
ADAPTIVE ALGORITHMS
FOR NONSTATIONARY

TIME SERIES

Anne M. Moore

A thesis submitted for the degreee of

Doctor of Philosophy

University of Edinburgh

1992

0

Abstract

Nonstationary time series arise in many different disciplines, and there are

many different reasons for wishing to study them. The particular interest in this

thesis is in modelling the time series so as to obtain certain parameters of interest

from it. Whatever the reason for studying such a time series and whatever the

method chosen, in order to accommodate the nonstationarity of the series it is

important to use an adaptive algorithm whose parameters are permitted to vary

with time.

The first achievement of this thesis will be to examine existing adaptive al-

gorithms, highlighting their strengths and weaknesses to determine which, if any,

offers the best way forward towards developing new algorithms. Following this,

rather than consider a specific class of algorithm a generic algorithm which con-

tains the properties of more than one class of algorithm will be examined. To fa-

cilitate the development of this algorithm hyperparameters and hypermodels will

be introduced. Results of simultations run to test the algorithms performance will

be given.

The second achievement of this thesis will be to develop a new algorithm,

the fast adaptive forward backward least squares algorithm. This algorithm in-

corporates a "forgetting factor" to enable the tracking of nonstationary signals.

Simulations will be performed which show that the algorithm can outperform the

unwindowed version in the presence of a nonstationary signal. Stabilization tech-

niques will be introduced which will prevent the algorithm exhibiting numerical

instabilities to which this type of algorithm is prone. Simulation results will be

presented to give guidelines for the choice of values of feedback gains which are

to be used to prevent the exhibition of instability.

Finally the advantages and limitations of both the new and exisiting algorithms

will be summarized and suggested areas of future research outlined.

Declaration of originality

I hereby declare that the work reported herein was composed and originated

entirely by myself in the Department of Electrical Engineering at the University

of Edinburgh.

11

Abbreviations

AFBLS Adaptive Forward Backward Least Squares

AIC 	Akaike's Information Criterion

AR 	Autoregressive

DSP 	Digital Signal Processor

FBLS 	Forward Backward Least Squares

FFT Fast Fourier Transform

LMS Least Mean Squares

LRS Linear Random Search

MSE Mean Squared Error

PSD Power Spectral Density

RLS Recursive Least Squares

SNR Signal to Noise Ratio

111

Principal Symbols

	

E[.] 	The expectation operator

	

x(n) 	The nth input sample

	

(n) 	An estimate of the nth input sample

	

(n) 	The vector containing the last m input samples

	

e(n) 	The a priori error

	

RXX 	The autocorrelation matrix

rXY The crosscorrelation matrix

A forgetting factor

ck Autoregressive coefficients

In The natural logarithm

v(n) The error covariance

o(n) The innovations variance

x 2 (m) A chi-squared distribution

e f The forward error

The backward error

V The difference operator

J The exchange matrix

ki The stabilization coefficients

iv

Acknowledgements

So many people, so little space 	.

Firstly I must thank Dr Steve McLaughlin, my principal supervisor, for his ad-

vice and guidance throughout the course of this work. Thanks also go to Dr Bernie

Mulgrew for cheerfully performing what must be an unenviable task, namely that

of second supervisor. I am also grateful to Professor Peter Grant for his help and

encouragement throughout my time in the group and Dr Sergios Theodoridis for

making helpful suggestions just when they were most needed.

Secondly I must thank my fellow members of the Signal Processing Group;

Dave C., Simon, Chris, Dave L., Norm, Raj and lain for a very enjoyable three

years and some interesting evening seminars! Special thanks must go to Dave C.

for proof-reading, help with computer code and an excellent trip to Canada!

Finally I must express my thanks to my parents for their support, encourage-

ment, proof-reading and unswerving belief that I would one day, finally leave the

educational establishment!

v

Contents

Introduction
	

1

	

1.1 	Nonstationary Time Series2

1.1.1 	Objectives of Time Series Analysis4

	

1.2 	Adaptive Algorithms6

	

1.3 	Organization of Thesis7

Adaptive Algorithms 9

2.1 	Introduction 9

2.2 	The Wiener Filter 11

2.3 	Least Mean Squares Algorithm 17

2.4 	Recursive Least Squares Algorithm 20

2.5 	Conclusions 24

A Generic Adaptive Algorithm
	 28

	

3.1 	Introduction28

	

3.2 	Autoregressive Modelling29

3.2.1 Maximum Likelihood Techniques30

3.2.2 	Akaike's Information Criterion31

3.2.3 Autoregressive Modelling with Time-varying Coefficients 	32

vi

3.3 Spectral Estimation 35

3.4 An introduction to hyperparameters and hypermodels 37

3.4.1 	State-space models 38

3.4.2 	A generic adaptive algorithm 39

3.4.3 	Hyperparameters 41

3.5 Development of an Algorithm for Tracking Nonstationary Signals 45

3.5.1 	Assumption of Constant Innovations Variance 45

3.5.2 	Computational Procedure 49

3.5.3 	Nonstationary Covariance 51

3.6 Simulations 54

3.7 Discussion of Results and Conclusions 61

4. The Adaptive Forward Backward Least Squares Algorithm 	63

	

4.1 	Introduction63

4.2 The Forward Backward Least Squares Algorithm64

4.2.1 Formulation of the Forward Backward Least Squares Algo-

rithm65

4.2.2 Conventional Adaptive Forward Backward Least Squares

Algorithm74

4.2.3 The Fast Adaptive Forward Backward Least Squares Algo-

rithm78

4.3 The Windowed Adaptive Forward Backward Least Squares Algorithm 88

	

4.4 	Results94

	

4.5 	Conclusions 98

vi'

Stabilization of the Adaptive Forward Backward Least Squares

Algorithm 	 99

5.1 	Introduction99

5.2 Instability effects in the Windowed Fast Adaptive Forward Back-

ward Least Squares Algorithm100

5.3 	Redundancy102

5.4 Implementation of Redundancy104

5.5 	Stabilization Simulation Results108

5.6 Simulation Results for Time-varying Signals 119

5.7 Simulation Results using Limited Wordlengths 125

5.8 Mathematical Tools for Stability Analysis 130

5.9 	Conclusions 132

Conclusions
	 134

6.1 	Achievements134

6.2 Limitations and Suggestions for Future Work136

Bibliography
	 138

Proofs of Identities used in Chapter 4
	

148

Formulation of the Windowed Adaptive Forward Backward Least

Squares Algorithm 	 153

B.1 The Fast Windowed Adaptive Forward Backward Least Squares

Algorithm161

Simulating reduced precision arithmetic on a Sun workstation 170

C.1 Internal representation of a precision variable170

C.2 Reducing precision arithmetic171

viii

D. Original Publications
	 172

E. Software
	 173

Ix

Chapter 1

Introduction

A time series is the recording of events and their variation with the passing of

time. More rigorously, a stationary time series is one which is defined [1] as hav -

ing statistical properties which are invariant to a shift in time. (A slightly less

confining definition is that both the mean and covariance are invariant to a shift

in time. In this case the process is said to be wide-sense stationary). Alas, in

the real world it is rare to find such well-behaved time series, and in practice we

are faced with collections of data which exhibit varying degrees of nonstationar-

ity. However this nonstationarity manifests itself, so-called adaptive algorithms

[1] which change in response to variations in the input have been developed to

accommodate it. The first major contribution of this thesis is to examine existing

algorithms and determine their limitations and to develop new ones which have, in

some sense, improved performance when dealing with nonstationary time series.

A second concern of this thesis is to ensure that once such an algorithm has been

developed and is in operation it will remain stable and unaffected by numerical

errors during the run-time of the algorithm.

1

2400

2200

C.
CD
CD 	 2000
Cz

0
•'- 	1800
4)

0

1600
a)
a)
U)

1400

1200
1860 1870 	1880 	1890 	1900 	1910 	1920

Years

Figure 1.1: Sheep Population 1867 to 1939

1930 	1940

1.1 Nonstationary Time Series

Nonstationary time series arise in many different disciplines. Some of the more

obvious examples include economics [2, 3] (where the series may be yearly sales

figures, monthly price indices), meteorology [4, 5] (where the series of interest

include daily highs and lows in temperature, annual rainfall and so forth), biology

[6, 7, 8] and the medical field [9, 10, 11] (where there is currently a great deal of

interest in foetal heart trace data [12]) and agriculture (where there are annual

records of livestock production, soil erosion etc). An example of the latter is

illustrated in figure 1.1 which shows a graph of the sheep population in England

and Wales from 1867 to 1939 [13]. These data arise from a nonstationary time

series where there is neither constant mean nor variance. Obviously many more

examples of physical time series can be found in the literature [13, 14, 15, 16, 17]

In the case of time series obtained from mathematical models, even the seem-

2

8

6

4

2

0

-2

-4

-6
0
	

10 	20 	30 	40 	50 	60 	70 	80 	90 	100
Time Samples

Figure 1.2: Graph of Simple Random Walk

ingly most simple systems can be nonstationary. For example consider the mis-

leadingly simple equation [18]

Xk+1 = Xk + Wk 	 (1.1)

where wk is a zero-mean stationary white Gaussian process with E[wkwl} =

and x0 = 0 and in this simplest case xk is a scalar. E[.] is the expectation

operator, which is defined as the sum of all the values the random variable may

take, each weighted by the probability with which the value is taken. The equation

is illustrated in figure 1.2. Squaring equation 1.1 and taking expectations leads to

	

E[x ~1]=E[x]+1 	
(12)

E[x]=k

So clearly xk is not stationary, despite having zero mean, but rather its variance

is an unbounded function of k. Thus it can be seen that nonstationarity is present

both in the real world and in the most simple of mathematical models.

3

1.1.1 Objectives of Time Series Analysis

Having seen examples of the wide diversity of time series in existence the question

must arise, why do we wish to study them? The answer to this can be divided

into several objectives [13, 16] each of which will now be considered. The first

objective is to describe, preferably in some mathematical way, the series and

its properties. Secondly, at a more detailed level, rather than generate a model

which merely describes a time series it may be possible to develop a model which

accurately describes the mechanism which is generating the time series. Thirdly,

having developed a model using one of the two methods outlined above, this

model can then be used to predict future values of the series. This is obviously

very important in the field of economics where it is useful to be able to predict

future demand for a product and so on. Finally, closely related to the idea of

prediction is that of control. Here future predictions are once again made from a

model of the time series and these future predictions are fed back into the model

to adjust some parameter. An example of this from the field of economics is where

the future demand for a product can be predicted. This prediction can then be fed

back to the manufacturing process so production can be increased or decreased as

required.

The particular interest in this thesis is in modelling the time series so as to

obtain certain parameters of interest from the time series. In particular we are

interested in spectral estimation. This involves estimating the different frequency

components which are present in a time series. Examining a data sequence in the

so-called frequency domain can often yield information which is obscured in the

time domain. To see this consider a signal which consists of two sinusoids, the first

of which has a much larger amplitude than the second. Figure 1.3 shows the signal

in the time domain and to the human eye it is not apparent that there is more

than one signal present. If however the signal is transformed to the frequency

domain (the methodology used does not concern us here) then, as can be seen in

figure 1.4, the presence of two sinusoids is easily discernable.

4

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

	

0 	5 	10 	15 	20 	25 	30 	35 	40 	45 	50
Samples

Figure 1.3: Time Domain Representation of Two Sinusoids

0

-10

-20
--I

-30

C

1)

	 -40 I 	-50

-60

-70 L

	

0
	

0.05 	0.1 	0.15 	0.2 	0.25 	0.3 	0.35 	0.4 	0.45 	0.5
Frequency

Figure 1.4: Frequency Domain Representation of Two Sinusoids

5

1.2 Adaptive Algorithms

It has already been mentioned that there are innumerable examples of nonsta-

tionary signals and many reasons for studying them. Whatever the reason and

whatever the method chosen, in order to accommodate their nonstationarity it

is important to use an adaptive algorithm whose parameters are permitted to

vary with time. There are three broad classes of adaptive algorithm; the Least

Mean Squares (LMS) algorithm [19, 20, 211; the Recursive Least Squares (RLS)

algorithm [19, 20, 22] and the Linear Random Search (LRS) algorithm [23].

The LRS algorithm differs from the first two in that, as will be seen subse-

quently, both the LMS and the RLS algorithm use a systematic search procedure

to arrive at an optimal solution. In the case of the LRS algorithm however, as

its name suggests, a random change is made to the weight vector of an adaptive

processor. The mean square error (MSE), that is the mean-square value of the

difference between the desired response and the valued obtained using the chosen

algorithm, is computed before and after the change and the two values compared.

If the random change in the weight vector causes the MSE to decrease then the

change is accepted, if not it is rejected and a different random change is tried. Al-

though the algorithm is conceptually simple and easy to implement it does have a

number of serious drawbacks. The worst of these is that there is a low probability

that any particular random change will be in the direction of the optimal filter

parameter and consequently the time taken for the LRS algorithm to converge to

a solution which is close to the optimal value is very long when compared to other

existing algorithms. For this reason only the LMS and RLS families of algorithms

will be considered to aid the development of models for nonstationary time series

in subsequent chapters.

1.3 Organization of Thesis

As was mentioned previously the aim of this thesis is to develop adaptive algo-

rithms which perform well in the presence of nonstationary data. One criterion

for good performance will be the requirement that the algorithm should be unaf-

fected by the lack of sufficient numerical precision inherent in the implementation

of all existing algorithms. The following paragraphs will outline the structure of

this thesis.

Chapter 2 will review the background to this work. Before considering specific

adaptive algorithms the mathematical framework for developing such algorithms

will be developed by considering the Wiener filter. We will then go on to review

the two broad classes of existing adaptive algorithms, the Recursive Least Squares

algorithms and the Least Mean Squares algorithms and examine their performance

in terms of specific criteria to determine which offers the best way forward towards

developing new algorithms.

An alternate approach to the development of new algorithms will be exam-

ined in chapter 3. Rather than consider a specific class of algorithm, a generic

algorithm which contains properties of more than one class of algorithm will be

developed. Before this can be undertaken various techniques which will be utilized

subsequently will be reviewed. These include autoregressive modelling, which will

also encompass a brief review of the related topics of maximum likelihood tech-

niques and information criteria, spectral estimation and state-space modelling.

The comparitively new concept of hyperparameters will be introduced [24] and

an adaptive algorithm which incorporates hyperparameters will be examined. Re-

suits of simulations run to test the algorithm's performance will be given. Finally

the limitations of such an adaptive scheme will be discussed.

In chapter 4 we will consider a particular variant of the recursive least squares

algorithm, the forward backward least squares algorithm. First the formulation of

the algorithm will be reviewed and then it will be seen how the use of symmetry

properties of certain matrices can be used to produce a fast version of the algo-

7

rithm. A "forgetting factor" will be introduced into the algorithm to facilitate

the tracking of time-varying signals, and thus a new algorithm, the fast adaptive

forward backward least squares algorithm, will be developed. Simulations will be

performed to show that this algorithm can outperform the unwindowed version in

the presence of a nonstationary signal.

In chapter 5 it will be shown that in its existing form, the new algorithm is

prone to numerical instabilities. The cause of the instability will be traced to

internal variables of the algorithm and a concept called "redundancy", where a

variable can be calculated in more than one way, will be introduced. Making use

of this, the two ways in which the variable can be calculated can be combined

and used in the algorithm to prevent error propagation and maintain a stable

algorithm. A major problem is the choice of feedback gain and the results of

extensive simulations will be presented to establish which values of feedback gain

are capable of extending the lifetime of the algorithm indefinitely. Mathematical

techniques will be outlined to support the simulation results.

Finally chapter 6 will conclude the work. The advantages and limitations of

the new algorithm will be examined and suggested areas of future reseach outlined.

Chapter 2

Adaptive Algorithms

2.1 Introduction

As was mentioned in chapter 1, since we are interested in signals whch are changing

with time, it is natural that we should wish to utilize adaptive algorithms. The

two broad classes of adaptive algorithm which we will consider are the Least Mean

Squares (LMS) algorithm [19, 20, 21, 25] and the Recursive Least Squares (RLS)

algorithm [19, 20, 22, 26]; each of which will be reviewed in subsequent sections.

When considering which particular algorithm to use for a specific application there

are a number of factors to be considered. It is rare to find an algorithm which

satisfies all of the desired criteria and in practice some trade-offs will have to be

made.

There are many criteria against which an adaptive algorithm must be measured

and they will consist of some or all of the following: computational complexity;

speed of convergence; misadjustment; tracking capability and numerical stability.

Each of these criteria will now be outlined in more detail.

Computational complexity is a measure of how many operations (additions,

multiplications and divisions) must be carried out in order to update the pa-

rameters of the algorithm as new data become available. Despite the advent of

new high speed processors this is still an important issue, especially if real-time

performance is to be achieved.

The second criterion is the speed of convergence of the algorithm. Convergence

is a transient phenomenom [27, 28, 29], that is to say, in a stationary environment

the convergence performance is defined as the number of iterations required by the

algorithm for a parameter to come within a predetermined distance of its optimal

value. If the input signal is only stationary over a finite interval and the input

then changes to a different stationary signal then the convergence properties of

the algorithm give a measure of the ability of the algorithm to adjust to the new

desired steady state behaviour.

The third criterion to be considered is misadjustment [30, 21, 31, 32]. This is

defined as the amount by which the mean squared error of a parameter varies from

the minimum mean squared error obtained from the Wiener solution. In the case

of a stationary environment, misadjustment can be reduced by taking sufficiently

small steps in the iterative search routine used to seek the optimum solution.

The problem with minimizing the step-size however is that this will increase the

number of iterations required before the optimum solution is obtained. Thus there

is a trade-off between misadjustment and convergence speed.

The step-size parameter, i, is a quantity used in the LMS algorithm, but when

considering the RLS algorithm there is no such term. Rather, what does play a

role in the behaviour of the algorithm is A the so-called "forgetting factor" (more

detail of which will be given later). As will be seen later when comparing certain

properties of the two algorithms (in particular the convergence of the algorithms

and their so-called "memories") the quantity 1 - A in the RLS algorithm plays

and analogous role to i in the LMS algorithm.

By the time an algorithm has adapted to the input signal at a given instant in

a truely time-varying environment the value of the input signal will have changed.

Thus it is no longer accurate to refer to the convergence properties of an algorithm

and instead the tracking properities of the algorithm must be considered [33, 22,

34 1 35]. These can be broken down into the steady state and transient tracking

properties. The transient properties are analogous to convergence in the case of

stationary signals - that is, if there is an abrupt change in the signal, how long

does it take for the algorithm to come within a predetermined distance of its

optimal value? However, once the signal has settled to its steady state solution, if

this solution is time-varying we are also interested in the ability of the algorithm

10

to track the now time-varying signal. Although fast convergence in a stationary

environment is indicative of good tracking properties for a specific algorithm there

is another factor which must be taken into consideration, namely the criterion

mentioned above, misadjustment. Thus in a nonstationary environment tracking

is not just a matter of speed of convergence, but rather is a trade-off between

speed and residual fluctuation.

Finally the numerical stability of the algorithm must be considered. This is

affected by two different phenomena. The first is how well the algorithm performs

if it is subject to ill-conditioned input data, for example if the input covariance

matrix is not positive definite. The second is what is the effect of implementing

the algorithm on a practical processor? Such processors will have only finite length

registers in which to store the values of parameters used in the algorithm. Thus

it is necessary to truncate the variables and it is possible that repeatedly doing

this may result in an accumulation of errors which cause the algorithm to diverge

from its theoretically predicted behaviour [36, 37, 38]. Practical processors can

be divided into two broad classes, those which are fixed point processors, and

those which are floating point. In the case of the former all input data must be

scaled so that their values lie between +1 and —1. With floating point processors,

however, no such scaling is required. Floating point digital signal processing chips

are now becoming available. Consequently in subsequent chapters in this thesis

whenever the issue of finite precision implementation is addressed only floating

point processors will be considered.

2.2 The Wiener Filter

The structure of a typical linear signal estimation problem is shown in figure 2.1.

If the input signal statistics are stationary then it is possible to develop an optimal

Wiener [391 filter as follows.

The figure clearly illustrates that the problem is to provide an estimate, (n),

of the signal y(n) given input data x(n). To facilitate this an error signal e(n)

11

Figure 2.1: System Modelling using an Adaptive Filter

12

equal to the difference between y(n) and its estimate i(n) is formed. A cost

function can then be assigned to e(n), that is a function which gives the penalty

when the estimate of a desired signal is incorrect. A very popular cost function,

and the one used in the development of the Wiener filter, is the mean squared

error criterion given by,

(n) = E [e2(n)]. 	 (2.1)

The filter is optimized by finding values for the coefficients of the filter which

minimize the cost function. Here the cost function is determined by taking the

expectation of the square of the error between the desired signal and its estimate.

It should be noted that this particular cost function is probabalistic in that it

involves taking an expectation, in other words ensemble averaging is used. There

may be certain circumstances in which it is not desirable to assume a probabalistic

model and in such cases, as will be seen subsequently, it is assumed that it is

possible to replace ensemble averaging with time averaging. However in developing

the Wiener filter the cost function remains as given above. Two further quantities

needed in the development of the filter are the vector (n), which is defined as a

column vector containing the last rn elements of the input sequence {x(n)}

(n) = {x(n), x(n - 1),.. . , x(n - rn +
	

(2.2)

and /, a column vector containing the m non-zero elements of the impulse response

sequence {h}

h_ [hO ,h i ,...,hm _ 1]T. 	 (2.3)

Since the optimal filter is assumed to be linear it is possible to express the

output signal (n) as the convolution of the input sequence .(n) and the impulse

response of the filter /.

(n) = 1: hkx(n - k). 	 (2.4)

13

In this case it is assumed that the filter is finite impulse response (FIR) of

order m - 1 so that h = 0 for ii > m and n <0. Thus

rn-i

(n) = 	hx(n - k), 	 (2.5)
kO

or in vector notation,

(n) = hT x(n) 	 (2.6)

Thus the cost function becomes

= E [(y(n) - hTx (n)) 2]
(2.7)

= E [y2(n)] - 2/IT!: + !iTRL1.

Here R is the N x N autocorrelation matrix of the input signal

R = E {x(n)xT(n)] 	 (2.8)

and r is the N element cross-correlation matrix of the input signal and the desired

response signal,

L = E { .(n)y(n)]. 	 (2.9)

Since the optimum filter is the one which minimizes the cost function, the next

step is to differentiate equation 2.7 with respect to the filter coefficients and to

set the result equal to zero. Doing this yields

Ia 	1
- =E I - ((n))(
ah 	 j (2.10)

1
=E [2e(n) &(n) I

öh]

but e(n) y(n) - ex(n) so

14

= —x(n—j),
ah3 	

(2.11)

=E{-2e(n)x(n—j)].

So to achieve optimization the condition

= 0 	 (2.12)

is needed. This can be rewritten as

—2E [x(n)e(n)1 = 0

E [x(n)y(n) - x(n)xT(n)h(n)J = 0

or

- RI! = 0. 	 (2.13)

Assuming that the autocorrelation matrix R is positive definite, the optimum,

or Wiener, filter is thus given by,

=
	

(2.14)

The above derivation is valid in the stationary case, but as soon as the sig-

nal characteristics become nonstationary the optimal Wiener filter becomes time-

varying and it is now that an adaptive algorithm must be used, so that the optimal

solution can be tracked as well as possible. It should be noted that there is an

implicit assumption in the use of all adaptive algorithms that the speed at which

the algorithm is updated is faster than the speed of variation of the signal. If this

is not the case there is no chance of any algorithm being able to track the signal.

The Least Mean Squares (LMS) algorithm attempts to adapt to the Wiener

solution by taking small steps in the direction of the negative gradient of the mean

squared error. By doing this it is hoped that these steps will lead to the bottom

of the "bowl" of the error surface, see figure 2.2 (which is this shape due to the

15

I-

C.,,

Filter Coefficient h0

Figure 2.2: Quadratic Error Surface of a Linear Filter

16

quadratic nature of equation 2.7) and thus achieve a minimization of the mean

squared error.

The Recursive Least Squares (RLS) algorithm, on the other hand, minimizes a

deterministic sum of squared errors. By deterministic we mean here that although

the signals under consideration may be random, the cost function to be evaluated

and minimized consists only of portions of the data rather than requiring knowl-

edge of the first and second order statistics of the input data, as is the case in the

LMS algorithm.

Each of these two classes of algorithm will now be reviewed in more detail.

2.3 Least Mean Squares Algorithm

It should be recalled that the overall aim is to minimize a given cost function so

as to determine the optimal values for the tap weights of a transversal filter. From

the Wiener-Hopf equation, equation 2.14, it can be seen that complete knowledge

of the statistics of the input signal is required in the form of the autocorrelation

matrix. In practice, however, such knowledge may not be available, particularly

in the case where the input signal is changing with time. One of the most popular

methods used to overcome this difficulty is to use an iterative search method. Here

the algorithm starts from a predetermined set of inital conditions which represents

complete ignorance about the input signal. An initial guess for the tap weights is

made and an error term computed. New data are then input to the algorithm and

a refined estimate of the tap weights is made in such a way as to reduce the error

term. This is repeated until the error term is smaller than some predetermined

value. One of the oldest such iterative search methods, and the basis of the LMS

algorithm, is the method of steepest descent.

Here an initial guess at the optimal filter coefficients is made. The gradient

of the MSE surface at that point is then calculated. This gradient gives, by

definition, the direction of the greatest rate of increase of the surface, and so an

17

improved estimate of the filter coefficients may be made by moving in the opposite

direction, the direction of steepest descent. So a new guess

h +1 = Li1LIi

is made. Here y is the step-size which determines how large a step in the direction

of steepest descent is made. This can be repeated until the optimal filter is found.

It should be noted that in this development of the method of steepest descent

use has been made of both the autocorrelation matrix and the cross-correlation

vector. As has already been stated these are not always available in practice, so to

obtain the Least Mean Squares (LMS) stochastic gradient algorithm the equation

for the gradient of the MSE surface should be replaced by a noisy estimate of

the gradient. Then the recursive search for the optimal filter coefficients can be

replaced by the following time recursion.

L(n + 1) = h(n) - 	 (2.15)

Here t is the estimate of the gradient mentioned earlier.

Recall that in the standard steepest descent methods the gradient was given

VA

V(n) = —2E [x(n)e(n)]

e(n) = y(n) - hT (n - 1)(n).
(2.16)

The expectation term in the equation above is an ensemble average, so it

once again requires statistical knowledge which may not be available. In order to

overcome this problem the ensemble average can be replaced by a time average,

that is to say, rather than concern ourselves with averaging over all possible signals

at a specific time, we can instead average a single representative signal over all

time. This ability to interchange time and ensemble averages is refered to as

ergodicity. Since the data are changing with time this time averaging reduces to

= —2x(n + 1)e(n + 1). 	 (2.17)

18

The full LMS algorithm is then given as,

LMS Algorithm

e(n + 1) = y(n + 1) - .(n + 1)h(n)

/(n + 1) = h(n) + 2px(n + 1)e(n + 1)

Having developed the LMS algorithm, its performance against the criteria giv -

en in the introduction to this chapter must now be reviewed. The first criterion

was computational complexity. For an order m filter, each time recursion requires

(m + 1) operations to update the filter. The second issue was the speed of conver-

gence of the LMS algorithm. A simplifed analysis of its convergence can be found

in [19, 21] where the evolution of the filter coefficients is examined. There it is

found that convergence of the algorithm is dependent on the eigenvalue spread of

the input signal. 111 'max is the largest eigenvalue of the input signal, convergence

is assured provided

o<<
Amax
	 (2.18)

Time constants T can be defined, corresponding to each eigenvalue A j of the

autocorrelation matrix, and are given approximately as

(2.19)

so the largest time constant will be due to the smallest eigenvalue)'min

Tmax 	 . 	 (2.20)
2/Jmin

This leads to the condition

'max
Tmax> 	. 	 (2.21)

Amin

Thus the larger the eigenvalue spread the longer the LMS algorithm will take to

converge. This dependence of convergence on eigenvalue spread is not a desirable

property.

19

The next criterion under which the algorithm must be evaluated is misadjust-

ment. This was defined as the increase in the mean-squared error due to the

"noisiness" of the coefficients. It can be evaluated as,

M = average excess rnse

E [e2 (n)]
(2.22)

It can be shown [19, 21] that for the LMS algorithm this can be evaluated as

M = tr{R}
	

(2.23)

Here tr is the trace of the matrix R and is defined as the scalar sum of its diagonal

elements.

For stationary input signals a small misadjustment can be obtained by choosing

a sufficiently small value of ji. So during the iterative search routine a very small

step is taken towards the optimum solution at each iteration. This will ultimately

lead to a very close approximation to the ideal solution. However, it will take a

long time to do so. In contrast a larger step-size will ensire a rapid convergence

towards the optimum solution, but may not get particularly close to the ideal.

Thus in the case of a stationary input where speed of convergence is not important

a small misadjustment can be obtained by choosing a value for ji as small as the

precision of the processor will allow. However, for nonstationary signals, where

speed of convergence plays a role in determining the tracking properties, it may

be preferable to chose a large value of ,tt despite the associated penalty of a larger

misadj ustment.

The final criterion for judging the LMS algorithm was the issue of stability.

In this case the algorithm scores quite well, provided the step-size is not infinites-

imally small (in which case the accuracy of the processor becomes an issue) and

the input signal is not overly ill-conditioned then the algorithm is well behaved

when implemented on a finite precision processor.

20

2.4 Recursive Least Squares Algorithm

As was stated earlier, in order to obtain the optimum filter coefficients from the

Wiener equation it is necessary to be able to evaluate both the autocorrelation

matrix and the crosscorrelation vector. It was noted that these are rarely available

in practice. In the RLS algorithm, rather than using approximations to the auto-

and crosscorrelation functions to minimize the mean squared error, portions of

the data sequence are used and the sum of the squared errors is chosen as the cost

function to be minimized.

By analogy with the derivation of the Wiener filter the optimal filter coefficients

can be found by replacing expectations in the case of Wiener's equation with

summations. Thus we get

R(n)h(n) =
	 (2.24)

where

R(n) =

	

= 	(k)y(k).

Now one object of an adaptive filter is that it be able to update estimates for

the values of the coefficients as new data samples become available. Rxx and

can each be updated as follows

	

R(n) = 	- 1) + x(n)xT(n), 	 (2.25)

	

= 	- 1) + x(ri)y(n). 	 (2.26)

21

Using equation 2.26, equation 2.24 can be rewritten as

R(n)/(n) = R(n - 1)L(n - 1) + .(n)y(n),

and then using equation 2.25 yields

= {R(n) - (n).T(n)] /?(n - 1) + (n)y(n),

which can be rewritten as

A(n) = L(n - 1) + li(n)(n)e(n),

where e(n) is the a priori error given by

e(n) =y(n) — i T (n - 1)(n).

The only thing remaining is to determine a method for updating the inverse of

&(n). Fortunately this can be done using the matrix inversion lemma [40, 41]

and applying it to equation 2.25. The complete RLS algorithm is then given in

the table below.

e(n+1) 	=y(n+l)_iT(n)(n+l)

h(n+1) 	=h(n)+R;(n+1)x&n+1)e(n+1)

R; (n) 	R-' (n)
R;(n+1) =R;(n)—

1 + T (n)R;(n).(n)

As with the LMS algorithm in the previous section, the RLS algorithm must

now be judged against the criteria laid out in the introduction to this chapter.

Once again the first issue is computational complexity. It is possible to implement

the algorithm so that it uses 2.5rn 2 + 4m multiplications and additions. However

for reasonably long filter lengths the fact that the complexity increases with the

length squared can present problems. Obviously the exact filter length at which

implemntation becomes problematic depends on the processor being used. Howev-

er, by the time ten taps are being used each iteration requires 290 multiplications

and additions. This may be considered unacceptable, especially when considering

the LMS algorithm would only require eleven such operations.

The next criteria to be addressed are the related issues of convergence and

tracking capability in a nonstationary environment. For the former it has been

22

shown [1] that if the RLS algorithm is implemented as given in the previous table,

then it will converge in about 2m iterations, where m is the filter length.

When we turn to the issue of tracking capability things become a little more

complicated. In order to facilitate tracking it is neccessary to introduce a so-

called "forgetting factor" into the algorithm. The idea here is that more emphasis

is placed on recent data than on data in the distant past. A common way [1]

of introducing the forgetting factor is to modify the cost function to include an

exponential function. Thus the cost function becomes

	

(n) = 1: A k-, e2 (k)
	

(2.27)

If this cost function is used in place of the original, unwindowed one, then only

one equation of the RLS algorithm needs to be modified, namely the equation for

updating the inverse autocorrelation matrix. This becomes

R; (n)x(n)x T (n)R; (n))
R;(n +1) 	(R;'(n) -

A 	+ xT(n)R;(n)x(n)). 	
(2.28)

Thus by introducing an exponential forgetting factor, the computational com-

plexity remains essentially unchanged. Unfortunately this is the only criterion

which remains unaffected once windowing is used.

In the case of the unwindowed algorithm (A = 1.0) it has been shown [42]

that as n - oo the least squares solution realizes the optimum Wiener solution.

However, as soon as A < 1, noise appears on the filter coefficients (regardless of

whether the filter is operating in a stationary or a nonstationary environment)

and as with the previous section a misadjustment factor must be introduced.

This can be quite complicated, involving up to fourth order statistics of the input

signal [22], but in the cases where A > 0.9 the misadjustment factor, M, can be

approximated [22, 1] to

M)AN ,
1+A

(2.29)

23

where once again N is the filter order. Now 1/1 - A provides a rough measure

of the "memory" of the RLS algorithm. (Where memory can be thought of as a

measure of how many previous data points have an influence on current events.

Thus the case A = 1.0 corresponds to an infinite memory since all data in the past

are weighted equally to the current datum and consequently none can be ignored

or "forgotten".) So for fast adaptation (that is a short memory) there will be a

penalty of a large misadjustment factor. Indeed it should be intuitively obvious

that there will be a trade-off between speed of adaptation and the accuracy of the

result thus obtained, as was the case with the LMS algorithm.

If the filter is operating in a nonstationary environment then, in addition to

the misadjustment outlined above, there will be another excess error source which

is known as the "lag error". This occurs because by the time the filter coefficients

have converged (as far as they are able to under the influence of the normal

misadjustment factor) to the optimum solution at a particular instant, then due

to the time-varying nature of the system the optimum solution itself will have

changed. It can be shown [22] that the lag error is related to the variance of the

source of nonstationarity, to the power of the input signal and to the length of

the memory of the RLS algorithm. Since the other source of misadjustment, see

earlier in this section, is inversely proportional to the length of the memory, there

will once again be a trade-off to be made. The time constant associated with the

lag-error is

1
T 1A (2.30)

It should be noted that both this and the time constant associated with the

ordinary misadjustment are independent of the eigenvalue spread of the input

signal. This is in contrast to the case of the LMS algortihm. Thus the tracking

capability of the RLS algorithm will always be at least as good as the tracking

capability of the LMS algorithm.

The final consideration is that of numerical stability. If either the original or

the windowed version of the algorithm is examined it is apparent that one of the

most important steps in the algorithm involves either the explicit or the implicit

24

inversion of an N x N matrix. As such this makes the algorithm particularly

vunerable to numerical instability, especially in the case of A < 1. Many sug-

gestions have been made as to methods to overcome this, the more successful of

which will appear in subsequent chapters of this work.

Having reviewed both algorithms the next section will compare them and

highlight their strengths and weaknesses.

2.5 Conclusions

Having reviewed both the LMS and the RLS algorithms all that remains now is

to compare their properties and to see which, if either, of the algorithms offers

the most promising way forward towards the aim of designing algorithms suitable

for tracking nonst ationary signals.

Firstly let us consider the LMS algorithm, this offers the major advantage

that it is comparatively simple to implement. It is also robust in that when the

algorithm is implemented on a finite precision processor there is little tendancy for

round off errors to accumulate and to cause divergence away from the theoretically

predicted results. The major downfall, however, of the LMS algorithm is that

in the case of stationary input signals the algorithm is slow to converge to its

optimum filter values and this is further compounded by a dependence of the

convergence rate on the eigenvalue spread of the input data. Such problems with

the convergence rate are a distinct handicap in an algorithm which is to be used

for the tracking of a nonstationary signal.

Let us now consider the major alternative to the LMS algorithm, the RL-

S algorithm. In contrast to the LMS algorithm this has very good convergence

properties in the case of stationary input data, and hence will have associated

desirable properties when used in a nonstationary environment. The indepen-

dence of convergence from the eigenvalue spread of the input data is also a useful

property. So as far as tracking and convergence properties are concerned the RLS

algorithm seems to be more worthy of consideration than does the LMS algorith-

25

m. There are however various problems to be overcome. The first is the issue of

computational complexity. The RLS algorithm has a complexity of 0(m 2) - this

is in sharp contrast to the LMS algorithm which has complexity of only 0(m).

This is a major disadvantage if the interest is in obtaining anywhere near real-

time processing. Steps have been taken to reduce the computational complexity

with so-called "fast" RLS algorithms [43, 44, 45], in which case it is possible to

obtain an RLS algorithm with complexity 0(m). These, however, add to what

is already a problem with RLS algorithms, that is the tendency of the RLS al-

gorithm to go unstable when implemented on a finite precision processor. What

is more alarming is that this tendency is present even when the input data is

well-conditioned.

Attempts have been made to produce stabilized fast RLS algorithms and have

have accomplished this with varying degrees of success. Some rely on so-called

"reinitialization" where certain internal variables are identified and when they

diverge beyond predetermined limits the algorithm is halted and then restarted

with many of the variables reinitialized (hence the name of the technique). In

doing this there is a slight increase in computational complexity, but more sig-

nificantly there can be a substantial reduction in tracking spped [1]. The latter

problem makes this technique unsuitable for tracking in a nonstationary environ-

ment. Other stabilization attempts include using "square-root free" versions of

algorithms which, as the name suggests, involves formulating an algorithm with-

out the use of square roots. The motivation behind this is that square roots can

be a) computationally expensive and b) awkward to use. However it has been

shown [46] that rather than eliminating numerical instabilities, these algorithms

merely delay their manifestation. More succesful attempts at stabilization have

been performed in two ways. The first of these is the use of "redundancy" which

involves the calculation of a variable in more than one way, compares the two

different values of the variable and uses the finite difference between them to the

control the build up of errors which is inherehnt in unstable algorithms. The sec-

ond succesful method is based on QR-decomposition of the data matrix [47]. This

is performed by using some form of data-dependent transformations which result

in orthogonal triangularization of the data. Both methods have their supporters

and discussion is current in the literature as to which, if either, offers the best

way forward for real applications.

Despite the deficiencies outlined above, the desirable properties of convergence

and tracking of the RLS algorithm make it an algorithm worth considering for

tracking nonstationary signals. A major part of this thesis will be concerned with

the development of a variant of the RLS algorithm which has a much reduced

computational complexity. More importantly, the variant will be developed in

such-a way that it has increased numerical stability even when implemented on

finite precision machines.

Before developing such an algorithm however, the next chapter offers an alter-

native way of examining algorithm design. Rather than just considering a specific

algorithm the alternative of using a generic algorithm which encompasses several

classes of algorithm is considered. Using such a generic algorithm it will be es-

tablished whether it is possible to develop an algorithm which tracks in a more

efficient way than those already exisiting.

27

Chapter 3

A Generic Adaptive Algorithm

3.1 Introduction

In the previous chapter a review of some adaptive algorithms was carried out,

with particular attention being paid to the RLS and LMS algorithms. In this

chapter the emphasis is changed and rather than look at individual classes of

algorithm, a generic algorithm is developed which contains the characteristics of

several classes including the RLS and LMS algorithms. In developing such a

generic algorithm hyperparameters [24, 48, 49, 50, 51] will be used. This will lead

to the development of so-called hypermodels and to a generalised methodology

for the design of adaptive algorithms. Within this framework particular attention

will be paid to the interpretation of hyperparameters in a modelling environmemt.

Before examining the issue of hyperparameters and their use in algorithm

design, autoregressive (AR) modelling will be reviewed. Spectral estimation under

the assumption of an autoregressive model will also be examined. It will be shown

that in order to model a time-varying system it may be necessary to allow the

coefficients of the AR model to vary in some constrained manner. With this in

mind hyperparameters will be introduced and it will be seen that hypermodels

can be used to describe the evolution of the time-varying coefficients. Once this

connection has been established a method of modelling a time-varying system will

be developed with the aim of estimating its spectral content. This model will be

based on an autoregressive model with time-varying coefficients. It will be shown

that such a method can track time-varying signals with considerable success.

3.2 Autoregressive Modelling

The issue to be addressed throughout this thesis is how to design adaptive algo-

rithms for use in a time-varying environment. A typical use of such an algorithm

would be the modelling of a time series itself. If this is the case then a tried

and tested technique is to fit an autoregressive model to the data. Autoregressive

models form an important class of linear models in which the current input is as-

sumed to consist of a linear combination of previous inputs. This can be expressed

mathematically as,

rn
x(n) = —ckx(n - k)+ 6f(). 	 (3.1)

Here x(ri) is the current input and x(n - k) are the previous inputs. The ck are

the model coefficients, the numbers by which the previous inputs are multiplied,

and m is the model order which determines how far back in time previous inputs

have an influence on the current input. Throughout the course of this work, unless

stated otherwise, e' (n) will be assumed to be a Gaussian- white noise with zero

mean. Whilst this assumption may not be valid in every case it has nevertheless

worked well in the cases examined.

Such an mth order AR. process is defined by the characteristic equation

1 +ciz-1 +c2z 2 + ...Cm Z_ m = 0
(3.2)

To ensure the asymptotic stability of the process it is necessary that the rn roots

of this equation lie within the unit circle of the z-plane, that is each of the roots

must have a magnitude less than one.

If a model of the form equation 3.1 is used then the parameters of the model

must be evaluated. These parameters are m, the model order, c,, the coefficient

values and €, the Gaussian noise (more specifically it is the value of the variance

of the noise that must be calculated).

29

If, for the moment, the value of rn is considered to be fixed (the question of

how to calculate it will be addressed later) then the two remaining issues are the

calculation of the noise variance and the calculation of the AR parameters. To

calculate these the method of maximum likelihood is used.

3.2.1 Maximum Likelihood Techniques

Maximum likelihood estimation is a technique found in statistical methods. The

aim is to find the best choice of a parameter from a given family of parameters.

Suppose that there is a family of variables 0 so that the probability density function

p(x I 0) of the random variable x can be formed. The parameter of interest in this

case is 0 rather than x so p(x I 0) can be viewed as a function of 0 rather than of

x. In this case the probability density function is known as a likelihood function.

The likelihood, or more often the log likelihood, can be maximised and the value

Ô of 0 for which this maximum is achieved can be regarded as the best choice for

0.

Having evaluated the parameters ck and a 2 , using maximum likelihood tech-

niques as outlined above, the only choice remaining is that of the model order.

This is an important choice as, in general, if too low a model order is selected the

spectrum obtained will be highly smoothed, but on the other hand if the model

order selected is too high there will be spurious low-level peaks in the spectrum

[52]. A typical method for determining m is to start by specifying a minimum and

a maximum value for m, the value of these limits can be set heuristically based

on experience, the amount of computing power available and the like. Having set

these bounds, a complete model including calculation of the noise variance and

AR parameters can be developed for each model order m within the limits. All

that then has to be done is to find some performance measure which indicates

which of all the models best fits the data of interest. Several such performance

measures exist, the one used in this work is Akaike's Information Criterion (AIC).

IN

3.2.2 Akaike's Information Criterion

The problem here is to decide which model provides the best fit to the data, given

various models with different model order m. In his 1974 paper Akaike proposed a

solution to this problem [53, 54]. Akaike observed that the log likelihood function

of a parameter, which was discussed earlier, is a quantity which is very sensitive

to small variations of that parameter around its true value. Suppose that the aim

is to model a random variable with probability density function g(x) based on

N independent observations x 1 ,.. . , XN. If the variable 0 corresponds to different

models of g(x) then there is a family of density functions f(x I 0) which model

g(x). The average log likelihood of the density functions is given by

10). 	 (3.3)

As N -* co the likelihood tends to

S(g;f(. I 0))
= f g(x)lnf(x I 0)dx. 	 (3.4)

It is this mean log likelihood which is a very sensitive measure of small devia-

tions of f(x I 0) from g(x). The difference between the actual probability function

and its model is always zero or positive and is given by

I(g; f(. I 0)) = S(g; g) - S(g; f(• I 0)). 	 (3.5)

From this it should be clear that the best fit model will be the one which

maximises S(g; f(. 0)), that is a model which maximises the mean log likelihood.

The full information criterion to be maximised is given by

AIC = —2 ln(L) + 2k, 	 (3.6)

where L is the likelihood function and k is the number of parameters to be esti-

mated. Details of this, in particular the reason for the factor 2 and the addition

of 2k can be found in [53]. It should be noted that this formula is often misquoted

31

with k replacing 2k. This is incorrect and has often lead to authors claiming

disappointing results when using the AIC.

There is one major problem with the AIC and that is that it is not a consistent

criterion so it does not select the true model with probability approaching 1 as

n —* oo. To overcome this other information criteria which are consistent have

been proposed [55, 56] but in practice they all give similar results. Thus it was

decided as in the work of Kitagawa and Gersch [48, 57], that the Akaike informa-

tion criterion should be used. Having evaluated all the parameters the model is

complete.

3.2.3 Autoregressive Modelling with Time-varying Coef-

ficients

Now suppose that the input signal is varying with time, as indeed is the case

of interest. A completely natural step then is to replace ck with ck(rI) that is

autoregressive coefficients which are permitted to vary with time [57, 58]. It

may also be advantageous to allow the Gaussian noise to become time-varying by

permitting its variance to vary with time. If these steps are undertaken then a

new time-varying model of the form

x(n) =
—

Ck(fl)X(fl — k) + €f(), 	 (3.7)

can be introduced.

Now it is possible that each ck will be different at each time instant. If similar

techniques to those described in previous sections were to be used to evaluate the

ck(n) the problem would rapidly become intractable. So instead the approach

taken is to constrain the values which each ck(n) can take. The method chosen

to do this was to attribute to each Ck(n) some form of model. It is apparent that

this is perfectly reasonable because if a model can be assumed for the actual data

there is no reason that a model should not be assumed for the coefficients of that

model.

32

Since an autoregressive model is being used for the data themselves a possible

model for the coefficients could also be autoregressive. That is let the model

describing the coefficients be of the form

Ck(fl) = - r bCk(n - j) + Sk(fl).

It is assumed that the b3 are constant. Of course it is perfectly possible that

they may be time-varying, but if this were the case a model would have to be

assigned to them, and such modelling could continue indefinitely. Instead the b3

are constrained so that the ck(n) are described by a rth order difference model of

the form

V T Ck(fl) = Sk(Th) 	 (3.9)

where V is the difference operator defined by

Vck(n) = ck(rl) - Ck(fl - 1), 	 (3.10)

thus the first order equation will be

Ck(fl) = Ck(fl - 1) + Sk(Ti), 	 (3.11)

the second order

Ck(Th) = 2ck (n - 1) - 	- 2) + &(n), 	 (3.12)

and so on. This type of constraint was first developed in [59] and is used in

[60].

The first order equation is that of a random walk. The second order difference

equation can be rewritten in the form

ck(rt) - Ck(Ti - 1) - w = Ck(fl - 1) - Ck(fl - 2) - w + 6k(n) 	 (3.13)

33

and if we define ak(n) by

	

ak(n) = ck(n) - ck(n - 1) - w, 	 (3.14)

then equation 3.12 can be rewritten as the pair of equations

	

Ck(fl) = Ck(fl - 1) + ak(n) + w 	
(3.15)

ak(n) = ak(n - 1) + 6k(fl).

Having done this if we define a state vector (n) by

(

Ck(fl)

Ck(fl-1))

then the linear difference model for the coefficients can be represented in the form

of a state transition equation

	

x(n) = Fx(n - 1) + Gu(n),
	 (3.16)

where

	

12 —11 	Iii
F =) I 	G = I 	I u(n) = 5k(n).

1 	0 	 0)

This enables time-varying coefficient models to be written in the form of a state

space model which will be used subsequently. So it has been seen that in order to

model a time-varying data sequence it is possible to use an autoregressive model

in which the AR coefficients themselves are permitted to vary with time. Having

reviewed AR modelling, spectral estimation will now be examined with partic-

ular emphasis on the intepretation of power spectral density in a nonstationary

environment.

34

3.3 Spectral Estimation

Until recently spectral estimation has usually been performed using some form

of fast Fourier transform (FFT) [61]. In most cases the data sequences from

which spectral estimates are to be formed are of a finite length and thus there

are problems in frequency resolution. Resolution can be thought of as a measure

of how close together in frequency two signals can be before they merge and are

indistinguishable. In an attempt to overcome these resolution limitations modern

techniques were developed. The particular class of modern techniques of interest

here is referred to as "parametric" spectral estimation. In this case it is assumed

that the time series to be analysed is the output of some unknown filter system,

the input to which is a white noise sequence. The most straightforward filter

structure to consider is an autoregressive one similar to the one examined in the

previous section.

Here, as before, x(n) = 	 - k) + ef (n). Then H(z), the transfer

function of the filter, is given by

(3.17)

where 0(z) is the transformed output signal and 1(z) is the transformed input

signal. Now the white noise input to the system can be thought of as

= x(n) + 	ckx(n - k), 	 (3.18)

transforming this to the Z-domain gives [52, 62, 63]

E(z) = X(z) + 	CkX(Z)Zk 	

(3.19) k=1
m

= X(z)(1 + 	ckz_k),

k=1

where X(z) is the output signal. Thus

35

X(z)
H(z) =

X(z)(1 + mE CA; z_k)

k=1 	 (3.20)
1

M

= 1 + CkZ_k

k=1

is the transfer function of the filter.

As well as the transfer function of the filter another quantity which will be

useful is the transfer function of the inverse filter. The inverse filter is the one

which takes the signal x(n) as its input and produces at the output a whitened

signal Ef(n). So if H(z) is as given above then

rn
H 1 (z) = 1 +Ck z_ k 1 (3.21)

With this in mind it is possible to produce an estimate of the power spectral

density of the desired signal. This can be done by utilizing the Wiener Khintchine

relation [20, 64] which relates the power spectral density (PSD) at the output of a

digital filter, S(0), with transfer function H(z) to the PSD at the input, S(0).

In this case the input PSD is the desired power spectral density and the output

PSD is the PSD of white noise. That is S(27rf) = 0,2 where U2 is the variance

of the white noise. The transfer function of interest is H(z) as given above.

The Wiener Khintchine relation is

S(0) = 	 (3.22)

substituting into the equation the definition of the various quantities this becomes,

rn

= i + 	ckexp2 	II2S(2f) - 1/2 <f < 1/2. 	 (3.23)

Thus if we can evaluate the parameters ck we have a method of evaluating the

spectral content of a time series. If equation 3.23 is examined it can be seen that

this equation is constant with time. However in the previous section it was seen

36

that in order to model a nonstationary time series ck could be replaced by ck(n).

If this is done equation 3.18 still holds (subject to ck being replaced by ck(n)).

However we can not use the exact methodology which follows on from that as the

Z-transform is no longer valid. There are, however, similar methods which have

been developed [65] and if these are used the corresponding time-varying PSD

p(f, n) becomes

01
2

p(f,n) = 	m 	 . 	 (3.24)

Ill + Eck(n) exp 2irjkf 112
k=1

3.4 An introduction to hyperparameters and

hypermodels

In this section hyperparameters will be introduced and the idea of so-called hy-

permodels developed with the view to developing a generic adaptive algorithm.

The close relationship between hypermodels and time-varying AR models will be

examined.

As was mentioned earlier, hyperparameters and hypermodels (which describe

the evolution of the hyperparameters) were originally developed as a technique

in the statistical field (specifically within the area of Bayesian analysis). Within

that field a hyperparameter gives a measure of a belief in a prior distribution. For

example, if it were assumed, prior to any measurement, that a given parameter

had a normal distribution, then the hyperparameter could be the variance of that

distribution. Here, however we are interested in modelling nonstationary time

series. The problem is that, because the statistics of the series are varying with

time, we have to achieve to achieve sufficient parameterization to capture both the

locally and globally changing statistics. The way we aim to do this is to follow the

methodology of [66]. Here the objective is to use a time-varying coefficients AR

model and to impose constraints (more strictly we are imposing proir constraints,

as we have no knowledge of how the coefficients should evolve) on the coefficients.

The models for the evolution of the coefficients are white noise excited difference

37

equation constraints. So, by analogy with examples from Bayesian analysis, the

unknown white noise variance is a hyperparameter of the AR coefficients.

In the rest of this chapter many references will be made to the formulation of

problems in the form of state-space models [67, 11. It is advantageous to review

what is meant by this before proceeding further.

3.4.1 State-space models

State-space models deal with the description of the characteristics, both internal

and external, of linear finite dimensional systems [68]. The aim is to use informa-

tion about the past behaviour of the system, known as the state of the system, to

predict the future response of the system. The state-space model of a system as

described above is given by

Q(Tl+ 1) = F(n+ 1,n)(n) + 1 (n)
	

(3.25)

.(n) = H(n)c(n) + 2().
	 (3.26)

c(n) is the state vector, (n) the observation vector, that is it contains the observed

data of the system, and F(n + 1, n) the state transition matrix which relates the

state of the system at time n and n+1. H(n) is the measurement matrix and f, (n)

and -C2 (n) are statistically independent noise vectors. Equation 3.25 is known as

the process equation and equation 3.26 as the observation equation, hence 1 (n)

and 2 (n) are known as the process noise and the measurement noise respectively.

In all cases both the state transition matrix F(n + 1, n) and the measurement

matrix H(n) are assumed to be known. The problem is to use the observed data

to find for each n > 1 the components of the state c(n). If i = n, where i is the

time at which we are interested in the state and n is the time of the last available

measurement, this is a filtering problem, if i > n a prediction problem and if

1 < i < n it is a smoothing problem, where the terms filtering, prediction and

smoothing will now be defined.

481

Filtering is defined as estimating the state vector at the current time based

on all measurements up to and including the current time. Prediction can be

thought of as forecasting and is defined as estimating the state at some future

time. Finally smoothing is estimating the value of the state at some time in the

past, based upon all the measurements taken up until the current time. In the

case of smoothing there is a delay in producing the result of interest, since data

measured later than time t are used to obtain a result about a quantity at time

t. There is however a positive effect from this; since the data obtained after the

time of interest can be used, the result obtained should be more accurate in some

sense than the one obtained simply using the filtering process.

3.4.2 A generic adaptive algorithm

Suppose that the algorithm is formulated as a state-space problem. Then by

combining equation 3.25 and equation 3.26 in a suitable manner at time (n - 1)

the algorithm can be described by the equation [69]

c(ri) = c(n —1) + WH(c(ri -
	 (3.27)

Here H(.,.) is a deterministic function which, together with the choce of the

gain matrix W, determines entirely the algorithm, and X n contains all the new

information available at time n. (Care should be taken not to confuse H(.,.) with

H(n), the measurement matrix in a state space model). To see how this is related

to the RLS algorithm it is helpful to follow the development of the latter in the

terms given in [46].

Consider the autoregressive model of the earlier section

x(n) = - 	ckx(n - k) + cf(), 	 (3.28)

then if (n) is the so-called regression vector

(n-1)=(x(n-1),...,x(n—m))T 	

(3.29)
(Ci,...,cm) T ,

39

equation 3.28 can be written as

x(n) = _cTx(rt) + ef (n). 	 (3.30)

The least squares estimate of ç is given by

	

(N) = MIN(c) (t1 (x(n) + QT(n - 1))2). 	 (3.31)

Note that here a forgetting factor has been introduced so as to discount the

influence of older measurements. This is to facilitate the tracking of time-varying

signals. Then it is easy to derive the following, see for example [70, 46].

c(n) =c(n— 1)+Th 1 (n)x(n— 1){x(n)+QT(n_ 1)x(n— i)}

	

= Q(rl - 1) + R'(n) .(n - 1)e(n,Q(n - 1)) 	 (3.32)

= Q(n - 1) + W(n)x(n - 1)e(n,Q(n —1)).

Here the error e(n) has been written as e(n,(n - 1)) to make explicit its

dependence on Q(n - 1). So by comparing equation 3.32 with equation 3.27 it

can be seen that the RLS algorithm does indeed fit into the generalised algorithm

form.

Returning to the generalised algorithm of equation 3.27, it is also useful to

incorporate in H the true system at time n even though the true system may not

be available to the algorithm designer. The algorithm then becomes

c(n) = c(n - 1) + WH((n - 1),(n);K). 	 (3.33)

So (n) is the true system which Q(n) is aiming to track. It may be advanta-

geous to be able to model the true system and it is here that hyperparameters are

used. Although we may not have direct access to the true system which we are

aiming to model, it is highly likely that we will have some information about it,

and by incorporating that knowledge into the model it may be possible to achieve

a better estimate of the true system. An example of this can be seen by consider-

ing the autoregressive model used in previous sections. In chosing to use a model

40

with time-varying coefficients we have assumed knowledge of the system (namely

that using only constant coefficients will produce a poor estimate). We further

assumed that the coefficients of the AR model should themselves been generated

by an autoregressive process. It was through making such an assumption, namely

that the parameters of a general linear model should themselves have a gener-

al linear structure, that Lindley and Smith introduced hyperparameters [24, 71].

They defined hyperparameters as quantities which describe the linear structure

of the parameters. So in the case of our time-varying AR model the coefficients

are modelled by equation 3.9, thus the hyperparameters are the parameters of the

distribution of the noise term [72].

3.4.3 Hyperparameters

Beneveniste [49, 50] took the concept of hyperparameters and applied it to adap-

tive algorithms, in particular he developed so-called hypermodels which describe

the behaviour of the true system (n). The first form developed was a first order

hypermodel

t(n) =

where (n) is a process whose distribution depends on

Some typical examples of first order hypermodels will now be given.

Constant Drift

t(ri)=t(n-1)+W(n).

(3.34)

(3.35)

Here W(n) is a Gaussian white noise of zero-mean. This produces the standard

random walk type model seen in figure 3.1

Zero-mean Linear Hypermodel

t(n) = L(n - 1) + 1u(At(n - 1) + W(n)), 	
36

Re(A) 	0. 	
(.

41

0.3

0.2

0.1

0
4)

-0.1

-0.2

-0.3
0

Time Samples

Figure 3.1: Constant Drift Hypermodel

As before W(n) is a Gaussian white noise of zero mean, it is a small positive

parameter and Re\(A) are the real parts of the eigenvalues of A. If A = 0 the

model reduces to the constant drift model of equation 3.35 otherwise models of

the type illustrated in figure 3.2 are obtained for the one dimensional case.

Jump Process

	

t(n) = t(n - 1) + jiW(n). 	 (3.37)

W(n) remains unchanged and follows a Bernoulli distribution that is

PI(n = 1} = Ce 	<<1
(3.38)

= 01 = 1 - a.

It is possible to allow a to depend on 	- 1). This behaviour is illustrated in

figure 3.3 in the case of a constant a.

42

1

0.8

0.6

0.4
4J

0.2

0

-0.2
0

Time Samples

Figure 3.2: Zero-mean Linear Hypermodel

1.4

1.3

1.2

1.1

1

0.9

0.8 L
0

Time Samples

Figure 3.3: Jump Process Hypermodel

43

Whilst many types of behaviour can be modelled using these types of hy-

permodels there is one important class which cannot be described by first order

hypermodels, namely oscillatory behaviour. To model this it is necessary to ex-

tend the idea of hypermodels to higher orders. The new type of hypermodels as

given by Benveniste is

(

T(ri) '\ (T(n — i) 't
1 A B ' / T(n — i) (3.39)

(n)) (n-1)) + C D) k((n-1),(n)))

where A,B,C and D are matrices of appropriate dimensions. This type of model

should be used in multi-step schemes such as those found in [73, 74] but such

schemes will not be considered here. In order to model oscillatory behaviours it

is sufficient merely to consider a subclass of the above hypermodels, namely the

linear class of the form

(T(n) 	(T(n_1) + (A B (T(n_1) ,
	 (3.40)

	

t(n)) 	t(n —1)) \ C D) \ W(n))

where as usual W(n) is Gaussian white noise. With both the first and the higher

order hypermodels it is advantageous to introduce a small parameter i to allow

for the fact that the true system may be slowly time-varying. In the case of first

order hypermodels the equation becomes modified to

t(n) = (n - 1) + tK(L(n - 1),(n)). 	 (3.41)

The higher order hypermodels can be amended in a similar fashion.

So, in the search for a generic adaptive algorithm the idea of hypermodels has

been introduced and it has been seen that in addition to considering the algorithm

it is also useful to prescribe a model for the true system. In doing so the pair of

equations

E) = t(n - 1) + ,uK(t(n - 1),.(m)), 	
(3.42)

c(n) = c(n - 1) + WH(c(n - 1),t(n - 1);(n)),

44

must be considered. Note that here for the sake of simplicity, only a first order by-

permodel has been used. Having introduced a generic algorithm and shown how it

compares to the RLS algorithm we will go on to consider the pair {algorithm:hypermodel}

and see how these can be used in a practical application.

3.5 Development of an Algorithm for Tracking

Nonstationary Signals

To summarize the work of the preceeding sections, the overall aim is to produce

an autoregressive model of a nonstationary time series. In order to do this a time-

varying AR coefficient model incorporating a hypermodel has been suggested.

This can be summarized by

x(n) = > 	Ck(fl)X(fl - k) + €'(n),

VCk(n) =

E5k(n) = 0,

E6k(n)6(m) = 6k,j5m,n 7_ 2 (TI),

e' (n) ' N(0, o 2)

(3.43)

So as with ordinary autoregressive modelling ck(n), the model order m, and

f -1 (n) must be chosen. However before ck(n) can be determined the difference

constraint order r and the hyperparameter T 2 (n) must be chosen.

3.5.1 Assumption of Constant Innovations Variance

To simplify the initial presentation of this work both r2 and cr2 will be considered

constant. In the next section this constraint will be relaxed and the algorithm

generalized to allow for nonstationary cr2 (n). To proceed with the algorithm

development it is advantageous to consider a state-space representation. Then

equation 3.43 becomes

45

(n) = FQ(n - 1) + Gu(n),

x(n) = —H(n)Q(n) + &(n),

H(ri)=(x(n-1),...,x(n—m),O,...,O),

(n) = (ci (n), c2 (n),. . . ,) T ,

i-' N(O,o), u(n) .' N(O, E), 	
(3.44)

T 2 	0

0 	...

It should be noted that the variance of the noise added to each individual

coefficient is the same for all coefficients. This is somewhat artificial and is used

only to keep the algorithm comparatively simple. If such a scheme does not give

statsifactory results in modelling time-varying systems then it may be possible to

assign different variances to each coefficient in the hope of improving the fit of the

model. Initially, however, compuataional complexity should be kept as low as is

feasibly possible.

Only first and second order difference equation constraints will be applied to

equation 3.44 thus

Fm = (Im)

(21m 1m
Fm 	

0

Gm = (Im) 	for r = 1,

Gm ('-)_
-

for r= 2.
0

(3.45)

It will be seen that a second order model was indeed sufficient to model a

variety of time-varying data sequences. The aim now is to compute the likelihood

of each model specified by the orders m and r. It should be noticed that as

a difference equation constraint has been applied to the ck(rI), the number of

unknown parameters will be (mr + 2); r2, 0r2 and the initial state vector. Thus

the AIC criterion will be modified to

AIC = —21n(L) + 2(rnr + 2). 	 (3.46)

46

Having given the state-space formulation for the equations, Kalman filtering

and prediction techniques can be used to calculate the likelihood [75, 67]

The likelihood can be obtained from

	

L(r 2 ,o 2 Im,r) = f((1))U=2fLc(n)Lc(1),. . .,c(n —1)) 	
(3)

by using the conditional marginal density, f(z(n) I z(1),. . . , z(n - 1)), of z(n)

given z(1),.. . , z(n - 1). This marginal density is approximated by

f(z(n) I z(1),. . . , z(n - 1)) = f f(z(n) I x(n))f(x(n) I z(i),.. . , z(n - l))dx(n)

	

/ 	/ 2\
2 -1/2

=) 	v(n)_h/2exp 	
—en)

2o2v(n))

e(n) = x(n) + H(n)i(nIri - 1),

v(n) = H(ri)v(nln - 1)Ht(n).

Here f(x(n)IQ(n)) is the conditional density of x(n) given (n), 2(nIn - 1) is

the one step ahead predictor of Q(n) and v(nln - 1) is its error covariance. (nIn)

is the filter estimate and v(nln) is the corresponding error covariance.

In order to update the prediction and its associated error covariance Kalman

filtering will be used. The resons for this choice will now be briefly outlined. A

distinctive feature of a Kalman filter is that its mathematical formulations is in

terms of state-space concepts. Also its solution is computed recursively in such

a way that each updated estimate of the state is computed from the previous

estimate and the new data,so only the previous estimate requires storage. Thus

Kalman filtering fits naturally in the framework we have chosen to adopt for the

problem formulation.

The basic form of the Kalman filter, however, suffers from a numerical insta-

bility problem which manifests itself in the recursive calculation of the predicted

state-error covariance matrix which, when calculated using finite precision arith-

metic, may not be non-negative definite which it is required to be.

47

Another problem which may result in the divergence of the algorithm when

using Kalman filtering, is the inaccurate modelling of the system under consid-

eration. These two problems are fundamentally different and the resolution of

numerical problems associated with the use of finite precisin processors will be

addressed in subsequent chapters. Here however we are concerned with the second

problem, namely accurate modelling. The suggested method of using hyperpa-

rameters aims to offer improved modelling of a possibly nonstationary time series

and as such, if reasonable modelling is achieved, Kalman filtering may offer a

reasonable method of updating the parameters of the model.

Using Kalman filtering the algorithm can be obtained as

Time update:

(nfti—i) =F(n-1In-1), 	 (3.49)

v(nn — 1) = FV(n - 1n — 1)FT + GEGT.

Observation update:

K(n) 	 = V(nln — 1)HT(n)[H(n)V(nn — 1)HT(n) + 	
(3.50)

2(nn) 	 = 2(nn — 1) + K(n)(x(n) + H(n)(nIn — 1)),

V(nn) 	 = (I — K(n)H(n))V(nn - 1).

Thus the marginal maximum likelihood estimate of a 2 is given by

&2 = 1>N
e2(n)

v(n)

(3.51)

1(2 m, k) = —N/2 log 27r& - N/2 — 1/2 > 	log v(n).

Here p 2 is the "trade-off" parameter given by

2 — It — T2 	 (3.52)

3.5.2 Computational Procedure

In the following, f(n) represents an estimate of the true value of a variable, f(n).

To calculate the maximum likelihood estimate, ô 2 , of a2 the observations x(i -

m),. . . , x(0) are needed but are not available. To get round this a conditional

likelihood conditioned on the avaiable data, x(1),. . . , x(m), is calculated. Also

the initial state vector 2(10) is unknown and so must be estimated. To do this

backward Kalman filtering is performed from time N back to time M. To do this

initial guesses at the final smoothed state and its covariance matrix are made as

(NjN) and V(NIN). Here f represents an initial guess at the value of a variable

f (n). Bearing this in mind the computational procedure can be broken down as

follows.

Specify maximum model orders M and R for the model order and the d-

ifference equation constraint order respectively. The maximum orders will

be chosen heuristically based on the amount and type of data being used

and the amount of computing time available (large orders will naturally take

longer to run).

For each different combination of model order and difference equation con-

straint (that is, for each pair (m, r) such that 0 < m < M and 1 < r < R)

fit a time-varying coefficients AR model and compute the associated AIC.

We now have an AIC associated with every possible combination of model

order and difference equation constraint.

From the list of possible AIC's pick the smallest. The combination (m, r)

corresponding to the minimum AIC represents the best fit model parameters

(m, r ,,). Using these model parameters the instantaneous spectrum can be

evaluated as follows:

For n = N— i,. . . , 1 (that is working backwards in time) obtain a smoothed

estimate of the state vector (nIN) given all the data x(i), . . . , x(N) using

a backward prediction and smoothing.

49

5. Compute the estimated instantaneous spectrum for each time instant n =

1,...,N by

3(f,ri) = 	
2(m)

(3.53)
Ill + 	exp(-27rjkf)12,

where the smoothed estimates (j, n) are given by

	

1 	... 	0 	I 	0

(3.54)

	

0 	... 	1 	I 	0

In the above procedure step 2 contains a complete modelling process for each

combination (in, r) and can be broken down as follows:

Make initial guesses for the final smoothed state and its associated covari-

ance matrix as (NIN) = 0 and

C...0

(NIN)= 	 (3.55)

0...0

where C is large (typically 0(106) and then work backwards in time to

estimate (MIM) and MIM), initial guesses for the first available data

sample and its associated covariance.

Set the estimate for the first sample equal to the guess for the first sam-

ple, and similarly for the covariance matrix so (MIM) = (MIM) and

(MIM) = V(MIM) and compute e(n),v(n) using equations 3.48 for each

n forward in time n =M+1, ... ,N.

Using e(n) and v(n) and equation 3.51 calculate an estimate a2, for a 2 and

hence, again using equation 3.51, calculate l(,u 2 lm, r) (recall that Z 2 	i 2)

Determine A2, the best estimate for 2, by maximising l(12 m,r). This is

done by using a numerical optimization routine repeating step (i), (ii) and

(iii).

50

(v) Use maxl(2Im, r) to calculate the AIC using equation 3.46.

3.5.3 Nonstationary Covariance

In this section the constraint that the noise variance is constant is relaxed. In

order to take advantage of this, several transformations of the noise distribution

must first be made. Suppose that there is a white noise s(n), n = 1,. . . , N and

s(n) ' s-' N(O, o 2 (n)) with unknown time-varying variance a2 (n). Then if 2 (m) is

defined by

x2(m)
= s 2 (2m - 1) + S2 (2m)

2
(3.56)

This generates an independent sequence of chi-square random variables with

two degrees of freedom. Then following the work of Davis and Jones [76, 77] the

transformation

t(m) = ln 2 (m) + y
	

(3.57)

can be made. Here y = 0.57721 is an approximation to Euler's constant. t(m) is

a random variable which is approximately normal with E[t(m)] = in a2 (m) and

var[t(m)] = 7r 2 /6. Since t(m) is approximately normal the use of a least squares

procedure to estimate t(m), and hence the unknown variance U2 (2m) is justifiable.

In trying to model t(m), an approach similar to the one for finding the time-

varying autoregressive coefficients is used. A rth order difference equation con-

straint of the form

= w(m)
	

(3.58)

is applied. Here w(m) ' s-' N(0, T2). 7-
2 can be identified as the hyperparameter.

Once again, using a state space representation, the equations can be rewritten as

d(m) = Fd(m —1) + Gw(m)

t(m) = Hd(m) + e(m.)

51

(3.59)

For example if r = 2 then

It(m) 	1 	12 -ii 	Iii H , 	= 11I F=

	

G= I 	IT 	I 	. (3.60)
Lt(m1)] 	1 0] 	[o] 	Lo

The situation is now analogous to the situation of the previous section and

Kalman filtering and backward smoothing can be applied to find smoothed values

of t(nIN). The smoothed estimate of the changing variance is then

a2 (2rnIN) = U2 (2m - uN) = expt(mN). 	 (3.61)

The computational procedure follows along the same broad lines as the ones

given in the previous section although certain steps must be ammended and others

added to allow for the extra calculations necessary. As before J(n) represents an

initial guess at the value of a variable, f(n), and f(n) represents a smoothed

estimate of the true value of the variable.

Compute o 2 (n), an initial smoothed estimate of the instantaneous envelope

from the available data x(1),... x(N)

Specify maximum orders M, R and T for the model order, the difference

equation constraint order and the hyperparameter model order respectively.

For each difference combination of model order, difference equation con-

straint and hyperparameter model order (that is for each triple (m, r, t)

such that 0 < m < M, 1 < r < R and 1 < t < T) fit a time-varying

coefficients AR model under the assumption that U2 (n) = 1 and T2 (n) is a

function of T and & 2 (n), the precise function r2 (n) will be detailed shortly.

As before use e(n) and v(n) to calculate a smoothed instantaneous estimate

of the innovations variance and compute the associated AIC.

52

5. From the list of possible AIC's pick the smallest. The combination (m, r, t)

corresponding to the minimum AIC represents the best fit model parameters

(rn,r, t). Using these proceed as in the previous section to calculate the

instantaeous spectrum.

Steps 1 and 4 are based on the procedure for calculating nonstationary variance

outlined at the start of this subsection. Step 1 can be broken down as follows

Find the mean of the observed data and subtract it from each sample so

that there is a zero mean process.

Let

Y 2 (m) = in x
2 (2m - 1) + x 2 (2m) 	

(3.62)
2

Assume a second order difference equation constraint and take r2 small,

typically O(iO) and compute 2(mlN) then & 2 (2m - 1) = 6 2 (2m) =

exp(2(m) +,y).

Step (4) can be broken down in a similar manner. First it should be recalled

[78, 79] that is v(n) is defined as the one-step-ahead predictor error (or residual)

and r(n) is the observations prediction then the quantity 1 follows a normal

distribution. Using this

Let

I v 2 (2m _1) 	v2(2m) I e2 (m) = in I 	 + 	. 	 (3.63)

L 2r(2m-1) 	2r(2m)

Again assume a second order difference equation constraint and take 7-2

small, typically 0(10) then,

- uN) = &2 (2mIN) = exp(ë 2 (rnN) +y).

53

In step (3) of the procedure it is necessary to choose what values to use for

r2 (n). In the absence of any other guidelines it was decided that since the compu-

tational procedure being implemented was the same as in [48] the same function
4T+1

	

for r2 (n) should be used. This function was defined as 	. The exact reasons
& 2 (n)

for this choice of hyperparameter are never given, but it should be clear that this

is a reasonable choice of function for the following reasons. Firstly the function

decreases exponentially as higher hyperparameter model orders are used. Thus as

the current coefficient depends on more previous values the corresponding impor-

tance of the noise variance decreases. Also the noise variance on the coefficients

should be normalised by dividing by the initial guess for the innovations variance.

The influence of this choice of r2 will be examined in the following section.

3.6 Simulations

It was decided to test the techniques developed in this chapter on an artificially

generated time series; series suggested in [57] were used. Two series were gener-

ated, the first with a slowly changing spectrum and the second with a much more

quickly changing spectrum.

In both cases the time series was generated by the fourth order AR sequence

z(n) = 	ck(n)z(n - k) +(n) n = 1,...500, 	 (3.64)

e(n) N(O, 1) and the roots of the AR operator are give by

= 0.83 cos w i (n) *j0.83 sin 1(n), 	
(3.65)

r3 , 4 = 0.88 cos w 2 (n) +jO.88sinw2 (rt),

where

"(n-100) 7ir(n-100) 	 (3.66) wi (n) = 	+ sin 2700 	w2 (n) = + sin 5400

54

Taking the Laplace transform of equation 3.64 shows that the AR operator is

then given by

- ci (n)s3 - c2(n)s 2 - c3(n)s - c4 (n) = 0. 	 (3.67)

It should be noted that this is not as given in [57] where the minus signs have

been incorrectly omitted. Then the four AR coefficients are given by

c1 (n) =r1+r2+r3+r4

2(0.88 cos wi (n) + 0.88 cos W2 (n)),

C2(n) = —r 1 r2 - (ri + r2)(r3 + r4) - r3r4

= _0.882 - 4 x 0.83 x 0.88 cos w i (n) cos w2(n) - 0.8362, 	
(3.68)

C3(n) = rir2 (r3 + r4) + r3r4 (r i + r2)

= 2 x 0.83 x 0.88(O.88 COS w 1 (n) +0.83 COS w 2 (n)),

C4(n) = — r1 r2r3 r4

= —0.83 x 0.83 x 0.88 x 0.88.

Figure 3.4 shows the time series and figure 3.5 its spectrum.

In the case of the quickly changing spectrum the same AR sequence was used

but the roots were modified to

________ = L + 	
'(n-100)

135
(n-100) '
	2 (n) = L + 	sin '(n-100) (3.69 270 	 ' 18

Again figure 3.6 shows the time series and figure 3.7 its spectrum. It can be

seen from the latter that the change of spectrum is considerably faster than in the

first case.

In both cases the maximum orders were as follows R = 2, M = 6 7 T = 7.

The first simulations were based on the slowly time-varying data. According

to the compuational procedure outlined in the previous section the first step is to

estimate the instantaneous envelope of the data. This was done and the results

1

ca C

8

6

4

2

0

—2

—4

—6

—8

—10
0 50 	100 	150 	200 	250 	300 	350 	400 	450 	500

Time (Samples)

Figure 3.4: Slowly Changing Input Time Series

Figure 3.5: Slowly Changing Input Spectrum

56

8

6

4

2

0

-2

-4

-6

-8

-10
0 50 	100 	150 	200 	250 	300 	350 	400 	450 	500

Time (Samples)

Figure 3.6: Quickly Changing Input Time Series

Figure 3.7: Quickly Changing Input Spectrum

57

9

8

7

6

5

4

3

2

1
0
	

50 	100 	150 	200 	250 	300 	350 	400 	450 	500
Time (Samples)

Figure 3.8: Estimated Envelope of Input Time Series

are shown in figure 3.8. By comparing this with figure 3.4 it can be seen that this

is a reasonably good estimate of the envelope of the data.

The next step in the procedure is to fit the AR models with different (in, r, t).

An essential problem here is what function of t to use to generate r2 . In the

	

work of [66] the function f(t) = 	was suggested. This function was used
& 2 (n)

when the time series being used was from a physical source. When applied to the

artificially generated series it proved unsatisfactory. In order to test the actual

algorithm before moving to the problem of choice of hyperparameters and model

orders it was decided to use the values of the hyperparameter as suggested in [57].

Using these values of T 2 and determining the values of m and r via the use of

the AIC the best fit values were found to be m = 5 and r = 2. The spectrum

obtained is shown in figure 3.9 and as can be seen this is a reasonable estimate.

Having established that the algorithm was working the next step was to test

it more rigourously and to test its tracking capabilities when the input time series

was allowed to vary quickly with time. Again the choice of hyperparameter was

MI

CE

Figure 3.9: Estimated Spectrum of Slowly Changing Series

as in [57] and the orders (m, r) were determined by the AIC. In this case the best

fit model was obtained with m = 4 and r = 2. This is shown in figure 3.10. For

the interest of comparison the output spectrum in the case in = 4 and r = 1 is

also shown, see figure 3.11.

It is also useful to determine the importance of smoothing which adds consid-

erable to the computational complexity. To establish the role of smoothing the

spectrum obtained without smoothing was generated and is shown in figure 3.12.

As can be seen filtering alone provides a good estimate of the original spectrum,

but smoothing brings the ouput spectrum to bear a much closer resemblance to

the original spectrum. The only points where this is not true are at the end points

where, since pre- and postwindowing have been assumed, the influence of all zeros

outside the data range has lead the spectrum to be smoothed to almost zero. At

these points it may be advantageous to use only the filtered output.

6111

CB

0çcc'

Figure 3.10: Estimated Spectrum of Quickly Changing Series

ocf

Figure 3.11: Estimated Spectrum of Quickly Changing Series, m=4, k=1

(3
 0ç0

Figure 3.12: Filtered Estimated Spectrum of Quickly Changing Series

3.7 Discussion of Results and Conclusions

As has been shown by the simulations, the method of modelling a nonstationary

time series with an autoregressive model with time-varying coefficients is able to

yield good results even in the case of a time series with a comparatively quickly

changing spectrum.

In examining the results of the simulations performed we have been relying on

"eye-balling" the graphs in order to determine whether a given model accurately

represents a nonstationary time series. Whilst this may be sufficient for a pre-

liminary assesment of whether the technique is valid it is not satisfactory for full

validation of the method. If more detailed simulations were to be run a quantative

method would have to be defined in order to assess which model offers the better

representation of a given time series in the case of two models which produce

graphically similar results. The use of hyperparameters when using a difference

equation constraint has been examined and the use of these incorporated into an

61

algorithm. There are however a number of issues which remain unresolved. The

most important of these is the choice of function of t to use as the hyperparam-

eter. It has already been seen that the choice of function suggested in [48] is

data specific and up until now our choice of r has been based on trial and error.

This is a matter of considerable complexity requiring an in depth knowledge of

the field of statistics and in particular stochastic processes. Such a choice would

also have to be accompanied by an examination of its optimality and Bayesian

admissability. It was felt that the literature did not offer sufficient guideline as

to which way to continue with this work. Also the advantages to be gained by

pursuing this technique in terms of slight improvements in alrady adequate mod-

els would be far outweighed by the cost in terms of the time required to study

stochastic techniques etc before being able to examine fully the issues which need

to be addressed. Rather than pursue this further alternative algorithms will now

be sought.

62

Chapter 4

The Adaptive Forward Backward

Least Squares Algorithm

4.1 Introduction

In this chapter as before we are interested in the estimation of the changing

spectrum of a nonstationary time series. The approach taken is still to form an

autoregressive model of the data and to use its coefficients to form an instanta-

neous estimate of the spectral content of the data. However now to estimate the

coefficients of the AR model the sum of the forward and backward error powers

is minimized. This is in contrast to the technique used in the majority of cas-

es, including that given in the preceeding chapter, where only the forward error

is minimized. The reason for this new choice of minimization criterion will be

explained later.

An algorithm which permits the calculation of the coefficients based on the

minimization given above will be presented. It will then be shown that if ad-

vantage is taken of certain properties of the covariance matrix it is possible to

reduce significantly the computational complexity of the algorithm. Finally a for-

getting factor will be introduced which will permit the algorithm to work in a

nonstationary environment.

4.2 The Forward Backward Least Squares Al-

gorithm

The major problem is now to estimate the coefficients in a computationally effi-

cient manner. This is a well studied problem [48, 80, 81, 57, 82] and most attempts

to seek its solution follow one of two directions, either the recursive least squares

algorithm or a gradient search method. As was recalled in chapter 2 recursive

least squares algorithms have been studied in great detail as they lend themselves

to the development of so-called "fast" techniques. That is, it is possible to use

certain properties (usually symmetry properties or shift-invariance) of quantities

in the algorithm to facilitate a computationally efficient implementation of the

algorithm. Take, for example, the input data matrix Xm (M, N)

x(M + in - 1) x(M + in - 2) ... x(M)

Xm (M,N)
x(M+m) 	x(M+in-1) ... x(M+1) =

x(N) 	x(N - 1) 	... x(N - m + 1)

It can be seen that all the elements on the leading diagonal are equal. Not only

that, but all elements on diagonals parallel to the leading diagonal are also equal.

A matrix which exhibits these properties is said to be Toeplitz, see eg [19, 75, 1].

Because of this property any calculation using a particular row of the matrix can

be performed equally well by replacing the current row by a time-shifted version of

the previous row with the last element discarded and a single new element added

at the front. If full use is made of this and similar properties it is possible to

reduce substantially the computational complexity of the algorithm.

It should be recalled that the recursive least squares algorithm seeks to formu-

late and minimize the forward prediction error energy. So if the forward predictor

is of the form;

x(n) = 	CkX(flk)+cf . 	 (4.2)

64

Then the forward prediction error is given by

ef =x(n)+ckx(n — k). 	 (4.3)

In an attempt to improve the spectral resolution Burg developed an alternative

algorithm, see e.g. [83, 1]. In this a lattice filter model was proposed which

rather than using just the forward prediction error, used the sum of the mean-

squared values of the forward and backward prediction errors as the quantity to

be minimized. An important facet of the Burg algorithm is that it exploits the

decoupling property associated with a multistage lattice predictor. This property

only holds when wide-sense stationarity is assumed. If this is not the case then

there may be problems with frequency bias, in which the peak of an estimated

spectrum may be misplaced by as much as 16%, and line-splitting. The latter

typically occurs when the signal to be analysed is an odd number of quarter

cycles long and has an initial phase of 45° [84]. Line-splitting manifests itself as

two or more closely separated peaks where only one should be present.

In an attempt to overcome the above mentioned problems the FBLS algorithm

was introduced [82, 85, 86, 87]. Here the sum of the squared norms of the forward

and backward errors is to be minimized. Since the minimization is basically a least

squares problem no assumptions are made concerning the statistics of the input

signal. Because of this, the FBLS algorithm should not suffer from the problems

which arise from the assumption of wide-sense stationarity inherent in the Burg

algorithm.

4.2.1 Formulation of the Forward Backward Least Squares

Algorithm

We shall now formulate the algorithm. Consider a data sequence x(M), x(M +

1),... , x(N). We wish to estimate the spectrum of this sequence. Assuming an

autoregressive (AR) model of order m for the data the forward and backward

errors can be formulated as

65

ef = x(n) + ckx(n - k) 	M + m < n < N,

(4.4)

rn fb=x(nm)+ckx(nm+k) M+m<n<N.

Collecting these over the observation interval [M + m, N] yields the vector

form of the equations;

E(M, N) = m (M + m, + Xm (M, N - 1)J m5
(4.5)

4(M,N) 	m (M,Nm)+X m (M+1j'T) m ,

where

f(M, N) = [€f(M), €f (M + 1),.. . ,

(M, N) = [€b(M) , Eb(M + 1),... , €b(N)]T, 	 (4.6)

m (M,N) = [x(M),x(M+1), ... ,x(N)]T,

M+m-1)

X m
(M,N) = x(M+m)

x(N)

x(M + m - 1) x(M + m - 2) ... x(M)

= x(M + m) 	x(M + in —1) ... x(M +1)

x(N) 	x(N - 1) 	... x(N - m + 1)

T
Cm 	= [Cm , Cm_i,.. . , ci]

=[x(n),x(n-1),...,x(n—m+1)] T

and J is the exchange matrix defined as

JJm

1 ... o ... o

which has zeros everywhere except on the off-leading diagonal which contains all

I's. J has the effect of reversing the order of rows and columns. More specifically

if a row vector is post-multiplied by J the order of its components will be reversed.

Similarly the order of the elements of a column vector can be reversed by pre-

multiplying it by J [88].

Now as stated previously the aim is to minimize the sum of the squared norms

of the forward and backward prediction error energies. That is we wish to minimize

(4.7)

(4.8)

67

+ m,N)11 2 + I(M + m, N)
11 2

(4.9)

ff M + m,N)T(M + m, + (M + m,N)T(M + rn, N)

with respect to the vector of AR coefficients n (n). Expanding equation 4.9 gives

x(M + m,N). m (M + Tn, N) + QJ(M, N)

+JRm (M, N - 1)JCm + rJT(M, N)Jcm 	
(4.10)

+(M,N - m)m(M,N - 	 gTmrb

+Rm (M + 1, N)Cm + (M, N),,

where

Rm (M,N) = X,(M,N)X m (M,N)

N

= E
k=M+m-1

= X7 (M+ 1,N) m (M,N —m)

= E
k=M+m

- 	XT(M,N - 1). m (M+m,N) m 	m

N-i
= 1 	.m (1C)X(1C + 1).

k=M+m-i

(4.11)

R, (N) can be thought of as the deterministic equivalent of a covariance matrix

and is sometimes refered to as the correlation matrix, although according to the

strict statistical definition this is a misnomer. Similarly and J,(N) are

the cross-correlation vectors between the actual inputs at time N and the desired

responses; x(k - m) in the backward prediction case and x(k + 1) in the case of

forward prediction.

Now recalling that= y and xTy = y differentiating the above equa-

tions yields

2 [JrJm (M, N) + 	M, N)J + 2[JRm (M, N - 1)J + Rm (M + 1, N)ICm = 0 (4.12)

or

(4.13)
Sm (M,N) m (M,N) =

where

Sm (M,N) = Rm (M+ 1,N)+ JRm(M,N - l)J 	
(4.14)

and

m (M,1'1) 	rmb
	

(4.15)

Sm (M, N) can be thought of as a quantity corresponding to the sum of the forward

and backward correlation matrices, and there is a similar correspondence between

,(M, N) and the forward and backward crosscorrelation vectors.

If the data are assumed to be prewindowed, that is x(n) = 0 for n <0, then M

can be set to 0 without loss of generality and the following time update equations

hold

Sm (M,N) 	S. (N)
(4.16)

Sm (N1)+Hm (N)H(N),

where

ft. (N) = [m (N - 1), m (N)I,
(4.17)

and similarly the update equation for &, (M, N) is

(M, N) 	j,.(N)

= 	- 1) + 11m (1'T)L(N), 	 (4.18)

where

A(N)
[x(N)

=
x(N—m) j 	 (4.19)

It is here that the Toeplitz nature of the correlation matrix has been utilized.

Consequently Km (N) and h(N) contain the new data which is available at time

N.

It is also useful to define the following matrix in the prewindowed case,

Q,. (N) = R. (N)+ JR. (N)J. 	 (4.20)

Qm (N) is said to be centro-symmetric, that is the following relationships hold;

JQm (N)J = Qm (N)

(4.21)

JQm (N) = Qm (N)J.

70

It is useful to be able to partion the matrix Qm+i(N) and this is done as follows

Qm+i(N) = Rm+i(N) + JRm+i (N)J,

N
	 (4.22)

Rm+i(N) =
k=M+m

x(k)

= 	x(k—m+1) [x(k),...,x(k—m+1)jx(k—m)]
k=M+m

x(k — m)
N 	 N

: m((1t - in)
k=M+m 	 k=M+m

N 	 N

x(k - m)x(k) 	X2 (k - m)
k=M+m 	 k=M+m

Rm (N) r(N)

r(N) r(N)

where

Also

N
bo r(N) = 	X2 (k - in).

k=M+m (4.23)

71

x(k)

N

JR, 1 (N)J = J E 	 [x(k),. , x(k - m + 1), x(k - in)] J
k=M+m x(k—m+1)

x(k — m)

x(k — rn)

N 	
x(k - m + 1)

= 	i 	x(k-1)
k=M4-m

x(k)

[x(k—m),...,x(k-1)Ix(k)].

Now, as stated earlier, pre-multiplying a column vector by J reverses the order

of the components as does post-multiplying a row vector by J. Thus

JRm (N1)J Jr(N)

(4.24)

where,

N

r(,1°(N)= 	X2 (k).
k=M+m 	 (4.25)

Thus it is possible to partition Qm (N) as

Sm (N) 	 N)+J(N)

Qm +i(N) = 	 . 	 (4.26)

IT r(N) + rT(N)J r(N) + r(°(N)

72

Two more useful identities are

Qm (N) = Sm (N) + J(N)(N), 	 (4.27)

and

S. (N) = Q. (N - 1) + 1.UT)(T'). 	 (4.28)

Using these the total error energy, E(N), can be evaluated as the sum of the

forward and backward errors:

+

!IT (N)x m (N) + JRm (N - 1)JCm + QJr((N) + r(nT (N)Jcm (4.29)

+m(1\T - m)(N - m) + Rm(N) m + cr(N) + r(N)cm

Now

ç3 [JRm(N - 1)J +Rm (N)] m = CSm (N)Cm

(4.30)

= Q3m (N) =

Also

~ [Jr((N) + r(N)] = rn 3m(")

	 (4.31)

and

['(N)J + '(N)] m = 8(N)Cm . 	
(4.32)

73

Finally

X(N)X m (N) + x(N - m)xm(N - m)

N 	 N

= >2x2(k)+ >x2 (k — m)
M+m 	M+m

= r(N) + r(N).

(4.33)

Thus

Em (N) = r°(N) + r°(N) + m (N) m (N) 	 (4.34)

4.2.2 Conventional Adaptive Forward Backward Least

Squares Algorithm

As with all adaptive algorithms the aim here is to update the parameters recur-

sively as new data become available. In particular if the AR coefficients m('T)

are known, then is it possible to compute the coefficients m (N + 1) in an efficient

manner as new data become available? In order to answer this first recall that

m(' + 1) is specified by

Sm(N+1)C m (N+1) 	m('/+ 1).
	 (4.35)

Using equations 4.16 and 4.18 this becomes

[Sm (N) + 11m (1V + 1)ft(N + 1)] m(V +1)
= 	 (4.36)

- [m (N) + iIm (N + l)h(N +1)].

74

or after rearranging

m (N + 1) = m(N) - S 1 (N)Hm (N + 1)x

[i[(N + 1)Cm (N + 1) + h(N + 1)]

(4.37)

Qm(+ 1) = m(") + WITh (N + I)cc 	+ 1),

So m(' -I- 1) is equal to fm (1V) plus an error term. Wm (N + 1) is a gain vector

and f(N+ 1) an a posteriori error. At this stage it should be noted that S, (N),

the sum of the forward and backward correlation matrices, must be inverted. It

is ofcourse possible that Sm (N) will be non-invertible, for example if Sm (N) is

not of full rank, and in that case the algorithm will go unstable. Further, if the

matrix Sm (N) was only just positive definite so that its determinant is very small,

it is possible that implementing the algorithm on a finite precision processor may

cause round-off errors which render Sm (N) non-invertible. In this development,

however, we will consider only the case where the input data are well-conditioned

and Sm (N) is invertible. The above equations can be rewritten more precisely as:

Wm (N+ 1) = S 1(N)Hm (N + 1) = {pj(N),w(N + 1)],

w (N) 	- - 	 - (4.38)

(N +1) = S 1 (N)X m (N + 1),

and

N + 1) = ft(N + 1)Cm (N + 1) + h(N + 1).
(4.39)

Unfortunately the above equation contains m(\T + 1), which is the quantity

sought, this equation must thus he modified to eliminate _m (1 + 1) as follows:

75

N + 1) = 	+ i)[c,(N) + Wm (N + 1)(N + 1)] + h(N + 1) (4.40)

or

c(N + 1) = L_1(N + 1)(N + 1), 	 (4.41)

where

e(N + 1) = 1(N + 1)cm (N) + h(N + 1)

X(N)JC m (N) + x(N + 1) 	 (4.42)

1(N+1)Cm (N)+X(N+1 —m)

and

L m (N + 1) = 12 - f[(N + 1)Wm (N + 1). 	 (4.43)

Now if JQm (N) is viewed as the forward predictor at time N and m (N) is the

corresponding backward predictor then cc (N + 1) as given by equation 4.42 can

be thought of as the vector of forward and backward errors at time N + 1.

So having successfully updated the AR coefficients ,,,(N), the only quantity

remaining to be updated is the total squared error. This can be updated as follows

E(N+1) =r(N+ 1)+r(N+1)+c(N+1)sm (N+1). 	(4.44)

Using equations 4.11 to replace r(N) and r(N), and then substituting for

c(N + 1) and im (N + 1) the total squared error becomes:

76

r((N)+ x2 (N + 1) + r°(N) + x2 (N + 1—rn) +(N+ 1) m (N+ 1)

= r((N) +r(N)+ hT(N+ 1)h(N+ 1) +c(N+ 1)x

[m (N) + ulm (N + 1)h(N + 1)]

= rmfo 	+ r'0(N) + (N)Am 	+ c'(N + 1)W(N + 1)S m (N)

+€(N + 1)h(N + 1)

or

E,(N +1) = Ecn 	+ E' (N + 1)e(N + 1). 	 (4.45)

Once again, the current total squared error is equal to the previous squared error

plus a correction term.

The algorithm as it is given above is 0(m 3). The most costly step in terms of

computational complexity is equation 4.38 where a matrix inversion is required.

To overcome this the matrix inversion lemma [40] can be used. This is given as

[A + BC]' = A 1 - A 1 B(I + CA 1 B)'CA 1 , 	 (4.46)

where A, B and C are matrices of appropriate dimensions. Now from equation 4.16

S,. (N)= S. (N-1) + 11m (N)t1(N)
	

(4.47)

and applying the matrix inversion lemma to this with A = Sm (N1), B = flm (N)

and C = H(N) yields

77

S 1 (N) = S 1 (N - 1) - S 1 (N - 1)ftm(N)X 	
(448)

[I
+ f1(N)S ? 1 (N - 1)fIm (N)] 1 11m (N)8 1 (N - 1).

Substituting S 1 (N) = Pm (N) and using expressions 4.38 and 4.43 gives,

Pm (N) 	= P. (N - 1) - Wm (N)L 1 (N)W(N),

(4.49)

W,,,, (N+1) = Pm (N) ft. (N + 1).

By introducing the quantity Pm (N) and using the matrix inversion lemma the

computational complexity has been reduced from 0(m 3) to 0(m 2). The conven-

tional algorithm is summarized in the table below.

Conventional Adaptive Forward Backward Least Squares Algorithm

P. (N)= Pm (N - 1) - Wm(N)L;1(N)W(N)

Wm (N +1) = Pm (N)Hm (N +1)

L m (N+ 1) = 12 H7 (N + 1)Wrn (N+ 1)

e(N + 1) = fI(N + 1)Cm (N) + h(N + 1)

= L-1 (N + 1)e(N +1)

E(N + 1) = E(N) + €(N + 1)e(N + 1)

!2m (N + 1) =fm (N) + Wm (N + 1)c(N + 1)

4.2.3 The Fast Adaptive Forward Backward Least Squares

Algorithm

In the previous section we saw that by introducing Pm (N) it was possible to reduce

the computational complexity of the algorithm by an order of magnitude. By using

so called fast techniques it is possible to reduce the computational complexity yet

further. The basic idea is to replace Sm (N) by Qm (N) and then to take advantage

of the partioning of Qm (N) together with its symmetry properties [88].

The focus of attention is the equation

Wm(N +1) = S;'(N)Hni (N +1)
	

(4.50)

and the aim is to find an even more computationally efficient method of solving

this than the method given in the previous section. The above equation can be

rewritten as

Wm(N +1) = —S; 1 (N) [J.m(1'1 - 1),.m(N)I. 	 (4.51)

Now if Sm (N) is replaced by Qm(N) then a new variable Ym(T) can be intro-

duced and defined as

Qm(N - 1)Um (N) =
	 (4.52)

or

[Sm(N - 1) + Jjm('T - 1)(N - 1)J] ,,,,() 	m(1"T) 	(4.53)

= S1(N - 1)X m (N) S7 1(N— 1)JXm(N 1)(N— 1)JUm (N)

= 	N) + 	N - 1)c(N), 	
(4.54)

where

= x(N - 1)JUm (N). 	 (4.55)

79

Using methods similar to those used in the previous section for the calculation

of m (1T + 1) it is possible to arrive at the following set of equations

- 1) = 1 - 	- 1)Jw(N - 1) 1

e(N) 	= x(N - 1)J(N), 	 (4.56)

c(N +1) = L(N) 1 e(N +1)

and

jkm (N)= w(N) + 1Ll. 	- 1)€(N). 	 (4.57)

The next step is to compute 	N) recursively as

Sm (N)(N) = 1.m(\T). 	 (4.58)

Now

Sm (N)W(N) =
(4.59)

[Qm(N - 1) + X m (N)X(N)] w(N) =

rearranging the above equation yields

(N) 	= 11(N —Q;(N + 1)J X m (N) - - Q 1)X m (N)X(N)(N)

= JQ 1 (N + 1)Xm(N) - Q;1(N - 1)X m (N)X(N)W(N) (4.60)

J m (1') + m (N) m (N)(N) q (N)

EM

The second line follows from JQm (N) = Qm (N)J (equation 4.21 and using the

same methods as before the following set of equations can be derived.

L- (N) 	1-

e(N) =

(4.61)

N) =

= JjLm (N) +Lm (N)(1T\T)

The next step concerns the (m+1)-dimensional column vector Lm +i(4S + 1).

Qm-i-i(N)!rn+i(1 T + 1) = 	m+i ('T + 1).
	 (4.62)

Now it has already been seen that Qm+i(N) can be partioned, but to calculate

Lm +i(1V + 1) will require Q,(N), so before proceeding further it is useful to

consider a second version of the matrix inversion lemma:

-1

R X 	R' + WA -1 V WA' 	 (4.63)

z 	- 	A'V 	A'

where W = -R- 'X A = Y - ZR'X,

(4.64)

V = -ZR -1

and applying this to Q,(N) yields

1-31

=
S'(N) + m (N) 1 (N)Q(N) c m (N)a;1 (N) 	

(4.65)

a;' (N)c (N)
	

a;'(N)

where

a. (N) = r(N) + r(N) + (N)m(N).7n 	 M
	 (4.66)

So am (N) is the minimum total energy. Returning to equation 4.62 we have

1km(' 1 + 1) = —Q;,(N + 1)X m+i(N + 1)

m (N + 1) = —JQ;,(N + 1)X m+i (N + 1)

= —Q; 1 (N + l)JX m+i(N + 1) 	 (4.67)

= —Q;,(N +1) (J(N) \
x(N+1))

Performing the multiplication yields the following (it should be noted that the

quantity obtained is a 2 x 1 column vector but it has been written with separate

components in each row to show how it can be written as the sum of two separate

column vectors.

jLm(1V +1)

- [s;1(N) + Qrn(;(N '(N)] Jim (N)

—a;1 (N)c(N)Jx m (N)

1+1 	IK m (1ST+1),

[oiL]

—c m (N)a;1 (N)x(N + 1)

—a;1 (N)x(N + 1)

(4.68)

IM

- 	1 K m (N + 1) - EM-(N)[C(N)JXm(N) + x(N + 1)]

(4.69)
- 	1 e)(N+1).
- Emc

The last line comes from equation 4.42.

Now 	+ 1) can be obtained by using an upper partition of M+,(N + 1)

namely

IXm(N+1) 	1
(4.70)

, L x(N - M +]

then

Qm+i(1V)Lm+i(N + 1) = m+(+ 1),

(4.71)

m+i (1'T + 1) = Q i (N) m+i (N + 1).

Doing the multiplication yields

Lm+i(' 1 + 1)

- [s1(N) +m ((]\f)ç ;1F(J\f)} m(V +1)

—a'(N)c(N)xm (N + 1)

m(N)(N)(N - m + 1)

—a;1 (N)x(N - m + 1)

]

Fcm(N)l
- 	 1+1

i 	i
IKm(N+l),

0 	L
(4.72)

	

1 	c(2) K m (N + 1) = —E(N)em (N + 1),

ROK

again the last line comes from using equation 4.42.

The only step remaining is to show that several of the quantities derived and

used in the algorithm are in fact related. The various relations are given below

and their proofs can be found in Appendix A.

(4.73)
L,,, (N+ 1) 12 = L,,, (N+ 1) 21 ,

(4.74)
L,,, (N+ 1) = L-(N) -

Lm(N + 022 = Im (N + 1) + E(N)Cm (+ 1)eç(N + 1), 	
(4.75)

(4.76)
L(N - 1) =

e(N) = Lm (N) 121
	 (4.77)

L(N) = Lm(N)22 - eT(N)(N).
	 (4.78)

Using the above identities a fast algorithm which is computationally efficient

has been derived. The fast algorithm has a complexity of approximately 9m and

is summarized in the table below.

Fast AFBLS Algorithm

Um (N) = w(N) + 1L,1. (N - 1)E(N)

e- (N) = X(N)JU m (N)

= Lm(N)22 - e(N)€(N)

6- (N) = L(N) 'e(N)

(JV) = JUm (N) + Um (N)E(N)

e')(N + 1) c(N)Jx m (N) + x(N + 1)

Iq(N + 1) = 	E(N) 	+ 1)

W 1 (N) 	Cm (N) = 	m 	+ 	K m (N+1)
0 	 1

K m (N + 1) = &m+i(N + 1) m+i

w 2 (N+1) m cm (N)
Km(N+1)

0 1

e 2)(N + 1) = _E(N)K m (N + 1)

ec(l)(N + 1) =
e (N+ 1)

e 2) (N+ 1)

L,(N+ 1) = 	- e(N)(N)

Lm(I\T + 1)22 = 	+ 1) 	+ E(N)e m (N + I)Eec 	+ 1)

+ 1)21 = —x(N + 1)w(N)

L m (IV + 1)12 = Lm (N + 021

e(N+ 1) = 	L m (N+ 012

L m (N+ 1)11

(N+ 1) = L(N)'e(N +1)

cc N + 1) = L m (N + 1)_128 c c (N +1)

Wm (N + 1) = [w(N),W(N + 1)]

E(1V + 1) = Emc 	+ 	+ 1)e(N + 1)

m (1V + 1) =fm(N) + Wm (N + 1)Eç(N + 1)

Whilst this algorithm has been shown to work well in the case of stationary

signals, the aim is to produce an algorithm which will be able to track slowly time-

varying signals. To this end it is necessary to introduce an exponential weighting

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1
0 10 	20 	30 	40 	50 	60 	70 	80 	90 	100

Time

Figure 4.1: Normal Data

factor or "forgetting factor" A and the next section will examine the development

of the windowed adaptive forward backward least squares algorithm.

of

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

n 1

	

0 	10 	20 	30 	40 	50 	60 	70 	80 	90 	100
Time

Figure 4.2: Exponential Window

	

1 	 1 	 1 	 1 	 1 	 I

0.8

0.6

0.4

0.2

0

—0.2

—0.4

—0.6

—0.8

	

0 	10 	20 	30 	40 	50 	60 	70 	80 	90 	100
Time

Figure 4.3: Windowed Data

1.

4.3 The Windowed Adaptive Forward Backward

Least Squares Algorithm

In this section we consider the introduction of a forgetting factor [89]) such that

o <) < 1. The idea of a forgetting factor is that since A' >)' more emphasis

will be placed on recent data than on data from the distant past. In this algorithm

we shall consider weighting the data directly as in [45, 901. That is, the data

sequence is now considered to be x(n),)x(n - 1),) 2x(n —2),. . . , - k). The

result of this type of weighting is that data become multiplied by an exponential

"window" and the result of this can be seen in figures 4.1, 4.2 and 4.3.

Because of this type of windowing it becomes necessary to introduce a second

subscript into the vector quantities. This second subscript will be used to indicate

the time of the latest received sample as now the value of the data sample x(n) at

each time instant will vary due to the introduction of windowing. For example,

we must now define

= [)%N_nx(n) ,. . . , 	 - n + 1)],
	 (4.79)

as before the first subscript denotes the length of the data sequence, but now

the second subscript indicates that the data are being viewed at time N and are

windowed accordingly.

The basic problem remains the same, namely the minimization of the sum of

the squared norms of the forward and backward prediction errors. Once again

this will yield the same basic solution

Sm (M,N) m (M,N) =
	 (4.80)

But now the definition of certain internal variables will have changed to take into

account the windowing of the data. The new variables are given below.

I rn , N (M+m1)l

I 	N(M+m) I

I ,N(N) 	I
AN-M_m+lX(M + m 1) AN_M_m+2(M + m —2) ... AN_Mx(M) 	1
AN_M_mX(M + m) 	AN_M_m+iX(M + m - 1) ... AN_M_ix(M + 1)

x(n) 	 A(N) 	 ... 	 - m + 1)j

m,N() = [AN_n x (n), AN_nx(n - 1),.. . , AN_n+mlX(- +

Rm,N(M,N) = X, ,N (M,N)X m ,N(M,N)

N

=
kM+m-i

N

Lrn,N(M,N) = 	
N-k+m A 	.m,N(k)X(k - m),

k=M+m

N-i

! rn,N(M,N) = 	
j; ANix _m ,N(k)X(k + 1).

k=M+m-i

The development of the 0(m 2) algorithm for the windowed case follows along

exactly the same lines as the unwindowed case reviewed in the previous section.

The full derivation of the algorithm can be found in appendix B. Here, however

only a brief outline is given. Once again prewindowing of data is assumed.

Sm,N(N) =A2 Sm,N-i (N - 1) + Hm,N(N)HrN(N), 	 (4.82)

where

Now

N
'- N-

rm,N(M,N) = 2_ 2 (k_m)X2(k - in)
k=M+m (4.87)

,N(N) = [J ,N _l (N - 1), m N(N)1 	
(4.83)

and

= 	m,N_l(N - 1) + Hm,Nh(N), 	
(4.84)

where

[

1
h(1V) =

x(N) 	

I.

	

Xmx(N - m) j 	 (4.85)

As before Qm ,N(N) is introduced and once again can be partitioned as

	

F Sm,N(N) 	 T Th ,N(N) + J!: fl , 	 1
Qm+l,N(N) = I 	

N(N)
I . 	(4.86)

L NN + N NJ '0rm ,N(N) + r°N(N)]

and

rN(M,N) =
k=M=m
	 (4.88)

where

"2 - -" 	
(4.89)

As before the minimum total energy is defined as

(4.90)
E(N) = r(N) + r(N) + (N) m (N).

The conventional recursive forward backward least squares algorithm for the

case of exponential windowing is given in the table below.

Conventional Adaptive Forward Backward Least Squares Algorithm

P. (N) Pm (N 1) - Wm(N)L;1(N)W(N)

Wm(N +1) = Pm(N)Hm(N +1)

uim (N+ 1) = 12 ft(N + 1)Wm(N + 1)

e(N + 1) = ft(N + 1) m(N) + h(N + 1)

cc N) 	= L' (N + 1)e (N +1)
E(N + 1) = A 2E(N) + f'(N + 1)e(N + 1)

m(1'T + 1) = fm (N) + Wm (N+ 1)(N + 1)

There are two things worth noting about the above algorithm. Firstly only two

of the equations are explicitly modified when using prewindowed data, although

it should be recalled that several of the internal variables are modified. Secondly,

in the case A = 1, that is when no exponential weighting is applied, the algorithm

simplifies, as expected, to the original algorithm given in the previous section.

Once again fast techniques are exploited to reduce the computational complex-

ity of the algorithm. When considering windowed data the derivation of the fast

algorithm is not quite as straightforward as the conventional algorithm. It is nev-

ertheless easy to derive the relevant equations. Perhaps the most major changes

brought about by the introduction of windowing are in the relations between the

internal variables as given at the end of the previous section. The equations to be

modified are equations 4.75, 4.76, 4.77 and 4.78. These become

L m (N + 1)22 = L im (N + 1) + \2Ec (N) em (N + 1)e(N + 1) 1
	 (4.91)

91

- 1) = 1 - + Lm(N)11, 	 (4.92)

e(N) = 1m(N)121 	 (4.93)

1 uT = 1 - * + L m (N)22 -) m (N)€ (N). 	 (4.94)

The windowed algorithm is now as shown in the table below. It should be

noted that although some of the equations in the algorithm are modified there is

no change in the overall structure, and for the case A = 1, the algorithm reduces,

as expected, to the unwindowed version given in the previous section.

RAI

Windowed Fast AFBLS Algorithm

= 	N) + 4t4(N - 1)(N)

e(N) = 	N (N)6, N (V)

L- (N) = 	+ Lm(N)22 -

= L(N)e(N)

= 	Ji!m , N (1'r) + 	m ,N(N)(N)

e)(N + 1) = \ç(N)J.m ,N(N) + x(N + 1)

K m (N + 1) = _2E(N)efl(N+ 1)

w 	 (N)
= 	,,,(N)
	

+ 	
c —m 	

Km(N+1)
0 	 1

K m (N + 1) = um +i(N + 1)N +1

w 2 —m (N) (N)
= 	

c
m+i (N + 1)

- 	—m 	
K2-,,,,, (N+ 1)

0 1

e 2)(N + 1) = 	2 E(N)K m (N +1)

ec(l)(N + 1) =
e'(N+1)

e 2)(N + 1)

L m (N+ 1)11 = L(N) - e(N)c(N)

L m (N + 1)22 = L m (N + 1) 	+ 2Ec (N) e m (N + 1)e(N + 1)

L m (N + 1)21 = 	rn ,N+l(N + 1)!(N - 1)

L m (N +1)12 = L m (N + 1)21

e, (N+ 1) =Lm (N + 1)12

M
= L m (N + 1) 	+ A2

cu (N+ 1) = L(N)e(N+ 1)

cc (N +1) = LM(N + 1) 1 e(N +1)

Wm (N + 1) = [jLml 	+ 1)1
E(N+1) =

Qm (N + 1) = Cm (N) + Wm (N + 1)€(N + 1)

93

4.4 Results

The first simulation was to test that the basic FBLS algorithm was working as

expected. To do this the same test signal as in [82] was used. There the input

time series was a sinusoid with frequency 0.111z. White Gaussian noise with

SNR = 30dB was added and the sampling frequency was 111z. A fourth order

autoregressive model was used and E(0) was set to be 0.02. The latter was

to correspond to the fact that E(0) usually takes a value of the order of the

standard deviation of the noise.

It was mentioned earlier in this chapter that one of the main problems asso-

ciated with Burg's algorithm was frequency bias. Chen and Stegen [91] observed

that the worse bias in frequency estimation occurs when the length of the input

data sequence is an odd number of quarter cycles and the initial phase an odd

multiple of 45°. In order to test the algorithm under worst-case conditions 17 data

points were used corresponding to 1.7 cycles and spectra obtained for five different

initial phases, 0°, 45°, 90°, 135°, 315°. Figure 4.4 shows the results obtained with

each spectrum individually normalized. It can be seen that the FBLS algorithm

provides a good method of spectral estimation. The insensitivity of the spectral

peak position to variation in phase can also be seen.

The next step was to examine the influence of the windowing. This should

have two effects, firstly it should give a more clearly defined spectral peak and

secondly it should allow for the tracking of a time-varying signal. The first effect

was tested by using the same signal as in the previous simulation, but this time

using only an initial phase of 0° since the influence of initial phase is not the

issue here. A range of values was used for the forgetting factor A. The results

of this are shown in figure 4.5. As ..\ decreases to 0.98 an improvement can be

seen, but decreasing .A beyond that causes the estimated spectrum to deteriorate.

The reason for this is that as) decreases so the memory of the filter decreases

(recall from chapter 2 that the memory of the filter can be defined as -1-) until

94

0
phi=000 -4-

phi=045 -4---

phi=090 -9--.

-5
	

phi=135 ---x-
phi=315 ----

-10

-15

-20

-25

-30

-35
0
	

0.05 	0.1 	0.15 	0.2 	0.25 	0.3 	0.35 	0.4 	0.45 	0.5
Normalized Frequency

Figure 4.4: Estimated Spectrum for Different Initial Phases

eventually the lack of data samles from which to form an estimate of the spectrum

an erroneous estimated spectrum to be formed.

To test the second effect, namely the effect of a change in the input signal, 100

data samples were generated, the input signal undergoing a doubling of frequency

after 50 samples. The reason for such a long data sequence was so that the

spectrum could be examined after the effects of transients had faded. As can be

seen in figure 4.6, when) = 1.0 a change in the spectrum is detectable, but rather

than a switch in frequency an additional frequency appears, but the original peak

remains. In contrast to this figure 4.7 shows the result when ,\ = 0.98. Here,

as expected, the peaks are better defined, but more importantly a change in

frequency is clearly visible with the influence of the earlier samples discounted

due to the effect of windowing. To illustrate this more clearly consider figures 4.8

and 4.9. These show graphs of the spectra obtained using both the windowed and

unwindowed algorithms after 40 and 90 samples respectively.

MY

'0

0

-5

-10

-15

-20

-25

-30

-35

-40

c

XB
<a
•X. 9B

I 	 I

Lambda = 1.00 —0--

 Lambda = 0.99 ±---
 Lambda = 0.98 -B--•

Lambda = 0.97 --X-

 Lambda = 0.95 ----
Lambda = 0.90 -(---

IPPOUD

0 	0.05 	0.1 	0.15 	0.2 	0.25 	0.3 	0.35 	0.4 	0.45 	0.5
Normalized Frequency

Figure 4.5: Effect of Windowing on Estimated Spectrum

ca

S

(1- eP

Figure 4.6: Unwindowed Estimate of Step Change in Frequency

MI

Ca

[S

'k.)

Figure 4.7: Windowed Estimate of Step Change in Frequency

0
Lambda = 1.00
Lambda 	0.98 = 0.98 --i---

-10

-20

PQ -30

-40

-50

-60
0
	

5 	10 	15 	20 	25 	30 	35 	40 	45 	50
Normalized Frequency

Figure 4.8: Comparison of Spectra after 40 Time Samples

97

0

-10

-20

-30

-40

-50

Lambda = 1.00 -a---
Lambda = 0.98 -4---

-60 L

0
	

5 	10 	15 	20 	25 	30 	35 	40 	45 	50
Normalized Frequency

Figure 4.9: Comparison of Spectra after 90 Time Samples

4.5 Conclusions

The development of the AFBLS algorithm for spectral estimation has been re-

viewed. It has been shown that this algorithm does, as is its objective, overcome

problems associated with frequency bias. Following this a new algorithm has been

developed. This new algorithm introduces a forgetting factor to facilitate both

sharper peaks and the detection of changes in the input signal. The new windowed

algorithm has been shown to offer short term improvements in the tracking of a

slowly changing signal.

In the next chapter the long term performance of the algorithm and its per-

formance with a more rapidly changing input signal will be examined.

Chapter 5

Stabilization of the Adaptive Forward

Backward Least Squares Algorithm

5.1 Introduction

In this chapter it will be shown that there is a price to be paid for the improved

performance in spectral estimation obtained when using a windowed version of the

fast AFBLS algorithm. This price is a rapid decrease in the numerical stability of

the algorithm so that after a matter of only a few hundred interations instability

is exhibited, even with the simplest signals. This instability is caused by the use

of finite precision arithmetic when implementing the algorithm.

The root of this instability can be traced to the methods used in calculating the

internal variables of the algorithm when implementing so-called fast techniques to

reduce computational complexity. It will be shown that it is possible to calculate

these internal variables in two different ways and the finite difference between the

two methods can be used to compute an error signal which can be fed back to

control the build up of errors, thus preventing the exhibition of instability.

Each error feedback signal will have an associated gain and a major issue is the

choice of these gains. Guidelines will be given as to these choices together with

some heuristic explanations as to the underlying mathematical techniques. Finally

the results of extensive simulations will be given showing how the stabilization

techniques can substantially extend the stable life-time of the algorithm.

5.2 Instability effects in the Windowed Fast

Adaptive Forward Backward Least

Squares Algorithm

Results at the end of the previous chapter showed that for short data sequences

a windowed version of the algorithm offered substantial improvements over the

unwindowed version when estimating the spectrum of a signal in noise. The

emphasis here is on the word short, indeed results were given for a data sequence

consisting of only 17 data points. The first step here then is to generate more

points from the same input signal and to examine the long-term behaviour of the

windowed and unwindowed versions of the algorithm. A sequence consisting of

1000 data points generated from the same sine wave plus noise used for the short

sequence was applied to the algorithm and the behaviour of the AR coefficients

examined. Figures 5.1 and 5.2 show the plots of the first AR coefficient verses

time for \ = 1.0 and). = 0.98. As can be seen there is a severe degredation

in behaviour in the windowed case. These results and all subsequent ones are

obtained by running simulations where all the variables are defined as "floats"

(which assign 16 bits to the storage of each variable). It may be thought that this

is unnecessarily restrictive and that the degredation observed could be delayed

by defining all variables as "doubles" (which assign 32 bits to the storage of each

variable). The reason for not doing this is that we are interested in manifestations

of instability and by using floats we are testing the algorithm more rigorously then

by using doubles.

In order to determine why this instability occurs the behaviour of the internal

variables should be examined. It has been suggested in [92, 93, 94, 95, 96] that

this type of instability can be traced to the backward a priori error. A plot of this

variable is shown in figure 5.3 and by comparing this with figure 5.2, it can be seen

that there is an exponential growth in the backward a priori error shortly before

the rapid descent into instability apparent in the behaviour of the coefficients.

100

0

-0.2

-0.4

-0.6

4-1
0 	-.

ID

> 	-1

-1.2

-1.4

-1.6
0 100 	200 	300 	400 	500 	600 	700 	800 	900 	1000

Iterations

Figure 5.1: Behaviour of First AR Coefficient in the Uriwindowed Case

400

200

0

-200

4-1
0

ID
J 	-400

'-4
CD >

-600

-800

-1000
0 200 	 400 	 600 	 800 	 1000

Iterations

Figure 5.2: Behaviour of First AR Coefficient in the Windowed Case

101

500

0

0

-500

S

S

-1000

4-4
0

1)

-1500

-2000
0 200 	 400 	 600 	 800 	 1000

Iterations

Figure 5.3: Behaviour of the Backward a Priori Error in the Windowed Case

To show that it is windowing which compounds instability figure 5.4 shows the

behaviour of the backward a priori error in the) = 1.0 unwindowed case.

5.3 Redundancy

In the previous section it was suggested that the backward a priori error e 2) (N+1)

is somehow involved in the instability of the algorithm. In this section we will try

to explain why this should be so and examine what can be done to overcome it.

It should be recalled that the backward a priori error is defined by

e 2)(N + 1) 	N+l(N + 1)(N + 1) + Am_lx(N - m + 1).

Now if this were to be calculated according to its definition it would require

0(m) multiplications and additions. However in an attempt to reduce the com-

putational complexity, the fast algorithm as developed in the previous chapter,

offers an alternative method for calculating e 2)(N + 1), namely

102

100

0

0

•0

0
('i
rQ
44
0

S

'5 >

50

0

-50

-100 1.

0
	

100 	200 	300
	

400 	500 	600 	700 	800 	900 	1000
Iterations

Figure 5.4: Behaviour of the Backward a Priori Error in the Unwindowed Case

eç(2)(N + 1) =)t 2E(N)K m (N + 1).

This requires only two multiplications since Emc 	and Km (N + 1) are both

scalars. Thus there are two methods for calculating the backward a priori error;

the existence of more than one method for calculating a quantity leads to a concept

known as "redundancy"

In theory the two methods of calculating a given variable should give exactly

the same result. In practice, however, since the algorithm is implemented on

a finite precision processor the infinite precision of the algorithm will have to

be truncated and the resulting rounding errors may cause the variable to take

on two different values depending on the method used for its calculation. It is

the difference between defined and calculated values of variables inherent in fast

algorithms which leads to the exhibition of numerical instability.

Having determined the cause of instability, is it possible to use the available

redundancy in some way to prevent the breakdown of the algorithm? According

to [97] the answer is yes. There techniques first suggested by [92] were developed.

103

In Botto's paper he suggested that an error, equal to the difference between the

two values of a given variable, should be formed. This error signal can then be

fed back into the recursive calculation of that variable and since negative error

feedback can reduce the effect of parameter variation it should be possible to

eliminate, or at worst delay considerably, the exhibition of instability.

For the stabilization of a particular variable m (N) it has been suggested [97, 1]

that the feedback signal should be a convex combination of its two finite precision

values; 01 (N), the value of m (N) according to its definition, and &(N), the

so-called fast method of calculating Om (N),

bm (N) = Kb(N) + (1 -
	 (5.1)

where K is a feedback constant. This idea is illustrated in figure 5.5. If K can be

properly chosen then it should be possible to stabilize fully the variable &m (N).

If K is set to zero then the algorithm reduces to its fast unstabilized form. If, on

the other hand, feedback is used in all variables where redundancy occurs (and

as will be seen in subsequent sections there is more than one such variable) and

K is set equal to one then the algorithm reduces to its stable conventional 0(m 2)

form. The art, of course, lies in determining which redundancies to exploit so as to

stablilize the algorithm with the minimum increase in computational complexity.

5.4 Implementation of Redundancy

In order to illustrate the effect of finite precision on the calculation of a given vari-

able a simulation was run in which both the "fast" and the conventional method

of determining the backward a priori error were used. The difference between the

two values was determined and was plotted against time. The results are shown

in figure 5.6. The input signal is a sinusoid with identical characteristics to the

one used in previous simulations.

From the previous section the backward a priori feedback signal is formed as

a convex combination of its two finite precision values. Thus it is formed as

104

Feedback Model

Figure 5.5: Block Diagram Illustrating Error Feedback

105

0

3.5e+10
0
-1

0..

'a 	3e+10

2.5e+10

2e+10
1....

'a 1.5e+10

0

le+10
a)
r.
0
U 	5e+09

a)
a)

U
.0

a) 	 I 	 I 	 I U

-5e+09 	 I 	
I 	 I 	 I

0 	 200 	 400 	 600 	 800 	 1000
a)

4-4 	 Iterations
'I-.
H

Figure 5.6: Difference Between the Conventional and Fast Backward a Priori Error

ec$)(N + 1) = K[,N+l(N 	N)t + 1)Cm () + m_lx(N - m + 1)1 - (5.2)
(1 - Ki).\ 2Ecn(N)ISm(N + 1),

Here K, are the feedback gains and there should be a different value of K used

for each place where the variable e 2)(N -I- 1) is subsequently used. If we refer to

the table of the windowed fast AFBLS algorithm as shown in the previous chapter

we see the backward a priori error e 2)(N + 1) is used in the following steps

The calculation of [LM(N +1)122

The calculations of f(N + 1)

The calculation of E(N)

According to [97] using feedback in step 3 is only of secondary importance.

Thus e 2)(N + 1) is used directly in two places which require feedback, so we

require two feedback coefficients K1 and K2 . This gives two distinct values for

106

em2)(N + 1). The one corresponding to K1 is used to calculate [LM(N + 1)122 and

the one corresponding to K2 is used to calculate f(N + 1).

As was suggested earlier the backward a priori error is not the only parameter

which exhibits redundancy. The algorithm as detailed in the table of the previous

chapter was examined and the formula for each variable according to the algorithm

was compared with the variable's definition. It most cases the formula for a

variable reduced to its definition. The only case, apart from the backward a priori

error, where this was not true was for the variable L' (N). This is defined as

L' (N) 1 - N (N)&m ,N(N), but is calculated as L(N) = + +Lm(N)22 -

euT(N) E (N). By refering to the algorithm it can be seen that L- (N) is used

in the following steps

The calculation of L m (N+ 1)11

The calculation of c' (N)

If we trace the path of L(N) through c' (N) we see that it is used subsequently to

calculate (N) which is then used to calculate fm (' +1). Once again by analogy

with the method found in [97] (Table 2) using feedback to calculate m('.T + 1)

is only of secondary importance (indeed this was born out by early simulations).

Thus feedback was needed only in the calculation of L m (N + Thus the value

of L(N) used in the algorithm is given by

= K8[1 - rn ,N(N)L m ,N(N)] + (1 - K8)[+ 11m(N)22 -
	 (5.3)

So we have a total of three feedback gains to adjust in the hope of acheiv -

ing stabilization. In the next section we will review the results of simulations

in which all these gains were permitted to vary independently. Before varying

each of the gains, or feedback parameters as they will sometimes be called, it is

worth calculating what the cost of implementing each redundancy will be in terms

of computational complexity. In the case K, K 2 , that is the calculation of the

backward a priori error, the fast version of the algorithm requires just two mul-

tiplications, whereas, as was mentioned previously, the definition of this variable

107

requires 0(m) multiplies and adds to calculate. The increase in computational

complexity is of the same order of magnitude for the case K8 , since in moving

from the fast to the conventional version of the algorithm the arithmetic changes

from scalar to vector multiplication.

5.5 Stabilization Simulation Results

As before the sinusoid of chapter 4 was used as the input signal. The logic behind

this was that before attempting to track complicated time-varying signals, it is

important that the algorithm first be stabilized for comparatively simple signals.

Each of the three gains K2 was permitted to vary in the range Ki e [0, 5.0] in

steps of 0.1. Stability was tested up to 10,000 samples. That is if the algorithm

exhibited instability before 10,000 samples for a given combination of gain values

then that combination was discounted. Three sets of simulations were run. In

each set one of the Ki was held fixed at zero (the reason for this choice being to

keep the computational complexity to a minimum; recall that K2 = 0 corresponds

to the original fast, unstabilized version of the algorithm) and the other two K,

were permitted to vary. Plots could then be made of the combinations of the two

varying parameters which lead to stability. An important choice of parameter in

running these simulations was the quantity a m This correponds to the initial value

of the error E ' (0). According to previous work [82, 98] this should take a value

of the order of the standard deviation of the noise. Since the SNR of the input

sequence of interest is 30dB this requires that a m is 0(10-2). A value am = 0.02

was used and figures 5.7 , 5.8 and 5.9 show combinations of (K1 , K 2), (K1 , K8)

and (K2 , K8) respectively which lead to a stable algorithm.

At first it would appear that there are several combinations of feedback pa-

rameter which lead to a stable algorithm, but in fact it will be seen that not all

such pairs give a correct spectrum (that is, a spectrum with a peak at 0.1Hz). If,

for example, we consider the pair (K1 , K 2) = (5,2.9) which is shown in figure 5.7

and plot its spectrum (see figure 5.10) we see that this is no way resembles our

original test spectrum.

HE

5

4

3

C\]

14

2

1

0
0 	 1 	 2 	 3 	 4 	 5

kl

Figure 5.7: Combinations of K1 and K2 leading to stability

109

5

4

3

OD
14

2

1

0
0 	 1 	 2 	 3 	 4 	 5

ki

Figure 5.8: Combinations of K1 and K8 leading to stability

110

5

4

3

00
14

2

1

0

• 0O •Q.O • 0
000

1 	 2 	 3 	 4 	 5
k2

Figure 5.9: Combinations of K2 and K8 leading to stability

111

0

-5

-10

-15

-20

-25

-30
0
	

0.05 	0.1 	0.15 	0.2 	0.25 	0.3 	0.35 	0.4 	0.45
	

0.5
Normalized Frequency

Figure 5.10: Spectrum obtained from (K 1 , K 2) = (5,2.9)

The reason for this is that certain combinations of feedback gains lead to s-

lightly different values for the AR parameters from the theoretical values, and thus

a different spectrum was obtained. Because of this it was necessary to examine

the spectrum obtained for each combination of feedback gain and discard those

which did not resemble sufficiently the theoretical spectrum. In this case "resem-

ble sufficiently" meant ensuring that the peak of the spectrum occured between

0.07Hz and MHz and that the PSD was below —10dB at 0Hz and MHz. If

the incorrect spectra are discarded then the number of combinations of feedback

parameters leading to correct stabilization decreases, and more importantly, the

region in which the combinations lie becomes more compact so that we discard

outliers which were in the previous plots. This is illustrated in figures 5.11 and

5.12. (There is no plot for (K 1 , K 2) as there are no such combinations which lead

to correct stabilization)

It was mentioned earlier that the choice of the value for the parameter a m was

important, and this can be illustrated if we consider the case a m = 0.2. If we

use this value and once again permit the feedback gains to vary independently

112

5

4

3

OD
14

2

1

0
0 	 1 	 2 	 3 	 4 	 5

ki

Figure 5.11: Combinations of K 1 and K8 giving Correct Stabilized Spectrum

113

5

4

3

aD

2

:i

0

I.IoX.II.I.XoI.IoX.ioio

0 	 1 	 2 	 3 	 4 	 5
k2

Figure 5.12: Combinations of K 2 and K8 giving Correct Stabilized Spectrum

114

5

4

3

C14
114

2

1

0
0 	 1 	2 	3 	4 	5

ki

Figure 5.13: Combinations of K1 and K2 giving Correct Stabilized Spectrum with

am = 0.2

the number of combinations of feedback parameter leading to correct and stable

models is increased as is illustrated in figures 5.13, 5.14 and 5.15. It should

not be suprising that this is the case as in increasing the value of am , we have

effectively increased the initial energy, E(0), of the system, thus there is a larger

tolerance of errors available and hence there should be a wider range of feedback

parameters available with which to stabilize the algorithm.

The question must now arise, are there any combinations of feedback parame-

ter common to both values of am and if so, how do their spectra compare? If we ex-

amine figures 5.11 and 5.14 we can see that the combination (K1 , K8) = (2.7, 1.9)

101

115

5

4

3

cxD
14

2

1

0

I 	 I 	 I 	 I

GGGGZGG

I 	 I 	 I 	 I

0 	1 	2 	3 	4 	5
ki

Figure 5.14: Combinations of K and K8 giving Correct Stabilized Spectrum with

am = 0.2

116

5

4

3

0:,

2

1

0
1 	 2 	 3 	 4 	 5

k2

Figure 5.15: Combinations of K2 and K8 giving Correct Stabilized Spectrum with

am = 0.2

117

0

-5

-10

-15

CQ
0

-20

-25

-30

-35
0

am=0.02
am=0.20

0.05 	0.1 	0.15 	0.2 	0.25 	0.3 	0.35 	0.4 	0.45
Normalized Frequency

0.5

Figure 5.16: Spectra obtained with (K 1 , K8) = (2.7, 1.9)

provides a stable and correct spectrum in both cases. The spectra obtained in

both cases are illustrated in figure 5.16.

As can be seen from the diagram the price to be paid for the availability of more

stabilization points is a considerable degradation in overall spectral performance.

Once again this should not be suprising. Recall that what we have done is to

increase the initial error energy, and so the spectral estimate can not be expected

to be as good as in the case where there is a smaller initial energy. Whether this

is worth accepting is up to the individual user of the algorithm.

One final simulation was run where the number of samples was increased to

500,000. The feedback coefficients were set to (2.7, 1.9) and a m = 0.02. The results

are shown figure 5.17, in this diagram only one in every fifty points is plotted,

but it was checked carefully that none of the intermediate points diverged away

from the theoretical value. At no time throughout this long simulation did the

algorithm exhibit instability.

118

0

-0.1

-0.2

-0.3

44
0 	-0.4

0

'5
> 	-0.5

-0.6

-0.7

-0.8
0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

Iterations

Figure 5.17: Behaviour of First AR Coefficient using Stabilized Algorithm

5.6 Simulation Results for Time-varying

Signals

Now that it has been seen how the algorithm can be stabilized for a comparatively

straightforward signal, the next step is to see whether it is possible to stabilize

it for a more complex one. The signal chosen was the same artificially generated

time series as in chapter 3. It should be recalled from there that the artificial time

series was generated by an autoregressive sequence whose roots were determined

by

w1(n) = !: + 11 sin 7,(n-100)
2700(n-100) w2(n) = + 	

-°° 	 (5.4)
6 	12 	5400

It is the denominator of the sine term in each of these equations, i.e. 2700 for

wi(n) and 5400 for w2(n), which determines how fast the spectrum of the artifi-

cially generated data varies with time. By decreasing the value of the denominator

119

Ce

Figure 5.18: Spectrum of Artificially Generated Spectrum with a = 540

the speed of variation can be increased. To allow for this equations 5.4 will be

modified to

w1(n)= -- + sin
7,(n-100) w2 (n) = • + 	sin 7100) 	 (5.5)

2a

So now a is the parameter which controls the speed of variation.

a was set to a value a = 540 so that the data are changing quite slowly with

time. An input data sequence consisting of 10000 samples was generated and in

the input spectrum for the first 500 samples is shown in figure 5.18.

As before stability was tested by permitting each of the three feedback param-

eters to vary independently. As before there is the possibility that there will be

combinations of feedback parameters which give stable but incorrect spectra. To

overcome this the spectrum of the input signal at an arbitrary point was examined.

The point n = 457 was chosen and the spectrum is shown in figure 5.19.

By looking at this diagram it was decided that suitable criteria for accepting

a spectrum were that the spectrum should have a peak between 0.07Hz and

120

0

-2

-4

-6

-8

-10

-12

-14
0
	

0.05 	0.1 	0.15 	0.2 	0.25 	0.3 	0.35 	0.4 	0.45 	0.5
Normalized Frequency

Figure 5.19: Instantaneous Spectrum of Artificially Generated Spectrum with

a = 540 at n = 457

121

0

-2

-4

-6

çi

-8

-10

-12

-14
0 0.05 	0.1 	0.15 	0.2 	0.25 	0.3 	0.35 	0.4 	0.45 	0.5

Normalized Frequency

Figure 5.20: Output Instantaneous Spectrum obtained with (K 1 , K 8) = (1.0, 1.5)

0.13Hz and that the value of the PSD at 0.35Hz should be greater than that at

both 0.30Hz and 0.40Hz. Figure 5.20 shows the instantaneous spectrum of an

accepted signal - in this case (K1 , K8) = (1.0, 1.5). It should be noted that in this

case the two peaks of the spectrum are of a similar height. This is in contrast to

the original spectrum where the dominant occurs just below MHz. If the output

spectrum is deemed insufficiently close to the input spectrum it is a simple matter

to incorporate more rigorous tests into the spectrum testing routine. The result

of this will, of course, be a decrease in the number of combinations of stabilization

parameters. As was the case when deciding a value of the initial energy of the

system, it is up to the algorithm designer to choose whether he would prefer the

availablilty of many stabilization points or a very close match with the input

spectrum.

Figures 5.21, and 5.22 show the combinations of feedback parameters which

lead to a stable and correct spectrum. It should be noted that there is no plot

for combinations of (K 1 , K2) as there were no such combinations which stabilized

the algorithm.

122

5

4

3

00
114

2

1

CO

UO

0
1 	 2 	 3 	 4 	 5

ki

Figure 5.21: Combinations of K1 and K8 giving Correct Stabilized Spectrum

123

5

3

OD

2

1

0
2 	 3 	 4 	 5

k2

Figure 5.22: Combinations of K2 and K8 giving Correct Stabilized Spectrum

124

It is interesting to note that there are more combinations of these parameters

which give the desired output for this test signal than for the original, more simple

test signal. At first this may appear suprising, but it should not be. The reason

for this is that in the original case the input signal was stationary and so as

the signal was repeatedly fed into the algorithm the accumulated round-off errors

would become more and more dominant. In the case of the second nonstationary

signal the algorithm must track a constantly varying signal so the part of the error

due to round-off will be comparatively smaller.

Finally for this test signal it is interesting to compare the full time-varying

output spectrum obtained for the time-varying signal with that obtained via the

method given in chapter 3. The result shown in figure 5.24 was obtained by using

the feedback parameters (K1 , K8) = (1.0, 1.5). Before comparing this result with

the results of chapter 3 and reaching an unfavourable conclusion, it should be re-

called that most of the results in that chapter showed the estimated spectrum after

filtering and smoothing (thus increasing considerably the computational complex-

ity), whereas in this case the estimated spectrum has only been filtered. It is

therefore fairest to compare the results only with that of figure 5.23 (which is the

same as figure 3.12 and is included merely for reasons of clarity).

5.7 Simulation 	Results 	using 	Limited

Wordlengt hs

Up until now all simulations have been run using 32-bit floating point arithmetic.

This is fine for simulations on computers but Digital Signal Processing (DSP)

chips are rarely so generous with their wordlength; in practice 16-bit processors

are far more common, and even as few as 8-bits are occasionally used, although

this is not so common in general purpose DSP chips. Thus it was decided that

simulations should be run testing the stability of the algorithm when implemented

using these shorter wordlengths. Since floating point DSP's are now commonly

available it was decided to limit the simulations to the floating point case and

125

11.1

U

Figure 5.23: Filtered Estimated Spectrum of Quickly Changing Series

'3

Figure 5.24: Output Spectrum obtained with (K1 , K8) = (1.0, 1.5)

126

not to test the algorithm using fixed point arithmetic. This is especially pertinent

since it has been suggested that the stabilization techniques used may not be valid

in the case of fixed point arithmetic.

The routine for truncating both the arithmetic and the input data was com-

paratively crude and certainly normalization could have been employed to ensure

that full use was made of the available bits, but the routine used was sufficient

for our purposes which were merely to show the stability, or otherwise, of the

algorithm for short wordlengths. Details of the truncation routine can be found

in appendix C.

The input signal was once again set to a simple sinusoid, as the results of

the previous section show that this signal is the harder of the two for which to

obtain stabilization coefficients. In order to keep computational complexity to a

minimum a choice had to be made as to which of the feedback parameters to set

to what values. In a previous section it was established that each implementation

of a redundancy increased the computational complexity by 0(m), and we need

to use a minimum of two feedback parameters to achieve stability. If however,

we examine the feedback loops used in the i = 1 and i = 2 case, we see that

the equations only differ in the choice of the K parameter. Thus if we have to

chose two out of the three feedback parameters to adjust whilst keeping compu-

tational complexity to a minimum, the the natural choice is to set K8 = 0 and

pick a non-zero combination for the other two feedback parameters. However we

should recall that it was shown earlier that there are no combinations of (K1 , 1(2)

which guarantee stability. Thus it was decided to use (K2 , K8) as the feedback

parameters. The reson for this choice is that it can be seen from earlier simula-

tions results that there are more combinations of (K2 , K8) that offer stabilization

than (K1 , 1f8). At first the aim was to stabilize the algorithm with an initial

error energy of a m = 0.02 as this would lead to a good spectral resemblance of

the output to the input signal. It was, however, found that whilst this value of

am would maintain stability if the wordlength was reduced to 16 bits, when the

wordlength was further reduced to 8 bits stability could no longer be guaranteed.

Thus it was neccessary to increase the initial error energy to a m = 0.2. Even

127

0

—0.2

—0.4

—0.6

44
0 	-.
a)

(a
—1

—1.2

—1.4

0 1000 	2000 	3000 	4000 	5000 	6000 	7000 	8000 	9000 	10000
Iterations

Figure 5.25: Behaviour of the First AR Coefficient for 32-bit Wordlength

when this was done it was worth noting that the number of combinations of feed-

back parameter which offer stabilization of the algorithm decreased dramatically.

Due to time constraints we were unable to run simulations to establish precisely

which of the existing feedback combinations would offer stability even when the

word-length was reduced to 8 bits, but given the software already produced in

the course of this work it would be a very simple matter to generate the results

of such simulations. It was, however, established that the particular combination

(K2, K 8) = (1.4,1.4) with am = 0.2 would guarantee stability even down to 8-bit

wordlength. Figures 5.25, 5.26 and 5.27 show the value of the first AR coefficien-

t in the case of 32-bit, 16-bit and 8-bit wordlength respectively. As should be

expected the variation in the value of the coefficient increases as the wordlength

decreases due to quantization effects. The most important result, however, is that

in no case did an instability occur. Thus it could be concluded that, given the

correct choice of stabilization coefficients, the stabilized version of the algorithm,

was unaffected by the shortening of the wordlength.

128

0

-0.2

-0.4

-0.6

44
0 	-0.8
'5

(ci
-1

-1.2

-1.4

-1.6
0 1000 	2000 	3000 	4000 	5000 	6000 	7000 	8000 	9000 	10000

Iterations

Figure 5.26: Behaviour of the First AR Coefficient for 16-bit Wordlength

0

-0.2

-0.4

-0.6

0

(I)
-0.8

(ci >

-1

-1.2

-1.4
0 1000 	2000 	3000 	4000 	5000 	6000 	7000 	8000 	9000 	10000

Iterations

Figure 5.27: Behaviour of the First AR Coefficient for 8-bit Wordlength

129

5.8 Mathematical Tools for Stability Analysis

Up until now all results presented for the stabilization of the algorithm have been

obtained as a result of intuitive ideas backed up by extensive computer simulations.

Whilst these have proved satisfactory in terms of illustrating the validity of the

stabilization technique, it may also be desirable to investigate the mathematical

reasoning underpinning the technique to see whether any inferences can be drawn

from the mathematics regarding the choice of feedback gains.

The aim then is to carry out a mathematical analysis of the error propagation

system. This has been performed many times, for examples see [97, 36, 991, and

the theory outlined here follows the same approach. Once again we must return

to a state-space formulation of the algorithm. As was seen in chapter 3, if 0(T)

denotes the state of the algorithm at time T then

0(T) = f (0(T - 1), z(T), ON (T)), 	 (5.6)

where z(T) is the desired response at time T and q(T) is the regression vector.

Now, as has been amply illustrated earlier in this chapter, as soon as the algorithm

is implemented on a finite precision processor, numerical errors created by round-

off occur. To take account of this the actual implemented algorithm will run with

a modified state vector 0(T) and hence equation 5.6 must be modified to

Ô(T) = f (ö(T - 1), z(T), N(T)) + V(T). 	 (5.7)

V(T) is a noise term which represents the round-off error acquired when imple-

menting the algorithm. Let

AO(T) = Ô(T) - 0(T)
	

(5.8)

So 0(T) is the difference between the perturbed and the true state of the algo-

rithm. If the assumption is made that L0(T) is small - which basically means

HRIC

that the wordlength used when implementing the algorithm is sufficiently long,

then applying a Taylor series expansion around 0(T), and ignoring terms of order

(2), gives

AO(T) = L0(T - 1)F(T) + V(T) 	 (5.9)

where F(T) = V9f (0, z(T), qw(T))e =e(T_l).

In order to determine the stability of the algorithm it is necessary to deter-

mine the exponential stability of equation 5.9. If this can be guaranteed then

equation 5.7 will be locally exponentially stable. Rigorous definitions of exponen-

tial stability can be found in the literature (see, for example, [100, 101]. Loosely

it places a constraint on the growth of 0(t) I

If we consider applying the technique outlined above to our new algorithm,

then the first step is to define the state vector for the algorithm. By analogy with

[97, 102, 103] this should be

0(T) = 	(N),!p(N), Lm(N + 1)e(N), c(N), E(N),. m (N)], (5.10)

Now wl (N),(N) and m (N) are all vectors of dimension m, Lm(N + 1)

is a 2 x 2 matrix and e(N), cu(N) and Em (N) are scalars. Thus F(T) is a

(3m + 4) x (3m + 4) matrix. It is possible to compute this matrix by exact analogy

with [97] but it is prohibitively complex and in order to make any deductions

from it whatsoever, it is necessary to make gross simplifications which may not

be justified. Indeed this is precisely what [97] states. This paper then goes on to

offer choices for feedback parameters under a variety of simpliflying assumptions.

The authors offer an analytical solution in the case A -+ 1, in which case our

algorithm reduces to its original unwindowed version which, as we have already

illustrated, does not exhibit instability. The second instance where they offer an

analytical solution is where the input signal is one of two simple deterministic

signals, the first being a dc signal and the second an impulse sequence of ones and

zeros. Once these assumptions are dropped and they attempt to provide further

results for larger ranges of) they state that they "do not have analytical tools

131

to investigate the eigenvalues for values of \ in this extended range". Thus the

authors are no longer able to make quantitive decisions as to the choice of feedback

gains and instead rely on simulation results to optimize the feedback gains.

It is also pertinent here to consider the concept of minimality [1]. A system is

described as being minimal if the number of elements constituting the state F(T) is

the strict minimum that needs to be propagated from one iteration to the next. A

system which is not minimal is said to be redundant. If we consider the algorithm

developed in chapters 4 and 5 we have deliberately introduced redundancy to

achieve a fast stabilized algorithm. This can be seen when we consider all the

variables which are propagated from one iteration to the next (see equation 5.10).

According to Regalia [104] minimality is of critical importance in achieving

stability of the algorithm. This does however seem to run counter to the whole

idea of introducing redundancy in the hope of achieving stabilisation. Until a

rigorous analysis of the error propagation mechanism can be performed it is not

possible to show conslusively that using redundancy does infact prevent, and not

merely delay, the onset of instability.

Despite the need for rigorous analysis it was felt that, bearing in mind the

limited time-scale available, rather than embark on a rigorous analysis of the

error propagation mechanism, which rapidly becomes intractable, it is better to

use the results of the many simulations carried out to guide the choice of the

stabilization coefficient.

5.9 Conclusions

In this chapter it was shown that the cost of implementing a fast version of the

new algorithm on a finite processor is a dramatic breakdown in the numerical

stability of the algorithm. This breakdown manifests itself as a divergence of the

variables of the algorithm towards infinity. A source of the errors which lead

to breakdown was identified and techniques applied in an attempt to overcome

it. Inherent in the stabilization technique was the choice of so-called feedback

132

parameters and many simulation results were shown which illustrate which values

of feedback parameters can be used to stabilize the algorithm. It was shown

that the algorithm could remain stabilized even when it was implemented on a

processor with only 8-bit wordlength. Finally guidelines were given as to how to

proceed should a rigorous mathematical analysis of the stabilization techniques

be required.

133

Chapter 6

Conclusions

6.1 Achievements

The most significant and novel work presented in this thesis has been an exami-

nation of existing adaptive algorithms for nonstationary time series together with

the development of a new algorithm. This algorithm offers the advantages of be-

ing able to track a time-varying signal whilst maintaining a comparatively low

computational complexity. The low computational complexity has, however, had

to be compromised slightly to overcome stability problems occuring whenever the

algorithm was implemented on finite precision processors.

In the review of exisiting adaptive algorithms we were particularly concerned

with two issues. The first was the development of a generic adaptive algorithm

which encompassed several classes of adaptive algorithm. The second was a more

specific issue, namely the use of an autoregressive model with time-varying coef-

ficients to model a nonstationary time series. With regard to the first issue it was

shown that the crucial concept was that of hyperparameters and their associated

hypermodels. We saw that first and second order hypermodels were essentially

just first and second order difference equations and that these had already been in-

corporated into the algorithm used to develop the time-varying AR model. Whilst

the algorithm performed well in the presence of nonstationary time series it did

however have two fundamental flaws. The first was that it was very computation-

ally intensive, although a positive effect of this was that the algorithm remained

numerically stable in all the simulations carried out. The second flaw was that the

optimal behaviour of the algorithm depended on the choice of a numerical value

134

for the hyperparameter and currently no proven mathematical technique exists to

aid this choice.

In subsequent chapters the original development of the new algorithm was a

comparatively simple task, building on existing algorithms and using well under-

stood techniques to modify the algorithm so that it would work well in an adaptive

environment. The difficult step occured when trying to prevent the exhibition of

instability. The use of redundancy is intuitively appealing as it is based on the

concept of there being two available signals which in theory should give the same

output, but which in practice are discernably different. Simulations have borne

this out and the use of error feedback has been shown to be effective in stabilizing

the new algorithm. The difficulty arises, however, when trying to choose quali-

tive values for the feedback gains. Carrying out an exact mathematical analysis

of the error propagation system rapidly becomes intractable and in all analyses

performed on this type of stabilization technique it has become necessary to ne-

glect higher order terms. Even when this is done the mathematics is still highly

complex and it is easy to become embedded in algebra whilst losing sight of the

general problem. Because of this, extensive simulations were carried out rather

than examining the development of complex mathematical proofs. Ideally, how-

ever, mathematical theory should be available to back up the results obtained and

to aid the algorithm designer in his choice of feedback parameters. Therefore, one

of the most natural developments from this work would be to examine the mathe-

matics behind it and to develop a rigorous stability theory. It is worth noting that

all the mathematical expositions of such stability anaylsis involve simplifications

of some sort. What we have shown is that it is possible to develop low compu-

tational complexity algorithms which remain stable as long as it is practicable to

run simulations on existing facilities.

135

6.2 Limitations and Suggestions for Future Work

With regard to the examination of existing techniques, we were able to highlight

the major problem preventing the use of a model with time-varying AR coefficients

to model a nonstationary time series. This problem was the choice of a value for

the hyperparameter. As to the second problem with the time-varying AR coeffi-

cient algorithm, namely its high computational complexity, it might be interesting

to apply proven techniques to lower its complexity. It should be recalled that both

this algorithm and our newly developed one are both based on the same (RLS)

algorithm . Thus if we attempt to lower the computational complexity of the

AR model algorithm it seems likely that we would introduce instability similar to

that exhibited by the new algorithm. This being the case it may be necessary to

investigate if it would be possible to apply techniques similar to those developed

in chapter 5 to stabilize the algorithm.

As has already been outlined, the greatest limitation of the new algorithm is

the unavailability of a rigourous mathematical proof of stability. Without this,

results can only be verified by simulation and it is not certain that divergence will

never occur. Until this problem can be overcome results such as these will remain

of academic interest only. It is therefore vital that the mathematical techniques

underpinning the stability results be investigated further.

There are numerous further simulations which could be carried out. It has

already been mentioned in chapter 5 that it has yet to be established precisely

which feedback parameters can guarantee stability when the wordlength is reduced

to 8 bits. The algorithm could also be tested on a wider range of input signals to

establish if there are any ranges of feedback parameter which guarantee stability

for all input signals.

Another natural step, once sufficient simulations have been run, would be

to carry out a hardware implementation of the algorithm. It has already been

mentioned that this would preferably take place using a floating point processor.

136

It is not envisaged that moving from simulations to hardware would present any

major problems, it is nevertheless a step that would be instructive to carry out.

Once the stability theory has been developed, further simulations run and a

hardware implementation of the algorithm carried out, then it should be possi-

ble to use the new algorithm to provide enhanced performance in applications

involving nonstationary time series.

137

Bibliography

S. Haykin. Adaptive Filter Theory. Prentice Hall, 1991.

M. Bhattacharyya. Lydia Pinkham Data Remodelled. Journal of Time

Series Analysis, 3, 1982.

P. Praetz. The Market Model, CAPM and Efficiency in the Frequency

Domain. Journal of Time Series Analysis, 3, 1982.

H. Newton, G. North and T. Crowley. Forecasting Global Ice Volume.

Journal of Time Series Analysis, 12, 1991.

D. Cadet and P. Daniel. Long-range Forecast of the Break and Active

Summer Monsoons. Tellus - Series A, 40A, 1988.

R. Tsay. Non-linear Time Seris Analysis of Blowfly Population. Journal of

Time Series Analysis, 9, 1988.

K. Lim and H. Tong. A Statistical Approach to Difference-Delay Modelling

in Ecology - Two Case Studies. Journal of Time Series Analysis, 4, 1983.

K. Lim. A Comparative Study of Various Univariate Time Series Models

for Canadian Lynx Data. Journal of Time Series Analysis, 8, 1987.

R. Prentice and D. Thompson. Atomic Bomb Survivor Data: Utilization

and Analysis. SIAM, 1984.

R. Mould. Cancer Statistics. A. Huger, 1983.

138

N. Becker. Analysis of Infectious Diesase Data. Chapman and Hall, 1989.

R.W. Beard and T.S. Finnegan. Text of Foetal Monitoring. Sonicad Ltd,

1974.

M. Kendall and J. Ord. Time Series. Edward Arnold, 1990.

J.D. Cryer. Time Series Analysis. Duxbury Press, 1986.

L.H. Koopmans. The Spectral Analysis of Time Series. Academic Press,

1974.

C. Chatfield. The Analysis of Time Series: Theory and Practice. Chapman

and Hall, 1975.

T.W. Anderson. The Statistical Analysis of Time Series. J. Wiley, 1971.

W. Feller, editor. An Introduction to Probability Theory and its Applications;

Volume 1. J. Wiley, 1950.

C.F.N. Cowan and P.M. Grant. Adaptive Filters. Prentice Hall, 1985.

P.M. Grant, C.F.N. Cowan, B. Mulgrew and J.H. Dripps. Analogue and

Digital Signal Processing and Coding. Chartwell-Bratt Studentlitteratur,

1989.

B. Widrow, J.M. McCool, M.G. Larimore and C.R. Johnson. Stationary

and Nonstationary Learning Characteristics of the LMS Adaptive Filters.

Proceedings of the IEEE, 64 No. 8:1151-1162, August 1976.

E. Eleftheriou and D.D. Falconer. Tracking Properties and Steady-state

Performance of RLS Adaptive Filter Algorithms. IEEE Transactions on

Acoustics, Speech and Signal Processing, ASSP-34 No. 5:1097-1109, October

1986.

139

B. Widrow and J.M. McCool. A Comparison of Adaptive Algorithms based

in the Methods of Steepest Descent and Random Search. IEEE Transactions

on Antennas and Propagation, AP-24:614-637, 1976.

D.V. Lindley and A.F.M. Smith. Bayes Estimates for the Linear Model.

Journal of the Royal Statistical Society - Part B, 34:1-42, 1972.

J.B. Foley and F.M. Boland. Comparison between Steepest Descent and

LMS Algorithms in Adaptive Filters. lEE Proceedings - Part F, 134 No.

3:283-289, June 1987.

I.Y.U. Gu. RLS Lattice and Circular Lattice with Real Time Variable Sliding

Window Length. In ICASSP, pages 916-919, 1989.

O.M. Macchi and N.J. Bershad. Adaptive Recovery of a Chirped Sinusoid

in Noise, Part 1: Performance of the RLS Algorithm. IEEE transactions on

Signal Processing, Vol 39 No. 3:583-594, March 1991.

N.J. Bershad and O.M. Macchi. Adaptive Recovery of a Chirped Sinusoid

in Noise, Part 2: Performance of the LMS Algorithm. IEEE Transactions

on Signal Processing, 39 No.3:595-602, March 1991.

E. Eweda and O.M. Macchi. Convergence of the RLS and LMS Adaptive

Filters. IEEE Transactions on Circuits and Systems, CAS-34 No. 7:799-803,

July 1987.

N. Bershad and 0. Macchi. Comparison of RLS and LMS Algorithms for

Tracking a Chirped Signal. Proceedings ICASSP-89, 2, 1989.

S. Marcos and 0. Macchi. Tracking Capability of the Least Mean Square

Algorithm: Application to an Asynchronous Echo Canceller. IEEE Trans-

actions on Acoustics, Speech and Signal Processing, 35, No. 11, 1987.

V. Solo. The Limiting Behaviour of LMS. IEEE Transactions on Acoustics,

Speech and Signal Processing, 37 No. 12, 1989.

140

E. Eweda and 0. Macchi. Tracking Error Bounds of Adaptive Nonstationary

Filtering. Automatica, 21 No. 3, 1985.

W. Gardener. Nonstationary Learning Characteristics of the LMS Algorith-

m. IEEE Transactions on Circuits and Systems, 34 No. 10, 1987.

B. Widrow and E. Walach. Statistical Efficiency of the LMS Algorithm with

Nonstationary Inputs. IEEE Transactions on Information Theory, 30:211-

221, 1984.

C. Caraiscos and B. Liu. A Roundoff Error Analysis of the LMS Adaptive

Algorithm. IEEE Transactions on Acoustics, Speech and Signal Processing,

ASSP-32 No. 1:34-41, February 1984.

R.D. Gitlin, J.E. Mazo and M.G. Taylor. On the Design of Gradient Algo-

rithms for Digitally Implemented Adaptive Filters. IEEE Transactions on

Circuit Theory, 20 No. 2:125-137, 1973.

R.D. Gitlin and S.B. Weinstein. On the Required Tap-weight Precision for

Digitally Implemented, Adaptive, Mean-squared Equalizers. Bell System

Technical Journal, 58 No. 2:301-321, 1979.

N. Wiener. Extrapolation, Interpolation and Smoothing of Stationary Time

Series with Engineering Applications. Wiley, 1949.

S. Theodoridis, K. Berberidis and N. Kalouptsidis. A New Adaptive Covari-

ance Symmetric Algorithm and a Fast Initialization for Least Squares FIR

Filters with Symmetric Impulse Response. Signal Processing, 18:153-167,

Iml

S. Barnett and C. Storey. Matrix Methods in Stability Theory. Thomas

Nelson, 1970.

J.M. Cioffi. Limited Precision Effects in Adaptive Filtering. IEEE Trans-

actions on Circuits and Systems, CAS-34 No. 7:821-833, July 1987.

141

J.M. Cioffi and T. Kailath. Fast Recursive Least Squares Transversal Filters

for Adaptive Filtering. IEEE Transactions on Acoustics, Speech and Signal

Processing, ASSP-32 No. 2:304-337, April 1984.

J.M. Cioffi and T. Kailath. Windowed Fast Transversal Filters Adaptive

Algorithms with Normalizaton. IEEE Transactions on Acoustics, Speech

and Signal Processing, ASSP-33 No. 3:607-625, June 1985.

D.T.M. Slock and T. Kailath. Fast Transversal Filters with Data Sequence

Weighting. IEEE Transactions on Acoustics, Speech and Signal Processing,

ASSP-37 No.3, March 1989.

L. Ljung. Analysis of Recursive Stochastic Algorithms. IEEE Transactions

on Automatic Control, AC-22 No. 4:551-575, August 1977.

I.K. Proudler, J.G. McWhirter and T.J. Shepherd. Fast QRD-based Algo-

rithms for Least Squares Linear Prediction. Proceedings of the IMA Con-

ference - Maths for Signal Processing, 1988.

C. Kitagawa and W. Gersch. A Smoothness Priors Time-varying AR Coef-

ficient Model of Nonstationary Covariance Time Series. IEEE Transactions

on Automatic Control, AC-30 No., January 1985.

A. Benveniste. Design of Adaptive Algorithms for the Tracking of Time-

varying Systems. International Journal of Adaptive Control and Signal Pro-

cessing, 1:3-29, 1987.

A. Benveniste, M. Metvier and P. Priouret. Algorithmes Adaptatifs et Ap-

proximations Stochastiques - Theorie et Applications. Masson, 1987.

G. Kitagawa. Non-Gaussian State-space Modelling of Nonstationary Time

Series. Journal of the American Statistical Association, 82 No.400 Theory

and Methods Section: 1032-1063, December 1987.

J.G. Proakis and D. Manolakis. Introduction to Digital Signal Processing.

Maxwell MacMillan, 1989.

142

H. Akaike. A New Look at Statistical Model Identification. IEEE Transac-

tions on Automatic Control, AC-19 No. 6:716-723, December 1974.

H. Akaike. Information Theory and an Extension of the Maximum Like-

lihood Principle. Proceedings of the Second International Symposium in

Information Theory, pages 267-281, 1972.

G. Schwarz. Estimating the Dimension of a Model. The Annals of Statistics,

6:461-463, 1978.

J. Bhansali. A Derivation of the Information Criterion for Selecting Autore-

gressive Models. Advances in Applied Probability, 18:360-387, 1986.

G. Kitagawa. Changing Spectrum Estimation. Journal of Sound and Vi-

bration, 89 No.3:433-445, 1983.

Y.S. Cho, S.B. Kim and E.J. Powers. Time-varying Spectral Estimation

using AR Models with Variable Forgetting Factors. IEEE Transactions on

Acoustics, Speech and Signal Processing, ASSP-39 No. 6:1422-1426, June

1991.

E.T. Whittaker. On a New Method of Graduation. Proceedings of the

Edinburgh Mathematical Society, 41:63-75, 1923.

H. Ney. Dynamic Programming Algorithm for Optimal Estimation of Speech

Parameter Contours. IEEE Transactions on Systems, Man and Cybernetics,

13:208-214 1 1983.

J.W. Cooley and J.W. Tukey. An Algorithm for the Machine Calculation

of Complex Fourier Series. Mathematical Computing, 19:297-301, 1965.

A.P. Oppenheim and R.W. Schafer. Digital Signal Processing. Prentice Hall,

1975.

P.A. Lynn. An Introduction to the Analysis and Processing of Signals.

MacMillan Education, 1982.

143

B.P. Lathi. An Introduction to Random Signals and Communication Theory.

Intertext, 1970.

P.A. Bello. Characterisation of Random Time-Variant Linear Channels. IRE

Transactions on Communication Systems, 11, 1963.

W. Gersch and G. Kitagawa. Smoothness Priors Transfer Function Estima-

tion. Automatica, 25 No. 4:603-608, 1989.

A. Gelb, editor. Applied Optimal Estimation. MIT Press, 1989.

R.E. Kalman and R.S. Bucy. New Results in Linear Filtering and Prediction

Theory. Journal of Basic Engineering Series D, 83:95-108, 1961.

A. Benveniste and G. Ruget. A Measure of the Tracking Capability of

Recursive Stochastic Algorithms with Constant Gains. IEEE Transactions

on Automatic Control, AC-27 No. 3:639-649, June 1982.

L. Ljung and T. Soderstom. Theory and Practice of Recursive Identification.

MIT Press, 1983.

J. Maritz and T. Lwin. Empirical Bayes Methods. Chapman and Hall, 1989.

G.L. Bretthorst. Bayesian Spectrum Analysis and Parameter Estimation.

Springer-Verlag, 1988.

S.V. Shilman and A.I. Yastrebov. Convergence of a class of Multistep S-

tochastic Adaptation Algorithms. Avtomatika i Telemekhanilca, No. 8:111-

118, August 1976.

A.P. Korostelev. Multistep Procedures of Stochastic Optimization. Av-

tomatika i Telemekhanika, No. 5:82-90, May 1981.

[75] B.D.O. Anderson and J.B. Moore. Optimal Filtering. Prentice Hall, 1979.

144

H.T. Davis and R.H. Jones. Estimation of the Innovation Variance of a

Stationary Time Series. Journal of the American Statistical Association,

pages 141-149, March 1968.

G. Wahba. Automatic Smoothing of the Log Periodogram. Journal of

the American Statistical Association - Theory and Methods Section, 78

No.369:122-132, March 1980.

A. Farina and F.A. Studer. Radar Data Processing - Volume 1: Introduction

and Tracking. Research Studies Press, 1985.

S.S. Blackman. Multiple-Target Tracking with Radar Applications. Artech

House, 1986.

P. Stoica, B. Friedlander and T. Soderstrom. Optimal Instrumental Van-

able Multistep Algorithms for Estimation of AR parameters of an ARMA

process. International Journal of Control, 45 No. 6:2093-2107, 1987.

P. Stoica, B. Friedlander and T. Soderstrom. Optimal Instrumental Variable

Estimates of AR parameters of an ARMA process. IEEE Transactions on

Automatic Control, AC-30 No. 11:1066-1074, November 1985.

N. Kalouptsidis and S. Theodoridis. Fast Adaptive Least Squares Algo-

rithms for Power Spectral Estimation. IEEE Transactions on Acoustics,

Speech and Signal Processing, ASSP-35 No. 5:661-670, May 1987.

J.P. Burg. Maximum Entropy Spectral Analysis. PhD thesis, Stanford Uni-

versity, 1975.

B.I. Helme and C.L. Nikias. Improved Spectrum Performance via a Data-

adaptive Weighted Burg Technique. IEEE Transactions on Acoustics,

Speech and Signal Processing, ASSP-33 No. 4:903-910, August 1985.

T.J. Ulrych and R.W. Clayton. Time Series Modelling and Maximum En-

tropy. Physics of the Earth and Planetary Interiors, 12:188-200, 1976.

145

K. Berberidis and S. Theodoridis. Efficient Symmetric Algorithms for Au-

toregressive Spectral Analysis. Technical report, Dept. of Computer Engi-

neering and Computer Technology, University of Patras Greece, 1990.

S.L. Marple. A New Autoregressive Spectrum Analysis Algorithm. IEEE

Transactions on Acoustics, Speech and Signal Processing, 28:441-454, 1980.

S.L. Marple. Fast Algorithms for Linear Prediction and System Identifica-

tion Filters with Linear Phase. IEEE Transactions on Acoustics, Speech and

Signal Processing, 30:942-953, 1982.

B. Toplis and S. Pasupathy. Tracking Improvements in Fast RLS Algorithms

using a Variable Forgetting Factor. IEEE Transactions on Acoustics, Speech

and Signal Processing, ASSP-36 No. 2:206-227, February 1988.

M. Bellanger. Fast Least Squares Sliding Window Algorithms for Adaptive

Filtering. Signal Processing IV; Theories and Applications, 2:563-566, 1988.

W.Y. Chen and G.R. Stegen. Experiments with Maximum Entropy Power

Spectra of Sinusoids. Journal of Geophysical Results, 79, 1974.

J. Botto. Stabilization of Fast Recursive Least Squares Transversal Filters

for Adaptive Filtering . Proceedings of ICASSP, 1987.

J. Botto and G.V. Moustakides. Stabilizing the Fast Kalman Algorithm.

IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-39

No. 9:1342-1348, September 1989.

M. Bellanger. Engineering Aspects of Fast Least Squares Algorithms in

Transversal Adaptive Filters. ICASSP 1987 Dallas, April 1987.

M. Bellanger. Adaptive Digital Filters and Signal Analysis. Marcel Dekker,

1987.

G.V. Moustakides. Correcting the Instability due to Finite Precision of the

Fast Kalman Identification. Signal Processing, 18 No. 1:33-42, September

1989.

146

D.T.M. Slock and T. Kailath. Numerically Stable Fast Transversal Filter-

s for Recursive Least Squares Adaptive Filtering. IEEE Transactions on

Signal Processing, 39 No. 1:92-114, January 1991.

N. Kalouptsidis and S. Theodoridis. Efficient Structurally Symmetric Am-

gorithms for Least Squares FIR Filters with Linear Phase. IEEE Transac-

tions on Acoustics, Speech and Signal Processing, ASSP-36 No. 9:1454-1465,

September 1988.

S. Ljung and L. Ljung. Error Propagation Properties of Recursive Least

Squares Adaption Algorithms. Automatica, 21 No. 2:157-167, 1985.

B.D.O. Anderson. Exponentail Stability of Linear Equations Arising in

Adaptive Identification. IEEE Transactions on Adaptive Control, 32:83-88,

1987.

R.L. Kosut, B.D.O. Anderson and I.M. Mareels. Stability Theory for Adap-

tive Systems: Method of Averaging and Persistnet Excitation. IEEE Trans-

actions on Adaptive Control, 32, 1987.

A. Benallal and A. Cilloire. A New Method to Stabilize Fast RLS Al-

gorithms Based on a First-order Model of the Propagation of Numerical

Errors. Proceedings of ICA SSSO, 1988.

A. Ammoumou, D. Aboutajdine and M. Najim. A New FTF9N Stabilized

Recursive Algorithm, Implementation on Finite-Precision. Proceedings of

A CA SF, 1992.

P.A. Regalia. System Theoretic Properties in the Stability Analysis of QR-

based Fast Least Squares Algorithms. Report DEC-0890-003, 1990.

147

Appendix A

Proofs of Identities used in Chapter 4

Identity 1.1

l m (N + 1)12 = Lm(N + 1) 21

Proof:

lim (N + 1) = 12 - 	+ l)Wm (N + 1)

12 I 	N) J 1
I [ji(N),](N+1)]

L(N+1)]

I m (N + 012 = —(N)Jyj(N + 1) = x(N)JS;1 (N)x m (N + 1)

uim(N + ')21 = _(N + 1)(N) = (N + 1)S;'(N)Jxm (N)

QED

148

Identity 1.2

L m (N + ') = 	- e(N)E(N)

Proof:

i'm (N+ 1)11 = 1_1(N)Jw(N)

= 1 - x(N)J [JLmU T) + m (N)(\T)1

= 1 - (N)m(N) - (N)Jm(N)C(N)

= L(N) - e(N)(N)

QED

149

Identity 1.3

L m (N + 022 	 = Lm (N + 1) + E(N)em (N + 1)Ee(N + 1)
rn

o)

Proof

ujm (N+1)22 	 = 1x(N+1)w(N+1)

iim (N+1)11 	 = 	 JILln

+1(+ 1)um (N + 1) 	= {(N + 1), x(N - m + i)] Lm+i (N + 1)

= [x(N + 1), x(N - m + 1)] { [(N +1) 1 +
0]

1 m (1)1
I 1q, (N+1)}

Lii
=

,c(2) 	 c(2) + 1)EcN)e2)(N + 1)

+1(' + 1)JJym+i (N + 1) = [(N)J, x(N + 1.)] 	m+i (T + 1)

=xmT m(N)J(N) - e 1)(N + 1)EcN)e1)(N + 1)

uim (N + 1)22 	 = Lm (N + 1) + E(N)e rfl (N + 1)Ee(N + 1)

QED

150

Identity 1.4

L(N-1) 	L m (N) ii

Proof:

L(N —1) = 1 —x(N— 1)Jw(N— 1)

= Lm (N) i1

QED

Identity 1.5

e(N) 12

Proof:

e(N) 	=1(N-1)Jw(N)

=

QED

151

Identity 1.6

L-(N) 	 - e T (N)E(N)

Proof:

L- (N) 	= 1 x(N) m (N)

= 1 - x(N) [w(N) + 	N - 1)€(N)]

=- 	 - 1)c(N)

= 	+ x(N)S;'(N - 1)Jx(N - 1)€(N)

= Lm(N)22 - e(N)E(N)

QED

152

Appendix B

Formulation of the Windowed

Adaptive Forward Backward Least

Squares Algorithm

We shall now formulate the algorithm. Consider a data sequence x(M), x(M +

1),... , x(N). This sequence is windowed explicitly so that the sequence of inter-

est becomes) 1v_M x (M), ,XN_M_lx(M + 1),... , x(N). We wish to estimate the

spectrum of this sequence. Assuming an autoregressive (AR) model of order rn

for the data the forward and backward errors can be formulated as

ef = ANThx(n) + 	ck)./''X(fl - k) 	 M + m < n < N

(B.1)

=A N_n+m(- m) + >I CkX Nn+m kx(n - rn + k) M + m < n <N

Collecting these over the observation interval [M + m, 	yields the vector

form of the equations;

ef = -m ,N(M + m, + Xm,N(M, N - 1)JQm

(B.2)

= m ,N(M, N - m) + Xm ,N(M + 1, N)J m

153

where

c((M, N) = [ef 	E1 (M + 1),. , Ef(N)]

	

N) = [cb(M), fb(M + 1), ... , Eb(N)IT
	

(B.3)

[AN_nx(n), AN_nx(n - 1),.. jN_n+m_i(- + 1)]

rn,N(M + m - 1)

Xm,N(M,N) =
m ,N(M+in)

\N_M_m+i(M + m - 1))N_M x (M)
	 (B.4)

= A N_M_m(M + m) 	 ,\N_M_ix(M +1)

x(N) 	 ... Am-iX(N - + 1)

Qm 	 = [Cm , Cm_i,.. . , Ci] T

Then minimization of the sum of the squared norms of the forward and backward

prediction error energies yields (using the same methodology as before)

Sm,N(M,N)m(M,N) =
	 (B.5)

where the new variables are defined as

Sm,N(M, N) = R,,N(M + 1, N) + JRm ,N(M, N - 1)J 	
(B.6)

154

and

.m ,N(M, N) - Th ,N(M, N) + Jr.' ,N (M, N) 	 (B.7)

with

Rm,N(M, N) = X ? ,N(M, N)X m ,N(M, N)

N

= 	 m,N(rn,N(1)7

k=M-f rn-i

N 	 (B.8)
! rn,N(M, N) = 	\N _ k +?Th mN (k)X(k - m),

k=M-I-rn

N-i

L' ,N(M, N) = 	t N _ k _ l m,N(k)X(k + 1).
k=M+m- 1

Once again the data are assumed to be prewindowed, that is x(n) = 0 for

ii < 0, then M can be set to 0 without loss of generality and the following time

update equations hold

Sm,N(M,N) = Srn,N(N) 	
(13.9)

= \2Sm,N_1(N - 1) + Hrn,N(N)H,N(N)

where

Hm,N(N) = ['m,N-iUT -
(B.10)

and similarly the update equation for m ,N(M, N) is

m ,N(M, N) =

= A 2m,N_1(N - 1) + Hm,N(N)h(N) 	 (B.11)

155

where

Ix(N) 	1
h(N) =1 	 I

m x (N_ m)] (B.12)

As before H,N(N) and h(N) contain the new data which are available at time

N.

It is also useful to define the following matrix in the prewindowed case,

Qm,N(N) = Rrn,N(N) + JRm ,N(N)J.
	 (B.13)

Qm ,N(N) is said to be centrosymmetric, that is the following relationships hold,

JQ,n,N(N)J = QTTh ,N(N)

(B.14)

JQm ,N(N) = Qm ,N(N)J.

It is useful to be able to partion the matrix Qm +l,N(N) and following the method-

ology of chapter 4 this can be done to yield

Sm ,N(N) 	 r- m ,N(N) + Jz:;,N(N)

Qm+l,N(N) = 	 . 	(B.15)

! n N(1\T) + d2 N(N)J Tm ,N(N) + rN(N)

Where

N
bo,

7•m N(M,N) = 	i)
2N_2(k_m)2(k - in)

k=M+rn 	 (B.16)

and

156

N
rmN(M,N) = 	

i \2(N_k)x2(k),
k=M=m 	 (B.17)

Two more useful identities are

Qm,N(N) = S,n,N(N) + J.m,N(N),N(N), 	 (B.18)

and

Sm ,N(N) = Q,Th ,N(N —1) + m,N(V)-m,N(') (B.19)

Using these and the mothods of chapter 4 we arrive at the expression for the total

error energy of the system as

IME
E7 (N) = Tm N(N) + rm ,N(N) + N) m ,N(N)

If Cm (N) denotes the vector of AR parameters estimated after the Nth sample,

then the aim is to compute m(1 T + 1) defined by

Sm,N+l(N + 1)Cm (N + 1) = m ,N+l('T + 1) 	 (B.21)

Using equations B.9 and B.11 this becomes

[A 2 Sm ,N(N) + Hm,N+l(N + 1)H,N+l(N + 1)] Qm('1 + 1)
= 	(13.22)

- [2 .,N(N) + uIm N+l(N + 1)h(N +

or after rearranging

157

(N+1)= m (N) - A 2 S N (N)Hm ,N +1(N+ 1)x

[1f ,N+l (N + 1)Cm (N + 1) + h(N + 1)]

(B.23)

Qm (N + 1) = m (N) + Wm (N + 1)E(N + 1),

Wm (N + 1) =)t_2 S N (N)ft m ,N+l(N + 1) = [t 1 (N),(N + 1)],

N) 	= 1 S N (N)J m ,N (N), 	
(B.24)

where

and

(N +1) = 	1 S N 	.m ,N+l (N)(N + 1),

cc (N + 1) = 11rn,N+1('V + 1)Cm(N - 1) + h(N + 1)
(B.25)

Unfortunately the above equation contains m (1'T + 1), which is the quantity

sought, this equation must thus be modified to eliminate m(T'T + 1) as follows:

c(N + 1) = Hrn,N+l(N + 1) [m (N) + Wm (N + 1)E(N + 1)] + h(N + 1) (B.26)

or

cc (N +1) = L;'(N + 1)e(N +1)
	

(B.27)

where

158

e(N + 1) = II, , N+l(N + 1) m (N) + h(N + 1)

rn,N('V)j m (") + x(N + 1) 	 (B.28)

c-rn ,N+1UV + 1)Qm (N) +)tm13(N + 1 - m)

and

L m (N + 1) = 12 - hlrn,N+l('V + 1)Wm (N + 1) 	 (B.29)

The only quantity remaining to be updated is the total squared error. This

can be updated as follows

Em"' (N + 1) = rN+l(N + 1) + Tm ,N+l(N + 1) + c(N + 1) m ,N+1(N + 1) (B.30)

Replacing r °,N+l(N + 1) and r,N+l(N + 1), and then substituting for (N + 1)

and m,N+1(" + 1) the total squared error becomes:

X 2 r; N (N) + x 2 (N + 1) + \2r N (N) + \2mx2(N + 1 - in) + Q(N + 1) m ,N+l(N + 1

= \2 (r N (N) + r,N(N)) + hT(N + 1)h(N + 1) + cT (N + 1) x

[23(jy) + fIm N+l(N + 1)h(N +

= A2 (r N (N) + r,N(N)) +)t2Q(N) m ,N(N) + A 2 €'(N + 1)W(N + 1)m,N()

+€'(N + 1)h(N + 1)

or

E7 (N + 1) = \2 E7 (N) + CrT1 (N + 1)e(N + 1) 	 (B.31)

159

The algorithm as it is given above is 0(m 3). The most costly step in terms of

computational complexity is equation B.24 where a matrix inversion is required.

As before with the unwindowed algorithm, applying the matrix inversion lemma

to S'N(N) yields

SN(N) = 	 - 1) - 	 - 1)fIm ,N(N)X

{i + H,N(N)2Srn,N_l(N - 1)m,N(N)1'E() m ,NN 2 S N _l (N - 1)
(B.32)

Substituting S'N(N) = Pm,N(N) and using expressions B.24 and B.29 gives,

Pm,N(N) 	= Pm,N_l(N - 1) - Wm(N)L;1(N)W(N)

(B.33)

W. (N+1) = Pm,N(N)Hm,N(N +1)

By introducing the quantity Pm,N(N) and using the matrix inversion lemma

the computational complexity has been reduced from 0(m 3) to 0(m 2). The con-

ventional algorithm is summarized in the table below.

Conventional Windowed Adaptive Forward Backward Least Squares Algorithm I
Pm ,N(N) 	=)C 2 Pm ,N_1(N 1) - Wm(N)Q(N)W(N)

Wm (N + l) = Pm ,N(N)Hm ,N+l(N + 1)

.L m (N+ 1) = 12 Hrn ,N+l(N+ 1)Wm (N+ 1)

e(N + 1) = '1rn,N+1('1 + 1)Cm (N) + h(N + 1)

= L-1 (N + 1)e(N +1)

E,(N + 1) = A 2 E(N) + €1:(N + 1)e(N + 1)

Cm (N + 1) = fm (N) + Wm (N + I) cc + 1)

160

B.1 The Fast Windowed Adaptive Forward Back-

ward Least Squares Algorithm

Once again the aim is to reduce the computational complexity of the algorith-

m by using so called fast techniques. The basic idea is to replace Sm ,N(N) by

Qm,N(N) and then to take advantage of the partioning of Qm,N(N) together with

its symmetry properties.

The focus of attention is the equation

Wm (N +1) = _)t 2 S N (N)Hm N+l(N + 1) 	 (B.34)

The above equation can be rewritten as

Wm (N + 1) =Sn'N(N) [-1m,N_l('T - 1), m N(N)] 	 (B.35)

Now if Sm , j (N) is replaced by Qm ,N(N) then a new variable iLm,N(1) can be

introduced and defined as

A2Qm,N1(N - 1) m ,N(N) = 	 (B.36)

or

2[Sm,N_l(N - 1) + j m ,N_l('V - 1),N_l(N -1)J] .,N(N) = .m ,N(N) (B.3

=-A C2SN_l(N - l) m ,N(N) -) 2SN_l(N - 1)Jm,N_1(N - 1),N

161

= w(N) + w'(N - 1)€(N),
(B.38)

where

= xT 	(N - 1)Jy m ,N(N). 	 (B.39) -m,N-1\

Using methods similar to those used in the previous section for the calculation

of cm (N + 1) it is possible to arrive at the following set of equations

L(N - 1) = 1 - N_l(N - 1)JA1w(N - 1)

e(N) 	= N_l(N - 1)Jw(N)

Cu (N +1) = L(N) 1 e(N +1)

and

= !Q(N) +)C 1 (N - 1)e(N)

The next step is to compute 	N) recursively as

/\Sm ,N(N)i(N) =
	 (B.42)

Now

162

)tSm ,N(N)(N) =

[Qm,N_l(N - 1) + 	 N) = _j.m ,N(V)

and using the same methods as before the following set of equations can be derived.

1—

e(N) = 	rn,N()JiLrn,N(")

N) = 	N)'e(N)

w(N) = 	JL1,,N(' T) + A ' m,N(')€rn(")

The next step concerns the (m+1)-dimensional column vector Vm+1,N+1(N+1).

and the equation

)t 2 Qm+1,N(N)Lm+l,N.I.1(N + 1) = 	m-Fl,N+l(' + 1) 	 (B.45)

We have already been seen that Qm+1,N(N) can be partioned, but to calculate

Y m +1,N+1('V + 1) will require Q1N(N), so as before we must use the second

version of the matris inversion lemma and apply it to Qm+l,N(N). This yields

-1 	

- SN(N) + Qm (N) 1 (N)Q(1'/) m(1'T)'(1'T) 	
(B.46)

Qm+1,N() -

a 1 (N)c(N) 	 am' (N)

where

163

a,,, (N)r(N) + r((N) + Q(N) m,N (N)
	

(B.47)

So a,,, (N) is the minimum total energy. Performing the multiplication yields

ZLm,N+1('V +1) =

\+ Qm (N)'(N)(\T)] j. m ,N('V)

—)a;1 (N)(N)J m ,N(N)

I!(N)l + 1Qm(')1
] 	1 	I] Km(N+1)

[0 	L'

Qm (1T) 1 ('V)X(" + 1)

—a(N)x(N + 1)

(B.48)

Kj(N + 1)
-

-

2
1 Ec(N) [AQ(N)J m ,N (N) + x(N + 1)]

— 	1
- — 2Ec(N)efl(N + 1)

The last line comes from equation B.28.

Now 	N+1) can be obtained by using an upper partition Of m+l N +l(N+1)

namely

F m,N+i(+ 1) 	1

[Am_ 1 X (N — M + 1)]

then

.X2Qm+l,N(N)Lm+l,N+1(N + 1) = 	m+l,N+l(N + 1)

Lm+l,N+l(' + 1) =—A
-2 Q -1 l,N(1) m+l,N+l(/\r + 1)

164

Doing the multiplication yields

Lm+l,N+l(" + 1)
_-2 [s'N (N) + m (N) 1(N)T(\T)I m,N+l(' T + 1)

—a 1 (N)c(N) m , N+l (N + 1)

_(N)a;l(N).Am_lx(N - m + 1)

+
_a;(N))tm_lx(N - in + 1)

= [(N+l)l

] 	

Im(V)

i]

1
1+1 	IK m (N+1)

L
(B.52)

Iq(N + 1) = 	1
2Ec(N) 6r,

(
)(1' + 1)

again the last line comes from using equation B.28.

The only step remaining is to show that several of the quantities derived and

used in the algorithm are in fact related. The various relations and their proofs

are given below.

165

Identity B.1

uim (N +1)12 = 	+ 1) 21

Proof:

.L m (N+1) 	12h1rn ,N +1(1)WTTh('1)

rn ,N(N)'
12 	

[] [(

N),(N+1)]

Lm (N + 1)12 = 	N (N)JQ fl (N + 1) 	 +1)

+ 1) 21 = 	l,N+l(V + 1)(N + 1) = -m ,N+l(V + 1))CS N (N)J m ,N (N)

QED

Identity B.2

L m (N + 1) = L(N) - e(N)c(N)

Proof:

.L m (N + 1) 11 = 1 -

= 1 - 	N (N)J\ 2 [.,N (N) +

= 1 - X 1 ,N(N)i m ,N(N) - 	rn,N(N)jm,N('V)Ern(V)

= L(N) - e(N)f(N)

166

Identity B.3

L m (N + 1)22

Proof:

uim (N + 1)22

uim (N + 1)11

m +l,N+l('V + 1)im,N+l(T + 1)

1 	e'(N+1)Ee(N-f = Lm (N + 1) + A2E(N)

= 1 — XN+l(N+l)W(N+1)

1 - 	rn,N(N)jL rn ('V)

= [-,N+l(N + 1), m_lx(N - m + 1)]

X m ,N+l(N + 1)

= [,N+1(' + 1), m_lx(N - in + 1)]

1(N+1)

0]
x{L 	+

IQm(V)I K2U m (N+1)}
,

L'

= rn,N+l(V + 1)(N + 1)—

eç 2)(N + 1)A2 1 Ec(N) e 2) (N + 1)

rn+l,N+l(" + 1)JJ m+l,N +l(N + 1) = [A ,N (N)J,x(N + 1)] JL1+l,N+1(' + 1)

=A T
im,N ('V)j!L rn(")

—e) (N + 1) A2E(N) e 1) (N + 1) rn

ujm (N + 1)22
1 e'(N + 1)Ee(N - = Lm (N + 1) + 2EC(N)

QED

167

Identity B.4

L'(N_1) 	1+ -LL m(N)11

Proof:

L(N - 1) = 1 - 	- 1)J)'w(N - 1)

___•• 	1 	1 T
- 	A2 	- m,N_l("1 - 1)J(N - 1)

—1 	1 	_L; (N)11
-

Identity B.5

e(N) 	= 	L m (N) 12

Proof:

e' (N) 	= XT
,

N (N)Jw(N)

=

QED

QED

ON

Identity B.6

. L (N) 	= 1 - f + Lm(N)22 - e(N)(N)

Proof:

L- (N) 	rn,N(N)Y m ,N(N)

= 1 - Y.rn,N(N) [(N) +

—1 - 	 - A—XTm,N(N)wm2(N)
- -

+ rn,N(N)S ni,N 	rn, (N)J N _l (1'7 - 1)€(N)

= 1 - + 	- eT(N)€(N)

QED

Using the above identities a fast algorithm can be derived. The fast algorithm

has a computational complexity of approximately 9m and is summarized in the

table of chapter 4.

169

Appendix C

Simulating reduced precision

arithmetic on a Sun workstation

This appendix (which was produced by Dr C.P. Callender) briefly describes how

limited precision floating point arithmetic may be simulated on a Sun workstation.

The internal representation of variables varies between different computers so the

method presented here is machine specific, although it could easily be adapted for

other computers.

C.i Internal representation of a precision van-

In -703 MR

A double precision variable is stored in eight consecutive bytes in memory. The

first seven of these bytes represent the mantissa of the variable and byte eight

contains the exponent. Both are stored as two's compliment binary values. The

exponent is an integer in the range -128 to 127 and the mantissa is a 56 bit fixed

point value with the binary point fixed at position four, so that it is in the range

-8 to 2
56-1

 x 8. Therefore, the internal representation of a number is

<--- - ----------------------Mantissa--------------------------> <--Exp->

xxxx.xxxx xxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx yyyyyyyy

Bytel 	Byte2 Byte3 	Byte4 	Byte5 	Byte6 	Byte7 	Byte8

170

C.2 Reducing precision arithmetic

Reduced precision arithmetic may be simulated performing computations (addi-

tion, subtraction, multiplication and division) at full machine precision and then

modifying the result by setting the least significant bits of the mantissa to zero as

appropriate. To reduce the precision to W bits, where 4 <= W <= 56, a mask

is generated. This mask is a bit sequence of 56 bits (7 bytes), which consists of

W ones, followed by 56 - W zeros. The least significant bits are then set to zero

by performing a bitwise and operation on the result with the mask. The result

which is obtained is equivalent to that which would have been obtained if the

computation had been performed at reduced precision.

171

Appendix D

Original Publications

Moore A and McLaughlin S "Spectral Estimation of Nonstationary Time Series"

Proceedings of the TEE Sixth International conference on Digital Signal Processing

in Communications, Loughborough 1991

Moore A, Theodoridis S and McLaughlin S "Stabilization of the Windowed Adap-

tive Forward Backward Least Squares Algorithm" Proceedings of the International

Symposium on Adaptive Systems in Control and Signal Processing, Grenoble 1992

Moore A, Theodoridis S and McLaughlin S "Tracking Time-varying Signals with

a Stabilized Forward Backward Least Squares Algorithm" to be published in the

Proceedings of Third IMA International Conference on Mathematics in Signal

Processing, Warwick 1992

172

Appendix E

Software

Throughout this work computer simulations have been run to verify results sug-

gested by theory or to obtain indications of what will happen when certain pa-

rameters are varied. Most of the work can be performed using standard routines,

but there are two routines which had to be written specifically for this work and

they can be found in the software disk attached to the back of this thesis.

The first was developed to perform the simulations required for chapter 3 and

is called "hyper.c" It takes as its input the data to be modelled and produces

a series of AR coefficients which model the data. The parameters which need to

be specified within the routine are the order of the AR model and the order of

the difference constraint applied to the evolution of the AR coefficients. Also an

initial value for the error covariance matrix must be specified.

The second routine was developed to simulate the stabilized windowed adap-

tive forward backward least squares algorithm of chapter 5 and is called "saf-

bls.c". Once again it takes as its input the data to be modelled and returns a set

of AR coefficients. Here the parameters to be supplied are the model order, the

value of)., the forgetting factor, and a value for the inital energy of the system.

The values of the feedback parameters K1, K2 and K8 must also be supplied.

(Within the routine there are also five other parameters K3 , K4 , K 5 , K6 and

K7 these should all be left at zero - they arose from various other stabilization

attempts)

173

