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Abstract 

Nonstationary time series arise in many different disciplines, and there are 

many different reasons for wishing to study them. The particular interest in this 

thesis is in modelling the time series so as to obtain certain parameters of interest 

from it. Whatever the reason for studying such a time series and whatever the 

method chosen, in order to accommodate the nonstationarity of the series it is 

important to use an adaptive algorithm whose parameters are permitted to vary 

with time. 

The first achievement of this thesis will be to examine existing adaptive al-

gorithms, highlighting their strengths and weaknesses to determine which, if any, 

offers the best way forward towards developing new algorithms. Following this, 

rather than consider a specific class of algorithm a generic algorithm which con-

tains the properties of more than one class of algorithm will be examined. To fa-

cilitate the development of this algorithm hyperparameters and hypermodels will 

be introduced. Results of simultations run to test the algorithms performance will 

be given. 

The second achievement of this thesis will be to develop a new algorithm, 

the fast adaptive forward backward least squares algorithm. This algorithm in-

corporates a "forgetting factor" to enable the tracking of nonstationary signals. 

Simulations will be performed which show that the algorithm can outperform the 

unwindowed version in the presence of a nonstationary signal. Stabilization tech-

niques will be introduced which will prevent the algorithm exhibiting numerical 

instabilities to which this type of algorithm is prone. Simulation results will be 

presented to give guidelines for the choice of values of feedback gains which are 

to be used to prevent the exhibition of instability. 

Finally the advantages and limitations of both the new and exisiting algorithms 

will be summarized and suggested areas of future research outlined. 
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Abbreviations 

AFBLS Adaptive Forward Backward Least Squares 

AIC 	Akaike's Information Criterion 

AR 	Autoregressive 

DSP 	Digital Signal Processor 

FBLS 	Forward Backward Least Squares 

FFT Fast Fourier Transform 

LMS Least Mean Squares 

LRS Linear Random Search 

MSE Mean Squared Error 

PSD Power Spectral Density 

RLS Recursive Least Squares 

SNR Signal to Noise Ratio 
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Principal Symbols 

	

E[.] 	The expectation operator 

	

x(n) 	The nth input sample 

	

(n) 	An estimate of the nth input sample 

	

(n) 	The vector containing the last m input samples 

	

e(n) 	The a priori error 

	

RXX 	The autocorrelation matrix 

rXY  The crosscorrelation matrix 

A forgetting factor 

ck Autoregressive coefficients 

In The natural logarithm 

v(n) The error covariance 

o(n) The innovations variance 

x 2 (m) A chi-squared distribution 

e f The forward error 

The backward error 

V The difference operator 

J The exchange matrix 

ki  The stabilization coefficients 
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Chapter 1 

Introduction 

A time series is the recording of events and their variation with the passing of 

time. More rigorously, a stationary time series is one which is defined [1] as hav -

ing statistical properties which are invariant to a shift in time. (A slightly less 

confining definition is that both the mean and covariance are invariant to a shift 

in time. In this case the process is said to be wide-sense stationary). Alas, in 

the real world it is rare to find such well-behaved time series, and in practice we 

are faced with collections of data which exhibit varying degrees of nonstationar-

ity. However this nonstationarity manifests itself, so-called adaptive algorithms 

[1] which change in response to variations in the input have been developed to 

accommodate it. The first major contribution of this thesis is to examine existing 

algorithms and determine their limitations and to develop new ones which have, in 

some sense, improved performance when dealing with nonstationary time series. 

A second concern of this thesis is to ensure that once such an algorithm has been 

developed and is in operation it will remain stable and unaffected by numerical 

errors during the run-time of the algorithm. 
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1.1 Nonstationary Time Series 

Nonstationary time series arise in many different disciplines. Some of the more 

obvious examples include economics [2, 3] (where the series may be yearly sales 

figures, monthly price indices), meteorology [4, 5] (where the series of interest 

include daily highs and lows in temperature, annual rainfall and so forth), biology 

[6, 7, 8] and the medical field [9, 10, 11] (where there is currently a great deal of 

interest in foetal heart trace data [12]) and agriculture (where there are annual 

records of livestock production, soil erosion etc). An example of the latter is 

illustrated in figure 1.1 which shows a graph of the sheep population in England 

and Wales from 1867 to 1939 [13]. These data arise from a nonstationary time 

series where there is neither constant mean nor variance. Obviously many more 

examples of physical time series can be found in the literature [13, 14, 15, 16, 17] 

In the case of time series obtained from mathematical models, even the seem- 
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ingly most simple systems can be nonstationary. For example consider the mis-

leadingly simple equation [18] 

Xk+1 = Xk + Wk 	 (1.1) 

where wk is a zero-mean stationary white Gaussian process with E[wkwl} = 

and x0  = 0 and in this simplest case xk is a scalar. E[.] is the expectation 

operator, which is defined as the sum of all the values the random variable may 

take, each weighted by the probability with which the value is taken. The equation 

is illustrated in figure 1.2. Squaring equation 1.1 and taking expectations leads to 

	

E[x ~1]=E[x]+1 	
(12) 

E[x]=k 

So clearly xk is not stationary, despite having zero mean, but rather its variance 

is an unbounded function of k. Thus it can be seen that nonstationarity is present 

both in the real world and in the most simple of mathematical models. 
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1.1.1 Objectives of Time Series Analysis 

Having seen examples of the wide diversity of time series in existence the question 

must arise, why do we wish to study them? The answer to this can be divided 

into several objectives [13, 16] each of which will now be considered. The first 

objective is to describe, preferably in some mathematical way, the series and 

its properties. Secondly, at a more detailed level, rather than generate a model 

which merely describes a time series it may be possible to develop a model which 

accurately describes the mechanism which is generating the time series. Thirdly, 

having developed a model using one of the two methods outlined above, this 

model can then be used to predict future values of the series. This is obviously 

very important in the field of economics where it is useful to be able to predict 

future demand for a product and so on. Finally, closely related to the idea of 

prediction is that of control. Here future predictions are once again made from a 

model of the time series and these future predictions are fed back into the model 

to adjust some parameter. An example of this from the field of economics is where 

the future demand for a product can be predicted. This prediction can then be fed 

back to the manufacturing process so production can be increased or decreased as 

required. 

The particular interest in this thesis is in modelling the time series so as to 

obtain certain parameters of interest from the time series. In particular we are 

interested in spectral estimation. This involves estimating the different frequency 

components which are present in a time series. Examining a data sequence in the 

so-called frequency domain can often yield information which is obscured in the 

time domain. To see this consider a signal which consists of two sinusoids, the first 

of which has a much larger amplitude than the second. Figure 1.3 shows the signal 

in the time domain and to the human eye it is not apparent that there is more 

than one signal present. If however the signal is transformed to the frequency 

domain (the methodology used does not concern us here) then, as can be seen in 

figure 1.4, the presence of two sinusoids is easily discernable. 
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1.2 Adaptive Algorithms 

It has already been mentioned that there are innumerable examples of nonsta-

tionary signals and many reasons for studying them. Whatever the reason and 

whatever the method chosen, in order to accommodate their nonstationarity it 

is important to use an adaptive algorithm whose parameters are permitted to 

vary with time. There are three broad classes of adaptive algorithm; the Least 

Mean Squares (LMS) algorithm [19, 20, 211; the Recursive Least Squares (RLS) 

algorithm [19, 20, 22] and the Linear Random Search (LRS) algorithm [23]. 

The LRS algorithm differs from the first two in that, as will be seen subse-

quently, both the LMS and the RLS algorithm use a systematic search procedure 

to arrive at an optimal solution. In the case of the LRS algorithm however, as 

its name suggests, a random change is made to the weight vector of an adaptive 

processor. The mean square error (MSE), that is the mean-square value of the 

difference between the desired response and the valued obtained using the chosen 

algorithm, is computed before and after the change and the two values compared. 

If the random change in the weight vector causes the MSE to decrease then the 

change is accepted, if not it is rejected and a different random change is tried. Al-

though the algorithm is conceptually simple and easy to implement it does have a 

number of serious drawbacks. The worst of these is that there is a low probability 

that any particular random change will be in the direction of the optimal filter 

parameter and consequently the time taken for the LRS algorithm to converge to 

a solution which is close to the optimal value is very long when compared to other 

existing algorithms. For this reason only the LMS and RLS families of algorithms 

will be considered to aid the development of models for nonstationary time series 

in subsequent chapters. 



1.3 Organization of Thesis 

As was mentioned previously the aim of this thesis is to develop adaptive algo-

rithms which perform well in the presence of nonstationary data. One criterion 

for good performance will be the requirement that the algorithm should be unaf-

fected by the lack of sufficient numerical precision inherent in the implementation 

of all existing algorithms. The following paragraphs will outline the structure of 

this thesis. 

Chapter 2 will review the background to this work. Before considering specific 

adaptive algorithms the mathematical framework for developing such algorithms 

will be developed by considering the Wiener filter. We will then go on to review 

the two broad classes of existing adaptive algorithms, the Recursive Least Squares 

algorithms and the Least Mean Squares algorithms and examine their performance 

in terms of specific criteria to determine which offers the best way forward towards 

developing new algorithms. 

An alternate approach to the development of new algorithms will be exam-

ined in chapter 3. Rather than consider a specific class of algorithm, a generic 

algorithm which contains properties of more than one class of algorithm will be 

developed. Before this can be undertaken various techniques which will be utilized 

subsequently will be reviewed. These include autoregressive modelling, which will 

also encompass a brief review of the related topics of maximum likelihood tech-

niques and information criteria, spectral estimation and state-space modelling. 

The comparitively new concept of hyperparameters will be introduced [24] and 

an adaptive algorithm which incorporates hyperparameters will be examined. Re-

suits of simulations run to test the algorithm's performance will be given. Finally 

the limitations of such an adaptive scheme will be discussed. 

In chapter 4 we will consider a particular variant of the recursive least squares 

algorithm, the forward backward least squares algorithm. First the formulation of 

the algorithm will be reviewed and then it will be seen how the use of symmetry 

properties of certain matrices can be used to produce a fast version of the algo- 
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rithm. A "forgetting factor" will be introduced into the algorithm to facilitate 

the tracking of time-varying signals, and thus a new algorithm, the fast adaptive 

forward backward least squares algorithm, will be developed. Simulations will be 

performed to show that this algorithm can outperform the unwindowed version in 

the presence of a nonstationary signal. 

In chapter 5 it will be shown that in its existing form, the new algorithm is 

prone to numerical instabilities. The cause of the instability will be traced to 

internal variables of the algorithm and a concept called "redundancy", where a 

variable can be calculated in more than one way, will be introduced. Making use 

of this, the two ways in which the variable can be calculated can be combined 

and used in the algorithm to prevent error propagation and maintain a stable 

algorithm. A major problem is the choice of feedback gain and the results of 

extensive simulations will be presented to establish which values of feedback gain 

are capable of extending the lifetime of the algorithm indefinitely. Mathematical 

techniques will be outlined to support the simulation results. 

Finally chapter 6 will conclude the work. The advantages and limitations of 

the new algorithm will be examined and suggested areas of future reseach outlined. 



Chapter 2 

Adaptive Algorithms 

2.1 Introduction 

As was mentioned in chapter 1, since we are interested in signals whch are changing 

with time, it is natural that we should wish to utilize adaptive algorithms. The 

two broad classes of adaptive algorithm which we will consider are the Least Mean 

Squares (LMS) algorithm [19, 20, 21, 25] and the Recursive Least Squares (RLS) 

algorithm [19, 20, 22, 26]; each of which will be reviewed in subsequent sections. 

When considering which particular algorithm to use for a specific application there 

are a number of factors to be considered. It is rare to find an algorithm which 

satisfies all of the desired criteria and in practice some trade-offs will have to be 

made. 

There are many criteria against which an adaptive algorithm must be measured 

and they will consist of some or all of the following: computational complexity; 

speed of convergence; misadjustment; tracking capability and numerical stability. 

Each of these criteria will now be outlined in more detail. 

Computational complexity is a measure of how many operations (additions, 

multiplications and divisions) must be carried out in order to update the pa-

rameters of the algorithm as new data become available. Despite the advent of 

new high speed processors this is still an important issue, especially if real-time 

performance is to be achieved. 

The second criterion is the speed of convergence of the algorithm. Convergence 

is a transient phenomenom [27, 28, 29], that is to say, in a stationary environment 



the convergence performance is defined as the number of iterations required by the 

algorithm for a parameter to come within a predetermined distance of its optimal 

value. If the input signal is only stationary over a finite interval and the input 

then changes to a different stationary signal then the convergence properties of 

the algorithm give a measure of the ability of the algorithm to adjust to the new 

desired steady state behaviour. 

The third criterion to be considered is misadjustment [30, 21, 31, 32]. This is 

defined as the amount by which the mean squared error of a parameter varies from 

the minimum mean squared error obtained from the Wiener solution. In the case 

of a stationary environment, misadjustment can be reduced by taking sufficiently 

small steps in the iterative search routine used to seek the optimum solution. 

The problem with minimizing the step-size however is that this will increase the 

number of iterations required before the optimum solution is obtained. Thus there 

is a trade-off between misadjustment and convergence speed. 

The step-size parameter, i, is a quantity used in the LMS algorithm, but when 

considering the RLS algorithm there is no such term. Rather, what does play a 

role in the behaviour of the algorithm is A the so-called "forgetting factor" (more 

detail of which will be given later). As will be seen later when comparing certain 

properties of the two algorithms (in particular the convergence of the algorithms 

and their so-called "memories") the quantity 1 - A in the RLS algorithm plays 

and analogous role to i in the LMS algorithm. 

By the time an algorithm has adapted to the input signal at a given instant in 

a truely time-varying environment the value of the input signal will have changed. 

Thus it is no longer accurate to refer to the convergence properties of an algorithm 

and instead the tracking properities of the algorithm must be considered [33, 22, 

34 1  35]. These can be broken down into the steady state and transient tracking 

properties. The transient properties are analogous to convergence in the case of 

stationary signals - that is, if there is an abrupt change in the signal, how long 

does it take for the algorithm to come within a predetermined distance of its 

optimal value? However, once the signal has settled to its steady state solution, if 

this solution is time-varying we are also interested in the ability of the algorithm 
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to track the now time-varying signal. Although fast convergence in a stationary 

environment is indicative of good tracking properties for a specific algorithm there 

is another factor which must be taken into consideration, namely the criterion 

mentioned above, misadjustment. Thus in a nonstationary environment tracking 

is not just a matter of speed of convergence, but rather is a trade-off between 

speed and residual fluctuation. 

Finally the numerical stability of the algorithm must be considered. This is 

affected by two different phenomena. The first is how well the algorithm performs 

if it is subject to ill-conditioned input data, for example if the input covariance 

matrix is not positive definite. The second is what is the effect of implementing 

the algorithm on a practical processor? Such processors will have only finite length 

registers in which to store the values of parameters used in the algorithm. Thus 

it is necessary to truncate the variables and it is possible that repeatedly doing 

this may result in an accumulation of errors which cause the algorithm to diverge 

from its theoretically predicted behaviour [36, 37, 38]. Practical processors can 

be divided into two broad classes, those which are fixed point processors, and 

those which are floating point. In the case of the former all input data must be 

scaled so that their values lie between +1 and —1. With floating point processors, 

however, no such scaling is required. Floating point digital signal processing chips 

are now becoming available. Consequently in subsequent chapters in this thesis 

whenever the issue of finite precision implementation is addressed only floating 

point processors will be considered. 

2.2 The Wiener Filter 

The structure of a typical linear signal estimation problem is shown in figure 2.1. 

If the input signal statistics are stationary then it is possible to develop an optimal 

Wiener [391 filter as follows. 

The figure clearly illustrates that the problem is to provide an estimate, (n), 

of the signal y(n) given input data x(n). To facilitate this an error signal e(n) 

11 



Figure 2.1: System Modelling using an Adaptive Filter 
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equal to the difference between y(n) and its estimate i(n) is formed. A cost 

function can then be assigned to e(n), that is a function which gives the penalty 

when the estimate of a desired signal is incorrect. A very popular cost function, 

and the one used in the development of the Wiener filter, is the mean squared 

error criterion given by, 

(n) = E [e2(n)]. 	 (2.1) 

The filter is optimized by finding values for the coefficients of the filter which 

minimize the cost function. Here the cost function is determined by taking the 

expectation of the square of the error between the desired signal and its estimate. 

It should be noted that this particular cost function is probabalistic in that it 

involves taking an expectation, in other words ensemble averaging is used. There 

may be certain circumstances in which it is not desirable to assume a probabalistic 

model and in such cases, as will be seen subsequently, it is assumed that it is 

possible to replace ensemble averaging with time averaging. However in developing 

the Wiener filter the cost function remains as given above. Two further quantities 

needed in the development of the filter are the vector (n), which is defined as a 

column vector containing the last rn elements of the input sequence {x(n)} 

(n) = {x(n), x(n - 1),.. . , x(n - rn + 
	

(2.2) 

and /, a column vector containing the m non-zero elements of the impulse response 

sequence {h} 

h_ [hO ,h i ,...,hm _ 1 ]T. 	 (2.3) 

Since the optimal filter is assumed to be linear it is possible to express the 

output signal (n) as the convolution of the input sequence .(n) and the impulse 

response of the filter /. 

(n) = 1: hkx(n - k). 	 (2.4) 

13 



In this case it is assumed that the filter is finite impulse response (FIR) of 

order m - 1 so that h = 0 for ii > m and n <0. Thus 

rn-i 

(n) = 	hx(n - k), 	 (2.5) 
kO 

or in vector notation, 

(n) = hT x(n) 	 (2.6) 

Thus the cost function becomes 

= E [(y(n) - hTx (n)) 2 ] 
(2.7) 

= E [y2(n)] - 2/IT!: + !iTRL1. 

Here R is the N x N autocorrelation matrix of the input signal 

R = E {x(n)xT(n)] 	 (2.8) 

and r is the N element cross-correlation matrix of the input signal and the desired 

response signal, 

L = E { .(n)y(n)]. 	 (2.9) 

Since the optimum filter is the one which minimizes the cost function, the next 

step is to differentiate equation 2.7 with respect to the filter coefficients and to 

set the result equal to zero. Doing this yields 

Ia 	1 
- =E I - ((n))( 
ah 	 j (2.10) 

1 
=E [2e(n) &(n) I 

öh ] 

but e(n) y(n) - ex(n) so 
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= —x(n—j),  
ah3 	

(2.11) 

=E{-2e(n)x(n—j)]. 

So to achieve optimization the condition 

= 0 	 (2.12) 

is needed. This can be rewritten as 

—2E [x(n)e(n)1 = 0 

E [x(n)y(n) - x(n)xT(n)h(n)J = 0 

or 

- RI! = 0. 	 (2.13) 

Assuming that the autocorrelation matrix R is positive definite, the optimum, 

or Wiener, filter is thus given by, 

= 
	

(2.14) 

The above derivation is valid in the stationary case, but as soon as the sig-

nal characteristics become nonstationary the optimal Wiener filter becomes time-

varying and it is now that an adaptive algorithm must be used, so that the optimal 

solution can be tracked as well as possible. It should be noted that there is an 

implicit assumption in the use of all adaptive algorithms that the speed at which 

the algorithm is updated is faster than the speed of variation of the signal. If this 

is not the case there is no chance of any algorithm being able to track the signal. 

The Least Mean Squares (LMS) algorithm attempts to adapt to the Wiener 

solution by taking small steps in the direction of the negative gradient of the mean 

squared error. By doing this it is hoped that these steps will lead to the bottom 

of the "bowl" of the error surface, see figure 2.2 (which is this shape due to the 
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quadratic nature of equation 2.7) and thus achieve a minimization of the mean 

squared error. 

The Recursive Least Squares (RLS) algorithm, on the other hand, minimizes a 

deterministic sum of squared errors. By deterministic we mean here that although 

the signals under consideration may be random, the cost function to be evaluated 

and minimized consists only of portions of the data rather than requiring knowl-

edge of the first and second order statistics of the input data, as is the case in the 

LMS algorithm. 

Each of these two classes of algorithm will now be reviewed in more detail. 

2.3 Least Mean Squares Algorithm 

It should be recalled that the overall aim is to minimize a given cost function so 

as to determine the optimal values for the tap weights of a transversal filter. From 

the Wiener-Hopf equation, equation 2.14, it can be seen that complete knowledge 

of the statistics of the input signal is required in the form of the autocorrelation 

matrix. In practice, however, such knowledge may not be available, particularly 

in the case where the input signal is changing with time. One of the most popular 

methods used to overcome this difficulty is to use an iterative search method. Here 

the algorithm starts from a predetermined set of inital conditions which represents 

complete ignorance about the input signal. An initial guess for the tap weights is 

made and an error term computed. New data are then input to the algorithm and 

a refined estimate of the tap weights is made in such a way as to reduce the error 

term. This is repeated until the error term is smaller than some predetermined 

value. One of the oldest such iterative search methods, and the basis of the LMS 

algorithm, is the method of steepest descent. 

Here an initial guess at the optimal filter coefficients is made. The gradient 

of the MSE surface at that point is then calculated. This gradient gives, by 

definition, the direction of the greatest rate of increase of the surface, and so an 

17 



improved estimate of the filter coefficients may be made by moving in the opposite 

direction, the direction of steepest descent. So a new guess 

h +1 = Li1LIi 

is made. Here y is the step-size which determines how large a step in the direction 

of steepest descent is made. This can be repeated until the optimal filter is found. 

It should be noted that in this development of the method of steepest descent 

use has been made of both the autocorrelation matrix and the cross-correlation 

vector. As has already been stated these are not always available in practice, so to 

obtain the Least Mean Squares (LMS) stochastic gradient algorithm the equation 

for the gradient of the MSE surface should be replaced by a noisy estimate of 

the gradient. Then the recursive search for the optimal filter coefficients can be 

replaced by the following time recursion. 

L(n + 1) = h(n) - 	 (2.15) 

Here t is the estimate of the gradient mentioned earlier. 

Recall that in the standard steepest descent methods the gradient was given 

VA 

V(n) = —2E [x(n)e(n)] 

e(n) = y(n) - hT (n - 1)(n). 
(2.16) 

The expectation term in the equation above is an ensemble average, so it 

once again requires statistical knowledge which may not be available. In order to 

overcome this problem the ensemble average can be replaced by a time average, 

that is to say, rather than concern ourselves with averaging over all possible signals 

at a specific time, we can instead average a single representative signal over all 

time. This ability to interchange time and ensemble averages is refered to as 

ergodicity. Since the data are changing with time this time averaging reduces to 

= —2x(n + 1)e(n + 1). 	 (2.17) 
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The full LMS algorithm is then given as, 

LMS Algorithm 

e(n + 1) = y(n + 1) - .(n + 1)h(n) 

/(n + 1) = h(n) + 2px(n + 1)e(n + 1) 

Having developed the LMS algorithm, its performance against the criteria giv -

en in the introduction to this chapter must now be reviewed. The first criterion 

was computational complexity. For an order m filter, each time recursion requires 

(m + 1) operations to update the filter. The second issue was the speed of conver-

gence of the LMS algorithm. A simplifed analysis of its convergence can be found 

in [19, 21] where the evolution of the filter coefficients is examined. There it is 

found that convergence of the algorithm is dependent on the eigenvalue spread of 

the input signal. 111 'max is the largest eigenvalue of the input signal, convergence 

is assured provided 

o<< 
Amax 
	 (2.18) 

Time constants T can be defined, corresponding to each eigenvalue A j  of the 

autocorrelation matrix, and are given approximately as 

(2.19) 

so the largest time constant will be due to the smallest eigenvalue )'min 

Tmax 	 . 	 (2.20) 
2/Jmin 

This leads to the condition 

'max 
Tmax> 	. 	 (2.21) 

Amin 

Thus the larger the eigenvalue spread the longer the LMS algorithm will take to 

converge. This dependence of convergence on eigenvalue spread is not a desirable 

property. 
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The next criterion under which the algorithm must be evaluated is misadjust-

ment. This was defined as the increase in the mean-squared error due to the 

"noisiness" of the coefficients. It can be evaluated as, 

M = average excess rnse 

E [e2 (n)] 
(2.22) 

It can be shown [19, 21] that for the LMS algorithm this can be evaluated as 

M = tr{R} 
	

(2.23) 

Here tr is the trace of the matrix R and is defined as the scalar sum of its diagonal 

elements. 

For stationary input signals a small misadjustment can be obtained by choosing 

a sufficiently small value of ji. So during the iterative search routine a very small 

step is taken towards the optimum solution at each iteration. This will ultimately 

lead to a very close approximation to the ideal solution. However, it will take a 

long time to do so. In contrast a larger step-size will ensire a rapid convergence 

towards the optimum solution, but may not get particularly close to the ideal. 

Thus in the case of a stationary input where speed of convergence is not important 

a small misadjustment can be obtained by choosing a value for ji as small as the 

precision of the processor will allow. However, for nonstationary signals, where 

speed of convergence plays a role in determining the tracking properties, it may 

be preferable to chose a large value of ,tt despite the associated penalty of a larger 

misadj ustment. 

The final criterion for judging the LMS algorithm was the issue of stability. 

In this case the algorithm scores quite well, provided the step-size is not infinites-

imally small (in which case the accuracy of the processor becomes an issue) and 

the input signal is not overly ill-conditioned then the algorithm is well behaved 

when implemented on a finite precision processor. 
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2.4 Recursive Least Squares Algorithm 

As was stated earlier, in order to obtain the optimum filter coefficients from the 

Wiener equation it is necessary to be able to evaluate both the autocorrelation 

matrix and the crosscorrelation vector. It was noted that these are rarely available 

in practice. In the RLS algorithm, rather than using approximations to the auto-

and crosscorrelation functions to minimize the mean squared error, portions of 

the data sequence are used and the sum of the squared errors is chosen as the cost 

function to be minimized. 

By analogy with the derivation of the Wiener filter the optimal filter coefficients 

can be found by replacing expectations in the case of Wiener's equation with 

summations. Thus we get 

R(n)h(n) = 
	 (2.24) 

where 

R(n) = 

	

= 	(k)y(k). 

Now one object of an adaptive filter is that it be able to update estimates for 

the values of the coefficients as new data samples become available. Rxx  and 

can each be updated as follows 

	

R(n) = 	- 1) + x(n)xT(n), 	 (2.25) 

	

= 	- 1) + x(ri)y(n). 	 (2.26) 
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Using equation 2.26, equation 2.24 can be rewritten as 

R(n)/(n) = R(n - 1)L(n - 1) + .(n)y(n), 

and then using equation 2.25 yields 

= {R(n) - (n).T(n)] /?(n - 1) + (n)y(n), 

which can be rewritten as 

A(n) = L(n - 1) + li(n)(n)e(n), 

where e(n) is the a priori error given by 

e(n) =y(n) — i T (n - 1)(n). 

The only thing remaining is to determine a method for updating the inverse of 

&(n). Fortunately this can be done using the matrix inversion lemma [40, 41] 

and applying it to equation 2.25. The complete RLS algorithm is then given in 

the table below. 

e(n+1) 	=y(n+l)_iT(n)(n+l) 

h(n+1) 	=h(n)+R;(n+1)x&n+1)e(n+1) 

R; (n) 	R-' (n) 
R;(n+1) =R;(n)— 

1 + T (n)R;(n).(n) 

As with the LMS algorithm in the previous section, the RLS algorithm must 

now be judged against the criteria laid out in the introduction to this chapter. 

Once again the first issue is computational complexity. It is possible to implement 

the algorithm so that it uses 2.5rn 2  + 4m multiplications and additions. However 

for reasonably long filter lengths the fact that the complexity increases with the 

length squared can present problems. Obviously the exact filter length at which 

implemntation becomes problematic depends on the processor being used. Howev-

er, by the time ten taps are being used each iteration requires 290 multiplications 

and additions. This may be considered unacceptable, especially when considering 

the LMS algorithm would only require eleven such operations. 

The next criteria to be addressed are the related issues of convergence and 

tracking capability in a nonstationary environment. For the former it has been 
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shown [1] that if the RLS algorithm is implemented as given in the previous table, 

then it will converge in about 2m iterations, where m is the filter length. 

When we turn to the issue of tracking capability things become a little more 

complicated. In order to facilitate tracking it is neccessary to introduce a so-

called "forgetting factor" into the algorithm. The idea here is that more emphasis 

is placed on recent data than on data in the distant past. A common way [1] 

of introducing the forgetting factor is to modify the cost function to include an 

exponential function. Thus the cost function becomes 

	

(n) = 1: A k-, e2 (k) 
	

(2.27) 

If this cost function is used in place of the original, unwindowed one, then only 

one equation of the RLS algorithm needs to be modified, namely the equation for 

updating the inverse autocorrelation matrix. This becomes 

R; (n)x(n)x T  (n)R; (n) ) 
R;(n +1 ) 	(R;'(n) - 

A 	+ xT(n)R;(n)x(n) ). 	
(2.28) 

Thus by introducing an exponential forgetting factor, the computational com-

plexity remains essentially unchanged. Unfortunately this is the only criterion 

which remains unaffected once windowing is used. 

In the case of the unwindowed algorithm ( A = 1.0 ) it has been shown [42] 

that as n - oo the least squares solution realizes the optimum Wiener solution. 

However, as soon as A < 1, noise appears on the filter coefficients (regardless of 

whether the filter is operating in a stationary or a nonstationary environment) 

and as with the previous section a misadjustment factor must be introduced. 

This can be quite complicated, involving up to fourth order statistics of the input 

signal [22], but in the cases where A > 0.9 the misadjustment factor, M, can be 

approximated [22, 1] to 

M)AN ,  
1+A 

(2.29) 
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where once again N is the filter order. Now 1/1 - A provides a rough measure 

of the "memory" of the RLS algorithm. (Where memory can be thought of as a 

measure of how many previous data points have an influence on current events. 

Thus the case A = 1.0 corresponds to an infinite memory since all data in the past 

are weighted equally to the current datum and consequently none can be ignored 

or "forgotten".) So for fast adaptation (that is a short memory) there will be a 

penalty of a large misadjustment factor. Indeed it should be intuitively obvious 

that there will be a trade-off between speed of adaptation and the accuracy of the 

result thus obtained, as was the case with the LMS algorithm. 

If the filter is operating in a nonstationary environment then, in addition to 

the misadjustment outlined above, there will be another excess error source which 

is known as the "lag error". This occurs because by the time the filter coefficients 

have converged (as far as they are able to under the influence of the normal 

misadjustment factor) to the optimum solution at a particular instant, then due 

to the time-varying nature of the system the optimum solution itself will have 

changed. It can be shown [22] that the lag error is related to the variance of the 

source of nonstationarity, to the power of the input signal and to the length of 

the memory of the RLS algorithm. Since the other source of misadjustment, see 

earlier in this section, is inversely proportional to the length of the memory, there 

will once again be a trade-off to be made. The time constant associated with the 

lag-error is 

1 
T 1A (2.30) 

It should be noted that both this and the time constant associated with the 

ordinary misadjustment are independent of the eigenvalue spread of the input 

signal. This is in contrast to the case of the LMS algortihm. Thus the tracking 

capability of the RLS algorithm will always be at least as good as the tracking 

capability of the LMS algorithm. 

The final consideration is that of numerical stability. If either the original or 

the windowed version of the algorithm is examined it is apparent that one of the 

most important steps in the algorithm involves either the explicit or the implicit 
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inversion of an N x N matrix. As such this makes the algorithm particularly 

vunerable to numerical instability, especially in the case of A < 1. Many sug-

gestions have been made as to methods to overcome this, the more successful of 

which will appear in subsequent chapters of this work. 

Having reviewed both algorithms the next section will compare them and 

highlight their strengths and weaknesses. 

2.5 Conclusions 

Having reviewed both the LMS and the RLS algorithms all that remains now is 

to compare their properties and to see which, if either, of the algorithms offers 

the most promising way forward towards the aim of designing algorithms suitable 

for tracking nonst ationary signals. 

Firstly let us consider the LMS algorithm, this offers the major advantage 

that it is comparatively simple to implement. It is also robust in that when the 

algorithm is implemented on a finite precision processor there is little tendancy for 

round off errors to accumulate and to cause divergence away from the theoretically 

predicted results. The major downfall, however, of the LMS algorithm is that 

in the case of stationary input signals the algorithm is slow to converge to its 

optimum filter values and this is further compounded by a dependence of the 

convergence rate on the eigenvalue spread of the input data. Such problems with 

the convergence rate are a distinct handicap in an algorithm which is to be used 

for the tracking of a nonstationary signal. 

Let us now consider the major alternative to the LMS algorithm, the RL-

S algorithm. In contrast to the LMS algorithm this has very good convergence 

properties in the case of stationary input data, and hence will have associated 

desirable properties when used in a nonstationary environment. The indepen-

dence of convergence from the eigenvalue spread of the input data is also a useful 

property. So as far as tracking and convergence properties are concerned the RLS 

algorithm seems to be more worthy of consideration than does the LMS algorith- 
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m. There are however various problems to be overcome. The first is the issue of 

computational complexity. The RLS algorithm has a complexity of 0(m 2 ) - this 

is in sharp contrast to the LMS algorithm which has complexity of only 0(m). 

This is a major disadvantage if the interest is in obtaining anywhere near real-

time processing. Steps have been taken to reduce the computational complexity 

with so-called "fast" RLS algorithms [43, 44, 45], in which case it is possible to 

obtain an RLS algorithm with complexity 0(m). These, however, add to what 

is already a problem with RLS algorithms, that is the tendency of the RLS al-

gorithm to go unstable when implemented on a finite precision processor. What 

is more alarming is that this tendency is present even when the input data is 

well-conditioned. 

Attempts have been made to produce stabilized fast RLS algorithms and have 

have accomplished this with varying degrees of success. Some rely on so-called 

"reinitialization" where certain internal variables are identified and when they 

diverge beyond predetermined limits the algorithm is halted and then restarted 

with many of the variables reinitialized (hence the name of the technique). In 

doing this there is a slight increase in computational complexity, but more sig-

nificantly there can be a substantial reduction in tracking spped [1]. The latter 

problem makes this technique unsuitable for tracking in a nonstationary environ-

ment. Other stabilization attempts include using "square-root free" versions of 

algorithms which, as the name suggests, involves formulating an algorithm with-

out the use of square roots. The motivation behind this is that square roots can 

be a) computationally expensive and b) awkward to use. However it has been 

shown [46] that rather than eliminating numerical instabilities, these algorithms 

merely delay their manifestation. More succesful attempts at stabilization have 

been performed in two ways. The first of these is the use of "redundancy" which 

involves the calculation of a variable in more than one way, compares the two 

different values of the variable and uses the finite difference between them to the 

control the build up of errors which is inherehnt in unstable algorithms. The sec-

ond succesful method is based on QR-decomposition of the data matrix [47]. This 

is performed by using some form of data-dependent transformations which result 

in orthogonal triangularization of the data. Both methods have their supporters 



and discussion is current in the literature as to which, if either, offers the best 

way forward for real applications. 

Despite the deficiencies outlined above, the desirable properties of convergence 

and tracking of the RLS algorithm make it an algorithm worth considering for 

tracking nonstationary signals. A major part of this thesis will be concerned with 

the development of a variant of the RLS algorithm which has a much reduced 

computational complexity. More importantly, the variant will be developed in 

such-a way that it has increased numerical stability even when implemented on 

finite precision machines. 

Before developing such an algorithm however, the next chapter offers an alter-

native way of examining algorithm design. Rather than just considering a specific 

algorithm the alternative of using a generic algorithm which encompasses several 

classes of algorithm is considered. Using such a generic algorithm it will be es-

tablished whether it is possible to develop an algorithm which tracks in a more 

efficient way than those already exisiting. 
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Chapter 3 

A Generic Adaptive Algorithm 

3.1 Introduction 

In the previous chapter a review of some adaptive algorithms was carried out, 

with particular attention being paid to the RLS and LMS algorithms. In this 

chapter the emphasis is changed and rather than look at individual classes of 

algorithm, a generic algorithm is developed which contains the characteristics of 

several classes including the RLS and LMS algorithms. In developing such a 

generic algorithm hyperparameters [24, 48, 49, 50, 51] will be used. This will lead 

to the development of so-called hypermodels and to a generalised methodology 

for the design of adaptive algorithms. Within this framework particular attention 

will be paid to the interpretation of hyperparameters in a modelling environmemt. 

Before examining the issue of hyperparameters and their use in algorithm 

design, autoregressive (AR) modelling will be reviewed. Spectral estimation under 

the assumption of an autoregressive model will also be examined. It will be shown 

that in order to model a time-varying system it may be necessary to allow the 

coefficients of the AR model to vary in some constrained manner. With this in 

mind hyperparameters will be introduced and it will be seen that hypermodels 

can be used to describe the evolution of the time-varying coefficients. Once this 

connection has been established a method of modelling a time-varying system will 

be developed with the aim of estimating its spectral content. This model will be 

based on an autoregressive model with time-varying coefficients. It will be shown 

that such a method can track time-varying signals with considerable success. 



3.2 Autoregressive Modelling 

The issue to be addressed throughout this thesis is how to design adaptive algo-

rithms for use in a time-varying environment. A typical use of such an algorithm 

would be the modelling of a time series itself. If this is the case then a tried 

and tested technique is to fit an autoregressive model to the data. Autoregressive 

models form an important class of linear models in which the current input is as-

sumed to consist of a linear combination of previous inputs. This can be expressed 

mathematically as, 

rn 
x(n) = —ckx(n - k)+ 6f(). 	 (3.1) 

Here x(ri) is the current input and x(n - k) are the previous inputs. The ck are 

the model coefficients, the numbers by which the previous inputs are multiplied, 

and m is the model order which determines how far back in time previous inputs 

have an influence on the current input. Throughout the course of this work, unless 

stated otherwise, e' (n) will be assumed to be a Gaussian- white noise with zero 

mean. Whilst this assumption may not be valid in every case it has nevertheless 

worked well in the cases examined. 

Such an mth order AR. process is defined by the characteristic equation 

1 +ciz-1  +c2z 2  + ...Cm Z_ m  = 0 
(3.2) 

To ensure the asymptotic stability of the process it is necessary that the rn roots 

of this equation lie within the unit circle of the z-plane, that is each of the roots 

must have a magnitude less than one. 

If a model of the form equation 3.1 is used then the parameters of the model 

must be evaluated. These parameters are m, the model order, c,, the coefficient 

values and €, the Gaussian noise (more specifically it is the value of the variance 

of the noise that must be calculated). 
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If, for the moment, the value of rn is considered to be fixed (the question of 

how to calculate it will be addressed later) then the two remaining issues are the 

calculation of the noise variance and the calculation of the AR parameters. To 

calculate these the method of maximum likelihood is used. 

3.2.1 Maximum Likelihood Techniques 

Maximum likelihood estimation is a technique found in statistical methods. The 

aim is to find the best choice of a parameter from a given family of parameters. 

Suppose that there is a family of variables 0 so that the probability density function 

p(x I 0) of the random variable x can be formed. The parameter of interest in this 

case is 0 rather than x so p(x I 0) can be viewed as a function of 0 rather than of 

x. In this case the probability density function is known as a likelihood function. 

The likelihood, or more often the log likelihood, can be maximised and the value 

Ô of 0 for which this maximum is achieved can be regarded as the best choice for 

0. 

Having evaluated the parameters ck and a 2 , using maximum likelihood tech-

niques as outlined above, the only choice remaining is that of the model order. 

This is an important choice as, in general, if too low a model order is selected the 

spectrum obtained will be highly smoothed, but on the other hand if the model 

order selected is too high there will be spurious low-level peaks in the spectrum 

[52]. A typical method for determining m is to start by specifying a minimum and 

a maximum value for m, the value of these limits can be set heuristically based 

on experience, the amount of computing power available and the like. Having set 

these bounds, a complete model including calculation of the noise variance and 

AR parameters can be developed for each model order m within the limits. All 

that then has to be done is to find some performance measure which indicates 

which of all the models best fits the data of interest. Several such performance 

measures exist, the one used in this work is Akaike's Information Criterion (AIC). 
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3.2.2 Akaike's Information Criterion 

The problem here is to decide which model provides the best fit to the data, given 

various models with different model order m. In his 1974 paper Akaike proposed a 

solution to this problem [53, 54]. Akaike observed that the log likelihood function 

of a parameter, which was discussed earlier, is a quantity which is very sensitive 

to small variations of that parameter around its true value. Suppose that the aim 

is to model a random variable with probability density function g(x) based on 

N independent observations x 1 ,.. . , XN. If the variable 0 corresponds to different 

models of g(x) then there is a family of density functions f(x I 0) which model 

g(x). The average log likelihood of the density functions is given by 

10). 	 (3.3) 

As N -* co the likelihood tends to 

S(g;f(. I 0)) 
= f g(x)lnf(x I 0)dx. 	 (3.4) 

It is this mean log likelihood which is a very sensitive measure of small devia-

tions of f(x I 0) from g(x). The difference between the actual probability function 

and its model is always zero or positive and is given by 

I(g; f(. I 0)) = S(g; g) - S(g; f(• I 0)). 	 (3.5) 

From this it should be clear that the best fit model will be the one which 

maximises S(g; f(. 0)), that is a model which maximises the mean log likelihood. 

The full information criterion to be maximised is given by 

AIC = —2 ln(L) + 2k, 	 (3.6) 

where L is the likelihood function and k is the number of parameters to be esti- 

mated. Details of this, in particular the reason for the factor 2 and the addition 

of 2k can be found in [53]. It should be noted that this formula is often misquoted 
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with k replacing 2k. This is incorrect and has often lead to authors claiming 

disappointing results when using the AIC. 

There is one major problem with the AIC and that is that it is not a consistent 

criterion so it does not select the true model with probability approaching 1 as 

n —* oo. To overcome this other information criteria which are consistent have 

been proposed [55, 56] but in practice they all give similar results. Thus it was 

decided as in the work of Kitagawa and Gersch [48, 57], that the Akaike informa-

tion criterion should be used. Having evaluated all the parameters the model is 

complete. 

3.2.3 Autoregressive Modelling with Time-varying Coef-

ficients 

Now suppose that the input signal is varying with time, as indeed is the case 

of interest. A completely natural step then is to replace ck with ck(rI) that is 

autoregressive coefficients which are permitted to vary with time [57, 58]. It 

may also be advantageous to allow the Gaussian noise to become time-varying by 

permitting its variance to vary with time. If these steps are undertaken then a 

new time-varying model of the form 

x(n) = 
—

Ck(fl)X(fl — k) + €f(), 	 (3.7) 

can be introduced. 

Now it is possible that each ck will be different at each time instant. If similar 

techniques to those described in previous sections were to be used to evaluate the 

ck(n) the problem would rapidly become intractable. So instead the approach 

taken is to constrain the values which each ck(n) can take. The method chosen 

to do this was to attribute to each Ck(n) some form of model. It is apparent that 

this is perfectly reasonable because if a model can be assumed for the actual data 

there is no reason that a model should not be assumed for the coefficients of that 

model. 
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Since an autoregressive model is being used for the data themselves a possible 

model for the coefficients could also be autoregressive. That is let the model 

describing the coefficients be of the form 

Ck(fl) = - r bCk(n - j) + Sk(fl). 

It is assumed that the b3  are constant. Of course it is perfectly possible that 

they may be time-varying, but if this were the case a model would have to be 

assigned to them, and such modelling could continue indefinitely. Instead the b3  

are constrained so that the ck(n)  are described by a rth order difference model of 

the form 

V T Ck(fl) = Sk(Th) 	 (3.9) 

where V  is the difference operator defined by 

Vck(n) = ck(rl) - Ck(fl - 1), 	 (3.10) 

thus the first order equation will be 

Ck(fl) = Ck(fl - 1) + Sk(Ti), 	 (3.11) 

the second order 

Ck(Th) = 2ck (n - 1) - 	- 2) + &(n), 	 (3.12) 

and so on. This type of constraint was first developed in [59] and is used in 

[60]. 

The first order equation is that of a random walk. The second order difference 

equation can be rewritten in the form 

ck(rt) - Ck(Ti - 1) - w = Ck(fl - 1) - Ck(fl - 2) - w + 6k(n) 	 (3.13) 
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and if we define ak(n) by 

	

ak(n) = ck(n) - ck(n - 1) - w, 	 (3.14) 

then equation 3.12 can be rewritten as the pair of equations 

	

Ck(fl) = Ck(fl - 1) + ak(n) + w 	
(3.15) 

ak(n) = ak(n - 1) + 6k(fl). 

Having done this if we define a state vector (n) by 

(

Ck(fl) 

Ck(fl-1) ) 

then the linear difference model for the coefficients can be represented in the form 

of a state transition equation 

	

x(n) = Fx(n - 1) + Gu(n), 
	 (3.16) 

where 

	

12 —11 	Iii 
F = 	) I 	G = I 	I u(n) = 5k(n). 

1 	0 	 0) 

This enables time-varying coefficient models to be written in the form of a state 

space model which will be used subsequently. So it has been seen that in order to 

model a time-varying data sequence it is possible to use an autoregressive model 

in which the AR coefficients themselves are permitted to vary with time. Having 

reviewed AR modelling, spectral estimation will now be examined with partic-

ular emphasis on the intepretation of power spectral density in a nonstationary 

environment. 
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3.3 Spectral Estimation 

Until recently spectral estimation has usually been performed using some form 

of fast Fourier transform (FFT) [61]. In most cases the data sequences from 

which spectral estimates are to be formed are of a finite length and thus there 

are problems in frequency resolution. Resolution can be thought of as a measure 

of how close together in frequency two signals can be before they merge and are 

indistinguishable. In an attempt to overcome these resolution limitations modern 

techniques were developed. The particular class of modern techniques of interest 

here is referred to as "parametric" spectral estimation. In this case it is assumed 

that the time series to be analysed is the output of some unknown filter system, 

the input to which is a white noise sequence. The most straightforward filter 

structure to consider is an autoregressive one similar to the one examined in the 

previous section. 

Here, as before, x(n) = 	 - k) + ef (n). Then H(z), the transfer 

function of the filter, is given by 

(3.17) 

where 0(z) is the transformed output signal and 1(z) is the transformed input 

signal. Now the white noise input to the system can be thought of as 

= x(n) + 	ckx(n - k), 	 (3.18) 

transforming this to the Z-domain gives [52, 62, 63] 

E(z) = X(z) + 	CkX(Z)Zk 	

(3.19) k=1 
m 

= X(z)(1 + 	ckz_k), 

k=1 

where X(z) is the output signal. Thus 
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X(z) 
H(z) = 

X(z)(1 + mE  CA; z_k)  

k=1 	 (3.20) 
1 

M 

= 1 + CkZ_k 

k=1 

is the transfer function of the filter. 

As well as the transfer function of the filter another quantity which will be 

useful is the transfer function of the inverse filter. The inverse filter is the one 

which takes the signal x(n) as its input and produces at the output a whitened 

signal Ef(n).  So if H(z) is as given above then 

rn 
H 1 (z) = 1 +Ck z_ k  1   (3.21) 

With this in mind it is possible to produce an estimate of the power spectral 

density of the desired signal. This can be done by utilizing the Wiener Khintchine 

relation [20, 64] which relates the power spectral density (PSD) at the output of a 

digital filter, S(0),  with transfer function H(z) to the PSD at the input, S(0). 

In this case the input PSD is the desired power spectral density and the output 

PSD is the PSD of white noise. That is S(27rf) = 0,2  where U2  is the variance 

of the white noise. The transfer function of interest is H(z) as given above. 

The Wiener Khintchine relation is 

S(0) = 	 (3.22) 

substituting into the equation the definition of the various quantities this becomes, 

rn 

= i + 	ckexp2 	II2S(2f) - 1/2 <f < 1/2. 	 (3.23) 

Thus if we can evaluate the parameters ck we have a method of evaluating the 

spectral content of a time series. If equation 3.23 is examined it can be seen that 

this equation is constant with time. However in the previous section it was seen 
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that in order to model a nonstationary time series ck could be replaced by ck(n). 

If this is done equation 3.18 still holds (subject to ck being replaced by ck(n)). 

However we can not use the exact methodology which follows on from that as the 

Z-transform is no longer valid. There are, however, similar methods which have 

been developed [65] and if these are used the corresponding time-varying PSD 

p(f, n) becomes 

01 
2  

p(f,n) = 	m 	 . 	 ( 3.24) 

Ill + Eck(n) exp 2irjkf  112 
k=1 

3.4 An introduction to hyperparameters and 

hypermodels 

In this section hyperparameters will be introduced and the idea of so-called hy-

permodels developed with the view to developing a generic adaptive algorithm. 

The close relationship between hypermodels and time-varying AR models will be 

examined. 

As was mentioned earlier, hyperparameters and hypermodels (which describe 

the evolution of the hyperparameters) were originally developed as a technique 

in the statistical field (specifically within the area of Bayesian analysis). Within 

that field a hyperparameter gives a measure of a belief in a prior distribution. For 

example, if it were assumed, prior to any measurement, that a given parameter 

had a normal distribution, then the hyperparameter could be the variance of that 

distribution. Here, however we are interested in modelling nonstationary time 

series. The problem is that, because the statistics of the series are varying with 

time, we have to achieve to achieve sufficient parameterization to capture both the 

locally and globally changing statistics. The way we aim to do this is to follow the 

methodology of [66]. Here the objective is to use a time-varying coefficients AR 

model and to impose constraints (more strictly we are imposing proir constraints, 

as we have no knowledge of how the coefficients should evolve) on the coefficients. 

The models for the evolution of the coefficients are white noise excited difference 
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equation constraints. So, by analogy with examples from Bayesian analysis, the 

unknown white noise variance is a hyperparameter of the AR coefficients. 

In the rest of this chapter many references will be made to the formulation of 

problems in the form of state-space models [67, 11. It is advantageous to review 

what is meant by this before proceeding further. 

3.4.1 State-space models 

State-space models deal with the description of the characteristics, both internal 

and external, of linear finite dimensional systems [68]. The aim is to use informa-

tion about the past behaviour of the system, known as the state of the system, to 

predict the future response of the system. The state-space model of a system as 

described above is given by 

Q(Tl+ 1) = F(n+ 1,n)(n) + 1 (n) 
	

(3.25) 

.(n) = H(n)c(n) + 2(). 
	 (3.26) 

c(n) is the state vector, (n) the observation vector, that is it contains the observed 

data of the system, and F(n + 1, n) the state transition matrix which relates the 

state of the system at time n and n+1. H(n) is the measurement matrix and f, (n) 

and -C2  (n) are statistically independent noise vectors. Equation 3.25 is known as 

the process equation and equation 3.26 as the observation equation, hence 1 (n) 

and 2 (n) are known as the process noise and the measurement noise respectively. 

In all cases both the state transition matrix F(n + 1, n) and the measurement 

matrix H(n) are assumed to be known. The problem is to use the observed data 

to find for each n > 1 the components of the state c(n). If i = n, where i is the 

time at which we are interested in the state and n is the time of the last available 

measurement, this is a filtering problem, if i > n a prediction problem and if 

1 < i < n it is a smoothing problem, where the terms filtering, prediction and 

smoothing will now be defined. 
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Filtering is defined as estimating the state vector at the current time based 

on all measurements up to and including the current time. Prediction can be 

thought of as forecasting and is defined as estimating the state at some future 

time. Finally smoothing is estimating the value of the state at some time in the 

past, based upon all the measurements taken up until the current time. In the 

case of smoothing there is a delay in producing the result of interest, since data 

measured later than time t are used to obtain a result about a quantity at time 

t. There is however a positive effect from this; since the data obtained after the 

time of interest can be used, the result obtained should be more accurate in some 

sense than the one obtained simply using the filtering process. 

3.4.2 A generic adaptive algorithm 

Suppose that the algorithm is formulated as a state-space problem. Then by 

combining equation 3.25 and equation 3.26 in a suitable manner at time (n - 1) 

the algorithm can be described by the equation [69] 

c(ri) = c(n —1) + WH(c(ri - 
	 (3.27) 

Here H(.,.) is a deterministic function which, together with the choce of the 

gain matrix W, determines entirely the algorithm, and X n  contains all the new 

information available at time n. (Care should be taken not to confuse H(.,.) with 

H(n), the measurement matrix in a state space model). To see how this is related 

to the RLS algorithm it is helpful to follow the development of the latter in the 

terms given in [46]. 

Consider the autoregressive model of the earlier section 

x(n) = - 	ckx(n - k) + cf(), 	 (3.28) 

then if (n) is the so-called regression vector 

(n-1)=(x(n-1),...,x(n—m) )T 	

(3.29) 
(Ci,...,cm) T , 
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equation 3.28 can be written as 

x(n) = _cTx(rt) + ef (n). 	 (3.30) 

The least squares estimate of ç  is given by 

	

(N) = MIN(c) (t1 (x(n) + QT(n - 1))2). 	 (3.31) 

Note that here a forgetting factor has been introduced so as to discount the 

influence of older measurements. This is to facilitate the tracking of time-varying 

signals. Then it is easy to derive the following, see for example [70, 46]. 

c(n) =c(n— 1)+Th 1 (n)x(n— 1){x(n)+QT(n_  1)x(n— i)} 

	

= Q(rl - 1) + R'(n) .(n - 1)e(n,Q(n - 1)) 	 (3.32) 

= Q(n - 1) + W(n)x(n - 1)e(n,Q(n —1)). 

Here the error e(n) has been written as e(n,(n - 1)) to make explicit its 

dependence on Q(n - 1). So by comparing equation 3.32 with equation 3.27 it 

can be seen that the RLS algorithm does indeed fit into the generalised algorithm 

form. 

Returning to the generalised algorithm of equation 3.27, it is also useful to 

incorporate in H the true system at time n even though the true system may not 

be available to the algorithm designer. The algorithm then becomes 

c(n) = c(n - 1) + WH((n - 1),(n);K). 	 (3.33) 

So (n) is the true system which Q(n) is aiming to track. It may be advanta-

geous to be able to model the true system and it is here that hyperparameters are 

used. Although we may not have direct access to the true system which we are 

aiming to model, it is highly likely that we will have some information about it, 

and by incorporating that knowledge into the model it may be possible to achieve 

a better estimate of the true system. An example of this can be seen by consider-

ing the autoregressive model used in previous sections. In chosing to use a model 
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with time-varying coefficients we have assumed knowledge of the system (namely 

that using only constant coefficients will produce a poor estimate). We further 

assumed that the coefficients of the AR model should themselves been generated 

by an autoregressive process. It was through making such an assumption, namely 

that the parameters of a general linear model should themselves have a gener-

al linear structure, that Lindley and Smith introduced hyperparameters [24, 71]. 

They defined hyperparameters as quantities which describe the linear structure 

of the parameters. So in the case of our time-varying AR model the coefficients 

are modelled by equation 3.9, thus the hyperparameters are the parameters of the 

distribution of the noise term [72]. 

3.4.3 Hyperparameters 

Beneveniste [49, 50] took the concept of hyperparameters and applied it to adap-

tive algorithms, in particular he developed so-called hypermodels which describe 

the behaviour of the true system (n). The first form developed was a first order 

hypermodel 

t(n) =  

where (n) is a process whose distribution depends on 

Some typical examples of first order hypermodels will now be given. 

Constant Drift 

t(ri)=t(n-1)+W(n). 

(3.34) 

(3.35) 

Here W(n) is a Gaussian white noise of zero-mean. This produces the standard 

random walk type model seen in figure 3.1 

Zero-mean Linear Hypermodel 

t(n) = L(n - 1) + 1u(At(n - 1) + W(n)), 	
36 

Re(A) 	0. 	
( . 
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Figure 3.1: Constant Drift Hypermodel 

As before W(n) is a Gaussian white noise of zero mean, it is a small positive 

parameter and Re\(A) are the real parts of the eigenvalues of A. If A = 0 the 

model reduces to the constant drift model of equation 3.35 otherwise models of 

the type illustrated in figure 3.2 are obtained for the one dimensional case. 

Jump Process 

	

t(n) = t(n - 1) + jiW(n). 	 (3.37) 

W(n) remains unchanged and follows a Bernoulli distribution that is 

PI(n = 1} = Ce 	<<1 
(3.38) 

= 01 = 1 - a. 

It is possible to allow a to depend on 	- 1). This behaviour is illustrated in 

figure 3.3 in the case of a constant a. 
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Figure 3.2: Zero-mean Linear Hypermodel 
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Figure 3.3: Jump Process Hypermodel 
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Whilst many types of behaviour can be modelled using these types of hy-

permodels there is one important class which cannot be described by first order 

hypermodels, namely oscillatory behaviour. To model this it is necessary to ex-

tend the idea of hypermodels to higher orders. The new type of hypermodels as 

given by Benveniste is 

(

T(ri) '\ ( T(n — i) 't 
1 A B ' / T(n — i) (3.39) 

(n) ) (n-1) ) + C D) k((n-1),(n))) 

where A,B,C and D are matrices of appropriate dimensions. This type of model 

should be used in multi-step schemes such as those found in [73, 74] but such 

schemes will not be considered here. In order to model oscillatory behaviours it 

is sufficient merely to consider a subclass of the above hypermodels, namely the 

linear class of the form 

(T(n) 	(T(n_1) + (A B (T(n_1) , 
	 (3.40) 

	

t(n) ) 	t(n —1)) \ C D) \ W(n) 	) 

where as usual W(n) is Gaussian white noise. With both the first and the higher 

order hypermodels it is advantageous to introduce a small parameter i to allow 

for the fact that the true system may be slowly time-varying. In the case of first 

order hypermodels the equation becomes modified to 

t(n) = (n - 1) + tK(L(n - 1),(n)). 	 (3.41) 

The higher order hypermodels can be amended in a similar fashion. 

So, in the search for a generic adaptive algorithm the idea of hypermodels has 

been introduced and it has been seen that in addition to considering the algorithm 

it is also useful to prescribe a model for the true system. In doing so the pair of 

equations 

E) = t(n - 1) + ,uK(t(n - 1),.(m)), 	
(3.42) 

c(n) = c(n - 1) + WH(c(n - 1),t(n - 1);(n)), 
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must be considered. Note that here for the sake of simplicity, only a first order by-

permodel has been used. Having introduced a generic algorithm and shown how it 

compares to the RLS algorithm we will go on to consider the pair {algorithm:hypermodel} 

and see how these can be used in a practical application. 

3.5 Development of an Algorithm for Tracking 

Nonstationary Signals 

To summarize the work of the preceeding sections, the overall aim is to produce 

an autoregressive model of a nonstationary time series. In order to do this a time-

varying AR coefficient model incorporating a hypermodel has been suggested. 

This can be summarized by 

x(n) = > 	Ck(fl)X(fl - k) + €'(n), 

VCk(n) = 

E5k(n) = 0, 

E6k(n)6(m) = 6k,j5m,n 7_ 2 (TI), 

e' (n) ' N(0, o 2 ) 

(3.43) 

So as with ordinary autoregressive modelling ck(n), the model order m, and 

f -1 (n) must be chosen. However before ck(n)  can be determined the difference 

constraint order r and the hyperparameter T 2 (n) must be chosen. 

3.5.1 Assumption of Constant Innovations Variance 

To simplify the initial presentation of this work both r2  and cr2  will be considered 

constant. In the next section this constraint will be relaxed and the algorithm 

generalized to allow for nonstationary cr2 (n). To proceed with the algorithm 

development it is advantageous to consider a state-space representation. Then 

equation 3.43 becomes 
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(n) = FQ(n - 1) + Gu(n), 

x(n) = —H(n)Q(n) + &(n), 

H(ri)=(x(n-1),...,x(n—m),O,...,O), 

(n) = (ci (n), c2 (n),. . . , ) T ,  

i-'  N(O,o), u(n) .' N(O, E), 	
(3.44) 

T 2 	0 

0 	... 

It should be noted that the variance of the noise added to each individual 

coefficient is the same for all coefficients. This is somewhat artificial and is used 

only to keep the algorithm comparatively simple. If such a scheme does not give 

statsifactory results in modelling time-varying systems then it may be possible to 

assign different variances to each coefficient in the hope of improving the fit of the 

model. Initially, however, compuataional complexity should be kept as low as is 

feasibly possible. 

Only first and second order difference equation constraints will be applied to 

equation 3.44 thus 

Fm  = (Im ) 

(21m  1m  
Fm 	

0 

Gm = (Im ) 	for r = 1, 

Gm ('-)_ 
- 

for r= 2. 
0 

(3.45) 

It will be seen that a second order model was indeed sufficient to model a 

variety of time-varying data sequences. The aim now is to compute the likelihood 

of each model specified by the orders m and r. It should be noticed that as 

a difference equation constraint has been applied to the ck(rI),  the number of 

unknown parameters will be (mr + 2); r2, 0r2  and the initial state vector. Thus 

the AIC criterion will be modified to 

AIC = —21n(L) + 2(rnr + 2). 	 (3.46) 
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Having given the state-space formulation for the equations, Kalman filtering 

and prediction techniques can be used to calculate the likelihood [75, 67] 

The likelihood can be obtained from 

	

L(r 2 ,o 2 Im,r) = f((1))U=2fLc(n)Lc(1),. . .,c(n —1)) 	
(3) 

by using the conditional marginal density, f(z(n) I z(1),. . . , z(n - 1)), of z(n) 

given z(1),.. . , z(n - 1). This marginal density is approximated by 

f(z(n) I z(1),. . . , z(n - 1)) = f f(z(n)  I x(n))f(x(n) I z(i),.. . , z(n - l))dx(n) 

	

/ 	/ 2\ 
2 -1/2 

= 	) 	v(n)_h/2exp 	
—en) 

2o2v(n) ) 

e(n) = x(n) + H(n)i(nIri - 1), 

v(n) = H(ri)v(nln - 1)Ht(n). 

Here f(x(n)IQ(n)) is the conditional density of x(n) given (n), 2(nIn - 1) is 

the one step ahead predictor of Q(n) and v(nln - 1) is its error covariance. (nIn) 

is the filter estimate and v(nln)  is the corresponding error covariance. 

In order to update the prediction and its associated error covariance Kalman 

filtering will be used. The resons for this choice will now be briefly outlined. A 

distinctive feature of a Kalman filter is that its mathematical formulations is in 

terms of state-space concepts. Also its solution is computed recursively in such 

a way that each updated estimate of the state is computed from the previous 

estimate and the new data,so only the previous estimate requires storage. Thus 

Kalman filtering fits naturally in the framework we have chosen to adopt for the 

problem formulation. 

The basic form of the Kalman filter, however, suffers from a numerical insta-

bility problem which manifests itself in the recursive calculation of the predicted 

state-error covariance matrix which, when calculated using finite precision arith-

metic, may not be non-negative definite which it is required to be. 
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Another problem which may result in the divergence of the algorithm when 

using Kalman filtering, is the inaccurate modelling of the system under consid-

eration. These two problems are fundamentally different and the resolution of 

numerical problems associated with the use of finite precisin processors will be 

addressed in subsequent chapters. Here however we are concerned with the second 

problem, namely accurate modelling. The suggested method of using hyperpa-

rameters aims to offer improved modelling of a possibly nonstationary time series 

and as such, if reasonable modelling is achieved, Kalman filtering may offer a 

reasonable method of updating the parameters of the model. 

Using Kalman filtering the algorithm can be obtained as 

Time update: 

(nfti—i) =F(n-1In-1), 	 (3.49) 

v(nn — 1) = FV(n - 1n — 1)FT + GEGT. 

Observation update: 

K(n) 	 = V(nln — 1)HT( n)[H(n)V( nn  — 1)HT(n) + 	
(3.50)  

2(nn) 	 = 2(nn — 1) + K(n)(x(n) + H(n)(nIn — 1)), 

V(nn) 	 = (I — K(n)H(n))V(nn - 1). 

Thus the marginal maximum likelihood estimate of a 2  is given by 

&2 = 1>N 
e2(n) 

 
v(n) 

(3.51) 

1( 2 m, k) = —N/2 log 27r& - N/2 — 1/2 > 	log v(n). 

Here p 2  is the "trade-off" parameter given by 

2 — It — T2 	 (3.52) 



3.5.2 Computational Procedure 

In the following, f(n) represents an estimate of the true value of a variable, f(n). 

To calculate the maximum likelihood estimate, ô 2 , of a2  the observations x(i - 

m),. . . , x(0) are needed but are not available. To get round this a conditional 

likelihood conditioned on the avaiable data, x(1),. . . , x(m), is calculated. Also 

the initial state vector 2(10) is unknown and so must be estimated. To do this 

backward Kalman filtering is performed from time N back to time M. To do this 

initial guesses at the final smoothed state and its covariance matrix are made as 

(NjN) and V(NIN). Here f represents an initial guess at the value of a variable 

f (n). Bearing this in mind the computational procedure can be broken down as 

follows. 

Specify maximum model orders M and R for the model order and the d-

ifference equation constraint order respectively. The maximum orders will 

be chosen heuristically based on the amount and type of data being used 

and the amount of computing time available (large orders will naturally take 

longer to run). 

For each different combination of model order and difference equation con-

straint (that is, for each pair (m, r) such that 0 < m < M and 1 < r < R) 

fit a time-varying coefficients AR model and compute the associated AIC. 

We now have an AIC associated with every possible combination of model 

order and difference equation constraint. 

From the list of possible AIC's pick the smallest. The combination (m, r) 

corresponding to the minimum AIC represents the best fit model parameters 

(m, r ,, ). Using these model parameters the instantaneous spectrum can be 

evaluated as follows: 

For n = N— i,. . . , 1 (that is working backwards in time) obtain a smoothed 

estimate of the state vector (nIN) given all the data x(i), . . . , x(N) using 

a backward prediction and smoothing. 
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5. Compute the estimated instantaneous spectrum for each time instant n = 

1,...,N by 

3(f,ri) = 	
2(m) 

(3.53) 
Ill + 	exp(-27rjkf)12, 

where the smoothed estimates (j, n) are given by 

	

1 	... 	0 	I 	0 

(3.54) 

	

0 	... 	1 	I 	0 

In the above procedure step 2 contains a complete modelling process for each 

combination (in, r) and can be broken down as follows: 

Make initial guesses for the final smoothed state and its associated covari-

ance matrix as (NIN) = 0 and 

C...0 

(NIN)= 	 (3.55) 

0...0 

where C is large (typically 0(106)  and then work backwards in time to 

estimate (MIM) and MIM), initial guesses for the first available data 

sample and its associated covariance. 

Set the estimate for the first sample equal to the guess for the first sam-

ple, and similarly for the covariance matrix so (MIM) = (MIM) and 

(MIM) = V(MIM) and compute e(n),v(n) using equations 3.48 for each 

n forward in time n =M+1, ... ,N. 

Using e(n) and v(n) and equation 3.51 calculate an estimate a2, for a 2  and 

hence, again using equation 3.51, calculate l(,u 2 lm, r) (recall that Z 2 	i 2 ) 

Determine A2,  the best estimate for 2,  by maximising l(12 m,r). This is 

done by using a numerical optimization routine repeating step (i), (ii) and 

(iii). 
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(v) Use maxl(2Im,  r) to calculate the AIC using equation 3.46. 

3.5.3 Nonstationary Covariance 

In this section the constraint that the noise variance is constant is relaxed. In 

order to take advantage of this, several transformations of the noise distribution 

must first be made. Suppose that there is a white noise s(n), n = 1,. . . , N and 

s(n) ' s-' N(O, o 2 (n)) with unknown time-varying variance a2 (n). Then if 2 (m) is 

defined by 

x2(m) 
= s 2 (2m - 1) + S2 (2m) 

2 
(3.56) 

This generates an independent sequence of chi-square random variables with 

two degrees of freedom. Then following the work of Davis and Jones [76, 77] the 

transformation 

t(m) = ln 2 (m) + y 
	

(3.57) 

can be made. Here y = 0.57721 is an approximation to Euler's constant. t(m) is 

a random variable which is approximately normal with E[t(m)] = in a2 (m) and 

var[t(m)] = 7r 2 /6. Since t(m) is approximately normal the use of a least squares 

procedure to estimate t(m), and hence the unknown variance U2  (2m) is justifiable. 

In trying to model t(m), an approach similar to the one for finding the time-

varying autoregressive coefficients is used. A rth order difference equation con-

straint of the form 

= w(m) 
	

(3.58) 

is applied. Here w(m) ' s-' N(0, T2). 7-
2  can be identified as the hyperparameter. 

Once again, using a state space representation, the equations can be rewritten as 

d(m) = Fd(m —1) + Gw(m) 

t(m) = Hd(m) + e(m.) 
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For example if r = 2 then 

It(m) 	1 	12 -ii 	Iii H  , 	= 11I F= 

	

G= I 	IT 	I 	. (3.60) 
Lt(m1)] 	1 0] 	[o] 	Lo 

The situation is now analogous to the situation of the previous section and 

Kalman filtering and backward smoothing can be applied to find smoothed values 

of t(nIN).  The smoothed estimate of the changing variance is then 

a2 (2rnIN) = U2 (2m - uN) = expt(mN). 	 (3.61) 

The computational procedure follows along the same broad lines as the ones 

given in the previous section although certain steps must be ammended and others 

added to allow for the extra calculations necessary. As before J(n) represents an 

initial guess at the value of a variable, f(n), and f(n) represents a smoothed 

estimate of the true value of the variable. 

Compute o 2 (n), an initial smoothed estimate of the instantaneous envelope 

from the available data x(1),... x(N) 

Specify maximum orders M, R and T for the model order, the difference 

equation constraint order and the hyperparameter model order respectively. 

For each difference combination of model order, difference equation con-

straint and hyperparameter model order (that is for each triple (m, r, t) 

such that 0 < m < M, 1 < r < R and 1 < t < T) fit a time-varying 

coefficients AR model under the assumption that U2  (n) = 1 and T2  (n) is a 

function of T and & 2 (n), the precise function r2 (n) will be detailed shortly. 

As before use e(n) and v(n) to calculate a smoothed instantaneous estimate 

of the innovations variance and compute the associated AIC. 
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5. From the list of possible AIC's pick the smallest. The combination (m, r, t) 

corresponding to the minimum AIC represents the best fit model parameters 

(rn,r, t). Using these proceed as in the previous section to calculate the 

instantaeous spectrum. 

Steps 1 and 4 are based on the procedure for calculating nonstationary variance 

outlined at the start of this subsection. Step 1 can be broken down as follows 

Find the mean of the observed data and subtract it from each sample so 

that there is a zero mean process. 

Let 

Y 2 (m) = in x
2 (2m - 1) + x 2 (2m) 	

(3.62) 
2 

Assume a second order difference equation constraint and take r2  small, 

typically O(iO) and compute 2(mlN)  then & 2 (2m - 1) = 6 2 (2m) = 

exp(2(m) +,y). 

Step (4) can be broken down in a similar manner. First it should be recalled 

[78, 79] that is v(n) is defined as the one-step-ahead predictor error (or residual) 

and r(n) is the observations prediction then the quantity 1  follows a normal 

distribution. Using this 

Let 

I v 2 (2m _1) 	v2(2m) I e2 (m) = in I 	 + 	. 	 ( 3.63) 

L 2r(2m-1) 	2r(2m)  

Again assume a second order difference equation constraint and take 7-2 

small, typically 0(10) then, 

- uN) = &2 (2mIN) = exp(ë 2 (rnN) +y). 
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In step (3) of the procedure it is necessary to choose what values to use for 

r2 (n). In the absence of any other guidelines it was decided that since the compu-

tational procedure being implemented was the same as in [48] the same function 
4T+1 

	

for r2 (n) should be used. This function was defined as 	. The exact reasons 
& 2 (n) 

for this choice of hyperparameter are never given, but it should be clear that this 

is a reasonable choice of function for the following reasons. Firstly the function 

decreases exponentially as higher hyperparameter model orders are used. Thus as 

the current coefficient depends on more previous values the corresponding impor-

tance of the noise variance decreases. Also the noise variance on the coefficients 

should be normalised by dividing by the initial guess for the innovations variance. 

The influence of this choice of r2  will be examined in the following section. 

3.6 Simulations 

It was decided to test the techniques developed in this chapter on an artificially 

generated time series; series suggested in [57] were used. Two series were gener- 

ated, the first with a slowly changing spectrum and the second with a much more 

quickly changing spectrum. 

In both cases the time series was generated by the fourth order AR sequence 

z(n) = 	ck(n)z(n - k) +(n) n = 1,...500, 	 (3.64) 

e(n) N(O, 1) and the roots of the AR operator are give by 

= 0.83 cos w i (n) *j0.83 sin 1(n), 	
(3.65) 

r3 , 4  = 0.88 cos w 2 (n) +jO.88sinw2 (rt), 

where 

"(n-100) 7ir(n-100) 	 (3.66) wi (n) = 	+ sin 2700 	w2 (n) = + sin 5400 
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Taking the Laplace transform of equation 3.64 shows that the AR operator is 

then given by 

- ci (n)s3  - c2(n)s 2  - c3(n)s - c4 (n) = 0. 	 (3.67) 

It should be noted that this is not as given in [57] where the minus signs have 

been incorrectly omitted. Then the four AR coefficients are given by 

c1 (n) =r1+r2+r3+r4 

2(0.88 cos wi (n) + 0.88 cos W2  (n)), 

C2(n) = —r 1 r2  - (ri  + r2 )(r3  + r4) - r3r4  

= _0.882 - 4 x 0.83 x 0.88 cos w i (n) cos w2(n) - 0.8362, 	
(3.68) 

C3(n) = rir2 (r3  + r4 ) + r3r4 (r i  + r2 ) 

= 2 x 0.83 x 0.88(O.88 COS w 1 (n) +0.83 COS  w 2 (n)), 

C4(n) = — r1 r2r3 r4  

= —0.83 x 0.83 x 0.88 x 0.88. 

Figure 3.4 shows the time series and figure 3.5 its spectrum. 

In the case of the quickly changing spectrum the same AR sequence was used 

but the roots were modified to 

________ = L + 	
'(n-100)

135
(n-100) ' 
	2 (n) = L + 	sin '(n-100) (3.69 270 	 ' 18 

Again figure 3.6 shows the time series and figure 3.7 its spectrum. It can be 

seen from the latter that the change of spectrum is considerably faster than in the 

first case. 

In both cases the maximum orders were as follows R = 2, M = 6 7  T = 7. 

The first simulations were based on the slowly time-varying data. According 

to the compuational procedure outlined in the previous section the first step is to 

estimate the instantaneous envelope of the data. This was done and the results 
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Figure 3.4: Slowly Changing Input Time Series 

Figure 3.5: Slowly Changing Input Spectrum 
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Figure 3.6: Quickly Changing Input Time Series 

Figure 3.7: Quickly Changing Input Spectrum 
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Figure 3.8: Estimated Envelope of Input Time Series 

are shown in figure 3.8. By comparing this with figure 3.4 it can be seen that this 

is a reasonably good estimate of the envelope of the data. 

The next step in the procedure is to fit the AR models with different (in, r, t). 

An essential problem here is what function of t to use to generate r2 . In the 

	

work of [66] the function f(t) = 	was suggested. This function was used 
& 2 (n) 

when the time series being used was from a physical source. When applied to the 

artificially generated series it proved unsatisfactory. In order to test the actual 

algorithm before moving to the problem of choice of hyperparameters and model 

orders it was decided to use the values of the hyperparameter as suggested in [57]. 

Using these values of T 2  and determining the values of m and r via the use of 

the AIC the best fit values were found to be m = 5 and r = 2. The spectrum 

obtained is shown in figure 3.9 and as can be seen this is a reasonable estimate. 

Having established that the algorithm was working the next step was to test 

it more rigourously and to test its tracking capabilities when the input time series 

was allowed to vary quickly with time. Again the choice of hyperparameter was 
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Figure 3.9: Estimated Spectrum of Slowly Changing Series 

as in [57] and the orders (m, r) were determined by the AIC. In this case the best 

fit model was obtained with m = 4 and r = 2. This is shown in figure 3.10. For 

the interest of comparison the output spectrum in the case in = 4 and r = 1 is 

also shown, see figure 3.11. 

It is also useful to determine the importance of smoothing which adds consid-

erable to the computational complexity. To establish the role of smoothing the 

spectrum obtained without smoothing was generated and is shown in figure 3.12. 

As can be seen filtering alone provides a good estimate of the original spectrum, 

but smoothing brings the ouput spectrum to bear a much closer resemblance to 

the original spectrum. The only points where this is not true are at the end points 

where, since pre- and postwindowing have been assumed, the influence of all zeros 

outside the data range has lead the spectrum to be smoothed to almost zero. At 

these points it may be advantageous to use only the filtered output. 
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Figure 3.11: Estimated Spectrum of Quickly Changing Series, m=4, k=1 
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Figure 3.12: Filtered Estimated Spectrum of Quickly Changing Series 

3.7 Discussion of Results and Conclusions 

As has been shown by the simulations, the method of modelling a nonstationary 

time series with an autoregressive model with time-varying coefficients is able to 

yield good results even in the case of a time series with a comparatively quickly 

changing spectrum. 

In examining the results of the simulations performed we have been relying on 

"eye-balling" the graphs in order to determine whether a given model accurately 

represents a nonstationary time series. Whilst this may be sufficient for a pre-

liminary assesment of whether the technique is valid it is not satisfactory for full 

validation of the method. If more detailed simulations were to be run a quantative 

method would have to be defined in order to assess which model offers the better 

representation of a given time series in the case of two models which produce 

graphically similar results. The use of hyperparameters when using a difference 

equation constraint has been examined and the use of these incorporated into an 
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algorithm. There are however a number of issues which remain unresolved. The 

most important of these is the choice of function of t to use as the hyperparam-

eter. It has already been seen that the choice of function suggested in [48] is 

data specific and up until now our choice of r has been based on trial and error. 

This is a matter of considerable complexity requiring an in depth knowledge of 

the field of statistics and in particular stochastic processes. Such a choice would 

also have to be accompanied by an examination of its optimality and Bayesian 

admissability. It was felt that the literature did not offer sufficient guideline as 

to which way to continue with this work. Also the advantages to be gained by 

pursuing this technique in terms of slight improvements in alrady adequate mod-

els would be far outweighed by the cost in terms of the time required to study 

stochastic techniques etc before being able to examine fully the issues which need 

to be addressed. Rather than pursue this further alternative algorithms will now 

be sought. 
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Chapter 4 

The Adaptive Forward Backward 

Least Squares Algorithm 

4.1 Introduction 

In this chapter as before we are interested in the estimation of the changing 

spectrum of a nonstationary time series. The approach taken is still to form an 

autoregressive model of the data and to use its coefficients to form an instanta-

neous estimate of the spectral content of the data. However now to estimate the 

coefficients of the AR model the sum of the forward and backward error powers 

is minimized. This is in contrast to the technique used in the majority of cas-

es, including that given in the preceeding chapter, where only the forward error 

is minimized. The reason for this new choice of minimization criterion will be 

explained later. 

An algorithm which permits the calculation of the coefficients based on the 

minimization given above will be presented. It will then be shown that if ad-

vantage is taken of certain properties of the covariance matrix it is possible to 

reduce significantly the computational complexity of the algorithm. Finally a for-

getting factor will be introduced which will permit the algorithm to work in a 

nonstationary environment. 



4.2 The Forward Backward Least Squares Al-

gorithm 

The major problem is now to estimate the coefficients in a computationally effi-

cient manner. This is a well studied problem [48, 80, 81, 57, 82] and most attempts 

to seek its solution follow one of two directions, either the recursive least squares 

algorithm or a gradient search method. As was recalled in chapter 2 recursive 

least squares algorithms have been studied in great detail as they lend themselves 

to the development of so-called "fast" techniques. That is, it is possible to use 

certain properties (usually symmetry properties or shift-invariance) of quantities 

in the algorithm to facilitate a computationally efficient implementation of the 

algorithm. Take, for example, the input data matrix Xm (M, N) 

x(M + in - 1) x(M + in - 2) ... x(M) 

Xm (M,N) 
x(M+m) 	x(M+in-1) ... x(M+1) =  

x(N) 	x(N - 1) 	... x(N - m + 1) 

It can be seen that all the elements on the leading diagonal are equal. Not only 

that, but all elements on diagonals parallel to the leading diagonal are also equal. 

A matrix which exhibits these properties is said to be Toeplitz, see eg [19, 75, 1]. 

Because of this property any calculation using a particular row of the matrix can 

be performed equally well by replacing the current row by a time-shifted version of 

the previous row with the last element discarded and a single new element added 

at the front. If full use is made of this and similar properties it is possible to 

reduce substantially the computational complexity of the algorithm. 

It should be recalled that the recursive least squares algorithm seeks to formu-

late and minimize the forward prediction error energy. So if the forward predictor 

is of the form; 

x(n) = 	CkX(flk)+cf . 	 (4.2) 
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Then the forward prediction error is given by 

ef =x(n)+ckx(n — k). 	 (4.3) 

In an attempt to improve the spectral resolution Burg developed an alternative 

algorithm, see e.g. [83, 1]. In this a lattice filter model was proposed which 

rather than using just the forward prediction error, used the sum of the mean-

squared values of the forward and backward prediction errors as the quantity to 

be minimized. An important facet of the Burg algorithm is that it exploits the 

decoupling property associated with a multistage lattice predictor. This property 

only holds when wide-sense stationarity is assumed. If this is not the case then 

there may be problems with frequency bias, in which the peak of an estimated 

spectrum may be misplaced by as much as 16%, and line-splitting. The latter 

typically occurs when the signal to be analysed is an odd number of quarter 

cycles long and has an initial phase of 45° [84]. Line-splitting manifests itself as 

two or more closely separated peaks where only one should be present. 

In an attempt to overcome the above mentioned problems the FBLS algorithm 

was introduced [82, 85, 86, 87]. Here the sum of the squared norms of the forward 

and backward errors is to be minimized. Since the minimization is basically a least 

squares problem no assumptions are made concerning the statistics of the input 

signal. Because of this, the FBLS algorithm should not suffer from the problems 

which arise from the assumption of wide-sense stationarity inherent in the Burg 

algorithm. 

4.2.1 Formulation of the Forward Backward Least Squares 

Algorithm 

We shall now formulate the algorithm. Consider a data sequence x(M), x(M + 

1),... , x(N). We wish to estimate the spectrum of this sequence. Assuming an 

autoregressive (AR) model of order m for the data the forward and backward 

errors can be formulated as 
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ef = x(n) + ckx(n - k) 	M + m < n < N, 

(4.4) 

rn  fb=x(nm)+ckx(nm+k) M+m<n<N. 

Collecting these over the observation interval [M + m, N] yields the vector 

form of the equations; 

E(M, N) = m (M + m, + Xm (M, N - 1)J m5  
(4.5) 

4(M,N) 	m (M,Nm)+X m (M+1j'T) m , 

where 

f(M, N) = [€f(M), €f (M + 1),.. . , 

(M, N) = [€b(M) ,  Eb(M + 1),... , €b(N)]T, 	 (4.6) 

m (M,N) = [x(M),x(M+1), ... ,x(N)]T, 



M+m-1) 

X m
(M,N) = x(M+m) 

x(N) 

x(M + m - 1) x(M + m - 2) ... x(M) 

= x(M + m) 	x(M + in —1) ... x(M +1) 

x(N) 	x(N - 1) 	... x(N - m + 1) 

T 
Cm 	= [Cm , Cm_i,.. . , ci ] 

=[x(n),x(n-1),...,x(n—m+1)] T  

and J is the exchange matrix defined as 

JJm  

1 ... o ... o 

which has zeros everywhere except on the off-leading diagonal which contains all 

I's. J has the effect of reversing the order of rows and columns. More specifically 

if a row vector is post-multiplied by J the order of its components will be reversed. 

Similarly the order of the elements of a column vector can be reversed by pre-

multiplying it by J [88]. 

Now as stated previously the aim is to minimize the sum of the squared norms 

of the forward and backward prediction error energies. That is we wish to minimize 

(4.7) 

(4.8) 
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+ m,N)11 2  + I(M + m, N)
11 2 

 

(4.9) 

ff M + m,N)T(M  + m, + (M + m,N)T(M  + rn, N) 

with respect to the vector of AR coefficients n (n). Expanding equation 4.9 gives 

x(M + m,N). m (M + Tn, N) + QJ(M, N) 

+JRm (M, N - 1)JCm  + rJT(M,  N)Jcm 	
(4.10) 

+(M,N - m)m(M,N - 	 gTmrb 

+Rm (M + 1, N)Cm  + (M, N),, 

where 

Rm (M,N) = X,(M,N)X m (M,N) 

N 

= E 
k=M+m-1 

= X7 (M+ 1,N) m (M,N —m) 

= E 
k=M+m 

- 	XT(M,N - 1). m (M+m,N) m 	m 

N-i 
= 1 	.m (1C)X(1C + 1). 

k=M+m-i 

(4.11) 



R, (N) can be thought of as the deterministic equivalent of a covariance matrix 

and is sometimes refered to as the correlation matrix, although according to the 

strict statistical definition this is a misnomer. Similarly and J,(N) are 

the cross-correlation vectors between the actual inputs at time N and the desired 

responses; x(k - m) in the backward prediction case and x(k + 1) in the case of 

forward prediction. 

Now recalling that= y and xTy = y differentiating the above equa-

tions yields 

2 [JrJm (M, N) + 	M, N)J + 2[JRm (M, N - 1)J + Rm (M + 1, N)ICm = 0 (4.12) 

or 

(4.13) 
Sm (M,N) m (M,N) = 

where 

Sm (M,N) = Rm (M+ 1,N)+ JRm(M,N - l)J 	
(4.14) 

and 

m (M,1'1) 	rmb 
	

(4.15) 

Sm (M, N) can be thought of as a quantity corresponding to the sum of the forward 

and backward correlation matrices, and there is a similar correspondence between 

,(M, N) and the forward and backward crosscorrelation vectors. 

If the data are assumed to be prewindowed, that is x(n) = 0 for n <0, then M 

can be set to 0 without loss of generality and the following time update equations 

hold 



Sm (M,N) 	S. (N)
(4.16) 

Sm (N1)+Hm (N)H(N), 

where 

ft. (N) = [ m  (N - 1), m (N)I, 
(4.17) 

and similarly the update equation for &, (M, N) is 

(M, N) 	j,.(N) 

= 	- 1) + 11m (1'T)L(N), 	 (4.18) 

where 

A(N) 
[ x(N)  

= 
x(N—m) j 	 (4.19) 

It is here that the Toeplitz nature of the correlation matrix has been utilized. 

Consequently Km (N) and h(N) contain the new data which is available at time 

N. 

It is also useful to define the following matrix in the prewindowed case, 

Q,. (N) = R. (N)+ JR. (N)J. 	 (4.20) 

Qm (N) is said to be centro-symmetric, that is the following relationships hold; 

JQm (N)J = Qm (N) 

(4.21) 

JQm (N) = Qm (N)J. 
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It is useful to be able to partion the matrix Qm+i(N) and this is done as follows 

Qm+i(N) = Rm+i(N) + JRm+i (N)J, 

N 
	 (4.22) 

Rm+i(N) = 
k=M+m 

x(k) 

= 	x(k—m+1) [x(k),...,x(k—m+1)jx(k—m)] 
k=M+m 

x(k — m) 
N 	 N 

: m((1t - in) 
k=M+m 	 k=M+m 

N 	 N 

x(k - m)x(k) 	X2 (k - m) 
k=M+m 	 k=M+m 

Rm (N) r(N) 

r(N) r(N) 

where 

Also 

N 
bo r(N) = 	X2 (k - in). 

k=M+m (4.23) 
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x(k) 

N 

JR, 1 (N)J = J E 	 [x(k),. , x(k - m + 1), x(k - in)] J 
k=M+m x(k—m+1) 

x(k — m) 

x(k — rn) 

N 	
x(k - m + 1) 

= 	i 	x(k-1) 
k=M4-m 

x(k) 

[x(k—m),...,x(k-1)Ix(k)]. 

Now, as stated earlier, pre-multiplying a column vector by J reverses the order 

of the components as does post-multiplying a row vector by J. Thus 

JRm (N1)J Jr(N) 

(4.24) 

where, 

N 

r(,1°(N)= 	X2 (k). 
k=M+m 	 (4.25) 

Thus it is possible to partition Qm (N) as 

Sm (N) 	 N)+J(N) 

Qm +i(N) = 	 . 	 (4.26) 

IT r(N) + rT(N)J r(N) + r(°(N) 
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Two more useful identities are 

Qm (N) = Sm (N) + J(N)(N), 	 (4.27) 

and 

S. (N) = Q. (N - 1) + 1.UT)(T'). 	 (4.28) 

Using these the total error energy, E(N), can be evaluated as the sum of the 

forward and backward errors: 

+ 

!IT (N)x m (N) + JRm (N - 1)JCm  + QJr((N) + r(nT (N)Jcm  (4.29) 

+m(1\T - m)(N - m) + Rm(N) m  + cr(N) + r(N)cm  

Now 

ç3 [JRm(N - 1)J +Rm (N)] m  = CSm (N)Cm  

(4.30) 

= Q3m (N) = 

Also 

~ [Jr((N) + r(N)] = rn 3m(") 

	 (4.31) 

and 

['(N)J + '(N)] m = 8(N)Cm . 	
(4.32) 
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Finally 

X(N)X m (N) + x(N - m)xm(N - m) 

N 	 N 

= >2x2(k)+ >x2 (k — m) 
M+m 	M+m 

= r(N) + r(N). 

(4.33) 

Thus 

Em (N) = r°(N) + r°(N) + m (N) m (N) 	 (4.34) 

4.2.2 Conventional Adaptive Forward Backward Least 

Squares Algorithm 

As with all adaptive algorithms the aim here is to update the parameters recur- 

sively as new data become available. In particular if the AR coefficients m('T) 

are known, then is it possible to compute the coefficients m (N + 1) in an efficient 

manner as new data become available? In order to answer this first recall that 

m(' + 1) is specified by 

Sm(N+1)C m (N+1) 	m('/+ 1 ). 
	 (4.35) 

Using equations 4.16 and 4.18 this becomes 

[Sm (N) + 11m (1V + 1)ft(N + 1)] m(V  +1) 
= 	 (4.36) 

- [ m (N) + iIm (N + l)h(N +1)]. 
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or after rearranging 

m (N + 1) = m(N) - S 1 (N)Hm (N + 1)x 

[i[(N + 1)Cm (N + 1) + h(N + 1)] 

(4.37) 

Qm( + 1) = m(") + WITh (N + I)cc 	+ 1), 

So m(' -I- 1) is equal to fm (1V) plus an error term. Wm (N + 1) is a gain vector 

and f(N+ 1) an a posteriori error. At this stage it should be noted that S, (N), 

the sum of the forward and backward correlation matrices, must be inverted. It 

is ofcourse possible that Sm (N) will be non-invertible, for example if Sm (N) is 

not of full rank, and in that case the algorithm will go unstable. Further, if the 

matrix Sm (N) was only just positive definite so that its determinant is very small, 

it is possible that implementing the algorithm on a finite precision processor may 

cause round-off errors which render Sm (N) non-invertible. In this development, 

however, we will consider only the case where the input data are well-conditioned 

and Sm (N) is invertible. The above equations can be rewritten more precisely as: 

Wm  (N+ 1) = S 1(N)Hm (N + 1) = {pj(N),w(N + 1)], 

w (N) 	- - 	 - (4.38) 

(N +1) = S 1 (N)X m (N + 1), 

and 

N + 1) = ft(N + 1)Cm (N + 1) + h(N + 1). 
(4.39) 

Unfortunately the above equation contains m(\T + 1), which is the quantity 

sought, this equation must thus he modified to eliminate _m (1 + 1) as follows: 
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N + 1) = 	+ i)[c,(N) + Wm (N + 1)(N + 1)] + h(N + 1) (4.40) 

or 

c(N + 1) = L_1(N + 1)(N + 1), 	 (4.41) 

where 

e(N + 1) = 1(N + 1)cm (N) + h(N + 1) 

X(N)JC m (N) + x(N + 1) 	 (4.42) 

1(N+1)Cm (N)+X(N+1 —m) 

and 

L m (N + 1) = 12 - f[(N + 1)Wm (N + 1). 	 (4.43) 

Now if JQm (N) is viewed as the forward predictor at time N and m (N) is the 

corresponding backward predictor then cc (N + 1) as given by equation 4.42 can 

be thought of as the vector of forward and backward errors at time N + 1. 

So having successfully updated the AR coefficients ,,,(N), the only quantity 

remaining to be updated is the total squared error. This can be updated as follows 

E(N+1) =r(N+ 1)+r(N+1)+c(N+1)sm (N+1). 	(4.44) 

Using equations 4.11 to replace r(N) and r(N), and then substituting for 

c(N + 1) and im (N + 1) the total squared error becomes: 
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r((N)+ x2 (N + 1) + r°(N) + x2 (N + 1—rn) +(N+ 1) m (N+ 1) 

= r((N) +r(N)+ hT(N+  1)h(N+ 1) +c(N+ 1)x 

[ m (N) + ulm (N + 1)h(N + 1)] 

= rmfo 	+ r'0(N) + (N)Am 	+ c'(N + 1)W(N + 1)S m (N) 

+€(N + 1)h(N + 1) 

or 

E,(N +1) = Ecn 	+ E' (N + 1)e(N + 1). 	 (4.45) 

Once again, the current total squared error is equal to the previous squared error 

plus a correction term. 

The algorithm as it is given above is 0(m 3 ). The most costly step in terms of 

computational complexity is equation 4.38 where a matrix inversion is required. 

To overcome this the matrix inversion lemma [40] can be used. This is given as 

[A + BC]' = A 1  - A 1 B(I + CA 1 B)'CA 1 , 	 (4.46) 

where A, B and C are matrices of appropriate dimensions. Now from equation 4.16 

S,. (N)= S. (N-1) + 11m (N)t1(N) 
	

(4.47) 

and applying the matrix inversion lemma to this with A = Sm (N1), B = flm (N) 

and C = H(N) yields 
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S 1 (N) = S 1 (N - 1) - S 1  (N - 1)ftm(N)X 	
(448) 

[I 
+ f1(N)S ? 1 (N - 1)fIm (N)] 1 11m (N)8 1 (N - 1). 

Substituting S 1 (N) = Pm (N) and using expressions 4.38 and 4.43 gives, 

Pm (N) 	= P. (N -  1) - Wm (N)L 1 (N)W(N), 

(4.49) 

W,,,, (N+1) = Pm (N) ft. (N + 1). 

By introducing the quantity Pm (N) and using the matrix inversion lemma the 

computational complexity has been reduced from 0(m 3 ) to 0(m 2 ). The conven-

tional algorithm is summarized in the table below. 

Conventional Adaptive Forward Backward Least Squares Algorithm 

P. (N)= Pm (N - 1) - Wm(N)L;1(N)W(N) 

Wm  (N +1) = Pm (N)Hm (N +1) 

L m (N+ 1) = 12 H7 (N + 1)Wrn (N+ 1) 

e(N + 1) = fI(N + 1)Cm (N) + h(N + 1) 

= L-1 (N + 1)e(N +1) 

E(N + 1) = E(N) + €(N + 1)e(N + 1) 

!2m  (N + 1) =fm (N) + Wm (N + 1)c(N + 1) 

4.2.3 The Fast Adaptive Forward Backward Least Squares 

Algorithm 

In the previous section we saw that by introducing Pm  (N) it was possible to reduce 

the computational complexity of the algorithm by an order of magnitude. By using 

so called fast techniques it is possible to reduce the computational complexity yet 

further. The basic idea is to replace Sm (N) by Qm (N) and then to take advantage 

of the partioning of Qm (N) together with its symmetry properties [88]. 

The focus of attention is the equation 



Wm(N +1) = S;'(N)Hni (N +1) 
	

(4.50) 

and the aim is to find an even more computationally efficient method of solving 

this than the method given in the previous section. The above equation can be 

rewritten as 

Wm(N +1) = —S; 1 (N) [J.m(1'1 - 1),.m(N)I. 	 (4.51) 

Now if Sm (N) is replaced by Qm(N) then a new variable Ym(T)  can be intro-

duced and defined as 

Qm(N - 1)Um (N) = 
	 (4.52) 

or 

[Sm(N - 1) + Jjm('T - 1)(N - 1)J] ,,,,() 	m(1"T) 	(4.53) 

= S1(N - 1)X m (N) S7 1(N— 1)JXm(N 1)(N— 1)JUm (N) 

= 	N) + 	N - 1)c(N), 	
(4.54) 

where 

= x(N - 1)JUm (N). 	 (4.55) 
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Using methods similar to those used in the previous section for the calculation 

of m (1T + 1) it is possible to arrive at the following set of equations 

- 1) = 1 - 	- 1)Jw(N - 1) 1  

e(N) 	= x(N - 1)J(N), 	 (4.56) 

c(N +1) = L(N) 1 e(N +1) 

and 

jkm  (N)= w(N) + 1Ll. 	- 1)€(N). 	 (4.57) 

The next step is to compute 	N) recursively as 

Sm (N)(N) = 1.m(\T). 	 (4.58) 

Now 

Sm (N)W(N) = 
(4.59) 

[Qm(N - 1) + X m (N)X(N)] w(N) = 

rearranging the above equation yields 

(N) 	= 11(N —Q;(N + 1)J X m (N) - - Q 1)X m (N)X(N)(N) 

= JQ 1 (N + 1)Xm(N) - Q;1(N - 1)X m (N)X(N)W(N) (4.60) 

J m (1') + m (N) m (N)(N) q (N) 

EM 



The second line follows from JQm (N) = Qm (N)J (equation 4.21 and using the 

same methods as before the following set of equations can be derived. 

L-  (N) 	1- 

e(N) = 

(4.61) 

N) = 

= JjLm (N) +Lm (N)(1T\T) 

The next step concerns the (m+1)-dimensional column vector Lm +i( 4S + 1). 

Qm-i-i(N)!rn+i(1 T + 1) = 	m+i ('T + 1). 
	 (4.62) 

Now it has already been seen that Qm+i(N)  can be partioned, but to calculate 

Lm +i(1V + 1) will require Q,(N), so before proceeding further it is useful to 

consider a second version of the matrix inversion lemma: 

-1 

R X 	R' + WA -1 V WA' 	 (4.63) 

z 	- 	A'V 	A' 

where W = -R- 'X A = Y - ZR'X, 

(4.64) 

V = -ZR -1  

and applying this to Q,(N) yields 
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= 
S'(N) + m (N) 1 (N)Q(N) c m (N)a;1  (N) 	

(4.65) 

a;' (N)c (N) 
	

a;'(N) 

where 

a. (N) = r(N) + r(N) + (N)m(N).7n 	 M 
	 (4.66) 

So am (N) is the minimum total energy. Returning to equation 4.62 we have 

1km(' 1  + 1) = —Q;,(N + 1)X m+i(N + 1) 

m (N + 1) = —JQ;,(N + 1)X m+i (N + 1) 

= —Q; 1 (N + l)JX m+i(N + 1) 	 (4.67) 

= —Q;,(N +1) ( J(N) \ 
x(N+1)) 

Performing the multiplication yields the following (it should be noted that the 

quantity obtained is a 2 x 1 column vector but it has been written with separate 

components in each row to show how it can be written as the sum of two separate 

column vectors. 

jLm(1V +1) 

- [s;1(N) + Qrn( 	;(N '(N)] Jim  (N) 

—a;1 (N)c(N)Jx m (N) 

1+1 	IK m (1ST+1), 

[oiL] 

—c m (N)a;1 (N)x(N + 1) 

—a;1 (N)x(N + 1) 

(4.68) 
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- 	1 K m (N + 1) - EM-(N)[C(N)JXm(N) + x(N + 1)] 

(4.69) 
- 	1  e)(N+1). 
- Emc 

The last line comes from equation 4.42. 

Now 	+ 1) can be obtained by using an upper partition of M+,(N + 1) 

namely 

IXm(N+1) 	1 
(4.70) 

, L x(N - M + ]  

then 

Qm+i(1V)Lm+i(N + 1) = m+( + 1), 

(4.71) 

m+i (1'T + 1) = Q i (N) m+i (N + 1). 

Doing the multiplication yields 

Lm+i(' 1  + 1) 

- [s1(N) +m ( 	(]\f)ç  ;1F(J\f)} m(V +1) 

—a'(N)c(N)xm (N + 1) 

m(N)(N)(N - m + 1) 

—a;1 (N)x(N - m + 1) 

] 

Fcm(N)l 
- 	 1+1 

i 	i 
IKm(N+l), 

0 	L  
(4.72) 

	

1 	c(2) K m (N + 1) = —E(N)em (N + 1), 

ROK 



again the last line comes from using equation 4.42. 

The only step remaining is to show that several of the quantities derived and 

used in the algorithm are in fact related. The various relations are given below 

and their proofs can be found in Appendix A. 

(4.73) 
L,,, (N+ 1 ) 12 = L,,, (N+ 1) 21 , 

(4.74) 
L,,, (N+ 1) = L-(N) - 

Lm(N + 022 = Im (N + 1) + E(N)Cm ( + 1)eç(N + 1), 	
(4.75) 

(4.76) 
L(N - 1) = 

e(N) = Lm (N) 121 
	 (4.77) 

L(N) = Lm(N)22 - eT(N)(N). 
	 (4.78) 

Using the above identities a fast algorithm which is computationally efficient 

has been derived. The fast algorithm has a complexity of approximately 9m and 

is summarized in the table below. 



Fast AFBLS Algorithm 

Um (N) = w(N) + 1L,1. (N - 1)E(N) 

e-  (N) = X(N)JU m (N) 

= Lm(N)22 - e(N)€(N) 

6- (N) = L(N) 'e(N) 

(JV) = JUm (N) + Um (N)E(N) 

e')(N + 1) c(N)Jx m (N) + x(N + 1) 

Iq(N + 1) = 	E(N) 	+ 1) 

W 1  (N) 	Cm (N) = 	m 	+ 	K m (N+1) 
0 	 1 

K m  (N + 1) = &m+i(N + 1) m+i 

w 2 (N+1) m cm (N) 
Km(N+1) 

0 1 

e 2)(N + 1) = _E(N)K m (N + 1) 

ec(l)(N + 1) = 
e (N+ 1) 

e 2) (N+ 1) 

L,(N+ 1) = 	- e(N)(N) 

Lm(I\T + 1 )22 = 	+ 1) 	+ E(N)e m (N + I)Eec 	+ 1) 

+ 1 )21 = —x(N + 1)w(N) 

L m (IV + 1 )12 = Lm (N + 021 

e(N+ 1) = 	L m (N+ 012 

L m (N+ 1 )11 

(N+ 1) = L(N)'e(N +1) 

cc  N + 1) = L m (N + 1)_128 c c (N +1) 

Wm  (N + 1) = [w(N),W(N + 1)] 

E(1V + 1) = Emc 	+ 	+ 1)e(N + 1) 

m (1V + 1) =fm(N) + Wm (N + 1)Eç(N + 1) 

Whilst this algorithm has been shown to work well in the case of stationary 

signals, the aim is to produce an algorithm which will be able to track slowly time-

varying signals. To this end it is necessary to introduce an exponential weighting 
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factor or "forgetting factor" A and the next section will examine the development 

of the windowed adaptive forward backward least squares algorithm. 
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4.3 The Windowed Adaptive Forward Backward 

Least Squares Algorithm 

In this section we consider the introduction of a forgetting factor [89] ) such that 

o < ) < 1. The idea of a forgetting factor is that since A' > )' more emphasis 

will be placed on recent data than on data from the distant past. In this algorithm 

we shall consider weighting the data directly as in [45, 901. That is, the data 

sequence is now considered to be x(n), )x(n - 1), ) 2x(n —2),. . . , - k). The 

result of this type of weighting is that data become multiplied by an exponential 

"window" and the result of this can be seen in figures 4.1, 4.2 and 4.3. 

Because of this type of windowing it becomes necessary to introduce a second 

subscript into the vector quantities. This second subscript will be used to indicate 

the time of the latest received sample as now the value of the data sample x(n) at 

each time instant will vary due to the introduction of windowing. For example, 

we must now define 

= [)%N_nx(n) ,. . . , 	 - n + 1)], 
	 (4.79) 

as before the first subscript denotes the length of the data sequence, but now 

the second subscript indicates that the data are being viewed at time N and are 

windowed accordingly. 

The basic problem remains the same, namely the minimization of the sum of 

the squared norms of the forward and backward prediction errors. Once again 

this will yield the same basic solution 

Sm (M,N) m (M,N) = 
	 (4.80) 

But now the definition of certain internal variables will have changed to take into 

account the windowing of the data. The new variables are given below. 



I rn , N (M+m1)l 

I 	N(M+m) I 

I ,N(N) 	I 
AN-M_m+lX(M + m 1) AN_M_m+2(M  + m —2) ... AN_Mx(M) 	1 
AN_M_mX(M + m) 	AN_M_m+iX(M + m - 1) ... AN_M_ix(M + 1) 

x(n) 	 A(N) 	 ... 	 - m + 1)j 

m,N() = [AN_n x (n), AN_nx(n - 1),.. . , AN_n+mlX( - + 

Rm,N(M,N) = X, ,N (M,N)X m ,N(M,N) 

N 

= 
kM+m-i 

N 

Lrn,N(M,N) = 	
N-k+m A 	.m,N(k)X(k - m), 

k=M+m 

N-i 

! rn,N(M,N) = 	
j; ANix _m ,N(k)X(k + 1). 

k=M+m-i 

The development of the 0(m 2 ) algorithm for the windowed case follows along 

exactly the same lines as the unwindowed case reviewed in the previous section. 

The full derivation of the algorithm can be found in appendix B. Here, however 

only a brief outline is given. Once again prewindowing of data is assumed. 

Sm,N(N) =A2  Sm,N-i (N - 1) + Hm,N(N)HrN(N), 	 (4.82) 

where 



Now 

N 
'- N- 

rm,N(M,N) = 2_ 2 (k_m)X2(k - in) 
k=M+m (4.87) 

,N(N) = [ J ,N _l (N - 1), m N(N)1 	
(4.83) 

and 

= 	m,N_l(N - 1) + Hm,Nh(N), 	
(4.84) 

where 

[ 	

1 
h(1V) = 

x(N) 	

I. 

	

Xmx(N - m) j 	 (4.85) 

As before Qm ,N(N) is introduced and once again can be partitioned as 

	

F Sm,N(N) 	 T Th ,N(N) + J!: fl , 	 1 
Qm+l,N(N) = I 	

N(N) 
I . 	(4.86) 

L NN + N NJ '0rm ,N(N) + r°N(N) ] 

and 

rN(M,N) = 
k=M=m 
	 (4.88) 

where 

"2 - -" 	
(4.89) 



As before the minimum total energy is defined as 

(4.90) 
E(N) = r(N) + r(N) + (N) m (N). 

The conventional recursive forward backward least squares algorithm for the 

case of exponential windowing is given in the table below. 

Conventional Adaptive Forward Backward Least Squares Algorithm 

P. (N) Pm (N 1) - Wm(N)L;1(N)W(N) 

Wm(N +1) = Pm(N)Hm(N +1) 

uim (N+ 1) = 12 ft(N + 1)Wm(N + 1) 

e(N + 1) = ft(N + 1) m(N) + h(N + 1) 

cc N) 	= L' (N + 1)e  (N +1) 
E(N + 1) = A 2E(N) + f'(N + 1)e(N + 1) 

m( 1'T + 1) = fm  (N) + Wm  (N+ 1)(N + 1) 

There are two things worth noting about the above algorithm. Firstly only two 

of the equations are explicitly modified when using prewindowed data, although 

it should be recalled that several of the internal variables are modified. Secondly, 

in the case A = 1, that is when no exponential weighting is applied, the algorithm 

simplifies, as expected, to the original algorithm given in the previous section. 

Once again fast techniques are exploited to reduce the computational complex-

ity of the algorithm. When considering windowed data the derivation of the fast 

algorithm is not quite as straightforward as the conventional algorithm. It is nev-

ertheless easy to derive the relevant equations. Perhaps the most major changes 

brought about by the introduction of windowing are in the relations between the 

internal variables as given at the end of the previous section. The equations to be 

modified are equations 4.75, 4.76, 4.77 and 4.78. These become 

L m (N + 1 )22 = L im (N + 1) + \2Ec (N) em  (N + 1)e(N + 1) 1 
	 (4.91) 
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- 1) = 1 - + Lm(N)11, 	 (4.92) 

e(N) = 1m(N)121 	 (4.93) 

1 uT = 1 - * + L m  (N)22 - ) m (N)€  (N). 	 (4.94) 

The windowed algorithm is now as shown in the table below. It should be 

noted that although some of the equations in the algorithm are modified there is 

no change in the overall structure, and for the case A = 1, the algorithm reduces, 

as expected, to the unwindowed version given in the previous section. 

RAI 



Windowed Fast AFBLS Algorithm 

= 	N) + 4t4(N - 1)(N) 

e(N) = 	N (N)6, N (V) 

L-  (N) = 	+ Lm(N)22 - 

= L(N)e(N) 

= 	Ji!m , N (1'r) + 	m ,N(N)(N) 

e)(N + 1) = \ç(N)J.m ,N(N) + x(N + 1) 

K m  (N + 1) = _2E(N)efl(N+ 1) 

w 	 (N) 
= 	,,,(N) 
	

+ 	
c —m 	

Km(N+1) 
0 	 1 

K m (N + 1) = um +i(N + 1)N +1  

w 2  —m (N) (N) 
= 	

c 
m+i (N + 1) 

- 	—m 	
K2-,,,,, (N+ 1) 

0 1 

e 2)(N + 1) = 	2 E(N)K m (N +1) 

ec(l)(N + 1) = 
e'(N+1) 

e 2)(N + 1) 

L m  (N+ 1 )11 = L(N) - e(N)c(N) 

L m (N + 1 )22 = L m (N + 1) 	+ 2Ec (N) e m  (N + 1)e(N + 1)  

L m (N + 1 )21 = 	rn ,N+l(N + 1)!(N - 1) 

L m (N +1)12 = L m (N + 1 )21 

e, (N+ 1) =Lm (N + 1 )12 

M 
= L m (N + 1) 	+ A2 

cu (N+ 1) = L(N)e(N+ 1) 

cc (N +1) = LM(N + 1) 1 e(N +1) 

Wm (N + 1) = [jLml 	+ 1)1 
E(N+1) = 

Qm (N + 1) = Cm (N) + Wm (N + 1)€(N  + 1) 
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4.4 Results 

The first simulation was to test that the basic FBLS algorithm was working as 

expected. To do this the same test signal as in [82] was used. There the input 

time series was a sinusoid with frequency 0.111z. White Gaussian noise with 

SNR = 30dB was added and the sampling frequency was 111z. A fourth order 

autoregressive model was used and E(0) was set to be 0.02. The latter was 

to correspond to the fact that E(0) usually takes a value of the order of the 

standard deviation of the noise. 

It was mentioned earlier in this chapter that one of the main problems asso-

ciated with Burg's algorithm was frequency bias. Chen and Stegen [91] observed 

that the worse bias in frequency estimation occurs when the length of the input 

data sequence is an odd number of quarter cycles and the initial phase an odd 

multiple of 45°. In order to test the algorithm under worst-case conditions 17 data 

points were used corresponding to 1.7 cycles and spectra obtained for five different 

initial phases, 0°, 45°, 90°, 135°, 315°. Figure 4.4 shows the results obtained with 

each spectrum individually normalized. It can be seen that the FBLS algorithm 

provides a good method of spectral estimation. The insensitivity of the spectral 

peak position to variation in phase can also be seen. 

The next step was to examine the influence of the windowing. This should 

have two effects, firstly it should give a more clearly defined spectral peak and 

secondly it should allow for the tracking of a time-varying signal. The first effect 

was tested by using the same signal as in the previous simulation, but this time 

using only an initial phase of 0° since the influence of initial phase is not the 

issue here. A range of values was used for the forgetting factor A. The results 

of this are shown in figure 4.5. As ..\ decreases to 0.98 an improvement can be 

seen, but decreasing .A beyond that causes the estimated spectrum to deteriorate. 

The reason for this is that as ) decreases so the memory of the filter decreases 

(recall from chapter 2 that the memory of the filter can be defined as -1-) until 
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Figure 4.4: Estimated Spectrum for Different Initial Phases 

eventually the lack of data samles from which to form an estimate of the spectrum 

an erroneous estimated spectrum to be formed. 

To test the second effect, namely the effect of a change in the input signal, 100 

data samples were generated, the input signal undergoing a doubling of frequency 

after 50 samples. The reason for such a long data sequence was so that the 

spectrum could be examined after the effects of transients had faded. As can be 

seen in figure 4.6, when ) = 1.0 a change in the spectrum is detectable, but rather 

than a switch in frequency an additional frequency appears, but the original peak 

remains. In contrast to this figure 4.7 shows the result when ,\ = 0.98. Here, 

as expected, the peaks are better defined, but more importantly a change in 

frequency is clearly visible with the influence of the earlier samples discounted 

due to the effect of windowing. To illustrate this more clearly consider figures 4.8 

and 4.9. These show graphs of the spectra obtained using both the windowed and 

unwindowed algorithms after 40 and 90 samples respectively. 
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Figure 4.5: Effect of Windowing on Estimated Spectrum 
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Figure 4.8: Comparison of Spectra after 40 Time Samples 
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4.5 Conclusions 

The development of the AFBLS algorithm for spectral estimation has been re-

viewed. It has been shown that this algorithm does, as is its objective, overcome 

problems associated with frequency bias. Following this a new algorithm has been 

developed. This new algorithm introduces a forgetting factor to facilitate both 

sharper peaks and the detection of changes in the input signal. The new windowed 

algorithm has been shown to offer short term improvements in the tracking of a 

slowly changing signal. 

In the next chapter the long term performance of the algorithm and its per-

formance with a more rapidly changing input signal will be examined. 



Chapter 5 

Stabilization of the Adaptive Forward 

Backward Least Squares Algorithm 

5.1 Introduction 

In this chapter it will be shown that there is a price to be paid for the improved 

performance in spectral estimation obtained when using a windowed version of the 

fast AFBLS algorithm. This price is a rapid decrease in the numerical stability of 

the algorithm so that after a matter of only a few hundred interations instability 

is exhibited, even with the simplest signals. This instability is caused by the use 

of finite precision arithmetic when implementing the algorithm. 

The root of this instability can be traced to the methods used in calculating the 

internal variables of the algorithm when implementing so-called fast techniques to 

reduce computational complexity. It will be shown that it is possible to calculate 

these internal variables in two different ways and the finite difference between the 

two methods can be used to compute an error signal which can be fed back to 

control the build up of errors, thus preventing the exhibition of instability. 

Each error feedback signal will have an associated gain and a major issue is the 

choice of these gains. Guidelines will be given as to these choices together with 

some heuristic explanations as to the underlying mathematical techniques. Finally 

the results of extensive simulations will be given showing how the stabilization 

techniques can substantially extend the stable life-time of the algorithm. 



5.2 Instability effects in the Windowed Fast 

Adaptive Forward Backward Least 

Squares Algorithm 

Results at the end of the previous chapter showed that for short data sequences 

a windowed version of the algorithm offered substantial improvements over the 

unwindowed version when estimating the spectrum of a signal in noise. The 

emphasis here is on the word short, indeed results were given for a data sequence 

consisting of only 17 data points. The first step here then is to generate more 

points from the same input signal and to examine the long-term behaviour of the 

windowed and unwindowed versions of the algorithm. A sequence consisting of 

1000 data points generated from the same sine wave plus noise used for the short 

sequence was applied to the algorithm and the behaviour of the AR coefficients 

examined. Figures 5.1 and 5.2 show the plots of the first AR coefficient verses 

time for \ = 1.0 and ). = 0.98. As can be seen there is a severe degredation 

in behaviour in the windowed case. These results and all subsequent ones are 

obtained by running simulations where all the variables are defined as "floats" 

(which assign 16 bits to the storage of each variable). It may be thought that this 

is unnecessarily restrictive and that the degredation observed could be delayed 

by defining all variables as "doubles" (which assign 32 bits to the storage of each 

variable). The reason for not doing this is that we are interested in manifestations 

of instability and by using floats we are testing the algorithm more rigorously then 

by using doubles. 

In order to determine why this instability occurs the behaviour of the internal 

variables should be examined. It has been suggested in [92, 93, 94, 95, 96] that 

this type of instability can be traced to the backward a priori error. A plot of this 

variable is shown in figure 5.3 and by comparing this with figure 5.2, it can be seen 

that there is an exponential growth in the backward a priori error shortly before 

the rapid descent into instability apparent in the behaviour of the coefficients. 
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To show that it is windowing which compounds instability figure 5.4 shows the 

behaviour of the backward a priori error in the ) = 1.0 unwindowed case. 

5.3 Redundancy 

In the previous section it was suggested that the backward a priori error e 2) (N+1) 

is somehow involved in the instability of the algorithm. In this section we will try 

to explain why this should be so and examine what can be done to overcome it. 

It should be recalled that the backward a priori error is defined by 

e 2 )(N + 1) 	N+l(N + 1)(N + 1) + Am_lx(N - m + 1). 

Now if this were to be calculated according to its definition it would require 

0(m) multiplications and additions. However in an attempt to reduce the com-

putational complexity, the fast algorithm as developed in the previous chapter, 

offers an alternative method for calculating e 2)(N + 1), namely 
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Figure 5.4: Behaviour of the Backward a Priori Error in the Unwindowed Case 

eç( 2)(N + 1) = )t 2E(N)K m (N + 1). 

This requires only two multiplications since Emc 	and Km  (N + 1) are both 

scalars. Thus there are two methods for calculating the backward a priori error; 

the existence of more than one method for calculating a quantity leads to a concept 

known as "redundancy" 

In theory the two methods of calculating a given variable should give exactly 

the same result. In practice, however, since the algorithm is implemented on 

a finite precision processor the infinite precision of the algorithm will have to 

be truncated and the resulting rounding errors may cause the variable to take 

on two different values depending on the method used for its calculation. It is 

the difference between defined and calculated values of variables inherent in fast 

algorithms which leads to the exhibition of numerical instability. 

Having determined the cause of instability, is it possible to use the available 

redundancy in some way to prevent the breakdown of the algorithm? According 

to [97] the answer is yes. There techniques first suggested by [92] were developed. 
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In Botto's paper he suggested that an error, equal to the difference between the 

two values of a given variable, should be formed. This error signal can then be 

fed back into the recursive calculation of that variable and since negative error 

feedback can reduce the effect of parameter variation it should be possible to 

eliminate, or at worst delay considerably, the exhibition of instability. 

For the stabilization of a particular variable m (N) it has been suggested [97, 1] 

that the feedback signal should be a convex combination of its two finite precision 

values; 01  (N), the value of m (N) according to its definition, and &(N), the 

so-called fast method of calculating Om (N), 

bm (N) = Kb(N) + (1 - 
	 (5.1) 

where K is a feedback constant. This idea is illustrated in figure 5.5. If K can be 

properly chosen then it should be possible to stabilize fully the variable &m (N). 

If K is set to zero then the algorithm reduces to its fast unstabilized form. If, on 

the other hand, feedback is used in all variables where redundancy occurs (and 

as will be seen in subsequent sections there is more than one such variable) and 

K is set equal to one then the algorithm reduces to its stable conventional 0(m 2 ) 

form. The art, of course, lies in determining which redundancies to exploit so as to 

stablilize the algorithm with the minimum increase in computational complexity. 

5.4 Implementation of Redundancy 

In order to illustrate the effect of finite precision on the calculation of a given vari-

able a simulation was run in which both the "fast" and the conventional method 

of determining the backward a priori error were used. The difference between the 

two values was determined and was plotted against time. The results are shown 

in figure 5.6. The input signal is a sinusoid with identical characteristics to the 

one used in previous simulations. 

From the previous section the backward a priori feedback signal is formed as 

a convex combination of its two finite precision values. Thus it is formed as 
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Feedback Model 

Figure 5.5: Block Diagram Illustrating Error Feedback 
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Figure 5.6: Difference Between the Conventional and Fast Backward a Priori Error 

ec$)(N + 1) = K[,N+l(N 	N )t + 1)Cm () + m_lx(N - m + 1 )1 -  (5.2) 
(1 - Ki).\ 2Ecn(N)ISm(N + 1), 

Here K, are the feedback gains and there should be a different value of K used 

for each place where the variable e 2)(N -I- 1) is subsequently used. If we refer to 

the table of the windowed fast AFBLS algorithm as shown in the previous chapter 

we see the backward a priori error e 2)(N + 1) is used in the following steps 

The calculation of [LM(N +1)122 

The calculations of f(N + 1) 

The calculation of E(N) 

According to [97] using feedback in step 3 is only of secondary importance. 

Thus e 2)(N + 1) is used directly in two places which require feedback, so we 

require two feedback coefficients K1  and K2 . This gives two distinct values for 
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em2)(N + 1). The one corresponding to K1  is used to calculate [LM(N + 1)122 and 

the one corresponding to K2  is used to calculate f(N + 1). 

As was suggested earlier the backward a priori error is not the only parameter 

which exhibits redundancy. The algorithm as detailed in the table of the previous 

chapter was examined and the formula for each variable according to the algorithm 

was compared with the variable's definition. It most cases the formula for a 

variable reduced to its definition. The only case, apart from the backward a priori 

error, where this was not true was for the variable L' (N). This is defined as 

L' (N) 1 - N (N)&m ,N(N), but is calculated as L(N) = + +Lm(N)22 - 

euT(N) E (N). By refering to the algorithm it can be seen that L-  (N) is used 

in the following steps 

The calculation of L m  (N+ 1)11  

The calculation of c' (N) 

If we trace the path of L(N) through c' (N) we see that it is used subsequently to 

calculate (N) which is then used to calculate fm (' +1). Once again by analogy 

with the method found in [97] (Table 2) using feedback to calculate m('.T + 1) 

is only of secondary importance (indeed this was born out by early simulations). 

Thus feedback was needed only in the calculation of L m  (N + Thus the value 

of L(N) used in the algorithm is given by 

= K8[1 - rn ,N(N)L m ,N(N)] + (1 - K8 )[ 	+ 11m(N)22 - 
	 (5.3) 

So we have a total of three feedback gains to adjust in the hope of acheiv -

ing stabilization. In the next section we will review the results of simulations 

in which all these gains were permitted to vary independently. Before varying 

each of the gains, or feedback parameters as they will sometimes be called, it is 

worth calculating what the cost of implementing each redundancy will be in terms 

of computational complexity. In the case K, K 2 , that is the calculation of the 

backward a priori error, the fast version of the algorithm requires just two mul-

tiplications, whereas, as was mentioned previously, the definition of this variable 
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requires 0(m) multiplies and adds to calculate. The increase in computational 

complexity is of the same order of magnitude for the case K8 , since in moving 

from the fast to the conventional version of the algorithm the arithmetic changes 

from scalar to vector multiplication. 

5.5 Stabilization Simulation Results 

As before the sinusoid of chapter 4 was used as the input signal. The logic behind 

this was that before attempting to track complicated time-varying signals, it is 

important that the algorithm first be stabilized for comparatively simple signals. 

Each of the three gains K2  was permitted to vary in the range Ki  e [0, 5.0] in 

steps of 0.1. Stability was tested up to 10,000 samples. That is if the algorithm 

exhibited instability before 10,000 samples for a given combination of gain values 

then that combination was discounted. Three sets of simulations were run. In 

each set one of the Ki  was held fixed at zero (the reason for this choice being to 

keep the computational complexity to a minimum; recall that K2  = 0 corresponds 

to the original fast, unstabilized version of the algorithm) and the other two K, 

were permitted to vary. Plots could then be made of the combinations of the two 

varying parameters which lead to stability. An important choice of parameter in 

running these simulations was the quantity a m  This correponds to the initial value 

of the error E ' (0). According to previous work [82, 98] this should take a value 

of the order of the standard deviation of the noise. Since the SNR of the input 

sequence of interest is 30dB this requires that a m  is 0(10-2).  A value am  = 0.02 

was used and figures 5.7 , 5.8 and 5.9 show combinations of (K1 , K 2 ), (K1 , K8 ) 

and (K2 , K8 ) respectively which lead to a stable algorithm. 

At first it would appear that there are several combinations of feedback pa-

rameter which lead to a stable algorithm, but in fact it will be seen that not all 

such pairs give a correct spectrum (that is, a spectrum with a peak at 0.1Hz). If, 

for example, we consider the pair (K1 , K 2 ) = (5,2.9) which is shown in figure 5.7 

and plot its spectrum (see figure 5.10) we see that this is no way resembles our 

original test spectrum. 
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Figure 5.7: Combinations of K1  and K2  leading to stability 
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Figure 5.8: Combinations of K1  and K8  leading to stability 
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Figure 5.9: Combinations of K2  and K8  leading to stability 
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Figure 5.10: Spectrum obtained from (K 1 , K 2 ) = (5,2.9) 

The reason for this is that certain combinations of feedback gains lead to s-

lightly different values for the AR parameters from the theoretical values, and thus 

a different spectrum was obtained. Because of this it was necessary to examine 

the spectrum obtained for each combination of feedback gain and discard those 

which did not resemble sufficiently the theoretical spectrum. In this case "resem-

ble sufficiently" meant ensuring that the peak of the spectrum occured between 

0.07Hz and MHz and that the PSD was below —10dB at 0Hz and MHz. If 

the incorrect spectra are discarded then the number of combinations of feedback 

parameters leading to correct stabilization decreases, and more importantly, the 

region in which the combinations lie becomes more compact so that we discard 

outliers which were in the previous plots. This is illustrated in figures 5.11 and 

5.12. (There is no plot for (K 1 , K 2 ) as there are no such combinations which lead 

to correct stabilization) 

It was mentioned earlier that the choice of the value for the parameter a m  was 

important, and this can be illustrated if we consider the case a m  = 0.2. If we 

use this value and once again permit the feedback gains to vary independently 
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Figure 5.11: Combinations of K 1  and K8  giving Correct Stabilized Spectrum 
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Figure 5.12: Combinations of K 2  and K8  giving Correct Stabilized Spectrum 
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Figure 5.13: Combinations of K1  and K2  giving Correct Stabilized Spectrum with 

am = 0.2 

the number of combinations of feedback parameter leading to correct and stable 

models is increased as is illustrated in figures 5.13, 5.14 and 5.15. It should 

not be suprising that this is the case as in increasing the value of am , we have 

effectively increased the initial energy, E(0), of the system, thus there is a larger 

tolerance of errors available and hence there should be a wider range of feedback 

parameters available with which to stabilize the algorithm. 

The question must now arise, are there any combinations of feedback parame-

ter common to both values of am  and if so, how do their spectra compare? If we ex-

amine figures 5.11 and 5.14 we can see that the combination (K1 , K8) = (2.7, 1.9) 

101 
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Figure 5.14: Combinations of K and K8  giving Correct Stabilized Spectrum with 

am = 0.2 
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Figure 5.15: Combinations of K2  and K8  giving Correct Stabilized Spectrum with 

am  = 0.2 
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Figure 5.16: Spectra obtained with (K 1 , K8) = (2.7, 1.9) 

provides a stable and correct spectrum in both cases. The spectra obtained in 

both cases are illustrated in figure 5.16. 

As can be seen from the diagram the price to be paid for the availability of more 

stabilization points is a considerable degradation in overall spectral performance. 

Once again this should not be suprising. Recall that what we have done is to 

increase the initial error energy, and so the spectral estimate can not be expected 

to be as good as in the case where there is a smaller initial energy. Whether this 

is worth accepting is up to the individual user of the algorithm. 

One final simulation was run where the number of samples was increased to 

500,000. The feedback coefficients were set to (2.7, 1.9) and a m  = 0.02. The results 

are shown figure 5.17, in this diagram only one in every fifty points is plotted, 

but it was checked carefully that none of the intermediate points diverged away 

from the theoretical value. At no time throughout this long simulation did the 

algorithm exhibit instability. 
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Figure 5.17: Behaviour of First AR Coefficient using Stabilized Algorithm 

5.6 Simulation Results for Time-varying 

Signals 

Now that it has been seen how the algorithm can be stabilized for a comparatively 

straightforward signal, the next step is to see whether it is possible to stabilize 

it for a more complex one. The signal chosen was the same artificially generated 

time series as in chapter 3. It should be recalled from there that the artificial time 

series was generated by an autoregressive sequence whose roots were determined 

by 

w1(n) = !: + 11  sin 7,(n-100)
2700(n-100) w2(n) = + 	

-°° 	 ( 5.4) 
6 	12 	5400 

It is the denominator of the sine term in each of these equations, i.e. 2700 for 

wi(n) and 5400 for w2(n), which determines how fast the spectrum of the artifi-

cially generated data varies with time. By decreasing the value of the denominator 
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Figure 5.18: Spectrum of Artificially Generated Spectrum with a = 540 

the speed of variation can be increased. To allow for this equations 5.4 will be 

modified to 

w1(n)= -- + sin 
7,(n-100) w2 (n) = • + 	sin 7100) 	 (5.5) 

2a 

So now a is the parameter which controls the speed of variation. 

a was set to a value a = 540 so that the data are changing quite slowly with 

time. An input data sequence consisting of 10000 samples was generated and in 

the input spectrum for the first 500 samples is shown in figure 5.18. 

As before stability was tested by permitting each of the three feedback param-

eters to vary independently. As before there is the possibility that there will be 

combinations of feedback parameters which give stable but incorrect spectra. To 

overcome this the spectrum of the input signal at an arbitrary point was examined. 

The point n = 457 was chosen and the spectrum is shown in figure 5.19. 

By looking at this diagram it was decided that suitable criteria for accepting 

a spectrum were that the spectrum should have a peak between 0.07Hz and 
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Figure 5.19: Instantaneous Spectrum of Artificially Generated Spectrum with 

a = 540 at n = 457 
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Figure 5.20: Output Instantaneous Spectrum obtained with (K 1 , K 8 ) = ( 1.0, 1.5) 

0.13Hz and that the value of the PSD at 0.35Hz should be greater than that at 

both 0.30Hz and 0.40Hz. Figure 5.20 shows the instantaneous spectrum of an 

accepted signal - in this case (K1 , K8 ) = (1.0, 1.5). It should be noted that in this 

case the two peaks of the spectrum are of a similar height. This is in contrast to 

the original spectrum where the dominant occurs just below MHz. If the output 

spectrum is deemed insufficiently close to the input spectrum it is a simple matter 

to incorporate more rigorous tests into the spectrum testing routine. The result 

of this will, of course, be a decrease in the number of combinations of stabilization 

parameters. As was the case when deciding a value of the initial energy of the 

system, it is up to the algorithm designer to choose whether he would prefer the 

availablilty of many stabilization points or a very close match with the input 

spectrum. 

Figures 5.21, and 5.22 show the combinations of feedback parameters which 

lead to a stable and correct spectrum. It should be noted that there is no plot 

for combinations of (K 1 , K2 ) as there were no such combinations which stabilized 

the algorithm. 
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Figure 5.21: Combinations of K1  and K8  giving Correct Stabilized Spectrum 
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Figure 5.22: Combinations of K2  and K8  giving Correct Stabilized Spectrum 
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It is interesting to note that there are more combinations of these parameters 

which give the desired output for this test signal than for the original, more simple 

test signal. At first this may appear suprising, but it should not be. The reason 

for this is that in the original case the input signal was stationary and so as 

the signal was repeatedly fed into the algorithm the accumulated round-off errors 

would become more and more dominant. In the case of the second nonstationary 

signal the algorithm must track a constantly varying signal so the part of the error 

due to round-off will be comparatively smaller. 

Finally for this test signal it is interesting to compare the full time-varying 

output spectrum obtained for the time-varying signal with that obtained via the 

method given in chapter 3. The result shown in figure 5.24 was obtained by using 

the feedback parameters (K1 , K8) = (1.0, 1.5). Before comparing this result with 

the results of chapter 3 and reaching an unfavourable conclusion, it should be re-

called that most of the results in that chapter showed the estimated spectrum after 

filtering and smoothing (thus increasing considerably the computational complex-

ity), whereas in this case the estimated spectrum has only been filtered. It is 

therefore fairest to compare the results only with that of figure 5.23 (which is the 

same as figure 3.12 and is included merely for reasons of clarity). 

5.7 Simulation 	Results 	using 	Limited 

Wordlengt hs 

Up until now all simulations have been run using 32-bit floating point arithmetic. 

This is fine for simulations on computers but Digital Signal Processing (DSP) 

chips are rarely so generous with their wordlength; in practice 16-bit processors 

are far more common, and even as few as 8-bits are occasionally used, although 

this is not so common in general purpose DSP chips. Thus it was decided that 

simulations should be run testing the stability of the algorithm when implemented 

using these shorter wordlengths. Since floating point DSP's are now commonly 

available it was decided to limit the simulations to the floating point case and 
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Figure 5.24: Output Spectrum obtained with (K1 , K8 ) = ( 1.0, 1.5) 
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not to test the algorithm using fixed point arithmetic. This is especially pertinent 

since it has been suggested that the stabilization techniques used may not be valid 

in the case of fixed point arithmetic. 

The routine for truncating both the arithmetic and the input data was com-

paratively crude and certainly normalization could have been employed to ensure 

that full use was made of the available bits, but the routine used was sufficient 

for our purposes which were merely to show the stability, or otherwise, of the 

algorithm for short wordlengths. Details of the truncation routine can be found 

in appendix C. 

The input signal was once again set to a simple sinusoid, as the results of 

the previous section show that this signal is the harder of the two for which to 

obtain stabilization coefficients. In order to keep computational complexity to a 

minimum a choice had to be made as to which of the feedback parameters to set 

to what values. In a previous section it was established that each implementation 

of a redundancy increased the computational complexity by 0(m), and we need 

to use a minimum of two feedback parameters to achieve stability. If however, 

we examine the feedback loops used in the i = 1 and i = 2 case, we see that 

the equations only differ in the choice of the K parameter. Thus if we have to 

chose two out of the three feedback parameters to adjust whilst keeping compu-

tational complexity to a minimum, the the natural choice is to set K8  = 0 and 

pick a non-zero combination for the other two feedback parameters. However we 

should recall that it was shown earlier that there are no combinations of (K1 , 1(2) 

which guarantee stability. Thus it was decided to use (K2 , K8 ) as the feedback 

parameters. The reson for this choice is that it can be seen from earlier simula-

tions results that there are more combinations of (K2 , K8 ) that offer stabilization 

than (K1 , 1f8 ). At first the aim was to stabilize the algorithm with an initial 

error energy of a m  = 0.02 as this would lead to a good spectral resemblance of 

the output to the input signal. It was, however, found that whilst this value of 

am  would maintain stability if the wordlength was reduced to 16 bits, when the 

wordlength was further reduced to 8 bits stability could no longer be guaranteed. 

Thus it was neccessary to increase the initial error energy to a m  = 0.2. Even 
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Figure 5.25: Behaviour of the First AR Coefficient for 32-bit Wordlength 

when this was done it was worth noting that the number of combinations of feed-

back parameter which offer stabilization of the algorithm decreased dramatically. 

Due to time constraints we were unable to run simulations to establish precisely 

which of the existing feedback combinations would offer stability even when the 

word-length was reduced to 8 bits, but given the software already produced in 

the course of this work it would be a very simple matter to generate the results 

of such simulations. It was, however, established that the particular combination 

(K2, K 8 ) = ( 1.4,1.4) with am  = 0.2 would guarantee stability even down to 8-bit 

wordlength. Figures 5.25, 5.26 and 5.27 show the value of the first AR coefficien-

t in the case of 32-bit, 16-bit and 8-bit wordlength respectively. As should be 

expected the variation in the value of the coefficient increases as the wordlength 

decreases due to quantization effects. The most important result, however, is that 

in no case did an instability occur. Thus it could be concluded that, given the 

correct choice of stabilization coefficients, the stabilized version of the algorithm, 

was unaffected by the shortening of the wordlength. 
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Figure 5.26: Behaviour of the First AR Coefficient for 16-bit Wordlength 
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Figure 5.27: Behaviour of the First AR Coefficient for 8-bit Wordlength 
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5.8 Mathematical Tools for Stability Analysis 

Up until now all results presented for the stabilization of the algorithm have been 

obtained as a result of intuitive ideas backed up by extensive computer simulations. 

Whilst these have proved satisfactory in terms of illustrating the validity of the 

stabilization technique, it may also be desirable to investigate the mathematical 

reasoning underpinning the technique to see whether any inferences can be drawn 

from the mathematics regarding the choice of feedback gains. 

The aim then is to carry out a mathematical analysis of the error propagation 

system. This has been performed many times, for examples see [97, 36, 991, and 

the theory outlined here follows the same approach. Once again we must return 

to a state-space formulation of the algorithm. As was seen in chapter 3, if 0(T) 

denotes the state of the algorithm at time T then 

0(T) = f (0(T - 1), z(T), ON (T)), 	 (5.6) 

where z(T) is the desired response at time T and q(T) is the regression vector. 

Now, as has been amply illustrated earlier in this chapter, as soon as the algorithm 

is implemented on a finite precision processor, numerical errors created by round-

off occur. To take account of this the actual implemented algorithm will run with 

a modified state vector 0(T) and hence equation 5.6 must be modified to 

Ô(T) = f (ö(T - 1), z(T), N(T)) + V(T). 	 (5.7) 

V(T) is a noise term which represents the round-off error acquired when imple-

menting the algorithm. Let 

AO(T) = Ô(T) - 0(T) 
	

(5.8) 

So 0(T) is the difference between the perturbed and the true state of the algo-

rithm. If the assumption is made that L0(T) is small - which basically means 
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that the wordlength used when implementing the algorithm is sufficiently long, 

then applying a Taylor series expansion around 0(T), and ignoring terms of order 

(2),  gives 

AO(T) = L0(T - 1)F(T) + V(T) 	 (5.9) 

where F(T) = V9f (0, z(T), qw(T))e =e(T_l). 

In order to determine the stability of the algorithm it is necessary to deter-

mine the exponential stability of equation 5.9. If this can be guaranteed then 

equation 5.7 will be locally exponentially stable. Rigorous definitions of exponen-

tial stability can be found in the literature (see, for example, [100, 101]. Loosely 

it places a constraint on the growth of 0(t) I 

If we consider applying the technique outlined above to our new algorithm, 

then the first step is to define the state vector for the algorithm. By analogy with 

[97, 102, 103] this should be 

0(T) = 	(N),!p(N), Lm(N + 1)e(N), c(N), E(N),. m (N)], (5.10) 

Now wl  (N),(N) and m (N) are all vectors of dimension m, Lm(N + 1) 

is a 2 x 2 matrix and e(N), cu(N) and Em (N) are scalars. Thus F(T) is a 

(3m + 4) x (3m + 4) matrix. It is possible to compute this matrix by exact analogy 

with [97] but it is prohibitively complex and in order to make any deductions 

from it whatsoever, it is necessary to make gross simplifications which may not 

be justified. Indeed this is precisely what [97] states. This paper then goes on to 

offer choices for feedback parameters under a variety of simpliflying assumptions. 

The authors offer an analytical solution in the case A -+ 1, in which case our 

algorithm reduces to its original unwindowed version which, as we have already 

illustrated, does not exhibit instability. The second instance where they offer an 

analytical solution is where the input signal is one of two simple deterministic 

signals, the first being a dc signal and the second an impulse sequence of ones and 

zeros. Once these assumptions are dropped and they attempt to provide further 

results for larger ranges of ) they state that they "do not have analytical tools 
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to investigate the eigenvalues for values of \ in this extended range". Thus the 

authors are no longer able to make quantitive decisions as to the choice of feedback 

gains and instead rely on simulation results to optimize the feedback gains. 

It is also pertinent here to consider the concept of minimality [1]. A system is 

described as being minimal if the number of elements constituting the state F(T) is 

the strict minimum that needs to be propagated from one iteration to the next. A 

system which is not minimal is said to be redundant. If we consider the algorithm 

developed in chapters 4 and 5 we have deliberately introduced redundancy to 

achieve a fast stabilized algorithm. This can be seen when we consider all the 

variables which are propagated from one iteration to the next (see equation 5.10). 

According to Regalia [104] minimality is of critical importance in achieving 

stability of the algorithm. This does however seem to run counter to the whole 

idea of introducing redundancy in the hope of achieving stabilisation. Until a 

rigorous analysis of the error propagation mechanism can be performed it is not 

possible to show conslusively that using redundancy does infact prevent, and not 

merely delay, the onset of instability. 

Despite the need for rigorous analysis it was felt that, bearing in mind the 

limited time-scale available, rather than embark on a rigorous analysis of the 

error propagation mechanism, which rapidly becomes intractable, it is better to 

use the results of the many simulations carried out to guide the choice of the 

stabilization coefficient. 

5.9 Conclusions 

In this chapter it was shown that the cost of implementing a fast version of the 

new algorithm on a finite processor is a dramatic breakdown in the numerical 

stability of the algorithm. This breakdown manifests itself as a divergence of the 

variables of the algorithm towards infinity. A source of the errors which lead 

to breakdown was identified and techniques applied in an attempt to overcome 

it. Inherent in the stabilization technique was the choice of so-called feedback 
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parameters and many simulation results were shown which illustrate which values 

of feedback parameters can be used to stabilize the algorithm. It was shown 

that the algorithm could remain stabilized even when it was implemented on a 

processor with only 8-bit wordlength. Finally guidelines were given as to how to 

proceed should a rigorous mathematical analysis of the stabilization techniques 

be required. 
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Chapter 6 

Conclusions 

6.1 Achievements 

The most significant and novel work presented in this thesis has been an exami-

nation of existing adaptive algorithms for nonstationary time series together with 

the development of a new algorithm. This algorithm offers the advantages of be-

ing able to track a time-varying signal whilst maintaining a comparatively low 

computational complexity. The low computational complexity has, however, had 

to be compromised slightly to overcome stability problems occuring whenever the 

algorithm was implemented on finite precision processors. 

In the review of exisiting adaptive algorithms we were particularly concerned 

with two issues. The first was the development of a generic adaptive algorithm 

which encompassed several classes of adaptive algorithm. The second was a more 

specific issue, namely the use of an autoregressive model with time-varying coef-

ficients to model a nonstationary time series. With regard to the first issue it was 

shown that the crucial concept was that of hyperparameters and their associated 

hypermodels. We saw that first and second order hypermodels were essentially 

just first and second order difference equations and that these had already been in-

corporated into the algorithm used to develop the time-varying AR model. Whilst 

the algorithm performed well in the presence of nonstationary time series it did 

however have two fundamental flaws. The first was that it was very computation-

ally intensive, although a positive effect of this was that the algorithm remained 

numerically stable in all the simulations carried out. The second flaw was that the 

optimal behaviour of the algorithm depended on the choice of a numerical value 
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for the hyperparameter and currently no proven mathematical technique exists to 

aid this choice. 

In subsequent chapters the original development of the new algorithm was a 

comparatively simple task, building on existing algorithms and using well under-

stood techniques to modify the algorithm so that it would work well in an adaptive 

environment. The difficult step occured when trying to prevent the exhibition of 

instability. The use of redundancy is intuitively appealing as it is based on the 

concept of there being two available signals which in theory should give the same 

output, but which in practice are discernably different. Simulations have borne 

this out and the use of error feedback has been shown to be effective in stabilizing 

the new algorithm. The difficulty arises, however, when trying to choose quali-

tive values for the feedback gains. Carrying out an exact mathematical analysis 

of the error propagation system rapidly becomes intractable and in all analyses 

performed on this type of stabilization technique it has become necessary to ne-

glect higher order terms. Even when this is done the mathematics is still highly 

complex and it is easy to become embedded in algebra whilst losing sight of the 

general problem. Because of this, extensive simulations were carried out rather 

than examining the development of complex mathematical proofs. Ideally, how-

ever, mathematical theory should be available to back up the results obtained and 

to aid the algorithm designer in his choice of feedback parameters. Therefore, one 

of the most natural developments from this work would be to examine the mathe-

matics behind it and to develop a rigorous stability theory. It is worth noting that 

all the mathematical expositions of such stability anaylsis involve simplifications 

of some sort. What we have shown is that it is possible to develop low compu-

tational complexity algorithms which remain stable as long as it is practicable to 

run simulations on existing facilities. 
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6.2 Limitations and Suggestions for Future Work 

With regard to the examination of existing techniques, we were able to highlight 

the major problem preventing the use of a model with time-varying AR coefficients 

to model a nonstationary time series. This problem was the choice of a value for 

the hyperparameter. As to the second problem with the time-varying AR coeffi-

cient algorithm, namely its high computational complexity, it might be interesting 

to apply proven techniques to lower its complexity. It should be recalled that both 

this algorithm and our newly developed one are both based on the same (RLS) 

algorithm . Thus if we attempt to lower the computational complexity of the 

AR model algorithm it seems likely that we would introduce instability similar to 

that exhibited by the new algorithm. This being the case it may be necessary to 

investigate if it would be possible to apply techniques similar to those developed 

in chapter 5 to stabilize the algorithm. 

As has already been outlined, the greatest limitation of the new algorithm is 

the unavailability of a rigourous mathematical proof of stability. Without this, 

results can only be verified by simulation and it is not certain that divergence will 

never occur. Until this problem can be overcome results such as these will remain 

of academic interest only. It is therefore vital that the mathematical techniques 

underpinning the stability results be investigated further. 

There are numerous further simulations which could be carried out. It has 

already been mentioned in chapter 5 that it has yet to be established precisely 

which feedback parameters can guarantee stability when the wordlength is reduced 

to 8 bits. The algorithm could also be tested on a wider range of input signals to 

establish if there are any ranges of feedback parameter which guarantee stability 

for all input signals. 

Another natural step, once sufficient simulations have been run, would be 

to carry out a hardware implementation of the algorithm. It has already been 

mentioned that this would preferably take place using a floating point processor. 
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It is not envisaged that moving from simulations to hardware would present any 

major problems, it is nevertheless a step that would be instructive to carry out. 

Once the stability theory has been developed, further simulations run and a 

hardware implementation of the algorithm carried out, then it should be possi-

ble to use the new algorithm to provide enhanced performance in applications 

involving nonstationary time series. 
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Appendix A 

Proofs of Identities used in Chapter 4 

Identity 1.1 

l m (N + 1 )12 = Lm(N + 1) 21  

Proof: 

lim (N + 1) = 12 - 	+ l)Wm (N + 1) 

12  I 	N) J 1 
I [ji(N),](N+1)] 

L(N+1)] 

I m (N + 012  = —(N)Jyj(N + 1) = x(N)JS;1 (N)x m (N + 1) 

uim(N + ')21 = _(N + 1)(N) = (N + 1)S;'(N)Jxm (N) 

QED 
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Identity 1.2 

L m (N + ') = 	- e(N)E(N) 

Proof: 

i'm (N+ 1 )11 = 1_1(N)Jw(N) 

= 1 - x(N)J [JLmU T ) + m (N)(\T)1 

= 1 - (N)m(N) - (N)Jm(N)C(N) 

= L(N) - e(N)(N) 

QED 
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Identity 1.3 

L m (N + 022 	 = Lm (N + 1) + E(N)em (N + 1)Ee(N + 1) 
rn 

o) 

Proof 

ujm (N+1)22 	 = 1x(N+1)w(N+1) 

iim (N+1)11 	 = 	 JILln  

+1( + 1)um (N + 1) 	= {(N + 1), x(N - m + i)] Lm+i (N + 1) 

= [x(N + 1), x(N - m + 1)] { [(N +1) 1 + 
0] 

1 m (1)1 
I 1q, (N+1)} 

Lii 
= 

,c(2) 	 c(2)  + 1)EcN)e2)(N  + 1) 

+1(' + 1)JJym+i (N + 1) = [(N)J, x(N + 1.)] 	m+i (T + 1) 

=xmT m(N)J(N) - e 1 )(N + 1)EcN)e1)(N  + 1) 

uim (N + 1 )22 	 = Lm (N + 1) + E(N)e rfl (N + 1)Ee(N + 1) 

QED 
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Identity 1.4 

L(N-1) 	L m (N) ii  

Proof: 

L(N —1) = 1 —x(N— 1)Jw(N— 1) 

= Lm (N) i1  

QED 

Identity 1.5 

e(N) 12  

Proof: 

e(N) 	=1(N-1)Jw(N) 

= 

QED 
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Identity 1.6 

L-(N) 	 - e T (N)E(N) 

Proof: 

L-  (N) 	= 1 x(N) m (N) 

= 1 - x(N) [w(N) + 	N - 1)€(N)] 

=- 	 - 1)c(N) 

= 	+ x(N)S;'(N - 1)Jx(N - 1)€(N) 

= Lm(N)22 - e(N)E(N) 

QED 
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Appendix B 

Formulation of the Windowed 

Adaptive Forward Backward Least 

Squares Algorithm 

We shall now formulate the algorithm. Consider a data sequence x(M), x(M + 

1),... , x(N). This sequence is windowed explicitly so that the sequence of inter-

est becomes ) 1v_M x (M), ,XN_M_lx(M + 1),... , x(N). We wish to estimate the 

spectrum of this sequence. Assuming an autoregressive (AR) model of order rn 

for the data the forward and backward errors can be formulated as 

ef = ANThx(n) + 	ck)./''X(fl - k) 	 M + m < n < N 

(B.1) 

=A N_n+m( - m) + >I CkX Nn+m kx(n - rn + k) M + m < n <N 

Collecting these over the observation interval [M + m, 	yields the vector 

form of the equations; 

ef  = -m ,N(M + m, + Xm,N(M, N - 1)JQm  

(B.2) 

= m ,N(M, N - m) + Xm ,N(M + 1, N)J m  

153 



where 

c( (M, N) = [ef 	E1  (M + 1),. , Ef(N)] 

	

N) = [cb(M), fb(M + 1), ... , Eb(N)IT 
	

(B.3) 

[AN_nx(n), AN_nx(n - 1),.. jN_n+m_i( - + 1)] 

rn,N(M + m - 1) 

Xm,N(M,N) = 
m ,N(M+in) 

\N_M_m+i(M + m - 1) 	)N_M x (M) 
	 (B.4) 

= A N_M_m(M + m) 	 ,\N_M_ix(M +1) 

x(N) 	 ... Am-iX(N - + 1) 

Qm 	 = [Cm , Cm_i,.. . , Ci] T 

Then minimization of the sum of the squared norms of the forward and backward 

prediction error energies yields (using the same methodology as before) 

Sm,N(M,N)m(M,N) = 
	 (B.5) 

where the new variables are defined as 

Sm,N(M, N) = R,,N(M + 1, N) + JRm ,N(M, N - 1)J 	
(B.6) 
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and 

.m ,N(M, N) - Th ,N(M, N) + Jr.'  ,N (M, N) 	 (B.7) 

with 

Rm,N(M, N) = X ? ,N(M, N)X m ,N(M, N) 

N 

= 	 m,N(rn,N( 1 )7 

k=M-f rn-i 

N 	 (B.8) 
! rn,N(M, N) = 	\N _ k +?Th mN (k)X(k - m), 

k=M-I-rn 

N-i 

L'  ,N(M, N) = 	t N _ k _ l m,N(k)X(k + 1). 
k=M+m- 1 

Once again the data are assumed to be prewindowed, that is x(n) = 0 for 

ii < 0, then M can be set to 0 without loss of generality and the following time 

update equations hold 

Sm,N(M,N) = Srn,N(N) 	
(13.9) 

= \2Sm,N_1(N - 1) + Hrn,N(N)H,N(N) 

where 

Hm,N(N) = ['m,N-iUT - 
(B.10) 

and similarly the update equation for m ,N(M, N) is 

m ,N(M, N) = 

= A 2m,N_1(N - 1) + Hm,N(N)h(N) 	 (B.11) 
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where 

Ix(N) 	1 
h(N) =1 	 I 

m x (N_ m)] (B.12) 

As before H,N(N)  and h(N) contain the new data which are available at time 

N. 

It is also useful to define the following matrix in the prewindowed case, 

Qm,N(N) = Rrn,N(N) + JRm ,N(N)J. 
	 (B.13) 

Qm ,N(N) is said to be centrosymmetric, that is the following relationships hold, 

JQ,n,N(N)J = QTTh ,N(N) 

(B.14) 

JQm ,N(N) = Qm ,N(N)J. 

It is useful to be able to partion the matrix Qm +l,N(N) and following the method-

ology of chapter 4 this can be done to yield 

Sm ,N(N) 	 r- m ,N(N) + Jz:;,N(N) 

Qm+l,N(N) = 	 . 	(B.15) 

! n N(1\T) + d2 N(N)J Tm ,N(N) + rN(N) 

Where 

N 
bo, 

7•m N(M,N) = 	i )
2N_2(k_m)2(k - in) 

k=M+rn 	 (B.16) 

and 
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N 
rmN(M,N) = 	

i \2(N_k)x2(k), 
k=M=m 	 (B.17) 

Two more useful identities are 

Qm,N(N) = S,n,N(N) + J.m,N(N),N(N), 	 (B.18) 

and 

Sm ,N(N) = Q,Th ,N(N —1) + m,N( V )-m,N(') (B.19) 

Using these and the mothods of chapter 4 we arrive at the expression for the total 

error energy of the system as 

IME 
E7 (N) = Tm N(N) + rm ,N(N) + N) m ,N(N) 

If Cm  (N) denotes the vector of AR parameters estimated after the Nth sample, 

then the aim is to compute m( 1 T + 1) defined by 

Sm,N+l(N + 1)Cm (N + 1) = m ,N+l('T + 1) 	 (B.21) 

Using equations B.9 and B.11 this becomes 

[A 2 Sm ,N(N) + Hm,N+l(N  + 1)H,N+l(N + 1)] Qm('1  + 1) 
= 	(13.22) 

- [ 2 .,N(N) + uIm N+l(N + 1)h(N  + 

or after rearranging 
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(N+1)=   m (N) - A 2 S N (N)Hm ,N +1(N+ 1)x 

[1f ,N+l (N + 1)Cm (N + 1) + h(N + 1)] 

(B.23) 

Qm (N + 1) = m (N) + Wm (N + 1)E(N + 1), 

Wm (N + 1) = )t_2 S N (N)ft m ,N+l(N + 1) = [t 1 (N),(N + 1)], 

N) 	= 1 S N (N)J m ,N (N), 	
(B.24) 

where 

and 

(N +1) = 	1 S N 	.m ,N+l  (N)(N + 1), 

cc (N + 1) = 11rn,N+1('V + 1)Cm(N - 1) + h(N + 1) 
(B.25) 

Unfortunately the above equation contains m (1'T + 1), which is the quantity 

sought, this equation must thus be modified to eliminate m(T'T + 1) as follows: 

c(N + 1) = Hrn,N+l(N + 1) [ m (N) + Wm (N + 1)E(N + 1)] + h(N + 1) (B.26) 

or 

cc (N +1) = L;'(N + 1)e(N +1) 
	

(B.27) 

where 
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e(N + 1) = II, , N+l(N + 1) m (N) + h(N + 1) 

rn,N('V)j m (") + x(N + 1) 	 (B.28) 

c-rn ,N+1UV + 1)Qm (N) + )tm13(N  + 1 - m) 

and 

L m (N + 1) = 12 - hlrn,N+l('V + 1)Wm (N + 1) 	 (B.29) 

The only quantity remaining to be updated is the total squared error. This 

can be updated as follows 

Em"' (N + 1) = rN+l(N + 1) + Tm ,N+l(N + 1) + c(N + 1) m ,N+1(N + 1) (B.30) 

Replacing r °,N+l(N + 1) and r,N+l(N + 1), and then substituting for (N + 1) 

and m,N+1(" + 1) the total squared error becomes: 

X 2 r; N (N) + x 2 (N + 1) + \2r N (N) + \2mx2(N  + 1 - in) + Q(N + 1) m ,N+l(N + 1 

= \2 (r N (N) + r,N(N)) + hT(N  + 1)h(N + 1) + cT (N + 1) x 

[23(jy) + fIm N+l(N + 1)h(N + 

= A2 (r N (N) + r,N(N)) + )t2Q(N) m ,N(N) + A 2 €'(N + 1)W(N + 1 )m,N() 

+€'(N + 1)h(N + 1) 

or 

E7 (N + 1) = \2 E7 (N) + CrT1 (N + 1)e(N + 1) 	 (B.31) 
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The algorithm as it is given above is 0(m 3 ). The most costly step in terms of 

computational complexity is equation B.24 where a matrix inversion is required. 

As before with the unwindowed algorithm, applying the matrix inversion lemma 

to S'N(N)  yields 

SN(N) = 	 - 1) - 	 - 1)fIm ,N(N)X 

{i + H,N(N)2Srn,N_l(N - 1)m,N(N)1'E() m ,NN 2 S N _l (N - 1) 
(B.32) 

Substituting S'N(N) = Pm,N(N) and using expressions B.24 and B.29 gives, 

Pm,N(N) 	= Pm,N_l(N - 1) - Wm(N)L;1(N)W(N) 

(B.33) 

W. (N+1) = Pm,N(N)Hm,N(N +1) 

By introducing the quantity Pm,N(N)  and using the matrix inversion lemma 

the computational complexity has been reduced from 0(m 3 ) to 0(m 2 ). The con-

ventional algorithm is summarized in the table below. 

Conventional Windowed Adaptive Forward Backward Least Squares Algorithm I 
Pm ,N(N) 	= )C 2 Pm ,N_1(N 1) - Wm(N)Q(N)W(N) 

Wm (N + l) = Pm ,N(N)Hm ,N+l(N + 1) 

.L m (N+ 1) = 12 Hrn ,N+l(N+ 1)Wm (N+ 1) 

e(N + 1) = '1rn,N+1('1  + 1)Cm (N) + h(N + 1) 

= L-1 (N + 1)e(N +1) 

E,(N + 1) = A 2 E(N) + €1:(N  + 1)e(N  + 1) 

Cm (N + 1) = fm (N) + Wm (N + I) cc  + 1) 
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B.1 The Fast Windowed Adaptive Forward Back-

ward Least Squares Algorithm 

Once again the aim is to reduce the computational complexity of the algorith-

m by using so called fast techniques. The basic idea is to replace Sm ,N(N) by 

Qm,N(N) and then to take advantage of the partioning of Qm,N(N)  together with 

its symmetry properties. 

The focus of attention is the equation 

Wm (N +1) = _)t 2 S N (N)Hm N+l(N + 1) 	 (B.34) 

The above equation can be rewritten as 

Wm (N + 1) =Sn'N(N)  [-1m,N_l('T - 1), m N(N)] 	 (B.35) 

Now if Sm , j (N) is replaced by Qm ,N(N) then a new variable iLm,N(1)  can be 

introduced and defined as 

A2Qm,N1(N - 1) m ,N(N) = 	 ( B.36) 

or 

2[Sm,N_l(N - 1) + j m ,N_l('V - 1),N_l(N -1)J] .,N(N) = .m ,N(N) (B.3 

=-A C2SN_l(N - l) m ,N(N) - ) 2SN_l(N - 1)Jm,N_1(N - 1),N 
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= w(N) + w'(N - 1)€(N), 
(B.38) 

where 

= xT 	(N - 1)Jy m ,N(N). 	 (B.39) -m,N-1\ 

Using methods similar to those used in the previous section for the calculation 

of cm (N + 1) it is possible to arrive at the following set of equations 

 

L(N - 1) = 1 - N_l(N - 1)JA1w(N - 1) 

e(N) 	= N_l(N - 1)Jw(N) 

Cu (N +1) = L(N) 1 e(N +1) 

 

and 

= !Q(N) + )C 1 (N - 1)e(N)  

The next step is to compute 	N) recursively as 

/\Sm ,N(N)i(N) = 
	 (B.42) 

Now 
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)tSm ,N(N)(N) = 
 

[Qm,N_l(N - 1) + 	 N) = _j.m ,N(V) 

and using the same methods as before the following set of equations can be derived. 

1— 

e(N) = 	rn,N()JiLrn,N(") 

 

N) = 	N)'e(N) 

w(N) = 	JL1,,N(' T ) + A ' m,N(')€rn(") 

The next step concerns the (m+1)-dimensional column vector Vm+1,N+1(N+1). 

and the equation 

)t 2 Qm+1,N(N)Lm+l,N.I.1(N + 1) = 	m-Fl,N+l(' + 1) 	 (B.45) 

We have already been seen that Qm+1,N(N)  can be partioned, but to calculate 

Y m +1,N+1('V + 1) will require Q1N(N),  so as before we must use the second 

version of the matris inversion lemma and apply it to Qm+l,N(N).  This yields 

-1 	

- SN(N) + Qm (N) 1 (N)Q(1'/) m(1'T)'(1'T) 	
(B.46) 

Qm+1,N( ) - 

a 1 (N)c(N) 	 am' (N) 

where 
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a,,, (N)r(N) + r((N) + Q(N) m,N (N) 
	

(B.47) 

So a,,, (N) is the minimum total energy. Performing the multiplication yields 

ZLm,N+1('V +1) = 

\+ Qm (N)'(N)(\T)] j. m ,N('V) 

—)a;1 (N)(N)J m ,N(N) 

I!(N)l + 1Qm(')1 
] 	1 	I  ] Km(N+1) 

[0 	L'  

Qm (1T) 1 ('V)X(" + 1) 

—a(N)x(N + 1) 

(B.48) 

Kj(N + 1) 
- 

- 

2 
1  Ec(N) [AQ(N)J m ,N (N) + x(N + 1)] 

 
— 	1 
- — 2Ec(N)efl(N + 1) 

The last line comes from equation B.28. 

Now 	N+1) can be obtained by using an upper partition Of m+l N +l(N+1) 

namely 

F m,N+i( + 1) 	1  

[Am_ 1 X (N — M + 1)] 

then 

.X2Qm+l,N(N)Lm+l,N+1(N + 1) = 	m+l,N+l(N + 1) 

 

Lm+l,N+l(' + 1) =—A
-2 Q -1  l,N(1) m+l,N+l(/\r + 1) 
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Doing the multiplication yields 

Lm+l,N+l(" + 1) 
_-2 [s'N (N) + m (N) 1(N)T(\T)I m,N+l(' T  + 1) 

—a 1 (N)c(N) m , N+l (N + 1) 

_(N)a;l(N).Am_lx(N - m + 1) 

+ 
_a;(N))tm_lx(N - in + 1) 

= [(N+l)l 

] 	

Im(V)  

i 	]

1 
1+1 	IK m (N+1) 

L  
(B.52) 

Iq(N + 1) = 	1 
2Ec(N) 6r,

(
)(1' + 1) 

again the last line comes from using equation B.28. 

The only step remaining is to show that several of the quantities derived and 

used in the algorithm are in fact related. The various relations and their proofs 

are given below. 
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Identity B.1 

uim (N +1)12 = 	+ 1) 21  

Proof: 

.L m (N+1) 	12h1rn ,N +1(1)WTTh('1) 

rn ,N(N)' 
12 	

[ 	 ] [(

N),(N+1)] 

Lm (N + 1 )12 = 	N (N)JQ fl (N + 1) 	 +1) 

+ 1) 21  = 	l,N+l(V + 1)(N + 1) = -m ,N+l(V + 1))CS N (N)J m ,N (N) 

QED 

Identity B.2 

L m (N + 1) = L(N) - e(N)c(N) 

Proof: 

.L m (N + 1) 11  = 1 - 

= 1 - 	N (N)J\ 2  [.,N (N) + 

= 1 - X 1 ,N(N)i m ,N(N) - 	rn,N(N)jm,N('V)Ern(V) 

= L(N) - e(N)f(N) 
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Identity B.3 

L m (N + 1)22  

Proof: 

uim (N + 1 )22 

uim (N + 1)11  

m +l,N+l('V + 1)im,N+l(T  + 1) 

1 	e'(N+1)Ee(N-f = Lm (N + 1) + A2E(N) 

= 1 — XN+l(N+l)W(N+1) 

1 - 	rn,N(N)jL rn ('V) 

= [-,N+l(N + 1), m_lx(N - m + 1)] 

X m ,N+l(N + 1) 

= [,N+1(' + 1), m_lx(N - in + 1)] 

1(N+1) 

0] 
x{L 	+ 

IQm(V)I K2U m (N+1)} 
, 

L' 

= rn,N+l(V + 1)(N  + 1)— 

eç 2)(N + 1)A2 1  Ec(N) e 2) (N + 1) 

rn+l,N+l(" + 1)JJ m+l,N +l(N + 1) = [A ,N (N)J,x(N + 1)] JL1+l,N+1(' + 1) 

=A T 
im,N ('V)j!L rn(") 

—e ) (N + 1) A2E(N) e 1) (N + 1)  rn 

ujm (N + 1 )22 
1  e'(N + 1)Ee(N - = Lm (N + 1) + 2EC(N) 

QED 
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Identity B.4 

L'(N_1) 	1+ -LL m(N)11 

Proof: 

L(N - 1) = 1 - 	- 1)J)'w(N - 1) 

___•• 	1 	1 T 
- 	A2 	- m,N_l("1 - 1)J(N - 1) 

—1 	1 	_L; (N)11 
- 

Identity B.5 

e(N) 	= 	L m (N) 12  

Proof: 

e' (N) 	= XT
, 

N (N)Jw(N) 

= 

QED 

QED 
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Identity B.6 

. L (N) 	= 1 - f + Lm(N)22 - e(N)(N) 

Proof: 

L- (N) 	rn,N(N)Y m ,N(N) 

= 1 - Y.rn,N(N) [(N) + 

—1  - 	 - A—XTm,N(N)wm2(N)  
- -  

+ rn,N(N)S ni,N 	rn,  (N)J N _l (1'7 - 1)€(N) 

= 1 - + 	- eT(N)€(N) 

QED 

Using the above identities a fast algorithm can be derived. The fast algorithm 

has a computational complexity of approximately 9m and is summarized in the 

table of chapter 4. 
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Appendix C 

Simulating reduced precision 

arithmetic on a Sun workstation 

This appendix (which was produced by Dr C.P. Callender) briefly describes how 

limited precision floating point arithmetic may be simulated on a Sun workstation. 

The internal representation of variables varies between different computers so the 

method presented here is machine specific, although it could easily be adapted for 

other computers. 

C.i Internal representation of a precision van-

In -703 MR 

A double precision variable is stored in eight consecutive bytes in memory. The 

first seven of these bytes represent the mantissa of the variable and byte eight 

contains the exponent. Both are stored as two's compliment binary values. The 

exponent is an integer in the range -128 to 127 and the mantissa is a 56 bit fixed 

point value with the binary point fixed at position four, so that it is in the range 

-8 to 2 
56-1 

 x 8. Therefore, the internal representation of a number is 

<--- - ----------------------Mantissa--------------------------> <--Exp-> 

xxxx.xxxx xxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx yyyyyyyy 

Bytel 	Byte2 Byte3 	Byte4 	Byte5 	Byte6 	Byte7 	Byte8 
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C.2 Reducing precision arithmetic 

Reduced precision arithmetic may be simulated performing computations (addi-

tion, subtraction, multiplication and division) at full machine precision and then 

modifying the result by setting the least significant bits of the mantissa to zero as 

appropriate. To reduce the precision to W bits, where 4 <= W <= 56, a mask 

is generated. This mask is a bit sequence of 56 bits (7 bytes), which consists of 

W ones, followed by 56 - W zeros. The least significant bits are then set to zero 

by performing a bitwise and operation on the result with the mask. The result 

which is obtained is equivalent to that which would have been obtained if the 

computation had been performed at reduced precision. 
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Appendix D 

Original Publications 

Moore A and McLaughlin S "Spectral Estimation of Nonstationary Time Series" 

Proceedings of the TEE Sixth International conference on Digital Signal Processing 

in Communications, Loughborough 1991 

Moore A, Theodoridis S and McLaughlin S "Stabilization of the Windowed Adap- 

tive Forward Backward Least Squares Algorithm" Proceedings of the International 

Symposium on Adaptive Systems in Control and Signal Processing, Grenoble 1992 

Moore A, Theodoridis S and McLaughlin S "Tracking Time-varying Signals with 

a Stabilized Forward Backward Least Squares Algorithm" to be published in the 

Proceedings of Third IMA International Conference on Mathematics in Signal 

Processing, Warwick 1992 
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Appendix E 

Software 

Throughout this work computer simulations have been run to verify results sug-

gested by theory or to obtain indications of what will happen when certain pa-

rameters are varied. Most of the work can be performed using standard routines, 

but there are two routines which had to be written specifically for this work and 

they can be found in the software disk attached to the back of this thesis. 

The first was developed to perform the simulations required for chapter 3 and 

is called "hyper.c" It takes as its input the data to be modelled and produces 

a series of AR coefficients which model the data. The parameters which need to 

be specified within the routine are the order of the AR model and the order of 

the difference constraint applied to the evolution of the AR coefficients. Also an 

initial value for the error covariance matrix must be specified. 

The second routine was developed to simulate the stabilized windowed adap-

tive forward backward least squares algorithm of chapter 5 and is called "saf-

bls.c". Once again it takes as its input the data to be modelled and returns a set 

of AR coefficients. Here the parameters to be supplied are the model order, the 

value of )., the forgetting factor, and a value for the inital energy of the system. 

The values of the feedback parameters K1, K2  and K8  must also be supplied. 

(Within the routine there are also five other parameters K3 , K4 , K 5 , K6  and 

K7  these should all be left at zero - they arose from various other stabilization 

attempts) 
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