
Applicative Notions in ML-like
Programs

Budi Halim Ling

Master of Philosophy
Department of Computer Science

University of Edinburgh
1998

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429709874?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract
Pure functional languages are expressive tools for writing modular and reliable
code. State in programming languages is a useful tool for programming dynamic
systems. However, their combination yields programming languages that are
difficult to model and to reason about.

There have been ongoing attempts to find subsets of the whole languages which
have good properties; in particular subsets where the programs are more modular
and the side effects are controlled. The existing studies are: interference control,
typing with side-effects information, and linear logic based languages. This thesis
presents a new classification for a paradigm called constant program throughout
a computational invariant. A program is called constant throughout an invariant
R if its input-output behaviour is constant over any variations of state that satisfy
the invariant R. Hence such a program behaves in an applicative way when it is
executed in a context that satisfies the invariant R.

The language of discussion is a pure ML fragment augmented with ref, :=,
and !. Programs with side effects are modelled in terms of sets, functions, and the
side effect monad. Computational invariants are modelled in terms of transition
systems. The notion of being constant throughout an invariant requires the notion
of indistinguishability throughout an invariant and we define the latter using
logical relation technique. We give two definitions of each of them: the first
one can be used for reasoning about programs with flat stores adequately. The
second one is more sensitive to the behaviour of ref and gives a better account
of constant programs with dynamic allocations.

Our results are: indistinguishability throughout an invariant R is an equival-
ence relation over elements that are constant throughout R, and the notion of
being constant throughout an invariant is preserved under function application.
On the practical side we present some substantial ML examples which use refer-
ences and side effects but externally behave in a constant way, together with the
proofs that they are classified as being constant. These are evidences that our
notions are useful concepts in the practise of writing modular programs.

Acknowledgements
I am indebted to my first supervisor, Michael Fourman, for providing me with
valuable support and advise. He also encouraged me to study imperative aspects
of ML.

Thanks to my second supervisor, Stuart Anderson, for giving a lot of encour-
agement, particularly in the final phase of writing up.

Thanks to people in LFCS in general, particularly Stephen Gilmore, Stefan
Kahrs, John Longley, Dave Matthews, Alex Simpson, and Paul Steckler. They
are keen to answer my questions about ML and general technical issues.

Thanks to people who have helped me in understanding the issues in my
thesis; they are are: Andrzej Filinski, Guy McCusker, Peter O’Hearn, and Ian
Stark. Ian’s works on names significantly contribute to my understanding of local
references in ML. I got many inspirations from his works.

Thanks to fellow students in LFCS, particularly Juliusz Chroboczek, Ewen
Denney, Luis Dominguez, Masahito Hasegawa, Tim Heap, Alvaro Moreira, Nikos
Mylonakis, and Jitka Stribrna. It is a pleasure to chat with them.

Thanks to the the computer support and maintenance people.
The administrative people have helped me in one way or another in providing

information and administrative support. In particular I like to thank Margaret
Davis and Bill Orrok.

To people who influenced me in my undergraduate years: Wesley Phoa, for
encouraging me to come to Edinburgh to pursue a postgraduate study; Ken
Robinson, for introducing me to the theory of programming language; and Arun
Sharma, for teaching me recursion theory.

To Faraz Khan, Eira Williams, Anne Denniss, JanPieter Hoogma, and Jane
Schonveld for their positive influence to my life.

To my parents and my family for everything. And I pray for their safety in
Indonesia.

The first three years of the study was supported by the Overseas Research
Students Studentships and the Faculty of Science and Engineering Scholarships.

This thesis uses Paul Taylor’s diagram package.

Declaration
I declare that this thesis was composed by myself and that the work contained
therein is my own, except where explicitly stated otherwise in the text.

(Budi Halim Ling)

Table of Contents

Chapter 1 Introduction 4
1.1 Survey . 7

1.1.1 Syntactic control of interference 7
1.1.2 Effects system . 9
1.1.3 Linear Logic based type system 10
1.1.4 Single threaded lambda calculus 11

1.2 Aim . 12
1.3 Method . 13
1.4 Results . 13
1.5 Synopsis . 14

Chapter 2 Notion of being constant 16
2.1 Being constant in general . 16

2.1.1 Constant behaviour with respect to an observation 16
2.1.2 Constant behaviour throughout an interaction 18
2.1.3 Constant behaviour with a limited observation within an

interaction . 21
2.2 Being constant in computation . 21

2.2.1 Notion of observation in computation 21
2.2.2 Reachable sets . 23
2.2.3 Observing reference-type values 24
2.2.4 Observing reference-type computations 25
2.2.5 Observing int-type values and computations 27
2.2.6 Observing functions of ground types 28
2.2.7 Dynamic allocations . 28
2.2.8 Some examples . 30

Chapter 3 iML and operational semantics 33

3.1 iML . 33
3.1.1 Language . 33

1

3.1.2 Operational Semantics . 34
3.2 Operational characterisation . 37
3.3 Discussion and example . 38

Chapter 4 Semantics 41

4.1 A semantics for iML . 41
4.1.1 Issues in imperative functional languages 42
4.1.2 Preliminaries in giving semantics of ML-like languages . . 43
4.1.3 A denotational semantics for iML 45

4.2 Computational invariant . 52
4.3 Being constant throughout a transition system 57

4.3.1 Background . 57
4.3.2 Definition . 59
4.3.3 Examples . 61

4.4 Being constant within a transition system 64
4.4.1 Background . 64
4.4.2 Definition . 65
4.4.3 Example . 65
4.4.4 Discussion . 68

Chapter 5 Case study: Queue module 69
5.1 Background . 69
5.2 Modules in ML . 72

5.2.1 Signatures and structures 72
5.2.2 ref and optimising an applicative module 75

5.3 Queue Module . 76
5.3.1 Queue implementations . 76
5.3.2 Complexity analysis . 78
5.3.3 QueueOne equivalent to QueueTwo 79
5.3.4 Method for proving QueueOne equivalent to QueueThree . 84
5.3.5 Discussions . 88

5.4 QueueOne equivalent to QueueThree 90
5.4.1 Definitions . 91
5.4.2 Proof of being constant . 93
5.4.3 Proof of equivalence . 97

Chapter 6 Conclusions and directions for further research 102

Appendix A Ingredients of monadic semantics 105

2

Appendix B Proofs 109

B.1 Queue1 const-within R . 109
B.2 Proof of Proposition 5.4.6 . 110
B.3 Proof of Proposition 5.4.7 . 111
B.4 Proof of Proposition 5.4.8 . 112
B.5 Proof of Proposition 5.4.15 . 115
B.6 Proof of Proposition 5.4.16 . 115
B.7 Proof of Proposition 5.4.17 . 116

Bibliography 119

3

Chapter 1

Introduction

Over the last thirty years or so, there have been shifts of interest in programming
language paradigm. From procedural languages that eliminate goto, to struc-
tured programming (e.g. Pascal, Modula-2), and to strongly-typed functional
languages (e.g. Haskell, Miranda, and ML). Recently there has been growing in-
terest in studying strongly-typed functional languages with state (e.g. Idealized
Algol and ML). Note that Idealized Algol [Rey81b] is different from the classical
Algol [And64] since the former has higher order types whereas the latter does
not.

The popularity of pure functional languages is mainly attributed to their ex-
pressiveness: twenty lines of code written in a procedural language can often be
rewritten in two or three lines in a functional language (a sorting algorithm is
such an example[Tur86]). Pure functional languages are suitable for prototyping
and easy to reason about. Programs can be regarded as mathematical functions.
With their strong type systems, they guide programmers to avoid bugs at run
time.

On the other hand, there are still places where the notion of state is useful
in programming. State gives a natural view of some computational phenomena
(e.g. reading/writing files and name generation) and it also can be used for code
optimisation. Introducing state to functional languages gives programmers more
flexibility in implementing their solutions.

We are not claiming that functional languages with states are the best among
programming languages. Nor are we claiming that it is a new trend. In fact, the
invention of such a language is not new (Lisp is an untyped version of such a
language). What we have now is a growing interest in studying such languages.
This is driven by theoretical and practical motivations.

On the theoretical side, there has been work towards fully abstract models for
languages with local variables[MS88, Sie96b] and languages with names[Sta94].

4

The interaction between local variables or private names and higher order func-
tions are not yet fully understood. Other work takes the design of reasoning
systems for such languages[MT92, HMST95] an important areas of study.

On the practical side, functional languages with states share features similar
to those exist in object-oriented languages. The following are the examples.

• We can encode the notion of object method and object identity. A private
variable in an object is coded as a local reference in a function. The following
code shows two implementations of an updatable integer class, one is written
in Java and another in ML. The Java code is adapted from [CW96].

class AnIntegerNamedX {

private int x;

public int lookupX() {

return x;

}

public void setX(int newX) {

x = newX;

}

}

...

AnIntegerNamedX myX = new AnIntegerNamedX();

myX.setX(1);

.... myX.lookupX() ...

...

fun class_AnIntegerNamedX () =

let

val class_x = ref 0

fun class_lookupX () = !class_x

fun class_setX newX = (class_x := newX)

in

{lookupX=class_lookupX, setX=class_setX}

end

...

5

val myX = class_AnIntegerNamedX();

(#setX myX) (1);

... (#lookupX myX)() ...

...

• Conventional object-oriented languages do not have higher-order features.
Thus, implementing a function such as maplist is cumbersome if not im-
possible.

• It is possible to add subtyping to functional languages. Such resulting
languages would have a feature that resemble inheritance.

In relation to pure functional languages, functional languages with state allow
programmers to optimise their programs at the programming language level. This
may be desirable when we do not know how the compiler optimises our code.

The advantages of functional languages with state do not come without a
price. The combination of pure functional language and state yields programming
languages that are difficult to model and to reason about.

It is still possible to view programs as functions, but now we have states as
implicit argument and output. A program M of type int→int may be viewed as
a function f ∈ S × N → S × N (where S is a space of stores and N the space
of natural numbers). Thus giving a uniform denotational interpretation is more
involved.

It is difficult to have a good reasoning technique for such languages. The
usefulness of a reasoning technique is judged from its simplicity, its naturalness,
and its completeness. The simple equational reasoning of lambda calculus is
invalid in functional languages with side effects (eg. the η rule is violated). This
is arguably one of the strongest objections using imperative functional languages
in place of pure functional languages. If we had reasoning techniques that are
simple enough for practising programmers to use, then the confidence in writing
correct code in imperative functional languages would return.

The notion of type also changes in such languages. This is very much related
to the issue of giving an interpretation of such a language, in particular the
relationship between the syntactical notion of type (ie. type checking and type
inference) and the semantical notion of type. At one extreme, types convey
minimum information about the typable programs. This is the case in ML type
inference. A program of type σ→τ says that when it takes a value of type

6

σ the application may or may not produce side effects. At the other extreme
types capture precisely the effects produced by typable programs. We are not
interested in such type systems since they are undecidable. In the middle of the
spectrum lie type systems that convey partial information about effects produced
by typable programs. Effects system [LG88] is such an example. It can tell
whether a particular global variable might be modified by a program. Since a type
system enforces a particular discipline in writing programs, a good type system
with effects information would guide programmers in the process of checking,
transforming, and documenting code.

There have been some works on trying to deal with these issues. One line of
work motivates the topic of this thesis. It is about finding subsets of the languages
in which the good properties of pure functional languages are recovered. The next
section gives a survey of recent works concerning this issue.

1.1 Survey

There have been ongoing attempts to find subsets of imperative functional lan-
guages which have good properties; in particular subsets where the programs are
more modular and the side effects are controlled. These include: interference con-
trol, typing with side-effects information, type systems which are based on Linear
Logic, and single threaded lambda calculus. The following sections describe re-
cent papers on each of them. The survey is presented in the form of summaries of
each of the papers. Each summary is divided into four parts: background, aim,
method, and results.

1.1.1 Syntactic control of interference

The issues in this work concern variables and higher-order aliasing. Two variables
are aliased when they refer to the same cell, whereas two functions are aliased
when they refer to the same variable and they use the variable in incompatible
ways (eg. both try to write or one tries to read while the other tries to write).
Interference free languages give a modular extension to languages which include
concurrency. This section summarises articles about syntactically eliminating in-
terferences for Algol-like languages.

Syntactic control of interference [Rey78].
Background: interference contributes to errors in programs.
Aim: to eliminate interference by syntactical means.

7

Method: introduces a notion of passive types. These are for procedures that can
read variables but not modify them.
Results: unfortunately subject reduction is not preserved.

Syntactic control of interference, part II [Rey89].
Background: same as in [Rey78]
Aim: to improve the syntactic control of interference defined in [Rey78].
Method: develops a type system using passive types (see [Rey78]) and conjunct-
ive types (see [CDCV81]).
Results: a decidable type system that only accepts noninterfering programs. Sub-
ject reduction is preserved.

The semantics of non-interference: a natural approach [O’H90].
Background: to study inteference or aliasing in Algol-like languages.
Aim: to give a semantic characterisation of noninterference, in particular nonin-
terference among higher-order functions.
Method: uses functor category for the characterisation of noninterference.
Results: the semantics is sound with respect to Reynolds Specification Logic. It
gives a syntactical control of inteference which is sound with respect to the se-
mantics.

Passivity and Independence [Red94].
Background: to use models of linear logic for understanding functional languages
with states.
Aim: to give a semantical account of Reynolds’ syntactic control of interference
[Rey78] and to give a better model for explaining local variables.
Method: uses coherent spaces (with dependency relations) for characterising no-
tions of historicity, absence of change, independent change, and passivity.
Results: a denotational account of passivity. An accurate model of local variables
which can verify all of [MS88]’s examples.

Syntactic control of interference revisited [OTTP95].
Background: to give a syntactical and semantical account of interference control.
Aim: to define a type system for SCI (called SCIR) and provide its semantical
framework.
Method: defines a typing judgement of the form Π | Γ ` M : θ where Π denotes
passive zone and Γ active zone. Gives a categorical account of the type system

8

using bireflexive models.
Results: the type system satisfies subject reduction. The bireflexive model can
interpret Π | Γ ` M : θ and the reduction relation preserves equality in any
bireflexive model.

Type Reconstruction for SCI [HR95].
Background: controlling interference in Algol-like languages syntactically.
Aim: to give a type inference for SCIR defined in [OTTP95].
Method: extends SCIR with a new constraint information so that principal types
exist.
Results: an algorithm for inferring types and interference information on Algol-
like languages. This is an improvement over [Rey89]’s type system where SCI
analysis is defined only for explicitly typed terms.

1.1.2 Effects system

Effects systems are concerned with developing more robust type systems for ML-
like languages. The target type system should be able to give information about
the effects produced by typable programs. A good effects system is one that gives
information about global side effects and masks unobservable local side effects.
The soundness of the type systems are measured with respect to the operational
semantics.

Polymorphic Effect Systems [LG88].
Background: a type system for reasoning and implementing compilers for func-
tional languages with state and polymorphism.
Aim: to encode information about side effects and regions in types.
Method: a type conveys three pieces of information: the original notion of type
for describing the value that an expression may return, an effect for describing
side effect, and a region for describing the area of the state in which side effects
may occur. It has two kinds of typing judgment: A,B ` e : τ and A,B ` e : ε
where ε denotes an effect.
Results: the effect system is sound. Formally, if {}, {} ` e : ε and (e, s)red⇒(v, s′),
then the reduction process red⇒ does not violate the constraint imposed by ε.

The type and effect discipline [TJ92].
Background: a more robust type system for an ML-like language.
Aim: to reconstruct types and effects information from ML-like programs.

9

Method: defines a notion of type-expression parameterised by effects and regions.
Defines a notion of inclusion between effects.
Results: The type system is sound with respect to the operational semantics. It
provides an algorithm for inferring types and effects information.

1.1.3 Linear Logic based type system

Linear Logic can be viewed as a logic of resource; in particular, copying has
to be done explicitly. This methodology can be transferred to pure functional
languages by developing a type system which requires explicit annotation for re-
sources which are duplicated or discarded. Such a type system is finer than the
usual type system in the sense that it may distinguish two equivalent programs
where one program uses resources in a different way than another.

Linear types can change the world! [Wad90].
Background: We can introduce an imperative aspect to a language by extending
a pure functional language with destructive array update mechanism. Arrays can
be used to model states efficiently. On the other hand, we would like the type
system to tell us how the arrays are used.
Aim: to use ideas from Linear Logic for designing a type system for programs
that neither duplicate nor discard an array.
Method: Has two families of types: values of linear types and values of nonlinear
types. The rules for linear types are reflections of Girard’s Linear Logic.
Results: a type system that can distinguish linear and nonlinear usage of arrays.
It shows an example of implementing an interpreter for a simple imperative pro-
gramming language under a functional language with destructive array update.

Once upon a type [TWM95].
Background: a type system that can determine how many times a resouce is used.
This is useful for compiler optimisation.
Aim: a type inference which detects when values are accessed at most once.
Method: extends the Hindley-Milner type system with uses information. A typ-
ing judgement takes the form Γ `Θ e : τ where Θ is a set of constraints. The type
system uses ideas from Linear Logic [Gir87] and Logic of Unity [Gir93].
Results: satisfies subject reduction with respect to call-by-need reduction. If a
term is typable, then the principal type exists.

10

1.1.4 Single threaded lambda calculus

Single threaded lambda calculus is a language based on lambda calculus extended
with an mutation operator and a mechanism for sequencing computation. The
type system is designed to ensure single-threadedness. A single threaded program
is a program that never duplicates its mutable datatype (e.g. array) in an unsafe
way. This property ensures the referential transparency of such language and at
the same time is expressive enough to model store and store updates. When we
use states in functional languages, we normally do not duplicate the whole states;
rather we change or modify the old state by updating a small fraction of its cells.
The mutation operator in the single threaded lambda calculus provides just this
mechanism.

Assignments for Applicative Languages [SRI91].
Background: trying to find a functional language with states which satisfies ref-
erential transparency.
Aim: extend lambda calculus with assignments while maintaining the static views
of functions.
Method: designs a type system that ensures that expressions have no side effects.
Type-expressions are divided into three layers: applicative types, mutable types,
and observer types.
Results: the type system satisfies subject reduction. It has an operational se-
mantics which is confluent.

Single-threaded Polymorphic Lambda Calculus [GH90].
Background: this extends a pure functional language like Haskell with a mutator
operator while still maintaining referential transparency for the extended lan-
guage.
Aim: To design a language extension and a type system that is able to restrict
the language into a subset which satisfies referential transparency.
Method: Defines a language called single-threaded-lambda-calculus. It is basically
a call-by-name functional language extended with a construct for applying func-
tion application in a single threaded way. The language is then extended with
a mutator operation and a type system for rejecting programs that may not be
confluent.
Results: Typable terms are confluent. It has a type reconstruction algorithm.

11

1.2 Aim

The work in this thesis is driven by the observation that some programs that use
references internally still behave in an applicative way. To get a better under-
standing of the issue, we need to explain the notion of ‘use references internally’
and ‘behave in an applicative way’.

In a programming language like ML, there are at least two ways a reference
can be used internally. The first way is to allocate a fresh location x and to
return a term f that does not explicitly reveal x to the surrounding context. The
following is an example.

val M = let

val x = ref 0

fun f n = (x:= !x+4; if isEven(!x) then n else !x)

in f

end

The surrounding context cannot have arbitrary access to x. It can only affect x

by invoking the identifier M.
The second way is to return a pointer x, but the pointer is encapsulated by

abstract data type mechanism. Hence the surrounding context regards x as an
abstract value and cannot invoke arbitrary operations on x. An example of this
is an implementation of a Queue data structure (see QueueThree on page 77).

ML programs written without ref, :=, and ! can be viewed as mathematical
functions. They are fully described by the graphs of their input-output pairs. For
programs that use ref, :=, or ! the situation is more involved because the output
of such a program depends on the current state as well as the input.

The identifier M defined above has the property that given a fixed input n,
the outputs of (M n) are constant throughout all possible current states produ-
cable/reachable by its surrounding context. Notice that this set of possible states
is a subset of the set of all states. The set is essentially determined by an invariant
that the identifier M satisfies and how private x is. If M satisfies an invariant I and
x is ‘private enough’, then the possible surrounding contexts would also satify I.

We do not study the notion of private references in depth, therefore we para-
meterise the notion of being constant over a class of relevant contexts. One of
the aims of this thesis is to find a suitable mathematical structure for expressing
a class of contexts.

We would like to give a semantic framework of being constant with respect to
a class of contexts. Moreover, we want to build the framework in a setting that

12

is easy to understand.
We should emphasise that our work is not primarily about finding a type

system or a decision procedure that can detect constant programs. Rather, we
aim to build a framework for understanding the notion of constant programs.
Developing a type system is possible future work.

1.3 Method

The language studied in this thesis is a pure ML fragment extended with :=, !, and
ref, where the values storable by references are integers. This is essentially the
language Reduced ML [Sta94]. Although the language does not have recursion,
we can encode nontrivial programs such as counter and memoisation programs.

We give an operational and denotational semantics of the language, with more
emphasis on the denotational semantics. We model types and programs in terms
of sets and functions and side effects in terms of side effect constructor TA =
S → S × A, where S is a set of states [Mog91]. One of the most delicate issues
is how to define the notion of being constant throughout a class of contexts. We
decide to express the notion of a class of contexts by an invariant that they must
satisfy. This is justifyable since the only aspects of a context that is relevant to
us is the invariant that it satisfies.

We study two structures for modelling invariants: one is a reachable set, and
the more general one is a transition system. Intuitively, a reachable set consists of
an initial state s0 and the possible states that are reachable from s0. A transition
system is a binary relation on states. It is more general than a reachable set since
we can extract only the possible future states from the current state and the set
of all reachable states. Hence a transition system is a more accurate structure for
expressing dynamic allocation.

The definition of being constant throughout a computational invariant R re-
quires the notion of indistinguishable throughout R and we define the latter in a
logical relation fashion [Mit90]. In effect, we define a class of relations indexed
by type expressions.

1.4 Results

We give two pairs of definitions of indistinguishability and being constant with
respect to a transition system R. The first pair is geared towards programs with
flat store. Programs with flat store are ones that use only global variables. The

13

definition is called:

{indistinguishable throughoutσ R}, and
{const-throughoutσ R}.

We show that the notion of indistinguishable throughoutσ R is an equivalence
relation over elements of [[σ]] that are constant throughoutσ R. The property of
constant throughoutσ R is preserved under function application.

The second pair of the definitions makes use of the ‘future sensitive’ property
of transition systems. It can handle the freedom of of choosing fresh names when
we allocate new locations and it only quantifies the behaviour of a computation
over the current and future states and prevents quantifying the computation over
previous states. The definition of indistinguishable is parameterised over pairs
of transition relations instead of transition relations because we have to take the
freedom of choosing fresh locations into account. The pair is called:

{indistinguishable withinσ R1, R2}, and
{const-withinσ R}.

The first notation is used for comparing a denotation a living in a relation R1 to
another denotation b living in R2. This framework is used in Chapter 5 for show-
ing an imperative ML implementation of Queue data structure indistinguishable
within R,R to its pure counterpart, where R is a transition system that both
implementations satisfy. This is one of the main practical contributions of the
thesis.

1.5 Synopsis

Chapter 2 aims to introduce an informal notion of being constant in computa-
tion. It emphasises the notion of observation, a computation which satisfies an
invariant, a reachable set for capturing computations that satisfy an invariant,
and a notion of indistingishability throughout an invariant.

Chapter 3 defines a language for our discussion. It is a pure fragment of ML
extended with ref, :=, and !. We define its operational semantics and operation-
ally characterise the notion of indistinguishability throughout a reachable set and
being constant throughout a reachable set. The method is essentially the same
as the one used in Chapter 2.

Chapter 4 extends the definitions in Chapter 2 by replacing reachable sets
with transition systems. We define notions called indistinguishable throughout R

14

and const-throughout R and show that these are generalisations of their coun-
terparts in Chapter 2. We give another definition which can handle dynamic
allocation and call them indistinguishable within R1,R2 and const-within R and
show that indistinguishable within can equate an example which involves creating
new locations.

Chapter 5 is the practical side of the thesis. It gives concrete ML implement-
ations of Queue module, with one implementation written in code that internally
uses references. It then shows that we can use the notion of indistinguishable
within for showing the denotation of a pure implementation indistinguishable to
the denotation of the imperative implementation with respect to a pair of identical
transition systems R,R, where R is a transition system that both denotations sat-
isfy. We can view Chapter 5 as the driving force of the thesis and the previous
chapters as giving a suitable framework for analysing Queue module.

Chapter 6 concludes the thesis and gives some discussions towards further
research.

15

Chapter 2

Notion of being constant

The purpose of this chapter is to introduce the concept of constant computation.
Section 2.1 shows some examples of constant behaviour in general phenomena,
and sum up their key elements in understanding constant behaviour. The key
elements are: the levels of details an observer can pick up from using or interacting
with the system and the constraint that an observer must obey when interacting
with the system.

Section 2.2 shows that the key elements in understanding constant behaviour
in general phenomena also apply in the case of computation, but the situation
is more delicate. When a program has a higher order feature, it is not clear
what being constant means. When programs cannot have access to arbitrary
information about current store, it is not straightforward to determine the scope
of information they can access from the store and the possible side effects they can
inflict upon the store. When the store is dynamically changed and new references
can be allocated to the store, determining the environment’s possible action upon
the store such that the program still behaves in a constant way requires a new
insight into the behaviour of computations with dynamic allocations. These are
what make analysis of constant computations subtle.

2.1 Being constant in general

2.1.1 Constant behaviour with respect to an observation

Constant functions are abundant in the real world.
When we consider just the space of functions, it is not clear whether con-

stant functions are abundant. But when we are talking about the real world,
then there are a lot of them. The reason is that when we model a phenomenon
using a mathematical function, the accuracy of our observation has to be taken
into account. Let us pick up an example from, say, electronics. To be precise,

16

supposing we want to analyse the behaviour of an electric switch with respect
to the voltage of a particular node in a circuit. Consider a circuit in Figure 2.1.
This circuit consists of a series of a resistor, a switch, and a DC source. We are
interested in determining the voltage at node n when the switch is closed. A
typical description of the voltage is described in Figure 2.2.

1V

n

Figure 2.1: A switch connected in serial to a resistor and a DC source

1

V

1 2 3 4 t

1

V

1 2 3 4 t0

Figure 2.2: The voltage of node n after the switch is set to on

Initially we have the switch set to off. At time t equals zero, the switch is set
to on, allowing the current to flow through the circuit.

Figure 2.2 shows a typical real life situation. Indeed, mathematically, it is
quite a complex one. When it is working along with other millions of switches
– as in the case of the internals of a processor – then the above model is too
complex to comprehend. However, when we know that the switch can only be
observed at a discrete interval of one second and the sampling resolution is 0.2
volts, then its behaviour, according to the observer is described in Figure 2.3

All the fluctuations are not observable. To the observer, the voltages (after
t = 1 second) are constant. All that the observer knows is that before and at the
time the switch is on the values are zero volts and at the first second the switch
is on and afterwards the values are 1 volts.

The graph in Figure 2.3 suggests that we have a ‘high-level’ view of the be-
haviour of the switch, which is portrayed in Figure 2.4.

The graph in Figure 2.4 provides a nice and simple abstraction of the beha-
viour of the switch. To what extent this abstraction is accurate depends on the

17

1

V

1 2 3 4 t

1

V

1 2 3 4 t0

x x x x

x

Figure 2.3: The voltage at node n sampled at 1 sample/s with resolution 0.2 volts

1

V

1 2 3 4 t

1

V

1 2 3 4 t0

Figure 2.4: A simplified view of the voltage at n

applications, but in many cases this abstraction is adequate.
To sum up, the following are the essential points in understanding constant

behaviour when we have a limited degree of observation:

• We describe a system in terms of a mathematical function. In other words,
it is an information transformer.

• The ‘resolution’ of observing the system determines how the observer views
the behaviour of the system. When the observer cannot detect the fluctu-
ations of the output, then the observer can deduce that the output does not
change.

2.1.2 Constant behaviour throughout an interaction

Another dimension of constant behaviour involves the issue of interaction. In an
interaction, there are two protagonists: an agent and an environment. The usual
scenario consists of an environment interacting with the agent and getting some
information out of the interactions. Some interactions may change the behaviour
of the agent as well as the environment. The ‘states’ of the environment and the
agent before and after the interaction might differ — the difference reflects the
effects of the interaction.

With the issue of constant behaviours, we are interested in classifying a set of
interactions such that the behaviour of the agent is unaltered.

18

There are many constant behaviour patterns in the worlds of interactions, be
it interactions between a human and other human being, a tree with the wind or
weather, or the sun with the earth (for other examples, think of objects being used
in a dynamic way). We study a simple example which consists of a spring and a
mass (see Figure 2.5). Let us say that we are interested in hanging the mass on
the spring and seeing how much the spring extends. Assuming the spring is ideal,
we have a linear curve characterising the coefficient of the spring (see Figure 2.6).

1 kg

Figure 2.5: Agents of interactions: the spring and the mass

max F

x

force

extension

Figure 2.6: The graph of extension of the spring against the force applied to it

In this example, the spring is the agent and we are the environment; the
interactions are the putting of masses to the spring and measuring its extensions.
Figure 2.7 shows some possible ‘interactions’ we can perform on the spring.

Notice that in Figure 2.6 the curve does not go on forever; it is only defined
up to force F equals max. Intuitively, it is obvious since the spring cannot stretch
out indefinitely. When the weight is too heavy, it will break (see Figure 2.8).

The thing is that the graph of Figure 2.6 describes the behaviour of the spring
as long as it is not broken. Once it is broken, its ‘intended behaviour’ is altered.

Computer minded readers could see that there is an element of ‘state’ here.
The state of a spring is either “in good form” or “broken”. When the spring is in
good form, it can serve us as a weight indicator (whose characteristics is specified
in Figure 2.6). When it is broken, it is useless.

19

1 kg

2 kg

Figure 2.7: Some possible scenarios of interaction

1 TON

Figure 2.8: When the force is beyond the constraint, the spring breaks

Pragmatically we do not want to break the spring. The way to do it is to
restrict the amount of weight applied to it. Figure 2.6 gives a guidance that
the force F applicable to the spring must be less than or equal to max. In
computing terminology, we say that the invariant that must be preserved during
the interaction is :

0 ≤ F ≤ max. (2.1)

Strictly speaking, Figure 2.6 in itself is not a constant function. However,
what we are interested in is whether the coefficient of the spring is unaltered
throughout its use. The notion of constancy in this setting is different to the
notion of constancy in the circuit example.

To sum up, the following are the essential points in understanding constant
behaviour throughout an interaction.

1. Some objects are best described in terms of their interactions with the
environment which uses them. From the environment point of view, an object
can be considered as providing a function.

2. This function is not altered as long as the environment satisfies the restric-
tions on how to use the object.

20

2.1.3 Constant behaviour with a limited observation within
an interaction

In general the phenomena of constant behaviours involve both elements of the
‘resolution’ of observation and the constraint in the interaction. For example,
in the spring example above, normally we assume that our measurement of the
spring extension is accurate only up to the nearest millimetre, say. It may be
possible that the spring is vibrating with amplitude of less than a millimetre; or
that given the same mass experimented twice on the spring, the first experiment
differs from the second one by a deviation of less than a millimetre.

2.2 Being constant in computation

2.2.1 Notion of observation in computation

This subsection describes the standard notion of context and the notion of obser-
vation in terms of context, where a context is a program fragment with a hole.
In a functional language with state, the notion of observation is more involved
because in general a context may modify the behaviour of a program it observes.

In the previous section we described two important notions in understanding
constant behaviours. They are the notion of resolution of an observation and the
notion of preserving a certain condition throughout an interaction. The combin-
ation of the two definitions gives an accurate account of the notion of constant
behaviour within an interaction. The two physical examples use physical devices
(a voltmeter or oscilloscope in the former example and a ruler in the latter) for
measuring the phenomena. The accuracy of the observations depend on the resol-
utions of the measuring devices. Physicists have standards of the level of accuracy
that they need for a certain observation. Do we have an accuracy standard in
observing a program? How do we define the resolution of a method for observing
a program?

There are various answers to the last question. From a low level languages
(such as assembly languages, C, and C++) programmer point of view, a widely
accepted method to observe a program is by using a debugger. The bare essential
features of a debugger includes an interpreter that can evaluates a program in a
step-by-step fashion and a window that displays the current states or variables.
When the hardware has a debugging facility, a debugger can display complete
information on how a program runs from one step to another.

In a single machine not connected to a network, this is the lowest level and
the most fine grain analysis we can perform.

21

From a program correctness point of view, the above analysis is too low level.
It requires the knowledge on how the actual program is executed in a hardware (ie.
the operational semantics) and — in many cases — how the compiler transforms
a program into a machine code (or a lower level code). These low level details
are useful in optimising and finding better internal representations of programs,
but they are too complex for analysis of the logical behaviours of programs. We
need a different notion of observation which is at the higher level of abstraction.

A widely accepted notion for observing a program at the logical level can be
explained in terms of a notion of context. A context is a program with a hole. It
is denoted by the symbol C[.]. C is the program part of the context and [.] is
where we plug in the program we want to observe. We can view a context as a
program parameterised by programs. A context represents a possible environment
for observing programs. In a typed programming language, we need to match the
types before plugging in a program to a hole since programs, holes, and contexts
have types. In the following discussion, we assume that we only plug a type-
compatible program to a context.

We observe a program by using other programs to observe it. In our setting
we apply the program to contexts. There are important relationships between
contexts, programs, and indistinguishability. Two programs are equal when they
are indistinguishable throughout all possible contexts. This is a notion of observa-
tional equivalence in [Plo77] and is a characterisation of equality at the operational
level.

The notions of observation and indistinguishability in pure functional lan-
guages can be explained in terms of contexts. However, in functional languages
with state the above notions are more involved, because the way a context ob-
serves a program can also affect the programs behaviour. This is because a
context can change the current state and the output of a program may depend
on the current state as well as its input. This is the major source of difficulties
in reasoning about functional languages with state.

This thesis studies a notion called invariant for understanding the behaviour
of functional languages with state. The introduction of invariant is natural for
capturing the dynamic aspects of computation.

We decide to express context not in terms of a syntactical construct, but in
terms of a semantical structure. The reason is that we want to characterise a
class of contexts that satisfy an invariant. If we define a context as a syntactical
construct, then we have to mix syntactical constructs with semantical structures,
and there is no clear way on how to do this. Thus we decide to shift everything

22

on to a semantical level.
In the next section we describe a structure for modelling invariants. It is called

reachable set. Intuitively, a reachable set consists of an initial state s0 and the
possible states that are reachable from s0. In Chapter 4, we give a more general
structure called transition relation.

2.2.2 Reachable sets

We are interested in functional languages with references (such as ML). In par-
ticular, our focus will be on functional languages with natural number references
only. We need to define states which can handle unused and allocated references.

Definition 2.2.1. L is a countable set.
AllStates = L → N ∪ {Unused}, N the set of natural numbers.
l defined-in s iff s(l) 6= Unused, for l ∈ L and s ∈ AllStates.
dom s = {l ∈ L | l defined-in s}, for s ∈ AllStates.
S = {s ∈ AllStates | dom s is finite}.

In this chapter, we would model a class of contexts with the notion of reachable
set. Intuitively, a reachable set is a set of states reachable from an initial state
s0. Formally, the definition is given below

Definition 2.2.2. A reachable set Q is a tuple < Q, s0 > where Q ⊆ S and
s0 ∈ Q.

The state s0 denotes an initial state whereas the nonempty set Q denotes
the possible states that are reachable from s0. We would abbreviate Q with its
underlying set Q.

The motivation behind this definition is that we are interested in a notion
of observation over a reachable set. The use of a reachable set provides a win-
dow where we can restrict our observation into the set of computations that are
relevant.

A reachable set represents the possible states that could be computed by a
class of contexts. In other words, the abstraction of a class of contexts is that
they are a reachable set, and observation with respect to a class of contexts is
observation with respect to a reachable set.

In this chapter we deal with computations with flat stores (ie. no dynamic
allocation). In this setting, the relevant locations are the ones that are definable
in every reachable state. The following defines what it means for a location to be
definable in a reachable set.

23

Definition 2.2.3. Let Q be a reachable set.
l defined-in Q iff forall s ∈ Q : l defined-in s.

2.2.3 Observing reference-type values

Natural numbers and locations are both ‘ground types’, but the former are pure
objects whereas the latter are imperative objects. We do not need the current
state to observe numbers, but we need it to observe references. This is because
the behaviour of a reference is determined relative to the current store.

If we know the reachable set of a class of computations, and we know that a
particular reference points to the same value in every state s in the reachable set,
then computationally this means the ‘lookup part’ of the reference behaves in a
constant way throughout this class of computations. This is the basis of our idea
of a constant location relative to a reachable set.

Definition 2.2.4. Let l ∈ L.
l V-const-throughout Q
iff
forall si, sj ∈ Q :
si(l) = sj(l)

The ‘V ’ in the prediate being-constant shows that the predicate is defined over
values instead of computations. When it is clear from context we would omit the
‘V ’ letter.

Another issue in the difference between natural numbers and locations is the
notion of indistinguishability. Two natural numbers are indistinguishable when
they are equal. The same characterisation does not apply for locations, because
it is possible to have two fresh locations which at the programming language level
are indistinguishable. Therefore we have to resort to a more abstract view of
equality.

We are interested in defining locations indistinguishability with respect to a
class of context. The following is the formal definition.

Definition 2.2.5. Let l, k ∈ L.
l,k V-indistinguishable throughout Q
iff
forall si, sj ∈ Q :
si(l) = sj(k)

24

It says that two locations are indistinguishable throughout a reachable set Q if
their lookup parts agree overQ. It follows that if l,k V-indistinguishable throughout Q
then l V-const-throughout Q. Similarly for k.

Our definition of location indistinguishability is driven by practical motivation:
we would like to use our definition in analysing ML modules which use references
but still behave in an applicative way. Such a module is a Queue module1 where
we have an efficient implementation by using a pointer to represent a queue.
We are allowed to pass the pointers around and they can be manipulated in a
restricted way, but we are not allowed to compare them.

The following are some properties of locations indistinguishability.

Proposition 2.2.6 (Reflexivity on indistinguishability). Let l ∈ L.
l V-const-throughout Q
iff
l,l V-indistinguishable throughout Q

This suggests that we can define location constancy in terms of location indistin-
guishability.

Proposition 2.2.7. The relation V-indistinguishable throughout Q is a partial
equivalence relation over L.

Corollary 2.2.8. Let L = { l ∈ L | l V-const-throughout Q}. The relation
V-indistinguishable throughout Q is an equivalence relation over L.

2.2.4 Observing reference-type computations

In an ML-like language, its call-by-value nature enforces the computations to only
allow canonical values to be passed around. When we want to pass an expression
to a function, the expression has to be evaluated first to a canonical value. Taking
side effects into account, the evaluation may change the current state.

The notions of canonical value and expression at the operational level can be
viewed as notions of value and computation at the denotational level [Mog89].
An expression M of type int ref is modelled as a function m ∈ S → S×L. The
process of reducing M to a canonical value corresponds to the process of applying
M to the current state s and obtaining an after-state s′ and a location l.

We would like to define the notion of indistinguishability throughout < Q, s0 >

for computations of arbitrary types. For an expression, the process of reducing
the expression into a canonical value may create side effects. One condition of

1see page 77 of this thesis

25

two expressions being indistinguishable is to require the side effects satisfy the
invariant Q. The second condition is to require that all possible canonical values
to which the expressions reduce are V-indistinguishable throughout Q when the
expressions are reduced under Q. The following is the formal definition. The
variable A denotes an arbitrary set.

Definition 2.2.9 (Some Conventions). Given s ∈ S;m ∈ S → S × A, we
define (m s)1 = π1(m s) and (m s)2 = π2(m s).

Definition 2.2.10. Let m,n ∈ S → S × A.
m,n C-indistinguishable throughout Q
iff
1. forall s ∈ Q : (m s)1 ∈ Q ∧ (n s)1 ∈ Q
2. let

A={(m s)2 | s ∈ Q} ∪ {(n s)2 | s ∈ Q}
in assert

forall a, b ∈ A : a,b V-indistinguishable throughout Q
end

The first clause says that Q is a state invariant that the functions m and n

must satisfy. The set A denotes the collection of values computed by m and n

over the reachable set Q. The ‘C’ in the prediate indistinguishable throughout
shows that the predicate is defined over computations instead of values. When it
is clear from context we would omit the ‘C’ letter.

The notion of constancy throughout Q for computations of arbitrary types
can be defined in terms of C-indistinguishable throughout Q.

Definition 2.2.11. Let m ∈ S → S × A.
m C-const-throughout Q iff m,m C-indistinguishable throughout Q

The above definitions specialises to location computations when we substitue
Awith the location space L. The following are some properties of indistinguishable
throughout Q and const-throughout Q for location computations.

Proposition 2.2.12. Let m ∈ S → S × L.
if m C-const-throughout Q
then forall s ∈ Q : (m s)2V-const-throughout Q.

Proposition 2.2.13. The relation C-indistinguishable throughout Q is a partial
equivalence relation over S → S × L.

26

Corollary 2.2.14. Let m,n ∈ S → S × L.
If m,n C-indistinguishable throughout Q,
then m C-const-throughout Q and

n C-const-throughout Q.

2.2.5 Observing int-type values and computations

We need definitions of being constant and indistinguishability for the ground type
int. For integer values, the definitions are simple since natural number values
are pure objects.

Definition 2.2.15. Let n ∈ N
n V-const-throughout Q
iff
true

Definition 2.2.16. Let a, b ∈ N
a, b V-indistinguishable throughout Q
iff
a = b

The definitions of indistinguishability and constancy for computations of nat-
ural numbers type are special cases of Definition 2.2.10 and 2.2.11 with the vari-
able A substituted by the space of natural numbers N .

Definition 2.2.17. Let m,n ∈ S → S ×N .
m,n C-indistinguishable throughout Q
iff
1. forall s ∈ Q : (m s)1 ∈ Q ∧ (n s)1 ∈ Q
2. let

N={(m s)2 | s ∈ Q} ∪ {(n s)2 | s ∈ Q}
in assert

forall a, b ∈ N : a,b V-indistinguishable throughout Q
end

Definition 2.2.18. Let m ∈ S → S ×N .
m C-const-throughout Q iff m,m C-indistinguishable throughout Q

Similarly, Propositions 2.2.12 and 2.2.13 apply to natural numbers computa-
tions.

Proposition 2.2.19. The relation C-indistinguishable throughout Q is a partial
equivalence relation over S → S ×N .

27

2.2.6 Observing functions of ground types

Our method of defining being-constant and indistinguishability for function types
contains two elements: the first element is that we define them in logical relation
fashion. The second is that a canonical value of function type is interpreted as a
function that takes values and produces computations. An expression of type σ
is interpreted as an element of type T [[σ]] where TA = S → S ×A (see [Mog91]).

This subsection gives general and uniform definitions of being-constant and
indistinguishability for function types. In principle the definition applies to arbit-
rary type expressions; but since we have not developed the formal setting2 of the
semantics, we only define them for functions of ground types.

For the rest of this subsection, the variables A,B are quantified over {N,L}.

Definition 2.2.20. Let f, g ∈ A→ (S → S ×B)
f, g V-indistinguishable throughout Q
iff
forall a, b ∈ A :

a,b V-indistinguishable throughout Q ⇒
(f a),(g b) C-indistinguishable throughout Q

Definition 2.2.21. Let f ∈ N → (S → S × L)
f V-const-throughout Q iff f, f V-indistinguishable throughout Q

Proposition 2.2.22. The relation V-indistinguishable throughout Q is a partial
equivalence relation over A→ TB.

2.2.7 Dynamic allocations

The structure reachable set is good enough for modelling computations that deal
only with global variables, but it is not sufficient for computations that involve
dynamic allocations. For a computation that allocates fresh locations, the reach-
able set would contain the initial state s0 and a larger state s1 where s1 has more
defined locations than s0. Let lx be a location defined in s1 but not in s0. Then
lx is not const-throughout Q, since s0(lx) 6= s1(lx). Such a decision is premature,
since if the rest of the computation maintains the lookup value of lx, then we
would like to say that lx is const-throughout Q.

2The formal setting is defined in Chapter 4

28

This suggests that we cannot force si(lx) = sj(lx) for all si, sj ∈ Q because
the status of an allocated location differs from the status of an unallocated one.
To make the distinction on their status, we need to filter out the undefined loc-
ations before comparing the values they point to. The alternative definition of
being-constant would be:

lx V-const-throughout Q
iff
let Q = {s ∈ Q | lx defined-in s}
in assert

forall si, sj ∈ Q : si(lx) = sj(lx)
end

However, this solution still cannot reason about names accurately. Consider the

val M = let
val x = ref 7

in fn y => y = x
end

val N = fn (y:int ref) => false

m = [[M]] ∈ S → (S × (L→ TB))
n = [[N]] ∈ S → (S × (L→ TB))
where
TB = S → S ×B
B = {true, false}

Figure 2.9: Two equivalent programs with program M written using a local name.

programs M and N in Figure 2.9. When we evaluate M, we create a new reference
x and output a function that takes a reference and compares it with x. This func-
tion is bound to an identifier M. Since x is a new reference and it cannot escape
the function M, any input to M will be different to x. Operationally M behaves like
a constant expression and is observationally equivalent to N. However we cannot
find a suitable reachable set Q such that m,n C-indistinguishable throughout Q.
Here is the sketch of the proof: reducing M corresponds to applying m to the
current state (say s0) and yielding an after state s1 and a function f ∈ L→ TB.
Similarly, we apply n to s0 and get an after-state s0 and a function g ∈ L→ TB.
The after state s1 is larger than s0 since it has a new location (say lx) allocated.
Since lx is hidden and cannot be modified, we expect the values pointed by lx

29

are either Unused or 7 for all states in Q. Hence lx is constant throughout Q.
However, (f lx) and (g lx) are not C-indistinguishable throughout Q. Hence m
and n are not C-indistinguishable throughout Q.

The above argument shows that the structure of reachable set essentially de-
scribes a state invariant for global variables. For a more accurate analysis of com-
putations that involve private location and dynamic allocation, we have to use
structures that are parameterised over stores. This framework is used in functor
category technique for reasoning about names [Sta94] and also apparent in oper-
ational technique for reasoning about names using state relations [Sta97, PS98].

We need to reemphasise that our main aim is not to find structures for reas-
oning about names since we consider that is beyond the scope of our topic which
is defining the notion of being-constant. Our aim is driven by practical issues
of implementing applicative programs in terms of programs that internally use
references. Such programs do not have references in their input or output types,
and when they do, the references are encapsulated by abstract data types (for an
example, see the Queue implementation using references on page 77).

Reachable sets have some practical uses in reasoning about programs that use
dynamic allocations. Although at the formal setting it cannot handle dynamic al-
locations, at the semi-formal setting it is applicable for reasoning about programs
with dynamic allocations. The following is the technique:

Given an expression M and the current state s0, reduce it to a canon-
ical value C and an after-state s1.

s0,M ⇓ C,s1

If C does not have the potential to allocate new locations, then we
can reason at the flat store level by restricting the relevant reachable
set into states that are reachable from s1.

2.2.8 Some examples

Example 2.2.23. Consider two imperative ML programs.

val M = (x := !x + 4; 7)

val N = (x := !x + 2; 7)

Where x is a global reference already allocated before the two programs are de-
clared.

30

Let lx be the location meaning of x. Then the meanings of M and N are defined
as the following.

m ∈ S → S ×N
m s = let

v = s(lx) + 4
in

(s[lx 7→ v], 7)
end

n ∈ S → S ×N
n s = let

v = s(lx) + 2
in

(s[lx 7→ v], 7)
end

Consider an fixed state s0 where s0(lx) = 0 and a reachable set < Q, s0 >

where

Q = {s ∈ S | s(lx) is even} (2.2)

It is easy to show that m,n C-indistinguishable throughout Q. They both
satisfy the invariant Q since they both preserve the evenness of s(lx) for s ∈ Q.
The second condition of Definition 2.2.10 is satisfied since for all s ∈ Q, (m s)2 =
7 = (n s)2.

Example 2.2.24. Consider the following ML programs.

val M = let val x = ref 0

fun f n = if (isEven (!x))

then (x := !x+2; n)

else (!x)

in f

end

fun id (n:int) = n

M is an expression whereas id is a canonical value. We would use our semi-
formal technique for proving M equivalent to id. Let s0 be the initial state when
we reduce M. The reduction process is described as:

s0,M ⇓ C,s0[lx 7→ 0]

31

which says that the result of the reduction is a canonical value C and an after-
state s0[lx 7→ 0]. We are interested in comparing C with id at the denotational
level. Their meanings are:

f = [[C]] ∈ N → (S → S ×N)
f n s = if s(lx) is even

then let

v = s(lx) + 2
in

(s[lx 7→ v], n)
end

else (s, s(lx))

id = [[id]] ∈ N → (S → S ×N)
id n s = (s, n)

Consider a reachable set < Q, s0[lx 7→ 0] > where

Q = {s ∈ S | s(lx) is even} (2.3)

Then we have f, id V-indistinguishable throughout Q. This is because for any
a ∈ N , we have (f a), (id a) C-indistinguishable throughout Q.

32

Chapter 3

iML and operational semantics

Section 3.1 defines a functional language with states and its operational se-
mantics. Section 3.2 gives an operational characterisation of indistinguishability
throughout a reachable set and being constant throughout a reachable set. These
are the operational counterparts of the definitions in Chapter 2.

3.1 iML

This section defines the language iML (imperative ML) and its operational se-
mantics. It is a pure fragment of ML extended with ref, !, and :=. Essentially the
language is the same as Reduced ML (RML) [Sta94] minus the reference equality
=int ref. Since =int ref is definable in iML (see later), they are essentially the
same language.

3.1.1 Language

The type expressions contain int ref for typing programs of type integer refer-
ences. Sometimes we would abbreviate int ref to ref. The type expressions
and the terms are the following.

τ ::= int | unit | bool | int ref | σ → τ.

M ::= x variable
| l locations
| () | n | true | false basic constants
| if M1 then M2 else M3 conditional
| M1 ⊕ M2 operations on integers
| M1 < M2 tests on integers
| ref M new reference

33

| !M lookup
| M := N assignment
| λx:σ.M function abstraction
| MN function application

where ⊕ ∈ {+,-,*} and < ∈ {<,>,=,<=,>=,<>}.
Notice that the language does not have recursion. However, the language is

rich enough to express nontrivial programs such as counter, memoisation, and
profiling programs.

We would use the following syntactic abbreviations.

• let val x = M in N ≡ (λx:σ.N)M

• let fun f x = M in N ≡ let val f = (λx:σ.M) in N end

where f is not free in M .

• M ;N≡ (λx:σ.N)M , x not free in N .

We define loc(M) as the free locations that occur in M . The type system
is a simple extension of the type system of simply typed lambda calculus. The
extensions are rules for handling constants, conditional, integer operations and
comparisons, and reference operations. The type system is shown in Figure 3.1.
We use the following notation for the type system. The variable b ranges over
boolean literals and a ranges over integer literals. The variable ⊕ in M1 ⊕ M2

ranges over {+,-,*} and the variable < in M1 <M2 ranges over {<,>,=,<=,>=,<>}.
Note that the symbol ⊕ is also used for patching type environments (see the
typing rules for function abstraction).

The type system of iML inherits properties satisfied by the type system of
RML. In particular, we have the following from [Sta94].

Fact 3.1.1.

1. If Γ ` M : σ then the type σ is unique.
2. If Γ ` M : σ then Γ⊕Γ′ ` M : σ.

3.1.2 Operational Semantics

At the operational level, we need to distinguish between expressions and canonical
values.

34

Γ ` x:σ
x : σ ∈ Γ

Γ ` l : int ref

Γ ` () : unit Γ ` b : bool Γ ` a : int

Γ ` M1 : bool Γ ` M2 : σ Γ ` M3 : σ
Γ ` if M1 then M2 else M3 :σ

Γ ` M1 : int Γ ` M2 : int
Γ ` M1 ⊕ M2 : int

Γ ` M1 : int Γ ` M2 : int
Γ ` M1 < M2 : bool

Γ ` M : int
Γ ` ref M : int ref

Γ ` M : int ref

Γ ` !M : int
Γ ` M : int ref Γ ` N : int

Γ ` M := N : unit

Γ⊕{x : σ} ` M : τ
Γ ` λx : σ.M : σ → τ

Γ ` M : σ → τ Γ ` N : σ
Γ ` MN : τ

Figure 3.1: Type system of iML

Definition 3.1.2.

M is in canonical form iff M is a variable, a location, a ground constant, or a
function abstraction.

Expσ(Γ) = {M | Γ ` M : σ}
Canσ(Γ) = {C ∈ Expσ(Γ) | C canonical}
Expσ = Expσ({})
Canσ = Canσ({})
Exp =

⋃
{Expσ | σ a type}

Can =
⋃
{Canσ | σ a type}

We define a big-step reduction semantics of the form

s,M ⇓ C,s′

where M ∈ Expσ and C ∈ Canσ. It says that starting from a state s, the term
M reduces to a canonical value C with the final state s′. We only consider well
formed judgements, where loc(M) ⊆ (dom s) and loc(C) ⊆ (dom s′).

The operational semantics is shown in Figure 3.2. The definition is essentially
taken from the operational semantics for RML[Sta94]. For binary operations on

35

integers we give a definition for +. The others (including tests on integers) are
similarly defined.

s,C ⇓ C,s

s,M1 ⇓ true,s1 s1,M2 ⇓ C,s2

s,if M1 then M2 else M3 ⇓ C,s2

s,M1 ⇓ false,s1 s1,M3 ⇓ C,s2

s,if M1 then M2 else M3 ⇓ C,s2

s,M1 ⇓ a,s1 s1,M2 ⇓ a′,s2

s,M1 + M2 ⇓ a+a′,s2

s,M ⇓ n,s′ l ∈/ dom s′

s,ref M ⇓ l,s′[l 7→ n]

s,M ⇓ l,s′
s,!M ⇓ s′(l),s′

s,M ⇓ l,s1 s1,N ⇓ n,s2

s,M:=N ⇓ (),s2[l 7→n]

s,M ⇓ λx:σ.M ′,s1 s1,N ⇓ C,s2 s2,M ′[C/x] ⇓ C ′,s3

s,MN ⇓ C ′,s3

Figure 3.2: Operational semantics of iML

Notice that in function application rule, N has to be reduced to a canonical
value before it can be applied.

Proposition 3.1.3. If s,M ⇓ C,s′ then dom s ⊆ dom s′.

Proof: By induction on the structure of the derivation of the evaluation judge-
ment.

Although iML lacks a primitive function =int ref for comparing locations,
such function is definable in iML (this is pointed to by McCusker[McC97a]). The
following is the definition.

fun eqRef x y =

let

val tmp = !x

val = x := !y + 1

val isAliased = if ((!x)=(!y)) then true

else false

in

(x := tmp; isAliased)

end

36

The trick is that we use aliasing property for detecting whether two pointers
are the same. If they are aliased, then a value change in one of them will be
reflected in the other. This method does not work for unit ref.

Proposition 3.1.4. eqRef satisfies the following rules.

s,M1 ⇓ l,s1 s1,M2 ⇓ l,s2

s,eqRef M1 M2 ⇓ true,s2

s,M1 ⇓ l,s1 s1,M2 ⇓ k,s2

s,eqRef M1 M2 ⇓ false,s2
l 6= k

Hence iML and RML are interdefinable.
iML inherits the following two properties from RML. The first property says

that unreachable stores do not affect the reduction. The second property says
that evaluations of terms always terminate.

Fact 3.1.5.
1. For all s ∈ S and M ∈ Expσ s.t. loc(M) ⊆ (dom s) :
s,M ⇓ C,s′ iff s⊕s′′,M ⇓ C,s′⊕s′′

2. For all s ∈ S and M ∈ Expσ s.t. loc(M) ⊆ (dom s) :
there exist s′ ∈ S, C ∈ Canσ s.t. (dom s) ⊆ (dom s′) ∧ s,M ⇓ C,s′.

3.2 Operational characterisation

This section gives an operational characterisation of indistinguishable throughout
a reachable set Q and being constant throughout Q. The definitions are very
much similar to the ones in Chapter 2, but here we skip the motivational part.
Moreover, the operational definitions are defined over all type expressions.

We define two families of binary logical relations parameterised over type
expressions and reachable sets.

V-op-indistinguishable throughoutσ Q ⊆ Canσ × Canσ

E-op-indistinguishable throughoutσ Q ⊆ Expσ × Expσ

Figure 3.3 shows their definitions. It is instructive to compare the definitions
with their denotational counterparts in Chapter 2. The definitions for values are
the same. The definition of E-op-indistinguishable throughout is a rewriting of
the definition of C-indistinguishable throughout at the operational setting.

Figure 3.4 shows the operational characterisation of being constant throughout
Q. We have the following properties.

37

Proposition 3.2.1.

1. The relation V-op-indistinguishable throughout Q is a partial equivalence rela-
tion over Canσ.
2. The relation E-op-indistinguishable throughout Q is a partial equivalence rela-
tion over Expσ.

(),() V-op-indistinguishable throughoutunit Q iff true
a, b V-op-indistinguishable throughouto Q iff a = b o ∈ {int, bool}
l, k V-op-indistinguishable throughoutref Q iff

forall si, sj ∈ Q : si(l) = sj(k)

V1, V2 V-op-indistinguishable throughoutσ→ τ Q iff
forall W1,W2 ∈ Canσ :
W1,W2 V-op-indistinguishable throughoutσ Q

implies (V1 W1), (V2 W2) E-op-indistinguishable throughoutτ Q

M1,M2 E-op-indistinguishable throughoutσ Q iff
forall si, sj ∈ Q, V1, V2 ∈ Canσ, s′i, s′j ∈ S :
si,M1 ⇓ V1, s

′
i

sj,M2 ⇓ V2, s′j

}
implies

s′i, s
′
j ∈ Q ∧ V1, V2 V-op-indistinguishable throughoutσ Q

Figure 3.3: Operational definition of {V-op-indistinguishable throughoutσ Q} and
{E-op-indistinguishable throughoutσ Q}.

C V-op-const-throughoutσ Q iff C,C V-op-indistinguishable throughoutσ Q
M E-op-const-throughoutσ Q iff M,M E-op-indistinguishable throughoutσ Q

Figure 3.4: Operational definition of {V-op-const throughoutσ Q} and {E-op-const
throughoutσ Q}.

3.3 Discussion and example

The definition of V-op-indistinguishable throughout Q in Figure 3.3 is similar in
spirit to the operational logical relation method of reasoning about names in nu-
calculus [Sta94]. The latter method uses the structure partial bijection R : s1
 s2

(where s1 and s2 are collections of names) for relating the local names of two
terms. There are two essential differences. Firstly, [Sta94] uses partial bijection
R : s1
 s2 whereas we use reachable set. R is used to relate the names in s1

38

with names in s2. This structure is used for comparing two names, where name
equality is defined as:

n1, n2 V-equalref R ⇐⇒ R(n1, n2)

Secondly, the difference lies in comparing expressions. The definition of ex-
pression equality in nu-calculus is defined as:

M1,M2 E-equalσ R ⇐⇒
∃R′ : s′1
 s′2, C1 ∈ Canσ(s1 ⊕ s′1), C2 ∈ Canσ(s2 ⊕ s′2).
s1,M1 ⇓ C1, (s1 ⊕ s′1) ∧
s2,M2 ⇓ C2, (s2 ⊕ s′2) ∧
C1, C2 V-equalσ (R⊕R′)

The definition does not assert that the after states need to satisfy an invariant,
whereas our definition explicitly mentions this.

It should be emphasised that the above comparison is sketchy since we are
comparing a language with states (of integer values) with a language with names.

It is also instructive to compare Definition in Figure 3.3 with its denotational
counterpart in Chapter 2. However, since Chapter 2 does not give a denotational
definition of iML, we can only compare them at the example level.

The semi formal technique outlined on page 30 is also applicable at the oper-
ational setting. We illustrate this by redoing the analysis in Example 2.2.24 on
page 31. Let M be a term defined in Example 2.2.24, s0 be the initial state when
we reduce M. The reduction process is:

s0,M ⇓ C,s0[lx 7→ 0]

where
lx /∈ dom s0

C= λn.if (isEven(!lx)) then (lx := !lx+2; n) else (!lx).

Consider a reachable set < Q, s0[lx 7→ 0] > defined in 2.3 on page 32. We want to
show C,id V-op-indistinguishable throughoutint→int Q. Consider an arbitrary
integer literal n, si, sj ∈ Q. We have

si,C n ⇓ n,si[lx 7→ si(lx) + 2]

sj,id n ⇓ n,sj

The after state si[lx 7→ si(lx)+2] is inQ; therefore (C n),(id n) E-op-indistinguishable
throughoutint Q.

39

The next chapter gives a denotational setting for the notion of indistinguishab-
ility and being constant with respect to an invariant, where an invariant in mod-
elled by a transition system.

40

Chapter 4

Semantics

Section 4.1 gives a background in giving a denotational semantics of functional
language with states and defines a store-semantics model for iML. Section 4.2
defines the structure transition system for expressing the notion of computa-
tional invariant. The structure is a generalisation of the structure reachable set
defined in Chapter 2. Section 4.3 gives a method and the formal definition of
being constant throughout a transition system. This definition is good enough
for analysing terms with flat stores. Section 4.4 gives another definition which
can handle the freedom of allocating fresh locations in new. The definition of
indistinguishability is parameterised over pairs of transition systems because we
need to take the freedom of choosing fresh locations into accounts. It gives a
method, the formal definition, and an example that the meanings of (ref 8)

and ((ref 7);(ref 8)) are indistinguishable within R1, R2, for a suitable pair
of (R1, R2).

4.1 A semantics for iML

The beauty of strongly typed, pure functional languages is that they have a
simple and clear semantics: types are viewed as sets and programs are viewed
as functions. The notion of program composition can be explained in terms of
the usual mathematical notion of function applications. This high level view
of programs is what makes functional languages effective tools in programming
[Hug89, Hen86]. The idea that programs can be viewed statically as mathematical
functions implies that we can use the abundant mathematical tools for reasoning
about programs. In particular, we can replace equals with equals. Referential
transparency guides programmers to avoid bugs in the coding process.

Adding novel features to the language still retains this ‘programs-as-functions’
view. With the addition of recursion, there is an adequate model that interprets

41

types as complete partial orders and programs as continuous functions (see [Plo83]
for a more detailed exposition of this issue.) These continuous functions are still
functions in the set theoretic sense, and program compositions are still the usual
function compositions. At the syntactic level, reasoning about recursive programs
can be done by viewing them as recursive equations [Tur82]. An additional tech-
nique for reasoning about recursive programs is by using induction. This can be
done at the denotational level [Pau87] or syntactic level [BW88].

With the addition of references and assignments, new complexities are intro-
duced that are difficult to resolve elegantly. It is more difficult to reason about
programs, to teach the language to students, and to give a simple and elegant
denotational model. The following are the explanations.

4.1.1 Issues in imperative functional languages

The equality of the expanded language is not a conservative extension of the
equality of the pure fragment. Consider the following example by [RV95].

fun M1 x f g = ((f x);(g x))

fun M2 x f g = ((f x);(f x);(g x))

M1 takes a value x and two functions f and g and applies f to x and g to
x. M2 is similar to M1, but it does (f x) twice before doing (g x). In the pure
fragment of ML, M1 and M2 are observationally equivalent. When we extend the
language to include ref, !, and :=, there is a context that can distinguish them.
The following is such a context expressed as an ML function.

fun myCtxt M =

let

val r = ref 0

fun inc x = (r := !r + 1)

fun lkUp x = !r

in

M () inc lkUp

end

The application of (myCtxt M1) returns 1 whereas (myCtxt M2) returns 2.
The above example suggests that now we have to take care of its intensional

behaviour as well as its extensional one. The program (x := !x + 1; 5) is not
the same as the program 5 although they always yield the same value.

42

It is more difficult to give a consistent presentation to students on the nature of
programs in the context of an imperative functional language. In ML courses (for
example, [Gil97]), students are introduced to the pure ML fragment and are told
that programs are functions. But when we introduce references and assigments,
we need to tell them that programs are actually functions that take input states
and produce output states. This shift of perception may create ambiguity and
confusion among students: which one is the actual meaning of a program?

Another complication is the interactions between higher order functions and
imperative features. We have Hoare Logic [Hoa69] for reasoning about While
Language (the logic can be extended to include first order functional languages
with assigment) but threre is no widely accepted method for reasoning about
higher order functions in terms of their pre-postcondition behaviours. The most
substantial work on related to this is Reynolds’ Specification Logic [Rey81a] for
reasoning about Idealized Algol programs. No similar logics for ML have been
developed.

The ref construct in ML can be used to code name generations and local
variables (for some examples, see [Sta94], p.102-105). The price we have to pay
is that it is difficult to give a simple and elegant semantics.

If we want to retain the ‘programs-as-functions’ view, then we have to view
a program as a function which also takes an input state and produces an output
state. The states are implicit arguments. The existence of implicit arguments
makes it cumbersome to define program composition. At the denotational level,
a composition of two programs is no longer just a function composition : we have
to ‘convert’ the domain and codomain of the interpretations into an appropriate
structure before composing them.

The following is our approach to giving a semantics of an ML-like language for
studying the notion of being constant with respect to a computational invariant.

4.1.2 Preliminaries in giving semantics of ML-like lan-
guages

4.1.2.1 Store semantics

A simple language that deals with assignment is While Language [Hoa69]. With
the While Language the central type in the language is comm. Its interpretation
is simply a space of state transformers.

S = L→V
[[comm]] = S→S

43

Note that L is a set of locations and V is a set of storable values.
In the case of a while language with higher order features, the essential idea

does not change. We have a notion of an L-value, which is a location l in L and
an R-value which is a storable value v in V . The meaning of a reference is a
location l. Assignment on l changes the current store s in S by modifying the
value pointed by l. Notice that an assignment does not change the location but
the value pointed to by the location.

This idea is explained in [Str73]. The idea can be used in a number of variants
of imperative functional languages including Idealized Algol and ML.

4.1.2.2 Monad

If we want to retain the programs-as-functions view of an imperative functional
language, there is an issue in how to compose programs, since we have to take
care of the implicit state arguments before composing their interpretations. This
mismatch of the domain-codomain of the interpretations can be solved by having
separate notions of values and computations [Mog89]. The idea is that a compu-
tation is a value with some other information (usually intensional information).
In our case, a side effect is the additional information. A program in general is
no longer a value, but rather a computation. A program of function type is a
computation that accepts a value and produces a computation. It cannot accept
a computation because only values can be passed.

The separation of values and computations is explicitly expressed in terms of
monad structure [Man76, Mog89, Cen96, Fil96]. The relevant feature of a monad
structure is that it has an endofunctor T which is used for expressing computation
type and a special arrow letA,B : TBA×TA→ TB for composing a computation
of type TA with a value of type A→ TB. TA is a space of computations which
return elements of type A. TBA is a function space that takes a value space A to
a computation space TB. The behaviour of let is that it takes f in TBA and m

in TA, evaluates m to a value of type A and applies f to the result while taking
care of the side effect produced in evaluating m.

The formal definition of the structure that we need can be described in terms
of strong monad. The following definition is adopted from [Sta94].

Definition 4.1.1. A strong monad over a cartesian closed category C consists
of an endofunctor T : C → C together with a unit natural transformation η :
1→ T and a lift operating taking f : A×B → TC to f∗ : A×TB→ TC such that

1. (ηB◦sndA,B)∗ = sndA,TB

44

2. f∗◦(idA × ηB) = f

3. g∗◦ < fstA,TB, f∗ >= (g∗◦ < fstA,B , f >)∗

whenever f : A×B → TC and g : A× C → TD.

The above structure is equivalent to Kleisli triple with tensorial strength.
This structure gives rise to a computational metalanguage λC . Basically, λC

is a simply typed lambda calculus augmented with let construct for dealing with
computations. The language λC provides a syntactic framework for the notion
of values and computations. It is augmented with an equational logic which is
sound with respect to the categorical structure [Mog89].

4.1.2.3 The appropriate structure

We will use the side effect functor over the category Set of sets for defining the
semantics of iML. The reasons are twofold: firstly, our focus is on characterising
applicativity and we want to put most of our efforts in this area. The best way is
to use a simple semantics and explain the core notions (which include the notion
of computational invariant and being constant) in terms of this simple notation.
There are other more sophisticated structures such as functor categories [Sta94]
and games models1[AM97] which give full abstraction results at least for ground
types. Our approach in using sets and functions for modelling types and programs
does not score well in full abstraction issue, but it is simple to understand.

The second reason is that we are analysing the notion of being constant with
respect to a computational invariant R. In our setting, R is a transition system
used for expressing computational constraints. It is not clear how to construct
such notions when we are working in functor category. In the game semantics
model, the situation is less clear. For example, the notion of pre-postcondition
in game semantics is more complicated than the store-semantics one [McC97b].

4.1.3 A denotational semantics for iML

This section describes the denotational semantics that we use for the purpose of
studying the notion of being constant with respect to a computational invariant.
The nature of the semantics is a store semantics [Str73, Sto77] using the category
Set of sets and functions structured in a monadic way [Mog89].

1The language has a construct makevar : (unit→int)→(int→unit)→int ref for creating
new ‘variable objects’.

45

The method is a standard monadic method of giving an interpretation function
of a programming language.

iML
([])

−−−−−→CMLiML
[[]]

−−−−−→(T, η, ∗) (4.1)

First we define a computational metalanguage CMLiML which is rich enough to
interpret constructs in iML. Then we define a model (T, η, ∗) for CMLiML, where
T is the side effect functor over Set . Then we define the interpretation [[]] from
CMLiML to the model and the interpretation ([]) from iML to CMLiML. We would
also use [[]] to denote the composition of the arrows in (4.1). An exposition of
this method for general notions of computation is provided in Appendix A.

The following subsections describes the details of the steps.

4.1.3.1 Metalanguage CMLiML

The type expressions of the metalanguage are defined as:
τ ::= int | unit | bool | int ref | σ → τ | Tσ.

The definition is similar with the definition of type expressions for iML (see
Chapter 3, page 33), but here we have an additional construct Tσ for expressiong
computations of type σ. A computation not only produces a values but also may
create side effects.

The terms of CMLiML is the terms of the computational metalanguage λC ex-
tended with the necessary constructs for interpreting iML. As well as conditional
and arithmetical constructs, an important set of constructs are new, lookup, and
update. These are constructs for intrepreting location allocations, dereferencings,
and assignments in iML.

M ::= x variable
| () | n | true | false basic constants
| cond(M1,M2,M3) conditional
| plus(M1,M2) | ... operations on integers
| <(M1,M2) | ... tests on integers
| new(M) new reference
| lookup(M) lookup
| update(M ,N) assignment
| λx:σ.M function abstraction
| MN function application
| [M] value as computation
| let x⇐M in N sequential computation

46

The intuitive meaning of let x⇐M in N is that we first evaluate M to a
value v, take any side effects created into account, then evaluate N in a context
where x has value v. The constructs new, lookup, and update behave like ref,
!, and := in iML.

The type system is presented in Figure 4.1. Notice that function application
rule is the usual one as in pure functional languages. On the other hand, we have
‘let’ application which, when applied, has a computation type.

Γ ` x : σ
x : σ∈ Γ

Γ ` () : unit

Γ ` a : int Γ ` b : bool

Γ ` M1 : bool Γ ` M2 : σ Γ ` M3 : σ
Γ ` cond(M1,M2,M3) : σ

Γ ` M1 : int Γ ` M2 : int
Γ ` plus(M1,M2) : int

Γ ` M1 : int Γ ` M2 : int
Γ ` <(M1,M2) : bool

Γ ` M : int
Γ ` new(M) : T (int ref)

Γ ` M : int ref

Γ ` lookup(M) : Tint

Γ ` M : int ref Γ ` N : int
Γ ` update(M,N) : Tunit

Γ, x : σ ` M : τ
Γ ` λx : σ.M : σ→τ

Γ ` M : σ→τ Γ ` N : σ
Γ ` MN : τ

Γ ` M : σ
Γ ` [M] : Tσ

Γ ` M : Tσ Γ, x : σ ` N : Tτ
Γ ` let x⇐M in N : Tτ

Figure 4.1: Type system for CMLiML

The computational metalanguage CMLiML is not new. It is essentially the
computational metalanguage defined for Reduced ML in [Sta94]. The only sig-
nificant difference is here new takes an integer expression and yields T (int ref)
whereas in [Sta94] new has the type T (int ref). We decide to use the former
definition to avoid dealing with a fixed initial value.

47

4.1.3.2 Store model for CMLiML

Definition 4.1.1 on page 44 gives a general framework for modelling computations.
This subsection presents a particular model based on sets and functions. It is
essentially the traditional store semantics models in monadic setting. At the
categorical level what we need is a structure that satisfies Definition 4.1.2.

Definition 4.1.2. The categorical model consists of a category C such that:
a. It is cartesian closed.
b. It has a strong monad T : C→C.

Since CMLiML has a mechanism for allocating a new reference (new), we would
need a semantical counterpart new for interpreting it. We would define new in
terms of a deterministic function Select ∈ S → L which selects a fresh location
in a given store. The following is the formal definition of a selection function.

Definition 4.1.3. A function Select ∈ S → L is a selection function iff ∀s ∈
S.Select(s)∈/ dom s.

Our set theoretical model MSelect is indexed over selection functions. Formally,
the interpretation function [[]]Select is also indexed over selection functions. When
the selection function is clear from context, we would omit the subscript.

Let Select be a selection function. A model MSelect is the following.

N = {0, 1, 2, ...}
1 = {∗}
Also see Definition 2.2.1
on page 23.

Figure 4.2: Primitive sets for semantics of iML

• The category is the category of sets and functions Set . In particular, we are
interested in the set of natural numbers, the singleton set, a countable set
of locations, and a set of stores (see Figure 4.2).

• The strong monad is the standard side effect monad defined in Figure 4.3.
T is the side effect constructor. An element of TA is a computation that
takes the current state and produces an updated state and a value of type
A. The function η is indexed by the set A. It is a function that converts
values into computations. The lifting ∗ operation enables us to interpret
compositions of iML terms.

48

TA = S → S ×A

ηA : A→ TA
ηA v s = (s, v)

f : A×B → TC
f∗ : A× TB → TC
f∗ (a,m) s = let

(s1, v) = m s
in
f (a, v) s1

end

Figure 4.3: Kleisli structure for side effect monad

• We are interested in the following functions in the category.
condA : B × A× A→A
plus : N ×N→N
lt : N ×N→N
new : N→TL
lookup : L→TN
update : L ×N→T1

where their definitions are explained below.
cond(true,a,b) = a

cond(false,a,b) = b

plus = the usual addition operation
lt = the usual less-than operation

new n s = let l = Select(s)
in (s[l 7→n],l)
end

lookup l s = (s,s(l))
update (l,n) s = (s,[l 7→n],∗)

Remark: We can check thatMSelect is a CCC with a strong monad. Throughout
the rest of the thesis, we fix a selection function Select for the interpretation
function [[]].

[Sta94] has a categorical model that captures many essential aspects of names
in iML. The model gives rise to the same computational metalanguage CMLiML

49

(see Chapter 4), but it induces a stronger equational logic which can equate some
additional programs which use references.

4.1.3.3 Interpreting CMLiML

The interpretation of CMLiML into the store model is quite standard. The fol-
lowing is the interpretation of the type expressions.

[[int]] = N
[[unit]] = 1
[[bool]] = B

[[int ref]] = L
[[σ→τ]] = [[σ]]⇒[[τ]]

[[Tσ]] = T [[σ]]

Where B = {true, false}. A context Γ= {x1 : σ1, ...xn : σn} is interpreted
as the product [[σ1]]× ...× [[σn]]. A term in context Γ ` M :σ is interpreted as a
morphism [[Γ]] m−→[[σ]]. The rules for interpreting CMLiML are given below.

Γ ` x:σ
7→

[[Γ]] πx−→[[σ]]

Γ ` () : unit
7→

[[Γ]] !−→1

Γ ` M1 : bool Γ ` M2 : σ Γ ` M3 : σ
Γ ` cond(M1,M2,M3) :σ

7→ [[Γ]] b−→B [[Γ]] m−→[[σ]] [[Γ]] n−→[[σ]]

[[Γ]]
<b,m,n>−−−−−→B × [[σ]]× [[σ]]

cond[[σ]]−−−−→[[σ]]

Γ ` M1 : int Γ ` M2 : int
Γ ` plus(M1,M2) : int

7→ [[Γ]] a−→N [[Γ]] b−→N
[[Γ]]

<a,b>−−−→N ×N plus−−→N
Γ ` M1 : int Γ ` M2 : int

Γ ` <(M1,M2) : bool
7→ [[Γ]] a−→N [[Γ]] b−→N

[[Γ]] <a,b>−−−→N ×N lt−→B

Γ ` M : int
Γ ` new(M) :T (int ref)

7→ [[Γ]] m−→N
[[Γ]] m−→N new−−→TL

Γ ` M : int ref

Γ ` lookup(M) : Tint
7→ Γ l−→L

[[Γ]] l−→L lookup−−−→TN
Γ ` M : int ref Γ ` N : int

Γ ` update(M,N) : Tunit
7→ [[Γ]] l−→L [[Γ]] a−→N

[[Γ]]
<l,a>−−−→L×N update−−−→T1

50

Γ,x : σ ` M : τ
Γ ` λx : σ.M : σ → τ

7→ Γ× [[σ]]
f−→[[τ]]

[[Γ]]
curry(f)−−−−→[[σ]]⇒[[τ]]

Γ ` M : σ → τ Γ ` N : σ
Γ ` MN : τ

7→ [[Γ]] f−→[[σ]]⇒[[τ]] [[Γ]] x−→[[σ]]

[[Γ]]
fx−→[[τ]]

Γ ` M : σ
Γ ` [M] : Tσ

7→ [[Γ]] x−→[[σ]]

[[Γ]] x−→[[σ]]
η[[σ]]−−→T [[σ]]

Γ ` M : Tσ Γ,x : σ ` N : Tτ
Γ ` let x⇐M in N : τ

7→ [[Γ]] m−→T [[σ]] [[Γ]] n−→T [[τ]]

[[Γ]] <1,m>−−−−→[[Γ]]× T [[σ]] n
∗
−→T [[τ]]

4.1.3.4 Interpreting iML

As in the previous section, there are three steps in interpreting the language:
interpreting type expressions, interpreting type environments, and interpreting
iML terms.

The interpretation of type expressions is almost identical except for function
types, where the codomain is of computation type. This is the case because at
the level of CMLiML we want to make the notion of computation explicit.

([int]) = int

([unit]) = unit

([bool]) = bool

([int ref]) = int ref

([σ→τ]) = ([σ]) → T ([τ])

The interpretation of the type environment Γ = {x1 : σ1, ..., xn : σn} is done in a
standard way.

([Γ]) = {x1 : ([σ1]), ..., xn : ([σn])}

iML terms are interpreted directly into CMLiML terms. The interpretation is
divided into interpreting iML canonical forms (denoted by | | : Can → [[σ]]) and
interpreting iML expressions (denoted by ([]) : Exp→ T [[σ]]).

51

Canonical forms:

| x | = x

| a | = a

| l | = l

| λx : σ.M | = λx : ([σ]).([M])

where the variable l ranges over locations.
Expressions:

([C]) = [| C |]
([if M1 then M2 else M3]) = let x = ([M1]) in cond(x,([M2]),([M3]))

([M1 + M2]) = let x = ([M1]) in let y = ([M2]) in [plus(x,y)]
([M1 < M2]) = let x = ([M1]) in let y = ([M2]) in [<(x,y)]

([ref M]) = let x = ([M]) in new(x)
([!M]) = let l = ([M]) in lookup(l)

([M := N]) = let l = ([M]) in let x = ([N]) in update(l,x)
([MN]) = let f = ([M]) in let x = ([N]) in f x

Note that the [] in [| C |] denotes a CMLiML construct lifting a value to a
computation (see page 46).

The translation ([]) is adequate with respect to the type systems. Formally,
it is expressed by Proposition 4.1.4

Proposition 4.1.4. For all iML term M ,
Γ ` M : σ iff ([Γ])`([M]) : T ([σ]).

Proof: By induction over the structure of the type derivation of M .

4.2 Computational invariant

We aim to study constant computations in denotational setting. Since our model
defined in the previous section is a simple sets and functions model, it does not
capture a lot of computational aspects of programs2. In terms of side effects, it
does not give a structure for distinguishing constant programs and nonconstant
programs. As an explanation, consider the following iML program:

val M = let

val x = ref 0

in

λn. x:=!x+2; if even(!x) then n

else !x

end

2For example, it is not fully abstract at first order types.

52

We are interested in the interpretation m of M. Below we give the typing of m.

m = [[M]] ∈ T [[int→int]]

∈ S→S×(N→TN)

The question we like to ask is: in what sense M and m are constant.
From the computation point of view the program M behaves like an identity

program id(where id is the usual definition of an identity program). Technically,
we say that M ∼= id (read: M is observationally equivalent to id).

At the denotational level, the definition of being constant is more intricate. A
naive definition which requires m to be equal to [[id]] (call it id) is too restrictive.
In fact, m is not equal to id since they differ on how they process the current
state.

This suggests that we need an additional structure; one that enables us to
assert that m is constant and is equal to id in some sense.

Let us consider a general case of a function f∈A→TB and see in what sense
f can be considered to have a constant computation behaviour. We can view f

as its uncurried version
f ∈ S×A→S×B.

This says that the behaviour of the input of f not only depends on the input
(of type A), but also on the current state3. Moreover, the output of f is a pair
of an after-state and an output value (of type B), but the value bindable by
programmers are only the output value4.

A series of operations will induce a transition system on states with the initial
state of the transition system being the initial state of the series. We can also
consider a transition system induced by all possible series of operations involving
f .

Going back to our earlier example, if we let (s′, f) = m s, and let lx the local
variable in f , then we know that f preserves the evenness of x in the sense that

∀s.if (s(lx)) is even then ((f(s, n))1 lx) is even.

Moreover, since we know that lx is initialised to 0, the relevant transition
system R is one that starts with lx mapped to 0 and preserves the evenness of lx.
We can express R as follows:

T (s, s′) ⇐⇒ s(lx) + 2 = s′(lx)

R(s, s′) ⇐⇒ T ∗([lx 7→0], s) ∧ T ∗(s, s′) (Defn-R)

3Notice that programmers have a restricted access to modify the current state.
4In other words, programmers cannot directly observe the after-state.

53

Where T ∗ is the transitive reflexive closure of T . The assertion T ∗([lx 7→0], s)
means that s is reachable from the state [lx 7→0] via T .5

Let (s2, fid) = id s. We will use the uncurried version of fid. Now we can have
a definition for asserting f and fid equivalent in the following sense:

a. for all s∈dom R; for all n∈N :
R(s, (f (s, n))1) ∧ R(s, (fid (s, n))1)

b. for all s ∈dom R; for all n∈N :
(f (s, n))2 = (fid (s, n))2

Assertion (a) says that each of the input-output pairs of states of f and fid
are related by R. Assertion (b) says that the bindable (or observable) outputs of
f and fid always match. Notice that these assertions are quantified over ‘possible
states in computation’ which is expressed by dom R.

The transition system R defined in (Defn-R) also has a way of expressing the
fact that f is constant in the following sense:

Let s ∈ dom R. Let (s1, k) = f (s, n). Consider any s2 such that R(s1, s2).
Let (s3, k2) = f (s2, n). Then k2 = k.

Intuitively it says that after evaluating f(s, n) we get (s1, k). If f is part of
a big computation, the computation may do some other operations (which may
have side effects) before calling f the next time. Supposing the computation
creates side effects by changing s1 into s2, and provided s1 is related to s2 via R,
then the input-output behaviour of f the next time it is called is the same as the
input-output behaviour of f the last time it is called.

In effect, the transition system R gives the context a scope for modifying the
current states within the boundary of R. A series of computation which uses f
will still maintain the property that f is constant as long as each state transition
in the computation satisfies R. In this respect, we also call R computational
invariant.

The purpose of a transition system serves as a context in which we execute an
operation. In effect, what we are doing is we observe the behaviour of an operation
only with respect to a particular or a class of contexts. There are different ways
of choosing the structures of contexts, most of them are at the operational level
(for example, see [Fel87, MT92, PS98] for definitions of evaluation contexts). We

5A bigger transition relation R′ ⊇ R is also applicable:

R′(s, s′) ⇐⇒ T ∗([lx 7→0], s) ∧ T ∗([lx 7→0], s′)

54

choose to use transition systems because we are interested in the historical effects
of a series of operations.

The following is a standard definition of transition system (also called trans-
ition relation) adopted from [Sif82b].

Definition 4.2.1. A transition system R is a pair (S,→), where S is a set of
states and → is a nonempty binary relation on S.

We view the states of a transition system as memory stores and the transition
→ as the possible store changes that we are interested in. s → s′ means it is
possible for the state s to be updated into s′. Another terminology says that s′

is reachable from s. We use R(s, s′) to denote s → s′.
We use the following notations.

dom R = {s∈S | ∃s′ ∈ S.R(s, s′)}
ran R = {s′∈S | ∃s ∈ S.R(s, s′)}.

We call a transition sytem R regular if R is reflexive on its domain, transitive,
and ran R ⊆ dom R. From now on we only consider regular transition systems.

One useful aspect of transition system is that they can capture the notion of
reachable states. Given a transition system R and a state s∈S, we can define a
notion of reachable states:

Definition 4.2.2. reachableRs = {s′ ∈ S | R(s, s′)}

When it is clear from context, we would omit the superscript R. Sometimes in the
beginning of a computation we have little information about how the computation
would behave — in particular how it would behave to the current store. As the
computation progresses, we gain more information about the computation and
could give a more determined characteristics about the computation. This is
the case when a program creates a side effect by allocating and initialising a new
reference. As the definition of new on page 49 shows, there is a choice in picking a
new location. Such a computation needs to be analysed in a more general context
in the beginning of the computation and gradually the context would narrow down
to the possible relevant transitions as the computation goes along. This means
before the allocation we do not know which new location would be allocated and
we should start with a more general transition relation, and after the allocation
we can narrow down our transition relation into the relevant possible paths.

We define the concept of narrowing down or restricting a transition relation
R with respects to a set of states A ⊆ S.

55

Definition 4.2.3. A / R = {(s, s′) ∈ R | s ∈ A}

We have the following proposition.

Proposition 4.2.4. dom (A / R) ⊆ A

Notice that the converse is not true. However, it is true when A ⊆ dom R.

Proposition 4.2.5. If A ⊆ dom R then dom (A / R) = A.

The last two propositions are special cases of the following:

Proposition 4.2.6. Let R′ = A/ R. Then we have:
dom R′ = A ∩ dom R.

Proof: ⊆ case: Let x ∈ dom R′. ie. x ∈ dom A/ R. By Proposition 4.2.4, we
have x ∈ A. By the previous result and our assumption, there exists y such that
(x,y) ∈ A ⊆ R. In other words, x ∈ dom R.
⊇ case: Suppose x ∈ A (*1) and x ∈ dom R (*2). By (*2), there exists z such
that (x,z) ∈ R. By the previous result, by (*1), and by the definition of /, we
have (x,z) ∈ A/ R. In other words, x ∈ dom A/ R.

This gives us a useful corollary:

Corollary 4.2.7. Let R′ = (reachables)/ R. Then we have:
dom R′ = (reachables) ∩ dom R.

There are useful properties relating a reachable state with a transitive and
reflexive relation.

Proposition 4.2.8. If R is a transitive and reflexive relation and s ∈ dom R,
then:
reachables/ R is transtive and reflexive.

Proof: (reflexive:) Consider x ∈ dom R′. By Proposition 4.2.7, x ∈ (reachables)∩
dom R. By reflexivity of Rand x ∈ (reachables), we have x ∈ (reachables)/R.
Hence (x,x) ∈ R′.
(transitive:) Consider (x,y) ∈ R′ and (y,z) ∈ R′. By R′ ⊆ R and the transivity
of R, we have (x,z) ∈ R. By x ∈ reachables we have (x,z) ∈ reachables / R.

56

Proposition 4.2.9. If R is regular and s ∈ dom R, then reachables/ R is regular.

4.3 Being constant throughout a transition sys-
tem

4.3.1 Background

The purpose of this section is to give a uniform definition of being constant with
respect to a transition system. The definition should be uniform in the sense that
it is general enough to cover all interpretations of iML terms, but it should also be
simple. Moreover, because our main motivation of the thesis is to find a subset of
iML terms which behave in an applicative way, it is desirable to have a semantic
definition which would easily induce a type system or a reasoning principle about
being-constant. For higher-order functional languages, logical relation [Mit90] is
such a method.

4.3.1.1 Logical relations

A logical relation is a family {Rσ} of typed relations with the relation Rσ→τ for
type σ → τ defined in terms of the relations Rσ and Rτ . It is defined over typed
applicative structures whose definitions is given below.

Definition 4.3.1 ([Mit90]). A typed applicative structure A for signature Σ is
a tuple

< {Aσ}, {Appσ,τ},Const >

of families of sets and mappings indexed by type expressions over the type con-
stants from Σ. It has the following characteristics:
a. Aσ is a set.
b. Appσ,τ is a function Appσ,τ : Aσ→τ → Aσ → Aτ

c. Const is a mapping from term constants of Σ to elements of the appropriate
Aσ’s.

The programming language iML can be viewed as a typed applicative structure
with Aσ the set of closed terms of type σ and App the usual program application.

Formally, the definition of binary logical relation over two applicative struc-
tures is the following.

Definition 4.3.2 ([Mit90]). Let A = < {Aσ}, {Appσ,τA },ConstA > and
B = < {Bσ}, {Appσ,τB },ConstB > be applicative structures for some signature Σ.
A logical relation P = {P σ} over A and B is a family of relations indexed by the

57

type expressions over Σ such that:

• P σ ⊆ Aσ ×Bσ for each type σ,

• P σ→τ (f, g) iff ∀x ∈ Aσ.∀y ∈ Bσ.P σ(x, y)⇒ P τ (AppAf x,AppBg y),

• P σ(ConstA(c),ConstB(c)) for every typed constant c:σ of Σ.

The above definition can be adopted to unary predicates by rewriting the
second point as

P σ→τ (f) iff ∀x ∈ Aσ.P σ(x)⇒ P τ(AppAf x).
Notice that we will borrow the idea of the definition but will not strictly use
the above definition since the predicate that we want to define (being-constant
throughout R) does not satisfy the third point. For example, we do not want
to have the assignment operator as being constant for any possible transition
system R. However, the first two points are sufficient for guaranteeing closure
under application when the function and the argument satisfy the predicates.

4.3.1.2 Logical relations on values and computations

The second issue in giving the definition of being constant throughout a transition
system R is to adopt the logical relation method in values-computations setting.
With a term in context Γ `M : τ (where Γ = {x1 : σ1, ..., xn : σn}) is interpreted
as a function [[σ1]]× ...× [[σn]]

m−→T [[τ]], we need to have a family of relations {V σi}
for handling values and a family of relations {Cτ} for handling computations.

To simplify our explanation, consider the case n = 1. Then a logical relation
P σ1→τ which takes m would have the following format:

P σ1→τ (m) iff for all a ∈ [[σ1]] : V σ1(a) ⇒ Cτ(m a).
This is a natural modified definition of logical relation in monadic semantics.

This method is used by [Cen96] for proving adequacy result on a tiny fragment
of ML (TMLE) with exceptions. He defines two approximation relations:

≤σ ⊆ [[σ]]× Canσ
�σ ⊆ T [[τ]]× Expτ

where T is the exception monad, Canσ is the strongly canonical TMLE terms
of type σ, and Expτ is the closed TMLE terms of type τ . A relation m �σ
M means the program M terminates if the mathematical expression m denotes.
Approximation at function type is defined as:

f ≤σ→τ (fn x : σ⇒e) iff f(d)�τ [b/x]e for all d and b such that d ≤σ b

58

and the definition of m �τ e uses the following clause:

if m = val(d), then e b, for some b such that d ≤τ b.

Notice that ≤σ→τ is defined in terms of ≤σ and �τ , and �τ is defined in terms
of ≤τ .

4.3.1.3 Indistinguishability relations

The third issue in giving the definition of being constant throughout a trans-
ition system R is about the need to have another logical relation. In analysing a
computational phenomena, it is natural to define a binary relation for expressing
indistinguishability. In our setting, we are interested in defining a notion of indis-
tinguishability with respect to contexts that satisfy a transition system R. The
purpose of the indistinguishability relation is to equate two denotations a and b

which are not the same at the sets and functions level, but they are observation-
ally indistinguishable within contexts that satisfy a transition system R. When
this is the case, we say a and b are indistinguishable throughout R. We define
a family of indistinguishability relations indexed by type expressions. They are
defined in logical relation fashion.

In the above setting, a constant program with respect to R is one which is
indistinguishable to itself with respect to R.

4.3.2 Definition

Figure 4.4 defines two families of binary relations

{V-indistinguishable throughoutσ R} (4.2)

{C-indistinguishable throughoutσ R} (4.3)

where R is a transition system. The definition is a standard logical relation
definition in value-computation setting. The subtletly lies in the computation
type.

The first condition in m,n C-indistinguishable throughoutσ R says that their
side effects have to satisfy R. The second condition says that their value parts
are V-indistinguishable throughoutσ R when their current states are in dom R.

Note that two locations l and k are V-indistinguishable throughoutref R if
they are either never get allocated throughout R or they are both get allocated
throughout R and they point to the same value.

Figure 4.5 defines the notion of being constant, which is a special case of the
notion of indistinguishability.

59

a, b V-indistinguishable throughoutint R
iff
a = b

l, k V-indistinguishable throughoutref R
iff
forall si, sj ∈ dom R : si(l) = sj(k)

m,n C-indistinguishable throughoutσR
iff
1. forall s ∈ dom R : R(s, (m s)1) ∧ R(s, (n s)1)
2. let A= {(m s)2 | s ∈ dom R} ∪ {(n s)2 | s ∈ dom R}

in assert
forall v, w ∈ A : v, w V-indistinguishable throughoutσ R

end

f, g V-indistinguishable throughoutσ→ τR
iff
forall a, b :

a,b V-indistinguishable throughoutσR
implies

(f a), (g b) C-indistinguishable throughoutτR)

Figure 4.4: {indistinguishable throughoutσ R}. For brevity, we use ref to mean
int ref.

x V-const-throughoutσR
iff
x, x V-indistinguishable throughoutσR

m C-const-throughoutσR
iff
m,m C-indistinguishable throughoutσR

Figure 4.5: {const-throughoutσR}.

60

The definitions in Figure 4.4 and 4.5 are refinements of their counterparts in
Chapter 2. A transition relation R can express a reachable set < Q, s0 > by
setting R = Q × Q. When l, k ∈ L are both defined in Q, Definition 2.2.5 in
Chapter 2 is the same as the definition of l, k V-indistinguishable throughoutref
R in this chapter.

The following shows some properties of the definitions.

Proposition 4.3.3.

1. The relation V-indistinguishable throughoutσ R is a partial equivalence relation
over [[σ]]
2. The relation C-indistinguishable throughoutσ R is a partial equivalence relation
over T [[σ]].

Corollary 4.3.4.

1. Let A = { a ∈ [[σ]] | a V-const-throughoutσ R }. The relation V-indistinguishable
throughoutσ R is an equivalence relation over A.
2. Let A = { a ∈ T [[σ]] | a C-const-throughoutσ R }. The relation C-indistinguishable
throughoutσ R is an equivalence relation over A.

The notion of C-const-throughoutσ R is closed under function application.
Formally,

Corollary 4.3.5.

If f V-const-throughoutσ → τ R and
x V-const-throughoutσ R,

then (f x)C-const-throughoutτ R.

4.3.3 Examples

Example 4.3.6. Example 2.2.23 on page 30 can be easily expressed in our set-
ting. We set R = Q×Q, where Q is defined as (2.2) on page 31.

Example 4.3.7. The iML language can be easily extended to include pairing.
Without loss of rigour, we can assume such construct and define the following
ML program:

val M = let

val x = ref 0

fun f n = x := !x+2; if (even(x)) then n else (!x)

fun g n = x := !x+4; if (even(x)) then (2*n) else (!x)

61

in

(f,g)

end

We will use our semi-formal technique for reasoning about M. The expression
M reduces to a canonical value of pair form.

s,M ⇓ (C1, C2), s[lx 7→ 0]

To say the meaning of (C1, C2) is being-const throughout R amounts to saying
that the meanings of C1 and C2 are being-const throughout R. For R = Q × Q
with Q defined as in the previous example, This is the case.

Example 4.3.8. This example analyses a memoised twice function6. Consider
the following two programs.

fun twice n = 2*n

val mtwice =

let

val x = ref 0

val y = ref (twice 0)

fun f n = if (n = !x) then (!y) else (x:=n; y:= (twice n); !y)

in

f

end

We will use our semi-formal technique for showing twice indistinguishable to
mtwice. Consider a current state s ∈ S. The expression mtwice reduces under s
to the following.

s,mtwice ⇓ C, s[lx 7→ 0][ly 7→ 0]

The denotations of twice and C are the following.

twice = [[twice]]

6A standard example is a memoised factorial function. This is not possible in our framework
since iML does not have recursion.

62

mtwice = [[C]]

twice n s = (s, 2× n)

mtwice n s = if s(lx) = n then (s, s(ly))
else let m = (twice n s[lx 7→ n])

in

(s[lx 7→ n][ly 7→ m],m)
end

Consider Q defined as

Q = {s[lx 7→ n][ly 7→ 2× n] | s ∈ S, n ∈ N}.

LetR = Q×Q. Then we have twice,mtwice V-indistinguishable throughoutint → int

R.

Example 4.3.9. This is a non-example. The definitions in Figure 4.4 and 4.5
still have limitations in dealing with dynamic allocations. Although the definition
of location indistinguishability is an improvement of its counterpart in Chapter 2,
it still cannot equate the following two programs.

val M = ref 8

val N = ((ref 7);(ref 8))

Let m = [[M]]
n = [[N]]

We cannot find a regular transition system R such that they are indistin-
guishable throughout R. For the proof, consider s ∈ dom R. It is possible to
have (m s) yielding (s[l 7→ 8], l) and (n s) yielding (s[l 7→ 7][k 7→ 8], k). Let
s2 = s[l 7→ 7][k 7→ 8]. Then l and k are not V-indistinguishable throughout R
since they are both defined in s2 and s2 ∈ dom R.

The next section provides a framework towards solving this problem.

63

4.4 Being constant within a transition system

This subsection gives an alternative definitions of being-constant and indistin-
guishable which are defined in previous section (Section 4.3). The purpose of the
alternative definitions is motivated by the need to find a better indistinguishabil-
ity relation which can handle dynamic allocations; in particular it should be able
to handle Example 4.3.9.

4.4.1 Background

The idea of the new definitions lies in utilising the structures in transition systems
for encoding some aspects of dynamic allocations and relevant future states. We
explain the idea in terms of three points below.

• Recall that a transition system R represents the possible state changes that
could occur in a class of contexts. The definition of C-indistinguishable
throughout R in Figure 4.4 is based on quantifying the relevant states over
dom R. This is too strong. Quantifying the behaviour of a location value
produced by a location computation over (dom R) amounts to quantifying
its behaviour relative to all possible states in the computations. A more
appropriate setting is to prevent observing the behaviour of the location
relative to its ‘previous’ states. This means given a location computation
m ∈ S → S × L and a current state s0 ∈ S,

let (s1, l) = m s0

then we are interested in the behaviour of l relative to states that are reach-
able from s1. Notice that this avoids the issue of undefined locations since if
m is the denotation of an iML program, then l is defined in s1 (iML cannot
have a program that generates ‘dangling’ references).

• A transition system can express ‘future possible states reachable from the
current state’7. Continuing the above example, we are only interested in
the behaviour of l over states that are reachable from s1. Hence we can cut
down a transition relation R into a relevant subset.

• Given new has a choice in picking up fresh locations, in comparing two
computations that might generate locations we have to take this issue into
account8. In other words, given two location computations m,n ∈ S →

7This idea is of standard use in concurrency for expressing safety and liveness properties
[Sif82a].

8This is the main reason why the definition in previous section fails to cope with Ex-
ample 4.3.9.

64

S × L and a current state s, the characterisation of indistinguishability for
(m s)2 and (n s)2 have to be compatible with the freedom to choose fresh
locations. We decide to solve this by parameterising the indistinguishability
relation over pairs of transition relations instead of just transition relations.
In this setting, comparing two denotations m and n is done with m ‘living’
in a transition relation R1 and n in R2.

The next section gives the formal definitions.

4.4.2 Definition

Figure 4.6 defines two families of binary relations

{V-indistinguishable withinσ R1, R2} (4.4)

{C-indistinguishable withinσ R1, R2} (4.5)

Where R1, R2 are transition systems. The definition is a standard logical
relation definition in value-computation setting. The definition is similar to in-
distinguishable throughout defined in Figure 4.4.

We would use the notation
(a within R1) indistinguishableσ (b within R2)

to mean a,b indistinguishable withinσ R1,R2.
The general difference between indistinguishable within and indistinguishable

throughout is that we parameterise indistinguishable within over two transition
systems whereas we parameterise indistinguishable throughout only over one trans-
ition system. When we look them in more detail, the difference lies in the ref and
computation cases. l,k V-indistinguishable withinref R1,R2 requires that l has to
be defined in R1 and k has to be defined in R2. The second condition in m,n C-
indistinguishable withinσ R1,R2 says that their value parts are V-indistinguishable
withinref R′1,R

′
2, where R′1 is a subset of transition system R1, whose domain are

states that are reachable from the after state obtained from evaluating m. Sim-
ilarly for R′2.

Figure 4.7 defines the notion of being constant, which is a special case of the
notion of indistinguishability.

4.4.3 Example

We would like to validate the indistinguishability of m and n defined in Ex-
ample 4.3.9. Their meanings are

65

(a within R1) V-indistinguishableint (b within R2)
iff
a = b

(l within R1) V-indistinguishableref (k within R2)
iff
1. l defined-in R1

2. k defined-in R2

3. forall si ∈ dom R1, sj ∈ dom R2 : si(l) = sj(k)

(m within R1) C-indistinguishableσ (n within R2)
iff
forall si ∈ dom R1, sj ∈ dom R2 :
let

(s′i, a) = m si
(s′j, b) = n sj

in assert
1. R1(si, s′i) ∧ R2(sj, s′j)
2. (a within (reachableR1

s′i
/ R1)) V-indistinguishableσ (b within (reachableR2

s′j
/ R2))

end

(f within R1) V-indistinguishableσ→ τ (g within R2)
iff
forall a, b :

(a within R1) V-indistinguishableσ (b within R2)
implies

((f a) within R1) C-indistinguishableτ ((g b) within R2)

Figure 4.6: {indistinguishable withinσ R}. For brevity, we use ref to mean
int ref.

x V-const-withinσR
iff
(x within R) V-indistinguishableσ (x within R)

m C-const-withinσR
iff
(m within R) C-indistinguishableσ (m within R)

Figure 4.7: {const-withinσR}.

66

m s = let l = Select(s)
in

(s[l 7→8], l)
end

n s = let

l = Select(s)
k = Select(s[l 7→7])

in

(s[l 7→7][k 7→8], k)
end

We need a transition system R for accomodating m. The specification is the
following.

R(s, s′) iff

∃l.s(l) = Unused ∧ s′(l) = 8 ∧
∀s′′s.t.R(s′, s′′) : s′′(l) = 8.

Notice that the definition is defined in terms of itself. We would construct such
a transition system below.

s0 is the state where dom s0 = {}
R1 = {(s0, s0[(Select s0)7→8])}
Rn+1 = {(s, s[(Select s)7→8]) | s ∈ ran Rn}

Rω =
∞⋃
n=1

Rn

R = the reflexive and transitive closure of Rω.

We need a transition system R′ for accomodating n. The specification is the
following.

R′(s, s′) iff

∃l, k.s(l) = s(k) = Unused ∧
s′(l) = 7∧s′(k) = 8 ∧
∀s′′s.t.R′(s′, s′′) : s′′(k) = 8.

Such R′ can be defined using previous technique, with the inductive part defined
as:

R1 = {(s0, s0[l 7→7][k 7→8]) | l = Select(s0) ∧ k = Select(s0[l 7→ 7])}
Rn+1 = {(s, s[l 7→7][k 7→8]) | s ∈ ran Rn ∧ l = Select(s) ∧ k = Select(s[l 7→ 7])}.

67

It is straightforward to verify that
(m within R) C-indistinguishableref (n within R′).

Since (dom R)∩(dom R′) = {s0}, we also have
(m within Rt) C-indistinguishableref (n within Rt)

where Rt = R ∪ R′.

4.4.4 Discussion

Notice that l,k V-indistinguishable throughoutref R does not imply (l within R)
V-indistinguishableref (k within R). The following is the sketch of the proof:
consider l, k ∈ L such that
∀s ∈ dom R.s(l) = s(k) = Unused.

Then
l, k V-indistinguishable throughoutref R

but not
l, k V-indistinguishable withinref R,R.

68

Chapter 5

Case study: Queue module

Section 5.1 introduces general concept of abstract data types and modules as a
way for structuring large programs. Section 5.2 describes the basic mechanism of
modules in ML and the use of references in optimising an applicative module. It
describes the issues of giving interpretations to ML modules and characterising
equivalence between two interpretations. Section 5.3 shows three ML implement-
ations of Queue module, two written without references and one written with
references. section 5.4 provides a framework for showing equivalence between a
pure implementation and an imperative implementation of Queue module. The
idea is essentially based on the definition of indistinguishable within defined in
Chapter 4. Section 5.5 gives the formalisation of the framework.

5.1 Background

When our job is to write small and simple programs, a simple programming
language like iML defined in Chapter 3 is sufficient. It is a subset of the core part
of Standard ML [MTH90]; the essence of the language is constructing functions,
composing and applying them. A program is written as a list of functions, readily
to be executed on the terminal.

When we shift from programming small codes into designing and integrat-
ing large systems, a bare typed lambda calculus programming language cannot
support the process well. This is because we need abstractions in building and
understanding large system. The main tool of abstraction is encapsulation —
hiding the unnecessary details of a subsystem and providing an interface which
provides information on the high level behaviour of the subsystem. This interface
is what a programmer needs to know in order to use the system. One can treat it
as a black box, and can pick other black boxes and combine them as one desires.

Enscapsulation is present in many programming language designed for build-

69

ing large, modular systems. For example:

• Modula 2 [Wir77, Wir88] which provides abstract data type (ADT) mech-
anism with its separate interface and implementation files,

• Common Lisp [Ste85, Gab89] which combines functional programming and
object oriented features,

• Object-oriented languages (C++ [Str87], Eiffel [Mey88], Java [GJS97], and
Smalltalk [PW88]) which use attributes, classes, and packages for hiding
local functions and states, and

• ML families (Standard ML [MTH90], New-Jersey ML [AM91], and CAML
[Ler93]) which have sophisticated module mechanisms which include sig-
natures (the interface part), structures (the implementation part), func-
tor (parameterised modules), and type sharing. On top of these they also
handle polymorphism.

One use of encapsulation is in designing packages as independent entities to be
included in libraries ready for use by programs that need them. The purpose of
building libraries is to achieve a high degree of software reusability which implies
cutting down duplicated work.

Modules and encapsulations are used extensively in real life projects. The
following are some case studies on justifying the importance of modules in software
system:

• Multics [CSC72] was a multi-user operating system developed in the 60s.
The high level programming language PL/I was used in implementing the
system which were carefully structured into modules that provided care-
fully controlled interfaces to the users. Out of the 1500 system modules, 250
were written in machine language for implementing the hardware dependent
routines. Only a few modules were rewritten from PL/I to machine language
for optimisation purposes. Some codes which were originally written in ma-
chine language were rewritten in PL/I for increasing their maintainability.
The project was claimed to be a success and the choice of the programming
language was the right one. Recalling their expericence, [CSC72] writes,

Not only has the cost of using a higher level language been accept-
able, but increased maintainability of the software has permitted
more rapid evolution of the system in response to development
ideas as well as user needs.

70

• Ada vs C. [Zei97] compares the development costs of using C and Ada in de-
veloping commercial products. The products (called VADS) were software
development tools for Ada, C, C++, and Ada95. The project started in
March 1983 using C, then used Ada from 1986, and by mid 1991 the size of
the Ada code had equalled the size of the C code. [Zei97] lists key elements
in measuring the the costs of the development. Some of them were the
bug/feature ratio, the training efforts to new programmers, the efforts in
manually controlling the codes to insure that the codes were well behaved,
and the accumulative cost. The resuts showed that Ada performed better
on all the above aspects.

Even designers of specification languages (for example, Extended ML [KST94]
and B-Notation [Abr91]) are aware that they need to have module mechanisms
and ways of providing the high level view of a specification. There has been
significant interest in using type theory [ML86, Luo94] as a general foundational
notation for studying specification notation, implementation notation, modules
and encapsulation (also see [Rus98]), and disciplined programming; the details
are beyond the scope of this thesis.

The idea of encapsulation as a way of defining and implementing abstract
data types (ADTs) is the heart of this section. In an ADT, the implementation
is hidden and invisible from the outside program (the caller). The caller can use
the ADT, but does not know how the ADT is implemented. For example, a stack
abstract data type has emptyStack, push, and pop operations which represent the
usual operations of stacks. Let us assume that the implementation satisfies the
algebraic equations of stack properties. The stack ADT provides these operations
to the users and does not reveal how the stack is actually implemented. The
algebraic properties of the implementation are what the users need. The stack
could be implemented using an array, a list, a pair of lists, or a pointer to a pair
of lists. Because the underlying implementation of the data structure is hidden
from its users, the implementation can easily be changed without affecting the
programs that use it.

The studies of ADTs combine theoretical results of data structures with prac-
tical uses of modular programming. We can partition programming community
into software builders who code efficient algorithms from journals or textbooks
(For example, Algorithm and Data Structure by [AHU87]) and package them as
off-the-shelf utilities, and programmers or analysts who work out the requirements
of system and design the solutions in terms of the existing modules, thus avoiding
thinking about the complexity of the actual implementation of the modules.

71

An abstract data type can provide applicative functions (as in the case of
Stack, Queue, Hash, and finiteSet data types) or state-sensitive functions (as in
the case of Counter datatype — it increments its values whenever it is called).

ADT research has concentrated on applicative packages since they are easily
manipulated and reasoned. The main issues in this case is coding an efficient im-
plementation of an abstract data type and showing that the new implementation
is basically the same as the standard one. These issues are discussed in details in
the following subsections. The abstract data type in question is Queue.

5.2 Modules in ML

This section is about an introduction to ML modules.

5.2.1 Signatures and structures

One main purpose of using ML module is for defining an abstract data type
together with its various operations and concealing the type and the operations
implementation details. The defining process is done with the signature construct
and the implemetation process is done with structure construct. Consider the case
where we want to define a set ADT with the operations emptyset, addset, and
memberset. This example is taken from [Gil97]. In ML, we declare them with
signature construct (see Figure 5.1). It says that we are interested in a module
that contains the type set and operations emptyset, addset, and memberset

(with their appropriate types). It only gives the information at the type level.

signature Set =
sig
type ’’a set
val emptyset : ’’a set
val addset : ’’a ∗ ’’a set → ’’a set
val memberset : ’’a ∗ ’’a set → bool

end

Figure 5.1: The ML signature of Set data type

To implement the Set data type, we need the structure construct. An im-
plementation involves deciding the representation of the stack and how the stack
operations are implemented in terms of the manipulation of the representation.
Figure 5.2 contains a simple implementation. We use a list as the representation

72

structure SetOne : Set =
struct
type ’’a set = ’’a list
val emptyset = []
val addset = op ::
val memberset = ListUtils.member

end

Figure 5.2: A first implementation of Set data type

structure SetTwo : Set =
struct
type ’’a set = ’’a → bool
fun emptyset = false
fun addset (x,s) = fn e => e = x orelse s e
fun memberset (x,s) = s x

end

Figure 5.3: A second implementation of Set data type

of a set, the :: operation for inserting an element to a set, and the list membership
operation for checking the set membership.

There are many ways of implementing Set data type. Figure 5.2 is one way,
Figure 5.3 is another. Figure 5.3 uses boolean functions on elements of type ’’a

for representing set.
We have two implementations of Set data type. How to show they are the

same? It begs a question of what we mean by “the same”. One answer is that both
satisfy some algebraic properties of sets; an example of a collection of algebraic
properties of sets is shown in Figure 5.4. This approach is discussed by [GTW78,
EM85, EM90] in the issues of specifying and implementing abstract data types.

member (x,emptyset) = ff
member (x,addset(x,s)) = tt
member (x,addset(y,s)) = (x=y) ∨ member(x,s)

Figure 5.4: Algebraic propertis of Set Data Type

A second answer is that there is a relation between the first representation
of the Set data type and the second representation of the Set data type such
that the first implementation of the operations is related (via this relation) to
the second implementation of the operations. In the case of Set, this definition

73

is formalised in Figure 5.5. The key idea in the figure is the relation T . The
relationship is visualised as commuting diagrams in Figure 5.6 (the diagram for
emptyset is trivial, therefore it is omitted). The definition is defined in a logical
relation style (see [Plo80, Mit90, Mit96]) where two functions are related if they
send related inputs to related outputs.

Let V = the meaning of the variable type ’’a
B = [[bool]]
S1 = [[’’a list]] = V list
S2 = [[’’a→ bool]] = V→B

valOfSetOne ∈ S1 → PV
valOfSetOne [x1, ..., xn] = {x1, ..., xn}
valOfSetTwo ∈ S2 → PV
valOfSetTwo f = {x|f x = tt}
T : S1 ↔ S2

T (s1, s2) iff valOfSetOne(s1) = valOfSetTwo(s2)

The relations between the two implementations are the following:

Let x ∈ V :

T ([[SetOne.emptyset]] , [[SetTwo.emptyset]])
T (s1, s2) implies T ([[SetOne.addset]](x, s1) , [[SetTwo.addset]](x, s2))
T (s1, s2) implies [[SetOne.memberset]](x, s1) = [[SetTwo.memberset]](x, s2)

Figure 5.5: A relation T that relates two Set implementations

V × S1
[[SetOne.addset]]- S1 V × S1

[[SetOne.memberset]]- B

V × S2

?

6

id× T

[[SetTwo.addset]]- S2

?

6

T

V × S2

?

6

id× T

[[SetTwo.memberset]]- B
?

6

id

Figure 5.6: A diagramatic view of the relation R

A third answer, is that the two implementations are contextually equivalent.
It means that for any ML programs using the Set signature, the behaviour of the
program is the same whenever we use the first implementation or the second one.
The essence of this definition is formalised for a language PCF (a typed lambda
calculus with recursion) by Plotkin in [Plo77] and for nu-calculus (a typed lambda
calculus with names) by Pitts and Stark [PS93, Sta94].

74

The second approach is usually studied at the denotational level; types are
viewed as sets with some structures and programs are viewed as functions. The
third approach is operational in nature; we define an operationa semantics of the
language and test the equivalence on the operational behaviours of all possible
program contexts.

There is a framework relating the second approach with the third one. If
we have a denotational model which is adequate, then function equality of the
meanings of two programs implies contextual equality. This framework exists
for languages without module constructs such as PCF and nu-calculus. There is
yet no frameworks for languages with modules since the studies of semantics of
modules are still in reseach.

5.2.2 ref and optimising an applicative module

Most ADT research concentrates on applicative languages because because they
have simple semantics. When an applicative library is heavily used, efforts are
made to optimise the package; and one possible way is by using states that are
visible within the package.

In the Standard ML New Jersey Library [AT 93], out of thirty-four structures
or functors, nine use references(see Figure 5.7). Some of the references are used
for implementing imperative data structures while others are used for optimising
applicative data structures.

dynamic-array.sml 1 functor
finalizer.sml 1 functor
hash-table.sml 1 functor
name.sml 1 structure
poly-hash-table.sml 1 structure
queue.sml 1 structure
random.sml 1 structure
splay-dict.sml 1 functor
splay-set.sml 1 functor

Figure 5.7: Libraries that use ref

There is a step in converting some imperative data structures into applicative
ones. For example, in the Hash library, we have:

insert : ’2a hash table → (Key.hash key ∗ ’2a) → unit

We can convert such function into an applicative one by passing the data
structure to its output:

75

insert : ’2a hash table → (Key.hash key ∗ ’2a) → ’2a hash table

It should be emphasised that the actual step is not this naive. We have to
take into consideration in what sense the hash implementation is applicative. For
example, if a hash is implemented as a pointer, and the insert operation returns
the same pointer, then we need the condition of single-threadedness for ensuring
the applicative behaviour of the Hash library.

The next section is a specific example of an optimisation. We define Queue
data structure, two implementations without ref, and a more efficient imple-
mentation with ref. We then prove that the third implementation is the same
as the first two in the logical relation sense (see page 74).

5.3 Queue Module

5.3.1 Queue implementations

Queue is a versatile data structure. They are used in job spooling, for temporarily
storing keyboard or mouse events, or as buffers. There are also other variants
of Queue, including priority queues (or heap) and bounded queues. The essen-
tial operations are enqueue — adding an element to the end of a queue and
dequeue — withdrawing an element from the head of the queue.

In this section, we define Queue data structure and three implementations.
This example is taken from [Fou95]. For simplicity we take the basic operations
only; other operations can be added without introducing further complexity to
the implementations and the semantics.

signature QSIG =
sig

type Q
exception Q
val empty : Q
val enqueue : int ∗ Q → Q
val dequeue : Q → int ∗ Q

end;

Figure 5.8: ML signature for Queue.ml

We define them using ML modules. The signature part (see Figure 5.8)
shows the type of the operators. The structure part (see Figure 5.9) consists
of three implementations: QueueOne, QueueTwo, and QueueThree. The first one

76

structure QueueOne : QSIG =
struct
exception Q
type Q = int list
val empty = []
fun enqueue (a, q) = (a :: q)
fun dequeue [] = raise Q
| dequeue q = let

val r = rev q
in

(head r, rev (tail r))
end

end;

structure QueueTwo : QSIG =
struct
exception Q
type Q = (int list ∗ int list)
val empty = ([],[])
fun enqueue (a, (qin, qout)) = (a :: qin, qout)
fun dequeue (qin, h :: qout) = (h, (qin, qout))
| dequeue ([],[]) = raise Q
| dequeue (qin,[]) = dequeue ([], rev qin)

end;

structure QueueThree :QSIG =
struct
exception Q
type Q = (int list ∗ int list) ref
val empty = ref([],[]) : Q
fun enqueue (a, ref (qin, qout)) = ref((a :: qin), qout)
fun dequeue (ref (qin, (h :: qout))) = (h, ref(qin, qout))
| dequeue (ref ([],[])) = raise Q
| dequeue (q as ref (qin,[])) = (q := ([], rev qin); dequeue q)

end;

Figure 5.9: ML structures for Queue.ml

77

is a naive implementation using a list for representing a queue. The second one
uses a pair of lists, and the third one uses a reference to a pair of lists. QueueOne
and QueueTwo are written without using references, whereas QueueThree with
references.

5.3.2 Complexity analysis

We are interested in comparing the efficiency of the three implementations. Start-
ing from QueueOne, the enqueue operation takes a constant time because we only
use concatenation (::) operation. The dequeue operation takes the complexity of
the rev operation, which is proportional to the length of the list. The deficiency
of this implementation is that it is expensive to dequeue an element. This is
because there is no ways of accessing the head of the queue directly.

A better implementation is QueueTwo which allows us to access the head and
the end of the queue at an amortized constant time (subject to no copying of
the queue). It uses a pair of lists (qin,qout), where the qin represents the end
of the queue up to a middle of the queue, and qout represents the front of the
queue up to continuation of the middle of the queue. The relationship between
the representations in QueueOne and QueueTwo is:

q = qin @ (rev qout)

QueueTwo is more efficient because the dequeue operation does not always take
n steps (where n is the length of the queue); in fact, dequeue does more work
only when qout is empty (see the third line of the definition of dequeue.) When
dequeue sees that qout is empty, it rearranges the queue by flushing out qin ,
transfer the queue to qout , and try the dequeue again. This avoids using the
reverse function on the successive dequeuing.

The amortized complexity [Oka96, Oka95] of QueueTwo is O(1). An amortized
bound O(f) is defined to be: for any sequence of n operations, the total running
time of the sequence is bounded by n × O(f). There is an additional implicit
condition on the nature of the sequence of operations. It requires that each data
structure is used at most once.

It is easily shown that the amoritzed complexity of QueueOne is O(n). Just
consider n operations of enqueues followed by n operations of dequeues.

In some cases QueueThree performs better than QueueTwo. Consider the case
where we start with an empty queue and do enqueue operation n times. Then
we pass the queue to a computation that dequeue the same queue m times.
QueueThree will do the reverse operation on the first dequeue and a head op-
eration on the second and subsequent dequeues, whereas QueueTwo will do the

78

reverse operations m times.

5.3.3 QueueOne equivalent to QueueTwo

In Figure 5.9 we present three implementations of the Queue data structure and
assume that the implementations are logically equivalent (ie. their external be-
haviours are the same). One way to justify this is by showing the structure
QueueOne is equivalent to QueueTwo and QueueOne is equivalent to QueueThree.
The former is straightforward; the latter is more difficult since it involves reas-
oning about the creation of references and passing them as abstract data. This
subsection contains the proof of QueueOne equivalent to QueueTwo.

Recall that a characterisation of an equivalence of two abstract data types is
done by finding a relation T between the two representations such that the first
implementation is related — via T — to the second implementation. Figure 5.6
in page 74 illustrates two commuting diagrams of such relation for Set data type.
We use this characterisation for showing QueueOne equivalent to QueueTwo.

First of all we define the interpretations of QueueOne and QueueTwo in terms
of sets and functions. For simplicity, let us ignore the case where it raises an
exception (the addition of the exception clause can be added without changing
the proof).

Queue1 ∈ int list × (N × int list → int list) × (int list → N × int list)

Figure 5.10: The type of Queue1 = {[QueueOne]}

(Queue1 s) = let
emp1 = []
enq1 (n, l) = (n::l)
deq1 l = let (h::l′) = rev l

in(h, rev l′)
end

in (emp1, enq1, deq1)
end

Figure 5.11: The interpretation of QueueOne

Notice that the mathematical meanings Queue1 and Queue2 are very similar
to their definitions (which are QueueOne and QueueTwo). The type int list is
interpreted as the space int list of finite lists of natural numbers and the type σ∗τ
is interpreted as the cartesian product of the interpretations of σ and τ .

79

Queue2 ∈ (int list × int list)×
((N × (int list × int list))→ (int list × int list))×
((int list × int list)→ (N × (int list × int list)))

Figure 5.12: The type of Queue2 = {[QueueTwo]}

(Queue2 s) = let
emp2 = ([], [])
enq2 = ...see Figure 5.14 ...
deq2 = ...see Figure 5.15 ...
in
(emp2, enq2, deq2)
end

Figure 5.13: The interpretation of QueueTwo

enq2 (n, q) = let
(qin, qout) = q
in
(n::qin, qout)
end

Figure 5.14: The definition of enq2

deq2 q = let
(qin, qout) = q
f (qin, n::qout′) = (n, (qin, qout′))
flush q = let

(qin, qout) = q
in
([], qout@(reverse qin))
end

in
if (qout 6= []) then f (qin, qout)
else if (qout = [] ∧ qin = []) then error
else let q′ = flush q

in f q′

end
end

Figure 5.15: The definition of deq2

80

For simplicity, assume we have reverse (or rev), head, tail, and cons (or ::)
operations at the semantics level. Also assume that we can do pattern matching.

Now we define a relation T between the meaning of the representation of Q in
QueueOne and the meaning of the representation of Q in QueueTwo.

Definition 5.3.1. The relation T is defined in Figure 5.16

[[QueueOne.Q]] = [[int list]]
= int list (finite lists of natural numbers)

[[QueueTwo.Q]] = [[int list∗int list]]
= int list × int list

valOf ∈ int list × int list → int list
valOf (qin, qout) = qin @ (rev qout)
T : [[QueueOne.Q]]↔ [[QueueTwo.Q]]
T : int list↔ int list × int list
T (q, (qin, qout)) iff q = valOf(qin, qout)

Figure 5.16: The relation T between the meanings of the representation of
QueueOne.Q and QueueTwo.Q

Intuitively, the relation T acts as a “converter” between the representation
of Q in the world of module QueueOne and the representation of Q in the world
of module QueueTwo. When an abstract data q in Queue1 is converted via T to
an abstract data (qin, qout) in Queue2 (and vice versa), its logical behaviour is
preserved.

Theorem 5.3.2. The diagrams in Figure 5.17 commute.

Proof:

Case: enq.
Let a ∈ N ,

q ∈ int list, and
(qin, qout) ∈ int list × int list.

Assume that T (q, (qin, qout)). In other words,
q = qin @ (rev qout).

Let q′ = enq1(a, q)
(qin′, qout′) = enq2(a, (qin, qout)).

81

N × (int list)
enq1 - (int list)

N × (int list × int list)
?

6

id× T

enq2- (int list × int list)
?

6

T

(int list)
deq1 - N × (int list)

(int list × int list)
?

6

T

deq2- N × (int list × int list)
?

6

id× T

Figure 5.17: The diagrams relating Queue1 and Queue2

We have
qin′ = a :: qin
qout′ = qout.

Proving the correspondence:
q′ = a :: q by enq1

= a :: (qin @ rev qout) by assumption
= (a :: qin) @ rev qout rearrange bracket
= qin′ @ rev qout′ by enq2.

In other words, T (q′, (qin′, qout′)).

Case: deq.
Let q ∈ int list and

(qin, qout) ∈ int list × int list.
Assume that T (q, (qin, qout)). In other words,
q = qin @ (rev qout).

We have two cases.
Consider the case qout 6= [].
Let (h :: out) = qout.
Let (a, q′) = deq1 q

(b, (qin′, qout′)) = deq2(qin, qout).
By deq2, we have

82

b = h

qin′ = qin

qout′ = out.
Proving the correspondence:
q′ = rev(tail(rev(q))) by deq1

= rev.tail.rev (qin @ (rev qout)) by assumption
= rev.tail (qout @ (rev qin)) by rev
= rev ((tail qout) @(rev qin)) rearranging bracket
= qin @ (rev (tail qout)) by rev
= qin @ (rev out)) by qout = h :: out
= qin′ @ (rev qout′)) by deq2.

To prove a = b, we have
a = head.rev q by deq1

= head.rev (qin @ (rev qout)) by assumption
= head (qout @ (rev qin)) by rev
= head ((h :: out) @ (rev qin)) by qout = h :: out
= h by head
= b by deq2.

Consider the case qin 6= [] ∧ qout = [].
Let (a, q′) = deq1 q

(b, (qin′, qout′)) = deq2(qin, qout).
By deq2, we have
b = head.rev qin

qin′ = []
qout′ = tail(rev qin).

Proving the correspondence:
q′ = rev(tail(rev(q))) by deq1

= rev.tail.rev (qin @ (rev qout)) by assumption
= rev.tail.rev qin by qout = []
= rev qout′ by deq2

= qin′ @ (rev qout′)) by deq2.

To prove a = b, we have
a = head.rev q by deq1

= head.rev (qin @ (rev qout)) by assumption

83

= head (qout @ (rev qin)) by rev
= head (rev qin) by qout = []
= b by deq2.

5.3.4 Method for proving QueueOne equivalent to QueueThree

The justification of QueueOne equivalent to QueueThree is more difficult, since
it involves comparing a pure module (QueueOne) with an imperative module
(QueueThree). If we inspect the code of QueueThree, basically it is the same
as the one in QueueTwo. One difference is that QueueThree uses a ‘pointer’ to a
pair of list instead of a pair of list. The returning of a pair of lists in QueueTwo is
replaced by the returning of a new pointer to a pair of lists.

Another difference is that QueueThree changes the state: the allocation of new
pointers means that it always expands locations in the current state whenever
it is called. More than that, in some cases dequeue can change the current
store (see the presence of the := operation in dequeue). There are two issues to
consider: what can be externally observed with the references that are outputted
from QueueThree? In what circumstances can we view QueueThree as being
applicative? These are the key issues in characterising in what sense QueueOne is
equivalent to QueueThree.

The answer can be informally explained as follows:
1. ML structures provides an encapsulation such that pointer representations

of abstract data are invisible. This is done by declaring such data structure
as opaque [Ull94, Gil97]. The references created by QueueThree are abstract
data. By default they can be passed around. But since they are abstract data,
they cannot be scrutinised directly by the users. For example, the user cannot
compare the pointers, lookup the values pointed by the pointers, or modify the
values pointed by the pointers.

2. We analyse how QueueThree expands and changes the current store. The
expansion does not create any interference with the existing locations, so modulo
the := operation in dequeue, QueueThree is constant with respect to a computa-
tion relation that expands locations. To deal with the possibility of state changes
by dequeue, notice that the assignment operation := in dequeue has a particular
pattern: if s0 = s[q 7→ (qin, [])] is the state before the assignment (5.1), then
s1 = s[q 7→ ([], rev qin)] is the state after the assignment (5.1).

q := ([],rev qin) (5.1)

84

The states s0 and s1 are related by the following.

valOf(s0(q)) = qin::(rev []) = []::rev(rev qin) = valOf(s1(q)).

This tells us that although the representations can change, the abstract meanings
do not change.

Recall that in the last section we prove QueueOne equivalent to QueueTwo by
defining a relation T between data type representations (at the semantics level)
and showing that T relates the two implementations via the two commuting
diagrams in page 81. This method is quite general and can be used for two
implementations of abstract data types written in a pure functional language.
One question we would like to ask is whether we can use the same method for
proving QueueOne equivalent to QueueThree.

The answer to the above question is yes, but we have to do more work. In
addition to the diagrams, we have to show that the behaviour of QueueThree is
constant throught any possible state changes created by its implementation or
the environment.

Here is the extra work that needs to be done.

1. First of all, it is instructive to define a computation invariant (call it R).
This describes the possible changes of representation for queues that do
not change the observable behaviour of the QueueThree functions. This
is needed because we assume the environment does not make unrestricted
changes to the state.

The explanation on page 84 shows that QueueThree creates side effects
by expanding locations or altering the internal representations of existing
locations. However, QueueThree still behaves in a constant way in this
context. Therefore, the computation invariant R that we need is the one
that is formally defined in Figure 5.18.

Qref = L
AllStates = L → (int list × int list) ∪ {Unused}.
dom s = {l ∈ L | l defined-in s} ,for s ∈ AllStates.
S = {s ∈ AllStates | dom s is finite}
R ∈ S ↔ S
R(s, s′)
iff
forall q ∈ dom s : valOf(s(q)) = valOf(s′(q))

Figure 5.18: The definition of R

85

Q1 ↔ Q3

S × int list

S ×Qref

T1

int list

T0

Q1 ↔ Q2

int list× int list

S × (N × int list)

S × (N ×Qref)

T2

int*Q1 ↔ int*Q3

Figure 5.19: Q1, Q2, and Q3 are abbreviations for QueueOne.Q, QueueTwo.Q,
and QueueThree.Q, respectively. T0 is the representation relation between
QueueOne.Q and QueueTwo.Q and T1 is the representation relation between
QueueOne.Q and QueueThree.Q. Qref is a space of pointers to pairs of lists. T2 is
the representation relation between (int*QueueOne.Q) and (int*QueueThree.Q).
T1 is used for relating the inputs of QueueOne.dequeue and QueueThree.dequeue
whereas T2 is used for relating the outputs of QueueOne.dequeue and
QueueThree.dequeue.

2. The relation T between the data type representations is more involved. The
relation T0 in Figure 5.19 shows that we do not need the current state to
observe representations of QueueOne.Q and QueueTwo.Q. In fact this is true
for any pure ML code. The situation is different when we try to relate two
representations where one (or both) of the representations are references.
We have to interpret the values relative to the current states to get a fuller
account of their behaviour. This is needed because what is significant in
a QueueThree.Q representation (which is represented as a reference) is not
the actual reference itself, but the value pointed to by the reference in
the current store. The representation of QueueOne.Q is int list and the
representation of QueueThree is Qref (a space of references). The relation
T1 between them is a binary relation of type S × int list ↔ S × Qref (see
Figure 5.19). We are also interested in relating observable values of type
(int*QueueOne.Q) with ones of type (int*QueueThree.Q). This is used for
relating the output of QueueOne.dequeue and QueueThree.dequeue. The
relation T2 between them is a binary relation of type S × (N × int list)↔
S × (N × Qref). Sometimes we will omit the brackets for clarity purpose.
The formal definitions of T1 and T2 are as follow:

T1((si, l), (sj, q)) ⇐⇒ l = valOf(sj(q)) (5.2)

T2((si, n, l), (sj,m, q)) ⇐⇒ l = valOf(sj(q)) ∧ n = m (5.3)

where m,n ∈ N . Note that T1 can be simplified into a relation of type
int list↔ S ×Qref, but for uniformity purpose we adopt the earlier type.

86

3. In the monadic semantics, QueueOne.dequeue is interpreted as

deq1∈ int list→ T (N × int list)
∈ int list→ (S → S × (N × int list))

We are interested in using the uncurried version of deq1 :
uncurry(deq1) ∈ S × int list→ S × (N × int list).

When it is clear from context, we will omit the uncurry symbol. Using
similar steps, we can interpret QueueThree.dequeue as

uncurry(deq3) ∈ S ×Qref→ S × (N ×Qref).
Again, we will omit the uncurry symbol when it is clear from context. Notice
that the domains of uncurry(deq1) and uncurry(deq3) matches the domain-
codomain of T1 and the codomains of uncurry(deq1) and uncurry(deq3)
matches the domain-codomain of T2. At this stage we can draw the right
diagrams for relating deq1 with deq3, enq1 with enq3, and emp1 with emp3

(where enq1 is the interpretation of QueueOne.enqueue, emp1 is the inter-
pretation of QueueOne.empty, enq3 is the interpretation of QueueThree.enqueue,
and emp3 is the interpretation of QueueThree.empty). Figure 5.20 shows
the diagrams.

S × int list
deq1- S × (N × int list)

S ×Qref
?

6

T1

deq3- S × (N ×Qref)
?

6

T2

S × (N × int list)
enq1 - S × int list 1

emp1- S × int list

S × (N ×Qref)
?

6

T2

enq3 - S ×Qref
?

6

T1

1
?

6

id

emp3- S ×Qref
?

6

T1

Figure 5.20: Diagrams relating the meanings of QueueOne and QueueThree

4. One role of R is in restricting the allowable state transformations that
deq1,deq3,enq1, and enq3 could perform. Consider the first diagram in Fig-
ure 5.20. In addition to the diagram, we need to assert that the output
state of deq3(s, q) is related to the input state s via R.

87

5. The last issue is the role of R in quantifying the diagrams in Figure 5.20. We
are only interested in quantifying the diagram over states reachable from
the point the structure QueueOne(or QueueThree) is declared.

The above method essentially uses the notion of C-indistinguishable within R1,R2

defined in Figure 4.6 on page 66. In this setting we model an ML structure as a
computation and define indistinguishability between tuples of values as:

(a1, ..., an), (b1, ..., bn) V-indistinguishableσ1*...*σn R,R
′ ⇐⇒

∀i ∈ 1..n :

ai, biV-indistinguishableσi R,R
′.

(5.4)

To sum up, the method for showing QueueOne equivalent to QueueThree is:

• Define the interpretation of QueueOne in the monadic style.

• Define the interpretation of QueueThree in the monadic style.

• Define a relation T1 ∈ S × int list ↔ S × Qref between the data type
representations QueueOne.Q and QueueThree.Q. Define a relation T2 ∈
S × (N × int list)↔ S × (N ×Qref) between the data type representations
(int*QueueOne.Q) and (int*QueueThree.Q).

• Prove QueueOne equivalent to QueueThree by proving the diagrams in Fig-
ure 5.20, where the diagrams are quantified over relevant states within R

(see point 5). In addition to this, also prove that the side effects produced
by QueueOne and QueueThree also satisfy R (see point 4).

The next section contains the details of the method.

5.3.5 Discussions

The idea of using a pair of lists as a representation of a queue is explained in
[Gri81] and [Bur82]. The idea of QueueThree is suggested by [Fou95].

The allocation of new references whenever the QueueThree is used is crucial.
At first sight, it looks unnecessary and one might think of using the same reference
and let the module mechanism protect the access to the pointer. Code which uses
the same reference is shown in Figure 5.21. It is basically the same as QueueThree
but the allocation of new references is done only at empty operation. It is not
equivalent to QueueTwo nor to QueueThree as the ML session in Figure 5.22 shows.

The exception is raised because r1 interferes with r2. Internally, r1 and r2

are the same pointers. When we execute

88

structure QueueFour : QSIG =
struct
exception Q
type Q = (int list ∗ int list) ref
val empty = ref([],[]) : Q
fun enqueue (a, q as ref(qin, qout)) =

(q := (a :: qin, qout); q)
fun dequeue (q as ref(qin, (h :: qout))) =

(q := (qin, qout); (h,q))
| dequeue (ref([],[])) = raise Q
| dequeue (q as ref(qin,[])) = (q := ([], rev qin); dequeue q)

end;

Figure 5.21: A naive implementation of Queue

- open QueueFour;
open QueueFour
exception Q = Q
val empty = ref ([],[]) : Q
val enqueue = fn : int ∗ Q -> Q
val dequeue = fn : Q -> int ∗ Q
- let
val q = enqueue(4,enqueue(3,empty))
val (h1,r1) = dequeue q
val (h2,r2) = dequeue r1
val r3 = enqueue(h1,r1)
val (,r4) = dequeue r3
val (a,r5) = dequeue r4
in
a
end;
= = = = = = = = =
uncaught exception Q
-

Figure 5.22: An ML session for QueueFour

89

val (h2,r2) = dequeue r1

r2 and r1 both point to a pair of empty lists. In the case of QueueTwo and
QueueThree, the resulting expressions in Figure 5.22 yield 3.

The issue of whether imperative functional languages are superior to the pure
ones is a controversial one; each camp believes in their own philosophy, even
still argues for other features of its programming language when there is a sign
of defeat. Pippenger [Pip97] shows that there exists an efficient impure Lisp
program which cannot be matched by a pure Lisp program for a real-time online
computation.

The method of showing QueueOne and QueueThree are equivalent uses lo-
gical relations and is similar to other logical-relation based methods for proving
equality between programs. Stark [Sta94, Sta96] develops a logic of equality for a
language with names which is complete up to first order types. Meyer and Sieber
[MS88] develops a model of Idealized Algol based on invariant preserving rela-
tions. The model is refined by Sieber [Sie96a] to be fully abstract up to second
order types. O’Hearn and Tennent [OT95] develops a different model of Ideal-
ized Algol based on parametricity and representation independence — a concept
primarily proposed by Reynolds [Rey83] for studing properties of abstract data
types.

It is unknown how to scale up Stark’s logic to languages that include assign-
ments statements and modules. The above Idealized Algol models are good for
stack based languages, but work in using the approaches for heap based languages
is yet to be explored.

5.4 QueueOne equivalent to QueueThree

This section gives the setting for interpreting ML structures and characterising in-
distinguishability between two interpretations. Subsection 5.5.1 defines an inter-
pretation Queue1 of QueueOne and an interpretationQueue3 of QueueThree. Sub-
section 5.5.2 formalises the definitions of const-within R for Queue1 and Queue3,
and shows Queue1 const-within R and Queue3 const-within R, where R is the ex-
pansive relation defined on Figure 5.18. Subsection 5.5.3 formalises the definition
of Queue1,Queue3 indistinguishable R,R. The definition is essentially based on
the notion of indistinguishable within defined in Chapter 4.4, but here we have to
handle two different representations.

90

5.4.1 Definitions

The way the semantics of QueueThree is obtained is essentially done using the
definition in Chapter 4 on page 41. We have the following additional assumptions.

• The only storable values are pairs of lists (see Figure 5.18). This is to
simplify our analysis.

• An ML structure is interpreted as a computation. Declaring a structure is
essentially the same as declaring a tuple of values. There is a side effect
when the declaration is executed.

• We have reverse (or rev), cons (or ::), head, and tail operations on finite
lists of natural numbers. Also assume we can do pattern matching.

Figure 5.23 and 5.24 shows the interpretation of QueueOne. Figure 5.25, 5.26,
5.27, and 5.28 shows the interpretation of QueueThree.

Queue1 ∈ S → S× [[Q ∗ (int ∗ Q → Q) ∗ (Q → int ∗ Q)]]
∈ S → S× ([[Q]] × [[int ∗ Q → Q]] × [[Q → int ∗ Q]])
∈ S → S× (int list ×

N × int list→ (S → S × int list) ×
int list→ (S → S × (N × int list)))

Figure 5.23: The type of Queue1 = {[QueueOne]}

(Queue1 s) = let
emp1 = []
enq1 (n, l) s = (s, n::l)
deq1 l s = let (h::l′) = rev l

in(s, h, rev l′)
end

in (s, (emp1, enq1, deq1))
end

Figure 5.24: The monadic interpretation of QueueOne

Note that the type of flush in Figure 5.28 is Qref → (S → S). Given a
pointer q to a pair of lists and a current state s, what it does is that it rearranges
the internal representation of the queue pointed by q and reflects the change to
the store. This is the only section in the definition of Queue3 that changes the
store. The change is safe since it preserves the computational invariant R (see
Figure 5.29).

91

Queue3 ∈ S → S× [[Q ∗ (int ∗ Q → Q) ∗ (Q → int ∗ Q)]]
∈ S → S× ([[Qrep]] × [[int ∗ Qrep → Qrep]] × [[Qrep → int ∗ Qrep]])
∈ S → S× (Qref ×

N ×Qref→ (S → S ×Qref) ×
Qref→ (S → S × (N ×Qref)))

Figure 5.25: The type of Queue3 = {[QueueThree]}

(Queue3 s) = let
q /∈ dom s
emp3 = q
enq3 = ...see Figure 5.27 ...
deq3 = ...see Figure 5.28 ...
in
(s[q 7→ ([], [])], (emp3, enq3, deq3))
end

Figure 5.26: The monadic interpretation of QueueThree

enq3 (n, q) s = let
(qin, qout) = s(q)
q′ /∈ dom s
in
(s[q′ 7→ (n::qin, qout)], q′)
end

Figure 5.27: The definition of enq3

92

deq3 q s = let
(qin, qout) = s(q)
f (qin, n::qout′) s = let

q′ /∈ dom s
in
(s[q′ 7→ (qin, qout′), n, q′])
end

flush q s = let
(qin, qout) = s(q)
in
(s[q 7→ ([], qout@(reverse qin))])
end

in
if (qout 6= []) then f (qin, qout) s
else if (qout = [] ∧ qin = []) then error
else let s′ = flush q s

in f (s′(q)) s′

end
end

Figure 5.28: The definition of deq3

si si+1

q 7→ (qin, []).

flush

q 7→ ([], rev qin)

Figure 5.29: The function flush does modify the state, but it still repects the
invariant R. The symbol q denotes a location in states si and si+1

.

Convention: for clarity purpose, sometimes we would write (s, (a, b, c)) as
(s, a, b, c). For the rest of the chapter, R refers to the transition system defined
in Figure 5.18 on page 85.

5.4.2 Proof of being constant

One of the most useful properties we want about Queue1 and Queue3 is that they
are observationally equivalent. However, since we are working at the denotational
level and adequacy results are beyond the scope of this thesis, we would study
their equivalence at the denotational level. The notion indistinguishability-within
is a good criteria for achieving observational equivalence. Another criteria is to
show that externally, Queue3 is an applicative module. At the denotational level,
we express it as: Queue3 const-within R. The definition and the proof of the

93

property is the topic of this subsection.

5.4.2.1 Queue3 const-within R

Definition 5.4.1 below defines what it means forQueue3 module to be const-within.

Definition 5.4.1.

Queue3 const-within R
iff
forall si, sj ∈ dom R :
let

(s′i, empi, enqi, deqi) = Queue3 si

(s′j, empj, enqj, deqj) = Queue3 sj

R′i = (reachableRs′i/ R)
R′j = (reachableRs′j/ R)

in assert
1. R(si, s′i) ∧ R(sj, s′j)
2.

a. empi, empj V-indistinguishable R′i, R′j
b. enqi, enqj V-indistinguishable R′i, R

′
j

c. deqi, deqj V-indistinguishable R′i, R′j
end

The definition is essentially a rewriting of the definition of C-const-within
R defined in Figure 4.7 on page 66. Values indistinguishability is handled by
(5.4). It is instructive to expand (2.a), (2.b), and (2.c), and study them at the
representation level. This is needed because we would like to study how pointer
representations behave.

Definition 5.4.2 is a general case of (2.a). It is a rewriting of the definition
V-indistinguishableref Ri, Rj (see Figure 4.6 on page 66) using T3 for relating the
pointer representations.

T3((si, qi), (sj, qj)) ⇐⇒
valOf(si(qi)) = valOf(sj(qj)).

(5.5)

Definition 5.4.2.

qi, qj V-indistinguishableQ Ri, Rj

iff
1. qi defined-in Ri

2. qj defined-in Rj

3. forall si ∈ dom Ri, sj ∈ dom Rj : T3((si, qi), (sj, qj)).

94

Definition 5.4.3 and Definition 5.4.4 are rewritten in a similar way.

Definition 5.4.3.
enqi, enqj V-indistinguishableint*Q→Q Ri, Rj

iff
∀q1, q2 ∈ Qref, a ∈ N :
q1, q2 V-indistinguishableQ Ri, Rj

implies
∀s0 ∈ dom Ri, s1 ∈ dom Rj :
let

(si, q′1) = enqi(a, q1)s0

(sj, q′2) = enqj(a, q2)s1

in assert
1. Ri(s0, si) ∧ Rj(s1, sj)
2. ∀s′i ∈ reachablesi , s′j ∈ reachablesj :

valOf(s′i(q′1)) = valOf(s′j(q′2))
end

Definition 5.4.4.

deqi, deqj V-indistinguishableQ→int*Q Ri, Rj

iff
∀q1, q2 ∈ Qref :
q1, q2 V-indistinguishableQ Ri, Rj

implies
∀s0 ∈ dom Ri, s1 ∈ dom Rj :
let

(si, a, q′1) = deqi q1 s0

(sj, b, q′2) = deqj q2 s1

in assert
1. Ri(s0, si) ∧ Rj(s1, sj)
2. a = b

3. ∀s′i ∈ reachablesi , s′j ∈ reachablesj :
valOf(s′i(q

′
1)) = valOf(s′j(q

′
2))

end

We want to prove Definition 5.4.1 for R defined in Figure 5.18 on page 85.
Our method is by proving conditions (1), (2.a), (2.b), and (2.c) of Definition 5.4.1
separately. Below are the steps.

Proposition 5.4.5.

95

∀ri, rj ∈ dom R :
let

(r′i, empi, enqi, deqi) = Queue3 ri

(r′j, empj, enqj, deqj) = Queue3 rj

in assert
Ri(ri, r′i) ∧ Rj(rj, r′j)

end

Proof: Immediate from the definition of Queue3.

.

Proposition 5.4.6.

∀ri, rj ∈ dom R :
let

(r′i, empi, enqi, deqi) = Queue3 ri

(r′j, empj, enqj, deqj) = Queue3 rj

Ri = (reachableRr′i/ R)
Rj = (reachableRr′j/ R)

in assert
empi, empj V-indistinguishableQ Ri, Rj

end

Proof: see Appendix.

.

Proposition 5.4.7.

∀ri, rj ∈ dom R :
let

(r′i, empi, enqi, deqi) = Queue3 ri

(r′j, empj, enqj, deqj) = Queue3 rj

Ri = (reachableRr′i/ R)
Rj = (reachableRr′j/ R)

in assert
enqi, enqj V-indistinguishableint*Q→Q Ri, Rj

end

Proof: see Appendix.

96

.

Proposition 5.4.8.

∀ri, rj ∈ dom R :
let

(r′i, empi, enqi, deqi) = Queue3 ri

(r′j, empj, enqj, deqj) = Queue3 rj

Ri = (reachableRr′i/ R)
Rj = (reachableRr′j/ R)

in assert
deqi, deqj V-indistinguishableQ→int*Q Ri, Rj

end

Proof: see Appendix.

.

Theorem 5.4.9. Queue3 const-within R.

Proof: It follows immediately from Proposition 5.4.5, 5.4.6, 5.4.7, and 5.4.8.

To complete the discussion, we can also show that Queue1 const-within R.
The details of the definition and the proof are in Appendix B.1.

5.4.3 Proof of equivalence

Definition 5.4.10 below defines what it means for Queue1,Queue3 indistinguishable
R,R.

Definition 5.4.10.

Queue1,Queue3 indistinguishable R,R
iff
forall si, sj ∈ dom R :
let

(s′i, emp1, enq1, deq1) = Queue1 si

(s′j, emp3, enq3, deq3) = Queue3 sj

R′i = (reachableRs′i/ R)
R′j = (reachableRs′j/ R)

in assert
1. R(si, s′i) ∧ R(sj, s′j)
2.

a. emp1, emp3 V-indistinguishable R′i, R
′
j

97

b. enq1, enq3 V-indistinguishable R′i, R′j
c. deq1, deq3 V-indistinguishable R′i, R′j

end

The definition is a rewriting of the definition of C-indistinguishable within
R1,R2 defined in Figure 4.6 on page 66. Value tuples indistinguishability is
handled by (5.4) on page 88.

The definition is similar to the notion Queue3 const-within R (see Defini-
tion 5.4.1) since const-within is a special case of indistinguishability within. The
difference is that the latter compare Queue3 with itself, whereas the former com-
pare Queue3 with Queue1.

We need to expand the conditions (2.a), (2.b), and (2.c), and study them at
the representation level. This is required because we would like to study how a
list representation is related to a pointer representation.

Definition 5.4.11 is a general case of (2.a). It is essentially a rewriting of the
definition of V-indistinguishableref Ri, Rj (see Figure 4.6 on page 66) using T1

for relating the representations.

Definition 5.4.11.

q1, q3 V-indistinguishableQ Ri, Rj

iff
1. q3 defined-in Rj

2. forall si ∈ dom Ri, sj ∈ dom Rj : T1((si, q1), (sj, q3)).

Definition 5.4.12 and Definition 5.4.13 are rewritten in a similar way. Implicit
in the definitions is the use of T2 for relating the inputs of enq1 and enq3 and the
outputs of deq1 and deq3.

Definition 5.4.12.

enq1, enq3 V-indistinguishableint*Q→Q Ri, Rj

iff
∀q1, q2 ∈ Qref, a ∈ N :
q1, q2 V-indistinguishableQ Ri, Rj

implies
∀s0 ∈ dom Ri, s1 ∈ dom Rj :
let

(si, q′1) = enq1(a, q1)s0

(sj, q′2) = enq3(a, q2)s1

in assert
1. Ri(s0, si) ∧ Rj(s1, sj)

98

2. ∀s′i ∈ reachablesi , s′j ∈ reachablesj :
valOf(s′i(q′1)) = valOf(s′j(q′2))

end

Definition 5.4.13.

deq1, deq3 V-indistinguishableQ→int*Q Ri, Rj

iff
∀q1, q2 ∈ Qref :
q1, q2 V-indistinguishableQ Ri, Rj

implies
∀s0 ∈ dom Ri, s1 ∈ dom Rj :
let

(si, a, q′1) = deq1 q1 s0

(sj, b, q′2) = deq3 q2 s1

in assert
1. Ri(s0, si) ∧ Rj(s1, sj)
2. a = b

3. ∀s′i ∈ reachablesi , s′j ∈ reachablesj :
valOf(s′i(q′1)) = valOf(s′j(q′2))

end

We want to prove Definition 5.4.10 for R defined in Figure 5.18 on page 85.
Our method is by proving conditions (1), (2.a), (2.b), and (2.c) of Definition 5.4.10
separately. Below are the steps.

Proposition 5.4.14.

∀ri, rj ∈ dom R :
let

(r′i, emp1, enq1, deq1) = Queue1 ri

(r′j, emp3, enq3, deq3) = Queue3 rj

in assert
Ri(ri, r′i) ∧ Rj(rj, r′j)

end

Proof: Immediate from the definition of Queue1 and Queue3.

.

Proposition 5.4.15.

∀ri, rj ∈ dom R :
let

99

(r′i, emp1, enq1, deq1) = Queue1 ri

(r′j, emp3, enq3, deq3) = Queue3 rj

Ri = (reachableRr′i/ R)
Rj = (reachableRr′j/ R)

in assert
emp1, emp3 V-indistinguishableQ Ri, Rj

end

Proof: see Appendix.

.

Proposition 5.4.16.

∀ri, rj ∈ dom R :
let

(r′i, emp1, enq1, deq1) = Queue1 ri

(r′j, emp3, enq3, deq3) = Queue3 rj

Ri = (reachableRr′i/ R)
Rj = (reachableRr′j/ R)

in assert
enq1, enq3 V-indistinguishableint*Q→Q Ri, Rj

end

Proof: see Appendix.

.

Proposition 5.4.17.

∀ri, rj ∈ dom R :
let

(r′i, emp1, enq1, deq1) = Queue1 ri

(r′j, emp3, enq3, deq3) = Queue3 rj

Ri = (reachableRr′i/ R)
Rj = (reachableRr′j/ R)

in assert
deq1, deq3 V-indistinguishableQ→int*Q Ri, Rj

end

Proof: see Appendix.

100

.

Theorem 5.4.18. Queue1, Queue3 indistinguishable R,R

Proof: It follows immediately from Proposition 5.4.14, 5.4.15, 5.4.16, and 5.4.17.

101

Chapter 6

Conclusions and directions for
further research

In this thesis, we have developed a method of characterising constant terms
in an ML-like language. First of all, we define the notion of indistinguishable
throughout a reachable set and being-constant throughout a reachable set at the
denotational level. The same method is also applicable at the operational level.
We then extend the method by using transition systems, instead of reachable sets
and define

{indistinguishable throughoutσ R}
{const-throughoutσ R}

where R is a transition system. The definition of indistinguishable throughout
R is an equivalence relation over elements that are const-throughout R, and the
property of const-throughout R is preserved under function application. The tools
that we use are not new: they are store semantics with side effect monad, logical
relation over values and computations, and transition system. The contribution
of this thesis is the decision to use transition system as an abstract notion of a
class of contexts.

The above structure are suitable for analysing terms with flat stores, but
it does not handle dynamic allocation well. For example, it cannot equate the
denotations of (ref 8) and ((ref 7); (ref 8)). In order to equate such terms,
we develop a notion called indistinguishable within R1,R2. By parameterising the
indistinguishability relation over a pair of transition relations, we can handle the
freedom of allocating fresh locations in new. This definition is also applicable to
reasoning about imperative implementation of Queue module where a queue is
implemented as a pointer.

The use of a pair of transition systems has its own consequences. It is not

102

known whether the notion is transitive in the following sense:

if a,b indistinguishable withinσ R1,R2 ∧
b,c indistinguishable withinσ R2,R3

then
a,c indistinguishable withinσ R1,R3.

For ground types, the above is satisfied, but for function types it is unknown
whether the above is satisfied. It seems that it is unlikely to be satisfied, but we
have not devised a counterexample yet.

Trying to restrict transitivity over a pair of identical relations does not sim-
plify the problem, because in comparing function type values (say of type σ→τ),
we need C-indistinguishable withinτ R,R, which in turn needs V-indistinguishable
withinτ R1,R2

1. One future work is to find a suitable notion of transitivity for
indistinguishable within. This might involve modifying the definition of indistin-
guishable within.

The thesis is driven by the practical motivation of implementing applicative
programs using programs that internally use references. Here we avoid dealing
directly with local references. We parameterise the notion of being constant over
transition systems (or pairs of transition systems) and give an informal motiva-
tion that a transition system is used for capturing an invariant that is satisfied by
local variables in a program. We have not given a formal relationships between
the notion of local variable and the structure transition system. This would re-
quire additional structures for describing features of locality and privacy (e.g. a
structure for describing local references that cannot escape from the programs
they are residing). This may be done by extending our existing framework or
replacing our framework with more sophisticated structures. With more sophist-
icated structures we hope to have an in-built equality between two denotations
which is adequate with respect to the language’s operational semantics.

In Chapter 5, we discuss Queue implementations at the denotational level
and show Queue1, Queue3 indistinguishable R,R. Since we do not have adequacy
result, there is yet no proof that they are observationally equivalent. However,
within opaque data structure mechanism, we believe that they are observationally
equivalent. One possible further work is to prove that it is so. The key of showing
them equivalent depends on the following facts.

1. The formal results that they are indistinguishable within a pair of identical
transition relations R.

1R1 and R2 are obtained from a particular s ∈ dom R (see the definition in Figure 4.6 on
page 66).

103

2. That point (1) above implies that empty1, enq1, deq1, empty3, enq3, and deq3

satisfy the invariant R.

3. The informal observation that the opaque mechanism of ML module encap-
sulates the reference implementation of Queue3. Thus since empty3, enq3,
and deq3 satisfy the invariant R, any computation that uses empty3, enq3,
or deq3 also satisfy the invariant R.

104

Appendix A

Ingredients of monadic semantics

A standard way of giving a monadic denotational model of a programming lan-
guage is:

Given a programming language (call it myPL), find an appropriate
monad structure T , a computational meta language CML induced by
the structure, and establish interpretations between the programming
language and the computational metalanguage and between the com-
putational metalanguage and the monad structure.

This method can be succintly described in terms of the following diagram.

myPL
([])- CML

[[]]- (T, η, ∗)

Chapter 4 of this thesis uses this approach in interpreting iML.
The computational metalanguage CML is more explicit than the programming

language: the types are more explicit since it distinguishes values and computa-
tions and the term constructors are more explicit too, particularly in expressing
the order of a computation.

Chapter3 of this thesis defines a programming language iML and Chapter4
defines a computational metalanguage CMLiML for interpreting iML. The inter-
pretation functions [[]] and ([]) are defined on page 50 and page 51, respectively.
Note that the type expressions of CMLiML have an extra construct Tσ which does
not appear in the type expressions of iML.

Other examples of programming languages with their corresponding compu-
tational metalanguages are described in [Sta94] (for a language with names and
side effects), and [Cen96] (for a language with exceptions).

Since a computational metalanguage consists of simply-typed lambda calculus
added with extra constructs for expressing various notions of computation, it can
be viewed as a programming language in its own right. The only thing that it

105

operational
semantics

equational logic/
evaluation logic

myPL CML

++

adequacy theorem

([])

Figure A.1: An adequacy result of the equational/evaluation logic allows us to
reason about some aspects of the operational semantics of the source language.

is lacking is an operational semantics. However, this deficiency is compensated
by the existence of program logics on the computational metalanguage. At a
simple level, we have equational logics ([Mog89]), and at a more sophisticated
level, we have evaluation logics which include modalities ([Pit91]). The logics
serve (at least) two purposes: at the denotational level they give insights and
understanding of monadic structures, and at the operational level they often
characterise operational properties of the source programming language quite
accurately (in the form of adequacy theorems) — thus giving a more syntactic and
proof theoretic account of some aspects of the source programming language. This
syntactic level of explanation is useful for programmers and nonmathematicians
who want to reason about the programming language. Diagram A.1 illustrates
the explanation.

The following are a list of examples of reasoning about programming languages
in terms of computational metalanguages.

1. [Cen96] defines a pure fragment of ML augmented with exceptions (called
TMLE). The semantics behaviour is described in terms of an operational
semantics. A suitable computational metalanguage MLT for dealing with
exceptions is defined and an equational logic on the metalanguage is defined
too. Then he defines a translation ([]) from TMLE to MLT and shows that
any closed term M reduces to n iff ([M]) = ([n]) is provable in the logic of
the metalanguage (where n is an integer value). Hence the logic gives rise
to an adequate model of the programming language.

2. Stark (in [Sta94, Sta96]) defines a lambda calculus with names (called nu-
calculus) and its operational semantics. On the other hand, he defines a
computational metalanguage CML (which includes new construct) and its
equational logic. He defines a translation from nu-calculus to CML and
shows that the equational logic is adequate with respect to the operational
semantics.

106

3. [Pit91] defines a pure fragment of ML augmented with flat store and recur-
sion (called TINY-ML). An operational semantics in the form of

s,e � s′,c

is given (where e is an expression, c a canonical value, and s,s′ are stores).
An evaluation logic with the appropriate constants and exioms is defined
(the logic includes a computational metalanguage). Then he defines a trans-
lation of TINY-ML expressions (of the form e:σ) into a metalanguage ex-
pression (of the form [[e]]:T [[σ]]). The logic defined is adequate with respect
to the operational semantics.

4. [Mog96] encodes the Variable Typed Logic of Effects (VTLoE) into an eval-
uation logic. VTLoE is a programming logic for reasoning about an untyped
version of pure ML fragment augmented with references (called λmk). Moggi
defines an evaluation logic ELT with the appropriate signature (which in-
cludes locations and values types, and reference allocation, reference lookup,
and reference update constructs). A translation between VTLoE and ELT

is defined and Proposition 4.6 of [Mog96] shows that the equational logic
ELT is adequate with respect to the equational logic of VTLoE.

Another tools which is useful for programmers is to have computational metalan-
guages simulated or coded in programming languages (they are usually higher
order functional languages). The reason for doing this is that monad is a tool for
writing modular programs. [Wad92b] gives an example of an interpreter written
in Haskell, where he starts with a bare interpreter which reduces a term to a value,
and provides possible extensions for incorporating error messages, error messages
with positions, execution count, output, or nondeterminism. The extensions are
coded as monads and the bare interpreter is parameterised over monads. So an
extension of a bare interpreter involves only plugging in the appropriatee monad
and sometimes modifying the interpreter code a bit. Although in some cases we
need to modify the bare code, the changes are minimal.

For programmers who are programming using a lot of list comprehensions
[BW88], the theory of monads is useful because monads in mathematics corres-
ponds to generalised list comprehensions in functional languages [Wad92a]. Hence
we can use the monad theorems for reasoning about comprehensions in general
and list comprehensions in particular. Note that this technique can also be
used on other structures when we have a correspondence between a particular
mathematical structure and a programming construct.

107

The aim of using monads for structuring various features of programming lan-
guage is still an ongoing research since it is not clear how we combine monads.
A more fundamental approach is the work of Power and Robinson [PR97] where
they start from premonoidal categories and use them to model notions of compu-
tation. For encoding program logics into evaluation logics, [Mog96] mentions of
the thought of encoding Henessy-Milner Logic [HM85] or Reynolds Specification
Logic [Rey82] in evaluation logics. Topics on monads in functional programming
are still growing and the best way to find up-to-date information on them is via
URL links on those topics. [Wal97] is such a link.

108

Appendix B

Proofs

B.1 Queue1 const-within R

Definition B.1.1 below defines what it means for Queue1 to be const-within.

Definition B.1.1.

Queue1 const-within R
iff
forall si, sj ∈ dom R :
let

(s′i, empi, enqi, deqi) = Queue1 si

(s′j, empj, enqj, deqj) = Queue1 sj

R′i = (reachableRs′i/ R)
R′j = (reachableRs′j/ R)

in assert
1. R(si, s′i) ∧ R(sj, s′j)
2.

a. empi, empj V-indistinguishable R′i, R′j
b. enqi, enqj V-indistinguishable R′i, R′j
c. deqi, deqj V-indistinguishable R′i, R

′
j

end

The definition is a rewriting of the definition of C-const-within R defined in
Figure 4.7 on page 66. Value tuples indistinguishability is handled by (5.4) on
page 88. Throughout this section we omit the word ‘within’ in V-indistinguishable
within. This is to save space. We do not expand the points (2.a), (2.b), and (2.c)
since they can be easily expanded using the definition in Figure 4.6. When we
expand them, we regard a list of integer as a ground value.

We have the following theorem.

109

Theorem B.1.2. Queue1 const-within R.

Proof:

Let si, sj ∈ dom R.
Let

(s′i, empi, enqi, deqi) = Queue1 si

(s′j , empj, enqj, deqj) = Queue1 sj

R′i = (reachableRs′i/ R)
R′j = (reachableRs′j/ R).

Condition (1) is satisfied, since (Queue1 s)1 = s for all s.
We have
empi = [] = empj

enqi = enqj = λ(n, l).λs.(s, n::l)
deqi = deqj = λl.λs. let (h::l′) = (reverse l) in (s, h, h′) end.

The above implies the conditions (2.a), (2.b), and (2.c).

B.2 Proof of Proposition 5.4.6

Consider ri, rj ∈ dom R.
Let

(r′i, (empi, enqi, deqi)) = Queue3 ri

(r′j , (empj, enqj, deqj)) = Queue3 rj

Ri = (reachableRr′i/ R)
Rj = (reachableRr′j/ R).

By the definition of Queue3, we have
r′i(empi) = ([], []) = r′j(empj).

ie.

valOf(r′i(empi)) = valOf(r′j(empj)). (B.1)

Consider si ∈ reachableRr′i
sj ∈ reachableRr′j .

We have
valOf(si(empi)) = valOf(r′i(empi)) by R expansive relation

= valOf(r′j(empj)) by (B.1)
= valOf(sj(empj)) by R expansive relation.

110

B.3 Proof of Proposition 5.4.7

Consider ri, rj ∈ dom R.
Let

(r′i, (empi, enqi, deqi)) = Queue3 ri

(r′j , (empj, enqj, deqj)) = Queue3 rj

Ri = (reachableRr′i/ R)
Rj = (reachableRr′j/ R).

Consider a ∈ N, q1, q2 ∈ Qref such that
q1, q2 V-indistinguishableQ Ri, Rj.

Consider s0 ∈ dom Ri

s1 ∈ dom Rj.
Let (si, q′1) = enqi (a, q1)s0

(sj, q′2) = enqj (a, q2)s1.

We want to show that q′1,q
′
2 are related ∧ Ri(s0, si) ∧ Rj(s1, sj). Note that the

first conjunction means valOf(s′i(q′1)) = valOf(s′j(q′2)) for all s′i reachable from
si and s′j reachable from sj. By the definition of enqi, enqj, q′1 and q′2 will be
new locations that points to (a :: qin1, qout1) and (a :: qin2, qout2), respectively
(where (qin1, qout1) = s0(q1) and (qin2, qout2) = s1(q2)). Let s′i ∈ reachableRr′i
and s′j ∈ reachableRr′j . Since the invariant R is a conservative expansion, we have

valOf(s′i(q′1)) = valOf(si(q′1)) and
valOf(s′j(q

′
2)) = valOf(sj(q′2)).

By our assumption we have qin1@rev qout1 = valOf (s0(q1)) = valOf (s1(q2)) =
qin2@rev qout2. To show that q′1 and q′2 are related, we do the following.

valOf(si(q′1))
= (a :: qin1) @ rev qout1 by valOf
= a :: (qin1 @ rev qout1) rearranging the bracket
= a :: (qin2 @ rev qout2) by assumption
= (a :: qin2) @ rev qout2) rearranging the bracket
= valOf(sj(q′2)). by valOf

Hence, valOf(s′i(q
′
1)) = valOf(s′j(q

′
2)) for all s′i reachable from si and s′j reachable

from sj.
It is clear that the side effects of enqi satisfies Ri since (enqi(a, q)s)1 is an

extension of s for any a ∈ N, q ∈ Qref, and s ∈ S. Similarly, we have enqj
satisfies Rj . In other words, we have Ri(s0, si) ∧ Rj(s1, sj).

Therefore , enqi, enqj V-indistinguishableint*Q→Q Ri, Rj

111

B.4 Proof of Proposition 5.4.8

Consider ri, rj ∈ dom R.
Let

(r′i, empi, enqi, deqi) = Queue3 ri

(r′j , empj, enqj, deqj) = Queue3 rj

Ri = (reachableRr′i/ R)
Rj = (reachableRr′j/ R).

Consider q1, q2 ∈ Qref such that
q1, q2 V-indistinguishableQ Ri, Rj.

Consider s0 ∈ dom Ri

s1 ∈ dom Rj.
Let (si, (a, q′1)) = deqi q1 s0

(sj, (b, q′2)) = deqj q2 s1.

We want to show that q′1, q
′
2 are related ∧ a = b ∧ Ri(s0, si) ∧ Rj(s1, sj). Note

that the first conjunction means valOf(s′i(q′1)) = valOf(s′j(q′2)) for all s′i reachable
from si and s′j reachable from sj. Let s′i ∈ reachableRr′i and s′j ∈ reachableRr′j . First
of all, we need to define the internal representations of q1 and q2. Let

(qin1, qout1) = s0(q1) and
(qin2, qout2) = s1(q2).

We have four cases to consider

1. Case qout1 6= [] ∧ qout2 6= []. Then by the definition of deq3, q′1 and q′2
will be new locations that points to (qin1, tail qout1) and (qin2, tail qout2),
respectively. Since the invariant R is a conservative expansion, we have

valOf(s′i(q′1)) = valOf(si(q′1)) and
valOf(s′j(q

′
2)) = valOf(sj(q′2)).

From our assumption we have qin1@(rev qout1) = valOf(s0(q1)) = valOf(s1(q2))
= qin2@(rev qout2) To show that q′1 and q′2 are related, we do the following.

valOf(si(q′1))
= qin1@rev(tail qout1)
= rev.rev (qin1@rev(tail qout1))
= rev ((tail qout1)@rev qin1)
= rev.tail (qout1@rev qin1)
= rev.tail.rev (qin1@rev qout1)
= rev.tail.rev (qin2@rev qout2)

112

= rev.tail (qout2@rev qin2)
= rev((tail qout2)@rev qin2) by qout2 6= []
= rev.rev(qin2@rev(tail qout2))
= qin2@rev(tail qout2)
= valOf(sj(q′2)).

Hence, valOf(s′i(q′1)) = valOf(s′j(q′2)) for all s′i reachable from si and s′j reach-
able from sj.

For proving a = b we do the following.

a = head qout1
= head (rev(valOf(s0(q1))))
= head (rev(valOf(s1(q2)))) by our assumption
= head qout2
= b.

Finally, by the definitions of deqi, deqj the side effects part of deqi, deqj
satisfy Ri, Rj, respectively. Hence we have Ri(s0, si) ∧ Rj(s1, sj).

2. Case qout1 = [] ∧ qout2 6= []. By the definition of deqi, deqj, q′1 and q′2 will
be new locations that points to ([], tail (rev qin1)) and (qin2, tail qout2),
respectively. Since the invariant R is a conservative expansion, we have

valOf(s′i(q′1)) = valOf(si(q′1)) and
valOf(s′j(q

′
2)) = valOf(sj(q′2)).

From our assumption we have qin1@ [] = valOf(s0(q1)) = valOf(s1(q2)) =
qin2@ (rev qout2). Hence qin1 = qin2@ (rev qout2). To show that q′1 and q′2
are related, we do the following.

valOf(si(q′1))
= [] @ rev(tail(rev(qin1)))
= rev.tail.rev (qin2@ (rev qout2))
= rev.tail (qout2@(rev qin2))
= rev ((tail qout2)@(rev qin2))
= qin2@(rev(tail qout2))
= valOf(sj(q′2)).

Hence, valOf(s′i(q
′
1)) = valOf(s′j(q

′
2)) for all s′i reachable from si and s′j reach-

able from sj.

To prove a = b, we have

113

a = head(rev qin1)
= head(rev(qin2@ (rev qout2)))
= head(qout2@(rev qin2))
= head qout2 by qout2 6= []
= b.

The side effects part of deqi (and deqj) satisfiesRi (and Rj) since the internal
representation of q1 after the computation — which is ([], (rev qin1)) —
is related to the one before the computation — which is (qin1, []) — via
valOf. In other words, valOf(qin1, []) = valOf([], (rev qin1)). Hence we have
∀q ∈ dom s0.valOf(s0(q)) = valOf(si(q)) and ∀q ∈ dom s1.valOf(s1(q)) =
valOf(sj(q)). Therefore, we have Ri(s0, si) ∧ Rj(s1, sj).

3. Case qout1 6= [] ∧ qout2 = [] is done in a similar way.

4. Case qout1 = [] ∧ qout2 = []. By the definition of deqi, deqj, q′1 and q′2 will
be new locations that point to ([], tail (rev qin1)) and ([], tail (rev qin2)),
respectively. Since the invariant R is a conservative expansion, we have

valOf(s′i(q
′
1)) = valOf(si(q′1)) and

valOf(s′j(q′2)) = valOf(sj(q′2)).
From our assumption we have qin1@[] = valOf(s0(q1)) = valOf(s1(q2)) =
qin1@[]. In other words, qin1 = qin2. To show that q′1 and q′2 is related, we
do the following.

valOf(si(q′1))
= [] @ (rev.tail.rev qin1)
= rev.tail.rev qin1

= rev.tail.rev qin2

= [] @ (rev.tail.rev qin2)
= valOf(sj(q′2))

Hence, valOf(s′i(q
′
1)) = valOf(s′j(q

′
2)) for all s′i reachable from si and s′j reach-

able from sj.

To prove a = b, we have a = head (rev qin1) = head(rev qin2) = b.

To show that the side effects part of deqi (and deqj) satisfies the invariant Ri

(and Rj), we have valOf(qin1, []) = valOf([], rev qin1) and valOf(qin2, []) =
valOf([], rev qin2). Hence we have ∀q ∈ dom s0.valOf(s0(q)) = valOf(si(q))
and ∀q ∈ dom s1.valOf(s1(q)) = valOf(sj(q)). Therefore, we have Ri(s0, si)
∧ Rj(s1, sj).

114

B.5 Proof of Proposition 5.4.15

Consider ri, rj ∈ dom R.
Let

(r′i, (emp1, enq1, deq1)) = Queue1 ri

(r′j , (emp3, enq3, deq3)) = Queue3 rj

Ri = (reachableRr′i/ R)
Rj = (reachableRr′j/ R).

By the definition of Queue1 and Queue3, we have

emp1 = [] = valOf(r′j(emp3)). (B.2)

Consider si ∈ reachableRr′i
sj ∈ reachableRr′j .

We have
emp1 = valOf(r′j(emp3)) by (B.2)

= valOf(sj(emp3)) by R expansive relation.

B.6 Proof of Proposition 5.4.16

Consider ri, rj ∈ dom R.
Let

(r′i, (emp1, enq1, deq1)) = Queue1 ri

(r′j , (emp3, enq3, deq3)) = Queue3 rj

Ri = (reachableRr′i/ R)
Rj = (reachableRr′j/ R).

Consider a ∈ N, q1 ∈ int list, q3 ∈ Qref such that
q1, q3 V-indistinguishableQ Ri, Rj.

Consider s0 ∈ dom Ri

s1 ∈ dom Rj.
Let (si, q′1) = enq1 (a, q1)s0

(sj, q′3) = enq3 (a, q3)s1.

We want to show that q′1,q′3 are related ∧ Ri(s0, si) ∧ Rj(s1, sj). Note that the first
conjunction means q′1= valOf(s′j(q′3)) for all s′i reachable from si and s′j reachable

115

from sj. Let s′i ∈ reachableRr′i and s′j ∈ reachableRr′j . By the definition of enq3, q′3 is
a new location that points to (a :: qin, qout) (where (qin, qout) = s1(q3)). Since
the invariant R is a conservative expansion, we have

valOf(s′j(q
′
3)) = valOf(sj(q′3)).

From the definition of enq1, we have q′1 = a:: q1. From our assumption we have
q1 = qin@rev qout. To show that q′1 and q′3 are related, we do the following.

q′1= a:: q1

= a:: (qin @ (rev qout)) by our assumption
= (a :: qin) @ (rev qout)
= valOf(sj(q′3)).

Hence, q′1 = valOf(s′j(q
′
3)) for all s′i reachable from si and s′j reachable from sj.

The side effects of enq3 satisfies Rj since (enq3(a, q)s)1 is an extension of s for
any a ∈ N, q ∈ Qref, and s ∈ S. It is clear that we have enq1 satisfies Ri. In
other words, we have Ri(s0, si) ∧ Rj(s1, sj).

Therefore , enq1, enq3 V-indistinguishableint*Q→Q Ri, Rj

B.7 Proof of Proposition 5.4.17

Consider ri, rj ∈ dom R.
Let

(r′i, (emp1, enq1, deq1)) = Queue1 ri

(r′j , (emp3, enq3, deq3)) = Queue3 rj

Ri = (reachableRr′i/ R)
Rj = (reachableRr′j/ R).

Consider q1 ∈ int list, q3 ∈ Qref such that
q1, q3 V-indistinguishableQ Ri, Rj.

In this proof we are only interested in the case where q1 6= [].
Consider s0 ∈ dom Ri

s1 ∈ dom Rj.
Let (si, (a, q′1)) = deq1 q1 s0

(sj, (b, q′3)) = deq3 q3 s1.

We want to show that q′1, q
′
3 are related ∧ a = b ∧ Ri(s0, si) ∧ Rj(s1, sj). Note

that the first conjunction means q′1= valOf(s′j(q′3)) for all s′i reachable from si and
s′j reachable from sj. Let s′i ∈ reachableRr′i and s′j ∈ reachableRr′j . First of all, we
need to define the internal representation of q3. Let

116

(qin, qout) = s1(q3).

We have three cases to consider

1. Case qout 6= []. Then by the definition of deq3, q′3 is a new location that
points to (qin, tail qout). Since the invariant R is a conservative expansion,
we have

valOf(s′j(q′3)) = valOf(sj(q′3)).
From our assumption we have q1 = qin@(rev qout). To show that q′1 and q′3
are related, we do the following.

q′1= rev(tail(rev(q1)))
= rev.tail.rev (qin @ (rev qout))
= rev.tail (qout @ (rev qin))
= rev ((tail qout) @(rev qin))
= qin @ (rev (tail qout))
= valOf(sj(q′3)).

Hence, q′1 = valOf(s′j(q′3)) for all s′i reachable from si and s′j reachable from
sj.

To prove a = b, we do the following.

a = head.rev q1

= head.rev (qin @ (rev qout)) by our assumption
= head (qout @ (rev qin))
= head qout by qout 6= []
= b

Finally, by the definitions of deq1, deq3 the side effects part of deq1, deq3

satisfy Ri, Rj, respectively. Hence we have Ri(s0, si) ∧ Rj(s1, sj).

2. Consider the case qin = [] ∧ qout = []. This implies that q1 = []. Therefore
we have a contradiction.

3. Consider the case qin 6= [] ∧ qout = []. By the definition of deq3, q′3 is a
new location that points to ([], tail (rev qin)). Since the invariant R is a
conservative expansion, we have

valOf(s′j(q
′
3)) = valOf(sj(q′3)).

From our assumption we have q1 = qin @ (rev qout) = qin. To show that
q′1 and q′3 are related, we do the following.

117

q′1= rev(tail(rev(q1)))
= rev(tail(rev(qin)))
= [] @ rev(tail(rev(qin)))
= valOf(sj(q′3)).

Hence, q′1 = valOf(s′j(q
′
3)) for all s′i reachable from si and s′j reachable from

sj.

To prove a = b, we have

a = head.rev q1

= head.rev (qin @ (rev qout))
= head(qout @ (rev qin))
= head (rev qin) by qout = []
= b by definition of deq3

The side effects part of deq3 satisfiesRj since we have ∀q ∈ dom s1.valOf(s1(q)) =
valOf(sj(q)). For deq1, it is clear that we have ∀q ∈ dom s0.valOf(s0(q)) =
valOf(si(q)). Therefore, we have Ri(s0, si) ∧ Rj(s1, sj).

118

Bibliography

[Abr91] J. R. Abrial. The B method for large software. specification, design
and coding (abstract). In Soren Prehn and Hans Toetenel, editors,
Proceedings of Formal Software Development Methods (VDM ’91),
volume 552 of LNCS, pages 398–405, Berlin, Germany, October 1991.
Springer.

[AHU87] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Data Struc-
tures and Algorithms. Addison-Wesley, 1987.

[AM91] Andrew W. Appel and David B. MacQueen. Standard ML of new
jersey. In J. Ma luszyński and M. Wirsing, editors, Proceedings of the
3rd Int. Symposium on Programming Language Implementation and
Logic Programming, PLILP91, Passau, Germany, Lecture Notes in
Computer Science, pages 1–13. Springer-Verlag, August 1991.

[AM97] Samson Abramsky and Guy McCusker. Call-by-value games. In Pro-
ceedings of CSL ’97, Lecture Notes in Computer Science. Springer-
Verlag, 1997. To appear.

[And64] Christian Andersen. An Introduction to ALGOL 60. Addison Wesley,
Reading, Massachusetts, 1964.

[AT 93] AT and T Bell Laboratories. The Standard ML of New Jersey Library
Reference Manual (Version 0.2), August 1993.

[Bur82] F. Warren Burton. Efficient functional implementation of FIFO
queues. Information Processing Letters, 14(5):205–206, July 1982.

[BW88] Richard Bird and Philip Wadler. Introduction to Functional Pro-
gramming. Prentice-Hall International Series in Computer Science.
Prentice-Hall International, 1988.

119

[CDCV81] Mario Coppo, Mariangiola Dezani-Ciancaglini, and B. Venneri. Func-
tional characters of solvable terms. Zeitschrift für Mathematische Lo-
gik und Grundlagen der Mathematik, 27:45–58, 1981.

[Cen96] Pietro Cenciarelli. Computational applications of calculi based on
monads. PhD thesis, University of Edinburgh, September 1996.

[CSC72] F. J. CORBAT, J. H. SALTZER, and C. T. CLINGEN. Multics–the
first seven years. In http://www.lilli.com/f7y.html, 1972.

[CW96] Mary Campione and Hathy Walrath. The Java Tutorial: O.O Pro-
gramming for the Internet. Addison Wesley, 1996.

[EM85] Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic Spe-
cification 1: Equations and Initial Semantics, volume 6 of EATCS
Monographs on Theoretical Computer Science. Springer-Verlag, New
York, N.Y., 1985.

[EM90] Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic Specific-
ation 2: Module Specifications and Constraints, volume 21 of EATCS
Monographs on Theoretical Computer Science. Springer-Verlag, New
York, N.Y., 1990.

[Fel87] Matthias Felleisen. The Calculi of λv-CS conversion: A Syntactic
Theory of Control and State in Imperative Higher-Order Programming
Languages. PhD thesis, Indiana University, 1987.

[Fil96] Andrzej Filinski. Controlling Effects. PhD thesis, Carnegie Mellon
University, May 1996.

[Fou95] Michael Fourman. queue.ml, 1995.

[Gab89] Richard P. Gabriel. The common lisp object system. AI Expert,
4(3):54–65, March 1989.

[GH90] Juan Guzmán and Paul Hudak. Single-threaded polymorphic lambda
calculus. In Proceedings, Fifth Annual IEEE Symposium on Logic in
Computer Science, Philadelphia, Pennsylvania, pages 333–343, June
1990.

[Gil97] Stephen Gilmore. Programming in Standard ML ’97: A Tutorial
Introduction. Technical Report ECS-LFCS-97-364, Laboratory for

120

Foundations of Computer Science, University of Edinburgh, Septem-
ber 1997.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50,
1987.

[Gir93] Jean-Yves Girard. On the unity of logic. Annals of Pure and Applied
Logic, 59:201–217, 1993.

[GJS97] J. Gosling, B. Joy, and G. Steele. The Java Language Specification.
Addison Wesley, 1997.

[Gri81] David Gries. The Science of Programming. Springer, New York, 1981.

[GTW78] J. A. Goguen, J. W. Thatcher, and E. G. Wagner. An initial algebra
approach to the specification of abstract data types. In R. T. Yeh, ed-
itor, Current Trends in Programming Methodology, Volume IV: Data
Structuring, pages 80–149, Englewood Cliffs, 1978. Prentice-Hall.

[Hen86] P. Henderson. Functional Programming, formal specification, and
rapid prototyping. IEEE Transactions on Software Engineering,
12(2):241–250, 1986.

[HM85] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and
concurrency. Jrnl. A.C.M., 23(1):137–161, January 1985.

[HMST95] Furio Honsell, Ian A. Mason, Scott Smith, and Carolyn Talcott.
A variable typed logic of effects. Information and Computation,
119(1):55–90, 15 May 1995.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Com-
munications of the ACM, 12(10):576–580, October 1969.

[HR95] Howard Huang and Uday Reddy. Type reconstruction for sci. In
David N. Turner, editor, Proceedings of the 1995 Glasgow Workshop
on Functional Programming, Ullapool, Scotland, 1995.

[Hug89] R. J. M. Hughes. Why functional programming matters. The Com-
puter Journal, 32(2):98–107, April 1989.

[KST94] Stefan Kahrs, Donald Sannella, and Andrzej Tarlecki. The Definition
of Extended ML. Technical Report ECS-LFCS-94-300, Laboratory for
Foundations of Computer Science, University of Edinburgh, August
1994.

121

[Ler93] Xavier Leroy. The caml light system, release 0.6 documentation and
user’s manual. In ftp://ftp.inria.fr/lang/caml-light/cl6refman.dvi.Z,
September 1993.

[LG88] Jon M. Lucassen and David K. Gifford. Polymorphic effect systems.
In Conference Record of the Fifteenth Annual ACM Symposium on
Principles of Programming Languages. ACM, ACM Press, January
1988.

[Luo94] Z. Luo. Computation and Reasoning: A Type Theory for Computer
Science. Oxford University Press, 1994.

[Man76] E. G. Manes. Algebraic Theories. Springer, New York, 1976.

[McC97a] Guy McCusker. Personal communication, 1997.

[McC97b] Guy McCusker. Personal communication, 1997.

[Mey88] Bertrand Meyer. Object-oriented Software Construction. Prentice
Hall, New York, N.Y., 1988.

[Mit90] John C. Mitchell. Type systems for programming languages. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, volume
B: Formal Models and Semantics, chapter 8, pages 365–458. North-
Holland, New York, N.Y., 1990.

[Mit96] John C. Mitchell. Foundations for Programming Languages. MIT
Press, Cambridge, 1 edition, 1996.

[ML86] P. Martin-Lof. Constructive mathematics and computer program-
ming. In C. A. R. Hoare and J. C. Shepherdson, editors, Mathemat-
ical Logic and Programming Languages, pages 167–184. Prentice Hall,
1986.

[Mog89] Eugenio Moggi. Computational lambda-calculus and monads. In Pro-
ceedings, Fourth Annual Symposium on Logic in Computer Science,
pages 14–23, Asilomar Conference Center, Pacific Grove, California,
5–8 June 1989. IEEE Computer Society Press.

[Mog91] Eugenio Moggi. Notions of computation and monads. Information and
Computation, 93:55–92, 1991. Proposes using the category-theoretic
notion of monad as a means of parametrizing programming-language
semantics by a notion of value-producing computation. This proposal

122

has been widely taken up in research on adding state constructs to
functional programming languages.

[Mog96] Eugenio Moggi. Representing V TLoE in Evaluation Logic. Technical
report, DISI, Univ. of Genova, April 1996.

[MS88] Albert R. Meyer and Kurt Sieber. Towards fully abstract semantics
for local variables. In Conference Record of the Fifteenth Annual
ACM Symposium on Principles of Programming Languages, pages
191–203, San Diego, California, January 13–15, 1988. ACM SIGACT-
SIGPLAN, ACM Press. Preliminary Report.

[MT92] I. Mason and C. Talcott. References, local variables, and operational
reasoning. In Proc. of 7th Annual Symposium on Logic in Computer
Science, 1992.

[MTH90] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML.
MIT Press, 1990.

[O’H90] P. W. O’Hearn. The semantics of non-interference: a natural ap-
proach. PhD thesis, Queen’s University, Kingston, Canada, 1990.

[Oka95] C. Okasaki. Amortization, lazy evaluation, and persistence: Lists with
catenation via lazy linking. In 36th Annual Symposium on Founda-
tions of Computer Science (FOCS’95), pages 646–654, Los Alamitos,
October 1995. IEEE Computer Society Press.

[Oka96] Chris Okasaki. Purely Functional Data Structures. PhD thesis, Carne-
gie Mellon University, September 1996.

[OT95] P. W. O’Hearn and R. D. Tennent. Parametricity and local variables.
Journal of the ACM, 42(3):658–709, May 1995.

[OTTP95] P. O’Hearn, R. Tennent, M. Takeyama, and A. J. Power. Syntactic
control of interference revisited. Elsevier Electronic Notes in Theor-
etical Computer Science, 1, 1995.

[Pau87] Lawrence Paulson. Logic and Computation: Interactive Proof with
Cambridge LCF. Cambridge, 1987. Cambridge Tracts in Theoretical
Computer Science, Volume 2.

[Pip97] Nicholas Pippenger. Pure versus impure Lisp. ACM Transactions on
Programming Languages and Systems, 19(2):223–238, March 1997.

123

[Pit91] A.M. Pitts. Evaluation logic. In G. Birtwistle, editor, IVth Higher
Order Workshop, Banff 1990. Springer, 1991.

[Plo77] Gordon Plotkin. LCF as a programming language. Theoretical Com-
puter Science, 5, 1977.

[Plo80] Gordon D. Plotkin. Lambda-definability in the full type hierarchy. In
Jonathan P. Seldin and J. Roger Hindley, editors, To H. B. Curry:
Essays on Combinatory Logic, Lambda Calculus and Formalism, pages
363–373. Academic Press, London, 1980.

[Plo83] G.D. Plotkin. Domains. Technical report, Dept. Comp. Sci., Uni-
versity of Edinburgh, 1983.

[PR97] John Power and Edmund Robinson. Premonoidal categories and no-
tions of computation. Mathematical Structures in Computer Science,
7(5):453–468, October 1997.

[PS93] Andrew M. Pitts and Ian D. B. Stark. Observable properties of higher
order functions that dynamically create local names, or: What’s new?
In Mathematical Foundations of Computer Science, Proc. 18th Int.
Symp., Gdańsk, 1993, volume 711 of Lecture Notes in Computer Sci-
ence, pages 122–141. Springer-Verlag, Berlin, 1993.

[PS98] Andrew Pitts and Ian Stark. Operational Reasoning for Functions
with Local State. In Gordon and Pitts, editor, Higher Order Opera-
tional Techniques in Semantics, pages 227–274. Cambridge University
Press, 1998.

[PW88] Lewis Pinson and Richard Wiener. An Introduction to Object-Oriented
Programming and Smalltalk. Addison-Wesley, Massachusetts, 1988.

[Red94] Uday S. Reddy. Passivity and independence. In Proceedings, Ninth
Annual IEEE Symposium on Logic in Computer Science, pages 342–
352, Paris, France, 4–7 July 1994. IEEE Computer Society Press.

[Rey78] J. C. Reynolds. Syntactic control of interference. In Conference Record
of the Fifth Annual ACM Symposium on Principles of Programming
Languages, pages 39–46. ACM Press, 1978.

[Rey81a] J. C. Reynolds. The craft of programming. Prentice-Hall Interna-
tional series in computer science, C. A. R. Hoare (Ed.). Prentice-Hall
International, Englewood Cliffs, NJ 07632, USA, 1981.

124

[Rey81b] John C. Reynolds. The essence of Algol. In J. W. de Bakker and
J. C. van Vliet, editors, Algorithmic Languages, pages 345–372, Am-
sterdam, 1981. North-Holland.

[Rey82] J. C. Reynolds. Idealized Algol and its specification logic. In D. Neel,
editor, Tools and Notions for Program Constructions, pages 121–161.
Cambridge University Press, 1982.

[Rey83] John C. Reynolds. Types, abstraction and parametric polymorphism.
In R. E. A. Mason, editor, Information Processing 83, pages 513–523,
Amsterdam, 1983. Elsevier Science Publishers B. V. (North-Holland).

[Rey89] J. C. Reynolds. Syntactic control of interference, part II. In Pro-
ceedings of ICALP ’89, LNCS 372, pages 704–722. Springer-Verlag,
1989.

[Rus98] C.V. Russo. Types for Modules. PhD thesis, University of Edinburgh,
Edinburgh UK, 1998.

[RV95] Jon G. Riecke and Ramesh Viswanathan. Isolating side effects
in sequential languages. In Conference Record of the 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL’95), pages 1–12, San Francisco, California, January
22–25, 1995. ACM Press.

[Sie96a] K. Sieber. Full abstraction for the second order subset of an ALGOL-
like language. Theoretical Computer Science, 168(1):155–212, Novem-
ber 1996.

[Sie96b] Kurt Sieber. Full abstraction for the second order subset of an
ALGOL-like language. Technical Report Feb8-7, Technical University
of Munich, February 8, 1996.

[Sif82a] J. Sifakis. A unified approach for studying the properties of transition
systems. Theoretical Computer Science, 18(3):227–258, June 1982.

[Sif82b] Joseph Sifakis. Global and local invariants in transition systems.
In Mogens Nielsen and Erik Meineche Schmidt, editors, Automata,
Languages and Programming, 9th Colloquium, volume 140 of Lecture
Notes in Computer Science, pages 510–522, Aarhus, Denmark, 12–
16 July 1982. Springer-Verlag.

125

[SRI91] V. Swarup, U. S. Reddy, and E. Ireland. Assignments for applicative
languages. In R. J. M. Hughes, editor, Functional Programming &
Computer Architecture, pages 192–214, Berlin, 1991. Springer-Verlag.

[Sta94] Ian Stark. Names and Higher-Order Functions. PhD thesis, Uni-
versity of Cambridge, December 1994. Also published as Technical
Report 363, University of Cambridge Computer Laboratory.

[Sta96] I. Stark. Categorical models for local names. J. Lisp and Symb.
Comp., 9(1):77–107, February 1996.

[Sta97] Ian Stark. Names, Equations, Relations: Practical Ways to Reason
about ‘new’. Technical Report BRICS-RS-97-39, BRICS, September
1997.

[Ste85] G. L. Steele. Common Lisp. Digital Press, Burlington, 1985.

[Sto77] J. E. Stoy. Denotational Semantics: The Scott-Strachey Approach
to Programming Language Semantics. MIT Press, Cambridge, Mas-
sachusetts, 1977.

[Str73] C. Strachey. The varieties of programming language. Monograph
PRG-10, Oxford University Computing Laboratory, Programming Re-
search Group, Oxford, UK, 1973.

[Str87] Bjarne Stroustrup. The C++ programming language. Addison-Wesley
series in computer science. Addison-Wesley, Reading, MA, USA, re-
printed with corrections edition, 1987.

[TJ92] J.-P. Talpin and P. Jouvelot. The type and effect discipline. In Proc. of
7th Annual Symposium on Logic in Computer Science, pages 162–173,
June 1992.

[Tur82] D. A. Turner. Recursion equations as a programming language. In
J. Darlington, P. Henderson, and D. A. Turner, editors, Functional
Programming and its Applications. Cambridge University Press, 1982.

[Tur86] D. A. Turner. Functional programming as executable specifications.
In C. A. R. Hoare and J. C. Shepherdson, editors, Mathematical Logic
and Programming Languages, pages 29–54. Prentice Hall, 1986.

[TWM95] David N. Turner, Philip Wadler, and Christian Mossin. Once upon
a type. In 7’th International Conference on Functional Programming

126

and Computer Architecture, pages 1–11, La Jolla, California, June
1995. ACM Press.

[Ull94] J. D. Ullman. Elements of ML Programming. Prentice-Hall, 1994.

[Wad90] Philip Wadler. Linear types can change the world! In Programming
Concepts and Methods, pages 561–581. North Holland, 1990.

[Wad92a] P. Wadler. Comprehending monads. Mathematical Structures in Com-
puter Science, 2:461–493, 1992.

[Wad92b] P. Wadler. The essence of functional programming. 19th POPL, pages
1–14, January 1992.

[Wal97] Lisa Walton. Monads web page, 1997.
http://www.cse.ogi.edu/̃ walton/monads.html.

[Wir77] N. Wirth. Modula: A language for modular multiprogramming. Soft-
ware – Practice and Experience, 7(1):3–35, January&February 1977.

[Wir88] Nikolaus Wirth. Programming in Modula-2. Springer, Berlin, 4 edi-
tion, 1988.

[Zei97] Stephen F. Zeigler. Comparing Development Costs of C and Ada. In
http://www.adauk.org.uk/pubs/zeigler.htm, 1997.

127

Index

σ∗τ , 79
[], 46
∗, 48
| |, 51
/, 56
η, 48
≤σ→τ , 58
([]), 46, 51
[[]], 46, 50

Ada vs C, 71
AllStates, 23
amortized bound, 78

B-Notation, 71
bug/feature ratio, 71

Can, 35
Canσ, 35
Canσ(Γ), 35
C-const-throughout Q, 26
C-indistinguishable throughout Q, 26
C-indistinguishable throughoutσ R, 59
C-indistinguishable withinσ R1, R2, 65
CMLiML

terms, 46
type expressions, 46
type system, 47

computational invariant, 54
cond, 49
const-throughoutσ R, 59
const-within

for Queue1, 109

for Queue3, 94
context, 22

defined-in, 23
Defn-R, 53
dom, 55
dom

in Queue example, 85
dom, 23

E-op-indistinguishable throughout Q,
37

Exp, 35
Expσ, 35
Expσ(Γ), 35
Extended ML, 71

iML
operational semantics, 35
terms, 33
type expressions, 33
type system, 34

indistinguishability, 24
between tuples of values, 88

indistinguishable
between Queue1 and Queue3, 97

indistinguishable throughout R, 59
int list, 79
invariant

in spring example, 20

L

a set of locations, 23

128

logical relation, 57
in relating Set representations, 74

lookup, 49
lt, 49
L-value, 44

M, 48
metalanguage

computational λC , 45
Multics, 70
myCtxt, 42

N , 23
new, 49
new, 47
new, 64
New Jersey libraries

Hash library, 75
no copying, 78

observational equivalence, 22
opaque data structure, 84
s,M ⇓ C,s′, 35

partial bijection, 38
plus, 49

Q
reachable set, 23

Q, 23
Qref, 86
Qref, 85
QSIG, 76
Queue implementations, 77
Queue1, 79
Queue2, 80
Queue3, 92
QueueFour, 89

R

in Queue1 and Queue3, 85
ran, 55
reachable, 55
reachable, 55
reachable set, 23
R-value, 44

S, 23
semi-formal technique

example, 31, 39
examples, 62
explanation, 30

set
relations between two implement-

ations, 74
set

signature, 72
ADT, 72
algebraic properties, 73

SetOne

x structure, 73
SetTwo

x structure, 73
single-threadedness, 76
strong monad, 44

T

in Queue1 and Queue2, 81
T1, 86
T2, 86
T3, 94
transition relation

pairs of, 65
transition system, 55

regular, 55
typed applicative structure, 57

update, 49

valOf

129

in Queue example, 81
V-const-throughout Q

for functions of ground types, 28
for integer values, 27
for location values, 24

V-indistinguishable throughout Q
for functions of ground types, 28
for integer values, 27
for location values, 24

V-indistinguishable throughoutσ R, 59
V-indistinguishable withinσ R1, R2, 65
V-indistinguishableint*Q→Q

in Queue1 and Queue3, 98
in Queue3, 95

V-indistinguishableQ
in Queue1 and Queue3, 98
in Queue3, 94

V-indistinguishableQ→int*Q

in Queue1 and Queue3, 99
in Queue3, 95

V-op-indistinguishable throughout Q,
37

130

