
. HKc-

WV

Constraint Satisfaction for

Resource Management

using ATMS:
a Timetable Design Support System.

Luis Montero

MSc Student

Department of Artificial Intelligence

University of Edinburgh
28th July 1989

Abstract

Truth Maintenance Systems (TMS) have turned out to be very useful for
many kinds of constraint satisfaction problems, for example qualitative reason¬

ing or scheduling. A particularly difficult constraint satisfaction problem, very
well known by course organisers in universities is the arrangement of lectures

according to teachers, students and department constraints and preferences, so
that the problem is solved and everyone is pleased.

The proposal of this project was due to both the interest in knowing how to

solve such a problem, and the fact that a version of de Kleer ATMS, a very

advanced and efficient TMS system, had been built by Peter Ross, and was

available in Edinburgh PROLOG.

This thesis first outlines some of the reasons why an ATMS is useful for a

timetabling problem, how it is used together with PROLOG, in order to produce
a system for solving that problem, and how that system works.

f

Acknowledgements

I have received technical help and encouragement from my two supervisors,
Tim Smithers and Dave Robertson, as well as Graeme Ritchie, whose expertise
and up to date information about previous real timetables data was very useful.
Peter Ross was very kind to solve my queries about using his ATMS implemen¬

tation, that was absolutely necessary for this project. Ken Currie and many

other people, both in A.I.A.I, and D.A.I., especially my MSc colleagues, gave me

useful information and help.

Far from the department, I would like to thank the Stevenson Foundation, for
the Scholarship which provided me with economic support to attend the MSc

course, and do this work. My family and friends, either here or in Spain, and my

colleagues in my previous job and University, who supported me in many bad

moments, and encouraged me to follow an "Artificial Intelligence" career, have

played a better role in this work than they can imagine. Thanks very much to

all them.

i

Table of Contents

1. Introduction 1

1.1 Brief History 2

2. Literature Review and Foundations of the Project 7

2.1 Problem Solving Techniques 8

2.2 Foundations of TMSs and ATMS 8

2.3 Peter Ross' ATMS 12

2.3.1 The basics 13

2.3.2 The NIP interface 13

2.3.3 Limitations 16

2.4 Extensions to ATMS 17

2.5 ATMS applications to Problem Solving 17

2.6 Meeting and Seminars 18

3. Detailed Description of the problem: Constraints 21

4. Objects and Structure of the problem: Data description 27

4.1 Formal Definition of Timetable and Lectures 27

4.2 ATMS Database and Justifications Scheme 29

4.2.1 Assumptions 29

4.2.2 Nodes 30

ii

4.2.3 Justifications Scheme 30

4.3 "Debugging Tree" utility 33

4.4 "History of the session" utility 36

4.5 Problem INFO utility 38

5. The System: Problem Solver and User Options 40

5.1 The Solve option: Hierarchical Plan 40

5.1.1 Hierarchy of Subjects, definition of levels 41

5.1.2 Fixed Levels 42

5.1.3 Non-fixed Levels: Best-First-Search 42

5.1.4 Agendas 43

5.1.5 Testing Mechanism 43

5.1.6 Rooms Rearrangement 44

5.1.7 Failures: Backtracking at upper levels 45

5.1.8 Example 46

5.1.9 Comments 49

5.2 Addition of constraints 52

5.2.1 Subject 52

5.2.2 Lectroom 53

5.2.3 Nonsimult 53

5.2.4 Nonfollow 53

5.2.5 Notpos 53

5.2.6 Bad 53

5.2.7 Verybad 53

5.2.8 fix 54

5.2.9 Subjlectures 54

iii

5.3 Deletion of constraints 55

5.3.1 Subject 55

5.3.2 Lectroom 56

5.3.3 Nonsimult 56

5.3.4 Nonfollow 56

5.3.5 Notpos 56

5.3.6 Bad 56

5.3.7 Verybad 56

5.3.8 Fix and Subjlectures 56

5.4 Movement of lectures in the timetable 57

5.5 "Resolve" option 58

5.6 Loading and Saving information 59

5.7 Human-Computer Interaction: The Graphic Interface 61

5.8 Implementation Comments 63

6. Further Research 65

6.1 Database system: Parallel Logic Programming 65

6.2 A general Timetables Architecture 66

6.3 Dependency Directed Backtracking 67

6.4 Efficient chronological backtracking using ATMS 67

6.5 Data Input: An "implementation independent" Front-End 68

6.6 Combined Options 69

7. Conclusions 70

Appendices

A. System Screens 75

iv

B. System Files: start.pl 76

C. System Files: addons.pl 77

D. System Files: newtimetable.pl 78

E. Constraints Files: realconstraints.pl 79

F. Suntool File: .suntools 80

v

Chapter 1

Introduction

The problem of constructing a Timetable Design Support System, is just a par¬

ticular example of a more wide category known as "resource management prob¬
lems". In this case, the "resources" are teachers, students, subjects, rooms,

times, and so on, and their management must lead to a timetable where lectures
are set. A big research effort is being made in Artificial Intelligence in order
to find a right way to solve "Resource management problems" as they appear

everywhere, in design and manufacturing, transport, banking, economic models,
and many other.

This project was very suitable to attempt, since, at least, the goal was clear

(although the rest of the work had to be done from scratch) and "common
sense" had to be used rather than "specialised expertise". In addition, I was
well aware of the problem, since I was attending a course with many constraints,
and information was readily available.

The proposal of the project was due to Tim Smithers, who thought of it as a

way of using ATMS for a problem completely different from the usual ones in the

Edinburgh Design System (EDS) project, more oriented to engineering design.
I found in it a very good opportunity of learning about "resource management

problem solving", and using Truth Maintenance Systems that I had found very

interesting while studying them in the module "Knowledge Representation and
Inference II".

1

1.1 Brief History

In the initial proposal, the first step was trying to design a "tutorials" timetable

system that would lead, at the end of the project to a "lectures" timetable

system. Later, in a meeting with Graeme Ritchie, on 2th May 1989, another

proposal about constructing an "Exams timetable design system" was made.
Since all these problems were really related (there were only differences about
where most constraints are: students, teachers, rooips), I found that attempting
everyone of them was a waste of time. I'd bettert^eive the finhl goal of the

project: the "lectures timetable", define very well this particular case, learn
7tcr-r-C. s. P

about it, and thenv any other system could be attempted either by me or by
others. Fortunately, as it was an open project, designed to experiment, all those
details were left to me and I had the opportunity to learn and practice a lot with
it.

The first step was looking for literature. I began with the three references
mentioned in Tim Smithers' proposal: [Rich 78] [deKleer 84] [Ross 87], which
were very useful since my knowledge about advanced problem solving techniques
and ATMS was rather limited. However, as the project was taking form, I
realised that other information, mainly technical reports about real applications
related to my project would be very welcome. I began looking for references
about it, either in proceedings of conferences, journals, books, or asking everyone

who could give me any information about it, inside and outside the University.

Unfortunately, I could not find in the literature any technical report about

using ATMS in this kind of project. What I found were some articles about

applications to qualitative reasoning or scheduling, that I will describe it in
more detail in the literature review chapter.

Another thing I did was to take advantage of seminars and courses about
related subjects (e.g.: scheduling), given at the University of Edinburgh and
contact the people who had been involved or interested in ATMS and related

projects. This will also be described in the following chapter, together with the
literature review.

2

Anyway, most of these contacts were too late in time, hence I had to start

my project much earlier. What I did, since the beginning of April 1989 was to

put my early ideas into practice. One thing I had clear in my mind is that the
Timetable Design Support System needed two phases:

1. Finding automatically an initial solution, as optimal as possible, according
to the initial constraints.

2. Allow the user to make modifications to

• The initial solution Timetable

• The input Constraints

and even the possibility of resolving the problem automatically.

HINT: This second phase could be repeated as many times as desired.

I considered the first phase NECESSARY, as hundreds of constraints appear

in this kind of problems. Therefore, I discarded the approach used in EDS (only
second phase, without automatic "resolving": everything is left to the user), as

it could make it completely useless. Therefore, I started attempting the first

phase, to construct an "initial problem solver". I realised I had some problems:

• My lack of experience in using special "problem solving techniques" and

implementing them in PROLOG (I will describe some of them while com¬

menting [Rich 78] in the Literature Review).

• My lack of experience in working with Peter Ross' ATMS inside PROLOG.

• The fact that the complete Timetable problem, even if not very well de¬

fined, at this moment, seemed to be very complex to face it initially and,
in addition, real data was not available yet.

Therefore, I decided to attempt a classical well-known, well-defined problem,
whose solutions were known: The Geoffrey Marnell's problem, proposed by Peter
Ross for a tutorial in the module "Knowledge Representation and Inference I".
In addition, I had solved it a different way, using LISP, and therefore, I could be

3

more sensitive to improvements in efficiency, and goodness of the problem solver
algorithm.

The problem is as follows (I included assumption numbers, as I was using
ATMS, as well):

Mr. Craft, Mr. Skill, Mr. Art and Mr. Wood are four schoolteachers.
Although each teaches classes in exactly two subjects.
Assumption 201: only one of the four teaches mathematics.

In addition:

Assumption 202: a) three of them teach English
Assumption 203: b) two teach Science
Assumption 204: c) two teach History
Assumption 205: d) Peter does not teach English
Assumption 206: e) Both Simon and Mr. Skill teach History
Assumption 207: f) Steven teaches Science
Assumption 208: g) Mr. Craft does not teach any of the subjects

that Charles or Mr. Art teaches.

What is the full name of each teacher, and
who teaches what subjects?

I found some techniques, used in PROLOG module, and studied in [Rich 78],
like "Best-First-Search using Agenda" or "tree processing", very useful for this

problem. I began working on it, on 13th April 1989, and gave a demonstration
of the final version on 25th April 1989. I discovered some things in it:

• If there is a clear definition of the objects in the system, and information is
used properly, so that impossible situations can be discarded in advance,
the complexity of the problem is vastly reduced. This problem, whose

possible combinations are over 300,000, was solved using only 21 steps (467
if all possible solutions are required, which implies a complete exploration
of the tree). Of course I had to use an AD HOC strategy (it was another
reason to face only "lecture timetabling" in the future and define very well
the problem).

• A tree structure was very useful, and I planned to include it in the real

problem, as a powerful debugging tool, as will be seen.

4

• ATMS caused some problems, as I was using an early version. When I

got the right one, I could see that it worked properly in this problem, the

way I had expected, and realised that the structure I had in mind for the
timetable system was possible. I will describe this in Chapter 4.

I will not describe my "Geoffrey Marnell's problem solver" in more detail, as
it is not the subject of this project.

After this, it was time to define clearly the problem, in the following areas:

• Constraints used in the real Timetabling problem

• Database Scheme, including description of ATMS nodes and assumptions,
the debugging tree, the history of a session, and other information options
in the system

• Problem solver, divided in two phases:

1. "First phase": Initial Problem Solver

2. "Second phase": design of a system to maintain consistency in the in¬
formation after every possible combination of changes, which include:

— addition of constraints

— deletion of constraints (necessary in the system, although unde¬
sirable for ATMS, as will be seen)

— movements of lectures in the timetable (in order to allow the user

performing changes in it himself)

so that "automatic resolve" option could restore a valid state, with a

solution, after any set of changes. This option had to be implemented
so that new changes could be added later and further "resolve" s would
restore a valid state.

Other useful options, like "load/save" were desirable.

• User Interface: windows, menus, use of the mouse, a nice presentation of
the Timetable and user information, to facilitate its use.

5

These points will be commented in chapters 3, 4, 5 and 6, respectively. Chap¬
ter 2 is dedicated to the literature review and foundations, that provided me with
the adequate background to attempt the project.

6

Chapter 2

Literature Review and Foundations of

the Project

I would like to explain in this chapter the foundations of Problem Solving and

ATMS, proposed improvements to ATMS and other implementation subjects,
and how it is used in real applications. Even though it is actually a long chapter,
it is not possible to cover all points in detail, since I found wide information,
but quite diverse (and often not very related with the project), mainly about
"improvements" and "applications".

Therefore, I will cover in more detail the foundations of ATMS. There will
be a section to explain how Peter Ross' ATMS works, that will be easily under¬
standable after the foundations section. Another section will cover the meetings
and seminars that gave me some background to go on. I hope that this chapter
will be useful, not only for making the project clear to the reader, but to let
future MSc students know how I managed to get information, how to select it
for a completely new problem, and all^difficulties I found.

7

2.1 Problem Solving Techniques

A picture of artificial intelligence from a "Problem Solving" point of view, is

given in [Rich 78], mainly in the three first chapters, and the second part of the
book, dedicated to "Advanced Problem Solving Techniques".

This book gave me the first ideas about how to face the project. Some of the

techniques proposed in it, like the use of Agendas in "Best-First-Search" were

used in the system. On the other hand, the use of ATMS and the fact that the

project was too specific, made other techniques proposed in the book useless (A*
and AO* algorithms, Planning, ..., as will be seen), but even so, I consider it a
very good beginners guide for problem solving.

2.2 Foundations of TMSs and ATMS

The first Truth Maintenance Systems appeared in the late 70s as a way to make

problem solvers work more efficiently, reducing the search space. As deKleer

says in [deKleer 86a], there were two problems:

• How can this space be searched efficiently, or

How can maximum information be transferred from one point in the space

to another.

• How, conceptually, should the problem solver be organized

TMSs were proposed as a solution since in many problems,

For most tasks, there is a great deal of similarity among the points
of the search space. As a consequence efficiency can be gained by

carrying results obtained in^pae region of the search space into other
regions

[deKleer 86a]

The proposed Problem Solver Architecture should consist of two parts:

8

• The Problem Solver, containing the set of rules governing the problem

• The TMS, which records the current state of the search, with coherency
and exhaustivity.

Justifications

I Problem I > I I

I I | T M S |

I Solver | < | I

Beliefs

The tasks of a TMS are ([deKleer 86a] for more detail):

1. Function as a cache for all the inferences ever made

2. Allow the Problem Solver to make non-monotonic justifications (i.e.: Un¬
less there is evidence on the contrary, infer A).

3. Ensure that the database is contradiction free.

One of the first proposed TMS was the "Justifications-based TMS" by Doyle,

explained in [Doyle 79]. This system is based on the enhancement of an "unique"
solution, represented by a set of nodes, through the justifications asserted by the

problem solver, after performing the tests. Nodes are IN if they belong to the

solution, OUT otherwise. When a solution turns inconsistent, because of any of
its IN nodes, Dependency Directed Backtracking is used:

Dependency Directed Backtracking may be defined as "adding justifications
to remove contradiction". The idea is to "jump" directly to the level (in the
search tree) where the discovered "bad" node was set, discard the selection, and
obtain a coherent environment by adding new nodes and justifications. The

usual, simple, alternative is Chronological Backtracking, which consists of per¬

forming a pure "depth first search" strategy (not useful for Doyle's TMS, of
course), as used in PROLOG, for instance. Both styles will be cbmmented often
in this thesis.

9

There were many problems with Doyle's TMS (see [deKleer 86a]), but the
two most important were:

• The single state problem: Only one solution (IN) is explored, and only its
justifications are found, even if other solutions are more suitable.

• Dependency Directed Backtracking, as used in TMS, is cumbersome and

computationally expensive.

Many solutions were proposed in the 80s. The most successful has been the

Assumption-Based Truth Maintenance System (ATMS) proposed in [deKleer 84]
and formally explained in [deKleer 86a]. Its origins are the problems that de
Kleer found while using Doyle's TMS in Qualitative Reasoning problems. I
will explain its foundations as briefly and clear as possible, so that the rest of
the thesis is understandable. I will start with the notation of its elements, as

shown in [deKleer 86a]. More information can be found in that article, but
[deKleer et al 87] and [Forbus 87] are the best tutorials I could find to learn
ATMS, and they are strongly recommended to any beginner.

• Node corresponds to a problem-solver "datum". There is a special "no-

good" (false) node, as well.

• Justification: a Horn clause of the form

X\ A X2 A • • • n

where XI, X2, ... are the antecedent nodes and n is the consequent node.
A problem solver description of the justification is called "informant", n

may be "nogood", which means that XI, X2, .. .lead to a contradiction.

• assumption: A special kind of node that can only be antecedent (to say it
exactly, it is justified only by itself).

• environment: A set (conjunction) of assumptions. Node n "holds" envi¬
ronment E if, according to the current set of justifications J, the following
is true:

10

E, J h n

in terms of propositional calculus. If n is "nogood", E is said to be incon¬
sistent

• context: A set of assumptions plus all nodes derivable from them.

• label of a node n is any set of environments associated with n. The label
is "minimal" if no environment in it is a superset of any other.

• A Basic Data Structure for a node contains a problem solver "datum", its

label, and justifications related to it.

Idatum =< datum, label, justifications > .

The differencies between this scheme and Peter Ross' ATMS will be clear in

next section.

I will now end this short description by clarifying how information is propa¬

gated in ATMS. The justification shown above,

Xi A X2 A • • • => n

automatically "implies" justifications involving antecedent nodes (and as¬

sumptions) of justifications ofXI, X2, ..., and consequent nodes of justifications
of n, in terms of propositional calculus (many implementations to do so are pro¬

posed. The easiest one involves going back to the environments). Therefore, we
can be sure that the whole ATMS environment is propositionally consistent.

This way, the problem solver using ATMS avoids the two problems mentioned
in Doyle's TMS

• There are many possible solutions to attempt, depending on the prob¬
lem solver strategy, since ATMS may keep track of everything (real non-
monotonicity).

11

• The propagation scheme is not cumbersome at all, it is reliable, it is effi¬

cient, and it is all the system has to do, since the search strategy may be
left to the problem solver, and chosen depending on the problem (this will
be discussed in next section, anyway).

Some final Comments:

• Deletion of assumptions and justifications is undesirable (as de Kleer says)
and, in some implementations, like Peter Ross' one, impossible, so that the

problem solver MUST include a way to cover these cases (e.g.: change -

deletion - of constraints), if they are going to happen. I included this in
my system.

• The choice of the search strategy is more flexible here. I will explain the
one I chose, but other alternatives are proposed in chapter 6. In any case,

some "extensions" to ATMS propose a backtracking mechanism embedded
in it. This and other ideas will be commented in section 2.3. We now look

at Peter Ross' ATMS implementation.

2.3 Peter Ross' ATMS

This section is extracted from Peter Ross' paper [Ross 87] about his implementa¬
tion of ATMS, in order to make clear how it works. It is based on the description
in [deKleer 86a].

"The paper describes what is essentially a record-keeping system to show
how deductions depend on sets of initial assumptions, without presuming those

assumptions to be either true or false. Only the justifications given to the ATMS,
of the form

A i A A2 A A3 A • • • C

need be true (the A, are the antecedents, the C is the consequent).

The later of de Kleer's papers ([deKleer 86b] and [deKleer 86c], commented
in next sections) complicate the overall picture by trying to build a proper formal

12

logic into the ATMS. For the purposes of experiment and research, it seemed
better to implement the simple system and leave the inferential details out of
the ATMS, as de Kleer first advocated. The initial version has been coupled to

NIP, a version of Edinburgh Prolog.

2.3.1 The basics

The vocabulary is basically that suggested by de Kleer:

node: the internal representation of a datum, that is, something that can figure
as an antecedent or consequent.

assumption: a "foundation" node, so to speak. The truth or falsehood of all
other nodes ultimately rests on the truth or falsehood of the assumptions.

justification: essentially, a Horn clause:

A\ A A2 A • • • z=^ C

showing how the truth of one node depends on a conjunction of others.

environment: a set of assumptions. The ATMS's job is to maintain records of
all the consistent, minimal environments in which each node holds.

label: the sound and complete set of environments in which a node holds.

context: the set of all nodes which hold in a given environment. If the set

includes the 'false' node, the context (and that environment) is called "in¬
consistent". According to first-order logic, such a context should logically
contain all nodes; however, the ATMS cannot create justifications for itself.

2.3.2 The NIP interface

In the initial implementation, node identifiers must be integers. They can be

arbitrary, except that zero is predeclared to be the 'false' node.

The following predicates are provided:

13

atms_setup(+Desired,—Granted)
This initialises the ATMS; all other predicates will fail with a warning

message if this has not been done. Purely for reasons of laziness, you are

required to give an upper bound on the number of assumptions you will
create. The predicate returns the bound you have been granted; this is

your desired number rounded up to the nearest multiple of the number of
bits in a word on your machine (a constant which is calculated at system

compilation time rather than being user-declared - so you don't need to

know it).

atms_assumption(-|-NodeID)
This creates a new node, and specially marks it as being an assumption.

Internally, a unique bit position is assigned for it in the bit sets that rep¬
resent environments. The predicate fails, with a warning message, if that
NodelD is already known to the system, or if you have already created the
maximum number of assumptions granted by the initialisation routine.

atms_node(+NodeID)
This creates a new node, with an initially empty label. The predicate fails,
with a warning message, if the NodelD is already known to the system.

There is no built-in limit on the number of nodes you can create.

atmsJustification(-j-ConsequentID,+ListOfAntecedentIDs)
This notifies the system of a justification (actually it need not be new) and
precipitates an internal flurry of label adjustments. The predicate fails if

any of the antecedent IDs is zero or is equal to the consequent ID. The
latter would not actually upset the system, but it is presumed that the
user might appreciate this defense against carelessness. The system can be
told of a set of inconsistent nodes (and thus, implicitly or explicitly, of sets
of inconsistent assumptions) by giving zero as the consequent ID. Looping
justifications, such as two nodes implying each other or anything more

complicated, are allowable and often useful. The internal label adjustment

process is nevertheless guaranteed to terminate.

14

atms_see_node(+NodeID)
This prints out useful information about that node, for your own program

debugging purposes. The predicate fails if the NodelD is unknown.

atms_env_data

This prints out useful information about all known environments. The
inconsistent environments are called 'nogoods'; these form the label of the
'false' node.

atms_get_envs(+ListOfNodeIDs,-ListOfListsOfAssumptions)
Given a list of nodes, this returns a list of lists of assumptions representing
all the environments in which the given nodes collectively hold. Thus, to
determine the label of a node, give a list containing only that node as

first argument. The predicate fails with a warning message if any of the

specified nodes is unknown.

atms_get_context (+ListOfAssumptions,-Consistency,—ListOfNodelDs)

Given a non-empty list of assumptions, this returns the atom 'consistent'
or 'inconsistent' as appropriate, and a list of all the nodes that hold in
that environment. This means that 'inconsistent' is returned if and only if
the list contains the number zero, indicating that the 'false' node is one of
those that appears to hold. The predicate fails with a warning message if

any of the given IDs does not refer to a known assumption, or if the list is

empty.

atms_debug(-(- Integer)
Debugging predicate.

As a point of use, notice that any assumption can be permanently invalidated

by giving it, by itself, as a justification of the 'false' node. Also, if you want to find
the minimal consistent subsets of a set of assumptions (this being dependent on
the current set of justifications), just use atms^get-Context/S to find the context
and then use atms-get-envs/2 to find the minimal consistent subsets.

15

If you want to find maximal contexts - that is, sets of nodes which are as

large as possible without including anything inconsistent - then there is a simple

procedure to follow. It is easily implemented in Prolog:

• Obtain the label of the false node by

atms_get_envs(0, FalseNodeLabel)

In general this will be a list of 'nogoods'.

• Obtain a list of all the assumption nodes in existence. Presumably, since
the Prolog program created them all explicitly, it will have the necessary

information already.

• Generate a maximal context by omitting one element of each 'nogood'
from the list of all assumptions, and then find the context in which the

remaining assumptions hold by using

atms_get.context(PrunedSetOfAssumptions, MaxContext)

• Backtrack as necessary to find each way of deleting one element of each

nogood from the full set of assumptions, to get other maximal contexts.

2.3.3 Limitations

You cannot retract a justification, although you can add an extra assumption
node to each justification which you would take to mean " this justification is

valid"; you can then track down which nodes depend on which justifications by

looking for those special assumptions in the labels.

You cannot read back what the set of justifications is. You cannot read back
what the set of tenable assumptions is. At the moment, your inference engine
must do the latter two, although it would be very easy to add them".

16

2.4 Extensions to ATMS

This is a short section about suggested improvements to ATMS that could make

projects like mine easier in the future.

As explained in last section, last paragraph, one of the main attempts to

enhance ATMS has been to construct a backtracking mechanism inside, since

many applications would take advantage of it, although the "raw" version ori¬
ented to qualitative reasoning did not require it. I was interested in this problem
since such a mechanism could be included in the system I was designing. How¬

ever, the different proposals ([deKleer &: Williams 86], [Smith 88]) were rather
different and none of them especially designed for my system.

A large set of interesting enhancements to the "raw" ATMS axe proposed

by de Kleer himself in [deKleer 86b], but they were not included in Peter Ross'
ATMS, as he clearly explains, and were not very useful for my project, either.

However, it is a very interesting article for people involved in ATMS on a long-
term basis.

I have found some small articles about more "clever" enhancements, like "la-

belling algorithms" or "Massively Parallel ATMS" (that de Kleer found very diffi¬
cult, in the beginning), and so on. Some of them are [Koff et al 88], [deKleer 88],
[Forbus & deKleer 88], [Dixon &; deKleer 88], but many other appear in AI pro¬
ceedings, of recent years, since the interest is growing. They may be very inter¬

esting on a long-term basis; mainly,,those related with "parallelism", in relation
with "parallel logic programming", as will be suggested in chapter 6.

2.5 ATMS applications to Problem Solving

This is a subject where I would have wanted to find references more close to my

problem, andAmore technical orientation, but I could not find them. The first
article I found about it was [deKleer 86c], a very complete "guide" to the overall
use of ATMS in problem-solving, but very few explanatory examples. Something
similar can be said about [AIAI 87]. [Smithers 85] and [Smithers et al 89] are

17

also good explanatory guides about AI in design and manufacturing, but no

details about the potential role of ATMS in them is explained in detail.

The only article I found about a real application, whose main goal was the
use of ATMS, is [Arlabosse et al 88]. Since Heriot-Watt University was involved
in it, I tried to contact any person in that University who could know about
the project, and I failed. Anyway, the project commented in the article was

about Qualitative Reasoning (not very close to my project), and I believe that
the authors were probably more interested in showing what they did rather than
how they did it (probably oriented to more experienced people). Therefore, I
could not take much advantage of it.

the lack of articles on applications made me try other sources of information

(meetings, seminars, as said in the "Brief history"), that will be commented in
next section.

2.6 Meetings and Seminars

I shall first describe three sources of knowledge which I used about scheduling

systems:

1. Interview with Mark S. Fox (Director of the Intelligence Systems Labora¬
tory, The Robotics Institute, Carnegie Mellon University)

knowing that Mark S. Fox was giving some seminars about Al-scheduling
research at CMU, in the department of Artificial Intelligence, University
of Edinburgh, on 11th and 12th April 1989, and that he is one of the best
researchers in this area (designer of ISIS system in 1980), I decided to
attend those seminars ands ask him about references for my project. He
sent me, in May, some brochures about technical publications and projects

being developed in his Institute. Unfortunately they were not directly
related with my project, but with scheduling. In addition I did not find
a direct relation with the use of a TMS, therefore I could not take much

advantage of them.

2. Project Planning Workshop

18

There was a course organised by the department of Meteorology, about
MSc projects management, on Monday 8th May 1989, and Tuesday 9th

May 1989, that I decided to attend, encouraged by Graeme Ritchie. I
found it really more oriented to BIG projects involving many people than
MSc projects, but it happened to be very useful for my work since it gave
me practical knowledge about using scheduling techniques (critical paths,
Gantt charts, PERT charts, and so on) that allowed me understand better
the articles I found about scheduling and, indirectly, clarified my ideas
about "resources" and constraints in my project.

'5
3. Iain Buchanan,seminar about a Distributed Asynchronous Scheduler (DAS)

I attended this seminar, on 18th May 1989, about a very advanced AI-

scheduling system that is being constructed in the Turing Institute, Strath-

clyde University (Glasgow). No technical details were provided, but I was
told how ATMS was used in it, and some advantages DAS had over ISIS
and other similar systems in the 80s.

I will describe now two main contacts I had about ATMS:

1. Karl Millington, one of the most experienced researchers in EDS project,
told me about the way ATMS is used in it. In a meeting on 10th May 1989,
and a joint EDS and EdCAAD meeting on 30th May 1989, he provided
me with information about it that I can resume in two points:

• EDS is an architecture designed to support many kinds of design

problems, not necessarily very well defined. Therefore, it is oriented to
SUPPORT systems, where the user has to describe almost everything
and solve the problem him/herself with the help of the system.

• The assumptions are considered as reasoning justifications, more than

"pure logic axioms", and justifications had to be interpreted like
"rules" in an Expert System or "rules of thumb" in common sense,

to justify nodes. It is the natural choice for EDS kind of problems.

However, since the goal of my project was quite well-defined, and I did
not require a "general purpose" architecture, I attempted a more "PURE

19

LOGIC" style in it. As a result, something more than a mere SUPPORT

system was constructed, as will be shown.

2. Ken Currie, one of the heads of the Planning group in AIAI, gave me some

articles about ATMS for problem solving on 17th May 1989, and even

proposed that I should update Peter Ross' ATMS with newly proposed

techniques oriented to use it in a "dependency directed backtracking" style,
as will be explained later (either as part of the MSc thesis or as a PhD

subject). Since those techniques were not necessary for my system (as I was
using another scheme that will be explained later), and they lay far away
from the project objectives set by Tim Smithers, I discarded that idea.

Anyway, he gave me some of the articles commented above ([AIAI 87],
[Smith 88]), useful for background reading at that moment.

20

Chapter 3

Detailed Description of the problem:
Constraints

I would like to describe here an explanation of the problem, trying to make clear
the kind of constraints existing in it, together with a small introduction to their

handling in the system, that will be more clearly explained later in 'Hierarchical
Plan' subsection, and related ones.

The final version has been designed to arrange lectures in a scheme similar
to the one existing in the MSc in Information Technology - Knowledge Based

Systems, whose characteristics can be described as follows.

• Lectures usually last for one hour, beginning at "o'clock" times (excep¬
tions can be handled easily, anyway), same time every week. They can be
arranged from Monday to Friday, from 9:00 until 17:00. Anyway, those
restrictions are to be defined by the user, as facts of the form:

— days([mon,tue,wed,thu,fri]).
- hours([9,10,ll,12,13,14,15,16]).

• Subjects for lectures may have, either a defined number of lectures to be

arranged according to constraints and preferences (usually, 2 or 3), or only
fixed lectures. This leads to two different kinds of constraints:

1. subjlectures(Subject,Number).

21

2. fix.(Subject ,[Dayx,Hourx\,ConstraintNumberf).

fix(Subject,[Dayn,Hourn],ConstraintNumbern).

depending on the status fixed vs. non-fixed of Subject. Number is the
number of lectures to be arranged for Subject. ConstraintNumbers (not
used in Subjlectures) are constraint identifier numbers to be handled by
ATMS, as in the other constraints that will appear. The status of a Subject

may be changed, in both directions, during a session, as will be shown.

The list of Subjects MUST be ordered as follows:

— All fixed Subjects MUST appear first.
— Other subjects MUST have any subjlectures predicate in the database,

and they SHOULD be ordered MOST RESTRICTED FIRST.

This is strongly recommended by DeKleer in [deKleer 86c] about ap¬
plications of ATMS Problem Solving to Scheduling, and it is a com¬

mon sense rule, anyway, in order to avoid backtracking, so that the
hierarchical plan can work properly, as will be shown later

Therefore, the final result should be:

— subjects([5u6yect/zxi,...,Subjectf ixf ,Subjectnonfixi, ... ,Subjectnonf
Where subindex "1 ... n" means "more ... less" constrained subjects.

There is a relation Subject-Room which implies that Subject lectures CAN
be given at Room. The corresponding input form is:

— lectroom(Subject,Roomx ,ConstraintNumberx).

lectroom (Subject,Roomn,ConstraintNumbern).

Incompatibilities Subject-Subject : Two different subjects attended by the
same student cannot have lectures at the same time. They cannot even

follow each other if they are in distant rooms (such as Kings Buildings vs.

Main University Area in Edinburgh). This leads to two different kinds of
constraints:

22

1. nons'imu\t(Subjecti,Subject2,ConstraintNumber).
2. nonfollow(S'u6j ecti ,Subject2 ,ConstraintNumber).

where the order of subjects is not relevant.

• Incompatibilities Subject-Time : Some Subjects cannot be taught at some

times, as a consequence of:

1. Departmental decisions for all subjects (e.g.: No lectures at 13:00)

2. Lecturer constraints (e.g.: Lectures for other courses at the same

time)

3. Rooms constraints (e.g.: atlt2, the only big enough room for some
subjects is available only few times a week)

4. Many other

The first (1) and the other (2, 3, 4) are included respectively, as

— notpos (all, [Day,Hour],ConstraintNumber)
— notpos(Subject, [Day,Hour],ConstraintNumber)

• Preferences Subject-Time: Some times are particularly bad or very bad for
lectures (although they can be used if no other choice), as a consequence

of:

1. Departmental decisions for all subjects (e.g.: Seminars on Wednesday
afternoons)

2. Lecturer preferences (e.g.: Mornings reserved for departmental projects)
3. Many other

They are included, respectively, as

— bad(all,[Day,Hour]).
— verybad(all,[Day,Hour]).
— bad(Subject,[Day,Hour]).

23

— verybad(Subject,[Day,Hour]).

No constraint number is used. In fact, they show preferences rather than
constraints.

Other kind of preferences are due to the days between lectures for the same

subject. A regular distribution of lectures along the week is more desirable
than cramping all them in the same day. As most subjects have two or

three lectures, a distance of 3 days between days was considered excellent;
2 or 4 days, good; 1 day, bad; and 0 days (more than one lecture in the
same day), very bad. I chose "3" in order to avoid penalizing tuesdays and
thursdays (happens if 2 or 4 are chosen) and even Wednesdays (happens if
4 is chosen), BUT it may be changed, because it is set by the user as an

asserted input fact:

optdifdays(3).

All these preferences are used to compose AGENDAS of suitable times for
a subject, ordered by priority. It will be explained later on.

• The maximum number of allowed assumptions is also entered by the user

in the input file. I chose 4096, a quite big number, as the problem is very

complex for a real timetable (HINT: 4096 — 212).

maxassumptnumber(4096).

• Some numbers are entered in the input, in order to establish the initial
numbers for tree nodes, normal nodes, non-constraints assumptions and
added constraint assumptions, so on:

— firsttreenode(lOOOO).
— firstnode (20000).
— firstas (30000).
— consnumber(40000).

• and an aditional constraint number is entered in order to send ATMS

inconsistencies due to lectures for different subjects at the same time, same
room (first "consnumber": 40000):

24

nonsimultsamelecture (40000).

• One more predicate will show if we allow backtracking at previous levels

("backtrack") or not ("nobacktrack"). It will be explained in chapter 4.

There are two different kinds of "constraints" in the info shown above:

• Items that do not change in a session. They form what I call a "defaults"
file.

• Items that may change during a session. The form the real constraints file.

Therefore, a defaults constraint file should have the following kind of infor¬
mation.

days([mon,tue,wed.thu.fri]).

hours([9,10,11.12.13.14.15.16.17]).

optdifdays(3).

maxassumptnumber(4096).

firsttreenode(10000).

firstnode(20000).

firstas(30000).

consnumber(40000).

nonsimultsamelecture(40000).

nobacktrack.

and an input constraint file should have the following kind of information,

subjects([...]).

25

subjlectures(Subj ect,Number).

fix(Subject,[Day,Hour].ConstraintNumber).

lectroom(Subject.Room,ConstraintNumber).

nonsimult(Subject1.Subject2,ConstraintNumber).

nonfollow(Subject1,Subject2,ConstraintNumber).

notpos(Subject,[Day,Hour].ConstraintNumber).

bad(Subject,[Day.Hour]).

verybad(Subject,[Day,Hour]).

The next Chapter shows a description of the Database system used in the

system to handle the manipulation of these constraints in an ATMS environment
in order to solve the problem, and other data structures used in the system to

help the user.

26

Chapter 4

Objects and Structure of the problem:
Data description

4.1 Formal Definition of Timetable and Lec¬

tures

I shall now clarify the main concept in this problem: the Timetable.

Definition: A Timetable is a set of lectures.

Therefore, I need to define lecture first. A lecture can be defined as an object
whose slots should include, at least:

• Subject

• Time

• Room

But, since:

• Time is [Day,Hour] in our definition,

• lectures are represented in the ATMS database by nodes, and they need a

number,

• PROLOG is not an Object Oriented Programming language, and it is more
suitable for list processing,

27

the final chosen representation was a list as follows:

Lecture = [NodeNumber,Subject,Day,Hour,Room]

And, consequently, a Timetable is a list whose elements are lectures:

Timetable = [Lecturei, ..., Lecturen\.

The timetable is initially empty, until the problem solver fills it with consis¬
tent lectures until an initial solution is found (if possible) and further modifica¬
tions with the user options update it. This involves a lot of searching, ATMS

work, and alterations in the environment, whose tracks have to be kept in an

adequate manner. Since the resolution of Geoffrey Marnell's problem, I had in
mind to keep a detailed structure in the system, in the following aspects:

1. A database for assumptions, nodes and justifications, compatible with the
above mentioned "Very Purist and Logically Consistent" scheme of justi¬
fications in ATMS environment, so that everything could be tested, and

nothing could go wrong, even after many changes.

2. A Proof Tree showing how the problem was solved, every time the user

requires solve or resolve options to find a solution automatically, so that a
kind of debug was possible.

3. The History of the session: all changes, both in timetables and constraints,
that the user made the program perform, so that keeping track of every¬

thing was possible for the user, so that he/she could recover a previous
state, see how changes affected the timetable, and so on.

4. An INFO utility, using ATMS info, that shows what things fail at every

moment, since changes in constraints and timetables are allowed after the
initial solution is found.

Each of these will now be described separately:

28

4.2 ATMS Database and Justifications Scheme

In Peter Ross' ATMS, nodes and Assumptions identifiers are numbers, and no

other semantic information about their meanings can be included. Therefore,
a database containing that semantic information and relating it with the nodes
and assumptions numbers in ATMS was required in PROLOG environment. I
shall now describe this database:

4.2.1 Assumptions

There are two kind of used assumptions in the system:

1. Constraints: fix, lectroom, nonsimult, nonfollow, notpos , whose assump¬

tion number comes from the input constraint file. E.g.:

• fix(spc,[tue,16],1010)
means that "Constraint assumption 1010 supports the fact that a

lecture for spc MUST be given on tue at 16".
v

Ik. oQ .

• Iectroom(kri2,atlt2,2002)
means that "constraint assumption 2002 supports the fact that a lec¬
ture for kri2 MAY be given in atlt2".

• nonsimult(spc,kri2,3003)
means that "constraint assumption 3003 supports the fact that lec¬
tures for spc and kri2 CANNOT be given at the same time".

NOTE: I will use these 3 constraints as part of the example in next sections.

2. "generate and test" assumptions: assumptions created while solving the

problem, for non-fixed subjects. E.g.:

• assumpt([30001,kri2,tue,16]).
means that "assumption 10001 supports the fact that a lecture for

kri2 MAY be given on tue at 16" (Clearly, non-monotonic reasoning,
since it can be falsified later).

29

4.2.2 Nodes

The nodes information is kept in the database in a similar way as "generate and
test" assumptions. There are two different kinds of nodes depending on their

representations (that will be mentioned as "noderep"s from now on): they may

include room information or not:

1. node([20010,spc,tue,16]).

means that "node 20010 represents a lecture for spc (Software for Parallel
Computers) given on tue at 16".

Another node of the same style that will be used in next sections is:

node([20001,kri2,tue,16]).

2. node([20002,kri2,tue,16,atlt2]).

means that "node 20002 represents a lecture for kri2 being given on tue at

16, at atlt2 room"

other nodes of the same style that will be used in next sections examples
are:

node([20011,spc,tue,16,kb]).

node([20013,spc,thu,14,kb]).

4.2.3 Justifications Scheme

Let's see how nodes justifications are entered in ATMS:

1. The first one corresponds to a FIXED lecture (if we follow the examples in
the subsections before). Therefore, the following justification is entered:

1010 =» 20010

or, graphically:

30

fix(spc,[tue,16],1010).

I
v

node([20010,spc,tue,16]).

2. The second one includes a "room" information, therefore, it needs two

steps:

(a) Justification of the same node without room information, say

node([20001,kri2,tue,16]).
Since kri2 does not have fixed lectures, we use the "generate and test"

assumption

assumpt([30001,kri2,tue,16]).
Therefore, the following justification is entered in ATMS:

30001 => 20001

(b) Justification of the node using (a) plus "rooms constraints" 1. We
look at the corresponding lectroom predicate "facts"

Iectroom(kri2,atlt2,2002).
Therefore, the following justification is entered in ATMS:

20001,2002 => 20002

More graphically, the scheme is as follows:

xIn the creation of a new node with room information, the inconsistency with con¬

straint "nonsharedrooms(40000)", and eventual nodes for "other lectures at the same

time, same room", are sent to ATMS, so that the system does not have to worry later
about it

31

assumpt([30001,kri2,tue,16]).

I
v

node([20001,kri2,tue,16]). lectroom(kri2,atIt2,2002).

v v

node([20002,kri2,tue,16,atlt2]).

If the problem solver discovers that there is also an existing node

node([20010,spc,tue,16])

in the timetable, and a constraint

nonsimult (spc ,kri2,3003)

in the constraints input file, we have to establish the incompatibility (with

or

node([20001,kri2,tue,16]). nonsimult(spc,kri2,3003).

I | node([20010,spc,tue,16]).
I I /
v v/
nogood

"nonfollow" and "notpos" would be treated the same way. I will describe
how the problem solver looks for such inconsistencies later.

HINT: This justifications style is the heart of the system

32

4.3 "Debugging Tree" utility

Now that the way assumptions and nodes are used is clear. I will describe the tree
structure and a new category of nodes: the tree-nodes. A "toy description" of
the problem solver, following the example before is included, in order to describe
the tree structure.

Let's suppose that I only have to set two lectures for spc, fixed at [tue,16],
and [thu,14], and one lecture for kri2 (non-fixed). Our toy problem solver would
do the following:

enter [20011,spc,tue,16,kb] in the timetable. In addition to the operations
described in the section before, this would also mean the creation of a tree-node
at level 1, say 10001, and a new justification is entered:

20011 =► 10001

Next time, the second fixed lecture for kri2 on [tue,16] is entered:

[20013,spc,thu,14,kb].

A tree-node is created at the second level, say 30002, and a new justification
is entered:

10001,20013 =► 10002

Next time, an attempt to put a lecture for kri2 on [tue,16] is done:

[20001 ,kri2,tue, 16].

A tree-node is created at the third level, say 30004. The problem solver
discovers that there was a "nonsimult" conflict (see page before). Therefore, two
justifications are set:

10002,20001 => 10004

20010,20001,3003 => 0

33

Therefore, "backtracking" will produce a successful new time for it, say

[20004,kri2,wed,16,atlt2].

A new tree-node, say 10005, is created, at the third level, and a justification
is set:

10002,20004 =>• 10005

And the problem is solved.

The solution timetable is

[[20011,spc,tue,16,kb],[20013,spc,thu,14,kb],[20004,kri2,wed,16,atlt2]]

"10005" is the SOLUTION NODE, and, from an ATMS point of view, it
accumulates the Information about all the nodes existing in the timetable (20011,
20013, 20004).

The solution path from the "top" (level 0) is [30001,30002,30005].

The tree is as follows:

top

I

30001: [20011,spc,tue,16,kb]

I

30002: [20013,spc,thu,14,kb]

/ \

30004: [20001,kri2,tue,16] 30005: [20004,kri2.wed,16.atlt2]

I I

FAIL: "nonsimult" with 20010, 3003 SOLUTION

34

Since in a real timetable there are many levels with many more nodes, such
a graphic representation is not possible, but the system would keep it in a list

representation and show it in the following way.

[30000,top]
[30001,[20011,spc,tue,16,kb]]
[30002,[20013,spc,thu,14,kb]]
[30004,[20001,kri2,tue,16]]
fail: [20010,20001,3003]

[30005,[20004,kri2,wed.16,atlt2]]
SOLUTION!: [30001,30002.30005]

This tree is a powerful debugging tool, since it allows an expert user to
see how and why things were done, and think about small changes, perhaps in
constraints (to improve the solution), and even in the program.

A tree is produced and kept in the environment for the initial solution and
for every time the user makes the system resolve the problem automatically,
after some changes. Each resolve subtree uses its solution node as its identifier.
There is always an active tree. The default one is the solve one (whose identifier
is tree). Any resolve subtree can be activated, looking for its identifier (using
History options, explained in next section), and using "puttree(Identifier)"

Some options to look at the tree are included, quite similar to the options
offered in the OYSTER system, used by the Mathematical Reasoning Group:

snapshot(Filename). - to obtain a snapshot of the tree in Filename

display. - to see the actual level and children

down(N). - to move to the Nth child (N = Node number)

up. - to move to the previous level

top. - to move to the top level

solution. - to move to the solution leaf

35

4.4 "History of the session" utility

Usually, a session for solving a Timetable problem may be very long, since many

changes can be introduced by the user until he/she is satisfied with the final
result. Keeping track of the history of a session may be useful for several reasons:

• Debugging purposes.

• Watching and recovering previous states if something undesirable happens
after some changes.

• Keeping a record of the exploration carried out.

Every change, either in the timetable or the constraints makes the system
create a new "tree-node" which will act as the identifier of the change performed

("tree-node" name is used as an extension of the function performed for subtrees,
explained before). Let's see the history after a change to the example in the
section before:

Let's suppose that the user adds a constraint, say

notpos(kri2,[wed,16],4004).

then, the environment has changed, since lecture

[20004,kri2,wed,16,atlt2]

is no longer good in the timetable.

A "tree-node" identifier is created, say 30006, And a new fact (the change)
has entered the history.

If he/she uses now the resolve option, a new node, say

[20006,kri2,fri,16,atlt2]

would enter the timetable replacing 20004. Then, a "tree-node", say

10007

36

would be created, and a justification entered (30007 is justified by the nodes
in the timetable):

20011,20013,20006 => 10007

And a new fact has entered the history. The whole history is now:

[[solve,10005.tree,no,[]],
[change,10006,[add.notpos,wed,16,4004],no,[4004,20004]],
[resolve,10007,subtree,no,[]]

]

where "no" means that such options were possible ("yes" otherwise), and "[]"
means that there were no failing constraints with the timetable at that moment,
while [4004,20004] means that 4004 constraint was not satisfied because of the
lecture 20004.

If I ask for the timetable, only the last one is shown, of course. In order to

keep previous states, all historical timetables are kept in the Prolog database, as
follows:

historyTimetable(change,10007,[[20011,spc,tue,16,kb],
[20013,spc,thu,14,kb],
[20006,kri2,fri,16,atlt2]]).

Some options are available to see the history:

• history-info: Will show the history of the session, from the first "solve"

up to now. Solution nodes numbers after every change are shown. They
can be used in order to see past timetables or consult resolve "subtrees"
as shown in the section before

• showtimetable(SolNode): Shows the past timetable corresponding to SolN-
ode solution node. If no argument is entered, the last one is shown

37

• snapshottimetables(Filename): Creates a snapshot of the history of the
session, together with the history of the timetables

• numbersJnfo(Number): Shows the "meaning" of an ATMS number (e.g.:
20011 means a lecture for spc given on tue at 16 in kb; 1010 is the number
of the constraint fix(spc,[tue,16],1010); 10007 is a treenode, and so on)

4.5 Problem INFO utility-

After a solution for the timetable problem is found, the resulting timetable will
match all the constraints. But, constraints additions and deletions are allowed

later, as well as moving lectures in the timetable. It is even possible that no

initial solution was found, so that an approximate partially incorrect solution
was set. In all these cases, the consistency of the timetable with constraints may

be lost, as we saw in the previous section. Therefore, I included an INFO utility
in order to let the user know what is corrupted after any change. It is also useful
for the system, since the resolve option may be required later, and will use such
information.

Provided that we have a very good TMS tool (ATMS keeps track of every¬
thing), a good way to find the things that fail in the system, could be simple:
seeing which ATMS environments leading to 0 (nogood) affect nodes in the ac¬

tual timetable (solution node). However, it is not enough, since some constraints
may have been deleted, and ATMS do not allow the retraction of justifications
or the deletion of assumptions. De Kleer says in [deKleer 86a], that such re¬

tractions and deletions should be a bad idea. In fact they are not necessary:
I constructed a way of handling an INFO mechanism, avoiding retractions. I
consider two kind of constraints:

• active constraints

38

• deleted constraints 2

and the algorithm is:

1. find the failing constraints in the present situation (testing the solnode
against active constraints with ATMS functions).

2. if there are none, we have finished; otherwise, go to 3.

3. find all environments leading to 0 (nogood node).

4. ignore those environments where "deleted constraints" appear.

5. select those environments where failing constraints appear.

6. find the contexts corresponding to any one of them

7. in each context, find the nodes that include room information which make
the constraint fail and appear in the actual timetable.

8. select the lowest priority one (advise the user to remove it and take it as a

candidate for removing, if "resolve" option required later).

Steps 1 ... 7 only require ATMS processing, and, 8 only needs a small database
search. Therefore, the process is efficient, and it works.

The obtained info is shown after any change, and may also be obtained under
user request with userjnfo command which will make a nice presentation of the
unsatisfied constraint assumptions, nodes which make them fail, and system

advice about which lectures to remove in order to solve the problem (if there is,
in fact, any failure).

Next chapter will show how all this database information is used in the prob¬
lem solver and every option that the system provides.

2No direct relation with IN or OUT nodes in a Justification based TMS. This is only
a fast way of discarding old constraints in ATMS

39

Chapter 5

The System: Problem Solver and
User Options

I think that the best way to attempt this chapter is to follow the way the system

was initially designed: First, a description of the Initial Problem Solver (solve
option). Second, the User options (adding, deleting constraints, moving lectures
in the timetable, resolve the timetable, load and save constraints or environ¬

ments, and so on). The human interface and some implementation details will
also be covered in this chapter.

5.1 The Solve option: Hierarchical Plan

When I had to face the implementation of the initial problem solver, given some

constraints, there were several points to cover:

• Solve the problem, whenever possible.

• If it was not possible, find the best partial solution

• Try to find an almost optimum solution according to preferences

• Avoid unnecessary backtracking

• Integrate it in the whole system, where further changes are possible

40

• Create the debug tree,

• Create the ATMS environment

And I had some choices about problem solving strategy:

1. A* or AO* heuristic search

2. Operations Research techniques

3. No search at all (or very few): Only support system

4. PLANNING techniques

5. Best-First-Search using an Agenda

and the decisions were:

1. had to be discarded since no suitable heuristic function was found. Anyway,

these algorithms are not very likely for this problem.

2. had to be discarded: it is useful for related items, like scheduling, but not
in this case.

3. had to be discarded, for the reasons shown in the introduction (first phase
was necessary) and the discussion with Karl Millington about EDS.

What I did was a mixture of 4 and 5: I used a Hierarchical Plan, such that

every level works in a "best-first-search using agenda" way. It does not mean

that I am using a planner: Since the problem was clearly defined, I just designed
a fixed Plan, that will be described in detail in the following subsections:

5.1.1 Hierarchy of Subjects, definition of levels

There is a hierarchy of subjects as has been described in chapter 3 (a sequence

in which they are considered). Each lecture for a subject defines a different level,
as seen in chapter 2 examples before. These levels are fixed or not, depending
on the status of their corresponding subjects. For each level, attempts are made
to set a lecture, either fixed or not.

41

5.1.2 Fixed Levels

At a fixed level there are only two choices: Either the time set in the "fix"

constraint is good or not, according to constraints (the trees at this levels are

"one father, one son"). In both cases, the lecture is entered, but if it is not good,
error is reported, both to the ATMS and the user, so that he/she may change it
later.

5.1.3 Non-fixed Levels: Best-First-Search

in Non-fixed Levels, a Best-First-Search strategy is used, where the BEST de¬

pends on preferences plus "notpos" constraints (useful in order to discard un¬

suitable times). An ordered agenda is used to do so.

An agenda, as described in search algorithms is a list where next step choices
are kept, so that we attempt them until, eventually, one of the choices leads to
a successful end, or there are no more choices in the agenda.

In this plan, the "successful end" at each level, is to set one lecture that keeps
the constraints satisfied.

an agenda, at any non-fixed level, in this system is a list as follows

[Pri1/[Day1,Hour1]], ... ,[Prin/[Dayn,Hourn]]]

Where Prij is the Priority that [Dayj,Hourj\ has according to preferences.

A low number means Higher priority in this system, since it allows the use of

setof automatic increasing ordering. Therefore, lower "Pri" numbers correspond
to the most suitable times and are set first in the Agenda.

The best-first-search at each level is very simple: Once the agenda is created,

Chronological backtracking is applied according to that agenda, until a "successful
end" is reached. This way, we guarantee that the "best" time that matched the

constraints, and is compatible with other lectures at previous levels,-is-chosen.

Some questions have to be answered, however:

• How are the agendas created. Which are the criteria?

42

• How do we check that a suitable time is consistent with the constraints?

• How do we arrange rooms information, not included in the agenda?

• What happens if no time in the agenda is valid?

These questions will be answered in next sections.

5.1.4 Agendas

In this subsection Iwill describe the Agendas Production System. As explained in
the introductory chapter, it is based on the preferences found in the constraints
file (plus the "notpos" constraints, that, directly, discard a time for a lecture),
plus the difference in days between lectures for the same subjects.

For every non-fixed subject, where m lectures will be set there is a "first"
level. At this level, every time gets its priority value:

"notpos" affected times get "11" (a number greater than 10 will discard them)

"verybad" affected times get "2"

"bad" affected times get "1"

other (good) times get "0"

therefore, "good" times are set first, then "bad", then "verybad", then "not¬

pos". This is the primitive agenda t

At each other level, for each remaining time in the agenda, the minimum
difference in days with the other lectures set for the same subject, is calculated,
and added to the corresponding priorities in the primitive agenda. The resulting

agenda is used at that level. It will be made clear in an example, in 5.1.8.

5.1.5 Testing Mechanism

For every selected time, we know that "notpos" constraints cannot affect it,
since it was tested while constructing the agenda. Therefore, "nonsimult" and

43

"nonfollow" constraints must be tested, as well as rooms possible problems. The
latter will be explained in the following subsection.

In order to test "nonsimult" and "nonfollow" constraints, we have to perform
some steps:

• looking in the timetable for the lectures set at the same time ("Then") and
adjacent ones ("Sides").

• for each lecture in "Then", extract the subject, and test if a "nonsimult"
constraint affects both that subject and the one we try to introduce. In
that case, discard the "Time". Otherwise:

• for each lecture in "Sides", extract the subject, and test if a "nonfollow"
constraint affects both that subject and the one we try to introduce. In
that case, discard the "Time". Otherwise: test rooms problems.

• At the same time, send all the information to ATMS,

5.1.6 Rooms Rearrangement

The first thing the system has to do in order to find a room for the lecture is

looking at the available rooms ("lectroom(Subject,Room,_)"). If there is one

available room that is not busy at the same time ("Then" is tested again), it is
chosen, and the lecture is definitively set. Otherwise, a method can be used in
order to save effort, that will be explained in the following paragraphs:

The Hierarchical approach to the problem means that no lectures are set at

any level, before the previous level has been completely set. Therefore, modifica¬
tions to previously set lectures, in order to avoid inconsistencies are not allowed.
But rooms are an exception:

According to "timetable experts" like Graeme Ritchie, Rooms are a "minor

problem" in lectures arrangement (although they should not be in exams ar¬

rangement). Therefore, if the change of room for a previous lecture can avoid

backtracking, it is done (even altering the tree structure, as alterations are very

small).

44

The idea is try to rearrange the rooms for lectures in "Then", until one of
the rooms available for the new subject stays free (It may or may not succeed,
but such an attempt is reasonable). It will be clear after the example shown in
5.1.8.

5.1.7 Failures: Backtracking at upper levels

One question arises when it is not possible to set a lecture at a non-fixed level

(which means that the plan fails). What do we do then? There are two natural
choices:

• Ask the user what time does he/she want the lecture to be (arbitrarily)
and assert it, sending all information about problems that it will produce,
to ATMS.

• perform backtracking at upper levels (what I call undesirable backtracking)
until one branch leads to a solution.

This system allows both of them, which are selected in the defaults input file,
as shown before, including either "nobacktrack" or "backtrack".

In my opinion, the first option is the natural choice, since most times we do
not know a priori if there is really a solution, and, anyway, from the point of
view of the user and the application, it is better to solve the problem as soon as

possible, even with faults, see what happens and modify it.

The second option is the "purist" one, of course, and it uses chronological

backtracking, as well (I will explain in 5.1.9 why Dependency Directed Back¬
tracking is avoided). But it is not the most practical one and should be used
only if we know, a priori that there is at least one solution, and we are not in
a hurry: I made a test altering the real MSc timetable constraints so that the
second non-fixed subject had no suitable times. More than 50 undesirable back¬

trackings were needed until the system finished exploration and realised that
there was no solution. If this problem happens at a lower level, there would be
thousands of backtrackings. Following the "purist" style, this option stops in

45

those situations, showing the longest partial solution found and telling the user

to exit and modify the constraints.

The example in the next subsection shows a backtracking option, in order to
allow the reader to understand the whole process.

5.1.8 Example

It is the moment to show a more complex example, to see all those things to¬

gether. Some abbreviatures are used for subjects (databas means "database
systems", matreas means "mathematical reasoning" and nig means "natural lan¬

guage processing") and rooms (al and aS are arbitrary names). A "_" symbol is
used instead of constraint numbers, as they will be irrelevant in the example (I
omit a description of how nodes are produced and justified by assumptions, to

simplify the scheme). The constraints are shown below:

days([mon,tue,wed,thu.fri]).

hours([10]).

subjects([databas.matreas,nlg]).

fix(databas,[mon,10],_).

lectroom(databas,al,_).

lectroom(databas,a2,_).

subjlectures(matreas,2).

lectroom(matreas,al,_).

subjlectures(nig,1).

lectroom(nlg,al,_).

nonsimult(databas,nig,_).

notpos(nig,[tue,10],_).

46

notpos(nig,[wed,10],_).

notpos(nig,[fri,10],_).

Plus usual additional information. Then the hierarchical plan would react as

follows:

• Level 1: fixed lecture is set

timetable = [[21002,databas,mon,10,al]]

treenode = 11001

21002 => 11001

• Level 2: no preferences:

Agenda = [0/[mon,10],0/[tue,10],0/[wed,10],0/[thu,10],0/[fri,10[]

[mon,10] is picked up. The only room allowed (al) creates conflicts with
"databas", Therefore the previous lecture is changed, as explained before

timetable = [[21003,databas,mon,10,a2], [21005,matreas,mon,10,al]],

treenode = 11002

the tree structure is partially broken (31002 cannot inherit from 31001,
since a previous node has changed). Therefore, the justification is:

21003,21005 =4> 11002

• Level 3: Optimum difference between days = 3:

New Agenda = [0/[thu,10],l/[wed,10],l/[fri,10],2/[tue,10]]

[thu,10] is picked up

timetable = [[21003,databas,mon,10,a2], [21005,matreas,mon,10,al],

[21007,matreas,thu,10,al]]

treenode = 11003

11002,21007 => 11003

47

• Level 4: lecture affected by "notpos"

Agenda = [0/[mon,10],0/[thu,10],ll/[tue,10],ll/[wed,10],ll/[fri,10]]

(11 (greater than 10) means not possible)

[mon,10] picked up. Not possible because of "nonsimult(databas,nlg,_).
Therefore we perform backtracking at the same level (not-undesirable back¬
tracking) .

[thu,10] picked up. Rooms arrangement with existing lecture for matreas
is not possible.

Other times are not suitable. Therefore, we can perform backtracking
at levels before (undesirable backtracking), if we want to find a complete
solution.

• Level 3: [thu,10] discarded.

New Agenda = [l/[wed,10],l/[fri,10],2/[tue,10]]

[wed,10] is picked up

timetable = [[21003,databas,mon,10,a2], [21005,matreas,mon,10,al],

[21017,matreas,wed,10,al],

treenode = 11007

31002,21017 => 31007

• Level 4: retried: Same Agenda

Agenda = [0/[mon,10],0/[thu,10],ll/[tue,10],ll/[wed,10],ll/[fri,10]]

[mon,10] is picked up, and discarded again

[thu,10] is picked up. Now there is no problem:

timetable = [[21003,databas,mon,10,a2], [21005,matreas,mon,10,al],

[21017,matreas,wed,10,al], [21027,nlg,thu,10,al]]

treenode = 11008

11007,21027 =>• 11008

solution node: 11008

48

5.1.9 Comments

This example illustrates several important principles:

1. The fact that matreas is higher in hierarchy than nig (which is more con¬

strained) produces undesirable backtracking and creates problems. "Most
constrained first" rule should be applied.

2. The possibility of changing previous rooms, even altering a little the tree

structure, is very useful. However, is not easily extensible to other cases

(as a kind of "dependency directed backtracking") for several reasons:

• It may be completely useless: We could try to modify "databas"

lecture, (level 1), when we discover, at level 4, that nig does not have
a place, but [mon,10] would be good, if level 1 was altered. However
it would not work, since databas is fixed.

• Even if it was useful (using a complicated algorithm) we would be
altering the hierarchy and preference rules, so that the solution would
not be optimal.

• Even if the solution was reasonably good, the tree structure would be

totally spoiled and no further debugging would be possible.

• Even if we keep track of all those "dirty tricks", such an algorithm
would be very difficult (room management was not easy at all, and it
was a very small problem), and probably not-complete (it would not
solve all possible cases).

• De Kleer shows in his paper [deKleer 86c] the convenience to use an

ATMS with chronological backtracking (PROLOG style), instead of
dependency directed backtracking (after all, this is not a justifications
TMS, and there are not really IN or OUT nodes, although a similarity
between "nodes in the timetable" and IN nodes exist).

Anyway, the task of finding a complete and efficient dependency directed

backtracking mechanism would be very useful, and it is left as an open

task to be commented in chapter 6.

49

3. backtrack-nobacktrack

"nobacktrack" option would have asked the user where to set "nig" lecture,
in the fourth level. Let's suppose the user chooses the same time ([thu,10]).
The system would tell the user the list of incompatibilities (with lectures
matreas at [thu,10]) and the user could change this one by him/herself,
with the same final result.

It is true that in this case, "backtrack" has proved to be a little better, but,
what happens if there are 9 levels between matreas and nlgl Chronological

backtracking would perform thousands of unnecessary operations, while

dependency directed backtracking would have the problems shown above.
I believe that "nobacktrack" is more convenient in such a case.

4. Database problems

Database search is widely used in this hierarchical plan. Consider the

previous example:

• At level 1, "fix" predicate facts are searched in the Prolog database
to see if any of them affects databas.

• At all levels, "lectroom" predicate facts are searched as well

• At level 2 and 4, "bad", "verybad" and "notpos" are tested to form
the agenda.

• At all levels, "nonsimult" and "nonfollow" are tested to see if a time
is suitable for a lecture.

• Every time a new node is created we have to:

— check that it did not exist before (level 4 on [thu,10] is the same

node both times)
— check if an assumption exists that can justify it

Otherwise, we would produce a proliferation of nodes and assumptions
that would make future database searching more difficult, and, worst

of all, we could not be able to use the ATMS properly. Let's see why:

If we have 3 different

"assumpt([N,matreas,thu,10])" (or "node([N,matreas,thu,10])")

50

where "different" means "having different Ns" (e.g.: 30001, 30002,

30003) and we discover inconsistencies with other nodes or constraints,
which one of the three do we use to send the ATMS as the fault? All
them? (then we are doing extra work instead of saving it). Otherwise,
it is impossible to give sound information to the user.

Uniqueness is necessary and so is database search in this case.

Now that we are aware of the necessity of much database searching, im¬

proving the default handling of databases search by Prolog could be a good

idea, but:

• A design of an ideal database to handle it may be a problem as hard
as the whole system itself.

• Prolog is not a very suitable language for designing kinds of database

system other than the normal one.

• The program would be less readable if an Ad Hoc database system is
used.

A good solution avoiding these problems could be to use Parallel Logic

Programming. It will be commented in chapter 6.

It is now time to comment all other options. The main principles I applied
here were:

• All kinds of constraints could be added and removed

• Subjects could be entered and removed

• Subjects could change their status (fixed - non-fixed)

• Lectures in the timetable could be moved, in time and/or room

• Options were reasonably "orthogonal" in the sense that every (reasonable)
change the user wants to do is possible, even if it involves many small

changes. It does not mean that all those possible complex changes are

available in only one step.

51

• These options together with "resolve" can be done in any order, as many

times as required, without corrupting the ATMS or other information in
the system: It must be always reliable.

• For any change that produces problems, all possible inconsistencies are sent

to the ATMS, not only the first found one (necessary if we want "resolve"
option to work properly).

• If the user wants, he/she do not have to create an input constraints file,
but enter all constraints from scratch before "solve" option.

In the following sections we shall see how these principles are implemented
by the different options provided in the system.

5.2 Addition of constraints

I will describe in this section the information that can be added to the database

system, and how it affects the environment. The following subsections cover

each possible addition.

5.2.1 Subject

This option allows a new subject to enter the system. In this case, the user must

enter also its position in the hierarchy (if it is not the first one), and the rooms

available for it (at least one). If addition is done before any attempt to "solve"
the problem, the user interprets it as pure "data entry", and the user must tell
the system if lectures are fixed or not, and, depending on it, either what times
are fixed for it, or how many lectures it will have, depending on the answer,

but they are not entered in the timetable ("solve" will do). If "solve" option
was used before, the new subject is supposed to be non-fixed with 0 lectures, so
that further additions of "fix" or "subjlectures" (shown below), will set its right
lectures.

52

5.2.2 Lectroom

A new room for a subject may enter the system if it was not there. It does not

affect the timetable or the ATMS environment.

5.2.3 Nonsimult

A new constraint "nonsimult(Subjectl,Subject2,N)" may enter the system, if it
was not there. In that case, all possible problems caused by this addition are

found and reported to ATMS.

5.2.4 Nonfollow

As previous item.

5.2.5 Notpos

A new constraint "notpos(Subject,[Day,Hour],N)" may enter the system, if it was
not there. In this case, any eventual "bad" or "verybad" "constraint" affecting

Subject and [Day,Hour] is removed, and, if there is any lecture for Subject on

[Day,Hour], the problem is reported to ATMS.

5.2.6 Bad

A new "constraint" (preferences information) "bad(Subject,[Day,Hour])" may

enter the system if it was not there. Any eventual "verybad" or "notpos" con¬

straint affecting Subject and [Day,Hour] is removed (in the case of "notpos", it
would involve "deleting" a constraint, and, consequently, setting its constraint
number as "deleted").

5.2.7 Verybad

As previous item.

53

5.2.8 fix

The addition of a constraint "fix(Subject,[Day,Hour],N) is forbidden if no "solve"
option has been performed, as fixed lectures have been already entered while

introducing the new Subject.

Otherwise, it is allowed, and it involves:

• The removal of all lectures for that subject in the timetable.

• The deletion of all existing "fix" constraints for it, if it was fixed.

• The deletion of "subjlectures(Subject,N)", otherwise, and, consequently, a
change of status: non(—/fixed —> fixed.

• A new position in the hierarchy, which the user must decide.

And all new lectures are entered. The reader may find it more natural adding
and deleting fixed lectures one by one, but I did it this way for two reasons

• This way, it can be used to change the status of a lecture in only one step.

• A change of a fixed lecture is a serious problem (in fact is is very uncommon
in real timetables), since it affects changes, not only in the timetable, but in
the constraints, situation that "move" option cannot handle (only changes
of room are allowed for fixed lectures with "move" option, since they do
not involve change of constraints), and this is the best way of managing
this case in only one step, and making it clear.

5.2.9 Subjlectures

The addition of a constraint "subjlectures(Subject,N)" is also forbidden, if no
"solve" option has been used, as the number of lectures has already been set

while entering the new subject.

Otherwise, it is allowed, and it involves:

54

• If Subject was not fixed (so that a "subjlectures(Subject,01dNj" is still in
the system), there are three possible cases:

1. If N is greater than OldN, it means the addition of N^OldN lectures,
done automatically. This is affected by the default option ^fack-
track" / "nobacktrack", explained before. /

2. If N is less than OldN, it means the deletion of the OldN-N lectures
chosen by the user.

3. If N is OldN, nothing is done.

• If Subject was fixed, it involves the removal of all lectures for that subject
in the timetable, and the deletion of all "fix" constraints for it. A new

position in the hierarchy is decided by the user, and N lectures are set as

explained in the previous item, case 1. This means, of course, a change of
status: fixed —> nonC-Jfixed.

iLfU (ju \i Uy

5.3 Deletion of constraints

I will describe in this section the information that can be removed from the

database system, and how it affects the environment. The following subsections
cover each possible deletion.

5.3.1 Subject

This option allows a Subject to be removed from the system. It involves:

• The elimination of Subject from the list of subjects

• The removal of all lectures for Subject in the timetable

• The deletion of all "constraints" and "preferences" (lectroom, nonsimult,
nonfollow, notpos, bad, verybad, fix, subjlectures) which include that Sub¬
ject as an argument.

55

5.3.2 Lectroom

A new room for a Subject may abandon the system only if it is not being used
for that Subject in the timetable. It does not affect the timetable or the ATMS
environment.

5.3.3 Nonsimult

A new constraint "nonsimult(Subjectl,Subject2,Nj" can always be deleted, if it
exists. Its number N is set as "deleted". It may produce eventual changes in
ATMS environment.

5.3.4 Nonfollow

As previous item.

5.3.5 Notpos

As previous item.

5.3.6 Bad

As previous item, but no constraint number exists, and it never produces any

change in the ATMS environment.

5.3.7 Verybad

As previous item.

5.3.8 Fix and Subjlectures

"fix" and "subjlectures" cannot be deleted, as explained earlier, except by adding

"subjlectures" or "fix", respectively.

56

As can be seen, this option is very simple. Its only complications will arise
in "ATMS INFO" option, as a consequence of the changes in the sets of "active"
and "deleted" constraints, as shown in chapter 4.

5.4 Movement of lectures in the timetable

As said before, fixed lectures can only change in room, but not in time. All other
lectures can change also in time. When such a change is made, the following is
done:

1. Look for the lectures in the timetable corresponding to the destination
time (Then), and adjacent lectures (Sides)

2. If there is a lecture in "Then" for the same subject, the change is not done

(This is the only forbidden case).

3. If there is a problem like the following:

• Conflict of the new lecture with "notpos"

• Conflict of the new lecture with "nonsimult" and any other lecture in
"Then"

• Conflict of the new lecture with "nonfollow" and any other lecture in
"Sides"

then, the system looks for all other possible problems (many of them can

happen at the same time), and sends inconsistencies to ATMS, so that the
Info will tell us all problems.

Why is all this checking done? Let's come back to the example in 5.1.8., with
one more subject (assemb), and the following additional constraints:

• notpos(assemb,[mon,10],_).

• nonsimult (databas,assemb,_).

57

If we try to move one lecture for assemb to [mon,10], the system would realise
first the inconsistency with

"notpos(assemb,[mon,10],_)".

Let's suppose that the system does not look for other inconsistencies, al¬

though, as can be seen, there is another one, say, 12, with

"[21003,databas,mon,10,a2]", and

"nonsimult (databas,assemb,_)".

If the user decides later to remove the constraint

"notpos (assemb, [mon,10],

then the system will tell him/her that the asserted lecture for "assemb" is
O.K. (an eventual "remove" option would not even affect it). However, it is still
inconsistent because of 12, but ATMS was not told so.

Such a bad situation does not happen in this system. I hope that the effort in

looking for all inconsistencies in order to make the system reliable is now clear.

5.5 The Resolve option

The resolve option has been designed to lead the timetable to a solution that
follows the constraints, again, after some changes have been performed. The
main requirement for the user at the moment it is needed, is usually to do it
as soon as possible. Otherwise, he/she'd better save the constraints and "solve"
again from scratch (say, option 02).

02 would probably lead to something very close to the "best solution", if the

hierarchy has been established well, as it would follow the plan. On the other

hand, it is slow if many lectures have to be set in the timetable. It would be
similar to "destroying our house and building it again, just because our washbasin
was broken", which is not very clever.

What the system does, instead, is

58

1. look at the list of candidates for removing (see 4.5, step 8 of the algorithm),
except for eventual fixed lectures.

2. remove them from the timetable

3. fill the timetable with, as many lectures as we have removed, for the same

subjects, in a strategy similar to the "solve" one.

This process does not follow strictly the hierarchy (old lectures of lower levels
that are not candidates for removal, will stay in their places, even if "higher level"
lectures could be set in their place), but I do not consider this to be important.
On the other hand, it is reasonably fast, which is what we want.

As we are following step 3 (in section 4.5) before the "solve" strategy, the
default choice "backtrack"-"nobacktrack" will affect us. In the first case, the

problem may be left unsolved and unfinished, and we may be told to attempt

option OS. In the second case, we may be told to choose any place for every
lecture that has not a suitable "hole" in the timetable. In these cases where

the problem remains unsolved, the user will have to help the system to solve the

problem himself, looking at constraints, other bothering lectures in the timetable,
and so on.

I consider "resolve" utility absolutely necessary, in order to avoid the user

having the problems shown in the previous paragraph whenever he/she makes a

change. This way, he will seldom have such a hard task.

5.6 Loading and Saving information

In my opinion, those options are fundamental, since it is not common to establish
a definitive timetable in only one session: constraints change from day to day,
and new updates may be necessary. This implies the need for saving/loading a

whole session (ATMS environment, timetables, trees, history, etc).

I found also the need to save/load only the constraints. First, when an un¬

experienced user faces a problem like this, he/she is probably more interested
in creating an input file of constraints to be loaded by the system than entering

59

the subjects and constraints one by one. Second, after an unsuccessful resolve

attempt, or a solution that does not satisfy us after many changes, we may want

to save only the constraints, and try solve again from scratch, forgetting the
whole environment.

In both cases, I made the predicates for loading and saving, so that the

resulting files were Prolog programs (actually, sets of predicate facts), for two
reasons:

• It makes the loading process easy, since Prolog programs can be easily
reconsulted in a Prolog environment (of course!) like the one I am using.

• It makes the file more understandable and even modifiable by the user, so

that he can even create the initial constraints file from scratch, as shown

above.

The task was not very difficult, but many predicates were needed in order to
format all the different predicate facts and write them in a Prolog file style. I
had to take some care, as well, in order to make the system reliable, in the sense

that after saving, abandoning the session, starting again and loading the session
before (environment), the state is exactly the same.

The use of load option is possible only in an "empty environment". More

exactly, an environment where solve has not been used yet. It is done in order to
maintain the reliability of the system: the actual constraints must be according
to the actual environment (ATMS, history, trees, etc), and both of them must
be according to the assumptions, nodes and justifications numeration. I think
this was the best way to achieve this goal.

As can be seen, loading and saving an environment is a little slow, as a

consequence of the big amount of information that has to be put, but it is just
as fast or slow as loading or saving any Prolog program of the same size. Any

improvement at this point should be done on the implementation of Prolog,
rather than on the system.

60

5.7 Human-Computer Interaction: The Graphic
Interface

I would like to begin this section describing how the system is loaded, and how to

start a session, since it will make clear why such a graphic interface was chosen.
It will also allow any potential user to get started with the system.

The final version of the system is designed to work on a SUN-3 machine,
under "suntools" environment, so that the first UNIX (SUN) command the user

should use, once we are in the right directory, should be:

suntools [-i] (-i for black screen: to avoid premature blindness!)

Appendix F shows the content of the ".suntools" file that should be in the
home directory in order to use the system (also designed for small bold char¬
acters). In this case, some windows appear. The most important of them, is
a large cmdtool window that will be one of our working windows. We use this
window to write a new command:

prolog -U200 -L1024 -C1024

where -U200 is due to Peter Ross' program "prolog.ini", needed for ATMS

system, and -L1024 -C1024 have proved to be convenient for working with pro¬

grams wider than 100 KBytes, as the one in this system. Then, the user should
write (now inside PROLOG):

[-'start.pl'].

(I decided not to include it in "prolog.ini" file, since it would have meant

modifying Peter Ross' file).

While loading start.pl, the main "Help" info will appear on the screen, while
the other programs are loaded, out of sight fromthe user.

When everything is loaded, and that window has disappeared, the user should
start by typing

template.

61

And a graphic Main window with a menu of options appears to the right.
This window and menu, are consequences of the graphic interface which I used,
as will be described just now.

The interface in this system is based on Richard Tobin/Peter Ross "Simple
Jo- ijHv-C'Ay apzv-fr pvo ek/ rfflj/ tvAst-Q-JAU.

NIP-Suntools Interface", that Del Cornali, an MSc colleague, gently explained to
me how to use. It does not contain many options, but it was quite nice and easy

to use. The main options I used were the graphic windows (with the possibility
of copying images to them) and the menus, to be set inside windows, in order to
select the desired system options.

At different moments, depending on the options chosen different menus ap¬

pear, in order to select the day, hour, room, subject, yes/no, and many other
options that the user is given. The system gets back to the menu before (or the
main menu) in case of bad entries (or pressing the mouse out of the menu, for
instance). It serves to the reliability of the system and to facilitate the user a

way to "escape" from options wrongly selected that he /she does not want to
continue.

The fact that the "Simple NIP-Suntools Interface" does not allow the use

of text windows for editing, made necessary the use of the above mentioned

"cmdtool", as the other main window in the system, used for most of the output

information from the system, and for input, when more that a simple "option
selection" is needed (e.g.: file names, new subjects or rooms added to the system,

etc). The use of "cmdtool" instead of "shelltool" will be explained below.

One of the most important needs of a system like this is a nice presentation
of the timetable, which allows the user to see how lectures are set, just by a

simple sight. A whole section of the program is dedicated to that task. It had
some key requirements:

• To be a text presentation, instead of graphic, because a "snapshot" of the
timetable in a file would be required.

• To give, at least, a small concession to graphics, to make possible the simple

sight.

62

• To keep as much information as possible in few space: Use of abbreviations
for subjects and rooms, and putting days and hours in a purpouse-built

grid, designed for weeks of five working-days, as usual.

Even so, the size of the timetable may be big, as can be seen in appendix I,
where some "layouts" of a session are shown. In addition, the info option shown

together with the timetable after any solve, resolve or change, may be more than
a page in length if many constraints happen to fail, so that it may "hide" the
timetable. Therefore, a scrolling option was needed, which "cmdtool" provides,
and "shelltool" does not.

The eventual use of editors for, say, new created constraints files, may make

necessary the use of a "shelltool" window, therefore, there is a big one just under
the "cmdtool" one. All the user has to do is hide the "cmdtool" window, and
the other will appear. If more things are needed, the user still has all other
suntool and sunview options. If any of this things is to be done, it is better to
exit the system (but not Prolog) for a while, because, otherwise, it is waiting for
a response in the menu, and it will not allow the user to do anything. Once the
user has finished and wants to recover the environment, all he has to do is use

the command:

mainmenu.

and he/she may continue the session (no save/load needed at all).

More information about the "Simple NIP-Suntools Interface", may be ob¬
tained from Richard Tobin, of A.I.A.I. and Peter Ross, od D.A.I., as well as all
NIP and sunview manuals in the department.

5.8 Implementation Comments

Up to now, I have covered mainly the theory behind the program, the options I
considered useful (and why), and how the user would use them in order to take
advantage of the system. I have intentionally left all implementation details apart

(e.g.: use of assertions and retractions in Prolog, the meaning of predicates facts,
some of them used as "variables" or "database records", goodness of algorithms,

63

etc). My main interest has been to describe the system as simply and clearly
as possible, avoiding details about programming, even if, after this, it is not so
clear how more than 190 KBytes were necessary to implement it. I believe this
is the best way to describe my system, and I will not describe implementation
details here, either.

However, there are several appendices with the complete listings of the pro¬

grams. The predicates are thoroughly commented and adequately ordered so

that reading it may allow another person to follow, understand, and hopefully

improve it.

64

Chapter 6

Further Research

I believe that this project may encourage future students and other people in¬
terested in the subject, to study it, find potential improvements, and try to im¬

plement them. I have found some areas in which it might be clearly improved,
and I would have been very keen on attempting such improvements myself if I
had more time.

Some of the potential improvements have been mentioned, or, at least, their
need have been clear after the description in this thesis. They will be shown in
the following sections:

6.1 Database system: Parallel Logic Program¬

ming

As shown in 5.1.9., I suggest the use of parallel logic programming in a problem
like this: Since most database problems in this system are about searching for
the "fact" that matches an expression: e.g.:

"node (20001 ,X,Y,Z ,T)

and most times only one does, the ideal software would be a parallel logic

programming language with a kind of OR parallelism: either Concurrent Prolog

style, or a language with committed choices (since most times, only one "fact"
matches the expression), like Parlog.

65

The ideal hardware device would be a multiprocessor system with shared

memory. In this case, using OR Parallelism, the speed of search would be multi¬

plied by the number of processors, since no communications conflicts may arise.

In the moment of writing this thesis, there is no such ideal combination
Software-Hardware. Anyway, as soon as I knew that a Sequent machine was

available for use in the department of Artificial Intelligence, and Edinburgh

Prolog, a version of C (needed for Peter Ross' ATMS), and even a subset of Parlog
were suitable for it, I asked for an account in order to make some tests myself,
even if it was not the ideal device, in order to find some potential improvements.

However, the use of Sequent machine seems to be at an early stage, and I
had a large number of problems with it. This, together with the lack of time
forced me to abandon the idea. I leave it as an open field for further research in
this area.

6.2 A general Timetables Architecture

As shown before, many kinds of timetables may exist, and not only "tutorials",

"lectures", or "exams", such as timetables for trains, planes, manufacturing

plants, and so on. The kinds of constraints seem completely different, but,

perhaps, they can be defined at a more abstract, architectural level: What do

they all have in common?. Is it possible to define a common "shell" and even

develop a kind of program, able to create a tool for each kind of timetable

(meta-program) ?

This was an idea I had in mind from the beginning (in fact, following it or
not, was one of the main decisions in the system), but it would have been a

bad direction of work, since I had not enough experience in solving this kind of

problem using ATMS, and the lack of time would have condemned it to failure.

In addition, if I wanted something to work efficiently by taking advantage of all

details, it had to be done in an Ad Hoc way, and it was.

However, having finished this version, it could be a good moment to attempt
this. I leave it also as an open task for other, after looking at my project results.
I believe that such a "Timetabling" general scheme would be as useful and

66

important as similar efforts done on "Qualitative Reasoning" or "Scheduling". I
believe that such a meta-program would be very useful.

6.3 Dependency Directed Backtracking

As explained in chapter 5, dependency directed backtracking was not the right
choice in the scheme I constructed, for many reasons. However, a generalization
of the problem, as suggested in section before, may make it more desirable than
the way I followed. It would be very interesting a research study about:

• constructing an efficient timetabling "dependency directed backtracking"

algorithm

• applying it properly to a system like this, while avoiding the problems
mentioned in chapter 5

This line of research could even be followed in relation to the future devel¬

opment of EDS project.

6.4 Efficient chronological backtracking using
ATMS

As explained in chapter 5, one of the reasons to reject any dependency directed

backtracking strategy was due to the fact that both Prolog and ATMS were more

suitable for a chronological backtracking approach. However, since this system is
more oriented to avoid backtracking at levels before (undesirable backtracking),
no one of them is really used if our choice is "nobacktrack", as explained before.

The fact is that it is extremely easy to provide a mechanism to use information

kept inside ATMS at previous attempts in order to avoid "re-inventing the wheel"
later. In the example shown in 5.1.8 ("backtrack" option), the second time we

test [mon,10] at level 4, we'd better test if ATMS has rejected it before (for
any reason), instead of searching for problems again. This would produce an

67

ATMS "supported" chronological backtracking, easy to follow in a system like this

(Prolog + ATMS), and, perhaps, as efficient as dependency directed backtracking,
with no one of its disadvantages).

I designed such a mechanism (less than 20 lines) but I did not include it
because of the problems created by "undesirable backtracking", and I decided
to recommend "nobacktracking" option, where such a mechanism is not needed.

However, if point 4 of this "further research" list is covered, this option would be

very useful, as an alternative to point 5. Perhaps a comparison of both strategies
would be a very intertesting project itself, using my project as an initial scheme
for ideas.

6.5 Data Input: An "implementation indepen¬
dent" Front-End

If we look at the system from an academic point of view, it is computationally

very "purist", quite efficient and can solve almost any "lectures" problem which
is formulated adequately. However, from the point of view of a potential user,
the input of data is, perhaps, not very nice, as Graeme Ritchie made me realise,
for some reasons:

• The user would prefer to enter the list of teachers and students and their
"human" constraints, so that the system may deduce "lectures" and "sub¬

jects" constraints, instead of calculating them himself (e.g.: list of teachers
constraints that lead to "notpos" times for their subjects, and rules like
"two subjects are nonsimult if and only if there exists a student that takes
both of them", and so on).

• The user would like to enter constraints in a positive or negative - dis¬

junctive or conjunctive normal form (DNF/CNF) style, depending on the

teacher/subject constraints. The way the constraints are entered corre¬

sponds to a conjunction on negative clauses, which is not always the best

(e.g.: a subject that has only three suitable times, should not force the user

to enter 37 "notpos" (negative-conjunctive CNF) constraints: he could

68

write 3 positive-disjunctive DNF suitable times, and let the system do the

rest).

• The user may not know Prolog and may not like, either to create a Prolog
file of constraints, or write them one by one in the system, the other option

provided.

However, while the points covered in previous sections are important, this
one is of little theoretical interest to AI researchers. An user interface is a

very easy and simple facility which any programmer may provide, but very

controversial, since it is not clear what the user really likes as a presentation,
and time consuming, even if it does not involve Artificial Intelligence at all. I

preferred to separate completely the origin of constraints (students-teachers) and
the real lectures constraints problem.

I agree, anyway, that it would be very important in a real system and it
should be done in this case, if it would move to a commercial system.

6.6 Combined Options

There is another proposal related to the previous one: to take advantage of the

orthogonality of the options in the system, in order to produce combined options
so that the user does not have to "think" (e.g.: the user would say "I do not like
this lecture here. Where else may I put it": Equivalent to "add notpos" plus
"resolve". It could be even iterated to see all possible places, include more hints,

...).

I think that, as in the previous extension, this is easy, but controversial and
time consuming. It should be done if destinated to a commercial system.

69

Chapter 7

Conclusions

This project is the result of the initial objectives in the project, plus some facts
that were revealed later, and some decisions I had to take:

• I had to choose between a basic "Support" system or a system that really
solve the problem and, in addition, give additional support to the user. I
found the latter as the right choice, even if it was more hard work.

• I had to choose between a global architecture for timetables or an Ad Hoc
case to be studied deeply. I chose the second one, as it allowed me to

construct the kind of system explained in the previous item.

• I had to choose between an abstract study of how to construct such a

system, advantages and disadvantages, or to construct a real system, able
to be used by a real user, with concessions to presentation, information to

the user, and so on. I found the second one as the most natural one.

The final system is the result of these decisions, together with the ktcktSf

development of the different sections in the work: Dedicating more time to some

of them would have probably spoiled drastically other areas.

I will summarise now the main points about what has been achieved in the

system:

1. The Hierarchical Plan designed to solve the problem happened to be a

good decision, since it really solves the problem and it is very efficient,

time^ the project (21 weeks), and the need of a compromise between the

70

as can be seen while using the system. It also allowed the use of "search
trees" as debugging tools, and many other facilities for the user, as shown
before. I believe that the nightmare produced by a "Brute Force" search
with backtracking, does not resist a comparison with it.

2. The set of user options:

• adding and deleting constraints,

• moving lectures,

• resolving the timetable at any moment,

• saving and loading either only constraints, or a complete session,

and the other user utilities, such as:

• search trees,

• history of a session,

• user information about the status at any moment,

together with the graphics interface using

• windows,

• menus, and

• a nice layout of the timetables,

form a complete and reliable system not only as an interesting toy example,
but to be used in real problems.

3. An ATMS has proved to be a very good tool to cope with "resource man¬

agement" problems, and, if used properly, gives complete and reliable in¬
formation to be used in Problem Solving.

This project was itself another kind of "resource management" problem (where
I was the main resource), that I had to attempt with my "natural intelligence".
The work described in this thesis is the result.

71

Bibliography

[AIAI 87] Knowledge Based Planning Systems Group AIAI.
Truth Maintenance Systems. Technical Report, Artifi¬
cial Intelligence Applications Institute, June 1987.

[Arlabosse et al 88] Francois Arlabosse, Bruno Jean-Bart, Nathalie Porte,
and Beatrice deRavinel. An efficient problem solving
architecture using atms, tested on a non-toy case study.
AI Communications Vol. 1 No. 4, PP• 6-15, December
1988.

[deKleer &: Williams 86] Johan deKleer and Brian C. Williams. Back to back¬
tracking: controlling the atms. Proceedings of the Na¬
tional Conference on Artificial Intelligence, Philadel¬

phia, pp 910-917, May 1986.

[deKleer 84] Johan deKleer. Choices without backtracking. Pro¬

ceedings of the National Conference on Artificial Intel¬

ligence, Austin, Texas, pp 79-85, August 1984.

[deKleer 86a] Johan deKleer. An assumption-based tms. Artificial

Intelligence No. 28, pp. 127-162, May 1986.

[deKleer 86b] Johan deKleer. Extending the atms. Artificial Intelli¬

gence No. 28, pp. 163-196, May 1986.

[deKleer 86c] Johan deKleer. Problem solving with the atms. Arti¬

ficial Intelligence No. 28, pp. 197-224, May 1986.

72

[deKleer 88]

[deKleer et al 87]

[Dixon & deKleer 88]

[Doyle 79]

Johan deKleer. A general labelling algorithm for

assumption-based truth maintenance. Proceedings of
the National Conference on Artificial Intelligence, pp

188-192, July 1988.

Johan deKleer, Kenneth D. Forbus, and Brian C.
Williams. Truth maintenance systems. National Con¬

ference on Artificial Intelligence, Tutorial No: TA\,

July 1987.

Michael Dixon and Johan deKleer. Massively parallel

assumption-based truth maintenance. Proceedings of
the National Conference on Artificial Intelligence, pp

199-204, July 1988.

J. Doyle. A truth maintenance system. Artificial in¬

telligence No. 12, pp. 281-272, 1979.

[Forbus &: deKleer 88] Kenneth D. Forbus and Johan deKleer. Focusing the
atms. Proceedings of the National Conference on Arti¬

ficial Intelligence, pp 193-198, July 1988.

[Forbus 87]

[Koff et al 88]

[Rich 78]

[Ross 87]

Kenneth D. Forbus. Building problem solvers: pro¬

gram notes on truth maintenance systems. National

Conference on Artificial Intelligence, Tutorial No:

TA4, July 1987.

Caroline N. Koff, Nicholas S. Flann, and Thomas G.

Dietterich. An efficient atms for equivalence relations.

Proceedings of the National Conference on Artificial In¬

telligence, pp 182-187, July 1988.

Elaine Rich. Artificial Intelligence. McGraw-Hill,
1978.

Peter Ross. A simple ATMS. DAI Software Paper No.

4, Department of Artificial Intelligence, University of

Edinburgh, February 1987.

73

[Smith 88] Barbara M. Smith. Forward checking, the atms and
search reduction. Reason Maintenance Systems and
their Applications, Edited by Smith and Kelleher. Ellis-

Horwood, 1988.

[Smithers 85]

[Smithers et al 89]

Tim Smithers. The alvey large scale demonstrator

project 'design to product'. Artificial Intelligence in

Manufacturing, Key to Integration?, North-Holland

(reprinted in 1987), November 1985.

Tim Smithers, Alistair Conkie, Jim Doheny, Brian Lo¬

gan, and Karl Millington. Design as intelligent be¬
haviour. an ai in design research programme. For sub¬
mission to the Design Theme of the Fourth Interna¬
tional Conference on Applications of Artificial Intelli¬

gence in Engineering, Cambridge, England, July 1989.

74

Appendix A

System Screens

This appendix contains 12 screens, as a layout of a whole, small session. They will

appear beginning in next page (screen pages are numbered 1 to 12, to simplify
the search).

75

The first screen (l) serves to orient the user about how to begin. The display
shows parameters for working under Prolog, and the way to get started with the

system, reconsulting the file 'start.pl'

« CONSOLE »

rnritnol - /t'jnr/lnr.al/hln/tr.nh

soluayX

■jsolwayX prolog -U200 -C1024 -L1024
Edinburgh Prolog version 1.5.04 (12 September 1988)
AI Applications Institute, University of Edinburgh

prolog.ini consulted: 8448 bytes 4.98 seconds

I ?- [-'start.pl'].

1

Next screen (2) shows the next step, when the system is reconsulting the
other system files, and how the screen is seen if working on black background
colour (strongly reccomended for working in the terminal, as eyes will suffer
much less).

This program is a FIMLIABLL 0LS1UN SUITOR! SYSILH using AIMS.

1) To USD It, the Uaer needs, either to create a file of constraints
or to enter then in ttie system. The first option is recomaended.

2) The program creates an initial Tinetable which solves the problem
accurdlnff to all constraints, (usinn "solve"), while constructing
a debug search tree that can be consulted as well.

3) The timetable Is sliuwn to the user. He/3he can either be
satisfied or not. In Mile case he/she nsy want to wee and channe
the constraints (using add or delete), and/or
alter the tinetable hfnself (using "nove"), using information
and advices fron ATMS embedded system.4) The user way use "resolve" to solve the problem again, after
suae changee, and continue with new nodlfIcatlona.

3) All the InfonRation la kepi into Mie system, in a -history" of
Nodes, Timetables, Trees and Constraints, that can ba consulted.
The user can save, either the whole envlroiment, after a session,
In order to continue another tlae, or only constraints. In order

ito solve again frua scratch.A template ie provided using "template" command.
This is the First command the user MUST use.

« CONSOLE »

r.mdtonl - /unr/lnca 1/hin/tcnh

'AIT: System Being Loaded

mm-mm
WMm

2

Next screen (3) shows the main menu, once the user has entered "template".
All choices can be seen here, though some of them lead to new menus of options.
We start by loading (load option) the file containing the constraints.

rmrtton1~ -"/linr/TfirnT/hTn/trfill

IOVO locturoc94.37 secondsstart.pl recunsulted: 112224 bytes
add cnnstralnts

dubupg I r»vi/ tr hh uptioriu

raSltfgGtiAhjkvt

;.V| Tirootablo t
M Assign

; Jy^ln'n M

■BateaSpio"iui"i Munieru! l'JU'J , 1 '

3

Next screen (4) shows the two choices offered to the user: load (or save, if that
was the option selected before) either constraints alone or the whole environment
after a session. Saving the whole session at the end is a good practice, so that,

in the future, the user can recover the saved session and continue with it. In this

case, we are starting from scratch, so that only constraints have to be loaded.

« CONSOLE »

rnritnnl - 7'ur.r/1n'caT/bln7'tr.f.h

■Brans

[onljtkconu tra ints

34.37 secondsstart.pl reconsulted: 112224 bytes

Timetable

Design
Support
System

o Luis Hunturu, 1000

4

Next screen (5) shows how the file has been loaded. Now we select the "solve"
option in order to find an initial solution.

« CONSOLE »
;olwayX

;ol ve

[show the timetable

iovo lectures34.37 secondsulart.pl recorisulted: 112224 bytes
add cnnatra 1nte

delete constraints
| ?- template.
filename: 'realconstraints.pi MmI oad

10.64 secondsrealconstraints.pl reconsulted: 19848 bytes

;debupyiny/tree options

Mm
isassiasS

r.iAx O L.\.
Timetable

Design
Support
System

© Luis Hontero, 1989

5

Next screen (6) shows how "solve" works, setting the lectures for the respec¬

tive subjects, in the right order (hierarchy).

« CONSOLE»

cii*dtoo'l'ytinr/iioeaT/bli^Vr.nB'

soluayX

.<■ start.pi reconsulted: 112224 bytes W.37 seconds

f. yes
v I 7- template,
filename: 'realconstraints.pl'.

realconstraints.pl reconsulted: 10848 bytes 10.64 seconds
'• databas in process . . .

.■£ cadvlsi in process ...
7 reaasns In process ...
'■ fsem2 in process . . .

/■ robuuns in process . . .

isidata in process . . .
•'
spc In prucusn . . .

''' bwhav In process . . .

cl Inp2 in process . . .

prolog In process . . .

kri2 In process . . .
■'

speech2 In process . . .

nip in process . . .

■iitreiis in process ...

■ovnmb In process ...

compcoa In process . . .

6

Next screen (7) shows the result after "solve" is done, and the timetable
obtained. If the user decides, then, to move a lecture he/she does not like (e.g.:
the one for "kri2" on tuesday), all he/she has to do is select that option from
the menu, as shown in screen 3. The user will be told to enter the name of the

subject, of course.

yHUtljHUtl

r«"ritooT-»7^
irnduta in process
ape in process . . .

buhav in process .

cling2 in process
prolog in process
kri2 in process . .

speech2 in process
nig in process . . .
matreas in process
assemb in process .

compcom in process
I am testing ATMS .

rnbnnnn

9 Idatubus kb3218|robsena todd
0 I I itr.nnmh

Timetable

Design
Support
System

o Luis Huntero, 1989 t

10|natreaa sbflO |nlg sbflO
10 j cadv1 a I kb3214jrobaena todd
10| |
101 I

14|imdata royobs|spc kbltb
<■ 14|fse«2 cognscl
14| I

.< 131 coapcoia kb32121 speech2 afb8
15|fsea2 cognscl

| 151 I
£ 16|prolog atlt2 |kri2 atlt2

161 |

* EVERYTHING is O.K.
please, enter consistent data.

111 ri 1 g sbflO |matreaa sbflO
lljcadvlsi kb3214|imdata royoba
111 I

compcoa kb3212

12|assenb sbflO Idatabas kb321B
12|remsens neteor|
12| |

prolog at1t2

asseaib abflB |matreas abflB |nlg
apeecli2 afbB jdatabaa kb3218|
buiia v kb3313| |

sbflB

(■data royobs aasemb abflB
cltng2 cognac

cling2

spc kbltb royobs

kr 12 a 11 t2

7

Next screen (8) shows the next step, when the user is told to enter the original
time and room, and the destination ones, so that new menus, as the one shown

above, will appear.

« CONSOLE»

CMrfinh'i"'7unr7Vwcii'T/hjoTicnlt
I aula to in process
ape in process ...
buhav in process .

clirig2 In process
prolog In process
kr12 In process ..

speech2 In process
nig In process . . .

aiatreas In process
assenb In proceus .

compcon In process
I an lusting ATMS ,

9 |d*tubas kb3218|robsuns todd
0 I I

10|natruss sbflO |nlg sbflO
10|cadv1uI kb3214jrobsuna todd
101 I
101 I

issunb abflB |oatruau sbflB
apeech2 afbB jda tabua kb3218
buhav kb3313|

lllnlg sbflO |natreas sbflB | conpcua kb3212| iaidata
lljcadvlsl kb3214|induta royobsj 1
HI I I I

12|asserab sbflB |databas kb32181pro 1og atlt2
12|rensuns nuteor| |
12| | |

cognac

14|lndata royobs|spc kbltb
14|f uun2 cognac|
1*1 I

13|compcom kb3212|spu«cb2 afbB
13|fseai2 cognac)
131 I

EVERYTHIHC Ib O.K.
please, enter consistent data

8

Next screen (9) shows the result after the movement has been done. The
system checks if that change affects the consistency (it does!). The new timetable
is shown, as well as the failing constraints, and some advice about what to

do, if the user wants to solve the problem him/herself. Let's suppose that the
user decides, then, to add a new constraint (e.g.: natural language - nig - and
mathematical reasoning - matreas - should not follow each other). He/she will
have to select "add constraints" option from the main menu, as shown in screen

3, and a new menu of options, as the one shown below, will appear. The user

will select "nonfollow".

cwdtool /uor/1oca1/bln/tcob

WARNING I 20102
Inotpoo

rionful 1 uu

databuo kb32181robsana todd
i

natreas abflO jnlg sbflB
cadvlal kb3214|rubauna todd

nig ubflO |natraaa abflO
cadvlal kb32l4|Induta royoba

I

aauuab abflO |natreaa 8bfl0 |nlg
speech2 afbS jdatabaa kb3216|
behav kb3315| I

i i

conpcua kb3212| Indata royobal aaaeaib
I |c1lng2
I I

abf IB
cognac|

aauunb abflO |databaa kb321B
raaBHiia mntuur|

I

prolog atlt2 |

I

|cl1ng2 cognac
I
I

Indata ruyoba|apc kbllb
fuun2 cugriacl

I

cunpcota kb3212| Rfi«acli2 afbO
fh««2 cognac|

I

|kr 12 a1112 |kr!2 atlt2
i I

9

Next screen (10) shows again the fact that the system tells the user to enter
the "First" and "Second" subject he/she wants to include in the new constraint.
Other constraints may require different data, in the same way, unless they are

new "names" (e.g.: new subjects or rooms), when entering them in the left
window may be necessary. In this case, "nig" subject is selected from the menu.

ItNUg : • '

remaena
WARNING I 20102: "A lectors for subject kr12 given on thu it 13'
will not follow the constrsintB:
Ruauon: nonfollow and/or nonaimult rohsnnn

an testinq ATMS

9 | dia tubau kb32181 robuwns todd
0 I I

lfl|«iatruu» sbflO | n 1 q sbflO
10 j csdv 1 s I kb3214 j robuuns tudd
10| I
101 I

aaesali sbflO |matrea« sbflB
spe«ch2 ifbB jdatabaa kb3210
behav kb3313|

annnaih

ll|nlg abflO (natreas sbflO | cuapcua kb3212| iaidata
lllcsdvlsi kb3214| Indala royobaj j
111 I I I

nostpcnm

12|asaeiab sbflD jdatabas kb321B|prolog itlt2
12|reaisens meteor | [
12| | |

cognsc

14 | iaidata royobs|spc
14|fsem2 cognsc|
141 |

Mm
15|compcoa kb3212|speech2 afbB
15|fsea2 cognac|
151 |

& js u-, «,*f;
J. F,-: ;

jfa Timetable 'J
•rijg . ,i-:<

Design ,V

l sss? mM
:nfvj v..,;

BBMrattjrate6 Lil la Municr u, lOO'.l '

16|prolog atlt2 |
16| |

ATMS info:

Assumptions that fail
constraint: nonfollow

unsatisfied by nodes:
Nude 20838: "A lecture for
Node 20103: "A lecture for

My advices: move the following
20103: "A lecture for subject I

10

Next screen (11) shows the result after the last addition: timetable, failing
constraints and lectures affected, and the system's advice ("scrolling" may be
necessary if the user wants to look at the complete timetable, as can be seen).
The user realises that there are many things to do and decides to select the
"resolve" option, so that the system will solve it automatically again.

« CONSOLE »

H
noluny%

rnritonl -7uol7Tiirii/bTn/teflh"

ll|nlg abflO |«atreas sbflO
lijcadvlsl kb32l4 j Indata royobs
111 I

12|assenb sbflQ |databaa kb3218
12|re«sens meteor|
12| |

13|

14|1ndats royobalspc kbllb
14|f ao*2 cognac|
14| |

15|coapco«a kb3212|speech2 afb8
15|futm2 cugnacl
131 I

161prolog a 1112 I
1G| I

conpcon kb3212

prolog at1t2

(■data royobs|assenb sbflB
|cliny2 cognac

spc kbltb | laidata royobs

i
kr12 a 1112 |

kr 12 a 1112

ATMS Info:

Awguapt loris that fall:
constraint: nunfollow(krI 2,spc, 012) .

urisatlsflsd by nodes:
Node 20030: "A lecture for subject epc given on thu at 14 In rooei kbllb"
Node 20103: "A lecture for subject krl2 given on tbu st 13 In rooei at112"

constraInt: nonfol1ou(n1g,ma treus,40001).

unsatisfied by nodes:
Node 2Q0G0: "A lecture for subject nig given on s»on at 11 In rousi sbflB"
Node 20862: "A lecture for subject eatress given on eon at 10 In rooa sbflB'

constraint: nonfo1low(nly,natreas,40081).

unsatisfied by nodes:
Node 20836: "A lecture for subject nig given on tue at 18 In room sbflB"
Node 20860: "A lecture for subject eatress given on tue at 11 In rouai sbflO

My advicua: move the following:
20062: "A lecture for subject aiatreas given on sion at 18 in room sbflQ"
20069: "A lecture for subject aiatreas given on tue at 11 In room sbfl0"
20103: "A lecture for subject kr!2 given on thu at 15 In roan atlt2"

11

And next screen (12) shows the new arrangement of lectures afterwards. The
user may save the environment, if he/she wishes, as shown before. To exit the
system, the user might use "exit" option and confirm (yes/no).

<< CONSOLE

main opt<mm:

c«ritnni*«/tinr7lnrn'l
unaa t I uf I ed by nudes
Node 20056: "A lectin
Nude 20669: "A lectin

Hy advices: move the following:
20062: "A lecture for subject aatreaa given on son at 18 In rooca sbflO'
20060: "A lecture for subject mtreas given on tue at 11 In room sbflO'
20103: "A lecture for subject kr!2 given on thu at 15 in rooa atlt2"

kr!2 In process ..

matreas In process
I an tee ting ATMS debugg I rig/true options

9 Idalubuu kb3218|rubaens todd
9 I I

101cadvlsI kb32141nig abflB
10| |rubsens todd
10| |
10| 1
101 t

ll|nlg sbflO | Indata
111cadv1 a 1 kb3214|
HI I

royobs

12|asserab sbflO |databas kb3218
12|remsens meteor|
12| |

14|natreas sbflfl |spc
14| Imdata royobsl
14|fsem2 cognsc|
141 |

15|coapcom kb3212Ispeuch2 afb8
15|fsem2 cugnsc|
131 I

16|prulug atlt2 |kr!2
16| |

EVERYTHING Is O.K.

matreas sbfl2
assemb sbflQ

speech2 afb8
behav kb3313

compcota kb3212

prolog atlt2

matreas abflB
da t abas kb3218

laidata royobs

kr 12 a 1112

nig

assemb sbflB
cllng2 cognac

cllng2 cognsc

Imdata royobs

kr!2 at 112

I hope this appendix will simplify the work to any person attempting to use

the system. Good luck!

12

Appendix B

System Files: start.pl

This appendix contains the text of the program that loads the main program,

shows the main menu and initialises the system in order to work. The listing is
shown in next page, in a format of two pages in one.

76

start.pi Wed Jul 5 02:36:12 1989 1

/*
File: start.pl
Author: Luis Montero, MSc Student (lmg@forth, lmg0aipna)
Purpose: Starting program for the Timetable Design Support System using ATMS.
*/

% ===

/*
PREDICATE: help
ARGUMENTS: NONE

COMMENTS: Succeeds after showing information about the system
*/
% === ===============================

help :-
write('This program is a TIMETABLE DESIGN SUPPORT SYSTEM using ATMS.'),
nl,
nl,
write (' 1)
nl,
write ('
nl,
write (' 2}
nl,
write ('
nl,
write ('
nl,
write (' 3)
nl,
write ('
nl,
write ('
nl,
write ('
nl,
write ('
nl,
write (' 4)
nl,
write ('
nl,
write (' 5)
nl,
write ('
nl,
write ('
nl,
write ('
nl,
write ('
nl,
nl,
write ('
nl,
write ('
nl.

%

/*
PREDICATE: start
ARGUMENTS: NONE

To use it, the User needs, either to create a file of constraints')

or to enter them in the system. The first option is recommended.'),

The program creates an initial Timetable which solves the problem')

according to all constraints, (using "solve"), while constructing')

a debug search tree that can be consulted as well.'),

The timetable is shown to the user. He/She can either be'),

satisfied or not. In this case he/she may want to see and change'),

the constraints (using add or delete), and/or'),

alter the timetable himself (using "move"), using information'),

and advices from ATMS embedded system.'),

The user may use "resolve" to solve the problem again, after'),

some changes, and continue with new modifications.'),

All the information is kept into the system, in a "history" of'),

Nodes, Timetables, Trees and Constraints, that can be consulted.'),

The user can save, either the whole environment, after a session,')

in order to continue another time, or only constraints, in order'),

to solve again from scratch.'),

A template is provided using "template" command.'),

This is the First command the user MUST use.'),

COMMENTS: Succeeds after asserting initial values in prolog database,
coming from constraints or solution file, for efficiency reasons,
in order to begin a new session

*/
% =============================

start :-

maxassumptnumber(MAN),
putsetup(MAN),
days(Days),
createtranslate(Days, 1),
hours(Hours),
join(Days,Hours,Dayshours),
asserta (dayshours(Dayshours)),
asserta (subjects([])),
asserta (timetable([])),
asserta (unsolved([])),
asserta (tracks([])).

:- [-'graph.pl'],
shell("clear"),
help,
startserver,
makeimage(1152,300,Image),
readimagebinary(Image,'wait.lmg'),
makewindow('WAIT',450,19,718,300,Waitwindow),
copy(Waitwindow,0,0,1152,300,set,Image,260,0),
asserta (notallowed(resolve)),
[-'atms.pi'],
[-'addons.pl'],
[-'newtimetable.pl'],
[-'defaults.pl'],
start,
shell("clear"),
killwindow(Waitwindow).

% Some predicates are in "newtimetable.pl"

% look at "ATMS DATABASE" section

% look at "SOLVE OPTION" section

% look at "SOLVE OPTION" section

Appendix C

System Files: addons.pl

This appendix contains the text of a program containing some "general purpose

predicates widely used in the main program of this system. The listing starts in
next page, in a format of two pages in one, with page numbers starting with 1.

77

addons.pi Wed Jul 5 02:17:55 1989 1

/*
File: addons.pl
Author: Luis Montero, MSc Student (lmg@forth, lmg0aipna)
Purpose: set of useful predicates frequently used in applications
*/

% ===

/*
PREDICATE: member(X,+Y)
ARGUMENTS: X, anything

Y, list (input)
COMMENTS: Succeeds if X is member of Y. It is valid either if

X is bound (test), or not (find elements of Y)
*/
% =================================== =====================

member(X,[X|]).

member(X,[_|T])
member(X,T).

% ==

/*
PREDICATE: memberchk(+X,+Y)
ARGUMENTS: X, anything

Y, list (input)
COMMENTS: Succeeds if X is member of Y. It has a RED CUT

*/

memberchk (X, [X |_])

memberchk(X,[_|T]) :-
memberchk(X,T).

/*
PREDICATE: membercdr(X,+Y)
ARGUMENTS: X, anything

Y, list of pairs (input)
COMMENTS: Succeeds if X is 'cdr' of a member of Y. It is valid either if

X is bound (test) or not (find 'cdr's of elements in Y)
*/

membercdr(X,[/X|]) .

membercdr(X,[_|T]) :-
membercdr(X,T).

/*
PREDICATE: remove(+L,+X,?Y)
ARGUMENTS: L, list (Set) (input)

X, anything
Y, list (output)

COMMENTS: Succeeds after instantiating Y to the list L after removing
the only appearance of X in it.

*/

remove ([],_, []).

remove ([X | T] ,X,T) :-

remove([Y|T],X,[Y|Tl]) :-
remove(T,X,Tl).

% ===

/*
PREDICATE: bagremove(+L,+X,?Y)
ARGUMENTS: L, list (input)

X, anything
Y, list (output)

COMMENTS: Succeeds after instantiating Y to the list L after removing
all appearances of X in it.

*/
% ======= : == ==:

bagremove([],_,[]).

bagremove([X|T],X,Tl) :-
i
• /

bagremove(T,X,T1).

bagremove([Y|T],X,[Y|Tl]) :-
bagremove(T,X,T1).

% ==

/*
PREDICATE: recremove(+L,+X,?Y)
ARGUMENTS: L, list (input)

X, list (input)
Y, list (output)

COMMENTS: Succeeds after instantiating Y to the list L after removing
all appearances of members of X in it.

*/

recremove ([],_, []) .

recremove([Z|T],X,Tl) :-

memberchk(Z,X),
i

recremove(T,X,T1).

recremove([Y|T],X,[Y|Tl]) :-
recremove(T,X,T1).

/*
PREDICATE: item(+Y,+Z,?T)
ARGUMENTS: Y, list

Z, number
T, anything

COMMENTS: Succeeds after instantiating T to the Zth element in the
list Y, or testing if T is the Zth element in Y

*/

addons.pi Wed Jul 5 02:17:55 1989 2

item([X|J,1,X)

item ([J Y], N, X)
N > 1,
N1 is N - 1,
item (Y, Nl, X) .

/*
PREDICATE: position(+X,+Y,?Z)
ARGUMENTS: X, anything

Y, list
Z, number

COMMENTS: Succeeds after instantiating Z to 0 if X is not in Y, in the
first level, or to the position it has in Y, otherwise.
It is also valid for finding the element Z in the list Y.

*/
% ==================

position(_,[],0).

position(X,[X|_] ,1) .

position(X,[W|Y],N>
X \== W,
position(X,Y,Nl),
{(Nl \== 0,

N is Nl + 1)

(Nl = 0,
N is 0)

) .

% ==

/*
PREDICATE: dif (+S,?D,+N)
ARGUMENTS: S, integer

D, integer
N, integer

COMMENTS: Succeeds after instantiating D to the numbers whose difference with
S is N, either upper or lower.

*/

dif(S,D,N) :-
D is S + N.

dif(S,D,N) :-
D is S - N.

/*
PREDICATE: abs(+S,?N)
ARGUMENTS: S, integer

N, integer
COMMENTS: Succeeds after instantiating N to the absolute value of S
*/

abs(S,S) :-
S > 0,
i

abs(S,N) :-
N is 0 - S.

% =========

/*
PREDICATE:
ARGUMENTS:

COMMENTS:

between(+D,+First,+Last)
D, integer
First, integer
Last, integer
Succeeds if D is between First
one of them

and Last (First <= Last) or it is

between(D,First,Last) :-
D >= First,
D =< Last.

% ==

/*
PREDICATE: putinpos(+Value,+Place,+State,?Statel)
ARGUMENTS: Value, integer

Place, integer
State, list
Statel, list

COMMENTS: Succeeds after instantiating Statel to the list result of setting the
content of position 'Place' in State to 'Value'

*/

putinpos(N,l,[_|Y],[N|Y]) :-

putinpos(N,M,[X|Y],[X|Z]) :-
Ml is M - 1,
moveaux(N,M1,Y,Z).

% ====== ==

/*
PREDICATE: reverse (+X,?Y)
ARGUMENTS: X, list

Y, list
COMMENTS: Succeeds after instantiating Y to the reversed X list,

(efficient version, using reverse/3)
*/
% ===

reverse(L,R)
reverse(L,[], R).

reverse([],X,X).

reverse([X|Y],Sofar,Z) :-
reverse(Y,[X|Sofar],Z).

%

addons.pi Wed Jul 5 02:17:55 1989 3

PREDICATE:
ARGUMENTS:

COMMENTS:

intersection(+X,+Y, ?Z)
X, list
Y, list
Z, list
Succeeds after instantiating Z to the intersection of
X and Y, if both of them are sets

intersection(X,Y,Z)
length (X,LX),
length (Y,LY),
LY < LX,
!
• r

intersection (Y,X, Z) .

intersection([],_,[)).

intersection([El|E2],Set,[El|Rest])
memberchk(El,Set),
I
• r

intersection(E2,Set,Rest).

intersection ([_| E2],Set,I) :-
intersection(E2,Set,I).

% ===

/*
PREDICATE: union(+X,+Y,?Z)
ARGUMENTS: X, list

Y, list
Z, list

COMMENTS: Succeeds after instantiating Z to the union set of
X and Y, if both of them are sets

*/

union(X,Y,Z)
cone(X,Y,XY),
setof2(I,member(I,XY),Z).

% ===

/*
PREDICATE: cone(+X,+Y,?Z)
ARGUMENTS: X, list

Y, list
Z, list

COMMENTS: Succeeds when Z is the concatenation of X and Y

*/
% == „

cone ([], L, L) .

cone([X | LI], L2,[X|L3]) :-

cone(LI,L2,L3).

% ======= ============

/*
PREDICATE: drawlist(+L1)
ARGUMENTS: LI, list

COMMENTS: Succeeds after writing the list LI, one member a line
*/
% ==

drawlist([])
nl.

drawlist([H|T]) :-
nl,
write (H),
drawlist(T).

% =============== ===

/*
PREDICATE: setof2(+X,+Y,?Z)
ARGUMENTS: X, anything

Y, predicate
Z, list

COMMENTS: like 'setof', but in the cases where 'setof' would fail,
'setof2' instantiates Z to []

*/
% ===

setof2 (X,Y,Z) :-
setof (X,Y,Z),

setof2 []) .

% =========

/*
PREDICATE:

ARGUMENTS:

COMMENTS:

bagof2(+X,+Y,?Z)
X, anything
Y, predicate
Z, list
like 'bagof', but in the cases where
'bagof2' instantiates Z to []

'setof' would fail,

bagof2(X,Y, Z) :-
bagof(X,Y,Z),
i

e

bagof2 []) .

% ==

/*
PREDICATE: sum(+X,+Y,?Z)
ARGUMENTS: X, list

Y, list
Z, list

COMMENTS: Succeeds after instantiating Z to the list whose elements are sums
of elements in X and the corresponding elements in Y

*/

sum ([],[], []).

sum([HI|T1], [H2|T2], [H3|T3]) :-
H3 is HI + H2,

addons.pi Wed Jul 5 02:17:55 1989 4

sum(Tl,T2,T3).

% =========

/*
PREDICATE:
ARGUMENTS:

COMMENTS:

times(+Item,+Bag,?List)
Item, anything
Bag, list
List, list
Succeeds after instantiating List to the list of "lists
whose first element is Item and whose second
element is the number of times it appears in Bag"

times(_,[],0).

times(H,[H|T],N) :-
i
• i

times(H,T,N1),
N is N1 + 1.

times(H,[_|T],N) :-
times(H,T,N).

/*
PREDICATE: writelist(+List)
ARGUMENTS: List, list
COMMENTS: Succeeds after writing each element in List in a

different line
*/

writelist ([]).

writelist([H|T]) :-
write (H),
nl,
writelist (T).

/*
PREDICATE: spaces(+N,?Spaceslist)
ARGUMENTS: N, integer

Spaces, list
COMMENTS: Succeeds after instantiating Spaces to a list of N 'space' ASCII

numbers
*/
% ====== ========_==========.=.=====================_= =======

spaces (0, []) :-

spaces(N,[32|Spaces]) :-
Nl is N - 1,
spaces(Nl,Spaces).

/*
PREDICATE: zero(+N,?List)

ARGUMENTS: N, integer
List, list

COMMENTS: Succeeds after instantiating List to a list of N '0's
*/
% ===== —=========

zero (0, []) :-

zero(N,[01X]) :-
Nl is N-l,
zero(N1,X).

% ================= ==============================

/*
PREDICATE: allmembers(+List,+Set)
ARGUMENTS: List, list

Set, list
COMMENTS: Succeeds if all members of List are in Set

*/

allmembers ([],_) .

allmembers([H|T], Set) :-
member(H,Set),
allmembers(T,Set).

Appendix D

System Files: newtimetable.pl

This appendix contains the text of the main program of the system. The listing
starts in next page, in a format of two pages in one, with page numbers starting
with 1.

78

newtimetable.pi Wed Jul 26 15:37:45 1989

/*
File: newtimetable.pl
Author: Luis Montero, MSc Student (lmg@forth, lmg0aipna)
Purpose: A Timetable Design Support System using ATMS.

GENERAL OVERVIEW:
This is the main Prolog code file for the TIMETABLE DESIGN SUPPORT SYSTEM
using ATMS. The predicates have been grouped together is SECTIONS, in order
to facilitate reading by people diferent from the author. Those sections are:

- HELP MENUS
- ATMS DATABASE
- DEBUG-TREE OPTIONS
- SOLVE OPTION
- SOLVE OPTION: FIXED LECTURES
- SOLVE OPTION: NON-FIXED LECTURES
- TESTS
- ATMS INFORMATION AND HISTORY
- SAVE AND LOAD OPTIONS
- RESOLVE OPTION
- DELETE OPTION
- ADD OPTION
- MOVE OPTION
- SHOW TIMETABLES
- GRAPHIC INTERFACE

*/

^ **

% * *

% * HELP MENUS *

% * *

% **

/*
PREDICATE: help_tree
ARGUMENTS: NONE

COMMENTS: Succeeds after showing information about the environment and
options that can be used to process the debug-tree

*/

help_tree :-
nl,
write('The history of the solution found after "solve" or "resolve" commands')
nl,
write('(the proof), including failures and solutions, is kept in a tree.'),
nl,
write('There is an active tree. The default one is the "solve" one (tree)'),
nl,
write('You can activate a "resolve" subtree, looking for its "SolNode"'),
nl,
write('solution node, in the "history", and doing "puttree (SolNode)"'),
nl,
nl,
write('COMMANDS to process and see the tree'),
nl,
nl,
write('snapshot (Filename). - to obtain a snapshot of the tree in Filename'),
nl,
nl,

write('display.
nl,
nl,
write('down(N).
nl,
nl,
write ('up.
nl,
nl,
write ('top.
nl,
nl,
write('solution,
nl.

- to see the actual level and children'),

- to move to the Nth child (N = Node number)'),

- to move to the previous level'),

to move to the top level'),

to move to the solution leaf'),

% ======= ==

/*
PREDICATE: help_cons
ARGUMENTS: NONE
COMMENTS: Succeeds after showing information about the kind of constraints

that can be used in the system, and how they should appear in the
constraints file

*/

help_cons :-
nl,
write ('The following Kinds of facts are used in a constraints file:'),
nl,
nl,
write('subjects - fixed first. Other subjects shhould be ordered'),
nl,
write (' most constrained first'),
nl,
nl,
write('subjlectures - number of lectures per subject, if not fixed'),
nl,
nl,
write ('The following constraints must include a "constraint assumption'"),
nl,
write('number, unless the opposite is said. Numbers must be unique'),
nl,
nl,
write('nonsimult - subjects that cannot have lectures at the same time'),
nl,
write('nonfollow - subjects that cannot have subsequent lectures (e.g.:'),
nl,
write (' lectures at KB/MAIN CAMPUS taken by the same person)'),
nl,
write (' lectroom
nl,
write (' fix
nl,
write (' bad,
nl,
write('verybad
nl,
write ('
nl,
write('notpos
nl,
nl,
write('OTHER times than bad, verybad or notpos, are "good"'),

- pairs subject-room suitable for it'),

- fixed times per subject, if fixed lectures'),

- "bad" or "very bad" times for each subject, and for'),

"all" subjects in general. NO CONSTRAINT ASSUMPTION'),

NUMBER USED'),

- "not possible" times for each subject, and "all'"),

newtimetable.pi Wed Jul 26 15:37:45 1989

nl,
nl,
write('For more info, edit the file "realconstraints.txt"'),
nl.

/*
PREDICATE: help_user
ARGUMENTS: NONE
COMMENTS: Succeeds after telling the user some information about

history-information options
*/

help_user :-
nl,
write

nl,
nl,
write
nl

write
nl
write
nl
write
nl

nl
write
nl
nl
write

nl,
write
nl
write

nl
write
nl

nl
write
nl

write
nl
nl

write
nl
write
nl
write
nl

nl
write
nl

nl
nl.

'If you want INFORMATION about the environment, you have some options:')

'user_info - will show you the unsatisfied constraint assumptions, and')

' nodes which make them fail'),

' and "system advices" about which lectures to remove to'),

' solve the problem, if there is, in fact, any failure'),

'showtimetable - shows the actual timetable'),

'history_info - will show the history of the session, from the first'),
' "solve" up to now. Solution nodes numbers after every'),

' change are shown, so that you can use them in order'),

' to see past timetables or consult resolve "subtrees"'),

' showtimetable(SolNode) - Shows the past timetable coresponding to'),

' Solnode solution node'),

' snapshottimetables(Filename) - creates a snapshot of the history'),

' of the session, together with the history of the'),

' timetables'),

'numbers - to see the meanings of the numbers in the history or tree'),

/*
PREDICATE: help_add_delete
ARGUMENTS: NONE
COMMENTS: Succeeds after telling the user some information about

add-delete and move options

help_add_delete :-
nl,
write

nl,
nl,
write

nl,
nl

nl,
write

nl,
nl,
write

nl,
nl,
write

nl,
write

nl,
write
nl
write
nl
write
nl
write
nl
write
nl
write

nl
nl
write
nl
write
nl

write
nl
write
nl
nl
wr

nl
wr

nl

wr

nl
wr

nl
wr

nl

wr

nl
wr

nl
nl
wr

nl
wr

nl

te

te

te

te

.te

.te

te

te

.te

'If you want to PERFORM CHANGES IN the TIMETABLE, use "move"'),

'move - Allows you to change a lecture in Day, Hour and/or Room,'),

'If you want to PERFORM CHANGES IN CONSTRAINTS, use "add" or "delete":')

'You can add and delete:'),

'NATURAL CHANGES:'),

' "Subject'"),

'"bad" constraints'),

'"verybad" constraints'),

'"notpos" constraints'),

'"nonsimult" constraints'),

'"nonfollow" constraints'),

'"lectroom" constraints'),

'If such changes are possible. The only side effect they produce is,'),

'eventually, to change the ATMS environment (desirable side effect,'),

'of course), so that the state of the problem may pass from "solved'"),

'to "unsolved" or viceversa.'),

'CHANGES TO ALTER THE STATUS OF LECTURES FOR A SUBJECT'),

'"Subjlectures'"),

' depending on the previous status, either "subjlectures" or ALL "fix"')
' constraints of the subject entered are deleted (if any), and ALL'),

' lectures are removed (they lose their priority). In any case,'),

' the timetable is updated, according to the number of lectures'),

' required, and a new "subjlectures" constraint is created'),

'"fix"'),

depending on the previous status, either "subjlectures" or ALL "fix"')

newtimetable.pl Wed Jul 26 15:37:45 1989
write (' constraints of the subject entered are deleted (if any), and ALL'),
nl,
write (' lectures are removed, and replaced by the'),
nl,
write (' new entered ones, as new "fix" constraints are created'),
nl,
nl,
write (' use "add" and "delete" commands for more details'),
nl.

% **

% * *

% * ATMS DATABASE *

% * *

% **

/*
PREDICATE: putsetup(+N)
ARGUMENTS: N, integer
COMMENTS: Succeeds after setting up atms for N assumptions
*/

putsetup (N) :-

atms_setup(N,_) .

% ===

/*
PREDICATE: putnode(+Node)
ARGUMENTS: Node, integer (node number)
COMMENTS: Succeeds after sending Node to ATMS

and keeping track in 'nodenumber'
*/
% ===

putnode(Node) :-

atms_node(Node),
asserta (nodenumber(Node)).

/*
PREDICATE: puttreenode(+Node)
ARGUMENTS: Node, integer (node number)
COMMENTS: Succeeds after sending Node to ATMS

and keeping track in 'treenode'
*/
% ===

puttreenode(Node) :-

atms_node(Node),
asserta (treenode(Node)).

% ========= ==========================

/*
PREDICATE: putassumpt(+As)
ARGUMENTS: As, integer (assumption number)
COMMENTS: Succeeds after sending As to ATMS

and keeping track in 'assumptnumber'
*/
% ================================ ==========

putassumpt(As) :-

atms_assumption(As),
asserta(assumptnumber(As)).

% ==

/*
PREDICATE: putconstraint(+As)
ARGUMENTS: As, integer (assumption number)
COMMENTS: Succeeds after sending As to ATMS

and keeping track in 'constraintnumber'
*/
% ==

putconstraint(As) :-

atms_assumption(As),
asserta(constraintnumber(As)).

% ==

/*
PREDICATE: put justification (+Node,+List)
ARGUMENTS: Node, integer (node number)
COMMENTS: Succeeds after sending the justification to ATMS

and keeping track in 'justification'. The option of doing so only
if such justification was not yet in the ATMS database, was
removed for efficiency reasons, but, if used, would need the
rule shown above.

putjustification(Node,List) :-
justification ([Node|List]),

*/

putjustification(Node,List) :-

asserta(justification([Node|List])),
atms_justification(Node,List) .

% ============ ===

/*
PREDICATE: sendjusttoatms(+L)
ARGUMENTS: L, list (of assumptions)
COMMENTS: Succeeds after sending all justifications representations in L

to ATMS

*/
% ==

sendjusttoatms([]).

sendjusttoatms([[Node|Just]|RT]) :-

atms_justification(Node,Just),
sendjusttoatms(RT).

%

/*

newtimetable.pi Wed Jul 26 15:37:45 1989

PREDICATE: sendnodestoatms(+L)
ARGUMENTS: L, list (of assumptions)
COMMENTS: Succeeds after sending all assumptions in L to ATMS
*/
% ==

sendnodestoatms([]).

sendnodestoatms([RH|RT]) :-

atms_node(RH),
sendnodestoatms(RT).

% === =============

/*
PREDICATE: sendastoatms(+L)
ARGUMENTS: L, list (of assumptions)
COMMENTS: Succeeds after sending all assumptions in L to ATMS
*/
% ==:

sendastoatms([]).

sendastoatms([RH|RT]) :-

atms_assumption(RH) ,

sendastoatms(RT).

% ==

/*
PREDICATE: sendconstoatms(+L)
ARGUMENTS: L, list (of assumptions)
COMMENTS: Succeeds after sending all assumptions in L to ATMS

and keeping track in 'constraintnumber'
*/
% > ==:

sendconstoatms([]).

sendconstoatms([RH|RT]) :-

putconstraint(RH),
sendconstoatms(RT).

/*
PREDICATE: sendconstraints
ARGUMENTS: NONE
COMMENTS: Succeeds after sending all initial constraints to ATMS Database
*/
% ==

sendconstraints :-

setof2(N,initconstraint(N),Aslist),
sendconstoatms(Aslist).

% ==

/*
PREDICATE: findconstraint(+N,?Pred,?Arglist)
ARGUMENTS: N, integer

Pred, atom (predicate name)
Arglsit, list (of Pred arguments)

COMMENTS: Succeeds after finding the predicate name and arguments

*/
%

corresponding to the constraint whose asumption number is N

findconstraint(N,nonsharedrooms,[N]) :-
nonsharedrooms(N).

findconstraint(N,nonsimult,[Argl,Arg2,N]) :-
nonsimult(Argl,Arg2,N).

findconstraint(N,nonfollow,[Argl,Arg2,N]) :-
nonfollow(Argl,Arg2,N).

findconstraint(N,lectroom,[Argl,Arg2,N]) :-
lectroom(Argl,Arg2,N).

findconstraint(N,fix,[Argl,Arg2,N]) :-
fix(Argl,Arg2,N).

findconstraint(N,notpos,[Argl,Arg2,N]) :-
notpos(Argl,Arg2,N).

/*
PREDICATE: initconstraint(?N)
ARGUMENTS: N, integer
COMMENTS: Succeeds if N is the number of any constraint
*/
% ==

initconstraint(N) :-

findconstraint(N,_,_).

% ===

/*
PREDICATE: constraints(?Aslist)
ARGUMENTS: Aslist, List of Assumption numbers
COMMENTS: Succeeds after instantiating Aslist to the list of existing

constraints in the environment

constraints(AsList) :-

setof2(N,constraintnumber(N),AsList).

% ==

/*
PREDICATE: db(+A,+Node)
ARGUMENTS: A, noderep [Node,Subject,Day,Hour [,Room]]

Node, integer (node number), the same Node in A
COMMENTS: Tests is such node exists in database (in this case, Assert Node

to such node number; otherwise, it creates a new one. In this
case, the eventual inconsistencies with existing nodes for
same day, hour and room are sent to ATMS)

*/
% ==

db (A,_) :-
node(A),

newtimetable.pi Wed Jul 26 15:37:45 1989

% creates a new one (noderep without room)

db(A,Node)
A " I'
nodenumber(LastNode),
t
• /

Node is LastNode + 1,
putnode(Node),
asserta(node(A)).

% creates a new one (noderep with room: inconsistencies to ATMS via
% recsharedrooms2 predicate

db(A,Node)
A = Day,Hour,Room],
nodenumber(LastNode),
i
• /

Node is LastNode + 1,
putnode (Node),
bagof2(X,nodeDayHour(X,Day,Hour,Room),Bag),
recsharedrooms2 (Node,Bag),
asserta(node(A)).

% creates the first one

db(A,Node) :-

firstnode(FirstNode),
Node is FirstNode + 1,
putnode(Node),
asserta(node(A)).

% ==

/*
PREDICATE: recsharedrooms2(+Node,+Nodelist)
ARGUMENTS: Node, node number

Nodelist, list of nodes numbers
COMMENTS: Succeeds after sending ATMS all inconsistencies between Node and

elements in Nodelist: Nodes that hold another lecture at the
same time, same room, which is impossible.

*/
% ==

recsharedrooms2(_,[]).

recsharedrooms2(Node,[Node|T]) :-
i
• r

recsharedrooms2 (Node,T).

recsharedrooms2(Node,[H|T]) :-
recsharedrooms3 (Node,H),
recsharedrooms2 (Node,T).

% ==

/*
PREDICATE: recsharedrooms3(+Nodel, +Node2)
ARGUMENTS: Nodel, node number

Node2, node number
COMMENTS: Succeeds after sending ATMS the inconsistency [Nodel,Node2,As]

where As is the assumption meaning that a room cannot hold two

*/
%

different lectures at the same time (it is impossible).

recsharedrooms3(Nodel,Node2) :-
nonsharedrooms(As),
put justification(0,[Nodel,Node2,As]).

% ===

/*
PREDICATE: nodeDayHour(?Node,+Day,+Hour,+Room)
ARGUMENTS: Node, node number

Day, day representation
Hour, hour representation
Room, room representation

COMMENTS: Succeeds after instantiating Node to the number of a node whose
Day, Hour and Room coincide with the arguments

*/
% ==

nodeDayHour(X,Day,Hour,Room) :-

node([X,_,Day,Hour,Room]).

/*
PREDICATE: dba(+A,+As)
ARGUMENTS: A, noderep [As,Subject,Day,Hour]

As, integer (node number), the same As in A
COMMENTS: Tests is such assumption exists in database (in this case, Asserts

As to such assumption number; otherwise, it creates a new one.
*/
% =======

dba(A, _) :-
assumpt(A),

% creates a new one

dba(A,As) :-
A = '

assumptnumber (LastAs),
i
• r

As is LastAs + 1,
putassumpt(As),
asserta (assumpt(A)).

% creates the first one

dba(A,As) :-
firstas (FirstAs),
As is FirstAs + 1,
putassumpt(As),
asserta (assumpt(A)).

% ============= =======================

/*
PREDICATE: dbtreenode(+TreeNode)
ARGUMENTS: TreeNode, integer (node number)

newtimetable.pi Wed Jul 26 15:37:45 1989 6

COMMENTS: produces a new tree node
*/
% ==================================

% creates a new one

dbtreenode(TreeNode)
treenode (TN),
t
• r

TreeNode is TN + 1,
puttreenode (TreeNode).

% creates the first one

dbtreenode (TreeNode)
firsttreenode (TN),
TreeNode is TN + lf
puttreenode (TreeNode).

% ==

/*
PREDICATE: dbass(+Nodedb)
ARGUMENTS: Nodedb, noderep. In this case: [Node,Subject,Day,Hour]
COMMENTS: Succeeds after creating a new assumption with the same content

as Nodedb, which justifies it
*/
% ==

dbass(Nodedb) :-
Nodedb = [Node,Subject,Day,Hour],
Asdb = [As,Subject,Day,Hour],
dba(Asdb,As),
put justification(Node,[As]).

% ===

/*
PREDICATE: dbnode(+Nodedb)
ARGUMENTS: Nodedb, noderep. In this case: [Node,Subject,Day,Hour,Room]
COMMENTS: Succeeds after finding the corresponding [Node2,Subject,Day,Hour]

noderep, the corresponding 'lectroom(Subject,Room,As)' constraint
assumption, and sending the justification to ATMS

*/
% ==

dbnode(Nodedb) :-
Nodedb = [Node,Subject,Day, Hour, Room],
Nodedb2 = [Node2,Subject,Day, Hour],
node(Nodedb2),
lectroom(Subject,Room,As),
put justification(Node,[Node2,As]).

% ===

/*
PREDICATE: removea11nodes(+Subject)
ARGUMENTS: Subject, subject representation
COMMENTS: Succeeds after removing all nodes that include Subject, and

asserting corresponding "oldnodes"
*/

removeallnodes(Subject) :-
Nodedb = [_,Subject|_],
retract(node(Nodedb)),
i
• t

asserta(oldnode(Nodedb)),
removeallnodes(Subject).

removeallnodes(_).

% ===

/*
PREDICATE: retractallnlectures
ARGUMENTS: NONE
COMMENTS: Succeeds after removing all nlectures in the database
*/
% ===

retractallnlectures

retract(nlectures(_,_)),
t
• /

retractallnlectures.

retractallnlectures.

% ==

/*
PREDICATE: retractallnodes
ARGUMENTS: NONE
COMMENTS: Succeeds after removing all oldnodes in the database
*/
% ==

retractalloldnodes :-

retract(oldnode(_)),
i
• t

retractalloldnodes.

retractalloldnodes.

% ==

/*
PREDICATE: retractallbad(+Subject)
ARGUMENTS: Subject, subject representation
COMMENTS: Succeeds after removing all "bad"s in the database

that include Subject
*/
% ============================== ==========================:

retractallbad(Subject) :-

bad(Subject,_),
i
• r

retract (bad(Subject,_)),
retractallbad(Subject).

retractallbad(_).

% =========================== ==========

/*
PREDICATE: retractallverybad(+Subject)
ARGUMENTS: Subject, subject representation

newtimetable.pl Wed Jul 26 15:37:45 1989

COMMENTS: Succeeds after removing all Hverybad"s in the database
that include Subject

*/
% ==

retractallverybad(Subject)
verybad(Subject,_),
i
• /

retract(verybad(Subject,_)),
retractallverybad(Subject).

retractallverybad(_).

% ===

/*
PREDICATE: retractallnotpos(+Subject)
ARGUMENTS: Subject, subject representation
COMMENTS: Succeeds after removing all "notposMs in the database

that include Subject
*/
% === ====:

retractallnotpos(Subject) :-

notpos(Subject,_,As),
t
• r

asserta(deleted(As)),
retract(constraintnumber(As)),
retract(notpos(Subject,_, As)) ,

retractallnotpos(Subject).

retractallnotpos(_).

% ==

/*
PREDICATE: retractallnonsimult(+Subject)
ARGUMENTS: Subject, subject representation
COMMENTS: Succeeds after removing all Mnonsimult"s in the database

that include Subject
*/
% =============================== ============================

retractallnonsimult(Subject) :-
nonsimult(Subjectl,Subject2,As),
member(Subject, [Subjectl,Subject2]),

• t

asserta(deleted(As)),
retract(constraintnumber(As)),
retract(nonsimult(Subjectl,Subject2,As)),
retractallnonsimult(Subject).

retractallnonsimult(_).

% ==

/*
PREDICATE: retractallnonfollow(+Subject)
ARGUMENTS: Subject, subject representation
COMMENTS: Succeeds after removing all HnonfollowMs in the database

that include Subject
*/

retractallnonfollow(Subject) :-
nonfollow(Subjectl,Subject2,As),
member(Subject,[Subjectl,Subject2]),

• t

asserta(deleted(As)),
retract(constraintnumber(As)),
retract(nonfollow (Subjectl,Subject2,As)),
retractallnonfollow(Subject).

retractallnonfollow(_).

% ==

/*
PREDICATE: retractallfix (+Subject)
ARGUMENTS: Subject, subject representation
COMMENTS: Succeeds after removing all "fix"s in the database

that include Subject
*/
% === ==============

retractallfix(Subject) :-

fix(Subject,_,As),
i
• t

asserta(deleted(As)),
retract(constraintnumber(As)),
retract(fix(Subject,_,As)),
retractallfix (Subject).

retractallfix(_).

% ==

/*
PREDICATE: retractallfixed
ARGUMENTS: Subject, subject representation
COMMENTS: Succeeds after removing all Mfixed"s in the database

that include Subject
*/
% ==

retractallfixed :-

retract(fixed(_,_)),
r
• f

retractallfixed,

retractallfixed.

/*
PREDICATE: retractalllectroom(+Subject)
ARGUMENTS: Subject, subject representation
COMMENTS: Succeeds after removing all "lectroom"s in the database

that include Subject
*/
% - „=====„==—.»—«==========»

retractalllectroom(Subject) :-
lectroom(Subject,As),
I
• f

asserta(deleted(As)),
retract(constraintnumber(As)),
retract(lectroom(Subject,_,As)),

newtimetable.pi Wed Jul 26 15:37:45 1989

retractalllectroom(Subject).

retractalllectroom(_).

% ***

% *

% * DEBUG-TREE OPTIONS
% *

% ***

% ==

/*
PREDICATE: snapshot(+Filename)
ARGUMENTS: Filename, atom
COMMENTS: Succeds after producing a snapshot of the solution tree in the file

Filename
*/
% ==

snapshot(Filename) :-
tell(Filename),
((activetree(tree),
tree(Tree))

(activetree (In),
subtree(In,Tree))

),
drawtree(Tree,0),
told.

% ==

/*
PREDICATE: drawtree(+T,+N)
ARGUMENTS: T, list (tree)

N, integer
COMMENTS: Succeeds after drawing a repreesentation of T , where N is the

left margin
*/
% ==

drawtree ([],_) :-
r
• t

nl.

drawtree(A,N) :-
A = [Node|_],
integer (Node),
!,
spaces(N,Spaceslist),
name(Spaces,Spaceslist),
write(Spaces),
write(A),
nl.

drawtree ([fail|T],N) :-
t

spaces(N,Spaceslist),
name(Spaces,Spaceslist),
write(Spaces),
write (' fail: '),

write(T),
nl.

drawtree([solution|T],N) :-
j

spaces(N,Spaceslist),
name(Spaces,Spaceslist),
write (Spaces),
write('SOLUTION!: '),
write(T),
nl.

drawtree ([H| T] ,N) :-
i
• I

Nl is N + 1,
drawtree(H,Nl),
drawtree(T,N).

drawtree(_,_) :-
write('DRAW PROBLEMS'),
nl.

% ==

/*
PREDICATE: display
ARGUMENTS: NONE
COMMENTS: Succeeds after showing the top two levels in the actual position

of the solution tree

*/
% ==

display :-
nl,
now (L),
((activetree(tree),
tree(Tree))

(activetree(In),
subtree(In,Tree))

),
gotolevel(Tree,L,[H|T]),
write (' '),
write (H),
nl,
disp2(T),
nl.

/*
PREDICATE:

ARGUMENTS:

COMMENTS:

gotolevel (+Tree,+List,?LastTree)
Tree, list
List, list
LastTree, list
Suceeds after instantiating LastTree to the tree obtained going
down across Tree, following List path

gotolevel(Tree,[],Tree).

gotolevel([|TT],[LH|LT],LastTree) :-
loc(LH,TT,NewTree),

newtimetable.pl Wed Jul 26 15:37:45 1989

gotolevel(NewTree,LT,LastTree).

% ======== ====================================

/*
PREDICATE: loc(+LH,+Children,JNewtree)
ARGUMENTS: LH, integer (node)

Children, list (of 'brother trees')
Newtree, list (tree)

COMMENTS: Succeeds after instantiating 'Newtree'
list whose node number is LH

*/

to the tree from 'Children'

loc(LH,[TH|] , TH)
TH - [[LH|]|),

loc(LH, [_|TT], TH)
loc (LH, TT, TH) .

% ========

/*
PREDICATE: disp2(+Children)
ARGUMENTS: Children, list of brother trees or 'fail/solution' terminal node
COMMENTS: Succeeds after writing the first level of each item in Children
*/
% ======== ==

disp2([]) .

disp2([H|T]) :-
write (' '),
disp3(H),
nl,
disp2(T).

% =======

/*
PREDICATE: disp3(+Item)
ARGUMENTS: Item, list of brother trees or 'fail/solution' terminal node
COMMENTS: Succeeds after writing the first level of each item in Children

(disp2 predicate)
*/
% ==,

disp3 ([fail|T]) :-
• r

write (' fail: ') ,

write(T) .

disp3([solution|T])
i
• /

write('SOLUTION!: '),
write (T).

disp3 ([H|]> :-
write(H).

%

/*

PREDICATE: terminal(+Tree)
ARGUMENTS: +Tree list (Tree representation - leaf)
COMMENTS: Succeeds if Tree is a 'fail' or 'solution' node, fails otherwise
*/
% === ======== ==============

terminal([solution|_]).

terminal([faill_]).

% ===

/*
PREDICATE: down(+N)
ARGUMENTS: N, integer
COMMENTS: Succeeds after setting the position in the solution tree to N

(changing 'now' value), if N is one of the children in the
previous position

*/
% ====< ============================== ==============================

down(N) :-

nl,
now(L),
((activetree(tree),
tree (Tree))

(activetree (In),
subtree(In,Tree))

),
gotolevel(Tree,L,[_!T]),
loc (N,T,_),
now(A),
cone(A,[N],Al),
retract(now(A)),
asserta(now(Al)).

% ===

/*
PREDICATE: up
ARGUMENTS: NONE
COMMENTS: Succeeds after jumping up a position in the solution tree
*/
% ===

up :-
now(A),
reverse(A,[_|T]),
reverse (T,Al),
retract(now(A)),
asserta (now(Al)).

% ==

/*
PREDICATE: top
ARGUMENTS: NONE
COMMENTS: Succeeds after jumping to the top of the solution tree

(setting 'now' to []).
*/

top :-

newtimetable.pi Wed Jul 26 15:37:45 1989

retract(now(_)),
asserta(now([])).

% ===

/*
PREDICATE: solution
ARGUMENTS: NONE
COMMENTS: Succeeds after jumping to the total or partial solution
*/
% ===

solution

((activetree (tree),
treesol (L))

(activetree(In),
subsol(In,L))

),
retract (now (_)),
asserta(now(L)).

% ==

/*
PREDICATE: puttree(+In)
ARGUMENTS: In, 'tree' or integer
COMMENTS: Succeeds after setting a new active tree for exploration
*/
% ==

puttree (In) :-

retract(activetree(_)),
retract(now(_)),
asserta(activetree(In)),
asserta(now([])).

% ***

% *
% * SOLVE OPTION
% *

% ***

/*
PREDICATE: solve
ARGUMENTS: NONE

COMMENTS: Succeeds after finding a solution for the timetable problem,
according to the set of constraints. The solution is then
asserted, as well as the search tree, in order to be seen by
the user later. The possible failure in the search (backtrack
option used) is asserted,
as well, in order to let the system know that there is no solution
(in this case, the longest partial solution has been asserted
as 'partial', and the corresponding branch in the Tree, as 'part')

*/

solve :-

notallowed(solve),

write ('option not available now'),
nl,
fail.

solve :-

subjects([]),
i
• f

write('no subjects to set'),
nl,
fail.

solve :-

solvestart,
set (Tree,Timetable,Fail),
asserta (notallowed(solve)),
retractallnlectures,
retractallfixed,
asserta(tree(Tree)),
((Fail = yes,

;

takepart(L),
asserta(treesol(L)),
reverse (L,[Solnode|_]),
asserta (solnode(Solnode)),
retract (timetable (_)),
asserta (timetable (PartTimetable)),
findinconsist(BadAs),
retract(unsolved(_)),
asserta(unsolved(BadAs)),
retract (tracks (_)),
setof2(X,findtracks(BadAs,X),Tracks),
asserta (tracks(Tracks)),
historyTimetable(backtrack,Solnode,PartTimetable),
showtimetable,
write ('UNSATISFIABLE CONSTRAINTS. I found a partial solution. Change the'
nl,
write('constraints, and repair it. You should EXIT the session now'),
nl,
user_info)

(retract(notallowed(resolve)),
sol(L),
retract(sol (L)),
asserta(treesol (L)),
reverse(L,[Solnode|_]),
asserta(solnode(Solnode)),
retract(timetable(_)),
asserta (timetable(Timetable)),
findinconsist(BadAs),
retract(unsolved(_)),
asserta (unsolved(BadAs)),
retract (tracks (_)),
setof2 (X,findtracks(BadAs,X),Tracks),
asserta (tracks(Tracks)),
showtimetable,
user_info)

>,
((part (_),
retract (part (_)))

(true)
>,
asserta(history([[solve,Solnode,tree,Fail,BadAs]])),

newtimetable.pi Wed Jul 26 15:37:45 1989

asserta(historyTimetable (solve,Solnode,Timetable)),
asserta (activetree (tree)),
asserta(now([])).

% ===

/*
PREDICATE: recnlectures
ARGUMENTS: List, list
COMMENTS: Succeeds after asserting all 'nlectures' predicates

corresponding to List.
*/
% ===

recnlectures ([]).

recnlectures([[Subject,N]|List]) :-
asserta(nlectures(Subject,N)),
recnlectures(List).

% ==

/*
PREDICATE: solvestart
ARGUMENTS: NONE
COMMENTS: Succeeds after asserting initial values in order to start "solve"

option
*/

solvestart :-

sendconstraints,
subjects(Subjects),
createfixed(Subjects),
createlectrooms(Subjects),
bagof2(XI,subjlecturesarglist (XI),Listl),
recnlectures(Listl).

% =========================== =====

/*
PREDICATE: createtranslate(+Days,+N)
ARGUMENTS: Days, list (of days representations)

N, integer
COMMENTS: Succeeds after asserting translate(Day,Nday), for all Day,

member of Days, where Nday is the position that it holds in Days.
*/
% ==

createtranslate ([],_) .

createtranslate([H|T],N) :-
asserta(translate (H,N)),
N1 is N + 1,
createtranslate (T,N1).

% ==:

/*
PREDICATE: join (+Days,+Hours,?Dayshours)
ARGUMENTS: Days, list (of days representations)

Hours, list (of hours representations)
DaysHours, list (of pairs [day,hour])

COMMENTS: Succeeds after instantiating DaysHours to the list of all pairs

*/
%

[Day,Hour] such that Day is in Days and Hour is in Hours

join (_,[], []).

join (LI, [H2|T2],L3) :-

subjoin(LI,H2,H3),
join(LI,T2,T3),
cone(H3,T3,L3).

% ========

/*
PREDICATE:
ARGUMENTS:

COMMENTS:

*/
% =

subjoin(+Days,+Hour,?Dayshour)
Days, list (of days representations)
Hour, hour representations
DaysHour, list (of pairs [day,hour])
Succeeds after instantiating DaysHour to the list of all pairs
[Day,Hour] such that Day is in Days

subjoin([],_,[]).

subjoin([HI|T1],L2,[[H1,L2]|T3]) :-
subjoin(T1,L2,T3).

/*
PREDICATE: createlectrooms(+Subjects)
ARGUMENTS: Subjects, list (of Subjects representations)
COMMENTS: Succeeds after asserting lectrooms(Subject,Rooms), for all Subject

member of Subjects, where Rooms is the set of Room elements such
that 'lectroom(Subject,Room,_)'

*/
% ===

createlectrooms([]).

createlectrooms([HSubjects|TSubjects]) :-
setof2(X,lectr(HSubjects,X),Rooms),
asserta(lectrooms(HSubjects,Rooms)),
createlectrooms(TSubjects).

% ======= ===

/*
PREDICATE: lectr (?X,?Y)
ARGUMENTS: X, Subject representation

Y, room representation
COMMENTS: Succeeds if there exists a Z such that lectroom(X,Y,Z)
*/
% =================== ===

lectr (X, Y) :-
lectroom (X,Y,_) .

% ================ ===== ==========================

/*
PREDICATE: createfixed(+Subjects)
ARGUMENTS: Subjects, list (of Subjects representations)

newtimetable.pi Wed Jul 26 15:37:45 1989 12

COMMENTS: Succeeds after asserting fixed (Subject,Times), for all Subject
member of Subjects, that have fixed times (Times is the set of
Time elements such that 'fix(Subject,Time,_)', while CHECKING
That fixed lectures are first, and all other are affected by
"subjlectures"

*/
% ======================

createfixed ([])

createfixed((HSubjects|TSubjects))
setof(X,fx(HSubjects,X),Times),

asserta(fixed(HSubjects,Times)),
createfixed(TSubjects).

createfixed(Subjects)
createfixed2(Subjects).

% =======================_=_===_==========================„====_„=_==========

/*
PREDICATE: createfixed2(+Subjects)
ARGUMENTS: Subjects, list (of Subjects representations)
COMMENTS: Succeeds after performing the TEST shown in createfixed predicate

above
*/

createfixed2 ([]) .

createfixed2([HSubjects|TSubjects)) :-

subjlectures(HSubjects,N),
integer (N),
N >- 0,
i
• r

createfixed2(TSubjects).

createfixed2([HSubjects|_]) :-
setof (X, fx (HSubjects,X),_),
1
• /

write('WARNING: Subjects list not well ordered. Look at '),
write(HSubjects),
nl,
fail.

createfixed2([HSubjects|_]) :-
write('WARNING: Subject without number of lectures to set. Look at '),
write(HSubjects),
nl,
fail.

% ==

/*
PREDICATE: fx(?X,?Y)
ARGUMENTS: X, Subject representation

Y, room representation
COMMENTS: Succeeds if there exists a Z such that fix(X,Y,Z)
*/
% ==

fx (X, Y) :-

fix(X,Y,_) .

% ================== ============ ================ =====================

/*
PREDICATE: set(?Tree,?Timetable, ?Fail)
ARGUMENTS: Tree, list (tree representation)

Timetable, list (of nodereps)
Fail, yes or no

COMMENTS: Succeeds after instantiating Timetable to the timetable solution,
Tree to its search tree, and Fail to 'yes' or 'no', depending
on the existance of a solution (see 'solve' comments)

*/
% ======================================= ================================

set([[In,tree]|Brothers],Timetable,Fail) :-
firsttreenode(In),
subjects([H|T]),
settimetable(H,T,[],[],Timetable,Brothers,Fail).

% ==

/*
PREDICATE: settimetable(+Subject,+Restsubjects,+Nodelist,+Timetable,

?Newtimetable,?Brothers,?Fail)
ARGUMENTS: Subject, subject representation

Restsubjects, list (of subjects representations)
Nodelist, list (of integers - nodes numbers)
Timetable, list (of nodereps)
Newtimetable, list (of nodereps)
Brothers, list (of trees representations)
Fail, yes or no

COMMENTS: Succeeds after instantiating Newtimetable to the timetable solution,
corresponding to Subject (and Restsubjects, using recursion),
depending on the actual state of Timetable (according to the
previous subjects. Brothers will hold the list of trees
corresponding to Subject-Restsubjects, and Fail is 'yes' or 'no',
depending on the existance of a solution. Nodelist, input value,
holds the path, from the top, up to our actual position in the
tree search. It is necessary to set dependencies between nodes
and asuumptions, and to assert the final solution (or partial).

There are two cases for settimetable:
- lectures FIXED in time (Therefore, Brothers can only contain

one Tree: if a fixed lecture is not possible, there is no

possible backtracking, but failure is reported at once)
- lectures NOT FIXED in time. Then, an agenda of suitable times,
ordered by priority (preferences) is used for best-first-search.

*/
% ==

settimetable(Subject,Restsubjects,Nodelist,Timetable,
Newtimetable,[Tree],Fail) :-

fixed(Subject,Times),
i
• /

write(Subject),
write(' in process ...'),
nl,
flxedinsert(Subject,Restsubjects,Times,Nodelist,Timetable,

Newtimetable,[Tree],Fail),

settimetable(Subject,Restsubjects,Nodelist,Timetable,
Newtimetable,Brothers,Fail) :-

newtimetable.pi Wed Jul 26 15:37:45 1989 13

write (Subject),
write (' in process '),
nl,
dayshours(Dayshours),
setof2(X,dayshourspri(Subject,Dayshours,X),Agenda),
length (Agenda, L),
zero (L,Pribefore),
nlectures (Subject,N),
agendainsert(Agenda,N,[],Pribefore,Subject,Restsubjects,Nodelist,Timetable,

Newtimetable,Brothers,Fail).

% **

% * *

% * SOLVE OPTION: FIXED *
% * *

% **

% ==

/*
PREDICATE: fixedinsert(+Subject,+Restsubjects,+Times,+Nodelist,+Timetable,

?Newtimetable,?Brothers,?Fail)
ARGUMENTS: Subject, subject representation

Restsubjects, list (of subjects representations)
Nodelist, list (of integers - nodes numbers)
Times, list (of times representations)
Timetable, list (of nodereps)
Newtimetable, list (of nodereps)
Brothers, list (of trees representations)
Fail, yes or no

COMMENTS: Succeeds after instantiating Newtimetable to the timetable solution,
corresponding to Subject (and Restsubjects, using recursion),
depending on the actual state of Timetable (according to the
previous subjects. Brothers will hold the list of trees
corresponding to Subject-Restsubjects, and Fail is 'no', only if
there is no solution (backtracking optrion). Nodelist, input value,
holds the path, from the top, up to our actual position in the
tree search. It is necessary to set dependencies between nodes
and asuumptions, and to assert the final solution (or partial).
This predicate covers the case when subject has its lectures FIXED
Fixed holds the list of such lectures). Therefore Brothers can only
contain one Tree: if a fixed lecture is not possible, there is no
possible backtracking, but failure is reported at once.

However, The double recursion fixedinsert-settimetable and
settimetable-agendainsert, makes it go to next subjects levels
not neccessarily with fixed lectures. Therefore many 'Children'
can appear at lower levels.

*/
% ==

fixedinsert(Subject,Restsubjects,[HTimes|TTimes],Nodelist,Timetable,
Newtimetable,[Tree], Fail) :-

HTimes = [Day,Hour],
Nodedb = [Node,Subject,Day,Hour],
db(Nodedb,Node),
fix (Subject,[Day,Hour],As),
put justification(Node,[As]),
dbtreenode(TreeNode),
lookfor(Timetable,Day,Hour,Before,Then,After,Sides),
((notpos(Subject,[Day,Hour],As2),

Faill = yes,
Reason = notpos,
Treel = [fail,As,As2],
put justification(0,[As,As2]))

(test(Nodedb,Then,Sides,Thenl,Treel,HThen,Faill),
Reason = 'nonfollow and/or nonsimult')

),
((Faill = yes,

t
• t

assertpartial (Nodelist,Timetable),
erasew('WAIT'),
warning(Nodedb,Reason),
write ('It will be set, provided that you will change it later'),
nl,
write ('Choose a Room for it'),
nl,
idwindow(menu,Menuwindow),
lectroomsmenu(Menuwindow, Subject, Room),
putwindow ('WAIT'),
Nodedb2 = [Node2,Subject,Day,Hour,Room],
recsubtest(Nodedb,Then,Sides,,
db(Nodedb2,Node2),
dbnode(Nodedb2),
HThen2 = Nodedb2,
Then2 = [Nodedb2|Then])

(HThen = [Node2|_],
HThen2 = HThen,
Then2 = Thenl)

>,
testok(Nodelist,Before,Then2,After, HThen2,Node2,TreeNode,Treel,

Timetablel,Father),
fixedinsert(Subject,Restsubjects,TTimes,[TreeNode|Nodelist],Timetablel,

Newtimetable, Children, Fail),
Tree = [Father|Children].

% no more lectures to set -> go to next subject

fixedinsert(_,[HSubjects|TSubjects],[],Nodelist,Timetable,
NewTimetable,Children, Fail) :-

settimetable(HSubjects,TSubjects,Nodelist,Timetable,
NewTimetable,Children,Fail).

% last subject, no more lectures to set -> solution

fixedinsert(_,[],[],Nodelist,Timetable,
Timetable,[[solution|RevNodelist]],no) :-

reverse(Nodelist,RevNodelist),
asserta(sol(RevNodelist)).

% **
% * *
% * SOLVE OPTION: NON-FIXED *
% * *
% **

%

/*

newtimetable.pi Wed Jul 26 15:37:45 1989 14

PREDICATE: agendainsert(+Agenda,+N,+Daysbefore,+Pribefore,
+Subject,+Restsubjects,+Nodelist,+Timetable,
?Newtimetable,?Brothers,?Fail)

ARGUMENTS: Agenda, list (of Pri/Time)
N, integer
Daysbefore, list (of Ndays - days numbers)
Pribefore, list of integers (priorities of differences between

days at level before)
Subject, subject representation
Restsubjects, list (of subjects representations)
Nodelist, list (of integers - nodes numbers)
Timetable, list (of nodereps)
Newtimetable, list (of nodereps)
Brothers, list (of trees representations)
Fail, yes or no

COMMENTS: Succeeds after instantiating Newtimetable to the timetable solution,
corresponding to Subject (and Restsubjects, using recursion),
depending on the actual state of Timetable (according to the
previous subjects. Brothers will hold the list of trees
corresponding to Subject-Restsubjects, and Fail is 'yes' or 'no',
depending on finding a solution or not ("backtrack" case). Nodelist,
input value, holds the path, from the top, up to our actual position
in the tree search. It is necessary to set dependencies between nodes
and asuumptions, and to assert the final solution.

The strategy of agendainsert depends on the default option chosen:
- "backtrack" means that "undesirable backtracking at levels before
is allowed. This choice means that the user believes that there
is a solution, and doesn't care how it is found. Therefore a
failure in finding any solution after all effort will be reported
to him in order to exit prolog and change the constraints.

- "nobacktrack" means that we follow strictly the plan. If it does
not work at a level, a lecture is set arbitrarily, where the user
wants, and we follow It is the natural and MOST LOGICAL choice.

isAn agenda of suitable times, ordered by priority (preferences)
used for best-first-search. Priority depends on:

1) global ("all") preferences of times in the course (good, bad,
verybad, notpos: "not possible")

2) same kind of preferences for each particular subject.
3) minimum difference in days with other lectures of same subject

(avoidance of lectures in the same day, ...)

In order to consider 3), Two arguments are used: Daysbefore, list
of previous days numbers for the same subject, and Pribefore, list
of priorities of type 3) the previous time (in order to remove
it next time: the 'minimum difference' is completely different with
0, 1, or 2 days in Daysbefore; therefore, we must recalculate it
again, and remove (SUBSTRACT), Pribefore. 'nextagenda' predicate,
shown later is committed to do it.

Three TESTS are done, which lead to different processes (brackets
and semicolons)
1) Is our newly created tree node affected by 'notpos' (Pri>10)?
2) Does 'test' predicate fail? (nonfollow/nonsimult/rooms/same time)
3) Does 'agendainsert' fail in all lower levels?
Knowing this, it is easier to follow the structure.

*/

agendainsert([Pri/[Hour,Nday]|TAgenda],N,Daysbefore,Pribefore,
Subject,Restsubjects,Nodelist,Timetable,
Newtimetable,Brothers,Fail) :-

N > 0,

translate (Day,Nday),
Nodedb = [Node,Subject,Day,Hour],
db(Nodedb,Node),
dbass(Nodedb),
dbtreenode(TreeNode),
Pribefore = [_|TPribefore],
((Pri > 10, % any notpos

t
• /

notpos(Any,[Day,Hour],As),
member(Any,[all,Subject]),
notposfailed (Nodedb,TreeNode, [fail,As,Node],Bigbrother),
choicebacktrack(N,Subject,Restsubjects,Nodelist,Timetable,Bigbrother,

Newtimetable,Brothers,Fail))

(lookfor(Timetable,Day,Hour,Before,Then,After,Sides),
test(Nodedb,Then,Sides,Thenl,Treel,HThen,Faill),
!,
((Faill = yes,

i
• /

testfailed(Nodelist,Nodedb, Node,TreeNode,Treel,Bigbrother,_),
agendainsert(TAgenda,N,Daysbefore,TPribefore,

Subject,Restsubjects,Nodelist,Timetable,
Newtimetable,Restbrothers,Fail),

Brothers = [BigbrotherIRestbrothers])

(HThen = [Node2|J,
testok(Nodelist,Before,Thenl,After,HThen,Node2,TreeNode,Treel,

Timetablel,Father),
N1 is N - 1,
<(N1 - 0,
!)

(nextagenda([Nday|Daysbefore],Pribefore,TAgenda,NewAgenda,Priafter))
>,
agendainsert(NewAgenda,Nl,[NdayIDaysbefore],Priafter,

Subject,Restsubjects,[TreeNodeINodelist],Timetablel,
Newtimetablel,Children,Fail2),

Bigbrother - [FatherlChildren],
((Fail2 - no,
Fail = no,
Newtimetable = Newtlmetablel,
Brothers « [Bigbrother])

% BACKTRACKING: Next will only happen if 'backtracking' option

(agendainsert(TAgenda, N,Daysbefore,TPribefore,
Subject, Restsubjects,Nodelist,Timetable,
Newtimetable,Restbrothers,Fail),

Brothers = [BigbrotherIRestbrothers])
)

)
)

)
),

% empty agenda:

agendainsert([],N,
Subject,Restsubjects,Nodelist,Timetable,
Newtimetable, Brothers,Fail) :-

Bigbrother - [0,'empty agenda'],

newtimetable.pi Wed Jul 26 15:37:45 1989 15

N > 0,
choicebacktrack(N,Subject,Restsubjects,Nodelist,Timetable,Bigbrother,

Newtimetable,Brothers,Fail).

% no more lectures to set -> go to next subject

agendainsert(_,0,_,_,
_,[HSubjects|TSubjects],Nodelist,Timetable,
Newtimetable,Brothers,Fail)

settimetable(HSubjects,TSubjects,Nodelist,Timetable,
Newtimetable,Brothers,Fail).

% last subject, no more lectures to set -> solution

agendainsert(_/0,_,_,
_, [],Nodelist,Timetable,
Timetable,[[solution|RevNodelist]],no)

reverse(Nodelist,RevNodelist),
asserta(sol(RevNodelist)).

% ============================= ==

/*
PREDICATE: choicebacktrack(+N,+Subject,+Restsubjects,

+Nodelist,+Timetable,+Bigbrother
?Newtimetable,?Brothers, ?Fail)

ARGUMENTS: N, integer
Subject, subject representation
Restsubjects, list (of subjects representations)
Nodelist, list (of integers - nodes numbers)
Timetable, list (of nodereps)
Bigbrother, list (tree representation)
Newtimetable, list (of nodereps)
Brothers, list (of trees representations)
Fail, yes or no

COMMENTS: Succeeds after instantiating Newtimetable to the timetable solution,
corresponding to Subject (and Restsubjects, using recursion),
in the case where no more choices were found in the agenda,
depending on the actual state of Timetable (according to the
previous subjects. Brothers will hold the list of trees
corresponding to Subject-Restsubjects, and Fail is 'yes' or 'no',
depending on finding a solution or not ("backtrack" case). Nodelist,
input value, holds the path, from the top, up to our actual position
in the tree search. It is necessary to set dependencies between nodes
and asuumptions, and to assert the final solution.

The strategy depends on the default option chosen:
- "backtrack" means that "undesirable backtracking at levels before
is allowed. This choice means that the user believes that there
is a solution, and doesn't care how it is found. Therefore a
failure in finding any solution after all effort will be reported
to him in order to exit prolog and change the constraints.

- "nobacktrack" means that we follow strictly the plan. If it does
not work at a level, a lecture is set arbitrarily, where the user

wants, and we follow It is the natural and MOST LOGICAL choice.
*/
% ==

choicebacktrack(N,Subject,Restsubjects,Nodelist,Timetable,Bigbrother,
Newtimetable,Brothers,Fail) :-

assertpartial (Nodelist,Timetable),
nl,

((backtrack,
i
• /

write ('BACKTRACK'),
nl,
Newtimetable = Timetable,
Restbrothers = [[fail,no_more_choices]],
Brothers = [Bigbrother|Restbrothers],
Fail = yes)

(nobacktrack,
i
• t

erasew('WAIT'),
write (N),
write (' lecture (s) for subject '),
write (Subject),
nl,
write ('cannot be set following the plan'),
nl,
write('Choose arbitrarily times for it(them)'),
nl,
readtimes(N,Subject,Timetable,[],_,Timetablel,Nodedblist),
putwindow('WAIT'),
dbtreenode(TreeNode),
extract(Timetablel,Nodes),
put justification(TreeNode,Nodes),
Father = [TreeNode|Nodedblist],
agendainsert(_, 0,_, _,

Subject,Restsubjects,[TreeNode|Nodelist],Timetablel,
Newtimetable,Children,_),

Smallbrother = [Father|Children],
Brothers = [Bigbrother,Smallbrother],
Fail = no)

% ==-

/*
PREDICATE: assertpartial(+Nodelist,+Timetable)
ARGUMENTS: Nodelist, list (of integers - nodes numbers)

Timetable, list (of nodereps)
COMMENTS: Succeeds after asserting a new partial solution (both the

partial Timetable and the Nodelist path) only if it is the
longest one, up to now.

*/
% ==

assertpartial(Nodelist,_) :-
takepart(X),
length (X,P),
length(Nodelist,N),
P >= N.

assertpartial(Nodelist,Timetable) :-
((Nodelist = [Partnode|_])

(Partnode = 'top')
>,
asserta(historyTimetable(backtrack,Partnode,Timetable)),
reverse (Nodelist,RevNodelist),
((part (J,
retract (part(_)))

(true)
),

newtimetable.pl Wed Jul 26 15:37:45 1989

asserta(part(RevNodelist)).

% ===

/*
PREDICATE: takepart(?X)
ARGUMENTS: X, anything
COMMENTS: Succeeds after instantiating X to the FIRST item such that

part(X)
*/
% === =======

takepart(X) :-

part(X),

% ===

/*
PREDICATE: dayshourspri(+Subject,+Dayshours,?PriHourNday)
ARGUMENTS: Subject, subject representation

Dayshours, list (of Times in form [Day,Hour])
PriHourNday, Pair Pri/Time, in form [Hour,Nday], Nday: day number

COMMENTS: Succeeds after instantiating Pri to the associated priority
for [Subject-Day-Hour], according to 'punct' criteria (No
difference in days involved here)

*/
% =================

dayshourspri (Subject,Dayshours,Pri/HN) :-
member(DH,Dayshours),
DH = [Day,Hour],
translate(Day,Nday),
HN = [Hour,Nday],
punct(all,DH,Pril),
punct(Subject,DH,Pri2),
Pri is Pril + Pri2.

% ==

/*
PREDICATE: punct(+Subject,+DH,?N)
ARGUMENTS: Subject, subject representation

DH, Time in form [Day,Hour]
N, integer

COMMENTS: Succeeds after instantiating N to the priority associated with
the state of the Time in constraints file (bad,verybad,notpos,none)

*/
% ==

punct(Subject,DH,1) :-
bad(Subject,DH),

punct(Subject,DH,2) :-
verybad(Subject,DH),

punct(Subject,DH,11) :-

notpos(Subject,DH,_),

punct 0) .

% =========

/*
PREDICATE:

ARGUMENTS:

COMMENTS:

nextagenda(+Daysbefore,+Pribefore,+Agenda,?NextAgenda,?Priafter)
Daysbefore, list of integers (days numbers)
Pribefore, list of integers
Agenda, list of Pri/Time
NextAgenda, list of Pri/Time
Priafter, list of integers
Succeeds after instantiating Nextagenda to the next agenda,
and Priafter to the list containing the Next Pribefore
elements), according to Daysbefore, Pribefore and Agenda.

nextagenda (Daysbefore,Pribefore,Agenda,Nextagenda,Priafter) :-
recnextagenda(Daysbefore,Pribefore,Agenda,Tl),
sort(T1,T2),
separate(T2,Nextagenda,Priafter) .

% =========

/*
PREDICATE:
ARGUMENTS:

COMMENTS:

recnextagenda (+Daysbefore,+Pribefore,+Agenda,?T1)
Daysbefore, list of integers (days numbers)
Pribefore, list of integers
Agenda, list of Pri/Time
Tl, list of Pri/Time/Sub
Succeeds after instantiating Tl to the list whose elements are
pairs Pri/Time (Next agenda elements) - Sub (Next Pribefore
elements), according to Daysbefore, Pribefore and Agenda.

recnextagenda (_,_,[],[]).

recnextagenda(Daysbefore,[Substract|TSubstract],[Pri/[Hour,Nday]|T],
[Pril/[Hour,Nday]/Add|Tl]) :-

setof(X,daydist(Nday,Daysbefore,X), [Mindis|_]),
optdifdays(N),
Dif is Mindis - N,
abs(Dif,Add),
Mid is Pri + Add,
Pril is Mid - Substract,
recnextagenda(Daysbefore,TSubstract,T,T1).

% ===

/*
PREDICATE: daydist(+NDay,+DS,?Dis)
ARGUMENTS: NDay, integer (day number)

DS, list of integers (days numbers)
Dis, integer

COMMENTS: Succeeds after instantiating Dis to the absolute difference between
Nday and an element of DS

*/
% ==

daydist(Day,DS,Dis) :-
member(D,DS),
distance(Day,D,Dis).

newtimetable.pi Wed Jul 26 15:37:45 1989 17

/*
PREDICATE: distance(+D1,+D2,?Dis)
ARGUMENTS: Dl, integer

D2, integer
Dis, integer

COMMENTS: Succeeds after instantiating Dis to the absolute difference between
Dl and D2

*/

distance (D,D,0) :-

distance (D1,D2,Dis) :-
P is Dl - D2,
abs(P,Dis).

/*
PREDICATE: separate(+T,?NextAgenda,?Priafter)
ARGUMENTS: T, list of Pri/Time/Sub

Agenda, list of Pri/Time
Pribefore, list of integers

COMMENTS: Succeeds after instantiating NextAgenda to the list whose elements
are pairs Pri/Time (Next agenda elements) and Pribefore, to the
list whose elements are Sub (integers), according to T.

*/

separate ([], [],[)).

separate([A1/A2/A3|T], [A1/A2|T1],[A3 IT2]) :-
separate (T,T1,T2) .

Sjj **

% * *
% * TESTS *
% * *

% **

/*
PREDICATE:
ARGUMENTS:

COMMENTS:

lookfor(+Timetable,+Day,+Hour,?Before,?Then,?After,?Sides)
Timetable, list (of nodereps)
Day, day representation
Hour, hour representation
Before, list (of nodereps)
Then, list (of nodereps)
After, list (of nodereps)
Sides, list (of nodereps)
Succeeds after instantiating Before, Then, After and Sides to the
elements of the Timetable: before, the same, after, and adjacent
respect the input Day and Hour.

lookfor ([],_,_,[],[],[],[]).

lookfor([H|T],Day,Hour,Before,Then,After,Sides) :-
((H = Day,Hour11_],

i
■ /

((Hour2 is Hour - 1,
Hour2 = Hourl,
I f
Sides = [H|Sidesl],
Before = [H|Beforel],
lookfor(T,Day,Hour,Beforel,Then,After,Sidesl))

r

(Hourl < Hour,
Before = [H|Beforel],
lookfor(T,Day,Hour,Beforel,Then,After,Sides))

(Hourl = Hour,
Before = [],
Then = [H|Thenl],
lookfor (T,Day,Hour,[],Thenl,After,Sides))

t

(Hour2 is Hour + 1,
Hour2 = Hourl,
i
• r

Sides = [H|Sidesl],
Before = [],
Then = [],
After = [H|Afterl],
lookfor (T,Day,Hour,[],[],Afterl,Sidesl))

/

(Hourl > Hour,
Sides = [],
Before = [],
Then = [],
After = [H|T])

)
)

'

<H = [_,_,Dayl|_],
translate(Dayl,Dl),
translate(Day,D),
((Dl < D,
Before = [H|Beforel],
lookfor (T,Day,Hour,Beforel,Then,After,Sides))

(Dl > D,
Sides = [],
Before = [],
Then = [],
After = [H|T]))

)
) .

/*
PREDICATE: test(+Nodedb,+Then,+Sides,?Thenl,?Tree,?HThen,?Fail)
ARGUMENTS: Nodedb, noderep

Then, list (of nodereps)
Sides, list (of nodereps)
Thenl, list (of nodereps)
Tree, tree representation ([] or information leaf)
HThen, noderep
Fail, yes or no

COMMENTS: Succeeds after instantiating Thenl to the 'Then' ("lookfor") list
after including the 'noderep' information for the new node (HThen)

newtimetable.pi Wed Jul 26 15:37:45 1989 18

obtained from Nodedb, after testing the conditions shown below,
if no failure is found, Fail is set to no, and Tree can hold
either [], or 'changes' information, depending on if we have changed
rooms or not

If a failure is found, Thenl is Then, Fail is set to yes, and
Tree holds 'failure' information.

The Test consists of:
- possible nonsimult crashes (Then used)
- possible nonfollow crashes (Sides used)

(Both of them tested in subtest)
- possible rooms conflict. As rooms conflict is supposed not to

be serious (but have to be solved), we don't backtrack, BUT
have to 'rearrangerooms'. If it is possible, I consider that
the tree node is the same as before, though including the
'changes' information (Much more practical and efficient than
backtracking). Otherwise, the failure is reported and backtracking
is done.
(tested in rearrangerooms, via subtestchoices)

*/

% empty 'Then and Sides' case (No failure is possible)

test([_,Subject,Day,Hour|_),[],[],[HThen],[],HThen,no)
• I

lectrooms(Subject,[Room|_]),
HThen = [Node,Subject,Day,Hour,Room],
db(HThen,Node),
dbnode(HThen).

% general case

test(Nodedb,Then,Sides,Thenl,Tree,HThen,Fail)
subtest(Nodedb,Then,Sides,Roomsbefore,Node,As,Failsub),
subtestchoices(Nodedb,Then,Roomsbefore,Node,As,Failsub,

Thenl,Tree,HThen,Fail).

PREDICATE:
ARGUMENTS:

subtest(+Nodedb,+Then,+Sides,?Roomsbefore,?Node,?As,?Fail)

*/
% =====

Nodedb, noderep
Then, list (of nodereps)
Sides, list (of nodereps)
Roomsbefore, list (of rooms representations)
Node integer (node number)
As integer (constraint assumption number)
Fail, yes or no
Succeeds after testing:
- possible lecures for the same subject at the same time
- possible nonsimult crashes (Then used)
- possible nonfollow crashes (Sides used)

if no failure is found, Fail is set to no, and Roomsbefore to
the list of rooms in then (possible conflicts) that will be
passed to subtestchoices
If a failure is found, Fail is set to yes, and Node and As are
instantiated to the nodes that, together with our created node
lead to a contradiction, or to 0, if "same time"

subtest (,[],[],[], , , no) .

subtest (Nodedb,[],[HSides|TSides],[],Node,As,Fail) :-
Nodedb = [_,Subjectl,_,_],
HSides = [_,Subject,Day,Hour,_],
((nonfollowing(Subject,Subjectl,As),

t
• /

node([Node,Subject,Day,Hour]),
Fail = yes)

(subtest(Nodedb,[],TSides, [],Node,As,Fail))
) .

subtest(Nodedb,[HThen|TThen],Sides,[Room|Roomsbefore],Node,As,Fail) :-
Nodedb = [_,Subjectl,_,_],
HThen = [_,Subject,Day,Hour,Room],
((Subject = Subjectl,

t
• t

Node = 0,
As = 0,
Fail = yes)

(nonsimultaneous(Subject,Subjectl,As),
t
• /

node([Node,Subject,Day,Hour]),
Fail = yes)

(subtest(Nodedb,TThen,Sides,Roomsbefore,Node,As,Fail))
) •

/*
PREDICATE:
ARGUMENTS:

COMMENTS:

recsubtest(+Nodedb,+Then, +Sides,?Roomsbefore,?Node,?As,?Fail)
Nodedb, noderep
Then, list (of nodereps)

(of nodereps)
(of rooms representations)
1
1

list
list
0 or

0 or

Sides,
Roomsbefore,
Node
As

Fail, yes or no
Succeeds after testing (IN THIS CASE: ALL!):
- possible lecures for the same subject at the same time
- possible nonsimult crashes (Then used)
- possible nonfollow crashes (Sides used)

if no failure is found, Fail is set to no, and Roomsbefore to
the list of rooms in then (possible conflicts) that will be
passed to subtestchoices
If a failure is found, Fail is set to yes, and Node and As are
instantiated to 0 if "same time", 1 otherwise, justifications are
sent to ATMS about Nodes and assumptions that, together with our
created node, lead to a contradiction.

*/

recsubtest (_,[],[],[], 1,1, no) .

recsubtest(Nodedb,[],[HSides|TSides],[],NewNode,NewAs,Fail) :-
Nodedb = [Lastnode,Subjectl,_,_],
HSides - [_,Subject,Day,Hour,_],
((nonfollowing(Subject,Subjectl,As),
!,
node([Node,Subject,Day,Hour]),
put justification(0,[Lastnode,Node,As]),

newtimetable.pl Wed Jul 26 15:37:45 1989

Fail -- yes)

(Fail = NewFail)
),
recsubtest(Nodedb,[],TSides,[],NewNode,NewAs,NewFail).

recsubtest(Nodedb,[HThenITThen],Sides,[Room IRoomsbefore],NewNode,NewAs,Fail)
Nodedb = [Lastnode, Subjectl,_,_],
HThen = [_,Subject,Day,Hour,Room],
((Subject = Subjectl,

• t

NewNode = 0,
NewAs = 0,
Fail = yes)

(nonsimultaneous(Subject,Subjectl,As),
f
• t

node([Node,Subject,Day,Hour]),
put justification(0,[Lastnode,Node,As]),
Fail = yes,
New2Node = NewNode,
New2As = NewAs)

(Fail = NewFail,
New2Node = NewNode,
New2As = NewAs)

),
recsubtest(Nodedb,TThen,Sides,Roomsbefore,New2Node,New2As,NewFail).

/*
PREDICATE: nonsimultaneous(?X,?Y,?Z)
ARGUMENTS: X, subject representation

Y, subject representation
Z, integer: constraint assumption number

COMMENTS: Succeeds if nonsimult(X,Y,Z) or nonsimult(Y,X,Z)
*/

nonsimultaneous(X,Y,Z) :-
nonsimult(X,Y,Z).

nonsimultaneous(X,Y,Z) :-
nonsimult(Y,X,Z).

% ===

/*
PREDICATE: nonfollowing(?X,?Y, ?Z)
ARGUMENTS: X, subject representation

Y, subject representation
Z, integer: constraint assumption number

COMMENTS: Succeeds if nonfollow(X,Y,Z) or nonfollow (Y,X,Z)
*/

nonfollowing(X,Y,Z) :-
nonfollow (X,Y,Z).

nonfollowing(X,Y,Z) :-
nonfollow (Y,X,Z).

% ==

/*
PREDICATE: subtestchoices(+Nodedb, +Then, +Roomsbefore,+Node,+As,+Failsub,

?Thenl,?Tree,?HThen,?Fail)
ARGUMENTS: Nodedb, noderep

Then, list (of nodereps)
Roomsbefore, list (of rooms representations)
Node, integer (node number)
As, integer (constraint assumption number)
Failsub, yes or no

Thenl, list (of nodereps)
Tree, tree representation ([] or information leaf)
HThen, noderep
Fail, yes or no

COMMENTS: Succeeds after instantiating Thenl to the 'Then' list after
including the 'noderep' information for the new node (HThen),
obtained from Nodedb, after testing the condition shown below.
Failsub holds the result of 'subtest'.
if no failure is found, Fail is set to no, and Tree can hold
either [], or 'changes' information, depending on if we have changed
rooms or not
If a failure is found, Thenl is Then, Fail is set to yes, and
Tree holds 'failure' information.

The Test consists of:
- possible rooms conflict. As rooms conflict is supposed not to

be serious (but have to be solved), we don't backtrack, BUT
have to 'rearrangerooms'. If it is possible, I consider that
the tree node is the same as before, though including the
'changes' information (Much more practical and efficient than
backtracking). Otherwise, the failure is reported and backtracking
is done.

(tested in rearrangerooms)
*/
% ==

% Failsub = yes, because the same subject was in Then

subtestchoices([Lastnode|_]0,0,yes,
,[fail,Lastnode,0,0],,yes) :-

IB

% Failsub = yes, because of recsubtest

subtestchoices([Lastnode1,1,yes,
,[fail,Lastnode,1,1],,yes) :-

% Failsub = yes, because of constraint As violation.

subtestchoices([Lastnode|_]Node,As,yes,
, [fail,Lastnode,Node,As],,yes) :-

put justification(0,[Lastnode,Node,As]).

% Failsub = no

subtestchoices(Nodedb,Then,Roomsbefore,_,_,no,
Thenl,Tree,HThen,Fail) :-

Nodedb = [_,Subject|_],
lectrooms (Subject,Rooms),
membertest(Rooms,Roomsbefore,Nodedb,Nodedblist,Faill),
((Faill = no,

newtimetable.pi Wed Jul 26 15:37:45 1989 20

Nodedblist = [HThen|_],
Thenl = [HThen|Then],
Fail = no,
Tree = [])

(rearrangerooms([Nodedb|Then],[],Thenl,Fail2),
((Fail2 = no,
Thenl = [HThen|Thenprev],
Fail = no,
Tree = [changed_rooms,Then,'will_be:',Thenprev])

(Fail = yes,
Tree = [fail,not_possible_rooms_arrangement])

)
)

) .

% ==

/*
PREDICATE: recsubtestchoices(+Nodedb,+Timetable, +Then, +Sides,

?Newtimetable,?HThen, ?Fail)
ARGUMENTS: Nodedb, noderep

Timetable, list of noderep
Then, list of noderep
Sides, list of noderep
Newtimetable, list of noderep
HThen, noderep
Fail, yes or no

COMMENTS: Succeeds after performing 'nonsimult' and 'nonfollow' tests,
via 'recsubtest'. If they are successful, an attempt to arrange
room for Nodedb is done. If 'same room'
conflicts' arise, Fail is yes. If any other conflict arise, Fail is
no, but adequate messages are shown.
Otherwise Newtimetable holds the new timetable after setting the
new noderep (HThen), and Fail is no. NO ASSERTION OTHER THAN
'ATMS RELATED' IS DONE.

*/
% ==

recsubtestchoices(Nodedb,Timetable,Then,Sides,
Newtimetable,HThen,no) :-

Nodedb = [Nodel,Subject,Day,Hour],
recsubtest(Nodedb,Then,Sides,Roomsbefore,Node,As, Subfail),
subtestchoices(Nodedb,Then,Roomsbefore,Node,As,Subfail,Thenl,_,HThen,ChFail),
((Subfail = yes,
warning(Nodedb,'nonfollow and/or nonsimult'),
lectroom(Subject,Room,As2),
Nodedb2 = [Node2,Subject,Day,Hour,Room],
db(Nodedb2,Node2),
put justification(Node2,[Nodel,As2]),
Then2 = [Nodedb2|Then])

(Subfail = no,
((ChFail = yes,

warning(Nodedb,'no rooms arrangement with other lectures'),
nl,
lectroom (Subject, Room,As2),
Nodedb2 = [Node2,Subject,Day,Hour,Room],
db(Nodedb2,Node2),
put justification(Node2, [Nodel,As2]),
Then2 = [Nodedb2|Then])

(ChFail = no,

Then2 = Thenl)
)

)
),
lookfor(Timetable,Day,Hour,Before,_,After,_),
cone(Then2,After,Afterl),
cone(Before,Afterl,Newtimetable).

% ============= ==:

/*
PREDICATE: rearrangerooms(+Then,+Roomsbefore,?Thenl,?Fail)
ARGUMENTS: Then, list (of nodereps)

Roomsbefore, list (of rooms representations)
Thenl, list (of nodereps)
Fail, yes or no

COMMENTS: Succeeds after instantiating Thenl to the result of finding a new

arrangement of rooms for Thenl, BUT without repetitions of rooms.
The predicate uses recursion and double recursion with
recarrange. If that instantiation is possible, Fail is 'no'.
If it is not possible, Fail is 'yes'.

*/
% ==

rearrangerooms([],_, [],no) .

rearrangerooms([HThen|TThen],Roomsbefore,[HThenl|TThenl],Fail) :-
HThen = [_, Subject| _],
lectrooms(Subject,Rooms),
membertest(Rooms,Roomsbefore,HThen,Nodedblist,Memberfail),
((Memberfail = no,

recarrange(TThen,Roomsbefore,Nodedblist,HThenl,TThenl,Fail))

(Fail = yes)
) .

% ========

/*
PREDICATE:

ARGUMENTS:

COMMENTS:

recarrange(+Then,+Roomsbefore,+Nodedblist,?HThenl,?TThenl,?Fail)
Then, list (of nodereps)
Roomsbefore, list (of rooms representations)
Nodedblist, list (of nodereps)
HThenl, noderep
TThenl, list (of nodereps)
Fail, yes or no
Succeeds after instantiating HThenl and TThenl to the legal values
such that Thenl = [HThenl|TThenl] is equivalent to
Then = [HThen|TThen], BUT without repetitions of rooms.
The predicate uses recursion and double recursion with
rearrangerooms. HThen is picked up from Nodedblist.
If that instantiation is possible, Fail is 'no'. If it is not
possible, whatever 'HThen' we choose, Fail is 'yes'.

recarrange (_,_, [],_/_, yes) .

recarrange(TThen,Roomsbefore,[HThen|TNodedblist],HThenl,TThenl,Fail) :-
HThen = Rooml],
rearrangerooms(TThen,[Rooml|Roomsbefore],TThenl,Faill),
((Faill = no,
Fail = no,
HThenl = HThen)

newtimetable.pi Wed Jul 26 15:37:45 1989

(recarrange(TThen,Roomsbefore,TNodedblist,HThenl,TThenl,Fail))
).

% ==

/*
PREDICATE: membertest(+Rooms,+Roomsbefore,+Nodedb,TNodedblist,?Fail)
ARGUMENTS: Rooms, list (of rooms representations)

Roomsbefore, list (of rooms representations)
Nodedb, noderep
Nodedblist, list (of nodereps)
Fail, yes or no

COMMENTS: Succeeds after testing which rooms in Rooms are not in Roomsbefore,
and instantiating Nodedblist to the list of the
new created nodes corresponding to such those rooms. Fail is 'yes'
if there are not such rooms, 'no' otherwise.

*/
% ==

membertest ([],_,_,[] ,yes) :-

membertest([HRoomsITRooms],Roomsbefore,Nodedb,Nodedblist,Fail) :-
Nodedb = [_,Subject,Day,Hour|_],
HNodedblist = [Nodel,Subject,Day,Hour,HRooms],
db(HNodedblist,Nodel),
dbnode(HNodedblist),
((member(HRooms,Roomsbefore),

i
• t

membertest(TRooms,Roomsbefore,Nodedb,Nodedblist,Fail)
r

(membertest(TRooms,Roomsbefore,Nodedb,TNodedblist,_),
Nodedblist = [HNodedblist|TNodedblist],
Fail = no))

) .

PREDICATE:
ARGUMENTS:

COMMENTS:

notposfailed(+Nodedb,+TreeNode,+Treel,?Tree)
Nodedb, list (noderep)
Treenode, integer (node number)
Treel, list (tree representation: information leaf)
Tree, list (tree representation)
Succeeds after instantiating Tree to the list with the right
information according to Treenode, Nodedb and Treel,
and sending ATMS the failure (it covers 'notpos' failures)

notposfailed(Nodedb,TreeNode,Treel,[[TreeNode,Nodedb]|[Treel]]) :-
Treel = [fail|FailAsNode],
put justification (0,FailAsNode).

% =============== ============================== ======

/*
PREDICATE: testok (+Nodelist,+Before,+Thenl,+After,

+Nodedb,+Node,+TreeNode,+Treel,
?Timetablel,?Tree)

ARGUMENTS: Nodelist, list (of integers - nodes numbers)
Before, list (of nodereps)
Thenl, list (of nodereps)

After, list (of nodereps)
Nodedb, noderep
Node, integer (node number)
Treenode, integer (node number)
Treel, list (tree representation: information leaf)
Timetablel, list (of nodereps)
Tree, list (tree representation)

COMMENTS: Succeeds after instantiating Tree to the list with the right
information according to Treenode, Nodedb and Treel,
and sending ATMS the justification of the tree
node, via treejustify

*/
% ==

testok(Nodelist,Before,Thenl,After,Nodedb,Node,TreeNode,Treel,
Timetablel,[TreeNodel[Nodedb|Treel]]) :-

cone(Thenl,After,Afterl),
cone(Before,Afterl,Timetablel),
((Treel = [changed_rooms|_],

i
• r

treejustify (_,Timetablel,Node,TreeNode,yes))

(treejustify(Nodelist,_,Node,TreeNode,no))
) .

% ===

/*
PREDICATE: testfailed(+Nodelist,+Nodedb,+Node,+TreeNode,+Treel,?Tree,?Fail)
ARGUMENTS: Nodelist, list (of integers - nodes numbers)

Nodedb, list (noderep)
Node, integer (node number)
Treenode, integer (node number)
Treel, list (tree representation: information leaf)
Tree, list (tree representation)
Fail, yes or no

COMMENTS: Succeeds after instantiating Tree to the list with the right
information according to Treenode, Nodedb and Treel, setting
Fail to yes, and sending ATMS the justification of the tree
node, via treejustify

*/
% ===

testfailed (Nodelist,Nodedb,Node,TreeNode,Treel,
[[TreeNode,Nodedb]|[Treel]],yes) :-

treejustify(Nodelist,_,Node,TreeNode, no).

/*
PREDICATE: treejustify(+Nodelist,+Timetable,+As,+Node,+Changedrooms)
ARGUMENTS: Nodelist, list (of integers - nodes numbers)

Nodedblist, list (of nodereps)
Node, integer (node number)
Treenode, integer (node number)
Changedrooms, yes or no

COMMENTS: If Changedrooms is no, it succeeds after sending ATMS the
justification [In,Node] -> Treenode, where In is the first node in
Nodelist - the tree father - (Nodelist is empty only for the
first node).
If Changedrooms is yes, it succeeds after sending ATMS the
justification [Node|Nodelist2] -> Node, where Nodelist2 is the list
of numbers of the nodes that appear in Timetable

newtimetable.pi Wed Jul 26 15:37:45 1989

treejustify(_,Timetable,Node,Treenode,yes)
extract(Timetable,Nodelist2),
putjustification(Treenode,[Node|Nodelist2]).

treejustify([In|_],_,Node,Treenode,no)
putjustification (Treenode,[In,Node]).

treejustify([],_,Node,Treenode, no)
put justification(Treenode,[Node]).

**

% * *

% * ATMS INFORMATION-HISTORY *

% * *

% **

% == ==========================

/*
PREDICATE: findinconsist(?BadAsNodes)
ARGUMENTS: BadAsNodes, list of lists of [Assumption] plus node numbers
COMMENTS: Succeeds after instantiating Tracks to the list of 'tracks'

recorder in the environment, and BadAsNodes to the list of "lists,
whose head is an unitary list containing an unsatisfied constraint
(assumption) number, and whose tail is the list of timetable
positions (nodes numbers) that make it unsatisfiable"

*/

findinconsist(BadAsNodes) :-
write ('I am testing ATMS ...'),
nl,
solnode(Solnode),
constraints(Constraints),
find_bad_as (Solnode,Constraints,BadAs),
atms_get_envs([0],BadEnvs),
timetable(Timetable),
extract(Timetable,Nodes),
find_bad_asnodes(BadAs,BadEnvs,Nodes,BadAsNodes),
nl.

% ===

/*
PREDICATE: extract(+Nodedblist,?Nodelist)
ARGUMENTS: Nodedblist, list (of nodereps)

Nodelist, list (of integers - nodes numbers)
COMMENTS: Succeeds after instantiating Nodelist to the list of numbers of

the nodes that appear in Nodedblist
*/

extract ([],[]).

extract ([[Node|_]|T],[Node|Tl]) :-
extract (T,T1).

% ============================ ========== ======

/*
PREDICATE: find_bad_as (+Solnode,+Constraints,?BadAs)

ARGUMENTS: Solnode, node number
Constraints, list of constraints (assumptions) numbers
BadAs, list of constraints (assumptions) numbers

COMMENTS: Succeeds after instantiating BadAs to the list of actual
constraints that are not satisfied by the solution (solnode),
according to ATMS information

*/
% ==

find_bad_as (_, [],[]).

find_bad_as(Solnode,[As|Aslist],[As|BadAs]) :-
atms_get_envs([Solnode,As],[]),
t
• r

find_bad_as (Solnode,Aslist, BadAs) .

find_bad_as(Solnode,[_|Aslist],BadAs) :-
find_bad_as(Solnode,Aslist,BadAs).

% ==

/*

find_bad_asnodes(+BadAs,+BadEnvs,+Nodes,?BadAsNodes)
BadAs, list of assumptions numbers
BadEnvs, list of environments (lists of Assumptions)
Nodes, list of nodes numbers
BadAsNodes, list of lists of [Assumption] plus node numbers
Succeeds after instantiating BadAsNodes to the list of "lists,
whose head is an unitary list containing a constraint from BadAs
(assumption) number, and whose tail is the list of timetable
positions (nodes numbers) that make it unsatisfiable"

% ================== ===

find_bad_asnodes([],_,_,U).

find_bad_asnodes ([H|T],BadEnvs,Nodes,BadAsNodes) :-
find_bad_nodes(H,BadEnvs,Nodes, HB),
find_bad_asnodes(T,BadEnvs,Nodes,TB),
cone(HB,TB,BadAsNodes).

PREDICATE:
ARGUMENTS:

COMMENTS:

/*
PREDICATE: find_bad_nodes(+As,+BadEnvs,+Nodes,?BadAsNodes)
ARGUMENTS: As, assumption number

BadEnvs, list of environments (lists of Assumptions)
Nodes, list of nodes numbers
BadAsNodes, list of lists of [Assumption] plus node numbers

COMMENTS: Succeeds after instantiating BadAsNodes to the list of "lists,
whose head is an unitary list containing As, unsatisfied constraint
(assumption) number, and whose tail is the list of timetable
positions (nodes numbers) that make it unsatisfiable"

*/
% ==

find_bad_nodes(_,[],_,[]).

find_bad_nodes(As,[H|T],Nodes,BadAsNodes) :-
setof2(X,testAsEnvs(As,H,Nodes,X),HB),
find_bad_nodes(As,T,Nodes,TB) ,

cone(HB,TB,BadAsNodes).

newtimetable.pi
% ====================

Wed Jul 26 15:37:45 1989

PREDICATE:
ARGUMENTS:

COMMENTS:

testAsEnvs (+As,+Env,+Nodes,?BadAsNodes)
As, assumption number
Env, list of environments (lists of Assumptions)
Nodes, list of nodes numbers
AsNodes, list of [Assumption] plus node numbers
Succeeds after instantiating AsNodes to the list
whose head is an unitary list containing As, unsatisfied constraint
(assumption) number, and whose tail is the list of timetable
positions (nodes numbers) that make it unsatisfiable

testAsEnvs(As,Env,Nodes,[As|BadNodes]) :-
memberchk(As,Env),
testenvs(Env),
atms_get_context(Env,inconsistent,Context),
setof(X,fivetypenode(Context,Nodes,X),BadNodes),
((notpos(_,_,As),

• r

BadNodes = [_])

(nonsharedrooms(As),
• t

BadNodes = [Nodel,Node2],
node([Nodel,Room]),
node([Node2,Room]))

(BadNodes = [_,_])
) .

% allmembers(BadNodes,Nodes).

% ==

/*
PREDICATE: testenvs(+Aslist)
ARGUMENTS: Aslist, list of assumptions numbers
COMMENTS: Succeeds if no assumption in Aslist have been deleted
*/

testenvs ([]).

testenvs ([H|T]) :-
\+ deleted(H),
testenvs(T).

% =========

/*
PREDICATE:

ARGUMENTS:

COMMENTS:

*/
% =

fivetypenode(+Context,+Nodes,?Solnode)
Context, list of environments (lists of Assumptions and Nodes)
Nodes, list of nodes numbers
Solnode, node number
Succeeds after instantiating Solnode to the node number of a node
that includes room information (length = 5) and, either it is in
Context, or it is direct consequence of a node in Context. In
addition it must be in Nodes (timetable nodes)

fivetypenode(Context,Nodes,Solnode)
member(Node,Context),

node([Node|T]),
(<T = O
Solnode = Node)

(T = [Subject,Day,Hour],
node([Solnode,Subject,Day,Hour,_]))

),
memberchk(Solnode,Nodes).

% ===

/*
PREDICATE: user_info
ARGUMENTS: NONE
COMMENTS: tells the user what is wrong between the actual timetable and

constraints, from the information existing in ATMS, plus some
advices about what to do, according to the 'tracks' recorded
while modifying the timetable and constraints.

*/
% ===

user_info :-
unsolved(BadAsNodes),
tracks(Tracks),
((BadAsNodes = [],

nl,
write('EVERYTHING is O.K.'),
nl)

(nl,
write('ATMS info:'),
nl,
write('Assumptions that fail:'),
nl,
writeasnodeslist(BadAsNodes),
write ('My advices: move the following:'),
nl,
writeinfolist(Tracks),
nl)

) .

% ===

/*
PREDICATE: findtracks(+BadAsNodes,?Nodedb)
ARGUMENTS: BadAsNodes, list [As|Nodes]

Nodedb, nodelist
COMMENTS: succeeds if Nodedb is the "track" corresponding to the Nodes in

BadAsNodes (see next predicate)
*/

findtracks(BadAsNodes, Nodedb) :-

member([_|Nodelist],BadAsNodes),
track (Nodelist,Nodedb).

% ===

/*
PREDICATE: track(+Nodes,?Nodedb)
ARGUMENTS: Nodes, list of nodes numbers

Nodedb, nodelist
COMMENTS: succeeds if Nodedb is the lowest level lecture from Nodes
*/

newtimetable.pi Wed Jul 26 15:37:45 1989 24

track([Node],[Node|Rest])
i
■ i

node([Node I Rest]).

track([NodelINodelist],Nodedb)
node([Nodel,Subjectl|Restl]),
track(Nodelist,[Node2,Subject2|Rest2]) ,

subjects(Subjects),
position(Subjectl,Subjects,PI),
position(Subject2,Subjects, P2),
((PI > P2,

• /

Nodedb = [Nodel,Subjectl|Restl])

(Nodedb = [Node2,Subject2|Rest2])
) .

% ==

/*
PREDICATE: writeasnodeslist(+AsNodes)
ARGUMENTS: AsNodes, list of constraint (assumption) number plus nodes numbers
COMMENTS: shows the unsatisfied constraint with the nodes that make it fail
*/
% ==

writeasnodeslist ([]) .

writeasnodeslist([[As|Nodes]|BadAsNodes]) :-
write('constraint: '),
showconstraint(As),
write('unsatisfied by nodes:')/
nl,
writenodelist (Nodes),
nl,
writeasnodeslist(BadAsNodes).

% ==

/*
PREDICATE: showconstraint
ARGUMENTS: N, integer
COMMENTS: shows the constraint whose asumption number is N
*/

showconstraint (N) :-

findconstraint(N,Pred,Arglist),
writeassumptarglist (Pred,[Arglist]).

/*
PREDICATE: history_info
ARGUMENTS: NONE
COMMENTS: shows the history of the problem
*/
% ==

history_info :-
history(History),
explainhistory,

writelist (History).

% ==

/*
PREDICATE: explainhistory
ARGUMENTS: NONE

COMMENTS: explains the meaning of every action in the history of the problem
*/
% =========================== ==

explainhistory :-
nl,
write('for each event in the history, you will be given a list whose'),
nl,
write('elements are: [Event,Node,Desc,Failed,Bad], where'),
nl/
write ('Event - may be either "solve" or "resolve" or "change"'),
nl,
write ('Node - is the solution node after the change'),
nl,
write ('Desc - is the description of the event. E.g. in case of "change"'),
nl,
write (' Desc will say if it was "move", "add" or "delete", plus'),
nl,
write (' subjects, days, hours, rooms, ... affected'),
nl,
write ('Failed - is "yes" if the change was not possible, "no" otherwise'),
nl,
write ('Bad - is [] if problem is solved, and the list of unsatisfied'),
nl,
write (' constraints (and responsible nodes) numbers, otherwise'),
nl.

/*
PREDICATE: node_info(+N)
ARGUMENTS: N, integer
COMMENTS: tells the user what the node N means, if such a node exists,

either if it belongs to Timetable or not. It is also valid
for non-constraint assumptions

*/
% ==

node_info(N) :-
Nodedb = [N|_],
t

node(Nodedb),
write ('Node '),
nodedb_info(Nodedb).

node_info(N) :-
Nodedb = [N|_],
t
• /

assumpt(Nodedb),
write('Assumption '),
nodedb_info(Nodedb).

node_info(N) :-
treenode(N),
write (N),
write (': is a Tree Node'),
nl.

nevrtimetable .pi Wed Jul 26 15:37:45 1989

node_info(N) :-
write(N),
write (': is not in the actual database'),
nl.

% ===

/*
PREDICATE: number_info(+Number)
ARGUMENTS: Number, integer
COMMENTS: tells the user what the node N means, if such a node exists,

either if it belongs to Timetable or not. It is also valid
for all kind of assumptions

*/
% ===

number_info(Number) :-
showconstraint(Number),
i
• /

write ('It is a constraint'),
nl.

number_info(Number) :-
node_info(Number),
nl.

% ==

/*
PREDICATE: nodedb_info(+Nodedb)
ARGUMENTS: Nodedb, noderep
COMMENTS: tells the user what the noderep Nodedb means, if such a node exists,

either if it belongs to Timetable or not. It is also valid
for non-constraint assumptions

*/
%

nodedb_info(Nodedb) :-
Nodedb = [N,Subject,Day,Hour|Tail],
write(N),
write (': "A lecture for subject '),
write(Subject),
write (' given on '),
write(Day),
write (' at '),
write(Hour),
((Tail = [Room],
write (' in room '),
write(Room)

)

(Tail = [])
>,
write (' "'),
nl.

/*
PREDICATE: writenodelist(+List)
ARGUMENTS: List, list of nodes numbers
COMMENTS: tells the user what the node means, for each node in List

either if it belongs to Timetable or not. It is also valid

*/
%

for non-constraint assumptions

writenodelist([]).

writenodelist([H|T]) :-

node_info (H),
writenodelist (T).

% ======== ^==!

/*
PREDICATE: writeinfolist(+List)
ARGUMENTS: List, list of nodereps
COMMENTS: tells the user what the node means, for each node in List

either if it belongs to Timetable or not. It is also valid
for non-constraint assumptions

*/
% ==

writeinfolist([]).

writeinfolist([H|T]) :-

nodedb_info (H),
writeinfolist (T).

^ **
% * *

% * LOAD AND SAVE OPTIONS *
% * *
^ **

% ==

/*
PREDICATE: load_c(+CF)
ARGUMENTS: CF, file name
COMMENTS: Succeeds after loading the constraints from the file NCF
*/
% ================================ ================================

load_c(CF) :-
putwindow('WAIT'),
[-CF],
erasew (_) .

% == «»= ====

/*
PREDICATE: load_s(+CF)
ARGUMENTS: CF, file name
COMMENTS: Succeeds after loading the constraints plus the whole

environment from the file NCF
*/
% === ======

load_s(SF) :-
putwindow('WAIT'),
[-SF],
subjects(Subjects),
createlectrooms(Subjects),

newtimetable.pl Wed Jul 26 15:37:45 1989 26

setof2 (D,deleted (D), SetD),
sendastoatras (SetD),
setof2(W,constraintnumber(W),SetO),
sendastoatms(SetO),
setof2 (X,assumptnumber (X), Setl),
sendastoatms(Setl),
setof2(Y,nodenumber(Y) ,Set2),
sendnodestoatms(Set2),
setof2 (T,treenode(T), Set4),
sendnodestoatms(Set4),
setof2 (Z,justIficatlon(Z),Set3),
sendjusttoatms (Set3),
asserta(activetree(tree)),
asserta (now ([])),
((notallowed(solve),
idmenu(main,Mainmenu), % Just for the user interface
setmenuitem(Mainmenu,1,resolve))

t

(true)
>,
erasew(_).

% ===

/*
PREDICATE: save_c(+NCF)
ARGUMENTS: NCF, file name
COMMENTS: Succeeds after writing the actual constraints in the file NCF
*/
% ===

save_c(NCF) :-
putwindow('WAIT'),
tell(NCF),
readall,
told,
erasew(_).

% ==:==================;

/*
PREDICATE: save_s(+NCF)
ARGUMENTS: NCF, file name
COMMENTS: Succeeds after writing the actual constraints, plus the actual

environment in the file NCF, in order to recover it later.
*/
% ==

save_s(NCF) :-
((notallowed(solve),
I)

(write ('There is no environment yet. Only constraints'),
nl,
fail)

>,
putwindow('WAIT'),
tell(NCF),
readall,
nl,
nl,
timetable (T),
writeassumpt(timetable,T),
nl.

nl,
tree(Tree),
writeassumpt(tree,Tree),
nl,
nl,
treesol(Sol),
writeassumpt(treesol, Sol),
nl,
nl,
((part(Partsol),

i
• r

writeassumpt(part,Partsol),
nl,
nl)

(true)
>,
bagof2(X,subtreearglist(X),Listtree),
writeassumptarglist(subtree,Listtree),
nl,
nl,
bagof2(Y,subsolarglist(Y),Listsol),
writeassumptarglist(subsol,Listsol),
nl,
nl,
bagof2([Not],notallowed (Not),Listnot),
writeassumptarglist(notallowed, Listnot),
nl,
nl,
solnode (Solnode),
writeassumpt(solnode,Solnode),
nl,
nl,
history (History),
writeassumpt(history,History),
nl,
nl,
unsolved(BadAs),
writeassumpt(unsolved,BadAs),
nl,
nl,
bagof2([ZO],treenode(ZO),ListO),
writeassumptarglist(treenode, ListO),
nl,
nl,
bagof2([Zl],nodenumber(Zl),Listl),
writeassumptarglist(nodenumber,Listl),
nl,
nl,
bagof2([Z2],assumptnumber(Z2),List2),
writeassumptarglist(assumptnumber,List2),
nl,
nl,
bagof2([Z3],constraintnumber(Z3),List3),
writeassumptarglist (constraintnumber,List3),
nl,
nl,
bagof2([Z31],newconsnumber(Z31),List31),
writeassumptarglist(newconsnumber,List31),
nl,
nl,
bagof2([Z32],deleted(Z32),List32),
writeassumptarglist(deleted,List32) ,

nl,

newtimetable.pi Wed Jul 26 15:37:45 1989 27

nl,
bagof2([Z4],justification(Z4),List4),
writeassumptarglist(justification, List4),
nl,
nl,
bagof2([Z5], node(Z5),List5),
writeassumptarglist(node,List5),
nl,
nl,
bagof2([Z6],assumpt(Z6),List 6),
writeassumptarglist(assumpt,List6),
nl,
nl,
bagof2(Z8,historyTimetablearglist(Z8),List8),
writeassumptarglist(historyTimetable,List8),
told,
erasew(_).

/*
PREDICATE: readall
ARGUMENTS: NONE
COMMENTS: suceeds after writing the actual constraints in the output device
*/

readall :-

subjects(Subjects),
writeassumpt(subjects,Subjects),
nl,
nl,
bagof2(XI,subjlecturesarglist(XI),Listl),
writeassumptarglist(subjlectures,Listl),
nl,
nl,
bagof2(X2,nonsimultarglist(X2),List2),
writeassumptarglist (nonsimult,List2),
nl,
nl,
bagof2(X3,nonfollowarglist(X3),List3),
writeassumptarglist(nonfollow,List3),
nl,
nl,
bagof2(X4,lectroomarglist(X4),List4),
writeassumptarglist(lectroom,List4),
nl,
nl,
bagof2 (X5,fixarglist(X5),List5),
writeassumptarglist(fix,List5),
nl,
nl,
bagof2(X6,badarglist(X6),List6),
writeassumptarglist(bad,List6),
nl,
nl,
bagof2(X7,verybadarglist(X7),List7),
writeassumptarglist(verybad,List7),
nl,
nl,
bagof2(X8,notposarglist(X8),List8),
writeassumptarglist(notpos, List8).

% ==

/*
PREDICATE: writeassumpt(+Pred,+H)
ARGUMENTS: Pred, atom (predicate identifier)

H, predicate argument
COMMENTS: Succeeds after writing in a 'prolog' manner the unary predicate

pred whose only argument is H.
*/
% ===

writeassumpt(Pred,H) :-
write(Pred),
write ('('),
write(H),
write(').'),
nl,
nl.

/*
PREDICATE: writeassumptarglist(+Pred,+List)
ARGUMENTS: Pred, atom (predicate identifier)

List, list of lists of arguments
COMMENTS: Succeeds after writing in a 'prolog' manner the unary predicate

pred with all the different lists of arguments in List (valid
for n-ary predicates and any number of facts)

*/

writeassumptarglist(_, []).

writeassumptarglist(Pred,[H|T]) :-
write(Pred),
write (' ('),
writearg(H),
write (').'),
nl,
nl,
writeassumptarglist(Pred,T).

/*
PREDICATE: writearg(+Arglist)
ARGUMENTS: Arglist, list of arguments
COMMENTS: Succeeds after writing Arglist in a 'prolog' manner
*/

writearg ([H]) :-
t
• r

write(H).

writearg([H|T]) :-
write(H),
write(','),
writearg(T).

/*
PREDICATE: historyTimetablearglist(?Arglist)
ARGUMENTS: Arglist, list of arguments

newtimetable.pi Wed Jul 26 15:37:45 1989

COMMENTS: Succeeds after instantiating Arglist to the list of arguments
[Al,...,An] such that historyTimetable(Al,...,An)

*/
% ==============

historyTimetablearglist ([Change,In,Subtree])
historyTimetable (Change,In,Subtree).

% ===

/*
PREDICATE: subtreearglist(?Arglist)
ARGUMENTS: Arglist, list of arguments
COMMENTS: Succeeds after instantiating Arglist to the list of arguments

[Al,...,An] such that subtree(Al,...,An)
*/
% ============

subtreearglist ([In,Subtree]) :-
subtree(In,Subtree).

% ================== =========== ===================================

/*
PREDICATE: subsolarglist(?Arglist)
ARGUMENTS: Arglist, list of arguments
COMMENTS: Succeeds after instantiating Arglist to the list of arguments

[Al,...,An] such that subsol(Al,...,An)
*/
% ==

subsolarglist([In,Sol]) :-
subsol(In,Sol).

/*
PREDICATE: subjlecturesarglist(?Arglist)
ARGUMENTS: Arglist, list of arguments
COMMENTS: Succeeds after instantiating Arglist to the list of arguments

[Al,...,An] such that subjlectures(Al,...,An)
*/
% ==

subjlecturesarglist ([Subject,N]) :-
subjlectures(Subject,N).

% =============== ==

/*
PREDICATE: nonsimultarglist(?Arglist)
ARGUMENTS: Arglist, list of arguments
COMMENTS: Succeeds after instantiating Arglist to the list of arguments

[Al,...,An] such that nonsimult(Al,...,An)
*/

nonsimultarglist([Subjectl,Subject2,As]) :-
nonsimult(Subjectl,Subject2,As).

% ===================================

/*
PREDICATE: nonfollowarglist(?Arglist)

ARGUMENTS: Arglist, list of arguments
COMMENTS: Succeeds after instantiating Arglist to the list of arguments

[Al,...,An] such that nonfollow(Al,...,An)
*/
% ==

nonfollowarglist([Subjectl,Subject2,As]) :-

nonfollow(Subjectl,Subject2,As).

% ===

/*
PREDICATE: lectroomarglist(?Arglist)
ARGUMENTS: Arglist, list of arguments
COMMENTS: Succeeds after instantiating Arglist to the list of arguments

[Al,...,An] such that lectroom(Al,...,An)
*/
% ====== ================== ===== ================= ==========

lectroomarglist([Subject,Room,As]) :-
lectroom(Subject,Room,As).

% ===

/*
PREDICATE: fixarglist(?Arglist)
ARGUMENTS: Arglist, list of arguments
COMMENTS: Succeeds after instantiating Arglist to the list of arguments

[Al,...,An] such that fix(Al,...,An)
*/

fixarglist ([Subject, Time,As]) :-
fix (Subject,Time,As) .

% ==

/*
PREDICATE: badarglist(?Arglist)
ARGUMENTS: Arglist, list of arguments
COMMENTS: Succeeds after instantiating Arglist to the list of arguments

[Al,...,An] such that bad (Al,...,An)
*/
% ==

badarglist([Subject,Time]) :-
bad(Subject,Time).

% == =====

/*
PREDICATE: verybadarglist(?Arglist)
ARGUMENTS: Arglist, list of arguments
COMMENTS: Succeeds after instantiating Arglist to the list of arguments

[Al,...,An] such that verybad(Al,...,An)
*/
% ==

verybadarglist([Subject,Time]) :-
verybad(Subject,Time).

%

/*

newtimetable.pi Wed Jul 26 15:37:45 1989

PREDICATE: notposarglist(?Arglist)
ARGUMENTS: Arglist, list of arguments
COMMENTS: Succeeds after instantiating Arglist to the list of arguments

[Al,...,An] such that notpos(Al, ,An)
*/
% ===

notposarglist ([Subject,Time,As]) :-
notpos(Subject,Time,As).

^ **

% * *

% * RESOLVE OPTION *
% * *

**

% ==

/*
PREDICATE: resolve

ARGUMENTS: NONE
COMMENTS: Succeeds after removing the lectures in 'track's (inconsistent

with the constraints) from the timetable, introducing new ones
in it, automatically, creating a subtree for the new state, a
solution path for it (subsol), and updating 'unsolved' and 'history'

*/

resolve :-

notallowed(resolve),
t
• /

write('option not available now')/
nl,
fail.

resolve

tracks(InitTracks),
fixremove (InitTracks,Tracks),
Tracks = [_l_],
timetable (Timetable),
recremove(Timetable,Tracks,Timetablel),
setof2(Z,inThen (Z,Tracks),SubjectsBefore),
bagof2(Z,inThen(Z,Tracks),Bagbefore),
subjects(Subjects),
ordnonfix(SubjectsBefore,Subjects, OrdSubjects),
times2(Bagbefore,OrdSubjects,OrdSubjectsTimes),
recnlectures(OrdSubjectsTimes),
subresolve (OrdSubjects,Timetablel,Newtimetable, Brothers,Fail),
((Fail - no,
sol(L),
retract (sol (L)))

(Fail =» yes,
takepart(L))

),
((part (_),

i
• r

retract (part (_)))

(true)
>,
retract (solnode (_)),

dbtreenode(SolNode),
extract(Newtimetable,Nodes),
put justification(SolNode,Nodes),
asserta (solnode (SolNode)),
findinconsist(BadAs),
asserta (subsol (SolNode,L)),
firsttreenode(In),
asserta(subtree(SolNode,[[In,subtree]|Brothers])),
retract(unsolved(_)),
asserta(unsolved(BadAs)),
retract (tracks (_)),
setof2(X,findtracks(BadAs,X), NewTracks) ,

asserta(tracks(NewTracks)),
history(List),
conc(List,[[resolve,SolNode,subtree,Fail,BadAs]],Newlist),
retract(history(List)),
asserta(history(Newlist)),
asserta(historyTimetable(resolve,SolNode,Newtimetable)),
showtimetable,
user_info,
((BadAs = [],
!)

(write ('Sorry. There is nothing else I can do.'),
nl)

) .

resolve :-

write ('Sorry. No non-fixed lectures bothering the constraints.'),
nl.

% ==

/*
PREDICATE: subresolve(+OrdSubjects,+Timetable,?Newtimetable,?Brothers,?Fail)
ARGUMENTS: OrdSubjects, list (of subjects representations)

Timetable, list (of nodereps)
Newtimetable, list (of nodereps)
Brothers, list (of trees representations)
Fail, yes or no

COMMENTS: Succeeds after updating the timetable with the lectures from
'tracks', now in a right place. If it is not possible, a
message is produced in that sense

*/
% ==

subresolve([HSubjects|TSubjects],Timetable,Newtimetable,Brothers,Fail) :-
settimetable(HSubjects,TSubjects,[],Timetable,

Newtimetable,Brothers,Fail),
((Fail = no,
retract (timetable (_)),
asserta(timetable(Newtimetable)),
retractallnlectures)

(Fail = yes,
spoiled)

) .

% ==

/*
PREDICATE: inThen(?Subject,+List)
ARGUMENTS: Subject, subject representation

List, list of noderep

newtimetable.pi Wed Jul 26 15:37:45 1989 30

COMMENTS: Succeeds after instantiating subject to any subject in any noderep
in List

*/
% ==

inThen(Subject,[[_,Subject|_]|_]).

inThen(Subject,[_|Then])
inThen(Subject,Then).

% ==

/*
PREDICATE: fixremove (+Nodedblist,?Nodedblist2)
ARGUMENTS: Nodedblist, list of nodereps

Nodedblist2, list of nodereps
COMMENTS: Succeeds after instantiating Nodedblist2 to the list of nodereps

from Nodedblist that are not fixed
*/
% ==

fixremove([],[]).

fixremove([[_,Subject|_]|IT],T) :-
fix(Subject,
i
• r

fixremove(IT,T) .

fixremove([H|IT],[H|T]) :-
fixremove (IT,T).

%

/*
PREDICATE: ordnonfix(+SubjectsBefore,+Subjects,+OrdSubjects)
ARGUMENTS: SubjectsBefore, list of subjects representation

Subjects, list of subjects representation
OrdSubjects, list of subjects representation

COMMENTS: Succeeds after instantiating OrdSubjects to the list of subjects
from SubjectsBefore, in the order they appear in Subjects

*/
% ==

ordnonfix(_, [],[]).

ordnonfix(SubjectsBefore,[HSubjects|TSubjects],
[HSubjects|SubjectsAfter]) :-

memberchk (HSubjects,SubjectsBefore),
!
• /

ordnonfix(SubjectsBefore,TSubjects, SubjectsAfter).

ordnonfix(SubjectsBefore,[_|TSubjects],SubjectsAfter) :-
ordnonfix(SubjectsBefore,TSubjects,SubjectsAfter).

% ===

/*
PREDICATE: times2(+Bag,+Set,?Settimes)
ARGUMENTS: Bag, list

Set, list
Settimes, list

COMMENTS: Succeeds after instantiating Settimes to the list of "lists
whose first element is an element in Set and whose second
element is the number of times it appears in Bag"

*/
% ==================================

times2 (_,[],[]).

times2(Bag,[HS|TS],[[HS,N]|TST]) :-

times(HS,Bag,N),
times2(Bag,TS,TST).

% ===

/*
PREDICATE: spoiled
ARGUMENTS: NONE
COMMENTS: Succeeds after giving a message when no solution has been found

with "resolve" option, after some - controversial - changes have
been made.

*/
% === =====

spoiled :-
write ('No solution has been found. Either'),
nl,
write ('(1) the constraints are unsatisfiable, or'),
nl,
write ('(2) some lectures are bothering "resolve" option strategy,'),
nl,
write (' and, either "solve" option can solve it, or yourself: changing'),
nl,
write('the constraints and timetable. To use "solve" option, save the'),
nl,
write ('constraints (save_c), exit PROLOG, and "solve" again with them'),
nl,
write('from scratch'),
nl,
nl.

^ **

% * *
% * DELETE OPTION *
% * *

/*
PREDICATE: delete(lectroom,[+Subject,+Room,+As],?Fail)
ARGUMENTS: lectroom, bound atom

ONE LIST OF:

Subject, subject representation
Room, room representation
As, integer
Fail, yes or no

COMMENTS: Succeeds after deleting a 'lectroom' constraint in the environment,
if such a constraint exists, and it it does not cause problems to
the timetable

*/

delete(lectroom,[Subject,Room, _],yes) :-
timetable(Timetable),
Nodedb = [_,SubjectRoom],

newtimetable.pl Wed Jul 26 15:37:45 1989 31

memberchk(Nodedb,Timetable),
i
• r

shout(Nodedb,'must be moved to other room first').

delete(leotroom,[Subject,Room,As],no)
retract(lectroom(Subject,Room,As)),
asserta(deleted(As)),
retract(constraintnumber(As)),
lectrooms(Subject,Rooms),
remove(Rooms,Room,NewRooms),
retract(lectrooms(Subject,Rooms)),
asserta(lectrooms(Subject,NewRooms)).

/*
PREDICATE: delete(subject,[+Subject],?Fail)
ARGUMENTS: subject, bound atom

ONE LIST OF:

Subject, subject representation
Fail, yes or no

COMMENTS: Succeeds after deleting a subject in the timetable, and everything
related with it

*/

delete (subject,[Subject],no) :-
putwi ndow ('WAIT') ,

timetable(Timetable),
subjremove(Timetable,Subject,NewTimetable),
retract (timetable (Timetable)),
asserta(timetable(NewTimetable)),
subjects(Subjects),
remove(Subjects,Subject,NewSubjects),
retract (subjects (Subjects)),
asserta(subjects(NewSubjects)),
lectrooms(Subject,Rooms),
retractalllectroom(Subject),
retract(lectrooms(Subject,Rooms)),
((fix(Subject,_,_),

retractallfix(Subject))

(retract(subjlectures(Subject,_)))
),
retractallbad (Subject),
retractallverybad(Subject),
retractallnotpos(Subject),
retractallnonsimult(Subject),
retractallnonfollow(Subject),
retractalloldnodes,
erasew(_).

/*
PREDICATE: subjremove(+Timetable,ISubjects,?NewTimetable)
ARGUMENTS: Timetable, list of noderep

Subject, subject representation
NewTimetable, list of noderep

COMMENTS: Succeeds after instantiating NewTimetable to the list of nodereps
that are in timetable whose subject is not Subject

*/

subjremove([],Subject,[]) :-
removea11nodes(Subject).

subjremove([Nodedb|T],Subject,NT) :-
Nodedb = [_,Subject|_],
i
• r

retract(node(Nodedb)),
asserta(oldnode (Nodedb)),
subjremove(T,Subject,NT).

subjremove([H|T],Subject,[H|NT])
subjremove(T,Subject,NT).

/*
PREDICATE: delete(bad,[+Subject,+Day,+Hour], Fail)
ARGUMENTS: bad, bound atom

ONE LIST OF:

Subject, subject representation
Day, day representation
Hour, hour representation
Fail, yes or no

COMMENTS: Succeeds after deleting a 'bad' constraint according to the
arguments above, if such a constraint exists

*/

delete(bad,[Subject,Day,Hour],no) :-
retract(bad (Subject,[Day,Hour])).

/*
PREDICATE:

ARGUMENTS:

COMMENTS:

delete(verybad,[+Subject,+Day,+Hour],?Fail)
verybad, bound atom
ONE LIST OF:

Subject, subject representation
Day, day representation
Hour, hour representation
Fail, yes or no
Succeeds after deleting a 'verybad' constraint according to the
arguments above, if such a constraint exists

delete(verybad,[Subject,Day,Hour],no) :-
retract(verybad(Subject,[Day, Hour])).

/*
PREDICATE:
ARGUMENTS:

COMMENTS:

delete(notpos,[+Subject,+Day,+Hour,+As],?Fail)
notpos, bound atom
ONE LIST OF:

Subject, subject representation
Day, day representation
Hour, hour representation
As, integer
Fail, yes or no
Succeeds after deleting a 'bad' constraint according to the
arguments above, if such a constraint exists

newtimetable.pi Wed Jul 26 15:37:45 1989 32

*/

delete(notpos,[Subject,Day,Hour,As],no)
asserta(deleted(As)),
retract(constraintnumber(As)),
retract(notpos(Subject,[Day,Hour],As)).

% ===

/*
PREDICATE: delete(nonfollow,[+Subjectl,+Subject2,+As])
ARGUMENTS: nonfollow, bound atom

ONE LIST OF:

Subjectl, subject representation
Subject2, subject representation
As, integer
Fail, yes or no

COMMENTS: Succeeds after deleting a 'nonfollow' constraint according to the
arguments above, if such a constraint exists

*/

delete(nonfollow,[Subjectl,Subject2,As], no) :-
asserta(deleted (As)),
retract(constraintnumber(As)),
retract(nonfollow (Subjectl,Subject2,As)).

% ===

/*
PREDICATE: delete(nonsimult,[+Subjectl,+Subject2,+As])
ARGUMENTS: nonsimult, bound atom

ONE LIST OF:

Subjectl, subject representation
Subject2, subject representation
As, integer
Fail, yes or no

COMMENTS: Succeeds after deleting a 'nonsimult' constraint according to the
arguments above, if such a constraint exists

*/

delete(nonsimult,[Subjectl,Subject2,As],no) :-
asserta(deleted(As)),
retract(constraintnumber(As)),
retract(nonsimult(Subjectl,Subject2,As)).

% **
% * *

% * ADD OPTION *
% * *

% **

/*
PREDICATE: add(subject,[+Subject],?Fail)
ARGUMENTS: subject, bound atom

ONE LIST OF:

Subject, subject representation
Fail, yes or no

COMMENTS: Succeeds after introducing a new subject in the timetable, asking
for the number of lectures, if they are fixed or not, and
introducing them.

*/
% ==

add(subject,[Subject],no) :-
repeat,
write('number of rooms available: '),
read(R),
integer(R),
nl,
• t

readrooms(R,Subject,Rooms),
asserta(lectrooms(Subject,Rooms)),
((notallowed(solve),

t
• f

write ('I assume it is non-fixed with 0 lectures (timetable not modified)'),
nl,
write('You should add the constraints for it, and then, either "fix" or'),
nl,
write('"subjlectures" information to update the timetable with it'),
nl,
asserta(subjlectures(Subject,0)))

t

(repeat,
write('number of lectures: '),
read (N),
integer(N),
nl,
i
• *

putwindow ('fixed? '),
idwindow(menu,Menuwindow),
idmenu(yesno,Yesnomenu),
showmenu(Menuwindow,Yesnomenu,F),
erasew('fixed? '),
((F = 1,
nl,
i
• t

readlist(N,DH,Aslist),
recassertfix(Subject,DH,Asl1st))

'

(F - 2,
nl,
asserta(subjlectures(Subject,N)))

),
write('no change has been performed in the timetable, but information has'),
nl,
write('been entered for further "solve"'),
nl

)
),
subjects(Subjects),
retract(subjects(Subjects)),
((Subjects = [),

■ t

OrdSubjects - [Subject])

(reorder(Subject,Subjects,OrdSubjects))
),
asserta(subjects(OrdSubjects)).

% -

newtimetable.pi Wed Jul 26 15:37:45 1989 33

/*
PREDICATE: fixDHAs(+Subject,+List)
ARGUMENTS: Subject, subject representation

List, list [[Day,Hour],List]
COMMENTS: No comments: It is clear enough
*/
% ===

fixDHAs(Subject,[[Day,Hour],As]) :-
fix(Subject,[Day,Hour],As).

% ==,

/*
PREDICATE: sepfix(+Listl,?List2,?List3)
ARGUMENTS: Listl, list of lists [X,Y]

List2, list
List3, list

COMMENTS: Succeeds after instantiating List2 and List3 to the list of
X and Y from Listl, respectively

*/
% ==;

sepfix ([], [],[]).

sepfix ([[X,Y] |T], [X|Tl], [Y|T2]) :-
sepfix(T,Tl,T2).

% ===

/*
PREDICATE: add (bad,[+Subject,+Day,+Hour],?Fail)
ARGUMENTS: bad, bound atom

ONE LIST OF:

Subject, subject representation
Day, day representation
Hour, hour representation
Fail, yes or no

COMMENTS: Succeeds after adding a 'bad' constraint according to the
arguments above, removing eventual 'verybad' or 'notpos'
related constraints

*/
% ===

add(bad,[Subject,Day,Hour],no) :-
retractbadnotpos(Subject,Day,Hour),
asserta(bad(Subject,[Day,Hour])).

% ==== ===

/*
PREDICATE: add(verybad,[+Subject,+Day,+Hour],?Fail)
ARGUMENTS: verybad, bound atom

ONE LIST OF:

Subject, subject representation
Day, day representation
Hour, hour representation
Fail, yes or no

COMMENTS: Succeeds after adding a 'verybad' constraint according to the
arguments above, removing eventual 'bad' or 'notpos'
related constraints

*/
% === ==============:

add(verybad,[Subject,Day,Hour],no) :-
retractbadnotpos(Subject,Day,Hour),
asserta(verybad(Subject,[Day,Hour])).

PREDICATE: add(notpos,[+Subject,+Day,+Hour,+As],?Fail)
ARGUMENTS: notpos, bound atom

ONE LIST OF:

Subject, subject representation
Day, day representation
Hour, hour representation
As, integer
Fail, yes or no

COMMENTS: Succeeds after adding a 'notpos' constraint according to the
arguments above, removing eventual 'bad' or 'verybad' conflicts,
and testing if a node inconsistent with it is in Timetable.
If it is fixed, notpos condition is not included. Otherwise,
we keep track of that node and send info to ATMS.

add(notpos,[Subject,Day,Hour,As],no) :-
retractbadnotpos(Subject,Day, Hour),
altconstraint(As),
asserta(notpos(Subject,[Day,Hour],As)),
((node([Node,Subject,Day,Hour]),

t
• r

put justification^, [Node,As))>

(true)
) .

/*
PREDICATE: retractbadnotpos(+Subject,+Day, +Hour)
ARGUMENTS: Subject, subject representation

Day, day representation
Hour, hour representation

COMMENTS: Succeeds after removing all 'bad', 'verybad' or 'notpos'
constraints according to the arguments above

*/
% ==, =========================

retractbadnotpos (Subject,Day,Hour) :-
bad(Subject,[Day,Hour)),
• t

retract(bad(Subject,[Day,Hour])),
retractbadnotpos(Subject, Day, Hour).

retractbadnotpos(Subject,Day,Hour) :-
verybad(Subject,[Day, Hour]),
t
• t

retract(verybad(Subject,[Day,Hour])),
retractbadnotpos(Subject, Day, Hour) .

retractbadnotpos(Subject,Day,Hour) :-
notpos(Subject,[Day,Hour],As),
t

asserta(deleted(As)),
retract(constraintnumber(As)),
retract(notpos(Subject,[Day,Hour],As)),

newtimetable.pl Wed Jul 26 15:37:45 1989

retractbadnotpos(Subject,Day,Hour).

retractbadnotpos .

PREDICATE: add(nonfollow,[+Subjectl,+Subject2,+As])
ARGUMENTS: nonfollow, bound atom

ONE LIST OF:

Subjectl,
Subject2,
As,
Fail, yes or no

COMMENTS: Succeeds after adding
arguments above

subject representation
subject representation
integer

a 'nonfollow' constraint according to the

add(nonfollow,[Subjectl,Subject2,As],no) :-
asserta(nonfollow(Subjectl,Subject2,As)),
altconstraint(As),
timetable (Timetable),
find(nonfollow,Subjectl,Subject2,As,Timetable).

% ==========

/*
PREDICATE:
ARGUMENTS:

add(nonsimult,[+Subject1,+Subject2,+As])
nonsimult, bound atom
ONE LIST OF:

Subjectl,
Subject2,
As,
Fail, yes or no
Succeeds after adding
arguments above

subject representation
subject representation
integer

a 'nonsimult' constraint according to the

add(nonsimult,[Subjectl,Subject2,As],no) :-
asserta(nonsimult(Subjectl,Subject2,As)),
altconstraint(As),
timetable(Timetable),
find(nonsimult,Subjectl,Subject2,As,Timetable).

% ========

/*
PREDICATE:
ARGUMENTS:

find(+Choice,+Subjectl,+Subject2,+As,+Timetable)
Choice, nonsimult or nonfollow
Subjectl, subject representation
Subject2, subject representation
As, integer
Timetable, list of noderep
performs, either nonfollow or nonsimult changes, depending on
Choice: looks for nodes affected by the new nonfollow or nonsimult
constraint, and updates tracks and ATMS according to it.

find(Choice,Subjectl,Subject2,As,Timetable) :-
Nodedbl = [Nodel,Subjectl,Day,Hourl,_],
Nodedb2 = [Node2,Subject2,Day,_,_],

member(Nodedbl,Timetable),
lookfor(Timetable,Day,Hourl,_,Then,After,Sides),
((Choice = nonfollow,
member(Nodedb2,Sides))

(Choice = nonsimult,
member(Nodedb2,Then))

),
put justification(0,[Nodel,Node2,As]),
find(Choice,Subjectl,Subject2,As,After).

find .

/*
PREDICATE:
ARGUMENTS:

COMMENTS:

add (lectroom,[+Subject,+Room,+As],?Fail)
notpos, bound atom
ONE LIST OF:

subject representation
room representation

integer

Subject,
Room,
As,
Fail, yes or no
Succeeds after adding a

arguments above,
lectroom' constraint according to the

add(lectroom,[Subject,Room,As],no) :-
altconstraint(As),
asserta (lectroom(Subject,Room,As)),
lectrooms(Subject,Rooms),
retract(lectrooms(Subject,Rooms)),
asserta(lectrooms(Subject,[Room|Rooms])).

% ========

/*
PREDICATE:
ARGUMENTS:

COMMENTS:

*/
% =

add (fix,[+Subject],?Fail)
fix, bound atom
ONE LIST OF:

Subject, subject representation
Fail, yes or no
Succeeds after performing the changes to introduce fixed lectures
for Subject. All previous lectures of subject are removed, and,
if they were not fixed, subjlectures constraint is removed, as
well: USED FOR MOVING NON-FIXED -> FIXED.

add(fix,[Subject],Fail) :-
fix(Subject,_,_),
i

write('number of lectures: '),
read(N),
nl,
readlist(N,DH,Aslist),
setof2(X,fixDHAs(Subject,X),DHAsl1st),
subjects(Subjects),
retract(subjects(Subjects)),
remove(Subjects,Subject,NextSubjects),
reorder(Subject,NextSubjects,OrdSubjects),
asserta (subjects(OrdSubjects)),
timetable(Timetable),

newtimetable.pi Wed Jul 26 15:37:45 1989 35

subjremove(Timetable,Subject,NewTimetable),
retractallfix(Subject),
rectestfix(Subject,NewTimetable,DH,Aslist,LastTimetable,Fail),
((Fail = yes,

i
■ f

setof2(Y,oldnode (Y),Set),
removea11nodes(Subject),
recassertnode (Set),
sepfix(DHAslist,DHl,Aslistl),
recassertfix(Subject,DHl,Aslistl))

(retract (timetable (Timetable)),
asserta(timetable(LastTimetable)),
recassertfix(Subject,DH,Aslist))

),
retractalloldnodes.

add (fix,[Subject],Fail)
subjlectures(Subject,OldN),
write('number of lectures: '),
read (N),
nl,
readlist(N,DH,Aslist),
subjects(Subjects),
retract(subjects(Subjects)),
remove(Subjects,Subject,NextSubjects),
reorder(Subject,NextSubjects,OrdSubjects),
asserta(subjects(OrdSubjects)),
timetable (Timetable),
subjremove(Timetable,Subject,NewTimetable),
retract(subjlectures(Subject,OldN)),
rectestfix(Subject,NewTimetable,DH,Aslist,LastTimetable,Fail),
((Fail - yes,

I
• r

setof2(Y,oldnode(Y),Set),
removea11nodes(Subject),
recassertnode(Set),
asserta(subjlectures(Subject,OldN)))

(retract (timetable(Timetable)),
asserta(timetable(LastTimetable)),
recassertfix(Subject,DH,Aslist))

),
retractalloldnodes.

/*
PREDICATE:
ARGUMENTS:

COMMENTS:

rectestfix(+Subject,+Timetable,+DH,+Aslist,?LastTimetable,?Fail)
Subject, subject representation
Timetable, list of noderep
DH, list of [Day,Hour]
Aslist, list of assumption numbers
LastTimetable, list of noderep
Fail, yes or no
Succeeds after instantiating LastTimetable to the result of adding
to Timetable the new fixed lectures (whose data are in Subject, DH
and Aslist). Many TESTS must be done: first, 'notpos', and then,
'nonsimult', 'nonfollow' and 'rooms conflicts'. LAST THREE TESTS
are performed, against all existing lectures that may
create conflicts.
If There is a Failure, Fail is yes. If no failure is
found in any new fixed lecture, Fail is no. NO ASSERTION OTHER THAN

*/
%

rectestfix(_,Timetable,[],[],Timetable,no).

rectestfix(Subject,Timetable,[[Day,Hour]|DH],[As|Aslist],LastTimetable,Fail) :-
Nodedb = [Node,Subject,Day,Hour],
db(Nodedb,Node),
put justification(Node,[As]),
((notpos(Subject,[Day,Hour],As2),

t

putjustification (0, [As,As2]),
warning (['new node',Subject,Day,Hour,As],'notpos'),
Failrec = no)

r

(true)
),
lookfor(Timetable,Day,Hour,_, Then,_,Sides),
recsubtestchoices(Nodedb,Timetable,Then,Sides,

Nexttimetable,_,Failrec),
((Failrec = no,

i
• /

Fail = Newfail)

(Fail = yes)
>,
rectestfix(Subject,Nexttimetable,DH,Aslist,LastTimetable,Newfail).

/*
PREDICATE: recassertfix(+Subject,+DH,+Aslist)
ARGUMENTS: Subject, subject representation

DH, list of [Day,Hour]
Aslist, list of As, Assumption numbers

COMMENTS: Succeeds after asserting 'fix' (Subject,[Day,Hour],As) for every
member of DH and Aslist, respectively.

*/

recassertfix (_,[], []).

recassertfix(Subject,[[Day,Hour]|DH],[As|Aslist]) :-
asserta(fix(Subject,[Day,Hour],As)),
recassertfix(Subject,DH,Aslist).

/*
PREDICATE: recassertnode(+List)
ARGUMENTS: List, subject representation
COMMENTS: Succeeds after asserting 'node' for every

member of List
*/

recassertnode([]).

recassertnode([H|T]) :-
asserta (node(H)),
recassertnode(T) .

newtimetable.pi Wed Jul 26 15:37:45 1989

% =========

/*
PREDICATE:
ARGUMENTS:

COMMENTS:

add(subjlectures,[+Subject,+N],?Fail)
subjlectures, bound atom
ONE LIST OF:

Subject, subject representation
N, integer
Fail, yes or no
Succeeds after asserting subjlectures(Subject,N), and performing
the adequate changes in the timetable, according to this. If
subject lectures were fixed, they are NOT FIXED ANY MORE, and
all related 'fix' facts dissappear from the database.
USED FOR MOVING FIXED -> NON-FIXED. If they
were not fixed, but the new number N of lectures is different,
either new lectures are entered or old ones are deleted (see
'deletelectures' predicate down below) depending on N and 'Old N'

add(subjlectures,[Subject,N],Fail) :-
setof(X,fixDHAs(Subject,X),DHAslist),
j

retractallfix(Subject),
retract(subjects(Subjects)),
remove(Subjects,Subject,NextSubjects),
reorder(Subject,NextSubjects,OrdSubjects),
asserta(subjects(OrdSubjects)),
timetable(Timetable),
subjremove(Timetable,Subject,NewTimetable),
asserta(subjlectures(Subject,0)),
subjlectadd(Subject,0,N,NewTimetable, Fail),
((Fail = yes,

I

setof2(Y,oldnode(Y),Set),
removea11nodes(Subject),
recassertnode(Set),
sepfix(DHAslist,DH,Aslist),
recassertfix(Subject,DH,Aslist))

f

(write('WARNING: lectures of this subject are NOT FIXED ANY MORE
nl,
write('They have been rearranged according to the actual database'),
nl)

),
retractalloldnodes.

add (subjlectures,[Subject,N] ,Fail)
subjlectures(Subject,OldN),
i
• f

timetable (Timetable),
subjlectadd(Subject,OldN,N,Timetable, Fail).

/*
PREDICATE: subjlectadd(+Subject,+01dN,+N,+Timetable, ?Fail)
ARGUMENTS: Subject, subject representation

OldN, integer
N, integer
Timetable, list of noderep
Fail, yes or no

COMMENTS: Succeeds after performing the adequate changes in the timetable,

knowing that there were OldN lectures of Subject in it, and there
must be N. Three cases appear: adding new lectures, removing
existing ones or performing no change.

*/
% ===== ===;

subjlectadd(Subject,OldN,N,Timetable,Fail) :-
NewN is N - OldN,
((NewN = 0,
Fail = no,

nl)

(NewN < 0,
Fail = no,

deletelectures(NewN,Subject,Timetable,Newtimetable),
retract (timetable (_)),
asserta (timetable(Newtimetable)))

(NewN > 0,
asserta(nlectures(Subject,NewN)),
settimetable(Subject,[],[],Timetable,

Newtimetable,_,Fail),
((Fail = yes,
spoiled)

(Fail = no,

retract(timetable(_)),
asserta(timetable(Newtimetable)),
retract (nlectures(Subject,_)),
retract(subjlectures(Subject, _)),
asserta (subjlectures(Subject,N)))

)
)

) .

% ===== ===

/*
PREDICATE: deletelectures(+NewN, +Subject,+Timetable, ?Newtimetable)
ARGUMENTS: NewN, integer (negative difference between N and OldN)

Subject, subject representation
Timetable, list of noderep
Newtimetable, list of noderep

COMMENTS: Succeeds after performing the work for the second case in
'sublectadd' predicate before: asking which lectures to release,
and removing from Timetable, leaving the result in NewTimetable.

*/
% ===

deletelectures(0,_,Timetable,Timetable).

deletelectures(N,Subject,Timetable,NewTimetable) :-
Nl is N + 1,
idwindow(menu,Menuwindow),
repeat,
write('Which lecture do you want to delete: '),
nl,
daysmenu(Menuwindow,Day),
hoursmenu(Menuwindow,Hour),
lookfor(Timetable,Day, Hour, Before,Then,After,_),
Nodedb = [_, Subject,Day,Hour,,
((memberchk(Nodedb,Then),
!)

newtimetable.pi Wed Jul 26 15:37:45 1989

(write('No such lecture. Try again'),
nl,
fail)

>,
I

remove(Then,Nodedb,Thenl),
cone(Thenl,After,Afterl),
cone(Before,Afterl,Timetablel) ,

deletelectures(Nl,Subject,Timetablel,NewTimetable) .

% **
% * *

% * MOVE OPTION *
% * *

% **

% ==

/*
PREDICATE: move([+Subject,+Day,+Hour,+Room,+Day2,+Hour2,+Room2], ?Fail)
ARGUMENTS: ONE LIST OF:

Subject, subject representation
Day, day representation
Hour, hour representation
Room, room representation
Day2, day representation
Hour2, hour representation
Room2, room representation
Fail, yes or no

COMMENTS: Succeeds after setting a lecture for Subject
at Day2,Hour2,Room2, if no 'same room'
constraints avoid it (otherwise, the error is reported and the
timetable is not modified.
Possible room conflicts are sent to 'tracks' and ATMS, so that a
further consultation will allow the user see the mistake

Any attempt to change FIXED lectures (except change of room)
or non-existing lectures,
has been detected previously and avoided as well: input validity
test is done in the template environment

*/
% ============================== ========= ============================

move([Subject,Day,Hour,Room,Day,Hour,Room2],no) :-
t
• t

timetable(Timetable),
Nodedb = [_,Subject,Day,Hour,Room],
Nodedb2 = [Node2,Subject,Day, Hour],
db(Nodedb2, Node2) ,

Nodedb3 = [Node3,Subject,Day,Hour,Room2],
db(Nodedb3,Node3),
dbnode(Nodedb3),
lookfor(Timetable,Day,Hour,Before,Then,After,_),
remove(Then,Nodedb,Thenl),
conc([Nodedb3|Thenl],After,Afterl),
cone(Before,Afterl,Timetablel),
retract(timetable(Timetable)),
asserta(timetable(Timetablel)) .

move([Subject,Day,Hour,Room,Day2,Hour2,Room2], Fail) :-

timetable(Timetable),
Nodedb = [_,Subject,Day,Hour,Room],
remove(Timetable,Nodedb,Timetable2),

moveaux(Timetable2,Subject,Day2,Hour2,Room2,Fail).

% ========

/*
PREDICATE:
ARGUMENTS:

*/
% =

moveaux(+Timetable2,+Subject, +Day2,+Hour2,+Room2,?Fail)
Timetable2, list of nodereps
Subject, subject representation
Day2, day representation
Hour2, hour representation
Room2, room representation
Fail, yes or no
Succeeds after setting a lecture for Subject
at Day2,Hour2,Room2, if no 'same room'
constraints avoid it (otherwise, the error is reported and the
timetable is not modified.
Possible room conflicts are sent to 'tracks' and ATMS, so that
further consultation will allow the user see the mistake

moveaux(Timetable2,Subject,Day2, Hour2, Room2, Fail) :-
Nodedb2 = [Node2,Subject,Day2,Hour2],
db(Nodedb2,Node2),
dbass(Nodedb2),
Nodedb3 = [Node3,Subject,Day2,Hour2,Room2],
db(Nodedb3,Node3),
dbnode(Nodedb3),
lookfor(Timetable2,Day2,Hour2,Before,Then,After,Sides),
((notpos(Subject,[Day2,Hour2],As),
put justification(0,[Node2,As]),
warning (Nodedb3,'notpos'))

(true)
),
recsubtest(Nodedb2,Then,Sides,_,Nodesub,Assub,Subfail),
((Subfail = yes,

t

((Nodesub = 0,
Assub = 0,
t
• /

shout(Nodedb2,'same subject, same time'),
Fail = yes)

(warning (Nodedb2,'nonfollow and/or nonsimult'),
Fail = no)

)
)

(Fail = no)
>,
((Fail = no,

nl
retract (timetable (_)),
cone([Nodedb3|Then],After,Afterl),
cone(Before,Afterl,Timetablel),
asserta(timetable(Timetablel)))

(true)
) -

%

newtimetable.pi Wed Jul 26 15:37:45 1989

/*
PREDICATE: shout(+Nodedb,+Message)
ARGUMENTS: Nodedb, noderep

Message, string
COMMENTS: Succeeds after writing an explanation why Nodedb is not

in accordance with the timetable and constraints
*/

shout(Nodedb,Message) :-

nodedb_info(Nodedb),
write (' has produced a failure:'),
nl,
write('Reason: '),
write (Message),
nl,
write('CHANGE NOT ASSERTED'),
nl.

/*
PREDICATE: warning(+Nodedb,+Message)
ARGUMENTS: Nodedb, noderep

Message, string
COMMENTS: Succeeds after writing an explanation why Nodedb is not

in accordance with the timetable and constraints
*/

warning(Nodedb,Message)
write('WARNING! '),
nodedb_info(Nodedb),
write('will not follow the constraints:'),
nl,
write('Reason: '),
write(Message),
nl.

% ***

% *
% * SHOW TIMETABLES
% *

% ***

/*
PREDICATE: maxchar(+Item,?N)
ARGUMENTS: Item, 'subject' or 'room',

N, integer,
COMMENTS: Succeeds after instantiating N to the number of characters reserved

for writing 'Item' elements in the layout.

maxchar(subject,7).

maxchar(room,6).

/*
PREDICATE: shtimetable(+Timetable)
ARGUMENTS: Timetable, list of nodereps
COMMENTS: Succeeds after producing a layout of Timetable
*/

shtimetable(Timetable) :-
hours([Minhour| _]),
Soonhour is Minhour - 2,
dayshours(DH),
days([_|Days]),
daystimetables(Days,Soonhour,Timetable,Timetables),
writeheadings,
writetimetable(DH,Timetables,[],[],_,_) .

/*
PREDICATE: showtimetable
ARGUMENTS: NONE
COMMENTS: Succeeds after producing a layout of the actual Timetable
*/

showtimetable :-

timetable(Timetable),
shtimetable(Timetable).

/*
PREDICATE: showtimetable(+SolNode)
ARGUMENTS: SolNode, node number
COMMENTS: Succeeds after producing a layout of 'SolNode' Timetable
*/

showtimetable(Node) :-

historyTimetable(Action,Node,Timetable),
write ('This was the timetable after '),
write(Action),
write(' had been done'),
nl,
shtimetable(Timetable).

% =========

/*
PREDICATE:
ARGUMENTS:

COMMENTS:

*/
% =========

snaptimetable(+Timetable,+File)
Timetable, list of nodereps
File, file name
Succeeds after producing a layout of Timetable in the file File

snaptimetable(Timetable,File) :-
tell(File),
showtimetable(Timetable),
told.

newtimetable.pi Wed Jul 26 15:37:45 1989

PREDICATE: snaptimetable(+File)
ARGUMENTS: Timetable, list of nodereps

File, file name
COMMENTS: Succeeds after producing a layout of Timetable in the file File
*/

snaptimetable(File) :-
timetable(Timetable),
tell (File),
showtimetable(Timetable),
told.

/*
PREDICATE: snapshottimetables(+File)
ARGUMENTS: File, file name
COMMENTS: Succeeds after producing a layout of all "historical" Timetables

in the file File
*/

snapshottimetables(File) :-
history(History),
tell(File),
write('TIMETABLES HISTORY'),
nl,
nl,
explainhistory,
recsnaphisttimetable(History),
told.

/*
PREDICATE: recsnaphisttimetable(+History)
ARGUMENTS: History, list
COMMENTS: Succeeds after writing the corresponding timetable for each Event

in History

recsnaphisttimetable([]).

recsnaphisttimetable([H|T]) :-
H = [Action,Node|_],
nl,
write (H),
nl,
nl,
historyTimetable(Action,Node,Timetable),
shtimetable(Timetable),
nl,
recsnaphisttimetable(T).

/*
PREDICATE: daystimetables(+Days,+Soonhour,+Timetable,?Timetables)
ARGUMENTS: Days, list of days representations

Soonhour, integer
Timetable, list of noderep
Timetables, list of lists of noderep

COMMENTS: Succeeds after instantiating Timetables to the list of
timetables for each different day (useful for 'showtimetable')

*/

daystimetables([HDays|TDays],Soonhour,Timetable,[Before|TTimetables]) :-
lookfor(Timetable,HDays,Soonhour,Before,_,After,_),
daystimetables(TDays,Soonhour,After,TTimetables).

daystimetables([],_, Timetable,[Timetable]).

/*
PREDICATE: writetimetable(+DH,+Timetables,+Any,+PastDayshours,?NT,?Next)
ARGUMENTS: DH, list of [Day,Hour]

Timetables, list of lists of noderep
Any, list of O's and l's
PastDayshours, list of [Day,Hour]
NT, list of noderep
Next, list of noderep

COMMENTS: This is a 'clever and tricky' predicate that succeeds after
producing the timetable layout. The way it works is looking
at the same HOUR for every day, 'again and again' until no
more lectures at this HOUR are left, before attempting the
following. Hints:
- Any holds 1 for any lecture found at a particular day (same HOUR)
in the 'round before', 0 for non-found lectures. At the end of
the days (Timetables = []), We test if Any has a 1 (then, we
continue with the same HOUR: new round), with the 'next'
timetables. Otherwise, we jump to the following hour.

- PastDayshours keeps [Day,Hour] of the previous round, in order
to recover it, in case of attempting same HOUR again.

- The 'next' timetables information is recorded in 'NT', and
passed to 'Next', when Any is empty again (new line, new round).

- 'Next' is then, passed recursively as the new 'Timetables'
information

*/

writetimetable([[Day,Hour]|TDH],[HTime|TTime],Any,PastDayshours,NT,Next) :-
NT = [NHTime|NTTime],
maxchar (subject,MCS),
maxchar(room,MCR),
((Any = [],
writeright(Hour,2),
writeCI'),
Next = NT)

(true)
),
((HTime = [[_,Subject,Day,Hour,Room]|THTime],

i
• t

NHTime - THTime,
writeright(Subject,MCS),
write(' '),
writeright(Room,MCR),
write ('I'),
Any 2 = [l|Any])

(NHTime = HTime,
writeright(' ',MCS),
write(' '),
writeright(' ',MCR),

newtimetable.pl Wed Jul 26 15:37:45 1989
write (' |'),
Any2 = [0|Any])

),
writetimetable(TDH,TTime,Any2,[[Day,Hour]|PastDayshours],NTTime,Next).

writetimetable(TDH,[],Any,PastDayshours,[],Next)
nl,
((memberchk(1,Any),

i

reverse(PastDayshours,HDH),
cone(HDH,TDH,DH),
writetimetable(DH,Next,[],[]/_,_))

(writedash,
writetimetable(TDH,Next,[],[],_,_))

> .

writetimetable ([],_, [],[], [],[]).

% ===

/*
PREDICATE: writeheadings
ARGUMENTS: NONE

COMMENTS: Succeeds after writing the heading of the timetable layout
*/
% ===

writeheadings :-
writedash,
write (' I'),
days(Days),
writedays (Days),
nl,
writedash.

% ===

/*
PREDICATE: writedays(+Days)
ARGUMENTS: Days, list of days representations
COMMENTS: Succeeds after writing the days in a right format, in the heading

of the timetable layout
*/
% ===

writedays ([]).

writedays([HDays|TDays]) :-
maxchar(subject,MCS),
maxchar(room,MCR),
spaces(MCR,Spaceslist),
name(Spaces,Spaceslist),
write(Spaces),
writeright(HDays,MCS),
write (' |'),
writedays (TDays).

% ==

/*
PREDICATE: writedash
ARGUMENTS: NONE
COMMENTS: Succeeds after writing a dashes line, to appear in

*/
% ^

the timetable layout

writedash :-

write (),
write (),
nl.

% ===<

/*
PREDICATE: writeright(+X,+N)
ARGUMENTS: X, atom

N, integer
COMMENTS: Succeeds after writing X with N characters (either truncating it

or ading blanks) .

*/
% ===

writeright(X,N) :-
name (X, List),
formatword(List,N,Formlist),
name(Y,Formlist),
write(Y).

/*
PREDICATE: formatword (+List,+N,?Formlist)
ARGUMENTS: List, list

N, integer
Formlist, list

COMMENTS: Succeeds after instantiating Formlist to the list representing
List 'name' with N positions, in the sense expressed in
'writeright'

*/
% ==

formatword(List,N,Formlist) :-
length(List,L),
Dif is N - L,
((Dif > 0,

t
• r

spaces(Dif,Spaces),
cone(List,Spaces,Formlist))

(pickup(List,N,Formlist))
) •

/*
PREDICATE: pickup(+List,+N,?Formlist)
ARGUMENTS: List, list

N, integer
Formlist, list

COMMENTS: Succeeds after instantiating Formlist to the list containing the
first N items in List

*/
% ==

pickup(_,0,[]) :-

newtimetable.pi Wed Jul 26 15:37:45 1989

pickup([H|List],N,[HIFormlist])
N1 is N - 1,
pickup(List,Nl,Formlist).

% **

% * *

% * GRAPHIC INTERFACE *

% * *

% **

% ==================== ;=================== : ===============================

/*
PREDICATE: template
ARGUMENTS: NONE
COMMENTS: Succeeds after creating the initial windows, images and menus

that will be used in the "user-interface", and starting the
session

*/
% ==

template :-

makeimage(414,900,Image),
readimagebinary(Image,'paint.lmg'),
makewindow('MENUS',0,750,394,900,Menuwindow),
copy(Menuwindow,0,0,414,900,set,Image,260,10),
asserta(idwindow(menu,Menuwindow)),
days(Days),
hours(Hours),
atomize(Hours,Atomhours),
makemenu(['yes/no:',yes,no),Yesnomenu),
asserta(idmenu(yesno,Yesnomenu)),
makemenu(['day:'|Days],Daysmenu),
asserta(idmenu(days,Daysmenu)),
makemenu(['hour:'|Atomhours],Hoursmenu),
asserta(idmenu(hours,Hoursmenu)),
makemenu(['main options:','solve','show the timetable','user info',
'move lectures','add constraints','delete constraints','save','load',
'help','history options','debugging/tree options','exit'],Mainmenu),

asserta(idmenu(main,Mainmenu)),
makemenu(['add:',subject,bad,verybad,notpos,nonsimult,nonfollow,lectroom,
fix,subjlectures],Addmenu),
asserta(idmenu(add,Addmenu)),
makemenu(['delete:',subject,bad,verybad,notpos,nonsimult,nonfollow,lectroom],
Deletemenu),
asserta(idmenu(delete,Deletemenu)),
makemenu(['save:','only constraints','whole environment'],Savemenu),
asserta(idmenu(save,Savemenu)),
makemenu(['load:','only constraints','whole environment'],Loadmenu),
asserta(idmenu(load,Loadmenu)),
makemenu(['help:','main','move/add/delete','constraints','tree',

'history/info'],Helpmenu),
asserta(idmenu(help,Helpmenu)),
makemenu(['history:','show the history','snapshot of timetables history',
'see a particular timetable','meaning of a number'],Histmenu),
asserta(idmenu(hist,Histmenu)),
makemenu(['tree:',puttree,snapshot,display,down,up,top,solution],

Treemenu),
asserta(idmenu(tree,Treemenu)),
mainmenu.

% == :==================:

/*
PREDICATE: atomize(+NList, ?List)
ARGUMENTS: Nlist, list of numbers

List, list of atoms
COMMENTS: Succeeds after instantiating List to the list whose elements are

the atoms corresponding to numbers in Nlist (adding a space to
the left), as it is necessary in this menus utility

*/
% ===

atomize([],[]).

atomize([NH|NT],[AH|AT]) :-

name(NH,List),
name (AH, [32 | List]),
atomize(NT,AT).

% ===

/*
PREDICATE: mainmenu
ARGUMENTS: NONE
COMMENTS: Succeeds after setting the Main Menu, waiting for a correct

response and reacting as required.
*/

mainmenu :-

idwindow(menu,Menuwindow),
idmenu(main,Mainmenu),
repeat,
showmenu(Menuwindow,Mainmenu,N),
choosemainmenu(N),
N = 12,

% ==

/*
PREDICATE: putwindow(+X)
ARGUMENTS: X, string
COMMENTS: Succeeds after writing the string, formatted to 8 characters,

in a predefined position of the Menus Window
*/

putwindow(X) :-

idwindow(menu,Menuwindow),
name(X,List),
formatword(List,8,Formlist),
name(Y,Formlist),
drawtext(Menuwindow,12,22,set,Y).

% ================= ===================================

/*
PREDICATE: erase

ARGUMENTS: X, string
COMMENTS: Succeeds after writing seven dots and a blank,

in a predefined position of the Menus Window
*/
% ===

newtimetable.pi Wed Jul 26 15:37:45 1989

erasew(_)
idwindow(menu,Menuwindow),
drawtext(Menuwindow,12,22,set,' ').

% ==

/*
PREDICATE: choosemainmenu(?N)
ARGUMENTS: N, integer
COMMENTS: Succeeds after having reacted according to the selected option N.
*/
% ==

choosemainmenu(1) :-
notallowed (solve),
putwindow('WAIT'),
resolve,
erasew('WAIT'),

choosemainmenu(1) :-

\+ notallowed (solve),
putwindow('WAIT'),
solve,
erasew('WAIT'),
idmenu(main,Mainmenu),
setmenuitem(Mainmenu,1,resolve),

choosemainmenu(2) :-

showtimetable,

choosemainmenu(3) :-

user_info,

choosemainmenu(4) :-
move,

choosemainmenu(5) :-

add,

choosemainmenu(6) :-

delete,

choosemainmenu(7)
savemenu,

choosemainmenu(8) :-

((notallowed(solve),
i

write ('It is undesirable to load over the actual environment'),
nl,
write('If you need it, exit prolog, restart the system, and then, load'),
nl,
fail)

7

(true)

>,
loadmenu,

choosemainmenu(9) :-

helpmenu,

choosemainmenu(10) :-

historymenu,

choosemainmenu(11) :-
treemenu,
t

#

choosemainmenu(12)
putwindow('sure?'),
idwindow(menu,Menuwindow),
idmenu(yesno,Yesnomenu),
showmenu(Menuwindow,Yesnomenu,N),
erasew('sure?'),

i'-i.

% =========================

/*
PREDICATE: savemenu

ARGUMENTS: NONE
COMMENTS: Succeeds after setting the Save Menu, waiting for a correct

response and reacting as required.
*/
% ==

savemenu :-

idwindow(menu,Menuwindow),
idmenu(save,Savemenu),
repeat,
showmenu(Menuwindow,Savemenu,N),
choosesavemenu(N),

% ==

/*
PREDICATE: choosesavemenu(?N)
ARGUMENTS: N, integer
COMMENTS: Succeeds after having reacted according to the selected option N.
*/
% ========== ===

choosesavemenu(0).

choosesavemenu(1) :-
write ('filename: '),
read (Filename),
nl,
save_c(Filename).

choosesavemenu(2) :-

write('filename: '),
read(Filename),
nl,

newtimetable.pi Wed Jul 26 15:37:45 1989 43

save_s(Filename).

% ==

/*
PREDICATE: loadmenu
ARGUMENTS: NONE
COMMENTS: Succeeds after setting the Load Menu, waiting for a correct

response and reacting as required.
*/
% ==

loadmenu :-

idwindow(menu,Menuwindow),
idmenu(load,Loadmenu),
repeat,
showmenu(Menuwindow,Loadmenu,N),
chooseloadmenu(N),

% == =======

/*
PREDICATE: chooseloadmenu(?N)
ARGUMENTS: N, integer
COMMENTS: Succeeds after having reacted according to the selected option N.
*/
% ==

chooseloadmenu (0).

chooseloadmenu(1) :-
write('filename: '),
read(Filename),
nl,
load_c(Filename).

chooseloadmenu(2) :-

write('filename: '),
read(Filename),
nl,
load_s(Filename).

% ==

/*
PREDICATE: helpmenu
ARGUMENTS: NONE
COMMENTS: Succeeds after setting the Help Menu, waiting for a correct

response and reacting as required.
*/
% ==

helpmenu
idwindow(menu,Menuwindow),
idmenu(help,Helpmenu),
repeat,
showmenu(Menuwindow,Helpmenu,N),
choosehelpmenu(N),

%

/*

PREDICATE: choosehelpmenu(?N)
ARGUMENTS: N, integer
COMMENTS: Succeeds after having reacted according to the selected option N.
*/
% ======================== ================================ ============

choosehelpmenu (0).

choosehelpmenu(1) :-
help.

choosehelpmenu(2) :-

help_add_delete.

choosehelpmenu(3) :-

help_cons.

choosehelpmenu(4) :-

help_tree.

choosehelpmenu(5) :-

help_user.

% ======================== ==

/*
PREDICATE: historymenu
ARGUMENTS: NONE

COMMENTS: Succeeds after setting the History Menu, waiting for a correct
response and reacting as required.

*/
% ===

historymenu
((history(_),
!)

(write ('history will not begin until "solve"')/
fail)

)/
idwindow(menu,Menuwindow),
idmenu(hist,Historymenu),
repeat,
showmenu(Menuwindow,Historymenu,N),
choosehistorymenu(N),

% ==

/*
PREDICATE: choosehistoryemenu(?N)
ARGUMENTS: N, integer
COMMENTS: Succeeds after having reacted according to the selected option N.
*/
% == =======================

choosehistorymenu(0).

choosehistorymenu(1) :-
history_info.

choosehistorymenu(2) :-
write('filename: '),
read (File),

nevrtimetable .pi Wed Jul 26 15:37:45 1989 44

nl,
snapshottimetables(File).

choosehistorymenu(3)
write('identifier node: '),
read (Solnode),
nl,
showtimetable(Solnode).

choosehistorymenu(4)
write('assumption or node number: '),
read(Number),
nl,
number_info(Number).

% ==

/*
PREDICATE: treemenu

ARGUMENTS: NONE
COMMENTS: Succeeds after setting the Tree Menu, waiting for a correct

response and reacting as required.
*/
% ==:

treemenu :-

((tree (_),
!)

(write ('there is no tree yet'),
fail)

>,
idwindow(menu,Menuwindow),
idmenu(tree,Treemenu),
repeat,
showmenu(Menuwindow,Treemenu,N),
choosetreemenu(N),

% ==

/*
PREDICATE: choosetreemenu(?N)
ARGUMENTS: N, integer
COMMENTS: Succeeds after having reacted according to the selected option N.
*/
% ==

choosetreemenu(0).

choosetreemenu(1) :-

write('identifier node: '),
read(Solnode),
nl,
puttree(Solnode).

choosetreemenu(2) :-

write('filename: '),
read (File),
nl,
snapshot(File).

choosetreemenu(3) :-

display.

choosetreemenu(4) :-
write ('identifier child node: '),
read(Node),
nl,
down(Node).

choosetreemenu(5) :-

up.

choosetreemenu(6) :-

top.

choosetreemenu(7) :-
solution.

% ================================== «============================:

/*
PREDICATE: subjectsmenu(+Menuwindow,?Subject)
ARGUMENTS: Menuwindow, id atom

Subject, subject representation
COMMENTS: Succeeds after setting the actual Subjects Menu on Menuwindow

window, waiting for a correct response and selecting Subject
according to it

*/
% ===================================== ===============================

subjectsmenu(Menuwindow,Subject) :-
subjects(Subjects),
dbmenu(subjects,Subjects,Subjectsmenu),
showmenu(Menuwindow,Subjectsmenu,N),
item(Subjects,N,Subject).

% ====================== ==

/*
PREDICATE: reordersubjectsmenu(+Menuwindow,+Subjects,?N)
ARGUMENTS: Menuwindow, id atom

Subjects, list of subjects
COMMENTS: Succeeds after setting the Subjects Menu on Menuwindow

window, waiting for a correct response and setting N to the
corresponding number

*/
% ==

reordersubjectsmenu(Menuwindow,Subjects,N) :-
dbmenu(subjects,Subjects,Subjectsmenu),
showmenu(Menuwindow,Subjectsmenu,N).

% ===

/*
PREDICATE: dbmenu(+Title,+Opt,?Id)
ARGUMENTS: Title, atom

Opt, list of atoms
Id, id atom

COMMENTS: Succeeds after setting Id to the corresponding menu identifier
for [Title|Opt] menu, if one exists; a new created one, otherwise

*/
% ================================= ======= =======

dbmenu(X,Y,Z) :-
idmenu(X,Y,Z),

newtimetable.pi Wed Jul 26 15:37:45 1989 45

dbmenu(X,Y, Z)
makemenu([X | Y], Z),
asserta(idmenu(X,Y,Z)).

% ======================== :=================:

/*
PREDICATE: lectroomsmenu(+Menuwindow,+Subject,?Room)
ARGUMENTS: Menuwindow, id atom

Subject, subject representation
Room, room representation

COMMENTS: Succeeds after setting the Rooms Menu corresponding to Subject on
Menuwindow window, waiting for a correct response and selecting Room
according to it

*/
% === ========== ====

lectroomsmenu(Menuwindow,Subject,Room) :-
lectrooms(Subject,Rooms),
dbmenu(rooms,Rooms,Lectroomsmenu),
showmenu(Menuwindow,Lectroomsmenu,N),
item(Rooms,N,Room).

% ==

/*
PREDICATE: daysmenu(+Menuwindow,?Day)
ARGUMENTS: Menuwindow, id atom

Day, subject representation
COMMENTS: Succeeds after setting the Days Menu on Menuwindow

window, waiting for a correct response and selecting Day
according to it

*/
% ==

daysmenu(Menuwindow,Day) :-
days(Days),
idmenu(days,Daysmenu),
showmenu(Menuwindow,Daysmenu,N),
item(Days,N,Day).

% ===

/*
PREDICATE: hoursmenu(+Menuwindow,?Hour)
ARGUMENTS: Menuwindow, id atom

Hour, subject representation
COMMENTS: Succeeds after setting the Hours Menu on Menuwindow

window, waiting for a correct response and selecting Hour
according to it

*/
% ================================= ======—======================

hoursmenu(Menuwindow,Hour)
hours(Hours),
idmenu(hours,Hoursmenu),
showmenu(Menuwindow,Hoursmenu,N),
item(Hours,N,Hour).

/*

PREDICATE: delete
ARGUMENTS: NONE
COMMENTS: Succeeds after producing a template in order to delete constraints

from the environment, and performing such deletions, if no
serious inconsistency is found

*/
% ===

delete :-

((subjects ([]),
i
• /

write('no subjects'),
nl,
fail)

(true)
>,
idwindow(menu,Menuwindow),
idmenu(delete,Deletemenu),
repeat,
write('please, enter consistent data.'),
nl,
nl,
showmenu(Menuwindow,Deletemenu,Num),
((Num = 1,
Opt = subject,
subjectsmenu(Menuwindow,Subject),
Lastaction = [Subject])

(Num = 2,
Opt = bad,
subjectsmenu(Menuwindow,Subject),
daysmenu(Menuwindow,Day),
hoursmenu(Menuwindow,Hour),
bad(Subject,[Day,Hour]),
Lastaction = [Subject,Day,Hour])

r

(Num = 3,
Opt = bad,
subjectsmenu(Menuwindow,Subject),
daysmenu(Menuwindow,Day),
hoursmenu(Menuwindow, Hour),
verybad(Subject,[Day,Hour]),
Lastaction = [Subject,Day,Hour])

(Num = 4,
Opt = notpos,
subjectsmenu(Menuwindow,Subject),
daysmenu(Menuwindow,Day),
hoursmenu(Menuwindow,Hour),
notpos(Subject,[Day,Hour],As),
Lastaction = [Subject,Day,Hour,As])

(Num = 5,
Opt = nonsimult,
putwindow('First '),
subjectsmenu(Menuwindow,Subjectl) ,
putwindow ('Second '),
subjectsmenu(Menuwindow,Subject2),
erasew('Second '),
((nonsimult (Subjectl,Subject2,As),

t
• t

Lastaction = [Subjectl,Subject2,As])

newtimetable.pi Wed Jul 26 15:37:45 1989 46

(nonsimult(Subject2,Subjectl,As),
t
• /

Lastaction = [Subject2,Subjectl,As])

'(fail)
)

)

(Num = 6,
Opt = nonfollow,
putwindow('First '),
subjectsmenu(Menuwindow,Subjectl),
putwindow('Second '),
subjectsmenu(Menuwindow,Subject2),
erasew('Second '),
((nonfollow(Subjectl,Subject2,As),

t
• r

Lastaction = [Subjectl,Subject2,As])

(nonfollow(Subject2,Subjectl,As),
t
• f

Lastaction = [Subject2,Subjectl,As])
'

(fail)
)

)

(Num = 7,
Opt = lectroom,
subjectsmenu(Menuwindow,Subject),
lectroomsmenu(Menuwindow,Subject,Room),
lectroom(Subject,Room,As),
Lastaction = [Subject,Room,As])

(Num = 0)
),
t
• t

Num > 0,
delete(Opt,Lastaction,Changefail),
newsolnode([delete,Opt|Lastaction],Changefail) .

testnew(N)
constraintnumber(N),
»
• r

write (N),
write (' is the number of an existing constraint'),
nl,
fail.

testnew(N)
deleted(N),
!,
write(N),
write (' is the number of an old constraint. You cannot use it'),
nl,
fail.

testnew(N)
assumptnumber(N),
i

write (N),
write (' is the number of an existing assumption'),
nl,

fail.

testnew(N)
nodenumber(N),
i
• /

write(N),
write(' is the number of an existing node'),
nl,
fail.

testnew(N)
treenodenumber(N),
!
• r

write (N),
write (' is the number of an existing tree node'),
nl,
fail.

testnew(_) .

% ==

/*
PREDICATE: add
ARGUMENTS: NONE
COMMENTS: Succeeds after producing a template in order to add constraints

to the environment, and performing such aditions, if no
serious inconsistency is found

*/

add :-

idwindow(menu,Menuwindow),
idmenu(add,Addmenu),
repeat,
write('please, enter consistent data.'),
nl,
nl,
showmenu (Menuwindow, Addmenu,Num),
((Num = 1,
Opt = subject,
write('subject: '),
read(Subject),
nl,
subjects(Subjects),
((memberchk(Subject,Subjects),

• t

write('That subject was already in the database'),
nl,
fail)

(true)
),
Lastaction = [Subject])

(Num = 2,
Opt = bad,
((subjects([]),

write('no subjects'),
nl,
fail)

(true)

newtimetable.pi Wed Jul 26 15:37:45 1989 47

>,
subjectsmenu(Menuwindow,Subject),
daysmenu(Menuwindow,Day),
hoursmenu(Menuwindow,Hour),
((bad(Subject,[Day,Hour)),

J

write('That fact was already in the database'),
nl,
fail)

(true)
>,
Lastaction = [Subject,Day,Hour])

(Num = 3,
Opt = verybad,
((subjects ([]),

i
• r

write ('no subjects'),
nl,
fail)

(true)
>,
subjectsmenu(Menuwindow, Subject),
daysmenu(Menuwindow,Day),
hoursmenu(Menuwindow, Hour),
((verybad(Subject,[Day, Hour)),

• t

write ('That fact was already in the database'),
nl,
fail)

(true)
),
Lastaction = [Subject,Day,Hour])

(Num = 4,
Opt = notpos,
((subjects ([]),

i
• r

write ('no subjects'),
nl,
fail)

(true)
>,
subjectsmenu (Menuwindow,Subject),
daysmenu(Menuwindow,Day),
hoursmenu (Menuwindow,Hour),
newconsnumber(LastAs),
t
• r

As is LastAs + 1,
((notpos(Subject,[Day,Hour],As2),

t
• r

write('That constraint is already in the database, with number '),
write(As2),
nl,
fail)

(asserta(newconsnumber(As)))
>,
Lastaction = [Subject,Day,Hour,As])

(Num = 5,
Opt = nonsimult,
((subjects ([]),

t
• r

write('no subjects'),
nl,
fail)

(true)
>,
putwindow('First '),
subjectsmenu(Menuwindow,Subjectl),
putwindow('Second '),
subjectsmenu(Menuwindow,Subject2),
erasew('Second '),
newconsnumber(LastAs),
T
• f

As is LastAs + 1,
((nonsimultaneous(Subjectl,Subject2,As2),

i
• t

write('That constraint is already in the database, with number '),
write(As2),
nl,
fail)

(asserta(newconsnumber(As)))
>,
Lastaction = [Subjectl,Subject2,As])

(Num = 6,
Opt = nonfollow,
((subjects ([]),

t
• r

write ('no subjects'),
nl,
fail)

(true)
>,
putwindow('First '),
subjectsmenu(Menuwindow,Subjectl),
putwindow('Second '),
subjectsmenu(Menuwindow,Subject2),
erasew('Second '),
newconsnumber(LastAs),
t
• r

As is LastAs + 1,
((nonfollowing(Subjectl,Subject2,As2) ,

T
• t

write('That constraint is already in the database, with number '),
write(As2),
nl,
fail)

(asserta(newconsnumber(As)))
>,
Lastaction = [Subjectl,Subject2,As])

(Num = 7,
Opt = lectroom,
((subjects([]),

• r

write('no subjects'),
nl.

newtimetable.pl Wed Jul 26 15:37:45 1989 48

fall)

(true)
>,
subjectsmenu (Menuwlndow,Subject),
write ('Room: '),
read(Room),
nl,
newconsnumber(LastAs),
I
• r

As is LastAs + 1,
((testroom(Subject,Room),
write ('this room was already in the database'),
nl,
fail)

(asserta(newconsnumber(As)))
),
Lastaction = [Subject,Room,As])

r

(Num = 8,
Opt = fix,
((notallowed (solve),
•)

(write('option available only after "solve". Save the constraints'),
nl,
write('in a file, and modify it, if you need this option just now'),
nl,
fail)

),
subjectsmenu(Menuwindow,Subject),
Lastaction - [Subject])

(Num = 9,
Opt = subjlectures,
((notallowed (solve),
!)

(write ('option available only after "solve". Save the constraints'),
nl,
write('in a file, and modify it, if you need this option just now'),
nl,
fail)

),
subjectsmenu(Menuwindow,Subject),
write('Number of lectures: '),
read (N) ,

nl,
integer (N),
N >= 0,
((subjlectures(Subject, N),

I
• r

write('That fact is already in the database'),
nl,
fail)

(true)
>,
Lastaction = [Subject,N])

(Num = 0)

Num > 0,
add(Opt,Lastaction,Changefail),
((sol (_),
retract(sol(_)))

r

(true)
>,
newsolnode([add,Opt|Lastaction],Changefail) .

% ==

/*
PREDICATE: move

ARGUMENTS: NONE
COMMENTS: Succeeds after producing a template in order to move lectures

in the timetable, and performing such changes, if no
serious inconsistency is found

*/
% ========= ===:=============== :

move :-

timetable([]),
• /

write ('there is nothing to move'),
nl.

move :-

idwindow(menu,Menuwindow),
repeat,
write('please, enter consistent data.'),
nl,
nl,
subjectsmenu(Menuwindow,Subject),
putwindow('FROM '),
daysmenu(Menuwindow,Day),
hoursmenu(Menuwindow, Hour),
lectroomsmenu(Menuwindow,Subject,Room),
putwindow('TO '),
daysmenu(Menuwindow,Day2),
hoursmenu(Menuwindow,Hour2),
lectroomsmenu(Menuwindow,Subject,Room2),
erasew('TO '),
Lastaction = [Subject,Day,Hour,Room,Day2,Hour2,Room2],
timetable(Timetable),
memberchk([_, Subject,Day,Hour,Room],Timetable),
((Day = Day2,
Hour = Hour2,
i
• /

((Room = Room2,
write ('THERE is NO CHANGE'),
nl,
i
f

fail)

(true) % change of room, same time, always allowed
)

)

(fix (Subject,_,_),
j
write ('FIXED LECTURE'),
nl,
fail)

newtimetable.pi Wed Jul 26 15:37:45 1989

(true)
),
t
• t

move(Lastaction,Changefail),
newsolnode([move|Lastaction],Changefail).

% ===

/*
PREDICATE: newsolnode(+Lastaction)
ARGUMENTS: Lastaction, list of information
COMMENTS: Succeeds after updating the environment, when a change (move, add

or delete) has been introduced by the user:
- Creating a node to hold the new timetable state
- introducing the change in the 'history', to be seen later
- Looking at the state of the problem (solved or not) according
to 'tracks' and ATMS information, and asserting it.

*/
% ===

newsolnode(_,_) :-
timetable([]),

newsolnode(Lastaction,ChangeFail) :-
timetable(Timetable),
dbtreenode(TreeNode),
extract(Timetable,Nodelist),
putjustification(TreeNode,Nodelist),
retract(solnode(_)),
asserta(solnode(TreeNode)),
((ChangeFail = yes,

i
• t

unsolved(BadAs))

(Lastaction = [_,lectrooml_],
t
• r

unsolved(BadAs))

(Lastaction = [delete,bad I_),
!
• t

unsolved(BadAs))
t

(Lastaction = [delete,verybadI_],
I

unsolved(BadAs))

(unsolved([]),
Lastaction = [delete |__],
i
• /

BadAs = [])
r

(findinconsist(BadAs),
retract(unsolved(_)),
asserta(unsolved(BadAs)),
retract (tracks (_)),
setof2(X,findtracks(BadAs,X),Tracks),
asserta(tracks(Tracks)))

>,
history (List),
conc(List,[[change,TreeNode,Lastaction,ChangeFail,BadAs]],Newlist),
retract(history(List)),
asserta(history(Newlist)),
asserta(historyTimetable(change,TreeNode,Timetable)),

showtimetable,
user info.

% ========

/*
PREDICATE:

ARGUMENTS:

COMMENTS:

readtimes(+N,+Subject,+Timetable,+Nodedblist,
?DH,?NewTimetable,?NewNodedblist)

N,
Subject,
Timetable,
Nodedblist,
DH,
NewTimetable,
NewNodedblist,

integer
subject
list of
list
list
list
list

of
of

representation
nodereps
nodereps
[Day,Hour]

of nodereps
of nodereps

Succeeds after getting N days, hours and rooms from
the user and instantiating them to DH, and updating Newtimetable
and NewNodedblist according to the new lectures generated.
Eventual inconsistencies are sent to ATMS

readtimes(0,_,Timetable, Nodedblist,[],Timetable,Nodedblist).

readtimes(N,Subject,Timetable,Nodedblist,
[[Day,Hour]|DH],Newtimetable,Newnodedblist) :-

idwindow(menu,Menuwindow),
N > 0,
N1 is N - 1,
readtimes(Nl,Subject,Timetable,Nodedblist,

DH,Midtimetable,Midnodedblist),
atomize([N],[M]),
putwindow(M),
repeat,
daysmenu(Menuwindow,Day),
hoursmenu(Menuwindow,Hour),
Nodedb = [Node,Subject,Day,Hour],
db(Nodedb,Node),
dbass (Nodedb),
((notpos(Subject,[Day,Hour],As),
put justification(0,[Node,As]))

(true)
),
((notpos(all,[Day,Hour],As2),
put justification(0,[Node,As2]))

(true)
),
Nodedb2 = [Node2, Subject, Day, Hour,Room],
((memberchk([Day,Hour],DH),
write('same lecture, same time. Try again'),
nl,
fail)

(memberchk(Nodedb2,Timetable),
write('same lecture, same time. Try again'),
nl,
fail)

(lectroomsmenu(Menuwindow, Subject,Room))
),
lookfor(Midtimetable, Day, Hour,Before,Then,After,Sides),
recsubtest(Nodedb,Then,Sides, , , ,),

newtimetable.pi Wed Jul 26 15:37:45 1989 50

db (Nodedb2,Node2),
dbnode(Nodedb2),
Newnodedblist = [Nodedb2IMidnodedblist],
cone([Nodedb2|Then],After,Afterl),
cone(Before,Afterl,Newtimetable) ,

erasew (_).

% ===

/*
PREDICATE: readlist (+N,?DH,?Aslist)
ARGUMENTS: N, integer

DH, list of [Day,Hour]
Aslist, list of As, Assumption numbers

COMMENTS: Succeeds after getting N days, hours from
the user and new Assumption numbers from the database system, and
instantiating them to DH and Aslist, as required.

*/
% ===

readlist (0,[],[]).

readlist(N,[[Day,Hour]|DH],[As|Aslist]) :-
idwindow(menu,Menuwindow),
N > 0,
N1 is N - 1,
readlist(N1,DH,Aslist),
atomize([N],[M]),
putwindow(M),
repeat,
daysmenu(Menuwindow,Day),
hoursmenu(Menuwindow,Hour),
((memberchk([Day,Hour],DH),
write('same lecture, same time. Try again'),
nl,
fail)

r

(true)
),
newconsnumber(LastAs),
;

As is LastAs + 1,
asserta(newconsnumber(As)),
altconstraint(As),
erasew(_).

altconstraint(As) :-

notallowed(solve),
i
• t

putconstraint(As).

altconstraint(_).

% == =====================

/*
PREDICATE: readrooms (+N,+Subject,?Rooms)
ARGUMENTS: N, integer

Subject, subject representation
Rooms, list of rooms

COMMENTS: Succeeds after getting N 'Room's and 'As's, assumption numbers from
the user and asserting lectroom(Subject,Room,As), according to
the input data

*/
% ^

readrooms (0,_,[]) .

readrooms(N,Subject,[Room|Rooms]) :-
N > 0,
Nl is N - 1,
nl,
write ('Room: '),
read(Room),
nl,
repeat,
newconsnumber(LastAs),
j
As is LastAs + 1,
asserta(newconsnumber(As)),
altconstraint(As),
asserta(lectroom(Subject,Room,As)),
readrooms(Nl,Subject,Rooms).

% ===

/*
PREDICATE: reorder(+Subject,+Subjects,?OrdSubjects)
ARGUMENTS: Subject, subject representation

Subjects, list of subjects representation
OrdSubjects, list of subjects representation

COMMENTS: Succeeds after instantiating OrdSubjects to the list with the
same elements as Subjects, PLUS Subject, in the specified order

*/
% ===

reorder(Subject,Subjects,OrdSubjects) :-
write('Remember that FIXED Subjects MUST BE FIRST'),
nl,
write('Which is the Subject that you want to precede '),
write(Subject),
write ('?'),
nl,
write('If First, Press the mouse out of the Menu'),
nl,
putwindow ('Previous'),
idwindow(menu,Menuwindow),
reordersubjectsmenu(Menuwindow,Subjects,N),
erasew('Previous'),
reorderaux(Subject,Subjects,N,OrdSubjects).

% ========

/*
PREDICATE:

ARGUMENTS:

COMMENTS:

*/
% =

reorderaux(+Subject,+Subjects,+N,?OrdSubjects)
Subject, subject representation
Subjects, list of subjects representation
N, integer
OrdSubjects, list of subjects representation
Succeeds after instantiating OrdSubjects to the list with the
same elements as Subjects, PLUS Subject after the Nth position

reorderaux (Subject,Subjects,0, [Subject|Subjects]) :-

newtimetable.pi Wed Jul 26 15:37:45 1989 51

reorderaux(Subject,[H|T],N,[H|OT])
N1 is N - 1,
reorderaux(Subject,T,N1,OT).

% =====================================:

/*
PREDICATE: testday(+Day)
ARGUMENTS: Day, days representation
COMMENTS: Succeeds if input data Day is correct
*/
% ==

testday(Day) :-
days(Days),
memberchk(Day,Days).

% ==

/*
PREDICATE: testhour(+Hour)
ARGUMENTS: Hour, hour representation
COMMENTS: Succeeds if input data Hour is correct
*/

testhour(Hour)
hours (Hours),
memberchk(Hour,Hours).

/*
PREDICATE: testsubject(+Subject)
ARGUMENTS: Subject, subject representation
COMMENTS: Succeeds if input data Subject is correct
*/
% ==

testsubject(Subject) :-
subjects(Subjects),
memberchk(Subject,Subjects).

% ===

/*
PREDICATE: testroom(+Subject,+Room)
ARGUMENTS: Subject, subject representation

Room, room representation
COMMENTS: Succeeds if any 'lectroom(Subject,Room,_)' exists
*/
% ===

testroom(Subject,Room) :-

lectroom(Subject, Room,_) .

Appendix E

Constraints Files: realconstraints.pl

This appendix contains the file where the real constraints for the timetable,

according to the "MSc in Information Technology" course information. This
serves as a sample of a "constraints file" and as a layout of how the system saves

the "actual constraints" in a file (except for comments with '*/' and of
course). The same layout, but including more predicates would be the one for a

"whole environment" file.

The listing starts in next page, in a format of two pages in one, with page

numbers starting with 1.

79

defaults.pl Mon Jul 3 22:29:47 1989

/*
File: defauits.pl
Author: Luis Montero, MSc Student (lmg@forth, lmg@aipna)
Purpose: defaults for the Timetable Design Support System using ATMS.
*/

days([mon,tue,wed, thu,fri]).

hours([9,10,11,12,13,14,15,16]).

optdifdays (3).

maxassumptnumber (4096) .

firsttreenode(10000).

firstnode (20000) .

firstas (30000) .

newconsnumber(40000).

nonsharedrooms (40000).

nobacktrack.

realconstraints.pl Fri Jun 30 21:50:43 1989

/*
File: realconstraints.pl
Author: Luis Montero, MSc Student (lmg@forth, lmg@aipna)
Purpose: Constraints for the Timetable Design Support System using ATMS.
*/

subjects([databas,cadvlsi,remsens,fsem2,robsens,imdata, spc, behav, cling2,
prolog,kri2,speech2,nig,matreas,assemb,compcom]).

subjlectures(prolog,2).

subjlectures(kri2,3).

subjlectures(speech2,2).

subjlectures (nig,3).

subjlectures(matreas,3).

subjlectures(assemb,3).

subjlectures(compcom,2).

nonsimult(prolog,kri2, 900) .

nonsimult(prolog,nig,901).

nonsimult(kri2,nig,902).

nonsimult(prolog,matreas,903).

nonsimult(kri2,matreas,904).

nonsimult(nig,matreas, 905) .

nonsimult(prolog,fsem2,906).

nonsimult(kri2,fsem2,907).

nonsimult(nig,fsem2,908).

nonsimult(kri2,cling2,909).

nonsimult(fsem2,cling2,910).

nonsimult(prolog,spc,911).

nonsimult(kri2,spc,912).

nonsimult(nig,spc,913).

nonsimult(prolog,assemb,914).

nonsimult(prolog,robsens,915).

nonsimult(assemb,robsens,916).

nonsimult(prolog,databas,917).

nonsimult(assemb,databas,918).

nonsimult(robsens,databas, 919)

nonsimult(kri2,databas,920).

nonsimult(nig,databas,921).

nonsimult(matreas, spc, 922).

nonsimult(matreas,cling2,923).

nonsimult(kri2,assemb,924).

nonsimult(assemb,spc,925).

nonsimult(kri2,robsens,926).

nonsimult(prolog,speech2,927).

nonsimult(kri2,speech2,928).

nonsimult(fsem2, speech2, 929) .

nonsimult(kri2,compcom,930).

nonsimult(cling2,compcom,931).

nonsimult(cling2,databas,932).

nonsimult(databas,compcom,933)

nonsimult(compcom,cadvlsi,934)

nonsimult(compcom,remsens, 935)

nonsimult(compcom,robsens, 936)

nonsimult(compcom,imdata,937).

nonsimult(compcom,spc, 938).

nonsimult(compcom,behav,939).

nonfollow(prolog,spc, 811).

nonfollow(kri2,spc,812).

nonfollow(nig,spc,813).

nonfollow(prolog,robsens,815).

nonfollow(assemb,robsens,816).

nonfollow(prolog,databas,817)

nonfollow(assemb,databas, 818)

nonfollow(kri2,databas,820).

nonfollow(nig,databas,821).

nonfollow(matreas,spc,822).

realconstraints.pi
nonfollow(assemb,spc,825).

nonfollow(kri2,robsens,826).

nonfollow(kri2,compcom,830).

nonfollow (cling2,compcom,831).

nonfollow(cling2,databas,832).

nonfollow(cling2,compcom,833).

lectroom(prolog,atlt2,201).

lectroom(kri2,atlt2,211).

lectroom(speech2,afb8,261).

lectroom(nig,sbf10,221).

lectroom(matreas,sbf10,231) .

lectroom (matreas,sbfl2,232).

lectroom(assemb,sbflO, 241) .

lectroom(compcom,kbltb, 251) .

lectroom(compcom,kb3212, 252) .

lectroom(databas,kb3218,101).

lectroom(cadvlsi,kb3214, 111) .

lectroom(spc,kbltb,121) .

lectroom (behav,kb3315,131) .

lectroom (robsens,todd, 141) .

lectroom(imdata,royobs,151) .

lectroom(fsem2,cognsci, 161) .

lectroom(cling2,cognsci, 171) .

lectroom(remsens,meteor, 181) .

fix(databas,[mon,9],301) .

fix(databas,[tue,12],302) .

fix(databas,[thu,10],303).

fix(cadvlsi,[mon,10],311).

fix(cadvlsi,[mon,11],312).

fix(remsens,[mon,12],381).

fix(imdata,[mon,14], 351) .

i Jun 30 21:50:43 1989

fix(imdata,[tue,11],352).

fix(imdata,[thu,11],353).

fix(imdata,[fri,14], 354).

fix(fsem2,[mon,14],361).

fix(fsem2,[mon,15],362).

fix(robsens,[tue,9],341).

fix(robsens,[tue,10],342).

fix(spc,[tue,14],321).

fix(spc,[thu,14],322).

fix(behav,[wed,10],331).

fix(cling2,[fri,11], 371).

fix(cling2,[fri, 12], 372) .

bad(all,[mon,9]).

bad(all,[tue,9]).

bad(all,[wed,9]).

bad(all,[thu,9]).

bad(all,[fri,9]).

bad(all,[wed,14]).

bad(all,[wed,15]).

bad(all,[wed,16]).

bad(all,[fri,14]).

bad(all,[fri,15]).

bad(all,[fri,16]).

notpos(all,[mon,13],1001).

notpos(all,[tue,13],1002).

notpos(all,[wed,13],1003).

notpos(all,[thu,13],1004).

notpos(all,[fri,13],1005).

% DAVE REASONS :

notpos(prolog,[mon,14],1101).

notpos(prolog,[mon,15],1102).

realconstraints.pi Fri Jun 30 21:50:43 1989

notpos(prolog,[tue,9],1103).

notpos(prolog,[thu,9],1104).

notpos(prolog,[thu,15),1105).

notpos(prolog,[fri,9],1106).

notpos(prolog,[fri,14],1107).

% ATLT2 REASONS:

notpos(prolog,[mon,9],1108).

notpos(prolog,[mon,10],1109).

notpos(prolog,[mon,11],1110).

notpos(prolog,[mon,12],1111).

notpos(prolog,[tue,10],1112).

notpos(prolog,[tue,11],1113).

notpos(prolog,[tue,12],1114).

bad(prolog,[tue,14]).

notpos(prolog,[wed,9],1115).

notpos (prolog, [wed,10],1116).

notpos(prolog,[wed,11],1117).

bad(prolog,[wed,14]).

bad(prolog,[wed,15]).

notpos(prolog,[thu,10],1118).

notpos(prolog,[thu,11],1119).

bad(prolog,[thu,12]).

bad(prolog,[thu,14]).

bad(prolog,[fri,10]).

notpos(prolog,[fri,11],1120),

notpos(prolog,[fri,12],1121).

notpos (prolog, [fri,14],1122).

notpos(prolog,[fri,15],1123).

% TIM REASONS:

notpos(kri2, [mon,14],1201) .

notpos (kri2, [mon, 15] ,1202) .

notpos(kri2

notpos(kri2

notpos (kri2

notpos(kri2

notpos(kri2

notpos (kri2

notpos(kri2

notpos(krl2

notpos(kri2

notpos (kri2

notpos (kri2

notpos(kri2

notpos(krl2

notpos(kri2

notpos(kri2

notpos(kri2

notpos (kri2

notpos (kri2

notpos(kri2

notpos(kri2

[mon,16],1203)

[tue,9],1204).

[tue,10] ,1205)

[tue,11] ,1206)

[tue,12] ,1207)

[wed,9],1208).

[wed,10] ,1209)

[wed,11],1210)

[wed,12],1211)

[wed,14],1212)

[wed,15],1213)

[wed,16],1214)

[thu,9],1215).

[thu, 10] ,1216)

[thu,11] ,1217)

[thu,12] ,1218)

[fri,9],1219).

[fri,10],1220)

[fri,11],1221)

[fri,12],1222)

% ATLT2 REASONS:

bad(kri2,[tue,14]).

bad(kri2,[thu,14]).

bad(kri2,[thu,15]).

notpos(kri2,[mon,9],1223).

notpos(kri2,[mon,10],1224)

notpos(kri2,[mon,11],1225)

notpos (kri2,[mon,12],1226)

notpos(kri2,[fri,14],1227)

notpos (kri2,[fri,15],1228)

realconstraints.pl Fri
% SPEECH

notpos(speech2,[mon,9],1301).

notpos(speech2,[mon,10],1302).

notpos(speech2,[mon,11],1303).

notpos(speech2,[mon,12], 1304).

notpos(speech2,[mon,14],1305).

notpos(speech2,[mon,15],1306).

notpos(speech2,[mon, 16], 1307) .

notpos(speech2,[tue,9],1308).

notpos(speech2,[tue,10],1309).

notpos(speech2,[tue,11],1310).

notpos(speech2,[tue,12],1311).

notpos(speech2,[tue,14],1312).

bad(speech2,[wed,9]).

bad (speech2,[wed,10]).

notpos(speech2,[wed,11], 1313).

notpos {speech2,[wed,12], 1314).

notpos(speech2,[wed,16], 1315).

notpos (speech2, [thu, 9] ,1316) .

notpos(speech2,[thu,10], 1317).

notpos (speech2,[thu, 11], 1318) .

notpos(speech2,[thu,12], 1319).

notpos (speech2,[thu,14], 1320).

notpos (speech2,[thu,15],1321).

notpos (speech2,[thu,16], 1322) .

notpos(speech2,[frl, 9] ,1323) .

notpos (speech2,[fri, 10], 1324) .

notpos(speech2,[fri, 11], 1325).

notpos(speech2,[fri, 12], 1326) .

notpos(speech2,[fri,14], 1327) .

notpos(speech2,[fri, 15], 1328) .

notpos (speech2,[fri, 16], 1329) .

Jun 30 21:50:43 1989

% NLG

notpos(nig,[tue,11],1401).

notpos (nig,[tue,12],1402).

notpos (nig,[fri,14],1403).

notpos (nig,[fri,15],1404).

notpos(nig,[fri,16],1405).

% MATREAS

bad(matreas,[tue,14]).

bad(matreas,[tue,15]).

bad(matreas,[wed,14]).

bad(matreas,[wed,15]).

bad(matreas, [fri, 14]).

bad(matreas,[fri,15]).

% ASSEMB

notpos(assemb,[tue,11],1601)

notpos(assemb,[tue,12],1602)

notpos(assemb,[tue,14], 1603)

j

Appendix F

Suntool File: .suntools

This appendix shows the content of the file '.suntools' neccessary to obtain the

layout seen in the "screendump"s, assuming the use of "small bold" characters.
The third line has been "cut" into two, as it is longer than 80 characters.

shelltool -Wp 0 72 -Ws 730 828 -WP 128 0

cmdtool -Wp 0 72 -Ws 750 828 -WP 64 0

cmdtool -Wp 0 0 -Ws 670 71 -WP 0 0 -W1 "« CONSOLE »"

-WL console -C

clock -Wp 497 32 -Ws 218 39 -WP 680 0 -Wi

80

