm used on

the acoustic recordings provided by the MOCHA database is described by Talkin (1995).

We used a 5 ms interval for analysis frames and a pitch frequency search range between

25 Hz and 600 Hz. Given the acoustic stream, at any given point in time the decision

about the beginning and termination of the vibration is made when:

1. a change in the state of pitch is detected by the pitch detection algorithm, and

2. this new state is steady for at least 20ms (around 320 samples of a 16 kHz record-

ing), which is an minimum duration of a typical short vowel.

Given the EPG stream provided by MOCHA, it is possible to detect various contacts

between the tongue and the hard palate. The output of the EPG sensor consists of 8

8-bit binary vectors with a simple spatial structure. The first three rows represent the

alveolar region (the first and the last bit of the first row are unused), followed by two

rows representing the palatal region, with the last three rows roughly corresponding to

the velar region. Figure 5.15 illustrates the three main EPG regions and their typical

behaviour during the articulation of the four consonants [d], [g], [sh] and [n].

In order to determine whether a contact has occurred, for each of the three regions

(velar, palatal and alveolar) we use the contact index measured by the linear combina-

tion of the rows representing that region (which is a sum of all the bits of the rows), as

described by Nguyen (2000). Given an appropriate per-region threshold (τa,τp and τv

representing the alveolar, palatal and velar regions, respectively) defined by examining

the relevant EPG measurements, change in the contact information at any given point

results in the emergence of an appropriate primitive if and only if the threshold value

of the index is crossed. For instance, the velar contact gesture VC-Touch emerges when

the value of the velar index increases beyond τv, while the gesture VC-Part signifying

the release of the closure emerges when this value decreases below τv. The emerging

primitive gestures involve the pair of organs corresponding to the contact location. For

palatal contact, the organs would involve tongue tip (TT) and the hard palate (HP), for

alveolar contact the pair would include the tongue tip (TT) and the alveolar ridge (AR).

Since the EPG sampling frequency of 200 Hz is reasonably low and the measurements
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appear to change slowly over time, we have not imposed any requirements on the values

of the indexes to be steady for any period of time.

The data stream containing EMA trajectories provides additional information about

the articulations. Since the primitive gestures to be detected in the EMA data have a

discrete nature, an obvious approach we follow is to cluster the distance measurements

between the pair of the articulators of interest. The clustering procedure, making use

of an efficient variant of k-means described by Kanungo et al. (2002), is applied to

the entire data available for the particular speaker. Since vocal tract configurations

vary from speaker to speaker, the clustering procedure is speaker-dependent. Each of

the n cluster centroids represents one of the n discretised distances between the two

articulators. For any given EMA frame, the distance between the two articulators is

calculated and compared to the nearest cluster centroid. If the nearest centroid for

this pair of articulators has changed since the last frame and the current articulation is

sustained for at least m frames, the decision is made to fire a primitive which represents

the event responsible for a change in the state of the articulation. We consider the

articulation to be sustained for m frames if the measurements of the distances between

the two articulators for each of the m frames fall into the same cluster.

If a single articulator is involved in a gesture (for instance, the gesture TT-LowerMid

only involves one articulator), the height of the articulator is calculated according to

Ay − BNy, where Ay stands for the y coordinate of the articulator in question and

BNy for the y coordinate of the bridge of the nose (origin). Whenever two gestures

are involved (for instance, any lip aperture gestures), the distance is calculated as the

distance between their respective vertical coordinates.

Note that two distinct primitives are used to indicate the articulator entering and

leaving the current quantisation region (cluster). For example, if we consider the

medium range of the tongue dorsum heights, when the new cluster centroid represents

a higher range, we represent this transition by the TD-RaiseMid gesture. Otherwise, if

the new cluster centroid represents the lower range, the transition is represented by a

different gesture TD-LowerMid. This behaviour is illustrated in Figure 5.16. The six

transitions indicated on the right-hand side of the figure correspond to four primitive

gestures since TD-LowerMax is identical to TD-RaiseMid and TD-RaiseMin is identical

to TD-LowerMid.

5.3.5 Gestural Formations as ETS2 Structs

In Section 5.2.2 we mentioned that an ETS2 struct is a temporally ordered sequence of

connected primitives capturing the “history” of the corresponding process. Within an

articulatory representation, a struct is identified with a temporal sequence of primitive
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Figure 5.16: Detection of four distinct tongue dorsum height gestures in the corresponding

EMA stream. Six states correspond to four gestures. The direction of the movement is

significant, hence TD-LowerMax is different from TD-RaiseMid and TD-RaiseMin is different

from TD-LowerMid.

gestures, which are hypothesised to provide the gestural structure of any given utterance.

We note that any utterance can itself be interpreted as a highly non-trivial gesture.

The inductive construction procedure of the ETS2 structs, outlined in Definition 5.4,

involves the attachment of the currently observed primitive transformation to the accu-

mulated struct. For our representation, this mechanism may be suboptimal. In reality,

at any given point in time the pre-processing algorithm (responsible for the derivation

of the gestural structure from the real data) may observe several instances of different

primitive gestures appearing simultaneously. In order to formally allow this, the ETS2

model has to be modified to allow for partial order of the primitives in the structs, since

currently it does not support this. A domain-specific extension, however, is possible.

The following gestural structure construction procedure allows us to support simultane-

ous articulatory events at least partially:

1. If at any point in time, a single primitive is observed, the struct is grown as usual

using the procedure outlined in Definition 5.4.

2. Suppose several primitives that do not share any articulators in common are ob-

served simultaneously. Since these primitives do not share any sites, no confusion

arises and these primitives are represented as an unordered tuple.

3. Otherwise, let k be the number of simultaneously observed primitive gestures

which share some sites in common. In addition, let ti be the time of the current

speech frame being processed. The k primitives are “de-parallelised” in such a
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way that all of them appear sequentially before the next speech frame starts

at ti+1. During this serialisation of primitive gestures, the regular ETS2 struct

construction is employed since primitives are now added one by one.

In practice, however, the steps (2) and (3) of the above procedure are seldom employed

because the simultaneous appearance of primitive articulatory events is quite rare. We

employ the above construction procedure for the derivation of the gestural structures

in form of ETS2 structs for any given utterance.

Example 5.10. Figure 5.17 shows an ETS2-based gestural structure of the word “get”,

consisting of 11 primitive gestures operating on 5 articulators, together with the cor-

responding phonetic segments, which are shown purely for convenience (detection and

construction processes do not make use of these segments). Names of all the articulators

(corresponding to ETS2 site types) are given in Table 5.1. The gestural structure in

Figure 5.17 is constructed on-the-fly from the primitive gestures detected in the avail-

able articulatory and acoustic data. For the sake of clarity, only some of the primitive

gestures participating in the critical articulation of the voiced velar stop [g] and the

unvoiced alveolar stop [t] are shown.

The articulation of [g], for instance, has a simple interpretation within this represen-

tation. Articulation is achieved by first forming a velar constriction, which, in turn, is

formed by the tongue dorsum TD first rising to its maximum position (TD-RaiseMax)

at 0.248 sec, then completing the constriction before the phoneme boundary by touching

the velum VL (VC-Touch) at 0.266 sec. The constriction is released within the phoneme

boundaries of [e] by first slightly lowering the tongue dorsum TD (TD-LowerMid) at

0.416 sec and then parting the tongue dorsum TD from the velum VL (VC-Part) at

0.460 sec. Note that vibration of the vocal folds VF (VFV-Start) occurs at the onset

of [g] at 0.380 sec. Similarly, it is possible to analyse the unvoiced alveolar stop [t], the

articulation of which is obtained by means of the tongue tip (TT), alveolar ridge (AR),

and the vocal folds (VF). B

5.3.6 Articulatory Transformations

In Section 5.2.4 we mentioned that an ETS2 transform is an encapsulation of a regular

temporal pattern of primitives, which is subdivided into two parts: the context and the

body. The context of a transform identifies the place, within a given struct, in which the

application of the body of the transform becomes legal, while the body is the “chunk”

that extends the (previously constructed) struct (Definition 5.9).

By examining the ETS2 gestural structs, generated by the preprocessing algorithm

described previously, several structurally and semantically related gestural fragments of
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Figure 5.17: ETS2 struct describing the gestural structure of the word “get”, constructed us-

ing the automatically detected primitive gestures. Corresponding phonetic labels are shown.
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the structs can be discerned. For each of the sound patterns of the consonants under

investigation, the corresponding gestural fragments can be roughly divided into two

parts, the actual constriction and the release. As mentioned in the previous section,

the primitives comprising the two parts of the corresponding gestural fragment exhibit

asynchrony and often span multiple phone boundaries (the anticipatory movement to-

ward the lip constriction target, for instance, might start relatively early, before the

constriction is actually produced). Therefore, in our analysis, the constriction starts

with the first primitive gesture aimed at producing this constriction, ending with the

last primitive gesture which secures its release.

Figure 5.18 shows some of the common (simplified) gestural patterns, four per sound,

encountered in the data for unvoiced velar (top) and bilabial (bottom) stops [k] and

[p]. The body of each of the ETS2 transformations consists of the sequence of gestures

which participate in the release of the stop, while the gestures which participate in the

formation of the actual constriction are depicted as part of the transformation context.

The context of the transformation can thus be seen as a necessary precondition for the

respective sound to be produced (the gestures which are not critical for a particular

articulation are shown with the connections to them crossed out).

Note that while each of the transformations has a similar higher-level semantics (for

instance, all four transformations shown in the top figure represent the release of an

unvoiced velar stop), structurally they are all different. The first two transformations

differ in their bodies which can be interpreted as follows: For the first body, the release is

accomplished by first removing the tongue back (TD) from the velum (VL) (the position

of the tongue in the oral cavity is still high) followed by the lowering of the tongue back

(TD). For the body of a second transformation, the tongue back appears to be lowered

(together with velum) and only then detached. For all of the transformations, the vocal

folds may have already stopped vibrating, meeting the necessary but not sufficient

requirement for the articulation (in which case they are shown in the contexts) or, they

stop vibrating at the onset of the release of that particular stop (in which case they are

in the bodies of the transformations).

5.3.7 Class Description via ETS2 Transforms

In Section 5.2.4 we mentioned that an ETS2 supertransform is a set of closely-related

transforms specifying the description of a class, where structural variations account for

noise in the class (Definition 5.10). In the articulatory representation, a supertrans-

form is identified with the family of temporal patterns of articulatory gestures (given

by a family of transformations from Section 5.3.6) that collectively describe the class

structure of a single phoneme.
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Figure 5.18: Simplified visualisation of some common gestural patterns encountered in the

data for unvoiced velar (top) and bilabial (bottom) stops [k] and [p], represented as ETS2

transformations.
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Example 5.11. A simple class structure for the class of voiced velar stops defining

phoneme [g] is given in Figure 5.19 (phoneme labels and timestamps corresponding to

primitives are not shown). Each column of the supertransform representation consists of

transforms which have structurally identical bodies (with each body specifying a release

of constriction). The thicker lines connecting constituent gestures between the body and

context of each constituent transform denote interface sites — used to indicate that the

necessary precondition (provided by the context) for the articulation of the respective

phoneme has been met. B

In Definition 5.10 of ETS2 supertransform, it was mentioned that there is no restric-

tion (apart from the one potentially introduced by the learning algorithm, described

elsewhere by Goldfarb et al., 2004, Part III) on the number of the primitives in either

contexts or bodies of the constituent transforms. Therefore, one class supertransform

can encapsulate the descriptions of various instances of gestural formations with differ-

ent durations.

In this work, we have chosen to focus on class elements which are provided in terms

of contexts of the gestural transforms. Our reason for doing this is that, for any given

gestural transform, the detection of the context alone is enough to decide whether the

phoneme corresponding to that transform has occurred. In addition, because phonetic

labels have been provided with the data in this study, there is no need for duration

modelling (for which one needs both body and context information). In other words,

at present, we are not interested in the information indicating where each phoneme

ends. This information is provided by the body of the transforms (to be more precise,

by the last primitive gesture in transform’s body). Henceforth, when referring to the

gestural structure of phonemes, constituent gestural transforms are assumed to consist

of contexts only.

Based on linguistic evidence (Ladefoged, 2001), only some of the primitive gestures

from the gestural groups given in Table 5.2 were postulated to be critical for structural

description of each of the 14 consonantal phonemes evaluated in this study. These

phonemes are shown in Table 5.3. Alongside each phoneme P , the frequency N of

occurrence of the corresponding label in the MOCHA corpus (the number shown is the

same for both the male and female datasets) and the hypothesised constituent gestures

are shown. Because we are interested in the contexts only, constituent gestures in Ta-

ble 5.3 describe formations of various constrictions involved in production of phonemes

in question.

For example, based on Table 5.3, the gestural structure of the unvoiced alveolar

stop [t], is specified by a supertransform having six distinct constituent transforms

(not shown), each consisting of various combinations of the three gestures VFV-Stop,
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Figure 5.19: Simplified depiction of an ETS2 supertransform for the class of voiced velar

stops given by phoneme [g], consisting of four ETS2 transforms.
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P N Hypothesised Primitive Gestures

[b] 306 VFV-Start LipsTouch VC-Part AR-Part HP-Part

[p] 192 VFV-Stop LipsTouch VC-Part HP-Part

[g] 535 VFV-Start VC-Touch TD-RaiseMax AR-Part HP-Part

[k] 370 VFV-Stop VC-Touch TD-RaiseMax AR-Part HP-Part

[d] 531 VFV-Start AR-Touch TT-RaiseMax

[t] 871 VFV-Stop AR-Touch TT-RaiseMax

[v] 226 VFV-Start LD-Touch

[f] 263 VFV-Stop LD-Touch

[ng] 140 VFV-Start VC-Touch TD-RaiseMax VL-Close∗

[m] 410 VFV-Start LipsTouch VL-Close∗

[n] 835 VFV-Start AR-Touch TT-RaiseMax VL-Close∗

[ch] 97 VFV-Stop TT-RaiseMax AR-Touch

[zh] 17 VFV-Start TT-RaiseMax HP-Touch

[sh] 146 VFV-Stop TT-RaiseMax HP-Touch

Table 5.3: Phonemes (P ), the number N of corresponding per-speaker labels (examples) and

the hypothesised constituent constriction-forming gestures (primitives) under investigation.

AR-Touch, and TT-RaiseMax.

5.3.8 Matching Gestural Transformations

Given an observed gestural formation, constructed using the inductive procedure out-

lined in Section 5.3.5, it is desirable to have a procedure for detecting the presence of an

ETS2 transform in ETS2 struct corresponding to that formation. If an ETS2 transform

is located within a struct, this is an indication that a class (defined by a supertrans-

form) to which this transform belongs, participates in the construction of an object

represented by a struct.

As mentioned above, the pre-processing front-end detects primitive gestures in the

available streams and employs the inductive construction procedure for updating the

currently observed gestural formation (struct). For the detection of the transform, we

only need to consider the case when the addition of a primitive to the end of a struct

causes the “completion of construction” of a transform. Thus, the algorithmic approach

presented here may be seen as a rooted depth-first search (Valiente, 2002), commencing

with the last primitive in the body of a transform (corresponding to the latest primitive

in the struct to be searched).
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Figure 5.20: Top: Pictorial representation of two distinct transform fragments. Bottom:

Representation of the above fragments as a single fragment, w.r.t. the partial order spec-

ification. Note that the “bottommost primitives” are AR-Touch and VFV-Stop (neither is

attached to any succeeding primitive).

In order to reduce the number of structurally-equivalent transforms in a super-

transform, a generalisation of the specification of transform context/bodies to partial

orderings of primitives — rather than total orderings — is possible (see Figure 5.20).

A pseudocode version of structural matching algorithm algorithm, which we previously

reported in (Gutkin and Gay, 2005b), is presented in Figure 5.21.

A transform is accepted when the structure of the transform is detected inside the

searched struct, i.e. when all primitives in Γ are mapped to primitives of the same

type and “interconnectedness” in Π. A mismatch in type or interconnection causes the

rejection of a transform. The worst-case complexity of this algorithm is O(m2 log m),

where m is the number of primitives in the transform to be matched.

In Section 5.3.3 it was mentioned that all of the primitives used in this represen-

tation are divided into various articulatory groups, each consisting of semantically and

structurally related primitives. Additionally, all m constituent primitives γ ∈ Γ be-

long to separate groups (see Table 5.3). This allows for the trivial modification of the

matching procedure specified above, whereby any primitive gesture π ∈ Π which does

not belong to any of the m groups is skipped during the search (without aborting the

search procedure). This modification allows the detection of candidate transforms in



Chapter 5. Formal Articulatory Representation of Speech with ETS2 196

1. Let Π denote the (ordered) set of n primitives in the struct to be matched and Γ
denote the (partially ordered) set of m primitives in the transform to be matched.

2. For each “bottommost” primitive γi ∈ Γ (see Figure 5.20) that is of the same type
as πn, πn ∈ Π, perform the following search:
Declarations
ρ: a current primitive ( ρ ∈ Γ )
V : a set of visited γ-primitives
P : a set of pending γ-primitives
E: an equivalent primitive mapping E : Γ→ Π

V ← ∅
P ← {γi}
E ← {γi 7→ πn}
WHILE P 6= ∅,
ρ← P. Pop()
IF ρ ∈ V , CONTINUE
FOR each primitive α attached to ρ,
Let β be the corresponding primitive attached to E(ρ)
IF α ∈ V , NEXT
IF Type(α) 6= Type(β)
Try next γi (return to step 2)

IF E(α) exists AND E(α) 6= β

Try next γi (return to step 2)
IF E(α) does not exist
E ← E ∪ {α 7→ β}
P. Push(α)

V. Push(ρ)

HALT:ACCEPT

3. HALT:REJECT

Figure 5.21: ETS2 Transform Matching Algorithm.

those cases when a “structural overlap” of various class elements appears in the data.

We used this modification of the search algorithm in our work.

5.3.9 Higher Levels of Representation

The class of gestures defined by a corresponding supertransform becomes the next-level

(non-trivial) gesture in the representational hierarchy. In particular, the bodies of the

constituent transform leading to this non-trivial primitive specify the various instances

of this non-trivial gesture observed in the data. Figure 5.22 shows the emergence of

the next-level non-trivial gestures (shown as the next-level ETS2 primitives on the

right-hand side of the figure). The unvoiced velar stop consonants from the initial
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Figure 5.22: The two instances of the next-level primitive [k] emerging from a gestural

structure of the word “coconut” via the supertransform for an unvoiced bilabial stop.

(articulatory) level gestural struct, corresponding to the word “coconut”, are shown

on the left-hand side. The shading shown indicates two different instances of initial-

level gestural events which are represented at the next-level as the ETS2 primitive [k].

Each of those instances corresponds to a different constituent transform from a class

supertransform for [k] which is shown in the centre. The sites of a next-level primitive

represent the organs participating in the formation of the class of events it represents.

In the case of [k], the sites stand for the tongue dorsum, the velum and the vocal folds.

As mentioned in Section 5.2.6, once the new phonemic primitives “appear” on the

next level, they can be used in the usual fashion in the construction of the next-level

representation. Obviously, the primitives do not appear by themselves. Construction
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of the representation at all the current levels is accomplished by the representation

construction algorithm. Assuming that for each level we are given a fixed inductive

structure (Definition 5.12), the new primitive appears on the next level if the represen-

tation construction algorithm can locate any of the constituent transformations of the

associated supertransform in the struct at the current level. The search for constituent

transform is performed using the gestural transform matching algorithm described in

Section 5.3.8.

5.4 Experiments and Discussion

In this section we describe two sets of experiments aimed at verifying the adequacy

of the proposed articulatory representation, based on the MOCHA articulatory corpus

described in Section 5.3.2. The phonemic classes under investigation, corresponding to

14 consonantal phonemes of British English, are shown in Figure 5.3. Overall, there

are 9,878 phonetic labels corresponding to the 14 phonemes in question, 4,939 per each

speaker.

The first set of experiments, described in Section 5.4.1, focused on the verification

of the primitive articulatory gestures automatically detected from the articulatory data

using an algorithm described in Section 5.3.4. In Section 5.4.1, we provide the details

of the verification algorithm, describe the parameters of the pre-processor responsible

for detecting the gestures and provide the results.

The second set of experiments is described in Section 5.4.2. The experiments fo-

cused on the classification of the gestural class descriptions corresponding to the 14

consonantal phonemes under investigation. Each of the hypothesised gestural super-

transformations (Section 5.3.7), consisting of the gestures shown in Table 5.3, were

searched for within 920 (460 per speaker) ETS2 articulatory formations automatically

constructed from the utterances of the MOCHA corpus. The results of the search

were then evaluated against the available phonetic labels. We describe the evaluation

algorithm and discuss the results.

5.4.1 Gesture Detection

In order to evaluate the reliability of the primitive gestures described above, experiments

were conducted to assess the potential accuracy of their detection. The evaluation was

conducted on the fsew and msak data sets from the MOCHA corpus (Section 5.3.2).

Since the corpus provides the phonetic labels, it is possible to check whether any of the

primitive gestures, a priori known to participate in articulations which uniquely define

certain phonemes, actually appear during runtime.
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5.4.1.1 Verification Algorithm

The verification algorithm is applied to all the utterances in the corpus. For each pho-

netic label from a given utterance, each of the primitive gestures from a corresponding

list is processed in turn. According to the algorithm, the primitive gesture participates

in the formation of the corresponding phone if one of the following conditions is satisfied:

1. The primitive gesture appears within the boundaries (specified by the start and

end times) of the phone label currently being processed.

2. The primitive gesture occurs somewhere within the boundaries of several previous

phones.

In the second case, the algorithm checks that no other primitive gesture belonging to

the same group occurred between the current phone and the phone where the primitive

gesture of interest was detected. This is to ensure that the primitive gesture being

verified (for example, LipsTouch) is not later cancelled by some other primitive gesture

from the same group (for example, LipsSlightPart) before the current phone boundaries.

5.4.1.2 Experimental Setup

The list of 14 consonantal phonemes evaluated during the experiments is shown in

Table 5.3. For each phoneme, the frequency of occurrence N of the corresponding

label in the corpus is shown, along with the list of primitive gestures which are a

priori hypothesised to participate in the formation of that phoneme. The frequencies

of occurrence of the phonetic labels (4,939 labels in total) are equal for both male

and female speaker data sets. Table 5.4 provides the description for each of the 13

critical gestures from Table 5.3. Each gesture is shown alongside the corresponding

articulators it operates on, the data stream where the gesture is to be detected and a

simple description. For example, the labio-dental closure LD-Touch involving the upper

incisor and the lower lip is detected in the EMA stream. The name VL-Close∗ denotes a

group consisting of any velic aperture gestures resulting in any degree of velum opening,

excluding the closure.

The EPG parameters are τv = 12, τp = 6 and τa = 9 for the velar, palatal and

alveolar indexes, respectively. These values were determined by manually examining a

small subset (two sentences, one for each speaker) of the corpus. The EMA steady state

parameter m was set to 10 frames (20 ms for the EMA data sampled at 500 Hz). The

number of EMA distance clusters n for all the pairs of articulators in questions was set

to 3.
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Gesture Organs Source Semantics

LipsTouch UL,LL EMA bilabial closure

VC-Touch TD,VL EPG dorsum touches the velum

VC-Part TD,VL EPG dorsum parts the velum

AR-Touch TT,AR EPG alveolar closure

AR-Part TT,AR EPG alveolar release

HP-Touch TT,HP EPG palatal closure

HP-Part TT,HP EPG palatal release

TD-RaiseMax TD EMA raise dorsum high

TT-RaiseMax TT EMA raise tongue tip high

LD-Touch TT,UI EMA labio-dental closure

VL-Close∗ VL EMA velum not closed

VFV-Start VF AC vocal folds start vibrating

VFV-Stop VF AC vocal folds stop vibrating

Table 5.4: Primitive gestures critical for the articulation of the phonemes given in Table 5.3

5.4.1.3 Verification Results

Validation experiments for each of the 13 critical gestures from Table 5.4 were conducted

on the female and male data sets separately with the results shown in Table 5.5. Vali-

dation experiments employ the verification procedure defined above in Section 5.4.1.1.

Because the original TIMIT phoneme labels are available, during this stage we know

which gestures to anticipate. The error is calculated as the percentage of the primitive

gestures which failed to meet the requirements of the verification procedure. For exam-

ple, the number of expected occurrences (Ne) of gesture specifying the biliabial closure

(LipsTouch) is 1086. The number corresponds to the number of bilabial closures which

are a priori known to participate in makeup of various phonemes (such as [b] and [p]).

The number of times this gesture has actually appeared during the validation of female

speaker dataset (Nf
o ) is 1078. Therefore, the accuracy for this gesture is 99.26% (1078

out of 1086) and the corresponding error (shown in Table 5.5 as Ef ) is 0.74%.

The expected frequency of occurrence of each of the critical gestures Ne is the same

for the male and the female speaker. For the female speaker, the observed frequency of

occurrence of each gesture is specified by Nf
o and the error percentage is given by Ef .

For the male speaker, the corresponding measurements are Nm
o and Em, respectively.

The overall error is 7.29% for the female speaker and 8.17% for the male speaker.

As can be seen from Table 5.5, while the overall error is reasonably low, some of the
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Gesture Ne Nf
o Ef (%) Nm

o Em (%)

LipsTouch 1086 1078 0.74 1079 0.64

VC-Touch 867 803 7.38 750 13.49

VC-Part 676 670 0.89 644 4.73

AR-Touch 2334 2052 12.08 1870 19.88

AR-Part 727 716 1.52 727 0.00

HP-Touch 163 162 0.61 163 0.00

HP-Part 1403 1209 13.86 1325 5.56

TD-RaiseMax 867 854 1.50 844 2.65

TT-RaiseMax 2497 2352 5.81 2388 4.37

LD-Touch 489 479 2.04 481 1.64

VL-Close∗ 1385 1015 26.71 1086 21.59

VFV-Start 2657 2558 3.73 2573 3.16

VFV-Stop 2282 2213 3.02 2078 8.94

Total 17433 16161 7.29 16008 8.17

Table 5.5: Evaluation results for each of the primitive gestures for the female (fsew) and

male (msak) speaker data sets.

primitive gestures are not detected very accurately. The problematic gestures are the

alveolar contact (AR-Touch) between the tongue tip and the alveolar ridge (determined

from the EPG data), the velar closure (VC-Touch) formed by the tongue dorsum and

the velum (determined from EPG data) and the group of gestures (VL-Close∗) defining

the nasals (detected in EMA data). The latter inaccuracy in the detection of the

nasalisation from the EMA data has been observed by others (Richmond, 1999). It is

hypothesised that the EPG and EMA detection errors are due to the recording setup,

where the subjects get used to the presence of the EMA coils and EPG palate and modify

their articulation of the sounds in question, skipping some of the critical articulations.

In addition, as observed by Richmond (2001), the sensors tend to dislocate during the

recordings, causing inaccurate measurements.

5.4.2 Phoneme Classification

The aim of the experiments described below was to assess the performance of the

structural identification of the 14 ETS supertransforms, each describing a consonan-

tal phoneme of English,in gestural ETS2 structures derived from real articulatory data.

The algorithm for matching the articulatory transformations was presented in Sec-
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tion 5.3.8. The reason for selecting this particular subset of 14 consonantal phonemes

is simple. In this work we are primarily interested in sounds which are produced by

various constrictions of the articulators (such as stops), because these sounds are clearly

manifest in the articulatory data. Combining the articulatory and acoustic data for the

recovery of vowels will be part of our future work, because other sounds, such as vowels,

are more difficult to model (structurally) based on the articulatory evidence alone.

5.4.2.1 Evaluation Strategy

The evaluation was applied to all 920 gestural structures (460 per speaker) automat-

ically derived from the utterances of the corpus. Overall, 9,879 phonetic labels were

available for the 14 classes corresponding to the 14 ETS2 supertransforms. In general,

a supertransform (phoneme class), was considered to match if any of its constituent

transforms matched the gestural structure corresponding to the label.

Since the representation is asynchronous and the articulation of stop consonants is

anticipatory (Ladefoged, 2001), primitive gestures are not constrained to appear within

the phoneme boundaries of any given label. For such anticipatory articulation, the

primitive gestures forming constrictions usually appear before the beginning of the

phonetic label, often spanning multiple phoneme boundaries. For instance, most of the

gestures participating in the articulation of the voiced velar stop [g] shown in Figure 5.17

appear before the beginning of the corresponding phonetic label. The gesture VC-Touch

completing the constriction occurs at 0.266 sec, 94 ms before the phoneme boundary.

Given the above, the search boundaries for any given constituent transform are not

restricted to the boundaries of the phonetic label, but also include the boundaries of

several previous phonemes. Phonetic boundaries are specified in terms of the start and

end times of a particular label. In particular, for each phonetic label and a candidate

class element (transform) to be matched, the sought structure is declared as a successful

match if it is identified by the search algorithm presented in Section 5.3.8 (starting from

the end time of the phoneme label and proceeding backward in time) and if one of the

following conditions is satisfied:

1. The candidate class element is located within the phoneme boundaries of the

phonetic label;

2. The candidate class element is found to be overlapping with the beginning of a

phoneme label (i.e. the formation of the constriction is anticipatory, beginning

before the start of a phoneme boundary).
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5.4.2.2 Results and Discussion

The overall results of the verification of the 14 classes of consonantal phonemes are

presented in Table 5.6 in the form of a confusion matrix. For each of the classes, the

number of correct matches is shown on the diagonal in bold. The number of class

phonemes which failed to classify in any of the available classes is shown under [X].

The number of expected phonemes is given by Ne, while No stands for the number of

correctly matched phonemes. The accuracy of the structural matching, denoted C, is

given in the last column. As can be seen from Table 5.6, out of 9,878 phonemes, 7,679

were classified correctly and 278 failed to match against any of the available classes.

The overall accuracy is 77.74%.

Analysis of the per-class statistics shows that the lowest accuracy of 62.16% was

obtained for the alveolar nasal [n] which was often confused with voiced alveolar stop [d].

This could be explained by the fact that the postulated class structures of these sounds

(see Table 5.3), are not sufficiently discriminative, differing by only one gesture (the

production of [n] is achieved in the presence of the velic opening). Therefore, due to a

failure of the pre-processor to detect the corresponding change in the state of the velum,

[n] is often classified as [d]. The relatively frequent misclassification of the class [m] as

[b] can also be attributed to the same cause. In general, it is expected that performance

should improve with a more accurate pre-processor and better discriminating phonemic

class descriptions, especially in the obvious cases when misclassification is not due to

noisy data or to errors in linguistic labelling of the corpus.

5.5 Summary and Potential Improvements

We presented a novel structural representation of speech, developed within the ETS2

formalism. The representational unit chosen was the gesture, which is seen as the in-

teraction of the various physiological organs involved in the act of speech production.

We have proposed an intuitively simple methodology for detecting the gestures in the

continuous speech and shown that the gestures can be extracted with a reasonably

low error rate (7.29% and 8.17% error on two speaker data sets of 31 minutes each).

In addition, we have described several domain-specific alterations of the formal ma-

chinery which were necessary to efficiently deal with the continuous articulatory data.

These alterations included the added support for the concept of a group of primitive

transformations, as well as extension of the inductive construction procedure to have

some preliminary support for the partial (rather than total) ordering of the primitive

transformations.

We described the 14 classes of English consonantal phonemes in terms of non-trivial
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combinations of articulatory gestures. A structural matching algorithm capable of de-

tecting an instance of one of the above classes inside a gestural structure (corresponding

to a speech utterance) was also presented. The performance of the proposed class de-

scriptions on real data (the MOCHA corpus) was evaluated, yielding an overall matching

accuracy of 77.74%. Our results support the hypothesis that a structural representation

of articulatory speech allows adequate identification of the phonemic classes.

Despite a general agreement that the use of articulatory information is highly ben-

eficial (on both linguistic and physiological grounds), progress in that direction has

been limited. This state of affairs may be attributed to a poor understanding of how

the various parts of a speech production system interact. We believe that the use of

a representational formalism that supports the description of structural classes of ar-

ticulatory processes (such as ETS2) will benefit both speech science and the linguistic

community. In particular, such a formalism will guide the modelling of these complex

speech production mechanisms.

Potential Improvements

Following are some important research directions we are planning to pursue in order to

improve the modelling power of the articulatory representation:

The pre-processor:

Here we list some ideas on how to improve the pre-processing front-end responsible for

constructing the representation:

• As mentioned in Section 5.3.4, the EMA component of the pre-processor essen-

tially employs k-means clustering (binning of the articulatory ranges) in order to

detect the articulatory gestures. No physiologically-inspired modelling is used.

We currently believe that this approach is suboptimal.

The modelling of the EMA trajectories can be improved by using a physiological

model of the vocal tract based on the estimated tracing of the shape of subject’s

hard palate (as in Jung, 1993, Section 3.2.1).

• Detection of articulatory gestures from the EPG data can be further improved

by using something more sophisticated than simple thresholding we are currently

employing. For example, a statistical approach along the lines of the one suggested

by Carreira-Perpiñán and Renals (1998) could be used.

• Additional examination of the phonetic segmentation of MOCHA. Originally it

was obtained by means of automatic alignment and some of the labelling errors



Chapter 5. Formal Articulatory Representation of Speech with ETS2 206

were corrected by hand (Wrench and Hardcastle, 2000). However, some of the

errors may have been missed out.

• Introduction of voting may be needed in order to improve the accuracy. For

example, the gestures involving the velum can be detected both in the EMA and

the EPG data. Sometimes the gesture is detected in the EPG stream but not in

the EMA stream due to the noisy EMA measurements. The decision based on

the EPG stream will override the EMA one if for the last several frames the EMA

data was agreeing with the EPG data.

Representation:

Improvements in the representation can be obtained by introducing the following changes:

• Support for a mixed-mode acoustic/articulatory representation. In order to prop-

erly model vowels, articulatory measurements are definitely not enough. Luckily,

MOCHA contains acoustic measurements corresponding to the articulatory ones.

This modification will involve introduction of new primitives into the representa-

tion, which are detected from either the acoustic or laryngeal waveforms.

• The above modification will allow us to expand the list of classes we can reliably

model to include the vowels. It will also help in modelling the difficult phonetic

classes, such as semivowels. At the initial stage, an attempt would be made to

come up with the class description (via ETS2 supertransforms) for those classes

and evaluation of those class descriptions on the MOCHA database.

• Since the representation is based on asynchronously-detected articulatory ges-

tures, one need not focus on phonemes only. A more interesting linguistic class

are syllables, which are becoming more popular as the units of linguistic and

speech recognition analysis (Wester, 2003). Once the above issues are addressed,

the problem can be transferred into the syllabic domain effortlessly.

Learning:

The discussion of the ETS2 learning algorithm has been omitted from this thesis (apart

from being mentioned briefly in Section 5.2.6). The interested reader is referred to (Gold-

farb et al., 2004, Part III). This is because we decided to focus on representations first.

The focus on representational aspects explains why we did not address learning of the

class structures, postulating them using a priori knowledge instead.

The algorithm, some basics of which have been briefly mentioned in Section 5.2.6

on p. 174, has nevertheless been successfully implemented and tested on the gestural
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structures derived from MOCHA. There are several problems which need to be rectified

before we can present the alternative formulation of the speech recognition problem

within ETS2. Briefly, the problems are the following:

• Currently, the algorithm operates in an unsupervised mode. This means that we

have no control over the classes which are being discovered. What we need is the

ability to present the learning algorithm with the finite number of instances of

each class. In particular, the supervised version of the algorithm must ensure that

we discover exactly one multi-level inductive structure (MIS) per class. This is

important because the representation is asynchronous and correlating the result

of the unsupervised learning with the available segmentation is difficult.

• The algorithm has several (numeric) control parameters which are difficult to cor-

relate with the number of levels to be discovered, as well as the average size of the

transform and the number of constituent transforms in the discovered supertrans-

form. The algorithm needs to be changed to allow direct control over the above

configurations.



Chapter 6

Conclusions and Future Research

In this chapter we conclude the thesis by providing a summary of obtained results, the

main contributions and the directions for future research. This chapter is organised as

follows. A summary of the thesis is presented in Section 6.1. The main contributions,

their significance and relevance to spoken language modelling are listed in Section 6.2.

Several dimensions of difficulty we encountered are discussed in Section 6.3. We conclude

this chapter in Section 6.4, where the main future research directions are presented.

6.1 Thesis Summary and Results

This thesis explored the issues involved in structural representation of spoken language.

The variety of approaches pursued in this thesis correspond to the evolution of our ideas

and understanding of structural modelling. In the first part of this thesis (Chapters 2–

4), a structural similarity-based (or topological) approach to modelling was investigated.

We summarise our findings in Section 6.1.1. In the second part of this thesis (Chap-

ters 5), formal approach to structural representation was explored. This is summarised

in Section 6.1.2.

6.1.1 Topological Approach

First, we proposed a linguistically well-motivated structural representation. The atomic

units of representation are distinctive phonological features. The objects under inves-

tigation corresponded to phones. We postulated the structure of objects in terms of

distinctive phonological features and designed a similarity measure which operates on

these objects. The similarity measure, together with the set of object representations

automatically derived from speech, comprises a symbolic metric space. The quality of

the proposed similarity measure was evaluated on dataset reduction and phone classifi-

cation tasks involving the TIMIT corpus of read speech (Garofolo et al., 1993). To this

208
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end, we utilised several clustering and classification algorithms previously reported in

the structural pattern recognition literature. In addition, we proposed a new initialisa-

tion criterion for symbolic clustering. Using this novel criterion, the system performed

as well as simple statistical models (monophone HMMs) on the same task.

Next, we explored the transition from the above symbolic space to the corresponding

similarity-based pseudo-Euclidean vector space representation. The primary motivation

behind this transition was to construct an equivalent (similarity-preserving) represen-

tation in a space where efficient visualisation, classification and learning machinery is

available. Several procedures for the construction of isometric vector space represen-

tations using pseudo-Euclidean embeddings were investigated. We conducted several

classification experiments using both simple (k nearest neighbours) and non-trivial vec-

tor space classifiers (neural networks and support vector machines). We introduced

a novel step in the algorithm for dimensionality reduction of the isometric embedding

which, in some cases, resulted in improved classification performance. In general, the re-

sults support the hypothesis that classifiers constructed on similarity-based vector space

representations perform as well (or better) than classifiers in the original symbolic space

on both well-separable small (three classes) and full (39 classes) classification tasks. Fur-

thermore, this is an indication that, from the point of view of the similarity measure,

no information is lost in the transition from symbolic to vector space representation.

We then explored the learning of class representations in the original symbolic space

using the ETS0 model. The main motivation behind this stage of the thesis was to

propose the procedure for the discovery of linguistically meaningful structural makeup

of the phonemic classes at hand. To this end, we utilised the previously reported

ETS0 algorithms which involve learning of a class-specific similarity measure. This

measure is induced by non-trivial class-specific structural features discovered by the

algorithm. Training and classification experiments were conducted on both small and

full tasks. We found that the ETS0 training procedure discovers linguistically interesting

class descriptions. We also demonstrated that for the small task the new class-specific

similarity measures often result in improved classification performance in comparison

with the original symbolic and vector space algorithms. On a full task, however, we

demonstrated a degradation in classification performance of the discovered similarity

measure, which was most likely due to violation of metric axioms.

Thus, we achieved the first research objective of this thesis, stated in Section 1.4

(p. 43) — to develop a linguistically well-motivated structural representation for phone-

mic objects and classes and experimentally evaluate it. The main conclusion drawn

from the first part of this thesis is that the similarity measure plays an absolutely cru-

cial role in all of the above developments. The careful selection of features and objects
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for structural representation is important. Together with a good similarity measure,

which accurately reflects the morphology of the domain, one can use two general frame-

works for representation: a similarity-based vector space representation and ETS0. Both

frameworks stress the importance of the similarity measure. In the first case, the rep-

resentation is constructed solely on the basis of similarities. The similarity measure

provides a mathematical structure for the resulting vector space. In the second case,

the discovery of the structural make-up of classes at hand amounts to the discovery of

a class-specific metric, the learning process being guided primarily by the evolving sim-

ilarity measure. In this case, the similarity measure provides the missing link between

the representation of objects and the representation of classes. Therefore we believe that

any future approaches to structural representation of spoken language should focus on

the design of accurate similarity measures. As we hope to have demonstrated in this

part of the thesis, the existence of general frameworks for representation, both structural

and numeric, does not necessarily guarantee interesting discoveries if the metric is not

designed well. Another important conclusion we drew in this part of the thesis is that

the similarity-based and ETS0 approaches are not mutually exclusive. Each approach

possesses important features lacking in the other (ETS0 provides us with structural class

descriptions, while similarity-based vector-space representation provides us with power-

ful visualisation, classification and learning techniques). Therefore, we believe that any

metric-based structural representation should employ both techniques for modelling.

6.1.2 Formal Approach

The recent versions of the ETS model introduced a novel formal language that explicitly

addresses the issue of object and class representation. It does this by providing a

uniform set-theoretic framework which incorporates the formal machinery for linking

these concepts. An important feature of the formalism is its event-based (or process-

based, in the last variation) philosophy. This allows one to structurally express the

dynamic nature of speech production and perception processes in a single mathematical

language. Initial step in this direction have been undertaken in the second part of this

thesis.

We adopted a production-based, articulatory, view of spoken language and proposed

a novel ETS2 representation based on speech production principles. The representation

is primarily motivated by the combinatorial view of speech advocated by the theory of

articulatory phonology. We described the basic units of ETS2 representation — the ar-

ticulatory gestures — and presented a conceptually simple pre-processing algorithm for

the automatic acquisition of these units from the articulatory (and some acoustic) data.

We developed the methodology for evaluating the quality of these units on a standard



Chapter 6. Conclusions and Future Research 211

corpus of articulatory recordings. We showed that the basic units of articulatory repre-

sentation can be recovered from articulatory measurements with a reasonably low error

rate. Next, we introduced the entire sensory-level representation based on the articula-

tory gestures and described several representation-specific assumptions which allowed us

to construct a procedure for evaluating the structural class descriptions. Based on the

observations of articulatory structures automatically recovered from the data and on the

linguistic evidence, we postulated the class structure of several phonemic sounds. The

quality of these class structures was experimentally verified using a structural matching

algorithm developed for this purpose. Classification results support the hypothesis that

the articulatory class descriptions are important and beneficial for the identification of

phonemes. Thus, we have achieved the second research objective of this thesis stated

in Section 1.4 — to design and experimentally evaluate formal representation of speech

based on articulatory principles.

Perhaps the most important lesson learnt from the application described in the sec-

ond part of this thesis is the recognition of importance of the concept of representation.

At the beginning of this thesis, we mentioned that two fundamental stages in pattern

recognition consist of representation and generalisation (Section 1.1.1). Representation

of articulatory processes was studied within a framework in which the concept of an

object/process is, for the first time, formally related to the concept of a class. Unlike

the “conventional” approach pursued in the first part of this thesis, the formal approach

allows one to evaluate the quality of object/process representation at a very early stage

in the design of a speech representation framework. This is because, by choosing the

atomic units of sensory level representation, it is possible, at this early stage, to use the

language of ETS for construction of simple class representations. The better the sen-

sory level units reflect important information present in the data, the better the quality

of the resulting class representations. We have shown that it is possible to construct

intuitively interesting sensory level representations directly from the articulatory and

acoustic data using straightforward pre-processing techniques. The atomic units of rep-

resentations thus extracted, namely the articulatory gestures, are simple. At the same

time, we have shown that these units describe important features of the data at hand.

Within the formal language of ETS, these units combine together to form non-trivial

structures and structural class representations that are linguistically interesting.

6.2 Contributions of this Thesis

The key contributions of this work are briefly listed below:

1. Design of a structural pattern recognition system based on linguistic principles
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(Chapter 2);

2. Clarification of the relationship between phonemic object and class representa-

tion via the similarity measure, experimentally achieved using the dissimilarity-

based (Chapter 3) and ETS0 (Chapter 4) frameworks; automatic acquisition of

structural make-up of phonemic classes using the ETS0 framework; application of

dissimilarity-based and ETS0 frameworks to speech representaton and classifica-

tion;

3. Development of a structural approach to articulatory representation of spoken

language within the ETS2 formalism; design, automatic acquisition and evalua-

tion of basic units of articulatory analysis; formal clarification of the nature of

non-trivial articulatory structures, and articulatory classes in particular; the first

known attempt to tackle a pattern recognition problem with formal versions of

ETS (Chapter 5);

6.3 Open Issues

The summary provided in each chapter of this thesis briefly lists the problematic issues

and potential improvements. Some of these issues are purely “technical” and can be

reasonably well resolved by either modifying the involved algorithms or by employing

alternative techniques developed by others. Other issues point at more fundamental

problems, some of which are reviewed below.

6.3.1 Topological Approach

The approach taken in Chapters 2–4 was to work with distinctive phonological features

as the basic units of structural representation. While, from a linguistic point of view,

this choice appears to be well-founded, it is not clear whether this is a good choice from

the point of view of acoustic modelling stage of speech recognition. The reason for this

doubt is simple. Distinctive phonological features are too abstract to be associated with

the signal directly. All of the distinctive phonological features have acoustic correlates.

However, establishing these correlates automatically without recourse to some nonlinear

mapping is difficult. Therefore, the pre-processor that we used for extracting structural

atoms of representation makes use of the data produced by the non-trivial model employ-

ing recurrent neural networks (see Section 2.3.2 on p. 53) (symbolic atoms of structural

representation are the quantised target values of distinctive feature-detecting neural

networks). This model was used in (King and Taylor, 2000; King et al., 2000; Wester,

2003) to extract distinctive feature estimates from speech. Thus, there is an intermedi-
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ate stage between the acoustic signal and the structural pattern recognition framework.

This intermediate stage is in itself a pattern recognition system that needs to be trained

(in a supervised mode) in order to provide accurate estimates. One of the shortcomings

of this approach is that the intermediate stage may introduce errors and inconsistencies

into the structural representation, degrading its classification performance.

While the representation of objects (phones) within the structural framework is lin-

guistically interesting, there are still several important issues which were not addressed.

The phones are represented by objects called phonological templates. Each phonological

template has knowledge of its own speech frames, but lacks any knowledge about the

context, which in its simplest form is defined as the preceding phone (see Section 2.3.4

on p. 57). Each template consists of several strings (streams). This particular template

structure prevents us from introducing any form of structural dependencies between

the streams, apart from numerical ones. Modifying the object structure to account for

both the contextual variation and inter-stream structural dependencies will result in a

much more complicated (graph-like) structure. This, in turn, would require re-working

of all the symbolic algorithms which are not purely based on the similarity measure,

the template-based ETS0 learning algorithm in particular. In addition, it is not clear

how to structurally capture possible numeric correlations between various multi-valued

features potentially present in the data.

In the experiments conducted in the first part of the thesis, we employed one of

the most widely-used database of read speech — the TIMIT corpus. In statistical

speech recognition, this corpus is often considered to be small. The spontaneous speech

databases routinely used by large vocabulary continuous speech recognition (LVCSR)

systems are more often than not considerably bigger. We discovered that even a rea-

sonably small (in statistical speech recognition terms) corpus, such as TIMIT, poses

several problems for the structural approach to modelling. The most problematic is-

sue that we encountered is the issue of database pruning for construction of efficient

similarity-based vector space representations. Initially, we constructed 124,962 sym-

bolic object representations that correspond to a 39-class training portion of TIMIT.

On average, this corresponds to 3,204 objects per class. In Chapter 2, we used sym-

bolic clustering algorithms to reduce the size of this set. However, we also saw that the

vector space embedding of the symbolic space is analytically more developed and, in

particular, provides better developed clustering techniques. In fact, if one was able to

construct a vector space embedding of 124,962 symbolic objects, no symbolic-space clus-

tering would be needed at all because the structure of the vector space would allow for

more computationally efficient storage and generalisation procedures. Unfortunately,

it is computationally intractable to construct an embedding of the entire training set
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because it is too large. The alternative which we followed was to reduce the size of the

training set in the symbolic, rather than vector, space and only then construct a vector

space embedding of the reduced training set. Thus, we were not able to resolve the

issue of constructing pseudo-Euclidean space embeddings of large symbolic sets. We

still have not found a feasible solution, although it is clear that such a solution will

involve an incremental embedding.

Another issue is the reliability of the similarity measure. Is it possible to improve

the performance of the system by using an alternative similarity measure which better

reflects the structure of the objects? The answer to this question is affirmative. What

is unclear is how to incorporate this measure into the ETS0 learning process without

breaking the optimisation. The Levenshtein-like form of the similarity measure which we

used in the first part of this thesis allowed for a reasonably straightforward extension

to a block-based edit distance used by the ETS0 learning algorithm. The resulting

distance, however, is not a metric. Worryingly enough (but hardly surprisingly), the

semimetric or pseudo-metric properties of the similarity measure may affect the quality

of the learning stage and result in the discovery of class descriptions which are not

discriminating enough. We were not able to fully resolve this issue.

6.3.2 Formal Approach

In Section 1.3.4 on p. 37 we suggested an informal way of thinking about the speech

communication process based on the multi-level ETS representation “tower”. The re-

ceiver of the linguistic message reassembles it from acoustics by ascending the levels in a

multi-level representation, possibly updating and growing it. Ascension to a new level is

made possible due to detection, at each level of representation, of important perceptual

features present in the stimulus. Articulation is a reverse process which can be seen as

the process of “collapsing” the multi-level representation into a compact analog acoustic

encoding.

Because we are primarily interested in representations for speech recognition, the

question that may be asked is: to what extent does the purely articulatory represen-

tation of Chapter 5 contribute to our understanding of perceptual representations. If

we adopt the above view of the speech communication process, it would appear that

the articulatory approach does not quite fit our philosophy. At present, we do not have

sufficient knowledge about the extent to which articulatory information is utilised dur-

ing the decoding of the acoustic message. Hence, intuitively at least, an articulatory

approach appears to be a very indirect way to look at perceptual mechanisms. To a

certain extent the latter observation is in disagreement with the motor theory of speech

perception (Liberman and Mattingly, 1985). Integration of more acoustic information
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into the model may be need in order to make the representation more interesting and

realistic. We nevertheless believe the articulatory representation may indeed provide

several important clues which may not otherwise be discovered by the pure acoustic-

based approaches.

An additional issue with the articulatory representation is that the very nature of

the basic units of representation does not allow us to adopt a uniform approach to data:

detection of each group of gestures requires the pre-processor to incorporate specific a

priori knowledge about each type of articulator. In other words, each gesture requires

the pre-processor to incorporate knowledge about the number of articulators involved in

that gesture, measurement-specific detection components (e.g. EPG and laryngeal event

detectors) and so on. Events from all these sources are incorporated into a single sensory

level of representation. It is still not clear whether this task has been accomplished in

a satisfactory manner. For instance, at present we are not aware of any structurally

elegant ways of incorporating the events from articulatory and acoustic streams in a

single level of representation. This would pose problems when we introduce additional

acoustic events into the representation — at present, only the voicing events come from

the acoustic stream of measurements. In addition, the articulatory representation is

corpus-specific. It is very difficult to switch to another articulatory corpus which lacks

some of the measurement sources we are currently using. In contrast, the purely auditory

representation, if such was developed, could present a more uniform view of the data,

primarily because the representation is constructed from a single source of measurements

— an acoustic waveform. An additional important practical advantage of the auditory

approach is that the acoustic data is available in larger quantities and is easier to acquire

than its articulatory counterpart.

6.4 Future Work

In this section we outline some of the primary directions for future research.

6.4.1 Articulatory Representation

First of all, the articulatory representation needs to be constructed within the ETS4

formalism. This will primarily involve reinterpreting the structure and function of the

articulatory gestures within ETS4. At present, it appears that very few changes are

needed: a sensory level of the ETS4 representation will be similar to our present ETS2

interpretation.

The overall list of potential improvements which can be introduced into the articula-

tory representation has been provided in Section 5.5. The primary direction of research
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will involve the development of a more sophisticated pre-processor for the acquisition

of articulatory gestures. Better modelling of the physiological structures involved in

the process of articulation will improve the quality of the sensory level of representa-

tion. At present, the pre-processor makes minimal use of geometry of the articulators

and surrounding structures. Modelling of these structures is known to be beneficial

to computational physiology (Engwall, 2003, 2004) and articulatory phonology (Jung,

1993; Jung et al., 1996). An alternative articulatory corpus containing more articulatory

measurement sources may need to be considered. We would be interested in obtaining

accurate estimates of the gestures involved in production of vowel sounds. In particu-

lar, these will involve estimates of various tongue and labial configurations, which give

important articulatory clues to the classification of vowels.

6.4.2 Speech Recognition Problem Revisited

An important direction for future research will involve work on a generalisation mech-

anism that could be used in a speech recognition setting. First, a supervised learning

algorithm will need to be developed. Given a set of training examples belonging to

some class, the goal of this stage is to discover the class representation. This problem is

highly non-trivial. Ideally, we would like exactly one class (primal class, in ETS4 terms

or a supertransform, in ETS2 terms) to emerge on the highest level of representation.

In addition, each class should have the same number of pre-specified levels in its rep-

resentation. This is because during the recognition stage, all the training set classes

should ideally emerge on the same level. Otherwise, producing a transcription would

be difficult because some of the classes may be found on different levels.

An additional issue involves the introduction of class-likelihoods into the model,

which would allow multiple hypotheses to be produced during the recognition stage.

This, in turn, will allow us to introduce a decoding component into the recogniser.

The decoding component may be based on conventional principles and also allow the

integration of a language model. At present, this seems to be a reasonable way of

introducing a priori linguistic knowledge into the framework.

6.5 Concluding Remark

As noted by Deller et al. (1993), the observation made by James Flanagan in 1976 is a

largely accurate reflection of the modern state of the field (Deller et al., 1993, p. 604):

“The problem of speech recognition has not been solved, primarily be-
cause the speech communication process is a subtle one. Many of its funda-
mentals are not very well understood. For example, while most researchers
recognise that a short-time frequency spectrum of speech bears important
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information, the human ear and brain are not a laboratory spectrum anal-
yser. We do not completely understand the inner ear, and what happens
beyond an auditory nerve is almost a total mystery.”

We believe that the formal study of representations of spoken language and the develop-

ment of generalisation algorithms within these representations will eventually contribute

to our understanding of the speech communication process. In this thesis we hope to

have made a small, but important, step in this direction.
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edited by M. C. R. Baeza-Yates, E. Chávez (Springer-Verlag, Morelia, Mexico), vol.

2676 of Lecture Notes in Computer Science, pp. 315–327.

Nock, H. (2001), “Techniques for Modelling Phonological Processes in Automatic

Speech Recognition,” Ph.D. thesis, University of Cambridge, UK.

Olszewski, R. T. (Feb. 2002), “Generalized Feature Extraction for Structural Pattern

Recognition in Time-Series Data,” Ph.D. thesis, School of Computer Science, Carnegie

Mellon University, Pittsburgh, PA.

Oommen, B. J. and Loke, R. K. S. (1999), “Designing Syntactic Pattern Classifiers

using Vector Quantization and Parametric String Editing,” IEEE Transactions on

Systems, Man, and Cybernetics, Part B 29(6), 881–888.

Ostendorf, M. (Dec. 1999), “Moving beyond the ‘beads-on-a-string’ model of speech,”

in Proc. IEEE Automatic Speech Recognition and Understanding (ASRU’99) Work-

shop (Keystone, USA).



Bibliography 233

Ostendorf, M., Digilakis, V., and Kimball, O. (1996), “From HMMs to Segment Models:

A Unified View of Stochastic Modeling for Speech Recognition,” IEEE Trans. Speech

and Audio Processing 5(4), 360–378.

Parkes, A. P. (2002), Introduction to Languages, Machines and Logic: Computable

Languages, Abstract Machines and Formal Logic (Springer-Verlag, London).

Pavlidis, T. (2003), “36 years on the pattern recognition front,” Pattern Recognition

Letters 24, 1–7.
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